
Chapter 9

The Curse of
Dimensionality

9.1 Two and Three Space Dimensions
In the previous chapter we considered partial differential equations in two

independent variables: time and one space variable. Since physical phenom-
ena occur in a three-dimensional world, mathematical models in only one space
dimension are usually considerable simplifications of the actual physical situ-
ation although in many cases they are sufficient for phenomena that exhibit
various symmetries or in which events are happening in two of the three space
dimensions at such a slow rate that those directions can be ignored. However,
large-scale scientific computing is now increasingly concerned with more de-
tailed analyses of problems in which all three space directions, or at least two,
are of concern. This chapter, then, will be concerned with problems in more
than one space dimension, although for simplicity of exposition we will mainly
discuss only two-dimensional problems.

In the previous chapter we considered the heat equation

Ut = cuxx (9.1.1)

as a mathematical model of the temperature in a long, thin rod. If the body
of interest is a three-dimensional cube, as shown in Figure 9.1, (9.1.1) extends
to three dimensions with partial derivatives in all three variables 2, y, and z .
Thus

U t = 4 u x x + 'Ilyy + %%), (9.1.2)

where the (:oIiHtaiit, c i H again thr ratio of the thermal conductivity and the

qi1aiit,i18iw ttrc not, fiiti(*t,ioiiH of ~ p t ~ o r t , i t t w .
prOdll(:t, Of t l l (! Hpf!C:ifiC: tlt!ltt I t I l d IIlhHH (h!llHit ,Y 1IIider the ~HHlltIlptiOIl that these

274 CHAPTER 9 THE CURSE OF DIMENSIONALITY

Figure 9.1: Three-Dimensional Cube

Equation (9.1.2) is a model of the temperature u as a function of time and
at points within the interior of the body. As usual, to complete the model
we need to specify boundary conditions, and for this purpose it is simplest for
exposition to treat the corresponding problem in two space dimensions:

U t = c('zLzz + 'ZLyy). (9.1.3)

We can consider (9.1.3) to be the mathematical model of the temperature in
a flat, thin plate as shown in Figure 9.2, where we have taken the plate to be
the unit square.

Y l

Figure 9.2: Flat, Thin Plate

The simplest boundary conditions occur when the temperature is pre-
scribed on the four sides of the plate:

4t lZl Y) = d Z 1 Y) l (Zl Y) on boundary1 (9.1.4)

9.1 TWO AND THREE SPACE DIMENSIONS 275

where g is a given function. Another possibility is to assume that one of the
sides, say x = 0, is perfectly insulated; thus, there is no heat loss across that
side and no change in temperature, so the boundary condition is

u,(t,O,y) = 0, 0 5 Y I 1, (9.1.5)

combined with the specification (9.1.4) on the other sides. A boundary condi-
tion of the form (9.1.5) is usually called a Neumann condition, and that of the
form (9.1.4) is a Dirichlet condition. Clearly, various other such combinations
are possible, including a specified temperature change (other than zero) across
a boundary. Boundary conditions for the three-dimensional problem can be
given in a similar fashion. We also must specify a temperature distribution at
some time which we take to be t = 0; such an initial condition for (9.1.3) is of
the form

4 0 , z, Y) = f(G 9). (9.1.6)

Given the initial condition (9.1.6) and boundary conditions of the form
(9.1.4) and/or (9.1.5), it is intuitively clear that the temperature distribution
should evolve in time to a final steady state that is determined only by the
boundary conditions. In many situations it is this steady-state solution that
is of primary interest, and since it no longer depends on time it should satisfy
the equation (9.1.3) with ut = 0:

u,, + uyy = 0. (9.1.7)

This is Laplace’s equation and, as mentioned in the previous chapter, is the
prototype of an elliptic equation. If we wish only the steady-state solution of
the temperature distribution problem that we have been discussing, we can
proceed, in principle, in two ways: solve equation (9.1.3) for u as a function
of time until convergence to a steady state is reached, or solve (9.1.7) only for
the steady-state solution.

Finite Differences for Poisson’s Equation
We will return to the time-dependent problem shortly, after considering

the finite difference method for (9.1.7) and, more generally, Poisson’s equation

u,, + uyy = f, (9.1.8)

where f is a given function of x and y. We assume that the domain of the
problem is the unit square 0 5 x, 51 5 1, and that Dirichlet boundary conditions

4 2 , v) = dx, u) , (x, Y) on boundary (9.1.9)

are given, w h w ! is t1 kriown function. We impose a mesh of grid points on
thc unit, Hqiinrc wi th Hpaciiig h l)et,wc!c!n the! pointH ir i hotti the horizontal and
vc!rtic:nl clirc!c:t,ioiin; t , l i i H i H illiiHt,rat,cxl i l l IciKiirc! !)J.

276 CHAPTER 9 THE CURSE OF DIMENSIONALITY

. . . I T
(1, 1)

X

Figure 9.3: Mesh Points on the Unit Square and Discretization Stencil

The interior grid points are given by

(z i , y j) = (ih,jh), i,j = 1 , . . . N , (9.1.10)

where (N + l) h = 1. Now consider a typical grid point (xi, g j) . We approximate
u,, and uyy at this point by the centered difference approximations

uz,(zi ,Yj) = j-#%-l,Yj) - 2 U (Z i , Y j) + 4 Q + l , Y j) l ,

U y y (% Y j) = p[u(zz,Yj-l) - 2+i ,Yj) + u(Zi,Yj+1)1.

1
(9.1.1 la)

(9.1.11 b)

If we put these approximations into the differential equation (9.1.8), we obtain

(9.1.12)

1

u(zi-1, V j) + U(zi+l: yj) + u(zi, Yj-1) + ~(zi, yj+l) - 4 ~ (z i , y j)

= h 2 f b 2 , y j) ,

which is an approximate relationship that the exact solution u of (9.1.8) sat-
isfies at any grid point in the interior of the domain.

We now define approximations uij to the exact solution u(zi ,yj) at the
N 2 interior grid points by requiring that they satisfy exactly the relationship
(9.1.12); that is,

- 2 ~ i + l , j - ~ i - i , j - ~ i , j + l - ~ i , j - 1 + 4 ~ i j = - h 2 f i j , i,j = 1 , . . . , N , (9.1.13)

where we have multiplied (9.1.12) by -1. This is a linear system of equations
in the (N + 2)’ variables uij. Note, however, that the variables U O , ~ , u ~ + l , j ,

j = 0,. . . , N + 1, and u i , ~ , u i , ~ + l , i = 0, . . . , N + 1, correspond to the grid
points on the boundary and thus are given by the boundary condition (9.1.9):

9.1 TWO AND THREE SPACE 1)lMI:‘NSIONS 277

Therefore (9.1.13) is a linear systtiii ol N 2 equations in the N 2 i i t ikt iowiis ‘uzjr
i , j = 1,. . . , N , corresponding to t h iiit,orior grid points. The st,oiii*il i t 1 b‘ixiirv
9.3 shows how uij is coupled to its i i o t t l i , south, east, and west iii!igliliorH i i i

(9.1.13). It is easy to show (Exercise! !I. 1 . 1) that the local discretixiittioil ilrror
in the uij is O(h2). Note that (9.1.13) is tjhe natural extension to t,wo nli i i iv
variables of the discrete equations

-u2+1 + 2ui - ui-1 = -/r”f,, 2 = 1 , . . . , N ,

obtained in Chapter 3 for the “one-dirnoriHioii;tl Poisson equation” u” = j .
We now wish to write the system (9.1.13) i t i matrix-vector form, and for

this purpose we will number the interior gricl points in the manner showri h i
Figure 9.4, which is called the natural or row-wise ordering. Corresponding to
this ordering of the grid points, we order tho ririkiiowns {uij} into the vector

(u l l , , . . rUNl,u12r...,UN2,...,11lN,...1uNN), (9.1.15)

and write the system of equations in the same order. We illustrate this for
N = 2 (Exercise 9.1.2):

4 -1 -1 0
-1 4 0 -1
-1 0 4 -1

0 -1 -1 4

in which we have put the known boundary values on the right-hand side of the
equation.

N2
N + l N + 2 2N

1 2 N

Figure 9.4: Natural Ordering of the Interior Grid Points

The equations (9.1.16) begin to illustrate the structure of the liiiwr nyntmii.
For general N , a typical row of the matrix will be

-1 I) . . . 0 -1 4 -1 0 . . . 0 - 1

278 C H A P T E R 9 THE CURSE OF DIMENSIONALITY

4 -1 -1
-1 4 -1 -1

-1 4 -1 -1
-1 4 -1

-1 4 -1 -1
-1 -1 4 -1 -1

-1 -1 4 -1 -1
-1 -1 4 -1

-1 4 -1 -1
-1 -1 4 -1 -1

-1 -1 4 -1 -1
-1 -1 4 -1

-1 4 -1
-1 -1 4 -1

-1 -1 4 -1
-1 -1 4

Figure 9.5: Coefficient Matrix of (9.1.13) for N = 4

equation, eliminating the corresponding -1 from the matrix. This happened
in each equation in (9.1.16) because of the size of N . We show in Figure 9.5
the coefficient matrix for N = 4 (see Exercise 9.1.2).

Although Figure 9.5 illustrates the structure of the coefficient matrix, this
form is cumbersome for large N ; it is much easier to write it in a block matrix
form. To do this we define the N x N tridiagonal matrix

(9.1.17)

and let IN denote the N x N identity matrix. Then the N 2 x N 2 coefficient
matrix of (9.1.13) is the block tridiagonal matrix

A = (9.1.18)

9.1 TWO AND THREE SPACE DIMENSIONS 2 79

The matrix of (9.1.16) is the special case of (9.1.18) for N = 2, and Figure 9.5
shows the matrix for N = 4.

If we also define the vectors

U i = (U l i , . . . , U N ~) T , fi = (f i i , . . . , f ~ i) ~ , i = 1,. . . , N ,

bl = (UO1 -k 2110,2120,

bi = (U O ~ , 0, . . . ,0 , ~ ~ + l , i) ~ ,

b N = (U 0 , N -k U l , N + l , U 2 , N + 1 , * * * , U N - l , N , U N , N + 1 -k U N + l , N)

* 7 U N - l , O , UN,O + U N + I , I) T ,

i = 2 , . . . , N - 1,
T

7

then we can write the system (9.1.13) in the compact form

We now make several comments about this system of equations. If N is
of moderate size, say N = 100, then there are N 2 = lo4 unknowns, and the
matrix in (9.1.19) is 10,000 x 10,000. In each row of the matrix there are at
most five nonzero elements, regardless of the size of N , so the distribution of
nonzero to zero elements is very “sparse” if N is at all large. Such matrices are
called large sparse matrices and arise in a variety of ways besides the numerical
solution of partial differential equations.

It is the property of being sparse that allows such large systems of equations
to be solved on today’s computers with relative ease. Recall that in Chapter 4,
we saw that Gaussian elimination requires on the order of n3 arithmetic op-
erations to solve an n x n linear system. Hence if a lo4 x lo4 linear system
were “dense,” that is, few of its elements were zero, and Gaussian elimination
were used to solve the system, then on the order of 10l2 operations would
be required. At a rate of lo6 operations per second, it would require several
hours to solve such a system. Moreover, for the corresponding three dimen-
sional problem the size of the system would be lo6, requiring l0l8 operations,
which is completely beyond the capacity of the fastest computers. However,
by utilizing the special structure and sparsity of systems such as (9.1.19), we
shall see in the next two sections that they can be accurately solved relatively
quickly and accurately, despite their large size.

The Heat Equation
We end thin nc:ction hy applying the discretization of Poisson’s equation to

the hcat trqiiat,iori (9.1.3) in two spa(:(: variables where, again for simplicity in
cxponit,ion, w(! will w w i i t ! I,liat, thc! x, 11 (1oIIitbiti in t h ! iiiiit nqI1tm! of Figure 9.3

280 CHAPTER 9 THE CURSE OF DIMENSIONALITY

and that the Dirichlet boundary conditions (9.1.4) are given on the sides of
the square. We also assume the initial condition (9.1.6).

Corresponding to the method (8.2.5) in the case of a single space variable,
we can consider the following explicit method for (9.1.3):

(9.1.20)

for m = 0 , 1 , . . . , and i,j = 1 , . . . , N . Here uc denotes the approximate so-
lution at the i, j gridpoint and at the mth time level m a t , and u:+' is the
approximate solution at the next time level. The terms in parentheses on the
right-hand side of (9.1.20) correspond exactly to the discretization (9.1.13)
with fij = 0. The prescription (9.1.20) has the same properties as its one-
dimensional counterpart (8.2.5): it is first-order accurate in time and second-
order accurate in space, and it is easy to carry out. It is also subject to a
similar stabilitv condition

h2
At 5 -

4c'
(9.1.21)

and thus has the problem that if h is small, very small time steps are required.
We can attempt to circumvent this restriction on the time step in the same

way that we did in Section 8.3 by the use of implicit methods. For example,
the implicit method (8.3.2) now becomes

(9.1.22)

which is unconditionally stable. However, to carry out this method requires
the solution at each time step of the system of linear equations

for z,j = 1 , . . . , N . This system has the same form as the system (9.1.13) for
Poissson's equation, with the exception that the coefficent of u;" is modified.
Indeed, the left-hand sides of the equations (9.1.23) have exactly the same form
as the finite difference equations for the Helmholtz equation u,, +uyy - uu = 0,
where u is a given function of z and y. The term -uu in this differential
equation becomes -h2uijuij in the difference equations (9.1.13), with uij =
a (z i , y j) . The particular constant function u = - l / (cAt) then corresponds to
the left-hand side of (9.1.23).

In the case of a single space variable, the use of an implicit method such
as (8.3.2) does not cause much computational difficulty since the solution of
tridiagonal systems of equations can be accomplished so rapidly. However,
each time step of (9.1.23) requires the solution of a two-dimensional Poissoti-
type equation, which is a much more dificiilt, (!oIri~)rlt,i~t,io~~~I p r o M w i . 'I'hc:

9.1 TWO AND THREE SPACE DIMENSIONS 281

Crank-Nicolson method (8.3.12) can also be easily extended to equation (9.1.3)
(Exercise 9.1.3) but suffers from the same difficulty that Poisson-type equations
must be solved at each time step. We shall consider, instead, a different class of
methods, in which the basic computational step is the solution of tridiagonal
systems of equations. These are time-splitting methods, in which the time
interval (t, t + At) is further subdivided and, in essence, only one-dimensional
problems are solved at each timestep.

An Alternating Direction Method

alternating direction implicit (ADI) method, which has the form
One of the most classical time-splitting methods is the Peacernan-Rachford

+u$j._l - 2 u 3 ,

This is a two-step method in which intermediate values u ; + ~ / ~ , i , j = 1 , . . . , N ,
are computed at the first step (9.1.24a). These 2 ~ ; " ' ~ are to be interpreted as
approximate values of the solution at the intermediate time level m + i; thus
the factor appears on the right-hand side of (9.1.24a) because the time step
is iA t . The computation in (9.1.24a) involves the solution of the N tridiagonal
systems of equations

(9.1.25)

= (a - 2)uC + uyj+l + uyjLj_l, i = 1,. . . , N ,

for j = 1,. . . , N , where a = 2h2/(cAt); that is, for each fixed j , (9.1.25) is
a tridiagonal system whose solution is u;+ll2, i = 1,. . . , N . The coefficient
matrix of each of these systems is a1 + A, where A is the (2, -1) tridiagonal
matrix (3.1.10). Since aI + A is diagonally dominant, these systems can be
rapidly solved by Gaussian elimination without interchanges.

Once the intermediate values u;+1/2 have been computed, the final values
are obtained from (9.1.24b) by solving the N tridiagonal systems

(2 + +:;+l - ?4<;;JIl - ,uypl (9.1.26)

282 CHAPTER 9 THE CURSE OF DIMENSIONALITY

for i = 1,. . . , N. Again, the coefficient matrices of these systems are a1 + A.
Thus the computational process requires the solution of 2N tridiagonal systems
of dimension N to move from the mth time level to the (rn + 1)st. It can be
shown that this method is unconditionally stable.

The term alternating direction derives from the paradigm that in some sense
we are approximating values of the solution in the x-direction by (9.1.24a), and
then in the y-direction by (9.1.2413). There are many variants of AD1 methods
and, more generally, of time-splitting methods, and such methods are widely
used for parabolic-type equations.

Supplementary Discussion and References: 9.1
The discussion of this section has been restricted to Poisson’s equation

in two variables on a square domain and the corresponding heat equation.
However, problems that arise in practice will generally deviate considerably
from these ideal conditions: the domain may not be square; the equation may
have nonconstant coefficients or even be nonlinear; the boundary conditions
may be a mixture of Dirichlet and Neumann conditions; there may be more
than a single equation - that is, there may be a coupled system of partial
differential equations; the equations may have derivatives of order higher than
two; and there may be three or more independent variables. The general
principles of finite difference discretization of this section still apply, but each
of the preceding factors causes complications.

One of the classical references for the discretization of elliptic equations
by finite difference methods is Forsythe and Wasow [1960]. See also Roache
[1972] for problems that arise in fluid dynamics, and Hall and Porsching [1990].
Discussions and analyses of alternating direction methods and related methods
such as the method of fractional steps are found in a number of books; see, for
example, Varga [1962] and Richtmyer and Morton [1967].

In the last several years finite element and other projection-type meth-
ods have played an increasingly important role in the solution of elliptic- and
parabolic-type equations. Although the mathematical basis of the finite ele-
ment method goes back to the 1940s, its development into a viable procedure
was carried out primarily by engineers in the 1950s and 1960s, especially for
problems in structural analysis. Since then the mathematical basis has been
extended and broadened and its applicability to general elliptic and parabolic
equations well demonstrated. One of the method’s main advantages is its
ability to handle curved boundaries. For introductions to the finite element
method, see Strang and Fix [1973], Becker, Carey and Oden [1981], Carey and
Oden [1984], Axelsson and Barker [1984], and Hall and Porsching [1990].

9.2 DIRECT METHODS

EXERCISES 9.1

9.1.1. Assume that the function u is as many times continuously differentiable as
needed. Expand u in Taylor series about (xi ,yj) and show that the approxi-
mations (9.1.11) are second order accurate:

and similarly for the approximation to uyy. Conclude that the local discretiza-
tion error in the approximate solution of (9.1.13) is O(h2).

9.1.2. Verify that with the ordering (9.1.15), the system of equations (9.1.13) takes
the form (9.1.16) for N = 2. Verify also that Figure 9.5 gives the coefficient
matrix for N = 4. What is the right-hand side of the system in this case?

9.1.3. Formulate the Crank-Nicolson method for (9.1.3).

9.1.4. Consider the equation
u z z + u y y + 0212 = f

with the boundary conditions (9.1.9) on the unit square and with u a positive
constant. Approximate u2 by central differences:

Write the difference equations corresponding to (9.1.13). Under what condition
on a h will the coefficient matrix be diagonally dominant?

9.2 Direct Methods
In the previous section we obtained the system of linear equations (9.1.19)

after discretizing Poisson's equation. We now consider ways to solve such
systems. In the next section we study iterative methods; in the present section,
we treat Gaussian elimination and other direct methods.

Fill in Gaussian Elimination
The coefficient matrix of (9.1.19) is banded with semi bandwidth N , but

it is very sparse within the band: whatever the size of N , there are at most
five non-zero elements in each row. However, if we apply Gaussian elimina-
tion or Cholesky factorization to this banded system, almost all elements that
were zero within the band in the original matrix will become non-zero as the
factorization proceeds. Such non-zero elements are called filled-in elements or
simply fin. Tht! way that fill occurs can be seen by examining the basic step
in Gaiiwitlii (!I i mi i i r i t , i o i i (s(x: Scc t ion 4.2) :

(! I . 2.1)

284 CHAPTER 9 THE CURSE OF DIMENSIONALITY

At the kth stage of the elimination, the element a::) is modified to become

a::”) is non-zero and fill will occur in the i, j position at this stage. The more
fill that occurs, the higher the operation count since elements that have become
non-zero have to be eliminated later in the process. Ideally no fill would occur,
so that the operation count would be based on the original number of non-zero
elements in A.

In many, if not most, problems it is difficult to ascertain where fill will
occur without carrying out the elimination process. In some cases, however,
especially where A has a simple structure, it is possible to determine the fill
pattern easily. We next do this for the matrix of (9.1.19). We will consider only
the block 3 x 3 form of this matrix since this clearly exhibits the fill pattern.
It is convenient to do the analysis in terms of the LU decomposition of A; if
we partition L and U corresponding to A we have:

a::+’), as shown in (9.2.1). If aij (k) is zero but a!:) and a:) are both non-zero,

(9.2.2)

(9.2.3a)

(9.2.3 b)

(9.2.3~)

(9.2.3d)

(9.2.3e)

L11 and U11 are the LU factors of the tridiagonal matrix T . By (4.2.18), these
factors have the form

L11 = , (9.2.4)

where the -1’s in U11 are the off-diagonal elements of T . Even though L11
has only two non-zero diagonals, the same is not true of LF;; it is a full lower
triangular matrix. To see why this is true, recall from (4.2.20) that the ith
column of L;: is the solution of the system

L l l x , = e,, (9.2 * 5)

9.2 DIRECT METHODS 285

where ei is the vector with 1 in the ith position and zero elsewhere. The
solution of (9.2.5) for i = 1 is

2 1 = 1, 22 = -12x1 = -12,23 = -1322 = 1 2 1 3 , . . ',XN = f12 * . . 1 ~ .

Thus provided that none of the li is zero, which is the case if L11 is the factor of
T, all components of the first column of LT: are non-zero. Doing the analogous
computation for general i, one sees that the first non-zero component in the
solution is the ith position and then each subsequent component of the solution
is non-zero. It follows that each column of Ly: has all non-zero elements below
the main diagonal. The same is true for U z so that UG1 is full above the main
diagonal. It is easy to verify (Exercise 9.2.1) that the product UG'L;: is then
a completely full matrix, and therefore the factors L22 and U22 in (9.2.3~) are
full below and above the main diagonal, respectively. The same is true of the
factors L 3 2 , L33, U23, and U33. Thus the non-zero structure of the factor L of
(9.2.2) is as shown in Figure 9.6.

Figure 9.6: Non-zero Structure of L and UT

UT has the same structure and complete fill has occurred within the band,
except for the first block. The same is true no matter how many blocks are in
the matrix A; the 3 x 3 block structure of (9.2.2) was just used as an example.
Thus, the amount of work to carry out the LU factorization (or Cholesky
factorization, where the same fill pattern occurs) is almost as much as if the
matrix A were a full banded matrix: the sparse structure of A within the
band has essentially been lost because of the fill. This phenomenon is not
dependent upon the particular 4, -1 entries in A, and is true in much more
general situations. Moreover, the QR factorization will also suffer from the
same type of fill (Exercise 9.2.7).

One approach to circumventing this problem of fill is a reordering of the
equations and iinkiiowxis. Consider the matrix with the non-zero structure of
Figure Y.7(a). If Gaiissitiii t!lirninat,iori is applied to this matrix, all elements
will, i i i Kt!tiorrtl, f i l l . () t i t,hr o t h r h r ~ ~ i d , for thr matrix of Fipyre 9.7.(b) no
~ l (w i o ~ i t , s will f i l l . T t i v r i i t i t x i x of F i g i r w !1.7(I)) rritiy he o h t , t i i t i c v t frorti that,

286 C H A P T E R 9 T H E C U R S E OF DIMENSIONALITY

i l b ' i I

i l i l j

of 9.7(a) by a reordering of the unknowns and equations (Exercise 9.2.2). In

20 ~ i i 2 i i o 22 i 4 i i 8 f i 6

is i i i i i 9 21 i 3 I i 7 1 i s

* * ... *
* *

* *

* *

*
* . . . * *

Figure 9.7: Arrowhead Matrices

general, it will not be known in advance how to do a reordering that will
minimize fill, but algorithms are known that can approximate this; see the
Supplementary Discussion.

Domain Decomposition Reordering
We now consider a way to order the systems of equations (9.1.13) for the

discrete Poisson problem so that Gaussian elimination can be carried out with
less fill, and therefore fewer arithmetic operations, than if we used the natural
ordering. We consider for illustration a rectangular grid of 22 interior points,
as shown in Figure 9.8. We partition this grid into three subdomains, as well
as two vertical lines of grid points called the separator set, labeled S. Such
a partitioning is an example of a domain decomposition. We next number
the grid points in the first subdomain using the natural ordering, followed by
the points in the second, and third subdomains, and then finally those in the
separator set. This is illustrated by the grid point numbers in the example of
Figure 9.8.

We now order the equations and unknowns according to the grid point num-
bering of Figure 9.8. The resulting coefficient matrix is shown in Figure 9.9.
Also shown in Figure 9.9 is the fill pattern that results from Gaussian elimi-
nation (or Cholesky factorization). The original elements of the rnatrix are 4

9.2 DIRECT METHODS 287

and -1. The other integers i indicate elements that were zero in the original
matrix but have become non-zero when elements in the ith column are zeroed
in the Gaussian elimination process. It is left to Exercise 9.2.3 to verify the
details of Figure 9.9. We note that the matrix (before fill) of Figure 9.9 is
related by a permutation matrix to the matrix that would result from using
the natural ordering (Exercise 9.2.4).

4 -1 -1
-1 4 - 1 1-1

-1 4 2 2 - 1 -1
-1 1 2 4 - 1 3

-1 2 - 1 4 - 1 3

4 - 1 -1 -1
-1 4 - 1 7 - 1 7

-1 4 8 8 - 1 8 -1
-1 7 8 4 - 1 9 7 - 1 9

-1 8 - 1 4 - 1 8 10 9

4 - 1 -1 -1
-1 4 - 1 1 3 - 1 13

-1 4 14 1 4 - 1 14

-1 1 4 - 1 4 - 1 14 16
-1 15-1 4 15 16

-1 3 3 3-1 7 8 7 8 9 4 - 1 9 12
-1 -1 10 10 -1 4 10 12

-1 13 14 13 14 15 9 10 4 -1
-1 16 16 12 12 -1 4

-1 3 - 1 4 3 -1

-1 9 - 1 4 9 10 9 - 1

-1 13 14 4 -1 15 13 -1

Figure 9.9: Domain Decomposition Matrix and Fill Pattern

The above discussion has illustrated in a very simple case the principle of
domain decomposition. More generally, if we have p subdomains and sepa-
rator sets that prevent unknowns in one subdomain from being connected to
unknowns in any other subdomain, then the coefficient matrix will take the
block arrowhead matrix form,

(9.2.6)

288 CHAPTER 9 THE CURSE OF DIMENSIONALITY

-
- L1

L2
L = : U =

LP
- L1 L2 Lp L , -

fil - . . . - Ul
u2 f i 2

UP UP

: , (9.2.7)

- u.3 -

LiUi = Ai, i = 1 ,..., p, (9.2.8a)

LiUi = Bi, LiUi = BT, i = 1 ,..., p , (9.2.813)

(9 . 2 . 8 ~)
i=l

Thus the factors L and U have the same block structure as A itself. All
fill occurs only within these blocks and not outside them, as illustrated in
Figure 9.9.

2 6 1 io 8 i 2 i o 22 i 4 is is
i 5 3 is i i i 9 ii i 3 i 7 i 5

s1 s1 S s1

Figure 9.10: Nested Dissection Reordering of Grid Points

Nested Dissection
We return to the example of Figure 9.9. The number of fill elements shown

in the figure is 76. This is to be contrasted with 182 fill elements had we
used the natural ordering and applied Gaussian elimination to the resulting
banded matrix (Exercise 9.2.6). We can obtain still further improvement in the
amount of fill by applying the domain decomposition principle again to each
subdomain of Figure 9.8. The resulting numbering of the grid points is shown
in Figure 9.10 and the corresponding coefficient matrix with fill elements in
Figure 9.11. The ordering of Figure 9.8 is sometimes called one-way dissection,
and repeated use of this within the subdomains leads to nested disaaction.

9.2 DIRECT METHODS 289

4 -1 -1
-1 4 1-1

4 -1 -1 -1
-1 4 3 - 1 3 -1

-1 1-1 3 4 - 1 3 4
-1 -1-1 4 5 4

-1 4 7 -1 7 -1
4 -1 -1 -1

4 -1 -1 -1
-1 4 9 - 1 9 -1

-1 7 - 1 9 4 - 1 7 8 9 1 0
-1 -1-1 4 8 8 10 10

-1 4 13 -1 13 -1
4 -1 -1 -1

4 -1 -1
-1 4 15-1

-1 1 3 - 1 15 4 - 1 13 14
-1 -1-1 4 17 14

-1 3 3 5 - 1 7 7 8 4 -1 11 11
-1 4 4 -1 8 8 -1 4 12 12

-1 9 9 10-1 13 13 17 11 11 4 -1
-1 10 10 -1 14 14 12 12 -1 4

Figure 9.11: Nested Dissection Matrix and Fill

There are 60 fill elements in Figure 9.11, as opposed to 76 in the matrix of
Figure 9.9, a relatively small but still significant saving. The main utility of
these reordering techniques is, of course, for much larger problems.

In summary, the main purpose of this section has been to show that Gaus-
sian elimination on the discrete equations of a partial differential equation leads
to considerable fill, and hence extra computation, but by judicious reorderings
of the equations the amount of fill can be significantly reduced.

Supplementary Discussion and References: 9.2
An excellent reference for further reading on direct methods for sparse

linear systems is George and Liu [1981]. This book includes, in particular,
detailed analyses of the storage and operation counts of one-way dissection
and a more general treatment of nested dissection in which both horizontal
and vertical separator lines are used. There also is a discussion and analysis
of othor r(!or(lcring tmliiiiques that rcducc: the fill. For more general problems
(i x . not, (: o i i i i i i K frotii I’oissoii’s oqiiatioii), on(! of the best such techniques is
t31i(! miniwu7n du/rw d g w i t h 7 r i ~ A i i o t , tiw KW(I rcf(:rwice for sparse systems is

290 CHAPTER 9 THE CURSE OF DIMENSIONALITY

Duff et al. [1986].
The general idea of domain decomposition has broad application in the

solution of partial differential equations, and has been a subject of intense
research in the last several years because of its potential usefulness in parallel
computing. For further discussion see, for example, Ortega [1988].

For general sparse linear systems, the algorithmic framework is the follow-
ing:

Step 1. Use a reordering strategy to minimize fill.
Step 2. Do a symbolic factorization to determine the fill.

Step 3. Do the numerical factorization (LU or LLT).
Step 4. Solve the corresponding triangular systems.

Set up data storage accordingly.

The symbolic factorization in Step 2 can be done surprisingly rapidly. Once
this is done, the exact fill pattern is known so that the amount of storage needed
for the factorization is also known. Storage can then be allowed for only the
non-zero elements in the factors. Step 1 is predicated on the assumption that
there is no need for interchanges to preserve numerical stability. If this is
not the case, then interchanges for stability may conflict with interchanges
to minimize fill. Generally, a compromise called threshold pivoting is used in
which interchanges for stability are made only if the pivot element is too small,
say less than .1 of the maximum element in its column. In this case there may
be several candidates for the new pivot element, and the algorithm can choose
the one that is best for maintaining sparsity.

For Poisson's equation and slight generalizations of it, there is another
class of direct methods called Fast Poisson Solvers. There are many such
methods and we will indicate only a few approaches. One is based on the fact
that eigenvalues and eigenvectors of the matrix of (9.1.18) are known exactly
in terms of sine functions. Thus if A = QDQT, where D is the diagonal
matrix with the eigenvalues of A and Q is an orthogonal matrix whose columns
are the eigenvectors of A , the solution of Ax = b is x = QD-'QTb. The
multiplications by QT and Q involve trigonometric sums and can be carried
out by the Fast Fourier Transform (FFT). Other, still faster, methods are
based on the cyclic reduction algorithm and a combination of this with the
Fast Fourier Transform. For further discussion of Fast Poisson Solvers, see, for
example, Hockney and Jesshope [1988].

EXERCISES 9.2

9.2.1. Let L and U be lower and upper triangular matrices for which Zij # 0, i 2 j ,
and uij # 0, i 5 j. Show that all elements of U L are, in general, non-zero.

9.2 DIRECT METHODS 291

9.2.2. Consider the system

* * * * * bi [; * * * *][iij=[;],
where * denotes a non-zero element. Show that by the reordering of unknowns
x1 * 25, 22 tt 2 4 , 2 3 tt 23 and the corresponding reordering of the equations,
the system can be written as

x5 b5

[: ; ; ; ;] [i ;]=[i] .
Generalize this to the case of the corresponding n x n system.

9.2.3. Show that the ordering of the grid points (and hence unknowns) of Figure 9.8
gives the coefficient matrix of 4's and -1's of Figure 9.9 for the system of
equations (9.1.13). Next apply Gaussian elimination to this matrix and show
that fill develops as indicated in Figure 9.9.

9.2.4. Show that the coefficient matrix A of Figure 9.9 (without the fill) is related to
the matrix A that one would obtain from the natural ordering by A = PAP,
where P is a permutation matrix.

9.2.5. Verify that LU factorization of the matrix of (9.2.6) is given by (9.2.7) and
(9.2.8).

9.2.6. For the grid of Figure 9.8, write out the 22 x 22 coefficient matrix for the
natural ordering. Then verify, using the techniques that led to Figure 9.5, that
the number of fill elements produced by Gaussian elimination is 182.

9.2.7. Consider the QR method for the matrix of Figure 9.5. Show that R fills in
within the band.

9.2.8. Consider the special case of (9.2.6) in which

and assume that A1 is symmetric positive definite. Show that A is not positive
definite but that there is a Cholesky-like factorization of the form

A = ["] [FT GT]
G' I ! 0 - H T

292 CHAPTER 9 THE CURSE OF DIMENSIONALITY

9.2.9. Consider the special case of Exercise 9.2.8 in which A1 = I and B1 = ET.
Show that the solution of the normal equations ETEa = ETf can be obtained
by solving the system

Discuss the circumstances in which you might wish to solve this expanded
system in place of the normal equations.

9.2.10. Use the fact that fill develops as in Figure 9.6 to show that the operation
count for Gaussian elimination applied to the system (9.1.19) is O(N4).

9.3 Iterative Methods
An alternative to the direct methods discussed in the previous section is

an iterative method, and we now describe some of the basic iterative methods
for large sparse systems of equations.

Jacobi's Method

at this time except that the diagonal elements are non-zero:
We consider the linear system Ax = b and make no assumptions about A

aii # 0, i = 1, ..., n. (9.3.1)

Perhaps the simplest iterative procedure is Jacobi's method. Assume that an
initial approximation xo to the solution is chosen. Then the next iterate is

(9.3.2)

It will be useful to write this in matrix-vector notation, and for this purpose,
we let D = diag(al1,. . . ,ann) and B = D - A. Then it is easy to verify that
(9.3.2) may be written as

x1 = D-'(b + Bx'),

and the entire sequence of Jacobi iterates is defined by

xk+l = D-'(b + Bx'), k = 0 , 1 , (9.3.3)

The Gauss-Seidel Method
A closely related iteration is derived from the following observation. After

"(11) is computed in (9.3.2) it is available to use in the computation of x:), and

9.3 ITERATIVE METHODS 293

it is natural to use this updated value rather than the original estimate z'p'.
If we use updated values as soon as they are available, then (9.3.2) becomes

which is the first step in the Gauss-Seidel iteration. To write this iteration
in matrix-vector form, let -L and -U denote the strictly lower and upper
triangular parts of A; that is, both L and U have zero main diagonals and

A = D - L - U. (9.3.5)

If we multiply (9.3.4) through by aii, then it is easy to verify that the n
equations in (9.3.4) can be written as

Dx' - Lx' = b + UXO. (9.3.6)

Since D - L is a lower-triangular matrix with non-zero diagonal elements, it is
nonsingular. Hence the entire sequence of Gauss-Seidel iterates is defined by

xk+' = (D - L)-l[Uxk + b], 5 = 0,1, (9.3.7)

The representations (9.3.3) and (9.3.7) of the Jacobi and Gauss-Seidel itera-
tions are useful for theoretical purposes, but the actual computations would
usually be done using the componentwise representations (9.3.2) and (9.3.4).

We next consider the application of these iterative methods to Laplace's
equation on a square. The difference equations for this problem were given by
(9.1.13) (with fij = 0) in the form

- u i + l j - ui-l,j - ~ i , j + l - ~ i , j - 1 + 4uij = 0, i , j = 1,. . . , N . (9.3.8)

Here, the unknowns are the uij, i,j = 1 , . . . , N , and the remaining values
of the u's are assumed known from the boundary conditions. Given initial
approximations u$', a Jacobi step applied to (9.3.8) is

so that the new Jacobi approximation at the (i , j) grid point is simply the
average of the previous approximations at the four surrounding grid points
(i f l , j) , (i , j f 1). It is for this reason that the Jacobi method is sometimes
known as the method of .qimultaneous displacements. Note that for the Jacobi
method the ortior it1 whic:h the equations are processed is immaterial. For
the Gauss-St!iclc!l IIic!t , l iot l , this i N I i o t , true, and each different ordering of the
i!qiititiolis ttc*t,iiidly c:orrc!npolicis to II clifforl!Iltl it,l!rtit,ive process. If WI? order the

294 CHAPTER 9 THE CURSE OF DIMENSIONALITY

grid points left to right and bottom to top, as was done in Section 9.1, then a
typical Gauss-Seidel step is

This new approximation at the (i , j) grid point is again an average of the
approximations at the four surrounding grid points, but now using two old
values and two new values. The difference between the two methods is shown
schematically in Figure 9.12.

i, j + l i, j + l

New 4 Old
-0-

Old 4 Old
-04-

i - 1 , j i + l , j i - 1 , j i + l , j 1 Old 1 New

i
i, j - I

I
i , j - l

(a) Jacobi (b) Gauss-Seidel

Figure 9.12: Jacobi and Gauss-Seidel Updates

Convergence

Both the Jacobi and Gauss-Seidel methods can be written in the form
We consider next the question of the convergence of iterative methods.

xk+' = H x k + d, k = 0,1, (9.3.9)

In particular, H = D - l B and d = D-lb for the Jacobi process, whereas
H = (D - L)-lU and d = (D - L)- 'b for Gauss-Seidel. Now assume that X *

is the exact solution of the system Ax = b. For the Jacobi method we then
have

(D - B)x* = b or x* = D-lBx* + D-lb ,

and for the Gauss-Seidel method

(D - L - U)x* = b or x* = (D - L)-'Ux* + (D - L)- 'b .

9.3 ITERATIVE METHODS 295

Thus in both cases
X' = Hx' + d. (9.3.10)

If we subtract (9.3.10) from (9.3.9), we have

ek+' = Hek , k = 0 , 1 , . . . , (9.3.11)

where ek = xk - x* is the error at the kth step.
Iterative methods of the form (9.3.9) are called stationary one-step methods

and (9.3.10) is the consistency condition. Then (9.3.11) is the basic error
relation for such methods. We can analyze the errors in much the same way as
we analyzed the power method in Section 7.3. Assume that H has n linearly
independent eigenvectors v1,. . . , v, with corresponding eigenvalues XI,. . . , A,.
The initial error e0 can then be expressed as some linear combination of the
eigenvect ors:

(9.3.12)

Thus,

eo = c l v l + czvz + . . + c,v,.

ek = H k e o = clA:vl + c 2 A ~ v z + . . + c,Akv,. (9.3.13)

In order that ek + 0 as k + 00 for any xo (and, hence, any ci in (9.3.12)), we
must have [A i l < 1, i = 1 , . . . ,n; that is, the spectral radius, p (H) , must I N
less than one. This result is true also when H does riot have n linearly irula-
pendent eigenvectors, but the proof is more difficult (see the Sripplcrnentary
Discussion). We state this basic convergence theorem as:

THEOREM 9.3.1 If (9.3.10) holds, the iterates (9.3.9) converge t o
the solution x* for any starting vector xo if and only af p (H) < 1.

Theorem 9.3.1 is the basic theoretical result for one-step iterative methods
but it does not immediately tell us if a particular iterative method is conver-
gent; we need to ascertain if the spectral radius of the iteration matrix for the
method is less than 1. In general, this is a very difficult problem, for which one
might have to resort to computing all the eigenvalues of the iteration matrix.
But for some iterative methods and for certain classes of matrices it is rela-
tively easy to determine that the convergence criterion is satisfied. We next
give some examples of this for the Jacobi and Gauss-Seidel methods.

THEOREM 9.3.2 Assume that the matrix A is strictly diagonally
dominant:

(9.3.14)

Then both t h c ! I J i m) bi und GimwSr:iilcl it c rat ionN r:onaci:qe to the
t m i q t ~ o ~ o l u t i o n o f AX = b JOT. imp d i ~ ~ t a i q wxtor x".

laiil > C laijl, i = 1 , . . . ,n.
j#i

296 CHAPTER 9 THE CURSE OF DIMENSIONALITY

The proof of this theorem is very simple for the Jacobi method. Since H =
D-lB , the condition (9.3.14) implies that the sums of the absolute values of
the elements in each row of H are less that 1. Hence llHllm < 1, and therefore
all eigenvalues of H are less that 1 in absolute value. Thus Theorem 9.3.1
applies. The proof for Gauss-Seidel is a little more complicated. Let A be any
eigenvalue of H and v a corresponding eigenvector. Then

xv = Hv = (D - L)-lUv,

or
X(D - L)v = uv. (9.3.15)

Let

The lcth equation of (9.3.15) is
lVkl = rnax(lvi1 : i = 1 , . . . ,n} . (9.3.16)

j < k j > k

Then (9.3.17) can be written as

X(1 + a) = -p,

so that

by (9.3.14) and (9.3.16). Thus we have shown that p (H) < 1 and Theorem 9.3.1
applies.

The condition of strict diagonal dominance is a rather stringent one and
does not apply to the difference equations (9.3.8) for Laplace’s equation: in
most rows of the coefficient matrix there are four coefficients of absolute value 1
in the off-diagonal positions, so that strict inequality does not hold in (9.3.14).
However, by using different techniques (see the Supplementary Discussion), it
can be shown that both methods indeed converge for the difference equations
(9.3.8).

The coefficient matrix of the equations (9.3.8) is symmetric [see (9.1.18)],
and it can be shown that it is also positive-definite. Indeed, for many discrete
analogs of elliptic partial differential equations, the coefficient matrix will be
symmetric and positive-definite. In this case the Gauss-Seidel iteration will al-
ways converge, although symmetry and positive-definiteness is not, in general,
sufficient for the Jacobi method to converge. We state the following theorem
without proof

9.3 ITERATIVE METHODS 297

THEOREM 9 .3 .3 Assume that the matrix A i s symmetric and positive-
definite. Then the Gauss-Seidel iterates converge to the unique so-
lution of Ax = b for any starting vector xo.

Even when the Jacobi and Gauss-Seidel methods are convergent, the rate of
convergence may be so slow as to preclude their usefulness; this is particularly
so for discrete analogs of elliptic partial differential equations. For example,
for equation (9.3.8) with N = 44, the error in each iteration of the Gauss-
Seidel method will decrease asymptotically only by a factor of about 0.995.
Moreover, the Jacobi method is about twice as slow on this problem, and the
rate of convergence of both methods becomes worse as N increases.

The SOR Method
In certain cases it is possible to accelerate considerably the rate of conver-

gence of the Gauss-Seidel method. Given the current approximation x', we
first compute the Gauss-Seidel iterate

(9.3.18)

as an intermediate value, and then take the final value of the new approxima-
tion to the ith component to he

2 xi xi). (9.3.19) x:!'+') = ('1 + W(@+') - (k)

Here w is a parameter that has been introduced to accelerate the rate of con-
vergence.

We can rewrite (9.3.18) and (9.3.19) in the following way. First substitute
(9.3.18) into (9.3.19):

and then rearrange the equation into the form

aiix!k+') + w c aijzj"') = (1 - w)aiix:') - w c a i j x y) + wbi.
j<i j>i

This relationship between the new iterates xi"') and the old x:') holds for
i = 1 , . . . , n, and using (9.3.5) we can write it in matrix-vector form as

Dx"+' - WLX"' = (1 - w)Dxk + wUxk + wb.

Sinw thc rriat,rix D - W L in ngttiri lower-triangular and, by assumption, hw
non-wro (liagotiitl v l o t i i (w t , n , it, i H iioiiniiigiilar, no we may write

pt 1 = (I) - wl ,) I [(I - w) I) + w I l] x k + w (U - wl,) "b. (!1.3.2 1)

298 CHAPTER 9 THE CURSE OF DIMENSIONALITY

This defines the successive overrelaxation (SOR) method, although, as with
Gauss-Seidel, the componentwise prescription (9.3.18), (9.3.19) would usuallly
be used for the actual computation. Note that if w = 1, (9.3.21) reduces to
the Gauss-Seidel iteration.

We restrict ourselves to real values of the parameter w. Then a necessary
condition for the SOR iteration (9.3.21) to be convergent is that 0 < w < 2
(see Exercise 9.3.15). In general, a choice of w in this range will not give con-
vergence, but in the important case that the coefficient matrix A k symmetric
and positive-definite, we have the following extension of Theorem 9.3.3, which
we also state without proof

THEOREM 9.3.4 (Ostrowski) Assume that A i s symmetric and
positive-definite. Then fo r any w E (0,2) and any starting vector
xo, the SOR iterates (9.3.21) converge to the solution of A x = b.

We would like to be able to choose the parameter w so as to optimize the
rate of convergence of the iteration (9.3.21). In general this is a very difficult
problem, and we will attempt to summarize, without proofs, a few of the
things that are known about its solution. For a class of matrices that are
called consistently ordered with property A, there is a rather complete theory
that relates the rate of convergence of the SOR method to that of the Jacobi
method and gives important insights into how to choose the optimum value of
w. We will not define this class of matrices precisely; suffice it to say that it
includes the matrix (9.1.18) of equations (9.3.8) as well as many other matrices
that arise as discrete analogs of elliptic partial differential equations.

The fundamental result that holds for this class of matrices is a relationship
between the eigenvalues of the SOR iteration matrix

H, = (D - w L) - l [(l - w)D + wV] (9.3.22)

and the eigenvalues pi of the Jacobi iteration matrix J = D-l (L + U) . Under
the assumption that the pi are all real and less that 1 in absolute value, it can
be shown that the optimum value of w, denoted by WO, is given in terms of the
spectral radius, p(J), of J by

n

(9.3.23)

and is always between 1 and 2. The corresponding value of the spectral radius
of H, is

P(H,,) = wo - 1, (9.3.24)

and it is this spectral radius that governs the ultimate rate of convergence of
the method. Moreover, we can ascertain the behavior of p(H,) as a fiinc:tion
of w, as is shown in Figure 9.13.

9.3 ITERATIVE METHODS 299

1 0 0 2 0

Figure 9.13: p(H,) as a Function of w

We can obtain an idea of the acceleration of convergence that is possible
by considering the equations (9.3.8). For this problem the eigenvalues of the
Jacobi iteration matrix J can be computed explicitly, and the largest turns
out to be

(9.3.25)
1

N + 1 ' p (J) = cos nh, h = -
If we put this in (9.3.23), we obtain

If, again for illustration, we take N = 44, then

p (J) = 0.9976, p(H1) = 0.995, wo = 1.87, p(H,,) = 0.87. (9.3.27)

This shows that, asymptotically, the error in Jacobi's method will decrease by
a factor of 0.9976 at each step, and that of the Gauss-Seidel method by a factor
of 0.995 = (.9976)2, which is twice as fast. But the error in the SOR method
will decrease by a factor of 0.87 = (.995)30, so that SOR is about thirty times
as fast as the Gauss-Seidel method. Moreover, the improvement becomes more
marked as N increases (see Exercise 9.3.8).

The preceding discussion indicates that dramatic improvements in the rate
of convergence of the Gauss-Seidel method are possible. However, a number
of caveats are in order. First of all, many - perhaps most - large sparse
matrices that arise in practice do not enjoy being "consistently ordered with
property A," and the preceding theory will not hold. It is still possible that
introduction o f the paritrnctttr w into the Gauss-Seidel method will produce a
substantial incrctw i i i t , l io rat(! of (:ow(!rgcricc, but this will not necessarily
be known i i i aclvsiicv!, i i o r will WP kiiow how tm c:hoonc: il, good value of w.
Evon i f t h c : o c ! f t i c : i c v i f . iiirit,rix in "c~oi inintc~i i f . ly orcl(w!cl witli propt!rt,y A," i t

300 CHAPTER 9 THE CURSE OF DIMENSIONALITY

still may be difficult to obtain a good estimate of W O . It was possible to
compute explicitly the quantities of (9.3.27) only because of the very special
nature of the equations (9.3.8), which allowed an exact computation of p(J) .
In general this will not be possible, and to use (9.3.26) will require estimating
p(J), which is itself a difficult problem. Thus even in those cases where the
preceding theory holds, it may be necessary to use an approximation process
to obtain a suitable value of w. In particular, there are "adaptive methods"
that help to approximate a good value of w as the SOR iteration proceeds (see
the Supplementary Discussion).

The Conjugate Gradient Method
A large number of iterative methods for solving linear systems of equa-

tions can be derived as minimization methods. If A is symmetric and positive
definite, then the quadratic function

Q (X) = ; x ~ A x - X T b (9.3.28)

has a unique minimizer which is the solution of Ax = b (Exercise 9.3.11). Thus
methods that attempt to minimize (9.3.28) are also methods to solve Ax = b.
Many minimization methods for (9.3.28) can be written in the form

x k + l = x k - akpk, k = 0 ,1 , (9.3.29)

Given the direction vector p k , one way to choose C Y ~ is to minimize q along the
line xk - a p k ; that is,

q(xk - a k p k) = minq(x k - a p k). (9.3.30)

For fixed x k and p k , q(xk - a p k) is a quadratic function of a and may be
minimized explicitly (Exercise 9.3.12) to give

Q

f f k = - (p k , r k) / (p k , A p k) , rk = b - Axk. (9.3.31)

In (9.3.31), and henceforth, we use the notation (u,v) to denote the inner
product uT v.

Although there are many other ways to choose the ak, we will use only
(9.3.31) and concentrate on different choices of the direction vectors p k . One
simple choice is p k = rkl which gives the method of steepest descent

xk+' = X' - ak(b - Ax'), k = 0 , 1 , (9.3.32)

This is also known as Richardson's method and is closely related to Jacobi's
method (Exercise 9.3.13). As with Jacobi's method, the convergence of (9.3.32)
is usually very slow. Another simple strategy is to take p k as one of the
unit vectors ei, which has a 1 in position i and is zero elsewhere. Then, if

9.3 ITERATIVE METHODS 30 1

po = el , p' = e2,. . . , pn-l = en, and the f f k are chosen by (9.3.31), n steps
of (9.3.29) are equivalent to one Gauss-Seidel iteration on the system Ax = b
(Exercise 9.3.14).

A very interesting choice of direction vectors arises from requiring that they
satisfy

Such vectors are called conjugate (with respect to A). It can be shown that if
po, . . . , pn-' are conjugate and the a'k are chosen by (9.3.31), then the iterates
xk of (9.3.29) converge to the exact solution in at most n steps. This property,
however, is not useful in practice because of rounding error; moreover, for large
problems n is far too many iterations. For many problems, however, especially
those arising from partial differential equations, methods based on conjugate
directions may converge, up to a convergence criterion, in far fewer than n
steps.

To use a conjugate direction method it is necessary to obtain the vectors
pk that satisfy (9.3.33). The preconditioned conjugate gradient algorithm gen-
erates these vectors as part of the overall method:

(pi, Apj) = 0 , i # j . (9.3.33)

Choose xo. Set ro = b - Axo. Solve Mfo = ro. Set po = fo . (9.3.34a)

For k = 0,1, . . .

f f k = - (f k , rk)/(pk, A p k) (9.3.34b)

x k + l = Xk - ffkpk (9.3.34c)

rk+l = rk + akApk (9.3.34d)

Test for convergence (9.3.34e)

Solve MI"+' = rk+l (9.3.34f)

,& = (fk+l, rk+l)/(fk, rk) (9.3.34g)

p k + l = f k + l + pkPk (9.3.3411)

We next make several comments about this algorithm. Assume for now that
M = I in (9.3.34a,f); then f k = rk and (9.3.34) defines the conjugate gradiant
method. The formula for f f k in (9.3.3413) differs from (9.3.31) because of an
identity, (pk, rk) = (rk, rk) , in the conjugate gradient method; thus (9.3.34b,c)
compute the rriiriirririiri in the direction pk. The next step computes the new
residual vt!c:t,or n i i i w

302 CHAPTER 9 THE CURSE OF DIMENSIONALITY

Because Apk is already known, this way of computing rk+l saves the multi-
plication Ax”’. Next there would be a convergence test; the usual one is
(r k + l , rk+l) = ((rk+’((% 5 E . Finally, the last two steps, (9.3.34glh), com-
pute a new direction vector p“l. It is not obvious that the direction vectors
computed in this fashion are conjugate, but it can be proved relatively easily
(Exercise 9.3.9).

Assuming still that M = I, the major work in each step of the conjugate
gradient algorithm is the matrix-vector product Apk. Note that as in the
Lanczos algorithm of Chapter 7, A need not be known explicitly as long as
a matrix-vector product can be computed. In addition to this product, three
“saxpy” operations of the form vector + scalar * vector are required, as well
as inner products for (pkl Ap’) and (rkl r’); if the latter quantity is used in
the convergence test, no further work is required there except a comparison.

We now return to the assumption that M = I . It can be shown that if x*
is the exact solution, then

(9.3.35 a) J J X k - x*JI2 5 2fia”lJzO - 2 * J (2 ,

where IC = cond2(A) = llA11211A-1112 and

a = (&- 1)/(&+ 1). (9.3.35 b)

The larger the condition number, the closer cr is to 1 and the slower the rate
of convergence. The role of the matrix M in (9.3.34f) is to “precondition” the
matrix A and reduce its condition number so as to obtain faster convergence.

Preconditioning
There are numerous ways to choose the matrix M but we discuss only two.

First, consider M = D, the main diagonal of A. This can be very beneficial
if the main diagonal elements of A have considerable variability. On the other
hand, if they are constant, as for the Poisson equations (9.1.13), then this
choice of M does not change the rate of convergence. Another, more generally
applicable, way to choose M is known as incomplete Cholesky factorization:

F o r j = l , ..., n

(9.3.36a)

For Z = j + l , . . . , n

If aij = 0 then l i j = 0 else

i -1

(9.3.36b)

(9.3.36c)

9.3 ITERATIVE METHODS 303

Without the statement (9.3.36b), this is the Cholesky factorization of Fig-
ure 4.5. The effect of (9.3.36b) is to bypass the computation of Zij if the
corresponding element of A is zero. Thus (9.3.36b) suppresses the fill that
would normally occur in a Cholesky factorization, and we obtain a “no-fill”
approximate Cholesky factor L. We then take M = LLT. The incomplete
factorization (9.3.36) is done once at the beginning of the iteration; then dur-
ing each iteration (9.3.34f) is carried out by solving two triangular systems
with coefficient matrices L and LT. The hope is that the extra work of incor-
porating this preconditioner will be more than repaid by a reduction in the
iteration count. For example, for a two dimensional Laplace equation on a
99 x 101 grid (9999 equations), the conjugate gradient iteration takes 266 iter-
ations (for a given convergence criterion) , whereas with incomplete Cholesky
preconditioning this is reduced to 45 iterations. The extra work to incorporate
the preconditioning does no more than double the time per iteration (and can
be much less with certain optimizations) so that the gain in speed is at least a
factor of three. Although the Cholesky factorization can always be performed
if A is symmetric positive definite, the incomplete factorization of (9.3.36)
may fail. However, it is possible to modify (9.3.36) in various ways so that an
incomplete factorization is possible (see the Supplementary Discussion).

Summary
In this section we have given an introduction to some of the simplest itera-

tive methods for large sparse systems of linear equations, especially those which
arise from elliptic partial differential equations. There are a number of other
methods, some of which are mentioned in the Supplementary Discussion, and
which method to use on a given problem is usually not clear. Moreover, direct
methods such as Gaussian elimination with suitable reorderings are sometimes
very efficient. In fact, for elliptic equations in two dimensions, direct methods
are probably to be preferred, whereas for three-dimensional problems iterative
methods are probably the best. However, which method to use will depend
upon several factors, including the computer, the particular equation to be
solved, and the accuracy required in the solution.

Supplementary Discussion and References: 9.3
The Jacobi and Gauss-Seidel iterations are classical methods that go back

to the last century. The basic theory of the SOR method was developed by
Young [1950]. For a complete discussion of the Jacobi, Gauss-Seidel, and SOR
methods and their many variants, see Varga [1962] and Young [1971]. For
ways to compute a(1aptively the w in SOR, see Hageman and Young [1981]
and Young and Mtti [l!)!)O].

Tht. t)wi(- (-o t iv (qo i i (*o ‘ I ’ h w w i 9.3.1 ix really equivalent to powers of a
trititrix t m c l i i i l r ; 1,o ~ W I . ‘I’tw c-oi i t l i thi l,titbI, /Ike(l -+ 0 (tn k + 00 for any eo
in (vIiiivdoiit, to I t ” + 0 ILH A 4 (XI. If I / = /’.I P ’ , wl icw .I is t,hc .Jordan

304 C H A P T E R 9 THE CURSE OF DIMENSIONALITY

canonical form of H , then H k = PJkPP-' and H k + 0 if and only if Jk + 0
as k -, m. If J is diagonal, then the result is essentially what was shown
in the text. Otherwise one needs to analyze powers of a Jordan block. By
considering (X I + E) k , where E is a matrix of 1's on the first superdiagonal,
it is easy to see that for k 2 n

which shows that the powers of a Jordan block tend to zero if and only if
1x1 < 1. Although p (H) < 1 is a necessary and sufficient condition that the
iterates (9.3.9) converge for any xo, it is not necessarily the case that the
relation I lekfl I I < I lek I I for the error vectors will hold in some usual norm (see
Exercise 9.3.10).

Theorem 9.3.2 can be extended to a form suitable for handling equations
such as (9.3.8). If A is irreducibly diagonally dominant (see the Supplementary
Discussion of Section 3.1), then the system of equations Ax = b has a unique
solution x*, and both the Jacobi and Gauss-Seidel iterates converge to x* for
any starting vector xo. It can be shown that the coefficient matrix of (9.3.8)
is irreducible and that this result then applies.

Theorem 9.3.4 is a special case of a more general convergence theorem: if
A is symmetric positive definite and A = P - Q, where P is nonsingular and
xT(P + Q)x > 0 for all x # 0, then p(P-'Q) < 1. This is sometimes referred
to as the Householder-John Theorem but it is actually due to Weissinger; see
Ortega [1990], where it is called the P-regular splitting theorem. A converse
of Theorem 9.3.4 also holds: If A is symmetric with positive diagonal elements
and SOR converges for some w E (0 ,2) and every xo, then A is positive
definite. If this converse is added, Theorem 9.3.4 is known as the Ostrowski-
Reich Theorem.

Iterative methods such as Gauss-Seidel tend to make fairly rapid progress in
the early stages and then slow down. As a consequence Gauss-Seidel is rarely
used by itself but it can be a key component of the multigrid method. Assume
that a partial differential equation is discretized on a grid of points for which the
approximate solution is desired. We call this the fine grid, and subsets of these
grid points are courser grids. A multigrid method takes a few Gauss-Seidel
iterations on the fine grid, then stops and "restricts" information from the fine
grid to a coarser grid and performs a few Gauss-Seidel iterations on this coarser
grid. The process is continued by using still coarser grids. Information from
these coarser grids is transmitted back to the finer grids by interpoltttion. Tticw

9.3 ITERATIVE METHODS 305

are many important details in this process and many variations on the basic
multigrid idea. Properly implemented, multigrid methods are increasingly
becoming the method of choice for many problems. For an introduction to
the multigrid method, see Briggs [1987] and, for a more advanced treatment,
Hackbrush [1985].

The conjugate gradient method was introduced by Hestenes and Stiefel
[1952]. Because of its finite convergence property it is a direct method, al-
though it was not a successful competitor against Gaussian elimination. Since
the 1970’s, however, it has enjoyed a resurgence as an iterative method for
large sparse systems. Another sometimes useful way to view the conjugate
gradient method is as an acceleration technique. It can be shown that the
conjugate gradient iterates satisfy the three-term recurrence relation known as
the Rutishauser form,

xk+l = ~ k + i { b k + i [(l - A)xk +b] + (1 - brc+i)xk} + (1 - P~c+I)x”’ , (9.3.37)

where the scalar parameters pk and brc are themselves computed by recurrence
relations. In this form, (9.3.37) can be considered an acceleration of the basic
iterative method yk+’ = (I - A) y k + b, which is (9.3.32) with the ck’k = 1.
For further reading on the conjugate gradient method, see Golub and Van
Loan [1989], Ortega [1988], and Hageman and Young [1981]. In particular, see
Ortega [1988] for various ways to modify the incomplete Cholesky factorization
(9.3.36) in case it should fail.

Many elliptic equations that arise in practice are nonlinear. The methods
of this section do not apply immediately in this case, although extensions of
them to nonlinear equations have been developed (see Ortega and Rheinboldt
[1970]). On the other hand, if a method such as Newton’s method is used
(Section 5.3), then at each stage a large sparse linear system must be solved
approximately, and iterative methods can be used for this purpose.

EXERCISES 9.3

9.3.1. Apply the Jacobi and Gauss-Seidel iterations to the system of equations Ax =
b where

3 1 1
A = [1 1 3 l], 1 ’ = [I] 1 1 1 3 J 1 3 ~

Use the starting approximation xo = (1,1,1) and take enough steps of the
iterative processes for the pattern of convergence to become clear.

9.3.2. Write computm prograrris for the Jacobi and Gauss-Seidel methods. Test
them on t,hc! proMc!tti of Excrcinc: 9.3.1.

8.3.3. Writ,(! out, in t l o h i l th! .I irc -o t) i rrrid (~tul~H-%idi:I itf?rtitioiifl for the equations
(9.3.8) for N : 3.

306 CHAPTER 9 THE CURSE OF DIMENSIONALITY

9.3.4. Consider the elliptic equation uzz + uyy + cu = 0 with the values of u pre-
scribed on the boundary of a square domain. Derive the difference equations
corresponding to (9.3.8). If c is a negative constant, show that the resulting
coefficient matrix is strictly diagonally dominant.

9.3.5. Let A be a real n x n symmetric positive definite matrix.

a. Show that the diagonal elements of A are necessarily positive.
b. If C is any real n x n nonsingular matrix, show that CTAC is also positive

definite.

9.3.6. Carry out several steps of the SOR iteration for the problem of Exercise 9.3.1.
Use the values w = 0.6 and w = 1.4 and compare the rates of convergence to
the Gauss-Seidel iteration.

9.3.7. Write a computer program to apply the SOR iteration to (9.3.8).

9.3.8. Use the relations (9.3.25) and (9.3.26) to compute p(J) , wo, and p(H,,) for
(9.3.8) for N = 99 and N = 999.

9.3.9. Prove that the relationship (9.3.33) holds for the conjugate gradient method
by using the following induction argument. As the induction hypothesis, as-
sume that (pk,Apj) = (rk,rj) = 0, j = 0 , . . . , k - 1. ((p',Apo) = 0;
(r',ro) = (ro - aoApo,po) = 0 by the definition of QO.) Then show that
(pk+',Apj) = (rk+', rj) = 0 for j = 0 , 1 , . . . , k .

9.3.10. Let H = [1. Compute Hk and show that if eo = (0, l) T , then

ek = Hkeo = (~ 2 - " ' , 0) ~ . Thus if a = 2O, llekllz 2 I leol lz.

9.3.11. Show that the gradient vector for (9.3.28) is Vq(x) = Ax - b. If A is
symmetric positive definite, show that the unique solution of Ax = b is the
unique minimizer of q.

9.3.12. For the function q of (9.3.28), show that

q(x - ap) = iqTAp(rZ + pT(b - AX)Q - $xT(2b - AX).

For x = xk and p = pk, minimize this function of Q to obtain (9.3.31).

9.3.13. If (Yk = 1 and A is such that its main diagonal is I , show that (9.3.32) is

9.3.14. Let po = el, p1 = ez, . . . , p"-' - - en, where ei is the vector with 1 in the
ith component and zero elsewhere. Show that n steps of (9.3.29) with Qk given
by (9.3.31) is equivalent to one Gauss-Seidel iteration on the system Ax = b.

9.3.15. For the SOR iteration matrix (9.3.22), show that det (D-wL)-' = det D-'
and then that det H , = (1 - w)". Using the fact that the determinant of a
matrix is the product of its eigenvalues, conclude that if w is real and w 5 0
or w 2 2, then at least one eigenvalue of H, must be greater than or equal to
1 in magnitude.

Jacobi's method.

9.3 ITERATIVE METHODS 307

9.3.16. Let A = EL + D - U , where E is a small parameter and JJUJJ, = 1.

a. Give an upper bound on the spectral radius of the Gauss-Seidel iteration

b. Now consider the “backward” Gauss-Seidel iteration

(D + U)x”’ = -eLxk + b.

Give an upper bound on the spectral radius of the iteration matrix for
this method and show its dependence on E .

matrix (E L + D)-’U.

	contents
	9. The Curse of Dimensionality
	9.1 Two and Three Space Dimensions
	Finite Differences for Poisson’s Equation
	The Heat Equation
	An Alternating Direction Method
	Supplementary Discussion and References: 9.1

	9.2 Direct Methods
	Fill in Gaussian Elimination
	Domain Decomposition Reordering
	Nested Dissection
	Supplementary Discussion and References: 9.2

	9.3 Iterative Methods
	Jacobi's Method
	The Gauss-Seidel Method
	Convergence
	The SOR Method
	The Conjugate Gradient Method
	Preconditioning
	Summary
	Supplementary Discussion and References: 9.3

