Chapter 19

The Treatment of Boundary
Conditions

In the preceding chapters, no particular reference was made to the associated
boundary conditions, although this is an essential aspect of the practical
application of a scheme into a working code.

The reader who has attempted to apply any of the methods described in the
previous sections to a flow in a finite domain, for instance a.stationary,
one-dimensional nozzle flow, is immediately faced with the problem of how to
discretize the equations at the boundary points.

Since we deal with hyperbolic propagation-dominated systems, the following
essential questions have to be answered:

(1) How many conditions of physical origin are to be imposed at a given
boundary?

(2) How are the remaining variables to be defined at the boundaries?

(3) How are these conditions to be formulated and discretized in order to be
compatible with the order of accuracy and the stability conditions of the
internal scheme?

We will first present an analysis of these questions, and of their answers, for
one-dimensional Euler flows.

The outcome of the one-dimensional analysis is actually of direct application
to multi-dimensional flows. Indeed, as seen in Section 16.5, the number and
type of conditions at a boundary of a multi-dimensional domain are defined
by the eigenvalue spectrum of the Jacobians associated with the normal to the
boundary. This defines locally quasi-one-dimensional propagation properties.
Therefore, we will give a detailed discussion of the one-dimensional boundary
treatments for the Euler equations in Section 19.1, while the multi-dimensional
aspects will be dealt with in Section 19.2.

Section 19.3 gives a brief mention of far-field boundary conditions, while
Section 19.4 discusses the question of the Kutta condition with Euler
calculations.
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Figure 19.1.1 Boundary conditions for a supersonic inlet and subsonic outlet in a
one-dimensional flow

19.1 ONE-DIMENSIONAL BOUNDARY TREATMENT
FOR EULER EQUATIONS

If a one-dimensional flow problem has to be solved in a range 0 < x < L, where
x =0 is the inflow boundary and-x = L the outflow boundary, the application
of any scheme requires the knowledge of the flow variables at the points x =0
and x = L. We will consider that the space interval (0, L) is divided into (M — 1)
cells of length Ax, ranging fromi=1at x =0toi = M at x = L (Figure 19.1.1).

For instance, writing the explicit Lax—Wendroff scheme at the point next to
the inflow boundary, i =2, leads to ¢ “Sod 293 e (b.2.25)

2
U;” —Uz= —g(fs -fiy +%[A3/2(f3 "‘fz)_Alﬂ(fz =)y (9.1

where the right-hand side is taken at time level n. The values of the dependent
variable vector U, at point x =0 have to be determined in some way, since
one cannot write equation (19.1.1) at i =1 as this would require values of the
flow variables at i = — 1, which lies outside the computational domain.

If an explicit scheme is applied, the influence of the boundary values propagate
numerically one space step at a time, that is a change in U, at time n will
influence U, at time (n + 1), U; at time (n + 2) and so on.

On the other hand, an implicit scheme couples all the points at the same
time level and a change in U, at time nAt influences all the U, at the next time
step, through the solution of the implicit (tridiagonal) system, if the boundary
conditions are treated in an implicit way. This can best be seen on the following
example of a Euler backward integration of the Beam and Warming scheme
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(B=1,¢=0)
(14 16ANAU,; = — 151" (19.1.2)
Explicitly the system to solve at each time step is
tA] AU + 20U, —1A!_ (AU, = —1(f7, — fi-) (19.13)
At point i = M — 1, the equation becomes
tAY AU+ 2AU  _y — 1Ay _, AUy 3= —1(f3— [4-2) (19.1.4)

and the way the information on AU, is introduced will influence the solution
alorithm and all the AU,. Therefore, the influence of the implementation of the
boundary conditions on the behaviour of the scheme may be considered as
stronger with implicit methods as compared to explicit schemes.

If all the variables were known at a boundary from the knowledge of the
physical input, there would be no difficulty in solving equation (19.1.1). However,
this is generally not the case with hyperbolic equations.

The number of physical variables that can be imposed freely at a boundary
is dependent on the propagation properties of the system and in particular on
the information propagated from the boundary towards the inside of the flow
region. See Section 16.4.4 for a discussion of these properties.

Since each characteristic direction can be considered as transporting a given
information, expressed as a combination of conservative or primitive flow
variables, the quantities transported from the inside of the domain towards the
boundary will influence and modify the situation along this boundary.

Hence, only variables transported from the boundaries towards the interior
can be freely imposed at the boundaries as physical boundary conditions. The
remaining variables will depend on the computed flow situations and are
therefore part of the solution. However, from a numerical point of view, in
order to solve for U%*! in equation (19.1.1), that is to compute the solution at
the following time step, information about all the components of U} is required
in addition to the allowed physical conditions. This additional information,
called numerical boundary conditions, has to be consistent with the physical
properties of the flow, as well as compatible with the discretized equations.

The number of physical conditions has been defined in Section 16.4.4 as a
function of the flow situation at the boundary (see Table 16.1). Since the total
number of dependent variables is three in a one-dimensional flow (N in general),
the number N, of numerical boundary conditions to be added to the discretized
system of equations is equal to

N,=N-N, (19.1.5)

where N, is the number of physical conditions.

19.1.1 Characteristic boundary conditions

The propagation properties in a one-dimesional flow are expressed in a
straightforward way by the characteristic variables, or equivalently by the
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Table 19.1. Physical and numerical boundary conditions for one-dimensional flows

Subsonic Supersonic

Physical conditions: wy,w, - e % Physical conditions: wy, wy,w,
Inlet EY

Numerical conditions: w, Numerical conditions: none

Physical conditions: w, Physical conditions: none
Outlet

Numerical conditions: wy, w, Numerical conditions: wy, wy, w5

Riemann invariants. The form of the missing information is therefore defined
- by the variables associated with the outgoing characteristics (Figures 16.4.7 and
19.1.1).

Table 16.1 can now be completed with the requirements on the numerical
boundary conditions, and this is presented in Table 19.1, referring to the
notations of Section 16.4 for the characteristic variables W with components
Wy, Wy, Wi ’

Hence, the number as well as the form of the missing information is
theoretically known. For instance, at a subsonic outlet, one should impose the
characteristic variable w, as the physical boundary condition and add, as
numerical conditions, the characteristic equations for w, and w, discretized in
a suitable way.

This forms the basis of the characteristic boundary method, which adds the
Riemann invariants or the compatibility equations for the outgoing
characteristics to the imposed physical boundary conditions, in order to obtain
the missing equations for points i = 1 and i = M; see also Moretti (1981) for a
general discussion and earlier references.

For instance, using the Riemann invariants one can apply the following
relations at point P, of Figure 19.1.1, referring to equations (16.4.33):

(/%) =(§> =w, (19.1.6)
Py Qo

<u+ % ) <u+ 2 ) =w, (19.1.7)
'))—1 P Q4+

y—1
<u - y2cl) =wP (19.1.8)
=y

where the variables at points Q, and Q, are known, as can be seen from
Figure 19.1.1. The quantity w{ is the imposed physical boundary condition.
The system of these three equations determines all the quantities in point P,
and define the vector U7*! at i=M.

19.1.2 Compatibility relations

An alternative to the characteristic method is to apply the compatibility relations
in differential form, discretizing them in an appropriate manner.
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For a quasi-one-dimensional nozzle flow of area S, this would lead to the
following equations (see equations (16.4.17)) at the subsonic outlet point P, of
Figure 19.1.1, assuming u > O:

op 1 ap) <ap 1 6p)
T | Ful 2 — 55 ) =0 19.19
(6t dar) \ox Pox (19.19)
ou 1dp U, 1 6p) ucds
—+— +(u+ =—— 19.1.10
(6t 6t) (u )< 0x pcdx S dx ( )
B(u,p,p)=0 (19.1.11)

where B(u, p, p) = 0 is the imposed physical boundary condition.

These equations have to be discretized at point P,, i= M, by using only
interior information, that is one has to apply one-sided differencing only. An
example of this approach can be found in Steger et al. (1980).

This is fully compatible with the mathematical analysis of boundary
conditions and of the well-posedness of an initial boundary value problem, as
analysed by Kreiss (1968, 1970). Indeed, the scalar hyperbolic equation
u, + au, = 0 is well posed in the sense of Kreiss, that is the boundary conditions
are not over- or underspecified and the solution depends continuously on the
initial and boundary data if a boundary condition is imposed at x =0 when
a>0and at x=L when a<0.

In addition, the same condition corresponds also to the stability requirements
of the upwind differencing. Indeed, as seen in Chapter 10 in Volume 1, the
upwind scheme applied at i = M:

ultt =uh, —o(uly, —uy_,) (19.1.12)
is stable for a> 0 and o < 1 but unstable for a <0, as is easily seen from the
Von Neumann amplification factor G=1—o0 + oe™'%. .

Since the numerical conditions (19.1.9) and (19.1.10) correspond precisely to
the characteristics with positive speeds of propagation, they will be stable under
an upwind differencing. On the other hand, the physical boundary condition
replaces the negative characteristic which would have been unstable under a
backward discretization.

This consistency and harmony between the physical, mathematical and
numerical properties is, of course, to be expected but is nevertheless worth
mentioning.

The above considerations do not resolve, by far, all the problems connected
with the implementation of the boundary conditions. If the characteristic
boundary method is the most rigorous one from a physical point of view, various
other ways of expressing the information corresponding to the outgoing
characteristics can be defined. These are known as extrapolation techniques and
will be discussed in the following sections. Other forms for the physical boundary
conditions can also be defined, such as the non-reflecting boundary conditions,
which are a particular formulation of the characteristic equations (Engquist
and Majda, 1977, 1979; Hedstrom, 1979).
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In addition, the Euler equations are generally solved in conservative form,
and the physical boundary conditions on the characteristics have to be expressed
as a function of the conservative variabies. On the other hand, the physical
boundary conditions are derived in many cases from experimental set-ups and
are given in terms of measurable quantities such as the primitive variables p,
u, p. For instance, the flow conditions in a nozzle are dominated for fixed inlet
conditions by the downstream value of the pressure.

Various combinations of primitive or conservative variables have therefore
to be selected as physical boundary conditions, raising several questions:

(1) Which combinations of primitive (or conservative) variables may be applied
as physical boundary conditions, in order to reconstruct the information
contained in the incoming and outgoing characteristics? If this is not
possible, the selected combination leads to an ill-posed problem. This will
be investigated in Section 19.1.3.

(2) What is the interrelation between physical boundary conditions at inlet
and at outlet? Is any combination of non-characteristic variables equally
valid in defining a well-posed problem with a unique solution? Wornom
and Hafez (1984) have pointed out that certain combinations are to be
excluded and this will also be discussed in Section 19.1.3.

(3) What is the influence of the boundary treatment on the stability and
accuracy of the basic scheme, also called the interior scheme? This is a
crucial topic, since stable interior schemes can be strongly affected by
unadapted boundary treatments, leading to possible instability of the
complete scheme or to the reduction of unconditional to conditional
stability. The theoretical analysis of the influence of boundary schemes on
stability and accuracy is a difficult task and some results are available for
simple problems which will be mentioned in Section 19.1.4.

Most of the research work in the field of the analysis of boundary schemes
for initial boundary value problems is of a mathematical and theoretical
nature. We refer the interested reader to the important contributions of
Kreiss (1968, 1970, 1974); Osher (1969a, 1969b); Gustafsson et al. (1972);
Gustafsson and Kreiss (1979); Trefethen (1983, 1984, 1985); and to the more
complete references listed in these publications and in the review of Higdon
(1986).

The non-mathematical-oriented reader will find much benefit in consulting
the publications by Yee (1981), Yee et al. (1982), Beam et al. (1981) and Warming
et al. (1983), which summarize the state of the art oriented towards the applied
numerical scientists and focusing on the applications to the system of Euler
equations.

19.1.3 Characteristic boundary conditions as a function of conservative
and primitive variables

The problem will be well posed if the full information on the ingoing and
outgoing characteristics can be recovered from the imposed combinations of
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conservative or primitive variables. Since the transformation matrices
between the characteristic W, primitive ¥V and conservative variables U
are known, it is not difficult to investigate the conditions under which an
imposed combination of variables leads to a well-posed problem.

The following transformation matrices between the variables W,V and U
have been defined in Section 16.4, for arbitrary variations A:

AW =LAV (19.1.13)
AW =L M~ 'AU =P~ 1-AU (19.1.14)

The matrices L™ ! and P~? are given in their one-dimensional form by equations
(16.4.9) and (16.4.11). The three set of variables are

1
Ap—?Ap
1 A“’l P p
AW = [Au+—Ap| = | Aw, U= |pu V={u| (19.1.15)
c
p1 Aw, PE P
Au——Ap
pc

The well-posedness analysis has to be performed on the linearized equations
whereby the coefficients of the matrices L™ and P~ ! are considered as constants,
equal to their value on the boundaries. Consequently, the variations A are small
perturbations around the local boundary values, which will be indicated by a
subscript 0.

The analysis procedure can be systematized as follows (Yee, 1981). If the
transformation matrix, say between W and V, is reordered such that the imposed
set of physical boundary conditions is separated from the remaining variables,
the information along the characteristics corresponding to the numerical
boundary condition must allow these remaining variables to be defined.
Referring to Figure 19.1.1 and the subsonic outlet point P,, one physical
boundary condition is allowed, say pressure p. The transformation relation
(19.1.13) is written with the ‘physical’ characteristic w, on top (see Table 19.1):

-1 0o 1]
pc
Aw, _1 Ap
AW=|Aw,|=|—5 1 0} -|Ap (19.1.16)
Aw, ¢ Au ’
L o1,
pc

The numerical conditions, obtained from (19.1.16),

Aw, =224 Ap (19.1.17)
Co




351

Aw, =22 4 Au (19.1.18)
PoCo
can clearly be solved for the remaining variables p and u at the boundary, since
p is known.

Formally writing AWF for the characteristics corresponding to the physical
boundary conditions and AW for the remaining characteristics defining the
numerical information from the interior towards the boundaries, equation
(19.1.16) is formalized as follows:

AWF
AWN

(LY (L7 Yyl |AV!
@wHY @yl lav
The group of variables V' represents the imposed physical conditions while the
group V" represents the free variables to be defined by the numerical or internal

information. The transformation matrix L™ ! is subdivided into the appropriate
submatrices. In the case of equation (19.1.16) one has WF = wy:

AW =

(19.1.19)

wh="1 vi=p  wm=|f (19.1.20)
w, u
and

(L“){’=_—1 (L Hy=0,1) (19.1.21)
pc
-1

_ c? B 1 0

(L H'= A s ‘)}1=‘0 1‘ (19.1.22)

pc

The condition for well-posedness is that V" can be recovered from the
information carried by the characteristics WN which intersect the boundary
from the interior of the flow domain. Writing

AWN = (L"HYNAV! + (L~ )NAV! (19.1.23)
the free variables V" are defined by
1
AV = AW — (L~ HMAV!] (19.1.24)
(L )ll

Hence, the condition for well-posedness is that the matrix (L™!)} is non-singular,
that is the condition of non-zero determinant

det[(L™Y)N| #0 (19.1.25)

has to be satisfied. This can be applied for the various combinations of primitive
variables at inlet and at outlet.

At a subsonic outlet, equation (19.1.16) shows that any of three variables p,
u, p can be chosen as a physical boundary condition, since none of the
submatrices defining W" is zero.
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Subsonic inlet

At a subsonic inlet, W* is formed by w, and w,, while WX = w, and one has

-1
P 1 p
A w =10 1 — [-Afu (19.1.26)
wHN pc
) p
0o 1 ——
e |,
Since one of the elements of the submatrix defining WNO 1 — 1/pc) is zero,

namely the element corresponding to the density p, the choice (1, p) as a physical
boundary condition is not well posed. Indeed, since

AWN=Ay—

A 19.1.27
7N (19.129)

one cannot define Ap at the boundary from the information on AW™. For any
other combination involving p as a physical condition, equation (19.1.27) will
allow the determination of the remaining free variable.

The same considerations can be applied to the conservative variables U and
the matrix P~! instead of L™!. Examining matrix P! (equation (16.4.11)), it
is seen that there are no zero elements and hence any possible combination of
variables as physical boundary conditions will be well-posed.

This analysis can also be extended to other combination of variables, say X,
by setting up the transformation matrix AW = K-AX and investigating the
submatrices of K (see Problems 19.1 and 19.2).

At supersonic boundaries, either all or none of the variables have to be
imposed and the problem is always well posed.

The above-described procedure defines the allowable combinations of
variables at a given boundary without relation to the selection of variables at
the other boundary. This question applies only to flow situations that are
subsonic at both boundaries and is actually not a trivial question, since it has
been observed (Wornom and Hafez, 1984) that certain combinations can give -
rise to non-unique steady-state solutions.

Wornom and Hafez show that the steady-state subsonic nozzle flow with
equal inlet and outlet areas leads to non-unique solutions if the same variable
is specified at outlet and at inlet.

This is easily shown from the stationary conservation laws, the subscripts 0
and 1 referring to the two end-points x=0 and x = L:

(puS)o = (puS), (19.1.28)

2 2
H=<_7_£+“_> =<L£+“_) (19.1.29)
y=1p 2/o \y—1p 2/,
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(%) = (%) (19.1.30)
(1] 1

If p and p are imposed at inlet and p at outlet, that is p,, po and p, are fixed,
the other variables have to be defined from

pl=pr 2t (19.1.31)
Po
u§<p151_1>= 2z (&_&> (19.1.32)
poSo 7"1 pl po

If the imposed boundary conditions are such that p, = p,, corresponding to a
subsonic inviscid flow without shocks, then p, = p, and the right-hand side of
equation (19.1.32) vanishes. Hence, the coefficient of u? has also to be zero in
order for a flow to exist. This leaves u, undetermined and so the problem is
not well posed. Hence, the computed distribution of flow variables will depend
on the initial conditions. Therefore, when the flow conditions are identical at
the two boundaries, one should not apply the same variable twice as the
boundary condition.

Summarizing, all combinations of conservative and primitive variables can be
selected as physical boundary conditions, with the exception of the pair (u, p)
at a subsonic inlet, if one has to determine the missing information from the
characteristic variables. In this case, the imposed conditions should contain the
density; for instance, (p, p) or (p,u) are well-posed boundary conditions.

Note, however, that this restriction does not apply with other boundary
treatments where the characteristic variables are explicitly determined at the
boundaries.

In the particular case of identical subsonic inflow and outflow situations, the
outlet boundary condition should contain the third variable, that is u, has to
be associated with (py, po) Or p; has to be coupled to (uy, po). This restriction
is, however, not necessary when the inlet and outlet flow conditions are different.

19.1.4 Extrapolation methods

Next to the direct application of the characteristic and compatibility relations,
many other methods can be applied in order to implement numerical boundary
conditions.

Various forms are listed below as a sample of the most popular methods,
although many other approaches can be defined. They are based on extra-
polations of the internal variables towards the boundary.

The listed formulas are at most of first order, which is generally sufficient for
second-order schemes, but quadratic extrapolation formulas can be used as well.

The following methods can be applied to any set of variables—conservative,
primitive or characteristic—at an inlet or an outlet boundary. In order to stress
this fact, we will use the variable X to represent either U, V, W or any other
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X X
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X ( X
L
— > —r1 >

i=1 2 3 i= 1 2 3

Zero-order First-order

Figure 19.1.2 Illustration of various forms of variable extrapolation. Space
extrapolation of variable X at fixed time

combination, and write the conditions for an outlet boundary i= M. The
transposition to inlet conditions is straightforward, replacing i=M by i=1,
i=(M —1)byi=2 and so on (Figures 19.1.2 to 19.1.4).

A. Space extrapolation

Zero-order extrapolation

xXit=x01 (19.1.33)
or ,
AXyy=AXy_, (19.1.34)
where
AX =X"*1 —X"=AX" (19.1.35)
First-order extrapolation
Xit=2x01 - X (19.1.36)
or
AXh =2AX%,_ —AXY,, (19.1.37)

B. Space—time extrapolation
Zero order

xXwt=Xxn_, (19.1.38)
or

AX =AXYY (19.1.39)
First order space/zero order in time

X;;l:zX;{—l_X:l-Z (19.1.40)
or
AX%, =2AX%0 - AXY, (19.1.41)



Zero order

n+l

3 i= 1 2

First order in space/zero
order in time

i= 1

2

First order in space / first order in time

Figure 19.1.3 Illustration of various forms of variable extrapolation. Space~time extrapolation

First order in space and time

or

C. Time extrapolation

Zero order

or

X3t =2X3,_, - X3,

AX% =2AX"0 — AXY 2,

X3t = X3,

AX, =0

(19.1.42)

(19.1.43)

(19.1.44)

(19.1.45)
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Zero order

First order

Figure 19.1.4 [llustration of various forms of variable extrapolation. Time extrapolation of variable
X at fixed position

First order

X =2x7, — X7t (19.1.46)
or
AX", =AX" ! (19.1.47)

Note that Figure 19.1.3 is a representation in the space—time plane x—t, while
Figures 19.1.2 and 19.1.4 are representations of the variable X as a function of
space or time.

The space-extrapolation techniques can be considered either as an explicit
or as an implicit treatment of the numerical boundary conditions and are
adapted to explicit and implicit schemes. On the other hand, the space—time
extrapolations are explicit in nature, while the pure time extrapolations are well
adapted to implicit (tridiagonal) schemes in A form.

The extrapolation techniques are discussed in some detail by Griffin and
Anderson (1977) and by Gottlieb and Turkel (1978) for applications to the
two-step Lax—Wendroff type of schemes, such as the Richtmyer or MacCormack
schemes. They show, for instance, that the space-extrapolation methods do not
destabilize these schemes nor reduce the stability limits.

With regard to accuracy, an important theorem by Gustafsson (1975) proves
that, for linear equations, the boundary scheme can be one order lower than
the interior scheme without reducing the global order of accuracy of the complete
scheme. Hence, the zero-order space-accurate boundary schemes will reduce
the overall accuracy of second-order schemes, while this will not be the case
for the first-order boundary scheme.
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With regard to implicit methods, the available results can be summarized,
following Yee et al. (1982), as follows:

(1) All A-stable interior schemes remain unconditionally stable with the
implicit space extrapolation. ’

(2) Coupled to space-time extrapolations, the implicit schemes will tend to
lose their unconditional stability. An interesting example is given in the
above-mentioned reference of the implicit Euler scheme (=1, £ =0),
which is unconditionally stable for an odd number of mesh points but
becomes conditionally stable for an even number of mesh points.

(3) Generally, when coupled to other implicit boundary schemes, the interior
implicit A-stable schemes remain unconditionally stable, while they reduce
to conditional stability when coupled with explicit boundary schemes.

These results are based on linearized theory, but have been generally
confirmed by numerical tests on non-linear equations such as Burgers equation
and the Euler equations. We note also here that the unconditional stability
referred to is to be interpreted as allowing very large CFL values to be applied
for steady-state computations. We refer the reader to the cited references for
more precise mathematical definitions of the stability criteria.

Another approach

Another family of numerical boundary conditions consists in discretizing the
equations at the boundary points in a one-sided manner and adding this
equation to the interior scheme. For instance, considering equation (19.1.1) for
the Lax—Wendroff scheme, one could add a first-order appropriate upwind
equation for U, (see the next chapter for more details on the upwind formulation
with mixed sign eigenvalues) and provide in this way the missing information.

19.1.5 Practical implementation methods for numerical
boundary conditions

Since the various forms for the numerical boundary conditions can be applied
to any of the variables, a large number of non-equivalent formulations can be
defined. For instance, a space-extrapolation method can be applied to the
conservative variables, as, for instance, Lerat et al. (1984), or to the characteristic
variables, following Yee et al. (1982), or to the primitive variables, or to any
other combination of variables. In addition, various forms of extrapolation can
be used for any of the above choice of variables. Due to the non-linearity of
the flow equations, these choices are not equivalent and lead to different
boundary treatments.

As another alternative, one can discretize directly the comptability equations
associated with the outgoing characteristics, or add to the internal scheme a
one-sided discretization of the conservation equations or of the non-conservative
form of the equations, coupled at the boundary with the physical conditions.
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We will describe in this section a few of the methods that can be applied,
since it is not possible to cover all the possibilities. We encourage the reader
to experiment with as many methods as possible, since the numerical treatment
of the boundary conditions is an essential aspect of a numerical simulation.

Characteristic extrapolation method

The transformation between the different set of variables follows the framework
described in Section 19.1.2, and we will illustrate it on the example of a space
extrapolation on the characteristic variables with a scheme based on the
conservative variables and boundary conditions imposed on the primitive
variables. This is the method adapted by Yee et al. (1982) and is an alternative
to the one-sided discretization of the compatibility equations corresponding to
the outgoing characteristics.

Referring to equation (19.1.24), the numerical characteristic variables AWN
are defined by an extrapolation, say equation (19.1.37), where A represents a
time increment:

AWN|y =2AWN|y_  — AWN |y, (19.1.48)

The values at i=(M —1) and i=(M —2) are obtained from the primitive
variables by an explicit evaluation following equation (19.1.23).

AWN = (L7 YN-AVI+ (LT ON-AVE fori=M—1, M —2 (19.1.49)

where the matrix elements are evaluated at time level n. Equation (19.1.24) then
gives
1
AV = ——— AW} (19.1.50)

where AV, =0 has been introduced since this indicates that the variables V',
are fixed by the physical boundary conditions. In a time-dependent problem
AV', will not be zero and determined by the imposed time variation.

Finally, the free variables VY, are transformed to the conservative variables
by application of the matrix M, evaluated at time level n:

AV 0

AUy=M
M TMAYE AV

=M, (19.1.51)

Subsonic outflow boundary, outflow pressure imposed

Referring to Figure 19.1.1 and equations (19.1.16) to (19.1.22), which define the
different submatrices, we have for AW™ at points i = M — 1 and M — 2, following
equation (19.1.49),
-1
c2
= A i+
i ‘

pe i

10
01

Wiy p

AWY=A
u

’ A (19.1.52)
i

Wali i
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and
— —A
2 P +Ap 3 P +Ap Aw
awy=2| | - Z =|7"1| (19.1.53)
op + Au 2p + Au Walu
pc M-1 pc M-2
The primitive free variables AV}, are obtained from equation (19.1.50) with
1 1 0
Lyt o1
avn |8 — |1 Of[Aw (19.1.55)
Auly [0 1||Aw,|y

and the corresponding conservative variables are obtained from equation
(19.1.51):

1 0 0
Ap Aw, Ap
u p 0
AUy=M|Au| = Aw,| =] A(pu) (19.1.56)
2
2 y—1

where the coeflicients of the matrix M are evaluated at time level n. One finally
obtains the equation, for instance for Ap,

2A A
ApM+<—2p) —2Bps -<—§’) +Bpy-,=0 (19.157)
¢ Jm-1 ¢/ M-2

which has to be added to the interior scheme equations written up to the point
M-1

Equation (19.1.56) can be considered as an explicit or an implicit boundary
scheme. For an implicit interior scheme with a tridiagonal matrix structure such
as equations (19.1.3) and (19.1.4), the above equation (19.1.57) and the two others
for A(pu),, and A(pE),, provide the additional equations needed for AU,,.

An alternative consists in the elimination of AU, in equation (19.1.4) by
introducing equation (19.1.56) without adding additional equations. One should
take care to maintain the block tridiagonal structure of the systems. Indeed,
this structure might be lost for some combinations when equations of the form
(19.1.57) are added as additional equations.

Example 19.1.1 MacCormack scheme with time extrapolation of
characteristic variables

Consider the original explicit MacCormack scheme under the form (17.2.31)
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with the source term Q:

EF —t(fle1 =S+ ALQ]
AU, =(f, —f,_,_) + AtQ; (E19.1.1)
AUT=4(AU;+AU)

Boundary conditions are required for each step separately which have to be
compatible with the conditions on the global scheme.

The first equation of (E19.1.1) defines the predictor boundary values at the
inlet AU, and the second equation can be used to obtain a corrector boundary
value at the outlet AU, since the forward predictor step defines AU, from the
variables in point i =2 and similarly for the backward corrector at outlet.

In order to obtain global boundary values a predictor boundary correction
at the outlet AU,, and a corrector boundary correction at the mletAU, are
required. Characteristic information at the boundaries together with the
physically imposed boundary conditions are applied to calculate AU ;and AU .

(a) Inlet boundary correction ﬁl

(i) Subsonic inlet
At a subsonic inlet, we select density and pressure as the physical boundary
conditions and the velocity u is to be defined numerically. With

p=p* physical boundary condition
p=p* physical boundary condition
=y numerical boundary condition

the characteristic variables at the inlet at the corrector step are defined as follows:

Aw, =Ap - izA=p (E19.1.22)
C
Aw, = Aumm 4+ LA (E19.1.2b)
pc
Aws = Awmvm = Ay _ L35 (E19.1.2¢)

pc

The boundary corrections AV for the corresponding primitive variables V will
be consistent if the updating step

Y+t = yr 4 LAV + AV) (E19.1.3)

maintains the constancy of the imposed variables p* and p*; that is at a subsonic
inlet, the corrector boundary values are related to the imposed variables and
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to the calculated predictors at inlet by

Ap=2p*—p")—Ap (E19.1.42)
Ap=2(p* — p")— Ap  (E19.1.4b)
The velocity Auj*™ is calculated from (E19.1.2c) by the time extrapolation
AWS™=Aw, or AWI™=0 (E19.1.5)
leading to
Au=Aumm = %Z—; + Awiom (E19.1.6)

These corrections are easily transformed into conservative corrections AU, .
Note that generally the initial solution will satisfy the physical boundary
conditions and in this case the first terms in equatlons (E19 1.4) will be zero,

thatis p” = p* and p" = p* leading to Ap —ApandAp= — Ap.

(ii) Supersonic inlet
All three variables are imposed and the boundary corrections can be written
directly in terms of conservative variables U:

AU, =2(U* - U)— AU, (E19.1.7)
where U* is obtained by transforming the physical imposed primitive variables
to conservative variables.

(b) Outlet boundary correction AU,

(i) Subsonic outlet
At a subsonic exit, where the pressure is imposed the characteristic predictor
values are defined by

— 1 —
Aw; = Ap™™ — E;Ap (E19.1.8a)
—_— 1 —
Aw, = Au™™ + —Ap » (E19.1.8b)
pc
—_— 1 —
Awy = Au™™ — — Ap (E19.1.8¢)
pc
with
Ap=p*-p" (E19.1.9)

The variables Ap™™ and Au™™ are calculated from (E19.1.8a) and (E19.1.8b)
respectively usmg a zero-order or first-order extrapolation in time for the

corrections Aw, and Aw,; that is

Aw;" =0 k=1,2 zero-order extrapolation (E19.1.10)
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Awl=Aw'"' k=12 first-order extrapolation (E19.1.11)

The primitive corrections are then finally given by

— — 1 —
Ap =Ap™™ = Aw, += Ap (E19.1.12)
. 4

_ 1 —
Au = Ay™™ = Aw, — —Ap (E19.1.13)
pc :
which are easily transformed to conservative corrections A—U—M.

(ii) Supersonic outlet

Three numerical boundary conditions have to be imposed. One can directly
work with conservative corrections using the following possibilities: a first-order
extrapolation in time

AU = AU (E19.1.14)

or a zero-order extrapolation, which gives excellent results,

AU%=0 (E19.1.15)

Compatibility relations with time-differenced physical boundary conditions

This approach, introduced by Chakravarthy (1983), is based on a
systematization of the characteristic method, as illustrated by equations (19.1.9)
to (19.1.11), whereby the physical boundary conditions are discretized in a time
differential form.

The idea behind this formulation relies on the fact that the compatibility
relations are obtained by multiplying the conservative Euler equations by the
left eigenvectors of the Jacobian matrix 4, as seen in Chapter 16.

At a boundary only the characteristics with negative (outgoing) eigenvalues
may be considered, since they provide information from inside the domain,
while the characteristics with positive eigenvalues have to be replaced by the
physical boundary conditions. Hence at a boundary the matrix P~ ! grouping
the left eigenvectors as lines, will have the lines associated with the incoming
characteristics zeroed out, in order to maintain only valid information. The
remaining equations can be derived from the physical boundary conditions by
differentiation in order to define a system of three by three equations at a
boundary, which is to be added to the system applied at the internal
points.

With the notation of equation (19.1.19), the characteristic compatibility
equations (16.4.19) can be written as

QWP 3}
. ot|wN

WP

x| =LT10=P70 (19.1.58)

Ox
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or with (16.3.39), as a function of the conservative variables, as
o|wP| (Y|, o |U"
ot |WR[ [(P~YN ox UM
where A is the Jacobian of the conservative variables. Note that the factor
A0U/0x can be replaced by the conservative flux derivative 8 f/dx.

Following the procedure described by equations (19.1.9) to (19.1.11), the
variables W*, which correspond to incoming characteristics, have to be replaced
by the physical boundary conditions B(U)=0, where U stands for the
conservative variables, for instance.

A fully combined treatment is obtained by taking the time derivative of the
boundary conditions

=P1Q - (19.1.59)

Z=0=—1U, (19.1.60)

where 0B/0U is the Jacobian matrix of the B functions with respect to U.
Introducing this equation for the physical boundary terms, the full system at
the boundaries then becomes

J| B a0 0
‘a—t WN a WN =‘(P_1)N Q (19.1.61)
or with AW = P 1AU,
0B

oU |ou L0
(P—I)N ot (P—I)N
Explicitly, the equations (19.1.62) are discretized after isolating dU/dt in the
following way. Defining the two matrices P,, P,,

) (19.1.62)

ouU 0
A& =
ox ‘(P“)N

oB
1= Pa_(f),, (19.1.63)
P2=’(P?1)N (19.1.64)

the equations (19.1.62) are discretized after multiplication by P!, which is
non-singular by construction as a consequence of the well-posedness of the
selected boundary treatment:

%’%HP;‘P;A)%#P; 'P2)Q (19.1.65)
or
2 2
6_ltj+ PI1P, é= (P;'P,)Q (19.1.66)
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The system (19.1.66) can be discretized in relation to the considered scheme,
that is explicitly or implicitly. In both cases, the flux term df/0x will have to
be differenced in a one-sided way, forward at an inlet boundary and backward
at an outlet section.

When an implicit scheme is selected, these equations can be discretized as
follows, with P* = P 1p,, in the line of the Beam and Warming schemes:

(1 + TP*5~ A" AU", = P (P, Q) — TP*37 %, (19.1.67)

for an outflow boundary and a similar equation at the inflow boundary with
a forward differencing operator 6* instead of 6.

The examples shown in Figure 18.1.6 to 18.1.8 have been obtained with this
treatment of the boundary conditions and a first-order upwind discretization
of (19.1.67). Note that equation (19.1.67) can also be applied with a second-order
backward difference, leading to a second-order accurate boundary scheme.

It is to be noted that the boundary equations (19.1.65) and (19.1.66) are not
in conservation form and, furthermore, the upwind discretization at the
boundaries is not consistent with the interior scheme from the point of view of
global conservation. For instance, if the interior scheme is based on a central
differencing of the fluxes & f; and if at the boundary one would apply a first-order
upwind formula 6~ f;= f;— f;-,, this would leave a conservation error of
(Frae1+ )2+ (= fru=1)=Cfu— fu-1)/2. For strict conservation the
sum M- 18f; + (3™ f)) should depend only on f, and f,, and not on the fluxes -
at interior points. _

For the implicit schemes of Lerat (Section 17.4) with a = 0, the explicit step
is the physical one, and will require a correct boundary treatment of an explicit
nature. The implicit step, being of a mathematical nature, can allow a simplified
treatment, such as AU = 0 at the boundaries.

Example 19.1.2  Subsonic outlet boundary, imposed exit pressure

The method just described is applied to a subsonic exit section, with imposed
pressure, directly in the conservative variables. The matrix P~1! (equation
(16.4.11)) is split as follows, keeping the usual order of the equations, that is
writing first (P~ Y)N:

y—1u? u y—1
=5z e
y—1, )1 ' 1 y-1
-1)N —uf—uc |— c—(y—Nu]—
S_|e l)pE ( 2 T ) [e—( )]pc "
(P77
_________________________ -
- 1 -1
- (uu2 + uc)i (c+@—Nu]— _r=
2 pc pc pc

(E19.1.16)
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The condition B(U) =0 is given by
B(U)=p—p,=0 (E19.1.17)

where p, is a constant. The Jacobian 6B/dU is actually formed by the last line
of the matrix M1

0B |y—1 ,
— —(y-1 -1 E19.1.18
w7 O—Du vy ( )
The matrices P, and P, are defined here as
y—1u? u y—1
S el —1)— -
2 ¢ Y )cz c?

po=| )] = () - | @isig
pc pc

a_q 2 pc
ou -
r—1 u? —(=Du y—1
2
y—1u? u y—1
1-—— -1)— -
2 ¢ Y )cz c?
(PN
P, = =|/y- 1 1 -1 E19.1.20
: I (e -u)l -g-pnl L) GO0
2 pc pc pc
0 0 0
The matrix P* = P 'P, is derived by direct algebraic manipulations:
y—1u? u 1—y
- -1 =
2 ¢ o )c_z c

=

2
p*= Eaﬂ(l-f) 1+7_1u(-— ) r-1 1—5>
2 c c c c

2
A

(E19.1.21)

o

Example 19.1.3  Subsonic inlet—pressure and density fixed

There is only one numerical boundary condition corresponding to the third
characteristic. In this case, (P~ ') and (P~ ") are reversed in comparison to the
previous example and we have

p—p*
p—p*

where p* and p* are the imposed values.

B(U)= =0 (E19.1.22)
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The Jacobian 8B/dU is formed by the second and last rows of M ™!

1 0 0
%8 =[y_1 : (E19.1.23)
ouU Tuz —p—u (y—-1
The matrices P, and P, become
1 0 0
Y— 1 2
—_— —-(y-1 -1
P, = 2 " G=bu v (E19.1.24)
-1 1 1 -
—(y—u2+uc)— [c+ @ —Du]l— _r=t
2 pc pc pc
0 0 0
0
P,= 0 O | (B19.125)
—1 1 1 -
—<y——u2+uc>— [c+@—u]— -1 1
2 pc pc pc

The matrix P* = P;!P, is derived by direct algebraic manipulations:

0 0 0

—u<1+y—1u> 1+(y—1)E _r=t
2c c c

-—uz(1+y—lu> l:l+('y—l)3:| —y—lu
2c c c

Example 19.14 Application to MacCormack and Beam and Warming schemes
Equation (19.1.66) is written with P* = P 'P,:
ou of

— 4+ P* - =p* E19.1.27
ot 0x Q ( )

This equation, valid at the boundaries, will be discretized in a one-sided way.
A first-order explicit scheme seems to be a good c.oice, since it has to be
combined with the explicit MacCormack scheme.

For an inlet boundary i = 1 one would write

AU" = —tP*8* f* + AtP*Q" (E19.1.28)
and for an outlet boundary i = M, \
AU, = —1P%3™ {7 + AtP%,0", (E19.1.29)

P* = (E19.1.26)
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For the Beam and Warming scheme, equation (E19.1.27) is discretized in an
implicit way with one-sided differences.
For an inlet boundary i = 1 we have, with an implicit treatment of the source
term where C = 3dQ/0U is here the Jacobian of the source term.
(1 +tP}¥6* A} — AtP¥CYH)AU = —tP¥6* [ + AtP* Q" (E19.1.30)
For an outlet boundary i = M,
(I + TPy o™ Ay — AtPy, CL)AUY, = — TPy 6™ 4, + AtPY, 0%, (E19.1.31)

Equations (E19.1.30) and (E19.1.31) represent the extra boundary equations
completing the blocktridiagonal system of Beam and Warming. More explicitly
they can be written as follows:

YAU} + ZAUS = RHS, inlet boundary (E19.1.32)
with
Y=1—1P*A" — AtP*C"
Z=1PtA  (E19.1.33)
RHS, = —tP}(f; —f1) + AtP}Q]
At the outlet boundary
' XAU% _, + YAU", = RHS,,  outlet boundary  (E19.1.34)
with
Y =1+ 1P} A}, — AtP},C},
X=—1PhA},_, (E19.1.35)
RHSy = —tPy(fy —fi_1) + AtPYL O},

In general, since the physical boundary conditions are imposed as time
derivatives ,B = 0 and linearized as equation (19.1.60), the non-linearity of the
boundary conditions will lead to small errors on the exact condition B(U)=0.
Hence, it is recommended to update the imposed variables, for instance pressure
in Example 19.1.1, after each time step in order to satisfy exactly the imposed
values. An alternative to the updating, which is actually more consistent with
an implicit approach, is to replace equation (19.1.60) by a Newton iteration

B(U"+ 1) = B(U'l) + g_(B}(U’”'l — U") (19168)

which is a discretized form of equation (19.1.60). Under the condition that the
solution at time step n + 1 satisfies exactly the boundary condition B(U"*!) =0,
equation (19.1.68) can be written with the boundary residual in the right-hand
side as

oB\" n_ .
(6_U> AU"= — B(U") (19.1.69)
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This can easily be introduced in equations (19.1.61) to (19.1.67) by adding to

the right-hand side the matrix " |, leading to the following equation, instead

of (19.1.62):
B
ou
A— = 19.1.70
(P~ 3t (P 1)N 0x l(P")”Q ( )
and equation (19.1.66) becomes
ou
—+ P! P —P' 19.1.71
a oo (1470

In the discretized form of equation (19.1.67), this modification leads to the
boundary scheme

— B
(P~%¢
The first group of equations are in fact B(U) =0 at time level n.

A comparison between this last method and the implicit characteristic extra-
polation method is shown in Figures 19.1.5 and 19.1.6. They correspond to the
same case and the same conditions as Figure 18.1.7, in particular the same
physical boundary conditions, identical CFL numbers of 40 and the same
artificial dissipation coefficients. The convergence rates of the three cases are

practically identical, reaching a residual reduction of eight orders of magnitude
in 100 time steps.

(1 + 1P*6~ A"y AU = — tP*6™ f7 + P]} (19.1.72)

ONE DIMENSIONAL NOZZLE FLOW ONE DIMENSIONAL NOZZLE FLOW
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Figure 19.1.5 Mass flux error and entropy distribution obtained with the Beam and Warming
scheme and first-order characteristic extrapolation as boundary treatment
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Figure 19.1.6 Mass flux error and entropy distribution obtained with the Beam and Warming
scheme and zero-order characteristic extrapolation as boundary treatment

Figure 18.1.7 is obtained with the implicit characteristic treatment, while
Figure 19.1.5 and 19.1.6 show the error evolution and entropy plots for the
first- order extrapolation on the characteristic variables and the zero-order
extrapolation respectively.

The results of Mach and density distributions can not be distinguished from
those shown in Figure 181.7, but the error curves show an increase in the error
level of the density flux which remains limited for the first-order extrapolation
but reaches one order of magnitude for the zero-order extrapolation. This is to
be expected since Gustafsson’s theorem predicts that the coupling of a
second-order accurate interior scheme with a zero-order boundary treatment
reduces the overall order of accuracy of the complete scheme. This can also be
seen on the entropy variation which shows an increased error in the region
downstream of the shock.

19.1.6 Non-reflecting boundary conditions

This approach is an alternative for the expression of physical boundary
conditions.

When imposing a constant pressure at a subsonic exit section under the
form p"*!=p* or Ap=0, where Ap=p"*! —p"=p* —p" as considered in
Examples 19.1.1 and 19.1.2, one actually allows perturbation waves to be
reflected at the boundaries. Indeed, since the amplitude of the local perturbation
wave carried by the incoming characteristic is Aw, = Au— Ap/pc, imposing
Ap =0 amounts to the generation of an incoming wave of intensity Aw, = Au
reflected from the exit boundary.
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The non-reflecting boundary condition (Engquist and Majda, 1977;
Hedstrom, 1979) expresses the physical boundary conditions as the requirement
that the local perturbations propagated along incoming characteristics be made
to vanish: that is

ow,

Y for all k such that 4, enters the domain (19.1.73)

In discretized form this condition is expressed as
Aw, =0 for all k such that A, enters the domain (19.1.74)

This condition is automatically satisfied with the characteristic approach (19.1.6)
to (19.1.8), but it can be applied with other treatments of the numerical boundary
conditions (see Problems 19.6 and 19.7). For a subsonic outlet, equation (19.1.74)
becomes

Ap

Aw; =Au——
p'c

0 (19.1.75)

For a subsonic inlet, the non-reflecting boundary conditions would be
sea (164 18)p 162

A
Aw1=Ap—TI:=0
c

Awy=Au+ 22 0 (19.1.76)
p"c

It is to be noted that this reasoning remains valid as long a shocks do not cross
the boundary, since the characteristic variables are not constant across a shock.
Hence the above conditions will generate a reflection when a shock passes
through a boundary. However, if the shock is of strength ¢, the Riemann variables
change by an amount O(e?) through the shock and produce a reflection of this
order of magnitude (Hedstrom, 1979).
In the presence of source terms, the characteristic equations are defined by
equation (16.4.19) or
% + Ak ?&
ot 0x
where 1% is the left eigenvector of the Jacobian associated with A,. At a fixed
poisition of the inlet or outlet boundaries, equation (19.1.73) is generalized as

=[®Q (19.1.77)

% =[®Q  for all k such that i, enters the domain  (19.1.78)
For a nozzle of cross-section S(x), equation (19.1.75) for a subsonic exit becomes
seq (e 4 23) Ap 1dS

Awy=Au——=——u"" (19.1.79)
p"c"  Sdx
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Computations show, in particular with unsteady flows but also for stationary
conditions, that this procedure provides an improved accuracy at the boundaries
and we refer to the listed references for specific examples; see also Thompson
(1987) for additional examples.

In steady-state computations and an imposed pressure at a subsonic exit, the
non-reflecting condition (19.1.75) does not ensure that p=p* and a strict
application of this equation might lead to a steady state depending on the initial
data. An ad hoc cure to this situation has been proposed by Rudy and
Strickwerda (1980). It consists in replacing equation (19.1.73) for the incoming
characteristic by the condition a > 0:

______ (p—pHN=0 ati=M (19.1.80)
C

For any finite value of a the steady-state solution will satisfy the condition
p=r*

The parameter a has to be optimized and some guidelines are provided by
Rudy and Strickwerda (1980). For the two-dimensional test cases analysed by
these authors with the MacCormack scheme, the convergence rate to steady
state was strongly dependent on the parameter «. The optimum value of «
decreases with increasing Mach number, from roughly 0.1 to 0.2 at Mach
number 0.8 to a value close to 1 for Mach numbers of 0.4. However, these
values are strongly problem dependent. In any case, the convergence rate was
considerably better compared to the case where the condition p = p* at exit
was used.

Equation (19.1.80) can be discretized in an implicit way, leading to

Apy = (p"c"Au + aAtAp*),

(19.1.81)
1+ oAt

n+1

where Ap=p"*' — p" and Ap* = p* — p", or in an explicit way

Apy = (p"c"Au + a At Ap*),, (19.1.82)

Better results are obtained with the implicit form (19.1.81).

An interesting combination for the expression of boundary conditions, in
particular for unsteady problems, is to combine the compatibility equations for
the outgoing waves with the non-reflective condition for the incoming
characteristics. This corresponds to an application of the procedure developed
in Section 19.1.5 with the replacement of the equation dB/dt =0 by equation
(19.1.78). This replacement maintains equation (19.1.65) with P, = P~?, the
complete diagonalization matrix of the Jacobian (E19.1.16). A straightforward
interpretation of the equation obtained in this way can be given in terms of
flux splitting concepts and will be discussed in Section 20.2.4.

Note that, for stationary problems, equation (19.1.80) might be used in this
approach, instead of (19.1.78).



372
19.2 MULTI-DIMENSIONAL BOUNDARY TREATMENT

Multi-dimensional flows contain a variety of boundaries, which can be grouped
into:

(1) Free surfaces, either far-field boundaries in external flows or inlet and outlet -
sections of internal flow systems (Figures 19.2.1 and 19.2.2).

These are the boundaries through which the flow enters or leaves the
computational domain. In external flow problems, free boundaries
are generally located far enough from the body such that free-stream
conditions can be considered although, as will be seen next, higher accuracy
is obtained when some far-field corrections, taking into account the finite
distance between the body and the outer boundaries of the computational
domain, are introduced.

In internal flow systems, ducts or cascades, these boundaries refer to the
inlet and outlet surfaces. For cascades, one has in addition periodic surfaces,
resulting from the periodicity of the cascade geometry. These surfaces are
not to be considered as external boundaries, since the periodicity condition
of equality of all physical flow quantities at corresponding points E,F
results in treating these points as internal points, without other boundary
treatment. ,

(2) Solid body surfaces, either bodies immersed in a flow or bounding walls
in ducts and cascades.

19.2.1 Physical and numerical boundary conditions

In all cases, the number of physical boundary conditions to be imposed at the
boundary surfaces is determined by the characteristic properties.

Referring to the presentation in Section 16.5, the number of physical
conditions to be imposed at a boundary with the normal vector 7 pointing
towards the flow domain is defined by the signs of the eigenvalues of the matrix

K=A4-1,=AA +BA, (19.2.1)

where T, is the unit vector normal to the surface, with components (4,, A,) in
a two-dimensional Cartesian coordinate system.

Remember that 4 and B are the Jacobians of the conservative x and y
components of the flux vector, with respect to the conservative variables. The
matrix

R=4-T,=4n +Bn, (19.2.2)

formed by the Jacobians of the flux components with respect to the primitive
variables has the same eigenvalues. _ '
The eigenvalues of the matrix K are 71, 71, 7 1,+c, 7 1,—cina
two-dimensional flow.
The first two eigenvalues are equal to the normal component of the velocity
vector, v,. The two remaining eigenvalues are associated with the acoustic waves
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Figure 19.2.1 External flow boundary configuration
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Figure 19.2.2 Internal flow boundary configuration
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and are equal to v, + ¢. Hence the sign of these eigenvalues will be determined
by the velocity components normal to the boundary surfaces.

Note that in a three-dimensional flow, the eigenvalue v, appears three times.

The associated wave propagation speeds in the direction T,, are )u_f, where
A represents any of the above eigenvalues, according to equation (16.3.11). Hence,
when 1 is positive, the information carried by the associated characteristics
propagates from the boundary towards the interior of the flow domain and a
physical boundary condition has to be imposed.

On the other hand, when the eigenvalue 1 is negative, information is
propagated from the flow domain towards the boundary, influencing thereby
the boundary surface conditions. These effects have therefore to be expressed
numerically, through numerical boundary conditions.

If the inlet flow is subsonic in the direction normal to the entry surface, three
cigenvalues are positive (four in a three-dimensional situation) and one is
negative. Therefore, three (or four) quantities will have to be fixed by the physical
flow conditions at the inlet of the flow domain, while the remaining one will
be determined by the interior conditions, through a numerical boundary
condition (Figure 19.2.3).

Two thermodynamic variables will generally be determined by the upstream
stagnation conditions. Most currently, stagnation pressure and temperature can
be imposed, or, equivalently, entropy and stagnation enthalpy. The third (and
fourth) physical variable(s) will be defined by one (or two) velocity component(s).
The remaining velocity component will result from the numerical boundary
treatment.

An equivalent option often applied in internal flows, such as channels or
cascade computations, is to specify inlet Mach number or velocity magnitude,
and have the inlet flow angle defined by the computed flow, or, inversely, fix
the incident flow angle, determining inlet Mach number from the computed flow.

In addition, when the flow is choked, that is when the sonic velocity is reached
in a minimum area section which is lower than, or equal to, the critical section
the mass flow rate cannot be imposed, but has to be calculated from the flow
properties through a numerical procedure.

’ dnfdi= vy -¢

dn/dt = v,re

>
(vn + c)ln

v

interior domain n

Figure 19.2.3 Subsonic inlet boundary in two-dimensional flows
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dnidt = v l+c dnfdt="-lv,|

An/dt = -(lv <)
n

4>

*

R -(Ivnl-c»c)ln
-lv |

ln( vn +c)

Figure 19.2.4 Subsonic outlet boundary in two-dimensional flows

At an outlet boundary, with subsonic normal velocity, three (four) eigenvalues
are negative, since the normals are defined as pointing towards the interior flow
domain. Three (four) numerical boundary conditions have therefore to be set,
while the fourth (fifth) condition, associated with the positive eigenvalue
(—|v,| + ¢), propagates information from the boundary towards the flow region.
It is consequently associated with a physical boundary condition (Figure 19.2.4).

The most appropriate physical condition, particularly for internal flows and
corresponding to most experimental situations, consists in fixing the downstream
static pressure. This can also be applied for external flow problems. However,
in this latter case, free-stream velocity is generally imposed.

If the flow is supersonic normal to the inlet surface, all boundary conditions
are physical.

With the same circumstances at the outlet, all eigenvalues are of negative
sign and no physical conditions have to be given. All the boundary variables
are defined by the interior flow, for instance via extrapolation formulas.

At a solid wall boundary, the normal velocity is zero, since no mass or other
convective flux can penetrate the solid body. Hence, only one eigenvalue is
positive and only one physical condition can be imposed, namely v, = 0. The
other variables at the wall, in particular velocity and pressure, have to be
determined by extrapolation from the interior to the boundary (Figure 19.2.5).

An important effect of the numerical boundary procedure is to ensure that
unwanted perturbations, generated in the computational domain, for instance
the transients in a steady-state flow, leave the domain without being reflected
at the boundaries. This implies that the propagation of these perturbations is
compatible with the characteristic propagation properties of the Euler equations,
as expresed by the compatibility relations or the equations for the characteristic
variables.

When this is not the case, the accuracy of the computation can be greatly
affected by the reflection occurring at the boundaries. It is therefore recom-
mended to apply, as in the one-dimensional case, characteristic or compatibility
relations as boundary procedures.
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Figure 19.2.5 Solid wall boundary in two-dimensional flows

19.2.2 Multi-dimensional compatibility relations

The compatibility or characteristic relations can be written, for an arbitrary
propagation direction, under the various formulations presented in Section
16.5.

They differ from their one-dimensional counterpart by the presence of
contributions to the convective transport of characteristic quantities, arising
from variations of velocity and pressure in the surface normal to the considered
propagation direction. This is best seen in equation (16.5.46), which is the
compatibility relation associated with the acoustic waves of celerity v, + c.

This equation is reproduced here for the direction 7 normal to the surface as

dfR:=Fcl-(1-V)7 (19.2.3)
where

di =§—t+(ﬁi c1,)V (19.2.4)

and with 1 representing unit directions in the surface, that is normal to 7,
namely

T7=0 (19.2.5)
The Riemann variables R} associated with the direction n are defined by
RE=7T,+ -2 (19.2.6)
y—1

as in the one-dimensional case.

It is seen here that these variables are generally not invariants, in the sense
of being transported along an associated bicharacteristic, as a consequence of
the presence of the right-hand side in equation (19.2.3).

The other characteristic relations are contained in the equations (16.5.51) to
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(16.5.52) and are reproduced here for a two-dimensional flow and the direction 7’:

op
ow -
1 P 2
ow, f,0u — R, 0v
oW = = (19.2.7)
- . Op
ow, 1,60 +—
pc
6W4 bt _1."'6?). + 6_”
pc

The characteristic system becomes

bl —
7V )w, =0
<6t b )w‘

0 —
(— + F-V)wz = g(ﬁxay — A0, ) (W3 +wy)= —

TV
% (I-Vyp

& - L (19.2.8)
L+ +c1,,)'V:|w3=c(ﬁx6y—ﬁy6x)w2= —cI-(T-V7

—

I:éa; +(T— cTn)-V:|W4 =c(A0,— A0 )W, = — cT-(I -V)Tf

The first equation of (19.2.8) describes the constancy of entropy along a
streamline, while the second characteristic equation has no equivalent in
one-dimensional flows and represents the propagation of vorticity waves. The
last two characteristic equations are identical to equation (19.2.3).

We recall here that these equations are to be considered as a shorthand form
for the combination of primitive variable variations defined by (19.2.7) since,
as pointed out in Chapter 16, the variables w cannot always be determined.
However, if the flow is close to uniform, as in a far-field region of an immerged
body, then the characteristic variables can be linearized around the uniform
flow variables and W can always be defined, as seen in Chapter 16, Section 16.5.

If the pressure and the velocity are uniform in the boundary surface, that is

TV¥p=0 and (V)i =0 (19.2.9)

then the right-hand sides of all the equations (19.2.8) vanish and one recovers
locally a one-dimensional situation.

19.2.3 Far-field treatment for steady-state flows

A simple treatment of the inlet and outlet boundaries for stationary flows
can be defined when (19.2.9) is valid (Thomas and Salas, 1986), where the
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compatibility relations associated with the acoustic waves reduce to

RM=v,+ __20_1 = constant along the path 7 +c1, (19.2.10)
v ——

R, =v,— _2c_1 = constant along the path 7 — cT,, (19.2.11)
y —

Subsonic inlet boundary

The first relation corresponds to the positive, incoming, characteristic and is

associated with the physical boundary condition. Hence, the values at the

boundary, indicated by a subscript B, are obtained from
2cp 2c,

=Vao +
y—1 y—1

(19.2.12)

where ¥V is the free-stream velocity and c,, the free stream speed of sound.
The second relation (19.2.11) is associated with a numerical boundary

condition and has to be estimated from inside the domain by an appropriate

extrapolation from the mesh points close to the boundary surface. Hence,

R, =vp— (19.2.13)
where the subscript i refers to a value at an internal mesh point along the
direction 7 — ¢1, or alternatively along the normal direction, since the boundary
variations along the tangent to the surface have been assumed to vanish.

The boundary values of the normal velocity and sound speed are obtained

by adding and subtracting equations (19.2.12) and (19.2.13), leading to
+ p—
Unp = Ros + R ; Ru (19.2.14)

cp=(Rp— R,;)y—:—1 (19.2.15)

The second characteristic relation can be simplified if the local coordinate
system is oriented such that the x direction is along the normal. In this case,
the variable w, reduces to the tangential velocity v, and the compatibility relation
becomes

v, = constant along the directions v or @ (19.2.16)

s = constant along the direction 7 or #
both variables being associated to the physical free-stream values; that is
Ui = Vi (19.2.17)
Sg =Sy (19.2.18)
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The above treatment does not indicate that the stagnation enthalpy is constant
and equal to its imposed value, since H is not associated with a characteristic
variable. This is an extremely important aspect for steady calculations and
should be enforced. This can be achieved in several ways, for instance by defining
the speed of sound along the boundary by

k= (—H“’—;B)(v ~1) (19.2.19)

instead of equation (19.2.15).
Alternatively, one could replace equation (19.2.12) or (19.2.18) by the condition

Hy=H, (19.2.20)

Subsonic outlet boundary

The same relations apply at the outlet, with the difference that the quantities
R, v and s are determined from the internal values. Remember that we
define the direction of the normal towards the inside of the computational
domain, that is v, > 0 at the inlet and v, <O at the outlet.

The fourth relation for R, is defined by the physical condition of fixed
pressure:

2cy

p
1=R:m=_|vnw|+ =

GJCG)

Rr-::! == IvnBl +

(19.2.21)

If the flow is not uniform in the boundary surfaces the complete form (19.2.3)
of the characteristic equations have to be used.

An equivalent formulation to the one just described can be defined by a direct
extension of the treatment of Section 19.1.3 where the variables R* are replaced
by the characteristic variables Aw, and Aw,, while v, and s are replaced by Aw,
and Aw, respectively.

Also, the treatment of Chakravarthy, combining the time-differenced physical
boundary conditions with the characteristic equations associated with the
negative eigenvalues into one system of equations at the boundaries, can be
extended in a straightforward way to two and three dimensions (Chakravarthy,
1983; Rai and Chaussee, 1983).

It is to be observed that other directions than the normal to the boundary
surface may be selected in applying the characteristic relations. One interesting
choice results from an analysis of Bayliss and Turkel (1982) which has been
shown by Roe (1986) to correspond to a direction making an angle 8 with the
incident velocity directions, supposed to be aligned with the x axis, such that
tan @ = B2y/(x — BRM ) with B> =1— M2 and R? =y +x?/p>.

19.2.4 Solid wall boundary

At a solid wall one characteristic enters the flow domain and a single physical
boundary condition is to be imposed. This condition is expressed by the
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vanishing of the normal velocity
v,=0 (19.2.22)

As a consequence, all convective flux components through the solid wall
will vanish in the computation of the flux terms and the normal component
of the flux vector reduces to the following expression in a two-dimensional
flow:

F1,= (19.2.23)

Hence, only the pressure contribution remains at the walls.

The variables other than the normal velocity, in particular the tangential
velocity, the pressure and another thermodynamic variables, for instance total
enthalpy or entropy, have to be obtained from the interior flow. Here again
these variables can be extrapolated directly from their values at points adjacent
to the wall surface, or the conservation equations can be solved for mesh points
on the boundary from a one-sided discretization.

A third alternative consists in applying the characteristic relations discretized
in a one-sided way from the wall towards the inside of the flow field. It is
essential to observe here that the simplified form of the compatibility relations,
namely equations (19.2.10), (19.2.11) and (19.2.16), are not valid here, since the
assumption of uniform velocity and pressure in the boundary surface is certainly
not satisfied at a solid wall boundary. Hence the full form (19.2.7) and (19.2.8)
has to be applied at the walls.

These relations are applied in differential form in the combined treatment of
Chakravarthy, where the equation for w,, asociated with a positive character-
istic, is replaced by the time-differenced form of the physical boundary condition
(19.2.22) (Chakravarthy, 1983; Rai and Chaussee, 1983).

Determination of the wall pressure

The numerical determination of the wall pressure is an essential element in any
computation with solid boundaries and various methods can be applied in
order to obtain the wall pressures.

Extrapolation from adjacent points This is the simplest approach, whereby
an extrapolation, generally linear or quadratic, is applied from neighbouring
points to the wall along a mesh point line.

When mesh points are located on the wall, as in Figure 19.2.6, one can also
solve the Euler equations with one-sided discretizations to find all the variables
in addition-to the vanishing normal velocity.
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Figure 19.2.6 Streamwise curvilinear coordinates at solid boundary

Compatibility relations at the wall The wall pressure can be obtained from
a one-sided discretization of the compatibility relations (19.2.8), considered as
-a system where the equation for w, is replaced by the physical boundary
condition.

These equations couple streamwise and normal derivatives of the pressure,
for instance the equation for w, becomes at the solid wall

1o L, w10 gy (19.2.24)
pcdt R, pcdl pon

where R, is the wall radius of curvature and d! is the elementary arc length
along the wall. If the continuity equation is subtracted from equation (19.2.24),
after having replaced the density variations by the isentropic pressure variations,
that is under the form

1
PG5+l Vp=0 (19.2.25)
pc Ot pc
one is left with the following equation, which is nothing else than the normal
projection of the momentum equation at the wall:
1 10
R L (19.2.26)
R, pon
Hence a third way, recommended initially by Rizzi (1978), consists in discretizing
directly the normal momentum equation at the wall.

Normal momentum equation Equation (19.2.26) is discretized in a one-sided
way along the normal to the solid wall boundary.
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In practical computations, however, one has seldom a mesh system formed
by normals to the wall, that is mesh points aligned along the wall normals.
Consequently, equation (19.2.26) is difficult to discretize as its stands and a
more appropriate form is based on the projection of the momentum equation
in arbitrary curvilinear coordinates, (£, #) in two dimensions, with the coordinate
line # = constant being the wall surface (Figure 19.2.6).

Projecting the momentum equation along the normal to the wall corresponds
to taking the second contravariant component, if one defines ¢ = ¢! and 5 = £2.
From the vanishing normal velocity at the wall,

%(F-ﬁ) =0 (19.2.27a)
one has

— dn
—FVp4pT ol =0 (19.2.27b)
dt
For stationary walls, the second term reduces to the streamwise derivative
~7-Vp+pv(T- V)i =0 (19.2.28)

With 7’ equal to the unit vector T,, along the normal, this equation leads directly
to equation (19.2.26).
Taking # =& 2 = Vp leads to

rw @
s’-Vp=a—’;\/n§+n3

%
o

=pv(T- V)i = — pA-(T-V)T

0
=g%0,p = (Gt + E,1,) 22 + (n? +n§)a—f7’

__ 0%~ ou @
= — U2 = —pU(ﬂ,a—z+ n,—") (19.2.29)

flow domain

Figure 19.2.7 Reflected boundary cell at a solid boundary
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The contravariant £ component U of the velocity vector is defined by
U=¢u+ép (19.2.30)

where the subscripts on ¢ and # indicate partial derivatives. This formula can
be applied to estimate dp/dn by calculating the metric coefficients from the mesh
point coordinates. Note that alternative expressions can also be obtained from
these equations (see Problem 19.20).

A current implementation technique is based on the definition of reflected
cells as shown in Figure 19.2.7, where the flow variables are defined as to ensure
vanishing normal velocities at the wall; that is one defines the conditions at the
reflected point R by

Pr = Pp
ViR = Urp (19.2.31)
U = — Upp

b3}
PR=PP"<'£) Ange
on)w

The derivative in the direction of the curvilinear coordinate # is related to the
normal pressure gradient by relations (19.2.29). The derivative dp/dn is estimated
at the wall and the wall values of all the variables are obtained from the
arithmetic average between P and R. Hence,

+ )

Pw =M=pp—%(—”) A (19.2.32a)
2 m/w

If the radius of curvature is known, dp/dn is given by equation (19.2.26) and

0p/dn is estimated directly from

op ap<6r]> ap(ac) o 1 op
dp_oP(omy, oP(Oo\_°P - P, 19.2.32b
on on\on/ 0t\on/ oOncosa O¢ ane ( )

where the angle a is obtained from cos o = (area of cell)/(AB-AC) and dp/d¢ can
be approximated with a central finite difference of p along the solid wall.

A further improvement is obtained by the replacement of the second reflection
condition on the tangential velocity at the wall by the condition of vanishing
wall vorticity if the flow conditions are irrotational. In this case, the discretization
of the following equation leads to an alternative to the third equation (19.2.31)

Oo o
on R,

The normal derivative of the tangential velocity is estimated from the chain
rule as in equation (19.2.32b). If the 5 direction is normal to £, equation (19.2.33)
can be approximated as follows:

=0 (19.2.33)

Vip— U , Up+UR
+ ~0 19.2.34
Afgp 2R, ( )
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from which the tangential velocity in the reflected cell vz can be estimated,
leading to

1 + A"RP/RW

= 19.2.35
k= De 1 — Ange/R,, ( )

Uy

19.2.5 Non-reflective boundary conditions

As in one dimension, non-reflective boundary conditions can be imposed as
physical boundary conditions in order to prevent the outgoing waves from
producing unwanted reflections at the boundaries.

Referring to the characteristic equations (19.2.7) and (19.2.8), written in the
condensed form

%‘:—*+(a"k-'v’)wk=bk k=1,...,4 (19.2.36)
where b, represents the right-hand side of equations (19.2.8) and a' = A,:f,,.

For all characteristics corresponding to incoming waves in the direction
normal to the boundary, that is with positive eigenvalues A, the non-reflective
boundary condition becomes

% =b, forall4,>0 (19.2.37)

For instance, at a subsonic outlet section where 4, >0, this condition is written
as

f.ov_lor_ .o (19.2.38)

where the right-hand side represents the tangential variations of the velocity
components in the boundary surface. When these variations are zero, either for
uniform conditions in the exit surface or for normal exit velocities, then condition
(19.2.38) is identical locally to the one-dimensional form.

The adaptation of Rudy and Strickwerda (1980) can be applied in the following
form, instead of (19.2.38) for an imposed exit pressure p*:

o _1op_2 p—pm=c (19.2.39)

where o > 0 has to be calibrated empirically.
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19.3 THE FAR-FIELD BOUNDARY CORRECTIONS

In external as well as internal flow problems the inlet and outlet boundaries
are assumed to be located far enough from the main flow region so that the
influence of the flow disturbances does not affect the free-stream values.

Since these disturbances generally require long distances to damp out, the
boundaries will have to be situated, in practice, at an appreciable distance from
the source of the disturbances, for instance an airfoil in an external flow problem.
In this latter case, a distance of the order of or larger than 50 chords between
the airfoil and the far-field boundary is not uncommon.

These large distances have to be filled either with a very large number of
mesh points in the far-field region, where on the other hand the flow variations
are often unimportant, or with very large mesh cells having reduced accuracy.
Both situations are undesirable and could be overcome if an approximate
behaviour of the far-field flow would be known and matched to the interior
flow field by an adaptation of the boundary conditions. As a consequence, the
external boundaries could be taken closer to the disturbed flow region with a
reduction in the total number of mesh points, reducing the total computational
cost while improving the accuracy.

An approximate description of the far field can easily be obtained by
introducing a perturbation field to the uniform flow and expressing it as an
asymptotic series in a perturbation parameter. In the inviscid far field, the
perturbation satisfies the small disturbance potential equation

(1-M2)¢,.+¢, =0 (19.3.1)

where x’ and ' are directions along and normal to the free-stream velocity and
M, the associated Mach number. The potential ¢’ is the isentropic disturbance
field defining the perturbation velocities as

T =V¢' (19.32)

A solution can be obtained as a series expansion in function of x’ and y’, or
of corresponding polar coordinates. For external flow problems, a solution can
be found of the form (see, for instance, Thomas and Salas, 1986)

W= 3 Lib coskd) + ¢ sin (k)]
k=11t

© 1 (19.3.3)
v'=Y —[b;sin(k6)+ c, cos(kB)]

k=1

where r is the radius measured from the quarter chord of the airfoil and @ the
polar angle. The coefficients can be obtained numerically by matching this
expansion to the numerical solution along a boundary at a certain distance
form the airfoil, such as the surface S, on Figure 19.3.1.

In the case of an isolated airfoil, however, theoretical far-field expansions can
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4
in direction is orthogonal to r

* A +
vp = vV, +F@).1 m

Figure 19.3.1 Far-field boundaries for flow along airfoil

be derived for thin airfoils, where the b’ coefficients are related to the thickness
distribution and the ¢’ coefficients to the circulation.

To the lowest order one obtains the corrections u; and v; to the far-field
velocities, expressed as fractions of the free-stream velocity V., under an
incidence angle of a:

Ug

—— =cosa, + Fsinf

Ve

| % _sina, — Fcosf (19.3.4)
where F is defined as a function of the circulation I" by
F o 1 (19.3.5)

T V.| 20r 1~ MZ sin(6— a,,)

B=/1-M% (19.3.6)

The circulation I is obtained from the lift coefficient
2r
L= =
|Valc
for an airfoil with chord ¢, where the lift coefficient is calculated from a
momentum flux balance over an arbitrary closed contour S around the airfoil.

The axial and normal forces L, and L, expressed as coefficients, normalized
by the free-stream dynamic pressure and the chord c, are calculated from the

with

(19.3.7)
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following momentum balance (see, for instance, Yu et al., 1983, for an overview
of drag and lift calculations):

oo 2L -
T paUE + V) pm(U2 + V’

2L,
C,= o U2+ Vi) pm(Uz n Vz § [pv(v: dS)+p1 -dS1  (19.39)

The corrected far-field velocities are to be introduced in the boundary
conditions, replacing the velocities with the subscript B in the relations of
Section 19.2.2.

The application of this correction leads to an improvement in the accuracy
and allows the far-field boundary to be placed at distances of the order of five
chords without penalty on the accuracy. An example, from Pulliam and Steger
(1985), shows the variation of lift coefficient with the outer distance of the
boundaries for an NACA 0012 airfoil at subsonic incidence conditions.

Figure 19.3.2 compares the variation of the lift coefficient with and without
the far-field corrections, (19.3.4) to (19.3.6), demonstrating the spectacular
improvement.

A more general formulation, valid for external and internal flows, has been
developed by Gustafsson (1982), Ferm and Gustafsson (1982), Gustafsson and
Ferm (1986), Verhoff (1985), Hirsch and Verhoff (1989). In this approach the
Euler equations are linearized in the far field and analytical solutions are
obtained for the perturbations from the uniform conditions at infinity, as a
Fourier series expansion in the direction along the boundary, allowing also far
field perturbations for the entropy waves. The coeflicients of the expansion are
written in the form of exponentials in the incoming direction, normal to the
boundary. The linearized form of the compatibility equations (19.2.8) can be
written as follows

§[pu(—'d8)+pl -dS7  (19.38)

owy ow)
+ M —1_ .J.
e . (19.3.10a)
ow), ow, 18(wi+w),)
2 M, 23T T 19.3.10b
ot ox 2 dy ( )
"Ws M, + 1)"”3 M2 _0o (19.3.10¢)
dx Oy
3W4+(M aw‘ M0 (19.3.10d)
ot 5)’

where the dash indicates perturbations from the free stream values.
Considering the internal nozzle flow of Figure 19.3.3, an expansion of the form

i x)sm'”T"y (19.3.11a)
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wy= Y fm(x)cos? (19.3.11b)
m=1

wy=73 gm(x)cosT—gX (19.3.11¢c)
m=1

is considered.

Since the first characteristic variable, which is proportional to the entropy,
is purely convected and decoupled from the other equations, we can solve
separately for the entropy perturbation and remove the corresponding equation
from the system (19.3.10).

The choice of the Fourier terms results from the flow tangency boundary
condition at the solid walls y= + b/2. Introducing these solutions in the
stationary form of equations (19.3.10) leads to the following system, for an
arbitrary Fourier mode m, writing M instead of M, the free stream Mach
number and removing the subscript m on the amplitudes f, g and h.

of mm
M+1)—~+—h=0
( )6x b
M=% 1™k 0 (19.3.12)
ox b
oh mn
M——— =0
E™ 2b(f+.q)

For each Fourier mode, solutions of the form

f f
gl=|qg| e* (19.3.13)
h h

0

can be applied in the inflow region, with x measured from the boundary on.
The coefficients u are eigenvalues of the system (19.3.12) and the amplitudes
are proportional to the eigenvectors of this system. The general solution is of
the form

B -
f 1 M+1 M+1
g|=Ci|—1|4+Cy| —B |e"™POLCyl B |etmth
h 0 1-M 1-M

1 1

(19.3.14)
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From the properties of the characteristic variables it is known that w, and
wj are characteristics propagating from left to right (for positve u), while w) is
propagating right to left for a subsonic flow, since they correspond respectively
to wave speeds u, u+ ¢ and u — c. Hence, in order to determine the far field
disturbances we express the amplitudes of the incoming characteristic
perturbations as zero at infinity, leading to a correction on the physical boundary
conditions for finite distances, and the amplitudes of the outgoing characteristics
are defined by the numerical solution at the boundary.

Hence, for the variables associated with the outgoing waves, a relation is
obtained for the coefficients C by developing the numerically obtained internal
solution at the boundary AA (x =0), for instance, as a Fourier series in y.

Figure 19.3.4 shows an example, from Verhoff (1985), of a two dimensional
nozzle flow comparing the computed solutions on the boundaries and in the
constant area regions, with and without the far-field matching procedure.

The figures compare the Mach number distributions for the nozzie mesh
shown in Figure 19.3.4 (a), when boundary conditions are applied at the sections
AA and BB (solid line) or at the limits of the computational domain (dashed line).

Figure 19.3.4 (b) is obtained with characteristic-type boundary conditions,
while Figure 19.3.4 (c) applies the perturbation expansion. As can be seen, the
error introduced by applying these boundary conditions in sections AA and
BB is very small, demonstrating the effectiveness of adapted far field corrections.

Another example is shown in the following figures for the transonic flow
through a similar nozzle, demonstrating the validity of this boundary treatment
for non-isentropic flows. Figure 19.3.5 shows the isoMach number distributions
in the central part of the long channel, with the presence of a curved shock,
resulting in a non uniform entropy downstream of the shock, comparing the
results obtained for the extended and restricted domains, the latter with
uncorrected (b) and corrected (c) boundary treatment.

The Mach number distributions on the lower and upper walls are shown on
Figure 19.3.6, for the three cases of Figure 19.3.5. There is a shift in the shock
position by one mesh cell, which is not very significant even on this relatively
coarse mesh. The improvement due to the boundary corrections is clearly seen.
Another measure of the corrections concerns the inlet angles; the corrected inlet
angle for the short channel is 2.6 degrees, to be compared with the value of 2.7
degrees calculated along the same section of the long channel, while in the
uncorrected case the inlet angle is fixed at zero degrees. Another display of the
effects of the boundary treatment is shown on Figure 19.3.7 where the Mach
number profiles are compared at inlet and outlet of the short channel. The
differences between the dashed lines and the plus-symbols indicate the amplitude
of the corrections on the short channel, while the solid line is the reference
value from the long channel. The small difference between the latter and the
corrected values of the short channel computation (+ symbols) is probably due
to the fact that the boundaries of the long channel have not been taken far
enough. This confirms again the efficiency of this boundary treatment.
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Figure 19.3.2 Effect on lift of varying outer boundary
distances with and without vortex correction. (From Pulliam
and Steger, 1985)
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Figure 19.3.3 Far-field regions for nozzle flow. The regions left of AA and right of BB

are considered as far field
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Figure 19.3.4 Comparison of characteristic and perturbation boundary conditions. (Courtesy A.
Verhoff, McDonnell Aircraft Co., USA)

Therefore we suggest applying and deriving perturbative far field corrections
whenever possible. It always reduces considerably the extension of the
computational domain, while maintaining the required accuracy.

Applications of the Fourier series development of the flow disturbances along
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the boundaries have also been applied by Giles (1988), (1989) within the context
of non-reflective boundary conditions.

It is of interest to notice the differences between the non-reflective boundary
conditions and the far field corrections obtained by the above approach.
Although the basic idea remains the same, namely to avoid incoming
disturbances, the former approach expresses this condition at the finite distance
location of the computational boundary, while the latter approach expresses
this condition at infinity. From this requirement, an exact linearized solution
is obtained in the far field. Hence the far field corrections give rise to incoming
disturbances at finite distances which tend to zero at infinity. This is the correct
physical assumption while the non-reflective conditions are approximations
when expressed at finite distances.

However, linearized exact solutions cannot always be easily obtained and in
these cases the application of non-reflective conditions at finite distances is the
next best approximation.

194 THE KUTTA CONDITION

It is well known that inviscid flows over lifting bodies, such as airfoils, have an
infinity of solutions depending on a free parameter, namely the circulation
around the airfoil.

The Kutta condition states that the closest approximation to the physical,
viscous reality is obtained for the value of the circulation which locates the
downstream stagnation point at the sharp trailing edge of the airfoil.

This condition, which can be implemented in a variety of ways, is essential
in potential flows in order to compute lifting airfoils. As seen in Chapter 13, a
jump in potential equal to the circulation has to be introduced along a cut in
the computational domain, simulating a singularity-vortex sheet. The intensity
of the potential discontinuity is determined, for instance, by imposing equal
pressures or velocities at the trailing edge points on the pressure and suction
surfaces.

At a Workshop on inviscid transonic flow computations (Rizzi and Viviand,
1981), it appeared that computations based on the Euler equations, and which
did not implement any form of Kutta condition, still produced accurate results,
with the correct value of the circulation.

This has been confirmed since then by many computations on two-dimen-
sional as well as three-dimensional airfoils and wings; see, for instance, Rizzi
(1982, 1985).

It seems, therefore, that it is not necessary to impose a Kutta condition on
calculations with time-dependent Euler flow models in order to obtain the
correct lift on airfoils with sharp trailing edges. This remarkable result implies
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the existence of some mechanism in the pseudo-time evolution of the computed
Euler solutions, which reproduces and simulates the essential physical
phenomena leading to the generation of circulation and lift.

It is well known (see, for instance, Prandtl, 1952, pp. 50-52, 69—70; Batchelor,
1970) that this mechanism is of a transient nature and is induced by the presence
of an eddy at the trailing edge, generating a surface of discontinuity in the
inviscid flow. In a viscous flow this surface of discontinuity will diffuse into a
thin shear layer and form the wake of the airfoil.

Indeed, at the initial instants the flow behaves in an irrotational manner with
a stagnation point S on the suction surface inducing a turning of the flow
around the sharp trailing edge (Figure 19.4.1(a)).

Around the trailing edge, very strong velocity gradients exist since the inviscid,
incompressible velocity tends to infinity at P and the compressible flow will
expand up to zero vacuum pressure. By some mechanism, an eddy is formed
at P, preventing the infinite velocities or the vacuum conditions, and a surface
of discontinuity appears, also called a vortex sheet, along which the two flows
from the pressure and suction sides merge with a discontinuity in the tangential
velocity (Figure 19.4.1(b)).

Note that the generation of this surface of discontinuity is not in contradiction
with Kelvin’s theorems on the impossibility of vorticity creation in inviscid
flows, since there are no streamlines that join points on the two sides of the
surface of discontinuity. Therefore this surface is a possible weak solution of
the Euler equations, in the same way as shocks.

The counterclockwise velocity induced by the eddy on the suction surface
moves the stagnation point S towards the trailing edge P. As long as the
stagnation point remains on the upper airfoil side, the discontinuity surface
rolls up and feeds the eddy intensity, increasing the induced velocity which
tends to move S towards P. After some short time, the stagnation point has
indeed reached the trailing edge and the eddy is transported by convection
downstream of the airfoil (Figure 19.4.1(c)).

Finally, a circulation appears around the airfoil, equal and opposite to the
circulation around the downstream convected eddy (Figure 19.4.1(d)) such that
the total circulation around any contour enclosing the airfoil and the rolling-up
eddy is zero according to Kelvin’s theorem.

This sequence of events can not be simulated with potential flows, since this
isentropic, irrotational flow model does not allow for vortex sheets with a
discontinuity in tangential velocities.

With the Euler flow model, on the other hand, vortex sheets can be captured
by the computations and this transient sequence of events can be simulated
numerically and inviscidly as soon as some mechanism exists that would trigger
the generation of the trailing edge eddy of Figure 19.4.1(b).

Prandtl (1952) does not specify by which mechanism a trailing edge eddy can
be produced, but it is clear from his remarks (pp. 51 and 58) that viscosity plays
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Figure 19.4.1 Mechanism behind the generation of lift on an airfoil
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an essential, if not dominating, role in the vorticity generation at the trailing
edge that feeds the eddy. Once this eddy is created the sequence of events
described above proceeds in an inviscid way.

It is clear, therefore, that in the Euler computations that do not require the
imposition of the Kutta condition, some mechanism has to exist that generates
vorticity around the trailing edge in order to initiate the production of
circulation. Remember, also, that in a real flow the physical circulation around
airfoils is equal to the total amount of vorticity generated in the wall regions
by viscosity (and eventually by non-uniform shocks). This vorticity feeds the
downstream convected eddy.

One possible mechanism can therefore be connected to the numerical
dissipation present in every sheme, either from additional artificial viscosity or
from the internal dissipation of the scheme needed for stability, both of which
are proportional to the gradients of the flow variables and in particular of the
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velocity. This provides a mechanism for the numerical generation of vorticity
(and entropy) at the scale of the mesh. With the very strong velocity gradients
at the sharp edge, even very small amounts of viscosity or dissipative effects
will generate local entropy layers and hence induce vorticity.

This is confirmed by various computations on coarse and fine grids (Barton
and Pulliam, 1984; Newsome, 1985), which clearly show the numerical
generation of vorticity or entropy layers by numerical dissipative effects. In this
second reference (Newsome, 1985) an interesting test is run for a conical delta
wing at supersonic Mach numbers and 10° incidence. This flow shows
experimentally a large leading edge separation vortex and a smaller secondary
viscous vortex, both of which are obtained with a Navier—Stokes computation
(Figure 19.4.2c). The large separation vortex is also obtained with the Euler flow
model on a coarse grid, although the smaller vortex (of viscous origin) does
not appear. The coarse grid calculations are run without the imposition of a
Kutta condition.

When the Euler flow is computed on a fine grid and the dissipation gradually
switched off, the leading edge separation disappears from the computed solution,
which is, however, a valid, converged solution of the Euler equations. When
the Kutta condition is explicitly introduced in the fine grid calculations, the
large local leading edge separation zone is recovered (Figure 19.4.2a,b).

These interesting computations seem to confirm that numerical dissipation
plays an essential role in the local generation of vorticity, and in addition also
shows that some caution has to be exercised when interpreting numerical Euler
solutions with large separated regions. Results can be obtained that are valid
numerical solutions to the inviscid flow models, but that can not be considered
as acceptable approximations to the limit of viscous flows for very high Reynolds
numbers.

This is also shown by Barton and Pulliam (1984) for the flow along airfoils
at subsonic free-stream velocities and high angles of attack. Figure 19.4.3 shows
a computation of the flow along a NACA 0012 airfoil at an incident Mach
number of 0.301 and 15° incidence, comparing a Navier-Stokes with a Euler
computation on a fine mesh. The viscous, this shear layer computation gives a
steady flow, fully confirmed by experimental data (Figure 19.4.3(a)), while the
Euler solution is an unsteady flow with large separated vortex regions. This
unsteady Euler flow is induced by the generation of vorticity due to a small
normal recompression shock in the leading edge region, resulting from the
strong leading edge expansion caused by the high incidence (Figure 19.4.3(b)).
Although not a good approximation of the corresponding Navier-Stockes flow,
it is nevertheless to be considered as a correct solution of the inviscid Euler
equations.

The viscous solution exhibits also a strong leading edge acceleration which
remains, however, fully subsonic, so that the generated vorticity, due only to
the boundary layer vorticity, is not sufficient to induce the unsteady flow pattern
generally produced by large amounts of concentrated vorticity, exemplified by
the Von Karman vortex street periodic flow structure.
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This suggests another mechanism that could contribute to the initial creation
of an eddy at sharp edges as put forward by Rizzi (1982). In this mechanism,
the large acceleration at the sharp edge leads to local supersonic flows with the
subsequent creation of expansion fans, shocks and contact discontinuities, much
like in the shock tube problem. The transient appearance of the shock wave
creates vorticity and induces the vortex sheet surface to roll up into the eddy.
Once the stagnation point is at the sharp edge, the local supersonic expansion
disappears. '

Note that the whole procedure described here is strongly dependent on the
presence of a sharp edge. If the trailing or leading edges are rounded, then the
above mechanisms do not operate and a Kutta condition is necessary to obtain
lift on the smooth body. However, the position of the stagnation point at which
the Kutta condition is to be imposed can only be determined by viscous
considerations.

195 SUMMARY

Various methods can be adopted for the implementation of boundary conditions
and any of these methods can be discretized in a variety of ways, applying
various extrapolation formulas or different discretizations of the differential
form of the characteristic relations.

A particular choice or combination of boundary conditions can have a
considerable influence on the accuracy and even on the stability properties of
the computational scheme; see, for instance, Trefethen (1983) and Foreman
(1986) for examples and discussions of boundary condition influences.

It is strongly recommended to test, with any scheme, many options and
combinations of implementations, by monitoring carefully the behaviour of
variables at the boundaries, displaying local errors and following the
conservation of variables such as total enthalpy for stationary flow problems
or entropy. For instance, in test problems where exact or reference solutions
are available, one should plot the detailed error evolution at the boundaries.
This reveals the detailed boundary behaviour of the solution and allows the
wave reflections and influence on accuracy, stability and convergence rate
of the boundary treatment to be controlled.
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PROBLEMS

Problem 19.1

Investigate the well-posedness of the system of variables (s,c,u) with regard to the
acceptable combinations of boundary variables for a subsonic inlet and outlet section,
following the method of Section 19.1.3. Refer also to Problem 16.19.

Problem 19.2

Repeat Problem 19.1 for the variables (p, 4, s) and (p, pu, p). Refer to Problems 16.20 and
16.21.

Problem 19.3

Apply the boundary treatment by characteristic extrapolation of Section 19.1.5 to a
subsonic inlet section in a one-dimensional flow, considering that p and u are given as
physical boundary conditions. Determine the boundary relations for p and for the
conservative variables.

Problem 19.4

Work out the boundary procedure for MacCormack’s scheme applying first-order space
extrapolation on the conservative variables.

Consider the four possibilities for sub/supersonic inlet/outlet sections with p and u
fixed at a subsonic inlet and p fixed at a subsonic outlet.

Apply the relation pE = p/(y — 1) + pu?/2 to obtain p at the inlet and pE at the outlet.

Work out this procedure for the variables U and for the variations AU.
Hint: In the second case write at the inlet Ap/(y — 1) = A(pE) — uA(pu) — uzAp/2 where
A(pE) is extrapolated. At the outlet Ap and A(pu) are extrapolated and Ap is known
and generally equal to zero.

Problem 19.5

Reproduce the boundary treatment of Example 19.1.3, based on compatibility relations
and time-differenced physical boundary conditions, for imposed values of ¥ and p at the
subsonic inlet.

Find the matrices P,, P, and P*.

Problem 19.6

Redefine the boundary procedure based on characteristic extrapolation with
MacCormack’s scheme, as developed in Example 19.1.1, with the non-reflecting
conditions for the physical boundary values.

Problem 19.7

Repeat Problem 19.6 with a first-order extrapolation of the conservative variables as
numerical boundary conditions.

Problem 19.8

Solve the one-dimensional stationary nozzle flow with the MacCormack scheme and
first-order extrapolated boundary conditions on the conservative variables.
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Consider the different cases of Problem 16.26 for the diverging nozzle and of Problem
16.27 for the converging—diverging nozzle.

Plot the errors in mass flux and the entropy and compare the results with the exact
solution.

Compare with the zero-order extrapolated boundary conditions.

Problem 19.9

Solve the one-dimensional stationary nozzle flow with the MacCormack scheme and
characteristic first-order extrapolated boundary conditions, following Example 19.1.1.

Consider the different cases of Problem 16.26 for the diverging nozzle and of
Problem 16.27 for the converging—diverging nozzle.

Plot the errors in mass flux and the entropy and compare the results with the exact
solution.

Compare with the zero-order extrapolated boundary conditions.

Problem 19.10

Repeat the previous problem by introducing the non-reflecting boundary conditions.
Compare also with the form (19.1.81) for the non-reflecting condition at exit.

Problem 19.11

Develop Chakravarthy’s boundary treatment for a subsonic inlet, with enthalpy h and
entropy s as physical imposed variables. Work out all the matrices and equations and
write them out explicitly.

Problem 19.12

Solve the one-dimensional stationary nozzle flow with the MacCormack scheme and
the boundary treatment of Example 19.1.4, with p, p and u as boundary variables.

Consider the different cases of Problem 16.26 for the diverging nozzle and of
Problem 16.27 for the converging—diverging nozzle.

Plot the errors in mass flux and the entropy and compare the results with the exact
solution.

Compare with the zero-order extrapolated boundary conditions.

\

Problem 19.13

Solve the one-dimensional stationary nozzle flow with the Beam and Warming scheme
and various boundary extrapolation formulas on the conservative variables, with p, u
and p as boundary variables.

Consider the different cases of Problem 16.26 for the diverging nozzle and of Problem
16.27 for the converging—diverging nozzle.

Plot the errors in mass flux and the entropy and compare the results with the exact
solution.

Compare with the zero-order extrapolated boundary conditions.

Problem 19.14

Solve the one-dimensional stationary nozzle flow with the Beam and Warming scheme
0=1, {=0 and the characteristic boundary treatment, with p,u and p as boundary
variables. Test different discretizations, comparing first- and second-order one-sided
difference formulas.
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Consider the different cases of Problem 16.26 for the diverging nozzle and of
Problem 16.27 for the converging—diverging nozzle.

Plot the errors in mass flux and the entropy and compare the results with the exact
solution.

Compare with the zero-order extrapolated boundary conditions.

Problem 19.15

Solve the one-dimensional stationary nozzle flow with the Beam and Warming scheme
0=1, £ =0 and the boundary treatment of Example 19.1.4.

Consider the different cases obtained in Problems 16.26 and 16.27.

Plot the errors in mass flux and the entropy and compare the results with the exact
solution.

Problem 19.16

Solve the shock tube problem for the first case of Problem 16.25 with MacCormack’s
scheme, applying the compatibility relations for the numerical conditions and the
non-reflective relations for the physical boundary conditions. Perform the calculations
for a sufficient number of time steps until the waves reach the exit boundary.

Observe the effects of the non-reflective condition by a comparison with a one-sided
discretization of the compatibility relation for the incoming characteristic.

Problem 19.17

Define the matrix transformations for a two-dimensional flow between the characteristic
, g ; H




407

Problem 19.20
Show from equations«(19.2.28) and (19.2.29) that the normal pressure gradient can be

written as :
p ~_01, ~f 0n, R
L =pUT L=pU|lu—2+0v-_2
V7% (“ &’ a:)
or as
op pU _ o7 ot ( du 6v>
Pl n—=- Nx My
on ni+n; % mp+m\ 0 o

Problem 19.21

Consider the two-dimensional oblique shock reflection on a flat plate and discretize on
a rectangular mesh defined as a cell-centred finite volume mesh, whereby no mesh points
are located on the plate; refer to Figure 19.2.7.

Apply the Jameson scheme to this problem with determination of the pressure from
the reflected cell method of equations (19.2.31) and (19.2.32).

Compare the convergence rates with and without residual smoothing.

Problem 19.22

Solve the reflected shock problem on a flat plate with the Beam and Warming scheme
from a discretization with a cell vertex finite volume or, equivalently, a finite difference
discretization, whereby the mesh points are on the flat plate.

Obtains the wall variables from the resolution of the difference equations at the wall
by applying the interior central discretization scheme after introduction of reflected wall
cells.

Compare with a discretization based on the compatibility relations at the wall for the
determination of the wall variables.

Problem 19.23

Repeat Problem 19.22 by replacing the time integration by a fourth-order Runge—Kutta
method, following Jameson’s approach but keeping the same space discretization.
Compare the details of the boundary treatment with the procedure of Problem 19.21.

Problem 19.24

Work out in detail the discretized form for the wall pressure in the case of a curved
wall as in Figure 19.2.7, following the relations (19.2.31) and (19.2.32) for a reflected wall
cell.

Problem 19.25

Work out equation (19.2.34) when the n direction is not perpendicular to the wall surface,
following the development of equation (19.2.32).
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