
Chapter 4 

More on Linear Systems of 
Equations 

4.1 Introduction and Least Squares Problems 

In the previous chapter we saw that two-point boundary value problems led 
to solving systems of linear equations. These linear equations were of a very 
special form: the coefficient matrix had only three non-zero diagonals. Such 
matrices are a special case of banded matrices, to be discussed in Section 4.2. 
Banded matrices in turn are special cases of full or dense matrices in which all 
elements of the matrix are non-zero. The primary purpose of this chapter is 
to discuss solution techniques for banded or full matrices. 

Most approaches to the solution of ordinary or partial differential equations 
give rise to linear systems in which the coefficient matrix is banded or very 
sparse; that is, it has few non-zero elements. How such matrices arise for partial 
differential equations will be discussed in Chapter 9. In the remainder of this 
section we will consider another important class of problems that generally 
lead to full coefficient matrices. These least square problems are not usually 
related to differential equations, although they may be. For example, given 
data on the number of predators and prey at different times, can we estimate 
the coefficients o,p,y, and 6 in the predator-prey equations (2.1.3)? Least 
squares techniques would be one approach to making such estimates. 

Least Squares Polynomials 

Recall from Section 2.3 that if 20, 21, . . . , zn are n + 1 distinct points and f 
is a given function, then there is a unique polynomial p of degree n such that 

P(G) = f(G), i = 0,. . . , n. 
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Now suppose that f itself is a polynomial of degree n and that we wish to 
determine its coefficients. Then, by the preceding interpolation result, it suf- 
fices to know f at n + 1 distinct points, provided that the determination of 
the values f(zi) can be made exactly. In many situations, however, the values 
of f can be found only by measurements and may be in error. In this case 
it is common to take many more than n + 1 measurements in the hope that 
these measurement errors will “average out.” The way in which these errors 
average out is determined by the method used to combine the measurements 
to obtain the coefficients of f. For both computational and statistical reasons, 
the method of choice is often that of least squares, and this method also enjoys 
an elegant mathematical simplicity. 

We now assume that we have m points xi, . . . , xm where m 2 n + 1 and at 
least n + 1 of the points are distinct. Let fi, . . . , fm be approximate values of 
a function f, not necessarily a polynomial, at the points xi,. . .x,. Then we 
wish to find a polynomial p(x) = ac + ala: + ~1. + onz” such that 

2 W[fi - P(XdY (4.1.1) 
i=l 

is a minimum over all polynomials of degree n. That is, we wish to find 

a07 al,. * * I a, so that the weighted sum of the squares of the “errors” fi -p(xt.i) 
is minimized. In (4.1.1) the wi are given positive constants, called weights, 
that may be used to assign greater or lesser emphasis to the terms of (4.1.1). 
For example, if the fi are measurements and we have great confidence in, say, 

A,..., fit, but rather little confidence in the rest, we might set wi = wz = 
. . . = wit = 5 and wii = ..a = w, = 1. 

The simplest case of a least squares problem is when n = 0, so that p is 
just a constant. Suppose, for example, that we have m measurements 11,. . . , 1, 
of the length of some object, where the measurements are obtained from m 
different rulers. Here the points xi, . . . , x, are all identical and, indeed, do 
not enter explicitly. If we invoke the least-squares principle, then we wish to 
minimize 

m 
g(Z) = c Wi(Zi 

i=l 

From the calculus we know that g takes on 
that satisfies g’(i) = 0 and g”(i) 2 0. Since 

g’(Z) = -2 2 Wi(Zi - Z), 

- Z)2. 

a (relative) minimum at a point i 

g”(Z) = 2 2 wi, 
i=l i=l 
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it follows that m 
5= c Wi, 

i=l 

and because this is the only solution of g’(Z) = 0 it must be the unique point 
that minimizes g. Thus if the weights wi are all 1, so that s = m, the least- 
squares approximation to 1 is just the average of the measurements 11,. 1 “, Tn. 

The next-simplest situation is if we use a linear polynomial p(z) = ae +alz. 
Problems of this type arise very frequently under the assumption that the data 
are obeying some linear relationship. In this case the function (4.1.1) is 

dao, 4 = 2 Wi(fi - a0 - wi)2, (4.1.2) 
i=l 

which we wish to minimize over the coefficients a0 and al. Again from the 
calculus, we know that a necessary condition for g to be minimized is that the 
partial derivatives of g at the minimizer must vanish: 

ai 
m 

-= 
aa0 

-2 x Wi(fi - a0 - UlXi) = 0, 
i=l 

ag -= 
aal 

-22 WiXi(fi - al-J - alxi) = 0. 
i=l 

Collecting coefficients of ao and al gives the system of two linear equations 

for the unknowns a0 and al. 
For polynomials of degree n, the function (4.1.1) that we wish to minimize 

is 

g(ao, al, * *. , f-4 = 5 ( 
wi a0 + a1xi + * * * + a,xT - fi)2. (4.1.4) 

i=l 

Proceeding as in the n = 2 case, we know from the calculus that a necessary 
condition for g to be minimized is that 

$3 ao,a1,...,%&) =o, j = 0,l.. . , n. 
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Writing these partial derivatives out explicitly gives the conditions 

2 ‘( wixi a0 + alxi + . . . + a,xl - fi) = 0, j = 0, 1, . . . , 72, 
i=l 

which is a system of n+ 1 linear equations in the n+ 1 unknowns as, al, . . . , a,; 
these equations are known as the normal equations. Collecting the coefficients 
of the aj and rewriting the equations in matrix-vector form gives the system 

where 

so 
$1 

62 

_ sn 

31 

32 

s2 *** 

.  1 .  

S, 

S2n 

= 

m 
sj = c wix;, Cj = C WiZjfi. 

i=l i=l 

CO 

Cl 

cn 

, (4.1.5) 

(4.1.6) 

Equation (4.1.3) is the special case of (4.1.5) for n = 1. Note that the matrix 
in (4.1.5) is determined by only 2n + 1 quantities se,. . . , ssn, and the “cross- 
diagonals” of the matrix are constant. Such a matrix is called a Hankel matrix 
and has many interesting properties. 

The system (4.1.5) can also be written in the form 

ETWEa = ETWf, (4.1.7) 

where W is a diagonal matrix containing the weights and 

E=-j :i 11 :!I, a=[ I], f=-F]. (4.1.8) 

The matrix E is m x (n + 1) and is of Vandermonde type; in particular, if 
m = n + 1, it is precisely the Vandermonde matrix of (2.3.11), which we 
showed was non-singular. We now extend that argument to show that the 
matrix of (4.1.7) is non-singular provided that at least n + 1 of the points xi 
are distinct. 

A symmetric matrix A is positive definite if 

xTAx > 0 for all x # 0. (4.1.9) 
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A positive definite matrix is nonsingular, since otherwise there would be an 
x # 0 so that Ax = 0 and thus (4.1.9) would be violated. 

We now show that the matrix ETWE of (4.1.7) is symmetric positive 
definite. Clearly it is symmetric since it is the matrix of (4.1.5). Let y be 
any m-vector and consider 

yTWy = g wiyp. (4.1.10) 
i=l 

Since the wi are assumed positive, yTWy > 0 and is equal to zero if and only 
if y = 0. Thus, if we set y = Ea, we conclude that 

aTETWEa > 0 for all a # 0 

provided that Ea # 0. But if Ea = 0, this implies that 

a0 + UlXi + * * * + a,21 = 0, i = 1,. . . , m. 

Recalling that we have assumed that at least n+l of the xi are distinct, the nth 
degree polynomial ac + uix +a . . +u,P would have at least n+ 1 distinct roots. 
This contradiction proves that ETWE is positive definite. Thus the system 
(4.1.7) has a unique solution, and the resulting polynomial with coefficients ui 
is the unique polynomial of degree n which minimizes (4.1.1). 

General Least Squares Problems 

We next consider more general least-squares problems in which the approx- 
imating function is not necessarily a polynomial but is a linear combination 

4(x) = f: w#Ji(X) (4.1.11) 
i=o 

of given functions $0, $1,. . . , 4,. If 4j(x) = xj, j = 0,. . . , n, then #J is the poly- 
nomial considered previously. Other common choices for the “basis functions” 
c$j are 

$j(x) = sinj7rx, j = 0,l.. . , n, 

and 
q+(x) = e”lJz, j=O,l )...I 72, 

where the crj are given real numbers. 
The general linear least squares problem is to find us,. . . , a, such that 

duo, ~1,. . . (4.1.12) 
i=l 
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is minimized, where 4 is given by (4.1.11). We can proceed exactly as before 
in obtaining the normal equations for (4.1.12). The first partial derivatives of 
g are 

Setting these equal to zero, collecting coefficients of the ai, and writing the 
resulting linear system in matrix-vector form gives the system so0 

1: 
310 

so1 Sll 

Son ... 

. . . ho a0 co al Cl N 1:: = 
. . . , 

. : 
S?Hl an CT% 

(4.1.13) 

where 

Cj = ewk4jC2k).fk- 

k=l k=l 

Note that in this case the coefficient matrix of (4.1.13) is not necessarily a 
Hankel matrix. As before, we can write (4.1.13) in the form (4.1.7) where now 

40(a) 41(n) ... 

Clearly, ETWE is again symmetric, but in order to conclude that it is positive 
definite, suitable conditions must be imposed on the functions 40,. . . , 4n as 
well as 21,. . . ,2,. 

Orthogonal Polynomials 
The normal equations are very useful for theoretical purposes or for com- 

putation purposes when n is small. But they have a tendency to become very 
ill-conditioned (see Section 4.4) for n at all large, even n 1 5. We now describe 
an alternative approach to computing the least squares polynomial by means 
of orthogonal polynomials. In what follows we assume that wi = 1, although 
the inclusion of weights presents no problem (Exercise 4.1.5). 

Let 40,41,..., qn be polynomials of degree 0, 1, . . . , n, respectively. Then 
we will say that the qi are mutually orthogonal with respect to the points 
zl,...,zm if 

eqk(zi)qj(zi)=O, k,j=O,l,..., n, k#j. 
i=l 

(4.1.14) 
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We shall return shortly to the question of how one obtains such a set of or- 
thogonal polynomials. For the moment assume that we have them and take 
f$i = qi, i = 0, 1,. . . , n, in the normal equations (4.1.13), in which the weights 
wi are all equal to 1. Then, because of (4.1.14), all elements of the coefficient 
matrix of (4.1.13) off the main diagonal are zero, and the system of equations 
reduces to 

k = 0, 1, . . . ) 71. 

Thus 

Uk = -$lk(Xi)fi, .k = 0,1)...) 72, (4.1.15) 
a=1 

where 

(4.1.16) 
i=l 

Therefore the least squares polynomial is 

k=O 

(4.1.17) 

An obvious question is whether the polynomial q of (4.1.17) is the same as 
the polynomial obtained from the normal equations (4.1.5) (with the wi = 1). 
The answer is yes, under our standard assumption that at least n + 1 of the 
points xi are distinct. This follows from the fact that - as shown earlier - there 
is a unique polynomial of degree n or less that minimizes (4.1.1). Therefore 
to show that the polynomial q of (4.1.17) is this same minimizing polynomial, 
it suffices to show that any polynomial of degree n can be written as a linear 
combination of the qi; that is, given a polynomial 

S(x) = bo + blX + * * f + bnxn, (4.1.18) 

we can find coefficients co, cl,. . . , c, so that 

C(x) = coqo(x) + Cl!Il(X) + . . . + wn(xC). (4.1.19) 

‘I’his can be done as follows. Let 

&(X) = d&O + &,1x + *. . + di,iXi, i=O,l,..., 72, 

where di,i # 0. Equating the right-hand sides of (4.1.18) and (4.1.19) gives 

ho + b1x + . . . + b,x n 

= do,0 + cl(dl,o + &,1x) + . . + cn(d,,o + . . . + d,,,x”), 
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and equating coefficients of powers of x then gives 

b, = cn&,n 
h-1 = w&p-l + cn-I&--l,n-1 

(4.1.20) 

bo = cndn,o + c,-ldn--l,o + - -a + codo,o. 

These are necessary and sufficient conditions that the polynomials of (4.1.18) 
and (4.1.19) be identical. Given bo, bl, . . . , b,, (4.1.20) is a triangular linear 
system of equations for the ci and is solvable since di,i # 0, i = 0, 1, . . . , n. 
Hence the polynomial of (4.1.17) is just another representation of the unique 
least-squares polynomial obtained by solving the normal equations (4.1.5). 

The use of orthogonal polynomials reduces the normal equations to a di- 
agonal system of equations which is trivial to solve. However, the burden is 
now shifted to the computation of the qi. There are several possible ways to 
construct orthogonal polynomials; we will describe one which is particularly 
suitable for computation. 

Let 
90(x) - 1, 91(x) = x - al, (4.1.21) 

where ~1 is to be determined so that go and q1 are orthogonal with respect to 
the xi. Thus we must have 

so that 

0 = &O(Xi)ql(Xi) = e(Xi - a1) = gxi - mal> 

i=l i=l i=l 

(4.1.22) 

Now let 
92(x) = w(x) - a241(x) - Pl, 

where ~2 and PI are to be determined so that q2 is orthogonal to both go and 
91; that is, 

e[Xiql(Xi) - a291(Xi) - P1]91Cxi) = O* 

i=l 

Noting that Cqr(xi) = 0, these relations reduce to 

2 xi91(Xi) - mP1 = 07 

i=l 

2 Xi[91(Xi)]2 - a271 = 0, 

i=l 
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where 71 is given by (4.1.16). Thus 

The computation for the remaining qi proceeds in an analogous fashion. 
Assume that we have determined go, 91, . . . , qj, and define qj+l by the three- 
term recurrence relation 

9j+1(4 = e7jw - ~j+19j(4 - Pj9j-1(4, (4.1.23) 

where oj+i and bj are to be determined from the orthogonality requirements 

2 9j+l(xi)9j(~i) = 0, 2 C?j+l(%)qj-l(zi) = 0. (4.1.24) 
i=l i=l 

If these two relations are satisfied, then qj+i must also be orthogonal to all the 
previous qk, k < j - 1, since by (4.1.23) 

m ?n m 

C qj+l(xi)qk(Zi) = C ziqj(zi)qk(zi) - aj+l C qj(zi)qk(zi) (4.1.25) 
i=l i=l i=l 

-Pj 2 9j-l(zi)4k(~i)~ 

j=l 

The last two terms in (4.1.25) are zero by assumption, whereas sqk(z) is a 
polynomial of degree k + 1 and can be expressed as a linear combination of 
90,91,..., qk+l. Hence the first term on the right-hand side of (4.1.25) is also 
zero. 

Returning to the conditions (4.1.24) and inserting qj+i from (4.1.23) leads 
to the expressions 

&j+l = $ $ xi[9j(zi)]2, 

2-l 

4 = & 2 zi9j(G)9j-1(Xi), 
3 2=1 

(4.1.26) 

for O!j+l and pj, where the y’s are given by (4.1.16). The pi, however, can be 
computed in a better way if we substitute for Xiqj-i(Zi) using (4.1.23), and 
tOlen note that 

2 9j 2% 9j 5% + QjQj-l(zi) + Pj-14j-2(zi)] = fJ[9j(zi)12 = 7j ( .)[ .( .) 
i-l i=l 
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by the orthogonality of the q’s. Thus 

p,=x, 
Yj-1 

(4.1.27) 

Note that the denominator in (4.1.27) can vanish only if qj-r(Zi) = 0, i = 
1 . . , m. But since at least n + 1 of the xi are assumed to be distinct, this 
would imply that qj-1 is identically zero, which contradicts the definition of 
qj-1. Hence ̂ /j-r # 0. 

We can summarize the orthogonal polynomial algorithm as follows: 

1. Set qo(z) = 1, 41(z) = 2 - i I%“=, 2i* 

2. Forj = 1,. . . , n-l, define qj+l by (4.1.23), where oj+l is given by (4.1.26), 
and ,L?j by (4.1.27). 

3. Compute the coefficients ac, al,. . . , a, of the least squares polynomial 
aoqo(z) + alql(z) + . . . + anqn(x) by (4.1.15). 

As mentioned previously, this approach is preferred numerically because 
it avoids the necessity of solving the (possibly) ill-conditioned system (4.1.5). 
Another advantage is that we are able to build up the least-squares polynomial 
degree by degree. For example, if we do not know what degree polynomial we 
wish to use, we might start with a first-degree polynomial, then a second- 
degree, and so on, until we obtain a fit that we believe is suitable. With the 
orthogonal polynomial algorithm the coefficients ui are independent of n, and 
as soon as we compute qj we can compute oj, and hence the least squares 
polynomial of degree j. 

A Numerical Example 

We now give a simple example, using the data 

Xl = 0 x2 = a x3 = ; x4 = 9 x5 = 1 

fl = 1 fz = 2 f3 = 1 f4 = 0 f5 = 1. 

Since there are five points xi, these data will uniquely determine a fourth- 
degree interpolating polynomial. We now compute the linear and quadratic 
least-squares polynomials by both the normal equations and the orthogonal 
polynomial approaches. 

For the normal equations for the linear polynomial, we will need the fol- 
lowing quantities: 

5 

c 
xi = $, (4.1.28) 

i=l i=l i=l i=l 
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Then the coefficients ae and al are the solutions of the system (4.1.3) (with 
the wi = 1): 

7 -4 
a0 = -, 

5 
al=-. 

5 
Thus the linear least squares polynomial is 

PI(X) = p - $2. (4.1.29) 

If we compute the same polynomial by orthogonal polynomials, the polynomial 
is given in the form . 

~ocro~~~+~l~l~~~=~o+~l~a:-~l~, (4.1.30) 

where ao and al are given by (4.1.15), and al by (4.1.22): 

a0 = 1, 
-4 

al=--, 
5 

a1 = +. 

Therefore the polynomial (4.1.30) is 1 - $(x - $), which is, as expected, the 
same as (4.1.29). 

To compute the least squares quadratic polynomial by the normal equa- 
tions, we need to solve the system (4.1.5) for n = 2, which for our data is 

The solution of this system is 

uo= 5, -4 
a1=5, u2 = 0. (4.1.31) 

Thus the best least squares polynomial approximation turns out to be the linear 
least-squares polynomial; that is, no improvement of the linear approximation 
can be made by adding a quadratic term. That (4.1.31) is correct is verified 
by computing the least squares quadratic by orthogonal polynomials. The 
orthogonal polynomial representation will be 

aoqo(x) +a1!h(x) +a2qn(x) = f - $++a,[x(x- ;, - &2(X - 3, -,&I, 

where ~2 and /31 are computed from (4.1.26) and (4.1.27) as 

‘I’tnix qz(a) = x2 - :r - f, and from (4.1.15) we find that as = 0. 
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The orthogonal polynomial approach can be extended to other basis func- 
tions that are orthogonal, such as trigonometric functions. However, for most 
basis functions the system (4.1.13) must be solved and, in general, all elements 
of this coefficient matrix will be non-zero. Hence we must solve a “full” linear 
system, which is the topic of the next two sections. 

Supplementary Discussion and References: 4.1 
An alternative approach to solving the least squares polynomial problem 

is to deal directly with the system of linear equations Ea = f, where E and f 
are given in (4.1.8). This is an m x (n + 1) system, where m is usually greater 
that n + 1; hence the matrix E is not square. Techniques for dealing with this 
type of system are given in Section 4.5. For further discussions of least squares 
problems see Golub and Van Loan [1989] and Lawson and Hanson [1974]. 

EXERCISES 4.1 

4.1.1. Assume that f  is a given function for which the following values are known: 
f(1) = 2, f(2) = 3, f(3) = 5, f(4) = 3. Find the constant, linear, and 
quadratic least-squares polynomials by both the normal-equation and orthogonal 
polynomial approaches. 

4.1.2. Write a computer program to obtain the least-squares polynomial of degree 
n using m 2 n + 1 data points by the orthogonal-polynomial approach. Test 
your program on the polynomials of Exercise 4.1.1. 

4.1.3. Let yi . . . y,,, be a set of data that we wish to approximate by a constant c. 
Determine c so that 

a. eic - yil = minimum. 
i=l 

b. i~~~x~lc - yil = minimum. 
-- 

4.1.4. If  yi, . . . , ym are m observations, define the mean and variance by 
m m 

g=1 
c Yi, v= 

m c 
(Yi - !7)2. 

i=l i=l 

Let ym+l, . . . , ym+n be n additional observations with mean and variance yc 
and v,. Show how to combine v  and U, by cxiv + (YZV~ to obtain the variance 
of the combined set of observations. Specialize this to n = 1 so as to obtain 
an updating formula for the variance each time a new observation is added. 

4.1.5. Modify the orthogonal polynomial approach to handle the problem (4.1.1) 
with given weights wi. Replace the relation (4.1.14) by c wzqk(zl)qJ(zi) and 
then modify (4.1.15), (4.1.26), and (4.1.27) accordingly. 
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4.1.6. Let f be a twice differentiable function on [0,8], and let zi = (i - 9), 
i=l,..., 17, and fi = f(zi). 
a. Using orthogonal polynomials, find the polynomial of degree 5 which mini- 
mizes (4.1.1) with the weights given by zui = y]i - 91 where 0 < y 5 1. 
b. Show how f’(0) and f”(0) can be approximated by using the recursion 
relations for the orthogonal polynomials. In particular, show how to obtain 
coefficients ai so that f’(0) is approximated by xi:, aifi. 

4.2 Gaussian .Eliminat ion 

In the previous chapter we discussed how to solve a system of tridiagonal 
linear equations by the Gaussian elimination method. We now apply Gaussian 
elimination to a general linear system 

Ax=b, (4.2.1) 

where A is a given n x n matrix assumed to be nonsingular, b is a given column 
n vector, and x is the solution vector to be determined. 

We write the system (4.2.1) as 

UllXl + * * * + ah% = bl 

u2121 + * * . + mnxn = b2 
(4.2.2) 

UnlXl +*a* + unnx, = b,. 

As with tridiagonal systems we first subtract o2i/oii times the first equation 
from the second equation to eliminate the coefficient of xi in the second equa- 
tion. For tridiagonal systems this completed the first stage but in the general 
case we wish to eliminate the coefficient of xi in all the remaining equations. 
Thus we subtract a31/a11 times the first equation from the third equation, 
u4i/aii times the first equation from the fourth equation, and so on, until the 
coefficients of xi in the last n - 1 equations have all been eliminated. This 
gives the reduced system of equations 

allxl + a1222 + . . . + al,x, = bl 

a;.x2 + ... + c$;x, = bi’), 

where 

.!?) = (Jij - (Jljail 
$3 

b!‘) = b. - blail 
all’ z 

* 
all ’ 

i,j = 2 )...) 72. (4.2.4) 
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Precisely the same process is now applied to the last n - 1 equations of the 
system (4.2.3) to eliminate the coefficients of 22 in the last n - 2 equations, 
and so on, until the entire system has been reduced to the triangular form 

Xl 

x2 114 = 

2, 

h 
bp) 

&-1) 

(4.2.5) 

i 

The superscripts indicate the number of times the elements have, in general, 
been changed. This completes the forward reduction (or forward elimination 
or triangular reduction) phase of the Gaussian elimination algorithm. Note 

that we have tacitly assumed that ali and the a$-‘) are all non-zero since 
we divide by these elements. In the following section we will consider the 
important question of how to handle zero or small divisors. 

The Gaussian elimination method is based on the fact (usually established 
in an introductory linear algebra course) that replacing any equation of the 
original system (4.2.2) by a linear combination of itself and another equation 
does not change the solution of (4.2.2). Thus the triangular system (4.2.5) 
has the same solution as the original system. The purpose of the forward 
reduction is to reduce the original system to one which is easy to solve; this 
is a common theme in much of scientific computing. The second part of the 
Gaussian elimination method then consists of the solution of (4.2.5) by back 
substitution, in which the equations are solved in reverse order: 

2, = 

X,-l (4.2.6) 

x1 = 
bl - a1222 - . . . - alnx, 

all 

The Gaussian elimination algorithm can be written in algorithmic form as 
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follows: 
Forward Reduction 

Fork= l,...,n-1 

Fori=k+l,...,n 

lik = z 

Forj=k+l,...,n 

aij = aij - likakj 

bi = bi - likbk 

Back Substitution 

For k = n, n - 1,. . . , 1 

xk = 
bk - &+I akjxj 

akk 

To translate the preceding algorithm into a computer ,. \ 

(4.2.7) 

(4.2.8) 

code one should note 

that the alf’ can be overwritten on the same storage spaces occupied by the 
original elements aij. If this is done, the original matrix will, of course, be 
destroyed during the process. Similarly, the new bi”) may be overwritten on 
the original storage spaces of the bi. The multiplier lik can be written into 
the corresponding storage space for oik, which is no longer needed after lik is 
computed. 

LU Factorization 

Gaussian elimination is related to a factorization 

A=LU (4.2.9) 

of the matrix A. Here U is the upper triangular matrix of (4.2.5) obtained 
in the forward reduction, and L is a unit lower triangular matrix (all main 
diagonal elements are 1) in which the subdiagonal element Zij is the multiplier 
used for eliminating the jth variable from the ith equation. For example, if 
the original system is 

(4.2.10) 
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then the reduced system (4.2.5) is 

[H i! ~][~~]=[~~,]. (4.2.11) 

The multipliers used to obtain (4.2.11) from (4.2.10) are 0.5, -0.25, and -0.5. 
Thus 

L= 0.5 

[ 

1 0 0 
1 0 > 

-0.25 -0.5 1 1 (4.2.12) 

and A is the product of (4.2.12) and the matrix U of (4.2.11). The calculations 
needed for the above assertions are left to Exercise 4.2.1. 

More generally, it is easy to verify (Exercise 4.2.2) that the elimination step 
that produces (4.2.3) from (4.2.2) is equivalent to multiplying (4.2.2) by the 
matrix 

(4.2.13) 

Continuing in this fashion, the reduced system (4.2.5) may be written as 

iAx = Lb, L = L,-l.. . L2L1, (4.2.14) 

where 

Li = 
1 

-li+l,i 

. . 

-l,,i 

(4.2.15) 

Each of the matrices Li has determinant equal to 1 and so is non-singular. 
Therefore the product L is non-singular. Moreover, I? is unit lower triangular 
and, therefore, so is kl. By construction, the coefficient matrix of (4.2.14) is 
U, and if we set L = k 1 we have 

U = iA = L-IA, 

which is equivalent to (4.2.9). The verification of the above statements is left 
to Exercise 4.2.3. 
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The factorization (4.2.8) is known as the LU decomposition (or LU factor- 
ization) of A. The right-hand side of (4.2.13) is L-lb, which is the solution 
of Ly = b. Thus the Gaussian elimination algorithm for solving Ax = b is 
mathematically equivalent to the three-step process: 

1. Factor A = LU. 

2. Solve Ly = b. 

3. Solve ux=y. 

(4.2.16) 

This matrix-theoretic view of Gaussian elimination is very useful for theoret- 
ical purposes and also forms the basis for some computational variants of the 
elimination process. In particular, the classical Crout and Doolittle forms of 
LU decomposition are based on formulas for the elements of L and U obtained 
from equating LU and A. Another use of (4.2.16) is when there are many right 
hand sides; in this case, step 1. is done once and the factors saved so that steps 
2. and 3. may be performed repeatedly. This will be discussed in more detail 
later. 

Operation Counts 

An important question is the efficiency of the Gaussian elimination algo- 
rithm, and we next estimate the number of arithmetic operations needed to 
compute the solution vector x. The major part of the work is in updating 
elements of A and we first count the number of operations to carry out the 
arithmetic statement aij = aij - &akj in (4.2.7). There is one addition and 
one multiplication in this statement and we count the number of additions. In 
the j loop of (4.2.7) there are n - k additions. The i loop repeats these n - k 
times so that the total over the k loop is 

n-1 n-1 

c(n - k)2 = c k2. 
k=l k=l 

Thus using the summation formula in Exercise 4.2.4 we obtain 

n-1 

Number of additions = c 
k2 = cn - 1)(n)(2n - ‘1 & c 

6 3’ 
(4.2.17) 

k=l 
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and the same count holds for the number of multiplications. We also need the 
number of divisions to compute the &, and the number of operations to modify 
the right hand side b and to do the back substitution. All of these involve no 
more than order n2 operations (see Exercise 4.2.5). Hence for sufficiently 
large n the work involved in the triangular factorization makes the dominant 
contribution to the computing time and is proportional to n3. Note that this 
implies that if n is doubled, the amount of work increases by approximately a 
factor of 8. 

To obtain an understanding of the amount of time that Gaussian elimi- 
nation might require on a moderate-size problem, suppose that n = 100 and 
that addition and multiplication times are 1,~s and ~,us, respectively (pus= mi- 
crosecond = 10m6 second). Then the time for the additions and multiplications 
in the factorization is approximately 

y(3ps) = 106~s = 1 second. 

There will also be time required for the other arithmetical operations of the 
complete elimination process, but this will be much less than 1 second. More 
importantly, there will be various “overhead” costs such as moving data back 
and forth from storage, and indexing. This could easily double or triple the 
total computing time, but on a computer of this speed only a few seconds 
would be required to solve a 100 x 100 system. 

Banded Matrices 

The previous discussion has assumed that the matrix of the system is “full,” 
that is, it has few zero elements. For many matrices that arise in practice, and 
particularly in the solution of differential equations, the elements of the matrix 
are primarily zero. Perhaps the simplest nontrivial examples of this are the 
tridiagonal matrices discussed in Section 3.1; here there are no more than three 
non-zero elements in each row regardless of the size of n. 

Tridiagonal matrices are special cases of banded matrices in which the non- 
zero elements are all contained in diagonals about the main diagonal, as il- 
lustrated in Figure 4.1. A matrix A = (aij) is a banded matrix of bandwidth 
p+q+lifaij=Oforalli,jsuchthati-j>porj-i>q. Suchamatrixhas 
all of its non-zero elements on the main diagonal, the closest p subdiagonals, 
and the closest q superdiagonals. If p = q = 1, there are only three non-zero 
diagonals, and the matrix is tridiagonal. In Section 3.1 tridiagonal matrices 
arose in the finite difference solution of two-point boundary-value problems. 
When derivatives are approximated by higher-order difference approximations, 
the matrices will have larger bandwidths. For example, the fourth-order ap- 
proximation given by (3.1.42) leads to a matrix with bandwidth 5 (p = q = 2). 
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Matrices with larger bandwidths will be discussed in Chapter 9 in connection 
with the numerical solution of partial differential equations. In most cases of 
interest p = q, and p is called the semi-bandwidth. We will restrict ourselves 
to such matrices in the sequel, although the case p # q presents no difficulties. 

Figure 4.1: Matrix with Bandwidth p + q + 1 

Just as for tridiagonal matrices, the Gaussian elimination algorithm for 
banded matrices benefits by not having to deal with the zero elements outside 
of the band. If A has semi-bandwidth p, there will be p coefficients to be elim- 
inated in the first column, and this elimination will alter only the elements in 
the second through (p + 1)st rows and columns of A. The number of oper- 
ations required will be p2 multiplications and additions, and p divisions (not 
counting operations on the right-hand side of the system). The first reduced 
matrix will be a banded matrix with the same bandwidth, and hence the same 
count applies. After n - p - 1 of these reductions, there will remain a full 

(P + 1) x (P + 1) matrix to be reduced. Hence the number of additions (or 
multiplications) required in the triangular reduction is 

(n-p- l)p2 + (ip)(p+ 1)(2p+ 1) A np2 - $p3. 

If n is large with respect top (for example, n = 1000, p = 7), the dominant term 
ill this operation count is np 2. As with full matrices, the number of operations 
t,o modify the right-hand side and perform the back substitution is of lower 
order, namely O(np); see Exercise 4.2.7. However, as the bandwidth decreases, 
I,llo number of operations for the right-hand side, the back substitution, and 
1,11(% divisions in the forward reduction constitute a larger fraction of the total 
o~)~:rat,io~l cormtj. In particular, for tridiagonal matrices, as discussed in Section 
i1.2, t,hcl forwarcl rotlrlction roquircs only n - 1 addition/multiplication pairs 
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and n - 1 divisions, whereas the right-hand side and back substitution require 
(2n - 1) additions/multiplications and n divisions. 

The storage of a banded matrix does not require reserving a full n x n 
two-dimensional array, which would be very inefficient. All that is needed is 
2p + 1 one-dimensional arrays, each holding one of the non-zero diagonals. In 
particular, a tridiagonal matrix may be stored in three one-dimensional arrays. 
However, if p is at all large it is probably better to store the diagonals of A as 
columns in a (2p + 1) x n two-dimensional array, as indicated in Figure 4.2 for 
p = 2 and n = 6. In any’case, the total storage required, including the right- 
hand side and the solution vector, is no more than (2p + 3)n; in particular, for 
tridiagonal systems it is no more than 5n. 

-0 0 a11 a12 al3 

0 a21 a22 a23 a24 

a31 a32 a33 a34 a35 

a42 a43 a44 a45 a46 

a53 a54 a55 a56 0 

_ a64 a65 a66 0 0 ~ 

Figure 4.2: Storage for a Banded Matrix 

For a banded matrix, the factors L and U of the LU decomposition retain 
the same bandwidth (Exercise 4.2.8). In particular, for tridiagonal matrices 

1 Ul al2 

12 1 u2 a23 

L= ,‘.. . . ,U= *. . . . . . (4.2.18) 

%-l,n. 

1, l- %I i 

Note that, the superdiagonal elements in U are the original elements of A. 
Matrices of the form (4.2.18) are called bidiagonal. 

Determinants and Inverses 

We return now to general matrices (not necessarily banded). We note 
first that the determinant of the coefficient matrix A, denoted by det A, is an 
easy by-product of the elimination process. By the LU decomposition of A, 
and using the facts that the determinant, of a product of two matrices is t,hc 
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product of the determinants and that the determinant of a triangular matrix 
is the product of its diagonal elements, we have 

detA=detLU=detLdetU=uiiusz..=u,, . (4.2.19) 

Thus, the determinant is just the product of the diagonal elements of the re- 
duced triangular matrix and is computed by an additional n-l multiplications. 
Even if only the determinant of the matrix is desired - and not the solution of 
a linear system - the Gaussian elimination reduction to triangular form is still 
the best general method for its computation. 

The Gaussian elimination process is also the best way, in general, to com- 
pute the inverse of A, if that is needed. Let e; be the vector with 1 in the ith 
position and zeros elsewhere. Then ei is the ith column of the identity matrix 
I, and from the basic relation AAm1 = I it follows that the ith column of A-’ 
is the solution of the linear system of equations Ax = ei. Hence we can obtain 
A-’ by solving the n systems of equations 

Axi = ei, i= l,...,n, (4.2.20) 

where the solution vectors xi, . . . , xn will be the columns of A-‘. 
We note that one does not wish to solve a system Ax = b by computing 

A-’ and then forming x = A -lb. This would generally require considerably 
more work than just solving the system. 

Several Right-Hand Sides 

The above procedure for computing A-’ extends to the more general prob- 
lem of solving several systems with the same coefficient matrix: 

Axi = bi, i=l ,...,m. (4.2.21) 

Recall that this was the case is carrying out the Sherman-Morrison or Sherman- 
Morrison-Woodbury formulas in Section 3.2 (See Exercise 3.2.8 and (3.2.24)). 
In terms of the LU decomposition of A, (4.2.21) can be carried out efficiently 
by the following modification of (4.2.16): 

1. Factor A = LU. 

2. Solve Lyi = bi, i= l,...,m. (4.2.22) 

3. Solve Uxi = yi, i= l,...,m. 

Note that the matrix A is factored only once, regardless of the number of 
right-hand sides. Hence the operation count is O(n3) +O(mn2), the latter term 
representing parts 2 and 3 in (4.2.22). Only when m becomes nearly as large as 
II. does the amount of work in parts 2 and 3 approach that of the factorization, 
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at least for full matrices. In the case of computing A-l, m = n, but the total 
operation count is still O(n3). 

To carry out the intent of (4.2.21) in terms of the elimination process, we 
can either do parts 1 and 2 simultaneously, modifying the right-hand sides as 
the elimination proceeds, or we can first complete the factorization and save 
the multipliers Zij to do 2. 

The various algorithms in this section have all been predicated on the 
assumption that all and the subsequent diagonal elements of the reduced 
matrix do not vanish. In, practice, it is not sufhcient that these divisors be 
non-zero; they must also be large enough in some sense or severe rounding 
error problems may occur. In Section 4.3 we will consider these problems and 
the modifications that are necessary for the elimination process to be a viable 
procedure. 

Supplementary Discussion and References: 4.2 
There are many books on numerical linear algebra and these, as well as more 

elementary books on numerical methods, all discuss the problem of solving 
linear systems of equations. For an advanced treatment and more references, 
see Golub and van Loan [1989]. 

Although the Gaussian elimination method is very efficient, there are al- 
gorithms that have a lower operation count as a function of n. In particular, 
the number of multiplications required to solve a linear system of size n by a 
method due to Strassen [1969] is O(n2s... ). But the constant multiplying the 
high-order term is larger than for Gaussian elimination, and the method is 
more complicated; consequently it has not been a serious competitor to Gaus- 
sian elimination for practical computation. Recent research, however (Higham 
[1990]), indicates that this approach can be superior to Gaussian elimination, 
at least in certain circumstances. 

EXERCISES 4.2 

4.2.1. Verify the forward reduction of (4.2.10) to obtain (4.2.11). Then verify that 
A = LZJ, where L is given by (4.2.12) and U is the upper triangular matrix in 
(4.2.11) 

4.2.2. Verify that multiplication of (4.2.2) by (4.2.13) gives (4.2.3). Then verify that 
(4.2.14) holds. 

4.2.3. Verify the following statements: 

a. The determinants of the L, of (4.2.15) are all 1. 

b. Products of lower (upper) triangular matrices are lower (upper) triangular. 
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c. Inverses of lower (upper) triangular matrices are lower (upper) triangular. 

d. The inverse of Li of (4.2.15) is the same matrix with the signs of the off- 
diagonal elements changed. 

4.2.4. Verify by induction the following summation formulas: 

n 

c 
i = $L(n + l), 2 .2 2 = in(n + 1)(2n + 1). 

i=l i=l 

4.2.5. Show that the following operation counts are correct for Gaussian elimination: 

a. Number of additions (multiplications) to compute new right hand side = 
n(n - 1)/2. 

b. Number of divisions to compute the multipliers lik = n(n - 1)/Z. 

c. Number of divisions in back substitution = n. 

d. Number of additions (multiplications) in back substitution = n(n - 1)/2. 

4.2.6. Using a Gaussian elimination code (either a package or one that you write), 
measure the time to solve full linear systems of sizes n = 50 and n = 100. 
Discuss why the larger time is not exactly a factor of 8 larger than the smaller, 
as suggested by the O(n3) operation count. 

4.2.7. If  A is a banded matrix with semi-bandwidth p, show that O(pn) operations 
are required to modify the right-hand side and do the back substitution. 

4.2.8. Let A be a matrix with bandwidth p + q + 1, as illustrated in Figure 4.1. If  
A = LU is the LU decomposition, show that L has bandwidth p + 1 and U 
has bandwidth q + 1. In particular, for tridiagonal matrices show that L and 
U have the form (4.2.18). 

4.2.9. Verify that the product of L and U in (4.2.18) is tridiagonal. 

4.2.10. Write a computer program to implement Gaussian elimination for a banded 
matrix with p subdiagonals and q superdiagonals. Use the storage pattern of 
Figure 4.2. 

4.2.11. If  A = LU, show that A-’ = UelLel. Using this, describe an algorithm 
for computing A-‘, taking advantage of the triangular structure of U-l and 
L-‘. How does your algorithm compare with solving the systems (4.2.20)? 

4.2.12. We have shown that Gaussian elimination on a full matrix requires O(n3) 
operat,ions and on a tridiagonal matrix it requires O(n) operations. For what 
t&O nc:llli-~)antlwidth will it require O(n2) operations? 
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4.2.13. Consider the n x n complex system (A + iB)(u + iv) = b + ic where 
A, B, u, v, b, and c are real. Show how to write this as a real 2n x 2n 
system. Compare the operation counts of Gaussian elimination applied to the 
real system and the original complex system, assuming that complex multipli- 
cation takes four real multiplications and two additions. (What does complex 
division require?) 

4.2.14. (Uniqueness of LU Decomposition). Let A be non-singular and suppose that 
A = LU = Lo where L and L are unit lower triangular and U and 0 are upper 
triangular. Show that L = e and U = 0. 

4.2.15. Let A = LU. Use Exercise 4.2.17 to give the LU decomposition of AT, 
where T is upper triangular. Specialize this to T = D, a diagonal matrix. 
What does this imply about the multipliers in Gaussian elimination when the 
columns of A are scaled? 

4.2.16. (Jordan elimination). Show that it is possible to eliminate the elements 
above the main diagonal as well as below, so that the reduced system is Dx = b 
where D is diagonal. How many operations does this method require to solve 
a linear system? 

4.2.17. Show that if Gaussian elimination is done on the matrix (3.1.41) the factor 
L of the LU decomposition has the same non-zero structure as the lower trian- 
gular part of A except that the last row has, in general, all non-zero elements. 
Assuming that no operations are done on elements known to be zero, show that 
the operation count for this algorithm is 8(n - 1) multiplications plus 6(n - 1) 
additions plus 3n - 2 divisions. 

4.2.18. Again for the matrix (3.1.41) show that solving Ax = b by the Sherman- 
Morrison formula (3.2.21) requires the following operations, assuming that the 
LU decomposition of T is done only once: 6n - 1 multiplications, 6n - 1 
additions, and 3n - 2 divisions. Compare this operation count with that of 
Exercise 4.2.20. Show also that the use of the Sherman-Morrison-Woodbury 
formula (3.2.26) to solve this system, as described in Exercise 3.2.8, requires 
8n - 6 multiplications, 8n - 5 additions, and 4n - 3 divisions. 

4.2.19. Let T be a symmetric nonsingular tridiagonal matrix. Give an algorithm to 
find numberspi,...,p, and ql,“*, qn so that the i, j element of T-’ is piqj if 
i > j and pjqi if i < j. (Hint: Look at the first column of T-l.) 

4.3 Interchanges 

In our discussion of the Gaussian elimination process in the previous section 
we assumed that all and all subsequent divisors were non-zero. However, we 
do not need to make such an assumption provided that we revise the algorithm 
so as to interchange equations if necessary, as we shall now describe. 
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We assume, as usual, that the coefficient matrix A is nonsingular. Suppose 
that all = 0. Then some other element in the first column of A must be 
non-zero or else A is singular (see Exercise 4.3.1). If, say, akl # 0, then we 
interchange the first equation in the system with the Icth; clearly, this does not 
change the solution. In the new system the (1,1) coefficient is now non-zero, 
and the elimination process can proceed. Similarly, an interchange can be done 
if any computed diagonal element that is to become a divisor in the next stage 
should vanish. Suppose, for example, that the elimination has progressed to 
the point 

(i-1) . . . &l) 
aii zn 

%i 
(i-1) . . . (p;l), 

and that a,!:-” = 0. If all of the remaining elements below &” in the ith 
column are also zero, this matrix is singular (see Exercise 4.3.2). Since the 
operations of adding a multiple of one row to another row, which produced 
this reduced matrix, do not affect the determinant, and an interchange of 
rows only changes the sign of the determinant, it follows that the original 
matrix is also singular, contrary to assumption. Hence at least one of the 
elements alci (+-l), k = i + 1,. . . , n, is non-zero, and we can interchange a row 
that contains a non-zero element with the ith row, thus ensuring that the new 
‘1, i element is non-zero. Again, this interchange of rows does not change the 
solution of the system. However, an interchange of rows does change the sign 
of the determinant of the coefficient matrix, so that if the determinant is to 
be computed a record must be kept of whether the number of interchanges is 
oven or odd. In any case, in exact arithmetic we can ensure that Gaussian 
elimination can be carried out by interchanging rows so that no divisions are 
zero. 

Rounding Error and Instability 

Since in exact arithmetic the Gaussian elimination process produces the 
solution of the linear system in a finite number of steps, and there is no dis- 
c.rcttization error associated with the process, the only thing that can affect the 
Il.c.curacy of our computed solution is rounding error. There are two possibil- 
it,iw. The first is an accumulation of rounding errors during a large number 
of’ arithmetic operations. For example, if n = 1,000, the operation count of 
1.11~ previous section shows that on the order of n3 = 10’ operations will be 
rcsclllircd; even though the error in each individual operation may be small, the 
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total buildup could be large. We shall see later that this potential accumulation 
of rounding error is not as serious as one might expect. 

An Example of Instability 
The second possibility involves catastrophic rounding errors. If an algo- 

rithm has this unfortunate characteristic, it is called numerically unstable and 
is not suitable as a general method. Although the interchange process de- 
scribed previously ensures that Gaussian elimination can be carried out math- 
ematically for any nonsingular matrix, the algorithm can give rise to catas- 
trophic rounding errors and is numerically unstable. We shall analyze a simple 
2 x 2 example in order to see how this can occur. 

Consider the system 

[ y5 ;] [ :;I = [ ;I: (4.3.1) 

whose exact solution is 

Xl = -0.4999975 * *. , x2 = 0.999995. 

Now suppose that we have a decimal computer with a word length of four 
digits; that is, numbers are represented in the form 0. * * * * x 1oP. Let us 
carry out Gaussian elimination on this hypothetical computer. First, we note 
that ali # 0, and no interchange is needed. The multiplier is 

121 -0.2 x 101 = = x 
0.1 x 10-d 

-0.2 106, 

which is exact, and the calculation for the new a22 is 

a$:) = 0.1 x lo1 - (-0.2 x 106)(0.1 x 101) 

= 0.1 x lo1 + 0.2 x lo6 = 0.2 x 106. 

(4.3.2) 

The exact sum in (4.3.2) is, of course, 0.200001 x 106, but since the computer 
has a word length of only four digits this must be represented as 0.2000 x 106; 
this is the first error in the calculation. 

The new b2 is 

bp) = -(-0.2 x 106)(0.1 x 101) = 0.2 x 106. (4.3.3) 

No rounding errors occurred in this computation, nor do any occur in the back 
substitution: 

bp) 0.2 x lo6 x2 = -= 
a&) 0.2 x 10s 

= 0.1 x 101, 

0.1 x lo1 - 0.1 x lo1 
Xl = 

-0.1 x 10-d = . 
o 
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The computed 22 agrees excellently with the exact 22, but the computed 21 
has no digits of accuracy. Note that the only error made in the calculation is 
* (1) m a22 , which has an error in the sixth decimal place. Every other operation 
was exact. How, then, can this one “small” error cause the computed 21 to 
deviate so drastically from its exact value? 

Backward Error Analysis 

The answer lies in the principle of backward error analysis, one of the 
most important concepts in scientific computing. The basic idea of backward 
error analysis is to “ask not what the error is, but what problem have we 
really solved.” We shall invoke this principle here in the following form. Note 
that the quantity 0.000001 x lo6 that was dropped from the computed ap2’ in 
(4.3.2) is the original element azz. Since this is the only place that a22 enters 
the calculation, the computed solution would have been the same if a22 were 
zero. Therefore the calculation on our four-digit computer has computed the 
exact solution of the system 

[ -Y5 ii] [ ::] = [ iI]. (4.3.4) 

Intuitively, we would expect the two systems (4.3.1) and (4.3.4) to have rather 
different solutions, and this is indeed the case. 

But why did this occur? The culprit is the large multiplier /zi, which made 
it impossible for a22 to be included in the sum in (4.3.2) because of the word 
length of the machine. The large multiplier was due to the smallness of ali 
relative to azr, and the remedy is, again, an interchange of the equations. 
Indeed, if we solve the system 

[ -i-5 : ] [ it: ] = [ Y ] 
on our hypothetical four-digit computer, we obtain 

121 0.1 
x 

10-4 = = 
0.2 x 101 

-0.5 x 1o-5 

(l) a22 = 0.1 x lo1 - (-0.5 x 10-5)(l) = 0.1 x lo1 

bp) = 0.1 x lo1 - (-0.5 x 1O-5)(O) = 0.1 x lo1 

x2 = 
0.1 x lo1 = I o 
0.1 x 101 . 

x1 = -co.1 x WP) = -0 5 
0.2 x 10’ 

. . 

(4.3.5) 
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The computed solution now agrees excellently with the exact solution. 

Partial Pivoting 

By a relatively simple strategy we can always arrange to keep the multipliers 
in the elimination process less than or equal to 1 in absolute value. This 
is known as partial pivoting: at the kth stage of the elimination process an 
interchange of rows is made, if necessary, to place in the main diagonal position 
the element of largest absolute value from the kth column below or on the main 
diagonal. If we include this interchange strategy in the forward reduction 
algorithm (4.2.7), we have: 

Forward Reduction with Partial Pivoting 

Fork= l,...,n-1 

Find m 2 k such that larnlcI = max{ laik 1 : i 2 k}. 

If a mk = 0, then A is singular, and stop. 

else interchange akj and a,j, j = k, k + 1,. . . , n. 

interchange bk and b,. (4.3.6) 

For i = k + 1, k + 2,. . . , n 

lik = aik fakk 

Forj=k+l,k+2,...,n 

aij = ajj - ljkakj 

bi = bi - likbk. 

Gaussian elimination with partial pivoting has proved to be an extremely 
reliable algorithm in practice. However, there are two major precautions that 
should be kept in mind. First, the matrix must be properly scaled before the 
algorithm is used. To illustrate this point, consider the system 

[ ‘2” -y ] [ ;; ] = [ -y 1, (4.3.7) 

No interchange is called for by the partial pivoting strategy since the (1,l) 
element is already the largest in the first column, However, if we carry out the 
elimination on our hypothetical four-digit computer (see Exercise 4.3.5), we 
will encounter exactly the same problem that we did with the system (4.3.1). 
Indeed, (4.3.7) is just (4.3.1) with the first equation multiplied by -106. 

The use of the partial pivoting strategy is predicated on the coefficient 
matrix being properly scaled so that the maximum element in each row and 
column is the same order of magnitude. This scaling is called equilibration or 
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balancing of the matrix. Unfortunately, there is no known foolproof general 
procedure for such scaling, but usually it will be clear that some rows or 
columns of the matrix need scaling, and this can be done before the elimination 
starts. For example, if we were given the system (4.3.7), we should scale the 
first row so that its maximum element is approximately 1. Then ali will be 
small, and the partial pivoting strategy will cause an interchange of the first 
and second rows. 

The second precaution regarding the partial pivoting strategy is that even 
with an equilibrated matrix, it can be numerically unstable. Examples in 
which this can happen have been given, but the occurrence of such matrices 
in practical computations seems to be sufficiently rare that the danger can be 
safely ignored. (For additional remarks, see the Supplementary Discussion.) 

LU with Interchanges 

If row interchanges are made, the Gaussian elimination process is not equiv- 
alent to a factorization of the matrix A into the product of lower- and upper- 
triangular matrices; the lower-triangular matrix must be modified in the fol- 
lowing way. A permutation matrix, P, is an n x n matrix that has exactly 
one element equal to 1 in each row and column and zeros elsewhere. A 4 x 4 
example is 

r1 0 0 01 

P= (4.3.8) 

Interchange of rows of a matrix can be effected by multiplication on the left 
by a permutation matrix. For example, multiplication of a 4 x 4 matrix by 
the permutation matrix (4.3.8) will leave the first and third rows the same 
and interchange the second and fourth rows (see Exercise 4.3.6). Thus the row 
interchanges of the coefficient matrix A that are required by the partial pivoting 
strategy can be represented by multiplication of A on the left by suitable 
permutation matrices. If Pi denotes the permutation matrix corresponding to 
the interchange required at the ith stage, then conceptually we are generating 
the triangular factorization of the matrix 

P,-lP,-Z.. . P2PlA = PA = LU (4.3.9) 

rather than A itself. Thus the factorization is A = (P-lL)U. Since the product 
of permutation matrices is again a permutation matrix and the inverse of a 
permutation matrix is a permutation matrix (Exercise 4.3.7), the first factor 
is a permutation of a lower-triangular matrix, whereas the second is again 
upper-triangular. Note that if no interchange is required at the ith stage, the 
permutation matrix Pi is simply the identity matrix. 
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Banded Systems 

Row interchanges require additional time and, in the case of banded ma- 
trices, also complicate the storage. Consider first a tridiagonal system. If an 
interchange is made at the first stage, the elements in the first two rows will 
be 

* * *o... 
* * o... 

The elimination process will then reenter a (generally) non-zero element into 
the (2,3) position, and the reduced (n - 1) x (n - 1) matrix will again be 
tridiagonal. Thus, the effect of the interchanges will be to introduce possible 
non-zero elements into the second superdiagonal of the reduced triangular ma- 
trix. Then the factor U in the decomposition of A will no longer be bidiagonal 
but will have, in general, three non-zero diagonals. Perhaps the simplest way 
of handling the storage is to add an additional one-dimensional array to hold 
these elements in the second superdiagonal. 

For a banded matrix with semibandwidth p the same kind of problem 
occurs. If an interchange is made at the first stage between the first and 
(p + 1)st rows, an additional p elements will be introduced into the first row, 
and these, in turn, will be propagated into rows 2 through p + 1 during the 
elimination process. Thus we need to provide storage for a possible additional 
p superdiagonals. The simplest way to handle this is to allow for an additional 
n x p array of storage at the outset. Of course this requires an additional np 
storage locations. An alternative method is based on the observation that the 
amount of additional storage needed is no more than the amount of storage 
required for the non-zero subdiagonals. As the subdiagonals are eliminated, 
we no longer will need that storage, and the new superdiagonals elements can 
be stored in those positions. However, it is this subdiagonal space that is 
normally used to store the multipliers if their retention is desired; in this case 
we have no alternative but to set aside additional storage. 

Diagonally Dominant and Positive Definite Matrices 

Although for general nonsingular matrices it is necessary to use the par- 
tial pivoting strategy, there are some types of matrices for which it is known 
that no interchanges are necessary. The most important of these are diagonally 
dominant matrices [recall (3.1.24) and (3.1.25)] and symmetric positive definite 
matrices [recall (4.1.9)]. In both cases, it is safe to use Gaussian elimination 
with no interchanges at all (see the Supplementary Discussion), although for 
positive definite matrices accuracy is often improved slightly by using inter- 
changes. Not needing to interchange is especially advantageous for banded 
matrices, and it is a fortunate fact that most banded matrices arising from 
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differential equations are either diagonally dominant or symmetric and posi- 
tive definite. In particular, no interchanges are needed for those tridiagonal 
matrices that were shown to be diagonally dominant in Chapter 3. 

In this section, we have discussed various questions concerning the accuracy 
of computed solutions of systems of linear equations. In the following section 
we will consider additional questions, including the important topic of “ill- 
conditioning.” 

Supplementary Discussion and References: 4.3 
The interchange of rows required by partial pivoting need not be done 

explicitly. Instead, the interchanges may be carried out implicitly by using a 
permutation vector that keeps track of which rows are interchanged. Whether 
one should use explicit interchanges depends on the computer’s “interchange” 
time, time required for indexing, program clarity, and other considerations. 

In those cases in which partial pivoting is not sufficient to guarantee ac- 
curacy, we can use another strategy called complete pivoting, in which both 
rows and columns are interchanged so as to bring into the diagonal divisor po- 
sition the largest element in absolute value in the remaining submatrix to be 
processed. This adds a significant amount of time to the Gaussian elimination 
process and is rarely incorporated into a standard program. See Wilkinson 
[1961] for further discussion. 

In a very important paper, Wilkinson [1961] showed that the effect of round- 
ing errors in Gaussian elimination is such that the computed solution is the 
exact solution of a perturbed system (A + E)x = b (see also, for example, 
Golub and van Loan [1989] and Ortega [1990] for textbook discussions). A 
bound on the matrix E is of the form 

II-% 5 P(~M~)Wlloo~ 

where p(n) is a cubic polynomial in the size of the matrix, E is the basic 
rounding error of the computer (for example, 2-27), and g(n) is the growth 
factor defined by 

where the ajf) are the elements of the successive reduced matrices formed in the 
elimination process. The growth factor depends crucially on the interchange 
strategy used. With no interchanges, g may be arbitrarily large. With partial 
pivoting (and in exact arithmetic), g(n) is bounded by 2”-l, which for large 
n completely dominates p(n). Wilkinson has exhibited matrices for which 
g(n) = 2”-l, but such matrices seem to be very rare in practice; indeed, the 
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actual size of g has been monitored extensively by Wilkinson and others for a 
large number of practical problems and has seldom exceeded 10, regardless of 
the size of the matrix. For the complete pivoting strategy a complicated but 
much better bound for g has been given by Wilkinson, and a long-standing 
conjecture was that g(n) 2 n. This conjecture has recently been shown by 
Gould [1991] to be false if rounding error in Gaussian elimination is allowed. 
Subsequently Edelman and Ohlrich [1991] used Mathematics to show that the 
conjecture is also false in exact arithmetic. The form of the best bound for g 
using complete pivoting remains an open question. 

For matrices that are (column) diagonally dominant, the growth factor g 
is bounded by 2, without any interchanges. For symmetric positive definite 
matrices, g is equal to 1. This explains why for these two important classes of 
matrices, no interchange strategy is necessary. 

The partial pivoting strategy ensures that the multipliers are all less than 
or equal to one in magnitude. However, for problems where the matrix has 
few non-zero elements it is sometimes desirable to require only that ]Zij] 5 (Y 
for some “threshold” parameter Q > 1. For further discussion, see Section 9.2. 

EXERCISES 4.3 

4.3.1. Suppose that the ith column of the matrix A consists of zero elements. Show 
that A is singular by the following different arguments: 

a. The determinant of A is zero. 

b. Aei = 0, where ei is the vector with 1 in the ith position and zeros else- 
where. 

c. A has, at most, n - 1 linearly independent columns. 

4.3.2. Let A be a matrix of the form 

all . . . 

ai-l,i-1 

aii 
. . 

I f  ai, = ai+i,i = .+. = ani = 0, show that A is singular. 
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4.3.3. Solve the following 3 x 3 system by Gaussian elimination by making row 
interchanges where needed to avoid division by zero: 

2x1 + 2x2 + 3x3 = 1 

X1 +X2 + 223 = 2 

2X1 +X2 + 2X3 = 3 

4.3.4. Translate the algorithm (4.3.6) into a computer program for Gaussian elimi- 
nation using partial pivoting. Include back substitution. 

4.3.5. Apply Gaussian elimination to the system (4.3.7) using the four-digit decimal 
computer of the text. Repeat the calculation after interchanging the equations. 

4.3.6. a. Show that multiplication of a 4 x 4 matrix on the left by the permutation 
matrix (4.3.8) interchanges the second and fourth rows and leaves the 
first and third rows the same. 

b. Show that multiplication on the right by the permutation matrix inter- 
changes the second and fourth columns. 

c. Give the 4 x 4 permutation matrix that interchanges the first and third rows 
and leaves the second and fourth rows the same. 

4.3.7. Show that the product of two n x n permutation matrices is a permutation 
matrix. Show that the inverse of a permutation matrix is a permutation matrix. 

4.3.8. Let A = LLT be a factorization of a symmetric positive definite matrix A, 
where L is lower-triangular and has positive main diagonal elements. Show 
that if e is obtained from L by changing the sign of every element of the ith 
row, then A = ,?I!~. (Th’ is s h ows that the LLT factorization is not unique, 
although there is a unique L with positive main diagonal elements.) 

4.3.9. A matrix H is called Hessenberg (see Chapter 7) if hi = 0 when i > j + 1. 
How many operations are required to solve Hx = b by Gaussian elimination? 
If H is normalized so that lhijl 5 1 for all i,j, and partial pivoting is used in 
Gaussian elimination, show that the elements of U are less than n in magnitude. 

4.3.10. Consider a matrix of the form 

* * .‘. * 

in which all elements are zero except in the first row and column and the 
main diagonal. How many operations will Gaussian elimination require if no 
pivoting is used? Does pivoting change this? Can you find a reordering of the 
equations and unknowns so that only O(n) operations are required? 
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4.3.11. Assume that the positive definite condition xTAx > 0 if x # 0 holds for all 
real x even though A is not symmetric (such matrices are sometimes called 
positive real). Show that an LU decomposition of A exists. 

4.4 Ill-Conditioning and Error Analysis 

The Gaussian elimination algorithm with partial pivoting has proved to 
be an efficient and reliable method in practice. Nevertheless, it may fail to 
compute accurate solutions of systems of equations that are “ill-conditioned”. 
A linear system of equations is said to be ill-conditioned if small changes in the 
elements of the coefficient matrix and/or right-hand side cause large changes 
in the solution. In this case no numerical method can be expected to produce 
an accurate solution, nor, in many cases, should a solution even be attempted. 

An Example of an Ill-conditioned System 

We begin with a 2 x 2 example. Consider the system 

0.832~~ + 0.448~~ = 1.00 
0.784~~ + 0.421~~ = 0, (4.4.1) 

and assume that we use a three-digit decimal computer to carry out Gaussian 
elimination. Since ali is the largest element of the matrix no interchange is 
required, and the computation of the new elements as2 (‘) and bp) is 

121 = E = 0.942 1 308.. . = 0.942 

a$;’ = 0.421 - 0.942 x 0.448 = 0.421 - 0.422 1 016 = -0.001 (4.4.2) 

bp = 0 - 1.00 x 0.942 = -0.942, 

where we have indicated by the vertical bars those digits lost in the computa- 
tion. Hence the computed triangular system is 

0.832~1 + 0.44822 = 1.00 
-0.001x2 = -0.942, 

and the back substitution produces the approximate solution 

x1 = -506, x2 = 942. 

But the exact solution of (4.4.1), correct to three figures, is 

Xl = -439, x2 = 817, 

(4.4.3) 

(4.4.4) 
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so the computed solution is incorrect by about 15%. Why has this occurred? 
The first easy answer is that we have lost significance in the calculation of 

a!&‘. Indeed, it is clear that the computed value of &’ has only one significant 
figure, so our final computed solution will have no more than one significant 
figure. But this is only the manifestation of the real problem. We invoke again 
the principle of backward error analysis. By carrying out a more detailed com- 
putation we can show that the computed solution (4.4.3) is the exact solution 
of the system 

0.832~~ + 0.447974 es. x2 = 1.00 
0.783744.. * x1 + 0.420992.. . x2 = 0. 

(4.4.5) 

The maximum percentage change between the elements of this system and the 
original system (4.4.1) is only 0.03%; therefore errors in the data are magnified 
by a factor of about 500. 

The root cause of this ill-conditioning is that the coefficient matrix of (4.4.1) 
is “almost singular.” Geometrically, this means that the lines defined by the 
two equations (4.4.1) are almost parallel, as indicated in Figure 4.3. Consider 
now the system of equations 

0.832~~ + 0.44822 = 1.00 
0.784~~ + (0.421 + &)x2 = 0. 

(4.4.6) 

The second equation defines a family of lines depending on the parameter E. As 
F increases from zero to approximately 0.0012, the line rotates counterclockwise 
and its intersection with the line defined by the first equation recedes to infinity 
until the two lines become exactly parallel and no solution of the linear system 
exists. 

For only one value of E, say ~0, is the coefficient matrix of (4.4.6) singular, 
but for infinitely many values of E near ~0 the matrix is almost singular. In 
general, the probability of a matrix being exactly singular is very small unless 
it was constructed in such a way that singularity is ensured. For example, we 
saw in Section 3.2 that periodic boundary conditions can give rise to singular 
c,oefficient matrices. In many situations, however, it may not be obvious in the 
li)rmulation of the problem that the resulting matrix will be singular or almost 
singular. This must be detected during the course of the solution and a warning 
issued. We will consider such detection mechanisms later, but we point out here 
I.llat, in general, it is extremely difficult to ascertain computationally if a given 
ttlatrix is exactly singular. For example, if LU is the computed factorization 
01’ A and unn = 0, then U is singular. But u,, may be contaminated by 
rolmding error so we cannot claim that A itself is singular. Conversely, if the 
c.orllputed u,, is not zero, this does not guarantee that A is non-singular. The 
I’~~t~damental proMom is the detection of zero in the presence of rounding error. 
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0.832~~ +0.448x2 = 1.00 

Xl 

Figure 4.3: Almost-Parallel Lines Defined by (4.4.1). The Intersection of the 
Lines is at (-439,817) 

However, near-singularity is easier to detect, and if that is the case, it is likely 
that the problem should be reformulated. For example, we may have chosen 
variables that are close to being dependent, and we should remove some of 
them or choose another set of variables. 

Determinants and Ill-conditioning 

Since a matrix is singular if its determinant is zero, it is sometimes sug- 
gested that the smallness of the determinant is a measure of the ill-conditioning 
of the system. This is not however generally true as the following example 
shows: 

1 = 10-y 1 = 1020. (4.4.7) 

The values of the two determinants are very different, but the lines defined by 
the two corresponding sets of equations 

lo-102 1 = 0 101c2 1 = 0 
lo-lea: 2 = 0 lolcz = 0 

(4.4.8) 
2 

are the same and are the coordinate axes. As we shall see more clearly in a 
moment, if the lines defined by the equations of a system are perpendicular, 
that system is “perfectly conditioned.” Thus the magnitude of the determinant 
of the coefficient matrix is not a good measure of the near-singularity of the 
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matrix. It can, however, become the basis of such a measure if the matrix is 
suitably scaled, as we shall now see. 

For two equations it is clear that a good measure of the “almost parallel- 
ness” of the corresponding two lines is the angle between them. An essentially 
equivalent measure is the area of the parallelogram shown in Figure 4.4, in 
which the sides of the parallelogram are of length 1 and the height is denoted 
by h. The area of the parallelogram is then equal to h since the base is 1, and 
the angle 8 between the lines defined by the two equations is related to h by 
h = sine. The area, h, varies between zero, when the lines coalesce, and 1, 
when they are perpendicular. 

x2 

a21xl + a22x2 = 0 

Figure 4.4: The Unit Parallelogram 

From analytic geometry, the distance from the point (P,r) to the line 
a2121 + a2222 = 0 is 

h = la2lP + a2271 

a2 ’ 
a2 = (a;, + ai2)l12. 

If we assume that all 2 0, the coordinates (,f3,7) are given by 

-al2 
p=- 

all 

a1 ’ 
Y=-> 

a1 
al = (aT1 + aq2)li2, 

xo that 
h = Ialla22 - a2lal21 _ PetAl, (4.4.9) 

(YlQ2 ala2 

Il~ce we see that, the area, h, is just the determinant divided by the produCt 
lYI(Y2. 
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This measure easily extends to n equations. Let A = (aij) be the coefficient 
matrix, and set 

V= IdetA =det 
ff~ff2..*a, 

ahlm : 1 i ’ 

(4.4. 

arm Q, 

1 0) 

where 
cri = ( uzl + a& + . . . + ~38) U2, 

We have called the quantity in (4.4.10) V instead of h because it is the volume 
of the n-dimensional unit parallelepiped circumscribed by the lines defined by 
the rows of matrix A; that is, 

$Cm,aiz,...,~J, ,...,n, i=l 
2 

are the coordinates of n points in n-dimensional space located Euclidean dis- 
tance 1 from the origin, and these n points define a parallelepiped whose sides 
are of length 1. It is intuitively clear, and can be proved rigorously, that the 
volume of this parallelepiped is between zero, when two or more of the edges 
coincide, and 1, when the edges are all mutually perpendicular. If V = 0, then 
det A = 0, and the matrix is singular. If V = 1, then the edges are as far 
from being parallel as possible, and in this case the matrix is called perfectly 
conditioned. 

Ramifications of Ill-Conditioning 

There are various ramifications of ill-conditioning of a matrix besides the 
difficulty in computing an accurate solution of the corresponding linear sys- 
tem. Consider again the system (4.4.1) and suppose that (4.4.5) is the “real” 
system that we wish to solve but that the coefficients of this system must be 
measured by some physical apparatus accurate to only the third decimal place, 
Thus (4.4.1) is not the system that we really wish to solve but is the best ap 
proximation to it that we can make. Suppose that we can also claim that 
the coefficients of (4.4.1) are accurate to at least 0.05%, as indeed they are, 
compared with (4.4.5). Then, it is an often-heard argument that we should 
be able to compute the solution of the system to about the same accuracy, 
But we have seen that this is not true; the ill-conditioning of the coefficient 
matrix magnifies small errors in the coefficients by a factor of about 500 in 
the case of (4.4.1). Hence no matter how accurately the system (4.4.1) ir 
solved, we will still have the error that has come from the measurement error 
in the coefficients. If, for example, we need the solution of the “real” system 
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(4.4.5) accurate to less than l%, we need to measure the coefficients much 
more accurately than three decimal places. 

In some cases, however, the coefficient matrix may be exact. A famous 
example of a class of ill-conditioned matrices is the Hilbert matrices (or Hilbert 
segments), in which the elements of the matrix are exact rational numbers: 

(4.4.11) 

These matrices are increasingly ill-conditioned as n increases. If for n = 8 the 
coefficients are entered in the computer as binary fractions exact to the extent 
possible with 27 binary digits (equivalent to about 8 decimal digits), the exact 
inverse of the matrix in the computer differs from the exact inverse of HS in 
the first figure! 

The following is another manifestation of ill-conditioning. Suppose that x 
is a computed solution of the system A% = b. One way to try to ascertain the 
accuracy of x is to form the residual vector, 

r=b-Ax. (4.4.12) 

If X were the exact solution, then r would be zero. Thus we would expect 
r to be “small” if X were a good approximation to the exact solution, and, 
conversely, that if r were small, then f would be a good approximation. This 
is true in some cases, but if A is ill-conditioned, the magnitude of r can be 
very misleading. As an example, consider the system 

0.780~ + 0.563~ = 0.217 
0.913x1 + 0.659x2 = 0.254, (4.4.13) 

and the approximate solution 

Then, the residual vector is 

10-s 
r= [ I 0 . 

Now consider another very different approximate solution 

X= 0.999 1 1 -1.001 ’ 

(4.4.14) 

(4.4.15) 

(4.4.16) 
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and the corresponding residual vector 

By comparing the residuals (4.4.15) and (4.4.17) we could easily conclude that 
(4.4.14) is the better approximate solution. However, the exact solution of 
(4.4.13) is (1, -l), so the residuals give completely misleading information. 

Condition Numbers Based on Norms 

We turn now to another, way of measuring the ill-conditioning of a matrix 
by means of norms (see Appendix 2 for a review of vector and matrix norms). 
Suppose first that a is the solution of Ax = b and that k + Ax is the solution 
of the system with the right-hand side b + Ab: 

A(k+Ax) = b+Ab. (4.4.18) 

Since Ali: = b, it follows that A(Ax) = Ab and Ax = A-‘(Ab), assuming, as 
usual, that A is nonsingular. Thus 

IlAXll I P-ill IlAblL 

which shows that the change in the solution due to a change in the right-hand 
side is bounded by IIA-lll. Th us a small change in b may cause a large change 
in k if IIA-ljl is large. The notion of “large” is always relative, however, and 
it is more useful to deal with the relative change IlAxll/llkll. From A1Z = b, 
it follows that 

llbll I IIAII 1141, 
and combining this with (4.4.19) yields 

ll4l llbll 5 IIAII IIA-lll IPbll Il4? 

or, equivalently (if b # 0), 

(4.4.20) 

This inequality shows that the relative change in k due to a change in b is 
bounded by the relative change in b, IlAbll/jlbll, multiplied by l]All IIA-lll. 
The latter quantity is of great importance and is called the condition number 
of A (with respect to the norm being used); it will be denoted by cond(A). 
This is the condition number for the problem of solving Ax = b or computing 
A-l. Other problems will have different condition numbers. For example, 
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in Chapter 7 we discuss the computation of eigenvalues, and the condition 
number of an eigenvalue of A is different than cond(A). 

Consider next the case in which the elements of A are changed so that the 
perturbed equations are 

Thus, since Ak = b, 

(A + 6A)(12 + 6x) = b. (4.4.21) 

ASx = b - Ali: - 6A(k + Sx) = -6A(i + 6x), 

or 

Therefore 

-6x = A-%5A(i + 6x). 

llSxl[ L IIA-‘jl 116All 11% + 6x11 = cond(A)wlli+ 6x11, 

so that 
IIWI IlfiAll 

lllz + 6x11 s condo- (4.4.22) 

Once again, the condition number plays a major role in the bound. Note that 
(4.4.22) expresses the change in 2 relative to the perturbed solution, jL + Sx, 
rather than k itself, as in (4.4.20), although it is possible to obtain a bound 
relative to i. 

The inequalities (4.4.20) and (4.4.22) need to be interpreted correctly. Note 
first that cond(A) 2 1 (see Exercise 4.4.2). If cond(A) is close to 1, then small 
relative changes in the data can lead to only small relative changes in the 
solution. In this case we say that the problem is well-conditioned. This also 
guarantees that the residual vector provides a valid estimate of the accuracy 
of an approximate solution X. From (4.4.12) 

r = A(A-lb -x), (4.4.23) 

so that, if e = A-lb - x is the error in the approximate solution, 

e = A-h. (4.4.24) 

This is the fundamental relation between the residual and the error. Then 

Ilrll IHI 5 IV-‘II Ilrll = conC-W--- IIAII ’ 
so that the error is bounded by cond(A) times a normalized residual vector. 
Note that. it ix necessary to normalize the residual vector somehow since we can 
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multiply the equation Ax = b by any constant without changing the solution, 
and such a multiplication would change the residual by the same amount. 

On the other hand, if the condition number is large, then small changes in 
the data may cause large changes in the solution, but not necessarily, depending 
on the particular perturbation. The practical effect of a large condition number 
depends on the accuracy of the data and the word length of the computer being 
used. If, for example, cond(A) = 106, then the equivalent of 6 decimal digits 
could possibly be lost. On a computer with a word length equivalent to 8 
decimal digits, this could be disastrous; on the other hand if the word length 
were the equivalent of 16 decimal digits, it might not cause much of a problem. 
If the data are measured quantities, however, the computed solution may not 
have any meaning even if computed accurately. 

Computation of the Condition Number 

In general, it is very difficult to compute the condition number 1 IAl 1 ) IA-l I I 
without knowing A-l, although the packages LINPACK and LAPACK (see 
the Supplementary Discussion) are able to estimate cond(A) in the course of 
solving a linear system. In some cases of interest, however, it is relatively easy 
to compute the condition number explicitly, and we give an example of this 
for the (2, -1) tridiagonal matrix of (3.1.10). 

As given in Appendix 2, the 2s norm of a symmetric matrix is its spectral 
radius p(A). Thus 

con&(A) = llAl1211A-1112 = dAMA-‘). (4.4.26) 

For the matrix of (3.1.10), we can compute explicitly (Exercise 4.4.5) the eigen- 
values as 

kn 
XI, =2-2COS- = 

n+l 
2 - 2coskh, 

where we have set h = r/(n + 1). Thus, the largest eigenvalue of A is 

p(A)=X,=2-2cosnh, 

and the smallest is 
X1=2-2cosh>O. 

(This shows, incidentally, that A is positive definite; see Appendix 2). Since 
the eigenvalues of A-’ are XT’, . . 
of A-’ is XT’. Thus 

. , A;’ (see Exercise 4.4.6), the spectral radius 

1- cosnh 1 +cosh 
conddA) = xnA? = 1 _ cos]~ = 1 _ c,osh’ LX , ’ .’ 
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For small h we can approximate the cosine by the first-order Taylor expansion 

h2 
cash-bT. 

Thus 
4 - h2 

condz(A) - h2 = O(h-2) = O(n2). 

This shows that A is moderately ill-conditioned and that the condition number 
grows approximately as the square of the dimension of the matrix, or as hm2. 
This is typical for matrices arising from boundary value problems. 

Supplementary Discussion and References: 4.4 

The state of the art in solving linear equations has now reached a very high 
level, especially for full and banded systems that can be stored in fast memory. 
Probably the best current set of codes is LINPACK, a package of FORTRAN 
subroutines. Recently LINPACK has evolved to a new package, LAPACK, 
specifically designed for use on vector and parallel computers. See Dongarra 
et al. [1979] for a discussion of LINPACK and Dongarra and Anderson et al. 
[1990] for LAPACK. 

One way to attempt to obtain an accurate solution of ill-conditioned sys- 
tems - and also to detect the ill-conditioning - is iterative refinement, which 
we now describe. Let xi be the computed solution of the system Ax = b and 
r-1 = AxI - b. If xi is not the exact solution, then r-1 # 0. Now solve the 
system Azl = -ri. If zi were the exact solution of this system, then 

A(xl + zl) = AXI - rl = b 

so that xi + zi is the exact solution of the original system. Of course, we 
will not be able to compute zi exactly, but we hope that x2 = xi + zi will 
be a better approximation to the exact solution than xi. For this to be the 
case, it is usual to compute the residual in double precision, although single 
precision can be sufficient in certain cases (see Skeel [1980] and Arioli et al. 
[1989]). The process can be repeated: form r-2 = Ax2 - b, solve Azg = -r2, 
set x3 = x2 +zz, and so on. One or two iterations will usually suffice to obtain 
an accurate solution, unless the problem is very ill-conditioned. For further 
discussion of iterative refinement, see Golub and Van Loan [1989]. 

For additional perturbation results such as (4.4.20) see Stewart and Sun 
[1990]. 
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EXERCISES 4.4 

4.4.1. Compute the determinant and the normalized determinant (4.4.10) for the 
matrix of (4.4.1) and for the matrix 

1 2 3 
A= 2 3 4. [ 1 3 4 4 

4.4.2. Using properties of matrix norms, prove that cond(A) > 1. 

4.4.3. Compute cond(A) for the matrices in Exercise 4.4.1 using both the Z1 and 1, 
norms (see Appendix 2 for definitions of these norms). 

4.4.4. Solve the system (4.4.1) for different right-hand sides. Compare the differ- 
ences in these solutions to the bound (4.4.20), using the 1, norm. 

4.4.5. Use the trigonometric identity sin(a f  p) = sin (Y cos p f  cos cr sin /3 to verify 
that the eigenvalues of the matrix (3.1.10) are given by (4.4.27) with corre- 
sponding eigenvectors 

xk = (sin kh, sin 2kh,. . . , sin nkh)T. 

That is, verify that Axk = &xk, k = 1,. . . ,n. 

4.4.6. If  A is nonsingular and Ax = Xx, show that A-lx = X-lx. 

4.4.7. If  A has eigenvalues Xi, . . . , X, and corresponding eigenvectors vn . . . , vn, 
show that (A-kc+& = (& +c)vk, k = 1,. . . , n, so that A+ cl has eigenvalues 
Xl + c, . . . ) A, + c. 

4.4.8. Let A be the matrix of (3.1.9) in which cl = cz = . .s = c,, = c. Use Exercise 
4.4.7 to show that A has eigenvalues 2 + c - Pcoskh, k = 1,. . . , n, and use them 
to find condz(A). Discuss how condz(A) varies with c. 

4.4.9 Let 

A= 
( 

;:;;;‘: ;:;;;; ) ,b = ( ;f;;; ) . 

Verify that (1, -l)T is the exact solution of Ax = b. If  r = A% - b, construct 
an % for which r = (-10m8, lo-‘) exactly. Find cond,(A). I f  b is exact, how 
small should the relative error in A be so that the solution can be guaranteed 
to have a relative error which is 5 10-s? 

4.4.10 Let r = AZ - b,% = x + 6x, Ax = b and R = AC - I, where C is an 
approximate inverse of A and IlRll < 1. Prove that 

ll~llllcll llwl 5 qpq’ 

4.4.11 Let A be a non-singular diagonal matrix. Show that the quantity V of 
(4.4.10) is always equal to 1, but that IIAjIIIA-‘II may be arbitrarily large. 
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So far in this chapter we have considered only Gaussian elimination and 
the corresponding LU factorization. But there are other factorizations of the 
matrix A which are sometimes very useful. 

Cholesky Factorization 

In the case of a symmetric positive definite matrix there is an important 
variant of Gaussian elimination, Cholesky’s method, -which is based on a fac- 
torization (or decomposition) of the form 

A = LLT. (4.5.1) 

Here L is a lower-triangular matrix but does not necessarily have l’s on the 
main diagonal as in the LU factorization. The factorization (4.5.1) is unique, 
provided that L is required to have positive diagonal elements (see Exercise 
4.5.1). 

The product in (4.5.1) is 

. . . 

(4.5.2) 

By equating elements of the first column of (4.5.2) with corresponding elements 
of A, we see that ail = ZiiZri, so the first column of L is determined by 

111 = hV2, lil = E, i=2 ,...,n. (4.5.3) 

In general, 
i j 

aii = 
c Ck, aij = 

c likljk, j < i, (4.5.4) 
k=l k=l 

which forms the basis for determining the columns of L in sequence . Once L 
is computed, the solution of the linear system can proceed just as in the LU 
decomposition (4.2.16): solve Ly = b and then solve LTx = y. The algorithm 
for the factorization is given in Figure 4.5. For the Cholesky decomposition to 
be carried out, it is necessary that the quantities ojj - c ljk all be positive 
so that the square roots may be taken. If the coefficient matrix A is posi- 
tive definite, these quantities are indeed positive; moreover, the algorithm is 
riumerically stable. 
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Forj = l,...,n 

ljj = (ajj-gle)“’ 

Fori=j+l,...,n 

i-l 

C&j -- c likljk 

lij = 
k=l 

ljj 

Figure 4.5: Cholesky Factorization 

The Cholesky factorization enjoys two advantages over LU factorization. 
First, there are approximately half as many arithmetic operations (Exercise 
4.5.2). Square roots are also required in the Cholesky factorization, although 
there is a variant of the algorithm which avoids these (see Exercise 4.5.3). The 
second advantage is that by utilizing symmetry only the lower triangular part 
of A needs to be stored. As with the LU factorization, the lij can be overwrit- 
ten onto the corresponding portions of A as they are computed. Finally, the 
Cholesky factorization extends readily to banded matrices and preserves the 
bandwidth, just as LU factorization without interchanges (see Exercise 4.5.4). 

The QR Factorization 

The Cholesky factorization applies only to symmetric positive definite ma- 
trices. We next consider a factorization that applies to any matrix. Indeed, 
later in this section we will use this factorization for rectangular matrices, but 
for the moment we will assume that A is n x n and real. The QR factorization 
(or decomposition or reduction) is then 

A=QR, (4.5.5) 

where Q is an orthogonal matrix (See Appendix 2) and R is upper triangular. 
(We could denote R by U, but historically R has always been used in this 
context .) 

We will obtain the matrix Q as a product of simpler orthogonal matrices 
based upon the rotation matrix 

[ 

cost2 sin8 
- 

I sin0 cos0 . 
(4.5.6) 
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We generalize such rotation matrices to n x n matrices of the form 

1 

Pi.j = 

1 
cij 

-Sij 

%j 

1 

. . 

1 

Cij 

1 

. . 

1 
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3 (4.5.7) 

where cij = COSB~~ and Sij = sin& are located in the ith and jth rows 

and columns, as indicated. Such matrices are called plane rotation matrices or 
Givens transformations. Just as (4.5.6) defines a rotation of the plane, a matrix 
of the form (4.5.7) gives a rotation in the (i,j) plane in n-space. It is easy to 
show (Exercise 4.5.5) that the matrices (4.5.6) and (4.5.7) are orthogonal. 

We now use the matrices Pij in the following way to achieve the QR fac- 
torization (4.5.5). Let ai denote the ith row of A. Then multiplication of A 
by Plz gives the matrix 

cl281 + 31282 

-51281 + cl282 

Al = P12A = a3 (4.5.8) 

L a, J 
Note that only the first two rows of A are changed by this multiplication. If 
we choose siz and cl2 so that 

- all312 + a2lcl2 = 0, (4.5.9) 

then Al has a zero in the (2,l) position, and the other elements in the first 
two rows of Al differ, in general, from those of A. We do not actually compute 
the angle 012 to achieve (4.5.9) since we can obtain the desired sine and cosine 
directly by 

cl2 = all(c& + u&)-‘/~, ~12 = u~~(c& + a&)-1/2. (4.5.10) 

The denominator in (4.5.10) is non-zero unless both ali and uzi are zero; but 
if (~21 = 0, this step can be bypassed since a zero is already in the desired 
position. 
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The transformation (4.5.8) is analogous to the first step of an LU factoriza- 
tion in which a multiple of the first row of A is subtracted from the second row 
to achieve a zero in the (2,l) position. We next proceed, as in LU, to obtain 
zeros in the remaining positions of the first column. We form AZ = PISA, 
which modifies the first and third rows of Al while leaving all other rows the 
same; in particular, the zero produced in the first stage in the (2,l) position 
remains unchanged. The elements cl3 and 51s of Pi3 are chosen analogously 
to (4.5.10) so that the (3,l) element of AZ is zero. We continue in this fashion, 
zeroing the remaining elements in the first column one after another and then 
zeroing elements in the second column in the order (3,2), (4,2), . . . , (n, 2), and 
so on. In all, we will use (n - 1) + (n - 2) + . . . + 1 plane rotation matrices 
Pij, and the result is that 

PA e P,-1,, . . . PlzA = R (4.5.11) 

is upper triangular. 
We now need two basic facts about orthogonal matrices. First, if U and V 

are orthogonal, then 

(UV)TUV = VTUTUV = VTV = I, 

so that the product of orthogonal matrices is orthogonal. Each of the matrices 
Pij in (4.5.11), and thus their product, P, is orthogonal. The second fact is 
that the inverse of an orthogonal matrix is orthogonal. This follows from the 
definition UTU = I since this implies that I = (UTU)-l = U-‘UmT. Thus, 
if we set Q = P-l, then Q is orthogonal, and multiplying (4.5.11) by Q gives 
(4.5.5). 

We next count the operations to carry out the above QR factorization. 
The majority of the work is in modifying the elements of the two rows that 
are changed at each rotation. From (4.5.8) it is clear that modification of the 
first two rows requires 4n multiplications and 2n additions. (For simplicity we 
have also counted the operations used to produce the zero in the (2,l) position 
even though they do not need to be performed.) The same count is true for 
producing zeros in the remaining n - 2 elements in the first column. Hence 
the first stage requires 4n(n - 1) multiplications and 2n(n - 1) additions. In 
each of the subsequent n - 2 stages, n decreases by 1 in this count so that the 
total is 

4 2 Ic(k - 1) mult + 2 2 Ic(lc - 1) add - $n3 mult + $z3 add, (4.5.12) 
k=2 k=2 

where we have used the summation formulas of Exercise 4.2.4. Computation of 
the cij and sij is also needed, but this requires only O(n2) operations. Thus we 
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see by (4.5.12) that this QR factorization requires approximately four times the 
multiplications and twice the additions of LU factorization (see Section 4.2). 
We will discuss the relative merits of QR and LU factorization shortly, but first 
we show that by using other orthogonal transformations the QR factorization 
can be computed more economically. 

Householder Transformations 

A Householder tranfsormation is a matrix of the form I - 2wwT, where 
wTw = 1. It is easy to see (Exercise 4.5.6) that such matrices are symmetric 
and orthogonal. They are also called elementary reflection matrices (see Ex- 
ercise 4.5.6). We now show how Householder transformations can be used to 
obtain the QR factorization of A. Let a1 be the first column of A and define 
(see Exercise 4.5.11) 

Wl = PlUl, UT - -( all - 31, a21,. . . , ad, (4.5.13) 

where 
s1 = f(aral)1/2, p1 = (2s: - 2allsl)-1/2. (4.5.14) 

The sign of s1 must be chosen to be opposite that of all so that there is 
no cancellation in the computation of ~1; otherwise, the algorithm would be 
numerically unstable. The vector WI satisfies 

so that PI = I - 2wlwy is a Householder transformation. Moreover, 

Gal = da11 - sl)a21 + ka!$] = pl(sT - alla) = &, 

j=2 

so that 

and 

all - 2wlwyal = all - 2hl - SI)PI = s1 
a-41 

> 

ajl - 2wjwral = ajl - - = 2WPl o 

2cLl ’ 
i=2,3 ,..., n. 

This shows that the first column of PI A is 

PIal = a1 - 2wTalwI = (sl,O,. . . ,O)T. 

Thus with this one orthogonal transformation, zeros have been introduced 
into the subdiagonal positions of the first column, as was done by n - 1 Givens 
t,ransforrriat,ioris. 
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The second stage is analogous. A Householder transformation Pz = I - 
2wswT is defined by a vector w2 whose first component is zero and whose 
remaining components are defined as in (4.5.13, 4.5.14), using now the second 
column of PI A from the main diagonal element down. The matrix P2 PI A then 
has zeros below the main diagonal in each of its first two columns. We continue 
in this way to zero elements below the main diagonal by Householder matrices 
Pi = I - 2wiwT, where wi has zeros in its first i - 1 components. Thus 

Pm-l.. . PIA= R, 

where R is upper triangular. The matrices Pi are all orthogonal so that P = 
P,-l . . . PI and P-l are also orthogonal. Therefore, Q = P-l is the orthogonal 
matrix of (4.5.5). 

The above discussion has considered only the formation of the vectors wi 
that define the Householder transformations, and we next consider the remain- 
der of the computation. If al, 82,. . . , a, are the columns of A, then 

PlA = A - 2wlwTA = A - 2wl(wTal, wTa2,. . . , wya,). (4.5.15) 

Thus, the ith column of PlA is 

ai - 2’wraiwl = ai - yluraiul, (4.5.16) 

where 
y1 = 2/L: = (3: - 91011)-l. 

It is more efficient computationally not to form the vector wi explicitly but 
to work with yi and ui as shown in (4.5.16). Analogous computations are 
performed to obtain the remaining reduced matrices PzPlA, . . . ; the complete 
algorithm is summarized in Figure 4.6. 

We next count the operations in the Householder reduction. The bulk 
of the work is in the formation of the new columns of the reduced matrices. 
Referring to the inner loop in Figure 4.6, at the kth stage the inner product 
ufaj requires n - k + 1 multiplications and n - k additions and the operation 
aj - (Y~U~C requires n - k + 1 additions and multiplications. Since there are 
n - k columns to update at the kth stage, this gives approximately 2(n - k) 
additions and multiplications. Summing this over all n - 1 stages, we obtain 

n-l 
2x(n k)” n(n - 1)(2n - = 1) - _ -n3 2 

k=l 
3 3 

(4.5.17) 

additions and multiplications. The number of other operations is no more than 
order n2. Comparing this count with (4.5.12) for the QR factorization using 
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