NUMERICAL COMPUTATION OF INTERNAL AND EXTERNAL FLOWS

Volume 1
Fundamentals of Numerical Discretization

C. Hirsch
Numerical Computation of INTERNAL AND EXTERNAL FLOWS
Volume 1: Fundamentals of Numerical Discretization

Charles Hirsch

Department of Fluid Mechanics,
Vrije Universiteit Brussel,
Brussels, Belgium

A Wiley–Interscience Publication
To the memory of

Leon Hirsch
and
Czipa Zugman,

my parents,
struck by destiny
CONTENTS

PREFACE xv
NOMENCLATURE xvii

PART I: THE MATHEMATICAL MODELS FOR FLUID FLOW SIMULATIONS AT VARIOUS LEVELS OF APPROXIMATION 1

Introduction 1

Chapter 1 The Basic Equations of Fluid Dynamics 8
1.1 General Form of a Conservation Law 9
1.1.1 Scalar conservation law 9
1.1.2 Vector conservation law 11
1.2 The Equation of Mass Conservation 12
1.3 The Conservation Law of Momentum or Equation of Motion 14
1.4 Rotating Frame of Reference 16
1.5 The Conservation Equation for Energy 18
1.5.1 Conservative formulation of the energy equation 19
1.5.2 The equations for internal energy and entropy 20
1.5.3 Energy equation in a relative system 21
1.5.4 Crocco's form of the equations of motion 21

Chapter 2 The Dynamic Levels of Approximation 26
2.1 The Navier—Stokes Equations 29
2.1.1 Perfect gas model 31
2.1.2 Incompressible fluid model 44
2.2 The Reynolds-Averaged Navier—Stokes Equations 49
2.3 The Thin Shear Layer (TSL) Approximation 63
2.4 The Parabolized Navier—Stokes Approximation 70
2.5 The Boundary Layer Approximation 75
2.6 The Distributed Loss Model 81
2.7 The Inviscid Flow Model—Euler Equations 87
2.7.1 The properties of discontinuous solutions 88
2.8 Steady Inviscid Rotational Flows—Clebsch Representation 100
2.9 The Potential Flow Model 108
2.9.1 Irrotational flow with circulation—Kutta—Joukowski condition 109
2.9.2 The limitations of the potential flow model for transonic flows 110
2.9.3 The non-uniqueness of transonic potential models 120
2.9.4 The small-disturbance approximation of the potential equation 126
2.9.5 Linearized potential flows—singularity methods 127
2.10 Summary 128

Chapter 3 The Mathematical Nature of the Flow Equations and their Boundary Conditions 133

3.1 Introduction 133
3.2 The concept of characteristic surfaces and wave-like solutions 135
 3.2.1 Partial differential equation of second order 135
 3.2.2 Wave front or characteristic surfaces 137
 3.2.3 General definition 139
 3.2.4 Domain of dependence—zone of influence 143
3.3 Alternative Definition—Compatibility Relations 145
 3.3.1 Compatibility relations 146
3.4 Time-like Variables 148
 3.4.1 Plane wave solutions with time-like variable 149
 3.4.2 Non-linear wave solutions and time-like variable 151
3.5 Initial and Boundary Conditions 152

PART II: BASIC DISCRETIZATION TECHNIQUES 161

Chapter 4 The Finite Difference Method 167

4.1 The Basics of Finite Difference Methods 167
 4.1.1 The properties of difference formulas 168
 4.1.2 Difference formulas with an arbitrary number of points 169
4.2 General Methods for Finite Difference Formulas 171
 4.2.1 Generation of difference formulas for first derivatives 173
 4.2.2 Higher-order derivatives 176
4.3 Implicit Finite Difference Formulas 180
 4.3.1 General derivation of implicit finite difference formulas for first and second derivatives 183
4.4 Multi-dimensional Finite Difference Formulas 186
 4.4.1 Difference schemes for the Laplace operator 187
 4.4.2 Mixed derivatives 191
4.5 Finite Difference Formulas on Non-Uniform Cartesian Meshes 195

Chapter 5 The Finite Element Method 201

5.1 The Nature of the Finite Element Approximation 202
 5.1.1 Finite element definition of the space 202
 5.1.2 Finite element definition of interpolation functions 203
 5.1.3 Finite element definition of the equation discretization—integral formulation 204
5.2 The Finite Element Interpolation Functions 205
 5.2.1 One-dimensional elements 205
 5.2.2 Two-dimensional elements 211
 5.2.3 Three-dimensional elements 215
5.3 Integral Formulation: The Method of Weighted Residuals or Weak Formulation
5.3.1 The Galerkin method
5.3.2 Finite element Galerkin method for a conservation law
5.3.3 Subdomain collocation—finite volume method
5.4 Practical Computational Techniques
5.4.1 General mapping to local co-ordinates
5.4.2 Numerical integration techniques

Chapter 6 Finite Volume Method and Conservative Discretizations
6.1 The Conservative Discretization
6.2 The Finite Volume Method
6.2.1 Two-dimensional finite volume method
6.2.2 General integration formulas for finite volumes
6.2.3 Three-dimensional finite volume method

PART III: THE ANALYSIS OF NUMERICAL SCHEMES

Chapter 7 The Concepts of Consistency, Stability and Convergence
7.1 Model Equations
7.1.1 One-dimensional simplified models
7.1.2 Two-dimensional simplified models
7.2 Basic Definitions: Consistency, Stability, Convergence
7.2.1 Consistency
7.2.2 Stability
7.2.3 Convergence

Chapter 8 The Von Neumann Method for Stability Analysis
8.1 Fourier Decomposition of the Error
8.1.1 Amplification factor
8.1.2 Comment on the CFL condition
8.2 General Formulation of Von Neumann's Method: System of Equations
8.2.1 Matrix and operator formulation
8.2.2 The general Von Neumann stability condition
8.3 The Spectral Analysis of Numerical Errors
8.3.1 Error analysis for parabolic problems
8.3.2 Error analysis for hyperbolic problems
8.3.3 Extension to three-level schemes
8.3.4 A comparison of different schemes for the linear convection equation
8.3.5 The numerical group velocity
8.4 Multi-dimensional Von Neumann Analysis
8.4.1 Parabolic equations
8.4.2 The two-dimensional convection equation
8.5 Stability Conditions for Non-Linear Problems
8.5.1 Non-constant coefficients
8.5.2 Dissipative schemes (Kreiss, 1964)
8.5.3 Non-linear problems
Some General Methods for the Determination of Von Neumann Stability Conditions

One-dimensional, two-level, three-point schemes

Multi-dimensional space-centred, convection–diffusion equation

General multi-level, multi-dimensional schemes

Chapter 9 The Method of the Equivalent Differential Equation for the Analysis of Stability

Stability Analysis for Parabolic Problems

Stability and Accuracy Analysis for Hyperbolic Problems

General formulation of the equivalent differential equation for linear hyperbolic problems

Error estimations for two-level explicit schemes

Stability analysis for two-level explicit schemes

The Generation of New Algorithms with a Prescribed Order of Accuracy

The Equivalent Differential Equation for Non-Linear Hyperbolic Problems

Chapter 10 The Matrix Method for Stability Analysis

Principle of the Matrix Method—Analysis of the Space Discretization

Amplification factors and stability criteria

The Spectra of Space-Discretized Operators

The spectrum for the diffusion equation \(u_t = \alpha u_{xx} \)

The spectrum for the convection equation \(u_t + au_x = 0 \)

The Stability of Time-Integration Schemes

Euler explicit scheme

Leapfrog method

Euler implicit (backward) scheme

Stability region in the complex \(\Omega \) plane

A realistic example (Eriksson and Rizzi, 1985)

Evaluation of Stability Criteria

The stability analysis of the convection–diffusion equation

Normal Mode Representation

Exact solutions of a space difference scheme

Spatial propagation of errors in time-dependent schemes

PART IV: THE RESOLUTION OF DISCRETIZED EQUATIONS

Chapter 11 Integration Methods for Systems of Ordinary Differential Equations

Linear Multi-step Methods

Predictor–Corrector Schemes

Linearization Methods for Non-Linear Implicit Schemes

Implicit Schemes for Multi-dimensional Problems: Alternating Direction Implicit (ADI) Methods

Two-dimensional diffusion equation

ADI method for the convection equation

The Runge–Kutta Schemes
Chapter 12 Iterative Methods for the Resolution of Algebraic Systems

12.1 Basic Iterative Methods
 12.1.1 Poisson's equation on a Cartesian, two-dimensional mesh
 12.1.2 Point Jacobi method—Point Gauss-Seidel method
 12.1.3 Convergence analysis of iterative schemes
 12.1.4 Eigenvalue analysis of an iterative method
 12.1.5 Fourier analysis of an iterative method

12.2 Overrelaxation Methods
 12.2.1 Jacobi overrelaxation
 12.2.2 Gauss-Seidel overrelaxation—successive overrelaxation (SOR)
 12.2.3 Symmetric successive overrelaxation (SSOR)
 12.2.4 Successive line overrelaxation methods (SLOR)

12.3 Preconditioning Techniques
 12.3.1 Richardson method
 12.3.2 Alternating direction implicit (ADI) method
 12.3.3 Other preconditioning techniques

12.4 Non-linear Problems

12.5 The Differential Equation Representation of a Relaxation Scheme

12.6 The Multi-grid Method
 12.6.1 Smoothing properties
 12.6.2 The Coarse Grid Correction (CGC) method for linear problems
 12.6.3 The two-grid iteration method for linear problems
 12.6.4 The multi-grid method for linear problems
 12.6.5 The multi-grid method for non-linear problems

APPENDIX: THOMAS ALGORITHM FOR TRIDIAGONAL SYSTEMS

A.1 Scalar Tridiagonal Systems
A.2 Periodic Tridiagonal Systems

INDEX
Preface

This book, which is published in two volumes, aims at introducing the reader to the essential steps involved in the numerical simulation of fluid flows by providing a guide from the initial step of the selection of a mathematical model to practical methods for their numerical discretization and resolution.

The first volume, divided into four parts, is devoted to the fundamentals of numerical discretization techniques and attempts a systematic presentation of the successive steps involved in the definition and development of a numerical simulation. The second, on the other hand, presents the applications of numerical methods and algorithms to selected flow models, from the full potential flow model to the systems of Euler and Navier–Stokes equations.

Part I, covering Chapters 1 to 3, introduces the mathematical models corresponding to various levels of approximation of a flow system. We hope hereby to draw, if necessary, the reader’s attention to the range of validity and limitations of the different available flow models so that the user will be in a position to make a choice in full awareness of its implications. Part II is devoted to a presentation of the essentials of the most frequently applied discretization methods for differential equations, the finite difference (Chapter 4), finite element (Chapter 5) and finite volume methods (Chapter 6). Part III introduces the next step in the development of an algorithm, namely the methods for the analysis of the stability, convergence and accuracy properties of a selected discretization. This is covered in Chapters 7 and 10, dealing, respectively, with basic definitions, the Von Neumann method, the method of the equivalent differential equation and the matrix method. Finally, Part IV covers the resolution methods for discretized equations. More particularly, integration methods which can be applied to systems of ordinary differential equations (in time) are discussed in Chapter 11 and iterative methods for the resolution of algebraic systems are discussed in Chapter 12.

No attempt has been made towards an exhaustive presentation of the material covered and several important topics are not treated in the text for objective as well as subjective reasons. To explain a few of them, spectral discretization methods applied to flow problems are an important technique, which is treated in existing textbooks, but also we have no practical experience with the method. Stability analysis methods, such as the energy method, require a mathematical background which is not often found in the engineering community, and it was not felt appropriate to introduce this subject in a
text which is addressed mainly to engineers and physicists with an interest in flow problems. The computational techniques for boundary layers are largely covered in recent textbooks, and we thought that there was not much to add to the existing, well-documented material.

This text is directed at students at the graduate level as well as at scientists and engineers already engaged, or starting to be engaged, in computational fluid dynamics. With regard to the material for a graduate course, we have aimed at allowing a double selection. For an introductory course, one can consider an ‘horizontal’ reading, by selecting subsections of different chapters in order to cover a wider range of topics. An alternative ‘vertical’ reading would select fewer chapters, with a more complete treatment of the selected topics.

Parts of this book have been written while holding the NAVAIR Research Chair at the Naval Postgraduate School in Monterey, during the academic year 1983–4, for which I am particularly indebted to Ray Shreeve, Professor at the Areonautical Department and Director of the Turbopropulsion Laboratory. The pleasant and encouraging atmosphere during this period and during subsequent summer stays at NPS, where some additional writing could partly be done, is, for a large part, the basis of having brought this task to an end.

Some sections on Euler equations were written during a summer stay at ICASE, NASA Langley and I would like to acknowledge particularly Dr Milton Rose, former Director of ICASE, for his hospitality and the stimulating atmosphere. I have also had the privilege of benefiting from results of computations performed, at my request, on different test cases by several groups, and I would like to thank D. Caughey at Cornell University, T. Holst at NASA Ames, A. Jameson at Princeton University, M. Salas at NASA Langley, and J. South and C. Gumbert also at NASA Langley, for their willingness and effort.

Finally, I would like to thank my colleagues S. Wajc and G. Warzee as well as present and former coworkers H. Deconinck, C. Lacor and J. Peuteman for various suggestions, comments and contributions. I have also the pleasure to thank my secretaries L. Vandenbosche and J. D’haes for the patience and the effort of typing a lengthy manuscript.

Ch. Hirsch
Brussels, January 1987
Nomenclature

\(a \) convection velocity of wave speed
\(A \) Jacobian of flux function
\(c \) speed of sound
\(c_p \) specific heat at constant pressure
\(c_v \) specific heat at constant volume
\(C \) discretization operator
\(D \) first derivative operator
\(e \) internal energy per unit mass
\(e \) vector (column matrix) of solution errors
\(E \) total energy per unit volume
\(E \) finite difference displacement (shift) operator
\(f \) flux function
\(f_e \) external force vector
\(\hat{F}(f, g, h) \) flux vector with components \(f, g, h \)
\(g \) gravity acceleration
\(G \) amplification factor/matrix
\(h \) enthalpy per unit mass
\(H \) total enthalpy
\(I \) rothalpy
\(J \) Jacobian
\(k \) coefficient of thermal conductivity
\(k_\text{rad} \) wavenumber
\(L \) differential operator
\(M \) Mach number
\(M_{x}, M_{y}, M_{z} \) Mach number of cartesian velocity components
\(n \) normal distance
\(\hat{n} \) normal vector
\(N \) finite element interpolation function
\(p \) pressure
\(P \) convergence or conditioning operator
\(Pr \) Prandtl number
\(q \) non-homogeneous term
\(q_\text{H} \) heat source
\(Q \) source term; matrix of non-homogeneous terms
\(r \) gas constant per unit mass
\(R \) residual of iterative scheme
\(Re \) mesh Reynolds (Peclet) number
\(Re \) Reynolds number
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>entropy per unit mass</td>
</tr>
<tr>
<td>S</td>
<td>characteristic surface</td>
</tr>
<tr>
<td>S</td>
<td>space-discretization operator</td>
</tr>
<tr>
<td>\bar{S}</td>
<td>surface vector</td>
</tr>
<tr>
<td>t</td>
<td>time</td>
</tr>
<tr>
<td>T</td>
<td>temperature</td>
</tr>
<tr>
<td>u</td>
<td>dependent variable</td>
</tr>
<tr>
<td>\bar{u}</td>
<td>entrainment velocity</td>
</tr>
<tr>
<td>U</td>
<td>vector (column matrix) of dependent variables</td>
</tr>
<tr>
<td>$\vec{v}(u, v, w)$</td>
<td>velocity vector with cartesian components u, v, w</td>
</tr>
<tr>
<td>U</td>
<td>vector of conservative variables</td>
</tr>
<tr>
<td>\vec{w}</td>
<td>relative velocity</td>
</tr>
<tr>
<td>W</td>
<td>weight function</td>
</tr>
<tr>
<td>x, y, z</td>
<td>Cartesian co-ordinates</td>
</tr>
<tr>
<td>z</td>
<td>amplification factor of time-integration scheme</td>
</tr>
<tr>
<td>α</td>
<td>diffusivity coefficient</td>
</tr>
<tr>
<td>β</td>
<td>dimensionless diffusion coefficient $\beta = \alpha \Delta t / \Delta x$</td>
</tr>
<tr>
<td>γ</td>
<td>ratio of specific heats</td>
</tr>
<tr>
<td>Γ</td>
<td>circulation; boundary of domain Ω</td>
</tr>
<tr>
<td>δ</td>
<td>central-difference operator</td>
</tr>
<tr>
<td>δ^+</td>
<td>forward difference operator</td>
</tr>
<tr>
<td>δ^-</td>
<td>backward difference operator</td>
</tr>
<tr>
<td>Δ</td>
<td>Laplace operator</td>
</tr>
<tr>
<td>Δt</td>
<td>time step</td>
</tr>
<tr>
<td>ΔU</td>
<td>variation of solution U between levels $n + 1$ and n</td>
</tr>
<tr>
<td>$\Delta x, \Delta y$</td>
<td>spatial mesh size in x and y directions</td>
</tr>
<tr>
<td>η</td>
<td>non-dimensional difference variable in local co-ordinates</td>
</tr>
<tr>
<td>ϵ</td>
<td>error of numerical solution</td>
</tr>
<tr>
<td>ϵ_v</td>
<td>turbulence dissipation rate</td>
</tr>
<tr>
<td>ϵ_d</td>
<td>dissipation or diffusion error</td>
</tr>
<tr>
<td>ϵ_δ</td>
<td>dispersion error</td>
</tr>
<tr>
<td>ζ</td>
<td>vorticity vector</td>
</tr>
<tr>
<td>ξ</td>
<td>magnitude of vorticity vector</td>
</tr>
<tr>
<td>θ</td>
<td>parameter controlling type of difference scheme</td>
</tr>
<tr>
<td>κ</td>
<td>wavenumber vector; wave-propagation direction</td>
</tr>
<tr>
<td>λ</td>
<td>eigenvalue of amplification matrix</td>
</tr>
<tr>
<td>μ</td>
<td>coefficient of dynamic viscosity</td>
</tr>
<tr>
<td>μ</td>
<td>averaging difference operator</td>
</tr>
<tr>
<td>ξ</td>
<td>non-dimensional distance variable in local co-ordinates</td>
</tr>
<tr>
<td>ρ</td>
<td>density</td>
</tr>
<tr>
<td>ρ</td>
<td>spectral radius</td>
</tr>
<tr>
<td>σ</td>
<td>Courant number</td>
</tr>
<tr>
<td>σ</td>
<td>shear stress tensor</td>
</tr>
<tr>
<td>τ</td>
<td>relaxation parameter</td>
</tr>
<tr>
<td>τ</td>
<td>stress tensor</td>
</tr>
<tr>
<td>ν</td>
<td>kinematic viscosity</td>
</tr>
<tr>
<td>ϕ</td>
<td>velocity potential</td>
</tr>
</tbody>
</table>
\(\phi \) phase angle in Von Neumann analysis

\(\Phi \) phase angle of amplification factor

\(\psi \) rotational function

\(\omega \) time frequency of plane wave

\(\omega \) overrelaxation parameters

\(\Omega \) eigenvalue of space discretization matrix

\(\Omega \) volume

\(\hat{I}_x, \hat{I}_y, \hat{I}_z \) unit vectors along the \(x, y, z \) directions

\(\hat{I}_n \) unit vector along the normal direction

Subscripts

\(e \) external variable

\(i, j \) mesh point locations in \(x, y \) directions

\(I, J \) nodal point index

\(j \) eigenvalue number

min minimum

max maximum

n normal or normal component

o stagnation values

v viscous term

\(x, y, z \) components in \(x, y, z \) directions

\(\partial_x, \partial_y, \partial_z \) partial differentiation with respect to \(x, y, z \)

\(\infty \) freestream value

Superscripts

\(n \) iteration level

\(n \) time-level

\(- \) exact solution of discretized equation

\(\ast \) exact solution of differential equation

Symbols

\(\times \) vector product of two vectors

\(\otimes \) tensor product of two vectors