
Chapter 8 

Space and Time 

8.1 Partial Differential Equations 
In previous chapters we have considered differential equations in a single 

independent variable. This independent variable was either time, as in the case 
of the trajectory or predator-prey problems of Chapter 2, or a space variable 
as in the problems of Chapter 3. We now begin the study of the numerical 
solution of differential equations in two or more independent variables ~ partial 
differential equations. In the present chapter the two independent variables will 
be time and a single space variable; in the next chapter we shall treat problems 
in more than one space variable. 

Example Equations 
As two examples, we will concentrate on 

ut = CUXZ (8.1.1) 

and 
utt = c u x x ,  (8.1.2) 

which are known, respectively, as the heat  (or dif fusion)  equat ion and the wave  
equation. In both (8.1.1) and (8.1.2) c is a given constant, and subscripts 
denote partial derivatives. The heat equation (8.1.1) is the prototype example 
of a parabolic equation, and (8.1.2) is an example of a hyperbolic equat ion (see 
the Supplementary Discussion.) The third standard type of partial differential 
equation is called elliptic, and the simplest example of this type is Poisson’s 
equation 

‘IL,, + 7LPY = f, (8.1.3) 

whnrc f is ti givori fiiric:t,iori of 1c riritl 11. If f 0, then (8.1.3) is Laplace’s 
equntion. Nlliptic t!qiirit,ioiis will tw  t,rc!nt,otl i t i  Ctiaptcr 9. 



248 CHAPTER 8 SPACE AND TIME 

Initial and Boundary Conditions for the Heat Equation 
As we saw with ordinary differential equations, a solution of a differential 

equation is not determined without appropriate initial and/or boundary con- 
ditions, and we expect the same to be true for partial differential equations. 
For (8.1.1) we need to prescribe an initial condition, and if x ranges over only 
a finite interval, we also need boundary conditions at the endpoints of this 
interval. Thus if the domain of x is 0 I x I 1, the initial condition would be 

u(0,x) = g(x), 0 52  I 1, (8.1.4) 

where g is a given function. We will also prescribe the boundary conditions 

u(t ,  0) = a, u(t ,  1) = p, t 2 0, (8.1.5) 

for given constants a and p. The equation (8.1.1) together with the conditions 
(8.1.4) and (8.1.5) is the mathematical model for the temperature distribution 
in a thin rod whose ends are held at fixed temperatures a and p, and whose 
initial temperature distribution is g(x). The solution u(x,t) then gives the 
temperature within the rod as a function of time. For this model the constant 
c in (8.1.1) is c = k / ( s p ) ,  where k > 0 is the thermal conductivity, s is the 
specific heat of the material, and p is the mass density. Thus c > 0. 

There are several variations on this problem that can be modeled by chang- 
ing the boundary conditions or the equation itself. For example, suppose that 
we assume that the right end of the rod is, like the sides, perfectly insulated; 
by definition, then, we expect no heat loss or change in temperature across 
this end, so the boundary conditions (8.1.5) are changed to 

u(t,O) = a ,  uz(t ,  1) = 0. (8.1.6) 

Another variation is to suppose that the rod is not homogeneous - as has 
been tacitly assumed - but is made of an alloy whose components vary as a 
function of x. Then the density as well as the thermal conductivity and specific 
heat will generally also vary with x, so that c = ~ ( x ) .  Thus the differential 
equation is now one with a variable rather than constant coefficient. Going 
one step further, the thermal conductivity will, in general, depend not only 
on the material but also on the temperature itself. For many problems this 
dependence is so slight that it can be ignored, but for others it cannot. Thus 
we may have c = ~ ( u )  so that the equation (8.1.1) is now nonlinear. 

The heat equation is also a mathematical model of various other physical 
phenomena such as the diffusion of a gas. 

The Wave Equation 
Consider next the wave equation (8.1.2). This equation, or more general 

forms of it, models various types of wave propagation phenonienrt, as, for 
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example, in acoustics. One classical problem is a vibrating string. Consider, 
for example, a taut string along the x-axis that is fastened at x = 0 and 
x = 1. If the string is plucked, it will vibrate. We assume that the string is 
“ideal” - that is, it is perfectly flexible, and the tension T is constant as a 
function of both x and t and is large compared to the weight of the string. We 
denote the deflection of the string at a point x and time t by u( t ,x ) ,  and we 
assume that the deflections u are small compared to the length of the string. 
We assume, moreover, that the slope of the deflected string at any point is 
small compared to unity and that the horizontal displacement of the string 
is negligible compared to the vertical displacement (this is sometimes called 
transverse motion).  We are also tacitly assuming that the motion of the string 
is only in a plane. The constant c in (8.1.2) is then equal to gT/w ,  where g 
is the gravitational constant and w is the weight of the string per unit length. 
In more general situations, T ,  and hence c, may not be constant. 

In addition to the differential equation, we again need suitable initial and 
boundary conditions. Since the ends of the string are fixed at x = 0 and x = 1, 
we have the boundary conditions 

u(t,O) = 0 u(t ,  1) = 0. (8.1.7) 

For the initial conditions we must specify the initial deflection as well as the 
initial velocity of the string; thus for a given function f , we will use 

(8.1.8) 

where the latter condition implies zero initial velocity of the string. With the 
differential equation (8.1.2), the boundary conditions (8.1.7), and the initial 
conditions (8.1.8), the problem is now fully specified. For other problems 
different boundary or initial conditions may be given, but since the equation 
is second order in t two initial conditions must generally be given, just as for 
ordinary differential equations. 

The purpose of this book is, of course, to study techniques for the numerical 
solution of problems. It is worth recalling here, however, that there is a classical 
analytical technique for representing the solution of both (8.1.1) and (8.1.2) 
by means of Fourier series. This technique is valid only under very restrictive 
conditions, but it does apply to the heat and wave equations together with the 
types of initial and boundary conditions we have considered and for c constant. 
It is the method of separation of varzabkes, and we shall review it rather briefly. 

Separation of Variables 

that dcpetids only 011 t and a fiinc:t,ioti that, depends only on x: 
Assiirric that the solution of (8.1.1) can be written as a product of a function 

u ( t , 3 : )  = *f)(t)w(x)* (8.1.9) 
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If we substitute (8.1.9) into (8.1.1), we obtain 

v’(t)w(z) = cv(t)w”(z), (8.1.10) 

or, assuming that neither v nor w is zero, 

(8.1.11) 

Since the left side of (8.1.11) is a function only o f t  and the right side is a 
function only of z, it follows that both sides must be equal to some constant, 
say p; thus, 

d ( t )  = p v ( t ) ,  cw’)(x) = pw(z). (8.1.12) 

The general solution of the first equation is 
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It is then easy to verify (Exercise 8.1.1) that 

n 

u(t, x) = C u k e - c k 2 m z t  sin k rx  

is a solution of (8.1.1) and, moreover, satisfies the boundary and initial condi- 
tions (8.1.17) and (8.1.18). 

The solution (8.1.19) is predicated on the finite expansion (8.1.18), but by 
the theory of Fourier series a very large class of functions, and hence initial 
conditions, can be represented by the infinite series 

(8.1.19) 
k = l  

W 

g(x) = u k  sin k m ,  a k  = 2 g ( z )  sin(krz)dz. 
k=l I' (8.1.20) 

In this case the solution can be given, analogously to (8.1.19), by 

00 

u(t ,  x) = u k e - c k 2 m Z t  sin krx,  (8.1.21) 
k = l  

although it is no longer as simple as in the case of (8.1.19) to verify rigorously 
that this is a solution. 

The method of separation of variables can also be applied to the wave 
equation, and we will just indicate the result corresponding to (8.1.21) for 
equation (8.1.2) together with the boundary and initial conditions (8.1.7) and 
(8.1.8). Again, if we assume that the first initial condition of (8.1.8) can be 
represented by 

M 

then the solution is 
W 

u(t, x) = a k  sin(k7rz) cos(k.lr&). 
k = l  

(8.1.22) 

(8.1.23) 

In the case that (8.1.22) is a finite sum, analogous to (8.1.18), it is easy to 
verify this result directly (Exercise 8.1.2) without any technical difficulties. 

We have not meant to imply that these series expansions are to be the basis 
for numerical methods, although in certain special cases they can be. Rather, 
such representations are sometimes useful in ascertaining qualitative infor- 
mation about thc noliitioii of the diffcrential equation. For example, (8.1.19) 
clewly sliows, siiiw ( 9  > 0, t81irtt u ( l ,  3:) -+ 0 as t -+ 00, and this same conclusion 
(:MI I)(: rc!ltc:hc!cI frorii th! iiifiiiit,c sc!ric!n (8.1.2 1 ).  Wc shall iisc this information 
it i  t,tw followiiig swt,ioti o i i  l i t l i t , ( !  i I i l f ( ! rc t iw  iiwt,tio(Is. Wc slirtll also iist! thc 

' 
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technique of separation of variables, applied to difference equations, to study 
stability properties of the numerical methods in the following sections. 

Supplementary Discussion and References: 8.1 
Consider a partial differential equation of the form 

au,, + bu,t + cutt + du ,  + eut  + fu = g, 

where the coefficients a ,  b, . . . are functions of x and t. Then the equation is 
elliptic if 

[b (x ,  t)I2 < a ( x ,  t ) c ( x ,  t )  (8.1.24) 

for all x , t  in the region of interest. Laplace’s equation is the special case in 
which a = c = 1 and all other coefficients are zero. The equation is hyperbolic 
if b2 > ac; this is the case for the wave equation. Finally, the equation is 
parabolic if b = ac, which holds for the heat equation since b = c = 0. 

Very interesting, important, and difficult problems occur for equations of 
mixed type in which the condition (8.1.24) holds in part of the domain while 
the opposite inequality holds in another part; that is, the equation is elliptic 
in part of the domain and hyperbolic in another part. Such problems arise, 
for example, in transonic airflow in which the flow is subsonic in part of the 
region (the elliptic part) and supersonic in another part (the hyperbolic part). 
In these problems the variable t is a second space variable y .  

Many, if not most, partial differential equation models of physical phenom- 
ena involve systems of equations rather than a single equation. The classifica- 
tion system of elliptic, hyperbolic, and parabolic can be extended to systems 
of equations, although relatively few systems that model realistic physical sit- 
uations fit into this nice classification. 

The method of separation of variables together with the use of Fourier 
series is a classical technique for solving certain simple equations and is dis- 
cussed in most beginning textbooks on partial differential equations. Most such 
books will contain additional examples, derivations of equations, and classifi- 
cation theory. See, for example, Haberman [1983] and Keener [1988], and, for 
more advanced treatments, Courant and Hilbert [1953, 19621, and Garabedian 
[ 19861. 

EXERCISES 8.1 

8.1.1. Show that the function of (8.1.16) satisfies (8.1.1) for any integer k. Then 
verify that (8.1.19) is a solution of (8.1.1) that satisfies the initial and boundary 
conditions (8.1.17) and (8.1.18). 

8.1.2. a. Show that 
n 

u(z, t )  = C ak sin(knz) cos(kn&) (8.1.25) 
k=l 
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satisfies the wave equation (8.1.2) as well as the boundary and initial 
conditions u(t, 0) = u(t, 1) = ut(0, z) = 0, u(0, z) = xi=, a k  sin(km). 

b. Write a program to display the special solution u(z, t )  = sin(m) cos(rt) on 
a graphics terminal in such a way that the motion of the string is clear. 
Do the same for more complicated solutions consisting of two and three 
terms of (8.1.25), for c = 1. 

8.2 Explicit Methods and Stability 
We begin in this section the study of finite difference methods for partial 

differential equations and, in particular, for the equations discussed in the 
previous section. We will treat first the heat equation 

ut = cu,,, 0 5 x 5 1, t 2 0, (8.2.1) 

with the initial and boundary conditions 

4 0 , x )  = d x ) ,  0 L x I 1, (8.2.2) 

u(t, 0) = a, u(t, 1) = p, t 2 0. (8.2.3) 

Difference Equations for the Heat Equation 
We set up a grid in the x, t plane with grid spacings Ax and At as illustrated 

in Figure 8.1. The idea of the simplest finite difference method for (8.2.1) is to 
replace the second derivative on the right-hand side of (8.2.1) with a central 
difference quotient in x, and replace ut with a forward difference in time. 
Then one advances the approximate solution forward in time one time level 
after another. More precisely, if WE let uy denote the approximate solution at 
x j  = jAx  and t ,  = mat, then the finite difference analog of (8.2.1) is 

( 8.2.4) 

or 
q + l  = u y  + /.L(UC1 - 2ujm + Ujm_l ) ,  j = 1 , .  . . , n, (8.2.5) 

where 
c a t  

p = ( a 2 ) 2 .  (8.2.6) 

The t)oiindary conditions (8.2.3) give the values 

,11;; = I t ,  ,,1"' , ' + I  = /j, m = O , l , .  . . (  
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t 

0 x1 x2 x, 1 x- 

k A x 4  

Figure 8.1: Grid Spacings 

and the initial condition (8.2.2) furnishes 

uy = g ( z j ) ,  j = 1 , .  . . , n. 

Therefore (8.2.5) provides a prescription for marching the approximate solution 
forward one time step after another: the values uj ,  j = 1 , .  . . , n, are first all 
obtained, and knowing these we can obtain u;, j = 1 , .  . . , n, and so on. 

How accurate will be the approximate solution obtained by (8.2.5)? A 
rigorous answer to this question is a difficult problem that is beyond the scope 
of this book, but we will attempt to obtain some insight by considering two 
aspects of the error analysis. 

Discretization Error 
Let u( t , z )  be the exact solution of (8.2.1) together with the initial and 

boundary conditions (8.2.2) and (8.2.3). If we put this exact solution into the 
difference formula (8.2.4), the amount by which the formula fails to be satisfied 
is called the local discretization error (or local truncation error); at the point 
(t ,  X) the local discretization error, e ,  is 

~ ( t  + At, X) - ~ ( t ,  X) c -- [ U ( t ,  x + A X )  - 2 ~ ( t ,  X) + ~ ( t ,  x - AX)]. (8.2.7) 
At (Ax)2 

This is entirely analogous to the previous definitions of local discretization 
error for ordinary differential equations and enjoys similar properties. For 
example, suppose that we know the exact solution u( t , z )  for some t and all 
0 5 x 5 1, and we use (8.2.4) to estimate the solution at t + At. Call this 
estimate ii(t + At, x). Then, by definition 

C 
[ U ( t ,  x + AX) - 2 ~ ( t ,  X) + u(t ,  x - A X ) ] ,  - -- ii(t + At, X) - ~ ( t ,  X) 

At ( A X ) 2  
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so if we subtract this from (8.2.7), we obtain 

C ( t  + A t , x )  - u(t + A t , x )  = Ate. (8.2.8) 

Thus the error caused by one time step using the difference scheme (8.2.4) is 
At times the local discretization error. 

It is easy to estimate the quantity e of (8.2.7) in terms of At and A x .  If we 
consider u as only a function of t  for fixed x, we can apply the Taylor expansion 

u(t + At, X )  = u( t ,  X )  + ut(t, x ) A t  + O[(At) ']  

to conclude that 

u(t + At, X )  - u(t ,  X) 
= ut(t, X )  + O(At) .  At 

Similarly, by Taylor expansions in x ,  we have 

U ( t ,  x + A X )  - 2 4 t ,  X )  + U ( t ,  x - A X )  
= u Z Z ( t , x )  +O[(Ax) '] .  

(Ax)' 

If we put these expressions into (8.2.7) and use ut = cuZZ (since u is the exact 
solution of the differential equation), we obtain 

e = O(At) +  AX)']. (8.2.9) 

The fact that At appears to the first power and A x  to the second power in 
this expression for the local discretization error is usually described by the 
statement that the finite difference method (8.2.4) is first-order accurate in 
time and second-order accurate in space. 

Stability 
It is tempting to conclude from (8.2.8) and (8.2.9) that the discretization 

error in uy, as obtained from (8.2.5), converges to zero as At and A x  tend 
to zero. Unfortunately, this conclusion is not warranted since (8.2.8) gives the 
error in the approximate solution only for a single time step. To show that the 
discretization error tends to zero on a whole time interval [0, T ]  is difficult and, 
in general, requires additional conditions on how At and A x  tend to zero. A 
relationship of the type (8.2.9), or more generally a statement that the local 
discretization error tends to zero with At and A x ,  is essentially a necessary 
condition for the global discretization error itself to tend to zero, and is called 
consistency of thc diffcrenc:t? scheme. The reason that consistency of the differ- 
ence rnethod does not, rwwssarily imply convergence of the discretization error 
in c:onncx:t,cd with atnhil i ty  of t h  ctifforc:ric:c H(:ti(:ine, and we now discuss certain 
t w l w c t , H  o f  thiH for t h  cIiff(!rc!iic:o H ~ I ( * I I I C  (8.2.5). 
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In a way exactly analogous to the method of separation of variables and the 
use of Fourier series that were applied to the differential equation ut = cuxx in 
the previous section, we can obtain the exact solution of (8.2.5) together with 
the boundary and initial conditions 

~ 2 j 2 = u r + ~ = O ,  m = l , 2  , . . . ,  
uy = g ( x j ) ,  j = 1,.  . . , n .  

(8.2.10) 

Assume that the solution uy can be written as 

u ~ = v , w j ,  3 j = 1 ,  ..., n, m=O,1,  . . . .  (8.2.11) 

This is the paradigm of separation of variables for difference equations. Putting 
(8.2.11) into (8.2.5) and collecting terms yields 

Vm+1 - Vm - W j + l  - 2 ~ j  + Wj-1 - , j=1 ,  ..., n , m = 0 , 1 ,  . . . .  
PVm wj 

Since the left side is independent of j and the right side is independent of m, 
both sides must be equal to some constant, say -A ;  thus 

-urn = -Xpvm, m = 0,1, ..., (8.2.12) 

wj+l - 2wj + wj-1 = -Awj, j = 1,. . . , n, (8.2.13) 

where wo = wn+l = 0 from the boundary conditions (8.2.10). Equation 
(8.2.13) represents the eigenvalue problem for the (2, -1) tridiagonal matrix 
of (3.1.10). The eigenvalues of this matrix are (see Exercise 4.4.5) 

XI, = 2 - 2 cos k.rrAx, k = 1 , .  . . , n, 

with corresponding eigenvectors (Exercise 4.4.5) 

w = [sin(k.rrAz), sin(2lcnAx), . . . , sin(nk.rrAx)]', k = 1,. . 
where Ax = l /(n + 1). Thus for each A = X I ,  

w j  = sin(jkxAz), j = 0,1,. . . , n + 1, 

is a solution of (8.2.13). Clearly 

vm = (1 - A P ) ~ V O ,  m = 0,1, ... , 

is a solution of (8.2.12) for any A, so that 

uj" = vmwj  = (1 -  XI,^)^ sin(jk.rrAx), m = 0,1,. . . , j = 0,1,. . .  

(8.2.14) 

(8.2.15) 

, n + 1, 
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is a solution of (8.2.5) for each k. As with the differential equation, any linear 
combination of these solutions is also a solution; thus 

n 

uj” = ak(1 - A ~ P ) ~  sin(jknAx) (8.2.16) 
k= 1 

is a solution of (8.2.5) for any constants arc. If the a k  are chosen so that 

n 

ak  = g(x1) sin IcdAz, (8.2.17) 
1=1 

then (Exercise 8.2.2) uj” also satisfies the initial condition 

uq = g(zj), j = 1 , .  . . , n .  (8.2.18) 

We now use the representation (8.2.16) in the following way. From our discus- 
sion in the previous section, the equation ut = cuxx together with the boundary 
conditions u(t, 0) = u(t, 1) = 0 is a model of the temperature distribution in a 
thin insulated rod whose ends are held at zero temperature. Since there is no 
source of heat, we expect that the temperature of the rod will decrease to zero 
so that u(t, x) - 0 as t + 00. This conclusion can also be obtained mathemat- 
ically from the series representations (8.1.19) or (K1.21) of the solution since 
the exponential terms all tend to zero. Therefore it is reasonable to demand 
that the finite difference approximations uj” also tend to zero as m tends to 
infinity, for any initial conditions; by (8.2.16), this will be the case if and only 
if 

\ l - p A k I < l ,  k = 1 ,  ..., n. (8.2.19) 

Since p and all the A k  are positive, (8.2.19) will hold if and only if 

- ( I -  pAk) < 1, Ic = 1 , .  . . , n ,  

or 
1 

- - (8.2.20) 
2 1 

p < min- = 
k Ak 1-cosnnAx I + c o s r A x ’  

since the largest 
becomes 

is An. Thus, with p = cAt/(Ax)2 from (8.2.6), (8.2.20) 

(8.2.21) 

This gives a restriction on the relative sizes of At and Ax, which if not satis- 
fied will, in general, rnmm that, the approximate solution uj” of the difference 
schcrrw will ultimately divorgc! HH ~ r b  tnrida t,o infinity and, obviously, will be- 
(:OIII(! ~i iIicroaningly poor ~~)~)roxiIii}~t,ioIi t,o the solution of the differential 
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Table 8.1: Unstable Behavior 

t l x  
0 
0.16 
0.24 
0.28 
0.32 
0.36 
0.40 
0.44 

0.2 
0.59 
0.08 
0.03 
0.02 
0.01 
0.005 
0.12 

-3.97 

0.4 
0.95 
0.13 
0.05 
0.03 
0.02 

-0.14 
3.20 

-62.0 

0.6 
0.95 
0.13 
0.05 
0.02 
0.09 

-1.22 
19.0 

-286.9 

0.8 
0.59 
0.08 
0.03 
0.004 
0.20 

-2.43 
32.2 

-428. 

equation, which tends to zero. In Table 8.1 we give an example of this insta- 
bility for (8.2.5) with c = l ,  g(x)  = sinrx, (I! = p = 0 and with A x  = 0.1 and 
At = 0.04 so that (8.2.21) is not satisfied. Note that the instability has begun 
to develop noticeably by t = 0.32 and then rapidly worsens. 

We can replace (8.2.21) by the slightly stronger condition 

(8.2.22) 

which always implies (8.2.21). This relation is called the stability condition for 
the difference method (8.2.5). Our derivation of it has been in the context of 
the behavior of uj” as m + 00 for fixed At and A x .  But it is also relevant to 
the problem of the convergence of the discretization error to zero as At and 
A x  tend to zero. In fact, although it is beyond our scope to prove this, the 
approximate solutions will converge to the exact solution as At and A x  tend 
to zero if (8.2.22) holds as At and A x  tend to zero. This is a special case of 
a more general principle known as the Lax Equivalence Theorem, which states 
that for quite general differential equations and consistent difference schemes, 
the global discretization error will tend to zero if and only if the method is 
stable. 

The condition (8.2.22) imposes an increasingly stringent limitation on the 
time step At as the space increment A x  becomes small, as Table 8.2 shows for 
the case c = 1. Thus we may require a time step far smaller than otherwise nec- 
essary to resolve the time-dependent nature of the solution of the differential 
equation itself. Although the analysis that we have done has been restricted to 
the simplest differential equation and simplest difference scheme, the require- 
ment of small time steps for explicit finite difference methods for parabolic 
and similar equations is a general problem and is a primary motivation for the 
implicit methods to be discussed in the next section. 
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A x  
0.1 
0.01 
0.001 

259 

At 
0.5.10-2 
0.5.10-4 
0.5*10-6 

Table 8.2: Maximum Tame Steps for Given A x  and c = 1 

The Wave Equation 

tion 
We turn now to hyperbolic equations, and in particular to the wave equa- 

utt = cu,,, 0 I x 5 1, t 2 0,  (8.2.23) 

together with the initial and boundary conditions 

u ( O , Z )  = f ( ~ ) ,  u ~ ( O , Z )  = g(X), u(t,O) = Q, u ( t , l )  = p. (8.2.24) 

As we discussed in the previous section, the problem (8.2.23), (8.2.24) is a 
mathematical model for a vibrating string. 

The simplest finite difference scheme for (8.2.23) is 

To obtain (8.2.25) we have used the usual centered difference formula for u,,, 
just as in (8.2.4), as well as for utt. Note that (8.2.25) now involves three time 
levels and requires that both uy and uy-l be known in order to advance to 
the ( m  + 1)st time level. This requires additional storage for uy-', as opposed 
to the method (8.2.5) for ut = CU,,, but is a natural consequence of the fact 
that the differential equation contains a second derivative in time. We also 
require both u: and ui in order to start, and these can be obtained from the 
initial conditions (8.2.24) : 

U; = f ( x j )  U: = f ( ~ j )  + A t g ( X j ) ,  j = 1,. . . , 72, (8.2.26) 

where the second condition is obtained by approximating ut(0,x) = g(x)  by 
[u(At ,x )  - u(O,x)]/At = g(z). F'rom the boundary conditions, we have 

11:: = (r, vr+, = 0, m = O , 1 , .  . . . (8.2.27) 

Thiis t,ho vttliit?s tit, the! ( in  + l)st, t,ittic! lt!vc!l are obtained by 
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where 
c(At)2 p = -  
(Ax)2 .  

It is easy to show that the local discretization error for (8.2.25) is O(At)2 + 
O(Ax)', so that the method is second-order accurate in both space and time 
(Exercise 8.2.4). For the stability analysis we can again proceed by the method 
of separation of variables and assume that the boundary conditions a and p 
are zero. Let uy = v,wj. Putting this into (8.2.25) leads to the two conditions 

u,+1 - 221, + vm-1 = -Xpv,, m = 1 , .  . . , (8.2.29) 

wj+l - 2wj + wj-1 = -Xwj, j = 1 , .  . . ,n. (8.2.30) 

The second set of equations is the same as (8.2.13), and thus its solutions are 
given by (8.2.14),(8.2.15). The equations (8.2.29), although ostensibly of the 
same form as (8.2.30), are for an initial-value problem in which YO and v l  are 
known. From Section 2.5 [see (2.5.11) - (2.5.14)], the solution of (8.2.29) is 
given by 

where q& are the roots of the characteristic equation 7' + (Ap - 2)v + 1 = 0 
and are given by 

The yi can be obtained from the initial conditions YO and u1. Thus the solution 
of (8.2.25) can be written as 

urn = yiv+m + 7 2 ~ 1 I " ,  m = 0, I , .  . . , 

v& = 3 2  - xp f J-). 

n 

q = c ak(Yk,Iv?+ + Yk,27]?-) sin(jkrAx), (8.2.31) 

where the subscript k indicates that the corresponding y and v have been 
computed for X = x k .  For uy to remain bounded for arbitrary Uk and initial 
conditions, it is necessary and sufficient that Ivk,*l 5 1. If 

k=l 

X k v  - 4 5 0, (8.2.32) 

then it is easy to verify that Ivk,*l = 1, and if - 4 > 0, then vk,- < -1. 
Hence (8.2.32) is the necessary and sufficient condition for stability. Since the 
eigenvalues X I ,  satisfy 0 < X k  < 4, a sufficient condition for (8.2.32) is that 
p I 1, or 

At 5 -. (8.2.33) 

This is also essentially a necessary condition in the sense that A, + 4 as 
n + 00, so any condition weaker that (8.2.33) would allow (8.2.32) to be 
violated for sufficiently large n. The stability condition (8.2.33) is tnnc:h l t ~  

Ax + 
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stringent on At than was (8.2.22) for the heat equation. Indeed, (8.2.33) shows 
that At need decrease only proportionately to Ax, rather than as the square 
of Ax, as was the case with (8.2.22). 

Although this section has dealt only with the heat and wave equations, the 
same principles of obtaining finite difference methods apply to more general 
initial-boundary value problems for either single equations or systems of equa- 
tions. In all such cases the user must be alert to the possibility of instability, 
although for most equations a simple analysis of the form given in this section 
will not be possible. 

Supplementary Discussion and References: 8.2 
We have only touched the surface of finite difference methods for parabolic 

and hyperbolic equations. In particular, we have considered only first- and 
second-order methods, although a variety of higher-order methods have been 
developed. More importantly, most of the useful methods for parabolic equa- 
tions are implicit, and these will be dealt with in the next section. The books 
by Ames [1977] and Hall and Porsching [1990] give many additional methods. 
See also Isaacson and Keller [1966] and Richtmyer and Morton [1967] for a 
discussion of methods as well as a rigorous analysis of discretization error and 
stability criteria. 

The separation of variables analysis leading to (8.2.16) can also be viewed 
in matrix terms. The matrix-vector formulation of (8.2.5) is 

Um+l = Um - pAum, m = O , l , . .  ., 
where A is the (2, -1) matrix of (8.2.13), and urn is the vector with components 
uy ,  . . . , u z .  The matrix H = I - p A  has eigenvalues 1 - PXI, and eigenvectors 
wk, where the XI, and wk are the eigenvalues and eigenvectors of A. Therefore 
if 

is the expansion of uo in terms of the eigenvectors, then 
n 

Urn = Hum-' = * * = Hmu0 = ak(1 - pXk)mwk, 
k=l 

which is (8.2.16). 

EXERCISES 8.2 
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8.2.2. Substitute (8.2.16) into (8.2.5) and verify that it is indeed a solution. Verify 
also that (8.2.18) holds if the uk are given by (8.2.17). 

8.2.3. Repeat and verify the calculation of Table 8.1. 

8.2.4. Use the approach discussed in the text for the heat equation to conclude that 
the method (8.2.25) for the wave equation is second-order accurate in both 
time and space. 

8.2.5. Write a computer program to solve the wave equation (8.2.23) with the ini- 
tial and boundary conditions (8.2.24) by the difference method (8.2.25). Apply 
your program for various values of At and Ax, and conclude that the calcula- 
tion is stable if (8.2.33) is satisfied. 

8.3 Implicit Methods 
The finite difference method (8.2.5) discussed in the previous section is 

called explicit because the values of uY+' at the next time level are obtained 
by an explicit formula in terms of the values a t  the previous time level. In 
contrast, consider again the heat equation 

ut = cu,,, 0 5 z 5 1, t 2 0, (8.3.1) 

and the difference approximation 

This is similar in form to (8.2.4) but has the important difference that the 
values of uj on the right side are now evaluated at  the (m + 1)st time level 
rather than the mth. Consequently, if we know u y ,  j = 1 , .  . . , n, and are ready 
to compute urn+', j = 1,. . . , n, we see that the variables uj on the right-hand 
side of (8.3.21 are all unknown. Thus we must view (8.3.2) as a system of 
equations that implicitly defines the values u?'', j = 1 , .  . . , n. This is one 
of the basic differences between implicit and explicit methods: in an explicit 
method we have a formula for uY+l, such as (8.2.5), in terms of known values 
of uj at previous time levels, whereas with an implicit method we must solve 
a system of equations to advance to the next time level. 

If, as in the previous section, we set p = cAt/(Az)', then we can rewrite 
(8.3.2) as 

(1 + 2p)ujm+l - p(ujm++ll+ uj":') = ujm, j = I , .  . . , n, (8.3.3) 

or in matrix-vector form, 

( I  + pA)u"+l = urn + b, m = 0 , 1 , .  . . . (8.3.4) 
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Here A is the (2,-1) tridiagonal matrix of (3.1.10), and urn+' and urn are 
vectors with components uT+' and uT,  i = 1,. . . , n, respectively. If we use 
the same boundary conditions 

u(t ,  0) = a ,  u(t, 1) = p (8.3.5) 

as in the previous section, then u6 = a and u;+' = p for k = 0,1,. . .; thus the 
vector b in (8.3.4) is zero except for pa and pp in the first and last components. 
We also assume the initial condition 

u(0,z)  = f(z), 0 I z I 1, (8.3.6) 

so, as before, uj" = f(zj), j = 1,. . . ,n. 
The implicit method (8.3.4) is now carried out by solving the linear system 

of equations (8.3.4) at each time step to obtain the uy+' from uy. The matrix 
in (8.3.4) is tridiagonal and also diagonally dominant (Section 3.1) since c > 0, 
and thus p > 0. Therefore, as we saw in Section 4.3, the system of equations 
can be efficiently solved by Gaussian elimination without pivoting. In the 
particular case of (8.3.4), we could compute the L and U factors once and for 
all, although we may not be able to do this for more general problems. 

Even though each time step of (8.3.4) can be carried out relatively effi- 
ciently, this method is more costly per time step than the explicit method 
(8.2.5). However, in return for this additional cost we obtain a substantial 
benefit in the stability properties of the method, which in many cases will al- 
low us to use a much larger time step than does the explicit method and thus 
will greatly cut the overall computing costs. We will now indicate the stability 
analysis following the lines of the previous section. 

Stability 
We assume, as before, that a = = 0. Then, corresponding to (8.2.16), 

.j" = (8.3.7) 

identically satisfies the difference scheme (8.3.3) for any constants Uk, provided 
that 

k=l 

1 I 

1 + 2p( 1 + cos k.rrAz) ' 
Moreover, up satisfies the initial condition if 

yk = k = 1, ..., n. (8.3.8) 

(8.3.9) 
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Now recall from our discussion in the previous section that we require that 
the approximate solution uj” + 0 as m --* 0;) if it is to mirror the solution of 
the differential equation itself. From (8.3.7) we see that this will be the case, 
in general, if and only if 

lykl < 1, k = 1 ,..., n. (8.3.10) 

But from (8.3.8), since p > 0, 

O < y , k < l ,  k = l ,  ..., 71, (8.3.11) 

so that (8.3.10) indeed holds. Most importantly, we see that (8.3.11) is true for 
any p > 0; thus, since p = cAt / (Ax)2 ,  (8.3.11) is true for any ratio of At and 
Ax. We say in this case that the method is unconditionally stable, meaning 
that it is stable without restrictions on the relative size of At and Ax. 

Discretization Error 
The fact that the method (8.3.3) is unconditionally stable does not mean 

that we can expect to obtain a good approximate solution for any At and Ax. 
As usual, these must be chosen sufficiently small to control discretization error. 
Now it is the case (see Exercise 8.3.3) that (8.3.2), like the corresponding ex- 
plicit method (8.2.5), is first-order accurate in time and second-order accurate 
in space; that is, the local discretization error will be 

e = O(At) + ~ ( A X ) ~ .  

Suppose that 
e = c1At + C ~ ( A X ) ~ .  

Then for the contributions to the total error from the discretization in time 
and the discretization in space to be commensurate, we require that 

At c ~ ( A z ) ~ ,  

which is reminiscent of the stability condition (8.2.22) for the explicit method. 
Thus we see that although the stability requirements for our implicit method 
do not impose any restrictions on the relative sizes of At and Ax, the accuracy 
requirements may. 

The Crank-Nicolson Method 
A potentially better implicit method in this regard is the famous Crank- 

Nicolson method, which is an average of the explicit method (8.2.4) and the 
implicit met hod (8.3.2): 
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This can be written in matrix-vector form as 

2 2 
( I  + fA)um+l = ( I  - fA)um + b, m = 0,1 , .  . . , (8.3.13) 

where A is again the (2, -1) matrix. Hence (8.3.12) is carried out by solving a 
tridiagonal system of equations at each time step. The advantage of (8.3.12) 
is that it is not only unconditionally stable, as is (8.3.4), but it is second-order 
accurate in time as well as in space. (The verification of these assertions is left 
to Exercise 8.3.5). These properties have made it one of the most often used 
methods for parabolic equations. 

One easy way to recall the three different methods (8.2.4), (8.3.2), and 
(8.3.12) is by their “stencils” of grid points as illustrated in Figure 8.2. These 
show which grid points enter into the difference method. 

m m o m  

j - 1  j j + l  j - 1  j j + l  

m o m  

j - 1  j j + l  

(a) Explicit (b) Fully implicit (c) Crank-Nicolson 
(8.2.4) (8.3.2) (8.3.12) 

Figure 8.2: Stenczls for the Methods 

It has become common practice in the numerical solution of parabolic-type 
partial differential equations to use implicit methods since their good stability 
properties outweigh the additional work required per time step. Most of the 
methods in actual use are more complicated than the Crank-Nicolson method, 
but the principles are the same. However, for problems involving more than 
one space dimension, straightforward extensions of the implicit methods of this 
section are not satisfactory, and additional techniques are required. One such 
technique will be discussed in Section 9.1. 

It is possible to formulate implicit methods for hyperbolic equations, such 
as the wave equation, in much the same way. However, as was seen with the 
wave equation, the stability requirements of explicit methods typically do not 
impose a stringent restriction on the time step. Consequently, implicit methods 
for hyperbolic equations are rather infrequently used in practice, and we shall 
not discuss them further. 

Supplementary Discussion and References: 8.3 
‘I‘lio rvfwwwx Kivcw i i i  Scctioii H.2 art’ also rt+vant for implicit mcthodx. 

1 1 1  p a r t , i ( v i h r ,  IIic4ibiiiyor ~- t i i c l  Morton  [ l!)67, 1 1 1 ) .  189-91] HiiIiiiIitbri‘/;(i Kraphic-dly 
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a number of implicit finite difference methods for parabolic equations in terms 
of their stencils. 

EXERCISES 8.3 

8.3.1. Write a program to carry out (8.3.4) and apply it to the problem of Exercise 
8.2.1. Use various values of At and Ax and verify numerically the stability 
of the method. Discuss your results compared to those for Exercise 8.2.1, 
including the relative ease and efficiency of carrying out the two methods. 

8.3.2. Proceed along the lines of the analysis of the previous section to verify that 
(8.3.7) satisfies (8.3.3). 

8.3.3. Proceed along the lines of the analysis of the previous section to show that 
the local discretization error for the method (8.3.3) satisfies (8.2.9). 

8.3.4. Modify your program of Exercise 8.3.1 to carry out the Crank-Nicolson method 
(8.3.12). Discuss your results and compare this method to (8.3.4). 

8.3.5. For the Crank-Nicolson method (8.3.12) with the boundary conditions a = 
/3 = 0, verify that the solution of (8.3.12) is of the form (8.3.7), where now 
-yk = (1 - ipAh) / ( l+  &pAh),  with = 2 - 2cos(lc~Az).  Conclude that the 
method is unconditionally stable. Show also that the method is second-order 
accurate in both space and time. 

8.3.6. The Dufort-Fkankel method for the heat equation is 

um+l 3 - .?-'- - [Atc/(Ax)'](u,",1 - u?" - uY-' +u,"I). 

Show that this method is unconditionally stable. Give an explicit formulation 
of it. 

8.3.7. Consider the nonlinear parabolic equation 

ut = 2123: - u - x2 - u3 > 

with boundary and initial conditions u(t, 0) = u(t,  1) = 0, u(0, x) = sinrx. 

a. Formulate an explicit method and do a stability analysis for the linear 
equation ut = us= - u. Test numerically your stability criterion against 
the nonlinear equation. 

b. Formulate a completely implicit method and write a program to solve the 
resulting nonlinear system at each time step by Newton's method. Verify 
numerically that your method is unconditionally stable. 

c. The corresponding steady-state equation is the two-point boundary-value 
problem w" = w + x 2  + w3, w(0) = w(1) = 0. If you are only interested 
in the steady-state solution, would it be better to attack this equation 
directly by the methods of Chapter 5 or to integrate the partial diffm:ritial 
equation to steady-state by the methods of parts a and b ?  
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8.4 Semidiscrete Methods 

We now consider another approach to initial boundary value problems 
which utilizes the projection principles of Chapter 6 and reduces the par- 
tial differential equation to an approximating system of ordinary differential 
equations. This approach can be applied in principle to both parabolic- and 
hyperbolic-type equations. We will first illustrate it for the heat equation 

ut = cu,,, 0 5 x 5 1, t 5 0, (8.4.1) 

with the initial and boundary conditions 

u(0 , x )  = f(x), u(t,O) = 0, u(t ,  1) = 0. (8.4.2) 

As in Section 6.1, let +1(x), . . . , &(x) be a set of basis functions that satisfy 
the boundary conditions: 

&(O)  = 0 4 k ( l )  = 0, k = 1,. . . ,n. (8.4.3) 

We attempt to find an approximate solution fi of (8.4.1) of the form 
n 

(8.4.4) 
i=l 

where the ai are to be determined. Note that this is the same approach taken 
in Chapter 6, with the exception that now we allow the coefficients cq of the 
linear combination of the basis functions to be functions of t to reflect the 
time-dependent nature of the problem. 

To determine the unknown coefficients ai, we can apply any of the criteria 
of Section 6.1, and we will consider first collocation in the following way. We 
again let 0 5 x1 < . * . < xn 5 1 be (not necessarily equally spaced) grid points 
in the x variable, and we require that the approximate solution (8.4.4) satisfy 
the differential equation at these points; thus, since 

n n 

we require that 
n n 
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and the n -vectors 

a(t) = (al(t), * * , an(t))T, a'(t) = (a:(t)i * .  ., ~ & ( t ) ) ~ ,  
we can write (8.4.5) as 

Thus if we assume that A is nonsingular and set C = A-lB, 
Aa'(t)  = Ba( t ) .  (8.4.7) 

a'(t) = Ca(t ) .  (8.4.8) 

Equation (8.4.8) is a system of n ordinary differential equations for the 
ai. To solve this system we will need an initial condition. If we require that 
the approximate solution ii satisfy the initial condition (8.4.2) at the points 
x l , .  . . , xn, we have 

n 

C ai(0)4i(xj)  = f (x j ) ,  j = 1, * 7 12, 
i=l 

or 
Aa(0)  = f ,  (8.4.9) 

where f = (f(xl) ,  . . . , f ( ~ , ) ) ~ .  By our assumption that A is nonsingular, we 
then have 

a(0) = A-lf. (8.4.10) 

The conceptual problem is then to solve the system of ordinary differential 
equations (8.4.8) with the initial condition (8.4.10). If we could do this exactly, 
then 12 as given by (8.4.4) would be the approximate solution. Such a method 
is called semidiscrete because we have discretized only in space by means of the 
basis functions 4i and grid points xi while leaving time as a continuous variable. 
In practice, however, the system of differential equations (8.4.8) must be solved 
numerically, so a discretization of time is introduced by that process and the 
term semidiscrete is somewhat of a misnomer. Nevertheless, the conceptual 
viewpoint of considering discretization of only the space variables and thus 
reducing the problem to a system of ordinary differential equations is useful. 

Let us consider the Euler method discussed in Chapter 2 for the numerical 
integration of the system (8.4.8). If to , t l , .  . . are equally spaced points in time 
with the spacing At, then Euler's method is 

= ak + AtCak,  k = 0,1,. . . , (8.4.11) 

where ak denotes the approximate solution at the kth time step. In practice 
we will not carry out (8.4.11) in the manner indicated since we will not actually 
form C = A-lB. Rather, we will work directly with the differential equation 
(8.4.7) and the corresponding Euler method 

Aa"+' = A a k  + A t B a k ,  k = 0,1,. . . . (8.4.12) 
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Thus at each time step we will solvc the linear system of equations (H.4.12) 
with coefficient matrix A.  The LU cloc:omposition of A can, in this ccmo, Ov 
done once and for all and the factors nnved to be used at each time step. 

In principle one could apply to (8.4.8) any of the higher-order method# 
discussed in Chapter 2; the formulation of some of these methods is left to 
Exercise 8.4.2. However, the equations (8.4.8) are typically rather "stiff," It1 
the sense discussed in Chapter 2, and the use of explicit methods will requira 
a rather small time step. Hence it may be advantageous to use a method such 
as the trapezoid rule. Applied to (8.4.8), the trapezoid rule (2.5.38) becomes 

or, multiplying through by A, collecting coefficients of ak+l and ak, and 
setting p = At/2, 

(A - pB)ak+l  = ( A  + @)ak .  (8.4.13) 

To carry out this method requires the solution at each time step of a linear 
system similar to (8.4.12) but with the coefficient matrix A - pB.  Assuming 
that this matrix is nonsingular and that At is held constant, we may proceed as 
before to compute the LU factors once and for all and use these in subsequent 
solutions of (8.4.13) at the different time steps. If the subtraction of the ma- 
trix p B  from A does not materially affect the difficulty of computing the LU 
decomposition, then the work in carrying out (8.4.13) will not be much more 
than that for Euler's method. However, the trapezoid method is second-order 
accurate in time, as discussed in Chapter 2, and allows a larger time step for 
stiff equations; it should, therefore, be more suitable for this problem. 

Hyperbolic Equations 

trate this for the wave equation 
The same approach can be applied to hyperbolic equations, and we illus- 

utt = cuxx, 0 5 2  5 1, t 2 0, (8.4.14) 

with the initial and boundary conditions 

~ ( 0 , z )  = f(z), ut(O,z) = g(z), u(t,O) = 0, ~ ( t ,  1) = 0. (8.4.15) 

It is common practice to reduce a hyperbolic equation like (8.4.14) to ti 

system of equations in which only the first derivative with respect to time a p  
pears. This is analogous to the situation for ordinary differential equations: 
recall that in Chapter 2 we reduced higher-order equations to first-order SYR- 

tems of ordinary diffwc!tit,ial eqiititions (HW Appendix 1).  In the case of (8.4.14) 
we will i i ~ e  ti rc!clric:t,ioti tiinde hy ititrodiiciti~ n function v ( t ,  2) such that 

'lit, = (L'lIS, ' I ) (  = f l ' l ix ,  (8.4.16) 
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where a = &. If u and v are solutions of the system (8.4.16) and are sufficiently 
differentiable, then by differentiating the first equation of (8.4.16) with respect 
to t and the second with respect to x, we obtain 

n 

utt = av,t = avt, = a%,, = cu,,, 

so that u is a solution of (8.4.14). The initial and boundary conditions (8.4.15) 
for (8.4.14) become 

Now let q51(x), . . . , &(x) and $1(x), . . . , $n(x)  be two sets of basis functions 
that satisfy 

$i(O) = q5i(l) = $i(O) = $i(l) = 0, i = 1 , .  . . ,n. (8.4.18) 

We shall seek approximate solutions ti and 6 of (8.4.16) of the form 

n n 

ti(., t )  = C Qi(t)q5i(.), 6(., t )  = c Pi(t)$Ji(Z). (8.4.19) 
i= l  i=l  

If we require that these approximate solutions satisfy the equations (8.4.16) at 
the grid points 21,. . . , xnr  we obtain 

n n 

i=l j=1 
I) I)  

which is a coupled system of 2n ordinary differential equations for the un- 
known functions a1,. . . ,an and p1, . . . ,pn. As before, the initial conditions 
are obtained from (8.4.17) by 

n 5 a i ( o M i ( Z j )  = f(4, c Pi(O)$i(.j) = ; LX g(s)ds,  j = 11.. . 1 n, 
i= 1 i=l 

where we will assume that the n x n matrices ( k ( z j ) )  and ($i(xj)) are nonsin- 
gular. Thus the semidiscrete method for the wave equation (8.4.14) is entirely 
analogous to that for the heat equation, with the exception that there are 
now twice as many unknown functions in the system of ordinary differential 
equations. 
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The Method of Lines 
We have used the collocation principle for the discretization of the space 

variable in both of the preceding examples, but the Galerkin principle discussed 
in Chapter 6 could have been used. Finite difference discretizations can also 
be used in the same fashion, as we now discuss briefly for the heat equation 
(8.4.1). If u is the exact solution of (8.4.1), then the approximate relation 

holds at the grid points X I , .  . . , xn .  This leads to the following procedure. We 
seek n functions v l ( t ) ,  . . . , vn( t )  such that 

v i ( t )  = U(t,Xi), i = 1 , .  * . ,n. 

The approximate relationship (8.4.21) suggests attempting to find these func- 
tions as the solution of the system of ordinary differential equations 

C 
W i ( t )  = - [vi+l(t) - 2vi(t) + wi.-l(t)], i = 1 , .  . . ,n, (8.4.22) 

in which the functions vo and vn+l are taken to be identically zero from the 
boundary conditions (8.4.2). Moreover, from the initial condition (8.4.2) we 
will take 

vt(0) = f ( X i ) ,  i = 1 , .  . . ,n. (8.4.23) 

The system (8.4.22) can be written in matrix form as 

(8.4.24) 

where A is the (2, -1) tridiagonal matrix (3.1.10). If we apply Euler’s method 
to this system, we have 

Written out in component form, this is 

cat 
.?+1 = .y + - (wZl - 2 v y  + v E 1 ) ,  i = 1 , .  . . ,n, m = 0 , 1 , .  . . , 

( A x ) 2  

which is tho explicitl method (8.2.5). Similarly, the implicit method (8.3.2) is 
obtairicd hy applyiIig thc h c k w i t r t l  Erilcr method (2.5.33) to (8.4.24), and the 
Crcirik-Nic:olsoIi I n c % l i o ( l  (8.3.12) Itriws by Itpplyi1ig the trapezoid rule (2.5.38) 
t,o (8.424).  
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The above procedure leading to the system of ordinary differential equa- 
tions (8.4.24) is called the method of lines, and some authors use this term for 
any semi-discrete method, whether or not it arises from finite differences. 

Supplementary Discussion and References: 8.4 
In the text we have described only the use of very simple methods for 

solving the ordinary differential equations arising from discretization only in 
the space variable. However, one of the advantages of this approach is the 
possibility of using high quality packages for solving the ordinary differential 
equations. For further reading, see Schiesser [1991]. 

EXERCISES 8.4 

8.4.1. a. Write out the system of equations (8.4.7) explicitly for the basis functions 
+ k ( X )  = sin krx, k = 1,. . . ,n, assuming that the grid points 21,. . . , zn  
are equally spaced. Write a program to carry out Euler’s method (8.4.1P) 
with n = 10 and At = 0.1. Run the program for 20 time steps and for 
different initial conditions. 

b. Do the same if the q5k are quadratic splines as discussed in Section 6.2. 

8.4.2. Write out explicitly the second- and fourth-order Runge-Kutta methods and 
the second- and fourth-order Adams-Bashforth methods for (8.4.8). 

8.4.3. Write a program to carry out the trapezoid method (8.4.13) for the problems 
of Exercise 8.4.1. 

8.4.4. Repeat Exercise 8.4.1 for the equations (8.4.20) for the wave equation, as- 
suming that the & and $* are both trigonometric functions in part a, and 
quadratic splines in part b. 
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