Numerical Computation
of
INTERNAL AND EXTERNAL FLOWS
Volume 2: Computational Methods for Inviscid and Viscous Flows
WILEY SERIES IN
NUMERICAL METHODS IN ENGINEERING
Consulting Editors
R. H. Gallagher, Worcester Polytechnic Institute,
Worcester, Massachusetts, USA
and
O. C. Zienkiewicz, Department of Civil Engineering,
University College of Swansea

Rock Mechanics in Engineering Practice
Edited by K. G. Stagg and O. C. Zienkiewicz

Optimum Structural Design: Theory and Applications
Edited by R. H. Gallagher and O. C. Zienkiewicz

Finite Elements in Fluids
Vol. 1 Viscous Flow and Hydrodynamics
Edited by R. H. Gallagher, J. T. Oden, C. Taylor, and O. C. Zienkiewicz

Finite Elements in Geomechanics
Edited by G. Gudehus

Numerical Methods in Offshore Engineering
Edited by O. C. Zienkiewicz, R. W. Lewis, and K. G. Stagg

Finite Elements in Fluids
Vol. 3
Edited by R. H. Gallagher, O. C. Zienkiewicz, J. T. Oden, M. Morandi Cecchi,
and C. Taylor

Energy Methods in Finite Element Analysis
Edited by R. Glowinski, E. Rodin, and O. C. Zienkiewicz

Finite Elements in Electrical and Magnetic Field Problems
Edited by M. V. K. Chari and P. Silvester

Numerical Methods in Heat Transfer
Vol. I
Edited by R. W. Lewis, K. Morgan, and O. C. Zienkiewicz

Finite Elements in Biomechanics
Edited by R. H. Gallagher, B. R. Simon, P. C. Johnson, and J. F. Gross

Soil Mechanics—Transient and Cyclic Loads
Edited by G. N. Pande and O. C. Zienkiewicz

Finite Elements in Fluids
Vol. 4
Edited by R. H. Gallagher, D. Norrie, J. T. Oden, a. d O. C. Zienkiewicz

Foundations of Structural Optimization: A Unified Approach
Edited by A. J. Morris

Numerical Methods in Heat Transfer
Vol. II
Edited by R. W. Lewis, K. Morgan, and B. A. Schrefler
Numerical Computation of INTERNAL AND EXTERNAL FLOWS

Volume 2: Computational Methods for Inviscid and Viscous Flows

Charles Hirsch

Department of Fluid Mechanics,
Vrije Universiteit Brussel,
Brussels, Belgium

A Wiley-Interscience Publication

JOHN WILEY & SONS
Chichester · New York · Brisbane · Toronto · Singapore
To A. F.
CONTENTS

PREFACE xv
NOMENCLATURE xix

PART V: THE NUMERICAL COMPUTATION OF POTENTIAL FLOWS 1

Chapter 13 The Mathematical Formulations of the Potential Flow Model 4
13.1 Conservative Form of the Potential Equation 4
13.2 The Non-conservative Form of the Isentropic Potential Flow Model 6
 13.2.1 Small-perturbation potential equation 7
13.3 The Mathematical Properties of the Potential Equation 9
 13.3.1 Unsteady potential flow 9
 13.3.2 Steady potential flow 9
13.4 Boundary Conditions 14
 13.4.1 Solid wall boundary condition 14
 13.4.2 Far field conditions 15
 13.4.3 Cascade and channel flows 17
 13.4.4 Circulation and Kutta condition 18
13.5 Integral or Weak Formulation of the Potential Model 18
 13.5.1 Bateman variational principle 19
 13.5.2 Analysis of some properties of the variational integral 20

Chapter 14 The Discretization of the Subsonic Potential Equation 26
14.1 Finite Difference Formulation 27
 14.1.1 Numerical estimation of the density 29
 14.1.2 Curvilinear mesh 31
 14.1.3 Consistency of the discretization of metric coefficients 34
 14.1.4 Boundary conditions—curved solid wall 36
14.2 Finite Volume Formulation 38
 14.2.1 Jameson and Caughey's finite volume method 39
14.3 Finite Element Formulation 42
 14.3.1 The finite element–Galerkin method 43
 14.3.2 Least squares or optimal control approach 47
14.4 Iteration Scheme for the Density 47
Chapter 15 The Computation of Stationary Transonic Potential Flows

15.1 The Treatment of the Supersonic Region: Artificial Viscosity—Density and Flux Upwinding
 15.1.1 Artificial viscosity—non-conservative potential equation
 15.1.2 Artificial viscosity—conservative potential equation
 15.1.3 Artificial compressibility
 15.1.4 Artificial flux or flux upwinding

15.2 Iteration Schemes for Potential Flow Computations
 15.2.1 Line relaxation schemes
 15.2.2 Guidelines for resolution of the discretized potential equation
 15.2.3 The alternating direction implicit method—approximate factorization schemes
 15.2.4 Other techniques—multigrid methods

15.3 Non-uniqueness and Non-isentropic Potential Models
 15.3.1 Isentropic shocks
 15.3.2 Non-uniqueness and breakdown of the transonic potential flow model
 15.3.3 Non-isentropic potential models

15.4 Conclusions

PART VI: THE NUMERICAL SOLUTION OF THE SYSTEM OF EULER EQUATIONS

Chapter 16 The Mathematical Formulation of the System of Euler Equations

16.1 The Conservative Formulation of the Euler Equations
 16.1.1 Integral conservative formulation of the Euler equations
 16.1.2 Differential conservative formulation
 16.1.3 Cartesian system of coordinates
 16.1.4 Discontinuities and Rankine–Hugoniot relations—entropy condition

16.2 The Quasi-linear Formulation of the Euler Equations
 16.2.1 The Jacobian matrices for conservative variables
 16.2.2 The Jacobian matrices for primitive variables
 16.2.3 Transformation matrices between conservative and non-conservative variables

16.3 The Characteristic Formulation of the Euler Equations—Eigenvalues and Compatibility Relations
 16.3.1 General properties of characteristics
 16.3.2 Diagonalization of the Jacobian matrices
 16.3.3 Compatibility equations

16.4 Characteristic Variables and Eigenvalues for One-dimensional Flows
 16.4.1 Eigenvalues and eigenvectors of Jacobian matrix
 16.4.2 Characteristic variables
 16.4.3 Characteristics in the x-t-plane—shocks and contact discontinuities
 16.4.4 Physical boundary conditions
 16.4.5 Characteristics and simple wave solutions

16.5 Eigenvalues and Compatibility Relations in Multidimensional Flows

16.5.1 Jacobian eigenvalues and eigenvectors in primitive variables 177
16.5.2 Diagonalization of the conservative Jacobians 180
16.5.3 Mach cone and compatibility relations 184
16.5.4 Boundary conditions 191
16.6 Some Simple Exact Reference Solutions for One-dimensional Inviscid Flows 196
16.6.1 The linear wave equation 196
16.6.2 The inviscid Burgers equation 196
16.6.3 The shock tube problem or Riemann problem 204
16.6.4 The quasi-one-dimensional nozzle flow 211

Chapter 17 The Lax-Wendroff Family of Space-centred Schemes 224
17.1 The Space-centred Explicit Schemes of First Order 226
17.1.1 The one-dimensional Lax–Friedrichs scheme 226
17.1.2 The two-dimensional Lax–Friedrichs scheme 229
17.1.3 Corrected viscosity scheme 233
17.2 The Space-centred Explicit Schemes of Second Order 234
17.2.1 The basic one-dimensional Lax–Wendroff scheme 234
17.2.2 The two-step Lax–Wendroff schemes in one dimension 238
17.2.3 Lerat and Peyret's S^2 family of non-linear two-step Lax–Wendroff schemes 246
17.2.4 One-step Lax–Wendroff schemes in two dimensions 251
17.2.5 Two-step Lax–Wendroff schemes in two dimensions 258
17.3 The Concept of Artificial Dissipation or Artificial Viscosity 272
17.3.1 General form of artificial dissipation terms 273
17.3.2 Von Neumann–Richtmyer artificial viscosity 274
17.3.3 Higher-order artificial viscosities 279
17.4 Lerat's Implicit Schemes of Lax–Wendroff Type 283
17.4.1 Analysis for linear systems in one dimension 285
17.4.2 Construction of the family of schemes 288
17.4.3 Extension to non-linear systems in conservation form 292
17.4.4 Extension to multi-dimensional flows 296
17.5 Summary 296

Chapter 18 The Central Schemes with Independent Time Integration 307
18.1 The Central Second-order Implicit Schemes of Beam and Warming in One Dimension 309
18.1.1 The basic Beam and Warming schemes 310
18.1.2 Addition of artificial viscosity 315
18.2 The Multidimensional Implicit Beam and Warming Schemes 326
18.2.1 The diagonal variant of Pulliam and Chaussee 328
18.3 Jameson’s Multistage Method 334
18.3.1 Time integration 334
18.3.2 Convergence acceleration to steady state 335

Chapter 19 The Treatment of Boundary Conditions 344
19.1 One-dimensional Boundary Treatment for Euler Equations 345
19.1.1 Characteristic boundary conditions 346
19.1.2 Compatibility relations 347
19.1.3 Characteristic boundary conditions as a function of conservative and primitive variables 349
19.1.4 Extrapolation methods 353
19.1.5 Practical implementation methods for numerical boundary conditions 357
19.1.6 Nonreflecting boundary conditions 369
19.2 Multidimensional Boundary Treatment 372
19.2.1 Physical and numerical boundary conditions 372
19.2.2 Multidimensional compatibility relations 376
19.2.3 Farfield treatment for steady-state flows 377
19.2.4 Solid wall boundary 379
19.2.5 Nonreflective boundary conditions 384
19.3 The Far-field Boundary Corrections 385
19.4 The Kutta Condition 395
19.5 Summary 401

Chapter 20 Upwind Schemes for the Euler Equations 408
20.1 The Basic Principles of Upwind Schemes 409
20.2 One-dimensional Flux Vector Splitting 415
20.2.1 Steger and Warming flux vector splitting 415
20.2.2 Properties of split flux vectors 417
20.2.3 Van Leer's flux splitting 420
20.2.4 Non-reflective boundary conditions and split fluxes 425
20.3 One-dimensional Upwind Discretizations Based on Flux Vector Splitting 426
20.3.1 First-order explicit upwind schemes 426
20.3.2 Stability conditions for first-order flux vector splitting schemes 428
20.3.3 Non-conservative first-order upwind schemes 438
20.4 Multi-dimensional Flux Vector Splitting 438
20.4.1 Steger and Warming flux splitting 440
20.4.2 Van Leer flux splitting 440
20.4.3 Arbitrary meshes 441
20.5 The Godunov-type Schemes 443
20.5.1 The basic Godunov scheme 444
20.5.2 Osher's approximate Riemann solver 453
20.5.3 Roe's approximate Riemann solver 460
20.5.4 Other Godunov-type methods 469
20.5.5 Summary 472
20.6 First-order Implicit Upwind Schemes 473
20.7 Multi-dimensional First-order Upwind Schemes 475

Chapter 21 Second-order Upwind and High-resolution Schemes 493
21.1 General Formulation of Higher-order Upwind Schemes 494
21.1.1 Higher-order projection stages—variable extrapolation or MUSCL approach 495
21.1.2 Numerical flux for higher-order upwind schemes 498
21.1.3 Second-order space- and time-accurate upwind schemes based on variable extrapolation 499
21.1.4 Linearized analysis of second-order upwind schemes 502
21.1.5 Numerical flux for higher-order upwind schemes—flux extrapolation 504
21.1.6 Implicit second-order upwind schemes 512
21.1.7 Implicit second-order upwind schemes in two dimensions 514
21.1.8 Summary 516
21.2 The Definition of High-resolution Schemes 517
21.2.1 The generalized entropy condition for inviscid equations 519
21.2.2 Monotonicity condition 525
21.2.3 Total variation diminishing (TVD) schemes 528
21.3 Second-order TVD Semi-discretized Schemes with Limiters 536
21.3.1 Definition of limiters for the linear convection equation 537
21.3.2 General definition of flux limiters 550
21.3.3 Limiters for variable extrapolation—MUSCL—method 552
21.4 Timeintegration Methods for TVD Schemes 556
21.4.1 Explicit TVD schemes of first-order accuracy in time 557
21.4.2 Implicit TVD schemes 558
21.4.3 Explicit second-order TVD schemes 560
21.4.4 TVD schemes and artificial dissipation 564
21.4.5 TVD limiters and the entropy condition 568
21.5 Extension to Non-linear Systems and to Multi-dimensions 570
21.6 Conclusions to Part VI 583

PART VII: THE NUMERICAL SOLUTION OF THE NAVIER–STOKES EQUATIONS 595

Chapter 22 The Properties of the System of Navier–Stokes Equations 597
22.1 Mathematical Formulation of the Navier–Stokes Equations 597
22.1.1 Conservative form of the Navier–Stokes equations 597
22.1.2 Integral form of the Navier–Stokes equations 599
22.1.3 Shock waves and contact layers 600
22.1.4 Mathematical properties and boundary conditions 601
22.2 Reynolds-averaged Navier–Stokes Equations 603
22.2.1 Turbulent-averaged energy equation 604
22.3 Turbulence Models 606
22.3.1 Algebraic models 608
22.3.2 One- and two-equation models—k–ε models 613
22.3.3 Algebraic Reynolds stress models 615
22.4 Some Exact One-dimensional Solutions 618
22.4.1 Solutions to the linear convection–diffusion equation 618
22.4.2 Solutions to Burgers equation 620
22.4.3 Other simple test cases 621

Chapter 23 Discretization Methods for the Navier–Stokes Equations 624
23.1 Discretization of Viscous and Heat Conduction Terms 625
23.2 Time-dependent Methods for Compressible Navier–Stokes Equations 627
23.2.1 First-order explicit central schemes 628
23.2.2 One-step Lax–Wendroff schemes 629
23.2.3 Two-step Lax–Wendroff schemes 630
23.2.4 Central schemes with separate space and time discretization 636
23.2.5 Upwind schemes 648
23.3 Discretization of the Incompressible Navier–Stokes Equations 654
23.3.1 Incompressible Navier–Stokes equations 654
23.3.2 Pseudo-compressibility method 656
23.3.3 Pressure correction methods 661
23.3.4 Selection of the space discretization 666
23.4 Conclusions to Part VII 674

INDEX 685
Preface

This volume, divided into Parts V to VII, is a continuation of the first one which was devoted to fundamentals of numerical discretizations. It contains a presentation of computational methods for inviscid and viscous flow models as they have evolved over the last decade.

Over the last twenty to thirty years considerable progress has been achieved and the field of Computational Fluid Dynamics (CFD) is reaching a mature stage, where most of the basic methodology is, and will remain, well established. Basically, the 1970s can be considered as the development period for the foundations of the discretization methods for transonic potential models and for the foundations of the central discretization methods for the Euler and Navier–Stokes equations, following on the landmark introduction of the Lax–Wendroff scheme.

Although prepared by earlier fundamental developments in the line of Godunov's method for physically based discretizations of the Euler equations, the upwind, high resolution methods have reached their maturity and been established on solid theoretical grounds in the 1980s. They are by now as firmly established as the central methods. Hence a large variety of techniques are available and a considerable experience has already been accumulated with various discretizations of the Euler equations.

The concomitant tremendous development of computer performance over the same period has resulted in the present capacity of solving two-dimensional Euler equations in seconds of computer time, and simple three-dimensional problems in minutes of CPU times, with the best available codes on the powerful supercomputers. Hence more attention can be given to the validation, accuracy and reliability of numerical flow simulations and to their extensions to complex industrial design and analysis applications.

Another consequence is the current possibility of obtaining Navier–Stokes solutions, within the Reynolds-averaged approximation, in rather short computer times (at least for two-dimensional problems and simple three-dimensional configurations). Although the accumulated experience with Navier–Stokes solutions is not yet as large as with the inviscid models, it is rapidly building up. Due to the strong connection between Euler and Navier–Stokes equations at high Reynolds numbers, most of the inviscid methods are of application to the viscous flows. The major topic of uncertainty remains
essentially connected to the fundamental problems of turbulence and its model-
lization within the Reynolds-averaged approximation.

The content of this volume reflects in a certain way the situation just described.

Part V deals with the simplest inviscid approximation which is, in certain
flow regimes, equivalent to the full system of Euler equations, namely the full
potential model. It contains three chapters, 13 to 15, covering the mathematical
formulations (Chapter 13), the discretization of subsonic potential flows
(Chapter 14) and the treatment of transonic situations (Chapter 15).

Part VI is devoted to a detailed presentation of the Euler equations and of
the basic numerical techniques developed in order to discretize the complex
system of inviscid, compressible conservation laws. It covers Chapters 16 to 21,
dealing with the algebra of the Euler equations (Chapter 16), the central schemes
(Chapter 17 and 18), the treatment of boundary conditions (Chapter 19) and
the upwind methods (Chapters 20 and 21).

Part VII finally introduces the discretization methods for the Navier–Stokes
equations and contains two chapters, 22 and 23. Chapter 22 covers the basic
mathematical formulation of Reynolds-averaged Navier–Stokes equations with
an introduction to turbulence models and the last chapter summarizes the
approaches for compressible and incompressible viscous conservation laws.

The present text is directed at students at the graduate level as well as at
scientists and engineers already engaged, or starting to be engaged, in
Computational Fluid Dynamics. Although Computational Fluid Dynamics
requires a good theoretical base, it remains for the large part an experimental
science since many properties depend on the non-linear character of the flow
equations and cannot be fully analysed. Therefore, a fraction of the problems
added to each chapter request the writing of a program, mainly for the
one-dimensional flow equations.

Since the development of a code covers many aspects: selection of a scheme,
implementation of boundary conditions, selection of a time integration method,
definition of control mechanisms of non-linear instabilities,...., it is recom-
mended to experiment intensively with as many variants as possible, either
individually or by sharing the number of selected options and different test
cases within a group or a class of students. A single modular code with many
options is a remarkably effective and instructive 'numerical laboratory'.

Initial versions of some chapters have been written while holding the NAVAIR
Research Chair at the Naval Postgraduate School in Monterey. I am particularly
grateful to Ray Shreeve for this opportunity and for his friendship.

Some sections on Euler equations have been written during a summer stay
at ICASE, NASA Langley, and I would like to acknowledge particularly
Dr Milton Rose, former Director of ICASE, for his hospitality and the
stimulating atmosphere.

I have also had the privilege to benefit from results of computations performed,
at my request, on different test cases by several groups and I would like to
thank D. Caughey at Cornell University, T. Holst at NASA Ames, A. Jameson
at Princeton University, M. Salas at NASA Langley, and J. South and C. Gumbert also at NASA Langley, for their willingness and effort.

During the redaction of this book, I have had some stimulating discussions on the subject of the Kutta condition with T. Pulliam and A. Rizzi for which I am grateful.

I have also the pleasure to thank my coworkers C. Lacor and G. Van Dijck for their comments and support, as well as my secretary J. D'haes for her considerable help with figures and text.

Ch. HIRSCH
Brussels, July 1988
Nomenclature

\begin{itemize}
\item \(a \) convection velocity or wave speed
\item \(\overrightarrow{A} \) jacobian of flux vector with respect to conservative variables, with components \(A, B, C \)
\item \(c \) speed of sound
\item \(c_p \) specific heat at constant pressure
\item \(c_v \) specific heat at constant volume
\item \(D \) artificial dissipation function
\item \(e \) internal energy per unit mass
\item \(E \) total energy per unit mass
\item \(f \) scalar flux function
\item \(f^* \) numerical flux function
\item \(f_e \) external force vector
\item \(\overrightarrow{F} \) flux vector with components \(f, g, h \)
\item \(g^{\alpha\beta}, g_{\alpha\beta} \) contravariant and covariant metric tensor
\item \(G \) amplification factor/matrix; convergence operator of iterative schemes
\item \(h \) enthalpy per unit mass
\item \(H \) stagnation enthalpy per unit mass
\item \(I \) rothalpy
\item \(J \) Jacobian of coordinate transformation
\item \(k \) coefficient of thermal conductivity
\item \(k \) wave number
\item \(K \) stiffness matrix
\item \(K = \overrightarrow{A} \cdot \overrightarrow{e} \) projection of jacobian matrix on propagation direction \(\overrightarrow{e} \)
\item \(K_T \) jacobian matrix of differential operator \(L \)
\item \(\ell^{(j)} \) left eigenvector of jacobian matrix
\item \(L \) differential operator
\item \(M \) Mach number
\item \(n \) normal distance
\item \(\overrightarrow{n} \) normal vector
\item \(N_1 \) finite element interpolation function for node \(I \)
\item \(p \) pressure
\item \(P \) convergence or conditioning operator
\item \(Pr \) Prandtl number
\item \(q \) modulus of velocity; source term
\item \(Q \) source term column-vector
\item \(r \) gas constant per unit mass
\item \(r^{(j)} \) right eigenvector of jacobian matrix
\item \(R \) residual of iterative scheme
\end{itemize}
Re
Reynolds number

s
entropy per unit mass

S
characteristic surface, area of nozzle cross-section

\overline{S}
surface vector

t
time

T
temperature

u
scalar dependent variable

U
column-vector of conservative variables

\vec{u}
velocity vector cartesian components u, v, w

V
column-vector of primitive variables

w
characteristic variable

W
column-vector of characteristic variables

\vec{x}
position vector

x, y, z
cartesian coordinates

α
diffusivity coefficient

γ
specific heat ratio

Γ
circulation; boundary of domain Ω

δ
central-difference operator: $\delta u_i = u_{i+1/2} - u_{i-1/2}$

$\overline{\delta}$
central-difference operator: $\overline{\delta} u_i = (u_{i+1} - u_{i-1})/2$

δ^+
forward difference operator $\delta^+ u_i = u_{i+1} - u_i$

δ^-
backward difference operator $\delta^- u_i = u_i - u_{i-1}$

Δ
Laplace operator

Δt
time step

$\Delta x, \Delta y$
spatial mesh size in x and y directions

ϵ
turbulence dissipation rate

ϵ_D dissipation or diffusion error

ϵ_{ϕ} dispersion error

$\vec{\zeta}$
vorticity vector

\overline{K}
wave-number vector; wave propagation direction

$\lambda(A)$ eigenvalue of matrix A

μ
coefficient of dynamic viscosity

μ
averaging difference operator: $\mu u_i = (u_{i+1/2} + u_{i-1/2})/2$

μ
switching function for transonic potential flow

ξ, η, ζ
curvilinear coordinates

ρ
density

$\rho(A)$ spectral radius of matrix A

σ
Courant number

$\vec{\sigma}$
internal stress tensor

τ
ratio $\Delta t/\Delta x$

ξ
viscous shear stress tensor

ν
kinematic viscosity

ϕ
velocity potential function

ϕ
phase angle in Von Neumann analysis

Φ
phase angle of amplification factor

ω
time frequency of plane wave

ω
overrelaxation parameter

Ω
volume

$\overline{1}_x, \overline{1}_y, \overline{1}_z$
unit vectors along the x, y, z directions
Subscripts

\(e\)
external variable

\(i,j\)
mesh point locations in \(x, y\) directions

\(I, J\)
nodal point index

\(J\)
eigenvalue number

\(L, R\)
left and right states

\(\text{min}\)
minimum

\(\text{max}\)
maximum

\(n\)
normal or normal component

\(o\)
stagnation values

\(v\)
viscous term

\(x, y, z\)
components in \(x, y, z\) directions

\(\partial\)
partial differentiation with respect to \(x, y, z\)

\(\infty\)
freestream value

\(\zeta, \eta, \zeta\)
components in \(\zeta, \eta, \zeta\) directions

Superscripts

\(AV\)
artificial viscosity

\(n\)
iteration level

\(n\)
time level

\(\text{-}\)
exact solution of discretized equation

\(\text{\text{-\text{-}}}\)
exact solution of differential equation

Symbols

\(x\)
vector product of two vectors

\(\otimes\)
tensor product of two vectors

\(\nabla\)
gradients or divergence operator