
Appendix 1 

Analysis and Differential 
Equations 

In this appendix we review briefly and without proofs some of the basic 
results from calculus and ordinary differential equations that are used in the 
text. 

MEAN-VALUE THEOREM: If the function f is continuously differ- 
entiable on an interval [a,  b], then there is a point < between a and 
b such that 

TAYLOR EXPANSION: If the function f is k times continuously 
diflerentiable on an interval [a,  bI7 then for any x and xo between a 
and 6 ,  there is a < between x and xo such that 

f ( x )  = f (xo) + f ’ (xo)(x  - 2 0 )  + ; f”(xo)(x  - x0)2 + * * (A. 1.2) 

Note that the rncan-value theorem can be considered a special case of the 
Taylor exparwioir for k = 1 and n = 20, b = z. 
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h’ (4  = f ’ (s(z))g’(x) .  (A.1.3) 

S E C O N D  MEAN-VALUE THEOREM OF T H E  I N T E G R A L  C A L C U L U S :  
If u and v are continuous functions on the interval [a,  b] and v does 
not change sign in [a,  b ] ,  then there i s  a E [a,  b] such that 

b b 1 u(x)v(z)da: = .(El 1 4z)dz .  (A.1.4) 

The next results deal with functions of several variables f ( 2 1 , .  . . , z,), or 
f ( x )  where x is the vector with components X I , . .  . , 2,. The partial derivative 
o f f  with respect to the i th  variable is defined at  a point x by 

af 1 
- (x)= lim -[ f (xI  ,... , x ~ - ~ , x ~ + h , x i + ~ ,  ..., x,)- f(x)], (A.1.5) 
d X i  h-0 h 

and similarly for partial derivatives of higher order. The derivative of f at a 
point x is defined by 

(A .  1.6) 

and is considered to be a row vector. The transpose of this vector is sometimes 
called the gradient of f and is denoted by V f .  In this context, it is often 
convenient to view V as the vector operator of partial derivatives: 

Then, the operator V2, often denoted by A, is the dot product of V with itself, 
so that 

This sum of second partial derivatives is very important in the study of partial 
differential equations (see Chapters 8 and 9). 

The function f is said to be continuously differentiable in some region of n 
space if each (first) partial derivative of f exists and is continuous within that 
region. For functions of several variables the mean-value theorem again holds, 
as follows. 

MEAN-VALUE THEOREM F O R  FUNCTIONS OF S E V E R A L  VARI-  
ABLES: Iff as a continuously diflerentiable function of n variables 
in some region, and if x and y are two points such that the points 

t x + ( l - t ) y ,  O L t l l  

are all in the region, then there is a [ between 0 and 1 such that 
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f ( Y )  - f(x) = f ’ ( b  + (1 - t ) Y ) ( Y  - 4. (A. 1.7) 

We note that this mean-value theorem is simply the usual one for functions of 
a single variable as applied to the function 

f ( t )  = f(tx + (1 - t ) y ) .  

If f l ,  . . . , fm are all functions of n variables, then we denote the vector- 
For such vector-valued valued function with components f l , .  . . , fm by F. 

functions, there is a natural derivative defined by 

(A. 1.8) 

where the notation means 
Jacobian matrix, whose i, . 

that F’(x) is an m x n matrix, usually called the 
j element is the partial derivative of the i th  com- 

ponent of F with respect to the j t h  variable. For example, if m = n = 2, 
then 

F’(x) = 

Note that in the special case m = 1, F is simply the single function f l ,  and 
the Jacobian matrix reduces to the row vector given by (A.1.6). 

We next consider results for ordinary differential equations. If y is a func- 
tion of a single variable t ,  then an ordinary differential equation for y is a 
relation of the form 

F ( t ,  y(t), Y’(t),* * * , Y ‘ W )  = 0 (A.1.9) 

for some given function F of n + 2 variables, where the independent variable 
t ranges over some finite or infinite interval. Equation (A.1.9) is the most 
general nth-order ordinary differential equation, where the order is determined 
by the highest-order derivative of the unknown function y that appears in 
the equation. Usually the equation is assumed to  be explicit in the highest 
derivative and is written as 

Y‘% = f ( t ,  Y, ( t ) ,  y ’ ( t ) , .  . . 1 dn-W. (A. 1.10) 

If the function f is linear in y and its derivatives, then the equation is called 
linear and can be written in the form 

p ( t )  = f&( , ( t )  + f i I ( t ) Y / ( t )  + .  . . + fi,&(t)y(n-l)(t) ( A . l . l l )  
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The equation (A.l.10) can also be considered for vector-valued functions 
y and f ,  in which case we would have a system of nth-order equations. The 
simplest such possibility is a system of first-order equations 

Y" = f ( t ,Y( t ) ) ,  (A. l .  12) 

where we assume that y and f are n vectors with components y1,. . . , yn and 

In principle, a system of first-order equations is all that we need to consider, 
since a single nth-order equation can be reduced to a system of n first-order 
equations (and, consequently, a system of m nth-order equations to a system 
of nm first-order equations). This reduction can be achieved, for example, as 
follows. Define new variables 

fly , fn. 

yi(t) = ~(~-l)(t), i = 1 , .  . . , n. (A.1.13) 

In terms of these variables, (A.l .10) becomes 

Y; = ~ ( ~ , Y I , Y ~ , . * * , Y ~ - I ) ,  (A. 1.14) 

whereas from (A.1.13) we obtain 

y! = y' $+I, i = l ,  ..., n - 1 .  (A. 1.15) 

Equations (A.1.14), (A.1.15) give a first-order system of equations in the un- 
knowns y1,. . . , yn, where the component y1 is the original unknown y of equa- 
tion (A.l.lO). 

A very important special case of (A.1.12) is when f is linear in y, and the 
equation takes the form 

Y W  = A(t)Y(t) + b(t), (A. l .  16) 

where A is a given n x n matrix whose elements are functions o f t ,  and b is 
a given vector function of t .  An important special case of (A.1.16), in turn, is 
when A is independent o f t ,  and b = 0, so that the equation is 

y' = Ay. (A. 1.17) 

Such a linear homogeneous system with constant coefficients can, in principle, 
be solved explicitly by the series expansion 

y(t) = (I + At + iA2t2 + * * *)c ,  (A. 1.18) 

where c is an arbitrary constant vector. The series expansion is simply that of 
the exponential of a matrix, and (A.l.18) can be written in the compact form 

y(t) = eAtc. ( A .  1.1'3) 
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Equation (A.l .19) shows that the general solution of (A.1.17) depends on 
n arbitrary constants - the n components of the vector c. Thus, to obtain a 
unique solution of the system (A.1.17) n additional conditions must be speci- 
fied, and these are usually given in terms of initial or boundary conditions. For 
example, suppose that we desire a solution of (A.1.17) for t 2 0 such that at 
t = 0 the solution takes on the initial condition yo. The solution is then given 
by (A.l .19) as y ( t )  = eAtyo. 

For more complicated equations the initial condition will not be represented 
in the solution in such a straightforward fashion. Indeed, it is not immediately 
obvious under what conditions the general initial-value problem 

Y ' W  = f ( t , Y ( t ) ) ,  Y ( 0 )  = Yo (A. 1.20) 

will even have a unique solution, but a number of basic theorems in this regard 
are known and may be found in any book on ordinary differential equations. 



Appendix 2 

Linear Algebra 

The most important tool in many areas of scientific computing is linear 
algebra, and we review here some of the basic results that will be used. 

If A = ( a i j )  is a real n x n matrix, we denote the inverse of A by A-' and 
the determinant by det A.  If the inverse of A exists, then A is nonsingular. 
The following basic result gives various other ways of stating this. 

THEOREM A.2.1 The following are equivalent: 
1. A is  nonsingular. 
2. det A # 0. 

3. The linear system A x  = 0 has only the solution x = 0. 
4. For any vector b, the linear system A x  = b has a unique solu- 

tion. 
5. The columns (rows) of A are linearly independent; that is, if 

al, . . . ,an are the columns of A and alal + . * .  + anan = 0,  
then the scalars ai are necessarily zero. 

The last condition may be rephrased to say that A has rank n where, in general, 
the rank is defined as the number of linearly independent columns (or rows) of 
the matrix. 

The transpose of A = ( a i j )  is AT = (a j i ) .  A basic fact about determinants 
is that det AT = det A .  Thus, by 2. of Theorem A.2.1, AT is nonsingular if 
and only if A is nonsingular. A partidarly important type of matrix satisfies 
AT = A atid in c:ttllt:cl .lryrrmetrir:. I f ,  ir i  ad(litioii, x T A x  > 0 for x # 0, then 
A is poNitiw d$nitv. I3y 3. o f  'l'lit!orctti A.2.1,  it ponitivc: (1c:finite matrix in 
t i o t i H i r i K i i I t L r .  
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A submatrix of A is obtained by deleting rows and columns of A. A principle 
submatrix results from deleting corresponding rows and columns; in particu- 
lar, a leading principle submatrix of size k is obtained by deleting rows and 
columns k + 1, k + 2, . . .. An important fact is that any principle submatrix of 
a symmetric positive definite matrix is also symmetric positive definite. 

Section 7.1 is devoted to a review of eigenvalues and we give in this appendix 
only the basic facts. A (real or complex) scalar X and a vector x # 0 are an 
eigenvalue and eigenvector, respectively, of the matrix A if 

AX = Ax. (A.2.1) 

By Theorem A.2.1, it follows that X is an eigenvalue if and only if 

det(A - X I )  = 0. (A.2.2) 

This is the characteristic equation of A and is a polynomial of degree n in A. 
(Here, as always, I is the identity matrix.) Consequently, A has precisely n 
(not necessarily distinct) eigenvalues - the n roots of (A.2.2). The collection 
of these n eigenvalues X 1  , . . , An is called the spectrum of A, and 

(A.2.3) 

is the spectral radius of A. Even if the matrix A is real, the eigenvalues of A may 
be complex. If A is symmetric, however, then its eigenvalues are necessarily 
real. Moreover, if A is also positive-definite, then its eigenvalues are also 
positive. The converse also holds; that is, if all the eigenvalues of a symmetric 
matrix are positive, then the matrix is positive-definite. 

Eigenvalues are generally difficult to compute, but there is an important 
class of matrices in which they are available by inspection. These are upper- 
or lower- triangular matrices 

for which the eigenvalues are simply the main diagonal elements. An important 
special case of triangular matrices are diagonal matrices 

which we will usually denote by D = diag(d1,. . . , d,,). 
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The Euclidean length of a vector x is defined by 

(A. 2.4) 

This is a special case of a vector norm, which is a real-valued function that 
satisfies the following distance-like properties: 

1. llxll 2 0 for any vector x and I(x1I = 0 only if x = 0. 

2. IIaxII = la1 llxll for any scalar a. 

3. (Ix + yII 5 llxll + llyll for all vectors x and y. 

(A.2.5) 

Property 3 is known as the triangle inequality. 
The Euclidean length (A.2.4) satisfies these properties and is usually called 

the Euclidean norm, or 12 norm. Other commonly used norms are defined by 
I )  

(A. 2.6) 

which are known as the 11 norm, and the 1, or max norm, respectively. The 
three norms (A.2.4) and (A.2.6) are special cases of the general class of l p  
norms 

(A. 2.7) 

defined for any real number p 6 [ l , ~ ) .  The 2, norm is the limiting case of 
(A.2.7) as p + m. Another important class of norms consists of the elliptic 
norms defined by 

for some given symmetric positive-definite matrix B; the Euclidean norm is 
the special case B = I .  

These various norms can be visualized geometrically in terms of the set of 
vectors {x : llxll = l}, which is known as the unit sphere. These are shown in 
Figure A.2.1 for vectors in the plane. Note that only for the Euclidean norm 
are the unit vectors on the circle of radius 1. 

The elliptic norms play a particularly central role in matrix theory because 
they arise in terms of an inner product, which in turn defines orthogonality of 
vectors. An inner product is a real-valued function of two vector variables that 
satisfies the following conditions (stated only for real vectors): 

llxll = (XTBX)1/2 

1. (x, x) 2 0 for all vectors x; (x, x) = 0 only if x = 0. 

2. (ax, y) = a(x, y) for all vectors x and y and scalars a. 

:j. (x, y) = (y, x) for d l  vtx:tms x rtiitl y .  
(A.2.8) 

4 .  (X  + 2,y) = (X ,y)  -t (2 ,y)  for 1111 Vt!('hWH X, y, l l l l t l  2. 
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Elliptic 

/m@l @ 
Figure A.2.1: Unit Spheres of Several Norms 

For any inner product a norm may be defined by 

llxll = (x,x)1’2, 

and the elliptic norms then derive from the inner product 

(x ,y)  = x T By. (A. 2.9) 

Two nonzero vectors x and y are orthogonal with respect to some inner 
product if 

If the inner product is the Euclidean one defined by (A.2.9) with B = I ,  then 
this gives the usual and intuitive concept of orthogonality. A set of nonzero 
vectors XI,  . . . , x, is orthogonal if 

(X,Y)  = 0. 

(Xi,Xj) = 0, i # j. 

A set of orthogonal vectors is necessarily linearly independent, and a set of n 
such vectors is said to be an orthogonal basis. If, in addition, llxill2 = 1, i = 
1 , .  . . , n, the vectors are orthonormal. 

If the columns of a matrix A are orthonormal in the inner product xTy,then 
ATA = I and the matrix is orthogonal. Orthogonal matrices have the impor- 
tant property that they preserve the length of a vector; that is, IIAxl12 = IIxll2. 

Convergence of a sequence of vectors {xk} to a limit vector x is defined in 
terms of a norm by 

llxk - X I /  + o as IC -+ 00. 
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It is natural to suppose that a sequence might converge in one norm but not 
in another. Surprisingly, this cannot happen. 

THEOREM A.2.2: The following are equivalent: 
1. The  sequence {xk} converges to x in some norm. 
2. The  sequence {xk} converges to x in every norm. 
3. The components of the sequence {xk} all converge to the cor- 

responding components of x; that is, xf -+ xi as k -+ 00 for 
i = 1, ..., 72. 

As a consequence of this result - sometimes known as the norm equivalence 
theorem - when we speak of the convergence of a sequence of vectors, it is 
immaterial whether or not we specify the norm. 

Any vector norm gives rise to a corresponding matrix norm by means of 

(A. 2.10) 

The properties (A.2.5) also hold for a matrix norm; in addition, there is the 
multiplicative property IlABll 5 IlAll 11B11. The geometric interpretation of 
a matrix norm is that IlAll is the maximum length of a unit vector after 
transformation by A; this is depicted in Figure A.2.2 for the 12 norm. 

Figure A.2.2: The 12 N o r m  

As with vectors, the convergence of a sequence of matrices may be defined 
component-wise or, equivalently, in terms of any matrix norm. That is, we 
write Ak -+ A as k + 00 if in some norm - All -+ 0 as k -+ 00. Again, 
convergence in some norm implies convergence in any norm. 

The matrix norms correspondiiig to the 11 and 1, vector norms are easily 
computed by 

(A.2.11)  
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That is, llAll1 is the maximum absolute value column sum of the elements of 
A, and llAlloo is the maximum row sum. The Euclidean matrix norm is given 
in terms of the spectral radius of ATA by 

IIA112 = [&4TA)1”2 (A.2.12) 

and is much more difficult to compute. If A is symmetric, (A.2.12) reduces to 

llAll2 = d A ) ,  (A.2.13) 

which is still difficult to compute but is more directly related to the matrix A. 
We note that it follows immediately from (A.2.10) that if A is any eigenvalue 

of A and x a corresponding eigenvector, then 

1x1 llxll = IlAxlI = IlAXll I l l 4 l  llxllr 

so that 1x1 5 IlAll; thus, any norm of the matrix A gives a bound on all 
eigenvalues of A. In general, however, the property (A.2.13) of the 12 norm 
will not hold. 
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