
Chapter 9 

The Curse of 
Dimensionality 

9.1 Two and Three Space Dimensions 
In the previous chapter we considered partial differential equations in two 

independent variables: time and one space variable. Since physical phenom- 
ena occur in a three-dimensional world, mathematical models in only one space 
dimension are usually considerable simplifications of the actual physical situ- 
ation although in many cases they are sufficient for phenomena that exhibit 
various symmetries or in which events are happening in two of the three space 
dimensions at such a slow rate that those directions can be ignored. However, 
large-scale scientific computing is now increasingly concerned with more de- 
tailed analyses of problems in which all three space directions, or at least two, 
are of concern. This chapter, then, will be concerned with problems in more 
than one space dimension, although for simplicity of exposition we will mainly 
discuss only two-dimensional problems. 

In the previous chapter we considered the heat equation 

Ut = cuxx (9.1.1) 

as a mathematical model of the temperature in a long, thin rod. If the body 
of interest is a three-dimensional cube, as shown in Figure 9.1, (9.1.1) extends 
to three dimensions with partial derivatives in all three variables 2, y, and z .  
Thus 

U t  = 4 u x x  + 'Ilyy + %%), (9.1.2) 

where the (:oIiHtaiit, c i H  again thr ratio of the thermal conductivity and the 

qi1aiit,i18iw ttrc not, fiiti(*t,ioiiH of ~ p t ~  o r  t , i t t w .  
prOdll(:t, Of t l l ( !  Hpf!C:ifiC: tlt!ltt I t I l d  IIlhHH (h!llHit ,Y 1IIider the ~HHlltIlptiOIl that these 
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Figure 9.1: Three-Dimensional Cube 

Equation (9.1.2) is a model of the temperature u as a function of time and 
at points within the interior of the body. As usual, to complete the model 
we need to specify boundary conditions, and for this purpose it is simplest for 
exposition to treat the corresponding problem in two space dimensions: 

U t  = c('zLzz + 'ZLyy). (9.1.3) 

We can consider (9.1.3) to be the mathematical model of the temperature in 
a flat, thin plate as shown in Figure 9.2, where we have taken the plate to be 
the unit square. 

Y l  

Figure 9.2: Flat, Thin Plate 

The simplest boundary conditions occur when the temperature is pre- 
scribed on the four sides of the plate: 

4t lZl  Y) = d Z 1 Y ) l  (Zl Y) on boundary1 (9.1.4) 
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where g is a given function. Another possibility is to assume that one of the 
sides, say x = 0, is perfectly insulated; thus, there is no heat loss across that 
side and no change in temperature, so the boundary condition is 

u,(t,O,y) = 0, 0 5 Y I 1, (9.1.5) 

combined with the specification (9.1.4) on the other sides. A boundary condi- 
tion of the form (9.1.5) is usually called a Neumann condition, and that of the 
form (9.1.4) is a Dirichlet condition. Clearly, various other such combinations 
are possible, including a specified temperature change (other than zero) across 
a boundary. Boundary conditions for the three-dimensional problem can be 
given in a similar fashion. We also must specify a temperature distribution at 
some time which we take to be t = 0; such an initial condition for (9.1.3) is of 
the form 

4 0 ,  z, Y) = f(G 9). (9.1.6) 

Given the initial condition (9.1.6) and boundary conditions of the form 
(9.1.4) and/or (9.1.5), it is intuitively clear that the temperature distribution 
should evolve in time to a final steady state that is determined only by the 
boundary conditions. In many situations it is this steady-state solution that 
is of primary interest, and since it no longer depends on time it should satisfy 
the equation (9.1.3) with ut = 0: 

u,, + uyy = 0. (9.1.7) 

This is Laplace’s equation and, as mentioned in the previous chapter, is the 
prototype of an elliptic equation. If we wish only the steady-state solution of 
the temperature distribution problem that we have been discussing, we can 
proceed, in principle, in two ways: solve equation (9.1.3) for u as a function 
of time until convergence to a steady state is reached, or solve (9.1.7) only for 
the steady-state solution. 

Finite Differences for Poisson’s Equation 
We will return to the time-dependent problem shortly, after considering 

the finite difference method for (9.1.7) and, more generally, Poisson’s equation 

u,, + uyy = f, (9.1.8) 

where f is a given function of x and y. We assume that the domain of the 
problem is the unit square 0 5 x, 51 5 1, and that Dirichlet boundary conditions 

4 2 ,  v )  = dx, u ) ,  (x, Y) on boundary (9.1.9) 

are given, w h w !  is t1 kriown function. We impose a mesh of grid points on 
thc unit, Hqiinrc wi th  Hpaciiig h l)et,wc!c!n the! pointH ir i  hotti the horizontal and 
vc!rtic:nl clirc!c:t,ioiin; t , l i i H  i H  illiiHt,rat,cxl i l l  IciKiirc! !)J. 
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Figure 9.3: Mesh Points on the Unit Square and Discretization Stencil 

The interior grid points are given by 

(z i , y j )  = (ih,jh), i,j = 1 , .  . . N ,  (9.1.10) 

where ( N + l ) h  = 1. Now consider a typical grid point (xi, g j ) .  We approximate 
u,, and uyy at this point by the centered difference approximations 

uz,(zi ,Yj)  = j-#%-l,Yj) - 2 U ( Z i , Y j )  + 4 Q + l , Y j ) l ,  

U y y ( % Y j )  = p[u(zz,Yj-l) - 2+i ,Yj)  + u(Zi,Yj+1)1. 

1 
(9.1.1 la) 

(9.1.11 b) 

If we put these approximations into the differential equation (9.1.8), we obtain 

(9.1.12) 

1 

u(zi-1, V j )  + U(zi+l: yj) + u(zi, Yj-1) + ~(zi, yj+l )  - 4 ~ ( z i ,  y j )  

= h 2 f b 2 ,  y j ) ,  

which is an approximate relationship that the exact solution u of (9.1.8) sat- 
isfies at any grid point in the interior of the domain. 

We now define approximations uij to the exact solution u(zi ,yj)  at the 
N 2  interior grid points by requiring that they satisfy exactly the relationship 
(9.1.12); that is, 

- 2 ~ i + l , j - ~ i - i , j - ~ i , j + l - ~ i , j - 1 + 4 ~ i j  = - h 2 f i j ,  i,j = 1 , .  . . , N ,  (9.1.13) 

where we have multiplied (9.1.12) by -1. This is a linear system of equations 
in the ( N  + 2)’ variables uij. Note, however, that the variables U O , ~ ,  u ~ + l , j ,  

j = 0,. . . , N + 1, and u i , ~ ,  u i , ~ + l ,  i = 0, . . . , N + 1, correspond to the grid 
points on the boundary and thus are given by the boundary condition (9.1.9): 
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Therefore (9.1.13) is a linear systtiii ol N 2  equations in the N 2  i i t ikt iowiis  ‘uzjr 
i , j  = 1,. . . , N ,  corresponding to t h  iiit,orior grid points. The st,oiii*il i t 1  b‘ixiirv 
9.3 shows how uij is coupled to its i i o t t l i ,  south, east, and west iii!igliliorH i i i  

(9.1.13). It is easy to show (Exercise! !I. 1 . 1 )  that the local discretixiittioil ilrror 
in the uij is O(h2).  Note that (9.1.13) is tjhe natural extension to t,wo nli i i iv 
variables of the discrete equations 

-u2+1 + 2ui - ui-1 = -/r”f,, 2 = 1 , .  . . , N ,  

obtained in Chapter 3 for the “one-dirnoriHioii;tl Poisson equation” u” = j .  
We now wish to write the system (9.1.13) i t i  matrix-vector form, and for  

this purpose we will number the interior gricl points in the manner showri h i  
Figure 9.4, which is called the natural or row-wise ordering. Corresponding to 
this ordering of the grid points, we order tho ririkiiowns {uij} into the vector 

( u l l , , . .  rUNl,u12r...,UN2,...,11lN,...1uNN), (9.1.15) 

and write the system of equations in the same order. We illustrate this for 
N = 2 (Exercise 9.1.2): 

4 -1 -1 0 
-1 4 0 -1 
-1 0 4 -1 

0 -1 -1 4 

in which we have put the known boundary values on the right-hand side of the 
equation. . . . . . .  

N2 . . . . . .  
N + l  N + 2  2N . . . . . .  

1 2  N 

Figure 9.4: Natural Ordering of the Interior Grid Points 

The equations (9.1.16) begin to illustrate the structure of the liiiwr nyntmii. 
For general N ,  a typical row of the matrix will be 

-1 I) . . .  0 -1 4 -1 0 . . .  0 - 1  
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4 -1 -1 
-1 4 -1 -1 

-1  4 -1 -1 
-1 4 -1 

-1  4 -1 -1 
-1 -1 4 -1 -1 

-1 -1  4 -1 -1 
-1 -1 4 -1 

-1 4 -1 -1 
-1 -1 4 -1 -1 

-1 -1 4 -1 -1 
-1 -1 4 -1 

-1 4 -1  
-1  -1 4 -1 

-1 -1  4 -1 
-1 -1 4 

Figure 9.5: Coefficient Matrix of (9.1.13) for  N = 4 

equation, eliminating the corresponding -1 from the matrix. This happened 
in each equation in (9.1.16) because of the size of N .  We show in Figure 9.5 
the coefficient matrix for N = 4 (see Exercise 9.1.2). 

Although Figure 9.5 illustrates the structure of the coefficient matrix, this 
form is cumbersome for large N ;  it is much easier to write it in a block matrix 
form. To do this we define the N x N tridiagonal matrix 

(9.1.17) 

and let IN denote the N x N identity matrix. Then the N 2  x N 2  coefficient 
matrix of (9.1.13) is the block tridiagonal matrix 

A =  (9.1.18) 
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The matrix of (9.1.16) is the special case of (9.1.18) for N = 2, and Figure 9.5 
shows the matrix for N = 4. 

If we also define the vectors 

U i  = ( U l i , .  . . , U N ~ )  T , fi = ( f i i , .  . . , f ~ i ) ~ ,  i = 1,.  . . , N ,  

bl = (UO1 -k 2110,2120, 

bi = ( U O ~ ,  0, .  . . ,0 ,  ~ ~ + l , i ) ~ ,  

b N  = ( U 0 , N  -k U l , N + l ,  U 2 , N + 1 ,  * * * , U N - l , N ,  U N , N + 1  -k U N + l , N )  

* 7 U N - l , O ,  UN,O + U N + I , I ) T ,  

i = 2 , .  . . , N - 1, 
T 

7 

then we can write the system (9.1.13) in the compact form 

We now make several comments about this system of equations. If N is 
of moderate size, say N = 100, then there are N 2  = lo4 unknowns, and the 
matrix in (9.1.19) is 10,000 x 10,000. In each row of the matrix there are at 
most five nonzero elements, regardless of the size of N ,  so the distribution of 
nonzero to zero elements is very “sparse” if N is at all large. Such matrices are 
called large sparse matrices and arise in a variety of ways besides the numerical 
solution of partial differential equations. 

It is the property of being sparse that allows such large systems of equations 
to be solved on today’s computers with relative ease. Recall that in Chapter 4, 
we saw that Gaussian elimination requires on the order of n3 arithmetic op- 
erations to solve an n x n linear system. Hence if a lo4 x lo4 linear system 
were “dense,” that is, few of its elements were zero, and Gaussian elimination 
were used to solve the system, then on the order of 10l2 operations would 
be required. At a rate of lo6 operations per second, it would require several 
hours to solve such a system. Moreover, for the corresponding three dimen- 
sional problem the size of the system would be lo6, requiring l0l8 operations, 
which is completely beyond the capacity of the fastest computers. However, 
by utilizing the special structure and sparsity of systems such as (9.1.19), we 
shall see in the next two sections that they can be accurately solved relatively 
quickly and accurately, despite their large size. 

The Heat Equation 
We end thin nc:ction hy applying the discretization of Poisson’s equation to 

the hcat trqiiat,iori (9.1.3) in two spa(:(: variables where, again for simplicity in 
cxponit,ion, w(! will w w i i t !  I,liat, thc! x, 11 (1oIIitbiti in t h !  iiiiit nqI1tm! of Figure 9.3 
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and that the Dirichlet boundary conditions (9.1.4) are given on the sides of 
the square. We also assume the initial condition (9.1.6). 

Corresponding to the method (8.2.5) in the case of a single space variable, 
we can consider the following explicit method for (9.1.3): 

(9.1.20) 

for m = 0 , 1 , .  . . , and i,j = 1 , .  . . , N .  Here uc denotes the approximate so- 
lution at the i, j gridpoint and at the mth time level m a t ,  and u:+' is the 
approximate solution at the next time level. The terms in parentheses on the 
right-hand side of (9.1.20) correspond exactly to the discretization (9.1.13) 
with fij = 0. The prescription (9.1.20) has the same properties as its one- 
dimensional counterpart (8.2.5): it is first-order accurate in time and second- 
order accurate in space, and it is easy to carry out. It is also subject to a 
similar stabilitv condition 

h2 
At 5 - 

4c' 
(9.1.21) 

and thus has the problem that if h is small, very small time steps are required. 
We can attempt to circumvent this restriction on the time step in the same 

way that we did in Section 8.3 by the use of implicit methods. For example, 
the implicit method (8.3.2) now becomes 

(9.1.22) 

which is unconditionally stable. However, to carry out this method requires 
the solution at each time step of the system of linear equations 

for z,j = 1 , .  . . , N .  This system has the same form as the system (9.1.13) for 
Poissson's equation, with the exception that the coefficent of u;" is modified. 
Indeed, the left-hand sides of the equations (9.1.23) have exactly the same form 
as the finite difference equations for the Helmholtz equation u,, +uyy - uu = 0, 
where u is a given function of z and y. The term -uu in this differential 
equation becomes -h2uijuij in the difference equations (9.1.13), with uij = 
a (z i , y j ) .  The particular constant function u = - l / (cAt)  then corresponds to 
the left-hand side of (9.1.23). 

In the case of a single space variable, the use of an implicit method such 
as (8.3.2) does not cause much computational difficulty since the solution of 
tridiagonal systems of equations can be accomplished so rapidly. However, 
each time step of (9.1.23) requires the solution of a two-dimensional Poissoti- 
type equation, which is a much more dificiilt, (!oIri~)rlt,i~t,io~~~I p r o M w i .  'I'hc: 
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Crank-Nicolson method (8.3.12) can also be easily extended to equation (9.1.3) 
(Exercise 9.1.3) but suffers from the same difficulty that Poisson-type equations 
must be solved at each time step. We shall consider, instead, a different class of 
methods, in which the basic computational step is the solution of tridiagonal 
systems of equations. These are time-splitting methods, in which the time 
interval (t, t + At) is further subdivided and, in essence, only one-dimensional 
problems are solved at each timestep. 

An Alternating Direction Method 

alternating direction implicit (ADI) method, which has the form 
One of the most classical time-splitting methods is the Peacernan-Rachford 

+u$j._l - 2 u 3 ,  

This is a two-step method in which intermediate values u ; + ~ / ~ ,  i , j  = 1 , .  . . , N ,  
are computed at the first step (9.1.24a). These 2 ~ ; " ' ~  are to be interpreted as 
approximate values of the solution at the intermediate time level m + i; thus 
the factor appears on the right-hand side of (9.1.24a) because the time step 
is iA t .  The computation in (9.1.24a) involves the solution of the N tridiagonal 
systems of equations 

(9.1.25) 

= (a  - 2)uC + uyj+l + uyjLj_l, i = 1,. . . , N ,  

for j = 1,. . . , N ,  where a = 2h2/(cAt); that is, for each fixed j ,  (9.1.25) is 
a tridiagonal system whose solution is u;+ll2, i = 1,. . . , N .  The coefficient 
matrix of each of these systems is a1 + A, where A is the (2, -1) tridiagonal 
matrix (3.1.10). Since aI  + A is diagonally dominant, these systems can be 
rapidly solved by Gaussian elimination without interchanges. 

Once the intermediate values u;+1/2 have been computed, the final values 
are obtained from (9.1.24b) by solving the N tridiagonal systems 

(2  + +:;+l - ?4<;;JIl - ,uypl (9.1.26) 
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for i = 1,. . . , N. Again, the coefficient matrices of these systems are a1 + A. 
Thus the computational process requires the solution of 2N tridiagonal systems 
of dimension N to move from the mth time level to the (rn + 1)st. It can be 
shown that this method is unconditionally stable. 

The term alternating direction derives from the paradigm that in some sense 
we are approximating values of the solution in the x-direction by (9.1.24a), and 
then in the y-direction by (9.1.2413). There are many variants of AD1 methods 
and, more generally, of time-splitting methods, and such methods are widely 
used for parabolic-type equations. 

Supplementary Discussion and References: 9.1 
The discussion of this section has been restricted to Poisson’s equation 

in two variables on a square domain and the corresponding heat equation. 
However, problems that arise in practice will generally deviate considerably 
from these ideal conditions: the domain may not be square; the equation may 
have nonconstant coefficients or even be nonlinear; the boundary conditions 
may be a mixture of Dirichlet and Neumann conditions; there may be more 
than a single equation - that is, there may be a coupled system of partial 
differential equations; the equations may have derivatives of order higher than 
two; and there may be three or more independent variables. The general 
principles of finite difference discretization of this section still apply, but each 
of the preceding factors causes complications. 

One of the classical references for the discretization of elliptic equations 
by finite difference methods is Forsythe and Wasow [1960]. See also Roache 
[1972] for problems that arise in fluid dynamics, and Hall and Porsching [1990]. 
Discussions and analyses of alternating direction methods and related methods 
such as the method of fractional steps are found in a number of books; see, for 
example, Varga [1962] and Richtmyer and Morton [1967]. 

In the last several years finite element and other projection-type meth- 
ods have played an increasingly important role in the solution of elliptic- and 
parabolic-type equations. Although the mathematical basis of the finite ele- 
ment method goes back to the 1940s, its development into a viable procedure 
was carried out primarily by engineers in the 1950s and 1960s, especially for 
problems in structural analysis. Since then the mathematical basis has been 
extended and broadened and its applicability to general elliptic and parabolic 
equations well demonstrated. One of the method’s main advantages is its 
ability to handle curved boundaries. For introductions to the finite element 
method, see Strang and Fix [1973], Becker, Carey and Oden [1981], Carey and 
Oden [1984], Axelsson and Barker [1984], and Hall and Porsching [1990]. 
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EXERCISES 9.1 

9.1.1. Assume that the function u is as many times continuously differentiable as 
needed. Expand u in Taylor series about (xi ,yj)  and show that the approxi- 
mations (9.1.11) are second order accurate: 

and similarly for the approximation to uyy. Conclude that the local discretiza- 
tion error in the approximate solution of (9.1.13) is O(h2). 

9.1.2. Verify that with the ordering (9.1.15), the system of equations (9.1.13) takes 
the form (9.1.16) for N = 2. Verify also that Figure 9.5 gives the coefficient 
matrix for N = 4. What is the right-hand side of the system in this case? 

9.1.3. Formulate the Crank-Nicolson method for (9.1.3). 

9.1.4. Consider the equation 
u z z  + u y y  + 0212 = f 

with the boundary conditions (9.1.9) on the unit square and with u a positive 
constant. Approximate u2 by central differences: 

Write the difference equations corresponding to (9.1.13). Under what condition 
on a h  will the coefficient matrix be diagonally dominant? 

9.2 Direct Methods 
In the previous section we obtained the system of linear equations (9.1.19) 

after discretizing Poisson's equation. We now consider ways to solve such 
systems. In the next section we study iterative methods; in the present section, 
we treat Gaussian elimination and other direct methods. 

Fill in Gaussian Elimination 
The coefficient matrix of (9.1.19) is banded with semi bandwidth N ,  but 

it is very sparse within the band: whatever the size of N ,  there are at most 
five non-zero elements in each row. However, if we apply Gaussian elimina- 
tion or Cholesky factorization to this banded system, almost all elements that 
were zero within the band in the original matrix will become non-zero as the 
factorization proceeds. Such non-zero elements are called filled-in elements or 
simply fin. Tht! way that fill occurs can be seen by examining the basic step 
in Gaiiwitlii (!I i mi i i r i t , i o i i  ( s(x: Scc t ion 4.2) : 

( ! I .  2.1 ) 
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At the kth stage of the elimination, the element a::) is modified to become 

a::”) is non-zero and fill will occur in the i, j position at this stage. The more 
fill that occurs, the higher the operation count since elements that have become 
non-zero have to be eliminated later in the process. Ideally no fill would occur, 
so that the operation count would be based on the original number of non-zero 
elements in A.  

In many, if not most, problems it is difficult to ascertain where fill will 
occur without carrying out the elimination process. In some cases, however, 
especially where A has a simple structure, it is possible to determine the fill 
pattern easily. We next do this for the matrix of (9.1.19). We will consider only 
the block 3 x 3 form of this matrix since this clearly exhibits the fill pattern. 
It is convenient to do the analysis in terms of the LU decomposition of A; if 
we partition L and U corresponding to A we have: 

a::+’), as shown in (9.2.1). If aij (k) is zero but a!:) and a:) are both non-zero, 

(9.2.2) 

(9.2.3a) 

(9.2.3 b) 

(9.2.3~) 

(9.2.3d) 

(9.2.3e) 

L11 and U11 are the LU factors of the tridiagonal matrix T .  By (4.2.18), these 
factors have the form 

L11 = , (9.2.4) 

where the -1’s in U11 are the off-diagonal elements of T .  Even though L11 
has only two non-zero diagonals, the same is not true of LF;; it is a full lower 
triangular matrix. To see why this is true, recall from (4.2.20) that the ith 
column of L;: is the solution of the system 

L l l x ,  = e,, ( 9.2 * 5)  
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where ei is the vector with 1 in the ith position and zero elsewhere. The 
solution of (9.2.5) for i = 1 is 

2 1  = 1, 22 = -12x1 = -12,23 = -1322 = 1 2 1 3 , .  . ',XN = f12 * .  . 1 ~ .  

Thus provided that none of the li is zero, which is the case if L11 is the factor of 
T, all components of the first column of LT: are non-zero. Doing the analogous 
computation for general i, one sees that the first non-zero component in the 
solution is the ith position and then each subsequent component of the solution 
is non-zero. It follows that each column of Ly: has all non-zero elements below 
the main diagonal. The same is true for U z  so that UG1 is full above the main 
diagonal. It is easy to verify (Exercise 9.2.1) that the product UG'L;: is then 
a completely full matrix, and therefore the factors L22 and U22 in (9.2.3~) are 
full below and above the main diagonal, respectively. The same is true of the 
factors L 3 2 ,  L33, U23, and U33. Thus the non-zero structure of the factor L of 
(9.2.2) is as shown in Figure 9.6. 

Figure 9.6: Non-zero Structure of L and UT 

UT has the same structure and complete fill has occurred within the band, 
except for the first block. The same is true no matter how many blocks are in 
the matrix A; the 3 x 3 block structure of (9.2.2) was just used as an example. 
Thus, the amount of work to carry out the LU factorization (or Cholesky 
factorization, where the same fill pattern occurs) is almost as much as if the 
matrix A were a full banded matrix: the sparse structure of A within the 
band has essentially been lost because of the fill. This phenomenon is not 
dependent upon the particular 4, -1 entries in A,  and is true in much more 
general situations. Moreover, the QR factorization will also suffer from the 
same type of fill (Exercise 9.2.7). 

One approach to circumventing this problem of fill is a reordering of the 
equations and iinkiiowxis. Consider the matrix with the non-zero structure of 
Figure Y.7(a). If Gaiissitiii t!lirninat,iori is applied to this matrix, all elements 
will, i i i  Kt!tiorrtl, f i l l .  ( ) t i  t,hr o t h r  h r ~ ~ i d ,  for thr matrix of Fipyre 9.7.(b) no 
~ l ( w i o ~ i t , s  will f i l l .  T t i v  r i i t i t x i x  of F i g i r w  !1.7( I ) )  rritiy he o h t , t i i t i c v t  frorti that, 
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i l b ' i  I 

i l i l j  

of 9.7(a) by a reordering of the unknowns and equations (Exercise 9.2.2). In 

20 ~ i i 2 i i o  22 i 4 i i 8 f i 6  

is i i i i i 9  21 i 3 I i 7 1 i s  

* * ... * 
* *  

* * 

* * 

* 
* . . .  * *  

Figure 9.7: Arrowhead Matrices 

general, it will not be known in advance how to do a reordering that will 
minimize fill, but algorithms are known that can approximate this; see the 
Supplementary Discussion. 

Domain Decomposition Reordering 
We now consider a way to order the systems of equations (9.1.13) for the 

discrete Poisson problem so that Gaussian elimination can be carried out with 
less fill, and therefore fewer arithmetic operations, than if we used the natural 
ordering. We consider for illustration a rectangular grid of 22 interior points, 
as shown in Figure 9.8. We partition this grid into three subdomains, as well 
as two vertical lines of grid points called the separator set, labeled S. Such 
a partitioning is an example of a domain decomposition. We next number 
the grid points in the first subdomain using the natural ordering, followed by 
the points in the second, and third subdomains, and then finally those in the 
separator set. This is illustrated by the grid point numbers in the example of 
Figure 9.8. 

We now order the equations and unknowns according to the grid point num- 
bering of Figure 9.8. The resulting coefficient matrix is shown in Figure 9.9. 
Also shown in Figure 9.9 is the fill pattern that results from Gaussian elimi- 
nation (or Cholesky factorization). The original elements of the rnatrix are 4 



9.2 DIRECT METHODS 287 

and -1. The other integers i indicate elements that were zero in the original 
matrix but have become non-zero when elements in the ith column are zeroed 
in the Gaussian elimination process. It is left to Exercise 9.2.3 to verify the 
details of Figure 9.9. We note that the matrix (before fill) of Figure 9.9 is 
related by a permutation matrix to the matrix that would result from using 
the natural ordering (Exercise 9.2.4). 

4 -1 -1 
-1 4 - 1  1-1 

-1 4 2 2 - 1  -1 
-1 1 2 4 - 1  3 

-1 2 - 1  4 - 1  3 

4 - 1  -1 -1 
-1 4 - 1  7 - 1  7 

-1 4 8 8 - 1  8 -1 
-1 7 8 4 - 1  9 7 - 1  9 

-1 8 - 1  4 - 1  8 10 9 

4 - 1  -1 -1 
-1 4 - 1  1 3 - 1  13 

-1 4 14 1 4 - 1  14 

-1 1 4 - 1  4 - 1  14 16 
-1 15-1  4 15 16 

-1 3 3 3-1 7 8 7 8 9 4 - 1  9 12 
-1 -1 10 10 -1 4 10 12 

-1 13 14 13 14 15 9 10 4 -1 
-1 16 16 12 12 -1 4 

-1 3 - 1  4 3 -1 

-1 9 - 1  4 9 10 9 - 1  

-1 13 14 4 -1 15 13 -1 

Figure 9.9: Domain Decomposition Matrix and Fill Pattern 

The above discussion has illustrated in a very simple case the principle of 
domain decomposition. More generally, if we have p subdomains and sepa- 
rator sets that prevent unknowns in one subdomain from being connected to 
unknowns in any other subdomain, then the coefficient matrix will take the 
block arrowhead matrix form, 

(9.2.6) 
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- 
- L1 

L2 
L =  : U =  

LP 
- L1 L2 Lp L ,  - 

fil - . . .  - Ul 
u2 f i 2  

UP UP 

: , (9.2.7) 

- u.3 - 

LiUi = Ai, i = 1 ,..., p, (9.2.8a) 

LiUi = Bi, LiUi = BT, i = 1 ,..., p ,  (9.2.813) 

( 9 . 2 . 8 ~ )  
i=l 

Thus the factors L and U have the same block structure as A itself. All 
fill occurs only within these blocks and not outside them, as illustrated in 
Figure 9.9. 

2 6 1 io 8 i 2  i o  22 i 4  is is 
i 5 3 is i i i  9 ii i 3  i 7  i 5  

s1 s1 S s1 

Figure 9.10: Nested Dissection Reordering of Grid Points 

Nested Dissection 
We return to the example of Figure 9.9. The number of fill elements shown 

in the figure is 76. This is to be contrasted with 182 fill elements had we 
used the natural ordering and applied Gaussian elimination to the resulting 
banded matrix (Exercise 9.2.6). We can obtain still further improvement in the 
amount of fill by applying the domain decomposition principle again to each 
subdomain of Figure 9.8. The resulting numbering of the grid points is shown 
in Figure 9.10 and the corresponding coefficient matrix with fill elements in 
Figure 9.11. The ordering of Figure 9.8 is sometimes called one-way dissection, 
and repeated use of this within the subdomains leads to nested disaaction. 
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4 -1 -1 
-1 4 1-1 

4 -1 -1 -1 
-1 4 3 - 1  3 -1 

-1 1-1 3 4 - 1  3 4  
-1 -1-1 4 5 4  

-1 4 7 -1 7 -1 
4 -1 -1 -1 

4 -1 -1 -1 
-1 4 9 - 1  9 -1 

-1 7 - 1  9 4 - 1  7 8 9 1 0  
-1 -1-1 4 8 8 10 10 

-1 4 13 -1 13 -1 
4 -1 -1 -1 

4 -1 -1 
-1 4 15-1 

-1 1 3 - 1  15 4 - 1  13 14 
-1 -1-1 4 17 14 

-1 3 3 5 - 1  7 7 8  4 -1 11 11 
-1 4 4 -1 8 8  -1 4 12 12 

-1 9 9 10-1 13 13 17 11 11 4 -1 
-1 10 10 -1 14 14 12 12 -1 4 

Figure 9.11: Nested Dissection Matrix and Fill 

There are 60 fill elements in Figure 9.11, as opposed to 76 in the matrix of 
Figure 9.9, a relatively small but still significant saving. The main utility of 
these reordering techniques is, of course, for much larger problems. 

In summary, the main purpose of this section has been to show that Gaus- 
sian elimination on the discrete equations of a partial differential equation leads 
to considerable fill, and hence extra computation, but by judicious reorderings 
of the equations the amount of fill can be significantly reduced. 

Supplementary Discussion and References: 9.2 
An excellent reference for further reading on direct methods for sparse 

linear systems is George and Liu [1981]. This book includes, in particular, 
detailed analyses of the storage and operation counts of one-way dissection 
and a more general treatment of nested dissection in which both horizontal 
and vertical separator lines are used. There also is a discussion and analysis 
of othor r(!or(lcring tmliiiiques that rcducc: the fill. For more general problems 
( i x .  not, ( : o i i i i i i K  frotii I’oissoii’s oqiiatioii), on(! of the best such techniques is 
t31i(! miniwu7n du/rw d g w i t h 7 r i ~  A i i o t ,  tiw KW(I rcf(:rwice for sparse systems is 
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Duff et al. [1986]. 
The general idea of domain decomposition has broad application in the 

solution of partial differential equations, and has been a subject of intense 
research in the last several years because of its potential usefulness in parallel 
computing. For further discussion see, for example, Ortega [1988]. 

For general sparse linear systems, the algorithmic framework is the follow- 
ing: 

Step 1. Use a reordering strategy to minimize fill. 
Step 2. Do a symbolic factorization to determine the fill. 

Step 3. Do the numerical factorization (LU or LLT).  
Step 4. Solve the corresponding triangular systems. 

Set up data storage accordingly. 

The symbolic factorization in Step 2 can be done surprisingly rapidly. Once 
this is done, the exact fill pattern is known so that the amount of storage needed 
for the factorization is also known. Storage can then be allowed for only the 
non-zero elements in the factors. Step 1 is predicated on the assumption that 
there is no need for interchanges to preserve numerical stability. If this is 
not the case, then interchanges for stability may conflict with interchanges 
to minimize fill. Generally, a compromise called threshold pivoting is used in 
which interchanges for stability are made only if the pivot element is too small, 
say less than .1 of the maximum element in its column. In this case there may 
be several candidates for the new pivot element, and the algorithm can choose 
the one that is best for maintaining sparsity. 

For Poisson's equation and slight generalizations of it, there is another 
class of direct methods called Fast Poisson Solvers. There are many such 
methods and we will indicate only a few approaches. One is based on the fact 
that eigenvalues and eigenvectors of the matrix of (9.1.18) are known exactly 
in terms of sine functions. Thus if A = QDQT,  where D is the diagonal 
matrix with the eigenvalues of A and Q is an orthogonal matrix whose columns 
are the eigenvectors of A ,  the solution of Ax = b is x = QD-'QTb. The 
multiplications by QT and Q involve trigonometric sums and can be carried 
out by the Fast Fourier Transform (FFT).  Other, still faster, methods are 
based on the cyclic reduction algorithm and a combination of this with the 
Fast Fourier Transform. For further discussion of Fast Poisson Solvers, see, for 
example, Hockney and Jesshope [1988]. 

EXERCISES 9.2 

9.2.1. Let L and U be lower and upper triangular matrices for which Zij # 0, i 2 j ,  
and uij # 0, i 5 j. Show that all elements of U L  are, in general, non-zero. 
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9.2.2. Consider the system 

* * * * *  bi [; * * * *][iij=[;], 
where * denotes a non-zero element. Show that by the reordering of unknowns 
x1 * 25, 22 tt 2 4 ,  2 3  tt 23 and the corresponding reordering of the equations, 
the system can be written as 

x5 b5 

[ : ; ; ;  ; ] [ i ; ]=[ i ] .  
Generalize this to the case of the corresponding n x n system. 

9.2.3. Show that the ordering of the grid points (and hence unknowns) of Figure 9.8 
gives the coefficient matrix of 4's and -1's of Figure 9.9 for the system of 
equations (9.1.13). Next apply Gaussian elimination to this matrix and show 
that fill develops as indicated in Figure 9.9. 

9.2.4. Show that the coefficient matrix A of Figure 9.9 (without the fill) is related to 
the matrix A that one would obtain from the natural ordering by A = PAP, 
where P is a permutation matrix. 

9.2.5. Verify that LU factorization of the matrix of (9.2.6) is given by (9.2.7) and 
(9.2.8). 

9.2.6. For the grid of Figure 9.8, write out the 22 x 22 coefficient matrix for the 
natural ordering. Then verify, using the techniques that led to Figure 9.5, that 
the number of fill elements produced by Gaussian elimination is 182. 

9.2.7. Consider the QR method for the matrix of Figure 9.5. Show that R fills in 
within the band. 

9.2.8. Consider the special case of (9.2.6) in which 

and assume that A1 is symmetric positive definite. Show that A is not positive 
definite but that there is a Cholesky-like factorization of the form 

A =  [ " ] [  FT GT ] 
G' I !  0 - H T  
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9.2.9. Consider the special case of Exercise 9.2.8 in which A1 = I and B1 = ET. 
Show that the solution of the normal equations ETEa = ETf can be obtained 
by solving the system 

Discuss the circumstances in which you might wish to solve this expanded 
system in place of the normal equations. 

9.2.10. Use the fact that fill develops as in Figure 9.6 to show that the operation 
count for Gaussian elimination applied to the system (9.1.19) is O(N4). 

9.3 Iterative Methods 
An alternative to the direct methods discussed in the previous section is 

an iterative method, and we now describe some of the basic iterative methods 
for large sparse systems of equations. 

Jacobi's Method 

at this time except that the diagonal elements are non-zero: 
We consider the linear system Ax = b and make no assumptions about A 

aii # 0, i = 1, ..., n. (9.3.1) 

Perhaps the simplest iterative procedure is Jacobi's method. Assume that an 
initial approximation xo to the solution is chosen. Then the next iterate is 

(9.3.2) 

It will be useful to write this in matrix-vector notation, and for this purpose, 
we let D = diag(al1,. . . ,ann) and B = D - A.  Then it is easy to verify that 
(9.3.2) may be written as 

x1 = D-'(b + Bx'), 

and the entire sequence of Jacobi iterates is defined by 

xk+l = D-'(b + Bx'), k = 0 , 1 , .  . . . (9.3.3) 

The Gauss-Seidel Method 
A closely related iteration is derived from the following observation. After 

"(11) is computed in (9.3.2) it is available to use in the computation of x:), and 
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it is natural to use this updated value rather than the original estimate z'p'. 
If we use updated values as soon as they are available, then (9.3.2) becomes 

which is the first step in the Gauss-Seidel iteration. To write this iteration 
in matrix-vector form, let -L and -U denote the strictly lower and upper 
triangular parts of A; that is, both L and U have zero main diagonals and 

A = D - L - U. (9.3.5) 

If we multiply (9.3.4) through by aii, then it is easy to verify that the n 
equations in (9.3.4) can be written as 

Dx' - Lx' = b + UXO. (9.3.6) 

Since D - L is a lower-triangular matrix with non-zero diagonal elements, it is 
nonsingular. Hence the entire sequence of Gauss-Seidel iterates is defined by 

xk+' = ( D  - L)-l[Uxk + b], 5 = 0,1, .  . . . (9.3.7) 

The representations (9.3.3) and (9.3.7) of the Jacobi and Gauss-Seidel itera- 
tions are useful for theoretical purposes, but the actual computations would 
usually be done using the componentwise representations (9.3.2) and (9.3.4). 

We next consider the application of these iterative methods to Laplace's 
equation on a square. The difference equations for this problem were given by 
(9.1.13) (with fij = 0) in the form 

- u i + l j  - ui-l,j - ~ i , j + l  - ~ i , j - 1  + 4uij = 0, i , j  = 1,. . . , N .  (9.3.8) 

Here, the unknowns are the uij, i,j = 1 , .  . . , N ,  and the remaining values 
of the u's are assumed known from the boundary conditions. Given initial 
approximations u$', a Jacobi step applied to (9.3.8) is 

so that the new Jacobi approximation at the ( i , j)  grid point is simply the 
average of the previous approximations at the four surrounding grid points 
(i f l , j) ,  ( i , j  f 1).  It is for this reason that the Jacobi method is sometimes 
known as the method of .qimultaneous displacements. Note that for the Jacobi 
method the ortior it1 whic:h the equations are processed is immaterial. For 
the Gauss-St!iclc!l IIic!t , l iot l ,  this i N  I i o t ,  true, and each different ordering of the 
i!qiititiolis ttc*t,iiidly c:orrc!npolicis to II clifforl!Iltl it,l!rtit,ive process. If WI? order the 
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grid points left to right and bottom to top, as was done in Section 9.1, then a 
typical Gauss-Seidel step is 

This new approximation at the ( i , j )  grid point is again an average of the 
approximations at the four surrounding grid points, but now using two old 
values and two new values. The difference between the two methods is shown 
schematically in Figure 9.12. 

i, j + l  i, j + l  

New 4 Old 
-0- 

Old 4 Old 
-04- 

i - 1 ,  j i + l ,  j i - 1 , j  i + l ,  j 1 Old 1 New 

i 
i, j - I  

I 
i , j - l  

(a) Jacobi (b) Gauss-Seidel 

Figure 9.12: Jacobi and Gauss-Seidel Updates 

Convergence 

Both the Jacobi and Gauss-Seidel methods can be written in the form 
We consider next the question of the convergence of iterative methods. 

xk+' = H x k  + d, k = 0,1, .  . . . (9.3.9) 

In particular, H = D - l B  and d = D-lb  for the Jacobi process, whereas 
H = (D - L)-lU and d = (D - L)- 'b  for Gauss-Seidel. Now assume that X *  

is the exact solution of the system Ax = b. For the Jacobi method we then 
have 

( D  - B)x* = b or x* = D-lBx* + D-lb ,  

and for the Gauss-Seidel method 

( D  - L - U)x* = b or x* = ( D  - L)-'Ux* + ( D  - L)- 'b .  



9.3 ITERATIVE METHODS 295 

Thus in both cases 
X' = Hx' + d. (9.3.10) 

If we subtract (9.3.10) from (9.3.9), we have 

ek+' = Hek , k = 0 , 1 , . . . ,  (9.3.11) 

where ek = xk - x* is the error at the kth step. 
Iterative methods of the form (9.3.9) are called stationary one-step methods 

and (9.3.10) is the consistency condition. Then (9.3.11) is the basic error 
relation for such methods. We can analyze the errors in much the same way as 
we analyzed the power method in Section 7.3. Assume that H has n linearly 
independent eigenvectors v1,. . . , v, with corresponding eigenvalues XI,. . . , A,. 
The initial error e0 can then be expressed as some linear combination of the 
eigenvect ors: 

(9.3.12) 

Thus, 

eo = c l v l  + czvz + . . + c,v,. 

ek = H k e o  = clA:vl + c 2 A ~ v z  + . . + c,Akv,. (9.3.13) 

In order that ek + 0 as k + 00 for any xo (and, hence, any ci in (9.3.12)), we 
must have [ A i l  < 1, i = 1 , .  . . ,n; that is, the spectral radius, p ( H ) ,  must I N  
less than one. This result is true also when H does riot have n linearly irula- 
pendent eigenvectors, but the proof is more difficult (see the Sripplcrnentary 
Discussion). We state this basic convergence theorem as: 

THEOREM 9.3.1 If (9.3.10) holds, the iterates (9.3.9) converge t o  
the solution x* for any starting vector xo if and only af p ( H )  < 1. 

Theorem 9.3.1 is the basic theoretical result for one-step iterative methods 
but it does not immediately tell us if a particular iterative method is conver- 
gent; we need to ascertain if the spectral radius of the iteration matrix for the 
method is less than 1. In general, this is a very difficult problem, for which one 
might have to resort to computing all the eigenvalues of the iteration matrix. 
But for some iterative methods and for certain classes of matrices it is rela- 
tively easy to determine that the convergence criterion is satisfied. We next 
give some examples of this for the Jacobi and Gauss-Seidel methods. 

THEOREM 9.3.2 Assume that the matrix A is strictly diagonally 
dominant: 

(9.3.14) 

Then both t h c !  I J i m )  bi und GimwSr:iilcl it c rat ionN r:onaci:qe to the 
t m i q t ~ o  ~ o l u t i o n  o f  AX = b JOT. imp d i ~ ~ t a i q  wxtor x". 

laiil > C laijl, i = 1 , .  . . ,n. 
j#i 
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The proof of this theorem is very simple for the Jacobi method. Since H = 
D-lB ,  the condition (9.3.14) implies that the sums of the absolute values of 
the elements in each row of H are less that 1. Hence llHllm < 1, and therefore 
all eigenvalues of H are less that 1 in absolute value. Thus Theorem 9.3.1 
applies. The proof for Gauss-Seidel is a little more complicated. Let A be any 
eigenvalue of H and v a corresponding eigenvector. Then 

xv = Hv = (D - L)-lUv, 

or 
X(D - L)v = uv. (9.3.15) 

Let 

The lcth equation of (9.3.15) is 
lVkl = rnax(lvi1 : i = 1 , .  . . ,n} .  (9.3.16) 

j < k  j > k  

Then (9.3.17) can be written as 

X(1 + a )  = -p, 

so that 

by (9.3.14) and (9.3.16). Thus we have shown that p ( H )  < 1 and Theorem 9.3.1 
applies. 

The condition of strict diagonal dominance is a rather stringent one and 
does not apply to the difference equations (9.3.8) for Laplace’s equation: in 
most rows of the coefficient matrix there are four coefficients of absolute value 1 
in the off-diagonal positions, so that strict inequality does not hold in (9.3.14). 
However, by using different techniques (see the Supplementary Discussion), it 
can be shown that both methods indeed converge for the difference equations 
(9.3.8). 

The coefficient matrix of the equations (9.3.8) is symmetric [see (9.1.18)], 
and it can be shown that it is also positive-definite. Indeed, for many discrete 
analogs of elliptic partial differential equations, the coefficient matrix will be 
symmetric and positive-definite. In this case the Gauss-Seidel iteration will al- 
ways converge, although symmetry and positive-definiteness is not, in general, 
sufficient for the Jacobi method to converge. We state the following theorem 
without proof 
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THEOREM 9 .3 .3  Assume that the matrix A i s  symmetric and positive- 
definite. Then the Gauss-Seidel iterates converge to  the unique so- 
lution of Ax = b for  any  starting vector xo. 

Even when the Jacobi and Gauss-Seidel methods are convergent, the rate of 
convergence may be so slow as to preclude their usefulness; this is particularly 
so for discrete analogs of elliptic partial differential equations. For example, 
for equation (9.3.8) with N = 44, the error in each iteration of the Gauss- 
Seidel method will decrease asymptotically only by a factor of about 0.995. 
Moreover, the Jacobi method is about twice as slow on this problem, and the 
rate of convergence of both methods becomes worse as N increases. 

The SOR Method 
In certain cases it is possible to accelerate considerably the rate of conver- 

gence of the Gauss-Seidel method. Given the current approximation x', we 
first compute the Gauss-Seidel iterate 

(9.3.18) 

as an intermediate value, and then take the final value of the new approxima- 
tion to the ith component to he 

2 xi xi ). (9.3.19) x:!'+') = ('1 + W(@+') - (k) 

Here w is a parameter that has been introduced to accelerate the rate of con- 
vergence. 

We can rewrite (9.3.18) and (9.3.19) in the following way. First substitute 
(9.3.18) into (9.3.19): 

and then rearrange the equation into the form 

aiix!k+') + w c aijzj"') = (1 - w)aiix:') - w c a i j x y )  + wbi. 
j<i j>i 

This relationship between the new iterates xi"') and the old x:') holds for 
i = 1 , .  . . , n, and using (9.3.5) we can write it in matrix-vector form as 

Dx"+' - WLX"' = (1 - w)Dxk  + wUxk + wb. 

Sinw thc rriat,rix D - W L  in ngttiri lower-triangular and, by assumption, hw 
non-wro (liagotiitl v l o t i i ( w t , n ,  it, i H  iioiiniiigiilar, no we may write 

pt 1 = ( I )  - wl , )  I [ (  I - w ) I )  + w I l ] x k  + w ( U  - wl,)  "b. ( !1.3.2 1 ) 
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This defines the successive overrelaxation (SOR) method, although, as with 
Gauss-Seidel, the componentwise prescription (9.3.18), (9.3.19) would usuallly 
be used for the actual computation. Note that if w = 1, (9.3.21) reduces to 
the Gauss-Seidel iteration. 

We restrict ourselves to real values of the parameter w. Then a necessary 
condition for the SOR iteration (9.3.21) to be convergent is that 0 < w < 2 
(see Exercise 9.3.15). In general, a choice of w in this range will not give con- 
vergence, but in the important case that the coefficient matrix A k symmetric 
and positive-definite, we have the following extension of Theorem 9.3.3, which 
we also state without proof 

THEOREM 9.3.4 (Ostrowski) Assume that A i s  symmetric and 
positive-definite. Then  fo r  any w E (0,2) and any starting vector 
xo, the SOR iterates (9.3.21) converge to the solution of A x  = b. 

We would like to be able to choose the parameter w so as to optimize the 
rate of convergence of the iteration (9.3.21). In general this is a very difficult 
problem, and we will attempt to summarize, without proofs, a few of the 
things that are known about its solution. For a class of matrices that are 
called consistently ordered with property A,  there is a rather complete theory 
that relates the rate of convergence of the SOR method to that of the Jacobi 
method and gives important insights into how to choose the optimum value of 
w. We will not define this class of matrices precisely; suffice it to say that it 
includes the matrix (9.1.18) of equations (9.3.8) as well as many other matrices 
that arise as discrete analogs of elliptic partial differential equations. 

The fundamental result that holds for this class of matrices is a relationship 
between the eigenvalues of the SOR iteration matrix 

H, = (D - w L ) - l [ ( l -  w)D + wV] (9.3.22) 

and the eigenvalues pi of the Jacobi iteration matrix J = D-l (L  + U ) .  Under 
the assumption that the pi are all real and less that 1 in absolute value, it can 
be shown that the optimum value of w, denoted by WO, is given in terms of the 
spectral radius, p(J), of J by 

n 

(9.3.23) 

and is always between 1 and 2. The corresponding value of the spectral radius 
of H, is 

P(H,,) = wo - 1, (9.3.24) 

and it is this spectral radius that governs the ultimate rate of convergence of 
the method. Moreover, we can ascertain the behavior of p(H,) as a fiinc:tion 
of w, as is shown in Figure 9.13. 
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1 0 0  2 0 

Figure 9.13: p(H,) as a Function of w 

We can obtain an idea of the acceleration of convergence that is possible 
by considering the equations (9.3.8). For this problem the eigenvalues of the 
Jacobi iteration matrix J can be computed explicitly, and the largest turns 
out to be 

(9.3.25) 
1 

N + 1 '  p ( J )  = cos nh, h = - 
If we put this in (9.3.23), we obtain 

If, again for illustration, we take N = 44, then 

p ( J )  = 0.9976, p(H1)  = 0.995, wo = 1.87, p(H,,)  = 0.87. (9.3.27) 

This shows that, asymptotically, the error in Jacobi's method will decrease by 
a factor of 0.9976 at each step, and that of the Gauss-Seidel method by a factor 
of 0.995 = (.9976)2, which is twice as fast. But the error in the SOR method 
will decrease by a factor of 0.87 = (.995)30, so that SOR is about thirty times 
as fast as the Gauss-Seidel method. Moreover, the improvement becomes more 
marked as N increases (see Exercise 9.3.8). 

The preceding discussion indicates that dramatic improvements in the rate 
of convergence of the Gauss-Seidel method are possible. However, a number 
of caveats are in order. First of all, many - perhaps most - large sparse 
matrices that arise in practice do not enjoy being "consistently ordered with 
property A," and the preceding theory will not hold. It is still possible that 
introduction o f  the paritrnctttr w into the Gauss-Seidel method will produce a 
substantial incrctw i i i  t , l io  rat(! of (:ow(!rgcricc, but this will not necessarily 
be known i i i  aclvsiicv!, i i o r  will WP kiiow how tm c:hoonc: il, good value of  w.  
Evon i f  t h  c : o c ! f t i c : i c v i f .  iiirit,rix in "c~oi inintc~i i f . ly  orcl(w!cl witli propt!rt,y A," i t  
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still may be difficult to  obtain a good estimate of W O .  It was possible to 
compute explicitly the quantities of (9.3.27) only because of the very special 
nature of the equations (9.3.8), which allowed an exact computation of p(J) .  
In general this will not be possible, and to use (9.3.26) will require estimating 
p(J),  which is itself a difficult problem. Thus even in those cases where the 
preceding theory holds, it may be necessary to  use an approximation process 
to obtain a suitable value of w.  In particular, there are "adaptive methods" 
that help to approximate a good value of w as the SOR iteration proceeds (see 
the Supplementary Discussion). 

The Conjugate Gradient Method 
A large number of iterative methods for solving linear systems of equa- 

tions can be derived as minimization methods. If A is symmetric and positive 
definite, then the quadratic function 

Q ( X )  = ; x ~ A x  - X T b  (9.3.28) 

has a unique minimizer which is the solution of Ax = b (Exercise 9.3.11). Thus 
methods that attempt to minimize (9.3.28) are also methods to solve Ax = b. 
Many minimization methods for (9.3.28) can be written in the form 

x k + l  = x k  - akpk, k = 0 ,1 ,  . . .  . (9.3.29) 

Given the direction vector p k ,  one way to choose C Y ~  is to minimize q along the 
line xk - a p k ;  that is, 

q(xk - a k p k )  = minq(x k - a p  k ). (9.3.30) 

For fixed x k  and p k ,  q(xk - a p k )  is a quadratic function of a and may be 
minimized explicitly (Exercise 9.3.12) to give 

Q 

f f k  = - ( p k , r k ) / ( p k , A p k ) ,  rk = b - Axk.  (9.3.31) 

In (9.3.31), and henceforth, we use the notation (u,v) to denote the inner 
product uT v. 

Although there are many other ways to choose the ak, we will use only 
(9.3.31) and concentrate on different choices of the direction vectors p k .  One 
simple choice is p k  = rkl  which gives the method of steepest descent 

xk+' = X' - ak(b - Ax'), k = 0 , 1 , .  . . . ( 9.3.32) 

This is also known as Richardson's method and is closely related to Jacobi's 
method (Exercise 9.3.13). As with Jacobi's method, the convergence of (9.3.32) 
is usually very slow. Another simple strategy is to take p k  as one of the 
unit vectors ei, which has a 1 in position i and is zero elsewhere. Then, if 



9.3 ITERATIVE METHODS 30 1 

po = el ,  p' = e2,. . . , pn-l = en, and the f f k  are chosen by (9.3.31), n steps 
of (9.3.29) are equivalent to one Gauss-Seidel iteration on the system Ax = b 
(Exercise 9.3.14). 

A very interesting choice of direction vectors arises from requiring that they 
satisfy 

Such vectors are called conjugate  (with respect to A). It can be shown that if 
po, . . . , pn-' are conjugate and the a'k are chosen by (9.3.31), then the iterates 
xk of (9.3.29) converge to the exact solution in at most n steps. This property, 
however, is not useful in practice because of rounding error; moreover, for large 
problems n is far too many iterations. For many problems, however, especially 
those arising from partial differential equations, methods based on conjugate 
directions may converge, up to a convergence criterion, in far fewer than n 
steps. 

To use a conjugate direction method it is necessary to obtain the vectors 
pk that satisfy (9.3.33). The preconditioned conjugate  gradient algorithm gen- 
erates these vectors as part of the overall method: 

(pi, Apj) = 0 ,  i # j .  (9.3.33) 

Choose xo. Set ro = b - Axo. Solve Mfo = ro. Set po = fo .  (9.3.34a) 

For k = 0,1, .  . . 

f f k  = - ( f k ,  rk)/(pk, A p k )  (9.3.34b) 

x k + l  = Xk - ffkpk (9.3.34c) 

rk+l = rk + akApk (9.3.34d) 

Test for convergence (9.3.34e) 

Solve MI"+' = rk+l (9.3.34f) 

,& = (fk+l, rk+l)/(fk, rk)  (9.3.34g) 

p k + l  = f k + l  + pkPk (9.3.3411) 

We next make several comments about this algorithm. Assume for now that 
M = I in (9.3.34a,f); then f k  = rk and (9.3.34) defines the conjugate gradiant  
method.  The formula for f f k  in (9.3.3413) differs from (9.3.31) because of an 
identity, (pk, rk)  = (rk, rk) ,  in the conjugate gradient method; thus (9.3.34b,c) 
compute the rriiriirririiri in the direction pk. The next step computes the new 
residual vt!c:t,or n i i i w  



302 CHAPTER 9 THE CURSE OF DIMENSIONALITY 

Because Apk is already known, this way of computing rk+l saves the multi- 
plication Ax”’. Next there would be a convergence test; the usual one is 
( r k + l ,  rk+l ) = ((rk+’((% 5 E .  Finally, the last two steps, (9.3.34glh), com- 
pute a new direction vector p“l. It is not obvious that the direction vectors 
computed in this fashion are conjugate, but it can be proved relatively easily 
(Exercise 9.3.9). 

Assuming still that M = I, the major work in each step of the conjugate 
gradient algorithm is the matrix-vector product Apk. Note that as in the 
Lanczos algorithm of Chapter 7, A need not be known explicitly as long as 
a matrix-vector product can be computed. In addition to this product, three 
“saxpy” operations of the form vector + scalar * vector are required, as well 
as inner products for (pkl Ap’) and (rkl r’); if the latter quantity is used in 
the convergence test, no further work is required there except a comparison. 

We now return to the assumption that M = I .  It can be shown that if x* 
is the exact solution, then 

(9.3.35 a) J J X k  - x*JI2 5 2fia”lJzO - 2 * J ( 2 ,  

where IC = cond2(A) = llA11211A-1112 and 

a = (&- 1)/(&+ 1). (9.3.35 b) 

The larger the condition number, the closer cr is to 1 and the slower the rate 
of convergence. The role of the matrix M in (9.3.34f) is to “precondition” the 
matrix A and reduce its condition number so as to obtain faster convergence. 

Preconditioning 
There are numerous ways to choose the matrix M but we discuss only two. 

First, consider M = D, the main diagonal of A. This can be very beneficial 
if the main diagonal elements of A have considerable variability. On the other 
hand, if they are constant, as for the Poisson equations (9.1.13), then this 
choice of M does not change the rate of convergence. Another, more generally 
applicable, way to choose M is known as incomplete Cholesky factorization: 

F o r j = l ,  ..., n 

(9.3.36a) 

For Z = j + l , . . . , n  

If aij = 0 then l i j  = 0 else 

i -1  

(9.3.36b) 

(9.3.36c) 
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Without the statement (9.3.36b), this is the Cholesky factorization of Fig- 
ure 4.5. The effect of (9.3.36b) is to bypass the computation of Zij if the 
corresponding element of A is zero. Thus (9.3.36b) suppresses the fill that 
would normally occur in a Cholesky factorization, and we obtain a “no-fill” 
approximate Cholesky factor L. We then take M = LLT. The incomplete 
factorization (9.3.36) is done once at the beginning of the iteration; then dur- 
ing each iteration (9.3.34f) is carried out by solving two triangular systems 
with coefficient matrices L and LT. The hope is that the extra work of incor- 
porating this preconditioner will be more than repaid by a reduction in the 
iteration count. For example, for a two dimensional Laplace equation on a 
99 x 101 grid (9999 equations), the conjugate gradient iteration takes 266 iter- 
ations (for a given convergence criterion) , whereas with incomplete Cholesky 
preconditioning this is reduced to 45 iterations. The extra work to incorporate 
the preconditioning does no more than double the time per iteration (and can 
be much less with certain optimizations) so that the gain in speed is at least a 
factor of three. Although the Cholesky factorization can always be performed 
if A is symmetric positive definite, the incomplete factorization of (9.3.36) 
may fail. However, it is possible to modify (9.3.36) in various ways so that an 
incomplete factorization is possible (see the Supplementary Discussion). 

Summary 
In this section we have given an introduction to some of the simplest itera- 

tive methods for large sparse systems of linear equations, especially those which 
arise from elliptic partial differential equations. There are a number of other 
methods, some of which are mentioned in the Supplementary Discussion, and 
which method to use on a given problem is usually not clear. Moreover, direct 
methods such as Gaussian elimination with suitable reorderings are sometimes 
very efficient. In fact, for elliptic equations in two dimensions, direct methods 
are probably to be preferred, whereas for three-dimensional problems iterative 
methods are probably the best. However, which method to use will depend 
upon several factors, including the computer, the particular equation to be 
solved, and the accuracy required in the solution. 

Supplementary Discussion and References: 9.3 
The Jacobi and Gauss-Seidel iterations are classical methods that go back 

to the last century. The basic theory of the SOR method was developed by 
Young [1950]. For a complete discussion of the Jacobi, Gauss-Seidel, and SOR 
methods and their many variants, see Varga [1962] and Young [1971]. For 
ways to compute a(1aptively the w in SOR, see Hageman and Young [1981] 
and Young and Mtti [ l!)!)O]. 

Tht. t)wi(- ( -o t iv (qo i i (*o  ‘ I ’ h w w i  9.3.1 ix really equivalent to powers of a 
trititrix t m c l i i i l r ;  1,o ~ W I .  ‘I’tw c-oi i t l i thi  l,titbI, /Ike(l -+ 0 (tn k + 00 for any eo 
in (vIiiivdoiit, to I t ”  + 0 ILH A 4 (XI. If I /  = /’.I P ’ ,  wl icw .I is t,hc .Jordan 
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canonical form of H ,  then H k  = PJkPP-' and H k  + 0 if and only if Jk + 0 
as k -, m. If J is diagonal, then the result is essentially what was shown 
in the text. Otherwise one needs to analyze powers of a Jordan block. By 
considering ( X I  + E ) k ,  where E is a matrix of 1's on the first superdiagonal, 
it is easy to see that for k 2 n 

which shows that the powers of a Jordan block tend to zero if and only if 
1x1 < 1. Although p ( H )  < 1 is a necessary and sufficient condition that the 
iterates (9.3.9) converge for any xo, it is not necessarily the case that the 
relation I lekfl I I < I lek I I for the error vectors will hold in some usual norm (see 
Exercise 9.3.10). 

Theorem 9.3.2 can be extended to a form suitable for handling equations 
such as (9.3.8). If A is irreducibly diagonally dominant (see the Supplementary 
Discussion of Section 3.1), then the system of equations Ax = b has a unique 
solution x*, and both the Jacobi and Gauss-Seidel iterates converge to x* for 
any starting vector xo. It can be shown that the coefficient matrix of (9.3.8) 
is irreducible and that this result then applies. 

Theorem 9.3.4 is a special case of a more general convergence theorem: if 
A is symmetric positive definite and A = P - Q, where P is nonsingular and 
xT(P + Q)x > 0 for all x # 0, then p(P-'Q) < 1. This is sometimes referred 
to as the Householder-John Theorem but it is actually due to Weissinger; see 
Ortega [1990], where it is called the P-regular splitting theorem. A converse 
of Theorem 9.3.4 also holds: If A is symmetric with positive diagonal elements 
and SOR converges for some w E (0 ,2)  and every xo, then A is positive 
definite. If this converse is added, Theorem 9.3.4 is known as the Ostrowski- 
Reich Theorem. 

Iterative methods such as Gauss-Seidel tend to make fairly rapid progress in 
the early stages and then slow down. As a consequence Gauss-Seidel is rarely 
used by itself but it can be a key component of the multigrid method. Assume 
that a partial differential equation is discretized on a grid of points for which the 
approximate solution is desired. We call this the fine grid, and subsets of these 
grid points are courser grids. A multigrid method takes a few Gauss-Seidel 
iterations on the fine grid, then stops and "restricts" information from the fine 
grid to a coarser grid and performs a few Gauss-Seidel iterations on this coarser 
grid. The process is continued by using still coarser grids. Information from 
these coarser grids is transmitted back to the finer grids by interpoltttion. Tticw 



9.3 ITERATIVE METHODS 305 

are many important details in this process and many variations on the basic 
multigrid idea. Properly implemented, multigrid methods are increasingly 
becoming the method of choice for many problems. For an introduction to 
the multigrid method, see Briggs [1987] and, for a more advanced treatment, 
Hackbrush [1985]. 

The conjugate gradient method was introduced by Hestenes and Stiefel 
[1952]. Because of its finite convergence property it is a direct method, al- 
though it was not a successful competitor against Gaussian elimination. Since 
the 1970’s, however, it has enjoyed a resurgence as an iterative method for 
large sparse systems. Another sometimes useful way to view the conjugate 
gradient method is as an acceleration technique. It can be shown that the 
conjugate gradient iterates satisfy the three-term recurrence relation known as 
the Rutishauser form, 

xk+l = ~ k + i { b k + i [ ( l -  A)xk  +b] + (1 - brc+i)xk} + (1 - P~c+I)x”’ ,  (9.3.37) 

where the scalar parameters pk and brc are themselves computed by recurrence 
relations. In this form, (9.3.37) can be considered an acceleration of the basic 
iterative method yk+’ = (I - A ) y k  + b, which is (9.3.32) with the ck’k = 1. 
For further reading on the conjugate gradient method, see Golub and Van 
Loan [1989], Ortega [1988], and Hageman and Young [1981]. In particular, see 
Ortega [1988] for various ways to modify the incomplete Cholesky factorization 
(9.3.36) in case it should fail. 

Many elliptic equations that arise in practice are nonlinear. The methods 
of this section do not apply immediately in this case, although extensions of 
them to nonlinear equations have been developed (see Ortega and Rheinboldt 
[1970]). On the other hand, if a method such as Newton’s method is used 
(Section 5.3), then at each stage a large sparse linear system must be solved 
approximately, and iterative methods can be used for this purpose. 

EXERCISES 9.3 

9.3.1. Apply the Jacobi and Gauss-Seidel iterations to the system of equations Ax = 
b where 

3 1 1  
A =  [ 1  1 3  l], 1 ’ = [ I ]  1 1  1 3 J  1 3 ~  

Use the starting approximation xo = (1,1,1) and take enough steps of the 
iterative processes for the pattern of convergence to become clear. 

9.3.2. Write computm prograrris for the Jacobi and Gauss-Seidel methods. Test 
them on t,hc! proMc!tti of Excrcinc: 9.3.1. 

8.3.3. Writ,(! out, in  t l o h i l  th! .I irc -o t ) i  rrrid (~tul~H-%idi:I itf?rtitioiifl for the equations 
(9.3.8) for  N : 3. 
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9.3.4. Consider the elliptic equation uzz + uyy + cu = 0 with the values of u pre- 
scribed on the boundary of a square domain. Derive the difference equations 
corresponding to (9.3.8). If c is a negative constant, show that the resulting 
coefficient matrix is strictly diagonally dominant. 

9.3.5. Let A be a real n x n symmetric positive definite matrix. 

a. Show that the diagonal elements of A are necessarily positive. 
b. If C is any real n x n nonsingular matrix, show that CTAC is also positive 

definite. 

9.3.6. Carry out several steps of the SOR iteration for the problem of Exercise 9.3.1. 
Use the values w = 0.6 and w = 1.4 and compare the rates of convergence to 
the Gauss-Seidel iteration. 

9.3.7. Write a computer program to apply the SOR iteration to (9.3.8). 

9.3.8. Use the relations (9.3.25) and (9.3.26) to compute p(J ) ,  wo, and p(H,,) for 
(9.3.8) for N = 99 and N = 999. 

9.3.9. Prove that the relationship (9.3.33) holds for the conjugate gradient method 
by using the following induction argument. As the induction hypothesis, as- 
sume that (pk,Apj) = (rk,rj) = 0, j = 0 , . . . ,  k - 1. ((p',Apo) = 0; 
(r',ro) = (ro - aoApo,po) = 0 by the definition of QO.) Then show that 
(pk+',Apj) = (rk+', rj) = 0 for j = 0 , 1 , .  . . , k .  

9.3.10. Let H = [ 1. Compute Hk and show that if eo = (0, l ) T ,  then 

ek = Hkeo = ( ~ 2 - " ' , 0 ) ~ .  Thus if a = 2O, llekllz 2 I leol lz. 

9.3.11. Show that the gradient vector for (9.3.28) is Vq(x) = Ax - b. If A is 
symmetric positive definite, show that the unique solution of Ax = b is the 
unique minimizer of q. 

9.3.12. For the function q of (9.3.28), show that 

q(x - ap) = iqTAp(rZ + pT(b - AX)Q - $xT(2b - AX). 

For x = xk and p = pk, minimize this function of Q to obtain (9.3.31). 

9.3.13. If (Yk = 1 and A is such that its main diagonal is I ,  show that (9.3.32) is 

9.3.14. Let po = el, p1 = ez, . . . , p"-' - - en, where ei is the vector with 1 in the 
ith component and zero elsewhere. Show that n steps of (9.3.29) with Qk given 
by (9.3.31) is equivalent to one Gauss-Seidel iteration on the system Ax = b. 

9.3.15. For the SOR iteration matrix (9.3.22), show that det (D-wL)-' = det D-' 
and then that det H ,  = (1 - w)". Using the fact that the determinant of a 
matrix is the product of its eigenvalues, conclude that if w is real and w 5 0 
or w 2 2, then at least one eigenvalue of H, must be greater than or equal to 
1 in magnitude. 

Jacobi's method. 
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9.3.16. Let A = EL + D - U ,  where E is a small parameter and JJUJJ, = 1. 

a. Give an upper bound on the spectral radius of the Gauss-Seidel iteration 

b. Now consider the “backward” Gauss-Seidel iteration 

(D + U)x”’ = -eLxk + b. 

Give an upper bound on the spectral radius of the iteration matrix for 
this method and show its dependence on E .  

matrix ( E L  + D)-’U. 
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