
Chapter 6 

Is There More Than Finite 
Differences? 

6.1 Introduction to Projection Methods 

In the previous chapters we have studied in some detail the application of 
finite difference methods to the approximate solution of differential equations. 
In this chapter we will consider another approach which has several variants 
known by such names as the finite element method, Galerkin’s method, and 
the Rayleigh-Ritz method. The underlying theme of all these methods is that 
one attempts to approximate the solution of the differential equation by a finite 
linear combination of known functions. These known functions, usually called 
the basis functions, have the common property that they are relatively simple: 
polynomials, trigonometric functions, and, most importantly, spline functions, 
which will be studied in the following section. Conceptually, we regard the 
solution as lying in some appropriate (infinite-dimensional) function space, and 
we attempt to obtain an approximate solution that lies in the finite-dimensional 
subspace that is determined by the basis functions. The “projection” of the 
solution onto the finite-dimensional subspace is the approximate solution. 

We will illustrate these general ideas with the linear two-point boundary- 
value problem 

e) + q(z)v = f(r), O<Zll, (6.1.1) 

with 
v(0) = 0, V(1) = 0, (6.1.2) 

where, for simplicity, we have taken the interval to be [0, l] and the boundary 
conditions to be zero (see Exercises 3.1.1 and 6.1.6). 

Suppo~ t,hat, we look for an approximate solution of (6.1.1), (6.1.2) of the 
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form 

(6.1.3) 
j=l 

where the basis functions & satisfy the boundary conditions: 

+j(O) = +j(l) = 0, j = l,...,n. (6.1.4) 

If (6.1.4) holds, then the approximate solution u given by (6.1.3) satisfies the 
boundary conditions. A classical example of a set of basis functions that satisfy 
(6.1.4) is 

+j(X) = sinjnz, j = 1,. . . ,n. (6.1.5) 

Another example is the set of polynomials 

dj(X) = Zj(l - Z), j=l,...,n. 

In the latter case the approximate solution (6.1.3) is of the form 

u(x) = z(1 - 2)(Ci + csx +. . . + C&n-l), 

(6.1.6) 

which is a polynomial of degree n+l with the property that it vanishes at 0 and 
1. Our main example of a set of basis functions, however, is spline functions, 
which, as mentioned previously, will be studied in the following section. 

Given a set of basis functions, we need to specify in what sense (6.1.3) is to 
be an approximate solution; that is, what is the criterion for determining the 
coefficients ck in the linear combination? There are several possible approaches, 
and we will discuss here only two, both of which are generally applicable and 
widely used. 

Collocation 

The first criterion is that of collocation. Let ~1, . . . , zll be n (not necessarily 
equally spaced) grid points in the interval [O,l]. We then require that the 
approximate solution satisfy the differential equation at these n points. Thus 
for the equation (6.1.1) and the approximation (6.1.3) we require that 

1 +q(xi) f: cj$j(xi) = f(xi), i = 1,. . . , n, (6.1.7) 
xi j=l 

and we assume, of course, that the basis functions are twice differentiable. If 
we carry out the differentiation in (6.1.7) and collect coefficients of the cj, we 
have 

~cjl~~(Xi)+q(si)~j(Xi)]=f(Xi), i=l,...,U. (6.1 .H) 
j=l 
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This is a system of n linear equations in the n unknowns cl, . 
computational problem is first to evaluate the coefficients 

aij = qxi, + q(xi)$j(xi), 

and then solve the system of linear equations 

AC = f, 

whereAisthenxnmatrix(aij),c= (~,...,c,)~,andf = (f(xl), 
We give a simple example. Consider the problem 

v”(X) + x2v(x) = x3, Olxll, 

181 

cn. The 

(6.1.9) 

(6.1.10) 

? f bd)T. 

(6.1.11) 

with the boundary conditions (6.1.2). Here f(x) = x3 and q(x) = x2. With 
the basis functions (6.1.5), we have 

gqx) = j7rcosj7rx, q$(x) = -(j7r)2 sinjnx, 

so that the coefficients (6.1.9) are 

aij = -(j~)~ sinjnxi + x1 sinj7rxi. 

The coefficients of the right-hand side of the system (6.1.10) are f(xi) = x”. 
If we use the basis functions (6.1.6), then 

qqx) = xj-yj - (j + 1)x], q(x) = jxj-Z[j - 1 - (j + 1)x], 

so that the coefficients (6.1.9) are now 

aij = jxim2[j - 1 - (j + l)xi] + ~{+~(l- xi). 

Again, the components of the right-hand side are xi. In both cases the system 
(6.1.10) is easily constructed once the grid points xl,. . . ,x, are specified. 

Galerkin’s Method 

We will return to a discussion of the collocation method after we consider 
another approach to determining the coefficients cl,. . . , cn. This is known as 
Galerkin’s method and is based on the concept of orthogonality of functions. 
Recall that two vectors f and g are orthogonal if the inner product satisfies 

(6.1.12) 
j=l 

Now suppose that the components of the vectors f and g are the value:< of two 
futlc:t,ionn f and !I at, ‘n equally spaced grid points in the interval [0, 11; that is, 

f = (f(/r),f(2h), *. . (f(7L/l)), 
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where h = (n + 1)-l is the grid-point spacing, and similarly for g. Then the 
orthogonality relation (6.1.12) is 

2 f(jhMh) = 0, 
j=l 

and this relation is unchanged if we multiply by h: 

h 2 f(.ihMjh) = 0. 
j=l 

(6.1.13) 

Now let n + CC (or, equivalently, let h + 0). Then, assuming that the 
functions f and g are integrable, the sum in (6.1.13) will tend to the integral 

J 
1 

f(x)g(x)dz = 0. (6.1.14) 
0 

With this motivation, we define two functions f and g to be orthogonal on the 
interval [0, l] if the relation (6.1.14) holds. 

The rationale for the Galerkin approach is as follows. Let the residual 
function for U(X) be defined by 

4x1 = u”(X) + cl(x)u(x) - f(z), O<z<l. (6.1.15) 

If U(X) were the exact solution of (6.1.1), then the residual function would 
be identically zero. Obviously, the residual would then be orthogonal to every 
function, and, in particular, it would be orthogonal to the set of basis functions. 
However, we cannot expect U(X) to be the exact solution because we restrict 
U(X) to be a linear combination of the basis functions. The Galerkin criterion 
is to choose U(X) so that its residual is orthogonal to all of the basis functions 
41,. . . r#h: 

J 01c"(4 + Q(x)'~L(x) - f(x)lh(x)dx = 0, i = l,...,n. (6.1.16) 

If we put (6.1.3) into (6.1.16) and interchange the summation and integration, 
we obtain 

7% 

ES cj o’[$;‘(~) + q(x)4j(x)l4~(xc)dx = J’ f(z)$i(z)dx, i = 1,. . . ,n. 
j=l 0 

Again, this is a system of linear equations of the form (6.1.10) with 

.fi = s/1 f(x)h(x)dx, i = l)..‘, 71, (6.1.17) 
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and f&j = s ol[S;Cz) + !?(~)d+(z)14i(zPz* 
If we integrate the first term in this integral by parts, 

and note that the first term vanishes because 4i is zero at the end points, we 
can rewrite aij as 

(6.1.18) 

Thus the system of equations to solve for the coefficients cl,. . . , cn in Galerkin’s 
method is AC = f, with the elements of A given by (6.1.18) and those off by 
(6.1.17). An example of the evaluation of the aij of (6.1.18) is left to Exercise 
6.1.5. 

Comparison of Methods 

We now make several comments regarding the finite difference, collocation, 
and Galerkin methods as applied to (6.1.1). In each case the central computa- 
tional problem is to solve a system of linear equations. In the finite difference 
and collocation methods these linear systems are determined by n grid points 
in the interval, although the nature of the linear systems is quite different: the 
finite difference method gives an approximation to the solution of the differ- 
ential equation at the grid points, whereas the collocation method gives the 
coefficients of the representation (6.1.3) of the approximate solution. With the 
collocation (or Galerkin) method, the value of the approximate solution at any 
point Z in the interval is obtained by the additional evaluation 

u(z) = 2 Cjqqi?). 
j=l 

Although the finite difference method requires no additional work to obtain the 
approximate solution at the grid points, it is defined only at the grid points, 
and obtaining an approximation at other points in the interval necessitates 
an interpolation process. The collocation and Galerkin methods, on the other 
hand, give an approximate solution on the whole interval. 

As we saw in Chapter 3, the linear system of equations of the finite dif- 
ference method is easily obtained and has the important, property (for the 
second-order difference approxinlatiorlri used there) that, 1,11(~ c:oc!ffic:ic:nt mal,rix 
is 1,ridiagonal; thus, tlic solution of tlir! linear nynt,c!rn rcqliir(!H wht,ivc!ly lit,t.lc 
c:o~~i~~~lt,at,ioII, t,tw 1mf1ilwr of ruit,tltnc!t,ic* o~mUiom4 rcctlliml IwirlK ~mq~orl~iold 
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to n (Section 3.2). For the collocation method, the elements of the coefficient 
matrix are also evaluated relatively easily by (6.1.9), provided that the basis 
functions C& are suitably simple. However, the coefficient matrix will now gen- 
erally be full, which means not only that all n2 elements need to be evaluated 
but also that the solution time will be proportional to n3. One of the very 
important properties of the spline basis functions - to be discussed in the next 
section - is that & will be identically zero except in a subinterval about xi. In 
the cases considered in Section 6.4, this subinterval will extend only from xi-2 
to xi+2, and the coefficient matrix will be tridiagonal. 

These same comments apply to Galerkin’s method: the coefficient matrix 
will in general be full, but the use of an appropriate spline function basis 
will allow us to recover a tridiagonal matrix. However, there is now another 
complication. The evaluation of the matrix coefficients (6.1.18) and elements 
of the right-hand side (6.1.17) requires integration over the whole interval. 
Only if the functions q and f are very simple will one be able to evaluate 
these integrals explicitly in closed form. Usually they must be approximated, 
and this leads us to the topic of numerical integration, which we consider in 
Section 6.3. Symbolic computation systems may also be used under certain 
circumstances. Finally, one advantage of the Galerkin method is that it always 
yields a symmetric matrix, as can be seen by (6.1.18), whereas collocation does 
not. No method has a clear advantage over the others. For each method there 
are problems for which it is best. Given a particular problem, analyses of 
the three methods applied to the problem may be necessary to evaluate their 
relative effectivenesses. 

Nonlinear Problems 

We end this section by indicating briefly how the collocation and Galerkin 
methods can be applied to nonlinear problems. For this purpose we will con- 
sider the equation 

w” = .9(v), v(0) = w(1) = 0, (6.1.19) 

where g is a given nonlinear function of a single variable. For the collocation 
method applied to (6.1.19) we substitute the approximate solution (6.1.3) and 
evaluate at the grid points xi,. . . , x, as before. This then leads to the nonlinear 
system of equations 

i = l,..., n, (6.1.20) 

for the coefficients cl,. . . cn. 
Similarly, for the Galerkin method the residual function (6.1.15) now be- 

comes 

'Cx) = 2 cj4y(X) - g 2 Cj4j(X) , 

j=l ( ) j=l 
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so that the system of equations corresponding to (6.1.16) is 

J[ 0 
’ gc.j4y(x)-g ~c~q$(z) c#~i(z)dz=O, i=l,...,n. (6.1.21) 

j=l ( )I j=l 

As before, we can integrate the first term by parts to put (6.1.21) in the form 

1 
- qf((z)qb;(z)dz = (6.1.22) 

which is again a nonlinear system for cl,. . . , c,. The methods of the previous 
chapter can be applied, in principle, to approximate solutions of both (6.1.20) 
and (6.1.22). 

Supplementary Discussion and References: 6.1 
A related approach to projection methods is by means of a variational 

principle. Consider the problem 

Min$ize 
s 0 

(6.1.23) 

where V is a set of suitably differentiable functions that vanish at the end 
points z = 0 and z = 1. By results in the calculus of variations, the solution 
of (6.1.23) is also the solution of the differential equation (6.1.1), which is 
known as the Euler equation for (6.1.23). Thus we can solve (6.1.1) by solving 
(6.1.23), and we can attempt to approximate a solution to (6.1.23) in a manner 
analogous to the Galerkin method. This is known as the Rayleigh-Ritz method. 

Let $I,... , & be a set of basis functions such that &(O) = 4i(l) = 0, 
i= l,..., n. Then we wish to minimize 

over the coefficients cl,. . . , c,. If CT,. . . , c;*, is the solution of the minimization 
problem, then 

U(Z) = &fQ(z) 
i=l 

is taken as an approximate solution for (6.1.23). If we use the same basis 
functions for the Galerkin method applied to (6.1 .l), we will obtain the same 
approximate solution. A good reference for the Rayleigh-Ritz and Galarkin 
In(!t,ho(l~ is Strarig rmtl Fix [1(373]. A g 00~1 refcrcucc for collocrtt,ion niotliotln in 
I\HdIN' t ! t ,  d. (I!)#]. 
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An important question is when does the system of linear equations obtained 
by the discretization methods of this section have a unique solution. This is 
generally easier to ascertain in the case of the Rayleigh-Ritz method since 
the question reduces to when the functional (6.1.24) has a minimum. For 
an introduction to these existence and uniqueness theorems as well as the 
important question of discretization error for the Galerkin and collocation 
methods, see, for example, Prenter [1975] and Hall and Porsching [1990]. 

EXERCISES 6.1 

6.1.1. a. For the two-point boundary-value problem y”(x) = y(x) + x2, 0 5 z 5 1, 
y(0) = y(1) = 0, write out explicitly the system of equations (6.1.8) for 
n = 3, $j(x) = sinjrx, and xi = i/3, i,j = 1,2,3. 

b. Repeat part a with &(x) = xj(l - x), j = 1,2,3. 

c. Write out the system for general n in matrix form using both (6.1.5) and 
(6.1.6) as the basis functions. 

6.1.2. Show that the functions sin Icrx are mutually orthogonal on the interval [0, 11, 
that is, &i sin knx sin jsx dx = 0, j, k = 0, 1, . . . , j # k. 

6.1.3. Repeat Exercise 6.1.1 for the Galerkin equations AC = f, where f is given by 
(6.1.17) and A by (6.1.18). 

6.1.4. Let g(v) = eV. 

a. For n = 3 and c#J~(x) = sin jTTz, j = 1,2,3, write out explicitly the equations 
(6.1.20) and (6.1.22) for the two-point boundary-value problem (6.1.19). 

b. Repeat part a for the basis functions &j(x) = xj(l -x), j = 1,2,3. 

6.1.5. If q(x) = x2, evaluate the coefficients aij of (6.1.18) for the basis functions 
(6.1.5) and (6.1.6). 

6.1.6. Show that the boundary value problem 

w”(X) +p(x)w’(x) + q(x)w(x) = f(x), w(0) = a, V(1) = p 

can be converted to a problem with zero boundary conditions as follows. Let 
U(X) = w(x) - (,B - a)x - CY. Show that u(0) = u(1) = 0 and that u satisfies 
the differential equation 

u”(X) + P(X)U’(X) + Q(Xb(X) = f(x) - e?(x) - LAX) + dxl(P - a)xc. 
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6.2 Spline Approximation 

In Section 2.3 we considered the problem of approximating a function by 
polynomials or piecewise polynomials. In the present section we will extend 
this to piecewise polynomials that have additional properties. 

Piecewise Quadratic Functions 

Let a 5 x1 < x2 < ... < x, < b be nodes subdividing the interval [a, b], 
and let yl,... , y,, be corresponding function values. In Section 2.3, we used 
piecewise polynomials that matched at certain grid points. For example, the 
function of (2.3.8) was a piecewise quadratic that agreed with given data at 
seven nodesi it was composed of three quadratics and was continuous but failed 
to be differentiable at the nodes where the different quadratics met. Now 
suppose that we wish to approximate by piecewise quadratics, but we require 
that the approximating function be differentiable everywhere. Then we need 
a different approach than that of Section 2.3. To illustrate this approach let 
7~ = 4, 1i = [zi, xi+l], i = 1,2,3, and 

qi(x) = ai2x2 + ailx + ai0, i = 1,2,3. (6.2.1) 

We will define a piecewise quadratic function q such that q(x) = qi(x) if 
z E li, i = 1,2,3, as illustrated in Figure 6.1. For q to be continuous and take 
on the prescribed values yi at the nodes, we require that 

Ql(Xl) = Yl, 

42(x3) = Y3, 

41(x2) = Y2, 

43(x3) = Y3, 

42(x2) = Y2, 

43(x4) = Y4. 
(6.2.2) 

If we also wish that q be differentiable at the nodes, then qi must equal qi at 
x2, and qh must equal q$ at x3: 

4Xx2) = d!(x2)3 qb(x3) = d&3). (6.2.3) 

The function q is determined by the nine coefficient,H iI1 (6.2.1) that define 
(lI, rrl, and r/:1, Thcl rc!lat,ionn (6.2.2) ant1 (6.2.3) Kivca only c)iKtIt, (*on(litions t,hat, 
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these nine coefficients must satisfy, and hence another relation must be spec- 
ified to determine q uniquely. Usually a value of q’ at some node is specified, 
for example, 

4:bl) = dl, (6.2.4) 

where di is some given value. The nine relations (6.2.2), (6.2.3), and (6.2.4) 
are then a system of nine linear equations for the coefficients of the qi. 

This approach is easily extended to an arbitrary number, n, of nodes. In 
this case there will be n - 1 intervals Ii and n - 1 quadratics qi defined on 
these intervals. The conditions (6.2.2) and (6.2.3) become 

Qa(Xi) = Yi %(%+1) = Yi+1, i=l,...,n-1, (6.2.5) 

and 
d(Xi+d = d+1(%+1), i= l,...,n-2. (6.2.6) 

These relations give 3n - 4 linear equations for the 3n - 3 unknown coefficients 
of the polynomials ql, . . . , qn-l. Again, one additional condition is needed, and 
we can use, for example, (6.2.4). Thus, to determine the piecewise quadratic, 
we need to solve 3n - 3 linear equations. 

Writing out equations (6.2.5), (6.2.6), and (6.2.4) for the quadratics qi, we 
have 

ai2xf + ailxi + ai = yi, i=l,...,n-1, 

ai2x:+l + ailxi+l + ai = yi+l, i=l ,...,n-1, 

2ai2xi+l + ail = %+1,2xi+l + ai+l,l, i = 1,. . . , n - 2, 

2al2xl + all = dl. 

If we order the unknowns as ai2, ail, ale, a22, a21, a20 and so on, the coefficient 
matrix of this system has the structure 

x: Xl 1 

xi x2 1 
4 X2 1 

4 X3 1 

. . 

4-l xn-1 1 

2 
2, &I 1 

2X2 1 0 -2x2 -1 

2x3 1 0 -2X3 -1 

. . 

2xn-1 1 0 -2x+1 -1 0 
_ 22, 1 

(6.2.7) 
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Cubic Splines 

For the purpose of approximating solutions to differential equations - as 
well as for many other situations - it is necessary that the approximating 
functions be at least twice continuously differentiable. This is not possible 
with piecewise quadratics unless the data are such that a single quadratic will 
s&ice. We are thus led to consider a piecewise cubic polynomial C(Z) with the 
following properties: 

c is twice continuously differentiable (6.2.8) 

In each interval li = [zi, zi+l], c is a cubic polynomial. (6.2.9) 

Such a function is called a cubic spline, the name being derived from a flexible 
piece of wood used by draftsmen for drawing curves. 

The function c will be represented by 

c(x) = Q(X) = c&3x3 +&2x2 +&lx + ail), 2 E Ii, i=l,... , n - 1. (6.2.10) 

The condition (6.2.8) implies that both c and c’ are also continuous on the 
whole interval I. Hence we must have 

ci-l(Xi) = Ci(Xi) c:-l(xi) = Ci(XJ cyq(xi) = CY(Xi), (6.2.11) 

for i = 2,. . . , n - 1, which are 3n - 6 conditions. Since there are 4n - 4 
unknown coefficients aij to be obtained for the function c of (6.2.10), we need 
n + 2 additional conditions. Especially for the purpose of interpolation or 
approximation, we will require that c take on the prescribed values 

C(G) = Yi, i= l,...,n, (6.2.12) 

which gives another n conditions. We still need two more conditions, and 
there are various possibilities for this. The natural cubic spline satisfies the 
additional conditions 

c”(X1) = c”(X,) = 0. (6.2.13) 

It can be shown that if i: is any other cubic spline that satisfies (6.2.8), (6.2.9), 
and (6.2.12), then I 

s ablC”(x)]2dx 5 Jb[F”(x)]2dx, a (6.2.14) 

so that the natural cubic spline has “minimum curvature.” 
We could determine c by solving the system of linear equations given by 

(6.2.11) (6.2.13) for the unknown coefficients c+. In this case the coefficient 
matrix would have a somewhat, unwieldy st,ructure similar to (6.2.7). Howc:vc:r, 
for the natural cubic: splint t,hc!rc: in anotlicr approach that, will Icad t,o a sinlplc 
I,ri(liagollal synbcm of cqual,ionH ill )vtlic:h the ImknowllN an’ tflll(! vrtluon of t,ll(* 
HCU)~(I tl(brivtilivc!n of (* 111, 1,11(* llo(loH. ‘1’)1(*11 t)y illf,(!gral,ioll w(* (‘a11 tl(%orrllirlc* f* 
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itself. Obtaining this tridiagonal system requires a good deal of manipulation, 
which we now begin. 

Computation of the Natural Cubic Spline 

We first note that cy is linear since ci is a cubic. Therefore the formula for 
linear interpolation yields 

c:‘(x) = c:‘(x:i) + y [C:l(Xi+1) - C:l(Xi)], 

where we have set hi = zi+r - xi, i = 1,. . . , n - 1. We now integrate (6.2.15) 
twice to obtain an expression for C(X): 

w = Ci(Xi) + 
s 

&)dt = Ci(Xi) + C:‘(Xi)(X -xi) (6.2.16) 

+ MXCl) - axi) (x _ zi)2 

2hi 1 

Ci (X) = Ci(Xi) + 
s 

ZCi(t)dt = Ci(Xi) + Ci(Xi)(X -Xi) (6.2.17) 

+cII(xj;ix - Xij2 + K(Xi+1) - c%)l (x _ 43 
z 

2 6hi 

For convenience we will henceforth use the notation 

J/i = Ci(Xi) = Ci-l(Xi)y 9: = C!i(Xi) = C:-l(Xi), (6.2.18) 

y:’ = Cy(Xi) = C:/-l(Xi), 

where we have invoked the conditions (6.2.11). Now replace i by i - 1 in 
(6.2.16), and then set x = xi to obtain 

hi-1 
y: = y:-1 + (y:’ + g-l)-. 

Next, set x = xi+1 in (6.2.17) and solve for y:: 

(6.2.19) 

y! = Yi+l - Yi 1, hi 1, hi 
z 

hi 
- Yi+l- - Yi -. 

6 3 

Equating the right-hand sides of (6.2.19) and (6.2.20) gives 

hi-1 
y:-1 + (y:’ + y;‘_+ = 

Yi+l - Yi 

hi 
- yl;12 - ?/y!$ 

(6.2.20) 

(6.2.21) 
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We next wish to eliminate y:-r from (6.2.21). To do this, replace i by i - 1 in 
(6.2.20) and substitute the resulting expression for y:-i into (6.2.21): 

Yi - Yi-1 ,, hi-1 
-1Ji- 

hi-1 

hi-1 
y,(L,- 

hi-2 
3 +(Ya’+Y,“:l)T 

After rearranging, this becomes 

= Yi+1 - Yi 1, hi 1, hi 

hi 
- Yi+l- - Yi -. 

6 3 

yr-lhi-l + 2yr(hi + hi-l) + yy+lhi = yi, i=2,**.,n-1, (6.2.22) 

where 

yi = 6 
[ 

Yi+l - Yi _ Yi - Yi-1 

hi 1 hi-1 ’ 
i=2,...,n-1. (6.2.23) 

Since yy = y: = 0 by the condition (6.2.13), (6.2.22) is a system of n - 2 linear 
equations in the n - 2 unknowns yg, . . . , y:-i; it is of the form Hy = 7, where 
y = (y?,. . . ,yiLl), Y = (YZ,. . . ,‘Y~-I), and 

2(h + hz) hz 
hz 2(h2 + W h3 

H= h 
. . *. (6.2.24) 
.* 

b-2 
b-2 2(h,-2 + hn-1) _ 

The matrix H is tridiagonal and clearly diagonally dominant. (It is also sym- 
metric and positive-definite.) Hence, the system Hy = 7 can be easily and 
efficiently solved by Gaussian elimination with no interchanges. 

After the y,!’ are computed, we still need to obtain the polynomials cl,. . . , 
c,-1. The first derivatives yi at the node points can be obtained from (6.2.20) 
since the yi are also known; thus 

Y: = C:(Xi) = C:-l(LCi) (6.2.25) 

= Yi+l -Yi hi 1, hi 

hi 
-YI:1F-Yi 3) i=l,...,n-1. 

Then, the ci themselves can be computed from (6.2.17), which we write in 
termsofyi,yi,andyrfori=l,+..,n-1: 

Ci(X) = yi + 1/:(x - Xi) + ;y/:' 
(X - Xi,j2 

2 + (Y:!+, - y;‘) (z $j3. (6.2.26) 
2 
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An Example 

We now give a simple example of the computation of a natural cubic spline. 
Suppose that we have the following nodes and function values: 

Xl = 0 x2 = + x3 = + x4 = j x5 = 1 

Yl = 1 Y2 = 2 Y3 = 1 Y4 = 0 y5 = 1. 

Here, n = 5 and the hi are all equal to a. The matrix H of (6.2.24) and the 
vector 7 whose components are given by (6.2.23) are 

Hence, the quantities yg, yi, and yy are obtained as the solution of the linear 
system 

4y$ +y; = -192 

y; + 4y; + y; = 0 

y; +4y; = 192, 

which is easily solved by Gaussian elimination. Since yy = yt = 0 by the 
condition (6.2.13), we have 

y:’ = 0, y; = -48, y; = 0, y; = 48, y; = 0. 

Using these values of the yr, we next compute the y: from (6.2.25): 

y; = 6, y; = 0, y; = -6, yi = 0, 

and with these we obtain the cubic polynomials cl, cs, cs, and c4 from (6.2.26). 
This then gives the cubic spline 

= cl(x) = 1 + 6x - 32x3, o<x<a, 

4x) 

1 

= c2(x) = 2 - 24(x - a)” + 32(x - i)“, i<X<i, 

= c3(x) = 1 - 6(x - ;) + 32(x - $)“, +<Xs;, 

= c4(x) = 24(x - i)” - 32(x - ;)“, $5x11. 

If we wish to evaluate c at some point, say x = 0.35, we note that 0.35 E [i, $1, 
and thus use cs for the evaluation: 

~(0.35) = ~~(0.35) = 2 - 24(0.1)2 + 32(0.1)3 = 1.792. 

In Section 6.4, we will return to the collocation and Galerkin methods using 
cubic splines as the basis furlctions. We stress again, however, that, splint 
functions are extremely useful iu many types of rl~)l)roxiIrlat,ioII rtl)l)lic’r~bioflH. 
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Supplementary Discussion and References: 6.2 
For further reading on spline functions, see Prenter [1975] and de Boor 

[1978]. In particular, splines using polynomials of degree higher than cubic are 
sometimes very useful and are developed in these references. 

EXERCISES 6.2 

6.2.1. Assume that f  is a given function for which the following values are known: 
f(1) = 2, f(2) = 3, f(3) = 5, f(4) = 3, f(4) = 3. For these data: 

a. Find the interpolating polynomial of degree 3 and write it in the form 
a0 + UlX + @X2 + c&x3. 

b. Find the quadratic spline function that satisfies the condition q’(1) = 0. 
(Hint: Start from the left.) 

c. Find the cubic spline function that satisfies c”(1) = 6, c”(4) = -9. (Hint: 
Try the polynomial of part a.) 

6.2.2. Reorder the unknowns in the system of equations (6.2.7) so as to obtain a 
coefficient matrix with as small a bandwidth as you can. 

6.2.3. Use (6.2.11) - (6.2.13) to write out the system of equations for the unknown 
coefficients oij of the cubic spline (6.2.10). 

6.2.4. For the function of Exercise 6.2.1, find the cubic spline c that satisfies c’(1) = 
1, c’(4) = -1, rather than the condition (6.2.13). (Hint: Think.) 

6.2.5. Write a computer program to obtain the natural cubic spline for a given set 
of nodes XI < ... < zn and corresponding function values ~1,. . . , yn by first 
solving the tridiagonal system with the coefficient matrix (6.2.24) and then 
using (6.2.25) and (6.2.26). Also write a program for evaluating this cubic 
spline at a given value x. Test your program on the example given in the text. 

6.3 Numerical Integration 

The Galerkin method described in Section 6.1 requires the evaluation of 
definite integrals of the form 

I(f) = 
s 
ab f(x)dx> 

and the need to evaluate such integrals also arises in a number of other prob- 
lems in scientific computing. The integrand, f(x), may be given in one of three 
ways: 

1. An exl)lic:it, fortu~~lr~ for !(:I:) is given; for exau~I)Ie, J(X) = (sin :I:),~-“‘. 
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2. The function f(x) is not given explicitly but can be computed for any value 
of 2 in the interval [a, b], usually by means of a computer program. 

3. A table of values {si,f(zi)} is given for a fixed, finite set of points zi in 
the interval. 

Functions in the first category are sometimes amenable to methods of sym- 
bolic computation, either by hand or by computer systems, although many in- 
tegrands will not have a “closed form” integral. The integrals of functions that 
fall into the second and third categories - as well as the first category if sym- 
bolic methods are not used - are usually approximated by numerical methods; 
such methods are called quadrature rules-and are derived by approximating the 
function f(x) by some other function, f(z), whose integral is relatively easy 
to evaluate. Any class of simple functions may be used to approximate f(z), 
such as polynomials, piecewise polynomials, and trigonometric, exponential, 
or logarithmic functions. The choice of the class of functions used may depend 
on some particular properties of the integrand, but the most common choice, 
which we will use here, is polynomials or piecewise polynomials. 

The Newton-Cotes Formulas 

The simplest polynomial is a constant. In the rectangle rule, f is approxi- 
mated by its value at the end point a (or, alternatively, at b) so that 

I(f) A R(f) = @ - aIf( (6.3.1) 

We could also approximate f by another constant obtained by evaluating f 
at a point interior to the interval; the most common choice is (a + b)/2, the 
center of the interval, which gives the midpoint rule 

I(f) A M(f) = (b - a)f (F) . (6.3.2) 

The rectangle and midpoint rules are illustrated in Figure 6.2. 
The next simplest polynomial is a linear function. If it is chosen so that 

it agrees with f at the end points a and b, then a trapezoid is formed, as 
illustrated in Figure 6.3. The area of this trapezoid - the integral of the linear 
function - is the approximation to the integral of f and is given by 

I(f) A T(f) = v[f(a) + f(b)]. 

This is known as the trapezoid rule. 
To obtain one further formula, we next approximate f by an interpolating 

quadratic polynomial that agrees with f at the end points a and b and the 
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Figure 6.2: Integration Approximations 

a b 

(a) lkapezoid rule 

a (b+a)/2 b 

(b) Simpson’s rule 

Figure 6.3: More Approximations 

midpoint (a + b)/2. The integral of this quadratic is given by (see Exercise 
6.3.1) 

which is Simpson’s rule and is illustrated in Figure 6.3. We note that Simpson’s 
rule may also be viewed as a linear combination of the trapezoid rule and the 
midpoint rule since 
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constructed to agree with f at these m points plus the two end points, and 
this polynomial is then integrated from a to b to give an approximation to the 
integral. Such quadrature formulas are called the Newton-Cotes formulas (See 
the Supplementary Discussion.) 

Error Formulas 

We consider next the error made in using the quadrature rules that have 
been described. In all cases f is approximated by an interpolating polynomial 
p of degree n over the interval [a, b], and the integral of p is the approximation 
to the integral. Hence the error in this approximation is 

E = b[f(x) -p(x)]& 
I a 

(6.3.5) 

By the Interpolation Error Theorem 2.3.2, this can be written as 

E= (A)! a J 
b (x - X0) . . . (x - x,)f '"+"(z(x))dx, 

where 20, ~1,. . . , zn are the interpolation points, and z(z) is a point in the 
interval [a, b] that depends on x. We now apply (6.3.6) to some specific cases. 

For the rectangle rule (6.3.1), n = 0 and 20 = a; hence (6.3.6) becomes 

IERI = Jb(x - a)f’(z(x))dx 5 Ml Jb(cc - a)& = +(b - a)2, (6.3.7) 
a a 

where Ml is a bound for If’(x)1 over the interval [a, b]. Note that the bound 
(6.3.7) will not be small unless MI is small, which means that f is close to 
constant, or the length of the interval is small; we shall return to this point 
later when we discuss the practical use of these quadrature formulas. For the 
trapezoid rule (6.3.3), n = 1, xo = a, and ~1 = b. Hence, again applying 
(6.3.6), we have 

l&l = i Jb(x - a)(x - b)f”(z(z))dz 5 $f(b - a)3, 
a 

(6.3.8) 

where M2 is a bound on If”(x)l over [a, b]. 
Consider next the midpoint rule (6.3.2), in which n = 0 and xo = (a+ b)/2. 

If we apply (6.3.6) and proceed as in (6.3.7), we obtain 

IEM1 = lb [x - F 
a 

(6.3.9) 
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This, however, is not the best bound we can obtain. We shall instead expand 
the integrand of (6.3.5) in a Taylor series about m = (a + b)/2. Since the 
interpolating polynomial is simply the constant p(z) = f(m), this gives 

f(x) -P(X) = f’(m)(x - m) + if”(+))(x - m12, 

where z is a point in the interval and depends on x. Thus the error in the 
midpoint rule is 

JEM) = /b[f’(m)(x - m)dx + ~f”(z(x))(x - m)2]dx 

< lj’(rn) [(x - m)dxi + f lib f”(z(x))(x - m12dz 

< S(b-cq3, - 

since 

J 
ab(x - m)dx = 0, 

(6.3.10) 

In a similar way we can derive the following bound for the error in Simp- 
son’s rule (6.3.4), which we state without proof (n/r4 is a bound for the fourth 
derivative): 

PSI I &(b - u)~. (6.3.11) 

Composite Formulas 

The above error bounds all involve powers of the length b-a of the interval, 
and unless this length is small the bounds will not, in general, be small. How- 
ever, in practice, we will only apply these quadrature formulas to sufficiently 
small intervals which we obtain by subdividing the given interval [a, b]. Thus 
we partition the interval [a, b] into n subintervals [xi-i, xi], i = 1,. . . , n, where 
20 = a and zn = b. Then 

I(f) = J,” f(z)da: = 2 JXi f(x)dx. 
i=l xi-1 

If we apply the rectangle rule to each subinterval [xi-r,xi], we obtain the 
composite rectangle rule 
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where hi = xi - xi-l. The composite midpoint, trapezoid, and Simpson’s rules 
are obtained in the same way by applying the basic rule to each subinterval; 
they are given by 

Ice = 2h.f i=l z (xi+;i-l) > (6.3.13) 

(6.3.14) htf) = 2 ;mxi-l) + f(G)], 
i=l 

Ics(~) = 5 $hi f(xi-1) + 4.f 
a=1 

( xi-1l xi) + f(xi)] e (6.3.15) 

We note that the composite rules may all be viewed as approximating 
the integrand f on the interval [a,b] by a piecewise polynomial function (see 
Section 2.3) and then integrating the piecewise polynomial to obtain an ap- 
proximation to the integral. For the midpoint and rectangle rules, the approx- 
imating function is piecewise constant; for the trapezoid rule it is piecewise 
linear, and for Simpson’s rule it is piecewise quadratic. 

We can now apply the previous error bounds on each subinterval. For 
example, for the rectangle rule, we use (6.3.7) to obtain the following bound 
on the error in the composite rule: 

(6.3.16) 

Note that we have used the maximum MI of If’(x)] on the whole interval [a, b], 
although a better bound in (6.3.16) could be obtained if we used the maximum 
of [f’(x)] separately on each subinterval. 

In the special case that the subintervals are all of the same length, hi = 
h = (b - a)/n, (6.3.16) becomes 

ECR 5 ?(b - a)h (Composite rectangle rule error), (6.3.17) 

which shows that the composite rectangle rule is a first-order method; that 
is, the error reduces only linearly in h. In a similar fashion, we can obtain 
bounds for the errors in the other composite rules by using (6.3.8), (6.3.10), 
and (6.3.11). The following bounds are given in the case that the intervals are 
all of the same length h: 

ECM 5 $(b - a)h2 (Composite midpoint rule error), (6.3.18) 

ECT < $(b - a)h2 (Composite trapexoitl rule error), (6.3.19) 
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Ecs I g$(b - a)h4 (Composite Simpson’s rule error). (6.3.20) 

Thus the composite midpoint and trapezoid rules are both second order, whereas 
the composite Simpson’s rule is fourth order. Because of its relatively high ac- 
curacy and simplicity, the composite Simpson’s rule is an often-used method. 

Supplementary Discussion and References: 6.3 
A difficulty with quadrature rules, as well as with other numerical methods 

that we have discussed earlier, is that some choice of the step sizes, hj, must 
be made. If the numerical integration schemes were to be used as described 
previously, the user would be required to specify hj a priori. In practice, high- 
quality quadrature software will employ some automatic adaptive scheme that 
will vary the step size depending on estimates of the error obtained during 
the computation. The user will be required to specify an acceptable tolerance 
for the error, and the program will automatically specify the step size as it is 
computing. 

The solution at 2 = b of the initial-value problem 

Y’(X) = f(x), y(a) = 0, a<xlb, (6.3.21) 

is y(b) = S,bf(x)dx. H ence integration may be viewed as the “trivial” subcase 
of solving an initial-value problem in which the right-hand side is independent 
of y. Any of the methods discussed in Chapter 2 may be applied to (6.3.21), in 
principle. In fact, most of those methods reduce to some quadrature rule that 
we have discussed. For example, Euler’s method is the composite rectangle 
rule, the second-order Runge-Kutta method is the composite trapezoid rule, 
and the fourth-order Runge-Kutta method is the composite Simpson’s rule 
(see Exercise 6.3.7). 

The Newton-Cotes formulas, mentioned in the text as being derived by 
integrating an interpolating polynomial of degree n, can be written in the 
form 

w A &if(%), (6.3.22) 
i=o 

where the xi are equally spaced points in the interval [a, b], with x0 = a, 
2 II= b; Simpson’s rule is the case n = 2. For n 5 7, the coefficients cui are 
all positive, but beginning with n = 8 certain coefficients will be negative; this 
has a deleterious effect on rounding error since cancellations will occur. The 
Newton-Cotes formulas also have the unsatisfactory theoretical property that 
as n + 00, convergence to the integral will not necessarily occur, even for 
infinitely diffcroritiable functions. 

The rc!l,rcnc!tlt,at,iorl (6.3.22) p rovidos another approach to the derivation of 
c~llcltlratmY! forrllllllitn th! rnr:thod f~f ?~rt,r1~~tr:i~?ni71r:d r:or~fic*krh. AHNIIIIW first, 
tlrat, t,lrc! :I+ IW givcw. If WC Hc(!k t,o clc*t,c~r’rrrirrc! 1,)~ /Y( NO IJu~t, t,trc! f’orr~rlr~ is 
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exact for polynomials of as high a degree as possible, then in particular it must 
be exact for 1,x, x2,. . . , z”, where m is to be as large as possible. This means 
that we must have 71 

c g+lmaj+l 

c&x; = j=O,l,..., m, (6.3.23) 
i=o j+1 ’ 

where the right-hand sides of these relations are the exact integrals of the 
powers of 2. The relations (6.3.23) constitute a system of linear equations 
for the unknown coefficients cri. If m = n, then the coefficient matrix is the 
Vandermonde matrix discussed in Section 2.3. It is nonsingular if the xi are 
all distinct, and hence the cri are uniquely determined for m = n. If the xi are 
equally spaced, then this approach again gives the Newton-Cotes formulas. 

Now assume that we do not specify the points xi in advance but consider 
them to be unknowns in the relations (6.3.23). Then if m = 2n + 1, (6.3.23) 
is a system of 2n + 2 equations in the 2n + 2 unknowns ae, al,. . . , QI, and 
XOrXlr***r%. The solution of these equations for the oi and xi give the 
Gaussian quadrature formulas. For example, in the case n = 1 on the interval 
[a,b] = [-l,l], the formula is 

s 1 

-lf(x)dx-f (-$+f (5). 

In general, the abscissas xi of these quadrature formulas are roots of certain 
orthogonal polynomials. Gaussian quadrature rules are popular because of 
their high-order accuracy, and the weights are always non-negative. 

We remarked in the text that Simpson’s rule can be viewed as a linear 
combination of the trapezoid and midpoint rules. By taking suitable linear 
combinations of the trapezoid rule for different spacings h, we can also derive 
higher-order quadrature formulas. This is known as Romberg integration and 
is a special case of Richardson extrapolation discussed earlier. The basis for 
the derivation of Romberg integration is that the trapezoid approximation can 
be shown to satisfy 

T(h) = I(f) + Czh2 + C4h4 + .+. + C2mh2m + O(h2”+2) (6.3.24) 

where the Ci depend on f and the interval but are independent of h. The 
expansion (6.3.24) holds provided that f has 2m + 2 derivatives. Now define 
a new approximation to the integral by 

Tl(h)= f [4T(;) -T(h)]. (6.3.25) 

The coefficients of this linear combination are chosen so that when the error 
in (6.3.25) is computed using (6.3.24), the coefficient of the h2 term is zero. 
Thus 

Tl(h) = l(f) + C;‘)h4 + . . . + O(h2rrr+2), 
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so that Tl is a fourth-order approximation to the integral. One can continue 
the process by combining TI (h) and TI (h/2) in a similar fashion to eliminate 
the h4 term in the error for Tl. More generally, we can construct the triangular 
array 

T(h) 

T(W) Tl(h) 

T(h/J) Tl(hP) Tz(h> 

. . 

where 

The elements in the ith column of this array converge to the integral at a rate 
depending on h2i. Provided that f is infinitely differentiable, however, the 
elements on the diagonal of the array converge at a rate that is superlinear, 
that is, faster than any power of h. 

We have not touched at all upon several other important topics in numeri- 
cal integration: techniques for handling integrands with a singularity, integrals 
over an infinite interval, multiple integrals, and adaptive procedures that at- 
tempt to fit the grid spacing automatically to the integrand. For a discussion 
of these matters, as well as further reading on the topics covered in this section, 
see Davis and Rabinowitz [1984] and Stroud [1971]. 

EXERCISES 6.3 

6.3.1. Write down explicitly the interpolating quadratic polynomial that agrees with 
f  at the three points a, b, and (u + b)/2. Integrate this quadratic from a to b 
to obtain Simpson’s rule (6.3.4). 

6.3.2. Show that the trapezoid rule integrates any linear function exactly and that 
Simpson’s rule integrates any cubic polynomial exactly. (Hint: Expand the 
cubic about the midpoint.) 

6.3.3. Apply the rectangle, midpoint, trapezoid, and Simpson’s rules to the function 
f(z) = x4 on the interval [0, 11. Compare the actual error in the approximations 
to the bounds given by (6.3.7), (6.3.8), (6.3.10), and (6.3.11). 

6.3.4. Based on the bound (6.3.19), how small would h need to be to guarantee an 
error no larger than 10T6 in the composite trapezoid rule approximation for 
f(x) = x4 on [0, 11. How small for the composite Simpson’s rule? 

6.3.5. Write a c:omput,rr program to carry out the composite trapezoid and Simp- 
non’n rub for an “arbitrary” function on the interval [a, b] and with an ar- 
Ihwy f4ul~cliviniot~ of [u, b]. ‘ht. yaw propm on f(z) = x4 on (0, 1] find 
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find the actual h needed, in the case of an equal subdivision, to achieve an 
error of less than 10m6 with the composite trapezoid rule. Do the same for 
f(z) = e+. 

6.3.6. Derive the four-point quadrature formula based on interpolation of the in- 
tegrand by a cubic polynomial at equally spaced points. (Hint: Think. The 
calculation can be simplified somewhat.) 

6.3.7. Show that Euler’s method applied to the initial value problem (6.3.21) is the 
composite rectangle rule, that the second-order Runge-Kutta method is the 
composite trapezoid rule, and that the fourth-order Runge-Kutta method is 
the composite Simpson rule. 

6.4 The Discrete Problem Using Splines 

We now return to the original problem (6.1.1), (6.1.2) of this chapter: for 
the two-point boundary-value problem 

04 + Q(E)‘U(Z) = f(z), Ola:<l, 

and 
w(0) = w(1) = 0, 

we wish to find an approximate solution of the form 

(6.4.1) 

(6.4.2) 

(6.4.3) 

where &,...,& are given functions. 

Collocation 

Recall from Section 6.1 that the collocation method for (6.4.1) requires 
solving the linear system of equations 

AC = f, (6.4.4) 

where the elements of the matrix A are 

aij = 4$(~) + 4(44j(4, i,j = 1)“‘) 0, (6.4.5) 

c is the vector of unknown coefficients cl,. . . , cn, f is the vector of values 
f(d,... , f(~), and a,. . . ,x, are given points in the interval [0, 11. In Sec- 
tion 6.1, we considered the choice of the basis functions & as either polynomials 
or trigonometric functions and saw that, in general, the coefficient matrix A 
was dense ~ that is, it had few zero elements in contrast to the tridiagonal 
coefficient matrix that WON ol)taitl(!d in Chaptc~r 3 axing thn finite cliff(~rc:rlc:c! 
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method. In the present section we shall use spline functions, and we will see 
that in the simplest case this again leads to a tridiagonal coefficient matrix. 

Since the coefficients aij use @‘(xi), it is necessary for the basis functions 
to have a second derivative at the nodes xl,. . . , x,. Thus linear and quadratic 
splines will not suffice; cubic splines, however, are twice differentiable, and 
we will consider them first as our basis functions. We will need to choose the 
basis functions so that they are linearly independent in a sense to be made clear 
shortly. We would also like to choose them so that the coefficient matrix A has 
as small a bandwidth as possible. To illustrate this last point, let us attempt 
to make the coefficient matrix tridiagonal. Assuming that the function q has 
no special properties, we see from (6.4.5) that this will only be achieved if we 
can choose the dj so that 

c#gXi) = $j(Xi) = 0, Ii - j( > 1. (6.4.6) 

This, in turn, will be true if we can choose & such that it vanishes identically 
outside the interval [xi-z, xi+z], and if 

fg(Xi-2) = &(x+2) = c#((Xi+2) = c#ii(Xi+2) = 0. (6.4.7) 

B-Splines 

Now recall that a cubic spline was defined by the conditions (6.2.8) and 
(6.2.9). These conditions, together with a specification of the function values 
at the node points xi, . . . ,x,, give 4n - 6 relations to determine the 4n - 4 
unknown coefficients that define the cubic spline. In Section 6.2 we used the 
additional two conditions (6.2.13), which determine a natural cubic spline; 
unfortunately, this natural cubic spline cannot satisfy the condition (6.4.6) 
unless it is identically zero. However, if we do not impose the additional 
conditions (6.2.13), we can obtain a cubic spline that does indeed satisfy the 
conditions (6.4.6). We denote this spine by Bi(x) and define it explicitly by 

&(x - xi-2)3> Xi-2 5 X 5 Xi-l, (6.4.8) 

a + -&(x - X&l) + -&(x -xi-1)2 - -&(x - X&1)3, Xi-1 5 X 5 Xi, 

i + $(Xi+l - X) + &(Xi+l - X)” - &(Xi+l - X)3, Xi 5 X I Xi+17 

&Cxi+2 - Xl31 Xi+1 L: X 5 Xi+2, otherwise, 
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with spacing h. It is straightforward (Exercise 6.4.1) to verify that this function 
is a cubic spline with the function values 

Bi(Xi) = 1, f%(Ul) = f, 

and zero at the other nodes. Moreover, if CJ$ = Bi the conditions (6.4.6) and 
(6.4.7) are satisfied (Exercise 6.4.1). Such a spline function, which is illustrated 
in Figure 6.4, is called a cubic basis spline, or cubic B-spline for short, since 
any cubic spline on the interval [a, b] may be written as a linear combination 
of B-splines. More precisely, we state the following theorem without proof: 

Theorem 6.4.1 Let C(X) be a cubic spline for the equally spaced node points 
Xl < *a* < xn. Then there are constants cxo, (~1,. . . , a,+1 such that 

n+l 

C(X) = c aiBi(x). (6.4.9) 
i=o 

Note that the functions Bo, B1, B,, and B,+l used in (6.4.9) require the 
introduction of the auxiliary grid points x-z, x-1, xc and x,+1, x,+2, xn+s. 

X t-2 xi-1 Xi Xi+1 xi+2 

Figure 6.4: A Cubic B-Spline 

Application to the Boundary-Value Problem 

We now return to the boundary-value problem (6.4.1). We assume again 
that the node points are equally spaced with spacing h, and that xi = 0, 
2 n= 1. We wish to take the basis functions &, . . . , & to be the B-splines 
B1,... , B,. However, although B3,. . . , B,-2 satisfy the zero boundary condi- 
tions, B1, B2, B,-1, and B, do not. Therefore we define the & to be 

h(x) = &(x1, i=3 ,...,n-2 

41(x) = Bl(x) - 4B0(z), #Q(X) = 4&(x) - Bl(x), (6.4.10) 

&-I(X) = 4&-1(x) - B,(x), &x(x) = B,(x) -4&+1(x). 

It is easy to verify from the definition (6.4.8) that +1(O) = $2(O) = &-i(O) = 
&(O) = 0. Moreover, it is clear that any linear combination (6.4.3) is a cubic 
spline and satisfies U(O) = ~(1) = 0. 
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We next need to evaluate the coefficients (6.4.5); for this, we will need Bi, 
Bi, and B:’ evaluated at the nodal points. This is easily done (Exercise 6.4.2), 
and we summarize the results in Table 6.1. Note that by the definition of the 
Bi, all values at node points not indicated in Table 6.1 are zero. This implies, 
in particular, that the coefficients aij of (6.4.5) are all zero unless Ii - jl 5 1 
or, possibly, if i = 1 or n. 

Table 6.1: Values of Bi, B:, B:’ 

xi-1 Xi xi-1 

Bi l/4 1 l/4 
B: 3/(4h) 0 -3/(4h) 

BI’ 3/(2h2) -3/h2 3/(2h2) 

For the evaluation of the nonzero coefficients aij of (6.4.5), we set qi = q(xi). 
Then using Table 6.1 we have 

aii = BI’(zi) + qiBi(xi) = $ + qir i = 3,. . . , n - 2, 

ai,i+l = B;+,(x.) + q.Bi+l(x.) = -?- + ‘i 2 2 2 
2h2 4’ 

i = 2,... , n - 3, (6.4.11) 

ai,i-1 = ByeI + q.B.wl(x.) = -!- + ‘i 2 1% z 2h2 4’ 
i = 4,. . . , n - 1. 

For the remaining coefficients we use the functions &, qS2, C$+~ and & of 
(6.4.10) and obtain 

9 
a11 = --, 

h2 %-2,n-1 = 5 + h-2, 

9 
a12 = p’ %-l,n-1 = g + yqn-l 

3 
a21 = -- G2, 2h2 4 an+-1 = $ + &-1, (6.4.12) 

9 
a22 = -$ + $2: %,n-1 = g’ 

a32 = j$+q”’ 
9 

%ln = --. 
h2 

The cornponc~nta of t,he right-hand sid(b f of t,hc: system (6.4.4) arc f(~, ), , , . , f(z,,). 
Then t,ho Ho~llt~io~l of t,tio HyHt(!lll (6.4.4) with t,h! (!odfi(!if!llt,ld of t,tW t.ri(lilqod 
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matrix A defined by (6.4.11) and (6.4.12) yields the coefficients cl,. . . , c, of 
the linear combination (6.4.3). 

We note that in the special case q(x) E 0, so that (6.4.1) is V”(Z) = f(z), 
the coefficient matrix A reduces to 

- 6 -6 
-1 9 -1 

-4 2 -1 

A=-& -1 *. 2 . 

*.. 

. . . 
-1 

-1 2 -4 
-1 9 -1 

-6 6 

which, aside from the factor -3/2(h2) and the elements of the first and last 
three rows and columns, is the (2, -1) coefficient matrix obtained by the finite 
difference method of Section 3.1. 

It can be shown that if the solution v of (6.4.1) is sufficiently differentiable, 
the preceding method has a discretization error of order h2, the same as the 
finite difference method of Section 3.1 using centered differences. Higher-order 
accuracy can be obtained by using splines of higher degree. For example, 
fourth-order accuracy can be obtained with quintic splines, functions that are 
four times continuously differentiable and that reduce to fifth-degree polyno- 
mials on each subinterval [xi, ~i+l]. 

The Galerkin Method 

We now turn to the Galerkin method. We will assume again that we wish 
to approximate a solution of (6.4.1),(6.4.2) by a linear combination of the form 
(6.4.3), where now the coefficients cl,. . . , c, are determined by the Galerkin 
criterion discussed in Section 6.1. This leads us to the solution of the linear 
system (6.4.4) where from (6.1.18) 

aij = - i,j = 1 ,***,T (6.4.13) 

and from (6.1.17) 

i= l,...,n. (6.4.14) 

For the basis functions & we will again use piecewise polynomials. AH 
the simplest possibility, let us first consider piecewise linear functions. III 
particular, assuming that the grid points 0 = xl), :E~, . . . , x,, , x,,+ , = I, MI! 
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equally spaced with spacing h, we will take the basis functions &, i = 1,. . . , n, 
to be 

h(x) = ;(x --G-l), xi-1 5 x 5 xj, 

1 -$x - Xi+1), xi5x1xi+1, 

= 0 x < Xi-l, x > xj+1. 

(6.4.15) 

These particular piecewise linear functions are called hut functions, or linear 
B-splines, and are illustrated in Figure 6.5. It is intuitively clear, and easily 
shown (Exercise 6.4.4), that any piecewise linear function that is defined on 
the nodes x0, xl,. . . , x,+1 and that vanishes at x0 and x,+1 can be expressed 
as a linear combination of these 41,. . . , &. 

xi-l Xi Xi+1 

Figure 6.5: A Hut Function 

We now wish to use the basis functions (6.4.15) in Galerkin’s method. 
At first glance, it would seem that there is a difficulty in using the & in the 
computation of the aij since this requires &, which does not exist at the points 
G-1, xi, and xi+l. Note, however, that $: is simply the piecewise constant 
function 

Xi-1 < X < Xi, 

1 --) 
h 

Xi < X < Xj+l, 
(6.4.16) 

= 0, X < Xi-1,X > Xj+le 

There are discontinuities in this function at the points xi-l, xi, and xi+l, but 
these do not affect the integration, and the integrations in (6.4.13) can be 
carried out on each subinterval to give 

C&j = (6.4.17) 

By the definit,ion of the &, the products && and $:4$ vanish identically unless 
i - 1 5 j 5 i + 1. Thus 

(1,) = 0, il’ Ii - .jl > I. (6.4. Ire) 
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To evaluate the other aij we first introduce the quantities 

s 

x*+1 
Ri = q(z)(x - G+d2k 

Xi 
Qi = lxi q(x)(a: - zj-1)2dz, 

xi-1 

I 

Xi 

Si = q(z)(a: -%-1)(2-%)k 

x*--1 

and note that 

s 

xi+1 

Xl (fl$?+#l~(z)da: = ;, J xi c#l;(+#t;(z)dz x*--1 
J 

xi+1 

x* 4#4l+,W~ = -;, s 
xi+1 q(z)h(~Mi(~)d~ xi 

s Xi q(z)$i(z)h(z)da: = $Qi, 
xi-1 

lx' d~Mi-l(~h#%(~)d~ 
Xc-1 

Therefore, from (6.4.17), 

ajj = $(-2h+Qi+Ri), i= l,...,n, 

ai,i+l = $(h - Si+d, i= l,...,n-1, 

aj+l = j&h - Si), i=2,...,n, 

and the right-hand side components of (6.4.4) are given for i = 1, * . . , n by 

(6.4.21) 

Thus the linear system (6.4.4) to be solved for the coefficients cl,. . . , cn of 
(6.4.3) consists of the tridiagonal matrix A whose components are given by 
(6.4.20), and the right-hand side f with components given by (6.4.21). We note 
that unless q(z) and f(x) are such that the integrals in (6.4.19) and (6.4.21) 
can be evaluated exactly, we would use the numerical integration techniques 
of the previous section to approximate these integrals. In the special case 
q(x) = 0, all Qi, Ri, and Si are zero; hence 

(6.4.19) 

1 = -, 
h 

= &’ 

= +j. 

(6.4.20) 

-2 1 1 
aii = - 

h ai,i+l = - h 
aj-l,j = -. 

h 

If we then multiply the equations (6.4.4) by -h-l, the new coefficient matrix 
will be exactly the (2, -1) tridiagonal matrix that arose in Chapter 3 from 
the finite difference approximation to u” = f. The right-hand side of the 
Galerkin equations will be different, however, involving the integrals off given 
in (6.4.21). 
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Provided that the solution of (6.4.1) is sufficiently differentiable, it can be 
shown that the Galerkin procedure using the piecewise linear functions (6.4.15) 
is second-order accurate; that is, the discretization error is O(h2). By using 
cubic splines it is possible to increase the order of accuracy by two, so as to 
make the discretization error O(h4). 

Comparison of Methods 

We now compare the three methods that we have discussed for two-point 
boundary-value problems: finite differences, collocation, and Galerkin. The 
finite difference method is conceptually simple, easy to implement, and yields 
second-order accuracy with the centered differences that we used in Chap- 
ter 3. The collocation method with cubic splines is slightly more difficult to 
implement but still relatively easy. For the Galerkin method, however, we 
must evaluate the integrals of (6.4.19) and (6.4.21), and generally this will 
require the use of numerical integration or symbolic computation systems. In 
all three cases the system of linear equations to be solved has a tridiagonal 
coefficient matrix. All three methods have higher-order versions, which are, 
naturally, more complicated. It is probably fair to say that for ordinary differ- 
ential equations the simplicity of the finite difference and collocation methods 
allows them to be preferred in most cases. The power of the Galerkin method 
becomes more apparent for partial differential equations. 

Supplementary Discussion and References: 6.4 
The books by Ascher et.al. [1988], deBoor [1978] and Prenter [1975] are 

good sources for further reading on the material of this section and for a proof 
of Theorem 6.4.1. See also Strang and Fix [1973] and Hall and Porsching [1990] 
for further discussion of the Galerkin method. 

EXERCISES 6.4 

6.4.1. Show that the function defined by (6.4.8) is a cubic spline on the interval 
[0, l] and satisfies the conditions (6.4.6) and (6.4.7). 

6.4.2. Show that the values of Bi, Bi, and Bi’ at zi-1, zi, zi+l are as given in Table 
6.1. 

6.4.3. Consider the two-point boundary-value problem 

4’ + (1+ Z2)V = X2, V(0) = 0, w(1) = 0. 

a. Let h = i and write out the coefficients a,j of (6.4.11) and (6.4.12) for 
the collocation method and then the complete system of linear equations 
(6.4.4). Ascertain whether the coefficient matrix is symmetric positive 
ddinit~f~ wd diagmdly dotninmt,. Solve the system and express the ap- 
proxirnatc! Holut,ion in t,hfl form (6.4.3), whw! the! basin functiotin arc given 
by (6.4.lO). 



210 CHAPTER 6 IS THERE MORE THAN FINITE DIFFERENCES? 

b. Repeat part a for the Galerkin method using the basis functions (6.4.15). 

6.4.4. Let f(z) be a piecewise linear function with nodes xi = ih, i = 0, 1, . . . , n + 1, 
h = (n+ 1)-l, and that vanishes at xc and xn+r . Show that there are constants 
al,. . . , (Y,, such that f(z) = Cy=, oid.( ) z z , w h ere the +i are defined by (6.4.15). 

6.4.5. Consider the boundary-value problem 

w”(X) - 3V(Z) = x2, 0 5 x 5 1, V(0) = V(1) = 0. 

a. Derive the system of tridiagonal equations to be solved to carry out the 
collocation method using the basis functions of (6.4.10) with the points 
xi = (i - l)h, i = 1,. . . ,n, h = l/(n - 1). 

b. Derive the system of tridiagonal equations to be solved to carry out 
Galerkin’s method using the basis functions (6.4.15). 

c. Add the nonlinear term lO[w(x)]” to the right hand side of the differential 
equation and repeat parts a. and b. Then compute the Jacobian matrices 
for these systems and discuss how to carry out Newton’s method. 
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