
Chapter 3 

Pinning It Down: 
Boundary Value Problems 

3.1 The Finite Difference Method for Linear 
Problems 

In the previous section we considered initial value problems for ordinary 
differential equations. In many problems, however, there will be conditions on 
the solution given at more than one point. For a single first order equation 
y’ = f(z, y), data at one point completely determines the solution so that if 
conditions at more than one point are given, either higher order equations or 
systems of equations must be treated. Consider the second-order equation 

ed = fh 4z), v’(4), O<z<l. (3.1.1) 

Because it is second-order, such an equation requires two additional conditions, 
and the simplest possibility is to prescribe the solution values at the end-points: 

w(0) = a, V(1) = p. (3.1.2) 

Equations (3.1.1) and (3.1.2) define a two-point boundary value problem. We 
note that the restriction of the interval in (3.1.1) to [0, l] is no loss of generality 
since a problem on any finite interval may be converted to one on the interval 
10. l] (Exercise 3.1.1). Alternatively, the following development is easily done 
directly on any finite interval (Exercise 3.1.6). 

If the function f of (3.1.1) is nonlinear in either V(X) or w’(z), the boundary 
value problem is nonlinear. Nonlinear boundary value problems are intrinsi- 
cally more difficult to solve, and we will consider them in Chapter 5. In this 
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chapter we treat only linear problems, in which case (3.1.1) may be written in 
the form 

w”(X) = b(x)w’(x) + C(X)W(X) + d(x), O<a:Il, (3.1.3) 

where b, c, and d are given functions of x. The boundary conditions that we 
consider first will be (3.1.2); later, we shall treat other types of boundary condi- 
tions. Equations (3.1.3) and (3.1.2) define a linear two-point boundary-value 
problem for the unknown function v, and our task is to develop procedures 
to approximate the solution. We will assume that the problem has a unique 
solution that is at least two times continuously differentiable. 

We first consider the special case of (3.1.3) in which b(x) - 0, so that the 
equation is 

w”(x) = c(x)(x) + d(x), O<x<l. (3.1.4) 

We will assume that C(X) 2 0 for 0 5 x 5 1; this is a sufficient condition for 
the problem (3.1.4), (3.1.2) to have a unique solution. To begin the numerical 
solution we divide the interval [0, l] into a number of equal subintervals of 
length h, as shown in Figure 3.1. As in Chapter 2, in Figure 3.1 the points xi 
are called the grid points, or nodes, and h is the grid spacing; xo and z~+~ are 
the boundary points, and xi,. . . ,x, are the interior grid points. 

f-&-L A.- 
x0 = 0 Xl X2 X n-l xn 1 = x,+1 

Figure 3.1: Grid Points 

We now need to approximate w”(x) in (3.1.4), and we do this by finite dif- 
ferences. Let xi be any interior grid point and approximate the first derivatives 
at the points xi f 4 by 

w’(xa _ 4) & b(Xi) - 4xi-l)] 
h ’ 

w’(xi + a> & [42i+1) - 441 
h ’ 

These relations are then used to approximate the second derivative: 

W”(Xj) A 
W’(Xj + Q) - W’(Xj - 4) & 4Xi+1) - 24x4 + W(X&1) 

h h2 
. (3.1.5) 

If we now put this approximation into equation (3.1.4) and denote the functions 
c and d evaluated at xi by ci and di, we obtain 

$[w(xi+l) - 2w(xi) + w(xi-I)] - ciw(xi) - di, i = 1,. . . ,n. (3.1.6) 
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What we have shown so far is that if we replace the second derivatives of 
the solution w by finite difference approximations and put these approximations 
into the differential equation, we obtain the approximate relations (3.1.6) that 
the solution must satisfy. We now turn this procedure around. Suppose that 
we can find numbers VI,. . . , v, that satisfy the equations 

$(qt’ - 214 + wiel) - cjvi = di, i = 1,. . . ,n, (3.1.7) 

or 
- vi+1 + 214 - ~-1 + cih2vi = -h2di, i = 1,. . . ,n, (3.1.8) 

with we = Q and vu,+1 = ,0. Then we can consider ~11,. . . , v, to be approxi- 
mations at the grid points xl,. . . , x, to the solution v of the boundary-value 
problem (3.1.4), (3.1.2). We shall return shortly to the question of the accuracy 
of these approximations. 

The equations (3.1.8) form a system of n linear equations in the n unknowns 

w,**., n v and can be written in matrix-vector form as 

2+clh2 -1 Vl -h2dl + a 
-1 2+c2h2 ‘*. v2 -h2d2 

. . . . = .(3.1.9) 

-1 : -h2d,m1 
-1 2+c,h2 v, -h2d, + P 

Thus, to obtain the approximate solution ~1,. . . , vn, we need to solve this 
system of linear equations. Techniques for this will be discussed in the next 
section. 

The coefficient matrix of (3.1.9) in the case that the ci are all zero is 

- 2 -1 

-1 2 *.. 

*. *. . . 
-1 

-1 2 

(3.1.10) 

This is an important matrix which arises in many contexts, as we shall see. 
Matrices of the form (3.1.9) or (3.1.10) are called tridiagonal since only the 
three main diagonals of the matrix have non-zero elements. Tridiagonal ma- 
trices arise in a variety of applications in addition to the two-point boundary 
value problems of this chapter. 
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Discretization Error 

We next consider the important question of the error in the approximations 
2rl,...,Vn. Since the linear system (3.1.9) which determines these quantities 
will be solved numerically, the computed wi will be in error because of rounding; 
this will be discussed in more detail in Chapter 4. For the present we assume 
that the vi are computed with no rounding error so that ~1,. . . , v, is the exact 
solution of the system (3.1.9). Let w(x~) again be the exact solution of the 
boundary-value problem at xi. Then, analogous to the definition for initial- 
value problems in Chapter 2, 

max )21i - u(x~)[ 
l<i<n 

is the (global) discretization error. We now indicate how an analysis of the 
discretization error proceeds, and give results in a particular case. Again, we 
restrict our attention to the equation (3.1.4). 

We first define the local discretization error, in a manner analogous to that 
for initial-value problems, by 

L(x, h) = &(x + h) - 2w(x) + v(x - h)] - c(x)w(x) - d(x), (3.1.12) 

where v is the exact solution of the differential equation (3.1.4) and h is the 
grid spacing. By means of (3.1.4), we can replace cw + d in (3.1.12) with w” so 
that 

L(x, h) = &J(X + h) - 24x) + v(x - h)] - w”(x). (3.1.13) 

Thus the local discretization error is just the error in approximating 21”. To 
estimate this error, we assume that w is four times continuously differentiable 
and expand w(x + h) and V(X - h) in Taylor series. After we collect terms (the 
details of which are left to Exercise 3.1.2), we obtain 

L(x, h) = &(4)(x)h2 + O(h4) = O(h2). (3.1.14) 

The problem now is to relate this local discretization error to the global error 
(3.1.11). To do this we evaluate (3.1.12) at the grid points xi, set pi = L(xi, h), 
and then subtract (3.1.7) from (3.1.12). Setting ei = v(x~) - zli, this gives 

ui= $[ei+l-2ei+ei-l]-ciei, i=l,.*.,n, 

or 
(2 + cih2)ei - ei+l - ei-1 = --h’ci, i = 1;. . . ,n, (3.1.15) 

where ee = e,+i = 0. If A is the coefficient matrix of (3.1.9) and e and u are 
vectors with components ei, . . . , e, and gi,. . . , on, we can write (3.1.15) as 

Ae = -h’a, (3.1.16) 
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or, assuming that A-’ exists, 

e = -h2A-lg. (3.1.17) 

This is the basic relationship between the global and local discretization errors. 
Note that the global discretization errors ei, . . . , e, and the approximate solu- 
tions VI,..., V, satisfy systems of equations with exactly the same coefficient 
matrix, but different right hand sides. 

The problem now is to study the behavior of A-l as h + 0. This is made 
more difficult by the fact that n, the order of A, tends to infinity as h + 0. It 
is beyond the scope of this book to pursue this problem in any generality, but 
we can give a relatively simple analysis of the discretization error in the case 
where 

C(X) 2 Y > 0, z E [O, 11, (3.1.18) 

so that ci 2 y, i = 1,. . . , n. If we set e = rnaxleil and 0 = max[aiJ = O(h2), 
we obtain from (3.1.15) and (3.1.18) that 

(2 + yh2)leil 5 2e + h2a, i=l , . . . ,n. (3.1.19) 

Since (3.1.19) holds for all i, we must have 

(2 + yh2)e 5 2e + h20. 

Therefore, since by (3.1.14) (T = O(h2), we conclude that 

e 5 s = O(h2), (3.1.20) 

which shows that the global discretization error is O(h2) provided that the 
local discretization is O(h2). It can be shown that the same result holds more 
generally, particularly for the important special case in which c(z) q 0, but a 
more difficult analysis is required. 

More General Equations 

We next consider the more general equation (3.1.3), in which U’ is present. 
The standard centered difference approximation to V’(Z) is 

w’(x) A $-[w(.T + h) - v(z - h)], (3.1.21) 

and it is easy to show (Exercise 3.1.3) that the error in this approximation is 
O(h2). If we replace w’(z) in (3.1.3) at the grid points and proceed as before, 
the equations corresponding to (3.1.8) now become 

(-l-~)v+I+(2+c~h2)v~+(--1+$ff)u~+l=-h2di, i=l,...,n, 
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rivi-1 + pivi + qiVi+l = -h2di, i=l , . . . , n, 

where we have set 

pi = 2 + cih2 , pi = -1+ $ ri = -I- ii!!. 
2 

(3.1.22) 

Then we can write these equations in matrix form as 

1 Pl Ql 

r2 ~2 472 

I 
*. . . . . . . . &z-l 

rn P, 

01 

2172 

= -h2 . (3.1.23) 

Ll 
dn + ad/h2 

dl + rlCr/h2 

4 

Diagonal Dominance 

One desirable property of the coefficient matrix of (3.1.23) is diagonal dom- 
inance. A general n x n matrix A = (aij) is row diagonally dominant if 

lG,il >ClO~ijl, i=l,...,n; (3.1.24) 
j#i 

that is, the absolute value of the diagonal element of each row is at least as 
large as the sum of the absolute values of all the off-diagonal elements in that 
row. The matrix is column diagonally dominant if 

/@iI >Clajil, i=l,...,n. (3.1.25) 
j#i 

Diagonal dominance is important for a number of reasons, one of which 
is that it is an approach to showing non-singularity of the matrix. Diagonal 
dominance by itself is not sufficient for this; for example, a 2 x 2 matrix with all 
elements equal to 1 is diagonally dominant but singular. However, the following 
strengthening of diagonal dominance guarantees non-singularity. The matrix 
A is strictly row (column) diagonally dominant if strict inequality holds in 
(3.1.24) for all i (or (3.1.25) for column). We then have the following result. 

THEOREM 3.1.1. If the n x n matrix A is strictly row or column 
diagonally dominant, then it is non-singular. 

To prove this theorem, assume that A is singular so that Ax = 0 for some 
non-zero x (see Theorem A.2.1 in Appendix 2). Let lxkl = max{lxiI : i = 
1 ,‘**I n}. The kth equation of Ax = 0 is 

akkXk = - c akjxj 

j#k 
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so that 

By assumption, lzkl > 0 so it can be divided out and the resulting inequality 
contradicts strict row diagonal dominance. This contradiction shows that A 
is non-singular. If A is strictly column diagonally dominant, then AT, the 
transpose of A, is strictly row diagonally dominant, so it is non-singular. Hence 
A is non-singular since det A = det AT. This completes the proof. 

For the matrix of (3.1.23) to be row diagonally dominant we need that 

IPal 2 ITil + If&l, i= l,...,n, 

or, using (3.1.22), 

12 + c&21 2 11 + ?I + 11 - ?I, i=l,...,n. (3.1.26) 

If we assume that ci 2 0, then (3.1.26) holds if h is sufficiently small. In 
particular, if 

lbihl 523 i= l,...,n, (3.1.27) 

then the absolute values of the quantities on the right side of (3.1.26) are the 
quantities themselves, so that 

12 + Cih21 L 1 + ~ + 1 - ~ = 2. 

The condition (3.1.27) on h, which also ensures column diagonal dominance, 
is a rather stringent one and can be avoided by using one-sided differences in 
place of the central difference (3.1.21) to approximate the first derivative. More 
precisely, we use the approximations 

Y’(Zi) - 
$(w~+I -vi) if bi < 0, 

i(~i - ~a-1) if bi 2 0, 
(3.1.28) 

so that the direction of the one-sided difference is determined by the sign of 
bi. Such differences are quite commonly used in fluid dynamics problems and 
in that context are called upwind (or upstream) differences. With (3.1.28) the 
ith row of the coefficient matrix (3.1.23) becomes 

-1 2+Cih2-bih -l+bih, bi 50, 

-(l + bib) 2 + Cih2 + bib -1, bi > 0, 
(3.1.29) 

and it is easy to verify that row diagonal dominance holds, independent of the 
size of h, assuming again that ci 2 0. We note, however, that although the 
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centered difference approximation (3.1.21) is second-order accurate, the one- 
sided approximations (3.1.28) are only first-order accurate, and this increase 
in the discretization error must be weighed against the better properties of the 
coefficient matrix. 

Symmetry 

Another desirable property of the coefficient matrix of (3.1.23) is symmetry. 
A matrix A = (aij) is symmetric if A = AT; that is, if 

aij = aji, i,j=l,..., n. (3.1.30) 

The matrix of (3.1.9) is symmetric, but for the matrix of (3.1.23) to be sym- 
metric we need that qi = ri+r, or using (3.1.22), 

-l+ibih=-l-ibi+rh, i=l,..., n-l. 

Clearly, these relations will not usually hold. In many situations, however, the 
differential equation is of the form 

[a(x)w’]’ = d(x). (3.1.31) 

In this case we can obtain a symmetric coefficient matrix by “symmetric dif- 
ferencing,” as described in the Supplementary Discussion. 

Other Boundary Conditions 

The previous discussion has used the boundary conditions (3.1.2). In many 
problems, however, boundary conditions on the derivative rather than the 
function itself may be given, and we now consider the modifications that this 
requires. 

Suppose, for example, that we have the boundary conditions 

w’(0) = a w’(1) = p (3.1.32) 

in place of (3.1.2); that is, we specify derivative values rather than function 
values. Consider now the difference equations (3.1.8). In the equation for 
i = 1, the value of vc is no longer known from the boundary condition at 
x = 0. Instead ve will be an additional unknown and we will need another 
equation that can be derived as follows. We approximate V” at x = 0 by 

1 
w”(0) - -[w-1 - 2we + Vl], 

h2 
(3.1.33) 

using a grid point -h outside the interval. Then by the boundary condition 

a = v’(0) - &WI -w-1] (3.1.34) 
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we have v-iS~i - 2ah, and we can use this to eliminate w-1 in (3.1.33): 

w”(O) A $22)’ - 2110 - 2ah]. (3.1.35) 

In general this approximation is only first-order accurate, but in the important 
special case that o = 0 it is second-order (Exercise 3.1.7). We can now use 
(3.1.35) to obtain an additional equation and we have n + 1 equations in the 
n+ 1 unknowns z~e,...,~,. If v(1) = p is specified as before, then this is 
the system of equations to be solved. If v’(1) is specified, as in (3.1.32), then 
another equation would arise from the approximation 

v”(1) - $ [2v, - 2w,+i + 2ph], (3.1.36) 

and w,+l would be an additional unknown. 
If only the function value is specified, as in (3.1.2), the boundary conditions 

are called Dirichlet, whereas if only the derivatives are specified, as in (3.1.32), 
the boundary conditions are called Neumann. More generally, mixed boundary 
conditions may be given as linear combinations of both function and derivative 
values at both end points: 

77140) +ww = a, n41) + w’(l) = P. 

In this case approximations analogous to those discussed previously would be 
used. 

We return to the boundary conditions (3.1.32), and consider the differen- 
tial equation (3.1.4). The approximations (3.1.35) and (3.1.36) give the two 
equations 

(2 + coh2)wo - 2~ = 2ah - h’do, 

(2 + c,+lh2)w,+l - 2v, = 2ph - h2d,+l, 

which are added to the system (3.1.8) to give n + 2 equations in the n + 2 
unknowns we, . . . , w,+l. The coefficient matrix of this system is 

2+coh2 -2 

-1 2+clh2 -1 

A= ‘. . . . . (3.1.37) 
-1 -1 

-2 2+c,h2 

This matrix is no longer symmetric, but it can be easily symmetrized if desired 
(Exercise 3.1.8). If ci > 0, i = 0, . . . , n + 1, Theorem 3.1.1 shows that A is 
non-singular. But if the ci are all zero it is singular, since Ae = 0, where 
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e = (1, 1,. . . , l)T. This singularity of A mirrors the non-uniqueness of solutions 
of the differential equation itself: if C(X) G 0 in (3.1.4) and Y is a solution 
satisfying the boundary conditions (3.1.32), then w + y is also a solution for 
any constant y. 

Another type of boundary condition that leads to non-unique solutions is 
called periodic: 

w(0) = w(1). (3.1.38) 

In this case vc and v,+i are both unknowns but since they are equal only 
one needs to be added to the system of equations. Again, we can use (3.1.33) 
as an additional equation. By (3.1.38), we can assume that the solution Y is 
extended periodically outside [0, 11; in particular, we can take w-1 = w, in 
(3.1.33) so that it becomes 

v”(0) A j&n - 2Ve + q]. (3.1.39) 

Similarly, in the approximation at zn we can take v,+r = ~0: 

w”(&J - ++’ - 2V, + T&+1] = $[Wn-’ - 2w, + T&J]. (3.1.40) 

There will then be n + 1 unknowns we,. . . , w,, and the coefficient matrix for 
the problem (3.1.4) can be obtained, using (3.1.39) and (3.1.40), in the form 

2+c&2 -1 -1 

-1 2+ci/Lz *.. 
A= (3.1.41) 

*. *. -1 

-1 -1 2+&J? 

The tridiagonal structure has now been lost because of the outlying -1’s. As 
with (3.1.37), it follows from Theorem 3.1.1 that the matrix A of (3.1.41) is 
non-singular if all ci are positive, but singular if all ci are zero. (As before, 
Ae = 0.) This singularity again reflects the differential equation, since if 
c(z) = 0 in (3.1.4) and w is a solution satisfying (3.1.38), then v + y is also a 
solution for any constant. 

Whatever difference approximation or boundary conditions are involved, 
the basic computational problem is to solve the resulting system of linear 
equations. We will address this question in the next section for the particular 
systems arising from two-point boundary value problems. The next chapter 
will consider linear systems in more generality. 
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Supplementary Discussion and References: 3.1 

We have discussed in the text only the simplest differencing procedures 
for rather simple problems. As we saw, the central difference approximation 
(3.1.5) gives rise to discretization error proportional to h2. It is frequently 
desirable to use more accurate methods. One approach is to use higher-order 
approximations; for example, 

w”(Xi) 1 & (-zlim2 + 16wim1 - 30wi + 16wi-i - Q+~) (3.1.42) 

is a fourth-order approximation (the error is proportional to h4), provided that 
w is sufficiently differentiable. One difficulty with applying approximations of 
this type to two-point boundary-value problems occurs near the boundary. For 
example, if we apply the approximation at the first interior grid point 21, it 
requires values of w not only at ze but also at z-1, which is outside the interval. 
However, second-order approximations can be applied at ~1 and x,-i and still 
retain fourth-order accuracy of the solution. This was proved by Shoosmith 
[1973] for various second order approximations, depending on (3.1.3), using 
techniques developed by Bramble and Hubbard [1964] for partial differential 
equations. 

Another approach to obtaining higher-order approximations to the solution, 
while using only second-order approximations to the derivatives is Richardson 
extrapolation. This was discussed in Section 2.2 for initial value problems 
and applies also to boundary value problems. Let x* be some fixed point in 
the interval [a, b] and let w(x*; h) denote the approximate solution at x* as a 
function of h. Assume that 

w(x*; h) = v(z*) + czh2 + c3h3 . . . + cphP + O(hp+‘) (3.1.43) 

where w(z*) is the solution of the differential equation at z*, and the ci are 
functions of x* and the solution. Note that the expansion (3.1.43) starts with 
h2 since we are assuming that the method is second order accurate. If w(x*; 3) 

is the approximate solution obtained with step length 4, then 

‘$x*; h) = 5[4w(z*; ;) - w(x*; h)] = d3h3 + . . . + O(hP+l), 

so that this new approximation is third-order accurate. In certain cases, such 
as when the first derivative is absent in (3.1.3), the error expansion (3.1.43) 
will contain only even powers of h, and one application of the extrapolation 
principle will then give fourth-order accuracy and is particularly effective. 

Still another approach to higher-order accuracy is deferred correction. In 
this procedure one computes an approximation to the local discretization error 
by means of the current approximate solution, and then uses this to obtain 
a new approximate solution with O(h4) accuracy. The process can then be 
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repeated to obtain still higher order approximations. For further discussion of 
this method, see, for example, Ascher et al. [1988]. 

We next give more details on “symmetric differencing” for the “self-adjoint” 
equation (3.1.31). As in the derivation of (3.1.5), we use the auxiliary grid 
points xi f 4 and approximate the outermost derivative of (a~‘)’ at xi by 

[a(x)v’(x)]: A &+p;+; - aqJ&), 

where the subscripts indicate the grid point at which the evaluation is done. 
We approximate the first derivatives by the centered differences 

and use these in (3.1.44) to obtain 

[a(x)v’(x)]: A $ai++ (Vi+1 - Vi) - ai-3 (Wi - W&l)] 

Therefore the system of difference equations corresponding to (3.1.31) is of the 
form Av = q where 

a3/2 +a112 -"3/2 

-a312 a5/2 +a312 -Q/2 

A= .* . . . . 

-%-l/2 

-G--1/2 G--1/2 +%z+1/2 

. (3.1.46) 

Clearly, this matrix is both symmetric and diagonally dominant. Note also 
that if a(~) E 1, (3.1.46) reduces to the (2, -1) matrix (3.1.10). If a term 
c(x)w is also present in (3.1.31), this will just add cih2 to the ith diagonal 
element of (3.1.46). 

A matrix A is reducible if there is a permutation matrix P (see Section 4.3) 
so that PAPT has the form 

PAPT= [ “d if], 

where Al and A3 are square submatrices. If no such permutation matrix can 
be found, then A is irreducible. It can be shown that any tridiagonal ma- 
trix whose off-diagonal elements are non-zero is irreducible; in particular, the 
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matrix (3.1.10) is irreducible. A matrix that is irreducible and row diagonally 
dominant is irreducibly diagonally dominant if strict inequality holds in (3.1.24) 
for at least one i. The proof of Theorem 3.1.1 can be extended to show that 
irreducibly diagonally dominant matrices are non-singular; in particular, the 
matrix (3.1.10) is non-singular. 

For further reading on two-point boundary value problems, see Ortega 
[1990] and the excellent books by Ascher et al. [1988] and Keller [1968]. 

EXERCISES 3.1 

3.1.1. Consider the boundary value problem u”(z) = g(z, U(Z), U’(Z)) with ~(a) = 
0, u(b) = p. By the change of variable t = (b - a)z + a, show that this 
problem is equivalent to (3.1.1) and (3.1.2) with V(Z) = u((b - a)z + a) and 
f(z, w(z), w’(z)) = (b - a)‘g((b - a)3 + a, W(Z), (b - a)-‘v’(z)). Specialize this 
result to the linear problem (3.1.3). 

3.1.2. Assume that the function W(Z) is suitably differentiable. By expanding 
W(Z + h) and w(z - h) in Taylor series, verify that (3.1.14) holds. 

3.1.3 Assume that the function W(Z) is twice differentiable. Show that the error in 
the centered difference approximation (3.1.21) is proportional to h2. 

3.1.4. Consider the two-point boundary-value problem 

0" + 2221' - 22, = 52, w(0) = l,V(l) = 0. 

a. Let h = $ and explicitly write out the difference equations (3.1.23). 

b. Repeat part a using the one-sided approximations (3.1.28) for u’. 

c. Repeat parts a and b for the boundary conditions w’(O) = 1, w(l) = 0, and 
then w’(O) + v(O) = 1, v’(1) + iv(l) = 0. 

3.1.5. Assume that the function a of (3.1.31) is twice differentiable. By the change of 
variable W(Z) = m ( ) h a z w z , s ow that (3.1.31) can be replaced by an equation 
of the form W”(Z) = C(Z)W(X) + f(x). G ive an expression for C(Z) and show 
how it can be approximated numerically. 

3.1.6. Suppose the equation (3.1.4) is defined on the interval [6,r]. Show that the 
equations (3.1.8) are still correct provided that h = (y - S/(n + 1)) and w, is 
interpreted as the approximate solution at 2% = 6 + ih. 

3.1.7. Assuming that u is sufficiently differentiable, show that (3.1.35) is, in general, 
only a first-order approximation to w”(O). However, if (Y = 0, argue that it is 
second-order by assuming that w has been extended outside the interval [0, l] 
so that w(-h) = w(h). 
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3.1.8. Let A and B be the tridiagonal matrices 

al bl 

. . . . Cl . . 
A= . . > B= 

bn-1 
h-1 a, _ 

al 71 

y1 ... ‘.. 

. . 3 

YTL-1 

m-1 an _ 

wherebjcj>Oandyi=&,i=l,...,n-1. Showthatif 

D=&ag I,&,* 
( 

bl . . *6,-l 
Cl ClCZ ‘. . . ’ Cl . . '&l-l > 

then B = DlJ2ADm112, where Dli2 = diag(d:12, diJ2,. . . ,dA’2). 

3.1.9. Derive the approximations (3.1.5) and (3.1.21) by means of interpolation poly- 
nomials: let 1 be the polynomial of degree 1 that satisfies Z(z k h) = ~(a: f h), 
and show that Z’(z) is the approximation (3.1.21). Then let q be the quadratic 
polynomial that satisfies q(x) = V(Z) and q(z ZJC h) = v(z f h), and show that 
q”(z) gives the approximation (3.1.5). 

3.1.10. Assume that the bi in (3.1.22) are all equal to a constant b. Give a condition 
that ensures that the matrix of (3.1.23) can be symmetrized as in Exercise 
3.1.8. Also, if the ci = 0 in (3.1.22), derive an expansion for the quantities d, 
of Exercise 3.1.8 as n + 00. 

3.1.11. Show that the matrix (3.1.46) can be written as A = ETDE, where E is 
the (n + 1) x n matrix 

E= 

3.1.12. Let A = I - B, where llBljrn < 1 (See Appendix 2). Modify the proof of 
Theorem 3.1.1 to show that A is nonsingular. 

- 1 
-1 1 

‘. 

. . . 1 
-1 

3.2 Solution of the Discretized Problem 

In the previous section we saw that the use of finite difference discretization 
of the two-point boundary value problem (3.1.3) led to a system of linear 
equations. The exact form of this system depends on the boundary conditions, 
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but in all the cases we considered, except periodic boundary conditions, the 
system was of the tridiagonal form 

I 
a11 al2 

a21 a22 a23 

a32 “. . . (3.2.1) 

Gaussian Elimination 

We will solve the system (3.2.1) by the Gaussian elimination method. This 
method, along with several variants, will be considered in detail for general 
linear systems in the next chapter. For the tridiagonal system (3.2.1) it turns 
out to be particularly simple. We consider first an example for n = 3 in which 
the equations are 

2vr - 212 = 1 

-v1+ 2v2 - 213 = 2 (3.2.2) 

-02 + 221s = 3 . 

Multiply the first equation by i and add to the second equation. This elimi- 
nates the coefficient of vr in the second equation, which becomes 

3 5 
-212 - = 2 v3 -. 

2 
(3.2.3) 

Now multiply this equation by $ and add to the original third equation. This 
eliminates the coefficient of ‘us in the third equation and gives the modified 
equation 

4 14 
-v3 = -, 
3 3 

in which us is the only unknown. Thus 2)s = i. Then (3.2.3) gives 212 = 4, and 
the first equation of (3.2.2) gives vr = 4. 

The above example illustrates the main ideas of Gaussian elimination for 
the general tridiagonal system (3.2.1), which we write out in equation form as 

a112’1 + a12v2 

a2lvl + a22v2 + a23v3 

a32v2 + a33213 + a34v4 

*. 

= dl 
= & 
= ds (3.2.4) 

arm-lvn-l + annun = d,. 
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We assume that all # 0, multiply the first equation by uzr/orr, and subtract 
it from the second. This eliminates the coefficient of wr in the second equation 
so that the last n - 1 equations are 

a’z2v2 + a23v3 = 4 
a32212 + a33v3 + a34v4 = 4 

where the primes indicate that the elements have been changed by the first 
row operations. This system is again tridiagonal, and we repeat the process: 
multiply the first row by ~132/&~ and subtract from the next row to eliminate 
the coefficient of 02. Note that in this step, as in all subsequent ones, we must 
assume that the divisor element is non-zero. We will consider this assumption 
in much more detail in the next chapter. 

At the end of the above process, the system has been transformed to 

all% + a12v2 = dl 

ai2v2 + a23v3 = 4 
. . 

a;-1,&Jn-1+ G-l,n% = d;-, 

(3.2.5) 

ah,,v,, = dk. 

Since the last equation contains only a single unknown, it can be solved. Then 
with V, computed, the next to last equation can be solved for ~~-1, and so 
on, working our way back up the equations. This process is known as the back 
substitution, at the end of which we have computed the solution of the system 
(3.2.4). 

As we shall see in the next chapter, Gaussian elimination for a general 
linear system of n equations requires approximately in” arithmetic operations. 
Because of the simple form of tridiagonal systems, far fewer operations are 
needed. To reduce the original system (3.2.4) to (3.2.5) requires only 2(n - 
1) additions, 2(n - 1) multiplications, and n - 1 divisions, while the back 
substitution requires n - 1 additions, n - 1 multiplications, and n divisions. 
Hence the total operation count to solve a tridiagonal system is 

3(n - 1) additions + 3(n - 1) multiplications + (2n - 1) divisions. 

Because of this relatively small operation count, very large systems can be 
solved very rapidly. Suppose, for example, that multiplication and addition 
each require 1,~s (=10M6 seconds) and division requires 5~s. Then the arith- 
metic operation time for n = 10,000 is approximately 

(60,000 + 20,000 x 5)~s = 0.16 seconds. 
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A Numerical Example 

To illustrate the methods of this chapter we solve a particular two-point 
boundary value problem numerically. The equation is 

[(1+x2)v’]‘=2+6x2+2xcosx-(1+x2)sinx, (3.2.6) 

with the boundary conditions 

v(0) = 1, v(1) = 2 + sin 1. (3.2.7) 

To evaluate the accuracy of the methods we have chosen the right hand side 
of (3.2.6) so that the exact solution is known: 

v(x) = x2 + sinx + 1. (3.2.8) 

The equation (3.2.6) is of the form (3.1.31), but we can carry out the 
differentiation to write it as 

where 

(1+ x2)21” + 2xv’ = d(x), (3.2.9) 

d(x)=2+6x2+2xcosx-(l+x2)sinx. (3.2.10) 

We could divide (3.2.9) through by 1 +x2 to obtain the form (3.1.3). Alterna- 
tively, we can modify the difference equations by multiplying the approxima- 
tion of V” by 1 + x2; that is, 

(1 +x2)21” I%* - - (l :2x1) (&+I - 2vi + V&-1). 

Using (3.2.11) and central differences to approximate v’, the difference equa- 
tions have the matrix form (3.1.23), where if ai = 1 + xf 

pi = 2ai, qi = -ai - xih, pi = -ai + xih. 

Since xi = ih, and ai = 1 + (ih)2, the coefficient matrix is then 

(3.2.12) 

2 + 2h2 -1- 2h2 
-1- 2h2 2 + 8h2 -1 - 6h2 

**. *. * *. . 
-l-n(n-l)h2 ’ 

-1- n(n - l)h2 2 + 2n2h2 
$2.13) 

and the right hand side is 

.,d,-l,d,- [n(n+l)+$] (Z+sinl)r. (3.2.14) 
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On the other hand, if we use the one-sided differences (3.1.28) to approximate 
v’, the coefficient matrix and the right hand side are 

2 + 4h2 -1- 3h2 
-1 - 4h2 2 + 12h2 -1 - 8h2 

*a. *a. **. (3.2.15) 
-1- (n - 1)2h2 

-1 - n2h2 2 + 2n(n + l)h2 

-h2 [dl- (I+&),&... d,- (n2+2n+$)(2+sinl)]T. (3.2.16) 

It is left to Exercise 3.2.2 to verify (3.2.13) - (3.2.16). 
We could also use the discretization of (3.2.6) discussed in the Supplemen- 

tary Discussion of Section 3.1. In this case the matrix (3.1.46) becomes 

2+ $h2 -1 _ 8h2 
4 

-1 - 2h2 
4 

2+yh2 -l- zh2 
4 

**. **. **. 
’ -1 - (n _ +)zhz 

-1 - (n - i)2h2 2 + (2n2 + i)h2 
(3.2.17) 

and the right-hand side is 

-h’{dr (;+$);dz,..., d,- [(n+i)‘+$] (I+sinl)r. (3.2.18) 

All three systems were solved for various values of h. Figure 3.2 shows the 
approximate solution using (3.2.13) and (3.2.14) with a step size h = l/32. 
This agrees very closely with the exact solution (3.2.8). The other methods 
generated visibly indistinguishable approximate solutions. 

Periodic Boundary Conditions 

We conclude this chapter by considering other boundary conditions. As 
discussed in Section 3.1, Neumann boundary conditions also lead to tridiago- 
nal systems of equations, but periodic boundary conditions introduce matrix 
elements outside of the tridiagonal part, as shown in (3.1.41). We could solve 
linear systems with such coefficient matrices by Gaussian elimination, but we 
wish to consider an alternative. 

For any non-zero column vectors u and v of length n, the product uvT is 
called a rank-one matrix and is an n x n matrix whose i, j entry is uivj. Now 
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0 1 
X 

Figure 3.2: The Computed Solution to (3.2.9), (3.2.7), using h = 1132 for the 
Difference Method Corresponding to (3.2.13), (3.2.14) 

let A be the matrix of (3.1.41) and I3 the tridiagonal part of the matrix. Then 
A may be written as (Exercise 3.2.7) 

A = B - e,eT - e,er, (3.2.19) 

where ei is the vector with 1 in the ith position and zero elsewhere. Thus A 
may be written as the sum of its tridiagonal part plus two rank-one matrices 
that bring in the outlying -1’s. We may also write A as 

A=T-wwT, (3.2.20) 

where T = B + diag(1, 0, . . . , 0,l) and w = el + e,. This changes the original 
tridiagonal matrix but has the advantage that A is now a tridiagonal matrix 
plus a single rank-one matrix. 

Next let C be any nonsingular matrix and uvT a rank-one matrix. Then 
the Sherman-Morrison formula is 

(C + &y-l = c-1 - fylC--luVTC-l, a = 1+ PC--1U, (3.2.21) 

which is easily verified (Exercise 3.2.7). The condition for nonsingularity of 
C + uvT is that cy # 0. Note that the matrix added to C-l on the right side 
of (3.2.21) is also a rank-one matrix. To solve a linear system of the form 

(C+uvT)x = b, (3.2.22) 
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we do not wish to form the inverse as in (3.2.21), but only solve linear systems. 
Thus we use (3.2.21) to write the solution of (3.2.22) in the form 

X = (C + UVT)-lb = C-lb - a-lC-luvTC-lb (3.2.23) 

= y - a-l(vTy)z, c!=l+v%, 

where y is the solution of Cy = b and z the solution of Cz = u. In particular, 
if C is a tridiagonal matrix, we can solve the system (3.2.22) by solving two 
tridiagonal systems and then combining those solutions as shown in (3.2.23). 
Thus, for the matrix of (3.2.20), the solution of Ax = b would consist of the 
steps: 

Solve Ty = b, Tz = w, (3.2.24) 

Form (Y = 1 + wTz, x = y - o-‘(wTy)z. (3.2.25) 

In the next chapter we will see (Exercises 4.2.20,21) that this approach has a 
slightly lower operation count than applying Gaussian elimination to A itself. 
More importantly, it requires only a code for solving tridiagonal systems (plus 
the additional operations of (3.2.25)) w h ereas a Gaussian elimination code that 
takes advantage of the zeros in A is somewhat more complicated. 

Although we were able to convert the matrix A of (3.2.19) to the form 
(3.2.20), which involved only a single rank-one matrix, in many situations we 
wish to deal with a matrix of the form C + R, where R is a matrix of rank m. 
A rank m matrix may be written in the form R = UVT, where U and V are 
n x m matrices. Then (3.2.21) extends to the Sherman-Morrison- Woodbury 
formula 

(C + LwT)-’ = c-l - c-w(I + VTC-lU)-lvTC-l. (3.2.26) 

The matrix 1+ VTCmlU is m x m, and the Sherman-Morrison formula (3.2.21) 
is the special case m = 1 of (3.2.26). We could apply (3.2.26) to solve the 
system Ax = b, where A is given by (3.2.19), although it is slightly more 
efficient to use (3.2.20) and (3.2.21). To use the formula (3.2.26) we take 
C = B, U = (ei,e,);and V = -( e,, er). The details of the computation are 
left to Exercise 3.2.8. 

Supplementary Discussion and References: 3.2 

For a nice review of the history and many applications of the formulas 
(3.2.21) and (3.2.26), see Hager [1989]. In particular, (3.2.21) was first given 
by J. Sherman and W. Morrison in 1949 for the special case of changing the 
elements in one column of C; in this case v = ei if the ith column is changed. 
The general formula (3.2.21) was given by M. Bartlett in 1951. Simultaneously, 



3.2 SOLUTION OF THE DISCRETIZED PROBLEM 87 

M. Woodbury gave the still more general formula (3.2.26) in a 1950 report, 
although it had appeared in earlier work in the mid 1940’s. For a discussion 
of rounding error analysis of these formulas, see Yip [1986]. 

EXERCISES 3.2 

3.2.1. Solve the linear system 

by Gaussian elimination. 

3.2.2. Verify that the coefficient matrix and right hand side of the difference ap- 
proximation of (3.2.9) using (3.2.11) and central difference approximations for 
w’ are given by (3.2.13) and (3.2.14). Verify (3.2.15) and (3.2.16) if one-sided 
approximations to w’ are used. 

3.2.3. Write a computer program to implement Gaussian elimination for tridiagonal 
systems. Use one-dimensional arrays to store the matrix. 

3.2.4. Multiply two n x n tridiagonal matrices. How many arithmetic operations 
does this require? Is the product matrix tridiagonal? 

3.2.5. Solve numerically the system with coefficient matrix and right-hand side 
(3.2.13), (3.2.14) for n = 10 and n = 20. Discuss the accuracy of your ap- 
proximate solutions. 

3.2.6. Repeat Exercise 3.2.5 for (3.2.15), (3.2.16) and (3.2.17), (3.2.18). 

3.2.7. Verify formulas (3.2.19), (3.2.21), and (3.2.26). 

3.2.8. Verify that the formula (3.2.26) can be used to solve the system Ax = b, 
where A is given by (3.2.19), by carrying out the following steps: 

1. Solve By = b, Bwl = el, Bw, = e,. 

2. Form the 2 x 2 matrix 

3. Form the 2-vector 
q = (I + UTW)-QJTy. 

4. Form the solution 
x=y-wq. 
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3.2.9. Consider the problem on the infinite interval (0,oo): 

y”(Z) = (22 + 2)/(x + 2)y(z), y(0) = 2, y(m) = 0. 

a. Approximate a solution to this problem by replacing the boundary condition 
at 00 by y(5) = 0 and using finite differences for h = l/10,1/20 and l/32. 

b. Now note that (22+2)/(x+2) + 2 as 2 + co. Hence consider the problem 

z”(2) = 22(z), z(0) = 2, z(o0) = 0. 

Solve this problem exactly and find an expression for z’(z) in terms of 
z(z). Using this expression for the value of y’(z) as z --+ 00, solve the 
truncated tridiagonal system and compare the solution to the truncated 
system used in part a. 
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