
Chapter 1 

The World of Scientific 
Computing 

1.1 What is Scientific Computing? 

The many thousands of computers now installed in this country and abroad 
are used for a bewildering - and increasing - variety of tasks: accounting and 
inventory control for industry and government, airline and other reservation 
systems, limited translation of natural languages such as Russian to English, 
monitoring of process control, and on and on. One of the earliest - and still 
one of the largest - uses of computers was to solve problems in science and 
engineering, and more specifically, to obtain solutions of mathematical models 
that represent some physical situation. The techniques used to obtain such 
solutions are part of the general area called scient$c computing, and the use 
of these techniques to elicit insight into scientific or engineering problems is 
called computational science (or computational engineering). 

There is now hardly an area of science or engineering that does not use 
computers for modeling. Trajectories for earth satellites and for planetary 
missions are routinely computed. Aerospace engineers also use computers to 
simulate the flow of air about an aircraft or other aerospace vehicle as it passes 
through the atmosphere, and to verify the structural integrity of aircraft. Such 
studies are of crucial importance to the aerospace industry in the design of safe 
and economical aircraft and spacecraft. Modeling new designs on a computer 
can save many millions of dollars compared to building a series of prototypes. 

Electrical engineers use computers to design new computers, especially 
computer circuits and VLSI layouts. Civil engineers study the structural char- 
acteristics of large buildings, dams, and highways. Meteorologists use large 
amounts of computer time to predict tomorrow’s weather as well as to make 
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much longer range predictions, including the possible change of the earth’s 
climate. Astronomers and astrophysicists have modeled the evolution of stars, 
and much of our basic knowledge about such phenomena as red giants and 
pulsating stars has come from such calculations coupled with observations. 
Ecologists and biologists are increasingly using the computer in such diverse 
areas as population dynamics (including the study of natural predator and 
prey relationships), the flow of blood in the human body, and the dispersion 
of pollutants in the oceans and atmosphere. 

The mathematical models of all of these problems - and of most of the other 
problems in science and engineering - are systems of differential equations, 
either ordinary or partial. Thus, to a first approximation, scientific computing 
as currently practiced is the computer solution of differential equations. Even if 
this were strictly true, scientific computing would still be an intensely exciting 

I 
discipline. Differential equations come in all “sizes and shapes,” and even with 
the largest computers we are nowhere near being able to solve many of the 
problems posed by scientists and engineers. 

But there is more to scientific computing, and the scope of the field is 
changing rapidly. There are many other mathematical models, each with its 
own challenges. In operations research and economics, large linear or nonlinear 
optimization problems need to be solved. Data reduction - the condensation 
of a large number of measurements into usable statistics - has always been an 
important, if somewhat mundane, part of scientific computing. But now we 
have tools (such as earth satellites) that have increased our ability to make 
measurements faster than our ability to assimilate them; fresh insights are 
needed into ways to preserve and use this irreplaceable information. In more 
developed areas of engineering, what formerly were difficult problems to solve 
even once on a computer are today’s routine problems that are being solved 
over and over with changes in design parameters. This has given rise to an 
increasing number of computer-aided design systems. Similar considerations 
apply in a variety of other areas. 

Although this discussion begins to delimit the area that we call scientific 
computing, it is difficult to define it exactly, especially the boundaries and over- 
laps with other areas1 We will accept as our working definition that scientific 
computing is the collection of tools, techniques, and theories required to solve 
on a computer mathematical models of problems in science and engineering. 

A majority of these tools, techniques, and theories originally developed in 
mathematics, many of them having their genesis long before the advent of elec- 
tronic computers. This set of mathematical theories and techniques is called 
numerical analysis (or numerical mathematics) and constitutes a major part 
of scientific computing. The development of the electronic computer, however, 
signaled a new era in the approach to the solution of scientific problems. Many 

‘Perhaps the only universally accepted definition of, say, mathematics is that it is what 
mathematicians do. 
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of the numerical methods that had been developed for the purpose of hand cal- 
culation (including the use of desk calculators for the actual arithmetic) had 
to be revised and sometimes abandoned. Considerations that were irrelevant 
or unimportant for hand calculation now became of utmost importance for the 
efficient and correct use of a large computer system. Many of these consid- 
erations - programming languages, operating systems, management of large 
quantities of data, correctness of programs - were subsumed under the new 
discipline of computer science, on which scientific computing now depends 
heavily. But mathematics itself continues to play a major role in scientific 
computing: it provides the language of the mathematical models that are to 
be solved and information about the suitability of a model (Does it have a 
solution? Is the solution unique?) and it provides the theoretical foundation 
for the numerical methods and, increasingly, many of the tools from computer 
science. 

In summary, then, scientific computing draws on mathematics and com- 
puter science to develop the best ways to use computer systems to solve prob- 
lems from science and engineering. This relationship is depicted schematically 
in Figure 1.1. In the remainder of this chapter, we will go a little deeper into 
these various areas. 

Numerical Analysis 
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Figure 1.1: Scientific Computing and Related Areas 

1.2 Mat hemat ical Modeling 

As was discussed in Section 1.1, we view scientific computing as the discipline 
that achieves a computer solution of mathematical models of problems from 
science and engineering. Hence, the first step in the overall solution process is 
the formulation of a suitable mathematical model of the problem at hand. This 
is a part of the discipline in which the problem arises: engineers devise models 
for engineering problems, and biologists for biological problems. Sometimes 
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mathematicians and computer scientists are involved in this modeling process, 
at least as consultants. 

Modeling 

The formulation of a mathematical model begins with a statement of the 
factors to be considered. In many physical problems, these factors concern the 
balance of forces and other conservation laws of physics. For example, in the 
formulation of a model of a trajectory problem - which will be done in Section 
2.1 - the basic physical law is Newton’s second law of motion, which requires 
that the forces acting on a body equal the rate of change of momentum of 
the body. This general law must then be specialized to the particular problem 
by enumerating and quantifying the forces that will be of importance. For 
example, the gravitational attraction of Jupiter will exert a force on a rocket 
in Earth’s atmosphere, but its effect will be so minute compared to the earth’s 
gravitational force that it can usually be neglected. Other forces may also be 
small compared to the dominant ones but their effects not so easily dismissed, 
and the construction of the model will invariably be a compromise between 
retaining all factors that could likely have a bearing on the validity of the model 
and keeping the mathematical model sufficiently simple that it is solvable using 
the tools at hand. Classically, only very simple models of most phenomena were 
considered since the solutions had to be achieved by hand, either analytically or 
numerically. As the power of computers and numerical methods has developed, 
increasingly complicated models have become tractable. 

In addition to the basic relations of the model - which in most situations in 
scientific computing take the form of differential equations - there usually will 
be a number of initial or boundary conditions. For example, in the predator- 
prey problem to be discussed in Chapter 2, the initial population of the two 
species being studied is specified. In studying the flow in a blood vessel, we 
may require a boundary condition that the flow cannot penetrate the walls 
of the vessel. In other cases, boundary conditions may not be so physically 
evident but are still required so that the mathematical problem has a unique 
solution. Or the mathematical model as first formulated may indeed have 
many solutions, the one of interest to be selected by some constraint such 
as a requirement that the solution be positive, or that it be the solution with 
minimum energy. In any case, it is usually assumed that the final mathematical 
model with all appropriate initial, boundary, and side conditions indeed has 
a unique solution. The next step, then, is to find this solution. For problems 
of current interest, such solutions rarely can be obtained in “closed form.” 
The solution must be approximated by some method, and the methods to 
be considered in this book are numerical methods suitable for a computer. 
In the next section we will consider the general steps to be taken to achieve a 
numerical solution, and the remainder of the book will be devoted to a detailed 
discussion of these steps for a number of different problems. 
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Validation 

Once we are able to compute solutions of the model, the next step usually 
is called the validation of the model. By this we mean a verification that the 
solution we compute is sufficiently accurate to serve the purposes for which the 
model was constructed. There are two main sources of possible error. First, 
there invariably are errors in the numerical solution. The general nature of 
these errors will be discussed in the next section, and one of the major themes 
in the remainder of the book will be a better understanding of the source and 
control of these numerical errors. But there is also invariably an error in the 
model itself. As mentioned previously, this is a necessary aspect of modeling: 
the modeler has attempted to take into account all the factors in the physical 
problem but then, in order to keep the model tractable, has neglected or ap- 
proximated those factors that would seem to have a small effect on the solution. 
The question is whether neglecting these effects was justified. The first test 
of the validity of the model is whether the solution satisfies obvious physical 
and mathematical constraints. For example, if the problem is to compute a 
rocket trajectory where the expected maximum height is 100 kilometers and 
the computed solution shows heights of 200 kilometers, obviously some blunder 
has been committed. Or, it may be that we are solving a problem for which we 
know, mathematically, that the solution must be increasing but the computed 
solution is not increasing. Once such gross errors are eliminated - which is 
usually fairly easy - the next phase begins, which is, whenever possible, com- 
parison of the computed results with whatever experimental or observational 
data are available. Many times this is a subtle undertaking, since even though 
the experimental results may have been obtained in a controlled setting, the 
physics of the experiment may differ from the mathematical model. For ex- 
ample, the mathematical model of airflow over an aircraft wing will usually 
assume the idealization of an aircraft flying in an infinite atmosphere, whereas 
the corresponding experimental results will be obtained from a wind tunnel 
where there will be effects from the walls of the enclosure. (Note that neither 
the experiment nor the mathematical model represents the true situation of 
an aircraft flying in our finite atmosphere.) The experience and intuition of 
the investigator are required to make a human judgement as to whether the 
results from the mathematical model are corresponding sufficiently well with 
observational data. 

At the outset of an investigation this is quite often ndt the case, and the 
model must be modified. Usually this means that additional terms - which 
were thought negligible but may not be - are added to the model. Sometimes 
a complete revision of the model is required and the physical situation must be 
approached from an entirely different point of view. In any case, once the model 
is modified the cycle begins again: a new numerical solution, revalidation, 
additional modifications, and so on. This process is depicted schematically in 
Figure 1.2. 
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Figure 1.2: The Mathematical Modeling and Solution Process 

Once the model is deemed adequate from the validation and modification 
process, it is ready to be used for prediction. This, of course, was the whole 
purpose. We should now be able to answer the questions that gave rise to 
the modeling effort: How high will the rocket go? Will the wolves eat all the 
rabbits? Of course, we must always take the answers with a healthy skepticism. 
Our physical world is simply too complicated and our knowledge of it too 
meager for us to be able to predict the future perfectly. Nevertheless, we hope 
that our computer solutions will give us increased insight into the problem 
being studied, be it a physical phenomenon or an engineering design. 

1.3 The Process of Numerical Solution 

We will discuss in this section the general considerations that arise in the 
computer solution of a mathematical model, and in the remainder of the book 
these matters will be discussed in more detail. 

Once the mathematical model is given, our first thought typically is to try 
to obtain an explicit closed-form solution, but such a sol&ion will usually only 
be possible for certain (perhaps drastic) simplifications of the problem. These 
simplified problems with known solutions may be of great utility in providing 
“check cases” for the more general problem. 

After realizing that explicit solutions are not possible, we then turn to 
the task of developing a numerical method for the solution. Implicit in our 
thinking at the outset - and increasingly explicit as the development proceeds 
- will be the computing equipment as well as the software environment that 
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is at our disposal. Our approach may be quite different for a microcomputer 
than for a very large computer. But certain general factors must be considered 
regardless of the computer to be used. 

Rounding Errors 

Perhaps the most important factor is that computers deal with a finite 
number of digits or characters. Because of this we cannot, in general, do arith- 
metic within the real number system as we do in pure mathematics. That 
is, the arithmetic done by a computer is restricted to finitely many digits, 
whereas the numerical representation of most real numbers requires infinitely 
many. For example, such fundamental constants as ?r and e require an infinite 
number of digits for a numerical representation and can nezler be entered ex- 
actly in a computer. Moreover, everi if we could start with numbers that have 
an exact numerical representation in the computer, the processes of arithmetic 
require that eventually we make certain errors. For example, the quotient of 
two four-digit numbers may require infinitely many digits for its numerical 
representation. And even the product of two four-digit numbers will, in gen- 
eral, require eight digits. For example, assuming four-digit decimal arithmetic, 
0.8132 x 0.6135 = 0.49889820 will be represented by 0.4988 or 0.4989, depend- 
ing on the computer. Therefore, we resign ourselves at the outset to the fact 
that we cannot do arithmetic exactly on a computer. We shall make small 
errors, called rounding errors, on almost all arithmetic operations, and our 
rask is to insure that these small errors do not accumulate to such an extent 
as to invalidate the computation. 

The above example was given in terms of decimal arithmetic, but computers 
actually use the binary number system. Each machine has a word length 
consisting of the number of binary digits contained in each memory word, and 
this word length determines the number of digits that can be carried in the 
usual arithmetic, called single-precision arithmetic, of the machine. On most 
scientific computers, this is the equivalent of between 7 and 14 decimal digits. 
Higher-precision arithmetic can also be carried out. On many machines double- 
precision arithmetic, which essentially doubles the number of digits that are 
carried, is part of the hardware; in this case, programs with double-precision 
arithmetic usually require only modest, if any, increases in execution time 
compared to single-precision versions. On the other ha+, some machines 
implement double precision by software, which may require several times as 
much time as single precision. Precision higher than double is always carried 
out by means of software and becomes increasingly inefficient as the precision 
increases. Higher-precision arithmetic is rarely used on practical problems, 
but it may be useful for generating “exact” solutions or other information for 
testing purposes. 

Round-off errors can affect the final computed result in different ways. 
First, during a sequence of millions of operations, each subject to a small 
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error, there is the danger that these small errors will accumulate so as to 
eliminate much of the accuracy of the computed result. If we round to the 
nearest digit, the individual errors will tend to cancel out, but the standard 
deviation of the accumulated error will tend to increase with the number of 
operations, leaving the possibility of a large final error. If chopping - that is, 
dropping the trailing digits rather than rounding - is used, there is a bias to 
errors in one direction, and the possibility of a large final error is increased. 
As an example of this phenomenon, consider the computation 0.8132 x 0.6135 
x 0.2103 = 0.10491829 correct to ten digits. Chopping the product of the 
first two numbers to four digits yields 0.4988, with an error of 0.9820 x 10m4. 
Multiplying 0.4988 by 0.2103 gives 0.1048 after chopping, with an error of 
0.9764 ~10~~. The accumulated error is 0.1183 x 10m3. 

In addition to this possible accumulation of errors over a large number 
of operations, there is the danger of catastrophic cancellation. Suppose that 
two numbers a and b are equal to within their last digit. Then the differ- 
ence c = a - b will have only one significant digit of accuracy even though no 
round-off error will be made in the subtraction. Future calculations with c will 
then usually limit the final result to one correct digit. Whenever possible, one 
tries to eliminate the possibility of catastrophic cancellation by rearranging 
the operations. Catastrophic cancellation is one way in which an algorithm 
can be numerically unstable, although in exact arithmetic it may be a correct 
algorithm. Indeed, it is possible for the results of a computation to be com- 
pletely erroneous because of round-off error even though only a small number 
of arithmetic operations have been performed. Examples of this will be given 
later. 

Detailed round-off error analyses have now been completed for a number of 
the simpler and more basic algorithms such as those that occur in the solution 
of linear systems of equations; some of these results will be described in more 
detail in Chapter 4. A particular type of analysis that has proved to be very 
powerful is backward error analysis. In this approach the round-off errors 
are shown to have the same effect as that caused by changes in the original 
problem data. When this analysis is possible, it can be stated that the error 
in the solution caused by round off is no worse than that caused by certain 
errors in the original model. The question of errors in the solution is then 
equivalent to the study of the sensitivity of the solution to perturbations in 
the model. If the solution is highly sensitive, the problem’ is said to be ill-posed 
or ill-conditioned, and numerical solutions are apt to be meaningless. 

Discretization Error 

Another way that the finiteness of computers manifests itself in causing 
errors in numerical computation is due to the need to replace “continuous” 
problems by “discrete” ones. As a simple example, the integral of a continu- 
ous function requires knowledge of the integrand along the whole interval of 
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integration, whereas a computer approximation to the integral can use values 
of the integrand at only finitely many points. Hence, even if the subsequent 
arithmetic were done exactly with no rounding errors, there would still be the 
error due to the discrete approximation to the integral. This type of error is 
usually called discretization error or truncation error, and it affects, except in 
trivial cases, all numerical solutions of differential equations and other “con- 
tinuous” problems. 

There is one more type of error which is somewhat akin to discretization 
error. Many numerical methods are based on the idea of an iterative process. 
In such a process, a sequence of approximations to a solution is generated 
with the hope that the approximations will converge to the solution; in many 
cases mathematical proofs of the convergence can be given. However, only 
finitely many such approximations can ever be generated on a computer, and, 
therefore, we must necessarily stop short of mathematical convergence. The 
error caused by such finite termination of an iterative process is sometimes 
called convergence error, although there is no generally accepted terminology 
here. 

If we rule out trivial problems that are of no interest in scientific computing, 
we can summarize the situation with respect to computational errors as fol- 
lows. Every calculation will be subject to rounding error. Whenever the math- 
ematical model of the problem is a differential equation or other “continuous” 
problem, there also will be discretization error, and in many cases, especially 
when the problem is nonlinear, there will be convergence error. These types of 
errors and methods of analyzing and controlling them will be discussed more 
fully in concrete situations throughout the remainder of the book. But it is 
important to keep in mind that an acceptable error is very much dependent on 
the particular problem. Rarely is very high accuracy - say, 14 digits - needed 
in the final solution; indeed, for many problems arising in industry or other 
applications two or three digit accuracy is quite acceptable. 

Efkiency 

The other major consideration besides accuracy in the development of com- 
puter methods for the solution of mathematical models is efficiency. By this 
we will mean the amount of effort - both human and computer - required to 
solve a given problem. For most problems, such as,solving a system of lin- 
ear algebraic equations, there are a variety of possible methods, some going 
back many tens or even hundreds of years. Clearly, we would like to choose 
a method that minimizes the computing time yet retains suitable accuracy in 
the approximate solution. This turns out to be a surprisingly difficult problem 
which involves a number of considerations. Although it is frequently possi- 
ble to estimate the computing time of an algorithm by counting the required 
arithmetic operations, the amount of computation necessary to solve a prob- 
lem to a given tolerance is still an open question except in a few cases. Even 
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if one ignores the effects of round-off error, surprisingly little is known. In the 
past several years these questions have spawned the subject of computational 
complexity. However, even if such theoretical results were known, they would 
still give only approximations to the actual computing time, which depends on 
a number of factors involving the computer system. And these factors change 
as the result of new systems and architectures. Indeed, the design and anal- 
ysis of numerical algorithms should provide incentives and directions for such 
changes. 

We give a simple example of the way a very inefficient method can arise. 
Many elementary textbooks on matrix theory or linear algebra present Cramer’s 
rule for solving systems of linear equations. This rule involves quotients of cer- 
tain determinants, and the definition of a determinant is usually given as the 
sum of all possible products (some with minus signs) of elements of the matrix, 
one element from each row and each column. There are n! such products for 
an n x n matrix. Now, if we proceed to carry out the computation of a deter- 
minant based on a straightforward implementation of this definition, it would 
require about n! multiplications and additions. For n very small, say n = 2 
or n = 3, this is a small amount of work. Suppose, however, that we have a 
20 x 20 matrix, a very small size in current scientific computing. If we assume 
that each arithmetic operation requires 1 microsecond (10 -6 second), then the 
time required for this calculation - even ignoring all overhead operations in 
the computer program - will exceed one million years! On the other hand, 
the Gaussian elimination method, which will be discussed in Chapter 4, will 
do the arithmetic operations for the solution of a 20 x 20 linear system in less 
than 0.005 second, again assuming 1 microsecond per operation. Although 
this is an extreme example, it does illustrate the difficulties that can occur by 
naively following a mathematical prescription in order to solve a problem on 
a computer. 

Good Programs 

Even if a method is intrinsically “good,” it is extremely important to im- 
plement the corresponding computer code in the best way possible, especially 
if other people are to use it. Some of the criteria for a good code are the 
following: 

1. Reliability- the code does not have errors and can*be trusted to compute 
what it is supposed to compute. 

2. Robustness, which is closely related to reliability - the code has a wide 
range of applicability as well as the ability to detect bad data, “singu- 
lar” or other problems that it cannot be expected to handle, and other 
abnormal situations, and deal with them in a way that is satisfactory to 
the user. 



1.4 THE COMPUTATIONAL ENVIRONMENT 11 

3. Portability - the code can be transferred from one computer to another 
with a minimum effort and without losing reliability. Usually this means 
that the code has been written in a general high-level language like FOR- 
TRAN and uses no “tricks” that are dependent on the characteristics of 
a particular computer. Any machine characteristics, such as word length, 
that must be used are clearly delineated. 

4. Maintainability - any code will necessarily need to be changed from time 
to time, either to make corrections or to add enhancements, and this 
should be possible with minimum effort. 

The code should be written in a clear and straightforward way so that such 
changes can be made easily and with a minimum likelihood of creating new 
errors. An important part of ‘maintainability is that there be good documenta- 
tion of the program so that it can be changed efficiently by individuals who did 
not write the code originally. Good documentation is also important so that 
the program user will understand not only how to use the code, but also its 
limitations. Finally, extensive testing of the program must be done to ensure 
that the preceding criteria have been met. 

As examples of good software, LINPACK and EISPACK have been two 
standard packages for the solution of linear systems and eigenvalue problems, 
respectively. They are now being combined and revised into LAPACK, which 
is being designed to run on parallel and vector computers (see the next section). 
Another very useful system is MATLAB, which contains programs for linear 
systems, eigenvalues and many other mathematical problems and also allows 
for easy manipulation of matrices. 

1.4 The Computational Environment 

As indicated in the last section, there is usually a long road from a mathe- 
matical model to a successful computer program. Such programs are developed 
within the overall computational environment, which includes the computers 
to be used, the operating system and other systems software, the languages 
in which the program is to be written, techniques and software for data man- 
agement and graphics output of the results, and progra+ms that do symbolic 
computation. In addition, network facilities allow the use of computers at 
distant sites as well as the exchange of software and data. 

Hardware 

The computer hardware itself is of primary importance. Scientific com- 
puting is done on computers ranging from small PC’s, which execute a few 
thousand floating point operations per second, to supercomputers capable of 
billions of such operations per second. Supercomputers that utilize hardware 
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vector instructions are called vector computers, while those that incorporate 
multiple processors are called parallel computers. In the latter case, the com- 
puter system may contain a few, usually very powerful, processors or as many 
as several tens of thousands of relatively simple processors. Generally, algo- 
rithms designed for single processor “serial” computers will not be satisfactory, 
without modification, for parallel computers. Indeed, a very active area of re- 
search in scientific computing is the development of algorithms suitable for 
vector and parallel computers. 

It is quite common to do program development on a workstation or PC 
prior to production runs on a larger computer. Unfortunately, a program will 
not always produce the same answers on two different machines due to different 
rounding errors. This, of course, will be the case if different precision arithmetic 
is used. For example, a machine using 48 digit binary arithmetic (14 decimal 
digits) can be expected to produce less rounding error then one using 24 binary 
digits (7 decimal digits). However, even when the precision is the same, two 
machines may produce slightly different results due to different conventions 
for handling rounding error. This is an unsatisfactory situation that has been 
addressed by the IEEE standard for floating point arithmetic. Although not 
all computers currently follow this standard, in the future they probably will, 
and then machines with the same precision will produce identical results on 
the same problem. On the other hand, algorithms for parallel computers often 
do the arithmetic operations in a different order than on a serial machine and 
this causes different errors to occur. 

Systems and Languages 

In order to be useful, computer hardware must be supplemented by sys- 
tems software, including operating systems and compilers for high level lan- 
guages. Although there are many operating systems, UNIX and its variants 
have increasingly become the standard for scientific computing and essentially 
all computer manufacturers now offer a version of UNIX for their machines. 
This is true for vector and parallel computers as well as more conventional 
ones. The use of a common operating system helps to make programs more 
portable. The same is true of programming languages. Since its inception in 
the mid 1950’s, Fortran been the primary programming language for scientific 
computing. It has been continually modified and extended over the years, and 
now versions of Fortran also exist for parallel and vector computers. Other 
languages, especially the systems language “C,” are sometimes used for scien- 
tific computing. However, it is expected that Fortran will continue to evolve 
and be the standard for the foreseeable future, at least in part because of the 
large investment in existing Fortran programs. 
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Data Management 

Many of the problems in scientific computing require huge amounts of data, 
both input and output, as well as data generated during the course of the 
computation. The storing and retrieving of these data in an efficient manner 
is called data management. As an example of this in the area of computer-aided 
design, a data base containing all information relevant to a particular design 
application - which might be for an aircraft, an automobile, or a dam - may 
contain several billion characters. In an aircraft design this information would 
include everything relevant about the geometry of each part of the aircraft, 
the material properties of each part, and so on. An engineer may use this 
data base simply to find all the materials with a certain property. On the 
other hand, the data base will also be used in doing various analyses of the 
structural properties of the aircraft, which requires the solution of certain linear 
or nonlinear systems of equations. Large data management programs for use 
in business applications such as inventory control have been developed over 
many years, and some of the techniques used there are now being applied to 
the management of large data bases for scientific computation. It is interesting 
to note that in many scientific computing programs the number of lines of code 
to handle data management is far larger than that for the actual computation. 

Visualization 

The results of a scientific computation are numbers that may represent, for 
example, the solution of a differential equation at selected points. For large 
computations, such results may consist of the values of four or five functions 
at a million or more points. Such a volume of data cannot just be printed. 
Scientific visualization techniques allow the results of such computations to be 
represented pictorially. For example, the output of a fluid flow computation 
might be a movie which depicts the flow as a function of time in either two or 
three dimensions. The results of a calculation of the temperature distribution 
in a solid might be a color-coded representation in which regions of high tem- 
peratures are red and regions of low temperatures are blue, with a gradation 
of hues between the extremes. Or, a design model may be rotated in three- 
dimensional space to allow views from any angle. Such visual representations 
allow a quick understanding of the computation, although more detailed anal- 
ysis of selected tables of numerical results may be needed f?r certain purposes, 
such as error checking. 

Symbolic Computation 

Another development which is having an increasing impact on scientific 
computing is symbolic computation. Systems such as MACSYMA, REDUCE, 
MAPLE, and MATHEMATICA allow the symbolic (as opposed to numeri- 
cal) computation of derivatives, integrals and various algebraic quantities. For 
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example, such systems can add, multiply and divide polynomials or rational 
expressions; differentiate expressions to obtain the same results that one would 
obtain using pencil and paper; and integrate expressions that have a “closed 
form” integral. This capability can relieve the drudgery of manipulating by 
hand lengthy algebraic expressions, perhaps as a prelude to a subsequent nu- 
merical computation. In this case, the output of the symbolic computation 
would ideally be a Fortran program. Symbolic computation systems can also 
solve certain mathematical problems, such as systems of linear equations, with- 
out rounding error. However, their use in this regard is limited since the size 
of the system must be small. In any case, symbolic computation is contin- 
uing to develop and can be expected to play an increasing role in scientific 
computation. 

In this section we have discussed briefly some of the major components of 
the overall computing environment that pertain to scientific computing. In 
the remainder of the book we will point out in various places where these 
techniques can be used, although it is beyond the scope of this book to pursue 
their application in detail. 

Supplementary Discussion and References: Chapter 1 

For further reading on the computer science areas discussed in this chap- 
ter, see Hennessy and Patterson [1990] for computer architecture, Peterson and 
Silberschatz [1985] for operating systems, Pratt [1984] and Sethi [1989] for pro- 
gramming languages, Aho, Sethi, and Ullman [1988] and Fischer and LeBlanc 
[1988] for compilers, Elmasri and Navathe [1989] for data management, and 
Friedhoff and Benzon [1989] and Mendez [1990] for visualization. Another ref- 
erence for computer graphics, which provides much of the technical foundation 
for visualization techniques is Newman and Sproul [1979]. The symbolic com- 
putation systems mentioned in the text are covered in Symbolics [1987] for 
MACSYMA, Rayna [1987] for REDUCE, Char et al. [1985] for MAPLE, and 
Wolfram [1988] for MATHEMATICA. 

The packages EISPACK and LINPACK are discussed in Garbow et al. 
[1977] and Dongarra et al. [1979], respectively, and LAPACK in Dongarra and 
Anderson et al. [1990]. These and many other software packages are available 
on NETLIB; see, for example, Dongarra, Duff et al. [1990]. MATLAB can be 
obtained from The Math Works, Inc., South Natrick, MA 01760. . 
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