
Chapter 2 

Letting It Fly: Initial 
Value Problems 

2.1 Examples of Initial Value Problems 

In this section we shall derive the mathematical models for two initial- 
value problems, one from the field of ecology and the other with aerospace 
applications. 

A Predator-Prey Problem 

We consider the population dynamics of two interacting species that have 
a predator-prey relationship. That is, the prey is able to find sufficient food 
but is killed by the predator whenever they encounter each other. Examples 
of such species interaction are wolves and rabbits, and parasites and certain 
hosts. What we want to investigate is how the predator and prey populations 
vary with time. 

Let z = z(t) and y = y(t) designate the number of prey and predators, 
respectively, at time t. To derive mathematical equations that approximate 
the population dynamics we make several simplifying assumptions. First, we 
assume that the prey population, if left alone, increases at a rate proportional 
to 2. Second, we assume that the number of times that’the predator kills the 
prey depends on the probability of the two coming together and is therefore 
proportional to zy. Combining these two assumptions, the prey population is 
governed by the ordinary differential equation 

where CY > 0 and p < 0. 
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For the predator equation we assume that the number of predators would 
decrease by natural causes if the prey were removed, contributing a yy term. 
However, the number of predators increases as a result of encounters with prey, 
leading to 

dy 
x = YY + 6XY (2.1.2) 

with y < 0 and S > 0. In summary, we have the system of two nonlinear 
ordinary differential equations 

dx 
- =ax+pxy, 
dt 

dy - = yy + 6xy, 
dt 

(2.1.3) 

with the assumptions o > 0, ,0 < 0, y < 0, and 6 > 0. These equations were 
first formulated in 1925 and are known its the Lotka-Volterra equations. The 
problem statement is not complete; we must start the process at some time 
(for example, t = 0) with given values for the initial populations x(0) and y(0). 
Thus we supplement the differential equations by two initial conditions: 

x(0) = X0 Y(O) = Yo* (2.1.4) 

Note that the model (2.1.3) -(2.1.4) g ives continuous solutions although the 
number of predators and prey will always be an integer. This is typical of 
many mathematical models in which discrete quantities are approximated by 
continuous ones so as to obtain a differential equation. 

A Trajectory Problem 

Ballistics problems have a long history in scientific computing and were 
one of the motivations for the development of computers during World War 
II. We will consider a simple ballistics problem as a special case of the more 
general problem of rocket trajectories. Suppose that a rocket is launched at 
a given angle of inclination to the ground (the launch angle). How high will 
the rocket go? The answer depends on a number of factors: the characteristics 
of the rocket and its engine, the drag caused by air density, the gravitational 
forces, and so on. To set up a mathematical model for this problem, we make 
a number of simplifying assumptions. First, we consider only rockets going to 
a height and range of no more than 100 kilometers; in this case, we can assume 
that the earth is flat with little loss of accuracy. Second, we assume that the 
trajectory of the rocket lies entirely in a plane; for example, we assume no wind 
effects. With these two assumptions, we set up a two-dimensional coordinate 
system centered at the launching site, and in Figure 2.1 we depict a typical 
trajectory. 

As shown in Figure 2.1, x(t) and y(t) denote the 2 and y coordinates of 
the rocket at time t, where we assume that launch occurs at t = 0 and, hence, 

x(0) = y(0) = 0. (2.1.5) 
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X 

Figure 2.1: A Typical ?3-ajectory 

If we denote differentiation with respect to time by i = dx/dt and G = dy/dt, 
then the velocity vector of the rocket at time t is v(t) = (k(t), G(t)). We denote 
the magnitude of the velocity vector by w(t) and its angle from the horizontal 
by e(t), as shown in Figure 2.1. These quantities are then given by 

v(t) = Kw)2 + Mt))211’2, e(t) = tan-l Lo 
i(t), 

(2.1.6) 

The basic mathematical model of the trajectory is derived from Newton’s 
laws of motion, which give 

-$mv) = F. (2.1.7) 

Here m(t) is the mass of the rocket, and F denotes the forces acting on the 
rocket and is composed of three terms: (1) the thrust, T(t), when the rocket 
engine is firing; (2) the drag force 

&Mv2, (2.1.8) 

where c is the coefficient of drag, p is air density, and s is the cross-sectional area 
of the rocket; and (3) the gravitational force, gm, where g is the acceleration 
of gravity. 

To write (2.1.7) in terms of x and y, we note that the part of the force F 
that consists of the thrust and the drag acts along the axis of the rocket. If 
we call this part FI , then . 

Fl = T - &psv2 (2.1.9) 

and (2.1.7) can be written 

rhk+m2 = FICOSI~, tiG+mi=Fisin0-mg, (2.1.10) 

since the gravitational force acts only in the vertical direction. Using (2.1.9) 
and rearranging terms, we rewrite (2.1.10) as 
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fi = +T- &~I~)cos~' - ;3, 
m 

(2.1.11a) 

5 = -$T- ~cpsw2) sine- zj,-g. (2.1.11b) 

This is a coupled system of two second-order nonlinear [recall equation (2.1.6)] 
differential equations. We are assuming that c and s are known constants, p is 
a known function of y (height above the surface), and T and m (and hence ti) 
are known functions of t. (The change in mass is caused by the expenditure 
of fuel.) 

The solution of (2.1.11) must satisfy (2.1.5), and this gives two of the four 
initial conditions that are needed. The other two are 

v(0) = 0, e(o) = 80. (2.1.12) 

Thus, for a given rocket, the only “free parameter” is the launch angle 80, and 
changes in the launch angle obviously cause changes in the trajectory. 

Equations (2.1.11) also serve as the mathematical model for the “projectile 
problem”, examples of which are a shell being shot from a cannon or a rock 
launched from a slingshot. In this case we assume that the projectile starts 
with a given velocity we, and thus (2.1.12) is changed to 

40) = vo, e(o) = eo. (2.1.13) 

There is now no thrust, and hence no change of mass, so (2.1.11) simplifies to 

. . -cpsv2 2=-cOSe, 
-cpsv2 .. - 

2m ‘= 2m 
sin8 - g, 

which in the context of our simplified model shows that given the initial velocity 
and launch angle, the trajectory depends only on the drag and gravitational 
forces. 

Our task, now, is to solve the equations (2.1.11) with the initial conditions 
(2.1.5) and (2.1.13). [H enceforth we shall use (2.1.13) since it includes the 
special case we = 0 of (2.1.12).] In the trivial case in which there is neither 
thrust nor drag, the equations can be solved explicitly (Exercise 2.1.3). How- 
ever, for any realistic specification of the air density p and the thrust this is 
not possible, and an approximate numerical solution is Tequired. 

For the numerical solutions to be discussed later, it will be convenient to 
reformulate the two second-order equations (2.1.11) as a system of four first- 
order equations. By differentiating the relations 

i=~c0se, $=vsint?, 

which are equivalent to (2.1.6), we have 

z=tic0sO--dsin8, ~=tisint9+dcosO. 

(2.1.15) 

(2.1.16) 
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If we substitute (2.1.15) and (2.1.16) into (2.1.11) and solve for ti and 8, we 
obtain 

c = -$T - $cpsv2) - gsin8 - ZU (2.1.17) 

4 = -%0se. 
V 

(2.1.18) 

Equations (2.1.17) and (2.1.18), together with (2.1.15), constitute a system of 
four first-order equations in the variables x, y, v, and 8. Again, the initial 
conditions are given by (2.1.5) and (2.1.13). 

We shall return to the numerical solution of both the predator-prey problem 
and the trajectory problem after we have discussed the basic methods used for 
the solution. 

Supplementary Discussion and References: 2.1 
There is no known nontrivial analytical solution of the problem given by 

(2.1.3), (2.1.4), and we must use approximation methods. The primary concern 
of this book is with numerical methods that replace a continuous problem 
with a discrete problem that is solved on a computer. But we will consider 
here another approach to solving (2.1.3), (2.1.4). These perturbation methods 
replace the original continuous problem with a slightly different and simpler 
continuous problem which can be solved analytically. 

The first step is to identify stationary or equilibrium states (x8, y8). In our 
case, the equations 

represent stationary states because 

dx dx 

Tit 
= xa(cx + PYS) = 0, 

(X8&) z 
( y ) = Ys(Y + 6x8) = 0. 
x.9, 8 

By expanding the right-hand sides of (2.1.3) in a Taylor series about (x8, ye), 
we obtain 

x(a + PY) = PG(Y - Ys) + . . . , y(y + 6x) = Sye(g - 2,) + * * * . 

Thus in the neighborhood of (z8,y8) we approximate (2.1.3) by the linear 
equations 

2 = PXs(Y - Ys), ?j = 6y,(x -xc,). (2.1.19) 

These equations may be solved in the form 

(x - xd2 + (Y - Ys12 = 

-Px, SYS c7 
(2.1.20) 
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where c is some constant determined by the initial conditions. This is the 
equation of an ellipse whose center is at (x8, ys), and different starting values 
of z(O) and y(O) determine different ellipses. The figure that follows shows 
a family of ellipses about (zS,yB), with the arrows indicating the direction of 
increasing time. It can be seen that the populations are cyclical: after a certain 
time, they return to their original levels. 
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This type of perturbation analysis can provide useful information about 
the solution of (2.1.3) in the neighborhood of a stationary point. Because 
the equations (2.1.3) are approximated by equations (2.1.19), we might expect 
that the solutions to (2.1.3) would be close to the ellipses that solve (2.1.19). 
Such a relationship is verified by the numerical approximations described in 
the remainder of this chapter. 

For further information on the predator-prey problem and other topics in 
mathematical biology, see Rubinow [1975], and for additional information on 
the theory of rocket trajectories, see, for example, Rosser, Newton, and Gross 
[1974]. 

EXERCISES 2.1 

2.1.1. What relationships among the coefficients (Y, p, y, and 6 and the population 
levels 2 and y of (2.1.3) would guarantee stable populations for 5 and y (that 
is, z(t + At) = z(t) and y(t + At) = y(t) for all At > O)? 

2.1.2. Verify (2.1.6). 

2.1.3. Show that the solution of Z = 0, ji = -mg, with iqitial conditions z(0) = 
y(O) = 0, v(0) = ~0, 0(O) = 00 is given by z(t) = (vocos&)t and y(t) = 
-mgt2/2 + (~0 sin 00)t. 

2.2 One-Step Methods 

In the previous section we gave two examples of initial-value problems for 
systems of ordinary differential equations. We will now consider such problems 
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in the general form 

2 = fi(?Yl(~c), . . . ,Yn(~)), i = l,...,n, a I 2, 

with initial conditions 

yj(a) = &, i = 1,. . . ,n. 

(2.2.1) 

(2.2.2) 

Here, the fi are given functions, x is the independent variable and the & are 
given initial conditions. In the previous section the predator-prey problem gave 
rise to two equations, whereas in the trajectory problem there were four first- 
order equations (see Exercise 2.2.1). More generally, as shown in Appendix 1, a 
single higher-order equation or a system of higher-order equations may always 
be reduced to a system of first-order equations; thus, the problem (2.2.1), 
(2.2.2) is very general. For simplicity in the subsequent presentation, we shall 
restrict our attention to a single equation 

in the single unknown function y, and with the initial condition 

y(a) = S. 

(2.2.3) 

(2.2.4) 

Later in the section we shall show how the methods extend easily to systems 
of the form (2.2.1). 

As indicated in (2.2.3), we wish to find the solution for x 2 a. In some 
problems we will wish to find the solution on a prescribed interval [a, b]. In 
other problems we may wish to know the behavior of the solution as x + co; of 
course, we can only compute the solution numerically in a finite interval, but we 
may wish to continue the computations until the behavior for large x becomes 
clear. And, in still other problems, we may wish to integrate until a prescribed 
condition is satisfied; for example, in the trajectory problem discussed in the 
previous section we may wish to know when the missile hits the ground. 

Although some initial-value problems have solutions that can be obtained 
analytically, many problems, including most of those of practical interest, can- 
not be solved in this manner. The purpose of the chapter is to describe methods 
for approximating solutions by using numerical methods, Garticularly by what 
are known as finite difference methods. 

The first step in the numerical solution is to introduce the grid points 
a = x0 < x1 < .a- < XN as shown in Figure 2.2. Although unequal spacing 
of the grid points presents no particular difficulties, we shall assume that they 
are equally spaced in order to simplify the discussion and analysis. If we let h 
denote the spacing, then Xk = a + kh, Ic = 0, 1, . . . , N. In what follows, y(Xk) 
will denote the value of the exact solution of (2.2.3) at the point Xk, and 
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X0 Xl x2 xN-l xN 
I I I I 1 I I 

a b 

Figure 2.2: Grid Points 

yk will denote the approximation generated by the numerical method under 
consideration. 

Euler’s Method 

Perhaps the simplest numerical scheme is Euler’s method, which is defined 

by 

Yo = 6, Ylc+1 = Yk + W% Yk), k=O,l,..., N-l. (2.2.5) 

The derivation of Euler’s method is straightforward. By the Taylor expansion 
(see Appendix 1) of y about xk, we have 

y(xk+l) = y(Zk) + h&k) + ;d%k) (2.2.6) 

h2 
= Y(xk) + hf(~k, ?&k)) + -?/“(Zk), 2 

where zk is some point in the interval (Xk,Zk+l). Here, and henceforth, we 
will always assume that all derivatives shown do exist. Now if y” is bounded 
and h is small, we may ignore the last term and we have, using the notation 
L to mean “approximately equal to,” 

?bk+l) - ?dxk) + hf(zk, dzk)). 

This is the basis for (2.2.5). Geometrically, Euler’s method consists of approx- 
imating the solution at Xk+i by following the tangent to the solution curve at 
Xk (see Figure 2.3). 

Euler’s method is very easy to carry out on a computer: at the k-th step 
we evaluate f(zk,Yk) and use this in (2.2.5). Hence,,essentially all of the 
computation required is in the evaluation of f(Xk, yk). We now give a simple 
example of the use of the method. Consider the equation 

y’(x) = y2(x) + 2x - x4, y(0) = 0. (2.2.7) 

It is easily verified that the exact solution of this equation is y(x) = x2. Here 
f(x, y) = y2 + 2x - x4, and therefore Euler’s method for (2.2.7) becomes 

f/k+1 = yk + h(y; + 2lch - k4h4), k = &I,. . . , yo = 0, (2.2.8) 
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Figure 2.3: One Step of Euler’s Method 

since XI, = kh. In Table 2.1 we give some computed values for (2.2.8) for 
h = 0.1, as well as the corresponding values of the exact solution. 

Table 2.1: Computed and Exact Solutions for (2.2.7) by Euler’s Method 

X Computed Solution Exact Solution 1 
0.1 0.00 0.01 
0.2 0.02 0.04 
0.3 0.06 0.09 
0.4 0.12 0.16 
0.5 0.20 0.25 

LO.6 0.30 0.36 

As Table 2.1 shows, the computed solution is in error, as is to be expected, 
and a major question regarding the use of Euler’s method, or any other numer- 
ical method, is the accuracy of the approximations ok. In general, the error in 
these approximations will come from two sources: (1) the discretization error 
that results from the replacement of the differential equation (2.2.3) by the 
approximation (2.2.5); and (2) the rounding error made in carrying out the 
arithmetic operations of the method (2.2.5). We shall consider the rounding 
error later, and for the moment we shall assume that the Yk of (2.2.5) are 
computed exactly so that the only error is the discretization error. 

Discretization Error 

We first consider the discretization error 
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E(k b) = IYN - Y(b)1 (2.2.9a) 

at a fixed point 

b=a+hN. (2.2.913) 

Note that N, and thus YN, is function of h; in particular, for fixed b, as h 
decreases, then N increases and if h + 0, then N + 00. We only allow h to 
vary, however, in such a way that (2.2.913) is satisfied for an integer N. The 
maximum discretization error on the whole interval [a, b], 

E(h; [a, b]) = maXl<i<N 1% - y(a + ih)l, -- (2.2.9c) 

is called the global discretization error (sometimes called the global truncation 
error) on the interval [a, b]. When the interval is clear, we will usually denote 
E(h; [a, b]) by E(h). Intuitively, we expect - and certainly hope - that E(h) + 
Oash-0. 

We next show how the global discretization error can be bounded. First, 
we will assume that the exact solution y has a bounded second derivative y” 
on the interval [a, b] and set 

max [y”(z)/ = M. 
a<x<b -- 

We then consider the expression 

Lb, h) = ;[Y(x + h) - ~(41 - f(z, Y(X)), 

(2.2.10) 

(2.2.11) 

which is called the local discretization error for Euler’s method at point x and is 
a measure of how much the difference quotient for y’(x) differs from f (x, y(x)). 
Now suppose that yk equals the exact solution y(zk). Then the difference 
between the Euler approximation yk+i and the exact solution y(Xk+i) is simply 

?/(xk+l) - Yk+l = Y(xk+l) - Y(zk) - hf (x/c, Y(xk)) = h+k, h). (2.2.12) 

That is, h times the local discretization error is the error produced in a single 
step of Euler’s method starting from the exact solution. 

We shall be interested in the maximum size of L(z, h) for any value of x, 
and we define the local discretization error for Euler’s method by 

L(h) = max IL(x, h)l. ’ 
a<x<b-h 

(2.2.13) 
-- 

Note that L(h) depends on the step length, h, as well as on the function f 
of the differential equation and the interval [a, b]. The only dependence we 
have explicitly delineated, however, is that on h, since under the assumption 
(2.2.10) and using a Taylor expansion analogous to (2.2.6) we obtain the bound 

L(h) I ;M = O(h). 
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Here we have used the standard notation O(h) to denote a quantity that goes 
to zero as rapidly as h goes to zero. More generally, we will say that a function 
g of h is O(hP) if g(h)/hP is bounded as h + 0 but g(h)/hQ is unbounded if 

Q>P. 
The problem now is to relate the local discretization error to the global 

discretization error. If we denote the error y(zk) - yk by ek, then we have, by 
using (2.2.5) and (2.2.11), 

ek+l = ?&k+l) - Yk+l (2.2.15) 

= y(xk) + hf(zk, Y(zk)) + hL(xk, h) - Yk - hf(%Yk) 

= ek + h[f(Qc, Y(Q)) - f(zk, Yk)] + h+k, h). 

Now assume that the function f has a bounded partial derivative with respect 
to its second variable: 

Then by the mean-value theorem (Appendix 1)) we have for some 0 < 0 < 1, 

lf(xk,Y(xk)) - f(xk,Yk)i = I$( xk,@/(xk) + (1 - %k)(Y(xk) - Yk) 

Substituting this into (2.2.15) and bounding L(xk, h) by L(h) gives 

lek+ll I (1 + hMl)lekl + hlW)l. (2.2.17) 

This is an inequality of the form 

f?k+l 5 c& + d, 

where & = ]ek], c = 1+ hM1, d = hL(h) and 6~ = 0. Thus, 

E, 5 c(ce,mn+d)+d<...< (l+c+~+)d (2.2.18) 

d = [(l + h”dn - ‘1 hL(h) I (1 + hM’)“L(h) 
hM1 MI 

where the last inequality follows from 1 + z 5 ex for x 2 U. Now zn = xe + nh 
and if we keep xn fixed at some point x+ in the interval [a, b] as h + 0, then 
f2.2.18) becomes 

This estimate is an upper bound on the absolute value of the error and may be 
rather pessimistic. Nevertheless, it does show that e, + 0 since L(h) = O(h). 
Moreover, E(h) = O(h). Thus, we have proved the following result. 
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THEOREM 2.2.1 (Euler Discretization Error) If the function f has 
a bounded partial derivative with respect to its second variable, and 
if the solution of (2.2.3), (2.2.4) has a bounded second derivative, 
then the Euler approximations converge to the exact solution as 
h + 0, and the global discretization error of Euler’s method satisfies 
E(h) = O(h). 

The fact that the global discretization error is O(h) is usually expressed by 
saying that Euler’s method is first order. The practical consequence of this is 
that as we decrease h, we expect that the approximate solution will become 
more accurate and converge to the exact solution at a linear rate in h as h 
tends to zero; that is, if we halve the step size, h, we expect that the error will 
decrease by about a factor of 2. This error behavior is shown in the following 
example. 

Consider the equation y’ = y, y(0) = 1, for which the exact solution is 
y(x) = eZ. We compute the solution at z = 1 by Euler’s method using various 
values of h (see Table 2.2). The exact solution at z = 1 is e = 2.718.. .; the 
errors for the different step sizes are given in the middle column. The ratios 
of the errors for successive halvings of h are given in the right-hand column, 
and it is seen that these ratios tend to i, as expected. 

Table 2.2: Error in Euler’s Method 

Computed Value Error Error Ratio 

11 
Runge-Kutta Methods 

The very slow rate of convergence shown in Table 2.2 as h decreases is 
typical of first-order methods and militates against their ;se. Much of the rest 
of this chapter will be devoted to studying other methods for which the error 
tends to zero at a faster rate as h tends to zero. As an example of one of the 
approaches to such methods, we next discuss the Heun method, which is given 

by 

yk+l = yk + ;[f(xk, yk) + f(xk+l, yk + hf(Xk, Yk))]. (2.2.19) 

Note that we have just replaced f(Xk, yk) in Euler’s method by an average of 
f evaluated at two different places. This is illustrated in Figure 2.4. The Heun 
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method is also known as a second-order Runge-Kutta method and has a local 
discretization error that is O(h2), as we will show shortly. 

yk xh S,ope = average 

Slope = f(x,, Yk) 

xk xk+l 

Figure 2.4: The Heun Method 

The most famous of the Runge-Kutta methods is the classical fourth-order 
method, given by 

~k+l = y/c + #‘I + 2F2 + 2F3 + f’4) (2.2.20) 

FI = f(ac,~k), F2=f xk+;,~k+;F~ , 
> 

F3 = f xk+;ryk+3'2 
( > 

, F4 = f(xk+~,yk +hFd. 

Here the f(zk, yk) in Euler’s method has been replaced by a weighted average 
of f evaluated at four different points. It is instructive to draw the figure 
corresponding to Figure 2.4; this is left to Exercise 2.2.9. 

One-Step Methods 

In Section 2.4 we will consider methods based on using information from 
prior steps so that yk+l will be a function not only of yk but also of yk-1 
and, perhaps, other prior values. The present section dea$ with methods that 
depend only on Yk. Such methods are called one step methods and can be 
written in the general form 

!/k+l = Yk + &‘(xk, Yk) (2.2.21) 

for some suitable function 4. In the case of Euler’s method 4 is just f itself, 
whereas for the Heun method 

44~ Y) = +[f(x, Y) + f(x + h, y + Wx, Y))I. (2.2.22) 
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The fourth-order Runge-Kutta method (2.2.20) is also a one-step method, and 
the corresponding function I$ can be written in a manner similar to (2.2.22) 
(see Exercise 2.2.5). 

For any one-step method (2.2.21), we define the local discretization error 
in a manner analogous to that for Euler’s method by 

L(h) = a<ygsh IL@, h)l, W, h) = ;[Y(z + h) - dz)l - +c, Y@C)) (2.2.23) 
-- 

where, again, y(z) is the exact solution of the differential equation. If, for a 
given 4, L(h) = O(h*) f or some integer p, then it is possible to show, under 
suitable assumptions on 4 and f, that the global discretization error will also 
be of order p in h: 

E(h) = l~kyN IY(Q) - Y~I = O(hP). 
-- 

(2.2.24) 

The order of the method (2.2.21) is defined to be the integer p for which 
L(h) = O(hp). This definition of order is a statement about the method and 
assumes that the solution y of the differential equation has bounded deriva- 
tives of suitably high order. For example, we showed that p = 1 for Euler’s 
method under the assumption (2.2.10), and Table 2.2 illustrated that the error 
decreased by a factor of about 2-l when the step length h was halved. For a 
pth order method, we expect the error to decrease by a factor of about 2-P 
when we halve h, at least for h sufficiently small. 

It is a relatively simple matter to show that the local discretization error 
for Heun’s method is O(h2), but this will be a consequence of the following 
more general analysis. Consider a function 4 defined by 

4(x, Y) = ~2f(2,9) + c3fb + clh, y + clhfk Y)), 

where we wish to determine the constants cl, cz, and cs so as to maximize 
the order of the one-step method (2.2.21); that is, we wish the best linear 
combination, as determined by cz and cs, of two values of f, and how far along 
the interval the second evaluation of f should be done, as determined by cl. 

We expand f in a Taylor series in two variables about the point (z, y). 
First, in the z variable, we have 

4 = c2f + c3[fb, Y + clhf) + clhfdz, y + cd;) + W2)1, 

where we have denoted f(z, y) simply by f and the partial derivative of f with 
respect to z by fZ. Next, expand in y where all partial derivatives shown are 
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evaluated at (z, y): 

4 = C2f+C3[f+Cd& +W2) +ClUz +W2)1 (2.2.25) 

= (C2 +c3)f + ClC3Wfy +fz) +0(h2). 

On the other hand, the exact solution y(z) of the differential equation satisfies 

;[Y(” + h) - y(z)] = y’(5) + ;y”(z)h + O(h2) (2.2.26) 

= f+fhg+o(h2) 
= f + $(ffy + fz) + O(h2>. 

Therefore, (2.2.25) and (2.2.26) combine to yield 

i[Y(a: + h) - Y(Z)1 -4(&Y(z)) (2.2.27) 

= (l- C2 - C3)f + h(+ - ClC3)(ffy +fz) +W2). 

If we require that 

C2+C3=1, 
1 

ClC3 = -, 
2 

(2.2.28) 

then the first two terms of (2.2.27) vanish for any f. Therefore L(h) = O(h2). 
Moreover, by carrying out the Taylor expansions one more term, it can be 
shown that, in general, we cannot achieve L(h) = O(h3) no matter what choice 
of the constants cl, cs, cg is made. Hence we have 

;[Y(z + h) - YWI - 4(x:, Y(X)) = W2), (2.2.29) 

which will hold whenever (2.2.28) is satisfied and the various derivatives we 
have used are bounded. Therefore, the methods delineated by (2.2.28) are al1 
second order so that there is not a unique second-order method of this type. 

If we set cl = y/2 and solve the two equations of (2.2.28) in terms of 7, we 
obtain a function that will always satisfy (2.2.28). Therefore, the method 

Yk+l = ?lk + h 

is second-order accurate for any y # 0. The special choice y = 2 gives the 
second-order Runge-Kutta method (2.2.19). The derivation of higher-order 
Runge-Kutta methods, and in particular the fourth-order method (2.2.20), 
can proceed in an analogous, but more complicated, manner. 
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Systems of Equations 

We next indicate how the above methods can be used for systems of equa- 
tions. Consider the system (2.2.1), which we will write in the vector form 

YW = f(T Y(X)). (2.2.30) 

Here y(z) denotes the vector with components yi(~), . . . , yn(z), and f is the 
vector with components fi , . . . , fn. The vector 9 will denote the initial values 
(2.2.2). Then Euler’s method (2.2.5) can be written for the system (2.2.30) as 

Yo = 9 Yk+l = yk + hf(zk,yk), k = 0, 1,. . . (2.2.31) 

where yi,ys,. . . are vector approximations to the solution y. We could, of 
course, write out (2.2.31) in component form; for n = 2, this would be 

Yl,O = !I1 Y2,o = $2 

Yl,k+l = ?dl,k + hfl(zk,Yl,k, Y2,k) 

I 

, k=O,l... . 
Y2,k+l = Y2,k + hf2bk, Yl,k, Y2,k) 

Clearly, the succinct vector notation (2.2.31) is advantageous. 
Similarly, Heun’s method (2.2.19) can be written in vector form for (2.2.30) 

by 
h 

Yk+l = Yk + -[f(xk, Yk) + f(zk+lr Yk + hfbk,Yk))]. 2 
(2.2.32) 

It is left to Exercise 2.2.7 to write the fourth-order Runge-Kutta method 
(2.2.20) in vector form. 

Rounding Error 

We now turn to a brief discussion of the rounding error in the methods 
of this section. Consider Euler’s method, in which there are two sources of 
rounding error. The first is the error that occurs in the evaluation of f(xk, &!k); 
we will denote this error by Ek. The second error, r]k, is the error made in the 
Euler formula. Thus, the computed approximations & satisfy 

f/k+1 = yk + h[f(zkr yk) + &k] + vk, k = 0, 1, .,. . . (2.2.33) 

It is possible to bound the effects of these errors in terms of bounds on the 
ek and Qk. However, we will content ourselves with the following intuitive 
discussion. As we have seen, the global discretization error in Euler’s method 
goes to zero as h goes to zero. Hence we can make the discretization error 
as small as we like by making h sufficiently small. However, the smaller h is, 
the more steps of Euler’s method that will be required and, in general, the 
larger the effect of the rounding error on the computed solution. In practice, 
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for a fixed word length in the computer arithmetic there will be a size of h 
below which the rounding error will become the dominant contribution to the 
overall error. The situation is depicted schematically in Figure 2.5, in which 
the step-size ho is the practical minimum that can be used. This minimum 
step-size is very difficult to ascertain in advance, but for problems for which 
only a moderate accuracy is required, the step size used will be far larger than 
this minimum, and the discretization error will be the dominant contributor 
to the error. The same general behavior occurs in all the methods, although 
the minimum step size, ho, will depend on the method and the problem. 

I 

ho h 

Figure 2.5: Error in Euler’s and Other Methods 

Change in Step Size 

So far in this section we have considered a fixed step-size h. However, 
in practice it is usually beneficial to allow the step to vary. By the bound 
(2.2.14) on the local discretization error, it follows that the error is small if 
the second derivative of the solution is small. In regions where this is the 
case, suitable accuracy may be obtained by using a relatively large step-size. 
On the other hand, if the second derivative is large a smaller step-size will 
be necessary to control the discretization error. For the higher order Runge- 
Kutta methods, the same idea will hold but higher-order derivatives of the 
solution will be the determining factor. Generally, one will not know much 
about these higher derivatives, but many times it will be known in advance 
that the solution is varying slowly in some region and rapidly in another, and 
the step-size can be changed accordingly. For further discussion on ways to 
estimate the discretization error so as to ascertain the proper step-size, see the 
Supplementary Discussion. 

Numerical Examples 

We complete this section with some simple calculations for the predator- 
prey equations introduced in Section 2.1. Recall that these equations are 

dx 
- = ax + pxy, 
dt 

& x = yy + 6xy, (2.2.34) 
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with the initial conditions 
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Y(O) = Yo* (2.2.35) 
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(c) Data interpolated by a function 

Figure 2.6: Options for Graphical Output. Solution to (2.2.34), (2.2.35) 
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The Supplementary Discussion of Section 2.1 showed that 

is a stationary point of (2.2.34), and that in the neighborhood of (z8,yB) the 
path traced out by (z(t), y(t)) for t > 0 is approximately an ellipse. For 
illustration purposes, we have chosen initial values ze and yo that are near 
stationary points. We have used the following values for the parameters: (Y = 
0.25, /3 = -0.01, y = -1.00, and 6 = 0.01. For these parameter values, there is 
a stationary point at (x8, ys) = (100,25). Initial values of 20 = 80 and ye = 30 
were used in all cases. 

160 
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x(t) 
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80 
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I .O 0 . i 
o . 
0 . 
o . 
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. 

\ . 
I . 

l 

I 1 I 1 

20 40 60 80 u(t) 
Figure 2.7: Euler’s Method for (2.2.34), (2.2.35) Using Different Step Sizes 
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Figures 2.6 - 2.8 are the plotted approximations to solutions of (2.2.34), 
(2.2.35) generated by several of the numerical methods in this section. In all 
cases we have plotted z (the prey) versus y (the predator), both as functions of 
time, t. The motion is in a clockwise direction as t increases. Figure 2.6 demon- 
strates three options that are usually available for graphics. Part (a) plots just 
the discrete values (xi, yi) generated by the numerical method, emphasizing 
the discrete nature of the methods. In part (b) the points are connected by 
straight lines, giving a polygonal shape to the approximation. Part (c) shows 
the dots connected by smooth curves. This option requires some special soft- 
ware based on approximation methods like those discussed in Section 6.2. 

Figure 2.7 demonstrates the dependency of the approximate solution on 
the value of the step size, h. The numerical method used for this figure is 
Euler’s method defined by (2.2.5). The values of h are 1,0.5, and 0.25. One 
sees that as the step size is halved the error is roughly halved also, suggesting 
O(h) convergence. Clearly, the errors are rather large even for h = 0.25. The 
‘Lexact” solution used for comparison was obtained by a higher-order Runge- 
Kutta method, and the solution so obtained may be considered to be exact for 
the purpose of comparing with the lower-order methods. 

Figure 2.8 shows the effect of using a second-order method rather than 
the first-order Euler method. Here the error for a step size of h = 1 is less 
than that for Euler’s method with a step size of h = 0.25. Note that, as with 
Euler’s method, the approximate solution is spiraling out away from the exact 
solution. 

Supplementary Discussion and References: 2.2 

Perhaps the conceptually simplest approach to higher-order one-step meth- 
ods is Taylor-series expansion of the solution. Consider the LLmethod” 

Yk+l = yk + hy’(X:k) + $,h2y”(q) + * * * + ;+P)(~k), (2.2.36) 

where y is the exact solution. It is easy to see that the order of this method 
is p. The higher derivatives of the solution can be obtained in principle from 
the differential equation itself. Thus y’(z) = f(z,y(z)), and 

Y’W = --$fb> Y(Z)) = fz(T Y(4) + f&T YWYW. (2.2.37) 

We then approximate y’(Zk) by f(zk, yk), and proceed similarly for higher 
derivatives. Thus the method for p = 1 is simply Euler’s method, whereas for 
p = 2 it becomes 

Yk+l = Yk + hf(zk, Yk) + ;[f&k, Yk) + fy(xk,Yk)f(Zk, Yk)], 



2.2 ONE-STEP METHODS 35 
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x(t) 
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0 20 40 
Y(t) 

Figure 2.8: Second-Order Runge-Kutta (Spiraling Outward) with Step-Size h = 
1, Compared to the “Exact” Solution of (2.2.34), (2.2.35) 

which is a second-order method. One can continue to differentiate (2.2.37) to 
obtain higher derivatives of y in terms of higher partial derivatives off, but the 
methods become exceedingly cumbersome. Symbol manipulation techniques 
have proved somewhat useful in generating the derivatives. Note that Taylor 
series methods achieve higher order by using derivatives of f evaluated at a 
single point, whereas Runge-Kutta methods evaluate only f at different points. 
For further discussion of Taylor-series methods, see Daniel and Moore [1970]. 

Runge-Kutta methods of order higher than four may be obtained but at 
still additional costs in evaluations of the function f. Ruqge-Kutta methods of 
order p require p evaluations of f for 2 5 p 5 4, p+ 1 evaluations for 5 5 p 5 7, 
and p + 2 evaluations for p 2 8. For a thorough discussion of Runge-Kutta 
methods, see, for example, Henrici [1962], Butcher [1987], or Hairer, Norsett, 
and Wanner [1987]. 

All good computer codes using Runge-Kutta methods employ some mech- 
anism for automatically changing the step size h as the integration proceeds. 
The problem is to ascertain the proper step size before the start of the next in- 
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tegration step. The usual approach is to estimate the local discretization error 
and adjust the step size accordingly. There are several ways to estimate the 
local error; two simple approaches are to repeat the last step of the integration 
with a step size half as large and then to compare the two results, or to use 
two Runge-Kutta formulas of different order. Both of these ways are costly in 
evaluations off, and an alternative approach is by means of the Runge-Kutta- 
Fehlberg formulas (see Butcher [1987] for further discussion). Here one can 
use, for example, a Runge-Kutta method of order five to estimate the error in 
a fourth-order Runge-Kutta method in such a way that only six evaluations of 
f are needed, as opposed to ten if the usual Runge-Kutta formulas were used. 
One of the best and most used Runge-Kutta codes is RKF45; see Shampine, 
Watts, and Davenport [1976]. 

As we have shown, in the absence of rounding error Euler’s method will 
yield the true solution of the differential equation as h -+ 0. But, as Table 2.2 
illustrates, the rate of convergence can be rather slow. An important technique 
to accelerate the convergence is Richardson extrapolation to the limit. For some 
fixed point z*, denote the approximation to the solution by y(z*; h). Under 
certain assumptions, it can be shown that 

y(x*; h) = y(x*) + qh + c2h2 + ..a + cphP + O(hp+‘), (2.2.38) 

where the ci are functions of x*. Now suppose that we also compute the 
approximate solution with step length h/2. Then we can combine y(x*; h) and 
y(z*; h/2) to obtain a better approximation. In particular, 

g(x*; h) = 2y(z*; 2 h) - y(x*; h) = y(x*) + d2h2 f.. . + O(hP+‘), 

so that $z*; h) is a second order approximation. (Note that the more accurate 
solution is obtained only at the points with spacing h, and not at the interme- 
diate points.) The process can then be repeated, if desired, to eliminate the 
coefficient d2 and obtain a third order approximation, and so on. The same 
idea can be applied to other problems such as numerical integration or differen- 
tiation, or other types of differential equations, provided that an ‘asymptotic 
expansion” of the form (2.2.38) holds for the approximate solution. 

An important modification of a system of differential equations occurs when 
there are side conditions. For example, a system of the for,m 

Y: = fi(X:,Y,(Z),...,Y,(2)), i= l,...,m, 

0 = gd(x,Y,(x),...,Y,(x)), i=m+l,...,n, 

consists of m differential equations and n-m non-differential equations. Such a 
system is called diferential-algebraic. For further discussion, see, for example, 
Hairer, Lubich, and Roche [1989], and Brenan, Campbell, and Petzold [1989]. 
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EXERCISES 2.2 

2.2.1. Rewrite the predator-prey equations (2.1.3) in the form (2.2.1); that is, give 
the functions fr and fz. Do the same for the trajectory equations (2.1.15), 
(2.1.17), and (2.1.18). 

2.2.2. Apply Euler’s method (2.2.5) to the initial-value problem y’ = -y, 0 5 z 5 1, 
y(0) = 1, with h = 0.25. Compare your answers to the exact solution y(z) = 
e-“. Repeat for h/2 and h/4. 

2.2.3. Verify the calculations of Tables 2.1 and 2.2. 

2.2.4. Apply the Heun method to the problem of Exercise 2.2.2. Compare your 
results with Euler’s method. 

2.2.5. Give the function 4 of (2.2.21) for the fourth-order Runge-Kutta method 
(2.2.20). 

2.2.6. The method yk+r = yk + hf(zk + (h/2),yk + (h/2)f(zk, yk)) is known as the 
midpoint rule. Show that it is second-order accurate. 

2.2.7. Write the fourth-order Runge-Kutta method (2.2.20) in vector form for the 
system (2.2.30). 

2.2.8. Apply Euler’s method and the Heun method to the problem y’(z) = z2 + 
IY(412,Y(0) = 1, z z 0, and compute yz for h = 0.1. 

2.2.9. For the fourth-order Runge-Kutta method (2.2.20), draw the figure corre- 
sponding to Figure 2.4. 

2.2.10. Repeat the calculations of Figure 2.7 using Euler’s method with step sizes 
0.5 and 0.25. How small a step size do you have to use for the graph of the 
solution to close back on itself to visual accuracy? 

2.2.11. Test the stability of the solution of the predator-prey equations (2.2.34) 
with respect to changes in the initial conditions by changing 2s = 80, ys = 30 
by a unit amount in each direction (four different cases) and repeating the 
calculation using the second-order Runge-Kutta method. 

2.2.12. Suppose that the initial condition of (2.2.5) is in error. Modify the analysis 
of the discretization error in Euler’s method to obtain a bound on the error 
caused by using an inexact initial condition ye = g # 5.’ 

2.3 Polynomial Interpolation 

The methods described in Section 2.2 were all one-step methods - methods 
that estimate y at Xk+l using information only at the previous point, Xk. In 
Section 2.4 methods that use information at several previous points will be 
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described. In order to develop such methods, however, we must first describe 
polynomial interpolation, the subject of this section. 

Suppose that one is given a set of points or nodes x0, xl,. . . ,x, and a set 
of corresponding numbers ye, ~1,. . . , yn. The interpolation problem is to find 
a function g that satisfies 

S(G) = Yi, i=O,l,...,n; (2.3.1) 

if (2.3.1) holds we say that g interpolates the data. There are many types of 
possible functions g that might be used, but the functions of interest in this 
section will be polynomials. 

It is clear that a polynomial of a given degree can not always be found so 
that (2.3.1) is satisfied. For example, if the data yi are given at three distinct 
nodes, no polynomial of degree 1 (a linear function) can satisfy (2.3.1) unless 
the data lie on a straight line. On the other hand, there is a polynomial of 
degree 2 and infinitely many polynomials of degree 3 which satisfy (2.3.1). The 
basic result for polynomial interpolation is given in the following theorem. 

THEOREM 2.3.1 (Existence and Uniqueness for Polynomial Inter- 
polation) Ifxo, xl,. . . , x, are distinct nodes, then for any yo, ~1,. . . , yn 
there exists a unique polynomial p(x) of degree n or less, such that 

P(G) = Yi, i = 0, 1, . . . ) 71. (2.3.2) 

Proof: The existence can be proved by constructing the Lagrange polyno- 
mials defined by 

(x - x0)(x - Xl) *. . (x - “j-1)(X - q+1) * * * (x - 4 

G(x) = (xj-xo)(xj-xl)...(xj-xj-l)(xj-xj+l)~+j-xn) 

= fi (s), j=O,l,..., 71. (2.3.3) 

k=O 

k#j 

It is easy to verify that these polynomials, which are all of degree n, satisfy 

lj(Xi) = A 
1 

ifi=j * 

if i # j. (2.3.4) 

Therefore lj(x)yj has the value 0 at all nodes xi, i = 0, 1, . . . , n, except for xj, 
where lj(xj)yj = yj. Thus, by defining 

(2.3.5) 
j=O 
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we have a polynomial of degree n or less that interpolates the data. 
To prove uniqueness, suppose, on the contrary, that there is another inter- 

polating polynomial of degree n or less, say q(x). By defining 

we obtain a polynomial, T, of degree n or less that is equal to zero at the n + 1 
distinct points ~0, ~1,. . . , z,. By the fundamental theorem of algebra, such a 
polynomial must be identically equal to zero, and it follows that p(z) = q(z). 
Thus, uniqueness is proved. 

As an example of polynomial interpolation, let us determine the polynomial 
p(z) of degree 2 or less that satisfies ~(-1) = 4, p(O) = 1, and p(l) = 0. The 
interpolating polynomial (2.3.5) is 

(x - 0)(x - 1) 
Ax) = (-l-0)(-1 - 1) 

4 + (x - (-11)(x - 1) 1 + (x - (-l))(x - w. 

(0 - (-l))(O - 1) Cl- (-l))(l - 0) 

= 2x2 - 2x + 1 - x2 + 0 = x2 - 2x + 1. 

One can easily verify that this p(x) does interpolate the given data. 

Error Estimates 

We next consider the question of accuracy in polynomial interpolation. In 
many applications of interpolation there is some function f defined over the 
entire interval of interest, even though values are used only at discrete points 
to determine an interpolating polynomial p. Thus it is of interest to discuss 
the discrepancy between p(x) and f(x) for values of x that lie between the 
nodes. The following theorem gives an expression for the error in terms of 
higher derivatives of f: 

THEOREM 2.3.2 (Polynomial Interpolation Error) Let f(x) be a 
function with n+ 1 continuous derivatives on an interval containing 
the distinct nodes x0 < x1 < .. . < x,. If p(x) is the unique 
polynomial of degree n or less satisfying 

P(G) = f (Xi), i=O,l,..., 72, ’ 

then for any x E [x0,2,], 

f(x)-p(x) = (x-x0)(x -xl)...(x--I,)f(,+l)(Z) 

(n + l)! 

for some z, depending on x, in the interval (x0,x,). 

(2.3.6) 
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We indicate a proof of this theorem in the Supplementary Discussion of this 
section; here we only discuss some of its ramifications. First of all, if n is at all 
large (even 4 or 5), it will probably be difficult, if not impossible, to compute 
the (rr + 1)th derivative of f . Even if n is cnly 1 (linear interpolation) and 
only the second derivative of f is needed, this also may be impossible if f is an 
unknown function for which values are known only at some discrete points; at 
best, we might be able to estimate some bound for the second derivative on the 
basis of our assumed knowledge of f. In any case, it will almost never be the 
case that (2.3.6) can be used to give a very precise bound on the error. It can, 
however, be useful in providing insight into the errors that are produced. As 
an example of this, suppose that the points xi are equally spaced with spacing 
h. Then it is easy to see (Exercise 2.3.2.) that 

1(x - x0)(x - x1) + e. (x - x,)1 5 n! hn+’ 

for any 2 in the interval [xe, x,]. Thus (2.3.6) can be bounded by 

If(x) -P(X)1 I 5, (2.3.7) 

where 

Piecewise Polynomials 

The bound (2.3.7) is, of course, still difficult to compute because of the 
quantity M. But it is useful in the following way. Suppose that we wish to 
approximate the function f over a given interval [a, b] by means of piecewise 
polynomials, that is, functions that are polynomials on given subintervals of 
[a, b]. For example, if a = ye < yi < a.. < rp < %+I = b is a partitioning 
of the interval [o,b], and g is a function that is continuous on [u,b] and is a 
polynomial on each of the intervals (ri, ~i+i), i = 0, 1, * *. ,p, then g is called a 
piecewise polynomial function on [a, b]. 

As an example of a piecewise quadratic function, suppose that the values 
of the function f on the interval [0, l] are given by 

x 0 l/6 l/3 l/2 2/3 5/6 -1 
f13 2 10 21’ 

Then, the function g defined by 

g(x) = -54x2 +21x + 1, 01x<; 

= -6x + 4, $IX<$ 

= -54x2 + 93x - 38, ;sx<1 

(2.3.8) 
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0 l/6 l/3 l/2 213 S/6 1 

Figure 2.9: A Piecewise Quadratic Function 

is the piecewise quadratic function on [0, l] that agrees with f at the given 
nodes, is continuous on the whole interval, and is a quadratic on each of the 
subintervals [0, 51, [ 5, g], [ 5 , 11. This function is shown in Figure 2.9. 

Consider now the error in approximating the function f by the function 
g of (2.3.8). Suppose that M is a bound for the third derivative of f on the 
entire interval [O,l]. Then on each of the intervals [0, 51, [i, $1, and [$, 11, the 
error bound (2.3.7) can be applied; here h = i, and n = 2. Therefore 

(2.3.9) 

Without further information on M, this estimate does not furnish a quan- 
titative bound. It does, however, show how the spacing h enters the error 
estimate. In particular, approximation by piecewise quadratics has an error 
estimate that is O(h3), so that it is third-order. Higher order approximation 
will result from using piecewise cubits or higher degree polynomials. 

The Vandermonde Matrix 

Even though the interpolating polynomial is unique, as shown by Theo- 
rem 2.3.1, there are several alternative ways to obtain or represent the poly- 
nomial, other than by the Lagrange polynomials. Perhaps the most basic 
approach is the following. Suppose that the interpolation polynomial p is 

p(z) = a0 + a12 + - -. + a,3?. * 

Then we want 

n 
a0 + alxi + . . . + a,xi = yi, i = 0, 1, . . . , 72. (2.3.10) 

Since the xi’s and the yi’s are known, this is a system of n+ 1 linear equations 
in the n+l unknowns ae, al,. . . ,a,. We write this system in the matrix-vector 
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form 

The coefficient matrix of (2.3.11), which we denote by V, is called the Van- 
dermonde matrix and is nonsingular if the z’s are distinct. (This statement 
can be proved directly rather easily, but note that we already have proved it 
indirectly by means of Theorem 2.3.1, which showed the existence and unique- 
ness of the interpolating polynomial. For if V were singular, this would imply 
that either no interpolating polynomial exists for the given data or infinitely 
many exist .) 

The Vandermonde matrix approach is sometimes useful for theoretical pur- 
poses, but less so for computation of the polynomial. For the latter the La- 
grange polynomials are usually better, but they are not convenient if a node is 
added or dropped from the data. For example, if (zn+r,gn+i) were added to 
the set of data (xi, yi), i = 0, 1, . . . , n, and we wished to compute the polyno- 
mial of degree n+ 1 that interpolated this data, then the Lagrange polynomials 
would all have to be recomputed. There is another representation of the in- 
terpolating polynomial that is very useful in this context; this is the Newton 
form, which we now describe. 

The Newton Form 

We assume now that the points xi are equally spaced with spacing h. We 
define differences of the data yi by means of Ayi = yi+l - yi, and higher 
differences by repeated application of this: 

A2yo = Ayl - AyO = y2 - 2yI + yO 
A3yo = A2y1 - A2y0 = y3 - 3y2 + 3yl _ yO 

(2.3.12) 

AnYo=Yn- (;),,A+ ( ;)yn~2-...+(-l)“yo, 

where the binomial coefficients are given by 

n 

( ) 

n(n-l)...(n-i+l) ’ 
= 

i i! 

In terms of the differences (2.3.12), we define a polynomial of degree n by 

p,(x) = y. + vhy, + (x - “0,‘;; - x1) A2yo (2.3.13) 

+...+ 
(x - x0)(x - x1). . . (x - %l) 

n! h” 
A”Yo. 
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Clearly, pn(xo) = yo since all remaining terms in (2.3.13) vanish. Similarly, 

p,(a) = Yo + (21 ; %/l - Yo) = Yl, 

and 

Pn(Xz) = Yo + cx2 ; xo) (yl - yo) + cx2 - xo2)h(;2 - Zl) (y2 - ZYl + yo) 

= Yo + 2bl - Yo) + (y2 - 2yl + yo) = y2. 

It is easy to verify in an analogous way that pn(zi) = yi, i = 3,. . . , n, although 
the computations become increasingly tedious. 

It is of interest to note that the polynomial p, of (2.3.13) is analogous 
to the first n + 1 terms of a Taylor expansion about 20. Now suppose that 
we add (zn+l,yn+l) to the data set. Then the polynomial p,+l that satisfies 
P~+~(x~) = yi, i = O,l,. . . ,n + 1, is given by 

Pn+l(z) = Pm(~) + 
(x - x0)(x - 21) *. . (x - GJ) 

(n + l)! hn+l 
An+‘yo, 

and it is this feature of the Newton form of the interpolating polynomial that 
is sometimes useful in practice. This is similar to taking one more term in a 
Taylor expansion. 

In the next section we will use interpolating polynomials to derive other 
methods for the solution of differential equations. This will be done by integrat- 
ing an interpolating polynomial, but once the polynomial has been determined 
other manipulations, such as differentiation, can also be performed. Moreover, 
interpolation is useful for approximating the solution between grid points, if 
that should be desired. However, it should be pointed out that interpolation 
may fail to preserve such desirable properties as monotonicity and convexity. 
It is a more difficult and subtle problem to obtain approximating functions 
chat do maintain such properties. 

Supplementary Discussion and References: 2.3 

We will indicate the proof of the basic error theorem 2.3.2. Assume that 
f # xj, j = 0, 1, . . * ) n; otherwise, both sides of (2.3.6) are zerb, and the result 
:s trivially true. Now, for x held fixed, define the function 

44s) = f(s) -P(S) - q(xMs), 

T)(s) = (s - x0)(5 - Xl). . . (3 - xn), q(x) = f(x) -P(X) 
ll(x) . 
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It is clear that @(xi) = 0, i = O,l,. . . ,n, and 4(z) = 0; hence 4 has at 
least n + 2 distinct roots zs,~i,. . . , x,,z. It follows by repeated application 
of Rolle’s theorem that 4’ has at least n + 1 distinct roots, 4” has at least n 
distinct roots, and so on. In particular, 4 cn+l) has at least one root z in the 
interval spanned by xc, xl,. . . , xn, x. But 

p+qs) = f’“+l’(s) -p(n+l)(s) _ q(x)$J’“+l’(s) 

= f(“+l)(s) - (n + l)! q(2), 

since p is a polynomial of degree n and $J is a polynomial of degree n+ 1. Thus, 

0 = @+1)(z) = f (n+‘)(z) - (n + l)! q(s), 

and solving for q(x) gives (2.3.6). 
For further discussion of interpolation, see, for example, Young and Gregory 

[1990]. 

EXERCISES 2.3 

2.3.1. Compute the polynomial p of degree 2 that satisfies p(0) = 0, p(1) = 1, 
p(2) = 0 by all three methods, that is, by using Lagrange polynomials, the 
Vandermonde matrix, and the Newton representation. Conclude that the poly- 
nomial is the same in all three cases. 

2.3.2. Verify the bound (2.3.7). Then let f(x) = sinrx/2, and let p be the polyno- 
mial of Exercise 2.3.1 that agrees with f at the points x = 0, 1,2. Use (2.3.7) to 
compute a bound for If(x) - p(x)1 on the interval [0,2]. Compare this bound 
with the actual error at selected points in the interval, and in particular at 
x = $ and a. 

2.3.3. Find the piecewise linear and quadratic functions that agree with the following 
data: 

x 1 0 1 l/6 1 l/3 1 l/2 1 2/3 1 5/6 1 1 
fll] 4 I 1 I-1 12 14 lo 

Compute error bounds for these functions on the interval [0, l], assuming that 
the function f satisfies If”(z)] 5 4, If”‘(z)] 5 10,O 5 z,< 1. 

2.3.4. Let f(x) = sinx, and let p and q be two polynomials of degree 3 that satisfy 
p(k/3) = q(A/3) = f(k/3), k = 0,1,2,3. Compute a bound for /p(x) - q(x)1 
that holds on the whole interval [0, 11. 

2.3.5. For given ye, . . . , y,, and distinct x0,. . . , xnr let p be the polynomial of degree 
n that satisfies p(xi) = yi, i = 0,. . . , n. Suppose that we wish to write p 
in the form p(x) = coqo(x) + ... + cnqn(x), where qo(x) E 1 and qi(x) = 
(x - x0) +a. (x - xi). Give an algorithm for finding CO,. . . , cn. 
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2.3.6. Find a polynomial of degree 3 that agrees with fi at 0, 1,3,4. Compare the 
approximation p(2) with fi = 1.414216. 

2.3.7. Let p be a polynomial that satisfies ~(-2) = -5, ~(-1) = 1, p(O) = 1, 
p(l) = 1, p(2) = 7, p(3) = 25. What can you say about the degree of p? 

2.4 Multistep Methods 

We return now to the initial-value problem 

Y’ = f(X> YL a L 2, Y(U) = 0. (2.4.1) 

In the methods of Section 2.2, the value of yk+l depended only on informa- 
tion at the previous point, xk. It seems plausible that more accuracy might 
be gained if information at SeVeral previous points, Xk, X&i,. . ., were used. 
Multistep methods do just that. 

A large and important class of multistep methods arises from the following 
approach. If we integrate (2.4.1) for the exact solution y(x) over the interval 

[xk, xk+l], we have 

s 

zk+l 

s 

xk+l 

?/(xk+l) - t&k) = y’(x)dx = fb, Y(x))~x (2.4.2) 
Sk Sk 

* s 

Sk+1 

= dx)dx, 
zk 

where in the last term we assume that p(x) is a polynomial that approxi- 
mates f(x, y(x)). To obtain this polynomial, suppose that, as in Section 2.2, 

Yk,Yk-l,***, y&N are approximations to the solution at Xk, X&l,. . . , X&N, 
where we assume that the xi are equally spaced with spacing h. Then fi = 
f(xi, yi), i = k, k-l,. . . , k-N, are approximations to f(x, y(x)) at xk, X&l,. . . 
. X&N, and we take p to be the interpolating polynomial for the data set 
(Xi, fi), i = k, k - 1,. . . ) k - N. Thus p is the polynomial of degree N that 
satisfies p(xi) = fi, i = k, k - 1,. . . , k - N. In principle, we can integrate this 
polynomial explicitly to give the method 

J 

Xkfl 

!/k+l = ?/k + p(x)dx. l (2.4.3) 
zk 

Adams-Bashforth Methods 

As the simplest example, if N = 0, then p is the constant fk and (2.4.3) is 
simply Euler’s method. If N = 1, then p is the linear function that interpolates 
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(a-1, fk-I) and (a, fd W e may obtain this and the subsequent formulas by 
applying (2.3.13) backwards from (zlc,fic); that is, with &fk = fk-i - fk 

(x - xk) 
dz)=Pl(z)=fk- h bfk, (2.4.4) 

where the minus sign occurs since h = IX&-1 - Zkl. If we integrate (2.4.4) from 
Xk to Xk+l, we obtain the method 

yk+l = t/k + hfk - ;Afk = ?/k + ;(3fk - 6-l), (2.4.5) 

which is a two-step method since it uses information at the two points zk and 
Z&i. Note that the first form of (2.4.5) shows how Euler’s method is modified 
to obtain the new method. 

Similarly, if N = 2, then p is the interpolating quadratic polynomial for 

(xk-2, fk-2)r (xk-1, fk-11, and (zk, fk)* If we again use (2.3.13), this polyno- 
mial may be written as 

P2(X) = Pl(Xc) + 
(X - Xk)(x - xk-1) 

2h2 
A2.frc, (2.4.6) 

where A2fk = fk - 2fk-1 + fk-2. Thus, by (2.4.3), the method is 

yk+l = yk + hftc - ;Afk + ;hA2fk. (2.4.7) 

This exhibits how the two-step formula (2.4.5) has been modified. We can also 
collect terms in (2.4.7) and write it as 

Yk+l = Yk + ;(=fk - 16frc-1 + 5fk-2). (2.4.8) 

If N = 3, the interpolating polynomial is a cubic, and the method is 

Yk+l = Yk + +fk - 59fk-1 + 37fk-2 - gfk-3). (2.4.9) 

Note that (2.4.8) is a three-step method, whereas (2.4.9) is a four-step method. 
It is left to Exercise 2.4.1 to give a detailed verification of the formulas (2.4.5), 
(2.4.8), and (2.4.9). 

The formulas (2.4.5), (2.4.8), and (2.4.9) are known as Adams-Bashforth 
methods. As we shall see later, (2.4.5) is second-order accurate and hence 
is known as the second-order Adams-Bashforth method. Similarly, (2.4.8) 
and (2.4.9) are the third- and fourth-order Adams-Bashforth methods, respec- 
tively. We can, in principle, continue the preceding process to obtain Adams- 
Bashforth methods of arbitrarily high order by increasing the number of prior 
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points and the degree of the interpolating polynomial p. The formulas become 
increasingly complex as N increases, but the principle is still the same. 

The Starting Problem 

Multistep methods suffer from a problem not encountered with one-step 
methods. Consider the fourth-order Adams-Bashforth method of (2.4.9). The 
initial value yo is given, but for k = 0 in (2.4.9), information is needed at z-1, 
x-2, and x-3, which doesn’t exist. The problem is that multistep methods 
need “help” getting started. We cannot use (2.4.9) until k 2 3, nor can we 
use (2.4.8) until k _> 2. The usual tactic is to use a one-step method, such 
as Runge-Kutta, of the same order of accuracy until enough values have been 
computed so that the multistep method is usable. Alternatively, one may use 
a one-step method at the first step, a two-step method at the second, and so 
on until enough starting values have been built up. However, it is important 
that the starting values obtained in this fashion be as accurate as those to be 
produced by the final method, and if the starting methods are of lower order, 
this will necessitate using a smaller step size and generating more intermediate 
points at the outset. The same problem arises if the step length is changed 
during the calculation. If, for example, at xk the step length is changed from 
h to a, then we will need values of y and f at xk - !j, which we do not have. 

Again, a Runge-Kutta method starting at xk-1 with step length 4 could be 
used. An attractive alternative is to use an interpolation formula, but care 
must be exercised to ensure that suitable accuracy is maintained. In general, 
it is much easier to change step-size with a one-step method than with a 
multistep method. 

Adams-Moulton Methods 

The Adams-Bashforth methods were obtained by using information already 
computed at zk and prior points. In principle, we can form the interpolating 
polynomial by using forward points as well. The simplest situation is to use 
the points xk+l, Xk, . . . , Xk-N and form the interpolating polynomial of degree 
.V + 1 that satisfies p(zi) = fi, i = k + 1, k, . . . , k - N. This generates a class 
of methods known as Adams-Moulton methods. If N = 0, then p is the linear 
function that interpolates (xk, fk) and (xk+l, fk+l), and the corresponding 
nethod is . 

Yk+l = Yk + ;(fk,, + .fk), (2.4.10) 

which is the second-order Adams-Moulton method. If N = 2, then p is the 
cubic polynomial that interpolates (Xk+l, fk+l), (xk, fk), (Sk-1, f&l), and 
xk-2, f&2); in this case the corresponding method is 

%+I = ?/k + ;(gfk+l + 19fk - 5fk-1 + fk-2), (2.4.11) 
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which is the fourth-order Adams-Moulton method. 
Note that in the formulas (2.4.10) and (2.4.11) fk+i is not known, since 

we need ?&+I to evaluate f(zk+i,&+i) = &+I, but yk+l is not yet known. 
Hence the Adams-Moulton methods define yk+i only implicitly. For example, 
(2.4.10) is really an equation, 

?/k+l = Yk + ;[f(xk+lr yk+l) + fk], (2.4.12) 

for the unknown value $&+I, and similarly for (2.4.11). Thus the Adams- 
Moulton methods are called implicit, whereas the Adams-Bashforth methods 
are called explicit since no equation needs to be solved in order to obtain yk+r. 

Predictor-Corrector Methods 

Implicit methods are useful for so-called stiff equations, to be discussed 
in the next section. However, another use of implicit methods is to combine 
an explicit with an implicit formula to form a predictor-corrector method. A 
commonly used predictor-corrector method is the combination of the fourth- 
order Adams methods (2.4.9) and (2.4.11): 

(P) 
yk+l = yk + $(=fk - 59fk-1 + 37fk-2 - gfk-3), 

(2.4.13) 

Yk+l = !/k + $(gff& + 19fk - sfk-1 + fk-2), . 

Note that this method is entirely explicit. First a “predicted” value y&)1 of 

&+l is computed by the Adams-Bashforth formula, then yril is used to give an 
approximate value of fkfl, which is used in the Adams-Moulton formula. The 
Adams-Moulton formula “corrects” the approximation given by the Adams- 
Bashforth formula. We could also take additional corrector steps in (2.4.13). 
In fact, repeated use of the corrector formula gives an iterative method to solve 
the nonlinear equation (2.4.11). We will return to this topic in Chapter 5. 

Discretieation Error 

We turn now to the question of the discretization eiror and, for simplic- 
ity, we will consider in detail only the Adams-Bashforth method (2.4.5). In 
a manner analogous to (2.2.23) for one-step methods, we define the local dis- 
cretization error at x by 

hL(x, h) = ~(a: + h) - Y(X) - ;[3fb,y(x)) - f(x - h,y(x - WI, (2.4.14) 
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where y(z) is the exact solution of the differential equation. Since y’(z) = 

f(~v(x)L th e t erm in brackets in (2.4.14) can be expanded in a Taylor series 
as 

3&z) - y’(a: - h) = 2&z) + by”(X) + O(h2). 

Combining this with 

y(x + h) - y(x) = by’(z) + ;Y”(z) + O(h3) 

yields 
L(z, h) = O(h2). (2.4.15) 

Therefore, assuming that suitably high-order derivatives of the solution are 
bounded, we have that the local discretization error L(h) on the interval [a, b] 
satisfies 

L(h) = a<~gmh IL(z, h)l = W2L -- 
(2.4.16) 

which shows that the method is second order. 
We could define the local discretization error separately for each of the 

other methods of this section. However, all of these methods are special cases 
of what are called linear multistep methods of the form 

y/c+1 = 2 WY~+I-i + h 2 Pih+l-i, 
i=l i=o 

(2.4.17) 

where, as usual, fj = f(zj, yj), and m is some fixed integer. The method 
2.4.17) is called linear since yk+l is a linear combination of the yi and fi. If 

30 = 0, the method is explicit, and if /3o # 0, then the method is implicit. In 
all of the Adams methods ~1 = 1 and ai = 0, i > 1; in the Adams-Bashforth 
methods Do = 0 and for Adams-Moulton PO # 0. 

For the general linear multistep method (2.4.17), we define the local dis- 
cretization error L(z, h) at z by 

L(x, h) = $y(z + h) - 2 aiy(z - (i - l)h)] - 2 Piy’(a: - (i - 1)h). 
i=l i=o 

For any given method, that is, for any given choice of m Hnd the constants 
2, and ,&, one can compute the local discretization error by expansion of y 
and y’ in Taylor series about z. In particular, under suitable assumptions on 
Ihe differentiability of the solution, one can show that the Adams-Bashforth 
nethods (2.4.8) and (2.4.9) are third and fourth order, respectively, whereas 
The Adams-Moulton methods (2.4.10) and (2.4.11) are second and fourth order. 
The verification of these statements is left to Exercise 2.4.6. 
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Once the local discretization error is known, there remains the problem of 
bounding the global discretization error, which is defined by 

E(h) = max{Iy(xk) - ykJ : 1 5 k 5 N}. 

In general, this is a difficult problem, but under suitable assumptions on f 
and the solution y, it can be shown for all of the methods of this section that 
E(h) = O(hP) when L(h) = O(hP). 

Multistep methods constitute an attractive alternative to the one-step meth- 
ods of Section 2.2. High-order methods can be constructed that require only 
one evaluation of f at each step, but at the price that the methods are not 
self-starting. Indeed, high-order Adams methods are the basis of the most 
efficient computer codes available today (see the Supplementary Discussion). 

Numerical Examples 

120 - 

x(t) 100 - 

t 

80 

1 

0 
I 1 1 I I 

20 40 

Y(t) 

Figure 2.10: Second-Order Runge-Kutta and Adams Predictor-Corrector 

We conclude this section by returning to the sample problems of Section 2.1. 
In Figure 2.8 (Section 2.2) we gave an approximate solution of the predator- 
prey equations (2.2.34), (2.2.35) obtained by the second-order Runge-Kutta 
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method. In Figure 2.10 we superimpose on Figure 2.8 an approximate solu- 
tion obtained by a second-order Adams-Bashforth/Adams-Moulton predictor- 
corrector method, which is based on (2.4.5) and (2.4.10) and given explicitly in 
Exercise 2.4.5. Note that the two methods in Figure 2.10 are in error by a com- 
parable amount, although one approximate solution spirals in from the exact 
solution whereas the other spirals out. The step size used for both methods was 
h = 1. Both of these methods require two evaluations of f per step. However, 
the corresponding fourth-order predictor-corrector method still requires only 
two evaluations of f, whereas the fourth-order Runge-Kutta method requires 
four. 

120 

100 

x(t) 

80 

. 

0 

/ - 

~ 

L 
20 40 

y(t) 

Figure 2.11: Second-Order Adams-Bashforth and AIdams Predictor-Corrector 

Figure 2.11 compares the second-order predictor-corrector method of Fig- 
ye 2.10 with the second-order Adams-Bashforth method. Note the strong 
+3ect that the correction step has on the Adams-Bashforth method; the ac- 
--lracy is improved somewhat but, more noticeably, the approximate solution 
L )w spirals in rather than out. Again, the step size for both methods was 
-- - 1. 
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We now apply the second-order Adams predictor-corrector method to the 
trajectory problem discussed in Section 2.1. The system of ordinary differential 
equations used for the projectile problem is given by (2.1.15), (2.1.17), and 
(2.1.18) with T = 0 and ti = 0: 

i = wcose, i = vsin8, 

(2.4.18) 

ir = 1 
- zmcpsv2 - gsin8, 6 = -2 case, 

V 

with initial conditions 

2(O) = 0, Y(O) = 0, 40) = vo, e(o) = eo. (2.4.19) 

Values for the parameters in (2.4.20) are m = 15 kg, c = 0.2, p = 1.29 kg/m, 
s = 0.25 m2, and g = 9.81 m/s 2. The initial value for w is ve = 50 m/s, and 
two different initial angles were used: f3e = 0.6 and 1.2 radians. Figure 2.12 is 
a plot of the height versus range of the projectile. 

--.jo = 0.6 
-\ ‘. 

‘\ 
1 ‘\ , 

100 
Range (meters) 

150 200 

Figure 2.12: Adams Predictor-Corrector Method (2.4.18), (2.4.19) Applied to 
the Trajectory Problem with Different Initial Angles 

Supplementary Discussion and References: 2.4 

The Adams methods form the basis for a number of highly sophisticated 
computer codes. In these codes the Adams methods are implemented with the 
capability of changing not only the step size - as we discussed for the Runge- 
Kutta methods -but also the order of the method. For details on one particular 
collection of codes - ODEPACK - see Hindmarsh [1983]. For more discussion 
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of the theory and practice of Adams methods, see, for example, Gear [1971] 
and Butcher [1987]. For an excellent account of how good computer codes are 
developed, see Shampine, Watts, and Davenport [1976]; this article makes the 
important point that the way methods are implemented on a computer can be 
more important than the intrinsic difference between methods. 

Another approach to the derivation of multistep methods starts with the 
general linear method (2.4.17) and requires that it be exact when the solution 
y of the differential equation is a polynomial of degree Q. This then implies 
that the method is order q. For example, if q = 1, then (2.4.17) must be 
exact whenever the solution is a constant; in this case the fi all vanish since 

f(x,dx)) = Y’(X) = 07 and we are left with the condition 

.._ 
1 = cc&. (2.4.20) 

i=l 

Similarly, the requirement that (2.4.17) be exact when the solution is y(z) = x 
leads to the condition 

m+l=cvlm+az(m-1)+...+LY,+CP,. (2.4.21) 
i=o 

The relations (2.4.20) and (2.4.21) for the coefficients cy( and pi are known 
as the consistency conditions for the multistep method and are necessary and 
sufficient conditions that the method be first order. One can continue this 
process to obtain relations on the CQ and pi that are necessary and sufficient 
that the method be of any given order. For further discussions of multistep 
methods, see, for example, Henrici [1962] and Butcher [1987]. 

We can combine the one-step methods of Section 2.2 with the multistep 
methods of this section into the same general formulation: 

y/c+1 = 2 aiyrc+1-i + W(a+1,. ’ . ) Zk+l-77%; yk+l, . . . , Yk+l--m). (2.4.22) 
i=l 

For one-step methods m = 1, and if ~1 = 1 and ‘4 is independent of xk+r 
and yk+l, then (2.4.22) reduces to the one-step method (2.2.24). On the other 
iand, if C$ is the function 

4= &ifC Xk+l-i, Yk+l-c > .I 
i=o 

:hen (2.4.22) reduces to the linear multistep method (2.4.17). The formulation 
2.4.22) contains virtually all methods in current use. 
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EXERCISES 2.4 

2.4.1. Verify that pl of (2.4.4) is the linear interpolating polynomial for (zk, fk) and 
(zk-1, fk-I), and that (2.4.5) follows from (2.4.3) for this pl. Similarly, verify 
that (2.4.6) is the quadratic interpolating polynomial for (zk, fk), (zk-1, fk-I), 
and (zk--2, fk-2). Then carry out the integration of pz to verify the formula 
(2.4.7). Finally, give the cubic interpolating polynomial pa by adding the 
appropriate cubic term (see (2.3.13)) to pz. Then integrate p3 in (2.4.3) to 
obtain the formula (2.4.9). 

2.4.2. Write a computer program to carry out the second-order Adams-Bashforth 
method (2.4.5). Use the second-order Runge-Kutta method to supply the 
missing starting value yl. Apply your program to the problems of Exercises 
2.2.2 and 2.2.8 and compare your results with the Euler and Heun methods. 

2.4.3. Repeat Exercise 2.4.2 using the fourth-order Adams-Bashforth method (2.4.9). 

2.4.4. Carry out in detail the derivation of the Adams-Moulton method (2.4.10). 
Do the same for the method (2.4.11). 

2.4.5. Use as much as possible of your program of Exercise 2.4.2 to write a computer 
program to carry out the predictor-corrector method 

(P) 
Yk+l = Yk + $fk - h-l), 

f(P) 
k+l = fh+l>Y,+, ? 

(P) ) 

!/k+l = Yk+;(fel+fk). 

Apply this to the problem y’ = -y, y(0) = 1 and compare your results with 
the methods of Exercise 2.4.2. Similarly, write a program to carry out (2.4.13). 

2.4.6. Compute the local discretization errors for the Adams-Bashforth methods 
(2.4.8) and (2.4.9) and show that they are third and fourth order, respectively. 
(Assume that the solution is sufficiently differentiable.) Do the same for the 
Adams-Moulton methods (2.4.10) and (2.4.11) and verify that they are second 
and fourth order, respectively. 

2.4.7. Give the coefficients LYE and pi in the linear multistep formulation (2.4.17) 
for the Adams-Bashforth and Adams-Moulton methods of second, third, and 
fourth order. 

2.4.8. Consider the method yk+l = yk-1 + $(fk+l + 2fk + f&l) . 

a. Find the order of the method. 

b. Discuss how to apply this method to the system of equations 
y’ = f(z, y). What difficulties do you expect to encounter 
in carrying out the method? 
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2.4.9. Repeat the calculations of Figure 2.11 using the second-order Adams-Bashforth 
method and the predictor-corrector method of Exercise 2.4.5. 

2.4.10. Repeat the calculations of Figure 2.12. Find the value of 00 such that the 
range of the rocket is 150 m. 

2.4.11. Consider the problem of evaluating the “normal density” 

p(o) = -& J ,” -t2/2& + ; 
by solving the differential equation 

1 -x2/2 
p’(x) = --g , p(0) = ;. 

Use the second-order Runge-Kutta method and the second-order predictor- 
corrector method of Exercise 2.4.5 to solve this differential equation, Compare 
your results. 

2.5 Stability, Instability, and Stiff Equations 

One of the pervading concerns of scientific computing is that of stability, a 
much overused word that tends to have somewhat different meanings depend- 
ing on the context. In this section we will discuss several aspects of stability 
as it pertains to the numerical solution of ordinary differential equations. 

Unstable Solutions 

Consider the second-order differential equation 

y” - 1oy’ - lly = 0 (2.5.1) 

n-ith the initial conditions 

Y(O) = 1, y’(0) = -1. (2.5.2) 

The solution of (2.5.1), (2.5.2) is y(z) = ebzr $s is easily verified. Now suppose 
xe change the first initial condition by a small quantity E, so that the initial 
renditions are 

y(0) = 1+ E, y’(0) = -1. (2.5.3) 

Then, as is again easily verified, the solution of (2.5.1) with the initial condi- 
:ions (2.5.3) is 

y(x) = (1+ $j&)e-’ + Gellz. (2.5.4) 

Therefore for any E > 0, no matter how small, the second term in (2.5.4) 
-auses the solution to tend to infinity as x + 00. The two solutions are shown 
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in Figure 2.13. We say that the solution y(z) = e-” of the problem (2.5.1), 
(2.5.2) is unstable, since arbitrarily small changes in the initial conditions can 
produce arbitrarily large changes in the solution as 5 + co. In the parlance of 
numerical analysis, one would also say that this problem is ill-conditioned; it 
is extremely difficult to obtain the solution numerically because rounding and 
discretization error will cause the same effect as changing the initial conditions, 
and the approximate solution will tend to diverge to infinity (see Exercise 
2.5.1). 

Figure 2.13: Solutions of Slightly Different Problems 

Even more pronounced instabilities can occur with nonlinear equations. 
For example, the problem 

Y’ = XY(Y - 21, Y(O) = 2, (2.5.5) 

has the solution y(z) = 2, which is unstable. To see this, note that for the 
initial condition y(0) = ye the solution is 

Y(X) = 
230 

YO + (2 - y0P2 ’ 

Thus if ye < 2, then y(z) + 0 as x + co, and if yo > 2, the solution increases 
and has a singularity when ye + (2 - ye)eZ2 = 0. Typical solutions are shown 
in Figure 2.14. 

Unstable Methods 

The two previous examples illustrated instabilities of solutions of the dif- 
ferential equation itself. We now turn to possible instabilities in the numerical 
method. Let us consider the method 

yn+l = in-1 + 2hfn, (2.5.6) 

which is similar to Euler’s method but is a multistep method and is second- 
order accurate, as is easy to verify (Exercise 2.5.3). 
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Figure 2.14: Solutions for Three Slightly Different Initial Conditions 

We now apply (2.5.6) to the problem 

y’ = -2y + 1, Y(O) = 1, (2.5.7) 

whose exact solution is 
y(x) = iewzz + f. (2.5.8) 

This solution is stable, since if the initial condition is changed to y(0) = 1 + E 
the solution becomes 

y(x) = (3 + e)e-2z + 4, 

and the change in (2.5.8) is only Ee -2x. The method (2.5.6) applied to (2.5.7) 
is 

Yn+l = YW-1 + 2h(-2y, + 1) = -4hy, + ynml + 2h, y. = 1, (2.5.9) 

with ye taken as the initial condition. However, since (2.5.6) is a two-step 
method, we also need to supply yi in order to start the process, and we will 

he exact solution (2.5.8) at x = h: 

y1 = ie-2h + +. (2.5.10) 

If, for any fixed h > 0, we now generate the sequence {y,} by (2.5.9) and 
(2.5.10), we will see that lynl + oc as n + oo, rather than mirroring the 
behavior as x + 00 of the solution (2.5.8) of the differential equation. Thus 
the method (2.5.6), although second-order accurate, exhibits unstable behavior 
and we next wish to address why this is so. 

Difference Equations 

It is relatively easy to analyze the behavior of the sequence {y,} generated 
by (2.5.9) by viewing (2.5.9) as a diference equation. The theory of difference 
equations parallels that of differential equations, and we will sketch the basic 
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parts of this theory in the case of linear difference equations of order m with 
constant coefficients; such an equation is of the form 

yn+l = adh + . . e + alYn-m+l + a0, n = m - l,m,m + 1,. . . , (2.5.11) 

with given constants ae, al,. . . , a,. The homogeneous part of (2.5.11) is 

yn+l = adh + . -a + alyn-m+l. (2.5.12) 

By analogy with differential equations, we attempt to find an exponential type 
solution of (2.5.12), only now the exponential takes the form yk = X” for some 
unknown constant X. We see that yk = X” indeed is a solution of (2.5.12) 
provided that X satisfies 

Am - amAm-’ - . . . - al = 0, (2.5.13) 

which is the characteristic equation of (2.5.12). If we assume that the m roots 

h,..., X, of (2.5.13) are distinct, then the fundamental solutions of (2.5.12) 
are A:,.. . , XL, and the general solution of (2.5.12) is 

yk = f$xf”, 
i=l 

k = O,l,. . * , (2.5.14) 

where the ci are arbitrary constants. A particular solution of (2.5.11) is given 

by 
a0 

‘lc = 1 _ al _ . . . _ a, ’ (2.5.15) 

provided that the denominator is not zero, as is easily verified. Therefore the 
general solution of (2.5.11) is the sum of (2.5.14) and (2.5.15): 

yk=f$Xf+ 
a0 

1 _ al - . . . - a, ’ 
Ic=O,l... . 

i=l 

(2.5.16) 

The arbitrary constants in (2.5.16) can be determined - just as for dif- 
ferential equations - by imposing additional conditions on the solution. In 
particular, suppose we are given the initial conditions 

YO,Yl,**‘,Ym-l. (2.5.17) 

Then (2.5.16) requires that 

CjAf + 
a0 

1 - al _ . . . _ a, = Yk’ 
k=O,l,...m-1, (2.5.18) 

i=l 

which is a system of m linear equations in the m unknowns cl,. . . , cm, and 
can be used to determine the ci. 
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We now apply this theory to the difference equation (2.5.9), which we write 
in the form 

yn+1 = -4hy, + yn-1 + 2h, yo = 1, yi = $P + ;. (2.5.19) 

The characteristic equation (2.5.13) is X2 + 4hX - 1 = 0 with roots 

X1 = -2h + J1$4hz, X2 = -2h - &%?. (2.5.20) 

The conditions (2.5.18) then become 

Cl + c2 + 4 = yo = 1, clX1 + c2X2 + 3 = yl = Ze 1 -a + ;, 

which can be solved for cl and cg to give 

cl=I+yd+h 
4 2dG-G 

c2 = 1 _ (Yl - i + h) 
4 2dW * 

(2.5.21) 

Thus the solution of (2.5.19) is 

yn = cl(-2h + J1+4hZ)n + cz(-2h - J1+4h2)n + 4. (2.5.22) 

.\lthough this representation of the solution is perhaps a little formidable, it 
allows us to see very easily the behavior of yn as n + co. In particular, for 
any fixed step size h > 0, it is evident that 

0<-2h+J1+4hZ<l, 2h + J1$4h2 > 1. 

Therefore the first term in (2.5.22) tends to zero, while the second tends to 
infinity, in an oscillatory way, as n tends to infinity. Since the exact solution 
2.5.8) of the differential equation tends to l/2 as x tends to infinity, we see 

that the error in the approximate solution {yn} diverges to infinity, and the 
method (2.5.9) is unstable applied to the problem (2.5.7). Note that this 
divergence of the error has nothing to do with rounding error; (2.5.22) is the 
Fxact mathematical representation of yn, and if the sequence (2.5.19) were 
computed in exact arithmetic it would correspond precisely with that given by 
25.22). 

Stability of Methods 

From the preceding example it is clear that an important property of a 
method is that it be stable in some sense. The most basic definition of stability 
may be given in terms of the general method (2.4.22): 

yn+l = 2 aiyn+l-i + h$(x,+l, . . . , xn+l-m, yn+lr . . . , yn+l-m). (2.5.23) 

I 
i=l 
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The method (2.5.23) is stable provided that all roots Xi of the polynomial 

p(X) E A” - CrlX m-l - * * * - a, (2.5.24) 

satisfy /Xii 5 1, and any root for which J&l = 1 is simple. The method is 
strongly stable if, in addition, m - 1 roots of (2.5.24) satisfy l&l < 1. (We note 
that some authors use the terms weakly stable and stable in place of stable and 
strongly stable.) 

Any method that is at least first-order accurate must satisfy the condition 
C:“=,CQ = 1, so that 1 is a root of (2.5.24). In this case, a strongly stable 
method will then have one root of (2.5.24) equal to 1 and all the rest strictly 
less than 1 in absolute value. For Runge-Kutta methods, p(X) = X - 1 since 
the method is one-step; hence there are no roots of (2.5.24) besides the root 
X = 1, and these methods are always strongly stable. For an m-step Adams 
method, p(X) = X” - Am-‘, so the other m - 1 roots of (2.5.24) are zero, and 
these methods also are strongly stable. 

For the method (2.5.6), the polynomial (2.5.24) is p(X) = X2 - 1 with roots 
fl; hence this method is stable but not strongly stable, and it is this lack of 
strong stability that gives rise to the unstable behavior of the sequence {yk} 
defined by (2.5.19). The reason for this is as follows. The difference equation 
(2.5.19) is second order (since yn+i, yn, and yn-i appear in the equation) 
and has two fundamental solutions, Xy and Xt, where Xi and Xz are the roots 
(2.5.20). The sequence {yk} generated by (2.5.19) is meant to approximate the 
solution of the differential equation (2.5.7), which is a first-order equation with 
only one fundamental solution. This fundamental solution is approximated by 
Xy; Xt is spurious and should rapidly go to zero. However, for any h > 0, 
IX21 > 1, and hence xa tends to infinity and not zero; it is this that causes 
the instability. Now, note that Xi and A2 converge to the roots of the stability 
polynomial (2.5.24) as h + 0; indeed, this polynomial is just the limit, as 
h + 0, of the characteristic polynomial X2 + 4hX - 1 of (2.5.19). The idea of 
strong stability now becomes more evident. If all the roots except one of the 
stability polynomial are less than 1 in magnitude, then all but one of the roots 
of the characteristic equation of the method must be less than 1 for sufficiently 
small h; hence powers of these roots - the spurious fundamental solutions of 
the difference equation - tend to zero and cause no instability. 

The stability theory that we have just discussed is essentially stability in 
the limit as h -+ 0, and the example of instability that we gave shows what 
can happen for arbitrarily small h if the method is stable but not strongly 
stable and the interval is infinite. On a finite interval, a stable method will 
give accurate results for sufficiently small h. On the other hand, even strongly 
stable methods can exhibit unstable behavior if h is too large. Although in 
principle h can be taken sufficiently small to overcome this difficulty, it may 
be that the computing time then becomes prohibitive. This is the situation 
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with differential equations that are known as stiff, and we shall conclude this 
section with a short discussion of such problems. 

Stiff Equations 

Consider the equation 

y’ = -looy + 100, Y(O) = Yo* (2.5.25) 

The exact solution of this problem is 

y(x) = (yo - l)e-loo” + 1. (2.5.26) 

It is clear that the solution is stable, since if we change the initial condition to 
yc + E the solution changes by Ee -looZ. Euler’s method applied to (2.5.25) is 

yn+1 = yn + h(-lOOy, + 100) = (1 - lOOh)y, + lOOh, (2.5.27) 

and the exact solution of this first-order difference equation is 

yn = (yo - l)(l - lOOh)” + 1. (2.5.28) 

For concreteness, suppose that yo = 2 so that the exact solutions (2.5.26) and 
(2.5.28) become 

y(x) = em1002 + 1, (2.5.29) 

yn = (1 - 100/L)” + 1. (2.5.30) 

Now, y(z) decreases very rapidly from ye = 2 to its limiting value of 1; 
for example, y(O.l)-1 + 5 x lo- 5. Initially, therefore, we expect to require a 
small step size h to compute the solution accurately. However, beyond, say, 
I = 0.1, the solution varies slowly and is essentially equal to 1; intuitively 
we would expect to obtain sufficient accuracy with Euler’s method using a 
relatively large h. However, we see from (2.5.30) that if h > 0.02, then (1 - 
lOOh > 1 and the approximation yn grows rapidly at each step and shows 
an unstable behavior. If we compare the exact solutions (2.5.29) and (2.5.30), 
we see that the particular solutions of (2.5.25) and (2.5.27) are identical (and 
equal to 1). The quantity (1 - 100h)n is an approximation to the exponential 
term e-loo2 and is, indeed, a good approximation for small h but rapidly 
becomes a poor approximation as h becomes as large as 0.02. Even though this 
exponential term contributes virtually nothing to the solution after x = 0.1, 
Euler’s method still requires that we approximate it with sufficient accuracy 
ro maintain stability. This is the typical problem with stiff equations: the 
solution contains a component that contributes very little to the solution, 
but the usual methods require that it be approximated accurately in order to 
maintain stability. 
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This problem occurs very frequently in systems of equations. For example, 
consider the second-order equation 

y” + 101y’ + 1ooy = 0. (2.5.31) 

As discussed in Appendix 1, we can convert (2.5.31) to an equivalent system 
of two first-order equations, but it is sufficient for our purposes to treat it in 
its second-order form. The general solution of (2.5.31) is 

y(x) = cle-looz + cze-“, 

and if we impose the initial conditions 

y(0) = 1.01, y’(0) = -2, 

the solution is 
y(x) = &eml”” + emz. (2.5.32) 

Clearly, the first term of this solution contributes very little after x reaches a 
value such as x = 0.1. Yet we will have the same problem as in the previous 
example if we apply Euler’s method to the first-order system corresponding 
to (2.5.31); that is, we will need to make the step size sufficiently small to 
approximate e-loo2 accurately even though this term contributes very little to 
the solution. This example illustrates the essence of the problem of stiffness 
in systems of equations. Usually the independent variable in such problems is 
time and the physical problem that is being modeled has transients that decay 
to zero very rapidly, but the numerical scheme must cope with them even after 
they no longer contribute to the solution. 

The general approach to the problem of stiffness is to use implicit methods. 
It is beyond the scope of this book to discuss this in detail, and we will only 
give an indication of the value of implicit methods in this context by applying 
one of the simplest such methods to the problem (2.5.25). For the general 
equation y’ = f(x, y), the method 

Yn+1 = Yn + U(%+1, Yn+l) (2.5.33) 

is known as the backward Euler method. It is of the same form as Euler’s 
method except that f is evaluated at (z,+l,yn+l) rather than at (xn, yn); 
hence the method is implicit. If we apply (2.5.33) to (2.5.25), we obtain 

~n+l = in + h(-lOOy,+l + loo>, (2.5.34) 

which can be put in the form 

yn+l = (1+ lOOh)-‘(yn + 100h). (2.5.35) 
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The exact solution of the difference equation (2.5.35) is 

yn = (yo - 1)(1+ looh)-n + 1, (2.5.36) 

as is easily verified (Exercise 2.5.10). In particular, for the initial condition 
yo = 2, which was treated previously, (2.5.36) becomes 

Yn = (1+ tooh)- + l, 
(2.5.37) 

and we see that there is no unstable behavior regardless of the size of h. Note 
that with Euler’s method we are attempting to approximate the solution by 
a polynomial, and no polynomial (except 0) can approximate e-” as 2 + co. 
With the backward Euler’s method we are approximating the solution by a 
rational function, and such functions can indeed go to zero as x --i) oo. 

The backward Euler method, like Euler’s method itself, is only first-order 
accurate, and a better choice would be the second-order Adams-Moulton method 
(2.4.10): 

Yn+l = Yn + ;vn + f(Xn+l, Yln+1)], (2.5.38) 

which is also known as the trapezoid rule. The use of this method on (2.5.25) 
is left to Exercise 2.5.13. 

The application of an implicit method to (2.5.25) was deceptively simple 
since the differential equation is linear and hence we could easily solve for 
y,+l in (2.5.34). If the differential equation had been nonlinear, however, the 
method would have required the solution of a nonlinear equation for yn+l at 
each step. More generally, for a system of differential equations the solution 
of a system of equations (linear or nonlinear, depending on the differential 
equations) would be needed at each step. This is costly in computer time, but 
the effective handling of stiff equations requires that some kind of implicitness 
be brought into the numerical method. 

Supplementary Discussion and References: 2.5 

There is a vast literature on the theory of stability of solutions of differential 
equations. For a readable introduction, see LaSalle and Lefschetz [1961]. 

We have given the basic result for linear difference equations with constant 
coefficients only for the case where the roots of the characteristic equation are 
distinct. If there are multiple roots, then polynomial terms in n enter the 
solution in a manner entirely analogous to that for differential equation’s. For 
=lore discussion of the theory of linear difference equations, see, for example, 
Ortega [1987]. 

The method (2.5.6) arises in a natural way by differentiation of an inter- 
?olating polynomial; for the derivation, see Henrici [1962, p. 2191. 
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The basic results of the theory of stability of multistep methods were de- 
veloped by G. Dahlquist in the 1950s; for a detailed treatment of this theory, 
see Henrici [1962]. Since then there have been a number of refined definitions 
of stability; in particular, the terms stiffly-stable and A-stable deal with types 
of stability needed for methods to handle stiff equations. For more on differ- 
ent definitions of stability, see, for example, Gear [1971], Lambert [1973], and 
Butcher [1987]. 

There are a number of codes available for solving stiff equations. One of the 
best is the VODE package of Brown, Byrne, and Hindmarsh [1989], which may 
also be used for problems which are not stiff. 
Backward Differention Formula (BDF) implicit 
general form (2.4.17) with pi = 0 for i > 0. 

EXERCISES 2.5 

For stiff equations a so-called 
method is used, which is of the 

2.5.1. By letting z = y’, show that the problem (2.5.1), (2.5.2) is equivalent to the 
first-order system y’ = Z, I’ = 10~ + lly, with initial conditions y(0) = 1 and 
z(0) = -1. Attempt to solve this system numerically by any of the methods 
of this chapter and discuss your results. 

2.5.2. Attempt to solve the problem (2.5.5) numerically by any of the methods of 
Sections 2.2 or 2.4 and discuss your results. 

2.5.3. Verify that the method (2.5.6) is second-order accurate. 

2.5.4. Carry out the algorithm (2.5.9), (2.5.10) numerically for various values of h. 
Discuss your results. 

2.5.5. Solve the difference equation yn+l = gy,, + ~~-1, yo = yl = 1, in terms of 
the roots of its characteristic equation. Discuss the behavior of the sequence 

{Yn) as n + 00. 

2.5.6. Find a value of yl such that the resulting solution of (2.5.9) with yc = 1 tends 
to zero as n tends to infinity. Write a program to carry out (2.5.9) with y1 
given in this way as well as by (2.5.10). Discuss your results. 

2.5.7. Consider the method yn+l = yn-s + (4h/3)(2fn - fn-l + 2f,+z), which is 
known as M&e’s method. Ascertain whether this method is stable and strongly 
stable. 

2.5.8. Write a program to carry out Euler’s method (2.5.27) for different values of 
h both less than and greater than 0.02. Discuss your results. 

2.5.9. The system y’ = x, L’ = -100~ - 101~ is the first-order system equivalent to 
the second-order equation (2.5.31). Using the initial conditions y(0) = 2 and 
z(0) = -2, apply Euler’s method to this system and determine experimentally 
how small the step size h must be to maintain stability. Attempt to verify 
analytically your conclusion about the size of h. 
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