
Parsing TEX into Mathematics

Richard J. Fateman
Eylon Caspi

Computer Science Division, Electrical Engineering and Computer Sciences
University of California, Berkeley

August 4, 1999

Abstract

Communication, storage, transmission, and searching of complex ma-
terial has become increasingly important. Mathematical computing in a
distributed environment is also becoming more plausible as libraries and
computing facilities are connected with each other and with user facili-
ties. TEX is a well-known mathematical typesetting language, and from
the display perspective it might seem that it could be used for communi-
cation between computer systems as well as an intermediate form for the
results of OCR (optical character recognition) of mathematical expres-
sions. There are flaws in this reasoning, since exchanging mathematical
information requires a system to parse and semantically “understand” the
TEX, even if it is “ambiguous” notationally. A program we developed can
handle 43% of 10,740 TEX formulas in a well-known table of integrals. We
expect that a higher success rate can be achieved easily.

1 Introduction

One goal of our work in digital library data acquisition has been to read and
“understand” printed pages of mathematics that have been scanned into a
computer. In particular, we wish to process formulas into a computationally
tractable form so that computer algebra systems can use them. In this paper
we address a practical issue that repeatedly arises, which is to process legacy
documents that need not be scanned because they are “born digital.” Yet the
the formulas are not ready for further processing because they are in TEX [14].
An associated question arises if we start with scanned pages of material: can
we consider transforming the collection of glyphs into some form of TEX as a
useful intermediate form?

1

1.1 2-D notation

We begin by distinguishing two kinds of 2-dimensional (2-D) mathematical no-
tation, to help clarify our goals.

The first and most intuitive version of 2-D arithmetic is the notation of simple
numbers and variables, divide-bars, and the operators and symbols of “elemen-
tary” algebra. This notation is rich enough that it can be used for impressive
demonstrations of hand-written input, and it can be modeled neatly as a for-
mal language. Programs for interpreting such material are commonplace today.
Unfortunately, most human observers read too much into the demonstrations of
apparent success in this domain, since the problems associated with extensions
are difficult and present barriers to important issues of math representation.

When we get to the second level, we have a fuller set of notation appropriate
for more elaborate mathematics. This includes conventional communications
as might appear in mathematical or physical sciences texts or journal articles.
This level must necessarily include integrals, derivative notations, summations,
multiple-line equations. equation numbers, side-conditions, subscripts, and a
full character set including various operators and brackets. It also include no-
tations for various algebras, diagrams, tabular representations, and notations
that are constructed for special purposes “on the fly”.

In this fuller set, can we simplify our task of understanding the arrangement
of symbols on the printed page by first deducing the TEX input that would have
produced the 2-D display?

Perhaps: but this is not a full solution: Portraying 2-D display as TEX, but
without some context, fails to disambiguate the expressions. Indeed, some of
the hardest parts of recognizing 2-D typeset mathematics are present even in
a linear form! This context may take the form of a dictionary or a “running
commentary” on the semantics of the mathematics. Clearly if the notation is
to be useful as a communication mechanism among some group of humans, it
should be understandable in the common context1.

It is about as hard to understand graphically laid-out 2-D mathematics as
it is to understand a straightforward TEX rendering of simple math2. That is,
whether we use TEX or 2-D it is as plausible to map both recognition problems
to a common notation incorporating positional information, and try to make
sense of this form.

Why do we find ourself concerned about using a TEX-centric approach, rather
1It is possible that notations intended to be read in several ways are used by authors. Are

there such examples of poetic mathematics?
2Of course it is clearly possible to map TEX recognition problem to a 2-D math recognition

since the readily-available TEX program converts TEX input from linear text to 2-D positions
on a page (in dvi format)!

2

than (say) some other notation, such as that proposed for computer algebra
systems (CAS) or for Openmath[13]? The strength of TEX, and in fact the near
inevitability of having to deal with it at some level, is based on its centrality in
some technical publishing environments. TEX allows us to (a) represent virtually
any article published by the AMS (American Mathematics Society) in recent
years, and (b) take advantage of the programs for typesetting, auxiliary display,
printing, etc. that have grown up around TEX. (One of our favorites is Aster
[1], a program to read mathematics out loud).

Before going further, perhaps we should explain for the benefit of readers
who are familiar with TEX but who have not thought about this problem, why it
is that TEX per se does not “understand” the mathematics in any direct sense.
Whether we have TEX or just ordinary “natural” mathematics notation, resolv-
ing ambiguity by the use of local and global context seems necessary to finally
map the notation to semantically useful mathematics. A simple example we
will revisit can be helpful: one cannot tell from TEX if u(v+w) is a multiplica-
tion or an application of the function u. TEX merely encodes the appearance,
ambiguity included.

1.2 Some Perspective

The typesetting of mathematics by computer is a well-studied area with the
emphasis on the generation problem [14]. In the past 15 years there has been
growing interest in the optical recognition of non-text written material, espe-
cially typeset mathematics [3]. Judging from the absolute volume of printed
scientific material, input or output of mathematics is low on the scale of im-
portance for commercial word processing or OCR scanning programs. Yet an
economical and effective solution is important for scientific documents: In this
era of digital libraries, effective storage and efficient retrieval of text which in-
cludes mathematics, seems to be of interest; in fact, specific retrieval of formulas
from within documents has applications as well.

Furthermore, and from our perspective more interestingly, it is possible to
turn this kind of activity to the future, and hope to improve scientific pro-
ductivity. It is now more plausible than ever to engage in a two-way dialog
with computer algebra systems (CAS): these are now routinely producing un-
wieldy expressions that can appear in documents. Sometimes the documents
are contained and composed in a proprietary “notebook” form with a limited
mathematical notation, as in Mathematica, Maple, Macsyma, Axiom, Theorist.
These are CAS-centric, and therefore are limited in scope (mathematically) to
the commands and data representation requirements of their host CAS.

We have now seen several prototype attempts to free these notebooks from
their ties to specific systems (e.g. CAS/PI, Mathscribe , SUI, GI/S, Camino-
Real), and emerge with a software component approach [13] It is not our intent

3

to provide a survey (see bibliography of [21],[18], [16]). In effect these inter-
pose a WYSIWYG layer between the CAS and the human user. The front-end
program translates from a human-oriented input notation to the “necessities of
computing” notation.

A different approach is to start afresh and develop new “standards” or base
solutions to mathematical representation. A success here would a forteriori
provide a solution for mathematical representation for CAS. On the down-side,
an attempt to encode all mathematics: past, present (and future?) is, to say the
least, quite ambitious. Nevertheless, we are aware of several competing activities
that seem to have this goal, either implicitly: OpenMath or similar component
technologies [13], Mathematical SGML/ MathML [12]; or explicitly: the QED
project [19] or Zhao’s system [21]. Zhao et al. states explicitly, “Our research
aims to... study the structure and meaning of all mathematical expressions so
as to recognize their linguistic and logical properties”. The Polymath group at
Simon Fraser University has also tried to address this problem3.

We agree that there are good reasons for trying to come up with a grammar
and semantics for mathematics notation, but we are concerned that any efforts
to find a fixed and complete notation must founder on the shoals of ambiguity.
Even granted some oracle of disambiguation, it appears that total generality
must require fairly substantial extensibility and the ability to incorporate con-
text into interpretation. One simply cannot expect to represent all past and
future mathematics with a fixed set of notations. Therefore one must provide
tools for extension, and hope that the tools are sufficiently “universal” for all
further work.

Any such coverage of mathematics apparently must be extensible, and it
appears that each group relies to some extent on type-systems (in the sense of
programming languages), to help in disambiguation. How effective can this be?
The success we demonstrate in this paper shows that if one sets a finite context
and looks primarily at its notations and semantics, the prospects grow brighter.

There is yet another approach, which is to place at the center of the ac-
tivity some WYSIWYG word-processing program incorporating mathematical
notation, add a user-interface (menus, commands) allowing the selection of ex-
pressions to be shipped to CAS, and the values returned. Current programs
that have an independent life as word processors but provide links to such com-
puter algebra systems include Techexplorer [11] with an optional link to Axiom
as well as Scientific Workplace [20] with an optional link to Maple or Mathe-
matica. However, this can only work for material that is “born digital,” a major
limitation for the large number of “legacy” mathematical documents already on

3There is a demo of a “latex2openmath” tool which, if it worked, would solve this problem.
It doesn’t seem to work, and its strategy is not described except to say it uses an AI language
called Wildlife.

4

paper or in TEX.

1.3 Where does TEX come in?

“TEX is designed to handle complex mathematical expressions in such a way
that most of them are easy to input.” says the TEXbook [14]. Judging from the
many pages that have been typeset using TEX it appears that Donald Knuth
has had a fair amount of success with the design. What does Knuth mean by
“handle” here? He certainly does not mean that TEX as used normally, is an
unambiguous encoding of all of mathematics. Without sufficient context beyond
that needed to typeset, even simple expressions are ambiguous. That is, in spite
of being specifically, precisely, and neatly typeset by TEX an expression may not
provide an unambiguous statement to a mathematically literate observer. As a
simple example, consider the expression u(v+w) which has at least two distinct
conventional interpretations: the function u applied to the sum v + w, or the
product of u and v + w. Without further context one cannot tell if u is a
function or an operand to the implicit multiplication. There are other common
interpretations for this same expression including the boolean expression more
expressively denoted u ∧ (u ∨ w), as well as possible expressions in algebras of
strings or other domains. And by the magic of mathematics, one can overload
this expression with freightloads of meaning. This is not a detriment to TEX.
Indeed, if Knuth had approached the task of encoding all of “mathematics,” the
simpler objective of the encoding of “conventional mathematical typesetting,”
might have been lost.

1.4 Why bother?

1.4.1 TEX is already in use

TEX has merit as an intermediate language associated with a mathematical
graphical user interface. Commercial tools such as IBM TechExplorer [11], TCI
Scientific Workplace [20] and MathType[15] exist today which allow the user to
build mathematical formulas on a computer screen using positioning templates
(superscript box over base-text box, integral sign with boxes for integration-
limits and integrand, etc.). The tools then emit a TEX or other visual encod-
ing of the formula (ex. Macintosh PICT) to be pasted into a word processor.
This method of user input, because it is graphical, is arguably the next most
natural method apart from handwriting formulas. Because it is based on rec-
tilinear templates, this method is in fact one-to-one transformable to TEX and
is burdened with all the semantic ambiguities present in TEX code. Hence a
mathematics recognition engine must still be run in order to disambiguate the
mathematics notation. Some of the aforementioned tools include recognition

5

engines with interfaces to computer algebra systems (TechExplorer to Axiom,
Scientific Workplace to Maple and Mathematica). The same job could be done
by a modular TEX-based recognition engine.

1.4.2 We would like to read Gradshteyn and Rhyzik

Often the general case can be illuminated by a well-chosen special case, and the
special case we have examined is the domain of “advanced calculus” as exhibited
by common texts, reference works (tables of integrals), and the relevant areas of
physics and engineering that rely on this level of mathematics. Suppose that we
wish to parse mathematics as normally typeset, into “semantically reasonable”
representations suitable for use by a computer algebra system. Let us be quite
specific: how hard is it to parse the recently re-typeset reference Table of In-
tegrals, Series, and Products by Gradshteyn and Rhyzik, Academic Press (5th
edition) from TEX to the moral equivalent of a CAS. This well-known reference
was re-published on CDROM in 1996. The internal version combining SGML
and TEX can be viewed and downloaded from CDROM to conventional ascii
files. Academic Press’s initial goal in the CDROM was to provide a “Dynatext”
version[7] which from our perspective was inadequate for CAS use.

Is it possible to take a domain broadly classified as “advanced calculus” and
parse most of the Gradsheyn [10] reference work within this domain? Our thesis
is: yes. And in fact we believe we can translate wholesale much of the work
done by Academic Press and its partners in converting this reference into TEX.

We realize that it is somewhat pointless to write a program to translate
automatically the occasional one-of-a kind details that appear in this book, es-
pecially if there is no obvious corresponding semantic structure in computer
algebra systems. But if the bulk of the text is parsed automatically the remain-
ing details can be converted by hand.

1.4.3 The challenge

Such work (typesetting of math) has been done by humans, so we have an exis-
tence proof. From the computer perspective, this is a challenge in representing,
communicating, and computing symbolically using mathematics that must be
overcome for us to succeed completely with OCR, also.

Is it plausible to use TEX in some substantial way for this task? Our initial
impulse is to say it is just too ambiguous, and provide, as we do in later sec-
tions of this paper, examples of difficulties. Yet, while TEX unassisted, cannot
do it all, we believe we are able to combine TEX with other notations effec-
tively. We can use contexts and disambiguation explicitly in expressions, e.g.

6

{\the-operand u} vs. {\the-operator u}. Alternatively, and the method
used here, we can use implicit contexts which amount to computing with dec-
larations of the form “until further notice, all symbols are variables except for
sin, cos, tan, and f.”

2 How to Proceed

There are several steps needed, including

• Describing formally some domain of interest D in some computer-oriented
natural (presumably textual but non-TEX) form. This is the target into
which the TEX will be translated. Tradition in Lisp provides for ab sin c to
be represented as (* a b (sin c)) but we cannot cite historical prece-
dent for Lisp forms for domain restrictions, provisos, citations, geometric
descriptions of branch-cuts, etc. Although once one unambiguous struc-
ture is provided for the mathematics, converting it to another is generally
straightforward.

• Describing all the TEX usages that would commonly be found in describing
expressions in that domain. This would ordinarily be described by formal
tools. In practice, formal grammars are the tools for automatically deriv-
ing parsing/translating software. A more practical approach is to divide
the task into lexical analysis and context-free parsing (if such is possible).

• Devising a translator from the TEX into D. Ordinarily one should describe
the language of interest, usually at the same time that one devises a formal
grammar for that language. One also defines appropriate augments to the
grammar so as to produce a representation of sentences in that language.
This grammar is then presented in a formal way to a parser generator
such as yacc or bison for consideration. After some careful grammar
modifications required by such tools, one then has a custom-built parser.

For this to work we must ask: does mathematics (as expressed in TEX) have a
formal grammar? Ideally it would be context free and no worse than LALR(1),
for the common tools to work [2]. Initial work by Fateman was based on the
premise that context-free simply would not work, and after some prototype
programming, the task was abandoned. He then suggested it as a project in a
graduate class (CS282, Fall, 1997, UC Berkeley) and Eylon Caspi took up the
challenge. His principal results are described in this paper.

7

2.1 Calculus, and a view from TEX

TEX already knows about certain functions like sin, cos and log. G+R uses
others such as the logarithmic integral li or Re (for Real Part). Given such a
list of functions it appears we know that log x is not multiplication but function
application. Oddly enough, even though functions such as erf (the Error Func-
tion) and Jν (Bessel Function of the first kind) also appear in such a list, erfx
and Jνx are never used. We see only erf(x) or Jν(x). Go figure.

In any case, once we have decided that for some f , f(x) is a function applica-
tion, we know that

∫ b
a
f(x) dx probably makes sense. We suspect that

∫ b
a
d(x) fx

does not make sense, although TEX really doesn’t object to the latter.

2.1.1 TEX Oddities

TEX enjoys, or suffers from, a number of oddities compared to common mathe-
matical notation.

2.1.2 Numbers

For example, numbers are not treated as compound tokens composed of dig-
its. They are separate tokens that just happen to appear to fit together. Thus
x^23 is not typeset as x23 but as x23. One must utter x^{23} to get the
expected result. And there is no offense taken by TEX with odd number-like ob-
jects like 123, 456.78.0.0 Furthermore, the notations 1234 and ${1}2{{3}}4$
typeset to the same appearance, namely 1234.

2.1.3 Precedence of operations

Although Knuth was obviously well aware of the nature of parsing and the role
taken in interpretation of mathematics by operator precedence, such interpreta-
tion is outside the scope of TEX for the most part. Precedence is revealed only
by certain subtle TEX rules such as providing decreased spacing around the /
compared to the space around + in a+ b/c.

Indeed, if one uses the \over construction, one sees that “usual precedence”
doesn’t work: note this: $$a + b \over c$$ typesets as

a+ b

c

That is, the whole formula to the left of \over is the numerator. In fact,
$a \over b \over c$ provokes a warning message, although it typesets as

8

equivalent to a/(bc). Knuth also warns against x^y^z which it will typeset
as xyz if you insist.

2.1.4 Faithfulness of bracketing

Here is another decision point facing us. In our analysis of TEX input, must
we interpret two utterances as identical in meaning if they produce the same
output? Using the TEX input language as a conveyance for mathematics, one
might wish to clarify the order of operations by the braces {} notations, even
though they are invisible in the typeset output. One choice would be to allow
braces to affect the “meaning”, as for example
${a+b}c$ does the addition then the multiplication versus
$a+{bc}$ the usual precedence, or
$a{+b}c$ which seems bizarre at first glance. (This has tighter spacing than
the identical previous two lines. Conceptually it consists of the “product” of a,
+b and c: a+bc and reflects the fact that TEX identifies the + as a unary prefix
operation, not an infix binary operator. If we write $a{{}+b}c$, the results are
again the usual a+ bc.).

But grouping the input by braces does not particularly change the output
of TEX, and so it may be more sensible to ignore the braces, and this is the rule
we finally used: remove almost all unnecessary braces.

Braces have another unfortunately arbitrary characteristic, grammatically
speaking. {\int}, or for that matter, {{{\int}}}{} can be used anywhere
that \int can be used. This presents complications to certain simple parsing
techniques, in particular forcing one to have only one syntactic non-terminal
symbol.

2.1.5 Ambiguity of high-level spaces

Normally spaces as multiplication imply very tight binding: the only tighter-
binding operation is exponentiation. That is, abc means a · (bc) not (ab)c. And
in particular, a = bc conventionally is grouped as (a) = (bc). But some spaces
are very loosely binding. Consider the space to the left of n 6= −1 in:∫

xndx =
xn+1

n+ 1
n 6= −1.

To any even vaguely attentive mathematics student, in this expression “=”
binds more tightly than the space, and it would be quite erroneous to interpret
this as (∫

xndx

)
=
(
xn+1

n+ 1
n 6= −1

)
.

9

While some disambiguation can be based on the amount of space, this is not
foolproof.

2.1.6 Variable vs. Function

Several ambiguities arise when it is not known whether a symbol represents
a variable or function. For instance, one cannot tell in such a case whether
the form a(b) is a multiplication or a function invocation. For a variable a, a′

typically refers to a related second variable, whereas for a function f , f ′ typically
refers to some derivative of f . Similarly, for a variable a, a−1 is a reciprocal,
whereas for a function f , f−1 is typically the inverse function.

Ambiguities of this form are easily overcome if one can determine the a
unique type for the symbol in question. If a symbol dictionary is not available, a
recognition engine may be able to determine the type from context. For instance,
the form a(b, c) is easily seen to be a function of two variables. If a symbol is
always followed by parentheses, even when parentheses are unnecessary for a
product, then it is likely to be a function. Humans have many such cues to
guess at a variable type, and clever AI techniques can seek to make use of such
cues. When all else fails, a recognition engine might ask the user interactively
for information.

2.1.7 Operator Notation

Operator notation allows one to specify a function without parenthesizing its
expression, as in sinx. The primary difficulty with such notation is in deciding
how much of the right-side product expression is actually affected by the opera-
tor. In practice, the extent is different for different operators. It is conventional,
for instance, to split trigonometric operations at spaces, as in:

sinx yz = (sinx) · (yz),

as well as at the next operator, as in:

sinx sin y = (sinx)(sin y).

This is not the case with the sigma summation operator, which nests, rather
than breaks, at the next summation:

∑
n

n2
∑
m

m2 =
∑
n

(∑
m

(n2m2)

)
.

In this case there is no real ambiguity, since different operator classes are known
to have certain spatial binding.

10

Context-sensitive ambiguities arise when the extent of an operator depends
on the nature of its arguments. For instance, the size and content of a fraction
may determine whether or not it belongs to an operator, as in:

sin θ
π

2
?= sin

(
θ
π

2

)
,

versus:

sin θ
x+ y + z

n!
?= sin(θ) · x+ y + z

n!
and similarly, whether a term to the right of the fraction belongs to the operator:

sin
π

2
θ

?= sin
(π

2
θ
)
,

versus:

sin
3πθ
2
x

?= sin
(

3πθ
2

)
x

It is not always clear whether a function belongs inside or outside an operator
argument. For instance, with f being a function, we cannot conclude whether:

sinnπf(b) = sin(nπ) f(b),

or:

sinnπf(b) = sin(nπ f(b)).

For a capitalized function F one may be more inclined to choose the former.

Contextual dependencies on variable names also exist for the division oper-
ator. For instance, it is not clear whether:

1/2π(a+ b) =
1

2π(a+ b)
,

or:

1/2π(a+ b) =
1

2π
(a+ b),

or even:

1/2π(a+ b) =
1
2
π(a+ b).

The way in which variable names and fraction sizes indicate binding of an
operator an operator is subjective to each user and sensitive to the domain of
computation. In such cases, a recognition engine cannot, in good faith, make up
its mind about operator precedence without consulting some user preferences
or making an interactive inquiry.

11

2.1.8 Derivatives and Integrals

Calculus notation has some interesting ambiguities when dealing with differen-
tials. Syntactically, a differential dx has the same form as a product. One may
wish to think of the d as an operator, but its binding may be ambiguous, for
instance with juxtaposed differentials. Matters are ever more complicated if one
introduces a variable d which is not meant to form differentials.

The derivative form dy
dx and derivative operator d

dx are syntactically indis-
tinguishable from fractions, and their semantic meaning can be quite subtle.
For instance, dy

dx is a stand-alone fraction, whereas d
dx is an operator affecting

some expression to its right. Also, d
dx2 is a first derivative (with respect to x2),

whereas d2

dx2 is a second derivative. Analyzing so many parts of an expression
to determine its collective meaning as a derivative is cumbersome at best.

The integrating variable of an integral resides in a differential which may ap-
pear in several positions, depending on the form of the integrand. For instance,
the following forms are equivalent:∫

1
sinx

dx =
∫

dx

sinx
.

With multiple integrals, differentials may appear most anywhere in the inte-
grand, as in this unconventional but mathematically sound form for a spherical-
coordinate volume integral:∫ b

a

dr

∫ 2π

0

∫ π

0

f(r, θ, φ)r2 sin θdθdφ.

Placing derivatives in the integrand further complicates the job of finding the
correct differential.

Dealing with syntactic ambiguities requires special care in the parser. Be-
cause differentials are syntactically equivalent to products, it is possible for the
two visually-adjacent characters of a dx differential to become separated in the
syntax tree. A parser may prevent this by including a differential form be-
ginning with the letter “d” in the grammar, and by applying a semantic pass
later to split products that merely look like differentials. A similar technique
can be employed to keep a suspected function and its parenthesized argument
together in the syntax tree. Such design decisions bring mixed blessings, as
they complicate a grammar and introduce new difficulties in the syntax tree,
such as having to split up an incorrectly grouped argument for an operator. For
instance, if parenthesized forms such as b(c) are always parsed as function invo-
cations, then a subsequent correction when b is a variable requires transforming
a possible initial parse of sin ab(c)de as sin(a)b(c)de into: ”sin(ab) (cde)”.

12

2.2 Criteria for Parsers

One might argue that we can use any parsing technique that passes a “sanity
check” on our interpretation. The check is produced by taking the algebraic re-
sult of the parse and converting back to TEX. A pattern matching program can
then make some effort to reconcile the re-conversion to TEXwith the original
input, or one can produce a printed page with the original and the “round-
trip” result. This does not provide a full check, and is not as foolproof as
might seem at first: Our current program cannot always tell if two horizontally
adjacent expressions are actually multiplied together, or might represent a oper-
ator/argument relationship. The parser then just produces a neutral structure
saying only that these two expressions are concatenated. They are re-typeset
in the same ambiguous fashion, and the human reader, naturally motivated to
believe that the two expressions are the same, accepts them as such, not notic-
ing the ambiguity. Some expressions are really done poorly. Following the rule
that parentheses, when present, delimit arguments of functions, cos(p)r means
the argument of the cos is p. Thus

∫
ln(sinπx) cos(n + 1)πxdx, appearing in

GR as formula 4.384.3 would seem to involve cos(n + 1). In the context of an
integral with respect to x this is apparent nonsense, and so one must interpret
it as cos((n+ 1)x). (We provide more examples in which humans or computers
may have trouble.)

Even if the sanity check detects differences, these may be harmless; the
result of removing some explicit spacing, noting the size specifications of brack-
ets, etc. Another difference may involve, the translation (as we have done), of
non-standard notation and abbreviations to standard ones, e.g. the cotangent
function is written as “ctg” rather than “cot”, or the regularization of notations
involving summation limits, etc.

More seriously garbled results either suggest that the input language is “more
advanced” than we anticipated in our parser or perhaps that our parser is in-
correct for some inputs.

We are also a bit uncomfortable about the prospect that humans may eas-
ily modify precedences in relation to context in a non-algorithmic way: Two
humans may agree that 1/2π(cosnx+ cos(n+ 1)x) means

cos (nx) + cos ((n+ 1)x)
2π

.

(Take a minute to check this out yourself!) But some computer programs
would interpret this as

1
2
· π · ((cos(n)) · x+ (cos(n+ 1) · x)).

We can argue that 1/2π means 1/(2π) because if we had meant π/2 we would

13

have written it that way.

Indeed, such hackishness has been encoded deliberately in Scientific Work-
place, which interprets sinπ/2 as sin(pi/2) but the more general sin a/(b+ c)
as sin a

b+c . There is an opportunity to ask the system to explain unambiguously
what its interpretation is in such cases, but in our experience it is in human
nature to fail to check such matters when they really count. See the appendix
on “Spaces the final frontier”.

Other declarations of values or functions must also be included in some
contexts. An explanation in a table of integrals may assert that u =

√
a2 − x2

and thus a CAS must realize this substitution is relevant when u appears in a
result. Another example is when one is told H stands for “any Bessel function”.
(The three Bessel functions are normally denoted by I, J , or K, and each
appears as a single-subscripted function of one argument.)

3 Our First TEX Parser

It is, in some sense, trivial to define a formal grammar that models TEX’s
math mode. Unfortunately such a grammar models only the notion of a math-
expression, and a few positional operators. It does not address the disambigua-
tion of operations and their precedences. Undergraduate compiler courses would
make one believe in the power of formal grammars and automatic parser gen-
erators: the generative prospects of TEX as used in mathematics is so far from
a context free language.

In an effort to specifically solve the problems from the Academic Press
CDROM [10], we started with a recursive-descent (partly automatically gen-
erated, but mostly hand-written) parser written by R. Fateman (in Lisp) previ-
ously for a computer algebra system. We extended it to absorb TEX as used by
AP, and convert it to data in Lisp, in a form that is easily digested by a com-
puter algebra system. Not every utterance in the reference has an immediate
correspondent in a computer algebra system, and so we have had to make up
some notation “not yet available” in the algebra system. It is clear that com-
pletely encoding the knowledge of this volume requires thoughtful extension of
computer algebra systems.

4 A Better Parser

Rather than polishing that first version, graduate student Eylon Caspi took up,
as a term project for CS282 at UC Berkeley, the challenge of translating TEX
plus context into mathematics.

14

Caspi wrote a multi-pass mathematics recognition engine designed with the
specific intent of transcribing formulas from the electronic reference A Table of
Integrals, Series, and Products [10] into LISP statements suitable for a computer
algebra system. The engine was developed to transcribe 154 of 210 integral and
summation formulas in the domain of real, scalar calculus4. A more challenging
test on 10,740 formulas is described in a later section of this paper.

4.1 New TEX Parser Overview

Ideally, a computer program would convert the bulk of formulas into a dis-
ambiguated output language, leaving only a residue of difficult, syntactically
dubious, or clearly ambiguous cases for human inspection and transcription.
We would like the output language to be general and easily parsed by a com-
puter so that it may be mapped into the languages of other computer algebra
systems. We chose LISP symbolic-expressions as the target data language for
its simplicity in reconversion, and the fact that it is in wider use than other
possible choices. Several computer algebra systems in use today, for instance
Axiom, Reduce and Macsyma, are written in LISP and/or allow the user to
interact with the system directly in LISP.

Fateman’s efforts described above suffered by the need to repeatedly modify
the hand-coded parser, based on the assumption that the mathematics notation
would not yield to ordinary context-free parsing techniques. By contrast Caspi
(not so keen on modifying Fateman’s LISP programming) tried to push the
“conventional wisdom” of using compiler-development tools including Perl, lex,
and yacc. An initial recursive-descent pass written in Perl expands TEX macros
and removes unnecessary (invisible) curly braces. A second pass written in flex
and bison with C++ converts the adjusted TEX code into an abstract syntax
tree based on a context-free attribute grammar for TEX expressions. Several
passes over the syntax tree then deal with context-sensitive and semantic aspects
of mathematical expressions, including disambiguating the use of primes and
parentheses on function symbols versus variables, and identifying the integrating
variables of integrals. A final pass prints a parenthesized version of the tree
suitable for read-in by LISP.

The initial performance of the recognition engine was encouraging. It was
able to successfully convert 154 of 210 formulas from from those ten of the Table
of Integrals’s eighteen chapters which deal with scalar integrals, summations,
and products. These formulas comprise the stand-alone formula listing of the
reference — the narrative text and its shorter embedded expressions were filtered
out of the parser’s input.

4The encoding of G+R in Dynatext made it difficult to dump more than this number of
expressions.

15

4.2 Parser details

4.2.1 Input Domain

The table of integrals contains eighteen chapters, covering such topics as basic
series, definite and indefinite integrals of elementary as well as special functions,
vector field calculus, matrix calculus, and differential equations. To limit the
complexity of the recognition engine, we chose to limit the input to the first ten
chapters, namely those dealing with integrals, summations, and products of real,
scalar quantities. The latter chapters involving vector, matrix, and complicated
derivative notation remain beyond the scope of this project.

Within the ten chapters considered, limitations of the CD-ROM “export”
software provided easy access only to 210 formulas those chapters of the refer-
ence which we handled for our experiment.

The $$ formula blocks comprise the main listing of formulas in the reference.
Most of them appear in a common format consisting of an optional formula
number, a primary equation, and an optional list of relations denoting conditions
required in order for the primary equation to hold. The spacing and punctuation
varies among formula blocks and provokes some otherwise needless special-case
syntax rules.

The TEX code appearing in the formula blocks consists of plain-TEX math
code and several AMS-TEX macros such as \dbinom. Trigonometric and other
familiar functions appear in non-italic Roman font, using backslash control se-
quences, \hbox constructions, or \operatorname constructions. The source uses
many trigonometric functions with alternate spellings, for instance tg for tan-
gent and ctg for cotangent. A variety of spacing constructions are employed,
including the AMS-TEX \align macro.

4.2.2 The Passes

The recognition engine uses multiple passes written using a number of parsing
tools and computer languages to go from TEX to LISP. The modularization of
passes allows us to employ multiple parsing techniques in succession, breaking
the recognition problem into more easily managed phases.

4.2.3 Expanding TEX Macros

A first pass is done to expand user macros defined using \def and to apply
\input file inclusions. Note that we do not include the AMS-TEX style files
in this pass, as they would only complicate parsing by expanding AMS-TEX

16

macros into low-level TEX formatting commands. We do use macros to define
away some unwanted constructs from the input, including, for instance, the
\align macro. This pass is written as a simple recursive-descent parser in
Perl, as it need only consider the \ backslash and {} curly brace characters to
recognize TEX macro syntax.

4.2.4 Adjusting {} Curly Braces

A second pass is done to strip away unnecessary curly braces from the TEX
code, and to insert them in critical places that assist the next pass. Braces
are used in TEX as syntactic separators and, in addition to being non-printing
characters, do not affect the displayed results except in specific constructions
as mentioned earlier. Brace pairs are removed in this pass unless they follow a
backslash control sequence (or known multiple-argument control sequence such
as \dbinom), a ^ exponentiation caret, or a _ subscripting underscore, or unless
they contain the \over or \choose sequences. Additional braces are explicitly
added around these latter two sequences when they appear in the argument
block of a backslash construction, primarily to simplify the formal grammar of
the next pass. This pass, like the first, is written as a recursive-descent parser
in Perl.

4.2.5 Parsing a Formal Grammar

The third pass consists of parsing an attribute grammar for TEX mathemat-
ical expressions. The parser is a shift-reduce implementation using flex and
bison with C++ code, so that the grammar is context-free and LALR(1). The
language of mathematics is, unfortunately, neither context-free nor LALR(1),
so that the abstract syntax tree produced by the parser contains syntactic as
well as semantic ambiguities, to be addressed in subsequent passes. The lexical
analyzer recognizes over 300 backslash sequences which are collected into token
classes (Greek letters, relation operators, etc.) by the lowest-level rules of the
grammar.

4.2.6 Semantic Passes

Several passes are made to modify the abstract syntax tree into a valid, dis-
ambiguated expression tree. Some passes are syntactic in nature to address
the 1-token-lookahead limitation of the grammar, for instance handling prime
and conjugate markings embedded in exponents. Other passes are semantic
in nature and address the context-free limitation of the grammar, such as dis-
assembling a(x) function-like constructions whose left symbol is not really a

17

function. One pass identifies the integrating variable of an integral and removes
its differential from the integrand (it presently does not handle nested integrals,
as none appear in the source text). These passes are written in C++ and are
linked with the bison-based parser, so that a sequence of them may be invoked
from the parser for each $$ formula block.

4.2.7 Emitting LISP

A penultimate pass is done to print a LISP representation of the resulting ex-
pression tree. In addition to arithmetic and relational operations native to
LISP, the expression tree employs such constructions as (integrate integrand

(variable lower-limit upper-limit)) and an outermost construction (stmt
formula-num relation relations . . .) to represent complete formula rules
from the Table of Integrals In the stmt construction, the first relation rep-
resents the primary formula, and optional subsequent relations represent condi-
tions required in order for the first relation to hold. Syntax errors encountered
in the bison parser as well as semantic errors discovered in the semantic passes
are flagged by the construct (parse error line-num). This pass, like the se-
mantic passes, is written in C++ and is invoked from the bison parser for each
$$ formula block.

4.2.8 LISP to CAS

We read the LISP data into a LISP-based computer algebra system. This allows
us to check the formulas for various syntactic consistencies. In our particular
case, we algebraically simplified the formulas, and converted them to TEX for
printing and comparison.

5 Results

The performance of the recognition system on its first input set was fairly good.
It was able to parse 154 of 210 $$ blocks without error (i.e. 73% of all such
blocks). Of the 56 erroneous blocks, 29 are series and product formulas which use
ellipsis notation with \ldots or \cdots. We expect that ellipsis patterns, while
possible to process, can be more easily handled on a case-by-case basis by explicit
human intervention. The remaining half of all errors are more conventional and
remediable syntax errors, including unexpected punctuation or text comments
embedded around formulas, as well as unexpected bracing not handled by the
brace-stripping pass.

18

The error rate quoted may be somewhat low because we may have allowed
suspicious or ambiguous expressions to pass through, and be re-typeset. It is
plausible to strengthen the semantic pass dedicated to identifying constructions
allowed by the parser whose meaning is not clear. We have written a version
of a general context-free parser that will return multiple parses for ambiguous
inputs, but have not used it for this task yet. For the integral table it is some-
times plausible to test the formulas (e.g. differentiating the anti-derivatives, or
doing numerical spot checks on the definite integrals). While such checks might
help disambiguate some formulas, sometimes it requires substantial subtlety to
confirm a formula. A spot check might reveal which of several interpretations
is sensible; e.g. it is not obvious whether the K(k) belongs to the ln operator
on the right side of this elliptic integral formula:∫ π

2

0

F (x, k)ctgx dx =
π

4
K(k′) +

1
2

ln kK(k).

Despite its shortcomings, the recognition engine is able to convert such com-
pound, multi-line formulas as:∫ n

u

E(x, k)
dx√

(sin2 x− sin2 u)(sin2 v − sin2 x)
=

1
2 cosu sin v

E(k)K

(√
1− tg2 u

tg2 v

)
+

+
k2 sin v
2 cosu

K

√1− sin2 2u
sin2 2v

[k2 = 1− ctg2 uctg2 v].

from the original TEX form:

$$

\def\UUU{\quad {\int_{u}^{n}}E(x,\tsp k)

{dx\over\sqrt{(\sin^{2} x-\sin^{2} u)

(\sin^{2} v-\sin^{2} x)}}}

\def\UU{\hphantom{\UUU}}\displaylines{\UUU

={}{1\over2\cos u\sin v}\mbi{E}(k)\mbi{K}

\left(\sqrt{1-{tg^{2}\tsp u\over

tg^{2}\tsp v}}\right)+\hfill\cr

\UU{}\hphantom{{}={}}{}+{k^{2}\sin v\over2\cos u}

\mbi{K}\left(\sqrt{1-{\sin^{2}

2u\over\sin^{2} 2v}}\right)\hfill\cr

\hfill[k^{2}=1-\ctg ^{2}\tsp u\ctg^{2}\tsp v].

\qquad\cr}

$$

using the expanded intermediate form:

19

$$

\quad \int_{u}^{n} E(x,\thinspace k)

{dx\over\sqrt{(\sin^{2} x-\sin^{2} u)(\sin^{2}

v-\sin^{2} x)}}

= {1\over2\cos u\sin v} \bold{E}(k)

\bold{K}\left(\sqrt{1- {tg^{2}\thinspace u\over

tg^{2}\thinspace v} }\right)+\hfill\quad

+ {k^{2}\sin v\over2\cos u}

\bold{K}\left(\sqrt{1- {\sin^{2}

2u\over\sin^{2} 2v} }\right)\hfill\quad

\hfill[k^{2}=1-\hbox{ctg} ^{2}\thinspace u

\hbox{ctg}^{2}\thinspace v].\qquad\quad

$$

into the LISP form:

(stmt () (== (integrate (* (userfunc E x k) (/ 1 (power

(* (- (power (sin x) 2) (power (sin u) 2)) (- (power

(sin v) 2) (power (sin x) 2))) (/ 1 2)))) (x u n)) (+

(* (* (/ 1 (* (* 2 (cos u)) (sin v))) (userfunc bold_E

k)) (userfunc bold_K (power (- 1 (/ (* (* t (power g

2)) u) (* (* t (power g 2)) v))) (/ 1 2)))) (* (/ (*

(power k 2) (sin v)) (* 2 (cos u))) (userfunc bold_K

(power (- 1 (/ (power (sin (* 2 u)) 2) (power (sin (* 2

v)) 2))) (/ 1 2)))))) (== (power k 2) (- 1 (* (power

(ctg u) 2) (power (ctg v) 2)))))

A closer examination shows that while this was correctly converted as writ-
ten, there is a bug in the input: tg2u was written as a product, and not as the
intended hboxtg2u, the tangent squared. Furthermore the upper limit of the
integral should have been v not n. The printed copy of the table is somewhat
vague in this area.

The entire recognition process is reasonably fast. Processing our initial 33
kilobyte TEX source extracted from the G+R containing 210 $$ formula blocks,
requires 13.6 seonds for the Perl -based passes and 0.3 seconds for the C++-
based passes, on a contemporary personal computer5. The Perl -based passes,
whose task is conceptually simpler than the C++-based passes, could proba-
bly gain an order-of-magnitude speedup from reimplementation in a compiled
language.

5Macintosh PowerBook 3400c, 240 MHz PowerPC 603e processor

20

6 More exhaustive testing

In a subsequent test on some 10,740 formulas from the same source (extracted
from the file GRAD.DAT on the CDROM for G+R), a slightly modified version
of the recognizer announced 5906 errors and presumed success for the remaining
4,834. Some of the alleged successes are not really successful since we know that
they include some 170 formulas with unhandled derivative forms, as well as some
semantically questionable forms.

Of the 5,906 reported errors6, some 1878 are due to unrecognized control se-
quences that we have not yet considered, including matrix constructions, equa-
tion alignment sequences, and macros for many special function names. These
were not encountered in our original test set, and therefore were not included
in our grammar. An additional 804 errors are due to \hbox constructions with
unrecognized contents, including more special function names and embedded
narrative comments. We suspect, therefore, that simply handling more special
function names (and their more complicated super/sub-scripting) would allow
the engine to recognize several thousand additional formulas out of this 5906.
Other errors are due to formula forms not handled by the grammar, includ-
ing some 300 ellipsis constructions, and forms with unexpected punctuation or
bracing7.

7 Conclusion

7.1 Concerning our Implementation

An automatic recognition engine has been presented which converts natural
mathematics notation typeset in TEX into a disambiguated, linearized LISP
form. The engine has proven to be effective in recognizing a large subset of the
electronic reference A Table of Integrals, Series, and Products [10] consisting of
integral and series formulas in the domain of real, scalar calculus. The engine
demonstrates that recognition of TEX code is feasible and fast using multiple-
pass parsing and semantic analysis techniques. We believe that a complete
“semantic” re-typesetting of this work could proceed more rapidly based on the
output from our program, although sensible checking would still be needed.

Future work for the recognition engine would include expanding the grammar
and adding more semantic passes. We would like to expand support for various
additional notations. For example, absolute-value symbols, which are presently

6the stated error counts are in fact estimates which come from tallying parser error diag-
nostics, and may therefore be inaccurate due to cascading of errors

7We do not count the 300 ellipses as ”unrecognized control sequences” since we recognize
them – we just do not know what to do with them!

21

handled only around the simplest expressions, cause difficulty because of the
ambiguity inherent in using the same vertical bar symbol for both sides of the
character grouping. We would also like to add support for complicated function
forms involving subscripts and superscripts, for instance Pµν (z) for associated
Legendre functions. Such special functions arguably form the most useful heart
of a table of integrals. Other desirable expansions to the system include support
for derivatives, better handling of exponent semantics (f−1 for inverse function,
f (n) for nth derivative), support for symbol accents (bars, tildes, etc.), and a
full complement of vector operations.

One lesson learned in this project is that the high-level structure of a docu-
ment, even for pieces as small as an integral formula statement with conditional
relations, may be buried under irregular punctuation and annotations which are
not well-modeled by a single grammar. A future change to the engine might
use an initial pass to separate the input into text and equation subcomponents
based on spaces and punctuation, then send each component to a formula parser
that need not worry about contextual punctuation. Trying to parse an equa-
tion using several domain-specific parsers may prove easier than constructing
a single universal parser, and this may be the key to wider use of TEX as a
viable communication form when others are not available, or even when others
are available but not fully supported.

7.2 Concerning TEX for CAS Communication

Our view is that TEX in context and with suitable “understanding” programs,
is a historically important encoding for considerable bodies of mathematics, and
continues to be used for new publications. It can also be used to encode in a
“naive” positional form some material initially parsed from 2-D into TEX.)

If we are to make semantic sense of this body of material, we must deal
with the consequences: parsing TEX. In fact, we may thereby be forced to
face the reality of dealing with a fuller notation than is routinely available in
any computer algebra system. Certainly, faced with communication problems
between humans and computers, we cannot just require all pure and applied
mathematicians to use the subset of mathematics present in CAS of today.

References

[1] T. V. Raman, “Audio System for Technical Readings,”
http://simon.cs.cornell.edu/Info/People/raman

[2] A. Aho, R. Sethi, J. Ullman. Compilers: Principles, Techniques, Tools,
Addison Wesley.

22

[3] Dorothea Blostein and Ann Grbavec. Recognition of Mathematical Nota-
tion. Chapter 22 in P.S.P. Wang and H. Bunke (ed) Handbook on Opti-
cal Character Recognition and Document Image Analysis, World Scientific
Publ. Co, 1996.

[4] G.F. Carrier, M. Krook, and C.E. Pearson, Functions of a Complex Vari-
able, McGraw Hill, 1966 (first printing).

[5] Courant and Hilbert, Methods of Mathematical Physics, volume 1. Wiley,
(1953).

[6] Digital Library discussion (email) (Univ. Illinois). 1996.

[7] EBT Dynatext http://www.inso.com/frames/consumer/dynatext/index.htm

[8] Richard J. Fateman and Taku Tokuyasu. “Progress in recognizing typeset
mathematics,” Proceedings SPIE Document Recognition III Vol. 2660, Jan.
1996. 37—50.

[9] R. Fateman and T. Einwohner.
http://http.cs.berkeley.edu/~fateman/htest.html

[10] Gradshteyn and Rhyzik. Table of Integrals, Series, and Products Academic
Press (5th edition), (also CDROM) 1996.

[11] IBM. Techexplorer hypermedia browser.
http://www.ics.raleigh.ibm.com/ics/techug.htm

[12] W. F. Hammond. Setting Mathematics with SGML
http://math.albany.edu:8800/hm/sgml/about.html

[13] P. Iglio and G. Attardi, “Software Components for Computer Al-
gebra,” in Proc. ISSAC 1998. ACM, Rostock, Germany, 62–69.
http://www.openmath.org/

[14] D. E. Knuth, The TEXbook, Addison-Wesley, 1984.

[15] Mathtype, Design Science Inc,
http://www.mathtype.com

[16] Norbert Kajler and Neil Soffer. “A survey of user interfaces for Computer
algebra systems,” J. Symbolic Computation.

[17] A. Prudnikov, P. Brichkov, O. Marichev. Integrals and Series (Moscow)
1983.

[18] Neil M. Soiffer, The Design of a User Interface for Computer Algebra Sys-
tems. Ph.D thesis, EECS Dept., Univ. of Calif, Berkeley, April, 1991. See
Also “Mathematical Typesetting in Mathematica,” ISSAC-95 140–149.

[19] The QED project
ftp://ftp.mcs.anl.gov/pub/qed/manifesto

23

[20] TCI: Scientific Workplace
http://www.thomson.com/brookscole/SWCAT 96/swp 2.0 swcat.html

[21] Y. Zhao, H. Sugiura, T. Torii and T. Sakurai, “Knowledge-based method
for mathematical notations understanding,” Trans of Inf. Proc. Soc. of
Japan, vol 35 no 11 (Nov. 1994) 2366–2381.

[22] Daniel Zwillinger, personal communication, August, 1998.

Spaces, the final frontier

Often a space is absent between two symbols multiplied together. Sometimes
a space means nothing, as with spaces around “+”. Oddly enough, sometimes
a space means “DIVIDE” as a result of an an interesting ambiguity in the use
of the “/”. a/bc written as $a / b c$ which might be transcribed in TEX as
${a \over b c}$ is displayed as a

bc . This is different from the usual program-
ming language interpretation in which we would first substitute a multiplication
operator for the space between b and c making it a / b * c and then provid-
ing the computational semantics of a

b · c. The argument for the TEX version
is that no human mathematicican would use 1/2π to mean π/2. Therefore the
former expression must mean 1/(2π). Does this happen? Sure. Here’s one from
Courant and Hilbert vol 1 [5] where p. 349 has un =

√
2/πρ0 sinnx by which is

meant

un =
√

2
π · ρ0

sin(n · x).

Perhaps because of the opportunity for misunderstandings, the occurrences
of “/” in typeset mathematics are not nearly as common as they are in computer
programs, where the linear format imposed on most input (files of characters)
makes it popular. It seems that for older printed work or reference texts, the
horizontal divide bar is preferred. Slashes are used when space is tight (com-
mon in journals today), or a division must be denoted in a cramped space: an
exponent, an in-line expression, a formula’s side-conditions. A typical example
of a use in display form:

· · ·
(
x− y
z

)v/2
· · ·

in [17] p. 619 3.2.4.2. In fact in this large table, the denominators following
the “/” are almost always single digit numbers, with rare occurrences of single
symbols e.g. 1/r. When the denominator is larger there might be parentheses:
e.g. on p 337, b(1−2α)/(2r). An alternative notation that is also used: a(b +
c)−1 makes the slash entirely dispensable when the denominator is more than
a few characters. Though TEX doesn’t seem to have shallow slashes, these are
sometimes used for small rational fractions I will call semi-slash expressions.

24

Thus instead of 1/2 we have something like 1/2 where the numerator 1 is shrunk
and slid up a bit and the 2 is similarly moved down a bit. While 1/2π may be
ambiguous, 1/2π is definitely π/2. (We could facetiously suggest it is another
way of writing 2−π).

A carefully written complex variables text [4] uses the semi-slash as indi-
cated, yet (p. 318) uses cos(πy/2b) to mean cos(πy/(2b)). The subtlety catches
these authors on p. 285 where w = yexp[−

∫
1/2a1(z)dz] appears when it should

be w = yexp[−
∫

1/(2a1(z))dz].

Of course slashes are used in dy/dx or even d/dx as operators, additionally
complicating the lives of simple-minded parsers.

Spaces can also be used as separators between formulas, or between equation
numbers, formulas, side-conditions, notes, etc.

25

