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Preface to the Secon
Edition

The impetus for this second edition is a desire to include some of the new techniques that have
emerged in recent years and also extend the scope of the book to cover certain areas that were
under-represented (even neglected) in the first edition. In this second volume there are
three topics that fall into the first category (density functional theory, bioinformatics/ protein
structure analysis and chemoinformatics) and one main area in the second category
(modelling of the solid state). In addition, of course, a new edition provides an opportunity
to take a critical view of the text and to re-organise and update the material. Thus whilst
much remains from the first edition, and this second book follows much the same path
through the subject, readers familiar with the first edition will find some changes which I
hope they will agree are for the better.

As with the first edition we initially consider quantum mechanics, but this is now split into
two chapters. Thus Chapter 2 provides an introduction to the ab initio and semi-empirical
approaches together with some examples of the uses of quantum mechanics. Chapter 3
covers more advanced aspects of the ab initio approach, density functional theory and the
particular problems of the solid state. Molecular mechanics is the subject of Chapter 4
and then in Chapter 5 we consider energy minimisation and other ’static’ techniques.
Chapters 6, 7 and 8 deal with the two main simulation methods (molecular dynamics and
Monte Carlo). Chapter 9 is devoted to the conformational analysis of ‘small’ molecules
but also includes some topics (e.g. .cluster analysis, principal components analysis) that
are widely used in informatics. In Chapter 10 the problems of protein structure prediction
and protein folding are considered; this chapter also contains an introduction to some of
the more widely used methods in bioinformatics. In Chapter 11 we draw upon material
from the previous chapters in a discussion of free energy calculations, continuum solvent
models, and methods for simulating chemical reactions and defects in solids. Finally,
Chapter 12 is concerned with modelling and chemoinformatics techniques for discovering
and designing new molecules, including database searching, docking, de novo design,
quantitative structure-activity relationships and combinatorial library design.

As in the first edition, the inexorable pace of change means that what is currently considered
‘cutting edge” will soon become routine. The examples are thus chosen primarily because
they illuminate the underlying theory rather than because they are the first application of
a particular technique or are the most recent available. In a similar vein, it is impossible
in a volume such as this to even attempt to cover everything and so there are undoubtedly
areas which'are under-represented. This is not intended to be a definitive historical account
or a review of the current state-of-the-art. Thus, whilst I have tried to include many literature
references it is possible that the invention of some technique may appear to be incorrectly
attributed or a “classic” application may be missing. A general guiding principle has been
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to focus on those techniques that are in widespread use rather than those which are the
province of one particular research group. Despite these caveats I hope that the coverage
is sufficient to provide a solid introduction to the main areas and also that those readers
who are ‘experts’” will find something new to interest them.

A Companion Web Site accompanies Molecular Modelling:
Principles and Applications, Second Edition by Andrew Leach

Visit the Molecular Modelling Companion Web Site at www.booksites.net/leach

The website contains general information about the book, up-to-date hyperlinks to
related chemistry sources on the web, reference copies of appendices of relevant
acronyms, and twenty-six full screen, full-colour graphical representations of molecular

structures.

Preface to the First Ed

Molecular modelling used to be restricted to a small number of scientists who had access to
the necessary computer hardware and software. Its practitioners wrote their own programs,
managed their own computer systems and mended them when they broke down. Today’s
computer workstations are much more powerful than the mainframe computers of even a
few years ago and can be purchased relatively cheaply. It is no longer necessary for the
modeller to write computer programs as software can be obtained from commercial soft-
ware companies and academic laboratories. Molecular modelling can now be performed
in any laboratory or classroom.

This book is intended to provide an introduction to some of the techniques used in
molecular modelling and computational chemistry, and to illustrate how these techniques
can be used to study physical, chemical and biological phenomena. A major objective is
to provide, in one volume, some of the theoretical background to the vast array of methods
available to the molecular modeller. I also hope that the book will help the reader to select
the most appropriate method for a problem and so make the most of his or her modelling
hardware and software. Many modelling programs are extremely simple to use and are
often supplied with seductive graphical interfaces, which obviously helps to make
modelling techniques more accessible, but it can also be very easy to select a wholly
inappropriate technique or method. ‘

Most molecular modelling studies involve three stages. In the first stage a model is selected
to describe the intra- and inter-molecular interactions in the system. The two most common
models that are used in molecular modelling are quantum mechanics and molecular
mechanics. These models enable the energy of any arrangement of the atoms and molecules
in the system to be calculated, and allow the modeller to determine how the energy of the
system varies as the positions of the atoms and molecules change. The second stage of a
molecular modelling study is the calculation itself, such as an energy minimisation, a
molecular dynamics or Monte Carlo simulation, or a conformational search. Finally, the
calculation must be analysed, not only to calculate properties but also to check that it has
been performed properly.

The book is organised so that some of the techniques discussed in later chapters refer to
material discussed earlier, though 1 have tried to make each chapter as independent of
the others as possible. Some readers may therefore be pleased to know that it is not essential
to completely digest the chapters on quantum mechanics and molecular mechanics in order
to read about methods for searching conformational space! Readers with experience in one
Oor more areas may, of course, wish to be more selective.

Ihave tried to provide as much of the underlying theory as seems appropriate to enable the
reader to understand the fundamentals of each method. In doing so I have assumed some
background knowledge of quantum mechanics, statistical mechanics, conformational
analysis and mathematics. A reader with an undergraduate degree in chemistry should
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have covered this material, which should also be familiar to many undergraduates in the
final year of their degree course. Full discussion can be found in the suggestions for further
reading at the end of each chapter. I have also attempted to provide a reasonable selection of
original references, though in a book of this scope it is obviously impossible to provide a
comprehensive coverage of the literature. In this context, I apologise in advance if any tech-
nique is inappropriately attributed.

The range of systems that can be considered in molecular modelling is extremely broad,
from isolated molecules through simple atomic and molecular liquids to polymers, bio-
logical macromolecules such as proteins and DNA and solids. Many of the techniques are
illustrated with examples chosen to reflect the breadth of applications. It is inevitable that,
for reasons of space, some techniques must be dealt with in a rudimentary fashion (or not

at all), and that many interesting and important applications cannot be described. Molecular |

modelling is a rapidly developing discipline and has benefited from the dramatic improve-
ments in computer hardware and software of recent years. Calculations that were major
undertakings only a few years ago can now be performed using personal computing

facilities. Thus, examples used to indicate the ‘state of the art’ at the time of writing will

invariably. be routine within a short time.

Symbols and Physical

Constants

This list contains the most frequently used symbols and physical constants ordered
according to approximate appearance in the text.

X Lagrange multiplier
7,0, ¢ spherical polar coordinates
ik orthogonal unit vectors along x, y, z axes

o, Euler angles
{xyor¥ arithmetic mean value of x

1 unit matrix

i square root of —1

T unit vector

a exponent in Gaussian function (normal dlstrlbutlon)

a standard deviation

o’ variance

h Planck’s constant (6.626 18 x 107>*] s)

I h/2m (1.05459 x 107*]s) _

m particle mass

Y molecular wavefunction

% P )0* + PP + 8702 (‘del-squared’)

H Hamiltonian

P spatial orbital

a, 3 spin functions ('spin up’ and "spin down’)

X spin orbital (product of spatial orbital and a spin function)
¢ basis function/atomic orbital (usually labelled bur by Or, b5)
dvordr indicates an integral over all spatial coordinates

do indicates an integral over all spin coordinates

dr indicates an integral over all spatial and spin coordinates
rii distances between two particles i and j (usually electrons in quantum mechanics)
Rag distance between two nuclei A and B

bij Kronecker delta (6; = 1if i = j; 6; = 0if i # j)

A .exchange operator

5 Coulomb operator

Heoe core Hamiltonian operator

F Fock matrix

S " overlap matrix

Sij overlap integral between orbitals i and j

7 Fock operator

C matrix of basis function coefficients
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XX

G metric matrix (in distance geometry)

i ith principal component

z variance-covariance matrix

A coupling parameter (used in free energy calculations)
W) weighting function used in umbrella sampling

N number density (= N/V)

SaB similarity coefficient between two molecules A and B

Dag ‘distance’ between two molecules A and B

o Hammett substitution constant

p partition coefficient of solute between two solvents

T log(P,/Py) for a substituent X relative to a hydrogen substituent
r? squared correlation coefficient

R? squared correlation coefficient in multiple linear regression
Q? cross-validated R?
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CHAPTER ONE

Useful Concepts in
Molecular Modellin:

1.1 Introduction

What is molecular modelling? ‘“Molecular’ clearly implies some connection with molecules.
The Oxford English Dictionary defines ‘model’ as ‘a simplified or idealised description of a
system or process, often in mathematical terms, devised to facilitate calculations and predic-
tions’. Molecular modelling would therefore appear to be concerned with ways to mimic the
behaviour of molecules and molecular systems. Today, molecular modelling is invariably
associated with computer modelling, but it is quite feasible to perform some simple
molecular modelling studies using mechanical models or a pencil, paper and hand calcula-
tor. Nevertheless, computational techniques have revolutionised molecular modelling to the
extent that most calculations could not be performed without the use of a computer. This is
not to imply that a more sophisticated model is necessarily any better than a simple one, but
computers have certainly extended the range of models that can be considered and the
systems to which they can be applied.

The ‘models’ that most chemists first encounter are molecular models such as the “stick’
models devised by Dreiding or the ‘space filling’ models of Corey, Pauling and Koltun
(commonly referred to as CPK models). These models enable three-dimensional represen-
tations of the structures of molecules to be constructed. An important advantage of these
models is that they are interactive, enabling the user to pose ‘what if ..." or “is it possible to
.. questions. These structural models continue to play an important role both in teaching
and in research, but molecular modelling is also concerned with more abstract models,
many of which have a distinguished history. An obvious example is quantum mechanics,
the foundations of which were laid many years before the first computers were
_ constructed.

There is a lot of confusion over the meaning of the terms ‘theoretical chemistry’, ‘computa-
tional chemistry” and “molecular modelling’. Indeed, many practitioners use all three labels
to describe aspects of their research, as the occasion demands! “Theoretical chemistry’ is
often considered synonymous with quantum mechanics, whereas computational chemistry
encompasses not only quantum mechanics but also molecular mechanics, minimisation,
simulations, conformational analysis and other computer-based methods for understanding
and predicting the behaviour of molecular systems. Molecular modellers use all of these
methads and so we shall not concern ourselves with semantics but rather shall consider
any theoretical or computational technique that provides insight into the behaviour of
molecular systems to be an example of molecular modelling. If a distinction has to be
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made, it is in the emphasis that molecular modelling places on the representation and
manipulation of the structures of molecules, and properties that are dependent upon
those three-dimensional structures. The prominent part that computer graphics has
played in molecular modelling has led some scientists to consider molecular modelling as
little more than a method for generating ‘pretty pictures’, but the technique is now firmly
established, widely used and accepted as a discipline in its own right.

A closely related subject is molecular informatics. This is a rather new term, making a precise
definition difficult, but it is usually considered to encompass two disciplines: chemoinfor-
matics and bioinformatics. Of these two areas, chemoinformatics (also written cheminfor-
matics) is the newer name but the older discipline; chemists have been using computers
to store, retrieve and manipulate information about molecules almost since computers

were invented. Both chemoinformatics and bioinformatics have risen to prominence primar-

ily as a consequence of the introduction of new experimental techniques. For the chemist
these experimental techniques are combinatorial library synthesis and high-throughput
screening, which enable very large numbers of molecules to be synthesised and tested; for
the biologist they are the automated sequencing machines that are being used to determine
the human genome. A characteristic feature of molecular informatics is that it is concerned
with information about large numbers of molecules, much larger than is typically the case
for a traditional molecular modelling study. For this reason, informatics was initially
more concerned with less complex representations of molecules that did not fully represent
their three-dimensional properties. However, even this distinction is now being eroded and
there is increasing use made of more traditional molecular modelling techniques within
informatics.

In the rest of this chapter we shall discuss a number of concepts and techniques that
are relevant to many areas of molecular modelling and so do not sit comfortably in any
individual chapter. We will also define some of the terms that will be used throughout
the book. :

1.2 Coordinate Systems

It is obviously important to be able to specify the positions of the atoms and/or molecules

in the system to a modelling program™. There are two common ways in which this can be

done. The most straightforward approach is to specify the Cartesian (x,y, z) coordinates of
all the atoms present. The alternative is to use internal coordinates, in which the position
of each atom is described relative to other atoms in the system. Internal coordinates are
usually written as a Z-matrix. The Z-matrix contains one line for each atom in the
system. A sample Z-matrix for the staggered conformation of ethane (see Figure 1.1) is

*For a system containing a large number of independent molecules it is common to use the
term ‘configuration’ to refer to each arrangement; this use of the word ‘configuration’ is not to be con-
fused with its standard chemical meaning as a different bonding arrangement of the atoms in a
molecule.
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Fig. 1.1: The staggered conformation of ethane.

as follows:
1 C
2 C 154 1
3 H 10 1 1095 2
4 H 10 2 1095 1 1800 3
5 H 10 1 1095 2 600 4
6 H 10 2 1095 1 —600 5
7 H 10 1 1095 2 1800 6
8 H 10 2. 1095 1 600 7

In the first line of the Z-matrix we define atom 1, which is a carbon atom. Atom number 2 is
also a carbon atom that is a distance of 1.54 A from atom 1 (columns 3 and 4). Atom 3 is a
hydrogen atom that is bonded to atom 1 with a bond length of 1.0 A. The angle formed
by atoms 2-1-3 is 109.5°, information that is specified in columns 5 and 6. The fourth
atom is a hydrogen, a distance of 1.0 A from atom 2, the angle 4-2-1 is 109.5°, and the torsion
angle (defined in Figure 1.2) for atoms 4-2-1-3 is 180°. Thus for all except the first three
atoms, each atom has three internal coordinates: the distance of the atom from one of the
atoms previously defined, the angle formed by the atom and two of the previous atoms,
and the torsion angle defined by the atom and three of the previous atoms. Fewer internal
coordinates are required for the first three atoms because the first atom can be placed
anywhere in space (and so it has no internal coordinates); for the second atom it is only
necessary to specify its distance from the first atom and then for the third atom only a
distance and an angle are required.

It is always possible to convert internal to Cartesian coordinates and vice versa. However,
one coordinate system is usually preferred for a given application. Internal coordinates
can usefully describe the relationship between the atoms in a single molecule, but Cartesian
coordinates may be more appropriate when describing a collection of discrete molecules.
Internal coordinates are commonly used as input to quantum mechanics programs, whereas
calculations using molecular mechanics are usually done in Cartesian coordinates. The total
number of coordinates that must be specified in the internal coordinate system is six fewer
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Fig. 1.2: A torsion angle A-B-C-D is defined as the angle between the planes A, B, Cand B, C, D. A torsion angle
can vary through 360° although the range —180° to +180° is most commonly used. We shail adopt the IUPAC
definition of a torsion angle in which an eclipsed conformation corresponds to a torsion angle of 0° und a trans or
anti conformation to a torsion angle of 180°. The reader should note that this may not correspond to some of the
definitions used in the literature, where the trans arrangerent is defined as a torsion angle of 0°. If one looks along
the bond B—C, then the torsion angle is the angle through which it is necessary to rotate the bond AB in a clockwise
sense in order to superimpose the two planes, as shown.

than the number of Cartesian coordinates for a non-linear molecule. This is because we are at
liberty to arbitrarily translate and rotate the system within Cartesian space without changing
the relative positions of the atoms.

1.3 Potential Energy Surfaces

In molecular modelling the Born-Oppenheimer approximation is invariably assumed to
operate. This enables the electronic and nuclear motions to be separated; the much smaller
mass of the electrons means that they can rapidly adjust to any change in the nuclear posi-
tions. Consequently, the energy of a molecule in its ground electronic state can be considered
a function of the nuclear coordinates only. If some or all of the nuclei move then the energy
will usually change. The new nuclear positions could be the result of a simple process such
as a single bond rotation or it could arise from the concerted movement of a large number of
atoms. The magnitude of the accompanying rise or fall in the energy will depend upon the
type of change involved. For example, about 3 kcal/mol is required to change the covalent
carbon-carbon bond length in ethane by 0.1 A away from its equilibrium value, but only
about 0.1kcal/mol is required to increase the non-covalent separation between two argon
atoms by 1 A from their minimum energy separation. For small isolated molecules, rotation
about single bonds usually involves the smallest changes in energy. For example, if we rotate
the carbon~-carbon bond in ethane, keeping all of the bond lengths and angles fixed in value,
then the energy varies in an approximately sinusoidal fashion as shown in Figure 1.3, with
minima at the three staggered conformations. The energy in this case can be considered a
function of a single coordinate only (i.e. the torsion angle of the carbon-carbon bond),
and as such can be displayed graphically, with energy along one axis and the value of the
coordinate along the other.
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Fig. 1.3 Variation in energy with rotation of the carbon-carbon bond in ethane.

Changes in the energy of a system can be considered as movements on a multidimensional
‘surface” called the energy surface. We shall be particularly interested in stationary points on
the energy surface, where the first derivative of the energy is zero with respect to the internal
or Cartesian coordinates. At a stationary point the forces on all the atoms are zero. Minimum
points are one type of stationary point; these correspond to stable structures. Methods for
locating stationary points will be discussed in more detail in Chapter 5, together with a

more detailed consideration of the concept of the energy surface.

1.4 Molecular Graphics

Computer graphics has had a dramatic impact upon molecular modelling. It should always
be remembered, however, that there is much more to molecular modelling than computer
graphics. It is the interaction between molecular graphics and the underlying theoretical
methods that has enhanced the accessibility of molecular modelling methods and assisted
the analysis and interpretation of such calculations.

Molecular graphics systems have evolved from delicate and temperamental pieces of equip-
ment that cost hundreds of thousands of pounds and occupied entire rooms, to today’s
imexpensive workstations that fit on or under a desk and yet are hundreds of times more
powerful. Over the years, two different types of molecular graphics display have been
u§ed in molecular modelling. First to be developed were vector devices, which construct
pictures using an electron gun to draw lines (or dots) on the screen, in a manner similar
to an oscilloscope. Vector devices were the mainstay of molecular modelling for almost
two decades but have now been largely superseded by raster devices. These divide the
screen into a large number of small “dots’, called pixels. Each pixel can be set to any of a
large number of colours, and so by setting each pixel to the appropriate colour it is possible
to generate the desired image.

}\’Ioieculves: are most commonly represented on a computer graphics screen using ’“stick” or
SPace—ﬁll;ng' representations, which are analogous to the Dreiding and Corey-Pauling-
Koltun (CPK) mechanical models. Sophisticated variations on these two basic types have
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been developed, such as the ability to colour molecules by atomic number and the inclusion
of shading and lighting effects, which give ‘solid” models a more realistic appearance. Some
of the commonly used molecular representations are shown in Figure 1.4 (colour plate
section). Computer-generated models do have some advantages when compared with
their mechanical counterparts. Of particular importance is the fact that a computer model
can be very easily interrogated to provide quantitative information, from simple geometrical
measures such as the distance between two atoms to more complex quantities such as the
energy or surface area. Quantitative information such as this can be very difficult if not
impossible to obtain from a mechanical model. Nevertheless, mechanical models may still
be preferred in certain types of situation due to the ease with which they can be manipulated
and viewed in three dimensions. A computer screen is inherently two-dimensional,

whereas molecules are three-dimensional objects. Nevertheless, some impression of the.

three-dimensional nature of an object can be represented on a computer screen using
techniques such as depth cueing (in which those parts of the object that are further away
from the viewer are made less bright) and through the use of perspective. Specialised
hardware enables more realistic three-dimensional stereo images to be viewed. In the
future “virtual reality’ systems may enable a scientist to interact with a computer-generated
molecular model in much the same way that a mechanical model can be manipulated.

Even the most basic computer graphics program provides some standard facilities for
the manipulation of models, including the ability to translate, rotate and “zoom’ the model
towards and away from the viewer. More sophisticated packages can provide the scientist
with quantitative feedback on the effect of altering the structure. For example, as a bond is
rotated then the energy of each structure could be calculated and displayed interactively.

For large molecular systems it may not always be desirable to include every single atom in

the computer image; the sheer number of atoms can result in a very confusing and cluttered -

picture. A clearer picture may be achieved by omitting certain atoms (e.g. hydrogen atoms)
or by representing groups of atoms as single ‘pseudo-atoms’. The techniques that have been

developed for displaying protein structures nicely illustrate the range of computer graphics’

representation possible (the use of computational techniques to investigate the structures of
proteins is considered in Chapter 10). Proteins are polymers constructed from amino acids,
and even a small protein may contain several thousand atoms. One way to produce a clearer
picture is to dispense with the explicit representation of any atoms and to represent the
protein using a ‘ribbon’. Proteins are also commonly represented using the cartoon
drawings developed by ] Richardson, an example of which is shown in Figure 1.5 (colour
plate section). The cylinders in this figure represent an arrangement of amino acids called
an a-helix, and the flat arrows an alternative type of regular structure called a f-strand.
The regions between the cylinders and the strands have no such regular structure and are
represented as “tubes’.

1.5 Surfaces

Many of the problems that are studied using molecular modelling involve the non-covalent
interaction between two or more molecules. The study of such interactions is often facilitated
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Fig. 1.6: The van der Waals (vdw) sutface of a molecule corresponds to the outward-facing sutfaces of the van der

Waals spheres Of the aloms. The molecular surface is generated by rolling a spherical probe (usually of radius 144
to represent i water molecule) on the van der Waals surface. The molecular surface is constructed from contact and
re-entrant sutface elements. The centre of the probe traces out the accessible surface.

by examining the van der Waals, molecular or accessible surfaces of the molecule. The van der
Waals sutface is simply constructed from the overlapping van der Waals spheres of the atoms,
Figure 1.6. It corresponds to a CPK or space-filling model. Let us now consider the approach of
a small “probe’ molecule, represented as a single van der Waals sphere, up to the van der
Waals surface of a larger molecule. The finite size of the probe sphere means that there will
be regions of “dead space’, crevices that are not accessible to the probe as it rolls about on
the larger molecule. This is illustrated in Figure 1.6. The amount of dead space increases
with the size of the probe; conversely, a probe of zero size would be able to access all of the
crevices. The molecular surface [Richards 1977] is traced out by the inward-facing part of the
probe sphere as it rolls on the van der Waals surface of the molecule. The molecular surface
contains two different types of surface element. The contact surface corresponds to those
regions where the probe is actually in contact with the van der Waals surface of the “target’.
The re-entrant surface regions occur where there are crevices that are too narrow for the
probe molecule to penetrate. The molecular surface is usually defined using a water molecule
as the probe, represented as a sphere of radius 1.4 A.

The accessible surface is also widely used. As originally defined by Lee and Richards [Lee and
Richards 1971] this is the surface that is traced by the centre of the probe molecule as it rolls
on the van der Waals surface of the molecule (Figure 1.6). The centre of the probe molecule
can thus be placed at any point on the accessible surface and not penetrate the van der Waals
spheres of any of the atoms in the molecule.

Widely used algorithms for calculating the molecular and accessible surfaces were devel-
oped by Connolly [Connolly 1983a,b], and others [e.g. Richmond 1984] have described
formulae for the calculation of exact or approximate values of the surface area. There are
Mmany ways to represent surfaces, some of which are illustrated in Figure 1.7 (colour plate
section). As shown, it may also be possible to endow a surface with a translucent quality,
which enables the molecule inside the surface to be displayed. Clipping can also be used
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to cut through the surface to enable the “inside’ to be viewed. In addition, properties such as
the electrostatic potential can be calculated on the surface and represented using an appro-
priate colour scheme. Useful though these representations are, it is important to remember
that the electronic distribution in a molecule formally extends to infinity. The ‘hard sphere’
representation is often very convenient and has certainly proved very valuable, but it may
not be appropriate in all cases [Rouvray 1997, 1999, 2000].

1.6 Computer Hardware and Software

One cannot fail to be amazed at the pace of development in the computer industry, where the
ratio of performance-to-price has increased by an order of magnitude every five years or so.
The workstations that are commonplace in many laboratories now offer a real alternative to
centrally maintained ‘supercomputers’ for molecular modelling calculations, especially as a
workstation or even a personal computer can be dedicated to a single task, whereas the super-
computer has to be shared with many other users. Nevertheless, in the immediate future
there will always be some calculations that require the power that only a supercomputer
can offer. The speed of any computer system is ultimately constrained by the speed at
which electrical signals can be transmitted. This means that there will come a time when
no further enhancements can be made using machines with ‘traditional’ single-processor
serial architectures, and parallel computers will play an ever more important role.

A parallel computer couples processors together in such a way that a calculation is divided
into small pieces with the results being combined at the end. Some calculations are more
amenable to parallel processing than others, and a significant amount of effort is being
spent converting existing algorithms to run efficiently on parallel architectures. In some
cases completely new methods have been developed to take maximum advantage of the
opportunities of parallel processing. The low cost of personal computer chips means that
large ‘farms” of processors can be constructed to give significant computing power for
relatively small outlay.

To perform molecular modelling calculations one also requires appropriate programs (the
software). The software used by molecular modellers ranges from simple programs that
perform just a single task to highly complex packages that integrate many different methods.
There is also an extremely wide varjation in the price of software! Some programs have been
so widely used and tested that they can be considered to have reached the status of a ‘gold
standard’ against which similar programs are compared. One hesitates to specify such
programs in print, but three items of software have been so widely used and cited that
they can safely be afforded the accolade. These are the Gaussian series of programs for per-
forming ab initio quantum mechanics, the MOPAC/AMPAC programs for semi-empirical
quantum mechanics and the MM2 program for molecular mechanics.

Various pieces of software were used to generate the data for the examples and illustrations
throughout this book. Some of these were written specifically for the task; some were freely
available programs; others were commercial packages. I have decided not to describe
specific programs in any detail, as such descriptions rapidly become outdated. Nevertheless,
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all items of software are accredited where appropriate. Please note that the use of any
particular piece of software does not imply any recommendation!

1.7 Units of Length and Energy

It will be noted that our Z-matrix for ethane has been defined using the angstrom as the unit of
length (1A=10" m =100 pm). The dngstrdm is a non-SI unit but is a very convenient one to
use, as most-bond lengths are of the order of 1-2 A. One other very common non-SI unit found
in the molecular modelling literature is the kilocalorie (1 kcal =4.1840 kJ). Other systems of
units are employed in other types of calculation, such as the atomic units used in quantum
mechanics (discussed in Chapter 2). It is important to be aware of, and familiar with, these
non-standard units as they are widely used in the literature and throughout this book.

1.8 The Molecular Modelling Literature

The number of scientific papers concerned with molecular modelling methods is rising
rapidly, as is the number of journals in which such papers are published. This reflects the
tremendous diversity of problems to which molecular modelling can be applied and the
ever-increasing availability of molecular modelling methods. It does, however, mean that
it can be very difficult to remain up to date with the field. A number of specialist journals
are devoted to theoretical chemistry, computational chemistry and molecular modelling,
each with their own particular emphasis. Relevant papers are also published in the more
‘general’ journals, and there are now a number of books covering aspects of molecular
modelling, some aimed at the specialist reader, others at the beginner. Many scientists are
now fortunate to have access to electronic catalogues of publications which can be searched
to find relevant papers. As many journals are now available over the internet it is possible to
perform a literature search and obtain copies of the relevant papers without even having to
leave the office. Some of the journals which are devoted to short reviews of recent develop-
ments often include molecular modelling sections (such as the “Current Opinion’ series); in
others, useful review articles appear on an occasional basis. One particularly valuable sou/rce
of 'informatio,n on molecular modelling methods is the Reviews in Computational Chemistry,

edited by Lipkowitz and Boyd, beginning in 1990 (see Further Reading). Each of these/
volumes contains chapters on a variety of subjects, each written by an appropriate expert.
A recent addition is the Encyclopaedia of Computational Chemistry by Schleyer et al. (1998)
(see Further Reading), which contains many chapters that cover a wide range of topics.

1.9 The Internet

In the first edit'ion of this book T wrote, ‘A major use of the Internet is for electronic mail, but
extremely rapid growth is being observed in other areas, particularly the “World-Wide

~ Web” (WWW) ..’ Sucha phrase seems an understatement; despite the ‘hype’, the Internet

has certainly made a dramatic impact, not least on the scientific community, where its
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origins lie. Anything written about the Internet is almost certain to become obsolete more
rapidly than any other topic in this book and so this section will be brief. I will assume
that all readers of this book will be familiar with the use of a web browser and the concept
of a hyperlink, which enables documents to be linked together. The URL (Uniform Resource
Locator) is the currency of the WWW, being the ‘electronic address” which enables the
particular item to be identified. Most documents are still written using HTML (HyperText
Markup Language) but increasingly incorporate more sophisticated features. Given the
tremendous growth in the Web it is important to be able to locate relevant information.
This is the role of the Internet search engines, which can be used to identify relevant sites
of interest via some form of keyword search. Within the molecular modelling context,
several trends can be noted. Whilst the Web was initially used to distribute mostly textual
information, it is increasingly used for much more sophisticated applications. Interactive
molecular graphics are a feature of many sites. Some sites enable calculations or database
searches to be performed via the Web, with the results being delivered interactively or via
email. This is particularly true for ‘intranets’ within an organisation. XML (eXtensible
Markup Language) is likely to play an increasingly important role in the ‘intelligent’
exchange of information over the Web, especially in specialist areas such as chemistry
[Murray-Rust and Rzepa 1999]. Several “electronic conferences’ have been held with partici-
pants from many different countries. Perhaps the only prediction that one can safely make
about the Web is that it is here to stay and its use will continue to grow.

1.10 Mathematical Concepts

A full appreciation of all of the techniques of molecular modelling would require a

mathematical treatment beyond that appropriate to a book of this size and scope. However,

a proper understanding does benefit from some knowledge of mathematical concepts such
as vectors, matrices, differential equations, complex numbers, series expansions and Lagran-
gian multipliers, and some very elementary statistical concepts. There is only space in this
book for a cursory introduction to these mathematical concepts and ideas, with very brief
descriptions and some key results. The suggestions for further reading provide detaile
background information on all of the mathematical topics required. ‘

1.10.1 Series Expansions

There are various series expansions that are useful for approximating functions. Particularly
important is the Taylor series: if f(x) is a continuous, single-valued function of x with contin-
uous derivatives f'(x), f”(x), . .., then we can expand the function about a point x, as follows:

x X X"
S0 +2) =f(x0) + 37 f (%) + gf"(xo) + 3—!f"'(x0) ot mf(")(xo) (11)

Taylor series are often truncated after the term involving the second derivative, which
makes the function vary in a quadratic fashion. This is a common assumption in many of
the minimisation algorithms that we will discuss in Chapter 5.
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A Maclaurin series is a specific form of the Taylor series for which x; = 0. Some standard
expansions in Taylor series form are:

Ex—]_ x2 x3 x4
= +x+2—!+§+a+"' (1.2)
. _ x3 x5
smx—xf§+§—--- (1.3)
2 3 4
X X X
In(1 =x—— 4+ 4...
n(l+x)=x 2+3 4+. (1.4)

The binomial expansion is used for functions of the form (1+x)%

3
(1+x)a=1+ax+a(a—1)§—|—a(a—1)(a—2)%—|—--- (15)

All these series must have |x| < 1 to be convergent.

1.10.2 Vectors

A vector is a quantity with both magnitude and direction. For example, the velocity of a
moving body is a vector quantity as it defines both the direction in which the body is travel-
ling and the speed at which it is moving. In Cartesian coordinates a vector such as the
velocity will have three components, indicating the contribution to the overall motion
from the component motions along the x, y and z directions. The addition and subtraction
of vectors can be understood using geometrical constructions, as shown in Figure 1.8.
Thus, if we want to calculate the force on an atom due to its interactions with all other
atoms in the system (as required in molecular dynamics calculations, see Chapter 7), we
would perform a vector sum of all the individual forces.

Some of the common manipulations that are performed with vectors include the scalar
product, vector product and scalar triple product, which we will illustrate using vectors
1, 1 and r3 that are defined in a rectangular Cartesian coordinate system:

r; =xi+yj+zk
) = xi+ 1) + 20k

13 = x31 + 13 + 3k (L6)
I +rp I 3
r = ;
‘ l‘1 r—-r; r
Addition Subtraction

Fig:1.8: The addition and subtraction of vectors.
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I

Scalar product Vector product

r ry.(r Xry)

I

Scalar triple product

Fig. 1.9: The scalar product, vector product and scalar triple product.

i, j and k are orthogonal unit vectors along the x, y and z axes. The scalar product is defined as:
Iy Ty = |1y [raf cosd ‘ (1.7)

1] and [r,| are the magnitudes of the two vectors ([r;] = /%3 + 12 + z2) and 0 is the angle

between them (Figure 1.9). The angle can be calculated as follows:

' 1% +ilY2 + 212 (18)
Iy x|

cosb =

The scalar product of two vectors is thus a scalar.

The vector product of two vectors r; x 1, (sometimes written r; A1) is a new vector (v), in a
direction perpendicular to the plane containing the two original vectors (Figure 1.9). The
direction of this new vector is such that r;, 1, and the new vector form a right-handed
system. If r; and r, are three-component vectors then the components of v are given by:

Vv = (120 — zyyo)1 + (21X — X125)] + (X112 — Y1)k . (1.9)

Note that the vector product r, x r; is not the same as the vector product I X 1, as it
corresponds to a vector in the opposite direction. The vector product is thus not commutative.

The scalar triple product 1y - (x> X 13) equals the scalar product of r; with the vector product of
r; and ry. The result is a scalar. The scalar triple product has a useful geometrical interpreta-
tion; it is the volume of the parallelepiped whose sides correspond to the three vectors

(Figure 1.9).

1.10.3 Matrices, Eigenvectors and Eigenvalues

A matrix is a set of quantities arranged in a rectangular array. An m x n matrix has m rows
and # columns. A vector can thus be considered to be a one-column matrix. Matrix addition
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and subtraction can only be performed with matrices of the same order. For example:

4 7 -4 3
If A=|-3 5 and B= 5 2
8 -2 -5 3
0 10 8 4
Then A+B=|2 7|; A-B=|_-8 3 (1.10)
3 1 12 -5

Multiplication of two matrices (AB) is only possible if the number of columns in A is equal to
the number of rows in B.If Aisanm x n matrix and Bis an 1 x o matrix then the product AB
is an m x o matrix. Each element (7, ) in the matrix AB is obtained by taking each of the n
values in the ith row of A and multiplying by the corresponding value in the jth column
of B. To illustrate with a simple example:

0 3
3 =25
If A= .
(_3 4 1) and B 2 4
1 6

Then
B:((3><O)+(—2><—2)+(5><1) Bx3)+(-2x4)+(5x6)
(=3 x0)+ (4 x=2)+ (1 x1) (—3><3)+(4><4)+(1><6)>

9 31 -
=\ ,13) (1.11)

We shall often encounter square matrices, which have the same number of rows and
columns. A diagonal matrix is a Square matrix in which all the elements are zero except
for those on the diagonal. The unit or identity matrix 1 is a special type of diagonal matrix
in which all the non-zero elements are 1; thus the 3 x 3 unit matrix is:

100
I=10 1 O’ (1.12)
0 01

A matrix is symmetric if it is a square matrix with elements such that the elements above and

below the diagonal are mirror images; A = Aj
Multiplication of a matrix by its inverse gives the unit matrix:
AlA=1 (1.13)

To compute the inverse of a square matrix it is necessary to first calculate its determinant, |A|.
The determinants of 2 x 2 and 3 x 3 matrices are calculated as follows:

a b
c d =ad — bd (1.14)
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a b ¢

e d d e
d e fl=a f‘—b] f +cl
h i g i g h
g h i
= a(ei — hf) — b(di — fg) + c(dh — eg) (1.15)
For example:
2 -2
3 6
\ ’:21; 2 5 0|=28 (1.16)
-2 3
-2 0 3

As can be seen, the determinant of a 3 x 3 matrix can be written as a sum of determinants of
2 x 2 matrices, obtained by first selecting one of the rows or columns in the matrix (the top
row was chosen in our example). For each element A; in this row, the row and column in
which that number appears are deleted (i.e. the ith row and the jth column). This leaves a
2 x 2 matrix whose determinant is calculated and then multiplied by (—=1)'*J. The result
of this calculation is called the bofactor of the element Aij. For example, the cofactor of the
element A;, in the 3 x 3 matrix

4 2 2
A= 25 0
-2°0 3

is —6. When calculating the determinant the cofactor is multiplied by the element Aj;. The
determinants of larger matrices can be obtained by extensions of the scheme illustrated
above; thus the determinant of a 4 x 4 matrix is initially written in terms of 3 x 3 matrices,
which in turn can be expressed in terms of 2 x 2 matrices.

Determinants have many useful and interesting properties. The determinant of a matrix is
zero if any two of its rows or columns are identical. The sign of the determinant is reversed
by exchanging any pair of rows or any pair of columns. If all elements of a row (or column}
are multiplied by the same number, then the value of the determinant is multiplied by that

number. The value of a determinant is unaffected if equal multiples of the values in any row

(or column) are added to another row (or column).

The vector product and the scalar triple product can be conveniently written as matrix
determinants. Thus:

i j k
NXB=\{x ¥ Z (1.17)
X2 Y2 22
o oz
(1 X13) = (X2 Yo 2 (1.18)
X3 Y3 23
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nspose of a matrix, A, is the matrix obtained by exchanging its rows and columns,
The transp y ging

Thus the transpose of an m X n matrix is an n x m matrix:

7 4 -3 8
if A= -3 5 AT=(7 _5 2) (1.19)
8 -2 -

The transpose of a square matrix is, of course, another square matrix. The transpose of a
symmetric matrix is itself. One particularly important transpose matrix is the adjoint
matrix, adjA, which is the transpose matrix of cofactors. For example, the matrix of cofactors
of the 3 « 3 mafrix

4 2 -2 B -6 10
A= 25 0 is -6 8 —4 (1.20)
-2 0 3 10 —4 16

In this case the adjoint matrix is the same as the matrix of cofactors (as A is a symmetric
matrix). The inverse of a matrix is obtained by dividing the elements of the adjoint matrix
by the determinant:

_adjA

ATl = 121
[A] ( )
‘Th‘us the inverse of our 3 x 3 matrix is
15/28 -3/14 5/14
A= -3/14 © 2/7 -1/7 (1.22)

5/14 -4 4/7

One of the most common matrix calculations involves finding its eigenvalues and eigenvectors.
An eigenvector is a column matrix x such that

Ax = Xx (1.23)

A is the associated eigenvalue. The eigenvector problem can be reformulated as follows:

Ax=XI= Ax - AxI=0= (A-A)x=0 (1.24)

A trivial solution to this equation is x = 0. For a non-trivial solution, we require that the

_ determinant [A — M| equals zero. One way to determine the eigenvalues and their asso-

ciated eigenvectors is thus to expend the determinant to give a polynomial equation in .
For our 3 x 3 symmetric matrix this gives: ’

4-x 2 -2
2 5-x 0 (1.25)

or:
“ @=2)(5= 2B —A) =223 — N)] - 225~ X)] =0 (1.26)
This can be factorised to give:
(1=X)T7-NE-N=0 (1.27)
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The eigenvalues are thus A\ = 1, A, =4, A3 =7. The corresponding eigenvectors are:

2/3 ~1/3 2/3\
A1:12X1= —1/3 A2:42X2: 2/3 A3:72X3= 2/3 (128)
2/3 2/3 -1/3

Here we have expressed the eigenvectors as vectors of unit length; any multiple of each
eigenvector would also be a solution. A is a real, symmetric matrix. The eigenvalues of
such matrices are always real and orthogonal (i.e. the scalar products of all pairs of eigen-
vectors are zero). This can be easily seen in our example.

As can be readily envisaged, expanding the determinant and solving a polynomial in A is not
the most efficient way to determine the eigenvalues and eigenvectors of larger matrices.
Mairix diagonalisation methods are much more common. Diagonalisation of a matrix A
involves finding a matrix U such that:

U'AU=D (1.29)
D is the diagonal matrix of eigenvalues. When A is a real symmetric matrix, then U is
the matrix of eigenvectors and U~ is the inverse matrix of eigenvectors. Thus, for our
example:
2/3 -1/3  2/3 4 2 -2 2/3 -1/3 2/3
=1/3  2/3  2/3 25 0 -1/3  2/3 . 2/3
2/3  2/3 -1/3 -2 0 3 2/3  2/3 -1/3
100
=10 40 (1.30)
00 7

Note that for a real symmetric matrix A, the inverse U~ ! is the same as the transpose, u'.

Many methods have been devised for diagonalising matrices; some of these are specific to
certain classes of matrices such as the class of real symmetric matrices. Many modelling
techniques require us to calculate the eigenvalues and eigenvectors of a matrix, including
self-consistent field quantum mechanics (Section 2.5), the distance geometry method for
exploring conformational space (Section 9.5) and principal components analysis (Section
9.13.1). The class of positive definite matrices is important in energy minimisation and
when finding transition structures; the eigenvalues of a positive definite matrix are all posi-
tive. A positive semidefinite matrix of rank m has m positive eigenvalues.

1.10.4 Complex Numbers

A complex number has two components: a real part (a) and an imaginary part (b), as
follows:

x=a+bi (1.31)
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imaginary }
b x=a+bi
a
real
-b x=a-bi

Fig. 110: The Argand diagram used to represent complex numbers.

i is the square root of —1 (i = v/~1). Complex numbers enable certain types of equation that
have no real solutions to be solved. For example, the roots of the equation x> —2x+3 =0are
x=1+ V2 and x=1-v2i. A complex number can be considered as a vector in a two-
dimensional coordinate system. Complex numbers are commonly represented using an
Argand diagram, in which the x coordinate corresponds to the real part of the complex
number and the y coordinate to the imaginary part (Figure 1.10).

Arithmetical operations on complex numbers are performed much as for vectors. Thus, if
x=a+biand y = ¢+ di, then: '

x+y=(a+c)+ (b+d)i (1.32)
x~y=@—c)+ b-d)i (1.33)
xy = (ac — bd) + (ad + bc)i (1.34)

The complex conjugate, %, equals a — bi and is obtained by reflecting x in the real axis in the
Argand diagram.

e® = cosf+isind (1.35)

where ¢ is any real number. This relationship is used in Fourier analysis and can be derived
from the expansions of the exponential, cosine and sine functions:

: ¢ i o
0 w2 YT
e’ =1+1i6 o 3!+4! (1.36)
. ¢
sm9=9—§+a—--- (1.37)
¢ ¢
cos@=1—5+4—!—--- (1.38)
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Various other relationships can be defined. For example:

610 +e—16‘ ] 619 _ 6719
sind =

5 5 (1.39)

cosf =

1.10.5 Lagrange Multipliers

Lagrange multipliers can be used to find the stationary points of functions, subject to a set
of constraints. Suppose we wish to find the stationary points of a function f(x,y) =
42 + 3x —i—2y2 + 6y subject to the constraint y =4x+2. In the Lagrange method the
constraint is written in the form g(x,y) =0

gle,y)=y—-4x-2=0 (1.40)

To find stationary points f(x,y) subject to g(x,y) = 0 we first determine the total der1vat1\,e
df, which is set equal to zero:

aj;dy (Bx+3)dx+ (4y+6)dy=0 (1.41)
Without the constraint the stationary points would be determined by setting the two partial
derivatives of /0x and 8f /0y equal to zero, as x and y are independent. With the constraint,
x and y are no longer independent but are related via the derivative of the constraint
function g: '

df = fd +

_ 098, .08, _
dg—axdx +@dy— 4dx +dy =0 (1.42)

The derivative of the constraint function, dg, is multiplied by a parameter A (the Lagrange
multiplier) and added to the total derivative df:

<g£ a)d”(gj; 5y)dy 0. . (1.43)

The value of the Lagrange multiplier is obtained by setting each of the terms in parentheses
to zero. Thus for our example we have: :

8x+3-4A=0 . L (144)
4y+6+A1=0 (1.45)

From these two equations we can obtain a further equation linking x and y:
A=2+3/4=-6—-4y or x=-27/8-2y ' (1.46)

Combining this with the constraint equation enables us to identify the statlonary point,
which is at (=59/72, —23/18).

This simple example could, of course, have been solved by simply substituting the constraint
equation into the original function, to give a function of just one of the variables. However, in
many cases this is not possible. The Lagrange multiplier method provides a powerful
approach which is widely applicable to problems involving constraints such as in constraint
dynamics (Section 7.5) and in quantum mechanics.
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‘i,10.6 Multiple Integrals

Many of the theories used in molecular modelling involve multiple integrals. Examples
include the two-electron integrals found in Hartree-Fock theory, and the integral over the

positions and momenta used to define the partition function, Q. In fact, most of the multiple
integrals thaf have to be evaluated are double integrals.

A ‘traditional’ or one-dimensional integral corresponds to the area under the curve between

' ’ihe imposed limit, as illustrated in Figure 1.11. Multiple integrals are simply extensions of

these ideas to more dimensions. We shall illustrate the principles using a function of two
variables, f(x,y). The double integral

[ [ayre = || sy asay T ad
A A

is the sum of the volume elements f(x,y)6x 6y (see Figure 1.11) over the area A as §x and y
tend to zero. Note that the “dx dy’ can be put either immediately after the integral sign or at
the end; in this book we often use the first method for multiple integrals.

Some multiple integrals can be written as a product of single integrals. This occurs when
f(x,y) is itself a product of functions g(x)h(y), in which case the integral can be separated:

| [axasstemen = | axgtw) [ayne (148)
A
y=f
area = f (x)8x
(\/ﬁ/ total area = [f (x)dx
1=f(x )
:i: P total volume = [ f (x, y)dxdy
| | SEE——
M y
ra s, | volume element = £ (x, y)8x8y
VALY TSN
= 88y /4

Fig 1.11: Single and double integrals. (Figure adapted in part from Boas M L, 1983, Mathematical Methods in the
Physical Sciences. 2nd Edition. New York, Wiley.)
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For example:

1 +m/2 1 . . ' x3 +1 4 ]
Ll de dyx*cosy = J 1x2 dx[smy]trﬁ = 2( 3 )71 =3 - (149)

We will use the separation of multiple integrals throughout our discussion of quantum
mechanics and computer simulation methods (Chapters 2, 3, 6, 7 and 8).

1.10.7 Some Basic Elements_of Statistics

Statistics is concerned with the collection and interpretation of numerical data. The subject is
a vast and complex one, and all we shall do here is to state some of the definitions commonly
used and to explain some of the terminology.

The arithmetic mean of a set of observations is the sum of the observations divided by the
number of observations:

X=1 % (1.50)

N is the number of observations. The mean may also be written (x). The variance, o?, indicates
the extent to which the set of observations cluster around the mean value and equals the
average of the squared deviations from the mean:

al—lzN:( %) (151)
“N2 x;— X .

The variance can also be calculated using the following formula, which may be more
convenient:

[, 1 (& 2
=N[;(x,’)—ﬁ<;xi>] _ | (1.52)

The standard deviation, o, equals the (positive) square root of the variance:

_ |1y .-2 1.53
= N;(xi_x) . (")

It is often desired to compare the distribution of observations in a population with a theore-
tical distribution. The normal distribution (also called the Gaussian distribution) is a particu-
larly important theoretical distribution in molecular modelling. The probability density
function for a general normal distribution is:

) = ——expl—(x ~ %)*/20" (154)

The factor before the exponential ensures that the integral of the function f(x) from —ooc to
+oo equals 1. The distribution is often written in terms of a parameter o:

flx) = \/g e—ox =%’ ; (1.55)
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Fig. 1.12: Three normal distributions with different values of o (Equation (1.55)). The functions are normalised, so
the area under each curve is the same.

In Figure 1.12 we show three normal distributions that all have zero mean but different
values of the variance (0°). A variance larger than 1 (small ) gives a flatter function and
a variance less than 1 (larger «) gives a sharper function.

1.10.8 The Fourier Series, Fourier Transform and Fast Fourier Transform

Consider a periodic function x(t) that repeats betweent = —7/2and t = +7/2 (i.e. has period
7). Even though x(t) may not correspond to an analytical expression it can be written as the
superposition of simple sine and cosine functions or Fourier series, Figure 1.13.

x(t) = ag + ay coswyt + ay cos gt + - - - + by sinwpt + by sin 2wt + - - - (1.56)
x(f) =ap + Z(u,, cos nwgt + by, sin nwyt) (1.57)
n=1

wy is related to the period of the function by wy = 2r/7 and to the frequency of the function
by wy = 271 The frequencies of the contributing harmonics are thus nv, and are separated

by 1/7.

The coefficients a, and b, can be obtained as follows:

1 (7/2
a =~ J—T/z x(t) dt (1.58)
2 (7/2
fy == J, /2 x(t) cos(2nmx/7) dx (1.59)
2 7/2
b=> L/z x(t) sin(2nmx/7) dx (1.60)
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0.25sin(2) - 0.1sin(4r) — 0.03sin(6¢) + 0.04sin(8¢)

041

Fn

Fig. 1.13: In a Fourier series a periodic function is expressed as a sum of sine and cosine functions.

An alternative way to express a Fourier series makes use of the following relationships:

sinwyt = [exp(iwgt) — exp(—iwpt)]/2i - (1.61)
cos wyt = [exp (iwgt) + exp(—iwpt)]/2 (1.62]

The Fourier series is then written

Foc
x(t) = ch exp(inwgt) (1.63)
with

1 } d 1.64
€y = ;J—T/z x(t) explinwgt) dt (1.64)

The Fourier series is used to represent a function that is periodic with period 7 in terms of
frequencies nwy = 27n /7. The Fourier transform is used when the function has no periodicity.
There is a close relationship between the Fourier series and the Fourier transform. One way
to demonstrate the gradual change from a Fourier series to a Fourier transform is to consider
how the distribution of contributing frequencies changes as the period increases. This is
illustrated in Figure 1.14, where the period of a square wavefunction is gradually increased.
Also shown are the frequency contributions. It can be seen that an increasing number of
frequency components is needed to describe the function as the period increases, and that
when the period is infinite, the frequency spectrum is continuous.

The Fourier transform relétionship between a function x(£) and the corresponding frequency

- function X(v) is:

x(t) = rw X (v} exp(2rivt) dv (1.65)

—00
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Fig 1.14; The connection between the Fourier transform and the Fourier seties can be established by gradually

 tcreasing e period of the function. When the period is infinite g continuous spectrum is obtained. (Figure adapted

from Ramirez R W, 1985, The FFT Fundamentals and Concepts. Englewood Cliffs, NJ, Prentice Hall.)

The frequency function X(v) is given by:

X(v) = Jj: x(£) exp(—2mivt) dt (1.66)

In practical applications, x(f) is not a continuous function, and the data to be transformed

are usually discrete values obtained by sampling at intervals. Under such circumstances,

the discrete Fourier transform (DFT) is used to obtain the frequency function. Let us
suppose that the time-dependent data values are obtained by sampling at regular intervals
Separated by 6t and that a total of M samples are obtained (starting at ¢ =.0). From M
samples, a total of M frequency coefficients can be obtained using the DFT expression
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[Press et al. 1992]:

M-1 :
X(kév) = 6t > x(nbt) exp|—2mink/M] (1.67)
n=0
Here, x(nét) (n =0,1,...,M — 1) are the experimental values obtained and X(kév) is the set
of Fourier coefficients (k =0,1,...,M —1). The separation between the frequencies, 6v,

depends on the number of samples and the time between samples: v = 1/Mét. An expres-
sion for converting frequency data into the time domain is also possible:

x(nét) = ]—3/;\42_1 X(kév) exp[2nink/M] (1.68)
k=0

To compute each Fourier coefficient X (kéT) (of which there are M) it is therefore necessary to
evaluate the summation Y"¥-! x(nét) exp|—2nink/M)] for that value of k. There will be M
terms in the summation. A simple algorithm to determine the frequency spectrum would
scale with the square of the number of measurements, M. This is a severe limitation, for
many problems involve an extremely large number of pieces of data. It is for this reason
that the fast Fourier transform (FFT) (ascribed to Cooley and Tukey [Cooley and Tukey
1965] but, in fact, using methods developed much earlier) has made such an impact. The
FFT algorithm scales as MIn M. With the FFT algorithm it is possible to derive the Fourier
transforms, even with a considerable number of data points.
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An Introduction to
Computational Quantum
Mechanics

2.1 Introduction

Our aim in this chapter will be to establish the basic elements of those quantum mechanical
methods that are most widely used in molecular modelling. - We shall assume some
familiarity with the elementary concepts of quantum mechanics as found in most ‘general’
physical chemistry textbooks, but little else other than some basic mathematics (see
Section 1.10). There are also many excellent introductory texts to quantum mechanics. In
Chapter 3 we then build upon this chapter and consider more advanced concepts. Quantum
mechanics does, of course, predate the first computers by many years, and it is a tribute to
the pioneers in the field that so many of the methods in common use today are based upon
their efforts. The early applications were restricted to atomic, diatomic or highly symmetri-
cal systems which could be solved by hand. The development of quantum mechanical
techniques that are more generally applicable and that can be implemented on a computer
(thereby eliminating the need for much laborious hand calculation) means that quantum
mechanics can now be used. to perform calculations on molecular systems of real, practical
interest. Quantum mechanics explicitly represents the electrons in a calculation, and so it is
possible to derive properties that depend upon the electronic distribution and, in particular,
to investigate chemical reactions in which bonds are broken and formed. These qualities,
which differentiate quantum mechanics from the empirical force field methods described
in Chapter 4, will be emphasised in our discussion of typical applications.

There are a number of quantum theories for treating molecular systems. The first we shall
examine, and the one which has been most widely used, is molecular orbital theory. However,
alternative approaches have been developed, some of which we shall also describe, albeit
briefly. We will be primarily concerned with the ab initio and semi-empirical approaches
to quantum mechanics but will also mention techniques such as Hiickel theory and valence
bond theory. An alternative approach to quantum mechanics, density functional theory, is
considered in Chapter 3. Density functional theory has always enjoyed significant support
from the materials science community but is increasingly used for molecular systems.

Quantum mechanics is often considered to be a difficult subject, and a cursory glance at the
following pages in this chapter may simply serve to reinforce that view! However, if
followed carefully it is possible to see how models that are developed for very simple
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systems can be applied to much more complex systems. As a consequence our treatment
does require some consideration of the mathematical background to the simplest and
most common types of calculation. Our strategy in developing the underlying theory of
molecular orbital quantum mechanical calculations is as follows. First, we revise some
key features of quantum mechanics, including the hydrogen atom. We then discuss the
functional form of an acceptable wavefunction for a molecular system and show how to
calculate the energy of such a system from the wavefunction. This leads to the problem of
determining the wavefunction itself and how this can be done using routine mathematical
méthcds. We will then be in a position to understand how quantum mechanical calculations
can be performed for real’ systems and will have the background necessary to consider
more advanced topics.

The starting point for any discussion of quantum mechanics is, of course, the Schrodinger
equation. The full, time-dependent form of this equation is

(2 (Zr Lo 2 o a2

a2 T ap vz

Equation (2.1) refers to a single particle (e.g. an electron) of mass m which is moving through
space (given by a position vector r = xi + yj + zk) and time (f) under the influence of an
external field ¥~ (which might be the electrostatic potential due to the nuclei of a molecule).
ks Planck’s constant divided by 27 and i is the square root of —1. ¥ is the wavefunction which
characterises the particle’s motion; it is from the wavefunction that we can derive various
properties of the particle. When the external potential ¥ is independent of time then the
wavefunction can be written as the product of a spatial part and a time part:
W(r,t) = ¢(r)T(f). We shall only consider situations where the potential is independent of
time, which enables the time-dependent Schrodinger equation to be written in the more
familiar, time-independent form:

{

Here, E is the energy of the particle and we have used the abbreviation V2 (pronounced ‘del-
squared’):

(2.1)

2
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It is usual to abbreviate the left-hand side of Equation (21) to #'¥, where # is the
Hamiltonian operator:

\% (2.3)

-
| H o= — Ev +v (24)
This reduces the Schrédinger equation to #¥ = EV. To solve the Schrodinger equation it is
necessary to find values of E and functions ¥ such that, when the wavefunction is operated
upon by the Hamiltonian, it returns the wavefunction multiplied by the energy. The
Schrédinger equation falls into the category of equations known as partial differential eigen-
value equations in which an operator acts on a function {the eigenfunction) and returns the
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function multiplied by a scalar (the eigenvalue). A simple example of an eigenvalue
equation is:

2 w=m 25)

The operator here is d/dx. One eigenfunction of this equationi is y = ¢” with the eigenvalue r
being equal to a. Equation (2.5) is a first-order differential equation. The Schrédinger
equation is a second-order differential equation as it involves the second derivative of ¥.
A simple example of an equation of this type is
dy \
i A 2.6
dxz ry ( )
The solutions of Equation (2.6) have the form y = A coskx + Bsinkx, where A, B and k are
constants. In the Schrédinger equation ¥ is the eigenfunction and E the eigenvalue.

2.1.1 Operators

The concept of an operator is an important one in quantum mechanics. The expectation value
(which we can consider to be the average value) of a quantity such as the energy, position or
linear momentum can be determined using an appropriate operator. The most commonly
used operator is that for the energy, which is the Hamiltonian operator itself, #. The
energy can be determined by calculating the following integral:

_Jeavdr

E= [ dr

(2.7)
The two integrals in Equation (2.7) are performed over all space (i.e. from —oo to +ooin the x,
y and z directions). Note the use of the complex conjugate notation (¥*), which reminds us
that the wavefunction may be a complex number. This equation can be derived by pre-
multiplying both sides of the Schrédinger equation, #'¥ = E¥, by the complex conjugate
of the wavefunction, ¥*, and integrating both sides over all space. Thus:

J\IJ*,%’\IJ dr = J\IJ*E\IJ dr . (28)
E is a scalar and so can be taken outside the integral, thus leading to Equation (2.7). If the

wavefunction is normalised then the denominator in Equation (2.7) will equal 1.

The Hamiltonian operator is composed of two parts that reflect the contributions of kinetic
and potential energies to the total energy. The kinetic energy operator is

e ' (2.9)

and the operator for the potential energy simply involves multiplication by the appropriate
expression for the potential energy. For an electron in an isolated atom or molecule the
potential energy operator comprises the electrostatic interactions between the electron
and the nucleus and the interactions between the electron and the other electrons. For a
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single electron and a single nucleus with Z protons the potential energy operator is thus:

_ Zé?
= Zreyr (2.10)
‘ Angﬂ‘ler‘ operator is that for linear momentum along the x direction, which is
ko
i (2.11)
The expectation value of this quantity can thus be obtained by evaluating the following
integral: ’
J v E 9 Wdr
_ i0x
Pp="—a— (212)
J U dr

,’,Z.'Ek.Z Atomic Units

Quantum mechanics is primarily concerned with atomic particles: electrons, protons and

neutrons. When the properties of such particles (e.g. mass, charge, etc.) are expressed in
‘macroscopic’ units then the value must usually be multiplied or divided by several
powers of 10. It is preferable to use a set of units that enables the results of a calculation

_ to be reported as “easily manageable’ values. One way to achieve this would be to multiply

each number by an appropriate power of 10. However, further simplification can be

_achieved by recognising that it is often necessary to carry quantities such as the mass of

the electron or electronic charge all the way through a calculation. These quantities are
thus also incorporated ‘into the atomic units. The atomic units of length, mass and energy
are as follows:

1 unit of charge equals the absolute charge on an electron, le] = 1.60219 x 107 ¥ C
1 mass unit equals the mass of the electron, m, = 9.10593 x 10~3! kg

1 unit of length (1 Bohr) is given by ay = #?/4r’m.e® = 5.29177 x 10 ' m

1 unit of energy (1 Hartree) is given by E, = ¢ [4megag = 4.35981 x 10787

The atomic unit of length is the radius of the first orbit in Bohr’s treatment of the hydrogen
atom. It also turns out to be the most probable distance of a 1s electron from the nucleus in

_ the hydrogen atom. The atomic unit of eénergy corresponds to the interaction between two

electronic charges separated by the Bohr radius. The total energy of the 1s electron in the
hydrogen atom equals —0.5 Hartree. In atomic units Planck’s constant A = 2r and so i = 1.

_ 2.1.3 Exact Solutions to the Schrédinger Equation

The Schrédinger equation can be solved exactly for only a few problems, such as the particle

n a box, the harmonic oscillator, the particle on a ring, the particle on a sphere and the

hydrogen atom, all of which are dealt with in introductory textbooks. A common feature

of these problems is that it is necessary to impose certain requirements (often called boundary
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conditions) on possible solutions to the equation. Thus, for a particle in a box with infinitely
high walls, the wavefunction is required to go to zero at the boundaries. For a particle on a
ring the wavefunction must have a periodicity of 27 because it must repeat every traversal of
the ring. An additional requirement on solutions to the Schrodinger equation is that the
wavefunction at a point r, when multiplied by its complex conjugate, is the probability of
finding the particle at the point (this is the Born interpretation of the wavefunction). The
square of an electronic wavefunction thus gives the electron density at any given point. If
we integrate the probability of finding the particle over all space, then the result must be
1 as the particle must be somewhere:

Jq:*\p dr=1 (2.13)

dr indicates that the integration is over all space. Wavefunctions which satisfy this condition
are said to be normalised. It is usual to require the solutions to the Schrédinger equation to be
orthogonal:

J U, dr =0 (m#£n) (2.14)

A convenient way to express both the orthogonality of different wavefunctions and the
normalisation conditions uses the Kronecker delta:

J Uy dr = 6, . | (2.15)
When used in this context, the Kronecker delta can be taken to have a value of 1 if m equals n

and zero otherwise. Wavefunctions that are both orthogonal and normalised are said to be
orthonormal.

2.2 One-electron Atoms

In an atom that contains a single electron, the potential energy depends upon the distance
between the electron and the nucleus as given by the Coulomb equation. The Hamiltonian
thus takes the following form:

B, Zé
H = —— — 216
J,f 2m v 4regr ( )
In atomic units the Hamiltonian is: '
1, Z
v 1o Z 17
H=—5V -~ , (217)

For the hydrogen atom, the nuclear charge, Z, equals +1. r is the distance of the electron from
the nucleus. The helium cation, He?, is also a one-electron atom but has a nuclear charge of
+2. As atoms have spherical symmetry it is more convenient to transform the Schrédinger
equation to polar coordinates 7, f and ¢, where r is the distance from the nucleus (located at
the origin), # is the angle to the z axis and ¢ is the angle from the x axis in the xy plane
(Figure 2.1). The solutions can be written as the product of a radial function R(r), which
depends only on r, and an angular function Y(6,¢) called a spherical harmonic, which
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Y =rsin 0 sin ¢

x=rsinBcos ¢ fr—m————rmmmm—

Fig 212 The relationship between spherical polar and Cartesian coordinates.

depends on 6§ and ¢:
Vot = Rnl(r)Ylm(gv ¢) : (218)

_ The wavefunctions are commonly referred to as orbitals and are characterised by three

quantum numbers 7, m and I. The quantum numbers can adopt values as follows:

u: principal quantum number: 0, 1, 2, ...
I: azimuthal quantum number: 0, 1, ... (n — 1)
m: magnetic quantum number: -1, ~(I—-1),...0...(I—1), L

The full radial function is:

Rar) = - I 5720)3 %] P ep (—g)plLi’:f (») (219)

p = 2Zr/nag, where a, is the Bohr radius.” The term in square brackets is a normalising
factor. L2 (p) is a special type of function called a Laguerre polynomial. We shall rarely
be interested in any other than the first few members of the series; moreover, they simplify
considerably if atomic units are used and we write them in terms of the orbital exponent
¢ = Z/n. The first few members of the series for low values of n are given in Table 2.1
and are illustrated graphically in Figure 2.2. As can be seen, the radial part of the wave-
function is a polynomial multiplied by a decaying exponential.

; The angular part of the wavefunction is the product of a function of # and a function of ¢:

Ylm(aa ¢) = @lm(a)q)m(¢) (2'20)
‘These functions are:
. 1 '
®,,(¢) = EQXP(W@ (221)

_ / |
(ZZ;D EL_::::;: P bl cos ) (2.22)

@1,,,(9) =

 Sirictly, a, in this case is given by ag = h? /% e, where pis the reduced mass, p=mM/(m, + M); Mis
the mass of the nucleus.
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n ! Ry (r)

2¢*2 exp((r)

2632(1 - ¢r) exp(—¢r)

(8/3)2¢5r exp(—(r)

(2/3)"2¢33(3 — 6¢r + 2¢2r%) exp(—(r)
(8/9)V/2¢%%(2 - ¢r)r exp(—(r)
(8/45)"2¢"/*r exp(—(r)

W W wiN N -
N = O -0 0

Table 2.1 Radial function for one-electron atoms.

The functions ®,,(¢) are just the solutions to the Schrédinger equation for a particle on a ring.
The term in square brackets for the function ©y,(6) is a normalising factor. Pll'"'(cos 0)is a
member of a series of functions called the associated Legendre polynomials (the ‘Legendre
polynomials’ are functions for which |m| = 0). The total orbital angular momentum of an
electron in the orbital is given by I(I+ 1)k and the component of the angular momentum
along the § = 0 axis is given by Ifi. The energy of each solution is a function of the principal
quantum number only; thus orbitals with the same value of n but different I and m are
degenerate. The orbitals are often represented as shown in Figure 2.3. These graphical
representations are not necessarily the same as the solutions given above. For example,
the “correct’ solutions for the 2p orbitals comprise one real and two complex functions:

2p(+1) = \/3/47R(r)sinfe® (2.23)

2p(0) = +/3/4xR(r) cos 6 (2.24)

2p(—1) = +/3/47R(r) sin e~ (2.25)

R(r) is the radial part of the wavefunction and +/3/4r is a normalisation factor for the

angular part. The 2p(0) function is real and corresponds to the 2p, orbital that is pictured

in Figure 2.3. A linear combination of the two remaining 2p solutions is used to generate

two 'real’ 2p wavefunctions, making use of the relationship exp(i¢) = cos ¢ + isin ¢ (Section
1.10.4). These linear combinations are the 2p, and 2p, orbitals shown in Figure 2.3.

2p, = 1/2[2p(+1) + 2p(—1)] = 1/3/47R(r) sinfcos ¢ (2.26)

2p, = —1/2[2p(+1) — 2p(~1)] = /3/47R(r) sinfsin ¢ ' (2.27)

These linear combinations still have the same energy as the original complex wavefunctions.

This is a general property of degenerate solutions of the Hamiltonian operator. The reason

why they are labelled 2p, and 2p, is that in polar coordinates the Cartesian coordinates x, y
and z have the same angular dependence as the orbitals in Figure 2.3:

x=rsinfcos¢ (2.28)
¥y =rsinfsin¢ (2.29)
z=rcosf . (2.30)

The solutions of the Schrédinger equation are either real or occur in degenerate pairs. These
pairs are complex conjugates that can then be combined to give energetically equivalent real
solutions. It is only when dealing with certain types of operator that it is necessary to retaina
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I;’;gajdlg dThe functions Ry (r) for the first three values of the principal quantum number. (a) 1s; (b) 25 and 2p; (c) 3s,

_ complex wavefunction (for the 2p functions, the operator that corresponds to angular
. Mmomentum about the z axis falls into this category). In fact, to simplify matters we will

almost always ignore the complex notation from now on and will deal with real orbitals.

Finally, we should note that the solutions are all orthogonal to each other; if the product of any

_ Pair of orbitals is integrated over all space, the result is zero unless the two orbitals are the

same. Orthonormality is aChieved by multiplying by an appropriate normalisation constant.
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Fig. 2.3: The common graphical representations of s, p and d orbitals.

The orbital picture has proved invaluable for providing insight and qualitative interpreta-
tions into the nature of the bonding in and reactivity of chemical systems. It is one which
we would like to retain for polyelectronic systems to provide a unifying theme that links
the simplest systems with much more complicated ones.

2.3 Polyelectronic Atoms and Molecules

Solving the Schrédinger equation for atoms with more than one electron is complicated by a
number of factors. The first complication is that the Schrédinger equation for such systems
cannot be solved exactly, even for the helium atom. The helium atom has three particles (two
electrons and one nucleus) and is an example of a three-body problem. No exact solutions can
be found for systems that involve three (or more) interacting particles. Thus, any solutions
we might find for polyelectronic atoms or molecules can only be approximations to the real,
true solutions of the Schrédinger equation. One consequence of there being no exact solution
is that the wavefunction may adopt more than one functional form; no form is necessarily
more ‘correct’ than another. In fact, the most general form of the wavefunction will be an

infinite series of functions.

A second complication with multi-electron species is that we must account for electron spin.
Spin is characterised by the quantum number s, which for an electron can only take the
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value 1. The spin angular momentum is quantised such that its projection on the z axis is
gither +% or —h. These two states are characterised by the quantum number m,, which
can have values of +1 or —1, and are often referred to as ‘up spin’ and ‘down spin’ respec-
tively. Electron spin is incorporated into the solutions to the Schrédinger equation by
writing each one-electron wavefunction as the product of a spatial function that depends
on the coordinates of the electron and a spin function that depends on its spin. Such
solutions are called spin orbitals, which we will represent using the symbol . The spatial
part (which will be referred to as an orbital and represented using ¢ for atomic orbitals
and ¢ for molecular orbitals) describes the distribution of electron density in space and is
analogous to the orbital diagrams in Figure 2.3. The spih part defines the electron spin
and is labelled « or 8. These spin functions have the value 0 or 1 depending on the quantum
number m; of the electron. Thus a(}) =1, a(—1) =0, 8(+3) =0, A(—3) = 1. Each spatial
orbital can accommodate two electrons, with paired spins. In order to predict the electronic
structure of a polyelectronic atom or a molecule, the Aufbau principle is employed, in which
electrons are assigned to the orbitals, two electrons per orbital. We need to remember that
electrons occupy degenerate states with a maximum number of unpaired electrons
{Hund's rules), and that there are certain situations where it is energetically more favourable
to place an unpaired electron in a higher-energy spatial orbital rather than pair it with
anether electron. However, such situations are rare, particularly for molecular systems,
and for most of the situations that we shall be interested in the number of electrons, N,
will be an even number that occupy the N/2 lowest-energy orbitals.

Electrons are indistinguishable. If we exchange any pair of electrons, then the distribution of
electron density remains the same. According to the Born interpretation, the electron density
is equal to the square of the wavefunction. It therefore follows that the wavefunction must
fact, for electrons the wavefunction is required to change sign: this is the antisymmetry
principle.

2.3.1 The Born-Oppenheimer Approximation

It was stated above that the Schrodinger equation cannot be solved exactly for any molecular
systems. However, it is possible to solve the equation exactly for the simplest molecular
species, Hy (and isotopically equivalent species such as HD*), when the motion of the elec-
trons is decoupled from the motion of the nuclei in accordance with the Born-Oppenheimer
approximation. The masses of the nuclei are much greater than the masses of the electrons (the
resting mass of the lightest nucleus, the proton, is 1836 times heavier than the resting mass of
?h_e electron). This means that the electrons can adjust almost instantaneously to any changes
In the positions of the nuclei. The electronic wavefunction thus depends only on the positions
of the nuclei and not on their momenta. Under the Born-Oppenheimer approximation the
total wavefunction for the molecule can be written in the following form:

k\I!tot(nuclei, electrons) = ¥ (electrons) ¥ (nuclei) (2.31)

The ’totc’?l.energy equals the sum of the nuclear energy (the electrostatic repulsion between
the positively charged nuclei) and the electronic energy. The electronic energy comprises
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the kinetic and potential energy of the electrons moving in the electrostatic field of the nuclei,
together with electron~electron repulsion: Ey,; = E(electrons) + E (nuclei).

When the Born-Oppenheimer approximation is used we concentrate on the electronic
motions; the nuclei are considered to be fixed. For each arrangement of the nuclei the
Schrodinger equation is solved for the electrons alone in the field of the nuclei. If it is desired
to change the nuclear positions then it is necessary to add the nuclear repulsion to the
electronic energy in order to calculate the total energy of the configuration.

2.3.2 The Helium Atom

We now return to the helium atom, our objective being to find a wavefunction that
describes the behaviour of the electrons. The Born-Oppenheimer approximation is not,
of course, relevant to systems with just one nucleus, and the wavefunction will be a func-
tion of the two electrons (which we shall label 1 and 2 with positions in space r; and 1p). As
noted above, for polyelectronic systems any solution we find can only ever be an
approximation to the true solution. There are a number of ways in which approximate
solutions to the Schrodinger equation can be found. One approach is to find a simpler
but related problem that can be more easily solved and then consider how the differences
between the two problems change the Hamiltonian and thereby affect the solutions. This is
called perturbation theory and is most appropriate when the differences between the real
and simple problems are small. For example, a perturbation approach to tackling the
helium atom might choose as the related system a ‘pseudo atom’, containing two electrons
that interact with the nucleus but not with each other. Although this is a ’three-body’
problem, the lack of any interaction between the electrons means that it can be solved
exactly using the method of the separation of variables. The separation of variables
technique can be applied whenever the Hamiltonian can be divided into parts that are
themselves dependent solely upon subsets of the coordinates. The equation to be solved
in this case is:

R, z¢ ®B_, Zd
ENLCHR v/ SN SR - ¥ - 232
{ 2m Vi dmegry  2m Vz‘ Amegty } (r1,12) = E¥(ry, ) (232)

Or, in atomic units,

1, Z 1., Z
—_— —_—— a— — —_—— = '33
{ 2v1 - 2V rz}\Il(rl,rZ) EV(rq,15) (2.33)

We can abbreviate this equation to
{1+ #2}V(ty,1) = E¥(r1, 1) (2.34)

#, and H#, are the individual Hamiltonians for electrons 1 and 2. Let us assume that the
wavefunction can be written as a product of individual one-electron wavefunctions,

$1(r1) and ¢, (ry): U(ry,12) = ¢ (r1)$(r2). Then we can write:
[#1 + H,)¢1(11)$2(r2) = Er(x1)a(r2) (2.35)
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Premultiplying by ¢;(r1)$,(r;) and integrating over all space gives:
[[arsdratrcent) o + ls(r)n0) = [ [ dratr )t ()t 236)

or

[ drdn(e) #16n01) [ arataten)iaten) + [ ann(e)on(er) [ dragaten) #a0a(e)

— E|dnoi(e)orter) | dnada(a)on(e) | (237)

. If we assume that the wavefunctions are normalised then it can easily be seen that the total

energy E is the sum of the individual orbital energies E; and E; (Ey = [ d7¢1(r1)# 161 (x71)
;{nd E; = f Ar¢o(12)#2¢2(12)). When the separation of variables method is used the solu-
tions for each electron are just those of the hydrogen atom (1s, 2s, etc.) in Equation (2.19)
with Z = 2. '

We now wish to establish the general functional form of possible wavefunctions for the two
electrons in this pseudo helium atom. We will do so by considering first the spatial part of the
wavefunction. We will show how to derive functional forms for the wavefunction in which the
exchange of electrons is independent of the electron labels and does not affect the electron
density. The simplest approach is to assume that each wavefunction for the helium atom is
the product of the individual one-electron solutions. As we have just seen, this implies that
the total energy is equal to the sum of the one-electron orbital energies, which is not correct
as 1t ignores electron-electron repulsion. Nevertheless, it is a useful illustrative model. The
wavefunction of the lowest energy state then has each of the two electrons in a 1s orbit;:ll:

1s(1)1s(2) (2.38)

i 1s(1) indicates a 1s function that depends on the coordinates of electron 1 (r;) and "1s(2)’
indicates a 1s function that depends upon the coordinates of electron 2 (ry). This wave-
function satisfies the indistinguishability criterion, for we obtain the same function when
we.exchange the electrons - 1s(1)1s(2) is the same as 1s(2)1s(1). Its energy is twice that of
a single electron in a 1s orbital. What of the first excited state, in which one electron is
promoted to the 2s orbital? Two possible wavefunctions for this state are:

1s(1)2s(2) (2.39)
1s(2)2s(1) (2.40)

I?IO these wavefunctions satisfy the indistinguishability criterion? In other words, do we get
the same function (or its negative) when we exchange the electrons? We do not, for when the

__ two electrons (1 and 2) are exchanged then a different wavefunction is obtained: “1s(1)2s(2)’

aftd ’-15(2)25(1)’ are not the same, nor is one simply minus the other. However, linear com-
bglanans of these two wavefunctions do not suffer from the labelling problerln and so we
Hugh't anticipate that functional forms such as the following might constitute acceptable
solutions to the Schrédinger equation for the pseudo helium atom: P

(1/v2)[15(1)2s(2) + 1s(2)2s(1))] (2.41)
’(1 /V2)[1s(1)2s(2) — 1s(2)2s(1)] (2.42)
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The factor (1/v/2) ensures that the wavefunction is normalised. Of the three acceptable
spatial forms that we have described so far, two are symmetric (i.e. do not change sign
when the electron labels are exchanged) and one is antisymmetric (the sign changes when
the electrons are exchanged):

1s(1)1s(2) - symmetric (2.43)
(1/v2)[1s(1)2s(2) + 1s(2)2s(1)] symmetric (2.44)
(1/v2)[1s(1)2s(2) — 1s(2)2s(1)] antisymmetric (245)

We now need to consider the effects of electron spin. For two electrons 1 and 2 there are
four spin states; (1), A(1), a(2), A(2). The indistinguishability criterion holds for the spin
components as well, and so the following combinations of spin wavefunctions are possible:

a(Da2) symmetric (2.46)
B8(1)B(2) symmetric (2.47)
(1/v2)[a(1)B(2) + (2)5(1)] symmetric (2.48)
(1/v2)[a(1)B(2) - +(2)A(1)] antisymmetric (249)

When we combine the spatial and spin wavefunctions, the overall wavefunction must be
antisymmetric with respect to exchange of electrons. It is therefore only admissible to com-
bine a symmetric spatial part with an antisymmetric spin part, or an antisymmetric spatial
part with a symmetric spin part. The following functional forms are therefore permissible
functional forms for the wavefunctions of the ground and first few excited states of the
helium atom:

(1/v2)15(1)15(2)[(1)8(2) — (2)B(1)] (2.50)
(1/2)[15(1)2s(2) + 15(2)2s()][(1)A(2) — (2)B(1)] (2.51)
(1/v2)[1s(1)2s(2) — 15(2)2s(1)]e(1)ex(2) (2.52)
(1/V2)[1s(1)2s(2) — 1s(2)25(1IBDBR) | (2.53)

(1/2)[1s(1)25(2) — 15(2)2s(V}[a(1)B(2) + a(2)5(1)] (2.54)

2.3.3 General Polyelectronic Systems and Slater Determinants

We now turn to the general case. What is an appropriate functional form of the wavefunction
for a polyelectronic system (not necessarily an atom) with N electrons that satisfies the anti-
symmetry principle? First, we note that the following functional form of the wavefunction is
inappropriate:

¥(1,2,...N) = x1(D)x2(2) - - - xn(N) (2.55)

This product of spin orbitals is unacceptable because it does not satisfy the antisymmetry
principle; exchanging pairs of electrons does not give the negative of the wavefunction.
This formulation of the wavefunction is known as a Hartree product. The energy of a
system described by a Hartree product equals the sum of the one-electron spin orbitals.
A key conclusion of the Hartree product description is that the probability of finding an
electron at a particular point in space is independent of the probability of finding any
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other electron at that point in space. In‘fact, it turns out that the motions of the electrons are
correlated. In addition, the Hartree product assumes that specific electrons have been
assigned to specific orbitals, whereas the antisymmetry principle requires that the electrons
are indistinguishable. Recall that for the helium atom, an acceptable functional form for the
Jowest-energy state, is:

b =1s(1)1s(2)[(1)B(2) — a(2)A(1)]
= 15(1)1s(2)(1)B(2) — 1s(1)1s(2)e(2)B(1) (2.56)

. This ¢can be written in the form of a 2 x 2 determinant:

1s(1)e(1) 1s(1)5(1)
152)a2) 1s2)8(2) (257)
The two spin orbitals are

x1 = 1s(D)e(l) and x, =1s(1)B(1) (2.58)
A determinant is the most convenient way to write down the permitted functional forms of a
polyelectronic wavefunction that satisfies the antisymmetry principle. In general, if we have

N elestrons in spin orbitals X1, X2, . . ., Xy (Where each spin orbital is the product of a spatial
function and a spin function) then an acceptable form of the wavefunction is:
x1(1)  x(() - xw(1)
- 1 x1(2) x2@) - xn(2)
= \/_N_' : : : (2.59)
x1(N) : x2(N) - xn(N)

As before, x;(1) is used to indicate a function that depends on the space and spin coordinates
of the electron labelled '1’. The factor 1/+/N! ensures that the wavefunction is normalised; we

the wavefunction is called a Slater determinant and is the simplest form of an orbital wave-
function that satisfies the antisymmetry principle. The Slater determinant is a particularly
convenient and concise way to represent the wavefunction due to the special properties
of determinants. Exchanging any two rows of a determinant, a process which corresponds
to exchanging two electrons, changes the sign of the determinant and therefore directly leads
to the antisymmetry property. If any two rows of a determinant are identical, which would
correspond to two electrons being assigned to the same spin orbital, then the determinant
vanishes. This can be considered a manifestation of the Pauli principle, which states that
no two electrons can have the same set of quantum numbers. The Pauli principle also
leads to the notion that each spatial orbital can accommodate two electrons of opposite spins.

VV;hgn the Slater determinant is expanded, a total of N! terms results. This is because there are
N! c_i}fferent permutations of N electrons. For example, for a three-electron system with spin
orbitals x;, x, and x3 the determinant is

x1(1) x2(1) xs3(1)
U=—"=1x02) x@ x2 (2.60)
x13) x2(3) x3(3)
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Expansion of the determinant gives the following expression (ignoring the normalisation ~ An important property of determinants is that a multiple of any column can be added t
. :~ . X dde
constant): : :: anqther column w.lthout altering the value of the determinant. This means that the spig
x1(D)x2(@)x3(3) — xa(Dx3(2)x2(3) + x2(Dx3(2)x1(3) . Qrblfa(jls arﬁ n(f)itr unique; other linear combinations give the same energy. To illustrate this
— o (Dya (2 ) _ Ny (3 261 ; consider the first excited state configuration of the helium atom (1s22g2 i .
x2(D)x1(2x3(3) + x3(Dx1(2)x2(3) — x3(Vx2(2)x1(3) (2.61) written as the following 2 x 2 determinant: m (15°2s%), which can be

This expansion contains six terms (= 3!). The six possible permutations of three electrons
are: 123, 132, 213, 231, 312, 321. Some of these permutations involve single exchanges of
electrons; others involve the exchange of two electrons. For example, the permutation 132
can be generated from the initial permutation by exchanging electrons 2 and 3. If we do
so then the following wavefunction is obtained:

x1(Dx23)x3(2) ~ x1(Dx3(3)x2(2) + x2(Dx3(3)x1(2) \
—x2:(Dx103)x3(2) + x3(Dx13)x2(2) — x3(Dx2(3)x1 (2) ; With these new orbitals the value of the determinant is as follows:

= —x1(D2@x0) + 11 )x2)x2(3) — x2(Dxs(2)x: (3) a0 %O [s) +251)][15(2) ~ 252)]a(1)a(2)

Is(T)a(1) 2s(1)a(1)
1s(2)a(2) 2s(2)a(2)
We now introduce two new “spin orbitals’;

X,__ls-f—Zs ] ;L
1 V2 & X2= 2 @ (2.66)

= 1s(1)a(1)25(2)cx(2) — 1s(2)a(2)2s(1) (1) (2.65)

!
+32(Dx2x3(3) - x3(Dxa(2x0) +x(1)x(2)x1(3) . 42 @ 2
= (262) - _ [1s(1) —28(1)][1s(2) + 25(2)]a(1)a(2)
By contrast, the permutation 312 requires that electrons 1 and 3 are exchanged and then 2
electrons 1 and 2 are exchanged. This gives rise to an unchanged wavefunction. In general, . =-v (2.67)
an odd permutation involves an odd number of electron exchanges and leads to a wave- This can be helpful because it may enable more meaningful sets of orbitals to b d
function with a changed sign; an even permutation involves an even number of electron. from the original solutions. Molecular orbital calculations may give solutioi getﬁeiate
exchanges and returns the wavefunction unchanged. ‘smeared out’ throughout the entire molecule, whereas we mayg find orbitalz th:t :;e
’ e

. . . localised in specifi i ; .
For any sizeable system the Slater determinant can be tedious to write out, let alone the ~ | In specific regions (e.g. in the bonds between atoms) to be more useful,

equivalent full orbital expansion, and so it is common to use a shorthand notation. Various
notation systems have been devised. In one system the terms along the diagonal of the
matrix are written as a single-row determinant. For the 3 x 3 determinant we therefore have:

x1() x2(1) xa(1)
x12) x2(2) x32)[=lx1 x2 xsl (263)
x13) x2(3) xa(3) -

The normalisation factor is assumed. It is often convenient to indicate the spin of each
electron in the determinant; this is done by writing a bar when the spin part is 8 (spin
down); a function without a bar indicates an « spin (spin up). Thus, the following are all
commonly used ways to write the Slater determinantal wavefunction for the beryllium
atom (which has the electronic configuration 1s22s?):

2.4 Molecular Orbital Calculations

2.4.1 Calculating t .
- Moiecuh’a g the Energy from the Wavefunction: the Hydrogen

- Inour treafment of molecular systems we first show how to determine the energy for a given
Waﬁge,functmn, and then demonstrate how to calculate the wavefunction for a sp%ciﬁc
\:;lﬁi,ea:' geometry. In the most popular 1'<ind of quantum mechanical calculations performed
e ecules each molecular spin orbital is expressed as a linear combination of atomic

orbitals (the LCAO y i i
Qf . fO(HOWing for Izisproach ). Thus each molecular orbital can be written as a summation

$15(1)  1s(1) 2s(1)  ¢2a(D) K
1|50 B0 6 B Y= 2ty 268)
V241 410) ¢10) ¢:() $u(3) Wbiisa (spatial) molecular orbital, ¢, is one of K atomic orbitals and ¢y 1s a coefficient. In a

:;g;;;je LC%O picturg of thfe lowest energy state of molecular hydrogen, H,, there are two
 “lectrons with opposite spins in the lowest energy spatial orbital (labelled log), which is

¢1s(4) &].5(4)‘ ¢25(4) &25(4)

= |¢ls éls ¢2$ &251
=|ls 1s 2s 2s] (2.64)

 Com putational qu i i
- tHHonal quantum chemistry is well endowed with acronyms and abbreviati i
| ) reviations.
; “c;f the more comn s c o f i 21, y ons. A list of some
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formed from a linear combination of two hydrogen-atom 1s arbitals:
10’g = A(lSA + 1SB) . (269)
A is the normalisation factor, whose value is not important in our present discussion. To

calculate the energy of the ground state of the hydrogen molecule for a fixed internuclear
distance we first write the wavefunction as a 2 x 2 determinant:

o | X - ) @70

where
x1(1) = 1og(1)e(1)
x2(1) = 1ag(1)ﬁ(1)
x1(2) = 10g(2)a(2)
x2(2) = 105(2)3(2)

For the hydrogen molecule, the Hamiltonian comprises the kinetic energy operator for each
electron plus the potential energy operator due to the Coulomb attraction between the two
electrons and the two nuclei, and the repulsion between the two electrons. In atomic units
the Hamiltonian is thus

(2.%1)

15
vi-=A 2 4a
2 na TiB Toa T8 T12

The electrons have been labelled 1 and 2 and the nuclei have been labelled A and B. For H,
the nuclear charges Z, and Zy are both equal to 1. First we need to consider how to calculate
the energy of this hydrogen molecule. This is obtained using Equation (2.7):
E_ JOAVdr
T [ Uldr

> = —%V% _ (2.72)

(2.73)

In general, a quantum mechanical calculation provides molecular orbitals that are normalised
but the total wavefunction is not. The normalisation constant for the wavefunction of the two-
electron hydrogen molecule is 1/+/2 and so the denominator in Equation (2.73) is equal to 2.

We now substitute the hydrogen molecule wavefunction into Equation (2.73) to provide the

following;

| [ars s (Wa(2) ~ Va3 - 193 = (1/r10) — (1)

— (1/ra) — (i/rzs) + (1/r2)lx1(Dx2(2) — x2(Hx1(2)1} (2.74) |

dr; indicates that the integration is over the spatial and spin coordinates of electron i. It is
~ useful to separate the Hamiltonian operator into two Hj Hamiltonians plus the inter-
electronic repulsion term: :

= ljj dry dry{ 1 (1)x2(2) — Xz(l)x1(2)][.9(f1 + 5 + (1/11)]

E 2
% [x1(Dx2(2) — x2(Dxa (2))} (2.75)
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where
1 1 1 1
B R S
2 A T 2 2V2 Taa  T3p (276)

We can now st.art to separate the integral in Equation (2.74) into individual terms and
identify the various contributions to the electronic energy:

E— “ dry dryxs (13 () (#1)x (1xa(2)
. J J a7y dryx: (1)x2(2) (1) x2(1)xy (2) o
+ [ [ dnare@ @) ue
- [[anamame@@)eme b
+ ”dﬁ i1 (Dxa(2) ( %) x(Dxa(2)

- J J dry dryx; (1)x2(2) (%)Xz(l))(l 2+ (2.77)

Each of these individual terms can be simplified if we recognise that terms dependent upon
electrons other than those in the operator can be separated out. For example, the first term in

the expansion, Equation (2.77), is:

Hdﬁ dr6(Dx2(2)(#1)x (Dxa(2) (2.78)

_ The operator #, is a function of the coordinates of electron 1 only, so terms involving

electron 2 can be separated out as follows:

j j dry dryxa(1Dx2(2) ()31 (U (2)

B 1 11
= Jimane® [imam(<3vi- L - L)ya
3V o ) 279)
If the molecular orbitals are normalised, the in '
' 11e mol . , tegral [dmx,(2)x2(2) equals 1. Further
simplification can be achieved by splitting the integral involvi g electron 1 into separate

integrals over the spatial and spin parts; the integral over spin orbitals is equal to the product

‘“ of an integral over the spatial coordinates and an integral over the spin coordinates:

JdT]Xl(l) (—v% — % ~ %)Xl(l)
= [antos (-39t 2= Do [dmama) (240)

fgﬁlli:ldc%mates integ'ration over spatial coordinates and do indicates integration over the spin
O0famates. The integral over the spin coordinates equals 1. This expression corresponds
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to the sum of the kinetic and potential energy of an electron in the orbital 1o, in the electro-
static field of the two bare nuclei. This integral can in turn be expanded by substituting the
atomic orbital combination for lo,:

jdl/llag(l) (—%V% —‘rliA - -r]l—B) Tog(1)
= 2 [ 15x0) + 1550} (- T~ - L) s+ 1m0} (@280
A "B

A is the normalisation constant. The integral in Equation (2.81) can in turn be factorised to

give a sum of integrals, each of which involves a pair of atomic orbitals:
1 1 1
[ant1sa(0) + 1550003 (=3 73 = = - {150 + Bsn ()
. 2 A 1B
1 1 1
= | dinlsa(1 ——Vz—————>1s 1
[antoa) (=37 7= 1sa)
1 1
+JdullsA(1) —EV% —— —— | 1s()) + - (2.82)
2 ra "B

Let us now apply the same procedure to the second term in Equation (2.77):

[[dm dmaape@@maiae) = |ana @ [aroeme 8

This particular integral is zero because the molecular orbitals are orthogonal and so the
integral over the coordinates of electron 2 equals zero:

jdm(zma) =0 (2.84)

A similar procedure can be applied to the other integrals involving electron-nuclear
interactions; it turns out that there are four non-zero integrals, each of which is equal to
the energy of a single electron in the field of the two hydrogen nuclei.

There remain four integrals arising from electron-electron interactions. These are:

[[dra s e (5 Jue@ -+ | dr drpxa (D) (2) (—%) xe(Dx(2)

1 1
- [[anamaa@ (2 ) amn@ - [[an @ (5, o @89
The first two of these can be simplified as follows:

[[dndmname (2 )@ = | [d diatoyayieg@ (52 ) 1m0

x Jdala'(l)a(l) J doy5(2)5(2)

- “duldu2lag(1)1ag(1)(%)10—3(2)1%(2) (2.86)

An Introduction to Computational Quantum Mechanics 45

According to the Born interpretation of the wavefunction, 1o, (r1)10,(r1) equals the electron
density of electron 1 in orbital 1o, at a position ry. Similarly, 1og(ry)10,(r2) is the electron
density of electron 2. The electrostatic repulsion between these regions of electron density
thus equals log(ry)1og(r1) X (1/r13) X 1og(ry)104(r2), where ry; is the distance between the
two electrons. The integral of this function over all space thus corresponds to the electro-
static (Coulomb) repulsion between the two orbitals.

1f we substitute the atomic orbital expansion, we obtain a series of two-electron integrals,
each of which involves four atomic orbitals:

J[ dvy dylog(1)104(2) (%) log(1)10,4(2)
= ” dvy dvy1s 4 (1)154(2) (%) 154 (1)1s4(2)
. J J du 15 (1154 (2) (%) 15, (1)1s(2) + - -- (2.87)

12

The remaining two integrals from Equation (2.85) are:

[[an dmana® (o ) = [ an dmtoy 10,05 1,102

12

x J»dala(l)ﬂ(l)J d02B(2)a(2) (2.88)

[n dmemn@ ()o@ = [[an bt 010,05 12,010,

x jdalﬂ(l)a(l) J doya(2)3(2) (2.89)

Both of these integrals are zero due to the orthogonality of the electron spin states o

and 3.

The triplet excited state of H, is obtained by promoting an electron to a higher-energy
n‘mlecular orbital. This higher-energy (antibonding) orbital is written 1o, and can be con-
sidered to arise from two 1s orbitals as follows:

10'u = A(].SA — 1SB) (290)

The triplet state has two unpaired electrons with the same spin (@) and so the wavefunction
state is:

loga(1l) loya(1) 5
loga(2) loya(2) (291)
If we now expand the expression for the energy as for the ground state, terms analogous to
the electron-nucleus and electron-electron interactions can again be obtained. However, the
cross-terms are no longer equal to zero as was the case for the ground state, because the
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electron spins are now the same (both a). For example, compare with Equation (2.88):
(1 1 ~
[[amamare) (i )ea@ = [[andi0010,0 (- ) 15@100

x Jdalaa)aa) jdaza(2)a(2) 2.92)

This contribution is called the exchange interaction. This appears with a minus sign in the
expression for the total energy and so acts to stabilise the triplet 1s'2s’ state over the
analogous singlet state. The exchange term is only non-zero for electrons of the same
spin. It has the effect of making electrons of the same spin ‘avoid’ each other. As a result
of this each electron can be considered to have a "hole” associated with it. This hole is
known as the exchange hole or the Fermi hole. )

2.4.2 The Energy of a General Polyelectronic System

The hydrogen molecule is such a small problem that all of the integrals can be written out in
full. This is rarely the case in molecular orbital calculations. Nevertheless, the same
principles are used to determine the energy of a polyelectronic molecular system. For an
N-electron system, the Hamiltonian takes the following general form:

1 1 1 1 1 ‘
H=-=N "V — ... _|___|___|_...) 2.93
( 2; " na ns 2 T3 ( )

As with the hydrogen molecule, we have adopted the convention that the nuclei are labelled
using capital letters A, B, C, etc., and the electrons are labelled 1,2, 3, ....

Recall that the Slater determinant for a system of N electrons in N spin orbitals can be written:

x1(1)  x@) x@ ... xn(1)
x12) x22) x(2) - xn(2)
x13) @) 6@ - xwG) (2.94)
aN) M) xa®) . )

Each term in the determinant can thus be written xi(1)xj(2)xx(3) - - - xu(N — 1)xu(N) where ,
j. k..., u,vis aseries of N integers.

As usual, the energy can be calculated from E = [ ¥#¥/ [ TU:

Juow = [ [anan-an @)
(<32 Vi = W) = @)+ (0 + W)+ )

x [xi<1)xj<2)xk<3)-~-1} | (2.95)
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J\II\I/ = J . .Jdﬁ dry - dTN{[)V(i(l)X]-(2)Xk(3) .. '][Xi(l)Xj(2)Xk(3) ! (2.96)

We can now see why the normalisation factor of the Slater determinantal wavefunction
isl /N -If each determinant contains N! terms then the product of two Slater determinants,
Edeterminant][determinant], contains (N!)2 terms. However, if the spin orbitals form an
orthonormal set then only products of identical terms from the determinant will be non-
sero when integrated over all space. We can illustrate this with the three-electron example.

_ Considering just the first two terms in the expansion we obtain the following;

mdﬁ dry drs 3 (Dx2(2)x6(3) = x1 (s @)xa(3) + -]

X Da(Mx2(2)xaB3) — x1(Dx3(2)x23) + - -] (2.97)

When multiplied out this gives:

j j j dry dry dns Py (D2 @3 B W2 s (3)]
- ”j dry dry drs (1D x2(2)x3)] b (D 2)xa 3)] + -+

+ m dry dry drs x1 (Dxs2)x 3] (Wxa(2)x2B3)] + - - (298)

The first of the integrals in Equation (2.98) equals 1 (if the spin orbitals are normalised). The
second term is zero because the terms involving both electrons 2 and 3 are different (for
example, the integral [ dmx5(2)x3(2) will be zero due to the orthogonality of the spin orbitals
Xz and x3). The third term in Equation (2.98) will be equal to 1, and so on. It turns out that
there are N! such non-zero terms. Thus if each indivitiual term in the determinant is normal-
ised, then:

Jw ~ NI (2.99)

Hence the normalisation factor for the determinantal wavefunction is 1/+/N!.

Turning now to the numerator in the energy expression (Equation (2.95)), this can be broken
down into a series of one-electron and two-electron integrals, as for the hydrogen molecule.
Each of these individual integrals has the general form: '

J . Jdﬁ dr, ... [term1|operator(term2) (2.100)
[te.rm‘ll and [term2] each represent one of the NI terms in the Slater determinant. To simplify
this integral, we first recognise that all spin orbitals involving an electron that does not

_ dppear in the operator can be taken outside the integral. For example, if the operator is

1/n4, then all spin orbitals other than those that depend on the coordinates of electron 1
can be separated from the integral. The orthogonality of the spin orbitals means that the
infegral will be zero unless all indices involving these other electrons are the same in
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[term1] and [term2]. Again, to use our three-electron system as an example:

J” dry dry dr3 [X;(l)X2(2)X3 (3)] <— %) D (1)x2(2)x3(3)]
= )

1A

= [t (=7 o) (2101

— [ amanix@n@a@xs@) [ama

But:
[[[ 2 a2 (—rliA)[xla)m(z)m(sn

= [[ dramba@r@lbe@xa) |4 (- )

=0 (2.102)

For integrals that involve two-electron operators (i.e. 1/r;), only those terms that do not
involve the coordinates of the two electrons can be taken outside the integral. For example:

- ” dry dn[x1(1)x2(2)] (ri_z) [x1(2)x2(2)] J d7sx3(3)x3(3)

 [[#n drmbaa@) (- ) ba@raca) (2.109)
But:

dr drydr (DG = ) ka(Dxe@x26)]
Il ()

— [[dm b @] = ) ba@x@) | dmx:@3)x0)
'g

12
-0 ‘ o (2.104)

As a consequence of these results, most of the individual integrals in the expansion will
be zero. Nevertheless, it can be readily envisaged that there will still be an extremely
large number of integrals to consider for all except the smallest problems. It is thus more
convenient to write the energy expression in a concise form that recognises the three
types of interaction that contribute to the total electronic energy of the system.

First, there is the kinetic and potential energy of each electron moving in the field of the
nuclei. The energy associated with this contribution for the molecular orbital x; is often
written H”™ and for M nuclei is given by:

e = [ (-3 - X 24 ) (2.105)

A=1
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For N electrons in N molecular orbitals this contribution to the total energy is:

core % 1, M Za N
total = ZjdﬁXi(l) <—§Vi - Z E)Xi(l) = ZHfiore (2.106)

i=1 i=1

Here we have followed convention and have used the label “1” wherever there is an integral
involving the coordinates of a single electron, even though the actual electron may not be
‘electron 1'. Similarly, when it is necessary to consider two electrons then the labels 1 and
2 are conventionally employed. H;”™ makes a favourable (i.e. negative) contribution to

the electronic energy.

The second contribution to the energy arises from the electrostatic repulsion between pairs
of electrons. This interaction depends on the electron-electron distance and, as we have
seen, is calculated from integrals such as:

]ij = ” dry dTZXi(l)Xj(z) (%)Xi(l)xj'(z) (2.107)

The symbol J;; is often used to represent this Coulomb interaction between electrons in spin
orbitals i and j, and is unfavourable (i.e. positive). The total electrostatic interaction between
the electron in orbital x; and the other N — 1 electrons is a sum of all such integrals, where
the summation index j runs from 1 to N, excluding i:

N
oulomi 1
Egeulomb — > JdTl drxi(1)x;(2) EXJ‘(Z)XI'(D

i#i
=" [ dmx(Dx() - x @2 (2:108)
j#i 12

The total Coulomb contribution to the electronic energy of the system is obtained as a double
summation over all electrons, taking care to count each interaction just once:

N N
Coulomb 1- NI
B =Y > [ananma@u - x@y@ =Y > ) (2:109)
i=1 j=i+1 . 12 i=1 j=it+1

The third contribution to the energy is the exchange ‘interaction’. This has no classical
counterpart and arises because the motions of electrons with parallel spins are correlated:
whereas there is a finite probability of finding two electrons with opposite (i.e. paired)

spins at the same point in space, where the spins are the same then the probability is

zera. This can be considered a manifestation of the Pauli principle, for if two electrons
occupied the same region of space and had parallel spins then they could be considered
fo hfwe the same set of quantum numbers. Electrons with the same spin thus tend to
avoid’ each other, and they experience a lower Coulombic repulsion, giving a lower (i.e.

_ more favourable) energy. The exchange interaction involves integrals of the form:

Kij = ” dry dTZXi(l)X]’ 2 (%) Xi (Z)Xj(l) (2.110)
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This integral is only non-zero if the spins of the electrons in the.spin orbitals x; and x; are the
same. The energy due to exchange is often represented as Kj;. The exchange energy between
the electron in spin orbital ; and the other N — 1 electrons is:

N
eXC| 1
e = 3 [ am 0@ (1 )@ )
j#i
The total exchange energy is calculated thus:
N N

rpee =5~ 3 [ dmav@) (%)xi(z)xj(lh

i=1 j=it+1

(2.112)

>

N N
j=1

F=i+1
The prime on the counter j’ indicates that the summation is only over electrons with the same
spin as electron i.

2.4.3 Shorthand Representations of the One- and Two-electron Integrals

Various shorthand ways have been devised to represent the integrals involved in an
electronic structure calculation. The two-electron integrals J; and Kj; are particularly long-
winded to write out. In one scheme the Coulomb interaction J;; is written as:

E 1 ’
<Xi Xj Xin> (2.113)

12
In this notation the complex parts are written on the left-hand side and the real parts on the
right. Sometimes the x symbol is eliminated:

<ij 1 ij> (2.114)
12
The exchange integrals would be written: '
1
<ij — ji> (2.115)
2 ,

in this notation. .

A notation that is widely used in the chemical literature writes the orbitals that are functions
of electron 1 on the left-hand side (with the complex conjugate orbital first, if appropriate)
and the orbitals that are functions of electron 2 on the right-hand side (again with the
complex conjugate orbital first). In this notation, which is the one that we will adopt, the
Coulomb integral is written (iijj) and the exchange integral (ij|ji). The one-electron integrals
such as Equation (2.105) are written as follows:

(372~ Afl Za ) = [aroa(n) (5 V2 - Afl Z)yw e

When calculating the total energy of the system, we should not forget the Coulomb inter-
action between the nuclei; this is constant within the Born-Oppenheimer approximation
for a given spatial arrangement of nuclei. When it is desired to change the nuclear positions,
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it is-of course n.ecessafy to take the internuclear repulsion energy into account, which is
calculated using the Coulomb equation:

> > I‘QA: (2.117)

2.4.4 The Energy of a Closed-shell System

In molecular modelling we are usually concerned with the ground states of molecules, most
of which have closed-shell configurations. In a closed-shell system containing N electrons in
N/2 orbitals, there are two spin orbitals associated with each spatial orbital ¢);: ¥;a and ;5.
The electronic energy of such a system can be calculated in a manner analogous to that for
the hydrogen molecule. First, there is the energy of each electron moving in the field of the
bare nuclei. For an electron in a molecular orbital ;, this contributes an energy Hi"™. If there
are two electrons in the orbital then the energy is 2H;;"™ and for N/2 orbitals the total
contribution to the energy will be:

N/2

> 2HE (2.118)

i=1

If we consider the electron-electron terms, the interaction between each pair of orbitals ;
and ¢ involves a total of four electrons. There are four ways in which two electrons in
one orbital can interact in a Coulomb sense with two electrons in a second orbital, thus
giving 4J;. However, there are just two ways to obtain paired electrons from this arrange-
ment, giving a total exchange contribution of —2K,'j. Finally, the Coulomb interaction
between each pair of electrons in the same orbital must be included; there is no exchange
interaction because the electrons have paired spins. The total energy is thus given as:

N/2 N/2 Nj2 N/2
E=2"H+> > @y-2k)+ > i (2.119)
Ci=1 i=1j=i+1 i=1
A more concise form of this equation can be obtained if we recognise that J; = Kj;:
N/2 N/2 NJ2
E=2 X;H +> 2(2},-]» - K;) (2.120)
i= i=1j=

2.5 The Hartree-Fock Equations

In our hydrogen molecule calculation in Section 2.4.1 the molecular orbitals were provided
as mput, but in most electronic structure calculations we are usually trying to calculate the
molecular orbitals. How do we go about this? We must remember that for many-body
problems there is no “correct’ solution; we therefore require some means to decide whether
one Proposed wavefunction is ‘better’ than another. Fortunately, the wvariation theorem
provides us with a mechanism for answering this question. The theorem states that the
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energy calculated from an approximation to the true wavefunction will always be greater
than the true energy. Consequently, the better the wavefunction, the lower the energy.
The ‘best’ wavefunction is obtained when the energy is a minimum. At a minimum, the
first derivative of the energy, 6E, will be zero. The Hartree-Fock equations are obtained
by imposing this condition on the expression for the energy, subject to the constraint that
the molecular orbitals remain orthonormal. The orthonormality condition is written in
terms of the overlap integral, S;, between two orbitals i and j. Thus

Sij = JXIX] dr = 61] (61] is the Kronecker delta) (2121)
This type of constrained minimisation problem can be tackled using the method of Lagrange
multipliers. In this approach (see Section 1.10.5 for a brief introduction to Lagrange
multipliers) the derivative of the function to be minimised is added to the derivatives of
the constraint(s) multiplied by a constant called a Lagrange multiplier. The sum is then
set equal to zero. If the Lagrange multiplier for each of the orthonormality conditions is

written Aij, then:
6E+6E E NS =0
i

In the Hartree-Fock equations the Lagrange multipliers are actually written —2¢;; to reflect
the fact that they are related to the molecular orbital energies. The equation to be solved is

thus:
i

We will not describe in detail how this equation is solved, as it is rather complicated. However,
a qualitative picture is possible. The major difference between polyelectronic systems and
systems with single electrons is the presence of interactions between the electrons, which,
as we have seen, are expressed as Coulomb and exchange integrals. Suppose we are given
the task of finding the “best’ (i.e. lowest energy) wavefunction for a polyelectronic system.
We wish to retain the orbital picture of the system, in which single electrons are assigned to
individual spin orbitals. The problem is to find a solution which simultaneously enables all
the electronic motions to be taken into account, as a change in the spin orbital for one electron
will influence the behaviour of an electron in another spin orbital due to the coupling of the
electronic motions. We concentrate on a single electron in a spin orbital ; in the field of the
nuclei and the other electrons in their (fixed) spin orbitals ;. The Hamiltonian operator for
the electron in x; contains three terms appropriate to the three different contributions to the
energy that were identified above (core, Coulomb, exchange). The result can be written as
an integro-differential equation for x; that has the following form:

3923 2w+ X [ [an@n@ 2w

A=1 iA i

(2.122)

(2.123)

17.
— ; [Jd72Xj(2)Xi(2)Ej(Xi(1) = zj:finj(l)

(2.124)
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This expression can be tidied up by introducing three operators that represent the contribu-
tions to the energy of the spin orbital x; in the ‘frozen’ system:

The core Hamiltonian operator, #°°(1):

%core(l) _ 1V2 d ZA
=5vi-y 4

P (2.125)

In the absence of any interelectronic interactions this would be the only operator present,
corresponding to the motion of a single electron moving in the field of the bare nuclei.

_ The Coulomb operator, Fi(1):

1
Fi(1) = JdTZXj(z)an(z) (2.126)
This operator corresponds to the average potential due to an electron in X
The exchange operator .;(1):
1
H;(Vx(1) = | | dmax;(2) —x:(2) | x;(1) (2.127)
12 /

The form of this operator is rather unusual, insofar as it must be defined in terms of its effect
when acting on the spin orbita] y;.

__Equation (2.124) can thus be written:

N "N
AP (L)xi(1) + ;fjmx,-(l) =D A (Wx(1) =Y e5x(1) (2.128)
j#i j#i i
_ Making use of the fact that { #;(1) — o {(D}x:(1) = 0 leads to the following form:
‘ ) N N
W+ 30 - 0 ) = 3 e (2129)
‘ i=1 j=1
Or, more simply:
- Aixi = Z%‘Xj (2.130)
i
/1 1s called the Fock operator:
_ ) N
A1) = (1) + Y {#5(1) — o (1)} (2.131)
j=1
For a closed-shell system, the Fock operator has the following form:
: N/2
A1) = (1) + Y {2,4;(1) - (1)} (2132)
j=1

_ The Fock operator is an effective one-electron Hamiltonian for the electron in the poly-

electronic system. However, written in this form of Equation (2.130), the Hartree-Fock
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equations do not seem to be particularly useful: on the left-hand side we have the Fock
operator acting on the molecular orbital y;, but this returns, not the molecular orbjtal multi-
plied by a constant as in a normal eigenvalue equation, but rather a series of orbitals x; multi-
plied by some unknown constants ¢;. This is because the solutions to the Hartree-Fock
equations are not unique. We have already seen that the value of a determinant is unaffected
when the multiple of any column is added to another column. If such a transformation is
performed on the Slater determinant, then a different set of constants af]- would be obtained
with the spin orbitals x; being linear combinations of the first set. Certain transformations
give rise to localised orbitals, which are particularly useful for understanding the chemical
nature of the system. These localised orbitals are no more ‘correct’ than a delocalised set.
Fortunately, it is possible to manipulate Equations (2.130) mathematically so that the
Lagrangian multipliers are zero unless the indices i and j are the same. The Hartree-Fack
equations then take on the standard eigenvalue form:

FiXi = EiXi (2.133)

Recall that in setting up these equations, each electron has been assumed to move in a
‘fixed’ field comprising the nuclei and the other electrons. This has important implications
for the way in which we attempt to find a solution, for any solution that we might find by
solving the equation for one electron will naturally affect the solutions for the other electrons
in the system. The general strategy is called a self-consistent field (SCF) approach. One way to
solve these equations is as follows. First, a set of trial solutions x; to the Hartree-Fock
eigenvalue equations are obtained. These are used to calculate the Coulomb and exchange
operators. The Hartree-Fock equations are solved, giving a second set of solutions y;,
which are used in the next iteration. The SCF method thus gradually refines the individual
electronic solutions that correspond to lower and lower total energies until the point is
reached at which the results for all the electrons are unchanged, when they are said to be
self-consistent.

2.5.1 Hartree-Fock Calculations for Atoms and Slater’s Rules

The Hartree-Fock equations are usually solved in different ways for atoms and for
molecules. For atoms, the equations can be solved numerically if it is assumed that the
electron distribution is spherically symmetrical. However, these numerical solutions: are
not particularly useful. Fortunately, analytical approximations to these solutions, which
are very similar to those obtained for the hydrogen atom, can be used with considerable
success. These approximate analytical functions thus have the form:

¥ = Ru(r)Ym(0,¢) (2.134)

Y is a spherical harmonic (as for the hydrogen atom) and R is a radial function. The radial
functions obtained for the hydrogen atom cannot be used directly for polyelectronic atoms
due to the screening of the nuclear charge by the inner shell electrons, but the hydrogen atom
functions are acceptable if the orbital exponent is adjusted to account for the screening effect.
Even so, the hydrogen atom functions are not particularly convenient to use in molecular
orbital calculations due to their complicated functional form. Slater [Slater 1930] suggested
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a simpler analytical form for the radial functions:
Ryu(r) = (20" 2[@n)) 2 =1 o (2.135)

These functions are universally known as Slater type orbitals (STOs) and are just the
Jeading term in the appropriate Laguerre polynomials. The first three Slater functions are
as follows:

Ris(r) =2¢%2 ¢ (2.136)
1/2 )
Ros(r) = Rop(r) = (g) re " (2.137)
' 7\1/2
Ras(r) = Rgp (r) = Ryq(r) = (%) re? (2.138)

To obtain the whole orbital we must multiply R(r) by the appropriate angular part. For
example, we would use the following expressions for the 1s, 2s and 2p, orbitals:

p1s(r) =/ ®/mexp(—(r) (2.139)
$2s(r) = /(% /3mrexp(—(r) (2.140)
bap, (¥) = 1/ /mexp(—(r) cos b (2.141)
Slater provided a series of empirical rules for choosing the orbital exponents ¢, which are
given by:
‘ ¢ = Z—o
— (2.142)

Z is the atomic number and o is a shielding constant, determined as below. 1" is an effective
principal quantum number, which takes the same value as the true principal quantum
number for n=1, 2 or 3, but for n =4, 5, 6 has the values 3.7, 4.0, 4.2, respectively. The
shielding constant is obtained as follows:

First, divide the orbitals into the following groups:
(1s); (2s, 2p); (3s, 3p); (3d); (4s, 4p); (4d); (4f); (5s, 5p); (5d) (2.143)
For a given orbital, o is obtained by adding together the following contributions:

(a) zero from an orbital further from the nucleus than those in the group;

(b) 0.35 from each other electron in the same group, but if the other orbital is the 1s then the
contribution is 0.3; V

(€) L0 for each electron in a group with a principal quantum number 2 or more fewer than
the current orbital;

(d) for each electron with a principal quantum number 1 fewer than the current orbital: 1.0 if
the current orbital is d or f; 0.85 if the current orbital is s or p

me‘Shielding constant for the valence electrons of silicon is obtained using Slater’s rules as
follows. The electronic configuration of Si is (152)(2522p6)(3523p2). We therefore count
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3 x 0.35 under rule (b), 2.0 under rule (c) and 8 x 0.85 under rule (d), giving a total of 9.85.
When subtracted from the atomic number (14) this gives 4.15 for the value of Z — o.

2.5.2 Linear Combination of Atomic Orbitals (LCAQ) in Hartree-Fock
Theory ' '

Direct solution of the Hartree-Fock equations is not a practical proposition for molecules
and so it is necessary to adopt an alternative approach. The most popular strategy is to
write each spin orbital as a linear combination of single electron orbitals: '

K
11)1‘ = Zcui¢u (2144)
v=1

The one-electron orbitals ¢, are commonly called basis functions and often correspond to
the atomic orbitals. We will label the basis functions with the Greek letters y, v, A and o.
In the case of Equation (2.144) there are K basis functions and we should therefore
expect to derive a total of K molecular orbitals (although not all of these will necessarily
be occupied by electrons). The smallest number of basis functions for a molecular system
will be that which can just accommodate ali the electrons in the molecule. More sophisti-
cated calculations use more basis functions than a minimal set. At the Hartree-Fock limit
the energy of the system can be reduced no further by the addition of any more basis
functions; however, it may be possible to lower the energy below the Hartree-Fock limit
by using a functional form of the wavefunction that is more extensive than the single
Slater determinant.

In accordance with the variation theorem we require the set of coefficients c,; that gives the
lowest-energy wavefunction, and some scheme for changing the coefficients to derive that
wavefunction. For a given basis set and a given functional form of the wavefunction (i.e.
a Slater determinant) the best set of coefficients is that for which the energy is a minimum,
at which point

O '

—=0 (2.145)

aCm'
for all coefficients c,;. The objective is thus to determine the set of coefficients that gives the
lowest energy for the system.

2.5.3 Closed-shell Systems and the Roothaan-Hall Equations

We shall initially consider a closed-shell system with N electrons in N/2 orbitals. The
derivation of the Hartree-Fock equations for such a system was first proposed by Roothaan

~ [Roothaan 1951] and (independently) by Hall [Hall 1951]. The resulting equations are known._

as the Roothaan equations or the Roothaan-Hall equations. Unlike the integro-differential
form of the Hartree-Fock equations, Equation (2.124), Roothaan and Hall recast the
equations in matrix form, which can be solved using standard techniques and can be applied
to systems of any geometry. We shall identify the major steps in the Roothaan approach,
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starting with the expression for the Hartree-Fock energy for our closed-shell system,
Equation (2.120):

N/2 N/2 Nj2
E=2Y"Hpe+ 35 (@ - Ky) (2.146)
i=1 i=1 j=1
The corresponding Fock operator is (Equation (2.132)):
‘ “N/J2
7D = A1) + Y {24;(1) — a5(1)} (2.147)
i=1 ,

We now introduce the atomic orbital expansion for the orbitals 1); and substitute for the
corresponding spin orbital y; into the Hartree-Fock equation, Z;(1)x;(1) = e;xx;:(1):

X X
#i(1) Zl cit() =&Y c16,(1) (2.148)
v= v=1

Pre-multiplying each side by ¢,(1) (where @, is also a basis function) and integrating gives
the following matrix equation:

K K
3 e [, /00,0 = &3 s [dng, 6,01 (2149)
v= v=1

‘jdz/}aﬁil(l)(ﬁ,,(l) is the overlap integral between the basis functions p and v, written S

Unlike the molecular orbitals, which will be required to be orthonormal, the overlap

between two basis functions is not necessarily zero (for example, they may be located on

_ different atoms).

The elements of the Fock matrix are given by

F,, = jdu@u(l)/i(l)qsu(l) (2.150)

?[‘he Fock matrix elements for a closed-shell system can be expanded as follows by substitut-
ing the expression for the Fock operator:

. N/2
F,= J 1, (1)#°(1)6,(1) + Y J dv16,(1)[2,#;(1) — A'5(1)]$, (1) (2.151)
j=1

_The elements of the Fock matrix can thus be written as the sum of core, Coulomb and

exchange contributions. The core contribution is:

M
Jms, oo, = [ao, 0 | -5v- S pe|em=mr e

The core contributions thus require the calculation of integrals that involve basis functions

91 Up to two centres (depending upon whether ¢, and ¢, are centred on the same nucleus

or not). Each element H™® can in turn be obtained as the sum of a kinetic energy integral

ﬁndg potential energy integral corresponding to the two terms in the one-electron
~ Hamiltonian, ,
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The Coulomb and exchange contributions to the Fock matrix element F,, are together
given by:

N/2
3 [ pA @) - 50l8 0 (2153)

j=1

Recall that the Coulomb operator #;(1) due to interaction with a spin orbital ; is given by:
#i(1) = dezx](z> %) (2.154)

We need to write each of the two occurrences of the spin orbital x; in this integral in terms of
the appropriate linear combination of basis functions: ~

K 1 K
Fi) = Jde;caj%(Z)r—u ;cqux(z) (2.155)

We have used the indices o and X for the basis functions here. Similarly, the exchange
contribution can be written:

oA, (1)(l) = U% > cobs @ (2)] S eyh@ (2156)

When the Coulomb and exchange operators are expressed in terms of the basis functions
and the orbital expansion is substituted for x;, then their contributions to the Fock matrix

element F,, take the following form:

N/2
) Jdvl¢y(1)[2fi(1) — A;(D]¢n(1)

j=1

J din dvag (19, (1) 7 ¢x(2)¢a(2)

N/2 K K

_ PIDILYY

FEET | [andne 606,000

N2 K K '
= ZZ \Coil2(uv|Aa) — (uAlvo)) (2.157)

I
-

We have used the shorthand notation for the integrals in the final expression. Note that the
two-electron integrals may involve up to four different basis functions (g, v, A, o), which may
in turn be located at four different centres. This has important consequences for the way in

which we try to solve the equations.

Tt is helpful to simplify Equatiokn (2.157) by introducing the charge density matrix, P, whose

elements are defined as:
N/2 N/2

=2 Z CpiCui and P,=2 Z C3iCoi (2.158]

i=1
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Note that the summations are over the N/2 occupied orbitals. Other properties can be
calculated from the density matrix; for example, the electronic energy is:

1 K K
) g g (H® + Fu) (2.159)

The electron density at a point r can also be expressed in terms of the density matrix:

K

p(r) = Z: > Pudu(1)e,(r) (2.160)

The expression for each element F,, of the Fock matrix elements for a closed-shell system of
N electrons then becomes:

K K
=H 43S Pal(uine) = 4 uA o) (2.161)

This is the standard form for the expression for the Fock matrix in the Roothaan-Hall
equations,

2.5.4 Solving the Roothaan-Hall Equations
The Fock matrix is a K x K square matrix that is symmetric if real basis functions are used.
The Roothaan-Hall equations (2.149) can be conveniently written as a matrix equation:

FC = SCE - (2162)

The elements of the K x K matrix C are the coefficients c,;:

cl,l 01’2 . cvi

c C1 G2 ... OK
=l . . : (2.163)

k CK,l CK,2 e CK,K

E is a diagonal matrix whose elements are the orbital energies:

€1 0o ... 0
0 gy ... 0

E= (2.164)
0 o ... EK

Let us consider how we might solve the Roothaan-Hall equations and thereby obtain the

_molecular orbitals. The first point we must note is that the elements of the Fock matrix,

;/Zl;lf;iizﬁfear onht.h;z1 leift—hand side of Equation (2.162), depend on the molecular orbital
etlicients c,;, which also appear on the right-hand side of th i i i
procedure is required to find a solution. s @ eauation. Thus an fferaive
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The one-electron contributions Hy, due to the electrons moving in the field of the bare
nuclei do not depend on the basis set coefficients and remain unchanged throughout the
calculation. However, the Coulomb and exchange contributions do depend on the co-
efficients and we would expect these to vary throughout the calculation. The individual
two-electron integrals (uv|Ac) are, however, constant throughout the calculation. An
obvious strategy is thus to calculate and store these integrals for later use.

Having written the Roothaan-Hall equations in matrix form we would obviously like ta
solve them using standard matrix eigenvalue methods (discussed in Section 1.10.3). How-
ever, standard eigenvalue methods would require an equation of the form FC=CE. The
Roothaan~Hall equations only adopt such a form if the overlap matrix, S, is equal to the
unit matrix, I (in which all diagonal elements are equal to 1 and all off-diagonal elements
are zero). The functions ¢ are usually normalised but they are not necessarily orthogonal
{for example, because they are located on different atoms) and so there will invariably be
non-zero off-diagonal elements of the overlap matrix. To solve the Roothaan~Hall equations
using standard methods they must be transformed. This corresponds to transforming the
basis functions so that they form an orthonormal set. We seek a matrix X, such that
X"'8X =1. X" is the transpose of X, obtained by interchanging rows and columns. There

are various ways in which X can be calculated; in symmetric orthogonalisation, the overlap

matrix is diagonalised. Diagonalisation involves finding the matrix U such that
UTSU = D =diag();... k) ‘ (2.165)

D is the diagonal matrix containing the eigenvalues A; of S, and U contains the eigenvectors
of S. U” is the transpose of the matrix U. (This expression is often written U™'SU = D since
for real basis functions U™! = U”.) Then the matrix X is given by X = UD"2U", where
D2 is formed from the inverse square roots of D. We shall write X as s Y 2 as it can be
considered to be the inverse square root of the overlap matrix: $ /2887V2 = L.

The Roothaan-Hall equations can now be manipulated as follows. Both sides of Equation
(2.162) are pre-multiplied by the matrix § %
S~Y2FC = sV/28CE = SY2CE (2.166)

Inserting the unit matrix, in the form s 1/2g1/ 2 into the left-hand side gives: .
s 1/2p(s~128'2yC = SY2CE (2.167)

or

S~Y2ps~12(sY2C) = (SY2C)E (2.168)
Equation (2.168) can be written FC' = C'E, where F' = § V2F$Y/2 and C' = SY2C.
The matrix equation F'C' = C'E can be solved using standard methods; a solution only
exists if the determinant [F' — EI| equals zero. In simple cases this can be done by multiply-
ing out the determinant to give a polynomial (the secular equation) whose roots are the
eigenvalues ¢;, but for large matrices a much more practical approach involves the diagona-

lisation of F'. The matrix of coefficients, C, are the eigenvectors of F. The basis function
coefficients C can then be obtained from C’ using C = $/2C’. A common scheme for
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_ solving the Roothaan-Hall equations is thus as follows:

. Calculate the integrals to form the Fock matrix, F.

. Calculate the overlap matrix, S.

Diagonalise S.

. Form 82

. Guess, or otherwise calculate, an initial density matrix, P.

. Form the Fock matrix using the integrals and the density matrix P.

Form F' = §V/?pg71/2,

- Solve the secular equation [F' — EI| = 0 to give the eigenvalues E and the eigenvectors C’
by diagonalising F.

9. Calculate the molecular orbital coefficients, C from C = §V2¢’.

_10. Calculate a new density matrix, P, from the matrix C.

11. Check for convergence. If the calculation has converged, stop. Otherwise repeat from

step 6 using the new density matrix, P.

® Mo W

This procedure requires an initial guess of the density matrix, P. The simplest approach is to
use the null matrix, which corresponds to ignoring all the electron-electron terms so that the

_electrons just experience the bare nuclei. This can sometimes lead to convergence problems

which may be prevented if a lower level of theory (such as semi-empirical or extended
Hiickel) is used to provide the initial guess. Moreover, a better guess may enable the
calculation to be performed more quickly. A variety of criteria can be used to establish
whether the calculation has converged or not. For example, the density matrix can be
cqmpared with that from the previous iteration, and/or the change in energy can be
‘monitored together with the basis set coefficients.

. The result of ? Hartree-Fock calculation is a set of K molecular orbitals, where K is the
__ number of basis functions in the calculation. The N electrons are then fed into these orbitals

in accordance with the Aufbau principle, two electrons per orbital, starting with the lowest-
energy orbitals. The remaining orbitals do not contain any electrons; these are known as the
Pirtual orbitals. Alternative electronic configurations can be generated by exciting electrons
from the occupied orbitals to the virtual orbitals; these excited configurations are used in
more advanced calculations that will be discussed in Chapter 3.

A Hartree-Fock calculation provides a set of orbital energies, ¢;. What is the significance

of these? The energy of an electron in a spin orbital is calculated by adding the core

gtiraction H;* to the Coulomb and exchange interactions with the other electrons in the
ystem: '

NJ2
e =H™ +> (2], - Ky) (2169)
i=1 ,

Th,e total electronic energy of the ground state is given by Equation (2.120):

N/2 N/2 N/2
—_ CO!
E= 22; HP™ +3 3" (2) - Ky) (2.170)
i= i=1 j=1
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The total energy is therefore not equal to the sum of the individual orbital energies but is
related as follows:

N N/2 NJ2
E= Eei — }_; 2(2},7 ~Ky) (2.171)
. i= 1=1 j= .

The reason for the discrepancy is that the individual orbital energies include contributions
from the interaction between that electron and all the nuclei and all other electrons in the
system. The Coulomb and exchange interactions between pairs of electrons are therefore
counted twice when summing the individual orbital energies.

2.5.5 A Simple lllustration of the Roothaan-Hall Approach

We will illustrate the stages involved in the Roothaan-Hall approach using the helium
hydrogen molecular ion, HeH™, as an example. This is a two-electron system. Our objective
here is to show how the Roothaan~Hall method can be used to derive the wavefunction, for a
fixed internuclear distance of 1 A. We use HeH" rather than H, as our system as the lack of
symmetry in HeH" makes the procedure more informative. There are two basis functions,
1s4 (centred on the helium atom) and 1sg (on the hydrogen). The numerical values of the
integrals that we shall use in our calculation were obtained using a Gaussian series approx-
imation to the Slater orbitals (the STO-3G basis set, which is described in Section 2.6). This
detail need not concern us here. Each wavefunction is expressed as a linear combination of
the two 1s atomic orbitals centred on the nuclei A and B:

¢ =c1alsa + cplsp (2.172)
thy = Coalsa + coplsp (2.173)
First, it is necessary to calculate the various one- and two-electron integrals and to formulate
the Fock and overlap matrices, each of which will be a 2 x 2 symmetric mairix (as there are
two orbitals in the basis set). The diagonal elements of the overlap matrix, S, are equal to 1.0

as each basis function is normalised; the off-diagonal elements have smaller, but non-zero,
values that are equal to the overlap between 1s, and 1sg for the internuclear distance chosen.

The matrix 8 is: )
10 0392 ' '
S = ( > (2.174)
0392 1.0 : -

The core contributions Hy, can be calculated as the sum of three 2 x 2 matrices comprising

the kinetic energy (T) and nuclear attraction terms for the two nuclei A and B (V, and V).

The elements of these three matrices are obtained by evaluating the following integrals:

T,ul/ = J‘dulqbu(l)(“ %Vz)qsy(l)
Vaw = [in0,@) (-2 )00

Vg = [ 10,0 (-2 ) 0,00 (2.175)
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The matrices are:

_ (1.412 0.081) _ (3344 0758 0525 —0.308
0.081 0.760 A7\ 0758 —1.026 ‘3:(_0,308 _1,227) (2.176)

H" is the sum of these three:

peore _ (2457 —0.985
= (2.177)

—0.985 —1.493

As faras th‘e two-electron integrals are concerned, with two basis functions there are a total
of 16 possible two-electron integrals. There are however only six unique two-electron
_integrals, as the indices can be permuted as follows:

(i) (Isplsallspls,)=1.056

(i) (Isalsa|lsalsg)=(Isalss|lsgls,) = (1s51sp|IsA154)
=(1splsa |18, 1s4) =0.303

(iii) (Is21sp[Isalsg) = (Isp1sp|Ispls,) = (Isp1s |15 1sp)
= (1sglsalsgls,)=0.112

(iv) (1sp1s,(1splsg) = (1sglsp[1sy1s,) =0.496

(v) (Isalsp|lsplsp) = (1spls,|Isglsg)= (1splsp[1ss1sg)
= (1sglsp[Isgls,) =0.244

{vi) (Isplsp|lsglsg)=0.775

To reiterate, these integrals are calculated as follows:
: 1
(20 = [ dor s, (,0) = 03 215, 2 (2178)
12

Having Calcul'ate.:d ‘the integrals, we are now ready to start the SCF calculation. To formulate
the Fock matrix it is necessary to have an initial guess of the density matrix, P. The simplest

_ approach is to use the null matrix in which all elements are zero. In this initial step the Fock

matrix F is therefore equal to H®™,

The Fock matrix must next be transformed to F' by pre- and post-multiplying by §~Y/2

g-1/2 _ -1.065 -0.217
: —0.217 1.065 2179)
F for this first Iteration is thus:
F -2401 -0.249
-0.249 —-1.353 (2180)
Diggonaﬁsation of F’ gives its eigenvalues and eigenvectors, which are:
Ee (—2.458 0.0 ) o 0.975 -0.220
00  —1.292 - \0.220 o.975> (2181)
‘ The coefficients C are obtained from C = $~2C' and are thus:
B ( 0.991 —-0.446
T 0022 1.087) (2182)
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To formulate the density matrix P we need to identify the occupied orbital(s). With a two-
electron system both. electrons occupy the orbital with the lowest energy (i.e. the orbital
with the lowest eigenvalue). At this stage the lowest-energy orbital is:

¥ =0.991 1s, +0.022 1sp (2.183)
The orbital is composed largely of the s orbital on the helium nucleus; in the absence of any

electron—electron repulsion the electrons tend to congregate near the nucleus with the larger
charge. The density matrix corresponding to this initial wavefunction is:

1.964 0.044
— (2.184)
0.044 0.001

The new Fock matrix is formed using P and the two-electron integrals together with H®™,
For example, the element Fy; is given by:
Fi1 = H™ + Ppy[(1salsal1sa1sa) — 3 (1sals4]154154)]
+ Ppp[(1sa1sa|15415p) — 3 (15415 [1541sp)]
+ Py [(1s 154 )1sp1s5) ~ 5 (1sa1sp|1sa1ss)]
+ Pp[(1sa154|1sp1sp) — % (14 155|15a1s8)] (2.185)

The complete Fock matrix is:

1406 —0690
_ 6 (2.186)
L0690 0618

The energy that corresponds to this Fock matrix (calculated using Equation (2.159)) is —3.870
Hartree. In the next iteration, the various matrices are as follows: ‘

. (—1.305 —0.347> o (-1.427 0.0 )
0347 —0448) ~ \ 00 032
o <0.943 —0.334) . (o.931 —0.560)
0334 0943 0150  1.076
b (1.735' 0.280) o (—1.436 —0.738)
0280 0.045 ~0.738 —0.644
Energy = —3.909 Hartree : (2.187)

The calculation proceeds as illustrated in Table 2.2, which shows the variation in the co-
efficients of the atomic orbitals in the lowest-energy wavefunction and the energy for the
first four SCF iterations. The energy is converged to six decimal places after six iterations
and the charge density matrix after nine iterations.

The final wavefunction still contains a large proportion of the 1s orbital on the helium atorm,

but less than was obtained without the two-electron integrals.
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Iteration c(1s,) c(1sg) Energy
1 0.991 0.022 —3.870
2 0.931 0.150 —3.909
3 0915 ‘ 0.181 -3.911
4 0.912 0.187 -3.911

Table 2.2 Variation in basis set coefficients and electronic energy for the HeH™ molecule.

2.5.6 Application of the Hartree-Fock Equations to Molecular Systems

We are now in a position to consider how the Hartree-Fock theory we have developed can
be used to perform practical quantum mechanical calculations on molecular systems. This is
an appropriate place in our discussion to distinguish the two major categories of quantum
mechanical molecular orbital calculations: the ab initio and the semi-empirical methods.
Ab initio strictly means ‘from the beginning’, or ‘from first principles’, which would imply
that a calculation using such an approach would require as input only physical constants
such as the speed of light, Planck’s constant, the masses of elementary particles, and so
on. Ab imitio in fact usually refers to a calculation which uses the full Hartree-Fock/
Roothaan-Hall equations, without ignoring or approximating any of the integrals or any
of the terms in the Hamiltonian. The ab initio methods do rely upon calibration calculations
and this has led some quantum chemists, notably Dewar (who has played a large part in the;
development of semi-empirical methods), to claim that any real difference between the
ab initio and ‘semi-empirical methods is entirely pedagogical. By conirast, semi-empirical
methods simplify the calculations, using parameters for some of the integrals and/or ignor-
ing some of the terms in the Hamiltonian. First we shall consider ab initio methods.

2.6 Basis Sets

The E:fasis setg most commonly used in quantum mechanical calculations are composed of
atomic functions. An obvious choice would be the Slater type orbitals. Unfortunately,

_ Slater functions are not particularly amenable to implementation in molecular orbital

CalCl‘Ilations. This is because some of the integrals are difficult, if not impossible, to evaluate
particularly when the atomic orbitals are centred on different nuclei. It is relatively straight:
forward to calculate integrals involving one or two centres, such as (uulvv), (uv|vv) and
('W[”_V)’ Three- and four-centre integrals are also feasible with Slater functions if the
atomic orbitals are located on the same atom:. However, three- and four-centre integrals
e very difficult if the atomic orbitals are based on different atoms. It is common in
ab mnitio calculations to replace the Slater orbitals by functions based upon Gaussians. A

Gaussian function has the form exp(—arz), and ab initiv calculations use basis functions

comprising integral powers of x, y and z multiplied by exp(— ar?):

2’2 exp(—ar’®) (2.188)
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Fig. 2.4: The product of two Gaussian functions is another Gaussian centred along the line joining their centres. In
this case the equations of the two functions are y = exp[—0.1(x + 1.0)] and y = exp[-0.3(x —~ 2.0)?] and the
equation of the product is y = exp(—27/40)[—0.4(x — 1.25)%] (Equation (2.189)).

« determines the radial extent (or ‘spread’) of a Gaussian function; a function with a large
value of o does not spread very far, whereas a small value of « gives a large spread. The
order of these Gaussian-type functions is determined by the powers of the Cartesian vari-
ables; a zeroth-order function has a+b+c=10; a first-order function has a+b+c=1,
and so on. There is thus one zeroth-order function, three first-order functions and six
second-order functions. The idea of using Gaussian functions in quantum mechanical calcu-
lations is often ascribed to Boys [Boys 1950]. A major advantage of Gaussian functions is that
the product of two Gaussians can be expressed as a single Gaussian, located along the line
joining the centres of the two Gaussians m and n (Figure 2.4): ‘

eXP(— %) exp(—ayts) = exp (— aa"f;n r%,m) exp(—ar?) (2.189)

m

¥.m is the distance between the centres m and n, and the orbital exponent « of the combined
function is related to the exponents a,, and a, by: ‘

 a=aptoy, (2.190)
rc is the distance from point C, which has coordinates:
O Xy + QX Q + W Zy + Oy Z
. — mim n 11 ; . — mym nyn; . — m~m n-n (2.191)
am+an am+an am+an

Xpus Yms Zm a0 Xy, Yy, Z,, are the centres of the two original Gaussians m and n respectively.

Thus, in a two-electron integral of the form (uv|Ac), the product ¢,(1)¢,(1) (where ¢, and ¢,
" may be on different centres) can be replaced by a single Gaussian function that is centred at
the appropriate point C. For Cartesian Gaussian functions the calculation is more compli-
cated than for the example we have stated above, due to the presence of the Cartesian
functions, but even so, efficient methods for performing the integrals have been devised.
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The zeroth-order Gaussian function g; has s-orbital angular symmetry; the three first-order

Gaussian functions have p-orbital symmetry. In normalised form these are:

2a 3/4 B

gs(a,r) = (—) e (2.192)
m
128 5\1/4

gx(a,r)=( ﬂf) xe " (2.193)
1280° \/*

gy(a,r)z( o ) yeor- (2.194)

1280°\V/*  _
) ze (2.195)

san - (2

The six second-order functions have the following form, exemplified by two of the functions:

204807 \/*

gxx(a,r)=( 0.3 ) e (2.196)
204807 \V*

Sylar)={—5 | we (2.197)

These second-order functions do not all have the same angular symmetry as the 3d atomic
orbitals, but a set comPrising 8xyr 8xz and g, together with two linear combinations of the
% &y and g, does give the desired result: -

Lzz—rr = %‘(zgzz — 8xx — gyy) (2198)
Sxx—yy = \/%(gxx - gyy) (2'199)

The remaining sixth linear combination has the symmetry properties of an s function:
8 = V(8 + 8y + 822) (2.200)

The advantages of Gaussian functions are countered by some serious shortcomings. This can
be readily seen from a graphical comparison of the 1s Slater function and its "best’ Gaussian
approximation, Figure 2.5. Unlike the Slater functions the Gaussian functions do not have a
cusp at the origin and they also decay towards zero more quickly. It is found that replacing a
Slater type orbital by a single Gaussian function leads to unacceptable errors. However, this
problem can be overcome if each atomic orbital is represented as a linear combination of
Gaussian functions. Each linear combination has the following form:

L
¢M = Zdiu¢i(aiu) (2201)
i=1

dg” is the coefficient of the primitive Gaussian function ¢;, which has exponent a;,. L is the
n,umber.of functions in the expansion. For example, the linear combinations of Gaussian
15 fun.ctlons that can be used to represent a 1s Slater type orbital with exponent £ =1 are
given in Table 2.3,
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Fig. 2.5: The 1s Slater type orbital and the best Gaussian equivalent.

The coefficients and the exponents are found by least-squares fitting, in which the overlap
between the Slater type function and the Gaussian expansion is maximised. Thus, for the
1s Slater type orbital we seek to maximise the following integral:

1 3/4 ¢
5= (27“) Jdre” o | (2.202)

A graphical comparison of the 1s Slater type orbital and the four Gaussian expansions in
Table 2.3 is shown in Figure 2.6. It is clear that the fit improves as the number of Gaussian
functions increases, but even so, the addition of many more Gaussian functions cannot
properly describe the exponential tail in the ‘true’ function and the cusp at the nucleus.
This means that Gaussian functions underestimate the long-range overlap between atoms
and the charge and spin density at the nucleus.

A Gaussian expansion contains two parameters: the coefficient and the exponent. The most
flexible way to use Gaussian functions in ab initio molecular orbital calculations permits both
of these parameters to vary during the calculation. Such a calculation is said to use

Number of Gaussians Exponent, ¢ Expansion coefficient, d

1 0270950 1.00

2 0.151623 0.678914
0.851819 0.430129

3 0.109818 0.444 635
0.405771 0.53528
2.22766 0.154329

4 0.0880187 0.291626

’ 0.265204 0.532846

0.954620 - 0.260 141
5.21686 - 0.0567523

Table 2.3 Coefficients and exponents for best-fit Gaussian expansions for the 1s Slater type
_arbital [Hehre et al. 1969].
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Fig. 2.6: Comparison of 15 Slater type orbital and Gaussian expansions with up to four terms.

uncontracted or primitive Gaussians. However, calculations with primitive Gaussians require
a sig%u'ﬁcant computational effort and so basis sets that consist of contracted Gaussian
functions are most commonly employed. In a contracted function the contraction coefficients
a,nd exponents are pre-determined and remain constant during the calculation. The series of
Gaussian funictions in such cases is commonly referred to as a contraction, with the contraction
length being the number of terms in the expansion. A further approximation that is often
employed for the sake of computational efficiency is to use the same Gaussian exponents
for the s and p orbitals in a given shell. This clearly restricts the flexibility of the basis set
but it does have the advantage of significantly reducing the number of mimerically differen’;
integrals that need to be calculated.

Quantum chemists have devised efficient short-hand notation schemes to denote the basis
szet used in an ab initio calculation, although this does mean that a proliferation of abbrevia-
tions and acronyms are introduced. However, the codes are usually quite simple to under-
Stalfid. We shall concentrate on the notation used by Pople and co-workers in their Gaussian
series of programs (see also the appendix to this chapter).

A mi{iimﬂi basis set is a representation that, strictly speaking, contains just the number of
func_tu.ms that are required to accommodate all the filled orbitals in each atom. In practice
a minimal basis set norma]ly includes all of the atomic orbitals in the shell. Thus, f01,'
gy§r0gen and helium a single s-type function would be required; for the elements from
,jthl,um to neon the 1s, 2s and 2p functions are used, and so on. The basis sets STO-3G
5TOAG, etc. {in general, STO-nG) are all minimal basis sets in which n Gaussian functions,
z'e Ifsej to represent each orbital. It is found that at least three Gaussian functions are
’agzéf;te to _prtoperl}’/ represent each Slater .type orbital and so the STO-3G basis set is the
- iheren;;,r:gxun;‘ ihat‘should be used in an ab initio molecular orbital calculation. In
andl tﬁé s en }tt e d1ff§rence be_tween the results obtained with the STO-3G basis set
bnnded - If‘er1 minimal basis sets with more Gaussian functions, although for hydrogen-
Me;f €d complexes STO-?G can Pe‘rform significantly better. The STO-3G basis set does
perform remarkably well in predicting molecular geometries, though this is due in part to



20 Chapter 2

a fortuitous cancellation of errors. Of course, the computational effort increases with the

number of functions in the Gaussian expansion.

The minimal basis sets are well known to have several deficiencies. There are particular
problems with compounds containing atoms at the end of a period, such as oxygen or
fluorine. Such atoms are described using the same number of basis functions as the atoms
at the beginning of the period, despite the fact that they have more electrons. A minimal
basis set only contains one contraction per atomic orbital and as the radial exponents are

not allowed to vary during the calculation the functions cannot expand or contract in size

in accordance with the molecular environment. The third drawback is that a minimal
f the electronic distribution. For example,

basis set cannot describe non-spherical aspects o
for a second-row element such as carbon the only functions that incorporate any anisotropy

are the 2p,, 2p, and 2p; functions. As the radial components of these functions are required
to be the same, no one component (x, ¥ o z) can differ from another.

These problems with minimal basis sets can be addressed if more than one function is used
for each orbital. A basis set which doubles the number of functions in the minimal basis set is
described as a double zeta basis. Thus, a linear combination of a ‘contracted” function and a
'diffuse’ function gives an overall result that is intermediate between the two. The basis
set coefficients of the contracted and the diffuse functions are automatically calculated by
the SCF procedure, which thus automatically determines whether a more contracted or a
more diffuse representation of that particular orbital is required. Such an approach can
provide a solution to the anisotropy problem because it is then possible to have different

linear combinations for the p., py and p; orbitals.

An alternative to the double zeta basis approach is to double the number of functions used to
describe the valence electrons but to keep a single function for the inner shells. The rationale
for this approach is that the core orbitals, unlike the valence orbitals, do not affect chemical

properties very much and vary only slightly from one molecule to another. The notation '
used for such split valence double zeta basis sets is exemplified by 3-21G. In this basis set
three Gaussian functions are used to describe the core orbitals. The valence electrons are
also represented by three Gaussians: the contracted part by two Gaussians and the diffuse
part by one Gaussian. The most commonly used split valence basis sets are 3-21G, 4-31G

and 6-31G.

Simply increasing the number of basis functions (triple zeta, quadruple zeta, etc.) does not
necessarily improve the model. In fact, it can give rise to wholly erroneous results, particu-
larly for molecules with a strongly anisotropic charge distribution. All of the basis sets we .
have encountered so far use functions that are centred on atomic nuclei. The use of sphit
valence basis sets can help to surmount the problems with non-isotropic charge distribution
but not completely. The charge distribution about an atomina molecule is usually perturbed
in comparison with the isolated atom. For example, the electron cloud in an isolated
hydrogen atom is symmetrical, but when the hydrogen atom is present in a molecule the
electrons are attracted towards the other nuclei. The distortion can be considered fo
correspond to mixing p-type character into the 1s orbital of the isolated atom to give a
form of sp hybrid. In a similar manner, the unoccupied d orbitals introduce asymmetry
into p orbitals (Figure 2.7). The most common solution to this problem is to introduce
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2pz 3dXY ‘

 hg 27 The addition of a 3d,, orbital to 2 i i i ]
g 27 oy p, gives a distorted orbital. (F [
P u R Schleyer and | A Hehre 1986. Ab initio Molecular Orbital Thfe;f;r;\;;iap;(jrdkfrs\rzle}yle)hm W Radom

polarisation functions into the basis set. The polarisation functions have a higher angular

quantum number and so correspond to p orbital i
o clements, P itals for hydrogen and d orbitals for the

The use of polarisation basis functions is indicated by an asterisk (*). Thus, 6-31G" refers to a

&-31(? :as(is seé ;\11&1'1 polarisation functions on the heavy (i.e. non-hydrogen) atoms. Two
asterisks (e.g. 6-31G™) indicate the use of polarisation (i.e i ‘ .

: 2 ( kL e of .. p) functions on hydr d
hehumi; T}}e 6—31G. l?as1s seF is particularly useful where hydrogen acts az ao‘bglfzizl alrrl't

atom. Partial polarlsatlon basis sets have also been developed. For example, the 3-21gG(*

- basis set has the same set of Gaussians as the 3-21G basis set (i.e. three functions for the

mne: ?eéli two contracted fur}ctions and one diffuse function for the valence shell) supple-
mented by six d-type Gaussians for the second-row elements. This basis set therzfore

__ aftempts to account for d-orbital effects in molecules containing second-row elements

’Iher’e dare no SpeClal polallsatIOIl f tio -TOW ele IIIS wW
T | b me 73 thh are deSCI‘lbed by

A defici . . .
: ,ng)enf;czr:gy oflthe basis sets_ c?escnbed so far is their inability to deal with species such as
anions and molecules containing lone pairs which have a significant amount of electron

T o
, ity away from the nuclear centres. This failure arises because the amplitudes of the

Cattssi . .
hé;ﬁﬂ?iﬁbamsf func:tlons are rather low far from the nuclei. To remedy this deficienc
highly diffuse functions can be added to the basis set. These basis sets are denoted using

_a 't thus the 3-214G basis set contains an additional single set of diffuse s- and p-type

Consei . T
Wéﬁs:;ag ft;nctlons. ++ indicates that the diffuse functions are included for hydrogen as
ell as for heavy atoms. At these levels the terminology starts to become a little unwieldy

_ Fore - i
 Forexample, the 6-31144-G(3df, 3pd) basis set uses a single zeta core and triple zeta valence

o : . o, 10
;f;‘ées;l;taﬁf;} with .addlhonal diffuse functions on all atoms. The '(3df, 3pd)’ indicates
three sefs of d functions and one set of f functions for first-row atoms and three sets of p

_ functions an i
ns and one set of d functions for hydrogen. This latter convention is probably the

most generic; one commonly en
¢ gthod? b t i i
e y encountered example is the 6-31G(d) basis set, which is

The basi ~

fm“siiif kS:;sh ii};:"; glve };av.;e csms1der‘ed 'thus far are sufficient for most calculations. However,

. réquire;dcazr ;u ations a basis set 'that effectively enables the basis set limit to be

o th;s bas”jgks t X h. he even-tempered b‘as1s set is designed to achieve this; each function
 basis set is the product Qf a spherical harmonic and a Gaussian function multiplied
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by a power of the distance from the origin:
Xiim(: 0, 8) = exp(—=G)r' Y1 (6, 6) (2203
The orbital exponent (; is expressed as a function of two parameters @ and J as follows:
G=aff k=1,23,...,N (2.204)

The even-tempered basis set consists of the following sequence of functions: 1s, 2p, 3d, 4f,
..., which correspond to increasing values of k. The advantage of this basis set is that it is
relatively easy to optimise the exponents for a large sequence of basis functions.

2.6.1 Creating a Basis Set

There is no definitive method for generating basis sets, and the construction of a new basis
set is very much an art. Nevertheless, there are a number of well-established approaches that
have resulted in widely used basis sets. We have already seen how linear combinations of
Gaussian functions can be fitted to Slater type orbitals by minimising the overlap (see
Figure 2.6 and Table 2.3). The Gaussian exponents and coefficients are derived by least-
squares fitting to the desired functions, such as Slater type orbitals. When using basis sets

that have been fitted to Slater orbitals it is often advantageous to use Slater exponents that

are different to those obtained from Slater’s rules. In general, better results for molecular
calculations are obtained if larger Slater exponents are used for the valence electrons; this
has the effect of giving a ‘smaller’, less diffuse orbital. For example, a value of 1.24 is
widely used for the Slater exponent of hydrogen rather than the 1.0 that would be suggested
by Slater’s rules. It is strai ghtforward to derive a basis set for a different Slater exponent if the
Gaussian expansion has been fitted to a Slater type orbital with ¢ = 1.0. If the Slater exponent
¢ is replaced by a new value, ¢, then the respective Gaussian exponents « and o are related
by:
’ 12
@_c (2.205)
a
A doubling of the Slater exponent thus corresponds to a quadrupling of the Gaussian
exponent. The expansion coefficients remain the same. For example, to obtain the exponents
of the Gaussian functions for hydrogen in the STO-3G basis set we need to multiply the
appropriate values in Table 23 by 1.24%, giving exponents of 0.168856, 0.623913 and
3.42525. This strategy can be quite powerful; the STO-nG basis sets were originally defined
with exponents that reproduce ‘best atom’ values for the core orbitals, but the exponents for

the valence electrons were values that give optimal performance for a selected set of small

molecules. For example, the suggested exponent for the valence orbitals in carbon was 1.72
rather than the 1.625 predicted by Slater’s rules. The core orbitals have a Slater exponent of
5.67. :

Basis sets can be constructed using an optimisation procedure in which the coefficients and
the exponents are varied to give the lowest atomic energies. Some complications can arise
when this approach is applied to larger basis sets. For example, in an atomic calculation
the diffuse functions can move towards the nucleus, especially if the core region is described
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by only a few basis functions. This is contrary to the role of diffuse functions, which is to

_ enhance the description in the internuclear region. It may therefore be necessary to construct

the basis set in stages, first determining the diffuse functions, using many basis functions for
the core, and then optimising the basis functions for the core region, keeping the diffuse
functions fixed. In many of the popular Gaussian basis sets the coefficients and exponents
of the core orbitals are designed to reproduce calculations on atoms, whereas the valence
pasis functions are parametrised to reproduce the properties of a carefully selected set of
molecular data.

The basis sets of Dunning [Dunning 1970] are obtained in a rather different way to those of

 Pople and co-workers. The first step is to perform an atomic SCF calculation using a set of

primitive Gaussian functions in which the exponents are optimised to give the lowest
energy for the atom. This set of primitive Gaussian functions (usually far too many for
general use in molecular calculations) is then contracted to a smaller number of Gaussian
functions, so drastically reducing the number of integrals that need be calculated. For
example, Huzinga optimised the exponents of an uncontracted basis set that contained
aine functions of s symmetry and five functions of p symmetry for the first-row elements
[Huzinga 1965]. This (9s5p) basis set represents the 1s, 2s and three 2p orbitals and in fact
corresponds to 24 basis functions per atom (9 +3 x 5). The primitive Gaussians in this

_uncontracted basis set are then apportioned to the basis functions in the new, contracted

basis set, which contains three s functions and two p functions and is written [3s2p]. No
primitive is assigned to more than one of the contracted basis functions. The 1s orbital is

_constructed from six primitives, the 2s orbital from one set of two primitives and one set

containing just one primitive, and the 2p orbitals are represented by one contracted function
containing five primitives and one contracted function that contains the remaining
primitive. The final basis set, which is illustrated in Table 2.4 for nitrogen, contains a total
of nine basis functions rather than the original 24. Each of the primitive functions appears

Exponent Coefficient Exponent

Coefficient Exponent Coefficient
1s 2s 2s
5800 0.001190 7.193 —0.160405 0.2133 1.000 000
8875 0.009 099 1.707 1.058215
204.7 0.044 145
59.84 0.150464
20.00 0.356 741
7193 0.446533
2086 0.145603

ip ' 2p

0.018254 0.1654 1.000 000

0.116461

0.390178

0.637102

Z@He 24 Exponents and contvaction coefficients for the three s-type and the fwo p-type Gaussian functions in the
s set of Dunning for nitrogen [Dunning 1970].
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in just one basis function with its original exponent. The ratios of the coefficients of the
primitives in the contracted basis set are equal to the ratios of the coefficients determined
in the atomic SCF calculation. The major advantage of this approach is that calculations
with the smaller basis set give results that are almost as good as calculations using the
full basis set but with much less computational effort.

2.7 Calculating Molecular Properties Using ab initio
Quantum Mechanics

We have now considered the key features of the ab initio approach to quantum mechanical
calculations and so, as an antidote to the rather theoretical nature of the chapter so far, it is
appropriate to consider how the method might be used in practice. Quantum mechanics can
be used to calculate a wide range of properties. In addition to thermodynamic and structural
values, quantum mechanics can be used to derive properties dependent upon the electronic
distribution. Such properties often cannot be determined by any other method. In this
section we shall provide a flavour of the ways in which quantum mechanics is used in
molecular modelling. Other applications, such as the location of transition structures and
the use of quantum mechanics in deriving force field parameters, will be discussed in
later chapters. Many different computer programs are now available for performing
ab initio calculations; probably the best known of these is the Gaussian series of programs
which originated in the laboratory of John Pople, who has made numerous contributions
to the field, recognised by the award of the Nobel Prize in 1998.

2.7.1 Setting Up the Calculation and the Choice of Coordinates

The traditional way to provide the nuclear coordinates to a quantum mechanical program is
via a Z-matrix, in which the positions of the nuclei are defined in terms of a set of internal
coordinates (see Section 1.2). Some programs also accept coordinates in Cartesian format,
which can be more convenient for large systems. It can sometimes be important to choose
an appropriate set of internal coordinates, especially when locating minima or transition
points or when following reaction pathways. This is discussed in more detail in Section 5.7.

2.7.2 Energies, Koopman’s Theorem and lonisation Potentials

The energy of an electron in an orbital (Equation (2.169)) is often equated with the energy
required to remove the electron to give the corresponding ion. This is Koopman’s theorent.
Two important caveats must be remembered when applying Koopman's theorem and
comparing the results with experimentally determined ionisation potentials. The first of
these is that the orbitals in the ionised state are assumed to be the same as in the unionised

state; they are ‘frozen’. This neglects the fact that the orbitals in the ionised state will be

different from those in the unionised state. The energy of the ionised state will thus tend

to be higher than it ‘should’ be, giving too large an ionisation potential. The second
caveat is that the Hartree-Fock method does not include the effects of electron correlation.
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The correction due to electron correlation would be expected to be greater for the unionised

effect of electron correlation often opposes the effect of the frozen orbitals, resulting in many

cases in good agreement between experimentally determined ionisation potentials and
calculated values.

A Hartree-Fock SCF calculation with K basis functions provides K molecular orbitals, but
__many of these will not be occupied by any electrons; they are the ‘virtual’ spin orbitals. If
. we were to add an electron to one of these virtual orbitals then this should provide a

means of calculating the electron affinity of the system. Electron affinities predicted by
Koopman's theorem are always positive when Hartree-Fock calculations are used, because

_ the virtual orbitals always have a positive energy. However, it is observed experimentally

that many neutral molecules will accept an electron to form a stable anion and so have

‘ m@g,ative electron affinities. This can be understood if one realises that electron correlation
_ would be expected to add to the error due to the ‘frozen’ orbital approximation, rather

than fo counteract it as for ionisation potentials.

 2.7.3 Calculation of Electric Multipoles

Some of the most important properties that a quantum mechanical calculation provides are
the electric multipole moments of the molecule. The electric multipoles reflect the distribu-
tion of charge in a molecule. The simplest electric moment (apart from the total net charge on

_the molecule) is the dipole. The dipole moment of a distribution of charges g; located at
 positions 1, is given by 3 g;r;. If there are just two charges +g and —q separated by a distance

rthen 'the dipole moment is gr. A dipole moment of 4.8 Debye corresponds to two charges
equal in magnitude to the electronic charge e separated by 1A. The dipole moment is a
vector quantity, with components along the three Cartesian axes. The dipole moment of a

can be calculated using the formula for a system of discrete charges:

M
Mnuclear = Z ZARA (2206)
A=1

The electronic contribution arises from a continuous function of electron density and must

be calculated using the appropriate operator:

. N
Relectronic — JdT\IJO ( Z —I‘,‘) \I!O (2207)

i=1

The dipole moment operator is a sum of one-electron operators r;, and as such the electronic

: ﬁmtribu_tion to the dipole moment can be written as a sum of one-electron contributions. The
 electronic contribution can also be written in terms of the density matrix, P, as follows:

K

Pp,l/ Jqusu(_r) ¢II
=1

K
Pelectronic = E

p=1v

" (2.208)
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Fig. 2.8: A quadrupole moment can be obtained from various arrangements of two positive and two negative charges,

The electronic contribution to the dipole moment is thus determined from the density matrix
and a series of one-electron integrals | dr¢,(—r)¢,. The dipole moment operator, r, has
components in the x, y and z directions, and so these one-electron integrals are divided
into their appropriate components; for example, the x component of the electronic contribu-
tion to the dipole moment would be determined using:

K K
=>"5'r, J dré,(—x)¢, (2.209)
p=1v=1

The quadrupole is the next electric moment. A molecule has a non-zero electric quadrupole
moment when there is a non-spherically symmetrical distribution of charge. A quadrupole
can be considered to arise from four charges that sum to zero which are arranged so that they
do not lead to a net dipole. Three such arrangements are shown in Figure 2.8. Whereas the
dipole moment has components in the x, y and z directions, the quadrupole has nine
components from all pairwise combinations of x and y and is represented by a 3 x3
matrix as follows: '

> ‘ling DqxYi D gixiZi
O=|Yqyx Xy Yavz (2.210)
Sqzx; Yqzyi Y. gz

The three moments higher than the quadrupole are the octopole, hexapole and decapole.

Methane is an example of a molecule whose lowest non-zero multipole moment is the
octopole. The entire set of electric moments is required to completely and exactly describe
the distribution of charge in a molecule. However, the series expansion is often truncated
after the dipole or quadrupole as these are often the most significant.

Extensive comparisons have been made of experimental and calculated dipole moments
(and in some cases the higher moments, though these are difficult to determine accurately
by experiment). Factors such as the basis set and electron correlation can have a significant
impact on the accuracy of the results, but it is found in many cases that the errors are
systematic and that a simple scaling factor can be used to convert the results of a calculation

with a small basis set to those obtained from experiment or with a much larger basis set. To
illustrate how calculated dipole moments can vary, Table 2.5 provides the dipole moments

for formaldehyde calculated at the experimental geometry using a variety of basis sets. Itis
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§T0-3G 1.5253 3-21G 2.2903 431G 3.0041
631G 2.7600 6-31G™ 2.7576 6-311G* 2.7807

_ Table 2.5 Dipole moments calculated for formaldehyde using various basis sets at the experimental geomelry.

_ also important to note that the dipole moment can be very sensitive to the geometry from

which it is calculated.

_ 2.7.4 The Total Electron Density Distribution and Molecular Orbitals

The electron density p(r) at a point r can be calculated from the Born interpretation of the
wavefunction as a sum of squares of the spin orbitals at the point r for all occupied molecular
_orbitals. For a system of N electrons occupying N/2 real orbitals, we can write:

N/2

=2 Z [i(x)? (2.211)

If we express the molecular orbital v; as a linear combination of basis functions, then the
electron density at a point r is given as:

N/2

1=2). ( i} cutult)) ZKjl )

N/2 K N/2 K K
—22;chcw¢u 1), (r) +2 ZZ Z Cutidu (D, (1) (2212)
1 i i=1 p=1v=p+

_ Equation (2212) can be tidied up considerably if it is written in terms of the elements of the

density matrix:

NJ2
(P =2 Z C,uicm‘>
-1 '

K K
p(r = Z Zpuu¢u(r)¢u(r
p=1v=1
K
= Z_:l Puudu(t)d,(r) +2Z Z P, (r)e,(r) (2.213)

p=1v=p+1

The integral of p(r) over all space equals the number of electrons in the system, N:

N2
deﬂ 22 Jdrlwl (2.214)

If the overlap between two orbitals ¢, and ¢, is written as S, and if the basis functions are
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Fig. 2.9: Contour map showing the variation in electron density around formanide.

assumed to be normalised (S, = 1), then:

K K K
N=SP,+2> > PuSw (2.215)
u=1

p=1v=p+1

The electron density can be visualised in several ways. One approach is .to co?stru;t1
contours on slices through the molecule, such that each contouT connects points o eq?d
density, as shown in Figure 2.9 for formamide. The elech.'on de‘zns1ty can also ll))e 1'ept1£1eeser]1;l !
as an isometric projection (or a ‘relief map’, Figure 2.10), in which the height above the pl

-

Fig. 2.10: Isometric projection of the electron density around formamide.
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represents the magnitude of the electron density. These diagrams show that the electron
density tends to be greatest near the nuclei, as would be expected. The electron density
can also be represented as a solid object, whose surface connects points of equal density.
The surface shown in Figure 2.11 (colour plate section) corresponds to an electron density
of 0.0001 a.u. around formamide. Other properties such as the electrostatic potential can
be mapped onto this surface, as we shall see in Section 2.7.9.

The electron clensi_ty distribution of individual molecular orbitals may also be determined
and plotted. The highest occupied molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO) are often of particular interest as these are the orbitals most

‘ commonly involved in chemical reactions. As an illustration, the HOMO and LUMO for

formamide are displayed in Figures 2.12 and 2.13 (colour plate section) as surface pictures.

2.7.5 Population Analysis

k Population analysis methods partition the electron density between the nuclei so that each

nucleus has a ‘number’ (not necessarily an integral number) of electrons associated with it.
Such a partitioning provides a way to calculate the atomic charge on each nucleus. It should
be noted that there is no quantum mechanical operator for the atomic charge and so any
partitioning scheme must be arbitrary. Hence many methods have been devised. Here we

will consider Mulliken and Léwdin analysis and Bader’s theory of atoms in molecules.

The alternatives include natural population analysis [Reed et al. 1985; Bachrach 1994].

 Wiberg and Rablen have compared a number of methods for calculating atomic charges,
_and we refer to some of their results in the following discussion [Wiberg and Rablen

1993]. To illustrate the variation that can be obtained in the results, for methane they

_found that the charge on the carbon atom varied from —0.473 to +0.244, depending upon

the method chosen! We will also consider the problem of calculating atomic charges in
more detail in Chapter 4 on molecular mechanics.

2.7.6 Mulliken and Lowdin Population Analysis

R 5 Mulliken suggested a widely used method for performing population analysis [Mulliken
1955]. The starting point is Equation (2.215), which relates the total number of electrons to
the density matrix and to the overlap integrals. In the Mulliken method, all of the electron
density (P,,,) in an orbital is allocated to the atom on which ¢, is located. The remaining

electron density is associated with the overlap population, ¢,¢,. For each element ¢, of
the density matrix, half of the density is assigned to the atom on which ¢, is located and

half to the atom on which ¢, is located. The net charge on an atom A is then calculated
by subtracting the number of electrons from the nuclear charge, Z:

K K

K
a=2Za— >, Pu- > > PuSu (2.216)

p=1liponA p=lponA v=1v#u

Mulliken population analysis is a trivial calculation to perform once a self-consistent field
has been established and the elements of the density matrix have been determined.
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However, there are some serious shortcomings to the method, as Mulliken himself pointed

out.

A Mulliken analysis depends upon the use of a balanced basis set, in which an equivalent
number of basis functions is present on each atom in the molecule. For example, it is possible
to calculate a wavefunction for a molecule such as water in which all of the basis functions
reside on the oxygen atom; if a large enough basis set is used then a quite reasonable wave-
function for the whole molecule can be obtained. However, the Mulliken analysis would put
all of the charge on the oxygen. This is an extreme example of a general problem; p, d and {
orbitals are spread quite far from the nucleus with which they are associated and so may be
very close to other atoms, yet the charge associated with electron occupation of such orbitals
is assigned to the atom on which the orbital is centred. The equal apportioning of electrons
between pairs of atoms, even if their electronegativities are very different, can lead in some
cases to quite unrealistic values for the net atomic charge. In extremis, some orbitals may
‘contain’ a negative number of electrons and others more than two electrons, in clear contra-
diction of the Pauli principle. A Mulliken analysis assumes that each basis function can be
associated with an atomic centre and so is not applicable if basis functions not centred on
the nuclei are used. The atomic charges can be very dependent upon the basis set; for
example, Wiberg and Rablen found that the charge on the central carbon in isobutene
changed from +0.1 with a 6-31G" basis set to +1.0 for a 6-311++G"* basis set.

In the Lowdin approach to population analysis [Lowdin 1970; Cusachs and Politzer 1968]
the atomic orbitals are transformed to an orthogonal set, along with the molecular orbital
coefficients. The transformed orbitals ¢, in the orthogonal set are given by:

K
#=> (80, (2.217)
v=1

The electron population associated with an atom becomes:

« A
a=Za— D, (8Y2PS*?),,,

p=1; pon A

(2.218)

Lowdin population analysis avoids the problem of negative populations or populations
greater than 2. Some quantum chemists prefer the Lowdin approach to that of Mulliken as
the charges are often closer to chemically intuitive values and are less sensitive to basis set.

2.7.7 Partitioning Electron Density: The Theory of Atoms in Molecules

R F W Bader’s theory of ‘atoms in molecules’ [Bader 1985] provides an alternative way to
partition the electrons between the atoms in a molecule. Bader’s theory has been applied
to many different problems, but for the purposes of our present discussion we will
concentrate on its use in partitioning electron density. The Bader approach is based upon
the concept of a gradient vectar path, which is a curve around the molecule such that it is
always perpendicular to the electron density contours. A set of gradient paths is drawn in
Figure 2.14 for formamide. As can be seen, some of the gradient paths terminate at the
atomic nuclei. Other gradient paths are attracted to points (called critical points) that are
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F(g 214.' Gradient vector pﬂthS LUOuTldfbr"lﬂmide The j t or at bos it t
; 1 . pﬂthS terminate at atom i i ]
b‘ i Sﬂ Kf[i”tfﬁ). ] a b nd Crltlcﬂl poinis (lTldlCﬂtL’d

not located at the nuclei; particularly common are the bond critical points, which are located
be‘twe?en bondc.ed, atoms. Other types of critical point can occur; for example, a ring critical
point is found in the centre of a benzene ring.

The bond critical points are points of minimum electron charge density between two bonded
a’cﬁm's. If we follow the contour in three-dimensional space from such a point down the
graci;lfznt path along which the density decreases most rapidly then this gives a means of
partitioning the density. This is shown in Figure 2.15 for hydrogen fluoride and in Figure

- 216 for formamide. This procedure can be performed for each bond, resulting in a three-

fimeniional partitioning of the electron density. The electron population that is assigned
0 each atom is then calculated by numerically integrating the ch i ithi
region surrounding that atom. ’ see arge densily within the

Wiberg and Rablen found that the charges obtained with the atoms in molecules method

z?tlif flaﬁvely' invariant to the basis set. The charges from this method were also consistent
ith the experimentally determined C-H bond dipoles in methane (in which the carbon is

positive) and i i i i i
examine) ;n ] ethyne (in which the carbon is negative), unlike most of the other methods they

2.7.8 Bond Orders
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Fig. 2.15: Partitioning the electron density in hydrogen fluoride.

Fig. 2.16: Partitioning the electron density in formamide.
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Molecule Bond STO-3G 4-31G
H, H—H 1.0 1.0
Methane C-H 0.99 0.96
Ethene =C 2.01 1.96
C—H 0.98 0.96
Ethyne c=C 3.00 3.27
C-H 0.98 0.36
Water O—H 0.95 0.80
N, N=N 3.0 ) 2.67

Table 2.6 Bond order obtained from the Mayer bond order scheme [Mayer 1983].

Mayer defined the bond order between two atoms as follows [Mayer 1983]:

Bap= ) D [(PS)u(PS),, + (P'S),(PS),,] (2.219)

ponA vonB

P is the total spinless density matrix (P = P* + P’) and P® is the spin density matrix
(P° = P° + P”). For a closed-shell system Mayer’s definition of the bond order reduces to:

Bas= Y. Y (PS).(PS), (2.220)

ponA vonB

The bond orders obtained from Mayer’s formula often seem intuitively reasonable, as

. illustrated in Table 2.6 for some simple molecules. The method has also been used to

compute the bond orders for intermediate structures in reactions of the form
H+XH—-HX+H and X+H, - XH+H (X=F, Cl, Br). The results suggested that
bond orders were a useful way to describe the similarity of the transition structure to the
reactants or to the products. Moreover, the bond orders were approximately conserved

_ along the reaction pathway.

As with methods for allocating electron density to atoms, the Mayer method is not
necessarily ‘correct’, though it appears to be a useful measure of the bond order that
conforms to accepted pictures of bonding in molecules.

2.7.9 Electrostatic Potentials

The electrostatic potential at a point 1, ¢(t), is defined as the work done to bring unit
positive charge from infinity to the point. The electrostatic interaction energy between a
point charge g located at r and the molecule equals g¢(t). The electrostatic potential has

Contributions from both the nuclei and from the electrons, unlike the electron density,
which only reflects the electronic distribution. The electrostatic potential due to the M

nuclei is; :

Zy

M
— § '__._ 2.221
¢nucl(r) A=1|T_RA| ( )
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Fig. 2.17: Electrostatic potential contours around cytosine. Negative contouts are dashed, the ze
The minima near N3 and O are marked.

ro contour is bold.

The potential due to the electrons is obtained from the appropriate integral of the
electron density:

dr'p(r) (2.222)
It — 1

bac() =~ |

' i tribu-
The total electrostatic potential equals the sum of the nuclear and the electronic contri

tions:

(]5(1') = (pnucl(r) + Pelec (1’) (2223)

The electrostatic potential has proved to be particularly useful for rationalising the inter-

actions between molecules and molecular recognition processes. This is becauselei(ilclt;r;)st;;iz
forces are primarily responsible for long-range ipterachons beicwesn n(;ovtisuahs.’ed e
electrostatic potential varies through space, and so it can be calculate ban Iy
the same way as the electron density. Electrostatic potential contours C;m e us d wflere o
where electrophilic attack might occur; electrophiles are often attracted to reglo

. . on
electrostatic potential is most negative. For example, the experimentally determined position

r L ine is at N3 (Figure 2.17). This atom is next to a
of electrophilic attack at the nucleic acid cytosine is ( eg21.117), 25 pointed out by Politzer

minimum in the electrostatic potential (also shown in Figur
* and Murray [Politzer and Murray 1991].

' i van der
Non-covalent interactions between molecules often occur at separations where the

Waals radii of the atoms are just touching and so it is often most us.eful to ?(aln};nif:zz
electrostatic potential in this region. For this reason, the electrostatic 'potlentl: Oldemity
calculated at the molecular surface (defined in Section 1.5) or the.: eql.n\l/a ent i densy
surface as shown in Figure 2.18 (colour plate section). Such pictorial represe
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can be used to qualitatively assess the degree of electrostatic similarity between two
molecules.

2.7.10 Thermodynamic and Structural Properties

The total energy of a system is equal to the sum of the electronic energy and the Coulombic
nuclear repulsion energy:

i‘: M 7,75

Eior = Eatee + (2.224)
A

=1 B=A+1 RAB

A more useful quantity for comparison with experiment is the heat of formation, which is
defined as the enthalpy change when one mole of a compound is formed from its constituent
elements in their standard states. The heat of formation can thus be calculated by subtracting
the heats of atomisation of the elements and the atomic ionisation energies from the total
energy. Unfortunately, ab initio calculations that do not include electron correlation
(which we will discuss in Chapter 3) provide uniformly poor estimates of heats of formation
with errors in bond dissociation energies of 25-40kcal/mol, even at the Hartree-Fock limit
for diatomic molecules.

When combined with an energy minimisation algorithm, quantum mechanics can be used
fo calculate equilibrium geometries of molecules. The results of such calculations can be
compared with the structures obtained from gas-phase experiments using microwave
spectroscopy, electronic spectroscopy and electron diffraction. Extensive tables listing
comparisons between calculations and experiment for many molecules have been published
in several reviews. Not surprisingly, the agreement between theory and experiment for
ab initio calculations generally improves as one increases the size of the basis set. Hehre
et al. suggest that the 3-21G basis set offers a good compromise between performance and
applicability [Hehre et al. 1986]. It is often found that errors in structural predictions are
systematic rather than random. For example, STO-3G bond lengths are generally too long,
whilst 6-31G” bond lengths tend to be too short. By analysing the trends in such calculations
it can be possible to derive scaling factors which enable more accurate predictions to be
made for each level of theory.

Quantum mechanics can be used to calculate the relative energies of conformations and the
entergy barriers between them. Experimental data is available for both relative stabilities and
barrier heights in some cases, though this tends to be limited to relatively simple molecules.
Butane is one molecule that has been investigated in great detail, with its gauche and anti
conformations and the barriers that separate them. The energy difference between the syn
and anti conformations of butane (Figure 2.19) was found to fall significantly with increasing
basis set size, particularly when correlated levels of theory were employed [Wiberg and

Murcko 1988; Allinger et al. 1990; Smith and Jaffe 1996]. However, the smaller energy differ-

ence between the minimum energy anti and gauche conformations can be calculated quite
accurately even with a relatively small basis set. Quantum mechanics calculations of the
change in energy as a bond is rotated are often used to parametrise the torsional terms in
moleecylar mechanics force fields, as will be discussed in Section 4.18. '
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gauche

Fig. 2.19; syn, anti and gauche conformations of butane (C-C-C-C torsion angles 0°, 180° and +£60° respectively).

2.8 Approximate Molecular Orbital Theories

Ab initio calculations can be extremely expensive in terms of the computer resources
required. Nevertheless, improvements in computer hardware and the availability of easy-
to-use programs have helped to make ab initio methods a widely used computational tool.
The approximate quantum mechanical methods require significantly less computational
resources. Indeed, the earliest approximate methods such as Hiickel theory predate
computers by many years. Moreover, by their incorporation of parameters derived from
experimental data some approximate methods can calculate certain properties more
accurately then even the highest level of ab initio methods.

Many approximate molecular orbital theories have been devised. Most of these methods are

not in widespread use today in their original form. Nevertheless, the more widely used
methods of today are derived from earlier formalisms, which we will therefore consider
where appropriate. We will concentrate on the semi-empirical methods developed in the
research groups of Pople and Dewar. The former pioneered the CNDO, INDO and
NDDO methods, which are now relatively little used in their original form but provided
the basis for subsequent work by the Dewar group, whose research resulted in the popular
MINDO/3, MNDO and AM1 methods. Our aim will be to show how the theory can be
applied in a practical way, not only to highlight their successes but also to show where
problems were encountered and how these problems were overcome. We will also consider
the Hiickel molecular orbital approach and the extended Hiickel method. Our discussion of
the underlying theoretical background of the approximate molecular orbital methods will be

based on the Roothaan-Hall framework we have already developed. This will help us to

establish the similarities and the differences with the ab initio approach.

2.9 Semi-empirical Methods

A discussion of semi-empirical methods starts most appropriately with the key components
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of the Roothaan-Hall equations, which for a closed-shell system are:

FC = SCE (2.225)
K K -
F,,=Hp*+ AZI D Prol(pvlre) — 3 (uA|vo)] (2.226)
=1o0=1
N/2
Py, =2 i (2.227)
i=1 )
HYe = Jdu1¢u(1) [ Lol i —ZA—]¢ 1) (2.228
2 A=1 |7'1 - RAI g . )

%Il ab initi‘o calculations all elements of the Fock matrix are calculated using Equation (2.226)
{rrespective of whether the basis functions ¢,, ¢,, ¢, and ¢, are on the same atom, on a'toms,
that are b_ogded or on atoms that are not formally bonded. To discuss the semi-empirical
rrllethods)lt 11:S u?eful to consider the Fock matrix elements in three groups: F,, (the diagonal
elements), where ¢, and ¢, are o

w " ¥ on the same atom) and F h
NN ) w (wWhere ¢, and ¢, are on

We have mentioned several times that the greatest proportion of the time required to
perfc?rm an ab initio Hartree-Fock SCF calculation is invariably spent calcul;?tin and
manipulating integrals. The most obvious way to reduce the computational effgort is
th"ere.fore to neglect or approximate some of these integrals. Semi-empirical methods achieve
this in part by explicitly considering only the valence electrons of the system; the core
electrons are subsumed into the nuclear core. The rationale behind this ap roxi,mation i

that the electrons involved in chemical bonding and other phenomena tphat we mlgl’lli

_ wish to investigate are those in the valence shell. By considering all the valence electrons

the s'emi,-empirical methods differ from those theories (e.g. Hiickel theory) that explicitl
cans@er only the 7 electrons of a conjugated system and which are therefore lim?ted tz '
specz.flf: 'classes of molecule. The semi-empirical calculations invariably use basis sets
comprising Slater type s, p and sometimes d orbitals. The orthogonality of such orbital
enables further simplifications to be made to the equations. o

g ‘fzzagt)l;riesc;?monlto t}: s.emi-fzmpiric;fll methods is that the overlap matrix, S (in Equation
- équ,a,l o 1equ;zli t(i]t e 1d?nt1ty matrix I. Thus all diagonal elements of the overlap matrix
wguld \hémr,analg all off-diagonal elements are zero. Some of the off-diagonal elements
the'élemeﬁ{s thy{ e zero due to the use of orthogonal basis sets on each atom, but in addition
a;;e - Sét A a corrTe:ponq to. the (‘)ve?lap betV\{een two atomic orbitals on different atoms
gimpjhiﬁed-kp‘c fesr(éE be main implication of th}s is that the Roothaan-Hall equations are
isifnpdrtaﬁt fo_ i ecomes FC =CE and so is immediately in standard matrix form. It
. e note that §ethng S equal. to the identity matrix does not mean that all overlap

grals are set to zero in the calculation of Fock matrix elements. Indeed, it is important

specifically to i ) ;
o v to-include some of the overlaps in even the simplest of the semi-empirical
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2.9.1 Zero-differential Overlap

Many semi-empirical theories are based upon the zero-differential overlap approximation
(ZDO). In this approximation, the overlap between pairs of different orbitals is set to zera
for all volume elements dv:

¢y dv =0 (2.229)
This directly leads to the following result for the overlap integrals:
S = 6w (2.230)

If the two atomic orbitals ¢, and ¢, are located on different atoms then the differential
overlap is referred to as diatomic differential overlap; if ¢, and-¢, are on the same atom
then we have monatomic differential overlap. If the ZDO approximation is applied to the
two-electron repulsion integral (uv|Ao) then the integral will equal zero if p # v and/or if
A # o. This can be written concisely using the Kronecker delta:

(o) = (HEIANB,0 030 (2.231)
It can immediately be seen that all three- and four-centre integrals are set to zero under the
ZDO approximation. If the ZDO approximation is applied to all orbital pairs then the

Roothaan-Hall equations for a closed-shell molecule (Equation (2.226)) simplify consider-
ably to give the following for p = v:

) K
Fuo = Ho® + ) Pa(upAN) = 3Py (sl pens) (2.232)
A=1

The summation over ) includes A = y, and the terms in (pp|up) can be separated to give:
K

F,=H® + 1P, () + D Palppld) (2.233)
A=1A5#p
For v # pwe have: ‘
Fuu = Hfb?/re‘ - %P”V(MMIVV) . (2234)

Sensible results cannot be obtained by simply applying the ZDO approximation to all pairs
of orbitals carte blanche. There are two major reasons for this.

The first consideration is that the total wavefunction and the molecular properties calculated
from it should be the same when a transformed basis set is used. We have already encoun-
tered this requirement in our discussion of the transformation of the Roothaan-Hall
equations to an orthogonal set. To reiterate: suppose a molecular orbital is written as'a
linear combination of atomic orbitals:

b= Cuiby (2.235)
I

If an alternative basis set is used in which the basis functions are just linear combinations
of the original basis functions, then the same wavefunction can be written as a linear
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combination of these new transformed functions:

%= Caiti (2.236)
G = b by (2.237)
Ha

f, are the coefficients of the original basis functions in the linear expansion of the trans-
formed basis set. Different types of transformation are possible; for example, some transfor-
mations mix orbitals with the same principal and azimuthal quantum numbers (e.g. mixing
2p,, 2p, and 2p,); others mix orbitals with the same principal quantum number but different
azimuthal quantum numbers (e.g. mixing 2s, 2p,, 2p, and 2p, orbitals to give sp3 hybrid
orbitals); yet other transformations mix orbitals located on different atoms. Suppose we
mix 2p, and 2p, atomic orbitals on the same atom. The differential overlap between these
two orbitals is 2p,2p,. We now introduce the following two new coordinates, which
correspond to a rotation in the xy plane:

, 1
¥ = 7 (x+1vy) (2.238)
,_ 1 |
Y= (—x+y) (2.239)

The overlap between the 2p;, and 2p, orbitals in this new coordinate system is %(2p2 —2p2).1If
the zero differential overlap approximation were applied, then different resultsywoula be
obtained for the two coordinate systems unless the overlap in the new, transformed
system was also ignored.

The second reason why the ZDO approximation is not applied to all pairs of orbitals is that
the major contributors to bond formation are the electron-core interactions between pairs of
orbitals and the nuclear cores (i.e. H,,). These interactions are therefore not subjected to the
ZDO0 approximation (and so do not suffer from any transformation problems).

2.9.2 CNDO

The complete neglect of differential overlap (CNDO) approach of Pople, Santry and Segal
was the first method to implement the zero-differential overlap approximation in a practical
fashion [Pople et al. 1965]. To overcome the problems of rotational invariance, the two-
ée@ron integrals (up|AX), where p and A are on different atoms A and B, were set equal
‘fﬂ 3 parameter v,p which depends only on the nature of the atoms A and B and the
Internuclear distance, and not on the type of orbital. The parameter 55 can be considered

o be the average electrostatic repulsion between an electron on atom A and an electron

on atom B. When both atomic orbitals are on the same atom the parameter is written

’??A azd represents the average electron-electron repulsion between two electrons on an
alom A,

With this approximation we can divide the elements of the Fock matrix into three groups:

F,, (the diagonal elements), F,, (where 1 and v are on different atoms) and F,, (where p
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and v are on the same atom). To obtain F,, we substitute 7ap for the two-electron integrals
(up|A)) where pand A are on different atoms and v, where p and A are on the same atom
into the Fock matrix equations, Equations (2.240)-(2.242):

K K

F,=Ho+ > Puvaa—zPurast ) Puas (2.240)
A=1; onA A=1; Anoton A

F,, =Huy" - 1P, vaa; wandvboth on atom A (2.241)

F,, =Hy® —3Pujas; M and v on different atoms, A and B (2.242)

Equation (2.240) is rather untidy, involving summations over basis functions on atom Aand
basis functions not on atom A. It is often simplified by writing Paa as the total electron
density on atom A, where:

A
Aon A

A similar expression can also be introduced for Ppg. With this notation F,,, simplifies to:

Fu = Hy' + (Paa — 3Pu)van + Z Pypyan : (2.244)
BZA

The core Hamiltonian expressions, Hoa® and Hy,®, correspond to electrons moving in the
field of the parent nucleus and the other nuclei. In semi-empirical methods the core electrons
are subsumed into the nucleus and so the nuclear charges are altered accordingly (for
example, carbon has a nuclear ‘charge’ of -+4).

In CNDO Hj[® is separated into an integral involving the atom on which ¢, is situated
(labelled A), and all the others (labelled B). Thus:

Hic;tre — ulm _ Z VAB (2245)
BZA
where:
1 V4 V4
. (ﬂ‘ 2 Ir; — Ryl #> and Vap (ﬂ |ty — Rs| #> ( )

U, is thus the energy of the orbital ¢, in the field of its own nucleus (A) and core electrons;
_V p is the energy of the electron in the field of another nucleus (B). To maintain consistency
with the way in which the two-electron integrals are treated, the terms

(# M) (2.247)

must be the same for all orbitals ¢, on atom A (i.e. the interaction energy between any
electron in an orbital on atom A with the core of atom B is equal to Vg)-

VA
|r; — Rl
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We next consider H,;”*, where ¢, and ¢, are both on the same atom, A. In this case the core

_ Hamiltonian has the following form:

1 Z
Heore (M’——VZ——A-‘— )__ ( ZB
v 14 —
2 Iry — Ral BZ#% ey — Ral |
Z
=U,— > (b
: B#£A (ﬂ Ir1 — Rg| V) : (2.248)

As ¢, and ¢, are on the same atom, U, is zero due to the orthogonality of atomic orbitals.
The term
¢

is zero in accordance with the zero-differential overlap approximation. Thus H,;"® is zefo in
CNDO.

Finally, if ¢, and ¢, are on two different atoms A and B, then we can write:

1, Za Zp ”)‘Z(*ZC
R N

T
2 Irl - RAI Irl - RBI C+£A,B

7B
|t — Rg|

u> (2.249)

u> (2.250)

The second term corresponds to the interaction of the distribution ¢, ¢, with the atoms C
(£ A, B). These interactions are ignored. The first part (known as thepresonance integral and
commonly written §,,) is not subject to the ZDO approximation, because it is the main
cause of bonding. In CNDO the resonance integral is made proportional to the overlap

integral, 5,

H™ = X85, (2.251)
where Bip is a parameter which depends on the nature of atoms A and B.

With these approximations the Fock matrix elements for CNDO become:

F,=U,+ Z VB + (Paa =3Py )van + Z PpyaB (2.252)
BAA. BZA

F,, =—3P,7aa; pand v on the same atom, A (2.253)

F, = ﬂf’ABSW_ — 1P, 7ap; pmonAand vonB (2.254)

To perform a CNDO calculation requires the following to be calculated or specified: the

overlap integrals, S,., the core Hamiltonians U, the electron-core interactions Vg, the

Ei&;tmn repu,]si(?n integrals yap and y44 and the bonding parameters 5. The CNDO
éﬁolje ;ei;om}smses, Slater type orbitals for the valence shell with the exponents being
vaiue o l,gg Slater’s r}lles (except for hydrogen, where an exponent of 1.2 is used as this
. - re appropriate to hydrogen atoms in molecules). Thus the basis set comprises
's I0f hydrogen and 2s, 2p,, 2p, and 2p, for the first-row elements. The overlap integrals

re calculated explicitly (the overlap between two basis functions on the same atom is,

of co i i
urse, zerg-with an s, p basis set). The electron repulsion integral parameter v,g is
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calculated using valence s functions on the two atoms A and B;

o = [ [ D00r D) - ) fen(n(2) (2255)
The use of spherically symmetric s orbitals avoids the problems associated with transforma-
tions of the axes. The core Hamiltonians (U,,) are not calculated but are obtained from
experimental ionisation energies. This is because it is important to distinguish between s
and p orbitals in the valence shell (i.e. the 2s and 2p orbitals for the first-row elements),
and without explicit core electrons this is difficult to achieve. The resonance integrals,
g, are written in terms of empirical single-atom values as follows:

Aas =388 +65) (2.256)

The 4° values are chosen to fit the results of minimal basis set ab initio calculations on
diatomic molecules.

The electron-core interaction, V3, is calculated as the interaction between an electron in a
valence s orbital on atom A with the nuclear core of atom B:

Vag = del¢s,A(l) I ¢sa(1) (2.257)
, |r1 — Rg|

CNDO is rightly recognised as the first in a long line of important semi-empirical models.
However, there were some important limitations with the model. One especially serious
deficiency of the first version of CNDO (introduced in 1965 [Pople and Segal 1965, Pople
et al. 1965] and now known as CNDOQO/1) is that two neutral atoms show a significant
(and incorrect) attraction, even when separated by several angstroms. The predicted equili-
brium distances for diatomic molecules are also too short and the dissociation energies too
large. These effects are due to electrons on one atom penetrating the valence shell of another
atom and so experiencing a nuclear attraction. This penetration effect can be quantified more
explicitly as follows. The net charge on an atom B equals the difference between its nuclear
charge and the total electron density: Qp = Zp — Ppg. If we now substitute for Pgg
(= Zg — Qp) in the diagonal elements of the Fock matrix, Equation (2.252), we obtain:

F=U, + (Par—1P,)7van + Z [-Qs7aB + (ZsVaB — Vas)] ~ (2.258)
BZA

—Qg7vas is the contribution from the total charge on atom B; this is zero if the atomic charge is
exactly balanced by the electron density. Zgysg — Vagp is called the penetration integral. It was
this contribution that caused the anomalous results for two neutral atoms at large separa-
tion. In the second version of CNDO (CNDO/2 [Pople and Segal 1966]) the penetration
integral effect was eliminated by putting V,g = Zgyap. The core Hamiltonian U, was
also defined differently in CNDO/2, using both ijonisation energies and electron affinities.

2.9.3 INDO

CNDO makes no allowance for the fact that the interaction between two electrons depends
upon their relative spins. This effect can be particularly severe for electrons on the same
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ator: Thus, in CNDO all two-electron integrals (pv|Av) are set to zero, and integrals (upu|vv)
and (uplpp) are forced to be equal (to yaa). The next development was the intermediate
neglect of differential overlap model (INDO [Pople et al. 1967]), which includes monatomic
differential overlap for one-centre integrals (i.e. for integrals involving basis functions
centredd on the same atom). This enables the interaction between two electrons on the
same atom with parallel spins to have a lower energy than the comparable interaction
between electrons with paired spins. For this reason the Fock matrix elements are usually
written with the spin (o or §) explicitly specified. The elements F,, and F,, (where g and
1 are located on atom A) then change from their CNDO/2 values as follows:

Fo =W+ > Y [Pruluplro) — PS,(uMuo)]l + > (Pss — Zg)vas (2.259)
AonA con A B#A

Fo,=Uy+ Y. Y [Py(uv|ro) — P4 (pAlvo)); pand v both onatom A (2.260)
AonA conA

In Equation (2.259) we have included the CNDO/2 approximation Vg = Zpyap. The matrix

element F,, where p and v are on different atoms, is the same as in CND(Q/2:

Fﬁv = % (B?X + Bg)s/,w - PﬁV’YAB (2261)
In a closed-shell system, P, = Pﬁy = %PW and the Fock matrix elements can be obtained by

making this substitution. If a basis set containing s, p orbitals is used, then many of the one-
centre integrals nominally included in INDO are equal to zero, as are the core elements U,,,.
Specifically, only the following one-centre, two-electron integrals are non-zero: (ppu|up),
(upipry and (pv|pv). The elements of the Fock matrix that are affected can then be written
as follows:

Fuu = uu/,z + Z [Pyy(p,p,|l/1/) - %PVV(MV|MV)] + Z (PBB - ZB)’YAB (2262)
vonA B#£A
Fu =3P, (uw|w) — 1P, (uulvv); p,von the same atom (2.263)

Some of the one-centre two-electron integrals in INDO are semi-empirical parameters,
obtained by fitting to atomic spectroscopic data. The core integrals U,, are obtained in a
slightly different fashion to that of CNDO/2, to take into account the new electronic
configurations under the INDO model for atoms and their cations and anions. An INDO
calculation requires little additional computational effort compared with the corresponding
CNDQO calculation and has the key advantage that states of different multiplicities can be
distinguished. For example, in CNDO the singlet and triplet configurations 1s*2s*2p? of
carbon have the same energy, whereas these can be distinguished using INDO. Two of the
systems considered in the original INDO publication were the methyl and ethyl radicals,
the unpaired electron density being compared with experimentally determined hyperfine
coupling constants. INDO gave a much more favourable result for these systems than CNDO.

2.94 NDDO

The next level of approximation is the neglect of diatomic differential overlap model (NDDO
[Pople et al. 1965]); this theory only neglects differential overlap between atomic orbitals on
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different atoms. Thus all of the two-electron, two-centre integrals of the form (uv|Ao), where
pand v are on the same atom and A and o are also on the same atom, are retained. The Fock
matrix elements become:

Fu=HZ 4 3 3 Palpuho) —1Pr(uMuo)] + 3 30 3 Paounido) (2264)

AonA gonA : B#A XonB oconB

F,=Hp*"+ Z Z [Pro(pv|Ao) — 1Py, (uAlvo)]
AonA oconA .

+ Z Z Z Py, (uv|)o); pand v both on A (2.265)
B#A AonB oconB

1

F, =Ho® - 5 > 3 Pu(uojvd); ponAandvonB (2.266)

AonB oon A

It is again possible to tidy up equations (2.264) and (2.265) when an s, p basis set is used:
Foo=H®+ S [Py (o) = P, (uvlp)| + D D0 > Pa(ppre)  (2.267)

vonA B#A ldonB oconB

Fpy = Hig® +3 Py, (uoluw) =3P (uplvw) + Y Y D Pagluvldo) (2.268)
B+#A donB oconB

Whereas the computation required for an INDO calculation is little more than for the
analogous CNDO calculation, in NDDO the number of two-electron, two-centre integrals
is increased by a factor of approximately 100 for each pair of heavy atoms in the system.

2.9.5 MINDO/3

The CNDO, INDO and NDDQO methods, as originally devised and implemented, are now
little used, in comparison with the methods subsequently developed by Dewar and
colleagues, but they were of considerable importance in showing how a systematic series
of approximations could be used to develop methods of real practical value. Moreover,
the calculations could be performed in a fraction of the time required to solve the full
Roothaan-Hall equations. However, they did not produce very accurate results, largely
because they were parametrised upon the results from relatively low-level ab initio calcula-
tions, which themselves agreed poorly with experiment. They were also limited to small
classes of molecule, and they often required a good experimental geometry to be supplied
as input because their geometry optimisation algorithms were not very sophisticated.

It was through the introduction of the MINDO/3 method by Bingham, Dewar and Lo
[Bingham et al. 1975a-d] that a wider audience was able to apply semi-empirical methods
in their own research. MINDO/3 was not so much a significant change in the theory,
being based upon INDO (MINDO stands for modified INDO), but it did differ significantly
in the way in which the method was parametrised, making much more use of experimental
data. Tt also incorporated a geometry optimisation routine (the Davidon-Fletcher-Powell
method; see Chapter 5), which enabled the program to accept crude initial geometries as
input and derive the associated minimum energy structures.
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MIINDQO/3 uses an s, p basis set and its Fock matrix elements are:

Fu=Uy+ > (Pu(pplw) — 3Py, (wlpv)) + > (Pss — Zg)vas (2.269)
vonA B#A

F,, = =3P, (w|w); pand v both on the same atom A (2.270)

F., =Hp*® =3P, (u|w) = Hy® — 1P, s pon A and vonB (2.271)

The two-centre repulsion integrals y,p in MINDO/3 are calculated using the following
function:
2

e
YAB = 3 5

1 e P 2 1/2
2 il AT
[RAB+4 (gA+gB> }

g4 is the average of the one-centre, two-electron integrals g, on atom A (ie. g, = (pufvv))
and &g is the equivalent average for atom B. This seemingly complex function for 45 is, in
fact, quite simple; at large R a5 it tends towards the Coulomb’s law expression ¢’ /R and as
R g tends to zero it approaches the average of the one-centre integrals on the two atoms. The
two-centre, one-electron integrals H;;® are given in MINDO/3 by:

H® =S,.8a8, +1,) (2.273)

2.272)

5,, is the overlap integral, [, and I, are ionisation potentials for the appropriate orbitals and
s is a parameter dependent upon both of the two atoms A and B.

The core-core interaction between pairs of nuclei was also changed in MINDO/3 from the
form used in CNDO/2. One way to correct the fundamental problems with CNDO/2 such
as the repulsion between two hydrogen atoms (or indeed any neutral molecules) at all
distances is to change the core-core repulsion term from a simple Coulombic expression
(Eap = ZaZp/Rag) to:

Eap = ZaZyva (2.274)

In fact, while this correction gives the desired behaviour at relatively long separations, it

does not account for the fact that as two nuclei approach each other the screening by the
core electrons decreases. As the separation approaches zero the core-core repulsion
should be described by Coulomb’s law. In MINDO/3 this is achieved by making the
core-core interaction a function of the electron-electron repulsion integrals as follows:

Exp = ZaZp{7a + [(€’/Rap) — vasl exp(—aspRap)} (2.275)

dsp Is a parameter dependent upon the nature of the atoms A and B. For OH and NH bonds
a slightly different core-core interaction was found to be more appropriate:

Exit = ZxZu{vxs + [(€8/Rxar) — vxerloxas exp(—Rxe) } (2.276)

The parameters for MINDO/3 were obtained in an entirely different way from previous
semi-empirical methods. Some of the values that were fixed in CNDO, INDO and NNDO
Were permitted to vary during the MINDO/3 parametrisation procedure. For example,
the exponents of the Slater atomic orbitals were allowed to vary from the values given by
Slater’s rules, and indeed the exponents for s and p orbitals were not required to be the
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same. Uy, and B,p were also regarded as variable parameters. Another key difference was
that the MINDO/3 parametrisation used experimental data such as molecular geometries
and heats of formation, rather than theoretical values from ab initio calculations or data
from atomic spectra. The parametrisation effort was a considerable undertaking, and it
was only at the fourth attempt that an acceptable model was obtained (as is implicit in
the appearance of the ‘3 in the name). For example, just to parametrise two atoms such
as carbon and hydrogen using a set of 20 molecules required between 30 000 and 50000
SCF calculations for each parametrisation scheme that was investigated.

2.9.6 MINDO

MINDO/3 proved to be very successful when it was introduced; it is important to realise
that even simple ab initio calculations were beyond the computational resources of all but
a few research groups in the 1970s. However, there were some significant limitations. For
example, heats of formation of unsaturated molecules were consistently too positive, the
errors in calculated bond angles were often quite large, and the heats of formation for
molecules containing adjacent atoms with lone pairs were too negative. Some of these
limitations were due to the use of the INDO approximation, and in particular the inability
of INDO to deal with systems containing lone pairs. Dewar and Thiel therefore introduced
the modified neglect of diatomic overlap (MNDO) method, which was based on NDDQ
[Dewar and Thiel 1977a, b]. The Fock matrix elements in MNDO were as follows:

Fo = HS 4+ S P () =3P, ()] + > D D Paolppbe)  (2277)
von A B#£A AonB conB

where HS® =U,, — > Vs (2.278)
B#A

F/,w = H;?,re +%P/,W(AU‘V|:U'V) - %Pm,(p,uh/l/)

+5° 3 3 P(wire); pand v both on A ' (2.279)
B#£A donB gonB

where HJ* = — Z Vs (2.280)
BZA
F,=Hy° -1 2 2 Py, (uolvd); ponAandvonB {2.281)
AonB oconA

where  HiJ® =35,,(8,+ 8,) (2.282)

The similarity with the NDDO expressions, Equations (2.264)-(2.266), can clearly be seen;
the major new features are the appearance of terms V5 and V.5 and a new form for the
two-centre, one-electron core resonance integrals, which depend upon the overlap 5,
and parameters 8, and §, as shown in Equation (2.282). V5 and V,p are two-centre,
one-electron attractions between an electron distribution ¢,¢, or ¢,¢,, respectively, on
atom A and the core of atom B. These are expressed as follows:

Vs = —Zp(1atialspss) (2.283)

Vs = —Zp(pavalsess) (2.284)
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The core-core repulsion terms are also different in MNDO from those in MINDO/3, with
OH and NH bonds again being treated separately:

Enp = ZaZg(sasalspsp){1 + exp(—aaRap) + exp(—apRap)} (2.285)
Exu = ZxZp(sxsx|susu){1 + Rxu exp(éaxRXH)/RAB) + exp(—onRxu) } (2.286)

Perhaps the most significant advantage of MNDO over MINDO/ 3 is the use throughout of
monatomic parameters; MINDO/3 requires diatomic parameters in the resonance integral

(Asp) and the core-core repulsion (a4p). It has been possible to expand MNDO to cover a

much wider variety of elements such as aluminium, silicon, germanijum, tin, bromine and
lead. However, the use of an (s, p) basis set in the original MNDO method did mean that
the method could not be applied to most transition metals, which require a basis set
containing d orbitals. In addition, hypervalent compounds of sulphur and phosphorus
are not modelled well. In more recent versions of the MNDO method d orbitals have
been explicitly included for the heavier elements [Thiel and Voityuk 1994]. Another serious
limitation of MNDO is its inability to accurately model intermolecular systems involving

_ hydrogen bonds (for example, the heat of formation of the water dimer is far too low in

MNDOJ. This is because of a tendency to overestimate the repulsion between atoms when
they are separated by a distance approximately equal to the sum of their van der Waals
radii. Conjugated systems can also present difficulties for MNDO. An extreme example of
this occurs with compounds such as nitrobenzene in which the nitro group is predicted to
be orthogonal to the aromatic ring rather than conjugated with it. In addition, MNDO
energies are too positive for sterically crowded molecules and too negative for molecules
containing four-membered rings. '

2.9.7 AM1

group [Dewar ef al. 1985]. AM1 was designed to eliminate the problems with MNDO, which
were considered to arise from a tendency to overestimate repulsions between atoms
separated by distances approximately equal to the sum of their van der Waals radii. The
strategy adopted was to modify the core-core term using Gaussian functions. Both attractive
and repulsive Gaussian functions were used; the attractive Gaussians were designed to
overcome the repulsion directly and were centred in the region where the repulsions
were too large. Repulsive Gaussian functions were centred at smaller internuclear separa-
fons. With' this modification the expression for the core-core term was related to the
MNDO expression by:

VAVAS
RaB

Exg =Eynpo +

x { D _Kaexp[-La,(Ras — M| + D, Ky exp[~Ly (Rap — MB].)Z]} (2.287)
! j

The additional terms are spherical Gaussian functions with a width determined by the

_ Parameter L. It was found that the values of these parameters were not critical and many
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E (AM1) - E (MNDO)

1.5 2.0 2.5 3.0 35
Distance (A)

Fig. 2.20: The difference in the core~core energy for AM1 and MNDO for carbon-hydrogen and oxygen-hydrogen
interactions.

were set to the same value. The M and K parameters were optimised for each atom, together
with the a parameters in the exponential terms in Equations (2.285) and (2.286). In the
original parametrisation of AM1 there are four terms in the ‘Gaussian expansion for
carbon, three for hydrogen and nitrogen and two for oxygen (both attractive and repulsive
Gaussians were used for carbon, hydrogen and nitrogen but only repulsive Gaussians for
oxygen). The effect of including these Gaussian functions can be seen in Figure 2.20,
which plots the difference in the MNDO and AM]1 core~-core terms for the carbon-hydrogen
and oxygen-hydrogen interactions. The inclusion of these Gaussians significantly increased
the number of parameters per atom, from seven in the MNDO to between 13 and 16 per
atom in AMT1. This, of course, made the parametrisation process considerably more difficult.
Overall, AM1 was a significant improvement over MNDO and many of the deficiencies
associated with the core repulsion were corrected.

2.9.8 PM3

PM3 is also based on MNDO (the name derives from the fact that it is the third parametrisa-
tion of MNDO, AM1 being considered the second) [Stewart 1989a, b]. The PM3 Hamiltonian
contains essentially the same elements as that for AM1, but the parameters for the PM3
model were derived using an automated parametrisation procedure devised by J J P Stewart.
By contrast, many of the parameters in AM1 were obtained by applying chemical
knowledge and ‘intuition’. As a consequence, some of the parameters have significantly
different values in AM1 and PM3, even though both methods use the same functional
form and they both predict various thermodynamic and structural properties to approxi-
mately the same level of accuracy. Some problems do remain with PM3. One of the most
important of these is the rotational barrier of the amide bond, which is much too low and
in some cases almost non-existent. This problem can be corrected through the use of an
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empirical torsional potential (see Section 4.5). There has been considerable debate over the
relative merits of the AM1 and PM3 approaches to parametrisation.

2.9.9 SAM1

The final offering from the Dewar group” was SAM1, which stands for ‘Semi-Ab-initio
Model 1" [Dewar et al. 1993). The name was chosen to reflect Dewar’s belief that methods
like AM1 offer such a significant enhancement over the earlier semi-empirical methods
like CNDO/2 that they should be given a different generic name. In SAM1 a standard

~ §TO-3G Gaussian basis set is used to evaluate the electron repulsion integrals; close inspec-

tion of the results from AM1 and MNDO suggested that steric effects were overestimated
because of the way in which the electron repulsion integrals were calculated. The resulting
integrals were then scaled, partly to enable some of the effects of electron correlation to be
included and partly to compensate for the use of a minimal basis set. The Gaussian terms in
the core~core repulsion were retained to fine-tune the model. The number of parameters in
SAM1 is no greater than in AM1 and fewer than in PM3. It does take longer to run (by up to
two orders of magnitude) though it was felt that with the improvements in computer
hardware such an increase was acceptable.

2.9.10 Programs for Semi-empirical Quantum Mechanical Calculations

_ The popularity of the MNDO, AM1 and PM3 methods is due in large part to their implemen-

tation in the MOPAC and AMPAC programs. The programs are able to perform many kinds

of calculation and to calculate many different properties.

The contributions of the Dewar group are rightly recognised as particularly significant in the
development of semi-empirical methods, but other research groups have also made impor-

_ tant contributions. The SINDO1 and ZINDO programs have been developed in the groups

of Jug and Zerner, respectively, and both contain novel features. The ZINDO program of
Zetner and co-workers can perform a wide variety of semi-empirical calculations and has

_been particularly useful for calculations on transition metal and lanthanide compounds

and for predicting molecular electronic spectra.

2.10 Hickel Theory

_ Hiickel theory can be considered the ‘grandfather’ of approximate molecular orbital
methods, having been formulated in the early 1930s [Hiickel 1931]. Hiickel theory is limited

to Cof't}fugated 7 systems and was originally devised to explain the non-additive nature of
certain Rroperties of aromatic compounds. For example, the properties of benzene are
much different from those of the hypothetical ‘cyclohexatriene’ molecule. Although

Hiickel theory, as originally formulated, is relatively little used in research today, extensions

~ Michael Dewar died in 1997.
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to it such as extended Hiickel theory are still employed and can provide qualitative insights
into the electronic structure of important classes of molecule. Hiickel theory is also widely
used for teaching purposes to introduce a ‘real’ theory that can be applied to relatively
complex systems with little more than pencil and paper or a simple computer program.

Hiickel theory separates the = system from the underlying o framework and constructs
molecular orbitals into which the 7 electrons are then fed in the usual way according to
the Aufbau principle. The 7 electrons are thus considered to be moving in a field created
by the nuclei and the ‘core’ of o electrons. The molecular orbitals are constructed from
linear combinations of atomic orbitals and so the theory is an LCAO method. For our
purposes it is most appropriate to consider Hiickel theory in terms of the CNDO approxima-
tion (in fact, Hiickel theory was the first ZDO molecular orbital theory to be developed). Let
us examine the three types of Fock matrix element in Equations (2.2562)-(2.254). First, F,,,. In
a neutral species, the net charge on each atom will be approximately zero, and so if we take
Equation (2.258), from which penetration effects have been eliminated, then we are left with
U, + (Paa — 0.5P,,)vaa. Now if each nucleus (A) in the 7 system is the same (i.e. carbon)
then this expression will be approximately constant for all nuclei being considered. The
matrix elements F,, are often (confusingly) called Coulomb integrals in Hiickel theory
and are assigned the symbol . All off-diagonal elements of the Fock matrix are assumed
to be zero with the exception of elements F,,,, where 1 and v are 7 orbitals on two bonded
atoms. These F,, are assumed to be constant, are assigned the symbol 3 and are known
as resonance integrals. The Fock matrix in Hiickel theory thus has as many rows and
columns as the number of atoms in the 7 system with diagonal elements that are all set to
a. All off-diagonal elements F; are zero unless there is a bond between the atoms i and j,
in which case the element is §. For benzene the Fock matrix is of the following form
(atom labelling as in Figure 2.21):

a 60 0 0 7
B a B 0 0 0
0 5 0 0
g’ (2.288)
0 0 IB o ,B 0
8 0 0 0 8 a
E
1
Yo o-20
6 2 Y4, Ys o -
5 3
v —f— ] asp
! ¥ # o+28

Fig. 2.21: Benzene and its Hiickel molecular orbitals.
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Fig 2.22: Three fullérenes, Cgg, Czg and Csg.

As w1th the other semi-empirical methods that we have considered so far, the overlap
m?{mg is equal to the identity matrix. The following simple matrix equation must then be
salved:

FC = CE (2.289)

The equation can be solved by standard methods to give the basis set coefficients and
the molecular orbital energies E. The orbital energies for benzene are E; = a+285;
?32, Es=a+B Ey, Es=a—f3 Eg=a-— 23, and so the ground state places two electrons’
in 1y and two each in the two degenerate orbitals ¢, and v5. The lowest-energy orbital v

15 a linear combination of the six carbon p orbitals. '

_ Hiickel theory was extended to cover various other systems, including those with hetero-

at,o,n}s, bu't .it was not particularly successful and has largely been superseded by other
semi-empirical methods. Nevertheless, for appropriate problems Hiickel theory can be

_ very useful. One example is the calculations of P W Fowler and colleagues, who studied

the relationship between geometry and electronic structure for a range of buckminster-

_ fullerenes (the parent molecule of which, Ceo, was discovered in 1985) [Fowler 1993]. The

fullerenes (or “buckyballs’) are excellent candidates for Hiickel theory as they are composed

‘ qf carbon and have extensive 7 systems; three examples are shown in Figure 2.22.

;I’he result§ of their ca1c1_11ations were summarised in two rules. The first rule states that at
‘e{iﬁ one isomer C, with a properly closed p shell (ie. bonding HOMO, antibonding
LUMO) exists for all n = 60 + 6k (k=0,2,3,..., but not 1). Thus Cg, Cyy, Cy, efc., are in

; th1§ group. The second rule is for carbon cylinders and states that a closed-shell structure
_ 18 found for n =2p(7+3k) (for all k). Cyy is the parent of this family. The calculations

Were extended to cover different types of structure and fullerenes doped with metals.

2.10.1 Extended Hiickel Theory

Hiickel theory is clearly limited, in part because it is restricted to systems. The extended

Hiickel method is a molecular orbital theory that takes account of all the valence electrons

- 511 the moiect{le [Hoffmann 1963]. It is largely associated with R Hoffmann, who received
_ the Nobel Prize for his contributions. The equation to be solved is FC=SCE, with the
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Fock matrix elements taking the following simple forms:
AA ;
Fo =Hy, =-I, (2.290)
FA¥=H, =-1K({1,+1)S,, (2.291)

In these equations, i and v are two atomic orbitals (e.g. Slater type orbitals), I, is the
ionisation potential of the orbital and K is a constant, which was originally set to 1.75. The
formula for the off-diagonal elements H,v (where y and v are on different atoms) was
originally suggested by R S Mulliken. These off-diagonal matrix elements are calculated
between all pairs of valence orbitals and so extended Hiickel theory is not limited to =
systems. ~

The extended Hiickel approach has proved to be rather successful for such a simple theory;.

for example, the famous Woodward-Hoffmann rules (see Section 5.9.4) were based upon
calculations using this model. Extended Hiickel theory has found particular application in
those areas where alternative theories cannot be used. This is largely due to the fact that
the basis set requires no more than experimentally determined ionisation potentials. It is
particularly useful for studying systems containing metals; these systems are problematic
for many other methods due to the lack of suitable basis sets.

2.11 Performance of Semi-empirical Methods

Our discussion of the application of quantum mechanics calculations was not explicitly
directed towards any particular quantum mechanical theory but was - implicitly at least
- written with ab initio methods in mind. All of the properties we considered in
Section 2.7 can also be determined using semi-empirical methods. Extensive tables
detailing the performance of the popular semi-empirical methods have been published,
both in the original papers and in review articles, some of which are listed at the end of
this chapter. The parametrisation of the semi-empirical approaches typically includes
geometrical variables, dipole moments, ionisation energies and heats of formation. In
Table 2.7 we provide a summary of the performance of the MINDO/3, MNDO, AM1,
PM3 and SAM1 semi-empirical methods from data supplied in the original publications.
The performance of successive semi-empirical methods has gradually improved from
one method to another, though one should always remember that anomalous results
may be obtained for certain types of system. Some of these limitations were outlined in
the discussion of the various semi-empirical methods. It is worth emphasising that some
of the major drawbacks with the semi-empirical methods arise simply because one is
trying to calculate properties that were not given a major consideration in the parametrisa-
tion process. For example, many of the molecules used for the parametrisation of the
MNDO, AM1 and PM3 methods had little or no conformational flexibility and it is
therefore not so surprising that some rotational barriers are not calculated with the same
accuracy as {say) heats of formation. In addition, to achieve optimal performance for
specific classes of molecules (e.g. the amino acids) or specific properties (e.g. conforma-
tional barriers) then it would be appropriate to include representative systems during
the parametrisation procedure.
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MNDO AM1 PM3 SAM1 Reference

MINDO/3

[Dewar and Thiel 1977b]

6.3
0.014A
2.8°

°

11.0
0.022A
5.6°

138 heats of formation (kcal/mol)

228 bond lengths

91 angles

0.38D
5.87
6.64

049D

9.7
11.69

57 dipole moments

[Dewar et al. 1985]

5.07
5.88

58 heats of formation of hydrocarbons (kcal/mol)

80 heats of formation for species with N and/or O (kcal/mol)

46 dipole moments

0.26D
0.29eV
8.82

0.32D

054D

0.39eV

0.31eV

29 ionisation energies

[Dewar et al. 1993]

5.21

7.12

406 heats of formation (kcal/mol)

196 dipole moments

0.40D 032D

0.35D

Table 2.7 Comparison of quantities calculated with various semi-empirical methods.
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Appendix 2.1 Some Common Acronyms Used in
Computational Quantum Chemistry

AM1 Austin Model 1

AO Atomic obital

B3LYP Scheme for hybrid Hartree-Fock/density functional theory
introduced by Becke

BLYP Becke-Lee-Yang-Parr gradient-corrected functional for use with
density functional theory

BSSE Basis set superposition error

CASSCF Complete active space self-consistent field

CI Configuration interaction

CIs Configuration interaction singles

CISD Configuration interaction singles and doubles

CNDO Complete neglect of differential overlap

DFT Density functional theory

DIIS Direct inversion of iterative subspace

DvP Double zeta with polarisation

DZ Double zeta

EHT Extended Hiickel theory

GVB Generalised valence bond model

HF Hartree-Fock

HOMO Highest occupied molecular orbital

INDO Intermediate neglect of differential overlap

LCAO Linear combination of atomic orbitals

LDA Local density approximation

LSDFT Local spin density functional theory

LUMO Lowest unoccupied molecular orbital

MBPT Many-body perturbation theory

MINDO/3 Modified INDO version 3

MNDO Modified neglect of diatomic overlap

MO , Molecular orbital

MP Mpgller-Plesset

MP2, MP3, etc. Mpgller-Plesset theory at second order, third order, etc.

NDDO Neglect of diatomic differential overlap

PM3 Parametrisation 3 of MNDO

QCISD ' Quadratic configuration interaction singles and doubles

QCISD(T) Configuration interation method involving single, double and
quadratic excitations with an estimated triple excitation

RHF Restricted Hartree-Fock

SAM1 Semi-Ab initio Model 1

SCF Self-consistent field

STO Slater type orbital

STO-3G, STO-AG, etc. Minimal basis sets in which 3, 4 etc, Gaussian functions are used to
represent the atomic orbitals on an atom

An Introduction to Computational Quantum Mechanics 105
UHF Unrestricted Hartree-Fock

- WVN Correlation functional due to Wilk, Vosko and Nusair
ZD0O Zero differential overlap
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CHAPTER THREE

Advanced ab initio
Methods, Density
Functional Theory and
Solid-state Quantum
Mechanics

3.1 Introduction

In Chapter 2 we worked through the two most commonly used quantum mechanical models
for performing calculations on ground-state ‘organic’-like molecules, the ab initio and semi-
empirical approaches. We also considered some of the properties that can be calculated
using these techniques. In this chapter we will consider various advanced features of the ab
initio approach and also examine the use of density functional methods. Finally, we will
examine the important topic of how quantum mechanics can be used to study the solid state.

3.2 Open-shell Systems

The Roothaan-Hall equations are not applicable to open-shell systems, which contain one or
more unpaired electrons. Radicals are, by definition, open-shell systems as are some ground-
state molecules such as NO and_O,. Two approaches have been devised to treat open-shell
systems. The first of these is spin-restricted Hartree-Fock (RHF) theory, which uses combi-
nations of singly and doubly occupied molecular orbitals. The closed-shell approach that
we have developed thus far is a special case of RHIF theory. The doubly occupied orbitals
use the same spatial functions for electrons of both o and (3 spin. The orbital expansion
Equation (2.144) is employed together with the variational method to derive the optimal
values of the coefficients. The alternative approach is the spin-unrestricted Hartree-Fock
(UHF) theory of Pople and Nesbet [Pople and Nesbet 1954], which uses two distinct sets
of molecular orbitals: one for electrons of « spin and the other for electrons of 3 spir.
Two Fock matrices are involved, one for each type of spin, with elements as follows:

K K o
B, =H+ > > [P + P2 (uv| o) — Pla(uA|vo)] (3.1)
A=1 o=1

_ density. The spin density p
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i K K
3 __ pycore 1]
Ff, = HZ® + }; ST P + P I(uvlro) — P, (uAvo)] (3.2)
=1 =1

UJHEF theory also uses two density matrices, the full density matrix being the sum of these
two: ‘

ﬂO[[
Ph,=Y i Pl=)_ cuch (33)
i i=1

P, =P +D : (3.4)

The summations in Equations (3.3) and (3.4) are over the occupied orbitals with a and G spin
as appropriate. Thus, age + Boce equals the total number of electrons in the system. In a
closed-shell Hartree-Fock wavefunction the distribution of electron spin is zero every\;vhere
because the electrons are paired. In an open-shell system, however, there is an excess of
electron spin, which can be expressed as the spin density, analogous to the electron
P (r) at a point r is given by:

) K K
PP = (1) — P = D S PG — PS8, (1) (35)

p=1 v=1

_ Clearly, the UHF approach is more general and indeed the restricted Hartree-Fock approach

is a special case of unrestricted Hartree-Fock. Figure 3.1 illustrates the conceptual difference
between the RHF and the UHF models. Unrestricted wavefunctions are also the most aiypro—
p’ria,te way to deal with other problems such as molecules near the dissociation limit. The
simplest example of this type of behaviour is the H, molecule, the ground state of which

is a singlet with a bond length of approximately 0.75 A. The restricted wavefunction is

the .appropriate Hartree-Fock wavefunction, with two paired electrons in a single spatial
Q,rhltai. As the bo.nd length increases towards the dissociation limit, this description is
clearly inappropriate, for hydrogen is experimentally observed to dissociate to two

RHF UHF

Fig. 3.1: The conceptual difference between the RHF and UHF models.
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Fig. 3.2: UHF and RHF dissociation curves for Hy. (Figure adapted from Szabo A, N S Ostlund 1982. Modern
Quantum Chemistry. Introduction to Advanced Electronic Structure Theory. New York, McGraw-Hill.)

hydrogen atoms. This behaviour cannot be achieved using a restricted Hartree-Fock wave-
function, which requires the two electrons to occupy the same spatial orbital and leads to H*
“and H~, but it is appropriately described by a UHF wavefunction. Beyond about 1.2A the
‘correct’ wavefunction for hydrogen must thus be obtained using UHF theory. The results
obtained by calculating the potential energy curves of the hydrogen molecule using the
RHF and UHF theories are shown in Figure 3.2. As can be seen, RHF theory gives a dissocia-
tion energy that is much too large, whereas the UHF theory shows the correct dissociation

behaviour.

3.3 Electron Correlation

The most significant drawback of Hartree-Fock theory is that it fails to adequately
represent electron correlation. In the self-consistent field method  the electrons are
assumed to be moving in an average potential of the other electrons, and so the instanta-
neous position of an electron is not influenced by the presence of a neighbouring electron.
In fact, the motions of electrons are correlated and they tend to ‘avoid’ each other more
than Hartree-Fock theory would suggest, giving rise to a lower energy. The correlation
energy is defined as the difference between the Hartree-Fock energy and the exact
energy. Neglecting electron correlation can lead to some clearly anomalous results,
especially as the dissociation limit is approached. For example, an uncorrelated calculation
would predict that the electrons in H; spend equal time on both nuclei, even when they are
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infinitely separated. Hartree-Fock geometries and relative energies for equilibrium
structures are often in good agreement with experiment and as many molecular modelling
applications are concerned with species at equilibrium it might be considered that
correlation effects are not so important. Nevertheless, there is increasing evidence that
the inclusion of correlation effects is warranted, especially when quantitative information
is required. Moreover, electron correlation is crucial in the study of dispersive effects
(which we shall consider in Section 4.10.1), which play a major role in intermolecular
interactions. Electron correlation is most frequently discussed in the context of ab initio
calculations, but it should be noted that the effects of electron correlation are implicitly
included in the semi-empirical methods because of the way in which they are
parametrised. However, specific electron correlation methods have also been developed
for use with the various levels of semi-empirical calculation; this in turn necessitates the
modification of some parameters.

3.3.1 Configuration Interaction

There are a number of ways in which correlation effects can be incorporated into an ab initio
molecular orbital calculation. A popular approach is configuration interaction (CI), in which
excited states are included in the description of an electronic state. To illustrate the principle,
let us consider a lithium atom. The ground state of lithium can be written 1s22s! (although
we have used the conventional nomenclature here, we should remember that the wave-
function-is really a Slater determinant). Excitation of the outer valence electron gives
states such as 1s?3s". A better description of the overall wavefunction is a linear combination
of the ground and-excited-state wavefunctions. If a Hartree-Fock calculation is performed
with K basis functions then 2K spin orbitals are obtained. If these 2K spin orbitals are
filled with N electrons (N < 2K) there will be 2K — N unoccupied, virtual orbitals. The
wavefunction obtained from the single-determinant approach that we have considered
thus far is expressed only in terms of the occupied orbitals. For example, a very simple
caleulation on H,, using as a basis set just the 1s orbitals on each hydrogen, results in two
molecular orbitals (1o, and 10,). In the ground state, the 1o, orbital is filled with two
electrons. An excited state can be generated by replacing one or more of the occupied
spin orbitals with a virtual spin orbital. Possible excited states for the hydrogen molecule
might thus include 1:7;011, and 102 (in fact, the first of these two configurations cannot be
combined with the ground state, as we shall see). In addition to the replacement of single
spin orbitals by single virtual orbitals, two spin orbitals can be replaced by two virtual
orbitals, three spin orbitals by three virtual orbitals, and so on. In general, the CI wave-
function can be written as:

U= CO\IJO + C1\IJ1 + CZ\IJZ 4. (36)

¥, is the single-determinant wavefunction obtained by solving the Hartree-Fock equations.
‘1’1,-\1'2, etc. are wavefunctions (expressed as determinants) that represent configurations
derived by replacing one or more of the occupied spin orbitals by a virtual spin orbital.
The en‘ergy of the system is then minimised in order to determine the coefficients ¢y, ¢y,
eic., using a linear variational approach, just as for a single-determinant calculation. A CI
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calculation thus involves an additional level of complexity; each configuration is written in
terms of molecular orbitals, which in turn are expressed as a linear combination of basis
functions. The number of integrals can become extremely large. The total number of ways
to permute N electrons and K orbitals is (2K!)/[N!(2K — N)!]. This is a very large number
for all except small values of K and N, which explains why it is not usual to consider all
possibilities (termed full configuration interaction) except for very small systems. However,
full CI is important because it is the most complete treatment possible within the limitations
imposed by the basis set. In the limit of a complete basis set full CI becomes complete Cland
virtually exact - but is generally considered impractical as at large K the number of Slater
determinants increases exponentially with N as KY/N!. It is common practice to limit the
excited states considered. For example, in configuration interaction singles (CIS) only wave-
functions that differ from the Hartree-Fock wavefunction by a single spin orbital are
included. The next levels of the theory involve double substitutions (configuration inter-
action doubles, CID) or both singles and double substitutions (configuration interaction
singles and doubles, CISD). Even at the CIS or CID levels, the number of excited states to
be included can be very large, and it may be desirable (or necessary) to restrict the spin
orbitals that are involved in the substitutions. For example, only excitations involving the
highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital
(LUMO) may be permitted. Alternatively, the orbitals corresponding to the inner electron
core may be neglected (the ‘frozen core’ approximation). Some of these options are

illustrated in Figure 3.3.

Not all excitations necessarily help to lower the energy; some determinants do not mix with
the ground state. A consequence of Brillouin’s theorem is that single excitations do not mix

S ——
______________ 1
I
!
.
I
_+_ | _++_
1
+ |
I
|
HOMO + LUMO Valence orbitals
only ~only

Fig. 3.3 Some of the ways in which excited-state wavefitnctions can be included in a configuration interaction
calculation. (Figure adapted from Hehre W J, L Radom, P o R Schleyer and ] A Hehre 1986. Ab initio Molecular
Orbital Theory. New York, Wiley.)
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directly with the single-determinant, ‘ground-state wavefunction ¥. It would therefore be
aniicipated that double excitations would be most important and that single excitations
would have no effect on the energy of the ground state. However, the single excitations
can interact with the double excitations, which in turn interact with ¥y, and so single excita-
tions. do have a small indirect effect on the energy. The determinants of triple and higher
excitations also do not interact directly with ¥, (though they may do indirectly via other
levels of excitation). This is because the Hamiltonian contains elements involving at most
interactions between pairs of electrons, and so if the Slater determinants differ by more
than two electron functions, their integral over all space will be zero.

In a "fraditional” CI calculation the determinants in the expansion, Equation (3.6), are those
obtained from a Hartree-Fock calculation; only the coefficients ¢, c;, etc. are permitted to
vary. Clearly, a better (i.e. lower-energy) wavefunction should be obtained if the coefficients
of the basis functions themselves can vary as well as the coefficients of the determinants.
This approach is known as the multiconfiguration self-consistent field method (MCSCF).
MCSCF theory is considerably more complicated than the Roothaan-Hall equations and
well beyond the scope of our discussion. One MCSCEF technique that has attracted consider-
able attention is the complete active-space SCF method (CASSCF) of Roos [Roos et al. 1980].
CASSCF enables very large numbers of configurations to be included in the calculation by
dividing the molecular orbitals into three sets: those which are doubly occupied in all
configurations, those which are unoccupied in all configurations, and then all the remaining
‘active’ orbitals. The list of configurations is generated by considering all possible
arrangements of the active electrons among the active orbitals.

A Clcaleulation is variational: the energy obtained is guaranteed to be greater than the "true’
energy. A drawback of CI calculations other than those performed at the full CI level is that
‘fhey are not size consistent. Simply put, this means that the energy of a number N of non-
interacting atoms or molecules is not equal to N times the energy of a single atom or
molecule. Another consequence of size consistency is that, as the bond length in a diatomic
molecule increases to infinity, so the energy of the system should become equal to the sum of
the energies of the respective atoms. To illustrate why this lack of size consistency arises

consider CID calculations on Be, and on two beryllium atoms. The electronic configuratior;
of Be is 1s*2s* and so if we label the two atoms A and B, then the wavefunction for each of the
two separated atoms will include the configuration 1s32p3 153 2p3 (=152 155 2p2A2p,23) in
which two electrons have been promoted in each beryllium atom from the 2s to the, 2p
orbitals. This configuration represents a quadruple excitation for the beryllium dimer

hoiCh has the electronic configuration 152153 253 283, This quadruply excited conﬁguratiori
Lf: not included in the CID wavefunction for the dimer, which is restricted to double excita-
tions. In fact, the energy of a CI calculation including only doubly excited states is expected

_ to scale in proportion to VN, where N is the number of non-interacting species present,

rather than N. The Quadratic Configuration Interaction method (QCISD) was introduced
to try to deal with this; it can be considered a size-consistent CISD theory [Pople et al.

_ 1987]. The procedure involves the addition of higher excitation terms which are quadratic

I thf'fir e'xpansion coefficients. Higher still in theory is QCISD(T), in which an estimated
éﬂn’mbutxon from the triple excitations can be incorporated, though with extra computa-
tional expense.
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3.3.2 Many-body Perturbation Theory

Mpgller and Plesset proposed an alternative way to tackle the problem of electron correlation
[Mgller and Plesset 1934]. Their method is based upon Rayleigh-Schrédinger perturbation
theory, in which the “true’ Hamiltonian operator #’ is expressed as the sum of a ‘zeroth-
order’ Hamiltonian 2, (for which a set of molecular orbitals can be obtained) and a
perturbation, ¥

H=Ho+V (3.7)
The eigenfunctions of the true Hamiltonian operator are ¥; with corresponding energies
E;. The eigenfunctions of the zeroth-order Hamiltonian are written \IJED) with energies Ego}'
The ground-state wavefunction is thus ‘IJ[()O) with energy E(()O). To devise a scheme by

which it is possible to gradually improve the eigenfunctions and eigenvalues of 5#, we
can write the true Hamiltonian as follows:

Ho=Hg+ NV (38)

A is a parameter that can vary between 0 and 1; when ) is zero then # is equal to the zeroth-
order Hamiltonian, but when A is 1 then # equals its true value. The eigenfunctions ¥; and
eigenvalues E; of #° are then expressed in powers of X:

T =00 420 + 20?4 = 3 xme (3.9)
n=0
E=E® + 3BV 4 XE® 4 ... = 3 NE (3.10)
n=0

Ef]) is the first-order correction to the energy, Ez@ is the second-order correction, and so on.
These energies can be calculated from the eigenfunctions as follows:

E® = | 00,0 ar (3.11)

EY = [ 9Oy 9w gr (3.12)

E? = | ey e ar - (313)
E® = j Oy e gr (3.14)

To determine the corrections to the energy it is therefore necessary to determine the
wavefunctions to a given order. In Mgller-Plesset perturbation theory the unperturbed
Hamiltonian 4 is the sum of the one-electron Fock operators for the N electrons:

. N N N .
H, ___.2; = Z (”core +Z (; +”i)) (3.15)
iz i=1 i=1

The Hartree-Fock wavefunction, \I/[()O), is an eigenfunction of #, and the corresponding
zeroth-order energy E[()O) is equal to the sum or orbital energies for the occupied molecular
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orbitals:

occupied

V=5 ¢ (3.16)

i=1

In order to calculate higher-order wavefunctions we need to establish the form of the
perturbation, ¥”. This is the difference between the ‘real’ Hamiltonian # and the zeroth-
order Hamiltonian, 5. Remember that the Slater determinant description, based on an
orbital picture of the molecule, is only an approximation. The true Hamiltonian is equal
to the sum of the nuclear attraction terms and electron repulsion terms:

# _i(”core) AR 1
0= +> ) = (3.17)
i=1 i—1j=it17y

Hence the perturbation 7~ is given by:
N N

N
v = Z Z %_ Z(/j + ;) (3.18)

i=1j=i+179  j=1

The first-order energy E(()l) is given by:

N N
1 1 1
B =—5> > lGlj) - (ili) (3.19)
i=1j=1"%

The sum of the zeroth-order and first-order energies thus corresponds to the Hartree—Fock
energy (compare with Equation (2.110), which gives the equivalent result for a closed-shell
system): '

O, 0w 1
EO +E0 ZZEi_E

N
i=1 i=1

N
> 1) — (i) (3.20)
=1 ~
To obtain an improvement on the Hartree-Fock energy it is therefore necessary to use
Moller-Plesset perturbation theory to at least second order. This level of theory is referred
to as MP2 and involves the integral j\IJ[()O)"// \IJ[()D dr. The higher-order wavefunction \IJ[()I) is
expressed as linear combinations of solutions to the zeroth-order Hamiltonian:

1 1 0
o) = Zc]( "o (3.21)
7

The \If;) in Equation (3.21) will include single, double, etc. excitations obtained by

_ Promoting electrons into the virtual orbitals obtained from a Hartree-Fock calculation.

The second-order energy is given by:

——— én dmia)x]-(z)(%)[xua)xb(z)—xba)xa(z)]

=335

i j>1 a b>a

o — (3.22)

These integrals will be non-zero only for double excitations, according to the Brillouin

_ theorem. Third- and fourth-order Magller-Plesset calculations (MP3 and MP4) are also
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available as standard options in many ab initio packages. For the fourth-order calculations
single, triple and quadruple excitations will also contribute. As the triple substitutions are
most difficult to perform computationally a partial theory that involves just single, double
and quadruple substitutions (MP4SDQ) is a popular alternative.

The advantage of many-body perturbation theory is that it is size-independent, unlike
configuration interaction - even when a truncated expansion is used. However, Moller-
Plesset perturbation theory is not variational and can sometimes give energies that are
lower than the ‘true’ energy. Meller-Plesset calculations are computationally intensive
and so their use is often restricted to ‘single-point’ calculations at a geometry obtained
using a lower level of theory. They are at present the most popular way to incorporate
electron correlation into molecular quantum mechanical calculations, especially at the
MP2 level. A Maoller-Plesset calculation is specified using the level of theory used (e.g.
MP2, MP3) together with the basis set. Thus MP2/6-31G" indicates a second-order
Mgller-Plesset calculation with the 6-31G™ basis set.

Certain properties benefit more from the use of correlation methods than others do. For
example, a single-determinant Hartree-Fock method and a reasonable basis set give
geometrical parameters often very close (bond lengths within 0.01-0.02A and angles
within 1-2°) to the experimental values. This contrasts with the situation for processes
which result in the unpairing of electrons. A simple example is the bond dissociation
energy of Hy, for which the Hartree-Fock limit is 84 kcal/ mol. MP2, MP3 and MP4 calcula-
tions using the 6-31G™ basis set give results of 101, 105 and 106 kcal/ mol, respectively, for
this process, much closer to the experimental value of 109kcal/mol. In these and similar
situations, electron correlation is often advised, if the computational resources permit.
However, one class of reactions can be well described using single-determinant Hartree-
Fock theory. These are known as isodesmic reactions, which are transformations in which
the number of electron pairs is constant and the chemical bond types are conserved. Such
reactions would be expected to benefit from a judicious cancellation of errors as only the
environment of the bonds has changed. Examples of isodesmic reactions are:

CH,CH,CH, + CH, — 2CH;CH,

CF;CHO + CH, — CF;H + CH;CHO

CH,;CH=C=0 + 2CH, — CH;CHj + CH,=CH, + H,C=0
Even at the STO-3G level quite respectable results can often be obtained.

In an attempt to deal with some of the shortcomings of even the correlated methods a
number of correction factors have been developed. The Gaussian-n procedures [Pople et al.
1989, Curtiss et al. 1991, 1998] represent an attempt to develop a protocol for the accurate
calculation of various properties such as atomisation energies, ionisation potentials, electron
affinities and proton affinities for atoms and molecules containing first-row and second-
row elements. Currently, the most recent member of this series is Gaussian-3 (G3) theory
[Curtiss et al. 1998]. The G3 method involves a defined sequence of calculations involving
geometry optimisation first at the Hartree-Fock level with the 6-31G" basis set and then at
the MP2/6-31G" level. A single-point calculation is next carried out using this geometry
with the full MP4 method (singles, doubles, triples and quadruples). This energy is then
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refined through a series of corrections, which deal with the need for higher polarisation
functions, for correlation effects beyond fourth-order perturbation theory (i.e. QCISD(T))
and for larger basis set effects. These correction factors are combined, together with a
zero-point energy derived from a series of scaled harmonic frequencies determined from
the first, HF/6-31G’, geometry optimisation, to give the final G3 energy. When tested on
299 experimental energies the overall average absolute deviation from experiment was
1.02kcal/mol, with the average deviations for the four different types of data being

_ 094kcal/mol for the enthalpies of formation (148 values), 1.13kcal/mol for the ionisation

energies (85 values), 1.00kcal/mol for electron affinities (58 values) and 1.34 kcal/mol for
proton affinities (eight values). Detailed examination of the results can help to identify
systems requiring most attention in subsequent developments of the theory. For example,
the enthalpy of formation of both SO, and PF; have large negative deviations from experi-
ment, perhaps due to the need for a larger basis set to describe the bonding in these
molecules. Likewise some of the strained hydrocarbon ring systems (cyclopropene, cyclobu-
tene and bicyclobutane) also show relatively large deviations. '

The G3 method is still rather computationally intensive and so some efforts have been made
to reduce the computational requirements whilst retaining an acceptable level of error. The
G3(MP2) variant [Curtiss et al. 1999] replaces the MP4 calculations (which are particularly
time-consuming), with comparable calculations at the MP2 level. This leaves the
QCISIX(T) stage as the most demanding step. The average absolute deviation of the energies
calculated using the G3(MP2) method was 1.89 kcal/kmol on the entire 299 test systems, a
significantly less accurate result than that of the full G3 method, but still noteworthy.

3.4 Practical Considerations When Performing ab initio
Calculations

Ab initio calculations can be extremely time-consuming, especially when using the higher
levels of theory or when the nuclei are free to move, as in a minimisation calculation (see
Chapter 5). Various ‘tricks” have been developed which can significantly reduce the compu-
tational effort involved. Many of these options are routinely available in the major software
packages and are invoked by the specification of simple keywords. One common tactic is to
combine different levels of theory for the various stages of a calculation. For example, a
lower level of theory can be used to provide the initial guess for the density matrix prior
to the first SCF iteration. Lower levels of theory can also be used in other ways. Suppose

 We wish to determine some of the electronic properties of a molecule in a minimum

energy structure. Energy minimisation requires that the nuclei move and is typically
performed in a series of steps, at each of which the energy (and frequently the gradient of
the energy) must be calculated. Minimisation is therefore a computationally expensive
procedure, particularly when performed at the high level of theory. To reduce this compu-
:fa_tional burden a lower level of theory can be employed for the geometry optimisation. A
single-point’ calculation using a high level of theory is then performed at the geometry
S0 obtained to give a wavefunction from which the properties are determined. The assump-

tion here of course is that the geometry does not change much between the two levels of
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theory. Such calculations are denoted by slashes (/). For example, a calculation that is
described as ‘6-31G*/STO-3G’ indicates that the geometry was determined using the
STO-3G basis set and the wavefunction was obtained using the 6-31G* basis set. Two
slashes are used when each calculation is itself described using a slash, such as when
electron correlation methods are used. For example, ‘"MP2/6-31G*//HF/6-31G" indicates
a geometry optimisation using a Hartree~Fock calculation with a 6-31G" basis set followed
by a single-point calculation using the MP2 method for incorporating electron correlation,
again using a 6-31G” basis set.

3.4.1 Convergence of Self-consistent Field Calculations

In an SCF calculation the wavefunction is gradually refined until self-consistency is
achijeved. For closed-shell ground-state molecules this is usually quite straightforward
and the energy converges after a few cycles. However, in some cases convergence is a
problem, and the energy may oscillate from one iteration to the next or even diverge
rapidly. Various methods have been proposed to deal with such situations. A simple
strategy is to use an average set of orbital coefficients rather than the set obtained from
the immediately preceding iteration. The coefficients in this average set can be weighted
according to the energies of each iteration. This tends to weed out those coefficients that
give rise to higher energies.

The injtial guess of the density matrix may influence the convergence of the SCF calculation;
a null matrix is the simplest approach, but better results may be obtained by using a density
matrix from a calculation performed at a lower level of theory. For example, the density
matrix from a semi-empirical calculation may be used as the starting point for an ab initio
calculation. Conversely, such an approach may itself lead to problems if there is a significant
difference between the density matrices for the lower and higher levels of theory.

A more sophisticated method that is often very successful is Pulay’s direct inversion of the
iterative subspace (DIIS) [Pulay 1980]. Here, the energy is assumed to vary as a quadratic
function of the basis set coefficients. In DIIS the coefficients for the next iteration are
calculated from their values in the previous steps. In essence, one is predicting where the
minimum in the energy will lie from a knowledge of the points that have been visited
and by assuming that the energy surface adopts a parabolic shape.

3.4.2 The Direct SCF Method

An ab initio calculation can be logically considered to involve two separate stages. First, the
various one- and two-electron integrals are calculated. This is a computationally intensive
task and considerable effort has been expended finding ways to make the calculation of
the integrals as efficient as possible. In the second stage, the wavefunction is determined
using the variation theorem. In a “traditional’ SCF calculation all of the integrals are first
calculated and stored on disk, to be retrieved later during the SCF calculation as required.
The number of integrals to be stored may run into millions and this inevitably leads to
delays in accessing the data, particularly as the retrieval of information from a disk requires
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physical movement of the read head 'and so is slow. Modern computers (both workstations
and supercomputers) have much faster (and cheaper) processing units, and many of these
machines also have a substantial amount of internal memory, which can be accessed in a
fraction of the time it takes to read data from the disk. In a direct SCF calculation, the
integrals are not stored on the disk but are kept in memory or recalculated when required
[AImIof et al. 1982].

A much-quoted ‘fact’ is that ab initio calculations scale as the fourth power of the number of
basis functions for ground-state, closed-shell systems. This scaling factor arises because each
two-electron integral (uv|Ag) involves four basis functions, so the number of two-electron
integrals would be expected to increase in proportion to the fourth power of the number
of basis functions. In fact, the number of such integrals is not exactly equal to the fourth
power of the number of basis functions because many of the integrals are related by
symmetry. We can calculate exactly the number of two-electron integrals that are required
in a Hartree~Fock ab initio calculation as follows. There are seven different types of two-
electron integral: :

(ba |.cd)

1. (ablcd) = (ablde) = = (baldc) = (cd|ab) = (cd|ba) = (dc|ab) = (dc|ba)

2. (aalbc) = (aa|cb) = (bclaa) = (cb|aa)

3. (ablac) = (ab|ca) = (balac) = (ba|ca) = (ac|ab) = (ac|ba) = (calab) = (calba)
4. (aa|bb) = (bblaa)

5. (ablab) = (ab|ba) = (balab) = (ba|ba)

6. (aalab) = (aa|ba) = (ablaa) = (ba|aa)

7. (aajan)

Hor a basis set with K basis functions, there are K(K — 1)(K — 2)(K — 3) integrals of type
(ablcd), but due to symmetry only one-eighth of these are unique as shown. Similarly,
there are 2K(K — 1)(K — 2) of type (2); 4K(K — 1)(K — 2) of type (3); K(K — 1) of type @);
2K(K — 1) of type (5); 4K(K — 1) of type (6) and K of type 7. Thus, a basis set with 200 func-
tions has a total of 202015 050 unique two-electron integrals. For all but the smallest of basis
sets most integrals are of type (1) which is why an ab initio problem is often considered to
scale as K*/8 (200*/8 = 200000 000). Including electron correlation adds significantly to
the computational cost; for example, MP2 calculations scale as the fifth power of the
number of basis functions. Electron correlation methods may also require significantly

_more memory and disk than the comparable SCF calculation; the higher levels scale as

the sixth power, and in QCISD(T), one part of the calculation is seventh order.

In practice, ab initio calculations often scale as a significantly smaller power than four. It is
found that in favourable cases the computational cost of a direct SCF calculation on a
large molecule scales as approximately the square of the number of basis functions used.
This significant reduction (from four to two) is due to several factors. We have already
nated some of the ways in which a carefully chosen basis set can reduce the computational
‘?ff()l't, for example by making many of the integrals (particularly the two-electron integrals)
identical by using the same Gaussian exponents for s and p orbitals in the same shell.
Another way in which the calculation time can be significantly reduced is to exploit any

Symmetry of the system. Many isolated molecules contain symmetry elements such as
Centres of inversion and ‘mirror planes, information which can be used to reduce the
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computational effort required. In the case of an ab initio calculation that scales as the fourth
power of the number of basis functions then a four-fold reduction in the number of atoims
can (in principle at least) result in the computational time being reduced by about 250
times. The most effective way to reduce the computational effort is to identify integrajs
which are so small that ignoring them (i.e. setting them to zero) will not affect the results:
The number of ‘important’ integrals is believed to scale as K* In K. The negligible integrals
are determined by calculating an upper limit for each integral. This can be done rapidly
and so those integrals that are guaranteed to be negligible can be identified and so
ignored. The cutoff value which determines whether an integral is explicitly calculated or
is set to zero can vary from one program to another, so it is always useful to check its
value if different programs give different results for a given calculation.

3.4.3 Calculating Derivatives of the Energy

Considerable effort has been spent devising efficient ways of directly calculating the first
and second derivatives of the energy with respect to the nuclear coordinates. Derivatives
are primarily used during minimisation procedures for finding equilibrium structures
(the first derivative of the energy with respect to its coordinates equals the force on an
atom) and are also used by methods which locate transition structures and determine
reaction pathways.

A self-consistent field wavefunction (and thus its energy) can be considered a complicated
function of the nuclear coordinates, basis functions and basis function coefficients (and, for a
CI calculation, the coefficients of single determinantal wavefunctions). In order to determine
the first, second, etc. derivatives of the energy with respect to the nuclear coordinates [Pulay
1977] it is necessary to consider not only how the energy depends directly on the nuclear
coordinates but also whether there is an indirect dependence via other parameters.
Indeed, it is only the one-electron part of the Hamiltonian that depends directly upon the
nuclear coordinates (H*™°(1), Equation (2.125)), to which is added an internuclear
Coulomb repulsion term. For the other parameters the derivative with respect to the
nuclear coordinates is generally determined via the chain rule (for first derivatives). For
example, for a generic nuclear coordinate g; and a generic parameter x; we can write:

OE _ OF 0%

= (3.23)

In Equation (3.23) ¢; would be the x, y or z coordinate of an atom and x; would be a
parameter such as a basis function coefficient or a basis function exponent. An important
result is that the terms involving variationally determined parameters (such as basis func-
tion coefficients) are equal to zero; the energy is a minimum when (0E/dc;) is zero. This
greatly reduces the computational effort. Most of the numerical work in calculating the
gradient is due to the various basis set parameters (e.g. orbital centres and exponents)
which require the derivatives of the various electron integrals. For Gaussian basis sets
these derivatives can be obtained analytically and indeed it is relatively straightforward
to obtain first derivatives for many levels of theory. The time taken to calculate the deriva-
tives is comparable to that required for the calculation of the total energy. Second (and
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higher) derivatives are more difficult and expensive to calculate, even at the lower levels of
theory.

A possible alternative approach to the calculation of forces is via the use of the Hellmann-
Feynman theorem. If ¥ is an exact wavefunction of a Hamiltonian H with energy E then this
theorem states that the derivative of E with respect to some parameter P can be written:

ey 620

In the case of the derivative with respect to some nuclear coordinate g;, we would consider
the exact force and the Hellmann-Feynmann force to be equal:

i(‘I'IHI‘I') = <‘I' g%“l'> (3.25)

0g;
Unfortunately, this only holds for the exact wavefunction and certain other types of
wavefunction (such as at the Hartree-Fock limit). Moreover, even though the Hellmann-
Feynman forces are much easier to calculate they are very unreliable, even for accurate
wavefunctions, giving rise to spurious forces (often referred to as ‘Pulay forces” [Pulay
1987]).

3.4.4 Basis Set Superposition Error

Suppose we wish to calculate the energy of formation of a bimolecular complex, such as the
energy of formation of a hydrogen-bonded water dimer. Such complexes are sometimes
referred to as ‘supermolecules’. One might expect that this energy value could be obtained
by first calculating the energy of a single water molecule, then calculating the energy of
the dimer, and finally subtracting the energy of the two isolated water molecules (the
‘reactants’) from that of the dimer (the "products’). However, the energy difference obtained
by such an approach will invariably be an overestimate of the true value. The discrepancy
arises from a phenomenon known as basis set superposition error (BSSE). As the two water
molecules approach each other, the energy of the system falls not only because of the
favourable intermolecular interactions but also because the basis functions on each molecule
provide a better description of the electronic structure around the other molecule. It is clear
that the BSSE would be expected to be particularly significant when small, inadequate basis
sets are used (e.g. the minimal basis STO-nG basis sets) which do not provide for an
adequate representation of the electron distribution far from the nuclei, particularly in the
region where non-covalent interactions are strongest. One way to estimate the basis set
superposition error is via the counterpoise correction method of Boys and Bernardi, in
which the entire basis set is included in all calculations [Boys and Bernardi 1970]. Thus, in
the general case:

A+B— AB (3.26)
AE = E(AB) — [E(A + E(B)] (3.27)

The calculation of the energy of the individual species A is performed in the presence of
‘ghost’- orbitals of B; that is, without the nuclei or electrons of B. A similar calculation is
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performed for B using ghost orbitals on A. An alternative approach is to use a basis set in
which the orbital exponents and contraction coefficients have been optimised for molecular
calculations rather than for atoms. The relevance of the basis set superposition error and its
dependence upon the basis set and the level of theory employed (i.e. SCF or with electron
correlation) remains a subject of much research.

3.5 Energy Component Analysis

The interaction between atoms and molecules can vary from the weak attraction between a
pair of closed-shell atoms (e.g. two rare gas atoms in a molecular beam) to the large energy

associated with the formation of a chemical bond. Intermediate between these two extremes -

are interactions due to hydrogen bonding or electron donor-acceptor processes. In these
intermediate cases it is often difficult to determine what factors are important in contributing
to the interaction. For example, what can a hydrogen bond be ascribed to?

Morokuma analysis is a method for decomposing the energy change on formation of an
intermolecular complex into five components: electrostatic, polarisation, exchange
repulsion, charge transfer and mixing [Morokuma 1977]. Suppose we have performed ab
initio SCF calculations on two molecules, X and Y, and on the intermolecular complex (or
’supermolecule’) XY. The wavefunctions obtained can be written AYY, ATY and ATY,.
A’ indicates the use of an antisymmetrised wavefunction (e.g. a Slater determinant). The
sum of the energies of the isolated molecules is Ej and the energy of the supermolecule is
E; (we follow the original notation of Morokuma). The interaction energy AE is thus
given by E, — Eo. The five components are calculated as follows.

The electrostatic contribution equals the interaction between the unperturbed electron
distributions of the two isolated species, A and B. It is identical to the classical Coulomb
interaction and equals the difference E; — Eg, where E; is the energy associated with the
product of the two individual wavefunctions, ¥;:

U, = ATLATY (3.28)

The electronic distributions of both X and Y will be changed by the presence of the other
molecule. These polarisation effects cause a dipole to be induced in (say) molecule Y due
to the charge distribution in molecule X and vice versa. Polarisation also affects the
higher-order multipoles. To calculate the polarisation contribution we first calculate
molecular wavefunctions ¥, and Uy in the presence of the other molecule. The energy of
the wavefunction ¥, is determined as E,, where ¥, is:

U, = AUATy (3.29)
The polarisation contribution equals E; — E; and is always attractive.

In determining ¥; and W¥,, no electron exchange interactions are, considered. The overlap
between the electron distributions of X and Y at short range causes a repulsion because to
bring together electrons with the same spin into the same region of space ultimately leads
ta a violation of the Pauli principle.

Advanced ab initio Methods ' , 123

The exchange repulsion is calculated as E; — E;, where Ej is the energy of the wavefunction
Y
Wy = AWy 1) (3.30)

1, is derived from the undistorted wavefunctions of X and Y but the exchange of electrons is
permitted. The exchange term is always repulsive.

The charge transfer term arises from the transfer of charge (i.e. electrons) from occupied
molecular orbitals on one molecule to unoccupied orbitals on the other molecule. This contri-
bution is calculated as the difference between the energy of the supermolecule XY when this
charge transfer is specifically allowed to occur, and an analogous calculation in which it is not.

The Morokuma formalism also requires an additional, ‘mixing’ or “coupling’ term to be
included. This equals the difference between the total SCF difference, AE, and the sum of
the four contributions (electrostatic, polarisation, exchange repulsion and charge transfer).
The mixing term has little physical significance and is used because the four components
do not completely account for the entire interaction energy (itis a fudge factor!). Fortunately,
it is often relatively small.

Morokuma studied a number of hydrogen-bonded complexes using this scheme in order to
assess the contribution from each component. The systems studied were typically of inter-
molecular complexes involving small molecules such as H,O, HF and NHj;. In addition,
Morokuma and his colleagues also examined a series of electron donor-acceptor complexes
such as H3N-BF3, OC-BHj;, HF-CIF and benzene-OC(CN),. He also studied the basis-set
dependence of the results and observed that the energy components were more sensitive
than the energy differences. For example, a minimal STO-3G basis set overestimates the
charge transfer contribution, whereas double zeta basis sets tend to exaggerate the electro-
static interaction.

3.5.1 Morokuma Analysis of the Water Dimer

The water dimer (H,0), has been subject to perhaps the closest scrutiny of all hydrogen-
bonded complexes. A variety of stable geometries are available to the water dimer, in
which one or more hydrogen bonds are present. There has been considerable debate over
the relative energies of these structures and even some dispute over which structures are
actually at minimum points on the energy surface [Smith ef al. 1990]. As might be expected,
the results depend upon the basis set used. A linear geometry is observed experimentally
and is also predicted to be the most stable structure by ab initio calculations with a wide
variety of basis sets (see Figure 3.4). Using a 6-31G™ basis set, Umeyama and Morokuma
calculated that the —5.6kcal/mol stabilisation energy was composed of —7.5kcal/mol
electrostatic stabilisation, 4.3 kcal/mol exchange repulsion, —0.5kcal/mol polarisation and
—1.8kcal/mol charge transfer [Umeyama and Morokuma 1977]. The ‘mixing term’ con-
tributed —0.1kcal/mol. Thus the hydrogen bond in the water dimer was considered to
arise primarily from electrostatic effects with a smaller charge transfer contribution.
Morokuma and Umeyama also extended their analysis of charge transfer to investigate
whether this was due to transfer from the proton donor to the acceptor, or from acceptor
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Fig. 3.4: The linear structure of the water dimer [Smith et al. 1990].

to donor. The results showed that approximately 90% of the charge transfer resulted from
proton acceptor to proton donor transfer.

Morokuma analysis was widely used in the years after its introduction; it is less popular

now as some problems have been encountered when trying to interpret the results with
the larger basis sets that are feasible with today’s faster computers and improved algo-
rithms. In particular, when diffuse basis sets are used then there is a substantial amount
of intermolecular overlap even at relatively large distances, which can make it difficult to
factor out the different components. Nevertheless, the approach is certainly a useful way
to assess the major causes of a particular type of intermolecular interaction, if only to
provide a qualitative picture. ’

3.6 Valence Bond Thecries

An entirely different way to treat the electronic structure of molecules is provided by valence
bond theory, which was developed at about the same time as the molecular orbital approach.
However, valence bond theory was not so amenable to calculations on large molecules, and
molecular orbital theory came to dominate electronic structure theory for such systems.
Nevertheless, valence bond theories are often considered to be more appropriate for certain
types of problem than molecular orbital theory, especially when dealing with processes that
involve bonds being broken and/or formed. Recall from Figure 3.2 that a self-consistent
field wavefunction gives a wholly inaccurate picture for the dissociation of Hy; by contrast,
the correct dissociation behaviour is naturally built into valence bond theories.

Valence bond theory is usually introduced using the famous Heitler-London model of the
hydrogen molecule [Heitler and London 1927]. This model considers two non-interacting
hydrogen atoms (a and b) in their ground states that are separated by a long distance.
The wavefunction for this system is: k

U = ¢ (1)¢lsb (2) (331)

As the two hydrogen atoms approach to form a hydrogen molecule, such a wavefunction is
inappropriate as it implies that electron 1 remains confined to orbital 1sa and electron 2 to
orbital 1sb. This clearly violates the indistinguishability principle, and so a linear combina-
tion is used

lI’vb X ¢]sa(1)¢1sb(2) + ¢15a(2)¢15b(1) (332)
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The corresponding molecular orbital function for this system is:

‘I’mo X ¢1sa(1)¢1sb(2) + ¢1sa(2)¢1sb(1) + ¢15a(1)¢15a(2) + ¢lsb(1)¢lsb(2) (333)

The additional terms in the molecular orbital wavefunction correspond to states with the
two electrons in the same orbital, which endows ionic character to the bond (H+H_). The
valence bond wavefunction does not include any ionic character and in fact it correctly
describes the dissociation into two hydrogen atoms. The simple valence bond and molecular

_orbital pictures in Equations (3.32) and (3.33) are extremes, with the ‘true’ wavefunction

peing somewhere in the middle. The valence bond representation can be improved by
including a degree of ionic character as follows:

Uip X P15a(1)$166(2) + P15a(2)b160(1) + A[B1sa(1) P15a(2) + P166(1) P156(2)] (3.34)

) is a parameter that can be varied to give the ‘correct’ amount of ionic character. Another
way to view the valence bond picture is that the incorporation of ionic character corrects the
overemphasis that the valence bond treatment places on electron correlation. The molecular
orbital wavefunction underestimates electron correlation and requires methods such as
configuration interaction to correct for it. Although the presence of ionic structures in
species such as H appears counterintuitive to many chemists, such species are widely
used fo explain certain other phenomena such as the ortho/para or meta directing proper-
ties of substituted benzene compounds under electrophilic attack. Moverover, it has been
shown that the ionic structures correspond to the deformation of the atomic orbitals when
they are involved in chemical bonds.

One widely used valence bond theory is the generalised valence bond (GVB) method of
Goddard and co-workers [Bobrowicz and Goddard 1977]. In the simple Heitler-London
treatment of the hydrogen molecule the two orbitals are the non-orthogonal atomic orbitals
on the two hydrogen atoms. In the GVB theory the analogous wavefunction is written:

Teyp o u(L)r(2) + u(2)v(l) (3.35)

# and v are non-orthogonal orbitals that are each expressed as a basis set expansion with the
coefficients being variationally optimised to minimise the energy. The construction of the
wavefunction from orbitals that are not necessarily orthogonal is characteristic of many
valence bond theories and complicates the computational problem. The GVB approach is
partictilarly successful for describing the electronic nature of systems as they approach
dissociation. k

_ Another approach is spin-coupled valence bond theory, which divides the electrons into two

sefs: ‘core’ electrons, which are described by doubly occupied orthogonal orbitals, and
‘active’ electrons, which occupy singly occupied non-orthogonal orbitals. Both types of
orbital are expressed in the usual way as a linear combination of basis functions. The
overall wavefunction is completed by two spin functions; one that describes the coupling
of the spins of the core electrons and one that deals with the active electrons. The choice
of spin function for these active electrons is a key component of the theory [Gerratt et al.
1997]. One of the distinctive features of this theory is that a considerable amount of
chemically significant electronic correlation is incorporated into the wavefunction, giving
an accuracy comparable to CASSCF. An additional benefit is that the orbitals tend to be
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H
Fig. 3.5:  orbital for benzene obtained from spin-coupled valence bond theory. (Figure redrawn from Gerrait ], D L
Cooper, P B Karadakov and M Raimondi 1997. Modern valence bond theory. Chemical Society Reviews 87:100.)

The figure also shows the two Kekulé and three Dewar benzene forms which contribute to the overall wavefunction;
each Kekulé form contributes approximately 40.5% and each Dewar form approximately 6.4%.

localised, closely resembling atomic or hybrid atomic orbitals, and consequently very visual.
Various chemical phenomena have been examined using this approach, including
dissociation reactions and hypervalence. One particularly interesting study was of the =
system of benzene [Cooper et al. 1986]. This calculation resulted in six orbitals, each localised
on one of the carbon atoms in the ring, though with some deformations towards neigh-
bouring atoms (Figure 3.5). Moreover, the spin-coupling patterns suggested that the
bonding was more akin to the Kekulé picture of benzene (with alternating double and
single bonds) together with small contributions from Dewar benzene rather than the
completely delocalised representation from molecular orbital theory.

3.7 Density Functional Theory

Density functional theory (DFT) is an approach to the electronic structure of atoms and
molecules which has enjoyed a dramatic surge of interest since the late 1980s and 1990s
[Parr 1983; Wimmer 1997]. Our approach here will be to introduce the key elements of
the theory and to identify the similarities and differences between DFT and the Hartree-
Fock approach. In Hartree-Fock theory the multi-electron wavefunction is expressed as a
Slater determinant which is constructed from a set of N single-electron wavefunctions (N
being the number of electrons in the molecule). DFT also considers single-electron functions.
However, whereas Hartree-Fock theory does indeed calculate the full N-electron wave-
function, density functional theory only attempts to calculate the total electronic energy
and the overall electronic density distribution. The central idea underpinning DFT is that
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there is a relationship between the total electronic energy and the overall electronic density.
This is not a particularly new idea; indeed an approximate model developed in the late 1920s
(the Thomas-Fermi model) contains some of the basic elements. However, the real break-
through came with a paper by Hohenberg and Kohn in 1964 [Hohenberg and Kohn 1964],
who showed that the ground-state energy and other properties of a system were uniquely
defined by the electron density. This is sometimes expressed by stating that the energy, E,

is a unique functional of p(r). A functional enables a function to be mapped to a number
and is usually written using square brackets. Thus:

QU] = | fds (3:36)

The function f(r) is usually dependent upon other well-defined functions. A simple example
of a functional would be the area under a curve, which takes a function f(r) defining the
curve between two points and returns a number (the area, in this case). In the case of
DET the function depends upon the electron density, which would make (Q a functional
of plr); in the simplest case f(r) would be equivalent to the density (i.e. f(r) = p(r)). If the
function f(r) were to depend in some way upon the gradients (or higher derivatives) of
ptr) then the functional is referred to as being 'non-local’, or ’‘gradient-corrected’. By
contrast, a "local’ functional would only have a simple dependence upon p(r). In DFT the
energy functional is written as a sum of two terms:

Elp(9)] = [ Veu(s)ots)dr + Flo(0) (3.37)

The first term arises from the interaction of the electrons with an external potential V. (r)
{typically due to the Coulomb interaction with the nuclei). F[p(r)] is the sum of the kinetic
energy of the electrons and the contribution from interelectronic interactions. The
minimum value in the energy corresponds to the exact ground-state electron density, so
enabling a variational approach to be used (i.e. the “best’ solution corresponds to the
minimum of energy and an incorrect density gives an energy above the true energy).
There is a constraint on the electron density as the number of electrons (N) is fixed:

N= J p(x) dr (3.38)

In order to minimise the energy we introduce this constraint as a Lagrangian multiplier
{(-p1), leading to:

)
.. [E[pm] -] o) dr] ~0 (3:39)
From this we can write:
SE[p(r)]\
<6p<r> )Vm"‘ (340

Equation (3.40) is the DFT equivalent of the Schrodinger equation. The subscript Ve
indicates that this is under conditions of constant external potential (i.e. fixed nuclear
positions). It is interesting to note that the Lagrange multiplier, y, can be identified with

_ the chemical potential of an electron cloud for its nuclei, which in turn is related to the
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electronegativity, x:

OE '
== (o). o
The second landmark paper in the development of density functional theory was by Kohn”
and Sham who suggested a practical way to solve the Hohnberg-Kohn theorem for a set of
interacting electrons [Kohn and Sham 1965]. The difficulty with Equation (3.37) is that we do
not know what the function Fp(r)] is. Kohn and Sham suggested that F[p(r)] should be
approximated as the sum of three terms:

Flp(r)] = Exz[p(r)] + Enlp(r)] + Exclp(r)] (3.42)

where Exg[p(r)] is the kinetic energy, Ey[p(r)] is the electron-electron Coulombic energy, and
Exc[p(t)] contains contributions from exchange and correlation. It is important to note that
the first term in Equation (3.42), Exg[p(r)], is defined as the kinetic energy of a system of
non-interacting electrons with the same density p(r) as the real system:

N 2
Bl = 3 [ (- w0 (3.43)

i=1-

" The second term, Ey(p), is also known as the Hartree electrostatic energy. The Hartree
approach to solving the Schrodinger equation was introduced briefly in Section 2.3.3 and
almost immediately dismissed because it fails to recognise that electronic motions are
correlated. In the Hartree approach this electrostatic energy arises from the classical
interaction between two charge densities, which, when summed over all possible pairwise
interactions, gives:

Eulp(®)] = ”M iy dry (3.44)

[r1 — 1]

Combining these two and adding the electron-nuclear interaction leads to the full expres-
sion for the energy of an N-electron system within the Kohn-Sham scheme:

r)ézij«A (-3 )wxr)dr 3 | FE2) gy iy + Eicloto)

i=1 |1_

_ﬁ:Jer o) de (3.45)

This equation acts to define the exchange-correlation energy functional Exc[p(r)], which thus
contains not only contributions due to exchange and correlation but also a contribution due
to the difference between the true kinetic energy of the system and Exg[p(r)].

* Walter Kohn, whose name appears on the two key papers which provided the impetus for the
development of ‘modern’ density functional theory, was awarded the Nobel Prize for Chemistry in
1998, jointly with John Pople.
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Kohn and Sham wrote the density p(r) of the system as the sum of the square moduli of a set
of one-electron orthonormal orbitals:

N
pr) = I(x) (3.46)
i=1

By introducing this expression for the electron density and applying the appropriate
variational condition the following one-electron Kohn-Sham equations result:

vi N Za p(r2)
{— 5 (Agl a) + }Edrz + VXC[rl]}"/)i(rl) = it;(11) (3.47)
In Equation (3.47) we have written the external potential in the form appropriate to the
interaction with M nuclei. ¢; are the orbital energies and Vxc is known as the exchange-
correlation functional, related to the exchange-correlation energy by:

Vxclr] = (6Ez;£r)( )]> (3.48)

The total electronic energy is then calculated from Equation (3.45).

To solve the Kohn-Sham equations a self-consistent approach is taken. An initial guess of
the density is fed into Equation (3.47) from which a set of orbitals can be derived, leading
to an improved value for the density, which is then used in the second iteration, and so
on until convergence is achieved.

3.7.1 Spin-polarised Density Functional Theory

Local spin density functional theory (LSDFT) is an extension of ‘regular’ DFT in the same
way that restricted and unrestricted Hartree-Fock extensions were developed to deal
with systems containing unpaired electrons. In this theory both the electron density and
the spin density are fundamental quantities with the net spin density being the difference
between the density of up-spin and down-spin electrons:

ox) = py (@) — py 1) (3.49)
The total electron density is just the sum of the densities for the two types of electron. The

exchange-correlation functional is typically different for the two cases, leading to a set of
spin-polarised Kohn-Sham equations:

L2 (D284 [Py ol ot = o) o=af @350

A=1h14 F12
This leads to two sets of wavefunctions, one for each spin; similar to UHF theory.
3.7.2 The Exchange-correlation Functional

The exchange-correlation functional is clearly key to the success (or otherwise) of the density
functional approach. One reason why DFT is so appealing is that even relatively simple
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approximations to the exchange-correlation functional can give favourable results. The
simplest way to obtain this contribution uses the so-called local density approximation
(LDA; the acronym LSDA is also used, for local spin density approximation), which is
based upon a model called the uniform electron gas, in which the electron density is constant
throughout all space. The total exchange-correlation energy, Exc, for our system can then be
obtained by integrating over all space:

Exclo(®)] = jp(r)sxc(p(r)) dr (3.51)

exc(p(r)) is the exchange-correlation energy per electron as a function of the density in the
uniform electron gas. The exchange-correlation functional is obtained by differentiation of
this expression:

Vel = p(x) ii;/%gﬂ + exclo(®) (352)

In the local density approximation it is assumed that at each point r in the inhomogeneous
electron distribution (i.e. in the system of interest) where the density is p(r) then Vxc[p(r)]
and exc(p(r)) have the same values as in the homogeneous electron gas. In other words,
the real electron density surrounding a volume element at position r is replaced by a
constant electron density with the same value as at r. However, this ’constant’ electron
density is different for each point in space (Figure 3.6). '

The exchange-correlation energy per electron (ie. the energy density) of the uniform
electron gas is known accurately for all densities of practical interest from various
approaches such as quantum Monte Carlo metheds [Ceperley and Alder 1980]. In order
to be of practical use this exchange-correlation energy density is then expressed in an
analytical form that makes it amenable to computation. It is usual to express exclp(®)] as
an analytical function of the electron density and to consider the exchange and correlation
contributions separately. However, some analytical expressions for the combined exchange
and correlation energy density do exist, such as the following expression of Gunnarsson and

dr r

Fig. 3.6: Schematic representation of the way in which the local density approximation assumies that the electron
density within a volume element dr surrounding a point ¢ is assumed to be constant.
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Lundqvist [Gunnarsson and Lundqvist 1976]:

0.458
exc(p(r) = === - 0.0666G (ﬁ)
3 .

1 _ x 1 3
G{x) =2 |(1+x)log(1 L N i =
(%) 2[( +x)log(1+x7") —a" +3 3], n e (3.53)
The following relatively simple expression is commonly used for the exchange-only energy
under the local density approximation [Slater 1974]:

1/3
Edrauna] =3 () 0420 + a0 (354)

where a and (@ represent up and down spins. In general, more attention has been paid to the
correlation contribution, for which there is no such simple functional form. Perdew and
Zunger suggested the following parametric relationship for the correlation contribution
[Perdew and Zunger 1981]:

—0.1423/(1 + 1.9529r,% + 0.3334 n>1
ec(p(r)) = { / ’ e = (3.55)
—0.0480 + 0.0311In 7, — 0.01167, + 0.00207, Inr, 7 <1
This re51'11t applies when the number of up spins equals the number of down spins and so is
not applicable to systems with an odd number of electrons. The correlation energy functional
was also considered by Vosko, Wilk and Nusair [Vosko et al. 1980], whose expression is:

SC(P(T)):%{Inx—Z+2b -1_Q i) l(x—x0)2 2(b‘l_zx())tan*1 Q

Xt e"™ 2+p Xy | X@) 0 2% +b
x=r" X(x)=2+bx+c, Q=lc—P)"% (3.56)

A =0.0621814, xy=-0.409286, b=13.0720, c=42.7198

In addition to the energy terms for the exchange-correlation contribution (which enables the
total energy to be determined) it is necessary to have corresponding terms for the potential,
Vxclp(r)], which are used to solve the Kohn-Sham equations. These are obtained as the

appropriate first detivatives using Equation (3.52).

To solve the Kohn-Sham equations a number of different approaches and strategies have
been proposed. One important way in which these can differ is in the choice of basis set
for expanding the Kohn-Sham orbitals. In most (but not all) DFT programs for calculating
the properties of molecular systems (rather than for solid-state materials) the Kohn-Sham

orbitals are expressed as a linear combination of atomic-centred basis functions:

K
Uil(t) = ity (357)
v=1

Several functional forms have been investigated for the basis functions ¢,. Given the vast
experience of using Gaussian functions in Hartree-Fock theory it will come as no surprise
fo learn that such functions have also been employed in density functional theory.
However, these are not the only possibility: Slater type orbitals are also used, as are numerical
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basis functions. We encountered Slater type orbitals in Chapter 2, but the notion of a
numerical basis function is new. A numerical basis function can be generated by solving
the Kohn-Sham equations for isolated atoms. This gives a set of values on a spherica]
polar grid centred on each atom. The variation at each grid point can be stored as a cubic
spline function so enabling analytical gradients to be calculated. One advantage of a
numerical basis set (if properly derived) is that it has the correct nodal behaviour close to
the nucleus together with an exponential decay.

More than one function may be used to represent a particular atomic orbital. This is
obviously a well-understood tactic when using Gaussian functions, but the use of basis
set contractions also applies to the Slater type orbitals and the numerical basis sets. For a

numerical basis set the “contraction’ can be derived from two functions, one corresponding

to the neutral atom and the other to a positive ion.

If the basis set expansion for the Kohn-Sham orbitals in Equation (3.57) is substituted into
the Kohn-Sham equations then it is possible to express them in a matrix form, identical in
form to the Roothaan-Hall equations:

HC = SCE (3.58)
In this matrix equation the elements of the Kohn-Sham matrix H are given by:
Vi (SR Za) [T
le = Idr1¢#(r1){— 7 — (AZﬂa + j‘? dl'2 + ch[l'l] ¢U(I'1) (359)

The first two terms are straightforward and are equal to the core contribution, H;)®. The
Coulomb repulsion contribution (the Hartree term) can be expanded in terms of the basis
functions and the density matrix, P:

Du(t)PE)A(M) 4 o oo p (S E)G ) L
” 12/\2:1(;/\0JJ T dr; )

11— 12| 11— 12

For a closed-shell system with N electrons the elements of the density matrix are given by:

N/2
P =2 cuicu (3.61)
i=1 ‘

This is just the same as for the Roothaan-Hall approach to Hartree-Fock theory. The overlap
matrix, S, is defined similarly:

S = [ 0006160 (3.62)

The overall procedure to achieve self-consistency is very reminiscent of that used in

Hartree-Fock theory, involving first an initial guess of the density by superimposing
atomic densities, construction of the Kohn-Sham and overlap matrices, and diagonalisation
to give the eigenfunctions and eigenvectors from which the Kohn-Sham orbitals”* can be

* It is important to note that the Kohn-Sham orbitals used in density functional theory are a set of non-
interacting orbitals designed to give the correct density and have no physical meaning beyond that,
unlike the orbitals used in Hartree-Fock theory.
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_constructed and thus the density for the next iteration. This cycle continues until conver-
gence is achieved.

The appearance of the four-centre integrals in Equation (3.60) might lead one to question the
advantage of the DFT approach, at least as far as computational efficiency is concerned.
Whilst these integrals can certainly be tackled using the same techniques as in Hartree~

Fock theory, it is also viable in density functional theory to avoid having to calculate
_them by considering the left-hand side of Equation (3.60). There are two basic ways to do

this. First, one can approximate the charge density by another basis set expansion:

p(r) = " i) (3.63)
k

These auxiliary basis functions ¢’ have the same functional form as the orbital expansion and

_the coefficients ¢; are obtained by a least-squares fitting procedure. Substituting for the

density in the four-centre integrals gives a computationally less demanding three-centre,
two-electron integral:

$u(11)%0 (1)1 (12) 65 (T2) ([ (1) (11)Sk(r2)
dry dy = ”

[t — 12| [r1 — 13

dry dr, (3.64)

_ The second approach focuses on the Coulomb integral and uses Poisson’s equation. Let us

introduce V,(r;):

p(7a)
V =
el(T1) J o) dr, (3.65)
Poisson’s equation relates the second derivative of the electric potential to the charge
density:

V2V (r) = —4mp(r) (3.66)
We can thus write: ‘

v? J——{—)@— dr, = —4mp(r
|l‘1 — l‘2| 9 7rp( 1) (367)

This equation can be solved numerically on a grid to determine Ve (7). The same grid is

_ then used to numerically integrate the four-centre, two-electron integral, Equation (3.60),

as follows: ‘
Pu(r1)p(12) 9, ' P
~ ”—”%}({%2‘[”@2 dry dr, = J¢u (1) Ve (r1)¢, (1) =~ ; 2. (R)Va(R)o, (R)W;  (3.68)

_ Inthis equation the P points R; correspond to the grid used to solve the Poisson equation for
Y, and W, are weighting factors. :

It might be wondered why these two simplifications for the four-centre, two-electron

_ Integrals can be used in density functional theory and not in Hartree-Fock theory. The

Jeason is that the exchange contribution in Hartree-Fock theory is not a function that can
be simplified (technically, it is a non-local functional), in contrast to the situation in
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density functional theory. As the four-centre integrals must therefore still be determined for
the exchange component in Hartree-Fock theory there is nothing to be gained from simpli-
fying the corresponding Coulomb term.

The exchange-correlation contribution to the Kohn-Sham matrix elements (the final term in
Equation (3.59)) is invariably evaluated using a grid of points. This is a consequence of the
complexity of the functionals employed. The integration may then be performed using the
grid directly or by fitting a further auxiliary basis set expansion with which analytical
integration can be used. If a DFT program uses a basis set containing K functions and
employs either a grid-based integration scheme with P points or an auxiliary basis set
with P functions then the computational complexity of the calculation scales as K?P. As P
is often linearly related to K, density functional theory is often said to scale as the cube of
the number of basis functions, K3. This contrasts with the fourth-power scaling for conven-
tional Hartree-Fock calculations. However, many practical density functional calculations
with a well-engineered computer program do not scale as the simple third power, just as
practical Hartree-Fock calculations do not scale as the fourth power; these oft-quoted state-
ments apply only to the most naive implementations or for calculations on very small, test
systems where integral neglect thresholds are not employed.

Whilst most of the programs which use density functional theory for molecular calculations
employ one of the three types of basis set described thus far, there are two important alter-
natives to this approach. The first of these involves the solution of the Kohn-Sham equations
numerically (on a grid) using what is sometimes referred to as a "basis-set free’ approach
[Becke and Dickson 1990]. Such an approach is thus free from the limitations of a finite
basis set expansion (provided, of course, that sufficient grid points are employed!) and
can be used to evaluate different exchange-correlation functionals, as these represent the
only remaining source of error. The second alternative is particularly important. for the
study of bulk systems such as metals and alloys and involves the use of plane waves. This
approach will be discussed later in this chapter when we consider the general problem of
using quantum mechanics to study the solid state.

3.7.3 Beyond the Local Density Approximation: Gradient-corrected
Functionals ‘ '

The most important feature of density functional theory is probably the way in which it
directly incorporates exchange and correlation effects; the latter in particular are only truly
considered in the more complex, post-Hartree-Fock approaches such as configuration inter-
action or many-body perturbation theory. Despite its simplicity the local density approxima-
tion performs surprisingly well. However, the local density approximation has been shown to
be clearly inadequate for some problems and for this reason extensions have been developed.
The most common method is to use gradient-corrected, ‘non-local’ functionals which depend
upon the gradient of the density at each point in space and not just on its value. These gradient
corrections are typically divided into separate exchange and correlation contributions. A
variety of gradient corrections have been proposed in the literature. The gradient correction
to the exchange functional proposed by Becke is popular [Becke 1988, 1992]; this corrects
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the local spin density approximation fesult as follows:

2
4/3 Xo vatrl
o dr; x,=

Jp (1 + 6bx, sinh ' x,) g p‘(f,/?’

Ex[p()] = ECPMp(m)] =0 Y

o=a,3

(3.69)

EQSDA [p(z)] is the standard Slater form of the exchange energy, Equation (3.54). The form
written in Equation (3.69) is for a spin-unrestricted system, from which the appropriate
expression for a closed-shell system is easily derived. x, is a dimensionless parameter
and b is constant with a value of 0.0042a.u. The value of b was determined by fitting to
exact exchange Hartree-Fock energies for the noble gas atoms helium to radon. Two
Particular features of this functional form are that in the limit ¥ — oo the limiting form of
the exchange-correlation integral is correctly achieved and that it uses just a single
parameter, b. The correlation functional of Lee, Yang and Parr is also widely used [Lee

et al. 1988]; in its original form it was expressed as follows (for a closed-shell system):

1 _ -
s+ b (G — 2 + Ghw + V)T

1+4+dp [y dr

Eclpte)] = =a |

(3.70)

N (2

4 b, ¢ and d are constants with values 0.049, 0.132, 0.2533 and 0.349, respectively. This
expression provides both local and non-local components within a single expressicn and

the gradient contribution to second order. A combination of the standard local spin
density approximation exchange result (Equation (3.54)) with the Becke gradient-exchange

. correction and the Lee-Yang-Parr correlation functional is currently a popular choice,

commonly abbreviated to BLYP (pronounced ‘blip").

3.7.4 Hybrid Hartree-Fock/Density Functional Methods

As we stated earlier, a key feature of density functional theory is the way in which correlation
effects are incorporated from the beginning, unlike Hartree~-Fock theory. Moreover, the
incorporation of correlation into the Hartree-Fock formalism often involves significant
computational overhead, as we have considered in Section 3.3. However, it is important to
recoghise that Hartree-Fock theory does provide an essentially exact means of treating the

~_exchange contribution. One potentially attractive option is thus to add a correlation energy

derived from DFT (e.g. the local density approximation) to the Hartree-Fock energy. In
stich an approach the exchange-correlation energy is written as a sum of the exact exchange
:cerm together with the correlation component from the local density approximation. This
‘exact’ exchange energy is obtained from the Slater determinant of the Kohn-Sham orbitals.

~_Unfortunately, this simple approach does not work well, but Becke has proposed a strategy

which C'I,oes seem to have much promise [Becke 1993a, b]. In his approach the exchange-
correlation energy Exc is written in the following form:

1
Exc = JO U dX (3.71)
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Equation (3.71) contains a coupling parameter A, which takes values from 0 to 1. A value
of zero corresponds to a system where there is no Coulomb repulsion Uxc between
the electrons (i.e. the Kohn-Sham non-interacting reference state). As A increases to 1 the
interelectronic Coulomb repulsion is introduced until A =1, which corresponds to the
‘real’ system with full interactions. For all values of A the electron density is the same
and .equal to the density of the real system. It is not practical to perform this integral
analytically and so it must be approximated. The simplest approximation is a linear
interpolation: :

Exc =3 (Uxc + Ukc) - (7

When A = 0 we have U3, which is the exchange-correlation potential energy of the non-
interacting reference system. As there are no electronic interactions in this system there is
no correlation term and so U3 corresponds to the pure exchange energy of the Kohn-
Sham determinant and can be determined exactly. U} is the exchange-correlation potential
energy of the full-interacting real system. Becke proposed that this should be calculated
using the local spin-density approximation. This potential energy (note that it is not the
total energy, E) is available from:

Ule ~ ULPA — j tixc [palr), po(x)] dr (3.73)

uxc is the exchange-correlation potential energy density of an’electron gas for which
appropriate expressions are available.

This so-called ‘half-and-half’ theory proved to be significantly better than the alternative
methods based upon mixing exact exchange and correlation energies. In a refinement of
the scheme, Becke recognised that there were problems with the model when A =0.
These problems arise because the electron gas model is' not appropriate near this
exchange-only limit for molecular bonds. Hence a key feature of Becke's modified model
is to eliminate the term U3 and to write the exchange-correlation energy as the following
linear combination:

Exc = BR* +ag(BR™* — EXA) + axAESS + acAEES (3.74)

In Equation (3.74) EZ° is the exact exchange energy (obtained from the Slater determinant
of the Kohn-Sham orbitals), EX’* is the exchange energy under the local spin density
approximation, AESC is the gradient correction for exchange and AEEC is the gradient
correction for correlation. 4y, ax and ac are empirical coefficients obtained by least-squares
fitting to experimental data (56 atomisation energies, 42 ionisation potentials, eight proton
affinities and the total atomic energies of the ten first-row elements). Their values are
ap = 0.20, ax = 0.72 and ac = 0.81. In Becke’s original paper his own gradient correction
for exchange was used together with a gradient correction for correlation suggested by
Perdew and Wang. An alternative to this scheme is to employ the Lee-Yang-Parr correlation
functional (with the gradient term) and the standard local correlation functional due to
Vosko, Wilk and Nusair (VWN). This is the ‘B3LYP’ density functional:

EBLYP — (1 g )EEPA 4 gl + ay AER® + acEET + (1 - ac) EE™ (3.75)
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3.7.5 Performance and Applications of Density Functional Theory

The application of density functional theory to isolated, ‘organic’ molecules is still in rela-
tive infancy compared with the use of Hartree-Fock methods. There continues to be a
steady stream of publications designed to assess the performance of the various
approaches to DFT. As we have discussed there is a plethora of ways in which density
functional theory can be implemented with different functional forms for the basis set
(Gaussians, Slater type orbitals, or numerical), different expressions for the exchange
and correlation contributions within the local density approximation, different expressions
for the gradient corrections and different ways to solve the Kohn-Sham equations to
achieve self-consistency. This contrasts with the situation for Hartree-Fock calculations,
which mostly use one of a series of tried and tested Gaussian basis sets and where there
is a substantial body of literature to help choose the most appropriate method for incorpor-
ating post-Hartree-Fock methods, should that be desired.

A clear conclusion from such comparative studies is that density functional methods using
gradient-corrected functionals can give results for a wide variety of properties that are
competitive with, and in some cases superior to, ab initio calculations using correlation

. (e.g.y MP2). Gradient-corrected functionals are required for the calculation of relative

conformational energies and the study of intermolecular systems, particularly those
involving hydrogen bonding [Sim et al. 1992]. As is the case with the ab initio methods
the choice of basis set is also important in determining the results. By keeping the basis
set constant (6-31G* being a popular choice) it is possible to make objective comparisons.
Four examples of such comparative studies are those of Johnson and colleagues, who
considered small neutral molecules [Johnson et al. 1993]; St-Amant et al., who examined

study of the absorption and circular dichroism spectra of 4-methyl-2-oxetanone [Stephens

et al. 1994]; and Frisch et al,, who compared a variety of density functional methods with

one another and to traditional ab initio approaches [Frisch ef al. 1996]. The evolution of
defined sets of data such as those associated with the Gaussian-n series of models has
also acted as a spur to those involved in developing density functional methods. For
example, much of Becke’s work on gradient corrections and on mixed Hartree-Fock/
density function methods was evaluated using data sets originally collated for the
Gaussian-1 and Gaussian-2 methods. A more recent example is a variant of the
Gaussian-3 method which uses B3LYP to determine geometries and zero-point energies
[Baboul et al. 1999].

One of the most important developments for the practical application of DFT were methods
for calculating analytical gradients of the energy with respect to the nuclear coordinates.
This enables molecular geometries to be optimised. Once more there are some differences
between the way this is done with density functional theory compared with Gaussian-
based Hartree-Fock methods. A potential problem is that the use of grid-based integration
schemes makes it difficult to provide exact expressions for the gradients. However, the
errors associated with the grid-based method are generally very small and do not cause
problems during the optimisation.
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3.8 Quantum Mechanical Methods for Studying the Solid State
3.8.1 Introduction |

The quantum mechanical methods used to study the behaviour of solid-phase systems are
often somewhat different to those traditionally employed for studies of individual molecules
or isolated intermolecular complexes. A perfect crystalline system can be constructed by
stacking copies of some repeating unit (the unit cell) in a systematic fashion without overlap-
ping and without gaps. The structure of a crystal can be specified by defining the size and
shape of the unit cell and the positions of the atoms within it. The unit cell is parallelepiped
in shape and is characterised by three lattice vectors a, b and ¢ and the angles between them
(Figure 3.7). It may be possible to conceive of more than one unit cell, with different unit
cell parameters. In such cases a set of standard cell parameters can be obtained by the
application of standardisation rules. The coordinates of the atoms in the unit cell may be
expressed as fractional coordinates (aa, b, vc). Indeed, any general vector r can be
written in terms of these basis vectors:

t = (ca, fb,vc) (3.76)

where ¢, 3 and v are not necessarily restricted to values between 0 and 1. There are fourteen
different types of basic unit cell; these are the Bravais lattices. Common Bravais lattices
include the simple cubic, body-centred cubic and face-centred cubic (Figure 3.8). Another
common structure also shown in Figure 3.8 is the hexagonal close-packed arrangement,
for which the underlying Bravais lattice (called the simple hexagonal) is formed from an
underlying triangular arrangement. In addition to the translational symmetry that the
unit cell must possess there may be some symmetry to the arrangement of the atoms
within the unit cell. The particular combination of symmetry elements in a crystal defines
its space group. There are 230 different space groups. If there is symmetry within the unit
cell then it is strictly only necessary to specify the asymmetric unit (the unique part of the
structure); the positions of the other atoms can be generated using the appropriate symmetry
operators.

Fig. 3.7: The six parameters a, b, ¢, o, 3, y which characterise the unit cell.
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Fig. 3.8: Some basic Bravais lattices: (a) simple cubic, (E) body-centred cubic, (c) face-centred cubic and (d) simple

_ hexagonal close-packed. (Figure adgpted in part from Ashcroft NW and Mermin N D 1976, Solid State Physics.

New York, Holt, Rinehart and Winston.)

_Another concept that is extremely powerful when considering lattice structures is the

reciprocal lattice. X-ray crystallographers use a reciprocal lattice defined by three vectors

a, b’ and ¢ in which a* is perpendicular to b and ¢ and is scaled so that the scalar

product of a* and a equals 1. b* and c¢* are similarly defined. In three dimensions this

leads to the following definitions:

«_ bxc ., axc «_ axb
& T abxc b “baxc C caxhb (377)

Note that the denominator in each case is equal to the volume of the unit cell. The fact that a*,

b’ and ¢” have the units of 1/length gives rise to the terms ‘reciprocal space’ and ‘reciprocal

lattice’. It turns out to be convenient for our computations to work with an expanded

_ Iediprocal space that is defined by three closely related vectors a®, b¥ and ¢*, which are
multiples by 2 of the X-ray crystallographic reciprocal lattice vectors:

a* =2ma*; bP=21b" ¥ =2nc (3.78)

_ A simple illustrative example of reciprocal space is that of a 2D square lattice where the

Vectors a and b are orthogonal and of length equal to the lattice spacing, 4. Here a* and

b are directed along the same directions as a and b respectively and have a length 1/a
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combined to give the equivalent of molecular orbitals. It is based on the assumption that the
effect of orbital overlap is to modulate but not change completely the initial atomic levels,
The approximation is traditionally considered most useful for describing the electronic
structure of systems such as insulators and transition metals with partially filled d shells,
The second approach is called the nearly free-electron approximation. This theory starts by
considering the electrons as free particles whose motion is modulated by the presence of
the lattice. The nearly free-electron approximation is traditionally considered the more
suitable approach to systems such as metals where there is substantial overlap of the
valence orbitals. We will outline both approaches in turn, making use of some of the
fundamental principles and properties of lattices discussed earlier.

3.8.2 Band Theory and Orbital-based Approaches

Band theory is perhaps easier for chemists to understand, starting as it does from an orbital
picture. We will therefore spend somewhat less space discussing this than the nearly free-
electron approximation. We will start by considering the simplest problem, a 1D lattice.
Initially we consider what happens if we bring together two atoms along the x axis until
they are separated by a distance, a. If each atom has one s orbital, then the combined
system has two molecular orbitals (one bonding and one anti-bonding). If we then add a
third atom then three molecular orbitals are obtained (one bonding, one non-bonding and
one anti-bonding). Four atoms give four energy levels, and so on. As more atoms are
added the energy levels merge to give what is an essentially continuous band of energy
levels (Figure 3.11). Each energy level can accommodate two electrons so if each atom con-
tributes one electron the band will be half full. The presence of unoccupied energy levels
near to the top of the filled level means that it is very easy to excite electrons from the
filled to the unfilled levels. The electrons are consequently very mobile, giving rise to the
special conduction and thermal properties of a metal. By contrast, if each atom contributes
two electrons then the band will be completely filled. Such electrons would have to be
excited to higher bands, which might, for example, be formed by the overlap of p orbitals.
In an insulator the energy of this p band would typically be significantly higher than the
lower s band and so excitation would require considerable energy. In a semiconductor
the band gap is smaller and it may be possible to excite electrons from the top of the
highest filled band (the valenece band) to the lowest unoccupied band (the conduction band)
at normal temperatures. These three difference scenarios are illustrated in Figure 3.11.

The periodicity of the lattice means that the values of a function (such as the electron
density) will be identical at equivalent points on the lattice. Likewise there is a relationship
between the wavefunction at a point (x in our 1D lattice) and at an equivalent point else-
where on the lattice (for the 1D lattice this would be x + na, where 7 is an integer). Bloch’s
theorem provides the link; each allowed lattice wavefunction must satisfy the following
relationship: ‘

W + ) = () (381)

In this equation we have identified the wavefunction with a label, k, which for now can
be considered an index; there are as many values of k as there are atoms in the 1D lattice.
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‘ Fig. 3.11: Iﬁe crefztion of a band of energy levels from the overlap of two, three, four, etc. atomic orbitals, which
eventually gives rise to a continuum. Also shown are the conceptual differences between metals, insulators and

semiconductors.

. We wish to construct linear combinations of the atomic orbitals such that the overall

wavefunction meets the Bloch requirement. Suppose the s orbitals in our lattice are labelled
Xn: Where the nth orbital is located at position x = n4a. An acceptable linear combination of

these orbitals that satisfies the Bloch requirements is:

Ph =Y ey, (3.82)

We now need to consider how the form of the wavefunction varies with k. The first situation
e consider corresponds to k = 0, where the exponential terms are all equal to 1 and the
_ overall wavefunction becomes a simple additive linear combination of the atomic orbitals:

¢k:0=ZXn=X0+X1+X2+"' (3.83)
n

The other situation we consider isk = 7 /a. Recall that exp(ix) can be written cos(x) + i sin(x).
Itk = 7/athen the sine terms will all be zero, leaving just the cosine terms cos(nr), which can
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Fig. 3.12: The variation in energy with k for a 1D lattice for a set of s orbitals (left) and for a set of p: orbitals (right).
Also shown are the corresponding arrangements of orbitals.

be expressed more generally as (—1)". Hence the wavefunction is:

P =D (D) =X - X1 T X2~ (3.84)
Equations (3.83) and (3.84) correspond to the lowest- and highest-energy wavefunctions for
our simple system over this range of k. Wavefunctions for values of k between 0 and 7/ahave
intermediate energies. The energy varies in a cosine-like manner with k between k = 0 and
k = /a (Figure 3.12). Note that k can adopt negative values and that E(—k) equals E(k). Also
worthy of note is that p orbitals show different behaviour to the s orbitals. For a set of p,
orbitals it is the k = 0 state that is of highest energy and k = 7/a is of lowest energy, due
to their nodal behaviour.

The graph of energy versus k is called the band structure; the bandwidth is the difference in
energy between the lowest and highest levels in the band. For the one-dimensional lattice
the bandwidth is determined by the lattice spacing; a smaller spacing a gives a greater band-
width in much the same way that the difference between the bonding and antibonding
orbitals in F, increases as the atoms get closer together. As we noted above there are as
many values of k (and so as many energy levels) as there are atoms in the lattice and that
each energy level can accommodate two electrons.

We now move on to consider a two-dimensional square lattice in the (x,y) plane, where the
inter-lattice spacing is still a. The Bloch theorem is now written in the following more general
form:

'@bk(r-l—T) - eik.ka(r) (3.85)

In Equation (3.85) T is a translation vector that maps each position into an equivalent
position in a neighbouring cell, r is a general positional vector and k is the wavevector
which characterises the wavefunction. k has components k, and k, in two dimensions and
is equivalent to the parameter k in the one-dimensional system. For the two-dimensional
square lattice the Schrodinger equation can be expressed in terms of separate wavefunctions
along the x- and y-directions. This results in various combinations of the atomic 1s orbitals,
some of which are shown in Figure 3.13. These combinations have different energies. The
lowest-energy solution corresponds to (k, =0, k, =0) and is a straightforward linear
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Fig. 3.13: Some of the possible combinations of atomic 1s orbitals for a 2D square lattice corresponding to different
oalues of k. and k. A shaded circle indicates a positive coefficient; an open circle corresponds to a negative coefficient.

combination of the atomic orbitals. The highest-energy solution corresponds to the situation
where both k, and k, have values of 7/a. The wavefunction for this high-energy solution
shows a rapid variation in sign. Another important feature evident in Figure 3.13 is the
wave-like nature of the various linear combinations, particularly if one imagines the
lattice extending infinitely in all directions over the (x,y) plane.

Tl;ae reciprocal space and the reciprocal lattice are directly related to the wavevector, k;
d$1,ffer$ent Valges of k can be considered as points within the reciprocal space defined by
a,; b’ and ¢’. It turns out that, when we are calculating the wavefunction and energy

_levels for a solid, we need to restrict k to one cell in the reciprocal lattice (typically chosen

to the cell containing k =0, or the first Brillouin zone), otherwise there is a danger of
counting some states more than once. A very common way to represent the band structure
for lattice structures is to plot how the energy changes as a function of k along certain lines of
symmetry within the first Brillouin zone. For example, to return to our square lattice
(for which the reciprocal lattice is also square) one could imagine taking a ‘tour’ starting
at the origin (k = (0,0)), moving along the x axis to k= (v/4,0) up the y axis to
k= (n/a, n/a), and finally returning to the origin. As we undertake this tour the energy
changes as shown in Figure 3.14. In this diagram we have labelled certain values of k

which have particular symmetry with their conventional Roman or Greek capital letters,

[, X and M [Bradley and Cracknell 1972].
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Fig. 3.14: Variation in energy for a ‘tour’ (I-X=M-I") of the reciprocal lattice for a 2D square lattice of hydrogen
atoms. (Figure adapted in part from Hoffann R 1988. Solids and Surfaces: A Chemist’s View on Bonding in
Extended Structures. New York, VCH Publishers.)

3.8.3 The Periodic Hartree—Fock Approach to Studying the Solid State

In the periodic Hartree-Fock approach the elements of the Fock matrix are constructed from
linear combinations of so-called Bloch functions:

PE) =D a()pk() (3.86)

Each Bloch function is itself a linear combination of atomic orbitals:

o5@) = X7 explik-T) | (3.87)

xJ is the wth atomic orbital in the crystal cell characterised by the lattice vector T. As
such, this method works in real space, which contrasts with the usual implementations of
the alternative plane-wave methods that we will discuss below [Dovesi et al. 2000]. Each
atomic orbital is expressed as a linear combination of (for example) Gaussian functions, as
in molecular Hartree-Fock theory. The coefficients a,,(k) in Equation (3.86) are obtained
by solving the following matrix equation for every value of k to self-consistency:

FkAk = SkAkEk (388)

Sy is the overlap matrix for the Bloch functions for the wavevector k, with Ey being the
energy matrix and A the matrix of coefficients. Fy is the Fock matrix, which consists of a
sum of one- and two-electron terms. The values of k are typically selected to sample from
the first Brillouin zone according to a special scheme as described in Section 3.8.6. When
these terms are expanded they involve infinite sums over the nuclei and electrons in the
lattice. As is usual in a Hartree-Fock approach the one-electron terms involve the sum of
a kinetic energy term and one due to the Coulomb interaction between the nuclei and the
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electrons; the two-electron terms involve Coulomb and exchange two-electron integrals.
Unfortunately, if these sums were to be evaluated individually and to completion then
they would not converge to a consistent value, but would diverge. However, effective
ways to determine these infinite sums have been proposed [Pisani and Dovesi 1980;
Dovesi et al. 1983]. These involve a variety of procedures. The Coulomb interactions are
divided into a series of terms corresponding to interacting and non-interacting charge
distributions. The latter can then be grouped together into ‘shells’ and the interaction
calculated using multipole expansions (see Section 4.9.1). For the shorter-range exchange
interaction it is possible to truncate the integral summation at an appropriate distance
without loss of accuracy. The truncation distance can depend upon the three-dimensional

_ structure of the material and so may vary from one calculation to the next.

Within the periodic Hartree-Fock approach it is possible to incorporate many of the variants
that we have discussed, such as UHF or RHF. Density functional theory can also be used.
‘This makes it possible to compare the results obtained from these variants. Whilst density
functional theory is more widely used for solid-state applications, there are certain types
of problem that are currently more amenable to the Hartree-Fock method. Of particular
relevance here are systems containing unpaired electrons, two recent examples being the
electronic and magnetic properties of nickel oxide and alkaline earth oxides doped with

alkali metal ions (Li in CaO) [Dovesi et al. 2000].

3.8.4 The Nearly Free-electron Approximation

Whereas the tight-binding approximation works well for certain types of solid, for other
systems it is often more useful to consider the valence electrons as free particles whose
motion is modulated by the presence of the lattice. Our starting point here is the Schrodinger
equation for a free particle in a one-dimensional, infinitely large box:

(£ =3

The solutions to this equation are:
¥ = Cexplikx); E = (H%k?)/2m (3.90)

The energy for a free particle can be related to the momentum by E = p*/2m and so the
wavefunction is related to the momentum p by:

¥ = Cexp(zipx/h) (3.91)
The wavelength of this motion is /p and the parameter k is equal to 27p/h. Thus k has units

_ of1/length (i.e. reciprocal length). The energy for a free particle varies in a quadratic fashion

with k and in principle any value of the energy is possible.
In two dimensions we obtain the following wavefunction:
Py = Cy explik,x/R)C, exp(ik,y/h) = Cexp(ik -1/h) (3.92)

Note that in Equation (3.92) we have expressed the wavefunction in terms of a vector, k
(which has components in the x and y directions of k, and k,) and the Cartesian vector r.
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The energy varies as a quadratic function of both k, and k:
" ‘

An analogous expression is obtained in three dimensions. We now need to consider periodic
systems. As we have discussed, the wavefunction for a particle on a periodic lattice must
satisfy Bloch’s theorem, Equation (3.85). The wavevector k in Bloch’s theorem plays the
same role in the study of periodic systems as the vector k does for a free particle. One
important difference is that whereas the wavevector is directly related to the momentum
for a free particle (i.e. k = p/h) this is not the case for the Bloch particle due to the presence
of the external potential (i.e. the nuclei). However, it is very convenient to consider fik as
analogous to the momentum and it is often referred to as the crystal momentum for this
reason. The possible values that k can adopt are given by:
My 5 Mprs My s

K= (N—Qa b ,ch> (3.94)
m,, Mg and m,, are integers and N,NgN, = N, the number of unit cells in the crystal. For a
macroscopic system where N is very large (of the order of Avogadro’s number) k thus
varies continuously. As we have seen before, the wavevector k in the Bloch theore%w
(Equation (3.85)) can be considered as a point within the reciprocal lattice defined by a°,
b® and ¢°. It can also be shown (see Appendix 3.1) that a wavefunction that satisfies
Bloch’s theorem can be written in the following form:

PX(r) = X Tuk(r) (3.95)

Here, u*(z) is a function that is periodic on the lattice. Recall from our earlier discussions on
reciprocal lattice vectors that one way to construct such a periodic function is as a Fourier
series expansion of plane wavefunctions exp(iG - 1):

u*r) = 3 K expliG 1) | | (3.96)
G

The sum runs over the reciprocal lattice vectors G we considered above. A simple case is
G = a°, for which exp(iG - 1) corresponds to'a wave travelling perpendicular to the real-

-~ space axes b and ¢ and with a wavelength such that it fits exactly into the unit cell. If
G = 2a® then two wavelengths fit into the cell.

The external potential due to the nuclei is periodic in the lattice and it too can be written as a
Fourier expansion of exponential functions of the reciprocal lattice:

U(r) = Z Ug exp(iG - 1) (3.97)
G

Ug is the Fourier coefficient. When this form of the potential is incorporated into the
Schrodinger equation the following equation can be derived [Ashcroft and Mermin 1976}:

2 .
(h—|k+GI2—E>c1{; +3 Ug,ges =0 (3.98)
2m e
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~ We can recover the free-particle resulf (i.e. zero potential) from Equation (3.98) by setting all
_of the Fourier coefficients Llg to zero, in which case the equation reduces to:

2
(% Ik + G|2—E) k=0 (3.99)

The solution of this equation requires that E = |k + G[?>/2m with the wavefunctions

_ being of the form ¥%(r) x expli(k + G) -r].vAlthough cast in a slightly different form, this

is equivalent to our earlier expression for the wavefunction of a free particle, Equation (3.92).

The summations in Equations (3.98) are over all reciprocal lattice vectors G. As can be seen,

_for a given value of k there are as many forms of this equation as there are reciprocal lattice

vectors in the system. Each of these equations for the different values of G gives rise to a
solution which is labelled with the band index n. Thus there are as many values of n as
there are reciprocal lattice vectors G. Just as there are n solutions to this Schrodinger
equation for a given value of k, so it is also possible to consider how the energy varies
with k for a given value of n. To understand the entire band structure of a solid requires
one to consider the variation of both k and n. As we indicated above, when calculating
the band structure it is usual to restrict k to just the first Brillouin zone to avoid duplicate
counting of states.

Let 'us now examine how these results can be applied to some simple one- and two-
dimensional periodic systems. Initially we will consider the situation where there is no
external potential and then discuss what happens when we introduce one. The first
case is the one-dimensional lattice, which has reciprocal lattice vectors at £27/a, £47/a, etc.
In order to derive the energy diagram we need to consider, for each reciprocal lattice vector
G, how the energy varies as we change k over the first Brillouin zone (which in this case
corresponds to varying k from —=/a to +n/a). The first reciprocal lattice vector is G =0,
for which the energy simply varies quadratically with k, from zero at k = 0 to #(r/a)*/2m
at k = £27/a. We next need to consider the two reciprocal vectors G = +2r/a. At the point

k = 0 the energy due to both of these reciprocal lattice vectors is i (2r/a)? /2m. As k increases

from 0 to +7/a the value of [k + G|? increases for the reciprocal lattice vector G = 27/a but it
decreases for the reciprocal lattice vector G = —27/a. Conversely, as k varies from 0 to —7/a
the energy increases for the reciprocal lattice vector G = —2xn/a and decreases for G = 2n/a.
These variations in energy are shown in Figure 3.15. Two types of energy diagram are shown
in this figure; one is the ‘reduced-zone’ scheme because the entire dependency of the energy
an the wavevector is contained within the first Brillouin zone. The alternative representation is
called an extended-zone scheme in which the energy levels are ‘folded out’ for values of k
beyond the first Brillouin zone.

We next need to introduce the weak potential, which acts to modulate the wavefunctions
and the associated energy levels. The effects of the potential are found to be most acute
where there is degeneracy of the energy levels. This arises even in the one-dimensional situa-
tion, where we have degenerate energy levels due to different reciprocal lattice vectors at
k=0 and k = 7/a. The effect of the potential is to perturb these energy levels in such a
way that lifts the degeneracy to create an energy gap. In the one-dimensional case the

_ effect of the potential is to ‘flatten’ the energy levels in the region close to the edge of the
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Fig. 3.15: Extended-zone and reduced-zone representations of band diagram for 1D lattice with no external potential:

Brillouin zone as shown in Figure 3.16. One way to explain the appearance of the energy gap
at the edges of the Brillouin zone is to recognise that the states of a free electron are waves
with a specific wavelength (27/k in the simple one-dimensional system). When the wave-
length becomes comparable to the lattice spacing the lattice diffracts the wave and at the
boundary of the Brillouin zone (k= 4n/a) a standing wave is created. Two different
standing waves are possible in a one-dimensional system, as shown in Figure 3.17. For
one of the standing waves (A in Figure 3.17) the peak electron density occurs in the vicinity
of the lattice points (the positive nuclei). This standing wave thus has a more favourable (i.e.
lower) energy than the equivalent free travelling wave. By contrast, the peak electron
density of the other standing wave (B in Figure 3.17) occurs between the nuclei and so its
energy is higher. Further gaps arise at k = +27/a, and so on.

A somewhat more complex case is that of the 2D hexagonal lattice. As for the one-dimen-
sional system we initially consider a free particle, restricting ourselves to wavevectors
within the first Brillouin zone with higher-energy states being due to reciprocal lattice
vectors beyond in the second, third, etc. Brillouin zones. We will consider how the energy
varies as we undertake a “tour’ of the first Brillouin zone in reciprocal space starting at
the origin (k = (0,0)), then moving to one of the vertices of the hexagon (the point
(k = cos7/6,sin7/6)), along to the mid-point of one of the edges (k = (0,sin7/6)), and
finally back to the origin (Figure 3.18). The origin, the vertex and the mid-point are all
points of symmetry and are identified by the symbols I, K and M, respectively. For 2
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_ Fie. 3.16: The effect of introducing a weak potential into the 1D lattice is to lift the degeneracy of the energy levels

near to the edge of the Brillouin zone (shown in both extended-zone and reduced-zone representation).

given value of k we compute the value of [k + G[* and thus the energy for the relevant
reciprocal lattice vectors.

The simplest case is that corresponding to G = 0. We still obtain a quadratic variation of
energy with (k| wherever we move within the first Brillouin zone. The variation in energy
for the three ‘legs’ of this tour can be represented in an energy band diagram as shown in
Figure 3.18. As there are six nearest-neighbour cells in this system, there are six energy
leV?ls to monitor at the next stage. The distance from the origin to each of these six reciprocal
lattice points is 2 cos /6. At k = 0 we therefore find that all six energy levels are degenerate

Fl;g. 3.17: ,Thﬂe two poss{ble gets of standing waves at the Brillouin zone boundary. Standing wave A concentrates
clectron density at the nuclei, whereas wave B concentrates electron density between the nuclei. Wave A thus has 4

 lower energy than wave B.
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Fig. 3.18: Energy band diagram (bottom) for a free-particle ‘tour’ (I'-K-M-I') of the reciprocal lattice for a 2D
hexagonal structure (top left). A total of seven bands are shown, due to the central reciprocal lattice vector G = @ and
the reciprocal lattice vectors from the six neighbouring cells. The energy varies as |k + G|, where the vector k + G is
comptited as shown in the top right of the figure (k: bold arrow; k + G: thin arrow).

and have a value of 3%*/2m ((2cos 7/6)* = 3). Moving towards the point (cos /6, sin 7/6)
we find that the six vectors separate into three pairs of degenerate levels. These six reciprocal
lattice points are labelled 1-6 in Figure 3.18, together with the corresponding energy levels.

As the tour continues, the different energy bands show two-, three- and six-fold degeneracy,

depending upon the value of k. Another key feature is that along some legs of the tour
certain pairs of bands are degenerate, though this degeneracy will often be lifted when a
different leg is traversed. For example, the pairs 1-2, 3-6 and 4-5 are degenerate from [
to K. Between K and M the pair 0-4 are degenerate; and on the final leg there is degeneracy
between the pairs 2-6 and 3-4. When the periodic potential is introduced some, but not
necessarily all, of this degeneracy will be lifted, giving rise to band gaps. The way in
which this can occur is shown schematically in Figure 3.19.
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Fig. 319: The effect of a weak external potential is to lift degeneracy and create band gaps as illustrated for a 2D
hexagonial lattice (compare with Figure 3.18).

3.8.5 The Fermi Surface and Density of States

To determine the ground state of a periodic system it is necessary to determine its band
 structure, by varying k over the first Brillouin zone and computing at each value of k the
different energy bands resulting from the reciprocal lattice vectors. The number of energy
levels in‘a band (i.e. the number of values permitted to k) is equal to the number of primitive
cells in the crystal, just as was the case for the orbital model in the tight-binding approxima-
Hon. For each energy level corresponding to a particular value of k the Pauli principle
permits two electrons of opposite spin to be assigned. This process is repeated for the
different bands until all the electrons have been allocated. The energy level of the highest
_0ecupied state is called the Fermi energy (for a metal; for an insulator, the Fermi energy is

different situations may result. In the first case all the occupied bands are completely
filled. As we saw earlier, this gives rise to a band gap between the top of the highest occupied
level and the bottom of the lowest empty level. The number of energy levels in each band is
equal to the number of primitive cells in the crystal, so a band gap can only arise if there is an
even number of electrons per primitive cell. The tight-binding approximation discussed in
Section 3.8.2 may be an appropriate model to apply in this case. The second situation arises
~ when one or more bands are partially filled. For each of these partially filled bands one can

 consider there to be a surface in the k space that separates the occupied and the unoccupied
levels, as defined by the Fermi energy. This set of surfaces is known as the Fermi surface and it
defines a border between the occupied and unoccupied states. In many cases the Fermi
surface is contained within a single band; if not, then the parts of the Fermi surface due
fo partially filled individual bands are known as the branches of the Fermi surface. The
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Fermi surface will show the same underlying periodicity as the reciprocal lattice. A particu-
larly attractive feature of the Fermi surface is that it can be measured experimentally, so
providing a link between theory and experiment.

The density of levels is another useful way to describe the electronic structure of a solid,
The density of levels indicates how many energy levels there are for a particular
energy. It can thus be defined as the number of levels between E and E + dE. This is often
normalised by volume, leading to the density of levels per unit volume g(E), which is given by:

=Y g.(E) (3100
The sum is over the bands n, with g, (E) being the density of levels in the band »:
1 .
E)=— | 8(E-E,(k))dk 3.1
() = 5 [S(E - E4(1) (3-101)

The delta function §(E — E,(k)) has a value of 1 if E,(k) is in the range E to E + dE and (
otherwise. The density of states D(E) is closely related to the density of levels; in the
simple case where we have two electrons in each level then the density of states is just
twice the density of levels. The integral of the density of states up to the Fermi level is
equal to the number of electrons and the integral of the density of states multiplied by the
energy is the total electronic energy:

N = JD(E) dE | (3.102)

Ey = JD(E)E dE (3.103)

The density of states can be usefully visualised by plotting the energy versus D(E). For
the simple one-dimensional situation where the energy varies in a cosine-like manner
with k and the levels are equally spaced, the density of states is greatest at the top and
bottom of the band (Figure 3.20). The density of states is thus inversely proportional to

Energy Energy

k Density of states

Fig. 3.20: Variation of the density of states, D(E), for the simple 1D lattice, shown with the corresponding energy
diagram.
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Fig. 3.21: Band structure and density of states for TiN.

the slope of the energy versus k curve; the flatter the band the greater the density of states
at that energy.

The density of states is somewhat like an orbital energy diagram, but unlike the latter does
not contain well-defined individual energy levels. Nevertheless, in some situations it is
possible to determine from which atomic orbitals a particular energy band is largely

_ derived. Of course, most real systems have rather more complex electronic structures

than the simple cases we have used to discuss the background, as illustrated in Figure

3.21, which shows the band structure and density of states diagram for TiN.

- 3.8.6 Density Functional Methods for Studying the Solid State:

Plane Waves and Pseudopotentials

Plane waves are often considered the most obvious basis set to use for calculations on periodic
systems, not least because this representation is equivalent to a Fourier series, which itself is

_the natural language of periodic functions. Fach orbital wavefunction is expressed as a linear

combination of plane waves which differ by reciprocal lattice vectors:

) =ty cexplilk + G) ) (3.104)
G
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The Kohn-Sham equations of the density functional theory then take on the following
form: :

7‘22
> {% Ik + Gloge: + Vien(G — G) + Vree(G — G) + V(G — G’)}uf,m' = Eifik+ G
Gl
4 (3.105)

Vions Vetec and Vyc represent the electron-nuclei, electron-electron and exchange-correlation
functionals, respectively. The delta function 6 is zero unless G = G/, in which case it has
a value of 1. There are two potential problems with the practical use of this equation for a
‘macroscopic’ lattice. First, the summation over G’ (a Fourier series) is in theory over an

infinite number of reciprocal lattice vectors. In addition, for a macroscropic lattice there .

are effectively an infinite number of k points within the first Brillouin zone. Fortunately,
there are practical solutions to both of these problems. '

We are usually interested in the valence electrons of an atom, as these are largely responsible
for the chemical bonding and most physical properties. The core electrons are little affected
by the atomic environment. It is therefore common only to consider explicitly the valence
electrons in the calculation and to subsume the core electrons into the nuclear core. One
potential drawback to the representation of valence electron wavefunctions with a plane-
wave basis set is that near to the atomic nuclei the wavefunctions of the valence electrons
show rapid oscillations. This is because their wavefunctions must be orthogonal to those
of the core electrons. These oscillations give rise to a large kinetic energy, and a very large
number of plane waves would be required to properly model this behaviour. This
corresponds to taking many terms in the plane-wave expansion of the orbital, Equation
(3.104). This problem is compounded by the fact that the solid ‘systems of interest often
contain elements much later in the periodic table than are usually encountered in molecular
Hartree-Fock calculations. Heavy elements have many more core electrons and so an even
more pronounced oscillatory behaviour. However, in this inner region the kinetic energy is
largely cancelled by the high electrostatic potential energy of interaction with the nucleus. A
~ popular way to deal with these problems is to replace the ‘true’ potential in these core
regions with a much weaker one called a pseudopoteniiul. This represents the way in which
the valence electrons interact with the combined nucleus plus core electrons [Heine 1970].
A pseudopotential is a potential function that gives wavefunctions with the same shape
as the true wavefunction outside the core region but with fewer nodes inside the core
region, as illustrated in Figure 3.22. This has the effect of reducing the number of terms
required for the plane wave expansion of the wavefunction, which in turn drastically
reduces the scale of the computational problem.

Pseudopotentials are usually derived from all-electron atomic calculations. The valence
electron pseudopotential is then required to reproduce the behaviour and properties of
the valence electrons in the full calculation. For example, the energy levels with the
pseudopotential should be the same as for the all-electron calculation. In addition, the
pseudopotential will often depend upon the orbital angular momentum of the wavefunction
(i.e. for s, p, d, etc. orbitals) and it will be desired that the total valence electron density
within the core radius equals that in the all-electron situation. Such pseudopotentials are
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Fg. 3.2?: Schematic representation of a pseudopotential. (Figure adapted from Pa’yne MC, M P Teter, D C Allan,
R A Arias and D ] Joannopoulos 1992. Tterative Minimisation Techniques for Ab initio Total-Energy Calculations:
Molecular Dynamics and Conjugate Gradients. Reviews of Modern Physics 64:1045-1097.)

referred to as ‘non-local norm-conserving’. An additional advantage of the use of pseudo-
potentials for the heavy elements is that they enable some relativistic effects to be included
in the model. A number of functional forms are possible for the pseudopotentials; it is

_usual to assume a specific functional form and then to vary the parameters. The various

pseudopotentials differ in the number of plane waves that are required for their represen-
tation and in the degree to which they can be transferred between different atomic
environments. So-called ‘soft’ pseudopotentials require fewer plane waves and are therefore
computationally more attractive, though there is to some extent a trade-off between softness
and transferability. Subsequently developed were the ‘ultrasoft’ or ‘supersoft’ pseudo-
potentials, which require even fewer plane waves.

In practice, therefore, a pseudopotential is invariably employed and only plane waves with a
kinetic energy (= (#?/2m)|k + GJ?) less than some cutoff are included in the calculation. The
cutoff used depends on the nature of the system under investigation. For example, in the
first-row elements the 2p valence orbitals approach closer to the nucleus than the com-
parable 3p orbitals in the second-row elements (the latter are repelled by the lower 2p
states). Thus elements such as silicon or sulphur usually have softer pseudopotentials
than their first-row equivalents carbon and oxygen. Everything else being equal, a higher
cutoff is consequently required for the latter and hence more plane waves in the expansion
(i.e. more reciprocal lattice vectors, G). Note that in the plane wave expansion the basis
functions are not associated with particular atoms but are defined over the whole cell

- (this also removes the problem of basis-set superposition errors as an additional benefit).
~ The coefficients a; | ¢ are obtained by following the usual density functional scheme: an

initial guess is made of the electron density variation p(r), the Kohn-Sham and overlap
matrices are constructed, diagonalisation gives the eigenfunctions and eigenvectors (and
thus the coefficients 4) from which the Kohn-Sham orbitals can be constructed and hence
the density for the next iteration.

The szconq important practical consideration when calculating the band structure of a
m?terle}l is'that, in principle, the calculation needs to be performed for all k vectors in the
Brillouin zone. This would seem to suggest that for a macroscopic solid an infinite number

 of vectors k would be needed to generate the band structure. However, in practice a discrete

sampling over the Brillouin zone is used. This is possible because the wavefunctions at points
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that are close together in k space will be almost identical and can be represented by a single
representative point. Each of these discrete values is multiplied by a weight factor related to
the volume of reciprocal space it represents. Obviously, the denser the set of k vectors the
smaller will be the error in the calculation. Various schemes have been suggested for selecting
suitable sets of k vectors which can give very accurate approximations to properties such ag
the charge density; the method of Monkhorst and Pack is particularly popular [Monkhorst
and Pack 1976]. The selection of k vectors is also influenced by the size and shape of the
system; indeed, if the unit cell is large then it may only be necessary to consider just one
vector. Typically, between ten and 100 vectors are sufficient to understand the structural
and electronic properties of a solid, though for certain types of problem such as calculating
the optical properties of a metal many more k vectors may be required (several thousands).
Ideally, one should ensure that the calculation converges both in terms of the number of wave-
vectors k considered and in terms of the number of reciprocal lattice vectors G. An additional
consideration is that the symmetry of the Brillouin zone itself may mean that it is not necessary
for k to vary over the entire zone but that only a smaller section need be considered. For
example, in our two-dimensional hexagonal close-packed case we would only have to
consider the small right-angled triangle over which we undertook our ‘tour’. This has an
area one-twelfth that of the entire zone. This is an example of the use of the point symmetry
of the Brillouin zone rather than the translational symmetry of the lattice. The small section
containing the explicit k vectors required for the calculation is sometimes referred to as the
irreducible part of the Brillouin zone. :

3.8.7 Application of Solid-state Quantum Mechanics to the Group 14
- Elements

The combination of density functional methods with pseudopotentials has been used
extensively to study a wide variety of materials. Three systems that have been the subject
of much interest are the group 14 elements carbon, silicon and germanium, reflecting
their natural abundance, commercial importance (especially for silicon) and the large
amount of experimental data available. Of particular interest is the problem of predicting
the lowest-energy structure at a given volume [Cohen 1986; Mujica and Needs 1993;
Needs and Mujica 1995]. In effect, this corresponds to predicting the most stable structure
at a particular pressure. These elements all exist in the familiar diamond structure at
normal pressures and temperatures but alternative structures can be formed by the
application of pressure, at least for silicon and germanium. There has also been much
speculation as to whether diamond itself could be transformed should a high enough
pressure be applied. This last problem does have some practical interest as it would
provide a theoretical upper limit to the pressures that could be achieved with ultra high-
pressure diamond anvil cells.

There are many alternatives to the diamond structure, including body-centred cubic, face-
centred cubic, hexagonal close-packed, simple hexagonal, simple cubic, §-tin, double-
hexagonal close-packed and two complex tetrahedral structures: a body-centred cubic
structure with eight atoms per unit cell and a simple tetragonal structure with twelve
atoms per unit cell, not forgetting of course the many fullerene forms. Not all studies

Advanced ab initio Methods ' _ 159

~132.50 0.20 —~
-132.70 0.10

E ~~

S 13290 g 0.00

R 8

% o)

£ 133.10 T _0.10

=} <«

[sd}
~133.30 ~0.20
~133.50 : B 1)) A A Y B

05 06 07 08 09 10 L1 Z150 0 150 300 450 600 750 900 1050

(a) Vive (®) Pressure (kbar)

Fig. 3.23: (a) Graph of energy vs volume (scale normalised to the diamond structure) for eleven phases of silicon.

(b) Enthalpy~pressure plot for the same eleven phases relative to the body-centred cubic phase. (Figures redrawn from
Needs R [ and A Mugjica 1995. First-principles pseudopotential study of the structural phases of silicon. Physical
Review B51:9652-9660.)

consider every one of these phases but by quoting the list in full we can appreciate the range
of possibilities. The energy differences between many of these phases are often small and so
it is ‘particularly important to achieve an effective sampling of points in k space (recent
studies suggest several thousands of such points are needed). The plane-wave cutoff can
also have an effect on the results. The calculations involve minimising each structure at a
number of different volumes and then fitting a polynomial to the data points. The results
are usually displayed as a graph of the total energy versus the volume, as shown in

_ Figure 3.23. Another way to display this type of data is an enthalpy-pressure plot, from

which the most stable phase at any pressure is easily identified as that with the lowest
enthalpy. Various bulk structural properties can also be calculated for comparison with
experiment.

_ Aswealluded, of the forms mentioned above only the diamond structure has been observed

experimentally for carbon. For both silicon and germanium there is a transition to the g-tin
phase around 100-130kbar. Silicon further transforms into other structures such as the
simple hexagonal with a relatively modest further increase in pressure, whereas for germa-

all in the same group? The electronic structure calculations provide some significant insights
into this problem. Thus silicon has a strongly repulsive p-orbital pseudopotential due to the
inner (2p) electrons, which carbon does not. This repulsion contributes to the formation of a
single peak in the electron density along each Si-Si bond, whereas for carbon there are two
peaks, each being near the position for the atomic p orbitals (Figure 3.24). The differences
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Fig. 3.24: Valence electron density for the diamond structures of carbon and silicon. (Figure redrawn from Cohen M L
1986. Predicting New Solids and Superconductors. Science 234:549-553.)

between silicon and germanium are ascribed to the d electron states; silicon does not have
core d electrons, whereas germanium does. Certain transitions (e.g. carbon — g-tin) do
not depend upon the d character of the electronic configuration in contrast to subsequent
transitions.

3.9 The Future Role of Quantum Mechanics: Theory and
Experiment Working Together

Of all the methods that we will discuss in this book, quantum mechanics is probably the
most widely used and the most extensively developed. The importance of the subject can
be gauged in many ways, from citation counts to the number of Nobel prizes awarded.
The systems studied using quantum mechanics range from the simplest molecular species
(e.g. HF, HD", HJ) to some very large and complex molecules (e.g. DNA, proteins and
complex solid-state materials). Some of the most productive situations occur. when
experiment and theory are used in combination to tackle a problem. The methylene
molecule, CH,, is of particular historical interest. Despite its small size, this molecule and
the controversy surrounding it played an important role in establishing the role of computa-
tional quantum mechanical methods in modern-day research and the relationship between
theory and experiment [Schaeffer 1986]. The early debate concentrated on the ground state
of the molecule and whether its geometry was linear or bent. Early ab initio calculations by
Foster and Boys [Foster and Boys 1960] suggested an H-C-H angle of 129° but this was
refuted by spectroscopic data from Herzberg's laboratory, which were interpreted to indi-
cate a linear geometry. Unfortunately for Foster and Boys, empirical calculations favoured
by their head of department, Longuet-Higgins, also gave a linear geometry. Events came
o a head when Bender and Schaeffer calculated a geometry of 135.1° and concluded that
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_the energy barrier between the linear and bent geometries was so large that no further
improvement in the theoretical model could remove it. Soon thereafter several other experi-

___ments were undertaken, showing a bent structure. Moreover, when Herzberg re-examined

his original data it was found to be consistent with a bent model. As we shall see in the

remaining chapters there are many kinds of problem that can be tackled using computa-
tional chemistry methods. By no means do they always work, but there is often a synergistic
relationship between experiment and theory, which means that the two combined can be
much more productive than either in isolation.

Appendix 3.1 Alternative Expression for a Wavefunction
~ Satisfying Bloch’s Function
We have Equation (3.81):
‘ PF (x + a) = eMypF(x) (3.106)
We write 9(x) as the product of the exponential and a function 1 (x):
g (x) = P (x)/ exp(ikx) (3.107)
If we perform the same manipulation for ¥(x + a) we get:

ika
u(x +a) = 1@,{21_;) = 1@.}(‘2; = ¢:i£f) = u(x) (3.108)

Thus uy(x) is a periodic function which can be used to formulate acceptable wavefunctions:

De(x) = ¥ (x) (3.109)
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[ cHAPEEREGUR e
Empirical Force Fielc
Models: Molecular
Mechanics

4.1 Introduction

Many of the problems that we would like to tackle in molecular modelling are unfortunately
too large to be considered by quantum mechanics. Quantum mechanical methods deal with
the electrons in a system, so that even if some of the electrons are ignored (as in the semi-
emp%rical schemes) a large number of particles must still be considered, and the calculations
are t1mejconsun1ing. Force field methods (also known as molecular mechanics) ignore the
electronic motions and calculate the energy of a system as a function of the nuclear positions
only. Molecular mechanics is thus invariably used to perform calculations on systems

that are as accurate as even the highest-level quantum mechanical calculations, in a fraction
of the computer time. However, molecular mechanics cannot of course provide properties
_ that depend upon the electronic distribution in a molecule.

_ That molecular mechanics works at all is due to the validity of several assumptions. The first
 of these is the Born-Oppenheimer approximation, without which it would be impossible to
; contemplate writing the energy as a function of the nuclear coordinates at all. Molecular
mechanics is based upon a rather simple model of the interactions within a system with
contributions from processes such as the stretching of bonds, the opening and closing of
angles and the rotations about single bonds. Even when simple functions (e.g. Hooke’s
law) are used to describe these contributions the force field can perform quite acceptabl
: Transferability is a key attribute of a force field, for it enables a set of parameters develope}(,fi
and tested on a relatively small number of cases to be applied to a much wider range of
_ problems. Moreover, parameters developed from data on small molecules can be used to
 study much larger molecules such as polymers.

~ 4.1.1 A Simple Molecular Mechanics Force Field

Many of the molecular modelling force fields in use today for molecular systems can be
Herpreted in terms of a relatively simple four-component picture of the intra- and inter-
;ifli?éewlar forces within the system: Energetic penalties are associated with the deviation

1 bonds and angles away from their ‘reference’ or ‘equilibrium’ values, there is a function
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that describes how the energy changes as bonds are rotated, and finally the force field
contains terms that describe the interaction between non-bonded parts of the system.
More sophisticated force fields may have additional terms, but they invariably con'tain
these four components. An attractive feature of this representation is that the various
terms can be ascribed to changes in specific internal coordinates such as bor}d lengths,
angles, the rotation of bonds or movements of atoms relative to each other. This makes it
casier to understand how changes in the force field parameters affect its performance,
and also helps in the parametrisation process. One functional form for such a force field
that can be used to model single molecules or assemblies of atoms and/or molecules is:

AAEDY %(zi—zm)%r > %(ei—o,-,o)%r > Xzﬁ(l+cos(nw-—'y))

bonds angles torsions

3 (el G220

’ ; j=§i;—1 <4E” K T ) | dmeory &y
¥ (") denotes the potential energy, which is a function of the positions (r) ‘of N particles
(usually atoms). The various contributions are schematically represented in Figure 4.1,
The first term in Equation (4.1) models the interaction between pairs of bonded atoms,
modelled here by a harmonic potential that gives the increase in energy as the bond
length [; deviates from the reference value [;o. The second term is a sumatlon over all
valence angles in the molecule, again modelled using a harmonic potential (a valence
angle is the angle formed between three atoms A—B—C in which A and C are both
bonded to B). The third term in Equation (4.1) is a torsional potential that models how' th.e
energy changes as a bond rotates. The fourth contribution is the non-bonded term. This s
calculated between all pairs of atoms (i and j) that are in different molecules or that are in

No/

Bond stretching Angle bending Bo(r:d rglal)ion
orsion

Non-bonded interactions Non-bonded interactions
(electrostatic) (van der Waals)

Fig. 4.1: Schematic representation of the four key contributions to 4 wmolecular mechanics force field: bond stretchintg,
angle bending and torsional terms and non-bonded interactions.
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Fig. 4.2: A typical force field model for propane contains ten bond-stretching terms, eighteen angle-bending terms,
eighteen torsional terms and 27 non-bonded interactions.

the same molecule but separated by at least three bonds (i.e. have a 1, relationship where
n > 4). In a simple force field the non-bonded term is usually modelled using a Coulomb

_potential term for electrostatic interactions and a Lennard-Jones potential for van der

Waals interactions.

We shall discuss the nature of these different contributions in more detail in Sections
43-410, but here we consider how the simple force field of Equation (4.1) would be used
to ealculate the energy of a conformation of propane (Figure 4.2). Propane has ten bonds:
twoe C—C bonds and eight C—H bonds. The C—C bonds are symmetrically equivalent but
the C—H bonds fall into two classes, one group corresponding to the two hydrogens
bonded to the central methylene (CH,) carbon and one group corresponding to the six

hydrogens bonded to the methyl carbons. In some sophisticated force fields different

_parameters would be used for these two different types of C—H bond, but in most force

fields the same bonding parameters (i.e. k; and ;o) would be used for each of the eight
CH bonds. This is an example of the way in which the same parameters can be used for
a wide variety of molecules. There are 18 different valence angles in propane, comprising
one C=C-C angle, ten C—C—H angles and seven H-C—-H angles. Note that all angles
are included in the force field model even though some of them may not be independent
of the others. There are 18 torsional terms: twelve H-C—C~H torsions and six H-C—C—C
torsions. Each of these is modelled with a cosine series expansion that has minima at the

trans and gauche conformations. Finally, there are 27 non-bonded terms to calculate, com-

prising 21 H-H interactions and six H—C interactions. The electrostatic contribution
would be calculated using Coulomb’s law from partial atomic charges associated with

~ each atom and the van der Waals contribution as a Lennard-Jones potential with
_ dppropriate ¢; and o; parameters. A sizeable number of terms are thus included in the

force field model, even for a molecule as simple as propane. Even so, the number of terms

{73) is many fewer than the number of integrals that would be involved in an equivalent ab

initio quantum mechanical calculation.
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an atom type that is different from the carbon atom in an isolated five-membered ring such
as histidine, which in turn is different from the atom type of a carbon atom ina benzene ring,
Indeed, the AMBER force field uses different atom types for a histidine amino acid depend-
ing upon its protonation state (Figure 4.3). Other, more general, force fields would assign
these atoms to the same generic ‘sp” carbon’ atom type. It is often found that force fields
which are designed for modelling specific classes of molecule (such as proteins and nucleic
acids, in the case of AMBER) use more specific atom types than force fields designed for
general-purpose use. :

We now discuss in some detail the individual contributions to a molecular mechanics force
field, giving a selection of the various functional forms that are in common use. We shall
then consider the important task of parametrisation, in which values for the many force
constants are derived. Our discussion will be illuminated by examples chosen from
contemporary force fields in widespread use and the MM2/MM3/MM4 and AMBER
force fields in particular.

4.3 Bond Stretching

The potential energy curve for a typical bond has the form shown in Figure 4.4. Of the many
functional forms used to model this curve, that suggested by Morse is particularly useful.
The Morse potential has the form:

v(l) = De{1 — expl-a(l — b)]}* (42)

D, is the depth of the potential energy minimum and a = w+/1/2D,), where p1is the reduced
mass and w is the frequency of the bond vibration. w is related to the stretching constant of
the bond, k, by w = 1/k/p. I is the reference value of the bond. The Morse potential is not
usually used in molecular mechanics force fields. In part this is because it is not particularly
amenable to efficient computation but also because it requires three parameters to be
specified for each bond. Moreover, it is rare in molecular mechanics calculations for

z(l)

Separation

Fig. 4.4: Variation in bond energy with interatomic separation.

.
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pbonds to deviate significantly from their equilibrium values; the Morse curve describes a

_wide range of behaviour from the strong equilibrium behaviour to dissociation. Conse-

quently, simpler expressions are often used. The most elementary approach is to use a
Hooke’s law formula in which the energy varies with the square of the displacement
from the reference bond length I:

o) = 501 (43)

The astute reader will have noticed our use of the term 'reference bond length’ (sometimes
called the ‘natural bond length’) for the parameter Iy. This parameter is commonly called the

‘equilibrium’ bond length, but to do so can be misleading. The reference bond length is the

value that the bond adopts when all other terms in the force field are set to zero. The
equilibrium bond length, by contrast, is the value that is adopted in a minimum energy

_ structure, when all other terms in the force field contribute. The complex interplay between

the various components in the force field means that the bond may well deviate slightly from
its reference value in order to compensate for other contributions to the energy. It is also
important to recognise that ‘real’ molecules undergo vibrational motion (even at absolute
zero, there is a zero-point energy due to vibrational motion). A true bond-stretching
potential is not harmonic but has a shape similar to that in Figure 4.4, which means that
the ‘average’ length of the bond in a vibrating molecule will deviate from the equilibrium
value for the hypothetical motionless state. The effects are usually small, but they are
significant if one wishes to predict bond lengths to thousandths of an angstrém. When
comparing the results of calculations with experimental data, one must also remember
that different experimental techniques measure different ‘equilibrium’ values, especially

. when the experiments are performed at different temperatures. The errors in experimentally

determined bond lengths can be quite large; for example, libration of a molecule in a crystal
means that the bond lengths determined by X-ray methods at room temperature may have
errors as large as 0.015A. MM2 was parametrised to fit the values obtained by electron
diffraction, which give the mean distances between atoms averaged over the vibrational
motion at room temperature.

The forces between bonded atoms are very strong and considerable energy is required to
cause a bond to deviate significantly from its equilibrium value. This is reflected in the

_ magnitude of the force constants for bond stretching; some typical values from the MM2

force field are shown in Table 4.1, where it can be seen that those bonds one would

Bond ' I (A)

k (kcal mol~* A-2)
Csp>—Csp® 1.523 317
Csp3=Csp? 1.497 317
Csp?=Csp” 1.337 690
Csp?=0 1.208 777
Csp®—Nsp? 1.438 367
C-N {(amide) 1.345 719

 Table 4.1 Force constants and reference bond lengths for
selected bonds [Allinger 1977].
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- - - )

z(l)

Fig. 4.5: Comparison of the simple harmonic potential (Hooke's law) with the Morse curve.

intuitively expect to be stronger have large force constants (contrast C—C with C=C and
N=N). A deviation of just 02 A from the reference value ly with a force constant of
300 keal mol ™' A2 would cause the energy of the system to rise by 12kcal/ mol.

The Hooke’s law functional form is a reasonable approximation to the shape of the pot.enti'al,
energy curve at the bottom of the potential well, at distances that cqrrespond to bonding in
ground-state molecules. It is less accurate away from equilibrium (Figure 4.5). To model the
Morse curve more accurately, cubic and higher terms can be included and the bond-
stretching potential can be written as follows:

o) = g(z — =K —lp) =K1 — L) —K"(I— )?..] (44)
» .
- ,I/
quadratic//
r /

Morse

o —

cubic \

Fig. 4.6: A cubic bond-stretching potential passes through a maximum but gives a better approximation {o the Morse
curve close to the equilibrium structure than the quadratic form.

%
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An undesirable side-effect of an expansion that includes just a quadratic and a cubic term (as
is employed in MM2) is that, far from the reference value, the cubic function passes through
a maximum. This can lead to a catastrophic lengthening of bonds (Figure 4.6). One way to

_accommodate this problem is to use the cubic contribution only when the structure is

sufficiently close to its equilibrium geometry and is well inside the ‘true’ potential well.
MM3 also includes a quartic term; this eliminates the inversion problem and leads to an
even better description of the Morse curve.

4.4 Angle Bending

The deviation of angles from their reference values is also frequently described using a
Hooke's law or harmonic potential:

k

v(6) =3

(6 — 6p)° (4.5)
The contribution of each angle is characterised by a force constant and a reference value.
Rather less energy is required to distort an angle away from equilibrium than to stretch

or compress a bond, and the force constants are proportionately smaller, as can be observed
in Table 4.2.

Angle s k (kcalmol 'deg™")
Csp?—Csp?—Csp® 109.47 0.0099
Csp®—Csp’—H 109.47 0.0079
H-Csp®—H 109.47 0.0070
Csp?—Csp?—Csp? 117.2 0.0099
Csp®—Csp?=Csp? 1214 0.0121
Csp?—Csp?=0 122.5 0.0101

Table 4.2 Force constants and reference angles for selected angles
[Allinger 1977].

As with the bond-stretching terms, the accuracy of the force field can be improved by the
incorporation of higher-order terms. MM2 contains a quartic term in addition to the quad-
ratic term. Higher-order terms have also been included to treat certain pathological cases
such as very highly strained molecules. The general form of the angle-bending term then
becomes:

v(0) = g (0 —60)°[L—K(0—6p) —K'(0— 05)* — K" (60— 6,)° ... ] (4.6)

4.5 Torsional Terms

The bond-stretching and angle-bending terms are often regarded as ‘hard’ degrees of free-

dom, in that quite substantial energies are required to cause significant deformations from
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their reference values. Most of the variation in structure and relative energies is due to the
complex interplay between the torsional and non-bonded contributions.

The existence of barriers to rotation about chemical bonds is fundamental to understanding
the structural properties of molecules and conformational analysis. The three minimum-
energy staggered conformations and three maximum-energy eclipsed structures of ethane
are a classic example of the way in which the energy changes with a bond rotation. Quantum
mechanical calculations suggest that this barrier to rotation can be considered to arise from
antibonding interactions between the hydrogen atoms on opposite ends of the molecule; the
antibonding interactions are minimised when the conformation is staggered and are at a
maximum when the conformation is eclipsed. Many force fields are used for modelling
flexible molecules where the major changes in conformation are due to rotations about

bonds; in order to simulate this it is essential that the force field properly represents the

energy profiles of such changes.

Not all molecular mechanics force fields use torsional potentials; it may be possible to rely
upon non-bonded interactions between the atoms at the end of each torsion angle (the 1,4
atoms) to achieve the desired energy profile. However, most force fields for ‘organic’
molecules do use explicit torsional potentials with a contribution from each bonded quartet
of atoms A—B—C—D in the system. Thus there would be nine individual torsional terms for
ethane and 24 for benzene (6 x C—C-C-C, 12xC-C—-C-H and 6 x H-C—C-H).
Torsional potentials are almost always expressed as a cosine series expansion. One
functional form is:

Ny,
v(w) = " [1+ cos(mw — )] A (4.7)
n=0

w is the torsion angle.

An alternative but equivalent expression is:
N
v(w) = Cycos(w)" (4.8)
n=0

V. in Equation (4.7) is often referred to as the ‘barrier’ height, but to do so is misleading,
obviously so when more than one term is present in the expansion. Moreover, other
terms in the force field equation contribute to the barrier height as a bond is rotated,
especially the non-bonded interactions between the 1,4 atoms. The value of V, does, how-
ever, give a qualitative indication of the relative barriers to rotation; for example, V,, for
an amide bond will be larger than for a bond between two sp® carbon atoms. 7 in Equation
(4.7) is the multiplicity; its value gives the number of minimum points in the function as the
bond is rotated through 360°. « (the phase factor) determines where the torsion angle passes
through its minimum value. For example, the energy profile for rotation about the single
bond between two sp° carbon atoms could be represented by a single torsional term with
n =23 and v = 0°. This would give a threefold rotational profile with minima at torsion
angles of +60°, —60° and 180° and maxima at £120° and 0°. A double bond between two
sp2 carbon atoms would have n =2 and v = 180° giving minima at 0° and 180°. The
value of V, would also be significantly larger for the double bond than for the single
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V,=4,n=2,y=180

Torsion energy

V"=2;n=3;7=0
-1 l | | I | i

0 60 120 180 240 300 360
Torsion angle

Fig. 4.7: Torsional potential varies as shown for different values of V,, n and .

bond. The effects of varying V,,, n and v are illustrated in Figure 4.7 for commonly occurring
torsional potentials.

Many of the torsional terms in the AMBER force field contain just one term from the cosine
series expansion, but for some bonds it was found necessary to include more than one term.
For example, to correctly model the tendency of O—C—C--O bonds to adopt a gauche con-
formation, a torsional potential with two terms was used for the O—C—C—O contribution:

»(we—0-0-c) = 0.25(1 + cos 3w) + 0.25(1 + cos 2w) (4.9)

The torsional energy for a OCH,—CH,O fragment (found in the sugars in DNA) varies with
the torsion angle w as shown in Figure 4.8. Another feature of the AMBER force field is its use
of general torsional parameters. The energy profile for rotation about a bond that is
described by a general torsional potential depends solely upon the atom types of the two

4.0
35
30
2.5
20
1.5
1.0

0.5

0 { { i i i
0 60 120 180 240 300 360

Torsion angle

Energy (kcal/mol)

g 4.8: Variation in torsional energy (AMBER force field) with O—C—C—O torsion angle () for OCH,—CH,0

fragment. The minithum energy conformations arise for w = 60° and 300°.
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atoms that comprise the central bond and not upon the atom types of the terminal atoms. For
example, all torsion angles in which the central bond is between two sp’~hybridised carbon
atoms (e.g. H-C-C-H, C-C-C-C, H-C-C-C) are assigned the same torsiona]
parameters, unless the torsion is a special case such as O—C—~C-O. In its treatment of the
torsional contribution, AMBER takes a position intermediate between those force fields
which only ever use a single term in the torsional expansion and those which consistently
use more terms for all torsions. MM2 falls into the latter category; it uses three terms in
the expansion: ,

v(w) = % (1+ cosw) + % (1 — cos 2w) + % (1 + cos 3w) ' (4.10)

A physical interpretation has been ascribed to each of the three terms in the MM2 torsionaj .

expansion from an analysis of ab initio calculations on simple fluorinated hydrocarbons. The
first, onefold term corresponds to interactions between bond dipoles, which are due to
differences in electronegativity between bonded atoms. The twofold term is due to the
effects of hyperconjugation (in alkanes) and conjugation effects (in alkenes), which provide
‘double bond’ character to the bond. The threefold term corresponds to steric interactions
between the 1,4 atoms. It was found that the additional terms in the torsional potential
were especially important for systems containing heteroatoms, such as the halogenated
hydrocarbons and molecules containing CCOC and CCNC fragments.

With careful parametrisation a force field which uses more than one term in the torsional
expansion will be more successful than a force field that uses only a single term (and this
is borne out by the MM2 force field). The major drawback is that many parameters are
required to model even a modest range of molecules.

4.6 Improper Torsions and Out-of-plane Bending Motions

Let us consider how cyclobutanone would be modelled using a force field containing just
standard bond-stretching and angle-bending terms of the type in Equation (4.1). The
equilibrium structure obtained with such a force field would have the oxygen atom-located
out of the plane formed by the adjoining carbon atom and the two carbon atoms bonded fo
it, as shown in Figure 4.9. In this structure, the angles to the oxygen adopt values close to the
reference value of 120°. Experimentally, it is found that the oxygen atom remains in the
plane of the cyclobutane ring, even though the C—C=0O angles are large (133°). This is
because the n-bonding energy, which is maximised in the coplanar arrangement, would
be much reduced if the oxygen were bent out of the plane. To achieve the desired geometry
itis necessary to incorporate an additional term (or terms) in the force field that keeps the sp2
carbon and the three atoms bonded to it in the same plane. The simplest way to achieve this
is to use an out-of-plane bending term.

There are several ways in which out-of-plane bending terms can be incorporated into a force
field. One approach is to treat the four atoms as an “improper’ torsion angle (i.e. a torsion
angle in which the four atoms are not bonded in the sequence 1-2-3-4). One way {0
define an improper torsion for cyclobutane would involve the atoms 1-5-3-2 in Figure 4.9.
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Fia. 4.9: Without an out-of-plane term, the oxygen atom in cyclobutane is predicted 1o li i
4 t
(left) rather than in the plane. Y P e fo lie out of the plane of the ring

A torsional potential of the following form is then used to maintain the improper torsion
_ angle at 0° or 180°:

o(w) = k(1 — cos 2w) (4.11)

Various other ways to incorporate the out-of-plane bending contribution are possible. For
example, one definition that is closer to the notion of an ‘out-of-plane bend’ involves a

_ calculation of the angle between a bond from the central atom and the plane defined by

the central atom and the other two atoms (Figure 4.10). A value of 0° corresponds to all
four atoms being coplanar. A third approach is to calculate the height of the central atom

_ above a plane defined by the other three atoms (Figure 4.10). With these two definitions
the deviation of the out-of-plane coordinate (be it an angle or a distance) can be modelled
using a harmonic potential of the form

' k
Of these three functional forms, the improper torsion definition is most widely used as it can
then be easily included with the "proper’ torsional terms in the force field. However, the

kE

@(e)zgoz; w(h) =12 (4.12)

\ﬁ

/

~ - Fig. 4.10: Two ways to ‘model the out-of-plane bending contributions.
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-

Fig. 4.11: Improper torsional terms can be used to keep a benzene ring planar.

other two functional forms may be better ways to implement out-of-plane bending in the

force field. Out-of-plane terms may also be used to achieve a particular geometry. For
example, if it is desired to ensure that an aromatic ring such as benzene maintains an
approximately planar structure then this can be achieved using a suitable set of out-of-
plane bending terms involving atoms on opposite sides of the ring (Figure 4.11). Improper
torsional terms are commonly used in the so-called united atom force fields to maintain
stereochemistry at chiral centres (see Section 4.14). It is important to remember that out-
of-plane terms may not always be necessary, and that to include such terms may have a
deleterious effect on the performance of the force field. Vibrational frequencies in particular
are often rather sensitive to the presence of out-of-plane terms.

4.7 Cross Terms: Class 1, 2 and 3 Force Fields

The presence of cross terms in a force field reflects coupling between the internal coordinates.
_ For example, as a bond angle is decreased it is found that the adjacent bonds. stretch to
reduce the interaction between the 1,3 atoms, as illustrated in Figure 4.12. Cross terms
were found to be important in force fields designed to predict vibrational spectra that
were the forerunners of molecular mechanics force fields, and so it is not surprising that
cross terms must often be included in a molecular mechanics force field to achieve optimal
performance. One should in principle include cross terms between all contributions to a
force field. However, only a few cross terms are generally found to be necessary in order
to reproduce structural properties accurately; more may be needed to reproduce other
properties such as vibrational frequencies, which are more sensitive to the presence of
such terms. In general, any interactions involving motions that are far apart in a molecule

Fig. 4.12: Coupling between the stretching of the bonds as an angle closes.
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can usually be set to zero. Most cross terms are functions of two internal coordinates, such as
stretch-stretch, stretch-bend and stretch-torsion terms, but cross terms involving more than
two internal coordinates such as the bend-bend-torsion have also been used. Various
functional forms are possible for the cross terms. For example, the stretch-stretch cross
term between two bonds 1 and 2 can be modelled as:

k
521l — Lo} (12 = L)) (4.13)

The stretching of the two bonds adjoining an angle could be modelled using an equation of
the following form (as in MM2, MM3 and MM4): '

k
'1’212’9 [(lh = l1p) + (2 — 12,0)](6 — o) (4.14)

U(llv 12) =

U(lh 127 0) =

In a Urey-Bradley force field, angle bending is achieved using 1,3 non-bonded interactions
rather than an explicit angle-bending potential. The stretch-bond term in such a force
field would be modelled by a harmonic function of the distance between the 1,3 atoms:

, 0
v(rp) = f (113 — 1) (4.15)
A stretch~torsion cross term can be used to model the stretching of a bond that occurs in an
eclipsed conformation. Two possible functional forms are:

v(l,w) = k(I — Iy) cos nw (4.16)
v(l,w) = k(I = Iy)[1 + cos nw| (4.17)
n is the periodicity of the rotation about the bond (n = 3 for sp>-sp° bonds).

Torsion-bend and torsion-bend-bend terms may also be included; the latter, for example,
would couple two angles A-B-C and B-C-D to a torsion angle A-B-C-D. Maple, Dinur
and Hagler used quantum mechanics calculations to investigate which of the cross terms
are most important and suggested that the stretch-stretch, stretch-bend, bend-bend,
stretch-torsion and bend-bend-torsion were most important [Dinur and Hagler 1991]
(schematically illustrated in Figure 4.13).

It has been suggested that the presence of cross terms (together with some other features)
can provide a general way to classify force fields [Hwang et al. 1994]. A class I force field
was considered one which is restricted to harmonic terms (e.g. for bond stretching and
angle bending) and which does not have any cross terms. A class II force field would
have anharmonic terms (e.g. through the use of Morse potentials or quartic terms) and expli-
¢if cross terms to account for the coupling between coordinates. The presence of these higher
and cross terms would tend to improve the ability of the force field to predict the properties
of more unusual systems (such as those which are highly strained) and also to enhance its
ability to reproduce vibrational spectra. Another characteristic of a class II force field was
that it could be used without modification to model the properties of isolated small
molecules, condensed phases and macromolecular systems. It was subsequently suggested
by Allinger [Allinger et al. 1996b] that a class III force field would also take account of chemi-
cal effects and other features such as electronegativity and hyperconjugation. A classic
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Fig. 4.13: Schematic illustration of the cross terms believed to be most important in force fields. (Adapted fror'n Dinur
U and A T Hagler 1991. New Approaches to Empirical Force Fields. In Reviews in Computational Chemistry,
Lipkowitz K B and D B Boyd (Editors). New York, VCH Publishers, pp. 99-164.)

example of the latter effect (hyperconjugation) is the change in the lengtl'} of the C—'H bond
in acetaldehyde with rotation about the C—C bond. When the C—H bond is pgrpendlcular to
the plane of the carbonyl group there is maximum overlap between the o qrbltal of the C—H
bond and the 7 orbital of the carbonyl carbon. Donation of electron density from the C.—H
bond to this 7* orbital is accompanied by a lengthening of the bond and a greater contribu-
tion from the charged resonance structure (Figure 4.14). When the bond to the hydrogen
atom is in the plane the overlap is minimal. Ab initio calculations suggested that the l?oqd
length changed by 0.006 A between the two forms. This effect was incorporated within
MM4 by a term of the following form:

Al = k(1 — cos 2w) | (4.18)

This is a kind of torsion-stretch cross term but different from the one where the centra'l bond
changes with torsion angle. There has been some considerable debate about the existence
and origin of the hyperconjugative effects, ‘but low—tempera’.cu}'g X-ray crystallpgTaPhlc
experiments on appropriate compounds together with ab initio calculations certainly

reveal a detectable effect.

Fig. 4.14; Valence bond representation of the hyperconjugation effect which leads to a lengthening of the C—H bond
in acetaldeyde.
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4.8 Introduction to Non-bonded Interactions

Independent molecules and atoms interact through non-bonded forces, which also play an
important role in determining the structure of individual molecular species. The non-
bonded interactions do not depend upon a specific bonding relationship between atoms.
They are ‘through-space’ interactions and are usually modelled as a function of some
inverse power of the distance. The non-bonded terms in a force field are usually considered
in two groups, one comprising electrostatic interactions and the other van der Waals
interactions. :

4.9 Electrostatic Interactions

4.9.1 The Central Multipole Expansion

Electronegative elements attract electrons more than less electronegative elements, giving
rise to an unequal distribution of charge in a molecule. This charge distribution can be
represented in a number of ways, one common approach being an arrangement of fractional
point charges throughout the molecule. These charges are designed to reproduce the electro-
static properties of the molecule. If the charges are restricted to the nuclear centres they are
often referred to as partial atomic charges or net atomic charges. The electrostatic interaction
between two molecules (or between different parts of the same molecule) is then calculated
as a sum of interactions between pairs of point charges, using Coulomb’s law:

_ qiq;
¥V = Z Z Ho]r,y (4.19)

N4 and Np are the numbers of point charges in the two molecules. This approach to the

_ representation and calculation of electrostatic interactions will be considered in more

detail in Section 4.9.2. First, we shall consider an alternative approach to the calculation of

_ electrostatic interactions which treats a molecule as a single entity and is (in principle at
_ least) capable of providing a very efficient way to calculate electrostatic intermolecular

interactions. This is the central multipole expansion, which is based upon the electric moments

_ or multipoles: the charge, dipole, quadrupole, octopole, and so on introduced in Section

27.3. These moments are usually represented by the following symbols: g (charge), u
(dipole), © (quadrupole) and @ (octopole). We are often interested in the lowest non-zero
electric moment. Thus species such as Nat, CI-, NH] or CH;CO; have the charge as

_ their lowest non-zero moment. For many uncharged molecules the dipole is the lowest
_ non-zero moment. Molecules such as N; and CO, have the quadrupole as their lowest

non-zero moment. The lowest non-zero moment for methane and tetrafluoromethane is

_the octopole. Each of these multipole moments can be represented by an appropriate

distribution of charges. Thus a dipole can be represented using two charges placed an
appropriate distance apart. A quadrupole can be represented using four charges and an
octopole by eight charges. A complete description of the charge distribution around a
molecule requires all of the non-zero electric moments to the specified. For some molecules,
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Fig. 4.15: The electrostatic potential due to two point charges.

the lowest non-zero moment may not be the most significant and it may therefore be unwise
to ignore the higher-order terms in the expansion without first checking their values.

To illustrate how the multipolar expansion is related to a distribution of charges in a system,
let us consider the simple case of a molecule with two charges 4; and ¢,, positioned at —z;
and z,, respectively (Figure 4.15). The electrostatic potential at point P (a distance r from the
origin, r, from charge ¢, and r, from charge ¢) is then given by:

o(r) = 1 (ﬂ " q_z) ' (4.20)

rhn T

By applying the cosine rule this can be written as follows (see Figure 4.15):

o) = — (— el + 42 4.21)
4me \/r7+ 22 + 2rz; cos § \ﬂz + 23 — 2rz; cos §

If r > z; and 7 >> z, then this expression can be expanded as follows:

2
1 (q1 + | (@0 - qr1221) cosd (g7t + 4225352 cos 91, .. ) (422)
r

We can now associate the appropriate terms in the expansion with the various electric
moments:

1 (g pcosé O3 cos’ 8 —1) )
_ 1 4. (4.23)
¢ ey (r Tt 2r

Thus (41 + 42) is the charge; (q22, — 4121) is the dipole; (122 + 273) is the quadrupole, and so
on. One interesting feature about a charge distribution is that only the first non-zero momgnt
is independent of the choice of origin. Thus, if a molecule is electrical'ly nel.ltral (ie.
g1+ g2 = 0) then its dipole moment is independent of the choice of origin. Th'ls can be
demonstrated for our two-charge system as follows. If the position of the origin is now
moved to a point —2/, then the dipole moment relative to this new origin is given by:

p=qpm+2)-qa@—72)=p+qd (4.24)
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Only if the total charge on the system (g) equals zero will the dipole moment be unchanged.
Similar arguments can be used to show that if both the charge and the dipole moment are
zero then the quadrupole moment is independent of the choice of origin. For convenience,
the origin is often taken to be the centre of mass of the charge distribution.

The electric moments are examples of tensor properties: the charge is a rank 0 tensor (which is
the same as a scalar quantity); the dipole is a rank 1 tensor (which is the same as a vector,
with three components along the x, y and z axes); the quadrupole is a rank 2 tensor with
nine components, which can be represented as a 3 x 3 matrix. In general, a tensor of rank
n has 3" components. :

For a distribution of charges (one not restricted to lie along one of the Cartesian axes), the
dipole moment is given by:

n="gm (4.25)

The components of the dipole moment along the x, y and z axes are > _g;x;, > q;y; and > g;z;.
The analogous way to define the quadrupole moment is as follows:

Sgx  anyi Do 4i%izi
O=| Ty T4y vz (4.26)

Y@z 2 GnY:i D qiziz
This definition of the quadrupole is obviously dependent upon the orientation of the charge
distribution within the coordinate frame. Transformation of the axes can lead to alternative

definitions that may be more informative. Thus the quadrupole moment is commonly
defined as follows: '

Siqi3xl 1) 34Xy 32 iqixizi
O=5| 3Xiamz X G -r) 3 iz (4.27)
3 uamz  3Liqvi > iq:32 — 17)
In Equation (4.27) 77 = x? 4+ y? + z2. This definition enables one to assess the deviation from
spherical symmetry as a spherically symmetric charge distribution will have

» 1
Z qixt = Z Gy = Z gzt = gz 317 (4.28)

and so the diagonal elements of the tensor will be zero. Quadrupoles are also reported in
terms of the principal axes; these are three mutually perpendicular axes «, 8 and v, which
are linear combinations of x, y and z such that the quadrupole tensor is diagonal (i.e. off-
diagonal elements are zero):

O 0 O
e=| 0 65 0 (4.29)
0 0 6,

Let us now consider the effect of placing another molecule with a linear charge distribution
(charges g7 and g3) with its centre of mass at the point P. The relative orientation of the two
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Fig. 4.16: The relative orientation of two dipoles.

molecules can be described in terms of four parameters (the distance joining their centres of
mass and three angles as shown in Figure 4.16). The electrostatic interaction between the two
molecules is calculated by multiplying each charge by the potential at that point and adding
the result for each charge. The following expression is the result [Buckingham 1959]:

! 3

“

o r

+lz(qu’ cosf + ¢ pucosd)
%
:
+% (2cosfcos ¢’ + sinfsiné cos ¢)

+55100/Bcos? — 1) + fO(3cos 0~ 1)

V(@) = (4.30)

47!'60 3 , 2 X . » ‘
+F[,u6 {cosf(3cos” ¢ — 1) + 2sinfsiné cos ¢ cos (}

+1/'6{cos ¢/ (3cos® § — 1) + 2sin ¢ sin b cos f cos ¢}]
+ 300’ [
475

+2sin? §sin® §' cos® ¢ -+ 16 sin#sin ¢ cos § cos ¢ cos (]

1—5cos? 0 — 5cos® 8 + 17 cos® f cos® &

L+ ) j

The energy of interaction between two charge distributions is thus an infinite series that
includes charge-charge, charge-dipole, dipole-dipole, charge-quadrupole, dipole-quadru-
pole interactions, quadrupole-quadrupole terms, and so on. These terms depend on differ-
ent inverse powers of the separation r. If the molecules are neutral (i.e. ¢ = ¢ = 0) then the
leading term in the expansion is that due to the dipole-dipole interaction, which varies as
7. This is a key result, for the range of the dipole-dipole interaction (r~°) is much less
than that of the Coulomb interaction (), Figure 4.17. This will be important in later chap-
ters, where we shall collect atoms together into neutral groups. The electrostatic interaction
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Fig. 4.17: The charge—charge energy decays much more slowly (ar™") than the dipole-dipole energy (ar™).

between these groups then decays as r~ rather than the ' dependence of each individual
charge-charge interaction. This can be seen in Figure 4.17, in which the functions r~* and r~>
have been plotted as a function of distance. Even when the dipole-dipole interaction energy
has fallen off almost to zero the charge-charge interaction energy is still significant. In gen-
eral, the interaction energy between two multipoles of order n and m decreases as r~ "™+,
It should be emphasised again that these expressions are only valid when the separation of
the two molecules, 7, is much larger than the internal dimensions of the molecules. The
favourable arrangements for the various multipoles are shown in Figure 4.18.

A central multipole expansion therefore provides a way to calculate the electrostatic
interaction between two molecules. The multipole moments can be obtained from the wave-
function and can therefore be calculated using quantum mechanics (see Section 2.7.3) or
can be determined from experiment. One example of the use of a multipole expansion is

—

Charge - dipole Charge — quadrupole Quadrupole ~ quadrupole

—
———e

. J—
— -

~Dipole - dipole Dipole - quadrupole

Fig. 4.18: The most favourable orientations of various multipoles. (Figure adapted from Buckingham A D 1959.
Molecular Quadrupole Moments. Quarterly Reviews of the Chemical Society 13:183-214.)
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the benzene model of Claessens, Ferrario and Ryckaert [Claessens et al. 1983]. Benzene has
no charge and no dipole moment, but it does have a sizeable quadrupole. The inclur?,ion of
the quadrupole was found to give clearly superior results in molecular dynamics simula-
tions of the liquid state over models that lacked any electronic contribution.

The main advantage of the multipolar description for calculating the electrostatic inter-
actions between molecules is its efficiency. For example, the charge-charge interaction
energy between two benzene molecules would require 144 individual charge-charge inter-
actions with a partial atomic charge model rather than the single quadrupole-quadrupole
term. Unfortunately, the multipole expansion is not applicable when the molecules are
separated by distances comparable with the molecular dimensions. The formal cond'lition
for convergence of the multipolar interaction energy is that the distance between two inter-

acting molecules should be larger than the sum of the distances from the centre of each

molecule to the furthest part of its charge distribution. If a sphere is constructed around
each molecule, positioned on its centre of mass, with a radius that encompasses all of the
charge distribution, then the multipole expansion for the interaction between two molecules
will converge if these spheres do not intersect. Even if one requires the sphere to encompass
just the nuclei in a molecule (i.e. ignoring the fact that the charge distribution around a
molecule extends to infinity) there may still be problems. For example, the convergence
sphere for a molecule such as butane would extend beyond the van der Waals radii in
some directions, enabling other molecules to penetrate the convergence sphere, as
illustrated in Figure 4.19. Another problem is that the multipolar expansion may b.e slow
to converge. The multipolar expansion is often located at the centre of mass, but this may
not be the best choice to achieve the most rapid convergence.

Fig. 4.19: The convergence sphere of the multipole expansion fora molecule such as butane may be penetrated by
another molecule.
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There are other difficulties with the central multipole expansion. The multipole moments are
properties of the entire molecule and so cannot be used to determine intramolecular
interactions. The central multipole model thus tends to be restricted to calculations
mvolving small molecules that are kept fixed in conformation during the calculation, and
where the interactions between molecules act at their centres of mass. It can be a complicated
procedure to calculate the forces acting on a molecule with a multipole model. The
interaction between multipoles of zero order (i.e. charges) gives rise to a simple translational
force. Multipoles of a higher order have directionality, and interactions between these
produce a torque, or .twisting force. Moreover, whereas the charge-charge forces are
equal and opposite, the torque acting on molecule i due to another molecule j is not
necessarily equal and opposite to the torque on molecule j due to molecule i.

4.9.2 Point-charge Electrostatic Models

We therefore return to the point-charge model for calculating electrostatic interactions. If
sufficient point charges are used then all of the electric moments can be reproduced and
the multipole interaction energy, Equation (4.30), is exactly equal to that calculated from
the Coulomb summation, Equation (4.19).

An accurate representation of a molecule’s electrostatic properties may require charges to be
placed at locations other than at the atomic nuclei. A simple example of this is molecular
nitrogen, which has a dipole moment of zero. The total charge on nitrogen is zero, and so
an atomic partial charge model would put zero charge on each nucleus. However, nitrogen
does have a quadrupole moment and this significantly affects its properties. The simplest
way to model this is to place three partial charges along the bond: a charge of —g at each
nucleus and +2g at the centre of mass. The quadrupole-quadrupole interaction between
two nitrogen molecules can then be calculated by summing nine pairs of charge-charge
mteractions. The value of g can be calculated using the following relationship between the
quadrupole moment and the partial charge:

O = 24(1/2)° (4.31)

L is the bond length. The experimental quadrupole moment is consistent with a charge, g, of
approximately 0.5e. In fact, a better representation of the electrostatic potential around the
nitrogen molecule is obtained using the five-charge model shown in Figure 4.20.

An alternative to the point charge model is to assign dipoles to the bonds in the molecule. The
electrostatic energy is then given as a sum of dipole-dipole interaction energies. This approach
(which is adopted in MM2/MM3/MM4) can be unwieldy for molecules that have a formal
charge and’ which require charge~charge and charge-dipole terms to be included in the
energy expression. Charged species are dealt with more naturally using the point charge model.

4.9.3 Calculating Partial Atomic Charges

Given the widespread use of the partial atomic charge model, it is important to consider how
the charges are obtained. For simple species the atomic charges required to reproduce the
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Fig. 4.20: Two charge models for N, with the electrostatic potentials that they generate. Also shown is the
electrostatic potential calculated using ab initio quantum mechanics (6-31G” basis set.) Negative contours are dashed
and the zero contour is bold.
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eleciric moments can be calculated ‘exactly if the geometry is known. For example, the
experimentally determined dipole moment of HF (1.82D) can be reproduced by placing
equal but opposite charges of 0.413¢ on the two atomic nuclei (assuming a bond length of
0917 A). The tetrahedral arrangement of the hydrogens about the carbon in methane
means that each hydrogen atom has an identical charge equal to one quarter the charge
on the carbon. The molecule is electrically neutral with zero dipole and quadrupole
meoments but a non-zero octopole moment, which can be reproduced using a hydrogen
charge of approximately 0.14e.

In some cases the atomic charges are chosen to reproduce thermodynamic properties
calculated using a molecular dynamics or Monte Carlo simulation. A series of simulations
is performed and the charge model is modified until satisfactory agreement with experiment
is obtained. This approach can be quite powerful despite its apparent simplicity, but it is
only really practical for small molecules or simple models.

The electrostatic properties of a molecule are a consequence of the distribution of the
electrons and the nuclei and thus it is reasonable to assume that one should be able to
obtain a set of partial atomic charges using quantum mechanics. Unfortunately, the partial
atomic charge is not an experimentally observable quantity and cannot be unambiguously
calculated from the wavefunction. This explains why numerous ways to determine partial
atomic charges have been proposed, and why there is still considerable debate as to the
‘best’ method to derive them. Indirect comparisons of the various methods are possible,
usually by calculating appropriate quantities from the charge model and then comparing
the results with either experiment or quantum mechanics. For example, one might examine
how well the charge model reproduces the experimental or quantum mechanical multipole
moments or the electrostatic potential around the molecule.

We have already encountered in Section 2.7.5 the population analysis method for calculating
partial atomic charges. Such sets of charges (commonly referred to as Mulliken charges when
obtained from that particular partitioning scheme) are often considered to be inappropriate
for accurately representing the interactions between molecules. This is because Mulliken
charges are primarily dependent upon the constitution of the molecule - how the atoms
are bonded together - rather than being designed to reproduce the properties that determine
how molecules interact with each other, such as the electrostatic potential. The importance of
the electrostatic potential in intermolecular interactions has resulted in much interest in
schemes that calculate charges consistent with this particular property.

4.9.4 Charges Derived from the Molecular Electrostatic Potential

The electrostatic potential at a point is the force acting on a unit positive charge placed at
that point. The nuclei give rise to a positive (i.e. repulsive) force, whereas the electrons
give rise to a negative potential. The electrostatic potential is an observable quantity that
can be determined from a wavefunction using Equations (2.222) and (2.223):

7]

_ - Z dr' p(r)
916) = bnsa®) + dalt) = 3 | (432)
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The electrostatic potential is a continuous property and is not easily represented by an
analytical function. Consequently, it is necessary to derive a discrete representation for
use in numerical analysis. The objective is to derive the set of partial charges (usually partial
atomic charges) that best reproduces the quantum mechanical electrostatic potential at a
series of points surrounding the molecule. A solution to this problem was suggested by
Cox and Williams [Cox and Williams 1981]. The electrostatic potential at each of the
chosen points is calculated from the wavefunction. A least-squares fitting procedure is
then employed to determine the set of partial atomic charges that best reproduces the elec-
trostatic potential at the points, subject to the constraint that the sum of the charges should
be equal to the net charge on the molecule. Symmetry conditions may also be imposed to
ensure that the charges on symmetrically equivalent atoms are equal. It is also possible to
require the atomic charges to reproduce other electrostatic properties of the molecules
such as the dipole moment. The fitting procedure minimises the sum of squares of the
differences in the electrostatic potential. Thus, if the electrostatic potential at a point is ¢
and if the value from the charge model is ¢;°°, then the objective is to minimise the following
function:

R= " wi(g) — ¢ (4.33)
i=1
Nipints is the number of points and w; is a weighting factor that enables different points to be
given different degrees of ‘importance’ in the fitting process. One of the charges is depen-
dent on the values of the others (because the sum must equal Z, the molecular charge).
This Nth charge has a value given by:

N-1
IN=Z- 4 (4.34)
=1
The electrostatic potential due to the chargesqj at the point i is given by Coulomb’s law:
calc _ Z I E] 1 q; (435)
47reor,] 47_regr,N

r; is the distance from the chargej to the point i. At a minimum value of the error function, R,
the first derivative is equal to zero with respect to all charges g;:

Npoints calc
o= "2 2 e ) (%) o (4.36)

This equation can be written in the following form:
Npoints N-1 Npoints R
1 1 1 1 ) ( 1 1 )] gj
: — )= wi| ——— | {——— )| +— (4.37)
; v (¢ TzN) (Tik _ TiN) ; [ ; (le v/ \ry rin /|47

When expressed in this way, then the set of equations can be recast as a matrix equation of

the form Aq = a. The charges q are then determined using standard matrix methods via
-1

g=A"a
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The points i (1,2, ..., Npoins) where the potential is fitted can be chosen in a variety of ways
but should be taken from the region where it is most important to model intermolecular
interactions correctly. This region is just beyond the van der Waals radii of the atoms

involved. Cox and Williams selected points from a regular grid in a shell defined by two
surfaces, one corresponding to the union of the van der Waals radii plus 1. 2A and the
others approximately 1A beyond that. The CHELP procedure of Chirlian and Francl
[Chirlian and Francl 1987] uses spherical shells, 1A apart, centred on each atom with
points symmetrically distributed on the surface. Any points within the van der Waals
radius of any atom in the system are discarded and the shells extend to 3 A from the van

_ der Waals surface of the molecule. The CHELP method employs a Lagrange multiplier

method to find the atomic charges, rather than an iterative least-squares procedure. This
minimises the error function R (Equation (4.33) ) subject to the constraint that the charges
sum to the total molecular charge. Such an analysis yields a set of N 41 equations in

_ N + 1unknowns and can be solved using standard matrix methods. The CHELPG algorithm
_of Breneman and Wiberg [Breneman and Wiberg 1990] combines the regular grid of points

of Cox and Williams with the Lagrange multiplier method of Chirlian and Francl as the
results from CHELP were found to change if the molecule was reoriented in the coordinate

 system. In CHELPG a cubic grid of points (spaced 0.3-0.8 A apart) is used and all grid points

that lie within the van der Waals radius of any atom are discarded, together with all points
that lie further than 2.8 A away from any atom.

The algorithm of Singh and Kollman used to derive the charges in the 1984 AMBER force
field uses points on a series of molecular surfaces, constructed using gradually increasing
van der Waals radii for the atoms [Singh and Kollman 1984]. The points at which the
potential was fitted were located on these shells. For the 1995 AMBER force field a modified
version of this electrostatic potential method was employed (termed ‘restrained electrostatic
potential fit’, or RESP [Bayly et al. 1993]). The RESP algorithm uses hyperbolic restraints on
non-hydrogen atoms. These restraints have the effect of reducing the charges on some
atoms, particularly buried carbon atoms, which can be assigned artificially high charges
in standard electrostatic potential fitting methods. The RESP charges also vary less with

the molecular conformation.

4.9.5 Deriving Charge Models for Large Systems

Molecular mechanics is used to model systems containing thousands of atoms such as poly-
mers. How then can charges be derived for such species? Clearly one cannot routinely
perform quantum mechanical calculations on a molecule with so many atoms and so it
must be broken into fragments of a suitable size. In some cases the fragments might
appear relatively easy to define; for example, many polymeric systems are constructed by
connecting together chemically defined monomeric units. The atomic charges for each
moenomer should be obtained from calculations on suitable fragments that recreate the
immediate local environment of the fragment in the larger molecule. For example, partial
atomic charges for amino acids are often obtained from calculations on a ‘dipeptide’
fragment (see Figure 4.21), which is more akin to the environment within a protein than
i an isolated amino acid. .
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Fig. 4.21: The charges used for calculations on proteins are best derived using a suitable fragment for each amino acid
that reflects the environment within the protein (right), rather than the isolated amino acid (left).

The charge sets obtained from electrostatic potential fitting can be highly dependent upon
the basis set used to derive the wavefunction. Moreover, the charges do not always improve

if a larger basis set is used. It is generally considered that the 6-31G” basis set gives reason-: -

able results for calculations relevant to condensed phases. In many cases it is possible to
scale the results of a calculation using a small basis set or even a lower level of theory
(such as a semi-empirical calculation) to obtain results comparable with those of a high-
level calculation. Of the various semi-empirical methods available, MNDO appears to
give the best correspondence with the charges derived from ab initio calculations, and scaling
factors have been determined by several research groups [Ferenczy et al. 1990; Luque et al.
1990; Bezler et al. 1990]. An additional complicating factor is that the charges obtained
from electrostatic potential fitting will often depend upon the conformation for which the
quantum mechanical calculation was performed [Williams 1990]. One solution is to perform
a series of charge calculations for different conformations and then use a charge model in
which each charge is weighted according to the relative population of that particular con-
formation as calculated from the Boltzmann distribution [Reynolds et al. 1992]. In a few
charge models the charges vary continuously with the conformation [Rappé and Goddard
1991; Dinur and Hagler 1995].

4.9.6 Rapid Methods for Calculating Atomic Charges

Some methods calculate atomic charges solely from information about the atoms present in
the molecule and the way in which the atoms are connected. The great advantage of such
methods is that they are very fast and can be used to calculate the charge distributipns for
large numbers of molecules (e.g. in a database). We will consider the Gasteiger and
Marsili method [Gasteiger and Marsili 1980] as an example.

The Gasteiger-Marsili approach uses the concept of the partial equalisation of orbital electro-
negativity. Electronegativity is a concept well known to chemists, being defined by Pauling
as ‘the power of an atom to attract electrons to itself’. Mulliken subsequently defined the
electronegativity of an atom A as the average of its ionisation potential I, and its electron
affinity E4: '

xa=3%a+Es) (4.38)

As Mulliken pointed out, the ionisation potential and electron affinity are specific to a given
valence state of an atom, and therefore the electronegativities of an atom’s valence states
would not be expected to be the same. This idea can be extended to the concept of orbital
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electronegativity, which is the electronegativity of a specific orbital in a given valence state.
For example, an sp orbital has a higher electronegativity than an sp® orbital. The orbital
electronegativity will also depend on the occupancy of the orbital; an empty orbital will
be better able to attract an electron than an orbital with a single electron, which in turn
will be better than an orbital with two electrons. The electronegativity of an orbital will
also be affected by the charges in other orbitals. Gasteiger and Marsili assumed a polynomial
relationship between the orbital electronegativity x,4 of an orbital ¢, in atom A and the
charge Qa on the atom A:

Xpa =y + b/,LAQA + X/,LAQ%%’ (439)

Values of the coefficients a4, b and ¢ were derived for common elements in their usual valence
states (for example, for carbon there are different values for sp’, sp>r and spa” valence states).

Electrons flow from the less electronegative elements to the more electronegative ones. This
flow of electrons results in a positive charge on the less electronegative atoms and a negative
charge on the more electronegative atoms, and as such the flow acts to equalise the electro-

_negativities. Total equalisation of electronegativity does not, however, lead to chemically

sensible results. This effect is modelled in the Gasteiger and Marsili approach by an iterative
procedure, in which less and less charge is transferred between bonded atoms at each step.
The electron charge transferred from an atom A to an atom B (where B is more electronega-
tive than A) in iteration k is given by:

Q(k) _ X]gk) *erg() of (4.40)

XA

In Equation (4.40), Q% is the charge (in electrons) transferred; xg‘) and Xg‘) are the electro-
negativities of the atoms A and B; x is the electronegativity of the cation of the less
electronegative atom and « is a damping factor which is raised to the power k. Gasteiger
and Marsili set « to 3. The charge on each atom is initially assigned its formal charge. In
each iteration, the electronegativities are calculated using Equation (4.39) and hence the
charge to be transferred. The total charge on an atom at the end of each iteration is thus
obtained by adding the charge transferred from all bonds to the atom to the value of the
charge from the previous iteration. The damping factor of reduces the influence of the
more electronegative atoms. This influence decreases with each iteration. With a damping
factor of § rapid convergence is achieved, usually within four or five steps.

A somewhat related method is the charge equilbration method of Rappé and Goddard
[Rappé and Goddard 1991]. This is employed in the ‘Universal Force Field’ (UFF) [Rappé
et al. 1992] as a general method for calculating charge distributions over a very wide
range of molecules (in principle, the entire periodic table). An additional feature of the
method is that the charges are dependent upon the molecular geometry and so can
change during the course of a calculation such as a molecular dynamics simulation. The
starting point for this approach is a series expansion of the energy of an isolated atom in
terms of the charge: '

v 1, (0
, - i N i ... 41
' A(.q) vao <3‘7)A0 T <3q2)Ao + (441)
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Truncating this expansion after second-order terms and considering three specific states (for
charges of 0, +1 and —1) leads to: '
(4.42)

va(0) = va0
O 1, (e .
= — — — 443
eate) = (35),, 2 (G, 48
— O 1, @) 4.44
va(=1) = va0 — ga <a‘q>A0 + 5 A <0q2 0 ( )

Now the energy of the positive species is the ionisation potential (IP) and the energy of the
negative species is minus the electron affinity (EA). Combining these results gives:

_1) =1 — /F 445

As usual, x4 is the electronegativity. Rappé and Goddard suggested that for a neutral atom
with a singly occupied orbital the difference between the ionisation potential and the
electron affinity would correspond to the Coulomb repulsion between two electrons place:d
in that orbital (the orbital would be unoccupied in the positive ion and doubly occupied in
the negative species). Writing this difference as J94 (referred to as the idempotential) leads to:

va(g) = vao + X&QA + %I?xA’%ZA (4.47)

Both the electronegativity and the idempotential can be derived from atomic data, though
such atomic data generally need to be corrected for use in molecular systems. In order to
use these equations to derive a set of charges for a molecule we first consider the total

electrostatic energy of the system:

N N N
V(g1 -qn) = O (a0 + Xada + AR +Y. D qadslas (4.48)
= A

=1 B=A+1

In this equation 5 represents a formulation of the Coulomb energy between charges g and

gs. For well-separated atoms a simple 1/r dependency is used. However, this simple

Coulomb law is not appropriate for atoms whose charge distributions overlap. In such
circumstances (which particularly arise for bonded atoms) there is a significant shielding
correction. This shielding correction is a Coulomb integral (Equation (2.107)), with the
atomic density being described using a single Slater type orbital whose precise form
depends on the nature (ns, np or nd) of the outer valence orbital together with the
covalent radius.

In order to derive the actual charges we first incorporate the factors J%.4 (the limiting value of
Jaa as the distance tends to zero) into the double summation in Equation (4.48):

N 1 X ;
V(g an) = Z (va0 + Xada) +3 Z ZquBIAB (4.49)
A=1 A=1B-1
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We can then take the derivative of the energy with respect to g,, which leads to:

o, & . N
a0, = xat D dslan=Xa +Jaada+ D dslas (4.50)
qA A=1 B=1B#A

The derivative of the energy with respect to the charge is an atomic chemical potential; at
equilibrium these chemical potentials will all be equal. The electrons move from regions
of low electronegativity (high electrochemical potential) to regions of high electronegativity
(low electrochemical potential). A further constraint is that the sum of the atomic charges
must sum to the total charge on the molecule. These conditions enable a set of simultaneous
equations to be written (subject to per-element limits on the charge on any given atom).

The presence of the g,45 term with its implied distance dependency means that the charges
depend upon the molecular geometry. Thus, should the conformation of a molecule change
the atomic charges will also change. Just three parameters are required for each atom in the
system (the electronegativity, the idempotential and the covalent radius).

4.9.7 Beyond Partial Atomic Charge Models

Most of the charge models that we have considered so far place the charge on the nuclear
centres. Atom-centred charges have many advantages. For example, the electrostatic
forces due to charge-charge interactions then act directly on the nuclei. This is important
if one wishes to calculate the forces on the nuclei as is required for energy minimisation
or a molecular dynamics simulation. Nuclear-centred charges do nevertheless suffer from
some drawbacks. In particular, they assume that the charge density about each atom is
spherically symmetrical. However, an atom’s valence electrons are often distributed in a
far from spherical manner, especially in molecules that contain features such as lone pairs
and 7 electron clouds above aromatic ring systems.

4.9.8 Distributed Multipole Models

One way to represent the anisotropy of a molecular charge distribution is to use distributed
multipoles. In this model, point charges, dipoles, quadrupoles and higher multipoles are
distributed throughout the molecule. These distributed multipoles can be determined in
various ways but the distributed multipole analysis (DMA) model of A ] Stone [Stone
1981; Stone and Alderton 1985] is probably the best-known example. The DMA method
calculates the multipoles from a quantum mechanics wavefunction defined in terms of
Gaussian basis functions. As we saw in Section 2.6, the overlap between two Gaussian
functions can be represented by another Gaussian located at a point (P) along the line that
connects them. Each product of basis functions ¢,¢, thus corresponds to a charge density
at P. This density can be expressed as a multipole expansion about P. The highest multipole
moment in the local expansion depends upon the basis set used; no multipole moment
higher than the sum of the angular quantum numbers of the basis set is possible. Thus,
when using a basis set that contains just s and p functions there will be local multipoles
no higher than the quadrupole. The crucial feature is that the local multipole expansion
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Fig. 4.22: Distributed multipole models for N, and HF. (Figure adapted from Stone A | and M Alderton 1985.
Distributed Multipole Analysis Methods and Applications. Molecular Physics 56:1047-1064.)

about P can be represented as a multipole expansion about another nearby point S. In the

distributed multipole approach, a set of site points is chosen and then the local multipole
expansion for each pair of basis functions is ‘moved’ from the relevant point P to one of
the sites S.

There are no limitations on the number or location of the multipole sites S; a natural set to
use is obtained by placing a site point on each atomic nucleus. In some applications
{especially for small molecules) additional sites are defined at the centres of bonds. For
example, Stone derived a distributed multipole model for nitrogen from a Dunning
[5s4p2d] basis set with two polarisation functions. This model contains charges of +0.60
on the nuclei and a charge of ~1.20 at the centre of the bond, together with a dipole on
each of the two nuclei and a quadrupole located at the centre of the bond (see Figure
4.22). For HF charges are placed on the two nuclei and at the centre of the bond with-a
dipole and a quadrupole on the fluorine and a small dipole at the centre of the bond
(Figure 4.22). In larger molecules not every atom may be given a site, such as hydrogen
atoms bonded to apolar atoms. It is also possible to restrict the order of the multipole expan-
sion at a given atom so that, for example, only a charge component would be present on a
polar hydrogen with the higher moments being represented by multipoles on the atom to
which it is bonded. An important consideration when choosing the multipole sites is that,
when a local multipole expansion is moved, the resulting multipole expansion is no
longer a truncated series. However, the smaller the distance between P and the correspond-
ing site point S, the quicker the series converges. In practice, therefore, each local multipole
moment expansion is either moved to the nearest site point or is divided between the two
nearest site points when they are equally close. With a basis set that contains just s and p
functions and multipole sites at the atomic nuclei, it is usually found that the distributed
multipole series converges rapidly after the quadrupole term. The multipoles themselves
can vary considerably with the basis set used to perform the ab initio calculation, but the
various electronic properties derived from them usually do not change much.

The distributed multipole model automatically includes non-spherical, anisotropic effects
due to features such as lone pairs or 7 electrons. The original applications of the DMA
approach were to small molecules such as diatomics and triatomics. The method has
since been used to develop models for nuclei acids and for peptides and has even been
applied to the undecapeptide cyclosporin [Price et al. 1989], which contains 199 atoms (the

Empirical Force Field Models: Molecular Mechanics _ 197

qua&ntum mechanical calculation on this molecule used 1000 basis functions). However, dis-
tributed multipole models have not yet been widely incorporated into force fields, not least

because of the additional computational effort required. It can be complicated to calculate

the atomic forces with the distributed multipole model; in particular, multipoles that are
not located on atoms generate torques, which must be analysed further to determine the

__ forces on the nuclei.

4.9.9 Using Charge Schemes to Study Aromatic-Aromatic Interactions

The attractive interactions between molecules containing 7 systems have long been studied
_ by theoreticians and experimentalists. Such systems are involved in a variety of phenomena,

including the stacking of the nucleic acid bases in DNA, the packing of aromatic molecules

in erystals and interactions between amino acid side chains in proteins. A variety of orien-
_tations are observed for aromatic dimers, ranging from edge-on, T-shaped structures to
face-to-face structures (Figure 4.23). Within these two families the molecules can move

relative to each other, so that, for example, in a face-to-face arrangement the atoms are
overlaid or are staggered. In the T-shaped structure the large quadrupole moments of

_ the benzene molecules adopt their most favourable orientation.

~ One very simple model of the interactions in such systems was devised by Hunter and

Saunders [Hunter and Saunders 1990], who wanted to explain the stacking behaviour of

aromatic systems such as the porphyrins shown in Figure 4.24. It is experimentally observed

that these molecules adopt a cofacial arrangement with their centres offset as shown. Hunter
and Saunders placed point charges not only at the nuclei but also at locations above and
below each atom, perpendicular to the plane of the ring. Thus in benzene each carbon
atom was given a charge of +1 and also had two associated charges of —3 above and

below the ring (Figure 4.25). The electrostatic interaction between two ring systems is

’ Fig 423 Face-to-face (left) and T-shaped (right) orientations of the benzene dimer.
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Fig. 4.24: Porphyrin system typical of those studied by Hunter and Saunders [Hunter and Saunders 1990].

calculated in the usual way by summing the charge-charge interactions using Coulomb’s
law. A major advantage of the Hunter-Saunders approach is its computational simplicity.
Moreover, it can be extended to cover a wide range of atom types and so applied to many
systems [Vinter 1994] with particular emphasis on simulating DNA [Hunter 1993, Packer
et al. 2000]. Hunter and Saunders summarised the results of their investigations on
porphyrins in three rules:

1. -7 repulsion dominates in a face-to-face geometry;
2. 7-c attraction dominates in an edge-on geometry;
3. m-o attraction dominates in an offset 7-stacked geometry.

The interactions between aromatic systems have also been studied using point charge
models, central multipoles and distributed multipoles. Fowler and Buckingham examined
homodimers of sym-triazine and 1,3 5-trifluorobenzene (Figure 4.26) [Fowler and Bucking-
ham 1991]. They were particularly keen to calculate how the electrostatic energy changed
as the rings were twisted in the face-to-face geometry. All but one of the energy models
suggested that the staggered orientations were the arrangements of minimum energy, but
the energy difference between the eclipsed and staggered structures varied Wldely,
depending upon the model. The central multipole model was found to be ineffective due
to convergence problems. Three different point-charge models were considered, all of

Fig. 4.25: Anisotropic model of benzene developed by Hunter and Saunders [Hunter and Saunders 1990].
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Fig. 4.26: Sym-triazine and 1,3,5-trifluorobenzene,

which gave acceptable energy curves. The distributed multipole model also performed well,
being comparable to the most accurate of the point-charge models.

4.9.10 Polarisation

Qur discussion of electronic effects has concentrated so far on ‘permanent’ features of the
charge distribution. Electrostatic interactions also arise from changes in the charge distribu-
tion’of a molecule or atom caused by an external field, a process called polarisation. The pri-
mary effect of the external electric field (which in our case will be caused by neighbouring
molecules) is to induce a dipole in the molecule. The magnitude of the induced dipole
moment P4 is proportional to the electric field E, with the constant of proportionality
being the polarisability o

Ring = @E (4.51)

The energy of interaction between a dipole p;q and an electric field E (the induction energy)
is determined by calculating the work done in charging the field from zero to E, using the
following integral:

E E
v(a,E) = — L dEping = — JO dEQE = —laF? (4.52)

In strong electric fields contributions to the induced dipole moment that are proportional to
E? or E? can also be important, and higher-order moments such as quadrupoles can also be
induced. We will not be concerned with such contributions.

For isolated atoms, the polarisability is isotropic - it does not depend on the orientation of
the atom with respect to the applied field, and the induced dipole is in the direction of the
electric field, as in Equation (4.51). However, the polarisability of a molecule is often aniso-
tropic. This means that the oriéntation of the induced dipole is not necessarily in the same
direction as the electric field. The polarisability of a molecule is often modelled as a collec-
tion of isotropically polarisable atoms. A small molecule may alternatively be modelled as a
single isotropic polarisable centre,

Let us consider the electric field due to a dipole p aligned along the z axis. The magnitude of
the electric field at a point P due to the dipole (see Figure 4.27) is:

w1 +3cos?d

E(r, 0) - 471'507’3

(4.53)
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Fig. 4.27: Electric field at point P due to dipole at the origin.

The induction energy with another molecule of polarisability « placed at P is therefore

21+3 cos*
u(r,0) = —ap UreoP (4.54)
; an induced dipole is independent of the disorienting
effect of thermal motion, whereas the dipole-dipole interaction between two permanent
dipoles does vary with the relative orientation of the two dipoles. This is because the
induced dipole follows the direction of the permanent dipole even as the molecules
change their orientations as a consequence of molecular collisions.

The interaction between a dipole and

An important consideration when modelling polarisation effects is that the dipole induced

on a molecule (A) will affect the charge distribution of another molecule (B). The electric
field at A due to the dipole(s) on B will in turn be affected. The presence of other molecules
can also influence the interaction. Consider the polarisation interaction between a polar
molecule and a neighbour (Figure 4.28). A third molecule may reduce the size of the electric
field on the second molecule and so lower the induction energy. This type of three-body
effect will be particularly significant when polarisable atoms are close to polar groups.
Polarisation is a cooperative effect and, as such, is modelled using a set of coupled equations
which are typically solved iteratively. Initially, the induced dipoles are set to zero. An initial
approximation to each induced dipole is then calculated from the permanent charges (ie.
partial atomic charges). The electric field due to these induced dipoles is then added to
the electric field from the permanent charges. This gives a refined value of the electric
field from which a new induced dipole can be determined. The calculation continues
until the induced dipoles do not change significantly between iterations.

A variety of schemes for including polarisation into molecular mechanics force fields have
been devised. One approach is to model the polarisation effects at the atomic level, with

-6 —0O—

nce of &

Fig. 4.28: The polarisation interaction between a dipole and a polarisable molecule can be affected by the prese
second dipole (right) and is therefore a many-body effect.
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dipoles being induced on each atom [Dang et al. 1991]. Th i i i
s atom £ given by, g etal. ]. The magnitude of the dipole induced

Bind; = E; (4.55)

apis the'z atomic pol.arisability, assumed to be isotropic. Appropriate values of «; have been
determined for various systems. The electric field, E;, at atom i is the vector sum of the field
due to the permanent and induced dipoles of the other atoms in the system:

B S (1)
3 rij - 4.56
i A A AN (420
1 anddr]- are the position vectors of the atoms i and j. Convergence of these equations in
meE ures 1such as.molec.ular dynamics, where successive configurations are generated
can be acce erated if the induced dipoles obtained at each current step are used as the;
starting points for the next configuration.

~ Analternative way to model polarisation effects is exemplified by the water model of Sprik

and Klein [Sprik and Klein 1988] , where the polarisation centre is represented as a collection
of closely spaced charges whose values are permitted to vary but whose totai sums to zero
In the water mOf:Iel, shown in Figure 4.29, four tetrahedrally arranged charges are used tc;
maodel the polarisation centre. These charges endow the molecule with an induced dipole

_ moment of any magnitude and direction. The charges are determined iteratively for each

conflgu,rat'ion of the system. The isotropic polarisability of a simple ion can similarly be
'trea,ted using Wo charges of equal magnitude but opposite sign placed either side oz the
ion, The d1rect1f)n of the ‘bond’ linking the two polarisation charges and the ion can reorient
o change the direction of the induced dipole. In a subsequent refinement of this‘model Sprik
a‘nd, Klein replaced the point charges by Gaussian charge distributions at the olarisaI:i

sites; these were better at modelling features such as hydrogen bonding i o

One appea}ling approach is the dynamically fluctuating charge model of Berne and col
Ie;gues [Rick et /ul. 1994]. This method has much in common with the charge equilibratior-l
;C(,) :1:18 of Ra}?pe a.nd Goddkard (see Section 4.9.6) in its use of the electronegativity equalisa-
Th,e, Cﬁg:oac , which ('ensures that the afomic chemical potentials are equal in the molecule.
n o ges are considered as ('iyngrmcally fluctuating variables, along with the atomic
ticlei in a molecular dynamics simulation. This means that the charges evolve in a natural

dl: 0/ : :

Fig. : 1 i

E;j% Cf;jp,iil;ziabﬁ rlnodellis ];)f wat;r and ions developed by Sprik and Klein. (Figure adapted from Sprik M 1993
I e Py entials an ond. In C i ion i i i '
5 i Kluwer).ey omputer Simulation in Chemical Physics, Allen M P, D J Tildesley
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manner during the simulation rather than having to determine a new set of charges at each
iteration of the procedure. This fluctuating charge model includes intramolecular inter-
actions and so the traditional Coulombic 1/r expression is not appropriate. Rather, the
charges are replaced by charge distributions (formulated as Slater s orbitals) whose
interaction is calculated using a Coulomb integral expression. This interaction is effectively
identical to the standard Coulomb expression for intermolecular interactions, only differing
for the intramolecular contribution.

One feature of this oscillating charge model is that it requires rather less computational effort
than traditional polarisation models. It also implicitly preserves the higher-order multipole
terms, which need to be explicitly incorporated in some of the alternative approaches. lons
are represented by two partial charges (which sum to the required integral ionic charge)

which are connected by a harmonic spring. The mass of one of these two species is made -

much greater than the other so that the heavier site remains near the centre of mass as the
spring oscillates. This particular model has been used for simulations of pure liquid water
[Rick et al. 1994], the solvation of amides [Rick and Berne 1996] and to investigate the effects
of polarisability on the hydration of the chloride ion in water clusters [Stuart and Berne
1996]. These calculations predicted that the chloride ions were located on the outside of
the clusters, even when they contained more than 100 water molecules. This was in contrast
to equivalent calculations using a non-polarisable model, the difference being attributed to
the presence of fluctuations in the dipole strengths of the water molecules in the cluster,
which are, as a consequence, more mobile. ' '

Due to the computational expense, polarisation effects are often included in a calculation
only when their effect is likely to be significant, such as simulations of ionic solutions.
These systems usually contain atoms or ions and small molecules only. It is important to
be aware of the following problem when using atomic polarisabilities. Consider a diatomic
molecule. The application of an external field will induce dipoles on both atoms. The dipole
on one atom will also contribute to the electric field at the other atom, and thereby influence
its induced dipole, but the model takes no account of the fact that the charge distributions
on the two atoms are inherently linked. For this reason (and for reasons of computational
efficiency) it is common to treat small molecules such.as water as single polarisable centres
when calculating polarisation effects. :

4.9.11 Solvent Dielectric Models

All of the formulae that we have written for electrostatic energies, potentials and forces have
included the permittivity of free space, £o. This is as one would expect for species acting ina
vacuum. However, under some circumstances a different dielectric model is used in the
equations for the electrostatic interactions. This is often done when it is desired to mimic
solvent effects, without actually including any explicit solvent molecules. One effect of a
solvent is to dampen the electrostatic interactions. A very simple way to model this damping
effect is to increase the permittivity, most easily by using an appropriate value for the

relative permittivity in the Coulomb’s law equation (i.e. £ = £0¢;). An alternative approach

is to make the dielectric dependent upon the separation of the charged species; this gives rise
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Effective dielectric constant

Distance

 Hg 4.30: A sigmoidal dielectric model smoothly varies the effective permittivity from 80 to 1 as shoum

to the so-called dist.ance—(?ler.)endent dielectric models. The simplest implementation of a dis-

tance':-depen.dent dielectric is to make the relative permittivity proportional to the distance

The interaction energy between two charges g; and g; then becomes: ‘

-1 g

v(r) = Tne, 2 (4.57)

The simple distance-dependent dielectric has no physical basis and so it is not generally

gecomglended, except when no alternative is possible. More sophisticated distance-

. 1fpen dent fgnchons can also be gmployed. Many of these have an approximately sigmoidal

; ?l}ze in which the rfelatlve permittivity is low at short distances and then rises towards the
bulk value at long distances. One example of such a function is [Smith and Pettit 1994]:

g —1

eett(r) = €, — [(rS)* +2rS +2]e ™ (4.58)
The value of £ varies from a value of 1 at zero separation to ¢, (the bulk permittivity of th

Sglve,nt) at large distances, in a manner determined by the parameter 5 (which is typicalle
%:;-z:, :) valﬁz betwe'en 0.15'A ! and 0.3 A™7; Figure 4.30). Sigmoidal functions give bette}ll'
- _Chooslértth n the s1mple distance-dependent dielectric model. However, it may be difficult
. e appropriate value .for the bulk dielectric ¢, when performing calculations on
large solutes, as the shortest distance between two charges may be through the solute

_ molecule rather than through the solvent (Figure 4.31).

'I‘h . . . ) . -
Sé;tgﬂlar;sahon'term can be a major contributor to the free energy of solvation of a
solute, and a variety of schemes have been devised to incorporate such effects where the

solvent is' modelled i ; :
L 1]9_11'12‘ as a continuum. We shall discuss these methods in more detail in
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]

Fig. 4.31: A line joining two points may pass through regions of different permittivity.

4.10 Van der Waals Interactions

FElectrostatic interactions cannot account for all of the non-bonded interactions in a system.
The rare gas atoms are an obvious example; all of the multipole moments of a rare gas atom
are zero and so there can be no dipole-dipole or dipole~induced dipole interactions. But
there clearly must be interactions between the atoms; how else could rare gases have
liquid and solid phases or show deviations from ideal gas behaviour? Deviations from
ideal gas behaviour were famously quantitated by van der Waals, thus the forces that
give rise to such deviations are often referred to as van der Waals forces.

If we were to study the interaction between two isolated argon atoms using a molecular beamn
experiment then we would find that the interaction energy varies with the separation in a
manner as shown in Figure 4.32. The other rare gases show a similar behaviour. The essential
features of this curve are as follows. The interaction energy is zero at infinite distance {and
indeed is negligible even at relatively short distances). As the separation is reduced, the
energy decreases, passing through a minimum at a distance of approximately 3.8A for
argon. The energy then rapidly increases as the separation decreases further. The force
between the atoms, which equals minus the first derivative of the potential energy with
respect to distance, is also shown in Figure 4.32. A variety of experiments have been used
to provide evidence for the nature of the van der Waals interactions, including gas imperfec-
tions, molecular beams, spectroscopic studies and measurements of transport properties.

4.10.1 Dispersive Interactions

The curve in Figure 4.32 is usually considered to arise from a balance between attractive and
repulsive forces. The attractive forces are long-range, whereas the repulsive forces act at
short distances. The attractive contribution is due to dispersive forces. London first showed
how the dispersive force could be explained using quantum mechanics [London 1930]
and so this interaction is sometimes referred to as the London force. The dispersive force
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Interatomic separation

Fig. 4.32: The inferaction energy and the force between two argon atoms.

is due to instantaneous dipoles which arise during the fluctuations in the electron clouds. An
instantaneous dipole in a molecule can in turn induce a dipole in neighbouring atoms,
giving rise to an attractive inductive effect.

A simple model to explain the dispersive interaction was proposed by Drude. This model
consists of ‘molecules” with two charges, +4 and —g, separated by a distance . The negative
charge performs simple harmonic motion with angular frequency w along the z axis about
the stationary positive charge (Figure 4.33). If the force constant for the oscillator is k and
if the mass of the oscillating charge is m, then the potential energy of an isolated Drude
molecule is %kzz, where z is the separation of the two charges. w is related to the force
constant by w = /k/m. The Schrédinger equation for a Drude molecule is:
Koy 1
Tam o2 2
This is the Schrodinger equation for a simple harmonic oscillator. The energies of the system
are given by E, = (v +3) x hw and the zero-point energy is 1 hw.

k2% = Eyp (4.59)

Wenow introduce a second Drude molecule, identical to the first, with the positive charge also
Ioca{ted on the z axis and an oscillating negative charge (Figure 4.33). When the two molecules
are infinitely separated, they do not interact and the total ground-state energy of the system is

- DS
e BT ' B
+q -4 -4 +q

Fig. 4.33: The Drude model for dispersive interactions. (Figure adapted from Rigby M, E B Smith, W A Wiakeham

and G C Maitland 1986. The Forces Between Molecules. Oxford, Clarendon Press.)
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just twice the zero-point energy of a single molecule, fiw /2. As the molecules approach (along
the z axis) there are interactions between the two dipoles, and the interaction energy between
the two “molecules’ can be shown to be approximately given by (see Appendix 4.1): '

a*hw

- 4.60)
2(4meg)*r® (4.60)

‘v(r) =

The Drude model thus predicts that the dispersion interaction varies as 1 /7.
The two-dimensional Drude model can be extended to three dimensions, the result being;

3ahiw

" e (4.61)

v(r) =
The Drude model only considers the dipole-dipole interaction; if higher-order terms, due to
dipole-quadrupole, quadrupole-quadrupole, etc., interactions are included as well as other
terms in the binomial expansion, then the energy of the Drude model is more properly
written as a series expansion:
Co G  Cp
v(?‘)='1‘—6'+?‘+r17+'” (4.62)
All of the coefficients C, are negative, implying an attractive interaction. Despite its
simplicity, the Drude model gives quite reasonable results; if just the C¢ term is included
then for argon the resulting dispersion energy is only about 25% too small.

4.10.2 The Repulsive Contribution

Below about 3 A, even a small decrease in the separation between a pair of argon atoms
causes a large increase in the energy. This increase has a quantum mechanical origin and
can be understood in terms of the Pauli principle, which formally prohibits any two
electrons in a system from having the same set of quantum numbers. The interaction is
due to electrons with the same spin, therefore the short-range repulsive forces are often
referred to as exchange forces. They are also known as overlap forces. The effect of exchange
is to reduce the electrostatic repulsion between pairs of electrons by forbidding them to
occupy the same region of space (i.e. the internuclear region). The reduced electron density

in the internuclear region leads to repulsion between the incompletely shielded nuclei. At

very short internuclear separations, the interaction energy varies as 1/r due to this nuclear
repulsion, but at larger separations the energy decays exponentially, as exp(—2r/ag), where
g is the Bohr radius. -

4.10.3 Modelling Van der Waals Interactions

The dispersive and exchange-repulsive interactions between atoms and molecules can be
calculated using quantum mechanics, though such calculations are far from trivial,
requiring electron correlation and large basis sets. For a force field we require a means to
model the interatomic potential curve accurately (Figure 4.32), using a simple empirical
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Fig. 4.34: The Lennard-Jones potential.

expression that can be rapidly calculated. The need for a function that can be rapidly
evaluated is a consequence of the large number of van der Waals interactions that must
be determined in many of the systems that we would like to model. The best known of
the van der Waals potential functions is the Lennard-Jones 12-6 function, which takes the
following form for the interaction between two atoms:

o(r) =4e K% )12 —~ (i:ﬂ (4.63)

The Lennard-Jones 12-6 potential contains just two adjustable parameters: the collision dia-
meter o (the separation for which the energy is zero) and the well depth ¢. These parameters
are graphically illustrated in Figure 4.34. The Lennard-Jones equation may also be expressed
in terms of the separation at which the energy passes through a minimum, 7, (also written
r'). At this separation, the first derivative of the energy with respect to the internuclear
distance is zero (i.e. 8»/8r = 0), from which it can easily be shown that r,, = 2//%5. We
can thus also write the Lennard-Jones 12-6 potential function as follows:

o) = {(rn/7) = 20/ 1)} (464)
or '
o(r) = A/ —C/° (4.65)
A is equal to er2 (or 4e0™?) and C is equal to 2¢75, (or 4e®).

The Lennard-Jones potential is characterised by an attractive part that varies as r®and a
rié}gulsive part that varies as 2. These two components are drawn in Figure 4.35. The
t 7 variation is of course the same power-law relationship found for the leading term in
theoretical treatments of the dispersion energy such as the Drude model. There are no
strong theoretical arguments in favour of the repulsive ™2, especially as quantum
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-12

Fig. 4.35: The Lennard-Jones potential is constructed from a repulsive component (ar™ ") and an attractive

component (ar5).

mechanics calculations suggest an exponential form. The twelfth power term is found to be
quite reasonable for rare gases but is rather too steep for other systems such as hydro-
carbons. However, the 6-12 potential is widely used, particularly for calculations on large
systems, as r~ ' can be rapidly calculated by squaring the +~5 term. The r° term can also
be calculated from the square of the distance without having to perform a computationally
expensive square root calculation. Different powers have also been used for the repulsive
part of the potential; values of 9 or 10 give a less steep curve and are used in some force
fields. Lennard-Jones’ original potential has been written in the following general form:

on{()-() T e

Equation (4.66) returns the Lennard-Jones potential for n =12 and m = 6.

Halgren has proposed an alternative functional form designed to be simple enough to be
easily incorporated into molecular mechanics calculations whilst also improving the ability
to reproduce experimental data [Halgren 1992, 1996a, b]. In this sense it is an attempt to
improve on the Lennard-Jones potential without introducing the complexity of some of
the potentials employed by spectroscopists. This potential has the general form:

() =aij(1+5>("m)( 147 _2> (4.67)

pij +6 pg +

In this equation p; = r;/rj. The constants é and y apply to all interactions between the atoms
i and j. This potential reduces to the standard Lennard-Jones 12-6 potential if the following
choice of parameters is used: n = 12, m = 6, 6§ = v = 0. Halgren proposed a ‘buffered 14-7"
potential in whichn =14, m =7, 6§ =0.07 and v = 0.12, giving the following equation:

10775 Y/ 112r)
o 4.68
7 (1’) €jj <rij + 007}’5) <”Z + 0121’;‘]‘7) ( )
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There were several reasons for developing this functional form. First was the desire to keep
the potential finite as the interatomic potential approaches zero (unlike the Lennard-Jones
function, which becomes infinite). Second, it gives a more accurate reproduction of the
series expansion for the dispersion interaction, Equation (4.62). Third, if a larger value of
d is. used then the repulsive component is greatly reduced without significantly changing
the distance at which the potential crosses zero or the depth of the energy minimum. This
feature is useful for optimising structures with crude initial geometries; other functional
forms can have significant problems with such situations.

In the buffered 14-7 potential the minimum-energy separation 7} for an atom i depends on
its atomic polarisability:

= At (4.69)

Several formulations in which the ™' term in the standard Lennard-Jones formulation is
replaced by a theoretically more realistic exponential expression have been proposed.
These include the Buckingham potential:

6 6

v(r) =¢ - exp|—a(r/rm — 1)] —ﬁ (r7m> ] (4.70)
There are three adjustable parameters in the Buckingham potential (g, 1y, and ¢). A value of ¢
between approximately 14 and 15 gives a potential that closely corresponds to the Lennard-
Jones 12-6 potential in the minimum-energy region. When using the Buckingham potential
it is important to remember that at very short distances the potential becomes strongly
attractive, as shown in Figure 4.36. This could lead to nuclei being fused together during
a calculation, and so the program must check that atoms are not becoming too close. The

Energy
I

rir

m

Fig. 4.36: A drawback of the Buckingham potential is that it becomes steeply attractive at short distances.
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atoms come close together some redistribution of the charge along the connecting bonds
would be expected that would act to reduce the interaction. Such a charge redistribution
would not be possible for two atoms at a similar distance apart if they were in different
molecules.

The parameters for the van der Waals interactions can be obtained in a variety of ways. In the
early force fields, such parameters were often determined from an analysis of crystal
packing. The objective of such studies was to produce a set of van der Waals parameters
which enabled the experimental geometries and thermodynamic properties such as the
heat of sublimation to be reproduced as accurately as possible. More recent force fields
derive their van der Waals parameters using liquid simulations in which the parameters
are optimised to reproduce a range of thermodynamic properties such as the densities
and enthalpies of vaporisation for appropriate liquids.

4.10.5 Reduced Units

The Lennard-Jones potential is completely specified by the two parameters ¢ and o. This
means that the results of a calculation performed on (say) liquid argon can be easily
converted to give equivalent results for another noble gas. For this reason it is common to
simulate the rare gases in terms of reduced units with ¢ and o both set to 1. The results
can then be converted to any system as appropriate. For example, the reduced density p*
is related to the real density by p* = po°; the reduced energy E* is given by E* = E/e, and
so on. Electrostatic interactions given by Coulomb’s law are also often written in terms of
a reduced unit of charge, which corresponds to each charge being divided by +/4me,. This
means that Coulomb’s law takes the less cumbersome form:

v(fllaflz) =ifa/r2 Of ¢(41,92) = G1G2/6: 112 (4.79)

4.11 Many-body Effects in Empirical Potentials

The electrostatic and van der Waals energies that we have considered so far are calculated
between pairs of interaction sites. The total non-bonded interaction energy is thus
determined by adding together the interactions between all pairs of sites in the system.

However, the interaction between two molecules can be affected by the presence of a

third, fourth or more molecules. For example, the interaction energy between three
molecules A, B and C is not in general given by the sum of the pairwise interaction energies:
»(A,B,C) # +(A,B) + v(A,C) ++(B,C). We have already seen an example of a non-
pairwise contribution, namely the polarisation interaction, which is determined using a
self-consistent procedure.

Three-body effects can significantly affect the dispersion interaction. For example, it is
believed that three-body interactions account for approximately 10% of the lattice energy
of crystalline argon. For very precise work, interactions involving more than three atoms
may have to be taken into account, but they are usually small enough to be ignored. A poten-
tial that includes both two- and three-body interactions would be written in the following
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Fig. 4.37: Calculating the three-body Axilrod-Teller contribution.

general form:

N N N N N
7 (V) = Z Z 0(2)(71‘]') +Z Z Z & (T3 Tiks i) (4.80)
i=1 j=i+1 i=1 j=i+1 k=j+1

Axilrod and Teller investigated the three-body dispersion contribution and showed that the
leading term is:

3 cos B4 cos 05 cos b

) (aB,7AB, 7BC) = VABC (4.81)

(rABrACrBC)a
QA, 6g and 6c are the internal angles of the triangle with sides of length 7,p, roc and rgc
(Figure 4.37). vp pc is a constant characteristic of the three species A, B and C. If A, B and
C are identical then v, g is approximately related to the Lennard-Jones coefficient C
and the polarisability by

v _ SQC6
ABC T T 4(4mey)

The effect of the Axilrod-Teller term (also known as the triple-dipole correction) is to make
the interaction energy more negative when three molecules are linear but to weaken it
when the molecules form an equilateral triangle. This is because the linear arrangement
enhances the correlations of the motions of the electrons, whereas the equilateral arrange-
ment reduces it.

(4.82)

Tlale three-body contribution may also be modelled using a term of the form
ol )(rAB,rAC,rBC) = Kapc{exp(—arap) exp(—frac) exp(—yrsc)} where K, «, 3 and v are
constants describing the interaction between the atoms A, B and C. Such a functional
form has been used in simulations of ion-water systems, where polarisation alone does
not exactly model configurations when there are two water molecules close to an ion
[Lybrand and Kollman 1985]. The three-body exchange repulsion term is thus only calcu-
lated for ion-water-water trimers when the species are close together.

The computational effort is significantly increased if three-body terms are included in the
model. Even with a simple pairwise model, the non-bonded interactions usually require
by far the greatest amount of computational effort. The number of bond, angle and torsional
terms increases approximately with the number of atoms (N) in the system, but the number
of non-bonded interactions increases with N2 There are N(N — 1)/2 distinct pairs of



214 ) ' ‘ Chapter 4

interactions to evaluate for a pairwise potential. If three-body effects are included then there
are N(N —1)(N —2)/6 unique three-body interactions. A system with 1000 atoms has
499500 pairwise interactions and 166167 000 three-body interactions. In general, there are
approximately N/3 times more three-body terms than two-body terms and so 'it is clear
why it is often considered preferable to avoid calculating the three-body interactions.

4.12 Effective Pair Potentials

Fortunately, it is found that a significant proportion of the many-body effects can be

incorporated into a pairwise model, if properly parametrised. The pair potentials most com- -

monly used in molecular modelling are thus ‘effective’ pairwise potentials; they do not
represent the true interaction energy between two isolated particles but are parametrised
to include many-body effects in the pairwise energy. Similarly, polarisation effects can be
implicitly included in a force field by the simple expedient of enhancing the electrostatic
interaction. This can be done by using larger partial charges than those for an isolated
molecule. This is most obviously manifested in larger multipole moments; the dipole
moment of a single water molecule is 1.85D, whereas the dipole moment of many simple
water models designed to simulate liquid water are significantly larger (closer to the
experimental value for liquid water of 2.6 D).

A notable example of a potential that does include many-body terms is the Barker-Fisher-
Watts potential for argon, which combines a pairwise potential with an Axilrod-Teller triple

150

100 Lcnnard-joncs

Barker—Fisher—Walits
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Fig. 4.38: Comparison of the Lennard-Jones potential for argon with the Barker—Fisher-Watts pair potential; kg is
Boltzmann’s constant.

Empirical Force Field Models: Molecular Mechanics 215

potential [Barker et al. 1971]. The pair potential is a linear combination of two potentials that
each take the following form:

) =TT A+ Ag(r = 1) 4 Ag(r' — 1)+ As(r = 1)+ Ay(r = 1) 4 As(r' = 1))

n G n Cg n Cyo
§4+R® 6§+R® s+ R

(4.83)

This potential function contains eleven constants: o, Ay ... As, Cs, Cg, Cy0 and 6. The function
is expressed in terms of r*, which is given by r* = r/ry, where r,, is the separation at the
minimum in the potential. The ‘true’ interaction energy as a function of the separation, r,
is then obtained by multiplying »"(r*) by the depth of the potential well, e:

v(r) = o™ (r") (4.84)

A comparison of the pairwise contribution to the Barker-Fisher-Watts potential with the
Lennard-Jones potential for argon is shown in Figure 4.38.

4.13 Hydrogen Bonding in Molecular Mechanics

Some force fields replace the Lennard-Jones 6-12 term between hydrogen-bonding atoms by
an explicit hydrogen-bonding term, which is often described using a 10-12 Lennard-Jones
potential:

A C

v(r)zﬁ—ﬁ

i (4.85)

This function is used to model the interaction between the donor hydrogen atom and the
heteroatom acceptor atom. Its use is intended to improve the accuracy with which the
geometry of hydrogen-bonding systems is predicted. Other force fields incorporate a
more complicated hydrogen-bonding function that takes into account deviations from the
geometry of the hydrogen bond and is thus dependent upon the coordinates of the donor
and "acceptor atoms as well as the hydrogen atom. For example, the YETI force field
[Vedani 1988] uses the following form for its hydrogen bonding term:

A - C

_ 2 4

vHp = (—12 — = ) €08" Opon..H.--Acc COS” WH...Acc—LP (4.86)
THAce  TH-Ace

The energy in Equation (4.86) depends upon the distance from the hydrogen to the acceptor,
the angle subtended at the hydrogen by the bonds to the donor and the acceptor, and the
deviation of the hydrogen bond from the closest lone-pair direction at the acceptor atom
{@it.-acc_1p In Equation (4.86), Figure 4.39).

The GRID program [Goodford 1985] that is used for finding energetically favourable regions
n protein binding sites uses a direction-dependent 6-4 function:

C D
VHB = (d—é' — F) COSm 0 (487)

6 is the angle subtended at the hydrogen and m is usually set to 4.
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Fig. 4.39: Definition of hydrogen-bond geometry used in YETI force field.

By no means do all force fields contain explicit hydrogen-bonding terms; most rely upon
electrostatic and van der Waals interactions to reproduce hydrogen bonding.

4.14 Force Field Models for the Simulation of Liquid Water

Many of the concepts that we have considered so far can be illustrated by examining some of
the empirical models that have been developed to study water. Despite its small size, water
acts as a paradigm for the different force field models that we have discussed. Moreover,
many of its properties can be easily determined using computer simulation methods and
so readily compared with experiment. It is also one of the most challenging systems to
model accurately. A wide range of water models have been proposed. The computational
efficiency with which the energy can be calculated using a given model is often an important
factor as there may be a very large number of water molecules present, together with a
solute; most of the force fields used to simulate liquid water thus use effective pairwise
potentials with no explicit three-body terms or polarisation effects.

Water models can be conveniently divided into three types. In the simple interaction-site
models each water molecule is maintained in a rigid geometry and the interaction between
molecules is described using pairwise Coulombic and Lennard-Jones expressions. Flexible
models permit internal changes in conformation of the molecule. Finally, models have
been developed that explicitly include the effects of polarisation and many-body effects.

4.14.1 Simple Water Models

The ‘simple” water models use between three and five interaction sites and a rigid water
geometry. The TIP3P [Jorgensen et al. 1983] and SPC [Berendsen et al. 1981] models use a
total of three sites for the electrostatic interactions; the partial positive charges on the hydro-
gen atoms are exactly balanced by an appropriate negative charge located on the oxygen
atom. The van der Waals interaction between two water molecules is computed using a
Lennard-Jones function with just a single interaction point per molecule centred on the
oxygen atom; no van der Waals interactions involving the hydrogen atoms are calculated.
The TIP3P and SPC models differ slightly in the geometry of each water molecule, in the
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SPC SPC/E TIP3P BF TiP4p ST2

r(OH), A 1.0 1.0 0.9572 0.96 0.9572 1.0
HOH; deg . 109.47 109.47 104.52 105.7 104.52 109.47

A < 1073, keal A"%/mol 629.4 6294 5820 560.4 600.0 238.7

¢, keal A¥/mol 625.5 625.5 595.0 837.0 610.0 268.9
q(0) ~0.82 —0.8472 —-0.834 0.0 0.0 0.0
q(H) 0.41 0.4238 0.417 0.49 0.52 0.2375
q™v) 0.0 0.0 0.0 ~0.98 -1.04 -0.2375
rOM), A 0.0 0.0 0.0 0.15 0.15 0.8

Table 4.3 A comparison of various wuternmodels [Jorgensen et al. 1983]. For the ST2 potential, (M) is the charge on
the ‘lone pairs’, which are a distance 0.8 A from the oxygen atom (see Figure 4.40).

_ hydrogen charges and in the Lennard-Jones parameters. These differences are indicated in

Table 4.3, which also includes data for the SPC/E model [Berendsen et al. 1987], which is an
updated version of the SPC model. The four-site models such as that of Bernal and Fowler
[Bernal and Fowler 1933] (which is now relatively little used but is important for historical
reasons as it dates from 1933) and Jorgensen’s TIP4P model [Jorgensen et al. 1983] shift the
negative charge from the oxygen atom to a point along the bisector of the HOH angle
towards the hydrogens (Figure 4.40). The parameters for these two models are also given
in the table. The most commonly used five-site model is the ST2 potential of Stillinger
and Rahman [Stillinger and Rahman 1974]. Here, charges are placed on the hydrogen
atoms and on two lone-pair sites on the oxygen. The electrostatic contribution is modulated

50 that for oxygen-oxygen distances below 2.016 A it is zero and for distances greater than

3.1287 A it takes-its full value. Between these two distances the electrostatic contribution is
modulated using a function that smoothly varies from 0.0 at the shorter distance to 1.0 at the
longer distance (see Section 6.7.3).

The experimentally determined dipole moment of a water molecule in the gas phase
is 1.85D. The dipole moment of an individual water molecule calculated with any of
these simple models is significantly higher; for example, the SPC dipole moment is
227D and that for TIP4P is 2.18 D. These values are much closer to the effective dipole
moment of liquid water, which is approximately 2.6 D. These models are thus all effective
pairwise models. The simple water models are usually parametrised by calculating various
properties using molecular dynamics or Monte Carlo simulations and then modifying the

qu) qH)
4(0) ! /
M /
q(H) g(H) M m s %
. _ | ap) q(H)
SPC, SPC/E, TIP3P TIP4P, BF §T2

- Fig. 4.40:. Some ‘simple’ water models (Table 4.3) [Jorgensen et al. 1983].
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parameters until the desired level of agreement between experiment and theory is achieved.
Thermodynamic and structural properties are usually used in the parametrisation, such as
the density, radial distribution function, enthalpy of vaporisation, heat capacity, diffusion
coefficient and dielectric constant.* It is found that some properties such as the density
and the enthalpy of vaporisation are predicted rather well by all of the models, but there
is significant variation in the values for other properties such as the dielectric constant
[Jorgensen et al. 1983]. When comparing the different models, it is also important to take
account of the computational effort each requires. Thus, nine site-site distances must be
calculated for each water dimer using a three-site model; ten are required for a four-site
model, and seventeen for the ST2 model.

The use of a rigid model for water is obviously an approximation, and it means that some
properties cannot be determined at all. For example, only when internal flexibility is
included can the vibrational spectrum be calculated and compared with experiment.
Flexibility is most easily incorporated by ‘grafting’ bond-stretching and angle-bending
terms onto the potential function for a rigid model. Such an approach needs to be done
with care. For example, Ferguson has developed a flexible model for water that is based
upon the SPC model [Ferguson 1995]. The partial charges and van der Waals parameters
in this model were slightly different from those in the rigid model, and flexibility was
achieved using cubic and harmonic bond-stretching terms and a harmonic angle-bending
term. The calculated values compared well with experimental results for a wide range of
thermodynamic and structural properties, including the dielectric constant and self-
diffusion coefficient.

4,14.2 Polarisable Water Models

The simple models give very good results for a wide range of properties of pure liquid
water. However, there is some concern that they are not appropriate models to use for
the most accurate work. This is especially the case for inhomogeneous systems where
there are strong electric field gradients due to the presence of ions, and at the solute-solvent
interface. Under such circumstances models that explicitly include polarisation effects and
three-body terms are considered to be more appropriate. The inclusion of an explicit polar-
isation term should also enhance the ability of the model to reproduce the behaviour of
water in other phases (e.g. solid and vapour) and at the interface between different
phases. The dipole moment of an isolated water molecule in such a model should thus be
closer to the gas-phase value rather than to the ‘effective’ value in liquid water. The simplest
way to include polarisation is to use an isotropic molecular polarisability contribution;
an alternative is to use atom-centred polarisabilities or the variable charge method. The
incorporation of polarisability may significantly increase the computational effort required
for a liquid simulation, and even then only the best polarisable models currently compete
with the well-established models that use effective pairwise potentials. We have already
considered some of the polarisable water models in our discussion of polarisation effects.
One early attempt to incorporate such effects into a water model was made by Barnes,

" A discussion of the calculation of these properties from computer simulation is given in Section 6.2.
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Finney, Nicholas and Quinn [Barnes éf al. 1979]. Their polarisable electropole water model
represented the charge distribution by a multipole expansion comprising a dipole of
l..855 D and a quadrupole moment that was determined from quantum mechanical calcula-
fions on an isolated molecule. Polarisation effects were calculated using an isotropic
molecular polarisability from the electric fields being produced by the dipoles and
quadrupoles of surrounding molecules. The model also used a spherically symmetric
Lennard-Jones function. A more recent study used the fluctuating charge model with
both the TIP4P and SPC geometries [Rick ef al. 1994]. The charges were assigned to repro-
duce the correct dipole moment of the gas-phase molecule (in contrast to the equivalent
non-po'larisable models). Of the two geometries, the TIPAP model gave the better results
for various properties. The dielectric properties were considered particularly well repro-
d};ced, including features in the dielectric spectrum arising from the translational motion
of a water molecule in the cage of its neighbours. This feature is not present in fixed-
charge models. Moreover, the computational cost with this particular model was onl

about 1.1 times that of the fixed-charge equivalent. g

4.14.3 Ab initio Potentials for Water

The final category of water model that we shall consider are the ‘ab initio’ potentials. These
are based upon ab initio quantum mechanical calculations on small clusters of' water
mo'lecules. One example of this type is the NCC model of Nieser, Corongiu and Clementi
which combines a two-molecule potential with a polarisation term [Niesar ef a 1990],
They had previously tried to explicitly include both three- and four-body effe;:ts bu’;
found this model computationally too expensive. The two-body model uses partial charges
on the hydrogen atoms and a compensating negative charge on a site located along the
bisector of the HOH angle, as in the TIP4P model. The equation used is:

] 1 11
P owobody = P —— + —— + —— 4 L
tworbody = (R13+R14+R23+R24)

4q° 1 01 1 1
R qZ(R—m+R—82+E+R_74>
+ App e FooRss Appy(e7BmRo | o~BunRi | ~BimRy I E—BHHR24)
+ Aop(e BomRes 4 p=BonRss | ,~BonRe + e—BOHRGZ)
- AIOH(B‘B/OHRS"‘ + ¢ BouRss  ,~BonRa ¢ BonRar)
+ Apyy(e B 4 g FruRn | p~BouRer 4 o BeuRa)

+ Apo (e ProRe 4. g~k (488)

; T.he points P are the Jocations where the negative charge is placed (numbered 7 and 8 in
_ Figure 4.41) and the terms Apy and App are used to enhance the performance of the

model at §hort f:listar)ces. q is the charge on each hydrogen. The polarisation term is
calculated in an iterative manner using induced dipoles along each O—H bond. The NCC

_ model was parametrised by fitting to the energies and other properties of 250 trimer and
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Fig. 4.41: The NCC water model. (After Corongiu G 1992. Molecular Dynamics Simulation for Liguid Water Using
a P;Jlurisable and Flexible Potential. International Journal of Quantum Chemistry 42:1209-1235.)

gh-level ab initio methods and large basis sets.
-body parameters (i.e. the locations of the
together with the polarisability and the
t the remaining terms

350 dimer configurations determined with hi
The water trimer data was used to fit the many
induced dipole moments and the point charges, .
value of the hydrogen charge). The dimer data were then used to fi

in the potential.

The original NCC potential was designed as a rigid water model ;'md perform_ed y;e]]. in tes;s:
of its ability to reproduce experimental data for both watgr dimers and llqul water.mc1
flexible version has also been developed [Corongiu 1992], with the energy being expresse ’
as a function of the three internal coordinates (two bond lengths and one angle) with terms

up to quartics:

Y intra = ]EfRR(‘s% +8)+ %faa(ég) + frr 6162 + fro(61 + 62)63
+ Rle [frrr (83 + 63) + foooB3 + frrr: (61 + 62)616
+ frro (83 + 63)83 + farob18205 + froo(b1 + 82)83]
+ ’1;—5 [ferrr (61 + &) + fonaoS3 ;i'fRRRR'(ﬁ% + 63)6162

+fRRR'R'5%§% +fRRRO(§? + 5%)‘53]

2\ 2
+ Rl—z [ frrrro(61 + 62)616203 + faroo (6 + 62)83
€
2
+ frri06616263 + frooe(61 + 6)83]

where (51 = Rl b Re, 452 = R2 - Re and (53 = RE(O - 92).

i : ‘ \plexity of some empirical
1 form of the NCC model demonstrates the complexity o ;
T ele (an this £ ntains only three atoms!). We should also note that

m ab initio quantum mechanical data is an approac.h
that is already well established and looks likely to be a method that is more widely used in

models (and this for a molecule that co
the development of empirical models fro

the future.

(4.89)
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4.15 United Atom Force Fields and Reduced Representations

In our discussion so far, we have assumed that all of the atoms in the system are explicitly
represented in the model. However, as the number of non-bonded interactions scales with
the square of the number of interaction sites present, there are clear advantages if the
some or all of the atoms (usually just the hydrogen atoms) into the atoms to which they
are bonded. A methyl group would then be modelled as a single “pseudo-atom’ or
‘united atom’. The van der Waals and electrostatic parameters would be modified to take
account of the adjoining hydrogen atoms. Considerable computational savings are possible;
for example, if butane is modelled as a four-site model rather than one with twelve atoms
then the van der Waals interaction between two butane molecules involves the calculation
of sixteen terms rather than 144. Other hydrocarbons are often represented using united
atom models. Many of the earliest calculations on proteins used united atom representa-
tions. In this case, not all of the hydrogen atoms in the protein are subsumed into their adja-
cent atoms, but just those that are bonded to carbon atoms. Hydrogen atoms bonded to polar
atoms such as nitrogen and oxygen are able to participate in hydrogen-bonding interactions,
which are modelled much better if these hydrogens are explicitly represented.

One drawback with a united atom force field is that chiral centres may be able to invert
during a calculation. This was found to be a problem with the united atom force fields for
proteins. The alpha carbon in the peptide unit (C, in Figure 4.42) is bonded to a hydrogen
atom and to the side chain (glycine and proline are slightly different; see Section 10.1). A
united atom force field model would not explicitly include the alpha hydrogen. Unfortu-
nately, the stereochemistry at the alpha carbon can then invert during a calculation. This

should be avoided as the naturally occurring amino acids have a defined stereochemistry

{as shown in Figure 4.42). This inversion may be prevented through the use of an improper
forsion term (e.g. N—C—C,-R) to keep the side chain in the correct relative position.

. In a united atom force field the van der Waals centre of the united atom is usually associated

with the position of the heavy (i.e. non-hydrogen) atom. Thus, for a united CH; or CH,

_ group the van der Waals centre would be located at the carbon atom. It would be more

dccurate to associate the van der Waals centre with a position that was offset slightly
from the carbon position, in order to reflect the presence of the hydrogen atoms. Toxvaerd
has developed such a model that gives superior performance for alkanes than do the simple
united atom models, particularly for simulations at high pressures [Toxvaerd 1990]. In

H, R R
) ca/ ca/
~,, 7 \C/ \N/ \C/
| Il | I
H 0] H 0
All atom United atom

Fig. 442: Representations of the naturally occurring amino acids.
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‘“Traditional’ united atom

Anisotropic potential

Fig. 4.43: The interaction energy between the two arrangements shown is equal in a ‘traditional” united atom force
field but different in the Toxvaerd anisotropic model. (Figure adapted from Toxvaerd S 1990. Molecular Dynamics
Calculations of the Equation of State of Alkanes. The Journal of Chemical Physics 93:4290-4295.)

Toxvaerd’s model the interaction sites are located at the geometrical centres of the CH, or

CHj; groups. The forces between these sites act on the united atom mass centre, which
remains located on the carbon atom (with a mass of 14 for a CH, group and 15 for a CH;,
group). As the interaction site is no longer located at an atomic nucleus the forces acting
on the masses are more complicated to calculate, but little additional computational expense
is required. The effect of using such an anisotropic potential is nicely illustrated by the twa
arrangements of methylene units shown schematically in Figure 4.43. In the united atom
model both arrangements would have the same energies and forces, but this is not sg
with the Toxvaerd anisotropic potential.

4.15.1 Other Simplified Models

In some force field models, even simpler representations are used than the united atom
approach, with entire groups of atoms being modelled as single interaction points. For
example, a benzene ring might be modelled as a single site with appropriately chosen
parameters.

Yet other models have no obvious relationship to any ‘real’ molecule but are useful because
their simplicity enables larger or more extensive calculations to be performed than would
otherwise be possible. The polymer field is full of such models, as we shall discuss in Section
8.6. Another area where such models have been widely applied is in the study of liquid
crystals. Liquid crystals are able to form phases that are characterised by a long-range
order of the molecular orientations in at least one dimension. Many of the molecules that
exhibit liquid crystalline behaviour are rod-shaped, but disc-like molecules can also form
liquid crystalline phases. Some typical examples of molecules that can show such behaviour
are shown in Figure 4.44. In the liquid crystalline state the rod-shaped molecules are aligned
with their long axes pointing in approximately the same direction. Some very simple
computer models have been used to investigate the behaviour of liquid crystals. These
simple models enable large simulations to be performed on assemblies of many ‘molecules’.
One example of such a simplified model is the Gay-Berne potential [Gay and Berne 1981},
which models the anisotropic interaction between two particles as:

12 6

A A A (o] Js
) = de(iy;, i — 4.90
»{73) E(uﬂuﬂr){[ﬂ'j—U(ﬁi,ﬁj,f)+0'o] [rij—g(ﬁf,ﬁj,f')+0s] } (&50)

‘ gmpirical Force Field Models: Molecular Mechanics

R
R= T
R
R R
R
4
R R

223

R
R
CgHys
R
R
O

/

: O—H 0

ROOC COOR
O )
\
(CHy),, H

COOR

R O(CHz)nOCN
I R R= ﬂ?v CsH),

Fig. £.44: Some typical liguid crystal molecules.
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u, agnfi u; are unit vectors that describe the orientations of the two molecules i and j and # is
a un.lt vector a101.1g the line connecting their centres (Figure 4.45). The molecules can be
considered as ellipsoids which have a shape that is reflected in two size parameters, o

4 S

_ and g,, which are the separations at which the attractive and repulsive terms in the

potential canfzel for end-to-end and side-by-side arrangements respectively. These are
ncorporated into the potential via the parameter o:

i 52 (s a2 —
U(ﬁiaﬁ]‘)f)zao{l—&[(UI r+u] I') (ui'l'—u]--r) J} 12

20 T+ x(a-y) " 1— x(dy &) (4.91)
where
(0e/os)* +1 (4.92)
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End-tc-end
Side-by side

>

Crossed

T-shaped

Fig. 4.45: The Gay-Berne model for liguid crystal systems and some typical arrangements.

x is the shape anisotropy parameter; it is zero for spherical particles and is equal to 1 for
infinitely long rods and —1 for infinitely thin discs; og is typically set equal to o.

The energy term is also orientation-dependent and is written as follows:

e(l;,a;,t) = eoe (1, Wy, T)e” (1, ;) (4.93)
where '
(i, &) = [1 - (8 - )]/
L X [ f 492 (G -8 (4.94)
© (ui,uj,r? N {1 2 [ 1+ x' (& - &) = X' (1 - @) ]}
X' measures the anisotropy of the attractive forces:
) 1= (ee/e)M™ (495)

X = e 1
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-, is the well depth for an end-to-end arrangement of the ellipsoids when the attractive and

__repulsive contributions cancel, and ¢, is the corresponding well depth for the side-by-side

arrangement (Figure 4.45).

The Gay-Berne potential is rather complex but is governed by a relatively small number of
parameters, some of which have readily interpretable meanings. The effect of changing the
parameters can be most clearly understood by considering certain orientations, such as
the side-by-side, end-to-end, crossed and T-shaped structures (Figure 4.45). In the crossed

_ structure the well depth (i, @1;, ) and the separation o(i;, i, ) are independent of x and

+. The ratio of the well depths for the end-to-end and side-by-side arrangements is &, /.
The exponents y and v are considered adjustable parameters. One way to obtain values
for these is to fit the Gay-Berne function to arrangements of Lennard-Jones particles. For
example, Luckhurst, Stevens and Phippen determined a value of 1 for v and a value of 2
for y by fitting to a linear array of four Lennard-Jones centres [Luckhurst et al. 1990].

Depending upon the parameters chosen, simulations performed using the Gay-Berne potential
show behaviour typical of liquid crystalline materials. Moreover, by modifying the potential
one can determine what contributions affect the liquid crystalline properties and so help to
suggest what types of molecule should be made in order to attain certain properties.

_ 4.16 Derivatives of the Molecular Mechanics Energy Function

Many molecular modelling techniques that use force-field models require the derivatives of the
energy (Le. the force) to be calculated with respect to the coordinates. It is preferable that ana-
Iytical expressions for these derivatives are available because they are more accurate and faster
than numerical derivatives. A molecular mechanics energy is usually expressed in terms of a
combination of internal coordinates of the system (bonds, angles, torsions, etc.) and interatomic
distances (for the non-bonded interactions). The atomic positions in molecular mechanics are
invariably expressed in terms of Cartesian coordinates (unlike quantum mechanics, where

. internal coordinates are often used). The calculation of derivatives with respect to the atomic
___coordinates usually requires the chain rule to be applied. For example, for an energy function

that depends upon the separation between two atoms (such as the Lennard-Jones potential,

Coulomb electrostatic interaction or bond-stretching term) we can write:

ry = 1P+ -y + (@ — 2 (4.96)
' ov ov arij

ax, ~ or; ox, (4.97)
3ri]- (xi — x])

i (4.98)

~ Thus, for the Lennard-Jones potential:

15} 24¢e a \? a\®
5;;:?[_2(;> +<;>] (4.99)
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The force in the x direction acting on atom i due to its interaction with atom j is given by:

24e
fxi =(x;— j) 7

HONG] wm

Analytical expressions for the derivatives of the other terms that are commonly found in
force fields are also available [Niketic and Rasmussen 1977]. Similar expressions must be
derived from scratch when new functional forms are developed.

4.17 Calculating Thermodynamic Properties Using a Force Field

A molecular mechanics program will return an ‘energy value’ for any configuration oy

conformation of the system. This value is properly described as a “steric energy’ and is
the energy of the system relative to a zero point that corresponds to a hypothetical molecuje
in which all of the bond lengths, valence angles, torsions and non-bonded separations are set
to their strainless values. It is not necessary to know the actual value of the zero point fo
calculate the relative energies of different configurations or different conformations of the
system.

Molecular mechanics can be used to calculate heats of formation. To do so requires the
energy to form the bonds in the molecule to be added to the steric energy. These bond
energies are typically obtained by fitting to experimentally determined heats of formation
and are stored as empirical parameters within the force field. The accuracy with which
heats of formation can be predicted with molecular mechanics is, in appropriate cases, com-
parable with experiment. Thus, the steric energy of a given structure may vary considerably
from one force field to another, but its heat of formation should be much closer (if the force
fields have been properly parametrised).

A third type of ‘energy’ that can be obtained from a molecular mechanics calculation is the
‘strain energy’. Differences in steric energy are only valid for different conformations or
configurations of the same system. Strain energies enable different molecules to be
compared. To determine the strain energy it is usual to define some ’strainless’ reference
point. The reference points can be chosen in many ways and so many different definitions
of strain energy have been proposed in the literature. For example, Allinger and co-workers
defined the reference point using a set of ’strainless’ compounds such as the all-frans
conformations of the straight-chain alkanes from methane to hexane. From this set of
compounds it was possible to derive a set of strainless energy parameters for constituent
parts of the molecules. The inherent strain energy of a hydrocarbon is then obtained by
subtracting the reference 'strainless’ energy from the actual steric energy calculated using
the force field: One interesting conclusion of this study was that chair cyclohexane has an
inherent strain energy due to the presence of 1,4 van der Waals interactions between the
carbon atoms within the ring. :

The sources of strain are often quantified by examining the different components (bonds,

angles, etc.) of the force field. Such analyses can provide useful information, especially for

cases such as highly strained rings. However, in many molecules the strain is distributed
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F;:g, 4:!,46: The DN/.i base pairs guanine (G), cytosine (C), adenine (A) and thymine (T). The uracil-2,6-
. duminopyridine pair can also form three hydrogen bonds but has a much lower association constant than G—C.

_among a variety of internal parameters (and in any case is force-field-dependent). For

intermolecular interactions the interpretation can be easier, for the ‘interaction energy’ is

_simply equal to the difference between the energies of the two isolated species and the

energy of the intermolecular complex. A good example of this type of calculation and the

_ conclusions that can be drawn from it is the study by Jorgensen and Pranata [Jorgensen

and Pranata 1990] of the interaction between analogues of the DNA base pairs. In the

_ double helical structure of DNA the bases pair up adenine (A) with thymine (T) and guanine

(G) with cytosine (C) (Figure 4.46).

The association constant of the G-C base pair in chloroform is between 10* M~ and 10° M1
whereas the association between the A-T base pair is significantly weaker, at 40-130M~,
One obvious reason for this difference is that there are three hydrogen bonds in the G-C
base pair and only two in the A-T base pair. However, a simple hydrogen-bond count
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does not explain all of the data, for synthetic analogues show a significant variation in
their association constants, despite having three hydrogen bonds. The weak binding of
the uracil-2,6-diaminopyridine (DAP) system (Figure 4.46) could be considered especially
anomalous as it contains the same types of hydrogen bond as in G-C (NH,-O, NH-N,
NH,-O). A qualitative explanation for this phenomenon was proposed by Jorgensen and
Pranata who examined the secohdary interactions in these complexes. As shown in
Figure 4.47, the G-C system contains two unfavourable secondary interactions and two
favourable ones, an overall sum of zero. In the uracil-DAP system, all four secondary
interactions are unfavourable.

4.18 Force Field Parametrisation

A force field can contain a large number of parameters, even if it is intended for calculations
on only a small set of molecules. Parametrisation of a force field is not a trivial task. A sig-
nificant amount of effort is required to create a new force field entirely from scratch, and
even the addition of a few parameters to an existing force field in order to model a new
class of molecules can be a complicated and time-consuming procedure. The performance
of a force field is often particularly sensitive to just a few of the parameters (usually the
non-bonded and torsional terms), so it is often sensible to spend more time optimising
these parameters rather than others (such as the bond-stretching and angle-bending
terms), the values of which do not greatly affect the results.

The first step is to select the data that are going to be used to guide the parametrisation
process. Molecular mechanics force fields may be used to determine a variety of structurally
related properties and the parametrisation data should be chosen accordingly. The
geometries and relative conformational energies of certain key molecules are usually
included in the data set. It is increasingly common to include vibrational frequencies in
the parametrisation; these are usually more difficult to reproduce but the incorporation of
appropriate cross terms can often help. Some force fields are parametrised to reproduce
thermodynamic properties using computer simulation techniques. The OPLS (optimised
parameters for liquid simulations [Jorgensen and Tirado-Reeves 1988]) parameters have
been obtained in this way. :

Unfortunately, experimental data may be non-existent or difficult to obtain for particulai'
classes of molecules. Quantum mechanics calculations are thus increasingly used to
provide the data’for the parametrisation of molecular mechanics force fields. This is an
important development because it greatly extends the range of chemical systems that
can be treated using the force-field approach. Ab initio calculations are able to reproduce
experimental results for small representative systems. Clearly, one should be careful fo
properly validate a force field derived in such a way by testing against experimental
data if at all possible.

Once a functional form for the force field has been chosen and the data to be used in the
parametrisation identified, there are then two basic methods that can be used to actually
obtain the parameters. The first approach is ‘parametrisation by trial and error’, in which
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the parameters are gradually refined to give better and better fits to the data. It is difficult to
simultaneously modify a large number of parameters in such a strategy and so it is usuaﬂ to
perform the parametrisation in stages. It is important to remember that there is some
muvpling‘ between all of the degrees of freedom and so for the most sensitive work none
of the parameters can truly be taken in isolation. Parameters for the hard degrees of freedom
(bond stretching and angle bending) can, however, often be treated separately ﬁ'om the
others (indeed the bond and angle parameters are often transferred from one force field
to another without modification). By contrast, the soft degrees of freedom (non-bonded
and torsional contributions) are closely coupled and can significantly influence each
other. One protocol that can be quite successful is to first establish a series of van der
Waals parameters. The electrostatic model is then determined (e.g. by electrostatic potential
ﬁttir‘tg). Finally, the torsional potentials are determined by ensuring that the torsional
barriers are reproduced together with the relative energies of the different conformations.
Of course, it may be necessary to modify any of the parameters at any stage should the
resulis be inadequate and so parametrisation is invariably an iterative procedure.

As experimental information on torsional barriers is often sparse or non-existent, quantum
mechanical calculations are widely used to determine torsional potentials. The general
strategy is as follows. First, a molecular fragment that adequately represents the rotatable
bond of interest and its immediate environment is chosen. A series of structures are then
generated by rotating about the bond and their energies determined using quantum
mechanics. The torsional potential is then fitted to reproduce the energy curve, in conjuric-
tion with the van der Waals potential and partial charges. This procedure can l;e illustrated
using the study of Pranata and Jorgensen who wanted to perform some calculations on
FKSO?, a potent immunosuppressant (Figure 4.48) [Pranata and Jorgensen 1991]. FK506
contains a ketoamide functionality that has a trans conformation when the molecule is
bound to its receptor but which is cis in the crystal structure of isolated FK506. NMR experi-

part of the molecule is clearly implicated in its function and so it was considered important

MeO

Me!
O, o

//In,,,’

il O
=5
it O

OMe

s

K7

Fig. 4.48: The immunosuppressant FK506.
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Fig. 4.49: Fragments used to derive and evaluate parameters for the ketoamide functionality in FK506. (Figure
redrawn from | Pranata and W L Jorgensen 1991, Computational Studies on FK506: Conformational Search and
Molecular Dynamics Simulations in Water. The Journal of the American Chemical Society 113:9483-9493.)

to correctly model the torsional potential about this bond. Pranata and Jorgensen intended to
use the AMBER force field for their calculations but the force field contained no parameters
for this link.

Molecular orbital calculations were performed on N,N-dimethyl-a-ketopropanamide
(Figure 4.49, left), which was chosen as an appropriate model system. Semi-empirical calcu-
lations using AM1 and ab initio calculations using a 6-31G(d) basis set suggested that the
minimum energy conformation corresponded to a torsion angle of 124° and 135°, respec-
tively, with the anti conformation being slightly higher in energy (~0.7 kcal/mol). However,
an analogous calculation using the 3-21G basis set did predict that the anti conformation was
at a minimum (Figure 4.49). Crystal structures of compounds containing this fragment
revealed that an orthogonal structure was commonly encountered. Torsional parameters
were then fitted to the 6-31G(d) potential and evaluated by calculating an energetic profile
for rotation in a larger fragment of the FK506 molecule using the force field and comparing it
with that obtained using AM1 (Figure 4.49, right).

An alternative approach to parametrisation, pioneered by Lifson and co-workers in the

development of their “consistent” force fields, is to use least-squares fitting to determine

the set of parameters that gives the optimal fit to the data [Lifson and Warshel 1968].
Again, the first step is to choose a set of experimental data that one wishes the force field
to reproduce (or calculate using quantum mechanics, if appropriate). Warshel and Lifson
used thermodynamic data, equilibrium conformations and vibrational frequencies. The
‘error’ for a given set of parameters equals the sum of squares of the differences between
the observed and calculated values for the set of properties. The objective is to change the
force field parameters to minimise the error. This is done by assuming that the properties
can be related to the force field by a Taylor series expansion:

Ay(x + éx) = Ay(x) + Zéx + - - - (4.101)

Ay is a vector of the differences between the calculated and experimental data and is a vector
whose components are the force field parameters. Z is a matrix whose elements are the
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derivatives of each property with respect to each of the parameters, 8x/8y. An iterative

rocedure is used to minimise the sum of squares of the differences, Ay®. The method is
easily modified to enable various weighting factors to be assigned to the different pieces
of experimental data, so that (for example) the thermodynamic data could be given greater
importance than the vibrational frequencies.

A well-known application of the least-squares approach to the optimisation of a force

field was performed by Hagler, Huler and Lifson, who derived a force field for peptides
by fitting to crystal data of a variety of appropriate compounds [Hagler et al. 1977; Hagler
and Lifson 1974]. A key result of their work was that no explicit hydrogen bond term
was required to model the hydrogen-bonding interactions, but that a combination of
appropriate electrostatic and van der Waals models was sufficient. A group led by

_ Hagler more recently developed a force field based upon the results of ab initio quantum

mechanics calculations on small molecules, again using least-squares fitting [Maple et al.
1988].. The quantum mechanics calculations were performed not only on small molecules
at equilibrium geometries but also on structures that were distorted from equilibrium. For
each geometry the energy was calculated together with the first and second derivatives
of the energy. This provided a wealth of data for the subsequent fitting procedure.
This research has resulted in many new algorithms for the derivation of force-field
parameters and has also challenged some of the assumptions about the development
and functional form of force fields. One feature of the resulting force field, named CFF
(standing for consistent force field), is that it contains rather more cross terms than
other. force fields. This can be ascribed to the objective of accurately reproducing
vibrational spectra. :

4.19 Transferability of Force Field Parameters

The range of systems that have been studied by force field methods is extremely varied. Some
force fields have been developed to study just one atomic or molecular species under a wider
range of conditions. For example, the chlorine model of Rodger, Stone and Tildesley [Rodger
et al. 1988] can be used to study the solid, liquid and gaseous phases. This is an anisotropic site
maodel, in which the interaction between a pair of sites on two molecules depends not only
upon the separation between the sites (as in an isotropic model such as the Lennard-Jones
model) but also upon the orientation of the site-site vector with respect to the bond vectors
of the two molecules. The model includes an electrostatic component which contains
dipole-dipole, dipole-quadrupole and quadrupole-quadrupole terms, and the van der
Waals contribution is modelled using a Buckingham-like function.

Other force fields are designed for use with specific classes of molecules; we have already
encountered the AMBER force field, which is designed for calculations on proteins and
nucleic acids. Yet other force fields are intended to be applied to a wide range of molecules,
and indeed-some force fields are designed to model the entire periodic table. Intuitively, one

_might expect a “specialised’ force field to perform better than a ‘general’ force field, and

while this is certainly true for the best of the specialised force fields, a good general force

~ field can often outperform a poor specific force field.
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The ability to transfer parameters from one molecule to another is crucial for any force field.
Without it, the task of parametrisation would be impossible, bec.ause so many parame.tgrs
would be required, and the force field would have no predictive ab111ty.'Tr2}nsferab111ty
has a number of important consequences for the development and application of for.ce
fields. The problem of transferability is often first encountered when a molgcular m‘echamcs
program fails to run because parameters are missing for the molecule being studled.b One
must somehow find values for the missing parameters. Some programs automatically
‘guess’ force field parameters; it is wise to check these assignments as they may be suspect.
For the developer of a force field, a compromise must often be found between a complex
functional form and a large number of atom types. It is also important to' try to ensure
that the errors in the force field are balanced, in the sense that it would be silly to spend a

lot of time getting (say) the bond-stretching terms just right, if the van der Waals parameters

give rise to large errors.

An alternative to ’guessing’ parameters (which, if done propetly, can sometimes give quite
reasonable results) is to construct the force field in such a way that the paramgters can'be
derived from atomic properties. This is particularly pertinent to those force fields which
are designed to be used on a very wide range of elements and atom types, such as the
Universal Force Field [Rappé et al. 1992]. This force field is claimed tQ model the entire
periodic table and as such it would probably be impossible to derive ind1v1dua1' parameters
for each of the terms; indeed, the data required for such an exercise does not ex1s.t for many
cases. Thus the UFF has a set of atom types which are characterised'b.y'atomlc number,
hybridisation and formal oxidation state. Reference bond lengths are initially set equal to
the sum of the two relevant atomic bond radii and then corrected for bond ord?r and the
relative electronegativities of the two atoms. Bond force constants are obtam,ed frc')m
Badger’s rules, under which the force constant is proportional to the product of t}}e effech\{e:
atomic charges’ for the two atoms and inversely proportional to the cube of the interatomic

distance:

o 9 (4.102)

The effective atomic charges are either obtained by fitting to data on diatomic molecules
(where it exists) or by interpolation or extrapolation from this fit.

Transferability can be helped by using the same parameters for. as widfe arange Qf situations
as possible. The non-bonded terms are particularly problematic m.th1s regard; it would, lﬁ
principle, be necessary to have parameters for the non-bonded interactions between a,; !
possible pairs of atom types. This would give rise to a very large number of parameters.
It is therefore commonly assumed that the same set of van der Waals parameters can bae
used for most, if not all, atoms of the same element. For example, all carbon atOI'ns (sp™s
sp, sp, etc.) would be treated with the same set of van der Waals paramet'ers, all mtrogelr:s
by a common set, and so on. The torsional terms may also be generalised, so that t,le
torsional parameters depend solely upon the atom types of the two atoms that form tlg
central bond, rather than on all four atoms that comprise the torsion angle, as describe
in Section 4.5 for the AMBER force field.
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4.20 The Treatment of Delocalised = Systems

The bonds in conjugated « systems are often of different lengths. For example, the central
pond in butadiene is approximately 1.47 A long, but the two terminal CH=CH, bonds are
approximately 1.34 A. If butadiene is modelled using a force field in which all four carbon
atoms are assigned the same atom type (e.g. ‘carbon sp”’) then each bond will be assigned
the same bonding parameters and in the equilibrium structure all carbon-carbon bonds

. will-be almost identical in length. A similar situation arises for aromatic systems. For

example, not all the bonds in naphthalene are of equal length (unlike benzene). The bond

lengths in a delocalised 7 system depend upon the bond orders; the higher the bond
_order, the shorter the bond.

In some cases it may be possible to circumvent this problem by creating a model specific to
the conjugated system. For butadiene the central carbon-carbon bond of the 7 system could
be treated in a different manner to the two terminal bonds, for example by using one
atom type for the —CH= carbon atoms and one for the =CH, carbon atoms in butadiene.
This approach might be acceptable if we wanted to perform an extensive series of calcula-
tions on substituted butadienes, but it does compromise the transferability of the force field
parameters. An alternative is to incorporate a molecular orbital calculation into the

_ force field. Two variants on this theme have been developed. In one approach, the =

and ¢ systems are treated separately [Warshel and Karplus 1972; Warshel and Lappicirella
1981]. For a given geometry, a self-consistent field quantum mechanical calculation is
performed on the 7 system, typically with an appropriate semi-empirical theory. Molecular
mechanics is simultaneously applied to the o system. The energies of the quantum
mechanical and molecular mechanical calculations are added together, and the geometry
is modified to minimise this combined energy. A obvious assumption inherent in this
approach is that the 7 and o systems can be separated, which may be difficult to justify
when deviations from planarity are present. Nevertheless, the approach has been extended
to include those containing conjugated nitrogen and oxygen atoms, which has enabled
the study of the properties of not only the ground states of some important biological chro-

_ mophores (such as porphyrins) but also their excited states [Warshel and Lappicirella

1981].

An alternative approach is exemplified by the MM2/MM3/MM4 family of programs. First,
a molecular orbital calculation is performed on the 7 system. If the initial conformation of the
system is non-planar the calculation is performed on the equivalent planar system. The force
field parameters are then modified according to the quantum mechanical bond orders. In
MMIP2 (the name given to the special version of MM2 which incorporated these features)

_ these parameters are the force constant for the bonds in the 7 system, the reference bond

lengths and the torsional barriers [Sprague et al. 1987; Allinger and Sprague 1973]. The
system is then subjected to the usual molecular mechanics treatment using the new force

_ field paramieters. A linear relationship between the stretching constants and the bond
_orders, and between the reference bond lengths and the bond orders was found to give

good results. Initially, the torsional barriers were assumed to be proportional to the
square of the bond orders, but this relationship was modified slightly in subsequent versions
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of the program. Thus in MM4 the V; and V3 terms become:
Vo =[A+7 81V (4.103)
V3 = Ky, [1 - p(w)]V3 (4.104)

In Equation (4.103) p; is the bond order about the central bond i-j of the torsion angle
calculated for a torsion angle of zero and ; is the resonance integral from the molecular
orbital calculation. The parameter A has a value of —0.09 and so the V, term is lower for
those conjugated bonds with a lower bond order. In Equation (4.104) pj; is now the bond
order for the bond i-j calculated for the torsion angle w. Ky, equals 1.25 and so V3 increases
with decreasing bond order. A bond with a lower bond order (and so a lower V, and a
higher V3) is thus more likely to deviate from planarity.

4.21 Force Fields for Inorganic Molecules

It may come as a surprise to many readers to learn that the earliest force field calculations on
inorganic molecules were reported at much the same time as the first calculations on organic
systems. For example, Corey and Bailar described the use of empirical force field calcula-
tions on octahedral complexes of cobalt in 1959 [Corey and Bailar 1959]. The range of
metal-containing systems that can be considered by force field methods has steadily
expanded since then. Moreover, many systems of commercial interest contain metals or
other elements not usually found in ‘organic’ or ‘biochemical’ systems.

Some inorganic systems (such as certain coordination complexes) are little different to
organic systems from a force field point of view; the bonding can be represented in a similar
way and many of the force field parameters originally developed for organic systems can be
transferred without modification. However, inorganic molecules do have certain properties

which makes them more difficult to model than their organic counterparts. Perhaps the two

most striking properties are the much wider range of geometries and the presence of highly
delocalised bonds. Thus inorganic molecules include square planar and sawhorse (e.g. SF,)
shapes for four coordination and T-shaped for three coordination. Coordination numbers
higher than four are also possible, with five (square pyramidal, trigonal bipyramidal) and
six (octahedral and trigonal prismatic) being particularly common. To model such systems

using conventional organic force fields would often be problematic because their geometries -

do not have a high degree of symmetry. For example, in a trigonal bipyramid there are in
principle three different types of bond angle subtended at the central atom (90°, 120° and
180°). Moreover, in such systems the atoms are often equivalent (interchanging them
gives the same structure back). However, if these atoms are assigned different force field
parameters then this equivalence is not reproduced by the calculation. At least in these
cases there is an obvious localised bonding scheme that can be applied; this is often not
possible with organometallic molecules. For example, how should the bonding in ferrocene
be represented in a force field calculation? Is there a bond between the iron and each of the
carbon atoms in the two cyclopentadienyl rings? Is there a ‘bond’ from the iron to the centre
of each of the rings? A yet further complication is that significant deviations from ideal
geometries are often observed due to electronic effects such as the Jahn-Teller effect.
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Whilst there is no universal solution to these problems within the context of a single force field
similar to those used in organic chemistry, for certain situations it is possible to use an organic-
like force field with only relatively small modifications. For obvious reasons those complexes
with a high degree of symmetry are most amenable to such a treatment. Thus octahedral and
square planar complexes are the simplest to model because of their symmetry (in addition to
the geometries common in organic chemistry). However, even these have two types of equili-
brium angle (180° and 90°). The situation can be much more complicated for the other geome-
tries or for structures where the geometry about the metal is a distortion of a regular
arrangement. A Urey-Bradley treatment of the bonding about the metal can often be quite
successful in achieving the correct geometries. Here, there are no angle-bending terms at
the metal but terms due to pairs of atoms bonded to the metal.

It is much more difficult to use such a force field to model metal 7 systems, where the bond-
ing between the metal and the ligand is not easily represented by a conventional bonding
picture. As we have discussed, metal atoms can adopt a wide range of geometries in 7
complexes, which are often significantly distorted from regular structures. Nevertheless,
force fields have been developed which can cope with such systems, as well as being able
to model more traditional systems such as organic compounds. These force fields often
use a rather different functional form from Equation (4.1) and the parameters are obtained
in a different way. One distinctive feature of both the Universal Force Field and the SHAPES
force field developed by Landis and co-workers [Allured et al. 1991; Cleveland and Landis
1996] is the way in which angle bending is treated. The harmonic potential that is commonly
employed in standard force fields is inappropriate to model the distortion of systems as the
igg(lze approaches 180°. UFF [Rappé ef al. 1993] uses a cosine Fourier series for each angle

»(0) = Kagc ) C,cosnd (4.105)

n=0
The coefficients C, are chosen to ensure that the function has a minimum at the appropriate
reference bond angle. For linear, trigonal, square planar and octahedral coordination,

Fourier series with just two terms are used with a C; term and a term for n =1, 2, 3 or 4,
respectively:

»(6) = Kapc[1 — cos(nh)] (4.106)

Thus, for example, if # = 4 then the function has minima at both 90° and 180° as required for
octahedral geometries. The general case is exemplified by the H-O-H angle in water, where
it is desired to have a minimum in the energy at an angle of 104.5°. Moreover, at this angle
(6) the second derivative of the energy equals the force constant. If in addition it is required
that the energy is a maximum at 180° the following expression results:

2(0) = Kagpc[Cy + C cos(6) + Cy(cos 26)] (4.107)
The three coefficients are defined as:
1
G = 4sin2(6,)’ Cy = —4C, cos(6y); Co = Cy[2cos”(6p) + 1] (4.108)
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The SHAPES angle-bending term is very similar:
" ‘
v(0) = Kapc ), [1+cos(nd — 6)] (4.109)
n=0

4 is the phase shift. Landis subsequently developed a formulation (called VALBOND) for
the angle-bending term that is based on valence bond theory and which can produce
results that compare well with ab initio calculations [Landis et al. 1995, 1998]. For example,
using just one set of C—H parameters the H-C—H bond angles in ethene, formaldehyde
and both singlet and triplet carbene match closely those found experimentally. One key
practical advantage of this method is that it is not necessary to define equilibrium bond
angles.

4.22 Force Fields for Solid-state Systems

Empirical potential models are widely used to study the solid state, complementing the
quantum mechanical approaches we discussed in Chapter 3. One important difference
between solid-state materials and ‘organic’ molecules (and indeed, some inorganic com-
plexes) is that whilst the latter can generally be described using a localised bond model
this is not always the case for the former. As a consequence, molecular ‘mechanics
approaches of the kind we have discussed so far in this chapter can be applied successfully
only to certain types of material. Ionic and metallic systems especially require an alternative
approach. Perhaps the key difference between solid-state materials and isolated molecules is
the way in which the electrostatic terms are considered. As we shall see in Sections 6.7 and
6.8 it is common to truncate such interactions at some cutoff distance. However, solid-state
modelling is concerned with materials that have long-range order; moreover, they often
contain highly charged species. This means that the use of cutoffs can have a particularly
detrimental effect, necessitating the use of special techniques such as the Ewald summation
that enable more accurate interaction energies to be calculated. First, however, we shall
consider the treatment of covalent systems which are amenable to the ‘organic’ style of
molecular mechanics force field treatment, as exemplified by the study of zeolites.

4.22.1 Covalent Solids: Zeolites

Zeolites are materials generally composed of silicon, aluminium, oxygen and a metal cation
or proton. They have a multitude of commercial uses including catalysis and separation (e.g.
they are used in oil refining to separate linear and branched alkanes). Many of these impor-
tant properties are a consequence of the presence within the zeolite of channels of molecular
dimensions. It is therefore natural that molecular modelling techniques should be used to
investigate the intrinsic properties of such materials and the way in which they interact
with adsorbates.

The size of many zeolite systems means that considerable computational resources may
be required for the calculation. In some cases therefore, such as the study of adsorption
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processes, -the zeolite is kept rigid and attention is concentrated on the intermclecular
interactions between the zeolite and the adsorbate. This is often done using a combination
of van der Waals and electrostatic terms; a Lennard-Jones potential may be used for the
van der Waals component, but a Buckingham-like potential is often preferred. Electrostatic
interactions can be very important for zeolites. However, the partial charges used in the
various published force fields can vary enormously (from 0.4e to as much as 1.9¢ for the
silicon atoms in silicates). :

It is obviously an approximation to keep the zeolite rigid, and in more complex models

_ the structure can vary. Many of the force fields that have been developed to model zeolites

are very similar to the valence force fields used for organic and biological molecules,
typically containing bond-stretching, angle-bending and torsional terms in addition to the
non-bonded interactions. One important consideration when modelling zeolites is that
very little energy is required to deform the Si—O—Si bond over an extremely wide range
(at least 120° to 180°). This is shown in Figure 4.50, which shows the results of ab initio cal-
culations using a 3-21G* basis set for H3SiOSiH;. The Fourier series expansions used by the
UFF and SHAPES force fields for the angle-bending terms are designed to cope with such
angular variation; Nicholas, Hopfinger, Trouw and Iton suggested the following quartic
potential as an alternative specifically for the Si—O—Si angle [Nicholas et al. 1991]:

k k k.
o(0) = 71 (6 — 0,)? +72(9 —6)° + 73 (0 — 6,)* (4.110)
With the correct choice of the parameters k; and 6, the ab initio data in Figure 4.50 could be
reproduced very well. In this force field a Urey-Bradley term was also included between the
silicon atoms in-such angles to model the lengthening of the Si—O bond as the angle

decreased.

14—

1.0

08~

045

Potential energy (kcal/mol) -

0.2

0 1 ] 1 I i J
1207 130 140 150 160 170 180 190

Si~0O-Si angle (deg)

Fig. 4.50: Variation in energy with the Si-O-Si angle. (Figure redrawn from Grigoras S and T H Lane 1988.
Molecular Parameters for Organosilicon Compounds Calculated from Ab Initio Computations. Journal of
Computational Chemistry 9:25-39.) '
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4.22.2 lonic Solids

The covalent approach is rarely appropriate for ionic and polar solids such as oxides and
halides. The usual starting point for studying such systems is to write the potential as a
series expansion of pairwise, three—body, etc., terms:

N N N N N
i=1j=i+1 i=1j=it1lk=j+1
One of the oldest of such models is due to Born [Born 1920], who restricted the series to
pairwise terms, which were in turn divided into long-range Coulomb interactions and
short-range repulsive forces. If an inverse power law is used for the repulsive term the
potential energy is thus:

N
99 A
_ 2 4.
=3, Z] (47rsor,-j+rf‘-) (4.112)

N
i=1j=i+ i

The simplest way to apply such an equation is to assume that the charges q are equal to the
oxidation states of the relevant species and that the repulsive potential only acts between
nearest neighbours (though in common with many solid-state calculations the long-range
jonic interaction is generally calculated for all possible interactions using an approach
such as the Ewald sum, Section 6.8). This only leaves the two parameters A and n whose
determination in principle requires only two pieces of experimental data (though the
values obtained may vary quite considerably depending upon which data is chosen). An
obvious extension of the simple form of Equation (4.112) is to model the short-range
interactions by an alternative functional form; the Buckingham potential is commonly
employed.

For a simple material such as sodium chloride the oxidation state assumption is a reasonable

one. However, for other systems this is not necessarily the case. Various methods have
been proposed for determining appropriate sets of non-integral charges. One strategy is
to examine the distribution of charge within the material, as can be obtained from high-
resolution X-ray experiments. However, there is no unique way to partition the charge
unless there is zero bonding overlap between the ions. The atoms-in-molecules approach
(see Section 2.7.7) may be a good way to do this but this is not the only option. It is worth
mentioning that one advantage of the formal charge approach is that it can facilitate the
transferability of potentials from one material to another whilst still maintaining charge
neutrality.

The Born model with integral or partial charges assumes that the ions have zero polaris-
ability. This is reasonable for small cations such as Lit or Mg?* but can introduce significant
errors for other systems. One property that clearly demonstrates this is the high-frequency
dielectric constant. At a suitably high frequency only the electrons can keep up with the
external field and the dielectric constant is given by the Clausius-Mosotti relationship:

(e, —1) 4r & '
T — Sy 4113
(51. n 2) 3Vm £ [¢A ( )
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Fig. 4.51: The Dick-Overhauser shell model.

¢, is the relative permittivity, V, is the molar volume and «; is the polarisability of the ithion
with the sum being over the N ions. If the ions were not polarisable then ¢, would have a
value of 1. As we have seen, one way to incorporate polarisation is to assign a point polari-
sability to each ion. However, this model does not often give good results, at least for certain
properties. This is because it fails to account for the coupling between polarisation and
short-range repulsion effects. Thus polarisation causes distortions in the distribution of
the valence electrons, and short-range repulsion is itself a consequence of the overlap
between such electrons. The overall effect of short-range repulsion is to reduce polarisation
effects. One model that can take this coupling into account is the shell model of Dick and
Overhauser [Dick and Overhauser 1958] (Figure 4.51). In this model the ion is represented
by a massive core linked to a massless shell by a harmonic spring. Both the core and the shell
have charges associated with them. In an electric field the shell retains its charge but moves
w2'1th respect to the core. The polarisability of an isolated ion in this model is proportional to
Y*/k where k is the spring constant of the harmonic spring and Y is the charge on the shell.
The electrostatic interaction energy equals the sum over all ions and shells, not counting any
interaction between an ion and its own shell. Although it is appealing to assume that the
shells somehow play the role of the valence electrons this is probably an over-interpretation

if only due to the fact that the shell charges, ¥, do not necessarily assume small negative
values. '

Three-body and higher terms are sometimes incorporated into solid-state potentials. The
Axilrod-Teller term is the most obvious way to achieve this. For systems such as the
alkali halides this makes a small contribution to the total energy. Other approaches
involve the use of terms equivalent to the harmonic angle-bending terms in valence
force fields; these have the advantage of simplicity but, as we have already discussed,
are only really appropriate for small deviations from the equilibrium bond angle.

Nevertheless, it can make a significant difference to the quality of the results in some
cases.
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As for molecular systems, the parameters used to study the solid s_jca}te can be (.ierived using
both experimental and theoretical data. There is a long tradition of using quantum
mechanical calculations to extract such potentials. Whereas it is now common for the
sophisticated Hartree-Fock and density functional theory approaches to be }1sed for su_.ch
parameter derivations, an approach called electron gas theory (a crude version of density
functional theory) played a significant historical role and is still used [Allan 'and Mackrodt
1994]. One example of the way in which ab initio quantum mechanical calculations can play a
role in this process is provided by the derivation of a potential model. for a—AIZO3 [Gale et al.
1992]. Previous attempts to derive empirical potentials for this material (usm'g a shell modfgl
combined with a Buckingham potential) were not entirely successful; in particular these did
not correctly predict that the corundum structure should have the lowest energy. One

interesting feature of these earlier parameterisations was the great variation in the core .

and shell charges; for example, in one of the models the aluminium core and shell charges
were 1.617 and 1.383 respectively; in another they were 10.6063 and —8.0563. A feature of the
periodic Hartree-Fock calculations (see Section 3.8.3) was the use of distorted structures to
provide more information on the nature of the energy surface, which was found to give
better results.

4.23 Empirical Potentials for Metals and Semiconductors

Perhaps the most important consideration when discussing. the deve%opment and use of
empirical potentials for studying atomic solids is that pairwise potential models are o'fFen
not very suitable. The performance of pairwise potential models can be bad for tra.ns.ltlon
metals and even worse for semiconductors! There are a number of reasons -why this is s,
many of which are due to the fundamental behaviour of pairwise potentials Qfor certain
experimental properties. The most oft-quoted properties are as follows:

1. The ratio between the cohesive energy and the melting temperature, E. / kBT. The .cohe.siv'e
energy is the energy cost of removing an atom from within the solid matrix. This ratio is
observed to be approximately 30 in metals but about 10 in pairwise systems. ‘

5. The ratio between the vacancy formation energy and the cohesive energy, E,/E.. Th1's
ratio is between } and } in metals but closer to unity in two-body systems (exactly 1 if

the structure is not permitted to relax). This can be understood as follows. Suppose -

each atom in a solid has Z neighbours. If one of the atoms is removed then the coordina-
tion of the surrounding Z atoms will fall to Z — 1. Using a pairwise energy model ’fhe
vacancy formation energy is thus Z times the atom-atom bond energy. The cohesn@
energy is the energy to reduce the coordination of an atom from Z to zero and s0
would also equal Z times the atom-atom bond energy. The energy change for both of
these processes is thus equal for the pairwise model. . . '

3. The ratio between the elastic constants Ci,/Cy. Elastic constants will be discussed 311
Sedion 5.10; for a cubic solid there are three distinct values, which are labelled C”,'(,lz
and C,,. For a two-body system the ratio is exactly 1 (this is known as the Cathy relatlgn—
ship). For metals and oxides deviation from unity is common; gold has a particularly high
value, which is indicative of its high malleability.
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4. The surface properties of metals are such that the surface tends to relax inwards but
systems described by two-body interactions tend to relax outwards.

The main reason for the failure of pairwise potentials is that they are unable to deal simulta-
neously with both surface and bulk environments. Thus on the surface there are generally
fewer bonds, but these tend to be stronger than in the bulk, where there are more, but
weaker, bonds. Several many-body potentials have been devised to try to address this
problem. Many of these potentials have a similar, sometimes mathematically equivalent, func-
tional form. This reflects their common origins in some form of quantum mechanical descrip-
tion of bonding. However, they differ in their underlying approach, the degree to which they
conform to these quantum mechanical origins and the way in which they are parametrised.
Here we will outline various models: the Finnis-Sinclair model (and the Sutton-Chen
extension), the embedded-atom model, the Stillinger-Weber model and the Tersoff model.

The origins of the Finnis-Sinclair potential [Finnis and Sinclair 1984] lie in the density of
states and the moments theorem. Recall that the density of states D(E) (see Section 3.8.5)
describes the distribution of electronic states in the system. D(E) gives the number of
states between E and E + ¢E. Such a distribution can be described in terms of its moments.
The moments are usually -defined relative to the energy of the atomic orbital from which
the molecular orbitals are formed. The mth moment, 4™, is given by:

.u'm = Z (E - Eatomic)mD(E) (4114)

The summation runs over the molecular orbitals or bonds. The first moment is the mean of
the distribution. If the moments are defined relative to the atomic orbital energy then this
first moment will be zero. The second moment (the sum of the squares of the deviations)
is the width of the distribution (the variance). The third moment describes how skewed
the distribution is about the mean. If all the moments are known then the distribution can
be completely characterised. Of these various moments one would expect the second to
be most related to the binding energy, as this indicates how much the energy levels in the
solid differ from those in the atom. Indeed, a high correlation is found to exist between
the binding energy and the square root of the second moment. Armed with this relationship
it would be possible to predict the binding energy for perfect lattices where the atomic
environments were identical. However, a more useful model is one based on a local
atomic environment (‘real’ materials contain features such as surfaces and defects). This
requires a local-density of states to be defined for each atom, d;(E), where the contribution
of each molecular orbital is weighted by the amount of the orbital on the atom. In a linear
combination of atomic orbitals (LCAQO) model this weight is the sum of the squares of the
basis set coefficients for those atomic orbitals centred on the atom. The global density of
states is equal to the sum of the local densities of states over all atoms and the electronic
binding energy for each atom equals the integral of d;(E)E:

Es = J d;(E)EdE (4.115)

Thus, if we knew the second moment of the local density of states we should be able to deter-
mine the atomic binding energy via the square root relationship. However, as quantum
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Fig. 4.52: Calculating paths using the moments theorem. lustrated are paths of lengths 2 and 4.

mechanics is the only way we currently know of to determine the density of states, this
might seem rather self-defeating. This is the role of the moments theorem, which relates the
bonding topology to the moments of the local density of states without requiring an explicit
calculation of the electronic energy levels.

The moments theorem states that the mth moment of the local density of states on an atom i
is determined by the sum of all paths of length m over neighbouring atoms that start and end
ati. For the second moment these paths involve just two "hops’, from the atom in question to
a neighbour and back again (Figure 4.52). For the higher moments, the number of possible
paths increases dramatically and becomes a challenging calculation. However, for the
second moment the number of paths of length 2 is simply equal to the number of nearest
neighbours, Z. Consequently, the local electronic binding energy for each atom is approxi-
mately equal to the square root of the number of neighbours. This is the second-moment
approximation: ‘

B« \/Zi (4.116)

As an aside, we can easily show how this satisfies the ratio E, /E. (property 2, page 240). The
energy E, associated with Z atoms having their coordination reduced from Z to Z — 1will be
Z[VZ — v/Z —1]. The cohesive energy E, is proportional to VZ. For typical values of Z this
gives E,/E, as approximately .

In the Finnis-Sinclair potential a pairwise contribution is added to the many-body term to
give the following form: ‘

i=1j=i+1

- N
“’/=2N: > P(rii)+;A\//7i (4.117)
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P(r;) is the pairwise potential, which, depending upon the model, can be considered to
include electrostatic and repulsive contributions. The second term is a function of the
electron density, p;, and varies with the square root, in keeping with the second-moment
approximation. The electron density for an atom includes contributions from the neigh-
bouring atoms as follows:

N
pi="Y_ ¢;ry) (4.118)

=LA

¢y (ry) is a short-range, decreasing function of the distance between the two atoms i and j. In
the original Finnis-Sinclair model the function ¢;(r;) was written as a parabolic function of
the interatomic distance, (r; — t.)?, where 7. is a cutoff distance chosen to lie between the
second and third neighbouring shells. ¢; is zero beyond this cutoff distance. The pairwise
potential was expressed as a quartic polynomial up to some cutoff and zero beyond.

The Finnis-Sinclair potential can be written in a more general form by replacing the number
of neighbouring atoms by an exponential function of the distance between atoms. This is
necessary because the number of neighbours is not always straightforward to define,
especially in disordered systems and near defects. An exponential function also reflects
the fact that electron densities decay exponentially from the nucleus. Moreover, the pairwise
potential can also be written as an exponential function of distance to give the following
general equation:

~ ]

=1 \j=1,ji =1j#i

Sutton and Chen extended the potential to longer range to enable the study of certain
problems such as the interactions between clusters of atoms [Sutton and Chen 1990].
Their objective was to combine the superior Finnis-Sinclair description of short-range
interactions with a van der Waals tail to model the long-range interactions. The form of
the Sutton-Chen potential is:

= 5 (-2 2, ()]
i=1j=it1 Vg io1 LiZTjei \Ti

Inthis equation, € and a are parameters with dimensions of energy and length respectively, c
is a dimensionless (positive) parameter, and m and n are integers such that n is greater than
m. The use of power-law relationships in the Sutton-Chen potential has a number of useful
consequences, analogous to the scaling properties of the Lennard-Jones potential. For
example, for a given crystal structure (e.g. hexagonal close-packed, face-centred cubic,
body-centred cubic, etc.) the value of ¢ is fixed. Moreover, if two metals are described by
the same values of m and n then the results for one system may be converted directly to
the other by rescaling the energy and length parameters ¢ and 4. Typical values for m are
between 6 and 8 and for n between 9 and 12.

1/2

} (4.120)

The embedded-atom method [Daw and Baskes 1984] is an empirical embodiment of a
simplified quantum mechanical model for bonding in solids called effective medium



244 | . . Chapter 4

theory. The key feature of effective medium theory is the replacement of the complex
environment around each atom by a simplified model known as jellium. The jellium
environment corresponds to a homogeneous electron gas with a positive background.
Each atom is considered to be surrounded by a sphere with a radius such that the
electronic charge within each sphere due to the background jellium is equal and opposite
to the charge on the atom. In the embedded-atom method the background electron density
is replaced by a sum of electron densities from the neighbouring atoms. The many-body
term is known as an embedding function; this gives the energy of each atom as a function
of the electron density, p;. In the embedded-atom method the electron density p; equals
the sum of the electron densities ¢; from neighbouring atoms (Equation (4.118)). In the
Daw and Baskes model a Coulomb potential was used for the pairwise potential but
with an effective charge Z(r) that decreases gradually with internuclear distance. The
embedding function was represented with a cubic spline equation that has a single mini-
mum and goes to zero at vanishing density. The densities were obtained from quantum
mechanical calculations.

Both the Finnis-Sinclair and the embedded-atom potentials (together with others that
we have not considered here) can be represented using a very similar functional form.
However,. it is important to realise that they differ in the way that they connect to the
first-principles, quantum mechanical model of bonding. They also differ in the procedures
used to parametrise the models, so that different parametrisations may be reported for the
same material. '

The construction of empirical potentials for semiconductors is considered to be an even
greater challenge than for metals. In our earlier discussion of the use of density functional
methods to determine the electronic structure of the group 14 elements carbon, silicon
and germanium we referred to the fact that, whilst the most stable form of silicon is the
diamond structure, as pressure is applied so new structures can be obtained. That such a
variety of structures can be achieved indicates that they are rather close in energy. Another
interesting property of silicon is that in the liquid form it is a metal and the liquid is more
dense than the solid. Two of the potentials that have been applied to these systems are
the Stillinger-Weber and the Tersoff potentials. The Stillinger-Weber potential [Stillinger
and Weber 1985] uses a two-body and three-body term:

N N N N N ' }
"sz Z fz(rij)+Z Z Z (h(rj, T, O) + A(rji, T, O) + hl(rey g, O)] (4.121)

im1 j=it1 =1 j=it+1 k=j+1
fa(ry) = ABr? — ;") expl(r; —a)7"] (4122)
h(ry, T, O) = Xexp[y(r; — a) "+ y(rgx — a) Y (cos Oiix —F%)2 (4.123)

These equations all use distances and energies in reduced units and the functional form is
designed to go to zero without discontinuities at the cutoff distance r = a. There are seven
parameters (A, B, p, g, a, A, ), which were determined by a search procedure, with care
being taken to ensure that the diamond structure was the most stable periodic arrangement
and that the melting point and liquid structure (as determined by molecular dynamics
simulations) were in reasonable agreement with experiment. The three-body term is
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designed to favour the tetrahedral geometry found in the diamond structure, which is why it
works reasonably well for this form of crystalline silicon. However, it does not perform so
well for the other solid forms, which have a different atomic geometry, or for other proper-
ties such as the liquid structure.

The Tersoff potential [Tersoff 1988] is based on a model known as the empirical bond-order
potential. This potential can be written in a form very similar to the Finnis-Sinclair
potential: '

N N
=3 { > Ae™i —byB e—ﬂ’fi} (4.124)

i=1 (j=1ji

The key term is b;, which is the bond order between the atoms i and j. This parameter
depends upon the number of bonds to the atom 7; the strength of the ‘bond” between i
and j decreases as the number of bonds to the atom i increases. The original bond-order
potential [Abell 1985] is mathematically equivalent to the Finnis-Sinclair model if the
bond order b;; is given by:

N -1/2
by = <1 + Y e*/’("‘**"‘f)) (4.125)
k=1k#ik#]

It can be readily confirmed that b; decreases as the number of bonds N increases and/or
their length (r;) decreases. This relationship between the bond strength and the number
of neighbours provides a useful way to rationalise the structure of solids. Thus the high
coordination of metals suggests that it is more effective for them to form more bonds,
even though each individual bond is weakened as a consequence. Materials such as silicon
achieve the balance for an intermediate number of neighbours and molecular solids have the
smallest atomic coordination numbers.

The Tersoff potential was designed specifically for the group 14 elements and extends the
basic empirical bond-order model by including an angular term. The interaction energy
between two atoms 7 and j using this potential is:

vij = _fc(r,-]- [A e M — b;B e M ]
where

by= (148G G= felra)g(0) exp[(r; — r30)°] (4.126)
k#ij
& &

g0 =1 tE [@ + (h — cos 6)?

The function fc is a smoothing function with the value 1 up to some distance r; (typically
chosen to include just the first neighbour shell) and then smoothly tapers to zero at the
cutoff distance. b; is the bond-order term, which incorporates an angular term dependent
upon the bond angle 0. The Tersoff potential is more broadly applicable than the
Stillinger-Weber potential, but does contain more parameters.
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Appendix 4.1 The Interaction Between Two Drude Molecules

In the system comprising two Drude molecules (see Section 4.9.1), an additional term must
be included in the Hamiltonian [Rigby et al. 1986]. This additional term arises from the inter-
actions between the two dipoles. The instantaneous dipole of each molecule is gz(f), where
z(t) is the separation of the charges. Thus, if we label the molecules 1 and 2, we can write the
dipole-dipole interaction energy as:

2”‘1 IJ‘Z _ _ 22122‘72 (4127)

vl ) = Cdmey® T Amer

r is the separation of the two molecules. The Schrodinger equation for this system is thus:

2 2
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This equation can be solved by making the following substitutions:
2 2
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These reduce Equation (4.128) to
oy 1Py 21 2 .
- ﬁ a—u% — % a—u% + [%klul + Ekzuz]’l,[) = Ed) (4130)

This is the Schrodinger equation for two independent (i.e. non-interacting) oscillators with
frequencies given as follows:

2 [ 2
— _ . = 1 4.131
| A Red R (4.131)

w/2m is the frequency of an isolated Drude molecule. The ground state energy of the system
is therefore just the sum of the zero-point energies of the two oscillators: Eg = 1fi(w; + w).

If we now substitute for w; and w, and expand the square roots using the binomial theorem,
then we obtain the following:
g'he

Eor) = hw — — 1% ___
o(r) = 2(4mey ) rok?

The interaction energy of the two oscillators is the difference between this zero-point energy
and the energy of the system when the oscillators are infinitely separated and so:

7w

_ __ 4133
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v(?‘) =
The force constant, k, is related to the polarisability of the molecule, « as follows. Suppose a
single Drude molecule is exposed to an external electric field E. In the electric field, a force gE
acts on each charge (in opposite directions as the charges are of opposite sign). This force
causes the charges to separate and equilibrium is reached when the restoring force due to
the stretching of the bond (kz) is equal to the electrostatic force: gE = kz. This separation

o (4.132) \
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of the charges is equivalent to a static dipole given by u;,; =gz = qu /k. However, the
induced dipole is also related to the polarisability by n;,; = oE. Thus the polarisability
can be written in terms of the force constant k: o = q2 /k. With this substitution the result
for the Drude model in two dimensions is:

4
()= - 2T (4.134)
2(47['50) 1'6
In three dimensions the equivalent result is:
4
o(r) = — Lh“;’ (4.135)
4(471'50) 1'6
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Energy Minimisation and
Related Methods for

Exploring the Energy
Surface

5.1 Introduction

For all except the very simplest systems the potential energy is a complicated, multi-
dimensional function of the coordinates. For example, the energy of a conformation of
ethane is a function of the 18 internal coordinates or 24 Cartesian coordinates that are
required to completely specify the structure. As we discussed in Section 1.3, the way in
which the energy varies with the coordinates is usually referred to as the potential energy
stirface (sometimes called the hypersurface). In the interests of brevity all references to
‘energy’ should be taken to mean ‘potential energy’ for the rest of this chapter, except
where explicitly stated otherwise. For a system with N atoms the energy is thus a function
of 3N — 6 internal or 3N Cartesian coordinates. It is therefore impossible to visualise the
entire energy surface except for some simple cases where the energy is a function of just
one or two coordinates. For example, the van der Waals energy of two argon atoms (as
might be modelled using the Lennard-Jones potential function) depends upon just one
coordinate: the interatomic distance. Sometimes we may wish to visualise just a part of
the energy surface. For example, suppose we take an extended conformation of pentane
and rotate the two central carbon-carbon bonds so that the torsion angles vary from 0° to
360°, calculating the energy of each structure generated. The energy in this case is a function

of just two variables and can be plotted as a contour diagram or as an isometric plot, as
shown in Figure 5.1.

We will use the term ‘energy surface’ to refer not only to systems in which the bonding
remains unchanged, as in these two examples, but also where bonds are broken and/or
formed. Our discussion will be appropriate to both quantum mechanics and molecular
mechanics, except where otherwise stated.

In molecular modelling we are especially interested in minimum points on the energy sur-
face. Minimurm energy arrangements of the atoms correspond to stable states of the system;
any movement away from a minimum gives a configuration with a higher energy. There
may be a very large number of minima on the energy surface. The minimum with the
very lowest energy is known as the global energy minimum. To identify those geometries of
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Fig. 5.1: Variation in the energy of pentane with the two torsion angles indicated and represented as a contour diagram and isometric plot. Only the lowest-energy

regions are shown.
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the system that correspond to minimum points on the energy surface we use a minimisation
algorithm. There is a vast literature on such methods and so we will concentrate on those
approaches that are most commonly used in molecular modelling. We may also be
interested to know how the system changes from one minimum energy structure to another.
FQI example, how do the relative positions of the atoms vary during a reaction? What
structural changes occur as a molecule changes its conformation? The highest point on
the pathway between two minima is of especial interest and is known as the saddle point,
with the arrangement of the atoms being the transition structure. Both minima and saddle
points are stationary points on the energy surface, where the first derivative of the energy
function is zero with respect to all the coordinates.

A geographical analogy can be a helpful way to illustrate many of the concepts we shall
encounter in this chapter. In this analogy minimum points correspond to the bottom of
valleys. A minimum may be described as being in a ‘long and narrow valley’ or ‘a flat
and featureless plain’. Saddle points correspond to mountain passes. We refer to algorithms
taking steps “uphill” or ‘downhill’.

5.1.1 Energy Minimisation: Statement of the Problem

The minimisation problem can be formally stated as follows: given a function f which depends
on one or more independent variables xy, x5, .. ., x;, find the values of those variables where f
has a minimum value. At a minimum point the first derivative of the function with respect to
each of the variables is zero and the second derivatives are all positive:

o =0; ﬁ >0 (5.1)
Bxi zez
The functions of most interest to us will be the quantum mechanics or molecular mechanics
energy with the variables x; being the Cartesian or the internal coordinates of the atoms.
Molecular mechanics minimisations are nearly always performed in Cartesian coordinates,
where the energy is a function of 3N variables; it is more common to use internal coordinates
(as- defined in the Z-matrix) with quantum mechanics. For analytical functions, the
minimum of a function can be found using standard calculus methods. However, this is
not- generally possible for molecular systems due to the complicated way in which the
energy varies with the coordinates. Rather, minima are located using numerical methods,
which gradually change the coordinates to produce configurations with lower and lower
energies until the minimum is reached. To illustrate how the various minimisation algo-
rithms operate, we shall consider a simple function of two variables: f(x,y) = x* 4 2°.
This function is represented as a contour diagram in Figure 5.2. The function has one mini-
mum point, located at the origin. In our examples we will attempt to locate the minimum
from the point (9.0,9.0). Although this is a function of just two variables for the purposes
of illustration, all of the methods that we shall consider can be applied to functions of
Inany more variables.

We can classify minimisation algorithms into two groups: those which use derivatives of the
energy with respect to the coordinates and those which do not. Derivatives can be useful
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Fig. 5.2: The function ¥ + 24/,

because they provide information about the shape of the energy surface, and, if used
properly, they can significantly enhance the efficiency with which the minimum is located.
There are many factors that must be taken into account when choosing the most appropriate
algorithm (or combination of algorithms) for a given problem; the ideal minimisation
algorithm is the one that provides the answer as quickly as possible, using the least
amount of memory. No single minimisation method has yet proved to be the best for all
molecular modelling problems and so most software packages offer a choice of methods.
In particular, a method that works well with quantum mechanics may not be the most suit-
able for use with molecular mechanics. This is partly because quantum mechanics is usually
used to model systems with fewer atoms than molecular mechanics; some operations that
are integral to certain minimisation procedures (such as matrix inversion) are trivial for
small systems but formidable for systems containing thousands of atoms. Quantum
mechanics and molecular mechanics also require different amounts of computational
effort to calculate the energies and the derivatives of the various configurations. Thus an
algorithm that takes many steps may be appropriate for molecular mechanics but
inappropriate for quantum mechanics.’

Most minimisation algorithms can only go downhill on the energy surface and so they can
only locate the minimum that is nearest (in a downhill sense) to the starting point. Thus,
Figure 5.3 shows a schematic energy surface and the minima that would be obtained starting
from three points A, B and C. The minima can be considered to correspond to the locations
where a ball rolling on the energy surface under the influence of gravity would come to rest.
To locate more than one minimum or to locate the global energy minimum we therefore
usually require a means of generating different starting points, each of which is then mini-
mised. Some specialised minimisation methods can make uphill moves to seek out minima
lower in energy than the nearest one, but no algorithm has yet proved capable of locating the
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Fig. 5.3: A schematic one-dimensional energy surface. Minimisation methods move downhill to the nearest minimum.
The statistical weight of the narrow, deep minimum may be less than a broad minimum which is higher in energy.

global energy minimum from an arbitrary starting position. The shape of the energy surface
may be important if one wishes to calculate the relative populations of the various minimum
energy structures. For example, a deep and narrow minimum may be less highly populated
than a broad minimum that is higher in energy as the vibrational energy levels will be more
widely spaced in the deeper minimum and so less accessible. For this reason the global
energy minimum may not be the most highly populated minimum. In any case, the
‘active’ structure (e.g. the biologically active conformation of a drug molecule) may not
correspond to the global minimum, or to the most highly populated conformation, or
even to a minimum energy structure at all.

The input to a minimisation program consists of a set of initia! coordinates for the system.
The initial coordinates may come from a variety of sources. They may be obtained from
an experimental technique, such as X-ray crystallography or NMR. In other cases a
theoretical method is employed, such as a conformational search algorithm. A combination
of experimental and theoretical approaches may also be used. For example, to study the
behaviour of a protein in water one may take an X-ray structure of the protein and immerse
it in a solvent ‘bath’, where the coordinates of the solvent molecules have been obtained
from a Monte Carlo or molecular dynamics simulation.

5.1.2 Derivatives

In order to use a derivative minimisation method it is obviously necessary to be able to
calculate the derivatives. of the energy with respect to the variables (i.e. the Cartesian or
internal coordinates, as appropriate). Derivatives may be obtained either analytically or
numerically. The use of analytical derivatives is preferable as they are exact, and because
they can be calculated more quickly; if only numerical derivatives are available then it
may be more effective to use a non-derivative minimisation algorithm. The problems of
calculating analytical derivatives with quantum mechanics and molecular mechanics
were discussed in Sections 3.4.3 and 4.16, respectively.
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Nevertheless, under some circumstances it is necessary to use numerical derivatives, These
can be calculated as follows. If one of the coordinates x; is changed by a small change (6x;)
and the energy for the new arrangement is computed then the derivative OE/8x; is obtained
by dividing the change in energy (4E) by the change in coordinate (6E/6x;). This strictly gives
the derivative at the mid-point between the two points x; and x; + éx;. A more accurate value
of the derivative at the point x; may be obtained (at the cost of an additional energy calcula-
tion) by evaluating the energy at two points, x; + 6x; and x; — 6x;. The derivative is then
obtained by dividing the difference in the energies by 26x;.

5.2 Non-derivative Minimisation Methods
5.2.1 The Simplex Method

A simplex is a geometrical figure with M+ 1 interconnected vertices, where M is the
dimensionality of the energy function. For a function of two variables the simplex is thus
triangular in shape. A tetrahedral simplex is used for a function of three variables and sa
for an energy function of 3N Cartesian coordinates the simplex will have 3N + 1 vertices;
if internal coordinates are used then the simplex will have 3N — 5 vertices. Each vertex
corresponds to a specific set of coordinates for which an energy can be calculated. For our
function f(x,y) = x* + 2 the simplex method would use a triangular simplex.

The simplex algorithm locates a minimum by moving around on the potential energy sur-
face in a fashion that has been likened to the motion of an amoeba. Three basic kinds of
move are possible. The most common type of move is a reflection of the vertex with the
highest value through the opposite face of the simplex, in an attempt to generate a new
point that has a lower value. If this new point is lower in energy than any of the other
points in the simplex then a ‘reflection and expansion’” move may be applied. When a
‘valley floor’ is reached then a reflection move will fail to produce a better point. Under
such circumstances the simplex contracts along one dimension from the highest point. If
this fails to reduce the energy then a third type of move is possible, in which the simplex
contracts in all directions, pulling around the lowest point. These three moves are illustrated
in Figure 5.4.

To implement the simplex algorithm it is first necessary to generate the vertices of the initial
simplex. The initial configuration of the system corresponds to just one of these vertices. The
remaining points can be obtained in a variety of ways, but one simple method is to add a
constant increment o each coordinate in turn. The energy of the system is calculated at
the new point, giving the function value for the relevant vertex.

The simplex method is most useful where the initial configuration of the system is very high
in energy, because it rarely fails to find a better solution. However, it can be rather expensive
in terms of computer time due to the large number of energy evaluations which are required
(merely to generate the initial simplex requires 3N + 1 energy evaluations). For this reason
the simplex method is often used in combination with a different minimisation algorithm: a
few steps of the simplex method are used to refine the initial structure and then a more
efficient method can take over.
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lowest

Initial simplex

Fig. 5.4: The three basic moves permitted to the simplex algorithm (reflection, and its close relation reflect-and-expand;
contract in one dimension and contract around the lowest point). (Figure adapted from Press W H, B P Flannery,
S A Teukolsky and W T Vetterling 1992. Numerical Recipes in Fortran. Cambridge, Cambridge University Press.)

Let us consider the application of the simplex method to our quadratic function, f = x* + 21
(Figure 5.5). Suppose our initial simplex contains vertices located at the points (9,9), (11,9)
and (9, 11), which have been generated by adding a constant factor 2 to each of the variables
in turn. The values of the function at these points are 243, 283 and 323, respectively. The
vertex with the highest function value is at (9,11) and so in the first iteration this point is
reflected through the opposite face of the triangle to generate a point with coordinates
(11,7) and a function value of 219 (we do not use the reflect-and-expand move in our

15

Fig. 5.5: The first few steps of the simplex algorithm with the function x* + 2. The initial simplex corresponds to
the triangle 123. Point 2 has the largest value of the function and the next simplex is the triangle 134. The simplex for
the third step is 145. .
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illustration). The highest vertex is now at (11, 9), which is reflected through the opposite face
of the simplex to give the point (9, 7), where the function has a value of 179. In fact, for this
admittedly artificial problem the simplex algorithm takes more than 30 steps to find a point
where the function has a value less than 0.1.

Why does the simplex contain one more vertex than the number of degrees of freedom? The
reason-is that with fewer than M + 1 vertices the algorithm cannot explore the whole energy
surface. Suppose we use only a two-vertex simplex to explore our quadratic energy surface.
A simplex with just two vertices is a straight line. The only moves that would be possible in
this case would be to other points that lie on this line; none of the energy surface away from
the line would be explored. Similarly, if we have a function of three variables and restrict the
simplex to a triangle then we will only be able to explore the region of space that lies in the
same plane as the triangle, whereas the minimum may not lie in this plane.

5.2.2 The Sequential Univariate Method

The simplex method is rarely considered suitable for quantum mechanical calculations, due to
the number of energy evaluations that must be performed. The sequential univariate method
is a non-derivative method that is considered more appropriate in this case. This method sys-
tematically cycles through the coordinates in turn. For each coordinate, two new structures are
generated by changing the current coordinate (i.e. x; 4 6x; and x; + 26x;). The energies of these
two structures are calculated. A parabola is then fitted through the three points corresponding
to the two distorted structures and the original structure. The minimum point in this quadratic
function is determined and the coordinate is then changed to the position of the minimum.
The procedure is illustrated in Figure 5.6. When the changes in all the coordinates are

Fig. 5.6: The sequential univariate method. Starting at the point labelled 1 two steps are made along one of the
coordinates to give points 2 and 3. A parabola is fitted to these three points and the minimum located (point 4). The
same procedure is then repeated along the next coordinate (points 5, 6 and 7). (Figure adapted from Schlegel H B
1987. Optimization of Equilibrium Geometries and Transition Structures. In Lawley K P (Editor). Ab Initio
Methods in Quantum Chemistry ~ I. New York, John Wiley, pp. 249-286.)
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sufficiently small then the minimum is deemed to have been reached, otherwise a new
iteration is performed. The sequential invariate method usually requires fewer function
evaluations than the simplex method but it can be slow to converge especially if there is
strong coupling between two or more of the coordinates or when the energy surface is
analogous to a long narrow valley. '

5.3 Introduction to Derivative Minimisation Methods

Derivatives provide information that can be very useful in energy minimisation, and deri-
vatives are used by most popular minimisation methods. The direction of the first derivative
of the energy (the gradient) indicates where the minimum lies, and the magnitude of the
gradient indicates the steepness of the local slope. The energy of the system can be lowered
by moving each atom in response to the force acting on it; the force is equal to minus the
gradient. Second derivatives indicate the curvature of the function, information that can
be used to predict where the function will change direction (i.e. pass through a minimum
or some other stationary point).

When discussing derivative methods it is useful to write the function as a Taylor series
expansion about the point x;:

V(@) =7 (%) + (2 — 27 () + (x = %) (1) /24 - (5.2)

For a multidimensional function, the variable x is replaced by the vector x and matrices are
used for the various derivatives. Thus if the potential energy ¥ (x) is a function of 3N
Cartesian coordinates, the vector x will have 3N components and x; corresponds to the
current configuration of the system. 77(x;) is a 3N x 1 matrix (i.e. a vector), each element
of which is the partial derivative of ¥~ with respect to the appropriate coordinate,
07" /0x;. We will also write the gradient at the point k as g;. Each element (i) of the
matrix ¥ (x;) is the partial second derivative of the energy function with respect to the
two coordinates x; and x;, &V /0x;0%;. " (%) is thus of dimension 3N x 3N and is
known as the Hessian matrix or the force constant matrix. The Taylor series expansion can
be written in the following form for the multidimensional case:

V(%) = ¥ () + (x = %) 77 (%) + (x = x)T - 77 (%) - (x = %) /24 - (5.3)

The energy functions used in molecular modelling are rarely quadratic and so the Taylor
series expansion, Equation (5.3), can only be considered an approximation. There are two
important consequences of this. The first consequence is that the performance of a given
minimisation method will not be as good for a molecular mechanics or quantum mechanics
energy surface as it is for a pure quadratic function. As we shall see, a second derivative
method such as the Newton-Raphson algorithm can locate the minimum in a single step
for a purely quadratic function, but several iterations are usually required for a typical
molecular modelling energy function. The second consequence is that, far from the mini-
mum, the harmonic approximation is a poor one and some of the less robust methods
will fail, even though they may work very well close to a minimum, where the harmonic
approximation is more valid. For this reason it is important to choose the minimisation
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protocol with care, possibly using a robust (but perhaps inefficient) method at first, and then
a less robust but more efficient method.

The derivative methods can be classified according to the highest-order derivative used.
First-order methods use the first derivatives (ie. the gradients) whereas second-order
methods use both first and second derivatives. The simplex method can thus be considered
a zeroth-order method as it does not use any derivatives.

5.4 First-order Minimisation Methods

Two first-order minimisation algorithms that are frequently used in molecular modelling are -

the method of steepest descents and the conjugate gradient method. These gradually change the
coordinates of the atoms as they move the system closer and closer to the minimum point. The
starting point for each iteration (k) is the molecular configuration obtained from the previous
step, which is represented by the multidimensional vector x; _ ;. For the first iteration the start-
ing point is the initial configuration of the system provided by the user, the vector x;.

5.4.1 The Steepest Descents Method

The steepest descents method moves in the direction parallel to the net force, which in
our geographical analogy corresponds to walking straight downhill. For 3N Cartesian
coordinates this direction is most conveniently represented by a 3N-dimensional unit
vector, s;. Thus:

sk = —8/|8x (54)

Having defined the direction along which to move it is then necessary to decide how far to
move along the gradient. Consider the two-dimensional energy surface of Figure 5.7. The
gradient direction from the starting point is along the line indicated. If we imagine a
cross-section through the surface along the line, the function will pass through a minimum
and then increase, as shown in the figure. We can choose to locate the minimum point by
performing a line search or we can take a step of arbitrary size along the direction of the force.

5.4.2 Line Search in One Dimension

The purpose of a line search is to locate the minimum along a specified direction (i.e. along
a line through the multidimensional space). The first stage of the line search is to bracket the
minimum. This entails finding three points along the line such that the energy of the middle
point is lower than the energy of the two outer points. If three such points can be found, then
at least one minimum must lie between the two outer points. An iterative procedure can
then be used to decrease the distance between the three points, gradually restricting the
minimum to an even smaller region. This is conceptually an easy process but it may require
a considerable number of function evaluations, making it computationally expensive. An
alternative is to fit a function such as a quadratic to the three points. Differentiation of the
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fly)

Fig. 5.7: A line search is used to locate the minimum in the function in the direction of the gradient.

fitted function enables an approximation to the minimum along the line to be identified
analytically. A new function can then be fitted to give a better estimate, as shown in
Figure 5.8. Higher-order polynomials may give a better fit to the bracketing points but
these can give incorrect interpolations when used with functions that change sharply in
the bracketed region. ‘

The gradient at the minimum point obtained from the line search will be perpendicular to
the previous direction. Thus, when the line search method is used to locate the minimum
along the gradient then the next direction in the steepest descents algorithm will be
orthogonal to the previous direction (i.e. g -gy_1 = 0).

Fig. 5.8: The minimum in a line search may be found more effectively by fitting an analytical function such as a
quadratic to the initial set of three points (1, 2 and 3). A better estimate of the minimum can then be found by fitting
@ new function to the points 1, 2 and 4 and finding its minimum. (Figure adapted from Press W H, B P Flannery,
5:A Teukolsky and W T Vetterling 1992. Numerical Recipes in Fortran. Cambridge, Cambridge University Press.)
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5.4.3 Arbitrary Step Approach

As the line search may itself be computationally demanding we could obtain the new
coordinates by taking a step of arbitrary length along the gradient unit vector s;. The new
set of coordinates after step k would then be given by the equation:

Xp41 = X+ Aksk (55)

A is the step size. In most applications of the steepest descents algorithm in molecular
modelling the step size initially has a predetermined default value. If the first iteration
leads to a reduction in energy, the step size is increased by a multiplicative factor (e.g. 1.2)
for the second iteration. This process is repeated so long as each iteration reduces the

~ energy. When a step produces an increase in energy, it is assumed that the algorithm has

leapt across the valley which contains the minimum and up the slope on the opposite face.
The step size is then reduced by a multiplicative factor (e.g. 0.5). The step size depends
upon the nature of the energy surface; for a flat surface large step sizes would be appropriate
but for a narrow, twisting gully a much smaller step would be more suitable. The arbitrary
step method may require more steps to reach the minimum but it can often require fewer func-
tion evaluations (and thus less computer time) than the more rigorous line search approach.

The steepest descents method works as follows for our trial function, f(x,y) = x* + 217,
Differentiating the function gives df = 2xdx + 4y dy and so the gradient at any point (x, )
equals 4y/2x. The direction of the first move from the point (9.0,9.0) is (—18.0, —36.0) and
the equation of the line along which the search is performed is y = 2x — 9. The minimum
of the function along this line can be obtained using Lagrange multipliers (see Section
1.10.5) and is at (4.0, —1.0). The direction of the next move is the vector (—8,4) and the
next line search is performed along the line y = —0.5x + 1. The minimum point along this
line is (2/3,2/3) where the function has the value 4/3. The third point found by the steepest
descents method is at (0.296, —0.074) where the function has the value 0.099. These moves
are illustrated in Figure 5.9.

The direction of the gradient is determined by the largest interatomic forces and so steepest
descents is a good method for relieving the highest-energy features in an initial configura-
tion. The method is generally robust even when the starting point is far from a minimum,
where the harmonic approximation to the energy surface is often a poor assumption. How-
ever, it suffers from the problem that many small steps will be performed when proceeding
down a long narrow valley. The steepest descents method is forced to make a right-angled
turn at each point, even though that might not be the best route to the minimum. The
path oscillates and continually overcorrects itself, as illustrated in Figure 5.10; later steps
reintroduce errors that were corrected by earlier moves.

5.4.4 Conjugate Gradients Minimisation

The conjugate gradients method produces a set of directions which does not show the
oscillatory behaviour of the steepest descents method in narrow valleys. In the steepest
descents method both the gradients and the direction of successive steps are orthogonal.
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Fig. 5.9: Application of steepest descents fo the function * + 27,

In conjugate gradients, the gradients at each point are orthogonal but the directions are
conjugate (indeed, the method is more properly called the conjugate directions method). A
set of conjugate directions has the property that for a quadratic function of M variables,
the minimum will be reached in M steps. The conjugate gradients method moves in a

direcfcion Vi from point x; where v; is computed from the gradient at the point and the
previous direction vector v;_:

Vi = =8k + nVi-1 (5.6)

7 is a scalar constant given by
. Bk Bk
W= :
8k-1°8k-1 57)

$
d
N

kg 5 .10: The steepest descents method can give undesirable behaviour in a long narrow valley.
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In the conjugate gradients method all of the directions and gradients satisfy the following
relationships: ‘

Vi ¥ v =0 (5.9)
S (5.10)

Clearly Equation (5.6) can only be used from the second step onwards and so the first step in
the conjugate gradients method is the same as the steepest descents (i.e. in the direction of
the gradient). The line search method should ideally be used to locate the one-dimensional
minimum in each direction to ensure that each gradient is orthogonal to all previous
gradients and that each direction is conjugate to all previous directions. However, an
arbitrary step method is also possible.

The conjugate gradients method deals with our simple quadratic function f(x, y) = x* + 212
as follows. From the initial point (9,9) we move to the same point as in steepest descents,
(4,—1). To find the direction of the next move, we first determine the negative gradient at
the current point. This is the vector (—8,4). This is then combined with the vector
corresponding to minus the gradient at the initial point, (—18,—36) multiplied by +:

. (—8) . (-8)% + (4)? (—18) B (—80/9)

T 4) T (187 + (=36)2 \ 36 +20/9
To locate the second point we therefore need to perform a line search along the linie
with gradient —1/4 that passes through the point (4,—1). The minimum along this line is
at the origin, at the true minimum of the function. The conjugate gradients method thus

locates the exact minimum of the function exactly in just two moves, as illustrated in
Figure 5.11.

(5.11)

-5 -0 -5 0 5 10 15

Fig. 5.11: Applic_atian of conjugate gradients method to the function x* 4 2y~

Caviaanad
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S'e'veraI. variants' of the cor‘ljugate gradients method have been proposed. The formulation
given in Equation (5.7) is the original Fletcher-Reeves algorithm. Polak and Ribiere
proposed an alternative form for the scalar constant ;:

= (8 — 8c—1) " 8k

Bk-1°8k-1 (5:12)

For a'purely quadratic function the Polak-Ribiere method is identical to the Fletcher-Reeves
algorithm as all gradients will be orthogonal. However, most functions of interest, includin
. tho§e used.in molecular modelling, are at best only approximately quadratic. ,Polak ang
Riviere claimed that their method performed better than the original Fletcher-Reeves
algorithm, at least for the functions that they examined. .

5.5 Second Derivative Methods: T -
i s: The Newton—-Raphson

Second-ordgr methods use not only the first derivatives (i-e. the gradients) but also the
second derivatives to locate a minimum. Second derivatives provide information about

_ the curvature of the function. The Newton-Raphson method is the simplest second-order
method. Recall our Taylor series expansion about the point x;, Equation (5.2):

YE) =Y (@) + (e~ 1) 7 (%) + (x — 02" (x) 2+ - - (5.13)
The first derivative of ¥ (x) is: |
V(%) =29 (1) + (x — ) ¥ " (x) (5.14)

If the function is purely quadratic, th ivative i
iy purely q , the se¢ond derivative is the same everywhere, and so

_ At the minimum (x = x*)7”(x*) = 0 and so

=1 =97 (0) /Y (%) (5-15)‘

; For a multidimensional function: x* — X — ¥ (x) 7" (xe).

v 1(x,() is the inverse Hessian matrix of second derivatives, which, in the Newton-Raphson
mfethod, must therefore be inverted. This can be computationally demanding for syI;tems
with many atoms and can also require a significant amount of storage. The Newton-
~ Raphson method is thus more suited to small molecules (usually less than 100 atoms or
§0), For a purely quadratic function the Newton-Raphson method finds the minimum
I one step from any point on the surface, as we will now show for our function

f(xly) =x2+2y2-

~ The Hessian matrix for this function is:

f,,:<2 0
0 4

(5.16)
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The inverse of this matrix is:

1 = (1(/) 2 1?4) | (5.17)

The minimum is obtained using Equation (5.15):

. <9> (1/2 0 18 0 (5.18)
x — — = .
9 0 1/4)\36 0 )
In practice, of course, the surface is only quadratic to a first approximation and so a number

of steps will be required, at each of which the Hessian matrix must be calculated and
inverted. The Hessian matrix of second derivatives must be positive definite in a Newton-

Raphson minimisation. A positive definite matrix is one for which all the eigenvalues are -

positive. When the Hessian matrix is not positive definite then the Newton-Raphson
method moves to points (e.g. saddle points) where the energy increases. In addition, far
from a minimum the harmonic approximation is not appropriate and the minimisation
can become unstable. One solution to this problem is to use a more robust method to get
near to the minimum (i.e. where the Hessian is positive definite) before applying the
Newton-Raphson method.

5.5.1 Variants on the Newton-Raphson Method

There are a number of variations on the Newton-Raphson method, many of which aim to
eliminate the need to calculate the full matrix of second derivatives. In addition, a family
of methods called the quasi-Newton methods require only first derivatives and gradually
construct the inverse Hessian matrix as the calculation proceeds. One simple way in
which it may be possible to speed up the Newton-Raphson method is to use the same
Hessian matrix for several successive steps of the Newton-Raphson algorithm with only
the gradients being recalculated at each iteration.

A widely used algorithm is the block-diagonal Newton-Raphson method in which just one
atom is moved at each iteration. Consequently all terms of the form &%/ Ox;0x;, where i
and j refer to the Cartesian coordinates of atoms other than the atom being moved, will
be zero. This only leaves those terms which involve the coordinates of the atom being
moved and so reduces the problem to the trivial one of inverting a 3 x 3 matrix. However,
the block-diagonal approach can be less efficient when the motions of some atoms are closely
coupled, such as the concerted movements of connected atoms in a phenyl ring.

5.6 Quasi-Newton Methods

Calculation of the inverse Hessian matrix can be a potentially time-consuming operation
that represents a significant drawback to the 'pure’ second derivative methods such as
Newton-Raphson. Moreover, one may not be able to calculate analytical second derivatives,
which are preferable. The quasi-Newton methods (also known as variable metric methods)
gradually build up the inverse Hessian matrix in successive iterations. That is, a sequence of
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matrices Hy is constructed that has the property

Jlim H, = y (5.19)

At each iteration k, the new positions x; , ; are obtained from the current positions x;, the
gradient g; and the current approximation to the inverse Hessian matrix H;:

Xer1 = % — Higg (5.20)

This formula is exact for a quadratic function, but for ‘real’ problems a line search may be
desirable. This line search is performed along the vector x; ', ; — x;. It may not be necessary
to locate the minimum in the direction of the line search very accurately, at the expense of
a few more steps of the quasi-Newton algorithm. For quantum mechanics calculations
the additional energy evaluations required by the line search may prove more expensive
than using the more approximate approach. An effective compromise is to fit a function
to the energy and gradient at the current point x; and at the point x; , ; and determine the
minimum in the fitted function.

Having moved to the new positions x; 1, H is updated from its value at the previous
step according to a formula depending upon the specific method being used. The methods
of Davidon-Fletcher-Powell (DFP), Broyden-Fletcher-Goldfarb-Shanno (BFGS) and
Murtaugh-Sargent (MS) are commonly encountered, but there are many others. These
methods converge to the minimum, for a quadratic function of M variables, in M steps.
The DFP formula is:

(11 = %) © (—1 — %) [Hiee (81— 86)] © [Hy - (81— 81))]
Hy, 1 =H + - + +1- Sk 5.21
* (k11— %) * (1 — &) (81— 8k) - He (81 — &) 621)

The symbol ® when interposed between two vectors means that a matrix is to be formed.
The ijth element of the matrix u ® v is obtained by multiplying u; by v;.

The BFGS formula differs from the DFP equation by an additional term:

H . — X1 = %) ® (1 — %)  [He- (81 — 801 © [Hi - (81 — 8)]
kr1=He +
(k11— %) * (81 — &) (8+1— 8 He- (81— &)

+ (81— &) He (811 —8)Ju®u (5.22)
where
(X1 — Xk) [Hy - (81 — 8)]
u= - — 5.23
Xey1 = %) (81— &) (8kr1 — 80 Hee (81— 8) 6.2)
The MS formula is:
Hy, = H, + (%1 — %) — Hi(grr1 — 8] © (X1 — %) — Hi(Bir1 — 8)] (5.24)

(k1 = %) — Hi(grr1 — 8]+ (8k+1 — 8)

All of these methods use just the new and current points to update the inverse Hessian. The
default algorithm used in the Gaussian series of molecular orbital programs [Schlegel 1982]
makes use of more of the previous points to construct the Hessian (and thence the inverse
Hessian), giving better convergence properties. Another feature of this method is its use
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of a quartic polynomial that is guaranteed to have just one local minimum in the line search.
The DFP, BFGS and MS methods can also be used with numerical derivatives, but alterna-
tive approaches may be more effective under such circumstances.

The matrix H is often initialised to the unit matrix I. The performance of the quasi-Newton
algorithms can be improved by using a better estimate of the inverse Hessian than just the
unit matrix. The unit matrix gives no information about the bonding in the system, nor does
it identify any coupling between the various degrees of freedom. For example, a molecular
mechanics calculation can be used to provide an initial guess to H prior to a quantum
mechanical calculation. Alternatively the matrix can be obtained from a quantum mechan-
ical calculation at a lower level of theory (e.g. semi-empirical or with a smaller basis set).

5.7 Which Minimisation Method Should | Use?

The choice of minimisation algorithm is dictated by a number of factors, including the sto-
rage and computational requirements, the relative speeds with which the various parts of
the calculation can be performed, the availability of analytical derivatives and the robustness
of the method. Thus, any method that requires the Hessian matrix to be stored (let alone its
inverse calculated) may present memory problems when applied to systems containing
thousands of atoms. Calculations on systems of this size are invariably performed using
molecular mechanics, and so the steepest descents and the conjugate gradients methods
are very popular here. For molecular mechanics calculations on small molecules, the
Newton-Raphson method may be used, although this algorithm can have problems with
structures that are far from a minimum. For this reason it is usual to perform a few steps
of minimisation using a more robust method such as the simplex or steepest descents
before applying the Newton-Raphson algorithm. Analytical expressions for both first and
second derivatives are available for most of the terms found in common force fields.

The performance of the steepest descents and conjugate gradients methods is contrasted in
the following example. A model of the antibiotic netropsin (Figure 5.12) bound to DNA was
constructed using an automated docking program. This initial model was then subjected to
two stages of minimisation. In the first stage, the aim was to produce a structure that did not

Fig. 5.12: The DNA inhibitor netropsin.
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Initial refinement

i Stringent minimisation
(Av. gradient <1 kcal A=?)

(Av. gradient <0.1 keal A™2)

Method CPU time (s) Number of iterations CPU time {s) Number of iterations
Steepest descents 67 98 ‘ 1405 1893

Conjugate gradients 149 213 257 367

Table 5.1 A comparison of the steepest descents and conjugate gradients methods for an initial refinement and a
stringent minimisation.

have any significant high-energy interactions. The structure was then further minimised to
give a structure much closer to the minimum. The results are shown in Table 5.1.

This study shows that the steepest descent method can actually be superior to conjugate
gradients when the starting structure is some way from the minimum. However, conjugate
gradients is much better once the initial strain has been removed.

Quantum mechanical calculations are restricted to systems with relatively small numbers of
atoms, and so storing the Hessian matrix is not a problem. As the energy calculation is often
the most time-consuming part of the calculation, it is desirable that the minimisation method
chosen takes as few steps as possible to reach the minimum. For many levels of quantum
mechanics theory analytical first derivatives are available. However, analytical second deri-
vatives are only available for a few levels of theory and can be expensive to compute. The
quasi-Newton methods are thus particularly popular for quantum mechanical calculations.

When using internal coordinates in a quantum mechanical minimisation it can be important
to use an appropriate Z-matrix as input. For many systems the Z-matrix can often be written
in many different ways as there are many combinations of internal coordinates. There
should be no strong coupling between the coordinates. Dummy atoms can often help in the
construction of an appropriate Z-matrix. A dummy atom is used solely to define the
geometry and has no nuclear charge and no basis functions. A simple example of the use
of dummy atoms is for a linear molecule such as HNj, where the angle of 180° would
cause problems. The geometry of this molecule can be defined using a dummy atom as
illustrated in Figure 5.13; the associated Z-matrix for this system would be:

1 N
2 N 1 RININ2
3 X ‘1 1.0 2 90.0
4 N 1 'RN1N4 3 AN4N1X 2 180.0
5 H 4 RN4H 1 AHN4N1 3 180.0
)|( 3
N—N-—N
5,4 1 2
H

Fig. 5.13: Internal coordinates of HN; molecule defined using dummy atoni X.
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4

Fig. 5.14: The ring closure bond between atoms 1 and 5 would be strongly coupled to the other internal coordinates
(left) unless dummy atoms are used to define the Z-matrix (right).

Strong coupling between coordinates can give long ‘valleys’ in the energy sm.fface, whic'h
may also present problems. Care must be taken when defining the Z-matrix for cyclic
systems in particular. The natural way to define a cyclic compound would be to
number the atoms sequentially around the ring. However, this would then mean that
the ring closure bond will be very strongly coupled to all of the other bonds, angles
and torsion angles (Figure 5.14). A better definition uses a dummy atom placed at the
centre of the ring (Figure 5.14). Some quantum mechanics programs are able to C(?n.ver.t
the input coordinates (be they Cartesian or internal) into the most efficient set for minimi-
sation so removing from the user the problems of trying to decide what is an appropriate
set of internal coordinates. For energy minimisations redundant internal coordinates have
been shown to give significant improvements in efficiency compared with Cartesjan
coordinates or non-redundant internal coordinates, especially for flexible and polycyclic
systems [Peng et al. 1996]. The redundant internal coordinates employed generally. com-
prise the bond lengths, angles and torsion angles in the system. These methods ob.V1ou,sly
also require the means to interconvert between the internal coordinate representahor_l and
the Cartesian coordinates that are often used as input and desired as output. Of particular
importance is the need to transform energy derivatives and the Hessian matrices (if

appropriate).

5.7.1 Distinguishing Between Minima, Maxima and Saddle Points

A configuration at which all the first derivatives are zero need not necessarily ‘F)e a minimum
point; this condition holds at both maxima and saddle points as well. From simple calcu.lu.s
we know that the second derivative of a function of one variable, f'(x) is positive at a mini-
mum and negative at a maximum. Itis necessary to calculate the eigenvalues f)f the Hessifm
matrix to distinguish between minima, maxima and saddle points. At a mlm'mym point
there will be six zero and 3N — 6 positive eigenvalues if 3N Cartesian coordinates are
used. The six zero eigenvalues correspond to the translational and rotational degrees of free-
dom of the molecule (thus these six zero eigenvalues are not obtained when internal coor-
dinates are used). At a maximum point all eigenvalues are negative and at a saddle P01nt
one or more eigenvalues are negative. We will consider the uses of the eigenvalue and eigen-
vector information in Sections 5.8 and 5.9.
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5.7.2 Convergence Criteria

In contrast to the simple analytical functions that we have used to illustrate the operation of
the various minimisation methods, in ‘real’ molecular modelling applications it is rarely
possible to identify the ‘exact’ location of minima and saddle points. We can only ever
hope to find an approximation to the true minimum or saddle point. Unless instructed
otherwise, most minimisation methods would keep going forever, moving ever closer to
the minimum. It is therefore necessary to have some means to decide when the minimisa-
tion calculation is sufficiently close to the minimum and so can be terminated. Any calcula-
tion is of course limited by the precision with which numbers can be stored on the
computer, but in most instances it is usual to stop well before this limit is reached. A
simple strategy is to monitor the energy from one iteration to the next and to stop when
the difference in energy between successive steps falls below a specified threshold. An
alternative is to monitor the change in coordinates and to stop when the difference between
successive configurations is sufficiently small. A third method is to calculate the root-mean-
square gradient. This is obtained by adding the squares of the gradients of the energy with
respect to the coordinates, dividing by the number of coordinates and taking the square
root:

T

_./88
RMS = 4/52 (5.25)

It is also useful to monitor the maximum value of the gradient to ensure that the minimisa-
tion has properly relaxed all the degrees of freedom and has not left a large amount of strain
in one or two coordinates.

5.8 Applications of Energy Minimisation

Energy minimisation is very widely used in molecular modelling and is an integral part of
techniques such as conformational search procedures (Chapter 9). Energy minimisation is
also used to prepare a system for other types of calculation. For example, energy mini-
misation may be used prior to a molecular dynamics or Monte Carlo simulation in order
to relieve any unfavourable interactions in the initial configuration of the system. This is
especially recommended for simulations of complex systems such as macromolecules or
large molecular assemblies. In the following sections we will discuss some techniques
that are specifically associated with energy minimisation methods.

5.8.1 Normal Mode Analysis

The molecular mechanics or quantum mechanics energy at an energy minimum
corresponds to a hypothetical, motionless state at 0K. Experimental measurements are
made on molecules at a finite temperature when the molecules undergo translational,
rotational and vibration motion. To compare the theoretical and experimental results it is
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necessary to make appropriate corrections to allow for these motions. These corrections are
calculated using standard statistical mechanics formulae. The internal energy U(T) at a
temperature T is given by:

U(T) = utrans(T) + urot(T) + uvib(T) + uvib(o) (526)

If all translational and rotational modes are fully accessible in accordance with the
equipartition theorem, then U, (T) and U, (T) are both equal to %kBT per molecule
(except that U (T) equals kgT for a linear molecule); kg is Boltzmann’'s constant. However,
the vibrational energy levels are often only partially excited at room temperature. The
vibrational contribution to the internal energy at a temperature T thus requires knowledge
of the actual vibrational frequencies. The vibrational contribution equals the difference in
the vibrational enthalpy at the temperature T and at 0K and is given by:

N,
2 hl/i hl/i
Uyip(T) = ; (‘2— +W> (5.27)

Npm is the number of normal vibrational modes for the system. Even the zero-point energy
(U,s(0), obtained by summing 1k for each normal mode) can be quite substantial, amount-
ing to about 100 kcal/mol for a six-carbon alkane. Other thermodynamic quantities such as
entropies and free energies may also be calculated from the vibrational frequencies using the
relevant statistical mechanics expressions. ' ‘

Normal modes are useful because they correspond to collective motions of the atoms in a
coupled system that can be individually excited. The three normal modes of water are
schematically illustrated in Figure 5.15; a non-linear molecule with N atoms has 3N — 6
normal modes. The frequencies of the normal modes together with the displacements of
the individual atoms may be calculated from a molecular mechanics force field or from
the wavefunction using the Hessian matrix of second derivatives (#™). Of course, if we
have used an appropriate minimisation algorithm then we already know the Hessian. The
Hessian must first be converted to the equivalent force-constant matrix in mass-weighted
coordinates (F), as follows:

F=M Y2y M 1/2 . (5.28)

1595 cm™' (1826 cm™) ‘ 3756 e’ (4188 cm ™) 3652 cm”’ (4070 cm ')

Fig. 5.15: Normal modes of water. Experimental and (calculated) frequencies ave shown. Theoretical frequencies
calculated using a 6-31G” basis sef.
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M is a diagonal matrix of dimension 3N x 3N, containing the atomic masses. All elements
of M are zero except those on the diagonal; Mg =my, Myy =my, Mg =myq, My, =
i, .- Man 2 anv_2 =1y, May_q3y_1=my, Msy sy = my. Each non-zero element of
M /2 is thus the inverse square root of the mass of the appropriate atom. The masses of
the atoms must be taken into account because a force of a given magnitude will have a
different effect upon a larger mass than a smaller one. For example, the force constant for
a bond to a deuterium atom is, to a good approximation, the same as to a proton, yet the
different mass of the deuteron gives a different motion and a different zero-point energy.
The use of mass-weighted coordinates takes care of these problems.

We next solve the secular equation [F — I| = 0 to obtain the eigenvalues and eigenvectors of
the matrix F. This step is usually performed using matrix diagonalisation, as outlined in
Section 1.10.3. If the Hessian is defined in terms of Cartesian coordinates then six of these
eigenvalues will be zero as they correspond to translational and rotational motion of the
entire system. The frequency of each normal mode is then calculated from the eigenvalues
using the relationship:

v = Q (5.29)
As a simple example of a normal mode calculation consider the linear triatomic system in
Figure 5.16. We shall just consider motion along the long axis of the molecule. The displace-
ments of the atoms from their equilibrium positions along this axis are denoted by &, It is
assumed that the displacements are small compared with the equilibrium values I, and the
system obeys Hooke’s law with bond force constants k. The potential energy is given by:

V=16~ &) +3k(& — &) (5.30)

We next calculate the first and then the second derivatives of the potential energy with
respect to the three coordinates £, & and &:

o o

% k(& — &) (5.31)
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Fig. 5.16: Linear three-atom system with results of normal mode calculation.
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The second derivatives are conveniently represented as a 3 x 3 matrix:

k -k O
-k 2k —k (5.32)
0 -k k
The mass-weighted matrix is
mq 0 0
0 m 0 (5.33)
0 0 ms
The secular equation to be solved is thus:
k
A W __k 0
m VM1 /1
k% A - L 0 (5.34)
Vit /iy i Vi | '
0 __k ko
V11 "

This determinant leads to a cubic in A which has three roots ()), each corresponding to a
different mode of motion:

k
L W L Bk (5.35)
M My
The corresponding frequencies can be obtained from Equation (5.29). The amplitudes (A) of
each normal mode are given by the eigenvector solutions of the secular equation FA = AA.
If A;, Ay and A, are the amplitudes of each atom then the amplitudes obtained for each

eigenvalue are:

A=—: Al = —Aa, A2 = 0 (536)
my
. iy
A= 0: Al = A3; . A2 = —‘Al (537)
my - .
my + 2m1 mq
A=k————: A = Asz; Ay =-2,/—A 5.38
iy 1 3 2 My 1 ( )

These normal modes are schematically illustrated in Figure 5.16. They correspond to a
symmetric stretch, a translation and an asymmetric stretch respectively.

We have already seen how the results of normal mode calculations can be used to
calculate thermodynamic quantities. The frequencies themselves can also be compared
with the results of spectroscopic experiments, information which can be used in the para-
metrisation of a force field. For example, the experimental frequencies for the normal
modes of water are shown in Figure 5.15, together with the frequencies determined
using a 6-31G* ab initio calculation. The calculated values clearly deviate from those
obtained experimentally, but the ratio of the experimental and theoretical frequencies is
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Fig. 5.17: Histogram of the normal modes calculated for a polyalanine polypeptide in an «-helical conformation. The
height of each bar indicates the number of normal modes in each 50 cm™? section.

remarkably consistent {(at about 1.1). Such empirical scaling factors have been derived
which enable frequencies obtained using a given level of theory to be converted to
values for experiment or a higher level of theory [Pople et al. 1993]. The normal modes
of much larger molecules can be calculated using molecular mechanics. For example, the
vibrations of a helical polypeptide constructed from a sequence of ten alanine residues
(112 atoms) are shown in Figure 5.17. In such cases it is usually the low-frequency
vibrations that are of most interest as these correspond to the large-scale conformational
motions of the molecule. The results of such analyses can be compared with molecular
dynamics simulations from which vibrational contributions can also be extracted [Brooks
and Karplus 1983].
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Fig. 5.18: Trimethoprim.

A normal mode calculation is based upon the assumption that the energy surface is quad-

ratic in the vicinity of the energy minimum (the harmonic approximation). Deviations

from the harmonic model can require corrections to calculated thermodynamic properties.
One way to estimate anharmonic corrections is to calculate a force constant matrix using
the atomic motions obtained from a molecular dynamics simulation; such simulations are
not restricted to movements on a harmonic energy surface. The eigenvalues and eigen-
vectors are then calculated for this quasi-harmonic force-constant matrix in the normal
way, giving a model which implicitly incorporates the anharmonic effects.

The harmonic approximation to the energy surface is found to be appropriate for well-
defined energy minima such as the intramolecular degrees of freedom of small molecules
and for some small intermolecular complexes. For larger systems such as liquids and
large, ‘floppy” molecules, the harmonic approximation breaks down. Such systems also
have an extraordinarily large number of ‘minima’ on the energy surface. In such cases it
is not possible to calculate accurately thermodynamic properties using energy minimisation
and normal mode calculations. Rather, molecular dynainics or Monte Carlo simulations
must be used to sample the energy surface from which properties can be derived, as we
will discuss in Chapters 6-8. k

5.8.2 The Study of Intermolecular Processes

One example of the use of minimisation methods and normal-mode analysis is the study by
Hagler and co-workers of the binding of the antibacterial drug trimethoprim (Figure 5.18)
to the enzyme dihydrofolate reductase (DHFR) [Dauber-Osguthorpe et al. 1988; Fisher
et al. 1991]. DHFR catalyses the reduction of folic acid and dihydrofolic acid to tetra-
hydrofolic acid (Figure 5.19) and plays a vital metabolic role in the biosynthesis of nucleic
acids in bacteria, protozoa, plants and animals. Trimethoprim exploits the structural
differences between bacterial and vertebrate DHFR, binding much more strongly to the
former, and is clinically used as an antibacterial agent. Inhibitors of human DHFR are
used in cancer therapy. Hagler and colleagues applied energy minimisation to an isolated
trimethoprim molecule, to the crystal structure of trimethoprim, to trimethoprim in the
presence of water molecules, and to trimethoprim in intermolecular complexes with
DHFR from both bacterial and vertebrate sources. An important observation was that the
conformation of the trimethoprim, when bound to the enzyme, was significantly different
from that obtained for the isolated molecule. This reinforces the view that the use of
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Fig. 5.19: DHER catalyses the reduction of folic acid to tetrahydrofolic acid.

structures obtained from energy minimisation calculations on isolated molecules can lead to
misleading conclusions. Intermolecular interactions with the receptor enable the ligand to
adopt a conformation whose intramolecular energy is significantly higher than any of its
minimum energy structures.

A normal mode analysis on the isolated and bound trimethoprim molecules enabled an
estimate to be made of the entropic contribution to binding. Low-frequency modes for
the isolated ligand were found to be shifted to higher frequencies for the ligand in the
enzyme complex, reflecting a restriction of the motion of the ligand by the protein. This
entropic contribution to the free energy of binding was predicted to be quite significant,
indicating that conclusions based solely upon energies may be misleading.

5.9 Determination of Transition Structures and Reaction
Pathways

Chemists are interested not only in the thermodynamics of a process (the relative stability of
the various species) but also in its kinetics (the rate of conversion from one structure to
another). Knowledge of the minimum points on an energy surface enables thermodynamic
data to be interpreted, but for the kinetics it is necessary to investigate the nature of the
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Fig. 5.20: The lowest-energy path from one minimum to another passes through a saddle point.

energy surface away from the minimum points. In particular, we would like to know how
the system changes from one minimum to another. What changes in geometry are involved,
and how does the energy vary during the transition? The minimum points on the energy
surface may be the reactants and products of a chemical reaction, two conformations of a
molecule, or two molecules that associate to form a non-covalently bound bimolecular
complex. We shall use the term 'reaction pathway’ to describe the path between two
minima, but our use of the word ‘reaction” does not necessarily mean that bond making
and/or breaking is involved. Many methods have been proposed for finding transition
structures and elucidating reaction pathways. We do not have space to cover all of the
methods, and so we shall restrict our discussion to some of the more common approaches.

As a system moves from one minimum to another, the energy increases to a maximum at the
transition structure and then falls. At a saddle point the first derivatives of the potential
function with respect to the coordinates are all zero (just as they are at a minimum point).
The number of negative eigenvalues in the Hessian matrix is used to distinguish different
types of saddle point; an nth-order transition or saddle point has n negative eigenvalues.
We are usually most interested in first-order saddle points, where the energy passes through
a maximum for movement along the pathway that connects the two minima, but is a
minimum for displacements in all other directions perpendicular to the path. This is
shown schematically for a two-dimensional energy surface in Figure 5.20.

These negative eigenvalues of the Hessian matrix are often referred to as the ‘imaginary’
frequencies for motion of the system over the saddle point. We can illustrate this concept
using the gas-phase Sy2 reaction between Cl™ and CH;Cl. As the chloride ion approaches
the methyl chloride along the line of the C—Cl bond the energy passes through an ion-
dipole complex which is at an energy minimum. The energy then rises to a maximum at
the pentagonal transition state. The energy profile is drawn in Figure 5.21. The geometries
of the minimum and the pentagonal transition state, as determined by an ab initio HF/
SCF calculation with the 6-31G” basis set are shown in Figure 5.22. The lowest-frequency
eigenvalues and a representation of the corresponding eigenvectors for the two geometries
are also given in Figure 5.22. There are three frequencies in the ion-dipole minimum that are
of particularly low energy; two of these correspond to degenerate ‘wagging’ motions of the
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Fig. 5.21: The energy profile for the gas-phase CI~ + MeCl reaction. (Adapted in part from Chandrasekhar ],
S F Smith and W L Jorgensen 1985. Theoretical Examination of the Sy2 Reaction Involving Chloride Ion
and Methyl Chloride in the Gas Phase and Aqueous Solution. Journal of the American Chemical Society

. 107:154-163.)

system (at 71.3cm ). The vibration at 101.0cm™! is the normal mode that corresponds to
motion towards the transition state. At the saddle point there is a single negative eigenvalue
(with an imaginary ‘frequency’ of —415.0cm™") that corresponds to vibration along the
CI-C-Cl axis (i.e. motion along the reaction pathway). The other normal modes at the
saddle point all have positive frequencies; the two lowest (at 204.2cm™) correspond to
wagging motions perpendicular to the CI-C~Cl axis and the third is a symmetric stretch
of the two chlorine atoms along the symmetry axis.

It is important to distinguish the transition structure from the transition state. The transition
structure is the point of highest potential energy along the pathway. By contrast, the transi-
tion state is the geometry at the peak in the free energy profile. In many cases the geometry at
the transition state is very similar to that of the transition structure. However, the transition
state may be different as the free energy of activation includes contributions from sources
other than just the potential energy. If the transition state geometry is temperature-
dependent then entropic factors may be important. An example is the following radical
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Fig. 5.22: Schematic representation. of some of the lower frequencies in the ion-dipole complex for the CI” 4 MeCl
reaction and the imaginary frequency of the transition structure, calculated using a 6-31G* basis set.

reaction: ’
H’ + CH;CH; — H, + CH,=CH,

The calculated geometry of the transition structure resembles the ethyl radical (Figure 5.23)
[Doubleday et al. 1985]. The entropy change for this reaction is negative and so, as the
temperature is increased, the maximum in the free energy profile shifts more towards the
products, in the direction of lower entropy.

Methods for finding transition structures and reaction pathways are often closely related.
Thus, some methods for finding the reaction pathway start from the transition structure
and move down towards a minimum. Such methods must be supplied with the transition
structure geometry as the starting point. Conversely, some methods for locating transition
structures do so by searching along the reaction pathway, or an approximation to it. Yet
other methods require neither the transition structure nor the pathway, but can determine
both simultaneously from the two minima. In general, it is more difficult to locate transition
structures and determine reaction pathways than to find minimum points. It is therefore
crucial to check that the Hessian matrix at any proposed saddle point has the required
single negative eigenvalue. Methods for locating saddle points are usually most effective
when given as input a geometry that is as close as possible to the transition structure. It
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Fig. 5.23: The transition structure for the H + CH3CH; — H, + CH,=CH, reaction. At low temperature the
transition structure corresponds to the transition state (maximum of free energy). At high temperature the transition
state moves closer to the products, as can be seen from the graph. (Redrawn from Doubleday C, | Mclver, M Page and
T Zielinski 1985. Temperature Dependence of the Transition-State Structure for the Disproportionation of Hydrogen
Atom with Ethyl Radical. Journal of the American Chemical Society 107:5800-5801.)

can also be helpful to examine the atomic displacements that correspond to the negative
eigenvector, to ensure that it corresponds to the correct motion over the saddle point as
for the Cl~ + CH;Cl reaction.

As one approaches the saddle point from a minimum, the Hessian matrix will change from
having all positive eigenvalues to including one negative value. The quadratic region of a
saddle point is that portion of the energy surface surrounding the point where the Hessian
contains one negative eigenvalue. Similarly the quadratic region of a minimum is the
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Fig. 5.24: The function f(x,y) = x* + 4x’y’ — 22* + 2y has a saddle point at (0,0) and minima at (1,0) and
(~1,0).

region where all eigenvalues are positive and the Hessian is positive definite. Some
algorithms for finding saddle points require a starting geometry within the quadratic
region. We can illustrate the concept of a quadratic region by considering the function
flx,y) =x* + 4x®y* — 2x* 4+ 212, which is drawn in Figure 5.24. This function has two
minima at (1,0) and (~1,0) and one saddle point at (0,0). In this case it is possible to
derive and characterise the stationary points analytically. The Hessian matrix of second deri-
vatives for this function is: :

(12x2 +8/7 -4 léxy ) (5.39)
' 16xy 8x? + 4

At the point (1,0) the Hessian matrix is thus

(z 2) | (5.40)

The eigenvalues of this matrix are obtained by setting the secular determinant to zero:

‘8_’\ 0 lgo (5.41)

0 4-A
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The eigenvalues are A = 4 and A = 8. Thus both eigenvalues are positive and the point is a
minimum. At the point (0,0) the Hessian matrix is

( f;l 2) (5.42)

with one negative and one positive eigenvalue (—4 and +4). The normalised eigenvectors
corresponding to these eigenvalues are-(0,1) for the eigenvalue A =4 and (1,0) for the
eigenvalue A = —4. These eigenvectors indicate the directions in which the gradient of the
function changes sign. Thus along the line x = 0 the function passes through a minimum,
as can be seen from Figure 5.24. By contrast, if one progresses from (—1,0) to (1,0) through
the origin then the function passes through a maximum. As one progresses through a transi-
tion structure the eigenvector of the negative eigenvalue corresponds to the concerted
motions of the atoms that give rise to motion through the saddle point. If we move along
the x axis from the minimum at (1,0) to the saddle point at the origin, both eigenvalues
will be positive so long as 12x* 4+ 8y*> — 4 > 0. Thus, so long as x is larger than 1/+/3 the
eigenvalues of the Hessian matrix will be positive. When x becomes smaller than 1/ V3
there will be one negative and one positive eigenvalue. In this case the quadratic region
would correspond to all points where the absolute value of x was less than 1/v/3.

5.9.1 Methods to Locate Saddle Points

In some simple cases such as the chloride/methyl chloride reaction the geometry of the tran-
sition structure can be predicted by inspection. In other cases a grid search can be used to scan
the energy surface in order to locate the approximate position of the transition state. In a grid
search, the coordinates are systematically varied to generate a set of structures, for each of
which the energy is calculated. It may then be possible to fit an analytical expression to

. these points, from which the saddle point can be predicted by standard calculus methods.

The grid search method is widely used for constructing potential energy surfaces but is
restricted to systems with a very small number of atoms or where only a limited number
of degrees of freedom are being explored such as the H+H,; — H; + H reaction. An
advantage of the grid search is that it does provide information about the energy surface
away from the pathway, which can be important if one wishes to investigate the dynamics
of a reaction and the interconversion of energy between different modes. The grid search
method is not the method of choice for all but the smallest systems due to the number of
energy evaluations that are required. In any case it does not directly provide the transition
structure.

The conversion of one minimum-energy structure into another may sometimes occur
primarily along just one or two coordinates. In such cases, an approximation to the reaction
pathway can be obtained by gradually changing the coordinate(s), allowing the system to
relax at each stage using minimisation while keeping the chosen coordinate(s) fixed. The
point of highest energy on the path is an approximation to the saddle point and the
structures generated during the course of the calculation can be considered to represent a
sequence of points on the interconversion pathway. When such coordinate driving methods
are applied to conformational changes that occur primarily via rotation about bonds, the
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the Hessian matrix of second derivatives is available then the appropriate direction to take is
uphill along the eigenvector of the smallest eigenvalue when all eigenvalues are positive and
downhill along the eigenvector corresponding to the negative eigenvalue when within the
quadratic region of the saddle point [Baker 1986].

As we have stated frequently, at a saddle point the gradient is zero (as it is for a minimum). It
might therefore be imagined that a minimisation algorithm (or some variant) could be used
to locate saddle points. Some minimisation algorithms can occasionally incorrectly converge
to a saddle point, especially if the starting structure is close to the transition structure. A
simple example is the Newton-Raphson method, which will converge to a transition
structure when giving a starting position that is within the quadratic region. Other minimi-
sation algorithms can also be modified so that they consistently locate saddle points when
provided with an initial structure within the quadratic region [Schlegel 1982].

5.9.2 Reaction Path Following

The traditional way to elucidate the reaction path is to move downhill from a saddle point to
the two associated minima. There may be many different paths that could be followed from
the saddle point to the associated minima. The intrinsic reaction coordinate (IRC) is the path
that would be followed by a particle moving along the steepest descents path with an
infinitely small step from the transition structure down to each minimum when the
system is described using mass-weighted coordinates (as in a normal mode calculation)
[Fukui 1981]. The initial directions towards each minimum can be obtained directly from
the eigenvector that corresponds to the imaginary frequency at the transition structure. A
simple steepest descents algorithm with a reasonable step size will usually give a path
that oscillates about the true minimum energy path, as illustrated in Figure 5.28. This is
perfectly acceptable in a minimisation, where the objective is to locate the minimum as
efficiently as possible and where we are not interested in the intermediate structures. To
determine the true reaction pathway (or a better approximation to it) it is necessary to
‘correct’ the path taken by the steepest descents algorithm. These corrective methods are
especially useful when the path is curved.

Fig. 5.28: A steepest descents minimisation algorithm produces a path that oscillates about the true reaction pathway
from the transition structure o a minimum.

Fig. 5.29: Method for correcting the path followed by a steepest descents algorithm to generate the intrinsic reaction
coordinate. The solid line shows the real path and the dotted line shows the algorithmic approximation to it. (Figure
redrawn from Gonzalez C and H B Schlegel 1988. An Improved Algorithm for Reaction Path Following. Journal of
Chemical Physics 90:2154-2161.)

Many different algorithms have been suggested for determining reaction paths. The real
challenge is to find an approach that is sufficiently general to work well in many (if not
all) situations and with relatively little computational expense. One widely used method
was devised by Gonzalez and Schlegel [Gonzalez and Schlegel 1988] and is illustrated in
Figure 5.29. First it calculates the gradient at the current point, x;. A step of length s/2 is
taken along the direction of this gradient to give a new point (x). The next point on the
reaction path is obtained by minimising the energy subject to the constraint that the distance
between x" and the new point on the reaction path (x, 1) is /2. The reaction path is then
approximated by a circle that passes through both x; and x;,; and whose tangents at
those two points are in the directions of the gradients. A refined version of this path-
following algorithm has been incorporated into an efficient combined procedure which
can determine reaction paths, minima and transition state geometries [Ayala and Schlegel
1997] without the need for second derivatives to be calculated.

_ 5.9.3 Transition Structures and Reaction Pathways for Large Systems

Most of the algorithms we have discussed so far, with the possible exception of adiabatic
mapping, were originally designed to be used with quantum mechanics where relatively
small numbers of atoms are involved. It is often difficult to apply these methods to the
study of conformational transitions. There are several reasons for this, but one important
feature is that it is assumed that there is only one saddle point between the initial and
final states. There may be a number of transition structures along the pathway between
two conformations of a complex molecule. Here we will discuss two related methods that
were originally designed to tackle this problem using molecular mechanics.

In the self-penalty walk (SPW) method of Czerminski and Elber [Czerminski and Elber 1990;
Nowak et al. 1991] a ‘polymer’ is constructed that consists of a series of M + 2 ‘monomers’.
Each monomer is a complete copy of the actual system and so there are (M + 2)N atoms
present in the calculation. The two ends of the polymer correspond to the two minima
between which we are trying to elucidate the pathway (the ‘reactant’ and the ‘product’).
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1,3-Alternate

1,2-Alternate

Fig. 5.31: Possible conformations of the calix[4]arene systems. (Figure adapted from Fischer S, P D | Groothenuis,
L C Groenen, W P van Hoorn, F C | M van Geggel, D N Reinhoudt and M Karplus 1995. Pathways for
Conformational Interconversion of Calix[4]arenes. Journal of the American Chemical Society 117:1611-1620.)

involved, giving the energy diagram in Figure 5.32. The predicted activation barrier of
14.5kcal/mol for the cone — inverted cone transition was in very good agreement with
the experimentally determined value of 14.2kcal/mol. Much of the barrier (9.1kcal/mol)
was due to the need to break two hydrogen bonds; the remainder was due to the need to
deform some bond angles such as those of the bridging methylene carbons.

5.9.4 The Transition Structures of Pericyclic Reactions

One of the most celebrated examples of the use of quantum mechanical methods in under-
standing chemical reactivity is the work of Woodward and Hoffmann [Woodward and
Hoffmann 1969] who were able to explain the experimentally observed nature of certain
types of concerted reaction. The reactions which they studied include cycloadditions, sigma-
tropic rearrangements, cheletropic reactions, electrocyclic reactions and the ene reaction
(Figure 5.33) and are collectively known as pericyclic reactions. The products obtained
from such reactions can be understood in terms of simple mechanistic arguments, but
such arguments cannot explain some aspects. In particular, the reactions are often highly
stereospecific with the reaction rates and the stereoselectivity changes dramatically with
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Fig. 5.32: Interconversion between various conformations of calix[4]arenes. X = H, R = H (top); X=0H,R=H
(bottom). Energies in kcal/mol.

the reaction conditions. Woodward and Hoffimann successfully employed molecular orbital
theory to rationalise the existing data and their theory has also been very successful in
predicting the outcome of similar reactions. The basic principle applied by Woodward
and Hoffmann was that of the conservation of orbital symmetry and as a consequence of
their work a series of rules (often called the Woodward-Hoffmann rules) were developed.
The Woodward-Hoffmann rules apply only to concerted reactions and are based upon the
principle that maximum bonding is maintained throughout the course of a reaction. Fukui
also discovered the importance of orbital symmetry and suggested that the majority of
chemical reactions should take place at the position of, and in the direction of, maximum
overlap between the highest occupied molecular orbital (HOMO) of one species and the
lowest unoccupied molecular orbital (LUMO) of the other component [Fukui 1971]. These
orbitals are collectively known as the frontier orbitals.

The HOMO-LUMO interaction depends on various factors, including the geometry of
approach (which affects the amount of overlap), the phase relationship of the orbitals and
their energy separation. For example, the HOMO and LUMO of ethene are illustrated
pictorially in Figure 5.34. The most obvious mode of interaction between the two molecules
involves suprafacial attack shown in Figure 5.34 to give cyclobutane. However, the sym-
metries of the overlapping orbitals must have the same phase for a favourable interaction
to occur and this is not possible for ethene unless an energetically unfavourable antarafacial
approach is adopted. By conirast, the interaction between ethene and the butadiene does
occur in a suprafacial sense with both HOMO/LUMO pairs of orbitals having the
appropriate phase relationship (Figure 5.34).
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Fig. 5.33: Typical pericyclic reactions.
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Fig. 5.34: Suprafacial attack of one ethene molecule on another (left) is not permitted by the Woodward—-Hoffmann
rules and the alternative antarafacial mode of attack is sterically unfavourable. Suprafacial attack is however permitted
jor the Diels-Alder reaction between butadiene and ethene (right). ‘
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Fig. 5.35: Geometry predicted by CASSCF ab initio calculations of the two possible transition structure geometries
for the Diels-Alder reaction between ethene and butadiene. (Figure adapted from Houk K N, | Gonzdlez and Y Li
1995. Pericyclic Reaction Transition States: Passions and Punctilios 1935-1995. Accounts of Chemical Research
28:81-90.)

The Woodward-Hoffmann rules state what the outcome of a pericyclic reaction will be, but
they do not define the mechanism by which the reaction occurs. Many theoretical techniques
have been applied to the study of these problems over the years [Houk ef al. 1992] and a
passionate debate has ensued on the nature of the transition structures involved in these
reactions. The debate has been fuelled by the fact that different theoretical treatments
(especially semi-empirical methods) give different results. For example, at one extreme
the Diels-Alder reaction between butadiene and ethene would proceed via a two-step
mechanism involving a biradial transition structure. At the other extreme the reaction
would involve a symmetrical transition state formed in a concerted, syrichronous reaction.
Ab initio calculations at various levels of theory suggest the concerted transition structure.
The geometry obtained for the prototypical Diels-Alder reaction between butadiene/
ethene using a CASSCF calculation and a 6-31G" basis set is shown in Figure 5.35 [Houk
et al. 1995]. The alternative biradial structure is also shown in Figure 5.35; this is predicted
to be 6 kcal/mol higher in energy than the symmetrical transition structure.

5.10 Solid-state Systems: Lattice Statics and Lattice Dynamics

Energy minimisation and normal mode analysis have an important role to play in the
study of the solid state. Algorithms similar to those discussed above are employed but an
extra feature of such systems, at least when they form a perfect lattice, is that it is can be
possible to exploit the space group symmetry of the lattice to speed up the calculations. It
is also important to properly take the interactions with atoms in neighbouring cells into
account.

The most straightforward type of lattice minimisation is performed at constant volume,
where the dimensions of the basic unit cell do not change. A more advanced type of calcula-
tion is one performed at constant pressure, in which case there are forces on both the atoms
and the unit cell as a whole. The lattice vectors are considered as additional variables along
with the atomic coordinates. The laws of elasticity describe the behaviour of a material when
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subjected to a stress (defined as the force per unit area). One obvious source of stress is any
external pressure, but stress may also arise from other sources, especially from interatomic
forces within the cell, which give rise to ‘internal stress’. The concept of strain is also key to
this subject; the strain is the fractional change in the dimension (for example, the change per
unit length when a steel rod is stretched). In the general case we consider a situation where a
point r in the unstrained material moves to a new point r' under the effect of some strain:

u=r'-r (5.48)

If we apply the strain uniformly in one dimension (e.g. the x axis) then the x coordinate of a
point that was initially at x will change by an amount proportional to x. This is written:

Uy = EpX (5.49)

In the general case the constant of proportionality is written as the first derivative:
x = Ol /Ox (5.50)

Deformation in the y and z directions is described in an analogous manner. In order to cater
for shear-type strains additional elements are defined:

Exy = Eyx = 3(du, /Ox + Bu, /Oy) (5.51}

These values ¢ give rise to a strain tensor (see Section 4.9.1 for more discussion on tensors),
which is symmetric and is often written in the following form:

1. 1
€1 2% 3% — _ —
1 €1=8x; =&y, E3FE&z
£e= |36 & 364 _ B _ (5.52)
1 €4 S &y E5 = €y, 6 = Exy
265 3 €4 . €3
There are thus six different numbers present in the strain tensor. The symmetric form of the
strain tensor prevents rotation of the unit cell with respect to the Cartesian axis system. It i 1s
possible to use this matrix to relate how a vector r in the unstrained matrix is related to oner’

in the strained structure as follows:
r'=0+gr (5.53)

I is the identity matrix. The six first derivatives of the energy with respect to the strain
components ¢; measure the forces acting on the unit cell. When combined with the atomic
coordinates we get a matrix with 3N + 6 dimensions. At a minimum not only should
there be no force on any of the atoms but the forces on the unit cell should also be zero.
Application of a standard iterative minimisation procedure such as the Davidon-
Fletcher-Powell method will optimise all these degrees of freedom to give a strain-free
final structure. In such procedures a reasonably accurate estimate of the initial inverse
Hessian matrix is usually required to ensure that the changes in the atomic positions and
in the cell dimensions are matched.

Two common properties which can be calculated from the minimum-energy structure are
the elastic and dielectric constants. The elastic constant matrix is used to relate the strains
of a material to the internal forces, or stresses. It is defined as the second derivative of the
energy with respect to the strain, normalised by the cell volume. The inverse of the elastic
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constant matrix gives the constant of proportionality between the stress and the strain. The
elastic constant matrix has dimensions 6 x 6 and is given by the following expression:
1
C=g W l= Fhy i L) (5.54)

In this equation #°, is the 6 x 6 matrix of second derivatives (elements 87"/ 65,]) ¥, and
9" are the corresponding 3N x 6 and 6 x 3N mixed coordinate/strain matrices, #7, is the
3N x 3N second-derivative coordinate matrix and V is the unit cell volume. It is the second
term in Equation (5.54) that accounts for internal atomic relaxations as the cell distorts.

The strains on the lattice are equal to the stress divided by the elastic constant matrix:

€= (Pstatic + Papplied) ’ C_l (555)

Here we have expressed the stress as the sum of the (external) applied pressure Pyppjicd

together with a static pressure Py, which arises from the internal forces acting on the
unit cell.

The dielectric constant is concerned with the electrical properties of a material. The dielectric
constant for a solid is a 3 x 3 matrix with different components according to the Cartesian
axes. These elements are given by:

Dij = 6‘] +A§/
In Equation (5.56) i and j are one of x, y or z; §; is the delta function (i.e. equal to one
when i = and zero otherwise) and q is a vector containing the charges of each species.
It is'well known that the effect of a.dielectric changes in an oscillating electric field (at
high enough frequencies the permanent dipoles in the material are unable to keep up
with the rapidly changing field). Thus one usually calculates two sets of dielectric
constant matrices, corresponding to the low- and high-frequency regimes. If polarisation
is included via a shell model (see Section 4.22.2) then both the cores and the shells are
used to determine the low-frequency dielectric matrix; at high frequency only the shells
are considered.

q -7vitl.q (5.56)

Comparison of the relative energies following a minimisation calculation can enable
predictions to be made of the likely structure for a given material. In the same way that
an organic molecule may be able to exist in more than one three-dimensional structure (or
conformation - see Chapter 9) so a solid may (in principle) be able to adopt more than
ane three-dimensional arrangement of its atoms whilst still maintaining a periodic lattice
structure. Silica, SiO,, has been the subject of considerable attention using these methods.
The lowest-energy form 'is a-5i0,, or quartz. However, it can also form more open
structures. A number of such microporous structures are in principle available, three
being silicalite, mordenite and faujasite. In one study the energies of these structures relative
to the quartz structure were found to be approximately 2.6, 4.9 and 5.1kcal/mol, respec-
tively [Ooms et al. 1988]. Indeed, the silicalite structure is the only one which can be prepared
as the pure silicon oxide; the other forms usually require a high aluminium content and are
mjore traditional zeolites. In an extension of this work two slightly different forms of the
silicalite structure were simulated. The normal form at room temperature has orthorhombic
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symmetry but at low temperatures this changes to monoclinic. These two forms are very
closely related, differing only by the distortion of a key angle by 0.64°. Nevertheless, an
energy-minimisation calculation starting from the orthorhombic structure did indeed
change to the monoclinic, in agreement with the experimental data [Bell et al. 1990]. The
orthorhombic — monoclinic transition could only be observed using a force field which
included polarisation effects (i.e. the shell model). Lattice minimisation methods can some-
times be very useful in helping to solve the structure of materials, a noteworthy example
being the determination of the structure of a zeolite NU-87 [Shannon ef al. 1991]. This
synthetic material is of particular interest as a catalyst as it contains a multidimensional
channel system. Multidimensional systems permit more complex catalytic reactions to
occur and are also less prone to deactivation than one-dimensional systems. In this case,
there are rings containing ten and twelve oxygen atoms (Figure 5.36 (colour plate section)).
NU-87 also has a high silica content, which confers improved stability to heat. A number of
experimental techniques were used to try to determine the structure, including electron dif-
fraction and powder synchrotron X-ray diffraction, as a result of which an approximate
structure was deduced but there remained some features in the powder diffraction spectrum
that could not be accounted for. These were initially believed to be due to impurities but
after energy-minimisation studies some subtle changes in the structure occurred to give a
related structure that was a better match to the experimental data. A key feature of this
particular minimisation was that the structure was not forced to adopt any specific
symmetry but rather each atom was able to move independently of the others. -

The calculation of vibrational frequencies (called phonons) is important to the study of the
solid state. Indeed, the calculation of and study of phonons is often given a special name,
lattice dyngmics. To calculate the vibrational frequencies for a solid one follows a very similar
approach to that described earlier for molecules, with the exception that when a shell model
is being used” then their effect must be incorporated into the mass-weighted mairix of
second derivatives (though not directly as they have no mass):

" " ) 71—1 1"
V= ’Vcore—core - ’y-core—shell * ’Vshell—shell ’ ’Vcore—shell (557)

Of additional importance is that the vibrational modes are dependent upon the reciprocal
lattice vector k. As with calculations of the electronic structure of periodic lattices these cal-
culations are usually performed by selecting a suitable set of points from within the Brillouin

zone. For periodic solids it is necessary to take this periodicity into account; the effect on the

second-derivative matrix is that each element ij needs to be multiplied by the phase factor
exp(ik - r;;). A phonon dispersion curve indicates how the phonon frequencies vary over the
Brillouin zone, an example being shown in Figure 5.37. The phonon density of states is
the variation in the number of frequencies as a function of frequency. A purely transverse
vibration is one where the displacement of the atoms is perpendicular to the direction of
motion of the wave; in a purely longitudinal vibration the atomic displacements are in the
direction of the wave motion. Such motions can be observed in simple systems (e.g. those
that contain just one or two atoms per unit cell) but for general three-dimensional lattices
most of the vibrations are a mixture of transverse and longitudinal motions, the exceptions

* The use of a shell model is generally recommended otherwise the resulting frequencies are too high.
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Fig. 5.37: .Com;?arison of the calculated phonon dispersion curve for Al with the experimental values measured using
neutron diffraction. (Figure redrawn from Michin Y, D Farkas, M ] Mehl and D A Papaconstantopoulos 1999.

Interatomic Potentials for Monomatomic Metals from Expetimental Data and ab initio Calculations. Physical
Review B59:3393-3407.)

being those along directions of high symmetry. The phonons are additionally classified as
acoustic or optical; the former are typically of longer wavelength (lower-frequency oscilla-
tions) where the atoms move as a unit. The name arises from the fact that these are often
measured as sound waves. At the point k = 0 (the gamma point) the first three vibrational
frequencies correspond to translation of the entire lattice. The optical phonons are typically
higher in frequency.