
Chapter 5 

Life Is Really Nonlinear 

5.1 Nonlinear Problems and Shooting 

We consider in this chapter the solution of nonlinear problems. Suppose, 
for example, that the coefficients b, c and d in (3.1.1) are functions of TJ as well 
as 2: 

w”(x) = b(x, w(x))w’(x) + c(x, w(x))w(x) + d(z, v(z)). (5.1.1) 

Then (5.1.1) is a nonlinear equation for ‘u. A simple example of this, which we 
will discuss later, is 

w”(X) = 3?J(z) + x2 + lO[w(z)]3, O<a:<l. (5.1.2) 

With either (5.1.1) or (5.1.2) we can have any of the boundary conditions 
(liscussed in Section 3.1, as well as others which are themselves nonlinear; for 
cbxample, 

[w(0)12 + w’(0) = 1, w(1) = [w’(l)]! (5.1.3) 

‘I’here are two basic approaches to such nonlinear problems. One is to discretize 
t.tlc differential equation as was done in Chapter 3 for linear equations; we will 
:il.udy this approach in Section 5.3. In the present section we will consider a 
Itl(%hod based on the solution of initial-value problems, and for this purpose 
WV will first treat as an example the projectile problem of Chapter 2. 

‘I’he Projectile Problem and Shooting 

Recall that the projectile problem was given by equations (2.1.15), (2.1.171, 
IIIIII (2.1.18) with ti = 0 and T = 0: 

9 = ‘1) CO8 H, f j  = ?JRiIle, (5.1.4) 
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As before, we have the initial conditions 

x(0) = y(0) = 0, v(0) = u. (5.1.5) 

In Chapter 2 we also prescribed 

e(0) = e, (5.1.6) 

so that (5.1.4) - (5.1.6) was an initial-value problem. Suppose now, however, 
that in place of (5.1.6) we require that the projectile hit the ground at a given 
time tj; that is, 

Y(Q) = 0. (5.1.7) 

Since the equations (5.1.4) are nonlinear in the unknowns x, y, v, and 8, this 
is a nonlinear two-point boundary value problem. Note that it may not have 
a solution; for example, tf may be too large for the given initial velocity V. 

We can base a numerical solution of this problem on the trial-and-error 
method that an artillery gunner might employ: choose a value of the launch 
angle, say &, and “shoot,” which, mathematically, means to solve the initial- 
value problem (5.1.4),(5.1.5) together with 

8(O) = $1. (5.1.8) 

We follow the trajectory until t = tf and record the corresponding value of 
y at tj, say yl. If y1 # 0 we choose another value of 8(O) and shoot again, 
continuing the process until a e(O) has been found such that y(tj) is suitably 
close to zero. Shortly we will discuss systematic ways to choose new values of 

e(o). 

Other Boundary Value Problems 

We can apply the above shooting method to other boundary value problems 
even though there may be no physical analogy to shooting. Consider, for 
example, the equation (5.1.2) with the boundary conditions 

v(0) = a, V(1) = p. (5.1.9) 

In this case we choose a trial value s for v’(0) and solve the initial value problem 

V ” = 3v + 1ov3 + 22, v(0) = a, v’(0) = s (5.1.10) 

up to 2 = 1. If the value of v at x = 1 is not sufficiently close to /3, we adjust 
s and try again. 

A key concern in the use of the shooting method is the adjustment of the 
parameter before the next shoot. We can address this question by recognizing 
that finding t,hc right value of R is equivalent, to finding a root of II nonlinear 
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function. To see why this is so, consider (5.1.10). Let w(z; s) be the solution 
of the initial-value problem with w’(0) = s and define 

f(s) = v(1; 5) - p. 

Then in the shooting method we need to find a value of s for which f(s) = 0. 
We can, in principle, use any number of numerical methods for finding solutions 
of equations; some of these methods will be discussed in the following section. 

Systems of Equations 

The shooting method can also be applied to two-point boundary-value 
problems for general first-order systems. Consider the system 

u’ = R(u, t), o<t<1, (5.1.11) 

where u(t) is the n -vector with components ui(t), i = 1,. . . , n. Assume that m 
of the functions ~1, . . . , un are prescribed at t = 1 and that n-m are prescribed 
at t = 0 so that we have the correct number, n, of boundary conditions. We 
will denote the set of functions prescribed at t = 0 by Uc and those prescribed 
at t = 1 by Vi. Note that these sets may overlap; for example, ~1 may be given 
at both t = 0 and t = 1, but us may not be given at either end point. To apply 
the shooting method, we select initial values sr, . . . , s, for the m functions not 
prescribed at t = 0 and solve numerically the initial-value problem 

u' = R(u,t), u(0) given by boundary conditions or {sr , . . . , s,}. 

Next, we compare the values of those ui E Ui with the integrated values ~(1; s), 
where s = (~1,. . . , s,). To solve the boundary-value problem the initial values 
si must be such that 

~i(l; s) = given value, ui E Ul. 

This is a system of m nonlinear equations in the m unknowns ~1,. . . , s,. We 
will consider methods for the solution of systems of nonlinear equations in 
Section 5.3. 

Instability 

Although the shooting method is simple in concept, it can suffer from in- 
stabilities in the initial-value problems. Instabilities of this type were discussed 
in Chapter 2, and we give here another simple example similar to the one in 
Section 2.5. Consider the problem 

IL1 - 1oou = 0, (5.1.12) 
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with the boundary conditions 

u(0) = 1, U(1) = 0. (5.1.13) 

It is easy to verify that the exact solution of this boundary-value problem is 

u(t) = 
1 -1ot _ 

(?-2o 

1 - e-20e 1 -e-20 
$Ot 

’ 

Now we attempt to obtain the solution by the shooting method using 

u’(0) = s. (5.1.15) 

The exact solution of the corresponding initial-value problem is 

10 - s 
u(t;s) = Te 

-lot 10 + s lot 
+Fe , (5.1.16) 

and we see that the value ~(1; s) at the end point t = 1 is very sensitive to s. 
The value of s that will give the exact solution (5.1.14) of the boundary-value 
problem is 

Solution with s = -9.99 

Exact Solution I 

Figure 5.1: Solutions of Exact and Nearby Problems 

If we solve the initial-value problem with the value of s correct to two 
decimal places, say s = -9.99, the solution of the initial-value problem is 
shown in Figure 5.1. The difficulty, of course, is that the solution of the initial- 
value problem grows like erot , and to suppress this fast-growing component, it 
is necessary to obtain a very accurate value of the initial condition. Even then, 
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rounding and discretization error in the solution of the initial value problem 
will tend to cancel out this accuracy in s. 

Supplementary Discussion and References: 5.1 
The shooting method for two-point boundary-value problems is described 

in many books on numerical analysis. A particularly detailed treatment is 
given in Roberts and Shipman [1972]. See also Ascher et al. [1988]. 

Another approach to solving two-point boundary-value problems by means 
of initial-value problems is the method of invariant embedding. Here, how- 
ever, the initial-value problems are for partial differential equations, rather 
khan ordinary differential equations. For a thorough discussion of invariant 
embedding, see Meyer [1973]. 

EXERCISES 5.1 

5.1.1. Solve the two-point boundary-value problem y” + y’ + y = -(z” + x + l), 
y(0) = y(1) = 0, by the shooting method using one of the methods of Chapter 2 
for initial-value problems. Check your numerical results by finding the exact 
analytical solution to this problem. (Hint: For the analytical solution, try the 
method of undetermined coefficients for a quadratic polynomial.) 

5.1.2. Solve the projectile boundary-value problem (5.1.4),(5.1.5),(5.1.7) numeri- 
cally using one of the methods of Chapter 2 for initial-value problems. 

5.1.3. Attempt to solve problem (5.1.12),(5.1.13) using the same method you used 
for Exercise 5.1.2. Compare your best result with the exact solution given 
by (5.1.16) and discuss the discrepancies. Also discuss any difficulties you 
encountered in obtaining your numerical solution. 

5.2 Solution of a Single Nonlinear Equation 

In the last section, we saw that the shooting method with one free parameter 
can be viewed as a problem of finding a solution of a nonlinear equation 

f(x) = 0. (5.2.1) 

We also saw in Chapter 2 that the use of implicit methods required solving 
a nonlinear equation. Many other areas in scientific computing lead to the 
problem of finding roots of equations, or, more generally, solutions of a system 
of nonlinear equations, which we will discuss in the next section. In the present 
section we restrict our attention to functions of a single variable. 

An important special case of (5.2.1) occurs when f is a polynomial: 

!(:I:) = fL,,X” + . . . + ff., :I: + I&,). (5.2.2) 
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In this case we know from the fundamental theorem of algebra that f has 
exactly n real or complex roots if we count multiplicities of the roots. For 
a general function f it is usually difficult to ascertain how many solutions 
equation (5.2.1) has: there may be none, one, finitely many, or infinitely many. 
A simple condition that ensures that there is at most one solution in a given 
interval (a,b) is that 

f’(x) > 0 for all 2 E (a, b) (5.2.3) 

(or f’(s) < 0 in the interval), although this does not guarantee that a root 
exists in the interval. (The proof of these statements is left to Exercises 5.2.1 
and 5.2.2.) If, however, f is continuous, and 

f(a) < 0, f(b) > 0, (5.2.4) 

then it is intuitively clear (and rigorously proved by a famous theorem of the 
calculus) that f must have at least one root in the interval (a, b). 

The Bisection Method 

Let us now assume that (5.2.4) holds and, for simplicity, that there is just 
one root in the interval (a, b). We do not necessarily assume that (5.2.3) holds; 
the situation might be as shown in Figure 5.2. One of the simplest ways of 
approximating a root of f in this situation is the bisection method, which we 
now describe. 

* 
a 

a 
b 

Figure 5.2: The Bisection Method 

Let xi = $(a + b) be the midpoint of the interval (a, b) and evaluate f (xl). 
If f(x1) > 0, then the root, x*, must lie between a and xi; if f(x1) < 0, which 
is the situation shown in Figure 5.2, then x* is between xi and b. We now 
continue this process, always keeping the interval in which x* is known to lie 
and evaluating f at its midpoint to obtain the next interval. For the function 
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shown in Figure 5.2, the steps would be as follows: 

f(x1) < 0. Hence, x* E (xl,b). Set 22 = 4(x1 + b). 

f(x2) > 0. Hence, x* E (x1, x2). Set x3 = +(x1 + x2). 

f(x3) < 0. Hence, x* E (x3, x2). Set x4 = 4(x2 + x3). 

f(x4) < 0. Hence, x* E (~4, ~2). Set x5 = i(x2 + ~4). 

Clearly, each step of the bisection procedure reduces the length of the 
interval known to contain x* by a factor of 2. Therefore after m steps the 
length of the interval will be (b - a)2-m, and this provides a bound on the 
error in our current approximation to the root; that is, 

(5.2.5) 

This bound has been obtained under the tacit assumption that the function 
values f(xi) are computed exactly. Of course, on a computer this will not be 
the case because of the rounding error (and possibly also discretization error 
- recall that the evaluation of the function f for the shooting method requires 
the solution of an initial-value problem). However, the bisection method does 
not use the value of f(xi) but only the sign of f(zi); therefore the bisection 
method is impervious to errors in evaluating the function f as long as the 
sign of f(xi) is evaluated correctly. One might think that the round-off error 
could not be so severe as to change the sign of the function, but this is not the 
case when the function values become sufficiently small. If the sign of f(xi) is 
incorrect, a wrong decision will be made in choosing the next subinterval, and 
the error bound (5.2.5) does not necessarily hold. 

It is clear that if one makes a maximum error of E in evaluating f at any 
point in the interval (a,b), then the sign of f will be correctly evaluated as 
long as 

If(x)I > PI* 

Since the function f will be close to zero near the root x*, we can also argue 
the converse: there will be an interval of uncertainty, say, (X*-E, x*+E), about 
the root in which the sign off may not be correctly evaluated (see Figure 5.3). 
When our approximations reach this interval, their further progress toward 
the root is at best problematical. Unfortunately, it is extremely difficult to 
determine this interval in advance. It depends on the unknown root x*, the 
“flatness” off in the neighborhood of the root, and the magnitude of the errors 
made in evaluating f. On the other hand, the interval is usually detectable 
(luring the course of the computation by an erratic behavior of the iterates; 
whorl thix o(:(:I~~N, t,hc:rcl in no longer any pointj in continuing the computation. 
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The fact that the sign of the function f may not be evaluated correctly near 
the root affects not only the bisection method but also the other methods we 
shall discuss later in the section. 

E- 
/ 

? ? 
x*-E ’ x* * x* + E 

Figure 5.3: The Interval of Uncertainty 

The Secant Method 

One drawback of the bisection method is that it may be rather slow. To 
reduce the initial interval by a large factor, say 106, which may correspond to 
about six-decimal-digit accuracy, we would expect to require, from the error 
bound (5.2.5), 

6 m=-&zO 
l%lcJ 

evaluations of f. When each evaluation is expensive, as in the case of the 
shooting method, we would like to keep the number of evaluations as small as 
possible. 

One possible way to speed up the bisection method is to use the values 
of the function f (instead of only its signs), and the simplest way to utilize 
this information is to choose the next point zi+i as the zero of the linear 
function that interpolates f at xi-1 and xi. This is shown in Figure 5.4. In 
the somewhat favorable situation shown in the figure, it is clear that xi+1 is a 
considerably better approximation to the root than would be the midpoint of 
the interval (xi-i, xi). 

The linear interpolating function is given by (see Section 2.3, although it 
is easily checked directly) 

z(x) = (Xi -x+1) lx - xi-1) f(Xi) - (R(z-21)1)f(Xi4), (5.2.6) 

and the root of this linear function is 

(5.2.7) 
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We may now proceed as in the bisection method, retaining xi+1 and either xi 
or xi-1 so that the function values at the two retained points have different 
signs. This is the regula falsi method. Alternatively, in the secant method, we 
simply carry out (5.2.7) sequentially as indicated, keeping the last two iterates 
regardless of whether their function values have different signs. 

Figure 5.4: The Secant Method 

It is better to rewrite (5.2.7) as 

di = f cxi) - f (xi-l) 

’ xi -xi-1 
(5.2.8) 

which is easily verified as mathematically identical to (5.2.7). This form is 
preferable to (5.2.7) for computation since there is less cancellation. 

Newton’s Method 

We can consider the quantity di in (5.2.8) to be a difference approximation 
to f’(xi), and, thus (5.2.8) may be viewed as a “discrete form” of the iterative 
method 

f Cxi) 
Xi+1 = Xi - f’(zi). (5.2.9) 

This is known as Newton’s method and is the most famous iterative method 
for obtaining roots of equations (as well as for solving systems of nonlinear 
equations, as we shall see in the next section). Geometrically, Newton’s method 
can be interpreted as approximating the function f by the linear function 

k(X) = f(xi) + (X - Xi)f'(Xi), 

which is tangent to f at xi, and then taking the next iterate xi+1 to be the 
zero of ii(x); this is H~OWI~ in Figure 5.5. 



154 CHAPTER 5 LIFE IS REALLY NONLINEAR 

Figure 5.5: Newtons’s Method 

Iteration Functions and Convergence 

The Newton iteration (5.2.9) can be written in the form 

a+1 = L7(%), (5.2.10) 

where 
f(x) g(x) = x - f’(z)’ (5.2.11) 

Many other iterative methods may also be written in the general form (5.2.10) 
for some iteration function g. For example, a very simple method is given by 
defining g to be 

g(x) = x - d(x) (5.2.12) 

for some scalar Q. This is sometimes called the chord method and is illustrated 
in Figure 5.6. 

Iterative methods of the form (5.2.10) are called one-step methods since 
xi+1 depends only on the previous iterate xi. On the other hand, the secant 
method (5.2.8) depends on both xi and xi-1 and is an example of a multistep 
method. (Note the analogy with one-step and multistep methods for initial- 
value problems.) 

To be useful the iteration function g must have the property 

x* = 9(x*) (5.2.13) 

for a root x* of f. This is clearly the case for (5.2.11) and (5.2.12). (This is 
true for (5.2.11) even when f’(x*) = 0, although in this case we must define 
g(x*) as the limit as x + x*; see Exercise 5.2.3.) A value of x* that satisfies 
(5.2.13) is called a fixed point of the function g. Assuming that the function g 
has a fixed point x*, an important question is the convergence of the iterates 
xi to x*. 
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Figure 5.6: The Chord Method 

We now discuss a basic property that ensures convergence of the iterates 
(5.2.10), at least when the starting iterate is sufficiently close to x*. We assume 
that g is continuously differentiable in a neighborhood of x*, that (5.2.13) 
holds, and that 

Id(x)1 5 Y < 1, if /x-x*1 <p. (5.2.14) 

By the mean-value theorem of the calculus, we can write 

g(x) - dx*) = g’(W - x*)7 (5.2.15) 

where [ is between x and x*. Therefore if lx - x*1 5 p, then we can apply 
(5.2.14) to conclude that 

b(x) - !dx*)I 5 YlX - 4, if )x-x*( <P. (5.2.16) 

Suppose now that 1x0 - x*1 5 p. Then, using (5.2.10) and (5.2.13), we see 
from (5.2.16) that 

(Xl -x*1 = 19(x0) - g(x*)I I YIZO - x*1. 

Since y < 1, this shows that x1 is closer to x* than x0. Thus, 1x1 - x*J 5 0, 
and we can do the same thing again to obtain 

1x2 - x*1 5 YlXl - x*1 5 Y21Xo - x*1, 

and, in general, 

lx, -x*1 5 ylx,-1 -x*1 I ... 5 ynlxo - x*1. (5.2.17) 

Since y < 1, this shows that x, --+ x* as n + 00 (assuming no rounding or 
ot tw oITom). 
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It will be argued that (5.2.14) is an uncheckable condition since it requires 
knowing something about g’ near x*, which is unknown. Surprisingly, however, 
we can obtain valuable information from the preceding analysis even without 
knowing x*. As a first illustration of this we consider an analysis of the second- 
order Adams-Moulton formula described in Section 2.4 for the solution of the 
ordinary differential equation y’ = f(y), where, for simplicity, we have dropped 
the dependence of f on x. The implicit formula is then given in (2.4.12) as 

?h+l = Yk + ;[fbk+l) + .fk]* (5.2.18) 

This is a nonlinear equation for yk+l, although it was used in Section 2.4 only 
as a “corrector formula”; that is, a predicted value y&)i was computed by an 
explicit method and then used in (5.2.18) to obtain a new estimate of yk+l by 

?& = Yk + $%&) + .fkh (5.2.19) 

Now we can correct this value again by using it in place of y,$)i in (5.2.19). If 
we do this repeatedly, we obtain the sequence defined by 

yf$ 
= Yk + h[.f(?/‘“’ ) + fk], 

2 k+l i = O,l,. . . . (5.2.20) 

Clearly, (5.2.20) is just the iteration process yf:;’ = g(yt$i), where 

g(Y) = Yk + ;[f (Y) + fkl. 

If yk+l is the exact solution of (5.2.18), we can apply the previous analysis 
to conclude that the sequence of (5.2.20) will converge to &+r provided that 
y& (the predicted value) is sufficiently close to yk+l and that 

IS’(Y)1 = 1 p(Y)1 < 1 

in a neighborhood of &+I; this will hold if h is sufficiently small. 
As another illustration of the use of the convergence analysis, we consider 

Newton’s method. Assume that f/(x*) # 0 and that f is twice continuously 
differentiable in a neighborhood of x*. Thus, by continuity, f’(x) # 0 in some 
neighborhood of x*, and we can differentiate the Newton iteration function 
(5.2.11) to obtain 

g’(x) = 1 _ V’(412 - f(xU”(~) = f(x)f”(X) 
Lf ‘(x)12 Lf’(~,l” 
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Hence g/(x*) = 0, since f(z*) = 0. Therefore, by continuity, (5.2.14) must hold 
in a neighborhood of x*, and we conclude that the Newton iterates converge if 
~0 is sufficiently close to x*. This shows that, under rather mild assumptions, 
the Newton iterates must converge to a root provided that xc (or any iterate 
zk) is sufficiently close to x”. Although this type of convergence theorem, 
known as a local convergence theorem, does not help one decide if the iterates 
will converge from a given x0, it gives an important intrinsic property of the 
iterative method. 

When an iterate is not sufficiently close to a solution, various types of “bad” 
behavior can occur with Newton’s method, as shown in Figure 5.7. Figure 
5.7(a) illustrates that if f’(xi) = 0, the next Newton iterate is not defined and 
the tangent line to f at xi is horizontal. Figure 5.7(b) indicates the possibility 
of “cycling,” in which zi+z = xi, and this cycle then repeats (see Exercise 
5.2.5); thus there is no convergence but no divergence either. Cycles of order 
higher than 2 are also possible. Figure 5.7.(c) shows divergence to infinity, as 
would be the case if xi is outside the domain of convergence to the solution of 
interest and the function behaves like, for example, e-” as z + 00. 

(a) f’(xi) = 0 (b) Oscillation (c) Divergence 

Figure 5.7: Possible “Bad” Behavior of Newton’s Method 

Convexity 

In contrast to the above instances of bad behavior, there are situations 
in which Newton’s method will converge for any starting approximation, no 
matter how far from the solution. In this case we speak of global convergence. 
Perhaps the simplest functions for which global convergence is obtained are 
those that are convex. A function is convexif it satisfies any one of the following 
equivalent properties, depending upon the differentiability of the function: 

f”(X) 2 0, for all x, (5.2.21a) 

f’(Y) 2 f’(x), ifyzx, (5.2.21b) 

f(ax + (1 - fY)l/) I crf(2) + (1 - fti).j(?/), (5.2.21~:) 
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where (5.2.21~) holds for any a E (0,l) and all z,y. 
A linear function f(x) = ax + b is always convex, as is easily checked by any 

of the definitions of (5.2.21). However, we are mostly interested in functions 
that actually “bend upwards,” as illustrated in Figure 5.8. Such functions 
are strictly convex and satisfy (5.2.21b,c) with strict inequality whenever x # 
y. Strict inequality in (5.2.21a) is also sufficient for strict convexity, but not 
necessary; the function f(x) = x4 is strictly convex although f”(0) = 0. 

Figure 5.8: Convergence of Newton’s Method for a Convex Function 

A convex function may have infinitely many roots (f(x) - 0) and even 
a strictly convex function may have no roots (for example, f(x) = emz). In 
the sequel, we will assume that f is strictly convex, f’(x) > 0 for all x, and 
f(x) = 0 has a solution; as noted previously, the condition on f’ ensures that 
the solution is unique. These assumptions are illustrated by the function in 
Figure 5.8. In this case if x0 is to the right of the solution, the Newton iterates 
converge monotonically to the solution, as is intuitively clear by drawing the 
tangent lines to the curve (see also Exercise 5.2.10). If xc is to the left of the 
solution, as shown in Figure 5.8, then the next Newton iterate is to the right of 
the solution, and thereafter the Newton iterates again converge monotonically 
to the solution. Figure 5.8 shows a function for which f’(x) > 0. If f’(x) < 0, 
the corresponding situation holds, but monotone convergence is now from left 
to right (Exercise 5.2.11). Similar convergence statements can be made if f is 
concave, that is, if -f is convex. 

The above discussion assumes that the properties of f hold for all x, in 
which case we obtain global convergence. They may, however, hold only in a 
neighborhood of a solution, and this will again ensure monotone convergence 
of the Newton iterates for suitable starting approximations x0. For example, 
in Figure 5.7(c) there will be an interval [x*, h] for which the Newtor~ it,wltt,t:n 
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will converge monotonically to x* if x0 E [x*, b]. See also Exercises 5.2.5 and 
5.2.6. 

Rate of Convergence 

From the standpoint of economical computation, the rate at which iterates 
converge to a root is almost as important as whether they converge at all. 
Suppose, in analogy to the estimate (5.2.17), that the errors behave as 

1x* - xi+11 = yix* -xii, 

where y is very close to 1, say y = 0.999. Then, reducing the error in a 
given iterate by a factor of 10 would require well over two thousand iterations. 
Clearly, we wish the y in the estimate (5.2.17) to be as small as possible, 
and from the derivation of (5.2.16) we see that it can be no smaller than 
[g’(x*)[. If g’(x*) # 0, then the rate of convergence is said to be linear or 
geometric, and lg’(x*)l is the asymptotic convergence factor. Recall, however, 
that for Newton’s method we showed that g’(x*) = 0 under the assumption 
that f’(x*) # 0. This does not imply, of course, that the iterates converge in 
one step, but it signals that the rate of convergence is faster than linear. In 
particular, it can be shown (see Exercise 5.2.4) that close to the solution the 
errors in Newton’s method satisfy 

1x* - xi+11 < c1x* - x#, (5.2.22) 

where c depends on the ratio of f” to f’ near x*. The relation (5.2.22) defines 
quadratic convergence; the iterates converge very rapidly once they begin to 
get close to a root. For example, suppose c = 1 and lx* - xi1 - 10m3. Then 
1x* - xi+11 - 10-6, so that the number of correct decimal places has been 
doubled in one iteration. It is this property of quadratic convergence that 
makes Newton’s method of central importance. Quadratic convergence is lost, 
however, when f’(x*) = 0, so that x* is a multiple root (see Exercise 5.2.12). 

As an illustration of quadratic convergence in Newton’s method, consider 
the problem of finding the zeros of f(x) = l/x+lnx-2. This function is defined 
for all positive values of x and has two zeros: one between x = 0 and x = 1 
and the other between x = 6 and x = 7, as illustrated in Figure 5.9. Table 5.1 
contains a summary of the first six iterations of Newton’s method using the 
starting value of x = 0.1. Note that once an approximation is “close enough” 
(in this case, after three iterations), the number of correct digits doubles in 
each iteration, which shows the quadratic convergence. 

Rounding Error 

So far the (Iiscussion of Newton’s method has been predicated upon exact 
(:o~~l~)rlt.i~tiorl of tJl(! it,(*rat,(:s, but, rounding or other errors will inevitably cause 
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Figure 5.9: The Function f(z) = l/x + lnx - 2 

Table 5.1: Convergence of Newton’s Method for f(x) = l/x + lnx - 2 

Number of 
Iteration xi-1 f (G-1) Xi Correct Digits 

1 0.1 5.6974149 0.16330461 0 
2 0.16330461 2.3113878 0.23697659 0 
3 0.23697659 0.7800322 0.29438633 1 
4 0.29438633 0.1740346 0.31576121 2 
5 0.31576121 0.0141811 0.31782764 4 
6 0.31782764 0.0001134 0.31784443 8 

the iterates to be computed inaccurately. For example, if &i and &: are the 
errors made in computing f (xi) and f’(xi), respectively, then the computed 
next iterate &+I is 

ii+1 = xiaf (xi) + 48(f’(xd + 4, 

where the circled operations indicate that rounding errors are also made in 
the subtraction and division. A full analysis of the effects of these errors is 
difficult, if even possible, and we content ourselves with the following remarks. 
If the errors pi and E: are small, we can expect the computed iterates to behave 
roughly as the exact iterates would, at least as long as we are not close to the 
root. However, when f(xi) becomes so small that it is comparable in size 
to pi, then the computed iterates no longer behave like the exact ones. In 
particular, we saw in the case of the bisection method that when the sign 
of f can no longer be evaluated correctly, the method breaks dowu iu the 
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sense that a wrong decision may be made as to which interval the root is in. 
An analogous thing happens with Newton’s method: if the sign of f(~) is 
evaluated incorrectly, but that of f’(zi) correctly (a reasonable assumption if 
f/(x*) is not particularly small), then the computed value of f(zi)/f’(zi) has 
the wrong sign, and the computed next iterate moves in the wrong direction. 

As with the bisection method, the notion of an interval of uncertainty about 
the root x* applies equally well to Newton’s method (as well as to essentially 
all iterative methods). 

Ill-conditioning 

In Chapter 4 we discussed ill-conditioning of a solution of a system of linear 
equations; an analogous problem can occur with roots of nonlinear equations. 
The simplest example of this is given by the trivial polynomial equation 

xn = 0, 

which has an n-fold root equal to zero, and the polynomial equation 

xn = & > E > 0, 

whose n roots are ~~1~ times the nth roots of unity and therefore all have 
absolute value of ~~1~. If, for example, n = 10 and E = 10-l’, the roots of the 
second polynomial have absolute value 10-l; thus, a change of 10-l’ in one 
coefficient (the constant term) of the original polynomial has caused changes 
log times as great in the roots. 

This simple example is a special case of the general observation that if a 
root x* of a polynomial f is of multiplicity m, then small changes of order E 
in the coefficients of f may cause a change of order ~‘1~ in x*; an analogous 
result holds for functions other than polynomials by expanding in a Taylor 
series about x*. 

Figure 5.10: A Large Change in x* Due to a Small Change in f 

A necessary condition for a multiple root at x* is that f’(z*) = 0. If 

f/(x*) # 0 but f’( x is small in the neighborhood of x*, then small changes in ) 
f can still cause large changes in x*, as Figure 5.10 illustrates. Perhaps the 
most famous example of how ill-conditioned nonmultiple roots can be is given 
by the f$lowing. Let f be the polynomial of degree 20 with roots 1,. . . ,20, 
and let f be the same polynomial but with the coefficicnt~ of x1’ changed by 
2T2” k 10e7. Then the roots of f^ t,o one dc!c:imal plncc! arc given by 



162 CHAPTER 5 LIFE IS REALLY NONLINEAR 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.9 

10.1 f 0.6i 11.8 f 1.7i 14.0 f 2.5i 16.7 f 2.8i 19.5 f 1.9i 20.8 

Since the coefficient of xl9 in f(x) is 210, we see that a change of about 10m7% 
in this one coefficient has caused such large changes in the roots that some 
have even become complex! 

The Shooting Method 

We end this section with a discussion of the shooting method introduced 
in Section 5.1. Consider the boundary value problem 

J’(x) = dx, 4x)), v(0) = a, w(1) = p. (5.2.23) 

The equation (5.1.2) is a special case of (5.2.23) in which g(x, w) = x2 + 3v + 
10~~. To apply the shooting method we solve the initial value problem 

v”(X) = g(x, v(x)), w(0) = a, w’(0) = s, (5.2.24) 

and denote the solution by v(x;s). Then, as in Section 5.1, we define the 
function 

f(s) = 41; 3) - P, (5.2.25) 

and we wish to solve the equation f(s) = 0. 
Consider first the bisection method, in which we only need to evaluate 

the function f. Each such evaluation requires that we solve the initial value 
problem (5.2.24) so as to obtain ~(1; 3). In general, the solution of (5.2.24) can 
be accomplished by any of the methods of Chapter 2 (after first converting the 
second order equation to a system of two first-order equations). To begin the 
bisection method we would need to find 50 and si so that f(se) and f(si) have 
different signs. This might require a little trial and error but then the bisection 
method proceeds systematically. Note that, in general, the computed f(s) will 
be inaccurate because of both discretization error in solving the initial value 
problem as well as rounding error, and the bisection method will break down 
when the sign of f can no longer be evaluated correctly. 

For this type of problem the evaluation of f(s) can be time consuming 
since it requires the solution of the initial value problem (5.2.24). Therefore 
we would like to utilize the potentially rapid convergence of Newton’s method. 
For Newton’s method we need f’(s) and we differentiate (5.2.25) to obtain 

f’(s) = m s), (5.2.26) 

where w,(l; s) is the partial derivative of V(X; s) with respect to s and evaluated 
at x = 1. In order to obtain a way of computing w,(l; s), we differentiate 

‘lJ”(X; .9) = g(X, ‘7/(X; .9)) 
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with respect to s to obtain 

(5.2.27) 

where gV(z, V) is the partial derivative of g(z, V) with respect to v. Assuming 
that differentiation with respect to s and x can be interchanged on the left 
side of (5.2.27), we then have 

vyc? s) = gv(x, 4x7 s))vs(x; s), (5.2.28) 

which is called the adjoint equation for v,. In (5.2.28) we are assuming that s is 
held fixed so that this is a differential equation for v,(z; s) considered only as a 
function of x. The initial conditions for (5.2.28) are obtained by differentiating 
those of (5.2.24) with respect to s; thus 

T&(0; s) = 0, vL(O; s) = 1. (5.2.29) 

If we knew the exact solution v(x; s) of (5.2.24), we could put this into gV in 
(5.2.28) to obtain a known function of 2, and then (5.2.28), (5.2.29) would be a 
linear initial-value problem for v,(z; s). Upon solving this initial value problem 
we obtain f’(s) = v,(l; s). Of course, we do not know the exact solution of 
(5.2.24), but we solve this initial-value problem approximately to obtain values 
vi - v(xi; s) at the grid points xi. We can then use these approximate values to 
evaluate gV in (5.2.28) and in this way we can obtain an approximate solution 
to (5.2.28) at the same time we obtain the approximate solution to (5.2.24). 
Thus we will be able to carry out Newton’s method, at least approximately, 
for f(s) = 0. We could also approximate Newton’s method by the secant or 
regula falsi methods in which only values of f(s) are required. 

We should caution, however, that the shooting method is not always viable, 
as discussed in Section 5.1, and the finite difference method to be discussed in 
Section 5.3 may be preferable for two-point boundary value problems. 

Supplementary Discussion and References: 5.2 
For a thorough treatment of the theory of iterative methods for roots of 

equations, see Traub [1964], and for an excellent discussion of rounding error, 
see Wilkinson ([1963], [1965]). In particular, the example of the ill-conditioned 
polynomial of degree 20 is due to Wilkinson. 

For roots of polynomials there are a number of specialized methods, such 
as Bairstow’s method for polynomials with real coefficients but complex roots, 
and Laguerre’s method, which has the property of cubic convergence (that 
is, an error estimate of the form (5.2.22) holds with 12’ - xii3 on the right- 
hand side). Also, roots of polynomials are eigenvalues of the corresponding 
c:ompaniori matrix and can be obtained in principle by the: rrif~thods of Chapter 
7. 
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When to stop the iteration is a problem for which there is still no definitive 
solution. The usual simplest tests are If( < E or Izi+l - zil < E, where E is 
some given tolerance. The first can be misleading when the function f is very 
“flat” near the root, as is the case of a multiple root, and the second can fail 
in a variety of situations depending on the iterative method. For example, for 
Newton’s method it can fail when the derivative is very large at the current 
iterate. These two possibilities are depicted in the following figure: 

xi+l 

EXERCISES 5.2 

5.2.1. If f is a continuously differentiable function, use the mean-value theorem (see 
Appendix 1) to show that if (5.2.3) holds then f has at most one root in the 
interval (a, b). 

5.2.2. Let f(z) = e”. Show that f’(z) > 0 for all 2 but f does not have any finite 
roots. 

5.2.3. Let f be twice continuously differentiable and suppose that f’(z*) = 0 at a 
root x* off but f’(x) # 0 in a neighborhood of x*. Show that the limit of the 
iteration function g of (5.2.11) exists and equals x* as z + x*. 

5.2.4. Let f be twice continuously differentiable and suppose that f’(x*) # 0 at a 
root x* off. Show that the error relation (5.2.22) holds for Newton’s method 
in some interval about x*. Hint: Expand 0 = f(z*) = f(x) + f/(x)(x* - z) + 
if”(E)(x* - x)~, solve this for x*, and then use (5.2.9). 

5.2.5. Consider the function f(x) = x - x3 with roots at 0 and fl. 

a. Show that Newton’s method is locally convergent to each of the three roots. 

b. Carry out several steps of Newton’s method starting with the initial ap- 
proximation x0 = 2. Discuss the rate of convergence that you observe in 
your computed iterates. 

c. Carry out several steps of both the bisection and secant methods starting 
with the interval (i, 2). Compare the rate of convergence of the iterates 
from these methods with that of the Newton iterates. 
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d. Determine the set of points S for which the Newton iterates will converge 
(in the absence of rounding errors) to the root 1 for any starting approx- 
imation ze in 5’. Do the same for the roots 0 and -1. 

5.2.6. Consider the equation x - 2 sin x = 0. 

a. Show graphically that this equation has precisely three roots: 0, and one 
in each of the intervals (7r/2,2) and (-2, -r/2). 

b. Show that the iterates xi+1 = 2sinxi, i = 0, 1, . . . , converge to the root in 
(r/2,2) for any x0 in this interval. 

c. Apply the Newton iteration to this equation and ascertain for what starting 
values the iterates will converge to the root in (7r/2,2). Compare the rate 
of convergence of the Newton iterates with those of part b. 

5.2.7. Let n be a positive integer and cz a positive number. Show that Newton’s 
method for the equation P - (Y = 0 is 

a 

n-l’ 1 k = 0, 1, . . . , 
xk 

and that this Newton sequence converges for any xc > 0. Discuss the case 
n = 2. 

5.2.8. Ascertain whether the following statements are true or false and prove your 
assertions: 

a. Let {zk} be a sequence of Newton iterates for a continuously differentiable 
function f. I f  for some i, If( 5 0.01 and Ixi+l = x21 < 0.01, then xi+1 
is within 0.01 of a root of f(x) = 0. 

b. The Newton iterates converge to the unique solution of x2 - 2x + 1 = 0 for 
any x0 # 1. (Ignore rounding error.) 

5.2.9. Consider the equation 2’ - 2x + 2 = 0. What is the behavior of the Newton 
iterates for various real starting values? 

5.2.10. Show that the Newton iterates converge to the unique solution of ezz +3x + 
2 = 0 for any starting value x0. 

5.2.11. Assume that f  is differentiable, convex, and f’(x) < 0 for all x. I f  f(x) = 0 
has a solution x*, show that x* is unique and that the Newton iterates converge 
monotonically upward to x* if x0 < x*. What happens if x0 > x*? 

5.2.12. Show that the Newton iterates for f(x) E xp converge to the solution x* = 0 
only linearly with an asymptotic convergence factor of (p - 1)/p. 

5.2.13. Newton’s method can be used for determining the reciprocal of numbers 
when division is not available. 
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a. Show how Newton’s method can be applied to the equation 

f(x) = ; - a, 

without using division. 

b. Give an equation for the error term, ek = Xk - a-‘, and show that the 
convergence is quadratic. 

c. Give conditions on the initial approximation so that zk + a-l as k + co. If 
0 < a < 1, give a numerical value of 20 which will guarantee convergence. 

5.3 Systems of Nonlinear Equations 

We mentioned in Section 5.1 that the shooting method applied to a system 
of ordinary differential equations can lead to the problem of solving a system 
of nonlinear algebraic equations in order to supply the missing initial condi- 
tions. As we shall see later, the application of the finite difference method to 
nonlinear boundary-value problems also leads to nonlinear systems of equa- 
tions. Therefore we consider in this section how the methods discussed in the 
previous section for a single equation can be extended to systems of equations. 

The problem is to obtain an approximate solution to the system of equa- 
tions 

fi(Xl, x2, . . ..xm) =o, i = 1,. . . (71, (5.3.1) 

where.f~,h...,f, are given functions of the n variables xi, . . . , xn. We shall 
usually use vector notation and write (5.3.1) as 

F(x) = 0, (5.3.2) 

where, as usual, x is the vector with components xl,. . . ,x,, and F is the 
vector function with components fl, . . . , fn. The special case of solving (5.3.1) 
when n = 1 is just the problem of finding roots of a single equation that was 
considered in the previous section. On the other hand, the special case in 
which 

F(x) E Ax - b, 

where A is a given matrix and b a given vector, is that of solving a system of 
linear equations, which was treated in Chapter 4. 

The problem of ascertaining when (5.3.2) has solutions, and how many, is 
generally very difficult. In the relatively simple case n = 2, it is easy to see the 
various possibilities geometrically, at least in principle. For example, if we plot 
in the x1, 22 plane the set of points for which fl(x1, x2) = 0, and then the set of 
points for which fz(z1, x2) = 0, the intersection of these sets is precisely the set 
of solutions of (5.3.2). (H ere, and henceforth, we are restricting our attentiorl 
to only real solutions.) Figure 5.11 illustrates a few ponaibla xituat~ionn. Later 
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(a) No solutions (b) A unique solution (c) Several solutions 

Figure 5.11: Possible Solutions for n = 2 

we shall assume that (5.3.2) has a solution x* that is the one of interest to us, 
although the system may have additional solutions. 

Picard Iterations 

In many situations the system (5.3.2) has the form 

F(x) z Ax + H(x) = 0, (5.3.3) 

where A is a given nonsingular matrix and H is a given vector of nonlinear 
functions. In this case a somewhat natural (although not necessarily good) 
iterative procedure is 

xi+1 = -A-lHcxi), i = 0,l ,a” 7 (5.3.4) 

where the superscript indicates iteration number. Here, as well as later, we 
mean by (5.3.4) that at each step of the iteration the linear system of equations 

Axi+’ = -H(xi) 

is to be solved to obtain the next iterate. The iteration (5.3.4) is known as a 
Picard iteration. It may be considered a special case of the extension of the 
chord method of the previous section to n equations; this would take the form 

X i+l = xi - BF(xi), i = O,l,. . . , (5.3.5) 

for a given nonsingular matrix B. It is easy to see (Exercise 5.3.2) that (5.3.5) 
I.N~IIWH to (5.3.1) if F in of the form (5.3.3) and B = A-‘. 
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Convergence 

When will the iterations (5.3.5) or (5.3.4) converge? The situation is pre- 
cisely analogous to that in the scalar case but complicated by the need to work 
with vector-valued functions. Consider the general one-step iteration 

xi+l = G(xi), i=O,l,... , 

where G is a given iteration function; for example, for (5.3.5) 

(5.3.6) 

G(x) G x - BF(x). (5.3.7) 

We shall assume that the solution x* of F(x) = 0 satisfies x* = G(x*) and, 
conversely, that if x* = G(x*), then F(x*) = 0; it is clear that this is the case 
for (5.3.7) if B is nonsingular. 

In the previous section, the convergence theory was based on lg’(z)l < 1 
in a neighborhood of the solution. For systems of equations the corresponding 
result is the following. If 

IIG’(x)ll 5 Y < 1, for Ilx - x*ll I P, (5.3.8) 

then the iterates (5.3.6) converge if j/x0 - x*Jj 5 p (or if JJx’ - x*/J 5 ,0 for 
any k). Here, as in Section 4.4, (1 11 denotes a vector norm or the correspond- 
ing matrix norm, and G’(x) is the Jacobian matrix (see Appendix 1) of G 
evaluated at x. We shall not prove this convergence statement but only note 
that it can be rather easily proven after a proper extension of the mean-value 
theorem to n dimensions. 

If we apply the criterion (5.3.8) to the iteration (5.3.5), we obtain (see 
Exercise 5.3.4) 

III- BF’WII 5 Y < 1 for ((x - x*(( < p (5.3.9) 

and, in particular, for the iteration (5.3.4), 

(IA-‘H’(x)11 I Y < 1 for ((x - x*1( 5 p. (5.3.10) 

Intuitively, (5.3.10) says that the iteration (5.3.4) will converge provided that 
A-lH’(x) is %mall” when x is close to x*. Similarly, the iteration (5.3.5) will 
converge if BF’(x) is close to the identity, or, equivalently, if B-l is close to 
F’(x). Since x* is not known, these criteria are not meant to be used to check 
whether a given iteration will converge, but rather to give some insight as to 
what factors govern the convergence. 

Newton’s Method 

Analogously to the previous section, the size of llG’(x)ll will tend to deter- 
mine the rate of convergence, and we would like this quantity to be as small as 
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possible, at least near the solution x*. Suppose that for the iteration (5.3.5) 
we could choose B = [F’(x*)]-l; then G/(x*) = 0, and the rate of convergence 
will be rapid near the solution. Of course, this choice of B is essentially im- 
possible since x* is not known, but we can achieve this effect by the following 
Newton iteration: 

X i+l = xi - [~‘(~i)]-l~(~i), i = O,l,. . . . (5.3.11) 

Here, we are assuming, of course, that the matrices F’(xi) are nonsingular, 
and we would carry out (5.3.11) by the following steps: 

1. Solve the linear system F’(xi)yi = -F(xi). 

2. Set xi+l = xi + yi. 
(5.3.12) 

The iteration (5.3.12) can be derived as follows. We approximate the func- 
tions fi at xlc by a first-order Taylor expansion: 

fi(x) t Zi(x) = fi(x”) + f,!(x”)(x - x’), i = 1,-e a, 12. (5.3.13) 

Here, fi(x”) is the ith row of the Jacobian matrix F/(x”) and (5.3.13) can be 
written as 

F(x) A L(x) G F(x”) + F’(xk)(x - xk). 

The solution of the linear system L(x) = 0 then gives the next Newton iterate 
xlc+l. Geometrically, ii(x) = 0 is the equation of the “hyperplane” tangent to 
fi at x’, and x’+’ is the intersection of the n sets {x : Zi(x) = 0). This gen- 
eralizes to n dimensions the property of Newton’s method in a single variable 
that the next Newton iterate is the intersection of the x-axis with the tangent 
line to f  at xi. 

Clearly, the iteration (5.3.11) reduces to Newton’s method of the previous 
section if n = 1. We would hope that (5.3.11) retains the basic property of 
quadratic convergence. This is true, and we state the following result without 
proof. 

THEOREM 5.3.1 (Newton Convergence) I f  F is two times con- 
tinuously diflerentiable in a neighborhood of x*, and if F/(x*) is 
nonsingular, then the iterates (5.3.11) will converge to x* provided 
that x0 is suficiently close to x* (local convergence theorem), and 
they will have the property of quadratic convergence: 

[[Xi+1 - x*(1 < cJIxi -x*11? (5.3.14) 

As an example of Newton’s method (5.3.12), we give in Table 5.2 the first 
four iterations for the system of nonlinear equations 

:,:‘4 + 2:; - 1 = 0, :,:y - 3:2 = 0, (5.3.15) 
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Table 5.2: Convergence of Newton’s Method for (5.3.15) 

Number of 
Iteration Xl x2 Correct Digits 

0 0.5 0.5 (40 
1 0.87499999 0.62499999 OJ 
2 0.79067460 0.61805555 I,4 
3 0.78616432 0.61803399 478 
4 0.78615138 0.61803399 8.8 

using the starting values xi = 0.5 and 52 = 0.5. Note that we can observe 
the approximate quadratic convergence by the number of correct digits in the 
iterates. 

The quadratic convergence property (5.3.14) (which is lost if F’(x*) is sin- 
gular) is highly desirable and makes Newton’s method of central importance 
in the solution of nonlinear systems of equations. But there are three obstacles 
to its successful use. The first is the need to compute the Jacobian matrix at 
each step, and this requires evaluation of the n2 partial derivatives afi/axj. If 
n is large and/or the functions fi are complicated, it can be drudgery to work 
out by hand - and then convert to computer code - the expressions for these 
derivatives; this can sometimes be mitigated by the use of symbolic differentia- 
tion techniques, as discussed in Chapter 1. Another commonly used approach 
is to approximate the partial derivatives by finite differences; for example, 

g(x) G ~[f~(xl,...,xj-l,xj+h,xj+l,...,x,)-f,(x)l. (5.3.16) 

This has the advantage of requiring only the expressions for the fi, which 
are needed in any case. But the actual numerical evaluation of the Jacobian 
matrix, either by expressions for the partial derivatives or by approximations 
such as (5.3.16), can be costly in computer time. This leads to a frequently used 
modification of Newton’s method in which the Jacobian matrix is reevaluated 
only periodically rather than at each iteration. For example, the iteration 
might be: 

1. Evaluate F/(x0). 

2. Compute xi+i = xi - [F’(xO)]-lF(xi), i = O,l,. . . ,lc. 

3. Evaluate F/(x”+‘). (5.3.17) 
4. Compute xi+l = xi - [F’(x~+‘)]-~F(x~), i = k + 1,. . . ,2k. 
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The modified Newton iteration (5.3.17) can also be useful in alleviating the 
second disadvantage of Newton’s method: the need to solve a system of linear 
equations at each step. The advantage of (5.3.17) in this regard is that the 
actual implementation involves, of course, solving a number of linear systems 
(as in step 2), 

F’(x”)yi = -F(xi), i = 0, 1, . . . , Ic, 

where the coefficient matrix F’(xO) is the same. Hence, as discussed in Section 
4.2, the LU factors of F/(x0) from the Gaussian elimination process can be 
retained and used for all Ic + 1 right-hand sides. 

The third - and most troublesome - difficulty with Newton’s method is 
that the iterates may not converge from a given starting approximation x0; 
the local convergence theorem only insures convergence once x0 (or some other 
iterate) is “sufficiently close” to x*. One remedy for this difficulty is to obtain 
the best possible first approximation using any physical or other knowledge 
about the problem. However, this is not always sufficient. An approach that 
often - but certainly not always - works is the continuation method, which we 
describe briefly in the Supplementary Discussion. 

Nonlinear Boundary Value Problems 

We discuss now the extension to nonlinear two-point boundary-value prob- 
lems of the finite difference method presented in Chapter 3. We shall consider 
the equation 

Y” = g(x, w), O<zll, (5.3.18) 

with the boundary conditions 

w(0) = a, w(1) = p. (5.3.19) 

Here g is a given function of two variables, and Q and p are given constants. 
We proceed exactly as in Section 3.1. The interval [0, l] is partitioned by 

grid points 
0 = x0 < Xl < . . . < 2, < x,+1 = 1 

with spacing h. At each interior grid point xi we approximate the second 
derivative by central differences and use these approximations in (5.3.18). This 
leads to the system of equations (corresponding to (3.1.8)) 

- ‘u~+~ + 2wi - vim1 + h2g(xi, wi) = 0, i= l,...,n, (5.3.20) 

where we = a and w,+r = p are known by the boundary conditions (5.3.18). 
This is a system of n equations in the n unknowns WI, . . . , w, and is nonlinear if 
t,hc function g is nonlinear in w. A solution ?I;, . . . , w: of (5.3.19), if it exists, is 
an iLl)l)roxit~l;lt,ioII to the c:orresI)orldirlg solution II of (5.3.18) at the grid points 
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We can write the system (5.3.19) in matrix-vector form as 

F(v) E Av + H(v) = 0, (5.3.21) 

where v is the vector with components ~1,. . . , un, A is the (2, -1) tridiagonal 
matrix of (3.1.10) and 

(5.3.22) 

As an example, consider the problem 

w”(X) = 3v(z) + x2 + lO[V(kr)]“, O<zll, v(0) = w(1) = 0. (5.3.23) 

Here 
g(x, v) = 3v + x2 + lows, (5.3.24) 

and with h = l/(n + 1) and 

xi = ih, i=O,l,..., n+l, (5.3.25) 

the difference equations (5.3.20) are 

- vi+1 + 2wi - wi-1 + h2(3wa + i2h2 + 10~:) = 0, i=l,...,n, (5.3.26) 

where, from the boundary conditions, wc = w,+r = 0. Hence the ith component 
of the function H(v) of (5.3.22) is h2(3wi + i2h2 + 10~:). 

We now consider some numerical methods for the system (5.3.21). The 
Picard iteration discussed earlier is 

A++’ = -H(v”). (5.3.27) 

The time to carry out one of these iterative steps depends almost entirely 
on the complexity of H since the solution of tridiagonal linear systems is very 
rapid, as we saw in Section 3.2. Moreover, in this case the LU decomposition of 
A can be done once and for all. Whether the iteration (5.3.26) even converges, 
however, will depend upon the properties of H. 

Next consider Newton’s method for (5.3.21). The Jacobian matrix will be 
(see Exercise 5.3.8) 

F’(v) = A + H’(v). (5.3.28) 
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Since the ith component, Hi(v) = h2g(zi,vi), of H depends only on vi, we 

have that z = 0, j # i. Thus the matrix H’(v) is diagonal and F’(v) is 

tridiagonal w!th a typical row given by 

-1 2 + hzg(zi,vi) - 1. 

The Newton iteration is then 

1. Solve [A + H’(v”)]yk = -[A@ + H(vk)], 

2. Set vk+l = vk + y”, 
(5.3.29) 

so that at each iteration a tridiagonal linear system is to be solved. If the 
function g is complicated, a major portion of the work of each Newton iteration 
will be the evaluation of H(v”) and H’(v”). 

For the boundary-value problem (5.3.23) g is given by (5.3.24), so that 

gp, v) = 3 + 3ow2, 

and the ith diagonal element of the Jacobian matrix (5.3.28) is 2+h2(3+30v~). 
Since the (2, -1) tridiagonal matrix A is diagonally dominant, it is clear that 
the addition of the positive terms h2(3 + 30~:) to the diagonal only enhances 
the diagonal dominance. More generally, whenever (Exercise 5.3.11) 

&l 
-&‘V) L 0, O<a:<_l, -ca<v<cm, (5.3.30) 

and A is the (2, -1) matrix, then 

A + H’(v) is diagonally dominant, (5.3.31) 

A + H’(v) is symmetric positive-definite. (5.3.32) 

As we saw in Section 4.3, either of these properties is sufficient to ensure that 
the solution of the tridiagonal systems (5.3.29) of Newton’s method can be 
carried out by Gaussian elimination without any need for interchanging rows 
to preserve numerical stability. 

It is also true (but beyond the scope of this book to prove) that either 
of the conditions (5.3.31) or (5.3.32) ensures that the system (5.3.21) has a 
Imique solution. On the other hand, if (5.3.30) does not hold the differential 
equation (5.3.18) need not have a unique solution, and this will be reflected 
in the discrete system (5.3.21). For example, if g(z, II) = ?)4 there will be two 
solut,iorln of both (5.3.18) and (53.21). Thiri is c:xplotwi fwt,ht!r in Exercixc! 
r,.:I.l:l. 
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For the difference equations (5.3.26) we tabulate in Table 5.3 the results 
of Newton’s method at the grid points 0.1,0.2, . . . (0.9 for h = 0.1, 0.01, and 
0.001 (n = 9, 99, and 999). In all cases the initial approximation for Newton’s 
method was taken to be v” = 0, and the iteration terminated when all com- 
ponents of the Newton correction vector y” of (5.3.28) were less than 10e6 in 
magnitude . 

Table 5.3: Newton’s Method for the Difference Equations (5.3.26) 

2 h = 0.1 h = 0.01 h = 0.001 
0.1 -0.0058 -0.0058 -0.0058 
0.2 -0.0116 -0.0118 -0.0118 
0.3 -0.0174 -0.0176 -0.0176 
0.4 -0.0223 -0.0230 -0.0230 
0.5 -0.0274 -0.0276 -0.0276 
0.6 -0.0302 -0.0304 -0.0304 
0.7 -0.0303 -0.0305 -0.0305 
0.8 -0.0265 -0.0266 -0.0266 
0.9 -0.0170 -0.0171 -0.0171 

Supplementary Discussion and References: 5.3 
For a more detailed discussion and analysis of a variety of methods for 

solving systems of nonlinear equations numerically, see Ortega and Rheinboldt 
[1970] and Dennis and Schnabel [1983]. In particular, these references contain 
various discrete forms of Newton’s method where the Jacobian matrix is ap- 
proximated in some fashion. Certain of these approximations lead to natural 
generalizations of the secant method to systems of equations, and others give 
what are known as quasi-Newton methods, which are among the most promis- 
ing methods for nonlinear systems. For a review of quasi-Newton methods, see 
also Dennis and More [1977]. 

An attractive alternative to symbolic differentiation or approximation of 
the partial derivatives in the Jacobian matrix by finite differences is automatic 
diflerentiation. See Griewank [1989] for a review and Griewank [1990] for 
application to Newton’s method. 

Many systems of equations arise in the attempt to minimize (or maximize) 
a function g of 12 variables. From the calculus we know that if g is continu- 
ously differentiable, then a necessary condition for a local minimum is that the 
gradient vector vanishes: 

( a9 a9 
--,...,+- 
ax , OX,, ) 

= 0. 
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Thus by solving this system of equations, one obtains a possible local min- 
imizer of g, and in many situations it will be known that this vector must 
indeed minimize g. Alternatively, if we are given an arbitrary system of equa- 
tions fi(x) = 0, i = 1,. . . , n, we can convert the solution of this system to a 
minimization problem by defining a function 

g(x) = &f(X)12~ 
i=l 

Clearly, g takes on a minimum value of zero only when all fi(x) are zero. 
This conversion, however, is usually not recommended for obtaining a numer- 
ical solution of the system since the ill-conditioning of the problem will be 
increased. 

In many problems the equations are to be solved for various values of one 
or more parameters. Suppose there is a single parameter a! and we write the 
system of equations as 

F(x; o) = 0. (5.3.33) 

Assume that we wish solutions x:, . . ’ , x& for values cys < oi < . . . < oN, 
where cys corresponds to a trivial, or at least an easy, problem; for example, 
the equations for QIO may be linear. If x; can be computed and if ]CX~ - QO] is 
small, then we hope that x: is sufficiently close to x; so that x; is a suitable 
starting approximation for the equation F(x; (~1) = 0. Continuing in this way, 
we use each previous solution as a starting approximation for the next problem. 
This is called the continuation method. 

If the equations to be solved do not contain a parameter, we can always 
introduce one artificially. For example, let F(x) = 0 be the system and let 
x0 be our best approximation to the solution (but not good enough for the 
Newton iteration to converge). Define a new set of equations depending on a 
parameter Q by 

@(x; a) = F(x) + (QI - l)F(x’) = 0, O<(Y<l. (5.3.34) 

Then @‘(x; 0) = F(x) - F(x”) = 0, f or which x0 is a solution, and P(x; 1) = 
F(x) = 0, which are the equations to be solved. Hence, we proceed as in the 
previous paragraph for parameters 0 = QO < (~1 < . . . < (;llN = 1. 

The continuation method is closely related to Davidenko’s method. Con- 
sider (5.3.33) and assume that for each cx E [0, l] the equation defines a solution 
x(a) that is continuously differentiable in a. Then if we differentiate 

F(x(a)) + (o - l)F(x’) = 0 

with respect to o, we obtain by the chain rule 

F’(x(ck))x’(rk) + F(x”) = 0, 
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or, assuming that the Jacobian matrix F/(x(a)) is nonsingular, 

x’(a) = -[F’(x(cI))]-IF, 

with the initial condition x(0) = x ‘. The solution x(a) of this initial-value 
problem at o = 1 will, we hope, be the desired solution of the original system 
of equations F(x) = 0. In practice we will have to solve the differential equa- 
tions numerically, and we can, in principle, use any of the methods of Chapter 
2. Although Davidenko’s method and the continuation method are attractive 
possibilities, their reliability in practice has been less than desired. In particu- 
lar, it is possible that the Jacobian matrix will become singular for some x(a) 
with Q < 1, or even that the solution curve itself will blow up prematurely. For 
a review of possible ways of overcoming some of these difficulties, see Allgower 
and Georg [1990]. 

The proof that the system (5.3.21) has a unique solution under the condi- 
tions (5.3.31) or (5.3.32) can be found, for example, in Ortega and Rheinboldt 
[1970, Section 4.41. 

EXERCISES 5.3 

5.3.1. Show graphically that the system of equations XT + zz = 1, zf - x2 = 0 has 
precisely two solutions. 

5.3.2. Show that (5.3.5) reduces to (5.3.4) when F is of the form (5.3.3) and B = 
A-l. 

5.3.3. Compute the Jacobian matrix G’(x) for 

G(x) = 

5.3.4. If G(x) = x - BF(x), show that G’(x) = I - BF’(x) and conclude that 
(5.3.9) and (5.3.10) follow from (5.3.8). 

5.3.5. For the functions of Exercise 5.3.1, compute the tangent planes at x1 = 2, 
x2 = 2. 

5.3.6. Give the Newton iteration for the equations of Exercise 5.3.1. For what points 
x is the Jacobian matrix nonsingular? 

5.3.7. Write a program for Newton’s method to solve n equations in n unknowns. 
Use Gaussian elimination with partial pivoting to solve the linear equations. 

5.3.8. If F(v) = Av + H(v) for some matrix A, verify that F’(v) = A + H’(v). 
Apply this to obtaining the *Jacobian matrices used in (5.3.9) and (5.3.10). 
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5.3.9. Write out the difference equations (5.3.20) and the corresponding Jacobian 
matrices for: 

a. g(z,w)=w+w2 

b. g&w)= zw3 

5.3.10 Write out the Newton iteration (5.3.29) explicitly for the difference equations 
(5.3.20) with g given by Exercise 5.3.9. 

5.3.11. Let D be a diagonal matrix with non-negative elements. 

a. I f  A is symmetric positive definite, show that A + D is positive definite. 

b. I f  A is diagonally dominant and has positive diagonal elements, show that 
A + D is diagonally dominant. 

c. Apply parts a. and b. to show that (5.3.31) and (5.3.32) follow from 
(5.3.30). 

5.3.12. Consider the two-point boundary-value problem w” = eV+2-ez2, 0 5 z 5 1, 
w(0) = 0, w(1) = 1. 

a. Write the finite difference equations for this problem in matrix-vector form 
for h = 0.01. 

b. Discuss in detail how you would solve the system of equations in part a 
on a computer. The discussion should include a clear description of the 
method, what, if any, problems you expect the method to have, how much 
computer time you would expect the method to use, and so on. 

5.3.13. Consider the two-point boundary-value problem w” = w4, 0 5 2 5 1, w(O) = 
1, w(1) = 4. 

a. Find an approximation to a solution by a third degree polynomial obtained 
by using the data w(O), w(l), w”(O), w”(l). 

b. Obtain an approximate solution by the shooting method using both bisec- 
tion and a chord method for the resulting single nonlinear equation. 

c. Use the finite difference method and obtain a solution to the discrete system 
by the Picard method and Newton’s method. For an initial approxima- 
tion for these iterative methods, use the approximate solution of part a. 

d. As mentioned in the text, a boundary value problem need root, have a unique 
solution. Can you find a second approximate solution for this problem? 

5.3.14. Consider the initial value problem 

Y’ = f(x,Y), Y(o) = YIJ, 

and t,hc backward Euler method 

yktl = yk + hf(Zk+l,yk+,), k = o,l,.... 
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a. Discuss Newton’s method applied to the backward Euler system for yk+l. 
How might you obtain an initial approximation for Newton’s method? 

b. Describe the Picard iteration for this system, and give conditions under 
which the Picard iterates will converge. 
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