
Chapter 7 

N Important Numbers 

7.1 Eigenvalue Problems 
In this chapter we shall consider the numerical solution of eigenvalue 

problems. Such problems occur frequently in engineering, physics, chemistry, 
economics, and statistics, as well as other areas. In this section we shall discuss 
a few example problems, classify different types of eigenvalue problems, and 
provide some mathematical background. 

In the matrix eigenvalue problem we wish to find a real or complex number 
A, an eigenvalue, and a corresponding nonzero vector x, an eigenvector, that 
satisfy the equation 

AX = AX, (7.1.1) 

where A is a given real or complex n x n matrix. As discussed in Appendix 2, a 
solution A of (7.1.1) is a root of the characteristic polynomial det(A - XI) = 0. 
This is a polynomial of degree n and therefore has exactly n real or complex 
roots, XI, 1 .  , A,, provided that the multiplicity of each root is counted. Once 
an eigenvalue Xi is known, a corresponding eigenvector xi can be determined, 
in principle, as a solution of the homogeneous system of equations 

(A - &I)x = 0. (7.1.2) 

Note that even if the matrix A is real, its eigenvalues - and consequently also 
its eigenvectors - may be complex. For example (Exercise 7.1.1), the matrix 
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a viable computational procedure except for the most trivial problems. The 
main purpose of this chapter is to give alternative computational methods. 

Differential Equations 

ordinary differential equations 
As an example of how eigenvalue problems arise, consider the system of 

dY - = Ay 
dt 

(7.1.3) 

for a given constant n x n matrix A. If we try a solution of (7.1.3) of the form 

y(t) = eXtx (7.1.4) 

for some constant unknown vector x and unknown parameter A, then we must 
have 

- dy = AeXtx = A(extx), 
dt 

or, since ext is always nonzero, Ax = Ax; that is, (7.1.4) is a solution of (7.1.3) 
if and only if A and x are an eigenvalue and a corresponding eigenvector of A. 

An important type of matrix is one that has n linearly independent eigen- 
vectors (see Theorem A.2.1 in Appendix 2 for the definition of linear indepen- 
dence). If this is the case, and X I , .  . . ,An and X I , .  . . , x, are the eigenvalues 
and corresponding eigenvectors, then 

yl(t) = eXltxl, yz(t) = exztxz, .. . , yn(t) = exntxn (7.1.5) 

is a complete set of linearly independent solutions of the differential equation 
(7.1.3). Hence, any solution of (7.1.3) may be written in the form 

n n 

(7.1.6) 
i=l  i=1 

where the constants c1,.  . . , c, may be determined by initial or other conditions. 
Thus, the general solution of (7.1.3) may be obtained by solving the eigenvalue 
problem for the matrix A. If A does not have n linearly independent eigen- 
vectors, a similar but more complicated representation of the solution may be 
given. 

Linearly Independent Eigenvectors 
We now discuss in more detail the property of a matrix having n linearly 

independent eigenvectors. As in Appendix 2, a similarity transformation of 
the matrix A is of the form P A P - l ,  where P is any nonsingular matrix. A 
similarity transformation of A arises from a change of variables; for (!xttiiiplc, 
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consider the system of equations Ax = b and make the change of variables 
y = Px and c = Pb, where P is a nonsingular matrix. In the new variables 
the system of equations is AP-'y = P-'c or, upon multiplying through by P, 
PAP-ly = c.  Thus, the coefficient matrix of the system in the new variables 
is the similarity transform PAP-'. 

An important property of similarity transformations is that they preserve 
the eigenvalues of A: the matrices A and PAP-' have the same eigenval- 
ues. This is easily seen by considering the characteristic polynomial and using 
the fact that the determinant of a product of matrices is the product of the 
determinants. Thus 

det(A - X I )  = det(PP-') det(A - X I )  = det(P) det(A - X I )  det(P-') 

= det(PAP-' - X I ) ,  

which shows that the characteristic polynomials, and hence the eigenvalues, 
of A and PAP- '  are identical. However, the eigenvectors change under a 
similarity transformation. Indeed, 

PAP- ly  = Xy or AP-'y = XP-'y 

shows that the eigenvector y of PAP-' is related to the eigenvector x of A by 
P - ly  = x or y = Px .  

An important question is how ''simple" the matrix A may be made under 
a similarity transformation. A basic result in this regard, which brings us back 
to linear independence of the eigenvectors, is the following: 

THEOREM 7.1.1 A matrix A is  similar to  a diagonal matrix if and 
only i f  A has n linearly independent eigenvectors. 

The proof of this theorem is both simple and illustrative. Let XI , .  . . , x, 
be n linearly independent eigenvectors of A with corresponding eigenvalues 
A l l . .  . ,A,, and let P be the matrix with columns XI , .  . . ,x,: then P is non- 
singular since its columns are linearly independent. By the basic definition 
Axi = Xixi applied to each column of P, we have 

A P  = A(Xi,XZ,. . . x,) = (Xixi,. . . , X,X,) = P D ,  (7.1.7) 

where D is the diagonal matrix diag(X1, XZ, . . . ,A,). Thus (7.1.7) is equivalent 
to A = PDP-', which shows that A is similar to a diagonal matrix whose di- 
agonal entries are the eigenvalues of A. Conversely, if A is similar to a diagonal 
matrix, then (7.1.7) shows that the columns of the similarity matrix P must 
be eigenvectors of A, and they are linearly independent by the nonsingularity 
of P. 

Two iiiiport,aiit, n p r c i t t l  c:ltnc!n of t, hr prw(!dirig rfrsiilt, aro thr following the- 
or(riiin, which w(! nt,at,o wit,lioiit, p r o o f .  
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THEOREM 7.1.2 If A has distinct eigenvalues, then A is similar to 
a diagonal matrix. 

THEOREM 7.1.3 If A is a real symmetric matrix (that is, A = AT),  
then A is similar t o  a diagonal matrix, and the similarity matrix 
mny be taken to be orthogonal (that is, PPT = I). 

Symmetric matrices are extremely important in applications. They also have 
many nice properties as regards their eigenvalues and eigenvectors. In particu- 
lar, the eigenvalues of a symmetric matrix are always real and are positive if A 
is positive definite. Moreover, the last part of Theorem 7.1.3 can be rephrased 
to say that the eigenvectors can be chosen to be orthonormal (Appendix 2). 

The Jordan Form 
Theorem 7.1.2 shows that if a matrix A does not have n linearly inde- 

pendent eigenvectors, then necessarily it has multiple eigenvalues. (But note 
that a matrix may have n linearly independent eigenvectors even though it has 
multiple eigenvalues; the identity matrix is an example.) The matrix 

(7.1.8) 

is a simple example of a matrix that does not have two linearly independent 
eigenvectors (see Exercise 7.1.4) and is not similar to a diagonal matrix. How- 
ever, any n x n matrix may be made similar to a matrix of the form 

where the X i  are the eigenvalues of A and the 6i are either 0 or 1. If q is 
the number of 6i that are nonzero, then A has n - q linearly independent 
eigenvectors, and whenever a 6i is nonzero, then the eigenvalues X i  and Xi-1 

are identical. Thus the matrix J can be partitioned as 

(7.1.9a) 

where p is the number of linearly independent eigenvectors, and each Ji is ti 
matrix of the form 
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(7.1.9b) 

with identical eigenvalues and all 1’s on the first superdiagonal. The matrix 
J of (7.1.9) is called the Jordan canonical form of A.  Note that if A has n 
linearly independent eigenvectors, then p = n ; in this case each Ji reduces to 
a 1 x 1 matrix, and J is diagonal. 

The Jordan canonical form is for useful theoretical purposes but not very 
useful in practice. For many computational purposes it is very desirable to 
work with orthogonal or unitary matrices. (A unitary matrix U is a complex 
matrix that satisfies U*U = I ,  where U* is the conjugate transpose of U ;  a 
real unitary matrix is an orthogonal matrix.) We next state without proof two 
basic results on similarity transformations with unitary or orthogonal matrices. 

SCHUR’S THEOREM. For an arbitrary n x n matrix A ,  there is a 
unitary matrix U such that UAU* is triangular. 

MURNAGHAN-WINTNER THEOREM. For a real n x n matrix A ,  
there is an orthogonal matrix P so that 

where each Tii is either 2 x 2 or 1 x 1. 

In the case of Schur’s Theorem, the diagonal elements of UAU* are the 
eigenvalues of A since UAU* is a similarity transformation. If A’ is real but has 
some complex eigenvalues, then U is necessarily complex. The Murnaghan- 
Winter Theorem comes as close to a triangular form as possible with a real 
orthogonal matrix. In this case, if Tii is 1 x 1, then it is a real eigenvalue of 
A, whereas if Tii is 2 x 2, its two eigenvalues are a complex conjugate pair of 
eigenvalues of A. 

Other Differential Equations 

tims lead in certain simple cases to the ordinary differential equation 
We now return to further examples of eigenvalue problems. Many applica- 

- I/”(.) = Xu(.), I/(()) = 0 ,  y ( l )  = 0. (7.1.10) 
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Here we wish to find values - again called eigenvalues - of the scalar X so that 
(7.1.10) has corresponding nonzero solutions - called eigenfunctions - that sat- 
isfy the given zero boundary conditions. This particularly simple problem can 
be solved explicitly. There are infinitely many eigenvalues and corresponding 
eigenfunctions that are given by 

X I ,  = k 2 r 2  yk(x) = sinkrz,  k = 1 ~ 2 , .  . . , (7.1.11) 

as is easily checked by substitution into (7.1.10). 

of y; that is, 
Next suppose that (7.1.10) is modified by adding a nonconstant coefficient 

- Y ” ( 4  = w ~ ) y ( ~ ) ,  Y(0) = 0, Y ( 1 )  = 0, (7.1.12) 

where c is a given positive function. Now it is no longer possible, in general, 
to obtain the eigenvalues and eigenfunctions of (7.1.12) explicitly, but we can 
approximate them numerically by the following procedure. Just as in the 
treatment of boundary-value problems in Chapter 3, we discretize the interval 
[0, 11 with grid points xi = ih, i = 0,1 , .  . . , n + 1, h = l / ( n  + l), and replace 
the second derivative in (7.1.12) by the corresponding difference quotient. This 
gives the discrete equations 

1 
h2 -(-y2+1 + 2yi - yi-1) = xciyi, i = 1,. . * , n, (7.1.13) 

where ci = c(x i ) ,  yo = yn+l = 0,  and yi is an approximation to y(xi). 
The equations (7.1.13) constitute a matrix eigenvalue problem of the form 

Ay = XBy, (7.1.14) 

where A is the (2, -1) tridiagonal matrix of (3.1.10) and B is a diagonal matrix 
with elements h2ci. Equation (7.1.14) is an example of a generalized eigenvalue 
problem in which the matrix B on the right-hand side of the equation is not 
the identity matrix. In the present case we have assumed that the function 
~ ( x )  is positive; therefore B is non-singular and we can multiply (7.1.14) by 
B-’ to convert it to the standard eigenvalue problem B-lAy = Xy. 

It is not always advisable to convert (7.1.14) back to a standard eigenvalue 
problem even if B is non-singular (see the Supplementary Discussion of Section 
7.2). Moreover, if A and B are symmetric, the product B-lA is not symmetric, 
in general. However, if B is also positive definite, we can convert (7.1.14) to a 
standard eigenvalue problem for a symmetric matrix as follows. First, compute 
the Cholesky decomposition B = LLT (Section 4.5). Then, multiply (7.1.14) 
by L-’ so that (7.1.14) becomes 

L - ~ A L - ~ L ~ ~  = X L ~ ~  or A z  = XZ, 
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where z = LTy  and A = L-lAL-T is symmetric. 
Although the main purpose of this chapter is to describe methods for com- 

puting eigenvalues and eigenvectors, it is important to note that many prob- 
lems require information only about the location of eigenvalues and not their 
precise values. As an example of this we return to the system (7.1.3) of ordi- 
nary differential equations. An important property of this system is whether 
all solutions tend to zero as t tends to infinity. If so, the zero solution is said 
to be asymptotically stable. Assuming again that the matrix A has n linearly 
independent eigenvectors, all solutions will go to zero as t goes to infinity if and 
only if each of the solutions (7.1.5) does, and since the vectors xi are constant, 
this will be the case if and only if eAit approaches zero as t approaches infinity 
for each i. If X i  is real, this will be the case if and only if X i  < 0, and if X i  is 
complex, the real part of Xi,  denoted by Re(&), must be negative. Thus the 
zero solution of (7.1.3) is asymptotically stable if and only if 

Re(&) < 0, i = I , .  . . ,n,  (7.1.15) 

so that all the eigenvalues lie in the left-half of the complex plane. A related 
example is an iterative method of the form 

xk+’ = Axk + d ,  k = 0 , 1 , .  . . . (7.1.16) 

As we will see in Chapter 9, the iterates xk will converge for any starting vector 
xo if and only if all the eigenvalues of A satisfy < 1. This will be true if 
I(AIJ < 1 for some norm, but the following approach is sometimes more easily 
applied. 

Gerschgorin’s Theorem 
Let A = ( a i j )  be a real or complex n x n matrix and let 

n c i = l ,  . . .  
j = 1  
j # i  

That is, ri is the sum of the absolute values of the off-diagonal elements in the 
ith row of A. Next define disks in the complex plane centered at aii and with 
radius Ti: 

We then have the following: 

GERSCHGORIN’S THEOREM All the eigenvalues of A lie in the 
union of the diska A,,  . . . , A,,. M O T C O I J ~ T ,  if S is a union of m disks 
auch that S i-9 di,9:joi7tt from all  the other disks, then S contain.9 
c m c . l l y  rrt, r ~ i ~ ~ r n i i c ~ h w s  of A (wur i , t i y  Priiiltip1ir:itien). 
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As a simple example of the use of Gerschgorin’s theorem, consider the 

.=A[ -: -4 i ] ,  (7.1.17) 

matrix 
-8 -2 

2 -10 

for which the Gerschgorin disks are illustrated in Figure 7.1. Note that we can 
immediately conclude that all eigenvalues of A have negative real part; hence 
if A were the coefficient matrix of the system of differential equations (7.1.3), 
the zero solution of that system would be asymptotically stable. Similarly, 
we can immediately conclude that the eigenvalues of A are all less than 1 in 
absolute value, so the vectors x k  defined by (7.1.16) converge. 

Figure 7.1: Gerschgorin’s Disks in the Complex Plane 

To illustrate the second part of Gerschgorin’s Theorem, suppose that the 
second row of the matrix of (7.1.17) is changed to &(-1,6,2) .  Then the disk 
A2 is centered at +!, again with radius A. Since A2 is now disjoint from the 
other two disks, it contains exactly one eigenvalue of A. Moreover, since any 
complex eigenvalues of A must occur in conjugate pairs, this eigenvalue must 
be real and therefore lies in the interval [s, 61. 

The proof of the first part of Gerschgorin’s Theorem is very easy. Let A be 
any eigenvalue of A ,  and x a corresponding eigenvector. Then, by (7.1.1), 

n 

( X - a i i ) x i  = C ~ i j ~ j ,  i = 1 ,..., n. 
j = l  
j # i  

If we let X k  be the component of largest absolute value in the vector x, then 
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Thus X is in the disk centered at a k k  and therefore in the union of all the disks. 
The proof of the second part of the theorem is more complicated and relies 
on the fact that the eigenvalues of a matrix are continuous functions of the 
elements of the matrix. 

By a simple similarity transformation, it is sometimes possible to use Ger- 
schgorin's Theorem to extract additional information about the eigenvalues. 
For example, consider the matrix 

A =  1 12 1 . [I 1 P U ]  
Since A is symmetric its eigenvalues are real, and by Gerschgorin's Theorem 
we conclude that they lie in the union of the intervals [7,9], [lo, 141, [9,11]. 
Since these intervals are not disjoint we cannot yet conclude that any of them 
contains an eigenvalue. However, if we do a similarity transformation with the 
matrix D = diag(d, 1 , l )  we obtain 

d 

1 10 
DAD-'= [ dsl 12 1 ] . 

By Gerschgorin's Theorem, the eigenvalues of this matrix (which are the same 
as those of A )  lie in the union of the intervals [8-d,8+d], [11-d-', 13+d-'], 
[9,11]. As long as 1 > d > 4[3 - &], the first interval is disjoint from the 
others and thus contains exactly one eigenvalue. In particular, the interval 
[7.6,8.4] contains one eigenvalue. 

Another important use of Gerschgorin's Theorem is in ascertaining the 
change in the eigenvalues of a matrix due to changes in the coefficients. Let A 
be a given n x n matrix with eigenvalues XI,. . . , A, and suppose that E is a 
matrix whose elements are small compared to those of A;  for example, E may 
be the rounding errors committed in entering the matrix A into a computer. 
Suppose that p1,.  . . , pn are the eigenvalues of A + E.  Then, what can one 
say about the changes I X i  - pi(? We next give a relatively simple result in the 
case that A has n linearly independent eigenvectors. Recall, from Appendix 2, 
that the infinity norm of a matrix is the maximum value of the sums of the 
absolute values of the elements in each row. 

THEOREM 7.1.4 Assume that A = PDP-', where D is the diag- 
onal matrix of eigenvalues of A ,  and let d = IIP-'EPJ(,. Then  
every eigenvalue of A + E is within d of a n  eigenualue of A.  



220 CHAPTER 7 N IMPORTANT NUMBERS 

A + E. Let B = P-’EP. Then C = D + B,  and the diagonal elements of C 
are X i  + bi i ,  i = 1 , .  . . , n. Hence, by Gerschgorin’s Theorem, the eigenvalues 
p1,.  . . , pn are in the union of the disks 

n 

(2 : 12 -xi - biiI 5 c Ib i j l } .  
j = 1  
j # i  

Therefore, given any p k ,  there is an i such that 
n 

j = 1  
j # i  

or 
n 

lpk - Ail 5 c lbijl 5 d, 
j=1 

which was to be shown. 

Ill-conditioned Eigenvalues 
Note that the quantity d need not be small even though llElloo is small; 

this will depend on P. In general, the more ill-conditioned the matrix P (in 
the sense of Chapter 4), the more ill-conditioned will be the eigenvalues of 
A, and the more the eigenvalues may change because of small changes in the 
coefficients of A. We give a simple example of this. Let 

1 A + E =  1 A =  [ 
Then the eigenvalues of A are 1 and 1 + and those of A + E are a p  
proximately 1 f in one element of A has caused 
a change lo5 times as large in the eigenvalues. The reason for this is that the 
matrix P of eigenvectors of A is very ill-conditioned. It is easy to verify that 

Thus a change of 

1 1 -1010 
p =  [ ; 10-10 1 ,  p-l= [ 0 1010 1 .  

Therefore the matrix P-lEP of Theorem 7.1.4 is 
1 -1010 1 -1 -1 P-lEP= [ 0 

1010 ] [ loo-lo ; ] [ ; 10-10 ] = [ 1 1 1 ’  
and thus d = (IP-lEPII, = 2. Note that the actual change in the eigenvalues 
is far smaller than this bound. 

It is an interesting and important fact that the eigenvalues of a symmetric 
matrix are always well-conditioned; this is the interpretation of the following 
theorem, stated without proof. 
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THEOREM 7.1.5 Let A and B be real symmetric n x n matrices with 
eigenvalues XI, . . . , A, and P I ,  . . . , p,, respectively. Then given any 
p j ,  there is a Ai such that 

(Xi - Pjl I IIA - Bll2. 

Note that in this theorem it is the 2-norm (see Appendix 2) that is used, and 
hence the result does not follow directly from Theorem 7.1.4. 

In this section we have given various examples of eigenvalue problems and 
some of the basic mathematical theory. In the remainder of this chapter we 
will discuss the foundation of various methods for computing eigenvalues and 
eigenvectors. 

Supplementary Discussion and References: 7.1 
Further discussion of the use of eigenvalues for solving linear ordinary dif- 

ferential equations can be found in most elementary differential equation text- 
books. See also Ortega [1987]. Discussions of the theory of matrix eigenvalue 
problems in a form most suitable for scientific computing are given in Golub 
and Van Loan [1989], Ortega [1987], and Ortega [1990]. See also Wilkinson 
[1965], Householder [1964], Stewart [1973], and Parlett [1980]. 

EXERCISES 7.1 

7.1.1. Compute the characteristic equations det(A - A I )  for the rnatric:es 

Next compute the eigenvalues of A by obtaining the roots of these polynomi- 
als, and then compute the eigenvectors by solving the homogeneous equations 
(7.1.2). 

7.1.2. Give the solution of the initial-value problem 

in terms of the eigenvalues and eigenvectors that were computed in Exercise 
7.1.1. 
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A =  

- a  b - 
b a  b 

b a  b 

b a b  
b a  - - 
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is called the companion matrix (or Frobenius matrix) of p .  Show that p(X)  
is the characteristic polynomial of A.  Then apply Gerschgorin’s Theorem to 
both A and AT to obtain bounds for the roots of p .  

7.1.12. Let A be a real, symmetric matrix. Show that Schur’s Theorem implies 
that there exists an orthogonal matrix Q such that QTAQ = D , where D is a 
diagonal matrix. 

7.1.13. A matrix A is skew-symmetric if AT = -A .  Let A be a real, skew-symmetric 
matrix and PAPT = T ,  where T is given by the Murnaghan-Wintner Theorem. 
Describe the structure of T in this case. 

7.1.14. Show how to write the differential equation 

y”(t) + ay ’ ( t )  + by( t )  = 0 

as a system of first-order equations in the form (7.1.3).Then give conditions on 
a and b so that y ( t )  + 0 as t -+ 00 for any initial conditions. 

7.1.15. Suppose that the matrix A hasp  zero eigenvalues and corresponding linearly 
independent eigenvectors. Show how to obtain the solution of the differential 
equation Ay’ = y even though A-’ does not exist. What does this imply 
about initial or boundary conditions? 

7.1.16. Compare the eigenvalues of (7.1.10) with those of the matrix 

K B = h - 2 A ,  h =  - 
n + l ’  

where A is the (2,  -1) tridiagonal matrix of (3.1.10). Which eigenvalues of B 
are accurate approximations of those of the differential equation? 

7.1.17. Consider the equation (7.1.14) where A and B are symmetric and B is 
positive definite. Show that we can construct matrices F and D such that 

A = F D F T  and B = F F T ,  

where D is a diagonal matrix whose entries are the eigenvalue of (7.1.14). 

7.1.18. Consider a matrix Ji of the form (7.1.9b). Show that there exists a diagonal 
matrix D so that DJiD-’ is the same as Ji except that the off-diagonal 1’s 
are replaced by e.  

7.1.19. Assume that A = AT.  In Theorem 7.1.4, give an upper bound for d = 
JIP-’EPIIm. 
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A k + T =  

7.2 The QR Method 

- A1 * . . .  

* 1 , as k t 00, (7.2.5) 

A n  

* 
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( k )  and the rate of convergence to  zero of the off-diagonal elements aij 
of Ak i s  given b y  

(7.2.6) 

The technical condition that P-l have an LU decomposition ensures that 
the eigenvalues appear on the main diagonal of T in descending order of mag- 
nit,ude. This is the usual situation, although if the condition is not satisfied 
the order of the eigenvalues may be different. The more stringent condition is 
(7.2.4)) which precludes not only multiple eigenvalues but also complex conju- 
gate pairs of eigenvalues. If the matrix A is real, then all the factors Qk and Rk 
are also real, and there is, of course, no possibility that the Ak could converge 
to a triangular matrix with complex eigenvalues. However, what does occur - 
which is the best that one could hope - is that the Ak will “converge)) to an 
almost-triangular form illustrated by the matrix 

I* ... * 

(7.2.7) 

In this example we have assumed that there are three real eigenvalues A3, X8, 

Xg with distinct absolute values and three complex conjugate pairs of eigenval- 
ues, again with distinct absolute values. The latter eigenvalues are determined 
by the three 2 x 2 matrices indicated by the blocks on the main diagonal. 
Actually, the elements of these 2 x 2 matrices do not converge, but their eigen- 
values do converge to eigenvalues of A.  Hence the computation of complex 
eigenvalues of real matrices does not present any problem. Note that (7.2.7) 
is the Murnaghan-Wintner form. Thus the Q R  algorithm attempts to obtain 
the Schur triangular form of the matrix when possible, and the Murnaghan- 
Wintner form otherwise. 

Hessenberg Form 
The Q R  algorithm as described so far is too inefficient to be effective, and 

two important modifications must be made. The first problem is that each step 
of (7.2.3) rt!quires O(nf3) operations, which makes the process very slow. We 
(:an circurrivcnt this difficulty by making it preliminary reduction of the matrix 
A t,o ii forrti for wliic:li t.lic! clc!c:oriil)osil,ioii ( : i l l1 I)(: morc rapidly computed. This 
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is the Hessenberg form 

(7.2.8) 

which has one non-zero diagonal below the main diagonal, while the elements 
above the main diagonal are, in general, non-zero . The reduction by similarity 
transformations of the original matrix A to Hessenberg form can be effected 
by the Householder transformations used in Section 4.5, as we now discuss. 

Let P 2  = I - 2w2wT be a Householder transformation such that P2A has 
zeros in its first column below the second position: 

(7.2.9) 

The vector w2 has a zero in the first component; otherwise, it is defined anal- 
ogously to (4.5.13) by 

w2 = p2u2, Uf = (0, a21 - 32,  a31,. * .  ,an), ( 7.2.10) 

n 
where 

92  = &(E a ; p ,  p2 = ( 2 4  - 2a21s2)-1/2. 
j=2 

Since we are performing similarity transformations, we must also multiply on 
the right by PT: 

A2 = P2APF = A - 2 ~ 2 w ; A  - ~ A w ~ w ;  + 4wfAwzwzwf.  (7.2.11) 

Since the first component of w2 is zero, the multiplication on the right by PT 
does not change the zeros introduced in the first column by P2A. Thus A2 is 
similar to A and has the form shown in (7.2.9). We now continue this process. 
P3 is determined by a vector w3 whose first two components are zero and is 
otherwise chosen analogously to (7.2.10) to produce zeros in the third column 
below the third element. And so on. After n - 2 Householder transformations, 
the matrix 

(7.2.12) PAPT = H ,  P 1 P,-l . * ' P2, 
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will have the Hessenberg form (7.2.8). Since (7.2.12) is a similarity transfor- 
mation, A and H will have the same eigenvalues. This reduction requires O(n3) 
operations; more precisely, it requires roughly twice as many operations as a 
Q R  factorization. 

A particularly important special case of (7.2.12) is when A is symmetric. 
In this case H must also be symmetric (Exercise 7.2.1); thus it is tridiagonal. 
We summarize the discussion above as: 

THEOREM 7.2.2.  An n x n real matrix can be reduced to  Hessenberg 
form (7.2.8) by  n - 2 Householder similarity transformations. If A 
is symmetric, the Hessenberg form is tridiagonal. 

We now apply the Q R  method (7.2.3) to the Hessenberg matrix H .  The 
Q R  factorization of H can be carried out by Householder transformations, as 
before, but since there is only one non-zero element below the main diagonal in 
each column it is slightly easier to use Givens transformations (see Section 4.5). 
Each Givens transformation will eliminate one zero below the main diagonal 
and thus n - 1 Givens transformations produce the Q R  factorization. As 
discussed in Section 4.5, the first Givens transformation modifies the first two 
rows of H and requires 4 n  multiplications and 2n additions. At each stage the 
length of the rows decreases by one and hence the total number of operations 
for the row modifications is 

n n 

4 k multiplications + 2 Ic additions = O(n2) operations. 

In addition to these row modifications it is necessary to obtain the multipliers 
but the overall operation count is still O(n2),  as opposed to O(n3) for a full 
matrix. This is the advantage of using the Hessenberg form. 

The initial reduction of A to Hessenberg form would not be effective if 
the Q R  method itself did not preserve the Hessenberg form. But it does. 
Let QT = Qn-l . . . Q1 be the product of the Givens transformations so that 
Q = QT . . QZ-l. Each Qi has off-diagonal elements only in the (i + 1, i) and 
(i, i + 1) positions and hence Q itself is a Hessenberg matrix (Exercise 7.2.2). 
Then since R is upper triangular, the product RQ is a Hessenberg matrix and 
can be formed in O(n2) operations (Exercise 7.2.3). Thus all of the matrices 
generated by the Q R  method retain the Hessenberg form and each complete 
Q.R step requires O(n2) operations. 

k = 2  lc=2 

Shifting 
Even with the initial reductiori of the matrix to Hessenberg form, the Q R  

method is still inefficient duo to tho ponnihly ~ I o w  rake of convergence to zero 
of  thc! n u h h g o n d  ek?rnc?ntn. ‘Thin rnt,c! of (!oiivc!rgf!ri(!c! in intlir:r~tf!d by (7.2.6), 
wliicti nliows that, if t,wo c!iKc!iivaliic!H, H I L ~  A, I L I K I  A,.+ 1 ,  t w !  v w y  clone! i i i  ahsolutc! 
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value, then the off-diagonal element in position ( i  + 1, i )  will converge to zero 
very slowly. 

We will attempt to mitigate this convergence problem by shifting the eigen- 
values of H. Suppose that An is a good approximation to the smallest eigen- 
value, A, (assumed real), and consider the matrix H = H - &J, which has 
eigenvalues A 1  - A,,.. . , A, - An. If we apply the Q R  method to fi, then the 
off-diagonal element in the last row of the matrices HI, will converge to zero 
as powers of the quotient (A, - A n ) / ( A n - l  - A,), as opposed to the quotient 
A,/A,-l .  For example, suppose that A, = 0.99, A,-1 = 1.1, and A, = 1.0. 
Then, A,/A,-1 = 0.9 while IA, - A,I/lA,-l - i,l = 0.1, so that the conver- 
gence of the (n, n - 1) element is approximately 20 times faster for the matrix 

Of course, we usually will not know a good approximation A, to use as the 
shift parameter. However, as the Q R  process proceeds, if the (n,n) elements 

as the shift parameters; that is, at the kth stage do the next Q R  step on the 

current matrix to make a shift at each stage. Each shift changes the eigenvalues 
of the original matrix by the amount of the shift, so we need to keep track of 
the accumulation of shifts that are made; indeed, it is this accumulation that 
converges to the eigenvalue A,. The convergence is signaled by the off-diagonal 
element in the last row becoming sufficiently small. When this occurs the last 
row and column of the matrix may be dropped, and to determine the eigenvalue 
A,-1 we proceed with the resulting (n  - 1) x (n  - 1) submatrix. Note that 
the eigenvalues of this submatrix, and hence of the original matrix, have been 
changed by the total accumulation of shifts (which is the approximation to 
A,), and this must be added back to the other computed eigenvalues at the 
end of the computation. Alternatively, the shifts may be added back in at 
each stage, as illustrated by (7.2.13) in a different context, so that all of the 
matrices HI, retain the same eigenvalues. 

The preceding discussion has been predicated on the assumption that the 
smallest eigenvalue, A,, is real. Now suppose that A, is complex. Then shifting 

nary part of the eigenvalue cannot be approximated. Instead, as was discussed 
earlier, the eigenvalues of the lower right 2 x 2 submatrices of the matrices 
HI, produced by the unshifted Q R  algorithm will converge to the eigenvalue 
pair A,, A,-1 = x,. Hence we use the eigenvalues of these 2 x 2 submatrices 
as shift parameters. Consider the first step applied to the matrix H1 and let 
k l ,  kz = be the eigenvalues of the lower right 2 x 2 submatrix. If we add 

H .  

h,, (k) of the matrices HI, are converging to the eigenvalue A,, we can use them 

matrix Hk = HI,  - h,,,I. (k) Then we continue using the (n,n) element of the 

by h,, ( I , )  , which remains real, is not a particularly good strategy since the imagi- 
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back the shifts, we obtain 

(7.2.13) 

If kl and k2 are complex, the matrices H I ,  H2, Q1, Q2, R1, and R2 will 
generally be complex, and consequently the Q R  steps need to be carried out 
in complex arithmetic. However, an interesting fact is that H3 is real (Exercise 
7.2.5). Indeed, it is possible to carry out the transformation from H1 to H3 
entirely in real arithmetic, although we will not go into the details of this here. 
This procedure is called the double-shift Q R  method. Even if the eigenvalues 
are real, it is a good strategy to shift twice using the eigenvalues of the lower 
right 2 x 2 submatrix. With this choice of shifts, as with shifting by the (n, n) 
element, the rate of convergence is usually at least quadratic. 

There is another possibility that enhances the speed of the Q R  method. 
Suppose that the subdiagonal element ai+l,i of the Hessenberg matrix H is 
zero. Then H can be written in block form 

Hi - k i I  = QiRi, 
H2 - k2I = Q 2 R 2 ,  

H2 = RiQi + k i l l  
H3 = R 2 Q 2  + k2I. 

H = [  0 H2 * ] ’ (7.2.14) 

and the eigenvalues of H are those of the matrices H I  and H2 (Exercise 7.2.6). 
Thus the Q R  method can be applied to these smaller matrices, which reduces 
the operation count. This observation can also be applied during the Q R  
method: if it should happen that the elements in position (i  + 1, i) converge 
to zero more rapidly than other off-diagonal elements, then the problem can 
be decomposed into two smaller problems. 

Householder’s Method 
We now return to the important special case in which A is symmetric. 

In this case the Hessenberg matrix is tridiagonal (Theorem 7.2.2) and the 
reduction of the original matrix by Householder transformations is known as 
Householder’s method. The Q R  method can again be used to compute the 
eigenvalues of the tridiagonal matrix T (see the Supplementary Discussion 
for alternative methods). In this case there are two simplifications. Since 
T is symmetric, its eigenvalues are necessarily real and therefore there is no 
need to be concerned with complex shifts or convergence of 2 x 2 submatrices. 
Secondly, the Q R  steps are very rapid; each requires only O(n) operations and 
the tridiagonal form is preserved (Exercise 7.2.4). 

Computation of Eigenvectors 
We next discuss the computation of eigenvectors, if they are desired. As- 

sume that an approxirriate t:igt!rivaluc htts t ) w t i  computed. Then there are two 
xt,c!pn to obtain th ( ~ o r r ( ! n ~ ) o ~ i ( I i t i ~  approxirririt,t! oigcxivc:c:t,or. First,, conipiitc: 
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the approximate eigenvector of the Hessenberg (or tridiagonal) matrix. We 
postpone the discussion of this until the following section since it is a special 
case of methods to be given there. Second, transform this eigenvector back to 
an eigenvector of the original matrix A.  We now consider this second step. 

Let y be an eigenvector of H corresponding to the eigenvalue A. Let 
H = PAPT, where P = Pn-1 . P2 is the product of the Householder transfor- 
mations Pi = I - 2wiwT used to obtain the Hessenberg form. Then x = P T y  
is the corresponding eigenvector of A since 

Ax = A P T y  = PTPAPTy = P T H y  = APTy = AX. 

If y is only an approximate eigenvector of H ,  we still use the same transfor- 
mation, P T y ,  to obtain an approximate eigenvector of A.  Thus 

x = PTy  = (Pn-,  * * * P2)Ty = p; .  . . p,T_,y. 

This is very easy to carry out. The first step is 
T Pn-ly = (I - 2wn-lw,T,)y  = y - 2(w,T,y)wn- l .  

Then P:-2 = I - 2wn-zw:-, is applied to this vector, and so on. Note that 
we need to retain the vectors wi that were used to produce the Hessenberg 
matrix H from A.  The non-zero components of the wi can be stored in the 
corresponding subdiagonal positions of A that are set to zero, if desired. 

We now summarize briefly the main points of this section. For the QR 
method to be efficient we must first reduce the original matrix A to Hessenberg 
form (tridiagonal if A is symmetric), and then incorporate shifts into the basic 
QR algorithm applied to this Hessenberg matrix. As the iteration proceeds, the 
eigenvalues are obtained one by one (or two at a time in the case of a complex 
conjugate pair), the matrix is reduced in size, and the iteration proceeds toward 
the remaining eigenvalues. Properly implemented, the QR algorithm is the 
best general-purpose method for nonsymmetric matrices. We have not been 
able to give all of the details necessary for such an implementation and have 
tried only to present the basic flavor of the method. The Supplementary 
Discussion gives references for further reading. 

Supplementary Discussion and References: 7.2 
It is tempting to try to find an orthogonal matrix so that PTAP is diagonal 

if A is symmetric. Unfortunately, this cannot be done with a finite number of 
operations, except in trivial cases, but there is a classical algorithm that at- 
tempts to find P as a limit of a sequence of products PI . . .Pk. This is Jacobi’s 
method, in which each Pi is a Givens matrix and, in the simplest case, the 
elements of A are zeroed in the order ( 2 ,  l), ( 3 ,  l), . . . , (n, l), ( 3 , 2 ) ,  ( 4 , 2 ) ,  . . .. 
Ideally, after all subdiagonal elements have been zeroed we would have a di- 
agonal matrix but non-zero elements generally will appear in positioria that 
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had previously been zeroed. The process is then repeated and, under mild 
assumptions, the matrices Ak = P:. . PTAP1. . Pk converge as k + 00 to 
a diagonal matrix containing the eigenvalues of A,  and PI . . Pk converges to 
a matrix P whose columns are the eigenvectors. Although Jacobi’s method is 
slow relative to the methods discussed in this section, it has been enjoying a 
recent revival due to its good properties on parallel computers (see, e.g., Golub 
and Van Loan [1989]). 

The idea of reducing the original symmetric matrix to tridiagonal form, 
rather than attempting to obtain a diagonal matrix as in Jacobi’s method, is 
due to J .  W. Givens in the early 1950’s. He used the plane rotation matri- 
ces now associated with his name. Shortly thereafter A. Householder noted 
that the reduction could be done more efficiently using elementary reflection 
matrices, now called Householder matrices. 

The QR method was introduced independently by Francis [1961, 19621 and 
Kublanovskaya [1961]. It was preceeded by the corresponding algorithm based 
on the LU decomposition and called the LR algorithm by H. Rutishauser 
in 1958. This method proceeds as in (7.2.3), but the QR factorizations are 
replaced by LR (i.e. LU) factorizations. Although the LU factorizations are 
faster (see Section 4.5), the QR method in general enjoys better numerical 
stability properties and has been the method of choice. 

Excellent codes for the QR method, and the special case of Householder’s 
method for symmetric matrices, are contained in EISPACK (Garbow et al. 
[1979]), which is now being transformed to the new LAPACK package (Don- 
garra and Anderson et al. [1990]). 

J. Wilkinson contributed immensely to the understanding and extension of 
all of the methods of this section. A wealth of material, including the proof of 
Theorem 7.2.1, detailed rounding error analyses, and further discussions of the 
practicalities of different methods may be found in his classic book (Wilkinson 
[1965]). See also Householder [1964] for a more mathematical treatment of 
some of the topics of this chapter, Parlett [1980] for results pertaining primarily 
to symmetric matrices, and Stewart [1973]. In particular, this latter book gives 
an implicitly shifted version of the QR method as well as relationships between 
the QR method and the power, inverse power, and Rayleigh quotient methods 
to be discussed in the next section. For a more recent review of all of the 
methods in this chapter, see Golub and Van Loan [1989]. 

In Section 7.1 it was mentioned that the generalized eigenvalue problem 
Ax = XBx can be converted to a standard problem B-lAx = Ax if B is non- 
singular. An alternative is the QZ algorithm (Moler and Stewart [1973]; see 
also Golub and Van Loan [1989]), which is an extension of the QR algorithm 
to the generalized eigenvalue problem. 

Although the QR algorithm is probably the best method, in general, for 
conipiitirig tho c:igctnvalut:n of a syrnrnatric tridiagonal matrix T, there are two 
at,t,ra(:t,ivv tdti:rtitLt,ivcs, (!t1(:11 o f  which is soitic!t.inion vcry iiwfiil. Thc: first is 
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based on a Stumn sequence, which for a tridiagonal matrix with diagonal ele- 
ments ui and off-diagonal elements bi (assumed to be non-zero), is a sequence 
of polynomials defined by 

&(A) = (Ui - A)Pi-l(A) - b;- ,p i - z (A) ,  i = 2,. . . ,n, (7.2.15) 

with p o ( A )  = 1 and pl(A) = a1 - A. The polynomial pk is the characteristic 
polynomial of the k x k leading principal submatrix of T .  In particular, p ,  is 
the characteristic polynomial of T and its roots are the eigenvalues of T .  These 
polynomials have the remarkable property that the number of agreements in 
sign between consecutive terms in the sequence l l p l ( i ) , . .  . ,p,(A) is equal to 
the number of roots of p ,  greater than or equal to 1. (See Exercise 7.2.9 for a 
related result.) This property then allows a bisection type algorithm. In par- 
ticular, by using two test points A 1  and i z  it is possible to know the number 
of the roots in the interval [il, & I ,  which can be very useful. For further infor- 
mation see Parlett [1980], which also discusses the spectrum splicing method 
(which is essentially equivalent for tridiagonal matrices to Sturm sequences). 
This is based on an LDLT decomposition of T - AI and application of the 
Inertia Theorem to ascertain the number of eigenvalues of T greater than 1 
(for the Inertia Theorem see, e.g., Ortega [1987]). 

The second alternative for symmetric tridiagonal matrices is an iterative 
method for the characteristic polynomial p , ( A )  of T .  Consider Newton’s 
method (Section 5.2). We can differentiate the sequence (7.2.15) to obtain 
the corresponding sequence for the derivatives 

p: (X)  = -pi-l(A) + (ui - A)P:-~(A) - b?-lp;-z(A),  i = 2 , .  .. , n ,  (7.2.16) 

where pb = 0 and p i  = -1. The two sequences (7.2.15) and (7.2.16) can be 
evaluated together to yield p , ( A )  and pL(X) to use in Newton’s method. This 
can be combined with the Sturm sequence property to ascertain an interval 
in which a root is known to lie before applying Newton’s method to achieve 
rapid convergence to the root. See, for example, Wilkinson [1965] for further 
details. Other root-finding techniques could also be used in place of Newton’s 
method. 

EXERCISES 7.2 

7.2.1. I f  A is symmetric, show that PAPT is also symmetric for any matrix P. 
Apply this, in particular, to (7.2.12) to conclude that the Hessenberg matrix 
H is tridiagonal if A is symmetric. 

7.2.2. Show that if Qi is a diagonal matrix except for non-zero elements in the 
(i + 1, i) and (i, i + 1) positions, then the product Q1 . . . Qn-1 is a Hessenberg 
matrix. 
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7.2.3. Show that if Q is a Hessenberg matrix and R is upper-triangular, then the 
product RQ is a Hessenberg matrix. Show that this multiplication requires 
0(n2) operations. 

7.2.4. Let A be a symmetric banded matrix. Show that the QR method (7.2.3) 
preserves the bandwidth of A. What is the operation count for one step? 
Specialize this to show that if the QR method is applied to a symmetric tridi- 
agonal matrix, the tridiagonal form is preserved and each QR step requires 
O(n) operations. What happens for nonsymmetric banded matrices? 

7.2.5. Let H1 be real and k l ,  k2 = k l  be complex scalars. Show that the matrix H3 

defined by (7.2.13) is real. 

7.2.6. Suppose that the matrix A has the block form 

Show that det(A - X I )  = det(A1 - X I )  det(A2 - X I )  so that the eigenvalues of 
A are those of A1 and A2. 

7.2.7. Let A be skew-symmetric (AT = -A). Show that if H is the Hessenberg 
matrix obtained by Householder reduction, then H is tridiagonal and skew- 
symmetric. Note that a skew-symmetric matrix has zero main diagonal ele- 
ments. Can you use this to simplify the QR algorithm? 

7.2.8. Let 

Show that if bici > 0, then there exists a diagonal matrix D so that DAD-' 
is symmetric. 

7.2.9. Let pk(X)  be the characteristic polynomial of the leading principal k x k 
submatrix of A. Suppose that A is symmetric with eigenvalues A1 5 . . .  5 A,. 
Show that pk(X)  > 0, k = 1,. . . ,n  if X < XI, and that the pk(X) alternate in 
sign if X > A,. 

7.2.10. Let A and B be symmetric n x n  matrices with B positive definite. Show how 
to find a matrix S so that A = STST and B = S S T ,  where T is a tridiagonal 
matrix whose eigenvalues are the same as those of B-lA. 

7.2.11. Let A be a real n x n matrix. Suppose that we wish to solve the linear 
systems (A + p l ) x  = b for several values of the real parameter p.  How may 
w(' us(: t h :  c1c:coiiil)osiitioIi A = P H P T ,  where P is orthogonal and H is upper 
H(:HH(:III)(TK'I I low iiiriiiy op:rr ib io i iH   dot^ your algorithm take? 
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7.3 Other Iterative Methods 
The Householder and Q R  methods of the previous section are of primary 

value when the matrix A is not particularly sparse, and all or a large number 
of the eigenvalues are desired. Conversely, they are not very useful for very 
large sparse matrices for which only a few eigenvalues are desired. Problems 
such as this arise in partial differential equations, discussed in Chapters 8 and 
9, as well as in other areas. A typical problem of this type might involve a 
5,000 x 5,000 matrix with only ten or fewer nonzero elements in each row, and 
for which only a few eigenvalues, perhaps four or five, are desired. For such a 
problem the Q R  method is unsatisfactory because the Q R  factorization may 
change zero elements of A into non-zero elements as the factorization proceeds. 
(See Section 9.2 for further discussion of "fill-in.") The purpose of the present 
section is to describe some alternative methods. 

The Power Method 
A classical method that has a certain usefulness - but also serious de- 

fects - for large sparse problems is the power method. Let A have eigenvalues 
A1, . . . , A,, which we assume for the moment are real and satisfy 

(7.3.1) 

For a given vector xo, consider the sequence of vectors generated by 

xk+' = Axk, k = 0 , 1 , .  . . . (7.3.2) 

To analyze this sequence, assume that A has n linearly independent eigenvec- 
tors v1, . . . , v, corresponding to the eigenvalues XI, . . . , A,, and expand xo in 
terms of these eigenvectors: 

xo = ClVl + . . . + cnv,. (7.3.3) 

xk = C&l+ czx;vz + . . . + c,x;v, ( 7.3.4) 

Then, since xk = Akxo and Akvi = $vi, 

k 

= A:[clvl+cz (k) V Z + . " + C ,  (gv,], 
Because of (7.3.1) the terms ( A ~ / A I ) ~ ,  i = 2 , .  . . , n all tend to zero as k goes 
to infinity. Therefore, if c1 # 0, 

AT'X' + c1v1, as k + 00, (7.3.5) 

which shows that the vectors xk tend to the direction of the eigenvector v1. 

The magnitude of the vectors xk, however, will tend to zero if l X l l  < 1, or 
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become unbounded if l A l l  > 1. Therefore scaling of the vectors xk is required, 
and the scaling process will also give approximations to the eigenvalue A1. 

One way to choose the scaling factors is based on the observation that as xk 
approaches the direction v 1 ,  then Axk = A 1 x k .  Hence ratios of the components 
of xk and Axk are approximations to A1. To avoid choosing components that 
are too small, let x? be a component of maximum absolute value of xk and 

Then T k  is an approximation to A1 and scaling Xk+l by Y k  prevents the xk 
from going to zero or infinity. In fact, it can be shown that 

Y k  + ~1 and xk + c v 1  as IC + co, (7.3.7) 

where the last relation says that xk tends to some multiple of the eigenvector 
V1. 

There is a relationship between the power method and the QR method of 
the previous section (see Exercise 7.3.1). However, an advantage of the power 
method is that the vectors xk can be generated by only matrix-vector multi- 
plications (plus the work needed to compute the scaling factors); operations 
on the matrix A itself are unnecessary. The main disadvantage is the possibly 
slow rate of convergence, which, as shown by (7.3.4), is determined primarily 
by the ratio Az/A1.  If this ratio is close to 1, as is typical for many problems, 
the convergence will be slow. One way to attempt to mitigate this problem is to 
use shifts as was done with the QR algorithm. If the power method is applied 
to the matrix A-01, whose eigenvalues are A1 - O, . . . , A, - O  (Exercise 7.1.6), 
then the rate of convergence will be determined by the ratio 1x2 - a ( / ( A 1  - 0 1 ,  
provided that A1 - o remains the dominant eigenvalue. But even with this 
shift the convergence may still be painfully slow. For example, suppose that a 
1,000 x 1,000 matrix has the eigenvalues 1,000, 999, . . . , 1. Then, after a shift 
by o = 500 the ratio is 0.998, which is barely better than the unshifted ratio 
of 0.999. 

The power method also has other disadvantages. If there is more than 
one dominant eigenvalue, for example, (A11 = 1x21 > 1x31, which would be the 
case for a real matrix with a dominant complex conjugate pair of roots, the 
sequence (7.3.6) may not converge. There are ways to circumvent this difficulty, 
but in the case of complex roots acceleration of the convergence by shifts is 
even less satisfactory. Another problem concerns computing the subdominant 
eigenvalues. Once we have approximated XI, we need to remove it in some 
fashion from the matrix o r  subsequent iterations will again converge to A1 

rather than Az. We iiext, show how to accomplish this by a process known 
as dr!fEntio7~ Dc!flatioii will also I)(! iiwfiil i n  other methods to be discussed 
s hortly. 
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Deflation 
Assume that A is symmetric so that its eigenvalues X i  are real and, by The- 

orem 7.1.3, the associated eigenvectors vi can be assumed to be .orthonormal. 
Again, let xo be given by (7.3.3). Then by the orthonormality of the vi, we 
have vyxo = c1. Thus the vector 

(7.3.8) 

is a linear combination of only v2,. . . , v,, and the same will be true for the 
sequence (7.3.2) starting from xo. If (A21 > / X i [ ,  i 2 3, then the power method 
will produce iterates converging to X2 and a multiple of v2. This idea extends 
to any number of eigenvectors (Exercise 7.3.2). 

The above deflation procedure allows us, in principle, to remove the effect 
of A 1  and v1 from the subsequent calculation of the remaining eigenvalues and 
eigenvectors. In practice, however, we will not know v1 exactly so that the 
vector xo, formed with an approximation to  v1, will still have a component in 
the direction v1, and the power method will still give convergence to  A1 rather 
than X2. Even if v1 were known exactly, rounding error in the formation of xo 
and the power method computations would have the same effect. Therefore 
it is necessary to apply (7.3.8) periodically to the current iterates in order to 
keep the effect of v1 suppressed. That is, if x k  is the current power method 
iterate and irl our approximation to v1, we would form 

- 0 -  0 T O  x - x - (vl x )v1 = c2v2 + . . . + c,v, 

and then continue the iteration with x k .  This would be done only occasionally. 
Another way to carry out a deflation process is given in Exercise 7.3.3. 

Inverse Iteration and Computation of Eigenvectors 
We next consider a variation of the power method, called inverse iteration 

or the inverse power method, whose rate of convergence is potentially much 
faster than that of the power method. Consider the sequence {xk} defined by 

(A - cl)xk = xk-', Ic = 1 , 2 , .  . . , (7.3.9) 

for some parameter B ;  that is, xk is the solution of the linear system (7.3.9). 
This is the power method for the matrix (A-cl)-' .  If A again has eigenvalues 
X I , .  . . , A, and corresponding eigenvectors v1,. . . , v,, then ( A  - el)-' has 
eigenvalues ( X i  - c)-' and eigenvectors vi, and the sequence {xk} of (7.3.9) 
obeys the relationship (7.3.4) with the A i  replaced by ( X i  - c)-': 

(7.3.10) 

We will return to (7.3.9) shortly as the basis for a method of computing 
both the eigenvalues and eigenvectors of A ,  h i t  we first note thrtt, invwse 
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iteration is the standard way to c:oiripiite the eigenvectors of a met,rlx OI I~. I -  

the eigenvalues have already been corriputed by, for example, the QR 1iint0iruJ 
Suppose that u is an approximation to X j  and rewrite (7.3.10) for k P 1 M 

(7.3,11) C ,  ca 
L V j  + c - Va. 
X j - U  izj Xa - u 

Now.suppose that I X j  -01 is small (say, 0(1W6)), X j  is not particularly close to 
another eigenvalue Xi, and c j  is not small. Then the dominant term in (7.3.11) 
will be c j ( X j  - u)-lvj. Only the direction of vJ needs to be computed since 
we can scale this to any desired length. Thus the effect of solving the system 
( A  - uI)xl = xo is to approximate the direction of the desired eigenvector. 
Note that the better u approximates X j ,  the closer to singular is the matrix 
A - oI. This ill-conditioning of A - uI is not deleterious in this case, however, 
since any error in solving the system will be primarily in the direction vj that 
we are approximating. 

Two factors will affect the accuracy of this approximation to the eigenvec- 
tor. First, if X j  is very close to another eigenvalue, say X j + l ,  then X j + l -  g will 
also be small, and the first term of (7.3.11) will no longer be dominant; we will 
then approximate some linear combination of vj and vj+l. Closeness of the 
eigenvalues is an intrinsic property of the matrix and hampers any numerical 
method in the calculation of the eigenvectors. The second factor is the pos- 
sibility that c j  is very small, and if this is the case, then again the first term 
of (7.3.11) may not be sufficiently dominant to give a good approximation to 
the desired eigenvector. In principle, we can insure that this will not happen 
by choosing the vector xo so that c j  is not small. However, we can do that 
with certainty only if the eigenvectors are known, and of course that is not 
the case. It has been found that choosing xo to be the vector with compo- 
nents all equal to 1 usually works very well. A similar strategy that sometimes 
works even better is to do Gaussian elimination on A - uI to produce the 
upper-triangular matrix U ,  and then solve the system Uy = z where z is a 
vector all of whose components are equal to 1. In this case the vector xo is not 
specified explicitly: it is the vector that would give rise to a vector of all 1’s 
under the Gaussian elimination calculation. Obviously, there is a great deal 
of flexibility in choosing the vector xo. Indeed, any “randomly” chosen vector 
would be very unlikely to yield a particularly small c j .  We note that one of 
the worst possible strategies would be to attempt to solve the homogeneoun 
system ( A  - uI)xl = 0, which would be the mathematical definition of t h !  
eigenvector if ~7 = X j .  

It is usually worthwhile to do another iteration using the approximate eigeri- 
vector x1 just corriputed. Evcri if the original choice of xo is such that c j  in 
very nriitlll, x1 will htlvc! tl Ej  thtlt in I a r K w ,  aiid another iteration may then givc 
tl suitthle it~)~)roxinitlt,iori. ThiH c:oid(l lw rc!pc!ritc!d an tritlriy tirries as dcsirod, 
h i t ,  o i i c  extra itl(!rtit3ioii in Kc!iic!relly niiflic:ic!iit,. 
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In the context of the QR method of the previous section, the above inverse 
iteration procedure would be applied to the Hessenberg matrix H (or the tridi- 
agonal matrix T in case A is symmetric). Once the desired eigenvectors of H 
have been computed, they are transformed back to eigenvectors of the original 
matrix as discussed in Section 7.2. Note that the eigenvalues, and consequently 
the eigenvectors, may be complex. This does not affect the inverse iteration 
procedure except that complex arithmetic must be performed. However, a 
side benefit of complex eigenvalues of a real matrix is that the eigenvectors 
occur in complex conjugate pairs, as do the eigenvalues, so that if u + iv is an 
eigenvector for a + ib, then u - iv is an eigenvector for a - ib, and no further 
computation is needed for this second eigenvector (Exercise 7.3.9). 

Computation of Eigenvalues 
As we have seen, each step of the inverse iteration (7.3.4) can greatly im- 

prove an  approximation to an  eigenvector if u is a good approximation to  a 
corresponding eigenvalue. However, there remains the problem of approximat- 
ing the eigenvalue itself for matrices that are not suitable for the QR method. 
Since (7.3.9) is the power method for ( A  -oI)-l ,  we can proceed as in (7.3.6): 

( A  - u I ) X k + '  = x k  , k = O , l ,  . . .  (7.3.12a) 

(7.3.12b) 

where Y k  is defined as in (7.3.6). Then 

Y k  + Y = (u - ~ j ) - ' ,  xk + cjvj, as IC -, 00, (7.3.13) 

provided that 

The eigenvalue X j  is then given by 
I(. - X j ) 7  > / ( a  - Xi)-'[, i # j. (7.3.14) 

1 
Y 

X . - u - - .  3 -  (7.3.15) 

If I(. - X i ) - l l  = max{I(u - Am)-'/; m # j}, then the rate of convergence is 
governed bv the ratio 

(7.3.16) 

The closer u is to Xj ,  the smaller this ratio. Therefore it is reasonable to 
replace a fixed u by estimates of X j  depending on Y k .  From (7.3.13), 

(7.3.17) 
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and thus we modify (7.3.12a) to 

( A  - o k 1 ) x k + '  = xk, k = 0 , 1 , .  . . , (7.3.18) 

where (Tk is given by (7.3.17). The value of u in (7.3.17) would be our best 
estimate of the eigenvalue we wish to approximate. For example, if we want 
the smallest eigenvalue in absolute value we might choose u = 0, whereas if we 
want the largest we could choose (T = IlAll for some norm. Once an eigenvalue 
has been approximated, we could use the same deflation procedure discussed 
for the power method to minimize the effect of that eigenvalue on further 
computations. However, the use of the shifts Uk allow us to circumvent the 
need for deflation if we have good estimates for the eigenvalues to be computed. 
Of course, if we are solving (7.3.18) by LU factorization, each time we change 
uk we must refactor A - a k 1 .  

The Rayleigh Quotient Method 
We next describe another way to choose the shift parameters uk in the case 

that A is a symmetric matrix. For a given vector v # 0, the Rayleigh quotient 
is the uuantitv 

(7.3.19) 

The Rayleigh quotient has two basic properties (Exercise 7.4.5): If XI I . . . 5 
A, and v1, . . . , v, are the eigenvalues and corresponding orthonormal eigen- 
vectors of A,  then for any v,  

x1 I 4 V )  I xn (7.3.20) 

and if v = vi, then 
.(V) = x i .  (7.3.2 1) 

Another basic property of the Rayleigh quotient is that if v is a good 
approximation to an eigenvector, then the Rayleigh quotient is a much better 
approximation to the corresponding eigenvalue. We make this precise in the 
following theorem. 

THEOREM 7.3.1 Let v = yvj  + w, where 

(7.3.22) 
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PROOF: By assumption, vj is orthogonal to w so that 

v T -  v - (yvj + W)T(yvj + w) = y2 + WTW 

Since 
A(7vj + W) = yXjvj + C Xicivi = yXjvj + W, 

i#j 

W is also orthogonal to vj. Thus 

v T AV = (yvj + ~ ) ~ ( y X j v j  + W) = y2Xj + wTW, 

so that 
y2xj + WTW X j  + y-2wTW 

.(V) = - 
y2 + WTW 1 + y-2wTw . 

- (7.3.23) 

If X = max{(Xi( : i # j}, then 

WTW = c XiCf  5 X2 c cf = X20(&2) = 0(&2), 

since X is fixed. By the estimates of Exercise 7.3.6, we then conclude from 
7.3.23) that 

(7.3.24) 

which was to be proved. 
As a consequence of Theorem 7.3.1, if an approximate eigenvector v is 

known to m digits of accuracy, then U(V) is an eigenvalue to approximately 
2m digits of accuracy. This forms the basis of a combined Rayleigh quo- 
tient/inverse iteration method of the form: 

Uk = U(X k ), (A - OkI)Xk++' = Xk, k = 0 , 1 , .  . . . (7.3.25) 

Thus starting from an initial xo, at each stage we compute a new Rayleigh 
quotient approximation uk to  the eigenvalue, and then a new approximation to 
the eigenvector by an inverse iteration step. This procedure can be very rapidly 
convergent when it is successful; indeed, it can be shown that there is a cubic 
rate of convergence of the sequence {Ok} to a simple eigenvalue. However, there 
are several drawbacks. The first is that of obtaining a satisfactory starting 
vector xo, since if xo is not a reasonable approximation to the direction vj of 
interest, the sequences (7.3.25) will not necessarily converge to the eigenvalue 
and eigenvector pair Xj,vj. One way to obtain a suitable xo is to use the 
power method for several steps to obtain an approximation to the eigenvector 
corresponding to the largest eigenvalue in absolute value. One then could 
switch to (7.3.25). For the other eigenvalue/eigenvector pairs, one would need 
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to use deflation to obtain approximate eigenvectors by tliv 1)owi’r method to 
use in (7.3.25). 

Another drawback of (7.3.25), or of inverse iteration in goiivrd, is the ne- 
cessity of solving the linear system of equations at each stage. For 1;irgtt sparse 
matrices such as arise in the solution of partial differential eqiidioiis, t,his is a 
major problem and is the subject of Chapter 9. 

Lanczos’ Method 
We end this chapter by considering one more method for large sparscx sym- 

metric matrices. As with the other methods of this section, Lanczos’ mt%hod 
is usually used to approximate only a few eigenvalues. In contrast to the other 
methods, it approximates both the largest and smallest eigenvalues simulta- 
neously, although the rate of convergence to the smallest eigenvalues may be 
slower. 

Recall from the previous section that a symmetric matrix can be reduced 
to a tridiagonal matrix T by an orthogonal similarity transformation: 

A = QTQT. (7.3.26) 

The orthogonal matrix Q was constructed hy m ? m s  of  H o i i ~ ~ ~ i o ~ i h ~ r  !,rawifor- 
mations, but we will now obtain T by itii cwt,iroly clifforc~iil ,  tqq)ro~wl i  wtiic-ti 
does not destroy the sparsity of A.  Siipposo lsliiitf (7.3.26) Iiolih wi(1 

If we multiply (7.3.26) on the right by Q, 

AQ = QT, (7.3.28) 

and equate the columns of the two sides of (7.3.28), we have 

Aqi = aiqi + Pig23 (7.3.2!)&) 

(7.3.29t)) Aqi = Pi-iqi-1 + aiqi + Piqi+l,  i = 2 , .  . . , - 1, 

Aqn = P n - l q n - l +  an%, (7.3.294 

where qi is tho it,h c : o l u m i  of (2. Siiicx! t,hc orthogonality of Q implies that, 
qTQ = 0, i, # j itrltl qfq, = 1, i f  wc iiiiiltiply (7.3.29) hy qT we see that 

(v ,  = g ,  7’ Agi, i = I , .  . . , 1 1 , .  (7.3.30) 
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To characterize the Pi we write (7.3.29a) as 

Piqz = Aqi - aiqi, 

and take norms of both sides to obtain 

P1 = fllAq1 - Q l 9 l l l 2 .  (7.3.31) 

The sign of P1 is immaterial and we shall elect to take the Pi as positive. Then 
in a similar way we obtain from (7.3.2913) 

Pi = IlAqi - aiqi - Pi-lqi-1112, i = 2,.  . . ,TI - 1. (7.3.32) 

We can now use the above characterizations as the basis for an algorithm 
to obtain Q and T. Let q 1  be an arbitrary vector such that qTq1 = 1. Form 
Aql and then 01 and from (7.3.30) and (7.3.31). Next, from (7.3.29a), 

1 
q z  = - ( h i  - aiqi). 

Now we can obtain a2 and Pz from (7.3.30) and (7.3.32) and then q 3  from 
(7.3.2913). Continuing in this way, we may compute all of the ai, Pi, and qi. 
The algorithm is summarized in Figure 7.2. One of the main strengths of 
the Lanczos algorithm is that the matrix A is never modified, as it is in the 
Householder reduction to tridiagonal form. As in the power method, A need 
not even be known explicitly as long as the matrix-vector product Aq can be 
formed. 

P1 

Figure 7.2: Lanczos Algorithm 

We have to verify that the qi generated by the Lanczos algorithm of Fig- 
ure 7.2 are indeed orthonormal. Clearly, the choice of Pi guarantees that 
Ilqi+lllz = 1, provided that Pi # 0; we shall return to this point shortly. For 
now we assume that all # 0 and show that the q, are orthogonal. First, 

(7.3.33) 
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and, by induction, 

T 1 T  1 
qi qi+l = Pi: qi (Aqi - aiqi - Pi-lqi-1) = bzT (ai - ai) = 0, (7.3.34) 

for i = 2 , .  . . , n-1.  We now show by induction that all of the qi are orthogonal. 
We make the induction hypothesis that 

qFqi+l = 0, j = 1 , .  . . , i ,  (7.3.35) 

which we have shown to be true for i = 1. We then wish to prove that 

qjTqi+2 = 0, j = 1,. . . , i  + 1. (7.3.36) 

By (7.3.34) we have shown this for j = i + 1, so we assume that j 5 i. Then, 
by (7.3.35), 

(7.3.37) T 1 T  qj q i + 2  = PZ',lqj (Aqi+l- ai+lqi+l- P i e )  

Now by (7.3.29b) and the symmetry of A, 

$Aqi+l = q?+iAQ = qT+i(Pj-l%-l+ a j ~  + P ~ Q + I ) .  (7.3.38) 

If j < i, then all of the inner products in (7.3.38) are zero by (7.3.35), as 
is qyqi in (7.3.37); hence q?qi+2 = 0. If j = i, then (7.3.38) shows that 
qTAqi+l = pi, which cancels the Pi in (7.3.37) so that, again, q T q , + 2  = 0 and 
the induction is complete. 

= llw1)12 = 
0. Then Aql = alql ,  so that ql and a1 are an eigenvector and a corresponding 
eigenvalue. More generally, if Pi = IlwiJl2 = 0, then the Lanczos process stops 
and we have at this point 

where Qi = (ql, . . . , qi) and Ti is the i x i leading principal submatrix of T. 
If i 1 , .  . . , i i  are the eigenvalues of Ti, then we can write 

We now return to the assumption that Pi # 0. Suppose that 

AQi = QiTi, (7.3.39) 

Ti = QiDiQT, (7.3.40) 

where D = diag(i1,. . . , i i )  and the columns of Qi are the corresponding or- 
thonormal eigenvectors of Ti. Putting (7.3.40) into (7.3.39) we obtain 

A Q ~ Q ~  = Q ~ Q ~ D ~ .  (7.3.41) 

The (:olii~rins of Qioi are orthonormal (Exercise 7.3.9), and thus (7.3.41) shows 
that the ,& arc c!igoiivalrien of A with corresponding eigenvectors which are the 
C O I I I X I I I I H  o f  Qio,. 'l'liiin thc crncrgcriix: o f  a = 0 signals that we can find 
i, ciKcnvtdiiw o f  A hy c:orripiit,iiig tth! c!iKc:iivdiic:n of T,. The process can then 
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be restarted by choosing a qi+l that is orthogonal to ql, . . . , qi. It is easy to 
show (Exercise 7.3.10) that pi = 0 if and only if ql is a linear combination of 
i eigenvectors of A; this is highly unlikely to happen in practice. 

Assuming that no pi = 0 we could carry the Lanczos process to completion 
and obtain the tridiagonal matrix T of (7.3.27). In practice this is rarely done 
for the large sparse matrices for which the Lanczos method is most useful. It 
turns out that if we stop the process at the kth step for some moderate size of 
k, the largest and smallest eigenvalues of the corresponding tridiagonal matrix 
T k  may be surprisingly good approximations to the corresponding eigenvalues 
of A . Moreover, other eigenvalues of T k  will approximate the corresponding 
small or large eigenvalues of A ,  although generally not as well as the extremal 
eigenvalue approximations. 

Summary 
In this section we have discussed several approaches to obtaining at least a 

few eigenvalues and corresponding eigenvectors of large sparse matrices. None 
of these methods is completely reliable and their usefulness depends in large 
measure on the location of the eigenvalues of A.  In general, the symmetric 
eigenvalue problem is much easier than the nonsymmetric, but even for sym- 
metric matrices there are no foolproof methods yet known. 

Supplementary Discussion and References: 7.3 
As with Section 7.2, the books by Golub and Van Loan [1989], Stewart 

[ 19731, and Wilkinson [ 19651 provide excellent information on more advanced 
aspects of the methods considered. See also Parlett [1980] for symmetric ma- 
trices. The analysis of the algorithms of this section was restricted to matrices 
with n linearly independent eigenvectors, but it can be extended to general 
matrices; see Golub and Van Loan [1989] and Wilkinson [1965], in particular. 

The Rayleigh quotient and Lanczos methods were presented in the text only 
for symmetric matrices, but extensions to nonsymmetric matrices are possible; 
see Golub and Van Loan [1989]. 

Many of the methods of this section have extensions to “block” methods in 
which several eigenvalues and eigenvectors are approximated simultaneously. 
For example, “subspace” iteration is an extension of the power or inverse power 
iterations. For further discussion of block methods, see Golub and Van Loan 
[1989] and Parlett [1980]. 

As we have shown, the vectors gi generated by the Lanczos algorithm are 
orthogonal. One serious problem with the algorithm is that due to rounding 
error this orthogonality is lost and with relatively few steps can be lost so sig- 
nificantly that the algorithm is no longer satisfactory. For ways to circumvent 
this problem by ”reorthogonalization;” see Golub and Van Loan [1989]. 
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EXERCISES 7.3 

7.3.1. (Stewart [1973]). Let Ak be the sequence of matrices generated by the QR 

that Ak = Q k f i k .  Conclude from this that the first column of 0, is a multiple 
of Akel .  

algorithm a?d let Q k  = . Q k - 1 ,  R k  = Rk-i . . . Ro. Show by induction 

7.3.2. Let A be symmetric with eigenvalues X i  and corresponding orthonormal eigen- 
vectors vi. If x = c lv l  + .. . + c,v,, show that 

T T x - (Vl X)Vl - . . . - (vmx)vm = Cm+lVm+l + . . . + CnV,. 

7.3.3. Let A be symmetric with eigenvalues X i  and corresponding orthonormal eigen- 
vectors vi. Show that the matrix A2 = A-XlvlvT has eigenvalues 0, XZ, . . . ,A, 
and corresponding eigenvectors v1,. . . , v,. Discuss how to compute Azx with- 
out forming A2 explicitly. 

7.3.4. Let A be a real matrix with complex eigenvalue a + ib and corresponding 
eigenvector u +iv. Show that u - iv is the eigenvector corresponding to  a - ib. 

7.3.5. Let A be a symmetric matrix with eigenvalues X1 5 . . . 5 A, and eigenvectors 
v1,. . . , v,. Show that if v = vi, the Rayleigh quotient of (7.3.19) is D = Xi. 
Use the fact that any vector v can be written as v = c l v l + .  . . + cnvn to show 
that (7.3.20) holds. 

7.3.6. From the geometric series 

1 
1--0. 
- = 1 + a + a2 + . . . 

conclude that 

= 1 + O ( E 2 ) .  
1 1 -- 

1 + O ( E 2 )  
1 + O(&) - 1 + W E ) ,  

Show also that [l + O(E)]’ = 1 + O ( E ) .  

7.3.7. The matrix 

L 

has eigenvalues 1 and 3 with corresponding eigenvectors (1, -1) and (1 , l ) .  Ap- 
ply several steps of the power method (7.3.6) to this matrix, starting with the 
vector xo = (1, O ) T .  Carry the iteration far enough for the rate of convergence 
to become apparent. 

7.3.8. Apply the power method to the shifted matrix A - + I  , where A is given in 
Exercise 7.3.7. D~H(:IIRH t,hr? irnproverrient in the rate of convergence. 

7.3.8. Let 0, tw 8x1 n x z ixiatrix whonc! c:oliirtinH are orthonormal and Pi an i x i 
o r t l i o K o x i s l  mit,rix. Show t h t r t .  t h :  c:ol iuxi i in of Q,P, are orthonormal. 
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7.3.10. Use (7.3.41) to show that if PZ = 0 in the Lanczos algorithm (and p, # 0, 

7.3.11. Let q be an arbitrary vector with llqll~ = 1 and assume that A = AT. Set 
u = qTAq and z = Aq - aq. Show that the interval IX - ~71 5 (Iz((2 must 
contain at  least one eigenvalue of A. 

j < i), then ql is a linear combination of i eigenvectors of A. 

7.3.12. Develop the Lanczos algorithm for skew-symmetric matrices. 

7.3.13. Let A be an arbitrary real matrix with eigenvalues A, and corresponding 
eigenvectors vi. Assume XZ = X I ,  so that v2 = 91 (Exercise 7.3.4). Given a 
vector r such that r = cv1 + E l ,  show how XI, X1,vl and 91 can be calculated 
from r,s = Ar, and t = As. Does this suggest an acceleration scheme for 
computing eigenvalues of non-symmetric matrices? 

7.3.14. (Steepest Descent) Let A be a real symmetric matrix, q be an arbitrary 
vector with ( ( q ( ( 2  = 1, and 

T y-lz = Aq - uq, u = q Aq, 

where y is choosen so that llzllz = 1. Show that qTz = 0. In order to compute 
the smallest eigenvalue of A, let w = aq + bz. 

a. Show how to compute a and b so that wTAw/wTw is a minimum. 

b. Consider the sequence wk = a k q k  + bkzk and 

/.4k = min{W~AWk/W~Wk : wk # 0). 

Show that ,&+I 5 pk. 

7.3.15. Let A = D+B and A ( a )  = D+aB, where D contains the diagonal elements 
of A and B the off-diagonal. Use the continuation method described in the 
Supplementary Discussion of Section 5.3 to give an algorithm for computing 
the smallest eigenvalue in magnitude of A( l )  = A. 

7.3.16. Let T be a symmetric tridiagonal matrix and K = T + E ,  where E = ( e i j )  

is a symmetric tridiagonal matrix with (ei j (  5 E .  Use Exercise 7.3.11 to give 
bounds on how far each eigenvalue of K is from an eigenvalue of T .  
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