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Wolfram Research is the holder of the copyright to the Mathematica software system described in this book,
including without limitation such aspects of the system as its code, structure, sequence, organization, “look
and feel”,  programming language and compilation of command names. Use of the system unless pursuant
to the terms of a license granted by Wolfram Research or as otherwise authorized by law is an infringement
of the copyright. 

The  author,  Wolfram  Research,  Inc.  and  Wolfram  Media,  Inc.  make  no  representations,  express  or
implied,  with  respect  to  this  documentation  or  the  software  it  describes,  including  without  limita-
tions, any implied warranties  of  merchantability or fitness for a particular purpose, all of  which are
expressly disclaimed. Users should be aware that included in the terms and conditions under which
Wolfram  Research  is  willing  to  license  Mathematica  is  a  provision  that  the  author,  Wolfram
Research, Wolfram Media, and their distribution licensees, distributors and dealers shall in no event
be liable for any indirect, incidental or consequential damages, and that liability for direct damages
shall be limited to the amount of the purchase price paid for Mathematica. 

In  addition  to  the  foregoing,  users  should  recognize  that  all  complex  software  systems  and  their
documentation  contain  errors  and  omissions.  The  author,  Wolfram  Research  and  Wolfram  Media
shall  not  be  responsible  under  any  circumstances  for  providing  information  on  or  corrections  to
errors and omissions discovered at any time in this book or the software it describes, whether or not
they are aware of the errors or omissions. The author, Wolfram Research and Wolfram Media do not
recommend the use of the software described in this book for applications in which errors or omis-
sions could threaten life, injury or significant loss. 

Mathematica,  MathLink  and MathSource  are  registered  trademarks  of  Wolfram Research.  J/Link,  MathLM,
MathReader,  .NET/Link,  Notebooks  and  webMathematica  are  trademarks  of  Wolfram  Research.  All  other
trademarks used are the property of their respective owners. Mathematica  is not associated with Mathemat-
ica Policy Research, Inc. or MathTech, Inc. 
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About the Author
Stephen Wolfram is the creator of Mathematica, and a well-known scientist. He is widely regarded as the most impor-
tant innovator in technical computing today, as well as one of the world's most original research scientists. 

Born in London in 1959, he was educated at Eton, Oxford and Caltech. He published his first scientific paper at the age
of fifteen, and had received his PhD in theoretical physics from Caltech by the age of twenty. Wolfram's early scientific
work  was  mainly  in  high-energy  physics,  quantum  field  theory  and  cosmology,  and  included  several  now-classic
results. Having started to use computers in 1973, Wolfram rapidly became a leader in the emerging field of scientific
computing,  and  in  1979  he  began  the  construction  of  SMP—the first  modern  computer  algebra  system—which he
released commercially in 1981. 

In  recognition  of  his  early  work  in  physics  and  computing,  Wolfram  became  in  1981  the  youngest  recipient  of  a
MacArthur Prize Fellowship. Late in 1981, Wolfram then set out on an ambitious new direction in science: to develop
a general theory of complexity in nature. Wolfram's key idea was to use computer experiments to study the behavior of
simple computer programs known as cellular automata. And in 1982 he made the first in a series of startling discover-
ies about  the origins  of  complexity. The publication  of  Wolfram's papers  on  cellular automata led to  a major shift  in
scientific  thinking,  and  laid  the  groundwork  for  a  new  field  of  science  that  Wolfram  named  “complex  systems
research”.  

Through  the  mid-1980s,  Wolfram  continued  his  work  on  complexity,  discovering  a  number  of  fundamental  connec-
tions  between  computation  and  nature,  and  inventing  such  concepts  as  computational  irreducibility.  Wolfram's  work
led to a wide range of applications—and provided the main scientific foundations for the popular movements known as
complexity theory and artificial life. Wolfram himself used his ideas to develop a new randomness generation system
and a new approach to computational fluid dynamics—both of which are now in widespread use. 

Following his scientific work on complex systems research, Wolfram in 1986 founded the first research center and first
journal  in  the  field.  Then,  after  a  highly  successful  career  in  academia—first at  Caltech,  then  at  the  Institute  for
Advanced Study in Princeton, and finally as Professor of Physics, Mathematics and Computer Science at the University
of Illinois—Wolfram launched Wolfram Research, Inc. 

Wolfram began the development of Mathematica  in late 1986. The first version of Mathematica  was released on June
23,  1988,  and was immediately hailed as a major advance in computing. In the years that followed,  the popularity of
Mathematica  grew  rapidly,  and  Wolfram  Research  became  established  as  a  world  leader  in  the  software  industry,
widely recognized for excellence in both technology and business. Wolfram has been president and CEO of Wolfram
Research since its inception, and continues to be personally responsible for the overall design of its core technology. 

Following  the  release  of  Mathematica  Version  2  in  1991,  Wolfram  began  to  divide  his  time  between  Mathematica
development and scientific research. Building on his work from the mid-1980s,  and now with Mathematica  as a tool,
Wolfram made a  rapid  succession  of  major  new discoveries.  By the  mid-1990s  his  discoveries  led  him to  develop  a
fundamentally new conceptual  framework,  which he then spent  the remainder of  the 1990s applying not only to new
kinds of questions, but also to many existing foundational problems in physics, biology, computer science, mathematics
and several other fields. 

After more than ten years of  highly concentrated work,  Wolfram finally described his achievements in his 1200-page
book A New Kind of Science.  Released on May 14,  2002,  the book was widely acclaimed and immediately became a
bestseller. Its publication has been seen as initiating a paradigm shift of historic importance in science. 

In addition to leading Wolfram Research to break new ground with innovative technology, Wolfram is now developing
a series of research and educational initiatives in the science he has created. 

Other books by Stephen Wolfram: 

è Cellular Automata and Complexity: Collected Papers (1993)
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è A New Kind of Science (2002)

Author's website:

www.stephenwolfram.com

Author's address:

email: s.wolfram@wolfram.com

mail: c/o Wolfram Research, Inc.

    100 Trade Center Drive

    Champaign, IL 61820, USA

For comments on this book or Mathematica

send email to comments@wolfram.com
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About Mathematica
Mathematica is the world's only fully integrated environment for technical computing. First released in 1988, it has had
a profound effect on the way computers are used in many technical and other fields. 

It  is  often said  that the release of  Mathematica  marked the beginning  of  modern technical computing.  Ever since the
1960s  individual  packages  had  existed  for  specific  numerical,  algebraic,  graphical  and  other  tasks.  But  the  visionary
concept  of  Mathematica  was  to  create  once  and  for  all  a  single  system  that  could  handle  all  the  various  aspects  of
technical  computing  in  a  coherent  and  unified  way.  The  key  intellectual  advance  that  made  this  possible  was  the
invention of a new kind of symbolic computer language that could for the first time manipulate the very wide range of
objects involved in technical computing using only a fairly small number of basic primitives. 

When Mathematica Version 1 was released, the New York Times wrote that “the  importance of the program cannot be
overlooked”,  and Business  Week  later  ranked Mathematica  among the ten most  important  new products  of  the year.
Mathematica was also hailed in the technical community as a major intellectual and practical revolution. 

At  first,  Mathematica's  impact  was  felt  mainly  in  the  physical  sciences,  engineering  and  mathematics.  But  over  the
years, Mathematica has become important in a remarkably wide range of fields. Mathematica is used today throughout
the  sciences—physical, biological,  social  and  other—and counts  many  of  the  world's  foremost  scientists  among  its
enthusiastic supporters. It has played a crucial role in many important discoveries, and has been the basis for thousands
of technical papers. In engineering, Mathematica has become a standard tool for both development and production, and
by now many of  the  world's  important  new products  rely at  one  stage or  another  in  their  design on Mathematica.  In
commerce,  Mathematica  has  played  a  significant  role  in  the  growth  of  sophisticated  financial  modeling,  as  well  as
being widely used in many kinds of general planning and analysis. Mathematica has also emerged as an important tool
in computer science and software development: its language component is widely used as a research, prototyping and
interface environment. 

The largest part of Mathematica's user community consists of technical professionals. But Mathematica is also heavily
used in education, and there are now many hundreds of courses—from high school to graduate school—based on it. In
addition,  with  the  availability of  student  versions,  Mathematica  has  become an  important  tool  for  both  technical  and
non-technical students around the world. 

The diversity of Mathematica's user base is striking. It spans all continents,  ages from below ten up, and includes for
example  artists,  composers,  linguists  and  lawyers.  There  are  also  many  hobbyists  from  all  walks  of  life  who  use
Mathematica to further their interests in science, mathematics and computing. 

Ever since Mathematica  was first  released,  its user base has grown steadily, and by now the total  number of users is
above a million. Mathematica  has become a standard in a great many organizations,  and it is used today in all of the
Fortune 50 companies, all of the 15 major departments of the U.S. government, and all of the 50 largest universities in
the world. 

At a  technical  level,  Mathematica  is  widely regarded  as  a  major feat  of  software engineering.  It  is  one  of  the largest
single  application  programs ever  developed,  and  it  contains  a  vast  array  of  novel  algorithms and  important  technical
innovations. Among its core innovations are its interconnected algorithm knowledgebase, and its concepts of symbolic
programming and of document-centered interfaces. 

The  development  of  Mathematica  has  been  carried  out  at  Wolfram  Research  by  a  world-class  team led  by  Stephen
Wolfram. The success of Mathematica has fueled the continuing growth of Wolfram Research, and has allowed a large
community of  independent  Mathematica-related  businesses  to  develop.  There  are  today  well  over  a  hundred  special-
ized commercial packages available for Mathematica, as well as more than three hundred books devoted to the system.  
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New in Version 5
Mathematica Version 5 introduces important extensions to the Mathematica  system, especially in scope and scalability
of  numeric  and  symbolic  computation.  Building  on  the  core  language  and  extensive  algorithm  knowledgebase  of
Mathematica, Version 5 introduces a new generation of advanced algorithms for a wide range of numeric and symbolic
operations.        

Numerical computation

† Major optimization of dense numerical linear algebra. 

† New optimized sparse numerical linear algebra. 

† Support for optimized arbitrary-precision linear algebra. 

† Generalized eigenvalues and singular value decomposition. 

† LinearSolveFunction for repeated linear-system solving. 

† p  norms for vectors and matrices. 

† Built-in MatrixRank for exact and approximate matrices. 

† Support for large-scale linear programming, with interior point methods. 

† New methods and array variable support in FindRoot and FindMinimum. 

† FindFit for full nonlinear curve fitting. 

† Constrained global optimization with NMinimize. 

† Support for n -dimensional PDEs in NDSolve. 

† Support for differential-algebraic equations in NDSolve. 

† Support for vector and array-valued functions in NDSolve. 

† Highly extensive collection of automatically-accessible algorithms in NDSolve. 

† Finer precision and accuracy control for arbitrary-precision numbers. 

† Higher-efficiency big number arithmetic, including processor-specific optimization. 

† Enhanced algorithms for number theoretical operations including GCD and FactorInteger. 

† Direct support for high-performance basic statistics functions. 

Symbolic computation

† Solutions to mixed systems of equations and inequalities in Reduce. 

† Complete solving of polynomial systems over real or complex numbers. 

† Solving large classes of Diophantine equations. 

† ForAll and Exists quantifiers and quantifier elimination. 

† Representation of discrete and continuous algebraic and transcendental solution sets. 

† FindInstance for finding instances of solutions over different domains. 
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† Exact constrained minimization over real and integer domains. 

† Integrated support for assumptions using Assuming and Refine. 

† RSolve for solving recurrence equations. 

† Support for nonlinear, partial and q  difference equations and systems. 

† Full solutions to systems of rational ordinary differential equations. 

† Support for differential-algebraic equations. 

† CoefficientArrays for converting systems of equations to tensors. 

Programming and Core System

† Integrated language support for sparse arrays. 

† New list programming with Sow and Reap. 

† EvaluationMonitor and StepMonitor for algorithm  monitoring. 

† Enhanced timing measurement, including AbsoluteTiming. 

† Major performance enhancements for MathLink. 

† Optimization for 64-bit operating systems and architectures. 

† Support for computations in full 64-bit address spaces. 

Interfaces

† Support for more than 50 import and export formats. 

† High efficiency import and export of tabular data. 

† PNG, SVG and DICOM graphics and imaging formats. 

† Import and export of sparse matrix formats. 

† MPS linear programming format. 

† Cascading style sheets and XHTML for notebook exporting. 

† Preview version of .NET/Link for integration with .NET. 

Notebook Interface

† Enhanced Help Browser design. 

† Automatic copy/paste switching for Windows. 

† Enhanced support for slide show presentation. 

† AuthorTools support for notebook diffs. 

Standard Add-on Packages

† Statistical plots and graphics. 
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† Algebraic number fields. 

New in Versions 4.1 and 4.2

† Enhanced pattern matching of sequence objects. 

† Enhanced optimizer for built-in Mathematica compiler. 

† Enhanced continued fraction computation. 

† Greatly enhanced DSolve. 

† Additional TraditionalForm formats. 

† Efficiency increases for multivariate polynomial operations. 

† Support for import and export of DXF, STL, FITS and STDS data formats. 

† Full support for CSV format import and export. 

† Support for UTF character encodings. 

† Extensive support for XML, including SymbolicXML subsystem and NotebookML. 

† Native support for evaluation and formatting of Nand and Nor. 

† High-efficiency CellularAutomaton function. 

† J/Link MathLink-based Java capabilities. 

† MathMLForm and extended MathML support. 

† Extended simplification of Floor, Erf, ProductLog and related functions. 

† Integration over regions defined by inequalities. 

† Integration of piecewise functions. 

† Standard package for visualization of regions defined by inequalities. 

† ANOVA standard add-on package. 

† Enhanced Combinatorica add-on package. 

† AuthorTools notebook authoring environment. 
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The Role of This Book

The Scope of the Book

This  book  is  intended  to  be  a  complete  introduction  to  Mathematica.  It  describes  essentially  all  the  capabilities  of
Mathematica, and assumes no prior knowledge of the system. 

In most uses of Mathematica, you will need to know only a small part of the system. This book is organized to make it
easy for you to learn the part you need for a particular calculation. In many cases, for example, you may be able to set
up your calculation simply by adapting some appropriate examples from the book. 

You should understand, however, that the examples in this book are chosen primarily for their simplicity, rather than to
correspond to realistic calculations in particular application areas. 

There are many other publications that discuss Mathematica from the viewpoint of particular classes of applications. In
some cases, you may find it better to read one of these publications first, and read this book only when you need a more
general perspective on Mathematica. 

Mathematica  is  a system built  on a fairly small set of  very powerful  principles.  This book describes those principles,
but  by  no  means spells  out  all  of  their  implications. In  particular,  while  the book describes  the elements that  go  into
Mathematica  programs, it does not give detailed examples of complete programs. For those, you should look at other
publications. 

The Mathematica System Described in the Book

This book describes the standard Mathematica  kernel,  as it exists on all computers that run Mathematica. Most major
supported features of the kernel in Mathematica Version 5 are covered in this book. Many of the important features of
the front end are also discussed. 

Mathematica is an open software system that can be customized in a wide variety of ways. It is important to realize that
this book covers only the full basic Mathematica system. If your system is customized in some way, then it may behave
differently from what is described in the book. 

The most common form of customization is the addition of various Mathematica function definitions. These may come,
for  example,  from  loading  a  Mathematica  package.  Sometimes  the  definitions  may  actually  modify  the  behavior  of
functions described in this book. In other cases, the definitions may simply add a collection of new functions that are
not described in the book. In certain applications, it may be primarily these new functions that you use, rather than the
standard ones described in the book. 

This book describes  what  to  do  when you interact  directly with  the standard Mathematica  kernel  and  notebook front
end. Sometimes, however, you may not be using the standard Mathematica  system directly. Instead, Mathematica may
be an embedded component of another system that you are using.  This system may for example call on Mathematica
only for certain computations, and may hide the details of those computations from you. Most of what is in this book
will only be useful if you can give explicit input to Mathematica.  If  all of your input is substantially modified by the
system you are using, then you must rely on the documentation for that system. 

Additional Mathematica Documentation

For all standard versions of Mathematica, the following is available in printed form, and can be ordered from Wolfram
Research: 

Printed from the Mathematica Help Browser 1

©1988-2003 Wolfram Research, Inc. All rights reserved.



† Getting Started with Mathematica: a booklet describing installation, basic operation, and troubleshooting of Mathematica on 
specific computer systems.  

Extensive  online  documentation  is  included  with  most  versions  of  Mathematica.  All  such  documentation  can  be
accessed from the Help Browser in the Mathematica notebook front end. 

In addition, the following sources of information are available on the web: 

† www.wolfram.com: the main Wolfram Research website.  

† documents.wolfram.com: full documentation for Mathematica.  

† library.wolfram.com/infocenter: the Mathematica Information Center—a central web repository for information on Mathematica 
and its applications.  
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Suggestions about Learning Mathematica

Getting Started

As with any other computer system, there are a few points that you need to get straight before you can even start using
Mathematica. For example, you absolutely must know how to type your input to Mathematica. To find out these kinds
of basic points, you should read at least the first section of Part 1 in this book. 

Once you know the basics, you can begin to get a feeling for Mathematica by typing in some examples from this book.
Always be sure that you type in exactly what appears in the book—do not change any capitalization, bracketing, etc. 

After you have tried a few examples from the book, you should start experimenting for yourself. Change the examples
slightly, and see what happens.  You should look at each piece of output carefully, and try to understand why it came
out as it did. 

After you have run through some simple examples, you should be ready to take the next step: learning to go through
what is needed to solve a complete problem with Mathematica. 

Solving a Complete Problem

You will  probably find it best  to start by picking a specific problem to work on.  Pick a problem that you understand
well—preferably one  whose  solution  you  could  easily  reproduce  by  hand.  Then  go  through  each  step  in  solving  the
problem,  learning  what  you  need  to  know  about  Mathematica  to  do  it.  Always  be  ready  to  experiment  with  simple
cases, and understand the results you get with these, before going back to your original problem. 

In  going  through  the  steps  to  solve  your  problem,  you  will  learn  about  various  specific  features  of  Mathematica,
typically from sections of Part 1. After you have done a few problems with Mathematica, you should get a feeling for
many of the basic features of the system. 

When you have built up a reasonable knowledge of the features of Mathematica,  you should go back and learn about
the overall structure of the Mathematica  system. You can do this by systematically reading Part 2 of this book. What
you will discover is that many of the features that seemed unrelated actually fit together into a coherent overall struc-
ture.  Knowing   this  structure  will  make it  much easier for  you to understand and remember the specific features you
have already learned. 

The Principles of Mathematica

You should not try to learn the overall structure of Mathematica too early. Unless you have had broad experience with
advanced computer languages or pure mathematics, you will probably find Part 2 difficult  to understand at first.  You
will find the structure and principles it describes difficult to remember, and you will always be wondering why particu-
lar  aspects  of  them might be  useful.  However,  if  you first  get  some practical experience  with Mathematica,  you will
find the overall structure much easier to grasp. You should realize that the principles on which Mathematica is built are
very general, and it is usually difficult to understand such general principles before you have seen specific examples. 

One  of  the  most important  aspects  of  Mathematica  is  that  it  applies  a  fairly  small number  of  principles  as  widely as
possible. This means that even though you have used a particular feature only in a specific situation, the principle on
which that  feature  is based can probably  be applied in many other  situations.  One reason it is  so important to under-
stand  the  underlying  principles  of  Mathematica  is  that  by  doing  so  you  can  leverage  your  knowledge  of  specific
features into a more general context.  As an example, you may first  learn about  transformation rules in the context of
algebraic expressions. 
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But the basic principle of transformation rules applies to any symbolic expression. Thus you can also use such rules to
modify the structure of, say, an expression that represents a Mathematica graphics object. 

Changing the Way You Work

Learning  to use  Mathematica  well  involves  changing  the  way you solve problems.  When you move from pencil  and
paper to Mathematica the balance of what aspects of problem solving are difficult changes. With pencil and paper, you
can often get by with a fairly imprecise initial formulation of your problem. Then when you actually do calculations in
solving the problem, you can usually fix up the formulation as you go along. However, the calculations you do have to
be fairly simple, and you cannot afford to try out many different cases.  

When you use Mathematica,  on the other hand, the initial formulation of your problem has to be quite precise. How-
ever,  once  you have  the  formulation,  you  can easily do  many different  calculations with  it.  This  means that  you can
effectively carry out many mathematical experiments on your problem. By looking at the results you get, you can then
refine the original formulation of your problem. 

There are  typically many different  ways to formulate a  given problem in  Mathematica.  In  almost all  cases,  however,
the most direct and simple formulations will be best. The more you can formulate your problem in Mathematica  from
the beginning, the better. Often, in fact, you will find that formulating your problem directly in Mathematica  is better
than first trying to set up a traditional mathematical formulation, say an algebraic one. The main point is that Mathemat-
ica  allows you to express  not  only  traditional  mathematical operations,  but  also algorithmic and structural  ones.  This
greater  range  of  possibilities  gives  you  a  better  chance  of  being  able  to  find  a  direct  way  to  represent  your  original
problem. 

Writing Programs

For most of the more sophisticated problems that you want to solve with Mathematica, you will have to create Mathe-
matica  programs.  Mathematica  supports  several  types  of  programming,  and  you  have  to  choose  which  one  to  use  in
each case. It turns out that no single type of programming suits all cases well. As a result, it is very important that you
learn several different types of programming. 

If  you already know a traditional programming language such as BASIC, C, Fortran,  Perl  or  Java,  you will probably
find  it  easiest  to  learn  procedural  programming  in  Mathematica,  using  Do,  For  and  so  on.  But  while  almost  any
Mathematica  program can, in principle, be written in a procedural way, this is rarely the best approach. In a symbolic
system like Mathematica, functional and rule-based programming typically yields programs that are more efficient, and
easier to understand.

If you find yourself using procedural programming a lot, you should make an active effort to convert at least some of
your programs to other  types.  At first,  you may find functional and  rule-based programs difficult  to understand.  But
after a while, you will find that their global structure is usually much easier to grasp than procedural programs. And as
your experience with Mathematica grows over a period of months or years, you will probably find that you write more
and more of your programs in non-procedural ways. 

Learning the Whole System

As you proceed  in  using  and learning  Mathematica,  it  is  important  to  remember that  Mathematica  is  a  large  system.
Although after a while you should know all of its basic principles, you may never learn the details of all its features. As
a result, even after you have had a great deal of experience with Mathematica, you will undoubtedly still find it useful
to look through this book.  When you do so,  you are quite likely to notice features that you never noticed before,  but
that with your experience, you can now see how to use. 
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How to Read This Book

If  at  all  possible,  you should  read this  book in conjunction  with using an actual  Mathematica  system. When you see
examples in the book, you should try them out on your computer. 

You can get a basic feeling for what Mathematica  does by looking at “A  Tour of Mathematica”  in Section T.0. You
may also find it useful to try out examples from this Tour with your own copy of Mathematica. 

Whatever your background, you should make sure to look at the first three or four sections in Part 1 before you start to
use Mathematica  on your own. These sections describe the basics that you need to know in order to use Mathematica
at any level. 

The  remainder  of  Part  1  shows  you  how  to  do  many  different  kinds  of  computations  with  Mathematica.  If  you  are
trying to do a specific calculation, you will often find it sufficient just to look at the sections of Part 1 that discuss the
features of Mathematica  you need to use. A good approach is to try and find examples in the book which are close to
what you want to do. 

The  emphasis  in  Part  1  is  on  using  the  basic  functions  that  are  built  into  Mathematica  to  carry  out  various  different
kinds of computations.  

Part  2,  on  the  other  hand,  discusses  the  basic  structure  and  principles  that  underlie  all  of  Mathematica.  Rather  than
describing a sequence of specific features, Part 2 takes a more global approach. If you want to learn how to create your
own Mathematica functions, you should read Part 2. 

Part 3 is intended for those with more sophisticated mathematical interests and knowledge. It covers the more advanced
mathematical  features  of  Mathematica,  as  well  as  describing  some  features  already  mentioned  in  Part  1  in  greater
mathematical detail. 

Each part of the book is divided into sections and subsections. There are two special kinds of subsections, indicated by
the following headings: 

† Advanced Topic: Advanced material which can be omitted on a first reading. 

† Special Topic: Material relevant only for certain users or certain computer systems. 

The main parts in this book are intended to be pedagogical, and can meaningfully be read in a sequential fashion. The
Appendix,  however,  is  intended  solely  for  reference  purposes.  Once  you  are  familiar  with  Mathematica,  you  will
probably find the list of functions in the Appendix the best place to look up details you need. 

About the Examples in This Book

All the examples given in this book were generated by running an actual copy of Mathematica Version 5. If you have a
copy of this version, you should be able to reproduce the examples on your computer as they appear in the book. 

There are, however, a few points to watch: 

† Until you are familiar with Mathematica, make sure to type the input exactly as it appears in the book. Do not change any of the 
capital letters or brackets. Later, you will learn what things you can change. When you start out, however, it is important that you 
do not make any changes; otherwise you may not get the same results as in the book. 

† Never type the prompt In[n]:= that begins each input line. Type only the text that follows this prompt. 

† You will see that the lines in each dialog are numbered in sequence. Most subsections in the book contain separate dialogs. To 
make sure you get exactly what the book says, you should start a new Mathematica session each time the book does. 

† Some “Special  Topic”  subsections give examples that may be specific to particular computer systems.  
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† Any examples that involve random numbers will generally give different results than in the book, since the sequence of random 
numbers produced by Mathematica is different in every session.  

† Some examples that use machine-precision arithmetic may come out differently on different computer systems. This is a result of 
differences in floating-point hardware. If you use arbitrary-precision Mathematica numbers, you should not see differences. 

† Almost all of the examples show output as it would be generated in StandardForm with a notebook interface to Mathematica. 
Output with a text-based interface will look similar, but not identical. 

† Almost all of the examples in this book assume that your computer or terminal uses a standard U.S. ASCII character set. If you 
cannot find some of the characters you need on your keyboard, or if Mathematica prints out different characters than you see in 
the book, you will need to look at your computer documentation to find the correspondence with the character set you are using. 
The most common problem is that the dollar sign character (Shift-4) may come out as your local currency character.

† If the version of Mathematica is more recent than the one used to produce this book, then it is possible that some results you get 
may be different. 

† Most of the examples in “A  Tour of Mathematica”,  as well as Parts 1 and 2, are chosen so as to be fairly quick to execute. 
Assuming you have a machine with a clock speed of over about 1 GHz (and most machines produced in 2003 or later do), then 
almost none of the examples should take anything more than a small fraction of a second to execute. If they do, there is probably 
something wrong. Section 1.3.12 describes how to stop the calculation. 
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Part 1
This  Part  gives  a  self-contained  introduction  to  Mathematica,  concentrating  on  using  Mathematica  as  an  interactive
problem-solving system. 

When you have read this Part, you should have sufficient knowledge of Mathematica to tackle many kinds of practical
problems. 

You should  realize,  however,  that  what  is  discussed  in this  Part  is  in  many respects just  the surface of  Mathematica.
Underlying all the various features and capabilities that are discussed, there are powerful and general principles. These
principles are discussed in Part 2. To get the most out of Mathematica, you will need to understand them. 

This  Part  does  not  assume that  you  have  used  a  computer  before.  In  addition,  most  of  the  material  in  it  requires  no
knowledge  of  mathematics  beyond  high-school  level.  The  more  advanced  mathematical  aspects  of  Mathematica  are
discussed in Part 3 of this book. 

1.0 Running Mathematica
To  find  out  how  to  install  and  run  Mathematica  you  should  read  the  documentation  that  came  with  your  copy  of
Mathematica. The details differ from one computer system to another, and are affected by various kinds of customiza-
tion that can be done on Mathematica. Nevertheless, this section outlines two common cases.  

Note  that  although  the  details  of  running  Mathematica  differ  from  one  computer  system to  another,  the  structure  of
Mathematica calculations is the same in all cases. You enter input, then Mathematica processes it, and returns a result. 

1.0.1 Notebook Interfaces

use an icon or the  Start menu graphical ways to start  Mathematica
mathematica the shell command to start  Mathematica

text ending with Shift-Enter input for  Mathematica HShift-Return on some keyboardsL
choose the  Quit menu item exiting  Mathematica

Running Mathematica with a notebook interface. 

In a “notebook”  interface, you interact with Mathematica by creating interactive documents.  

If you use your computer via a purely graphical interface, you will typically double-click the Mathematica icon to start
Mathematica.  If  you use your  computer via  a  textually based operating system, you will  typically type the command
mathematica to start Mathematica.  

When Mathematica  starts up, it usually gives you a blank notebook.  You enter Mathematica  input into the notebook,
then  type  Shift-Enter  to  make  Mathematica  process  your  input.  (To  type  Shift-Enter,  hold  down  the  Shift  key,  then
press Enter.) You can use the standard editing features of your graphical interface to prepare your input, which may go
on for  several lines. Shift-Enter tells Mathematica  that  you have finished your input.  If  your keyboard has a numeric
keypad, you can use its Enter key instead of Shift-Enter.   

After you send Mathematica input from your notebook, Mathematica will label your input with In[n]:=. It labels the
corresponding output Out[n]=. 
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You type 2 + 2, then end your input with Shift-Enter. Mathematica processes the input, then adds the input label In[1]:=, and 
gives the output. 

Throughout this book, “dialogs”  with Mathematica are shown in the following way: 

With a notebook interface, you just type in 2 + 2. Mathematica then adds the label In[1]:=, and prints the result. 

In[1]:= 2 + 2

Out[1]= 4

Section 0.5.1  discusses  some  important  details  about  reproducing  the  dialogs  on  your  computer  system.  Section 1.3
gives more information about Mathematica notebooks. 

You should realize that notebooks are part of the “front  end”  to Mathematica.  The Mathematica  kernel which actu-
ally performs computations may be run either on the same computer as the front end, or on another computer connected
via some kind of network or line. In most cases, the kernel is not even started until you actually do a calculation with
Mathematica. 

To exit Mathematica, you typically choose the Quit menu item in the notebook interface. 

1.0.2 Text-Based Interfaces

math the operating system command to start  Mathematica 
text ending with Enter input for  Mathematica

Control-D or  Quit@  D exiting  Mathematica

Running Mathematica with a text-based interface. 

With a text-based interface, you interact with your computer primarily by typing text on the keyboard. 

To  start  Mathematica  with  a  text-based  interface,  you  typically  type  the  command  math  at  an  operating  system
prompt. On some systems, you may also be able to start Mathematica with a text-based interface by double-clicking on
a Mathematica Kernel icon. 

When Mathematica  has started, it will print the prompt In[1]:=,  signifying that it is ready for your input.  You can
then type your input, ending with Enter or Return.  

Mathematica will then process the input, and generate a result. If it prints the result out, it will label it with Out[1]=. 

Throughout this book, dialogs with Mathematica are shown in the following way: 

The computer prints In[1]:=. You just type in 2 + 2. The line that starts with Out[1]= is the result from Mathematica.

In[1]:= 2 + 2

Out[1]= 4
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Section 0.5.1 discusses some important details about reproducing the dialogs on your computer system. Note that you
do not explicitly type the In[n]:= prompt; only type the text that follows this prompt. 

Note also that most of the actual dialogs given in the book show output in the form you get with a notebook interface to
Mathematica;  output  with  a  text-based  interface  looks  similar,  but  lacks  such  features  as  special  characters  and  font
size changes. 

Section 1.3  gives  more details  on running Mathematica  with a  text-based interface.  To exit  Mathematica,  either  type
Control-D, Control-Z or Quit[ ] at an input prompt. 
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1.1 Numerical Calculations

1.1.1 Arithmetic

You can do arithmetic with Mathematica just as you would on an electronic calculator. 

This is the sum of two numbers. 

In[1]:= 2.3 + 5.63

Out[1]= 7.93

Here the / stands for division, and the ^ stands for power.  

In[2]:= 2.4 / 8.9 ^ 2

Out[2]= 0.0302992

Spaces denote multiplication in Mathematica. You can use a * for multiplication if you want to. 

In[3]:= 2 3 4

Out[3]= 24

You can type arithmetic expressions with parentheses. 

In[4]:= (3 + 4) ^ 2 - 2 (3 + 1)

Out[4]= 41

Spaces are not needed, though they often make your input easier to read. 

In[5]:= (3+4)^2-2(3+1)

Out[5]= 41

x^y power
−x minus

xêy divide
x  y  z  or  x∗y∗z multiply

x+y+z add

Arithmetic operations in Mathematica. 

Arithmetic operations in Mathematica  are grouped according to the standard mathematical conventions. As usual, 2 ^
3 + 4, for example, means (2 ^ 3) + 4, and not 2 ^ (3 + 4). You can always control grouping by explicitly using
parentheses.  
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This result is given in scientific notation. 

In[6]:= 2.4 ^ 45

Out[6]= 1.28678× 1017

You can enter numbers in scientific notation like this. 

In[7]:= 2.3 10^70

Out[7]= 2.3×1070

Or like this. 

In[8]:= 2.3*^70

Out[8]= 2.3×1070

1.1.2 Exact and Approximate Results

A standard electronic calculator does all your calculations to a particular accuracy, say ten decimal digits. With Mathe-
matica, however, you can often get exact results.  

Mathematica gives an exact result for 2100 , even though it has 31 decimal digits. 

In[1]:= 2 ^ 100

Out[1]= 1267650600228229401496703205376

You can tell Mathematica to give you an approximate numerical result, just as a calculator would, by ending your input
with //N. The N stands for “numerical”.  It must be a capital letter. Section 2.1.3 will explain what the // means. 

This gives an approximate numerical result. 

In[2]:= 2 ^ 100 //N

Out[2]= 1.26765× 1030

Mathematica can give results in terms of rational numbers.  

In[3]:= 1/3 + 2/7

Out[3]= 
13
21

//N always gives the approximate numerical result. 

In[4]:= 1/3 + 2/7 //N

Out[4]= 0.619048

expr  êêN give an approximate numerical value for  expr 

Getting numerical approximations. 
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When you type in an integer like 7,  Mathematica  assumes that it is exact. If  you type in a number like 4.5,  with an
explicit decimal point, Mathematica assumes that it is accurate only to a fixed number of decimal places. 

This is taken to be an exact rational number, and reduced to its lowest terms. 

In[5]:= 452/62

Out[5]= 
226
31

Whenever you give a number with an explicit decimal point, Mathematica produces an approximate numerical result. 

In[6]:= 452.3/62

Out[6]= 7.29516

Here again, the presence of the decimal point makes Mathematica give you an approximate numerical result. 

In[7]:= 452./62

Out[7]= 7.29032

When any number in an arithmetic expression is given with an explicit decimal point, you get an approximate numerical result for 
the whole expression. 

In[8]:= 1. + 452/62

Out[8]= 8.29032

1.1.3 Some Mathematical Functions

Mathematica includes a very large collection of mathematical functions. Section 3.2 gives the complete list. Here are a
few of the common ones. 

Sqrt@ x D square root H è!!!x  L
Exp@ x D exponential H ex  L
Log@ x D natural logarithm H loge x  L

Log@ b,  x D logarithm to base  b  H logb x  L
Sin@ x D ,  Cos@ x D ,  Tan@ x D trigonometric functions Hwith arguments in radiansL

ArcSin@ x D ,  
ArcCos@ x D ,  ArcTan@ x D 

inverse trigonometric functions

n! factorial Hproduct of integers  1, 2, …, n  L
Abs@ x D absolute value

Round@ x D closest integer to  x  
Mod@ n,  m D n  modulo  m  Hremainder on division of  n  by  m  L
Random@  D pseudorandom number between 0 and 1

Max@ x,  y, … D ,  Min@ x,  y, … D maximum, minimum of  x  ,  y  ,  … 
FactorInteger@ n D prime factors of  n Hsee Section  3.2.4 L

Some common mathematical functions. 
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† The arguments of all  Mathematica functions are enclosed in  square brackets .
† The names of built-in  Mathematica functions begin with  capital letters .

Two important points about functions in Mathematica. 

It is important to remember that all function arguments in Mathematica  are enclosed in square brackets, not parenthe-
ses. Parentheses in Mathematica are used only to indicate the grouping of terms, and never to give function arguments.  

This gives loge H8.4L . Notice the capital letter for Log, and the square brackets for the argument. 

In[1]:= Log[8.4]

Out[1]= 2.12823

Just as with arithmetic operations, Mathematica  tries to give exact values for mathematical functions when you give it
exact input. 

This gives è!!!!!!16  as an exact integer. 

In[2]:= Sqrt[16]

Out[2]= 4

This gives an approximate numerical result for è!!!2 . 

In[3]:= Sqrt[2] //N

Out[3]= 1.41421

The presence of an explicit decimal point tells Mathematica to give an approximate numerical result. 

In[4]:= Sqrt[2.]

Out[4]= 1.41421

Since you are not asking for an approximate numerical result, Mathematica leaves the number here in an exact symbolic form. 

In[5]:= Sqrt[2]

Out[5]= 
è!!!2

Here is the exact integer result for 30ä29ä ...ä1. Computing factorials like this can give you very large numbers. You should be 
able to calculate up to at least 2000! in a short time. 

In[6]:= 30!

Out[6]= 265252859812191058636308480000000

This gives the approximate numerical value of the factorial. 

In[7]:= 30! //N

Out[7]= 2.65253× 1032
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Pi p > 3.14159  
E e > 2.71828  Hnormally output as  ‰  L

Degree p ê180 :
degrees-to-radians conversion factor Hnormally output as  °  L

I i =
è!!!!!!!

-1  Hnormally output as  Â  L
Infinity ¶ 

Some common mathematical constants. 

Notice that the names of these built-in constants all begin with capital letters. 

This gives the numerical value of p2 . 

In[8]:= Pi ^ 2 //N

Out[8]= 9.8696

This gives the exact result for sinHp ê 2L . Notice that the arguments to trigonometric functions are always in radians. 

In[9]:= Sin[Pi/2]

Out[9]= 1

This gives the numerical value of sinH20éL . Multiplying by the constant Degree converts the argument to radians.  

In[10]:= Sin[20 Degree] //N

Out[10]= 0.34202

Log[x] gives logarithms to base e . 

In[11]:= Log[E ^ 5]

Out[11]= 5

You can get logarithms in any base b using Log[b, x]. As in standard mathematical notation, the b is optional.  

In[12]:= Log[2, 256]

Out[12]= 8

1.1.4 Arbitrary-Precision Calculations

When you use //N  to  get  a  numerical result,  Mathematica  does  what  a  standard  calculator  would  do:  it  gives  you a
result to a fixed number of significant figures. You can also tell Mathematica  exactly how many significant figures to
keep in a particular calculation. This allows you to get numerical results in Mathematica to any degree of precision. 

expr êêN or  N@ expr D approximate numerical value of  expr 
N@ expr,  n D numerical value of  expr calculated with  n -digit precision

Numerical evaluation functions. 
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This gives the numerical value of p  to a fixed number of significant digits. Typing N[Pi] is exactly equivalent to Pi //N. 

In[1]:= N[Pi]

Out[1]= 3.14159

This gives p  to 40 digits. 

In[2]:= N[Pi, 40]

Out[2]= 3.141592653589793238462643383279502884197

Here is è!!!7  to 30 digits. 

In[3]:= N[Sqrt[7], 30]

Out[3]= 2.64575131106459059050161575364

Doing any kind of numerical calculation can introduce small roundoff errors into your results. When you increase the
numerical precision, these errors typically become correspondingly smaller. Making sure that you get the same answer
when you increase numerical precision is often a good way to check your results. 

The quantity ep è!!!!!!!!!163  turns out to be very close to an integer. To check that the result is not, in fact, an integer, you have to use 
sufficient numerical precision. 

In[4]:= N[Exp[Pi Sqrt[163]], 40]

Out[4]= 2.625374126407687439999999999992500725972×1017

1.1.5 Complex Numbers

You can enter complex numbers in Mathematica  just by including the constant I, equal to è!!!!!!!
-1 . Make sure that you

type a capital I. 

If  you are using notebooks,  you can also enter I  as Â  by typing ÂiiÂ  (see Section 1.1.7).  The form Â  is  normally
what is used in output. Note that an ordinary i means a variable named i , not è!!!!!!!

-1 . 

This gives the imaginary number result 2 i . 

In[1]:= Sqrt[-4]

Out[1]= 2

This gives the ratio of two complex numbers. 

In[2]:= (4 + 3 I) / (2 - I)

Out[2]= 1 + 2

Here is the numerical value of a complex exponential. 

In[3]:= Exp[2 + 9 I] //N

Out[3]= −6.73239 + 3.04517
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x  +  I  y the complex number  x + i y  
Re@ z D real part
Im@ z D imaginary part

Conjugate@ z D complex conjugate  z*  or  zê  
Abs@ z D absolute value  » z »  
Arg@ z D the argument  j  in  » z » ei j  

Complex number operations. 

1.1.6 Getting Used to Mathematica

† Arguments of functions are given in  square brackets .
† Names of built-in functions have their first letters capitalized.
† Multiplication can be represented by a space.
† Powers are denoted by  ^ .
† Numbers in scientific notation are entered, for example, as  2.5*^-4 or  2.5  10^−4 .

Important points to remember in Mathematica. 

This section has given you a first glimpse of Mathematica.  If you have used other computer systems before, you will
probably  have  noticed  some  similarities  and  some  differences.  Often  you  will  find  the  differences  the  most  difficult
parts to remember. It may help you, however, to understand a little about why Mathematica  is set up the way it is, and
why such differences exist. 

One important feature of Mathematica  that differs from other computer languages, and from conventional mathemati-
cal notation,  is  that  function arguments are enclosed in square brackets,  not  parentheses.  Parentheses in Mathematica
are  reserved  specifically  for  indicating  the  grouping  of  terms.  There  is  obviously  a  conceptual  distinction  between
giving  arguments  to  a  function  and  grouping  terms together;  the  fact  that  the  same notation  has  often  been  used  for
both  is  largely  a  consequence  of  typography  and  of  early  computer  keyboards.  In  Mathematica,  the  concepts  are
distinguished by different notation. 

This  distinction  has  several  advantages.  In  parenthesis  notation,  it  is  not  clear  whether  c H1 + xL  means c[1  +  x]  or
c*(1 + x). Using square brackets for function arguments removes this ambiguity. It also allows multiplication to be
indicated without an explicit * or other character. As a result, Mathematica can handle expressions like 2x and a x or
a (1 + x), treating them just as in standard mathematical notation. 

You will have seen in this section that built-in Mathematica  functions often have quite long names. You may wonder
why, for  example, the pseudorandom number function is called Random,  rather than, say, Rand.  The answer,  which
pervades  much  of  the  design  of  Mathematica,  is  consistency.  There  is  a  general  convention  in  Mathematica  that  all
function  names  are  spelled  out  as  full  English  words,  unless  there  is  a  standard  mathematical abbreviation  for  them.
The great advantage of this scheme is that it is predictable. Once you know what a function does, you will usually be
able  to  guess  exactly  what  its  name  is.  If  the  names  were  abbreviated,  you  would  always  have  to  remember  which
shortening of the standard English words was used.  

Another feature of  built-in Mathematica  names is that they all  start with capital letters. In later sections, you will see
how to define variables and functions of  your own. The capital letter convention makes it easy to distinguish built-in
objects.  If  Mathematica  used  max  instead of  Max  to  represent  the  operation  of  finding  a  maximum, then you would
never be able to use max as the name of one of your variables. In addition, when you read programs written in Mathe-
matica, the capitalization of built-in names makes them easier to pick out.  
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1.1.7 Mathematical Notation in Notebooks

If you use a text-based interface to Mathematica, then the input you give must consist only of characters that you can
type directly on your computer keyboard. But if you use a notebook interface then other kinds of input become possi-
ble.  

Usually there are palettes provided which operate like extensions of your keyboard,  and which have buttons that you
can click to enter particular forms. You can typically access standard palettes using the Palettes  submenu of the File
menu.  

Clicking the p  button in this palette will enter a pi into your notebook.

Clicking the first button in this palette will create an empty structure for entering a power. You can use the mouse to fill in the 
structure. 

You can also give input by using special keys on your keyboard. Pressing one of these keys does not lead to an ordi-
nary character being entered, but instead typically causes some action to occur or some structure to be created. 

Â pÂ the symbol  p  
Â infÂ the symbol  ¶ 
Â eeÂ the symbol  ‰  for the exponential constant Hequivalent to  E L
Â iiÂ the symbol  Â  for  

è!!!!!!!
-1  Hequivalent to  I L

Â degÂ the symbol  °  Hequivalent to  Degree L
‚Î ^Ï or ‚Î 6Ï go to the superscript for a power

‚Î êÏ go to the denominator for a fraction
‚Î @Ï or ‚Î 2Ï go into a square root

‚Î â  Ï HControl-SpaceL return from a superscript, denominator or square root

A few ways to enter special notations on a standard English-language keyboard. 

Here is a computation entered using ordinary characters on a keyboard. 

In[1]:= N[Pi^2/6]

Out[1]= 1.64493

Here is the same computation entered using a palette or special keys. 

In[2]:= NA π
2

6
E

Out[2]= 1.64493
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Here is an actual sequence of keys that can be used to enter the input. 

In[3]:= N[ ÂpÂ ‚Î^Ï 2 ‚Î Ï ‚Î/Ï 6 ‚Î Ï ]

Out[3]= 1.64493

In a traditional computer language such as C, Fortran, Java or Perl, the input you give must always consist of a string of
ordinary  characters  that  can  be  typed directly  on  a  keyboard.  But  the  Mathematica  language  also  allows  you to  give
input that contains special characters, superscripts, built-up fractions, and so on. 

The language incorporates many features of traditional mathematical notation. But you should realize that the goal of
the language is to provide a precise and consistent way to specify computations. And as a result, it does not follow all
of the somewhat haphazard details of traditional mathematical notation.  

Nevertheless,  as  discussed in Section 1.10.9,  it  is  always possible  to get  Mathematica  to  produce output  that  imitates
every aspect of traditional mathematical notation. And as discussed in Section 1.10.9, it is also possible for Mathemat-
ica to import text that uses such notation, and to some extent to translate it into its own more precise language.  
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1.2 Building Up Calculations

1.2.1 Using Previous Results

In doing calculations, you will often need to use previous results that you have got. In Mathematica, %  always stands
for your last result. 

% the last result generated
%% the next-to-last result

%% … % H k  timesL the  k  th  previous result
% n the result on output line  Out@ n D Hto be used with careL

Ways to refer to your previous results. 

Here is the first result. 

In[1]:= 77 ^ 2

Out[1]= 5929

This adds 1 to the last result. 

In[2]:= % + 1

Out[2]= 5930

This uses both the last result, and the result before that. 

In[3]:= 3 % + % ^ 2 + %%

Out[3]= 35188619

You will have noticed that all the input and output lines in Mathematica  are numbered. You can use these numbers to
refer to previous results. 

This adds the results on lines 2 and 3 above. 

In[4]:= %2 + %3

Out[4]= 35194549

If you use a text-based interface to Mathematica, then successive input and output lines will always appear in order, as
they do in the dialogs in this book. However, if you use a notebook interface to Mathematica, as discussed in Section
1.0.1, then successive input and output lines need not appear in order. You can for example “scroll  back”  and insert
your  next  calculation  wherever  you want  in  the  notebook.  You should  realize that  %  is  always  defined  to  be  the  last
result  that  Mathematica  generated.  This  may  or  may  not  be  the  result  that  appears  immediately  above  your  present
position in the notebook.  With a notebook interface, the only way to tell when a particular  result was generated is to
look at the Out[n] label that it has. Because you can insert and delete anywhere in a notebook, the textual ordering of
results in a notebook need have no relation to the order in which the results were generated. 
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1.2.2 Defining Variables

When you do  long  calculations,  it  is  often  convenient  to  give names  to  your  intermediate results.  Just  as  in  standard
mathematics, or in other computer languages, you can do this by introducing named variables. 

This sets the value of the variable x to be 5. 

In[1]:= x = 5

Out[1]= 5

Whenever x appears, Mathematica now replaces it with the value 5. 

In[2]:= x ^ 2

Out[2]= 25

This assigns a new value to x. 

In[3]:= x = 7 + 4

Out[3]= 11

pi is set to be the numerical value of p  to 40-digit accuracy. 

In[4]:= pi = N[Pi, 40]

Out[4]= 3.141592653589793238462643383279502884197

Here is the value you defined for pi. 

In[5]:= pi

Out[5]= 3.141592653589793238462643383279502884197

This gives the numerical value of p2 , to the same accuracy as pi. 

In[6]:= pi ^ 2

Out[6]= 9.86960440108935861883449099987615113531

x  =  value assign a value to the variable  x 
x  =  y  =  value assign a value to both  x and  y 

x  =.  or  Clear@ x D remove any value assigned to  x 

Assigning values to variables. 

It is very important to realize that values you assign to variables are permanent.  Once you have assigned a value to a
particular variable, the value will be kept until you explicitly remove it. The value will, of course, disappear if you start
a whole new Mathematica session. 

Forgetting about definitions you made earlier is the single most common cause of mistakes when using Mathematica. If
you set x = 5, Mathematica  assumes that you always  want x to have the value 5, until or unless you explicitly tell it
otherwise. To avoid mistakes, you should remove values you have defined as soon as you have finished using them. 
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† Remove values you assign to variables as soon as you finish using them.

A useful principle in using Mathematica. 

The variables  you define can have almost any names. There is no limit on the length of  their  names. One constraint,
however, is that variable names can never start with numbers. For example, x2 could be a variable, but 2x means 2*x.

Mathematica  uses both  upper- and lower-case letters. There is a convention that built-in Mathematica  objects always
have  names starting  with  upper-case  (capital)  letters.  To  avoid  confusion,  you  should  always  choose  names for  your
own variables that start with lower-case letters.   

aaaaa a variable name containing only lower-case letters
Aaaaa a built-in object whose name begins with a capital letter

Naming conventions. 

You can type formulas involving  variables in Mathematica  almost exactly as  you would in mathematics. There are a
few important points to watch, however. 

†  x  y means  x times  y .
†  xy with no space is the variable with name  xy .
†  5x means  5 times  x .
†  x^2y means  Hx^2L  y , not  x^H2yL .

Some points to watch when using variables in Mathematica. 

1.2.3 Making Lists of Objects

In doing calculations,  it  is  often convenient  to collect together  several objects,  and treat them as a single entity. Lists
give  you  a  way  to  make  collections  of  objects  in  Mathematica.  As  you  will  see  later,  lists  are  very  important  and
general structures in Mathematica. 

A list such as {3,  5,  1}  is  a collection of  three objects.  But in many ways, you can treat the whole list as a single
object.  You  can,  for  example,  do  arithmetic  on  the  whole  list  at  once,  or  assign  the  whole  list  to  be  the  value  of  a
variable. 

Here is a list of three numbers. 

In[1]:= {3, 5, 1}

Out[1]= 83, 5, 1<

This squares each number in the list, and adds 1 to it. 

In[2]:= {3, 5, 1}^2 + 1

Out[2]= 810, 26, 2<
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This takes differences between corresponding elements in the two lists. The lists must be the same length. 

In[3]:= {6, 7, 8} - {3.5, 4, 2.5}

Out[3]= 82.5, 3, 5.5<

The value of % is the whole list. 

In[4]:= %

Out[4]= 82.5, 3, 5.5<

You can apply any of the mathematical functions in Section 1.1.3 to whole lists. 

In[5]:= Exp[ % ] // N

Out[5]= 812.1825, 20.0855, 244.692<

Just as you can set variables to be numbers, so also you can set them to be lists. 

This assigns v to be a list. 

In[6]:= v = {2, 4, 3.1}

Out[6]= 82, 4, 3.1<

Wherever v appears, it is replaced by the list. 

In[7]:= v / (v - 1)

Out[7]= 92, 4
3
, 1.47619=

1.2.4 Manipulating Elements of Lists

Many of the most powerful list manipulation operations in Mathematica  treat whole lists as single objects. Sometimes,
however, you need to pick out or set individual elements in a list.  

You can refer to an element of a Mathematica list by giving its “index”.  The elements are numbered in order, starting
at 1.  

8  a,  b,  c <  a list
Part@ list,  i D or  list @@ i DD the  i th  element of  list Hthe first element is  list @@1DD L

Part@ list,  8  i,  j, … <  
D  or  list @@ 8  i,  j, … <  DD 

a list of the  i th  ,  j th  , … elements of  list 

Operations on list elements. 

This extracts the second element of the list. 

In[1]:= {5, 8, 6, 9}[[2]]

Out[1]= 8
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This extracts a list of elements. 

In[2]:= {5, 8, 6, 9}[[ {3, 1, 3, 2, 4} ]]

Out[2]= 86, 5, 6, 8, 9<

This assigns the value of v to be a list. 

In[3]:= v = {2, 4, 7}

Out[3]= 82, 4, 7<

You can extract elements of v. 

In[4]:= v[[ 2 ]]

Out[4]= 4

By assigning a variable to be a list, you can use Mathematica  lists much like “arrays”  in other computer languages.
Thus, for example, you can reset an element of a list by assigning a value to v[[i]]. 

Part@ v,  i D  or  v @@ i DD extract the  i th  element of a list
Part@ v,  i D  =  
value  or  v @@ i DD  =  value 

reset the  i th  element of a list

Array-like operations on lists. 

Here is a list. 

In[5]:= v = {4, -1, 8, 7}

Out[5]= 84, −1, 8, 7<

This resets the third element of the list. 

In[6]:= v[[3]] = 0

Out[6]= 0

Now the list assigned to v has been modified. 

In[7]:= v

Out[7]= 84, −1, 0, 7<

1.2.5 The Four Kinds of Bracketing in Mathematica

Over the course of the last few sections, we have introduced each of the four kinds of bracketing used in Mathematica.
Each kind of bracketing has a very different meaning. It is important that you remember all of them. 
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HtermL parentheses for grouping
f  @ x D square brackets for functions

8  a,  b,  c <  curly braces for lists
v @@ i DD double brackets for indexing H Part@ v,  i D L

The four kinds of bracketing in Mathematica. 

When the expressions you type in are complicated, it is often a good idea to put extra space inside each set of brackets.
This  makes  it  somewhat  easier  for  you  to  see  matching  pairs  of  brackets.  v[[  8a,  b<  ]]  is,  for  example,  easier  to
recognize than v[[8a, b<]]. 

1.2.6 Sequences of Operations

In doing a calculation with Mathematica, you usually go through a sequence of steps. If you want to, you can do each
step on a separate line. Often, however,  you will find it convenient to put several steps on the same line. You can do
this simply by separating the pieces of input you want to give with semicolons. 

expr1;  expr2;  expr3  do several operations, and give the result of the last one
expr1;  expr2; do the operations, but print no output

Ways to do sequences of operations in Mathematica. 

This does three operations on the same line. The result is the result from the last operation. 

In[1]:= x = 4; y = 6; z = y + 6

Out[1]= 12

If you end your input with a semicolon, it is as if you are giving a sequence of operations, with an “empty”  one at the
end. This has the effect of making Mathematica perform the operations you specify, but display no output. 

expr  ; do an operation, but display no output

Inhibiting output. 

Putting a semicolon at the end of the line tells Mathematica to show no output. 

In[2]:= x = 67 - 5 ;

You can still use % to get the output that would have been shown. 

In[3]:= %

Out[3]= 62
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1.3 Using the Mathematica System

1.3.1 The Structure of Mathematica

Mathematica kernel the part that actually performs computations
Mathematica front end the part that handles interaction with the user

The basic parts of the Mathematica system. 

Mathematica  is a modular software system in which the kernel which actually performs computations is separate from
the front end which handles interaction with the user. 

The  most  common type  of  front  end  for  Mathematica  is  based  on  interactive  documents  known  as  notebooks.  Note-
books mix Mathematica input and output with text, graphics, palettes and other material. You can use notebooks either
for doing ongoing computations, or as means of presenting or publishing your results.   

Notebook interface interactive documents
Text-based interface text from the keyboard
MathLink interface communication with other programs

Common kinds of interfaces to Mathematica. 

The notebook front end includes many menus and graphical tools for creating and reading notebook documents and for
sending and receiving material from the Mathematica kernel. 

A notebook mixing text, graphics and Mathematica input and output.

In  some cases,  you may not  need  to  use  the  notebook  front  end,  and  you may want  instead to  interact  more directly
with the Mathematica  kernel. You can do this by using a text-based interface, in which text you type on the keyboard
goes straight to the kernel. 
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A dialog with Mathematica using a text-based interface.

In[1]:= 2^100

Out[1]= 1267650600228229401496703205376

In[2]:= Integrate[1/(x^3 - 1), x]

                 1 + 2 x
          ArcTan[-------]                               2
                 Sqrt[3]     Log[-1 + x]   Log[1 + x + x ]
Out[2]= -(---------------) + ----------- - ---------------
              Sqrt[3]             3               6

An important  aspect  of  Mathematica  is  that  it  can  interact  not  only  with  human users  but  also  with  other  programs.
This  is  achieved  primarily  through  MathLink,  which  is  a  standardized  protocol  for  two-way communication between
external programs and the Mathematica kernel. 

A fragment of C code that communicates via MathLink with the Mathematica kernel.

MLPutFunction(stdlink,  "EvaluatePacket", 1);

  MLPutFunction(stdlink, "Gamma", 2);
    MLPutReal(stdlink, 2);
    MLPutInteger(stdlink, n);

MLEndPacket(stdlink);
MLCheckFunction(stdlink, "ReturnPacket", &n);

MLGetReal(stdlink, &result);

Among the  many MathLink-compatible  programs  that  are  now available,  some are  set  up  to  serve  as  complete  front
ends to Mathematica. Often such front ends provide their own special user interfaces, and treat the Mathematica kernel
purely as  an embedded computational engine.  If  you are using Mathematica  in this way,  then only some parts  of  the
discussion in the remainder of this section will probably be relevant. 

1.3.2 Differences between Computer Systems

There are many detailed differences between different kinds of computer systems. But one of the important features of
Mathematica is that it allows you to work and create material without being concerned about such differences.  

In order to fit in as well as possible with particular computer systems, the user interface for Mathematica  on different
systems is inevitably at least slightly different. But the crucial point is that beyond superficial differences, Mathematica
is set up to work in exactly the same way on every kind of computer system.  

† The language used by the  Mathematica kernel
† The structure of  Mathematica notebooks
† The  MathLink communication protocol

Elements of Mathematica that are exactly the same on all computer systems. 
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The  commands  that  you  give  to  the  Mathematica  kernel,  for  example,  are  absolutely  identical  on  every  computer
system. This means that when you write a program using these commands, you can immediately take the program and
run it on any computer that supports Mathematica.  

The  structure  of  Mathematica  notebooks  is  also  the  same  on  all  computer  systems.  And  as  a  result,  if  you  create  a
notebook on one computer system, you can immediately take it and use it on any other system.  

† The visual appearance of windows, fonts, etc.
† Mechanisms for importing and exporting material from notebooks
† Keyboard shortcuts for menu commands

Elements that can differ from one computer system to another. 

Although the underlying structure of Mathematica notebooks is always the same, there are often superficial differences
in the way notebooks look on different computer systems, and in some of the mechanisms provided for interacting with
them. 

The goal in each case is to make notebooks work in a way that is as familiar as possible to people who are used to a
particular type of computer system. 

And in addition, by adapting the details of notebooks to each specific computer system, it becomes easier to exchange
material between notebooks and other programs running on that computer system.  

The same Mathematica notebook on three different computer systems. The underlying structure is exactly the same, but some 
details of the presentation are different.

One consequence of the modular nature of the Mathematica  system is that its parts can be run on different computers.
Thus, for example, it is not uncommon to run the front end for Mathematica on one computer, while running the kernel
on a quite separate computer.  

Communications between  the  kernel  and  the  front  end  are  handled  by  MathLink,  using  whatever  networking  mecha-
nisms are available. 
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1.3.3 Special Topic: Using a Text-Based Interface

With a text-based interface,  you interact  with Mathematica  just  by typing successive lines of  input,  and getting back
successive lines of output on your screen. 

At each stage,  Mathematica  prints  a prompt of  the form In[n]:=  to  tell  you that it  is  ready to receive input.  When
you have entered your input, Mathematica processes it, and then displays the result with a label of the form Out[n]=.  

If your input is short, then you can give it on a single line, ending the line by pressing Enter or Return. If your input is
longer,  you can give it on several lines. Mathematica  will automatically continue reading successive lines until  it has
received a complete expression.  Thus, for example, if you type an opening parenthesis on one line, Mathematica  will
go  on  reading  successive  lines  of  input  until  it  sees  the  corresponding  closing  parenthesis.  Note  that  if  you  enter  a
completely blank line, Mathematica will throw away the lines you have typed so far, and issue a new input prompt.  

% n  or  Out@ n D the value of the  n th  output
InString@ n D the text of the  n th  input

In@ n D the  n th  input, for re-evaluation

Retrieving and re-evaluating previous input and output. 

With  a  text-based  interface,  each  line  of  Mathematica  input  and  output  appears  sequentially.  Often  your  computer
system will allow you to scroll backwards to review previous work, and to cut-and-paste previous lines of input. 

But whatever kind of computer system you have, you can always use Mathematica  to retrieve or re-evaluate previous
input  and  output.  In  general,  re-evaluating  a  particular  piece  of  input  or  output  may give  you  a  different  result  than
when you evaluated it in the first place. The reason is that in between you may have reset the values of variables that
are used in that piece of input or output. If you ask for Out[n], then Mathematica will give you the final form of your
nth  output. On the other hand, if you ask for In[n], then Mathematica will take the nth  input you gave, and re-evaluate
it using whatever current assignments you have given for variables. 
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1.3.4 Doing Computations in Notebooks

A typical Mathematica notebook containing text, graphics and Mathematica expressions. The brackets on the right indicate the 
extent of each cell.

Mathematica  notebooks  are  structured  interactive  documents  that  are  organized  into  a  sequence  of  cells.  Each  cell
contains  material  of  a  definite  type—usually text,  graphics,  sounds  or  Mathematica  expressions.  When  a  notebook  is
displayed on the screen, the extent of each cell is indicated by a bracket on the right.  

The  notebook  front  end  for  Mathematica  provides  many ways  to  enter  and  edit  the  material in  a  notebook.  Some of
these ways will  be standard  to whatever  computer system or  graphical  interface you are using.  Others  are specific to
Mathematica. 

Shift-Enter or Shift-Return send a cell of input to the  Mathematica kernel

Doing a computation in a Mathematica notebook. 

Once you have prepared the material in a cell, you can send it as input to the Mathematica  kernel simply by pressing
Shift-Enter or Shift-Return. The kernel will send back whatever output is generated, and the front end will create new
cells in your notebook to display this output. Note that if you have a numeric keypad on your keyboard, then you can
use its Enter key as an alternative to Shift-Enter. 

Here is a cell ready to be sent as input to the Mathematica kernel.
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The output from the computation is inserted in a new cell.

Most kinds of output that you get in Mathematica  notebooks can readily be edited, just like input. Usually Mathemat-
ica  will make a copy of the output when you first start editing it, so you can keep track of the original output and its
edited form.  

Once you have  done  the  editing you want,  you can typically just  press  Shift-Enter  to  send what  you have created as
input to the Mathematica kernel. 

Here is a typical computation in a Mathematica notebook. 

Mathematica will automatically make a copy if you start editing the output. 

After you have edited the output, you can send it back as further input to the Mathematica kernel. 

When you do computations in a Mathematica  notebook,  each line of  input  is  typically labeled with In[n]:=,  while
each line of output is labeled with the corresponding Out[n]=. 

There is no reason, however, that successive lines of input and output should necessarily appear one after the other in
your notebook. Often, for example, you will want to go back to an earlier part of your notebook, and re-evaluate some
input you gave before.   
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It is important to realize that wherever a particular expression appears in your notebook, it is the line number given in
In[n]:=  or  Out[n]=  which  determines  when  the  expression  was  processed  by  the  Mathematica  kernel.  Thus,  for
example, the fact that one expression may appear earlier than another in your notebook does not mean that it will have
been evaluated first by the kernel. This will only be the case if it has a lower line number.  

Each line of input and output is given a label when it is evaluated by the kernel. It is these labels, not the position of the expression 
in the notebook, that indicate the ordering of evaluation by the kernel. 

If you make a mistake and try to enter input that the Mathematica  kernel does not understand, then the front end will
produce a beep. In general, you will get a beep whenever something goes wrong in the front end. You can find out the
origin of the beep using the Why the Beep? item in the Help menu.  

Animate graphics double-click the first cell in the sequence of frames
Resize a graphic click the graphic and move the handles that appear

Find coordinates in a graphic move around in the graphic holding
down the Command or Control key Hor equivalentL

Play a sound double-click the cell that contains it

Operations on graphics and sounds. 

1.3.5 Notebooks as Documents

Mathematica notebooks allow you to create documents that can be viewed interactively on screen or printed on paper.  

Particularly in larger notebooks, it is common to have chapters, sections and so on, each represented by groups of cells.
The extent of these groups is indicated by a bracket on the right. 
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The grouping of cells in a notebook is indicated by nested brackets on the right.

A group of cells can be either open or closed. When it is open, you can see all the cells in it explicitly. But when it is
closed, you see only the first or heading cell in the group.  

Large notebooks  are  often distributed with many closed groups  of  cells,  so that  when you first  look at the notebook,
you see just an outline of its contents. You can then open parts you are interested in by double-clicking the appropriate
brackets. 

Double-clicking the bracket that spans a group of cells closes the group, leaving only the first cell visible. 

When a group is closed, the bracket for it has an arrow at the bottom. Double-clicking this arrow opens the group again. 

Each cell within a notebook is assigned a particular style which indicates its role within the notebook. Thus, for exam-
ple, material intended as input to be executed by the Mathematica kernel is typically in Input style, while text that is
intended purely to be read is typically in Text style.   

The  Mathematica  front  end  provides  menus  and  keyboard  shortcuts  for  creating  cells  with  different  styles,  and  for
changing styles of existing cells. 
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This shows cells in various styles. The styles define not only the format of the cell contents, but also their placement and spacing.

By putting a cell in a particular style, you specify a whole collection of properties for the cell, including for example
how large and in what font text should be given. 

The  Mathematica  front  end  allows  you  to  modify  such  properties,  either  for  complete  cells,  or  for  specific  material
within cells. 

Even within a cell of a particular style, the Mathematica front end allows a wide range of properties to be modified separately.

It is worth realizing that in doing different kinds of things with Mathematica notebooks, you are using different parts of
the Mathematica system. Operations such as opening and closing groups of cells, doing animations and playing sounds
use only a small part of the Mathematica  front end, and these operations are supported by a widely available program
known as MathReader.  

To  be  able  to  create  and  edit  notebooks,  you  need  more  of  the  Mathematica  front  end.  And  finally,  to  be  able  to
actually do computations within a Mathematica notebook, you need a full Mathematica system, with both the front end
and the kernel. 

MathReader reading  Mathematica notebooks
Mathematica front end creating and editing  Mathematica notebooks

Mathematica kernel doing computations in notebooks

Programs required for different kinds of operations with notebooks. 

1.3.6 Active Elements in Notebooks

One  of  the  most  powerful  features  of  Mathematica  notebooks  is  that  their  actions  can  be  programmed.  Thus,  for
example, you can set up a button in a Mathematica  notebook which causes various operations to be performed when-
ever you click it.  
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Here is a notebook that contains a button. 

Clicking the button in this case causes the current date to be displayed.

Later in this book, we will discuss how you can set up buttons and other similar objects in Mathematica notebooks. But
here suffice it to say that whenever a cell is indicated as active, typically by the presence of a stylized “A”  in its cell
bracket, clicking on active elements within the cell will cause actions that have been programmed for these elements to
be performed.  

It  is  common to  set  up  palettes  which  consist  of  arrays  of  buttons.  Sometimes such  palettes  appear  as  cells  within  a
notebook.  But more often,  a special kind of separate notebook window is used, which can conveniently be placed on
the side of your computer screen and used in conjunction with any other notebook.  

Palettes consisting of arrays of buttons are often placed in separate notebooks. 

In the simplest cases, the buttons in palettes serve essentially like additional keys on your keyboard.  Thus,  when you
press a button, the character or object shown in that button is inserted into your notebook just as if you had typed it. 

Here is a palette of Greek letters with buttons that act like additional keys on your keyboard. 

Often,  however,  a  button  may  contain  a  placeholder  indicated  by  É .  This  signifies  that  when  you  press  the  button,
whatever is currently selected in your notebook will be inserted at the position of the placeholder.  

The buttons here contain placeholders indicated by É . 

Here is a notebook with an expression selected.
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Pressing the top left button in the palette wraps the selected expression with a square root.

Sometimes buttons  that  contain  placeholders  will  be  programmed simply to  insert  a  certain  expression  in  your  note-
book. But more often, they will be programmed to evaluate the result, sending it as input to the Mathematica kernel.  

These buttons are set up to perform algebraic operations. 

Here is a notebook with an expression selected. 

Pressing the top left button in the palette causes the selected expression to be simplified. 

There  are  some  situations  in  which  it  is  convenient  to  have  several  placeholders  in  a  single  button.  Your  current
selection is typically inserted at the position of  the primary placeholder,  indicated by É .  Additional placeholders may
however be indicated by Ñ , and you can move to the positions of successive placeholders using Tab.  

Here is a palette containing buttons with several placeholders. 

Here is an expression in a notebook.

Pressing the top left button in the palette inserts the expression in place of the É .

You can move to the other placeholders using Tab, and then edit them to insert whatever you want. 
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1.3.7 Special Topic: Hyperlinks and Active Text

The Mathematica front end provides a variety of ways to search for particular words or text in Mathematica notebooks.
But particularly when large documents or collections of documents are involved, it is often convenient to insert hyper-
links which immediately take you to a specific point in a notebook, just as is often done on websites. 

Hyperlinks are usually indicated by words or phrases that are underlined, and are often in a different color. Clicking on a hyperlink 
immediately takes you to wherever the hyperlink points. 

Hyperlinks in notebooks work very much like the buttons discussed in the previous section. And once again, all aspects
of hyperlinks are programmable. 

Indeed, it is possible to set up active text in notebooks that performs almost any kind of action. 

1.3.8 Getting Help in the Notebook Front End

In most versions of the Mathematica  notebook front end, the Help menu gives you access to the Help Browser, which
serves as an entry point into a large amount of online documentation for Mathematica. 

Getting Started a quick start to using  Mathematica
Built-in Functions information on all built-in functions

The Mathematica Book the complete book online
Master Index index of all online documentation material

Typical types of help available with the notebook front end. 

An example of looking up basic information about a function in the Help Browser.

If  you  type  the  name  of  a  function  into  a  notebook,  most  versions  of  the  front  end  allow  you  immediately  to  find
information about the function by pressing an appropriate key (F1 under Windows). 

When you first start Mathematica, you will typically be presented with a basic tutorial. You can visit the tutorial again
with the Tutorial menu item in the Help menu. 
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1.3.9 Getting Help with a Text-Based Interface

?Name show information on  Name 
?? Name show extra information on  Name 
?Aaaa∗ show information on all objects whose names begin with  Aaaa 

Ways to get information directly from the Mathematica kernel. 

This gives information on the built-in function Log. 

In[1]:= ?Log

Log@zD gives the natural logarithm of z H
logarithm to base eL. Log@b, zD gives the logarithm to base b.

You can ask for information about any object, whether it is built into Mathematica, has been read in from a Mathemat-
ica package, or has been introduced by you. 

When you use ?  to get information, you must make sure that the question mark appears as the first character in your
input  line.  You  need  to  do  this  so that  Mathematica  can  tell  when  you are  requesting  information rather  than giving
ordinary input for evaluation. 

You can get extra information by using ??. Attributes will be discussed in Section 2.6.3. 

In[2]:= ??Log

Log@zD gives the natural logarithm of z H
logarithm to base eL. Log@b, zD gives the logarithm to base b.

Attributes@LogD = 8Listable, NumericFunction, Protected<

This gives information on all Mathematica objects whose names begin with Lo. When there is more than one object, Mathematica 
just lists their names. 

In[3]:= ?Lo*

"Locked        LogicalExpand Loopback
Log           LogIntegral   LowerCaseQ
LogGamma      LongForm"

?Aaaa  will  give  you  information  on  the  particular  object  whose  name  you  specify.  Using  the  “metacharacter”  *,
however, you can get information on collections of objects with similar names. The rule is that * is a “wild  card”  that
can stand for any sequence of ordinary characters. So, for example, ?Lo* gets information on all objects whose names
consist of the letters Lo, followed by any sequence of characters.  

You  can put  *  anywhere  in  the  string  you ask  ?  about.  For  example,  ?*Expand  would  give  you all  objects  whose
names end with Expand. Similarly, ?x*0 would give you objects whose names start with x, end with 0, and have any
sequence of characters in between. (You may notice that the way you use * to specify names in Mathematica is similar
to the way you use * in Unix and other operating systems to specify file names.) 
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You can ask for information on most of the special input forms that Mathematica uses. This asks for information about the := 
operator. 

In[4]:= ?:=

lhs := rhs assigns rhs to be the delayed value
of lhs. rhs is maintained in an unevaluated form. When lhs
appears, it is replaced by rhs, evaluated afresh each time.

1.3.10 Mathematica Packages

One  of  the  most  important  features  of  Mathematica  is  that  it  is  an  extensible  system.  There  is  a  certain  amount  of
mathematical  and  other  functionality  that  is  built  into  Mathematica.  But  by  using  the  Mathematica  language,  it  is
always possible to add more functionality. 

For many kinds of calculations, what is built  into the standard version of  Mathematica  will be quite sufficient.  How-
ever, if you work in a particular specialized area, you may find that you often need to use certain functions that are not
built into Mathematica. 

In such cases, you may well be able to find a Mathematica package that contains the functions you need. Mathematica
packages are files written in the Mathematica  language. They consist of collections of Mathematica  definitions which
“teach”  Mathematica about particular application areas. 

<< package read in a  Mathematica package

Reading in Mathematica packages. 

If you want to use functions from a particular package, you must first read the package into Mathematica. The details
of how to do this are discussed in Section 1.11. There are various conventions that govern the names you should use to
refer to packages. 

This command reads in a particular Mathematica package. 

In[1]:= << DiscreteMath`CombinatorialFunctions`

The Subfactorial function is defined in the package. 

In[2]:= Subfactorial[10]

Out[2]= 1334961

There  are  a  number  of  subtleties  associated  with  such  issues  as  conflicts  between  names  of  functions  in  different
packages. These are discussed in Section 2.7.9. One point to note, however, is that you must not refer to a function that
you will read from a package before actually reading in the package. If you do this by mistake, you will have to execute
the command Remove["name"] to get rid of the function before you read in the package which defines it. If you do
not call Remove, Mathematica will use “your”  version of the function, rather than the one from the package. 

Remove@" name "D remove a function that has been introduced in error

Making sure that Mathematica uses correct definitions from packages. 

The  fact  that  Mathematica  can  be  extended  using  packages  means  that  the  boundary  of  exactly  what  is  “part  of
Mathematica”  is quite blurred. As far as usage is concerned, there is actually no difference between functions defined
in packages and functions that are fundamentally built into Mathematica. 
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In  fact,  a  fair  number  of  the  functions  described  in  this  book  are  actually  implemented  as  Mathematica  packages.
However, on most Mathematica systems, the necessary packages have been preloaded, so that the functions they define
are always present. 

To blur the boundary of what is part of Mathematica even further, Section 2.7.11 describes how you can tell Mathemat-
ica  automatically to load a particular package if you ever try to use a certain function. If you never use that function,
then it will not be present. But as soon as you try to use it, its definition will be read in from a Mathematica package. 

As  a  practical  matter,  the  functions  that  should  be  considered  “part  of  Mathematica”  are  probably  those  that  are
present in all Mathematica systems. It is these functions that are primarily discussed in this book. 

Nevertheless, most versions of Mathematica  come with a standard set of Mathematica  packages, which contain defini-
tions for many more functions. Some of these functions are mentioned in this book. But to get them, you must usually
read in the necessary packages explicitly. 

You can use the Help Browser to get information on standard Mathematica add-on packages. 

It is possible to set your Mathematica system up so that particular packages are pre-loaded, or are automatically loaded
when needed. If you do this, then there may be many functions that appear as standard in your version of Mathematica,
but which are not documented in this book. 

One  point  that  should  be  mentioned is  the  relationship  between  packages  and  notebooks.  Both  are  stored  as  files  on
your  computer  system,  and  both  can  be  read  into  Mathematica.  However,  a  notebook  is  intended  to  be  displayed,
typically  with  a  notebook  interface,  while  a  package  is  intended  only  to  be  used  as  Mathematica  input.  Many  note-
books in fact contain sections that can be considered as packages, and which contain sequences of definitions intended
for  input  to  Mathematica.  There  are  also  capabilities  that  allow  packages  set  up  to  correspond  to  notebooks  to  be
maintained automatically. 

1.3.11 Warnings and Messages

Mathematica  usually goes about  its work silently,  giving output  only when it  has finished doing the calculations you
asked for. 

However, if it looks as if Mathematica is doing something you definitely did not intend, Mathematica will usually print
a message to warn you.  
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The square root function should have only one argument. Mathematica prints a message to warn you that you have given two 
arguments here. 

In[1]:= Sqrt[4, 5]

Sqrt::argx :  Sqrt called with 2 arguments; 1 argument is expected.

Out[1]= Sqrt@4, 5D

Each message has a name. You can switch off messages using Off. 

In[2]:= Off[Sqrt::argx]

The message Sqrt::argx has now been switched off, and will no longer appear. 

In[3]:= Sqrt[4, 5]

Out[3]= Sqrt@4, 5D

This switches Sqrt::argx back on again. 

In[4]:= On[Sqrt::argx]

Off@ Function :: tag D switch off HsuppressL a message
On@ Function :: tag D switch on a message

Functions for controlling message output. 

1.3.12 Interrupting Calculations

There will probably be times when you want to stop Mathematica  in the middle of a calculation. Perhaps you realize
that you asked Mathematica  to do the wrong thing. Or perhaps the calculation is just taking a long time, and you want
to find out what is going on. 

The way that you interrupt a Mathematica calculation depends on what kind of interface you are using.   

Alt-Comma or Command-Comma notebook interfaces
Control-C text-based interfaces

Typical keys to interrupt calculations in Mathematica. 

On some computer systems, it may take Mathematica some time to respond to your interrupt. When Mathematica does
respond, it will typically give you a menu of possible things to do. 

continue continue the calculation
show show what  Mathematica is doing

inspect inspect the current state of your calculation
abort abort this particular calculation
exit exit  Mathematica completely

Some typical options available when you interrupt a calculation in Mathematica. 
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1.4 Algebraic Calculations

1.4.1 Symbolic Computation

One of the important features of Mathematica  is that it can do symbolic, as well as numerical calculations. This means
that it can handle algebraic formulas as well as numbers. 

Here is a typical numerical computation. 

In[1]:= 3 + 62 - 1

Out[1]= 64

This is a symbolic computation. 

In[2]:= 3x - x + 2

Out[2]= 2 + 2 x

Numerical computation 3  +  62  −  1  ö   64 

Symbolic computation 3x  −  x  +  2  ö   2  +  2  x 

Numerical and symbolic computations. 

You can type any algebraic expression into Mathematica. 

In[3]:= -1 + 2x + x^3

Out[3]= −1 + 2 x + x3

Mathematica automatically carries out basic algebraic simplifications. Here it combines x2  and -4 x2  to get -3 x2 .  

In[4]:= x^2 + x - 4 x^2

Out[4]= x − 3 x2

You  can  type  in  any  algebraic  expression,  using  the  operators  listed  in  Section 1.1.1.  You  can  use  spaces  to  denote
multiplication. Be careful not to forget  the space in x  y.  If  you type in xy  with no space, Mathematica  will interpret
this as a single symbol, with the name xy, not as a product of the two symbols x and y. 

Mathematica rearranges and combines terms using the standard rules of algebra. 

In[5]:= x y + 2 x^2 y + y^2 x^2 - 2 y x

Out[5]= −x y + 2 x2 y + x2 y2

Here is another algebraic expression. 

In[6]:= (x + 2y + 1)(x - 2)^2

Out[6]= H−2 + xL2 H1 + x + 2 yL
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The function Expand multiplies out products and powers. 

In[7]:= Expand[%]

Out[7]= 4 − 3 x2 + x3 + 8 y − 8 x y + 2 x2 y

Factor does essentially the inverse of Expand. 

In[8]:= Factor[%]

Out[8]= H−2 + xL2 H1 + x + 2 yL

When you type in more complicated expressions, it is important that you put parentheses in the right places. Thus, for
example,  you  have  to  give  the  expression  x4 y  in  the  form  x^(4y).  If  you  leave  out  the  parentheses,  you  get  x4 y
instead. It never hurts to put in too many parentheses, but to find out exactly when you need to use parentheses, look at
Section A.2. 

Here is a more complicated formula, requiring several parentheses. 

In[9]:= Sqrt[2]/9801 (4n)! (1103 + 26390 n) / (n!^4 396^(4n))

Out[9]= 
2

1
2 −8 n 99−2−4 n H1103 + 26390 nL H4 nL!

Hn!L4

When  you  type  in  an  expression,  Mathematica  automatically  applies  its  large  repertoire  of  rules  for  transforming
expressions.  These  rules  include  the  standard  rules  of  algebra,  such  as  x - x = 0,  together  with  much  more  sophisti-
cated rules involving higher mathematical functions. 

Mathematica uses standard rules of algebra to replace Iè!!!!!!!!!!!1 + x M4
 by H1 + xL2 .

In[10]:= Sqrt[1 + x]^4

Out[10]= H1 + xL2

Mathematica knows no rules for this expression, so it leaves the expression in the original form you gave. 

In[11]:= Log[1 + Cos[x]]

Out[11]= Log@1 + Cos@xDD

The notion of transformation rules is a very general one. In fact, you can think of the whole of Mathematica as simply
a system for applying a collection of transformation rules to many different kinds of expressions. 

The general principle that Mathematica follows is simple to state. It takes any expression you input, and gets results by
applying  a  succession  of  transformation  rules,  stopping  when  it  knows  no  more  transformation  rules  that  can  be
applied. 

† Take any expression, and apply transformation rules until the result no longer changes.

The fundamental principle of Mathematica. 

2 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



1.4.2 Values for Symbols

When Mathematica transforms an expression such as x + x into 2x, it is treating the variable x in a purely symbolic or
formal fashion. In such cases, x is a symbol which can stand for any expression. 

Often, however, you need to replace a symbol like x with a definite “value”.  Sometimes this value will be a number;
often it will be another expression. 

To take an expression such as 1 + 2x and replace the symbol x that appears in it with a definite value, you can create a
Mathematica  transformation rule, and then apply this rule to the expression. To replace x with the value 3, you would
create the transformation rule x  ->  3.  You must type ->  as a pair  of  characters,  with no space in between. You can
think of x -> 3 as being a rule in which “ x goes to 3”.  

To  apply  a  transformation  rule  to  a  particular  Mathematica  expression,  you  type  expr  /.  rule.  The  “replacement
operator”  /. is typed as a pair of characters, with no space in between. 

This uses the transformation rule x->3 in the expression 1 + 2x. 

In[1]:= 1 + 2x /. x -> 3

Out[1]= 7

You can replace x with any expression. Here every occurrence of x is replaced by 2 - y. 

In[2]:= 1 + x + x^2 /. x -> 2 - y

Out[2]= 3 + H2 − yL2 − y

Here is a transformation rule. Mathematica treats it like any other symbolic expression. 

In[3]:= x -> 3 + y

Out[3]= x → 3 + y

This applies the transformation rule on the previous line to the expression x^2 - 9. 

In[4]:= x^2 - 9 /. %

Out[4]= −9 + H3 + yL2

expr  ê.  x  −>  value replace  x by  value in the expression  expr 
expr  ê.  8  x  −>  xval,  y  −>  yval <  perform several replacements

Replacing symbols by values in expressions. 

You can apply rules together by putting the rules in a list. 

In[5]:= (x + y) (x - y)^2 /. {x -> 3, y -> 1 - a}

Out[5]= H4 − aL H2 + aL2
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The replacement operator /. allows you to apply transformation rules to a particular expression. Sometimes, however,
you will want to define transformation rules that should always  be applied. For example, you might want to replace x
with 3 whenever x occurs. 

As  discussed  in  Section 1.2.2,  you  can do  this  by assigning  the  value 3  to  x  using  x  =  3.  Once  you have  made the
assignment x = 3, x will always be replaced by 3, whenever it appears. 

This assigns the value 3 to x. 

In[6]:= x = 3

Out[6]= 3

Now x will automatically be replaced by 3 wherever it appears. 

In[7]:= x^2 - 1

Out[7]= 8

This assigns the expression 1 + a to be the value of x. 

In[8]:= x = 1 + a

Out[8]= 1 + a

Now x is replaced by 1 + a. 

In[9]:= x^2 - 1

Out[9]= −1 + H1 + aL2

You can define the value of a symbol to be any expression, not just a number. You should realize that once you have
given  such  a  definition,  the  definition  will  continue  to  be  used  whenever  the  symbol  appears,  until  you  explicitly
change  or  remove  the  definition.  For  most  people,  forgetting  to  remove  values  you  have  assigned  to  symbols  is  the
single most common source of mistakes in using Mathematica. 

x  =  value define a value for  x which will always be used
x  =. remove any value defined for  x 

Assigning values to symbols. 

The symbol x still has the value you assigned to it above. 

In[10]:= x + 5 - 2x

Out[10]= 6 + a − 2 H1 + aL

This removes the value you assigned to x. 

In[11]:= x =.
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Now x has no value defined, so it can be used as a purely symbolic variable. 

In[12]:= x + 5 - 2x

Out[12]= 5 − x

A symbol such as x can serve many different purposes in Mathematica, and in fact, much of the flexibility of Mathemat-
ica  comes from being able to mix these purposes at will.  However,  you need to keep some of the different uses of x
straight  in  order  to  avoid  making  mistakes.  The  most  important  distinction  is  between  the  use  of  x  as  a  name  for
another expression, and as a symbolic variable that stands only for itself. 

Traditional programming languages that do not support symbolic computation allow variables to be used only as names
for  objects,  typically  numbers,  that  have  been  assigned  as  values  for  them.  In  Mathematica,  however,  x  can  also  be
treated as  a purely formal variable,  to which various transformation rules can be applied.  Of course,  if  you explicitly
give a definition, such as x = 3, then x will always be replaced by 3, and can no longer serve as a formal variable. 

You should understand that explicit definitions such as x  =  3  have a global effect.  On the other hand,  a replacement
such as expr /. x->3 affects only the specific expression expr. It is usually much easier to keep things straight if you
avoid using explicit definitions except when absolutely necessary.

You can always  mix replacements with assignments.  With assignments,  you can give names to expressions  in which
you want to do replacements, or to rules that you want to use to do the replacements. 

This assigns a value to the symbol t. 

In[13]:= t = 1 + x^2

Out[13]= 1 + x2

This finds the value of t, and then replaces x by 2 in it. 

In[14]:= t /. x -> 2

Out[14]= 5

This finds the value of t for a different value of x. 

In[15]:= t /. x -> 5a

Out[15]= 1 + 25 a2

This finds the value of t when x is replaced by Pi, and then evaluates the result numerically. 

In[16]:= t /. x -> Pi //N

Out[16]= 10.8696

1.4.3 Transforming Algebraic Expressions

There are often many different ways to write the same algebraic expression.  As one example, the expression H1 + xL2

can be  written  as  1 + 2 x + x2 .  Mathematica  provides  a  large  collection of  functions  for  converting  between different
forms of algebraic expressions.   

Printed from the Mathematica Help Browser 5

©1988-2003 Wolfram Research, Inc. All rights reserved.



Expand@ expr D multiply out products and
powers, writing the result as a sum of terms

Factor@ expr D write  expr as a product of minimal factors

Two common functions for transforming algebraic expressions. 

Expand gives the “expanded  form”,  with products and powers multiplied out. 

In[1]:= Expand[ (1 + x)^2 ]

Out[1]= 1 + 2 x + x2

Factor recovers the original form.  

In[2]:= Factor[ % ]

Out[2]= H1 + xL2

It is easy to generate complicated expressions with Expand. 

In[3]:= Expand[ (1 + x + 3 y)^4 ]

Out[3]= 1 + 4 x + 6 x2 + 4 x3 + x4 + 12 y + 36 x y + 36 x2 y +

12 x3 y + 54 y2 + 108 x y2 + 54 x2 y2 + 108 y3 + 108 x y3 + 81 y4

Factor often gives you simpler expressions. 

In[4]:= Factor[ % ]

Out[4]= H1 + x + 3 yL4

There are some cases, though, where Factor can give you more complicated expressions. 

In[5]:= Factor[ x^10 - 1 ]

Out[5]= H−1 + xL H1 + xL H1 − x + x2 − x3 + x4L H1 + x + x2 + x3 + x4L

In this case, Expand gives the “simpler”  form. 

In[6]:= Expand[ % ]

Out[6]= −1 + x10

1.4.4 Simplifying Algebraic Expressions

There  are  many  situations  where  you  want  to  write  a  particular  algebraic  expression  in  the  simplest  possible  form.
Although it  is  difficult  to know exactly what one means in all  cases by the “simplest  form”,  a worthwhile  practical
procedure is to look at many different forms of an expression, and pick out the one that involves the smallest number of
parts.      
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Simplify@ expr D try to find the simplest form of  expr 
by applying various standard algebraic transformations

FullSimplify@ expr D try to find the simplest form
by applying a wide range of transformations

Simplifying algebraic expressions. 

Simplify writes x2 + 2 x + 1 in factored form. 

In[1]:= Simplify[x^2 + 2x + 1]

Out[1]= H1 + xL2

Simplify leaves x10 - 1 in expanded form, since for this expression, the factored form is larger. 

In[2]:= Simplify[x^10 - 1]

Out[2]= −1 + x10

You can often use Simplify to “clean  up”  complicated expressions that you get as the results of computations. 

Here is the integral of 1 ê Hx4 - 1L . Integrals are discussed in more detail in Section 1.5.3. 

In[3]:= Integrate[1/(x^4-1), x]

Out[3]= 
1
4
H−2 ArcTan@xD + Log@−1 + xD − Log@1 + xDL

Differentiating the result from Integrate should give back your original expression. In this case, as is common, you get a more 
complicated version of the expression. 

In[4]:= D[%, x]

Out[4]= 
1
4
J 1

−1 + x
−

1
1 + x

−
2

1 + x2
N

Simplify succeeds in getting back the original, more simple, form of the expression. 

In[5]:= Simplify[%]

Out[5]= 
1

−1 + x4

Simplify  is set up to try various standard algebraic transformations on the expressions you give. Sometimes, how-
ever, it can take more sophisticated transformations to make progress in finding the simplest form of an expression. 

FullSimplify  tries a much wider  range of  transformations,  involving  not  only algebraic functions,  but also many
other kinds of functions. 

Simplify does nothing to this expression. 

In[6]:= Simplify[Gamma[x] Gamma[1 - x]]

Out[6]= Gamma@1 − xD Gamma@xD
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FullSimplify, however, transforms it to a simpler form. 

In[7]:= FullSimplify[Gamma[x] Gamma[1 - x]]

Out[7]= π Csc@π xD

For fairly small expressions, FullSimplify  will often succeed in making some remarkable simplifications. But for
larger expressions, it can become unmanageably slow. 

The reason for this is that to do its job, FullSimplify effectively has to try combining every part of an expression
with every other, and for large expressions the number of cases that it has to consider can be astronomically large.  

Simplify  also has a difficult  task to do,  but it  is set up to avoid some of the most time-consuming transformations
that  are  tried  by  FullSimplify.  For  simple  algebraic  calculations,  therefore,  you  may often  find  it  convenient  to
apply Simplify quite routinely to your results. 

In more complicated calculations, however, even Simplify, let alone FullSimplify, may end up needing to try a
very large number of  different  forms,  and therefore  taking a long time. In  such cases,  you typically need to do more
controlled simplification, and use your knowledge of the form you want to get to guide the process.   

1.4.5 Advanced Topic: Putting Expressions into Different Forms

Complicated algebraic  expressions  can usually be written in many different  ways.  Mathematica  provides  a variety of
functions for converting expressions from one form to another. 

In many applications, the most common of these functions are Expand, Factor and Simplify. However, particu-
larly when you have rational expressions that contain quotients, you may need to use other functions.  

Expand@ expr D multiply out products and powers
ExpandAll@ expr D apply  Expand everywhere

Factor@ expr D reduce to a product of factors
Together@ expr D put all terms over a common denominator

Apart@ expr D separate into terms with simple denominators
Cancel@ expr D cancel common factors between numerators and denominators

Simplify@ expr D try a sequence of algebraic transformations
and give the smallest form of  expr found

Functions for transforming algebraic expressions. 

Here is a rational expression that can be written in many different forms. 

In[1]:= e = (x - 1)^2 (2 + x) / ((1 + x) (x - 3)^2)

Out[1]= 
H−1 + xL2 H2 + xL
H−3 + xL2 H1 + xL

Expand expands out the numerator, but leaves the denominator in factored form. 

In[2]:= Expand[e]

Out[2]= 
2

H−3 + xL2 H1 + xL −
3 x

H−3 + xL2 H1 + xL +
x3

H−3 + xL2 H1 + xL
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ExpandAll expands out everything, including the denominator. 

In[3]:= ExpandAll[e]

Out[3]= 
2

9 + 3 x − 5 x2 + x3
−

3 x
9 + 3 x − 5 x2 + x3

+
x3

9 + 3 x − 5 x2 + x3

Together collects all the terms together over a common denominator.   

In[4]:= Together[%]

Out[4]= 
2 − 3 x + x3

H−3 + xL2 H1 + xL

Apart breaks the expression apart into terms with simple denominators. 

In[5]:= Apart[%]

Out[5]= 1 +
5

H−3 + xL2 +
19

4 H−3 + xL +
1

4 H1 + xL

Factor factors everything, in this case reproducing the original form. 

In[6]:= Factor[%]

Out[6]= 
H−1 + xL2 H2 + xL
H−3 + xL2 H1 + xL

According to Simplify, this is the simplest way to write the original expression. 

In[7]:= Simplify[e]

Out[7]= 
H−1 + xL2 H2 + xL
H−3 + xL2 H1 + xL

Getting expressions into the form you want is something of an art. In most cases, it is best simply to experiment, trying
different transformations until you get what you want. Often you will be able to use palettes in the front end to do this. 

When you have an expression with a single variable, you can choose to write it as a sum of terms, a product, and so on.
If  you  have  an  expression  with  several  variables,  there  is  an  even  wider  selection  of  possible  forms.  You  can,  for
example, choose to group terms in the expression so that one or another of the variables is “dominant”.   

Collect@ expr,  x D group together powers of  x 
FactorTerms@ expr,  x D pull out factors that do not depend on  x 

Rearranging expressions in several variables. 

Here is an algebraic expression in two variables. 

In[8]:= v = Expand[(3 + 2 x)^2 (x + 2 y)^2]

Out[8]= 9 x2 + 12 x3 + 4 x4 + 36 x y + 48 x2 y + 16 x3 y + 36 y2 + 48 x y2 + 16 x2 y2
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This groups together terms in v that involve the same power of x.  

In[9]:= Collect[v, x]

Out[9]= 4 x4 + 36 y2 + x3 H12 + 16 yL + x2 H9 + 48 y + 16 y2L + x H36 y + 48 y2L

This groups together powers of y. 

In[10]:= Collect[v, y]

Out[10]= 9 x2 + 12 x3 + 4 x4 + H36 x + 48 x2 + 16 x3L y + H36 + 48 x + 16 x2L y2

This factors out the piece that does not depend on y. 

In[11]:= FactorTerms[v, y]

Out[11]= H9 + 12 x + 4 x2L Hx2 + 4 x y + 4 y2L

As  we  have  seen,  even  when  you  restrict  yourself  to  polynomials  and  rational  expressions,  there  are  many different
ways to write any particular expression. If you consider more complicated expressions, involving, for example, higher
mathematical functions, the variety of possible forms becomes still greater. As a result, it is totally infeasible to have a
specific function built into Mathematica  to produce each possible form. Rather, Mathematica  allows you to construct
arbitrary  sets  of  transformation  rules  for  converting  between  different  forms.  Many  Mathematica  packages  include
such rules; the details of how to construct them for yourself are given in Section 2.5. 

There are nevertheless a few additional built-in Mathematica functions for transforming expressions.

TrigExpand@ expr D expand out trigonometric expressions into a sum of terms
TrigFactor@ expr D factor trigonometric expressions into products of terms
TrigReduce@ expr D reduce trigonometric expressions using multiple angles
TrigToExp@ expr D convert trigonometric functions to exponentials
ExpToTrig@ expr D convert exponentials to trigonometric functions

FunctionExpand@ expr D expand out special and other functions
ComplexExpand@ expr D perform expansions assuming that all variables are real
PowerExpand@ expr D transform  Hx yLp  into  xp yp  , etc.

Some other functions for transforming expressions. 

This expands out the trigonometric expression, writing it so that all functions have argument x.  

In[12]:= TrigExpand[Tan[x] Cos[2x]]

Out[12]= 
3
2
Cos@xD Sin@xD −

Tan@xD
2

−
1
2
Sin@xD2 Tan@xD

This uses trigonometric identities to generate a factored form of the expression. 

In[13]:= TrigFactor[%]

Out[13]= HCos@xD − Sin@xDL HCos@xD + Sin@xDL Tan@xD
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This reduces the expression by using multiple angles. 

In[14]:= TrigReduce[%]

Out[14]= −
1
2
Sec@xD HSin@xD − Sin@3 xDL

This expands the sine assuming that x and y are both real. 

In[15]:= ComplexExpand[ Sin[x + I y] ]

Out[15]= Cosh@yD Sin@xD + Cos@xD Sinh@yD

This does the expansion allowing x and y to be complex. 

In[16]:= ComplexExpand[ Sin[x + I y], {x, y} ]

Out[16]= −Cosh@Im@xD + Re@yDD Sin@Im@yD − Re@xDD + Cos@Im@yD − Re@xDD Sinh@Im@xD + Re@yDD

The transformations on expressions done by functions like Expand and Factor are always correct, whatever values
the symbolic variables in the expressions  may have. Sometimes, however,  it is  useful to perform transformations that
are only correct for some possible values of symbolic variables. One such transformation is performed by PowerEx
pand. 

Mathematica does not automatically expand out non-integer powers of products. 

In[17]:= Sqrt[x y]

Out[17]= 
è!!!!!!!x y

PowerExpand does the expansion. 

In[18]:= PowerExpand[%]

Out[18]= 
è!!!x è!!!y

1.4.6 Advanced Topic: Simplifying with Assumptions

Simplify@ expr,  assum D simplify  expr with assumptions

Simplifying with assumptions. 

Mathematica does not automatically simplify this, since it is only true for some values of x. 

In[1]:= Simplify[Sqrt[x^2]]

Out[1]= 
è!!!!!!x2

è!!!!!x2  is equal to x  for x ¥ 0, but not otherwise. 

In[2]:= {Sqrt[4^2], Sqrt[(-4)^2]}

Out[2]= 84, 4<
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This tells Simplify to make the assumption x > 0, so that simplification can proceed. 

In[3]:= Simplify[Sqrt[x^2], x > 0]

Out[3]= x

No automatic simplification can be done on this expression. 

In[4]:= 2 a + 2 Sqrt[a - Sqrt[-b]] Sqrt[a + Sqrt[-b]]

Out[4]= 2 a + 2"##################a − è!!!!!!−b "##################a + è!!!!!!−b

If a  and b  are assumed to be positive, the expression can however be simplified. 

In[5]:= Simplify[%, a > 0 && b > 0]

Out[5]= 2 Ia +
è!!!!!!!!!!!!!a2 + b M

Here is a simple example involving trigonometric functions. 

In[6]:= Simplify[ArcSin[Sin[x]], -Pi/2 < x < Pi/2]

Out[6]= x

Element@ x,  dom D state that  x is an element of the domain  dom 
Element@ 8  x1,  x2, … <,  dom D state that all the  xi  are elements of the domain  dom 

Reals real numbers
Integers integers
Primes prime numbers

Some domains used in assumptions. 

This simplifies 
è!!!!!x2  assuming that x  is a real number. 

In[7]:= Simplify[Sqrt[x^2], Element[x, Reals]]

Out[7]= Abs@xD

This simplifies the sine assuming that n  is an integer. 

In[8]:= Simplify[Sin[x + 2 n Pi], Element[n, Integers]]

Out[8]= Sin@xD

With the assumptions given, Fermat's Little Theorem can be used.  

In[9]:= Simplify[Mod[a^p, p], Element[a, Integers] && Element[p, Primes]]

Out[9]= Mod@a, pD
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This uses the fact that sin HxL , but not arcsin HxL , is real when x  is real. 

In[10]:= Simplify[Re[{Sin[x], ArcSin[x]}], Element[x, Reals]]

Out[10]= 8Sin@xD, Re@ArcSin@xDD<

1.4.7 Picking Out Pieces of Algebraic Expressions

Coefficient@ expr,  form D coefficient of  form in  expr 
Exponent@ expr,  form D maximum power of  form in  expr 

Part@ expr,  n D  or  expr @@ n DD n th  term of  expr 

Functions to pick out pieces of polynomials. 

Here is an algebraic expression. 

In[1]:= e = Expand[(1 + 3x + 4y^2)^2]

Out[1]= 1 + 6 x + 9 x2 + 8 y2 + 24 x y2 + 16 y4

This gives the coefficient of x in e. 

In[2]:= Coefficient[e, x]

Out[2]= 6 + 24 y2

Exponent[expr, y] gives the highest power of y that appears in expr. 

In[3]:= Exponent[e, y]

Out[3]= 4

This gives the fourth term in e. 

In[4]:= Part[e, 4]

Out[4]= 8 y2

You may notice that the function Part[expr,  n]  used to pick out the nth  term in a sum is the same as the function
described  in  Section  1.2.4  for  picking  out  elements  in  lists.  This  is  no  coincidence.  In  fact,  as  discussed  in  Section
2.1.5, every Mathematica expression can be manipulated structurally much like a list. However, as discussed in Section
2.1.5, you must be careful, because Mathematica  often shows algebraic expressions in a form that is different from the
way it treats them internally. 

Coefficient works even with polynomials that are not explicitly expanded out. 

In[5]:= Coefficient[(1 + 3x + 4y^2)^2, x]

Out[5]= 6 + 24 y2
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Numerator@ expr D numerator of  expr 
Denominator@ expr D denominator of  expr 

Functions to pick out pieces of rational expressions. 

Here is a rational expression. 

In[6]:= r = (1 + x)/(2 (2 - y))

Out[6]= 
1 + x

2 H2 − yL

Denominator picks out the denominator. 

In[7]:= Denominator[%]

Out[7]= 2 H2 − yL

Denominator gives 1 for expressions that are not quotients. 

In[8]:= Denominator[1/x + 2/y]

Out[8]= 1

1.4.8 Controlling the Display of Large Expressions

When you do symbolic calculations, it is quite easy to end up with extremely complicated expressions. Often, you will
not even want to see the complete result of a computation. 

If you end your input with a semicolon, Mathematica  will do the computation you asked for,  but will not display the
result. You can nevertheless use % or Out[n] to refer to the result.  

Even though you may not  want  to  see the whole  result  from a computation,  you often do need to see  its  basic  form.
You can use Short to display the outline of an expression, omitting some of the terms.   

Ending your input with ; stops Mathematica from displaying the complicated result of the computation. 

In[1]:= Expand[(x + 5 y + 10)^8] ;

You can still refer to the result as %. //Short displays a one-line outline of the result. The <<n>> stands for n terms that have 
been left out. 

In[2]:= % //Short

Out[2]//Short= 

100000000 + 80000000 x + 42 + 390625 y8

This shows a three-line version of the expression. More parts are now visible. 

In[3]:= Short[%, 3]

Out[3]//Short= 

100000000 + 80000000 x + 28000000 x2 + 5600000 x3 + 700000 x4 +

35 + 8750000 x y6 + 437500 x2 y6 + 6250000 y7 + 625000 x y7 + 390625 y8
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This gives the total number of terms in the sum.  

In[4]:= Length[%]

Out[4]= 45

command  ; execute  command , but do not print the result
expr  êê  Short show a one-line outline form of  expr 

Short@ expr,  n D show an  n -line outline of  expr 

Some ways to shorten your output. 

1.4.9 The Limits of Mathematica

In just one Mathematica command, you can easily specify a calculation that is far too complicated for any computer to
do.  For  example,  you  could  ask  for  Expand[(1+x)^(10^100)].  The  result  of  this  calculation  would  have
10100 + 1 terms—more than the total number of particles in the universe. 

You should have no trouble working out Expand[(1+x)^100]  on any computer that can run Mathematica. But as
you increase the exponent of (1+x), the results you get will eventually become too big for your computer's memory to
hold. Exactly at what point this happens depends not only on the total amount of memory your computer has, but often
also on such details as what other jobs happen to be running on your computer when you try to do your calculation. 

If your computer does run out of memory in the middle of a calculation, most versions of Mathematica have no choice
but to stop immediately. As a result, it is important to plan your calculations so that they never need more memory than
your computer has. 

Even  if  the  result  of  an  algebraic  calculation  is  quite  simple,  the  intermediate  expressions  that  you  generate  in  the
course  of  the  calculation  can  be  very  complicated.  This  means  that  even  if  the  final  result  is  small,  the  intermediate
parts of a calculation can be too big for your computer to handle. If this happens, you can usually break your calcula-
tion into pieces, and succeed in doing each piece on its own. You should know that the internal scheme which Mathe-
matica  uses  for  memory  management  is  such  that  once  part  of  a  calculation  is  finished,  the  memory  used  to  store
intermediate expressions that arose is immediately made available for new expressions.  

Memory space is the most common limiting factor in Mathematica  calculations. Time can also, however, be a limiting
factor. You will usually be prepared to wait a second, or even a minute, for the result of a calculation. But you will less
often be prepared to wait an hour or a day, and you will almost never be able to wait a year. 

The internal code of Mathematica  uses highly efficient and optimized algorithms. But there are some tasks for which
the best known algorithms always eventually take a large amount of time. A typical issue is that the time required by
the  algorithm  may  increase  almost  exponentially  with  the  size  of  the  input.  A  classic  case  is  integer
factorization—where the best known algorithms require times that grow almost exponentially with the number of digits.
In  practice,  you  will  find  that  FactorInteger[k]  will  give  a  result  almost  immediately  when  k  has  fewer  than
about 40 digits. But if k has 60 digits, FactorInteger[k] can start taking an unmanageably long time.  

In  some  cases,  there  is  progressive  improvement  in  the  algorithms  that  are  known,  so  that  successive  versions  of
Mathematica  can  perform  particular  computations  progressively  faster.  But  ideas  from  the  theory  of  computation
strongly suggest that many computations will always in effect require an irreducible amount of computational work—so
that no fast algorithm for them will ever be found.   
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Whether or not the only algorithms involve exponentially increasing amounts of time, there will always come a point
where  a  computation  is  too  large  or  time-consuming  to  do  on  your  particular  computer  system.  As  you  work  with
Mathematica, you should develop some feeling for the limits on the kinds of calculations you can do in your particular
application area. 

† Doing arithmetic with numbers containing a few hundred million digits.
† Generating a million digits of numbers like  p  and  e .
† Expanding out a polynomial that gives a million terms.
† Factoring a polynomial in four variables with a hundred thousand terms.
† Reducing a system of quadratic inequalities to a few thousand independent components.
† Finding integer roots of a sparse polynomial with degree a million.
† Applying a recursive rule a million times.
† Calculating all the primes up to ten million.
† Finding the numerical inverse of a  1000ä1000  dense matrix.
† Solving a million-variable sparse linear system with a hundred thousand non-zero coefficients.
† Finding the determinant of a  250ä250  integer matrix.
† Finding the determinant of a  20ä20  symbolic matrix.
† Finding numerical roots of a polynomial of degree 200.
† Solving a sparse linear programming problem with a few hundred thousand variables.
† Finding the Fourier transform of a list with a hundred million elements.
† Rendering a million graphics primitives.
† Sorting a list of ten million elements.
† Searching a string that is ten million characters long.
† Importing a few tens of megabytes of numerical data.
† Formatting a few hundred pages of  TraditionalForm output.

Some operations that typically take a few seconds on a 2003 vintage PC. 

1.4.10 Using Symbols to Tag Objects

There are many ways to use symbols in Mathematica.  So far,  we have concentrated on using symbols to store values
and to represent mathematical variables. This section describes another way to use symbols in Mathematica.  

The idea is to use symbols as “tags”  for different types of objects. 

Working with physical units gives one simple example. When you specify the length of an object, you want to give not
only a number, but also the units in which the length is measured. In standard notation, you might write a length as 12
meters. 

You can imitate this notation almost directly in Mathematica.  You can for  example simply use a symbol meters  to
indicate the units of our measurement. 

The symbol meters here acts as a tag, which indicates the units used. 

In[1]:= 12 meters

Out[1]= 12 meters
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You can add lengths like this. 

In[2]:= % + 5.3 meters

Out[2]= 17.3 meters

This gives a speed. 

In[3]:= % / (25 seconds)

Out[3]= 
0.692 meters

seconds

This converts to a speed in feet per second. 

In[4]:= % /. meters -> 3.28084 feet

Out[4]= 
2.27034 feet

seconds

There is in fact a standard Mathematica  package that allows you to work with units. The package defines many sym-
bols that represent standard types of units. 

Load the Mathematica package for handling units. 

In[5]:= <<Miscellaneous`Units`

The package uses standardized names for units. 

In[6]:= 12 Meter/Second

Out[6]= 
12 Meter
Second

The function Convert[expr, units] converts to the specified units. 

In[7]:= Convert[ %, Mile/Hour ]

Out[7]= 
37500 Mile
1397 Hour

Usually you have to give prefixes for units as separate words. 

In[8]:= Convert[ 3 Kilo Meter / Hour, Inch / Minute ]

Out[8]= 
250000 Inch
127 Minute
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1.5 Symbolic Mathematics

1.5.1 Basic Operations

Mathematica's  ability  to  deal  with  symbolic expressions,  as  well  as  numbers,  allows  you to  use  it  for  many kinds  of
mathematics.  

Calculus  is  one  example.  With  Mathematica,  you can differentiate  an  expression  symbolically,  and  get  a  formula for
the result. 

This finds the derivative of xn . 

In[1]:= D[ x^n, x ]

Out[1]= n x−1+n

Here is a slightly more complicated example. 

In[2]:= D[x^2 Log[x + a], x]

Out[2]= 
x2

a + x
+ 2 x Log@a + xD

D@ f ,  x D the HpartialL derivative  ∑ fÅÅÅÅÅÅÅÅ∑x  

Integrate@ f ,  x D the indefinite integral  Ÿ f d  x  

Sum@ f ,  8  i,  imin,  imax <  D the sum  ⁄i=imin
imax f  

Solve@ lhs == rhs,  x D solution to an equation for  x  
Series@ f ,  8  x,  x0,  order <  D a power series expansion of  f  about the point  x = x0  

Limit@ f ,  x −> x0  D the limit  limxØx0 f  
Minimize@ f ,  x D minimization of  f  with respect to  x  

Some symbolic mathematical operations. 

Getting  formulas  as  the  results  of  computations  is  usually  desirable  when  it  is  possible.  There  are  however  many
circumstances  where  it  is  mathematically  impossible  to  get  an  explicit  formula  as  the  result  of  a  computation.  This
happens, for example, when you try to solve an equation for which there is no “closed  form”  solution. In such cases,
you must resort to numerical methods and approximations. These are discussed in Section 1.6. 

1.5.2 Differentiation

Here is the derivative of xn  with respect to x . 

In[1]:= D[ x^n, x ]

Out[1]= n x−1+n
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Mathematica knows the derivatives of all the standard mathematical functions. 

In[2]:= D[ ArcTan[x], x ]

Out[2]= 
1

1 + x2

This differentiates three times with respect to x. 

In[3]:= D[ x^n, {x, 3} ]

Out[3]= H−2 + nL H−1 + nL n x−3+n

The function D[x^n, x] really gives a partial derivative, in which n is assumed not to depend on x. Mathematica has
another function, called Dt, which finds total derivatives, in which all variables are assumed to be related. In mathemati-
cal notation, D[f, x] is like ∑ fÅÅÅÅÅÅÅÅ∑x , while Dt[f, x] is like d fÅÅÅÅÅÅÅÅÅd x . You can think of Dt as standing for “derivative  total”.

Dt gives a total derivative, which assumes that n can depend on x. Dt[n, x] stands for d nÅÅÅÅÅÅÅÅd x . 

In[4]:= Dt[ x^n, x ]

Out[4]= xn I n
x

+ Dt@n, xD Log@xDM

This gives the total differential d  HxnL . Dt[x] is the differential d  x . 

In[5]:= Dt[ x^n ]

Out[5]= xn J n Dt@xD
x

+ Dt@nD Log@xDN

D@ f ,  x D partial derivative  ∑ÅÅÅÅÅÅÅ∑x f  

D@ f ,  x1,  x2, … D multiple derivative  ∑ÅÅÅÅÅÅÅÅÅ∑x1
 ∑ÅÅÅÅÅÅÅÅÅ∑x2

...  f  

D@ f ,  8  x,  n <  D repeated derivative  ∑n fÅÅÅÅÅÅÅÅÅÅ∑xn  

Dt@ f  D total differential  d  f  
Dt@ f ,  x D total derivative  dÅÅÅÅÅÅÅÅd x f  

Some differentiation functions. 

As well as treating variables like x  symbolically, you can also treat functions in Mathematica  symbolically. Thus, for
example, you can find formulas for derivatives of f[x], without specifying any explicit form for the function f. 

Mathematica does not know how to differentiate f, so it gives you back a symbolic result in terms of f'. 

In[6]:= D[ f[x], x ]

Out[6]= f @xD

Mathematica uses the chain rule to simplify derivatives. 

In[7]:= D[ 2 x f[x^2], x ]

Out[7]= 2 f@x2D + 4 x2 f @x2D
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1.5.3 Integration

Here is the integral Ÿ xn d  x  in Mathematica. 

In[1]:= Integrate[x^n, x]

Out[1]= 
x1+n

1 + n

Here is a slightly more complicated example. 

In[2]:= Integrate[1/(x^4 - a^4), x]

Out[2]= −
2 ArcTan@ x

a D − Log@a − xD + Log@a + xD
4 a3

Mathematica  knows how to do almost any integral that can be done in terms of standard mathematical functions. But
you  should  realize  that  even  though  an  integrand  may  contain  only  fairly  simple  functions,  its  integral  may  involve
much more complicated functions—or may not be expressible at all in terms of standard mathematical functions.  

Here is a fairly straightforward integral. 

In[3]:= Integrate[Log[1 - x^2], x ]

Out[3]= −2 x − Log@−1 + xD + Log@1 + xD + x Log@1 − x2D

This integral can be done only in terms of a dilogarithm function. 

In[4]:= Integrate[Log[1 - x^2]/x, x]

Out[4]= −
1
2
PolyLog@2, x2D

This integral involves Erf. 

In[5]:= Integrate[Exp[1 - x^2], x]

Out[5]= 
1
2

è!!!π Erf@xD

And this one involves a Fresnel function. 

In[6]:= Integrate[Sin[x^2], x]

Out[6]= $%%%%%%π
2

FresnelSA$%%%%%%2
π

xE

Even this integral requires a hypergeometric function. 

In[7]:= Integrate[(1 - x^2)^n, x]

Out[7]= x Hypergeometric2F1A 1
2
, −n, 3

2
, x2E
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This integral simply cannot be done in terms of standard mathematical functions. As a result, Mathematica just leaves it undone. 

In[8]:= Integrate[ x^x, x ]

Out[8]= ‡ xx x

Integrate@ f ,  x D the indefinite integral  Ÿ f d  x  

Integrate@ f ,  x,  y D the multiple integral  Ÿ d  x d  y f  

Integrate@ f ,  8  x,  xmin,  xmax <  D the definite integral  Ÿxmin
xmax f d  x  

Integrate@ f ,  8  x,  xmin,
 xmax <,  8  y,  ymin,  ymax <  D 

the multiple integral  Ÿxmin
xmaxd  x Ÿymin

ymaxd  y f  

Integration. 

Here is the definite integral Ÿa
bsin2 HxL d  x . 

In[9]:= Integrate[Sin[x]^2, {x, a, b} ]

Out[9]= 
1
2
H−a + b + Cos@aD Sin@aD − Cos@bD Sin@bDL

Here is another definite integral. 

In[10]:= Integrate[Exp[-x^2], {x, 0, Infinity}]

Out[10]= 
è!!!π
2

Mathematica cannot give you a formula for this definite integral. 

In[11]:= Integrate[ x^x, {x, 0, 1} ]

Out[11]= ‡
0

1

xx x

You can still get a numerical result, though. 

In[12]:= N[ % ]

Out[12]= 0.783431

This evaluates the multiple integral Ÿ0
1

 d  x Ÿ0
xd  y Hx2 + y2L . The range of the outermost integration variable appears first. 

In[13]:= Integrate[ x^2 + y^2, {x, 0, 1}, {y, 0, x} ]

Out[13]= 
1
3
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1.5.4 Sums and Products

This constructs the sum ‚
i=1

7 xi
ÅÅÅÅÅÅi . 

In[1]:= Sum[x^i/i, {i, 1, 7}]

Out[1]= x +
x2

2
+
x3

3
+
x4

4
+
x5

5
+
x6

6
+
x7

7

You can leave out the lower limit if it is equal to 1. 

In[2]:= Sum[x^i/i, {i, 7}]

Out[2]= x +
x2

2
+
x3

3
+
x4

4
+
x5

5
+
x6

6
+
x7

7

This makes i  increase in steps of 2 , so that only odd-numbered values are included. 

In[3]:= Sum[x^i/i, {i, 1, 5, 2}]

Out[3]= x +
x3

3
+
x5

5

Products work just like sums. 

In[4]:= Product[x + i, {i, 1, 4}]

Out[4]= H1 + xL H2 + xL H3 + xL H4 + xL

Sum@ f ,  8  i,  imin,  imax <  D the sum  ⁄i=imin
imax f  

Sum@ f ,  8  i,  imin,  imax,  di <  D the sum with  i increasing in steps of  di 
Sum@ f ,  8  i,  imin,  
imax <,  8  j,  jmin,  jmax <  D 

the nested sum  ⁄i=imin
imax ⁄ j= jmin

jmax f  

Product@ f ,  8  i,  imin,  imax <  D the product  ¤i=imin
imax f  

Sums and products. 

This sum is computed symbolically as a function of n . 

In[5]:= Sum[i^2, {i, 1, n}]

Out[5]= 
1
6
n H1 + nL H1 + 2 nL

Mathematica can also give an exact result for this infinite sum.   

In[6]:= Sum[1/i^4, {i, 1, Infinity}]

Out[6]= 
π4

90
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As with integrals, simple sums can lead to complicated results.  

In[7]:= Sum[x^(i (i + 1)), {i, 1, Infinity}]

Out[7]= 
−2 x1ê4 + EllipticTheta@2, 0, xD

2 x1ê4

This sum cannot be evaluated exactly using standard mathematical functions. 

In[8]:= Sum[1/(i! + (2i)!), {i, 1, Infinity}]

Out[8]= ‚
i=1

∞
1

i! + H2 iL!

You can nevertheless find a numerical approximation to the result. 

In[9]:= N[%]

Out[9]= 0.373197

Mathematica  also has a notation for multiple sums and products.  Sum[f, 8 i, imin, imax<, 8 j, jmin, jmax<] repre-
sents a sum over i and j, which would be written in standard mathematical notation as ⁄i=imin

imax ⁄ j= jmin
jmax f . Notice that in

Mathematica notation, as in standard mathematical notation, the range of the outermost variable is given first.  

This is the multiple sum ⁄i=1
3 ⁄ j=1

i xi y j . Notice that the outermost sum over i is given first, just as in the mathematical notation. 

In[10]:= Sum[x^i y^j, {i, 1, 3}, {j, 1, i}]

Out[10]= x y + x2 y + x3 y + x2 y2 + x3 y2 + x3 y3

The  way  the  ranges  of  variables  are  specified  in  Sum  and  Product  is  an  example  of  the  rather  general  iterator
notation  that  Mathematica  uses.  You  will  see  this  notation  again  when  we  discuss  generating  tables  and  lists  using
Table (Section 1.8.2), and when we describe Do loops (Section 1.7.3).  

8  imax <  iterate  imax times, without incrementing any variables
8  i,  imax <  i goes from  1 to  imax in steps of  1 

8  i,  imin,  imax <  i goes from  imin to  imax in steps of  1 

8  i,  imin,  imax,  di <  i goes from  imin to  imax in steps of  di 
8  i,  imin,  imax <,
 8  j,  jmin,  jmax <, …

i goes from  imin to  imax ,
and for each such value,  j goes from  jmin to  jmax , etc.

Mathematica iterator notation. 

1.5.5 Equations

Section 1.2.2 discussed assignments  such as x = y which set x equal to y. This section discusses equations,  which test
equality. The equation x == y tests whether x is equal to y.     

This tests whether 2 + 2 and 4 are equal. The result is the symbol True. 

In[1]:= 2 + 2 == 4

Out[1]= True
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It  is  very  important  that  you  do  not  confuse  x  =  y  with  x  ==  y.  While  x  =  y  is  an  imperative  statement that  actually
causes an assignment to be done, x == y  merely tests  whether x and y  are equal, and causes no explicit action. If you
have used the C programming language, you will recognize that the notation for assignment and testing in Mathematica
is the same as in C.   

x  =  y assigns  x to have value  y 
x  ==  y tests whether  x and  y are equal

Assignments and tests. 

This assigns x to have value 4. 

In[2]:= x = 4

Out[2]= 4

If you ask for x, you now get 4. 

In[3]:= x

Out[3]= 4

This tests whether x is equal to 4. In this case, it is. 

In[4]:= x == 4

Out[4]= True

x is equal to 4, not 6. 

In[5]:= x == 6

Out[5]= False

This removes the value assigned to x. 

In[6]:= x =.

The tests we have used so far involve only numbers, and always give a definite answer, either True or False. You
can also do tests on symbolic expressions. 

Mathematica cannot get a definite result for this test unless you give x a specific numerical value. 

In[7]:= x == 5

Out[7]= x 5

If you replace x by the specific numerical value 4, the test gives False. 

In[8]:= % /. x -> 4

Out[8]= False
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Even when you do tests on symbolic expressions, there are some cases where you can get definite results. An important
one is when you test the equality of two expressions that are identical. Whatever the numerical values of the variables
in these expressions may be, Mathematica knows that the expressions must always be equal. 

The two expressions are identical, so the result is True, whatever the value of x may be. 

In[9]:= 2 x + x^2 == 2 x + x^2

Out[9]= True

Mathematica does not try to tell whether these expressions are equal. In this case, using Expand would make them have the same 
form. 

In[10]:= 2 x + x^2 == x (2 + x)

Out[10]= 2 x + x2 x H2 + xL

Expressions like x == 4 represent equations in Mathematica. There are many functions in Mathematica for manipulat-
ing and solving equations. 

This is an equation in Mathematica. Subsection 1.5.7 will discuss how to solve it for x. 

In[11]:= x^2 + 2 x - 7 == 0

Out[11]= −7 + 2 x + x2 0

You can assign a name to the equation. 

In[12]:= eqn = %

Out[12]= −7 + 2 x + x2 0

If you ask for eqn, you now get the equation. 

In[13]:= eqn

Out[13]= −7 + 2 x + x2 0

1.5.6 Relational and Logical Operators

x  ==  y equal Halso input as  x  ã   y L
x  !=  y unequal Halso input as  x  ∫   y L

x  >  y greater than
x  >=  y greater than or equal to Halso input as  x  ¥   yL

x  <  y less than
x  <=  y less than or equal to Halso input as  x  §   yL

x  ==  y  ==  z all equal
x  !=  y  !=  z all unequal HdistinctL

x  >  y  >  z , etc. strictly decreasing, etc.

Relational operators. 
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This tests whether 10 is less than 7. The result is False. 

In[1]:= 10 < 7

Out[1]= False

Not all of these numbers are unequal, so this gives False. 

In[2]:= 3 != 2 != 3

Out[2]= False

You can mix < and <=. 

In[3]:= 3 < 5 <= 6

Out[3]= True

Since both of the quantities involved are numeric, Mathematica can determine that this is true. 

In[4]:= Pi^E < E^Pi

Out[4]= True

Mathematica does not know whether this is true or false. 

In[5]:= x > y

Out[5]= x > y

!p not Halso input as  Ÿ  p L
p  &&  q  && … and Halso input as  p  fl   q  fl  …L
p  »»  q  »» … or Halso input as  p  fi   q  fi  …L

Xor@ p,  q, … D exclusive or Halso input as  p    q   …L
Nand@ p,  q, … 
D and  Nor@ p,  q, … D 

nand and nor Halso input as   and   L

If@ p,  then,  else D give  then if  p is  True , and  else if  p is  False 

LogicalExpand@ expr D expand out logical expressions

Logical operations. 

Both tests give True, so the result is True. 

In[6]:= 7 > 4 && 2 != 3

Out[6]= True

You should remember that the logical operations ==, && and || are all double characters in Mathematica. If you have
used a programming language such as C, you will be familiar with this notation.  

Mathematica does not know whether this is true or false. 

In[7]:= p && q

Out[7]= p && q
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Mathematica leaves this expression unchanged. 

In[8]:= (p || q) && !(r || s)

Out[8]= Hp »» qL && ! Hr »» sL

You can use LogicalExpand to expand out the terms. 

In[9]:= LogicalExpand[ % ]

Out[9]= p && ! r && ! s »» q && ! r && ! s

1.5.7 Solving Equations

An expression like x^2 + 2 x - 7 == 0 represents an equation in Mathematica. You will often need to solve equations
like this, to find out for what values of x they are true.    

This gives the two solutions to the quadratic equation x2 + 2 x - 7 = 0. The solutions are given as replacements for x. 

In[1]:= Solve[x^2 + 2x - 7 == 0, x]

Out[1]= 99x → −1 − 2 è!!!2 =, 9x → −1 + 2 è!!!2 ==

Here are the numerical values of the solutions.    

In[2]:= N[ % ]

Out[2]= 88x → −3.82843<, 8x → 1.82843<<

You can get a list of the actual solutions for x by applying the rules generated by Solve to x using the replacement operator. 

In[3]:= x /. %

Out[3]= 8−3.82843, 1.82843<

You can equally well apply the rules to any other expression involving x. 

In[4]:= x^2 + 3 x /. %%

Out[4]= 83.17157, 8.82843<

Solve@ lhs  ==  rhs,  x D solve an equation, giving a list of rules for  x 
x  ê.  solution use the list of rules to get values for  x 

expr  ê.  solution use the list of rules to get values for an expression

Finding and using solutions to equations. 

Solve  always tries to  give you explicit  formulas  for  the solutions  to equations.  However,  it  is  a  basic  mathematical
result that, for sufficiently complicated equations, explicit algebraic formulas cannot be given. If you have an algebraic
equation in one variable, and the highest power of the variable is at most four, then Mathematica  can always give you
formulas for the solutions. However, if the highest power is five or more, it may be mathematically impossible to give
explicit algebraic formulas for all the solutions. 
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Mathematica can always solve algebraic equations in one variable when the highest power is less than five. 

In[5]:= Solve[x^4 - 5 x^2 - 3 == 0, x]

Out[5]= 99x → −$%%%%%%%%%%%%%%%%%%%%%%%5
2

+
è!!!!!!37
2

=, 9x → $%%%%%%%%%%%%%%%%%%%%%%%5
2

+
è!!!!!!37
2

=,

9x → − $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1
2
I−5 + è!!!!!!37 M =, 9x → $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1

2
I−5 + è!!!!!!37 M ==

It can solve some equations that involve higher powers. 

In[6]:= Solve[x^6 == 1, x]

Out[6]= 88x → −1<, 8x → 1<, 8x → −H−1L1ê3<, 8x → H−1L1ê3<, 8x → −H−1L2ê3<, 8x → H−1L2ê3<<

There are some equations, however, for which it is mathematically impossible to find explicit formulas for the solutions. Mathemat-
ica uses Root objects to represent the solutions in this case.  

In[7]:= Solve[2 - 4 x + x^5 == 0, x]

Out[7]= 88x → Root@2 − 4 #1 + #15 &, 1D<,
8x → Root@2 − 4 #1 + #15 &, 2D<, 8x → Root@2 − 4 #1 + #15 &, 3D<,
8x → Root@2 − 4 #1 + #15 &, 4D<, 8x → Root@2 − 4 #1 + #15 &, 5D<<

Even though you cannot get explicit formulas, you can still find the solutions numerically. 

In[8]:= N[ % ]

Out[8]= 88x → −1.51851<, 8x → 0.508499<, 8x → 1.2436<,
8x → −0.116792 − 1.43845 <, 8x → −0.116792 + 1.43845 <<

In  addition  to  being  able  to  solve  purely  algebraic  equations,  Mathematica  can  also  solve  some equations  involving
other functions. 

After printing a warning, Mathematica returns one solution to this equation. 

In[9]:= Solve[ Sin[x] == a, x ]

Solve::ifun :  Inverse functions are being used by Solve, so some solutions
may not be found; use Reduce for complete solution information.

Out[9]= 88x → ArcSin@aD<<

It is important to realize that an equation such as sin HxL = a  actually has an infinite number of possible solutions, in this
case differing by multiples of 2 p .  However,  Solve  by default  returns just  one solution,  but prints a message telling
you that other solutions may exist. You can use Reduce to get more information. 

There is no explicit “closed  form”  solution for a transcendental equation like this. 

In[10]:= Solve[ Cos[x] == x, x ]

Solve::tdep :  The equations appear to involve the
variables to be solved for in an essentially non−algebraic way.

Out[10]= Solve@Cos@xD x, xD
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You can find an approximate numerical solution using FindRoot, and giving a starting value for x. 

In[11]:= FindRoot[ Cos[x] == x, {x, 0} ]

Out[11]= 8x → 0.739085<

Solve  can  also  handle  equations  involving  symbolic  functions.  In  such  cases,  it  again  prints  a  warning,  then  gives
results in terms of formal inverse functions. 

Mathematica returns a result in terms of the formal inverse function of f. 

In[12]:= Solve[ f[x^2] == a, x ]

InverseFunction::ifun :  

Inverse functions are being used. Values may be lost for multivalued inverses.

Out[12]= 99x → −
è!!!!!!!!!!!!!!!!!!!fH−1L@aD =, 9x →

è!!!!!!!!!!!!!!!!!!!fH−1L@aD ==

Solve@ 8  lhs1  == rhs1,  lhs2  
== rhs2, … <,  8  x,  y, … <  D 

solve a set of simultaneous equations for  x ,  y , …

Solving sets of simultaneous equations. 

You  can  also  use  Mathematica  to  solve  sets  of  simultaneous  equations.  You  simply  give  the  list  of  equations,  and
specify the list of variables to solve for. 

Here is a list of two simultaneous equations, to be solved for the variables x  and y . 

In[13]:= Solve[{a x + y == 0, 2 x + (1-a) y == 1}, {x, y}]

Out[13]= 99x → −
1

−2 + a − a2
, y → −

a
2 − a + a2

==

Here are some more complicated simultaneous equations. The two solutions are given as two lists of replacements for x and y. 

In[14]:= Solve[{x^2 + y^2 == 1, x + 3 y == 0}, {x, y}]

Out[14]= 99x → −
3

è!!!!!!10
, y →

1
è!!!!!!10

=, 9x →
3

è!!!!!!10
, y → −

1
è!!!!!!10

==

This uses the solutions to evaluate the expression x + y. 

In[15]:= x + y /. %

Out[15]= 9−$%%%%%%2
5
, $%%%%%%2

5
=

Mathematica can solve any set of simultaneous linear equations. It can also solve a large class of simultaneous polyno-
mial equations. Even when it does not manage to solve the equations explicitly, Mathematica  will still usually reduce
them to a much simpler form. 

When you are working with sets of equations in several variables, it is often convenient to reorganize the equations by
eliminating some variables between them.  
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This eliminates y between the two equations, giving a single equation for x. 

In[16]:= Eliminate[{a x + y == 0, 2 x + (1-a) y == 1}, y]

Out[16]= H2 − a + a2L x 1

If you have several equations, there is no guarantee that there exists any consistent solution for a particular variable.   

There is no consistent solution to these equations, so Mathematica returns {}, indicating that the set of solutions is empty. 

In[17]:= Solve[{x==1, x==2}, x]

Out[17]= 8<

There is also no consistent solution to these equations for almost all values of a. 

In[18]:= Solve[{x==1, x==a}, x]

Out[18]= 8<

The general question of whether a set of equations has any consistent solution is quite a subtle one. For example, for
most values of a, the equations {x==1, x==a} are inconsistent, so there is no possible solution for x. However, if a
is  equal  to  1,  then  the  equations  do  have  a  solution.  Solve  is  set  up  to  give  you  generic  solutions  to  equations.  It
discards any solutions that exist only when special constraints between parameters are satisfied.     

If you use Reduce instead of Solve, Mathematica will however keep all the possible solutions to a set of equations,
including those that require special conditions on parameters.  

This shows that the equations have a solution only when a==1. The notation a==1 && x==1 represents the requirement that both 
a==1 and x==1 should be True. 

In[19]:= Reduce[{x==a, x==1}, x]

Out[19]= a 1 && x 1

This gives the complete set of possible solutions to the equation. The answer is stated in terms of a combination of simpler 
equations. && indicates equations that must simultaneously be true; || indicates alternatives. 

In[20]:= Reduce[a x - b == 0, x]

Out[20]= b 0 && a 0 »» a ≠ 0 && x
b
a

This gives a more complicated combination of equations. 

In[21]:= Reduce[a x^2 - b == 0, x]

Out[21]= b 0 && a 0 »» a ≠ 0 &&
i
k
jjjx −

è!!!b
è!!!a

»» x
è!!!b
è!!!a

y
{
zzz

This gives a symbolic representation of all solutions. 

In[22]:= Reduce[Sin[x] == a, x]

Out[22]= C@1D ∈ Integers && Hx π − ArcSin@aD + 2 π C@1D »» x ArcSin@aD + 2 π C@1DL
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Solve@ lhs == rhs,  x D solve an equation for  x 
Solve@ 8  lhs1  == rhs1,  lhs2  
== rhs2, … <,  8  x,  y, … <  D 

solve a set of simultaneous equations for  x ,  y , …

Eliminate@ 8  lhs1  == rhs1,
 lhs2  == rhs2, … <,  8  x, … <  D 

eliminate  x , … in a set of simultaneous equations

Reduce@ 8  lhs1  == rhs1,  lhs2  
== rhs2, … <,  8  x,  y, … <  D 

give a set of simplified equations, including all possible solutions

Functions for solving and manipulating equations. 

Reduce also has powerful capabilities for handling equations specifically over real numbers or integers. Section 3.4.9
discusses this in more detail. 

This reduces the equation assuming x and y are complex. 

In[23]:= Reduce[x^2 + y^2 == 1, y]

Out[23]= y −
è!!!!!!!!!!!!!1 − x2 »» y è!!!!!!!!!!!!!1 − x2

This includes the conditions for x and y to be real. 

In[24]:= Reduce[x^2 + y^2 == 1, y, Reals]

Out[24]= −1 ≤ x ≤ 1 && Iy −
è!!!!!!!!!!!!!1 − x2 »» y è!!!!!!!!!!!!!1 − x2 M

This gives only the integer solutions. 

In[25]:= Reduce[x^2 + y^2 == 1, y, Integers]

Out[25]= x −1 && y 0 »» x 0 && y −1 »» x 0 && y 1 »» x 1 && y 0

1.5.8 Inequalities

Reduce@ ineqs,  8  x,  y, … <  D reduce a collection of inequalities
FindInstance@ ineqs,  8  x,  y, … <  D find an instance that satisfies the  ineqs 

Handling inequalities. 

This finds a reduced form for the inequalities. 

In[1]:= Reduce[x + y < 1 && y > x > 0, {x, y}]

Out[1]= 0 < x <
1
2
&& x < y < 1 − x

These inequalities can never be satisfied. 

In[2]:= Reduce[x + y < 1 && y > x > 1, {x, y}]

Out[2]= False
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It is easy to end up with rather complicated results. 

In[3]:= Reduce[x + y < 1 && y^2 > x > 0, {x, y}]

Out[3]= 0 < x <
1
2
I3 − è!!!5 M && Iy < −è!!!x »» è!!!x < y < 1 − xM »»

1
2
I3 − è!!!5 M ≤ x <

1
2
I3 + è!!!5 M && y < −è!!!x »» x ≥

1
2
I3 + è!!!5 M && y < 1 − x

Equations can often be solved to give definite values of variables. But inequalities typically just define regions that can
only be specified by other inequalities. You can use FindInstance to find definite values of variables that satisfy a
particular set of inequalities. 

This finds a point in the region specified by the inequalities. 

In[4]:= FindInstance[x + y < 1 && y^2 > x > 0, {x, y}]

Out[4]= 99x →
7
2
, y → −3==

Minimize@ 8  expr,
 ineq <,  8  x,  y, … <  D 

minimize  expr while satisfying  ineqs 

Maximize@ 8  expr,
 ineq <,  8  x,  y, … <  D 

maximize  expr while satisfying  ineqs 

Constrained minimization and maximization. 

This gives the maximum, together with where it occurs. 

In[5]:= Maximize[{x^2 + y, x^2 + y^2 <= 1}, {x, y}]

Out[5]= 9 5
4
, 9x → −

è!!!3
2

, y →
1
2
==

1.5.9 Differential Equations

DSolve@ eqns,  y @ x D,  x D solve a differential equation for  y 
@ x D , taking  x as the independent variable

DSolve@ eqns,  y,  x D give a solution for  y in pure function form

Solving an ordinary differential equation. 

Here is the solution to the differential equation y£ HxL = a y HxL + 1. C[1] is a coefficient which must be determined from 
boundary conditions. 

In[1]:= DSolve[ y'[x] == a y[x] + 1, y[x], x ]

Out[1]= 99y@xD → −
1
a

+ a x C@1D==

If you include an appropriate initial condition, there are no undetermined coefficients in the solution. 

In[2]:= DSolve[ {y'[x] == a y[x] + 1, y[0] == 0}, y[x], x ]

Out[2]= 99y@xD →
−1 + a x

a
==
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Whereas  algebraic  equations  such  as  x2 + x = 1  are  equations  for  variables,  differential  equations  such  as
y££ HxL + y£ HxL = y HxL  are equations for functions. In Mathematica, you must always give differential equations explic-
itly in terms of functions such as y[x], and you must specify the variables such as x on which the functions depend. As
a  result,  you  must  write  an  equation  such  as  y££ HxL + y£ HxL = y HxL  in  the  form  y''[x]  +  y'[x]  ==  y[x].  You
cannot write it as y'' + y' == y. 

Mathematica  can  solve  both  linear  and  nonlinear  ordinary  differential  equations,  as  well  as  lists  of  simultaneous
equations. If you do not specify enough initial or boundary conditions, Mathematica will give solutions that involve an
appropriate number of undetermined coefficients. Each time you use DSolve, it names the undetermined coefficients
C[1], C[2], etc. 

Here is a pair of simultaneous differential equations, with no initial or boundary conditions. The solution you get involves two 
undetermined coefficients. 

In[3]:= DSolve[ {x'[t] == y[t], y'[t] == x[t]}, {x[t], y[t]}, t ]

Out[3]= 99x@tD →
1
2

−t H1 + 2 tL C@1D +
1
2

−t H−1 + 2 tL C@2D,

y@tD →
1
2

−t H−1 + 2 tL C@1D +
1
2

−t H1 + 2 tL C@2D==

When you ask DSolve to get you a solution for y[x], the rules it returns specify how to replace y[x] in any expres-
sion. However, these rules do not specify how to replace objects such as y'[x]. If you want to manipulate solutions
that you get from DSolve, you will often find it better to ask for solutions for y, rather than for y[x]. 

This gives the solution for y as a “pure  function”.  

In[4]:= DSolve[ y'[x] == x + y[x], y, x ]

Out[4]= 88y → Function@8x<, −1 − x + x C@1DD<<

You can now use the replacement operator to apply this solution to expressions involving y. 

In[5]:= y''[x] + y[x] /. %

Out[5]= 8−1 − x + 2 x C@1D<

Section 2.2.5 explains how the “pure  function”  indicated by & that appears in the result from DSolve works. 

Note that DSolve can handle combinations of algebraic and differential equations. It can also handle partial differen-
tial equations, in which there is more than one independent variable. 

1.5.10 Power Series

The mathematical operations we have discussed so far are exact. Given precise input, their results are exact formulas. 

In many situations, however, you do not need an exact result. It may be quite sufficient, for example, to find an approxi-
mate formula that is valid, say, when the quantity x is small.       

This gives a power series approximation to H1 + xLn  for x  close to 0 , up to terms of order x3 . 

In[1]:= Series[(1 + x)^n, {x, 0, 3}]

Out[1]= 1 + n x +
1
2
H−1 + nL n x2 +

1
6
H−2 + nL H−1 + nL n x3 + O@xD4
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Mathematica knows the power series expansions for many mathematical functions. 

In[2]:= Series[Exp[-a t] (1 + Sin[2 t]), {t, 0, 4}]

Out[2]= 1 + H2 − aL t + J−2 a +
a2

2
N t2 + J−

4
3

+ a2 −
a3

6
N t3 + J 4 a

3
−
a3

3
+
a4

24
N t4 + O@tD5

If you give it a function that it does not know, Series writes out the power series in terms of derivatives. 

In[3]:= Series[1 + f[t], {t, 0, 3}]

Out[3]= 1 + f@0D + f @0D t +
1
2
f @0D t2 +

1
6
fH3L@0D t3 + O@tD4

Power series are approximate formulas that play much the same role with respect to algebraic expressions as approxi-
mate  numbers  play  with  respect  to  numerical  expressions.  Mathematica  allows  you  to  perform  operations  on  power
series, in all cases maintaining the appropriate order or “degree  of precision”  for the resulting power series. 

Here is a simple power series, accurate to order x5 . 

In[4]:= Series[Exp[x], {x, 0, 5}]

Out[4]= 1 + x +
x2

2
+
x3

6
+

x4

24
+

x5

120
+ O@xD6

When you do operations on a power series, the result is computed only to the appropriate order in x. 

In[5]:= %^2 (1 + %)

Out[5]= 2 + 5 x +
13 x2

2
+
35 x3

6
+
97 x4

24
+
55 x5

24
+ O@xD6

This turns the power series back into an ordinary expression. 

In[6]:= Normal[%]

Out[6]= 2 + 5 x +
13 x2

2
+
35 x3

6
+
97 x4

24
+
55 x5

24

Now the square is computed exactly. 

In[7]:= %^2

Out[7]= J2 + 5 x +
13 x2

2
+
35 x3

6
+
97 x4

24
+
55 x5

24
N
2

Applying Expand gives a result with eleven terms. 

In[8]:= Expand[%]

Out[8]= 4 + 20 x + 51 x2 +
265 x3

3
+
467 x4

4
+
1505 x5

12
+

7883 x6

72
+
1385 x7

18
+
24809 x8

576
+
5335 x9

288
+
3025 x10

576

Printed from the Mathematica Help Browser 17

©1988-2003 Wolfram Research, Inc. All rights reserved.



Series@ expr,  8  x,  x0,  n <  D find the power series expansion of  expr 
about the point  x  =  x0  to at most  n th  order

Normal@ series D truncate a power series to give an ordinary expression

Power series operations. 

1.5.11 Limits

Here is the expression sin HxL ê x . 

In[1]:= t = Sin[x]/x

Out[1]= 
Sin@xD

x

If you replace x by 0, the expression becomes 0/0, and you get an indeterminate result. 

In[2]:= t /. x->0

Power::infy :  Infinite expression
1
0

encountered.

∞::indet :  Indeterminate expression 0 ComplexInfinity encountered.

Out[2]= Indeterminate

If you find the numerical value of sin HxL ê x  for x  close to 0, however, you get a result that is close to 1 . 

In[3]:= t /. x->0.01

Out[3]= 0.999983

This finds the limit of sin HxL ê x  as x  approaches 0 . The result is indeed 1. 

In[4]:= Limit[t, x->0]

Out[4]= 1

Limit@ expr,  x −> x0  D the limit of  expr as  x approaches  x0  

Limits. 

1.5.12 Integral Transforms

LaplaceTransform@ expr,  t,  s D find the Laplace transform of  expr 
InverseLaplaceTransform@ 

expr,  s,  t D 

find the inverse Laplace transform of  expr 

Laplace transforms. 
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This computes a Laplace transform. 

In[1]:= LaplaceTransform[t^3 Exp[a t], t, s]

Out[1]= 
6

Ha − sL4

Here is the inverse transform. 

In[2]:= InverseLaplaceTransform[%, s, t]

Out[2]= a t t3

FourierTransform@ expr,  t,  w D find the symbolic Fourier transform of  expr 
InverseFourierTransform@ 

expr,  w,  t D 

find the inverse Fourier transform of  expr 

Fourier transforms. 

This computes a Fourier transform. 

In[3]:= FourierTransform[t^4 Exp[-t^2], t, w]

Out[3]= 
3
4

− w2
4 − 3

4
− w2

4 w2 + 1
16

− w2
4 w4

è!!!2

Here is the inverse transform. 

In[4]:= InverseFourierTransform[%, w, t]

Out[4]= −t2 t4

Note that in the scientific and technical literature many different conventions are used for defining Fourier transforms.
Section 3.8.4 describes the setup in Mathematica. 

1.5.13 Recurrence Equations

RSolve@ eqns,  a @ n D,  n D solve the recurrence equations  eqns for  a @ n D 

Solving recurrence equations. 

This solves a simple recurrence equation. 

In[1]:= RSolve[{a[n] == 3 a[n-1]+1, a[1]==1}, a[n], n]

Out[1]= 99a@nD →
1
2
H−1 + 3nL==
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1.5.14 Packages for Symbolic Mathematics

There are many Mathematica  packages which implement symbolic mathematical operations.  This section gives a few
examples drawn from the standard set of packages distributed with Mathematica. As discussed in Section 1.3.10, some
copies of Mathematica may be set up so that the functions described here are automatically loaded into Mathematica if
they are ever needed. 

Vector Analysis

<<Calculus`VectorAnalysis  ̀ load the vector analysis package
SetCoordinates@ system @ names DD specify the coordinate system to be used H 

Cartesian ,  Cylindrical ,  Spherical , etc.L,
giving the names of the coordinates in that system

Grad@ f  D evaluate the gradient  “ f  of  f  in the coordinate system chosen
Div@ f  D evaluate the divergence  “ ÿ f  of the list  f  
Curl@ f  D evaluate the curl  “ ä f  of the list  f  

Laplacian@ f  D evaluate the Laplacian  “2  f  of  f  

Vector analysis. 

This loads the vector analysis package. In some versions of Mathematica, you may not need to load the package explicitly. 

In[1]:= <<Calculus`VectorAnalysis`

This specifies that a spherical coordinate system with coordinate names r, theta and phi should be used. 

In[2]:= SetCoordinates[Spherical[r, theta, phi]]

Out[2]= Spherical@r, theta, phiD

This evaluates the gradient of r2 sin HqL  in the spherical coordinate system. 

In[3]:= Grad[r^2 Sin[theta]]

Out[3]= 82 r Sin@thetaD, r Cos@thetaD, 0<

Variational Methods

<<

Calculus`VariationalMethods  ̀

load the variational methods package

VariationalD@ f ,  y @ x D,  x D find the variational derivative of  f  

Variational methods. 

This loads the variational methods package. 

In[1]:= <<Calculus`VariationalMethods`
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This finds the functional derivative of y HxL è!!!!!!!!!!!y£ HxL . 

In[2]:= VariationalD[y[x] Sqrt[y'[x]], y[x], x]

Out[2]= 
2 y @xD2 + y@xD y @xD

4 y @xD3ê2

Quaternions

<<Algebra`Quaternions  ̀ load the quaternions package
Quaternion@ a,  b,  c,  d  D the quaternion  a + b i + c j + d  k  

Quaternions. 

This loads the quaternions package. 

In[1]:= <<Algebra`Quaternions`

This finds the principal square root of a quaternion. 

In[2]:= Sqrt[Quaternion[1, 1, 1, 0]]

Out[2]= QuaternionA31ê4 CosA ArcTanA
è!!!2 E

2
E, 31ê4 SinA ArcTanAè!!!!2 E

2 E
è!!!2

,
31ê4 SinA ArcTanAè!!!!2 E

2 E
è!!!2

, 0E

1.5.15 Advanced Topic: Generic and Non-Generic Cases

This gives a result for the integral of xn  that is valid for almost all values of n . 

In[1]:= Integrate[x^n, x]

Out[1]= 
x1+n

1 + n

For the special case of x-1 , however, the correct result is different. 

In[2]:= Integrate[x^-1, x]

Out[2]= Log@xD

The  overall  goal  of  symbolic  computation  is  typically  to  get  formulas  that  are  valid  for  many possible  values  of  the
variables that appear in them. It is however often not practical to try to get formulas that are valid for absolutely every
possible value of each variable. 

Mathematica always replaces 0 ê x  by 0 . 

In[3]:= 0 / x

Out[3]= 0
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If x  is equal to 0, however, then the true result is not 0. 

In[4]:= 0 / 0

Power::infy :  Infinite expression 1
0

encountered.

∞::indet :  Indeterminate expression 0 ComplexInfinity encountered.

Out[4]= Indeterminate

This construct treats both cases, but would be quite unwieldy to use. 

In[5]:= If[x != 0, 0, Indeterminate]

Out[5]= If@x ≠ 0, 0, IndeterminateD

If Mathematica  did not automatically replace 0 ê x  by 0, then few symbolic computations would get very far. But you
should  realize  that  the  practical  necessity  of  making  such  replacements  can  cause  misleading  results  to  be  obtained
when exceptional values of parameters are used. 

The basic operations  of  Mathematica  are  nevertheless  carefully  set  up  so that  whenever  possible the results  obtained
will be valid for almost all values of each variable. 

è!!!!!x2  is not automatically replaced by x . 

In[6]:= Sqrt[x^2]

Out[6]= 
è!!!!!!x2

If it were, then the result here would be -2, which is incorrect. 

In[7]:= % /. x -> -2

Out[7]= 2

This makes the assumption that x  is a positive real variable, and does the replacement. 

In[8]:= Simplify[Sqrt[x^2], x > 0]

Out[8]= x

1.5.16 Mathematical Notation in Notebooks

If you use the notebook front end for Mathematica, then you can enter some of the operations discussed in this section
in special ways. 
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⁄i=imin
imax f  Sum@ f ,  8  i,  

imin,  imax <  D 

sum

¤i=imin
imax f  Product@ f ,  8  

i,  imin,  imax <  D 

product

Ÿ f x  Integrate@ 

f ,  x D 

indefinite integral

Ÿxmin
xmax f x  Integrate@ f ,  8  

x,  xmin,  xmax <  D 

definite integral

∂x f  D@ f ,  x D partial derivative
∂x,y f  D@ f ,  x,  y D multivariate partial derivative

Special and ordinary ways to enter mathematical operations in notebooks. 

This shows part of the standard palette for entering mathematical operations. When you press a button in the palette, the form 
shown in the button is inserted into your notebook, with the black square replaced by whatever you had selected in the notebook.

Â sumÂ summation sign  ⁄  
Â prodÂ product sign  ¤  

Â intÂ integral sign  Ÿ  
Â ddÂ special differential  „  for use in integrals
Â pdÂ partial derivative  ∑  

‚Î _Ï or ‚Î −Ï move to the subscript position or lower limit of an integral
‚Î ^Ï or ‚Î 6Ï move to the superscript position or upper limit of an integral
‚Î +Ï or ‚Î =Ï move to the underscript position or lower limit of a sum or product
‚Î &Ï or ‚Î 7Ï move to the overscript position or upper limit of a sum or product
‚Î %Ï or ‚Î 5Ï switch between upper and lower positions

‚Î â  Ï HControl-SpaceL return from upper or lower positions

Ways to enter special notations on a standard English-language keyboard. 

You can enter an integral like this. Be sure to use the special differential „  entered as ÂddÂ, not just an ordinary d. 

In[1]:= ‡ xn x

Out[1]= 
x1+n

1 + n

Here is the actual key sequence you type to get the input. 

In[2]:= ÂintÂx‚Î^Ïn‚Î Ï ÂddÂx

Out[2]= 
x1+n

1 + n
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1.6 Numerical Mathematics

1.6.1 Basic Operations

Exact  symbolic  results  are  usually  very  desirable  when  they  can  be  found.  In  many  calculations,  however,  it  is  not
possible to get symbolic results. In such cases, you must resort to numerical methods. 

N@ expr D numerical value of an expression Hsee Section  1.1 L
NIntegrate@ f ,  8  x,  xmin,  xmax <  D numerical approximation to  Ÿxmin

xmax f d  x
NSum@ f ,  8  i,  imin,  Infinity <  D numerical approximation to  ⁄imin

¶ f  
FindRoot@ lhs == rhs,  8  x,  x0  <  D search for a numerical solution to an equation, starting with  

x  =  x0  
NSolve@ lhs == rhs,  x D numerical approximations to all solutions of an equation

FindMinimum@ f ,  8  x,  x0  <  D search for a minimum of  f  , starting with  x  =  x0  
NMinimize@ f ,  x D attempt to find the global minimum of  f  

Basic numerical operations. 

Mathematica maintains this expression in an exact, symbolic, form. 

In[1]:= (3 + Sqrt[2])^3

Out[1]= I3 + è!!!2 M3

You can even use standard symbolic operations on it. 

In[2]:= Expand[ % ]

Out[2]= 45 + 29 è!!!2

N[expr] gives you a numerical approximation. 

In[3]:= N[ % ]

Out[3]= 86.0122

Functions such as Integrate  always try to get exact  results  for  computations.  When they cannot get exact results,
they  typically  return  unevaluated.  You  can  then  find  numerical  approximations  by  explicitly  applying  N.  Functions
such as NIntegrate do the calculations numerically from the start, without first trying to get an exact result. 

There is no exact formula for this integral, so Mathematica returns it unevaluated. 

In[4]:= Integrate[Sin[Sin[x]], {x, 1, 2}]

Out[4]= ‡
1

2

Sin@Sin@xDD x
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You can use N to get an approximate numerical result. 

In[5]:= N[ % ]

Out[5]= 0.81645

NIntegrate does the integral numerically from the start. 

In[6]:= NIntegrate[Sin[Sin[x]], {x, 1, 2}]

Out[6]= 0.81645

1.6.2 Numerical Sums, Products and Integrals

NSum@ f ,  8  i,  imin,  Infinity <  D numerical approximation to  ⁄imin
¶ f  

NProduct@ f ,  8  
i,  imin,  Infinity <  D 

numerical approximation to  ¤imin
¶ f  

NIntegrate@ f ,  8  x,  xmin,  xmax <  D numerical approximation to  Ÿxmin
xmax f d  x

NIntegrate@ f ,  8  x,  xmin,
 xmax <,  8  y,  ymin,  ymax <  D 

the multiple integral  Ÿxmin
xmaxd  x Ÿymin

ymaxd  y f  

Numerical sums, products and integrals. 

Here is a numerical approximation to ‚
i=1

¶ 1ÅÅÅÅÅi3 . 

In[1]:= NSum[1/i^3, {i, 1, Infinity}]

Out[1]= 1.20206

NIntegrate can handle singularities at the end points of the integration region. 

In[2]:= NIntegrate[1/Sqrt[x (1-x)], {x, 0, 1}]

Out[2]= 3.14159 − 1.65678×10−48

You can do numerical integrals over infinite regions. 

In[3]:= NIntegrate[Exp[-x^2], {x, -Infinity, Infinity}]

Out[3]= 1.77245

Here is a double integral over a triangular domain. Note the order in which the variables are given. 

In[4]:= NIntegrate[ Sin[x y], {x, 0, 1}, {y, 0, x} ]

Out[4]= 0.119906
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1.6.3 Numerical Equation Solving

NSolve@ lhs == rhs,  x D solve a polynomial equation numerically
NSolve@ 8  lhs1  == rhs1,  lhs2  
== rhs2, … <,  8  x,  y, … <  D 

solve a system of polynomial equations numerically

FindRoot@ lhs == rhs,  8  x,  x0  <  D search for a numerical solution to an equation, starting at  x  =  x0  
FindRoot@ 8  lhs1  == 

rhs1,  lhs2  == rhs2, … <,  8  
8  x,  x0  <,  8  y,  y0  <, … <  D 

search for numerical solutions to simultaneous equations

Numerical root finding. 

NSolve gives you numerical approximations to all the roots of a polynomial equation. 

In[1]:= NSolve[ x^5 + x + 1 == 0, x ]

Out[1]= 88x → −0.754878<, 8x → −0.5 − 0.866025 <, 8x → −0.5 + 0.866025 <,
8x → 0.877439 − 0.744862 <, 8x → 0.877439 + 0.744862 <<

You can also use NSolve to solve sets of simultaneous equations numerically. 

In[2]:= NSolve[{x + y == 2, x - 3 y + z == 3, x - y + z == 0}, {x, y, z}]

Out[2]= 88x → 3.5, y → −1.5, z → −5.<<

If your equations involve only linear functions or polynomials, then you can use NSolve to get numerical approxima-
tions  to  all  the  solutions.  However,  when  your  equations  involve  more  complicated functions,  there  is  in  general  no
systematic procedure for finding all solutions, even numerically. In such cases, you can use FindRoot  to search for
solutions. You have to give FindRoot a place to start its search. 

This searches for a numerical solution, starting at x = 1. 

In[3]:= FindRoot[ 3 Cos[x] == Log[x], {x, 1} ]

Out[3]= 8x → 1.44726<

The equation has several solutions. If you start at a different x , FindRoot may return a different solution. 

In[4]:= FindRoot[ 3 Cos[x] == Log[x], {x, 10} ]

Out[4]= 8x → 13.1064<

You can search for solutions to sets of equations. Here the solution involves complex numbers. 

In[5]:= FindRoot[{x==Log[y], y==Log[x]}, {{x, I}, {y, 2}}]

Out[5]= 8x → 0.318132 + 1.33724 , y → 0.318132 + 1.33724 <
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1.6.4 Numerical Differential Equations

NDSolve@ eqns,  
y,  8  x,  xmin,  xmax <  D 

solve numerically for the function  y ,
with the independent variable  x in the range  xmin to  xmax 

NDSolve@ eqns,  8  y1,  

y2, … <,  8  x,  xmin,  xmax <  D 

solve a system of equations for the  yi  

Numerical solution of differential equations. 

This generates a numerical solution to the equation y£ HxL = y HxL  with 0 < x < 2. The result is given in terms of an Interpolat
ingFunction. 

In[1]:= NDSolve[{y'[x] == y[x], y[0] == 1}, y, {x, 0, 2}]

Out[1]= 88y → InterpolatingFunction@880., 2.<<, <>D<<

Here is the value of y H1.5L . 

In[2]:= y[1.5] /. %

Out[2]= 84.48169<

With an algebraic  equation such as x2 + 3 x + 1 = 0,  each solution  for  x  is  simply a single number.  For  a  differential
equation, however,  the solution is a function,  rather than a single number. For example, in the equation y£ HxL = y HxL ,
you want to get an approximation to the function y HxL  as the independent variable x  varies over some range. 

Mathematica  represents  numerical  approximations  to  functions  as  InterpolatingFunction  objects.  These
objects  are  functions  which,  when  applied  to  a  particular  x ,  return  the  approximate  value  of  y HxL  at  that  point.  The
InterpolatingFunction  effectively  stores  a  table  of  values  for  y HxiL ,  then  interpolates  this  table  to  find  an
approximation to y HxL  at the particular x  you request. 

y @ x D  ê.  solution use the list of rules for the function  y to get values for  y @ x D 

InterpolatingFunction@ 

data D@ x D 

evaluate an interpolated function at the point  x 

Plot@Evaluate@ y @ x D  ê.  
solution D,  8  x,  xmin,  xmax <  D 

plot the solution to a differential equation

Using results from NDSolve. 

This solves a system of two coupled differential equations. 

In[3]:= NDSolve[ {y'[x] == z[x], z'[x] == -y[x], y[0] == 0, z[0] == 1}, {y, z}, {x, 0, 
Pi} ]

Out[3]= 88y → InterpolatingFunction@880., 3.14159<<, <>D,
z → InterpolatingFunction@880., 3.14159<<, <>D<<

Here is the value of z[2] found from the solution. 

In[4]:= z[2] /. %

Out[4]= 8−0.416147<
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Here is a plot of the solution for z[x] found on line 3. Plot is discussed in Section 1.9.1. 

In[5]:= Plot[Evaluate[z[x] /. %3], {x, 0, Pi}]

0.5 1 1.5 2 2.5 3

-1

-0.5

0.5

1

Out[5]=  Graphics 

NDSolve@ eqn,  u,  8  x,  xmin,
 xmax <,  8  t,  tmin,  tmax <, … D 

solve a partial differential equation

Numerical solution of partial differential equations. 

1.6.5 Numerical Optimization

NMinimize@ f ,  8  x,  y, … <  D minimize  f  
NMaximize@ f ,  8  x,  y, … <  D maximize  f  

NMinimize@ 8  f ,
 ineqs <,  8  x,  y, … <  D 

minimize  f  subject to the constraints  ineqs 

NMaximize@ 8  f ,
 ineqs <,  8  x,  y, … <  D 

maximize  f  subject to the constraints  ineqs 

Finding global minima and maxima. 

This gives the maximum value, and where it occurs. 

In[1]:= NMaximize[x/(1 + Exp[x]), x]

Out[1]= 80.278465, 8x → 1.27846<<

This minimizes the function within the unit circle. 

In[2]:= NMinimize[{Cos[x] - Exp[x y], x^2 + y^2 < 1}, {x, y}]

Out[2]= 8−0.919441, 8x → 0.795976, y → 0.605328<<

NMinimize  and NMaximize  can find the absolute minima and maxima of  many functions.  But in some cases it is
not realistic to do this. You can search for local minima and maxima using FindMinimum and FindMaximum.  
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FindMinimum@ f ,  8  x,  x0  <  D search for a local minimum of  f  , starting at  x  =  x0  
FindMinimum@ f ,  8  
8  x,  x0  <,  8  y,  y0  <, … <  D 

search for a local minimum in several variables

FindMaximum@ f ,  8  x,  x0  <  D search for a local maximum

Searching for local minima and maxima. 

This searches for a local minimum of x cos HxL , starting at x = 2. 

In[3]:= FindMinimum[x Cos[x], {x, 2}]

Out[3]= 8−3.28837, 8x → 3.42562<<

With a different starting point, you may reach a different local minimum. 

In[4]:= FindMinimum[x Cos[x], {x, 10}]

Out[4]= 8−9.47729, 8x → 9.52933<<

This finds a local minimum of sin Hx yL . 

In[5]:= FindMinimum[Sin[x y], {{x, 2}, {y, 2}}]

Out[5]= 8−1., 8x → 2.1708, y → 2.1708<<

1.6.6 Manipulating Numerical Data

When you have numerical data, it is often convenient to find a simple formula that approximates it. For example, you
can try to “fit”  a line or curve through the points in your data. 

Fit@ 8  y1,  y2, … 

<,  8  f 1,  f 2, … <,  x D 

fit the values  yn  to a linear combination of functions  fi  

Fit@ 8  8  x1,  y1  <,  8  x2,  y2  

<, … <,  8  f 1,  f 2, … <,  x D 

fit the points  Hxn, ynL  to a linear combination of the  fi  

Fitting curves to linear combinations of functions. 

This generates a table of the numerical values of the exponential function. Table will be discussed in Section 1.8.2. 

In[1]:= data = Table[ Exp[x/5.] , {x, 7}]

Out[1]= 81.2214, 1.49182, 1.82212, 2.22554, 2.71828, 3.32012, 4.0552<

This finds a least-squares fit to data of the form c1 + c2 x + c3 x2 . The elements of data are assumed to correspond to values 1 , 
2 , ...  of x . 

In[2]:= Fit[data, {1, x, x^2}, x]

Out[2]= 1.09428 + 0.0986337 x + 0.0459482 x2
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This finds a fit of the form c1 + c2 x + c3 x3 + c4 x5 . 

In[3]:= Fit[data, {1, x, x^3, x^5}, x]

Out[3]= 0.96806 + 0.246829 x + 0.00428281 x3 − 6.57948×10−6 x5

This gives a table of x , y  pairs. 

In[4]:= data = Table[ {x, Exp[Sin[x]]} , {x, 0., 1., 0.2}]

Out[4]= 880., 1.<, 80.2, 1.21978<, 80.4, 1.47612<,
80.6, 1.75882<, 80.8, 2.04901<, 81., 2.31978<<

This finds a fit to the new data, of the form c1 + c2 sin HxL + c3 sin H2 xL . 

In[5]:= Fit[%, {1, Sin[x], Sin[2x]}, x]

Out[5]= 0.989559 + 2.04199 Sin@xD − 0.418176 Sin@2 xD

FindFit@ data,  
form,  8  p1,  p2, … <,  x D 

find a fit to  form with parameters  pi  

Fitting data to general forms. 

This finds the best parameters for a linear fit. 

In[6]:= FindFit[data, a + b x + c x^2, {a, b, c}, x]

Out[6]= 8a → 0.991251, b → 1.16421, c → 0.174256<

This does a nonlinear fit. 

In[7]:= FindFit[data, a + b^(c + d x), {a, b, c, d}, x]

Out[7]= 8a → −3.65199, b → 1.65713, c → 3.03947, d → 0.501815<

One common way of picking out “signals”  in numerical data is to find the Fourier transform, or frequency spectrum,
of the data. 

Fourier@ data D numerical Fourier transform
InverseFourier@ data D inverse Fourier transform

Fourier transforms. 

Here is a simple square pulse. 

In[8]:= data = {1, 1, 1, 1, -1, -1, -1, -1}

Out[8]= 81, 1, 1, 1, −1, −1, −1, −1<
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This takes the Fourier transform of the pulse. 

In[9]:= Fourier[data]

Out[9]= 80. + 0. , 0.707107 + 1.70711 , 0. + 0. , 0.707107 + 0.292893 ,
0. + 0. , 0.707107 − 0.292893 , 0. + 0. , 0.707107 − 1.70711 <

Note  that  the  Fourier  function  in  Mathematica  is  defined  with  the  sign  convention  typically  used  in  the  physical
sciences—opposite to the one often used in electrical engineering. Section 3.8.4 gives more details. 

1.6.7 Statistics

Mean@ data D mean Haverage valueL
Median@ data D median Hcentral valueL

Variance@ data D variance
StandardDeviation@ data D standard deviation

Quantile@ data,  q D q th  quantile
Total@ data D total of values

Basic descriptive statistics. 

Here is some “data”.  

In[1]:= data = {4.3, 7.2, 8.4, 5.8, 9.2, 3.9}

Out[1]= 84.3, 7.2, 8.4, 5.8, 9.2, 3.9<

This gives the mean of your data. 

In[2]:= Mean[data]

Out[2]= 6.46667

Here is the variance. 

In[3]:= Variance[data]

Out[3]= 4.69467

The  standard  set  of  packages  distributed  with  Mathematica  includes  several  for  doing  more  sophisticated  statistical
analyses of data.  
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Statistics`DescriptiveStatist
ics` 

descriptive statistics functions

Statistics`MultivariateDescri
ptiveStatistics  ̀

multivariate descriptive statistics functions

Statistics`ContinuousDistribu
tions` 

properties of continuous statistical distributions

Statistics`DiscreteDistributi
ons` 

properties of discrete statistical distributions

Statistics`HypothesisTests  ̀ hypothesis tests based on the normal distribution
Statistics`ConfidenceInterval
s` 

confidence intervals derived from the normal distribution

Statistics`MultinormalDistrib
ution` 

properties of distributions
based on the multivariate normal distribution

Statistics`LinearRegression  ̀ linear regression analysis
Statistics`NonlinearFit  ̀ nonlinear fitting of data
Statistics`DataSmoothing  ̀ smoothing of data

Statistics`DataManipulation  ̀ utilities for data manipulation

Some standard statistical analysis packages. 
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1.7 Functions and Programs

1.7.1 Defining Functions

In this part of the book, we have seen many examples of functions that are built into Mathematica. In this section, we
discuss  how you can add your  own simple functions  to  Mathematica.  Part  2  will  describe  in  much greater  detail  the
mechanisms for adding functions to Mathematica. 

As  a  first  example,  consider  adding  a  function  called  f  which  squares  its  argument.  The  Mathematica  command to
define this function is f[x_] := x^2. The _ (referred to as “blank”)  on the left-hand side is very important; what it
means will be discussed below. For now, just remember to put a _ on the left-hand side, but not on the right-hand side,
of your definition. 

This defines the function f. Notice the _ on the left-hand side. 

In[1]:= f[x_] := x^2

f squares its argument. 

In[2]:= f[a+1]

Out[2]= H1 + aL2

The argument can be a number. 

In[3]:= f[4]

Out[3]= 16

Or it can be a more complicated expression. 

In[4]:= f[3x + x^2]

Out[4]= H3 x + x2L2

You can use f in a calculation. 

In[5]:= Expand[f[(x+1+y)]]

Out[5]= 1 + 2 x + x2 + 2 y + 2 x y + y2

This shows the definition you made for f. 

In[6]:= ?f

Global`f

f@x_D := x2
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f@x_D  :=  x^2 define the function  f 

? f  show the definition of  f  
Clear@ f  D clear all definitions for  f  

Defining a function in Mathematica. 

The names like f that you use for functions in Mathematica are just symbols. Because of this, you should make sure to
avoid using names that begin with capital letters, to prevent confusion with built-in Mathematica functions. You should
also make sure that you have not used the names for anything else earlier in your session. 

Mathematica functions can have any number of arguments. 

In[7]:= hump[x_, xmax_] := (x - xmax)^2 / xmax

You can use the hump function just as you would any of the built-in functions. 

In[8]:= 2 + hump[x, 3.5]

Out[8]= 2 + 0.285714 H−3.5 + xL2

This gives a new definition for hump, which overwrites the previous one. 

In[9]:= hump[x_, xmax_] := (x - xmax)^4

The new definition is displayed. 

In[10]:= ?hump

Global`hump

hump@x_, xmax_D := Hx − xmaxL4

This clears all definitions for hump. 

In[11]:= Clear[hump]

When you have finished with a particular function, it is always a good idea to clear definitions you have made for it. If
you do not do this, then you will run into trouble if you try to use the same function for a different purpose later in your
Mathematica session. You can clear all definitions you have made for a function or symbol f by using Clear[f]. 

1.7.2 Functions as Procedures

In many kinds of calculations, you may find yourself typing the same input to Mathematica  over and over again. You
can save yourself a lot of typing by defining a function that contains your input commands. 

This constructs a product of three terms, and expands out the result. 

In[1]:= Expand[ Product[x + i, {i, 3}] ]

Out[1]= 6 + 11 x + 6 x2 + x3
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This does the same thing, but with four terms. 

In[2]:= Expand[ Product[x + i, {i, 4}] ]

Out[2]= 24 + 50 x + 35 x2 + 10 x3 + x4

This defines a function exprod which constructs a product of n terms, then expands it out. 

In[3]:= exprod[n_] := Expand[ Product[ x + i, {i, 1, n} ] ]

Every time you use the function, it will execute the Product and Expand operations. 

In[4]:= exprod[5]

Out[4]= 120 + 274 x + 225 x2 + 85 x3 + 15 x4 + x5

The  functions  you  define  in  Mathematica  are  essentially  procedures  that  execute  the  commands  you  give.  You  can
have several steps in your procedures, separated by semicolons. 

The result you get from the whole function is simply the last expression in the procedure. Notice that you have to put parentheses 
around the procedure when you define it like this. 

In[5]:= cex[n_, i_] := ( t = exprod[n]; Coefficient[t, x^i] )

This “runs”  the procedure. 

In[6]:= cex[5, 3]

Out[6]= 85

expr1;  expr2; … a sequence of expressions to evaluate
Module@ 8  a,  b, … <,  proc D a procedure with local variables  a ,  b , …

Constructing procedures. 

When you write procedures in Mathematica, it is usually a good idea to make variables you use inside the procedures
local, so that they do not interfere with things outside the procedures. You can do this by setting up your procedures as
modules, in which you give a list of variables to be treated as local. 

The function cex defined above is not a module, so the value of t “escapes”,  and exists even after the function returns. 

In[7]:= t

Out[7]= 120 + 274 x + 225 x2 + 85 x3 + 15 x4 + x5

This function is defined as a module with local variable u. 

In[8]:= ncex[n_, i_] := Module[{u}, u = exprod[n]; Coefficient[u, x^i]]

The function gives the same result as before. 

In[9]:= ncex[5, 3]

Out[9]= 85
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Now, however, the value of u does not escape from the function. 

In[10]:= u

Out[10]= u

1.7.3 Repetitive Operations

In using Mathematica, you sometimes need to repeat an operation many times. There are many ways to do this. Often
the most natural is in fact to set up a structure such as a list with many elements, and then apply your operation to each
of the elements. 

Another approach is to use the Mathematica  function Do, which works much like the iteration constructs in languages
such  as  C  and  Fortran.  Do  uses  the  standard  Mathematica  iterator  notation  introduced  for  Sum  and  Product  in
Section 1.5.4. 

Do@ expr,  8  i,  imax <  D evaluate  expr with  i running from  1 to  imax 
Do@ expr,  8  i,  imin,  imax,  di <  D evaluate  expr with  i running from  imin to  imax in steps of  di 

Print@ expr D print  expr 
Table@ expr,  8  i,  imax <  D make a list of the values of  expr with  i running from  1 to  imax 

Implementing repetitive operations. 

This prints out the values of the first five factorials. 

In[1]:= Do[ Print[i!], {i, 5} ]

1

2

6

24

120

It is often more useful to have a list of results, which you can then manipulate further. 

In[2]:= Table[ i!, {i, 5} ]

Out[2]= 81, 2, 6, 24, 120<

If you do not give an iteration variable, Mathematica simply repeats the operation you have specified, without changing anything. 

In[3]:= r = 1; Do[ r = 1/(1 + r), {100} ]; r

Out[3]= 
573147844013817084101
927372692193078999176

1.7.4 Transformation Rules for Functions

Section 1.4.2 discussed how you can use transformation rules of the form x -> value to replace symbols by values. The
notion of transformation rules in Mathematica  is, however, quite general. You can set up transformation rules not only
for symbols, but for any Mathematica expression. 
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Applying the transformation rule x -> 3 replaces x by 3. 

In[1]:= 1 + f[x] + f[y] /. x -> 3

Out[1]= 1 + f@3D + f@yD

You can also use a transformation rule for f[x]. This rule does not affect f[y]. 

In[2]:= 1 + f[x] + f[y] /. f[x] -> p

Out[2]= 1 + p + f@yD

f[t_] is a pattern that stands for f with any argument. 

In[3]:= 1 + f[x] + f[y] /. f[t_] -> t^2

Out[3]= 1 + x2 + y2

Probably  the  most  powerful  aspect  of  transformation  rules  in  Mathematica  is  that  they  can  involve  not  only  literal
expressions,  but  also  patterns.  A  pattern  is  an  expression  such  as  f[t_]  which  contains  a  blank  (underscore).  The
blank  can  stand  for  any  expression.  Thus,  a  transformation  rule  for  f[t_]  specifies  how  the  function  f  with  any
argument  should  be  transformed.  Notice  that,  in  contrast,  a  transformation  rule  for  f[x]  without  a  blank,  specifies
only how the literal expression f[x] should be transformed, and does not, for example, say anything about the transfor-
mation of f[y]. 

When you give a function definition such as f[t_] := t^2, all you are doing is telling Mathematica to automatically
apply the transformation rule f[t_] -> t^2 whenever possible. 

You can set up transformation rules for expressions of any form. 

In[4]:= f[a b] + f[c d] /. f[x_ y_] -> f[x] + f[y]

Out[4]= f@aD + f@bD + f@cD + f@dD

This uses a transformation rule for x^p_. 

In[5]:= 1 + x^2 + x^4 /. x^p_ -> f[p]

Out[5]= 1 + f@2D + f@4D

Sections 2.3 and 2.5 will explain in detail how to set up patterns and transformation rules for any kind of expression.
Suffice it to say here that in Mathematica all expressions have a definite symbolic structure; transformation rules allow
you to transform parts of that structure. 
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1.8 Lists

1.8.1 Collecting Objects Together

We first encountered lists in Section 1.2.3 as a way of collecting numbers together. In this section, we shall see many
different ways to use lists. You will find that lists are some of the most flexible and powerful objects in Mathematica.
You  will  see  that  lists  in  Mathematica  represent  generalizations  of  several  standard  concepts  in  mathematics  and
computer science. 

At a basic level, what a Mathematica list essentially does is to provide a way for you to collect together several expres-
sions of any kind. 

Here is a list of numbers. 

In[1]:= {2, 3, 4}

Out[1]= 82, 3, 4<

This gives a list of symbolic expressions. 

In[2]:= x^% - 1

Out[2]= 8−1 + x2, −1 + x3, −1 + x4<

You can differentiate these expressions. 

In[3]:= D[%, x]

Out[3]= 82 x, 3 x2, 4 x3<

And then you can find values when x is replaced with 3. 

In[4]:= % /. x -> 3

Out[4]= 86, 27, 108<

The mathematical functions that are built  into Mathematica  are mostly set up to be “listable”  so that they act sepa-
rately on each element of a list.  This is, however,  not true of all functions in Mathematica.  Unless you set it up spe-
cially, a new function f that you introduce will treat lists just as single objects. Sections 2.2.4 and 2.2.10 will describe
how you can use Map and Thread to apply a function like this separately to each element in a list. 

1.8.2 Making Tables of Values

You  can  use  lists  as  tables  of  values.  You  can  generate  the  tables,  for  example,  by  evaluating  an  expression  for  a
sequence of different parameter values. 

This gives a table of the values of i2 , with i  running from 1 to 6. 

In[1]:= Table[i^2, {i, 6}]

Out[1]= 81, 4, 9, 16, 25, 36<

Printed from the Mathematica Help Browser 1

©1988-2003 Wolfram Research, Inc. All rights reserved.



Here is a table of sin Hn ê 5L  for n  from 0 to 4 . 

In[2]:= Table[Sin[n/5], {n, 0, 4}]

Out[2]= 90, SinA 1
5
E, SinA 2

5
E, SinA 3

5
E, SinA 4

5
E=

This gives the numerical values. 

In[3]:= N[%]

Out[3]= 80., 0.198669, 0.389418, 0.564642, 0.717356<

You can also make tables of formulas. 

In[4]:= Table[x^i + 2i, {i, 5}]

Out[4]= 82 + x, 4 + x2, 6 + x3, 8 + x4, 10 + x5<

Table uses exactly the same iterator notation as the functions Sum and Product, which were discussed in Section 1.5.4. 

In[5]:= Product[x^i + 2i, {i, 5}]

Out[5]= H2 + xL H4 + x2L H6 + x3L H8 + x4L H10 + x5L

This makes a table with values of x running from 0 to 1 in steps of 0.25. 

In[6]:= Table[Sqrt[x], {x, 0, 1, 0.25}]

Out[6]= 80, 0.5, 0.707107, 0.866025, 1.<

You can perform other operations on the lists you get from Table. 

In[7]:= %^2 + 3

Out[7]= 83, 3.25, 3.5, 3.75, 4.<

TableForm displays lists in a “tabular”  format. Notice that both words in the name TableForm begin with capital letters.  

In[8]:= % // TableForm

Out[8]//TableForm= 
3
3.25
3.5
3.75
4.

All  the  examples  so  far  have  been  of  tables  obtained  by  varying  a  single  parameter.  You  can  also  make  tables  that
involve  several  parameters.  These  multidimensional  tables  are  specified  using  the  standard  Mathematica  iterator
notation, discussed in Section 1.5.4. 

This makes a table of x i + y j  with i  running from 1 to 3  and j  running from 1 to 2 . 

In[9]:= Table[x^i + y^j, {i, 3}, {j, 2}]

Out[9]= 88x + y, x + y2<, 8x2 + y, x2 + y2<, 8x3 + y, x3 + y2<<
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The  table  in  this  example  is  a  list  of  lists.  The  elements  of  the  outer  list  correspond  to  successive  values  of  i .  The
elements of each inner list correspond to successive values of j , with i  fixed. 

Sometimes you may want to generate a table by evaluating a particular expression many times, without incrementing
any variables. 

This creates a list containing four copies of the symbol x. 

In[10]:= Table[x, {4}]

Out[10]= 8x, x, x, x<

This gives a list of four pseudorandom numbers. Table re-evaluates Random[ ] for each element in the list, so that you get a 
different pseudorandom number. 

In[11]:= Table[Random[ ], {4}]

Out[11]= 80.0560708, 0.6303, 0.359894, 0.871377<

Table@ f ,  8  imax <  D give a list of  imax values of  f  
Table@ f ,  8  i,  imax <  D give a list of the values of  f  as  i runs from  1 to  imax 

Table@ f ,  8  i,  imin,  imax <  D give a list of values with  i running from  imin to  imax 
Table@ f ,  8  i,  imin,  imax,  di <  D use steps of  di 

Table@ f ,  8  i,  imin,  imax 
<,  8  j,  jmin,  jmax <, … D 

generate a multidimensional table

TableForm@ list D display a list in tabular form

Functions for generating tables. 

You can use the operations discussed in Section 1.2.4 to extract elements of the table.  

This creates a 2ä2 table, and gives it the name m. 

In[12]:= m = Table[i - j, {i, 2}, {j, 2}]

Out[12]= 880, −1<, 81, 0<<

This extracts the first sublist from the list of lists that makes up the table. 

In[13]:= m[[1]]

Out[13]= 80, −1<

This extracts the second element of that sublist. 

In[14]:= %[[2]]

Out[14]= −1

This does the two operations together. 

In[15]:= m[[1,2]]

Out[15]= −1
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This displays m in a “tabular”  form. 

In[16]:= TableForm[m]

Out[16]//TableForm= 
0 −1
1 0

t @@ i DD  or  Part@ t,  i D give the  i th  sublist in  t Halso input as  t P  i T  L
t @@ 8  i1,  i2, … <  DD  or  
Part@ t,  8  i1,  i2, … <  D 

give a list of the  i1  th  ,  i2  th  , … parts of  t 

t @@ i,  j, … DD 

 or  Part@ t,  i,  j, … D 

give the part of  t corresponding to  t @@ i DD@@ j DD …

Ways to extract parts of tables. 

As we mentioned in Section 1.2.4, you can think of lists in Mathematica as being analogous to “arrays”.  Lists of lists
are then like two-dimensional arrays. When you lay them out in a tabular form, the two indices of each element are like
its x  and y  coordinates.  

You can use Table to generate arrays with any number of dimensions. 

This generates a three-dimensional 2ä2ä2 array. It is a list of lists of lists. 

In[17]:= Table[i j^2 k^3, {i, 2}, {j, 2}, {k, 2}]

Out[17]= 8881, 8<, 84, 32<<, 882, 16<, 88, 64<<<

1.8.3 Vectors and Matrices

Vectors and matrices in Mathematica are simply represented by lists and by lists of lists, respectively. 

8  a,  b,  c <  vector  Ha, b, cL  

8  8  a,  b <,  8  c,  d  <  <  matrix  
i
k
jjja b
c d

y
{
zzz  

The representation of vectors and matrices by lists. 

This is a 2ä2 matrix. 

In[1]:= m = {{a, b}, {c, d}}

Out[1]= 88a, b<, 8c, d<<

Here is the first row.  

In[2]:= m[[1]]

Out[2]= 8a, b<
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Here is the element m12 .   

In[3]:= m[[1,2]]

Out[3]= b

This is a two-component vector.  

In[4]:= v = {x, y}

Out[4]= 8x, y<

The objects p and q are treated as scalars.  

In[5]:= p v + q

Out[5]= 8q + p x, q + p y<

Vectors are added component by component. 

In[6]:= v + {xp, yp} + {xpp, ypp}

Out[6]= 8x + xp + xpp, y + yp + ypp<

This takes the dot (“scalar”)  product of two vectors.  

In[7]:= {x, y} . {xp, yp}

Out[7]= x xp + y yp

You can also multiply a matrix by a vector. 

In[8]:= m . v

Out[8]= 8a x + b y, c x + d y<

Or a matrix by a matrix. 

In[9]:= m . m

Out[9]= 88a2 + b c, a b + b d<, 8a c + c d, b c + d2<<

Or a vector by a matrix. 

In[10]:= v . m

Out[10]= 8a x + c y, b x + d y<

This combination makes a scalar. 

In[11]:= v . m . v

Out[11]= x Ha x + c yL + y Hb x + d yL

Because of  the way Mathematica  uses  lists  to  represent  vectors  and  matrices,  you never  have to distinguish between
“row”  and “column”  vectors.   
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Table@ f ,  8  i,  n <  D build a length- n  vector by evaluating  f  with  i  =  1 ,  2 , …,  n 
Array@ a,  n D build a length- n  vector of the form  8  a @1D,  a @2D, … <  

Range@ n D create the list  8  1,  2,  3, … ,  n <  
Range@ n1,  n2  D create the list  8  n1,  n1  +1, … ,  n2  <  

Range@ n1,  n2,  dn D create the list  8  n1,  n1 +dn, … ,  n2  <  
list @@ i DD  or  Part@ list,  i D give the  i th  element in the vector  list 

Length@ list D give the number of elements in  list 
ColumnForm@ list D display the elements of  list in a column

c  v multiply by a scalar
a  .  b vector dot product

Cross@ a,  b D vector cross product Halso input as  a  ä   b L
Norm@ v D norm of a vector

Functions for vectors. 

Table@ f ,  8  i,  m <,  8  j,  n <  D build an  män  matrix by evaluating  f  with  i 
ranging from  1 to  m and  j ranging from  1 to  n 

Array@ a,  8  m,  n <  D build an  män  matrix with  i, j  th  element  a @ i,  j D 

IdentityMatrix@ n D generate an  nän  identity matrix
DiagonalMatrix@ list D generate a square matrix with the elements in  list on the diagonal

list @@ i DD  or  Part@ list,  i D give the  i th  row in the matrix  list 
list @@All,  j DD 

 or  Part@ list,  All,  j D 

give the  j th  column in the matrix  list 

list @@ i,  j DD  or  Part@ list,  i,  j D give the  i, j  th  element in the matrix  list 
Dimensions@ list D give the dimensions of a matrix represented by  list 
MatrixForm@ list D display  list in matrix form

Functions for matrices. 

This builds a 3ä3 matrix s  with elements si j = i + j . 

In[12]:= s = Table[i+j, {i, 3}, {j, 3}]

Out[12]= 882, 3, 4<, 83, 4, 5<, 84, 5, 6<<

This displays s in standard two-dimensional matrix format. 

In[13]:= MatrixForm[s]

Out[13]//MatrixForm= 

i

k

jjjjjjj
2 3 4
3 4 5
4 5 6

y

{

zzzzzzz

This gives a vector with symbolic elements. You can use this in deriving general formulas that are valid with any choice of vector 
components. 

In[14]:= Array[a, 4]

Out[14]= 8a@1D, a@2D, a@3D, a@4D<
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This gives a 3ä2 matrix with symbolic elements. Section 2.2.6 will discuss how you can produce other kinds of elements with 
Array. 

In[15]:= Array[p, {3, 2}]

Out[15]= 88p@1, 1D, p@1, 2D<, 8p@2, 1D, p@2, 2D<, 8p@3, 1D, p@3, 2D<<

Here are the dimensions of the matrix on the previous line. 

In[16]:= Dimensions[%]

Out[16]= 83, 2<

This generates a 3ä3 diagonal matrix. 

In[17]:= DiagonalMatrix[{a, b, c}]

Out[17]= 88a, 0, 0<, 80, b, 0<, 80, 0, c<<

c  m multiply by a scalar
a  .  b matrix product

Inverse@ m D matrix inverse
MatrixPower@ m,  n D n th  power of a matrix

Det@ m D determinant
Tr@ m D trace

Transpose@ m D transpose
Eigenvalues@ m D eigenvalues
Eigenvectors@ m D eigenvectors

Some mathematical operations on matrices. 

Here is the 2ä2 matrix of symbolic variables that was defined above. 

In[18]:= m

Out[18]= 88a, b<, 8c, d<<

This gives its determinant. 

In[19]:= Det[m]

Out[19]= −b c + a d

Here is the transpose of m. 

In[20]:= Transpose[m]

Out[20]= 88a, c<, 8b, d<<

This gives the inverse of m in symbolic form. 

In[21]:= Inverse[m]

Out[21]= 99 d
−b c + a d

, −
b

−b c + a d
=, 9−

c
−b c + a d

,
a

−b c + a d
==
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Here is a 3ä3 rational matrix.  

In[22]:= h = Table[1/(i+j-1), {i, 3}, {j, 3}]

Out[22]= 991, 1
2
, 1

3
=, 9 1

2
, 1

3
, 1

4
=, 9 1

3
, 1

4
, 1

5
==

This gives its inverse. 

In[23]:= Inverse[h]

Out[23]= 889, −36, 30<, 8−36, 192, −180<, 830, −180, 180<<

Taking the dot product of the inverse with the original matrix gives the identity matrix. 

In[24]:= % . h

Out[24]= 881, 0, 0<, 80, 1, 0<, 80, 0, 1<<

Here is a 3ä3 matrix. 

In[25]:= r = Table[i+j+1, {i, 3}, {j, 3}]

Out[25]= 883, 4, 5<, 84, 5, 6<, 85, 6, 7<<

Eigenvalues gives the eigenvalues of the matrix. 

In[26]:= Eigenvalues[r]

Out[26]= 9 1
2
I15 + è!!!!!!!!!249 M, 1

2
I15 − è!!!!!!!!!249 M, 0=

This gives a numerical approximation to the matrix. 

In[27]:= rn = N[r]

Out[27]= 883., 4., 5.<, 84., 5., 6.<, 85., 6., 7.<<

Here are numerical approximations to the eigenvalues.  

In[28]:= Eigenvalues[rn]

Out[28]= 815.3899, −0.389867, −2.43881×10−16<

Section 3.7 discusses many other matrix operations that are built into Mathematica. 
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1.8.4 Getting Pieces of Lists

First@ list D the first element in  list 
Last@ list D the last element

Part@ list,  n D or  list @@ n DD the  n th  element
Part@ list,  − n D  or  list @@− n DD the  n th  element from the end

Part@ list,  8  n1,  n2, … <  
D  or  list @@ 8  n1,  n2, … <  DD 

the list of elements at positions  n1  ,  n2  , …

Picking out elements of lists. 

We will use this list for the examples. 

In[1]:= t = {a,b,c,d,e,f,g}

Out[1]= 8a, b, c, d, e, f, g<

Here is the last element of t. 

In[2]:= Last[t]

Out[2]= g

This gives the third element. 

In[3]:= t[[3]]

Out[3]= c

This gives a list of the first and fourth elements. 

In[4]:= t[[ {1, 4} ]]

Out[4]= 8a, d<

Take@ list,  n D the first  n elements in  list 
Take@ list,  − n D the last  n elements

Take@ list,  8  m,  n <  D elements  m through  n HinclusiveL
Rest@ list D list with its first element dropped

Drop@ list,  n D list with its first  n elements dropped
Most@ list D list with its last element dropped

Drop@ list,  − n D list with its last  n elements dropped
Drop@ list,  8  m,  n <  D list with elements  m through  n dropped

Picking out sequences in lists. 

This gives the first three elements of the list t defined above. 

In[5]:= Take[t, 3]

Out[5]= 8a, b, c<
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This gives the last three elements. 

In[6]:= Take[t, -3]

Out[6]= 8e, f, g<

This gives elements 2 through 5 inclusive. 

In[7]:= Take[t, {2, 5}]

Out[7]= 8b, c, d, e<

This gives elements 3 through 7 in steps of 2. 

In[8]:= Take[t, {3, 7, 2}]

Out[8]= 8c, e, g<

This gives t with the first element dropped. 

In[9]:= Rest[t]

Out[9]= 8b, c, d, e, f, g<

This gives t with its first three elements dropped. 

In[10]:= Drop[t, 3]

Out[10]= 8d, e, f, g<

This gives t with only its third element dropped. 

In[11]:= Drop[t, {3, 3}]

Out[11]= 8a, b, d, e, f, g<

Section  2.1.5  shows  how  all  the  functions  in  this  section  can  be  generalized  to  work  not  only  on  lists,  but  on  any
Mathematica expressions. 

The functions in this section allow you to pick out pieces that occur at particular positions in lists. Section 2.3.2 shows
how  you  can  use  functions  like  Select  and  Cases  to  pick  out  elements  of  lists  based  not  on  their  positions,  but
instead on their properties. 

1.8.5 Testing and Searching List Elements

Position@ list,  form D the positions at which  form occurs in  list
Count@ list,  form D the number of times  form appears as an element of  list 

MemberQ@ list,  form D test whether  form is an element of  list 
FreeQ@ list,  form D test whether  form occurs nowhere in  list 

Testing and searching for elements of lists. 

The previous section discussed how to extract pieces of lists based on their positions or indices. Mathematica  also has
functions that search and test for elements of lists, based on the values of those elements. 
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This gives a list of the positions at which a appears in the list. 

In[1]:= Position[{a, b, c, a, b}, a]

Out[1]= 881<, 84<<

Count counts the number of occurrences of a. 

In[2]:= Count[{a, b, c, a, b}, a]

Out[2]= 2

This shows that a is an element of {a, b, c}. 

In[3]:= MemberQ[{a, b, c}, a]

Out[3]= True

On the other hand, d is not. 

In[4]:= MemberQ[{a, b, c}, d]

Out[4]= False

This assigns m to be the 3ä3 identity matrix. 

In[5]:= m = IdentityMatrix[3]

Out[5]= 881, 0, 0<, 80, 1, 0<, 80, 0, 1<<

This shows that 0 does occur somewhere in m. 

In[6]:= FreeQ[m, 0]

Out[6]= False

This gives a list of the positions at which 0 occurs in m. 

In[7]:= Position[m, 0]

Out[7]= 881, 2<, 81, 3<, 82, 1<, 82, 3<, 83, 1<, 83, 2<<

As discussed in Section 2.3.2, the functions Count and Position, as well as MemberQ and FreeQ, can be used not
only to search for particular list elements, but also to search for classes of elements which match specific “patterns”.  
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1.8.6 Adding, Removing and Modifying List Elements

Prepend@ list,  element D add  element at the beginning of  list 
Append@ list,  element D add  element at the end of  list 

Insert@ list,  element,  i D insert  element at position  i in  list 
Insert@ list,  element,  − i D insert at position  i counting from the end of  list

Delete@ list,  i D delete the element at position  i in  list 
ReplacePart@ list,  new,  i D replace the element at position  i in  list with  new 

ReplacePart@ list,  new,  8  i,  j <  D replace  list @@ i,  j DD with  new 

Functions for manipulating elements in explicit lists. 

This gives a list with x prepended. 

In[1]:= Prepend[{a, b, c}, x]

Out[1]= 8x, a, b, c<

This inserts x so that it becomes element number 2. 

In[2]:= Insert[{a, b, c}, x, 2]

Out[2]= 8a, x, b, c<

This replaces the third element in the list with x. 

In[3]:= ReplacePart[{a, b, c, d}, x, 3]

Out[3]= 8a, b, x, d<

This replaces the 1, 2  element in a 2ä2 matrix. 

In[4]:= ReplacePart[{{a, b}, {c, d}}, x, {1, 2}]

Out[4]= 88a, x<, 8c, d<<

Functions like ReplacePart take explicit lists and give you new lists. Sometimes, however, you may want to modify
a list “in  place”,  without explicitly generating a new list. 

v  =  8  e1,  e2, … <  assign a variable to be a list
v @@ i DD  =  new assign a new value to the  i th  element

Resetting list elements. 

This defines v to be a list. 

In[5]:= v = {a, b, c, d}

Out[5]= 8a, b, c, d<
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This sets the third element to be x. 

In[6]:= v[[3]] = x

Out[6]= x

Now v has been changed. 

In[7]:= v

Out[7]= 8a, b, x, d<

m @@ i,  j DD  =  new replace the  Hi, jL  th  element of a matrix
m @@ i DD  =  new replace the  i th  row

m @@All,  i DD  =  new replace the  i th  column

Resetting pieces of matrices. 

This defines m to be a matrix. 

In[8]:= m = {{a, b}, {c, d}}

Out[8]= 88a, b<, 8c, d<<

This sets the first column of the matrix. 

In[9]:= m[[All, 1]] = {x, y}; m

Out[9]= 88x, b<, 8y, d<<

This sets every element in the first column to be 0. 

In[10]:= m[[All, 1]] = 0; m

Out[10]= 880, b<, 80, d<<

1.8.7 Combining Lists

Join@ list1,  list2, … D concatenate lists together
Union@ list1,  list2, … D combine lists, removing repeated elements and sorting the result

Functions for combining lists. 

Join concatenates any number of lists together. 

In[1]:= Join[{a, b, c}, {x, y}, {t, u}]

Out[1]= 8a, b, c, x, y, t, u<
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Union combines lists, keeping only distinct elements. 

In[2]:= Union[{a, b, c}, {c, a, d}, {a, d}]

Out[2]= 8a, b, c, d<

1.8.8 Advanced Topic: Lists as Sets

Mathematica usually keeps the elements of a list in exactly the order you originally entered them. If you want to treat a
Mathematica list like a mathematical set, however, you may want to ignore the order of elements in the list.  

Union@ list1,  list2, … D give a list of the distinct elements in the  listi  
Intersection@ list1,  list2, … D give a list of the elements that are common to all the  listi  

Complement@ universal,  list1, … D give a list of the elements that are in  
universal , but not in any of the  listi  

Set theoretical functions. 

Union gives the elements that occur in any of the lists. 

In[1]:= Union[{c, a, b}, {d, a, c}, {a, e}]

Out[1]= 8a, b, c, d, e<

Intersection gives only elements that occur in all the lists. 

In[2]:= Intersection[{a, c, b}, {b, a, d, a}]

Out[2]= 8a, b<

Complement gives elements that occur in the first list, but not in any of the others. 

In[3]:= Complement[{a, b, c, d}, {a, d}]

Out[3]= 8b, c<

1.8.9 Rearranging Lists

Sort@ list D sort the elements of  list into a standard order
Union@ list D sort elements, removing any duplicates

Reverse@ list D reverse the order of elements in  list 
RotateLeft@ list,  n D rotate the elements of  list  n places to the left
RotateRight@ list,  n D rotate  n places to the right

Functions for rearranging lists. 

This sorts the elements of a list into a standard order. In simple cases like this, the order is alphabetical or numerical. 

In[1]:= Sort[{b, a, c, a, b}]

Out[1]= 8a, a, b, b, c<

14 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



This sorts the elements, removing any duplicates. 

In[2]:= Union[{b, a, c, a, b}]

Out[2]= 8a, b, c<

This rotates (“shifts”)  the elements in the list two places to the left. 

In[3]:= RotateLeft[{a, b, c, d, e}, 2]

Out[3]= 8c, d, e, a, b<

You can rotate to the right by giving a negative displacement, or by using RotateRight. 

In[4]:= RotateLeft[{a, b, c, d, e}, -2]

Out[4]= 8d, e, a, b, c<

PadLeft@ list,  len,  x D pad  list on the left with  x to make it length  len 
PadRight@ list,  len,  x D pad  list on the right

Padding lists. 

This pads a list with x's to make it length 10. 

In[5]:= PadLeft[{a, b, c}, 10, x]

Out[5]= 8x, x, x, x, x, x, x, a, b, c<

1.8.10 Grouping Together Elements of Lists

Partition@ list,  n D partition  list into  n -element pieces
Partition@ list,  n,  d  D use offset  d  for successive pieces

Split@ list D split  list into pieces consisting of runs of identical elements

Functions for grouping together elements of lists. 

Here is a list. 

In[1]:= t = {a, b, c, d, e, f, g}

Out[1]= 8a, b, c, d, e, f, g<

This groups the elements of the list in pairs, throwing away the single element left at the end. 

In[2]:= Partition[t, 2]

Out[2]= 88a, b<, 8c, d<, 8e, f<<
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This groups elements in triples. There is no overlap between the triples. 

In[3]:= Partition[t, 3]

Out[3]= 88a, b, c<, 8d, e, f<<

This makes triples of elements, with each successive triple offset by just one element. 

In[4]:= Partition[t, 3, 1]

Out[4]= 88a, b, c<, 8b, c, d<, 8c, d, e<, 8d, e, f<, 8e, f, g<<

This splits up the list into runs of identical elements. 

In[5]:= Split[{a, a, b, b, b, a, a, a, b}]

Out[5]= 88a, a<, 8b, b, b<, 8a, a, a<, 8b<<

1.8.11 Ordering in Lists

Sort@ list D sort the elements of  list into order
Min@ list D the smallest element in  list 

Ordering@ list,  n D the positions of the  n smallest elements in  list 
Max@ list D the largest element in  list 

Ordering@ list,  − n D the positions of the  n largest elements in  list 
Ordering@ list D the ordering of all elements in  list 

Permutations@ list D all possible orderings of  list 

Ordering in lists. 

Here is a list. 

In[1]:= t = {17, 21, 14, 9, 18}

Out[1]= 817, 21, 14, 9, 18<

This gives the smallest element in the list. 

In[2]:= Min[t]

Out[2]= 9

This gives in order the positions of the 3 smallest elements. 

In[3]:= Ordering[t, 3]

Out[3]= 84, 3, 1<

Here are the actual elements. 

In[4]:= t[[%]]

Out[4]= 89, 14, 17<
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1.8.12 Advanced Topic: Rearranging Nested Lists

You  will  encounter  nested  lists  if  you  use  matrices  or  generate  multidimensional  arrays  and  tables.  Mathematica
provides many functions for handling such lists.    

Flatten@ list D flatten out all levels in  list 
Flatten@ list,  n D flatten out the top  n levels in  list 

Partition@ list,  8  n1,  n2, … <  D partition into blocks of size  n1 än2 ä… 
Transpose@ list D interchange the top two levels of lists

RotateLeft@ list,  8  n1,  n2, … <  D rotate successive levels by  ni  places
PadLeft@ list,  8  n1,  n2, … <  D pad successive levels to be length  ni  

A few functions for rearranging nested lists. 

This “flattens  out”  sublists. You can think of it as effectively just removing all inner braces. 

In[1]:= Flatten[{{a}, {b, {c}}, {d}}]

Out[1]= 8a, b, c, d<

This flattens out only one level of sublists. 

In[2]:= Flatten[{{a}, {b, {c}}, {d}}, 1]

Out[2]= 8a, b, 8c<, d<

There are many other operations you can perform on nested lists. We will discuss more of them in Section 2.4. 
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1.9 Graphics and Sound

1.9.1 Basic Plotting

Plot@ f ,  8  x,  xmin,  xmax <  D plot  f  as a function of  x from  xmin to  xmax 
Plot@ 8  f 1,  f 2, … 

<,  8  x,  xmin,  xmax <  D 

plot several functions together

Basic plotting functions. 

This plots a graph of sin HxL  as a function of x  from 0 to 2 p .  

In[1]:= Plot[Sin[x], {x, 0, 2Pi}]

1 2 3 4 5 6
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0.5

1

Out[1]=  Graphics 

You can plot functions that have singularities. Mathematica will try to choose appropriate scales. 

In[2]:= Plot[Tan[x], {x, -3, 3}]

-3 -2 -1 1 2 3

-40

-20

20

40

Out[2]=  Graphics 
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You can give a list of functions to plot. 

In[3]:= Plot[{Sin[x], Sin[2x], Sin[3x]}, {x, 0, 2Pi}]
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1

Out[3]=  Graphics 

To get  smooth curves,  Mathematica  has  to  evaluate  functions  you  plot  at  a  large  number  of  points.  As  a  result,  it  is
important that you set things up so that each function evaluation is as quick as possible. 

When you ask Mathematica  to plot an object,  say f,  as a function of x,  there are two possible approaches it can take.
One  approach  is  first  to  try  and  evaluate  f,  presumably  getting  a  symbolic  expression  in  terms of  x,  and  then  subse-
quently evaluate this expression numerically for the specific values of x needed in the plot. The second approach is first
to work out what values of x are needed, and only subsequently to evaluate f with those values of x.

If you type Plot[f, 8x, xmin, xmax<] it is the second of these approaches that is used. This has the advantage that
Mathematica  only tries to evaluate f  for specific numerical values of x; it does not matter whether sensible values are
defined for f when x is symbolic. 

There are, however, some cases in which it is much better to have Mathematica  evaluate f before it starts to make the
plot. A typical case is when f is actually a command that generates a table of functions. You want to have Mathematica
first produce the table, and then evaluate the functions, rather than trying to produce the table afresh for each value of
x. You can do this by typing Plot[Evaluate[f], 8x, xmin, xmax<]. 
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This makes a plot of the Bessel functions Jn HxL  with n  running from 1 to 4. The Evaluate tells Mathematica first to make the 
table of functions, and only then to evaluate them for particular values of x. 

In[4]:= Plot[Evaluate[Table[BesselJ[n, x], {n, 4}]], {x, 0, 10}]

2 4 6 8 10
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0.6

Out[4]=  Graphics 

This finds the numerical solution to a differential equation, as discussed in Section 1.6.4. 

In[5]:= NDSolve[{y'[x] == Sin[y[x]], y[0] == 1}, y, {x, 0, 4}]

Out[5]= 88y → InterpolatingFunction@880., 4.<<, <>D<<

Here is a plot of the solution. The Evaluate tells Mathematica to first set up an InterpolatingFunction object, then 
evaluate this at a sequence of x values. 

In[6]:= Plot[Evaluate[ y[x] /. % ], {x, 0, 4}]
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Out[6]=  Graphics 
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Plot@ f ,  8  x,  xmin,  xmax <  D first choose specific numerical values for  
x , then evaluate  f  for each value of  x 

Plot@Evaluate@ 

f  D,  8  x,  xmin,  xmax <  D 

first evaluate  f  , then choose specific numerical values of  x 

Plot@Evaluate@Table@ 

f , … DD,  8  x,  xmin,  xmax <  D 

generate a list of functions, and then plot them

Plot@Evaluate@ y @ x D  ê.  
solution D,  8  x,  xmin,  xmax <  D 

plot a numerical solution to a differential equation obtained from  
NDSolve 

Methods for setting up objects to plot. 

1.9.2 Options

When Mathematica  plots a graph for you, it has to make many choices. It has to work out what the scales should be,
where the function should be sampled, how the axes should be drawn, and so on. Most of the time, Mathematica  will
probably  make  pretty  good  choices.  However,  if  you  want  to  get  the  very  best  possible  pictures  for  your  particular
purposes, you may have to help Mathematica in making some of its choices. 

There  is  a  general  mechanism for  specifying “options”  in Mathematica  functions.  Each option  has  a  definite  name.
As  the  last  arguments  to  a  function  like  Plot,  you  can  include  a  sequence  of  rules  of  the  form  name->value,  to
specify  the  values  for  various  options.  Any  option  for  which  you  do  not  give  an  explicit  rule  is  taken  to  have  its
“default”  value.   

Plot@ f ,  8  x,  xmin,
 xmax <,  option −> value D 

make a plot, specifying a particular value for an option

Choosing an option for a plot. 

A function like Plot has many options that you can set. Usually you will need to use at most a few of them at a time.
If  you  want  to  optimize  a  particular  plot,  you  will  probably  do  best  to  experiment,  trying  a  sequence  of  different
settings for various options. 

Each time you produce a plot, you can specify options for it. Section 1.9.3 will also discuss how you can change some
of the options, even after you have produced the plot. 
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option name default value 

AspectRatio 1êGoldenRatio the height-to-width ratio for the plot;  
Automatic sets it from the absolute  
x  and  y  coordinates

Axes Automatic whether to include axes
AxesLabel None labels to be put on the axes;  

ylabel specifies a label for the  y  
axis,  8  xlabel,  ylabel <  for both axes

AxesOrigin Automatic the point at which axes cross
TextStyle $TextStyle the default style to use for text in the plot
FormatType StandardForm the default format type to use for text in the plot
DisplayFunction $DisplayFunct

ion 

how to display graphics;  
Identity causes no display

Frame False whether to draw a frame around the plot
FrameLabel None labels to be put around the frame; give a list in

clockwise order starting with the lower  x  axis
FrameTicks Automatic what tick marks to draw if there is a frame;  

None gives no tick marks
GridLines None what grid lines to include;  Automatic 

includes a grid line for every major tick mark
PlotLabel None an expression to be printed as a label for the plot
PlotRange Automatic the range of coordinates to include in the plot;  

All includes all points
Ticks Automatic what tick marks to draw if there are axes;  

None gives no tick marks

Some of the options for Plot. These can also be used in Show. 

Here is a plot with all options having their default values. 

In[7]:= Plot[Sin[x^2], {x, 0, 3}]
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Out[7]=  Graphics 
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This draws axes on a frame around the plot. 

In[8]:= Plot[Sin[x^2], {x, 0, 3}, Frame->True]
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Out[8]=  Graphics 

This specifies labels for the x  and y  axes. The expressions you give as labels are printed just as they would be if they appeared as 
Mathematica output. You can give any piece of text by putting it inside a pair of double quotes. 

In[9]:= Plot[Sin[x^2], {x, 0, 3}, AxesLabel -> {"x value", "Sin[x^2]"} ]

0.5 1 1.5 2 2.5 3
x value
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-0.5

0.5

1
Sin@x^2D

Out[9]=  Graphics 
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You can give several options at the same time, in any order. 

In[10]:= Plot[Sin[x^2], {x, 0, 3}, Frame -> True, GridLines -> Automatic]
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Out[10]=  Graphics 

Setting the AspectRatio option changes the whole shape of your plot. AspectRatio gives the ratio of width to height. Its 
default value is the inverse of the Golden Ratio—supposedly the most pleasing shape for a rectangle. 

In[11]:= Plot[Sin[x^2], {x, 0, 3}, AspectRatio -> 1]
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Out[11]=  Graphics 

Automatic use internal algorithms
None do not include this
All include everything
True do this
False do not do this

Some common settings for various options. 

When Mathematica makes a plot, it tries to set the x  and y  scales to include only the “interesting”  parts of the plot. If
your function increases very rapidly, or has singularities, the parts where it gets too large will be cut off. By specifying
the option PlotRange, you can control exactly what ranges of x  and y  coordinates are included in your plot. 
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Automatic show at least a large fraction of the points,
including the interesting region Hthe default settingL

All show all points
8  ymin,  ymax <  show a specific range of  y  values

8  xrange,  yrange <  show the specified ranges of  x  and  y  values

Settings for the option PlotRange. 

The setting for the option PlotRange gives explicit y  limits for the graph. With the y  limits specified here, the bottom of the 
curve is cut off. 

In[12]:= Plot[Sin[x^2], {x, 0, 3}, PlotRange -> {0, 1.2}]
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Out[12]=  Graphics 

Mathematica  always tries to plot functions as smooth curves. As a result, in places where your function wiggles a lot,
Mathematica  will use more points. In general, Mathematica  tries to adapt  its sampling of your function to the form of
the function. There is, however, a limit, which you can set, to how finely Mathematica will ever sample a function.  
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The function sin H 1ÅÅÅÅx L  wiggles infinitely often when x > 0. Mathematica tries to sample more points in the region where the 
function wiggles a lot, but it can never sample the infinite number that you would need to reproduce the function exactly. As a 
result, there are slight glitches in the plot. 

In[13]:= Plot[Sin[1/x], {x, -1, 1}]
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Out[13]=  Graphics 

option name default value 

PlotStyle Automatic a list of lists of graphics primitives to
use for each curve Hsee Section  2.10.3 L

PlotPoints 25 the minimum number of
points at which to sample the function

MaxBend 10. the maximum kink angle
between successive segments of a curve

PlotDivision 30. the maximum factor by which
to subdivide in sampling the function

Compiled True whether to compile the function being plotted

More options for Plot. These cannot be used in Show. 

It  is  important  to  realize that  since Mathematica  can  only  sample your  function  at  a  limited number  of  points,  it  can
always miss features of the function. By increasing PlotPoints,  you can make Mathematica  sample your function
at a larger number of points. Of course, the larger you set PlotPoints to be, the longer it will take Mathematica  to
plot any function, even a smooth one. 

Since Plot needs to evaluate your function many times, it is important to make each evaluation as quick as possible.
As a result,  Mathematica  usually compiles  your  function  into a  low-level  pseudocode that  can be executed very effi-
ciently.  One  potential  problem  with  this,  however,  is  that  the  pseudocode  allows  only  machine-precision  numerical
operations. If the function you are plotting requires higher-precision operations,  you may have to switch off compila-
tion in Plot. You can do this by setting the option Compiled -> False. Note that Mathematica  can only compile
“inline  code”;  it cannot for example compile functions that you have defined. As a result, you should, when possible,
use  Evaluate  as  described  in  Section 1.9.1  to  evaluate  any  such  definitions  and  get  a  form  that  the  Mathematica
compiler can handle. 
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1.9.3 Redrawing and Combining Plots

Mathematica  saves information about every plot you produce, so that you can later redraw it. When you redraw plots,
you can change some of the options you use.   

Show@ plot D redraw a plot
Show@ plot,  option −> value D redraw with options changed

Show@ plot1,  plot2, … D combine several plots
Show@GraphicsArray@ 

8  8  plot1,  plot2, … <, … <  DD 

draw an array of plots

InputForm@ plot D show the information that is saved about a plot

Functions for manipulating plots. 

Here is a simple plot. -Graphics- is usually printed on the output line to stand for the information that Mathematica saves about 
the plot. 

In[1]:= Plot[ChebyshevT[7, x], {x, -1, 1}]
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Out[1]=  Graphics 
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This redraws the plot from the previous line. 

In[2]:= Show[%]
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Out[2]=  Graphics 

When you redraw the plot, you can change some of the options. This changes the choice of y  scale. 

In[3]:= Show[%, PlotRange -> {-1, 2}]
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Out[3]=  Graphics 
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This takes the plot from the previous line, and changes another option in it. 

In[4]:= Show[%, PlotLabel -> "A Chebyshev Polynomial"]
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A Chebyshev Polynomial

Out[4]=  Graphics 

By using Show with a sequence of different options, you can look at the same plot in many different ways. You may
want to do this, for example, if you are trying to find the best possible setting of options. 

You can also use Show to combine plots. It does not matter whether the plots have the same scales: Mathematica  will
always choose new scales to include the points you want. 

This sets gj0 to be a plot of J0 HxL  from x = 0 to 10. 

In[5]:= gj0 = Plot[BesselJ[0, x], {x, 0, 10}]
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Out[5]=  Graphics 
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Here is a plot of Y1 HxL  from x = 1 to 10. 

In[6]:= gy1 = Plot[BesselY[1, x], {x, 1, 10}]
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Out[6]=  Graphics 

This shows the previous two plots combined into one. Notice that the scale is adjusted appropriately. 

In[7]:= gjy = Show[gj0, gy1]
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Out[7]=  Graphics 

Using  Show[plot1,  plot2,  … ]  you  can  combine  several  plots  into  one.  GraphicsArray  allows  you  to  draw
several plots in an array. 
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Show@GraphicsArray@ 

8  plot1,  plot2, … <  DD 

draw several plots side by side

Show@GraphicsArray@ 

8  8  plot1  <,  8  plot2  <, … <  DD 

draw a column of plots

Show@GraphicsArray@ 8  
8  plot11,  plot12, … <, … <  DD 

draw a rectangular array of plots

Show@GraphicsArray@ plots,  
GraphicsSpacing  −>  8  h,  v <  DD 

put the specified horizontal and vertical spacing between the plots

Drawing arrays of plots. 

This shows the plots given above in an array. 

In[8]:= Show[GraphicsArray[{{gj0, gjy}, {gy1, gjy}}]]
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Out[8]=  GraphicsArray 

If you redisplay an array of plots using Show, any options you specify will be used for the whole array, rather than for individual 
plots. 

In[9]:= Show[%, Frame->True, FrameTicks->None]
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Out[9]=  GraphicsArray 
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Here is a way to change options for all the plots in the array. 

In[10]:= Show[ % /. (Ticks -> Automatic) -> (Ticks -> None) ]

Out[10]=  GraphicsArray 

GraphicsArray  by default puts a narrow border around each of the plots in the array it gives. You can change the
size of this border by setting the option GraphicsSpacing  ->  8h, v< . The parameters h and v  give the horizontal
and vertical spacings to be used, as fractions of the width and height of the plots. 

This increases the horizontal spacing, but decreases the vertical spacing between the plots in the array. 

In[11]:= Show[%, GraphicsSpacing -> {0.3, 0}]

Out[11]=  GraphicsArray 

When you make a plot, Mathematica saves the list of points it used, together with some other information. Using what
is  saved,  you can redraw plots  in  many different  ways with  Show.  However,  you should  realize that  no matter what
options you specify, Show still has the same basic set of points to work with. So, for example, if you set the options so
that Mathematica displays a small portion of your original plot magnified, you will probably be able to see the individ-
ual sample points  that  Plot  used.  Options like PlotPoints  can only be set in the original Plot  command itself.
(Mathematica always plots the actual points it has; it avoids using smoothed or splined curves, which can give mislead-
ing results in mathematical graphics.) 
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Here is a simple plot. 

In[12]:= Plot[Cos[x], {x, -Pi, Pi}]
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Out[12]=  Graphics 

This shows a small region of the plot in a magnified form. At this resolution, you can see the individual line segments that were 
produced by the original Plot command. 

In[13]:= Show[%, PlotRange -> {{0, .3}, {.92, 1}}]
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Out[13]=  Graphics 

1.9.4 Advanced Topic: Manipulating Options

There are a number of functions built into Mathematica which, like Plot, have various options you can set. Mathemat-
ica provides some general mechanisms for handling such options. 

If you do not give a specific setting for an option to a function like Plot, then Mathematica  will automatically use a
default value for the option. The function Options[function, option] allows you to find out the default value for a
particular option. You can reset the default using SetOptions[function, option->value].  Note that if you do this,
the default value you have given will stay until you explicitly change it. 
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Options@ function D give a list of the current default settings for all options
Options@ function,  option D give the default setting for a particular option

SetOptions@ function,
 option −> value, … D 

reset defaults

Manipulating default settings for options. 

Here is the default setting for the PlotRange option of Plot. 

In[1]:= Options[Plot, PlotRange]

Out[1]= 8PlotRange → Automatic<

This resets the default for the PlotRange option. The semicolon stops Mathematica from printing out the rather long list of 
options for Plot. 

In[2]:= SetOptions[Plot, PlotRange->All] ;

Until you explicitly reset it, the default for the PlotRange option will now be All. 

In[3]:= Options[Plot, PlotRange]

Out[3]= 8PlotRange → All<

The  graphics  objects  that  you  get  from Plot  or  Show  store  information  on  the  options  they  use.  You  can  get  this
information by applying the Options function to these graphics objects. 

Options@ plot D show all the options used for a particular plot
Options@ plot,  option D show the setting for a specific option

AbsoluteOptions@ plot,  option D show the absolute form used for a specific option, even
if the setting for the option is  Automatic or  All 

Getting information on options used in plots. 

Here is a plot, with default settings for all options. 

In[4]:= g = Plot[SinIntegral[x], {x, 0, 20}]
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Out[4]=  Graphics 
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The setting used for the PlotRange option was All. 

In[5]:= Options[g, PlotRange]

Out[5]= 8PlotRange → All<

AbsoluteOptions gives the absolute automatically chosen values used for PlotRange. 

In[6]:= AbsoluteOptions[g, PlotRange]

Out[6]= 8PlotRange → 88−0.499999, 20.5<, 8−0.0462976, 1.89824<<<

1.9.5 Contour and Density Plots

ContourPlot@ f ,  8  x,  xmin,
 xmax <,  8  y,  ymin,  ymax <  D 

make a contour plot of  f  as a function of  x and  y 

DensityPlot@ f ,  8  x,  xmin,
 xmax <,  8  y,  ymin,  ymax <  D 

make a density plot of  f  

Contour and density plots. 

This gives a contour plot of the function sin HxL sin HyL . 

In[1]:= ContourPlot[Sin[x] Sin[y], {x, -2, 2}, {y, -2, 2}]
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Out[1]=  ContourGraphics 

A contour plot gives you essentially a “topographic  map”  of a function. The contours join points on the surface that
have the same height. The default is to have contours corresponding to a sequence of equally spaced z values. Contour
plots produced by Mathematica are by default shaded, in such a way that regions with higher z values are lighter. 
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option name default value 

ColorFunction Automatic what colors to use for shading;  
Hue uses a sequence of hues

Contours 10 the total number of contours, or the list of  
z values for contours

PlotRange Automatic the range of values
to be included; you can specify  8  
zmin,  zmax <  ,  All or  Automatic 

ContourShading True whether to use shading
PlotPoints 25 number of evaluation points in each direction
Compiled True whether to compile the function being plotted

Some options for ContourPlot. The first set can also be used in Show. 

Particularly if you use a display or printer that does not handle gray levels well, you may find it better to switch off shading in 
contour plots. 

In[2]:= Show[%, ContourShading -> False]
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Out[2]=  ContourGraphics 

You should realize that if you do not evaluate your function on a fine enough grid, there may be inaccuracies in your
contour plot. One point to notice is that whereas a curve generated by Plot may be inaccurate if your function varies
too quickly in a particular region, the shape of contours can be inaccurate if your function varies too slowly. A rapidly
varying function gives a regular pattern of contours, but a function that is almost flat can give irregular contours. You
can typically overcome such problems by increasing the value of PlotPoints. 
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Density plots show the values of your function at a regular array of points. Lighter regions are higher. 

In[3]:= DensityPlot[Sin[x] Sin[y], {x, -2, 2}, {y, -2, 2}]
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Out[3]=  DensityGraphics 

You can get rid of the mesh like this. But unless you have a very large number of regions, plots usually look better when you 
include the mesh. 

In[4]:= Show[%, Mesh -> False]
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Out[4]=  DensityGraphics 

option name default value 

ColorFunction Automatic what colors to use for shading;  
Hue uses a sequence of hues

Mesh True whether to draw a mesh
PlotPoints 25 number of evaluation points in each direction
Compiled True whether to compile the function being plotted

Some options for DensityPlot. The first set can also be used in Show. 
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1.9.6 Three-Dimensional Surface Plots

Plot3D@ f ,  8  x,  xmin,  
xmax <,  8  y,  ymin,  ymax <  D 

make a three-dimensional plot of  
f  as a function of the variables  x and  y 

Basic 3D plotting function. 

This makes a three-dimensional plot of the function sin Hx yL . 

In[1]:= Plot3D[Sin[x y], {x, 0, 3}, {y, 0, 3}]

0

1

2

3 0

1

2

3

-1
-0.5

0
0.5
1

0

1

2

Out[1]=  SurfaceGraphics 

There are many options for three-dimensional plots in Mathematica. Some will be discussed in this section; others will
be described in Section 2.10. 

The first set of options for three-dimensional plots is largely analogous to those provided in the two-dimensional case. 
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option name default value 

Axes True whether to include axes
AxesLabel None labels to be put on the axes:  zlabel 

specifies a label for the  z  axis,  8  
xlabel,  ylabel,  zlabel <  for all axes

Boxed True whether to draw a
three-dimensional box around the surface

ColorFunction Automatic what colors to use for shading;  
Hue uses a sequence of hues

TextStyle $TextStyle the default style to use for text in the plot
FormatType StandardForm the default format type to use for text in the plot
DisplayFunction $DisplayFunct

ion 

how to display graphics;  
Identity causes no display

FaceGrids None how to draw grids on faces of the bounding box;  
All draws a grid on every face

HiddenSurface True whether to draw the surface as solid
Lighting True whether to color the

surface using simulated lighting
Mesh True whether an  x y  

mesh should be drawn on the surface
PlotRange Automatic the range of coordinates to

include in the plot: you can specify  All ,  
8  zmin,  zmax <  or  8  8  xmin , xmax <,
8  ymin,ymax <,8  zmin,zmax <  <  

Shading True whether the surface
should be shaded or left white

ViewPoint 81.3,  
−2.4,  2< 

the point in space
from which to look at the surface

PlotPoints 25 the number of points in each direction
at which to sample the function;  8  nx,
 ny  <  specifies different numbers in the  

x  and  y  directions
Compiled True whether to compile the function being plotted

Some options for Plot3D. The first set can also be used in Show. 
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This redraws the plot on the previous line, with options changed. With this setting for PlotRange, only the part of the surface in 
the range -0.5 § z § 0.5 is shown.

In[2]:= Show[%, PlotRange -> {-0.5, 0.5}]
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Out[2]=  SurfaceGraphics 

When you make the original plot, you can choose to sample more points. You will need to do this to get good pictures of functions 
that wiggle a lot. 

In[3]:= Plot3D[10 Sin[x + Sin[y]], {x, -10, 10}, {y, -10, 10}, PlotPoints -> 50]
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Out[3]=  SurfaceGraphics 
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Here is the same plot, with labels for the axes, and grids added to each face. 

In[4]:= Show[%, AxesLabel -> {"Time", "Depth", "Value"}, FaceGrids -> All]
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Out[4]=  SurfaceGraphics 

Probably the single most important issue in plotting a three-dimensional surface is specifying where you want to look
at the surface from. The ViewPoint option for Plot3D and Show allows you to specify the point 8x, y, z<  in space
from  which  you  view  a  surface.  The  details  of  how  the  coordinates  for  this  point  are  defined  will  be  discussed  in
Section  2.10.10.  In  many  versions  of  Mathematica,  there  are  ways  to  choose  three-dimensional  view  points  interac-
tively, then get the coordinates to give as settings for the ViewPoint option. 

Here is a surface, viewed from the default view point {1.3, -2.4, 2}. This view point is chosen to be “generic”,  so that 
visually confusing coincidental alignments between different parts of your object are unlikely. 

In[5]:= Plot3D[Sin[x y], {x, 0, 3}, {y, 0, 3}]
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Out[5]=  SurfaceGraphics 
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This redraws the picture, with the view point directly in front. Notice the perspective effect that makes the back of the box look 
much smaller than the front. 

In[6]:= Show[%, ViewPoint -> {0, -2, 0}]
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Out[6]=  SurfaceGraphics 

81.3,  −2.4,  2< default view point
80,  −2,  0< directly in front
80,  −2,  2< in front and up
80,  −2,  −2< in front and down
8−2,  −2,  0< left-hand corner
82,  −2,  0< right-hand corner
80,  0,  2< directly above

Typical choices for the ViewPoint option. 

The human visual system is not particularly good at understanding complicated mathematical surfaces. As a result, you
need to generate pictures that contain as many clues as possible about the form of the surface.  

View  points  slightly  above  the  surface  usually  work  best.  It  is  generally  a  good  idea  to  keep  the  view  point  close
enough to the surface that there is some perspective effect. Having a box explicitly drawn around the surface is helpful
in recognizing the orientation of the surface. 
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Here is a plot with the default settings for surface rendering options. 

In[7]:= g = Plot3D[Exp[-(x^2+y^2)], {x, -2, 2}, {y, -2, 2}]
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Out[7]=  SurfaceGraphics 

This shows the surface without the mesh drawn. It is usually much harder to see the form of the surface if the mesh is not there. 

In[8]:= Show[g, Mesh -> False]
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Out[8]=  SurfaceGraphics 
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This shows the surface with no shading. Some display devices may not be able to show shading. 

In[9]:= Show[g, Shading -> False]
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Out[9]=  SurfaceGraphics 

The inclusion of shading and a mesh are usually great assets in understanding the form of a surface. On some vector
graphics  output  devices,  however,  you may not  be able to  get  shading.  You should  also realize that  when shading is
included, it may take a long time to render the surface on your output device. 

To  add  an  extra  element  of  realism  to  three-dimensional  graphics,  Mathematica  by  default  colors  three-dimensional
surfaces using a simulated lighting model. In the default case, Mathematica  assumes that there are three light sources
shining  on  the  object  from  the  upper  right  of  the  picture.  Section  2.10.12  describes  how  you  can  set  up  other  light
sources, and how you can specify the reflection properties of an object. 

While in most cases, particularly with color output devices, simulated lighting is an asset, it can sometimes be confus-
ing.  If  you set  the option Lighting  ->  False,  then Mathematica  will  not  use  simulated lighting,  but  will  instead
shade all surfaces with gray levels determined by their height. 

Plot3D usually colors surfaces using a simulated lighting model. 

In[10]:= Plot3D[Sin[x y], {x, 0, 3}, {y, 0, 3}]
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Out[10]=  SurfaceGraphics 
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Lighting -> False switches off the simulated lighting, and instead shades surfaces with gray levels determined by height. 

In[11]:= Show[%, Lighting -> False]
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Out[11]=  SurfaceGraphics 

With  Lighting  ->  False,  Mathematica  shades  surfaces  according  to  height.  You  can  also  tell  Mathematica
explicitly  how  to  shade  each  element  of  a  surface.  This  allows  you  effectively  to  use  shading  to  display  an  extra
coordinate at each point on your surface.   

Plot3D@ 8  f ,  GrayLevel@ s D <,  8  x,
 xmin,  xmax <,  8  y,  ymin,  ymax <  D 

plot a surface corresponding to  f  ,
shaded in gray according to the function  s 

Plot3D@ 8  f ,  Hue@ s D <,  8  x,  
xmin,  xmax <,  8  y,  ymin,  ymax <  D 

shade by varying color hue rather than gray level

Specifying shading functions for surfaces. 

This shows a surface whose height is determined by the function Sin[x y], but whose shading is determined by Gray
Level[x/3]. 

In[12]:= Plot3D[{Sin[x y], GrayLevel[x/3]}, {x, 0, 3}, {y, 0, 3}]
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Out[12]=  SurfaceGraphics 
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1.9.7 Converting between Types of Graphics

Contour, density and surface plots are three different ways to display essentially the same information about a function.
In all cases, you need the values of a function at a grid of points. 

The Mathematica  functions ContourPlot, DensityPlot  and Plot3D all produce Mathematica  graphics objects
that include a list of the values of your function on a grid. As a result, having used any one of these functions, Mathe-
matica can easily take its output and use it to produce another type of graphics. 

Here is a surface plot. 

In[1]:= Plot3D[BesselJ[nu, 3x], {nu, 0, 3}, {x, 0, 3}]
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Out[1]=  SurfaceGraphics 

This converts the object produced by Plot3D into a contour plot. 

In[2]:= Show[ ContourGraphics[ % ] ]
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Out[2]=  ContourGraphics 
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Show@ContourGraphics@ g DD convert to a contour plot
Show@DensityGraphics@ g DD convert to a density plot
Show@SurfaceGraphics@ g DD convert to a surface plot

Show@Graphics@ g DD convert to a two-dimensional image

Conversions between types of graphics. 

You can use GraphicsArray to show different types of graphics together. 

In[3]:= Show[ GraphicsArray[ {%, %%} ] ]
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Out[3]=  GraphicsArray 

1.9.8 Plotting Lists of Data

So far, we have discussed how you can use Mathematica to make plots of functions. You give Mathematica a function,
and it builds up a curve or surface by evaluating the function at many different points.  

This section describes how you can make plots from lists of data, instead of functions. (Section 1.11.3 discusses how to
read data from external files and programs.) The Mathematica commands for plotting lists of data are direct analogs of
the ones discussed above for plotting functions. 

ListPlot@ 8  y1,  y2, … <  D plot  y1  ,  y2  ,  ...  at  x  values  1  ,  2  ,  ...  
ListPlot@ 8  8  x1,
 y1  <,  8  x2,  y2  <, … <  D 

plot points  Hx1, y1L  ,  ...  

ListPlot@ list,  
PlotJoined  −>  TrueD 

join the points with lines

ListPlot3D@ 8  8  z11,  z12,
… <,  8  z21,  z22, … <, … <  D 

make a three-dimensional plot of the array of heights  zy x  

ListContourPlot@ array D make a contour plot from an array of heights
ListDensityPlot@ array D make a density plot

Functions for plotting lists of data. 
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Here is a list of values. 

In[1]:= t = Table[i^2, {i, 10}]

Out[1]= 81, 4, 9, 16, 25, 36, 49, 64, 81, 100<

This plots the values. 

In[2]:= ListPlot[t]
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Out[2]=  Graphics 

This joins the points with lines. 

In[3]:= ListPlot[t, PlotJoined -> True]
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Out[3]=  Graphics 

This gives a list of x , y  pairs. 

In[4]:= Table[{i^2, 4 i^2 + i^3}, {i, 10}]

Out[4]= 881, 5<, 84, 24<, 89, 63<, 816, 128<, 825, 225<,
836, 360<, 849, 539<, 864, 768<, 881, 1053<, 8100, 1400<<
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This plots the points. 

In[5]:= ListPlot[%]
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Out[5]=  Graphics 

This gives a rectangular array of values. The array is quite large, so we end the input with a semicolon to stop the result from being 
printed out. 

In[6]:= t3 = Table[Mod[x, y], {y, 20}, {x, 30}] ;

This makes a three-dimensional plot of the array of values. 

In[7]:= ListPlot3D[t3]
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Out[7]=  SurfaceGraphics 
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You can redraw the plot using Show, as usual. 

In[8]:= Show[%, ViewPoint -> {1.5, -0.5, 0}]
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Out[8]=  SurfaceGraphics 

This gives a density plot of the array of values. 

In[9]:= ListDensityPlot[t3]
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Out[9]=  DensityGraphics 

1.9.9 Parametric Plots

Section  1.9.1  described  how  to  plot  curves  in  Mathematica  in  which  you  give  the  y  coordinate  of  each  point  as  a
function of the x  coordinate.  You can also use Mathematica  to make parametric  plots. In a parametric plot, you give
both the x  and y  coordinates of each point as a function of a third parameter, say t .  

Printed from the Mathematica Help Browser 33

©1988-2003 Wolfram Research, Inc. All rights reserved.



ParametricPlot@ 8  
f x,  f y  <,  8  t,  tmin,  tmax <  D 

make a parametric plot

ParametricPlot@ 8  8  f x,  f y  <,  8  

gx,  gy  <, … <,  8  t,  tmin,  tmax <  D 

plot several parametric curves together

ParametricPlot@ 8  
f x,  f y  <,  8  t,  tmin,  tmax <,  

AspectRatio  −>  AutomaticD 

attempt to preserve the shapes of curves

Functions for generating parametric plots. 

Here is the curve made by taking the x  coordinate of each point to be Sin[t] and the y  coordinate to be Sin[2t]. 

In[1]:= ParametricPlot[{Sin[t], Sin[2t]}, {t, 0, 2Pi}]
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Out[1]=  Graphics 

The “shape”  of the curve produced depends on the ratio of height to width for the whole plot. 

In[2]:= ParametricPlot[{Sin[t], Cos[t]}, {t, 0, 2Pi}]
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Out[2]=  Graphics 
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Setting the option AspectRatio to Automatic makes Mathematica preserve the “true  shape”  of the curve, as defined by the 
actual coordinate values it involves.  

In[3]:= Show[%, AspectRatio -> Automatic]
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Out[3]=  Graphics 

ParametricPlot3D@ 8  f x,

 f y,  f z  <,  8  t,  tmin,  tmax <  D 

make a parametric plot of a three-dimensional curve

ParametricPlot3D@ 8  f x,  f y,  f z  <,
 8  t,  tmin,  tmax <,  8  u,  umin,  umax <  D 

make a parametric plot of a three-dimensional surface

ParametricPlot3D@ 

8  f x,  f y,  f z,  s <, … D 

shade the parts of the parametric plot according to the function  s 

ParametricPlot3D@ 8  8  f x,  f y,

 f z  <,  8  gx,  gy,  gz  <, … <, … D 

plot several objects together

Three-dimensional parametric plots. 

ParametricPlot3D[8 f x, f y, f z <, 8 t, tmin, tmax<] is the direct analog in three dimensions of Parametric
Plot[8 f x, f y <, 8 t, tmin, tmax<] in two dimensions. In both cases, Mathematica  effectively generates a sequence
of points by varying the parameter t, then forms a curve by joining these points. With ParametricPlot, the curve is
in two dimensions; with ParametricPlot3D, it is in three dimensions. 
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This makes a parametric plot of a helical curve. Varying t produces circular motion in the x , y  plane, and linear motion in the z  
direction. 

In[4]:= ParametricPlot3D[{Sin[t], Cos[t], t/3}, {t, 0, 15}]
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Out[4]=  Graphics3D 

ParametricPlot3D[8 f x, f y, f z <, 8 t, tmin, tmax<, 8u, umin, umax<] creates a surface, rather than a curve.
The surface is formed from a collection of quadrilaterals. The corners of the quadrilaterals have coordinates correspond-
ing to the values of the f i  when t and u take on values in a regular grid. 

Here the x  and y  coordinates for the quadrilaterals are given simply by t and u. The result is a surface plot of the kind that can be 
produced by Plot3D. 

In[5]:= ParametricPlot3D[{t, u, Sin[t u]}, {t, 0, 3}, {u, 0, 3}]
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Out[5]=  Graphics3D 
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This shows the same surface as before, but with the y  coordinates distorted by a quadratic transformation. 

In[6]:= ParametricPlot3D[{t, u^2, Sin[t u]}, {t, 0, 3}, {u, 0, 3}]
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Out[6]=  Graphics3D 

This produces a helicoid surface by taking the helical curve shown above, and at each section of the curve drawing a quadrilateral. 

In[7]:= ParametricPlot3D[{u Sin[t], u Cos[t], t/3}, {t, 0, 15}, {u, -1, 1}]
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Out[7]=  Graphics3D 

In general,  it  is possible to construct many complicated surfaces using ParametricPlot3D.  In each case, you can
think of the surfaces as being formed by “distorting”  or “rolling  up”  the t , u  coordinate grid in a certain way. 
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This produces a cylinder. Varying the t parameter yields a circle in the x , y  plane, while varying u moves the circles in the z  
direction. 

In[8]:= ParametricPlot3D[{Sin[t], Cos[t], u}, {t, 0, 2Pi}, {u, 0, 4}]

-1-0.50 0.5 1

-1
-0.5

0
0.5

1

0

1

2

3

4
1
-0.5

0
0.5

Out[8]=  Graphics3D 

This produces a torus. Varying u yields a circle, while varying t rotates the circle around the z  axis to form the torus. 

In[9]:= ParametricPlot3D[ {Cos[t] (3 + Cos[u]), Sin[t] (3 + Cos[u]), Sin[u]}, {t, 0, 
2Pi}, {u, 0, 2Pi}]
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Out[9]=  Graphics3D 
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This produces a sphere. 

In[10]:= ParametricPlot3D[ {Cos[t] Cos[u], Sin[t] Cos[u], Sin[u]}, {t, 0, 2Pi}, {u, 
-Pi/2, Pi/2}]
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Out[10]=  Graphics3D 

You should  realize  that  when  you draw surfaces  with  ParametricPlot3D,  the  exact  choice  of  parametrization is
often  crucial.  You  should  be  careful,  for  example,  to  avoid  parametrizations  in  which  all  or  part  of  your  surface  is
covered more than once.  Such multiple coverings  often lead to discontinuities in the mesh drawn on the surface,  and
may make ParametricPlot3D take much longer to render the surface. 

1.9.10 Some Special Plots

As discussed in Section 2.10, Mathematica  includes a full graphics programming language.  In this language, you can
set up many different kinds of plots. A few of the common ones are included in standard Mathematica packages. 
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<<Graphics` load a package to set up additional graphics functions
LogPlot@ f ,  8  x,  xmin,  xmax <  D generate a log-linear plot

LogLogPlot@ f ,  8  x,  xmin,  xmax <  D generate a log-log plot
LogListPlot@ list D generate a log-linear plot from a list of data

LogLogListPlot@ list D generate a log-log plot from a list of data
PolarPlot@ r,  8  t,  tmin,  tmax <  D generate a polar plot of the radius  r as a function of angle  t 

ErrorListPlot@ 

8  8  x1,  y1,  dy1  <, … <  D 

generate a plot of data with error bars

TextListPlot@ 8  
8  x1,  y1,  " s1  " < ,  … <  D 

plot a list of data with each point given by the text string  si  

BarChart@ list D plot a list of data as a bar chart
PieChart@ list D plot a list of data as a pie chart

PlotVectorField@ 8  f x,  f y  <,  8  x,  

xmin,  xmax <,  8  y,  ymin,  ymax <  D 

plot the vector field corresponding to the vector function  f  

ListPlotVectorField@ list D plot the vector field corresponding
to the two-dimensional array of vectors in  list 

SphericalPlot3D@ r,  8  theta,  
min,  max <,  8  phi,  min,  max <  D 

generate a three-dimensional spherical plot

Some special plotting functions defined in standard Mathematica packages. 

This loads a standard Mathematica package to set up additional graphics functions. 

In[1]:= <<Graphics`

This generates a log-linear plot. 

In[2]:= LogPlot[ Exp[-x] + 4 Exp[-2x], {x, 0, 6} ]
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Out[2]=  Graphics 

Here is a list of the first 10 primes. 

In[3]:= p = Table[Prime[n], {n, 10}]

Out[3]= 82, 3, 5, 7, 11, 13, 17, 19, 23, 29<
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This plots the primes using the integers 1, 2, 3, …  as plotting symbols. 

In[4]:= TextListPlot[p]
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Out[4]=  Graphics 

Here is a bar chart of the primes. 

In[5]:= BarChart[p]
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Out[5]=  Graphics 
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This gives a pie chart. 

In[6]:= PieChart[p]
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Out[6]=  Graphics 

1.9.11 Special Topic: Animated Graphics

On many computer systems, Mathematica can produce not only static images, but also animated graphics or “movies”
. 

The basic idea in all cases is to generate a sequence of “frames”  which can be displayed in rapid succession. You can
use the standard Mathematica  graphics functions described above to produce each frame. The mechanism for display-
ing the frames as a movie depends on the Mathematica  interface you are using. With a notebook-based interface, you
typically  put  the  frames  in  a  sequence  of  cells,  then  select  the  cells  and  choose  a  command  to  animate  them.  With
text-based interfaces,  there is often an external  program provided  for  displaying animated graphics.  The program can
typically be accessed from inside Mathematica using the function Animate. 

<<Graphics`Animation  ̀ load the animation package Hif necessaryL
Animate@ plot,  8  t,  tmin,  tmax <  D execute the graphics command  plot for a sequence of values of  

t , and animate the resulting sequence of frames
ShowAnimation@ 8  g1,  g2, … <  D produce an animation from a sequence of graphics objects

Typical ways to produce animated graphics. 

When  you  produce  a  sequence  of  frames  for  a  movie,  it  is  important  that  different  frames  be  consistent.  Thus,  for
example, you should typically give an explicit setting for the PlotRange option, rather than using the default Auto
matic  setting, in order to ensure that the scales used in different frames are the same. If you have three-dimensional
graphics with different view points, you should similarly set SphericalRegion -> True in order to ensure that the
scaling of different plots is the same. 
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This generates a list of graphics objects. Setting DisplayFunction -> Identity stops Plot3D from rendering the graphics 
it produces. Explicitly setting PlotRange ensures that the scale is the same in each piece of graphics. 

In[1]:= Table[ Plot3D[ BesselJ[0, Sqrt[x^2 + y^2] + t], {x, -10, 10}, {y, -10, 10}, Axes 
-> False, PlotRange -> {-0.5, 1.0}, DisplayFunction -> Identity ], {t, 0, 8} ] // 
Short

Out[1]//Short= 

8  SurfaceGraphics , 7 ,  SurfaceGraphics <

On an appropriate computer system, ShowAnimation[%] would animate the graphics. This partitions the graphics into three 
rows, and shows the resulting array of images. 

In[2]:= Show[ GraphicsArray[ Partition[%, 3] ] ]

Out[2]=  GraphicsArray 

1.9.12 Sound

On most computer systems, Mathematica  can produce not  only graphics  but  also sound.  Mathematica  treats graphics
and sound in a closely analogous way. 

For example, just as you can use Plot[f, 8x, xmin, xmax<] to plot a function, so also you can use Play[f, 8 t, 0,
tmax<] to “play”  a function. Play takes the function to define the waveform for a sound: the values of the function
give the amplitude of the sound as a function of time. 

Play@ f ,  8  t,  0,  tmax <  D play a sound with amplitude  f  as a function of time  t in seconds

Playing a function. 

On a suitable computer system, this plays a pure tone with a frequency of 440 hertz for one second. 

In[1]:= Play[Sin[2Pi 440 t], {t, 0, 1}]

Out[1]= -Sound-

Sounds  produced  by  Play  can  have  any  waveform.  They  do  not,  for  example,  have  to  consist  of  a  collection  of
harmonic pieces. In general, the amplitude function you give to Play specifies the instantaneous signal associated with
the  sound.  This  signal  is  typically  converted  to  a  voltage,  and  ultimately  to  a  displacement.  Note  that  amplitude  is
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sometimes defined to be the peak signal associated with a sound; in Mathematica, it is always the instantaneous  signal
as a function of time. 

This plays a more complex sound. 

In[2]:= Play[ Sin[700 t + 25 t Sin[350 t]], {t, 0, 4} ]

Out[2]= -Sound-

Play  is  set  up  so  that  the  time variable  that  appears  in  it  is  always measured in  absolute  seconds.  When  a  sound  is
actually played, its amplitude is sampled a certain number of times every second. You can specify the sample rate by
setting the option SampleRate. 

Play@ f ,  8  t,  0,  tmax 
<,  SampleRate  −>  r D 

play a sound, sampling it  r times a second

Specifying the sample rate for a sound. 

In general,  the higher the sample rate, the better high-frequency components in the sound will be rendered. A sample
rate of r  typically allows frequencies up to r ê 2  hertz. The human auditory system can typically perceive sounds in the
frequency  range  20  to  22000  hertz  (depending  somewhat  on  age  and  sex).  The  fundamental  frequencies  for  the  88
notes on a piano range from 27.5 to 4096 hertz. 

The  standard  sample  rate  used  for  compact  disc  players  is  44100.  The  effective  sample  rate  in  a  typical  telephone
system is around 8000. On most computer systems, the default sample rate used by Mathematica is around 8000.

You can use Play[8 f 1, f 2 <, … ] to produce stereo sound. In general, Mathematica  supports any number of sound
channels. 

ListPlay@ 8  a1,  a2,
… <,  SampleRate  −>  r D 

play a sound with a sequence of amplitude levels

Playing sampled sounds. 

The function ListPlay allows you simply to give a list of values which are taken to be sound amplitudes sampled at
a certain rate. 

When sounds are actually rendered by Mathematica, only a certain range of amplitudes is allowed. The option Play
Range  in Play  and ListPlay  specifies how the amplitudes you give should be scaled to fit in the allowed range.
The settings for this option are analogous to those for the PlotRange graphics option discussed in Section 1.9.2. 

PlayRange  −>  Automatic HdefaultL use an internal procedure to scale amplitudes
PlayRange  −>  All scale so that all amplitudes fit in the allowed range

PlayRange  −>  8  amin,  amax <  make amplitudes between  amin and  
amax fit in the allowed range, and clip others

Specifying the scaling of sound amplitudes. 

While  it  is  often  convenient  to  use  the  default  setting  PlayRange  ->  Automatic,  you  should  realize  that  Play
may run significantly faster if you give an explicit PlayRange specification, so it does not have to derive one. 

Show@ sound D replay a sound object

Replaying a sound object. 

44 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



Both Play and ListPlay return Sound objects which contain procedures for synthesizing sounds. You can replay a
particular Sound object using the function Show that is also used for redisplaying graphics. 

The internal structure of Sound objects is discussed in Section 2.10.18. 
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1.10 Input and Output in Notebooks

1.10.1 Entering Greek Letters

click on  a  use a button in a palette
î @AlphaD use a full name

Â aÂ or Â alphaÂ use a standard alias Hshown below as Ç a  L
Â \alphaÂ use a TeX alias

Â &agrÂ use an SGML alias

Ways to enter Greek letters in a notebook. 

Here is a palette for entering common Greek letters.

You can use Greek letters just like the ordinary letters that you type on your keyboard. 

In[1]:= Expand[(α + β)^3]

Out[1]= α3 + 3 α2 β + 3 α β2 + β3

There are several ways to enter Greek letters. This input uses full names. 

In[2]:= Expand[(\[Alpha] + \[Beta])^3]

Out[2]= α3 + 3 α2 β + 3 α β2 + β3
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full name aliases 

a î @AlphaD Ç a  , Ç alpha

b î @BetaD Ç b  , Ç beta

g î @GammaD Ç g  , Ç gamma

d î @DeltaD Ç d  , Ç delta

e î @EpsilonD Ç e  , Ç epsilon

z î @ZetaD Ç z  , Ç zeta

h î @EtaD Ç h  , Ç et  , Ç eta

q î @ThetaD Ç q  , Ç th  , Ç theta

k î @KappaD Ç k  , Ç kappa

l î @LambdaD Ç l  , Ç lambda

m î @MuD Ç m  , Ç mu

n î @NuD Ç n  , Ç nu

x î @XiD Ç x  , Ç xi

p î @PiD Ç p  , Ç pi

r î @RhoD Ç r  , Ç rho

s î @SigmaD Ç s  , Ç sigma

t î @TauD Ç t  , Ç tau

f î @PhiD Ç f  , Ç ph  , Ç phi

j î @CurlyPhiD Ç j  , Ç cph  , Ç cphi

c î @ChiD Ç c  , Ç ch  , Ç chi

y î @PsiD Ç y  , Ç ps  , Ç psi

w î @OmegaD Ç o  , Ç w  , Ç omega

full name aliases 

G î @CapitalGammaD Ç G  , Ç Gamma

D î @CapitalDeltaD Ç D  , Ç Delta

Q î @CapitalThetaD Ç Q  , Ç Th  , Ç Theta

L î @CapitalLambdaD Ç L  , Ç Lambda

P î @CapitalPiD Ç P  , Ç Pi

S î @CapitalSigmaD Ç S  , Ç Sigma

U î @CapitalUpsilonD Ç U  , Ç Upsilon

F î @CapitalPhiD Ç F  , Ç Ph  , Ç Phi

C î @CapitalChiD Ç C  , Ç Ch  , Ç Chi

Y î @CapitalPsiD Ç Y  , Ç Ps  , Ç Psi

W î @CapitalOmegaD Ç O  , Ç W  , Ç Omega

Commonly used Greek letters. In aliases Ç  stands for the key Â . TeX aliases are not listed explicitly.

Note that in Mathematica the letter p  stands for Pi. None of the other Greek letters have special meanings. 

p  stands for Pi. 

In[3]:= N[π]

Out[3]= 3.14159

You can use Greek letters either on their own or with other letters. 

In[4]:= Expand[(Rαβ + Ξ)^4]

Out[4]= Rαβ4 + 4 Rαβ3 Ξ + 6 Rαβ2 Ξ2 + 4 Rαβ Ξ3 + Ξ4

The symbol pa  is not related to the symbol p . 

In[5]:= Factor[πα^4 - 1]

Out[5]= H−1 + παL H1 + παL H1 + πα2L
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1.10.2 Entering Two-Dimensional Input

When Mathematica reads the text x^y, it interprets it as x raised to the power y. 

In[1]:= x^y

Out[1]= xy

In a notebook, you can also give the two-dimensional input xy  directly. Mathematica again interprets this as a power. 

In[2]:= xy

Out[2]= xy

One way to enter a two-dimensional form such as xy  into a Mathematica  notebook is to copy this form from a palette
by clicking the appropriate button in the palette. 

Here is a palette for entering some common two-dimensional notations. 

There are also several ways to enter two-dimensional forms directly from the keyboard. 

x ‚Î ^Ï  y ‚Î â  Ï use control keys that exist on most keyboards
x ‚Î 6Ï  y ‚Î â  Ï use control keys that should exist on all keyboards

î !îH x î ^ y î L followed by  Make 2D use only ordinary printable characters

Ways to enter a superscript directly from the keyboard. ‚Îâ Ï stands for Control-Space.

You type ‚Î^Ï by holding down the Control key, then hitting the ^ key. As soon as you do this, your cursor will jump
to a superscript position. You can then type anything you want and it will appear in that position.   

When you have finished, press ‚Îâ Ï to move back down from the superscript position. ‚Îâ Ï stands for Control-Space;
you type it by holding down the Control key, then pressing the space bar. 

This sequence of keystrokes enters xy . 

In[3]:= x ‚Î^Ï y

Out[3]= xy

Here the whole expression y+z is in the superscript. 

In[4]:= x ‚Î^Ï y + z

Out[4]= xy+z
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Pressing ‚Îâ Ï (Control-Space) takes you down from the superscript. 

In[5]:= x ‚Î^Ï y ‚Î Ï + z

Out[5]= xy + z

You can remember the fact that ‚Î^Ï gives you a superscript by thinking of ‚Î^Ï as just a more immediate form of
^.  When you type x^y,  Mathematica  will  leave this one-dimensional form unchanged  until  you explicitly process it.
But if you type x ‚Î^Ï y then Mathematica will immediately give you a superscript. 

On a standard English-language keyboard,  the character ^  appears as the shifted version of 6.  Mathematica  therefore
accepts ‚Î6Ï as an alternative to ‚Î^Ï. Note that if you are using something other than a standard English-language
keyboard, Mathematica will almost always accept ‚Î6Ï but may not accept ‚Î^Ï. 

This is an alternative input form that avoids the use of control characters. 

In[6]:= \!\( x \^ y \)

Out[6]= xy

With this input form, Mathematica automatically understands that the + z does not go in the superscript. 

In[7]:= \!\( x \^ y + z \)

Out[7]= xy + z

Using control characters minimizes the number of keystrokes that you need to type in order to enter a superscript. But
particularly if you want to save your input in a file, or send it to another program, it is often more convenient to use a
form that does not involve control characters. You can do this using î! sequences.     

If you copy a î! sequence into Mathematica, it will automatically jump into two-dimensional form. But if you enter the
sequence  directly  from  the  keyboard,  you  explicitly  need  to  choose  the  Make  2D  menu  item  in  order  to  get  the
two-dimensional form. 

When entered from the keyboard î( … î) sequences are shown in literal form.

Choosing the Make 2D item in the Edit menu converts these sequences into two-dimensional forms.

x ‚Î _Ï  y ‚Î â  Ï use control keys that exist on most keyboards
x ‚Î −Ï  y ‚Î â  Ï use control keys that should exist on all keyboards

î !îH x î _ y î L followed by  Make 2D use only ordinary printable characters

Ways to enter a subscript directly from the keyboard. 

Subscripts in Mathematica  work very much like superscripts. However, whereas Mathematica  automatically interprets
xy  as  x  raised to  the  power  y,  it  has  no  similar interpretation  for  xy .  Instead,  it  just  treats  xy  as  a  purely  symbolic
object. 
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This enters y as a subscript. 

In[8]:= x ‚Î_Ï y

Out[8]= xy

Here is another way to enter y as a subscript. 

In[9]:= \!\( x \_ y \)

Out[9]= xy

x ‚Î êÏ  y ‚Î â  Ï use control keys
î !îH x î ê y î L followed by  Make 2D use only ordinary printable characters

Ways to enter a built-up fraction directly from the keyboard. 

This enters the built-up fraction xÅÅÅÅy . 

In[10]:= x ‚Î/Ï y

Out[10]= 
x
y

Here the whole y + z goes into the denominator. 

In[11]:= x ‚Î/Ï y + z

Out[11]= 
x

y + z

But pressing Control-Space takes you out of the denominator, so the + z does not appear in the denominator. 

In[12]:= x ‚Î/Ï y ‚Î Ï + z

Out[12]= 
x
y

+ z

Mathematica automatically interprets a built-up fraction as a division. 

In[13]:= 
8888

2222

Out[13]= 4

Here is another way to enter a built-up fraction. 

In[14]:= \!\( 8888 \/ 2222 \)

Out[14]= 4

‚Î @Ï  x ‚Î â  Ï use control keys that exist on most keyboards
‚Î 2Ï  x ‚Î â  Ï use control keys that should exist on all keyboards

î !îHî@ x î L followed by  Make 2D use only ordinary printable characters

Ways to enter a square root directly from the keyboard. 
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This enters a square root. 

In[15]:= ‚Î@Ï x + y

Out[15]= 
è!!!!!!!!!!!x + y

Control-Space takes you out of the square root. 

In[16]:= ‚Î@Ï x ‚Î Ï + y

Out[16]= 
è!!!x + y

Here is a form without control characters. 

In[17]:= \!\( \@ x + y \)

Out[17]= 
è!!!x + y

And here is the usual one-dimensional Mathematica input that gives the same output expression. 

In[18]:= Sqrt[x] + y

Out[18]= 
è!!!x + y

‚Î ^Ï or ‚Î 6Ï go to the superscript position
‚Î _Ï or ‚Î −Ï go to the subscript position
‚Î @Ï or ‚Î 2Ï go into a square root
‚Î %Ï or ‚Î 5Ï go from subscript to superscript or

vice versa, or to the exponent position in a root
‚Î êÏ go to the denominator for a fraction
‚Î â  Ï return from a special position HControl-SpaceL

Special input forms based on control characters. The second forms given should work on any keyboard. 

This puts both a subscript and a superscript on x. 

In[19]:= x ‚Î^Ï y ‚Î%Ï z

Out[19]= xz
y

Here is another way to enter the same expression. 

In[20]:= x ‚Î_Ï z ‚Î%Ï y

Out[20]= xz
y
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î !îH …î L all two-dimensional input and grouping within it
x î ^  y superscript  xy  within î !îH …î L 

x î _  y subscript  xy  within î !îH …î L 

x î ^  y î %  z subscript and superscript  xz
y  within î !îH …î L 

î @  x square root  
è!!!x  within î !îH …î L 

x î ê  y built-up fraction  xÅÅÅÅy  within î !îH …î L 

Special input forms that generate two-dimensional input with the Make 2D menu item. 

You must preface the outermost î( with î!. 

In[21]:= \!\(a \/ b + \@ c \) + d

Out[21]= 
a
b

+ è!!!c + d

You can use î( and î) to indicate the grouping of elements in an expression without introducing explicit parentheses. 

In[22]:= \!\(a \/ \( b + \@ c \) \) + d

Out[22]= 
a

b + è!!!c
+ d

In  addition  to  subscripts  and  superscripts,  Mathematica  also  supports  the  notion  of  underscripts  and
overscripts—elements that  go  directly  underneath  or  above.  Among  other  things,  you  can  use  underscripts  and  over-
scripts to enter the limits of sums and products. 

x ‚Î +Ï  y ‚Î â  Ï or  x ‚Î =Ï  y ‚Î â  Ï create an underscript  x
y

 

î !îH x î + y î L followed by  Make 2D create an underscript  x
y

 

x ‚Î &Ï  y ‚Î â  Ï or  x ‚Î 7Ï  y ‚Î â  Ï create an overscript  x
y

 

î !îH x î & y î L followed by  Make 2D create an overscript  x
y

 

Creating underscripts and overscripts.

1.10.3 Editing and Evaluating Two-Dimensional Expressions

When you see a two-dimensional expression on the screen, you can edit it much as you would edit text. You can for
example place your cursor somewhere and start typing. Or you can select a part of the expression, then remove it using
the Delete key, or insert a new version by typing it in. 

In addition to ordinary text editing features, there are some keys that you can use to move around in two-dimensional
expressions. 

‚Î .Ï select the next larger subexpression
‚Î â  Ï move to the right of the current structure

Ø move to the next character
≠ move to the previous character

Ways to move around in two-dimensional expressions. 
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This shows the sequence of subexpressions selected by repeatedly typing ‚Î.Ï.

Shift-Enter evaluate the whole current cell
Shift-Control-Enter or Command-Return evaluate only the selected subexpression

Ways to evaluate two-dimensional expressions. 

In  most  computations,  you  will  want  to  go  from  one  step  to  the  next  by  taking  the  whole  expression  that  you  have
generated,  and  then  evaluating  it.  But  if  for  example  you  are  trying  to  manipulate  a  single  formula  to  put  it  into  a
particular form, you may instead find it  more convenient  to  perform a sequence of  operations  separately on different
parts of the expression.  

You do this by selecting each part you want to operate on, then inserting the operation you want to perform, then using
Shift-Control-Enter or Command-Return. 

Here is an expression with one part selected.

Pressing Shift-Control-Enter evaluates the selected part.
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1.10.4 Entering Formulas

character  short form long form symbol 

p  Ç p  î @PiD Pi 

¶ Ç inf  î 
@InfinityD 

Infinity 

°  Ç deg  î @DegreeD Degree 

Special forms for some common symbols. Ç  stands for the key Â .

This is equivalent to Sin[60 Degree]. 

In[1]:= Sin[60°]

Out[1]= 
è!!!3
2

Here is the long form of the input. 

In[2]:= Sin[60 \[Degree]]

Out[2]= 
è!!!3
2

You can enter the same input like this. 

In[3]:= Sin[60 deg ]

Out[3]= 
è!!!3
2

Here the angle is in radians. 

In[4]:= SinA π

3
E

Out[4]= 
è!!!3
2
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special

characters 

short form long form ordinary characters 

x  §   y x Ç <=   y x î @
LessEqualD 

 y 

x  <=  y 

x  ¥   y x Ç >=   y x î @
GreaterEq
ualD  y 

x  >=  y 

x  ∫   y x Ç !=   y x î 
@NotEqualD 

 y 

x  !=  y 

x  œ   y x Ç el   y x î 
@ElementD 

 y 

Element@ x,  y D 

x  Ø   y x Ç −>   y x î 
@RuleD  y 

x  −>  y 

Special forms for a few operators. Section A.2.7 gives a complete list. 

Here the replacement rule is entered using two ordinary characters, as ->. 

In[5]:= x/(x+1) /. x -> 3 + y

Out[5]= 
3 + y
4 + y

This means exactly the same. 

In[6]:= x/(x+1) /. x \[Rule] 3 + y

Out[6]= 
3 + y
4 + y

As does this. 

In[7]:= x/(x+1) /. x → 3 + y

Out[7]= 
3 + y
4 + y

Or this. 

In[8]:= x/(x+1) /. x ->  3 + y

Out[8]= 
3 + y
4 + y

The special arrow form Ø  is by default also used for output. 

In[9]:= Solve[x^2 == 1, x]

Out[9]= 88x → −1<, 8x → 1<<
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special

characters 

short form long form ordinary characters 

x  π   y x Ç div   y x î 
@DivideD  y 

x  ê  y 

x  µ   y x Ç ∗   y x î 
@TimesD  y 

x  ∗  y 

x  ä   y x Ç cross   y x î 
@CrossD  y 

Cross@ x,  y D 

x  ã   y x Ç ==   y x î 
@EqualD  y 

x  ==  y 

x    y x Ç l=   y x î @
LongEqualD 

 y 

x  ==  y 

x  fl   y x Ç &&   y x î @AndD  y x  &&  y 
x  fi   y x Ç »»   y x î @OrD  y x  »»  y 
Ÿ   x Ç !   x î @NotD  x !x 
x  fl   y x Ç =>   y x î 

@ImpliesD 

 y 

Implies@ x,  y D 

x  ‹   y x Ç un   y x î 
@UnionD  y 

Union@ x,  y D 

x  ›   y x Ç inter   y x î @
Intersect
ionD  y 

Intersection@ x,  y D 

x  y x Ç ,   y x î @
Invisible
CommaD  y 

x,y 

f   x f  Ç @   x f  î @
Invisible
Applicati
onD  x 

f  @x or  f  @ x D 

Some operators with special forms used for input but not output. 

Mathematica understands π , but does not use it by default for output. 

In[10]:= x ÷ y

Out[10]= 
x
y

The  forms  of  input  discussed  so  far  in  this  section  use  special  characters,  but  otherwise  just  consist  of  ordinary
one-dimensional lines of text. Mathematica notebooks, however, also make it possible to use two-dimensional forms of
input. 
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two-dimensional one-dimensional 

 xy  x  ^  y power
 x

y  x  ê  y division
 è!!!x  Sqrt@ x D square root
 è!!!xn  x  ^  H1ê nL n  th  root
 ⁄i=imin

imax f  Sum@ f ,  8  i,  
imin,  imax <  D 

sum

 ¤i=imin
imax f  Product@ f ,  8  

i,  imin,  imax <  D 

product

 Ÿ f x  Integrate@ 

f ,  x D 

indefinite integral

 Ÿxmin
xmax f x  Integrate@ f ,  8  

x,  xmin,  xmax <  D 

definite integral

 ∂x f  D@ f ,  x D partial derivative
 ∂x,y f  D@ f ,  x,  y D multivariate partial derivative
 exprPi, j,…T  Part@ expr,

 i,  j, … D 

part extraction

Some two-dimensional forms that can be used in Mathematica notebooks. 

You can enter  two-dimensional  forms using any of  the mechanisms discussed  in Section 1.10.2.  Note that  upper  and
lower limits for sums and products must be entered as overscripts and underscripts—not superscripts and subscripts.  

This enters an indefinite integral. Note the use of Çdd  to enter the “differential  d”.  

In[11]:= int  f[x] dd  x

Out[11]= ‡ f@xD x

Here is an indefinite integral that can be explicitly evaluated. 

In[12]:= ‡ Exp@−x2D x

Out[12]= 
1
2
è!!!π Erf@xD

Here is the usual Mathematica input for this integral. 

In[13]:= Integrate[Exp[-x^2], x]

Out[13]= 
1
2
è!!!π Erf@xD

This enters exactly the same integral. 

In[14]:= \!\( \[Integral] Exp[-x\^2] \[DifferentialD]x \)

Out[14]= 
1
2
è!!!π Erf@xD
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short form long form 

Ç sum  î @SumD summation sign  ⁄  
Ç prod  î @ProductD product sign  ¤  

Ç int  î @IntegralD integral sign  Ÿ  
Ç dd  î @

DifferentialDD 

special  „  for use in integrals

Ç pd  î @PartialDD partial derivative operator  ∑  
Ç @@  , Ç DD  î @

LeftDoubleBra
cketD , î @
RightDoubleBr
acketD 

part brackets

Some special characters used in entering formulas. Section 3.10 gives a complete list. 

You should realize that even though a summation sign can look almost identical to a capital sigma it is treated in a very
different way by Mathematica. The point is that a sigma is just a letter; but a summation sign is an operator which tells
Mathematica to perform a Sum operation.  

Capital sigma is just a letter. 

In[15]:= a + \[CapitalSigma]^2

Out[15]= a + Σ2

A summation sign, on the other hand, is an operator. 

In[16]:= ÂsumÂ ‚Î+Ï n=0 ‚Î%Ï m ‚Î Ï 1/f[n]

Out[16]= ‚
n=0

m
1

f@nD

Here is another way to enter the same input. 

In[17]:= \!\( \[Sum] \+ \( n = 0 \) \% m 1 \/ f[n] \)

Out[17]= ‚
n=0

m
1

f@nD

Much as  Mathematica  distinguishes  between  a  summation sign  and  a  capital  sigma,  it  also  distinguishes  between  an
ordinary d  and the special “differential  d”  „  that is used in the standard notation for integrals. It is crucial that you
use this differential „ —entered as ÂddÂ—when you type in an integral. If you try to use an ordinary d, Mathematica
will just interpret this as a symbol called d—it will not understand that you are entering the second part of an integra-
tion operator. 

This computes the derivative of xn . 

In[18]:= ∂x xn

Out[18]= n x−1+n
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Here is the same derivative specified in ordinary one-dimensional form. 

In[19]:= D[x^n, x]

Out[19]= n x−1+n

This computes the third derivative. 

In[20]:= ∂x,x,x xn

Out[20]= H−2 + nL H−1 + nL n x−3+n

Here is the equivalent one-dimensional input form. 

In[21]:= D[x^n, x, x, x]

Out[21]= H−2 + nL H−1 + nL n x−3+n

1.10.5 Entering Tables and Matrices

The Mathematica front end typically provides a Create Table/Matrix/Palette menu item which allows you to create a
blank array with any specified number of rows and columns. Once you have such an array, you can then edit it to fill in
whatever elements you want.   

Mathematica treats an array like this as a matrix represented by a list of lists. 

In[1]:= 
a b c
1 2 3

Out[1]= 88a, b, c<, 81, 2, 3<<

Putting parentheses around the array makes it look more like a matrix, but does not affect its interpretation. 

In[2]:= J a b c
1 2 3

N

Out[2]= 88a, b, c<, 81, 2, 3<<

Using MatrixForm tells Mathematica to display the result of the Transpose as a matrix. 

In[3]:= MatrixFormATransposeAJ a b c
1 2 3

NEE

Out[3]//MatrixForm= 

i

k

jjjjjjj
a 1
b 2
c 3

y

{

zzzzzzz

‚Î ,Ï add a column
‚Î ¿  Ï HControl-EnterL add a row

Tab go to the next  Ñ  or  É  element
‚Î â  Ï HControl-SpaceL move out of the table or matrix

Entering tables and matrices. 
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Note that you can use ‚Î,Ï and ‚Î¿ Ï to start building up an array, and particularly for small arrays this is often more
convenient than using the Create Table/Matrix/Palette menu item. 

Section 2.9.11  will  describe  how to adjust  many aspects  of  the appearance  of  arrays  you create in  Mathematica.  The
Create  Table/Matrix/Palette  menu  item  typically  allows  you  to  make  basic  adjustments,  such  as  drawing  lines
between rows or columns. 

1.10.6 Subscripts, Bars and Other Modifiers

Here is a typical palette of modifiers. 

Mathematica allows you to use any expression as a subscript. 

In[1]:= Expand@H1 + x1+nL4D

Out[1]= 1 + 4 x1+n + 6 x1+n
2 + 4 x1+n

3 + x1+n
4

Unless you specifically tell it otherwise, Mathematica will interpret a superscript as a power. 

In[2]:= Factor@xn4 − 1D

Out[2]= H−1 + xnL H1 + xnL H1 + xn
2L

‚Î _Ï or ‚Î −Ï go to the position for a subscript
‚Î +Ï or ‚Î =Ï go to the position underneath
‚Î ^Ï or ‚Î 6Ï go to the position for a superscript
‚Î &Ï or ‚Î 7Ï go to the position on top

‚Î â  Ï return from a special position HControl-SpaceL
Special input forms based on control characters. The second forms given should work on any keyboard. 

This enters a subscript using control keys. 

In[3]:= Expand[(1 + x‚Î_Ï1+n‚Î Ï)^4]

Out[3]= 1 + 4 x1+n + 6 x1+n
2 + 4 x1+n

3 + x1+n
4

Just  as  ‚Î^Ï  and  ‚Î_Ï  go  to  superscript  and  subscript  positions,  so  also  ‚Î&Ï  and  ‚Î=Ï  can  be  used  to  go  to
positions directly above and below. With the layout of a standard English-language keyboard ‚Î&Ï  is directly to the
right of ‚Î^Ï while ‚Î=Ï is directly to the right of ‚Î_Ï. 
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key sequence displayed form expression form 

x ‚Î &Ï_ xêê  OverBar@ x D 

x ‚Î &Ï vec  x”  OverVector@ x D 

x ‚Î &Ï∼ xè  OverTilde@ x D 

x ‚Î &Ï^ x̀  OverHat@ x D 

x ‚Î &Ï. x°  OverDot@ x D 

x ‚Î =Ï_ xêê  UnderBar@ x D 

Ways to enter some common modifiers using control keys. 

Here is xêê . 

In[4]:= x ‚Î&Ï_ ‚Î Ï

Out[4]= x̄

You can use xêê  as a variable. 

In[5]:= Solve[a^2 == %, a]

Out[5]= 99a → −è!!!x̄ =, 9a → è!!!x̄ ==

key sequence displayed form expression form

x î _  y xy  Subscript@ x,  y D 

x î +  y x
y

 Underscript@ x,  y D 

x î ^  y xy  Superscript@ x,  y D 

Hinterpreted as  Power@ x,  y D L
x î &  y x

y
 Overscript@ x,  y D 

x î &_ xêê  OverBar@ x D 

x î &î@RightVectorD x”  OverVector@ x D 

x î &∼ xè  OverTilde@ x D 

x î &^ x̀  OverHat@ x D 

x î &. x°  OverDot@ x D 

x î +_ xêê  UnderBar@ x D 

Ways to enter modifiers without control keys. All these forms can be used only inside î!î( … î). 

1.10.7 Special Topic: Non-English Characters and Keyboards

If you enter text in languages other than English, you will typically need to use various additional accented and other
characters. If your computer system is set up in an appropriate way, then you will often be able to enter such characters
directly  using  standard  keys  on  your  keyboard.  But  however  your  system is  set  up,  Mathematica  always  provides  a
uniform way to handle such characters.  
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full name alias 

à î @AGraveD Ç a`

å î @ARingD Ç ao

ä î @ADoubleDotD Ç a"

ç î @CCedillaD Ç c,

î @CHacekD Ç cv

é î @EAcuteD Ç e'

è î @EGraveD Ç e`

í î @IAcuteD Ç i'

ñ î @NTildeD Ç n∼

ò î @OGraveD Ç o`

full name alias 

ø î @OSlashD Ç oê
ö î @ODoubleDotD Ç o"

ù î @UGraveD Ç u`

ü î @UDoubleDotD Ç u"

ß î @SZD Ç sz  , Ç ss

Å î @CapitalARingD Ç Ao

Ä î @CapitalADoubleDotD Ç A"

Ö î @CapitalODoubleDotD Ç O"

Ü î @CapitalUDoubleDotD Ç U"

Some common European characters. 

Here is a function whose name involves an accented character. 

In[1]:= Lam\[EAcute][x, y]

Out[1]= Lamé@x, yD

This is another way to enter the same input. 

In[2]:= Lam e' [x, y]

Out[2]= Lamé@x, yD

You  should  realize  that  there  is  no  uniform  standard  for  computer  keyboards  around  the  world,  and  as  a  result  it  is
inevitable that some details of what has been said in this chapter may not apply to your keyboard. 

In  particular,  the  identification  for  example of  ‚Î6Ï  with  ‚Î^Ï  is  valid  only  for  keyboards  on  which  ^  appears  as
Shift-6. On other keyboards, Mathematica uses ‚Î6Ï to go to a superscript position, but not necessarily ‚Î^Ï. 

Regardless of how your keyboard is set up you can always use palettes or menu items to set up superscripts and other
kinds of notation. And assuming you have some way to enter characters such as î, you can always give input using full
names such as î[Infinity] and textual forms such as î(xî/yî). 

1.10.8 Other Mathematical Notation

Mathematica  supports  an  extremely  wide  range  of  mathematical  notation,  although  often  it  does  not  assign  a
pre-defined meaning to it.  Thus,  for  example,  you can enter  an expression  such as x  ∆  y,  but  Mathematica  will  not
initially make any assumption about what you mean by ∆ . 

Mathematica knows that ∆  is an operator, but it does not initially assign any specific meaning to it. 

In[1]:= {17 ⊕ 5, 8 ⊕ 3}

Out[1]= 817⊕5, 8⊕ 3<
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This gives Mathematica a definition for what the ∆  operator does. 

In[2]:= x_ ⊕ y_ := Mod[x + y, 2]

Now Mathematica can evaluate ∆  operations. 

In[3]:= {17 ⊕ 5, 8 ⊕ 3}

Out[3]= 80, 1<

full name alias 

∆ î @CirclePlusD Ç c+

≈ î @CircleTimesD Ç c∗

≤ î @PlusMinusD Ç +−

Ô î @WedgeD Ç ^

Ó î @VeeD Ç v

> î @TildeEqualD Ç ∼=

º î @TildeTildeD Ç ∼∼

~ î @TildeD Ç ∼

∂ î @ProportionalD Ç prop

ª î @CongruentD Ç ===

t î @GreaterTildeD Ç >∼

p î @GreaterGreaterD
î @SucceedsD

@ î @RightTriangleD

full name alias 

ö î @LongRightArrowD Ç −−>

¨ î @LeftRightArrowD Ç <−>

Æ î @UpArrowD
F î @EquilibriumD Ç equi

¢ î @RightTeeD
  î @SupersetD Ç sup

û î @SquareIntersectionD
œ î @ElementD Ç el

– î @NotElementD Ç !el

ë î @SmallCircleD Ç sc

\ î @ThereforeD
» î @VerticalSeparatorD Ç »
˝ î @VerticalBarD Ç â  »
î î @BackslashD Ç \

A few of the operators whose input is supported by Mathematica. 

Mathematica assigns built-in meanings to ¥  and r , but not to t  or p . 

In[4]:= {3 ≥ 4, 3 r 4, 3 t 4, 3 p 4}

Out[4]= 8False, False, 3 t 4, 3 p 4<

There are some forms which look like characters on a standard keyboard, but which are interpreted in a different way
by Mathematica. Thus, for example, î[Backslash] or Ç\  displays as î but is not interpreted in the same way as a î
typed directly on the keyboard.  

The î  and Ô  characters used here are different from the î and ^ you would type directly on a keyboard. 

In[5]:= {a \  b, a ^  b}

Out[5]= 8aîb, a Ôb<

Most operators  work  like ∆  and  go in between their  operands.  But  some operators  can go in other  places.  Thus,  for
example,  Ç<  and  Ç>  or  î[LeftAngleBracket]  and  î[RightAngleBracket]  are  effectively  operators  which
go around their operand.  
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The elements of the angle bracket operator go around their operand. 

In[6]:= \[LeftAngleBracket] 1 + x \[RightAngleBracket]

Out[6]= X1 + x\

full name alias 

î @ScriptLD Ç scl

î @ScriptCapitalED Ç scE

√ î @GothicCapitalRD Ç goR

 î @DoubleStruckCapitalZD Ç dsZ

¡ î @AlephD Ç al

« î @EmptySetD Ç es

µ î @MicroD Ç mi

full name alias 

Þ î @AngstromD Ç Ang

Ñ î @HBarD Ç hb

£ î @SterlingD
— î @AngleD
• î @BulletD Ç bu

† î @DaggerD Ç dg

Ú î @NaturalD
Some additional letters and letter-like forms. 

You can use letters and letter-like forms anywhere in symbol names. 

In[7]:= {ℜ∅, \[Angle]ABC}

Out[7]= 8ℜ∅, ∠ABC<

«  is assumed to be a symbol, and so is just multiplied by a and b. 

In[8]:= a ∅ b

Out[8]= a b ∅

1.10.9 Forms of Input and Output

Mathematica  notebooks allow you to give input and get output in a variety of different forms. Typically the front end
provides menu commands for converting cells from one form to another. 

InputForm a form that can be typed directly
using characters on a standard keyboard

OutputForm a form for output only that
uses just characters on a standard keyboard

StandardForm a form for input and output that
makes use of special characters and positioning

TraditionalForm a form primarily for output that imitates
all aspects of traditional mathematical notation

Forms of input and output. 

Printed from the Mathematica Help Browser 19

©1988-2003 Wolfram Research, Inc. All rights reserved.



The input here works in both InputForm and StandardForm. 

In[1]:= x^2 + y^2/z

Out[1]= x2 +
y2

z

Here is a version of the input appropriate for StandardForm. 

In[2]:= x2 +
y2

z

Out[2]= x2 +
y2

z

InputForm  is the most general form of input for Mathematica: it works whether you are using a notebook interface
or a text-based interface.  

With a notebook interface, output is by default produced in StandardForm. 

In[3]:= Sqrt[x] + 1/(2 + Sqrt[y])

Out[3]= 
è!!!x +

1
2 + è!!!y

With a text-based interface, OutputForm is used instead. 

In[4]:= Sqrt[x] + 1/(2 + Sqrt[y]) // OutputForm

Out[4]//OutputForm= 

Sqrt[x] + (2 + Sqrt[y])^(-1)

Out[4]//OutputForm= 
"               1
Sqrt[x] + -----------          ---------- 
          2 + Sqrt[y]"

With a notebook interface, the default form for both input and output is StandardForm. 

The  basic  idea  of  StandardForm  is  to  provide  a  precise  but  elegant  representation  of  Mathematica  expressions,
making use of special characters, two-dimensional positioning, and so on. 

Both input and output are given here in StandardForm. 

In[5]:= ‡
1

Hx3 + 1L  x

Out[5]= 
ArcTanA −1+2 xè!!!!3 E

è!!!3
+
1
3
Log@1 + xD −

1
6
Log@1 − x + x2D

An important feature of StandardForm is that any output you get in this form you can also directly use as input. 

In[6]:= 
ArcTanA −1+2 x

è!!!!
3

E
è!!!!
3

+
Log@1 + xD

3
−
Log@1 − x + x2D

6

Out[6]= 
ArcTanA −1+2 xè!!!!3 E

è!!!3
+
1
3
Log@1 + xD −

1
6
Log@1 − x + x2D
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The  precise  nature  of  StandardForm  prevents  it  from  following  all  of  the  somewhat  haphazard  conventions  of
traditional  mathematical  notation.  Mathematica  however  also  supports  TraditionalForm,  which  uses  a  large
collection of rules to give a rather complete rendition of traditional mathematical notation.     

TraditionalForm uses lower-case names for functions, and puts their arguments in parentheses rather than square brackets. 

In[7]:= ‡
1

Hx3 + 1L  x êê TraditionalForm

Out[7]//TraditionalForm= 

tan-1I 2 x-1ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3
M

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!3
+

1
ÅÅÅÅÅ
3

logHx + 1L -
1
ÅÅÅÅÅ
6

logHx2 - x + 1L

Here are a few transformations made by TraditionalForm. 

In[8]:= {Abs[x], ArcTan[x], BesselJ[0, x], Binomial[i, j]} // TraditionalForm

Out[8]//TraditionalForm= 

9†x§, tan-1HxL, J0HxL, i
k
jjj

i
j
y
{
zzz=

TraditionalForm  is  often  useful  for  generating  output  that  can  be  inserted  directly  into  documents  which  use
traditional  mathematical  notation.  But  you  should  understand  that  TraditionalForm  is  intended  primarily  for
output: it does not have the kind of precision that is needed to provide reliable input to Mathematica. 

Thus, for example, in TraditionalForm, Ci(x) is the representation for both Ci[x] and CosIntegral[x], so
if this form appears on its own as input, Mathematica  will have no idea which of the two interpretations is the correct
one.    

In StandardForm, these three expressions are all displayed in a unique and unambiguous way. 

In[9]:= { Ci[1+x], CosIntegral[1+x], Ci(1+x) } // StandardForm

Out[9]//StandardForm= 

8Ci@1 + xD, CosIntegral@1 + xD, Ci H1 + xL<

In TraditionalForm, however, the first two are impossible to distinguish, and the third differs only in the presence of an extra 
space. 

In[10]:= { Ci[1+x], CosIntegral[1+x], Ci(1+x) } // TraditionalForm

Out[10]//TraditionalForm= 

8CiHx + 1L, CiHx + 1L, Ci Hx + 1L<

The ambiguities of TraditionalForm make it in general unsuitable for specifying input to the Mathematica kernel.
But  at  least  for  sufficiently  simple  cases,  Mathematica  does  include  various  heuristic  rules  for  trying  to  interpret
TraditionalForm expressions as Mathematica input. 

Cells intended for input to the kernel are assumed by default to contain StandardForm expressions. 
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Here the front end was specifically told that input would be given in TraditionalForm. The cell bracket has a jagged line to 
indicate the difficulties involved.

† The input is a copy or simple edit of previous output.
† The input has been converted from  StandardForm , perhaps with simple edits.
† The input contains explicit hidden information giving its interpretation.
† The input contains only the simplest and most familiar notations.

Some situations in which TraditionalForm input can be expected to work. 

Whenever Mathematica  generates an expression in TraditionalForm,  it automatically inserts various hidden tags
so that the expression can later be interpreted unambiguously if it is given as input. And even if you edit the expression,
the tags will often be left sufficiently undisturbed that unambiguous interpretation will still be possible.   

This generates output in TraditionalForm. 

In[11]:= Exp[I Pi x] // TraditionalForm

Out[11]//TraditionalForm= 

‰Â p x

Mathematica was told to expect TraditionalForm input here. The input was copied from the previous output line, and thus 
contains hidden tags that ensure the correct interpretation. 

In[12]:= „‰ p x êê StandardForm
Out[12]//StandardForm= 

π x

Simple editing often does not disturb the hidden tags. 

In[13]:= „2 ‰ p x êê StandardForm
Out[13]//StandardForm= 

2 π x

If you enter a TraditionalForm  expression from scratch, or import it from outside Mathematica, then Mathemat-
ica  will  still  do  its  best  to  guess  what  the expression  means. When  there are  ambiguities,  what  it  typically does  is  to
assume that you are using notation in whatever way is more common in elementary mathematical applications. 

In TraditionalForm input, this is interpreted as a derivative. 

In[14]:= 
∂ y HxL
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

∂x
êê StandardForm

Out[14]//StandardForm= 

y @xD
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This is interpreted as an arc tangent. 

In[15]:= tan-1HxL êê StandardForm
Out[15]//StandardForm= 

ArcTan@xD

This is interpreted as the square of a tangent. 

In[16]:= tan2HxL êê StandardForm
Out[16]//StandardForm= 

Tan@xD2

There is no particularly standard traditional interpretation for this; Mathematica assumes that it is 1/Tan[x]^2. 

In[17]:= tan-2HxL êê StandardForm
Out[17]//StandardForm= 

Cot@xD2

You  should  realize  that  TraditionalForm  does  not  provide  any  kind  of  precise  or  complete  way  of  specifying
Mathematica  expressions.  Nevertheless,  for  some elementary  purposes  it  may be  sufficient,  particularly  if  you  use  a
few additional tricks. 

† Use  xHyL for functions;  x  H yL for multiplication
† Use Ç ee  for the exponential constant  E 

† Use Ç ii  or Ç jj  for the imaginary unit  I 

† Use Ç dd  for differential operators in integrals and derivatives

A few tricks for TraditionalForm input. 

With a space f (1 + x) is interpreted as multiplication. Without a space, g(1 + x) is interpreted as a function. 

In[18]:= f H1 + xL + gH1 + xL êê StandardForm
Out[18]//StandardForm= 

f H1 + xL + g@1 + xD

The ordinary e is interpreted as a symbol e. The special “exponential  e”,  entered as Çee , is interpreted as the exponential 
constant. 

In[19]:= 8e3.7, „3.7< êê StandardForm
Out[19]//StandardForm= 

8e3.7, 40.4473<

1.10.10 Mixing Text and Formulas

The simplest way to mix text and formulas in a Mathematica notebook is to put each kind of material in a separate cell.
Sometimes, however, you may want to embed a formula within a cell of text, or vice versa.   
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‚Î HÏ or ‚Î 9Ï begin entering a formula within text, or text within a formula
‚Î LÏ or ‚Î 0Ï end entering a formula within text, or text within a formula

Entering a formula within text, or vice versa. 

Here is a notebook with formulas embedded in a text cell.

Mathematica  notebooks often contain both formulas that are intended for actual evaluation by Mathematica, and ones
that are intended just to be read in a more passive way. 

When  you  insert  a  formula  in  text,  you  can  use  the  Convert  to  StandardForm  and  Convert  to  TraditionalForm
menu  items  within  the  formula  to  convert  it  to  StandardForm  or  TraditionalForm.  StandardForm  is
normally appropriate whenever the formula is thought of as a Mathematica program fragment.  

In  general,  however,  you  can  use  exactly  the  same mechanisms for  entering  formulas,  whether  or  not  they  will  ulti-
mately be given as Mathematica input. 

You  should  realize,  however,  that  to  make  the  detailed  typography  of  typical  formulas  look  as  good  as  possible,
Mathematica  automatically  does  things  such  as  inserting  spaces  around  certain  operators.  But  these  kinds  of  adjust-
ments can potentially be inappropriate if you use notation in very different ways from the ones Mathematica is expect-
ing. 

In such cases, you may have to make detailed typographical adjustments by hand, using the mechanisms discussed in
Section 2.9.11. 

1.10.11 Displaying and Printing Mathematica Notebooks

Depending  on  the  purpose  for  which  you  are  using  a  Mathematica  notebook,  you  may  want  to  change  its  overall
appearance. The front end allows you to specify independently the styles to be used for display on the screen and for
printing. Typically you can do this by choosing appropriate items in the Format menu. 

ScreenStyleEnvironment styles to be used for screen display
PrintingStyleEnvironment styles to be used for printed output

Working standard style definitions for screen display
Presentation style definitions for presentations

Condensed style definitions for high display density
Printout style definitions for printed output

Front end settings that define the global appearance of a notebook. 
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Here is a typical notebook as it appears in working form on the screen. 

Here is the same notebook with condensed styles. 

Here is a preview of how the notebook would appear when printed out. 

1.10.12 Creating Your Own Palettes

The Mathematica notebook front end comes with a collection of standard palettes. But it also allows you to create your
own palettes.  

† Set up a blank palette using  Create TableêMatrixêPalette under the  Input menu
† Fill in the contents
† Make the palette active using  Generate Palette from Selection under the  File menu

The basic steps in creating a palette. 

Printed from the Mathematica Help Browser 25

©1988-2003 Wolfram Research, Inc. All rights reserved.



Create Table/Matrix/Palette will create a blank palette.

You can then insert whatever you want into each button.

The menu item Generate Palette from Selection makes a separate active palette.

Clicking on a button in the palette now inserts its contents into your notebook.

Create TableêMatrixêPalette set up a blank palette
Generate Palette from Selection make a separate active palette
Generate Notebook from Palette convert a palette back into an editable notebook

Edit Button edit the script associated with a palette or button

Menu items for setting up palettes. 

When you are creating a palette, you can use the same mechanisms to add columns and rows as you can when you are
creating any other kind of table, matrix or grid. Thus ‚Î,Ï will add a new column of buttons, and ‚Î¿ Ï (Control-En-
ter) will add a new row. 

button contents action 

X  replace current selection by  X  
text containing  X  É  Y replace current selection  S by  XSY  

Contents of buttons. 

In the simplest case,  when you press  a  button  in a  palette what  will  happen is  that the contents of  the button will  be
inserted into your notebook, replacing whatever your current selection was. 

Sometimes however you may not simply want to overwrite your current selection, but rather you may want to modify
the  selection  in  some  way.  As  an  example,  you  might  want  to  wrap  a  function  like  Expand  around  your  current
selection.  

You can do this by setting up a button with contents Expand[É]. The É  can be entered as Çspl  or î[Selection
Placeholder].  In  general,  É  serves  as  a  placeholder  for  your  current  selection.  When  you  press  a  button  that
contains É , the É  is first replaced by your current selection, and only then is the result inserted into your notebook.    
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Here is a cell in which the current selection is part of an expression.

Pressing a button containing Expand[É] wraps Expand around the current selection. 

Mathematica  allows  you  to  associate  any  action  you  want  with  a  button.  You  can  set  up  some  common actions  by
using the Edit Button menu, having selected either a single button or a whole palette. 

Paste paste the contents of the button HdefaultL
Evaluate paste then evaluate in place what has been pasted

EvaluateCell paste then evaluate the whole cell
CopyEvaluate copy the current selection into

a new cell, then paste and evaluate in place
CopyEvaluateCell copy the current selection into a

new cell, then paste and evaluate the whole cell

Typical actions for buttons. 

With  the  default  Paste  setting  for  a  button  action,  pressing  the  button  modifies  the  contents  of  a  cell  but  does  no
evaluation. By choosing other button actions, however, you can tell Mathematica  to perform an evaluation every time
you press the button. 

With  the  button  action  Evaluate  the  result  of  this  evaluation  is  made  to  overwrite  your  current  selection.  This  is
useful if you want to set up a button which modifies parts of an expression in place, say by applying Expand[É] to
them. 

The  button  action  Evaluate  performs  evaluation  only  on  whatever  was  pasted  into  your  current  cell.  The  button
action EvaluateCell, on the other hand, performs evaluation on the whole cell, generating a new cell to show the
result. 

Here is an expression with a part selected. 

This shows the result of pressing a button containing Expand[É] with an EvaluateCell button action. 

Sometimes it is useful to be able to extract the current selection from a cell, and then operate on it in a new cell. You
can do this using the button actions CopyEvaluate and CopyEvaluateCell. 

Here is an expression with a part selected. 
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A button with a CopyEvaluateCell button action copies the current selection into a new cell, then pastes the contents of the 
button, and then performs an evaluation, putting the result into a new cell. 

Create TableêMatrixêPalette set up a blank palette
Create Button set up a single button not in a palette

Generate Palette from Selection make a separate window
Cell Active activate buttons within a cell in a notebook

Ways to create active elements in the front end. 

Mathematica allows you to set up a wide range of active elements in the notebook front end. In the most common case,
you have a palette which consists of an array of buttons in a separate window. But you can also have arrays of buttons,
or even single buttons, within the cells of an ordinary notebook. 

In addition, you can make a button execute any action you want—performing computations in the Mathematica kernel,
or changing the configuration of notebooks in the front end. Section 2.11.6 discusses how to do this. 

1.10.13 Setting Up Hyperlinks

Create Hyperlink make the selected object a hyperlink

Menu items for setting up hyperlinks. 

A hyperlink is a special kind of button which jumps to another part of a notebook when it is pressed. Typically hyper-
links are indicated in Mathematica by blue or underlined text. 

To set up a hyperlink, just select the text or other object that you want to be a hyperlink. Then choose the menu item
Create Hyperlink and fill in the specification of where you want the destination of the hyperlink to be. 

1.10.14 Automatic Numbering

† Choose a cell style such as  NumberedEquation 

† Use the  Create Automatic Numbering Object menu, with a counter name such as  Section 

Two ways to set up automatic numbering in a Mathematica notebook. 
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The input for each cell here is exactly the same, but the cells contain an element that displays as a progressively larger number as 
one goes through the notebook. 

These cells are in NumberedEquation style. 

1.10.15 Exposition in Mathematica Notebooks

Mathematica  notebooks provide the basic technology that you need to be able to create a very wide range of sophisti-
cated  interactive  documents.  But  to  get  the  best  out  of  this  technology  you  need  to  develop  an  appropriate  style  of
exposition. 

Many people  at  first  tend  to  use  Mathematica  notebooks  either  as  simple worksheets  containing  a  sequence  of  input
and output  lines,  or  as  on-screen versions  of  traditional  books  and other  printed  material.  But  the  most effective and
productive uses of Mathematica  notebooks tend to lie at neither one of these extremes, and instead typically involve a
fine-grained  mixing of  Mathematica  input  and  output  with  explanatory  text.  In  most cases  the  single  most important
factor in obtaining such fine-grained mixing is uniform use of the Mathematica language. 

One might think that there would tend to be three kinds of material in a Mathematica  notebook: plain text, mathemati-
cal formulas, and computer code. But one of the key ideas of Mathematica  is to provide a single language that offers
the best of both traditional mathematical formulas and computer code. 

In StandardForm, Mathematica  expressions have the same kind of compactness and elegance as traditional mathe-
matical formulas. But unlike such formulas, Mathematica expressions are set up in a completely consistent and uniform
way.  As  a  result,  if  you  use  Mathematica  expressions,  then  regardless  of  your  subject  matter,  you  never  have  to  go
back and reexplain your basic notation: it is always just the notation of the Mathematica  language. In addition, if you
set  up  your  explanations  in  terms of  Mathematica  expressions,  then a  reader  of  your  notebook  can immediately take
what you have given, and actually execute it as Mathematica input. 

If  one  has  spent  many years  working  with  traditional  mathematical notation,  then  it  takes  a  little time to  get  used to
seeing  mathematical  facts  presented  as  StandardForm  Mathematica  expressions.  Indeed,  at  first  one  often  has  a
tendency to try to use TraditionalForm whenever possible, perhaps with hidden tags to indicate its interpretation.
But  quite  soon  one  tends  to  evolve  to  a  mixture  of  StandardForm  and  TraditionalForm.  And  in  the  end  it
becomes clear that StandardForm alone is for most purposes the most effective form of presentation. 
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In traditional mathematical exposition, there are many tricks for replacing chunks of text by fragments of formulas. In
StandardForm many of these same tricks can be used. But the fact that Mathematica  expressions can represent not
only mathematical objects but also procedures and algorithms increases greatly the extent to which chunks of text can
be replaced by shorter and more precise material. 

30 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



1.11 Files and External Operations

1.11.1 Reading and Writing Mathematica Files

You  can  use  files  on  your  computer  system  to  store  definitions  and  results  from  Mathematica.  The  most  general
approach is to store everything as plain text that is appropriate for input to Mathematica. With this approach, a version
of Mathematica running on one computer system produces files that can be read by a version running on any computer
system. In addition, such files can be manipulated by other standard programs, such as text editors. 

<<  name read in a  Mathematica input file
expr  >>  name output  expr to a file as plain text

expr  >>>  name append  expr to a file
!! name display the contents of a plain text file

Reading and writing files. 

This expands Hx + yL3 , and outputs the result to a file called tmp. 

In[1]:= Expand[ (x + y)^3 ] >> tmp

Here are the contents of tmp. They can be used directly as input for Mathematica. 

In[2]:= !!tmp

"x^3 + 3*x^2*y + 3*x*y^2 + y^3"

This reads in tmp, evaluating the Mathematica input it contains. 

In[3]:= <<tmp

Out[3]= x3 + 3 x2 y + 3 x y2 + y3

If you are familiar with Unix or MS-DOS operating systems, you will recognize the Mathematica redirection operators
>>, >>> and << as being analogous to the shell operators >, >> and <. 

The  redirection  operators  >>  and  >>>  are  convenient  for  storing  results  you  get  from  Mathematica.  The  function
Save["name", f, g, … ] allows you to save definitions for variables and functions. 

Save@" name ",  f ,  g, … D save definitions for variables or functions in a file

Saving definitions in plain text files. 

Here is a definition for a function f. 

In[4]:= f[x_] := x^2 + c

This gives c the value 17. 

In[5]:= c = 17

Out[5]= 17
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This saves the definition of f in the file ftmp. 

In[6]:= Save["ftmp", f]

Mathematica automatically saves both the actual definition of f, and the definition of c on which it depends. 

In[7]:= !!ftmp

"f[x_] := x^2 + c
 
c = 17"

This clears the definitions of f and c. 

In[8]:= Clear[f, c]

You can reinstate the definitions you saved simply by reading in the file ftmp. 

In[9]:= <<ftmp

Out[9]= 17

file .m Mathematica expression file in plain text format
file .nb Mathematica notebook file
file .mx Mathematica definitions in  DumpSave format

Typical names of Mathematica files. 

If  you  use  a  notebook  interface  to  Mathematica,  then  the  Mathematica  front  end  allows  you  to  save  complete  note-
books, including not only Mathematica input and output, but also text, graphics and other material. 

It  is  conventional  to  give  Mathematica  notebook  files  names  that  end  in  .nb,  and  most  versions  of  Mathematica
enforce this convention. 

When you open a notebook  in the Mathematica  front  end,  Mathematica  will  immediately display the contents  of  the
notebook,  but  it  will  not  normally send any of  these contents  to  the kernel  for  evaluation until  you explicitly request
this to be done. 

Within  a  Mathematica  notebook,  however,  you  can  use  the  Cell  menu  in  the  front  end  to  identify  certain  cells  as
initialization cells,  and  if  you  do  this,  then  the  contents  of  these  cells  will  automatically be  evaluated  whenever  you
open the notebook. 

The I in the cell bracket indicates that the second cell is an initialization cell that will be evaluated whenever the notebook is 
opened. 

It is sometimes convenient to maintain Mathematica  material both in a notebook which contains explanatory text, and
in a package which contains only raw Mathematica definitions. You can do this by putting the Mathematica definitions
into initialization cells in the notebook. Every time you save the notebook, the front end will then allow you to save an
associated .m file which contains only the raw Mathematica definitions. 
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1.11.2 Advanced Topic: Finding and Manipulating Files

Although the details of how files are named and organized differ from one computer system to another, Mathematica
provides some fairly general mechanisms for finding and handling files. 

Mathematica assumes that files on your computer system are organized in a collection of directories. At any point, you
have a current working directory. You can always refer to files in this directory just by giving their names. 

Directory@  D give your current working directory
SetDirectory@" dir "D set your current working directory

FileNames@  D list the files in your current working directory
FileNames@" form "D list the files whose names match a certain form

<< name read in a file with the specified name
<< context ` read in a file corresponding to the specified context

CopyFile@" file1  ",  " file2  "D copy  file1  to  file2  
DeleteFile@" file "D delete a file

Functions for finding and manipulating files. 

This is the current working directory. The form it has differs from one computer system to another. 

In[1]:= Directory[ ]

Out[1]= /users/sw

This resets the current working directory. 

In[2]:= SetDirectory["Examples"]

Out[2]= /users/sw/Examples

This gives a list of all files in your current working directory whose names match the form Test*.m. 

In[3]:= FileNames["Test*.m"]

Out[3]= {Test1.m, Test2.m, TestFinal.m}

Although you usually want to create files only in your current working directory, you often need to read in files from
other directories. As a result, when you ask Mathematica to read in a file with a particular name, Mathematica automati-
cally searches a list of directories (specified by the value of the search path variable $Path) to try and find a file with
that name. 

One  issue  in  handling  files  in  Mathematica  is  that  the  form  of  file  and  directory  names  varies  between  computer
systems.  This  means  for  example  that  names  of  files  which  contain  standard  Mathematica  packages  may  be  quite
different on different systems. Through a sequence of conventions, it is however possible to read in a standard Mathe-
matica  package with the same command on all  systems. The way this works  is  that each package defines a so-called
Mathematica  context,  of  the  form  name`name`.  On  each  system,  all  files  are  named  in  correspondence  with  the
contexts  they  define.  Then  when  you  use  the  command  <<name`name`  Mathematica  automatically  translates  the
context name into the file name appropriate for your particular computer system.  
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FindList@" file ",  " text "D give a list of all lines in a file that contain the specified text
FindList@FileNames@ 

 D,  " text "D 

search in all files in your current directory

Searching for text in files. 

This searches for all lines in the file BookIndex containing diagrams. 

In[4]:= FindList["BookIndex", "diagrams"]

Out[4]= 8Ferrers diagrams: DiscreteMath`Combinatorica ,̀
Hasse diagrams: DiscreteMath`Combinatorica <̀

1.11.3 Importing and Exporting Data

Import@" file ",  "Table"D import a table of data from a file
Export@" file ",  list,  "Table"D export  list to a file as a table of data

Importing and exporting tabular data. 

This exports an array of numbers to the file out.dat. 

In[1]:= Export["out.dat", {{5.7, 4.3}, {-1.2, 7.8}}]

Out[1]= out.dat

Here are the contents of the file out.dat. 

In[2]:= !!out.dat

"5.7   4.3
-1.2   7.8"

This imports the contents of out.dat as a table of data. 

In[3]:= Import["out.dat", "Table"]

Out[3]= 885.7, 4.3<, 8−1.2, 7.8<<

Import["file", "Table"] will handle many kinds of tabular data, automatically deducing the details of the format
whenever possible. Export["file",  list,  "Table"]  writes out  data separated by spaces,  with numbers given in C
or Fortran-like form, as in 2.3E5 and so on. 

Import@" name.ext "D import data assuming a format deduced from the file name
Export@" name.ext ",  expr D export data in a format deduced from the file name

Importing and exporting general data. 

table formats "CSV" ,  "TSV" 

matrix formats "MAT" ,  "HDF" ,  "MTX" 

specialized data formats "FITS" ,  "SDTS" 

Some common formats for tabular data. 
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Import  and Export  can handle not only tabular data, but also data corresponding to graphics,  sounds,  expressions
and even whole documents. Import and Export can often deduce the appropriate format for data simply by looking
at the extension of the file name for the file in which the data is being stored.  Sections 2.10.19  and 2.12.7  discuss in
more  detail  how Import  and  Export  work.  Note  that  you  can  also  use  Import  and  Export  to  manipulate  raw
files of binary data. 

This imports a graphic in JPEG format. 

In[4]:= Import["turtle.jpg"]

Out[4]=  Graphics 

This displays the graphic. 

In[5]:= Show[%]

Out[5]=  Graphics 

$ImportFormats import formats supported on your system
$ExportFormats export formats supported on your system

Finding the complete list of supported import and export formats. 

1.11.4 Exporting Graphics and Sounds

Mathematica  allows you to export graphics and sounds in a wide variety of formats. If you use the notebook front end
for Mathematica, then you can typically just copy and paste graphics and sounds directly into other programs using the
standard mechanism available on your computer system.   

Export@" name.ext ",  graphics D export graphics to a file in a format deduced from the file name
Export@" file ", 

 graphics,  " format "D 

export graphics in the specified format

Export@"! command 
",  graphics,  " format "D 

export graphics to an external command

Exporting Mathematica graphics and sounds. 
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graphics formats "EPS" ,  "TIFF" ,  "GIF" ,  
"JPEG" ,  "PNG" ,  "PDF" ,  "SVG" , etc.

sound formats "SND" ,  "WAV" ,  "AIFF" ,  "AU" , etc.

Some common formats for graphics and sounds. Section 2.10.19 gives a complete list. 

This generates a plot. 

In[1]:= Plot[Sin[x] + Sin[Sqrt[2] x], {x, 0, 10}]

2 4 6 8 10

-1

-0.5

0.5

1

1.5

2

Out[1]=  Graphics 

This exports the plot to a file in Encapsulated PostScript format. 

In[2]:= Export["sinplot.eps", %]

Out[2]= sinplot.eps

1.11.5 Exporting Formulas from Notebooks

Here is a cell containing a formula.

This is what you get if you copy the formula and paste it into an external text-based program. 

\!\(-\(ArcTan[\(1 + 2 x\)\/\@3]\/\@3\) + Log[-1 + x]\/3
  - Log[1 + x + x\^2]\/6\) 

Pasting the text back into a notebook immediately reproduces the original formula. 
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Mathematica  allows you to export formulas both textually and visually. You can use Export  to tell Mathematica  to
write a visual representation of a formula into a file. 

Export@" file 
.eps",  ToBoxes@ expr DD 

save the visual form of  expr to a file in EPS format

Export@" file ",  
ToBoxes@ expr D,  " format "D 

save the visual form of  expr in the specified format

Exporting expressions in visual form. 

1.11.6 Generating TeX

Mathematica  notebooks provide a sophisticated environment for creating technical documents. But particularly if you
want  to  merge  your  work  with  existing  material  in  TeX,  you  may  find  it  convenient  to  use  TeXForm  to  convert
expressions in Mathematica into a form suitable for input to TeX.   

TeXForm@ expr D print  expr in TeX input form

Mathematica output for TeX. 

Here is an expression, printed in standard Mathematica form. 

In[1]:= (x + y)^2 / Sqrt[x y]

Out[1]= 
Hx + yL2
è!!!!!!!x y

Here is the expression in TeX input form. 

In[2]:= TeXForm[%]

Out[2]//TeXForm= 

\frac{{\left( x + y \right) }^2}{{\sqrt{x\,y}}}

TeXSave@" file .tex"D save your complete current notebook in TeX input form
TeXSave@" file 
.tex",  " source .nb"D 

save a TeX version of the notebook  source .nb 

Converting complete notebooks to TeX. 

In addition to being able to convert individual expressions to TeX, Mathematica  also provides capabilities for translat-
ing complete notebooks. These capabilities can usually be accessed from the Save As Special  menu in the notebook
front end, where various options can be set. 
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1.11.7 Exchanging Material with the Web

HTMLSave@" file .html"D save your complete current notebook in HTML form
HTMLSave@" file 
.html",  " source .nb"D 

save an HTML version of the notebook  source .nb 

Converting notebooks to HTML. 

HTMLSave  has  many options  that  allow you  to  specify  how  notebooks  should  be  converted  for  web  browsers  with
different  capabilities.  You can find details  in  the Additional  Information section of  the online Reference Guide  entry
for HTMLSave. 

MathMLForm@ expr D print  expr in MathML form
MathMLForm@StandardForm@ 

expr DD 

use  StandardForm 

rather than traditional mathematical notation
ToExpression@" 

string ",  MathMLFormD 

interpret a string of MathML as  Mathematica input

Converting to and from MathML. 

Here is an expression printed in MathML form. 

In[1]:= MathMLForm[x^2/z]

Out[1]//MathMLForm=

<math>
<mfrac>
  <msup>
    <mi>x</mi>
    <mn>2</mn>
  </msup>
  <mi>z</mi>
</mfrac>
</math>

If you paste MathML into a Mathematica  notebook,  Mathematica  will automatically try to convert  it to Mathematica
input. You can copy an expression from a notebook as MathML using the Copy As menu in the notebook front end.   

Export@" file .xml",  expr D export in XML format
Import@" file .xml"D import from XML

ImportString@" string ",  "XML"D import data from a string of XML

XML importing and exporting. 

Somewhat like  Mathematica  expressions,  XML is  a  general  format for  representing  data.  Mathematica  automatically
converts  certain  types  of  expressions  to  and  from specific  types  of  XML.  MathML is  one  example.  Other  examples
include NotebookML for notebook expressions, and SVG for graphics.    
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If  you  ask  Mathematica  to  import  a  generic  piece  of  XML,  it  will  produce  a  SymbolicXML  expression.  Each  XML
element of the form <elem  attr='val'>data</elem>  is translated to a Mathematica  SymbolicXML expression of the
form  XMLElement["elem",  8"attr"->"val"<,  8data<].  Once  you  have  imported  a  piece  of  XML  as  Symbolic-
XML, you can use Mathematica's powerful  symbolic programming capabilities to manipulate the expression you get.
You can then use Export to export the result in XML form.   

This generates a SymbolicXML expression, with an XMLElement representing the a element in the XML string. 

In[2]:= ImportString["<a aa='va'>s</a>", "XML"]

Out[2]= XMLObject@DocumentD@8<, XMLElement@a, 8aa → va<, 8s<D, 8<D

There are now two nested levels in the SymbolicXML. 

In[3]:= ImportString["<a><b bb='1'>ss</b><b bb='2'>ss</b></a>", "XML"]

Out[3]= XMLObject@DocumentD@8<,
XMLElement@a, 8<, 8XMLElement@b, 8bb → 1<, 8ss<D, XMLElement@b, 8bb → 2<, 8ss<D<D, 8<D

This does a simple transformation on the SymbolicXML. 

In[4]:= %/."ss" -> XMLElement["c",{},{"xx"}]

Out[4]= XMLObject@DocumentD@8<,
XMLElement@a, 8<, 8XMLElement@b, 8bb → 1<, 8XMLElement@c, 8<, 8xx<D<D,
XMLElement@b, 8bb → 2<, 8XMLElement@c, 8<, 8xx<D<D<D, 8<D

This shows the result as an XML string. 

In[5]:= ExportString[%, "XML"]

Out[5]= <a>

<b bb='1'>

<c>xx<êc>

<êb>

<b bb='2'>

<c>xx<êc>

<êb>

<êa>

1.11.8 Generating C and Fortran Expressions

If  you have special-purpose  programs written in C or  Fortran,  you may want to take formulas you have generated in
Mathematica  and insert them into the source code of your programs. Mathematica  allows you to convert mathematical
expressions into C and Fortran expressions.   

CForm@ expr D write out  expr so it can be used in a C program
FortranForm@ expr D write out  expr for Fortran

Mathematica output for programming languages. 
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Here is an expression, written out in standard Mathematica form. 

In[1]:= Expand[(1 + x + y)^2]

Out[1]= 1 + 2 x + x2 + 2 y + 2 x y + y2

Here is the expression in Fortran form. 

In[2]:= FortranForm[%]

Out[2]//FortranForm= 

1 + 2*x + x**2 + 2*y + 2*x*y + y**2

Here is the same expression in C form. Macros for objects like Power are defined in the C header file mdefs.h that comes with 
most versions of Mathematica. 

In[3]:= CForm[%]

Out[3]//CForm= 

1 + 2*x + Power(x,2) + 2*y + 2*x*y + Power(y,2)

You should realize that there are many differences between Mathematica and C or Fortran. As a result, expressions you
translate  may  not  work  exactly  the  same  as  they  do  in  Mathematica.  In  addition,  there  are  so  many  differences  in
programming constructs that no attempt is made to translate these automatically. 

Compile@ x,  expr D compile an expression into efficient internal code

A way to compile Mathematica expressions. 

One of the common motivations for converting Mathematica expressions into C or Fortran is to try to make them faster
to evaluate numerically. But the single most important reason that C and Fortran can potentially be more efficient than
Mathematica is that in these languages one always specifies up front what type each variable one uses will be—integer,
real number, array, and so on.   

The  Mathematica  function  Compile  makes  such  assumptions  within  Mathematica,  and  generates  highly  efficient
internal code. Usually this code runs not much if at all slower than custom C or Fortran. 

1.11.9 Splicing Mathematica Output into External Files

If you want to make use of Mathematica output in an external file such as a program or document, you will often find it
useful to “splice”  the output automatically into the file.  

Splice@" file .m x "D splice  Mathematica output into an external file named  
file .m x , putting the results in the file  file.x 

Splice@" infile ",  " outfile "D splice  Mathematica output into  
infile , sending the output to  outfile 

Splicing Mathematica output into files. 

The basic idea is to set up the definitions you need in a particular Mathematica  session, then run Splice  to use the
definitions you have made to produce the appropriate output to insert into the external files. 
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#include "mdefs.h"

double f(x)
double x;
{
double y;

y = <* Integrate[Sin[x]^5, x] *> ;

return(2*y - 1) ;
}

A simple C program containing a Mathematica formula. 

#include "mdefs.h"

double f(x)
double x;
{
double y;

y = -5*Cos(x)/8 + 5*Cos(3*x)/48 - Cos(5*x)/80 ;

return(2*y - 1) ;
}

The C program after processing with Splice. 

1.11.10 Running External Programs

Although  Mathematica  does  many things  well,  there  are  some things  that  are  inevitably better  done  by  external  pro-
grams. You can use Mathematica to control the external programs, or to analyze output they generate. 

On almost all computer systems, it is possible to run external programs directly from within Mathematica. Mathemat-
ica communicates with the external programs through interprocess communication mechanisms such as pipes. 

In  the  simplest  cases,  the  only  communication  you  need  is  to  send  and  receive  plain  text.  You  can  prepare  input  in
Mathematica,  then  give  it  as  the  standard  input  for  the  external  program. Or you can take the standard  output  of  the
external program, and use it as input to Mathematica. 

In general, Mathematica  allows you to treat streams of data exchanged with external programs just like files. In place
of a file name, you give the external command to run, prefaced by an exclamation point. 

<< file read in a file
<<"! command " run an external command, and read in the output it produces

expr  >>  "! command " feed the textual form of  expr to an external command
ReadList@"! command ",  NumberD run an external command,

and read in a list of the numbers it produces

Some ways to communicate with external programs. 

This feeds the expression x^2 + y^2 as input to the external command lpr, which, on a typical Berkeley Unix system, sends 
output to a printer. 

In[1]:= x^2 + y^2 >> "!lpr"
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With a text-based interface, putting ! at the beginning of a line causes the remainder of the line to be executed as an external 
command. squares is an external program which prints numbers and their squares. 

In[2]:= !squares 4

1 1
2 4
3 9
4 16

This runs the external command squares 4, then reads numbers from the output it produces. 

In[3]:= ReadList["!squares 4", Number, RecordLists->True]

Out[3]= 881, 1<, 82, 4<, 83, 9<, 84, 16<<

1.11.11 MathLink

The previous section discussed how to exchange plain text with external programs. In many cases, however,  you will
find it convenient to communicate with external programs at a higher level, and to exchange more structured data with
them. 

On  almost  all  computer  systems,  Mathematica  supports  the  MathLink  communication  standard,  which  allows
higher-level  communication  between  Mathematica  and  external  programs.  In  order  to  use  MathLink,  an  external
program has to include some special source code, which is usually distributed with Mathematica. 

MathLink allows external programs both to call Mathematica, and to be called by Mathematica. Section 2.13 discusses
some of the details of MathLink. By using MathLink, you can, for example, treat Mathematica essentially like a subrou-
tine embedded inside an external program. Or you can create a front end that implements your own user interface, and
communicates with the Mathematica kernel via MathLink. 

You can also  use  MathLink  to  let  Mathematica  call  individual  functions  inside  an  external  program.  As described  in
Section 2.13,  you can set up a MathLink  template file to specify how particular functions in Mathematica  should call
functions inside your external  program. From the MathLink  template file,  you can generate source code to include in
your  program.  Then  when  you  start  your  program,  the  appropriate  Mathematica  definitions  are  automatically  made,
and when you call a particular Mathematica function, code in your external program is executed. 

Install@" command "D start an external program and install  
Mathematica definitions to call functions it contains

Uninstall@ link D terminate an external program
and uninstall definitions for functions in it

Calling functions in external programs. 

This starts the external program simul, and installs Mathematica definitions to call various functions in it. 

In[1]:= Install["simul"]

Out[1]= LinkObject[simul, 5, 4]
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Here is a usage message for a function that was installed in Mathematica to call a function in the external program. 

In[2]:= ?srun

srun[{a, r, gamma}, x] performs a simulation with the
   specified parameters.

When you call this function, it executes code in the external program. 

In[3]:= srun[{3, 0, 7}, 5]

Out[3]= 6.78124

This terminates the simul program. 

In[4]:= Uninstall["simul"]

Out[4]= simul

You  can  use  MathLink  to  communicate  with  many  types  of  programs,  including  with  Mathematica  itself.  There  are
versions  of  the  MathLink  library  for  a  variety  of  common  programming  languages.  The  J/Link  system  provides  a
standard  way to  integrate  Mathematica  with  Java,  based  on  MathLink.  With  J/Link  you  can take any Java class,  and
immediately make its methods accessible as functions in Mathematica. 
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1.12 Special Topic: The Internals of Mathematica

1.12.1 Why You Do Not Usually Need to Know about Internals

Most  of  this  book  is  concerned  with  explaining  what  Mathematica  does,  not  how  it  does  it.  But  the  purpose  of  this
chapter is to say at least a little about how Mathematica does what it does. Appendix A.9 gives some more details. 

You should realize at the outset that while knowing about the internals of Mathematica  may be of intellectual interest,
it is usually much less important in practice than one might at first suppose. 

Indeed, one of the main points of Mathematica is that it provides an environment where you can perform mathematical
and other operations without  having to think in detail about how these operations are actually carried out inside your
computer. 

Thus,  for  example,  if  you  want  to  factor  the  polynomial  x15 - 1,  you  can  do  this  just  by  giving  Mathematica  the
command Factor[x^15 - 1]; you do not have to know the fairly complicated details of how such a factorization is
actually carried out by the internal code of Mathematica. 

Indeed, in almost all practical uses of Mathematica, issues about how Mathematica  works inside turn out to be largely
irrelevant.  For  most  purposes  it  suffices  to  view  Mathematica  simply  as  an  abstract  system  which  performs  certain
specified mathematical and other operations. 

You might think that knowing how Mathematica  works inside would be necessary in determining what answers it will
give. But this is only very rarely the case. For the vast majority of the computations that Mathematica  does are com-
pletely specified by the definitions of mathematical or other operations. 

Thus,  for  example,  3^40  will  always  be  12157665459056928801,  regardless  of  how  Mathematica  internally
computes this result. 

There are some situations, however, where several different answers are all equally consistent with the formal mathemat-
ical definitions. Thus, for example, in computing symbolic integrals, there are often several different expressions which
all  yield  the  same derivative.  Which  of  these  expressions  is  actually  generated  by  Integrate  can  then  depend  on
how Integrate works inside. 

Here is the answer generated by Integrate. 

In[1]:= Integrate[1/x + 1/x^2, x]

Out[1]= −
1
x

+ Log@xD

This is an equivalent expression that might have been generated if Integrate worked differently inside. 

In[2]:= Together[%]

Out[2]= 
−1 + x Log@xD

x

In numerical computations, a similar phenomenon occurs. Thus, for example, FindRoot  gives you a root of a func-
tion.  But  if  there  are  several  roots,  which  root  is  actually  returned  depends  on  the  details  of  how FindRoot  works
inside. 
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This finds a particular root of cos HxL + sin HxL . 

In[3]:= FindRoot[Cos[x] + Sin[x], {x, 10.5}]

Out[3]= 8x → 14.9226<

With a different starting point, a different root is found. Which root is found with each starting point depends in detail on the 
internal algorithm used. 

In[4]:= FindRoot[Cos[x] + Sin[x], {x, 10.8}]

Out[4]= 8x → 11.781<

The  dependence  on  the  details  of  internal  algorithms  can  be  more  significant  if  you  push  approximate  numerical
computations to the limits of their validity. 

Thus,  for  example, if  you give NIntegrate  a  pathological  integrand,  whether  it yields a meaningful answer or not
can depend on the details of the internal algorithm that it uses. 

NIntegrate knows that this result is unreliable, and can depend on the details of the internal algorithm, so it prints warning 
messages. 

In[5]:= NIntegrate[Sin[1/x], {x, 0, 1}]

NIntegrate::slwcon :  

Numerical integration converging too slowly; suspect one of the
following: singularity, value of the integration being 0, oscillatory
integrand, or insufficient WorkingPrecision. If your integrand is
oscillatory try using the option Method−>Oscillatory in NIntegrate.

NIntegrate::ncvb :  NIntegrate failed to converge to prescribed accuracy
after 7 recursive bisections in x near x = 0.0035126778890767337 .̀

Out[5]= 0.504894

Traditional  numerical  computation  systems have  tended  to  follow  the  idea  that  all  computations  should  yield  results
that at least nominally have the same precision. A consequence of this idea is that it is not sufficient just to look at a
result to know whether it is accurate; you typically also have to analyze the internal algorithm by which the result was
found. This fact has tended to make people believe that it is always important to know internal algorithms for numeri-
cal computations. 

But  with  the  approach  that  Mathematica  takes,  this  is  rarely  the  case.  For  Mathematica  can  usually  use  its
arbitrary-precision  numerical  computation  capabilities  to  give  results  where  every  digit  that  is  generated  follows  the
exact mathematical specification of the operation being performed. 

Even though this is an approximate numerical computation, every digit is determined by the mathematical definition for p . 

In[6]:= N[Pi, 30]

Out[6]= 3.14159265358979323846264338328

Once again, every digit here is determined by the mathematical definition for sin HxL . 

In[7]:= N[Sin[10^50], 20]

Out[7]= −0.78967249342931008271
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If you use machine-precision numbers, Mathematica cannot give a reliable result, and the answer depends on the details of the 
internal algorithm used. 

In[8]:= Sin[10.^50]

Out[8]= 0.705222

It is a general characteristic that whenever the results you get can be affected by the details of internal algorithms, you
should  not  depend  on these results.  For  if  nothing  else,  different  versions  of  Mathematica  may exhibit  differences  in
these  results,  either  because  the  algorithms  operate  slightly  differently  on  different  computer  systems,  or  because
fundamentally different algorithms are used in versions released at different times. 

This is the result for sinH1050L  on one type of computer. 

In[1]:= Sin[10.^50]

Out[1]= 0.705222

Here is the same calculation on another type of computer. 

In[1]:= Sin[10.^50]

Out[1]= -0.0528229

And here is the result obtained in Mathematica Version 1. 

In[2]:= Sin[10.^50]

Out[2]= 0.0937538

Particularly  in  more  advanced  applications  of  Mathematica,  it  may  sometimes  seem  worthwhile  to  try  to  analyze
internal algorithms in order to predict which way of doing a given computation will be the most efficient. And there are
indeed  occasionally  major  improvements  that  you  will  be  able  to  make  in  specific  computations  as  a  result  of  such
analyses.   

But most often the analyses will not be worthwhile. For the internals of Mathematica  are quite complicated, and even
given  a  basic  description  of  the  algorithm  used  for  a  particular  purpose,  it  is  usually  extremely  difficult  to  reach  a
reliable conclusion about how the detailed implementation of this algorithm will actually behave in particular circum-
stances. 

A  typical  problem  is  that  Mathematica  has  many  internal  optimizations,  and  the  efficiency  of  a  computation  can  be
greatly affected by whether the details of the computation do or do not allow a given internal optimization to be used. 

1.12.2 Basic Internal Architecture

numbers sequences of binary digits
strings sequences of character code bytes or byte pairs

symbols pointers to the central table of symbols
general expressions sequences of pointers to the head and elements

Internal representations used by Mathematica. 

When you  type  input  into  Mathematica,  a  data  structure  is  created  in  the  memory of  your  computer  to  represent  the
expression you have entered. 

Printed from the Mathematica Help Browser 3

©1988-2003 Wolfram Research, Inc. All rights reserved.



In general, different pieces of your expression will be stored at different places in memory. Thus, for example, for a list
such as {2, x, y + z} the “backbone”  of the list will be stored at one place, while each of the actual elements will
be stored at a different place. 

The backbone of the list then consists just of three “pointers”  that specify the addresses in computer memory at which
the actual expressions that form the elements of the list are to be found. These expressions then in turn contain pointers
to their subexpressions. The chain of pointers ends when one reaches an object such as a number or a string, which is
stored directly as a pattern of bits in computer memory. 

Crucial  to  the  operation  of  Mathematica  is  the  notion  of  symbols  such  as  x.  Whenever  x  appears  in  an  expression,
Mathematica represents it by a pointer. But the pointer is always to the same place in computer memory—an entry in a
central table of all symbols defined in your Mathematica session.  

This  table  is  a  repository  of  all  information  about  each  symbol.  It  contains  a  pointer  to  a  string  giving  the  symbol's
name, as well as pointers to expressions which give rules for evaluating the symbol. 

† Recycle memory as soon as the data in it is no longer referenced.

The basic principle of Mathematica memory management. 

Every piece of memory used by Mathematica  maintains a count of how many pointers currently point to it. When this
count  drops  to  zero,  Mathematica  knows  that  the  piece  of  memory  is  no  longer  being  referenced,  and  immediately
makes the piece of memory available for something new. 

This strategy essentially ensures that no memory is ever wasted, and that any piece of memory that Mathematica uses is
actually storing data that you need to access in your Mathematica session. 

† Create an expression corresponding to the input you have given.
† Process the expression using all rules known for the objects in it.
† Generate output corresponding to the resulting expression.

The basic actions of Mathematica. 

At the heart of Mathematica is a conceptually simple procedure known as the evaluator which takes every function that
appears in an expression and evaluates that function. 

When the function is one of the thousand or so that are built into Mathematica,  what the evaluator does is to execute
directly internal  code in the Mathematica  system. This  code  is  set  up  to perform the operations  corresponding  to the
function, and then to build a new expression representing the result. 

† The built-in functions of  Mathematica support universal computation.

The basic feature that makes Mathematica a self-contained system. 

A crucial feature of the built-in functions in Mathematica  is that they support universal computation. What this means
is  that  out  of  these  functions  you  can  construct  programs  that  perform  absolutely  any  kinds  of  operation  that  are
possible for a computer. 

As it turns out, small subsets of Mathematica's built-in functions would be quite sufficient to support universal computa-
tion. But having the whole collection of functions makes it in practice easier to construct the programs one needs. 

The underlying point, however, is that because Mathematica supports universal computation you never have to modify
its  built-in  functions:  all  you  have  to  do  to  perform a  particular  task  is  to  combine these  functions  in  an  appropriate
way. 
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Universal computation is the basis for all standard computer languages. But many of these languages rely on the idea of
compilation.  If  you  use  C  or  Fortran,  for  example,  you  first  write  your  program,  then  you  compile  it  to  generate
machine code that can actually be executed on your computer.  

Mathematica does not require you to go through the compilation step: once you have input an expression, the functions
in the expression can immediately be executed. 

Often Mathematica will preprocess expressions that you enter, arranging things so that subsequent execution will be as
efficient as possible. But such preprocessing never affects the results that are generated, and can rarely be seen explic-
itly. 

1.12.3 The Algorithms of Mathematica

The  built-in  functions  of  Mathematica  implement  a  very  large  number  of  algorithms  from  computer  science  and
mathematics.  Some  of  these  algorithms  are  fairly  old,  but  the  vast  majority  had  to  be  created  or  at  least  modified
specifically  for  Mathematica.  Most  of  the  more  mathematical algorithms in  Mathematica  ultimately carry  out  opera-
tions which at least at some time in the past were performed by hand. In almost all cases, however, the algorithms use
methods very different from those common in hand calculation. 

Symbolic  integration  provides  an  example.  In  hand  calculation,  symbolic  integration  is  typically  done  by  a  large
number of tricks involving changes of variables and the like. 

But  in  Mathematica  symbolic  integration  is  performed  by  a  fairly  small  number  of  very  systematic  procedures.  For
indefinite integration, the idea of these procedures is to find the most general form of the integral, then to differentiate
this and try to match up undetermined coefficients. 

Often  this  procedure  produces  at  an  intermediate stage immensely complicated algebraic  expressions,  and  sometimes
very  sophisticated  kinds  of  mathematical functions.  But  the  great  advantage  of  the  procedure  is  that  it  is  completely
systematic, and its operation requires no special cleverness of the kind that only a human could be expected to provide. 

In  having  Mathematica  do  integrals,  therefore,  one  can  be  confident  that  it  will  systematically  get  results,  but  one
cannot expect that the way these results are derived will have much at all to do with the way they would be derived by
hand. 

The  same  is  true  with  most  of  the  mathematical  algorithms  in  Mathematica.  One  striking  feature  is  that  even  for
operations  that  are  simple to  describe,  the systematic algorithms to  perform these  operations  in Mathematica  involve
fairly advanced mathematical or computational ideas. 

Thus, for example, factoring a polynomial in x  is first done modulo a prime such as 17 by finding the null space of a
matrix obtained by reducing high powers of x  modulo the prime and the original polynomial. Then factorization over
the integers is achieved by “lifting”  modulo successive powers of the prime using a collection of intricate theorems in
algebra and analysis.  

The use of powerful systematic algorithms is important in making the built-in functions in Mathematica able to handle
difficult and general cases. But for easy cases that may be fairly common in practice it is often possible to use simpler
and more efficient algorithms. 

As  a  result,  built-in  functions  in  Mathematica  often  have  large  numbers  of  extra  pieces  that  handle  various  kinds  of
special cases. These extra pieces can contribute greatly to the complexity of the internal code, often taking what would
otherwise be a five-page algorithm and making it hundreds of pages long. 

Most of the algorithms in Mathematica, including all their special cases, were explicitly constructed by hand. But some
algorithms were instead effectively created automatically by computer. 
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Many of the algorithms used for machine-precision numerical evaluation of mathematical functions are examples. The
main parts of such algorithms are formulas which are as short as possible but which yield the best numerical approxima-
tions. 

Most such formulas used in Mathematica were actually derived by Mathematica itself. Often many months of computa-
tion were required, but the result was a short formula that can be used to evaluate functions in an optimal way. 

1.12.4 The Software Engineering of Mathematica

Mathematica is one of the more complex software systems ever constructed. Its source code is written in a combination
of C and Mathematica, and for Version 5, the code for the kernel consists of about 1.5 million lines of C and 150,000
lines of Mathematica. This corresponds to roughly 50 megabytes of data, or some 50,000 printed pages.  

The C code in Mathematica is actually written in a custom extension of C which supports certain memory management
and object-oriented features. The Mathematica code is optimized using Share and DumpSave. 

In  the  Mathematica  kernel  the  breakdown  of  different  parts  of  the  code  is  roughly  as  follows:  language  and system:
30%; numerical computation: 25%; algebraic computation: 25%; graphics and kernel output: 20%. 

Most of this code is fairly dense and algorithmic: those parts that are in effect simple procedures or tables use minimal
code since they tend to be written at a higher level—often directly in Mathematica. 

The source code for the kernel, save a fraction of a percent, is identical for all computer systems on which Mathematica
runs. 

For  the front  end,  however,  a  significant  amount of  specialized code is  needed to support  each different  type of  user
interface  environment.  The  front  end  contains  about  650,000  lines  of  system-independent  C  source  code,  of  which
roughly 150,000 lines are concerned with expression formatting. Then there are between 50,000 and 100,000 lines of
specific code customized for each user interface environment. 

Mathematica uses a client-server model of computing. The front end and kernel are connected via MathLink—the same
system as is used to communicate with other programs. 

Within  the  C  code  portion  of  the  Mathematica  kernel,  modularity  and  consistency  are  achieved  by  having  different
parts communicate primarily by exchanging complete Mathematica expressions. 

But it should be noted that even though different parts of the system are quite independent at the level of source code,
they  have  many  algorithmic  interdependencies.  Thus,  for  example,  it  is  common  for  numerical  functions  to  make
extensive use of algebraic algorithms, or for graphics code to use fairly advanced mathematical algorithms embodied in
quite different Mathematica functions. 

Since the beginning of its development in 1986, the effort spent directly on creating the source code for Mathematica is
a substantial fraction of a thousand man-years. In addition, a comparable or somewhat larger effort has been spent on
testing and verification. 

The source code of Mathematica  has changed greatly since Version 1 was released. The total number of lines of code
in the kernel grew from 150,000 in Version 1 to 350,000 in Version 2, 600,000 in Version 3, 800,000 in Version 4 and
about 1.5 million in Version 5. In addition, at every stage existing code has been revised—so that Version 5 has only a
few percent of its code in common with Version 1. 

Despite these changes in internal code, however,  the user-level design of Mathematica  has remained compatible from
Version 1 on. Much functionality has been added, but programs created for Mathematica  Version 1 will almost always
run absolutely unchanged under Version 5. 
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1.12.5 Testing and Verification

Every version of Mathematica  is subjected to a large amount of testing before it is released. The vast majority of this
testing is done by an automated system that is written in Mathematica. 

The automated system feeds millions of pieces of input to Mathematica, and checks that the output obtained from them
is correct. Often there is some subtlety in doing such checking: one must account for different behavior of randomized
algorithms and for such issues as differences in machine-precision arithmetic on different computers. 

The test inputs used by the automated system are obtained in several ways: 

† For every Mathematica function, inputs are devised that exercise both common and extreme cases.  

† Inputs are devised to exercise each feature of the internal code.  

† All the examples in this book and in other books about Mathematica are used.  

† Standard numerical tables are optically scanned for test inputs.  

† Formulas from all standard mathematical tables are entered.  

† Exercises from textbooks are entered.  

† For pairs of functions such as Integrate and D or Factor and Expand, random expressions are generated and tested.  

When tests are run, the automated testing system checks not only the results, but also side effects such as messages, as
well as memory usage and speed. 

There is also a special instrumented version of Mathematica  which is set up to perform internal consistency tests. This
version  of  Mathematica  runs  at  a  small  fraction  of  the  speed  of  the  real  Mathematica,  but  at  every  step  it  checks
internal memory consistency, interruptibility, and so on. 

The instrumented version of Mathematica  also records which pieces of Mathematica  source code have been accessed,
allowing  one  to  confirm  that  all  of  the  various  internal  functions  in  Mathematica  have  been  exercised  by  the  tests
given. 

All standard Mathematica  tests are routinely run on each version of Mathematica, on each different computer system.
Depending on the speed of the computer system, these tests take a few days to a few weeks of computer time. 

In addition, huge numbers of tests based on random inputs are run for the equivalent of many years of computer time
on a sampling of different computer systems. 

Even with all this testing, however, it is inevitable in a system as complex as Mathematica that errors will remain. 

The standards of correctness for Mathematica  are certainly much higher than for typical mathematical proofs. But just
as long proofs will inevitably contain errors that go undetected for many years, so also a complex software system such
as Mathematica will contain errors that go undetected even after millions of people have used it. 

Nevertheless, particularly after all the testing that has been done on it, the probability that you will actually discover an
error in Mathematica in the course of your work is extremely low. 

Doubtless there will be times when Mathematica does things you do not expect. But you should realize that the probabil-
ities are such that it is vastly more likely that there is something wrong with your input to Mathematica or your under-
standing of what is happening than with the internal code of the Mathematica system itself. 

If you do believe that you have found a genuine error in Mathematica,  then you should contact Wolfram Research at
the addresses given in the front of this book so that the error can be corrected in future versions. 
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Part 2
Part  1  introduced  Mathematica  by  showing  you  how  to  use  some  of  its  more  common  features.  This  Part  looks  at
Mathematica  in  a  different  way.  Instead  of  discussing  individual  features,  it  concentrates  on  the  global  structure  of
Mathematica, and describes the framework into which all the features fit. 

When you first start doing calculations with Mathematica, you will probably find it sufficient just to read the relevant
parts  of  Part  1.  However,  once  you  have  some general  familiarity with  the  Mathematica  system, you  should  make a
point of reading this Part. 

This Part describes the basic structure of the Mathematica  language, with which you can extend Mathematica, adding
your own functions, objects or other constructs. This Part shows how Mathematica  uses a fairly small number of very
powerful symbolic programming methods to allow you to build up many different kinds of programs. 

Most  of  this  Part  assumes  no  specific  prior  knowledge  of  computer  science.  Nevertheless,  some  of  it  ventures  into
some fairly complicated issues. You can probably ignore these issues unless they specifically affect programs you are
writing. 

If you are an expert on computer languages, you may be able to glean some understanding of Mathematica by looking
at the Reference Guide at the end of this book. Nevertheless, to get a real appreciation for the principles of Mathemat-
ica, you will have to read this Part. 
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2.1 Expressions

2.1.1 Everything Is an Expression

Mathematica  handles  many  different  kinds  of  things:  mathematical  formulas,  lists  and  graphics,  to  name  a  few.
Although they often look very different,  Mathematica  represents all of these things in one uniform way. They are all
expressions. 

A prototypical example of a Mathematica  expression is f[x, y]. You might use f[x, y] to represent a mathemati-
cal function f  Hx, yL . The function is named f, and it has two arguments, x and y. 

You do not always have to write expressions in the form f[x, y, … ]. For example, x + y is also an expression. When
you type in  x  +  y,  Mathematica  converts  it  to  the  standard  form Plus[x,  y].  Then,  when it  prints  it  out  again,  it
gives it as x + y. 

The same is true of other “operators”,  such as ^ (Power) and / (Divide). 

In fact, everything you type into Mathematica is treated as an expression. 

x  +  y  +  z Plus@x,  y,  zD 

x  y  z Times@x,  y,  zD 

x^n Power@x,  nD 

8a,  b,  c< List@a,  b,  cD 

a  −>  b Rule@a,  bD 

a  =  b Set@a,  bD 

Some examples of Mathematica expressions. 

You can see the full form of any expression by using FullForm[expr].  

Here is an expression. 

In[1]:= x + y + z

Out[1]= x + y + z

This is the full form of the expression. 

In[2]:= FullForm[%]

Out[2]//FullForm= 

Plus@x, y, zD

Here is another expression. 

In[3]:= 1 + x^2 + (y + z)^2

Out[3]= 1 + x2 + Hy + zL2
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Its full form has several nested pieces. 

In[4]:= FullForm[%]

Out[4]//FullForm= 

Plus@1, Power@x, 2D, Power@Plus@y, zD, 2DD

The  object  f  in  an  expression  f[x,  y,  … ]  is  known  as  the  head  of  the  expression.  You  can  extract  it  using
Head[expr]. Particularly when you write programs in Mathematica, you will often want to test the head of an expres-
sion to find out what kind of thing the expression is. 

Head gives the “function  name”  f. 

In[5]:= Head[f[x, y]]

Out[5]= f

Here Head gives the name of the “operator”.  

In[6]:= Head[a + b + c]

Out[6]= Plus

Everything has a head. 

In[7]:= Head[{a, b, c}]

Out[7]= List

Numbers also have heads. 

In[8]:= Head[23432]

Out[8]= Integer

You can distinguish different kinds of numbers by their heads. 

In[9]:= Head[345.6]

Out[9]= Real

Head@ expr D give the head of an expression: the  f  in  f  @ x,  y D 

FullForm@ expr D display an expression in the full form used by  Mathematica

Functions for manipulating expressions. 

2.1.2 The Meaning of Expressions

The notion of expressions is a crucial unifying principle in Mathematica. It is the fact that every object in Mathematica
has the same underlying structure that makes it possible for Mathematica  to cover so many areas with a comparatively
small number of basic operations. 

Although  all  expressions  have  the  same basic  structure,  there  are  many different  ways  that  expressions  can  be  used.
Here are a few of the interpretations you can give to the parts of an expression.  
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meaning of  f  meaning of  x ,  y ,  ...  examples 

Function arguments
or parameters

Sin@xD ,  f@x,  yD 

Command arguments
or parameters

Expand@Hx  +  1L^2D 

Operator operands x  +  y ,  a  =  b 

Head elements 8a,  b,  c< 

Object type contents RGBColor@r,  g,  bD 

Some interpretations of parts of expressions. 

Expressions in Mathematica are often used to specify operations. So, for example, typing in 2 + 3 causes 2 and 3 to be
added together, while Factor[x^6 - 1] performs factorization. 

Perhaps  an  even  more  important  use  of  expressions  in  Mathematica,  however,  is  to  maintain  a  structure,  which  can
then be acted on by other functions. An expression like {a, b, c} does not specify an operation. It merely maintains a
list structure, which contains a collection of three elements. Other functions, such as Reverse or Dot, can act on this
structure. 

The full form of the expression {a, b, c} is List[a, b, c]. The head List performs no operations. Instead, its
purpose is to serve as a “tag”  to specify the “type”  of the structure. 

You  can  use  expressions  in  Mathematica  to  create  your  own  structures.  For  example,  you  might  want  to  represent
points in three-dimensional space, specified by three coordinates. You could give each point as point[x, y, z]. The
“function”  point again performs no operation. It serves merely to collect the three coordinates together, and to label
the resulting object as a point. 

You can think of expressions like point[x, y, z] as being “packets  of data”,  tagged with a particular head. Even
though all expressions have the same basic structure, you can distinguish different “types”  of expressions by giving
them different heads. You can then set up transformation rules and programs which treat different types of expressions
in different ways. 

2.1.3 Special Ways to Input Expressions

Mathematica  allows you to use special notation for many common operators. For example, although internally Mathe-
matica represents a sum of two terms as Plus[x, y], you can enter this expression in the much more convenient form
x + y. 

The  Mathematica  language  has  a  definite  grammar  which  specifies  how  your  input  should  be  converted  to  internal
form. One aspect of the grammar is that it specifies how pieces of your input should be grouped. For example, if you
enter an expression such as a  +  b  ^  c,  the Mathematica  grammar specifies that this should be considered,  following
standard mathematical notation, as a + (b ^ c) rather than (a + b) ^ c. Mathematica chooses this grouping because
it  treats  the  operator  ^  as  having  a  higher  precedence  than  +.  In  general,  the  arguments  of  operators  with  higher
precedence are grouped before those of operators with lower precedence. 

You  should  realize  that  absolutely  every  special  input  form  in  Mathematica  is  assigned  a  definite  precedence.  This
includes  not  only  the  traditional  mathematical  operators,  but  also  forms  such  as  ->,  :=  or  the  semicolons  used  to
separate expressions in a Mathematica program. 

The table in Section A.2.7 gives all the operators of Mathematica in order of decreasing precedence. The precedence is
arranged,  where possible,  to follow standard mathematical usage, and to minimize the number of parentheses that are
usually needed. 
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You will find, for example, that relational operators such as < have lower precedence than arithmetic operators such as
+. This means that you can write expressions such as x + y > 7 without using parentheses. 

There are nevertheless many cases where you do have to use parentheses. For example, since ; has a lower precedence
than =, you need to use parentheses to write x = ( a ; b ). Mathematica interprets the expression x = a ; b as (x =
a) ; b. In general, it can never hurt to include extra parentheses, but it can cause a great deal of trouble if you leave
parentheses out, and Mathematica interprets your input in a way you do not expect. 

f   @ x,  y D standard form for  f   @ x,  y D 

f   @  x prefix form for  f   @ x D 

x  êê  f  postfix form for  f   @ x D 

x  ∼  f   ∼  y infix form for  f   @ x,  y D 

Four ways to write expressions in Mathematica. 

There are several common types of operators in Mathematica. The + in x + y is an “infix”  operator. The - in -p is a
“prefix”  operator. Even when you enter an expression such as f[x, y, … ] Mathematica allows you to do it in ways
that mimic infix, prefix and postfix forms.  

This “postfix  form”  is exactly equivalent to f[x + y]. 

In[1]:= x + y //f

Out[1]= f@x + yD

You will often want to add functions like N as “afterthoughts”,  and give them in postfix form. 

In[2]:= 3^(1/4) + 1 //N

Out[2]= 2.31607

It is sometimes easier to understand what a function is doing when you write it in infix form. 

In[3]:= {a, b, c} ~Join~ {d, e}

Out[3]= 8a, b, c, d, e<

You should notice that // has very low precedence. If you put //f at the end of any expression containing arithmetic
or logical operators, the f is applied to the whole expression. So, for example, x+y //f means f[x+y], not x+f[y]. 

The prefix form @ has a much higher precedence. f @ x + y is equivalent to f[x] + y, not f[x + y]. You can write
f[x + y] in prefix form as f @ (x + y). 

2.1.4 Parts of Expressions

Since lists are just a particular kind of expression, it will come as no surprise that you can refer to parts of any expres-
sion much as you refer to parts of a list. 

This gets the second element in the list {a, b, c}. 

In[1]:= {a, b, c}[[2]]

Out[1]= b
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You can use the same method to get the second element in the sum x + y + z. 

In[2]:= (x + y + z)[[2]]

Out[2]= y

This gives the last element in the sum. 

In[3]:= (x + y + z)[[-1]]

Out[3]= z

Part 0 is the head. 

In[4]:= (x + y + z)[[0]]

Out[4]= Plus

You can refer to parts of an expression such as f[g[a], g[b]] just as you refer to parts of nested lists. 

This is part 1. 

In[5]:= f[g[a], g[b]] [[1]]

Out[5]= g@aD

This is part {1,1}. 

In[6]:= f[g[a], g[b]] [[1, 1]]

Out[6]= a

This extracts part {2,1} of the expression 1 + x^2. 

In[7]:= (1 + x^2) [[2, 1]]

Out[7]= x

To see what part is {2,1}, you can look at the full form of the expression. 

In[8]:= FullForm[1 + x^2]

Out[8]//FullForm= 

Plus@1, Power@x, 2DD

You should realize that the assignment of indices to parts of expressions is done on the basis of the internal Mathemat-
ica  forms of  the expression,  as shown by FullForm.  These forms do not always correspond directly with what you
see printed  out.  This  is  particularly  true  for  algebraic  expressions,  where  Mathematica  uses  a  standard  internal  form,
but prints the expressions in special ways. 

Here is the internal form of x / y. 

In[9]:= FullForm[x / y]

Out[9]//FullForm= 

Times@x, Power@y, −1DD
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It is the internal form that is used in specifying parts. 

In[10]:= (x / y)[[2]]

Out[10]= 
1
y

You can manipulate parts of expressions just as you manipulate parts of lists. 

This replaces the third part of a + b + c + d by x^2. Note that the sum is automatically rearranged when the replacement is done. 

In[11]:= ReplacePart[a + b + c + d, x^2, 3]

Out[11]= a + b + d + x2

Here is an expression. 

In[12]:= t = 1 + (3 + x)^2 / y

Out[12]= 1 +
H3 + xL2

y

This is the full form of t. 

In[13]:= FullForm[ t ]

Out[13]//FullForm= 

Plus@1, Times@Power@Plus@3, xD, 2D, Power@y, −1DDD

This resets a part of the expression t. 

In[14]:= t[[2, 1, 1]] = x

Out[14]= x

Now the form of t has been changed. 

In[15]:= t

Out[15]= 1 +
x2

y

Part@ expr,  n D  or  expr @@ n DD the  n th  part of  expr 
Part@ expr,  8  n1,  n2, … <  
D  or  expr @@ 8  n1,  n2, … <  DD 

a combination of parts of an expression

ReplacePart@ expr,  elem,  n D replace the  n th  part of  expr by  elem 

Functions for manipulating parts of expressions. 

Section 1.2.4 discussed how you can use lists of indices to pick out several elements of a list at a time. You can use the
same procedure to pick out several parts in an expression at a time. 
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This picks out elements 2 and 4 in the list, and gives a list of these elements. 

In[16]:= {a, b, c, d, e}[[{2, 4}]]

Out[16]= 8b, d<

This picks out parts 2 and 4 of the sum, and gives a sum of these elements. 

In[17]:= (a + b + c + d + e)[[{2, 4}]]

Out[17]= b + d

Any part in an expression can be viewed as being an argument of some function. When you pick out several parts by
giving a list of indices, the parts are combined using the same function as in the expression. 

2.1.5 Manipulating Expressions like Lists

You  can  use  most  of  the  list  operations  discussed  in  Section 1.8  on  any  kind  of  Mathematica  expression.  By  using
these operations, you can manipulate the structure of expressions in many ways. 

Here is an expression that corresponds to a sum of terms. 

In[1]:= t = 1 + x + x^2 + y^2

Out[1]= 1 + x + x2 + y2

Take[t, 2] takes the first two elements from t, just as if t were a list. 

In[2]:= Take[t, 2]

Out[2]= 1 + x

Length gives the number of elements in t. 

In[3]:= Length[t]

Out[3]= 4

You can use FreeQ[expr, form] to test whether form appears nowhere in expr. 

In[4]:= FreeQ[t, x]

Out[4]= False

This gives a list of the positions at which x appears in t. 

In[5]:= Position[t, x]

Out[5]= 882<, 83, 1<<

You should remember that all functions which manipulate the structure of expressions act on the internal forms of these
expressions.  You  can  see  these  forms  using  FullForm[expr].  They  may  not  be  what  you  would  expect  from  the
printed versions of the expressions. 
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Here is a function with four arguments. 

In[6]:= f[a, b, c, d]

Out[6]= f@a, b, c, dD

You can add an argument using Append. 

In[7]:= Append[%, e]

Out[7]= f@a, b, c, d, eD

This reverses the arguments. 

In[8]:= Reverse[%]

Out[8]= f@e, d, c, b, aD

There are a few extra functions that can be used with expressions, as discussed in Section 2.2.10. 

2.1.6 Expressions as Trees

Here is an expression in full form. 

In[1]:= FullForm[x^3 + (1 + x)^2]

Out[1]//FullForm= 

Plus@Power@x, 3D, Power@Plus@1, xD, 2DD

TreeForm prints out expressions to show their “tree”  structure.  

In[2]:= TreeForm[x^3 + (1 + x)^2]

Out[2]//TreeForm= 

PlusA »
Power@x, 3D

, »
PowerA »

Plus@1, xD
, 2E

E

You can think of any Mathematica  expression as a tree. In the expression above, the top node in the tree consists of a
Plus. From this node come two “branches”,  x^3 and (1 + x)^2. From the x^3 node, there are then two branches,
x and 3, which can be viewed as “leaves”  of the tree. 

This matrix is a simple tree with just two levels. 

In[3]:= TreeForm[{{a, b}, {c, d}}]

Out[3]//TreeForm= 

ListA »
List@a, bD

, »
List@c, dD

E
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Here is a more complicated expression. 

In[4]:= {{a b, c d^2}, {x^3 y^4}}

Out[4]= 88a b, c d2<, 8x3 y4<<

The tree for this expression has several levels. The representation of the tree here was too long to fit on a single line, so it had to be 
broken onto two lines. 

In[5]:= TreeForm[%]

Out[5]//TreeForm= 

ListA »
ListA »

Times@a, bD
, »
TimesAc, »

Power@d, 2D
E
E
,

»
ListA »

TimesA »
Power@x, 3D

, »
Power@y, 4D

E
E
E

The indices that label each part of an expression have a simple interpretation in terms of trees. Descending from the top
node of the tree, each index specifies which branch to take in order to reach the part you want. 

2.1.7 Levels in Expressions

The  Part  function  allows  you  to  access  specific  parts  of  Mathematica  expressions.  But  particularly  when  your
expressions have fairly uniform structure, it is often convenient to be able to refer to a whole collection of parts at the
same time. 

Levels  provide  a  general  way  of  specifying  collections  of  parts  in  Mathematica  expressions.  Many  Mathematica
functions allow you to specify the levels in an expression on which they should act. 

Here is a simple expression, displayed in tree form. 

In[1]:= (t = {x, {x, y}, y}) // TreeForm

Out[1]//TreeForm= 

ListAx, »
List@x, yD

, yE

This searches for x in the expression t down to level 1. It finds only one occurrence. 

In[2]:= Position[t, x, 1]

Out[2]= 881<<

This searches down to level 2. Now it finds both occurrences of x. 

In[3]:= Position[t, x, 2]

Out[3]= 881<, 82, 1<<
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This searches only at level 2. It finds just one occurrence of x. 

In[4]:= Position[t, x, {2}]

Out[4]= 882, 1<<

Position@ expr,  form,  n D give the positions at which  form occurs in  expr down to level  n 
Position@ expr,  form,  8  n <  D give the positions exactly at level  n 

Controlling Position using levels. 

You can think of  levels  in  expressions  in terms of  trees.  The level  of  a  particular  part  in  an expression is  simply the
distance down the tree at which that part appears, with the top of the tree considered as level 0. 

It is equivalent to say that the parts which appear at level n are those that can be specified by a sequence of exactly n
indices. 

n levels  1 through  n 
Infinity all levels Hexcept 0L

8  n <  level  n only
8  n1,  n2  <  levels  n1  through  n2  

Heads  −>  True include heads
Heads  −>  False exclude heads

Level specifications. 

Here is an expression, displayed in tree form. 

In[5]:= (u = f[f[g[a], a], a, h[a], f]) // TreeForm

Out[5]//TreeForm= 

fA »
fA »

g@aD
, aE

, a, »
h@aD

, fE

This searches for a at levels from 2 downwards. 

In[6]:= Position[u, a, {2, Infinity}]

Out[6]= 881, 1, 1<, 81, 2<, 83, 1<<

This shows where f appears other than in the head of an expression. 

In[7]:= Position[u, f, Heads->False]

Out[7]= 884<<

This includes occurrences of f in heads of expressions. 

In[8]:= Position[u, f, Heads->True]

Out[8]= 880<, 81, 0<, 84<<
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Level@ expr,  lev D a list of the parts of  expr at the levels specified by  lev 
Depth@ expr D the total number of levels in  expr 

Testing and extracting levels. 

This gives a list of all parts of u that occur down to level 2. 

In[9]:= Level[u, 2]

Out[9]= 8g@aD, a, f@g@aD, aD, a, a, h@aD, f<

Here are the parts specifically at level 2. 

In[10]:= Level[u, {2}]

Out[10]= 8g@aD, a, a<

When you have got the hang of ordinary levels, you can try thinking about negative levels. Negative levels label parts
of expressions starting at the bottom  of the tree. Level -1 contains all the leaves of the tree: objects like symbols and
numbers.   

This shows the parts of u at level -1. 

In[11]:= Level[u, {-1}]

Out[11]= 8a, a, a, a, f<

You  can  think  of  expressions  as  having  a  “depth”,  which  is  equal  to  the  maximum  number  of  levels  shown  by
TreeForm. In general, level -n in an expression is defined to consist of all subexpressions whose depth is n.  

The depth of g[a] is 2. 

In[12]:= Depth[ g[a] ]

Out[12]= 2

The parts of u at level -2 are those that have depth exactly 2. 

In[13]:= Level[u, {-2}]

Out[13]= 8g@aD, h@aD<
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2.2 Functional Operations

2.2.1 Function Names as Expressions

In an expression like f[x], the “function  name”  f is itself an expression, and you can treat it as you would any other
expression. 

You can replace names of functions using transformation rules. 

In[1]:= f[x] + f[1 - x] /. f -> g

Out[1]= g@1 − xD + g@xD

Any assignments you have made are used on function names. 

In[2]:= p1 = p2; p1[x, y]

Out[2]= p2@x, yD

This defines a function which takes a function name as an argument. 

In[3]:= pf[f_, x_] := f[x] + f[1 - x]

This gives Log as the function name to use. 

In[4]:= pf[Log, q]

Out[4]= Log@1 − qD + Log@qD

The  ability  to  treat  the  names  of  functions  just  like  other  kinds  of  expressions  is  an  important  consequence  of  the
symbolic nature of the Mathematica  language. It makes possible the whole range of functional operations discussed in
the sections that follow. 

Ordinary Mathematica functions such as Log or Integrate typically operate on data such as numbers and algebraic
expressions.  Mathematica  functions  that  represent  functional  operations,  however,  can  operate  not  only  on  ordinary
data,  but  also  on  functions  themselves.  Thus,  for  example,  the  functional  operation  InverseFunction  takes  a
Mathematica function name as an argument, and represents the inverse of that function. 

InverseFunction is a functional operation: it takes a Mathematica function as an argument, and returns another function 
which represents its inverse. 

In[5]:= InverseFunction[ArcSin]

Out[5]= Sin

The result obtained from InverseFunction is a function which you can apply to data. 

In[6]:= %[x]

Out[6]= Sin@xD
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You can also use InverseFunction in a purely symbolic way. 

In[7]:= InverseFunction[f] [x]

Out[7]= fH−1L@xD

There  are  many  kinds  of  functional  operations  in  Mathematica.  Some  represent  mathematical  operations;  others
represent various kinds of procedures and algorithms. 

Unless  you  are  familiar  with  advanced  symbolic  languages,  you  will  probably  not  recognize  most  of  the  functional
operations  discussed  in  the  sections  that  follow.  At  first,  the  operations  may  seem  difficult  to  understand.  But  it  is
worth  persisting.  Functional  operations  provide  one  of  the  most  conceptually  and  practically  efficient  ways  to  use
Mathematica. 

2.2.2 Applying Functions Repeatedly

Many  programs  you  write  will  involve  operations  that  need  to  be  iterated  several  times.  Nest  and  NestList  are
powerful constructs for doing this. 

Nest@ f ,  x,  n D apply the function  f  nested  n times to  x 
NestList@ f ,  x,  n D generate the list  8  x,  f  @ x D,  f  @ f  

@ x DD, … <  , where  f  is nested up to  n deep

Applying functions of one argument repeatedly. 

Nest[f, x, n] takes the “name”  f of a function, and applies the function n times to x. 

In[1]:= Nest[f, x, 4]

Out[1]= f@f@f@f@xDDDD

This makes a list of each successive nesting. 

In[2]:= NestList[f, x, 4]

Out[2]= 8x, f@xD, f@f@xDD, f@f@f@xDDD, f@f@f@f@xDDDD<

Here is a simple function. 

In[3]:= recip[x_] := 1/(1 + x)

You can iterate the function using Nest. 

In[4]:= Nest[recip, x, 3]

Out[4]= 
1

1 + 1
1+ 1

1+x

Nest and NestList  allow you to apply functions a fixed number of times. Often you may want to apply functions
until the result no longer changes. You can do this using FixedPoint and FixedPointList.
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FixedPoint@ f ,  x D apply the function  f  repeatedly until the result no longer changes
FixedPointList@ f ,  x D generate the list  8  x,  f  @ x D,  f  @ f  @ x DD, 

… <  , stopping when the elements no longer change

Applying functions until the result no longer changes. 

Here is a function that takes one step in Newton's approximation to è!!!3 . 

In[5]:= newton3[x_] := N[ 1/2 ( x + 3/x ) ]

Here are five successive iterates of the function, starting at x = 1. 

In[6]:= NestList[newton3, 1.0, 5]

Out[6]= 81., 2., 1.75, 1.73214, 1.73205, 1.73205<

Using the function FixedPoint, you can automatically continue applying newton3 until the result no longer changes. 

In[7]:= FixedPoint[newton3, 1.0]

Out[7]= 1.73205

Here is the sequence of results. 

In[8]:= FixedPointList[newton3, 1.0]

Out[8]= 81., 2., 1.75, 1.73214, 1.73205, 1.73205, 1.73205<

NestWhile@ f ,  x,  test D apply the function  f  repeatedly until applying  
test to the result no longer yields  True 

NestWhileList@ f ,  x,  test D generate the list  8  x,  f  @ x D,  f  @ f  @ x DD, … <  ,
stopping when applying  test to the result no longer yields  True 

NestWhile@ f ,  x,  test,  m D ,  
NestWhileList@ f ,  x,  test,  m D 

supply the  m 
most recent results as arguments for  test at each step

NestWhile@ f ,  x,  test,  AllD ,  
NestWhileList@ f ,  x,  test,  AllD 

supply all results so far as arguments for  test 

Applying functions repeatedly until a test fails. 

Here is a function which divides a number by 2. 

In[9]:= divide2[n_] := n/2

This repeatedly applies divide2 until the result is no longer an even number. 

In[10]:= NestWhileList[divide2, 123456, EvenQ]

Out[10]= 8123456, 61728, 30864, 15432, 7716, 3858, 1929<
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This repeatedly applies newton3, stopping when two successive results are no longer considered unequal, just as in FixedPoint
List. 

In[11]:= NestWhileList[newton3, 1.0, Unequal, 2]

Out[11]= 81., 2., 1.75, 1.73214, 1.73205, 1.73205, 1.73205<

This goes on until the first time a result that has been seen before reappears. 

In[12]:= NestWhileList[Mod[5 #, 7]&, 1, Unequal, All]

Out[12]= 81, 5, 4, 6, 2, 3, 1<

Operations such as Nest take a function f of one argument, and apply it repeatedly. At each step, they use the result of
the previous step as the new argument of f. 

It is important to generalize this notion to functions of two arguments. You can again apply the function repeatedly, but
now each result you get supplies only one of the new arguments you need. A convenient approach is to get the other
argument at each step from the successive elements of a list. 

FoldList@ f ,  x,  8  a,  b, … <  D create the list  8  x,  f  @ x,  a D,  f  @ f  @ x,  a D,  b D, … <  
Fold@ f ,  x,  8  a,  b, … <  D give the last element of the list produced by  

FoldList@ f ,  x,  8  a,  b, … <  D 

Ways to repeatedly apply functions of two arguments. 

Here is an example of what FoldList does. 

In[13]:= FoldList[f, x, {a, b, c}]

Out[13]= 8x, f@x, aD, f@f@x, aD, bD, f@f@f@x, aD, bD, cD<

Fold gives the last element of the list produced by FoldList. 

In[14]:= Fold[f, x, {a, b, c}]

Out[14]= f@f@f@x, aD, bD, cD

This gives a list of cumulative sums. 

In[15]:= FoldList[Plus, 0, {a, b, c}]

Out[15]= 80, a, a + b, a + b + c<

Using Fold and FoldList  you can write many elegant and efficient programs in Mathematica. In some cases, you
may find it helpful to think of Fold and FoldList as producing a simple nesting of a family of functions indexed by
their second argument. 

This defines a function nextdigit. 

In[16]:= nextdigit[a_, b_] := 10 a + b

This is now like the built-in function FromDigits. 

In[17]:= fromdigits[digits_] := Fold[nextdigit, 0, digits]
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Here is an example of the function in action. 

In[18]:= fromdigits[{1, 3, 7, 2, 9, 1}]

Out[18]= 137291

2.2.3 Applying Functions to Lists and Other Expressions

In  an  expression  like f[{a,  b,  c}]  you are  giving  a  list  as  the  argument to  a function.  Often  you need instead to
apply a function  directly to  the elements of  a  list,  rather  than to the list  as  a whole.  You can do this in Mathematica
using Apply. 

This makes each element of the list an argument of the function f. 

In[1]:= Apply[f, {a, b, c}]

Out[1]= f@a, b, cD

This gives Plus[a, b, c] which yields the sum of the elements in the list. 

In[2]:= Apply[Plus, {a, b, c}]

Out[2]= a + b + c

Here is the definition of the statistical mean, written using Apply. 

In[3]:= mean[list_] := Apply[Plus, list] / Length[list]

Apply@ f ,  8  a,  b, … <  D apply  f  to a list, giving  f  @ a,  b, … D 

Apply@ f ,  expr D or  f   @@  expr apply  f  to the top level of an expression
Apply@ f ,  expr,  
8  1 <  D  or  f   @@@  expr 

apply  f  at the first level in an expression

Apply@ f ,  expr,  lev D apply  f  at the specified levels in an expression

Applying functions to lists and other expressions. 

What Apply does in general is to replace the head of an expression with the function you specify. Here it replaces Plus by 
List. 

In[4]:= Apply[List, a + b + c]

Out[4]= 8a, b, c<

Here is a matrix. 

In[5]:= m = {{a, b, c}, {b, c, d}}

Out[5]= 88a, b, c<, 8b, c, d<<
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Using Apply without an explicit level specification replaces the top-level list with f. 

In[6]:= Apply[f, m]

Out[6]= f@8a, b, c<, 8b, c, d<D

This applies f only to parts of m at level 1. 

In[7]:= Apply[f, m, {1}]

Out[7]= 8f@a, b, cD, f@b, c, dD<

This applies f at levels 0 through 1. 

In[8]:= Apply[f, m, {0, 1}]

Out[8]= f@f@a, b, cD, f@b, c, dDD

2.2.4 Applying Functions to Parts of Expressions

If you have a list of elements, it is often important to be able to apply a function separately to each of the elements. You
can do this in Mathematica using Map. 

This applies f separately to each element in a list. 

In[1]:= Map[f, {a, b, c}]

Out[1]= 8f@aD, f@bD, f@cD<

This defines a function which takes the first two elements from a list. 

In[2]:= take2[list_] := Take[list, 2]

You can use Map to apply take2 to each element of a list. 

In[3]:= Map[take2, {{1, 3, 4}, {5, 6, 7}, {2, 1, 6, 6}}]

Out[3]= 881, 3<, 85, 6<, 82, 1<<

Map@ f ,  8  a,  b, … <  D apply  f  to each element in a list, giving  
8  f  @ a D,  f  @ b D, … <  

Applying a function to each element in a list. 

What Map[f, expr] effectively does is to “wrap”  the function f around each element of the expression expr. You can
use Map on any expression, not just a list. 

This applies f to each element in the sum. 

In[4]:= Map[f, a + b + c]

Out[4]= f@aD + f@bD + f@cD
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This applies Sqrt to each argument of g. 

In[5]:= Map[Sqrt, g[x^2, x^3]]

Out[5]= gAè!!!!!!x2 , è!!!!!!x3 E

Map[f, expr] applies f to the first level of parts in expr. You can use MapAll[f, expr] to apply f to all the parts of
expr.  

This defines a 2ä2 matrix m. 

In[6]:= m = {{a, b}, {c, d}}

Out[6]= 88a, b<, 8c, d<<

Map applies f to the first level of m, in this case the rows of the matrix. 

In[7]:= Map[f, m]

Out[7]= 8f@8a, b<D, f@8c, d<D<

MapAll applies f at all levels in m. If you look carefully at this expression, you will see an f wrapped around every part. 

In[8]:= MapAll[f, m]

Out[8]= f@8f@8f@aD, f@bD<D, f@8f@cD, f@dD<D<D

In general, you can use level specifications as described in Section 2.1.7 to tell Map to which parts of an expression to
apply your function. 

This applies f only to the parts of m at level 2. 

In[9]:= Map[f, m, {2}]

Out[9]= 88f@aD, f@bD<, 8f@cD, f@dD<<

Setting the option Heads->True wraps f around the head of each part, as well as its elements. 

In[10]:= Map[f, m, Heads->True]

Out[10]= f@ListD@f@8a, b<D, f@8c, d<DD

Map@ f ,  expr D or  f   ê@  expr apply  f  to the first-level parts of  expr 
MapAll@ f ,  expr D  or  f   êê@  expr apply  f  to all parts of  expr 

Map@ f ,  expr,  lev D apply  f  to each part of  expr at levels specified by  lev 

Ways to apply a function to different parts of expressions. 

Level specifications allow you to tell Map to which levels of parts in an expression you want a function applied. With
MapAt,  however,  you can instead give an explicit  list  of  parts  where you want a function applied.  You specify each
part by giving its indices, as discussed in Section 2.1.4. 
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Here is a 2ä3 matrix. 

In[11]:= mm = {{a, b, c}, {b, c, d}}

Out[11]= 88a, b, c<, 8b, c, d<<

This applies f to parts {1, 2} and {2, 3}. 

In[12]:= MapAt[f, mm, {{1, 2}, {2, 3}}]

Out[12]= 88a, f@bD, c<, 8b, c, f@dD<<

This gives a list of the positions at which b occurs in mm. 

In[13]:= Position[mm, b]

Out[13]= 881, 2<, 82, 1<<

You can feed the list of positions you get from Position directly into MapAt. 

In[14]:= MapAt[f, mm, %]

Out[14]= 88a, f@bD, c<, 8f@bD, c, d<<

To avoid ambiguity, you must put each part specification in a list, even when it involves only one index. 

In[15]:= MapAt[f, {a, b, c, d}, {{2}, {3}}]

Out[15]= 8a, f@bD, f@cD, d<

MapAt@ f ,  expr,
 8  part1,  part2, … <  D 

apply  f  to specified parts of  expr 

Applying a function to specific parts of an expression. 

Here is an expression. 

In[16]:= t = 1 + (3 + x)^2 / x

Out[16]= 1 +
H3 + xL2

x

This is the full form of t. 

In[17]:= FullForm[ t ]

Out[17]//FullForm= 

Plus@1, Times@Power@x, −1D, Power@Plus@3, xD, 2DDD

You can use MapAt on any expression. Remember that parts are numbered on the basis of the full forms of expressions. 

In[18]:= MapAt[f, t, {{2, 1, 1}, {2, 2}}]

Out[18]= 1 +
f@H3 + xL2D

f@xD
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MapIndexed@ f ,  expr D apply  f  to the elements of an expression, giving the part
specification of each element as a second argument to  f  

MapIndexed@ f ,  expr,  lev D apply  f  to parts at specified levels, giving the
list of indices for each part as a second argument to  f  

Applying a function to parts and their indices. 

This applies f to each element in a list, giving the index of the element as a second argument to f. 

In[19]:= MapIndexed[f, {a, b, c}]

Out[19]= 8f@a, 81<D, f@b, 82<D, f@c, 83<D<

This applies f to both levels in a matrix. 

In[20]:= MapIndexed[f, {{a, b}, {c, d}}, 2]

Out[20]= 8f@8f@a, 81, 1<D, f@b, 81, 2<D<, 81<D, f@8f@c, 82, 1<D, f@d, 82, 2<D<, 82<D<

Map allows you to apply a function of one argument to parts of an expression. Sometimes, however, you may instead
want to apply a function of several arguments to corresponding parts of several different expressions. You can do this
using MapThread. 

MapThread@ f ,  8  expr1,  expr2, … <  D apply  f  to corresponding elements in each of the  expri  
MapThread@ f ,  8  
expr1,  expr2, … <,  lev D 

apply  f  to parts of the  expri  at the specified level

Applying a function to several expressions at once. 

This applies f to corresponding pairs of list elements. 

In[21]:= MapThread[f, {{a, b, c}, {ap, bp, cp}}]

Out[21]= 8f@a, apD, f@b, bpD, f@c, cpD<

MapThread works with any number of expressions, so long as they have the same structure. 

In[22]:= MapThread[f, {{a, b}, {ap, bp}, {app, bpp}}]

Out[22]= 8f@a, ap, appD, f@b, bp, bppD<

Functions like Map allow you to create expressions with parts modified. Sometimes you simply want to go through an
expression,  and  apply  a  particular  function  to  some parts  of  it,  without  building  a  new expression.  A  typical  case  is
when the function you apply has certain “side  effects”,  such as making assignments, or generating output. 

Scan@ f ,  expr D evaluate  f  applied to each element of  expr in turn
Scan@ f ,  expr,  lev D evaluate  f  applied to parts of  expr on levels specified by  lev 

Evaluating functions on parts of expressions. 
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Map constructs a new list in which f has been applied to each element of the list. 

In[23]:= Map[f, {a, b, c}]

Out[23]= 8f@aD, f@bD, f@cD<

Scan evaluates the result of applying a function to each element, but does not construct a new expression. 

In[24]:= Scan[Print, {a, b, c}]

a

b

c

Scan visits the parts of an expression in a depth-first walk, with the leaves visited first. 

In[25]:= Scan[Print, 1 + x^2, Infinity]

1

x

2

x2

2.2.5 Pure Functions

Function@ x,  body D a pure function in which  x 
is replaced by any argument you provide

Function@ 8  x1,  x2, … <,  body D a pure function that takes several arguments
body  & a pure function in which arguments are specified as  

# or  #1 ,  #2 ,  #3 , etc.

Pure functions. 

When you use functional operations such as Nest and Map, you always have to specify a function to apply. In all the
examples  above,  we  have  used  the  “name”  of  a  function  to  specify  the  function.  Pure  functions  allow you  to  give
functions which can be applied to arguments, without having to define explicit names for the functions. 

This defines a function h. 

In[1]:= h[x_] := f[x] + g[x]

Having defined h, you can now use its name in Map. 

In[2]:= Map[h, {a, b, c}]

Out[2]= 8f@aD + g@aD, f@bD + g@bD, f@cD + g@cD<
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Here is a way to get the same result using a pure function. 

In[3]:= Map[ f[#] + g[#] &, {a, b, c} ]

Out[3]= 8f@aD + g@aD, f@bD + g@bD, f@cD + g@cD<

There are several equivalent ways to write pure functions in Mathematica. The idea in all cases is to construct an object
which, when supplied with appropriate arguments, computes a particular function. Thus, for example, if fun  is a pure
function, then fun[a] evaluates the function with argument a. 

Here is a pure function which represents the operation of squaring. 

In[4]:= Function[x, x^2]

Out[4]= Function@x, x2D

Supplying the argument n to the pure function yields the square of n. 

In[5]:= %[n]

Out[5]= n2

You can use a pure function wherever you would usually give the name of a function. 

You can use a pure function in Map. 

In[6]:= Map[ Function[x, x^2], a + b + c ]

Out[6]= a2 + b2 + c2

Or in Nest. 

In[7]:= Nest[ Function[q, 1/(1+q)], x, 3 ]

Out[7]= 
1

1 + 1
1+ 1

1+x

This sets up a pure function with two arguments and then applies the function to the arguments a and b. 

In[8]:= Function[{x, y}, x^2 + y^3] [a, b]

Out[8]= a2 + b3

If  you  are  going  to  use  a  particular  function  repeatedly,  then you can define  the function  using f[x_]  :=  body,  and
refer to the function by its name f. On the other hand, if you only intend to use a function once, you will probably find
it better to give the function in pure function form, without ever naming it. 

If you are familiar with formal logic or the LISP programming language,  you will recognize Mathematica  pure func-
tions as being like l  expressions or anonymous functions. Pure functions are also close to the pure mathematical notion
of operators. 
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# the first variable in a pure function
# n the  n th  variable in a pure function
## the sequence of all variables in a pure function

## n the sequence of variables starting with the  n th  one

Short forms for pure functions. 

Just  as  the  name of  a  function  is  irrelevant  if  you  do  not  intend  to  refer  to  the  function  again,  so  also  the  names of
arguments in a pure function are irrelevant. Mathematica allows you to avoid using explicit names for the arguments of
pure functions,  and instead to specify the arguments by giving “slot  numbers”  #n.  In  a Mathematica  pure function,
#n stands for the nth  argument you supply. # stands for the first argument. 

#^2 & is a short form for a pure function that squares its argument. 

In[9]:= Map[ #^2 &, a + b + c ]

Out[9]= a2 + b2 + c2

This applies a function that takes the first two elements from each list. By using a pure function, you avoid having to define the 
function separately. 

In[10]:= Map[Take[#, 2]&, {{2, 1, 7}, {4, 1, 5}, {3, 1, 2}}]

Out[10]= 882, 1<, 84, 1<, 83, 1<<

Using short forms for pure functions, you can simplify the definition of fromdigits given in Section 2.2.2. 

In[11]:= fromdigits[digits_] := Fold[(10 #1 + #2)&, 0, digits]

When you use short forms for pure functions, it is very important that you do not forget the ampersand. If you leave the
ampersand out, Mathematica will not know that the expression you give is to be used as a pure function. 

When  you  use  the  ampersand  notation  for  pure  functions,  you  must  be  careful  about  the  grouping  of  pieces  in  your
input.  As  shown  in  Section A.2.7  the  ampersand  notation  has  fairly  low precedence,  which  means that  you  can  type
expressions like #1 + #2 & without parentheses. On the other hand, if you want, for example, to set an option to be a
pure function, you need to use parentheses, as in option -> (fun &). 

Pure functions in Mathematica  can take any number of arguments. You can use ## to stand for all the arguments that
are given, and ##n to stand for the nth  and subsequent arguments. 

## stands for all arguments. 

In[12]:= f[##, ##]& [x, y]

Out[12]= f@x, y, x, yD

##2 stands for all arguments except the first one. 

In[13]:= Apply[f[##2, #1]&, {{a, b, c}, {ap, bp}}, {1}]

Out[13]= 8f@b, c, aD, f@bp, apD<
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2.2.6 Building Lists from Functions

Array@ f ,  n D generate a length  n list of the form  8  f  @1D,  f  @2D, … <  
Array@ f ,  8  n1,  n2, … <  D generate an  n1 än2 ä ...  

nested list, each of whose entries consists of  
f  applied to its indices

NestList@ f ,  x,  n D generate a list of the form  8  x,  f  @ x D,  f  
@ f  @ x DD, … <  , where  f  is nested up to  n deep

FoldList@ f ,  x,  8  a,  b, … <  D generate a list of the form  8  x,  f  
@ x,  a D,  f  @ f  @ x,  a D,  b D, … <  

ComposeList@ 8  f 1,  f 2, … <,  x D generate a list of the form  8  x,  f 1  @ x D,  f 2  @ f 1  @ x DD, … <  

Making lists from functions. 

This makes a list of 5 elements, each of the form p[i]. 

In[1]:= Array[p, 5]

Out[1]= 8p@1D, p@2D, p@3D, p@4D, p@5D<

Here is another way to produce the same list. 

In[2]:= Table[p[i], {i, 5}]

Out[2]= 8p@1D, p@2D, p@3D, p@4D, p@5D<

This produces a list whose elements are i + i2 . 

In[3]:= Array[ # + #^2 &, 5]

Out[3]= 82, 6, 12, 20, 30<

This generates a 2ä3 matrix whose entries are m[i, j]. 

In[4]:= Array[m, {2, 3}]

Out[4]= 88m@1, 1D, m@1, 2D, m@1, 3D<, 8m@2, 1D, m@2, 2D, m@2, 3D<<

This generates a 3ä3 matrix whose elements are the squares of the sums of their indices. 

In[5]:= Array[Plus[##]^2 &, {3, 3}]

Out[5]= 884, 9, 16<, 89, 16, 25<, 816, 25, 36<<

NestList and FoldList were discussed in Section 2.2.2. Particularly by using them with pure functions, you can
construct some very elegant and efficient Mathematica programs. 

This gives a list of results obtained by successively differentiating xn  with respect to x . 

In[6]:= NestList[ D[#, x]&, x^n, 3 ]

Out[6]= 8xn, n x−1+n, H−1 + nL n x−2+n, H−2 + nL H−1 + nL n x−3+n<
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2.2.7 Selecting Parts of Expressions with Functions

Section 1.2.4 showed how you can pick out elements of lists based on their positions. Often, however, you will need to
select elements based not on where they are, but rather on what they are. 

Select[list, f] selects elements of list using the function f as a criterion. Select applies f to each element of list in
turn, and keeps only those for which the result is True. 

This selects the elements of the list for which the pure function yields True, i.e., those numerically greater than 4. 

In[1]:= Select[{2, 15, 1, a, 16, 17}, # > 4 &]

Out[1]= 815, 16, 17<

You can use Select to pick out pieces of any expression, not just elements of a list. 

This gives a sum of terms involving x, y and z. 

In[2]:= t = Expand[(x + y + z)^2]

Out[2]= x2 + 2 x y + y2 + 2 x z + 2 y z + z2

You can use Select to pick out only those terms in the sum that do not involve the symbol x. 

In[3]:= Select[t, FreeQ[#, x]&]

Out[3]= y2 + 2 y z + z2

Select@ expr,  f  D select the elements in  expr for which the function  f  gives  True 

Select@ expr,  f ,  n D select the first  n elements in  expr 
for which the function  f  gives  True 

Selecting pieces of expressions. 

Section 2.3.5 discusses some “predicates”  that are often used as criteria in Select. 

This gives the first element which satisfies the criterion you specify. 

In[4]:= Select[{-1, 3, 10, 12, 14}, # > 3 &, 1]

Out[4]= 810<

2.2.8 Expressions with Heads That Are Not Symbols

In most cases, you want the head f of a Mathematica  expression like f[x] to be a single symbol. There are, however,
some important applications of heads that are not symbols. 

This expression has f[3] as a head. You can use heads like this to represent “indexed  functions”.  

In[1]:= f[3][x, y]

Out[1]= f@3D@x, yD
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You can use any expression as a head. Remember to put in the necessary parentheses. 

In[2]:= (a + b)[x]

Out[2]= Ha + bL@xD

One  case  where  we  have  already  encountered  the  use  of  complicated  expressions  as  heads  is  in  working  with  pure
functions in Section 2.2.5. By giving Function[vars, body] as the head of an expression, you specify a function of
the arguments to be evaluated. 

With the head Function[x, x^2], the value of the expression is the square of the argument. 

In[3]:= Function[x, x^2] [a + b]

Out[3]= Ha + bL2

There are several constructs in Mathematica  which work much like pure functions, but which represent specific kinds
of functions,  typically numerical ones.  In all  cases, the basic mechanism involves giving a head which contains com-
plete information about the function you want to use. 

Function@ vars,  body D@ args D pure function
InterpolatingFunction@ 

data D@ args D 

approximate numerical function Hgenerated by  
Interpolation and  NDSolve L

CompiledFunction@ data D@ args D compiled numerical function Hgenerated by  Compile L
LinearSolveFunction@ 

data D@ vec D 

matrix solution function Hgenerated by  LinearSolve L

Some expressions which have heads that are not symbols. 

NDSolve returns a list of rules that give y as an InterpolatingFunction object. 

In[4]:= NDSolve[{y''[x] == y[x], y[0]==y'[0]==1}, y, {x, 0, 5}]

Out[4]= 88y → InterpolatingFunction@880., 5.<<, <>D<<

Here is the InterpolatingFunction object. 

In[5]:= y /. First[%]

Out[5]= InterpolatingFunction@880., 5.<<, <>D

You can use the InterpolatingFunction object as a head to get numerical approximations to values of the function y. 

In[6]:= % [3.8]

Out[6]= 44.7012

Another important use of more complicated expressions as heads is in implementing functionals  and functional opera-
tors in mathematics. 

As one example, consider the operation of differentiation. As will be discussed in Section 3.5.4, an expression like f'
represents a derivative function, obtained from f by applying a functional operator to it. In Mathematica, f' is repre-
sented  as  Derivative[1][f]:  the  “functional  operator”  Derivative[1]  is  applied  to  f  to  give  another
function, represented as f'.  
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This expression has a head which represents the application of the “functional  operator”  Derivative[1] to the “function”  f. 

In[7]:= f'[x] // FullForm

Out[7]//FullForm= 

Derivative@1D@fD@xD

You can replace the head f' with another head, such as fp. This effectively takes fp to be a “derivative  function”  obtained from 
f. 

In[8]:= % /. f' -> fp

Out[8]= fp@xD

2.2.9 Advanced Topic: Working with Operators

You can think of an expression like f[x] as being formed by applying an operator f to the expression x. You can think
of an expression like f[g[x]] as the result of composing the operators f and g, and applying the result to x. 

Composition@ f ,  g, … D the composition of functions  f  ,  g , …
InverseFunction@ f  D the inverse of a function  f  

Identity the identity function

Some functional operations. 

This represents the composition of the functions f, g and h. 

In[1]:= Composition[f, g, h]

Out[1]= Composition@f, g, hD

You can manipulate compositions of functions symbolically. 

In[2]:= InverseFunction[Composition[%, q]]

Out[2]= Composition@qH−1L, hH−1L, gH−1L, fH−1LD

The composition is evaluated explicitly when you supply a specific argument. 

In[3]:= %[x]

Out[3]= qH−1L@hH−1L@gH−1L@fH−1L@xDDDD

You  can  get  the  sum  of  two  expressions  in  Mathematica  just  by  typing  x  +  y.  Sometimes  it  is  also  worthwhile  to
consider performing operations like addition on operators. 

You can think of this as containing a sum of two operators f and g. 

In[4]:= (f + g)[x]

Out[4]= Hf + gL@xD
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Using Through, you can convert the expression to a more explicit form. 

In[5]:= Through[%, Plus]

Out[5]= f@xD + g@xD

This corresponds to the mathematical operator 1 + ∑ÅÅÅÅÅÅÅ∑x . 

In[6]:= Identity + (D[#, x]&)

Out[6]= Identity + H∂x #1 &L

Mathematica does not automatically apply the separate pieces of the operator to an expression. 

In[7]:= % [x^2]

Out[7]= HIdentity + H∂x #1 &LL@x2D

You can use Through to apply the operator. 

In[8]:= Through[%, Plus]

Out[8]= 2 x + x2

Identity@ expr D the identity function
Through@ p @ f 1,  f 2  D@ x D,  q D give  p @ f 1  @ x D,  f 2  @ x DD if  p is the same as  q 

Operate@ p,  f  @ x DD give  p @ f  D@ x D 

Operate@ p,  f  @ x D,  n D apply  p at level  n in  f  
MapAll@ p,  expr,  Heads−>TrueD apply  p to all parts of  expr , including heads

Operations for working with operators. 

This has a complicated expression as a head. 

In[9]:= t = ((1 + a)(1 + b))[x]

Out[9]= HH1 + aL H1 + bLL@xD

Functions like Expand do not automatically go inside heads of expressions. 

In[10]:= Expand[%]

Out[10]= HH1 + aL H1 + bLL@xD

With the Heads option set to True, MapAll goes inside heads. 

In[11]:= MapAll[Expand, t, Heads->True]

Out[11]= H1 + a + b + a bL@xD

The replacement operator /. does go inside heads of expressions. 

In[12]:= t /. a->1

Out[12]= H2 H1 + bLL@xD
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You can use Operate to apply a function specifically to the head of an expression. 

In[13]:= Operate[p, t]

Out[13]= p@H1 + aL H1 + bLD@xD

2.2.10 Structural Operations

Mathematica  contains  some  powerful  primitives  for  making  structural  changes  to  expressions.  You  can  use  these
primitives both to implement mathematical properties such as associativity and distributivity, and to provide the basis
for some succinct and efficient programs. 

This  section  describes  various  operations  that  you  can  explicitly  perform on  expressions.  Section  2.6.3  will  describe
how some of  these  operations  can be  performed automatically on  all  expressions  with a  particular  head by assigning
appropriate attributes to that head. 

You  can  use  the  Mathematica  function  Sort[expr]  to  sort  elements  not  only  of  lists,  but  of  expressions  with  any
head.  In  this  way,  you  can  implement the  mathematical properties  of  commutativity or  symmetry for  arbitrary  func-
tions. 

You can use Sort to put the arguments of any function into a standard order. 

In[1]:= Sort[ f[c, a, b] ]

Out[1]= f@a, b, cD

Sort@ expr D sort the elements of a list or other expression into a standard order
Sort@ expr,  pred D sort using the function  pred 

to determine whether pairs are in order
Ordering@ expr D give the ordering of elements when sorted

Ordering@ expr,  n D give the ordering of the first  n elements when sorted
Ordering@ expr,  n,  pred D use the function  pred to determine whether pairs are in order

OrderedQ@ expr D give  True if the elements of  expr 
are in standard order, and  False otherwise

Order@ expr1,  expr2  D give  1 if  expr1  comes before  expr2  

in standard order, and  −1 if it comes after

Sorting into order. 

The second argument to Sort is a function used to determine whether pairs are in order. This sorts numbers into descending order. 

In[2]:= Sort[ {5, 1, 8, 2}, (#2 < #1)& ]

Out[2]= 88, 5, 2, 1<

This sorting criterion puts elements that do not depend on x before those that do. 

In[3]:= Sort[ {x^2, y, x+y, y-2}, FreeQ[#1, x]& ]

Out[3]= 8y, −2 + y, x + y, x2<
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Flatten@ expr D flatten out all nested functions with the same head as  expr 
Flatten@ expr,  n D flatten at most  n levels of nesting

Flatten@ expr,  n,  h D flatten functions with head  h 
FlattenAt@ expr,  i D flatten only the  i th  element of  expr 

Flattening out expressions. 

Flatten removes nested occurrences of a function. 

In[4]:= Flatten[ f[a, f[b, c], f[f[d]]] ]

Out[4]= f@a, b, c, dD

You can use Flatten to “splice”  sequences of elements into lists or other expressions. 

In[5]:= Flatten[ {a, f[b, c], f[a, b, d]}, 1, f ]

Out[5]= 8a, b, c, a, b, d<

You can use  Flatten  to  implement the  mathematical property  of  associativity.  The function  Distribute  allows
you to implement properties such as distributivity and linearity. 

Distribute@ f  
@ a  +  b  + … , … DD 

distribute  f  over sums to give  
f  @ a, … D  +  f  @ b, … D  + …

Distribute@ f  @ args D,  g D distribute  f  over any arguments which have head  g 
Distribute@ expr,  g,  f  D distribute only when the head is  f  

Distribute@ expr,  g,  f ,  gp,  fp D distribute  f  over  g ,
replacing them with  fp and  gp , respectively

Applying distributive laws. 

This “distributes”  f over a + b. 

In[6]:= Distribute[ f[a + b] ]

Out[6]= f@aD + f@bD

Here is a more complicated example. 

In[7]:= Distribute[ f[a + b, c + d] ]

Out[7]= f@a, cD + f@a, dD + f@b, cD + f@b, dD

In general, if f is distributive over Plus, then an expression like f[a + b] can be “expanded”  to give f[a] + f[b].
The  function  Expand  does  this  kind  of  expansion  for  standard  algebraic  operators  such  as  Times.  Distribute
allows you to perform the same kind of expansion for arbitrary operators. 

Expand uses the distributivity of Times over Plus to perform algebraic expansions. 

In[8]:= Expand[ (a + b) (c + d) ]

Out[8]= a c + b c + a d + b d
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This applies distributivity over lists, rather than sums. The result contains all possible pairs of arguments. 

In[9]:= Distribute[ f[{a, b}, {c, d}], List ]

Out[9]= 8f@a, cD, f@a, dD, f@b, cD, f@b, dD<

This distributes over lists, but does so only if the head of the whole expression is f. 

In[10]:= Distribute[ f[{a, b}, {c, d}], List, f ]

Out[10]= 8f@a, cD, f@a, dD, f@b, cD, f@b, dD<

This distributes over lists, making sure that the head of the whole expression is f. In the result, it uses gp in place of List, and fp 
in place of f. 

In[11]:= Distribute[ f[{a, b}, {c, d}], List, f, gp, fp ]

Out[11]= gp@fp@a, cD, fp@a, dD, fp@b, cD, fp@b, dDD

Related to Distribute is the function Thread. What Thread effectively does is to apply a function in parallel to
all the elements of a list or other expression. 

Thread@ f  @ 8  a1,  a2  <,  8  b1,  b2  <  DD thread  f  over lists to give  8  f  @ a1,  b1  D,  f  @ a2,  b2  D <  
Thread@ f  @ args D,  g D thread  f  over objects with head  g in  args 

Functions for threading expressions. 

Here is a function whose arguments are lists. 

In[12]:= f[{a1, a2}, {b1, b2}]

Out[12]= f@8a1, a2<, 8b1, b2<D

Thread applies the function “in  parallel”  to each element of the lists. 

In[13]:= Thread[%]

Out[13]= 8f@a1, b1D, f@a2, b2D<

Arguments that are not lists get repeated. 

In[14]:= Thread[ f[{a1, a2}, {b1, b2}, c, d] ]

Out[14]= 8f@a1, b1, c, dD, f@a2, b2, c, dD<

As  mentioned  in  Section  1.8.1,  and  discussed  in  more  detail  in  Section  2.6.3,  many  built-in  Mathematica  functions
have the property of being “listable”,  so that they are automatically threaded over any lists that appear as arguments. 

Built-in mathematical functions such as Log are listable, so that they are automatically threaded over lists. 

In[15]:= Log[{a, b, c}]

Out[15]= 8Log@aD, Log@bD, Log@cD<
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Log is, however, not automatically threaded over equations. 

In[16]:= Log[x == y]

Out[16]= Log@x yD

You can use Thread to get functions applied to both sides of an equation. 

In[17]:= Thread[%, Equal]

Out[17]= Log@xD Log@yD

Outer@ f ,  list1,  list2  D generalized outer product
Inner@ f ,  list1,  list2,  g D generalized inner product

Generalized outer and inner products. 

Outer[f,  list1,  list2]  takes  all  possible  combinations  of  elements  from list1  and  list2 ,  and  combines  them with  f.
Outer can be viewed as a generalization of a Cartesian product for tensors, as discussed in Section 3.7.11. 

Outer forms all possible combinations of elements, and applies f to them. 

In[18]:= Outer[f, {a, b}, {1, 2, 3}]

Out[18]= 88f@a, 1D, f@a, 2D, f@a, 3D<, 8f@b, 1D, f@b, 2D, f@b, 3D<<

Here Outer produces a lower-triangular Boolean matrix. 

In[19]:= Outer[ Greater, {1, 2, 3}, {1, 2, 3} ]

Out[19]= 88False, False, False<, 8True, False, False<, 8True, True, False<<

You can use Outer on any sequence of expressions with the same head. 

In[20]:= Outer[ g, f[a, b], f[c, d] ]

Out[20]= f@f@g@a, cD, g@a, dDD, f@g@b, cD, g@b, dDDD

Outer,  like  Distribute,  constructs  all  possible  combinations  of  elements.  On  the  other  hand,  Inner,  like
Thread, constructs only combinations of elements that have corresponding positions in the expressions it acts on. 

Here is a structure built by Inner. 

In[21]:= Inner[f, {a, b}, {c, d}, g]

Out[21]= g@f@a, cD, f@b, dDD

Inner is a generalization of Dot. 

In[22]:= Inner[Times, {a, b}, {c, d}, Plus]

Out[22]= a c + b d
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2.2.11 Sequences

The function Flatten allows you to explicitly flatten out all sublists. 

In[1]:= Flatten[{a, {b, c}, {d, e}}]

Out[1]= 8a, b, c, d, e<

FlattenAt lets you specify at what positions you want sublists flattened. 

In[2]:= FlattenAt[{a, {b, c}, {d, e}}, 2]

Out[2]= 8a, b, c, 8d, e<<

Sequence objects automatically get spliced in, and do not require any explicit flattening. 

In[3]:= {a, Sequence[b, c], Sequence[d, e]}

Out[3]= 8a, b, c, d, e<

Sequence@ e1,  e2, … D a sequence of arguments that
will automatically be spliced into any function

Representing sequences of arguments in functions. 

Sequence works in any function. 

In[4]:= f[Sequence[a, b], c]

Out[4]= f@a, b, cD

This includes functions with special input forms. 

In[5]:= a == Sequence[b, c]

Out[5]= a b c

Here is a common way that Sequence is used. 

In[6]:= {a, b, f[x, y], g[w], f[z, y]} /. f->Sequence

Out[6]= 8a, b, x, y, g@wD, z, y<
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2.3 Patterns

2.3.1 Introduction

Patterns  are  used  throughout  Mathematica  to  represent  classes  of  expressions.  A  simple  example  of  a  pattern  is  the
expression f[x_]. This pattern represents the class of expressions with the form f[anything]. 

The main power of patterns comes from the fact that many operations in Mathematica can be done not only with single
expressions, but also with patterns that represent whole classes of expressions. 

You can use patterns in transformation rules to specify how classes of expressions should be transformed. 

In[1]:= f[a] + f[b] /. f[x_] -> x^2

Out[1]= a2 + b2

You can use patterns to find the positions of all expressions in a particular class. 

In[2]:= Position[{f[a], g[b], f[c]}, f[x_]]

Out[2]= 881<, 83<<

The  basic  object  that  appears  in  almost  all  Mathematica  patterns  is  _  (traditionally  called  “blank”  by  Mathematica
programmers). The fundamental rule is simply that _  stands for any expression. On most keyboards the _ underscore
character appears as the shifted version of the - dash character. 

Thus,  for  example,  the  pattern  f[_]  stands  for  any  expression  of  the  form  f[anything].  The  pattern  f[x_]  also
stands for any expression of the form f[anything], but gives the name x to the expression anything, allowing you to
refer to it on the right-hand side of a transformation rule. 

You can put  blanks  anywhere  in  an  expression.  What  you get  is  a  pattern which matches all  expressions  that  can be
made by “filling  in the blanks”  in any way. 

f@n_D f with any argument, named  n 

f@n_,  m_D f with two arguments, named  n and  m 

x^n_ x to any power, with the power named  n 

x_^n_ any expression to any power
a_  +  b_ a sum of two expressions

8a1_,  a2_< a list of two expressions
f@n_,  n_D f with two  identical arguments

Some examples of patterns. 

You can construct patterns for expressions with any structure. 

In[3]:= f[{a, b}] + f[c] /. f[{x_, y_}] -> p[x + y]

Out[3]= f@cD + p@a + bD

One  of  the  most  common  uses  of  patterns  is  for  “destructuring”  function  arguments.  If  you  make  a  definition  for
f[list_],  then you need to use functions like Part  explicitly in  order  to pick out  elements of  the list.  But if  you
know for example that the list will always have two elements, then it is usually much more convenient instead to give a
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definition instead for  f[{x_,  y_}].  Then you can refer  to  the elements of  the list directly as x  and y.  In addition,
Mathematica will not use the definition you have given unless the argument of f really is of the required form of a list
of two expressions. 

Here is one way to define a function which takes a list of two elements, and evaluates the first element raised to the power of the 
second element. 

In[4]:= g[list_] := Part[list, 1] ^ Part[list, 2]

Here is a much more elegant way to make the definition, using a pattern. 

In[5]:= h[{x_, y_}] := x ^ y

A crucial point to understand is that Mathematica patterns represent classes of expressions with a given structure. One
pattern will match a particular expression if the structure of the pattern is the same as the structure of the expression, in
the  sense  that  by  filling  in  blanks  in  the  pattern  you  can  get  the  expression.  Even  though  two  expressions  may  be
mathematically  equal,  they cannot  be  represented  by the same Mathematica  pattern unless  they have the same struc-
ture. 

Thus, for example, the pattern (1 + x_)^2 can stand for expressions like (1 + a)^2 or (1 + b^3)^2 that have the
same structure. However, it cannot stand for the expression 1 + 2 a + a^2. Although this expression is mathematically
equal to (1 + a)^2, it does not have the same structure as the pattern (1 + x_)^2. 

The  fact  that  patterns  in  Mathematica  specify  the  structure  of  expressions  is  crucial  in  making  it  possible  to  set  up
transformation rules which change the structure of expressions, while leaving them mathematically equal. 

It  is  worth realizing that  in general it  would be quite impossible for Mathematica  to match patterns by mathematical,
rather than structural, equivalence. In the case of expressions like (1 + a)^2 and 1 + 2 a + a^2, you can determine
equivalence just  by using functions like Expand  and Factor.  But,  as discussed in Section 2.6.2  there is no general
way to find out whether an arbitrary pair of mathematical expressions are equal. 

As another example, the pattern x^_ will match the expression x^2. It will not, however, match the expression 1, even
though this could be considered as x^0. Section 2.3.9 will discuss how to construct a pattern for which this particular
case will match. But you should understand that in all cases pattern matching in Mathematica  is fundamentally struc-
tural. 

The x^n_ matches only x^2 and x^3. 1 and x can mathematically be written as xn , but do not have the same structure.

In[6]:= {1, x, x^2, x^3} /. x^n_ -> r[n]

Out[6]= 81, x, r@2D, r@3D<

Another  point  to  realize  is  that  the  structure  Mathematica  uses  in  pattern  matching  is  the  full  form  of  expressions
printed by FullForm. Thus, for example, an object such as 1/x, whose full form is Power[x, -1] will be matched
by  the  pattern  x_^n_,  but  not  by  the  pattern  x_/y_,  whose  full  form  is  Times[x_,  Power[y_,  -1]].  Again,
Section 2.3.9 will discuss how you can construct patterns which can match all these cases. 

The expressions in the list contain explicit powers of b, so the transformation rule can be applied. 

In[7]:= {a/b, 1/b^2, 2/b^2} /. b^n_ -> d[n]

Out[7]= 8a d@−1D, d@−2D, 2 d@−2D<
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Here is the full form of the list. 

In[8]:= FullForm[{a/b, 1/b^2, 2/b^2}]

Out[8]//FullForm= 

List@Times@a, Power@b, −1DD, Power@b, −2D, Times@2, Power@b, −2DDD

Although  Mathematica  does  not  use  mathematical  equivalences  such  as  x1 = x  when  matching  patterns,  it  does  use
certain structural equivalences. Thus, for example, Mathematica takes account of properties such as commutativity and
associativity in pattern matching. 

To apply this transformation rule, Mathematica makes use of the commutativity and associativity of addition. 

In[9]:= f[a + b] + f[a + c] + f[b + d] /. f[a + x_] + f[c + y_] -> p[x, y]

Out[9]= f@b + dD + p@b, aD

The discussion so far has considered only pattern objects such as x_ which can stand for any single expression. In later
subsections,  we  discuss  the  constructs  that  Mathematica  uses  to  extend  and  restrict  the  classes  of  expressions  repre-
sented by patterns. 

2.3.2 Finding Expressions That Match a Pattern

Cases@ list,  form D give the elements of  list that match  form 
Count@ list,  form D give the number of elements in  list that match  form 

Position@ list,  form,  8  1 <  D give the positions of elements in  list that match  form 
Select@ list,  test D give the elements of  list on which  test gives  True 

Picking out elements that match a pattern. 

This gives the elements of the list which match the pattern x^_. 

In[1]:= Cases[ {3, 4, x, x^2, x^3}, x^_ ]

Out[1]= 8x2, x3<

Here is the total number of elements which match the pattern. 

In[2]:= Count[ {3, 4, x, x^2, x^3}, x^_ ]

Out[2]= 2

You can apply functions like Cases not only to lists, but to expressions of any kind. In addition, you can specify the
level of parts at which you want to look. 
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Cases@ expr,  lhs −> rhs D find elements of  expr that match  lhs , and give a list
of the results of applying the transformation rule to them

Cases@ expr,  lhs −> rhs,  lev D test parts of  expr at levels specified by  lev 
Count@ expr,  form,  lev D give the total number of parts that match  

form at levels specified by  lev 
Position@ expr,  form,  lev D give the positions of parts that match  

form at levels specified by  lev 

Searching for parts of expressions that match a pattern. 

This returns a list of the exponents n. 

In[3]:= Cases[ {3, 4, x, x^2, x^3}, x^n_ -> n]

Out[3]= 82, 3<

The pattern _Integer matches any integer. This gives a list of integers appearing at any level. 

In[4]:= Cases[ {3, 4, x, x^2, x^3}, _Integer, Infinity]

Out[4]= 83, 4, 2, 3<

Cases@ expr,  form,  lev,  n D find only the first  n parts that match  form 
Position@ expr,  form,  lev,  n D give the positions of the first  n parts that match  form 

Limiting the number of parts to search for. 

This gives the positions of the first two powers of x appearing at any level. 

In[5]:= Position[ {4, 4 + x^a, x^b, 6 + x^5}, x^_, Infinity, 2]

Out[5]= 882, 2<, 83<<

The positions are specified in exactly the form used by functions such as Extract and ReplacePart discussed in Section 1.8. 

In[6]:= ReplacePart[ {4, 4 + x^a, x^b, 6 + x^5}, zzz, % ]

Out[6]= 84, 4 + zzz, zzz, 6 + x5<

DeleteCases@ expr,  form D delete elements of  expr that match  form 
DeleteCases@ expr,  form,  lev D delete parts of  expr that match  form at levels specified by  lev 

Deleting parts of expressions that match a pattern. 

This deletes the elements which match x^n_. 

In[7]:= DeleteCases[ {3, 4, x, x^2, x^3}, x^n_ ]

Out[7]= 83, 4, x<
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This deletes all integers appearing at any level. 

In[8]:= DeleteCases[ {3, 4, x, 2+x, 3+x}, _Integer, Infinity ]

Out[8]= 8x, x, x<

ReplaceList@ expr,  lhs  −>  rhs D find all ways that  expr can match  lhs 

Finding arrangements of an expression that match a pattern. 

This finds all ways that the sum can be written in two parts. 

In[9]:= ReplaceList[a + b + c, x_ + y_ -> g[x, y]]

Out[9]= 8g@a, b + cD, g@b, a + cD, g@c, a + bD, g@a + b, cD, g@a + c, bD, g@b + c, aD<

This finds all pairs of identical elements. The pattern ___ stands for any sequence of elements. 

In[10]:= ReplaceList[{a, b, b, b, c, c, a}, {___, x_, x_, ___} -> x]

Out[10]= 8b, b, c<

2.3.3 Naming Pieces of Patterns

Particularly when you use transformation rules, you often need to name pieces of patterns. An object like x_ stands for
any expression, but gives the expression the name x. You can then, for example, use this name on the right-hand side of
a transformation rule. 

An important point is that when you use x_, Mathematica requires that all occurrences of blanks with the same name x
in a particular expression must stand for the same expression. 

Thus f[x_, x_] can only stand for expressions in which the two arguments of f are exactly the same. f[_, _], on
the other hand, can stand for any expression of the form f[x, y], where x and y need not be the same. 

The transformation rule applies only to cases where the two arguments of f are identical. 

In[1]:= {f[a, a], f[a, b]} /. f[x_, x_] -> p[x]

Out[1]= 8p@aD, f@a, bD<

Mathematica  allows you to give names not just to single blanks, but to any piece of a pattern. The object x:pattern in
general represents a pattern which is assigned the name x. In transformation rules, you can use this mechanism to name
exactly those pieces of a pattern that you need to refer to on the right-hand side of the rule. 

_ any expression
x _ any expression, to be named  x 

x:pattern an expression to be named  x , matching  pattern 

Patterns with names. 
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This gives a name to the complete form _^_ so you can refer to it as a whole on the right-hand side of the transformation rule. 

In[2]:= f[a^b] /. f[x:_^_] -> p[x]

Out[2]= p@abD

Here the exponent is named n, while the whole object is x. 

In[3]:= f[a^b] /. f[x:_^n_] -> p[x, n]

Out[3]= p@ab, bD

When you give the same name to two pieces of a pattern, you constrain the pattern to match only those expressions in
which the corresponding pieces are identical. 

Here the pattern matches both cases. 

In[4]:= {f[h[4], h[4]], f[h[4], h[5]]} /. f[h[_], h[_]] -> q

Out[4]= 8q, q<

Now both arguments of f are constrained to be the same, and only the first case matches. 

In[5]:= {f[h[4], h[4]], f[h[4], h[5]]} /. f[x:h[_], x_] -> r[x]

Out[5]= 8r@h@4DD, f@h@4D, h@5DD<

2.3.4 Specifying Types of Expression in Patterns

You can tell a lot about what “type”  of expression something is by looking at its head. Thus, for example, an integer
has head Integer, while a list has head List. 

In  a  pattern,  _h  and  x_h  represent  expressions  that  are  constrained  to  have  head  h.  Thus,  for  example,  _Integer
represents any integer, while _List represents any list. 

x _ h an expression with head  h 
x _Integer an integer

x _Real an approximate real number
x _Complex a complex number

x _List a list
x _Symbol a symbol

Patterns for objects with specified heads. 

This replaces just those elements that are integers. 

In[1]:= {a, 4, 5, b} /. x_Integer -> p[x]

Out[1]= 8a, p@4D, p@5D, b<

You can think of making an assignment for f[x_Integer] as like defining a function f that must take an argument
of “type”  Integer. 
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This defines a value for the function gamma when its argument is an integer. 

In[2]:= gamma[n_Integer] := (n - 1)!

The definition applies only when the argument of gamma is an integer. 

In[3]:= gamma[4] + gamma[x]

Out[3]= 6 + gamma@xD

The object 4. has head Real, so the definition does not apply. 

In[4]:= gamma[4.]

Out[4]= gamma@4.D

This defines values for expressions with integer exponents. 

In[5]:= d[x_^n_Integer] := n x^(n-1)

The definition is used only when the exponent is an integer. 

In[6]:= d[x^4] + d[(a+b)^3] + d[x^(1/2)]

Out[6]= 3 Ha + bL2 + 4 x3 + dAè!!!x E

2.3.5 Putting Constraints on Patterns

Mathematica  provides a general mechanism for specifying constraints on patterns. All you need do is to put /; condi-
tion  at  the  end  of  a  pattern  to  signify  that  it  applies  only  when  the  specified  condition  is  True.  You  can  read  the
operator /; as “slash-semi”,  “whenever”  or “provided  that”.  

pattern  ê;  condition a pattern that matches only when a condition is satisfied
lhs  :>  rhs  ê;  condition a rule that applies only when a condition is satisfied
lhs  :=  rhs  ê;  condition a definition that applies only when a condition is satisfied

Putting conditions on patterns and transformation rules. 

This gives a definition for fac that applies only when its argument n is positive. 

In[1]:= fac[n_ /; n > 0] := n!

The definition for fac is used only when the argument is positive. 

In[2]:= fac[6] + fac[-4]

Out[2]= 720 + fac@−4D

This gives the negative elements in the list. 

In[3]:= Cases[{3, -4, 5, -2}, x_ /; x < 0]

Out[3]= 8−4, −2<
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You can use /;  on whole  definitions and transformation rules,  as  well  as on individual patterns.  In general,  you can
put /; condition  at the end of any := definition or :> rule to tell Mathematica  that the definition or rule applies only
when the specified condition holds. Note that /; conditions should not usually be put at the end of = definitions or ->
rules, since they will then be evaluated immediately, as discussed in Section 2.5.8. 

Here is another way to give a definition which applies only when its argument n is positive. 

In[4]:= fac2[n_] := n! /; n > 0

Once again, the factorial functions evaluate only when their arguments are positive. 

In[5]:= fac2[6] + fac2[-4]

Out[5]= 720 + fac2@−4D

You can use  the /;  operator  to  implement arbitrary  mathematical constraints  on  the  applicability  of  rules.  In  typical
cases, you give patterns which structurally match a wide range of expressions, but then use mathematical constraints to
reduce the range of expressions to a much smaller set. 

This rule applies only to expressions that have the structure v[x_, 1 - x_]. 

In[6]:= v[x_, 1 - x_] := p[x]

This expression has the appropriate structure, so the rule applies. 

In[7]:= v[a^2, 1 - a^2]

Out[7]= p@a2D

This expression, while mathematically of the correct form, does not have the appropriate structure, so the rule does not apply. 

In[8]:= v[4, -3]

Out[8]= v@4, −3D

This rule applies to any expression of the form w[x_, y_], with the added restriction that y == 1 - x. 

In[9]:= w[x_, y_] := p[x] /; y == 1 - x

The new rule does apply to this expression. 

In[10]:= w[4, -3]

Out[10]= p@4D

In setting up patterns and transformation rules, there is often a choice of where to put /; conditions. For example, you
can put a /;  condition on the right-hand side of a rule in the form lhs  :>  rhs  /;  condition,  or  you can put it on the
left-hand side in the form lhs /; condition  -> rhs. You may also be able to insert the condition inside the expression
lhs. The only constraint is that all the names of patterns that you use in a particular condition must appear in the pattern
to which the condition is attached. If this is not the case, then some of the names needed to evaluate the condition may
not yet have been “bound”  in the pattern-matching process. If this happens, then Mathematica  uses the global values
for the corresponding variables, rather than the values determined by pattern matching. 
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Thus, for example, the condition in f[x_, y_] /; (x + y < 2) will use values for x and y that are found by match-
ing f[x_,  y_],  but the condition in f[x_  /;  x  +  y  <  2,  y_]  will use the global value for y,  rather than the one
found by matching the pattern. 

As long as you make sure that the appropriate names are defined, it is usually most efficient to put /; conditions on the
smallest possible parts of patterns. The reason for this is that Mathematica matches pieces of patterns sequentially, and
the sooner it finds a /; condition which fails, the sooner it can reject a match. 

Putting the /; condition around the x_ is slightly more efficient than putting it around the whole pattern. 

In[11]:= Cases[{z[1, 1], z[-1, 1], z[-2, 2]}, z[x_ /; x < 0, y_]]

Out[11]= 8z@−1, 1D, z@−2, 2D<

You need to put parentheses around the /; piece in a case like this. 

In[12]:= {1 + a, 2 + a, -3 + a} /. (x_ /; x < 0) + a -> p[x]

Out[12]= 81 + a, 2 + a, p@−3D<

It is common to use /; to set up patterns and transformation rules that apply only to expressions with certain proper-
ties. There is a collection of functions built into Mathematica  for testing the properties of expressions. It is a conven-
tion that functions of this kind have names that end with the letter Q, indicating that they “ask  a question”.  

IntegerQ@ expr D integer
EvenQ@ expr D even number
OddQ@ expr D odd number

PrimeQ@ expr D prime number
NumberQ@ expr D explicit number of any kind
NumericQ@ expr D numeric quantity

PolynomialQ@ expr,  8  x1,  x2, … <  D polynomial in  x1  ,  x2  ,  ...  
VectorQ@ expr D a list representing a vector
MatrixQ@ expr D a list of lists representing a matrix

VectorQ@ expr,  NumericQD ,  
MatrixQ@ expr,  NumericQD 

vectors and matrices where all elements are numeric

VectorQ@ expr,  test D ,  
MatrixQ@ expr, testD

vectors and matrices for which the function  
test yields  True on every element

ArrayQ@ expr,  d  D full array with depth matching  d  

Some functions for testing mathematical properties of expressions. 

The rule applies to all elements of the list that are numbers. 

In[13]:= {2.3, 4, 7/8, a, b} /. (x_ /; NumberQ[x]) -> x^2

Out[13]= 95.29, 16, 49
64

, a, b=

This definition applies only to vectors of integers. 

In[14]:= mi[list_] := list^2 /; VectorQ[list, IntegerQ]
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The definition is now used only in the first case. 

In[15]:= {mi[{2, 3}], mi[{2.1, 2.2}], mi[{a, b}]}

Out[15]= 884, 9<, mi@82.1, 2.2<D, mi@8a, b<D<

An important feature of all the Mathematica property-testing functions whose names end in Q is that they always return
False if they cannot determine whether the expression you give has a particular property. 

4561 is an integer, so this returns True. 

In[16]:= IntegerQ[4561]

Out[16]= True

This returns False, since x is not known to be an integer. 

In[17]:= IntegerQ[x]

Out[17]= False

In some cases, you can explicitly specify the results that property-testing functions should give. Thus, with a definition
such as x  /:  IntegerQ[x]  =  True,  as  discussed  in Section 2.5.10,  Mathematica  will  assume that  x  is  an integer.
This  means  that  if  you  explicitly  ask  for  IntegerQ[x],  you  will  now  get  True,  rather  than  False.  However,
Mathematica does not automatically propagate assertions, so it cannot determine for example that IntegerQ[x^2] is
True. You must load an appropriate Mathematica package to make this possible. 

SameQ@ x,  y D or  x  ===  y x and  y are identical
UnsameQ@ x,  y D or  x  =!=  y x and  y are not identical

OrderedQ@ 8  a,  b, … <  D a ,  b ,  ...  are in standard order
MemberQ@ expr,  form D form matches an element of  expr 
FreeQ@ expr,  form D form matches nothing in  expr 
MatchQ@ expr,  form D expr matches the pattern  form 

ValueQ@ expr D a value has been defined for  expr 
AtomQ@ expr D expr has no subexpressions

Some functions for testing structural properties of expressions. 

With ==, the equation remains in symbolic form; === yields False unless the expressions are manifestly equal. 

In[18]:= {x == y, x === y}

Out[18]= 8x y, False<

The expression n is not a member of the list {x, x^n}. 

In[19]:= MemberQ[{x, x^n}, n]

Out[19]= False
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However, {x, x^n} is not completely free of n. 

In[20]:= FreeQ[{x, x^n}, n]

Out[20]= False

You can use FreeQ to define a “linearity”  rule for h. 

In[21]:= h[a_ b_, x_] := a h[b, x] /; FreeQ[a, x]

Terms free of x are pulled out of each h. 

In[22]:= h[a b x, x] + h[2 (1+x) x^2, x]

Out[22]= a b h@x, xD + 2 h@x2 H1 + xL, xD

pattern  ?  test a pattern which matches an expression only if  
test yields  True when applied to the expression

Another way to constrain patterns. 

The  construction  pattern  /;  condition  allows  you  to  evaluate  a  condition  involving  pattern  names  to  determine
whether  there  is  a  match.  The  construction  pattern  ?  test  instead  applies  a  function  test  to  the  whole  expression
matched by  pattern  to  determine whether  there  is  a  match.  Using  ?  instead  of  /;  sometimes leads  to  more succinct
definitions. 

With this definition matches for x_ are tested with the function NumberQ. 

In[23]:= p[x_?NumberQ] := x^2

The definition applies only when p has a numerical argument. 

In[24]:= p[4.5] + p[3/2] + p[u]

Out[24]= 22.5 + p@uD

Here is a more complicated definition. Do not forget the parentheses around the pure function. 

In[25]:= q[{x_Integer, y_Integer} ? (Function[v, v.v > 4])] := qp[x + y]

The definition applies only in certain cases. 

In[26]:= {q[{3, 4}], q[{1, 1}], q[{-5, -7}]}

Out[26]= 8qp@7D, q@81, 1<D, qp@−12D<

2.3.6 Patterns Involving Alternatives

patt1   »  patt2   » … a pattern that can have one of several forms

Specifying patterns that involve alternatives. 
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This defines h to give p when its argument is either a or b. 

In[1]:= h[a | b] := p

The first two cases give p. 

In[2]:= {h[a], h[b], h[c], h[d]}

Out[2]= 8p, p, h@cD, h@dD<

You can also use alternatives in transformation rules. 

In[3]:= {a, b, c, d} /. (a | b) -> p

Out[3]= 8p, p, c, d<

Here is another example, in which one of the alternatives is itself a pattern. 

In[4]:= {1, x, x^2, x^3, y^2} /. (x | x^_) -> q

Out[4]= 81, q, q, q, y2<

When  you  use  alternatives  in  patterns,  you  should  make  sure  that  the  same set  of  names  appear  in  each  alternative.
When a pattern like (a[x_] | b[x_]) matches an expression, there will always be a definite expression that corre-
sponds to the object x. On the other hand, if you try to match a pattern like (a[x_] | b[y_]), then there will be a
definite expression corresponding either to x, or to y, but not to both. As a result, you cannot use x and y to refer to
definite expressions, for example on the right-hand side of a transformation rule. 

Here f is used to name the head, which can be either a or b. 

In[5]:= {a[2], b[3], c[4], a[5]} /. (f:(a|b))[x_] -> r[f, x]

Out[5]= 8r@a, 2D, r@b, 3D, c@4D, r@a, 5D<

2.3.7 Flat and Orderless Functions

Although  Mathematica  matches  patterns  in  a  purely  structural  fashion,  its  notion  of  structural  equivalence  is  quite
sophisticated.  In  particular,  it  takes  account  of  properties  such  as  commutativity  and  associativity  in  functions  like
Plus and Times. 

This  means, for  example,  that  Mathematica  considers  the expressions  x  +  y  and y  +  x  equivalent  for  the purposes  of
pattern matching. As a result, a pattern like g[x_ + y_, x_] can match not only g[a + b, a], but also g[a + b,
b]. 

This expression has exactly the same form as the pattern. 

In[1]:= g[a + b, a] /. g[x_ + y_, x_] -> p[x, y]

Out[1]= p@a, bD
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In this case, the expression has to be put in the form g[b + a, b] in order to have the same structure as the pattern. 

In[2]:= g[a + b, b] /. g[x_ + y_, x_] -> p[x, y]

Out[2]= p@b, aD

Whenever  Mathematica  encounters  an  orderless  or  commutative  function  such  as  Plus  or  Times  in  a  pattern,  it
effectively tests all the possible orders of arguments to try and find a match. Sometimes, there may be several orderings
that lead to matches. In such cases, Mathematica  just uses the first ordering it finds. For example, h[x_ + y_, x_ +
z_]  could  match h[a  +  b,  a  +  b]  with  xØa,  yØb,  zØb  or  with  xØb,  yØa,  zØa.  Mathematica  tries  the case
xØa, yØb, zØb first, and so uses this match.   

This can match either with x Ø  a or with x Ø  b. Mathematica tries x Ø  a first, and so uses this match. 

In[3]:= h[a + b, a + b] /. h[x_ + y_, x_ + z_] -> p[x, y, z]

Out[3]= p@a, b, bD

ReplaceList shows both possible matches. 

In[4]:= ReplaceList[h[a + b, a + b], h[x_ + y_, x_ + z_] -> p[x, y, z]]

Out[4]= 8p@a, b, bD, p@b, a, aD<

As  discussed  in  Section  2.6.3,  Mathematica  allows  you  to  assign  certain  attributes  to  functions,  which  specify  how
those  functions  should  be  treated  in  evaluation  and  pattern  matching.  Functions  can  for  example  be  assigned  the
attribute  Orderless,  which  specifies  that  they  should  be  treated  as  commutative  or  symmetric,  and  allows  their
arguments to be rearranged in trying to match patterns. 

Orderless commutative function:  f  @ b,  c,  
a D , etc., are equivalent to  f  @ a,  b,  c D 

Flat associative function:  f  @ f  @ a 
D,  b D , etc., are equivalent to  f  @ a,  b D 

OneIdentity f  @ f  @ a DD , etc., are equivalent to  a 
Attributes@ f  D give the attributes assigned to  f  

SetAttributes@ f ,  attr D add  attr to the attributes of  f  
ClearAttributes@ f ,  attr D remove  attr from the attributes of  f  

Some attributes that can be assigned to functions. 

Plus has attributes Orderless and Flat, as well as others. 

In[5]:= Attributes[Plus]

Out[5]= 8Flat, Listable, NumericFunction, OneIdentity, Orderless, Protected<

This defines q to be an orderless or commutative function. 

In[6]:= SetAttributes[q, Orderless]

Printed from the Mathematica Help Browser 13

©1988-2003 Wolfram Research, Inc. All rights reserved.



The arguments of q are automatically sorted into order. 

In[7]:= q[b, a, c]

Out[7]= q@a, b, cD

Mathematica rearranges the arguments of q functions to find a match. 

In[8]:= f[q[a, b], q[b, c]] /. f[q[x_, y_], q[x_, z_]] -> p[x, y, z]

Out[8]= p@b, a, cD

In addition to being orderless, functions like Plus and Times also have the property of being flat or associative. This
means  that  you  can  effectively  “parenthesize”  their  arguments  in  any  way,  so  that,  for  example,  x  +  (y  +  z)  is
equivalent to x + y + z, and so on.    

Mathematica takes account of flatness in matching patterns. As a result, a pattern like g[x_ + y_] can match g[a + b
+ c], with x Ø  a and y Ø  (b + c). 

The argument of g is written as a + (b + c) so as to match the pattern. 

In[9]:= g[a + b + c] /. g[x_ + y_] -> p[x, y]

Out[9]= p@a, b + cD

If there are no other constraints, Mathematica will match x_ to the first element of the sum. 

In[10]:= g[a + b + c + d] /. g[x_ + y_] -> p[x, y]

Out[10]= p@a, b + c + dD

This shows all the possible matches. 

In[11]:= ReplaceList[g[a + b + c], g[x_ + y_] -> p[x, y]]

Out[11]= 8p@a, b + cD, p@b, a + cD, p@c, a + bD, p@a + b, cD, p@a + c, bD, p@b + c, aD<

Here x_ is forced to match b + d. 

In[12]:= g[a + b + c + d, b + d] /. g[x_ + y_, x_] -> p[x, y]

Out[12]= p@b + d, a + cD

Mathematica  can usually apply  a transformation rule to a function  only if  the pattern in the rule covers  all  the argu-
ments in the function. However, if you have a flat function, it is sometimes possible to apply transformation rules even
though not all the arguments are covered. 

This rule applies even though it does not cover all the terms in the sum. 

In[13]:= a + b + c /. a + c -> p

Out[13]= b + p
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This combines two of the terms in the sum. 

In[14]:= u[a] + u[b] + v[c] + v[d] /. u[x_] + u[y_] -> u[x + y]

Out[14]= u@a + bD + v@cD + v@dD

Functions like Plus and Times are both flat and orderless. There are, however, some functions, such as Dot, which
are flat, but not orderless. 

Both x_ and y_ can match any sequence of terms in the dot product. 

In[15]:= a . b . c . d . a . b /. x_ . y_ . x_ -> p[x, y]

Out[15]= p@a.b, c.dD

This assigns the attribute Flat to the function r. 

In[16]:= SetAttributes[r, Flat]

Mathematica writes the expression in the form r[r[a, b], r[a, b]] to match the pattern. 

In[17]:= r[a, b, a, b] /. r[x_, x_] -> rp[x]

Out[17]= rp@r@a, bDD

Mathematica writes this expression in the form r[a, r[r[b], r[b]], c] to match the pattern. 

In[18]:= r[a, b, b, c] /. r[x_, x_] -> rp[x]

Out[18]= r@a, rp@r@bDD, cD

In an ordinary function that is not flat, a pattern such as x_  matches an individual argument of the function. But in a
function f[a, b, c, … ] that is flat, x_ can match objects such as f[b, c] which effectively correspond to a sequence
of arguments. However, in the case where x_ matches a single argument in a flat function, the question comes up as to
whether the object it matches is really just the argument a itself, or f[a]. Mathematica  chooses the first of these cases
if the function carries the attribute OneIdentity, and chooses the second case otherwise. 

This adds the attribute OneIdentity to the function r. 

In[19]:= SetAttributes[r, OneIdentity]

Now x_ matches individual arguments, without r wrapped around them. 

In[20]:= r[a, b, b, c] /. r[x_, x_] -> rp[x]

Out[20]= r@a, rp@bD, cD

The  functions  Plus,  Times  and  Dot  all  have  the  attribute  OneIdentity,  reflecting  the  fact  that  Plus[x]  is
equivalent  to  x,  and  so  on.  However,  in  representing  mathematical  objects,  it  is  often  convenient  to  deal  with  flat
functions that do not have the attribute OneIdentity. 

Printed from the Mathematica Help Browser 15

©1988-2003 Wolfram Research, Inc. All rights reserved.



2.3.8 Functions with Variable Numbers of Arguments

Unless  f  is  a  flat  function,  a  pattern  like  f[x_,  y_]  stands  only  for  instances  of  the  function  with  exactly  two argu-
ments. Sometimes you need to set up patterns that can allow any number of arguments. 

You can do this using multiple blanks. While a single blank such as x_ stands for a single Mathematica  expression, a
double blank such as x__ stands for a sequence of one or more expressions. 

Here x__ stands for the sequence of expressions (a, b, c). 

In[1]:= f[a, b, c] /. f[x__] -> p[x, x, x]

Out[1]= p@a, b, c, a, b, c, a, b, cD

Here is a more complicated definition, which picks out pairs of duplicated elements in h. 

In[2]:= h[a___, x_, b___, x_, c___] := hh[x] h[a, b, c]

The definition is applied twice, picking out the two paired elements. 

In[3]:= h[2, 3, 2, 4, 5, 3]

Out[3]= h@4, 5D hh@2D hh@3D

“Double  blanks”  __  stand for  sequences of  one or  more expressions.  “Triple  blanks”  ___  stand for  sequences of
zero  or  more  expressions.  You  should  be  very  careful  whenever  you  use  triple  blank  patterns.  It  is  easy  to  make  a
mistake that  can lead to an infinite  loop.  For  example,  if  you define p[x_,  y___]  :=  p[x]  q[y],  then typing in
p[a] will lead to an infinite loop, with y repeatedly matching a sequence with zero elements. Unless you are sure you
want to include the case of zero elements, you should always use double blanks rather than triple blanks. 

_ any single expression
x _ any single expression, to be named  x 
__ any sequence of one or more expressions

x __ sequence named  x 
x __ h sequence of expressions, all of whose heads are  h
___ any sequence of zero or more expressions

x ___ sequence of zero or more expressions named  x 
x ___ h sequence of zero or more expressions, all of whose heads are  h

More kinds of pattern objects. 

Notice  that  with  flat  functions  such  as  Plus  and  Times,  Mathematica  automatically  handles  variable  numbers  of
arguments, so you do not explicitly need to use double or triple blanks, as discussed in Section 2.3.7. 

When you use multiple blanks, there are often several matches that are possible for a particular expression. In general,
Mathematica  tries first  those matches that  assign the shortest  sequences of arguments to the first  multiple blanks that
appear in the pattern. 

This gives a list of all the matches that Mathematica tries. 

In[4]:= ReplaceList[f[a, b, c, d], f[x__, y__] -> g[{x}, {y}]]

Out[4]= 8g@8a<, 8b, c, d<D, g@8a, b<, 8c, d<D, g@8a, b, c<, 8d<D<
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Many kinds of enumeration can be done by using ReplaceList with various kinds of patterns. 

In[5]:= ReplaceList[f[a, b, c, d], f[___, x__] -> g[x]]

Out[5]= 8g@a, b, c, dD, g@b, c, dD, g@c, dD, g@dD<

This effectively enumerates all sublists with at least one element. 

In[6]:= ReplaceList[f[a, b, c, d], f[___, x__, ___] -> g[x]]

Out[6]= 8g@aD, g@a, bD, g@bD, g@a, b, cD, g@b, cD, g@cD, g@a, b, c, dD, g@b, c, dD, g@c, dD, g@dD<

2.3.9 Optional and Default Arguments

Sometimes you  may want  to  set  up  functions  where  certain  arguments,  if  omitted,  are  given  “default  values”.  The
pattern x_:v stands for an object that can be omitted, and if so, will be replaced by the default value v.   

This defines a function j with a required argument x, and optional arguments y and z, with default values 1 and 2, respectively. 

In[1]:= j[x_, y_:1, z_:2] := jp[x, y, z]

The default value of z is used here. 

In[2]:= j[a, b]

Out[2]= jp@a, b, 2D

Now the default values of both y and z are used. 

In[3]:= j[a]

Out[3]= jp@a, 1, 2D

x _: v an expression which, if omitted, is taken to have default value  v 
x _ h:v an expression with head  h and default value  v 

x _. an expression with a built-in default value

Pattern objects with default values. 

Some  common Mathematica  functions  have  built-in  default  values  for  their  arguments.  In  such  cases,  you  need  not
explicitly give the default value in x_:v, but instead you can use the more convenient notation x_. in which a built-in
default value is assumed. 

x_  +  y_. default for  y is  0 

x_  y_. default for  y is  1 

x_^y_. default for  y is  1 

Some patterns with optional pieces. 
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Here a matches the pattern x_ + y_. with y taken to have the default value 0. 

In[4]:= {f[a], f[a + b]} /. f[x_ + y_.] -> p[x, y]

Out[4]= 8p@a, 0D, p@b, aD<

Because Plus  is a flat function, a pattern such as x_ +  y_  can match a sum with any number of terms. This pattern
cannot, however,  match a single term such as a.  However,  the pattern x_  +  y_.  contains an optional piece, and can
match either an explicit sum of terms in which both x_ and y_ appear, or a single term x_, with y taken to be 0. 

Using  constructs  such  as  x_.,  you  can  easily  construct  single  patterns  that  match  expressions  with  several  different
structures. This is particularly useful when you want to match several mathematically equal forms that do not have the
same structure. 

The pattern matches g[a^2], but not g[a + b]. 

In[5]:= {g[a^2], g[a + b]} /. g[x_^n_] -> p[x, n]

Out[5]= 8p@a, 2D, g@a + bD<

By giving a pattern in which the exponent is optional, you can match both cases. 

In[6]:= {g[a^2], g[a + b]} /. g[x_^n_.] -> p[x, n]

Out[6]= 8p@a, 2D, p@a + b, 1D<

The pattern a_. + b_. x_ matches any linear function of x_. 

In[7]:= lin[a_. + b_. x_, x_] := p[a, b]

In this case, b Ø  1. 

In[8]:= lin[1 + x, x]

Out[8]= p@1, 1D

Here b Ø  1 and a Ø  0. 

In[9]:= lin[y, y]

Out[9]= p@0, 1D

Standard Mathematica  functions such as Plus  and Times  have built-in default  values for their arguments. You can
also set up defaults for your own functions, as described in Section A.5.1. 

2.3.10 Setting Up Functions with Optional Arguments

When  you  define  a  complicated  function,  you  will  often  want  to  let  some  of  the  arguments  of  the  function  be
“optional”.  If you do not give those arguments explicitly, you want them to take on certain “default”  values.  

Built-in Mathematica  functions use two basic methods for dealing with optional arguments. You can choose between
the same two methods when you define your own functions in Mathematica. 
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The first  method is  to  have  the  meaning of  each argument  determined by  its  position,  and  then to  allow one  to drop
arguments,  replacing  them  by  default  values.  Almost  all  built-in  Mathematica  functions  that  use  this  method  drop
arguments  from the  end.  For  example,  the  built-in function  Flatten[list,  n]  allows  you  to  drop  the  second argu-
ment, which is taken to have a default value of Infinity. 

You can implement this kind of “positional”  argument using _: patterns. 

f  @ x _,  k _: kdef  D  :=  value a typical definition for a function whose
second argument is optional, with default value  kdef  

Defining a function with positional arguments. 

This defines a function with an optional second argument. When the second argument is omitted, it is taken to have the default 
value Infinity. 

In[1]:= f[list_, n_:Infinity] := f0[list, n]

Here is a function with two optional arguments. 

In[2]:= fx[list_, n1_:1, n2_:2] := fx0[list, n1, n2]

Mathematica assumes that arguments are dropped from the end. As a result m here gives the value of n1, while n2 has its default 
value of 2. 

In[3]:= fx[k, m]

Out[3]= fx0@k, m, 2D

The  second  method  that  built-in  Mathematica  functions  use  for  dealing  with  optional  arguments  is  to  give  explicit
names to the optional arguments, and then to allow their values to be given using transformation rules. This method is
particularly convenient for functions like Plot which have a very large number of optional parameters, only a few of
which usually need to be set in any particular instance.  

The typical arrangement is that values for “named”  optional arguments can be specified by including the appropriate
transformation rules at the end of the arguments to a particular function. Thus, for example, the rule PlotJoined->
True, which specifies the setting for the named optional argument PlotJoined, could appear as ListPlot[list,
PlotJoined->True]. 

When  you  set  up  named  optional  arguments  for  a  function  f,  it  is  conventional  to  store  the  default  values  of  these
arguments as a list of transformation rules assigned to Options[f].  

f  @ x _,  opts ___D  :=  value a typical definition for a function
with zero or more named optional arguments

name  ê.  8  opts <   ê.  Options@ f  D replacements used to get the value of a
named optional argument in the body of the function

Named arguments. 

This sets up default values for two named optional arguments opt1 and opt2 in the function fn. 

In[4]:= Options[fn] = { opt1 -> 1, opt2 -> 2 }

Out[4]= 8opt1 → 1, opt2 → 2<
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This gives the default value for opt1. 

In[5]:= opt1 /. Options[fn]

Out[5]= 1

The rule opt1->3 is applied first, so the default rule for opt1 in Options[fn] is not used. 

In[6]:= opt1 /. opt1->3 /. Options[fn]

Out[6]= 3

Here is the definition for a function fn which allows zero or more named optional arguments to be specified. 

In[7]:= fn[x_, opts___] := k[x, opt2/.{opts}/.Options[fn]]

With no optional arguments specified, the default rule for opt2 is used. 

In[8]:= fn[4]

Out[8]= k@4, 2D

If you explicitly give a rule for opt2, it will be used before the default rules stored in Options[fn] are tried. 

In[9]:= fn[4, opt2->7]

Out[9]= k@4, 7D

2.3.11 Repeated Patterns

expr .. a pattern or other expression repeated one or more times
expr ... a pattern or other expression repeated zero or more times

Repeated patterns. 

Multiple  blanks  such  as  x__  allow  you  to  give  patterns  in  which  sequences  of  arbitrary  expressions  can  occur.  The
Mathematica pattern repetition operators .. and ... allow you to construct patterns in which particular forms can be
repeated  any  number  of  times.  Thus,  for  example,  f[a..]  represents  any  expression  of  the  form f[a],  f[a,  a],
f[a, a, a] and so on. 

The pattern f[a..] allows the argument a to be repeated any number of times. 

In[1]:= Cases[{ f[a], f[a, b, a], f[a, a, a] }, f[a..]]

Out[1]= 8f@aD, f@a, a, aD<

This pattern allows any number of a arguments, followed by any number of b arguments. 

In[2]:= Cases[{ f[a], f[a, a, b], f[a, b, a], f[a, b, b] }, f[a.., b..]]

Out[2]= 8f@a, a, bD, f@a, b, bD<
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Here each argument can be either a or b. 

In[3]:= Cases[{ f[a], f[a, b, a], f[a, c, a] }, f[(a | b)..]]

Out[3]= 8f@aD, f@a, b, aD<

You can use .. and ... to represent repetitions of any pattern. If the pattern contains named parts, then each instance
of these parts must be identical. 

This defines a function whose argument must consist of a list of pairs. 

In[4]:= v[x:{{_, _}..}] := Transpose[x]

The definition applies in this case. 

In[5]:= v[{{a1, b1}, {a2, b2}, {a3, b3}}]

Out[5]= 88a1, a2, a3<, 8b1, b2, b3<<

With this definition, the second elements of all the pairs must be the same. 

In[6]:= vn[x:{{_, n_}..}] := Transpose[x]

The definition applies in this case. 

In[7]:= vn[{{a, 2}, {b, 2}, {c, 2}}]

Out[7]= 88a, b, c<, 82, 2, 2<<

2.3.12 Verbatim Patterns

Verbatim@ expr D an expression that must be matched verbatim

Verbatim patterns. 

Here the x_ in the rule matches any expression. 

In[1]:= {f[2], f[a], f[x_], f[y_]} /. f[x_] -> x^2

Out[1]= 84, a2, x_2, y_2<

The Verbatim tells Mathematica that only the exact expression x_ should be matched. 

In[2]:= {f[2], f[a], f[x_], f[y_]} /. f[Verbatim[x_]] -> x^2

Out[2]= 8f@2D, f@aD, x2, f@y_D<

2.3.13 Patterns for Some Common Types of Expression

Using  the  objects  described  above,  you  can  set  up  patterns  for  many  kinds  of  expressions.  In  all  cases,  you  must
remember that the patterns must represent the structure of the expressions in Mathematica  internal form, as shown by
FullForm. 
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Especially for some common kinds of expressions, the standard output format used by Mathematica  is not particularly
close to the full internal form. But it is the internal form that you must use in setting up patterns. 

n _Integer an integer  n  
x _Real an approximate real number  x  

z _Complex a complex number  z  
Complex@ x _,  y _D a complex number  x + i y  

Complex@ x 
_Integer,  y _IntegerD 

a complex number where
both real and imaginary parts are integers

Hr _Rational  »  r _IntegerL rational number or integer  r  
Rational@ n _,  d  _D a rational number  nÅÅÅÅÅd  

Hx _  ê;  NumberQ@ 

x D  &&  Im@ x D==0L 

a real number of any kind

Hx _  ê;  NumberQ@ x DL a number of any kind

Some typical patterns for numbers. 

Here are the full forms of some numbers. 

In[1]:= {2, 2.5, 2.5 + I, 2/7} // FullForm

Out[1]//FullForm= 

List@2, 2.5`, Complex@2.5`, 1D, Rational@2, 7DD

The rule picks out each piece of the complex numbers. 

In[2]:= {2.5 - I, 3 + I} /. Complex[x_, y_] -> p[x, y]

Out[2]= 8p@2.5, −1D, p@3, 1D<

The fact that these expressions have different full forms means that you cannot use x_ + I y_ to match a complex number. 

In[3]:= {2.5 - I, x + I y} // FullForm

Out[3]//FullForm= 

List@Complex@2.5`, −1D, Plus@x, Times@Complex@0, 1D, yDDD

The pattern here matches both ordinary integers, and complex numbers where both the real and imaginary parts are integers. 

In[4]:= Cases[ {2.5 - I, 2, 3 + I, 2 - 0.5 I, 2 + 2 I}, _Integer | Complex[_Integer, 
_Integer] ]

Out[4]= 82, 3 + , 2 + 2 <

As  discussed  in  Section  1.4.1,  Mathematica  puts  all  algebraic  expressions  into  a  standard  form,  in  which  they  are
written  essentially  as  a  sum  of  products  of  powers.  In  addition,  ratios  are  converted  into  products  of  powers,  with
denominator  terms  having  negative  exponents,  and  differences  are  converted  into  sums  with  negated  terms.  To  con-
struct patterns for algebraic expressions, you must use this standard form. This form often differs from the way Mathe-
matica  prints  out  the  algebraic  expressions.  But  in  all  cases,  you  can  find  the  full  internal  form  using  Full
Form[expr]. 
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Here is a typical algebraic expression. 

In[5]:= -1/z^2 - z/y + 2 (x z)^2 y

Out[5]= −
1
z2

−
z
y

+ 2 x2 y z2

This is the full internal form of the expression. 

In[6]:= FullForm[%]

Out[6]//FullForm= 

Plus@Times@−1, Power@z, −2DD,
Times@−1, Power@y, −1D, zD, Times@2, Power@x, 2D, y, Power@z, 2DDD

This is what you get by applying a transformation rule to all powers in the expression. 

In[7]:= % /. x_^n_ -> e[x, n]

Out[7]= −z e@y, −1D − e@z, −2D + 2 y e@x, 2D e@z, 2D

x _  +  y _ a sum of two or more terms
x _  +  y _. a single term or a sum of terms

n _Integer  x_ an expression with an explicit integer multiplier
a _.  +  b _.  x _ a linear expression  a + b x  

x _  ^  n _ xn  with  n ∫ 0 ,  1  
x _  ^  n _. xn  with  n ∫ 0  

a _.  +  b _.  x _  +  c _.  x _^2 a quadratic expression with non-zero linear term

Some typical patterns for algebraic expressions. 

This pattern picks out linear functions of x. 

In[8]:= {1, a, x, 2 x, 1 + 2 x} /. a_. + b_. x -> p[a, b]

Out[8]= 81, a, p@0, 1D, p@0, 2D, p@1, 2D<

x _List or  x:8  ___ <  a list
x _List  ê;  VectorQ@ x D a vector containing no sublists

x _List  ê;  

VectorQ@ x,  NumberQD 

a vector of numbers

x:8  ___List <   or  x:8  8  ___ <  ... <  a list of lists
x _List  ê;  MatrixQ@ x D a matrix containing no sublists

x _List  ê;  

MatrixQ@ x,  NumberQD 

a matrix of numbers

x:8  8  _,  _ <  ... <  a list of pairs

Some typical patterns for lists. 

This defines a function whose argument must be a list containing lists with either one or two elements. 

In[9]:= h[x:{ ({_} | {_, _})... }] := q
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The definition applies in the second and third cases. 

In[10]:= {h[{a, b}], h[{{a}, {b}}], h[{{a}, {b, c}}]}

Out[10]= 8h@8a, b<D, q, q<

2.3.14 An Example: Defining Your Own Integration Function

Now that  we  have  introduced  the  basic  features  of  patterns  in  Mathematica,  we can use  them to  give  a  more or  less
complete example. We will show how you could define your own simple integration function in Mathematica.    

From a  mathematical  point  of  view,  the  integration  function  is  defined  by  a  sequence  of  mathematical relations.  By
setting up transformation rules for patterns, you can implement these mathematical relations quite directly in Mathemat-
ica. 

mathematical form Mathematica definition 

Ÿ Hy + zL „ x = Ÿ y „ x + Ÿ z „ x  integrate@y_  +  z_,  x_D  :=  

integrate@y,  xD  +  integrate@z,  xD 

Ÿ c y „ x = c Ÿ y „ x  H c  independent of  x  L integrate@c_  y_,  x_D  :=  c 

 integrate@y,  xD  ê;  FreeQ@c,  xD 

Ÿ c „ x = c x  integrate@c_,  x_D  :=  c  x  ê;  FreeQ@c,  xD 

Ÿ xn „ x = xHn+1L
ÅÅÅÅÅÅÅÅÅÅÅÅÅn+1  ,  n ∫ -1  integrate@x_^n_.,  x_D  :=  x^Hn+1LêHn+1L 

 ê;  FreeQ@n,  xD  &&  n  !=  −1 

Ÿ 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅa x+b  „ x = log Ha x+bLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅa  integrate@1êHa_.  x_  +  b_.L,  x_D  := 

 Log@a  x  +  bDêa  ê;  FreeQ@8a,b<,  xD 

Ÿ ea x+b „ x = 1ÅÅÅÅa ea x+b  integrate@Exp@a_.  x_  +  b_.D,  x_D  := 

 Exp@a  x  +  bDêa  ê;  FreeQ@8a,b<,  xD 

Definitions for an integration function. 

This implements the linearity relation for integrals: Ÿ Hy + zL „ x = Ÿ y „ x + Ÿ z „ x . 

In[1]:= integrate[y_ + z_, x_] := integrate[y, x] + integrate[z, x]

The associativity of Plus makes the linearity relation work with any number of terms in the sum. 

In[2]:= integrate[a x + b x^2 + 3, x]

Out[2]= integrate@3, xD + integrate@a x, xD + integrate@b x2, xD

This makes integrate pull out factors that are independent of the integration variable x. 

In[3]:= integrate[c_ y_, x_] := c integrate[y, x] /; FreeQ[c, x]

Mathematica tests each term in each product to see whether it satisfies the FreeQ condition, and so can be pulled out. 

In[4]:= integrate[a x + b x^2 + 3, x]

Out[4]= integrate@3, xD + a integrate@x, xD + b integrate@x2, xD
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This gives the integral Ÿ c „ x = c x  of a constant. 

In[5]:= integrate[c_, x_] := c x /; FreeQ[c, x]

Now the constant term in the sum can be integrated. 

In[6]:= integrate[a x + b x^2 + 3, x]

Out[6]= 3 x + a integrate@x, xD + b integrate@x2, xD

This gives the standard formula for the integral of xn . By using the pattern x_^n_., rather than x_^n_, we include the case of 
x1 = x . 

In[7]:= integrate[x_^n_., x_] := x^(n+1)/(n+1) /; FreeQ[n, x] && n != -1

Now this integral can be done completely. 

In[8]:= integrate[a x + b x^2 + 3, x]

Out[8]= 3 x +
a x2

2
+
b x3

3

Of course, the built-in integration function Integrate (with a capital I) could have done the integral anyway. 

In[9]:= Integrate[a x + b x^2 + 3, x]

Out[9]= 3 x +
a x2

2
+
b x3

3

Here is the rule for integrating the reciprocal of a linear function. The pattern a_. x_ + b_. stands for any linear function of x. 

In[10]:= integrate[1/(a_. x_ + b_.), x_] := Log[a x + b]/a /; FreeQ[{a,b}, x]

Here both a and b take on their default values. 

In[11]:= integrate[1/x, x]

Out[11]= Log@xD

Here is a more complicated case. The symbol a now matches 2 p. 

In[12]:= integrate[1/(2 p x - 1), x]

Out[12]= 
Log@−1 + 2 p xD

2 p

You can go on and add many more rules for integration. Here is a rule for integrating exponentials. 

In[13]:= integrate[Exp[a_. x_ + b_.], x_] := Exp[a x + b]/a /; FreeQ[{a,b}, x]
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2.4 Manipulating Lists

2.4.1 Constructing Lists

Lists are widely used in Mathematica, and there are many ways to construct them.   

Range@ n D the list  8  1,  2,  3, … ,  n <  
Table@ expr,  8  i,  n <  D the values of  expr with  i from  1 to  n 

Array@ f ,  n D the list  8  f  @1D,  f  @2D, … ,  f  @ n D <  
NestList@ f ,  x,  n D 8  x,  f  @ x D,  f  @ f  @ x DD, … <  with up to  n nestings

 Normal@SparseArray@ 

8  i1  -> v1 ,  … <,  n DD 

a length  n list with element  ik  being  vk  

Apply@List,  f  @ e1,  e2, … DD the list  8  e1,  e2, … <  

Some explicit ways to construct lists. 

This gives a table of the first five powers of two. 

In[1]:= Table[2^i, {i, 5}]

Out[1]= 82, 4, 8, 16, 32<

Here is another way to get the same result. 

In[2]:= Array[2^# &, 5]

Out[2]= 82, 4, 8, 16, 32<

This gives a similar list. 

In[3]:= NestList[2 #&, 1, 5]

Out[3]= 81, 2, 4, 8, 16, 32<

SparseArray lets you specify values at particular positions. 

In[4]:= Normal[SparseArray[{3->x, 4->y}, 5]]

Out[4]= 80, 0, x, y, 0<

You can also use patterns to specify values. 

In[5]:= Normal[SparseArray[{i_ -> 2^i}, 5]]

Out[5]= 82, 4, 8, 16, 32<

Often you will know in advance how long a list is supposed to be, and how each of its elements should be generated.
And often you may get one list from another. 
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Map@ f ,  list D apply  f  to each element of  list 
MapIndexed@ f ,  list D give  f  @ elem,  8  i <  D for the  i th  element

Cases@ list,  form D give elements of  list that match  form 
Select@ list,  test D select elements for which  test @ elem D is  True 

list @@ 8  i1,  i2, … <  DD or  
Part@ list,  8  i1,  i2, … <  D 

give a list of the specified parts of  list 

Constructing lists from other lists. 

This selects elements larger than 5. 

In[6]:= Select[{1, 3, 6, 8, 10}, # > 5&]

Out[6]= 86, 8, 10<

This explicitly picks out numbered parts. 

In[7]:= {a, b, c, d}[[{2, 1, 4}]]

Out[7]= 8b, a, d<

Sometimes you may want to accumulate a list of results during the execution of a program. You can do this using Sow
and Reap. 

Sow@ val D sow the value  val for the nearest enclosing  Reap 

Reap@ expr D evaluate  expr , returning also a list of values sown by  Sow 

Using Sow and Reap. 

This program iteratively squares a number. 

In[8]:= Nest[#^2&, 2, 5]

Out[8]= 4294967296

This does the same computation, but accumulating a list of intermediate results above 1000. 

In[9]:= Reap[Nest[(If[# > 1000, Sow[#]]; #^2) &, 2, 6]]

Out[9]= 818446744073709551616, 8865536, 4294967296<<<

An  alternative  but  less  efficient  approach  involves  introducing  a  temporary  variable,  then  starting  with  t  =  8< ,  and
successively using AppendTo[t, elem]. 
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2.4.2 Manipulating Lists by Their Indices

Part@ list,  spec D or  list @@ spec DD part or parts of a list
Part@ list,  spec1,  spec2, … 

D or  list @@ spec1,  spec2, … DD 

part or parts of a nested list

n the  n th  part from the beginning
−n the  n th  part from the end

8  i1,  i2, … <  a list of parts
All all parts

Getting parts of lists. 

This gives a list of parts 1 and 3. 

In[1]:= {a, b, c, d}[[{1, 3}]]

Out[1]= 8a, c<

Here is a nested list. 

In[2]:= m = {{a, b, c}, {d, e}, {f, g, h}};

This gives a list of its first and third parts. 

In[3]:= m[[{1, 3}]]

Out[3]= 88a, b, c<, 8f, g, h<<

This gives a list of the first part of each of these. 

In[4]:= m[[{1, 3}, 1]]

Out[4]= 8a, f<

And this gives a list of the first two parts. 

In[5]:= m[[{1, 3}, {1, 2}]]

Out[5]= 88a, b<, 8f, g<<

This gives the second part of all sublists. 

In[6]:= m[[All, 2]]

Out[6]= 8b, e, g<

You can always reset one or more pieces of a list by doing an assignment like m[[… ]] = value.   

This resets part 1, 2 of m. 

In[7]:= m[[1, 2]] = x

Out[7]= x
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This is now the form of m. 

In[8]:= m

Out[8]= 88a, x, c<, 8d, e<, 8f, g, h<<

This resets part 1 to x and part 3 to y. 

In[9]:= m[[{1, 3}]] = {x, y}; m

Out[9]= 8x, 8d, e<, y<

This resets parts 1 and 3 both to p. 

In[10]:= m[[{1, 3}]] = p; m

Out[10]= 8p, 8d, e<, p<

This restores the original form of m. 

In[11]:= m = {{a, b, c}, {d, e}, {f, g, h}};

This now resets all parts specified by m[[{1, 3}, {1, 2}]]. 

In[12]:= m[[{1, 3}, {1, 2}]] = x; m

Out[12]= 88x, x, c<, 8d, e<, 8x, x, h<<

You can use Range to indicate all indices in a given range. 

In[13]:= m[[Range[1, 3], 2]] = y; m

Out[13]= 88x, y, c<, 8d, y<, 8x, y, h<<

It  is  sometimes  useful  to  think  of  a  nested  list  as  being  laid  out  in  space,  with  each  element  being  at  a  coordinate
position given by its indices. There is then a direct geometrical interpretation for list[[spec1, spec2, … ]]. If a given
speck  is a single integer, then it represents extracting a single slice in the kth  dimension, while if it is a list, it represents
extracting  a  list  of  parallel  slices.  The  final  result  for  list[[spec1,  spec2,  … ]]  is  then  the  collection  of  elements
obtained by slicing in each successive dimension. 

Here is a nested list laid out as a two-dimensional array. 

In[14]:= (m = {{a, b, c}, {d, e, f}, {g, h, i}}) // TableForm

Out[14]//TableForm= 
a b c
d e f
g h i

This picks out rows 1 and 3, then columns 1 and 2. 

In[15]:= m[[{1, 3}, {1, 2}]] // TableForm

Out[15]//TableForm= 
a b
g h
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Part is set up to make it easy to pick out structured slices of nested lists. Sometimes, however, you may want to pick
out arbitrary collections of individual parts. You can do this conveniently with Extract.  

Part@ list,  8  i1,  i2, … <  D the list  8  list @@ i1  DD,  list @@ i2  DD, … <  
Extract@ list,  8  i1,  i2, … <  D the element  list @@ i1,  i2, … DD 

Part@ list,  spec1,  spec2, … D parts specified by successive slicing
Extract@ list,  8  8  i1,  i2,
… <,  8  j1,  j2, … <, … <  D 

the list of individual parts  8  list @@ i1,
 i2, … DD,  list @@ j1,  j2, … DD, … <  

Getting slices versus lists of individual parts. 

This extracts the individual parts 1,3 and 1,2. 

In[16]:= Extract[m, {{1, 3}, {1, 2}}]

Out[16]= 8c, b<

An  important  feature  of  Extract  is  that  it  takes  lists  of  part  positions  in  the  same  form  as  they  are  returned  by
functions like Position. 

This sets up a nested list. 

In[17]:= m = {{a[1], a[2], b[1]}, {b[2], c[1]}, {{b[3]}}};

This gives a list of positions in m. 

In[18]:= Position[m, b[_]]

Out[18]= 881, 3<, 82, 1<, 83, 1, 1<<

This extracts the elements at those positions. 

In[19]:= Extract[m, %]

Out[19]= 8b@1D, b@2D, b@3D<

Take@ list,  spec D take the specified parts of a list
Drop@ list,  spec D drop the specified parts of a list

Take@ list,  spec1,  spec2, … D ,  

Drop@ list,  spec1,  spec2, … D 

take or drop specified parts at each level in nested lists

n the first  n elements
−n the last  n elements

8  n <  element  n only
8  m,  n <  elements  m through  n HinclusiveL

8  m,  n,  s <  elements  m through  n in steps of  s 
All all parts
None no parts

Taking and dropping sequences of elements in lists. 
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This takes every second element starting at position 2. 

In[20]:= Take[{a, b, c, d, e, f, g}, {2, -1, 2}]

Out[20]= 8b, d, f<

This drops every second element. 

In[21]:= Drop[{a, b, c, d, e, f, g}, {2, -1, 2}]

Out[21]= 8a, c, e, g<

Much like Part, Take and Drop can be viewed as picking out sequences of slices at successive levels in a nested list.
You can use Take and Drop to work with blocks of elements in arrays. 

Here is a 3ä3 array. 

In[22]:= (m = {{a, b, c}, {d, e, f}, {g, h, i}}) // TableForm

Out[22]//TableForm= 
a b c
d e f
g h i

Here is the first 2ä2 subarray. 

In[23]:= Take[m, 2, 2] // TableForm

Out[23]//TableForm= 
a b
d e

This takes all elements in the first two columns. 

In[24]:= Take[m, All, 2] // TableForm

Out[24]//TableForm= 
a b
d e
g h

This leaves no elements from the first two columns. 

In[25]:= Drop[m, None, 2] // TableForm

Out[25]//TableForm= 
c
f
i
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Prepend@ list,  elem D add  element at the beginning of  list 
Append@ list,  elem D add  element at the end of  list 

Insert@ list,  elem,  i D insert  element at position  i 
Insert@ list,  elem,  8  i,  j, … <  D insert at position  i ,  j , …

Delete@ list,  i D delete the element at position  i 
Delete@ list,  8  i,  j, … <  D delete at position  i ,  j , …

Adding and deleting elements in lists. 

This makes the 2,1 element of the list be x. 

In[26]:= Insert[{{a, b, c}, {d, e}}, x, {2, 1}]

Out[26]= 88a, b, c<, 8x, d, e<<

This deletes the element again. 

In[27]:= Delete[%, {2, 1}]

Out[27]= 88a, b, c<, 8d, e<<

ReplacePart@ list,  new,  i D replace the element at position  i in  list with  new 
ReplacePart@ 

list,  new,  8  i,  j, … <  D 

replace  list @@ i,  j, … DD with  new 

ReplacePart@ list,  new,  8  
8  i1,  j1, … <,  8  i2, … <, … <  D 

replace all parts  list @@ ik,  jk, … DD with  new 

ReplacePart@ list,  new,  
8  8  i1, … <, … <  ,  8  n1, … <  D 

replace part  list @@ ik, … DD with  new @@ nk  DD 

Replacing parts of lists. 

This replaces the third element in the list with x. 

In[28]:= ReplacePart[{a, b, c, d}, x, 3]

Out[28]= 8a, b, x, d<

This replaces the first and fourth parts of the list. Notice the need for double lists in specifying multiple parts to replace. 

In[29]:= ReplacePart[{a, b, c, d}, x, {{1}, {4}}]

Out[29]= 8x, b, c, x<

Here is a 3ä3 identity matrix. 

In[30]:= IdentityMatrix[3]

Out[30]= 881, 0, 0<, 80, 1, 0<, 80, 0, 1<<

This replaces the 2,2 component of the matrix by x. 

In[31]:= ReplacePart[%, x, {2, 2}]

Out[31]= 881, 0, 0<, 80, x, 0<, 80, 0, 1<<
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2.4.3 Nested Lists

8  list1,  list2, … <  list of lists
Table@ expr,  8  i,  m <,  8  j,  n <, … D mänä…  table of values of  expr 

Array@ f ,  8  m,  n, … <  D mänä…  array of values  f  @ i,  j, … D 

Normal@SparseArray@ 8  8  i1, j1  ,
…  <  −> v1, … <,  8  m,  n, … <  DD 

mänä…  array with element  8  is, js  ,…  <  being  vs  

Outer@ f ,  list1,  list2, … D generalized outer product with elements combined using  f  

Ways to construct nested lists. 

This generates a table corresponding to a 2ä3 nested list. 

In[1]:= Table[x^i + j, {i, 2}, {j, 3}]

Out[1]= 881 + x, 2 + x, 3 + x<, 81 + x2, 2 + x2, 3 + x2<<

This generates an array corresponding to the same nested list. 

In[2]:= Array[x^#1 + #2 &, {2, 3}]

Out[2]= 881 + x, 2 + x, 3 + x<, 81 + x2, 2 + x2, 3 + x2<<

Elements not explicitly specified in the sparse array are taken to be 0. 

In[3]:= Normal[SparseArray[{{1, 3} -> 3 + x}, {2, 3}]]

Out[3]= 880, 0, 3 + x<, 80, 0, 0<<

Each element in the final list contains one element from each input list. 

In[4]:= Outer[f, {a, b}, {c, d}]

Out[4]= 88f@a, cD, f@a, dD<, 8f@b, cD, f@b, dD<<

Functions  like  Array,  SparseArray  and  Outer  always  generate  full  arrays,  in  which  all  sublists  at  a  particular
level are the same length. 

Dimensions@ list D the dimensions of a full array
ArrayQ@ list D test whether all sublists at a given level are the same length

ArrayDepth@ list D the depth to which all sublists are the same length

Functions for full arrays. 

Mathematica  can handle arbitrary nested lists. There is no need for the lists to form a full array. You can easily gener-
ate ragged arrays using Table.  

This generates a triangular array. 

In[5]:= Table[x^i + j, {i, 3}, {j, i}]

Out[5]= 881 + x<, 81 + x2, 2 + x2<, 81 + x3, 2 + x3, 3 + x3<<
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Flatten@ list D flatten out all levels of  list 
Flatten@ list,  n D flatten out the top  n levels

Flattening out sublists. 

This generates a 2ä3 array. 

In[6]:= Array[a, {2, 3}]

Out[6]= 88a@1, 1D, a@1, 2D, a@1, 3D<, 8a@2, 1D, a@2, 2D, a@2, 3D<<

Flatten in effect puts elements in lexicographic order of their indices. 

In[7]:= Flatten[%]

Out[7]= 8a@1, 1D, a@1, 2D, a@1, 3D, a@2, 1D, a@2, 2D, a@2, 3D<

Transpose@ list D transpose the top two levels of  list 
Transpose@ list,  8  n1,  n2, … <  D put the  k th  level in  list at level  nk  

Transposing levels in nested lists. 

This generates a 2ä2ä2 array. 

In[8]:= Array[a, {2, 2, 2}]

Out[8]= 888a@1, 1, 1D, a@1, 1, 2D<, 8a@1, 2, 1D, a@1, 2, 2D<<,
88a@2, 1, 1D, a@2, 1, 2D<, 8a@2, 2, 1D, a@2, 2, 2D<<<

This permutes levels so that level 3 appears at level 1. 

In[9]:= Transpose[%, {3, 1, 2}]

Out[9]= 888a@1, 1, 1D, a@2, 1, 1D<, 8a@1, 1, 2D, a@2, 1, 2D<<,
88a@1, 2, 1D, a@2, 2, 1D<, 8a@1, 2, 2D, a@2, 2, 2D<<<

This restores the original array. 

In[10]:= Transpose[%, {2, 3, 1}]

Out[10]= 888a@1, 1, 1D, a@1, 1, 2D<, 8a@1, 2, 1D, a@1, 2, 2D<<,
88a@2, 1, 1D, a@2, 1, 2D<, 8a@2, 2, 1D, a@2, 2, 2D<<<

Map@ f ,  list,  8  n <  D map  f  across elements at level  n 
Apply@ f ,  list,  8  n <  D apply  f  to the elements at level  n 

MapIndexed@ f ,  list,  8  n <  D map  f  onto parts at level  n and their indices

Applying functions in nested lists. 

Here is a nested list. 

In[11]:= m = {{{a, b}, {c, d}}, {{e, f}, {g, h}, {i}}};
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This maps a function f at level 2. 

In[12]:= Map[f, m, {2}]

Out[12]= 88f@8a, b<D, f@8c, d<D<, 8f@8e, f<D, f@8g, h<D, f@8i<D<<

This applies the function at level 2. 

In[13]:= Apply[f, m, {2}]

Out[13]= 88f@a, bD, f@c, dD<, 8f@e, fD, f@g, hD, f@iD<<

This applies f to both parts and their indices. 

In[14]:= MapIndexed[f, m, {2}]

Out[14]= 88f@8a, b<, 81, 1<D, f@8c, d<, 81, 2<D<,
8f@8e, f<, 82, 1<D, f@8g, h<, 82, 2<D, f@8i<, 82, 3<D<<

Partition@ list,  8  n1,  n2, … <  D partition into  n1 än2 ä… blocks
PadLeft@ list,  8  n1,  n2, … <  D pad on the left to make an  n1 än2 ä… array
PadRight@ list,  8  n1,  n2, … <  D pad on the right to make an  n1 än2 ä… array

RotateLeft@ list,  8  n1,  n2, … <  D rotate  nk  places to the left at level  k 
RotateRight@ list,  8  n1,  n2, … <  D rotate  nk  places to the right at level  k 

Operations on nested lists. 

Here is a nested list. 

In[15]:= m = {{{a, b, c}, {d, e}}, {{f, g}, {h}, {i}}};

This rotates different amounts at each level. 

In[16]:= RotateLeft[m, {0, 1, -1}]

Out[16]= 888e, d<, 8c, a, b<<, 88h<, 8i<, 8g, f<<<

This pads with zeros to make a 2ä3ä3 array. 

In[17]:= PadRight[%, {2, 3, 3}]

Out[17]= 888e, d, 0<, 8c, a, b<, 80, 0, 0<<, 88h, 0, 0<, 8i, 0, 0<, 8g, f, 0<<<

2.4.4 Partitioning and Padding Lists

Partition@ list,  n D partition  list into sublists of length  n 
Partition@ list,  n,  d  D partition into sublists with offset  d  

Split@ list D split  list into runs of identical elements
Split@ list,  test D split into runs with adjacent elements satisfying  test 

Partitioning elements in a list. 
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This partitions in blocks of 3. 

In[1]:= Partition[{a, b, c, d, e, f}, 3]

Out[1]= 88a, b, c<, 8d, e, f<<

This partitions in blocks of 3 with offset 1. 

In[2]:= Partition[{a, b, c, d, e, f}, 3, 1]

Out[2]= 88a, b, c<, 8b, c, d<, 8c, d, e<, 8d, e, f<<

The offset can be larger than the block size. 

In[3]:= Partition[{a, b, c, d, e, f}, 2, 3]

Out[3]= 88a, b<, 8d, e<<

This splits into runs of identical elements. 

In[4]:= Split[{1, 4, 1, 1, 1, 2, 2, 3, 3}]

Out[4]= 881<, 84<, 81, 1, 1<, 82, 2<, 83, 3<<

This splits into runs where adjacent elements are unequal. 

In[5]:= Split[{1, 4, 1, 1, 1, 2, 2, 3, 3}, Unequal]

Out[5]= 881, 4, 1<, 81<, 81, 2<, 82, 3<, 83<<

Partition  in  effect  goes  through  a  list,  grouping  successive  elements into  sublists.  By default  it  does  not  include
any sublists that would “overhang”  the original list. 

This stops before any overhang occurs. 

In[6]:= Partition[{a, b, c, d, e}, 2]

Out[6]= 88a, b<, 8c, d<<

The same is true here. 

In[7]:= Partition[{a, b, c, d, e}, 3, 1]

Out[7]= 88a, b, c<, 8b, c, d<, 8c, d, e<<

You can tell Partition to include sublists that overhang the ends of the original list. By default, it fills in additional
elements by treating the original list as cyclic. It can also treat it as being padded with elements that you specify. 

This includes additional sublists, treating the original list as cyclic. 

In[8]:= Partition[{a, b, c, d, e}, 3, 1, {1, 1}]

Out[8]= 88a, b, c<, 8b, c, d<, 8c, d, e<, 8d, e, a<, 8e, a, b<<

Printed from the Mathematica Help Browser 11

©1988-2003 Wolfram Research, Inc. All rights reserved.



Now the original list is treated as being padded with the element x. 

In[9]:= Partition[{a, b, c, d, e}, 3, 1, {1, 1}, x]

Out[9]= 88a, b, c<, 8b, c, d<, 8c, d, e<, 8d, e, x<, 8e, x, x<<

This pads cyclically with elements x and y. 

In[10]:= Partition[{a, b, c, d, e}, 3, 1, {1, 1}, {x, y}]

Out[10]= 88a, b, c<, 8b, c, d<, 8c, d, e<, 8d, e, y<, 8e, y, x<<

This introduces no padding, yielding sublists of differing lengths. 

In[11]:= Partition[{a, b, c, d, e}, 3, 1, {1, 1}, {}]

Out[11]= 88a, b, c<, 8b, c, d<, 8c, d, e<, 8d, e<, 8e<<

You can  think  of  Partition  as  extracting  sublists  by  sliding  a  template along,  and  picking  out  elements from the
original list. You can tell Partition where to start and stop this process. 

This gives all sublists that overlap the original list. 

In[12]:= Partition[{a, b, c, d}, 3, 1, {-1, 1}, x]

Out[12]= 88x, x, a<, 8x, a, b<, 8a, b, c<, 8b, c, d<, 8c, d, x<, 8d, x, x<<

This allows overlaps only at the beginning. 

In[13]:= Partition[{a, b, c, d}, 3, 1, {-1, -1}, x]

Out[13]= 88x, x, a<, 8x, a, b<, 8a, b, c<, 8b, c, d<<

Partition@ list,  n,  d  D  or  
Partition@ list,  n,  d,  8  1,  −1 <  D 

keep only sublists with no overhangs

Partition@ list,  n,  d,  8  1,  1 <  D allow an overhang at the end
Partition@ list,  n,  d,  8  −1,  −1 <  D allow an overhang at the beginning
Partition@ list,  n,  d,  8  −1,  1 <  D allowing overhangs at both the beginning and end
Partition@ list,  n,  d,  8  kL,  kR  <  D specify alignments of first and last sublists

Partition@ list,  n,  d,  spec D pad by cyclically repeating elements in  list 
Partition@ list,  n,  d,  spec,  x D pad by repeating the element  x 

Partition@ list,  n,
 d,  spec,  8  x1,  x2, … <  D 

pad by cyclically repeating the  xi  

Partition@ list,  n,  d,  spec,  8  <  D use no padding

Specifying alignment and padding. 

An alignment specification 8kL,  kR <  tells Partition  to give the sequence of sublists in which the first element of
the original list appears at position kL  in the first sublist, and the last element of the original list appears at position kR
in the last sublist. 
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This makes a appear at position 1 in the first sublist. 

In[14]:= Partition[{a, b, c, d}, 3, 1, {1, 1}, x]

Out[14]= 88a, b, c<, 8b, c, d<, 8c, d, x<, 8d, x, x<<

This makes a appear at position 2 in the first sublist. 

In[15]:= Partition[{a, b, c, d}, 3, 1, {2, 1}, x]

Out[15]= 88x, a, b<, 8a, b, c<, 8b, c, d<, 8c, d, x<, 8d, x, x<<

Here a is in effect made to appear first at position 4. 

In[16]:= Partition[{a, b, c, d}, 3, 1, {4, 1}, x]

Out[16]= 88x, x, x<, 8x, x, a<, 8x, a, b<, 8a, b, c<, 8b, c, d<, 8c, d, x<, 8d, x, x<<

This fills in padding cyclically from the list given. 

In[17]:= Partition[{a, b, c, d}, 3, 1, {4, 1}, {x, y}]

Out[17]= 88y, x, y<, 8x, y, a<, 8y, a, b<, 8a, b, c<, 8b, c, d<, 8c, d, x<, 8d, x, y<<

Functions like ListConvolve use the same alignment and padding specifications as Partition. 

In some cases it may be convenient  to insert explicit padding into a list.  You can do this using PadLeft  and Pad
Right. 

PadLeft@ list,  n D pad to length  n by inserting zeros on the left
PadLeft@ list,  n,  x D pad by repeating the element  x 

PadLeft@ list,  n,  8  x1,  x2, … <  D pad by cyclically repeating the  xi  
PadLeft@ list,  n,  list D pad by cyclically repeating  list 

PadLeft@ list,  n,  padding,  m D leave a margin of  m elements on the right
PadRight@ list,  n D pad by inserting zeros on the right

Padding a list. 

This pads the list to make it length 6. 

In[18]:= PadLeft[{a, b, c}, 6]

Out[18]= 80, 0, 0, a, b, c<

This cyclically inserts {x, y} as the padding. 

In[19]:= PadLeft[{a, b, c}, 6, {x, y}]

Out[19]= 8x, y, x, a, b, c<

This also leaves a margin of 3 on the right. 

In[20]:= PadLeft[{a, b, c}, 10, {x, y}, 3]

Out[20]= 8y, x, y, x, a, b, c, x, y, x<
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PadLeft, PadRight and Partition can all be used on nested lists. 

This creates a 3ä3 array. 

In[21]:= PadLeft[{{a, b}, {e}, {f}}, {3, 3}, x]

Out[21]= 88x, a, b<, 8x, x, e<, 8x, x, f<<

This partitions the array into 2ä2 blocks with offset 1. 

In[22]:= Partition[%, {2, 2}, {1, 1}]

Out[22]= 8888x, a<, 8x, x<<, 88a, b<, 8x, e<<<, 888x, x<, 8x, x<<, 88x, e<, 8x, f<<<<

If you give a nested list as a padding specification, its elements are picked up cyclically at each level. 

This cyclically fills in copies of the padding list. 

In[23]:= PadLeft[{{a, b}, {e}, {f}}, {4, 4}, {{x, y}, {z, w}}]

Out[23]= 88x, y, x, y<, 8z, w, a, b<, 8x, y, x, e<, 8z, w, z, f<<

Here is a list containing only padding. 

In[24]:= PadLeft[{{}}, {4, 4}, {{x, y}, {z, w}}]

Out[24]= 88x, y, x, y<, 8z, w, z, w<, 8x, y, x, y<, 8z, w, z, w<<

2.4.5 Sparse Arrays

Lists are normally specified in Mathematica  just  by giving explicit lists of their elements. But particularly in working
with large arrays, it is often useful instead to be able to say what the values of elements are only at certain positions,
with all other elements taken to have a default value, usually zero. You can do this in Mathematica using SparseAr
ray objects. 

8  e1,  e2, … <  ,  8  8  
e11,  e12, … <, … <  , …

ordinary lists

SparseArray@ 8  pos1   −> 

 val1,  pos2   −>  val2, … <  D 

sparse arrays

Ordinary lists and sparse arrays. 

This specifies a sparse array. 

In[1]:= SparseArray[{2->a, 5->b}]

Out[1]= SparseArray@<2>, 85<D

Here it is as an ordinary list. 

In[2]:= Normal[%]

Out[2]= 80, a, 0, 0, b<
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This specifies a two-dimensional sparse array. 

In[3]:= SparseArray[{{1,2}->a, {3,2}->b, {3,3}->c}]

Out[3]= SparseArray@<3>, 83, 3<D

Here it is an ordinary list of lists. 

In[4]:= Normal[%]

Out[4]= 880, a, 0<, 80, 0, 0<, 80, b, c<<

SparseArray@ list D sparse array version of  list 
SparseArray@ 8  pos1  

−> val1,  pos2  −> val2, … <  D 

sparse array with values  vali  at positions  posi  

SparseArray@ 8  pos1,  

pos2, … <  −> 8  val1,  val2, … <  D 

the same sparse array

SparseArray@ data,  8  d1,  d2, … <  D d1 äd2 ä ...  sparse array
SparseArray@ data,  dims,  val 
D sparse array with default value  val 

Normal@ array D ordinary list version of  array 
ArrayRules@ array D position-value rules for  array 

Creating and converting sparse arrays. 

This generates a sparse array version of a list. 

In[5]:= SparseArray[{a, b, c, d}]

Out[5]= SparseArray@<4>, 84<D

This converts back to an ordinary list. 

In[6]:= Normal[%]

Out[6]= 8a, b, c, d<

This makes a length 7 sparse array with default value x. 

In[7]:= SparseArray[{3->a, 5->b}, 7, x]

Out[7]= SparseArray@<2>, 87<, xD

Here is the corresponding ordinary list. 

In[8]:= Normal[%]

Out[8]= 8x, x, a, x, b, x, x<

This shows the rules used in the sparse array. 

In[9]:= ArrayRules[%%]

Out[9]= 883< → a, 85< → b, 8_< → x<
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An important feature of SparseArray is that the positions you specify can be patterns. 

This specifies a 4ä4 sparse array with 1 at every position matching {i_, i_}. 

In[10]:= SparseArray[{i_, i_} -> 1, {4, 4}]

Out[10]= SparseArray@<4>, 84, 4<D

The result is a 4ä4 identity matrix. 

In[11]:= Normal[%]

Out[11]= 881, 0, 0, 0<, 80, 1, 0, 0<, 80, 0, 1, 0<, 80, 0, 0, 1<<

Here is an identity matrix with an extra element. 

In[12]:= Normal[SparseArray[{{1, 3}->a, {i_, i_}->1}, {4, 4}]]

Out[12]= 881, 0, a, 0<, 80, 1, 0, 0<, 80, 0, 1, 0<, 80, 0, 0, 1<<

This makes the whole third column be a. 

In[13]:= Normal[SparseArray[{{_, 3}->a, {i_, i_}->1}, {4, 4}]]

Out[13]= 881, 0, a, 0<, 80, 1, a, 0<, 80, 0, a, 0<, 80, 0, a, 1<<

You can think of  SparseArray[rules]  as  taking all  possible  position  specifications,  then applying rules  to  deter-
mine values in each case. As usual, rules given earlier in the list will be tried first. 

This generates a random diagonal matrix. 

In[14]:= Normal[SparseArray[{{i_, i_} :> Random[]}, {3, 3}]]

Out[14]= 880.0560708, 0, 0<, 80, 0.6303, 0<, 80, 0, 0.359894<<

You can have rules where values depend on indices. 

In[15]:= Normal[SparseArray[i_ -> i^2, 10]]

Out[15]= 81, 4, 9, 16, 25, 36, 49, 64, 81, 100<

This fills in even-numbered positions with p. 

In[16]:= Normal[SparseArray[{_?EvenQ->p, i_->i^2}, 10]]

Out[16]= 81, p, 9, p, 25, p, 49, p, 81, p<

You can use patterns involving alternatives. 

In[17]:= Normal[SparseArray[{1|3, 2|4}->a, {4, 4}]]

Out[17]= 880, a, 0, a<, 80, 0, 0, 0<, 80, a, 0, a<, 80, 0, 0, 0<<
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You can also give conditions on patterns. 

In[18]:= Normal[SparseArray[i_/;3<i<7 -> p, 10]]

Out[18]= 80, 0, 0, p, p, p, 0, 0, 0, 0<

This makes a band-diagonal matrix. 

In[19]:= Normal[SparseArray[{{i_, j_} /; Abs[i - j] < 2 -> i + j}, {5, 5}]]

Out[19]= 882, 3, 0, 0, 0<, 83, 4, 5, 0, 0<, 80, 5, 6, 7, 0<, 80, 0, 7, 8, 9<, 80, 0, 0, 9, 10<<

For many purposes,  Mathematica  treats SparseArray  objects  just  like the ordinary lists to which they correspond.
Thus, for example, if you ask for parts of a sparse array object, Mathematica will operate as if you had asked for parts
in the corresponding ordinary list. 

This generates a sparse array object. 

In[20]:= s = SparseArray[{2->a, 4->b, 5->c}, 10]

Out[20]= SparseArray@<3>, 810<D

Here is the corresponding ordinary list. 

In[21]:= Normal[s]

Out[21]= 80, a, 0, b, c, 0, 0, 0, 0, 0<

Parts of the sparse array are just like parts of the corresponding ordinary list. 

In[22]:= s[[2]]

Out[22]= a

This part has the default value 0. 

In[23]:= s[[3]]

Out[23]= 0

Many operations treat SparseArray objects just like ordinary lists. When possible, they give sparse arrays as results. 

This gives a sparse array. 

In[24]:= 3 s + x

Out[24]= SparseArray@<3>, 810<, xD

Here is the corresponding ordinary list. 

In[25]:= Normal[%]

Out[25]= 8x, 3 a + x, x, 3 b + x, 3 c + x, x, x, x, x, x<
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Dot works directly with sparse array objects. 

In[26]:= s . s

Out[26]= a2 + b2 + c2

You can mix sparse arrays and ordinary lists. 

In[27]:= s . Range[10]

Out[27]= 2 a + 4 b + 5 c

Mathematica represents sparse arrays as expressions with head SparseArray. Whenever a sparse array is evaluated,
it is automatically converted to an optimized standard form with structure SparseArray[Automatic, dims, val,
… ]. 

This structure is,  however,  rarely evident, since even operations like Length  are set up to give results for the corre-
sponding ordinary list, not for the raw SparseArray expression structure. 

This generates a sparse array. 

In[28]:= t = SparseArray[{1->a, 5->b}, 10]

Out[28]= SparseArray@<2>, 810<D

Here is the underlying optimized expression structure. 

In[29]:= InputForm[%]

Out[29]//InputForm= 

SparseArray[Automatic, {10}, 0,   {1, {{0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2}, {}},    
{a, b}}]

Length gives the length of the corresponding ordinary list. 

In[30]:= Length[t]

Out[30]= 10

Map also operates on individual values. 

In[31]:= Normal[Map[f, t]]

Out[31]= 8f@aD, f@0D, f@0D, f@0D, f@bD, f@0D, f@0D, f@0D, f@0D, f@0D<
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2.5 Transformation Rules and Definitions

2.5.1 Applying Transformation Rules

expr  ê.  lhs  −>  rhs apply a transformation rule to  expr 
expr  ê.  8  lhs1   −>  
rhs1,  lhs2   −>  rhs2, … <  

try a sequence of rules on each part of  expr 

Applying transformation rules. 

The replacement operator /. (pronounced “slash-dot”)  applies rules to expressions. 

In[1]:= x + y /. x -> 3

Out[1]= 3 + y

You can give a list of rules to apply. Each rule will be tried once on each part of the expression. 

In[2]:= x + y /. {x -> a, y -> b}

Out[2]= a + b

expr  ê.  8  rules1,  rules2, … <  give a list of the results from applying each of the  rulesi  to  expr 

Applying lists of transformation rules. 

If you give a list of lists of rules, you get a list of results. 

In[3]:= x + y /. {{x -> 1, y -> 2}, {x -> 4, y -> 2}}

Out[3]= 83, 6<

Functions such as Solve and NSolve return lists whose elements are lists of rules, each representing a solution. 

In[4]:= Solve[x^3 - 5x^2 +2x + 8 == 0, x]

Out[4]= 88x → −1<, 8x → 2<, 8x → 4<<

When you apply these rules, you get a list of results, one corresponding to each solution. 

In[5]:= x^2 + 6 /. %

Out[5]= 87, 10, 22<

When you use expr /. rules, each rule is tried in turn on each part of expr. As soon as a rule applies, the appropriate
transformation is made, and the resulting part is returned. 

The rule for x^3 is tried first; if it does not apply, the rule for x^n_ is used. 

In[6]:= {x^2, x^3, x^4} /. {x^3 -> u, x^n_ -> p[n]}

Out[6]= 8p@2D, u, p@4D<
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A result is returned as soon as the rule has been applied, so the inner instance of h is not replaced. 

In[7]:= h[x + h[y]] /. h[u_] -> u^2

Out[7]= Hx + h@yDL2

The replacement expr /. rules tries each rule just once on each part of expr. 

Since each rule is tried just once, this serves to swap x and y. 

In[8]:= {x^2, y^3} /. {x -> y, y -> x}

Out[8]= 8y2, x3<

You can use this notation to apply one set of rules, followed by another. 

In[9]:= x^2 /. x -> (1 + y) /. y -> b

Out[9]= H1 + bL2

Sometimes you  may need  to  go  on  applying  rules  over  and  over  again,  until  the  expression  you  are  working  on  no
longer  changes.  You  can  do  this  using  the  repeated  replacement  operation  expr  //.  rules  (or  Replace
Repeated[expr, rules]). 

expr  ê.  rules try rules once on each part of  expr 
expr  êê.  rules try rules repeatedly until the result no longer changes

Single and repeated rule application. 

With the single replacement operator /. each rule is tried only once on each part of the expression. 

In[10]:= x^2 + y^6 /. {x -> 2 + a, a -> 3}

Out[10]= H2 + aL2 + y6

With the repeated replacement operator //. the rules are tried repeatedly until the expression no longer changes. 

In[11]:= x^2 + y^6 //. {x -> 2 + a, a -> 3}

Out[11]= 25 + y6

Here the rule is applied only once. 

In[12]:= log[a b c d] /. log[x_ y_] -> log[x] + log[y]

Out[12]= log@aD + log@b c dD

With the repeated replacement operator, the rule is applied repeatedly, until the result no longer changes. 

In[13]:= log[a b c d] //. log[x_ y_] -> log[x] + log[y]

Out[13]= log@aD + log@bD + log@cD + log@dD

When you use //.  (pronounced  “slash-slash-dot”),  Mathematica  repeatedly passes  through your expression,  trying
each of the rules given. It goes on doing this until it gets the same result on two successive passes. 

2 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



If you give a set of rules that is circular, then //. can keep on getting different results forever. In practice, the maxi-
mum number of passes that //. makes on a particular expression is determined by the setting for the option MaxIter
ations. If you want to keep going for as long as possible, you can use ReplaceRepeated[expr, rules, MaxIt
erations -> Infinity]. You can always stop by explicitly interrupting Mathematica. 

By setting the option MaxIterations, you can explicitly tell ReplaceRepeated how many times to try the rules you give. 

In[14]:= ReplaceRepeated[x, x -> x + 1, MaxIterations -> 1000]

ReplaceRepeated::rrlim :  Exiting after x scanned 1000 times.

Out[14]= 1000 + x

The replacement operators /.  and //.  share the feature that they try each rule on every subpart  of your expression.
On the other hand, Replace[expr, rules] tries the rules only on the whole of expr, and not on any of its subparts. 

You can use Replace, together with functions like Map and MapAt, to control exactly which parts of an expression a
replacement is applied to. Remember that you can use the function ReplacePart[expr, new, pos] to replace part
of an expression with a specific object. 

The operator /. applies rules to all subparts of an expression. 

In[15]:= x^2 /. x -> a

Out[15]= a2

Without a level specification, Replace applies rules only to the whole expression. 

In[16]:= Replace[x^2, x^2 -> b]

Out[16]= b

No replacement is done here. 

In[17]:= Replace[x^2, x -> a]

Out[17]= x2

This applies rules down to level 2, and so replaces x. 

In[18]:= Replace[x^2, x -> a, 2]

Out[18]= a2

expr  ê.  rules apply rules to all subparts of  expr 
Replace@ expr,  rules D apply rules to the whole of  expr only

Replace@ expr,  rules,  levspec D apply rules to parts of  expr on levels specified by  levspec 

Applying rules to whole expressions. 

Replace returns the result from using the first rule that applies. 

In[19]:= Replace[f[u], {f[x_] -> x^2, f[x_] -> x^3}]

Out[19]= u2
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ReplaceList gives a list of the results from every rule that applies. 

In[20]:= ReplaceList[f[u], {f[x_] -> x^2, f[x_] -> x^3}]

Out[20]= 8u2, u3<

If a single rule can be applied in several ways, ReplaceList gives a list of all the results. 

In[21]:= ReplaceList[a + b + c, x_ + y_ -> g[x, y]]

Out[21]= 8g@a, b + cD, g@b, a + cD, g@c, a + bD, g@a + b, cD, g@a + c, bD, g@b + c, aD<

This gives a list of ways of breaking the original list in two. 

In[22]:= ReplaceList[{a, b, c, d}, {x__, y__} -> g[{x}, {y}]]

Out[22]= 8g@8a<, 8b, c, d<D, g@8a, b<, 8c, d<D, g@8a, b, c<, 8d<D<

This finds all sublists that are flanked by the same element. 

In[23]:= ReplaceList[{a, b, c, a, d, b, d}, {___, x_, y__, x_, ___} -> g[x, {y}]]

Out[23]= 8g@a, 8b, c<D, g@b, 8c, a, d<D, g@d, 8b<D<

Replace@ expr,  rules D apply  rules in one way only
ReplaceList@ expr,  rules D apply  rules in all possible ways

Applying rules in one way or all possible ways. 

2.5.2 Manipulating Sets of Transformation Rules

You can manipulate lists of transformation rules in Mathematica  just like other symbolic expressions. It is common to
assign a name to a rule or set of rules. 

This assigns the “name”  sinexp to the trigonometric expansion rule. 

In[1]:= sinexp = Sin[2 x_] -> 2 Sin[x] Cos[x]

Out[1]= Sin@2 x_D → 2 Cos@xD Sin@xD

You can now request the rule “by  name”.  

In[2]:= Sin[2 (1 + x)^2] /. sinexp

Out[2]= 2 Cos@H1 + xL2D Sin@H1 + xL2D

You can use lists of rules to represent mathematical and other relations.  Typically you will find it convenient  to give
names to the lists, so that you can easily specify the list you want in a particular case. 

In most situations, it is only one rule from any given list that actually applies to a particular expression. Nevertheless,
the /. operator tests each of the rules in the list in turn. If the list is very long, this process can take a long time. 

Mathematica allows you to preprocess lists of rules so that /. can operate more quickly on them. You can take any list
of  rules  and  apply  the  function  Dispatch  to  them.  The  result  is  a  representation  of  the  original  list  of  rules,  but
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including dispatch tables which allow /. to “dispatch”  to potentially applicable rules immediately, rather than testing
all the rules in turn. 

Here is a list of rules for the first five factorials. 

In[3]:= facs = Table[f[i] -> i!, {i, 5}]

Out[3]= 8f@1D → 1, f@2D → 2, f@3D → 6, f@4D → 24, f@5D → 120<

This sets up dispatch tables that make the rules faster to use. 

In[4]:= dfacs = Dispatch[facs]

Out[4]= Dispatch@8f@1D → 1, f@2D → 2, f@3D → 6, f@4D → 24, f@5D → 120<, −DispatchTables−D

You can apply the rules using the /. operator. 

In[5]:= f[4] /. dfacs

Out[5]= 24

Dispatch@ rules D create a representation of
a list of rules that includes dispatch tables

expr  ê.  drules apply rules that include dispatch tables

Creating and using dispatch tables. 

For long lists of rules, you will find that setting up dispatch tables makes replacement operations much faster. This is
particularly  true  when  your  rules  are  for  individual  symbols or  other  expressions  that  do  not  involve  pattern  objects.
Once you have built dispatch tables in such cases, you will find that the /.  operator takes a time that is more or less
independent  of  the number of  rules you have.  Without  dispatch tables,  however,  /.  will  take a time directly propor-
tional to the total number of rules. 

2.5.3 Making Definitions

The replacement operator  /.  allows you to  apply  transformation rules  to  a  specific  expression.  Often,  however,  you
want to have transformation rules automatically applied whenever possible. 

You  can  do  this  by  assigning  explicit  values  to  Mathematica  expressions  and  patterns.  Each  assignment  specifies  a
transformation rule to be applied whenever an expression of the appropriate form occurs. 

expr  ê.  lhs  −>  rhs apply a transformation rule to a specific expression
lhs  =  rhs assign a value which defines a

transformation rule to be used whenever possible

Manual and automatic application of transformation rules. 

This applies a transformation rule for x to a specific expression. 

In[1]:= (1 + x)^6 /. x -> 3 - a

Out[1]= H4 − aL6
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By assigning a value to x, you tell Mathematica to apply a transformation rule for x whenever possible. 

In[2]:= x = 3 - a

Out[2]= 3 − a

Now x is transformed automatically. 

In[3]:= (1 + x)^7

Out[3]= H4 − aL7

You should realize that except inside constructs like Module and Block, all assignments you make in a Mathematica
session are permanent. They continue to be used for the duration of the session, unless you explicitly clear or overwrite
them. 

The fact  that  assignments are permanent means that  they must be made with care.  Probably the single most common
mistake in using Mathematica is to make an assignment for a variable like x at one point in your session, and then later
to use x having forgotten about the assignment you made. 

There are several ways to avoid this kind of mistake. First, you should avoid using assignments whenever possible, and
instead  use  more  controlled  constructs  such  as  the  /.  replacement  operator.  Second,  you  should  explicitly  use  the
deassignment operator  =.  or  the  function  Clear  to  remove values  you have  assigned when you have  finished  with
them. 

Another  important  way  to  avoid  mistakes  is  to  think  particularly  carefully  before  assigning  values  to  variables  with
common or simple names. You will often want to use a variable such as x as a symbolic parameter. But if you make an
assignment such as x = 3, then x will be replaced by 3 whenever it occurs, and you can no longer use x as a symbolic
parameter. 

In general, you should be sure not to assign permanent values to any variables that you might want to use for more than
one purpose. If at one point in your session you wanted the variable c to stand for the speed of light, you might assign
it a value such as 3.*10^8. But then you cannot use c later in your session to stand, say, for an undetermined coeffi-
cient. One way to avoid this kind of problem is to make assignments only for variables with more explicit names, such
as SpeedOfLight.

x  =. remove the value assigned to the object  x 
Clear@ x,  y, … D clear all the values of  x ,  y , …

Removing assignments. 

This does not give what you might expect, because x still has the value you assigned it above. 

In[4]:= Factor[ x^2 - 1 ]

Out[4]= H−4 + aL H−2 + aL

This removes any value assigned to x. 

In[5]:= Clear[x]
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Now this gives the result you expect. 

In[6]:= Factor[ x^2 - 1 ]

Out[6]= H−1 + xL H1 + xL

2.5.4 Special Forms of Assignment

Particularly when you write procedural programs in Mathematica, you will often need to modify the value of a particu-
lar variable repeatedly. You can always do this by constructing the new value and explicitly performing an assignment
such as x = value. Mathematica, however, provides special notations for incrementing the values of variables, and for
some other common cases. 

i ++ increment the value of  i by  1 

i −− decrement  i 
++ i pre-increment  i 
−− i pre-decrement  i 

i  +=  di add  di to the value of  i 
i  −=  di subtract  di from  i 
x  ∗=  c multiply  x by  c 
x  ê=  c divide  x by  c 

Modifying values of variables. 

This assigns the value 7x to the variable t. 

In[1]:= t = 7x

Out[1]= 7 x

This increments the value of t by 18x. 

In[2]:= t += 18x

Out[2]= 25 x

The value of t has been modified. 

In[3]:= t

Out[3]= 25 x

This sets t to 8, multiplies its value by 7, then gives the final value of t. 

In[4]:= t = 8; t *= 7; t

Out[4]= 56
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The value of i++ is the value of i before the increment is done. 

In[5]:= i=5; Print[i++]; Print[i]

5

6

The value of ++i is the value of i after the increment. 

In[6]:= i=5; Print[++i]; Print[i]

6

6

x  =  y  =  value assign the same value to both  x and  y 
8  x,  y <   =  8  value1,  value2  <  assign different values to  x and  y 

8  x,  y <   =  8  y,  x <  interchange the values of  x and  y 

Assigning values to several variables at a time. 

This assigns the value 5 to x and 8 to y. 

In[7]:= {x, y} = {5, 8}

Out[7]= 85, 8<

This interchanges the values of x and y. 

In[8]:= {x, y} = {y, x}

Out[8]= 88, 5<

Now x has value 8. 

In[9]:= x

Out[9]= 8

And y has value 5. 

In[10]:= y

Out[10]= 5

You can use assignments to lists to permute values of variables in any way. 

In[11]:= {a, b, c} = {1, 2, 3}; {b, a, c} = {a, c, b}; {a, b, c}

Out[11]= 83, 1, 2<

When you write programs in Mathematica,  you will sometimes find it convenient  to take a list,  and successively add
elements to it. You can do this using the functions PrependTo and AppendTo. 
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PrependTo@ v,  elem D prepend  elem to the value of  v 
AppendTo@ v,  elem D append  elem 

v  =  8  v,  elem <  make a nested list containing  elem 

Assignments for modifying lists. 

This assigns the value of v to be the list {5, 7, 9}. 

In[12]:= v = {5, 7, 9}

Out[12]= 85, 7, 9<

This appends the element 11 to the value of v. 

In[13]:= AppendTo[v, 11]

Out[13]= 85, 7, 9, 11<

Now the value of v has been modified. 

In[14]:= v

Out[14]= 85, 7, 9, 11<

Although  AppendTo[v,  elem]  is  always  equivalent  to  v  =  Append[v,  elem],  it  is  often  a  convenient  notation.
However,  you  should  realize  that  because  of  the  way  Mathematica  stores  lists,  it  is  usually  less  efficient  to  add  a
sequence of elements to a particular list than to create a nested structure that consists, for example, of lists of length 2 at
each level. When you have built up such a structure, you can always reduce it to a single list using Flatten. 

This sets up a nested list structure for w. 

In[15]:= w = {1}; Do[ w = {w, k^2}, {k, 1, 4} ]; w

Out[15]= 888881<, 1<, 4<, 9<, 16<

You can use Flatten to unravel the structure. 

In[16]:= Flatten[w]

Out[16]= 81, 1, 4, 9, 16<

2.5.5 Making Definitions for Indexed Objects

In many kinds of calculations, you need to set up “arrays”  which contain sequences of expressions, each specified by
a certain index. One way to implement arrays in Mathematica is by using lists. You can define a list, say a = 8x, y, z,
… < ,  then  access  its  elements  using  a[[i]],  or  modify  them using  a[[i]]  =  value.  This  approach  has  a  drawback,
however, in that it requires you to fill in all the elements when you first create the list. 

Often, it is more convenient to set up arrays in which you can fill in only those elements that you need at a particular
time. You can do this by making definitions for expressions such as a[i]. 
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This defines a value for a[1]. 

In[1]:= a[1] = 9

Out[1]= 9

This defines a value for a[2]. 

In[2]:= a[2] = 7

Out[2]= 7

This shows all the values you have defined for expressions associated with a so far. 

In[3]:= ?a

Global`a

a@1D = 9

a@2D = 7

You can define a value for a[5], even though you have not yet given values to a[3] and a[4]. 

In[4]:= a[5] = 0

Out[4]= 0

This generates a list of the values of the a[i]. 

In[5]:= Table[a[i], {i, 5}]

Out[5]= 89, 7, a@3D, a@4D, 0<

You can think of the expression a[i] as being like an “indexed”  or “subscripted”  variable.  

a @ i D  =  value add or overwrite a value
a @ i D access a value

a @ i D  =. remove a value
?a show all defined values

Clear@ a D clear all defined values
Table@ a @iD,  8  i,  
1,  n <  D  or  Array@ a,  n D 

convert to an explicit  List 

Manipulating indexed variables. 

When  you  have  an  expression  of  the  form  a[i],  there  is  no  requirement  that  the  “index”  i  be  a  number.  In  fact,
Mathematica  allows the index to be any expression whatsoever. By using indices that are symbols, you can for exam-
ple build up simple databases in Mathematica. 

This defines the “object”  area with “index”  square to have value 1. 

In[6]:= area[square] = 1

Out[6]= 1
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This adds another result to the area “database”.  

In[7]:= area[triangle] = 1/2

Out[7]= 
1
2

Here are the entries in the area database so far. 

In[8]:= ?area

Global`area

area@squareD = 1

area@triangleD = 1
2

You can use these definitions wherever you want. You have not yet assigned a value for area[pentagon]. 

In[9]:= 4 area[square] + area[pentagon]

Out[9]= 4 + area@pentagonD

2.5.6 Making Definitions for Functions

Section 1.7.1 discussed how you can define functions in Mathematica. In a typical case, you would type in f[x_] =
x^2  to  define  a  function  f.  (Actually,  the  definitions  in  Section  1.7.1  used  the  :=  operator,  rather  than  the  =  one.
Section 2.5.8 will explain exactly when to use each of the := and = operators.) 

The  definition  f[x_]  =  x^2  specifies  that  whenever  Mathematica  encounters  an  expression  which  matches  the
pattern f[x_], it should replace the expression by x^2. Since the pattern f[x_] matches all expressions of the form
f[anything], the definition applies to functions f with any “argument”.  

Function  definitions  like  f[x_]  =  x^2  can  be  compared  with  definitions  like  f[a]  =  b  for  indexed  variables  dis-
cussed  in  the  previous  subsection.  The definition  f[a]  =  b  specifies  that  whenever  the  particular  expression  f[a]
occurs, it is to be replaced by b. But the definition says nothing about expressions such as f[y], where f appears with
another “index”.  

To define a “function”,  you need to specify values for  expressions of  the form f[x],  where the argument x  can be
anything.  You  can  do  this  by  giving  a  definition  for  the  pattern  f[x_],  where  the  pattern  object  x_  stands  for  any
expression. 

f@ x D  =  value definition for a  specific expression  x 
f@ x _D  =  value definition for  any expression , referred to as  x 

The difference between defining an indexed variable and a function. 

Making definitions for f[2] or f[a] can be thought of as being like giving values to various elements of an “array”
named f. Making a definition for f[x_] is like giving a value for a set of “array  elements”  with arbitrary “indices”
. In fact, you can actually think of any function as being like an array with an arbitrarily variable index.  

In  mathematical  terms,  you  can  think  of  f  as  a  mapping.  When  you  define  values  for,  say,  f[1]  and  f[2],  you
specify the image of this mapping for various discrete points in its domain. Defining a value for f[x_]  specifies the
image of f on a continuum of points. 
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This defines a transformation rule for the specific expression f[x]. 

In[1]:= f[x] = u

Out[1]= u

When the specific expression f[x] appears, it is replaced by u. Other expressions of the form f[argument] are, however, not 
modified. 

In[2]:= f[x] + f[y]

Out[2]= u + f@yD

This defines a value for f with any expression as an “argument”.  

In[3]:= f[x_] = x^2

Out[3]= x2

The old definition for the specific expression f[x] is still used, but the new general definition for f[x_] is now used to find a 
value for f[y].  

In[4]:= f[x] + f[y]

Out[4]= u + y2

This removes all definitions for f. 

In[5]:= Clear[f]

Mathematica  allows  you  to  define  transformation  rules  for  any  expression  or  pattern.  You  can  mix  definitions  for
specific expressions such as f[1] or f[a] with definitions for patterns such as f[x_]. 

Many kinds of mathematical functions can be set up by mixing specific and general definitions in Mathematica. As an
example, consider the factorial function. This particular function is in fact built into Mathematica (it is written n!). But
you can use Mathematica definitions to set up the function for yourself. 

The standard mathematical definition for the factorial function can be entered almost directly into Mathematica, in the
form:  f[n_]  :=  n  f[n-1];  f[1]  =  1.  This  definition  specifies  that  for  any  n,  f[n]  should  be  replaced  by  n
f[n-1], except that when n is 1, f[1] should simply be replaced by 1. 

Here is the value of the factorial function with argument 1. 

In[6]:= f[1] = 1

Out[6]= 1

Here is the general recursion relation for the factorial function. 

In[7]:= f[n_] := n f[n-1]

Now you can use these definitions to find values for the factorial function. 

In[8]:= f[10]

Out[8]= 3628800
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The results are the same as you get from the built-in version of factorial. 

In[9]:= 10!

Out[9]= 3628800

2.5.7 The Ordering of Definitions

When  you  make  a  sequence  of  definitions  in  Mathematica,  some  may  be  more  general  than  others.  Mathematica
follows the principle of trying to put more general definitions after more specific ones. This means that special cases of
rules are typically tried before more general cases. 

This  behavior  is  crucial  to  the  factorial  function  example  given  in  the  previous  section.  Regardless  of  the  order  in
which  you  entered  them,  Mathematica  will  always  put  the  rule  for  the  special  case  f[1]  ahead  of  the  rule  for  the
general case f[n_]. This means that when Mathematica looks for the value of an expression of the form f[n], it tries
the special case f[1] first, and only if this does not apply, it tries the general case f[n_]. As a result, when you ask
for f[5], Mathematica will keep on using the general rule until the “end  condition”  rule for f[1] applies. 

†  Mathematica tries to put specific definitions before more general definitions.

Treatment of definitions in Mathematica. 

If  Mathematica  did  not  follow the  principle  of  putting  special  rules  before  more  general  ones,  then  the  special  rules
would always be “shadowed”  by more general ones. In the factorial example, if the rule for f[n_] was ahead of the
rule for f[1], then even when Mathematica tried to evaluate f[1], it would use the general f[n_] rule, and it would
never find the special f[1] rule. 

Here is a general definition for f[n_]. 

In[1]:= f[n_] := n f[n-1]

Here is a definition for the special case f[1]. 

In[2]:= f[1] = 1

Out[2]= 1

Mathematica puts the special case before the general one. 

In[3]:= ?f

Global`f

f@1D = 1

f@n_D := n f@n − 1D

In the factorial function example used above, it is clear which rule is more general. Often, however, there is no definite
ordering  in  generality  of  the  rules  you  give.  In  such  cases,  Mathematica  simply tries  the  rules  in  the  order  you  give
them. 

These rules have no definite ordering in generality. 

In[4]:= log[x_ y_] := log[x] + log[y] ; log[x_^n_] := n log[x]
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Mathematica stores the rules in the order you gave them. 

In[5]:= ?log

Global`log

log@x_ y_D := log@xD + log@yD

log@x_n_D := n log@xD

This rule is a special case of the rule for log[x_ y_]. 

In[6]:= log[2 x_] := log[x] + log2

Mathematica puts the special rule before the more general one. 

In[7]:= ?log

Global`log

log@2 x_D := log@xD + log2

log@x_ y_D := log@xD + log@yD

log@x_n_D := n log@xD

Although in many practical cases, Mathematica can recognize when one rule is more general than another, you should
realize that this is not always possible. For example, if two rules both contain complicated /; conditions, it may not be
possible to work out which is more general, and, in fact, there may not be a definite ordering. Whenever the appropri-
ate ordering is not clear, Mathematica stores rules in the order you give them. 

2.5.8 Immediate and Delayed Definitions

You may have noticed that there are two different ways to make assignments in Mathematica: lhs = rhs and lhs := rhs.
The  basic  difference  between these  forms is  when  the  expression  rhs  is  evaluated.  lhs  =  rhs  is  an  immediate assign-
ment,  in which rhs  is  evaluated at the time when the assignment is made. lhs  :=  rhs,  on the other hand,  is a delayed
assignment, in which rhs is not evaluated when the assignment is made, but is instead evaluated each time the value of
lhs is requested. 

lhs  =  rhs Himmediate assignmentL rhs is evaluated when the assignment is made
lhs  :=  rhs Hdelayed assignmentL rhs is evaluated each time the value of  lhs is requested

The two types of assignments in Mathematica. 

This uses the := operator to define the function ex. 

In[1]:= ex[x_] := Expand[(1 + x)^2]

Because := was used, the definition is maintained in an unevaluated form. 

In[2]:= ?ex

Global`ex

ex@x_D := Expand@H1 + xL2D
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When you make an assignment with the = operator, the right-hand side is evaluated immediately. 

In[3]:= iex[x_] = Expand[(1 + x)^2]

Out[3]= 1 + 2 x + x2

The definition now stored is the result of the Expand command. 

In[4]:= ?iex

Global`iex

iex@x_D = 1 + 2 x + x2

When you execute ex, the Expand is performed. 

In[5]:= ex[y + 2]

Out[5]= 9 + 6 y + y2

iex simply substitutes its argument into the already expanded form, giving a different answer. 

In[6]:= iex[y + 2]

Out[6]= 1 + 2 H2 + yL + H2 + yL2

As you can see  from the  example above,  both  =  and  :=  can  be  useful  in  defining  functions,  but  they have  different
meanings, and you must be careful about which one to use in a particular case. 

One rule of thumb is the following. If you think of an assignment as giving the final “value”  of an expression, use the
=  operator.  If  instead  you  think  of  the  assignment  as  specifying  a  “command”  for  finding  the  value,  use  the  :=
operator. If in doubt, it is usually better to use the := operator than the = one. 

lhs  =  rhs rhs is intended to be the final value of  
lhs He.g.,  f@x_D  =  1  −  x^2 L

lhs  :=  rhs rhs gives a command or program
to be executed whenever you ask for the value of  
lhs He.g.,  f@x_D  :=  Expand@1  −  x^2D L

Interpretations of assignments with the = and := operators. 

Although := is probably used more often than = in defining functions, there is one important case in which you must
use =  to  define  a  function.  If  you do  a calculation,  and get  an answer  in terms of  a  symbolic parameter x,  you often
want to go on and find results for various specific values of x.  One way to do this is to use the /.  operator to apply
appropriate rules for x in each case. It is usually more convenient however,  to use = to define a function whose argu-
ment is x. 

Here is an expression involving x. 

In[7]:= D[Log[Sin[x]]^2, x]

Out[7]= 2 Cot@xD Log@Sin@xDD
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This defines a function whose argument is the value to be taken for x. 

In[8]:= dlog[x_] = %

Out[8]= 2 Cot@xD Log@Sin@xDD

Here is the result when x is taken to be 1 + a. 

In[9]:= dlog[1 + a]

Out[9]= 2 Cot@1 + aD Log@Sin@1 + aDD

An important point to notice in the example above is that there is nothing special about the name x that appears in the
x_ pattern. It is just a symbol, indistinguishable from an x that appears in any other expression. 

f  @ x _D  =  expr define a function which gives the value  
expr for any particular value of  x 

Defining functions for evaluating expressions. 

You can use = and := not only to define functions, but also to assign values to variables. If you type x = value, then
value is immediately evaluated, and the result is assigned to x. On the other hand, if you type x := value, then value is
not immediately evaluated. Instead, it is maintained in an unevaluated form, and is evaluated afresh each time x is used. 

This evaluates Random[ ] to find a pseudorandom number, then assigns this number to r1. 

In[10]:= r1 = Random[ ]

Out[10]= 0.0560708

Here Random[ ] is maintained in an unevaluated form, to be evaluated afresh each time r2 is used. 

In[11]:= r2 := Random[ ]

Here are values for r1 and r2. 

In[12]:= {r1, r2}

Out[12]= 80.0560708, 0.6303<

The value of r1 never changes. Every time r2 is used, however, a new pseudorandom number is generated. 

In[13]:= {r1, r2}

Out[13]= 80.0560708, 0.359894<

The  distinction  between  immediate  and  delayed  assignments  is  particularly  important  when  you  set  up  chains  of
assignments. 

This defines a to be 1. 

In[14]:= a = 1

Out[14]= 1
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Here a + 2 is evaluated to give 3, and the result is assigned to be the value of ri. 

In[15]:= ri = a + 2

Out[15]= 3

Here a + 2 is maintained in an unevaluated form, to be evaluated every time the value of rd is requested. 

In[16]:= rd := a + 2

In this case, ri and rd give the same values. 

In[17]:= {ri, rd}

Out[17]= 83, 3<

Now the value of a is changed. 

In[18]:= a = 2

Out[18]= 2

Now rd uses the new value for a, while ri keeps its original value. 

In[19]:= {ri, rd}

Out[19]= 83, 4<

You can use delayed assignments such as t := rhs to set up variables whose values you can find in a variety of differ-
ent “environments”.  Every time you ask for t, the expression rhs  is evaluated using the current values of the objects
on which it depends. 

The right-hand side of the delayed assignment is maintained in an unevaluated form. 

In[20]:= t := {a, Factor[x^a - 1]}

This sets a to 4, then finds the value of t. 

In[21]:= a = 4; t

Out[21]= 84, H−1 + xL H1 + xL H1 + x2L<

Here a is 6. 

In[22]:= a = 6; t

Out[22]= 86, H−1 + xL H1 + xL H1 − x + x2L H1 + x + x2L<

In the example above, the symbol a acts as a “global  variable”,  whose value affects the value of t. When you have a
large  number  of  parameters,  many  of  which  change  only  occasionally,  you  may  find  this  kind  of  setup  convenient.
However,  you  should  realize  that  implicit  or  hidden  dependence  of  one  variable  on  others  can  often  become  quite
confusing.  When possible,  you should make all dependencies explicit,  by defining functions which take all necessary
parameters as arguments. 
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lhs  −>  rhs rhs is evaluated when the rule is given
lhs  :>  rhs rhs is evaluated when the rule is used

Two types of transformation rules in Mathematica. 

Just  as  you  can  make  immediate  and  delayed  assignments  in  Mathematica,  so  you  can  also  set  up  immediate  and
delayed transformation rules. 

The right-hand side of this rule is evaluated when you give the rule. 

In[23]:= f[x_] -> Expand[(1 + x)^2]

Out[23]= f@x_D → 1 + 2 x + x2

A rule like this is probably not particularly useful. 

In[24]:= f[x_] -> Expand[x]

Out[24]= f@x_D → x

Here the right-hand side of the rule is maintained in an unevaluated form, to be evaluated every time the rule is used. 

In[25]:= f[x_] :> Expand[x]

Out[25]= f@x_D Expand@xD

Applying the rule causes the expansion to be done. 

In[26]:= f[(1 + p)^2] /. f[x_] :> Expand[x]

Out[26]= 1 + 2 p + p2

In  analogy  with  assignments,  you  should  typically  use  ->  when  you  want  to  replace  an  expression  with  a  definite
value, and you should use :> when you want to give a command for finding the value. 

2.5.9 Functions That Remember Values They Have Found

When you make a function definition using :=,  the value of  the function is recomputed every time you ask for it. In
some kinds of calculations, you may end up asking for the same function value many times. You can save time in these
cases by  having  Mathematica  remember all  the  function  values  it  finds.  Here  is  an  “idiom”  for  defining  a  function
that does this. 

f@ x _D  :=  f@ x D  =  rhs define a function which remembers values that it finds

Defining a function that remembers values it finds. 

This defines a function f which stores all values that it finds. 

In[1]:= f[x_] := f[x] = f[x - 1] + f[x - 2]
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Here are the end conditions for the recursive function f. 

In[2]:= f[0] = f[1] = 1

Out[2]= 1

Here is the original definition of f. 

In[3]:= ?f

Global`f

f@1D = 1

f@0D = 1

f@x_D := f@xD = f@x − 1D + f@x − 2D

This computes f[5]. The computation involves finding the sequence of values f[5], f[4], ...  f[2]. 

In[4]:= f[5]

Out[4]= 8

All the values of f found so far are explicitly stored. 

In[5]:= ?f

Global`f

f@1D = 1

f@0D = 1

f@2D = 2

f@3D = 3

f@4D = 5

f@5D = 8

f@x_D := f@xD = f@x − 1D + f@x − 2D

If you ask for f[5] again, Mathematica can just look up the value immediately; it does not have to recompute it.  

In[6]:= f[5]

Out[6]= 8

You can see how a definition like f[x_] := f[x] = f[x-1] + f[x-2] works. The function f[x_] is defined to
be  the  “program”  f[x]  =  f[x-1]  +  f[x-2].  When  you  ask  for  a  value  of  the  function  f,  the  “program”  is
executed. The program first calculates the value of f[x-1] + f[x-2], then saves the result as f[x]. 

It is often a good idea to use functions that remember values when you implement mathematical recursion relations in
Mathematica. In a typical case, a recursion relation gives the value of a function f  with an integer argument x  in terms
of  values  of  the  same  function  with  arguments  x - 1,  x - 2,  etc.  The  Fibonacci  function  definition
f  HxL = f  Hx - 1L + f  Hx - 2L  used above is an example of this kind of recursion relation. The point is that if you calcu-
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late say f  H10L  by just applying the recursion relation over and over again, you end up having to recalculate quantities
like f  H5L  many times. In a case like this, it is therefore better just to remember the value of f  H5L , and look it up when
you need it, rather than having to recalculate it. 

There is of course a trade-off involved in remembering values. It is faster to find a particular value, but it takes more
memory space to store all of them. You should usually define functions to remember values only if the total number of
different values that will be produced is comparatively small, or the expense of recomputing them is very great. 

2.5.10 Associating Definitions with Different Symbols

When you make a definition in the form f[args] = rhs or f[args] := rhs, Mathematica associates your definition with
the object f. This means, for example, that such definitions are displayed when you type ?f. In general, definitions for
expressions in which the symbol f appears as the head are termed downvalues of f. 

Mathematica however also supports upvalues, which allow definitions to be associated with symbols that do not appear
directly as their head. 

Consider for example a definition like Exp[g[x_]] := rhs. One possibility is that this definition could be associated
with the symbol Exp, and considered as a downvalue of Exp. This is however probably not the best thing either from
the point of view of organization or efficiency. 

Better is to consider Exp[g[x_]] := rhs to be associated with g, and to correspond to an upvalue of g. 

f  @ args D  :=  rhs define a downvalue for  f  
f  @ g @ args D, … D  ^:=  rhs define an upvalue for  g 

Associating definitions with different symbols. 

This is taken to define a downvalue for f. 

In[1]:= f[g[x_]] := fg[x]

You can see the definition when you ask about f. 

In[2]:= ?f

Global`f

f@g@x_DD := fg@xD

This defines an upvalue for g. 

In[3]:= Exp[g[x_]] ^:= expg[x]

The definition is associated with g. 

In[4]:= ?g

Global`g

g@x_D ^:= expg@xD
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It is not associated with Exp. 

In[5]:= ??Exp

Exp@zD is the exponential function.

Attributes@ExpD = 8Listable, NumericFunction, Protected, ReadProtected<

The definition is used to evaluate this expression. 

In[6]:= Exp[g[5]]

Out[6]= expg@5D

In simple cases, you will get the same answers to calculations whether you give a definition for f[g[x]] as a down-
value for f  or an upvalue for  g.  However,  one of  the two choices is usually much more natural and efficient than the
other. 

A good rule of thumb is that a definition for f[g[x]] should be given as an upvalue for g in cases where the function f
is more common than g. Thus, for example, in the case of Exp[g[x]], Exp is a built-in Mathematica function, while
g is presumably a function you have added. In such a case, you will typically think of definitions for Exp[g[x]]  as
giving relations satisfied by g. As a result, it is more natural to treat the definitions as upvalues for g than as downval-
ues for Exp. 

This gives the definition as an upvalue for g. 

In[7]:= g/: g[x_] + g[y_] := gplus[x, y]

Here are the definitions for g so far. 

In[8]:= ?g

Global`g

g@x_D ^:= expg@xD

g@x_D + g@y_D ^:= gplus@x, yD

The definition for a sum of g's is used whenever possible. 

In[9]:= g[5] + g[7]

Out[9]= gplus@5, 7D

Since the full form of the pattern g[x_] + g[y_] is Plus[g[x_], g[y_]], a definition for this pattern could be
given as a downvalue for Plus. It is almost always better, however, to give the definition as an upvalue for g. 

In general,  whenever Mathematica  encounters  a particular function, it  tries all the definitions you have given for that
function. If you had made the definition for g[x_]  + g[y_]  a downvalue for Plus,  then Mathematica  would have
tried  this  definition  whenever  Plus  occurs.  The  definition  would  thus  be  tested  every  time  Mathematica  added
expressions together, making this very common operation slower in all cases. 

However, by giving a definition for g[x_] + g[y_] as an upvalue for g, you associate the definition with g. In this
case,  Mathematica  only  tries  the  definition  when  it  finds  a  g  inside  a  function  such  as  Plus.  Since  g  presumably
occurs much less frequently than Plus, this is a much more efficient procedure. 
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f  @ g D  ^=  value  or  
f  @ g @ args DD  ^=  value 

make assignments to be associated with  g , rather than  f  

f  @ g D  ^:=  value  or  
f  @ g @ args DD  ^:=  value 

make delayed assignments associated with  g 

f  @ arg1,  arg2, … D  ^=  value make assignments associated with the heads of  all the  argi  

Shorter ways to define upvalues. 

A typical  use  of  upvalues  is  in  setting up  a  “database”  of  properties  of  a  particular  object.  With  upvalues,  you can
associate each definition you make with the object that it concerns, rather than with the property you are specifying. 

This defines an upvalue for square which gives its area. 

In[10]:= area[square] ^= 1

Out[10]= 1

This adds a definition for the perimeter. 

In[11]:= perimeter[square] ^= 4

Out[11]= 4

Both definitions are now associated with the object square. 

In[12]:= ?square

Global`square

area@squareD ^= 1

perimeter@squareD ^= 4

In general, you can associate definitions for an expression with any symbol that occurs at a sufficiently high level in the
expression. With an expression of the form f[args], you can define an upvalue for a symbol g so long as either g itself,
or an object with head g,  occurs in args.  If g occurs at a lower level in an expression, however,  you cannot associate
definitions with it. 

g occurs as the head of an argument, so you can associate a definition with it. 

In[13]:= g/: h[w[x_], g[y_]] := hwg[x, y]

Here g appears too deep in the left-hand side for you to associate a definition with it. 

In[14]:= g/: h[w[g[x_]], y_] := hw[x, y]

TagSetDelayed::tagpos :  

Tag g in h@w@g@x_DD, y_D is too deep for an assigned rule to be found.

Out[14]= $Failed
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f  @ … D  :=  rhs downvalue for  f  
f  ê:  f  @ g @ … DD@ … D  :=  rhs downvalue for  f  

g ê:  f  @ … ,  g, … D  :=  rhs upvalue for  g 
g ê:  f  @ … ,  g @ … D, … D  :=  rhs upvalue for  g 

Possible positions for symbols in definitions. 

As discussed in Section 2.1.2, you can use Mathematica  symbols as “tags”,  to indicate the “type”  of an expression.
For  example,  complex  numbers  in  Mathematica  are  represented  internally  in  the  form  Complex[x,  y],  where  the
symbol Complex serves as a tag to indicate that the object is a complex number. 

Upvalues  provide  a  convenient  mechanism  for  specifying  how  operations  act  on  objects  that  are  tagged  to  have  a
certain type. For example, you might want to introduce a class of abstract mathematical objects of type quat. You can
represent each object of this type by a Mathematica expression of the form quat[data]. 

In a typical case, you might want quat objects to have special properties with respect to arithmetic operations such as
addition and multiplication. You can set up such properties by defining upvalues for quat  with respect to Plus  and
Times. 

This defines an upvalue for quat with respect to Plus. 

In[15]:= quat[x_] + quat[y_] ^:= quat[x + y]

The upvalue you have defined is used to simplify this expression. 

In[16]:= quat[a] + quat[b] + quat[c]

Out[16]= quat@a + b + cD

When you  define  an  upvalue  for  quat  with  respect  to  an  operation  like  Plus,  what  you  are  effectively doing  is  to
extend the domain of the Plus operation to include quat objects. You are telling Mathematica to use special rules for
addition in the case where the things to be added together are quat objects. 

In defining addition for quat  objects,  you could always have a special addition operation, say quatPlus,  to which
you assign an appropriate downvalue.  It is usually much more convenient,  however,  to use the standard Mathematica
Plus  operation  to  represent  addition,  but  then  to  “overload”  this  operation  by  specifying  special  behavior  when
quat objects are encountered. 

You can think of upvalues as a way to implement certain aspects of object-oriented programming. A symbol like quat
represents a particular type of object. Then the various upvalues for quat specify “methods”  that define how quat
objects should behave under certain operations, or on receipt of certain “messages”.  

2.5.11 Defining Numerical Values

If  you  make  a  definition  such  as  f[x_]  :=  value,  Mathematica  will  use  the  value  you  give  for  any  f  function  it
encounters.  In some cases, however,  you may want to define a value that is  to be used specifically when you ask for
numerical values. 

expr  =  value define a value to be used whenever possible
N@ expr D  =  value define a value to be used for numerical approximation

Defining ordinary and numerical values. 
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This defines a numerical value for the function f. 

In[1]:= N[f[x_]] := Sum[x^-i/i^2, {i, 20}]

Defining the numerical value does not tell Mathematica anything about the ordinary value of f. 

In[2]:= f[2] + f[5]

Out[2]= f@2D + f@5D

If you ask for a numerical approximation, however, Mathematica uses the numerical values you have defined. 

In[3]:= N[%]

Out[3]= 0.793244

You  can  define  numerical  values  for  both  functions  and  symbols.  The  numerical  values  are  used  by  all  numerical
Mathematica functions, including NIntegrate, FindRoot and so on. 

N@ expr D  =  value define a numerical value to be used
when default numerical precision is requested

N@ expr,  8  n,  Infinity <  D =  value define a numerical value to be used when  
n -digit precision and any accuracy is requested

Defining numerical values that depend on numerical precision. 

This defines a numerical value for the symbol const, using 4n + 5 terms in the product for n-digit precision. 

In[4]:= N[const, {n_, Infinity}] := Product[1 - 2^-i, {i, 2, 4n + 5}]

Here is the value of const, computed to 30-digit precision using the value you specified. 

In[5]:= N[const, 30]

Out[5]= 0.577576190173204842557799443858

Mathematica  treats numerical values essentially like upvalues. When you define a numerical value for f, Mathematica
effectively enters your definition as an upvalue for f with respect to the numerical evaluation operation N. 

2.5.12 Modifying Built-in Functions

Mathematica  allows  you  to  define  transformation  rules  for  any  expression.  You  can  define  such  rules  not  only  for
functions  that  you  add  to  Mathematica,  but  also  for  intrinsic  functions  that  are  already built  into  Mathematica.  As  a
result, you can enhance, or modify, the features of built-in Mathematica functions. 

This  capability  is  powerful,  but  potentially  dangerous.  Mathematica  will  always  follow  the  rules  you  give  it.  This
means that if the rules you give are incorrect, then Mathematica will give you incorrect answers. 

To avoid the possibility of changing built-in functions by mistake, Mathematica “protects”  all built-in functions from
redefinition. If you want to give a definition for a built-in function, you have to remove the protection first. After you
give the definition, you should usually restore the protection, to prevent future mistakes. 
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Unprotect@ f  D remove protection
Protect@ f  D add protection

Protection for functions. 

Built-in functions are usually “protected”,  so you cannot redefine them. 

In[1]:= Log[7] = 2

Set::write :  Tag Log in Log@7D is Protected.

Out[1]= 2

This removes protection for Log. 

In[2]:= Unprotect[Log]

Out[2]= 8Log<

Now you can give your own definitions for Log. This particular definition is not mathematically correct, but Mathematica will still 
allow you to give it.  

In[3]:= Log[7] = 2

Out[3]= 2

Mathematica will use your definitions whenever it can, whether they are mathematically correct or not. 

In[4]:= Log[7] + Log[3]

Out[4]= 2 + Log@3D

This removes the incorrect definition for Log. 

In[5]:= Log[7] =.

This restores the protection for Log. 

In[6]:= Protect[Log]

Out[6]= 8Log<

Definitions you give can override built-in features of  Mathematica.  In general,  Mathematica  tries to use your defini-
tions before it uses built-in definitions. 

The  rules  that  are  built  into  Mathematica  are  intended  to  be  appropriate  for  the  broadest  range  of  calculations.  In
specific  cases,  however,  you  may not  like  what  the  built-in  rules  do.  In  such  cases,  you  can  give  your  own  rules  to
override the ones that are built in. 

There is a built-in rule for simplifying Exp[Log[expr]]. 

In[7]:= Exp[Log[y]]

Out[7]= y
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You can give your own rule for Exp[Log[expr]], overriding the built-in rule. 

In[8]:= ( Unprotect[Exp] ; Exp[Log[expr_]] := explog[expr] ; Protect[Exp] ; )

Now your rule is used, rather than the built-in one. 

In[9]:= Exp[Log[y]]

Out[9]= explog@yD

2.5.13 Advanced Topic: Manipulating Value Lists

DownValues@ f  D give the list of downvalues of  f  
UpValues@ f  D give the list of upvalues of  f  

DownValues@ f  D  =  rules set the downvalues of  f  
UpValues@ f  D  =  rules set the upvalues of  f  

Finding and setting values of symbols. 

Mathematica  effectively  stores  all  definitions  you  give  as  lists  of  transformation  rules.  When  a  particular  symbol  is
encountered, the lists of rules associated with it are tried. 

Under most circumstances, you do not need direct access to the actual transformation rules associated with definitions
you have given. Instead, you can simply use lhs = rhs and lhs =. to add and remove rules. In some cases, however, you
may find it useful to have direct access to the actual rules. 

Here is a definition for f. 

In[1]:= f[x_] := x^2

This gives the explicit rule corresponding to the definition you made for f. 

In[2]:= DownValues[f]

Out[2]= 8HoldPattern@f@x_DD x2<

Notice  that  the  rules  returned  by  DownValues  and  UpValues  are  set  up  so  that  neither  their  left-  nor  right-hand
sides  get  evaluated.  The  left-hand  sides  are  wrapped  in  HoldPattern,  and  the  rules  are  delayed,  so  that  the
right-hand sides are not immediately evaluated. 

As  discussed  in  Section  2.5.6,  Mathematica  tries  to  order  definitions  so  that  more  specific  ones  appear  before  more
general ones. In general, however, there is no unique way to make this ordering, and you may want to choose a differ-
ent ordering from the one that Mathematica chooses by default. You can do this by reordering the list of rules obtained
from DownValues or UpValues. 

Here are some definitions for the object g. 

In[3]:= g[x_ + y_] := gp[x, y] ; g[x_ y_] := gm[x, y]
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This shows the default ordering used for the definitions. 

In[4]:= DownValues[g]

Out[4]= 8HoldPattern@g@x_ + y_DD gp@x, yD, HoldPattern@g@x_ y_DD gm@x, yD<

This reverses the order of the definitions for g. 

In[5]:= DownValues[g] = Reverse[DownValues[g]]

Out[5]= 8HoldPattern@g@x_ y_DD gm@x, yD, HoldPattern@g@x_ + y_DD gp@x, yD<
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2.6 Evaluation of Expressions

2.6.1 Principles of Evaluation

The fundamental operation that Mathematica  performs is evaluation. Whenever you enter an expression, Mathematica
evaluates the expression, then returns the result. 

Evaluation in Mathematica works by applying a sequence of definitions. The definitions can either be ones you explic-
itly entered, or ones that are built into Mathematica. 

Thus,  for  example, Mathematica  evaluates the expression 6  +  7  using a built-in procedure for  adding integers.  Simi-
larly, Mathematica  evaluates the algebraic expression x - 3x + 1 using a built-in simplification procedure. If you had
made the definition x = 5, then Mathematica would use this definition to reduce x - 3x + 1 to -9. 

The two most central concepts in Mathematica  are probably expressions  and evaluation. Section 2.1 discussed how all
the  different  kinds  of  objects  that  Mathematica  handles  are  represented  in  a  uniform  way  using  expressions.  This
section describes how all the operations that Mathematica  can perform can also be viewed in a uniform way as exam-
ples of evaluation. 

Computation 5  +  6  ö   11 

Simplification x  −  3x  +  1  ö   1  −  2x 

Execution x  =  5  ö   5 

Some interpretations of evaluation. 

Mathematica  is an infinite evaluation  system. When you enter an expression,  Mathematica  will keep on using defini-
tions it knows until it gets a result to which no definitions apply. 

This defines x1 in terms of x2, and then defines x2. 

In[1]:= x1 = x2 + 2 ; x2 = 7

Out[1]= 7

If you ask for x1, Mathematica uses all the definitions it knows to give you a result. 

In[2]:= x1

Out[2]= 9

Here is a recursive definition in which the factorial function is defined in terms of itself. 

In[3]:= fac[1] = 1 ; fac[n_] := n fac[n-1]

If you ask for fac[10], Mathematica will keep on applying the definitions you have given until the result it gets no longer 
changes. 

In[4]:= fac[10]

Out[4]= 3628800

Printed from the Mathematica Help Browser 1

©1988-2003 Wolfram Research, Inc. All rights reserved.



When  Mathematica  has  used  all  the  definitions  it  knows,  it  gives  whatever  expression  it  has  obtained  as  the  result.
Sometimes the result may be an object such as a number. But usually the result is an expression in which some objects
are represented in a symbolic form. 

Mathematica uses its built-in definitions for simplifying sums, but knows no definitions for f[3], so leaves this in symbolic form. 

In[5]:= f[3] + 4f[3] + 1

Out[5]= 1 + 5 f@3D

Mathematica  follows the principle of applying definitions until the result it gets no longer changes. This means that if
you take the final result that Mathematica  gives, and enter it as Mathematica  input, you will get back the same result
again. (There are some subtle cases discussed in Section 2.6.13 in which this does not occur.) 

If you type in a result from Mathematica, you get back the same expression again. 

In[6]:= 1 + 5 f[3]

Out[6]= 1 + 5 f@3D

At any given time, Mathematica  can only use those definitions that it knows at that time. If you add more definitions
later, however, Mathematica will be able to use these. The results you get from Mathematica may change in this case. 

Here is a new definition for the function f. 

In[7]:= f[x_] = x^2

Out[7]= x2

With the new definition, the results you get can change. 

In[8]:= 1 + 5 f[3]

Out[8]= 46

The simplest examples of evaluation involve using definitions such as f[x_] = x^2 which transform one expression
directly  into  another.  But  evaluation  is  also  the  process  used  to  execute  programs written  in  Mathematica.  Thus,  for
example,  if  you  have  a  procedure  consisting  of  a  sequence  of  Mathematica  expressions,  some  perhaps  representing
conditionals and loops, the execution of this procedure corresponds to the evaluation of these expressions. Sometimes
the evaluation process may involve evaluating a particular expression several times, as in a loop. 

The expression Print[zzzz] is evaluated three times during the evaluation of the Do expression. 

In[9]:= Do[Print[zzzz], {3}]

zzzz

zzzz

zzzz

2.6.2 Reducing Expressions to Their Standard Form

The built-in functions in Mathematica operate in a wide variety of ways. But many of the mathematical functions share
an important approach: they are set up so as to reduce classes of mathematical expressions to standard forms. 
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The built-in definitions for the Plus function, for example, are set up to write any sum of terms in a standard unparen-
thesized form. The associativity of addition means that expressions like (a + b) + c, a + (b + c) and a + b + c are
all equivalent. But for many purposes it is convenient for all these forms to be reduced to the single standard form a +
b + c. The built-in definitions for Plus are set up to do this. 

Through the built-in definitions for Plus, this expression is reduced to a standard unparenthesized form. 

In[1]:= (a + b) + c

Out[1]= a + b + c

Whenever  Mathematica  knows  that  a  function  is  associative,  it  tries  to  remove parentheses  (or  nested  invocations  of
the function) to get the function into a standard “flattened”  form.  

A function like addition is not only associative, but also commutative, which means that expressions like a + c + b and
a  +  b  +  c  with  terms in  different  orders  are  equal.  Once  again,  Mathematica  tries  to  put  all  such expressions  into a
“standard”  form. The standard form it chooses is the one in which all the terms are in a definite order, corresponding
roughly to alphabetical order.  

Mathematica sorts the terms in this sum into a standard order.  

In[2]:= c + a + b

Out[2]= a + b + c

flat HassociativeL f  @ f  @ a,  b D,  c D is equivalent to  f  @ a,  b,  c D , etc.
orderless HcommutativeL f  @ b,  a D is equivalent to  f  @ a,  b D , etc.

Two important properties that Mathematica uses in reducing certain functions to standard form.

There are several reasons to try to put expressions into standard forms. The most important is that if two expressions
are really in standard form, it is obvious whether or not they are equal.  

When the two sums are put into standard order, they are immediately seen to be equal, so that two f's cancel, leaving the result 0. 

In[3]:= f[a + c + b] - f[c + a + b]

Out[3]= 0

You could imagine finding out whether a + c + b was equal to c + a + b by testing all possible orderings of each sum.
It is clear that simply reducing both sums to standard form is a much more efficient procedure. 

One  might  think  that  Mathematica  should  somehow  automatically  reduce  all  mathematical  expressions  to  a  single
standard canonical form. With all but the simplest kinds of expressions, however, it is quite easy to see that you do not
want the same standard form for all purposes. 

For polynomials, for  example, there are two obvious standard forms, which are good for different purposes.  The first
standard  form  for  a  polynomial  is  a  simple  sum  of  terms,  as  would  be  generated  in  Mathematica  by  applying  the
function Expand. This standard form is most appropriate if you need to add and subtract polynomials. 

There  is,  however,  another  possible  standard  form that  you  can  use  for  polynomials.  By applying  Factor,  you can
write any polynomial as a product of irreducible factors. This canonical form is useful if you want to do operations like
division. 

Expanded and factored forms are in a sense both equally good standard forms for polynomials. Which one you decide
to use simply depends on what you want to use it for. As a result, Mathematica does not automatically put polynomials
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into one of these two forms. Instead, it gives you functions like Expand and Factor that allow you explicitly to put
polynomials in whatever form you want. 

Here is a list of two polynomials that are mathematically equal. 

In[4]:= t = {x^2 - 1, (x + 1)(x - 1)}

Out[4]= 8−1 + x2, H−1 + xL H1 + xL<

You can write both of them in expanded form just by applying Expand. In this form, the equality of the polynomials is obvious. 

In[5]:= Expand[t]

Out[5]= 8−1 + x2, −1 + x2<

You can also see that the polynomials are equal by writing them both in factored form. 

In[6]:= Factor[t]

Out[6]= 8H−1 + xL H1 + xL, H−1 + xL H1 + xL<

Although  it  is  clear  that  you  do  not  always  want  expressions  reduced  to  the  same  standard  form,  you  may  wonder
whether it is at least possible to reduce all expressions to some standard form. 

There is a basic result in the mathematical theory of computation which shows that this is, in fact, not always possible.
You cannot guarantee that any finite sequence of transformations will take any two arbitrarily chosen expressions to a
standard form.  

In  a  sense,  this  is  not  particularly  surprising.  If  you  could  in  fact  reduce  all  mathematical  expressions  to  a  standard
form, then it would be quite easy to tell whether any two expressions were equal. The fact that so many of the difficult
problems of mathematics can be stated as questions about the equality of expressions suggests that this can in fact be
difficult. 

2.6.3 Attributes

Definitions  such  as  f[x_]  =  x^2  specify  values  for  functions.  Sometimes,  however,  you  need  to  specify  general
properties of functions, without necessarily giving explicit values. 

Mathematica provides a selection of attributes that you can use to specify various properties of functions. For example,
you can use the attribute Flat to specify that a particular function is “flat”,  so that nested invocations are automati-
cally flattened, and it behaves as if it were associative. 

This assigns the attribute Flat to the function f. 

In[1]:= SetAttributes[f, Flat]

Now f behaves as a flat, or associative, function, so that nested invocations are automatically flattened. 

In[2]:= f[f[a, b], c]

Out[2]= f@a, b, cD

Attributes like Flat  can affect not only evaluation, but also operations such as pattern matching. If you give defini-
tions or transformation rules for a function, you must be sure to have specified the attributes of the function first. 
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Here is a definition for the flat function f. 

In[3]:= f[x_, x_] := f[x]

Because f is flat, the definition is automatically applied to every subsequence of arguments. 

In[4]:= f[a, a, a, b, b, b, c, c]

Out[4]= f@a, b, cD

Attributes@ f  D give the attributes of  f  
Attributes@ f  
D  =  8  attr1,  attr2, … <  

set the attributes of  f  

Attributes@ f  D  =  8  <  set  f  to have no attributes
SetAttributes@ f ,  attr D add  attr to the attributes of  f  

ClearAttributes@ f ,  attr D remove  attr from the attributes of  f  

Manipulating attributes of symbols. 

This shows the attributes assigned to f. 

In[5]:= Attributes[f]

Out[5]= 8Flat<

This removes the attributes assigned to f. 

In[6]:= Attributes[f] = { }

Out[6]= 8<
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Orderless orderless, commutative function H
arguments are sorted into standard orderL

Flat flat, associative function Harguments are flattened out L
OneIdentity f  @ f  @ a DD , etc. are equivalent to  a for pattern matching

Listable f  is automatically threaded
over lists that appear as arguments He.g.,  
f  @ 8  a,b <  D becomes  8  f  @ a D,  f  @ b D <  L

Constant all derivatives of  f  are zero
NumericFunction f  is assumed to have a numerical

value when its arguments are numeric quantities
Protected values of  f  cannot be changed

Locked attributes of  f  cannot be changed
ReadProtected values of  f  cannot be read

HoldFirst the first argument of  f  is not evaluated
HoldRest all but the first argument of  f  is not evaluated
HoldAll none of the arguments of  f  are evaluated

HoldAllComplete the arguments of  f  are treated as completely inert
NHoldFirst the first argument of  f  is not affected by  N 

NHoldRest all but the first argument of  f  is not affected by  N 

NHoldAll none of the arguments of  f  are affected by  N
SequenceHold Sequence objects appearing in the arguments of  

f  are not flattened out
Temporary f  is a local variable, removed when no longer used

Stub Needs is automatically called if  f  is ever explicitly input

The complete list of attributes for symbols in Mathematica. 

Here are the attributes for the built-in function Plus. 

In[7]:= Attributes[Plus]

Out[7]= 8Flat, Listable, NumericFunction, OneIdentity, Orderless, Protected<

An  important  attribute  assigned  to  built-in  mathematical  functions  in  Mathematica  is  the  attribute  Listable.  This
attribute specifies that a function should automatically be distributed or “threaded”  over lists that appear as its argu-
ments.  This  means that  the  function  effectively gets  applied separately  to  each element in  any lists  that  appear  as  its
arguments. 

The built-in Log function is Listable. 

In[8]:= Log[{5, 8, 11}]

Out[8]= 8Log@5D, Log@8D, Log@11D<

This defines the function p to be listable. 

In[9]:= SetAttributes[p, Listable]
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Now p is automatically threaded over lists that appear as its arguments. 

In[10]:= p[{a, b, c}, d]

Out[10]= 8p@a, dD, p@b, dD, p@c, dD<

Many  of  the  attributes  you  can  assign  to  functions  in  Mathematica  directly  affect  the  evaluation  of  those  functions.
Some attributes, however, affect only other aspects of the treatment of functions. For example, the attribute OneIden
tity affects only pattern matching, as discussed in Section 2.3.7. Similarly, the attribute Constant is only relevant
in differentiation, and operations that rely on differentiation. 

The  Protected  attribute  affects  assignments.  Mathematica  does  not  allow  you  to  make  any  definition  associated
with a symbol that carries this attribute. The functions Protect and Unprotect discussed in Section 2.5.12 can be
used  as  alternatives  to  SetAttributes  and  ClearAttributes  to  set  and  clear  this  attribute.  As  discussed  in
Section 2.5.12 most built-in Mathematica objects are initially protected so that you do not make definitions for them by
mistake. 

Here is a definition for the function g. 

In[11]:= g[x_] = x + 1

Out[11]= 1 + x

This sets the Protected attribute for g. 

In[12]:= Protect[g]

Out[12]= 8g<

Now you cannot modify the definition of g. 

In[13]:= g[x_] = x

Set::write :  Tag g in g@x_D is Protected.

Out[13]= x

You can usually see the definitions you have made for a particular symbol by typing ?f, or by using a variety of built-in
Mathematica  functions. However, if you set the attribute ReadProtected, Mathematica  will not allow you to look
at the definition of a particular symbol. It will nevertheless continue to use the definitions in performing evaluation. 

Although you cannot modify it, you can still look at the definition of g. 

In[14]:= ?g

Global`g

Attributes@gD = 8Protected<

g@x_D = 1 + x

This sets the ReadProtected attribute for g. 

In[15]:= SetAttributes[g, ReadProtected]
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Now you can no longer read the definition of g. 

In[16]:= ?g

Global`g

Attributes@gD = 8Protected, ReadProtected<

Functions like SetAttributes and ClearAttributes usually allow you to modify the attributes of a symbol in
any way. However, if you once set the Locked attribute on a symbol, then Mathematica will not allow you to modify
the attributes of that symbol for the remainder of your Mathematica session. Using the Locked attribute in addition to
Protected or ReadProtected, you can arrange for it to be impossible for users to modify or read definitions. 

Clear@ f  D remove values for  f  , but not attributes
ClearAll@ f  D remove both values and attributes of  f  

Clearing values and attributes. 

This clears values and attributes of p which was given attribute Listable above. 

In[17]:= ClearAll[p]

Now p is no longer listable. 

In[18]:= p[{a, b, c}, d]

Out[18]= p@8a, b, c<, dD

By defining  attributes  for  a  function  you  specify  properties  that  Mathematica  should  assume whenever  that  function
appears.  Often,  however,  you want  to  assume the  properties  only  in  a  particular  instance.  In  such  cases,  you will  be
better off not to use attributes, but instead to call a particular function to implement the transformation associated with
the attributes. 

By explicitly calling Thread, you can implement the transformation that would be done automatically if p were listable. 

In[19]:= Thread[p[{a, b, c}, d]]

Out[19]= 8p@a, dD, p@b, dD, p@c, dD<

Orderless Sort@ f  @ args DD 

Flat Flatten@ f  @ args DD 

Listable Thread@ f  @ args DD 

Constant Dt@ expr,  Constants−> f  D 

Functions that perform transformations associated with some attributes. 

Attributes  in  Mathematica  can  only  be  permanently  defined  for  single  symbols.  However,  Mathematica  also  allows
you to set up pure functions which behave as if they carry attributes. 

Function@ vars,  body,  8  attr1, … <  D a pure function with attributes  attr1  , …

Pure functions with attributes. 
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This pure function applies p to the whole list. 

In[20]:= Function[{x}, p[x]] [{a, b, c}]

Out[20]= p@8a, b, c<D

By adding the attribute Listable, the function gets distributed over the elements of the list before applying p. 

In[21]:= Function[{x}, p[x], {Listable}] [{a, b, c}]

Out[21]= 8p@aD, p@bD, p@cD<

2.6.4 The Standard Evaluation Procedure

This section describes the standard procedure used by Mathematica  to evaluate expressions. This procedure is the one
followed for most kinds of expressions. There are however some kinds of expressions, such as those used to represent
Mathematica  programs  and  control  structures,  which  are  evaluated  in  a  non-standard  way.  The  treatment  of  such
expressions is discussed in the sections that follow this one. 

In the standard  evaluation procedure,  Mathematica  first  evaluates the head of  an expression,  and then evaluates each
element  of  the  expressions.  These  elements  are  in  general  themselves  expressions,  to  which  the  same  evaluation
procedure is recursively applied. 

The three Print functions are evaluated in turn, each printing its argument, then returning the value Null. 

In[1]:= {Print[1], Print[2], Print[3]}

1

2

3

Out[1]= 8Null, Null, Null<

This assigns the symbol ps to be Plus. 

In[2]:= ps = Plus

Out[2]= Plus

The head ps is evaluated first, so this expression behaves just like a sum of terms. 

In[3]:= ps[ps[a, b], c]

Out[3]= a + b + c

As  soon  as  Mathematica  has  evaluated  the  head  of  an  expression,  it  sees  whether  the  head  is  a  symbol  that  has
attributes.  If  the symbol has  the  attributes  Orderless,  Flat  or  Listable,  then  immediately after  evaluating  the
elements of the expression Mathematica performs the transformations associated with these attributes. 

The next step in the standard evaluation procedure is to use definitions that Mathematica knows for the expression it is
evaluating.  Mathematica  first  tries  to  use  definitions  that  you  have  made,  and  if  there  are  none  that  apply,  it  tries
built-in definitions. 
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If  Mathematica  finds  a  definition  that  applies,  it  performs  the  corresponding  transformation  on  the  expression.  The
result is another expression, which must then in turn be evaluated according to the standard evaluation procedure. 

† Evaluate the head of the expression.
† Evaluate each element in turn.
† Apply transformations associated with the attributes  Orderless ,  Listable and  Flat .
† Apply any definitions that you have given.
† Apply any built-in definitions.
† Evaluate the result.

The standard evaluation procedure. 

As  discussed  in  Section  2.6.1,  Mathematica  follows  the  principle  that  each  expression  is  evaluated  until  no  further
definitions  apply.  This  means  that  Mathematica  must  continue  re-evaluating  results  until  it  gets  an  expression  which
remains unchanged through the evaluation procedure. 

Here is an example that shows how the standard evaluation procedure works on a simple expression. We assume that a
= 7. 

2  a  x  +  a^2  +  1 here is the original expression
Plus@Times@2,  a, 

 xD,  Power@a,  2D,  1D 

this is the internal form

Times@2,  a,  xD this is evaluated first
Times@2,  7,  xD a is evaluated to give  7 

Times@14,  xD built-in definitions for  Times give this result
Power@a,  2D this is evaluated next
Power@7,  2D here is the result after evaluating  a 

49 built-in definitions for  Power give this result
Plus@Times@14,  xD,  49,  1D here is the result after the arguments of  

Plus have been evaluated
Plus@50,  Times@14,  xDD built-in definitions for  Plus give this result

50  +  14  x the result is printed like this

A simple example of evaluation in Mathematica. 

Mathematica  provides  various  ways  to  “trace”  the  evaluation  process,  as  discussed  in  Section  2.6.11.  The  function
Trace[expr]  gives  a  nested  list  showing  each  subexpression  generated  during  evaluation.  (Note  that  the  standard
evaluation traverses the expression tree in a depth-first way, so that the smallest subparts of the expression appear first
in the results of Trace.) 

First set a to 7. 

In[4]:= a = 7

Out[4]= 7

This gives a nested list of all the subexpressions generated during the evaluation of the expression. 

In[5]:= Trace[2 a x + a^2 + 1]

Out[5]= 888a, 7<, 2 7 x, 14 x<, 88a, 7<, 72, 49<, 14 x + 49 + 1, 50 + 14 x<
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The order in which Mathematica  applies different kinds of definitions is important. The fact that Mathematica  applies
definitions you have given before it applies built-in definitions means that you can give definitions which override the
built-in ones, as discussed in Section 2.5.12. 

This expression is evaluated using the built-in definition for ArcSin. 

In[6]:= ArcSin[1]

Out[6]= 
π
2

You can give your own definitions for ArcSin. You need to remove the protection attribute first. 

In[7]:= Unprotect[ArcSin]; ArcSin[1] = 5Pi/2;

Your definition is used before the one that is built in. 

In[8]:= ArcSin[1]

Out[8]= 
5 π
2

As discussed in Section 2.5.10, you can associate definitions with symbols either as upvalues or downvalues. Mathemat-
ica always tries upvalue definitions before downvalue ones. 

If  you  have  an  expression  like  f[g[x]],  there  are  in  general  two  sets  of  definitions  that  could  apply:  downvalues
associated  with  f,  and  upvalues  associated  with  g.  Mathematica  tries  the  definitions  associated  with  g  before  those
associated with f. 

This ordering follows the general strategy of trying specific definitions before more general ones. By applying upval-
ues  associated  with  arguments  before  applying  downvalues  associated  with  a  function,  Mathematica  allows  you  to
make definitions for special arguments which override the general definitions for the function with any arguments. 

This defines a rule for f[g[x_]], to be associated with f. 

In[9]:= f/: f[g[x_]] := frule[x]

This defines a rule for f[g[x_]], to be associated with g. 

In[10]:= g/: f[g[x_]] := grule[x]

The rule associated with g is tried before the rule associated with f. 

In[11]:= f[g[2]]

Out[11]= grule@2D

If you remove rules associated with g, the rule associated with f is used. 

In[12]:= Clear[g] ; f[g[1]]

Out[12]= frule@1D

† Definitions associated with  g are applied before definitions associated with  f  in the expression  f  @ g @ x DD .

The order in which definitions are applied. 
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Most functions such as Plus  that are built  into Mathematica  have downvalues.  There are,  however,  some objects in
Mathematica  which  have  built-in  upvalues.  For  example,  SeriesData  objects,  which  represent  power  series,  have
built-in upvalues with respect to various mathematical operations. 

For  an expression like f[g[x]],  the complete sequence of  definitions  that  are tried in the standard evaluation proce-
dure is: 

† Definitions you have given associated with g;  

† Built-in definitions associated with g;  

† Definitions you have given associated with f;  

† Built-in definitions associated with f.  

The fact that upvalues are used before downvalues is important in many situations. In a typical case, you might want to
define  an  operation  such  as  composition.  If  you give  upvalues  for  various  objects  with  respect  to  composition,  these
upvalues will be used whenever such objects appear. However, you can also give a general procedure for composition,
to be used if no special objects are present. You can give this procedure as a downvalue for composition. Since downval-
ues are tried after upvalues, the general procedure will be used only if no objects with upvalues are present. 

Here is a definition associated with q for composition of “ q objects”.  

In[13]:= q/: comp[q[x_], q[y_]] := qcomp[x, y]

Here is a general rule for composition, associated with comp. 

In[14]:= comp[f_[x_], f_[y_]] := gencomp[f, x, y]

If you compose two q objects, the rule associated with q is used. 

In[15]:= comp[q[1], q[2]]

Out[15]= qcomp@1, 2D

If you compose r objects, the general rule associated with comp is used. 

In[16]:= comp[r[1], r[2]]

Out[16]= gencomp@r, 1, 2D

In  general,  there  can  be  several  objects  that  have  upvalues  in  a  particular  expression.  Mathematica  first  looks  at  the
head  of  the  expression,  and  tries  any  upvalues  associated  with  it.  Then  it  successively  looks  at  each  element  of  the
expression,  trying  any  upvalues  that  exist.  Mathematica  performs  this  procedure  first  for  upvalues  that  you  have
explicitly defined, and then for upvalues that are built in. The procedure means that in a sequence of elements, upval-
ues associated with earlier elements take precedence over those associated with later elements. 

This defines an upvalue for p with respect to c. 

In[17]:= p/: c[l___, p[x_], r___] := cp[x, {l, r}]

This defines an upvalue for q. 

In[18]:= q/: c[l___, q[x_], r___] := cq[x, {l, r}]
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Which upvalue is used depends on which occurs first in the sequence of arguments to c. 

In[19]:= {c[p[1], q[2]], c[q[1], p[2]]}

Out[19]= 8cp@1, 8q@2D<D, cq@1, 8p@2D<D<

2.6.5 Non-Standard Evaluation

While most built-in Mathematica  functions follow the standard evaluation procedure, some important ones do not. For
example,  most  of  the  Mathematica  functions  associated  with  the  construction  and  execution  of  programs  use
non-standard evaluation procedures. In typical cases, the functions either never evaluate some of their arguments, or do
so in a special way under their own control. 

x  =  y do not evaluate the left-hand side
If@ p,  a,  b D evaluate  a if  p is  True , and  b if it is  False 

Do@ expr,  8  n <  D evaluate  expr  n times
Plot@ f ,  8  x, … <  D evaluate  f  with a sequence of numerical values for  x 

Function@ 8  x <,  body D do not evaluate until the function is applied

Some functions that use non-standard evaluation procedures. 

When you give a definition such as a = 1, Mathematica does not evaluate the a that appears on the left-hand side. You
can see  that  there  would  be  trouble  if  the  a  was  evaluated.  The  reason  is  that  if  you  had  previously  set  a  =  7,  then
evaluating a in the definition a = 1 would put the definition into the nonsensical form 7 = 1. 

In the standard evaluation procedure, each argument of a function is evaluated in turn. This is prevented by setting the
attributes HoldFirst, HoldRest and HoldAll. These attributes make Mathematica  “hold”  particular arguments
in an unevaluated form.     

HoldFirst do not evaluate the first argument
HoldRest evaluate only the first argument
HoldAll evaluate none of the arguments

Attributes for holding function arguments in unevaluated form. 

With the standard evaluation procedure, all arguments to a function are evaluated. 

In[1]:= f[1 + 1, 2 + 4]

Out[1]= f@2, 6D

This assigns the attribute HoldFirst to h. 

In[2]:= SetAttributes[h, HoldFirst]

The first argument to h is now held in an unevaluated form. 

In[3]:= h[1 + 1, 2 + 4]

Out[3]= h@1 + 1, 6D
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When you use the first argument to h like this, it will get evaluated. 

In[4]:= h[1 + 1, 2 + 4] /. h[x_, y_] -> x^y

Out[4]= 64

Built-in functions like Set carry attributes such as HoldFirst. 

In[5]:= Attributes[Set]

Out[5]= 8HoldFirst, Protected, SequenceHold<

Even though a function may have attributes which specify that it should hold certain arguments unevaluated, you can
always explicitly tell Mathematica to evaluate those arguments by giving the arguments in the form Evaluate[arg]. 

Evaluate effectively overrides the HoldFirst attribute, and causes the first argument to be evaluated. 

In[6]:= h[Evaluate[1 + 1], 2 + 4]

Out[6]= h@2, 6D

f  @Evaluate@ arg DD evaluate  arg immediately, even though attributes of  
f  may specify that it should be held

Forcing the evaluation of function arguments. 

By holding its arguments, a function can control when those arguments are evaluated. By using Evaluate,  you can
force  the  arguments  to  be  evaluated  immediately, rather  than being  evaluated  under  the  control  of  the  function.  This
capability is useful in a number of circumstances. 

One example discussed in Section 1.9.1 occurs when plotting graphs of expressions. The Mathematica  Plot function
holds unevaluated the expression you are going to plot, then evaluates it at a sequence of numerical positions. In some
cases, you may instead want to evaluate the expression immediately, and have Plot work with the evaluated form. For
example,  if  you  want  to  plot  a  list  of  functions  generated  by Table,  then  you will  want  the  Table  operation  done
immediately, rather than being done every time a point is to be plotted. 
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Evaluate causes the list of functions to be constructed immediately, rather than being constructed at each value of x chosen by 
Plot. 

In[7]:= Plot[ Evaluate[Table[Sin[n x], {n, 1, 3}]], {x, 0, 2Pi} ]

1 2 3 4 5 6

-1

-0.5

0.5

1

Out[7]=  Graphics 

There are a number of built-in Mathematica  functions which,  like Plot,  are set up to hold some of their arguments.
You can always override this behavior using Evaluate. 

The Mathematica Set function holds its first argument, so the symbol a is not evaluated in this case. 

In[8]:= a = b

Out[8]= b

You can make Set evaluate its first argument using Evaluate. In this case, the result is the object which is the value of a, 
namely b is set to 6. 

In[9]:= Evaluate[a] = 6

Out[9]= 6

b has now been set to 6. 

In[10]:= b

Out[10]= 6

In most cases, you want all expressions you give to Mathematica to be evaluated. Sometimes, however, you may want
to  prevent  the  evaluation  of  certain  expressions.  For  example,  if  you  want  to  manipulate  pieces  of  a  Mathematica
program symbolically, then you must prevent those pieces from being evaluated while you are manipulating them. 

You  can  use  the  functions  Hold  and  HoldForm  to  keep  expressions  unevaluated.  These  functions  work  simply by
carrying  the  attribute  HoldAll,  which  prevents  their  arguments  from  being  evaluated.  The  functions  provide
“wrappers”  inside which expressions remain unevaluated. 

The difference between Hold[expr] and HoldForm[expr]  is that in standard Mathematica  output format, Hold is
printed  explicitly,  while  HoldForm  is  not.  If  you  look  at  the  full  internal  Mathematica  form,  you  can  however  see
both functions. 
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Hold maintains expressions in an unevaluated form. 

In[11]:= Hold[1 + 1]

Out[11]= Hold@1 + 1D

HoldForm also keeps expressions unevaluated, but is invisible in standard Mathematica output format. 

In[12]:= HoldForm[1 + 1]

Out[12]= 1 + 1

HoldForm is still present internally. 

In[13]:= FullForm[%]

Out[13]//FullForm= 

HoldForm@Plus@1, 1DD

The function ReleaseHold removes Hold and HoldForm, so the expressions they contain get evaluated. 

In[14]:= ReleaseHold[%]

Out[14]= 2

Hold@ expr D keep  expr unevaluated
HoldComplete@ expr D keep  expr unevaluated and prevent upvalues associated with  

expr from being used
HoldForm@ expr D keep  expr unevaluated, and print without  HoldForm 

ReleaseHold@ expr D remove  Hold and  HoldForm in  expr 
Extract@ expr,  index,  HoldD get a part of  expr , wrapping it with  Hold to prevent evaluation

ReplacePart@ expr,  
Hold@ value D,  index,  1D 

replace part of  expr , extracting  value without evaluating it

Functions for handling unevaluated expressions. 

Parts of expressions are usually evaluated as soon as you extract them. 

In[15]:= Extract[ Hold[1 + 1, 2 + 3], 2]

Out[15]= 5

This extracts a part and immediately wraps it with Hold, so it does not get evaluated. 

In[16]:= Extract[ Hold[1 + 1, 2 + 3], 2, Hold]

Out[16]= Hold@2 + 3D

The last argument of 1 tells ReplacePart to extract the first part of Hold[7 + 8] before inserting it. 

In[17]:= ReplacePart[ Hold[1 + 1, 2 + 3], Hold[7 + 8], 2, 1]

Out[17]= Hold@1 + 1, 7 + 8D
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f  @ … ,  Unevaluated@ expr D, … D give  expr unevaluated as an argument to  f  

Temporary prevention of argument evaluation. 

1 + 1 evaluates to 2, and Length[2] gives 0. 

In[18]:= Length[1 + 1]

Out[18]= 0

This gives the unevaluated form 1 + 1 as the argument of Length. 

In[19]:= Length[Unevaluated[1 + 1]]

Out[19]= 2

Unevaluated[expr]  effectively  works  by  temporarily  giving  a  function  an  attribute  like  HoldFirst,  and  then
supplying expr as an argument to the function. 

SequenceHold do not flatten out  Sequence objects that appear as arguments
HoldAllComplete treat all arguments as completely inert

Attributes for preventing other aspects of evaluation. 

By setting the attribute HoldAll, you can prevent Mathematica from evaluating the arguments of a function. But even
with this attribute set, Mathematica  will still do some transformations on the arguments. By setting SequenceHold
you can prevent it from flattening out Sequence objects that appear in the arguments. And by setting HoldAllCom
plete  you  can  also  inhibit  the  stripping  of  Unevaluated,  and  prevent  Mathematica  from  using  any  upvalues  it
finds associated with the arguments.    

2.6.6 Evaluation in Patterns, Rules and Definitions

There  are  a  number  of  important  interactions  in  Mathematica  between  evaluation  and  pattern  matching.  The  first
observation is that pattern matching is usually done on expressions that have already been at least partly evaluated. As
a result, it is usually appropriate that the patterns to which these expressions are matched should themselves be evalu-
ated. 

The fact that the pattern is evaluated means that it matches the expression given. 

In[1]:= f[k^2] /. f[x_^(1 + 1)] -> p[x]

Out[1]= p@kD

The right-hand side of the /; condition is not evaluated until it is used during pattern matching. 

In[2]:= f[{a, b}] /. f[list_ /; Length[list] > 1] -> list^2

Out[2]= 8a2, b2<

There are some cases, however,  where you may want to keep all or part of a pattern unevaluated. You can do this by
wrapping  the  parts  you  do  not  want  to  evaluate  with  HoldPattern.  In  general,  whenever  HoldPattern[patt]
appears within a pattern, this form is taken to be equivalent to patt for the purpose of pattern matching, but the expres-
sion patt is maintained unevaluated. 
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HoldPattern@ patt D equivalent to  patt 
for pattern matching, with  patt kept unevaluated

Preventing evaluation in patterns. 

One application for  HoldPattern  is  in  specifying patterns which can apply to unevaluated expressions,  or  expres-
sions held in an unevaluated form. 

HoldPattern keeps the 1 + 1 from being evaluated, and allows it to match the 1 + 1 on the left-hand side of the /. operator. 

In[3]:= Hold[u[1 + 1]] /. HoldPattern[1 + 1] -> x

Out[3]= Hold@u@xDD

Notice that while functions like Hold prevent evaluation of expressions, they do not affect the manipulation of parts of
those expressions with /. and other operators. 

This defines values for r whenever its argument is not an atomic object. 

In[4]:= r[x_] := x^2 /; !AtomQ[x]

According to the definition, expressions like r[3] are left unchanged. 

In[5]:= r[3]

Out[5]= r@3D

However, the pattern r[x_] is transformed according to the definition for r. 

In[6]:= r[x_]

Out[6]= x_2

You need to wrap HoldPattern around r[x_] to prevent it from being evaluated. 

In[7]:= {r[3], r[5]} /. HoldPattern[r[x_]] -> x

Out[7]= 83, 5<

As illustrated above, the left-hand sides of transformation rules such as lhs -> rhs  are usually evaluated immediately,
since the rules are usually applied to expressions which have already been evaluated. The right-hand side of lhs -> rhs
is also evaluated immediately. With the delayed rule lhs :> rhs, however, the expression rhs is not evaluated. 

The right-hand side is evaluated immediately in -> but not :> rules. 

In[8]:= {{x -> 1 + 1}, {x :> 1 + 1}}

Out[8]= 88x → 2<, 8x 1 + 1<<

Here are the results of applying the rules. The right-hand side of the :> rule gets inserted inside the Hold without evaluation. 

In[9]:= {x^2, Hold[x]} /. %

Out[9]= 884, Hold@2D<, 84, Hold@1 + 1D<<
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lhs  −>  rhs evaluate both  lhs and  rhs 
lhs  :>  rhs evaluate  lhs but not  rhs 

Evaluation in transformation rules. 

While  the  left-hand  sides  of  transformation  rules  are  usually  evaluated,  the  left-hand  sides  of  definitions  are  usually
not. The reason for the difference is as follows. Transformation rules are typically applied using /. to expressions that
have  already been  evaluated.  Definitions,  however,  are  used  during  the  evaluation  of  expressions,  and  are  applied  to
expressions  that  have not  yet  been completely evaluated.  To work  on  such expressions,  the left-hand sides of  defini-
tions must be maintained in a form that is at least partially unevaluated. 

Definitions for symbols are the simplest case. As discussed in the previous section, a symbol on the left-hand side of a
definition such as x = value is not evaluated. If x had previously been assigned a value y, then if the left-hand side of x
= value were evaluated, it would turn into the quite unrelated definition y = value. 

Here is a definition. The symbol on the left-hand side is not evaluated. 

In[10]:= k = w[3]

Out[10]= w@3D

This redefines the symbol. 

In[11]:= k = w[4]

Out[11]= w@4D

If you evaluate the left-hand side, then you define not the symbol k, but the value w[4] of the symbol k. 

In[12]:= Evaluate[k] = w[5]

Out[12]= w@5D

Now w[4] has value w[5]. 

In[13]:= w[4]

Out[13]= w@5D

Although  individual  symbols  that  appear  on  the  left-hand  sides  of  definitions  are  not  evaluated,  more  complicated
expressions are partially evaluated. In an expression such as f[args] on the left-hand side of a definition, the args are
evaluated. 

The 1 + 1 is evaluated, so that a value is defined for g[2]. 

In[14]:= g[1 + 1] = 5

Out[14]= 5

This shows the value defined for g. 

In[15]:= ?g

Global`g

g@2D = 5
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You can see why the arguments of  a function that  appears  on the left-hand side of  a definition must be evaluated by
considering  how  the  definition  is  used  during  the  evaluation  of  an  expression.  As  discussed  in  Section  2.6.1,  when
Mathematica evaluates a function, it first evaluates each of the arguments, then tries to find definitions for the function.
As a result, by the time Mathematica  applies any definition you have given for a function, the arguments of the func-
tion must already have been evaluated. An exception to this occurs when the function in question has attributes which
specify that it should hold some of its arguments unevaluated. 

symbol  =  value symbol is not evaluated;  value is evaluated
symbol  :=  value neither  symbol nor  value is evaluated

f  @ args D  =  value args are evaluated; left-hand side as a whole is not
f  @HoldPattern@ arg DD  =  value f  @ arg D is assigned, without evaluating  arg 

Evaluate@ lhs D  =  value left-hand side is evaluated completely

Evaluation in definitions. 

While in most cases it is appropriate for the arguments of a function that appears on the left-hand side of a definition to
be evaluated, there are some situations in which you do not want this to happen. In such cases, you can wrap HoldPat
tern around the parts that you do not want to be evaluated. 

2.6.7 Evaluation in Iteration Functions

The built-in Mathematica  iteration functions  such as  Table  and Sum,  as  well  as  Plot  and  Plot3D,  evaluate their
arguments in a slightly special way. 

When evaluating an expression like Table[f, 8 i, imax<], the first step, as discussed in Section 2.7.6, is to make the
value  of  i  local.  Next,  the  limit  imax  in  the  iterator  specification  is  evaluated.  The  expression  f  is  maintained  in  an
unevaluated  form,  but  is  repeatedly  evaluated  as  a  succession  of  values  are  assigned  to  i.  When  this  is  finished,  the
global value of i is restored. 

The function Random[ ] is evaluated four separate times here, so four different pseudorandom numbers are generated. 

In[1]:= Table[Random[ ], {4}]

Out[1]= 80.0560708, 0.6303, 0.359894, 0.871377<

This evaluates Random[ ] before feeding it to Table. The result is a list of four identical numbers. 

In[2]:= Table[ Evaluate[Random[ ]], {4} ]

Out[2]= 80.858645, 0.858645, 0.858645, 0.858645<

In  most cases,  it  is  convenient  for  the function  f  in  an expression  like  Table[f,  8 i,  imax<]  to  be  maintained in an
unevaluated form until specific values have been assigned to i. This is true in particular if a complete symbolic form for
f valid for any i cannot be found. 

This defines fac to give the factorial when it has an integer argument, and to give NaN (standing for “Not  a Number”)  otherwise. 

In[3]:= fac[n_Integer] := n! ; fac[x_] := NaN
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In this form, fac[i] is not evaluated until an explicit integer value has been assigned to i. 

In[4]:= Table[fac[i], {i, 5}]

Out[4]= 81, 2, 6, 24, 120<

Using Evaluate forces fac[i] to be evaluated with i left as a symbolic object. 

In[5]:= Table[Evaluate[fac[i]], {i, 5}]

Out[5]= 8NaN, NaN, NaN, NaN, NaN<

In cases  where  a  complete symbolic form for  f  with  arbitrary i  in  expressions  such as Table[f,  8 i,  imax<]  can  be
found, it is often more efficient to compute this form first, and then feed it to Table. You can do this using Table[
Evaluate[f], 8 i, imax<]. 

The Sum in this case is evaluated separately for each value of i. 

In[6]:= Table[Sum[i^k, {k, 4}], {i, 8}]

Out[6]= 84, 30, 120, 340, 780, 1554, 2800, 4680<

It is however possible to get a symbolic formula for the sum, valid for any value of i. 

In[7]:= Sum[i^k, {k, 4}]

Out[7]= i + i2 + i3 + i4

By inserting Evaluate, you tell Mathematica first to evaluate the sum symbolically, then to iterate over i. 

In[8]:= Table[Evaluate[Sum[i^k, {k, 4}]], {i, 8}]

Out[8]= 84, 30, 120, 340, 780, 1554, 2800, 4680<

Table@ f ,  8  i,  imax <  D keep  f  unevaluated until specific values are assigned to  i 
Table@Evaluate@ f  D,  8  i,  imax <  D evaluate  f  first with  i left symbolic

Evaluation in iteration functions. 

As  discussed  in  Section 1.9.1,  it  is  convenient  to  use  Evaluate  when  you  plot  a  graph  of  a  function  or  a  list  of
functions. This causes the symbolic form of the function or list to be found first, before the iteration begins. 

2.6.8 Conditionals

Mathematica  provides various ways to set up conditionals,  which specify that particular expressions should be evalu-
ated only if certain conditions hold. 
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lhs  :=  rhs  ê;  test use the definition only if  test evaluates to  True 

If@ test,  then,  else D evaluate  then if  test is  True , and  else if it is  False 

Which@ test1,  value1,  test2, … D evaluate the  testi  
in turn, giving the value associated with the first one that is  
True 

Switch@ expr,  form1,
 value1,  form2, … D 

compare  expr with each of the  formi  ,
giving the value associated with the first form it matches

Switch@ expr,  form1,  

value1,  form2, … ,  _,  def  D 

use  def  as a default value

Conditional constructs. 

The test gives False, so the “ else”  expression y is returned. 

In[1]:= If[7 > 8, x, y]

Out[1]= y

Only the “ else”  expression is evaluated in this case. 

In[2]:= If[7 > 8, Print[x], Print[y]]

y

When  you  write  programs  in  Mathematica,  you  will  often  have  a  choice  between  making  a  single  definition  whose
right-hand side involves several branches controlled by If functions, or making several definitions, each controlled by
an appropriate  /;  condition.  By using several  definitions,  you can often produce programs that are both  clearer,  and
easier to modify. 

This defines a step function, with value 1 for x > 0, and -1 otherwise. 

In[3]:= f[x_] := If[x > 0, 1, -1]

This defines the positive part of the step function using a /; condition. 

In[4]:= g[x_] := 1 /; x > 0

Here is the negative part of the step function. 

In[5]:= g[x_] := -1 /; x <= 0

This shows the complete definition using /; conditions. 

In[6]:= ?g

Global`g

g@x_D := 1 ê; x > 0

g@x_D := −1 ê; x ≤ 0

The  function  If  provides  a  way  to  choose  between  two  alternatives.  Often,  however,  there  will  be  more  than  two
alternatives. One way to handle this is to use a nested set of If functions. Usually, however, it is instead better to use
functions like Which and Switch. 
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This defines a function with three regions. Using True as the third test makes this the default case. 

In[7]:= h[x_] := Which[x < 0, x^2, x > 5, x^3, True, 0]

This uses the first case in the Which. 

In[8]:= h[-5]

Out[8]= 25

This uses the third case. 

In[9]:= h[2]

Out[9]= 0

This defines a function that depends on the values of its argument modulo 3. 

In[10]:= r[x_] := Switch[Mod[x, 3], 0, a, 1, b, 2, c]

Mod[7, 3] is 1, so this uses the second case in the Switch. 

In[11]:= r[7]

Out[11]= b

17 matches neither 0 nor 1, but does match _. 

In[12]:= Switch[17, 0, a, 1, b, _, q]

Out[12]= q

An  important  point  about  symbolic  systems  such  as  Mathematica  is  that  the  conditions  you  give  may  yield  neither
True  nor  False.  Thus,  for  example,  the  condition  x  ==  y  does  not  yield  True  or  False  unless  x  and  y  have
specific values, such as numerical ones. 

In this case, the test gives neither True nor False, so both branches in the If remain unevaluated. 

In[13]:= If[x == y, a, b]

Out[13]= If@x y, a, bD

You can add a special fourth argument to If, which is used if the test does not yield True or False. 

In[14]:= If[x == y, a, b, c]

Out[14]= c
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If@ test,  then,  else,  unknown D a form of  If which includes the expression to use if  
test is neither  True nor  False 

TrueQ@ expr D give  True if  expr is  True , and  False otherwise
lhs  ===  rhs  or  SameQ@ lhs,  rhs D give  True if  lhs and  rhs are identical, and  False otherwise

lhs  =!=  rhs  or  UnsameQ@ lhs,  rhs D give  True if  lhs and  rhs 
are not identical, and  False otherwise

MatchQ@ expr,  form D give  True if the pattern  form 
matches  expr , and give  False otherwise

Functions for dealing with symbolic conditions. 

Mathematica leaves this as a symbolic equation. 

In[15]:= x == y

Out[15]= x y

Unless expr is manifestly True, TrueQ[expr] effectively assumes that expr is False. 

In[16]:= TrueQ[x == y]

Out[16]= False

Unlike ==, === tests whether two expressions are manifestly identical. In this case, they are not. 

In[17]:= x === y

Out[17]= False

The main difference between lhs === rhs and lhs == rhs is that === always returns True or False, whereas == can
leave its input in symbolic form, representing a symbolic equation, as discussed in Section 1.5.5. You should typically
use ===  when you want to test the structure  of an expression, and ==  if you want to test mathematical equality. The
Mathematica pattern matcher effectively uses === to determine when one literal expression matches another. 

You can use === to test the structure of expressions. 

In[18]:= Head[a + b + c] === Times

Out[18]= False

The == operator gives a less useful result. 

In[19]:= Head[a + b + c] == Times

Out[19]= Plus Times

In setting up conditionals, you will often need to use combinations of tests, such as test1  && test2  && … . An important
point  is  that  the  result  from  this  combination  of  tests  will  be  False  if  any  of  the  testi  yield  False.  Mathematica
always evaluates the testi  in turn, stopping if any of the testi  yield False. 

expr1   &&  expr2   &&  expr3  evaluate until one of the  expri  is found to be  False 

expr1   »»  expr2   »»  expr3  evaluate until one of the  expri  is found to be  True 

Evaluation of logical expressions. 
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This function involves a combination of two tests. 

In[20]:= t[x_] := (x != 0 && 1/x < 3)

Here both tests are evaluated. 

In[21]:= t[2]

Out[21]= True

Here the first test yields False, so the second test is not tried. The second test would involve 1/0, and would generate an error. 

In[22]:= t[0]

Out[22]= False

The  way  that  Mathematica  evaluates  logical  expressions  allows  you  to  combine  sequences  of  tests  where  later  tests
may make sense only if the earlier ones are satisfied. The behavior, which is analogous to that found in languages such
as C, is convenient in constructing many kinds of Mathematica programs. 

2.6.9 Loops and Control Structures

The execution of a Mathematica program involves the evaluation of a sequence of Mathematica expressions. In simple
programs,  the  expressions  to  be  evaluated  may  be  separated  by  semicolons,  and  evaluated  one  after  another.  Often,
however, you need to evaluate expressions several times, in some kind of “loop”.  

Do@ expr,  8  i,  imax <  D evaluate  expr repetitively, with  
i varying from  1 to  imax in steps of  1 

Do@ expr,  8  i,  imin,  imax,  di <  D evaluate  expr with  i varying from  imin to  imax in steps of  di 
Do@ expr,  8  n <  D evaluate  expr  n times

Simple looping constructs. 

This evaluates Print[i^2], with i running from 1 to 4. 

In[1]:= Do[Print[i^2], {i, 4}]

1

4

9

16

This executes an assignment for t in a loop with k running from 2 to 6 in steps of 2. 

In[2]:= t = x; Do[t = 1/(1 + k t), {k, 2, 6, 2}]; t

Out[2]= 
1

1 + 6
1+ 4

1+2 x

The way iteration is specified in Do is exactly the same as in functions like Table and Sum. Just as in those functions,
you can set up several nested loops by giving a sequence of iteration specifications to Do. 
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This loops over values of i from 1 to 4, and for each value of i, loops over j from 1 to i-1. 

In[3]:= Do[Print[{i,j}], {i, 4}, {j, i-1}]

82, 1<
83, 1<
83, 2<
84, 1<
84, 2<
84, 3<

Sometimes you may want to repeat a particular operation a certain number of times, without changing the value of an
iteration variable. You can specify this kind of repetition in Do just as you can in Table and other iteration functions. 

This repeats the assignment t = 1/(1+t) three times. 

In[4]:= t = x; Do[t = 1/(1+t), {3}]; t

Out[4]= 
1

1 + 1
1+ 1

1+x

You can put a procedure inside Do. 

In[5]:= t = 67; Do[Print[t]; t = Floor[t/2], {3}]

67

33

16

Nest@ f ,  expr,  n D apply  f  to  expr  n times
FixedPoint@ f ,  expr D start with  expr , and apply  f  

repeatedly until the result no longer changes
NestWhile@ f ,  expr,  test D start with  expr , and apply  f  repeatedly until applying  

test to the result no longer yields  True 

Applying functions repetitively. 

Do allows you to repeat operations by evaluating a particular expression many times with different values for iteration
variables.  Often,  however,  you  can  make  more  elegant  and  efficient  programs  using  the  functional  programming
constructs  discussed  in  Section 2.2.2.  Nest[f,  x,  n],  for  example,  allows  you to  apply  a  function  repeatedly to  an
expression. 

This nests f three times. 

In[6]:= Nest[f, x, 3]

Out[6]= f@f@f@xDDD
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By nesting a pure function, you can get the same result as in the example with Do above. 

In[7]:= Nest[ Function[t, 1/(1+t)], x, 3 ]

Out[7]= 
1

1 + 1
1+ 1

1+x

Nest allows you to apply a function a specified number of times. Sometimes, however, you may simply want to go on
applying a function until the results you get no longer change. You can do this using FixedPoint[f, x]. 

FixedPoint goes on applying a function until the result no longer changes. 

In[8]:= FixedPoint[Function[t, Print[t]; Floor[t/2]], 67]

67

33

16

8

4

2

1

0

Out[8]= 0

You  can  use  FixedPoint  to  imitate  the  evaluation  process  in  Mathematica,  or  the  operation  of  functions  such  as
expr //. rules. FixedPoint goes on until two successive results it gets are the same. NestWhile allows you to go
on until an arbitrary function no longer yields True. 

Catch@ expr D evaluate  expr until  Throw@ 

value D is encountered, then return  value 
Catch@ expr,  form D evaluate  expr until  Throw@ value,  

tag D is encountered, where  form matches  tag 
Catch@ expr,  form,  f  D return  f  @ value,  tag D instead of  value 

Non-local control of evaluation. 

When the Throw is encountered, evaluation stops, and the current value of i is returned as the value of the enclosing Catch. 

In[9]:= Catch[Do[Print[i]; If[i > 3, Throw[i]], {i, 10}]]

1

2

3

4

Out[9]= 4

Throw and Catch  provide a flexible way to control the process of evaluation in Mathematica. The basic idea is that
whenever  a  Throw  is  encountered,  the  evaluation  that  is  then  being  done  is  stopped,  and  Mathematica  immediately
returns to the nearest appropriate enclosing Catch.  
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Scan applies the function Print to each successive element in the list, and in the end just returns Null. 

In[10]:= Scan[Print, {7, 6, 5, 4}]

7

6

5

4

The evaluation of Scan stops as soon as Throw is encountered, and the enclosing Catch returns as its value the argument of 
Throw. 

In[11]:= Catch[Scan[(Print[#]; If[# < 6, Throw[#]])&, {7, 6, 5, 4}]]

7

6

5

Out[11]= 5

The same result is obtained with Map, even though Map would have returned a list if its evaluation had not been stopped by 
encountering a Throw. 

In[12]:= Catch[Map[(Print[#]; If[# < 6, Throw[#]])&, {7, 6, 5, 4}]]

7

6

5

Out[12]= 5

You can use Throw  and Catch  to divert  the operation of  functional programming constructs,  allowing for  example
the evaluation of such constructs to continue only until some condition has been met. Note that if you stop evaluation
using Throw, then the structure of the result you get may be quite different from what you would have got if you had
allowed the evaluation to complete. 

Here is a list generated by repeated application of a function. 

In[13]:= NestList[1/(# + 1)&, -2.5, 6]

Out[13]= 8−2.5, −0.666667, 3., 0.25, 0.8, 0.555556, 0.642857<

Since there is no Throw encountered, the result here is just as before. 

In[14]:= Catch[ NestList[1/(# + 1)&, -2.5, 6] ]

Out[14]= 8−2.5, −0.666667, 3., 0.25, 0.8, 0.555556, 0.642857<

Now the evaluation of the NestList is diverted, and the single number given as the argument of Throw is returned.

In[15]:= Catch[ NestList [If[# > 1, Throw[#], 1/(# + 1)]&, -2.5, 6] ]

Out[15]= 3.
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Throw and Catch operate in a completely global way: it does not matter how or where a Throw is generated—it will
always stop evaluation and return to the enclosing Catch. 

The Throw stops the evaluation of f, and causes the Catch to return just a, with no trace of f left. 

In[16]:= Catch[ f[ Throw[ a ] ] ]

Out[16]= a

This defines a function which generates a Throw when its argument is larger than 10. 

In[17]:= g[x_] := If[x > 10, Throw[overflow], x!]

No Throw is generated here. 

In[18]:= Catch[ g[4] ]

Out[18]= 24

But here the Throw generated inside the evaluation of g returns to the enclosing Catch. 

In[19]:= Catch[ g[40] ]

Out[19]= overflow

In small programs, it is often adequate to use Throw[value]  and Catch[expr]  in their simplest form. But particu-
larly if  you write  larger  programs that  contain  many separate  pieces,  it  is  usually much better  to  use  Throw[value,
tag]  and Catch[expr, form].  By keeping the expressions tag  and form  local to a particular piece of your program,
you can then ensure that your Throw and Catch will also operate only within that piece.  

Here the Throw is caught by the inner Catch. 

In[20]:= Catch[ f [ Catch[ Throw[x, a], a ] ], b ]

Out[20]= f@xD

But here it is caught only by the outer Catch. 

In[21]:= Catch[ f [ Catch[ Throw[x, b], a ] ], b ]

Out[21]= x

You can use patterns in specifying the tags which a particular Catch should catch. 

In[22]:= Catch[ Throw[x, a], a | b ]

Out[22]= x

This keeps the tag a completely local. 

In[23]:= Module[{a}, Catch[ Throw[x, a], a] ]

Out[23]= x
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You should  realize that  there is no need for  the tag that  appears  in Throw  to  be a  constant;  in general  it  can be any
expression.  

Here the inner Catch catches all throws with tags less than 4, and continues the Do. But as soon as the tag reaches 4, the outer 
Catch is needed. 

In[24]:= Catch[ Do[ Catch[ Throw[i^2, i], n_ /; n < 4], {i, 10} ], _]

Out[24]= 16

When you use Catch[expr, form] with Throw[value, tag], the value returned by Catch is simply the expression
value given in the Throw. If you use Catch[expr, form, f], however, then the value returned by Catch is instead
f[value, tag]. 

Here f is applied to the value and tag in the Throw. 

In[25]:= Catch[ Throw[ x, a ], a, f ]

Out[25]= f@x, aD

If there is no Throw, f is never used. 

In[26]:= Catch[ x, a, f ]

Out[26]= x

While@ test,  body D evaluate  body repetitively, so long as  test is  True 

For@ start,  test,  incr,  body D evaluate  start , then repetitively evaluate  
body and  incr , until  test fails

General loop constructs. 

Functions like Do,  Nest  and FixedPoint  provide structured ways to make loops in Mathematica  programs, while
Throw  and Catch  provide  opportunities  for  modifying this  structure.  Sometimes, however,  you may want  to create
loops that even from the outset have less structure. And in such cases, you may find it convenient to use the functions
While and For, which perform operations repeatedly, stopping when a specified condition fails to be true. 

The While loop continues until the condition fails. 

In[27]:= n = 17; While[(n = Floor[n/2]) != 0, Print[n]]

8

4

2

1

The functions While and For in Mathematica are similar to the control structures while and for in languages such
as C. Notice, however, that there are a number of important differences. For example, the roles of comma and semico-
lon are reversed in Mathematica For loops relative to C language ones.
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This is a very common form for a For loop. i++ increments the value of i. 

In[28]:= For[i=1, i < 4, i++, Print[i]]

1

2

3

Here is a more complicated For loop. Notice that the loop terminates as soon as the test i^2 < 10 fails. 

In[29]:= For[i=1; t=x, i^2 < 10, i++, t = t^2 + i; Print[t]]

1 + x2

2 + H1 + x2L2

3 + I2 + H1 + x2L2M2

In Mathematica, both While and For always evaluate the loop test before evaluating the body of the loop. As soon as
the  loop  test  fails  to  be  True,  While  and  For  terminate.  The  body  of  the  loop  is  thus  only  evaluated in  situations
where the loop test is True. 

The loop test fails immediately, so the body of the loop is never evaluated. 

In[30]:= While[False, Print[x]]

In  a  While  or  For  loop,  or  in  general  in  any  Mathematica  procedure,  the  Mathematica  expressions  you  give  are
evaluated in a definite sequence. You can think of this sequence as defining the “flow  of control”  in the execution of
a Mathematica program. 

In  most  cases,  you  should  try  to  keep  the  flow of  control  in  your  Mathematica  programs  as  simple as  possible.  The
more the  flow of  control  depends  for  example on  specific  values  generated during  the execution of  the program, the
more difficult you will typically find it to understand the structure and operation of the program. 

Functional  programming constructs  typically involve  very  simple flow of  control.  While  and  For  loops  are  always
more complicated, since they are set up to make the flow of control depend on the values of the expressions given as
tests. Nevertheless, even in such loops, the flow of control does not usually depend on the values of expressions given
in the body of the loop. 

In some cases, however, you may need to construct Mathematica  programs in which the flow of control is affected by
values generated during the execution of a procedure or of the body of a loop. One way to do this, which fits in with
functional  programming  ideas,  is  to  use  Throw  and  Catch.  But  Mathematica  also  provides  various  functions  for
modifying the flow of control which work like in languages such as C. 

Break@  D exit the nearest enclosing loop
Continue@  D go to the next step in the current loop
Return@ expr D return the value  expr ,

exiting all procedures and loops in a function
Goto@ name D go to the element  Label@ name D in the current procedure
Throw@ value D return  value as the value of the nearest enclosing  

Catch Hnon-local returnL
Control flow functions. 
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The Break[ ] causes the loop to terminate as soon as t exceeds 19. 

In[31]:= t = 1; Do[t *= k; Print[t]; If[t > 19, Break[]], {k, 10}]

1

2

6

24

When k < 3, the Continue[ ] causes the loop to be continued, without executing t += 2. 

In[32]:= t = 1; Do[t *= k; Print[t]; If[k < 3, Continue[]]; t += 2, {k, 10}]

1

2

6

32

170

1032

7238

57920

521298

5213000

Return[expr]  allows  you  to  exit  a  particular  function,  returning  a  value.  You  can  think  of  Throw  as  a  kind  of
non-local return which allows you to exit a whole sequence of nested functions. Such behavior can be convenient for
handling certain error conditions. 

Here is an example of the use of Return. This particular procedure could equally well have been written without using Return. 

In[33]:= f[x_] := (If[x > 5, Return[big]]; t = x^3; Return[t - 7])

When the argument is greater than 5, the first Return in the procedure is used. 

In[34]:= f[10]

Out[34]= big

This function “throws”  error if its argument is negative. 

In[35]:= h[x_] := If[x < 0, Throw[error], Sqrt[x]]

No Throw is generated here. 

In[36]:= Catch[ h[6] + 2 ]

Out[36]= 2 + è!!!6
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But in this case a Throw is generated, and the whole Catch returns the value error. 

In[37]:= Catch[ h[-6] + 2 ]

Out[37]= error

Functions like Continue[ ] and Break[ ] allow you to “transfer  control”  to the beginning or end of a loop in a
Mathematica  program. Sometimes you may instead need to transfer  control  to  a particular  element in a Mathematica
procedure. If you give a Label as an element in a procedure, you can use Goto to transfer control to this element. 

This goes on looping until q exceeds 6. 

In[38]:= (q = 2; Label[begin]; Print[q]; q += 3; If[q < 6, Goto[begin]])

2

5

Note  that  you  can  use  Goto  in  a  particular  Mathematica  procedure  only  when  the  Label  it  specifies  occurs  as  an
element of the same Mathematica  procedure.  In general, use of Goto  reduces the degree of structure that can readily
be perceived in a program, and therefore makes the operation of the program more difficult to understand. 

2.6.10 Collecting Expressions During Evaluation

In  many  computations  one  is  concerned  only  with  the  final  result  of  evaluating  the  expression  given  as  input.  But
sometimes one also wants to collect expressions  that were generated in the course of  the evaluation. You can do this
using Sow and Reap. 

Sow@ val D sow the value  val for the nearest enclosing  Reap 

Reap@ expr D evaluate  expr , returning also a list of values sown by  Sow 

Using Sow and Reap. 

Here the output contains only the final result. 

In[1]:= a = 3; a += a^2 + 1; a = Sqrt[a + a^2]

Out[1]= 
è!!!!!!!!!182

Here two intermediate results are also given. 

In[2]:= Reap[Sow[a = 3]; a += Sow[a^2 + 1]; a = Sqrt[a + a^2]]

Out[2]= 9è!!!!!!!!!182 , 883, 10<<=

This computes a sum, collecting all terms that are even. 

In[3]:= Reap[Sum[If[EvenQ[#], Sow[#], #]& [i^2 + 1], {i, 10}]]

Out[3]= 8395, 882, 10, 26, 50, 82<<<

Like Throw and Catch, Sow and Reap can be used anywhere in a computation. 
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This defines a function that can do a Sow. 

In[4]:= f[x_] := (If[x < 1/2, Sow[x]]; 3.5 x (1 - x))

This nests the function, reaping all cases below 1/2. 

In[5]:= Reap[Nest[f, 0.8, 10]]

Out[5]= 80.868312, 880.415332, 0.446472, 0.408785, 0.456285<<<

Sow@ val,  tag D sow  val with a tag to indicate when to reap
Sow@ val,  8  tag1,  tag2, … <  D sow  val for each of the  tagi  

Reap@ expr,  form D reap all values whose tags match  form 
Reap@ expr,  8  form1,  form2, … <  D make separate lists for each of the  formi  

Reap@ expr,  8  form1, … <,  f  D apply  f  to each distinct tag and list of values

Sowing and reaping with tags. 

This reaps only values sown with tag x. 

In[6]:= Reap[Sow[1, x]; Sow[2, y]; Sow[3, x], x]

Out[6]= 83, 881, 3<<<

Here 1 is sown twice with tag x. 

In[7]:= Reap[Sow[1, {x, x}]; Sow[2, y]; Sow[3, x], x]

Out[7]= 83, 881, 1, 3<<<

Values sown with different tags always appear in different sublists. 

In[8]:= Reap[Sow[1, {x, x}]; Sow[2, y]; Sow[3, x]]

Out[8]= 83, 881, 1, 3<, 82<<<

The makes a sublist for each form of tag being reaped. 

In[9]:= Reap[Sow[1, {x, x}]; Sow[2, y]; Sow[3, x], {x, x, y}]

Out[9]= 83, 8881, 1, 3<<, 881, 1, 3<<, 882<<<<

This applies f to each distinct tag and list of values. 

In[10]:= Reap[Sow[1, {x, x}]; Sow[2, y]; Sow[3, x], _, f]

Out[10]= 83, 8f@x, 81, 1, 3<D, f@y, 82<D<<

The tags can be part of the computation. 

In[11]:= Reap[Do[Sow[i/j, GCD[i, j]], {i, 4}, {j, i}]]

Out[11]= 9Null, 991, 2, 3,
3
2
, 4,

4
3
=, 81, 2<, 81<, 81<==
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2.6.11 Advanced Topic: Tracing Evaluation

The  standard  way in  which  Mathematica  works  is  to  take  any  expression  you  give  as  input,  evaluate  the  expression
completely, and  then return  the result.  When you are trying to understand what Mathematica  is  doing,  however,  it  is
often  worthwhile  to  look  not  just  at  the  final  result  of  evaluation,  but  also  at  intermediate  steps  in  the  evaluation
process. 

Trace@ expr D generate a list of all expressions used in the evaluation of  expr 
Trace@ expr,  form D include only expressions which match the pattern  form 

Tracing the evaluation of expressions. 

The expression 1 + 1 is evaluated immediately to 2. 

In[1]:= Trace[1 + 1]

Out[1]= 81 + 1, 2<

The 2^3 is evaluated before the addition is done. 

In[2]:= Trace[2^3 + 4]

Out[2]= 8823, 8<, 8 + 4, 12<

The evaluation of each subexpression is shown in a separate sublist. 

In[3]:= Trace[2^3 + 4^2 + 1]

Out[3]= 8823, 8<, 842, 16<, 8 + 16 + 1, 25<

Trace[expr] gives a list which includes all the intermediate expressions involved in the evaluation of expr. Except in
rather simple cases, however, the number of intermediate expressions generated in this way is typically very large, and
the list returned by Trace is difficult to understand. 

Trace[expr, form] allows you to “filter”  the expressions that Trace records, keeping only those which match the
pattern form. 

Here is a recursive definition of a factorial function. 

In[4]:= fac[n_] := n fac[n-1]; fac[1] = 1

Out[4]= 1

This gives all the intermediate expressions generated in the evaluation of fac[3]. The result is quite complicated. 

In[5]:= Trace[fac[3]]

Out[5]= 8fac@3D, 3 fac@3 − 1D,
883 − 1, 2<, fac@2D, 2 fac@2 − 1D, 882 − 1, 1<, fac@1D, 1<, 2 1, 2<, 3 2, 6<
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This shows only intermediate expressions of the form fac[n_]. 

In[6]:= Trace[fac[3], fac[n_]]

Out[6]= 8fac@3D, 8fac@2D, 8fac@1D<<<

You can specify any pattern in Trace. 

In[7]:= Trace[fac[10], fac[n_/;n > 5]]

Out[7]= 8fac@10D, 8fac@9D, 8fac@8D, 8fac@7D, 8fac@6D<<<<<

Trace[expr,  form]  effectively  works  by  intercepting  every  expression  that  is  about  to  be  evaluated  during  the
evaluation of expr, and picking out those that match the pattern form. 

If you want to trace “calls”  to a function like fac, you can do so simply by telling Trace to pick out expressions of
the form fac[n_]. You can also use patterns like f[n_, 2] to pick out calls with particular argument structure. 

A  typical  Mathematica  program,  however,  consists  not  only  of  “function  calls”  like  fac[n],  but  also  of  other
elements,  such  as  assignments  to  variables,  control  structures,  and  so  on.  All  of  these  elements  are  represented  as
expressions. As a result, you can use patterns in Trace to pick out any kind of Mathematica  program element. Thus,
for example, you can use a pattern like k = _ to pick out all assignments to the symbol k. 

This shows the sequence of assignments made for k. 

In[8]:= Trace[(k=2; For[i=1, i<4, i++, k = i/k]; k), k=_]

Out[8]= 98k = 2<, 99k =
1
2
=, 8k = 4<, 9k =

3
4
===

Trace[expr, form]  can pick out expressions that occur at any time in the evaluation of expr.  The expressions need
not, for example, appear directly in the form of expr that you give. They may instead occur, say, during the evaluation
of functions that are called as part of the evaluation of expr. 

Here is a function definition. 

In[9]:= h[n_] := (k=n/2; Do[k = i/k, {i, n}]; k)

You can look for expressions generated during the evaluation of h. 

In[10]:= Trace[h[3], k=_]

Out[10]= 99k =
3
2
=, 99k =

2
3
=, 8k = 3<, 8k = 1<==

Trace  allows  you  to  monitor  intermediate steps  in  the  evaluation  not  only  of  functions  that  you  define,  but  also  of
some functions that are built into Mathematica. You should realize, however, that the specific sequence of intermediate
steps  followed  by  built-in  Mathematica  functions  depends  in  detail  on  their  implementation  and  optimization  in  a
particular version of Mathematica. 

Trace@ expr,  f  @___DD show all calls to the function  f  
Trace@ expr,  i  =  _D show assignments to  i 
Trace@ expr,  _  =  _D show all assignments

Trace@ expr,  Message@___DD show messages generated

Some ways to use Trace. 
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The function Trace returns a list that represents the “history”  of a Mathematica computation. The expressions in the
list are given in the order that they were generated during the computation. In most cases, the list returned by Trace
has a nested structure, which represents the “structure”  of the computation. 

The  basic  idea  is  that  each  sublist  in  the  list  returned  by  Trace  represents  the  “evaluation  chain”  for  a  particular
Mathematica  expression.  The  elements  of  this  chain  correspond  to  different  forms  of  the  same  expression.  Usually,
however,  the evaluation of  one expression requires the evaluation of  a number of other expressions,  often subexpres-
sions. Each subsidiary evaluation is represented by a sublist in the structure returned by Trace. 

Here is a sequence of assignments. 

In[11]:= a[1] = a[2]; a[2] = a[3]; a[3] = a[4]

Out[11]= a@4D

This yields an evaluation chain reflecting the sequence of transformations for a[i] used. 

In[12]:= Trace[a[1]]

Out[12]= 8a@1D, a@2D, a@3D, a@4D<

The successive forms generated in the simplification of y + x + y show up as successive elements in its evaluation chain. 

In[13]:= Trace[y + x + y]

Out[13]= 8y + x + y, x + y + y, x + 2 y<

Each argument of the function f has a separate evaluation chain, given in a sublist. 

In[14]:= Trace[f[1 + 1, 2 + 3, 4 + 5]]

Out[14]= 881 + 1, 2<, 82 + 3, 5<, 84 + 5, 9<, f@2, 5, 9D<

The evaluation chain for each subexpression is given in a separate sublist. 

In[15]:= Trace[x x + y y]

Out[15]= 88x x, x2<, 8y y, y2<, x2 + y2<

Tracing the evaluation of a nested expression yields a nested list. 

In[16]:= Trace[f[f[f[1 + 1]]]]

Out[16]= 88881 + 1, 2<, f@2D<, f@f@2DD<, f@f@f@2DDD<

There are two basic ways that subsidiary evaluations can be required during the evaluation of a Mathematica  expres-
sion. The first way is that the expression may contain subexpressions,  each of which has to be evaluated. The second
way  is  that  there  may be  rules  for  the  evaluation  of  the  expression  that  involve  other  expressions  which  themselves
must be evaluated. Both kinds of subsidiary evaluations are represented by sublists in the structure returned by Trace. 

The subsidiary evaluations here come from evaluation of the arguments of f and g. 

In[17]:= Trace[f[g[1 + 1], 2 + 3]]

Out[17]= 8881 + 1, 2<, g@2D<, 82 + 3, 5<, f@g@2D, 5D<
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Here is a function with a condition attached. 

In[18]:= fe[n_] := n + 1 /; EvenQ[n]

The evaluation of fe[6] involves a subsidiary evaluation associated with the condition. 

In[19]:= Trace[fe[6]]

Out[19]= 8fe@6D,
88EvenQ@6D, True<, RuleCondition@$ConditionHold@$ConditionHold@6 + 1DD, TrueD,
$ConditionHold@$ConditionHold@6 + 1DD<, 6 + 1, 7<

You often get nested lists when you trace the evaluation of functions that are defined “recursively”  in terms of other
instances of themselves. The reason is typically that each new instance of the function appears as a subexpression in the
expressions obtained by evaluating previous instances of the function. 

Thus, for example, with the definition fac[n_] := n fac[n-1], the evaluation of fac[6] yields the expression 6
fac[5], which contains fac[5] as a subexpression. 

The successive instances of fac generated appear in successively nested sublists. 

In[20]:= Trace[fac[6], fac[_]]

Out[20]= 8fac@6D, 8fac@5D, 8fac@4D, 8fac@3D, 8fac@2D, 8fac@1D<<<<<<

With this definition, fp[n-1] is obtained directly as the value of fp[n]. 

In[21]:= fp[n_] := fp[n - 1] /; n > 1

fp[n] never appears in a subexpression, so no sublists are generated. 

In[22]:= Trace[fp[6], fp[_]]

Out[22]= 8fp@6D, fp@6 − 1D, fp@5D, fp@5 − 1D, fp@4D,
fp@4 − 1D, fp@3D, fp@3 − 1D, fp@2D, fp@2 − 1D, fp@1D<

Here is the recursive definition of the Fibonacci numbers. 

In[23]:= fib[n_] := fib[n - 1] + fib[n - 2]

Here are the end conditions for the recursion. 

In[24]:= fib[0] = fib[1] = 1

Out[24]= 1

This shows all the steps in the recursive evaluation of fib[5]. 

In[25]:= Trace[fib[5], fib[_]]

Out[25]= 8fib@5D, 8fib@4D, 8fib@3D, 8fib@2D, 8fib@1D<, 8fib@0D<<, 8fib@1D<<,
8fib@2D, 8fib@1D<, 8fib@0D<<<, 8fib@3D, 8fib@2D, 8fib@1D<, 8fib@0D<<, 8fib@1D<<<

Each  step  in  the  evaluation  of  any  Mathematica  expression  can  be  thought  of  as  the  result  of  applying  a  particular
transformation rule. As discussed in Section 2.5.10, all the rules that Mathematica  knows are associated with specific
symbols  or  “tags”.  You  can  use  Trace[expr,  f]  to  see  all  the  steps  in  the  evaluation  of  expr  that  are  performed
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using transformation rules associated with the symbol f.  In this case, Trace  gives not only the expressions to which
each rule is applied, but also the results of applying the rules. 

In general, Trace[expr, form] picks out all the steps in the evaluation of expr where form matches either the expres-
sion about to be evaluated, or the tag associated with the rule used. 

Trace@ expr,  f  D show all evaluations which use
transformation rules associated with the symbol  f  

Trace@ expr,  f   »  g D show all evaluations associated with either  f  or  g 

Tracing evaluations associated with particular tags. 

This shows only intermediate expressions that match fac[_]. 

In[26]:= Trace[fac[3], fac[_]]

Out[26]= 8fac@3D, 8fac@2D, 8fac@1D<<<

This shows all evaluations that use transformation rules associated with the symbol fac. 

In[27]:= Trace[fac[3], fac]

Out[27]= 8fac@3D, 3 fac@3 − 1D, 8fac@2D, 2 fac@2 − 1D, 8fac@1D, 1<<<

Here is a rule for the log function. 

In[28]:= log[x_ y_] := log[x] + log[y]

This traces the evaluation of log[a b c d], showing all transformations associated with log. 

In[29]:= Trace[log[a b c d], log]

Out[29]= 8log@a b c dD, log@aD + log@b c dD,
8log@b c dD, log@bD + log@c dD, 8log@c dD, log@cD + log@dD<<<

Trace@ expr,  form,
 TraceOn  −>  oform D 

switch on tracing only within forms matching  oform 

Trace@ expr,  form,
 TraceOff  −>  oform D 

switch off tracing within any form matching  oform 

Switching off tracing inside certain forms. 

Trace[expr, form] allows you to trace expressions matching form  generated at any point in the evaluation of expr.
Sometimes, you may want to trace only expressions generated during certain parts of the evaluation of expr. 

By setting the option TraceOn  ->  oform,  you can specify that tracing should be done only during the evaluation of
forms which match oform. Similarly, by setting TraceOff -> oform, you can specify that tracing should be switched
off during the evaluation of forms which match oform. 

This shows all steps in the evaluation. 

In[30]:= Trace[log[fac[2] x]]

Out[30]= 888fac@2D, 2 fac@2 − 1D, 882 − 1, 1<, fac@1D, 1<, 2 1, 2<, 2 x<, log@2 xD, log@2D + log@xD<
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This shows only those steps that occur during the evaluation of fac. 

In[31]:= Trace[log[fac[2] x], TraceOn -> fac]

Out[31]= 888fac@2D, 2 fac@2 − 1D, 882 − 1, 1<, fac@1D, 1<, 2 1, 2<<<

This shows only those steps that do not occur during the evaluation of fac. 

In[32]:= Trace[log[fac[2] x], TraceOff -> fac]

Out[32]= 888fac@2D, 2<, 2 x<, log@2 xD, log@2D + log@xD<

Trace@ expr,  lhs  −>  rhs D find all expressions matching  
lhs that arise during the evaluation of  
expr , and replace them with  rhs 

Applying rules to expressions encountered during evaluation. 

This tells Trace to return only the arguments of fib used in the evaluation of fib[5]. 

In[33]:= Trace[fib[5], fib[n_] -> n]

Out[33]= 85, 84, 83, 82, 81<, 80<<, 81<<, 82, 81<, 80<<<, 83, 82, 81<, 80<<, 81<<<

A powerful aspect of the Mathematica Trace function is that the object it returns is basically a standard Mathematica
expression which you can manipulate using other Mathematica  functions.  One important point to realize, however,  is
that  Trace  wraps  all  expressions  that  appear  in  the  list  it  produces  with  HoldForm  to  prevent  them  from  being
evaluated. The HoldForm is not displayed in standard Mathematica output format, but it is still present in the internal
structure of the expression. 

This shows the expressions generated at intermediate stages in the evaluation process. 

In[34]:= Trace[1 + 3^2]

Out[34]= 8832, 9<, 1 + 9, 10<

The expressions are wrapped with HoldForm to prevent them from evaluating. 

In[35]:= Trace[1 + 3^2] // InputForm

Out[35]//InputForm= 

{{HoldForm[3^2], HoldForm[9]}, HoldForm[1 + 9],   HoldForm[10]}

In standard Mathematica output format, it is sometimes difficult to tell which lists are associated with the structure returned by 
Trace, and which are expressions being evaluated. 

In[36]:= Trace[{1 + 1, 2 + 3}]

Out[36]= 881 + 1, 2<, 82 + 3, 5<, 82, 5<<
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Looking at the input form resolves any ambiguities. 

In[37]:= InputForm[%]

Out[37]//InputForm= 

{{HoldForm[1 + 1], HoldForm[2]},   {HoldForm[2 + 3], HoldForm[5]}, HoldForm[{2, 
5}]}

When you use a transformation rule in Trace, the result is evaluated before being wrapped with HoldForm. 

In[38]:= Trace[fac[4], fac[n_] -> n + 1]

Out[38]= 85, 84, 83, 82<<<<

For  sophisticated  computations,  the  list  structures  returned  by  Trace  can  be  quite  complicated.  When  you  use
Trace[expr,  form],  Trace  will  include  as  elements  in  the  lists  only  those  expressions  which  match  the  pattern
form. But whatever pattern you give, the nesting structure of the lists remains the same. 

This shows all occurrences of fib[_] in the evaluation of fib[3]. 

In[39]:= Trace[fib[3], fib[_]]

Out[39]= 8fib@3D, 8fib@2D, 8fib@1D<, 8fib@0D<<, 8fib@1D<<

This shows only occurrences of fib[1], but the nesting of the lists is the same as for fib[_]. 

In[40]:= Trace[fib[3], fib[1]]

Out[40]= 888fib@1D<<, 8fib@1D<<

You can  set  the  option  TraceDepth  ->  n  to  tell  Trace  to  include  only  lists  nested  at  most  n  levels  deep.  In  this
way, you can often pick out the “big  steps”  in a computation, without seeing the details. Note that by setting Trace
Depth or TraceOff you can avoid looking at many of the steps in a computation, and thereby significantly speed up
the operation of Trace for that computation. 

This shows only steps that appear in lists nested at most two levels deep. 

In[41]:= Trace[fib[3], fib[_], TraceDepth->2]

Out[41]= 8fib@3D, 8fib@1D<<

Trace@ expr,  form,
 TraceDepth  −>  n D 

trace the evaluation of  expr ,
ignoring steps that lead to lists nested more than  n levels deep

Restricting the depth of tracing. 

When  you  use  Trace[expr,  form],  you  get  a  list  of  all  the  expressions  which  match  form  produced  during  the
evaluation of expr. Sometimes it is useful to see not only these expressions, but also the results that were obtained by
evaluating them. You can do this by setting the option TraceForward -> True in Trace. 

This shows not only expressions which match fac[_], but also the results of evaluating those expressions. 

In[42]:= Trace[fac[4], fac[_], TraceForward->True]

Out[42]= 8fac@4D, 8fac@3D, 8fac@2D, 8fac@1D, 1<, 2<, 6<, 24<
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Expressions  picked  out  using  Trace[expr,  form]  typically  lie  in  the  middle  of  an  evaluation  chain.  By  setting
TraceForward -> True, you tell Trace to include also the expression obtained at the end of the evaluation chain.
If you set TraceForward -> All, Trace will include all the expressions that occur after the expression matching
form on the evaluation chain. 

With TraceForward->All, all elements on the evaluation chain after the one that matches fac[_] are included. 

In[43]:= Trace[fac[4], fac[_], TraceForward->All]

Out[43]= 8fac@4D, 4 fac@4 − 1D,
8fac@3D, 3 fac@3 − 1D, 8fac@2D, 2 fac@2 − 1D, 8fac@1D, 1<, 2 1, 2<, 3 2, 6<, 4 6, 24<

By setting the option TraceForward, you can effectively see what happens to a particular form of expression during
an evaluation. Sometimes, however, you want to find out not what happens to a particular expression, but instead how
that  expression  was  generated.  You  can  do  this  by  setting  the  option  TraceBackward.  What  TraceBackward
does is to show you what preceded a particular form of expression on an evaluation chain. 

This shows that the number 120 came from the evaluation of fac[5] during the evaluation of fac[10]. 

In[44]:= Trace[fac[10], 120, TraceBackward->True]

Out[44]= 888888fac@5D, 120<<<<<<

Here is the whole evaluation chain associated with the generation of the number 120. 

In[45]:= Trace[fac[10], 120, TraceBackward->All]

Out[45]= 888888fac@5D, 5 fac@5 − 1D, 5 24, 120<<<<<<

TraceForward  and  TraceBackward  allow  you  to  look  forward  and  backward  in  a  particular  evaluation  chain.
Sometimes,  you  may also  want  to  look  at  the  evaluation  chains  within  which  the  particular  evaluation  chain  occurs.
You  can  do  this  using  TraceAbove.  If  you  set  the  option  TraceAbove  ->  True,  then  Trace  will  include  the
initial and final expressions in all the relevant evaluation chains. With TraceAbove -> All, Trace includes all the
expressions in all these evaluation chains.

This includes the initial and final expressions in all evaluation chains which contain the chain that contains 120. 

In[46]:= Trace[fac[7], 120, TraceAbove->True]

Out[46]= 8fac@7D, 8fac@6D, 8fac@5D, 120<, 720<, 5040<

This shows all the ways that fib[2] is generated during the evaluation of fib[5]. 

In[47]:= Trace[fib[5], fib[2], TraceAbove->True]

Out[47]= 8fib@5D, 8fib@4D, 8fib@3D, 8fib@2D, 2<, 3<, 8fib@2D, 2<, 5<,
8fib@3D, 8fib@2D, 2<, 3<, 8<
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Trace@ expr,  form,  opts D trace the evaluation of  expr using the specified options
TraceForward  −>  True include the final expression in the evaluation chain containing  

form 
TraceForward  −>  All include all expressions following  form in the evaluation chain

TraceBackward  −>  True include the first expression in the evaluation chain containing  
form 

TraceBackward  −>  All include all expressions preceding  form in the evaluation chain
TraceAbove  −>  True include the first and last expressions in all

evaluation chains which contain the chain containing  form 
TraceAbove  −>  All include all expressions in all evaluation

chains which contain the chain containing  form 

Option settings for including extra steps in trace lists. 

The basic way that Trace[expr, … ] works is to intercept each expression encountered during the evaluation of expr,
and then to use various criteria to determine whether this expression should be recorded. Normally, however,  Trace
intercepts  expressions  only  after  function  arguments  have  been  evaluated.  By  setting  TraceOriginal  ->  True,
you can get Trace also to look at expressions before function arguments have been evaluated. 

This includes expressions which match fac[_] both before and after argument evaluation. 

In[48]:= Trace[fac[3], fac[_], TraceOriginal -> True]

Out[48]= 8fac@3D, 8fac@3 − 1D, fac@2D, 8fac@2 − 1D, fac@1D<<<

The list structure produced by Trace normally includes only expressions that constitute steps in non-trivial evaluation
chains.  Thus,  for  example, individual  symbols that evaluate to themselves are not normally included.  Nevertheless,  if
you  set  TraceOriginal  ->  True,  then  Trace  looks  at  absolutely  every  expression  involved  in  the  evaluation
process, including those that have trivial evaluation chains. 

In this case, Trace includes absolutely all expressions, even those with trivial evaluation chains. 

In[49]:= Trace[fac[1], TraceOriginal -> True]

Out[49]= 8fac@1D, 8fac<, 81<, fac@1D, 1<

option name default value 

TraceForward False whether to show expressions following  
form in the evaluation chain

TraceBackward False whether to show expressions preceding  
form in the evaluation chain

TraceAbove False whether to show evaluation chains leading
to the evaluation chain containing  form 

TraceOriginal False whether to look at expressions before
their heads and arguments are evaluated

Additional options for Trace. 

When you use Trace to study the execution of a program, there is an issue about how local variables in the program
should be treated. As discussed in Section 2.7.3, Mathematica scoping constructs such as Module create symbols with
new names to represent local variables. Thus, even if you called a variable x in the original code for your program, the
variable may effectively be renamed x$nnn when the program is executed. 
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Trace[expr, form] is set up so that by default a symbol x that appears in form will match all symbols with names of
the form x$nnn that arise in the execution of expr. As a result, you can for example use Trace[expr, x = _] to trace
assignment to all variables, local and global, that were named x in your original program. 

Trace@ expr,  form,  
MatchLocalNames  −>  FalseD 

include all steps in the execution of  expr that match  form ,
with no replacements for local variable names allowed

Preventing the matching of local variables. 

In some cases, you may want to trace only the global variable x, and not any local variables that were originally named
x. You can do this by setting the option MatchLocalNames -> False. 

This traces assignments to all variables with names of the form x$nnn. 

In[50]:= Trace[Module[{x}, x = 5], x = _]

Out[50]= 88x$1 = 5<<

This traces assignments only to the specific global variable x. 

In[51]:= Trace[Module[{x}, x = 5], x = _, MatchLocalNames -> False]

Out[51]= 8<

The  function  Trace  performs  a  complete  computation,  then  returns  a  structure  which  represents  the  history  of  the
computation. Particularly in very long computations, it is however sometimes useful to see traces of the computation as
it  proceeds.  The  function  TracePrint  works  essentially  like  Trace,  except  that  it  prints  expressions  when  it
encounters them, rather than saving up all of the expressions to create a list structure. 

This prints expressions encountered in the evaluation of fib[3]. 

In[52]:= TracePrint[fib[3], fib[_]]

fib@3D
fib@3 − 1D
fib@2D
fib@2 − 1D
fib@1D
fib@2 − 2D
fib@0D
fib@3 − 2D
fib@1D

Out[52]= 3

The  sequence  of  expressions  printed  by  TracePrint  corresponds  to  the  sequence  of  expressions  given  in  the  list
structure returned by Trace. Indentation in the output from TracePrint corresponds to nesting in the list structure
from  Trace.  You  can  use  the  Trace  options  TraceOn,  TraceOff  and  TraceForward  in  TracePrint.
However, since TracePrint produces output as it goes, it cannot support the option TraceBackward. In addition,
TracePrint is set up so that TraceOriginal is effectively always set to True. 
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Trace@ expr, … D trace the evaluation of  expr ,
returning a list structure containing the expressions encountered

TracePrint@ expr, … D trace the evaluation of  expr , printing the expressions encountered
TraceDialog@ expr, … D trace the evaluation of  expr ,

initiating a dialog when each specified expression is encountered
TraceScan@ f ,  expr, … D trace the evaluation of  expr , applying  f  

to  HoldForm of each expression encountered

Functions for tracing evaluation. 

This enters a dialog when fac[5] is encountered during the evaluation of fac[10]. 

In[53]:= TraceDialog[fac[10], fac[5]]

TraceDialog::dgbgn :  Entering Dialog; use Return@D to exit.

Out[54]= fac@5D

Inside the dialog you can for example find out where you are by looking at the “stack”.  

In[54]:= Stack[ ]

Out[55]= 8TraceDialog, Times, Times, Times<

This returns from the dialog, and gives the final result from the evaluation of fac[10]. 

In[55]:= Return[ ]

TraceDialog::dgend :  Exiting Dialog.

Out[53]= 3628800

The  function  TraceDialog  effectively  allows  you  to  stop  in  the  middle  of  a  computation,  and  interact  with  the
Mathematica  environment  that  exists  at  that  time.  You  can  for  example  find  values  of  intermediate  variables  in  the
computation, and even reset those values. There are however a number of subtleties, mostly associated with pattern and
module variables. 

What  TraceDialog  does  is  to  call  the  function  Dialog  on  a  sequence  of  expressions.  The  Dialog  function  is
discussed  in  detail  in  Section  2.14.2.  When  you  call  Dialog,  you  are  effectively  starting  a  subsidiary  Mathematica
session with its own sequence of input and output lines. 

In general, you may need to apply arbitrary functions to the expressions you get while tracing an evaluation. Trace
Scan[f, expr, … ] applies f to each expression that arises. The expression is wrapped with HoldForm to prevent it
from evaluating. 

In  TraceScan[f,  expr,  … ],  the  function  f  is  applied  to  expressions  before  they  are  evaluated.  TraceScan[f,
expr, patt, fp] applies f before evaluation, and fp after evaluation. 

2.6.12 Advanced Topic: The Evaluation Stack

Throughout  any  computation,  Mathematica  maintains  an  evaluation  stack  containing  the  expressions  it  is  currently
evaluating. You can use the function Stack to look at the stack. This means, for example, that if you interrupt Mathe-
matica in the middle of a computation, you can use Stack to find out what Mathematica is doing. 
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The expression that Mathematica  most recently started to evaluate always appears as the last element of the evaluation
stack. The previous elements of the stack are the other expressions whose evaluation is currently in progress. 

Thus  at  the  point  when x  is  being  evaluated,  the  stack associated with  the  evaluation  of  an  expression  like  f[g[x]]
will have the form 8 f[g[x]], g[x], x< . 

Stack[_] gives the expressions that are being evaluated at the time when it is called, in this case including the Print function. 

In[1]:= f[g[ Print[Stack[_]] ]] ;

8f@g@Print@Stack@_DDDD;, f@g@Print@Stack@_DDDD,
g@Print@Stack@_DDD, Print@Stack@_DD<

Stack[ ] gives the tags associated with the evaluations that are being done when it is called. 

In[2]:= f[g[ Print[Stack[ ]] ]] ;

8CompoundExpression, f, g, Print<

In general,  you can think of  the evaluation stack as showing what functions called what other  functions to get  to the
point  Mathematica  is  at  in  your  computation.  The  sequence  of  expressions  corresponds  to  the  first  elements  in  the
successively nested lists returned by Trace with the option TraceAbove set to True. 

Stack@  D give a list of the tags associated
with evaluations that are currently being done

Stack@_D give a list of all expressions currently being evaluated
Stack@ form D include only expressions which match  form 

Looking at the evaluation stack. 

It is rather rare to call Stack directly in your main Mathematica  session. More often, you will want to call Stack in
the  middle  of  a  computation.  Typically,  you  can  do  this  from within  a  dialog,  or  subsidiary  session,  as  discussed  in
Section 2.14.2. 

Here is the standard recursive definition of the factorial function. 

In[3]:= fac[1] = 1; fac[n_] := n fac[n-1]

This evaluates fac[10], starting a dialog when it encounters fac[4]. 

In[4]:= TraceDialog[fac[10], fac[4]]

TraceDialog::dgbgn :  Entering Dialog; use Return@D to exit.

Out[5]= fac@4D

This shows what objects were being evaluated when the dialog was started. 

In[5]:= Stack[ ]

Out[6]= 8TraceDialog, Times, Times, Times, Times, Times, Times, fac<
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This ends the dialog. 

In[6]:= Return[ ]

TraceDialog::dgend :  Exiting Dialog.

Out[4]= 3628800

In  the  simplest cases,  the Mathematica  evaluation  stack is  set  up to record  all  expressions  currently being evaluated.
Under  some  circumstances,  however,  this  may  be  inconvenient.  For  example,  executing  Print[Stack[  ]]  will
always show a stack with Print as the last function. 

The  function  StackInhibit  allows  you  to  avoid  this  kind  of  problem.  StackInhibit[expr]  evaluates  expr
without modifying the stack. 

StackInhibit prevents Print from being included on the stack. 

In[7]:= f[g[ StackInhibit[Print[Stack[ ]]] ]] ;

Out[5]= 8CompoundExpression, f, g<

Functions  like  TraceDialog  automatically  call  StackInhibit  each  time  they  start  a  dialog.  This  means  that
Stack does not show functions that are called within the dialog, only those outside. 

StackInhibit@ expr D evaluate  expr without modifying the stack
StackBegin@ expr D evaluate  expr with a fresh stack

StackComplete@ expr D evaluate  expr with intermediate
expressions in evaluation chains included on the stack

Controlling the evaluation stack. 

By using StackInhibit and StackBegin, you can control which parts of the evaluation process are recorded on
the stack. StackBegin[expr]  evaluates expr,  starting a fresh  stack.  This  means that  during the evaluation of  expr,
the stack does not include anything outside the StackBegin. Functions like TraceDialog[expr, … ] call Stack
Begin before they begin evaluating expr, so that the stack shows how expr is evaluated, but not how TraceDialog
was called. 

StackBegin[expr] uses a fresh stack in the evaluation of expr. 

In[8]:= f[ StackBegin[ g[h[ StackInhibit[Print[Stack[ ]]] ]] ] ]

8g, h<

Out[6]= f@g@h@NullDDD

Stack normally shows you only those expressions that are currently being evaluated. As a result, it includes only the
latest form of each expression. Sometimes, however, you may find it useful also to see earlier forms of the expressions.
You can do this using StackComplete. 

What StackComplete[expr] effectively does is to keep on the stack the complete evaluation chain for each expres-
sion that is currently being evaluated. In this case, the stack corresponds to the sequence of expressions obtained from
Trace with the option TraceBackward -> All as well as TraceAbove -> True. 
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2.6.13 Advanced Topic: Controlling Infinite Evaluation

The  general  principle  that  Mathematica  follows  in  evaluating  expressions  is  to  go  on  applying  transformation  rules
until  the  expressions  no  longer  change.  This  means,  for  example,  that  if  you  make  an  assignment  like  x  =  x  +  1,
Mathematica should go into an infinite loop. In fact, Mathematica stops after a definite number of steps, determined by
the value of the global variable $RecursionLimit. You can always stop Mathematica earlier by explicitly interrupt-
ing it. 

This assignment could cause an infinite loop. Mathematica stops after a number of steps determined by $RecursionLimit. 

In[1]:= x = x + 1

$RecursionLimit::reclim :  Recursion depth of 256 exceeded.

Out[1]= 255 + Hold@1 + xD

When Mathematica stops without finishing evaluation, it returns a held result. You can continue the evaluation by explicitly calling 
ReleaseHold.  

In[2]:= ReleaseHold[%]

$RecursionLimit::reclim :  Recursion depth of 256 exceeded.

Out[2]= 510 + Hold@1 + xD

$RecursionLimit maximum depth of the evaluation stack
$IterationLimit maximum length of an evaluation chain

Global variables that limit infinite evaluation. 

Here is a circular definition, whose evaluation is stopped by $IterationLimit. 

In[3]:= {a, b} = {b, a}

$IterationLimit::itlim :  Iteration limit of 4096 exceeded.

$IterationLimit::itlim :  Iteration limit of 4096 exceeded.

Out[3]= 8Hold@bD, Hold@aD<

The  variables  $RecursionLimit  and  $IterationLimit  control  the  two  basic  ways  that  an  evaluation  can
become infinite in Mathematica.  $RecursionLimit  limits the maximum depth of  the evaluation stack, or  equiva-
lently,  the  maximum nesting  depth  that  would  occur  in  the  list  structure  produced  by  Trace.  $IterationLimit
limits the maximum length of any particular evaluation chain, or the maximum length of any single list in the structure
produced by Trace. 

$RecursionLimit  and  $IterationLimit  are  by  default  set  to  values  that  are  appropriate  for  most  computa-
tions, and most computer systems. You can, however,  reset these variables to any integer (above a lower limit), or to
Infinity.  Note  that  on  most  computer  systems,  you  should  never  set  $RecursionLimit  =  Infinity,  as
discussed in Section 2.14.4. 

This resets $RecursionLimit and $IterationLimit to 20. 

In[4]:= $RecursionLimit = $IterationLimit = 20

Out[4]= 20

48 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



Now infinite definitions like this are stopped after just 20 steps. 

In[5]:= t = {t}

$RecursionLimit::reclim :  Recursion depth of 20 exceeded.

Out[5]= 8888888888888888888Hold@8t<D<<<<<<<<<<<<<<<<<<<

Without an end condition, this recursive definition leads to infinite computations. 

In[6]:= fn[n_] := {fn[n-1], n}

A fairly large structure is built up before the computation is stopped. 

In[7]:= fn[10]

$RecursionLimit::reclim :  Recursion depth of 20 exceeded.

Out[7]= 8888888888888888888Hold@fn@−8 − 1DD, −8<, −7<, −6<, −5<, −4<, −3<, −2<, −1<, 0<, 1<,
2<, 3<, 4<, 5<, 6<, 7<, 8<, 9<, 10<

Here is another recursive definition. 

In[8]:= fm[n_] := fm[n - 1]

In this case, no complicated structure is built up, and the computation is stopped by $IterationLimit. 

In[9]:= fm[0]

$IterationLimit::itlim :  Iteration limit of 20 exceeded.

Out[9]= Hold@fm@−19 − 1DD

It is important to realize that infinite loops can take up not only time but also computer memory. Computations limited
by $IterationLimit do not normally build up large intermediate structures. But those limited by $Recursion
Limit often do. In many cases, the size of the structures produced is a linear function of the value of $Recursion
Limit. But in some cases, the size can grow exponentially, or worse, with $RecursionLimit. 

An assignment like x = x + 1 is obviously circular. When you set up more complicated recursive definitions, however,
it can be much more difficult to be sure that the recursion terminates, and that you will not end up in an infinite loop.
The  main  thing  to  check  is  that  the  right-hand  sides  of  your  transformation  rules  will  always  be  different  from  the
left-hand sides.  This ensures  that  evaluation will  always “make  progress”,  and Mathematica  will  not  simply end up
applying the same transformation rule to the same expression over and over again. 

Some of the trickiest cases occur when you have rules that depend on complicated /;  conditions (see Section 2.3.5).
One particularly awkward  case is  when the condition involves  a “global  variable”.  Mathematica  may think that  the
evaluation  is  finished  because  the  expression  did  not  change.  However,  a  side  effect  of  some  other  operation  could
change the value of the global variable, and so should lead to a new result in the evaluation. The best way to avoid this
kind  of  difficulty  is  not  to  use  global  variables  in  /;  conditions.  If  all  else  fails,  you  can  type  Update[s]  to  tell
Mathematica to update all expressions involving s. Update[ ] tells Mathematica to update absolutely all expressions. 

2.6.14 Advanced Topic: Interrupts and Aborts

Section  1.3.12  described  how  you  can  interrupt  a  Mathematica  computation  by  pressing  appropriate  keys  on  your
keyboard. 
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In  some cases,  you  may want  to  simulate  such  interrupts  from within  a  Mathematica  program.  In  general,  executing
Interrupt[ ] has the same effect as pressing interrupt keys. On a typical system, a menu of options is displayed, as
discussed in Section 1.3.12. 

Interrupt@  D interrupt a computation
Abort@  D abort a computation

CheckAbort@ expr,  failexpr D evaluate  expr and return the result, or  failexpr if an abort occurs
AbortProtect@ expr D evaluate  expr ,

masking the effect of aborts until the evaluation is complete

Interrupts and aborts. 

The  function  Abort[  ]  has  the  same  effect  as  interrupting  a  computation,  and  selecting  the  abort  option  in  the
interrupt menu. 

You can use Abort[ ] to implement an “emergency  stop”  in a program. In almost all cases, however, you should try
to use functions like Return and Throw, which lead to more controlled behavior. 

Abort terminates the computation, so only the first Print is executed. 

In[1]:= Print[a]; Abort[ ]; Print[b]

a

Out[1]= $Aborted

If  you  abort  at  any  point  during  the  evaluation  of  a  Mathematica  expression,  Mathematica  normally  abandons  the
evaluation of the whole expression, and returns the value $Aborted. 

You can, however, “catch”  aborts using the function CheckAbort. If an abort occurs during the evaluation of expr
in CheckAbort[expr, failexpr], then CheckAbort returns failexpr, but the abort propagates no further. Functions
like Dialog use CheckAbort in this way to contain the effect of aborts. 

CheckAbort catches the abort, prints c and returns the value aborted. 

In[2]:= CheckAbort[Print[a]; Abort[ ]; Print[b], Print[c]; aborted]

a

c

Out[2]= aborted

The effect of the Abort is contained by CheckAbort, so b is printed. 

In[3]:= CheckAbort[Print[a]; Abort[ ], Print[c]; aborted]; Print[b]

a

c

b

When  you  construct  sophisticated  programs in  Mathematica,  you  may sometimes want  to  guarantee  that  a  particular
section of  code in a program cannot  be aborted,  either  interactively or  by calling Abort.  The function AbortPro
tect  allows you to evaluate an expression, saving up any aborts until after the evaluation of the expression is com-
plete. 
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The Abort is saved up until AbortProtect is finished. 

In[4]:= AbortProtect[Abort[ ]; Print[a]]; Print[b]

a

Out[4]= $Aborted

The CheckAbort sees the abort, but does not propagate it further. 

In[5]:= AbortProtect[Abort[ ]; CheckAbort[Print[a], x]]; Print[b]

b

Even inside AbortProtect,  CheckAbort  will see any aborts  that  occur,  and will  return the appropriate failexpr.
Unless this failexpr itself contains Abort[ ], the aborts will be “absorbed”  by the CheckAbort. 

2.6.15 Compiling Mathematica Expressions

If you make a definition like f[x_] := x Sin[x], Mathematica  will store the expression x Sin[x] in a form that
can  be  evaluated  for  any  x.  Then  when  you  give  a  particular  value  for  x,  Mathematica  substitutes  this  value  into  x
Sin[x], and evaluates the result. The internal code that Mathematica uses to perform this evaluation is set up to work
equally well whether the value you give for x is a number, a list, an algebraic object, or any other kind of expression. 

Having to take account of all these possibilities inevitably makes the evaluation process slower. However, if Mathemat-
ica could assume that x will be a machine number, then it could avoid many steps, and potentially evaluate an expres-
sion like x Sin[x] much more quickly. 

Using  Compile,  you  can  construct  compiled  functions  in  Mathematica,  which  evaluate  Mathematica  expressions
assuming  that  all  the  parameters  which  appear  are  numbers  (or  logical  variables).  Compile[8x1,  x2,  … <,  expr]
takes  an  expression  expr  and  returns  a  “compiled  function”  which  evaluates  this  expression  when given  arguments
x1 , x2 , … . 

In  general,  Compile  creates  a  CompiledFunction  object  which  contains  a  sequence  of  simple  instructions  for
evaluating  the  compiled  function.  The  instructions  are  chosen  to  be  close  to  those  found  in  the  machine  code  of  a
typical computer, and can thus be executed quickly. 

Compile@ 8  x1,  x2, … <,  expr D create a compiled function which evaluates  
expr for numerical values of the  xi  

Creating compiled functions. 

This defines f to be a pure function which evaluates x Sin[x] for any x. 

In[1]:= f = Function[{x}, x Sin[x]]

Out[1]= Function@8x<, x Sin@xDD

This creates a compiled function for evaluating x Sin[x]. 

In[2]:= fc = Compile[{x}, x Sin[x]]

Out[2]= CompiledFunction@8x<, x Sin@xD, −CompiledCode−D
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f and fc yield the same results, but fc runs faster when the argument you give is a number. 

In[3]:= {f[2.5], fc[2.5]}

Out[3]= 81.49618, 1.49618<

Compile  is useful in situations where you have to evaluate a particular numerical or logical expression many times.
By taking  the  time to  call  Compile,  you  can  get  a  compiled  function  which  can  be  executed  more quickly  than  an
ordinary Mathematica function. 

For simple expressions such as x  Sin[x],  there is usually little difference between the execution speed for ordinary
and compiled functions. However, as the size of the expressions involved increases, the advantage of compilation also
increases. For large expressions, compilation can speed up execution by a factor as large as 20. 

Compilation makes  the  biggest  difference  for  expressions  containing  a  large  number  of  simple,  say  arithmetic,  func-
tions.  For  more complicated functions,  such as BesselK  or  Eigenvalues,  most  of  the  computation time is  spent
executing internal Mathematica algorithms, on which compilation has no effect. 

This creates a compiled function for finding values of the tenth Legendre polynomial. The Evaluate tells Mathematica to 
construct the polynomial explicitly before doing compilation. 

In[4]:= pc = Compile[{x}, Evaluate[LegendreP[10, x]]]

Out[4]= CompiledFunctionA8x<,

−
63
256

+
3465 x2

256
−
15015 x4

128
+
45045 x6

128
−
109395 x8

256
+
46189 x10

256
, −CompiledCode−E

This finds the value of the tenth Legendre polynomial with argument 0.4. 

In[5]:= pc[0.4]

Out[5]= 0.0968391

This uses built-in numerical code. 

In[6]:= LegendreP[10, 0.4]

Out[6]= 0.0968391

Even though you can use compilation to speed up numerical functions that you write, you should still try to use built-in
Mathematica  functions  whenever  possible.  Built-in  functions  will  usually  run  faster  than  any  compiled Mathematica
programs you can create.  In  addition,  they typically use  more extensive algorithms, with more complete control  over
numerical precision and so on. 

You  should  realize  that  built-in  Mathematica  functions  quite  often  themselves  use  Compile.  Thus,  for  example,
NIntegrate  by default  automatically uses Compile  on  the expression you tell it  to integrate. Similarly, functions
like Plot and Plot3D use Compile on the expressions you ask them to plot. Built-in functions that use Compile
typically have the option Compiled. Setting Compiled -> False tells the functions not to use Compile. 
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Compile@ 8  8  x1,  t1  
<,  8  x2,  t2  <, … <,  expr D 

compile  expr assuming that  xi  is of type  ti  

Compile@ 8  8  x1,  t1,  n1  <,
 8  x2,  t2,  n2  <, … <,  expr D 

compile  expr assuming that  xi  
is a rank  ni  array of objects each of type  ti  

Compile@ vars,  
expr,  8  8  p1,  pt1  <, … <  D 

compile  expr ,
assuming that subexpressions which match  pi  are of type  pti  

_Integer machine-size integer
_Real machine-precision approximate real number

_Complex machine-precision approximate complex number
True  »  False logical variable

Specifying types for compilation. 

Compile  works  by making assumptions about the types of objects that occur  in evaluating the expression you give.
The default assumption is that all variables in the expression are approximate real numbers. 

Compile  nevertheless  also  allows  integers,  complex  numbers  and  logical  variables  (True  or  False),  as  well  as
arrays of numbers. You can specify the type of a particular variable by giving a pattern which matches only values that
have that type. Thus, for example, you can use the pattern _Integer  to specify the integer type. Similarly, you can
use True | False to specify a logical variable that must be either True or False. 

This compiles the expression 5 i + j with the assumption that i and j are integers. 

In[7]:= Compile[{{i, _Integer}, {j, _Integer}}, 5 i + j]

Out[7]= CompiledFunction@8i, j<, 5 i + j, −CompiledCode−D

This yields an integer result. 

In[8]:= %[8, 7]

Out[8]= 47

This compiles an expression that performs an operation on a matrix of integers. 

In[9]:= Compile[{{m, _Integer, 2}}, Apply[Plus, Flatten[m]]]

Out[9]= CompiledFunction@8m<, Plus @@ Flatten@mD, −CompiledCode−D

The list operations are now carried out in a compiled way, and the result is an integer. 

In[10]:= %[{{1, 2, 3}, {7, 8, 9}}]

Out[10]= 30

The types that Compile handles correspond essentially to the types that computers typically handle at a machine-code
level.  Thus,  for  example,  Compile  can handle  approximate real  numbers that  have machine precision,  but  it  cannot
handle  arbitrary-precision  numbers.  In  addition,  if  you  specify  that  a  particular  variable  is  an  integer,  Compile
generates code only for the case when the integer is of “machine  size”,  typically between ≤231 . 

When  the  expression  you  ask  to  compile  involves  only  standard  arithmetic  and  logical  operations,  Compile  can
deduce the types of objects generated at every step simply from the types of the input variables. However, if you call
other  functions,  Compile  will  typically  not  know  what  type  of  value  they  return.  If  you  do  not  specify  otherwise,
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Compile  assumes that any other function yields an approximate real number value.  You can, however,  also give an
explicit list of patterns, specifying what type to assume for an expression that matches a particular pattern. 

This defines a function which yields an integer result when given an integer argument. 

In[11]:= com[i_] := Binomial[2i, i]

This compiles x^com[i] using the assumption that com[_] is always an integer. 

In[12]:= Compile[{x, {i, _Integer}}, x^com[i], {{com[_], _Integer}}]

Out[12]= CompiledFunction@8x, i<, xcom@iD, −CompiledCode−D

This evaluates the compiled function. 

In[13]:= %[5.6, 1]

Out[13]= 31.36

The idea of Compile is to create a function which is optimized for certain types of arguments. Compile is neverthe-
less set up so that the functions it creates work with whatever types of arguments they are given. When the optimiza-
tion cannot be used, a standard Mathematica expression is evaluated to find the value of the function. 

Here is a compiled function for taking the square root of a variable. 

In[14]:= sq = Compile[{x}, Sqrt[x]]

Out[14]= CompiledFunctionA8x<, è!!!x , −CompiledCode−E

If you give a real number argument, optimized code is used. 

In[15]:= sq[4.5]

Out[15]= 2.12132

The compiled code cannot be used, so Mathematica prints a warning, then just evaluates the original symbolic expression. 

In[16]:= sq[1 + u]

CompiledFunction::cfsa :  

Argument 1 + u at position 1 should be a machine−size real number.

Out[16]= 
è!!!!!!!!!!!1 + u

The  compiled  code  generated  by  Compile  must  make assumptions  not  only  about  the  types  of  arguments  you  will
supply, but also about the types of all objects that arise during the execution of the code. Sometimes these types depend
on the actual values of the arguments you specify. Thus, for example, Sqrt[x] yields a real number result for real x if
x is not negative, but yields a complex number if x is negative. 

Compile always makes a definite assumption about the type returned by a particular function. If this assumption turns
out  to  be  invalid  in  a  particular  case  when  the  code  generated  by  Compile  is  executed,  then  Mathematica  simply
abandons the compiled code in this case, and evaluates an ordinary Mathematica expression to get the result. 
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The compiled code does not expect a complex number, so Mathematica has to revert to explicitly evaluating the original symbolic 
expression. 

In[17]:= sq[-4.5]

CompiledFunction::cfn :  Numerical error encountered
at instruction 2; proceeding with uncompiled evaluation.

Out[17]= 0. + 2.12132

An  important  feature  of  Compile  is  that  it  can  handle  not  only  mathematical  expressions,  but  also  various  simple
Mathematica programs. Thus, for example, Compile can handle conditionals and control flow structures. 

In  all  cases,  Compile[vars,  expr]  holds  its  arguments  unevaluated.  This  means  that  you  can  explicitly  give  a
“program”  as the expression to compile. 

This creates a compiled version of a Mathematica program which implements Newton's approximation to square roots. 

In[18]:= newt = Compile[ {x, {n, _Integer}}, Module[{t}, t = x; Do[t = (t + x/t)/2, {n}]; 
t] ]

Out[18]= CompiledFunctionA8x, n<,
ModuleA8t<, t = x; DoAt =

1
2
It +

x
t
M, 8n<E; tE, −CompiledCode−E

This executes the compiled code. 

In[19]:= newt[2.4, 6]

Out[19]= 1.54919

2.6.16 Advanced Topic: Manipulating Compiled Code

If  you use compiled code created by Compile  only within Mathematica  itself,  then you should never  need to know
the  details  of  its  internal  form.  Nevertheless,  the  compiled  code  can  be  represented  by  an  ordinary  Mathematica
expression, and it is sometimes useful to manipulate it. 

For  example,  you can take compiled code generated by Compile,  and  feed  it  to  external  programs or  devices.  You
can also create CompiledFunction objects yourself, then execute them in Mathematica.

In  all  of  these  cases,  you  need  to  know  the  internal  form  of  CompiledFunction  objects.  The  first  element  of  a
CompiledFunction  object  is  always  a  list  of  patterns  which  specifies  the  types  of  arguments  accepted  by  the
object.  The fifth  element of  a  CompiledFunction  object  is  a  Mathematica  pure  function  that  is  used  if  the com-
piled code instruction stream fails for any reason to give a result. 

CompiledFunction@ 8  arg1,  arg2,
… <,  8  reg1,  reg2, … <  ,  8  nl,
 ni,  nr,  nc,  nt  <,  instr,  func D 

compiled code taking arguments of type  
argi  and executing the instruction stream  

instr using  nk  registers of type  k 

The structure of a compiled code object. 
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This shows the explicit form of the compiled code generated by Compile. 

In[1]:= Compile[{x}, x^2] // InputForm

Out[1]//InputForm= 

CompiledFunction[{_Real}, {{3, 0, 0}, {3, 0, 1}},   {0, 0, 2, 0, 0}, {{1, 5}, {29, 
0, 0, 1}, {2}},   Function[{x}, x^2], Evaluate]

The  instruction  stream  in  a  CompiledFunction  object  consists  of  a  list  of  instructions  for  a  simple  idealized
computer. The computer is assumed to have numbered “registers”,  on which operations can be performed. There are
five basic types of registers: logical, integer, real, complex and tensor. For each of these basic types it is then possible
to have either a single scalar register or an array of registers of any rank. A list of the total number of registers of each
type required to evaluate a particular CompiledFunction object is given as the second element of the object. 

The actual instructions in the compiled code object are given as lists. The first element is an integer “opcode”  which
specifies  what  operation  should  be  performed.  Subsequent  elements  are  either  the  numbers  of  registers  of  particular
types,  or  literal constants.  Typically the last element of the list is the number of a “destination  register”,  into which
the result of the operation should be put. 
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2.7 Modularity and the Naming of Things

2.7.1 Modules and Local Variables

Mathematica  normally assumes that all  your variables are global.  This means that  every time you use a name like x,
Mathematica normally assumes that you are referring to the same object. 

Particularly  when  you  write  programs,  however,  you  may  not  want  all  your  variables  to  be  global.  You  may,  for
example, want to use the name x  to refer to two quite different variables in two different programs. In this case, you
need the x in each program to be treated as a local variable. 

You  can  set  up  local  variables  in  Mathematica  using  modules.  Within  each  module,  you  can  give  a  list  of  variables
which are to be treated as local to the module. 

Module@ 8  x,  y, … <,  body D a module with local variables  x ,  y , …

Creating modules in Mathematica. 

This defines the global variable t to have value 17. 

In[1]:= t = 17

Out[1]= 17

The t inside the module is local, so it can be treated independently of the global t. 

In[2]:= Module[{t}, t=8; Print[t]]

8

The global t still has value 17. 

In[3]:= t

Out[3]= 17

The  most  common way  that  modules  are  used  is  to  set  up  temporary  or  intermediate  variables  inside  functions  you
define.  It  is  important  to  make sure  that  such  variables  are  kept  local.  If  they are  not,  then  you  will  run  into  trouble
whenever their names happen to coincide with the names of other variables. 

The intermediate variable t is specified to be local to the module. 

In[4]:= f[v_] := Module[{t}, t = (1 + v)^2; t = Expand[t] ]

This runs the function f. 

In[5]:= f[a + b]

Out[5]= 1 + 2 a + a2 + 2 b + 2 a b + b2
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The global t still has value 17. 

In[6]:= t

Out[6]= 17

You can  treat  local  variables  in  modules  just  like  other  symbols.  Thus,  for  example,  you can use  them as  names for
local functions, you can assign attributes to them, and so on. 

This sets up a module which defines a local function f. 

In[7]:= gfac10[k_] := Module[{f, n}, f[1] = 1; f[n_] := k + n f[n-1]; f[10]]

In this case, the local function f is just an ordinary factorial. 

In[8]:= gfac10[0]

Out[8]= 3628800

In this case, f is set up as a generalized factorial. 

In[9]:= gfac10[2]

Out[9]= 8841802

When you set up a local variable in a module, Mathematica  initially assigns no value to the variable. This means that
you can use the variable in a purely symbolic way, even if there was a global value defined for the variable outside the
module. 

This uses the global value of t defined above, and so yields a number. 

In[10]:= Expand[(1 + t)^3]

Out[10]= 5832

Here Length simply receives a number as its argument. 

In[11]:= Length[Expand[(1 + t)^3]]

Out[11]= 0

The local variable t has no value, so it acts as a symbol, and Expand produces the anticipated algebraic result. 

In[12]:= Module[{t}, Length[Expand[(1 + t)^3]]]

Out[12]= 4

Module@ 8  x  =  x0,
 y  =  y0, … <,  body D 

a module with initial values for local variables

Assigning initial values to local variables. 

This specifies t to be a local variable, with initial value u. 

In[13]:= g[u_] := Module[{ t = u }, t += t/(1 + u)]
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This uses the definition of g. 

In[14]:= g[a]

Out[14]= a +
a

1 + a

You can define initial values for any of the local variables in a module. The initial values are always evaluated before
the module is executed. As a result, even if a variable x is defined as local to the module, the global x will be used if it
appears in an expression for an initial value. 

The initial value of u is taken to be the global value of t. 

In[15]:= Module[{t = 6, u = t}, u^2]

Out[15]= 289

lhs  :=  Module@ vars,  rhs  ê;  cond D share local variables between  rhs and  cond 

Using local variables in definitions with conditions. 

When you set up /;  conditions  for  definitions,  you often need to introduce temporary variables.  In many cases,  you
may want to share these temporary variables with the body of the right-hand side of the definition. Mathematica allows
you to enclose the whole right-hand side of your definition in a module, including the condition. 

This defines a function with a condition attached. 

In[16]:= h[x_] := Module[{t}, t^2 - 1 /; (t = x - 4) > 1]

Mathematica shares the value of the local variable t between the condition and the body of the right-hand side. 

In[17]:= h[10]

Out[17]= 35

2.7.2 Local Constants

With@ 8  x  =  x0,
 y  =  y0, … <,  body D 

define local constants  x ,  y , …

Defining local constants. 

Module allows you to set up local variables, to which you can assign any sequence of values. Often, however, all you
really need are local constants, to which you assign a value only once. The Mathematica With construct allows you to
set up such local constants. 

This defines a global value for t. 

In[1]:= t = 17

Out[1]= 17
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This defines a function using t as a local constant. 

In[2]:= w[x_] := With[{t = x + 1}, t + t^3]

This uses the definition of w. 

In[3]:= w[a]

Out[3]= 1 + a + H1 + aL3

t still has its global value. 

In[4]:= t

Out[4]= 17

Just as in Module, the initial values you define in With are evaluated before the With is executed. 

The expression t + 1 which gives the value of the local constant t is evaluated using the global t. 

In[5]:= With[{t = t + 1}, t^2]

Out[5]= 324

The way With[8x  =  x0,  … <,  body]  works is to take body,  and replace every occurrence of x,  etc. in it by x0 , etc.
You can think of With as a generalization of the /. operator, suitable for application to Mathematica  code instead of
other expressions. 

This replaces x with a. 

In[6]:= With[{x = a}, x = 5]

Out[6]= 5

After the replacement, the body of the With is a = 5, so a gets the global value 5. 

In[7]:= a

Out[7]= 5

This clears the value of a. 

In[8]:= Clear[a]

In some respects, With is like a special case of Module, in which each local variable is assigned a value exactly once. 

One of the main reasons for using With rather than Module is that it typically makes the Mathematica programs you
write easier to understand. In a module, if you see a local variable x at a particular point, you potentially have to trace
through all of the code in the module to work out the value of x at that point. In a With construct, however,  you can
always  find  out  the  value  of  a  local  constant  simply  by  looking  at  the  initial  list  of  values,  without  having  to  trace
through specific code. 

If you have several With constructs, it is always the innermost one for a particular variable that is in effect. You can
mix Module and With. The general rule is that the innermost one for a particular variable is the one that is in effect. 
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With nested With constructs, the innermost one is always the one in effect. 

In[9]:= With[{t = 8}, With[{t = 9}, t^2]]

Out[9]= 81

You can mix Module and With constructs. 

In[10]:= Module[{t = 8}, With[{t = 9}, t^2]]

Out[10]= 81

Local variables in inner constructs do not mask ones outside unless the names conflict. 

In[11]:= With[{t = a}, With[{u = b}, t + u]]

Out[11]= a + b

Except for the question of when x and body are evaluated, With[8x = x0 <, body] works essentially like body /. x ->
x0 .  However, With  behaves in a special way when the expression body  itself contains With  or Module  constructs.
The  main issue  is  to  prevent  the  local  constants  in  the  various  With  constructs  from conflicting  with  each  other,  or
with global objects. The details of how this is done are discussed in Section 2.7.3. 

The y in the inner With is renamed to prevent it from conflicting with the global y. 

In[12]:= With[{x = 2 + y}, Hold[With[{y = 4}, x + y]]]

Out[12]= Hold@With@8y$ = 4<, H2 + yL + y$DD

2.7.3 How Modules Work

The  way  modules  work  in  Mathematica  is  basically  very  simple.  Every  time  any  module  is  used,  a  new  symbol  is
created to represent each of its local variables. The new symbol is given a unique name which cannot conflict with any
other names. The name is formed by taking the name you specify for the local variable, followed by $, with a unique
“serial  number”  appended. 

The  serial  number  is  found  from  the  value  of  the  global  variable  $ModuleNumber.  This  variable  counts  the  total
number of times any Module of any form has been used. 

†  Module generates symbols with names of the form  x $ nnn to represent each local variable.

The basic principle of modules in Mathematica. 

This shows the symbol generated for t within the module. 

In[1]:= Module[{t}, Print[t]]

t$1
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The symbols are different every time any module is used. 

In[2]:= Module[{t, u}, Print[t]; Print[u]]

t$2

u$2

For most purposes, you will never have to deal directly with the actual symbols generated inside modules. However, if
for example you start up a dialog while a module is being executed, then you will see these symbols. The same is true
whenever you use functions like Trace to watch the evaluation of modules. 

You see the symbols that are generated inside modules when you use Trace. 

In[3]:= Trace[ Module[{t}, t = 3] ]

Out[3]= 8Module@8t<, t = 3D, 8t$3 = 3, 3<, 3<

This starts a dialog inside a module. 

In[4]:= Module[{t}, t = 6; Dialog[ ]]

Inside the dialog, you see the symbols generated for local variables such as t. 

In[5]:= Stack[_]

Out[5]= 8Module@8t<, t = 6; Dialog@DD, t$4 = 6; Dialog@D, Dialog@D<

You can work with these symbols as you would with any other symbols. 

In[6]:= t$4 + 1

Out[6]= 7

This returns from the dialog. 

In[7]:= Return[t$4 ^ 2]

Out[4]= 36

Under some circumstances, it is convenient explicitly to return symbols that are generated inside modules. 

You can explicitly return symbols that are generated inside modules. 

In[8]:= Module[{t}, t]

Out[5]= t$6

You can treat these symbols as you would any others. 

In[9]:= %^2 + 1

Out[6]= 1 + t$62
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Unique@ x D generate a new symbol with a unique name of the form  x $ nnn 
Unique@ 8  x,  y, … <  D generate a list of new symbols

Generating new symbols with unique names. 

The  function  Unique  allows  you  to  generate  new  symbols  in  the  same  way  as  Module  does.  Each  time  you  call
Unique, $ModuleNumber is incremented, so that the names of new symbols are guaranteed to be unique. 

This generates a unique new symbol whose name starts with x. 

In[10]:= Unique[x]

Out[7]= x$7

Each time you call Unique you get a symbol with a larger serial number. 

In[11]:= {Unique[x], Unique[x], Unique[x]}

Out[8]= 8x$8, x$9, x$10<

If you call Unique with a list of names, you get the same serial number for each of the symbols. 

In[12]:= Unique[{x, xa, xb}]

Out[9]= 8x$11, xa$11, xb$11<

You can  use  the  standard  Mathematica  ?name  mechanism to  get  information  on  symbols  that  were  generated  inside
modules or by the function Unique. 

Executing this module generates the symbol q$nnn. 

In[13]:= Module[{q}, q^2 + 1]

Out[10]= 1 + q$122

You can see the generated symbol here. 

In[14]:= ?q*

"q    q$12"

Symbols  generated  by  Module  behave  in  exactly  the  same  way  as  other  symbols  for  the  purposes  of  evaluation.
However, these symbols carry the attribute Temporary, which specifies that they should be removed completely from
the system when they are no longer used. Thus most symbols that are generated inside modules are removed when the
execution of those modules is finished. The symbols survive only if they are explicitly returned. 

This shows a new q variable generated inside a module. 

In[15]:= Module[{q}, Print[q]]

q$13
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The new variable is removed when the execution of the module is finished, so it does not show up here. 

In[16]:= ?q*

"q    q$12"

You  should  realize  that  the  use  of  names  such  as  x$nnn  for  generated  symbols  is  purely  a  convention.  You  can  in
principle  give  any  symbol  a  name of  this  form.  But  if  you do,  the  symbol  may collide  with  one  that  is  produced  by
Module. 

An important point to note is that symbols generated by Module are in general unique only within a particular Mathe-
matica session. The variable $ModuleNumber which determines the serial numbers for these symbols is always reset
at the beginning of each session. 

This means in particular  that if  you save expressions  containing generated symbols in a file,  and then read them into
another session, there is no guarantee that conflicts will not occur. 

One way to avoid such conflicts is explicitly to set $ModuleNumber  differently at the beginning of each session. In
particular, if you set $ModuleNumber = 10^10 $SessionID, you should avoid any conflicts. The global variable
$SessionID  should  give  a  unique  number  which  characterizes  a  particular  Mathematica  session  on  a  particular
computer. The value of this variable is determined from such quantities as the absolute date and time, the ID of your
computer, and, if appropriate, the ID of the particular Mathematica process. 

$ModuleNumber the serial number for symbols generated by  
Module and  Unique 

$SessionID a number that should be different for every  Mathematica session

Variables to be used in determining serial numbers for generated symbols. 

Having generated appropriate symbols to represent the local variables you have specified, Module[vars, body] then
has to evaluate body  using these symbols. The first  step is to take the actual expression body  as  it  appears  inside the
module,  and  effectively  to  use  With  to  replace  all  occurrences  of  each  local  variable  name  with  the  appropriate
generated symbol. After this is done, Module actually performs the evaluation of the resulting expression. 

An  important  point  to  note  is  that  Module[vars,  body]  inserts  generated  symbols  only  into  the  actual  expression
body. It does not, for example, insert such symbols into code that is called from body, but does not explicitly appear in
body. 

Section 2.7.6 will discuss how you can use Block to set up “local  values”  which work in a different way. 

Since x does not appear explicitly in the body of the module, the local value is not used. 

In[17]:= tmp = x^2 + 1; Module[{x = 4}, tmp]

Out[14]= 1 + x2

Most of the time, you will probably set up modules by giving explicit Mathematica  input of the form Module[vars,
body]. Since the function Module has the attribute HoldAll, the form of body will usually be kept unevaluated until
the module is executed. 

It  is,  however,  possible  to  build  modules  dynamically  in  Mathematica.  The  generation  of  new  symbols,  and  their
insertion  into  body  are  always  done  only  when  a  module  is  actually  executed,  not  when  the  module  is  first  given  as
Mathematica input. 
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This evaluates the body of the module immediately, making x appear explicitly. 

In[18]:= tmp = x^2 + 1; Module[{x = 4}, Evaluate[tmp]]

Out[15]= 17

2.7.4 Advanced Topic: Variables in Pure Functions and Rules

Module  and  With  allow  you  to  give  a  specific  list  of  symbols  whose  names  you  want  to  treat  as  local.  In  some
situations, however, you want to automatically treat certain symbol names as local. 

For  example,  if  you use  a  pure  function  such  as  Function[{x},  x  +  a],  you want  x  to  be  treated as  a  “formal
parameter”,  whose specific name is local.  The same is true of the x  that appears in a rule like f[x_]  ->  x^2,  or a
definition like f[x_] := x^2. 

Mathematica  uses a uniform scheme to make sure that the names of formal parameters which appear in constructs like
pure functions and rules are kept local, and are never confused with global names. The basic idea is to replace formal
parameters when necessary by symbols with names of the form x$. By convention, x$ is never used as a global name. 

Here is a nested pure function. 

In[1]:= Function[{x}, Function[{y}, x + y]]

Out[1]= Function@8x<, Function@8y<, x + yDD

Mathematica renames the formal parameter y in the inner function to avoid conflict with the global object y. 

In[2]:= %[2y]

Out[2]= Function@8y$<, 2 y + y$D

The resulting pure function behaves as it should. 

In[3]:= %[a]

Out[3]= a + 2 y

In general, Mathematica  renames the formal parameters in an object like Function[vars,  body]  whenever body  is
modified in any way by the action of another pure function. 

The formal parameter y is renamed because the body of the inner pure function was changed. 

In[4]:= Function[{x}, Function[{y}, x + y]] [a]

Out[4]= Function@8y$<, a + y$D

Since the body of the inner function does not change, the formal parameter is not renamed. 

In[5]:= Function[{x}, x + Function[{y}, y^2]] [a]

Out[5]= a + Function@8y<, y2D

Mathematica  renames  formal  parameters  in  pure  functions  more  liberally  than  is  strictly  necessary.  In  principle,
renaming could be avoided if the names of the formal parameters in a particular function do not actually conflict with
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parts of expressions substituted into the body of the pure function. For uniformity, however, Mathematica still renames
formal parameters even in such cases. 

In this case, the formal parameter x in the inner function shields the body of the function, so no renaming is needed.

In[6]:= Function[{x}, Function[{x}, x + y]] [a]

Out[6]= Function@8x<, x + yD

Here are three nested functions. 

In[7]:= Function[{x}, Function[{y}, Function[{z}, x + y + z]]]

Out[7]= Function@8x<, Function@8y<, Function@8z<, x + y + zDDD

Both inner functions are renamed in this case. 

In[8]:= %[a]

Out[8]= Function@8y$<, Function@8z$<, a + y$ + z$DD

As mentioned in Section 2.2.5, pure functions in Mathematica  are like l  expressions in formal logic. The renaming of
formal parameters allows Mathematica  pure  functions to reproduce  all  the semantics of  standard  l  expressions  faith-
fully. 

Function@ 8  x, … <,  body D local parameters
lhs  −>  rhs  and  lhs  :>  rhs local pattern names

lhs  =  rhs  and  lhs  :=  rhs local pattern names
With@ 8  x  =  x0, … <,  body D local constants

Module@ 8  x, … <,  body D local variables

Scoping constructs in Mathematica. 

Mathematica  has  several  “scoping  constructs”  in  which  certain  names  are  treated  as  local.  When  you  mix  these
constructs in any way, Mathematica does appropriate renamings to avoid conflicts. 

Mathematica renames the formal parameter of the pure function to avoid a conflict. 

In[9]:= With[{x = a}, Function[{a}, a + x]]

Out[9]= Function@8a$<, a$ + aD

Here the local constant in the inner With is renamed to avoid a conflict. 

In[10]:= With[{x = y}, Hold[With[{y = 4}, x + y]]]

Out[10]= Hold@With@8y$ = 4<, y + y$DD

There is no conflict between names in this case, so no renaming is done. 

In[11]:= With[{x = y}, Hold[With[{z = x + 2}, z + 2]]]

Out[11]= Hold@With@8z = y + 2<, z + 2DD
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The local variable y in the module is renamed to avoid a conflict. 

In[12]:= With[{x = y}, Hold[Module[{y}, x + y]]]

Out[12]= Hold@Module@8y$<, y + y$DD

If you execute the module, however, the local variable is renamed again to make its name unique. 

In[13]:= ReleaseHold[%]

Out[13]= y + y$1

Mathematica  treats transformation rules as scoping constructs, in which the names you give to patterns are local. You
can set up named patterns either using x_, x__ and so on, or using x:patt. 

The x in the h goes with the x_, and is considered local to the rule. 

In[14]:= With[{x = 5}, g[x_, x] -> h[x]]

Out[14]= g@x_, 5D → h@xD

In a rule like f[x_] -> x + y, the x which appears on the right-hand side goes with the name of the x_ pattern. As a
result, this x is treated as a variable local to the rule, and cannot be modified by other scoping constructs. 

The y, on the other hand, is not local to the rule, and can be modified by other scoping constructs. When this happens,
Mathematica renames the patterns in the rule to prevent the possibility of a conflict. 

Mathematica renames the x in the rule to prevent a conflict. 

In[15]:= With[{w = x}, f[x_] -> w + x]

Out[15]= f@x$_D → x + x$

When  you  use  With  on  a  scoping  construct,  Mathematica  automatically  performs  appropriate  renamings.  In  some
cases, however, you may want to make substitutions inside scoping constructs, without any renaming. You can do this
using the /. operator. 

When you substitute for y using With, the x in the pure function is renamed to prevent a conflict. 

In[16]:= With[{y = x + a}, Function[{x}, x + y]]

Out[16]= Function@8x$<, x$ + Ha + xLD

If you use /. rather than With, no such renaming is done. 

In[17]:= Function[{x}, x + y] /. y -> a + x

Out[17]= Function@8x<, x + Ha + xLD

When you apply a rule such as f[x_] -> rhs, or use a definition such as f[x_] := rhs, Mathematica implicitly has to
substitute  for  x  everywhere  in  the  expression  rhs.  It  effectively  does  this  using  the  /.  operator.  As  a  result,  such
substitution does not respect scoping constructs. However, when the insides of a scoping construct are modified by the
substitution, the other variables in the scoping construct are renamed. 
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This defines a function for creating pure functions. 

In[18]:= mkfun[var_, body_] := Function[{var}, body]

The x and x^2 are explicitly inserted into the pure function, effectively by using the /. operator. 

In[19]:= mkfun[x, x^2]

Out[19]= Function@8x<, x2D

This defines a function that creates a pair of nested pure functions. 

In[20]:= mkfun2[var_, body_] := Function[{x}, Function[{var}, body + x]]

The x in the outer pure function is renamed in this case. 

In[21]:= mkfun2[x, x^2]

Out[21]= Function@8x$<, Function@8x<, x2 + x$DD

2.7.5 Dummy Variables in Mathematics

When  you  set  up  mathematical  formulas,  you  often  have  to  introduce  various  kinds  of  local  objects  or  “dummy
variables”.  You can treat such dummy variables using modules and other Mathematica scoping constructs. 

Integration  variables  are  a  common  example  of  dummy  variables  in  mathematics.  When  you  write  down  a  formal
integral,  conventional notation requires you to introduce an integration variable with a definite name. This variable is
essentially  “local”  to  the  integral,  and  its  name,  while  arbitrary,  must  not  conflict  with  any  other  names  in  your
mathematical expression. 

Here is a function for evaluating an integral. 

In[1]:= p[n_] := Integrate[f[s] s^n, {s, 0, 1}]

The s here conflicts with the integration variable. 

In[2]:= p[s + 1]

Out[2]= ‡
0

1

s1+s f@sD s

Here is a definition with the integration variable specified as local to a module. 

In[3]:= pm[n_] := Module[{s}, Integrate[f[s] s^n, {s, 0, 1}]]

Since you have used a module, Mathematica automatically renames the integration variable to avoid a conflict. 

In[4]:= pm[s + 1]

Out[4]= ‡
0

1

s$2421+s f@s$242D s$242
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In  many cases,  the  most  important  issue  is  that  dummy variables  should  be  kept  local,  and  should  not  interfere  with
other  variables  in  your  mathematical  expression.  In  some  cases,  however,  what  is  instead  important  is  that  different
uses of the same dummy variable should not conflict. 

Repeated dummy variables  often appear  in  products  of  vectors  and  tensors.  With  the “summation  convention”,  any
vector  or  tensor  index  that  appears  exactly  twice  is  summed  over  all  its  possible  values.  The  actual  name  of  the
repeated  index  never  matters,  but  if  there  are  two  separate  repeated  indices,  it  is  essential  that  their  names  do  not
conflict. 

This sets up the repeated index j as a dummy variable. 

In[5]:= q[i_] := Module[{j}, a[i, j] b[j]]

The module gives different instances of the dummy variable different names. 

In[6]:= q[i1] q[i2]

Out[6]= a@i1, j$387D a@i2, j$388D b@j$387D b@j$388D

There  are  many  situations  in  mathematics  where  you  need  to  have  variables  with  unique  names.  One  example  is  in
representing solutions to equations. With an equation like sin HxL = 0, there are an infinite number of solutions, each of
the form x = n p , where n  is a dummy variable that can be equal to any integer. If you generate solutions to the equa-
tion on two separate occasions, there is no guarantee that the value of n  should be the same in both cases. As a result,
you must set up the solution so that the object n  is different every time. 

This defines a value for sinsol, with n as a dummy variable. 

In[7]:= sinsol := Module[{n}, n Pi]

Different occurrences of the dummy variable are distinguished. 

In[8]:= sinsol - sinsol

Out[8]= n$389 π − n$390 π

Another  place where  unique objects are needed is in representing “constants  of  integration”.  When you do an inte-
gral,  you  are  effectively  solving  an  equation  for  a  derivative.  In  general,  there  are  many  possible  solutions  to  the
equation,  differing  by  additive  “constants  of  integration”.  The  standard  Mathematica  Integrate  function  always
returns a solution with no constant of integration. But if you were to introduce constants of integration, you would need
to use modules to make sure that they are always unique. 

2.7.6 Blocks and Local Values

Modules in Mathematica  allow you to treat the names of variables as local. Sometimes, however, you want the names
to be global, but values to be local. You can do this in Mathematica using Block. 

Block@ 8  x,  y, … <,  body D evaluate  body using local values for  x ,  y , …
Block@ 8  x  =  x0,
 y  =  y0, … <,  body D 

assign initial values to  x ,  y , …

Setting up local values. 
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Here is an expression involving x. 

In[1]:= x^2 + 3

Out[1]= 3 + x2

This evaluates the previous expression, using a local value for x. 

In[2]:= Block[{x = a + 1}, %]

Out[2]= 3 + H1 + aL2

There is no global value for x. 

In[3]:= x

Out[3]= x

As described in the sections above, the variable x in a module such as Module[8x<, body] is always set up to refer to
a unique symbol, different each time the module is used, and distinct from the global symbol x. The x in a block such as
Block[8x<, body] is, however, taken to be the global symbol x. What the block does is to make the value of x local.
The value x had when you entered the block is always restored when you exit the block. And during the execution of
the block, x can take on any value. 

This sets the symbol t to have value 17. 

In[4]:= t = 17

Out[4]= 17

Variables in modules have unique local names. 

In[5]:= Module[{t}, Print[t]]

t$1

In blocks, variables retain their global names, but can have local values. 

In[6]:= Block[{t}, Print[t]]

t

t is given a local value inside the block. 

In[7]:= Block[{t}, t = 6; t^4 + 1]

Out[7]= 1297

When the execution of the block is over, the previous value of t is restored. 

In[8]:= t

Out[8]= 17

Blocks  in  Mathematica  effectively  allow  you  to  set  up  “environments”  in  which  you  can  temporarily  change  the
values of variables. Expressions you evaluate at any point during the execution of a block will use the values currently
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defined for variables in the block. This is true whether the expressions appear directly as part of the body of the block,
or are produced at any point in its evaluation. 

This defines a delayed value for the symbol u. 

In[9]:= u := x^2 + t^2

If you evaluate u outside a block, the global value for t is used. 

In[10]:= u

Out[10]= 289 + x2

You can specify a temporary value for t to use inside the block. 

In[11]:= Block[{t = 5}, u + 7]

Out[11]= 32 + x2

An important implicit use of Block in Mathematica is for iteration constructs such as Do, Sum and Table. Mathemat-
ica effectively uses Block to set up local values for the iteration variables in all of these constructs. 

Sum automatically makes the value of the iterator t local. 

In[12]:= Sum[t^2, {t, 10}]

Out[12]= 385

The local values in iteration constructs are slightly more general than in Block. They handle variables such as a[1], as well as 
pure symbols. 

In[13]:= Sum[a[1]^2, {a[1], 10}]

Out[13]= 385

When you set up functions in Mathematica,  it  is  sometimes convenient  to have “global  variables”  which can affect
the functions without being given explicitly as arguments. Thus, for example, Mathematica  itself has a global variable
$RecursionLimit which affects the evaluation of all functions, but is never explicitly given as an argument. 

Mathematica  will  usually  keep any value you define for  a  global  variable  until  you explicitly change it.  Often,  how-
ever, you want to set up values which last only for the duration of a particular computation, or part of a computation.
You can do this by making the values local to a Mathematica block. 

This defines a function which depends on the “global  variable”  t. 

In[14]:= f[x_] := x^2 + t

In this case, the global value of t is used. 

In[15]:= f[a]

Out[15]= 17 + a2
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Inside a block, you can set up a local value for t. 

In[16]:= Block[{t = 2}, f[b]]

Out[16]= 2 + b2

You can use global variables not only to set parameters in functions, but also to accumulate results from functions. By
setting up such variables to be local to a block, you can arrange to accumulate results only from functions called during
the execution of the block. 

This function increments the global variable t, and returns its current value. 

In[17]:= h[x_] := (t += x^2)

If you do not use a block, evaluating h[a] changes the global value of t. 

In[18]:= h[a]

Out[18]= 17 + a2

With a block, only the local value of t is affected. 

In[19]:= Block[{t = 0}, h[c]]

Out[19]= c2

The global value of t remains unchanged. 

In[20]:= t

Out[20]= 17 + a2

When you enter a block such as Block[8x<, body], any value for x is removed. This means that you can in principle
treat  x  as  a  “symbolic  variable”  inside  the  block.  However,  if  you  explicitly  return  x  from  the  block,  it  will  be
replaced by its value outside the block as soon as it is evaluated. 

The value of t is removed when you enter the block. 

In[21]:= Block[{t}, Print[Expand[(t + 1)^2]]]

1 + 2 t + t2

If you return an expression involving t, however, it is evaluated using the global value for t. 

In[22]:= Block[{t}, t^2 - 3]

Out[22]= −3 + H17 + a2L2

2.7.7 Blocks Compared with Modules

When you write a program in Mathematica,  you should always try to set it  up so that  its parts  are as independent  as
possible. In this way, the program will be easier for you to understand, maintain and add to. 

16 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



One of the main ways to ensure that different parts of a program do not interfere is to give their variables only a certain
“scope”.  Mathematica provides two basic mechanisms for limiting the scope of variables: modules and blocks. 

In writing actual programs, modules are far more common than blocks. When scoping is needed in interactive calcula-
tions, however, blocks are often convenient. 

Module@ vars,  body D lexical scoping
Block@ vars,  body D dynamic scoping

Mathematica variable scoping mechanisms. 

Most traditional computer languages use a so-called “lexical  scoping”  mechanism for variables, which is analogous to
the  module  mechanism  in  Mathematica.  Some  symbolic  computer  languages  such  as  LISP  also  allow  “dynamic
scoping”,  analogous to Mathematica blocks. 

When lexical scoping is used, variables are treated as local to a particular section of the code in a program. In dynamic
scoping, the values of variables are local to a part of the execution history of the program. 

In  compiled  languages  like  C  and  Java,  there  is  a  very  clear  distinction  between  “code”  and  “execution  history”.
The symbolic nature of Mathematica  makes this distinction slightly less clear, since “code”  can in principle be built
up dynamically during the execution of a program. 

What Module[vars, body] does is to treat the form of the expression body at the time when the module is executed
as the “code”  of a Mathematica  program. Then when any of the vars explicitly appears in this “code”,  it is consid-
ered to be local. 

Block[vars, body] does not look at the form of the expression body. Instead, throughout the evaluation of body, the
block uses local values for the vars. 

This defines m in terms of i. 

In[1]:= m = i^2

Out[1]= i2

The local value for i in the block is used throughout the evaluation of i + m. 

In[2]:= Block[{i = a}, i + m]

Out[2]= a + a2

Here only the i that appears explicitly in i + m is treated as a local variable. 

In[3]:= Module[{i = a}, i + m]

Out[3]= a + i2

2.7.8 Contexts

It  is  always  a  good  idea  to  give  variables  and  functions  names that  are  as  explicit  as  possible.  Sometimes, however,
such names may get inconveniently long. 

In  Mathematica,  you  can  use  the  notion  of  “contexts”  to  organize  the  names  of  symbols.  Contexts  are  particularly
important in Mathematica  packages which introduce symbols whose  names must not conflict with those of any other
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symbols. If you write Mathematica packages, or make sophisticated use of packages that others have written, then you
will need to know about contexts. 

The basic idea is that the full name of any symbol is broken into two parts: a context and a short name. The full name is
written  as  context`short,  where  the  `  is  the  backquote  or  grave  accent  character  (ASCII  decimal  code  96),  called  a
“context  mark”  in Mathematica. 

Here is a symbol with short name x, and context aaaa. 

In[1]:= aaaa`x

Out[1]= aaaa`x

You can use this symbol just like any other symbol. 

In[2]:= %^2 - %

Out[2]= −aaaa`x + aaaa`x2

You can for example define a value for the symbol. 

In[3]:= aaaa`x = 78

Out[3]= 78

Mathematica treats a`x and b`x as completely different symbols. 

In[4]:= a`x == b`x

Out[4]= a`x b`x

It is typical to have all the symbols that relate a particular topic in a particular context. Thus, for example, symbols that
represent physical units might have a context PhysicalUnits`. Such symbols might have full names like Physi
calUnits`Joule or PhysicalUnits`Mole. 

Although you can always refer to a symbol by its full name, it is often convenient to use a shorter name. 

At any given point in a Mathematica  session, there is always a current context $Context. You can refer to symbols
that are in this context simply by giving their short names. 

The default context for Mathematica sessions is Global`. 

In[5]:= $Context

Out[5]= Global`

Short names are sufficient for symbols that are in the current context. 

In[6]:= {x, Global`x}

Out[6]= 8x, x<

Contexts  in  Mathematica  work  somewhat  like  file  directories  in  many operating  systems.  You  can  always  specify  a
particular  file  by  giving  its  complete  name,  including  its  directory.  But  at  any  given  point,  there  is  usually  a  current
working directory, analogous to the current Mathematica  context. Files that are in this directory can then be specified
just by giving their short names. 
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Like directories  in  many operating systems, contexts  in  Mathematica  can  be hierarchical.  Thus,  for  example,  the full
name of a symbol can involve a sequence of context names, as in c1`c2`c3`name. 

context ` name  or  c1  ` c2  ` … ` name a symbol in an explicitly specified context
` name a symbol in the current context

` context ` name 
 or  ` c1  ` c2  `  … ` name 

a symbol in a specific context relative to the current context

name a symbol in the current
context, or found on the context search path

Specifying symbols in various contexts. 

Here is a symbol in the context a`b`. 

In[7]:= a`b`x

Out[7]= a`b`x

When  you  start  a  Mathematica  session,  the  default  current  context  is  Global`.  Symbols  that  you  introduce  will
usually be in this context. However, built-in symbols such as Pi are in the context System`. 

In  order  to  let  you easily  access  not  only  symbols  in  the context  Global`,  but  also  in  contexts  such as  System`,
Mathematica  supports  the  notion  of  a  context  search  path.  At  any  point  in  a  Mathematica  session,  there  is  both  a
current context $Context, and also a current context search path $ContextPath. The idea of the search path is to
allow you  to  type  in  the  short  name of  a  symbol,  then  have  Mathematica  search  in  a  sequence  of  contexts  to  find  a
symbol with that short name. 

The context search path for symbols in Mathematica  is analogous to the “search  path”  for program files provided in
operating systems such as Unix and MS-DOS. 

The default context path includes the contexts for system-defined symbols. 

In[8]:= $ContextPath

Out[8]= 8Global`, System`<

When you type in Pi, Mathematica interprets it as the symbol with full name System`Pi. 

In[9]:= Context[Pi]

Out[9]= System`

Context@ s D the context of a symbol
$Context the current context in a  Mathematica session

$ContextPath the current context search path
Contexts@  D a list of all contexts

Finding contexts and context search paths. 

When  you  use  contexts  in  Mathematica,  there  is  no  reason  that  two  symbols  which  are  in  different  contexts  cannot
have  the  same short  name.  Thus,  for  example,  you  can have  symbols with  the  short  name Mole  both  in  the  context
PhysicalUnits` and in the context BiologicalOrganisms`. 
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There is,  however,  then the question of  which symbol you actually get  when you type in only the short  name Mole.
The answer to this question is determined by which of the contexts comes first in the sequence of contexts listed in the
context search path. 

This introduces two symbols, both with short name Mole. 

In[10]:= {PhysicalUnits`Mole, BiologicalOrganisms`Mole}

Out[10]= 8PhysicalUnits`Mole, BiologicalOrganisms`Mole<

This adds two additional contexts to $ContextPath. 

In[11]:= $ContextPath = Join[$ContextPath, {"PhysicalUnits`", "BiologicalOrganisms`"}]

Out[11]= 8Global`, System`, PhysicalUnits`, BiologicalOrganisms`<

Now if you type in Mole, you get the symbol in the context PhysicalUnits`.

In[12]:= Context[Mole]

Out[12]= PhysicalUnits`

In  general,  when  you  type  in  a  short  name  for  a  symbol,  Mathematica  assumes  that  you  want  the  symbol  with  that
name whose context appears earliest in the context search path. As a result, symbols with the same short name whose
contexts  appear  later  in  the context  search path are  effectively “shadowed”.  To refer  to  these symbols,  you need to
use their full names. 

Mathematica  always warns you when you introduce new symbols that “shadow”  existing symbols with your current
choice for $ContextPath. If you use a notebook front end, Mathematica  will typically let you select in such cases
which symbol you want to keep. 

This introduces a symbol with short name Mole in the context Global`. Mathematica warns you that the new symbol shadows 
existing symbols with short name Mole. 

In[13]:= Global`Mole

Mole::shdw :  Symbol Mole appears in multiple contexts
8Global`, PhysicalUnits`, BiologicalOrganisms`<; definitions in
context Global` may shadow or be shadowed by other definitions.

Out[13]= Mole

Now when you type in Mole, you get the symbol in context Global`. 

In[14]:= Context[Mole]

Out[14]= Global`

If  you once  introduce  a  symbol which  shadows  existing symbols,  it  will  continue to do  so until  you either  rearrange
$ContextPath, or explicitly remove the symbol. You should realize that it is not sufficient to clear the value of the
symbol;  you  need  to  actually  remove  the  symbol  completely from Mathematica.  You  can  do  this  using  the  function
Remove[s]. 
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Clear@ s D clear the values of a symbol
Remove@ s D remove a symbol completely from the system

Clearing and removing symbols in Mathematica. 

This removes the symbol Global`Mole. 

In[15]:= Remove[Mole]

Now if you type in Mole, you get the symbol PhysicalUnits`Mole. 

In[16]:= Context[Mole]

Out[16]= PhysicalUnits`

When Mathematica  prints  out the name of  a symbol, it has to choose whether  to give the full  name, or  just  the short
name. What  it  does  is  to  give  whatever  version  of  the name you would  have  to  type in  to  get  the particular  symbol,
given your current settings for $Context and $ContextPath. 

The short name is printed for the first symbol, so this would give that symbol if you typed it in. 

In[17]:= {PhysicalUnits`Mole, BiologicalOrganisms`Mole}

Out[17]= 8Mole, BiologicalOrganisms`Mole<

If you type in a short name for which there is no symbol either in the current context, or in any context on the context
search path, then Mathematica  has to create a new symbol with this name. It always puts new symbols of this kind in
the current context, as specified by $Context. 

This introduces the new symbol with short name tree. 

In[18]:= tree

Out[18]= tree

Mathematica puts tree in the current context Global`. 

In[19]:= Context[tree]

Out[19]= Global`

2.7.9 Contexts and Packages

A typical package written in Mathematica introduces several new symbols intended for use outside the package. These
symbols may correspond for example to new functions or new objects defined in the package. 

There  is  a  general  convention  that  all  new  symbols  introduced  in  a  particular  package  are  put  into  a  context  whose
name is related to the name of the package. When you read in the package, it adds this context at the beginning of your
context search path $ContextPath. 

This reads in a package for finding Padé approximants. 

In[1]:= <<Calculus`Pade`
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The package prepends its context to $ContextPath. 

In[2]:= $ContextPath

Out[2]= 8Calculus`Pade`, Global`, System`<

The symbol Pade is in the context set up by the package. 

In[3]:= Context[Pade]

Out[3]= Calculus`Pade`

You can refer to the symbol using its short name. 

In[4]:= Pade[Exp[x], {x, 0, 2, 4}]

Out[4]= 
1 + x

3 + x2
30

1 − 2 x
3 + x2

5 − x3
30 + x4

360

The full names of symbols defined in packages are often quite long. In most cases, however, you will only need to use
their short names. The reason for this is that after you have read in a package, its context is added to $ContextPath,
so the context is automatically searched whenever you type in a short name. 

There is  a  complication,  however,  when two symbols with the same short  name appear  in two different packages.  In
such a case, Mathematica  will warn you when you read in the second package. It will tell you which symbols will be
“shadowed”  by the new symbols that are being introduced. 

The symbol Pade in the context Calculus`Pade` is shadowed by the symbol with the same short name in the new package. 

In[5]:= <<NewPade`

Pade::shdw :  

Symbol Pade appears in multiple contexts 8NewPade`, Calculus`Pade`<; definitions
in context NewPade` may shadow or be shadowed by other definitions.

You can access the shadowed symbol by giving its full name. 

In[6]:= Calculus`Pade`Pade[Exp[x], {x, 0, 2, 4}]

Out[6]= 
1 + x

3 + x2
30

1 − 2 x
3 + x2

5 − x3
30 + x4

360

Conflicts can occur not only between symbols in different packages, but also between symbols in packages and sym-
bols that you introduce directly in your Mathematica  session. If you define a symbol in your current context, then this
symbol will shadow any other symbol with the same short name in packages that you read in. The reason for this is that
Mathematica always searches for symbols in the current context before looking in contexts on the context search path. 

This defines a function in the current context. 

In[7]:= Div[f_] = 1/f

Out[7]= 
1
f
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Any other functions with short name Div will be shadowed by the one in your current context. 

In[8]:= <<Calculus`VectorAnalysis`

Div::shdw :  Symbol Div appears in multiple contexts
8Calculus`VectorAnalysis ,̀ Global`<; definitions in context
Calculus`VectorAnalysis` may shadow or be shadowed by other definitions.

This sets up the coordinate system for vector analysis. 

In[9]:= SetCoordinates[Cartesian[x, y, z]]

Out[9]= Cartesian@x, y, zD

This removes Div completely from the current context. 

In[10]:= Clear[Div]; Remove[Div]

Now the Div from the package is used. 

In[11]:= Div[{x, y^2, x}]

Out[11]= 1 + 2 y

If  you  get  into  the  situation  where  unwanted  symbols  are  shadowing  the  symbols  you  want,  the  best  thing  to  do  is
usually  to  get  rid  of  the  unwanted  symbols  using  Remove[s].  An  alternative  that  is  sometimes  appropriate  is  to
rearrange the entries in $ContextPath and to reset the value of $Context so as to make the contexts that contain
the symbols you want be the ones that are searched first. 

$Packages a list of the contexts corresponding to
all packages loaded into your  Mathematica session

Getting a list of packages. 

2.7.10 Setting Up Mathematica Packages

In a typical Mathematica package, there are generally two kinds of new symbols that are introduced. The first kind are
ones  that  you  want  to  “export”  for  use  outside  the  package.  The  second  kind  are  ones  that  you  want  to  use  only
internally within the package. You can distinguish these two kinds of symbols by putting them in different contexts. 

The usual convention is to put symbols intended for export in a context with a name Package` that corresponds to the
name  of  the  package.  Whenever  the  package  is  read  in,  it  adds  this  context  to  the  context  search  path,  so  that  the
symbols in this context can be referred to by their short names. 

Symbols that are not intended for export, but are instead intended only for internal use within the package, are conven-
tionally put into a context with the name Package`Private`. This context is not added to the context search path. As
a result, the symbols in this context cannot be accessed except by giving their full names. 
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Package ` symbols for export
Package `Private` symbols for internal use only

System` built-in  Mathematica symbols
Needed1  ` ,  Needed2  ` , … other contexts needed in the package

Contexts conventionally used in Mathematica packages. 

There  is  a  standard  sequence  of  Mathematica  commands  that  is  typically  used  to  set  up  the  contexts  in  a  package.
These commands set the values of $Context and $ContextPath so that the new symbols which are introduced are
created in the appropriate contexts. 

BeginPackage@" Package `"D set  Package ` to be the current context, and put only  
System` on the context search path

f  ::usage  =  " text " , … introduce the objects intended for export Hand no othersL
Begin@"`Private`"D set the current context to  Package `Private` 

f  @ args D  =  value , … give the main body of definitions in the package
End@  D revert to the previous context Hhere  Package ` L

EndPackage@  D end the package, prepending the  
Package ` to the context search path

The standard sequence of context control commands in a package. 

BeginPackage["Collatz`"]

Collatz::usage =
        "Collatz[n] gives a list of the iterates in the 3n+1 problem,
        starting from n. The conjecture is that this sequence always
        terminates."

Begin["`Private`"]

Collatz[1] := {1}

Collatz[n_Integer]  := Prepend[Collatz[3 n + 1], n] /; OddQ[n] && n > 0

Collatz[n_Integer] := Prepend[Collatz[n/2], n] /; EvenQ[n] && n > 0

End[ ]

EndPackage[ ]

The sample package Collatz.m. 

Defining usage messages at the beginning of a package is the standard way of making sure that symbols you want to
export are created in the appropriate context. The way this works is that in defining these messages, the only symbols
you mention are exactly the ones you want to export. These symbols are then created in the context Package`, which is
then current. 

In the actual definitions of the functions in a package, there are typically many new symbols, introduced as parameters,
temporary variables, and so on. The convention is to put all these symbols in the context Package`Private`, which
is not put on the context search path when the package is read in. 

24 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



This reads in the sample package given above. 

In[1]:= <<Collatz.m

The EndPackage command in the package adds the context associated with the package to the context search path. 

In[2]:= $ContextPath

Out[2]= 8Collatz`, Global`, System`<

The Collatz function was created in the context Collatz`. 

In[3]:= Context[Collatz]

Out[3]= Collatz`

The parameter n is put in the private context Collatz`Private`. 

In[4]:= ?Collatz`Private`*

Collatz`Private`n

In the Collatz package, the functions that are defined depend only on built-in Mathematica  functions. Often, how-
ever, the functions defined in one package may depend on functions defined in another package. 

Two things  are  needed  to  make this  work.  First,  the  other  package must  be  read  in,  so that  the  functions  needed  are
defined. And second, the context search path must include the context that these functions are in. 

You can explicitly tell Mathematica  to read in a package at any point using the command <<context`. (Section 2.12.5
discusses  the  tricky  issue  of  translation  from  system-independent  context  names  to  system-dependent  file  names.)
Often,  however,  you  want  to  set  it  up  so  that  a  particular  package  is  read  in  only  if  it  is  needed.  The  command
Needs["context`"] tells Mathematica  to read in a package if the context associated with that package is not already
in the list $Packages. 

Get@" context `"D  or  << context ` read in the package corresponding to the specified context
Needs@" context `"D read in the package if the specified context is not already in  

$Packages 

BeginPackage@" Package 
`",  8  " Needed1  `", … <  D 

begin a package, specifying that certain contexts in addition to  
System` are needed

Functions for specifying interdependence of packages. 

If you use BeginPackage["Package`"] with a single argument, Mathematica puts on the context search path only
the Package`  context and the contexts for built-in Mathematica  symbols. If  the definitions you give in your package
involve functions  from other  packages,  you must make sure that  the contexts  for  these packages  are also included in
your context search path. You can do this by giving a list of the additional contexts as a second argument to Begin
Package.  BeginPackage  automatically calls  Needs  on  these  contexts,  reading  in  the  corresponding  packages  if
necessary, and then making sure that the contexts are on the context search path. 

Begin@" context `"D switch to a new current context
End@  D revert to the previous context

Context manipulation functions. 
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Executing a function like Begin which manipulates contexts changes the way that Mathematica  interprets names you
type in. However, you should realize that the change is effective only in subsequent expressions that you type in. The
point is that Mathematica always reads in a complete input expression, and interprets the names in it, before it executes
any  part  of  the  expression.  As  a  result,  by  the  time  Begin  is  executed  in  a  particular  expression,  the  names  in  the
expression have already been interpreted, and it is too late for Begin to have an effect. 

The fact that context manipulation functions do not have an effect until the next complete expression is read in means
that  you  must  be  sure  to  give  those  functions  as  separate  expressions,  typically  on  separate  lines,  when  you  write
Mathematica packages. 

The name x is interpreted before this expression is executed, so the Begin has no effect. 

In[5]:= Begin["a`"]; Print[Context[x]]; End[ ]

Global`

Out[5]= a`

Context  manipulation functions  are  used primarily as  part  of  packages  intended to be read into Mathematica.  Some-
times, however, you may find it convenient to use such functions interactively. 

This can happen, for example, if you go into a dialog, say using TraceDialog, while executing a function defined in
a package. The parameters and temporary variables in the function are typically in a private context associated with the
package. Since this context is not on your context search path, Mathematica  will print out the full names of the sym-
bols, and will require you to type in these full names in order to refer to the symbols. You can however use Begin["-
Package`Private`"] to make the private context of the package your current context. This will make Mathematica
print out short names for the symbols, and allow you to refer to the symbols by their short names.

2.7.11 Automatic Loading of Packages

Previous sections have discussed explicit loading of  Mathematica  packages using <<package  and Needs[package].
Sometimes, however, you may want to set Mathematica up so that it automatically loads a particular package when the
package is needed. 

You can use DeclarePackage to give the names of symbols which are defined in a particular package. Then, when
one of these symbols is actually used, Mathematica will automatically load the package where the symbol is defined. 

DeclarePackage@" context `", 

 8  " name1  ",  " name2  ",  … <  D 

declare that a package should automatically be
loaded if a symbol with any of the names  namei  is used

Arranging for automatic loading of packages. 

This specifies that the symbols Div, Grad and Curl are defined in Calculus`VectorAnalysis`. 

In[1]:= DeclarePackage["Calculus`VectorAnalysis`", {"Div", "Grad", "Curl"}]

Out[1]= Calculus`VectorAnalysis`

When you first use Grad, Mathematica automatically loads the package that defines it. 

In[2]:= Grad[x^2 + y^2, Cartesian[x, y, z]]

Out[2]= 82 x, 2 y, 0<
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When you set  up a large collection of  Mathematica  packages,  it  is  often a good idea to create an additional  “names
file”  which  contains  a  sequence  of  DeclarePackage  commands,  specifying  packages  to  load  when  particular
names are used. Within a particular Mathematica  session, you then need to load explicitly only the names file. When
you have done this, all the other packages will automatically be loaded if and when they are needed. 

DeclarePackage  works  by  immediately  creating  symbols  with  the  names  you  specify,  but  giving  each  of  these
symbols the special attribute Stub.  Whenever  Mathematica  finds a  symbol with the Stub  attribute,  it  automatically
loads the package corresponding to the context of the symbol, in an attempt to find the definition of the symbol. 

2.7.12 Manipulating Symbols and Contexts by Name

Symbol@" name "D construct a symbol with a given name
SymbolName@ symb D find the name of a symbol

Converting between symbols and their names. 

Here is the symbol x. 

In[1]:= x // InputForm

Out[1]//InputForm= 

x

Its name is a string. 

In[2]:= SymbolName[x] // InputForm

Out[2]//InputForm= 

"x"

This gives the symbol x again. 

In[3]:= Symbol["x"] // InputForm

Out[3]//InputForm= 

x

Once  you  have  made  an  assignment  such  as  x  =  2,  then  whenever  x  is  evaluated,  it  is  replaced  by  2.  Sometimes,
however, you may want to continue to refer to x itself, without immediately getting the value of x. 

You can do this by referring to x by name. The name of the symbol x is the string "x", and even though x itself may
be replaced by a value, the string "x" will always stay the same. 

The names of the symbols x and xp are the strings "x" and "xp". 

In[4]:= t = {SymbolName[x], SymbolName[xp]} // InputForm

Out[4]//InputForm= 

{"x", "xp"}
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This assigns a value to x. 

In[5]:= x = 2

Out[5]= 2

Whenever you enter x it is now replaced by 2. 

In[6]:= {x, xp} // InputForm

Out[6]//InputForm= 

{2, xp}

The name "x" is not affected, however. 

In[7]:= t // InputForm

Out[7]//InputForm= 

InputForm[{"x", "xp"}]

NameQ@" form "D test whether any symbol has a name which matches  form 
Names@" form "D give a list of all symbol names which match  form 

Contexts@" form `"D give a list of all context names which match  form 

Referring to symbols and contexts by name. 

x and xp are symbols that have been created in this Mathematica session; xpp is not. 

In[8]:= {NameQ["x"], NameQ["xp"], NameQ["xpp"]}

Out[8]= 8True, True, False<

You can specify the form of symbol names using string patterns  of the kind discussed in Section 2.8.3. "x*" stands,
for example, for all names that start with x. 

This gives a list of all symbol names in this Mathematica session that begin with x. 

In[9]:= Names["x*"] // InputForm

Out[9]//InputForm= 

{"x", "xp"}

These names correspond to built-in functions in Mathematica. 

In[10]:= Names["Qu*"] // InputForm

Out[10]//InputForm= 

{"Quantile", "Quartics", "QuasiMonteCarlo",   "QuasiNewton", "Quit", "Quotient"}

This asks for names “close”  to WeierstrssP. 

In[11]:= Names["WeierstrssP", SpellingCorrection->True]

Out[11]= 8WeierstrassP<
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Clear@" form "D clear the values of all symbols whose names match  form 
Clear@" context `∗"D clear the values of all symbols in the specified context

Remove@" form "D remove completely all symbols whose names match  form 
Remove@" context `∗"D remove completely all symbols in the specified context

Getting rid of symbols by name. 

This clears the values of all symbols whose names start with x. 

In[12]:= Clear["x*"]

The name "x" is still known, however. 

In[13]:= Names["x*"]

Out[13]= 8x, xp<

But the value of x has been cleared. 

In[14]:= {x, xp}

Out[14]= 8x, xp<

This removes completely all symbols whose names start with x. 

In[15]:= Remove["x*"]

Now not even the name "x" is known. 

In[16]:= Names["x*"]

Out[16]= 8<

Remove@"Global`∗"D remove completely all symbols in the  Global` context

Removing all symbols you have introduced. 

If you do not set up any additional contexts, then all the symbols that you introduce in a Mathematica  session will be
placed in the Global` context. You can remove these symbols completely using Remove["Global`*"]. Built-in
Mathematica objects are in the System` context, and are thus unaffected by this.  

2.7.13 Advanced Topic: Intercepting the Creation of New Symbols

Mathematica  creates a new symbol when you first  enter a particular name. Sometimes it is useful to “intercept”  the
process of creating a new symbol. Mathematica provides several ways to do this. 

On@General::newsymD print a message whenever a new symbol is created
Off@General::newsymD switch off the message printed when new symbols are created

Printing a message when new symbols are created. 
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This tells Mathematica to print a message whenever a new symbol is created. 

In[1]:= On[General::newsym]

Mathematica now prints a message about each new symbol that it creates. 

In[2]:= sin[k]

General::newsym :  Symbol sin is new.

General::newsym :  Symbol k is new.

Out[2]= sin@kD

This switches off the message. 

In[3]:= Off[General::newsym]

Generating a message when Mathematica creates a new symbol is often a good way to catch typing mistakes. Mathemat-
ica  itself cannot tell the difference between an intentionally new name, and a misspelling of a name it already knows.
But by reporting all new names it encounters, Mathematica allows you to see whether any of them are mistakes. 

$NewSymbol a function to be applied to the name
and context of new symbols which are created

Performing operations when new symbols are created. 

When Mathematica  creates  a  new symbol,  you may want  it  not  just  to  print  a  message, but  instead to perform some
other action. Any function you specify as the value of the global variable $NewSymbol will automatically be applied
to strings giving the name and context of each new symbol that Mathematica creates. 

This defines a function to be applied to each new symbol which is created. 

In[4]:= $NewSymbol = Print["Name: ", #1, " Context: ", #2]&

Out[4]= Print@Name: , #1, Context: , #2D &

The function is applied once to v and once to w. 

In[5]:= v + w

Name: v Context: Global`

Name: w Context: Global`

Out[5]= v + w
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2.8 Strings and Characters

2.8.1 Properties of Strings

Much of what Mathematica does revolves around manipulating structured expressions. But you can also use Mathemat-
ica as a system for handling unstructured strings of text.  

" text " a string containing arbitrary text

Text strings. 

When you input  a  string  of  text  to  Mathematica  you must always  enclose  it  in  quotes.  However,  when Mathematica
outputs the string it usually does not explicitly show the quotes.  

You can see the quotes by asking for the input form of the string. In addition, in a Mathematica  notebook, quotes will
typically appear automatically as soon as you start to edit a string. 

When Mathematica outputs a string, it usually does not explicitly show the quotes. 

In[1]:= "This is a string."

Out[1]= This is a string.

You can see the quotes, however, by asking for the input form of the string. 

In[2]:= InputForm[%]

Out[2]//InputForm= 

"This is a string."

The fact that Mathematica does not usually show explicit quotes around strings makes it possible for you to use strings
to specify quite directly the textual output you want. 

The strings are printed out here without explicit quotes. 

In[3]:= Print["The value is ", 567, "."]

The value is 567.

You should understand, however, that even though the string "x" often appears as x in output, it is still a quite differ-
ent object from the symbol x. 

The string "x" is not the same as the symbol x. 

In[4]:= "x" === x

Out[4]= False

You  can  test  whether  any  particular  expression  is  a  string  by  looking  at  its  head.  The  head  of  any  string  is  always
String. 
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All strings have head String. 

In[5]:= Head["x"]

Out[5]= String

The pattern _String matches any string. 

In[6]:= Cases[{"ab", x, "a", y}, _String]

Out[6]= 8ab, a<

You can  use  strings  just  like  other  expressions  as  elements  of  patterns  and  transformations.  Note,  however,  that  you
cannot assign values directly to strings. 

This gives a definition for an expression that involves a string. 

In[7]:= z["gold"] = 79

Out[7]= 79

This replaces each occurrence of the string "aa" by the symbol x. 

In[8]:= {"aaa", "aa", "bb", "aa"} /. "aa" -> x

Out[8]= 8aaa, x, bb, x<

2.8.2 Operations on Strings

Mathematica  provides  a  variety  of  functions  for  manipulating  strings.  Most  of  these  functions  are  based  on  viewing
strings as a sequence of characters, and many of the functions are analogous to ones for manipulating lists. 

s1   <>  s2   <> … or  
StringJoin@ 8  s1 ,  s2, … <  D 

join several strings together

StringLength@ s D give the number of characters in a string
StringReverse@ s D reverse the characters in a string

Operations on complete strings. 

You can join together any number of strings using <>. 

In[1]:= "aaaaaaa" <> "bbb" <> "cccccccccc"

Out[1]= aaaaaaabbbcccccccccc

StringLength gives the number of characters in a string. 

In[2]:= StringLength[%]

Out[2]= 20
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StringReverse reverses the characters in a string. 

In[3]:= StringReverse["A string."]

Out[3]= .gnirts A

StringTake@ s,  n D make a string by taking the first  n characters from  s 
StringTake@ s,  8  n <  D take the  n th  character from  s 

StringTake@ s,  8  n1,  n2  <  D take characters  n1  through  n2  
StringDrop@ s,  n D make a string by dropping the first  n characters in  s 

StringDrop@ s,  8  n1,  n2  <  D drop characters  n1  through  n2  

Taking and dropping substrings. 

StringTake and StringDrop are the analogs for strings of Take and Drop for lists. Like Take and Drop, they
use  standard  Mathematica  sequence  specifications,  so  that,  for  example,  negative  numbers  count  character  positions
from the end of a string. Note that the first character of a string is taken to have position 1. 

Here is a sample string. 

In[4]:= alpha = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

Out[4]= ABCDEFGHIJKLMNOPQRSTUVWXYZ

This takes the first five characters from alpha. 

In[5]:= StringTake[alpha, 5]

Out[5]= ABCDE

Here is the fifth character in alpha. 

In[6]:= StringTake[alpha, {5}]

Out[6]= E

This drops the characters 10 through 2, counting from the end of the string. 

In[7]:= StringDrop[alpha, {-10, -2}]

Out[7]= ABCDEFGHIJKLMNOPZ

StringInsert@ s,  snew,  n D insert the string  snew at position  n in  s 
StringInsert@ s,
 snew,  8  n1,  n2, … <  D 

insert several copies of  snew into  s 

Inserting into a string. 

StringInsert[s, snew, n] is set up to produce a string whose nth  character is the first character of snew. 
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This produces a new string whose fourth character is the first character of the string "XX". 

In[8]:= StringInsert["abcdefgh", "XX", 4]

Out[8]= abcXXdefgh

Negative positions are counted from the end of the string. 

In[9]:= StringInsert["abcdefgh", "XXX", -1]

Out[9]= abcdefghXXX

Each copy of "XXX" is inserted at the specified position in the original string. 

In[10]:= StringInsert["abcdefgh", "XXX", {2, 4, -1}]

Out[10]= aXXXbcXXXdefghXXX

StringReplacePart@ 

s,  snew,  8  m,  n <  D 

replace the characters at positions  
m through  n in  s by the string  snew 

StringReplacePart@ s,  snew,
 8  8  m1,  n1  <,  8  m2,  n2  <, … <  D 

replace several substrings in  s by  snew 

StringReplacePart@ 

s,  8  snew1,  snew2, … <,  8  8  
m1,  n1  <,  8  m2,  n2  <, … <  D 

replace substrings in  s by the corresponding  snewi  

Replacing parts of a string. 

This replaces characters 2 through 6 by the string "XXX". 

In[11]:= StringReplacePart["abcdefgh", "XXX", {2, 6}]

Out[11]= aXXXgh

This replaces two runs of characters by the string "XXX". 

In[12]:= StringReplacePart["abcdefgh", "XXX", {{2, 3}, {5, -1}}]

Out[12]= aXXXdXXX

Now the two runs of characters are replaced by different strings. 

In[13]:= StringReplacePart["abcdefgh", {"XXX", "YYYY"}, {{2, 3}, {5, -1}}]

Out[13]= aXXXdYYYY

StringPosition@ s,  sub D give a list of the starting and ending positions at which  
sub appears as a substring of  s 

StringPosition@ s,  sub,  k D include only the first  k occurrences of  sub in  s 
StringPosition@ 

s,  8  sub1,  sub2, … <  D 

include occurrences of any of the  subi  

Finding positions of substrings. 
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You can use StringPosition  to  find  where  a particular  substring  appears  within a given string.  StringPosi
tion returns a list, each of whose elements corresponds to an occurrence of the substring. The elements consist of lists
giving the starting and ending character positions for the substring. These lists are in the form used as sequence specifi-
cations in StringTake, StringDrop and StringReplacePart. 

This gives a list of the positions of the substring "abc". 

In[14]:= StringPosition["abcdabcdaabcabcd", "abc"]

Out[14]= 881, 3<, 85, 7<, 810, 12<, 813, 15<<

This gives only the first occurrence of "abc". 

In[15]:= StringPosition["abcdabcdaabcabcd", "abc", 1]

Out[15]= 881, 3<<

This shows where both "abc" and "cd" appear. Overlaps between these strings are taken into account. 

In[16]:= StringPosition["abcdabcdaabcabcd", {"abc", "cd"}]

Out[16]= 881, 3<, 83, 4<, 85, 7<, 87, 8<, 810, 12<, 813, 15<, 815, 16<<

StringReplace@ s,  8  s1  
 −>  sp1,  s2   −>  sp2, … <  D 

replace the  si  by the corresponding  
spi  whenever they appear as substrings of  s 

Replacing substrings according to rules. 

StringReplace allows you to perform replacements for substrings within a string. StringReplace sequentially
goes  through  a  string,  testing  substrings  that  start  at  each  successive  character  position.  To each substring,  it  tries  in
turn  each  of  the  transformation  rules  you  have  specified.  If  any  of  the  rules  apply,  it  replaces  the  substring,  then
continues to go through the string, starting at the character position after the end of the substring. 

This replaces all occurrences of the character a by the string XX. 

In[17]:= StringReplace["abcdabcdaabcabcd", "a" -> "XX"]

Out[17]= XXbcdXXbcdXXXXbcXXbcd

This replaces abc by Y, and d by XXX. 

In[18]:= StringReplace["abcdabcdaabcabcd", {"abc" -> "Y", "d" -> "XXX"}]

Out[18]= YXXXYXXXaYYXXX

The first occurrence of cde is not replaced because it overlaps with abc. 

In[19]:= StringReplace["abcde abacde", {"abc" -> "X", "cde" -> "Y"}]

Out[19]= Xde abaY
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StringPosition@ s,  sub,
 IgnoreCase  −>  TrueD 

find where  sub occurs in  s ,
treating lower- and upper-case letters as equivalent

StringReplace@ s,  8  s1   −>  sp1,
… <,  IgnoreCase  −>  TrueD 

replace  si  by  spi  in  s ,
treating lower- and upper-case letters as equivalent

Case-independent operations. 

This replaces all occurrences of "the", independent of case. 

In[20]:= StringReplace["The cat in the hat.", "the" -> "a", IgnoreCase -> True]

Out[20]= a cat in a hat.

Sort@ 8  s1,  s2,  s3, … <  D sort a list of strings

Sorting strings. 

Sort sorts strings into standard dictionary order. 

In[21]:= Sort[{"cat", "fish", "catfish", "Cat"}]

Out[21]= 8cat, Cat, catfish, fish<

2.8.3 String Patterns

You  can  use  the  standard  Mathematica  equality  test  s1  ==  s2  to  test  whether  two  strings  are  identical.  Sometimes,
however, you may want to find out whether a particular string matches a certain string pattern. 

Mathematica  allows  you  to  define  string  patterns  which  consist  of  ordinary  strings  in  which  certain  characters  are
interpreted  as  special  “metacharacters”.  You  can  then  use  the  function  StringMatchQ  to  find  out  whether  a
particular  string  matches  a  string  pattern  you  have  defined.  You  should  realize  however  that  string  patterns  have
nothing to do with the ordinary Mathematica patterns for expressions that were discussed in Section 2.3. 

" string1  "  ==  " string2  " test whether two strings are identical
StringMatchQ@" 

string ",  " pattern "D 

test whether a string matches a particular string pattern

Matching strings. 

The character * can be used in a string pattern as a metacharacter to stand for any sequence of alphanumeric characters.
Thus, for example, the string pattern "a*b"  would match any string which begins with an a,  ends with a b,  and has
any number of alphanumeric characters in between. Similarly, "a*b*" would match any string that starts with a, and
has any number of other characters, including at least one b. 

The string matches the string pattern you have given. 

In[1]:= StringMatchQ["aaaaabbbbcccbbb", "a*b*"]

Out[1]= True
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The  way  *  is  used  in  Mathematica  string  patterns  is  analogous  to  the  way  it  is  used  for  filename  patterns  in  many
operating systems. Mathematica  however provides some other string pattern metacharacters that are tailored to match-
ing different classes of Mathematica symbol names. 

∗ zero or more characters
@ one or more characters which are not upper-case letters

î ∗ etc. literal  ∗ etc.

Metacharacters used in string patterns. 

In Mathematica  there is a general convention that only built-in names should contain upper-case characters. Assuming
that you follow this convention, you can use @ as a metacharacter to set up string patterns which match names you have
defined, but avoid matching built-in names. 

StringMatchQ@" 

string ",  " pattern ",  
SpellingCorrection  −>  TrueD 

test whether  pattern matches  string ,
allowing a small fraction of characters to differ

StringMatchQ@" string ",  " pattern 
",  IgnoreCase  −>  TrueD 

test whether  pattern matches  string ,
treating lower- and upper-case letters as equivalent

Options for matching strings. 

These strings do not match. 

In[2]:= StringMatchQ["platypus", "paltypus"]

Out[2]= False

Allowing for spelling correction, these strings are considered to match. 

In[3]:= StringMatchQ["platypus", "paltypus", SpellingCorrection -> True]

Out[3]= True

These strings match when lower- and upper-case letters are treated as equivalent. 

In[4]:= StringMatchQ["AAaaBBbb", "a*b*", IgnoreCase -> True]

Out[4]= True

2.8.4 Characters in Strings

Characters@" string "D convert a string to a list of characters
StringJoin@ 8  " c1  ",  " c2  ",  … <  D convert a list of characters to a string

Converting between strings and lists of characters. 

This gives a list of the characters in the string. 

In[1]:= Characters["A string."]

Out[1]= 8A, , s, t, r, i, n, g, .<
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You can apply standard list manipulation operations to this list. 

In[2]:= RotateLeft[%, 3]

Out[2]= 8t, r, i, n, g, ., A, , s<

StringJoin converts the list of characters back to a single string. 

In[3]:= StringJoin[%]

Out[3]= tring.A s

DigitQ@ string D test whether all characters in a string are digits
LetterQ@ string D test whether all characters in a string are letters

UpperCaseQ@ string D test whether all characters in a string are upper-case letters
LowerCaseQ@ string D test whether all characters in a string are lower-case letters

Testing characters in a string. 

All characters in the string given are letters. 

In[4]:= LetterQ["Mixed"]

Out[4]= True

Not all the letters are upper case, so the result is False. 

In[5]:= UpperCaseQ["Mixed"]

Out[5]= False

ToUpperCase@ string D generate a string in which all letters are upper case
ToLowerCase@ string D generate a string in which all letters are lower case

Converting between upper and lower case. 

This converts all letters to upper case. 

In[6]:= ToUpperCase["Mixed Form"]

Out[6]= MIXED FORM

CharacterRange@" c1  ",  " c2  "D generate a list of all characters from  c1  and  c2  

Generating ranges of characters. 

This generates a list of lower-case letters in alphabetical order. 

In[7]:= CharacterRange["a", "h"]

Out[7]= 8a, b, c, d, e, f, g, h<
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Here is a list of upper-case letters. 

In[8]:= CharacterRange["T", "Z"]

Out[8]= 8T, U, V, W, X, Y, Z<

Here are some digits. 

In[9]:= CharacterRange["0", "7"]

Out[9]= 80, 1, 2, 3, 4, 5, 6, 7<

CharacterRange  will usually give meaningful results for any range of characters that have a natural ordering. The
way CharacterRange works is by using the character codes that Mathematica internally assigns to every character. 

This shows the ordering defined by the internal character codes used by Mathematica. 

In[10]:= CharacterRange["T", "e"]

Out[10]= 8T, U, V, W, X, Y, Z, @, \, D, ^, _, `, a, b, c, d, e<

2.8.5 Special Characters

In addition to the ordinary characters that appear on a standard keyboard, you can include in Mathematica  strings any
of the special characters that are supported by Mathematica. 

Here is a string containing special characters. 

In[1]:= "α⊕β⊕…"

Out[1]= α⊕β⊕…

You can manipulate this string just as you would any other. 

In[2]:= StringReplace[%, "⊕" -> " üü "]

Out[2]= α üü β üü …

Here is the list of the characters in the string. 

In[3]:= Characters[%]

Out[3]= 8α, , ü, ü, , β, , ü, ü, , …<

In a Mathematica notebook, a special character such as a  can always be displayed directly. But if you use a text-based
interface, then typically the only characters that can readily be displayed are the ones that appear on your keyboard. 

As  a  result,  what  Mathematica  does  in  such  situations  is  to  try  to  approximate  special  characters  by  similar-looking
sequences  of  ordinary characters.  And when this  is  not  practical,  Mathematica  just  gives  the full  name of  the special
character. 
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In a Mathematica notebook using StandardForm, special characters can be displayed directly. 

In[4]:= "Lamé  αβ+"

Out[4]= Lamé αβ+

In OutputForm, however, the special characters are approximated when possible by sequences of ordinary ones. 

In[5]:= % // OutputForm

Out[5]//OutputForm= 

"Lamé  αβ+"

Out[5]//OutputForm= 
"Lamé  αβ+"

Mathematica  always  uses  full  names for  special  characters  in  InputForm.  This  means that  when special  characters
are written out to files or external programs, they are by default represented purely as sequences of ordinary characters. 

This uniform representation is crucial in allowing special characters in Mathematica  to be used in a way that does not
depend on the details of particular computer systems. 

In InputForm the full names of all special characters are always written out explicitly. 

In[6]:= "Lamé  αβ+" // InputForm

Out[6]//InputForm= 

"Lamé  αβ+"

a a literal character
î @ Name D a character specified using its full name

î " a  " to be included in a string
îî a î to be included in a string

Ways to enter characters in a string. 

You have to use î to “escape”  any " or î characters in strings that you enter. 

In[7]:= "Strings can contain \"quotes\" and \\ characters."

Out[7]= Strings can contain "quotes" and \ characters.

îî produces a literal î rather than forming part of the specification of a . 

In[8]:= "\\[Alpha] is \[Alpha]."

Out[8]= \[Alpha] is α.

This breaks the string into a list of individual characters. 

In[9]:= Characters[%]

Out[9]= 8\, @, A, l, p, h, a, D, , i, s, , α, .<
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This creates a list of the characters in the full name of a . 

In[10]:= Characters[ ToString[InputForm["α"]] ]

Out[10]= 8", α, "<

And this produces a string consisting of an actual a  from its full name. 

In[11]:= ToExpression[ "\"\\[" <> "Alpha" <> "]\""]

Out[11]= α

2.8.6 Advanced Topic: Newlines and Tabs in Strings

î n a newline Hline feedL to be included in a string
î t a tab to be included in a string

Explicit representations of newlines and tabs in strings. 

This prints on two lines. 

In[1]:= "First line.\nSecond line."

Out[1]= First line.
Second line.

In InputForm there is an explicit în to represent the newline. 

In[2]:= InputForm[%]

Out[2]//InputForm= 

"First line.\nSecond line."

When you enter a long string in Mathematica, it is often convenient to break your input across several lines. Mathemat-
ica will by default ignore such breaks, so that if you subsequently output the string, it can then be broken in whatever
way is appropriate. 

Mathematica ignores the line break and any tabs that follow it. 

In[3]:= "A string on
two lines."

Out[3]= A string on two lines.

There is no newline in the string. 

In[4]:= InputForm[%]

Out[4]//InputForm= 

"A string on two lines."
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" text " line breaks in  text are ignored
"î< text î >" line breaks in  text are stored explicitly as î n 

Input forms for strings. 

Now Mathematica keeps the newline. 

In[5]:= "\<A string on
two lines.\>"

Out[5]= A string on
two lines.

In InputForm, the newline is shown as an explicit în. 

In[6]:= InputForm[%]

Out[6]//InputForm= 

"A string on\ntwo lines."

You should realize that even though it is possible to achieve some formatting of Mathematica output by creating strings
which  contain  raw  tabs  and  newlines,  this  is  rarely  a  good  idea.  Typically  a  much  better  approach  is  to  use  the
higher-level Mathematica  formatting primitives to be discussed in the next two sections. These primitives will always
yield consistent output, independent of such issues as the positions of tab settings on a particular device. 

In strings with newlines, text is always aligned on the left. 

In[7]:= {"Here is\na string\non several lines.", "Here is\nanother"}

Out[7]= 8Here is
a string
on several lines., Here is
another<

The ColumnForm formatting primitive gives more control. Here text is aligned on the right. 

In[8]:= ColumnForm[{"First line", "Second", "Third"}, Right]

Out[8]= First line
Second
Third

And here the text is centered. 

In[9]:= ColumnForm[{"First line", "Second", "Third"}, Center]

Out[9]= First line
Second
Third

Within Mathematica  you can use formatting primitives to avoid raw tabs and newlines. But if you intend to send your
output in textual form to external programs, then these programs will often expect to get raw tabs and newlines. 

Note  that  you  must  either  use  WriteString  or  give  your  output  in  OutputForm  in  order  for  the  raw  tabs  and
newlines to show up. In InputForm, they will just be given as ît and în. 
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This outputs a string to a file. 

In[10]:= "First line.\nSecond line." >> test

Here are the contents of the file. By default, >> generates output in InputForm. 

In[11]:= !!test

""First line.\nSecond line.""

This explicitly tells Mathematica to use OutputForm for the output. 

In[12]:= OutputForm["First line.\nSecond line."] >> test

Now there is a raw newline in the file. 

In[13]:= !!test

"First line.
Second line."

2.8.7 Advanced Topic: Character Codes

ToCharacterCode@" string "D give a list of the character codes for the characters in a string
FromCharacterCode@ n D construct a character from its character code

FromCharacterCode@ 

8  n1,  n2, … <  D 

construct a string of characters from a list of character codes

Converting to and from character codes. 

Mathematica assigns every character that can appear in a string a unique character code. This code is used internally as
a way to represent the character. 

This gives the character codes for the characters in the string. 

In[1]:= ToCharacterCode["ABCD abcd"]

Out[1]= 865, 66, 67, 68, 32, 97, 98, 99, 100<

FromCharacterCode reconstructs the original string. 

In[2]:= FromCharacterCode[%]

Out[2]= ABCD abcd

Special characters also have character codes. 

In[3]:= ToCharacterCode["α⊕Γû∅"]

Out[3]= 8945, 8853, 915, 8854, 8709<

CharacterRange@" c1  ",  " c2  "D generate a list of characters with successive character codes

Generating sequences of characters. 
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This gives part of the English alphabet. 

In[4]:= CharacterRange["a", "k"]

Out[4]= 8a, b, c, d, e, f, g, h, i, j, k<

Here is the Greek alphabet. 

In[5]:= CharacterRange["α", "ω"]

Out[5]= 8α, β, γ, δ, ∂, ζ, η, θ, ι, κ, λ, µ, ν, ξ, ο, π, ρ, ς, σ, τ, υ, ϕ, χ, ψ, ω<

Mathematica  assigns  names  such  as  î[Alpha]  to  a  large  number  of  special  characters.  This  means  that  you  can
always refer to such characters just by giving their names, without ever having to know their character codes. 

This generates a string of special characters from their character codes. 

In[6]:= FromCharacterCode[{8706, 8709, 8711, 8712}]

Out[6]= ∂∅∇∈

You can always refer to these characters by their names, without knowing their character codes. 

In[7]:= InputForm[%]

Out[7]//InputForm= 

"∂∅∇∈"

Mathematica has names for all the common characters that are used in mathematical notation and in standard European
languages. But for a language such as Japanese, there are more than 3,000 additional characters, and Mathematica does
not assign an explicit name to each of them. Instead, it refers to such characters by standardized character codes. 

Here is a string containing Japanese characters. 

In[8]:= "数学 "

Out[8]= 数学

In InputForm, these characters are referred to by standardized character codes. The character codes are given in hexadecimal. 

In[9]:= InputForm[%]

Out[9]//InputForm= 

"数学"

The  notebook  front  end  for  Mathematica  is  typically  set  up  so  that  when  you  enter  a  character  in  a  particular  font,
Mathematica will automatically work out the character code for that character. 

Sometimes, however, you may find it convenient to be able to enter characters directly using character codes. 
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î 0 null byte Hcode 0L
î nnn a character with octal code  nnn 

î . nn a character with hexadecimal code  nn 
î : nnnn a character with hexadecimal code  nnnn 

Ways to enter characters directly in terms of character codes. 

For characters with character  codes below 256,  you can use înnn  or  î.nn.  For  characters with character  codes  above
256, you must use î:nnnn. Note that in all cases you must give a fixed number of octal or hexadecimal digits, padding
with leading 0s if necessary. 

This gives character codes in hexadecimal for a few characters. 

In[10]:= BaseForm[ToCharacterCode["Aàαℵ"], 16]

Out[10]//BaseForm= 

84116, e016, 3b116, 213516<

This enters the characters using their character codes. Note the leading 0 inserted in the character code for a . 

In[11]:= "\.41\.e0\:03b1\:2135"

Out[11]= Aàαℵ

In assigning codes to characters, Mathematica  follows three compatible standards:  ASCII,  ISO Latin-1, and Unicode.
ASCII covers the characters on a normal American English keyboard. ISO Latin-1 covers characters in many European
languages. Unicode is a more general standard which defines character codes for several tens of thousands of charac-
ters used in languages and notations around the world. 

0 – 127 Hî 000 – î 177 L ASCII characters
1 – 31 Hî 001 – î 037 L ASCII control characters

32 – 126 Hî 040 – î 176 L printable ASCII characters
97 – 122 Hî 141 – î 172 L lower-case English letters

129 – 255 Hî 201 – î 377 L ISO Latin-1 characters
192 – 255 Hî 240 – î 377 L letters in European languages

0 – 59391 Hî :0000 – î :e7ff L Unicode standard public characters
913 – 1009 Hî :0391 – î :03f1 L Greek letters

12288 – 35839 Hî :3000 – î :8bff L Chinese, Japanese and Korean characters
8450 – 8504 Hî :2102 – î :2138 L modified letters used in mathematical notation
8592 – 8677 Hî :2190 – î :21e5 L arrows
8704 – 8945 Hî :2200 – î :22f1 L mathematical symbols and operators

64256 – 64300 Hî :fb00 – î :fb2c L Unicode private characters defined specially by  Mathematica

A few ranges of character codes used by Mathematica. 

Here are all the printable ASCII characters. 

In[12]:= FromCharacterCode[Range[32, 126]]

Out[12]= !"#$%&'HL∗+,−.ê0123456789:;<=>?@

ABCDEFGHIJKLMNOPQRSTUVWXYZ@\D^_`abcdefghijklmnopqrstuvwxyz8»<∼
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Here are some ISO Latin-1 letters. 

In[13]:= FromCharacterCode[Range[192, 255]]

Out[13]= ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ

Here are some special characters used in mathematical notation. The black blobs correspond to characters not available in the 
current font. 

In[14]:= FromCharacterCode[Range[8704, 8750]]

Out[14]= ∀�∂∃±∅∆∇∈∉�úù∋�¤ˇ⁄－°�∕î�Î·,��∝∞¨∠≠Æ˝I˛Jflfi∩∪Ÿ∬�ò

Here are a few Japanese characters. 

In[15]:= FromCharacterCode[Range[30000, 30030]]

Out[15]= 

2.8.8 Advanced Topic: Raw Character Encodings

Mathematica  always allows you to refer to special characters by using names such as î[Alpha] or explicit hexadeci-
mal  codes  such  as  î:03b1.  And  when  Mathematica  writes  out  files,  it  by  default  uses  these  names  or  hexadecimal
codes.    

But sometimes you may find it convenient to use raw encodings for at least some special characters. What this means is
that rather than representing special characters by names or explicit hexadecimal codes, you instead represent them by
raw bit patterns appropriate for a particular computer system or particular font. 

$CharacterEncoding  =  None use printable ASCII names for all special characters
$CharacterEncoding  =  " name " use the raw character encoding specified by  name 

$SystemCharacterEncoding the default raw character
encoding for your particular computer system

Setting up raw character encodings. 

When you press a key or combination of keys on your keyboard, the operating system of your computer sends a certain
bit  pattern to Mathematica.  How this  bit  pattern  is  interpreted  as  a  character  within  Mathematica  will  depend  on  the
character encoding that has been set up. 

The notebook front end for Mathematica typically takes care of setting up the appropriate character encoding automati-
cally for whatever font you are using. But if you use Mathematica with a text-based interface or via files or pipes, then
you may need to set $CharacterEncoding explicitly. 

By  specifying  an  appropriate  value  for  $CharacterEncoding  you  will  typically  be  able  to  get  Mathematica  to
handle raw text generated by whatever language-specific text editor or operating system you use. 

You  should  realize,  however,  that  while  the  standard  representation  of  special  characters  used  in  Mathematica  is
completely portable  across  different  computer systems,  any representation  that  involves  raw character  encodings  will
inevitably not be. 
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"PrintableASCII" printable ASCII characters only HdefaultL
"ASCII" all ASCII including control characters

"ISOLatin1" characters for common western European languages
"ISOLatin2" characters for central and eastern European languages
"ISOLatin3" characters for additional

European languages He.g. Catalan, TurkishL
"ISOLatin4" characters for other additional

European languages He.g. Estonian, LappishL
"ISOLatinCyrillic" English and Cyrillic characters

"AdobeStandard" Adobe standard PostScript font encoding
"MacintoshRoman" Macintosh roman font encoding

"WindowsANSI" Windows standard font encoding
"Symbol" symbol font encoding

"ZapfDingbats" Zapf dingbats font encoding
"ShiftJIS" shift-JIS for Japanese Hmixture of 8- and 16-bitL

"EUC" extended Unix code for Japanese Hmixture of 8- and 16-bitL
"UTF8" Unicode transformation format encoding

"Unicode" raw 16-bit Unicode bit patterns

Some raw character encodings supported by Mathematica. 

Mathematica  knows  about  various  raw character  encodings,  appropriate  for  different  computer systems and  different
languages. 

Any  character  that  is  included  in  a  particular  raw  encoding  will  be  written  out  in  raw  form  by  Mathematica  if  you
specify  that  encoding.  But  characters  which  are  not  included  in  the  encoding  will  still  be  written  out  using  standard
Mathematica full names or hexadecimal codes. 

In addition,  any character included in a particular  encoding can be given in raw form as input to Mathematica  if you
specify that encoding. Mathematica will automatically translate the character to its own standard internal form. 

This writes a string to the file tmp. 

In[1]:= "a b c \[EAcute] \[Alpha] \[Pi] \:2766" >> tmp

Special characters are by default written out using full names or explicit hexadecimal codes. 

In[2]:= !!tmp

""a b c é α π �""

This tells Mathematica to use a raw character encoding appropriate for Macintosh roman fonts. 

In[3]:= $CharacterEncoding = "MacintoshRoman"

Out[3]= MacintoshRoman

Now those special characters that can will be written out in raw form. 

In[4]:= "a b c \[EAcute] \[Alpha] \[Pi] \:2766" >> tmp
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You can only read the raw characters if you have a system that uses the Macintosh roman encoding. 

In[5]:= !!tmp

""a b c é α π �""

This tells Mathematica to use no raw encoding by default. 

In[6]:= $CharacterEncoding = None

Out[6]= None

You can still explicitly request raw encodings to be used in certain functions. 

In[7]:= Get["tmp", CharacterEncoding->"MacintoshRoman"]

Out[7]= a b c é α π �

Mathematica supports both 8- and 16-bit raw character encodings. In an encoding such as "ISOLatin1", all charac-
ters are represented by bit patterns containing 8 bits. But in an encoding such as "ShiftJIS" some characters instead
involve bit patterns containing 16 bits.   

Most of the raw character encodings supported by Mathematica include basic ASCII as a subset. This means that even
when  you  are  using  such  encodings,  you  can  still  give  ordinary  Mathematica  input  in  the  usual  way,  and  you  can
specify special characters using î[ and î: sequences. 

Some  raw  character  encodings,  however,  do  not  include  basic  ASCII  as  a  subset.  An  example  is  the  "Symbol"
encoding, in which the character codes normally used for a and b are instead used for a  and b .  

This gives the usual ASCII character codes for a few English letters. 

In[8]:= ToCharacterCode["abcdefgh"]

Out[8]= 897, 98, 99, 100, 101, 102, 103, 104<

In the "Symbol" encoding, these character codes are used for Greek letters. 

In[9]:= FromCharacterCode[%, "Symbol"]

Out[9]= αβχδεφγη

ToCharacterCode@" string "D generate codes for characters using the standard  
Mathematica encoding

ToCharacterCode@" 

string ",  " encoding "D 

generate codes for characters using the specified encoding

FromCharacterCode@ 

8  n1,  n2, … <  D 

generate characters from codes using the standard  
Mathematica encoding

FromCharacterCode@ 8  
n1,  n2, … <,  " encoding "D 

generate characters from codes using the specified encoding

Handling character codes with different encodings. 
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This gives the codes assigned to various characters by Mathematica. 

In[10]:= ToCharacterCode["abc\[EAcute]\[Pi]"]

Out[10]= 897, 98, 99, 233, 960<

Here are the codes assigned to the same characters in the Macintosh roman encoding. 

In[11]:= ToCharacterCode["abc\[EAcute]\[Pi]", "MacintoshRoman"]

Out[11]= 897, 98, 99, 142, 185<

Here are the codes in the Windows standard encoding. There is no code for î[Pi] in that encoding. 

In[12]:= ToCharacterCode["abc\[EAcute]\[Pi]", "WindowsANSI"]

Out[12]= 897, 98, 99, 233, None<

The  character  codes  used  internally  by  Mathematica  are  based  on  Unicode.  But  externally  Mathematica  by  default
always uses plain ASCII sequences such as î[Name]  or  î:xxxx  to refer  to special  characters.  By telling it to use the
raw "Unicode"  character  encoding,  however,  you  can  get  Mathematica  to  read  and  write  characters  in  raw 16-bit
Unicode form. 
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2.9 Textual Input and Output

2.9.1 Forms of Input and Output

Here is one way to enter a particular expression. 

In[1]:= x^2 + Sqrt[y]

Out[1]= x2 + è!!!y

Here is another way to enter the same expression. 

In[2]:= Plus[Power[x, 2], Sqrt[y]]

Out[2]= x2 + è!!!y

With a notebook front end, you can also enter the expression directly in this way. 

In[3]:= x2 +
è!!!!
y

Out[3]= x2 + è!!!y

Mathematica allows you to output expressions in many different ways. 

In Mathematica notebooks, expressions are by default output in StandardForm. 

In[4]:= x^2 + Sqrt[y]

Out[4]= x2 + è!!!y

OutputForm uses only ordinary keyboard characters and is the default for text-based interfaces to Mathematica. 

In[5]:= OutputForm[ x^2 + Sqrt[y] ]

Out[5]//OutputForm= 

x^2 + Sqrt[y]

Out[5]//OutputForm= 
" 2
x  + Sqrt[y]"

InputForm yields a form that can be typed directly on a keyboard. 

In[6]:= InputForm[ x^2 + Sqrt[y] ]

Out[6]//InputForm= 

x^2 + Sqrt[y]

FullForm shows the internal form of an expression in explicit functional notation. 

In[7]:= FullForm[ x^2 + Sqrt[y] ]

Out[7]//FullForm= 

Plus@Power@x, 2D, Power@y, Rational@1, 2DDD
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FullForm@ expr D the internal form of an expression
InputForm@ expr D a form suitable for direct keyboard input
OutputForm@ expr D a two-dimensional form using only keyboard characters

StandardForm@ expr D the default form used in  Mathematica notebooks

Some output forms for expressions. 

Output forms provide textual representations of Mathematica  expressions.  In some cases these textual representations
are also suitable for input to Mathematica. But in other cases they are intended just to be looked at, or to be exported to
other programs, rather than to be used as input to Mathematica. 

TraditionalForm uses a large collection of ad hoc rules to produce an approximation to traditional mathematical notation. 

In[8]:= TraditionalForm[ x^2 + Sqrt[y] + Gamma[z] EllipticK[z] ]

Out[8]//TraditionalForm= 

x2 + KHzL GHzL +
è!!!!y

TeXForm yields output suitable for export to TeX. 

In[9]:= TeXForm[ x^2 + Sqrt[y] ]

Out[9]//TeXForm= 

x^2 + {\sqrt{y}}

CForm yields output that can be included in a C program. Macros for objects like Power are included in the header file 
mdefs.h. 

In[10]:= CForm[ x^2 + Sqrt[y] ]

Out[10]//CForm= 

Power(x,2) + Sqrt(y)

FortranForm yields output suitable for export to Fortran. 

In[11]:= FortranForm[ x^2 + Sqrt[y] ]

Out[11]//FortranForm= 

x**2 + Sqrt(y)

TraditionalForm@ expr D traditional mathematical notation
TeXForm@ expr D output suitable for export to TeX

MathMLForm@ expr D output suitable for use with MathML on the web
CForm@ expr D output suitable for export to C

FortranForm@ expr D output suitable for export to Fortran

Output forms not normally used for Mathematica input. 

Section 2.9.17 will discuss how you can create your own output forms. You should realize however that in communicat-
ing  with  external  programs  it  is  often  better  to  use  MathLink  to  send  expressions  directly  than  to  generate  a  textual
representation for these expressions. 
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† Exchange textual representations of expressions.
† Exchange expressions directly via  MathLink .

Two ways to communicate between Mathematica and other programs. 

2.9.2 How Input and Output Work

Input convert from a textual form to an expression
Processing do computations on the expression

Output convert the resulting expression to textual form

Steps in the operation of Mathematica. 

When you type something like x^2 what Mathematica at first sees is just the string of characters x, ^, 2. But with the
usual  way  that  Mathematica  is  set  up,  it  immediately  knows  to  convert  this  string  of  characters  into  the  expression
Power[x, 2]. 

Then,  after  whatever  processing  is  possible  has  been  done,  Mathematica  takes  the  expression  Power[x,  2]  and
converts it into some kind of textual representation for output. 

Mathematica reads the string of characters x, ^, 2 and converts it to the expression Power[x, 2]. 

In[1]:= x ^ 2

Out[1]= x2

This shows the expression in Fortran form. 

In[2]:= FortranForm[%]

Out[2]//FortranForm= 

x**2

FortranForm is just a “wrapper”:  the value of Out[2] is still the expression Power[x, 2]. 

In[3]:= %

Out[3]= x2

It  is  important  to  understand  that  in  a  typical  Mathematica  session  In[n]  and  Out[n]  record  only  the  underlying
expressions that are processed, not the textual representations that happen to be used for their input or output. 

If you explicitly request a particular kind of output, say by using TraditionalForm[expr], then what you get will
be labeled with Out[n]//TraditionalForm. This indicates that what you are seeing is expr//Traditional
Form, even though the value of Out[n] itself is just expr. 

Mathematica  also allows you to specify globally that you want output to be displayed in a particular form. And if you
do this, then the form will no longer be indicated explicitly in the label for each line. But it is still the case that In[n]
and Out[n] will record only underlying expressions, not the textual representations used for their input and output. 
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This sets t to be an expression with FortranForm explicitly wrapped around it. 

In[4]:= t = FortranForm[x^2 + y^2]

Out[4]//FortranForm= 

x**2 + y**2

The result on the previous line is just the expression. 

In[5]:= %

Out[5]= x2 + y2

But t contains the FortranForm wrapper, and so is displayed in FortranForm. 

In[6]:= t

Out[6]//FortranForm= 

x**2 + y**2

Wherever t appears, it is formatted in FortranForm. 

In[7]:= {t^2, 1/t}

Out[7]= 9x ∗∗ 2 + y ∗∗ 22, 1
x ∗∗ 2 + y ∗∗ 2

=

2.9.3 The Representation of Textual Forms

Like  everything  else  in  Mathematica  the  textual  forms  of  expressions  can  themselves  be  represented  as  expressions.
Textual forms that consist of one-dimensional sequences of characters can be represented directly as ordinary Mathemat-
ica  strings. Textual forms that involve subscripts, superscripts and other two-dimensional constructs,  however,  can be
represented by nested collections of two-dimensional boxes.  

One-dimensional strings InputForm ,  FullForm , etc.
Two-dimensional boxes StandardForm ,  TraditionalForm , etc.

Typical representations of textual forms. 

This generates the string corresponding to the textual representation of the expression in InputForm. 

In[1]:= ToString[x^2 + y^3, InputForm]

Out[1]= x^2 + y^3

FullForm shows the string explicitly. 

In[2]:= FullForm[%]

Out[2]//FullForm= 

"x^2 + y^3"
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Here are the individual characters in the string. 

In[3]:= Characters[%]

Out[3]= 8x, ^, 2, , +, , y, ^, 3<

Here is the box structure corresponding to the expression in StandardForm. 

In[4]:= ToBoxes[x^2 + y^3, StandardForm]

Out[4]= RowBox@8SuperscriptBox@x, 2D, +, SuperscriptBox@y, 3D<D

Here is the InputForm of the box structure. In this form the structure is effectively represented by an ordinary string. 

In[5]:= ToBoxes[x^2 + y^3, StandardForm] // InputForm

Out[5]//InputForm= 

\(x\^2 + y\^3\)

If  you  use  the  notebook  front  end  for  Mathematica,  then  you  can  see  the  expression  that  corresponds  to  the  textual
form of each cell by using the Show Expression menu item.  

Here is a cell containing an expression in StandardForm. 

Here is the underlying representation of that expression in terms of boxes, displayed using the Show Expression menu item. 

ToString@ expr,  form D create a string representing the specified textual form of  expr 
ToBoxes@ expr,  form D create a box structure representing the specified textual form of  

expr 

Creating strings and boxes from expressions. 

2.9.4 The Interpretation of Textual Forms

ToExpression@ input D create an expression by interpreting strings or boxes

Converting from strings or boxes to expressions. 
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This takes a string and interprets it as an expression. 

In[1]:= ToExpression["2 + 3 + x/y"]

Out[1]= 5 +
x
y

Here is the box structure corresponding to the textual form of an expression in StandardForm. 

In[2]:= ToBoxes[2 + x^2, StandardForm]

Out[2]= RowBox@82, +, SuperscriptBox@x, 2D<D

ToExpression interprets this box structure and yields the original expression again. 

In[3]:= ToExpression[%]

Out[3]= 2 + x2

In any Mathematica session, Mathematica is always effectively using ToExpression to interpret the textual form of
your input as an actual expression to evaluate. 

If you use the notebook front end for Mathematica, then the interpretation only takes place when the contents of a cell
are sent to the kernel, say for evaluation. This means that within a notebook there is no need for the textual forms you
set up to correspond to meaningful Mathematica  expressions; this is only necessary if you want to send these forms to
the kernel. 

FullForm explicit functional notation
InputForm one-dimensional notation

StandardForm two-dimensional notation

The hierarchy of forms for standard Mathematica input. 

Here is an expression entered in FullForm. 

In[4]:= Plus[1, Power[x, 2]]

Out[4]= 1 + x2

Here is the same expression entered in InputForm. 

In[5]:= 1 + x^2

Out[5]= 1 + x2

And here is the expression entered in StandardForm. 

In[6]:= 1 + x2

Out[6]= 1 + x2

Built  into  Mathematica  is  a  collection  of  standard  rules  for  use  by  ToExpression  in  converting  textual  forms  to
expressions. 

These rules define the grammar of Mathematica. They state, for example, that x + y should be interpreted as Plus[x,
y],  and  that  xy  should  be  interpreted  as  Power[x,  y].  If  the  input  you  give  is  in  FullForm,  then  the  rules  for
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interpretation  are  very  straightforward:  every  expression  consists  just  of  a  head  followed  by  a  sequence  of  elements
enclosed in brackets. The rules for InputForm are slightly more sophisticated: they allow operators such as +, =, and
->,  and  understand  the  meaning  of  expressions  where  these  operators  appear  between  operands.  StandardForm
involves still more sophisticated rules, which allow operators and operands to be arranged not just in a one-dimensional
sequence, but in a full two-dimensional structure.  

Mathematica  is  set  up so that  FullForm,  InputForm  and StandardForm  form a strict hierarchy:  anything you
can enter in FullForm will also work in InputForm, and anything you can enter in InputForm will also work in
StandardForm. 

If you use a notebook front end for Mathematica, then you will typically want to use all the features of Standard
Form. If you use a text-based interface, however, then you will typically be able to use only features of InputForm. 

x^2 ordinary  InputForm 

î !îHxî^2îL one-dimensional representation of  StandardForm 

Two versions of InputForm. 

When  you  use  StandardForm  in  a  Mathematica  notebook,  you  can  enter  directly  two-dimensional  forms  such  as
x2 .  But  InputForm  allows  only  one-dimensional  forms.  Nevertheless,  even  though  the  actual  text  you  give  in
InputForm  must  be  one-dimensional,  it  is  still  possible  to  make  it  represent  a  two-dimensional  form.  Thus,  for
example, î!î(xî^2î) represents the two-dimensional form x2 , and is interpreted by Mathematica as Power[x, 2]. 

Here is ordinary one-dimensional input. 

In[7]:= x^2 + 1/y

Out[7]= x2 +
1
y

Here is input that represents a two-dimensional form. 

In[8]:= \!\( x\^2 + 1\/y \)

Out[8]= x2 +
1
y

Even though the input is given differently, the expressions obtained on the last two lines are exactly the same. 

In[9]:= % == %%

Out[9]= True

If you copy a two-dimensional form out of Mathematica, it is normally given in î!î( … î) form. When you paste this
one-dimensional form back into a Mathematica  notebook, it will automatically “snap”  into two-dimensional form. If
you simply type a î!î( … î) form into a notebook, you can get it to snap into two-dimensional form using the Make
2D menu item.       

ToExpression@ input,  form D attempt to create an expression assuming that  
input is given in the specified textual form

Importing from other textual forms. 

StandardForm  and  its  subsets  FullForm  and  InputForm  provide  precise  ways  to  represent  any  Mathematica
expression  in  textual  form.  And  given  such  a  textual  form,  it  is  always  possible  to  convert  it  unambiguously  to  the
expression it represents. 
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TraditionalForm is an example of a textual form intended primarily for output. It is possible to take any Mathemat-
ica  expression  and  display  it  in  TraditionalForm.  But  TraditionalForm  does  not  have  the  precision  of
StandardForm,  and  as  a  result  there  is  in  general  no  unambiguous  way  to  go  back  from a  TraditionalForm
representation and get the expression it represents.  

Nevertheless,  ToExpression[input,  TraditionalForm]  takes  text  in  TraditionalForm  and  attempts  to
interpret it as an expression. 

This takes a string and interprets it as TraditionalForm input. 

In[10]:= ToExpression["f(6)", TraditionalForm]

Out[10]= f@6D

In StandardForm the same string would mean a product of terms. 

In[11]:= ToExpression["f(6)", StandardForm]

Out[11]= 6 f

When  TraditionalForm  output  is  generated  as  the  result  of  a  computation,  the  actual  collection  of  boxes  that
represent  the  output  typically  contains  special  InterpretationBox  and  TagBox  objects  which  specify  how  an
expression can be reconstructed from the TraditionalForm output. 

The same is  true of  TraditionalForm  that  is  obtained  by explicit  conversion  from StandardForm.  But  if  you
edit  TraditionalForm  extensively,  or  enter  it  from  scratch,  then  Mathematica  will  have  to  try  to  interpret  it
without the benefit of any additional embedded information.  

2.9.5 Short and Shallow Output

When you generate a very large output expression in Mathematica, you often do not want to see the whole expression
at once. Rather, you would first like to get an idea of the general structure of the expression, and then, perhaps, go in
and look at particular parts in more detail. 

The functions Short and Shallow allow you to see “outlines”  of large Mathematica expressions. 

Short@ expr D show a one-line outline of  expr 
Short@ expr,  n D show an  n -line outline of  expr 
Shallow@ expr D show the top parts of  expr 

Shallow@ expr,  8  depth,  length <  D show the parts of  expr to the specified depth and length

Showing outlines of expressions. 

This generates a long expression. If the whole expression were printed out here, it would go on for 23 lines. 

In[1]:= t = Expand[(1 + x + y)^12] ;

This gives a one-line “outline”  of t. The <<87>> indicates that 87 terms are omitted. 

In[2]:= Short[t]

Out[2]//Short= 

1 + 12 x + 87 + 12 x y11 + y12
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When Mathematica generates output, it first effectively writes the output in one long row. Then it looks at the width of
text you have asked for, and it chops the row of output into a sequence of separate “lines”.  Each of the “lines”  may
of  course  contain  superscripts  and  built-up  fractions,  and  so  may  take  up  more  than  one  actual  line  on  your  output
device. When you specify a particular number of lines in Short, Mathematica takes this to be the number of “logical
lines”  that you want, not the number of actual physical lines on your particular output device.  

Here is a four-line version of t. More terms are shown in this case. 

In[3]:= Short[t, 4]

Out[3]//Short= 

1 + 12 x + 66 x2 + 220 x3 + 495 x4 + 792 x5 + 924 x6 + 792 x7 +

495 x8 + 220 x9 + 66 x10 + 12 x11 + 68 + 495 x4 y8 + 220 y9 + 660 x y9 +

660 x2 y9 + 220 x3 y9 + 66 y10 + 132 x y10 + 66 x2 y10 + 12 y11 + 12 x y11 + y12

You can use Short with other output forms, such as InputForm. 

In[4]:= Short[InputForm[t]]

Out[4]//Short= 

1 + 12∗x + 66∗x^2 + 220∗x^3 + <<85>> + 12∗x∗y^11 + y^12

Short  works  by  removing  a  sequence  of  parts  from  an  expression  until  the  output  form  of  the  result  fits  on  the
number of  lines you specify.  Sometimes, however,  you may find it  better to specify not  how many final output  lines
you  want,  but  which  parts  of  the  expression  to  drop.  Shallow[expr,  8depth,  length<]  includes  only  length  argu-
ments to any function, and drops all subexpressions that are below the specified depth. 

Shallow shows a different outline of t. 

In[5]:= Shallow[t]

Out[5]//Shallow= 

1 + 12 x + 66 Power@ 2 D + 220 Power@ 2 D + 495 Power@ 2 D + 792 Power@ 2 D +

924 Power@ 2 D + 792 Power@ 2 D + 495 Power@ 2 D + 220 Power@ 2 D + 81

This includes only 10 arguments to each function, but allows any depth. 

In[6]:= Shallow[t, {Infinity, 10}]

Out[6]//Shallow= 

1 + 12 x + 66 x2 + 220 x3 + 495 x4 + 792 x5 + 924 x6 + 792 x7 + 495 x8 + 220 x9 + 81

Shallow is particularly useful when you want to drop parts in a uniform way throughout a highly nested expression,
such as a large list structure returned by Trace. 

Here is the recursive definition of the Fibonacci function. 

In[7]:= fib[n_] := fib[n-1] + fib[n-2] ; fib[0] = fib[1] = 1

Out[7]= 1

This generates a large list structure. 

In[8]:= tr = Trace[fib[8]] ;
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You can use Shallow to see an outline of the structure. 

In[9]:= Shallow[tr]

Out[9]//Shallow= 

8fib@ 1 D, Plus@ 2 D, 88 2 <, 1 , 1 , 8 7 <, 8 7 <, 1 , 1 <,
88 2 <, 1 , 1 , 8 7 <, 8 7 <, 1 , 1 <, Plus@ 2 D, 34<

Short gives you a less uniform outline, which can be more difficult to understand. 

In[10]:= Short[tr, 4]

Out[10]//Short= 

8fib@8D, fib@8 − 1D + fib@8 − 2D,
888 − 1, 7<, fib@7D, 3 , 13 + 8, 21<, 8 1 <, 21 + 13, 34<

2.9.6 String-Oriented Output Formats

" text " a string containing arbitrary text

Text strings. 

The quotes are not included in standard Mathematica output form. 

In[1]:= "This is a string."

Out[1]= This is a string.

In input form, the quotes are included. 

In[2]:= InputForm[%]

Out[2]//InputForm= 

"This is a string."

You can put any kind of text into a Mathematica  string. This includes non-English characters, as well as newlines and
other control information. Section 2.8 discusses in more detail how strings work. 

StringForm@" cccc 
`` cccc ",  x1,  x2, … D 

output a string in which successive  
`` are replaced by successive  xi  

StringForm@" cccc 
` i ` cccc ",  x1,  x2, … D 

output a string in which each  ` 

i ` is replaced by the corresponding  xi  

Using format strings. 

In  many  situations,  you  may  want  to  generate  output  using  a  string  as  a  “template”,  but  “splicing”  in  various
Mathematica expressions. You can do this using StringForm. 

This generates output with each successive `` replaced by an expression. 

In[3]:= StringForm["x = ``, y = ``", 3, (1 + u)^2]

Out[3]= x = 3, y = H1 + uL2
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You can use numbers to pick out expressions in any order. 

In[4]:= StringForm["{`1`, `2`, `1`}", a, b]

Out[4]= 8a, b, a<

The string in StringForm acts somewhat like a “format  directive”  in the formatted output statements of languages
such as C and Fortran. You can determine how the expressions in StringForm will be formatted by wrapping them
with standard output format functions. 

You can specify how the expressions in StringForm are formatted using standard output format functions. 

In[5]:= StringForm["The `` of `` is ``.", TeXForm, a/b, TeXForm[a/b]]

Out[5]= The TeXForm of a
b

is \frac 8a< 8b<.

You  should  realize  that  StringForm  is  only  an  output  format.  It  does  not  evaluate  in  any  way.  You  can  use  the
function ToString to create an ordinary string from a StringForm object. 

StringForm generates formatted output in standard Mathematica output form. 

In[6]:= StringForm["Q: `` -> ``", a, b]

Out[6]= Q: a −> b

In input form, you can see the actual StringForm object. 

In[7]:= InputForm[%]

Out[7]//InputForm= 

StringForm["Q: `` -> ``", a, b]

This creates an ordinary string from the StringForm object. 

In[8]:= InputForm[ToString[%]]

Out[8]//InputForm= 

"Q: a -> b"

StringForm allows you to specify a “template  string”,  then fill in various expressions. Sometimes all you want to
do is to concatenate together the output forms for a sequence of expressions. You can do this using SequenceForm. 

SequenceForm@ expr1,  expr2, … D give the output forms of the  expri  concatenated together

Output of sequences of expressions. 

SequenceForm prints as a sequence of expressions concatenated together. 

In[9]:= SequenceForm["[x = ", 56, "]"]

Out[9]= @x = 56D
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ColumnForm@ 8  expr1,  expr2, … <  D a left-aligned column of objects
ColumnForm@ list,  h,  v D a column with horizontal alignment  h H Left ,  

Center or  Right L, and vertical alignment  
v H Below ,  Center or  Above L

Output of columns of expressions. 

This arranges the two expressions in a column. 

In[10]:= ColumnForm[{a + b, x^2}]

Out[10]= a + b

x2

HoldForm@ expr D give the output form of  expr , with  expr maintained unevaluated

Output of unevaluated expressions. 

Using text  strings  and functions  like StringForm,  you can generate  pieces of  output  that  do not  necessarily corre-
spond to valid Mathematica  expressions. Sometimes, however, you want to generate output that corresponds to a valid
Mathematica  expression,  but  only  so  long  as  the  expression  is  not  evaluated.  The  function  HoldForm  maintains  its
argument unevaluated, but allows it to be formatted in the standard Mathematica output form. 

HoldForm maintains 1 + 1 unevaluated. 

In[11]:= HoldForm[1 + 1]

Out[11]= 1 + 1

The HoldForm prevents the actual assignment from being done. 

In[12]:= HoldForm[x = 3]

Out[12]= x = 3

If it was not for the HoldForm, the power would be evaluated. 

In[13]:= HoldForm[34^78]

Out[13]= 3478

2.9.7 Output Formats for Numbers

ScientificForm@ expr D print all numbers in scientific notation
EngineeringForm@ expr D print all numbers in

engineering notation Hexponents divisible by 3L
AccountingForm@ expr D print all numbers in standard accounting format

Output formats for numbers. 
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These numbers are given in the default output format. Large numbers are given in scientific notation. 

In[1]:= {6.7^-4, 6.7^6, 6.7^8}

Out[1]= 80.00049625, 90458.4, 4.06068×106<

This gives all numbers in scientific notation. 

In[2]:= ScientificForm[%]

Out[2]//ScientificForm= 

84.9625× 10−4, 9.04584× 104, 4.06068×106<

This gives the numbers in engineering notation, with exponents arranged to be multiples of three. 

In[3]:= EngineeringForm[%]

Out[3]//EngineeringForm= 

8496.25× 10−6, 90.4584× 103, 4.06068×106<

In accounting form, negative numbers are given in parentheses, and scientific notation is never used. 

In[4]:= AccountingForm[{5.6, -6.7, 10.^7}]

Out[4]//AccountingForm= 

85.6, H6.7L, 10000000.<

NumberForm@ expr,  tot D print at most  tot digits of all approximate real numbers in  expr 
ScientificForm@ expr,  tot D use scientific notation with at most  tot digits
EngineeringForm@ expr,  tot D use engineering notation with at most  tot digits

Controlling the printed precision of real numbers. 

Here is p9  to 30 decimal places. 

In[5]:= N[Pi^9, 30]

Out[5]= 29809.0993334462116665094024012

This prints just 10 digits of p9 . 

In[6]:= NumberForm[%, 10]

Out[6]//NumberForm= 

29809.09933

This gives 12 digits, in engineering notation. 

In[7]:= EngineeringForm[%, 12]

Out[7]//EngineeringForm= 

29.8090993334×103
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option name default value 

DigitBlock Infinity maximum length of
blocks of digits between breaks

NumberSeparator 8",",  "  "< strings to insert at breaks between blocks of
digits to the left and right of a decimal point

NumberPoint "." string to use for a decimal point
NumberMultiplier "î@TimesD" string to use for the

multiplication sign in scientific notation
NumberSigns 8"−",  ""< strings to use for signs

of negative and positive numbers
NumberPadding 8"",  ""< strings to use for padding on the left and right
SignPadding False whether to insert padding after the sign
NumberFormat Automatic function to generate final format of number
ExponentFunction Automatic function to determine the exponent to use

Options for number formatting. 

All the options in the table except the last one apply to both integers and approximate real numbers. 

All  the  options  can  be  used  in  any  of  the  functions  NumberForm,  ScientificForm,  EngineeringForm  and
AccountingForm.  In  fact,  you  can  in  principle  reproduce  the  behavior  of  any  one  of  these  functions  simply  by
giving  appropriate  option  settings  in  one  of  the  others.  The  default  option  settings  listed  in  the  table  are  those  for
NumberForm. 

Setting DigitBlock->n breaks digits into blocks of length n. 

In[8]:= NumberForm[30!, DigitBlock->3]

Out[8]//NumberForm= 

265,252,859,812,191,058,636,308,480,000,000

You can specify any string to use as a separator between blocks of digits. 

In[9]:= NumberForm[30!, DigitBlock->5, NumberSeparator->" "]

Out[9]//NumberForm= 

265 25285 98121 91058 63630 84800 00000

This gives an explicit plus sign for positive numbers, and uses | in place of a decimal point. 

In[10]:= NumberForm[{4.5, -6.8}, NumberSigns->{"-", "+"}, NumberPoint->"|"]

Out[10]//NumberForm= 

8+4»5, −6»8<

When Mathematica prints an approximate real number, it has to choose whether scientific notation should be used, and
if so, how many digits should appear to the left of the decimal point. What Mathematica  does is first to find out what
the exponent would be if scientific notation were used, and one digit were given to the left of the decimal point. Then it
takes this exponent, and applies any function given as the setting for the option ExponentFunction. This function
should return the actual exponent to be used, or Null if scientific notation should not be used. 
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The default is to use scientific notation for all numbers with exponents outside the range -5 to 5. 

In[11]:= {8.^5, 11.^7, 13.^9}

Out[11]= 832768., 1.94872×107, 1.06045×1010<

This uses scientific notation only for numbers with exponents of 10 or more. 

In[12]:= NumberForm[%, ExponentFunction -> (If[-10 < # < 10, Null, #]&)]

Out[12]//NumberForm= 

832768., 19487171., 1.06045×1010<

This forces all exponents to be multiples of 3. 

In[13]:= NumberForm[%, ExponentFunction -> (3 Quotient[#, 3]&)]

Out[13]//NumberForm= 

832.768× 103, 19.4872×106, 10.6045×109<

Having determined what the mantissa and exponent for a number should be, the final step is to assemble these into the
object to print. The option NumberFormat allows you to give an arbitrary function which specifies the print form for
the number. The function takes as arguments three strings: the mantissa, the base, and the exponent for the number. If
there is no exponent, it is given as "". 

This gives the exponents in Fortran-like “e”  format. 

In[14]:= NumberForm[{5.6^10, 7.8^20}, NumberFormat -> (SequenceForm[#1, "e", #3]&) ]

Out[14]//NumberForm= 

83.03305e7, 6.94852e17<

You can use FortranForm to print individual numbers in Fortran format. 

In[15]:= FortranForm[7.8^20]

Out[15]//FortranForm= 

6.948515870862152e17

PaddedForm@ expr,  tot D print with all numbers having room for  tot 
digits, padding with leading spaces if necessary

PaddedForm@ expr,  8  tot,  frac <  D print with all numbers having room for  tot 
digits, with exactly  frac digits to the right of the decimal point

NumberForm@ expr,  8  tot,  frac <  D print with all numbers having at most  tot digits, exactly  
frac of them to the right of the decimal point

ColumnForm@ 8  expr1,  expr2, … <  D print with the  expri  left aligned in a column

Controlling the alignment of numbers in output. 

Whenever you print a collection of numbers in a column or some other definite arrangement, you typically need to be
able to align the numbers in a definite way. Usually you want all the numbers to be set up so that the digit correspond-
ing to a particular power of 10 always appears at the same position within the region used to print a number. 
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You can change the positions of digits in the printed form of a number by “padding”  it in various ways. You can pad
on the right, typically adding zeros somewhere after the decimal. Or you can pad on the left, typically inserting spaces
in place of leading zeros. 

This pads with spaces to make room for up to 7 digits in each integer. 

In[16]:= PaddedForm[{456, 12345, 12}, 7]

Out[16]//PaddedForm= 

8 456, 12345, 12<

This creates a column of integers. 

In[17]:= PaddedForm[ColumnForm[{456, 12345, 12}], 7]

Out[17]//PaddedForm= 

456
12345

12

This prints each number with room for a total of 7 digits, and with 4 digits to the right of the decimal point. 

In[18]:= PaddedForm[{-6.7, 6.888, 6.99999}, {7, 4}]

Out[18]//PaddedForm= 

8 −6.7000, 6.8880, 7.0000<

In NumberForm, the 7 specifies the maximum precision, but does not make Mathematica pad with spaces. 

In[19]:= NumberForm[{-6.7, 6.888, 6.99999}, {7, 4}]

Out[19]//NumberForm= 

8−6.7, 6.888, 7.<

If you set the option SignPadding-> True, Mathematica will insert leading spaces after the sign. 

In[20]:= PaddedForm[{-6.7, 6.888, 6.99999}, {7, 4}, SignPadding->True]

Out[20]//PaddedForm= 

8− 6.7000, 6.8880, 7.0000<

Only the mantissa portion is aligned when scientific notation is used. 

In[21]:= PaddedForm[ ColumnForm[{6.7 10^8, 48.7, -2.3 10^-16}], {4, 2}]

Out[21]//PaddedForm= 

6.70×108

48.70

−2.30×10−16

With the default setting for the option NumberPadding, both NumberForm and PaddedForm insert trailing zeros
when they pad a number on the right. You can use spaces for padding on both the left and the right by setting Number
Padding -> {" ", " "}. 
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This uses spaces instead of zeros for padding on the right. 

In[22]:= PaddedForm[{-6.7, 6.888, 6.99999}, {7, 4}, NumberPadding -> {" ", " "}]

Out[22]//PaddedForm= 

8 −6.7 , 6.888 , 7. <

BaseForm@ expr,  b D print with all numbers given in base  b 

Printing numbers in other bases. 

This prints a number in base 2. 

In[23]:= BaseForm[2342424, 2]

Out[23]//BaseForm= 

10001110111110000110002

In bases higher than 10, letters are used for the extra digits. 

In[24]:= BaseForm[242345341, 16]

Out[24]//BaseForm= 

e71e57d16

BaseForm also works with approximate real numbers. 

In[25]:= BaseForm[2.3, 2]

Out[25]//BaseForm= 

10.0100110011001100112

You can even use BaseForm for numbers printed in scientific notation. 

In[26]:= BaseForm[2.3 10^8, 2]

Out[26]//BaseForm= 

1.10110110101100001012 × 227

Section 3.1.3 discusses how to enter numbers in arbitrary bases, and also how to get lists of the digits in a number. 

2.9.8 Tables and Matrices

TableForm@ list D print in tabular form
MatrixForm@ list D print in matrix form

Formatting lists as tables and matrices. 

Here is a list. 

In[1]:= Table[(i + 45)^j, {i, 3}, {j, 3}]

Out[1]= 8846, 2116, 97336<, 847, 2209, 103823<, 848, 2304, 110592<<
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TableForm displays the list in a tabular format. 

In[2]:= TableForm[%]

Out[2]//TableForm= 
46 2116 97336
47 2209 103823
48 2304 110592

MatrixForm displays the list as a matrix. 

In[3]:= MatrixForm[%]

Out[3]//MatrixForm= 

i

k

jjjjjjj
46 2116 97336
47 2209 103823
48 2304 110592

y

{

zzzzzzz

This displays an array of algebraic expressions as a matrix. 

In[4]:= MatrixForm[ Table[x^i - y^j, {i, 3}, {j, 3}] ]

Out[4]//MatrixForm= 

i

k

jjjjjjjj

x − y x − y2 x − y3

x2 − y x2 − y2 x2 − y3

x3 − y x3 − y2 x3 − y3

y

{

zzzzzzzz

PaddedForm@TableForm@ 

list D,  tot D 

print a table with all numbers padded to have room for  tot digits

PaddedForm@TableForm@ 

list D,  8  tot,  frac <  D 

put  frac digits to the right of
the decimal point in all approximate real numbers

Printing tables of numbers. 

Here is a list of numbers. 

In[5]:= fac = {10!, 15!, 20!}

Out[5]= 83628800, 1307674368000, 2432902008176640000<

TableForm displays the list in a column. 

In[6]:= TableForm[fac]

Out[6]//TableForm= 
3628800
1307674368000
2432902008176640000

This aligns the numbers by padding each one to leave room for up to 20 digits. 

In[7]:= PaddedForm[TableForm[fac], 20]

Out[7]//PaddedForm= 
3628800

1307674368000
2432902008176640000
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In this particular case, you could also align the numbers using the TableAlignments option. 

In[8]:= TableForm[fac, TableAlignments -> {Right}]

Out[8]//TableForm= 
3628800

1307674368000
2432902008176640000

This lines up the numbers, padding each one to have room for 8 digits, with 5 digits to the right of the decimal point. 

In[9]:= PaddedForm[TableForm[{6.7, 6.888, 6.99999}], {8, 5}]

Out[9]//PaddedForm= 
6.70000
6.88800
6.99999

You can use TableForm and MatrixForm to format lists that are nested to any depth, corresponding to arrays with
any number of dimensions. 

Here is the format for a 2ä2 array of elements a[i, j]. 

In[10]:= TableForm[ Array[a, {2, 2}] ]

Out[10]//TableForm= 
a@1, 1D a@1, 2D
a@2, 1D a@2, 2D

Here is a 2ä2ä2 array. 

In[11]:= TableForm[ { Array[a, {2, 2}], Array[b, {2, 2}] } ]

Out[11]//TableForm= 
a@1, 1D
a@1, 2D

a@2, 1D
a@2, 2D

b@1, 1D
b@1, 2D

b@2, 1D
b@2, 2D

And here is a 2ä2ä2ä2 array. 

In[12]:= TableForm[ { {Array[a, {2, 2}], Array[b, {2, 2}]}, {Array[c, {2, 2}], Array[d, 
{2, 2}]} } ]

Out[12]//TableForm= 
a@1, 1D a@1, 2D
a@2, 1D a@2, 2D

b@1, 1D b@1, 2D
b@2, 1D b@2, 2D

c@1, 1D c@1, 2D
c@2, 1D c@2, 2D

d@1, 1D d@1, 2D
d@2, 1D d@2, 2D

In general,  when you print an n-dimensional table, successive dimensions are alternately given as columns and rows.
By setting the option TableDirections -> 8dir1, dir2, … < , where the diri  are Column or Row, you can specify
explicitly  which  way  each  dimension  should  be  given.  By  default,  the  option  is  effectively  set  to  8Column,  Row,
Column, Row, … < . 
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The option TableDirections allows you to specify explicitly how each dimension in a multidimensional table should be 
given. 

In[13]:= TableForm[ { Array[a, {2, 2}], Array[b, {2, 2}] }, TableDirections -> {Row, Row, 
Column} ]

Out[13]//TableForm= 
a@1, 1D
a@1, 2D

a@2, 1D
a@2, 2D

b@1, 1D
b@1, 2D

b@2, 1D
b@2, 2D

Whenever you make a table from a nested list such as 8 list1, list2, … < , there is a question of whether it should be the
listi  or  their  elements  which  appear  as  the  basic  entries  in  the  table.  The  default  behavior  is  slightly  different  for
MatrixForm and TableForm. 

MatrixForm  handles  only  arrays  that  are  “rectangular”.  Thus,  for  example,  to  consider  an  array  as
two-dimensional,  all  the  rows  must  have  the  same  length.  If  they  do  not,  MatrixForm  treats  the  array  as
one-dimensional, with elements that are lists. 

MatrixForm treats this as a one-dimensional array, since the rows are of differing lengths. 

In[14]:= MatrixForm[{{a, a, a}, {b, b}}]

Out[14]//MatrixForm= 

J 8a, a, a<
8b, b< N

While  MatrixForm  can  handle  only  “rectangular  arrays”,  TableForm  can  handle  arbitrary  “ragged”  arrays.  It
leaves blanks wherever there are no elements supplied. 

TableForm can handle “ragged”  arrays. 

In[15]:= TableForm[{{a, a, a}, {b, b}}]

Out[15]//TableForm= 
a a a
b b

You can include objects that behave as “subtables”.  

In[16]:= TableForm[{{a, {{p, q}, {r, s}}, a, a}, {{x, y}, b, b}}]

Out[16]//TableForm= 

a p q
r s a a

x
y b b

You can control the number of levels in a nested list to which both TableForm and MatrixForm go by setting the
option TableDepth. 

This tells TableForm only to go down to depth 2. As a result {x, y} is treated as a single table entry. 

In[17]:= TableForm[{{a, {x, y}}, {c, d}}, TableDepth -> 2]

Out[17]//TableForm= 
a 8x, y<
c d
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option name default value 

TableDepth Infinity maximum number
of levels to include in the table

TableDirections 8  Column,  Row, 

 Column, … <  
whether to arrange
dimensions as rows or columns

TableAlignments 8  Left,  Bottom, 

 Left, … <  
how to align the entries in each dimension

TableSpacing 8  1,  3,  0, 

 1,  0, … <  
how many spaces to put
between entries in each dimension

TableHeadings 8  None,  
None, … <  

how to label the entries in each dimension

Options for TableForm. 

With the option TableAlignments, you can specify how each entry in the table should be aligned with its row or
column.  For  columns,  you can  specify  Left,  Center  or  Right.  For  rows,  you  can  specify  Bottom,  Center  or
Top.  If  you  set  TableAlignments  ->  Center,  all  entries  will  be  centered  both  horizontally  and  vertically.
TableAlignments -> Automatic uses the default choice of alignments. 

Entries in columns are by default aligned on the left. 

In[18]:= TableForm[{a, bbbb, cccccccc}]

Out[18]//TableForm= 
a
bbbb
cccccccc

This centers all entries. 

In[19]:= TableForm[{a, bbbb, cccccccc}, TableAlignments -> Center]

Out[19]//TableForm= 
a

bbbb
cccccccc

You can use  the  option  TableSpacing  to  specify  how much horizontal  space  there  should  be  between successive
columns, or how much vertical space there should be between successive rows. A setting of 0 specifies that successive
objects should abut. 

This leaves 6 spaces between the entries in each row, and no space between successive rows. 

In[20]:= TableForm[{{a, b}, {ccc, d}}, TableSpacing -> {0, 6}]

Out[20]//TableForm= 
a b
ccc d

None no labels in any dimension
Automatic successive integer labels in each dimension

8  8  lab11,  lab12, … <, … <  explicit labels

Settings for the option TableHeadings. 
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This puts integer labels in a 2ä2ä2 array. 

In[21]:= TableForm[Array[a, {2, 2, 2}], TableHeadings -> Automatic]

Out[21]//TableForm= 
1 2

1 1 a@1, 1, 1D
2 a@1, 1, 2D

a@1, 2, 1D
a@1, 2, 2D

2 1 a@2, 1, 1D
2 a@2, 1, 2D

a@2, 2, 1D
a@2, 2, 2D

This gives a table in which the rows are labeled by integers, and the columns by a list of strings. 

In[22]:= TableForm[{{a, b, c}, {ap, bp, cp}}, TableHeadings -> {Automatic, {"first", 
"middle", "last"}}]

Out[22]//TableForm= 
first middle last

1 a b c
2 ap bp cp

This labels the rows but not the columns. TableForm automatically inserts a blank row to go with the third label. 

In[23]:= TableForm[{{2, 3, 4}, {5, 6, 1}}, TableHeadings -> {{"row a", "row b", "row c"}, 
None}]

Out[23]//TableForm= 
row a 2 3 4
row b 5 6 1
row c

2.9.9 Styles and Fonts in Output

StyleForm@ expr,  options D print with the specified style options
StyleForm@ expr,  " style "D print with the specified cell style

Specifying output styles. 

The second x2  is here shown in boldface. 

In[1]:= {x^2, StyleForm[x^2, FontWeight->"Bold"]}

Out[1]= 8x2, x2<

This shows the word text in font sizes from 10 to 20 points. 

In[2]:= Table[StyleForm["text", FontSize->s], {s, 10, 20}]

Out[2]= 9text, text, text, text, text, text,
text, text, text, text, text=
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This shows the text in the Tekton font. 

In[3]:= StyleForm["some text", FontFamily->"Tekton"]

option typical settingHsL 
FontSize 12 size of characters in printer's points
FontWeight "Plain" 

or  "Bold" 

weight of characters

FontSlant "Plain" 

or  "Italic" 

slant of characters

FontFamily "Courier" ,  
"Times" ,  
"Helvetica" 

font family

FontColor GrayLevel@0D color of characters
Background GrayLevel@1D background color for characters

A few options that can be used in StyleForm. 

If you use the notebook front end for Mathematica, then each piece of output that is generated will by default be in the
style of the cell in which the output appears. By using StyleForm[expr, "style"], however, you can tell Mathemat-
ica to output a particular expression in a different style. 

Here is an expression output in the style normally used for section headings. 

In[4]:= StyleForm[x^2 + y^2, "Section"]

Out[4]//StyleForm= 

x2 + y2

Section 2.11.1 describes in more detail how cell styles work. By using StyleForm[expr, "style", options] you can
generate output that is in a particular style, but with certain options modified. 

2.9.10 Representing Textual Forms by Boxes

All  textual  forms  in  Mathematica  are  ultimately  represented  in  terms  of  nested  collections  of  boxes.  Typically  the
elements of these boxes correspond to objects that are to be placed at definite relative positions in two dimensions.   

Here are the boxes corresponding to the expression a + b. 

In[1]:= ToBoxes[a + b]

Out[1]= RowBox@8a, +, b<D

DisplayForm shows how these boxes would be displayed. 

In[2]:= DisplayForm[%]

Out[2]//DisplayForm= 

a + b
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DisplayForm@ boxes D show  boxes as they would be displayed

Showing the displayed form of boxes. 

This displays three strings in a row. 

In[3]:= RowBox[{"a", "+", "b"}] // DisplayForm

Out[3]//DisplayForm= 

a + b

This displays one string as a subscript of another. 

In[4]:= SubscriptBox["a", "i"] // DisplayForm

Out[4]//DisplayForm= 

ai

This puts two subscript boxes in a row. 

In[5]:= RowBox[{SubscriptBox["a", "1"], SubscriptBox["b", "2"]}] // DisplayForm

Out[5]//DisplayForm= 

a1 b2

" text " literal text
RowBox@ 8  a,  b, … <  D a row of boxes or strings  a  b …

GridBox@ 8  8  a1,  b1,
… <,  8  a2,  b2, … <, … <  D 

a grid of boxes  
a1 b1 …
a2 b2 …
ª ª

SubscriptBox@ a,  b D subscript  ab  
SuperscriptBox@ a,  b D superscript  ab  

SubsuperscriptBox@ a,  b,  c D subscript and superscript  ab
c  

UnderscriptBox@ a,  b D underscript  a
b

 

OverscriptBox@ a,  b D overscript  ab  

UnderoverscriptBox@ a,  b,  c D underscript and overscript  a
b

c
 

FractionBox@ a,  b D fraction  a
b  

SqrtBox@ a D square root  è!!!a  

RadicalBox@ a,  b D b th  root  è!!!ab  

Some basic box types. 

This nests a fraction inside a radical. 

In[6]:= RadicalBox[FractionBox[x, y], n] // DisplayForm

Out[6]//DisplayForm= 

$%%%%%%xyn
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This puts a superscript on a subscripted object. 

In[7]:= SuperscriptBox[SubscriptBox[a, b], c] // DisplayForm

Out[7]//DisplayForm= 

abc

This puts both a subscript and a superscript on the same object. 

In[8]:= SubsuperscriptBox[a, b, c] // DisplayForm

Out[8]//DisplayForm= 

ab
c

FrameBox@ box D render  box with a frame drawn around it
GridBox@ list,  RowLines−>TrueD put lines between rows in a  GridBox 

GridBox@ list,  
ColumnLines−>TrueD 

put lines between columns in a  GridBox 

GridBox@ list,  
RowLines−> 8  True,  False <  D 

put a line below the first row, but not subsequent ones

Inserting frames and grid lines. 

This shows a fraction with a frame drawn around it. 

In[9]:= FrameBox[FractionBox["x", "y"]] // DisplayForm

Out[9]//DisplayForm= 
x
y

This puts lines between rows and columns of an array. 

In[10]:= GridBox[Table[i+j, {i, 3}, {j, 3}], RowLines->True, ColumnLines->True] // 
DisplayForm

Out[10]//DisplayForm= 
2 3 4
3 4 5
4 5 6

And this also puts a frame around the outside. 

In[11]:= FrameBox[%] // DisplayForm

Out[11]//DisplayForm= 

2 3 4
3 4 5
4 5 6

StyleBox@ boxes,  options D render  boxes with the specified option settings
StyleBox@ boxes,  " style "D render  boxes in the specified style

Modifying the appearance of boxes. 
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StyleBox takes the same options as StyleForm. The difference is that StyleForm acts as a “wrapper”  for any
expression, while StyleBox represents underlying box structure. 

This shows the string "name" in italics. 

In[12]:= StyleBox["name", FontSlant->"Italic"] // DisplayForm

Out[12]//DisplayForm= 

name

This shows "name" in the style used for section headings in your current notebook. 

In[13]:= StyleBox["name", "Section"] // DisplayForm

Out[13]//DisplayForm= 

name

This uses section heading style, but with characters shown in gray. 

In[14]:= StyleBox["name", "Section", FontColor->GrayLevel[0.5]] // DisplayForm

Out[14]//DisplayForm= 

name
If you use a notebook front end for Mathematica, then you will be able to change the style and appearance of what you
see on the screen directly by using menu items. Internally, however,  these changes will still be recorded by the inser-
tion of appropriate StyleBox objects. 

FormBox@ boxes,  form D interpret  boxes using rules associated with the specified form
InterpretationBox@ boxes,  expr D interpret  boxes as representing the expression  expr 

TagBox@ boxes,  tag D use  tag to guide the interpretation of  boxes 
ErrorBox@ boxes D indicate an error and do not attempt further interpretation of  

boxes 

Controlling the interpretation of boxes. 

This prints as x  with a superscript. 

In[15]:= SuperscriptBox["x", "2"] // DisplayForm

Out[15]//DisplayForm= 

x2

It is normally interpreted as a power. 

In[16]:= ToExpression[%] // InputForm

Out[16]//InputForm= 

x^2

26 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



This again prints as x  with a superscript. 

In[17]:= InterpretationBox[SuperscriptBox["x", "2"], vec[x, 2]] // DisplayForm

Out[17]//DisplayForm= 

x2

But now it is interpreted as vec[x, 2], following the specification given in the InterpretationBox. 

In[18]:= ToExpression[%] // InputForm

Out[18]//InputForm= 

vec[x, 2]

If you edit the boxes given in an InterpretationBox,  then there is no guarantee that the interpretation specified
by  the  interpretation  box  will  still  be  correct.  As  a  result,  Mathematica  provides  various  options  that  allow  you  to
control the selection and editing of InterpretationBox objects. 

option default value 

Editable False whether to allow the contents to be edited
Selectable True whether to allow the contents to be selected
Deletable True whether to allow the box to be deleted
DeletionWarning False whether to issue a warning if the box is deleted
BoxAutoDelete False whether to strip the

box if its contents are modified
StripWrapperBoxes False whether to remove  

StyleBox etc. from within  
boxes in  TagBox@ boxes, … D 

Options for InterpretationBox and related boxes. 

TagBox  objects  are  used  to  store  information  that  will  not  be  displayed  but  which  can  nevertheless  be  used  by  the
rules that interpret boxes. Typically the tag in TagBox[boxes, tag] is a symbol which gives the head of the expres-
sion  corresponding  to  boxes.  If  you  edit  only  the  arguments  of  this  expression  then  there  is  a  good  chance  that  the
interpretation specified by the TagBox will still be appropriate. As a result, Editable->True is the default setting
for a TagBox. 

The  rules  that  Mathematica  uses  for  interpreting  boxes  are  in  general  set  up  to  ignore  details  of  formatting,  such  as
those  defined  by  StyleBox  objects.  Thus,  unless  StripWrapperBoxes->False,  a  red  x,  for  example,  will
normally not be distinguished from an ordinary black x. 

A red x is usually treated as identical to an ordinary one. 

In[19]:= ToExpression[ StyleBox[x, FontColor->RGBColor[1,0,0]]] == x

Out[19]= True

ButtonBox@ boxes D display like  boxes 
but perform an action whenever  boxes are clicked on

Setting up active elements. 

In  a  Mathematica  notebook  it  is  possible  to  set  up  elements  which  perform  an  action  whenever  you  click  on  them.
These  elements  are  represented  internally  by  ButtonBox  objects.  When  you  create  an  expression  containing  a
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ButtonBox,  you  will  be  able  to  edit  the  contents  of  the  ButtonBox  directly  so  long  as  the  Active  option  is
False for the cell containing the expression. As soon as you set Active->True, the ButtonBox will perform its
action whenever you click on it. 

Section 2.11.6 discusses how to set up actions for ButtonBox objects. 

2.9.11 Adjusting Details of Formatting

Mathematica  provides  a  large  number  of  options  for  adjusting  the  details  of  how expressions  are  formatted.  In  most
cases,  the  default  settings  for  these  options  will  be  quite  adequate.  But  sometimes special  features  in  the expressions
you are dealing with may require you to change the options.  

option default value 

ColumnAlignments Center how to align columns
RowAlignments Baseline how to align rows
ColumnSpacings 0.8 spacings between columns in ems
RowSpacings 1.0 spacings between rows in x-heights
ColumnsEqual False whether to make all columns equal width
RowsEqual False whether to make all rows equal total height
ColumnWidths Automatic the actual width of each column in ems
RowMinHeight 1 the minimum total height in

units of font size assigned to each row
GridBaseline Axis with what part of the whole grid the

baselines of boxes around it should be aligned
ColumnLines False whether to draw lines between columns
RowLines False whether to draw lines between rows
GridDefaultElement " Ñ  " what to insert when a

new element is interactively created

Options to GridBox. 

This sets up an array of numbers. 

In[1]:= t = Table[{i, (2i)!, (3i)!}, {i, 4}] ;

Here is how the array is displayed with the default settings for all GridBox options. 

In[2]:= GridBox[t] // DisplayForm

Out[2]//DisplayForm= 
1 2 6
2 24 720
3 720 362880
4 40320 479001600

28 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



This right justifies all the columns. 

In[3]:= GridBox[t, ColumnAlignments->Right] // DisplayForm

Out[3]//DisplayForm= 
1 2 6
2 24 720
3 720 362880
4 40320 479001600

This left justifies the first two columns and right justifies the last one. 

In[4]:= GridBox[t, ColumnAlignments->{Left, Left, Right}] // DisplayForm

Out[4]//DisplayForm= 
1 2 6
2 24 720
3 720 362880
4 40320 479001600

This sets the gutters between columns. 

In[5]:= GridBox[t, ColumnSpacings->{5, 10}] // DisplayForm

Out[5]//DisplayForm= 
1 2 6
2 24 720
3 720 362880
4 40320 479001600

This forces all columns to be the same width. 

In[6]:= GridBox[t, ColumnsEqual->True] // DisplayForm

Out[6]//DisplayForm= 
1 2 6
2 24 720
3 720 362880
4 40320 479001600

Usually a GridBox leaves room for any character in the current font to appear in each row. But with RowMinHeight->0 it 
packs rows in more tightly. 

In[7]:= {GridBox[{{x, x}, {x, x}}], GridBox[{{x, x}, {x, x}}, RowMinHeight->0]} // 
DisplayForm

Out[7]//DisplayForm= 

9 x x
x x

, x x
x x=
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Center centered HdefaultL
Left left justified Haligned on left edgeL
Right right justified Haligned on right edgeL
"." aligned at decimal points
" c " aligned at the first occurrence of the specified character

8  pos1,  pos2, … <  separate specifications for each column in the grid

Settings for the ColumnAlignments option. 

In formatting complicated tables, it is often important to be able to control in detail the alignment of table entries. By
setting  ColumnAlignments->"c"  you  tell  Mathematica  to  arrange  the  elements  in  each  column  so  that  the  first
occurrence of the character "c" in each entry is aligned. 

Choosing  ColumnAlignments->"."  will  therefore  align  numbers  according  to  the  positions  of  their  decimal
points.  Mathematica  also  provides  a  special  î[AlignmentMarker]  character,  which  can  be  entered  as  Çam .  This
character does not display explicitly, but can be inserted in entries in a table to mark which point in these entries should
be lined up.    

Center centered
Top tops aligned

Bottom bottoms aligned
Baseline baselines aligned HdefaultL

Axis axes aligned
8  pos1,  pos2, … <  separate specifications for each row in the grid

Settings for the RowAlignments option. 

This is the default alignment of elements in a row of a GridBox. 

In[8]:= GridBox[{{SuperscriptBox[x, 2], FractionBox[y, z]}}] // DisplayForm

Out[8]//DisplayForm= 

x2 y
z

Here is what happens if the bottom of each element is aligned. 

In[9]:= GridBox[{{SuperscriptBox[x, 2], FractionBox[y, z]}}, RowAlignments->Bottom] // 
DisplayForm

Out[9]//DisplayForm= 

x2
y
z

In a piece of ordinary text, successive characters are normally positioned so that their baselines are aligned. For many
characters, such as m and x, the baseline coincides with the bottom of the character. But in general the baseline is the
bottom of the main part of the character, and for example, in most fonts g and y have “descenders”  that extend below
the baseline.   

This shows the alignment of characters with the default setting RowAlignments->Baseline. 

In[10]:= GridBox[{{"x", "m", "g", "y"}}] // DisplayForm

Out[10]//DisplayForm= 

x m g y
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This is what happens if instead the bottom of each character is aligned. 

In[11]:= GridBox[{{"x", "m", "g", "y"}}, RowAlignments->Bottom] // DisplayForm

Out[11]//DisplayForm= 

x m g y

Like  characters  in  ordinary  text,  Mathematica  will  normally  position  sequences  of  boxes  so  that  their  baselines  are
aligned. For many kinds of boxes the baseline is simply taken to be the baseline of the main element of the box. Thus,
for example, the baseline of a SuperScript box xy  is taken to be the baseline of x. 

For a FractionBox x
y , the fraction bar defines the axis of the box. In text in a particular font, one can also define an

axis—a line going through the centers of symmetrical characters such as + and (. The baseline for a FractionBox is
then taken to be the same distance below its axis as the baseline for text in the current font is below its axis.  

For  a  GridBox,  you can use  the  option  GridBaseline  to  specify  where  the  baseline  should  be  taken to  lie.  The
possible settings are the same as the ones for RowAlignments. The default is Axis, which makes the center of the
GridBox be aligned with the axis of text around it. 

The GridBaseline option specifies where the baseline of the GridBox should be assumed to be. 

In[12]:= {GridBox[{{x,x},{x,x}}, GridBaseline->Top], GridBox[{{x,x},{x,x}}, 
GridBaseline->Bottom]} // DisplayForm

Out[12]//DisplayForm= 

9
x x
x x

,

x x
x x=

option default value 

Background GrayLevel@0.8D button background color

ButtonFrame "Palette" the type of frame for the button
ButtonExpandable True whether a button should

expand to fill a position in a  GridBox 

ButtonMargins 3 the margin in printer's
points around the contents of a button

ButtonMinHeight 1 the minimum total height
of a button in units of font size

ButtonStyle "Paste" the style from which properties of the button
not explicitly specified should be inherited

Formatting options for ButtonBox objects. 

This makes a button that looks like an element of a dialog box.  

In[13]:= ButtonBox["abcd", ButtonFrame->"DialogBox"] // DisplayForm

Out[13]//DisplayForm= 

abcd
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Palettes are typically constructed using grids of ButtonBox objects with zero row and column spacing. 

In[14]:= GridBox[{{ButtonBox["abc"], ButtonBox["xyz"]}}, ColumnSpacings->0] // DisplayForm

Out[14]//DisplayForm= 

abc xyz

Buttons usually expand to be aligned in a GridBox. 

In[15]:= GridBox[{{ButtonBox["abcd"]}, {ButtonBox["x"]}}] // DisplayForm

Out[15]//DisplayForm= 

abcd

x

Here the lower button is made not to expand. 

In[16]:= GridBox[{{ButtonBox["abcd"]}, {ButtonBox["x", ButtonExpandable->False]}}] // 
DisplayForm

Out[16]//DisplayForm= 

abcd

x

Section 2.11.6 will discuss how to set up actions for ButtonBox objects. 

printer's point approximately 1ê72 inch Hor
sometimes the size of a pixel on a displayL

pica 12 printer's points, or 1ê6 inch
font point size the maximum distance in printer's points between

the top and bottom of any character in a particular font
em a width equal to the point font

size—approximatelythe width of an M
en half an em

x-height the height of an x character in the current font

Units of distance. 
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full name alias 

î @InvisibleSpaceD Ç is  zero-width space
î @VeryThinSpaceD Ç â  Ç 1ê18 em H x  x L
î @ThinSpaceD Ç â  â  Ç 3ê18 em H x  x L
î @MediumSpaceD Ç â  â  â  Ç 4ê18 em H x  x L
î @ThickSpaceD Ç â  â  â  â  Ç 5ê18 em H x  x L
î @NegativeVeryThinSpaceD Ç − â  Ç -1 ê 18  em H x  x L
î @NegativeThinSpaceD Ç − â  â  Ç -3 ê 18  em H x  x L
î @NegativeMediumSpaceD Ç − â  â  â  Ç -4 ê 18  em H x  x L
î @NegativeThickSpaceD Ç − â  â  â  â  Ç -5 ê 18  em H x  x L
î @RawSpaceD â  keyboard space character
î @SpaceIndicatorD Ç space  the  â  character indicating a space

Spacing characters of various widths. â  indicates the space key on your keyboard. 

When  you  enter  input  such  as  x+y,  Mathematica  will  automatically  convert  this  to  RowBox[{"x","+","y"}].
When the RowBox is output, Mathematica will then try to insert appropriate space between each element. Typically, it
will  put  more space  around  characters  such as  +  that  are  usually  used  as  operators,  and  less space around characters
such  as  x  that  are  not.  You  can  however  always  modify  spacing  by  inserting  explicit  spacing  characters.  Positive
spacing characters will move successive elements further apart, while negative ones will bring them closer together.  

Mathematica by default leaves more space around characters such as + and - that are usually used as operators. 

In[17]:= RowBox[{"a", "b", "+", "c", "-", "+"}] // DisplayForm

Out[17]//DisplayForm= 

a b + c − +

You can explicitly insert positive and negative spacing characters to change spacing. 

In[18]:= RowBox[{"a", "\[ThickSpace]", "b", "+", "\[NegativeMediumSpace]", "c", "-", 
"+"}] // DisplayForm

Out[18]//DisplayForm= 

a b +c − +

StyleBox@ boxes,  
AutoSpacing−>FalseD 

leave the same space around every character in  boxes 

Inhibiting automatic spacing in Mathematica. 

This makes Mathematica leave the same space between successive characters. 

In[19]:= StyleBox[RowBox[{"a", "b", "+", "c", "-", "+"}], AutoSpacing->False] // 
DisplayForm

Out[19]//DisplayForm= 

a b+c−+

When you have an expression displayed on the screen, the notebook front end allows you interactively to make detailed
adjustments  to  the  positions  of  elements.  Typically  ‚Î≠ Ï,  ‚ÎØ Ï,  ‚ÎÆ Ï,  ‚Î∞ Ï  “nudge”  whatever  you  have
selected by one pixel at your current screen magnification. Such adjustments are represented within Mathematica using
AdjustmentBox objects.    
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AdjustmentBox@ box,
 BoxMargins−> 8  8  left,  

right <,  8  bottom,  top <  <  D 

draw margins of the specified widths around  box 

AdjustmentBox@ box,  
BoxBaselineShift−> up D 

shift the height at which baselines of boxes around  
box should be aligned

Adjusting the position of a box. 

This adds space to the left of the B and removes space to its right. 

In[20]:= RowBox[{"A", AdjustmentBox["B", BoxMargins-> {{1, -0.3}, {0, 0}}], "C", "D"}] // 
DisplayForm

Out[20]//DisplayForm= 

A B  C D

By careful adjustment, you can set things up to put two characters on top of each other.      

In[21]:= RowBox[{"C", AdjustmentBox["/", BoxMargins->{{-.8, .8}, {0, 0}}]}] // DisplayForm

Out[21]//DisplayForm= 

Cê

The left and right margins in an AdjustmentBox are given in ems; the bottom and top ones in x-heights. By giving
positive values for margins you can force there to be space around a box. By giving negative values you can effectively
trim space away, and force other  boxes to be closer.  Note that in a RowBox,  vertical alignment is determined by the
position  of  the  baseline;  in  a  FractionBox  or  an  OverscriptBox,  for  example,  it  is  instead  determined by  top
and bottom margins. 

StyleBox@ boxes,  
ShowContents−>FalseD 

leave space for  boxes but do not display them

Leaving space for boxes without displaying them. 

If you are trying to line up different elements of your output, you can use ShowContents->False  in StyleBox
to leave space for boxes without actually displaying them. 

This leaves space for the Y, but does not display it. 

In[22]:= RowBox[{"X", StyleBox["Y", ShowContents->False], "Z"}] // DisplayForm

Out[22]//DisplayForm= 

X Z

The sizes of most characters are determined solely by what font they are in, as specified for example by the FontSize
option in StyleBox. But there are some special expandable characters whose size can change even within a particular
font. Examples are parentheses, which by default are taken to expand so as to span any expression they contain. 
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Parentheses by default expand to span whatever expressions they contain. 

In[23]:= {RowBox[{"(", "X", ")"}], RowBox[{"(", FractionBox["X", "Y"], ")"}]} // 
DisplayForm

Out[23]//DisplayForm= 

9HXL, I X
Y
M=

option default value 

SpanMinSize Automatic minimum size of expandable
characters in units of font size

SpanMaxSize Automatic maximum size of expandable
characters in units of font size

SpanSymmetric True whether vertically expandable
characters should be symmetric
about the axis of the box they are in

SpanLineThickness Automatic thickness in printer's points of fraction lines etc.

StyleBox options for controlling expandable characters. 

Parentheses within a single RowBox by default grow to span whatever other objects appear in the RowBox. 

In[24]:= RowBox[{"(", "(", GridBox[{{X},{Y},{Z}}]}] // DisplayForm

Out[24]//DisplayForm= 

i

k

jjjjjjj
i

k

jjjjjjj
X
Y
Z

Some expandable characters, however, grow by default only to a limited extent. 

In[25]:= RowBox[{"{", "[", "(", GridBox[{{X},{Y},{Z}}]}] // DisplayForm

Out[25]//DisplayForm= 

9A
i

k

jjjjjjj
X
Y
Z

This specifies that all characters inside the StyleBox should be allowed to grow as large as they need. 

In[26]:= StyleBox[%, SpanMaxSize->Infinity] // DisplayForm

Out[26]//DisplayForm= 

looom
n
ooo

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

i

k

jjjjjjj
X
Y
Z

By default, expandable characters grow symmetrically. 

In[27]:= RowBox[{"(", GridBox[{{X},{Y}}, GridBaseline->Bottom], ")"}] // DisplayForm

Out[27]//DisplayForm= 

i

k

jjjjjjjjj

X
Y
y

{

zzzzzzzzz
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Setting SpanSymmetric->False allows expandable characters to grow asymmetrically. 

In[28]:= {X, StyleBox[%, SpanSymmetric->False]} // DisplayForm

Out[28]//DisplayForm= 

9X,
i
k
jj XY

y
{
zz=

The notebook  front  end  typically provides  a  Spanning Characters  menu which  allows  you to  change  the  spanning
characteristics of all characters within your current selection. 

parentheses, arrows, bracketing bars grow without bound
brackets, braces, slash grow to limited size

Default characteristics of expandable characters. 

The top bracket by default grows to span the OverscriptBox. 

In[29]:= OverscriptBox["xxxxxx", "\[OverBracket]"] // DisplayForm

Out[29]//DisplayForm= 

xxxxxxt vuuuuuuuuuuuu

The right arrow by default grows horizontally to span the column it is in. 

In[30]:= GridBox[{{"a", "xxxxxxx", "b"}, {"a", "\[RightArrow]", "b"}}] // DisplayForm

Out[30]//DisplayForm= 
a xxxxxxx b
a →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ b

The up arrow similarly grows vertically to span the row it is in. 

In[31]:= GridBox[{{FractionBox[X, Y], "\[UpArrow]"}}] // DisplayForm

Out[31]//DisplayForm= 
X
Y

↑⏐⏐⏐⏐

option default value 

ScriptSizeMultipliers 0.71 how much smaller to
make each level of subscripts, etc.

ScriptMinSize 4 the minimum point size to use for subscripts, etc.
ScriptBaselineShifts 8Automatic, 

 Automatic< 

the distance in x-heights
to shift subscripts and superscripts

StyleBox options for controlling the size and positioning of subscripts, etc. 

This sets up a collection of nested SuperscriptBox objects. 

In[32]:= b = ToBoxes[X^X^X^X^X]

Out[32]= SuperscriptBox@X, SuperscriptBox@X, SuperscriptBox@X, SuperscriptBox@X, XDDDD
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By default, successive superscripts get progressively smaller. 

In[33]:= b // DisplayForm

Out[33]//DisplayForm= 

XX
XX
X

This tells Mathematica to make all levels of superscripts the same size. 

In[34]:= StyleBox[b, ScriptSizeMultipliers->1] // DisplayForm

Out[34]//DisplayForm= 

XX
XX
X

Here successive levels of superscripts are smaller, but only down to 5-point size. 

In[35]:= StyleBox[b, ScriptMinSize->5] // DisplayForm

Out[35]//DisplayForm= 

XX
XX
X

Mathematica  will usually optimize the position of subscripts and superscripts in a way that depends on their environ-
ment. If you want to line up several different subscripts or superscripts you therefore typically have to use the option
ScriptBaselineShifts to specify an explicit distance to shift each one. 

The second subscript is by default shifted down slightly more than the first. 

In[36]:= RowBox[{SubscriptBox["x", "0"], "+", SubsuperscriptBox["x", "0", "2"]}] // 
DisplayForm

Out[36]//DisplayForm= 

x0 + x0
2

This tells Mathematica to apply exactly the same shift to both subscripts. 

In[37]:= StyleBox[%, ScriptBaselineShifts->{1, Automatic}] // DisplayForm

Out[37]//DisplayForm= 

x
0

+ x
0
2

option default value 

LimitsPositioning Automatic whether to change positioning
in the way conventional for limits

An option to UnderoverscriptBox and related boxes. 

The limits of a sum are usually displayed as underscripts and overscripts. 

In[38]:= Sum[f[i], {i, 0, n}]

Out[38]= ‚
i=0

n

f@iD
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When the sum is shown smaller, however, it is conventional for the limits to be displayed as subscripts and superscripts. 

In[39]:= 1/%

Out[39]= 
1

⁄i=0
n f@iD

Here low and high still display directly above and below XX. 

In[40]:= UnderoverscriptBox["XX", "low", "high", LimitsPositioning->True] // DisplayForm

Out[40]//DisplayForm= 

XX
low

high

But now low and high are moved to subscript and superscript positions. 

In[41]:= FractionBox["a", %] // DisplayForm

Out[41]//DisplayForm= 
a

XXlow
high

LimitsPositioning->Automatic  will  act  as  if  LimitsPositioning->True  when  the  first  argument  of
the box is an object such as î[Sum] or î[Product]. You can specify the list of such characters by setting the option
LimitsPositioningTokens.   

option default value 

MultilineFunction Automatic what to do when a
box breaks across several lines

Line breaking options for boxes. 

When you are dealing with long expressions it is inevitable that they will continue beyond the length of a single line.
Many kinds of boxes change their display characteristics when they break across several lines. 

This displays as a built-up fraction on a single line. 

In[42]:= Expand[(1 + x)^5]/Expand[(1 + y)^5]

Out[42]= 
1 + 5 x + 10 x2 + 10 x3 + 5 x4 + x5

1 + 5 y + 10 y2 + 10 y3 + 5 y4 + y5

This breaks across several lines. 

In[43]:= Expand[(1 + x)^10]/Expand[(1 + y)^5]

Out[43]= H1 + 10 x + 45 x2 + 120 x3 + 210 x4 + 252 x5 + 210 x6 + 120 x7 + 45 x8 + 10 x9 + x10Lê
H1 + 5 y + 10 y2 + 10 y3 + 5 y4 + y5L

You can use the option MultilineFunction to specify how a particular box should be displayed if it breaks across
several lines. The setting MultilineFunction->None prevents the box from breaking at all. 

You can to some extent control where expressions break across lines by inserting î[NoBreak] and î[NonBreaking
Space] characters. Mathematica will try to avoid ever breaking an expression at the position of such characters.      
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You can force Mathematica  to break a line by explicitly inserting a î[NewLine]  character, obtained in the standard
notebook front end simply by typing Return. With default settings for options, Mathematica  will automatically indent
the next line after you type a Return. However, the level of indenting used will be fixed as soon as the line is started,
and  will  not  change  when  you  edit  around  it.  By  inserting  an  î[IndentingNewLine]  character,  you  can  tell
Mathematica  always to maintain the correct level of indenting based on the actual environment in which a line occurs.

full name alias 

î @NoBreakD Ç nb  inhibit a line break
î @NonBreakingSpaceD Ç nbs  insert a space, inhibiting

a line break on either side of it
î @NewLineD ¿  insert a line break, setting the indenting

level at the time the new line is started
î @IndentingNewLineD Ç nl  insert a line break, always

maintaining the correct indenting level

Characters for controlling line breaking. 

When Mathematica  breaks an expression across several lines, it indents intermediate lines by an amount proportional
to the nesting level in the expression at which the break occurred. 

The line breaks here occur only at level 1. 

In[44]:= Range[30]

Out[44]= 81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30<

But here the break is at a much deeper level. 

In[45]:= Nest[List, x+y, 30]

Out[45]= 888888888888888888888888888888x + y<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

2.9.12 String Representation of Boxes

Mathematica  provides  a compact way of  representing  boxes in terms of  strings.  This  is  particularly convenient  when
you want to import or export specifications of boxes as ordinary text.    

This generates an InputForm string that represents the SuperscriptBox. 

In[1]:= ToString[SuperscriptBox["x", "2"], InputForm]

Out[1]= \Hx\^2\L

This creates the SuperscriptBox. 

In[2]:= \( x \^ 2 \)

Out[2]= SuperscriptBox@x, 2D
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ToExpression interprets the SuperscriptBox as a power. 

In[3]:= ToExpression[%] // FullForm

Out[3]//FullForm= 

Power@x, 2D

It is important to distinguish between forms that represent just raw boxes, and forms that represent the meaning  of the
boxes. 

This corresponds to a raw SuperscriptBox. 

In[4]:= \( x \^ 2 \)

Out[4]= SuperscriptBox@x, 2D

This corresponds to the power that the SuperscriptBox represents. 

In[5]:= \!\( x \^ 2 \)

Out[5]= x2

The expression generated here is a power. 

In[6]:= FullForm[ \!\( x \^ 2 \) ]

Out[6]//FullForm= 

Power@x, 2D

î H input î L raw boxes
î !îH input î L the meaning of the boxes

Distinguishing raw boxes from the expressions they represent. 

If  you  copy  the  contents  of  a  StandardForm  cell  into  another  program,  such  as  a  text  editor,  Mathematica  will
automatically generate a î!î( … î) form. This is done so that if you subsequently paste the form back into Mathemat-
ica,  the  original  contents  of  the  StandardForm  cell  will  automatically be  re-created.  Without  the  î!,  only  the  raw
boxes corresponding to these contents would be obtained.  

With default settings for options, î!î( … î) forms pasted into Mathematica  notebooks are automatically displayed in
two-dimensional form. î!î( … î) forms entered directly from the keyboard can be displayed in two-dimensional form
using the Make 2D item in the Edit menu.  

"îH input î L" a raw character string
"î!îH input î L" a string containing boxes

Embedding two-dimensional box structures in strings. 

Mathematica  will usually treat a î(  … î)  form that appears within a string just like any other sequence of characters.
But by inserting a î!  you can tell Mathematica  instead to treat this form like the boxes it represents.  In this way you
can therefore embed box structures within ordinary character strings.  
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Mathematica treats this as an ordinary character string. 

In[7]:= "\( x \^ 2 \)"

Out[7]= \H x \^ 2 \L

The î! tells Mathematica that this string contains boxes. 

In[8]:= "\!\( x \^ 2 \)"

Out[8]= x2

You can mix boxes with ordinary text. 

In[9]:= "box 1: \!\(x\^2\); box 2: \!\(y\^3\)"

Out[9]= box 1: x2; box 2: y3

î H box1 ,  box2, …î L RowBox@ box1,  box2, … D 

box1  î ^  box2  SuperscriptBox@ box1,  box2  D 

box1  î _  box2  SubscriptBox@ box1,  box2  D 

box1  î _  box2  î %  box3  SubsuperscriptBox@ box1,  box2,  box3  D 

box1  î &  box2  OverscriptBox@ box1,  box2  D 

box1  î +  box2  UnderscriptBox@ box1,  box2  D 

box1  î +  box2  î %  box3  UnderoverscriptBox@ box1,  box2,  box3  D 

box1  î ê  box2  FractionBox@ box1,  box2  D 

î @  box SqrtBox@ box D 

î @  box1  î %  box2  RadicalBox@ box1,  box2  D 

form î `  box FormBox@ box,  form D 

î ∗  input construct boxes from  input 

Input forms for boxes. 

Mathematica requires that any input forms you give for boxes be enclosed within î( and î). But within these outermost
î( and î) you can use additional î( and î) to specify grouping. 

Here ordinary parentheses are used to indicate grouping. 

In[10]:= \( x \/ (y + z) \) // DisplayForm

Out[10]//DisplayForm= 
x

Hy + zL

Without the parentheses, the grouping would be different. 

In[11]:= \( x \/ y + z \) // DisplayForm

Out[11]//DisplayForm= 
x
y

+ z
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î( and î) specify grouping, but are not displayed as explicit parentheses. 

In[12]:= \( x \/ \(y + z\) \) // DisplayForm

Out[12]//DisplayForm= 
x

y + z

The inner î( and î) lead to the construction of a RowBox. 

In[13]:= \( x \/ \(y + z\) \)

Out[13]= FractionBox@x, RowBox@8y, +, z<DD

When you type aa+bb  as  input  to  Mathematica,  the first  thing  that  happens  is  that  aa,  +  and bb  are  recognized as
being separate “tokens”.  The same separation into tokens is done when boxes are constructed from input enclosed in î
( … î). However, inside the boxes each token is given as a string, rather than in its raw form.  

The RowBox has aa, + and bb broken into separate strings. 

In[14]:= \( aa+bb \) // FullForm

Out[14]//FullForm= 

RowBox@List@"aa", "+", "bb"DD

The spaces around the + are by default discarded. 

In[15]:= \( aa + bb \) // FullForm

Out[15]//FullForm= 

RowBox@List@"aa", "+", "bb"DD

Backslash-space inserts a literal space. 

In[16]:= \( aa \ + \ bb \) // FullForm

Out[16]//FullForm= 

RowBox@List@"aa", " ", "+", " ", "bb"DD

Here two nested RowBox objects are formed. 

In[17]:= \( aa+bb/cc \) // FullForm

Out[17]//FullForm= 

RowBox@List@"aa", "+", RowBox@List@"bb", "ê", "cc"DDDD

The same box structure is formed even when the string given does not correspond to a complete Mathematica expression. 

In[18]:= \( aa+bb/ \) // FullForm

Out[18]//FullForm= 

RowBox@List@"aa", "+", RowBox@List@"bb", "ê"DDDD

Within î( … î) sequences, you can set up certain kinds of boxes by using backslash notations such as î^ and î@. But
for other kinds of boxes, you need to give ordinary Mathematica input, prefaced by î*.  
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This constructs a GridBox. 

In[19]:= \( \*GridBox[{{"a", "b"}, {"c", "d"}}] \) // DisplayForm

Out[19]//DisplayForm= 
a b
c d

This constructs a StyleBox. 

In[20]:= \( \*StyleBox["text", FontWeight->"Bold"] \) // DisplayForm

Out[20]//DisplayForm= 

text

î*  in effect  acts like an escape: it  allows you to enter ordinary Mathematica  syntax even within a î(  … î)  sequence.
Note that the input you give after a î* can itself in turn contain î( … î) sequences. 

You can alternate nested î* and î( … î). Explicit quotes are needed outside of î( … î). 

In[21]:= \( x + \*GridBox[{{"a", "b"}, {\(c \^ 2\), \(d \/ 
\*GridBox[{{"x","y"},{"x","y"}}] \)}}] \) // DisplayForm

Out[21]//DisplayForm= 

x +

a b

c2 d
x y
x y

In  the  notebook  front  end,  you  can  typically  use  ‚Î*Ï  or  ‚Î8Ï  to  get  a  dialog  box  in  which  you  can  enter  raw
boxes—just as you do after î*.  

î !îH input î L interpret input in the current form
î !îH form î `  input î L interpret input using the specified form

Controlling the way input is interpreted. 

In a StandardForm cell, this will be interpreted in StandardForm, yielding a product. 

In[22]:= \!\( c(1+x) \)

Out[22]= c H1 + xL

The backslash backquote sequence tells Mathematica to interpret this in TraditionalForm. 

In[23]:= \!\(TraditionalForm\` c(1+x) \)

Out[23]= c@1 + xD

When  you  copy  the  contents  of  a  cell  from  a  notebook  into  a  program  such  as  a  text  editor,  no  explicit  backslash
backquote sequence is usually included. But if you expect to paste what you get back into a cell of a different type from
the one it  came from, then you will typically need to include a backslash backquote  sequence in order  to ensure that
everything is interpreted correctly.  
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2.9.13 Converting between Strings, Boxes and Expressions

ToString@ expr,  form D create a string representing the specified textual form of  expr 
ToBoxes@ expr,  form D create boxes representing the specified textual form of  expr 

ToExpression@ input,  form D create an expression by interpreting a
string or boxes as input in the specified textual form

ToString@ expr D create a string using  OutputForm 

ToBoxes@ expr D create boxes using  StandardForm 

ToExpression@ input D create an expression using  StandardForm 

Converting between strings, boxes and expressions. 

Here is a simple expression. 

In[1]:= x^2 + y^2

Out[1]= x2 + y2

This gives the InputForm of the expression as a string. 

In[2]:= ToString[x^2 + y^2, InputForm]

Out[2]= x^2 + y^2

In FullForm explicit quotes are shown around the string. 

In[3]:= FullForm[%]

Out[3]//FullForm= 

"x^2 + y^2"

This gives a string representation for the StandardForm boxes that correspond to the expression. 

In[4]:= ToString[x^2 + y^2, StandardForm] // FullForm

Out[4]//FullForm= 

"\!\Hx\^2 + y\^2\L"

ToBoxes yields the boxes themselves. 

In[5]:= ToBoxes[x^2 + y^2, StandardForm]

Out[5]= RowBox@8SuperscriptBox@x, 2D, +, SuperscriptBox@y, 2D<D

In generating data for files and external programs, it is sometimes necessary to produce two-dimensional forms which
use only ordinary keyboard characters. You can do this using OutputForm. 

This produces a string which gives a two-dimensional rendering of the expression, using only ordinary keyboard characters. 

In[6]:= ToString[x^2 + y^2, OutputForm]

Out[6]= 2 2
x + y
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The string consists of two lines, separated by an explicit în newline. 

In[7]:= FullForm[%]

Out[7]//FullForm= 

" 2 2\nx + y"

The string looks right only in a monospaced font. 

In[8]:= StyleBox[%, FontFamily->"Times"] // DisplayForm

Out[8]//DisplayForm= 

2 2 x + y

If you operate only with one-dimensional structures, you can effectively use ToString to do string manipulation with
formatting functions. 

This generates a string corresponding to the OutputForm of StringForm. 

In[9]:= ToString[StringForm["``^10 = ``", 4, 4^10]] // InputForm

Out[9]//InputForm= 

"4^10 = 1048576"

InputForm strings corresponding to keyboard input
StandardForm strings or boxes corresponding

to standard two-dimensional input HdefaultL
TraditionalForm strings or boxes mimicking traditional mathematical notation

Some forms handled by ToExpression. 

This creates an expression from an InputForm string. 

In[10]:= ToExpression["x^2 + y^2"]

Out[10]= x2 + y2

This creates the same expression from StandardForm boxes. 

In[11]:= ToExpression[RowBox[{SuperscriptBox["x", "2"], "+", SuperscriptBox["y", "2"]}]]

Out[11]= x2 + y2

Here the boxes are represented in InputForm. 

In[12]:= ToExpression[\(x\^2 + y\^2\)]

Out[12]= x2 + y2

This returns raw boxes. 

In[13]:= ToExpression["\(x\^2 + y\^2\)"]

Out[13]= RowBox@8SuperscriptBox@x, 2D, +, SuperscriptBox@y, 2D<D
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This interprets the boxes. 

In[14]:= ToExpression["\!\(x\^2 + y\^2\)"]

Out[14]= x2 + y2

In TraditionalForm these are interpreted as functions. 

In[15]:= ToExpression["c(1 + x) + log(x)", TraditionalForm]

Out[15]= c@1 + xD + Log@xD

ToExpression@ input,  form,  h D create an expression, then wrap it with head  h 

Creating expressions wrapped with special heads. 

This creates an expression, then immediately evaluates it. 

In[16]:= ToExpression["1 + 1"]

Out[16]= 2

This creates an expression using StandardForm rules, then wraps it in Hold. 

In[17]:= ToExpression["1 + 1", StandardForm, Hold]

Out[17]= Hold@1 + 1D

You can get rid of the Hold using ReleaseHold. 

In[18]:= ReleaseHold[%]

Out[18]= 2

SyntaxQ@" string "D determine whether a string represents syntactically correct  
Mathematica input

SyntaxLength@" string "D find out how long a sequence of characters starting
at the beginning of a string is syntactically correct

Testing correctness of strings as input. 

ToExpression  will  attempt to  interpret  any  string  as  Mathematica  input.  But  if  you  give  it  a  string  that  does  not
correspond to syntactically correct input, then it will print a message, and return $Failed. 

This is not syntactically correct input, so ToExpression does not convert it to an expression. 

In[19]:= ToExpression["1 +/+ 2"]

ToExpression::sntx: Syntax error in or before "1 +/+ 2".                           
^

Out[19]= $Failed
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ToExpression requires that the string correspond to a complete Mathematica expression. 

In[20]:= ToExpression["1 + 2 + "]

ToExpression::sntxi:     Incomplete expression; more input is needed. 

Out[20]= $Failed

You can use the function SyntaxQ to test whether a particular string corresponds to syntactically correct Mathematica
input.  If  SyntaxQ  returns  False,  you  can  find  out  where  the  error  occurred  using  SyntaxLength.  Syntax
Length returns the number of characters which were successfully processed before a syntax error was detected. 

SyntaxQ shows that this string does not correspond to syntactically correct Mathematica input. 

In[21]:= SyntaxQ["1 +/+ 2"]

Out[21]= False

SyntaxLength reveals that an error was detected after the third character in the string. 

In[22]:= SyntaxLength["1 +/+ 2"]

Out[22]= 3

Here SyntaxLength returns a value greater than the length of the string, indicating that the input was correct so far as it went, 
but needs to be continued. 

In[23]:= SyntaxLength["1 + 2 + "]

Out[23]= 10

2.9.14 The Syntax of the Mathematica Language

Mathematica  uses various syntactic rules to interpret input that you give, and to convert strings and boxes into expres-
sions. The version of these rules that is used for StandardForm and InputForm in effect defines the basic Mathe-
matica language. The rules used for other forms, such as TraditionalForm, follow the same overall principles, but
differ in many details.  

a ,  xyz ,  a  b  g  symbols
"some  text" ,  " a   +  b  " strings

123.456 ,  3*^45 numbers
+,  −> ,  ∫  operators

H∗  comment  ∗L input to be ignored

Types of tokens in the Mathematica language. 

When you give text as input to Mathematica, the first thing that Mathematica  does is to break the text into a sequence
of tokens, with each token representing a separate syntactic unit. 

Thus, for example, if you give the input xx+yy-zzzz, Mathematica will break this into the sequence of tokens xx, +,
yy, - and zzzz. Here xx, yy and zzzz are tokens that correspond to symbols, while + and - are operators.  
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Operators  are  ultimately what  determine the  structure  of  the  expression  formed from a particular  piece of  input.  The
Mathematica  language involves several general classes of  operators,  distinguished by the different positions in which
they appear with respect to their operands. 

prefix !x Not@ x D 

postfix x! Factorial@ x D 

infix x  +  y  +  z Plus@ x,  y,  z D 

matchfix 8  x,  y,  z <  List@ x,  y,  z D 

compound x  ê:  y  =  z TagSet@ x,  y,  z D 

overfix x̂  OverHat@ x D 

Examples of classes of operators in the Mathematica language. 

Operators typically work by picking up operands from definite positions around them. But when a string contains more
than one operator, the result can in general depend on which operator picks up its operands first. 

Thus, for example, a*b+c could potentially be interpreted either as (a*b)+c or as a*(b+c) depending on whether
* or + picks up its operands first. 

To avoid such ambiguities, Mathematica  assigns a precedence  to each operator that can appear. Operators with higher
precedence are then taken to pick up their operands first.    

Thus, for example, the multiplication operator * is assigned higher precedence than +, so that it picks up its operands
first, and a*b+c is interpreted as (a*b)+c rather than a*(b+c). 

The * operator has higher precedence than +, so in both cases Times is the innermost function. 

In[1]:= {FullForm[a * b + c], FullForm[a + b * c]}

Out[1]= 8Plus@Times@a, bD, cD, Plus@a, Times@b, cDD<

The // operator has rather low precedence. 

In[2]:= a * b + c // f

Out[2]= f@a b + cD

The @ operator has high precedence. 

In[3]:= f @ a * b + c

Out[3]= c + b f@aD

Whatever  the precedence of  the operators  you are using,  you can always specify the structure of  the expressions  you
want to form by explicitly inserting appropriate parentheses.  

Inserting parentheses makes Plus rather than Times the innermost function. 

In[4]:= FullForm[a * (b + c)]

Out[4]//FullForm= 

Times@a, Plus@b, cDD
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Extensions of symbol names x _ ,  #2 ,  e :: s , etc.
Function application variants e @ e D ,  e  @@  e , etc.

Power-related operators ,  e ,  e^e , etc.

Multiplication-related operators “  e ,  eêe ,  e ≈  e ,  e  e , etc.
Addition-related operators e  ∆   e ,  e  +  e ,  e  ‹   e , etc.

Relational operators e  ==  e ,  e  ~   e ,  e  a   e ,  e  2   e ,  e  œ   e , etc.
Arrow and vector operators e  ö   e ,  e  â   e ,  e  F   e ,  e  )   e , etc.

Logic operators ∀e e  ,  e  &&  e ,  e  fi   e ,  e  ¢   e , etc.
Pattern and rule operators e .. ,  e  »  e ,  e  −>  e ,  e  ê.  e , etc.

Pure function operator e  & 

Assignment operators e  =  e ,  e  :=  e , etc.
Compound expression e;  e 

Outline of operators in order of decreasing precedence. 

The table  in  Section A.2.7  gives  the  complete ordering  by  precedence  of  all  operators  in  Mathematica.  Much of  this
ordering, as in the case of * and +, is determined directly by standard mathematical usage. But in general the ordering
is simply set up to make it less likely for explicit parentheses to have to be inserted in typical pieces of input. 

Operator precedences are such that this requires no parentheses. 

In[5]:= ∀x ∃y x⊗ y ê yÏ m ≠ 0 ⇒ n E m

Out[5]= Implies@∀x H∃y x ⊗y ê yL && m ≠ 0, n E mD

FullForm shows the structure of the expression that was constructed. 

In[6]:= FullForm[%]

Out[6]//FullForm= 

Implies@And@ForAll@x, Exists@y, Succeeds@CircleTimes@x, yD, yDDD, Unequal@m, 0DD,
NotRightTriangleBar@n, mDD

Note that the first and second forms here are identical; the third requires explicit parentheses. 

In[7]:= {x -> #^2 &, (x -> #^2)&, x -> (#^2 &)}

Out[7]= 8x → #12 &, x → #12 &, x → H#12 &L<

flat x  +  y  +  z x  +  y  +  z 
left grouping x  ê  y  ê  z Hx  ê  yL  ê  z 
right grouping x  ^  y  ^  z x  ^  H y  ^  zL 

Types of grouping for infix operators. 

Plus is a Flat function, so no grouping is necessary here. 

In[8]:= FullForm[a + b + c + d]

Out[8]//FullForm= 

Plus@a, b, c, dD
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Power is not Flat, so the operands have to be grouped in pairs. 

In[9]:= FullForm[a ^ b ^ c ^ d]

Out[9]//FullForm= 

Power@a, Power@b, Power@c, dDDD

The syntax of the Mathematica language is defined not only for characters that you can type on a typical keyboard, but
also for all the various special characters that Mathematica supports. 

Letters such as g ,  and ¡  from any alphabet are treated just like ordinary English letters, and can for example appear
in the names of symbols. The same is true of letter-like forms such as ¶ , Ñ  and — . 

But many other special characters are treated as operators. Thus, for example, ∆  and ù  are infix operators, while Ÿ  is
a prefix operator, and X  and \  are matchfix operators.  

∆  is an infix operator. 

In[10]:= a ⊕ b ⊕ c // FullForm

Out[10]//FullForm= 

CirclePlus@a, b, cD

µ  is an infix operator which means the same as *. 

In[11]:= a × a × a × b × b × c

Out[11]= a3 b2 c

Some special characters form elements of fairly complicated compound operators. Thus, for example, Ÿ f „ x contains
the compound operator with elements Ÿ  and „ .  

The Ÿ  and „  form parts of a compound operator. 

In[12]:= Ÿ k[x] x // FullForm

Out[12]//FullForm= 

Integrate@k@xD, xD

No parentheses are needed here: the “inner  precedence”  of Ÿ  …  „  is lower than Times. 

In[13]:= Ÿ a[x] b[x] x + c[x]

Out[13]= c@xD + ‡ a@xD b@xD x

Parentheses are needed here, however. 

In[14]:= Ÿ (a[x] + b[x]) x + c[x]

Out[14]= c@xD + ‡ Ha@xD + b@xDL x

Input  to  Mathematica  can  be  given  not  only  in  the  form  of  one-dimensional  strings,  but  also  in  the  form  of
two-dimensional boxes. The syntax of the Mathematica  language covers not only one-dimensional constructs but also
two-dimensional ones.   
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This superscript is interpreted as a power. 

In[15]:= xa+b

Out[15]= xa+b

∂x f  is a two-dimensional compound operator. 

In[16]:= ∂x xn

Out[16]= n x−1+n

⁄  is part of a more complicated two-dimensional compound operator. 

In[17]:= ‚
n=1

∞ 1

ns

Out[17]= Zeta@sD

The ⁄  operator has higher precedence than +. 

In[18]:= ‚
n=1

∞ 1

ns
+ n

Out[18]= n + Zeta@sD

2.9.15 Operators without Built-in Meanings

When you enter a piece of input such as 2  +  2,  Mathematica  first recognizes the +  as an operator and constructs the
expression Plus[2, 2], then uses the built-in rules for Plus to evaluate the expression and get the result 4. 

But not all operators recognized by Mathematica  are associated with functions that have built-in meanings. Mathemat-
ica  also supports  several  hundred  additional  operators  that  can be used in constructing expressions,  but  for  which no
evaluation rules are initially defined. 

You can use these operators as a way to build up your own notation within the Mathematica language. 

The ∆  is recognized as an infix operator, but has no predefined value. 

In[1]:= 2⊕3 êê FullForm
Out[1]//FullForm= 

CirclePlus@2, 3D

In StandardForm, ∆  prints as an infix operator. 

In[2]:= 2⊕3

Out[2]= 2⊕3

You can define a value for ∆ . 

In[3]:= x_ ⊕ y_ := Mod[x + y, 2]
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Now ∆  is not only recognized as an operator, but can also be evaluated. 

In[4]:= 2 ⊕ 3

Out[4]= 1

x  ∆   y CirclePlus@ x,  y D 

x  º   y TildeTilde@ x,  y D 

x  \   y Therefore@ x,  y D 

x  ¨  y LeftRightArrow@ x,  y D 

“   x Del@ x D 

Ñ   x Square@ x D 

X  x,y, … \  AngleBracket@ x,  y, … D 

A few Mathematica operators corresponding to functions without predefined values. 

Mathematica  follows  the  general  convention  that  the  function  associated  with  a  particular  operator  should  have  the
same name as the special character that represents that operator.   

î[Congruent] is displayed as ª . 

In[5]:= x \[Congruent] y

Out[5]= x ≡ y

It corresponds to the function Congruent. 

In[6]:= FullForm[%]

Out[6]//FullForm= 

Congruent@x, yD

x î @ name D  y name @ x,  y D 

î @ name D  x name @ x D 

î @Left name D  x,
 y, …î @Right name D 

name @ x,  y, … D 

The conventional correspondence in Mathematica between operator names and function names. 

You should realize that even though the functions CirclePlus  and CircleTimes  do not have built-in evaluation
rules, the operators ∆  and ≈  do have built-in precedences. Section A.2.7 lists all the operators recognized by Mathemat-
ica, in order of their precedence. 

The operators ≈  and ∆  have definite precedences—with ≈  higher than ∆ . 

In[7]:= x ⊗ y ⊕ z // FullForm

Out[7]//FullForm= 

Mod@Plus@z, CircleTimes@x, yDD, 2D
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xy  Subscript@ x,  y D 

x+  SubPlus@ x D 

x−  SubMinus@ x D 

x∗  SubStar@ x D 

x+  SuperPlus@ x D 

x−  SuperMinus@ x D 

x∗  SuperStar@ x D 

x†  SuperDagger@ x D 

x
y

 Overscript@ x,  y D 

x
y

 Underscript@ x,  y D 

x̄  OverBar@ x D 

x”  OverVector@ x D 

x  OverTilde@ x D 

x̂  OverHat@ x D 

x  OverDot@ x D 

x̄  UnderBar@ x D 

Some two-dimensional forms without built-in meanings. 

Subscripts have no built-in meaning in Mathematica. 

In[8]:= x2 + y2 êê InputForm
Out[8]//InputForm= 

Subscript[x, 2] + Subscript[y, 2]

Most superscripts are however interpreted as powers by default. 

In[9]:= x2 + y2 êê InputForm
Out[9]//InputForm= 

x^2 + y^2

A few special superscripts are not interpreted as powers. 

In[10]:= x† + y+ êê InputForm
Out[10]//InputForm= 

SuperDagger[x] + SuperPlus[y]

Bar and hat are interpreted as OverBar and OverHat. 

In[11]:= x̄ + ŷ êê InputForm
Out[11]//InputForm= 

OverBar[x] + OverHat[y]

2.9.16 Defining Output Formats

Just  as  Mathematica  allows  you  to  define  how expressions  should  be  evaluated,  so  also  it  allows  you to  define  how
expressions  should  be  formatted  for  output.  The  basic  idea  is  that  whenever  Mathematica  is  given  an  expression  to
format for output, it first calls Format[expr] to find out whether any special rules for formatting the expression have
been defined.  By assigning a value to Format[expr]  you can therefore  tell  Mathematica  that  you want  a particular
kind of expression to be output in a special way. 

This tells Mathematica to format bin objects in a special way. 

In[1]:= Format[bin[x_, y_]] := MatrixForm[{{x}, {y}}]
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Now bin objects are output to look like binomial coefficients. 

In[2]:= bin[i + j, k]

Out[2]= J i + j
k

N

Internally, however, bin objects are still exactly the same. 

In[3]:= FullForm[%]

Out[3]//FullForm= 

bin@Plus@i, jD, kD

Format@ expr1  D  :=  expr2  define  expr1  to be formatted like  expr2  
Format@ expr1,  form D  :=  expr2  give a definition only for a particular output form

Defining your own rules for formatting. 

By  making  definitions  for  Format,  you  can  tell  Mathematica  to  format  a  particular  expression  so  as  to  look  like
another expression. You can also tell Mathematica to run a program to determine how a particular expression should be
formatted. 

This specifies that Mathematica should run a simple program to determine how xrep objects should be formatted.

In[4]:= Format[xrep[n_]] := StringJoin[Table["x", {n}]]

The strings are created when each xrep is formatted. 

In[5]:= xrep[1] + xrep[4] + xrep[9]

Out[5]= x + xxxx + xxxxxxxxx

Internally however the expression still contains xrep objects. 

In[6]:= % /. xrep[n_] -> x^n

Out[6]= x + x4 + x9

Prefix@ f  @ x D,  h D prefix form  h  x 
Postfix@ f  @ x D,  h D postfix form  x  h 

Infix@ f  @ x,  y, … D,  h D infix form  x  h  y  h …
Prefix@ f  @ x DD standard prefix form  f   @  x 
Postfix@ f  @ x DD standard postfix form  x  êê  f  

Infix@ f  @ x,  y, … DD standard infix form  x  ∼  f   ∼  y  ∼  f   ∼ …
PrecedenceForm@ expr,  n D an object to be parenthesized with a precedence level  n 

Output forms for operators. 

This prints with f represented by the “prefix  operator”  <>. 

In[7]:= Prefix[f[x], "<>"]

Out[7]= <> x
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Here is output with the “infix  operator”   . 

In[8]:= s = Infix[{a, b, c}, "Äê"]

Out[8]= a Äê b Äê c

By default, the “infix  operator”    is assumed to have “higher  precedence”  than ^, so no parentheses are inserted. 

In[9]:= s^2

Out[9]= Ha Äê b Äê cL2

When  you  have  an  output  form  involving  operators,  the  question  arises  of  whether  the  arguments  of  some  of  them
should be parenthesized. As discussed in Section 2.1.3, this depends on the “precedence”  of the operators. When you
set up output forms involving operators, you can use PrecedenceForm  to specify the precedence to assign to each
operator. Mathematica uses integers from 1 to 1000 to represent “precedence  levels”.  The higher the precedence level
for an operator, the less it needs to be parenthesized.  

Here   is treated as an operator with precedence 100. This precedence turns out to be low enough that parentheses are inserted.  

In[10]:= PrecedenceForm[s, 100]^2

Out[10]= Ha Äê b Äê cL2

When you make an assignment for Format[expr], you are defining the output format for expr in all standard types of
Mathematica  output. By making definitions for Format[expr, form], you can specify formats to be used in specific
output forms.  

This specifies the TeXForm for the symbol x. 

In[11]:= Format[x, TeXForm] := "{\\bf x}"

The output format for x that you specified is now used whenever the TeX form is needed. 

In[12]:= TeXForm[1 + x^2]

Out[12]//TeXForm= 

1 + {{\bf x}}^2

2.9.17 Advanced Topic: Low-Level Input and Output Rules

MakeBoxes@ expr,  form D construct boxes to represent  expr in the specified form
MakeExpression@ boxes,  form D construct an expression corresponding to  boxes 

Low-level functions for converting between expressions and boxes. 

MakeBoxes generates boxes without evaluating its input. 

In[1]:= MakeBoxes[2 + 2, StandardForm]

Out[1]= RowBox@82, +, 2<D
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MakeExpression interprets boxes but uses HoldComplete to prevent the resulting expression from being evaluated. 

In[2]:= MakeExpression[%, StandardForm]

Out[2]= HoldComplete@2 + 2D

Built into Mathematica  are a large number of rules for generating output and interpreting input. Particularly in Stan
dardForm, these rules are carefully set up to be consistent, and to allow input and output to be used interchangeably. 

It is fairly rare that you will need to modify these rules. The main reason is that Mathematica already has built-in rules
for the input and output of many operators to which it does not itself assign specific meanings. 

Thus, if you want to add, for example, a generalized form of addition, you can usually just use an operator like ∆  for
which Mathematica already has built-in input and output rules. 

This outputs using the ∆  operator. 

In[3]:= CirclePlus[u, v, w]

Out[3]= u⊕v⊕w

Mathematica understands ∆  on input. 

In[4]:= u ⊕ v ⊕ w // FullForm

Out[4]//FullForm= 

CirclePlus@u, v, wD

In  dealing  with  output,  you can  make definitions  for  Format[expr]  to  change  the  way that  a  particular  expression
will be formatted. You should realize, however, that as soon as you do this, there is no guarantee that the output form
of your expression will be interpreted correctly if it is given as Mathematica input. 

If you want to, Mathematica  allows you to redefine the basic rules that it  uses for the input and output of all expres-
sions. You can do this by making definitions for MakeBoxes and MakeExpression. You should realize, however,
that unless you make such definitions with great care, you are likely to end up with inconsistent results. 

This defines how gplus objects should be output in StandardForm. 

In[5]:= gplus /: MakeBoxes[gplus[x_, y_, n_], StandardForm] := RowBox[ {MakeBoxes[x, 
StandardForm], SubscriptBox["\[CirclePlus]", MakeBoxes[n, StandardForm]], 
MakeBoxes[y, StandardForm]} ]

gplus is now output using a subscripted ∆ . 

In[6]:= gplus[a, b, m+n]

Out[6]= a⊕m+n b

Mathematica cannot however interpret this as input. 

In[7]:= a⊕m+n b

Syntax::sntxi :  Incomplete expression; more input is needed.
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This tells Mathematica to interpret a subscripted ∆  as a specific piece of FullForm input. 

In[8]:= MakeExpression[RowBox[{x_, SubscriptBox[ "\[CirclePlus]", n_], y_}], 
StandardForm] := MakeExpression[RowBox[ {"gplus", "[", x, ",", y, ",", n, "]"}], 
StandardForm]

Now the subscripted ∆  is interpreted as a gplus. 

In[9]:= a⊕m+n b êê FullForm
Out[8]//FullForm= 

gplus@a, b, Plus@m, nDD

When you give definitions for MakeBoxes, you can think of this as essentially a lower-level version of giving defini-
tions for Format. An important difference is that MakeBoxes does not evaluate its argument, so you can define rules
for formatting expressions without being concerned about how these expressions would evaluate. 

In addition, while Format is automatically called again on any results obtained by applying it, the same is not true of
MakeBoxes. This means that in giving definitions for MakeBoxes you explicitly have to call MakeBoxes again on
any subexpressions that still need to be formatted. 

† Break input into tokens.
† Strip spacing characters.
† Construct boxes using built-in operator precedences.
† Strip  StyleBox and other boxes not intended for interpretation.
† Apply rules defined for  MakeExpression .

Operations done on Mathematica input. 

2.9.18 Generating Unstructured Output

The functions  described  so far  in  this  section determine how  expressions  should  be formatted when they are printed,
but they do not actually cause anything to be printed. 

In  the  most  common  way  of  using  Mathematica  you  never  in  fact  explicitly  have  to  issue  a  command  to  generate
output.  Usually,  Mathematica  automatically  prints  out  the  final  result  that  it  gets  from  processing  input  you  gave.
Sometimes, however, you may want to get Mathematica to print out expressions at intermediate stages in its operation.
You can do this using the function Print. 

Print@ expr1,  expr2, … D print the  expri  , with no spaces in between,
but with a newline Hline feedL at the end

Printing expressions. 

Print prints its arguments, with no spaces in between, but with a newline (line feed) at the end. 

In[1]:= Print[a, b]; Print[c]

ab

c
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This prints a table of the first five integers and their squares. 

In[2]:= Do[Print[i, " ", i^2], {i, 5}]

1 1

2 4

3 9

4 16

5 25

Print  simply takes  the  arguments  you give,  and  prints  them out  one  after  the  other,  with  no  spaces  in  between.  In
many cases, you will need to print output in a more complicated format. You can do this by giving an output form as an
argument to Print.  

This prints the matrix in the form of a table. 

In[3]:= Print[TableForm[{{1, 2}, {3, 4}}]]

1 2
3 4

Here the output format is specified using StringForm. 

In[4]:= Print[StringForm["x = ``, y = ``", a^2, b^2]]

x = a2, y = b2

The output generated by Print is usually given in the standard Mathematica output format. You can however explic-
itly specify that some other output format should be used. 

This prints output in Mathematica input form. 

In[5]:= Print[InputForm[a^2 + b^2]]

a^2 + b^2

You  should  realize  that  Print  is  only  one  of  several  mechanisms  available  in  Mathematica  for  generating  output.
Another is the function Message  described in Section 2.9.21, used for generating named messages. There are also a
variety of lower-level functions described in Section 2.12.3 which allow you to produce output in various formats both
as part of an interactive session, and for files and external programs. 

2.9.19 Generating Styled Output in Notebooks

StylePrint@ expr,  " style "D create a new cell containing  expr in the specified style
StylePrint@ expr D use the default style for the notebook

Generating styled output in notebooks. 
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This generates a cell in section heading style. 

In[1]:= StylePrint["The heading", "Section"];

This generates a cell in input style. 

In[2]:= StylePrint[x^2 + y^2, "Input"]

Mathematica  provides  many  capabilities  for  manipulating  the  contents  of  notebooks,  as  discussed  in  Section  2.11.
StylePrint handles the simple case when all you want to do is to add a cell of a particular style. 

2.9.20 Requesting Input

Mathematica  usually works by taking whatever input you give, and then processing it. Sometimes, however, you may
want to have a program you write explicitly request more input. You can do this using Input and InputString. 

Input@  D read an expression as input
InputString@  D read a string as input
Input@" prompt "D issue a prompt, then read an expression

InputString@" prompt "D issue a prompt then read a string

Interactive input. 

Exactly how Input  and  InputString  work  depends  on  the  computer  system and  Mathematica  interface  you are
using. With a text-based interface, they typically just wait for standard input, terminated with a newline. With a note-
book interface, however, they typically get the front end to put up a “dialog  box”,  in which the user can enter input. 

In general,  Input  is  intended for  reading complete Mathematica  expressions.  InputString,  on the other hand, is
for reading arbitrary strings. 

2.9.21 Messages

Mathematica has a general mechanism for handling messages generated during computations. Many built-in Mathemat-
ica  functions  use  this  mechanism to produce  error  and warning  messages.  You can also  use the mechanism for  mes-
sages associated with functions you write. 

The basic idea is that every message has a definite name, of the form symbol::tag. You can use this name to refer to
the message. (The object symbol::tag has head MessageName.) 

Off@ s :: tag D switch off a message, so it is not printed
On@ s :: tag D switch on a message

Controlling the printing of messages. 
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As discussed in Section 1.3.11, you can use On and Off to control the printing of particular messages. Most messages
associated with built-in functions are switched on by default. You can use Off to switch them off if you do not want to
see them. 

This prints a warning message. 

In[1]:= Log[a, b, c]

Log::argt :  Log called with 3 arguments; 1 or 2 arguments are expected.

Out[1]= Log@a, b, cD

You can switch off the message like this. 

In[2]:= Off[Log::argt]

Now no warning message is produced. 

In[3]:= Log[a, b, c]

Out[3]= Log@a, b, cD

Although  most  messages  associated  with  built-in  functions  are  switched  on  by  default,  there  are  some  which  are
switched  off  by  default,  and  which  you  will  see  only  if  you  explicitly  switch  them  on.  An  example  is  the  message
General::newsym, discussed in Section 2.7.13, which tells you every time a new symbol is created. 

s :: tag give the text of a message
s :: tag  =  string set the text of a message
Messages@ s D show all messages associated with  s 

Manipulating messages. 

The text of a message with the name s::tag is stored simply as the value of s::tag, associated with the symbol s. You
can  therefore  see  the  text  of  a  message  simply  by  asking  for  s::tag.  You  can  set  the  text  by  assigning  a  value  to
s::tag. 

If you give LinearSolve a singular matrix, it prints a warning message. 

In[4]:= LinearSolve[{{1, 1}, {2, 2}}, {3, 5}]

LinearSolve::nosol :  Linear equation encountered which has no solution.

Out[4]= LinearSolve@881, 1<, 82, 2<<, 83, 5<D

Here is the text of the message. 

In[5]:= LinearSolve::nosol

Out[5]= Linear equation encountered which has no solution.

This redefines the message. 

In[6]:= LinearSolve::nosol = "Matrix encountered is not invertible."

Out[6]= Matrix encountered is not invertible.
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Now the new form will be used. 

In[7]:= LinearSolve[{{1, 1}, {2, 2}}, {3, 5}]

LinearSolve::nosol :  Matrix encountered is not invertible.

Out[7]= LinearSolve@881, 1<, 82, 2<<, 83, 5<D

Messages are always stored as strings suitable for use with StringForm. When the message is printed, the appropri-
ate expressions are “spliced”  into it. The expressions are wrapped with HoldForm to prevent evaluation. In addition,
any  function  that  is  assigned  as  the  value  of  the  global  variable  $MessagePrePrint  is  applied  to  the  resulting
expressions before they are given to StringForm. The default for $MessagePrePrint is Short. 

Most  messages  are  associated  directly  with  the  functions  that  generate  them.  There  are,  however,  some  “general”
messages, which can be produced by a variety of functions. 

If you give the wrong number of arguments to a function F, Mathematica will warn you by printing a message such as
F::argx.  If  Mathematica  cannot  find  a  message  named  F::argx,  it  will  use  the  text  of  the  “general”  message
General::argx  instead.  You can use Off[F::argx]  to switch off  the argument count message specifically for
the function F. You can also use Off[General::argx]  to switch off all messages that use the text of the general
message.  

Mathematica prints a message if you give the wrong number of arguments to a built-in function. 

In[8]:= Sqrt[a, b]

Sqrt::argx :  Sqrt called with 2 arguments; 1 argument is expected.

Out[8]= Sqrt@a, bD

This argument count message is a general one, used by many different functions.

In[9]:= General::argx

Out[9]= `1` called with `2` arguments; 1 argument is expected.

If something goes very wrong with a calculation you are doing, it is common to find that the same warning message is
generated over and over again. This is usually more confusing than useful. As a result, Mathematica  keeps track of all
messages that are produced during a particular calculation, and stops printing a particular message if it comes up more
than three times. Whenever this happens, Mathematica  prints the message General::stop  to let you know. If you
really want to see all the messages that Mathematica tries to print, you can do this by switching off General::stop.

$MessageList a list of the messages produced during a particular computation
MessageList@ n D a list of the messages produced during the processing of the  

n th  input line in a  Mathematica session

Finding out what messages were produced during a computation. 

In every computation you do, Mathematica maintains a list $MessageList of all the messages that are produced. In
a standard Mathematica  session, this list is cleared after each line of output is generated. However, during a computa-
tion, you can access the list. In addition, when the nth  output line in a session is generated, the value of $Message
List is assigned to MessageList[n]. 
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This returns $MessageList, which gives a list of the messages produced. 

In[10]:= Sqrt[a, b, c]; Exp[a, b]; $MessageList

Sqrt::argx :  Sqrt called with 3 arguments; 1 argument is expected.

Exp::argx :  Exp called with 2 arguments; 1 argument is expected.

Out[10]= 8Sqrt::argx, Exp::argx<

The message names are wrapped in HoldForm to stop them from evaluating. 

In[11]:= InputForm[%]

Out[11]//InputForm= 

{HoldForm[Sqrt::argx], HoldForm[Exp::argx]}

In  writing  programs,  it  is  often  important  to  be  able  to  check  automatically  whether  any  messages  were  generated
during a particular calculation. If messages were generated, say as a consequence of producing indeterminate numerical
results, then the result of the calculation may be meaningless.  

Check@ expr,  failexpr D if no messages are generated during the evaluation of  
expr , then return  expr , otherwise return  failexpr 

Check@ expr,  failexpr,
 s1  :: t1,  s2  :: t2, … D 

check only for the messages  si  :: ti  

Checking for warning messages. 

Evaluating 1^0 produces no messages, so the result of the evaluation is returned. 

In[12]:= Check[1^0, err]

Out[12]= 1

Evaluating 0^0 produces a message, so the second argument of Check is returned. 

In[13]:= Check[0^0, err]

Power::indet :  Indeterminate expression 00 encountered.

Out[13]= err

Check[expr, failexpr] tests for all messages that are actually printed out. It does not test for messages whose output
has been suppressed using Off. 

In some cases you may want to test only for a specific set of messages, say ones associated with numerical overflow.
You can do this by explicitly telling Check the names of the messages you want to look for. 

The message generated by Sin[1, 2] is ignored by Check, since it is not the one specified. 

In[14]:= Check[Sin[1, 2], err, General::ind]

Sin::argx :  Sin called with 2 arguments; 1 argument is expected.

Out[14]= Sin@1, 2D
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Message@ s :: tag D print a message
Message@ s :: tag,  expr1, … D print a message, with the  expri  spliced into its string form

Generating messages. 

By  using  the  function  Message,  you  can  mimic  all  aspects  of  the  way  in  which  built-in  Mathematica  functions
generate messages. You can for example switch on and off messages using On and Off, and Message will automati-
cally look for General::tag if it does not find the specific message s::tag. 

This defines the text of a message associated with f. 

In[15]:= f::overflow = "Factorial argument `1` too large."

Out[15]= Factorial argument `1` too large.

Here is the function f. 

In[16]:= f[x_] := If[x > 10, (Message[f::overflow, x]; Infinity), x!]

When the argument of f is greater than 10, the message is generated. 

In[17]:= f[20]

f::overflow :  Factorial argument 20 too large.

Out[17]= ∞

This switches off the message. 

In[18]:= Off[f::overflow]

Now the message is no longer generated. 

In[19]:= f[20]

Out[19]= ∞

When you call Message, it first tries to find a message with the explicit name you have specified. If this fails, it tries
to  find  a  message with  the  appropriate  tag  associated with the symbol General.  If  this  too  fails,  then Mathematica
takes any function you have defined as the value of the global variable $NewMessage, and applies this function to the
symbol and tag of the message you have requested. 

By setting up the value of $NewMessage appropriately, you can, for example, get Mathematica to read in the text of a
message from a file when that message is first needed. 

2.9.22 International Messages

The standard set of messages for built-in Mathematica  functions are written in American English. In some versions of
Mathematica, messages are also available in other languages. In addition, if you set up messages yourself, you can give
ones in other languages. 

Languages  in  Mathematica  are  conventionally  specified  by  strings.  The  languages  are  given  in  English,  in  order  to
avoid the possibility of needing special characters. Thus, for example, the French language is specified in Mathematica
as "French". 
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$Language  =  " lang " set the language to use
$Language  =  8  " 

lang1  ",  " lang2  ",  … <  
set a sequence of languages to try

Setting the language to use for messages. 

This tells Mathematica to use French-language versions of messages. 

In[1]:= $Language = "French"

Out[1]= French

If your version of Mathematica has French-language messages, the message generated here will be in French. 

In[2]:= Sqrt[a, b, c]

Sqrt::argx: Sqrt est appelée avec 3 arguments;
   il faut y avoir 1.

Out[2]= Sqrt[a, b, c]

symbol :: tag the default form of a message
symbol :: tag :: Language a message in a particular language

Messages in different languages. 

When built-in Mathematica functions generate messages, they look first for messages of the form s::t::Language, in
the  language  specified  by  $Language.  If  they  fail  to  find  any  such  messages,  then  they  use  instead  the  form s::t
without an explicit language specification. 

The  procedure  used  by  built-in  functions  will  also  be  followed  by  functions  you  define  if  you  call  Message  with
message names of the form s::t. If you give explicit languages in message names, however, only those languages will
be used. 

2.9.23 Documentation Constructs

When you write programs in Mathematica, there are various ways to document your code. As always, by far the best
thing is to write clear code, and to name the objects you define as explicitly as possible. 

Sometimes, however,  you may want  to  add some “commentary  text”  to  your code,  to  make it  easier  to  understand.
You can add such text at any point in your code simply by enclosing it in matching (* and *). Notice that in Mathemat-
ica, “comments”  enclosed in (* and *) can be nested in any way. 

You can use comments anywhere in the Mathematica code you write. 

In[1]:= If[a > b, (* then *) p, (* else *) q]

Out[1]= If@a > b, p, qD

H∗  text  ∗L a comment that can be inserted anywhere in  Mathematica code

Comments in Mathematica. 
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There  is  a  convention  in  Mathematica  that  all  functions  intended  for  later  use  should  be  given  a  definite  “usage
message”,  which  documents  their  basic  usage.  This  message  is  defined  as  the  value  of  f::usage,  and  is  retrieved
when you type ?f. 

f  ::usage  =  " text " define the usage message for a function
? f  get information about a function

?? f  get more information about a function

Usage messages for functions. 

Here is the definition of a function f. 

In[2]:= f[x_] := x^2

Here is a “usage  message”  for f. 

In[3]:= f::usage = "f[x] gives the square of x."

Out[3]= f@xD gives the square of x.

This gives the usage message for f. 

In[4]:= ?f

f@xD gives the square of x.

??f gives all the information Mathematica has about f, including the actual definition. 

In[5]:= ??f

f@xD gives the square of x.

f@x_D := x2

When you define a function f, you can usually display its value using ?f. However, if you give a usage message for f,
then ?f  just  gives  the usage  message. Only when you type ??f  do  you get  all  the details  about  f,  including its actual
definition. 

If you ask for information using ? about just one function, Mathematica will print out the complete usage messages for
the function. If you ask for information on several functions at the same time, however, Mathematica will just give you
the name of each function. 

f  ::usage main usage message
f  ::notes notes about the function

f  ::usage:: Language , etc. messages in a particular language

Some typical documentation messages. 

In addition to the usage message, there are some messages such as notes and qv that are often defined to document
functions. 

If  you  use  Mathematica  with  a  text-based  interface,  then  messages  and  comments  are  the  primary  mechanisms  for
documenting  your  definitions.  However,  if  you use  Mathematica  with  a  notebook  interface,  then you will  be  able  to
give much more extensive documentation in text cells in the notebook. 
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2.10 The Structure of Graphics and Sound

2.10.1 The Structure of Graphics

Section  1.9  discussed  how  to  use  functions  like  Plot  and  ListPlot  to  plot  graphs  of  functions  and  data.  In  this
section, we discuss how Mathematica represents such graphics, and how you can program Mathematica to create more
complicated images. 

The basic idea is that Mathematica  represents  all  graphics  in terms of  a collection of  graphics primitives.  The primi-
tives are objects like Point, Line and Polygon, that represent elements of a graphical image, as well as directives
such as RGBColor, Thickness and SurfaceColor. 

This generates a plot of a list of points. 

In[1]:= ListPlot[ Table[Prime[n], {n, 20}] ]
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Out[1]=  Graphics 

InputForm shows how Mathematica represents the graphics. Each point is represented as a Point graphics primitive. All the 
various graphics options used in this case are also given. 

In[2]:= InputForm[%]

Out[2]//InputForm= 

Graphics[{Point[{1, 2}], Point[{2, 3}],    Point[{3, 5}], Point[{4, 7}], Point[{5, 
11}],    Point[{6, 13}], Point[{7, 17}], Point[{8, 19}],    Point[{9, 23}], 
Point[{10, 29}],    Point[{11, 31}], Point[{12, 37}],    Point[{13, 41}], 
Point[{14, 43}],    Point[{15, 47}], Point[{16, 53}],    Point[{17, 59}], 
Point[{18, 61}],    Point[{19, 67}], Point[{20, 71}]},   {PlotRange -> Automatic, 
AspectRatio ->     GoldenRatio^(-1), DisplayFunction :>     $DisplayFunction, 
ColorOutput -> Automatic,    Axes -> Automatic, AxesOrigin -> Automatic,    
PlotLabel -> None, AxesLabel -> None,    Ticks -> Automatic, GridLines -> None,    
Prolog -> {}, Epilog -> {},    AxesStyle -> Automatic, Background ->     
Automatic, DefaultColor -> Automatic,    DefaultFont :> $DefaultFont,    
RotateLabel -> True, Frame -> False,    FrameStyle -> Automatic, FrameTicks ->     
Automatic, FrameLabel -> None,    PlotRegion -> Automatic, ImageSize ->     
Automatic, TextStyle :> $TextStyle,    FormatType :> $FormatType}]
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Each complete piece of graphics in Mathematica  is represented as a graphics object. There are several different kinds
of graphics object, corresponding to different types of graphics. Each kind of graphics object has a definite head which
identifies its type. 

Graphics@ list D general two-dimensional graphics
DensityGraphics@ list D density plot
ContourGraphics@ list D contour plot
SurfaceGraphics@ list D three-dimensional surface

Graphics3D@ list D general three-dimensional graphics
GraphicsArray@ list D array of other graphics objects

Graphics objects in Mathematica. 

The  functions  like  Plot  and  ListPlot  discussed  in  Section  1.9  all  work  by  building  up  Mathematica  graphics
objects, and then displaying them. 

Graphics Plot ,  ListPlot ,  ParametricPlot 

DensityGraphics DensityPlot ,  ListDensityPlot 

ContourGraphics ContourPlot ,  ListContourPlot 

SurfaceGraphics Plot3D ,  ListPlot3D 

Graphics3D ParametricPlot3D 

Generating graphics objects by plotting functions and data. 

You  can  create  other  kinds  of  graphical  images  in  Mathematica  by  building  up  your  own  graphics  objects.  Since
graphics objects in Mathematica  are just symbolic expressions, you can use all the standard Mathematica  functions to
manipulate them. 

Once  you  have  created  a  graphics  object,  you  must  then  display  it.  The  function  Show  allows  you  to  display  any
Mathematica graphics object. 

Show@ g D display a graphics object
Show@ g1,  g2, … D display several graphics objects combined

Show@GraphicsArray@ 

8  8  g11,  g12, … <, … <  DD 

display an array of graphics objects

Displaying graphics objects. 

This uses Table to generate a polygon graphics primitive. 

In[3]:= poly = Polygon[ Table[N[{Cos[n Pi/5], Sin[n Pi/5]}], {n, 0, 5}] ]

Out[3]= Polygon@881., 0.<, 80.809017, 0.587785<, 80.309017, 0.951057<,
8−0.309017, 0.951057<, 8−0.809017, 0.587785<, 8−1., 0.<<D

This creates a two-dimensional graphics object that contains the polygon graphics primitive. In standard output format, the 
graphics object is given simply as -Graphics-. 

In[4]:= Graphics[ poly ]

Out[4]=  Graphics 
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InputForm shows the complete graphics object. 

In[5]:= InputForm[%]

Out[5]//InputForm= 

Graphics[Polygon[{{1., 0.}, {0.8090169943749475,      0.5877852522924731}, 
{0.30901699437494745,      0.9510565162951535}, {-0.30901699437494745,      
0.9510565162951535}, {-0.8090169943749475,      0.5877852522924731}, {-1., 0.}}]]

This displays the graphics object you have created. 

In[6]:= Show[%]

Out[6]=  Graphics 

Graphics directives Examples:  RGBColor ,  Thickness ,  SurfaceColor 

Graphics options Examples:  PlotRange ,  
Ticks ,  AspectRatio ,  ViewPoint 

Local and global ways to modify graphics. 

Given  a  particular  list  of  graphics  primitives,  Mathematica  provides  two  basic  mechanisms  for  modifying  the  final
form of  graphics  you get.  First,  you can insert  into the list  of  graphics  primitives certain graphics  directives,  such as
RGBColor, which modify the subsequent graphical elements in the list. In this way, you can specify how a particular
set of graphical elements should be rendered. 

This takes the list of graphics primitives created above, and adds the graphics directive GrayLevel[0.3]. 

In[7]:= Graphics[ {GrayLevel[0.3], poly} ]

Out[7]=  Graphics 
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Now the polygon is rendered in gray. 

In[8]:= Show[%]

Out[8]=  Graphics 

By inserting  graphics  directives,  you can  specify  how particular  graphical  elements should  be  rendered.  Often,  how-
ever,  you  want  to  make global  modifications  to  the  way a  whole  graphics  object  is  rendered.  You  can  do  this  using
graphics options. 

By adding the graphics option Frame you can modify the overall appearance of the graphics. 

In[9]:= Show[%, Frame -> True]
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Out[9]=  Graphics 

Show returns a graphics object with the options in it. 

In[10]:= InputForm[%]

Out[10]//InputForm= 

Graphics[{GrayLevel[0.3],    Polygon[{{1., 0.}, {0.8090169943749475,       
0.5877852522924731}, {0.30901699437494745,       0.9510565162951535}, 
{-0.30901699437494745,       0.9510565162951535}, {-0.8090169943749475,       
0.5877852522924731}, {-1., 0.}}]},   {Frame -> True}]
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You can specify graphics options in Show. As a result, it is straightforward to take a single graphics object, and show it
with many different choices of graphics options. 

Notice  however  that  Show  always  returns  the  graphics  objects  it  has  displayed.  If  you  specify  graphics  options  in
Show, then these options are automatically inserted into the graphics objects that Show returns. As a result, if you call
Show again on the same objects, the same graphics options will be used, unless you explicitly specify other ones. Note
that in all cases new options you specify will overwrite ones already there. 

Options@ g D give a list of all graphics options for a graphics object
Options@ g,  opt D give the setting for a particular option

AbsoluteOptions@ g,  opt D give the absolute value used for a
particular option, even if the setting is  Automatic 

Finding the options for a graphics object. 

Some graphics options work by requiring you to specify a particular value for a parameter related to a piece of graph-
ics.  Other  options  allow  you  to  give  the  setting  Automatic,  which  makes  Mathematica  use  internal  algorithms  to
choose appropriate values for parameters. In such cases, you can find out the values that Mathematica actually used by
applying the function AbsoluteOptions. 

Here is a plot. 

In[11]:= zplot = Plot[Abs[Zeta[1/2 + I x]], {x, 0, 10}]
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Out[11]=  Graphics 

The option PlotRange is set to its default value of Automatic, specifying that Mathematica should use internal algorithms to 
determine the actual plot range. 

In[12]:= Options[zplot, PlotRange]

Out[12]= 8PlotRange → Automatic<

AbsoluteOptions gives the actual plot range determined by Mathematica in this case. 

In[13]:= AbsoluteOptions[zplot, PlotRange]

Out[13]= 8PlotRange → 88−0.25, 10.25<, 80.500681, 1.57477<<<
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FullGraphics@ g D translate objects specified by graphics
options into lists of explicit graphics primitives

Finding the complete form of a piece of graphics. 

When you use a graphics option such as Axes, Mathematica  effectively has to construct a list of graphics elements to
represent  the  objects  such  as  axes  that  you have  requested.  Usually Mathematica  does  not  explicitly return  the  list  it
constructs  in  this  way.  Sometimes,  however,  you  may  find  it  useful  to  get  this  list.  The  function  FullGraphics
gives the complete list of graphics primitives needed to generate a particular plot, without any options being used. 

This plots a list of values. 

In[14]:= ListPlot[ Table[EulerPhi[n], {n, 10}] ]
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Out[14]=  Graphics 

FullGraphics yields a graphics object that includes graphics primitives representing axes and so on. 

In[15]:= Short[ InputForm[ FullGraphics[%] ], 6]

Out[15]//Short= 

Graphics@88Point@81, 1<D, Point@82, 1<D, Point@83, 2<D, Point@84, 2<D,
Point@85, 4<D, Point@86, 2<D, Point@87, 6<D, Point@88, 4<D, Point@89,
6<D, Point@810, 4<D<, 88GrayLevel@0.D, AbsoluteThickness@0.25D, Line@
884., 1.<, 84., 1.053091740255856<<D<, <<52>>, 8GrayLevel@0.D, <<2>><<<D

With  their  default  option  settings,  functions  like  Plot  and  Show  actually  cause  Mathematica  to  generate  graphical
output. In general, the actual generation of graphical output is controlled by the graphics option DisplayFunction.
The default setting for this option is the value of the global variable $DisplayFunction. 

In  most  cases,  $DisplayFunction  and  the  DisplayFunction  option  are  set  to  use  the  lower-level  rendering
function Display to produce output, perhaps after some preprocessing. Sometimes, however, you may want to get a
function  like  Plot  to  produce  a  graphics  object,  but  you  may  not  immediately  want  that  graphics  object  actually
rendered as output. You can tell Mathematica to generate the object, but not render it, by setting the option Display
Function -> Identity. Section 2.10.14 will explain exactly how this works. 
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Plot@ f , … ,  DisplayFunction 

 −>  IdentityD , etc.
generate a graphics object for a plot, but do not actually display it

Show@ g,  DisplayFunction 

 −>  $DisplayFunctionD 

show a graphics object using the default display function

Generating and displaying graphics objects. 

This generates a graphics object, but does not actually display it. 

In[16]:= Plot[BesselJ[0, x], {x, 0, 10}, DisplayFunction -> Identity]

Out[16]=  Graphics 

This modifies the graphics object, but still does not actually display it. 

In[17]:= Show[%, Frame -> True]

Out[17]=  Graphics 

To display the graphic, you explicitly have to tell Mathematica to use the default display function. 

In[18]:= Show[%, DisplayFunction -> $DisplayFunction]
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Out[18]=  Graphics 
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2.10.2 Two-Dimensional Graphics Elements

Point@ 8  x,  y <  D point at position  x ,  y 
Line@ 8  8  x1,  y1  <,  8  x2,  y2  <, … <  D line through the points  8  x1,  y1  <  ,  8  x2,  y2  <  , …

Rectangle@ 8  xmin,
 ymin <,  8  xmax,  ymax <  D 

filled rectangle

Polygon@ 8  8  x1,  
y1  <,  8  x2,  y2  <, … <  D 

filled polygon with the specified list of corners

Circle@ 8  x,  y <,  r D circle with radius  r  centered at  x  ,  y  
Disk@ 8  x,  y <,  r D filled disk with radius  r  centered at  x  ,  y  

Raster@ 8  8  a11,  a12,
… <,  8  a21, … <, … <  D 

rectangular array of gray levels between  0 and  1 

Text@ expr,  8  x,  y <  D the text of  expr , centered at  x ,  y Hsee Section  2.10.16 L
Basic two-dimensional graphics elements. 

Here is a line primitive. 

In[1]:= sawline = Line[Table[{n, (-1)^n}, {n, 6}]]

Out[1]= Line@881, −1<, 82, 1<, 83, −1<, 84, 1<, 85, −1<, 86, 1<<D

This shows the line as a two-dimensional graphics object. 

In[2]:= sawgraph = Show[ Graphics[sawline] ]

Out[2]=  Graphics 
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This redisplays the line, with axes added. 

In[3]:= Show[ %, Axes -> True ]
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Out[3]=  Graphics 

You  can  combine  graphics  objects  that  you  have  created  explicitly  from graphics  primitives  with  ones  that  are  pro-
duced by functions like Plot. 

This produces an ordinary Mathematica plot. 

In[4]:= Plot[Sin[Pi x], {x, 0, 6}]
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Out[4]=  Graphics 
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This combines the plot with the sawtooth picture made above. 

In[5]:= Show[%, sawgraph]
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Out[5]=  Graphics 

You can combine different graphical elements simply by giving them in a list. In two-dimensional graphics, Mathemat-
ica will render the elements in exactly the order you give them. Later elements are therefore effectively drawn on top of
earlier ones. 

Here is a list of two Rectangle graphics elements. 

In[6]:= {Rectangle[{1, -1}, {2, -0.6}], Rectangle[{4, .3}, {5, .8}]}

Out[6]= 8Rectangle@81, −1<, 82, −0.6<D, Rectangle@84, 0.3<, 85, 0.8<D<

This draws the rectangles on top of the line that was defined above. 

In[7]:= Show[ Graphics[ {sawline, %} ]]

Out[7]=  Graphics 

The Polygon graphics primitive takes a list of x , y  coordinates, corresponding to the corners of a polygon. Mathemat-
ica joins the last corner with the first one, and then fills the resulting area. 
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Here are the coordinates of the corners of a regular pentagon. 

In[8]:= pentagon = Table[{Sin[2 Pi n/5], Cos[2 Pi n/5]}, {n, 5}]

Out[8]= 99 1
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This displays the pentagon. With the default choice of aspect ratio, the pentagon looks somewhat squashed. 

In[9]:= Show[ Graphics[ Polygon[pentagon] ] ]

Out[9]=  Graphics 

This chooses the aspect ratio so that the shape of the pentagon is preserved. 

In[10]:= Show[%, AspectRatio -> Automatic]

Out[10]=  Graphics 

Printed from the Mathematica Help Browser 11

©1988-2003 Wolfram Research, Inc. All rights reserved.



Mathematica can handle polygons which fold over themselves. 

In[11]:= Show[Graphics[ Polygon[ {{-1, -1}, {1, 1}, {1, -1}, {-1, 1}} ] ]]

Out[11]=  Graphics 

Circle@ 8  x,  y <,  r D a circle with radius  r centered at the point  8  x,  y <  
Circle@ 8  x,  y <,  8  rx,  ry  <  D an ellipse with semi-axes  rx  and  ry  

Circle@ 8  x,  y <,
 r,  8  theta1,  theta2  <  D 

a circular arc

Circle@ 8  x,  y <,  8  
rx,  ry  <,  8  theta1,  theta2  <  D 

an elliptical arc

Disk@ 8  x,  y <,  r D , etc. filled disks

Circles and disks. 

This shows two circles with radius 2. Setting the option AspectRatio -> Automatic makes the circles come out with their 
natural aspect ratio. 

In[12]:= Show[ Graphics[ {Circle[{0, 0}, 2], Circle[{1, 1}, 2]} ], AspectRatio -> 
Automatic ]

Out[12]=  Graphics 
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This shows a sequence of disks with progressively larger semi-axes in the x  direction, and progressively smaller ones in the y  
direction. 

In[13]:= Show[ Graphics[ Table[Disk[{3n, 0}, {n/4, 2-n/4}], {n, 4}] ], AspectRatio -> 
Automatic ]

Out[13]=  Graphics 

Mathematica allows you to generate arcs of circles, and segments of ellipses. In both cases, the objects are specified by
starting  and  finishing  angles.  The  angles  are  measured  counterclockwise  in  radians  with  zero  corresponding  to  the
positive x  direction. 

This draws a 140é  wedge centered at the origin. 

In[14]:= Show[ Graphics[ Disk[{0, 0}, 1, {0, 140 Degree}] ], AspectRatio -> Automatic ]

Out[14]=  Graphics 
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Raster@ 8  8  a11,  a12,
… <,  8  a21, … <, … <  D 

array of gray levels between 0 and 1

Raster@ array,  8  8  xmin,  ymin <,  
8  xmax,  ymax <  <,  8  zmin,  zmax <  D 

array of gray levels between  zmin 
and  zmax drawn in the rectangle defined by  
8  xmin,  ymin <  and  8  xmax ,  ymax <  

RasterArray@ 8  8  g11,  

g12, … <,  8  g21, … <, … <  D 

rectangular array of cells
colored according to the graphics directives  gi j  

Raster-based graphics elements. 

Here is a 4ä4 array of values between 0 and 1. 

In[15]:= modtab = Table[Mod[i, j]/3, {i, 4}, {j, 4}] // N

Out[15]= 880., 0.333333, 0.333333, 0.333333<, 80., 0., 0.666667, 0.666667<,
80., 0.333333, 0., 1.<, 80., 0., 0.333333, 0.<<

This uses the array of values as gray levels in a raster. 

In[16]:= Show[ Graphics[ Raster[%] ] ]

Out[16]=  Graphics 
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This shows two overlapping copies of the raster. 

In[17]:= Show[ Graphics[ {Raster[modtab, {{0, 0}, {2, 2}}], Raster[modtab, {{1.5, 1.5}, 
{3, 2}}]} ] ]

Out[17]=  Graphics 

In the default  case, Raster  always generates an array of  gray cells. As described in Section 2.10.7, you can use the
option ColorFunction to apply a “coloring  function”  to all the cells. 

You  can  also  use  the  graphics  primitive  RasterArray.  While  Raster  takes  an  array  of  values,  RasterArray
takes an array of Mathematica  graphics directives. The directives associated with each cell are taken to determine the
color of that cell. Typically the directives are chosen from the set GrayLevel, RGBColor  or Hue.  By using RGB
Color and Hue directives, you can create color rasters using RasterArray. 

2.10.3 Graphics Directives and Options

When you set up a graphics object in Mathematica, you typically give a list of graphical elements. You can include in
that list graphics directives which specify how subsequent elements in the list should be rendered. 

In general, the graphical elements in a particular graphics object can be given in a collection of nested lists. When you
insert graphics directives in this kind of structure, the rule is that a particular graphics directive affects all subsequent
elements  of  the  list  it  is  in,  together  with  all  elements  of  sublists  that  may  occur.  The  graphics  directive  does  not,
however, have any effect outside the list it is in. 

The first sublist contains the graphics directive GrayLevel. 

In[1]:= {{GrayLevel[0.5], Rectangle[{0, 0}, {1, 1}]}, Rectangle[{1, 1}, {2, 2}]}

Out[1]= 88GrayLevel@0.5D, Rectangle@80, 0<, 81, 1<D<, Rectangle@81, 1<, 82, 2<D<
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Only the rectangle in the first sublist is affected by the GrayLevel directive. 

In[2]:= Show[Graphics[ % ]]

Out[2]=  Graphics 

Mathematica  provides  various  kinds  of  graphics  directives.  One  important  set  is  those  for  specifying  the  colors  of
graphical elements. Even if you have a black-and-white display device, you can still give color graphics directives. The
colors you specify will be converted to gray levels at the last step in the graphics rendering process. Note that you can
get gray-level display even on a color device by setting the option ColorOutput -> GrayLevel. 

GrayLevel@ i D gray level between 0 HblackL and 1 HwhiteL
RGBColor@ r,  g,  b D color with specified red, green

and blue components, each between 0 and 1
Hue@ h D color with hue  h between 0 and 1

Hue@ h,  s,  b D color with specified hue,
saturation and brightness, each between 0 and 1

Basic Mathematica color specifications. 
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On a color display, the two curves are shown in color. In black and white they are shown in gray. 

In[3]:= Plot[{BesselI[1, x], BesselI[2, x]}, {x, 0, 5}, PlotStyle -> {{RGBColor[1, 0, 
0]}, {RGBColor[0, 1, 0]}}]
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Out[3]=  Graphics 

The function  Hue[h]  provides  a  convenient  way  to  specify  a  range  of  colors  using  just  one  parameter.  As  h  varies
from  0  to  1,  Hue[h]  runs  through  red,  yellow,  green,  cyan,  blue,  magenta,  and  back  to  red  again.  Hue[h,  s,  b]
allows you to specify not only the “hue”,  but also the “saturation”  and “brightness”  of a color. Taking the satura-
tion  to  be  equal  to  one  gives  the  deepest  colors;  decreasing  the  saturation  toward  zero  leads  to  progressively  more
“washed  out”  colors. 

For most purposes,  you will be able to specify the colors  you need simply by giving appropriate RGBColor  or Hue
directives. However, if you need very precise or repeatable colors, particularly for color printing, there are a number of
subtleties which arise, as discussed in Section 2.10.17. 

When you give a graphics  directive such as RGBColor,  it  affects all  subsequent  graphical  elements that  appear  in a
particular  list.  Mathematica  also  supports  various  graphics  directives  which  affect  only  specific  types  of  graphical
elements. 

The graphics directive PointSize[d] specifies that all Point elements which appear in a graphics object should be
drawn as circles with diameter d. In PointSize, the diameter d is measured as a fraction of the width of your whole
plot. 

Mathematica  also  provides  the  graphics  directive  AbsolutePointSize[d],  which  allows  you  to  specify  the
“absolute”  diameter of points, measured in fixed units. The units are 1ÅÅÅÅÅÅÅ72  of an inch, approximately printer's points. 

PointSize@ d  D give all points a diameter  d  
as a fraction of the width of the whole plot

AbsolutePointSize@ d  D give all points a diameter  d  measured in absolute units

Graphics directives for points. 

Here is a list of points. 

In[4]:= Table[Point[{n, Prime[n]}], {n, 6}]

Out[4]= 8Point@81, 2<D, Point@82, 3<D, Point@83, 5<D,
Point@84, 7<D, Point@85, 11<D, Point@86, 13<D<
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This makes each point have a diameter equal to one-tenth of the width of the plot. 

In[5]:= Show[Graphics[{PointSize[0.1], %}], PlotRange -> All]

Out[5]=  Graphics 

Here each point has size 3 in absolute units. 

In[6]:= ListPlot[Table[Prime[n], {n, 20}], Prolog -> AbsolutePointSize[3]]
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Out[6]=  Graphics 

Thickness@ w D give all lines a thickness  w 
as a fraction of the width of the whole plot

AbsoluteThickness@ w D give all lines a thickness  w measured in absolute units
Dashing@ 8  w1,  w2, … <  D show all lines as a sequence of dashed segments, with lengths  

w1  ,  w2  , …
AbsoluteDashing@ 8  w1,  w2, … <  D use absolute units to measure dashed segments

Graphics directives for lines. 
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This generates a list of lines with different absolute thicknesses. 

In[7]:= Table[ {AbsoluteThickness[n], Line[{{0, 0}, {n, 1}}]}, {n, 4}]

Out[7]= 88AbsoluteThickness@1D, Line@880, 0<, 81, 1<<D<,
8AbsoluteThickness@2D, Line@880, 0<, 82, 1<<D<,
8AbsoluteThickness@3D, Line@880, 0<, 83, 1<<D<,
8AbsoluteThickness@4D, Line@880, 0<, 84, 1<<D<<

Here is a picture of the lines. 

In[8]:= Show[Graphics[%]]

Out[8]=  Graphics 

The Dashing  graphics  directive allows you to create lines with various kinds of dashing. The basic idea is to break
lines  into  segments  which  are  alternately  drawn  and  omitted.  By  changing  the  lengths  of  the  segments,  you  can  get
different line styles. Dashing allows you to specify a sequence of segment lengths. This sequence is repeated as many
times as necessary in drawing the whole line. 

This gives a dashed line with a succession of equal-length segments. 

In[9]:= Show[Graphics[ {Dashing[{0.05, 0.05}], Line[{{-1, -1}, {1, 1}}]} ]]

Out[9]=  Graphics 
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This gives a dot-dashed line. 

In[10]:= Show[Graphics[{Dashing[{0.01, 0.05, 0.05, 0.05}], Line[{{-1, -1}, {1, 1}}]}]]

Out[10]=  Graphics 

One way to use Mathematica  graphics directives is to insert them directly into the lists of graphics primitives used by
graphics objects.  Sometimes, however,  you want the graphics directives to be applied more globally, and for example
to  determine  the  overall  “style”  with  which  a  particular  type  of  graphical  element  should  be  rendered.  There  are
typically graphics options which can be set to specify such styles in terms of lists of graphics directives. 

PlotStyle  −>  style specify a style to be used for all curves in  Plot 

PlotStyle  −>  8  
8  style1  <,  8  style2  <, … <  

specify styles to be used HcyclicallyL for a sequence of curves in  
Plot 

MeshStyle  −>  style specify a style to be used
for a mesh in density and surface graphics

BoxStyle  −>  style specify a style to be used for the
bounding box in three-dimensional graphics

Some graphics options for specifying styles. 
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This generates a plot in which the curve is given in a style specified by graphics directives. 

In[11]:= Plot[BesselJ[2, x], {x, 0, 10}, PlotStyle -> {{Thickness[0.02], GrayLevel[0.5]}}]
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Out[11]=  Graphics 

GrayLevel@0.5D gray
RGBColor@1,  0,  0D , etc. red, etc.

Thickness@0.05D thick
Dashing@80.05,  0.05<D dashed

Dashing@80.01,  
0.05,  0.05,  0.05<D 

dot-dashed

Some typical styles. 

The  various  “style  options”  allow  you  to  specify  how  particular  graphical  elements  in  a  plot  should  be  rendered.
Mathematica also provides options that affect the rendering of the whole plot. 

Background  −>  color specify the background color for a plot
DefaultColor  −>  color specify the default color for a plot

Prolog  −>  g give graphics to render before a plot is started
Epilog  −>  g give graphics to render after a plot is finished

Graphics options that affect whole plots. 
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This draws the whole plot on a gray background. 

In[12]:= Plot[Sin[Sin[x]], {x, 0, 10}, Background -> GrayLevel[0.6]]
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Out[12]=  Graphics 

This makes the default color white. 

In[13]:= Show[%, DefaultColor -> GrayLevel[1]]
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Out[13]=  Graphics 

2.10.4 Coordinate Systems for Two-Dimensional Graphics

When  you  set  up  a  graphics  object  in  Mathematica,  you  give  coordinates  for  the  various  graphical  elements  that
appear.  When  Mathematica  renders  the  graphics  object,  it  has  to  translate  the  original  coordinates  you  gave  into
“display  coordinates”  which specify where each element should be placed in the final display area. 

Sometimes, you may find it convenient to specify the display coordinates for a graphical element directly. You can do
this by using “scaled  coordinates”  Scaled[8sx, sy<] rather than 8x, y< . The scaled coordinates are defined to run
from 0 to 1 in x  and y , with the origin taken to be at the lower-left corner of the display area.
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8  x,  y <  original coordinates
Scaled@ 8  sx,  sy <  D scaled coordinates

Coordinate systems for two-dimensional graphics. 

The rectangle is drawn at a fixed position relative to the display area, independent of the original coordinates used for the plot. 

In[1]:= Plot[Tan[x], {x, 0, 2Pi}, Prolog -> Rectangle[Scaled[{0.7, 0.7}], Scaled[{1, 1}]]]
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Out[1]=  Graphics 

When you use 8x, y<  or Scaled[8sx, sy<], you are specifying position either completely in original coordinates, or
completely in  scaled  coordinates.  Sometimes,  however,  you  may need  to  use  a  combination  of  these  coordinate  sys-
tems. For example, if you want to draw a line at a particular point whose length is a definite fraction of the width of the
plot, you will have to use original coordinates to specify the basic position of the line, and scaled coordinates to specify
its length. 

You can use Scaled[8dsx, dsy<, 8x, y<] to specify a position using a mixture of original and scaled coordinates. In
this  case,  8x,  y<  gives  a  position  in  original  coordinates,  and  8dsx,  dsy<  gives  the offset  from the  position  in scaled
coordinates.

Note  that  you  can  use  Scaled  with  either  one  or  two  arguments  to  specify  radii  in  Disk  and  Circle  graphics
elements. 

Scaled@ 8  sdx,  sdy <,  8  x,  y <  D scaled offset from original coordinates
Offset@ 8  adx,  ady <,  8  x,  y <  D absolute offset from original coordinates

Offset@ 8  adx,  ady 
<,  Scaled@ 8  sx,  sy <  DD 

absolute offset from scaled coordinates

Positions specified as offsets. 
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Each line drawn here has an absolute length of 6 printer's points. 

In[2]:= Show[Graphics[Table[ Line[{{x, x^2}, Offset[{0, 6}, {x, x^2}]}], {x, 10}], 
Frame->True]]
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Out[2]=  Graphics 

You can also use Offset inside Circle with just one argument to create a circle with a certain absolute radius. 

In[3]:= Show[Graphics[Table[ Circle[{x, x^2}, Offset[{2, 2}]], {x, 10}], Frame->True]]
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Out[3]=  Graphics 

In  most  kinds  of  graphics,  you  typically want  the  relative  positions  of  different  objects  to  adjust  automatically when
you change the coordinates or the overall size of your plot.  But sometimes you may instead want the offset from one
object to another to be constrained to remain fixed. This can be the case, for example, when you are making a collec-
tion  of  plots  in  which  you  want  certain  features  to  remain  consistent,  even  though  the  different  plots  have  different
forms.   

Offset[8adx,  ady<,  position]  allows you to specify the position  of  an object  by giving  an absolute  offset  from a
position that is specified in original or scaled coordinates. The units for the offset are printer's points, equal to 1ÅÅÅÅÅÅÅ72  of an
inch.  
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When you give text in a plot, the size of the font that is used is also specified in printer's points. A 10-point font, for
example, therefore has letters whose basic height is 10 printer's points. You can use Offset to move text around in a
plot, and to create plotting symbols or icons which match the size of text.   

PlotRange  −>  8  8  xmin,
 xmax <,  8  ymin,  ymax <  <  

the range of original coordinates to include in the plot

PlotRegion  −>  8  8  sxmin,
 sxmax <,  8  symin,  symax <  <  

the region of the display specified
in scaled coordinates which the plot fills

Options which determine translation from original to display coordinates. 

When Mathematica renders a graphics object, one of the first things it has to do is to work out what range of original x
and y  coordinates it should actually display. Any graphical elements that are outside this range will be “clipped”,  and
not shown. 

The  option  PlotRange  specifies  the  range  of  original  coordinates  to  include.  As  discussed  in  Section 1.9.2,  the
default  setting is  PlotRange  ->  Automatic,  which makes Mathematica  try to choose a range which includes all
“interesting”  parts of a plot, while dropping “outliers”.  By setting PlotRange -> All, you can tell Mathematica
to include everything. You can also give explicit ranges of coordinates to include. 

This sets up a polygonal object whose corners have coordinates between roughly ≤1. 

In[4]:= obj = Polygon[ Table[{Sin[n Pi/10], Cos[n Pi/10]} + 0.05 (-1)^n, {n, 20}]] ;

In this case, the polygonal object fills almost the whole display area. 

In[5]:= Show[Graphics[obj]]

Out[5]=  Graphics 
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With the default PlotRange -> Automatic, the outlying point is not included, but does affect the range of coordinates chosen. 

In[6]:= Show[ Graphics[{obj, Point[{20, 20}]}] ]

Out[6]=  Graphics 

With PlotRange -> All, the outlying point is included, and the coordinate system is correspondingly modified. 

In[7]:= Show[%, PlotRange -> All]

Out[7]=  Graphics 

The option PlotRange allows you to specify a rectangular region in the original coordinate system, and to drop any
graphical elements that lie outside this region. In order to render the remaining elements, however,  Mathematica  then
has to determine how to position this rectangular region with respect to the final display area. 

The option PlotRegion allows you to specify where the corners of the rectangular region lie within the final display
area. The positions of the corners are specified in scaled coordinates, which are defined to run from 0 to 1 across the
display area. The default is PlotRegion -> {{0, 1}, {0, 1}}, which specifies that the rectangular region should
fill the whole display area. 
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By specifying PlotRegion, you can effectively add “margins”  around your plot. 

In[8]:= Plot[ArcTan[x], {x, 0, 10}, PlotRegion -> {{0.2, 0.8}, {0.3, 0.7}}]
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Out[8]=  Graphics 

AspectRatio  −>  r make the ratio of height to width for the display area equal to  r 
AspectRatio  −>  Automatic determine the shape of the

display area from the original coordinate system

Specifying the shape of the display area. 

What we have discussed so far is how Mathematica translates the original coordinates you specify into positions in the
final display area. What remains to discuss, however, is what the final display area is like. 

On most computer systems, there is a certain fixed region of screen or paper into which the Mathematica  display area
must fit. How it fits into this region is determined by its “shape”  or aspect ratio. In general, the option AspectRa
tio specifies the ratio of height to width for the final display area. 

It is important to note that the setting of AspectRatio  does not affect the meaning of the scaled or display coordi-
nates.  These coordinates always run from 0 to 1 across the display area.  What AspectRatio  does is to change the
shape of this display area. 

This generates a graphic object corresponding to a hexagon. 

In[9]:= hex = Graphics[Polygon[ Table[{Sin[n Pi/3], Cos[n Pi/3]}, {n, 6}] ]] ;

Printed from the Mathematica Help Browser 27

©1988-2003 Wolfram Research, Inc. All rights reserved.



This renders the hexagon in a display area whose height is three times its width. 

In[10]:= Show[hex, AspectRatio -> 3]

Out[10]=  Graphics 

For two-dimensional graphics, AspectRatio  is set by default to the fixed value of 1/GoldenRatio. Sometimes,
however,  you may want  to  determine the aspect  ratio for  a plot  from the original coordinate  system used in the plot.
Typically what you want is for one unit in the x  direction in the original coordinate system to correspond to the same
distance in the final display as one unit in the y  direction. In this way, objects that you define in the original coordinate
system are displayed with their “natural  shape”.  You can make this happen by setting the option AspectRatio ->
Automatic. 

With AspectRatio -> Automatic, the aspect ratio of the final display area is determined from the original coordinate system, 
and the hexagon is shown with its “natural  shape”.  

In[11]:= Show[hex, AspectRatio -> Automatic]

Out[11]=  Graphics 

Using scaled coordinates,  you can specify  the sizes  of  graphical  elements as  fractions of  the size of  the display area.
You  cannot,  however,  tell  Mathematica  the  actual  physical  size  at  which  a  particular  graphical  element  should  be
rendered.  Of  course,  this  size  ultimately depends  on  the  details  of  your  graphics  output  device,  and  cannot  be  deter-
mined for certain within Mathematica. Nevertheless, graphics directives such as AbsoluteThickness discussed in
Section 2.10.3  do  allow  you  to  indicate  “absolute  sizes”  to  use  for  particular  graphical  elements.  The  sizes  you
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request  in  this  way  will  be  respected  by  most,  but  not  all,  output  devices.  (For  example,  if  you  optically  project  an
image, it is neither possible nor desirable to maintain the same absolute size for a graphical element within it.) 

2.10.5 Labeling Two-Dimensional Graphics

Axes  −>  True give a pair of axes
GridLines  −>  Automatic draw grid lines on the plot

Frame  −>  True put axes on a frame around the plot
PlotLabel  −>  " text " give an overall label for the plot

Ways to label two-dimensional plots. 

Here is a plot, using the default Axes -> True. 

In[1]:= bp = Plot[BesselJ[2, x], {x, 0, 10}]
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Out[1]=  Graphics 

Setting Frame -> True generates a frame with axes, and removes tick marks from the ordinary axes. 

In[2]:= Show[bp, Frame -> True]
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Out[2]=  Graphics 
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This includes grid lines, which are shown in light blue on color displays. 

In[3]:= Show[%, GridLines -> Automatic]
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Out[3]=  Graphics 

Axes  −>  False draw no axes
Axes  −>  True draw both  x  and  y  axes

Axes  −>  8  False,  True <  draw a  y  axis but no  x  axis
AxesOrigin  −>  Automatic choose the crossing point for the axes automatically

AxesOrigin  −>  8  x,  y <  specify the crossing point
AxesStyle  −>  style specify the style for axes

AxesStyle  −>  8  8  xstyle <,  8  ystyle <  <  specify individual styles for axes
AxesLabel  −>  None give no axis labels
AxesLabel  −>  ylabel put a label on the  y  axis

AxesLabel  −>  8  xlabel,  ylabel <  put labels on both  x  and  y  axes

Options for axes. 

This makes the axes cross at the point {5, 0}, and puts a label on each axis. 

In[4]:= Show[bp, AxesOrigin->{5, 0}, AxesLabel->{"x", "y"}]
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Out[4]=  Graphics 
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Ticks  −>  None draw no tick marks
Ticks  −>  Automatic place tick marks automatically

Ticks  −>  8  xticks,  yticks <  tick mark specifications for each axis

Settings for the Ticks option. 

With  the  default  setting  Ticks  ->  Automatic,  Mathematica  creates  a  certain  number  of  major  and  minor  tick
marks, and places them on axes at positions which yield the minimum number of  decimal digits in the tick labels. In
some cases, however,  you may want to specify the positions and properties of tick marks explicitly. You will need to
do this, for example, if you want to have tick marks at multiples of p , or if you want to put a nonlinear scale on an axis. 

None draw no tick marks
Automatic place tick marks automatically

8  x1,  x2, … <  draw tick marks at the specified positions
8  8  x1,  label1  <,  8  x2,  label2  <, … <  draw tick marks with the specified labels

8  8  x1,  label1,  len1  <, … <  draw tick marks with the specified scaled lengths
8  8  x1,  label1,  8  plen1,  mlen1  <  <, … <  draw tick marks with the specified

lengths in the positive and negative directions
8  8  x1,  label1,  len1,  style1  <, … <  draw tick marks with the specified styles

func a function to be applied to  xmin ,  xmax to get the tick mark option

Tick mark options for each axis. 

This gives tick marks at specified positions on the x  axis, and chooses the tick marks automatically on the y  axis. 

In[5]:= Show[bp, Ticks -> {{0, Pi, 2Pi, 3Pi}, Automatic}]
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Out[5]=  Graphics 
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This adds tick marks with no labels at multiples of p ê 2. 

In[6]:= Show[bp, Ticks -> {{0, {Pi/2, ""}, Pi, {3Pi/2, ""}, 2Pi, {5Pi/2, ""}, 3Pi}, 
Automatic}]
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Out[6]=  Graphics 

Particularly when you want to create complicated tick mark specifications, it is often convenient to define a “tick  mark
function”  which creates the appropriate tick mark specification given the minimum and maximum values on a particu-
lar axis. 

This defines a function which gives a list of tick mark positions with a spacing of 1. 

In[7]:= units[xmin_, xmax_] := Range[Floor[xmin], Floor[xmax], 1]

This uses the units function to specify tick marks for the x  axis. 

In[8]:= Show[bp, Ticks -> {units, Automatic}]
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Out[8]=  Graphics 

Sometimes you may want to generate tick marks which differ only slightly from those produced automatically with the
setting Ticks -> Automatic. You can get the complete specification for tick marks that were generated automati-
cally in a particular plot by using AbsoluteOptions[g, Ticks], as discussed in Section 2.10.1. 
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Frame  −>  False draw no frame
Frame  −>  True draw a frame around the plot

FrameStyle  −>  style specify a style for the frame
FrameStyle  −>  8  8  
xmstyle <,  8  ymstyle <, … <  

specify styles for each edge of the frame

FrameLabel  −>  None give no frame labels
FrameLabel  −>  
8  xmlabel,  ymlabel, … <  

put labels on edges of the frame

RotateLabel  −>  False do not rotate text in labels
FrameTicks  −>  None draw no tick marks on frame edges

FrameTicks  −>  Automatic position tick marks automatically
FrameTicks  −>  8  
8  xmticks,  ymticks, … <  <  

specify tick marks for frame edges

Options for frame axes. 

The Axes  option  allows  you  to  draw a  single  pair  of  axes  in  a  plot.  Sometimes,  however,  you  may instead  want  to
show the scales for a plot on a frame, typically drawn around the whole plot. The option Frame allows you effectively
to draw four axes, corresponding to the four edges of the frame around a plot. These four axes are ordered clockwise,
starting from the one at the bottom. 

This draws frame axes, and labels each of them. 

In[9]:= Show[bp, Frame -> True, FrameLabel -> {"label 1", "label 2", "label 3", "label 
4"}]
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Out[9]=  Graphics 

GridLines  −>  None draw no grid lines
GridLines  −>  Automatic position grid lines automatically

GridLines  −>  8  xgrid,  ygrid <  specify grid lines in analogy with tick marks

Options for grid lines. 

Grid lines in Mathematica  work very much like tick marks. As with tick marks, you can specify explicit positions for
grid lines. There is no label or length to specify for grid lines. However, you can specify a style. 
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This generates x  but not y  grid lines. 

In[10]:= Show[bp, GridLines -> {Automatic, None}]
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Out[10]=  Graphics 

2.10.6 Making Plots within Plots

Section 1.9.3  described  how you can make regular  arrays  of  plots  using GraphicsArray.  Using  the Rectangle
graphics primitive, however, you can combine and superimpose plots in any way. 

Rectangle@ 8  xmin,  ymin 
<,  8  xmax,  ymax <,  graphics D 

render a graphics object within the specified rectangle

Creating a subplot. 

Here is a three-dimensional plot. 

In[1]:= p3 = Plot3D[Sin[x] Exp[y], {x, -5, 5}, {y, -2, 2}]
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Out[1]=  SurfaceGraphics 
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This creates a two-dimensional graphics object which contains two copies of the three-dimensional plot. 

In[2]:= Show[Graphics[ {Rectangle[{0, 0}, {1, 1}, p3], Rectangle[{0.8, 0.8}, {1.2, 1.4}, 
p3]} ]]
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Out[2]=  Graphics 

Mathematica can render any graphics object within a Rectangle. In all cases, what it puts in the rectangle is a scaled
down version  of  what  would  be  obtained  if  you  displayed  the  graphics  object  on  its  own.  Notice  that  in  general  the
display area for the graphics object will be sized so as to touch at least one pair of edges of the rectangle. 

2.10.7 Density and Contour Plots

DensityGraphics@ array D density plot
ContourGraphics@ array D contour plot

Graphics objects that represent density and contour plots. 

The functions DensityPlot and ContourPlot discussed in Section 1.9.5 work by creating ContourGraphics
and DensityGraphics objects containing arrays of values. 

Most of the options for density and contour plots are the same as those for ordinary two-dimensional plots. There are,
however, a few additional options. 

option name default value 

ColorFunction Automatic how to assign colors to each cell
ColorFunctionScaling True whether to scale values

before applying a color function
Mesh True whether to draw a mesh
MeshStyle Automatic a style for the mesh

Additional options for density plots. 

In a density plot, the color of each cell represents its value. By default, each cell is assigned a gray level, running from
black  to  white  as  the  value  of  the  cell  increases.  In  general,  however,  you  can  specify  other  “color  maps”  for  the
relation between the value of a cell and its color. The option ColorFunction allows you to specify a function which
is applied to each cell value to find the color of the cell. With ColorFunctionScaling->True the cell values are
scaled so as to run between 0 and 1 in a particular density plot; with ColorFunctionScaling->False  no such
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scaling is  performed.  The function  you give as  the setting for  ColorFunction  may return  any Mathematica  color
directive, such as GrayLevel, Hue or RGBColor. A common setting to use is ColorFunction -> Hue. 

Here is a density plot with the default ColorFunction. 

In[1]:= DensityPlot[Sin[x y], {x, -1, 1}, {y, -1, 1}]
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Out[1]=  DensityGraphics 

This gives a density plot with a different “color  map”.  

In[2]:= Show[%, ColorFunction -> (GrayLevel[#^3]&)]
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Out[2]=  DensityGraphics 

option name default value 

Contours 10 what contours to use
ContourLines True whether to draw contour lines
ContourStyle Automatic style to use for contour lines
ContourShading True whether to shade regions in the plot
ColorFunction Automatic how to assign colors to contour levels
ColorFunctionScaling True whether to scale values

before applying a color function

Options for contour plots. 
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In  constructing  a  contour  plot,  the  first  issue  is  what  contours  to  use.  With  the  default  setting  Contours  ->  10,
Mathematica  uses a sequence of 10 contour levels equally spaced between the minimum and maximum values defined
by the PlotRange option. 

Contours  −>  n use a sequence of  n equally spaced contours
Contours  −>  8  z1,  z2, … <  use contours with values  z1  ,  z2  , …

Specifying contours. 

This creates a contour plot with two contours. 

In[3]:= ContourPlot[Sin[x y], {x, -1, 1}, {y, -1, 1}, Contours -> {-.5, .5}]
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Out[3]=  ContourGraphics 

There are some slight subtleties associated with labeling density and contour plots. Both the Axes and Frame options
from  ordinary  two-dimensional  graphics  can  be  used.  But  setting  AxesOrigin  ->  Automatic  keeps  the  axes
outside the plot in both cases. 

2.10.8 Three-Dimensional Graphics Primitives

One  of  the  most  powerful  aspects  of  graphics  in  Mathematica  is  the  availability  of  three-dimensional  as  well  as
two-dimensional  graphics  primitives.  By  combining  three-dimensional  graphics  primitives,  you  can  represent  and
render three-dimensional objects in Mathematica. 

Point@ 8  x,  y,  z <  D point with coordinates  x ,  y ,  z 
Line@ 8  8  x1,  y1,  z1  

<,  8  x2,  y2,  z2  <, … <  D 

line through the points  8  x1,  y1,  z1  <  ,  8  x2,  y2,  z2  <  , …

Polygon@ 8  8  x1,  y1,  

z1  <,  8  x2,  y2,  z2  <, … <  D 

filled polygon with the specified list of corners

Cuboid@ 8  xmin,  ymin,  
zmin <,  8  xmax,  ymax,  zmax <  D 

cuboid

Text@ expr,  8  x,  y,  z <  D text at position  8  x,  y,  z <  Hsee Section  2.10.16 L
Three-dimensional graphics elements. 
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Every time you evaluate rcoord, it generates a random coordinate in three dimensions. 

In[1]:= rcoord := {Random[ ], Random[ ], Random[ ]}

This generates a list of 20 random points in three-dimensional space. 

In[2]:= pts = Table[Point[rcoord], {20}] ;

Here is a plot of the points. 

In[3]:= Show[ Graphics3D[ pts ] ]

Out[3]=  Graphics3D 

This gives a plot showing a line through 10 random points in three dimensions. 

In[4]:= Show[ Graphics3D[ Line[ Table[rcoord, {10}] ] ] ]

Out[4]=  Graphics3D 

If you give a list of graphics elements in two dimensions, Mathematica  simply draws each element in turn, with later
elements obscuring earlier ones. In three dimensions, however, Mathematica collects together all the graphics elements
you specify, then displays them as three-dimensional objects, with the ones in front in three-dimensional space obscur-
ing those behind. 
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Every time you evaluate rantri, it generates a random triangle in three-dimensional space. 

In[5]:= rantri := Polygon[ Table[ rcoord, {3} ] ]

This draws a single random triangle. 

In[6]:= Show[ Graphics3D[ rantri ] ]

Out[6]=  Graphics3D 

This draws a collection of 5 random triangles. The triangles in front obscure those behind. 

In[7]:= Show[ Graphics3D[ Table[rantri, {5}] ] ]

Out[7]=  Graphics3D 

By creating an appropriate list of polygons, you can build up any three-dimensional object in Mathematica. Thus, for
example, all the surfaces produced by ParametricPlot3D are represented simply as lists of polygons. 

The  package  Graphics`Polyhedra`  contains  examples  of  lists  of  polygons  which  correspond  to  polyhedra  in
three dimensions. 

This loads a package which defines various polyhedra. 

In[8]:= <<Graphics`Polyhedra`
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Here is the list of polygons corresponding to a tetrahedron centered at the origin. 

In[9]:= Tetrahedron[ ]

Out[9]= 8Polygon@
880., 0., 1.73205<, 80., 1.63299, −0.57735<, 8−1.41421, −0.816497, −0.57735<<D,
Polygon@880., 0., 1.73205<, 8−1.41421, −0.816497, −0.57735<,
81.41421, −0.816497, −0.57735<<D, Polygon@
880., 0., 1.73205<, 81.41421, −0.816497, −0.57735<, 80., 1.63299, −0.57735<<D,
Polygon@880., 1.63299, −0.57735<, 81.41421, −0.816497, −0.57735<,
8−1.41421, −0.816497, −0.57735<<D<

This displays the tetrahedron as a three-dimensional object. 

In[10]:= Show[ Graphics3D[ % ] ]

Out[10]=  Graphics3D 

Dodecahedron[ ] is another three-dimensional object defined in the polyhedra package. 

In[11]:= Show[ Graphics3D[ Dodecahedron[ ] ] ]

Out[11]=  Graphics3D 
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This shows four intersecting dodecahedra. 

In[12]:= Show[ Graphics3D[ Table[Dodecahedron[0.8 {k, k, k}], {k, 0, 3}] ] ]

Out[12]=  Graphics3D 

Mathematica  allows polygons in three dimensions to have any number of vertices. However, these vertices should lie
in  a  plane,  and  should  form a convex  figure.  If  they do not,  then Mathematica  will  break the polygon into triangles,
which are planar by definition, before rendering it. 

Cuboid@ 8  x,  y,  z <  D a unit cube with opposite corners having coordinates  
8  x,  y,  z <  and  8  x +1,  y +1,  z +1 <  

Cuboid@ 8  xmin,  ymin,  
zmin <,  8  xmax,  ymax,  zmax <  D 

a cuboid Hrectangular parallelepipedL with
opposite corners having the specified coordinates

Cuboid graphics elements. 

This draws 20 random unit cubes in three-dimensional space. 

In[13]:= Show[Graphics3D[ Table[Cuboid[10 rcoord], {20}] ]]

Out[13]=  Graphics3D 
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2.10.9 Three-Dimensional Graphics Directives

In three dimensions,  just  as  in  two dimensions,  you can give various graphics  directives to  specify how the different
elements in a graphics object should be rendered. 

All  the  graphics  directives  for  two  dimensions  also  work  in  three  dimensions.  There  are  however  some  additional
directives in three dimensions. 

Just  as in two dimensions, you can use the directives PointSize,  Thickness  and Dashing  to tell  Mathematica
how to render Point and Line elements. Note that in three dimensions, the lengths that appear in these directives are
measured as fractions of the total width of the display area for your plot. 

This generates a list of 20 random points in three dimensions. 

In[1]:= pts = Table[Point[Table[Random[ ], {3}]], {20}];

This displays the points, with each one being a circle whose diameter is 5% of the display area width. 

In[2]:= Show[Graphics3D[ { PointSize[0.05], pts } ]]

Out[2]=  Graphics3D 

As  in  two  dimensions,  you  can  use  AbsolutePointSize,  AbsoluteThickness  and  AbsoluteDashing  if
you want to measure length in absolute units. 

This generates a line through 10 random points in three dimensions. 

In[3]:= line = Line[Table[Random[ ], {10}, {3}]] ;
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This shows the line dashed, with a thickness of 2 printer's points. 

In[4]:= Show[Graphics3D[ { AbsoluteThickness[2], AbsoluteDashing[{5, 5}], line } ]]

Out[4]=  Graphics3D 

For  Point  and  Line  objects,  the  color  specification  directives  also  work  the  same  in  three  dimensions  as  in  two
dimensions. For Polygon objects, however, they can work differently. 

In  two  dimensions,  polygons  are  always  assumed to  have  an  intrinsic  color,  specified  directly  by  graphics  directives
such  as  RGBColor.  In  three  dimensions,  however,  Mathematica  also  provides  the  option  of  generating  colors  for
polygons using a more physical approach based on simulated illumination. With the default option setting Lighting
->  True  for  Graphics3D  objects,  Mathematica  ignores  explicit  colors  specified  for  polygons,  and  instead  deter-
mines all  polygon colors  using the simulated illumination model. Even in this case, however,  explicit colors are used
for points and lines. 

Lighting  −>  False intrinsic colors
Lighting  −>  True colors based on simulated illumination HdefaultL

The two schemes for coloring polygons in three dimensions. 

This loads a package which defines various polyhedra. 

In[5]:= <<Graphics`Polyhedra`
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This draws an icosahedron, using the same gray level for all faces. 

In[6]:= Show[Graphics3D[{GrayLevel[0.7], Icosahedron[ ]}], Lighting -> False]

Out[6]=  Graphics3D 

With the default setting Lighting -> True, the colors of polygons are determined by the simulated illumination model, and 
explicit color specifications are ignored. 

In[7]:= Show[%, Lighting -> True]

Out[7]=  Graphics3D 
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Explicit color directives are, however, always followed for points and lines. 

In[8]:= Show[{%, Graphics3D[{GrayLevel[0.5], Thickness[0.05], Line[{{0, 0, -2}, {0, 0, 
2}}]}]}]

Out[8]=  Graphics3D 

EdgeForm@  D draw no lines at the edges of polygons
EdgeForm@ g D use the graphics directives  g 

to determine how to draw lines at the edges of polygons

Giving graphics directives for all the edges of polygons. 

When you render a three-dimensional graphics object in Mathematica, there are two kinds of lines that can appear. The
first  kind  are lines from explicit  Line  primitives that  you included in the graphics  object.  The second kind are lines
that were generated as the edges of polygons. 

You  can  tell  Mathematica  how  to  render  all  lines  of  the  second  kind  by  giving  a  list  of  graphics  directives  inside
EdgeForm. 

This renders a dodecahedron with its edges shown as thick gray lines. 

In[9]:= Show[Graphics3D[ {EdgeForm[{GrayLevel[0.5], Thickness[0.02]}], Dodecahedron[ ]}]]

Out[9]=  Graphics3D 
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FaceForm@ gfront,  gback D use  gfront 
graphics directives for the front face of each polygon, and  
gback for the back

Rendering the fronts and backs of polygons differently. 

An important aspect of polygons in three dimensions is that they have both front and back faces. Mathematica uses the
following convention to define the “front  face”  of a polygon: if you look at a polygon from the front, then the corners
of the polygon will appear counterclockwise, when taken in the order that you specified them. 

This defines a dodecahedron with one face removed. 

In[10]:= d = Drop[Dodecahedron[ ], {6}] ;

You can now see inside the dodecahedron. 

In[11]:= Show[Graphics3D[d]]

Out[11]=  Graphics3D 
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This makes the front (outside) face of each polygon light gray, and the back (inside) face dark gray. 

In[12]:= Show[Graphics3D[ {FaceForm[GrayLevel[0.8], GrayLevel[0.3]], d}], Lighting -> 
False]

Out[12]=  Graphics3D 

2.10.10 Coordinate Systems for Three-Dimensional Graphics

Whenever Mathematica  draws a three-dimensional object, it always effectively puts a cuboidal box around the object.
With  the default  option setting Boxed  ->  True,  Mathematica  in  fact  draws the edges  of  this  box explicitly.  But  in
general, Mathematica automatically “clips”  any parts of your object that extend outside of the cuboidal box. 

The option PlotRange specifies the range of x , y  and z  coordinates that Mathematica should include in the box. As
in  two  dimensions  the  default  setting  is  PlotRange  ->  Automatic,  which  makes  Mathematica  use  an  internal
algorithm to  try  and  include  the  “interesting  parts”  of  a  plot,  but  drop  outlying  parts.  With  PlotRange  ->  All,
Mathematica will include all parts. 

This loads a package defining various polyhedra. 

In[1]:= <<Graphics`Polyhedra`

This creates a stellated icosahedron. 

In[2]:= stel = Stellate[Icosahedron[ ]] ;
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Here is the stellated icosahedron, drawn in a box. 

In[3]:= Show[Graphics3D[stel], Axes -> True]
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Out[3]=  Graphics3D 

With this setting for PlotRange, many parts of the stellated icosahedron lie outside the box, and are clipped. 

In[4]:= Show[%, PlotRange -> {-1, 1}]
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Out[4]=  Graphics3D 

Much as  in  two dimensions,  you can use  either  “original”  or  “scaled”  coordinates  to  specify  the  positions  of  ele-
ments in three-dimensional objects. Scaled coordinates, specified as Scaled[8sx, sy, sz<] are taken to run from 0 to
1 in each dimension. The coordinates are set up to define a right-handed coordinate system on the box. 

8  x,  y,  z <  original coordinates
Scaled@ 8  sx,  sy,  sz <  D scaled coordinates, running from 0 to 1 in each dimension

Coordinate systems for three-dimensional objects. 
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This puts a cuboid in one corner of the box. 

In[5]:= Show[Graphics3D[{stel, Cuboid[Scaled[{0, 0, 0}], Scaled[{0.2, 0.2, 0.2}]]}]]

Out[5]=  Graphics3D 

Once  you  have  specified  where  various  graphical  elements  go  inside  a  three-dimensional  box,  you  must  then  tell
Mathematica  how  to  draw  the  box.  The  first  step  is  to  specify  what  shape  the  box  should  be.  This  is  analogous  to
specifying  the  aspect  ratio  of  a  two-dimensional  plot.  In  three  dimensions,  you  can  use  the  option  BoxRatios  to
specify the ratio of side lengths for the box. For Graphics3D  objects, the default is BoxRatios  -> Automatic,
specifying that the shape of the box should be determined from the ranges of actual coordinates for its contents. 

BoxRatios  −>  8  xr,  yr,  zr <  specify the ratio of side lengths for the box
BoxRatios  −>  Automatic determine the ratio of side lengths from the

range of actual coordinates Hdefault for  Graphics3D L
BoxRatios  −>  8  1,  1,  0.4 <  specify a fixed shape of box Hdefault for  SurfaceGraphics L

Specifying the shape of the bounding box for three-dimensional objects. 

This displays the stellated icosahedron in a tall box. 

In[6]:= Show[Graphics3D[stel], BoxRatios -> {1, 1, 5}]

Out[6]=  Graphics3D 

Printed from the Mathematica Help Browser 49

©1988-2003 Wolfram Research, Inc. All rights reserved.



To produce  an image of a three-dimensional object,  you have to tell Mathematica  from what view point you want to
look at the object. You can do this using the option ViewPoint. 

Some common settings for  this option were given in Section 1.9.6.  In general,  however,  you can tell Mathematica  to
use any view point, so long as it lies outside the box. 

View points  are  specified  in  the form ViewPoint  ->  8sx,  sy,  sz< .  The values  si  are  given  in  a  special  coordinate
system, in which the center of the box is {0, 0, 0}. The special coordinates are scaled so that the longest side of the
box corresponds to one unit. The lengths of the other sides of the box in this coordinate system are determined by the
setting  for  the BoxRatios  option.  For  a  cubical  box,  therefore,  each of  the  special  coordinates  runs  from -1 ê 2  to
1 ê2 across the box. Note that the view point must always lie outside the box. 

This generates a picture using the default view point {1.3, -2.4, 2}. 

In[7]:= surf = Plot3D[(2 + Sin[x]) Cos[2 y], {x, -2, 2}, {y, -3, 3}, AxesLabel -> {"x", 
"y", "z"}]
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Out[7]=  SurfaceGraphics 

This is what you get with a view point close to one of the corners of the box. 

In[8]:= Show[surf, ViewPoint -> {1.2, 1.2, 1.2}]
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Out[8]=  SurfaceGraphics 
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As you move away from the box, the perspective effect gets smaller. 

In[9]:= Show[surf, ViewPoint -> {5, 5, 5}]
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Out[9]=  SurfaceGraphics 

option name default value 

ViewPoint 81.3,  
−2.4,  2< 

the point in a special scaled coordinate
system from which to view the object

ViewCenter Automatic the point in the scaled coordinate system
which appears at the center of the final image

ViewVertical 80,  0,  1< the direction in the scaled coordinate system
which appears as vertical in the final image

Specifying the position and orientation of three-dimensional objects. 

In  making a  picture  of  a  three-dimensional  object  you have  to  specify  more than just  where  you want  to  look  at  the
object from. You also have to specify how you want to “frame”  the object in your final image. You can do this using
the additional options ViewCenter and ViewVertical. 

ViewCenter allows you to tell Mathematica what point in the object should appear at the center of your final image.
The point is specified by giving its scaled coordinates, running from 0 to 1 in each direction across the box. With the
setting ViewCenter  ->  {1/2,  1/2,  1/2},  the center of the box will therefore appear at the center of your final
image. With many choices of view point, however, the box will not appear symmetrical, so this setting for ViewCen
ter will not center the whole box in the final image area. You can do this by setting ViewCenter -> Automatic. 

ViewVertical specifies which way up the object should appear in your final image. The setting for ViewVerti
cal gives the direction in scaled coordinates which ends up vertical in the final image. With the default setting View
Vertical  ->  {0,  0,  1},  the  z  direction  in  your  original  coordinate  system always  ends  up  vertical  in  the  final
image. 
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With this setting for ViewCenter, a corner of the box appears in the center of your image. 

In[10]:= Show[surf, ViewCenter -> {1, 1, 1}]
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Out[10]=  SurfaceGraphics 

This setting for ViewVertical makes the x  axis of the box appear vertical in your image. 

In[11]:= Show[surf, ViewVertical -> {1, 0, 0}]
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Out[11]=  SurfaceGraphics 

When  you  set  the  options  ViewPoint,  ViewCenter  and  ViewVertical,  you  can  think  about  it  as  specifying
how you would look at a physical object. ViewPoint specifies where your head is relative to the object. ViewCen
ter  specifies  where  you  are  looking  (the  center  of  your  gaze).  And  ViewVertical  specifies  which  way up  your
head is. 

In  terms of  coordinate  systems,  settings  for  ViewPoint,  ViewCenter  and  ViewVertical  specify  how coordi-
nates in the three-dimensional box should be transformed into coordinates for your image in the final display area. 

For some purposes,  it is useful to think of the coordinates in the final display area as three dimensional. The x  and y
axes  run  horizontally  and  vertically,  respectively,  while  the  z  axis  points  out  of  the  page.  Positions  specified  in  this
“display  coordinate  system”  remain fixed when you change ViewPoint  and so on.  The positions  of  light  sources
discussed in the next section are defined in this display coordinate system. 
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Box coordinate system measured relative to the box around your object
Display coordinate system measured relative to your final display area

Coordinate systems for three-dimensional graphics. 

Once you have obtained a two-dimensional image of a three-dimensional object, there are still some issues about how
this  image  should  be  rendered.  The  issues  however  are  identical  to  those  that  occur  for  two-dimensional  graphics.
Thus,  for  example,  you can modify the  final  shape  of  your  image by changing  the AspectRatio  option.  And you
specify what region of your whole display area your image should take up by setting the PlotRegion option. 

This modifies the aspect ratio of the final image. 

In[12]:= Show[surf, Axes -> False, AspectRatio -> 0.3]

Out[12]=  SurfaceGraphics 

Mathematica  usually scales the images of  three-dimensional objects  to be as  large as possible,  given the display area
you specify. Although in most cases this scaling is what you want, it does have the consequence that the size at which a
particular three-dimensional object is drawn may vary with the orientation of the object. You can set the option Spher
icalRegion  ->  True  to  avoid  such  variation.  With  this  option  setting,  Mathematica  effectively  puts  a  sphere
around the three-dimensional bounding box, and scales the final image so that the whole of this sphere fits inside the
display area you specify. The sphere has its center at the center of the bounding box, and is drawn so that the bounding
box just fits inside it. 
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This draws a rather elongated version of the plot. 

In[13]:= Show[surf, BoxRatios -> {1, 5, 1}]
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Out[13]=  SurfaceGraphics 

With SphericalRegion -> True, the final image is scaled so that a sphere placed around the bounding box would fit in the 
display area. 

In[14]:= Show[%, SphericalRegion -> True]
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Out[14]=  SurfaceGraphics 

By setting SphericalRegion -> True, you can make the scaling of an object consistent for all orientations of the
object. This is useful if you create animated sequences which show a particular object in several different orientations. 

SphericalRegion  −>  False scale three-dimensional images to be as large as possible
SphericalRegion  −>  True scale images so that a sphere drawn around the three-dimensional

bounding box would fit in the final display area

Changing the magnification of three-dimensional images. 
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2.10.11 Plotting Three-Dimensional Surfaces

By  giving  an  appropriate  list  of  graphics  primitives,  you  can  represent  essentially  any  three-dimensional  object  in
Mathematica with Graphics3D. You can represent three-dimensional surfaces with Graphics3D by giving explicit
lists of polygons with adjacent edges. 

If you need to represent arbitrary surfaces which can fold over and perhaps intersect themselves, there is no choice but
to use explicit lists of polygons with Graphics3D, as ParametricPlot3D does. 

However,  there  are  many  cases  in  which  you  get  simpler  surfaces.  For  example,  Plot3D  and  ListPlot3D  yield
surfaces which never fold over, and have a definite height at every x , y  point. You can represent simple surfaces like
these  in  Mathematica  without  giving  an  explicit  list  of  polygons.  Instead,  all  you  need  do  is  to  give  an  array  which
specifies  the  z  height  at  every  point  in  an  x ,  y  grid.  The  graphics  object  SurfaceGraphics[array]  represents  a
surface constructed in this way. 

Graphics3D@ primitives D arbitrary three-dimensional objects, including folded surfaces
SurfaceGraphics@ array D simple three-dimensional surfaces

Three-dimensional graphics objects. 

Here is a 4ä4 array of values. 

In[1]:= moda = Table[Mod[i, j], {i, 4}, {j, 4}]

Out[1]= 880, 1, 1, 1<, 80, 0, 2, 2<, 80, 1, 0, 3<, 80, 0, 1, 0<<

This uses the array to give the height of each point on the surface. 

In[2]:= Show[SurfaceGraphics[moda]]

Out[2]=  SurfaceGraphics 

Both Plot3D and ListPlot3D work by creating SurfaceGraphics objects. 

Graphics3D@ surface D convert  SurfaceGraphics to  Graphics3D 

Converting between representations of surfaces. 
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If  you  apply  Graphics3D  to  a  SurfaceGraphics  object,  Mathematica  will  generate  a  Graphics3D  object
containing an explicit list of polygons representing the surface in the SurfaceGraphics object. Whenever you ask
Mathematica  to  combine  two  SurfaceGraphics  objects  together,  it  automatically  converts  them  both  to
Graphics3D objects. 

Here is a surface represented by a SurfaceGraphics object. 

In[3]:= Plot3D[(1 - Sin[x]) (2 - Cos[2 y]), {x, -2, 2}, {y, -2, 2}]
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Out[3]=  SurfaceGraphics 

Here is another surface. 

In[4]:= Plot3D[(2 + Sin[x]) (1 + Cos[2 y]), {x, -2, 2}, {y, -2, 2}]
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Out[4]=  SurfaceGraphics 
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Mathematica shows the two surfaces together by converting each of them to a Graphics3D object containing an explicit list of 
polygons. 

In[5]:= Show[%, %%]
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Out[5]=  Graphics3D 

option name default value 

Mesh True whether to draw a mesh on the surface
MeshStyle Automatic graphics directives

specifying how to render the mesh
MeshRange Automatic the original range of

coordinates corresponding to the mesh

Mesh options in SurfaceGraphics. 

When you create a surface using SurfaceGraphics,  the default  is  to draw a rectangular  mesh on the surface.  As
discussed in Section 1.9.6, including this mesh typically makes it easier for one to see the shape of the surface. You can
nevertheless get rid of the mesh by setting the option Mesh -> False. You can also set the option MeshStyle to a
list of graphics directives which specify thickness, color or other properties of the mesh lines. 

A SurfaceGraphics  object  contains an array of values which specify the height of a surface at points in an x ,  y
grid. By setting the option MeshRange, you can give the range of original x  and y  coordinates that correspond to the
points in this grid. When you use Plot3D[f, 8x, xmin, xmax<, 8y, ymin, ymax<] to generate a SurfaceGraph
ics  object,  the setting MeshRange  ->  88xmin,  xmax<,  8ymin,  ymax<<  is  automatically generated.  The setting for
MeshRange  is  used  in  labeling  the  x  and  y  axes  in  surface  plots,  and  in  working  out  polygon  coordinates  if  you
convert a SurfaceGraphics object to an explicit list of polygons in a Graphics3D object. 

None leave out clipped parts of the surface, so that you can see through
Automatic show the clipped part of the surface with the same shading as an

actual surface in the same position would have Hdefault settingL
GrayLevel@ i D ,  
RGBColor@ r,  g,  b D , etc.

show the clipped part of the
surface with a particular gray level, color, etc.

8  bottom,  top <  give different specifications
for parts that are clipped at the bottom and top

Settings for the ClipFill option. 
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The option PlotRange works for SurfaceGraphics as it does for other Mathematica graphics objects. Any parts
of a surface that lie outside the range of coordinates defined by PlotRange  will be “clipped”.  The option Clip
Fill allows you to specify what should happen to the parts of a surface that are clipped. 

Here is a three-dimensional plot in which the top and bottom of the surface are clipped. With the default setting for ClipFill, 
the clipped parts are shown as they would be if they were part of the actual surface. 

In[6]:= Plot3D[Sin[x y], {x, 0, 3}, {y, 0, 3}, PlotRange -> {-.5, .5}]
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Out[6]=  SurfaceGraphics 

With ClipFill->None, parts of the surface which are clipped are left out, so that you can “see  through”  the surface there. 
Mathematica always leaves out parts of the surface that correspond to places where the value of the function you are plotting is not 
a real number. 

In[7]:= Show[%, ClipFill -> None]
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Out[7]=  SurfaceGraphics 
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This makes the bottom clipped face white (gray level 1), and the top one black. 

In[8]:= Show[%, ClipFill -> {GrayLevel[1], GrayLevel[0]}]
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Out[8]=  SurfaceGraphics 

Whenever  Mathematica  draws a surface,  it  has to know not  only the height,  but  also the color  of  the surface at  each
point. With the default setting Lighting -> True, Mathematica  colors the surface using a simulated lighted model.
However, with Lighting -> False, Mathematica uses a “color  function”  to determine how to color the surface. 

The default  color  function takes the height  of  the surface,  normalized to run from 0 to 1,  and colors  each part  of  the
surface with a gray level corresponding to this height. There are two ways to change the default. 

First, if you set the option ColorFunction -> c, then Mathematica will apply the function c to each height value to
determine  the  color  to  use  at  that  point.  With  ColorFunction  ->  Hue,  Mathematica  will  for  example  color  the
surface with a range of hues. 

Plot3D@ f , … ,  
ColorFunction  −>  c D 

apply  c to the normalized values of  f  
to determine the color of each point on a surface

ListPlot3D@ array,  
ColorFunction  −>  c D 

apply  c to the elements of  array to determine color

SurfaceGraphics@ array,
 ColorFunction  −>  c D 

apply  c to the elements of  array to determine color

Specifying functions for coloring surfaces. 
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With Lighting -> False, the default is to color surfaces with gray scales determined by height. 

In[9]:= exp = Plot3D[Exp[-Sqrt[x^2 + y^2]], {x, -2, 2}, {y, -2, 2}, Lighting -> False]

-2
-1

0
1

2 -2

-1

0

1

2

0
0.2
0.4
0.6

2
-1

0
1

Out[9]=  SurfaceGraphics 

This defines a function which maps alternating ranges of values into black and white. 

In[10]:= stripes[f_] := If[Mod[f, 1] > 0.5, GrayLevel[1], GrayLevel[0]]

This shows the surface colored with black and white stripes. 

In[11]:= Show[exp, ColorFunction -> (stripes[5 #]&)]
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Out[11]=  SurfaceGraphics 

The second way to change the default coloring of surfaces is to supply an explicit second array along with the array of
heights. ColorFunction is then applied to the elements of this second array, rather than the array of heights, to find
the  color  directives  to  use.  In  the  second  array,  you  can  effectively  specify  the  value  of  another  coordinate  for  each
point on the surface. This coordinate will be plotted using color, rather than position. 

You can generate an array of color values automatically using Plot3D[8 f, s<, … ]. If you give the array explicitly in
ListPlot3D  or  SurfaceGraphics,  you  should  realize  that  with  an  nän  array  of  heights,  you  need  an
Hn - 1LäHn - 1L  array  to  specify  colors.  The  reason  is  that  the  heights  are  specified  for  points  on  a  grid,  whereas  the
colors are specified for squares on the grid. 
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When you supply a second function or array to Plot3D, ListPlot3D, and so on, the default setting for the Color
Function  option  is  Automatic.  This  means that  the  function  or  array should  contain explicit  Mathematica  color
directives, such as GrayLevel  or RGBColor. However, if you give another setting, such as ColorFunction  ->
Hue, then the function or array can yield pure numbers or other data which are converted to color directives when the
function specified by ColorFunction is applied. 

Plot3D@ 8  f ,  s <,  8  x,  xmin,
 xmax <,  8  y,  ymin,  ymax <  D 

plot a surface whose height is determined by  
f  and whose color is determined by  s 

ListPlot3D@ height,  color D generate a colored surface plot from an array of heights and colors
SurfaceGraphics@ height,  color D a graphics object representing a

surface with a specified array of heights and colors

Specifying arrays of colors for surfaces. 

This plots a surface with gray level determined by the y  coordinate. 

In[12]:= Plot3D[{Sin[x] Sin[y]^2, GrayLevel[y/3]}, {x, 0, 3}, {y, 0, 3}]
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Out[12]=  SurfaceGraphics 
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This puts a random gray level in each grid square. Notice that the array of grid squares is 9ä9, whereas the array of grid points is 
10ä10. 

In[13]:= ListPlot3D[ Table[i/j, {i, 10}, {j, 10}], Table[GrayLevel[Random[ ]], {i, 9}, 
{j, 9}] ]
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Out[13]=  SurfaceGraphics 

2.10.12 Lighting and Surface Properties

With the default option setting Lighting -> True, Mathematica  uses a simulated lighting model to determine how
to color polygons in three-dimensional graphics. 

Mathematica  allows you to specify two components to the illumination of an object. The first is “ambient  lighting”,
which produces uniform shading all over the object. The second is light from a collection of point sources, each with a
particular  position  and  color.  Mathematica  adds  together  the  light  from  all  of  these  sources  in  determining  the  total
illumination of a particular polygon. 

AmbientLight  −>  color diffuse isotropic lighting
LightSources  −>  8  8  pos1,
 col1  <,  8  pos2,  col2  <, … <  

point light sources with specified positions and colors

Options for simulated illumination. 

The  default  lighting  used  by  Mathematica  involves  three  point  light  sources,  and  no  ambient  component.  The  light
sources are colored respectively red, green and blue, and are placed at 45é  angles on the right-hand side of the object. 
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Here is a surface, shaded using simulated lighting using the default set of lights. 

In[1]:= Plot3D[Sin[x + Sin[y]], {x, -3, 3}, {y, -3, 3}, Lighting -> True]
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Out[1]=  SurfaceGraphics 

This shows the result of adding ambient light, and removing all point light sources. 

In[2]:= Show[%, AmbientLight -> GrayLevel[0.5], LightSources -> {}]
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Out[2]=  SurfaceGraphics 
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This adds a single point light source at the left-hand side of the image. 

In[3]:= Show[%, LightSources -> {{{-1, 0, 0.5}, GrayLevel[0.5]}}]
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Out[3]=  SurfaceGraphics 

The positions of light sources in Mathematica  are specified in the display  coordinate system. The x  and y  coordinates
are in the plane of the final display, and the z  coordinate comes out of the plane. Using this coordinate system ensures
that the light sources remain fixed with respect to the viewer, even when the relative positions of the viewer and object
change. 

Even though the view point is changed, the light source is kept fixed on the left-hand side of the image. 

In[4]:= Show[%, ViewPoint -> {2, 2, 6}]
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Out[4]=  SurfaceGraphics 

The perceived color of a polygon depends not only on the light which falls on the polygon, but also on how the poly-
gon  reflects  that  light.  You  can use  the  graphics  directive  SurfaceColor  to  specify  the  way that  polygons  reflect
light. 

If you do not explicitly use SurfaceColor directives, Mathematica effectively assumes that all polygons have matte
white surfaces. Thus the polygons reflect light of any color incident on them, and do so equally in all directions. This is
an appropriate model for materials such as uncoated white paper. 

64 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



Using  SurfaceColor,  however,  you  can  specify  more  complicated  models.  The  basic  idea  is  to  distinguish  two
kinds of reflection: diffuse and specular. 

In  diffuse  reflection,  light  incident  on  a  surface  is  scattered  equally  in  all  directions.  When  this  kind  of  reflection
occurs,  a  surface  has  a  “dull”  or  “matte”  appearance.  Diffuse  reflectors  obey  Lambert's  Law  of  light  reflection,
which states that the intensity of reflected light is cosHaL  times the intensity of the incident light, where a  is the angle
between the incident light direction and the surface normal vector. Note that when a > 90é , there is no reflected light. 

In specular reflection, a surface reflects light in a mirror-like way. As a result, the surface has a “shiny”  or “gloss”
appearance.  With  a  perfect  mirror,  light  incident  at  a  particular  angle  is  reflected  at  exactly  the  same  angle.  Most
materials, however, scatter light to some extent, and so lead to reflected light that is distributed over a range of angles.
Mathematica  allows you to specify how broad the distribution is by giving a specular exponent,  defined according to
the Phong lighting model. With specular exponent n , the intensity of light at an angle q  away from the mirror reflection
direction  is  assumed  to  vary  like  cos HqLn .  As  n Ø ¶ ,  therefore,  the  surface  behaves  like  a  perfect  mirror.  As  n
decreases,  however,  the  surface  becomes  less  “shiny”,  and  for  n = 0,  the  surface  is  a  completely  diffuse  reflector.
Typical values of n  for actual materials range from about 1 to several hundred. 

Most  actual  materials show a  mixture of  diffuse  and  specular  reflection.  In  addition,  they typically behave  as  if  they
have a certain intrinsic color.  When the incident light is white, the reflected light has the color of the material. When
the incident light is not white, each color component in the reflected light is a product of the corresponding component
in the incident light and in the intrinsic color of the material. 

In  Mathematica,  you  can  specify  reflection  properties  by  giving  an  intrinsic  color  associated  with  diffuse  reflection,
and another one associated with specular reflection. To get no reflection of a particular kind, you must give the corre-
sponding  intrinsic  color  as  black,  or  GrayLevel[0].  For  materials  that  are  effectively  “white”,  you  can  specify
intrinsic colors of the form GrayLevel[a], where a is the reflectance or albedo of the surface. 

SurfaceColor@GrayLevel@ a DD matte surface with albedo  a 
SurfaceColor@RGBColor@ 

r,  g,  b DD 

matte surface with intrinsic color

SurfaceColor@ diff ,  spec D surface with diffuse intrinsic color  
diff  and specular intrinsic color  spec 

SurfaceColor@ diff ,  spec,  n D surface with specular exponent  n 

Specifying surface properties of lighted polygons. 

This loads a package containing various graphics objects. 

In[5]:= <<Graphics`Shapes`

Sphere creates a graphics object which represents a sphere. 

In[6]:= s = Sphere[ ] ;
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This shows the sphere with the default matte white surface. 

In[7]:= Show[Graphics3D[s]]

Out[7]=  Graphics3D 

This makes the sphere have low diffuse reflectance, but high specular reflectance. As a result, the sphere has a “specular  high-
light”  near the light sources, and is quite dark elsewhere. 

In[8]:= Show[Graphics3D[{ SurfaceColor[GrayLevel[0.2], GrayLevel[0.8], 5], s}]]

Out[8]=  Graphics3D 

When you set up light sources and surface colors, it is important to make sure that the total intensity of light reflected
from a particular polygon is never larger than 1. You will get strange effects if the intensity is larger than 1. 

2.10.13 Labeling Three-Dimensional Graphics

Mathematica  provides  various  options  for  labeling  three-dimensional  graphics.  Some  of  these  options  are  directly
analogous to those for two-dimensional graphics, discussed in Section 2.10.5. Others are different. 
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Boxed  −>  True draw a cuboidal bounding box around the graphics HdefaultL
Axes  −>  True draw  x  ,  y  and  z  

axes on the edges of the box Hdefault for  SurfaceGraphicsL
Axes  −>  8False,  False,  True< draw the  z  axis only

FaceGrids  −>  All draw grid lines on the faces of the box
PlotLabel  −>  text give an overall label for the plot

Some options for labeling three-dimensional graphics. 

This loads a package containing various polyhedra. 

In[1]:= <<Graphics`Polyhedra`

The default for Graphics3D is to include a box, but no other forms of labeling. 

In[2]:= Show[Graphics3D[Dodecahedron[ ]]]

Out[2]=  Graphics3D 

Setting Axes -> True adds x , y  and z  axes. 

In[3]:= Show[%, Axes -> True]
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Out[3]=  Graphics3D 
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This adds grid lines to each face of the box. 

In[4]:= Show[%, FaceGrids -> All]
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Out[4]=  Graphics3D 

BoxStyle  −>  style specify the style for the box
AxesStyle  −>  style specify the style for axes

AxesStyle  −>  8  8  
xstyle <,  8  ystyle <,  8  zstyle <  <  

specify separate styles for each axis

Style options. 

This makes the box dashed, and draws axes which are thicker than normal. 

In[5]:= Show[Graphics3D[Dodecahedron[ ]], BoxStyle -> Dashing[{0.02, 0.02}], Axes -> 
True, AxesStyle -> Thickness[0.01]]
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Out[5]=  Graphics3D 

By setting the option Axes ->  True,  you tell Mathematica  to draw axes on the edges of the three-dimensional box.
However,  for  each axis,  there are in  principle  four  possible  edges  on  which it  can be drawn.  The option AxesEdge
allows you to specify on which edge to draw each of the axes. 
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AxesEdge  −>  Automatic use an internal algorithm to choose where to draw all axes
AxesEdge  −>  8  xspec,  yspec,  zspec <  give separate specifications for each of the  x  ,  y  and  z  axes

None do not draw this axis
Automatic decide automatically where to draw this axis
8  diri,  dir j  <  specify on which of the four possible edges to draw this axis

Specifying where to draw three-dimensional axes. 

This draws the x  on the edge with larger y  and z  coordinates, draws no y  axis, and chooses automatically where to draw the z  
axis. 

In[6]:= Show[Graphics3D[Dodecahedron[ ]], Axes -> True, AxesEdge -> {{1, 1}, None, 
Automatic}]
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Out[6]=  Graphics3D 

When you draw the x  axis on a three-dimensional box, there are four possible edges on which the axis can be drawn.
These edges are distinguished by having larger or smaller y  and z  coordinates. When you use the specification 8diry,
dirz <  for where to draw the x  axis, you can set the diri  to be +1 or -1 to represent larger or smaller values for the y
and z  coordinates. 

AxesLabel  −>  None give no axis labels
AxesLabel  −>  zlabel put a label on the  z  axis
AxesLabel  −>  
8  xlabel,  ylabel,  zlabel <  

put labels on all three axes

Axis labels in three-dimensional graphics. 
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You can use AxesLabel to label edges of the box, without necessarily drawing scales on them. 

In[7]:= Show[Graphics3D[Dodecahedron[ ]], Axes -> True, AxesLabel -> {"x", "y", "z"}, 
Ticks -> None]
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Out[7]=  Graphics3D 

Ticks  −>  None draw no tick marks
Ticks  −>  Automatic place tick marks automatically

Ticks  −>  8  xticks,  yticks,  zticks <  tick mark specifications for each axis

Settings for the Ticks option. 

You  can  give  the  same  kind  of  tick  mark  specifications  in  three  dimensions  as  were  described  for  two-dimensional
graphics in Section 2.10.5. 

FaceGrids  −>  None draw no grid lines on faces
FaceGrids  −>  All draw grid lines on all faces

FaceGrids  −>  8  face1,  face2, … <  draw grid lines on the faces specified by the  facei  
FaceGrids  −>  8  8  face1,
 8  xgrid1,  ygrid1  <  <, … <  

use  xgridi  ,  ygridi  

to determine where and how to draw grid lines on each face

Drawing grid lines in three dimensions. 

Mathematica allows you to draw grid lines on the faces of the box that surrounds a three-dimensional object. If you set
FaceGrids -> All, grid lines are drawn in gray on every face. By setting FaceGrids -> 8 face1, face2, … <  you
can tell Mathematica to draw grid lines only on specific faces. Each face is specified by a list 8dirx, diry, dirz < , where
two of the diri  must be 0, and the third one is +1 or -1. For each face, you can also explicitly tell Mathematica where
and  how  to  draw  the  grid  lines,  using  the  same  kind  of  specifications  as  you  give  for  the  GridLines  option  in
two-dimensional graphics. 
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This draws grid lines only on the top and bottom faces of the box. 

In[8]:= Show[Graphics3D[Dodecahedron[ ]], FaceGrids -> {{0, 0, 1}, {0, 0, -1}}]

Out[8]=  Graphics3D 

2.10.14 Advanced Topic: Low-Level Graphics Rendering

All  Mathematica  graphics  functions  such  as  Show  and  Plot  have  an  option  DisplayFunction,  which  specifies
how the Mathematica graphics objects they produce should actually be displayed. The way this works is that the setting
you give for DisplayFunction is automatically applied to each graphics object that is produced. 

DisplayFunction  
−>  $DisplayFunction 

default setting

DisplayFunction  −>  Identity generate no display
DisplayFunction  −>  f  apply  f  to graphics objects to produce display

Settings for the DisplayFunction option. 

Within  the  Mathematica  kernel,  graphics  are  always  represented  by  graphics  objects  involving  graphics  primitives.
When you actually render graphics, however, they must be converted to a lower-level form which can be processed by
a Mathematica front end, such as a notebook interface, or by other external programs. 

The  standard  low-level  form that  Mathematica  uses  for  graphics  is  PostScript.  The Mathematica  function  Display
takes any Mathematica  graphics object, and converts it into a block of PostScript code. It can then send this code to a
file, an external program, or in general any output stream. 

Display@" file ",  graphics D store the PostScript for a piece of  Mathematica graphics in a file
Display@"! program ",  graphics D send the PostScript to an external program

Display@ stream,  graphics D send the PostScript to an arbitrary stream
DisplayString@ graphics D generate a string of PostScript

Converting Mathematica graphics to PostScript. 
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The default value of the global variable $DisplayFunction  is Function[ Display[$Display,  #] ]. With
this  default,  graphics  objects  produced  by  functions  like  Show  and  Plot  are  automatically converted  to  PostScript,
and sent  to  whatever  stream is  specified by the value of  the global  variable  $Display.  The variable  $Display  is
typically set during the initialization of a particular Mathematica session. 

PostScript@" 

string1  ",  " string2  ",  … D 

a two-dimensional graphics primitive
giving PostScript code to include verbatim

Inserting verbatim PostScript code. 

With the standard two-dimensional graphics primitives in Mathematica you can produce most of the effects that can be
obtained with PostScript. Sometimes, however, you may find it necessary to give PostScript code directly. You can do
this using the special two-dimensional graphics primitive PostScript. 

The strings you specify in the PostScript  primitive will be inserted verbatim into the final PostScript code gener-
ated by Display. You should use the PostScript primitive with care. For example, it is crucial that the code you
give  restores  the  PostScript  stack  to  exactly  its  original  state  when  it  is  finished.  In  addition,  to  specify  positions  of
objects, you will have to understand the coordinate scaling that Mathematica  does in its PostScript output. Finally, any
PostScript primitives that you insert can only work if they are supported in the final PostScript interpreter that you use
to display your graphics. 

The PostScript primitive gives raw PostScript code which draws a Bézier curve. 

In[1]:= Show[Graphics[ { PostScript[".008 setlinewidth"], PostScript[".1 .1 moveto"], 
PostScript["1.1 .6 -.1 .6 .9 .1 curveto stroke"] }, Frame -> True]]
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Out[1]=  Graphics 

In  most  cases,  a  particular  Mathematica  graphics  object  always  generates  PostScript  of  a  particular  form.  For
Graphics3D objects, the option RenderAll allows you to choose between two different forms. 

The  main  issue  is  how  the  polygons  which  make up  three-dimensional  objects  should  be  rendered.  With  the  default
setting RenderAll -> True, all polygons you specify are drawn in full, but those behind are drawn first. When all
the polygons are drawn, only those in front are visible. However, while an object is being drawn on a display, you can
typically see the polygons inside it. 

The problem with this approach  is that  for  an object  with many layers, you may generate a large amount of spurious
PostScript  code  associated  with  polygons  that  are  not  visible  in  the  final  image.  You  can  potentially  avoid  this  by
setting RenderAll -> False. In this case, Mathematica works out exactly which polygons or parts of polygons will
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actually be  visible  in  your  final  image,  and  renders  only  these.  So  long  as  there  are  fairly  few intersections  between
polygons, this approach will typically yield less PostScript code, though it may be much slower. 

RenderAll  −>  True draw all polygons, starting from the back HdefaultL
RenderAll  −>  False draw only those polygons or parts

of polygons that are visible in the final image

An option for rendering three-dimensional pictures. 

When you generate a PostScript representation of a three-dimensional object, you lose all information about the depths
of the parts of the object. Sometimes, you may want to send to external programs a representation which includes depth
information. Often, the original Graphics3D  object in Mathematica  form is then the appropriate representation. But
some  external  programs  cannot  handle  intersecting  polygons.  To  deal  with  this,  Graphics3D  includes  the  option
PolygonIntersections.  If  you  set  PolygonIntersections  ->  False,  then  Show  will  return  not  your
original Graphics3D  object, but rather one in which intersecting polygons have been broken into disjoint pieces, at
least with the setting for ViewPoint and so on that you have given. 

2.10.15 Formats for Text in Graphics

$TextStyle  =  value set the default text style for all graphics
$FormatType  =  value set the default text format type for all graphics
TextStyle  −>  value an option for the text style in a particular graphic
FormatType  −>  value an option for the text format type in a particular graphic

Specifying formats for text in graphics. 

Here is a plot with default settings for all formats. 

In[1]:= Plot[Sin[x]^2, {x, 0, 2 Pi}, PlotLabel->Sin[x]^2]
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Out[1]=  Graphics 
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Here is the same plot, but now using a 7-point italic font. 

In[2]:= Plot[Sin[x]^2, {x, 0, 2 Pi}, PlotLabel->Sin[x]^2, 
TextStyle->{FontSlant->"Italic", FontSize->7}]
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Out[2]=  Graphics 

This uses TraditionalForm rather than StandardForm. 

In[3]:= Plot[Sin[x]^2, {x, 0, 2 Pi}, PlotLabel->Sin[x]^2, FormatType -> TraditionalForm]
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Out[3]=  Graphics 

This tells Mathematica what default text style to use for all subsequent plots. 

In[4]:= $TextStyle = {FontFamily -> "Times", FontSize -> 7}

Out[4]= 8FontFamily → Times, FontSize → 7<
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Now all the text is in 7-point Times font. 

In[5]:= Plot[Sin[x]^2, {x, 0, 2 Pi}, PlotLabel->Sin[x]^2]

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1
Sin@xD2

Out[5]=  Graphics 

" style " a cell style in your current notebook
FontSize  −>  n the size of font to use in printer's points

FontSlant  −>  "Italic" use an italic font
FontWeight  −>  "Bold" use a bold font
FontFamily  −>  " name " specify the name of the font family to use He.g.  

"Times" ,  "Courier" ,  "Helvetica" L
Typical elements used in the setting for TextStyle or $TextStyle. 

If you use the standard notebook front end for Mathematica, then you can set $TextStyle or TextStyle to be the
name of a cell style in your current notebook. This tells Mathematica to use that cell style as the default for formatting
any text that appears in graphics. 

You can also explicitly specify how text should be formatted by using options such as FontSize and FontFamily.
Note that  FontSize  gives  the  absolute  size  of  the  font  to  use,  measured in  units  of  printer's  points,  with one  point
being 1ÅÅÅÅÅÅÅ72  inches.  If  you resize a plot,  the text in it will not by default change size: to get text of a different size you
must explicitly specify a new value for the FontSize option. 

StyleForm@ expr,  " style "D output  expr in the specified cell style
StyleForm@ expr,  options D output  expr using the specified font and style options
TraditionalForm@ expr D output  expr in  TraditionalForm 

Changing the formats of individual pieces of output. 
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This outputs the plot label using the section heading style in your current notebook. 

In[6]:= Plot[Sin[x]^2, {x, 0, 2 Pi}, PlotLabel->StyleForm[Sin[x]^2, "Section"]]
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Out[6]=  Graphics 

This uses the section heading style, but modified to be in italics. 

In[7]:= Plot[Sin[x]^2, {x, 0, 2 Pi}, PlotLabel->StyleForm[Sin[x]^2, "Section", 
FontSlant->"Italic"]]
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Out[7]=  Graphics 
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This produces TraditionalForm output, with a 12-point font. 

In[8]:= Plot[Sin[x]^2, {x, 0, 2 Pi}, PlotLabel->StyleForm[TraditionalForm[Sin[x]^2], 
FontSize->12]]
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Out[8]=  Graphics 

You should realize that the ability to refer to cell styles such as "Section" depends on using the standard Mathemat-
ica notebook front end. Even if you are just using a text-based interface to Mathematica, however, you can still specify
formatting of text in graphics using options such as FontSize. The complete collection of options that you can use is
given in Section 2.11.10. 

2.10.16 Graphics Primitives for Text

With  the  Text  graphics  primitive,  you  can  insert  text  at  any  position  in  two-  or  three-dimensional  Mathematica
graphics. Unless you explicitly specify a style or font using StyleForm, the text will be given in your current default
style. 

Text@ expr,  8  x,  y <  D text centered at the point  8  x,  y <  
Text@ expr,  8  x,  y <,  8  −1,  0 <  D text with its left-hand end at  8  x,  y <  
Text@ expr,  8  x,  y <,  8  1,  0 <  D right-hand end at  8  x,  y <  
Text@ expr,  8  x,  y <,  8  0,  −1 <  D centered above  8  x,  y <  
Text@ expr,  8  x,  y <,  8  0,  1 <  D centered below  8  x,  y <  

Text@ expr,  8  x,  y <,  8  dx,  dy <  D text positioned so that  8  x,  y <  is at relative coordinates  
8  dx ,  dy <  within the box that bounds the text

Text@ expr,  8  x,  y 
<,  8  dx,  dy <,  8  0,  1 <  D 

text oriented vertically to read from bottom to top

Text@ expr,  8  x,  y 
<,  8  dx,  dy <,  8  0,  −1 <  D 

text that reads from top to bottom

Text@ expr,  8  x,  y 
<,  8  dx,  dy <,  8  −1,  0 <  D 

text that is upside-down

Two-dimensional text. 
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This generates five pieces of text, and displays them in a plot. 

In[1]:= Show[Graphics[ Table[ Text[Expand[(1 + x)^n], {n, n}], {n, 5} ] ], PlotRange -> 
All]

1 + x

1 + 2 x + x2

1 + 3 x + 3 x2 + x3

1 + 4 x + 6 x2 + 4 x3 + x4

1 + 5 x + 10 x2 + 10 x3 + 5 x4 + x5

Out[1]=  Graphics 

Here is some vertically oriented text with its left-hand side at the point 82, 2< . 

In[2]:= Show[Graphics[Text[ StyleForm["Some text", FontSize->14, FontWeight->"Bold"], {2, 
2}, {-1, 0}, {0, 1}]], Frame -> True]
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Out[2]=  Graphics 

When you specify an offset for text, the relative coordinates that are used are taken to run from -1  to 1 in each direc-
tion across the box that bounds the text. The point 80, 0<  in this coordinate system is defined to be center of the text.
Note that the offsets you specify need not lie in the range -1 to 1. 

Note that  you can specify  the  color  of  a  piece  of  text  by preceding the Text  graphics  primitive with an appropriate
RGBColor or other graphics directive. 

Text@ expr,  8  x,  y,  z <  D text centered at the point  8  x,  y,  z <  
Text@ expr,  8  x,  y,  z <,  8  sdx,  sdy <  D text with a two-dimensional offset

Three-dimensional text. 
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This loads a package containing definitions of polyhedra. 

In[3]:= <<Graphics`Polyhedra`

This puts text at the specified position in three dimensions. 

In[4]:= Show[Graphics3D[{Dodecahedron[ ], Text["a point", {2, 2, 2}, {1, 1}]}]]

a point

Out[4]=  Graphics3D 

Note that when you use text in three-dimensional graphics, Mathematica  assumes that the text is never hidden by any
polygons or other objects. 

option name default value 

Background None background color
TextStyle 8< style or font specification
FormatType StandardForm format type

Options for Text. 
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By default the text is just put straight on top of whatever graphics have already been drawn. 

In[5]:= Show[Graphics[{{GrayLevel[0.5], Rectangle[{0, 0}, {1, 1}]}, Text["Some text", 
{0.5, 0.5}]}]]

Some text

Out[5]=  Graphics 

Now there is a rectangle with the background color of the whole plot enclosing the text. 

In[6]:= Show[Graphics[{{GrayLevel[0.5], Rectangle[{0, 0}, {1, 1}]}, Text["Some text", 
{0.5, 0.5}, Background->Automatic]}]]

Some text

Out[6]=  Graphics 

2.10.17 Advanced Topic: Color Output

Monochrome displays gray levels
Color displays red, green and blue mixtures
Color printing cyan, magenta, yellow and black mixtures

Specifications of color for different kinds of output devices. 

When  you  generate  graphics  output  in  Mathematica,  there  are  different  specifications  of  color  which  are  natural  for
different kinds of output devices. Sometimes output devices may automatically convert from one form of color specifica-
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tion to another. But Mathematica provides graphics directives which allow you directly to produce color specifications
appropriate for particular devices. 

GrayLevel@ i D gray level H setgray in PostScriptL
RGBColor@ r,  g,  b D red, green and blue components for a display H setrgbcolorL

Hue@ h,  s,  b D hue, saturation and brightness components for a display H 
setrgbcolor L

CMYKColor@ c,  m,  y,  k D cyan, magenta, yellow and black components
for four-color process printing H setcmykcolor L

Color directives in Mathematica. 

Each color directive in Mathematica  yields a definite color directive in the PostScript code that Mathematica  sends to
your output device. Thus, for example, the RGBColor directive in Mathematica yields setrgbcolor in PostScript.
The final treatment of the PostScript color directives is determined by your output device, and the PostScript interpreter
that is used. 

Nevertheless, in most cases, the parameters specified in the Mathematica color directives will be used fairly directly to
set the intensities or densities of the components of the color output. 

When this is done, it is important to realize that a given set of parameters in a Mathematica  color directive may yield
different perceived colors on different output devices. For example, the actual intensities of red, green and blue compo-
nents will often differ between different color displays even when the settings for these components are the same. Such
differences also occur when the brightness or contrast of a particular color display is changed. 

In addition, you should realize that the complete “gamut”  of colors that you can produce by varying parameters on a
particular  output  device  is  smaller,  often  substantially  so,  than  the  gamut  of  colors  which  can  be  perceived  by  the
human visual system. Even though the space of colors that we can perceive can be described with three parameters, it is
not possible to reach all parts of this space with mixtures of a fixed number of “primary  colors”.  

Different choices of primary colors are typically made for different types of output devices. Color displays, which work
with  emitted  or  transmitted  light,  typically  use  red,  green  and  blue  primary  colors.  However,  color  printing,  which
works  with  reflected light,  typically uses  cyan,  magenta,  yellow and black as  primary colors.  When  a  color  image is
printed, four separate passes are typically made, each time laying down one of these primary colors. 

Thus, while RGBColor and Hue are natural color specifications for color displays, CMYKColor is the natural specifi-
cation for color printing. 

By default, Mathematica takes whatever color specifications you give, and uses them directly. The option ColorOut
put, however,  allows you to make Mathematica  always convert the color specifications you give to ones appropriate
for a particular kind of output device. 

ColorOutput  −>  Automatic use color specifications as given HdefaultL
ColorOutput  −>  None convert to monochrome

ColorOutput  −>  GrayLevel convert all color specifications to gray levels
ColorOutput  −>  RGBColor convert to  RGBColor form
ColorOutput  −>  CMYKColor convert to  CMYKColor form

ColorOutput  −>  f  apply  f  to each color directive

Color output conversions. 

One  of  the  most  complicated  issues  in  color  output  is  performing  the  “color  separation”  necessary  to  take  a  color
specified using red, green and blue primaries, and render the color using cyan, magenta, yellow and black printing inks.
Mathematica  has a built-in algorithm for doing this conversion. The algorithm is based on an approximation to typical
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monitor colors and the standard set of four-color process printing inks. Note that the colors of these printing inks are
not even close to complementary to typical monitor colors, and the actual transformation is quite nonlinear. 

While Mathematica has built-in capabilities for various color conversions, you can also specify your own color conver-
sions using ColorOutput  -> f.  With this option setting, the function f  is automatically applied to each color direc-
tive generated by Mathematica. 

Note that while any of the color directives given above can be used in setting up graphics objects,  simulated lighting
calculations in Mathematica are always done using RGBColor, and so all color directives are automatically converted
to this form when simulated lighting is used. 

This defines a transformation on RGBColor objects, which extracts the red component, and squares it. 

In[1]:= red[RGBColor[r_, g_, b_]] = GrayLevel[r^2]

Out[1]= GrayLevel@r2D

This specifies that red should simply square any GrayLevel specification. 

In[2]:= red[GrayLevel[g_]] = GrayLevel[g^2]

Out[2]= GrayLevel@g2D

This plots the squared red component, rather than using the usual transformation from color to black and white. 

In[3]:= Plot3D[Sin[x + y], {x, -3, 3}, {y, -3, 3}, ColorOutput -> red]
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Out[3]=  SurfaceGraphics 

Note that if you give your own ColorOutput transformation, you must specify how the transformation acts on every
color directive that arises in the image you are producing. For three-dimensional plots shaded with simulated lighting,
you must typically specify the transformation at least for RGBColor and GrayLevel. 

2.10.18 The Representation of Sound

Section 1.9.12 described how you can take functions and lists of data and produce sounds from them. This subsection
discusses how sounds are represented in Mathematica. 
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Mathematica  treats  sounds  much  like  graphics.  In  fact,  Mathematica  allows  you  to  combine  graphics  with  sound  to
create pictures with “sound  tracks”.  

In analogy with graphics,  sounds in Mathematica  are represented by symbolic sound objects.  The sound objects have
head Sound, and contain a list of sound primitives, which represent sounds to be played in sequence. 

Sound@ 8  s1,  s2, … <  D a sound object containing a list of sound primitives

The structure of a sound object. 

The functions Play and ListPlay discussed in Section 1.9.12 return Sound objects. 

Play returns a Sound object. On appropriate computer systems, it also produces sound. 

In[1]:= Play[Sin[300 t + 2 Sin[400 t]], {t, 0, 2}]

Out[1]= -Sound-

The Sound object contains a SampledSoundFunction primitive which uses a compiled function to generate amplitude 
samples for the sound. 

In[2]:= Short[ InputForm[%] ]

Out[2]//Short=

Sound[SampledSoundFunction[<<3>>]]

SampledSoundList@ 

8  a1,  a2, … <,  r D 

a sound with a sequence of amplitude levels, sampled at rate  r 

SampledSoundFunction@ f ,  n,  r D a sound whose amplitude levels sampled at rate  r 
are found by applying the function  f  to  n successive integers

Mathematica sound primitives. 

At the lowest level, all sounds in Mathematica are represented as a sequence of amplitude samples. In SampledSound
List,  these  amplitude  samples  are  given  explicitly  in  a  list.  In  SampledSoundFunction,  however,  they  are
generated  when  the  sound  is  output,  by  applying  the  specified  function  to  a  sequence  of  integer  arguments.  In  both
cases, all amplitude values obtained must be between -1 and 1.

ListPlay  generates  SampledSoundList  primitives,  while  Play  generates  SampledSoundFunction  primi-
tives. With the default option setting Compiled -> True, Play will produce a SampledSoundFunction object
containing a CompiledFunction. 

Once  you  have  generated  a  Sound  object  containing  various  sound  primitives,  you  must  then  output  it  as  a  sound.
Much as  with  graphics,  the  basic  scheme is  to  take the  Mathematica  representation  of  the  sound,  and  convert  it  to  a
lower-level form that can be handled by an external program, such as a Mathematica front end. 

The low-level representation of sound used by Mathematica consists of a sequence of hexadecimal numbers specifying
amplitude levels. Within Mathematica, amplitude levels are given as approximate real numbers between -1 and 1. In
producing  the  low-level  form,  the  amplitude  levels  are  “quantized”.  You  can  use  the  option  SampleDepth  to
specify how many bits should be used for each sample. The default is SampleDepth -> 8, which yields 256 possible
amplitude levels, sufficient for most purposes.

You can use the option SampleDepth in any of the functions Play, ListPlay and PlaySound. In sound primi-
tives, you can specify the sample depth by replacing the sample rate argument by the list 8rate, depth< . 
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Since  graphics  and  sound  can  be  combined  in  Mathematica,  their  low-level  representations  must  not  conflict.  As
discussed  in  Section  2.10.14,  all  graphics  in  Mathematica  are  generated  in  the  PostScript  language.  Sounds  are  also
generated  as  a  special  PostScript  function,  which  can  be  ignored  by  PostScript  interpreters  on  devices  which  do  not
support sound output. 

Display@ stream,  sound D output sound to a stream
Display@ stream,
 8  graphics,  sound <  D 

output graphics and sound to a stream

Sending sound to a stream. 

Mathematica uses the same function Display to output sound, graphics, and combinations of the two. 

In  Play,  ListPlay  and  Sound,  the  option  DisplayFunction  specifies  how  the  sound  should  ultimately  be
output.  The  default  for  this  option  is  the  global  variable  $SoundDisplayFunction.  Typically,  this  is  set  to  an
appropriate call to Display. 

2.10.19 Exporting Graphics and Sounds

Export@" name.ext ",  graphics D export graphics in a format deduced from the file name
Export@" file ", 

 graphics,  " format "D 

export graphics in the specified format

Export@" file ",  8  g1,  g2, … <, … D export a sequence of graphics for an animation
ExportString@ 

graphics,  " format "D 

generate a string representation of exported graphics

Exporting graphics and sounds. 

"EPS" Encapsulated PostScript H .eps L
"PDF" Adobe Acrobat portable document format H .pdf L
"SVG" Scalable Vector Graphics H .svg L
"PICT" Macintosh PICT
"WMF" Windows metafile format H .wmf L
"TIFF" TIFF H .tif ,  .tiff L
"GIF" GIF and animated GIF H .gif L
"JPEG" JPEG H .jpg ,  .jpeg L
"PNG" PNG format H .png L
"BMP" Microsoft bitmap format H .bmp L
"EPSI" Encapsulated PostScript with device-independent preview H 

.epsi L
"EPSTIFF" Encapsulated PostScript with TIFF preview
"XBitmap" X window system bitmap H .xbm L

"PBM" portable bitmap format H .pbm L
"PPM" portable pixmap format H .ppm L
"PGM" portable graymap format H .pgm L
"PNM" portable anymap format H .pnm L

"DICOM" DICOM medical imaging format H .dcm ,  .dic L
Typical graphics formats supported by Mathematica. The first group are resolution independent. 
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When you export a graphic outside of Mathematica, you usually have to specify the absolute size at which the graphic
should be rendered. You can do this using the ImageSize option to Export. 

ImageSize->x  makes the width of  the graphic be x  printer's  points;  ImageSize->72  xi  thus makes the width xi
inches. The default is to produce an image that is four inches wide. ImageSize->8x, y<  scales the graphic so that it
fits in an x ä  y region. 

ImageSize Automatic absolute image size in printer's points
ImageRotated False whether to rotate the image Hlandscape modeL
ImageResolution Automatic resolution in dpi for the image

Options for Export. 

Within Mathematica,  graphics  are manipulated in a way that  is  completely independent  of  the resolution of  the com-
puter screen or other output device on which the graphics will eventually be rendered. 

Many programs and devices accept graphics in resolution-independent formats such as Encapsulated PostScript (EPS).
But some require that the graphics be converted to rasters or bitmaps with a specific resolution. The ImageResolu
tion  option for  Export  allows you to  determine what  resolution  in  dots  per  inch (dpi)  should  be used.  The lower
you set this resolution, the lower the quality of the image you will get, but also the less memory the image will take to
store. For screen display, typical resolutions are 72 dpi and above; for printers, 300 dpi and above. 

"DXF" AutoCAD drawing interchange format H .dxf L
"STL" STL stereolithography format H .stl L

Typical 3D geometry formats supported by Mathematica. 

"WAV" Microsoft wave format H .wav L
"AU" m law encoding H .au L
"SND" sound file format H .snd L
"AIFF" AIFF format H .aif ,  .aiff L

Typical sound formats supported by Mathematica. 

2.10.20 Importing Graphics and Sounds

Mathematica  allows you not only to export graphics and sounds, but also to import them. With Import you can read
graphics and sounds in a wide variety of formats, and bring them into Mathematica as Mathematica expressions. 

Import@" name.ext "D import graphics from the file  name.
ext in a format deduced from the file name

Import@" file ",  " format "D import graphics in the specified format
ImportString@" 

string ",  " format "D 

import graphics from a string

Importing graphics and sounds. 
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This imports an image stored in JPEG format. 

In[3]:= g = Import["ocelot.jpg"]

Out[3]=  Graphics 

Here is the image. 

In[4]:= Show[g]

Out[4]=  Graphics 

This shows an array of four copies of the image. 

In[5]:= Show[GraphicsArray[{{g, g}, {g, g}}]]

Out[5]=  GraphicsArray 

Import yields expressions with different structures depending on the type of data it reads. Typically you will need to
know the structure if you want to manipulate the data that is returned. 
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Graphics@ primitives,  opts D resolution-independent graphics
Graphics@Raster@ data D,  opts D resolution-dependent bitmap images

8  graphics1,  graphics2, … <  animated graphics
Sound@SampledSoundList@ 

data,  r DD 

sounds

Structures of expressions returned by Import. 

This shows the overall structure of the graphics object imported above. 

In[6]:= Shallow[InputForm[g]]

Out[6]//Shallow= 

Graphics@Raster@<< 4 >>D, Rule@<< 2 >>D, Rule@<< 2 >>D, Rule@<< 2 >>DD

This extracts the array of pixel values used. 

In[7]:= d = g[[1, 1]] ;

Here are the dimensions of the array. 

In[8]:= Dimensions[d]

Out[8]= 8200, 200<

This shows the distribution of pixel values. 

In[9]:= ListPlot[Sort[Flatten[d]]]
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2.11 Manipulating Notebooks

2.11.1 Cells as Mathematica Expressions

Like  other  objects  in  Mathematica,  the  cells  in  a  notebook,  and  in  fact  the  whole  notebook  itself,  are  all  ultimately
represented  as  Mathematica  expressions.  With  the  standard  notebook  front  end,  you  can  use  the  command  Show
Expression to see the text of the Mathematica expression that corresponds to any particular cell.   

Show Expression menu item toggle between displayed form and underlying  
Mathematica expression

‚Î ∗Ï or ‚Î 8Ï Hbetween existing cellsL put up a dialog box to allow input of a cell in  
Mathematica expression form

Handling Cell expressions in the notebook front end. 

Here is a cell displayed in its usual way in the front end.

Here is the underlying Mathematica expression that corresponds to the cell.

Cell@ contents,  " style "D a cell with a specific style
Cell@ contents,  " style ",  options D a cell with additional options specified

Mathematica expressions corresponding to cells in notebooks. 

Within  a  given  notebook,  there  is  always  a  collection  of  styles  that  can  be  used  to  determine  the  appearance  and
behavior  of  cells.  Typically  the  styles  are  named  so  as  to  reflect  what  role  cells  which  have  them  will  play  in  the
notebook.   

"Title" the title of the notebook
"Section" a section heading

"Subsection" a subsection heading
"Text" ordinary text
"Input" Mathematica input
"Output" Mathematica output

Some typical cell styles defined in notebooks. 

Here are several cells in different styles.
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Here are the expressions that correspond to these cells.

A particular style such as "Section" or "Text" defines various settings for the options associated with a cell. You
can override these settings by explicitly setting options within a specific cell. 

Here is the expression for a cell in which options are set to use a gray background and to put a frame around the cell. 

This is how the cell looks in a notebook. 

option default value 

CellFrame False whether to draw a frame around the cell
Background GrayLevel@1D what color to draw the background for the cell
Editable True whether to allow the

contents of the cell to be edited
TextAlignment Left how to align text in the cell
FontSize 12 the point size of the font for text
CellTags 8  < tags to be associated with the cell

A few of the large number of possible options for cells. 

The  standard  notebook  front  end  for  Mathematica  provides  several  ways  to  change  the  options  of  a  cell.  In  simple
cases, such as changing the size or color of text, there will often be a specific menu item for the purpose. But in general
you can use the option inspector that is built into the front end. This is typically accessed using the Option Inspector
menu item in the Format menu.   

† Change settings for specific options with menus.
† Look at and modify all options with the option inspector.
† Edit the textual form of the expression corresponding to the cell.
† Change the settings for all cells with a particular style.

Ways to manipulate cells in the front end.

Sometimes you will want just to change the options associated with a specific cell. But often you may want to change
the  options  associated  with  all  cells  in  your  notebook  that  have  a  particular  style.  You  can do  this  by  using  the  Edit
Style Sheet command in the front end to open up the style sheet associated with your notebook, and then modifying
the options for the cells in this style sheet that represent the style you want to change.   
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CellPrint@Cell@…  DD insert a cell into your currently selected notebook
CellPrint@ 8  Cell@… 

 D,  Cell@…  D, … <  D 

insert a sequence of cells into your currently selected notebook

Inserting cells into a notebook. 

This inserts a section cell into the current notebook. 

In[1]:= CellPrint[Cell["The heading", "Section"]]

This inserts a text cell with a frame around it. 

In[2]:= CellPrint[Cell["Some text", "Text", CellFrame->True]]

CellPrint allows you to take a raw Cell expression and insert it into your current notebook. Sometimes, however,
you may find it more convenient  to give an ordinary  Mathematica  expression,  and then have Mathematica  convert  it
into a Cell of a certain style, and insert this cell into a notebook. You can do this using the function StylePrint. 

StylePrint@ expr,  " style "D create a new cell of the specified style, and write  expr into it
StylePrint@ contents,
 " style ",  options D 

use the specified options for the new cell

Writing expressions into cells with specified styles. 

This inserts a cell in section style into your current notebook. 

In[3]:= StylePrint["The heading", "Section"]

This creates several cells in output style. 

In[4]:= Do[StylePrint[Factor[x^i - 1], "Output"], {i, 7, 10}]
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You can use any cell options in StylePrint. 

In[5]:= StylePrint["Another heading", "Section", CellFrame->True, FontSize->28]

CellPrint  and  StylePrint  provide  simple  ways  to  modify  open  notebooks  in  the  front  end  from  within  the
kernel. Later in this section we will discuss more sophisticated and flexible ways to do this. 

2.11.2 Notebooks as Mathematica Expressions

Notebook@ 8  cell1,  cell2, … <  D a notebook containing a sequence of cells
Notebook@ cells,  options D a notebook with options specified

Expressions corresponding to notebooks. 

Here is a simple Mathematica notebook.

Here is the expression that corresponds to this notebook.

Notebook[8
    Cell["Section heading", "Section"],
    Cell["Some text.", "Text"],
    Cell["More text.", "Text"]<]

Just like individual cells, notebooks in Mathematica  can also have options. You can look at and modify these options
using the options inspector in the standard notebook front end. 
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option default value 

WindowSize 8  nx,  ny <  the size in pixels of the
window used to display the notebook

WindowFloating False whether the window
should float on top of others

WindowToolbars 8  < what toolbars to
include at the top of the window

ShowPageBreaks False whether to show where page breaks
would occur if the notebook were printed

CellGrouping Automatic how to group cells in the notebook
Evaluator "Local" what kernel should be used

to do evaluations in the notebook

A few of the large number of possible options for notebooks. 

In addition to notebook options, you can also set any cell option at the notebook level. Doing this tells Mathematica to
use that option setting as the default for all the cells in the notebook. You can override the default by explicitly setting
the options within a particular cell.  

Here is the expression corresponding to a notebook with a ruler displayed in the toolbar at the top of the window. 

Notebook[8
    Cell["Section heading", "Section"],
    Cell["Some text.", "Text"]<,
       WindowToolbars->8"RulerBar"<]

This is what the notebook looks like in the front end.

This sets the default background color for all cells in the notebook.

Notebook[8
    Cell["Section heading", "Section"],
    Cell["Some text.", "Text"]<,
       Background->GrayLevel[.7]]

Now each cell has a gray background. 
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If you go outside of Mathematica and look at the raw text of the file that corresponds to a Mathematica notebook, you
will  find  that  what  is  in  the  file  is  just  the  textual  form  of  the  expression  that  represents  the  notebook.  One  way  to
create a Mathematica notebook is therefore to construct an appropriate expression and put it in a file.   

In  notebook  files  that  are  written  out  by  Mathematica,  some  additional  information  is  typically  included  to  make  it
faster for Mathematica to read the file in again. The information is enclosed in Mathematica comments indicated by (*
… *) so that it does not affect the actual expression stored in the file. 

NotebookOpen@" file .nb"D open a notebook file in the front end
NotebookPut@ expr D create a notebook corresponding to  expr in the front end
NotebookGet@ obj D get the expression corresponding

to an open notebook in the front end

Setting up notebooks in the front end from the kernel. 

This writes a notebook expression out to the file sample.nb. 

In[1]:= Notebook[{Cell["Section heading", "Section"], Cell["Some text.", "Text"]}] >> 
"sample.nb"

This reads the notebook expression back from the file. 

In[2]:= <<sample.nb

Out[2]= Notebook@8Cell@Section heading, SectionD, Cell@Some text., TextD<D

This opens sample.nb as a notebook in the front end. 

In[3]:= NotebookOpen["sample.nb"]

Once  you  have  set  up  a  notebook  in  the  front  end  using  NotebookOpen,  you  can  then  manipulate  the  notebook
interactively just as you would any other notebook. But in order to use NotebookOpen, you have to explicitly have a
notebook  expression  in  a  file.  With  NotebookPut,  however,  you  can  take  a  notebook  expression  that  you  have
created in the kernel, and immediately display it as a notebook in the front end.  

Here is a notebook expression in the kernel. 

In[5]:= Notebook[{Cell["Section heading", "Section"], Cell["Some text.", "Text"]}]

Out[4]= Notebook@8Cell@Section heading, SectionD, Cell@Some text., TextD<D
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This uses the expression to set up a notebook in the front end. 

In[6]:= NotebookPut[%]

Out[5]= -NotebookObject-

You can use NotebookGet to get the notebook corresponding to a particular NotebookObject back into the kernel. 

In[7]:= NotebookGet[%]

Out[6]= Notebook@8Cell@CellGroupData@8Cell@TextData@Section headingD, SectionD,
Cell@TextData@Some text.D, TextD<, OpenDD<D

2.11.3 Manipulating Notebooks from the Kernel

If you want to do simple operations on Mathematica notebooks, then you will usually find it convenient just to use the
interactive capabilities of the standard Mathematica  front end. But if you want to do more complicated and systematic
operations, then you will often find it better to use the kernel. 

Notebooks@  D a list of all your open notebooks
Notebooks@" name "D a list of all open notebooks with the specified name

SelectedNotebook@  D the notebook that is currently selected
InputNotebook@  D the notebook into which typed input will go

EvaluationNotebook@  D the notebook in which this function is being evaluated
ButtonNotebook@  D the notebook containing the

button Hif anyL which initiated this evaluation

Functions that give the notebook objects corresponding to particular notebooks. 

Within the Mathematica  kernel,  notebooks that you have open in the front end are referred to by notebook objects  of
the  form NotebookObject[fe,  id].  The first  argument of  NotebookObject  specifies  the FrontEndObject
for  the  front  end  in  which  the  notebook  resides,  while  the  second  argument  gives  a  unique  serial  number  for  the
notebook. 

Here is a notebook named Example.nb. 

This finds the corresponding notebook object in the front end. 

In[1]:= Notebooks["Example.nb"]

Out[1]= {NotebookObject[<<Example.nb>>]}
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This gets the expression corresponding to the notebook into the kernel. 

In[2]:= NotebookGet[First[%]]

Out[2]= Notebook[{Cell[First Heading, Section],
    Cell[Second Heading, Section]}]

This replaces every occurrence of the string "Section" by "Text". 

In[3]:= % /. "Section" -> "Text"

Out[3]= Notebook[{Cell[First Heading, Text],
    Cell[Second Heading, Text]}]

This creates a new modified notebook in the front end. 

In[4]:= NotebookPut[%]

Out[4]= {NotebookObject[<<Untitled-1.nb>>]}

NotebookGet@ obj D get the notebook expression corresponding to the notebook object  
obj 

NotebookPut@ expr,  obj D make  expr 
the expression corresponding to the notebook object  obj 

NotebookPut@ expr D make  expr 
the expression corresponding to the currently selected notebook

Exchanging whole notebook expressions between the kernel and front end. 

If you want to do extensive manipulations on a particular notebook you will usually find it convenient to use Note
bookGet to get the whole notebook into the kernel as a single expression. But if instead you want to do a sequence of
small operations on a notebook, then it is often better to leave the notebook in the front end, and then to send specific
commands from the kernel to the front end to tell it what operations to do. 

Mathematica  is  set  up  so  that  anything  you  can  do  interactively  to  a  notebook  in  the  front  end  you  can  also  do  by
sending appropriate commands to the front end from the kernel. 

Options@ obj D give a list of all options set for the
notebook corresponding to notebook object  obj 

Options@ obj,  option D give the value of a specific option
AbsoluteOptions@ obj,  option D give absolute option values even when the actual setting is  

Automatic 

SetOptions@ obj,  option −> value D set the value of an option

Finding and setting options for notebooks. 
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This gives the setting of the WindowSize option for your currently selected notebook. 

In[5]:= Options[SelectedNotebook[ ], WindowSize]

Out[5]= 8WindowSize → 8550., 600.<<

This changes the size of the currently selected notebook on the screen. 

In[6]:= SetOptions[SelectedNotebook[ ], WindowSize -> {250, 100}]

Null

Out[6]= {WindowSize → {250., 100.}}

Within any open notebook, the front end always maintains a current selection. The selection can consist for example of
a  region  of  text  within  a  cell  or  of  a  complete cell.  Usually the selection is  indicated on  the screen by some form of
highlighting. The selection can also be between two characters of text, or between two cells, in which case it is usually
indicated on the screen by a vertical or horizontal insertion bar.  

You can modify the current selection in an open notebook by issuing commands from the kernel.   

SelectionMove@ obj,  Next,  unit D move the current selection to
make it be the next unit of the specified type

SelectionMove@ 

obj,  Previous,  unit D 

move to the previous unit

SelectionMove@ 

obj,  After,  unit D 

move to just after the end of the present unit of the specified type

SelectionMove@ 

obj,  Before,  unit D 

move to just before the beginning of the present unit

SelectionMove@ obj,  All,  unit D extend the current selection
to cover the whole unit of the specified type

Moving the current selection in a notebook. 

Character individual character
Word word or other token

Expression complete subexpression
TextLine line of text

TextParagraph paragraph of text
CellContents the contents of the cell

Cell complete cell
CellGroup cell group

EvaluationCell cell associated with the current evaluation
ButtonCell cell associated with any button that initiated the evaluation

GeneratedCell cell generated by the current evaluation
Notebook complete notebook

Units used in specifying selections. 
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Here is a simple notebook. 

This sets nb to be the notebook object corresponding to the currently selected notebook. 

In[7]:= nb = SelectedNotebook[ ];

This moves the current selection within the notebook to be the next word. 

In[8]:= SelectionMove[nb, Next, Word]

This extends the selection to the complete first cell. 

In[9]:= SelectionMove[nb, All, Cell]

This puts the selection at the end of the whole notebook. 

In[10]:= SelectionMove[nb, After, Notebook]

10 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



NotebookFind@ obj,  data D move the current selection to the next
occurrence of the specified data in a notebook

NotebookFind@ 

obj,  data,  PreviousD 

move to the previous occurrence

NotebookFind@ obj,  data,  AllD make the current selection cover all occurrences
NotebookFind@ 

obj,  data,  dir,  elems D 

search in the specified elements of each cell, going in direction  
dir 

NotebookFind@ obj,  " 

text ",  IgnoreCase−>TrueD 

do not distinguish upper- and lower-case letters in text

Searching the contents of a notebook. 

This moves the current selection to the position of the previous occurrence of the word cell. 

In[11]:= NotebookFind[nb, "cell", Previous]

Out[11]= NotebookSelection[-NotebookObject-]

The letter a  does not appear in the current notebook, so $Failed is returned, and the selection is not moved. 

In[12]:= NotebookFind[nb, "\[Alpha]", Next]

CellContents contents of each cell
CellStyle the name of the style for each cell
CellLabel the label for each cell
CellTags tags associated with each cell

8  elem1,  elem2, … <  several kinds of elements

Possible elements of cells to be searched by NotebookFind. 

In  setting  up  large  notebooks,  it  is  often  convenient  to  insert  tags  which  are  not  usually  displayed,  but  which  mark
particular  cells  in  such  a  way  that  they  can  be  found  using  NotebookFind.  You  can  set  up  tags  for  cells  either
interactively in the front end, or by explicitly setting the CellTags option for a cell. 

NotebookLocate@" tag "D locate and select cells with
the specified tag in the current notebook

NotebookLocate@ 

8  " file ",  " tag " <  D 

open another notebook if necessary

Globally locating cells in notebooks. 
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NotebookLocate is the underlying function that Mathematica calls when you follow a hyperlink in a notebook. The
menu item Create Hyperlink  sets up the appropriate NotebookLocate  as part of the script for a particular hyper-
link button.  

NotebookWrite@ obj,  data D write  data into a notebook at the current selection
NotebookApply@ obj,  data D write  data 

into a notebook, inserting the current selection in place of the first  
É  that appears in  data 

NotebookDelete@ obj D delete whatever is currently selected in a notebook
NotebookRead@ obj D get the expression that

corresponds to the current selection in a notebook

Writing and reading in notebooks. 

NotebookWrite[obj, data] is similar to a Paste operation in the front end: it replaces the current selection in your
notebook by data. If the current selection is a cell NotebookWrite[obj, data] will replace the cell with data. If the
current selection lies between two cells, however, then NotebookWrite[obj, data] will create an appropriate new
cell or cells. 

Here is a notebook with a word of text selected. 

This replaces the selected word by new text. 

In[13]:= NotebookWrite[nb, "<<inserted text>>"]

This moves the current selection to just after the first cell in the notebook. 

In[14]:= SelectionMove[nb, After, Cell]
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This now inserts a text cell after the first cell in the notebook. 

In[15]:= NotebookWrite[nb, Cell["This cell contains text.", "Text"]]

This makes the current selection be the next cell in the notebook. 

In[16]:= SelectionMove[nb, Next, Cell]

This reads the current selection, returning it as an expression in the kernel. 

In[17]:= NotebookRead[nb]

Out[17]= Cell@Here is a second one., SectionD

NotebookWrite[obj, data] just discards the current selection and replaces it with data. But particularly if you are
setting  up  palettes,  it  is  often  convenient  first  to  modify  data  by  inserting  the  current  selection  somewhere  inside  it.
You  can  do  this  using  selection  placeholders  and  NotebookApply.  The  first  time  the  character  É  ,  entered  as  î
[SelectionPlaceholder]  or ÂsplÂ, appears anywhere in data, NotebookApply will replace this charac-
ter by the current selection.    

Here is a simple notebook with the current selection being the contents of a cell. 

In[18]:= nb = SelectedNotebook[ ] ;

This replaces the current selection by a string that contains a copy of its previous form. 

In[19]:= NotebookApply[nb, "x + 1/ "]

Printed from the Mathematica Help Browser 13

©1988-2003 Wolfram Research, Inc. All rights reserved.



SelectionEvaluate@ obj D evaluate the current selection in place
SelectionCreateCell@ obj D create a new cell containing just the current selection

SelectionEvaluateCreateCell@ 

obj D 

evaluate the current selection and create a new cell for the result

SelectionAnimate@ obj D animate graphics in the current selection
SelectionAnimate@ obj,  t D animate graphics for  t seconds

Operations on the current selection. 

This makes the current selection be the whole contents of the cell. 

In[20]:= SelectionMove[nb, All, CellContents]

This evaluates the current selection in place. 

In[21]:= SelectionEvaluate[nb]

SelectionEvaluate allows you to take material from a notebook and send it through the kernel for evaluation. On
its  own,  however,  SelectionEvaluate  always  overwrites  the  material  you  took.  But  by  using  functions  like
SelectionCreateCell  you  can  maintain  a  record  of  the  sequence  of  forms  that  are  generated—just like  in  a
standard Mathematica session. 

This makes the current selection be the whole cell. 

In[22]:= SelectionMove[nb, All, Cell]

This creates a new cell, and copies the current selection into it. 

In[23]:= SelectionCreateCell[nb]

This wraps Factor around the contents of the current cell. 

In[24]:= NotebookApply[nb, "Factor[ ]"]
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This evaluates the contents of the current cell, and creates a new cell to give the result. 

In[25]:= SelectionEvaluateCreateCell[nb]

Functions  like  NotebookWrite  and  SelectionEvaluate  by  default  leave  the  current  selection  just  after
whatever material they insert into your notebook. You can then always move the selection by explicitly using Selec
tionMove. But functions like NotebookWrite  and SelectionEvaluate  can also take an additional argument
which specifies where the current selection should be left after they do their work. 

NotebookWrite@ obj,  data,  sel D write  data 
into a notebook, leaving the current selection as specified by  sel 

NotebookApply@ obj,  data,  sel D write  data replacing  É  
by the previous current selection, then leaving

the current selection as specified by  sel 
SelectionEvaluate@ obj,  sel D evaluate the current selection, making

the new current selection be as specified by  sel 
SelectionCreateCell@ obj,  sel D create a new cell containing just the current selection,

and make the new current selection be as specified by  sel 
SelectionEvaluateCreateCell@ 

obj,  sel D 

evaluate the current selection, make a new cell for the result,
and make the new current selection be as specified by  sel 

Performing operations and specifying what the new current selection should be.

After immediately after whatever material is inserted HdefaultL
Before immediately before whatever material is inserted

All the inserted material itself
Placeholder the first  É  in the inserted material

None leave the current selection unchanged

Specifications for the new current selection. 

Here is a blank notebook. 

In[26]:= nb = SelectedNotebook[ ] ;

This writes 10! into the notebook, making the current selection be what was written. 

In[27]:= NotebookWrite[nb, "10!", All]
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This evaluates the current selection, creating a new cell for the result, and making the current selection be the whole of the result.

In[28]:= SelectionEvaluateCreateCell[nb, All]

This wraps FactorInteger around the current selection. 

In[29]:= NotebookApply[nb, "FactorInteger[ ]", All]

This evaluates the current selection, leaving the selection just before the result. 

In[30]:= SelectionEvaluate[nb, Before]

This now inserts additional text at the position of the current selection. 

In[31]:= NotebookWrite[nb, "a = "]

Options@ obj,  option D find the value of an option for a complete notebook
Options@NotebookSelection@ 

obj D,  option D 

find the value for the current selection

SetOptions@ obj,  option −> value D set the value of an option for a complete notebook
SetOptions@NotebookSelection@ 

obj D,  option −> value D 

set the value for the current selection

Finding and setting options for whole notebooks and for the current selection. 

Make the current selection be a complete cell. 

In[32]:= SelectionMove[nb, All, Cell]
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Put a frame around the cell that is the current selection. 

In[33]:= SetOptions[NotebookSelection[nb], CellFrame->True]

NotebookCreate@  D create a new notebook
NotebookCreate@ options D create a notebook with specified options
NotebookOpen@" name "D open an existing notebook

NotebookOpen@" name ",  options D open a notebook with specified options
SetSelectedNotebook@ obj D make the specified notebook the selected one

NotebookPrint@ obj D send a notebook to your printer
NotebookPrint@ obj,  " file "D send a PostScript version of a notebook to a file

NotebookPrint@ 

obj,  "! command "D 

send a PostScript version of a notebook to an external command

NotebookSave@ obj D save the current version of a notebook in a file
NotebookSave@ obj,  " file "D save the notebook in a file with the specified name

NotebookClose@ obj D close a notebook

Operations on whole notebooks. 

If you call NotebookCreate[ ] a new empty notebook will appear on your screen.   

By executing commands like SetSelectedNotebook and NotebookOpen, you tell the Mathematica front end to
change the windows you see. Sometimes you may want to manipulate a notebook without ever having it displayed on
the screen. You can do this by using the option setting Visible->False  in NotebookOpen or NotebookCre
ate.  

2.11.4 Manipulating the Front End from the Kernel

$FrontEnd the front end currently in use
Options@$FrontEnd,  option D the setting for a global option in the front end
AbsoluteOptions@$FrontEnd, 

 option D 

the absolute setting for an option

SetOptions@$FrontEnd, 

 option −> value D 

reset an option in the front end

Manipulating global options in the front end. 

Just  like  cells  and  notebooks,  the  complete  Mathematica  front  end  has  various  options,  which  you  can  look  at  and
manipulate from the kernel.  

This gives the object corresponding to the front end currently in use. 

In[1]:= $FrontEnd

Out[1]=  FrontEndObject 
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This gives the current directory used by the front end for notebook files. 

In[2]:= Options[$FrontEnd, NotebookDirectory]

Out[2]= 8NotebookDirectory $InstallationDirectory<

option default value 

NotebookDirectory "∼$" the current directory for notebook files
NotebookPath Hsystem dependentL the path to search when trying to open notebooks
Language "English" default language for text
MessageOptions Hlist of settingsL how to handle various

help and warning messages

A few global options for the Mathematica front end. 

By  using  NotebookWrite  you  can  effectively  input  to  the  front  end  any  ordinary  text  that  you  can  enter  on  the
keyboard.  FrontEndTokenExecute  allows  you  to  send  from  the  kernel  any  command  that  the  front  end  can
execute. These commands include both menu items and control sequences. 

FrontEndTokenExecute@" name "D execute a named command in the front end

Executing a named command in the front end. 

"Indent" indent all selected lines by one tab
"NotebookStatisticsDialog" display statistics about the current notebook

"OpenCloseGroup" toggle a cell group between open and closed
"CellSplit" split a cell in two at the current insertion point

"DuplicatePreviousInput" create a new cell which is
a duplicate of the nearest input cell above

"FindDialog" bring up the find dialog
"ColorSelectorDialog" bring up the color selector dialog

"GraphicsAlign" align selected graphics
"CompleteSelection" complete the command name that is the current selection

A few named commands that can be given to the front end. These commands usually correspond to menu items. 

2.11.5 Advanced Topic: Executing Notebook Commands Directly in the Front End

When  you  execute  a  command  like  NotebookWrite[obj,  data]  the  actual  operation  of  inserting  data  into  your
notebook  is  performed  in  the  front  end.  Normally,  however,  the  kernel  is  needed  in  order  to  evaluate  the  original
command, and to construct the appropriate request to send to the front end. But it turns out that the front end is set up
to execute a limited collection of commands directly, without ever involving the kernel. 

NotebookWrite@ obj,  data D version of  NotebookWrite to be executed in the kernel
FrontEnd`NotebookWrite@ 

obj,  data D 

version of  NotebookWrite 

to be executed directly in the front end

Distinguishing kernel and front end versions of commands. 

18 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



The  basic  way  that  Mathematica  distinguishes  between  commands  to  be  executed  in  the  kernel  and  to  be  executed
directly in the front  end is by using contexts.  The kernel commands are in the usual  System`  context,  but  the front
end commands are in the FrontEnd` context. 

FrontEndExecute@ expr D send  expr to be executed in the front end

Sending an expression to be executed in the front end. 

Here is a blank notebook. 

This uses kernel commands to write data into the notebook. 

In[1]:= NotebookWrite[SelectedNotebook[ ], "x + y + z"]

In the kernel, these commands do absolutely nothing. 

In[2]:= FrontEnd`NotebookWrite[FrontEnd`SelectedNotebook[ ], "a + b + c + d"]

If they are sent to the front end, however, they cause data to be written into the notebook. 

In[3]:= FrontEndExecute[%]

If  you  write  sophisticated  programs  for  manipulating  notebooks,  then  you  will  have  no  choice  but  to  execute  these
programs primarily in the kernel. But for the kinds of operations typically performed by simple buttons, you may find
that it is possible to execute all the commands you need directly in the front end—without the kernel even needing to be
running. 

2.11.6 Button Boxes and Active Elements in Notebooks

Within any cell in a notebook it is possible to set up ButtonBox objects that perform actions whenever you click on
them. ButtonBox  objects  are the way that palette buttons,  hyperlinks and other active elements are implemented in
Mathematica notebooks.   

When you first enter a ButtonBox object in a cell, it will behave just like any other expression, and by clicking on it
you can select it, edit it, and so on. But if you set the Active option for the cell, say by choosing the Cell Active item
in  the  Cell  Properties  menu,  then  the  ButtonBox  will  become  active,  and  when  you  click  on  it,  it  will  perform
whatever action you have specified for it.  
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Here is a button. 

In[1]:= ButtonBox["Expand[ ]"] // DisplayForm

Out[1]//DisplayForm= 

Expand@ D

When the button appears in an active cell, it will paste its contents whenever you click on it. 

Here is a typical palette.

In the expression corresponding to the palette each button corresponds to a ButtonBox object. 

ButtonBox@ boxes D a button that will paste its
contents when it appears in an active cell

ButtonBox@ boxes,  Active−>TrueD a button that will always be active
ButtonBox@ boxes,  
ButtonStyle−>" style "D 

a button whose properties are taken from the specified style

Basic ButtonBox objects. 

By setting the ButtonStyle  you can specify defaults  both  for  how a button will  be displayed, and what its action
will  be.  The notebook front  end provides  a number of  standard  ButtonStyle  settings,  which you can access from
the Create Button and Edit Button menu items.   

"Paste" paste the contents of the button HdefaultL
"Evaluate" paste then evaluate in place what has been pasted

"EvaluateCell" paste then evaluate the whole cell
"CopyEvaluate" copy the current selection into

a new cell, then paste and evaluate in place
"CopyEvaluateCell" copy the current selection into a

new cell, then paste and evaluate the whole cell
"Hyperlink" jump to a different location in the notebook

Standard settings for the ButtonStyle option. 
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Here is the expression corresponding to a CopyEvaluateCell button. 

This is what the button looks like. 

Here is a notebook with a selection made. 

This is what happens when one then clicks on the button. 

option default value 

ButtonFunction Hpasting functionL the function to apply when the button is clicked
ButtonSource Automatic where to get the first

argument of the button function from
ButtonData Automatic the second argument

to supply to the button function
ButtonEvaluator None where to send the button function for evaluation
ButtonNote None what to display in the window status

line when the cursor is over the button

Options that affect the action of buttons. 

A particular ButtonStyle setting will specify defaults for all other button options. Some of these options will affect
the display of the button, as discussed in Section 2.9.11. Others affect the action it performs. 

What ultimately determines the action of a button is the setting for the ButtonFunction  option. This setting gives
the  Mathematica  function  which  is  to  be  executed  whenever  the  button  is  clicked.  Typically  this  function  will  be  a
combination of various notebook manipulation commands. 

Thus,  for  example,  in  its  most  basic  form,  a  Paste  button  will  have  a  ButtonFunction  given  effectively  by
NotebookApply[SelectedNotebook[  ],  #]&,  while  a  Hyperlink  button  will  have  a ButtonFunction
given effectively by NotebookLocate[#2]&. 

When a button is clicked, two arguments are supplied to its ButtonFunction.  The first  is specified by Button
Source, and the second by ButtonData. 

Printed from the Mathematica Help Browser 21

©1988-2003 Wolfram Research, Inc. All rights reserved.



Typically ButtonData  is set to be a fixed expression, defined when the button was first created. ButtonSource,
on the other hand, usually changes with the contents of the button, or the environment in which the button appears. 

Automatic ButtonData if it is set, otherwise  ButtonContents 

ButtonContents the expression displayed on the button
ButtonData the setting for the  ButtonData option

CellContents the contents of the cell in which the button appears
Cell the whole cell in which the button appears

Notebook the whole notebook in which the button appears
n the expression  n levels up from the button in the notebook

Possible settings for the ButtonSource option. 

For  a  simple  Paste  button,  the  setting  for  ButtonSource  is  typically  ButtonContents.  This  means  that
whatever  is  displayed  in  the  button  will  be  what  is  passed  as  the  first  argument  of  the  button  function.  The  button
function can then take this argument and feed it to NotebookApply, thereby actually pasting it into the notebook. 

By using settings other than ButtonContents  for ButtonSource,  you can create buttons which effectively pull
in various aspects of their environment for processing. Thus, for example, with the setting ButtonSource->Cell,
the  first  argument  to  the  button  function  will  be  the  expression  that  represents  the  whole  cell  in  which  the  button
appears. By having the button function manipulate this expression you can then make the button have a global effect on
the whole cell, say by restructuring it in some specified way.   

None the front end
Automatic the current kernel

" name " a kernel with the specified name

Settings for the ButtonEvaluator option. 

Once the arguments to a ButtonFunction  have been found,  and an expression has been constructed, there is then
the question of where that expression should be sent for evaluation. The ButtonEvaluator option for a Button
Box allows you to specify this. 

In general, if the expression involves a range of Mathematica  functions, then there will be no choice but to evaluate it
in an actual Mathematica  kernel. But if the expression involves only simple notebook manipulation commands, then it
may be possible to execute the expression directly in the front end, without ever involving the kernel. You can specify
that this should be done by setting the option ButtonEvaluator->None. 

FrontEndExecute@ expr D execute an expression in the front end
FrontEnd`NotebookApply@… 

 D , etc.
front end versions of notebook commands

Expressions to be executed directly in the front end. 

As discussed in the previous section, the standard notebook front  end can handle only a limited set of commands, all
identified as being in the FrontEnd`  context.  But these commands are sufficient to be able to implement all of  the
actions associated with standard button styles such as Paste, EvaluateCell and Hyperlink. 

Note that even if an expression is sent to the front end, it will be executed only if it is wrapped in a FrontEndExe
cute. 
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2.11.7 Advanced Topic: The Structure of Cells

Cell@ contents,  " style "D a cell in a particular style
Cell@ contents,  " style ",  options D a cell with additional options set

Expressions corresponding to cells. 

Here is a notebook containing a text cell and a Mathematica input cell. 

Here are the expressions corresponding to these cells. 

Here is a notebook containing a text cell with Mathematica input inside. 

This is the expression corresponding to the cell. The Mathematica input is in a cell embedded inside the text. 

" text " plain text
TextData@ 8  text1,  text2, … <  D text potentially in different styles, or containing cells

BoxData@ boxes D formatted  Mathematica expressions
GraphicsData@" type ",  data D graphics or sounds

OutputFormData@" 

itext ",  " otext "D 

text as generated by  InputForm and  OutputForm 

RawData@" data "D unformatted expressions as obtained using  Show Expression 

CellGroupData@ 8  
cell1,  cell2, … <,  OpenD 

an open group of cells

CellGroupData@ 8  
cell1,  cell2, … <,  ClosedD 

a closed group of cells

StyleData@" style "D a style definition cell

Expressions representing possible forms of cell contents. 
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2.11.8 Styles and the Inheritance of Option Settings

Global the complete front end and all open notebooks
Notebook the current notebook

Style the style of the current cell
Cell the specific current cell

Selection a selection within a cell

The hierarchy of levels at which options can be set. 

Here is a notebook containing three cells.

This is what happens when the setting CellFrame->True is made specifically for the third cell.

This is what happens when the setting CellFrame->True is made globally for the whole notebook.

This is what happens when the setting is made for the "Section" style. 

In the standard  notebook front  end,  you can check and set options at any level by using the Option Inspector  menu
item. If you do not set an option at a particular level, then its value will always be inherited from the level above. Thus,
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for  example,  if  a  particular  cell  does  not  set  the  CellFrame  option,  then  the  value  used  will  be  inherited  from its
setting for the style of the cell or for the whole notebook that contains the cell.    

As a  result,  if  you set CellFrame->True  at  the level  of  a whole  notebook,  then all  the cells in  the notebook will
have frames drawn around them—unless the style of a particular cell, or the cell itself, explicitly overrides this setting. 

† Choose the basic default styles for a notebook
† Choose the styles for screen and printing style environments
† Edit specific styles for the notebook

Ways to set up styles in a notebook. 

Depending on what you intend to use your Mathematica  notebook for, you may want to choose different basic default
styles for the notebook. In the standard notebook front end, you can do this using the Edit Style Sheet menu item.  

"Report" styles for everyday work and for reports
"Tutorial" styles for tutorial-type material

"Book" styles for books such as this one

Some typical choices of basic default styles. 

With each choice of basic default styles, the styles that are provided will change. Thus, for example, only in the Book
default styles is there a Box style which sets up the gray boxes used in this book. 

Here is a notebook that uses Book default styles.

option default value 

ScreenStyleEnvironment "Working" the style environment
to use for display on the screen

PrintingStyleEnvironment "Printout" the style environment to use for printed output

Options for specifying style environments. 

Within a particular set of basic default styles, Mathematica allows for two different style environments: one for display
on  the  screen,  and  another  for  output  to  a  printer.  The  existence  of  separate  screen  and  printing  style  environments
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allows  you  to  set  up  styles  which  are  separately  optimized  both  for  low-resolution  display  on  a  screen,  and
high-resolution printing. 

"Working" on-screen working environment
"Presentation" on-screen environment for presentations

"Condensed" on-screen environment for maximum display density
"Printout" paper printout environment

Some typical settings for style environments. 

Here is a notebook with the usual Working screen style environment.

Here is the same notebook with the Condensed screen style environment.

The way that Mathematica  actually sets  up the definitions for styles is by using style definition cells.  These cells can
either be given in separate style definition notebooks, or can be included in the options of a specific notebook. In either
case, you can access style definitions by using the Edit Style Sheet menu item in the standard notebook front end.  

" name .nb" get definitions from the specified notebook
8  cell1,  cell2, … <  get definitions from the explicit cells given

Settings for the StyleDefinitions option for a Notebook. 

Here is an example of a typical style definition cell.

This is the expression corresponding to the cell. Any cell in Section style will inherit the option settings given here.

Null
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Cell@StyleData@" 

style "D,  options D 

a cell specifying option settings for a particular style

Cell@StyleData@" 

style ",  " env "D,  options D 

a cell specifying additional
options for a particular style environment

Expressions corresponding to style definition cells. 

2.11.9 Options for Cells

Mathematica  provides  a  large  number  of  options  for  cells.  All  of  these  options  can  be  accessed  through  the  Option
Inspector menu item in the front end. They can be set either directly at the level of individual cells or at a higher level,
to be inherited by individual cells. 

option typical default value 

CellDingbat "" a dingbat to use to emphasize the cell
CellFrame False whether to draw a frame around the cell
Background GrayLevel@1D the background color for the cell
ShowCellBracket True whether to display the cell bracket
Magnification 1 the magnification at which to display the cell
CellOpen True whether to display the contents of the cell

Some basic cell display options. 

This creates a cell in Section style with default settings for all options. 

In[1]:= CellPrint[Cell["A Heading", "Section"]]

This creates a cell with dingbat and background options modified. 

In[2]:= CellPrint[Cell["A Heading", "Section",
CellDingbat->"\[FilledCircle]", Background->GrayLevel[.7]]]
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option typical default value 

CellMargins 887,  0<, 

 84,  4<< 

outer margins in printer's points
to leave around the contents of the cell

CellFrameMargins 8 margins to leave inside the cell frame
CellElementSpacings list of rules details of the layout of cell elements
CellBaseline Baseline how to align the baseline

of an inline cell with text around it

Options for cell positioning. 

The option CellMargins allows you to specify both horizontal and vertical margins to put around a cell. You can set
the horizontal margins interactively by using the margin stops in the ruler displayed when you choose the Show Ruler
menu item in the front end.  

Whenever  an option can refer  to all  four edges  of  a cell,  Mathematica  follows the convention that  the setting for  the
option  takes  the  form  88 left,  right<,  8bottom,  top<< .  By  giving  non-zero  values  for  the  top  and  bottom  elements,
CellMargins  can  specify  gaps  to  leave  above  and  below  a  particular  cell.  The  values  are  always  taken  to  be  in
printer's points.  

This leaves 50 points of space on the left of the cell, and 20 points above and below. 

In[3]:= CellPrint[Cell["First text", "Text", CellMargins->{{50, 0}, {20, 20}}]]

Almost every aspect of Mathematica notebooks can be controlled by some option or another. More detailed aspects are
typically handled by “aggregate  options”  such as CellElementSpacings. The settings for these options are lists
of Mathematica  rules, which effectively give values for a sequence of suboptions.  The names of these suboptions are
usually strings rather than symbols. 

This shows the settings for all the suboptions associated with CellElementSpacings. 

In[4]:= Options[SelectedNotebook[ ], CellElementSpacings]

Out[4]= 8CellElementSpacings → 8CellMinHeight → 12., ClosedCellHeight → 19.,
ClosedGroupTopMargin→ 4., GroupIconTopMargin → 3., GroupIconBottomMargin→ 12.<<

Mathematica  allows  you  to  embed  cells  inside  pieces  of  text.  The  option  CellBaseline  determines  how  such
“inline  cells”  will be aligned vertically with respect to the text around them. In direct analogy with the option Grid
Baseline  for  a  GridBox,  the  option  CellBaseline  specifies  what  aspect  of  the  cell  should  be  considered  its
baseline. 

Here is a cell containing an inline formula. The baseline of the formula is aligned with the baseline of the text around it.
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Here is a cell in which the bottom of the formula is aligned with the baseline of the text around it.

This alignment is specified using the CellBaseline->Bottom setting. 

option typical default value 

CellLabel "" a label for a cell
ShowCellLabel True whether to show the label for a cell
CellLabelAutoDelete True whether to delete the label if the cell is modified
CellTags 8  < tags for a cell
ShowCellTags False whether to show tags for a cell
ConversionRules 8  < rules for external conversions

Options for ancillary data associated with cells. 

In addition to the actual contents of a cell, it is often useful to associate various kinds of ancillary data with cells. 

In a standard Mathematica  session, cells containing successive lines of kernel input and output are given labels of the
form  In[n]:=  and  Out[n]=.  The  option  ShowCellLabel  determines  whether  such  labels  should  be  displayed.
CellLabelAutoDelete  determines whether  the  label  on  a  cell  should  be  removed if  the  contents  of  the  cell  are
modified. Doing this ensures that In[n]:= and Out[n]= labels are only associated with unmodified pieces of kernel
input and output.   

Cell tags are typically used to associate keywords or other attributes with cells, that can be searched for using functions
like NotebookFind. Destinations for hyperlinks in Mathematica notebooks are usually implemented using cell tags. 

The option ConversionRules  allows you to  give a  list  containing entries  such as  "TeX"  ->  data  which  specify
how the contents of a cell should be converted to external formats. This is particularly relevant if you want to keep a
copy of the original form of a cell that has been converted in Mathematica notebook format from some external format. 
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option typical default value

Deletable True whether to allow a cell to be
deleted interactively with the front end

Copyable True whether to allow a cell to be copied
Selectable True whether to allow the

contents of a cell to be selected
Editable True whether to allow the

contents of a cell to be edited
CellEditDuplicate False whether to make a copy

of a cell if its contents are edited
Active False whether buttons in the cell are active

Options for controlling interactive operations on cells. 

The  options  Deletable,  Copyable,  Selectable  and  Editable  allow you  to  control  what  interactive opera-
tions should be allowed on cells. By setting these options to False at the notebook level, you can protect all the cells
in a notebook. 

Even if  you allow a particular  cell  to be edited,  you can set CellEditDuplicate->True  to get Mathematica  to
make  a  copy  of  the  contents  of  the  cell  before  they  are  actually  changed.  Styles  for  cells  that  contain  output  from
Mathematica kernel evaluations usually make use of this option. 

option typical default value

Evaluator "Local" the name of the kernel to use for evaluations
Evaluatable False whether to allow the

contents of a cell to be evaluated
CellEvaluationDuplicate False whether to make a

copy of a cell if it is evaluated
CellAutoOverwrite False whether to overwrite previous

output when new output is generated
GeneratedCell False whether this cell was generated from the kernel
InitializationCell False whether this cell should automatically

be evaluated when the notebook is opened

Options for evaluation. 

Mathematica makes it possible to specify a different evaluator for each cell in a notebook. But most often, the Evalua
tor option is set only at the notebook level, typically using the Kernel menu item in the front end. 

The option CellAutoOverwrite  is typically set to True for styles that represent Mathematica  output. Doing this
means that when you re-evaluate a particular piece of input, Mathematica  will automatically delete the output that was
previously generated from that input, and will overwrite it with new output. 

The option GeneratedCell is set whenever a cell is generated by an external request to the front end rather than by
an interactive operation within the front end. Thus, for example, any cell obtained as output from a kernel evaluation,
or created using a function like CellPrint or NotebookWrite, will have GeneratedCell->True. 
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option typical default value 

PageBreakAbove Automatic whether to put a page
break just above a particular cell

PageBreakWithin False whether to allow a
page break within a particular cell

PageBreakBelow Automatic whether to put a page
break just below a particular cell

GroupPageBreakWithin False whether to allow a page break
within a particular group of cells

Options for controlling page breaks when cells are printed. 

When you display a notebook on the screen, you can scroll continuously through it. But if you print the notebook out,
you have to decide where page breaks will occur. A setting of Automatic for a page break option tells Mathematica
to make a page break if necessary; True  specifies that  a page break should always be made, while False  specifies
that it should never be. 

2.11.10 Text and Font Options

option typical default value 

PageWidth WindowWidth how wide to assume the page to be
TextAlignment Left how to align successive lines of text
TextJustification 0 how much to allow lines of

text to be stretched to make them fit
Hyphenation True whether to allow hyphenation
ParagraphIndent 0 how many printer's points to

indent the first line in each paragraph

General options for text formatting. 

If you have a large block of  text containing no explicit Return characters, then Mathematica  will automatically break
your text into a sequence of lines. The option PageWidth specifies how long each line should be allowed to be. 

WindowWidth the width of the window on the screen
PaperWidth the width of the page as it would be printed
Infinity an infinite width Hno linebreakingL

n explicit width given in printer's points

Settings for the PageWidth option in cells and notebooks. 

The  option  TextAlignment  allows  you  to  specify  how  you  want  successive  lines  of  text  to  be  aligned.  Since
Mathematica  normally breaks text only at space or punctuation characters, it is common to end up with lines of differ-
ent lengths.  Normally the variation in lengths will  give your text a ragged boundary.  But Mathematica  allows you to
adjust the spaces in successive lines of text so as to make the lines more nearly equal in length. The setting for Text
Justification  gives  the  fraction  of  extra  space  which  Mathematica  is  allowed  to  add.  TextJustifica
tion->1 leads to “full  justification”  in which all complete lines of text are adjusted to be exactly the same length.   
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Left aligned on the left
Right aligned on the right
Center centered

x aligned at a position  x running from  −1 to  +1 across the page

Settings for the TextAlignment option. 

Here is text with TextAlignment->Left and TextJustification->0. 

With TextAlignment->Center the text is centered. 

TextJustification->1 adjusts word spacing so that both the left and right edges line up. 

TextJustification->0.5 reduces the degree of raggedness, but does not force the left and right edges to be precisely lined 
up. 

When you enter a block of text in a Mathematica  notebook, Mathematica  will treat any explicit Return characters that
you type as paragraph breaks.  The option ParagraphIndent  allows you to specify how much you want to indent
the first line in each paragraph. By giving a negative setting for ParagraphIndent, you can make the first line stick
out to the left relative to subsequent lines.   
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LineSpacing−> 8  c,  0 <  leave space so that the total height of each line is  
c times the height of its contents

LineSpacing−> 8  0,  n <  make the total height of each line exactly  n printer's points
LineSpacing−> 8  c,  n <  make the total height  c 

times the height of the contents plus  n printer's points
ParagraphSpacing−> 8  c,  0 <  leave an extra space of  c times the height

of the font before the beginning of each paragraph
ParagraphSpacing−> 8  0,  n <  leave an extra space of exactly  n 

printer's points before the beginning of each paragraph
ParagraphSpacing−> 8  c,  n <  leave an extra space of  c 

times the height of the font plus  n printer's points

Options for spacing between lines of text. 

Here is some text with the default setting LineSpacing->{1, 1}, which inserts just 1 printer's point of extra space between 
successive lines. 

With LineSpacing->{1, 5} the text is “looser”.  

LineSpacing->{2, 0} makes the text double-spaced.  

With LineSpacing->{1, -2} the text is tight. 
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option typical default value 

FontFamily "Courier" the family of font to use
FontSubstitutions 8  < a list of substitutions to try for font family names
FontSize 12 the maximum height

of characters in printer's points
FontWeight "Bold" the weight of characters to use
FontSlant "Plain" the slant of characters to use
FontTracking "Plain" the horizontal compression

or expansion of characters
FontColor GrayLevel@0D the color of characters
Background GrayLevel@1D the color of the background for each character

Options for fonts. 

"Courier" text like this 

"Times" text like this
"Helvetica" text like this 

Some typical font family names. 

FontWeight−>"Plain" text like this
FontWeight−>"Bold" text like this 

FontWeight−>"ExtraBold" text like this 
FontSlant−>"Oblique" text like this 

Some settings of font options. 

Mathematica  allows  you  to  specify  the  font  that  you  want  to  use  in  considerable  detail.  Sometimes,  however,  the
particular combination of font families and variations that you request may not be available on your computer system.
In such cases, Mathematica  will try to find the closest approximation it can. There are various additional options, such
as FontPostScriptName,  that you can set to help Mathematica  find an appropriate font.  In addition,  you can set
FontSubstitutions to be a list of rules that give replacements to try for font family names.   

There are a great many fonts available for ordinary text. But for special technical characters, and even for Greek letters,
far  fewer  fonts  are  available.  The  Mathematica  system  includes  fonts  that  were  built  to  support  all  of  the  various
special characters that are used by Mathematica. There are three versions of these fonts: ordinary (like Times), mono-
spaced (like Courier), and sans serif (like Helvetica). 

For a given text font, Mathematica  tries to choose the special character font that matches it best. You can help Mathe-
matica  to  make this  choice  by  giving  rules  for  "FontSerifed"  and  "FontMonospaced"  in  the  setting  for  the
FontProperties option. You can also give rules for "FontEncoding" to specify explicitly from what font each
character is to be taken. 
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2.11.11 Advanced Topic: Options for Expression Input and Output

option typical default value 

AutoIndent Automatic whether to indent after an
explicit Return character is entered

DelimiterFlashTime 0.3 the time in seconds to flash a
delimiter when a matching one is entered

ShowAutoStyles True whether to show automatic style
variations for syntactic and other constructs

ShowCursorTracker True whether an elliptical spot
should appear momentarily to guide
the eye if the cursor position jumps

ShowSpecialCharacters True whether to replace î @ Name D 

by a special character as soon as the  
D is entered

ShowStringCharacters False whether to display  " when a string is entered
SingleLetterItalics False whether to put

single-letter symbol names in italics
ZeroWidthTimes False whether to represent

multiplication by a zero width character
InputAliases 8< additional  Ç  name Ç  aliases to allow
InputAutoReplacements 8  "−>"  −> 

 " Ø  ",  … <  
strings to automatically replace on input

AutoItalicWords 8  
"Mathematica", 

… <  

words to automatically put in italics

LanguageCategory Automatic what category of language to assume a cell
contains for spell checking and hyphenation

Options associated with the interactive entering of expressions. 

The options SingleLetterItalics and ZeroWidthTimes are typically set whenever a cell uses Tradition
alForm. 

Here is an expression entered with default options for a StandardForm input cell. 

Here is the same expression entered in a cell with SingleLetterItalics->True and ZeroWidthTimes->True. 

Built into Mathematica  are a large number of  aliases for  common special characters. InputAliases  allows you to
add  your  own  aliases  for  further  special  characters  or  for  any  other  kind  of  Mathematica  input.  A  rule  of  the  form
"name"->expr specifies that ÇnameÇ  should immediately be replaced on input by expr. 

Aliases are delimited by explicit Â  characters.  The option InputAutoReplacements  allows you to specify that
certain  kinds  of  input  sequences  should  be  immediately  replaced  even  when  they  have  no  explicit  delimiters.  By
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default, for example, -> is immediately replaced by Ø . You can give a rule of the form "seq"->"rhs" to specify that
whenever seq appears as a token in your input, it should immediately be replaced by rhs. 

"NaturalLanguage" human natural language such as English
"Mathematica" Mathematica input

"Formula" mathematical formula
None do no spell checking or hyphenation

Settings for LanguageCategory to control spell checking and hyphenation. 

The option LanguageCategory  allows you to tell Mathematica  what type of contents it should assume cells have.
This determines how spelling and structure should be checked, and how hyphenation should be done. 

option typical default value 

StructuredSelection False whether to allow only
complete subexpressions to be selected

DragAndDrop False whether to allow drag-and-drop editing

Options associated with interactive manipulation of expressions. 

Mathematica  normally allows you to select  any part  of  an  expression  that  you see on the screen.  Occasionally,  how-
ever, you may find it useful to get Mathematica to allow only selections which correspond to complete subexpressions.
You can do this by setting the option StructuredSelection->True. 

Here is an expression with a piece selected. 

With StructuredSelection->True only complete subexpressions can ever be selected. 

GridBox@ data,  opts D give options that apply to a particular grid box
StyleBox@ boxes,  opts D give options that apply to all boxes in  boxes 

Cell@ contents,  opts D give options that apply to all boxes in  contents 
Cell@ contents,  
GridBoxOptions−> opts D 

give default options settings for all  GridBox objects in  contents 

Examples of specifying options for the display of expressions. 

As discussed in Section 2.9, Mathematica  provides many options for specifying how expressions should be displayed.
By using StyleBox[boxes, opts] you can apply such options to collections of boxes. But Mathematica  is set up so
that  any option that  you can give to a StyleBox  can also  be given to a complete Cell  object,  or  even a complete
Notebook. Thus, for example, options like Background and LineIndent can be given to complete cells as well
as to individual StyleBox objects.  

There are some options that apply only to a particular type of box, such as GridBox.  Usually these options are best
given separately in each GridBox where they are needed. But sometimes you may want to specify default settings to
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be inherited by all GridBox objects that appear in a particular cell. You can do this by giving these default settings as
the value of the option GridBoxOptions for the whole cell. 

For each box type named XXXBox, Mathematica  provides a cell option XXXBoxOptions  that allows you to specify
the default options settings for that type of box. 

2.11.12 Options for Graphics Cells

option typical default value 

AspectRatioFixed True whether to keep a fixed
aspect ratio if the image is resized

ImageSize 8288,  288< the absolute width and
height of the image in printer's points

ImageMargins 880,  0<, 

 80,  0<< 

the widths of margins in printer'
s points to leave around the image

Options for displaying images in notebooks. 

Here is a graphic displayed in a notebook. 

With the default setting AspectRatioFixed->True resizing the graphic does not change its shape.

If you set AspectRatioFixed->False then you can change the shape.

Mathematica  allows  you  to  specify  the  final  size  of  a  graphic  by  setting  the  ImageSize  option  in  kernel  graphics
functions such as Plot and Display. Once a graphic is in a notebook, you can then typically resize or move it just
by using the mouse. 

† Use the  Animate Selected Graphics menu item in the front end.
† Use the kernel command  SelectionAnimate@ obj D .

Ways to generate animations in a notebook. 
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Mathematica generates animated graphics by taking a sequence of graphics cells, and then treating them like frames in
a movie. The option AnimationDisplayTime  specifies  how long a particular  cell  should be displayed as part  of
the movie. 

option typical default value 

AnimationDisplayTime 0.1 minimum time in seconds to
display this cell during an animation

AnimationDirection Forward which direction to run
an animation starting with this cell

Options for animations. 

2.11.13 Options for Notebooks

† Use the  Option Inspector menu to change options interactively.
† Use  SetOptions@ obj,  options D from the kernel.
† Use  NotebookCreate@ options D to create a new notebook with specified options.

Ways to change the overall options for a notebook. 

This creates a notebook displayed in a 40ä30 window with a thin frame. 

In[1]:= NotebookCreate[WindowFrame->"ThinFrame", WindowSize->{40, 30}]

option typical default value 

StyleDefinitions "DefaultStyles
.nb" 

the basic style sheet to use for the notebook

ScreenStyleEnvironment "Working" the style environment to use for screen display
PrintingStyleEnvironment "Printout" the style environment to use for printing

Style options for a notebook. 

In giving style definitions for a particular notebook, Mathematica  allows you either to reference another notebook, or
explicitly to include the Notebook expression that defines the styles. 

option typical default value 

CellGrouping Automatic how to group cells in the notebook
ShowPageBreaks False whether to show where page breaks

would occur if the notebook were printed
NotebookAutoSave False whether to automatically save

the notebook after each piece of output

General options for notebooks. 
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With CellGrouping->Automatic, cells are automatically grouped based on their style.

With CellGrouping->Manual, you have to group cells by hand. 

option typical default value 

DefaultNewCellStyle "Input" the default style for
new cells created in the notebook

DefaultDuplicateCellStyle "Input" the default style for cells created by
automatic duplication of existing cells

Options specifying default styles for cells created in a notebook. 

Mathematica  allows you to take any cell option and set it at the notebook level, thereby specifying a global default for
that option throughout the notebook. 

option typical default value 

Editable True whether to allow
cells in the notebook to be edited

Selectable True whether to allow cells to be selected
Deletable True whether to allow cells to be deleted
ShowSelection True whether to show the

current selection highlighted
Background GrayLevel@1D what background color to use for the notebook
Magnification 1 at what magnification to display the notebook
PageWidth WindowWidth how wide to allow the contents of cells to be

A few cell options that are often set at the notebook level. 

Here is a notebook with the Background option set at the notebook level. 
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option typical default value 

Visible True whether the window
should be visible on the screen

WindowSize 8Automatic, 

 Automatic< 

the width and height
of the window in printer's points

WindowMargins Automatic the margins to leave around the
window when it is displayed on the screen

WindowFrame "Normal" the type of frame to draw around the window
WindowElements 8  "StatusArea", 

… <  
elements to include in the window

WindowTitle Automatic what title should be displayed for the window
WindowToolbars 8  < toolbars to display at the top of the window
WindowMovable True whether to allow the window

to be moved around on the screen
WindowFloating False whether the window should

always float on top of other windows
WindowClickSelect True whether the window should

become selected if you click in it

Characteristics of the notebook window. 

WindowSize  allows you to  specify  how large you want  a  window to be;  WindowMargins  allows  you to  specify
where you want  the window to be placed on your screen. The setting WindowMargins->88 left,  right<,  8bottom,
top<<  gives the margins in printer's points to leave around your window on the screen. Often only two of the margins
will be set explicitly; the others will be Automatic, indicating that these margins will be determined from the particu-
lar size of screen that you use.  

"Normal" an ordinary window
"Palette" a palette window

"ModelessDialog" a modeless dialog box window
"ModalDialog" a modal dialog box window

"MovableModalDialog" a modal dialog box window that can be moved around the screen
"ThinFrame" an ordinary window with a thin frame
"Frameless" an ordinary window with no frame at all
"Generic" a window with a generic

border, as used for the examples in this book

Typical possible settings for WindowFrame. 

Mathematica  allows many different types of windows. The details of how particular windows are rendered may differ
slightly from one computer system to another, but their general form is always the same. WindowFrame specifies the
type  of  frame  to  draw  around  the  window.  WindowElements  gives  a  list  of  specific  elements  to  include  in  the
window. 

"StatusArea" an area used to display status messages, such as those from  
ButtonNote options

"MagnificationPopUp" a pop-up menu of common magnifications
"HorizontalScrollBar" a scroll bar for horizontal motion
"VerticalScrollBar" a scroll bar for vertical motion

Some typical possible entries in the WindowElements list. 
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Here is a window with a status area and horizontal scroll bar, but no magnification pop-up or vertical scroll bar. 

"RulerBar" a ruler showing margin settings
"EditBar" buttons for common editing operations

Some typical possible entries in the WindowToolbars list. 

Here is a window with ruler and edit toolbars. 

2.11.14 Advanced Topic: Global Options for the Front End

In the standard notebook front end, Mathematica  allows you to set a large number of global options. The values of all
these options  are  by default  saved in a  “preferences  file”,  and  are automatically reused when you run Mathematica
again.   

style definitions default style definitions to use for new notebooks
file locations directories for finding notebooks and system files

data export options how to export data in various formats
character encoding options how to encode special characters

language options what language to use for text
message options how to handle messages generated by  Mathematica 

menu settings items displayed in modifiable menus
dialog settings choices made in dialog boxes

system configuration private options for specific computer systems

Some typical categories of global options for the front end. 

As discussed in Section 2.11.4, you can access global front end options from the kernel by using Options[$Front
End,  name].  But  more often,  you will  want to access these options interactively using the Option Inspector  in the
front end. 
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2.12 Files and Streams

2.12.1 Reading and Writing Mathematica Files

Particularly  if  you  use  a  text-based  Mathematica  interface,  you  will  often  need  to  read  and  write  files  containing
definitions  and  results  from  Mathematica.  Section  1.11.1  gave  a  general  discussion  of  how  to  do  this.  This  section
gives some more details. 

<< file  or  Get@" file "D read in a file of  Mathematica 
input, and return the last expression in the file

!! file display the contents of a file

Reading files. 

This shows the contents of the file factors. 

In[1]:= !!factors

"(* Factors of x^20 - 1 *)
  (-1 + x)*(1 + x)*(1 + x^2)*(1 - x + x^2 - x^3 + x^4)*
   (1 + x + x^2 + x^3 + x^4)*(1 - x^2 + x^4 - x^6 + x^8)"

This reads in the file, and returns the last expression in it. 

In[2]:= <<factors

Out[2]= H−1 + xL H1 + xL H1 + x2L H1 − x + x2 − x3 + x4L H1 + x + x2 + x3 + x4L H1 − x2 + x4 − x6 + x8L

If Mathematica cannot find the file you ask it to read, it prints a message, then returns the symbol $Failed. 

In[3]:= <<faxors

Get::noopen :  Cannot open faxors.

Out[3]= $Failed

Mathematica  input  files can contain any number of  expressions.  Each expression,  however,  must start on a new line.
The expressions  may however  continue for  as  many lines as necessary.  Just as in a standard interactive Mathematica
session, the expressions are processed as soon as they are complete. Note, however, that in a file, unlike an interactive
session, you can insert a blank line at any point without effect. 

When  you  read  in  a  file  with  <<file,  Mathematica  returns  the  last  expression  it  evaluates  in  the  file.  You  can  avoid
getting any visible result from reading a file by ending the last expression in the file with a semicolon, or by explicitly
adding Null after that expression. 

If Mathematica  encounters a syntax error while reading a file, it reports the error, skips the remainder of the file, then
returns $Failed. If the syntax error occurs in the middle of a package which uses BeginPackage and other context
manipulation functions, then Mathematica tries to restore the context to what it was before the package was read. 
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expr  >>  file  or  Put@ expr,  " file "D write an expression to a file
expr  >>>  file  or  
PutAppend@ expr,  " file "D 

append an expression to a file

Writing expressions to files. 

This writes an expression to the file tmp. 

In[4]:= Factor[x^6 - 1] >> tmp

Here are the contents of the file. 

In[5]:= !!tmp

"(-1 + x)*(1 + x)*(1 - x + x^2)*(1 + x + x^2)"

This appends another expression to the same file. 

In[6]:= Factor[x^8 - 1] >>> tmp

Both expressions are now in the file. 

In[7]:= !!tmp

"(-1 + x)*(1 + x)*(1 - x + x^2)*(1 + x + x^2)
(-1 + x)*(1 + x)*(1 + x^2)*(1 + x^4)"

When you use expr  >>>  file,  Mathematica  appends each new expression you give to the end of your file. If  you use
expr >> file, however, then Mathematica instead wipes out anything that was in the file before, and then puts expr into
the file. 

When you use either >>  or >>>  to write expressions to files, the expressions are usually given in Mathematica  input
format, so that you can read them back into Mathematica. Sometimes, however,  you may want to save expressions in
other formats. You can do this by explicitly wrapping a format directive such as OutputForm around the expression
you write out. 

This writes an expression to the file tmp in output format. 

In[8]:= OutputForm[ Factor[x^6 - 1] ] >> tmp

The expression in tmp is now in output format. 

In[9]:= !!tmp

"                           2            2
(-1 + x) (1 + x) (1 - x + x ) (1 + x + x )"

One of the most common reasons for using files is to save definitions of Mathematica  objects, to be able to read them
in again in a subsequent Mathematica  session. The operators >> and >>> allow you to save Mathematica  expressions
in  files.  You  can  use  the  function  Save  to  save  complete definitions  of  Mathematica  objects,  in  a  form suitable  for
execution in subsequent Mathematica sessions.  
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Save@" file ",  symbol D save the complete definitions for a symbol in a file
Save@" file ",  " form "D save definitions for symbols whose names match the string pattern  

form 
Save@" file ",  " context `"D save definitions for all symbols in the specified context

Save@" file ",  8  
object1,  object2, … <  D 

save definitions for several objects

Writing out definitions. 

This assigns a value to the symbol a. 

In[10]:= a = 2 - x^2

Out[10]= 2 − x2

You can use Save to write the definition of a to a file. 

In[11]:= Save["afile", a]

Here is the definition of a that was saved in the file. 

In[12]:= !!afile

"a = 2 - x^2"

When  you  define  a  new  object  in  Mathematica,  your  definition  will  often  depend  on  other  objects  that  you  defined
before.  If  you  are  going  to  be  able  to  reconstruct  the  definition  of  your  new  object  in  a  subsequent  Mathematica
session, it is  important that you store not  only its own definition, but also the definitions of other objects on which it
depends.  The  function  Save  looks  through  the  definitions  of  the  objects  you  ask  it  to  save,  and  automatically  also
saves all definitions of other objects on which it can see that these depend. However, in order to avoid saving a large
amount of unnecessary material, Save  never includes definitions for  symbols that have the attribute Protected.  It
assumes  that  the  definitions  for  these  symbols  are  also  built  in.  Nevertheless,  with  such  definitions  taken  care  of,  it
should always be the case that reading the output generated by Save back into a new Mathematica  session will set up
the definitions of your objects exactly as you had them before.  

This defines a function f which depends on the symbol a defined above. 

In[13]:= f[z_] := a^2 - 2

This saves the complete definition of f in a file. 

In[14]:= Save["ffile", f]

The file contains not only the definition of f itself, but also the definition of the symbol a on which f depends. 

In[15]:= !!ffile

"f[z_] := a^2 - 2
 
a = 2 - x^2"

The function Save makes use of the output forms Definition and FullDefinition, which print as definitions
of Mathematica symbols. In some cases, you may find it convenient to use these output forms directly. 
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The output form Definition[f] prints as the sequence of definitions that have been made for f. 

In[16]:= Definition[f]

Out[16]= f@z_D := a2 − 2

FullDefinition[f] includes definitions of the objects on which f depends. 

In[17]:= FullDefinition[f]

Out[17]= f@z_D := a2 − 2

a = 2 − x2

When you create  files  for  input  to  Mathematica,  you usually  want  them to  contain  only  “plain  text”,  which  can be
read  or  modified  directly.  Sometimes,  however,  you  may  want  the  contents  of  a  file  to  be  “encoded”  so  that  they
cannot  be  read  or  modified  directly  as  plain  text,  but  can  be  loaded into  Mathematica.  You  can  create  encoded  files
using the Mathematica function Encode. 

Encode@" source ",  " dest "D write an encoded version of the file  source to the file  dest 
<< dest read in an encoded file

Encode@" source 
",  " dest ",  " key "D 

encode with the specified key

Get@" dest ",  " key "D read in a file that was encoded with a key
Encode@" source ",  " dest 
",  MachineID  −>  " ID "D 

create an encoded file which can
only be read on a machine with a particular ID

Creating and reading encoded files. 

This writes an expression in plain text to the file tmp. 

In[18]:= Factor[x^2 - 1] >> tmp

This writes an encoded version of the file tmp to the file tmp.x. 

In[19]:= Encode["tmp", "tmp.x"]

Here are the contents of the encoded file. The only recognizable part is the special Mathematica comment at the beginning. 

In[20]:= !!tmp.x

"(*!1N!*)mcm
_QZ9tcI1cfre*Wo8:) P"

Even though the file is encoded, you can still read it into Mathematica using the << operator. 

In[21]:= <<tmp.x

Out[21]= H−1 + xL H1 + xL
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DumpSave@" file .mx",  symbol D save definitions for a symbol in internal  Mathematica format
DumpSave@" file .mx",  " context `"D save definitions for all symbols in a context

DumpSave@" file .mx", 

 8  object1,  object2, … <  D 

save definitions for several symbols or contexts

DumpSave@" package `",  objects D save definitions in a file with a specially chosen name

Saving definitions in internal Mathematica format. 

If you have to read in very large or complicated definitions, you will often find it more efficient to store these defini-
tions in internal Mathematica format, rather than as text. You can do this using DumpSave. 

This saves the definition for f in internal Mathematica format. 

In[22]:= DumpSave["ffile.mx", f]

Out[22]= 8f<

You can still use << to read the definition in. 

In[23]:= <<ffile.mx

<< recognizes when a file contains definitions in internal Mathematica  format, and operates accordingly. One subtlety
is that the internal Mathematica  format differs from one computer system to another. As a result, .mx files created on
one computer cannot typically be read on another. 

If  you  use  DumpSave["package`",  … ]  then  Mathematica  will  write  out  definitions  to  a  file  with  a  name  like
package.mx/system/package.mx, where system identifies your type of computer system.    

This creates a file with a name that reflects the name of the computer system being used. 

In[24]:= DumpSave["gffile`", f]

Out[24]= 8f<

<< automatically picks out the file with the appropriate name for your computer system. 

In[25]:= <<gffile`

DumpSave@" file .mx"D save all definitions in your current  Mathematica session
DumpSave@" package `"D save all definitions in a file with a specially chosen name

Saving the complete state of a Mathematica session. 

2.12.2 External Programs

On most computer systems, you can execute external programs or commands from within Mathematica. Often you will
want  to  take  expressions  you  have  generated  in  Mathematica,  and  send  them to  an  external  program,  or  take  results
from external programs, and read them into Mathematica. 

Mathematica supports two basic forms of communication with external programs: structured and unstructured. 
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Structured communication use  MathLink to exchange expressions with  
MathLink -compatible external programs

Unstructured communication use file reading and writing operations to exchange ordinary text

Two kinds of communication with external programs in Mathematica. 

The idea of  structured communication is  to  exchange complete Mathematica  expressions  to external  programs which
are specially set up to handle such objects. The basis for structured communication is the MathLink  system, discussed
in Section 2.13. 

Unstructured communication consists in sending and receiving ordinary text from external programs. The basic idea is
to treat an external program very much like a file, and to support the same kinds of reading and writing operations. 

expr  >>  "! command " send the text of an expression to an external program
<<  "! command " read in text from an external program as  Mathematica input

Reading and writing to external programs. 

In general, wherever you might use an ordinary file name, Mathematica allows you instead to give a pipe, written as an
external command, prefaced by an exclamation point.  When you use the pipe,  Mathematica  will  execute the external
command, and send or receive text from it. 

This sends the result from FactorInteger to the external program lpr. On many Unix systems, this program generates a 
printout. 

In[1]:= FactorInteger[2^31 - 1] >> !lpr

This executes the external command echo $TERM, then reads the result as Mathematica input. 

In[2]:= <<"!echo $TERM"

One  point  to  notice  is  that  you  can  get  away  with  dropping  the  double  quotes  around  the  name  of  a  pipe  on  the
right-hand side of << or >> if the name does not contain any spaces or other special characters. 

Pipes in Mathematica  provide a very general mechanism for unstructured communication with external programs. On
many  computer  systems,  Mathematica  pipes  are  implemented  using  pipe  mechanisms  in  the  underlying  operating
system; in  some cases,  however,  other  interprocess  communication mechanisms are  used.  One  restriction of  unstruc-
tured communication in Mathematica  is that a given pipe can only be used for input or for output, and not for both at
the same time. In order to do genuine two-way communication, you need to use MathLink. 

Even  with  unstructured  communication,  you  can  nevertheless  set  up  somewhat  more  complicated  arrangements  by
using temporary files. The basic idea is to write data to a file, then to read it as needed. 

OpenTemporary@  D open a temporary file with a unique name

Opening a temporary file. 

Particularly  when  you  work  with  temporary  files,  you  may  find  it  useful  to  be  able  to  execute  external  commands
which do not explicitly send or receive data from Mathematica. You can do this using the Mathematica function Run. 

Run@" command ",  arg1, … D run an external command from within  Mathematica

Running external commands without input or output. 
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This executes the external Unix command date. The returned value is an “exit  code”  from the operating system. 

In[3]:= Run["date"]

Tue Jun 10 21:09:51 CDT 2003

Out[3]= 0

Note that when you use Run,  you must not preface commands with exclamation points. Run  simply takes the textual
forms of the arguments you specify, then joins them together with spaces in between, and executes the resulting string
as an external command. 

It is important to realize that Run never “captures”  any of the output from an external command. As a result, where
this  output  goes  is  purely  determined  by  your  operating  system.  Similarly,  Run  does  not  supply  input  to  external
commands. This means that the commands can get input through any mechanism provided by your operating system.
Sometimes external commands may be able to access the same input and output streams that are used by Mathematica
itself. In some cases, this may be what you want. But particularly if you are using Mathematica  with a front end, this
can cause considerable trouble. 

!command intercept a line of  Mathematica 
input, and run it as an external command

Shell escapes in Mathematica. 

If you use Mathematica  with a text-based interface, there is usually a special mechanism for executing external com-
mands. With such an interface, Mathematica takes any line of input that starts with an exclamation point, and executes
the text on the remainder of the line as an external command. 

The  way  Mathematica  uses  !command  is  typical  of  the  way  “shell  escapes”  work  in  programs  running  under  the
Unix operating system. In most versions of Mathematica, you will be able to start an interactive shell from Mathemat-
ica simply by typing a single exclamation point on its own on a line. 

This line is taken as a “shell  escape”,  and executes the Unix command date. 

In[4]:= !date

Tue Jun 10 21:09:52 CDT 2003

Out[4]= 0

RunThrough@" command ",  expr D run  command , using  expr 
as input, and reading the output back into  Mathematica

Running Mathematica expressions through external programs. 

As discussed  above,  <<  and >>  cannot  be  used  to  both  send and  receive  data  from an external  program at  the same
time. Nevertheless, by using temporary files, you can effectively both send and receive data from an external program
while still using unstructured communication. 

The  function  RunThrough  writes  the  text  of  an  expression  to  a  temporary  file,  then  feeds  this  file  as  input  to  an
external program, and captures the output as input to Mathematica. Note that in RunThrough, like Run, you should
not preface the names of external commands with exclamation points. 
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This feeds the expression 789 to the external program cat, which in this case simply echoes the text of the expression. The output 
from cat is then read back into Mathematica. 

In[5]:= RunThrough["cat", 789]

Out[5]= 789

2.12.3 Advanced Topic: Streams and Low-Level Input and Output

Files  and  pipes  are  both  examples  of  general  Mathematica  objects  known  as  streams.  A  stream in  Mathematica  is  a
source of input or output. There are many operations that you can perform on streams. 

You  can  think  of  >>  and  <<  as  “high-level”  Mathematica  input-output  functions.  They  are  based  on  a  set  of
lower-level input-output  primitives that work directly with streams. By using these primitives, you can exercise more
control over exactly how Mathematica does input and output. You will often need to do this, for example, if you write
Mathematica programs which store and retrieve intermediate data from files or pipes. 

The basic low-level scheme for writing output to a stream in Mathematica is as follows. First, you call OpenWrite or
OpenAppend to “open  the stream”,  telling Mathematica that you want to write output to a particular file or external
program, and in what form the output should be written. Having opened a stream, you can then call Write or Write
String  to  write  a  sequence  of  expressions  or  strings  to  the  stream.  When  you  have  finished,  you  call  Close  to
“close  the stream”.  

" name " a file, specified by name
"! name " a command, specified by name

InputStream@" name ",  n D an input stream
OutputStream@" name ",  n D an output stream

Streams in Mathematica. 

When you open a file or a pipe, Mathematica creates a “stream  object”  that specifies the open stream associated with
the  file  or  pipe.  In  general,  the  stream object  contains  the  name of  the  file  or  the  external  command used  in  a  pipe,
together with a unique number. 

The  reason  that  the  stream object  needs  to  include  a  unique  number  is  that  in  general  you  can  have  several  streams
connected to the same file or external program at the same time. For example, you may start several different instances
of the same external program, each connected to a different stream. 

Nevertheless, when you have opened a stream, you can still refer to it using a simple file name or external command
name so long as there is only one stream associated with this object. 

This opens an output stream to the file tmp. 

In[1]:= stmp = OpenWrite["tmp"]

Out[1]= OutputStream@tmp, 20D

This writes a sequence of expressions to the file. 

In[2]:= Write[stmp, a, b, c]
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Since you only have one stream associated with file tmp, you can refer to it simply by giving the name of the file. 

In[3]:= Write["tmp", x]

This closes the stream. 

In[4]:= Close[stmp]

Out[4]= tmp

Here is what was written to the file. 

In[5]:= !!tmp

"abc
x"

OpenWrite@" file "D open an output stream to a file,
wiping out the previous contents of the file

OpenAppend@" file "D open an output stream to a
file, appending to what was already in the file

OpenWrite@"! command "D open an output stream to an external command
Write@ stream,  expr1,  expr2, … D write a sequence of expressions to a

stream, ending the output with a newline Hline feedL
WriteString@ 

stream,  str1,  str2, … D 

write a sequence of character
strings to a stream, with no extra newlines

Display@ stream,  graphics D write graphics or sound output to a stream, in PostScript form
Close@ stream D tell  Mathematica that you are finished with a stream

Low-level output functions. 

When  you  call  Write[stream,  expr],  it  writes  an  expression  to  the  specified  stream.  The  default  is  to  write  the
expression in Mathematica  input  form. If  you call  Write  with a sequence of  expressions,  it  will  write these expres-
sions one after another to the stream. In general, it leaves no space between the successive expressions. However, when
it has finished writing all the expressions, Write always ends its output with a newline. 

This re-opens the file tmp. 

In[6]:= stmp = OpenWrite["tmp"]

Out[6]= OutputStream@tmp, 21D

This writes a sequence of expressions to the file, then closes the file. 

In[7]:= Write[stmp, a^2, 1 + b^2]; Write[stmp, c^3]; Close[stmp]

Out[7]= tmp

All the expressions are written in input form. The expressions from a single Write are put on the same line. 

In[8]:= !!tmp

"a^21 + b^2
c^3"
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Write provides a way of writing out complete Mathematica expressions. Sometimes, however, you may want to write
out less structured data. WriteString allows you to write out any character string. Unlike Write, WriteString
adds no newlines or other characters. 

This opens the stream. 

In[9]:= stmp = OpenWrite["tmp"]

Out[9]= OutputStream@tmp, 22D

This writes two strings to the stream. 

In[10]:= WriteString[stmp, "Arbitrary output.\n", "More output."]

This writes another string, then closes the stream. 

In[11]:= WriteString[stmp, " Second line.\n"]; Close[stmp]

Out[11]= tmp

Here are the contents of the file. The strings were written exactly as specified, including only the newlines that were explicitly 
given. 

In[12]:= !!tmp

"Arbitrary output.
More output.  Second line."

Write@ 8  stream1,  
stream2, … <,  expr1, … D 

write expressions to a list of streams

WriteString@ 8  stream1,
 stream2, … <,  str1, … D 

write strings to a list of streams

Writing output to lists of streams. 

An important feature of the functions Write  and WriteString  is that they allow you to write output not just to a
single stream, but also to a list of streams. 

In  using  Mathematica,  it  is  often  convenient  to  define  a  channel  which  consists  of  a  list  of  streams.  You  can  then
simply tell Mathematica to write to the channel, and have it automatically write the same object to several streams. 

In a standard interactive Mathematica session, there are several output channels that are usually defined. These specify
where particular kinds of output should be sent. Thus, for example, $Output specifies where standard output should
go,  while  $Messages  specifies  where  messages  should  go.  The  function  Print  then  works  essentially  by  calling
Write  with  the  $Output  channel.  Message  works  in  the  same  way  by  calling  Write  with  the  $Messages
channel. Section 2.14.1 lists the channels used in a typical Mathematica session. 

Note that  when  you run Mathematica  through MathLink,  a  different  approach  is  usually  used.  All  output  is  typically
written to a single MathLink link, but each piece of output appears in a “packet”  which indicates what type it is. 

In  most  cases,  the  names  of  files  or  external  commands  that  you  use  in  Mathematica  correspond  exactly  with  those
used  by  your  computer's  operating  system.  On  some  systems,  however,  Mathematica  supports  various  streams  with
special names. 
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"stdout" standard output
"stderr" standard error

Special streams used on some computer systems. 

The special stream "stdout" allows you to give output to the “standard  output”  provided by the operating system.
Note however that you can use this stream only with simple text-based interfaces to Mathematica.  If your interaction
with  Mathematica  is  more  complicated,  then  this  stream will  not  work,  and  trying  to  use  it  may  cause  considerable
trouble. 

option name default value 

FormatType InputForm the default output format to use
PageWidth 78 the width of the page in characters
NumberMarks $NumberMarks whether to include  ` 

marks in approximate numbers
CharacterEncoding $CharacterEnc

oding 

encoding to be used for special characters

Some options for output streams. 

You  can  associate  a  number  of  options  with  output  streams.  You  can  specify  these  options  when  you  first  open  a
stream using OpenWrite or OpenAppend. 

This opens a stream, specifying that the default output format used should be OutputForm. 

In[13]:= stmp = OpenWrite["tmp", FormatType -> OutputForm]

Out[13]= OutputStream@tmp, 23D

This writes expressions to the stream, then closes the stream. 

In[14]:= Write[stmp, x^2 + y^2, " ", z^2]; Close[stmp]

Out[14]= tmp

The expressions were written to the stream in OutputForm. 

In[15]:= !!tmp

" 2    2       2
x  + y       z"

Note that you can always override the output format specified for a particular stream by wrapping a particular expres-
sion you write to the stream with an explicit Mathematica format directive, such as OutputForm or TeXForm. 

The option PageWidth gives the width of the page available for textual output from Mathematica. All lines of output
are broken so that they fit in this width. If you do not want any lines to be broken, you can set PageWidth -> Infin
ity.  Usually,  however,  you will  want to set PageWidth  to the value appropriate  for  your particular  output  device.
On many systems, you will have to run an external program to find out what this value is. Using SetOptions, you
can  make  the  default  rule  for  PageWidth  be,  for  example,  PageWidth  :>  <<"!devicewidth",  so  that  an
external program is run automatically to find the value of the option. 
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This opens a stream, specifying that the page width is 20 characters. 

In[16]:= stmp = OpenWrite["tmp", PageWidth -> 20]

Out[16]= OutputStream@tmp, 24D

This writes out an expression, then closes the stream. 

In[17]:= Write[stmp, Expand[(1 + x)^5]]; Close[stmp]

Out[17]= tmp

The lines in the expression written out are all broken so as to be at most 20 characters long. 

In[18]:= !!tmp

"1 + 5*x + 10*x^2 + 
 10*x^3 + 5*x^4 + 
 x^5"

The option CharacterEncoding allows you to specify a character encoding that will be used for all strings contain-
ing special  characters  which  are  sent  to  a  particular  output  stream, whether  by  Write  or  WriteString.  You will
typically  need  to  use  CharacterEncoding  if  you  want  to  modify  an  international  character  set,  or  prevent  a
particular output device from receiving characters that it cannot handle. 

Options@ stream D find the options that have been set for a stream
SetOptions@ stream,
 opt1   −>  val1, … D 

reset options for an open stream

Manipulating options of streams. 

This opens a stream with the default settings for options. 

In[19]:= stmp = OpenWrite["tmp"]

Out[19]= OutputStream@tmp, 25D

This changes the FormatType option for the open stream. 

In[20]:= SetOptions[stmp, FormatType -> TeXForm];

Options shows the options you have set for the open stream. 

In[21]:= Options[stmp]

Out[21]= 8DOSTextFormat → True, FormatType → TeXForm,
PageWidth → 78, PageHeight → 22, TotalWidth → ∞, TotalHeight → ∞,
CharacterEncoding ASCII, NumberMarks $NumberMarks<

This closes the stream again. 

In[22]:= Close[stmp]

Out[22]= tmp
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Options@$OutputD find the options set for all streams in the channel  $Output 

SetOptions@$Output, 

 opt1   −>  val1, … D 

set options for all streams in the channel  $Output 

Manipulating options for the standard output channel. 

At every point in your session, Mathematica  maintains a list Streams[ ] of all the input and output streams that are
currently open, together with their options. In some cases, you may find it useful to look at this list directly. Mathemat-
ica will not, however, allow you to modify the list, except indirectly through OpenRead and so on. 

2.12.4 Naming and Finding Files

The  precise  details  of  the  naming  of  files  differ  from  one  computer  system  to  another.  Nevertheless,  Mathematica
provides some fairly general mechanisms that work on all systems. 

As mentioned in Section 1.11.2, Mathematica  assumes that all your files are arranged in a hierarchy of directories. To
find a particular file, Mathematica  must know both what the name of the file is, and what sequence of directories it is
in. 

At any given time, however,  you have a current  working directory,  and you can refer  to  files or  other  directories by
specifying where they are relative to this directory. Typically you can refer to files or directories that are actually in this
directory simply by giving their names, with no directory information. 

Directory@  D your current working directory
SetDirectory@" dir "D set your current working directory
ResetDirectory@  D revert to your previous working directory

Manipulating directories. 

This gives a string representing your current working directory. 

In[1]:= Directory[ ]

Out[1]= /users/sw

This sets your current working directory to be the Packages subdirectory. 

In[2]:= SetDirectory["Packages"]

Out[2]= /users/sw/Packages

Now your current working directory is different. 

In[3]:= Directory[ ]

Out[3]= /users/sw/Packages

This reverts to your previous working directory. 

In[4]:= ResetDirectory[ ]

Out[4]= /users/sw
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When you call SetDirectory, you can give any directory name that is recognized by your operating system. Thus,
for  example,  on  Unix-based  systems,  you  can  specify  a  directory  one  level  up  in  the  directory  hierarchy  using  the
notation .., and you can specify your “home”  directory as ~. 

Whenever  you  go  to  a  new  directory  using  SetDirectory,  Mathematica  always  remembers  what  the  previous
directory was. You can return to this previous directory using ResetDirectory. In general, Mathematica maintains
a stack of directories, given by DirectoryStack[ ]. Every time you call SetDirectory, it adds a new directory
to the stack, and every time you call ResetDirectory it removes a directory from the stack. 

ParentDirectory@  D the parent of your current working directory
$InitialDirectory the initial directory when  Mathematica was started

$HomeDirectory your home directory, if this is defined
$BaseDirectory the base directory for system-wide files to be loaded by  

Mathematica 
$UserBaseDirectory the base directory for user-specific files to be loaded by  

Mathematica 
$InstallationDirectory the top-level directory in which your  

Mathematica installation resides

Special directories. 

Whenever you ask for a particular file, Mathematica  in general goes through several steps to try and find the file you
want. The first step is to use whatever standard mechanisms exist in your operating system or shell. 

Mathematica scans the full name you give for a file, and looks to see whether it contains any of the “metacharacters”
*, $, ~, ?, [, ", î and '.  If it finds such characters, then it passes the full name to your operating system or shell for
interpretation. This means that if you are using a Unix-based system, then constructions like name* and $VAR will be
expanded at this point. But in general, Mathematica takes whatever was returned by your operating system or shell, and
treats this as the full file name. 

For output files, this is the end of the processing that Mathematica does. If Mathematica cannot find a unique file with
the name you specified, then it will proceed to create the file. 

If  you are trying to get  input  from a file,  however,  then there is  another  round of  processing that  Mathematica  does.
What happens is that Mathematica  looks at the value of the Path  option for the function you are using to determine
the names of  directories relative to which it  should search for  the file. The default  setting for the Path  option is the
global variable $Path. 

Get@" file ",  Path  −> 

 8  " dir1  ",  " dir2  ",  … <  D 

get a file, searching for it relative to the directories  diri  

$Path default list of directories relative to which to search for input files

Search path for files. 

In general, the global variable $Path is defined to be a list of strings, with each string representing a directory. Every
time you ask for  an input  file,  what Mathematica  effectively does is  temporarily to make each of  these directories in
turn your current working directory, and then from that directory to try and find the file you have requested. 

Here is a typical setting for $Path. The current directory (.) and your home directory (~) are listed first. 

In[5]:= $Path

Out[5]= {., ~, /users/math/bin, /users/math/Packages}
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FileNames@  D list all files in your current working directory
FileNames@" form "D list all files in your current working

directory whose names match the string pattern  form 
FileNames@ 8  " 

form1  ",  " form2  ",  … <  D 

list all files whose names match any of the  formi  

FileNames@ forms,  
8  " dir1  ",  " dir2  ",  … <  D 

give the full names of all files whose names match  
forms in any of the directories  diri  

FileNames@ forms,  dirs,  n D include files that are in subdirectories up to  n levels down
FileNames@ 

forms,  dirs,  InfinityD 

include files in all subdirectories

FileNames@ forms,
 $Path,  InfinityD 

give all files whose names match  forms 
in any subdirectory of the directories in  $Path 

Getting lists of files in particular directories. 

Here is a list of all files in the current working directory whose names end with .m. 

In[6]:= FileNames["*.m"]

Out[6]= {alpha.m, control.m, signals.m, test.m}

This lists files whose names start with a in the current directory, and in subdirectories with names that start with P. 

In[7]:= FileNames["a*", {".", "P*"}]

Out[7]= {alpha.m, Packages/astrodata, Packages/astro.m,

  Previous/atmp}

FileNames  returns  a  list  of  strings  corresponding  to  file  names.  When  it  returns  a  file  that  is  not  in  your  current
directory,  it  gives  the  name  of  the  file  relative  to  the  current  directory.  Note  that  all  names  are  given  in  the  format
appropriate for the particular computer system on which they were generated. 

DirectoryName@" file "D extract the directory name from a file name
ToFileName@" 

directory ",  " name "D 

assemble a full file name from a directory name and a file name

ParentDirectory@" directory "D give the parent of a directory
ToFileName@ 8  " dir1  
",  " dir2  ",  … <,  " name "D 

assemble a full file name from a hierarchy of directory names

ToFileName@ 8  " 

dir1  ",  " dir2  ",  … <  D 

assemble a single directory
name from a hierarchy of directory names

Manipulating file names. 

You should realize that different computer systems may give file names in different ways. Thus, for example, Windows
systems  typically  give  names  in  the  form  dir:îdirî#dirî#name,  Unix  systems  in  the  form  dir/dir/name  and
Macintosh  systems in  the  form :dir:dir:name.  The function  ToFileName  assembles file  names in  the  appropriate
way for the particular computer system you are using.  
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This gives the directory portion of the file name. 

In[8]:= DirectoryName["Packages/Math/test.m"]

Out[8]= PackagesêMathê

This constructs the full name of another file in the same directory as test.m. 

In[9]:= ToFileName[%, "abc.m"]

Out[9]= PackagesêMathêabc.m

If  you  want  to  set  up  a  collection  of  related  files,  it  is  often  convenient  to  be  able  to  refer  to  one  file  when  you  are
reading another one. The global variable $Input gives the name of the file from which input is currently being taken.
Using DirectoryName and ToFileName you can then conveniently specify the names of other related files.  

$Input the name of the file or stream
from which input is currently being taken

Finding out how to refer to a file currently being read by Mathematica.

2.12.5 Files for Packages

When you create or use Mathematica packages, you will often want to refer to files in a system-independent way. You
can use contexts to do this. 

The basic idea is that on every computer system there is a convention about how files corresponding to Mathematica
contexts should be named. Then,  when you refer  to  a file using a context,  the particular  version of  Mathematica  you
are using converts the context name to the file name appropriate for the computer system you are on. 

<< context ` read in the file corresponding to the specified context

Using contexts to specify files. 

This reads in one of the standard packages that come with Mathematica. 

In[1]:= <<Graphics`Colors`

name .mx file in  DumpSave format
name .mxê$SystemIDê name .mx file in  DumpSave format for your computer system

name .m file in  Mathematica source format
name êinit.m initialization file for a particular directory

dir ê… files in other directories specified by  $Path 

The typical sequence of files looked for by <<name`. 

Mathematica is set up so that <<name` will automatically try to load the appropriate version of a file. It will first try to
load a name.mx  file  that  is  optimized for  your  particular  computer system. If  it  finds no such file,  then it  will try to
load a name.m file containing ordinary system-independent Mathematica input. 

If name is a directory, then Mathematica will try to load the initialization file init.m in that directory. The purpose of
the init.m file is to provide a convenient way to set up Mathematica packages that involve many separate files. The
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idea  is  to  allow  you  to  give  just  the  command <<name`,  but  then  to  load  init.m  to  initialize  the  whole  package,
reading in whatever other files are necessary.  

This reads in the file Graphics/init.m, which initializes all standard Mathematica graphics packages. 

In[2]:= <<Graphics`

2.12.6 Manipulating Files and Directories

CopyFile@" file1  ",  " file2  "D copy  file1  to  file2  
RenameFile@" file1  ",  " file2  "D give  file1  the name  file2  

DeleteFile@" file "D delete a file
FileByteCount@" file "D give the number of bytes in a file

FileDate@" file "D give the modification date for a file
SetFileDate@" file "D set the modification date for a file to be the current date

FileType@" file "D give the type of a file as  File ,  Directory or  None 

Functions for manipulating files. 

Different operating systems have different commands for manipulating files. Mathematica  provides a simple set of file
manipulation functions, intended to work in the same way under all operating systems. 

Notice that CopyFile  and RenameFile  give the final  file the same modification date as the original  one.  File
Date returns modification dates in the 8year, month, day, hour, minute, second<  format used by Date. 

CreateDirectory@" name "D create a new directory
DeleteDirectory@" name "D delete an empty directory
DeleteDirectory@" name ", 

 DeleteContents  −>  TrueD 

delete a directory and all files and directories it contains

RenameDirectory@" 

name1  ",  " name2  "D 
rename a directory

CopyDirectory@" 

name1  ",  " name2  "D 
copy a directory and all the files in it

Functions for manipulating directories. 

2.12.7 Importing and Exporting Files

Import@" file ",  "List"D import a one-dimensional list of data from a file
Export@" file ",  list,  "List"D export  list to a file as a one-dimensional list of data

Import@" file ",  "Table"D import a two-dimensional table of data from a file
Export@" file ",  list,  "Table"D export  list to a file as a two-dimensional table of data

Import@" file ",  "CSV"D import data in comma-separated format
Export@" file ",  list,  "CSV"D export data in comma-separated format

Importing and exporting lists and tables of data. 
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This exports a list of data to the file out1.dat. 

In[1]:= Export["out1.dat", {6.7, 8.2, -5.3}, "List"]

Out[1]= out1.dat

Here are the contents of the file. 

In[2]:= !!out1.dat

Out[2]= 6.7
8.2
−5.3

This imports the contents back into Mathematica. 

In[3]:= Import["out1.dat", "List"]

Out[3]= 86.7, 8.2, −5.3<

If  you  want  to  use  data  purely  within  Mathematica,  then  the  best  way  to  keep  it  in  a  file  is  usually  as  a  complete
Mathematica  expression,  with all  its structure preserved,  as discussed in Section 2.12.1.  But if  you want  to exchange
data with other programs, it is often more convenient to have the data in a simple list or table format. 

This exports a two-dimensional array of data. 

In[4]:= Export["out2.dat", {{5.6 10^12, 7.2 10^12}, {3, 5}}, "Table"]

Out[4]= out2.dat

When necessary, numbers are written in C or Fortran-like “E”  notation. 

In[5]:= !!out2.dat

"5.6e12   7.2e12
3   5"

This imports the array back into Mathematica. 

In[6]:= Import["out2.dat", "Table"]

Out[6]= 885.6× 1012, 7.2×1012<, 83, 5<<

If  you  have  a  file  in  which  each  line  consists  of  a  single  number,  then  you  can  use  Import["file",  "List"]  to
import the contents of the file as a list of numbers. If each line consists of a sequence of numbers separated by tabs or
spaces,  then Import["file",  "Table"]  will  yield a  list  of  lists  of  numbers.  If  the file  contains  items that  are not
numbers, then these are returned as Mathematica strings. 

This exports a mixture of textual and numerical data. 

In[7]:= Export["out3.dat", {{"first", 3.4}, {"second", 7.8}}]

Out[7]= out3.dat
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Here is the exported data. 

In[8]:= !!out3.dat

"first   3.4
second   7.8"

This imports the data back into Mathematica. 

In[9]:= Import["out3.dat", "Table"]

Out[9]= 88first, 3.4<, 8second, 7.8<<

With InputForm, you can explicitly see the strings. 

In[10]:= InputForm[%]

Out[10]//InputForm= 

{{"first", 3.4}, {"second", 7.8}}

Import@" file ",  "List"D treat each line as a separate numerical or other data item
Import@" file ",  "Table"D treat each element on each

line as a separate numerical or other data item
Import@" file ",  "Text"D treat the whole file as a single string of text
Import@" file ",  "Lines"D treat each line as a string of text
Import@" file ",  "Words"D treat each separated word as a string of text

Importing files in different formats. 

This creates a file with two lines of text. 

In[11]:= Export["out4.dat", {"The first line.", "The second line."}, "Lines"]

Out[11]= out4.dat

Here are the contents of the file. 

In[12]:= !!out4.dat

"The first line.
The second line."

This imports the whole file as a single string. 

In[13]:= Import["out4.dat", "Text"]//InputForm

Out[13]//InputForm= 

"The first line.\nThe second line."

This imports the file as a list of lines of text. 

In[14]:= Import["out4.dat", "Lines"]//InputForm

Out[14]//InputForm= 

{"The first line.", "The second line."}
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This imports the file as a list of words separated by white space. 

In[15]:= Import["out4.dat", "Words"]//InputForm

Out[15]//InputForm= 

{"The", "first", "line.", "The", "second",   "line."}

2.12.8 Reading Textual Data

With  <<,  you  can  read  files  which  contain  Mathematica  expressions  given  in  input  form.  Sometimes,  however,  you
may  instead  need  to  read  files  of  data  in  other  formats.  For  example,  you  may  have  data  generated  by  an  external
program which consists of a sequence of numbers separated by spaces. This data cannot be read directly as Mathemat-
ica input. However, the function ReadList can take such data from a file or input stream, and convert it to a Mathe-
matica list. 

ReadList@" file ",  NumberD read a sequence of numbers from a file, and put them in a  
Mathematica list

Reading numbers from a file. 

Here is a file of numbers. 

In[1]:= !!numbers

"11.1   22.2    33.3
44.4   55.5    66.6"

This reads all the numbers in the file, and returns a list of them. 

In[2]:= ReadList["numbers", Number]

Out[2]= 811.1, 22.2, 33.3, 44.4, 55.5, 66.6<

ReadList@" file ", 

 8  Number,  Number <  D 
read numbers from a file,
putting each successive pair into a separate list

ReadList@" file ",  
Table@Number,  8  n <  DD 

put each successive block of  n numbers in a separate list

ReadList@" file ",  Number, 

 RecordLists  −>  TrueD 

put all the numbers on each line of the file into a separate list

Reading blocks of numbers. 

This puts each successive pair of numbers from the file into a separate list. 

In[3]:= ReadList["numbers", {Number, Number}]

Out[3]= 8811.1, 22.2<, 833.3, 44.4<, 855.5, 66.6<<

This makes each line in the file into a separate list. 

In[4]:= ReadList["numbers", Number, RecordLists -> True]

Out[4]= 8811.1, 22.2, 33.3<, 844.4, 55.5, 66.6<<
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ReadList  can  handle  numbers  which  are  given  in  Fortran-like “ E”  notation.  Thus,  for  example,  ReadList  will
read 2.5E+5 as 2.5ä105 . Note that ReadList can handle numbers with any number of digits of precision. 

Here is a file containing numbers in Fortran-like “ E”  notation. 

In[5]:= !!bignum

"4.5E-5      7.8E4
2.5E2      -8.9"

ReadList can handle numbers in this form. 

In[6]:= ReadList["bignum", Number]

Out[6]= 80.000045, 78000., 250., −8.9<

ReadList@" file ",  type D read a sequence of objects of a particular type
ReadList@" file ",  type,  n D read at most  n objects

Reading objects of various types. 

ReadList can read not only numbers, but also a variety of other types of object. Each type of object is specified by a
symbol such as Number. 

Here is a file containing text. 

In[7]:= !!strings

"Here is text. 
And more text."

This produces a list of the characters in the file, each given as a one-character string. 

In[8]:= ReadList["strings", Character]

Out[8]= 8H, e, r, e, , i, s, , t, e, x, t, ., ,
, A, n, d, , m, o, r, e, , t, e, x, t, .,
<

Here are the integer codes corresponding to each of the bytes in the file. 

In[9]:= ReadList["strings", Byte]

Out[9]= 872, 101, 114, 101, 32, 105, 115, 32, 116, 101, 120, 116, 46, 32,
10, 65, 110, 100, 32, 109, 111, 114, 101, 32, 116, 101, 120, 116, 46, 10<

This puts the data from each line in the file into a separate list. 

In[10]:= ReadList["strings", Byte, RecordLists -> True]

Out[10]= 8872, 101, 114, 101, 32, 105, 115, 32, 116, 101, 120, 116, 46, 32<,
865, 110, 100, 32, 109, 111, 114, 101, 32, 116, 101, 120, 116, 46<<
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Byte single byte of data, returned as an integer
Character single character, returned as a one-character string

Real approximate number in Fortran-like notation
Number exact or approximate number in Fortran-like notation
Word sequence of characters delimited by word separators

Record sequence of characters delimited by record separators
String string terminated by a newline

Expression complete  Mathematica expression
Hold@ExpressionD complete  Mathematica expression, returned inside  Hold 

Types of objects to read.

This returns a list of the “words”  in the file strings. 

In[11]:= ReadList["strings", Word]

Out[11]= 8Here, is, text., And, more, text.<

ReadList allows you to read “words”  from a file. It considers a “word”  to be any sequence of characters delim-
ited by word separators.  You can set the option WordSeparators  to specify the strings you want to treat as word
separators. The default is to include spaces and tabs, but not to include, for example, standard punctuation characters.
Note that in all cases successive words can be separated by any number of word separators. These separators are never
taken to be part of the actual words returned by ReadList. 

option name default value 

RecordLists False whether to make a separate
list for the objects in each record

RecordSeparators 8"în"< separators for records
WordSeparators 8"  ",  "ît"< separators for words
NullRecords False whether to keep zero-length records
NullWords False whether to keep zero-length words
TokenWords 8< words to take as tokens

Options for ReadList. 

This reads the text in the file strings as a sequence of words, using the letter e and . as word separators. 

In[12]:= ReadList["strings", Word, WordSeparators -> {"e", "."}]

Out[12]= 8H, r, is t, xt, , And mor, t, xt<

Mathematica  considers  any  data  file  to  consist  of  a  sequence  of  records.  By  default,  each  line  is  considered  to  be  a
separate record. In general, you can set the option RecordSeparators to give a list of separators for records. Note
that  words  can  never  cross  record  separators.  As  with  word  separators,  any  number  of  record  separators  can  exist
between successive records, and these separators are not considered to be part of the records themselves. 

By default, each line of the file is considered to be a record. 

In[13]:= ReadList["strings", Record] // InputForm

Out[13]//InputForm= 

{"Here is text. ", "And more text."}
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Here is a file containing three “sentences”  ending with periods. 

In[14]:= !!sentences

"Here is text. And more.
And a second line."

This allows both periods and newlines as record separators. 

In[15]:= ReadList["sentences", Record, RecordSeparators -> {".", "\n"}]

Out[15]= 8Here is text, And more, And a second line<

This puts the words in each “sentence”  into a separate list. 

In[16]:= ReadList["sentences", Word, RecordLists -> True, RecordSeparators -> {".", "\n"}]

Out[16]= 88Here, is, text<, 8And, more<, 8And, a, second, line<<

ReadList@" file ",  Record,  
RecordSeparators  −>  8   <  D 

read the whole of a file as a single string

ReadList@" file ",  Record, 

 RecordSeparators  −>  8  8  " 

lsep1  ", … <,  8  " rsep1  ", … <  <  D 

make a list of those parts of a file which lie between the  
lsepi  and the  rsepi  

Settings for the RecordSeparators option. 

Here is a file containing some text. 

In[17]:= !!source

"f[x] (: function f :)
g[x] (: function g :)"

This reads all the text in the file source, and returns it as a single string. 

In[18]:= InputForm[ ReadList["source", Record, RecordSeparators -> { }] ]

Out[18]//InputForm= 

{"f[x] (: function f :)\ng[x] (: function g :)\n"}

This gives a list of the parts of the file that lie between (: and :) separators. 

In[19]:= ReadList["source", Record, RecordSeparators -> {{"(: "}, {" :)"}}]

Out[19]= 8function f, function g<

By choosing appropriate separators, you can pick out specific parts of files. 

In[20]:= ReadList[ "source", Record, RecordSeparators -> {{"(: function ", "["}, {" :)", 
"]"}} ]

Out[20]= 8x, f, x, g<

Mathematica  usually  allows  any  number  of  appropriate  separators  to  appear  between  successive  records  or  words.
Sometimes,  however,  when  several  separators  are  present,  you  may  want  to  assume  that  a  “null  record”  or  “null
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word”  appears  between each pair  of  adjacent  separators.  You can do this  by setting the options NullRecords  ->
True or NullWords -> True. 

Here is a file containing “words”  separated by colons. 

In[21]:= !!words

"first:second::fourth:::seventh"

Here the repeated colons are treated as single separators. 

In[22]:= ReadList["words", Word, WordSeparators -> {":"}]

Out[22]= 8first, second, fourth, seventh<

Now repeated colons are taken to have null words in between. 

In[23]:= ReadList["words", Word, WordSeparators -> {":"}, NullWords -> True]

Out[23]= 8first, second, , fourth, , , seventh<

In  most  cases,  you  want  words  to  be  delimited by  separators  which  are  not  themselves  considered  as  words.  Some-
times,  however,  it  is  convenient  to  allow  words  to  be  delimited  by  special  “token  words”,  which  are  themselves
words. You can give a list of such token words as a setting for the option TokenWords. 

Here is some text. 

In[24]:= !!language

"22*a*b+56*c+13*a*d"

This reads the text, using the specified token words to delimit words in the text. 

In[25]:= ReadList["language", Word, TokenWords -> {"+", "*"}]

Out[25]= 822, ∗, a, ∗, b, +, 56, ∗, c, +, 13, ∗, a, ∗, d<

You  can  use  ReadList  to  read  Mathematica  expressions  from  files.  In  general,  each  expression  must  end  with  a
newline, although a single expression may go on for several lines. 

Here is a file containing text that can be used as Mathematica input. 

In[26]:= !!exprs

"x + y +
z
2^8"

This reads the text in exprs as Mathematica expressions. 

In[27]:= ReadList["exprs", Expression]

Out[27]= 8x + y + z, 256<
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This prevents the expressions from being evaluated. 

In[28]:= ReadList["exprs", Hold[Expression]]

Out[28]= 8Hold@x + y + zD, Hold@28D<

ReadList  can insert the objects it reads into any Mathematica  expression. The second argument to ReadList  can
consist of any expression containing symbols such as Number  and Word  specifying objects to read. Thus, for exam-
ple, ReadList["file", 8Number, Number<] inserts successive pairs of numbers that it reads into lists. Similarly,
ReadList["file", Hold[Expression]] puts expressions that it reads inside Hold. 

If ReadList reaches the end of your file before it has finished reading a particular set of objects you have asked for,
then it inserts the special symbol EndOfFile in place of the objects it has not yet read. 

Here is a file of numbers. 

In[29]:= !!numbers

"11.1   22.2    33.3
44.4   55.5    66.6"

The symbol EndOfFile appears in place of numbers that were needed after the end of the file was reached. 

In[30]:= ReadList["numbers", {Number, Number, Number, Number}]

Out[30]= 8811.1, 22.2, 33.3, 44.4<, 855.5, 66.6, EndOfFile, EndOfFile<<

ReadList@"! command ",  type D execute a command, and read its output
ReadList@ stream,  type D read any input stream

Reading from commands and streams. 

This executes the Unix command date, and reads its output as a string. 

In[31]:= ReadList["!date", String]

Out[31]= 8Tue Jun 10 21:09:55 CDT 2003<

OpenRead@" file "D open a file for reading
OpenRead@"! command "D open a pipe for reading

Read@ stream,  type D read an object of the specified type from a stream
Skip@ stream,  type D skip over an object of the specified type in an input stream

Skip@ stream,  type,  n D skip over  n objects of the specified type in an input stream
Close@ stream D close an input stream

Functions for reading from input streams. 

ReadList  allows you to read all  the data in a particular  file or  input  stream. Sometimes, however,  you want  to get
data a piece at a time, perhaps doing tests to find out what kind of data to expect next. 

When you read individual pieces of data from a file, Mathematica always remembers the “current  point”  that you are
at  in  the  file.  When  you  call  OpenRead,  Mathematica  sets  up  an  input  stream from a  file,  and  makes  your  current
point the beginning of the file. Every time you read an object from the file using Read, Mathematica sets your current
point  to  be  just  after  the  object  you  have  read.  Using  Skip,  you  can  advance  the  current  point  past  a  sequence  of
objects without actually reading the objects. 

Printed from the Mathematica Help Browser 25

©1988-2003 Wolfram Research, Inc. All rights reserved.



Here is a file of numbers. 

In[32]:= !!numbers

"11.1   22.2    33.3
44.4   55.5    66.6"

This opens an input stream from the file. 

In[33]:= snum = OpenRead["numbers"]

Out[33]= InputStream@numbers, 74D

This reads the first number from the file. 

In[34]:= Read[snum, Number]

Out[34]= 11.1

This reads the second pair of numbers. 

In[35]:= Read[snum, {Number, Number}]

Out[35]= 822.2, 33.3<

This skips the next number. 

In[36]:= Skip[snum, Number]

And this reads the remaining numbers. 

In[37]:= ReadList[snum, Number]

Out[37]= 855.5, 66.6<

This closes the input stream. 

In[38]:= Close[snum]

Out[38]= numbers

You can use the options WordSeparators and RecordSeparators in Read and Skip just as you do in Read
List. 

Note that if you try to read past the end of file, Read returns the symbol EndOfFile. 

2.12.9 Searching Files

FindList@" file ",  " text "D get a list of all the lines in the file that contain the specified text
FindList@" file ",  " text ",  n D get a list of the first  n lines that contain the specified text

FindList@" file ",  8  
" text1  ",  " text2  ",  … <  D 

get lines that contain any of the  texti  

Finding lines that contain specified text. 
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Here is a file containing some text. 

In[1]:= !!textfile

"Here is the first line of text.
And the second.
And the third. Here is the end."

This returns a list of all the lines in the file containing the text is. 

In[2]:= FindList["textfile", "is"]

Out[2]= 8Here is the first line of text., And the third. Here is the end.<

The text fourth appears nowhere in the file. 

In[3]:= FindList["textfile", "fourth"]

Out[3]= 8<

By default, FindList  scans successive lines of a file, and returns those lines which contain the text you specify. In
general,  however,  you  can  get  FindList  to  scan  successive  records,  and  return  complete  records  which  contain
specified text.  As in ReadList,  the option RecordSeparators  allows you to tell Mathematica  what strings you
want to consider as record separators. Note that by giving a pair of lists as the setting for RecordSeparators, you
can specify different left and right separators.  By doing this,  you can make FindList  search only for  text which is
between specific pairs of separators. 

This finds all “sentences”  ending with a period which contain And. 

In[4]:= FindList["textfile", "And", RecordSeparators -> {"."}]

Out[4]= 8
And the second,
And the third<

option name default value 

RecordSeparators 8"în"< separators for records
AnchoredSearch False whether to require the text searched

for to be at the beginning of a record
WordSeparators 8"  ",  "ît"< separators for words
WordSearch False whether to require that the

text searched for appear as a word
IgnoreCase False whether to treat lower-

and upper-case letters as equivalent

Options for FindList. 

This finds only the occurrence of Here which is at the beginning of a line in the file. 

In[5]:= FindList["textfile", "Here", AnchoredSearch -> True]

Out[5]= 8Here is the first line of text.<
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In  general,  FindList  finds  text  that  appears  anywhere  inside  a  record.  By  setting  the  option  WordSearch  ->
True,  however,  you  can  tell  FindList  to  require  that  the  text  it  is  looking  for  appears  as  a  separate  word  in  the
record. The option WordSeparators specifies the list of separators for words. 

The text th does appear in the file, but not as a word. As a result, the FindList fails. 

In[6]:= FindList["textfile", "th", WordSearch -> True]

Out[6]= 8<

FindList@ 8  " file1  ", 

 " file2  ",  … <,  " text "D 

search for occurrences of the text in any of the  filei  

Searching in multiple files. 

This searches for third in two copies of textfile. 

In[7]:= FindList[{"textfile", "textfile"}, "third"]

Out[7]= 8And the third. Here is the end., And the third. Here is the end.<

It is often useful to call FindList on lists of files generated by functions such as FileNames. 

FindList@"! command ", … D run an external command, and find text in its output

Finding text in the output from an external program. 

This runs the external Unix command date. 

In[8]:= !date

Tue Jun 10 21:09:55 CDT 2003

Out[8]= 0

This finds the time-of-day field in the date. 

In[9]:= FindList["!date", ":", RecordSeparators -> {" "}]

Out[9]= 821:09:55<

OpenRead@" file "D open a file for reading
OpenRead@"! command "D open a pipe for reading

Find@ stream,  text D find the next occurrence of  text 
Close@ stream D close an input stream

Finding successive occurrences of text. 

FindList  works  by  making  one  pass  through  a  particular  file,  looking  for  occurrences  of  the  text  you  specify.
Sometimes, however, you may want to search incrementally for successive occurrences of a piece of text. You can do
this using Find. 
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In order  to use Find,  you first  explicitly have to open an input  stream using OpenRead.  Then,  every time you call
Find  on  this  stream,  it  will  search  for  the  text  you  specify,  and  make  the  current  point  in  the  file  be  just  after  the
record it finds. As a result, you can call Find several times to find successive pieces of text. 

This opens an input stream for textfile. 

In[10]:= stext = OpenRead["textfile"]

Out[10]= InputStream@textfile, 85D

This finds the first line containing And. 

In[11]:= Find[stext, "And"]

Out[11]= And the second.

Calling Find again gives you the next line containing And. 

In[12]:= Find[stext, "And"]

Out[12]= And the third. Here is the end.

This closes the input stream. 

In[13]:= Close[stext]

Out[13]= textfile

Once you have an input stream, you can mix calls to Find, Skip and Read. If you ever call FindList  or Read
List, Mathematica will immediately read to the end of the input stream. 

This opens the input stream. 

In[14]:= stext = OpenRead["textfile"]

Out[14]= InputStream@textfile, 86D

This finds the first line which contains second, and leaves the current point in the file at the beginning of the next line. 

In[15]:= Find[stext, "second"]

Out[15]= And the second.

Read can then read the word that appears at the beginning of the line. 

In[16]:= Read[stext, Word]

Out[16]= And

This skips over the next three words. 

In[17]:= Skip[stext, Word, 3]
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Mathematica finds is in the remaining text, and prints the entire record as output. 

In[18]:= Find[stext, "is"]

Out[18]= And the third. Here is the end.

This closes the input stream. 

In[19]:= Close[stext]

Out[19]= textfile

StreamPosition@ stream D find the position of the current point in an open stream
SetStreamPosition@ stream,  n D set the position of the current point
SetStreamPosition@ stream,  0D set the current point to the beginning of a stream

SetStreamPosition@ 

stream,  InfinityD 

set the current point to the end of a stream

Finding and setting the current point in a stream. 

Functions like Read, Skip  and Find  usually operate on streams in an entirely sequential fashion. Each time one of
the functions is called, the current point in the stream moves on. 

Sometimes, you may need to know where  the current  point  in a stream is,  and be able to reset  it.  On most computer
systems, StreamPosition  returns  the position of  the current  point  as  an integer  giving the number of  bytes from
the beginning of the stream. 

This opens the stream. 

In[20]:= stext = OpenRead["textfile"]

Out[20]= InputStream@textfile, 87D

When you first open the file, the current point is at the beginning, and StreamPosition returns 0. 

In[21]:= StreamPosition[stext]

Out[21]= 0

This reads the first line in the file. 

In[22]:= Read[stext, Record]

Out[22]= Here is the first line of text.

Now the current point has advanced. 

In[23]:= StreamPosition[stext]

Out[23]= 31
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This sets the stream position back. 

In[24]:= SetStreamPosition[stext, 5]

Out[24]= 5

Now Read returns the remainder of the first line. 

In[25]:= Read[stext, Record]

Out[25]= is the first line of text.

This closes the stream. 

In[26]:= Close[stext]

Out[26]= textfile

2.12.10 Searching and Reading Strings

Functions  like  Read  and  Find  are  most  often  used  for  processing  text  and  data  from external  files.  In  some cases,
however,  you may find it  convenient  to use these same functions to process strings within Mathematica.  You can do
this by using the function StringToStream, which opens an input stream that takes characters not from an external
file, but instead from a Mathematica string. 

StringToStream@" string "D open an input stream for reading from a string
Close@ stream D close an input stream

Treating strings as input streams. 

This opens an input stream for reading from the string. 

In[1]:= str = StringToStream["A string of words."]

Out[1]= InputStream@String, 89D

This reads the first “word”  from the string. 

In[2]:= Read[str, Word]

Out[2]= A

This reads the remaining words from the string. 

In[3]:= ReadList[str, Word]

Out[3]= 8string, of, words.<

This closes the input stream. 

In[4]:= Close[str]

Out[4]= String
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Input streams associated with strings work just like those with files. At any given time, there is a current position in the
stream, which advances when you use functions like Read. The current position is given as the number of bytes from
the beginning  of  the string  by the function  StreamPosition[stream].  You can explicitly set  the current  position
using SetStreamPosition[stream, n]. 

Here is an input stream associated with a string. 

In[5]:= str = StringToStream["123 456 789"]

Out[5]= InputStream@String, 90D

The current position is initially 0 bytes from the beginning of the string. 

In[6]:= StreamPosition[str]

Out[6]= 0

This reads a number from the stream. 

In[7]:= Read[str, Number]

Out[7]= 123

The current position is now 3 bytes from the beginning of the string. 

In[8]:= StreamPosition[str]

Out[8]= 3

This sets the current position to be 1 byte from the beginning of the string. 

In[9]:= SetStreamPosition[str, 1]

Out[9]= 1

If you now read a number from the string, you get the 23 part of 123. 

In[10]:= Read[str, Number]

Out[10]= 23

This sets the current position to the end of the string. 

In[11]:= SetStreamPosition[str, Infinity]

Out[11]= 11

If you now try to read from the stream, you will always get EndOfFile. 

In[12]:= Read[str, Number]

Out[12]= EndOfFile
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This closes the stream. 

In[13]:= Close[str]

Out[13]= String

Particularly when you are processing large volumes of textual data, it is common to read fairly long strings into Mathe-
matica,  then  to  use  StringToStream  to  allow  further  processing  of  these  strings  within  Mathematica.  Once  you
have created an input stream using StringToStream, you can read and search the string using any of the functions
discussed for files above. 

This puts the whole contents of textfile into a string. 

In[14]:= s = First[ ReadList["textfile", Record, RecordSeparators -> {}] ]

Out[14]= Here is the first line of text.
And the second.
And the third. Here is the end.

This opens an input stream for the string. 

In[15]:= str = StringToStream[s]

Out[15]= InputStream@String, 92D

This gives the lines of text in the string that contain is. 

In[16]:= FindList[str, "is"]

Out[16]= 8Here is the first line of text., And the third. Here is the end.<

This resets the current position back to the beginning of the string. 

In[17]:= SetStreamPosition[str, 0]

Out[17]= 0

This finds the first occurrence of the in the string, and leaves the current point just after it. 

In[18]:= Find[str, "the", RecordSeparators -> {" "}]

Out[18]= the

This reads the “word”  which appears immediately after the. 

In[19]:= Read[str, Word]

Out[19]= first

This closes the input stream. 

In[20]:= Close[str]

Out[20]= String
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2.13 MathLink and External Program Communication

2.13.1 How MathLink Is Used

Most of this book has been concerned with how human users interact with Mathematica. MathLink  provides a mecha-
nism through which programs rather than human users can interact with Mathematica.

† Calling functions in an external program from within  Mathematica .
† Calling  Mathematica from within an external program.
† Setting up alternative front ends to  Mathematica .
† Exchanging data between  Mathematica and external programs.
† Exchanging data between concurrent  Mathematica processes.

Some typical uses of MathLink. 

MathLink  provides  a  general  interface  for  external  programs  to  communicate  with  Mathematica.  Many  standard
software systems now have MathLink compatibility either built in or available in add-on modules. 

In  addition,  the  MathLink  Developer  Kit  bundled  with  most  versions  of  Mathematica  provides  the  tools  you need to
create your own MathLink-compatible programs. 

Once you have a MathLink-compatible program, you can transparently establish a link between it and Mathematica. 

The link can either be on a single computer, or it can be over a network, potentially with a different type of computer at
each end. 

† Implementing inner loops in a low-level language.
† Handling large volumes of data external to  Mathematica .
† Sending  Mathematica graphics or other data for special processing.
† Connecting to a system with an existing user interface.

A few uses of MathLink-compatible programs. 

MathLink-compatible programs range from very simple to very complex. A minimal MathLink-compatible program is
just  a  few  lines  long.  But  it  is  also  possible  to  build  very  large  and  sophisticated  MathLink-compatible  programs.
Indeed, the Mathematica notebook front end is one example of a sophisticated MathLink-compatible program. 

†  MathLink is a mechanism for exchanging  Mathematica expressions between programs.

The basic idea of MathLink. 

Much  of  the  power  of  MathLink  comes  from  its  use  of  Mathematica  expressions.  The  basic  idea  is  that  MathLink
provides  a  way  to  exchange  Mathematica  expressions  between  programs,  and  such  expressions  can  represent  abso-
lutely any kind of data. 
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† An array of numbers.
† A collection of geometrical objects.
† A sequence of commands.
† A stream of text.
† Records in a database.
† The cells of a  Mathematica notebook.

A few examples of data represented by Mathematica expressions in MathLink. 

The MathLink library consists of a collection of routines that allow external programs to send and receive Mathematica
expressions.  

The  MathLink  Developer  Kit  provides  utilities  for  incorporating  these  routines  into  external  programs.  Utilities  are
included for a variety of languages, although in this chapter we discuss mainly the case of C. 

An important feature of the MathLink library is that it is completely platform independent: it can transparently use any
interprogram communication mechanism that exists on your computer system. 

2.13.2 Installing Existing MathLink-Compatible Programs

One of the most common uses of MathLink is to allow you to call functions in an external program from within Mathe-
matica. Once the external program has been set up, all you need do to be able to use it is to “install”  it in your current
Mathematica session. 

Install@" prog "D install a  MathLink -compatible external program
Uninstall@ link D uninstall the program

Setting up external programs with functions to be called from within Mathematica. 

This installs a MathLink-compatible external program called bitprog. 

In[1]:= Install["bitprog"]

Out[1]= LinkObject@.êbitprog, 4, 3D

BitShift is one of the functions inside bitprog. 

In[2]:= BitShift[111, 3]

Out[2]= 13

You can use it just as you would a function within Mathematica. 

In[3]:= Table[BitShift[111, i], {i, 30, 35}]

Out[3]= 80, 0, 111, 55, 27, 13<

When you have a package written in the Mathematica  language a single version will run unchanged on any computer
system. But external programs typically need to be compiled separately for every different type of computer. 

Mathematica has a convention of keeping versions of external programs in directories that are named after the types of
computers on which they will run. And assuming that this convention has been followed, Install["prog"] should
always install the version of prog appropriate for the particular kind of computer that you are currently using. 
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Install@"name`"D install a program found anywhere on  $Path 

Using context names to specify programs to install. 

When  you  ask  to  read  in  a  Mathematica  language  file  using  <<name`,  Mathematica  will  automatically  search  all
directories  in  the  list  $Path  in  order  to  find  a  file  with  the  appropriate  name.  Similarly,  if  you  use
Install["name`"]  Mathematica  will  automatically  search  all  directories  in  $Path  in  order  to  find  an  external
program with the name name.exe.  Install["name`"]  allows you to install programs that are stored in a central
directory without explicitly having to specify their location.    

2.13.3 Setting Up External Functions to Be Called from Mathematica

If you have a function defined in an external program, then what you need to do in order to make it possible to call the
function from within Mathematica is to add appropriate MathLink code that passes arguments to the function, and takes
back the results it produces. 

In simple cases, you can generate the necessary code just by giving an appropriate MathLink template for each external
function.   

:Begin:
:Function:      f
:Pattern:       f[x_Integer, y_Integer]
:Arguments:     {x, y}
:ArgumentTypes: {Integer, Integer}
:ReturnType:    Integer
:End:

A file f.tm containing a MathLink template for an external function f.

:Begin: begin the template for a particular function
:Function: the name of the function in the external program
:Pattern: the pattern to be defined to call the function

:Arguments: the arguments to the function
:ArgumentTypes: the types of the arguments to the function

:ReturnType: the type of the value returned by the function
:End: end the template for a particular function

:Evaluate: Mathematica input to evaluate when the function is installed

The elements of a MathLink template. 

Once you have constructed a MathLink  template for a particular external function, you have to combine this template
with the actual source code for the function. Assuming that the source code is written in the C programming language,
you  can  do  this  just  by  adding  a  line  to  include  the  standard  MathLink  header  file,  and  then  inserting  a  small  main
program. 

Include the standard MathLink header file. 

#include "mathlink.h"
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Here is the actual source code for the function f.

int f(int x, int y) 8
   return x+y;
<

This sets up the external program to be ready to take requests from Mathematica. 

int main(int argc, char *argv[]) 8
   return MLMain(argc, argv);
<

A file f.c containing C source code. 

Note that the form of main  required on different systems may be slightly different.  The release notes included in the
MathLink Developer Kit on your particular computer system should give the appropriate form. 

mcc preprocess and compile  MathLink source files
mprep preprocess  MathLink source files

Typical external programs for processing MathLink source files. 

MathLink  templates  are  conventionally  put  in  files  with  names  of  the  form  file.tm.  Such  files  can  also  contain  C
source code, interspersed between templates for different functions. 

Once you have set up the appropriate files, you then need to process the MathLink  template information, and compile
all of your source code. Typically you do this by running various external programs, but the details will depend on your
computer system. 

Under Unix, for example, the MathLink Developer Kit includes a program named mcc which will preprocess MathLink
templates  in  any  file  whose  name  ends  with  .tm,  and  then  call  cc  on  the  resulting  C  source  code.  mcc  will  pass
command-line options and other files directly to cc. 

This preprocesses f.tm, then compiles the resulting C source file together with the file f.c. 

mcc -o f.exe f.tm f.c

This installs the binary in the current Mathematica session. 

In[1]:= Install["f.exe"]

Out[1]= LinkObject@f.exe, 4, 4D

Now f[x, y] calls the external function f(int x, int y) and adds two integers together. 

In[2]:= f[6, 9]

Out[2]= 15
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The external program handles only machine integers, so this gives a peculiar result. 

In[3]:= f[2^31-1, 5]

Out[3]= −2147483644

On systems other than Unix, the MathLink Developer Kit typically includes a program named mprep, which you have
to call directly, giving as input all of the .tm files that you want to preprocess. mprep will generate C source code as
output, which you can then feed to a C compiler. 

Install@" prog "D install an external program
Uninstall@ link D uninstall an external program
Links@" prog "D show active links associated with  " prog " 

Links@  D show all active links
LinkPatterns@ link D show patterns that can be evaluated on a particular link

Handling links to external programs. 

This finds the link to the f.exe program. 

In[4]:= Links["f.exe"]

Out[4]= 8LinkObject@.êf.exe, 6, 4D<

This shows the Mathematica patterns that can be evaluated using the link. 

In[5]:= LinkPatterns[%[[1]]]

Out[5]= 8f@x_Integer, y_IntegerD<

Install sets up the actual function f to execute an appropriate ExternalCall function. 

In[6]:= ?f

Global`f

f@x_Integer, y_IntegerD :=

ExternalCall@LinkObject@.êf.exe, 6, 4D, CallPacket@0, 8x, y<DD

When a  MathLink  template file  is  processed,  two basic  things  are  done.  First,  the  :Pattern:  and  :Arguments:
specifications are used to generate a Mathematica  definition that calls an external function via MathLink. And second,
the :Function:, :ArgumentTypes: and :ReturnType: specifications are used to generate C source code that
calls your function within the external program. 

:Begin:

This gives the name of the actual C function to call in the external program.

:Function:      prog_add

This gives the Mathematica pattern for which a definition should be set up.

:Pattern:       SkewAdd[x_Integer, y_Integer:1]
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The values of the two list elements are the actual arguments to be passed to the external function. 

:Arguments:     8x, If[x > 1, y, y + x - 2]<

This specifies that the arguments should be passed as integers to the C function.

:ArgumentTypes: 8Integer, Integer<

This specifies that the return value from the C function will be an integer.

:ReturnType:    Integer

:End:

Both  the  :Pattern:  and  :Arguments:  specifications  in  a  MathLink  template  can  be  any  Mathematica  expres-
sions.  Whatever  you  give  as  the  :Arguments:  specification  will  be  evaluated  every  time  you  call  the  external
function. The result of the evaluation will be used as the list of arguments to pass to the function. 

Sometimes you may want to set up Mathematica expressions that should be evaluated not when an external function is
called, but instead only when the external function is first installed. 

You can do this  by inserting :Evaluate:  specifications in your MathLink  template. The expression  you give after
:Evaluate:  can go on for several lines: it is assumed to end when there is first a blank line, or a line that does not
begin with spaces or tabs. 

This specifies that a usage message for SkewAdd should be set up when the external program is installed.

:Evaluate:    SkewAdd::usage = "SkewAdd[x, y] performs
       a skew addition in an external program."

When an external program is installed, the specifications in its MathLink  template file are used in the order they were
given. This means that any expressions given in :Evaluate:  specifications that appear before :Begin:  will have
been evaluated before definitions for the external function are set up. 

Here are Mathematica expressions to be evaluated before the definitions for external functions are set up.

:Evaluate:  BeginPackage["XPack`"]
:Evaluate:  XF1::usage = "XF1[x, y] is one external function."
:Evaluate:  XF2::usage = "XF2[x] is another external function."
:Evaluate:  Begin["`Private`"]

This specifies that the function XF1 in Mathematica should be set up to call the function f in the external C program.

:Begin:
:Function:       f
:Pattern:        XF1[x_Integer, y_Integer]
:Arguments:      8x, y<
:ArgumentTypes:  8Integer, Integer<
:ReturnType:     Integer
:End:
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This specifies that XF2 in Mathematica should call g. Its argument and return value are taken to be approximate real numbers. 

:Begin:
:Function:       g
:Pattern:        XF2[x_?NumberQ]
:Arguments:      8x<
:ArgumentTypes:  8Real<
:ReturnType:     Real
:End:

These Mathematica expressions are evaluated after the definitions for the external functions. They end the special context used for 
the definitions.

:Evaluate:  End[ ]
:Evaluate:  EndPackage[ ]

Here is the actual source code for the function f. There is no need for the arguments of this function to have the same names as 
their Mathematica counterparts.

int f(int i, int j) 8
   return i + j;
<

Here is the actual source code for g. Numbers that you give in Mathematica will automatically be converted into C double types 
before being passed to g.

double g(double x) 8
   return x*x;
<

By using :Evaluate:  specifications,  you can evaluate Mathematica  expressions  when an  external  program is  first
installed. You can also execute code inside the external program at this time simply by inserting the code in main()
before  the  call  to  MLMain().  This  is  sometimes  useful  if  you  need  to  initialize  the  external  program  before  any
functions in it are used. 

MLEvaluateStringHstdlink, 

 " string "L 

evaluate a string as  Mathematica input

Executing a command in Mathematica from within an external program. 

int diff(int i, int j) {

This evaluates a Mathematica Print function if i < j.

    if (i < j) MLEvaluateString(stdlink, "Print[\"negative\"]");

    return i - j;
}

Printed from the Mathematica Help Browser 7

©1988-2003 Wolfram Research, Inc. All rights reserved.



This installs an external program containing the diff function defined above. 

In[7]:= Install["diffprog"]

Out[7]= LinkObject@.êdiffprog, 7, 5D

Calling diff causes Print to be executed. 

In[8]:= diff[4, 7]

negative

Out[8]= −3

Note that any results generated in the evaluation requested by MLEvaluateString()  are ignored. To make use of
such  results  requires  full  two-way  communication  between  Mathematica  and  external  programs,  as  discussed  in
Section 2.13.9. 

2.13.4 Handling Lists, Arrays and Other Expressions

MathLink  allows  you  to  exchange  data  of  any  type  with  external  programs.  For  more  common  types  of  data,  you
simply need to give appropriate  :ArgumentTypes:  or  :ReturnType:  specifications in your MathLink  template
file. 

Mathematica specification C specification 

Integer integer int 

Real floating-point
number

double 

IntegerList list of integers int  ∗ ,  long 

RealList list of floating-point
numbers

double  ∗ ,  long 

String character string char  ∗ 

Symbol symbol name char  ∗ 

Manual call  MathLink 
routines directly

void 

Basic type specifications. 

Here is the MathLink template for a function that takes a list of integers as its argument. 

:Begin:
:Function:       h
:Pattern:        h[a_List]
:Arguments:      8a<
:ArgumentTypes:  8IntegerList<
:ReturnType:     Integer
:End:
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Here is the C source code for the function. Note the extra argument alen which is used to pass the length of the list. 

int h(int *a, long alen) 8

   int i, tot=0;

   for(i=0; i<alen; i++)
      tot += a[i];

   return tot;
<

This installs an external program containing the specifications for the function h. 

In[1]:= Install["hprog"]

Out[1]= LinkObject@.êhprog, 9, 6D

This calls the external code. 

In[2]:= h[{3, 5, 6}]

Out[2]= 14

This does not match the pattern h[a_List] so does not call the external code. 

In[3]:= h[67]

Out[3]= h@67D

The pattern is matched, but the elements in the list are of the wrong type for the external code, so $Failed is returned. 

In[4]:= h[{a, b, c}]

Out[4]= $Failed

You  can  mix  basic  types  of  arguments  in  any  way  you  want.  Whenever  you  use  IntegerList  or  RealList,
however, you have to include an extra argument in your C program to represent the length of the list. 

Here is an :ArgumentTypes: specification. 

:ArgumentTypes:  8IntegerList, RealList, Integer<

Here is a possible corresponding C function declaration. 

void f(int *a, long alen, double *b, long blen, int c)

Note that when a list is passed to a C program by MathLink  its first element is assumed to be at position 0, as is stan-
dard in C, rather than at position 1, as is standard in Mathematica. 

In addition, following C standards, character strings specified by String are passed as char * objects, terminated by
î0 null bytes. Section 2.13.5 discusses how to handle special characters. 
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MLPutIntegerHstdlink,  int  iL put a single integer
MLPutRealHstdlink,  double  xL put a single floating-point number

MLPutIntegerListHstdlink, 

 int  ∗ a,  long  nL 

put a list of  n integers starting from location  a 

MLPutRealListHstdlink, 

 double  ∗ a,  long  nL 

put a list of  n floating-point numbers starting from location  a 

MLPutIntegerArrayHstdlink, 

 int  ∗ a,  long  ∗ 

dims,  NULL,  long  dL 

put an array of integers to form a depth  
d  list with dimensions  dims 

MLPutRealArrayHstdlink, 

 double  ∗ a,  long  ∗ 

dims,  NULL,  long  dL 

put an array of floating-point numbers

MLPutStringHstdlink, 

 char  ∗ sL 

put a character string

MLPutSymbolHstdlink, 

 char  ∗ sL 

put a character string as a symbol name

MLPutFunctionHstdlink, 

 char  ∗ s,  long  nL 

begin putting a function with head  s and  n arguments

MathLink functions for sending data to Mathematica. 

When  you  use  a  MathLink  template  file,  what  mprep  and  mcc  actually  do  is  to  create  a  C  program  that  includes
explicit calls to MathLink library functions. If you want to understand how MathLink works, you can look at the source
code of this program. Note when you use mcc, you typically need to give a -g option, otherwise the source code that is
generated is automatically deleted.  

If your external function just returns a single integer or floating-point number, then you can specify this just by giving
Integer  or Real  as the :ReturnType:  in your MathLink  template file. But because of the way memory alloca-
tion and deallocation work in C, you cannot directly give :ReturnType:  specifications such as IntegerList  or
RealList.  And instead, to return such structures, you must explicitly call MathLink  library functions within your C
program, and give Manual as the :ReturnType: specification. 

Here is the MathLink template for a function that takes an integer as an argument, and returns its value using explicit MathLink 
functions. 

:Begin:
:Function:       bits
:Pattern:        bits[i_Integer]
:Arguments:      8i<
:ArgumentTypes:  8Integer<
:ReturnType:     Manual
:End:

The function is declared as void. 

void bits(int i) {

   int a[32], k;
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This puts values into the C array a.

   for(k=0; k<32; k++) 8
       a[k] = i%2;
       i >>= 1;
       if (i==0) break;
   <

   if (k<32) k++;

This sends k elements of the array a back to Mathematica. 

    MLPutIntegerList(stdlink, a, k);
    return ;
}

This installs the program containing the external function bits. 

In[5]:= Install["bitsprog"]

Out[5]= LinkObject@bitsprog, 5, 5D

The external function now returns a list of bits. 

In[6]:= bits[14]

Out[6]= 80, 1, 1, 1<

If  you  declare  an  array  in  C  as  int  a[n1][n2][n3]  then  you  can  use  MLPutIntegerArray()  to  send  it  to
Mathematica as a depth 3 list. 

...

Here is a declaration for a 3-dimensional C array.

   int a[8][16][100];

This sets up the array dims and initializes it to the dimensions of a. 

   long dims[] = 88, 16, 100<;
   ...

This sends the 3-dimensional array a to Mathematica, creating a depth 3 list. 

    MLPutIntegerArray(stdlink, a, dims, NULL, 3);

...

You can use MathLink functions to create absolutely any Mathematica expression. The basic idea is to call a sequence
of MathLink functions that correspond directly to the FullForm representation of the Mathematica expression. 
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This sets up the Mathematica function Plus with 2 arguments. 

MLPutFunction(stdlink, "Plus", 2);

This specifies that the first argument is the integer 77.

MLPutInteger(stdlink, 77);

And this specifies that the second argument is the symbol x. 

MLPutSymbol(stdlink, "x");

In general,  you first  call MLPutFunction(),  giving the head of  the Mathematica  function you want to create, and
the  number  of  arguments  it  has.  Then  you  call  other  MathLink  functions  to  fill  in  each  of  these  arguments  in  turn.
Section 2.1 discusses the general structure of Mathematica expressions and the notion of heads. 

This creates a Mathematica list with 2 elements. 

MLPutFunction(stdlink, "List", 2);

The first element of the list is a list of 10 integers from the C array r. 

MLPutIntegerList(stdlink, r, 10);

The second element of the main list is itself a list with 2 elements. 

MLPutFunction(stdlink, "List", 2);

The first element of this sublist is a floating-point number. 

MLPutReal(stdlink, 4.5);

The second element is an integer. 

MLPutInteger(stdlink, 11);

MLPutIntegerArray() and MLPutRealArray() allow you to send arrays which are laid out in memory in the
one-dimensional way that C pre-allocates them. But if you create arrays during the execution of a C program, it is more
common  to  set  them  up  as  nested  collections  of  pointers.  You  can  send  such  arrays  to  Mathematica  by  using  a
sequence of MLPutFunction() calls, ending with an MLPutIntegerList() call. 

...

This declares a to be a nested list of lists of lists of integers. 

int ***a;

...

This creates a Mathematica list with n1 elements. 

MLPutFunction(stdlink, "List", n1);
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for (i=0; i<n1; i++) {

This creates a sublist with n2 elements. 

    MLPutFunction(stdlink, "List", n2);

    for (j=0; j<n2; j++) {

This writes out lists of integers. 

        MLPutIntegerList(stdlink, a[i][j], n3);

    }
}

...

It is important to realize that any expression you create using MathLink functions will be evaluated as soon as it is sent
to  Mathematica.  This  means,  for  example,  that  if  you  wanted  to  transpose  an  array  that  you  were  sending  back  to
Mathematica,  all  you would need to do is  to wrap a Transpose  around the expression representing the array.  You
can then do this simply by calling MLPutFunction(stdlink,  "Transpose",  1);  just before you start creat-
ing the expression that represents the array. 

The  idea  of  post-processing  data  that  you  send  back  to  Mathematica  has  many  uses.  One  example  is  as  a  way  of
sending lists whose length you do not know in advance.  

This creates a list in Mathematica by explicitly appending successive elements. 

In[7]:= t = {}; Do[t = Append[t, i^2], {i, 5}]; t

Out[7]= 81, 4, 9, 16, 25<

This creates a list in which each successive element is in a nested sublist. 

In[8]:= t = {}; Do[t = {t, i^2}, {i, 5}]; t

Out[8]= 888888<, 1<, 4<, 9<, 16<, 25<

Flatten flattens out the list. 

In[9]:= Flatten[t]

Out[9]= 81, 4, 9, 16, 25<

Sequence automatically flattens itself. 

In[10]:= {Sequence[1, Sequence[4, Sequence[ ]]]}

Out[10]= 81, 4<

In order to call MLPutIntegerList(), you need to know the length of the list you want to send. But by creating a
sequence of nested Sequence objects, you can avoid having to know the length of your whole list in advance. 
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This sets up the List around your result. 

MLPutFunction(stdlink, "List", 1);

while( condition ) {
     generate an element

Create the next level Sequence object. 

    MLPutFunction(stdlink, "Sequence", 2);

Put the element. 

    MLPutInteger(stdlink,  i );

}

This closes off your last Sequence object. 

MLPutFunction(stdlink, "Sequence", 0);

MLGetIntegerHstdlink,  int  ∗ iL get an integer, storing it at address  i 
MLGetRealHstdlink, 

 double  ∗ xL 

get a floating-point number, storing it at address  x 

Basic functions for explicitly getting data from Mathematica. 

Just as MathLink provides functions like MLPutInteger() to send data from an external program into Mathematica,
so  also  MathLink  provides  functions  like  MLGetInteger()  that  allow  you  to  get  data  from  Mathematica  into  an
external program. 

The  list  that  you  give  for  :ArgumentTypes:  in  a  MathLink  template  can  end  with  Manual,  indicating  that  after
other arguments have been received, you will call MathLink functions to get additional expressions. 

:Begin:
:Function:       f

The function f in Mathematica takes 3 arguments. 

:Pattern:        f[i_Integer, x_Real, y_Real]

All these arguments are passed directly to the external program.

:Arguments:      8i, x, y<

Only the first argument is sent directly to the external function. 

:ArgumentTypes:  8Integer, Manual<
:ReturnType:     Real
:End:
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The external function only takes one explicit argument. 

double f(int i) {

This declares the variables x and y. 

   double x, y;

MLGetReal() explicitly gets data from the link. 

   MLGetReal(stdlink, &x);
   MLGetReal(stdlink, &y);

   return i+x+y;
}

MathLink  functions  such  as  MLGetInteger(link,  pi)  work  much  like  standard  C  library  functions  such  as
fscanf(fp,  "%d",  pi).  The  first  argument  specifies  the  link  from which  to  get  data.  The last  argument  gives  the
address at which the data that is obtained should be stored. 

MLCheckFunctionHstdlink, 

 " name ",  long  ∗ nL 

check the head of a function and store how many arguments it has

Getting a function via MathLink. 

:Begin:
:Function:       f

The function f in Mathematica takes a list of integers as an argument. 

:Pattern:        f[a:8___Integer<]

The list is passed directly to the external program.

:Arguments:      8a<

The argument is to be retrieved manually by the external program. 

:ArgumentTypes:  8Manual<
:ReturnType:     Integer
:End:

The external function takes no explicit arguments. 

int f(void) {
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This declares local variables. 

    long n, i;
    int a[MAX];

This checks that the function being sent is a list, and stores how many elements it has in n. 

    MLCheckFunction(stdlink, "List", &n);

This gets each element in the list, storing it in a[i].

   for (i=0; i<n; i++)
      MLGetInteger(stdlink, a+i);

...
}

In simple cases, it is usually possible to ensure on the Mathematica  side that the data you send to an external program
has the structure that is expected. But in general the return value from MLCheckFunction()  will be non-zero only
if the data consists of a function with the name you specify. 

Note  that  if  you  want  to  get  a  nested  collection  of  lists  or  other  objects,  you  can  do  this  by  making  an  appropriate
sequence of calls to MLCheckFunction(). 

MLGetIntegerListHstdlink, 

 int  ∗∗ a,  long  ∗ nL 

get a list of integers, allocating the memory needed to store it

MLGetRealListHstdlink, 

 double  ∗∗ a,  long  ∗ nL 

get a list of floating-point numbers

MLDisownIntegerListHstdlink, 

 int  ∗ a,  long  nL 

disown the memory associated with a list of integers

MLDisownRealListHstdlink, 

 double  ∗ a,  long  nL 

disown the memory associated
with a list of floating-point numbers

Getting lists of numbers. 

When an external program gets data from Mathematica, it must set up a place to store the data. If the data consists of a
single integer, as in MLGetInteger(stdlink, &n), then it suffices just to have declared this integer using int n. 

But when the data consists of a list of integers of potentially any length, memory must be allocated to store this list at
the time when the external program is actually called. 

MLGetIntegerList(stdlink,  &a,  &n)  will  automatically  do  this  allocation,  setting  a  to  be  a  pointer  to  the
result. Note that memory allocated by functions like MLGetIntegerList() is always in a special reserved area, so
you cannot modify or free it directly. 

Here is an external program that will be sent a list of integers. 

int f(void) {
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This declares local variables. a is an array of integers. 

    long n;
    int *a;

This gets a list of integers, making a be a pointer to the result. 

    MLGetIntegerList(stdlink, &a, &n);

...

This disowns the memory used to store the list of integers. 

    MLDisownIntegerList(stdlink, a, n);

...
}

If  you  use  IntegerList  as  an  :ArgumentTypes:  specification,  then  MathLink  will  automatically  disown  the
memory used for the list after your external function exits. But if you get a list of integers explicitly using MLGetInte
gerList(), then you must not forget to disown the memory used to store the list after you have finished with it. 

MLGetIntegerArrayHstdlink, 

 int  ∗∗ a,  long  ∗∗ dims,  
char  ∗∗∗ heads,  long  ∗ dL 

get an array of integers of any depth

MLGetRealArrayHstdlink, 

 double  ∗∗ a,  long  ∗∗ dims,
 char  ∗∗∗ heads,  long  ∗ dL 

get an array of floating-point numbers of any depth

MLDisownIntegerArrayHstdlink, 

 int  ∗ a,  long  ∗ dims,  
char  ∗∗ heads,  long  dL 

disown memory associated with an integer array

MLDisownRealArrayHstdlink, 

 double  ∗ a,  long  ∗ dims,
 char  ∗∗ heads,  long  dL 

disown memory associated with a floating-point array

Getting arrays of numbers. 

MLGetIntegerList()  extracts a one-dimensional array of integers from a single Mathematica  list. MLGetInte
gerArray()  extracts  an  array  of  integers  from  a  collection  of  lists  or  other  Mathematica  functions  nested  to  any
depth. 

The  name  of  the  Mathematica  function  at  level  i  in  the  structure  is  stored  as  a  string  in  heads[i].  The  size  of  the
structure at level i is stored in dims[i], while the total depth is stored in d. 

If  you  pass  a  list  of  complex  numbers  to  your  external  program,  then  MLGetRealArray()  will  create  a
two-dimensional  array  containing  a  sequence  of  pairs  of  real  and  imaginary  parts.  In  this  case,  heads[0]  will  be
"List" while heads[1] will be "Complex". 

Note  that  you  can  conveniently  exchange  arbitrary-precision  numbers  with  external  programs  by  converting  them to
lists of digits in Mathematica using IntegerDigits and RealDigits.   
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MLGetStringHstdlink, 

 char  ∗∗ sL 

get a character string

MLGetSymbolHstdlink, 

 char  ∗∗ sL 

get a symbol name

MLDisownStringHstdlink, 

 char  ∗ sL 

disown memory associated with a character string

MLDisownSymbolHstdlink, 

 char  ∗ sL 

disown memory associated with a symbol name

Getting character strings and symbol names. 

If  you use  String  as  an  :ArgumentTypes:  specification,  then MathLink  will  automatically disown the  memory
that is used to store the string after your function exits. This means that if you want to continue to refer to the string,
you must allocate memory for it, and explicitly copy each character in it. 

If you get a string using MLGetString(), however, then MathLink  will not automatically disown the memory used
for the string when your function exits. As a result, you can continue referring to the string. When you no longer need
the string, you must nevertheless explicitly call MLDisownString() in order to disown the memory associated with
it. 

MLGetFunctionHstdlink, 

 char  ∗∗ s,  long  ∗ nL 

begin getting a function, storing the name of the head in  
s and the number of arguments in  n 

MLDisownSymbolHstdlink, 

 char  ∗ sL 

disown memory associated with a function name

Getting an arbitrary function. 

If  you  know  what  function  to  expect  in  your  external  program,  then  it  is  usually  simpler  to  call  MLCheckFunc
tion(). But if you do not know what function to expect, you have no choice but to call MLGetFunction(). If you
do  this,  you  need  to  be  sure  to  call  MLDisownSymbol()  to  disown  the  memory  associated  with  the  name  of  the
function that is found by MLGetFunction(). 

2.13.5 Special Topic: Portability of MathLink Programs

The  Mathematica  side  of  a  MathLink  connection  is  set  up  to  work  exactly  the  same  on  all  computer  systems.  But
inevitably there are differences between external programs on different computer systems.

For  a  start,  different  computer  systems  almost  always  require  different  executable  binaries.  When  you  call
Install["prog"],  therefore,  you  must  be  sure  that  prog  corresponds  to  a  program  that  can  be  executed  on  your
particular computer system.  

Install@" file "D try to execute  file directly
Install@" file ",  
LinkProtocol−>" type "D 

use the specified protocol for low-level data transport

$SystemID identify the type of computer system being used
Install@" dir "D try to execute a file with a name of the form  

dir ê$SystemIDê dir 

Installing programs on different computer systems.
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Mathematica  follows the convention that if prog  is an ordinary file, then Install["prog"]  will just try to execute
it. But if prog  is a directory, then Mathematica  will look for a subdirectory of that directory whose name agrees with
the current value of $SystemID, and will then try to execute a file named prog within that subdirectory. 

mcc  −o  prog … put compiled code in the file  prog in the current directory
mcc  −xo  prog … put compiled code in  prog ê$SystemIDê prog 

Typical Unix commands for compiling external programs. 

Even though the executable binary of an external program is inevitably different on different computer systems, it can
still be the case that the source code in a language such as C from which this binary is obtained can be essentially the
same.  

But to achieve portability in your C source code there are several points that you need to watch. 

For  a  start,  you should  never  make use  of  extra  features  of  the  C language  or  C run-time libraries  that  happen to be
provided  on  a  particular  system,  but  are  not  part  of  standard  C.  In  addition,  you  should  try  to  avoid  dealing  with
segmented or otherwise special memory models. 

The  include  file  mathlink.h  contains  standard  C  prototypes  for  all  the  functions  in  the  MathLink  library.  If  your
compiler does not support such prototypes, you can ignore them by giving the directive #define MLPROTOTYPES 0
before #include "mathlink.h". But assuming that it does support prototypes, your compiler will always be able
to check that the calls you make to functions in the MathLink library have arguments of appropriate types.  

MLPutIntegerHL MLGetIntegerHL default integer of type  int ;
sometimes 16 bits, sometimes 32 bits

MLPutShortIntegerHL MLGetShortInt
egerHL 

short integer of type  short ; usually 16 bits

MLPutLongIntegerHL MLGetLongInte
gerHL 

long integer of type  long ; usually 32 bits

MLPutRealHL MLGetRealHL default real number of type  
double ; usually at least 64 bits

MLPutFloatHL MLGetFloatHL single-precision floating-point number of type  
float ; often 32 bits

MLPutDoubleHL MLGetDoubleHL double-precision floating-point number of type  
double ; usually at least 64 bits

MathLink functions that use specific C types. 

On some computer systems and with some compilers, a C language int  may be equivalent to a long.  But the stan-
dard for  the C language equally well  allows int  to  be equivalent  to short.  And if  you are going  to call  MathLink
library functions in a portable way, it is essential that you use the same types as they do. 

Once you have passed your data into the MathLink library functions, these functions then take care of all further issues
associated with differences between data representations on different computer systems. Thus, for example, MathLink
automatically  swaps  bytes  when  it  sends  data  between  big  and  little  endian  machines,  and  converts  floating-point
formats losing as little precision as possible. 
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MLPutStringHstdlink, 

 char  ∗ sL 

put a string without special characters

MLPutUnicodeStringHstdlink,  
unsigned  short  ∗ s,  long  nL 

put a string encoded in terms of 16-bit Unicode characters

MLPutByteStringHstdlink,  
unsigned  char  ∗ s,  long  nL 

put a string containing only 8-bit character codes

MLGetStringHstdlink, 

 char  ∗∗ sL 

get a string without special characters

MLGetUnicodeStringHstdlink,  
unsigned  short  ∗∗ s,  long  ∗ nL 

get a string encoded in terms of 16-bit Unicode characters

MLGetByteStringHstdlink, 

 unsigned  char  ∗∗ s,
 long  ∗ n,  long  specL 

get a string containing only 8-bit character codes, using  
spec as the code for all 16-bit characters

Manipulating general strings. 

In simple C programs, it is typical to use strings that contain only ordinary ASCII characters. But in Mathematica  it is
possible  to  have  strings  containing  all  sorts  of  special  characters.  These  characters  are  specified  within  Mathematica
using Unicode character codes, as discussed in Section 2.8.8.

C  language  char  *  strings  typically  use  only  8  bits  to  store  the  code  for  each  character.  Unicode  character  codes,
however,  require  16  bits.  As  a  result,  the  functions  MLPutUnicodeString()  and  MLGetUnicodeString()
work with arrays of unsigned short integers.  

If  you  know  that  your  program  will  not  have  to  handle  special  characters,  then  you  may  find  it  convenient  to  use
MLPutByteString()  and  MLGetByteString().  These  functions  represent  all  characters  directly  using  8-bit
character codes. If a special character is sent from Mathematica, then it will be converted by MLGetByteString()
to a fixed code that you specify. 

†  mainHL may need to be different on different computer systems

A point to watch in creating portable MathLink programs. 

Computer systems and compilers that have C run-time libraries based on the Unix model allow MathLink  programs to
have a main program of the form main(argc, argv) which simply calls MLMain(argc, argv). 

Some computer systems or compilers may however require main programs of a different form. You should realize that
you  can  do  whatever  initialization  you  want  inside  main()  before  calling  MLMain().  Once  you  have  called
MLMain(), however, your program will effectively go into an infinite loop, responding to requests from Mathematica
until the link to it is closed. 
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2.13.6 Using MathLink to Communicate between Mathematica Sessions

LinkCreate@" name "D create a link for another program to connect to
LinkConnect@" name "D connect to a link created by another program

LinkClose@ link D close a  MathLink connection
LinkWrite@ link,  expr D write an expression to a  MathLink connection

LinkRead@ link D read an expression from a  MathLink connection
LinkRead@ link,  HoldD read an expression and immediately wrap it with  Hold 

LinkReadyQ@ link D find out whether there is data ready to be read from a link

MathLink connections between Mathematica sessions. 

Session A

This starts up a link on port number 8000. 

In[1]:= link = LinkCreate["8000"]

Out[1]= LinkObject[8000@frog.wolfram.com, 4, 4]

Session B

This connects to the link on port 8000. 

In[1]:= Link = LinkConnect["8000"]

Out[1]= LinkObject["8000@frog.wolfram.com", 4, 4]

Session A

This evaluates 15! and writes it to the link. 

In[2]:= LinkWrite[link, 15!]

Session B

This reads from the link, getting the 15! that was sent. 

In[2]:= LinkRead[link]

Out[2]= 1307674368000

This writes data back on the link. 

In[3]:= LinkWrite[link, N[%^6]]

Session A
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And this reads the data written in session B. 

In[3]:= LinkRead[link]

Out[3]= 5.00032× 1072

One  use  of  MathLink  connections  between  Mathematica  sessions  is  simply  as  a  way  to  transfer  data  without  using
intermediate files. 

Another use is as a way to dispatch different parts of a computation to different sessions. 

Session A

This writes the expression 2 + 2 without evaluating it. 

In[4]:= LinkWrite[link, Unevaluated[2 + 2]]

Session B

This reads the expression from the link, immediately wrapping it in Hold. 

In[4]:= LinkRead[link, Hold]

Out[4]= Hold[2 + 2]

This evaluates the expression. 

In[5]:= ReleaseHold[%]

Out[5]= 4

When you call  LinkWrite,  it  writes  an  expression  to the MathLink  connection  and immediately returns.  But  when
you call LinkRead, it will not return until it has read a complete expression from the MathLink connection. 

You  can  tell  whether  anything  is  ready  to  be  read  by  calling  LinkReadyQ[link].  If  LinkReadyQ  returns  True,
then  you  can  safely  call  LinkRead  and  expect  immediately  to  start  reading  an  expression.  But  if  LinkReadyQ
returns False, then LinkRead would block until an expression for it to read had been written by a LinkWrite in
your other Mathematica session. 

Session A

There is nothing waiting to be read on the link, so if LinkRead were to be called, it would block. 

In[5]:= LinkReadyQ[link]

Out[5]= False

Session B

This writes an expression to the link. 

In[6]:= LinkWrite[link, x + y]

22 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



Session A

Now there is an expression waiting to be read on the link. 

In[6]:= LinkReadyQ[link]

Out[6]= True

LinkRead can thus be called without fear of blocking. 

In[7]:= LinkRead[link]

Out[7]= x + y

LinkCreate@  D pick any unused port on your computer
LinkCreate@" number "D use a specific port
LinkConnect@" number "D connect to a port on the same computer

LinkConnect@" number@host "D connect a port on another computer

Ways to set up MathLink links. 

MathLink  can use whatever mechanism for interprogram communication your computer system supports. In setting up
connections between concurrent Mathematica sessions, the most common mechanism is internet TCP ports.  

Most computer systems have a few thousand possible numbered ports,  some of  which are typically allocated to stan-
dard system services. 

You can use any of the unallocated ports for MathLink connections. 

Session on frog.wolfram.com

This finds an unallocated port on frog.wolfram.com. 

In[8]:= link = LinkCreate[ ]

Out[8]= LinkObject["2981@frog.wolfram.com", 5, 5]

Session on toad.wolfram.com

This connects to the port on frog.wolfram.com. 

In[7]:= link = LinkConnect["2981@frog.wolfram.com"]

Out[7]= LinkObject["2981@frog.wolfram.com", 5, 5]

This sends the current machine name over the link. 

In[8]:= LinkWrite[link, $MachineName]

Session on frog.wolfram.com
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This reads the expression written on toad. 

In[9]:= LinkRead[link]

Out[9]= toad

By  using  internet  ports  for  MathLink  connections,  you  can  easily  transfer  data  between  Mathematica  sessions  on
different machines. All that is needed is that an internet connection exists between the machines. 

Note that because MathLink is completely system independent, the computers at each end of a MathLink connection do
not have to be of the same type. MathLink  nevertheless notices when they are, and optimizes data transmission in this
case. 

2.13.7 Calling Subsidiary Mathematica Processes

LinkLaunch@" prog "D start an external program and open a connection to it

Connecting to a subsidiary program via MathLink. 

This starts a subsidiary Mathematica process on the computer system used here. 

In[1]:= link = LinkLaunch["math -mathlink"]

Out[1]= LinkObject[math -mathlink, 4, 4]

Here is a packet representing the first input prompt from the subsidiary Mathematica process. 

In[2]:= LinkRead[link]

Out[2]= InputNamePacket[In[1]:= ]

This writes a packet representing text to enter in the subsidiary Mathematica process. 

In[3]:= LinkWrite[link, EnterTextPacket["10!"]]

Here is a packet representing the output prompt from the subsidiary Mathematica process. 

In[4]:= LinkRead[link]

Out[4]= OutputNamePacket[Out[1]= ]

And here is the actual result from the computation. 

In[5]:= LinkRead[link]

Out[5]= ReturnTextPacket[3628800]

The  basic  way  that  the  various  different  objects  involved  in  a  Mathematica  session  are  kept  organized  is  by  using
MathLink packets. A MathLink packet is simply an expression with a definite head that indicates its role or meaning.  
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EnterTextPacket@" input "D text to enter corresponding to an input line
ReturnTextPacket@" output "D text returned corresponding to an output line
InputNamePacket@" name "D text returned for the name of an input line
OutputNamePacket@" name "D text returned for the name of an output line

Basic packets used in Mathematica sessions. 

The fact that LinkRead returns an InputNamePacket indicates that the subsidiary Mathematica is now ready for new input. 

In[6]:= LinkRead[link]

Out[6]= InputNamePacket[In[2]:= ]

This enters two Print commands as input. 

In[7]:= LinkWrite[link, EnterTextPacket["Print[a]; Print[b];"]]

Here is the text from the first Print. 

In[8]:= LinkRead[link]

Out[8]= TextPacket[a
]

And here is the text from the second Print. 

In[9]:= LinkRead[link]

Out[9]= TextPacket[b
]

No output line is generated, so the new packet is an InputNamePacket. 

In[10]:= LinkRead[link]

Out[10]= InputNamePacket[In[3]:= ]

TextPacket@" string "D text from  Print etc.
MessagePacket@ symb,  " tag "D a message name

DisplayPacket@" string "D parts of PostScript graphics
DisplayEndPacket@" string "D the end of PostScript graphics

Some additional packets generated in Mathematica sessions. 

If  you  enter  input  to  Mathematica  using  EnterTextPacket["input"],  then  Mathematica  will  automatically
generate a string version of your output, and will respond with ReturnTextPacket["output"]. But if you instead
enter input using EnterExpressionPacket[expr] then Mathematica  will respond with ReturnExpression
Packet[expr] and will not turn your output into a string. 

EnterExpressionPacket@ expr D an expression to enter corresponding to an input line
ReturnExpressionPacket@ expr D an expression returned corresponding to an output line

Packets for representing input and output lines using expressions. 
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This enters an expression into the subsidiary Mathematica session without evaluating it. 

In[11]:= LinkWrite[link, Unevaluated[EnterExpressionPacket[ Factor[x^6 - 1]]]]

Here are the next 3 packets that come back from the subsidiary Mathematica session. 

In[12]:= Table[LinkRead[link], {3}]

Out[12]= 8OutputNamePacket@Out@3D=D,
ReturnExpressionPacket@H−1 + xL H1 + xL H1 − x − x2L H1 + x + x2LD,
InputNamePacket@In@4D:=D<

InputNamePacket  and  OutputNamePacket  packets  are  often  convenient  for  making  it  possible  to  tell  the
current state of a subsidiary Mathematica  session. But you can suppress the generation of these packets by calling the
subsidiary Mathematica session with a string such as "math -mathlink -batchoutput". 

Even if you suppress the explicit generation of InputNamePacket and OutputNamePacket packets, Mathemat-
ica  will  still  process  any  input  that  you  give  with  EnterTextPacket  or  EnterExpressionPacket  as  if  you
were  entering  an  input  line.  This  means  for  example  that  Mathematica  will  call  $Pre  and  $Post,  and  will  assign
values to In[$Line] and Out[$Line].  

EvaluatePacket@ expr D an expression to be sent purely for evaluation
ReturnPacket@ expr D an expression returned from an evaluation

Evaluating expressions without explicit input and output lines. 

This sends an EvaluatePacket. The Unevaluated prevents evaluation before the packet is sent. 

In[13]:= LinkWrite[link, Unevaluated[EvaluatePacket[10!]]]

The result is a pure ReturnPacket. 

In[14]:= LinkRead[link]

Out[14]= ReturnPacket@3628800D

This sends an EvaluatePacket requesting evaluation of Print[x]. 

In[15]:= LinkWrite[link, Unevaluated[EvaluatePacket[Print[x]]]]

The first packet to come back is a TextPacket representing text generated by the Print. 

In[16]:= LinkRead[link]

Out[16]= TextPacket[x
]

After that, the actual result of the Print is returned. 

In[17]:= LinkRead[link]

Out[17]= ReturnPacket[Null]

In  most  cases,  it  is  reasonable  to  assume  that  sending  an  EvaluatePacket  to  Mathematica  will  simply  cause
Mathematica to do a computation and to return various other packets, ending with a ReturnPacket. However, if the
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computation  involves  a  function  like  Input,  then  Mathematica  will  have  to  request  additional  input  before  it  can
proceed with the computation. 

This sends a packet whose evaluation involves an Input function. 

In[18]:= LinkWrite[link, Unevaluated[EvaluatePacket[2 + Input["data ="]]]]

What comes back is an InputPacket which indicates that further input is required. 

In[19]:= LinkRead[link]

Out[19]= InputPacket[data =]

There is nothing more to be read on the link at this point. 

In[20]:= LinkReadyQ[link]

Out[20]= False

This enters more input. 

In[21]:= LinkWrite[link, EnterTextPacket["x + y"]]

Now the Input function can be evaluated, and a ReturnPacket is generated. 

In[22]:= LinkRead[link]

Out[22]= ReturnPacket[2 + x + y]

LinkInterrupt@ link D send an interrupt to a  MathLink -compatible program

Interrupting a MathLink-compatible program. 

This sends a very time-consuming calculation to the subsidiary process. 

In[23]:= LinkWrite[link, EnterTextPacket["FactorInteger[2^777-1]"]]

The calculation is still going on. 

In[24]:= LinkReadyQ[link]

Out[24]= False

This sends an interrupt. 

In[25]:= LinkInterrupt[link]

Now the subsidiary process has stopped, and is sending back an interrupt menu. 

In[26]:= LinkRead[link]

Out[26]= MenuPacket[1, Interrupt> ]
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2.13.8 Special Topic: Communication with Mathematica Front Ends

The  Mathematica  kernel  uses  MathLink  to  communicate  with  Mathematica  front  ends.  If  you  start  a  Mathematica
kernel from within a front end, therefore, the kernel will be controlled through a MathLink connection to this front end.

$ParentLink the  MathLink connection to use for kernel input and output

The link to the front end for a particular kernel. 

The global  variable $ParentLink  specifies the MathLink  connection that a particular  kernel will  use for  input  and
output. 

It  is  sometimes useful  to  reset  $ParentLink  in  the middle of  a Mathematica  session,  thereby effectively changing
the front end to which the kernel is connected. 

Session A

This creates a link on port 8000. 

In[1]:= link = LinkCreate["8000"]

Out[1]= LinkObject[8000@frog.wolfram.com, 4, 4]

Session B

This connects to the link opened in session A. 

In[2]:= LinkConnect["8000"]

Out[1]= LinkObject[8000@frog.wolfram.com, 4, 4]

This tells session B that it should use session A as a front end. 

In[3]:= $ParentLink = %

Session A

Session A now acts as a front end to session B and gets all output from it. 

In[4]:= Table[LinkRead[link], {4}]

Out[2]= {ResumePacket[LinkObject[ParentLink, 1, 1]],
 OutputNamePacket[Out[2]= ], ReturnTextPacket[
  LinkObject[8000@frog.wolfram.com, 4, 4]],
 InputNamePacket[In[3]:= ]}

This releases session B again. 

In[5]:= LinkWrite[link, EnterTextPacket["$ParentLink=."]]
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Much like the Mathematica kernel, the standard notebook front end for Mathematica is set up to handle a certain set of
MathLink packets. 

Usually it is best to use functions like NotebookWrite and FrontEndExecute if you want to control the Mathe-
matica front end from the kernel. But in some cases you may find it convenient to send packets directly to the front end
using LinkWrite. 

2.13.9 Two-Way Communication with External Programs

When you install a MathLink-compatible external program using Install, the program is set up to behave somewhat
like a simplified Mathematica  kernel. Every time you call a function in the external program, a CallPacket  is sent
to the program, and the program responds by sending back a result wrapped in a ReturnPacket. 

This installs an external program, returning the LinkObject used for the connection to that program. 

In[6]:= link = Install["bitsprog"]

Out[6]= LinkObject@bitsprog, 4, 4D

The function ExternalCall sends a CallPacket to the external program. 

In[7]:= ?bits

Global`bits

bits@i_IntegerD :=

ExternalCall@LinkObject@.êbitsprog, 13, 7D, CallPacket@0, 8i<DD

You can send the CallPacket explicitly using LinkWrite. The first argument of the CallPacket specifies which function 
in the external program to call. 

In[8]:= LinkWrite[link, CallPacket[0, {67}]]

Here is the response to the CallPacket from the external program. 

In[9]:= LinkRead[link]

Out[9]= 81, 1, 0, 0, 0, 0, 1<

If you use Install several times on a single external program, Mathematica will open several MathLink connections
to  the  program.  Each  connection  will  however  always  correspond  to  a  unique  LinkObject.  Note  that  on  some
computer  systems, you may need to  make an  explicit  copy of  the file  containing the external  program in order  to  be
able to call it multiple times. 

$CurrentLink the  MathLink 
connection to the external program currently being run

Identifying different instances of a single external program. 

:Begin:
:Function:      addto
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This gives $CurrentLink as an argument to addto.

:Pattern:       addto[$CurrentLink, n_Integer]

:Arguments:     8n<
:ArgumentTypes: 8Integer<
:ReturnType:    Integer
:End:

This zeros the global variable counter every time the program is started.

int counter = 0;

int addto(int n) 8
    counter += n;
    return counter;
<

This installs one instance of the external program containing addto. 

In[10]:= ct1 = Install["addtoprog"]

Out[10]= LinkObject@addtoprog, 5, 5D

This installs another instance. 

In[11]:= ct2 = Install["addtoprog"]

Out[11]= LinkObject@addtoprog, 6, 6D

This adds 10 to the counter in the first instance of the external program. 

In[12]:= addto[ct1, 10]

Out[12]= 10

This adds 15 to the counter in the second instance of the external program. 

In[13]:= addto[ct2, 15]

Out[13]= 15

This operates on the first instance of the program again. 

In[14]:= addto[ct1, 20]

Out[14]= 30

If  an  external  program  maintains  information  about  its  state  then  you  can  use  different  instances  of  the  program  to
represent different states. $CurrentLink then provides a way to refer to each instance of the program. 

The value of $CurrentLink  is temporarily set every time a particular instance of the program is called, as well as
when each instance of the program is first installed. 
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MLEvaluateStringHstdlink, 

 " string "L 

send input to  Mathematica but return no results

Sending a string for evaluation by Mathematica. 

The two-way nature of MathLink  connections allows you not only to have Mathematica  call an external program, but
also to have that external program call back to Mathematica. 

In  the  simplest  case,  you  can  use  the  MathLink  function  MLEvaluateString()  to  send  a  string  to  Mathematica.
Mathematica  will evaluate this string, producing whatever effects the string specifies, but it will not return any results
from the evaluation back to the external program. 

To get results back you need explicitly to send an EvaluatePacket  to Mathematica, and then read the contents of
the ReturnPacket that comes back. 

...

This starts an EvaluatePacket. 

MLPutFunction(stdlink, "EvaluatePacket", 1);

This constructs the expression Factorial[7] or 7!.

  MLPutFunction(stdlink, "Factorial", 1);
    MLPutInteger(stdlink, 7);

This specifies that the packet you are constructing is finished. 

MLEndPacket(stdlink);

This checks the ReturnPacket that comes back. 

MLCheckFunction(stdlink, "ReturnPacket", &n);

This extracts the integer result for 7! from the packet. 

MLGetInteger(stdlink, &ans);

...

MLEndPacketHstdlinkL specify that a packet is finished and ready to be sent to  
Mathematica 

Sending a packet to Mathematica. 

When you can send Mathematica an EvaluatePacket[input], it may in general produce many packets in response,
but  the  final  packet  should  be  ReturnPacket[output].  Section 2.13.12  will  discuss  how  to  handle  sequences  of
packets and expressions whose structure you do not know in advance. 
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2.13.10 Special Topic: Running Programs on Remote Computers

MathLink  allows  you  to  call  an  external  program from within  Mathematica  even  when  that  program is  running  on  a
remote computer. Typically, you need to start the program directly from the operating system on the remote computer.
But then you can connect to it using commands within your Mathematica session. 

Operating system on toad.wolfram.com

This starts the program fprog and tells it to create a new link.

fprog -linkcreate 

The program responds with the specification of the link it has created. 

Link created on: 2976@toad.wolfram.com 

Mathematica session on frog.wolfram.com

This connects to the link that has been created. 

In[1]:= Install[LinkConnect["2976@toad.wolfram.com"]]

Out[1]= LinkObject[2976@toad.wolfram.com, 1]

This now executes code in the external program on toad.wolfram.com. 

In[2]:= f[16]

Out[2]= 561243

External  programs  that  are  created  using  mcc  or  mprep  always  contain  the  code  that  is  needed  to  set  up  MathLink
connections. If you start such programs directly from your operating system, they will prompt you to specify what kind
of  connection  you  want.  Alternatively,  if  your  operating  system supports  it,  you  can  also  give  this  information  as  a
command-line argument to the external program. 

prog  −linkcreate operating system command
to run a program and have it create a link

Install@LinkConnect@" 

port@host "DD 

Mathematica command to connect to the external program

Running an external program on a remote computer. 

2.13.11 Special Topic: Running External Programs under a Debugger

MathLink allows you to run external programs under whatever debugger is provided in your software environment. 

MathLink-compatible  programs  are  typically  set  up  to  take  arguments,  usually  on  the  command  line,  which  specify
what MathLink connections they should use. 
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In debugger: run  −linkcreate 

In  Mathematica : Install@LinkConnect@" port "DD 

Running an external program under a debugger. 

Note that in order to get a version of an external program that can be run under a debugger, you may need to specify
-g or other flags when you compile the program. 

Debugger

Set a breakpoint in the C function f. 

break f
Breakpoint set: f: line 1 

Start the external program.

run -linkcreate 

The program responds with what port it is listening on.

Link created on: 2981@frog.wolfram.com 

Mathematica session

This connects to the program running under the debugger. 

In[1]:= Install[LinkConnect["2981@frog.wolfram.com"]]

Out[1]= LinkObject[2981@frog.wolfram.com, 1]

This calls a function which executes code in the external program. 

In[2]:= f[16]

Debugger

The external program stops at the breakpoint. 

Breakpoint: f(16) 

This tells the debugger to continue.

continue 

Mathematica session

Now f returns. 

Out[2]= 561243
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2.13.12 Manipulating Expressions in External Programs

Mathematica  expressions provide a very general way to handle all kinds of data, and you may sometimes want to use
such  expressions  inside  your  external  programs.  A  language  like  C,  however,  offers  no  direct  way  to  store  general
Mathematica  expressions. But it is nevertheless possible to do this by using the loopback links provided by the Math-
Link  library.  A  loopback  link  is  a  local  MathLink  connection  inside  your  external  program,  to  which  you  can  write
expressions that can later be read back. 

MLINK  MLLoopbackOpenHstdenv, 

 long  ∗ errnoL 

open a loopback link

void  MLCloseHMLINK  linkL close a link
int  
MLTransferExpressionHMLINK 

 dest,  MLINK  srcL 

get an expression from  src and put it onto  dest 

Functions for manipulating loopback links. 

...

This opens a loopback link. 

ml = MLLoopbackOpen(stdenv, &errno);

This puts the expression Power[x, 3] onto the loopback link. 

MLPutFunction(ml, "Power", 2);
  MLPutSymbol(ml, "x");
  MLPutInteger(ml, 3);

...

This gets the expression back from the loopback link. 

MLGetFunction(ml, &head, &n);
  MLGetSymbol(ml, &sname);
  MLGetInteger(ml, &k);

...

This closes the loopback link again. 

MLClose(ml);

You can use MLTransferExpression() to take an expression that you get via stdlink from Mathematica, and
save it in a local loopback link for later processing. 

You  can  also  use  MLTransferExpression()  to  take  an  expression  that  you  have  built  up  on  a  local  loopback
link, and transfer it back to Mathematica via stdlink. 

...
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This puts 21! onto a local loopback link. 

MLPutFunction(ml, "Factorial", 1);
  MLPutInteger(ml, 21);

This sends the head FactorInteger to Mathematica. 

MLPutFunction(stdlink, "FactorInteger", 1);

This transfers the 21! from the loopback link to stdlink.

MLTransferExpression(stdlink, ml);

You can put any sequence of expressions onto a loopback link. Usually you get the expressions off the link in the same
order as you put them on. 

And once you have got an expression off the link it is usually no longer saved. But by using MLCreateMark() you
can mark a particular position in a sequence of expressions on a link, forcing MathLink  to save every expression after
the mark so that you can go back to it later. 

MLMARK  
MLCreateMarkHMLINK  linkL 

create a mark at the current
position in a sequence of expressions on a link

MLSeekMarkHMLINK  link,
 MLMARK  mark,  long  nL 

go back to a position  n 
expressions after the specified mark on a link

MLDestroyMarkHMLINK 

 link,  MLMARK  markL 

destroy a mark in a link

Setting up marks in MathLink links. 

...

This puts the integer 45 onto a loopback link. 

MLPutInteger(ml, 45);

This puts 33 onto the link. 

MLPutInteger(ml, 33);

And this puts 76. 

MLPutInteger(ml, 76);

This will read 45 from the link. The 45 will no longer be saved. 

MLGetInteger(ml, &i);

This creates a mark at the current position on the link. 

mark = MLCreateMark(ml);
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This will now read 33. 

MLGetInteger(ml, &i);

And this will read 76. 

MLGetInteger(ml, &i);

This goes back to the position of the mark. 

MLSeekMark(ml, mark, 0);

Now this will read 33 again. 

MLGetInteger(ml, &i);

It is important to destroy marks when you have finished with them, so no unnecessary expressions will be saved.

MLDestroyMark(ml, mark);

The way the MathLink  library is implemented, it is very efficient to open and close loopback links, and to create and
destroy marks in them. The only point to remember is that as soon as you create a mark on a particular link, MathLink
will save subsequent expressions that are put on that link, and will go on doing this until the mark is destroyed. 

int  MLGetNextHMLINK  linkL find the type of the next object on a link
int  MLGetArgCountHMLINK 

 link,  long  ∗ nL 

store in  n the number of arguments for a function on a link

int  MLGetSymbolHMLINK 

 link,  char  ∗∗ nameL 

get the name of a symbol

int  MLGetIntegerHMLINK 

 link,  int  ∗ iL 

get a machine integer

int  MLGetRealHMLINK 

 link,  double  ∗ xL 

get a machine floating-point number

int  MLGetStringHMLINK 

 link,  char  ∗∗ stringL 

get a character string

Functions for getting pieces of expressions from a link. 

MLTKFUNC composite function—headand arguments
MLTKSYM Mathematica symbol
MLTKINT integer
MLTKREAL floating-point number
MLTKSTR character string

Constants returned by MLGetNext(). 

switch(MLGetNext(ml)) {
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This reads a composite function. 

    case MLTKFUNC:
    MLGetArgCount(ml, &n);
     recurse for head
    for (i = 0; i < n; i++) 8
         recurse for each argument
    <
    … 

This reads a single symbol. 

    case MLTKSYM:
    MLGetSymbol(ml, &name);
    … 

This reads a machine integer. 

    case MLTKINT:
    MLGetInteger(ml, &i);
    … 

}

By  using  MLGetNext()  it  is  straightforward  to  write  programs  that  can  read  any  expression.  The  way  MathLink
works,  the  head  and arguments  of  a  function  appear  as  successive  expressions  on  the  link,  which  you read  one  after
another. 

Note that if you know that the head of a function will be a symbol, then you can use MLGetFunction() instead of
MLGetNext().  In  this  case,  however,  you  still  need  to  call  MLDisownSymbol()  to  disown  the  memory used  to
store the symbol name. 

int  MLPutNextHMLINK 

 link,  int  typeL 

prepare to put an object of the specified type on a link

int  MLPutArgCountHMLINK 

 link,  long  nL 

give the number of arguments for a composite function

int  MLPutSymbolHMLINK 

 link,  char  ∗ nameL 

put a symbol on the link

int  MLPutIntegerHMLINK 

 link,  int  iL 

put a machine integer

int  MLPutRealHMLINK 

 link,  double  xL 

put a machine floating-point number

int  MLPutStringHMLINK 

 link,  char  ∗ stringL 

put a character string

Functions for putting pieces of expressions onto a link. 

MLPutNext()  specifies  types  of  expressions  using  constants  such  as  MLTKFUNC  from  the  mathlink.h  header
file—just like MLGetNext(). 
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2.13.13 Advanced Topic: Error and Interrupt Handling

When  you  are  putting  and  getting  data  via  MathLink  various  kinds  of  errors  can  occur.  Whenever  any  error  occurs,
MathLink goes into a completely inactive state, and all MathLink functions you call will return 0 immediately.  

long  MLErrorHMLINK  linkL return a number identifying the current error, or  
0 if none has occurred

char  
∗MLErrorMessageHMLINK  linkL 

return a character string describing the current error

int  MLClearErrorHMLINK  linkL clear the current error, returning  
MathLink if possible to an active state

Handling errors in MathLink programs. 

When you do complicated operations, it is often convenient to check for errors only at the end. If you find that an error
occurred, you must then call MLClearError() to activate MathLink again. 

int  MLNewPacketHMLINK  linkL skip to the end of the current packet

Clearing out the remains of a packet. 

After an error, it is common to want to discard the remainder of the packet or expression that you are currently process-
ing. You can do this using MLNewPacket(). 

In some cases,  you may want  to set it  up so that  if  an error  occurs while you are processing particular  data,  you can
then later go back and reprocess the data in a different way. You can do this by calling MLCreateMark() to create a
mark  before  you  first  process  the  data,  and  then  calling  MLSeekMark()  to  seek  back  to  the  mark  if  you  need  to
reprocess  the  data.  You  should  not  forgot  to  call  MLDestroyMark()  when  you  have  finally  finished  with  the
data—otherwise MathLink will continue to store it. 

int  MLAbort a global variable set when a program set up by  
Install is sent an abort interrupt

Aborting an external program. 

If you interrupt Mathematica  while it is in the middle of executing an external function, it will typically give you the
opportunity to try to abort the external function. If you choose to do this, what will happen is that the global variable
MLAbort will be set to 1 inside your external program. 

MathLink cannot automatically back out of an external function call that has been made. So if you have a function that
can take a long time, you should explicitly check MLAbort every so often, returning from the function if you find that
the variable has been set. 

2.13.14 Running Mathematica from Within an External Program

To run Mathematica  from within an external program requires making use of many general features of MathLink. The
first issue is how to establish a MathLink connection to Mathematica. 
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When you  use  MathLink  templates  to  create  external  programs that  can  be  called from Mathematica,  source  code  to
establish a MathLink  connection is automatically generated, and all you have to do in your external program is to call
MLMain(argc, argv). But in general you need to call several functions to establish a MathLink connection. 

MLENV  MLInitializeH0L initialize  MathLink library functions
MLINK  MLOpenArgvHMLENV 

 env,  char  ∗∗ argv0,  char 

 ∗∗ argv1,  long  ∗ errnoL 

open a  MathLink 
connection taking parameters from an  argv array

MLINK  MLOpenStringHMLENV  env,
 char  ∗ string,  long  ∗ errnoL 

open a  MathLink 
connection taking parameters from a single character string

int  MLActivateHMLINK  linkL activate a  MathLink 
connection, waiting for the program at the other end to respond

void  MLCloseHMLINK  linkL close a  MathLink connection
void  
MLDeinitializeHMLENV  envL 

deinitialize  MathLink library functions

Opening and closing MathLink connections. 

Include the standard MathLink header file. 

#include "mathlink.h"

int main(int argc, char *argv[]) {

   MLENV env;
   MLINK link;
   long errno;

This initializes MathLink library functions. 

   env = MLInitialize(0);

This opens a MathLink connection, using the same arguments as were passed to the main program. 

   link = MLOpenArgv(env, argv, argv+argc, &errno);

This activates the connection, waiting for the other program to respond.

   MLActivate(link);

   ...
}

Often the argv that you pass to MLOpenArgv()  will come directly from the argv that is passed to main() when
your whole program is started. Note that MLOpenArgv() takes pointers to the beginning and end of the argv array.
By not using argc directly it avoids having to know the size of an int.   

The elements in the argv array are character strings which mirror the arguments and options used in the Mathematica
functions LinkLaunch, LinkCreate and LinkConnect. 
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"−linklaunch" operate like  LinkLaunch@" name "D 

"−linkcreate" operate like  LinkCreate@" name "D 

"−linkconnect" operate like  LinkConnect@" name "D 

"−linkname",  " name " give the name to use
"−linkprotocol",  " protocol " give the link protocol to use H tcp ,  pipes , etc.L

Possible elements of the argv array passed to MLOpenArgv().

As an  alternative to  MLOpenArgv()  you can use  MLOpenString(),  which  takes  parameters concatenated  into  a
single character string with spaces in between. 

Once  you  have  successfully  opened  a  MathLink  connection  to  the  Mathematica  kernel,  you  can  then  use  standard
MathLink functions to exchange data with it. 

int  MLEndPacketHMLINK  linkL indicate the end of a packet
int  MLNextPacketHMLINK  linkL find the head of the next packet
int  MLNewPacketHMLINK  linkL skip to the end of the current packet

Functions often used in communicating with the Mathematica kernel. 

Once you have sent all the pieces of a packet using MLPutFunction() etc., MathLink requires you to call MLEnd
Packet() to ensure synchronization and consistency. 

One  of  the  main issues  in  writing  an  external  program which  communicates directly  with  the  Mathematica  kernel  is
handling all the various kinds of packets that the kernel can generate. 

The function MLNextPacket() finds the head of the next packet that comes from the kernel, and returns a constant
that indicates the type of the packet. 

Mathematica packet constant 

ReturnPacket@ expr D RETURNPKT result from a computation
ReturnTextPacket@" string "D RETURNTEXTPKT textual form of a result
InputNamePacket@" name "D INPUTNAMEPKT name of an input line
OutputNamePacket@" name "D OUTPUTNAMEPKT name of an output line
TextPacket@" string "D TEXTPKT textual output from functions like  Print 

MessagePacket@ 

symb,  " tag "D 

MESSAGEPKT name of a message generated by  Mathematica

DisplayPacket@" string "D DISPLAYPKT part of PostScript graphics
DisplayEndPacket@" string "D DISPLAYENDPKT end of PostScript graphics
InputPacket@" prompt "D INPUTPKT request for a response to an  Input function
CallPacket@ i,  list D CALLPKT request for a call to an external function

Some packets recognized by MLNextPacket(). 

This keeps on reading data from a link, discarding it until an error or a ReturnPacket is found. 

while ((p = MLNextPacket(link)) && p != RETURNPKT)
    MLNewPacket(link);
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If you want to write a complete front end to Mathematica, you will need to handle all of the possible types of packets
that the kernel can generate. Typically you can do this by setting up an appropriate switch on the value returned by
MLNextPacket(). 

The MathLink Developer Kit contains sample source code for several simple but complete front ends. 

int  MLReadyHMLINK  linkL test whether there is data waiting to be read on a link
int  MLFlushHMLINK  linkL flush out buffers containing data waiting to be sent on a link

Flow of data on links. 

One  feature  of  more  sophisticated  external  programs such  as  front  ends  is  that  they may need  to  perform operations
while they are waiting for data to be sent to them by Mathematica. When you call a standard MathLink library function
such as MLNextPacket() your program will normally block until all the data needed by this function is available.   

You can avoid blocking by repeatedly calling MLReady(), and only calling functions like MLNextPacket() when
MLReady() no longer returns 0. MLReady() is the analog of the Mathematica function LinkReadyQ. 

Note that MathLink  sometimes buffers  the data that you tell it to send. To make sure that all necessary data has been
sent you should call MLFlush(). Only after doing this does it make sense to call MLReady() and wait for data to be
sent back. 

Printed from the Mathematica Help Browser 41

©1988-2003 Wolfram Research, Inc. All rights reserved.



2.14 Global Aspects of Mathematica Sessions

2.14.1 The Main Loop

In  any  interactive  session,  Mathematica  effectively  operates  in  a  loop.  It  waits  for  your  input,  processes  the  input,
prints the result,  then goes back to waiting for input again. As part of this “main  loop”,  Mathematica  maintains and
uses various global objects. You will often find it useful to work with these objects. 

You should  realize,  however,  that  if  you use Mathematica  through  a special  front  end,  your front  end may set up its
own main loop, and what is said in this section may not apply. 

In@ n D the expression on the  n th  input line
InString@ n D the textual form of the  n th  input line
% n  or  Out@ n D the expression on the  n th  output line

Out@ 8  n1,  n2, … <  D a list of output expressions
%% … % H n timesL or  Out@− n D the expression on the  n th  previous output line

MessageList@ n D a list of messages produced while processing the  n th  line
$Line the current line number HresettableL

Input and output expressions. 

In  a  standard  interactive  session,  there  is  a  sequence  of  input  and  output  lines.  Mathematica  stores  the  values  of  the
expressions on these lines in In[n] and Out[n]. 

As  indicated  by  the  usual  In[n]:=  prompt,  the  input  expressions  are  stored  with  delayed  assignments.  This  means
that whenever you ask for In[n], the input expression will always be re-evaluated in your current environment. 

This assigns a value to x. 

In[1]:= x = 7

Out[1]= 7

Now the value for x is used. 

In[2]:= x - x^2 + 5x - 1

Out[2]= −8

This removes the value assigned to x. 

In[3]:= x =.

This is re-evaluated in your current environment, where there is no value assigned to x. 

In[4]:= In[2]

Out[4]= −1 + 6 x − x2
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This gives the textual form of the second input line, appropriate for editing or other textual manipulation. 

In[5]:= InString[2] // InputForm

Out[5]//InputForm= 

"x - x^2 + 5x - 1"

$HistoryLength the number of previous lines of input and output to keep

Specifying the length of session history to keep. 

Mathematica by default stores all your input and output lines for the duration of the session. In a very long session, this
may take up a large amount of computer memory. You can nevertheless get rid of the input and output lines by explic-
itly  clearing  the  values  of  In  and  Out,  using  Unprotect[In,  Out],  followed  by  Clear[In,  Out].  You  can
also  tell  Mathematica  to  keep  only  a  limited  number  of  lines  of  history  by  setting  the  global  variable  $History
Length.  

Note that  at  any point  in  a  session,  you can reset  the line number counter  $Line,  so  that  for  example new lines are
numbered so as to overwrite previous ones. 

$PreRead a function applied to each input string before being fed to  
Mathematica

$Pre a function applied to each input expression before evaluation
$Post a function applied to each expression after evaluation

$PrePrint a function applied after  Out@ n D 

is assigned, but before the result is printed
$SyntaxHandler a function applied to any input line that yields a syntax error

Global functions used in the main loop. 

Mathematica  provides a variety of “hooks”  that allow you to insert functions to be applied to expressions at various
stages  in  the  main  loop.  Thus,  for  example,  any  function  you  assign  as  the  value  of  the  global  variable  $Pre  will
automatically be applied before evaluation to any expression you give as input. 

For a particular  input  line,  the standard main loop begins by getting a text string of input.  Particularly if  you need to
deal  with  special  characters,  you  may want  to  modify  this  text  string  before  it  is  further  processed  by  Mathematica.
You can do this by assigning a function as the value of the global variable $PreRead. This function will be applied to
the text string, and the result will be used as the actual input string for the particular input line. 

This tells Mathematica to replace << … >> by 8  … <  in every input string. 

In[6]:= $PreRead = StringReplace[#, {"<<" -> "{", ">>" -> "}"}]&

Out[6]= StringReplace@#1, 8<< → 8, >> → <<D &

You can now enter braces as double angle brackets. 

In[7]:= <<4, 5, 6>>

Out[7]= 84, 5, 6<
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You can remove the value for $PreRead like this, at least so long as your definition for $PreRead does not modify this very 
input string. 

In[8]:= $PreRead =.

Once  any  $PreRead  processing  on  an  input  string  is  finished,  the  string  is  read  by  Mathematica.  At  this  point,
Mathematica  may  find  that  there  is  a  syntax  error  in  the  string.  If  this  happens,  then  Mathematica  calls  whatever
function you have specified as  the value of  $SyntaxHandler.  It  supplies two arguments: the input  string,  and the
character position at which the syntax error was detected. With $SyntaxHandler you can, for example, generate an
analysis of the syntax error, or call an editor. If your function returns a string, then Mathematica will use this string as a
new input string. 

This specifies what Mathematica should do when it gets a syntax error. 

In[9]:= $SyntaxHandler = (Print[StringForm["Error at char `1` in `2`", #2, #1]]; $Failed)&

Out[9]= HPrint@Error at char #2 in #1D; $FailedL &

This input generates a syntax error. 

In[10]:= 3 +/+ 5

Syntax::sntxf: "3 +" cannot be followed by "/+ 5". 

Error at char 4 in 3 +ê+ 5

Once  Mathematica  has  successfully  read  an  input  expression,  it  then  evaluates  this  expression.  Before  doing  the
evaluation,  Mathematica  applies  any  function  you  have  specified  as  the  value  of  $Pre,  and  after  the  evaluation,  it
applies any function specified as the value of $Post. Note that unless the $Pre function holds its arguments unevalu-
ated, the function will have exactly the same effect as $Post. 

$Post allows you to specify arbitrary “post  processing”  to be done on results obtained from Mathematica. Thus, for
example,  to  make  Mathematica  get  a  numerical  approximation  to  every  result  it  generates,  all  you  need  do  is  to  set
$Post = N. 

This tells Mathematica to apply N to every result it generates. 

In[11]:= $Post = N

Out[10]= N

Now Mathematica gets a numerical approximation to anything you type in. 

In[12]:= Sqrt[7]

Out[11]= 2.64575

This removes the post-processing function you specified. 

In[13]:= $Post =.

As soon as Mathematica has generated a result, and applied any $Post function you have specified, it takes the result,
and  assigns  it  as  the  value  of  Out[$Line].  The  next  step  is  for  Mathematica  to  print  the  result.  However,  before
doing this, it applies any function you have specified as the value of $PrePrint. 
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This tells Mathematica to shorten all output to two lines. 

In[14]:= $PrePrint = Short[#, 2]& ;

Only a two-line version of the output is now shown. 

In[15]:= Expand[(x + y)^40]

Out[14]= x40 + 40 x39 y + 780 x38 y2 + 35 + 780 x2 y38 + 40 x y39 + y40

This removes the value you assigned to $PrePrint. 

In[16]:= $PrePrint =.

There are various kinds of output generated in a typical Mathematica session. In general, each kind of output is sent to
a definite output channel, as discussed in Section 2.12.3. Associated with each output channel, there is a global variable
which gives a list of the output streams to be included in that output channel. 

$Output standard output and text generated by  Print 

$Echo an echo of each input line Has stored in  InString@ n D L
$Urgent input prompts and other urgent output

$Messages standard messages and output generated by  Message 

$Display graphics output generated by the default  $DisplayFunction
$SoundDisplay sound output generated by the default  

$SoundDisplayFunction 

Output channels in a standard Mathematica session. 

By modifying the list of streams in a given output channel,  you can redirect or copy particular kinds of Mathematica
output. Thus, for example, by opening an output stream to a file, and including that stream in the $Echo list, you can
get each piece of input you give to Mathematica saved in a file. 

Streams@  D list of all open streams
Streams@" name "D list of all open streams with the specified name

$Input the name of the current input stream

Open streams in a Mathematica session. 

The  function  Streams  shows  you  all  the  input,  output  and  other  streams  that  are  open  at  a  particular  point  in  a
Mathematica  session.  The  variable  $Input  gives  the  name of  the  current  stream from which  Mathematica  input  is
being taken at a particular point. $Input is reset, for example, during the execution of a Get command. 

$MessagePrePrint a function to be applied to expressions that are given in messages
$Language list of default languages to use for messages

Parameters for messages. 

There are various global parameters which determine the form of messages generated by Mathematica. 

As discussed in Section 2.9.21, typical messages include a sequence of expressions which are combined with the text
of the message through StringForm. $MessagePrePrint gives a function to be applied to the expressions before
they are printed. The default value of $MessagePrePrint is Short.
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As  discussed  in  Section  2.9.22,  Mathematica  allows  you  to  specify  the  language  in  which  you  want  messages  to  be
produced. In a particular Mathematica session, you can assign a list of language names as the value of $Language. 

Exit@  D or  Quit@  D terminate your  Mathematica session
$Epilog a global variable to be evaluated before termination

Terminating Mathematica sessions. 

Mathematica  will  continue  in  its  main  loop  until  you  explicitly  tell  it  to  exit.  Most  Mathematica  interfaces  provide
special ways to do this. Nevertheless, you can always do it by explicitly calling Exit or Quit. 

Mathematica  allows you to give a value to the global variable $Epilog  to specify operations to perform just before
Mathematica  actually  exits.  In  this  way,  you  can  for  example  make Mathematica  always  save  certain  objects  before
exiting. 

$IgnoreEOF whether to ignore the end-of-file character

A global variable that determines the treatment of end-of-file characters. 

As  discussed  in  Section  2.8.5,  Mathematica  usually  does  not  treat  special  characters  in  a  special  way.  There  is  one
potential  exception,  however.  With  the  default  setting  $IgnoreEOF  =  False,  Mathematica  recognizes  end-of-file
characters.  If  Mathematica  receives  an  end-of-file  character  as  the  only  thing  on  a  particular  input  line  in  a  standard
interactive Mathematica session, then it will exit the session. 

Exactly how you enter an end-of-file character depends on the computer system you are using. Under Unix, for exam-
ple, you typically press Control-D. 

Note that if you use Mathematica  in a “batch  mode”,  with all its input coming from a file, then it will automatically
exit when it reaches the end of the file, regardless of the value of $IgnoreEOF. 

2.14.2 Dialogs

Within  a  standard  interactive  session,  you  can  create  “subsessions”  or  dialogs  using  the  Mathematica  command
Dialog. Dialogs are often useful if you want to interact with Mathematica while it is in the middle of doing a calcula-
tion. As mentioned in Section 2.6.11, TraceDialog  for  example automatically calls Dialog  at specified points in
the  evaluation  of  a  particular  expression.  In  addition,  if  you  interrupt  Mathematica  during  a  computation,  you  can
typically “inspect”  its state using a dialog. 

Dialog@  D initiate a  Mathematica dialog
Dialog@ expr D initiate a dialog with  expr as the current value of  % 

Return@  D return from a dialog, taking the current value of  
% as the return value

Return@ expr D return from a dialog, taking  expr as the return value

Initiating and returning from dialogs. 

This initiates a dialog. 

In[1]:= Dialog[ ]
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You can do computations in a dialog just as you would in any Mathematica session. 

In[2]:= 2^41

Out[2]= 2199023255552

You can use Return to exit from a dialog. 

In[3]:= Return[ ]

Out[1]= 2199023255552

When you exit  a  dialog,  you can return  a  value  for  the  dialog using Return[expr].  If  you do  not  want  to  return  a
value,  and  you  have  set  $IgnoreEOF  =  False,  then  you  can  also  exit  a  dialog  simply  by  giving  an  end-of-file
character, at least on systems with text-based interfaces. 

To evaluate this expression, Mathematica initiates a dialog. 

In[4]:= 1 + Dialog[ ]^2

The value a + b returned from the dialog is now inserted in the original expression. 

In[5]:= Return[a + b]

Out[2]= 1 + Ha + bL2

In starting a dialog, you will often find it useful to have some “initial  expression”.  If you use Dialog[expr], then
Mathematica will start a dialog, using expr as the initial expression, accessible for example as the value of %. 

This first starts a dialog with initial expression a^2. 

In[6]:= Map[Dialog, {a^2, b + c}]

Out[4]= a2

% is the initial expression in the dialog. 

In[7]:= %^2 + 1

Out[5]= 1 + a4

This returns a value from the first dialog, and starts the second dialog, with initial expression b + c. 

In[8]:= Return[%]

Out[4]= b + c

This returns a value from the second dialog. The final result is the original expression, with values from the two dialogs inserted. 

In[9]:= Return[444]

Out[3]= 81 + a4, 444<

Dialog  effectively works  by running a subsidiary version of  the standard  Mathematica  main loop.  Each dialog you
start  effectively “inherits”  various values from the overall  main loop.  Some of  the values  are,  however,  local  to the
dialog, so their original values are restored when you exit the dialog.
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Thus, for example, dialogs inherit the current line number $Line when they start. This means that the lines in a dialog
have numbers that follow the sequence used in the main loop. Nevertheless, the value of $Line is local to the dialog.
As a result, when you exit the dialog, the value of $Line reverts to what it was in the main loop. 

If you start a dialog on line 10 of your Mathematica  session, then the first line of the dialog will be labeled In[11].
Successive lines of the dialog will be labeled In[12], In[13]  and so on. Then, when you exit the dialog, the next
line in your main loop will be labeled In[11]. At this point, you can still refer to results generated within the dialog
as  Out[11],  Out[12]  and  so  on.  These  results  will  be  overwritten,  however,  when  you  reach  lines  In[12],
In[13], and so on in the main loop. 

In a standard Mathematica  session, you can tell whether you are in a dialog by seeing whether your input and output
lines  are  indented.  If  you  call  a  dialog  from  within  a  dialog,  you  will  get  two  levels  of  indentation.  In  general,  the
indentation you get  inside d  nested  dialogs  is  determined by the output  form of  the object  DialogIndent[d].  By
defining the format for this object, you can specify how dialogs should be indicated in your Mathematica session. 

DialogSymbols  :>  8  x,  y, … <  symbols whose values should be treated as local to the dialog
DialogSymbols  :> 

 8  x  =  x0,  y  =  y0, … <  
symbols with initial values

DialogProlog  :>  expr an expression to evaluate before starting the dialog

Options for Dialog. 

Whatever  setting  you  give  for  DialogSymbols,  Dialog  will  always  treat  the  values  of  $Line,  $Epilog  and
$MessageList as local. Note that if you give a value for $Epilog, it will automatically be evaluated when you exit
the dialog. 

When you call Dialog, its first step is to localize the values of variables. Then it evaluates any expression you have
set  for  the  option  DialogProlog.  If  you  have  given  an  explicit  argument  to  the  Dialog  function,  this  is  then
evaluated next. Finally, the actual dialog is started. 

When you exit the dialog, you can explicitly specify the return value using Return[expr]. If you do not do this, the
return value will be taken to be the last value generated in the dialog. 

2.14.3 Date and Time Functions

Date@  D give the current local date and time in the form  
8  year,  month,  day,  hour,  minute,  second <  

Date@ z D give the current date and time in time zone  z 
TimeZone@  D give the time zone assumed by your computer system

Finding the date and time. 

This gives the current date and time. 

In[1]:= Date[ ]

Out[1]= 82003, 6, 10, 21, 10, 26.085265<

The Mathematica Date function returns whatever your computer system gives as the current date and time. It assumes
that any corrections for daylight saving time and so on have already been done by your computer system. In addition, it
assumes that your computer system has been set for the appropriate time zone. 
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The function TimeZone[ ] returns the current time zone assumed by your computer system. The time zone is given
as the number of hours which must be added to Greenwich mean time (GMT) to obtain the correct local time. Thus, for
example,  U.S.  eastern  standard  time (EST)  corresponds  to  time zone  -5.  Note  that  daylight  saving  time corrections
must be included in the time zone, so U.S. eastern daylight time (EDT) corresponds to time zone -4. 

This gives the current time zone assumed by your computer system. 

In[2]:= TimeZone[ ]

Out[2]= −5.

This gives the current date and time in time zone +9, the time zone for Japan. 

In[3]:= Date[9]

Out[3]= 82003, 6, 11, 11, 10, 26.096032<

AbsoluteTime@  D total number of seconds since the beginning of January 1, 1900
SessionTime@  D total number of seconds elapsed since

the beginning of your current  Mathematica session
TimeUsed@  D total number of seconds of CPU time used in your current  

Mathematica session
$TimeUnit the minimum time interval recorded on your computer system

Time functions. 

You should  realize that  on  any computer system, there is a certain “granularity”  in the times that  can be measured.
This granularity is given as the value of the global variable $TimeUnit. Typically it is either about 1ÅÅÅÅÅÅÅÅÅÅ100  or 1ÅÅÅÅÅÅÅÅÅÅÅÅ1000  of a
second. 

Pause@ n D pause for at least  n seconds

Pausing during a calculation. 

This gives various time functions. 

In[4]:= {AbsoluteTime[ ], SessionTime[ ], TimeUsed[ ]}

Out[4]= 83.264268226117453×109, 5.188506, 0.79<

This pauses for 10 seconds, then re-evaluates the time functions. Note that TimeUsed[ ] is not affected by the pause. 

In[5]:= Pause[10]; {AbsoluteTime[ ], SessionTime[ ], TimeUsed[ ]}

Out[5]= 83.264268236129375×109, 15.200449, 0.79<

FromDate@ date D convert from date to absolute time
ToDate@ time D convert from absolute time to date

Converting between dates and absolute times. 
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This sets d to be the current date. 

In[6]:= d = Date[ ]

Out[6]= 82003, 6, 10, 21, 10, 36.137483<

This adds one month to the current date. 

In[7]:= Date[ ] + {0, 1, 0, 0, 0, 0}

Out[7]= 82003, 7, 10, 21, 10, 36.140428<

This gives the number of seconds in the additional month. 

In[8]:= FromDate[%] - FromDate[d]

Out[8]= 2.592000002945×106

Timing@ expr D evaluate  expr , and return a list of the CPU time needed,
together with the result obtained

AbsoluteTiming@ expr D evaluate  expr , giving the absolute time taken

Timing Mathematica operations. 

Timing  allows  you  to  measure  the  CPU  time,  corresponding  to  the  increase  in  TimeUsed,  associated  with  the
evaluation of  a single Mathematica  expression.  Note that  only CPU time associated with the actual evaluation of  the
expression  within  the Mathematica  kernel  is  included.  The time needed  to  format the  expression  for  output,  and any
time associated with external programs, is not included. 

AbsoluteTiming  allows  you  to  measure  absolute  total  elapsed  time.  You  should  realize,  however,  that  the  time
reported for a particular calculation by both AbsoluteTiming and Timing depends on many factors. 

First,  the  time depends  in  detail  on  the computer system you are using.  It  depends  not  only on  instruction times, but
also on memory caching, as well as on the details of the optimization done in compiling the parts of the internal code of
Mathematica used in the calculation. 

The time also depends on the precise state of your Mathematica  session when the calculation was done. Many of the
internal  optimizations  used  by  Mathematica  depend  on  details  of  preceding  calculations.  For  example,  Mathematica
often  uses  previous  results  it  has  obtained,  and  avoids  unnecessarily  re-evaluating  expressions.  In  addition,  some
Mathematica  functions build internal tables when they are first called in a particular way, so that if they are called in
that way again, they run much faster. For all of these kinds of reasons, it is often the case that a particular calculation
may not take the same amount of time if you run it at different points in the same Mathematica session. 

This gives the CPU time needed for the calculation. The semicolon causes the result of the calculation to be given as Null. 

In[9]:= Timing[100000!;]

Out[9]= 80.52 Second, Null<

Now Mathematica has built internal tables for factorial functions, and the calculation takes no measurable CPU time. 

In[10]:= Timing[100000!;]

Out[10]= 80. Second, Null<
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However, some absolute time does elapse. 

In[11]:= AbsoluteTiming[100000!;]

Out[11]= 80.000084 Second, Null<

Note that the results you get from Timing are only accurate to the timing granularity $TimeUnit of your computer
system. Thus, for example, a timing reported as 0 could in fact be as much as $TimeUnit. 

TimeConstrained@ expr,  t D try to evaluate  expr , aborting the calculation after  t seconds
TimeConstrained@ 

expr,  t,  failexpr D 

return  failexpr if the time constraint is not met

Time-constrained calculation. 

When you use Mathematica interactively, it is quite common to try doing a calculation, but to abort the calculation if it
seems to be taking too long. You can emulate this behavior inside a program by using TimeConstrained. Time
Constrained  tries to evaluate a particular expression for a specified amount of time. If it does not succeed, then it
aborts the evaluation, and returns either $Aborted, or an expression you specify. 

You  can  use  TimeConstrained,  for  example,  to  have  Mathematica  try  a  particular  approach  to  a  problem for  a
certain  amount  of  time,  and  then  to  switch  to  another  approach  if  the  first  one  has  not  yet  succeeded.  You  should
realize  however  that  TimeConstrained  may  overrun  the  time  you  specify  if  Mathematica  cannot  be  interrupted
during a particular part of a calculation. In addition, you should realize that because different computer systems run at
different speeds, programs that use TimeConstrained will often give different results on different systems. 

2.14.4 Memory Management

MemoryInUse@  D number of bytes of memory currently being used by  Mathematica
MaxMemoryUsed@  D maximum number of bytes of memory used by  

Mathematica in this session

Finding memory usage. 

Particularly for symbolic computations, memory is usually the primary resource which limits the size of computations
you can do. If a computation runs slowly, you can always potentially let it run longer. But if the computation generates
intermediate  expressions  which  simply  cannot  fit  in  the  memory of  your  computer  system,  then  you  cannot  proceed
with the computation. 

Mathematica is careful about the way it uses memory. Every time an intermediate expression you have generated is no
longer needed, Mathematica immediately reclaims the memory allocated to it. This means that at any point in a session,
Mathematica stores only those expressions that are actually needed; it does not keep unnecessary objects which have to
be “garbage  collected”  later. 

This gives the number of bytes of memory currently being used by Mathematica. 

In[1]:= MemoryInUse[ ]

Out[1]= 947712
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This generates a 10000-element list. 

In[2]:= Range[10000] // Short

Out[2]= 81, 2, 3, 4, 5, 6, 7, 8, 9985 , 9994, 9995, 9996, 9997, 9998, 9999, 10000<

Additional memory is needed to store the list. 

In[3]:= MemoryInUse[ ]

Out[3]= 989616

This list is kept because it is the value of Out[2]. If you clear Out[2], the list is no longer needed. 

In[4]:= Unprotect[Out]; Out[2]=.

The memory in use goes down again. 

In[5]:= MemoryInUse[ ]

Out[5]= 954408

This shows the maximum memory needed at any point in the session. 

In[6]:= MaxMemoryUsed[ ]

Out[6]= 1467536

One issue that  often  comes up  is  exactly  how much memory Mathematica  can  actually use  on  a  particular  computer
system. Usually there is a certain amount of memory available for all processes running on the computer at a particular
time. Sometimes this amount of  memory is equal  to the physical number of  bytes of RAM in the computer. Often,  it
includes a certain amount of “virtual  memory”,  obtained by swapping data on and off a mass storage device. 

When  Mathematica  runs,  it  needs  space  both  for  data  and  for  code.  The  complete  code  of  Mathematica  is  typically
several megabytes in size. For any particular calculation, only a small fraction of this code is usually used. However, in
trying to work out the total amount of space available for Mathematica  data, you should not forget what is needed for
Mathematica code. In addition, you must include the space that is taken up by other processes running in the computer.
If there are fewer jobs running, you will usually find that your job can use more memory. 

It  is  also  worth  realizing  that  the  time  needed  to  do  a  calculation  can  depend  very  greatly  on  how  much  physical
memory  you  have.  Although  virtual  memory  allows  you  in  principle  to  use  large  amounts  of  memory  space,  it  is
usually  hundreds  or  even  thousands  of  times slower  to  access  than physical  memory. As  a  result,  if  your  calculation
becomes so large that it needs to make use of virtual memory, it may run much more slowly. 

MemoryConstrained@ expr,  b D try to evaluate  expr , aborting if more than  
b additional bytes of memory are requested

MemoryConstrained@ 

expr,  b,  failexpr D 

return  failexpr if the memory constraint is not met

Memory-constrained computation. 

MemoryConstrained  works  much  like  TimeConstrained.  If  more  than  the  specified  amount  of  memory  is
requested, MemoryConstrained  attempts to abort your computation. As with TimeConstrained, there may be
some overshoot in the actual amount of memory used before the computation is aborted. 
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ByteCount@ expr D the maximum number of bytes of memory needed to store  expr 
LeafCount@ expr D the number of terminal nodes in the expression tree for  expr 

Finding the size of expressions. 

Although you may find ByteCount useful in estimating how large an expression of a particular kind you can handle,
you should realize that the specific results given by ByteCount can differ substantially from one version of Mathemat-
ica to another. 

Another  important  point  is  that  ByteCount  always  gives  you  the  maximum  amount  of  memory  needed  to  store  a
particular expression. Often Mathematica  will actually use a much smaller amount of memory to store the expression.
The main issue is how many of the subexpressions in the expression can be shared. 

In an expression like f[1 + x, 1 + x], the two subexpressions 1 + x are identical, but they may or may not actually
be stored in the same piece of computer memory. ByteCount gives you the number of bytes needed to store expres-
sions with the assumption that no subexpressions  are shared. You should realize that the sharing of subexpressions is
often destroyed as soon as you use an operation like the /. operator. 

Nevertheless, you can explicitly tell Mathematica  to share subexpressions using the function Share. In this way, you
can significantly reduce the actual amount of memory needed to store a particular expression. 

Share@ expr D share common subexpressions in the storage of  expr
Share@  D share common subexpressions throughout memory

Optimizing memory usage. 

On  most  computer  systems,  the  memory  used  by  a  running  program  is  divided  into  two  parts:  memory  explicitly
allocated by the program, and “stack  space”.  Every time an internal routine is called in the program, a certain amount
of stack space is used to store parameters associated with the call. On many computer systems, the maximum amount of
stack space that can be used by a program must be specified in advance. If the specified stack space limit is exceeded,
the program usually just exits. 

In  Mathematica,  one  of  the  primary  uses  of  stack  space  is  in  handling  the  calling  of  one  Mathematica  function  by
another. All such calls are explicitly recorded in the Mathematica Stack discussed in Section 2.6.12. You can control
the size of this stack by setting the global parameter $RecursionLimit.  You should be sure that this parameter is
set small enough that you do not run out of stack space on your particular computer system. 

2.14.5 Advanced Topic: Global System Information

In order to write the most general Mathematica programs you will sometimes need to find out global information about
the setup under which your program is being run. 

Thus, for example, to tell whether your program should be calling functions like NotebookWrite, you need to find
out whether the program is being run in a Mathematica session that is using the notebook front end. You can do this by
testing the global variable $Notebooks. 

$Notebooks whether a notebook front end is being used

Determining whether a notebook front end is being used. 

Mathematica  is  usually  used  interactively,  but  it  can  also  operate  in  a  batch  mode—say taking  input  from a  file  and
writing output to a file. In such a case, a program cannot for example expect to get interactive input from the user. 
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$BatchInput whether input is being given in batch mode
$BatchOutput whether output should be

given in batch mode, without labeling, etc.

Variables specifying batch mode operation. 

The Mathematica kernel is a process that runs under the operating system on your computer. Within Mathematica there
are several global variables that allow you to find the characteristics of this process and its environment. 

$CommandLine the original command line used to invoke the  Mathematica kernel
$ParentLink the  MathLink  LinkObject 

specifying the program that invoked the kernel Hor  
Null if the kernel was invoked directlyL

$ProcessID the ID assigned to the  Mathematica 
kernel process by the operating system

$ParentProcessID the ID of the process that invoked the  Mathematica kernel
$UserName the login name of the user running the  Mathematica kernel

Environment@" var "D the value of a variable defined by the operating system

Variables associated with the Mathematica kernel process. 

If you have a variable such as x in a particular Mathematica  session, you may or may not want that variable to be the
same  as  an  x  in  another  Mathematica  session.  In  order  to  make  it  possible  to  maintain  distinct  objects  in  different
sessions, Mathematica  supports  the variable $SessionID,  which uses information such as starting time, process ID
and  machine  ID to  try  to  give  a  different  value  for  every  single  Mathematica  session,  whether  it  is  run  on  the  same
computer or a different one. 

$SessionID a number set up to be different for every  Mathematica session

A unique number different for every Mathematica session. 

Mathematica  provides various global variables that allow you to tell which version of the kernel you are running. This
is  important  if  you  write  programs  that  make  use  of  features  that  are,  say,  new  in  Version  5.  You  can  then  check
$VersionNumber to find out if these features will be available. 

$Version a string giving the complete version of  Mathematica in use
$VersionNumber the  Mathematica kernel version number He.g.  5.0 L
$ReleaseNumber the release number for your version of the  

Mathematica kernel on your particular computer system
$CreationDate the date, in  Date format, on which your particular  

Mathematica release was created
$InstallationDate the date on which your copy of  Mathematica was installed

$ProductInformation a list of detailed product information

Variables specifying the version of Mathematica used. 

Mathematica  itself is set up to be as independent of the details of the particular computer system on which it is run as
possible. However, if you want to access external aspects of your computer system, then you will often need to find out
its characteristics. 
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$System a full string describing the computer system in use
$SystemID a short string specifying the computer system in use

$ProcessorType the architecture of the processor in your computer system
$MachineType the general type of your computer system
$ByteOrdering the native byte ordering convention on your computer system

$OperatingSystem the basic operating system in use
$SystemCharacterEncoding the default raw character encoding used by your operating system

Variables specifying the characteristics of your computer system. 

Mathematica  uses the values of  $SystemID  to  label  directories  that contain versions of  files for  different  computer
systems, as  discussed  in  Sections 2.12.1  and 2.13.5.  Computer  systems for  which  $SystemID  is  the  same will  nor-
mally be binary compatible. 

$OperatingSystem  has  values  such  as  "Unix"  and  "MacOS".  By  testing  $OperatingSystem  you  can
determine whether a particular external program is likely to be available on your computer system. 

This gives some characteristics of the computer system used to generate the examples for this book. 

In[1]:= {$System, $ProcessorType, $OperatingSystem}

Out[1]= 8Linux, x86, Unix<

$MachineName the name of the computer on which  Mathematica is running
$MachineDomain the network domain for the computer

$MachineID the unique ID assigned by  Mathematica to the computer

Variables identifying the computer on which Mathematica is running. 

$LicenseID the ID for the license under which  Mathematica is running
$LicenseExpirationDate the date on which the license expires

$NetworkLicense whether this is a network license
$LicenseServer the full name of the machine serving the license

$LicenseProcesses the number of  Mathematica 
processes currently being run under the license

$MaxLicenseProcesses the maximum number of processes provided by the license
$PasswordFile password file used when the kernel was started

Variables associated with license management. 
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Part 3
Part  1  described  how  to  do  basic  mathematics  with  Mathematica.  For  many  kinds  of  calculations,  you  will  need  to
know nothing more. But if you do want to use more advanced mathematics, this Part discusses how to do it in Mathe-
matica. 

This Part goes through the various mathematical functions and methods that are built into Mathematica. Some calcula-
tions can be done just by using these built-in mathematical capabilities. For many specific calculations, however,  you
will need to use application packages that have been written in Mathematica. These packages build on the mathemati-
cal capabilities discussed in this Part, but add new functions for doing special kinds of calculations. 

Much of what is said in this Part assumes a knowledge of mathematics at an advanced undergraduate level. If you do
not understand a particular section, then you can probably assume that you will not need to use that section. 
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3.1 Numbers

3.1.1 Types of Numbers

Four underlying types of numbers are built into Mathematica. 

Integer arbitrary-length exact integer
Rational integerêinteger in lowest terms

Real approximate real number, with any specified precision
Complex complex number of the form  number  +  number  I

Intrinsic types of numbers in Mathematica.

Rational numbers always consist of a ratio of two integers, reduced to lowest terms. 

In[1]:= 12344/2222

Out[1]= 
6172
1111

Approximate real numbers are distinguished by the presence of an explicit decimal point. 

In[2]:= 5456.

Out[2]= 5456.

An approximate real number can have any number of digits. 

In[3]:= 4.54543523454543523453452345234543

Out[3]= 4.5454352345454352345345234523454

Complex numbers can have integer or rational components. 

In[4]:= 4 + 7/8 I

Out[4]= 4 +
7
8

They can also have approximate real number components. 

In[5]:= 4 + 5.6 I

Out[5]= 4 + 5.6

123 an exact integer
123. an approximate real number

123.0000000000000 an approximate real number with a certain precision
123.  +  0.  I a complex number with approximate real number components

Several versions of the number 123. 
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You  can  distinguish  different  types  of  numbers  in  Mathematica  by  looking  at  their  heads.  (Although  numbers  in
Mathematica have heads like other expressions, they do not have explicit elements which you can extract.)  

The object 123 is taken to be an exact integer, with head Integer. 

In[6]:= Head[123]

Out[6]= Integer

The presence of an explicit decimal point makes Mathematica treat 123. as an approximate real number, with head Real. 

In[7]:= Head[123.]

Out[7]= Real

NumberQ@ x D test whether  x is any kind of number
IntegerQ@ x D test whether  x is an integer

EvenQ@ x D test whether  x is even
OddQ@ x D test whether  x is odd

PrimeQ@ x D test whether  x is a prime integer
Head@ x D=== type test the type of a number

Tests for different types of numbers.

NumberQ[x] tests for any kind of number. 

In[8]:= NumberQ[5.6]

Out[8]= True

5. is treated as a Real, so IntegerQ gives False. 

In[9]:= IntegerQ[5.]

Out[9]= False

If you use complex numbers extensively, there is one subtlety you should be aware of. When you enter a number like
123., Mathematica treats it as an approximate real number, but assumes that its imaginary part is exactly zero. Some-
times you may want  to  enter  approximate complex numbers  with  imaginary parts  that  are  zero,  but  only  to  a  certain
precision.  

When the imaginary part is the exact integer 0, Mathematica simplifies complex numbers to real ones. 

In[10]:= Head[ 123 + 0 I ]

Out[10]= Integer

Here the imaginary part is only zero to a certain precision, so Mathematica retains the complex number form. 

In[11]:= Head[ 123. + 0. I ]

Out[11]= Complex
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The distinction between complex numbers whose imaginary parts are exactly zero, or are only zero to a certain preci-
sion, may seem like a pedantic one. However, when we discuss, for example, the interpretation of powers and roots of
complex numbers in Section 3.2.7, the distinction will become significant. 

One way to  find  out  the type of  a  number  in Mathematica  is  just  to  pick out  its  head using Head[expr].  For  many
purposes, however, it is better to use functions like IntegerQ which explicitly test for particular types. Functions like
this are set up to return True if their argument is manifestly of the required type, and to return False otherwise. As a
result, IntegerQ[x] will give False, unless x has an explicit integer value.  

3.1.2 Numeric Quantities

NumberQ@ expr D test whether  expr is explicitly a number
NumericQ@ expr D test whether  expr has a numerical value

Testing for numeric quantities. 

Pi is a symbol, so Pi + 3 is not explicitly a number. 

In[1]:= NumberQ[Pi + 3]

Out[1]= False

It does however have a numerical value. 

In[2]:= NumericQ[Pi + 3]

Out[2]= True

This finds the explicit numerical value of Pi + 3. 

In[3]:= N[Pi + 3]

Out[3]= 6.14159

Mathematica  knows that constants such as Pi are numeric quantities. It also knows that standard mathematical func-
tions such as Log and Sin have numerical values when their arguments are numerical.  

Log[2 + x] contains x, and is therefore not a numeric quantity. 

In[4]:= {NumericQ[Log[2]], NumericQ[Log[2 + x]]}

Out[4]= 8True, False<

Many functions implicitly use the numerical values of numeric quantities. 

In[5]:= Min[Exp[2], Log[2], Sqrt[2]]

Out[5]= Log@2D

In general, Mathematica  assumes that any function which has the attribute NumericFunction  will yield numerical
values  when  its  arguments  are  numerical.  All  standard  mathematical  functions  in  Mathematica  already  have  this
attribute.  But when you define your own functions,  you can explicitly set the attribute to tell Mathematica  to assume
that these functions will have numerical values when their arguments are numerical.  
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3.1.3 Digits in Numbers

IntegerDigits@ n D a list of the decimal digits in the integer  n 
IntegerDigits@ n,  b D the digits of  n in base  b 

IntegerDigits@ n,  b,  len D the list of digits padded on the left with zeros to give total length  
len 

IntegerExponent@ n,  b D the number of zeros at the end of  n in base  b 
RealDigits@ x D a list of the decimal digits in the approximate real number  x ,

together with the number of digits to the left of the decimal point
RealDigits@ x,  b D the digits of  x in base  b 

RealDigits@ x,  b,  len D the first  len digits of  x in base  b 
RealDigits@ x,  b,  len,  n D the first  len digits starting with the coefficient of  bn  

FromDigits@ list D reconstruct a number from its decimal digit sequence
FromDigits@ list,  b D reconstruct a number from its digits sequence in base  b 

Converting between numbers and lists of digits. 

Here is the list of base 16 digits for an integer. 

In[1]:= IntegerDigits[1234135634, 16]

Out[1]= 84, 9, 8, 15, 6, 10, 5, 2<

This gives a list of digits, together with the number of digits that appear to the left of the decimal point. 

In[2]:= RealDigits[123.4567890123456]

Out[2]= 881, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6<, 3<

Here is the binary digit sequence for 56, padded with zeros so that it is of total length 8. 

In[3]:= IntegerDigits[56, 2, 8]

Out[3]= 80, 0, 1, 1, 1, 0, 0, 0<

This reconstructs the original number from its binary digit sequence. 

In[4]:= FromDigits[%, 2]

Out[4]= 56

b ^^ nnnn a number in base  b 
BaseForm@ x,  b D print with  x in base  b

Numbers in other bases. 

When the base is larger than 10, extra digits are represented by letters a– z. 
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The number 1001012  in base 2 is 37 in base 10. 

In[5]:= 2^^100101

Out[5]= 37

This prints 37 in base 2. 

In[6]:= BaseForm[37, 2]

Out[6]//BaseForm= 

1001012

Here is a number in base 16. 

In[7]:= 16^^ffffaa00

Out[7]= 4294945280

You can do computations with numbers in base 16. Here the result is given in base 10. 

In[8]:= 16^^fffaa2 + 16^^ff - 1

Out[8]= 16776096

This gives the result in base 16. 

In[9]:= BaseForm[%, 16]

Out[9]//BaseForm= 

fffba016

You can give approximate real numbers, as well as integers, in other bases. 

In[10]:= 2^^101.100101

Out[10]= 5.57813

Here are the first few digits of è!!!2  in octal. 

In[11]:= BaseForm[N[Sqrt[2], 30], 8]

Out[11]//BaseForm= 

1.3240474631771674622042627661154678

This gives an explicit list of the first 15 octal digits. 

In[12]:= RealDigits[Sqrt[2], 8, 15]

Out[12]= 881, 3, 2, 4, 0, 4, 7, 4, 6, 3, 1, 7, 7, 1, 7<, 1<

This gives 15 octal digits starting with the coefficient of 8-10 . 

In[13]:= RealDigits[Sqrt[2], 8, 15, -10]

Out[13]= 881, 7, 7, 1, 6, 7, 4, 6, 2, 2, 0, 4, 2, 6, 3<, −9<

Printed from the Mathematica Help Browser 5

©1988-2003 Wolfram Research, Inc. All rights reserved.



Section 2.9.7 describes how to print numbers in various formats. If you want to create your own formats, you will often
need to use MantissaExponent to separate the pieces of real numbers. 

MantissaExponent@ x D give a list containing the mantissa and exponent of  x 
MantissaExponent@ x,  b D give the mantissa and exponent in base  b 

Separating the mantissa and exponent of numbers. 

This gives a list in which the mantissa and exponent of the number are separated. 

In[14]:= MantissaExponent[3.45 10^125]

Out[14]= 80.345, 126<

3.1.4 Numerical Precision

As  discussed  in  Section  1.1.2,  Mathematica  can  handle  approximate  real  numbers  with  any  number  of  digits.  In
general, the precision of an approximate real number is the effective number of decimal digits in it which are treated as
significant  for  computations.  The  accuracy  is  the  effective  number  of  these  digits  which  appear  to  the  right  of  the
decimal  point.  Note  that  to  achieve  full  consistency  in  the  treatment  of  numbers,  precision  and  accuracy  often  have
values that do not correspond to integer numbers of digits. 

Precision@ x D the total number of significant decimal digits in  x 
Accuracy@ x D the number of significant decimal

digits to the right of the decimal point in  x 

Precision and accuracy of real numbers. 

This generates a number with 30-digit precision. 

In[1]:= x = N[Pi^10, 30]

Out[1]= 93648.0474760830209737166901849

This gives the precision of the number. 

In[2]:= Precision[x]

Out[2]= 30.

The accuracy is lower since only some of the digits are to the right of the decimal point. 

In[3]:= Accuracy[x]

Out[3]= 25.0285

This number has all its digits to the right of the decimal point. 

In[4]:= x / 10^6

Out[4]= 0.0936480474760830209737166901849
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Now the accuracy is larger than the precision. 

In[5]:= {Precision[%], Accuracy[%]}

Out[5]= 830., 31.0285<

An approximate real number always has some uncertainty in its value, associated with digits beyond those known. One
can think of precision as providing a measure of the relative size of this uncertainty. Accuracy gives a measure of the
absolute size of the uncertainty. 

Mathematica is set up so that if a number x  has uncertainty d , then its true value can lie anywhere in an interval of size
d  from  x - d ê 2  to  x + d ê 2.  An  approximate  number  with  accuracy  a  is  defined  to  have  uncertainty  10-a ,  while  a
non-zero approximate number with precision p  is defined to have uncertainty » x » 10-p . 

Precision@ x D -log10 Hd ê » x »L  
Accuracy@ x D -log10 HdL  

Definitions of precision and accuracy in terms of uncertainty. 

Adding or subtracting a quantity smaller than the uncertainty has no visible effect. 

In[6]:= {x - 10^-26, x, x + 10^-26}

Out[6]= 893648.0474760830209737166901849,
93648.0474760830209737166901849, 93648.0474760830209737166901849<

N@ expr,  n D evaluate  expr to  n 
-digit precision using arbitrary-precision numbers

N@ expr D evaluate  expr numerically using machine-precision numbers

Numerical evaluation with arbitrary-precision and machine-precision numbers. 

Mathematica  distinguishes  two  kinds  of  approximate  real  numbers:  arbitrary-precision  numbers,  and
machine-precision  numbers  or  machine numbers.  Arbitrary-precision  numbers  can contain any  number  of  digits,  and
maintain  information  on  their  precision.  Machine  numbers,  on  the  other  hand,  always  contain  the  same  number  of
digits, and maintain no information on their precision. 

Here is a machine-number approximation to p . 

In[7]:= N[Pi]

Out[7]= 3.14159

These are both arbitrary-precision numbers. 

In[8]:= {N[Pi, 4], N[Pi, 20]}

Out[8]= 83.142, 3.1415926535897932385<

As discussed in more detail below, machine numbers work by making direct use of the numerical capabilities of your
underlying computer system. As a result, computations with them can often be done more quickly. They are however
much  less  flexible  than  arbitrary-precision  numbers,  and  difficult  numerical  analysis  can  be  needed  to  determine
whether results obtained with them are correct. 
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MachinePrecision the precision specification used to indicate machine numbers
$MachinePrecision the effective precision for

machine numbers on your computer system
MachineNumberQ@ x D test whether  x is a machine number

Machine numbers. 

This returns the symbol MachinePrecision to indicate a machine number. 

In[9]:= Precision[ N[Pi] ]

Out[9]= MachinePrecision

On this computer, machine numbers have slightly less than 16 decimal digits. 

In[10]:= $MachinePrecision

Out[10]= 15.9546

When you enter an approximate real number, Mathematica has to decide whether to treat it as a machine number or an
arbitrary-precision  number.  Unless  you  specify  otherwise,  then  if  you  give  less  than  $MachinePrecision  digits,
Mathematica  will treat the number as machine precision, and if you give more digits, it will treat the number as arbi-
trary precision.   

123.4 a machine-precision number
123.45678901234567890 an arbitrary-precision number on some computer systems

123.45678901234567890  ̀ a machine-precision number on all computer systems
123.456`200 an arbitrary-precision number with 200 digits of precision

123.456``200 an arbitrary-precision number with 200 digits of accuracy
1.234*^6 a machine-precision number in scientific notation H 1.234ä106  L

1.234`200*^6 a number in scientific notation with 200 digits of precision
2^^101.111`200 a number in base 2 with 200 binary digits of precision

2^^101.111`200*^6 a number in base 2 scientific notation H 101.1112 ä26  L
Input forms for numbers. 

When Mathematica  prints out numbers, it usually tries to give them in a form that will be as easy as possible to read.
But if you want to take numbers that are printed out by Mathematica, and then later use them as input to Mathematica,
you need to make sure that no information gets lost.   

In standard output form, Mathematica prints a number like this to six digits. 

In[11]:= N[Pi]

Out[11]= 3.14159

In input form, Mathematica prints all the digits it knows. 

In[12]:= InputForm[%]

Out[12]//InputForm= 

3.141592653589793
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Here is an arbitrary-precision number in standard output form. 

In[13]:= N[Pi, 20]

Out[13]= 3.1415926535897932385

In input form, Mathematica explicitly indicates the precision of the number, and gives extra digits to make sure the number can be 
reconstructed correctly. 

In[14]:= InputForm[%]

Out[14]//InputForm= 

3.1415926535897932384626433832795028842`20.

This makes Mathematica not explicitly indicate precision. 

In[15]:= InputForm[%, NumberMarks->False]

Out[15]//InputForm= 

3.1415926535897932385

InputForm@ expr,  
NumberMarks−>TrueD 

use  ` marks in all approximate numbers

InputForm@ expr,  
NumberMarks−>AutomaticD 

use  ` only in arbitrary-precision numbers

InputForm@ expr,  
NumberMarks−>FalseD 

never use  ` marks

Controlling printing of numbers. 

The  default  setting  for  the  NumberMarks  option,  both  in  InputForm  and  in  functions  such  as  ToString  and
OpenWrite  is  given  by  the  value  of  $NumberMarks.  By  resetting  $NumberMarks,  therefore,  you  can  globally
change the way that numbers are printed in InputForm.   

This makes Mathematica by default always include number marks in input form. 

In[16]:= $NumberMarks = True

Out[16]= True

Even a machine-precision number is now printed with an explicit number mark. 

In[17]:= InputForm[N[Pi]]

Out[17]//InputForm= 

3.141592653589793`

Even with no number marks, InputForm still uses *^ for scientific notation. 

In[18]:= InputForm[N[Exp[600], 20], NumberMarks->False]

Out[18]//InputForm= 

3.7730203009299398234*^260

In doing numerical computations, it is inevitable that you will sometimes end up with results that are less precise than
you want. Particularly when you get numerical results that are very close to zero, you may well want to assume that the
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results  should  be  exactly  zero.  The  function  Chop  allows  you  to  replace  approximate  real  numbers  that  are  close  to
zero by the exact integer 0. 

Chop@ expr D replace all approximate real numbers in  
expr with magnitude less than  10-10  by 0

Chop@ expr,  dx D replace numbers with magnitude less than  dx by 0

Removing numbers close to zero. 

This computation gives a small imaginary part. 

In[19]:= Exp[ N[2 Pi I] ]

Out[19]= 1. − 2.44921 × 10−16

You can get rid of the imaginary part using Chop. 

In[20]:= Chop[%]

Out[20]= 1.

3.1.5 Arbitrary-Precision Numbers

When  you  do  calculations  with  arbitrary-precision  numbers,  Mathematica  keeps  track  of  precision  at  all  points.  In
general,  Mathematica  tries  to  give  you  results  which  have  the  highest  possible  precision,  given  the  precision  of  the
input you provided. 

Mathematica  treats  arbitrary-precision  numbers  as  representing  the  values  of  quantities  where  a  certain  number  of
digits  are  known,  and  the  rest  are  unknown.  In  general,  an  arbitrary-precision  number  x  is  taken  to  have
Precision[x]  digits  which  are  known  exactly,  followed  by  an  infinite  number  of  digits  which  are  completely
unknown. 

This computes p  to 10-digit precision. 

In[1]:= N[Pi, 10]

Out[1]= 3.141592654

After a certain point, all digits are indeterminate. 

In[2]:= RealDigits[%, 10, 13]

Out[2]= 883, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, Indeterminate, Indeterminate<, 1<

When  you  do  a  computation,  Mathematica  keeps  track  of  which  digits  in  your  result  could  be  affected  by  unknown
digits  in  your  input.  It  sets  the  precision  of  your  result  so  that  no  affected  digits  are  ever  included.  This  procedure
ensures that all digits returned by Mathematica are correct, whatever the values of the unknown digits may be. 

This evaluates GH1 ê7L  to 30-digit precision. 

In[3]:= N[Gamma[1/7], 30]

Out[3]= 6.54806294024782443771409334943
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The result has a precision of exactly 30 digits. 

In[4]:= Precision[%]

Out[4]= 30.

If you give input only to a few digits of precision, Mathematica cannot give you such high-precision output. 

In[5]:= N[Gamma[0.142], 30]

Out[5]= 6.58965

If you want Mathematica to assume that the argument is exactly 142/1000, then you have to say so explicitly. 

In[6]:= N[Gamma[142/1000], 30]

Out[6]= 6.58964729492039788328481917496

In many computations, the precision of the results you get progressively degrades as a result of “roundoff  error”.  A
typical case of this occurs if you subtract two numbers that are close together. The result you get depends on high-order
digits in each number, and typically has far fewer digits of precision than either of the original numbers. 

Both input numbers have a precision of around 20 digits, but the result has much lower precision. 

In[7]:= 1.11111111111111111111 -
1.11111111111111111000

Out[7]= 1.1 × 10−18

Adding extra digits in one number but not the other is not sufficient to allow extra digits to be found in the result. 

In[8]:= 1.11111111111111111111345 -
1.11111111111111111000

Out[8]= 1.1 × 10−18

The precision of the output from a function can depend in a complicated way on the precision of the input. Functions
that vary rapidly typically give less precise output, since the variation of the output associated with uncertainties in the
input is larger. Functions that are close to constants can actually give output that is more precise than their input.   

Functions like Sin that vary rapidly typically give output that is less precise than their input. 

In[9]:= Sin[111111111.0000000000000000]

Out[9]= −0.2975351033349432

Here is e-40  evaluated to 20-digit precision. 

In[10]:= N[Exp[-40], 20]

Out[10]= 4.2483542552915889953× 10−18
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The result you get by adding the exact integer 1 has a higher precision. 

In[11]:= 1 + %

Out[11]= 1.0000000000000000042483542552915889953

It is worth realizing that different ways of doing the same calculation can end up giving you results with very different
precisions.  Typically,  if  you  once  lose  precision  in  a  calculation,  it  is  essentially  impossible  to  regain  it;  in  losing
precision, you are effectively losing information about your result. 

Here is a 40-digit number that is close to 1. 

In[12]:= x = N[1 - 10^-30, 40]

Out[12]= 0.9999999999999999999999999999990000000000

Adding 1 to it gives another 40-digit number. 

In[13]:= 1 + x

Out[13]= 1.999999999999999999999999999999000000000

The original precision has been maintained. 

In[14]:= Precision[%]

Out[14]= 40.301

This way of computing 1 + x loses precision. 

In[15]:= (x^2 - 1) / (x - 1)

Out[15]= 2.000000000

The result obtained in this way has quite low precision. 

In[16]:= Precision[%]

Out[16]= 9.69897

The  fact  that  different  ways  of  doing  the  same  calculation  can  give  you  different  numerical  answers  means,  among
other things, that comparisons between approximate real numbers must be treated with care. In testing whether two real
numbers are “equal”,  Mathematica  effectively finds their difference, and tests whether the result is “consistent  with
zero”  to the precision given.  

These numbers are equal to the precision given. 

In[17]:= 3 == 3.000000000000000000

Out[17]= True

The  internal  algorithms  that  Mathematica  uses  to  evaluate  mathematical  functions  are  set  up  to  maintain  as  much
precision as possible. In most cases, built-in Mathematica functions will give you results that have as much precision as
can be justified on the basis of your input. In some cases, however, it is simply impractical to do this, and Mathematica
will give you results that have lower precision. If you give higher-precision input, Mathematica  will use higher preci-
sion in its internal calculations, and you will usually be able to get a higher-precision result. 

12 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



N@ expr D evaluate  expr numerically to machine precision
N@ expr,  n D evaluate  expr 

numerically trying to get a result with  n digits of precision

Numerical evaluation. 

If you start with an expression that contains only integers and other exact numeric quantities, then N[expr, n] will in
almost  all  cases  succeed  in  giving  you  a  result  to  n  digits  of  precision.  You  should  realize,  however,  that  to  do  this
Mathematica sometimes has to perform internal intermediate calculations to much higher precision.  

The global variable $MaxExtraPrecision specifies how many additional digits should be allowed in such interme-
diate calculations. 

variable default value 

$MaxExtraPrecision 50 maximum additional precision to use

Controlling precision in intermediate calculations. 

Mathematica automatically increases the precision that it uses internally in order to get the correct answer here. 

In[18]:= N[Sin[10^40], 30]

Out[18]= −0.569633400953636327308034181574

Using the default setting $MaxExtraPrecision=50 Mathematica cannot get the correct answer here. 

In[19]:= N[Sin[10^100], 30]

N::meprec :  Internal precision limit $MaxExtraPrecision = 50.` reached
while evaluating Sin@10000000000000000000 61  00000000000000000000D.

Out[19]= 0.

This tells Mathematica that it can use more digits in its internal calculations. 

In[20]:= $MaxExtraPrecision = 200

Out[20]= 200

Now it gets the correct answer. 

In[21]:= N[Sin[10^100], 30]

Out[21]= −0.372376123661276688262086695553

This resets $MaxExtraPrecision to its default value. 

In[22]:= $MaxExtraPrecision = 50

Out[22]= 50

Even  when  you  are  doing  computations  that  give  exact  results,  Mathematica  still  occasionally  uses  approximate
numbers for some of its internal calculations, so that the value of $MaxExtraPrecision can thus have an effect. 
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Mathematica works this out using bounds from approximate numbers. 

In[23]:= Sin[Exp[100]] > 0

Out[23]= True

With the default value of $MaxExtraPrecision, Mathematica cannot work this out. 

In[24]:= Sin[Exp[200]] > 0

N::meprec :  Internal precision limit
$MaxExtraPrecision = 50.` reached while evaluating −Sin@ 200D.

Out[24]= Sin@ 200D > 0

Temporarily resetting $MaxExtraPrecision allows Mathematica to get the result. 

In[25]:= Block[{$MaxExtraPrecision = 100}, Sin[Exp[200]] > 0 ]

Out[25]= False

In doing calculations that degrade precision, it is possible to end up with numbers that have no significant digits at all.
But even in such cases, Mathematica still maintains information on the accuracy of the numbers. Given a number with
no significant digits, but accuracy a, Mathematica  can then still tell that the actual value of the number must be in the
range 8−10−a, +10−a<ê2 . Mathematica by default prints such numbers in the form 0. × 10e .  

Here is a number with 20-digit precision. 

In[26]:= x = N[Exp[50], 20]

Out[26]= 5.1847055285870724641× 1021

Here there are no significant digits left. 

In[27]:= Sin[x]/x

Out[27]= 0. × 10−22

But Mathematica still keeps track of the accuracy of the result. 

In[28]:= Accuracy[%]

Out[28]= 21.7147

Adding this to an exact 1 gives a number with quite high precision. 

In[29]:= 1 + %

Out[29]= 22.7147

One subtlety in characterizing numbers by their precision is that any number that is consistent with zero must be treated
as having zero precision. The reason for this is that such a number has no digits that can be recognized as significant,
since all its known digits are just zero. 
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This gives a number whose value is consistent with zero. 

In[30]:= d = N[Pi, 20] - Pi

Out[30]= −0. × 10−20

The number has no recognizable significant digits of precision. 

In[31]:= Precision[d]

Out[31]= 0.

But it still has a definite accuracy, that characterizes the uncertainty in it. 

In[32]:= Accuracy[d]

Out[32]= 19.2089

If you do computations whose results are likely to be near zero, it can be convenient to specify the accuracy, rather than
the precision, that you want to get. 

N@ expr,  p D evaluate  expr to precision  p 
N@ expr,  8  p,  a <  D evaluate  expr to at most precision  p and accuracy  a 

N@ expr,  8  Infinity,  a <  D evaluate  expr to any precision but to accuracy  a 

Specifying accuracy as well as precision. 

Here is a symbolic expression. 

In[33]:= u = ArcTan[1/3] - ArcCot[3]

Out[33]= −ArcCot@3D + ArcTanA 1
3
E

This shows that the expression is equivalent to zero. 

In[34]:= FullSimplify[u]

Out[34]= 0

N cannot guarantee to get a result to precision 20. 

In[35]:= N[u, 20]

N::meprec :  Internal precision limit $MaxExtraPrecision =

50.` reached while evaluating −ArcCot@3D + ArcTanA 1
3
E.

Out[35]= 0. × 10−71

But it can get a result to accuracy 20. 

In[36]:= N[u, {Infinity, 20}]

Out[36]= 0. × 10−21
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When  Mathematica  works  out  the  potential  effect  of  unknown  digits  in  arbitrary-precision  numbers,  it  assumes  by
default  that  these  digits  are  completely independent  in  different  numbers.  While  this  assumption will  never  yield too
high a precision in a result, it may lead to unnecessary loss of precision. 

In  particular,  if  two numbers  are  generated in  the  same way in a  computation,  some of  their  unknown digits  may be
equal.  Then,  when these numbers are,  for  example, subtracted,  the unknown digits may cancel.  By assuming that the
unknown digits are always independent, however, Mathematica will miss such cancellations. 

Here is a number computed to 20-digit precision. 

In[37]:= d = N[3^-30, 20]

Out[37]= 4.8569357496188611379× 10−15

The quantity 1 + d has about 34-digit precision. 

In[38]:= Precision[1 + d]

Out[38]= 34.3136

This quantity still has the same precision, since Mathematica assumes that the unknown digits in each number d are independent. 

In[39]:= Precision[(1 + d) - d]

Out[39]= 34.0126

Numerical algorithms sometimes rely on cancellations between unknown digits in different numbers yielding results of
higher  precision.  If  you can be sure  that  certain  unknown digits will  eventually cancel,  then you can explicitly intro-
duce  fixed  digits  in  place  of  the  unknown  ones.  You can carry  these  fixed  digits  through  your  computation,  then let
them cancel, and get a result of higher precision. 

SetPrecision@ x,  n D create a number with  n decimal digits
of precision, padding with base-2 zeros if necessary

SetAccuracy@ x,  n D create a number with  n decimal digits of accuracy

Functions for modifying precision and accuracy. 

This introduces 10 more digits in d. 

In[40]:= d = SetPrecision[d, 30]

Out[40]= 4.85693574961886113790624266497× 10−15

The digits that were added cancel out here. 

In[41]:= (1 + d) - d

Out[41]= 1.00000000000000000000000000000000000000000000

The precision of the result is now about 44 digits, rather than 34. 

In[42]:= Precision[%]

Out[42]= 44.0126
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SetPrecision works by adding digits which are zero in base 2. Sometimes, Mathematica stores slightly more digits
in an arbitrary-precision number than it displays, and in such cases, SetPrecision will use these extra digits before
introducing zeros. 

This creates a number with a precision of 40 decimal digits. The extra digits come from conversion to base 10. 

In[43]:= SetPrecision[0.400000000000000, 40]

Out[43]= 0.4000000000000000222044604925031308084726

variable default value 

$MaxPrecision Infinity maximum total precision to be used
$MinPrecision −Infinity minimum precision to be used

Global precision control parameters. 

By  making  the  global  assignment  $MinPrecision  =  n,  you  can  effectively  apply  SetPrecision[expr,  n]  at
every step in a computation. This means that even when the number of correct digits in an arbitrary-precision number
drops below n, the number will always be padded to have n digits. 

If you set $MaxPrecision = n as well as $MinPrecision = n, then you can force all arbitrary-precision numbers
to have a fixed precision of n digits. In effect, what this does is to make Mathematica treat arbitrary-precision numbers
in much the same way as it treats machine numbers—but with more digits of precision.  

Fixed-precision computation can make some calculations more efficient, but without careful analysis you can never be
sure how many digits are correct in the results you get.  

Here is a small number with 20-digit precision. 

In[44]:= k = N[Exp[-60], 20]

Out[44]= 8.7565107626965203385× 10−27

With Mathematica's usual arithmetic, this works fine. 

In[45]:= Evaluate[1 + k] - 1

Out[45]= 8.7565107626965203385× 10−27

This tells Mathematica to use fixed-precision arithmetic. 

In[46]:= $MinPrecision = $MaxPrecision = 20

Out[46]= 20

The first few digits are correct, but the rest are wrong. 

In[47]:= Evaluate[1 + k] - 1

Out[47]= 8.7565107626963908935× 10−27
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3.1.6 Machine-Precision Numbers

Whenever  machine-precision  numbers  appear  in  a  calculation,  the  whole  calculation  is  typically  done  in  machine
precision. Mathematica will then give machine-precision numbers as the result. 

Whenever the input contains any machine-precision numbers, Mathematica does the computation to machine precision. 

In[1]:= 1.4444444444444444444 ^ 5.7

Out[1]= 8.13382

Zeta[5.6] yields a machine-precision result, so the N is irrelevant. 

In[2]:= N[Zeta[5.6], 30]

Out[2]= 1.02338

This gives a higher-precision result. 

In[3]:= N[Zeta[56/10], 30]

Out[3]= 1.02337547922702991086041788103

When you do calculations with arbitrary-precision numbers, as discussed in the previous section, Mathematica  always
keeps  track  of  the  precision  of  your  results,  and  gives  only  those  digits  which  are  known  to  be  correct,  given  the
precision  of  your  input.  When  you  do  calculations  with  machine-precision  numbers,  however,  Mathematica  always
gives you a machine-precision result, whether or not all the digits in the result can, in fact, be determined to be correct
on the basis of your input. 

This subtracts two machine-precision numbers. 

In[4]:= diff = 1.11111111 - 1.11111000

Out[4]= 1.11 × 10−6

The result is taken to have machine precision. 

In[5]:= Precision[diff]

Out[5]= MachinePrecision

Here are all the digits in the result. 

In[6]:= InputForm[diff]

Out[6]//InputForm= 

1.1099999999153454`*^-6

The  fact  that  you  can  get  spurious  digits  in  machine-precision  numerical  calculations  with  Mathematica  is  in  many
respects  quite  unsatisfactory.  The  ultimate reason,  however,  that  Mathematica  uses  fixed  precision  for  these  calcula-
tions is a matter of computational efficiency. 
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Mathematica  is  usually  set  up  to  insulate  you  as  much  as  possible  from  the  details  of  the  computer  system you  are
using.  In  dealing with machine-precision numbers,  you would lose too much, however,  if  Mathematica  did not make
use of some specific features of your computer. 

The important point is that almost all computers have special hardware or microcode for doing floating-point calcula-
tions to a particular fixed precision. Mathematica makes use of these features when doing machine-precision numerical
calculations. 

The  typical  arrangement  is  that  all  machine-precision  numbers  in  Mathematica  are  represented  as  “double-precision
floating-point numbers”  in the underlying computer system. On most current computers, such numbers contain a total
of 64 binary bits, typically yielding 16 decimal digits of mantissa. 

The  main  advantage  of  using  the  built-in  floating-point  capabilities  of  your  computer  is  speed.  Arbitrary-precision
numerical  calculations,  which  do  not  make  such  direct  use  of  these  capabilities,  are  usually  many times slower  than
machine-precision calculations. 

There are several disadvantages of using built-in floating-point capabilities. One already mentioned is that it forces all
numbers to have a fixed precision, independent of what precision can be justified for them. 

A second disadvantage is that the treatment of machine-precision numbers can vary slightly from one computer system
to another.  In working with machine-precision numbers,  Mathematica  is  at  the mercy of  the floating-point  arithmetic
system  of  each  particular  computer.  If  floating-point  arithmetic  is  done  differently  on  two  computers,  you  may  get
slightly different results for machine-precision Mathematica calculations on those computers.  

$MachinePrecision the number of decimal digits of precision
$MachineEpsilon the minimum positive machine-precision number which can

be added to 1.0 to give a result distinguishable from 1.0
$MaxMachineNumber the maximum machine-precision number
$MinMachineNumber the minimum positive machine-precision number

$MaxNumber the maximum magnitude of an arbitrary-precision number
$MinNumber the minimum magnitude of a positive arbitrary-precision number

Properties of numbers on a particular computer system. 

Since  machine-precision  numbers  on  any  particular  computer  system are  represented  by  a  definite  number  of  binary
bits, numbers which are too close together will have the same bit pattern, and so cannot be distinguished. The parame-
ter $MachineEpsilon gives the distance between 1.0 and the closest number which has a distinct binary representa-
tion. 

This gives the value of $MachineEpsilon for the computer system on which these examples are run. 

In[7]:= $MachineEpsilon

Out[7]= 2.22045 × 10−16

Although this prints as 1., Mathematica knows that the result is larger than 1. 

In[8]:= 1. + $MachineEpsilon

Out[8]= 1.
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Subtracting 1 gives $MachineEpsilon. 

In[9]:= % - 1.

Out[9]= 2.22045 × 10−16

This again prints as 1. 

In[10]:= 1. + $MachineEpsilon/2

Out[10]= 1.

In this case, however, subtracting 1 yields 0, since 1 + $MachineEpsilon/2 is not distinguished from 1. to machine precision. 

In[11]:= % - 1.

Out[11]= 0.

Machine  numbers  have  not  only  limited  precision,  but  also  limited  magnitude.  If  you  generate  a  number  which  lies
outside the range specified by $MinMachineNumber and $MaxMachineNumber, Mathematica  will automatically
convert the number to arbitrary-precision form. 

This is the maximum machine-precision number which can be handled on the computer system used for this example. 

In[12]:= $MaxMachineNumber

Out[12]= 1.79769 × 10308

Mathematica automatically converts the result of this computation to arbitrary precision. 

In[13]:= Exp[1000.]

Out[13]= 1.970071114017× 10434

3.1.7 Advanced Topic: Interval Arithmetic

Interval@ 8  min,  max <  D the interval from  min to  max 
Interval@ 8  min1 ,  
max1  <,  8  min2 ,  max2  <, … D 

the union of intervals from  min1  to  max1  ,  min2  to  max2  , …

Representations of real intervals. 

This represents all numbers between -2 and +5. 

In[1]:= Interval[{-2, 5}]

Out[1]= Interval@8−2, 5<D

The square of any number between -2 and +5 is always between 0 and 25. 

In[2]:= Interval[{-2, 5}]^2

Out[2]= Interval@80, 25<D
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Taking the reciprocal gives two distinct intervals. 

In[3]:= 1/Interval[{-2, 5}]

Out[3]= IntervalA9−∞, −
1
2
=, 9 1

5
, ∞=E

Abs folds the intervals back together again. 

In[4]:= Abs[%]

Out[4]= IntervalA9 1
5

, ∞=E

You can use intervals in many kinds of functions. 

In[5]:= Solve[3 x + 2 == Interval[{-2, 5}], x]

Out[5]= 99x → IntervalA9−
4
3

, 1=E==

Some functions automatically generate intervals. 

In[6]:= Limit[Sin[1/x], x -> 0]

Out[6]= Interval@8−1, 1<D

IntervalUnion@ 

interval1 ,  interval2 , … D 

find the union of several intervals

IntervalIntersection@ 

interval1 ,  interval2 , … D 

find the intersection of several intervals

IntervalMemberQ@ interval,  x D test whether the point  x lies within an interval
IntervalMemberQ@ 

interval1 ,  interval2  D 

test whether  interval2  lies completely within  interval1  

Operations on intervals. 

This finds the overlap of the two intervals. 

In[7]:= IntervalIntersection[Interval[{3, 7}], Interval[{-2, 5}]]

Out[7]= Interval@83, 5<D

You can use Max and Min to find the end points of intervals. 

In[8]:= Max[%]

Out[8]= 5

This finds out which of a list of intervals contains the point 7.   

In[9]:= IntervalMemberQ[ Table[Interval[{i, i+1}], {i, 1, 20, 3}], 7]

Out[9]= 8False, False, True, False, False, False, False<
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You can use intervals not only with exact quantities but also with approximate numbers. Even with machine-precision
numbers, Mathematica always tries to do rounding in such a way as to preserve the validity of results.  

This shows explicitly the interval treated by Mathematica as the machine-precision number 0. 

In[10]:= Interval[0.]

Out[10]= Interval@8−2.22507 × 10−308, 2.22507 × 10−308<D

This shows the corresponding interval around 100., shifted back to zero. 

In[11]:= Interval[100.] - 100

Out[11]= Interval@8−1.42109 × 10−14, 1.42109 × 10−14<D

The same kind of thing works with numbers of any precision. 

In[12]:= Interval[N[Pi, 50]] - Pi

Out[12]= Interval@8−1. × 10−49, 1. × 10−49<D

With ordinary machine-precision arithmetic, this computation gives an incorrect result. 

In[13]:= Sin[N[Pi]]

Out[13]= 1.22461 × 10−16

The interval generated here, however, includes the correct value of 0. 

In[14]:= Sin[Interval[N[Pi]]]

Out[14]= Interval@8−3.21629 × 10−16, 5.6655 × 10−16<D

3.1.8 Advanced Topic: Indeterminate and Infinite Results

If you type in an expression like 0/0, Mathematica prints a message, and returns the result Indeterminate. 

In[1]:= 0/0

Power::infy :  Infinite expression 1
0

encountered.

∞::indet :  Indeterminate expression 0 ComplexInfinity encountered.

Out[1]= Indeterminate

An expression like 0/0  is  an example of  an indeterminate numerical  result.  If  you type in 0/0,  there  is no way for
Mathematica to know what answer you want. If you got 0/0 by taking the limit of x ê x  as x Ø 0, then you might want
the answer 1.  On the other hand, if you got 0/0  instead as the limit of 2 x ê x ,  then you probably want the answer 2.
The expression  0/0  on  its  own does  not  contain  enough  information to  choose  between these  and  other  cases.  As  a
result, its value must be considered indeterminate.  

Whenever  an  indeterminate  result  is  produced  in  an  arithmetic  computation,  Mathematica  prints  a  warning  message,
and then returns Indeterminate  as  the result  of  the computation.  If  you ever try to use Indeterminate  in an
arithmetic  computation,  you  always  get  the  result  Indeterminate.  A  single  indeterminate  expression  effectively
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“poisons”  any  arithmetic  computation.  (The  symbol  Indeterminate  plays  a  role  in  Mathematica  similar  to  the
“not  a number”  object in the IEEE Floating Point Standard.)  

The usual laws of arithmetic simplification are suspended in the case of Indeterminate. 

In[2]:= Indeterminate - Indeterminate

Out[2]= Indeterminate

Indeterminate “poisons”  any arithmetic computation, and leads to an indeterminate result. 

In[3]:= 2 Indeterminate - 7

Out[3]= Indeterminate

When  you  do  arithmetic  computations  inside  Mathematica  programs,  it  is  often  important  to  be  able  to  tell  whether
indeterminate results  were generated in the computations. You can do this by using the function Check  discussed in
Section 2.9.21 to test whether any warning messages associated with indeterminate results were produced. 

You can use Check inside a program to test whether warning messages are generated in a computation. 

In[4]:= Check[(7 - 7)/(8 - 8), meaningless]

Power::infy :  Infinite expression 1
0

encountered.

∞::indet :  Indeterminate expression 0 ComplexInfinity encountered.

Out[4]= meaningless

Indeterminate an indeterminate numerical result
Infinity a positive infinite quantity

−Infinity a negative infinite quantity H DirectedInfinity@−1D L
DirectedInfinity@ r D an infinite quantity with complex direction  r 

ComplexInfinity an infinite quantity with an undetermined direction
DirectedInfinity@  D equivalent to  ComplexInfinity 

Indeterminate and infinite quantities. 

There  are  many  situations  where  it  is  convenient  to  be  able  to  do  calculations  with  infinite  quantities.  The  symbol
Infinity  in  Mathematica  represents  a  positive  infinite  quantity.  You can use  it  to  specify  such  things  as  limits of
sums and integrals. You can also do some arithmetic calculations with it. 

Here is an integral with an infinite limit. 

In[5]:= Integrate[1/x^3, {x, 1, Infinity}]

Out[5]= 
1
2

Mathematica knows that 1 ê ¶ = 0. 

In[6]:= 1/Infinity

Out[6]= 0
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If you try to find the difference between two infinite quantities, you get an indeterminate result. 

In[7]:= Infinity - Infinity

∞::indet :  Indeterminate expression −∞ + ∞ encountered.

Out[7]= Indeterminate

There are a number of subtle points that arise in handling infinite quantities. One of them concerns the “direction”  of
an infinite quantity. When you do an infinite integral, you typically think of performing the integration along a path in
the complex plane that goes to infinity in some direction. In this case, it is important to distinguish different versions of
infinity  that  correspond  to  different  directions  in  the  complex  plane.  +¶  and  -¶  are  two  examples,  but  for  some
purposes one also needs i ¶  and so on.  

In  Mathematica,  infinite  quantities  can  have  a  “direction”,  specified  by  a  complex  number.  When  you  type  in  the
symbol  Infinity,  representing  a  positive  infinite  quantity,  this  is  converted  internally  to  the  form  Directed
Infinity[1], which represents an infinite quantity in the +1  direction. Similarly, -Infinity becomes Direct
edInfinity[-1],  and  I  Infinity  becomes  DirectedInfinity[I].  Although  the  DirectedInfinity
form is always used internally, the standard output format for DirectedInfinity[r] is r Infinity.  

Infinity is converted internally to DirectedInfinity[1]. 

In[8]:= Infinity // FullForm

Out[8]//FullForm= 

DirectedInfinity@1D

Although the notion of a “directed  infinity”  is often useful, it is not always available. If you type in 1/0, you get an
infinite result,  but  there is  no  way to determine the “direction”  of  the infinity.  Mathematica  represents  the result  of
1/0 as DirectedInfinity[ ]. In standard output form, this undirected infinity is printed out as ComplexInfin
ity. 

1/0 gives an undirected form of infinity. 

In[9]:= 1/0

Power::infy :  Infinite expression 1
0

encountered.

Out[9]= ComplexInfinity

3.1.9 Advanced Topic: Controlling Numerical Evaluation

NHoldAll prevent any arguments of a function from being affected by  N 

NHoldFirst prevent the first argument from being affected
NHoldRest prevent all but the first argument from being affected

Attributes for controlling numerical evaluation. 

Usually N goes inside functions and gets applied to each of their arguments. 

In[1]:= N[f[2/3, Pi]]

Out[1]= f@0.666667, 3.14159D
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This tells Mathematica not to apply N to the first argument of f. 

In[2]:= SetAttributes[f, NHoldFirst]

Now the first argument of f is left in its exact form. 

In[3]:= N[f[2/3, Pi]]

Out[3]= fA 2
3

, 3.14159E
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3.2 Mathematical Functions

3.2.1 Naming Conventions

Mathematical  functions  in  Mathematica  are  given  names  according  to  definite  rules.  As  with  most  Mathematica
functions, the names are usually complete English words, fully spelled out. For a few very common functions, Mathe-
matica uses the traditional abbreviations. Thus the modulo function, for example, is Mod, not Modulo. 

Mathematical functions that are usually referred to by a person's name have names in Mathematica of the form Person-
Symbol. Thus, for example, the Legendre polynomials Pn HxL  are denoted LegendreP[n, x]. Although this conven-
tion does lead to longer function names, it avoids any ambiguity or confusion. 

When  the  standard  notation  for  a  mathematical function  involves  both  subscripts  and  superscripts,  the  subscripts  are
given before the superscripts in the Mathematica form. Thus, for example, the associated Legendre polynomials Pn

m HxL
are denoted LegendreP[n, m, x].  

3.2.2 Numerical Functions

IntegerPart@ x D integer part of  x 
FractionalPart@ x D fractional part of  x 

Round@ x D integer  Xx\  closest to  x 
Floor@ x D greatest integer  dxt  not larger than  x 

Ceiling@ x D least integer  `xp  not smaller than  x 
Sign@ x D 1 for  x > 0  ,  −1 for  x < 0  

UnitStep@ x D 1 for  x ¥ 0  ,  0 for  x < 0  
Abs@ x D absolute value  » x »  of  x 

Max@ x1 ,  x2 , … D  or  
Max@ 8  x1 ,  x2 , … <, … D 

the maximum of  x1  ,  x2  , …

Min@ x1 ,  x2 , … D  or  
Min@ 8  x1 ,  x2 , … <, … D 

the minimum of  x1  ,  x2  , …

Some numerical functions of real variables.

x IntegerPart@ x D Fraction
alPart@ 

x D 

Round@ 

x D 

Floor@ x D Ceiling@ 

x D 

2.4 2 0.4 2 2 3 

2.5 2 0.5 2 2 3 

2.6 2 0.6 3 2 3 

−2.4 −2 −0.4 −2 −3 −2 

−2.5 −2 −0.5 −2 −3 −2 

−2.6 −2 −0.6 −3 −3 −2 

Extracting integer and fractional parts. 

IntegerPart[x]  and  FractionalPart[x]  can  be  thought  of  as  extracting  digits  to  the  left  and  right  of  the
decimal  point.  Round[x]  is  often  used  for  forcing  numbers  that  are  close  to  integers  to  be  exactly  integers.
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Floor[x]  and Ceiling[x]  often arise in working out  how many elements there will  be in sequences of  numbers
with non-integer spacings. 

x  +  I  y the complex number  x + i y  
Re@ z D the real part  Re z  
Im@ z D the imaginary part  Im z  

Conjugate@ z D the complex conjugate  z*  or  zê  
Abs@ z D the absolute value  » z »  
Arg@ z D the argument  f  such that  z = » z » ei f  

Numerical functions of complex variables.

Rationalize@ x D a rational number approximation to  x 
Rationalize@ x,  dx D a rational approximation within tolerance  dx 

Finding rational approximations. 

3.2.3 Pseudorandom Numbers

Random@  D a pseudorandom real between  0 and  1 

Random@Real,  xmax D a pseudorandom real between  0 and  xmax 
Random@Real,  8  xmin,  xmax <  D a pseudorandom real between  xmin and  xmax 

Random@ComplexD a pseudorandom complex number in the unit square
Random@Complex,  8  zmin,  zmax <  D a pseudorandom complex number in the rectangle defined by  

zmin and  zmax 
Random@ type,  range,  n D an  n -digit pseudorandom number

Random@IntegerD 0 or  1 with probability  1ÅÅÅÅ2  

Random@Integer,  8  imin,  imax <  D a pseudorandom integer between  imin and  imax , inclusive
SeedRandom@  D reseed the pseudorandom generator, with the time of day
SeedRandom@ s D reseed with the integer  s 

$RandomState the current state of the pseudorandom generator

Pseudorandom number generation.

This gives a list of 3 pseudorandom numbers. 

In[1]:= Table[Random[ ], {3}]

Out[1]= 80.0560708, 0.6303, 0.359894<

Here is a 30-digit pseudorandom real number in the range 0 to 1.  

In[2]:= Random[Real, {0, 1}, 30]

Out[2]= 0.748823044099679773836330229338

This gives a list of 8 pseudorandom integers between 100 and 200 (inclusive). 

In[3]:= Table[Random[Integer, {100, 200}], {8}]

Out[3]= 8120, 108, 109, 147, 146, 189, 188, 187<
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If you call Random[ ] repeatedly, you should get a “typical”  sequence of numbers, with no particular pattern. There
are many ways to use such numbers. 

One  common  way  to  use  pseudorandom  numbers  is  in  making  numerical  tests  of  hypotheses.  For  example,  if  you
believe that two symbolic expressions are mathematically equal, you can test this by plugging in “typical”  numerical
values for symbolic parameters, and then comparing the numerical results. (If you do this, you should be careful about
numerical accuracy problems and about functions of complex variables that may not have unique values.)  

Here is a symbolic equation. 

In[4]:= Sin[Cos[x]] == Cos[Sin[x]]

Out[4]= Sin@Cos@xDD Cos@Sin@xDD

Substituting in a random numerical value shows that the equation is not always True. 

In[5]:= % /. x -> Random[ ]

Out[5]= False

Other  common uses  of  pseudorandom numbers  include simulating probabilistic  processes,  and sampling large spaces
of  possibilities.  The  pseudorandom  numbers  that  Mathematica  generates  are  always  uniformly  distributed  over  the
range you specify. 

Random is unlike almost any other Mathematica  function in that every time you call it, you potentially get a different
result. If you use Random in a calculation, therefore, you may get different answers on different occasions. 

The  sequences  that  you  get  from  Random[  ]  are  not  in  most  senses  “truly  random”,  although  they  should  be
“random  enough”  for  practical  purposes.  The  sequences  are  in  fact  produced  by  applying  a  definite  mathematical
algorithm, starting from a particular “seed”.  If you give the same seed, then you get the same sequence. 

When  Mathematica  starts  up,  it  takes  the  time  of  day  (measured  in  small  fractions  of  a  second)  as  the  seed  for  the
pseudorandom  number  generator.  Two  different  Mathematica  sessions  will  therefore  almost  always  give  different
sequences of pseudorandom numbers.  

If you want to make sure that you always get the same sequence of pseudorandom numbers, you can explicitly give a
seed for the pseudorandom generator, using SeedRandom. 

This reseeds the pseudorandom generator. 

In[6]:= SeedRandom[143]

Here are three pseudorandom numbers. 

In[7]:= Table[Random[ ], {3}]

Out[7]= 80.952312, 0.93591, 0.813754<

If you reseed the pseudorandom generator with the same seed, you get the same sequence of pseudorandom numbers. 

In[8]:= SeedRandom[143]; Table[Random[ ], {3}]

Out[8]= 80.952312, 0.93591, 0.813754<

Every  single  time  Random  is  called,  the  internal  state  of  the  pseudorandom  generator  that  it  uses  is  changed.  This
means that calls to Random made in subsidiary calculations will have an effect on the numbers returned by Random in
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your main calculation. To avoid any problems associated with this, you can save the value of $RandomState before
you do subsidiary calculations, and then restore it afterwards. 

By localizing the value of $RandomState using Block, the internal state of the pseudorandom generator is restored after 
generating the first list. 

In[9]:= {Block[{$RandomState}, {Random[ ], Random[ ]}], {Random[ ], Random[ ]}}

Out[9]= 880.1169, 0.783447<, 80.1169, 0.783447<<

3.2.4 Integer and Number-Theoretical Functions

Mod@ k,  n D k modulo  n Hremainder from dividing  k by  n L
Quotient@ m,  n D the quotient of  m and  n Hinteger part of  mên L
GCD@ n1 ,  n2 , … D the greatest common divisor of  n1  ,  n2  , …
LCM@ n1 ,  n2 , … D the least common multiple of  n1  ,  n2  , …

KroneckerDelta@ n1 ,  n2 , … D the Kronecker delta  dn1  n2  …  

equal to 1 if all the  ni  are equal, and 0 otherwise
IntegerDigits@ n,  b D the digits of  n in base  b 

IntegerExponent@ n,  b D the highest power of  b that divides  n 

Some integer functions.

The remainder on dividing 17 by 3 . 

In[1]:= Mod[17, 3]

Out[1]= 2

The integer part of 17 ê 3. 

In[2]:= Quotient[17, 3]

Out[2]= 5

Mod also works with real numbers. 

In[3]:= Mod[5.6, 1.2]

Out[3]= 0.8

The result from Mod always has the same sign as the second argument. 

In[4]:= Mod[-5.6, 1.2]

Out[4]= 0.4

For any integers a and b, it is always true that b*Quotient[a, b] + Mod[a, b] is equal to a. 
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Mod@ k,  n D result in the range 0 to  n - 1  
Mod@ k,  n,  1D result in the range 1 to  n  

Mod@ k,  n,  − n ê2D result in the range  `-n ê 2p  to  d+n ê 2t  
Mod@ k,  n,  d  D result in the range  d  to  d + n - 1  

Integer remainders with offsets. 

Particularly when you are using Mod to get indices for parts of objects, you will often find it convenient to specify an
offset. 

This effectively extracts the 18th  part of the list, with the list treated cyclically. 

In[5]:= Part[{a, b, c}, Mod[18, 3, 1]]

Out[5]= c

The  greatest  common  divisor  function  GCD[n1 ,  n2 ,  … ]  gives  the  largest  integer  that  divides  all  the  ni  exactly.
When you enter a ratio of  two integers,  Mathematica  effectively uses GCD  to cancel  out  common factors,  and give a
rational number in lowest terms.  

The least common multiple function LCM[n1 , n2 , … ] gives the smallest integer that contains all the factors of each
of the ni . 

The largest integer that divides both 24 and 15 is 3. 

In[6]:= GCD[24, 15]

Out[6]= 3

The Kronecker delta  or  Kronecker symbol  KroneckerDelta[n1 ,  n2 ,  … ]  is  equal  to 1 if all the ni  are equal,
and is 0 otherwise. dn1  n2  …  can be thought of as a totally symmetric tensor. 

This gives a totally symmetric tensor of rank 3. 

In[7]:= Array[KroneckerDelta, {3, 3, 3}]

Out[7]= 8881, 0, 0<, 80, 0, 0<, 80, 0, 0<<,
880, 0, 0<, 80, 1, 0<, 80, 0, 0<<, 880, 0, 0<, 80, 0, 0<, 80, 0, 1<<<

FactorInteger@ n D a list of the prime factors of  n , and their exponents
Divisors@ n D a list of the integers that divide  n 

Prime@ k D the  k th  prime number
PrimePi@ x D the number of primes less than or equal to  x 

PrimeQ@ n D give  True if  n is a prime, and  False otherwise
FactorInteger@ n,  
GaussianIntegers−>TrueD 

a list of the Gaussian prime factors of the Gaussian integer  
n , and their exponents

PrimeQ@ n,  
GaussianIntegers−>TrueD 

give  True if  n is a Gaussian prime, and  False otherwise

Integer factoring and related functions.
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This gives the factors of 24 as 23 , 31 . The first element in each list is the factor; the second is its exponent. 

In[8]:= FactorInteger[24]

Out[8]= 882, 3<, 83, 1<<

Here are the factors of a larger integer. 

In[9]:= FactorInteger[111111111111111111]

Out[9]= 883, 2<, 87, 1<, 811, 1<, 813, 1<, 819, 1<, 837, 1<, 852579, 1<, 8333667, 1<<

You  should  realize  that  according  to  current  mathematical  thinking,  integer  factoring  is  a  fundamentally  difficult
computational  problem.  As  a  result,  you  can  easily  type  in  an  integer  that  Mathematica  will  not  be  able  to  factor  in
anything short of an astronomical length of time. But as long as the integers you give are less than about 50 digits long,
FactorInteger should have no trouble. And in special cases it will be able to deal with much longer integers. (You
can  make some factoring  problems  go  faster  by  setting  the  option  FactorComplete->False,  so  that  Factor
Integer[n] tries to pull out only easy factors from n.) 

Here is a rather special long integer. 

In[10]:= 30!

Out[10]= 265252859812191058636308480000000

Mathematica can easily factor this special integer. 

In[11]:= FactorInteger[%]

Out[11]= 882, 26<, 83, 14<, 85, 7<, 87, 4<, 811, 2<, 813, 2<, 817, 1<, 819, 1<, 823, 1<, 829, 1<<

Although Mathematica  may not  be able to  factor  a  large integer,  it  can often still  test whether  or  not  the integer is  a
prime. In addition, Mathematica has a fast way of finding the kth  prime number. 

It is often much faster to test whether a number is prime than to factor it. 

In[12]:= PrimeQ[234242423]

Out[12]= False
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Here is a plot of the first 100 primes. 

In[13]:= ListPlot[ Table[ Prime[n], {n, 100} ] ]
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Out[13]=  Graphics 

This is the millionth prime. 

In[14]:= Prime[1000000]

Out[14]= 15485863

Particularly  in  number  theory,  it  is  often  more  important  to  know  the  distribution  of  primes  than  their  actual  values.
The function PrimePi[x] gives the number of primes p HxL  that are less than or equal to x . 

This gives the number of primes less than a billion. 

In[15]:= PrimePi[10^9]

Out[15]= 50847534

By default, FactorInteger allows only real integers. But with the option setting GaussianIntegers -> True,
it  also  handles  Gaussian  integers,  which  are  complex  numbers  with  integer  real  and  imaginary  parts.  Just  as  it  is
possible to factor  uniquely in terms of  real  primes, it  is  also possible to factor  uniquely in terms of  Gaussian primes.
There  is  nevertheless  some  potential  ambiguity  in  the  choice  of  Gaussian  primes.  In  Mathematica,  they  are  always
chosen to have positive real parts, and non-negative imaginary parts, except for a possible initial factor of -1 or ≤ i .   

Over the Gaussian integers, 2 can be factored as H-iL H1 + iL2 . 

In[16]:= FactorInteger[2, GaussianIntegers -> True]

Out[16]= 88− , 1<, 81 + , 2<<

Here are the factors of a Gaussian integer. 

In[17]:= FactorInteger[111 + 78 I, GaussianIntegers -> True]

Out[17]= 882 + , 1<, 83, 1<, 820 + 3 , 1<<
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PowerMod@ a,  b,  n D the power  ab  modulo  n  
EulerPhi@ n D the Euler totient function  f HnL  

MoebiusMu@ n D the Möbius function  m HnL  
DivisorSigma@ k,  n D the divisor function  sk  HnL  
JacobiSymbol@ n,  m D the Jacobi symbol  H nÅÅÅÅÅm L  

ExtendedGCD@ n1 ,  n2 , … D the extended gcd of  n1  ,  n2  , …
MultiplicativeOrder@ k,  n D the multiplicative order of  k  modulo  n  

MultiplicativeOrder@ 

k,  n,  8  r1 ,  r2 , … <  D 

the generalized multiplicative order with residues  ri  

CarmichaelLambda@ n D the Carmichael function  l HnL  
LatticeReduce@ 8  v1 ,  v2 , … <  D the reduced lattice basis for the set of integer vectors  vi  

Some functions from number theory.

The  modular  power  function  PowerMod[a,  b,  n]  gives  exactly  the  same  results  as  Mod[a^b,  n]  for  b > 0.
PowerMod is much more efficient, however, because it avoids generating the full form of a^b. 

You can use PowerMod not only to find positive modular powers, but also to find modular inverses. For negative b,
PowerMod[a, b, n] gives, if possible, an integer k  such that k a-b ª 1 mod n . (Whenever such an integer exists, it is
guaranteed to be unique modulo n .) If no such integer k  exists, Mathematica leaves PowerMod unevaluated. 

PowerMod is equivalent to using Power, then Mod, but is much more efficient. 

In[18]:= PowerMod[2, 13451, 3]

Out[18]= 2

This gives the modular inverse of 3 modulo 7. 

In[19]:= PowerMod[3, -1, 7]

Out[19]= 5

Multiplying the inverse by 3 modulo 7 gives 1, as expected. 

In[20]:= Mod[3 %, 7]

Out[20]= 1

The Euler totient function f HnL  gives the number of integers less than n  that are relatively prime to n . An important
relation (Fermat's Little Theorem) is that af HnL ª 1 mod n  for all a  relatively prime to n . 

The Möbius function m HnL  is defined to be H-1Lk  if n  is a product of k  distinct primes, and 0  if n  contains a squared
factor (other than 1). An important relation is the Möbius inversion formula, which states that if g HnL = ⁄d »  n f  HdL  for
all n , then f  HnL = ⁄d »  n m HdL g Hn ê dL , where the sums are over all positive integers d  that divide n .  

The  divisor  function  sk  HnL  is  the  sum  of  the  k th  powers  of  the  divisors  of  n .  The  function  s0 HnL  gives  the  total
number of divisors of n , and is often denoted d  HnL . The function s1 HnL , equal to the sum of the divisors of n , is often
denoted s HnL . 
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For prime n , f HnL = n - 1. 

In[21]:= EulerPhi[17]

Out[21]= 16

The result is 1, as guaranteed by Fermat's Little Theorem. 

In[22]:= PowerMod[3, %, 17]

Out[22]= 1

This gives a list of all the divisors of 24. 

In[23]:= Divisors[24]

Out[23]= 81, 2, 3, 4, 6, 8, 12, 24<

s0 HnL  gives the total number of distinct divisors of 24. 

In[24]:= DivisorSigma[0, 24]

Out[24]= 8

The  Jacobi  symbol  JacobiSymbol[n,  m]  reduces  to  the  Legendre  symbol  H nÅÅÅÅÅm L  when  m  is  an  odd  prime.  The
Legendre symbol is equal to zero if n  is divisible by m , otherwise it is equal to 1  if n  is a quadratic residue modulo the
prime m , and to -1  if it is not. An integer n  relatively prime to m  is said to be a quadratic residue modulo m  if there
exists an integer k  such that k2 ª n mod m . The full Jacobi symbol is a product of the Legendre symbols I nÅÅÅÅÅÅpi

M  for each
of the prime factors pi  such that m = ¤i pi . 

The  extended  gcd  ExtendedGCD[n1 ,  n2 ,  … ]  gives  a  list  8g,  8r1 ,  r2 ,  … <<  where  g  is  the  greatest  common
divisor  of  the  ni ,  and  the  ri  are  integers  such  that  g = r1 n1 + r2 n2 + ….  The  extended  gcd  is  important  in  finding
integer solutions to linear Diophantine equations.   

The first number in the list is the gcd of 105 and 196. 

In[25]:= ExtendedGCD[105, 196]

Out[25]= 87, 8−13, 7<<

The second pair of numbers satisfies g = r m + s n . 

In[26]:= -13 105 + 7 196

Out[26]= 7

The  multiplicative  order  function  MultiplicativeOrder[k,  n]  gives  the  smallest  integer  m  such  that
km ª 1 mod n . The function is sometimes known as the index or discrete log of k . The notation ordn HkL  is occasionally
used. 

The generalized multiplicative order function MultiplicativeOrder[k, n, 8r1 , r2 , … <] gives the smallest
integer m  such that km ª ri mod n  for some i . MultiplicativeOrder[k, n, 8-1, 1<] is sometimes known as the
suborder function of k  modulo n , denoted sordn HkL . 
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The Carmichael function or least universal exponent l HnL  gives the smallest integer m  such that km ª 1 mod n  for all
integers k  relatively prime to n .  

The lattice reduction function LatticeReduce[8v1 , v2 , … <] is used in several kinds of modern algorithms. The
basic idea is to think of the vectors vk  of integers as defining a mathematical lattice. Any vector representing a point in
the lattice can be written as a linear combination of the form ⁄ ck vk , where the ck  are integers. For a particular lattice,
there are many possible choices of the “basis  vectors”  vk .  What LatticeReduce  does is to find a reduced set of
basis vectors vêêk  for the lattice, with certain special properties.  

Three unit vectors along the three coordinate axes already form a reduced basis. 

In[27]:= LatticeReduce[{{1,0,0},{0,1,0},{0,0,1}}]

Out[27]= 881, 0, 0<, 80, 1, 0<, 80, 0, 1<<

This gives the reduced basis for a lattice in four-dimensional space specified by three vectors. 

In[28]:= LatticeReduce[{{1,0,0,12345}, {0,1,0,12435}, {0,0,1,12354}}]

Out[28]= 88−1, 0, 1, 9<, 89, 1, −10, 0<, 885, −143, 59, 6<<

Notice  that  in  the  last  example,  LatticeReduce  replaces  vectors  that  are  nearly  parallel  by  vectors  that  are  more
perpendicular. In the process, it finds some quite short basis vectors. 

ContinuedFraction@ x,  n D generate the first  n 
terms in the continued fraction representation of  x 

FromContinuedFraction@ list D reconstruct a number from its continued fraction representation
Rationalize@ x,  dx D find a rational approximation to  x with tolerance  dx 

Continued fractions. 

This generates the first 10 terms in the continued fraction representation for p . 

In[29]:= ContinuedFraction[Pi, 10]

Out[29]= 83, 7, 15, 1, 292, 1, 1, 1, 2, 1<

This reconstructs the number represented by the list of continued fraction terms. 

In[30]:= FromContinuedFraction[%]

Out[30]= 
1146408
364913

The result is close to p . 

In[31]:= N[%]

Out[31]= 3.14159

This gives directly a rational approximation to p . 

In[32]:= Rationalize[Pi, 1/1000]

Out[32]= 
201
64

10 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



Continued  fractions  appear  in  many  number-theoretical  settings.  Rational  numbers  have  terminating  continued
fraction representations. Quadratic irrational numbers have continued fraction representations that become repetitive. 

ContinuedFraction@ x D the complete continued fraction representation
for a rational or quadratic irrational number

RealDigits@ x D the complete digit sequence for a rational number
RealDigits@ x,  b D the complete digit sequence in base  b 

Complete representations for numbers. 

The continued fraction representation of è!!!!!!79  starts with the term 8, then involves a sequence of terms that repeat forever. 

In[33]:= ContinuedFraction[Sqrt[79]]

Out[33]= 88, 81, 7, 1, 16<<

This reconstructs è!!!!!!79  from its continued fraction representation. 

In[34]:= FromContinuedFraction[%]

Out[34]= 
è!!!!!!79

This shows the recurring sequence of decimal digits in 3 ê7. 

In[35]:= RealDigits[3/7]

Out[35]= 8884, 2, 8, 5, 7, 1<<, 0<

FromDigits reconstructs the original number. 

In[36]:= FromDigits[%]

Out[36]= 
3
7

DigitCount@ n,  b,  d  D the number of  d  digits in the base  b representation of  n 

Digit count function. 

Here are the digits in the base 2 representation of the number 77. 

In[37]:= IntegerDigits[77, 2]

Out[37]= 81, 0, 0, 1, 1, 0, 1<

This directly computes the number of ones in the base 2 representation. 

In[38]:= DigitCount[77, 2, 1]

Out[38]= 4
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The plot of the digit count function is self-similar.  

In[39]:= ListPlot[Table[DigitCount[n, 2, 1], {n, 128}], PlotJoined->True]
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Out[39]=  Graphics 

BitAnd@ n1 ,  n2 , … D bitwise AND of the integers  ni  
BitOr@ n1 ,  n2 , … D bitwise OR of the integers  ni  

BitXor@ n1 ,  n2 , … D bitwise XOR of the integers  ni  
BitNot@ n D bitwise NOT of the integer  n 

Bitwise operations. 

Bitwise operations act on integers represented as binary bits. BitAnd[n1 ,  n2 ,  … ]  yields the integer whose binary
bit representation has ones at positions where the binary bit representations of all of the ni  have ones. BitOr[n1 , n2 ,
… ] yields the integer with ones at positions where any of the ni  have ones. BitXor[n1 , n2 ] yields the integer with
ones at positions where n1  or n2  but not both have ones. BitXor[n1 , n2 , … ] has ones where an odd number of the
ni  have ones. 

This finds the bitwise AND of the numbers 23 and 29 entered in base 2. 

In[40]:= BaseForm[BitAnd[2^^10111, 2^^11101], 2]

Out[40]//BaseForm= 

101012

Bitwise operations  are  used  in  various  combinatorial  algorithms.  They  are  also  commonly used  in  manipulating  bit-
fields in low-level computer languages. In such languages, however, integers normally have a limited number of digits,
typically a  multiple of  8.  Bitwise operations  in Mathematica  in  effect  allow integers  to  have an unlimited number of
digits. When an integer is negative, it is taken to be represented in two's complement form, with an infinite sequence of
ones on the left. This allows BitNot[n] to be equivalent simply to -1 - n .   
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3.2.5 Combinatorial Functions

n! factorial  n Hn - 1L Hn - 2Lä…ä1  
n !! double factorial  n Hn - 2L Hn - 4Lä… 

Binomial@ n,  m D binomial coefficient  H n
m L = n! ê @m! Hn - mL!D  

Multinomial@ n1 ,  n2 , … D multinomial coefficient  Hn1 + n2 + …L! ê Hn1 ! n2 ! …L  

Fibonacci@ n D Fibonacci number  Fn  
Fibonacci@ n,  x D Fibonacci polynomial  Fn HxL  

HarmonicNumber@ n D harmonic number  Hn  
HarmonicNumber@ n,  r D harmonic number  Hn

HrL  of order  r  

BernoulliB@ n D Bernoulli number  Bn  
BernoulliB@ n,  x D Bernoulli polynomial  Bn HxL  

EulerE@ n D Euler number  En  
EulerE@ n,  x D Euler polynomial  En HxL  

StirlingS1@ n,  m D Stirling number of the first kind  Sn
HmL  

StirlingS2@ n,  m D Stirling number of the second kind  Sn
HmL  

PartitionsP@ n D the number  p HnL  of unrestricted partitions of the integer  n  
PartitionsQ@ n D the number  q HnL  of partitions of  n  into distinct parts

Signature@ 8  i1 ,  i2 , … <  D the signature of a permutation

Combinatorial functions.

The factorial function  n!  gives the number of ways of ordering n  objects. For non-integer n , the numerical value of
n!  is obtained from the gamma function, discussed in Section 3.2.10. 

The binomial coefficient  Binomial[n,  m]  can be written as H n
m L = n! ê @m! Hn - mL!D .  It  gives the number of ways

of choosing m  objects from a collection of n  objects, without regard to order. The Catalan numbers, which appear in
various tree enumeration problems, are given in terms of binomial coefficients as cn = I 2 n

n M ë Hn + 1L . 

The  multinomial  coefficient  Multinomial[n1 ,  n2 ,  … ],  denoted  HN; n1, n2, ..., nmL =  N ! ê Hn1 ! n2 ! ... nm !L ,
gives the number of ways of partitioning N  distinct objects into m  sets of sizes ni  (with N = ⁄i=1

m ni ).  

Mathematica gives the exact integer result for the factorial of an integer. 

In[1]:= 30!

Out[1]= 265252859812191058636308480000000

For non-integers, Mathematica evaluates factorials using the gamma function. 

In[2]:= 3.6!

Out[2]= 13.3813

Mathematica can give symbolic results for some binomial coefficients. 

In[3]:= Binomial[n, 2]

Out[3]= 
1
2
H−1 + nL n
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This gives the number of ways of partitioning 6 + 5 = 11 objects into sets containing 6 and 5 objects. 

In[4]:= Multinomial[6, 5]

Out[4]= 462

The result is the same as I 11
6 M . 

In[5]:= Binomial[11, 6]

Out[5]= 462

The  Fibonacci  numbers  Fibonacci[n]  satisfy  the  recurrence  relation  Fn = Fn-1 + Fn-2  with  F1 = F2 = 1.  They
appear in a wide range of discrete mathematical problems. For large n , Fn ê Fn-1  approaches the golden ratio. 

The  Fibonacci  polynomials  Fibonacci[n,  x]  appear  as  the  coefficients  of  tn  in  the  expansion  of
t ê H1 - x t - t2L = ⁄n=0

¶ Fn HxL tn .  

The  harmonic  numbers  HarmonicNumber[n]  are  given  by  Hn = ⁄i=1
n 1 ê i ;  the  harmonic  numbers  of  order  r

HarmonicNumber[n,  r]  are  given by Hn
HrL = ⁄i=1

n 1 ê ir .  Harmonic numbers appear  in many combinatorial estima-
tion problems, often playing the role of discrete analogs of logarithms. 

The  Bernoulli  polynomials  BernoulliB[n,  x]  satisfy  the  generating  function  relation
t ex t ê Het - 1L = ⁄n=0

¶ Bn HxL tn ê n! .  The  Bernoulli  numbers  BernoulliB[n]  are  given  by  Bn = Bn H0L .  The  Bn
appear as the coefficients of the terms in the Euler-Maclaurin summation formula for approximating integrals. 

Numerical values for Bernoulli numbers are needed in many numerical algorithms. You can always get these numerical
values by first finding exact rational results using BernoulliB[n], and then applying N. 

The  Euler  polynomials  EulerE[n,  x]  have  generating  function  2 ex t ê Het + 1L = ⁄n=0
¶ En HxL tn ê n! ,  and  the  Euler

numbers  EulerE[n]  are  given  by  En = 2n En H 1ÅÅÅÅ2 L .  The  Euler  numbers  are  related  to  the  Genocchi  numbers  by
Gn = 22-2 n n E2 n-1 . 

This gives the second Bernoulli polynomial B2 HxL . 

In[6]:= BernoulliB[2, x]

Out[6]= 
1
6

− x + x2

You can also get Bernoulli polynomials by explicitly computing the power series for the generating function. 

In[7]:= Series[t Exp[x t]/(Exp[t] - 1), {t, 0, 4}]

Out[7]= 1 + J−
1
2

+ xN t + J 1
12

−
x
2

+
x2

2
N t2 + J x

12
−

x2

4
+

x3

6
N t3 + J−

1
720

+
x2

24
−

x3

12
+

x4

24
N t4 + O@tD5

BernoulliB[n] gives exact rational-number results for Bernoulli numbers. 

In[8]:= BernoulliB[20]

Out[8]= −
174611

330

Stirling  numbers  show  up  in  many  combinatorial  enumeration  problems.  For  Stirling  numbers  of  the  first  kind
StirlingS1[n, m], H-1Ln-m Sn

HmL  gives the number of permutations of n  elements which contain exactly m  cycles.
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These  Stirling  numbers  satisfy  the  generating  function  relation  x Hx - 1L … Hx - n + 1L = ⁄m=0
n Sn

HmL xm .  Note  that  some
definitions of the Sn

HmL  differ by a factor H-1Ln-m  from what is used in Mathematica. 

Stirling  numbers  of  the  second  kind  StirlingS2[n,  m]  give  the  number  of  ways  of  partitioning  a  set  of  n
elements into m  non-empty subsets. They satisfy the relation xn = ⁄m=0

n Sn
HmL x Hx - 1L ... Hx - m + 1L . 

The  partition  function  PartitionsP[n]  gives  the  number  of  ways  of  writing  the  integer  n  as  a  sum of  positive
integers,  without  regard  to  order.  PartitionsQ[n]  gives  the  number  of  ways  of  writing  n  as  a  sum  of  positive
integers, with the constraint that all the integers in each sum are distinct.  

This gives a table of Stirling numbers of the first kind. 

In[9]:= Table[StirlingS1[5, i], {i, 5}]

Out[9]= 824, −50, 35, −10, 1<

The Stirling numbers appear as coefficients in this product. 

In[10]:= Expand[Product[x - i, {i, 0, 4}]]

Out[10]= 24 x − 50 x2 + 35 x3 − 10 x4 + x5

This gives the number of partitions of 100, with and without the constraint that the terms should be distinct. 

In[11]:= {PartitionsQ[100], PartitionsP[100]}

Out[11]= 8444793, 190569292<

The partition function p HnL  increases asymptotically like e
è!!!!n . Note that you cannot simply use Plot to generate a plot of a 

function like PartitionsP because the function can only be evaluated with integer arguments. 

In[12]:= ListPlot[ Table[ N[Log[ PartitionsP[n] ]], {n, 100} ] ]
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Out[12]=  Graphics 

The functions in this section allow you to enumerate various kinds of combinatorial objects. Functions like Permuta
tions allow you instead to generate lists of various combinations of elements. 

The signature function  Signature[8 i1 , i2 , … <]  gives the signature of a permutation. It is equal to +1  for even
permutations (composed of an even number of transpositions), and to -1  for odd permutations. The signature function
can be thought of as a totally antisymmetric tensor, Levi-Civita symbol or epsilon symbol.  
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ClebschGordan@ 8  j1 ,  

m1  <,  8  j2 ,  m2  <,  8  j,  m <  D 

Clebsch-Gordan coefficient

ThreeJSymbol@ 8  j1 ,  m1  

<,  8  j2 ,  m2  <,  8  j3 ,  m3  <  D 

Wigner 3-j symbol

SixJSymbol@ 8  j1 ,  

j2 ,  j3  <,  8  j4 ,  j5 ,  j6  <  D 

Racah 6-j symbol

Rotational coupling coefficients. 

Clebsch-Gordan  coefficients  and  n-j  symbols  arise  in  the  study  of  angular  momenta  in  quantum  mechanics,  and  in
other applications of the rotation group. The Clebsch-Gordan coefficients ClebschGordan[8 j1 , m1 <, 8 j2 , m2 <,
8 j, m<] give the coefficients in the expansion of the quantum mechanical angular momentum state » j, m\  in terms of
products of states » j1, m1 \ » j2, m2\ . 

The 3-j symbols or Wigner coefficients ThreeJSymbol[8 j1 , m1 <, 8 j2 , m2 <, 8 j3 , m3 <] are a more symmetrical
form  of  Clebsch-Gordan  coefficients.  In  Mathematica,  the  Clebsch-Gordan  coefficients  are  given  in  terms  of  3-j
symbols by Cm1  m2  m3

j1  j2  j3 =  H-1Lm3+ j1- j2  è!!!!!!!!!!!!!!!!2 j3 + 1  I j1
m1

j2
m2

j3
-m3

M . 

The  6-j  symbols  SixJSymbol[8 j1 ,  j2 ,  j3 <,  8 j4 ,  j5 ,  j6 <]  give  the  couplings  of  three  quantum  mechanical
angular momentum states. The Racah coefficients are related by a phase to the 6-j symbols. 

You can give symbolic parameters in 3-j symbols. 

In[13]:= ThreeJSymbol[{j, m}, {j+1/2, -m-1/2}, {1/2, 1/2}]

Out[13]= −
H−1L−j+m è!!!!!!!!!!!!!!!!!!1 + j + m
è!!!2 è!!!!!!!!!!!1 + j è!!!!!!!!!!!!!!1 + 2 j

3.2.6 Elementary Transcendental Functions

Exp@ z D exponential function  ez  
Log@ z D logarithm  loge HzL  

Log@ b,  z D logarithm  logb HzL  to base  b  
Sin@ z D ,  Cos@ z D ,  Tan@ z D ,  
Csc@ z D ,  Sec@ z D ,  Cot@ z D 

trigonometric functions Hwith arguments in radiansL

ArcSin@ z D ,  ArcCos@ z 
D ,  ArcTan@ z D ,  ArcCsc@ z 
D ,  ArcSec@ z D ,  ArcCot@ z D 

inverse trigonometric functions Hgiving results in radiansL

ArcTan@ x,  y D the argument of  x + i y  
Sinh@ z D ,  Cosh@ z D ,  Tanh@ z D ,  
Csch@ z D ,  Sech@ z D ,  Coth@ z D 

hyperbolic functions

ArcSinh@ z D ,  ArcCosh@ z D ,  
ArcTanh@ z D ,  ArcCsch@ z D ,  
ArcSech@ z D ,  ArcCoth@ z D 

inverse hyperbolic functions

Elementary transcendental functions.
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Mathematica gives exact results for logarithms whenever it can. Here is log2 1024. 

In[1]:= Log[2, 1024]

Out[1]= 10

You can find the numerical values of mathematical functions to any precision. 

In[2]:= N[Log[2], 40]

Out[2]= 0.6931471805599453094172321214581765680755

This gives a complex number result. 

In[3]:= N[ Log[-2] ]

Out[3]= 0.693147 + 3.14159

Mathematica can evaluate logarithms with complex arguments. 

In[4]:= N[ Log[2 + 8 I] ]

Out[4]= 2.10975 + 1.32582

The arguments of trigonometric functions are always given in radians.  

In[5]:= Sin[Pi/2]

Out[5]= 1

You can convert from degrees by explicitly multiplying by the constant Degree. 

In[6]:= N[ Sin[30 Degree] ]

Out[6]= 0.5

Here is a plot of the hyperbolic tangent function. It has a characteristic “sigmoidal”  form. 

In[7]:= Plot[ Tanh[x], {x, -8, 8} ]
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Out[7]=  Graphics 
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There are a number of additional trigonometric and hyperbolic functions that are sometimes used. The versine function
is  defined  as  vers HzL = 1 - cos HzL .  The  haversine  is  simply  hav HzL = 1ÅÅÅÅ2  vers HzL .  The  complex  exponential  ei x  is
sometimes written as cis HxL . The gudermannian function  is defined as gd HzL = 2 tan-1 HezL - pÅÅÅÅ2 . The inverse guder-
mannian is gd-1 HzL = log @sec HzL + tan HzLD . The gudermannian satisfies such relations as sinh HzL = tan @gd HxLD .  

3.2.7 Functions That Do Not Have Unique Values

When you ask for the square root s  of a number a ,  you are effectively asking for the solution to the equation s2 = a .
This equation, however, in general has two different solutions. Both s = 2  and s = -2  are, for example, solutions to the
equation s2 = 4.  When  you evaluate the “function”  è!!!4 ,  however,  you usually want  to get  a single number,  and so
you have to choose one of these two solutions. A standard choice is that è!!!x  should be positive for x > 0. This is what
the Mathematica function Sqrt[x] does.  

The  need  to  make  one  choice  from  two  solutions  means  that  Sqrt[x]  cannot  be  a  true  inverse  function  for  x^2.
Taking a number, squaring it, and then taking the square root can give you a different number than you started with. 

è!!!4  gives +2, not -2. 

In[1]:= Sqrt[4]

Out[1]= 2

Squaring and taking the square root does not necessarily give you the number you started with. 

In[2]:= Sqrt[(-2)^2]

Out[2]= 2

When you evaluate è!!!!!!!!!
-2 i , there are again two possible answers: -1 + i  and 1 - i . In this case, however, it is less clear

which one to choose. 

There is in fact no way to choose è!!!z  so that it is continuous for all complex values of z . There has to be a “branch
cut”—a  line  in  the  complex  plane  across  which  the  function  è!!!z  is  discontinuous.  Mathematica  adopts  the  usual
convention of taking the branch cut for è!!!z  to be along the negative real axis.   

This gives 1 - i , not -1 + i . 

In[3]:= N[ Sqrt[-2 I] ]

Out[3]= 1. − 1.

The branch cut in Sqrt along the negative real axis means that values of Sqrt[z] with z just above and below the axis are very 
different. 

In[4]:= {Sqrt[-2 + 0.1 I], Sqrt[-2 - 0.1 I]}

Out[4]= 80.0353443 + 1.41466 , 0.0353443 − 1.41466 <

Their squares are nevertheless close. 

In[5]:= %^2

Out[5]= 8−2. + 0.1 , −2. − 0.1 <
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The discontinuity along the negative real axis is quite clear in this three-dimensional picture of the imaginary part of the square 
root function. 

In[6]:= Plot3D[ Im[Sqrt[x + I y]], {x, -4, 4}, {y, -4, 4} ]
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Out[6]=  SurfaceGraphics 

When  you  find  an  n th  root  using  z1ên ,  there  are,  in  principle,  n  possible  results.  To  get  a  single  value,  you  have  to
choose a particular principal root. There is absolutely no guarantee that taking the n th  root of an n th  power will leave
you with the same number. 

This takes the tenth power of a complex number. The result is unique. 

In[7]:= (2.5 + I)^10

Out[7]= −15781.2 − 12335.8

There are ten possible tenth roots. Mathematica chooses one of them. In this case it is not the number whose tenth power you took. 

In[8]:= %^(1/10)

Out[8]= 2.61033 − 0.660446

There  are  many  mathematical  functions  which,  like  roots,  essentially  give  solutions  to  equations.  The  logarithm
function and the inverse trigonometric functions are examples. In almost all cases, there are many possible solutions to
the  equations.  Unique  “principal”  values  nevertheless  have  to  be  chosen  for  the  functions.  The  choices  cannot  be
made continuous over the whole complex plane. Instead, lines of discontinuity, or branch cuts, must occur. The posi-
tions  of  these  branch  cuts  are  often  quite  arbitrary.  Mathematica  makes  the  most  standard  mathematical  choices  for
them.  
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Sqrt@ z D  and  z^s H-¶, 0L  for  Re s > 0  ,  H-¶, 0D  for  Re s § 0  H s not an integerL
Exp@ z D none
Log@ z D H-¶, 0D  

trigonometric functions none
ArcSin@ z D  and  ArcCos@ z D H-¶, -1L  and  H+1, +¶L  

ArcTan@ z D H-i ¶, -iD  and  @i, i ¶L  
ArcCsc@ z D  and  ArcSec@ z D H-1, +1L  

ArcCot@ z D @-i, +iD  
hyperbolic functions none

ArcSinh@ z D H-i ¶, -iL  and  H+i, +i ¶L  
ArcCosh@ z D H-¶, +1L  
ArcTanh@ z D H-¶, -1D  and  @+1, +¶L  
ArcCsch@ z D H-i, iL  
ArcSech@ z D H-¶, 0D  and  H+1, +¶L  
ArcCoth@ z D @-1, +1D

Some branch-cut discontinuities in the complex plane.

ArcSin is a multiple-valued function, so there is no guarantee that it always gives the “inverse”  of Sin. 

In[9]:= ArcSin[Sin[4.5]]

Out[9]= −1.35841

Values of ArcSin[z] on opposite sides of the branch cut can be very different. 

In[10]:= {ArcSin[2 + 0.1 I], ArcSin[2 - 0.1 I]}

Out[10]= 81.51316 + 1.31888 , 1.51316 − 1.31888 <

A three-dimensional picture, showing the two branch cuts for the function sin-1 HzL . 

In[11]:= Plot3D[ Im[ArcSin[x + I y]], {x, -4, 4}, {y, -4, 4}]

-4
-2

0
2

4 -4

-2

0

2

4

-2

0

2

4
-2

0
2

Out[11]=  SurfaceGraphics 
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3.2.8 Mathematical Constants

I i =
è!!!!!!!

-1  
Infinity ¶ 

Pi p > 3.14159  
Degree p ê180  : degrees to radians conversion factor

GoldenRatio f = I1 +
è!!!5 M ë 2 > 1.61803  

E e > 2.71828  
EulerGamma Euler's constant  g > 0.577216  

Catalan Catalan's constant  > 0.915966
Khinchin Khinchin's constant  > 2.68545  
Glaisher Glaisher's constant  > 1.28243  

Mathematical constants.

Euler's constant EulerGamma is given by the limit g = limmØ¶ I‚
k=1

m 1ÅÅÅÅk -  log mM . It appears in many integrals, and
asymptotic formulas. It is sometimes known as the Euler-Mascheroni constant, and denoted C .   

Catalan's constant  Catalan  is given by the sum ⁄k=0
¶ H-1Lk  H2 k + 1L-2 .  It  often appears in asymptotic estimates of

combinatorial functions. 

Khinchin's constant Khinchin (sometimes called Khintchine's constant) is given by ‰
s=1

¶ I1 + 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅs Hs+2L M
log2  s

. It gives
the geometric mean of the terms in the continued fraction representation for a typical real number. 

Glaisher's constant  Glaisher A  (sometimes called the Glaisher-Kinkelin constant) satisfies log HAL = 1ÅÅÅÅÅÅÅ12 - z£ H-1L ,
where z  is the Riemann zeta function. It appears in various sums and integrals, particularly those involving gamma and
zeta functions.  

Mathematical constants can be evaluated to arbitrary precision. 

In[1]:= N[EulerGamma, 40]

Out[1]= 0.5772156649015328606065120900824024310422

Exact computations can also be done with them. 

In[2]:= IntegerPart[GoldenRatio^100]

Out[2]= 792070839848372253126
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3.2.9 Orthogonal Polynomials

LegendreP@ n,  x D Legendre polynomials  Pn HxL  
LegendreP@ n,  m,  x D associated Legendre polynomials  Pn

m HxL  
SphericalHarmonicY@ 

l,  m,  q,  f  D 

spherical harmonics  Yl
m Hq, fL  

GegenbauerC@ n,  m,  x D Gegenbauer polynomials  Cn
HmL HxL  

ChebyshevT@ n,  x 
D ,  ChebyshevU@ n,  x D 

Chebyshev polynomials  Tn HxL  
and  Un HxL  of the first and second kinds

HermiteH@ n,  x D Hermite polynomials  Hn HxL  
LaguerreL@ n,  x D Laguerre polynomials  Ln HxL  

LaguerreL@ n,  a,  x D generalized Laguerre polynomials  Ln
a HxL  

JacobiP@ n,  a,  b,  x D Jacobi polynomials  Pn
Ha,bL HxL  

Orthogonal polynomials.

Legendre  polynomials  LegendreP[n,  x]  arise  in  studies  of  systems  with  three-dimensional  spherical  symmetry.
They  satisfy  the  differential  equation  H1 - x2L y££ - 2 x y£ + n Hn + 1L y = 0,  and  the  orthogonality  relation
Ÿ-1

1
 Pm HxL Pn HxL „ x =  0 for m ∫ n . 

The  associated  Legendre  polynomials  LegendreP[n,  m,  x]  are  obtained  from  derivatives  of  the  Legendre
polynomials  according  to  Pn

m HxL = H-1Lm H1 - x2Lmê2 dm @Pn HxLD ë d  xm .  Notice  that  for  odd  integers  m § n ,  the  Pn
m HxL

contain powers of è!!!!!!!!!!!!!1 - x2 , and are therefore not strictly polynomials. The Pn
m HxL  reduce to Pn HxL  when m = 0. 

The  spherical  harmonics  SphericalHarmonicY[l,  m,  q,  f]  are  related  to  associated  Legendre  polynomials.
They  satisfy  the  orthogonality  relation  Ÿ Yl

m Hq, fL Yêêê
l£
m£

 Hq, fL „ w  =  0  for  l ∫ l£  or  m ∫ m£ ,  where  d  w  represents
integration over the surface of the unit sphere. 

This gives the algebraic form of the Legendre polynomial P8 HxL . 

In[1]:= LegendreP[8, x]

Out[1]= 
35

128
−

315 x2

32
+

3465 x4

64
−

3003 x6

32
+

6435 x8

128

The integral Ÿ-1
1

 P7 HxL P8 HxL d  x  gives zero by virtue of the orthogonality of the Legendre polynomials. 

In[2]:= Integrate[LegendreP[7,x] LegendreP[8,x], {x, -1, 1}]

Out[2]= 0

Integrating the square of a single Legendre polynomial gives a non-zero result. 

In[3]:= Integrate[LegendreP[8, x]^2, {x, -1, 1}]

Out[3]= 
2

17
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High-degree Legendre polynomials oscillate rapidly. 

In[4]:= Plot[LegendreP[10, x], {x, -1, 1}]
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Out[4]=  Graphics 

The associated Legendre “polynomials”  involve fractional powers. 

In[5]:= LegendreP[8, 3, x]

Out[5]= −
3465

8
$%%%%%%%%%%%%%%%%−1 − x

−1 + x
H−1 + xL2 H1 + xL H3 x − 26 x3 + 39 x5L

Section 3.2.10 discusses the generalization of Legendre polynomials to Legendre functions, which can have non-integer degrees. 

In[6]:= LegendreP[8.1, 0]

Out[6]= 0.268502

Gegenbauer polynomials  GegenbauerC[n, m,  x]  can be viewed as generalizations of the Legendre polynomials
to systems with Hm + 2L-dimensional spherical symmetry. They are sometimes known as ultraspherical polynomials. 

GegenbauerC[n,  0,  x]  is  always  equal  to  zero.  GegenbauerC[n,  x]  is  however  given  by  the  limit
limmØ0 Cn

HmL HxL ê m . This form is sometimes denoted Cn
H0L HxL . 

Series  of  Chebyshev  polynomials  are  often  used  in  making  numerical  approximations  to  functions.  The  Chebyshev
polynomials of the first kind ChebyshevT[n, x] are defined by Tn Hcos qL = cos Hn qL . They are normalized so that
Tn H1L = 1.  They  satisfy  the  orthogonality  relation  Ÿ-1

1
 Tm HxL Tn HxL H1 - x2L-1ê2

 „ x =  0  for  m ∫ n .  The  Tn HxL  also
satisfy an orthogonality relation under summation at discrete points in x  corresponding to the roots of Tn HxL . 

The  Chebyshev  polynomials  of  the  second  kind  ChebyshevU[n,  z]  are  defined  by
Un Hcos qL = sin @Hn + 1L qD ê sin q .  With  this  definition,  Un H1L = n + 1.  The  Un  satisfy  the  orthogonality  relation
Ÿ-1

1
 Um HxL Un HxL H1 - x2L1ê2

 „ x = 0 for m ∫ n . 

The  name  “Chebyshev”  is  a  transliteration  from  the  Cyrillic  alphabet;  several  other  spellings,  such  as  “Tscheby -
scheff”,  are sometimes used. 

Hermite polynomials  HermiteH[n,  x]  arise as the quantum-mechanical wave functions for  a harmonic oscillator.
They  satisfy  the  differential  equation  y££ - 2 x y£ + 2 n y = 0,  and  the  orthogonality  relation
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Ÿ-¶

¶
 Hm HxL Hn HxL e-x2

 „ x =  0  for  m ∫ n .  An  alternative  form  of  Hermite  polynomials  sometimes  used  is
H  en HxL = 2-nê2 Hn Ix ëè!!!2 M  (a different overall normalization of the H  en HxL  is also sometimes used). 

The  Hermite  polynomials  are  related  to  the  parabolic  cylinder  functions  or  Weber  functions  Dn HxL  by
Dn HxL = 2-nê2 e-x2ê4 Hn Ix ëè!!!2 M .  

This gives the density for an excited state of a quantum-mechanical harmonic oscillator. The average of the wiggles is roughly the 
classical physics result. 

In[7]:= Plot[(HermiteH[6, x] Exp[-x^2/2])^2, {x, -6, 6}]
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Out[7]=  Graphics 

Generalized Laguerre polynomials LaguerreL[n, a, x] are related to hydrogen atom wave functions in quantum
mechanics.  They  satisfy  the  differential  equation  x y££ + Ha + 1 - xL y£ + n y = 0,  and  the  orthogonality  relation
Ÿ0

¶
 Lm

a  HxL Ln
a HxL xa e-x „ x =  0  for m ∫ n .  The Laguerre polynomials  LaguerreL[n,  x]  correspond to the special

case a = 0. 

Jacobi polynomials JacobiP[n, a, b, x] occur in studies of the rotation group, particularly in quantum mechanics.
They satisfy the orthogonality relation Ÿ-1

1
 Pm

Ha,bL HxL Pn
Ha,bL HxL H1 - xLa H1 + xLb „ x =  0  for m ∫ n . Legendre, Gegenbauer

and  Chebyshev  polynomials  can  all  be  viewed  as  special  cases  of  Jacobi  polynomials.  The  Jacobi  polynomials  are
sometimes given in the alternative form Gn Hp, q, xL = n !  G Hn + pL ê G H2 n + pL Pn

Hp-q,q-1L H2 x - 1L . 

You can get formulas for generalized Laguerre polynomials with arbitrary values of a. 

In[8]:= LaguerreL[2, a, x]

Out[8]= 
1
2
H2 + 3 a + a2 − 4 x − 2 a x + x2L

3.2.10 Special Functions

Mathematica includes all the common special functions of mathematical physics found in standard handbooks. We will
discuss each of the various classes of functions in turn.  

One  point  you  should  realize  is  that  in  the  technical  literature  there  are  often  several  conflicting  definitions  of  any
particular special function. When you use a special function in Mathematica,  therefore,  you should be sure to look at
the definition given here to confirm that it is exactly what you want. 
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Mathematica gives exact results for some values of special functions. 

In[1]:= Gamma[15/2]

Out[1]= 
135135 è!!!π

128

No exact result is known here. 

In[2]:= Gamma[15/7]

Out[2]= GammaA 15
7

E

A numerical result, to arbitrary precision, can nevertheless be found. 

In[3]:= N[%, 40]

Out[3]= 1.069071500448624397994137689702693267367

You can give complex arguments to special functions. 

In[4]:= Gamma[3 + 4I] //N

Out[4]= 0.00522554 − 0.172547

Special functions automatically get applied to each element in a list. 

In[5]:= Gamma[{3/2, 5/2, 7/2}]

Out[5]= 9
è!!!π
2

, 3 è!!!π
4

, 15 è!!!π
8

=

Mathematica knows analytical properties of special functions, such as derivatives. 

In[6]:= D[Gamma[x], {x, 2}]

Out[6]= Gamma@xD PolyGamma@0, xD2 + Gamma@xD PolyGamma@1, xD

You can use FindRoot to find roots of special functions. 

In[7]:= FindRoot[ BesselJ[0, x], {x, 1} ]

Out[7]= 8x → 2.40483<

Special  functions  in  Mathematica  can  usually  be  evaluated  for  arbitrary  complex  values  of  their  arguments.  Often,
however, the defining relations given below apply only for some special choices of arguments. In these cases, the full
function corresponds to a suitable extension or “analytic  continuation”  of these defining relations. Thus, for example,
integral representations of functions are valid only when the integral exists, but the functions themselves can usually be
defined elsewhere by analytic continuation. 

As a simple example of how the domain of a function can be extended, consider the function represented by the sum
⁄k=0

¶ xk .  This  sum  converges  only  when  » x » < 1.  Nevertheless,  it  is  easy  to  show  analytically  that  for  any  x ,  the
complete function is equal to 1 ê H1 - xL . Using this form, you can easily find a value of the function for any x , at least
so long as x ∫ 1. 
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Gamma and Related Functions

Beta@ a,  b D Euler beta function  B Ha, bL  
Beta@ z,  a,  b D incomplete beta function  Bz Ha, bL  

BetaRegularized@ z,  a,  b D regularized incomplete beta function  I  Hz, a, bL  
Gamma@ z D Euler gamma function  G HzL  

Gamma@ a,  z D incomplete gamma function  G Ha, zL  
Gamma@ a,  z0 ,  z1  D generalized incomplete gamma function  G Ha, z0L - G Ha, z1L  

GammaRegularized@ a,  z D regularized incomplete gamma function  Q Ha, zL  
InverseBetaRegularized@ 

s,  a,  b D 

inverse beta function

InverseGammaRegularized@ a,  s D inverse gamma function
Pochhammer@ a,  n D Pochhammer symbol  HaLn  

PolyGamma@ z D digamma function  y HzL  
PolyGamma@ n,  z D n  th  derivative of the digamma function  yHnL HzL  

Gamma and related functions.

The  Euler  gamma  function  Gamma[z]  is  defined  by  the  integral  G HzL = Ÿ0
¶

 tz-1 e-t d  t .  For  positive  integer  n ,
G HnL = Hn - 1L ! . G HzL  can be viewed as a generalization of the factorial function, valid for complex arguments z .   

There are some computations, particularly in number theory, where the logarithm of the gamma function often appears.
For positive real arguments, you can evaluate this simply as Log[Gamma[z]]. For complex arguments, however, this
form  yields  spurious  discontinuities.  Mathematica  therefore  includes  the  separate  function  LogGamma[z],  which
yields the logarithm of the gamma function with a single branch cut along the negative real axis.  

The Euler beta function Beta[a, b] is B Ha, bL = G HaL G HbL ê G Ha + bL = Ÿ0
1

 ta-1 H1 - tLb-1 d  t . 

The Pochhammer symbol or rising factorial Pochhammer[a, n] is HaLn = a Ha + 1L … Ha + n - 1L = G Ha + nL ê G HaL .
It  often  appears  in  series  expansions  for  hypergeometric  functions.  Note  that  the  Pochhammer symbol  has  a  definite
value even when the gamma functions which appear in its definition are infinite.   

The  incomplete  gamma  function  Gamma[a,  z]  is  defined  by  the  integral  G Ha, zL = Ÿz
¶ta-1 e-t d  t .  Mathematica

includes  a  generalized  incomplete  gamma  function  Gamma[a,  z0 ,  z1 ]  defined  as  Ÿz0

z1 ta-1 e-t d  t .  The  alternative
incomplete gamma function g Ha, zL  can therefore be obtained in Mathematica as Gamma[a, 0, z]. 

The incomplete beta function  Beta[z,  a,  b]  is  given by Bz Ha, bL = Ÿ0
zta-1 H1 - tLb-1 d  t .  Notice that  in the incom-

plete beta function, the parameter z is an upper limit of integration, and appears as the first argument of the function. In
the incomplete gamma function, on the other hand, z is a lower limit of integration, and appears as the second argument
of the function.  

In certain cases, it is convenient not to compute the incomplete beta and gamma functions on their own, but instead to
compute regularized forms  in which these functions are divided by complete beta and gamma functions. Mathematica
includes  the  regularized incomplete  beta function  BetaRegularized[z,  a,  b]  defined  for  most  arguments  by
I  Hz, a, bL = B Hz, a, bL ê B Ha, bL ,  but  taking  into  account  singular  cases.  Mathematica  also  includes  the  regularized
incomplete  gamma function  GammaRegularized[a,  z]  defined  by Q Ha, zL = G Ha, zL ê G HaL ,  with  singular  cases
taken into account. 

The  incomplete  beta  and  gamma functions,  and  their  inverses,  are  common in  statistics.  The  inverse  beta  function
InverseBetaRegularized[s,  a,  b]  is  the  solution  for  z  in  s = I  Hz, a, bL .  The  inverse  gamma  function
InverseGammaRegularized[a, s] is similarly the solution for z  in s = Q Ha, zL . 

26 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



Derivatives of the gamma function often appear in summing rational series. The digamma function PolyGamma[z]
is the logarithmic derivative of the gamma function, given by y HzL = G£ HzL ê G HzL . For integer arguments, the digamma
function satisfies the relation y HnL = -g + Hn-1 , where g  is Euler's constant (EulerGamma  in Mathematica) and Hn
are the harmonic numbers.   

The  polygamma functions  PolyGamma[n,  z]  are  given  by  yHnL HzL = dn y HzL ê d  zn .  Notice  that  the  digamma func-
tion corresponds to yH0L HzL . The general form yHnL HzL  is the Hn + 1L th , not the n th , logarithmic derivative of the gamma
function. The polygamma functions satisfy the relation yHnL HzL = H-1Ln+1 n! ⁄k=0

¶ 1 ê Hz + kLn+1 . 

Many exact results for gamma and polygamma functions are built into Mathematica. 

In[1]:= PolyGamma[6]

Out[1]= 
137
60

− EulerGamma

Here is a contour plot of the gamma function in the complex plane. 

In[2]:= ContourPlot[ Abs[Gamma[x + I y]], {x, -3, 3}, {y, -2, 2}, PlotPoints->50 ]
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Out[2]=  ContourGraphics 

Zeta and Related Functions

LerchPhi@ z,  s,  a D Lerch's transcendent  F Hz, s, aL  
PolyLog@ n,  z D polylogarithm function  Lin HzL  

PolyLog@ n,  p,  z D Nielsen generalized polylogarithm function  Sn,p HzL  

RiemannSiegelTheta@ t D Riemann-Siegel function  J HtL  
RiemannSiegelZ@ t D Riemann-Siegel function  Z HtL  
StieltjesGamma@ n D Stieltjes constants  gn  

Zeta@ s D Riemann zeta function  z HsL  
Zeta@ s,  a D generalized Riemann zeta function  z Hs, aL  

Zeta and related functions. 

The  Riemann  zeta  function  Zeta[s]  is  defined  by  the  relation  z HsL = ⁄k=1
¶ k-s  (for  s > 1).  Zeta  functions  with

integer  arguments  arise  in  evaluating  various  sums and  integrals.  Mathematica  gives  exact  results  when  possible  for
zeta functions with integer arguments.  
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There  is  an  analytic  continuation  of  z HsL  for  arbitrary  complex  s ∫ 1.  The  zeta  function  for  complex  arguments  is
central  to  number-theoretical  studies  of  the  distribution  of  primes.  Of  particular  importance  are  the  values  on  the
critical line Re s = 1ÅÅÅÅ2 . 

In studying z H 1ÅÅÅÅ2 + i tL , it is often convenient to define the two analytic Riemann-Siegel functions RiemannSiegel
Z[t]  and  RiemannSiegelTheta[z]  according  to  Z  HtL = ei J HtL z H 1ÅÅÅÅ2 + i tL  and
J HtL = Im log G H 1ÅÅÅÅ4 + i t ê 2L - t logHpL ê 2  (for t  real). Note that the Riemann-Siegel functions are both real as long as t  is
real. 

The  Stieltjes  constants  StieltjesGamma[n]  are  generalizations  of  Euler's  constant  which  appear  in  the  series
expansion of z HsL  around its pole at s = 1; the coefficient of H1 - sLn  is gn ê n ! . Euler's constant is g0 . 

The generalized Riemann zeta function or Hurwitz zeta function Zeta[s, a] is given by z Hs, aL = ⁄k=0
¶ Hk + aL-s ,

where any term with k + a = 0 is excluded.  

Mathematica gives exact results for z H2 nL . 

In[1]:= Zeta[6]

Out[1]= 
π6

945

Here is a three-dimensional picture of the Riemann zeta function in the complex plane. 

In[2]:= Plot3D[ Abs[ Zeta[x + I y] ], {x, -3, 3}, {y, 2, 35}]
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Out[2]=  SurfaceGraphics 
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This is a plot of the absolute value of the Riemann zeta function on the critical line Re z = 1ÅÅÅÅ2 . You can see the first few zeros of 
the zeta function. 

In[3]:= Plot[ Abs[ Zeta[ 1/2 + I y ] ], {y, 0, 40} ]
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Out[3]=  Graphics 

The  polylogarithm  functions  PolyLog[n,  z]  are  given  by  Lin HzL = ⁄k=1
¶ zk ê kn .  The  polylogarithm  function  is

sometimes known  as  Jonquière's  function.  The  dilogarithm  PolyLog[2,  z]  satisfies  Li2 HzL = Ÿz
0log H1 - tL ê t „ t .

Sometimes Li2 H1 - zL  is known as Spence's integral. The Nielsen generalized polylogarithm functions or hyperloga-
rithms  PolyLog[n,  p,  z]  are  given  by  Sn,p HzL = H-1Ln+p-1 ê HHn - 1L! p!L Ÿ0

1
 logn-1 HtL logp H1 - z tL ê t „ t .  Polyloga-

rithm functions appear in Feynman diagram integrals in elementary particle physics, as well as in algebraic K-theory.  

The Lerch transcendent  LerchPhi[z,  s,  a]  is a generalization of the zeta and polylogarithm functions,  given by
F Hz, s, aL = ⁄k=0

¶ zk ê Ha + kLs ,  where  any  term  with  a + k = 0  is  excluded.  Many  sums  of  reciprocal  powers  can  be
expressed  in  terms  of  the  Lerch  transcendent.  For  example,  the  Catalan  beta  function  b HsL = ⁄k=0

¶ H-1Lk  H2 k + 1L-s

can be obtained as 2-s F H-1, s, 1ÅÅÅÅ2 L .  

The  Lerch  transcendent  is  related  to  integrals  of  the  Fermi-Dirac  distribution  in  statistical  mechanics  by
Ÿ0

¶
 ks ê Hek-m + 1L „ k = em G Hs + 1L F H-em, s + 1, 1L . 

The  Lerch  transcendent  can  also  be  used  to  evaluate  Dirichlet  L-series  which  appear  in  number  theory.  The  basic
L-series  has  the  form  L Hs, cL = ⁄k=1

¶ c HkL k-s ,  where  the  “character”  c HkL  is  an  integer  function  with  period  m .
L-series of this kind can be written as sums of Lerch functions with z  a power of e2 p iêm .   

LerchPhi[z, s, a, DoublyInfinite->True] gives the doubly infinite sum ⁄k=-¶
¶ zk ê Ha + kLs . 

Exponential Integral and Related Functions

CosIntegral@ z D cosine integral function  Ci HzL  
CoshIntegral@ z D hyperbolic cosine integral function  Chi HzL  

ExpIntegralE@ n,  z D exponential integral  En HzL  
ExpIntegralEi@ z D exponential integral  Ei HzL  

LogIntegral@ z D logarithmic integral  li HzL  
SinIntegral@ z D sine integral function  Si HzL  

SinhIntegral@ z D hyperbolic sine integral function  Shi HzL  

Exponential integral and related functions. 

Printed from the Mathematica Help Browser 29

©1988-2003 Wolfram Research, Inc. All rights reserved.



Mathematica has two forms of exponential integral: ExpIntegralE and ExpIntegralEi.  

The exponential integral function ExpIntegralE[n, z] is defined by En HzL = Ÿ1
¶

 e-z t ê tn „ t . 

The  second  exponential  integral  function  ExpIntegralEi[z]  is  defined  by  Ei HzL = -Ÿ-z
¶e-t ê t „ t  (for  z > 0),

where the principal value of the integral is taken. 

The logarithmic integral function LogIntegral[z] is given by li HzL = Ÿ0
zd  t ê log t  (for z > 1), where the principal

value of the integral is taken. li HzL  is central to the study of the distribution of primes in number theory. The logarith-
mic integral function is sometimes also denoted by Li HzL . In some number-theoretical applications, li HzL  is defined as
Ÿ2

zd  t ê log t , with no principal value taken. This differs from the definition used in Mathematica by the constant liH2L .  

The  sine  and  cosine  integral  functions  SinIntegral[z]  and  CosIntegral[z]  are  defined  by
Si HzL = Ÿ0

zsin HtL ê t „ t  and  Ci HzL = -Ÿz
¶cos HtL ê t „ t .  The  hyperbolic  sine  and  cosine  integral  functions  Sinh

Integral[z]  and  CoshIntegral[z]  are  defined  by  Shi HzL = Ÿ0
zsinh HtL ê t „ t  and

Chi HzL = g + log HzL + Ÿ0
zHcosh HtL - 1L ê t „ t .   

Error Function and Related Functions

Erf@ z D error function  erf  HzL  
Erf@ z0 ,  z1  D generalized error function  erf  Hz1L - erf  Hz0L  

Erfc@ z D complementary error function  erfc HzL  
Erfi@ z D imaginary error function  erfi HzL  

FresnelC@ z D Fresnel integral  C HzL  
FresnelS@ z D Fresnel integral  S HzL  

InverseErf@ s D inverse error function
InverseErfc@ s D inverse complementary error function

Error function and related functions. 

The  error  function  Erf[z]  is  the  integral  of  the  Gaussian  distribution,  given  by  erf  HzL = 2 ëè!!!!
p  Ÿ0

ze-t2  d  t .  The
complementary  error  function  Erfc[z]  is  given  simply  by  erfc HzL = 1 - erf  HzL .  The  imaginary  error  function
Erfi[z]  is  given  by  erfi HzL = erf  Hi zL ê i .  The  generalized  error  function  Erf[z0 ,  z1 ]  is  defined  by  the  integral
2 ëè!!!!

p  Ÿz0

z1 e-t2  d  t . The error function is central to many calculations in statistics.

The inverse error function InverseErf[s] is defined as the solution for z  in the equation s = erf  HzL . The inverse
error  function  appears  in  computing  confidence  intervals  in  statistics  as  well  as  in  some  algorithms  for  generating
Gaussian random numbers.   

Closely related to the error function are the Fresnel integrals FresnelC[z] defined by C HzL = Ÿ0
zcos Hp t2 ê 2L d  t  and

FresnelS[z] defined by S HzL = Ÿ0
zsin Hp t2 ê 2L d  t . Fresnel integrals occur in diffraction theory.  
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Bessel and Related Functions

AiryAi@ z D and  AiryBi@ z D Airy functions  Ai HzL  and  Bi HzL  
AiryAiPrime@ z D 

and  AiryBiPrime@ z D 

derivatives of Airy functions  Ai£ HzL  and  Bi£ HzL  

BesselJ@ n,  z D 

and  BesselY@ n,  z D 

Bessel functions  Jn HzL  and  Yn HzL  

BesselI@ n,  z D 

and  BesselK@ n,  z D 

modified Bessel functions  In HzL  and  Kn HzL  

StruveH@ n,  z D 

and  StruveL@ n,  z D 

Struve function  Hn HzL  and modified Struve function  Ln HzL  

Bessel and related functions. 

The  Bessel  functions  BesselJ[n,  z]  and  BesselY[n,  z]  are  linearly  independent  solutions  to  the  differential
equation z2 y££ + z y£ + Hz2 - n2L y = 0. For integer n , the Jn HzL  are regular at z = 0, while the Yn HzL  have a logarithmic
divergence at z = 0.  

Bessel functions arise in solving differential equations for systems with cylindrical symmetry.   

Jn HzL  is  often  called the Bessel  function  of  the  first  kind,  or  simply the  Bessel  function.  Yn HzL  is  referred  to as  the
Bessel function of the second kind, the Weber function, or the Neumann function (denoted Nn HzL).  

The  Hankel  functions  (or  Bessel  functions  of  the  third kind)  Hn
H1,2L HzL = Jn HzL ≤ i Yn HzL  give  an  alternative  pair  of

solutions to the Bessel differential equation. 

In  studying systems with  spherical  symmetry, spherical  Bessel  functions  arise,  defined by fn HzL =
è!!!!!!!!!!!!

p ê 2 z  Fn+ 1ÅÅÅÅ2
 HzL ,

where f  and F  can be j  and J , y  and Y , or hi  and Hi . For integer n , Mathematica  gives exact algebraic formulas for
spherical Bessel functions. 

The  modified  Bessel  functions  BesselI[n,  z]  and  BesselK[n,  z]  are  solutions  to  the  differential  equation
z2 y££ + z y£ - Hz2 + n2L y = 0.  For  integer  n ,  In HzL  is  regular  at  z = 0;  Kn HzL  always  has  a  logarithmic  divergence  at
z = 0. The In HzL  are sometimes known as hyperbolic Bessel functions.  

Particularly  in  electrical  engineering,  one  often  defines  the  Kelvin  functions,  according  to
bern HzL + i bein HzL = en p i Jn Hz e-p iê4L , kern HzL + i kein HzL = e-n p iê2 Kn Hz ep iê4L . 

The Airy functions AiryAi[z] and AiryBi[z] are the two independent solutions Ai HzL  and Bi HzL  to the differen-
tial  equation  y££ - z y = 0.  Ai HzL  tends  to  zero  for  large  positive  z ,  while  Bi HzL  increases  unboundedly.  The  Airy
functions are related to modified Bessel functions with one-third-integer orders. The Airy functions often appear as the
solutions  to  boundary  value  problems  in  electromagnetic  theory  and  quantum mechanics.  In  many cases  the  deriva-
tives of the Airy functions AiryAiPrime[z] and AiryBiPrime[z] also appear.  

The Struve function StruveH[n, z] appears in the solution of the inhomogeneous Bessel equation which for integer
n  has the form z2 y££ + z y£ + Hz2 - n2L y = 2ÅÅÅÅp  zn+1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH2 n-1L!! ; the general solution to this equation consists of a linear combina-
tion  of  Bessel  functions  with  the  Struve  function  Hn HzL  added.  The  modified  Struve  function  StruveL[n,  z]  is
given  in  terms  of  the  ordinary  Struve  function  by  Ln HzL = -i e-i n pê2 Hn HzL .  Struve  functions  appear  particularly  in
electromagnetic theory.  
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Here is a plot of J0 Iè!!!x M . This is a curve that an idealized chain hanging from one end can form when you wiggle it. 

In[1]:= Plot[ BesselJ[0, Sqrt[x]], {x, 0, 50} ]
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Out[1]=  Graphics 

Mathematica generates explicit formulas for half-integer-order Bessel functions. 

In[2]:= BesselK[3/2, x]

Out[2]= 
−x "#####π

2 H1 + 1
x L

è!!!x

The Airy function plotted here gives the quantum-mechanical amplitude for a particle in a potential that increases linearly from left 
to right. The amplitude is exponentially damped in the classically inaccessible region on the right. 

In[3]:= Plot[ AiryAi[x], {x, -10, 10} ]
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Out[3]=  Graphics 
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Legendre and Related Functions

LegendreP@ n,  z D Legendre functions of the first kind  Pn HzL  
LegendreP@ n,  m,  z D associated Legendre functions of the first kind  Pn

m HzL  
LegendreQ@ n,  z D Legendre functions of the second kind  Qn HzL  

LegendreQ@ n,  m,  z D associated Legendre functions of the second kind  Qn
m HzL  

Legendre and related functions. 

The  Legendre  functions  and  associated  Legendre  functions  satisfy  the  differential  equation
H1 - z2L y££ - 2 z y£ + @n Hn + 1L - m2 ê H1 - z2LD y = 0.  The  Legendre  functions  of  the  first  kind,  LegendreP[n,  z]
and LegendreP[n, m, z], reduce to Legendre polynomials when n  and m  are integers. The Legendre functions of
the second kind LegendreQ[n, z] and LegendreQ[n, m, z] give the second linearly independent solution to the
differential  equation.  For  integer  m  they  have  logarithmic  singularities  at  z = ≤1.  The  Pn HzL  and  Qn HzL  solve  the
differential equation with m = 0. 

Legendre functions arise in studies of quantum-mechanical scattering processes. 

LegendreP@ n,  m,  z D or  
LegendreP@ n,  m,  1,  z D 

type 1 function containing  H1 - z2Lmê2
 

LegendreP@ n,  m,  2,  z D type 2 function containing  HH1 + zL ê H1 - zLLmê2  
LegendreP@ n,  m,  3,  z D type 3 function containing  HH1 + zL ê H-1 + zLLmê2  

Types of Legendre functions. Analogous types exist for LegendreQ. 

Legendre  functions  of  type  1  are  defined  only  when  z  lies  inside  the  unit  circle  in  the  complex  plane.  Legendre
functions of type 2  have the same numerical values as type 1 inside the unit circle, but are also defined outside. The
type  2  functions  have  branch  cuts  from -¶  to  -1  and  from +1  to  +¶ .  Legendre  functions  of  type  3,  sometimes
denoted Pn

m HzL  and Qn
m HzL , have a single branch cut from -¶  to +1. 

Toroidal  functions  or  ring functions,  which  arise  in  studying  systems with  toroidal  symmetry, can  be  expressed  in
terms of the Legendre functions P

!n- 1ÅÅÅÅ2

m  Hcosh hL  and Q
n- 1ÅÅÅÅ2

m  Hcosh hL .   

Conical functions can be expressed in terms of P
!- 1ÅÅÅÅ2 +i p
m  Hcos qL  and Q

- 1ÅÅÅÅ2 +i p
m  Hcos qL .  

When you use the function LegendreP[n, x] with an integer n , you get a Legendre polynomial. If you take n  to be
an arbitrary complex number, you get, in general, a Legendre function. 

In the same way, you can use the functions GegenbauerC  and so on with arbitrary complex indices to get Gegen-
bauer  functions,  Chebyshev  functions,  Hermite  functions,  Jacobi  functions  and  Laguerre  functions.  Unlike  for
associated Legendre functions, however, there is no need to distinguish different types in such cases.      

Printed from the Mathematica Help Browser 33

©1988-2003 Wolfram Research, Inc. All rights reserved.



Confluent Hypergeometric Functions

Hypergeometric0F1@ a,  z D hypergeometric function  0 F1 H; a; zL  
Hypergeometric0F1Regularized@ 

a,  z D 

regularized hypergeometric function  0 F1 H; a; zL ê G HaL  

Hypergeometric1F1@ a,  b,  z D Kummer confluent hypergeometric function  1 F1 Ha; b; zL  
Hypergeometric1F1Regularized@ 

a,  b,  z D 

regularized confluent hypergeometric function  1 F1 Ha; b; zL ê G HbL

HypergeometricU@ a,  b,  z D confluent hypergeometric function  U  Ha, b, zL  

Confluent hypergeometric functions. 

Many of the special functions that we have discussed so far can be viewed as special cases of the confluent hypergeo-
metric function Hypergeometric1F1[a, b, z].    

The  confluent  hypergeometric  function  can  be  obtained  from  the  series  expansion
1 F1 Ha; b; zL = 1 + a z ê b + a Ha + 1L ê b Hb + 1L z2 ê 2! + ∫ = ⁄k=0

¶ HaLk ê HbLk zk ê k ! .  Some  special  results  are  obtained
when a  and b  are both integers. If a < 0, and either b > 0  or b < a , the series yields a polynomial with a finite number
of terms. 

If  b  is  zero  or  a  negative  integer,  then 1 F1 Ha; b; zL  itself  is  infinite.  But  the  regularized confluent  hypergeometric
function  Hypergeometric1F1Regularized[a,  b,  z]  given  by  1 F1 Ha; b; zL ê G HbL  has  a  finite  value  in  all
cases. 

Among  the  functions  that  can  be  obtained  from  1 F1  are  the  Bessel  functions,  error  function,  incomplete  gamma
function, and Hermite and Laguerre polynomials. 

The function 1 F1 Ha; b; zL  is sometimes denoted F Ha; b; zL  or M  Ha, b, zL . It is often known as the Kummer function.  

The  1 F1  function  can  be  written  in  the  integral  representation  1 F1 Ha; b; zL = G HbL ê @G Hb - aL G HaLD Ÿ 0
1

 ez t ta-1

H1 - tLb-a-1 d  t . 

The 1 F1  confluent hypergeometric function is a solution to Kummer's differential equation z y££ + Hb - zL y£ - a y = 0,
with the boundary conditions 1 F1 Ha; b; 0L = 1 and ∑@1 F1 Ha; b; zLD ê ∑ z »z=0 = a ê b . 

The function HypergeometricU[a, b, z] gives a second linearly independent solution to Kummer's equation. For
Re b > 1  this function behaves like z1-b  for small z . It has a branch cut along the negative real axis in the complex z
plane.   

The function U  Ha, b, zL  has the integral representation U  Ha, b, zL = 1 ê G HaL Ÿ0
¶

 e-z t  ta-1 H1 + tLb-a-1 d  t . 

U  Ha, b, zL , like 1 F1 Ha; b; zL , is sometimes known as the Kummer function. The U  function is sometimes denoted by
Y . 

The  Whittaker  functions  give  an  alternative  pair  of  solutions  to  Kummer's  differential  equation.  The  Whittaker
function  Mk ,  m  is  related  to  1 F1  by  Mk ,  m HzL = e-zê2 z1ê2+m 1 F1 H 1ÅÅÅÅ2 + m - k; 1 + 2 m; zL .  The  second  Whittaker  function
Wk ,  m  obeys the same relation, with 1 F1  replaced by U .  

The parabolic  cylinder functions  are  related to  Whittaker  functions  by Dn HzL = 21ê4+nê2 z-1ê2 ä  W 1ÅÅÅÅ4 + nÅÅÅÅ2 , -1ÅÅÅÅÅÅÅÅ4
 Hz2 ê 2L .  For

integer n , the parabolic cylinder functions reduce to Hermite polynomials.  

The Coulomb wave functions  are also  special  cases  of  the confluent  hypergeometric  function.  Coulomb wave func-
tions give solutions to the radial Schrödinger  equation in the Coulomb potential of a point nucleus. The regular Cou-
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lomb  wave  function  is  given  by  FL Hh, rL = CL HhL rL+1 e-i r 1 F1 HL + 1 - i h; 2 L + 2; 2 i rL ,  where
CL HhL = 2L e-phê2 » G HL + 1 + i hL » ê G H2 L + 2L .  

Other special cases of the confluent hypergeometric function include the Toronto functions T  Hm, n, rL , Poisson-Char-
lier polynomials rn Hn, xL , Cunningham functions wn,m HxL  and Bateman functions kn HxL . 

A limiting form of the confluent hypergeometric function which often appears is Hypergeometric0F1[a, z]. This
function is obtained as the limit 0 F1 H; a; zL = limqØ¶ 1 F1 Hq; a; z ê qL . 

The  0 F1  function  has  the  series  expansion  0 F1 H; a; zL = ⁄k=0
¶ 1 ê HaLk zk ê k !  and  satisfies  the  differential  equation

z y££ + a y£ - y = 0. 

Bessel functions of the first kind can be expressed in terms of the 0 F1  function. 

Hypergeometric Functions and Generalizations

Hypergeometric2F1@ a,  b,  c,  z D hypergeometric function  2 F1 Ha, b; c; zL  
Hypergeometric2F1Regularized@ 

a,  b,  c,  z D 

regularized hypergeometric function  2 F1 Ha, b; c; zL ê G HcL  

HypergeometricPFQ@ 8  a1 ,
… ,  ap  <,  8  b1 , … ,  bq  <,  z D 

generalized hypergeometric function  p Fq Ha; b; zL  

HypergeometricPFQRegularized@ 

8  a1 , … ,  ap  <,  8  b1 , … ,  bq  <,  z D 

regularized generalized hypergeometric function

MeijerG@ 8  8  a1 , … ,  an  <,  
8  an+1 , … ,  ap  <  <,  8  8  b1 , … , 

 bm  <,  8  bm+1 , … ,  bq  <  <,  z D 

Meijer G function

AppellF1@ a,  b1 ,  b2 ,  c,  x,  y D Appell hypergeometric function of two variables  
F1 Ha; b1, b2; c; x, yL  

Hypergeometric functions and generalizations. 

The  hypergeometric  function  Hypergeometric2F1[a,  b,  c,  z]  has  series  expansion
2 F1 Ha, b; c; zL = ⁄k=0

¶ HaLk  HbLk ê HcLk zk ê k ! .  The  function  is  a  solution  of  the  hypergeometric  differential  equation
z H1 - zL y££ + @c - Ha + b + 1L zD y£ - a b y = 0.   

The  hypergeometric  function  can  also  be  written  as  an  integral:  2 F1 Ha, b; c; zL = G HcL ê @G HbL G Hc - bLD ä

Ÿ0
1

 tb-1 H1 - tLc-b-1 H1 - t zL-a d  t . 

The  hypergeometric  function  is  also  sometimes  denoted  by  F ,  and  is  known  as  the  Gauss  series  or  the  Kummer
series.   

The  Legendre  functions,  and  the  functions  which  give  generalizations  of  other  orthogonal  polynomials,  can  be
expressed  in  terms  of  the  hypergeometric  function.  Complete  elliptic  integrals  can  also  be  expressed  in  terms of  the
2 F1  function. 

The Riemann P function, which gives solutions to Riemann's differential equation, is also a 2 F1  function.  

The  generalized  hypergeometric  function  or  Barnes  extended  hypergeometric  function  Hypergeometric
PFQ[8a1 , … , ap <, 8b1 , … , bq <, z] has series expansion p Fq Ha; b; zL =  ⁄k=0

¶ Ha1Lk ... HapLk ê @Hb1Lk ... HbqLkD zk ê k ! . 

The  Meijer  G  function  MeijerG[88a1 ,…,an <,  8an+1 ,…,ap <<,  88b1 ,…,bm <,  8bm+1 ,…,bq <<,  z]  is  defined  by
the  contour  integral  representation  Gp q

m n Iz … a1,…,ap
b1,…,bq

M = 1ÅÅÅÅÅÅÅÅÅÅ2 p i  Ÿ G H1 - a1 - sL …G H1 - an - sL ä

G Hb1 + sL …G Hbm + sL ê HG Han+1 + sL …G Hap + sL G H1 - bm+1 - sL …G H1 - bq - sLL z-s d  s ,  where  the  contour  of  integra-
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tion is set up to lie between the poles of G H1 - ai - sL  and the poles of G Hbi + sL . MeijerG is a very general function
whose special cases cover most of the functions discussed in the past few sections. 

The  Appell  hypergeometric  function  of  two  variables  AppellF1[a,  b1 ,  b2 ,  c,  x,  y]  has  series  expansion
F1 Ha; b1, b2; c; x, yL = ⁄m=0

¶ ⁄n=0
¶ HaLm+n Hb1Lm Hb2Ln ê Hm! n! HcLm+nL xm yn . This function appears for example in integrat-

ing cubic polynomials to arbitrary powers.  

The Product Log Function

ProductLog@ z D product log function  W  HzL  

The product log function.

The product  log  function  gives  the  solution  for  w  in  z = w ew .  The function  can be  viewed as  a  generalization of  a
logarithm. It can be used to represent solutions to a variety of transcendental equations. The tree generating function
for counting distinct oriented trees is related to the product log by T  HzL = -W  H-zL .    

3.2.11 Elliptic Integrals and Elliptic Functions

Even  more  so  than  for  other  special  functions,  you  need  to  be  very  careful  about  the  arguments  you  give  to  elliptic
integrals  and  elliptic  functions.  There  are  several  incompatible  conventions  in  common use,  and  often  these  conven-
tions  are  distinguished  only  by  the  specific  names  given  to  arguments  or  by  the  presence  of  separators  other  than
commas between arguments. 

† Amplitude  f  Hused by  Mathematica , in radiansL
† Argument  u  Hused by  Mathematica L: related to amplitude by  f = am HuL  

† Delta amplitude  DHfL  :  D HfL =
"###########################1 - m sin2 HfL  

† Coordinate  x  :  x = sin HfL  
† Characteristic  n  Hused by  Mathematica in elliptic integrals of the third kindL
† Parameter  m  Hused by  Mathematica L: preceded by  »  , as in  I  Hf  »  mL  
† Complementary parameter  m1  :  m1 = 1 - m  
† Modulus  k  : preceded by comma, as in  I  Hf, kL  ;  m = k2  
† Modular angle  a  : preceded by  \  , as in  I  Hf \ aL  ;  m = sin2 HaL  
† Nome  q  : preceded by comma in  q  functions;  q = exp @-p K  H1 - mL ê K  HmLD = exp Hi pw£ ê wL  
† Invariants  g2  ,  g3  Hused by  Mathematica L
† Half-periods  w  ,  w£  :  g2 = 60 ⁄r ,  s

£ w-4  ,  g3 = 140 ⁄r ,  s
£ w-6  , where  w = 2 r w + 2 s w£  

† Ratio of periods  t  :  t = w£ ê w  
† Discriminant  D  :  D = g2

3 - 27 g3
2  

† Parameters of curve  a  ,  b  Hused by  Mathematica L
† Coordinate  y  Hused by  Mathematica L: related by  y2 = x3 + a x2 + b x  

Common argument conventions for elliptic integrals and elliptic functions. 
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JacobiAmplitude@ u,  m D give the amplitude  f  
corresponding to argument  u  and parameter  m  

EllipticNomeQ@ m D give the nome  q corresponding to parameter  m 
InverseEllipticNomeQ@ q D give the parameter  m corresponding to nome  q 

WeierstrassInvariants@ 

8  w,  w£  <  D 

give the invariants  8  g2 ,  g3  <  

corresponding to the half-periods  8w, w£<  
WeierstrassHalfPeriods@ 

8  g2 ,  g3  <  D 

give the half-periods  8w, w£<  
corresponding to the invariants  8  g2 ,  g3  <  

Converting between different argument conventions. 

Elliptic Integrals

EllipticK@ m D complete elliptic integral of the first kind  K  HmL  
EllipticF@ f,  m D elliptic integral of the first kind  F Hf  »  mL  

EllipticE@ m D complete elliptic integral of the second kind  E HmL  
EllipticE@ f,  m D elliptic integral of the second kind  E Hf  »  mL  

EllipticPi@ n,  m D complete elliptic integral of the third kind  P Hn »  mL  
EllipticPi@ n,  f,  m D elliptic integral of the third kind  P Hn; f  »  mL  

JacobiZeta@ f,  m D Jacobi zeta function  Z  Hf  »  mL  

Elliptic integrals. 

Integrals  of  the  form Ÿ R Hx, yL „ x ,  where  R  is  a  rational  function,  and  y2  is  a  cubic  or  quartic  polynomial  in  x ,  are
known as elliptic integrals. Any elliptic integral can be expressed in terms of the three standard kinds of Legendre-Ja-
cobi elliptic integrals. 

The  elliptic  integral  of  the  first  kind  EllipticF[f,  m]  is  given  for  -p ê 2 < f < p ê2  by
F Hf  »  mL = Ÿ0

f
 @1 - m sin2 HqLD-1ê2

 „ q  = Ÿ0
sinHfL

 @H1 - t2L H1 - m t2LD-1ê2
 „ t .  This  elliptic  integral  arises  in  solving  the

equations of motion for a simple pendulum. It is sometimes known as an incomplete elliptic integral of the first kind.

Note that the arguments of the elliptic integrals are sometimes given in the opposite order from what is used in Mathe-
matica. 

The complete elliptic integral of the first kind EllipticK[m] is given by K  HmL = F H pÅÅÅÅ2 »  mL . Note that K  is used
to denote the complete elliptic integral of the first kind, while F  is used for its incomplete form. In many applications,
the  parameter  m  is  not  given  explicitly,  and  K  HmL  is  denoted  simply  by  K .  The  complementary  complete  elliptic
integral  of  the  first  kind  K£ HmL  is  given  by  K  H1 - mL .  It  is  often  denoted  K£ .  K  and  i K£  give  the  “real”  and
“imaginary”  quarter-periods of the corresponding Jacobi elliptic functions discussed below. 

The  elliptic  integral  of  the  second  kind  EllipticE[f,  m]  is  given  for  -p ê 2 < f < p ê 2  by
E Hf  »  mL = Ÿ0

f
 @1 - m sin2 HqLD1ê2

 „ q  = Ÿ0
sinHfL

 H1 - t2L-1ê2
 H1 - m t2L1ê2

 „ t .  

The  complete  elliptic  integral  of  the  second  kind  EllipticE[m]  is  given  by  E HmL = E H pÅÅÅÅ2 »  mL .  It  is  often
denoted E . The complementary form is E£ HmL = E H1 - mL . 

The Jacobi zeta function JacobiZeta[f, m] is given by Z  Hf  »  mL = E Hf  »  mL - E HmL F Hf  »  mL ê K  HmL .   

The Heuman lambda function is given by L0 Hf  »  mL = F Hf  »  1 - mL ê K  H1 - mL + 2ÅÅÅÅp  K  HmL Z Hf  »  1 - mL .  
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The  elliptic  integral  of  the  third  kind  EllipticPi[n,  f,  m]  is  given  by
P Hn; f  »  mL = Ÿ0

f
 H1 - n sin2 HqLL-1

 @1 - m sin2 HqLD-1ê2
 „ q .  

The complete elliptic integral of the third kind EllipticPi[n, m] is given by P Hn »  mL = P Hn; pÅÅÅÅ2 »  mL . 

Here is a plot of the complete elliptic integral of the second kind E HmL . 

In[1]:= Plot[EllipticE[m], {m, 0, 1}]
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Out[1]=  Graphics 

Here is K  HaL  with a = 30é . 

In[2]:= EllipticK[Sin[30 Degree]^2] // N

Out[2]= 1.68575

The elliptic integrals have a complicated structure in the complex plane. 

In[3]:= Plot3D[ Im[EllipticF[px + I py, 2]], {px, 0.5, 2.5}, {py, -1, 1}, PlotPoints->60 ]
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Out[3]=  SurfaceGraphics 
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Elliptic Functions

JacobiAmplitude@ u,  m D amplitude function  am Hu »  mL  
JacobiSN@ u,  m D ,  
JacobiCN@ u,  m D , etc.

Jacobi elliptic functions  sn Hu »  mL  , etc.

InverseJacobiSN@ v,  m D ,  
InverseJacobiCN@ v,  m D , etc.

inverse Jacobi elliptic functions  sn-1 Hv »  mL  , etc.

EllipticTheta@ a,  u,  q D theta functions  Ja Hu, qL  H a = 1, ..., 4  L
EllipticThetaPrime@ a,  u,  q D derivatives of theta functions  Ja

£  Hu, qL  H a = 1, ..., 4  L
WeierstrassP@ u,  8  g2 ,  g3  <  D Weierstrass elliptic function  ƒ Hu; g2, g3L  

WeierstrassPPrime@ 

u,  8  g2 ,  g3  <  D 

derivative of Weierstrass elliptic function  ƒ£ Hu; g2, g3L  

InverseWeierstrassP@ 

p,  8  g2 ,  g3  <  D 

inverse Weierstrass elliptic function

WeierstrassSigma@ u,  8  g2 ,  g3  <  D Weierstrass sigma function  s Hu; g2, g3L  
WeierstrassZeta@ u,  8  g2 ,  g3  <  D Weierstrass zeta function  z Hu; g2, g3L  

Elliptic and related functions. 

Rational  functions  involving  square  roots  of  quadratic  forms  can  be  integrated  in  terms  of  inverse  trigonometric
functions. The trigonometric functions can thus be defined as inverses of the functions obtained from these integrals. 

By analogy, elliptic functions are defined as inverses of the functions obtained from elliptic integrals. 

The amplitude  for  Jacobi elliptic functions JacobiAmplitude[u,  m]  is  the inverse of the elliptic integral  of the
first  kind.  If  u = F Hf  »  mL ,  then f = am Hu »  mL .  In  working  with Jacobi  elliptic functions,  the argument m  is  often
dropped, so am Hu »  mL  is written as am HuL .  

The  Jacobi  elliptic  functions  JacobiSN[u,  m]  and  JacobiCN[u,  m]  are  given  respectively  by  sn HuL = sin HfL
and  cn HuL = cos HfL ,  where  f = am Hu »  mL .  In  addition,  JacobiDN[u,  m]  is  given  by

dn HuL =
"###########################1 - m sin2 HfL = D HfL .  

There are a total of twelve Jacobi elliptic functions JacobiPQ[u, m], with the letters P and Q chosen from the set S,
C,  D  and  N.  Each  Jacobi  elliptic  function  JacobiPQ[u,  m]  satisfies  the  relation  pq HuL = pn HuL ê qn HuL ,  where  for
these purposes nn HuL = 1. 

There  are  many  relations  between  the  Jacobi  elliptic  functions,  somewhat  analogous  to  those  between  trigonometric
functions.  In  limiting  cases,  in  fact,  the  Jacobi  elliptic  functions  reduce  to  trigonometric  functions.  So,  for  example,
sn Hu »  0L = sin HuL ,  sn Hu »  1L = tanh HuL ,  cn Hu »  0L = cos HuL ,  cn Hu »  1L = sech HuL ,  dn Hu »  0L = 1  and
dn Hu »  1L = sech HuL . 

The notation Pq HuL  is often used for the integrals Ÿ0
upq2 HtL „ t . These integrals can be expressed in terms of the Jacobi

zeta function defined above. 

One of the most important properties of elliptic functions is that they are doubly periodic in the complex values of their
arguments. Ordinary trigonometric functions are singly periodic, in the sense that f  Hz + s wL = f  HzL  for any integer s .
The elliptic functions are doubly periodic, so that f  Hz + r w + s w£L = f  HzL  for any pair of integers r  and s . 

The  Jacobi  elliptic  functions  sn Hu »  mL ,  etc.  are  doubly  periodic  in  the  complex  u  plane.  Their  periods  include
w = 4 K  HmL  and w£ = 4 i K  H1 - mL , where K  is the complete elliptic integral of the first kind. 

The choice of p  and q  in the notation pq Hu »  mL  for Jacobi elliptic functions can be understood in terms of the values
of the functions at the quarter periods K  and i K£ . 
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This shows two complete periods in each direction of the absolute value of the Jacobi elliptic function sn Hu »  1ÅÅÅÅ3 L . 

In[1]:= ContourPlot[Abs[JacobiSN[ux + I uy, 1/3]], {ux, 0, 4 EllipticK[1/3]}, {uy, 0, 4 
EllipticK[2/3]}, PlotPoints->40 ]
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Out[1]=  ContourGraphics 

Also built into Mathematica are the inverse Jacobi elliptic functions InverseJacobiSN[v, m], InverseJaco
biCN[v, m], etc. The inverse function sn-1 Hv »  mL , for example, gives the value of u  for which v = sn Hu »  mL . The
inverse Jacobi elliptic functions are related to elliptic integrals.   

The four theta functions Ja Hu, qL  are obtained from  EllipticTheta[a, u, q] by taking a to be 1, 2, 3 or 4. The
functions  are  defined  by:  J1 Hu, qL = 2 q1ê4 ⁄n=0

¶ H-1Ln qn Hn+1L sin @H2 n + 1L uD ,
J2 Hu, qL = 2 q1ê4 ⁄n=0

¶ qn Hn+1L cos @H2 n + 1L uD ,  J3 Hu, qL = 1 + 2 ‚
n=1

¶
qn2

 cos H2 n uL ,
J4 Hu, qL = 1 + 2 ‚

n=1

¶ H-1Ln qn2
 cos H2 n uL .  The  theta  functions  are  often  written  as  Ja HuL  with  the  parameter  q  not

explicitly  given.  The  theta  functions  are  sometimes  written  in  the  form  J Hu »  mL ,  where  m  is  related  to  q  by
q = exp @-p K  H1 - mL ê K  HmLD .  In  addition,  q  is  sometimes  replaced  by  t ,  given  by  q = ei pt .  All  the  theta  functions
satisfy a diffusion-like differential equation ∑2  J Hu, tL ê ∑u2 = 4 p i ∑J Hu, tL ê ∑ t . 

The Jacobi elliptic functions can be expressed as ratios of the theta functions. 

An  alternative  notation  for  theta  functions  is  Q Hu »  mL = J4 Hv »  mL ,  Q1 Hu »  mL = J3 Hv »  mL ,  H  Hu »  mL = J1 HvL ,
H1 Hu »  mL = J2 HvL , where v = p u ê 2 K  HmL . 

The Neville theta functions can be defined in terms of the theta functions as Js HuL = 2 K  HmL J1 Hv »  mL ê  pJ1
£  H0  »  mL ,

Jc HuL = J2 Hv »  mL ê J2 H0  »  mL ,  Jd  HuL = J3 Hv »  mL ê J3 H0  »  mL ,  Jn HuL = J4 Hv »  mL ê J4 H0  »  mL ,  where
v = p u ê 2 K  HmL . The Jacobi elliptic functions can be represented as ratios of the Neville theta functions. 

The  Weierstrass  elliptic  function  WeierstrassP[u,  8g2 ,  g3 <]  can  be  considered  as  the  inverse  of  an  elliptic
integral.   The  Weierstrass  function  ƒ Hu; g2, g3L  gives  the  value  of  x  for  which  u = Ÿ¶

xH4 t3 - g2 t - g3L
-1ê2

 „ t .  The
function WeierstrassPPrime[u, 8g2 , g3 <] is given by ƒ£ Hu; g2, g3L = ∑ÅÅÅÅÅÅÅ∑u  ƒ Hu; g2, g3L . 

The  Weierstrass  functions  are  also  sometimes written  in  terms of  their  fundamental  half-periods  w  and  w£ ,  obtained
from the invariants g2  and g3  using WeierstrassHalfPeriods[8g2 , g3 <]. 

The function InverseWeierstrassP[p, 8g2 , g3 <] finds one of the two values of u  for which p = ƒ Hu; g2, g3L .
This value always lies in the parallelogram defined by the complex number half-periods w  and w£ . 
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InverseWeierstrassP[8p,  q<,  8g2 ,  g3 <]  finds  the  unique  value  of  u  for  which  p = ƒ Hu; g2, g3L  and
q = ƒ£ Hu; g2, g3L . In order for any such value of u  to exist, p  and q  must be related by q2 = 4 p3 - g2 p - g3 . 

The  Weierstrass  zeta  function  WeierstrassZeta[u,  8g2 ,  g3 <]  and  Weierstrass  sigma  function  Weier
strassSigma[u,  8g2 ,  g3 <]  are  related  to  the  Weierstrass  elliptic  functions  by  z£ Hz; g2, g3L = -ƒ Hz; g2, g3L  and
s£ Hz; g2, g3L ê s Hz; g2, g3L = z Hz; g2, g3L . 

The Weierstrass zeta and sigma functions are not strictly elliptic functions since they are not periodic. 

Elliptic Modular Functions

DedekindEta@ t  D Dedekind eta function  hHtL  
KleinInvariantJ@ t  D Klein invariant modular function  J  HtL  

ModularLambda@ t  D modular lambda function  lHtL  

Elliptic modular functions. 

The  modular  lambda  function  ModularLambda[t]  relates  the  ratio  of  half-periods  t = w£ ê w  to  the  parameter
according to m = l HtL . 

The  Klein  invariant  modular  function  KleinInvariantJ[t]  and  the  Dedekind  eta  function  Dedekind
Eta[t] satisfy the relations D = g2

3 ê J  HtL = H2 pL12 h24 HtL . 

Modular elliptic functions are defined to be invariant under certain fractional linear transformations of their arguments.
Thus for example lHtL  is invariant under any combination of the transformations t Ø t + 2 and t Ø t ê H1 - 2 tL . 

Generalized Elliptic Integrals and Functions

ArithmeticGeometricMean@ a,  b D the arithmetic-geometric mean of  a and  b 
EllipticExp@ u,  8  a,  b <  D generalized exponential associated with the elliptic curve  

y2 = x3 + a x2 + b x  
EllipticLog@ 8  x,  y <,  8  a,  b <  D generalized logarithm associated with the elliptic curve  

y2 = x3 + a x2 + b x  

Generalized elliptic integrals and functions. 

The  definitions  for  elliptic  integrals  and  functions  given  above  are  based  on  traditional  usage.  For  modern  algebraic
geometry, it is convenient to use slightly more general definitions. 

The  function  EllipticLog[8x,  y<,  8a,  b<]  is  defined  as  the  value  of  the  integral  1ÅÅÅÅ2  Ÿ¶

xHt3 + a t2 + b tL-1ê2
 „ t ,

where the sign of the square root is specified by giving the value of y  such that y =
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!x3 + a x2 + b x . Integrals of the

form Ÿ¶

xHt2 + a tL-1ê2
 „ t  can be expressed in terms of the ordinary logarithm (and inverse trigonometric functions). You

can think of EllipticLog  as giving a generalization of this, where the polynomial under the square root is now of
degree three. 

The function EllipticExp[u,  8a,  b<]  is  the inverse of EllipticLog.  It  returns the list 8x,  y<  that appears in
EllipticLog. EllipticExp is an elliptic function, doubly periodic in the complex u  plane. 

ArithmeticGeometricMean[a, b] gives the arithmetic-geometric mean (AGM) of two numbers a and b. This
quantity is central to many numerical algorithms for computing elliptic integrals and other functions. For positive reals
a  and  b  the  AGM  is  obtained  by  starting  with  a0 = a ,  b0 = b ,  then  iterating  the  transformation  an+1 = 1ÅÅÅÅ2  Han + bnL ,
bn+1 =

è!!!!!!!!!!!an bn  until an = bn  to the precision required. 
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3.2.12 Mathieu and Related Functions

MathieuC@ a,  q,  z D even Mathieu functions with characteristic value  
a and parameter  q 

MathieuS@ b,  q,  z D odd Mathieu function with characteristic value  b and parameter  q 
MathieuCPrime@ a,  q,  z D 

 and  MathieuSPrime@ b,  q,  z D 

z derivatives of Mathieu functions

MathieuCharacteristicA@ r,  q D characteristic value  ar  
for even Mathieu functions with characteristic exponent  

r and parameter  q 
MathieuCharacteristicB@ r,  q D characteristic value  br  

for odd Mathieu functions with characteristic exponent  
r and parameter  q 

MathieuCharacteristicExponent@
 a,  q D 

characteristic exponent  r  
for Mathieu functions with characteristic value  

a and parameter  q 

Mathieu and related functions. 

The  Mathieu  functions  MathieuC[a,  q,  z]  and  MathieuS[a,  q,  z]  are  solutions  to  the  equation
y££ + @a - 2 q cos H2 zLD y = 0.  This  equation  appears  in  many physical  situations  that  involve  elliptical  shapes  or  peri-
odic potentials. The function MathieuC is defined to be even in z , while MathieuS is odd.          

When q = 0  the  Mathieu  functions  are  simply cos Iè!!!a  zM  and  sin Iè!!!a  zM .  For  non-zero  q ,  the  Mathieu  functions  are
only periodic in z  for certain values of a . Such Mathieu characteristic values are given by MathieuCharacteris
ticA[r, q] and MathieuCharacteristicB[r, q] with r  an integer or rational number. These values are often
denoted by ar  and br . 

For integer r , the even and odd Mathieu functions with characteristic values ar  and br  are often denoted c er Hz, qL  and
s er Hz, qL , respectively. Note the reversed order of the arguments z  and q . 

According to Floquet's Theorem any Mathieu function can be written in the form ei r z f  HzL , where f  HzL  has period 2 p
and r  is the Mathieu characteristic exponent MathieuCharacteristicExponent[a, q]. When the character-
istic exponent r  is an integer or rational number, the Mathieu function is therefore periodic. In general, however, when
r  is not a real integer, ar  and br  turn out to be equal. 
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This shows the first five characteristic values ar  as functions of q . 

In[1]:= Plot[Evaluate[Table[MathieuCharacteristicA[r, q], {r, 0, 4}]], {q, 0, 15}]
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Out[1]=  Graphics 

3.2.13 Working with Special Functions

automatic evaluation exact results for specific arguments
N@ expr,  n D numerical approximations to any precision
D@ expr,  x D exact results for derivatives

N@D@ expr,  x DD numerical approximations to derivatives
Series@ expr,  8  x,  x0 ,  n <  D series expansions

Integrate@ expr,  x D exact results for integrals
NIntegrate@ expr,  x D numerical approximations to integrals

FindRoot@ expr ==0,  8  x,  x0  <  D numerical approximations to roots

Some common operations on special functions. 

Most  special  functions  have  simpler  forms  when  given  certain  specific  arguments.  Mathematica  will  automatically
simplify special functions in such cases. 

Mathematica automatically writes this in terms of standard mathematical constants. 

In[1]:= PolyLog[2, 1/2]

Out[1]= 
π2

12
−

Log@2D2

2

Here again Mathematica reduces a special case of the Airy function to an expression involving gamma functions. 

In[2]:= AiryAi[0]

Out[2]= 
1

32ê3 Gamma@ 2
3 D
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For most choices of arguments, no exact reductions of special functions are possible. But in such cases, Mathematica
allows you to find numerical approximations to any degree of precision. The algorithms that are built into Mathematica
cover essentially all values of parameters—real and complex—for which the special functions are defined. 

There is no exact result known here. 

In[3]:= AiryAi[1]

Out[3]= AiryAi@1D

This gives a numerical approximation to 40 digits of precision. 

In[4]:= N[AiryAi[1], 40]

Out[4]= 0.1352924163128814155241474235154663061749

The result here is a huge complex number, but Mathematica can still find it. 

In[5]:= N[AiryAi[1000 I]]

Out[5]= −4.78026663777× 106472 + 3.6749209072× 106472

Most special functions have derivatives that can be expressed in terms of elementary functions or other special func-
tions. But even in cases where this is not so, you can still use N to find numerical approximations to derivatives.    

This derivative comes out in terms of elementary functions. 

In[6]:= D[FresnelS[x], x]

Out[6]= SinA π x2

2
E

This evaluates the derivative of the gamma function at the point 3. 

In[7]:= Gamma'[3]

Out[7]= 2 J 3
2

− EulerGammaN

There is no exact formula for this derivative of the zeta function. 

In[8]:= Zeta'[Pi]

Out[8]= Zeta @πD

Applying N gives a numerical approximation. 

In[9]:= N[%]

Out[9]= −0.167603

Mathematica incorporates a vast amount of knowledge about special functions—including essentially all the results that
have  been  derived  over  the  years.  You  access  this  knowledge  whenever  you  do  operations  on  special  functions  in
Mathematica. 
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Here is a series expansion for a Fresnel function. 

In[10]:= Series[FresnelS[x], {x, 0, 15}]

Out[10]= 
π x3

6
−

π3 x7

336
+

π5 x11

42240
−

π7 x15

9676800
+ O@xD16

Mathematica knows how to do a vast range of integrals involving special functions. 

In[11]:= Integrate[AiryAi[x]^2, {x, 0, Infinity}]

Out[11]= 
1

32ê3 Gamma@ 1
3 D

2

One feature of working with special functions is that there are a large number of relations between different functions,
and these relations can often be used in simplifying expressions. 

FullSimplify@ expr D try to simplify  expr using a range of transformation rules

Simplifying expressions involving special functions. 

This uses the reflection formula for the gamma function. 

In[12]:= FullSimplify[Gamma[x] Gamma[1 - x]]

Out[12]= π Csc@π xD

This makes use of a representation for Chebyshev polynomials. 

In[13]:= FullSimplify[ChebyshevT[n, z] - k Cos[n ArcCos[z]]]

Out[13]= −H−1 + kL Cos@n ArcCos@zDD

The Airy functions are related to Bessel functions. 

In[14]:= FullSimplify[3 AiryAi[1] + Sqrt[3] AiryBi[1]]

Out[14]= 2 BesselIA−
1
3

, 2
3
E

FunctionExpand@ expr D try to expand out special functions

Manipulating expressions involving special functions. 

This expands out the PolyGamma, yielding a function with a simpler argument. 

In[15]:= FunctionExpand[PolyGamma[2, 2 + x]]

Out[15]= 2 J 1
x3 +

1
H1 + xL3 N + PolyGamma@2, xD

Here is an example involving Bessel functions. 

In[16]:= FunctionExpand[BesselY[n, I x]]

Out[16]= −
2 H xL−n xn BesselK@n, xD

π
+ BesselI@n, xD H−H xL−n xn + H xLn x−n Cos@n πDL Csc@n πD
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In this case the final result does not even involve PolyGamma. 

In[17]:= FunctionExpand[Im[PolyGamma[0, 3 I]]]

Out[17]= 
1
6

+
1
2

π Coth@3 πD

This finds an expression for the second derivative of the zeta function at zero. 

In[18]:= FunctionExpand[Zeta''[0]]

Out[18]= 
EulerGamma2

2
−

π2

24
−

1
2
HLog@2D + Log@πDL2 + StieltjesGamma@1D

3.2.14 Statistical Distributions and Related Functions

There are standard Mathematica  packages for  evaluating functions related to common statistical distributions. Mathe-
matica  represents  the  statistical distributions  themselves in  the symbolic form name[param1 ,  param2 ,  … ],  where
the parami  are parameters for the distributions. Functions such as Mean,  which give properties of statistical distribu-
tions, take the symbolic representation of the distribution as an argument. 

BetaDistribution@ a,  b  D continuous beta distribution
CauchyDistribution@ a,  b D Cauchy distribution with location parameter  

a  and scale parameter  b  
ChiSquareDistribution@ n D chi-square distribution with  n degrees of freedom

ExponentialDistribution@ l  D exponential distribution with scale parameter  l  
ExtremeValueDistribution@ 

a,  b  D 

extreme value HFisher-TippettL distribution

FRatioDistribution@ n1 ,  n2  D F  -ratio distribution with  n1  
numerator and  n2  denominator degrees of freedom

GammaDistribution@ a,  l  D gamma distribution with shape parameter  
a  and scale parameter  l  

NormalDistribution@ m,  s  D normal HGaussianL distribution with mean  
m  and standard deviation  s 

LaplaceDistribution@ m,  b  D Laplace Hdouble exponentialL distribution with mean  
m  and variance parameter  b  

LogNormalDistribution@ m,  s  D lognormal distribution with mean parameter  
m  and variance parameter  s  

LogisticDistribution@ m,  b  D logistic distribution with mean  m  and variance parameter  b  
RayleighDistribution@ s D Rayleigh distribution
StudentTDistribution@ n D Student  t  distribution with  n  degrees of freedom

UniformDistribution@ min,  max D uniform distribution on the interval  8  min,  max <  
WeibullDistribution@ a,  b  D Weibull distribution

Statistical distributions from the package Statistics`ContinuousDistributions`. 

Most of the continuous statistical distributions commonly used are derived from the normal or Gaussian distribution
NormalDistribution[m,  s].  This  distribution  has  probability  density  1 ë Iè!!!!!!!2 p  sM exp @-Hx - mL2 ê H2 s2LD .  If
you take random variables that follow any distribution with bounded variance, then the Central Limit Theorem shows
that the mean of a large number of these variables always approaches a normal distribution. 

46 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



The  logarithmic  normal  distribution  or  lognormal  distribution  LogNormalDistribution[m,  s]  is  the
distribution followed by the exponential  of  a normal-distributed random variable.  This distribution arises when many
independent random variables are combined in a multiplicative fashion. 

The chi-square distribution  ChiSquareDistribution[n] is the distribution of the quantity ⁄i=1
n xi

2 , where the
xi  are random variables which follow a normal distribution with mean zero and unit variance. The chi-square distribu-
tion gives the distribution of variances of samples from a normal distribution. 

The Student t distribution StudentTDistribution[n] is the distribution followed by the ratio of a variable that
follows  the  normal  distribution  to  the  square  root  of  one  that  follows  the  chi-square  distribution  with  n  degrees  of
freedom. The t  distribution characterizes the uncertainty in a mean when both the mean and variance are obtained from
data. 

The  F-ratio  distribution,  F-distribution  or  variance  ratio  distribution  FRatioDistribution[n1 ,  n2 ]  is  the
distribution of the ratio of two chi-square variables with n1  and n2  degrees of freedom. The F -ratio distribution is used
in the analysis of variance for comparing variances from different models. 

The  extreme  value  distribution  ExtremeValueDistribution[a,  b]  is  the  limiting  distribution  for  the
smallest or largest values in large samples drawn from a variety of distributions, including the normal distribution. 

PDF@ dist,  x D probability density function Hfrequency functionL at  x  
CDF@ dist,  x D cumulative distribution function at  x  

Quantile@ dist,  q D q  th  quantile
Mean@ dist D mean

Variance@ dist D variance
StandardDeviation@ dist D standard deviation

Skewness@ dist D coefficient of skewness
Kurtosis@ dist D coefficient of kurtosis

CharacteristicFunction@ 

dist,  t D 

characteristic function  f HtL  

Random@ dist D pseudorandom number with specified distribution

Functions of statistical distributions. 

The cumulative distribution function (cdf) CDF[dist, x] is given by the integral of the probability density function
for the distribution up to the point x . For the normal distribution, the cdf is usually denoted F HxL . Cumulative distribu-
tion functions are used in evaluating probabilities for statistical hypotheses. For discrete distributions, the cdf is given
by the sum of the probabilities up to the point x . The cdf is sometimes called simply the distribution function. The cdf
at  a  particular  point  x  for  a  given  distribution  is  often  denoted  P Hx »  q1, q2, ...L ,  where  the  qi  are  parameters of  the
distribution.  The  upper  tail  area  is  given  in  terms of  the  cdf  by  Q Hx »  qiL = 1  -  P Hx »  qiL .  Thus,  for  example,  the
upper  tail  area  for  a  chi-square  distribution  with  n  degrees  of  freedom  is  denoted  Q Hc2 »  nL  and  is  given  by  1  -
CDF[ChiSquareDistribution[nu], chi2]. 

The quantile Quantile[dist, q] is effectively the inverse of the cdf. It gives the value of x at which CDF[dist, x]
reaches q. The median is given by Quantile[dist, 1/2]; quartiles, deciles and percentiles can also be expressed as
quantiles. Quantiles are used in constructing confidence intervals for statistical parameter estimates. 

The  characteristic  function  CharacteristicFunction[dist,  t]  is  given  by  f HtL = Ÿ p HxL exp Hi t xL „ x ,  where
p HxL  is the probability density for a distribution. The n th  central moment of a distribution is given by the n th  deriva-
tive i-n fHnL H0L . 

Random[dist]  gives  pseudorandom  numbers  that  follow  the  specified  distribution.  The  numbers  can  be  seeded  as
discussed in Section 3.2.3. 
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This loads the package which defines continuous statistical distributions. 

In[1]:= <<Statistics`ContinuousDistributions`

This represents a normal distribution with mean zero and unit variance. 

In[2]:= ndist = NormalDistribution[0, 1]

Out[2]= NormalDistribution@0, 1D

Here is a symbolic result for the cumulative distribution function of the normal distribution. 

In[3]:= CDF[ndist, x]

Out[3]= 
1
2
i
k
jjj1 + ErfA x

è!!!2
Ey
{
zzz

This gives the value of x  at which the cdf of the normal distribution reaches the value 0.9. 

In[4]:= Quantile[ndist, 0.9] // N

Out[4]= 1.28155

Here is a list of five normal-distributed pseudorandom numbers. 

In[5]:= Table[ Random[ndist], {5} ]

Out[5]= 8−1.63994, 0.987641, −0.475946, −0.598517, −1.04913<

BernoulliDistribution@ p D discrete Bernoulli distribution with mean  p  
BinomialDistribution@ n,  p D binomial distribution for  n  trials with probability  p  

DiscreteUniformDistribution@ 

n D 

discrete uniform distribution with  n  states

GeometricDistribution@ p D discrete geometric distribution with mean  1 ê p - 1  
HypergeometricDistribution@ 

n,  ns u c c ,  nt o t  D 

hypergeometric distribution for  n  trials with  
ns u c c  successes in a population of size  nt o t  

NegativeBinomialDistribution@ 

r,  p D 

negative binomial distribution for failure count  
r  and probability  p  

PoissonDistribution@ mu D Poisson distribution with mean  m  

Statistical distributions from the package Statistics`DiscreteDistributions`. 

Most of the common discrete statistical distributions can be derived by considering a sequence of “trials”,  each with
two possible outcomes, say “success”  and “failure”.  

The Bernoulli distribution BernoulliDistribution[p] is the probability distribution for a single trial in which
success, corresponding to value 1, occurs with probability p , and failure, corresponding to value 0, occurs with probabil-
ity 1 - p . 

The  binomial  distribution  BinomialDistribution[n,  p]  is  the  distribution  of  the  number  of  successes  that
occur in n  independent  trials when the probability for success in an individual trial is p .  The distribution is given by
H n

k L pk  H1 - pLn-k . 
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The  negative  binomial  distribution  NegativeBinomialDistribution[r,  p]  gives  the  distribution  of  the
number  of  failures  that  occur  in  a  sequence  of  trials  before  r  successes  have  occurred,  given  that  the probability  for
success in each individual trial is p . 

The  geometric  distribution  GeometricDistribution[p]  gives  the  distribution  of  the  total  number  of  trials
before the first success occurs in a sequence of trials where the probability for success in each individual trial is p . 

The  hypergeometric  distribution  HypergeometricDistribution[n,  ns u c c ,  nt o t ]  is  used  in  place  of  the
binomial distribution for experiments in which the n  trials correspond to sampling without replacement from a popula-
tion of size nt o t  with ns u c c  potential successes. 

The  discrete  uniform  distribution  DiscreteUniformDistribution[n]  represents  an  experiment  with  n
outcomes that occur with equal probabilities. 
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3.3 Algebraic Manipulation

3.3.1 Structural Operations on Polynomials

Expand@ poly D expand out products and powers
Factor@ poly D factor completely

FactorTerms@ poly D pull out any overall numerical factor
FactorTerms@ poly,  8  x,  y, … <  D pull out any overall factor that does not depend on  x ,  y , …

Collect@ poly,  x D arrange a polynomial as a sum of powers of  x 
Collect@ poly,  8  x,  y, … <  D arrange a polynomial as a sum of powers of  x ,  y , …

Structural operations on polynomials. 

Here is a polynomial in one variable. 

In[1]:= (2 + 4 x^2)^2 (x - 1)^3

Out[1]= H−1 + xL3 H2 + 4 x2L2

Expand expands out products and powers, writing the polynomial as a simple sum of terms. 

In[2]:= t = Expand[ % ]

Out[2]= −4 + 12 x − 28 x2 + 52 x3 − 64 x4 + 64 x5 − 48 x6 + 16 x7

Factor performs complete factoring of the polynomial. 

In[3]:= Factor[ t ]

Out[3]= 4 H−1 + xL3 H1 + 2 x2L2

FactorTerms pulls out the overall numerical factor from t. 

In[4]:= FactorTerms[ t ]

Out[4]= 4 H−1 + 3 x − 7 x2 + 13 x3 − 16 x4 + 16 x5 − 12 x6 + 4 x7L

There  are  several  ways  to  write  any  polynomial.  The  functions  Expand,  FactorTerms  and  Factor  give  three
common  ways.  Expand  writes  a  polynomial  as  a  simple  sum  of  terms,  with  all  products  expanded  out.  Factor
Terms  pulls  out  common  factors  from  each  term.  Factor  does  complete  factoring,  writing  the  polynomial  as  a
product of terms, each of as low degree as possible. 

When you have a polynomial in more than one variable, you can put the polynomial in different forms by essentially
choosing  different  variables  to  be  “dominant”.  Collect[poly,  x]  takes  a  polynomial  in  several  variables  and
rewrites it as a sum of terms containing different powers of the “dominant  variable”  x.  

Here is a polynomial in two variables. 

In[5]:= Expand[ (1 + 2x + y)^3 ]

Out[5]= 1 + 6 x + 12 x2 + 8 x3 + 3 y + 12 x y + 12 x2 y + 3 y2 + 6 x y2 + y3

Printed from the Mathematica Help Browser 1

©1988-2003 Wolfram Research, Inc. All rights reserved.



Collect reorganizes the polynomial so that x is the “dominant  variable”.  

In[6]:= Collect[ %, x ]

Out[6]= 1 + 8 x3 + 3 y + 3 y2 + y3 + x2 H12 + 12 yL + x H6 + 12 y + 6 y2L

If you specify a list of variables, Collect will effectively write the expression as a polynomial in these variables. 

In[7]:= Collect[ Expand[ (1 + x + 2y + 3z)^3 ], {x, y} ]

Out[7]= 1 + x3 + 8 y3 + 9 z + 27 z2 + 27 z3 + x2 H3 + 6 y + 9 zL + y2 H12 + 36 zL +

y H6 + 36 z + 54 z2L + x H3 + 12 y2 + 18 z + 27 z2 + y H12 + 36 zLL

Expand@ poly,  patt D expand out  poly 
avoiding those parts which do not contain terms matching  patt 

Controlling polynomial expansion. 

This avoids expanding parts which do not contain x. 

In[8]:= Expand[(x + 1)^2 (y + 1)^2, x]

Out[8]= H1 + yL2 + 2 x H1 + yL2 + x2 H1 + yL2

This avoids expanding parts which do not contain objects matching b[_]. 

In[9]:= Expand[(a[1] + a[2] + 1)^2 (1 + b[1])^2, b[_]]

Out[9]= H1 + a@1D + a@2DL2 + 2 H1 + a@1D + a@2DL2 b@1D + H1 + a@1D + a@2DL2 b@1D2

PowerExpand@ expr D expand out  Ha bLc  and  HabLc
 in  expr 

Expanding powers. 

Mathematica  does  not  automatically  expand  out  expressions  of  the  form  (a  b)^c  except  when  c  is  an  integer.  In
general it is only correct to do this expansion if a and b are positive reals. Nevertheless, the function PowerExpand
does the expansion, effectively assuming that a and b are indeed positive reals. 

Mathematica does not automatically expand out this expression. 

In[10]:= (x y)^n

Out[10]= Hx yLn

PowerExpand does the expansion, effectively assuming that x and y are positive reals. 

In[11]:= PowerExpand[%]

Out[11]= xn yn

Log is not automatically expanded out. 

In[12]:= Log[%]

Out[12]= Log@xn ynD
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PowerExpand does the expansion. 

In[13]:= PowerExpand[%]

Out[13]= n Log@xD + n Log@yD

Collect@ poly,  patt D collect separately terms involving each object that matches  patt 
Collect@ poly,  patt,  h D apply  h to each final coefficient obtained

Ways of collecting terms. 

Here is an expression involving various functions f. 

In[14]:= t = 3 + x f[1] + x^2 f[1] + y f[2]^2 + z f[2]^2

Out[14]= 3 + x f@1D + x2 f@1D + y f@2D2 + z f@2D2

This collects terms that match f[_]. 

In[15]:= Collect[t, f[_]]

Out[15]= 3 + Hx + x2L f@1D + Hy + zL f@2D2

This applies Factor to each coefficient obtained. 

In[16]:= Collect[t, f[_], Factor]

Out[16]= 3 + x H1 + xL f@1D + Hy + zL f@2D2

3.3.2 Finding the Structure of a Polynomial

PolynomialQ@ expr,  x D test whether  expr is a polynomial in  x 
PolynomialQ@ expr,  8  x1,  x2, … <  D test whether  expr is a polynomial in the  xi  

Variables@ poly D a list of the variables in  poly 
Exponent@ poly,  x D the maximum exponent with which  x appears in  poly 

Coefficient@ poly,  expr D the coefficient of  expr in  poly 
Coefficient@ poly,  expr,  n D the coefficient of  expr^n in  poly 
Coefficient@ poly,  expr,  0D the term in  poly independent of  expr 

CoefficientList@ 

poly,  8  x1,  x2, … <  D 

generate an array of the coefficients of the  xi  in  poly 

Finding the structure of polynomials written in expanded form. 

Here is a polynomial in two variables. 

In[1]:= t = (1 + x)^3 (1 - y - x)^2

Out[1]= H1 + xL3 H1 − x − yL2
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This is the polynomial in expanded form. 

In[2]:= Expand[t]

Out[2]= 1 + x − 2 x2 − 2 x3 + x4 + x5 − 2 y − 4 x y + 4 x3 y + 2 x4 y + y2 + 3 x y2 + 3 x2 y2 + x3 y2

PolynomialQ reports that t is a polynomial in x. 

In[3]:= PolynomialQ[t, x]

Out[3]= True

This expression, however, is not a polynomial in x. 

In[4]:= PolynomialQ[x + Sin[x], x]

Out[4]= False

Variables gives a list of the variables in the polynomial t. 

In[5]:= Variables[t]

Out[5]= 8x, y<

This gives the maximum exponent with which x appears in the polynomial t. For a polynomial in one variable, Exponent gives 
the degree of the polynomial. 

In[6]:= Exponent[t, x]

Out[6]= 5

Coefficient[poly, expr] gives the total coefficient with which expr appears in poly. In this case, the result is a sum of two 
terms. 

In[7]:= Coefficient[t, x^2]

Out[7]= −2 + 3 y2

This is equivalent to Coefficient[t, x^2]. 

In[8]:= Coefficient[t, x, 2]

Out[8]= −2 + 3 y2

This picks out the coefficient of x0  in t. 

In[9]:= Coefficient[t, x, 0]

Out[9]= 1 − 2 y + y2

CoefficientList gives a list of the coefficients of each power of x , starting with x0 . 

In[10]:= CoefficientList[1 + 3x^2 + 4x^4, x]

Out[10]= 81, 0, 3, 0, 4<
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For multivariate polynomials, CoefficientList gives an array of the coefficients for each power of each variable. 

In[11]:= CoefficientList[t, {x, y}]

Out[11]= 881, −2, 1<, 81, −4, 3<, 8−2, 0, 3<, 8−2, 4, 1<, 81, 2, 0<, 81, 0, 0<<

It is important to notice that the functions in this section will work even on polynomials that are not explicitly given in
expanded form. 

Many of the functions also work on expressions that are not strictly polynomials. 

Without giving specific integer values to a, b and c, this expression cannot strictly be considered a polynomial. 

In[12]:= x^a + x^b + y^c

Out[12]= xa + xb + yc

Exponent[expr, x] still gives the maximum exponent of x in expr, but here has to write the result in symbolic form. 

In[13]:= Exponent[%, x]

Out[13]= Max@0, a, bD

3.3.3 Structural Operations on Rational Expressions

For  ordinary  polynomials,  Factor  and  Expand  give  the  most  important  forms.  For  rational  expressions,  there  are
many different forms that can be useful. 

ExpandNumerator@ expr D expand numerators only
ExpandDenominator@ expr D expand denominators only

Expand@ expr D expand numerators, dividing the denominator into each term
ExpandAll@ expr D expand numerators and denominators completely

Different kinds of expansion for rational expressions. 

Here is a rational expression. 

In[1]:= t = (1 + x)^2 / (1 - x) + 3 x^2 / (1 + x)^2 + (2 - x)^2

Out[1]= H2 − xL2 +
3 x2

H1 + xL2 +
H1 + xL2
1 − x

ExpandNumerator writes the numerator of each term in expanded form. 

In[2]:= ExpandNumerator[t]

Out[2]= 4 − 4 x + x2 +
3 x2

H1 + xL2 +
1 + 2 x + x2

1 − x
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Expand expands the numerator of each term, and divides all the terms by the appropriate denominators. 

In[3]:= Expand[t]

Out[3]= 4 +
1

1 − x
− 4 x +

2 x
1 − x

+ x2 +
x2

1 − x
+

3 x2

H1 + xL2

ExpandDenominator expands out the denominator of each term. 

In[4]:= ExpandDenominator[t]

Out[4]= H2 − xL2 +
H1 + xL2
1 − x

+
3 x2

1 + 2 x + x2

ExpandAll does all possible expansions in the numerator and denominator of each term. 

In[5]:= ExpandAll[t]

Out[5]= 4 +
1

1 − x
− 4 x +

2 x
1 − x

+ x2 +
x2

1 − x
+

3 x2

1 + 2 x + x2

ExpandAll@ expr,  patt D , etc. avoid expanding parts which contain no terms matching  patt

Controlling expansion. 

This avoids expanding the term which does not contain z. 

In[6]:= ExpandAll[(x + 1)^2/y^2 + (z + 1)^2/z^2, z]

Out[6]= 1 +
H1 + xL2

y2
+

1
z2

+
2
z

Together@ expr D combine all terms over a common denominator
Apart@ expr D write an expression as a sum of terms with simple denominators
Cancel@ expr D cancel common factors between numerators and denominators
Factor@ expr D perform a complete factoring

Structural operations on rational expressions. 

Here is a rational expression. 

In[7]:= u = (-4x + x^2)/(-x + x^2) + (-4 + 3x + x^2)/(-1 + x^2)

Out[7]= 
−4 x + x2

−x + x2
+

−4 + 3 x + x2

−1 + x2

Together puts all terms over a common denominator. 

In[8]:= Together[u]

Out[8]= 
2 H−4 + x2L

H−1 + xL H1 + xL
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You can use Factor to factor the numerator and denominator of the resulting expression. 

In[9]:= Factor[%]

Out[9]= 
2 H−2 + xL H2 + xL
H−1 + xL H1 + xL

Apart writes the expression as a sum of terms, with each term having as simple a denominator as possible. 

In[10]:= Apart[u]

Out[10]= 2 −
3

−1 + x
+

3
1 + x

Cancel cancels any common factors between numerators and denominators. 

In[11]:= Cancel[u]

Out[11]= 
−4 + x
−1 + x

+
4 + x
1 + x

Factor first puts all terms over a common denominator, then factors the result. 

In[12]:= Factor[%]

Out[12]= 
2 H−2 + xL H2 + xL
H−1 + xL H1 + xL

In mathematical terms, Apart decomposes a rational expression into “partial  fractions”.  

In  expressions  with  several  variables,  you  can  use  Apart[expr,  var]  to  do  partial  fraction  decompositions  with
respect to different variables. 

Here is a rational expression in two variables. 

In[13]:= v = (x^2+y^2)/(x + x y)

Out[13]= 
x2 + y2

x + x y

This gives the partial fraction decomposition with respect to x. 

In[14]:= Apart[v, x]

Out[14]= 
x

1 + y
+

y2

x H1 + yL

Here is the partial fraction decomposition with respect to y. 

In[15]:= Apart[v, y]

Out[15]= −
1
x

+
y
x

+
1 + x2

x H1 + yL
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3.3.4 Algebraic Operations on Polynomials

For many kinds of practical calculations, the only operations you will need to perform on polynomials are essentially
the structural ones discussed in the preceding sections. 

If you do more advanced algebra with polynomials, however, you will have to use the algebraic operations discussed in
this section.  

You  should  realize  that  most  of  the  operations  discussed  in  this  section  work  only  on  ordinary  polynomials,  with
integer exponents and rational-number coefficients for each term.  

PolynomialQuotient@ 

poly1,  poly2,  x D 

find the result of dividing the polynomial  
poly1  in  x by  poly2  , dropping any remainder term

PolynomialRemainder@ 

poly1,  poly2,  x D 

find the remainder from dividing the polynomial  
poly1  in  x by  poly2  

PolynomialGCD@ poly1,  poly2  D find the greatest common divisor of two polynomials
PolynomialLCM@ poly1,  poly2  D find the least common multiple of two polynomials

PolynomialMod@ poly,  m D reduce the polynomial  poly modulo  m 
Resultant@ poly1,  poly2,  x D find the resultant of two polynomials

Subresultants@ poly1,  poly2,  x D find the principal subresultant coefficients of two polynomials
GroebnerBasis@ 8  poly1,

 poly2, … <,  8  x1,  x2, … <  D 

find the Gröbner basis for the polynomials  polyi  

GroebnerBasis@ 8  poly1,  poly2, … 

<,  8  x1,  x2, … <  ,  8  y1,  y2, … <  D 

find the Gröbner basis eliminating the  yi  

PolynomialReduce@ poly,  8  
poly1,  poly2, … <,  8  x1,  x2, … <  D 

find a minimal representation of  poly in terms of the  polyi  

Reduction of polynomials. 

Given two polynomials p HxL  and q HxL , one can always uniquely write p HxLÅÅÅÅÅÅÅÅÅÅÅÅq HxL = a HxL + b HxLÅÅÅÅÅÅÅÅÅÅÅq HxL , where the degree of b HxL  is
less than the degree of q HxL . PolynomialQuotient gives the quotient a HxL , and PolynomialRemainder gives
the remainder b HxL . 

This gives the remainder from dividing x2  by 1 + x . 

In[1]:= PolynomialRemainder[x^2, x+1, x]

Out[1]= 1

Here is the quotient of x2  and x + 1, with the remainder dropped. 

In[2]:= PolynomialQuotient[x^2, x+1, x]

Out[2]= −1 + x

This gives back the original expression. 

In[3]:= Simplify[ (x+1) % + %% ]

Out[3]= x2
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Here the result depends on whether the polynomials are considered to be in x or y. 

In[4]:= {PolynomialRemainder[x+y, x-y, x], PolynomialRemainder[x+y, x-y, y]}

Out[4]= 82 y, 2 x<

PolynomialGCD[poly1,  poly2]  finds  the  highest  degree  polynomial  that  divides  the  polyi  exactly.  It  gives  the
analog for polynomials of the integer function GCD.  

PolynomialGCD gives the greatest common divisor of the two polynomials. 

In[5]:= PolynomialGCD[ (1-x)^2 (1+x) (2+x), (1-x) (2+x) (3+x) ]

Out[5]= H−1 + xL H2 + xL

PolynomialMod  is essentially the analog for polynomials of the function Mod for integers. When the modulus m is
an  integer,  PolynomialMod[poly,  m]  simply  reduces  each  coefficient  in  poly  modulo  the  integer  m.  If  m  is  a
polynomial,  then  PolynomialMod[poly,  m]  effectively  tries  to  get  as  low  degree  a  polynomial  as  possible  by
subtracting  from  poly  appropriate  multiples  q  m  of  m.  The  multiplier  q  can  itself  be  a  polynomial,  but  its  degree  is
always less than the degree of poly. PolynomialMod yields a final polynomial whose degree and leading coefficient
are both as small as possible. 

This reduces x2  modulo x + 1. The result is simply the remainder from dividing the polynomials. 

In[6]:= PolynomialMod[x^2, x+1]

Out[6]= 1

In this case, PolynomialMod and PolynomialRemainder do not give the same result. 

In[7]:= {PolynomialMod[x^2, a x + 1], PolynomialRemainder[x^2, a x + 1, x]}

Out[7]= 9x2, 1
a2

=

The  main  difference  between  PolynomialMod  and  PolynomialRemainder  is  that  while  the  former  works
simply by multiplying and subtracting polynomials, the latter uses division in getting its results. In addition, Polynomi
alMod allows reduction by several moduli at the same time. A typical case is reduction modulo both a polynomial and
an integer. 

This reduces the polynomial x2 + 1 modulo both x + 1 and 2 . 

In[8]:= PolynomialMod[x^2 + 1, {x + 1, 2}]

Out[8]= 0

The function Resultant[poly1,  poly2,  x]  is  used in a number of  classical algebraic algorithms. The resultant of
two  polynomials  a  and  b ,  both  with  leading  coefficient  one,  is  given  by  the  product  of  all  the  differences  ai - b j
between the roots of the polynomials. It turns out that for any pair of polynomials, the resultant is always a polynomial
in  their  coefficients.  By  looking  at  when  the  resultant  is  zero,  one  can  tell  for  what  values  of  their  parameters  two
polynomials have a common root.  Two polynomials with leading coefficient one have k  common roots if exactly the
first k  elements in the list Subresultants[poly1, poly2, x] are zero.   
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Here is the resultant with respect to y  of two polynomials in x  and y . The original polynomials have a common root in y  only for 
values of x  at which the resultant vanishes. 

In[9]:= Resultant[(x-y)^2-2, y^2-3, y]

Out[9]= 1 − 10 x2 + x4

Gröbner  bases  appear  in  many  modern  algebraic  algorithms  and  applications.  The  function  Groebner
Basis[8 poly1, poly2, … <, 8x1, x2, … <] takes a set of polynomials, and reduces this set to a canonical form from
which many properties can conveniently be deduced. An important feature is that the set of polynomials obtained from
GroebnerBasis always has exactly the same collection of common roots as the original set.               

The Hx + yL2  is effectively redundant, and so does not appear in the Gröbner basis. 

In[10]:= GroebnerBasis[{(x+y), (x+y)^2}, {x, y}]

Out[10]= 8x + y<

The polynomial 1 has no roots, showing that the original polynomials have no common roots. 

In[11]:= GroebnerBasis[{x+y,x^2-1,y^2-2x}, {x, y}]

Out[11]= 81<

The polynomials are effectively unwound here, and can now be seen to have exactly five common roots. 

In[12]:= GroebnerBasis[{x y^2+2 x y+x^2+1, x y+y^2+1}, {x, y}]

Out[12]= 81 + y2 − y3 − y4 − y5, x + y2 + y3 + y4<

PolynomialReduce[poly,  8 p1,  p2,  … <,  8x1,  x2,  … <]  yields a list 88a1,  a2,  … <,  b<  of polynomials with
the property that b is minimal and a1  p1  + a2  p2  + …  + b is exactly poly.  

This writes x2 + y2  in terms of x - y  and y + a , leaving a remainder that depends only on a . 

In[13]:= PolynomialReduce[x^2 + y^2, {x - y, y + a}, {x, y}]

Out[13]= 88x + y, −2 a + 2 y<, 2 a2<

Factor@ poly D factor a polynomial
FactorSquareFree@ poly D write a polynomial as a product of powers of square-free factors

FactorTerms@ poly,  x D factor out terms that do not depend on  x 
FactorList@ poly D ,  
FactorSquareFreeList@ poly 
D ,  FactorTermsList@ poly D 

give results as lists of factors

Functions for factoring polynomials. 

Factor, FactorTerms and FactorSquareFree perform various degrees of factoring on polynomials. Factor
does  full  factoring  over  the  integers.  FactorTerms  extracts  the  “content”  of  the  polynomial.  FactorSquare
Free pulls out any multiple factors that appear. 
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Here is a polynomial, in expanded form. 

In[14]:= t = Expand[ 2 (1 + x)^2 (2 + x) (3 + x) ]

Out[14]= 12 + 34 x + 34 x2 + 14 x3 + 2 x4

FactorTerms pulls out only the factor of 2 that does not depend on x. 

In[15]:= FactorTerms[t, x]

Out[15]= 2 H6 + 17 x + 17 x2 + 7 x3 + x4L

FactorSquareFree factors out the 2 and the term (1 + x)^2, but leaves the rest unfactored. 

In[16]:= FactorSquareFree[t]

Out[16]= 2 H1 + xL2 H6 + 5 x + x2L

Factor does full factoring, recovering the original form. 

In[17]:= Factor[t]

Out[17]= 2 H1 + xL2 H2 + xL H3 + xL

Particularly when you write programs that work with polynomials, you will often find it convenient to pick out pieces
of polynomials in a standard form. The function FactorList  gives a list of all the factors of a polynomial, together
with their exponents. The first element of the list is always the overall numerical factor for the polynomial.  

The  form  that  FactorList  returns  is  the  analog  for  polynomials  of  the  form produced  by  FactorInteger  for
integers. 

Here is a list of the factors of the polynomial in the previous set of examples. Each element of the list gives the factor, together 
with its exponent. 

In[18]:= FactorList[t]

Out[18]= 882, 1<, 81 + x, 2<, 82 + x, 1<, 83 + x, 1<<

Factor@ poly,  
GaussianIntegers  −>  TrueD 

factor a polynomial, allowing
coefficients that are Gaussian integers

Factoring polynomials with complex coefficients. 

Factor  and related functions usually handle only polynomials with ordinary integer or rational-number coefficients.
If  you  set  the  option  GaussianIntegers  ->  True,  however,  then  Factor  will  allow polynomials  with  coeffi-
cients that are complex numbers with rational real and imaginary parts. This often allows more extensive factorization
to be performed. 

This polynomial is irreducible when only ordinary integers are allowed. 

In[19]:= Factor[1 + x^2]

Out[19]= 1 + x2
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When Gaussian integer coefficients are allowed, the polynomial factors. 

In[20]:= Factor[1 + x^2, GaussianIntegers -> True]

Out[20]= H− + xL H + xL

Cyclotomic@ n,  x D give the cyclotomic polynomial of order  n in  x 

Cyclotomic polynomials. 

Cyclotomic polynomials arise as “elementary  polynomials”  in various algebraic algorithms. The cyclotomic polynomi-
als are defined by Cn HxL = ¤k Hx - e2 p i kênL , where k  runs over all positive integers less than n  that are relatively prime
to n .  

This is the cyclotomic polynomial C6 HxL . 

In[21]:= Cyclotomic[6, x]

Out[21]= 1 − x + x2

C6 HxL  appears in the factors of x6 - 1. 

In[22]:= Factor[x^6 - 1]

Out[22]= H−1 + xL H1 + xL H1 − x + x2L H1 + x + x2L

Decompose@ poly,  x D decompose  poly , if possible,
into a composition of a list of simpler polynomials

Decomposing polynomials. 

Factorization is  one important way of  breaking down polynomials into simpler parts.  Another,  quite different,  way is
decomposition.  When one factors a polynomial P HxL ,  one writes it as a product  p1 HxL p2 HxL ...  of polynomials pi HxL .
Decomposing a polynomial Q HxL  consists of writing it as a composition of polynomials of the form q1 Hq2 H ... HxL ...LL .   

Here is a simple example of Decompose. The original polynomial x4 + x2 + 1 can be written as the polynomial xêê2 + xêê + 1, 
where xêê  is the polynomial x2 . 

In[23]:= Decompose[x^4 + x^2 + 1, x]

Out[23]= 81 + x + x2, x2<

Here are two polynomial functions. 

In[24]:= ( q1[x_] = 1 - 2x + x^4 ; q2[x_] = 5x + x^3 ; )

This gives the composition of the two functions. 

In[25]:= Expand[ q1[ q2[ x ] ] ]

Out[25]= 1 − 10 x − 2 x3 + 625 x4 + 500 x6 + 150 x8 + 20 x10 + x12
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Decompose recovers the original functions. 

In[26]:= Decompose[%, x]

Out[26]= 81 − 2 x + x4, 5 x + x3<

Decompose[poly, x] is set up to give a list of polynomials in x, which, if composed, reproduce the original polyno-
mial.  The  original  polynomial can contain  variables  other  than x,  but  the  sequence  of  polynomials that  Decompose
produces are all intended to be considered as functions of x. 

Unlike factoring, the decomposition of polynomials is not completely unique. For example, the two sets of polynomials
pi  and  qi ,  related  by  q1 HxL = p1 Hx - aL  and  q2 HxL = p2 HxL + a  give  the  same  result  on  composition,  so  that
p1 Hp2 HxLL = q1 Hq2 HxLL . Mathematica  follows the convention of absorbing any constant terms into the first polynomial
in the list produced by Decompose. 

InterpolatingPolynomial@ 

8  f 1,  f 2, … <,  x D 

give a polynomial in  x 
which is equal to  f i  when  x is the integer  i 

InterpolatingPolynomial@ 8  
8  x1,  f 1  <,  8  x2,  f 2  <, … <,  x D 

give a polynomial in  x which is equal to  f i  when  x is  xi  

Generating interpolating polynomials. 

This yields a quadratic polynomial which goes through the specified three points. 

In[27]:= InterpolatingPolynomial[{{-1, 4}, {0, 2}, {1, 6}}, x]

Out[27]= 4 + H1 + xL H−2 + 3 xL

When x is 0, the polynomial has value 2. 

In[28]:= % /. x -> 0

Out[28]= 2

3.3.5 Polynomials Modulo Primes

Mathematica can work with polynomials whose coefficients are in the finite field Zp  of integers modulo a prime p .     

PolynomialMod@ poly,  p D reduce the coefficients in a polynomial modulo  p 
Expand@ poly,  Modulus  −>  p D expand  poly modulo  p 
Factor@ poly,  Modulus  −>  p D factor  poly modulo  p 

PolynomialGCD@ poly1,

 poly2,  Modulus  −>  p D 

find the GCD of the  polyi  modulo  p 

GroebnerBasis@ polys,
 vars,  Modulus  −>  p D 

find the Gröbner basis modulo  p 

Functions for manipulating polynomials over finite fields. 
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Here is an ordinary polynomial. 

In[1]:= Expand[ (1 + x)^6 ]

Out[1]= 1 + 6 x + 15 x2 + 20 x3 + 15 x4 + 6 x5 + x6

This reduces the coefficients modulo 2. 

In[2]:= PolynomialMod[%, 2]

Out[2]= 1 + x2 + x4 + x6

Here are the factors of the resulting polynomial over the integers. 

In[3]:= Factor[%]

Out[3]= H1 + x2L H1 + x4L

If you work modulo 2, further factoring becomes possible. 

In[4]:= Factor[%, Modulus->2]

Out[4]= H1 + xL6

3.3.6 Advanced Topic: Polynomials over Algebraic Number Fields

Functions like Factor usually assume that all coefficients in the polynomials they produce must involve only rational
numbers. But by setting the option Extension you can extend the domain of coefficients that will be allowed. 

Factor@ poly,  
Extension−> 8  a1 ,  a2, … <  D 

factor  poly 
allowing coefficients that are rational combinations of the  ai  

Factoring polynomials over algebraic number fields. 

Allowing only rational number coefficients, this polynomial cannot be factored. 

In[1]:= Factor[1 + x^4]

Out[1]= 1 + x4

With coefficients that can involve è!!!2 , the polynomial can now be factored. 

In[2]:= Factor[1 + x^4, Extension -> {Sqrt[2]}]

Out[2]= −I−1 + è!!!2 x − x2M I1 + è!!!2 x + x2M

The polynomial can also be factored if one allows coefficients involving è!!!!!!!
-1 . 

In[3]:= Factor[1 + x^4, Extension -> {Sqrt[-1]}]

Out[3]= H− + x2L H + x2L
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GaussianIntegers->True is equivalent to Extension->Sqrt[-1]. 

In[4]:= Factor[1 + x^4, GaussianIntegers -> True]

Out[4]= H− + x2L H + x2L

If one allows coefficients that involve both è!!!2  and è!!!!!!!
-1  the polynomial can be factored completely. 

In[5]:= Factor[1 + x^4, Extension -> {Sqrt[2], Sqrt[-1]}]

Out[5]= 
1
4
Iè!!!2 − H1 + L xM Iè!!!2 − H1 − L xM Iè!!!2 + H1 − L xM Iè!!!2 + H1 + L xM

Expand gives the original polynomial back again. 

In[6]:= Expand[%]

Out[6]= 1 + x4

Factor@ poly,  
Extension−>AutomaticD 

factor  poly allowing algebraic numbers in  
poly to appear in coefficients

Factoring polynomials with algebraic number coefficients. 

Here is a polynomial with a coefficient involving è!!!2 . 

In[7]:= t = Expand[(Sqrt[2] + x)^2]

Out[7]= 2 + 2 è!!!2 x + x2

By default, Factor will not factor this polynomial. 

In[8]:= Factor[t]

Out[8]= 2 + 2 è!!!2 x + x2

But now the field of coefficients is extended by including è!!!2 , and the polynomial is factored. 

In[9]:= Factor[t, Extension -> Automatic]

Out[9]= Iè!!!2 + xM2

Other  polynomial  functions  work  much  like  Factor.  By  default,  they  treat  algebraic  number  coefficients  just  like
independent  symbolic  variables.  But  with  the  option  Extension->Automatic  they  perform  operations  on  these
coefficients. 

By default, Cancel does not reduce these polynomials.   

In[10]:= Cancel[t / (x^2 - 2)]

Out[10]= 
2 + 2 è!!!2 x + x2

−2 + x2
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But now it does. 

In[11]:= Cancel[t / (x^2 - 2), Extension->Automatic]

Out[11]= 
−è!!!2 − x
è!!!2 − x

By default, PolynomialLCM pulls out no common factors.  

In[12]:= PolynomialLCM[t, x^2 - 2]

Out[12]= H−2 + x2L I2 + 2 è!!!2 x + x2M

But now it does. 

In[13]:= PolynomialLCM[t, x^2 - 2, Extension->Automatic]

Out[13]= −2 è!!!2 − 2 x + è!!!2 x2 + x3

3.3.7 Trigonometric Expressions

TrigExpand@ expr D expand trigonometric expressions out into a sum of terms
TrigFactor@ expr D factor trigonometric expressions into products of terms

TrigFactorList@ expr D give terms and their exponents in a list
TrigReduce@ expr D reduce trigonometric expressions using multiple angles

Functions for manipulating trigonometric expressions. 

This expands out a trigonometric expression. 

In[1]:= TrigExpand[Sin[2 x] Cos[2 y]]

Out[1]= 2 Cos@xD Cos@yD2 Sin@xD − 2 Cos@xD Sin@xD Sin@yD2

This factors the expression. 

In[2]:= TrigFactor[%]

Out[2]= 2 Cos@xD Sin@xD HCos@yD − Sin@yDL HCos@yD + Sin@yDL

And this reduces the expression to a form linear in the trigonometric functions. 

In[3]:= TrigReduce[%]

Out[3]= 
1
2
HSin@2 x − 2 yD + Sin@2 x + 2 yDL

TrigExpand works on hyperbolic as well as circular functions. 

In[4]:= TrigExpand[Tanh[x + y]]

Out[4]= 
Cosh@yD Sinh@xD

Cosh@xD Cosh@yD + Sinh@xD Sinh@yD +
Cosh@xD Sinh@yD

Cosh@xD Cosh@yD + Sinh@xD Sinh@yD
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TrigReduce reproduces the original form again. 

In[5]:= TrigReduce[%]

Out[5]= Tanh@x + yD

Mathematica automatically uses functions like Tan whenever it can. 

In[6]:= Sin[x]^2/Cos[x]

Out[6]= Sin@xD Tan@xD

With TrigFactorList, however, you can see the parts of functions like Tan. 

In[7]:= TrigFactorList[%]

Out[7]= 881, 1<, 8Sin@xD, 2<, 8Cos@xD, −1<<

TrigToExp@ expr D write trigonometric functions in terms of exponentials
ExpToTrig@ expr D write exponentials in terms of trigonometric functions

Converting to and from exponentials. 

TrigToExp writes trigonometric functions in terms of exponentials. 

In[8]:= TrigToExp[Tan[x]]

Out[8]= 
H − x − xL

− x + x

ExpToTrig does the reverse, getting rid of explicit complex numbers whenever possible. 

In[9]:= ExpToTrig[%]

Out[9]= Tan@xD

ExpToTrig deals with hyperbolic as well as circular functions. 

In[10]:= ExpToTrig[Exp[x] - Exp[-x]]

Out[10]= 2 Sinh@xD

You can also use ExpToTrig on purely numerical expressions. 

In[11]:= ExpToTrig[(-1)^(1/17)]

Out[11]= CosA π
17

E + SinA π
17

E

3.3.8 Expressions Involving Complex Variables

Mathematica  usually  pays  no  attention  to  whether  variables  like  x  stand  for  real  or  complex  numbers.  Sometimes,
however,  you may want to make transformations which are appropriate only if particular variables are assumed to be
either real or complex. 
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The  function  ComplexExpand  expands  out  algebraic  and  trigonometric  expressions,  making  definite  assumptions
about the variables that appear. 

ComplexExpand@ expr D expand  expr assuming that all variables are real
ComplexExpand@ 

expr,  8  x1,  x2, … <  D 

expand  expr assuming that the  xi  are complex

Expanding complex expressions. 

This expands the expression, assuming that x and y are both real. 

In[1]:= ComplexExpand[Tan[x + I y]]

Out[1]= 
Sin@2 xD

Cos@2 xD + Cosh@2 yD +
Sinh@2 yD

Cos@2 xD + Cosh@2 yD

In this case, a is assumed to be real, but x is assumed to be complex, and is broken into explicit real and imaginary parts. 

In[2]:= ComplexExpand[a + x^2, {x}]

Out[2]= a − Im@xD2 + 2 Im@xD Re@xD + Re@xD2

With several complex variables, you quickly get quite complicated results. 

In[3]:= ComplexExpand[Sin[x] Exp[y], {x, y}]

Out[3]= Re@yD Cos@Im@yDD Cosh@Im@xDD Sin@Re@xDD − Re@yD Cos@Re@xDD Sin@Im@yDD Sinh@Im@xDD +

H Re@yD Cosh@Im@xDD Sin@Im@yDD Sin@Re@xDD + Re@yD Cos@Im@yDD Cos@Re@xDD Sinh@Im@xDDL

There  are  several  ways  to  write  a  complex  variable  z  in  terms  of  real  parameters.  As  above,  for  example,  z  can  be
written in the “Cartesian  form”  Re[z] + I Im[z]. But it can equally well be written in the “polar  form”  Abs[z]
Exp[I Arg[z]]. 

The  option  TargetFunctions  in  ComplexExpand  allows  you  to  specify  how  complex  variables  should  be
written. TargetFunctions  can be set to a list of functions from the set 8Re, Im, Abs, Arg, Conjugate,
Sign< . ComplexExpand will try to give results in terms of whichever of these functions you request. The default is
typically to give results in terms of Re and Im. 

This gives an expansion in Cartesian form. 

In[4]:= ComplexExpand[Re[z^2], {z}]

Out[4]= −Im@zD2 + Re@zD2

Here is an expansion in polar form. 

In[5]:= ComplexExpand[Re[z^2], {z}, TargetFunctions -> {Abs, Arg}]

Out[5]= Abs@zD2 Cos@Arg@zDD2 − Abs@zD2 Sin@Arg@zDD2

Here is another form of expansion. 

In[6]:= ComplexExpand[Re[z^2], {z}, TargetFunctions -> Conjugate]

Out[6]= 
z2

2
+
Conjugate@zD2

2
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3.3.9 Simplification

Simplify@ expr D try various algebraic and trigonometric
transformations to simplify an expression

FullSimplify@ expr D try a much wider range of transformations

Simplifying expressions. 

Mathematica does not automatically simplify an algebraic expression like this. 

In[1]:= (1 - x)/(1 - x^2)

Out[1]= 
1 − x
1 − x2

Simplify performs the simplification. 

In[2]:= Simplify[%]

Out[2]= 
1

1 + x

Simplify performs standard algebraic and trigonometric simplifications. 

In[3]:= Simplify[Sin[x]^2 + Cos[x]^2]

Out[3]= 1

It does not, however, do more sophisticated transformations that involve, for example, special functions. 

In[4]:= Simplify[Gamma[1+n]/n]

Out[4]= 
Gamma@1 + nD

n

FullSimplify does perform such transformations. 

In[5]:= FullSimplify[%]

Out[5]= Gamma@nD

FullSimplify@ expr,  
ExcludedForms  −>  pattern D 

try to simplify  expr ,
without touching subexpressions that match  pattern 

Controlling simplification. 

Here is an expression involving trigonometric functions and square roots. 

In[6]:= t = (1 - Sin[x]^2) Sqrt[Expand[(1 + Sqrt[2])^20]]

Out[6]= 
"########################################################22619537 + 15994428è!!!2 H1 − Sin@xD2L

Printed from the Mathematica Help Browser 19

©1988-2003 Wolfram Research, Inc. All rights reserved.



By default, FullSimplify will try to simplify everything. 

In[7]:= FullSimplify[t]

Out[7]= I3363 + 2378è!!!2 M Cos@xD2

This makes FullSimplify avoid simplifying the square roots. 

In[8]:= FullSimplify[t, ExcludedForms->Sqrt[_]]

Out[8]= 
"########################################################22619537 + 15994428è!!!2 Cos@xD2

FullSimplify@ expr,
 TimeConstraint−> t D 

try to simplify  expr , working for at most  
t seconds on each transformation

FullSimplify@ expr,  
TransformationFunctions 

 −>  8  f 1,  f 2, … <  D 

use only the functions  f i  in trying to transform parts of  expr 

FullSimplify@ expr,  
TransformationFunctions  −> 

 8  Automatic,  f 1,  f 2, … <  D 

use built-in transformations as well as the  f i  

Simplify@ expr,  
ComplexityFunction−> c D 

and  FullSimplify@ expr,  
ComplexityFunction−> c D 

simplify using  c to determine what form is considered simplest

Further control of simplification. 

In  both  Simplify  and  FullSimplify  there  is  always  an  issue  of  what  counts  as  the  “simplest”  form  of  an
expression.  You  can  use  the  option  ComplexityFunction  ->  c  to  provide  a  function  to  determine  this.  The
function will be applied to each candidate form of the expression, and the one that gives the smallest numerical value
will be considered simplest.      

With its default definition of simplicity, Simplify leaves this unchanged. 

In[9]:= Simplify[4 Log[10]]

Out[9]= 4 Log@10D

This now tries to minimize the number of elements in the expression. 

In[10]:= Simplify[4 Log[10], ComplexityFunction -> LeafCount]

Out[10]= Log@10000D

3.3.10 Using Assumptions

Mathematica  normally makes as  few assumptions as  possible  about  the objects  you ask  it  to  manipulate.  This  means
that the results it gives are as general as possible. But sometimes these results are considerably more complicated than
they would be if more assumptions were made. 
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Refine@ expr,  assum D refine  expr using assumptions
Simplify@ expr,  assum D simplify with assumptions

FullSimplify@ expr,  assum D full simplify with assumptions
FunctionExpand@ expr,  assum D function expand with assumptions

Doing operations with assumptions. 

Simplify by default does essentially nothing with this expression. 

In[1]:= Simplify[1/Sqrt[x] - Sqrt[1/x]]

Out[1]= −$%%%%%%1
x

+
1
è!!!x

The reason is that its value is quite different for different choices of x . 

In[2]:= % /. x -> {-3, -2, -1, 1, 2, 3}

Out[2]= 9−
2
è!!!3

, − è!!!2 , −2 , 0, 0, 0=

With the assumption x > 0, Simplify can immediately reduce the expression to 0. 

In[3]:= Simplify[1/Sqrt[x] - Sqrt[1/x], x > 0]

Out[3]= 0

Without making assumptions about x  and y , nothing can be done. 

In[4]:= FunctionExpand[Log[x y]]

Out[4]= Log@x yD

If x  and y  are both assumed positive, the log can be expanded. 

In[5]:= FunctionExpand[Log[x y], x > 0 && y > 0]

Out[5]= Log@xD + Log@yD

By applying Simplify  and FullSimplify  with appropriate assumptions to equations and inequalities you can in
effect establish a vast range of theorems.  

Without making assumptions about x  the truth or falsity of this equation cannot be determined. 

In[6]:= Simplify[Abs[x] == x]

Out[6]= x Abs@xD

Now Simplify can prove that the equation is true. 

In[7]:= Simplify[Abs[x] == x, x > 0]

Out[7]= True
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This establishes the standard result that the arithmetic mean is larger than the geometric one. 

In[8]:= Simplify[(x + y)/2 >= Sqrt[x y], x >= 0 && y >= 0]

Out[8]= True

This proves that erf  HxL  lies in the range H0, 1L  for all positive arguments. 

In[9]:= FullSimplify[0 < Erf[x] < 1, x > 0]

Out[9]= True

Simplify and FullSimplify always try to find the simplest forms of expressions. Sometimes, however, you may
just want Mathematica  to follow its ordinary evaluation process,  but  with certain assumptions made. You can do this
using Refine.  The way it works is that Refine[expr, assum]  performs the same transformations as Mathematica
would perform automatically if the variables in expr were replaced by numerical expressions satisfying the assumptions
assum.  

There is no simpler form that Simplify can find. 

In[10]:= Simplify[Log[x], x < 0]

Out[10]= Log@xD

Refine just evaluates Log[x] as it would for any explicit negative number x. 

In[11]:= Refine[Log[x], x < 0]

Out[11]= π + Log@−xD

An important class of assumptions are those which assert that some object  is an element of a particular domain. You
can set up such assumptions using x œ  dom, where the œ  character can be entered as Çel  or î[Element]. 

x  œ   dom or  Element@ x,  dom D assert that  x is an element of the domain  dom 
8  x1,  x2, … <   œ   dom assert that all the  xi  are elements of the domain  dom 

patt  œ   dom assert that any expression which matches  
patt is an element of the domain  dom 

Asserting that objects are elements of domains. 

This confirms that p  is an element of the domain of real numbers. 

In[12]:= Pi ∈ Reals

Out[12]= True

These numbers are all elements of the domain of algebraic numbers. 

In[13]:= {1, Sqrt[2], 3 + Sqrt[5]} ∈ Algebraics

Out[13]= True
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Mathematica knows that p  is not an algebraic number. 

In[14]:= Pi ∈ Algebraics

Out[14]= False

Current mathematics has not established whether e + p  is an algebraic number or not. 

In[15]:= E + Pi ∈ Algebraics

Out[15]= + π ∈ Algebraics

This represents the assertion that the symbol x is an element of the domain of real numbers. 

In[16]:= x ∈ Reals

Out[16]= x ∈ Reals

Complexes the domain of complex numbers    
Reals the domain of real numbers    

Algebraics the domain of algebraic numbers    
Rationals the domain of rational numbers    
Integers the domain of integers    
Primes the domain of primes    

Booleans the domain of booleans H True and  False L    

Domains supported by Mathematica. 

If n  is assumed to be an integer, sin Hn pL  is zero. 

In[17]:= Simplify[Sin[n Pi], n ∈ Integers]

Out[17]= 0

This establishes the theorem cosh HxL ¥ 1 if x  is assumed to be a real number. 

In[18]:= Simplify[Cosh[x] >= 1, x ∈ Reals]

Out[18]= True

If you say that a variable satisfies an inequality, Mathematica will automatically assume that it is real. 

In[19]:= Simplify[x ∈ Reals, x > 0]

Out[19]= True

By using Simplify, FullSimplify and FunctionExpand with assumptions you can access many of Mathemati-
ca's vast collection of mathematical facts. 

This uses the periodicity of the tangent function. 

In[20]:= Simplify[Tan[x + Pi k], k ∈ Integers]

Out[20]= Tan@xD
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The assumption k/2 œ  Integers implies that k must be even. 

In[21]:= Simplify[Tan[x + Pi k/2], k/2 ∈ Integers]

Out[21]= Tan@xD

Mathematica knows that log HxL < exp HxL  for positive x . 

In[22]:= Simplify[Log[x] < Exp[x], x > 0]

Out[22]= True

FullSimplify accesses knowledge about special functions. 

In[23]:= FullSimplify[Im[BesselJ[0, x]], x ∈ Reals]

Out[23]= 0

Mathematica knows about discrete mathematics and number theory as well as continuous mathematics. 

This uses Wilson's Theorem to simplify the result. 

In[24]:= FunctionExpand[Mod[(p - 1)!, p], p ∈ Primes]

Out[24]= −1 + p

This uses the multiplicative property of the Euler phi function. 

In[25]:= FunctionExpand[EulerPhi[m n], {m, n} ∈ Integers && GCD[m, n] == 1]

Out[25]= EulerPhi@mD EulerPhi@nD

In something like Simplify[expr, assum] or Refine[expr, assum] you explicitly give the assumptions you want
to use. But sometimes you may want to specify one set of assumptions to use in a whole collection of operations. You
can do this by using Assuming. 

Assuming@ assum,  expr D use assumptions  assum in the evaluation of  expr 
$Assumptions the default assumptions to use

Specifying assumptions with larger scopes. 

This tells Simplify to use the default assumption x > 0. 

In[26]:= Assuming[x > 0, Simplify[Sqrt[x^2]]]

Out[26]= x

This combines the two assumptions given. 

In[27]:= Assuming[x > 0, Assuming[x ∈ Integers, Refine[Floor[Sqrt[x^2]]]]]

Out[27]= x
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Functions  like  Simplify  and  Refine  take  the  option  Assumptions,  which  specifies  what  default  assumptions
they should use. By default, the setting for this option is Assumptions  :> $Assumptions. The way Assuming
then works is to assign a local value to $Assumptions, much as in Block.  

In addition to Simplify and Refine, a number of other functions take Assumptions  options, and thus can have
assumptions specified for them by Assuming. Examples are FunctionExpand, Integrate, Limit, Laplace
Transform. 

The assumption is automatically used in Integrate. 

In[28]:= Assuming[n > 0, 1 + Integrate[x^n, {x, 0, 1}]^2]

Out[28]= 1 +
1

H1 + nL2
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3.4 Manipulating Equations and Inequalities

3.4.1 The Representation of Equations and Solutions

Mathematica  treats  equations  as  logical  statements.  If  you  type  in  an  equation  like  x^2  +  3x  ==  2,  Mathematica
interprets this as a logical statement which asserts that x^2 + 3x is equal to 2. If you have assigned an explicit value to
x, say x = 4, then Mathematica can explicitly determine that the logical statement x^2 + 3x == 2 is False. 

If you have not assigned any explicit value to x,  however,  Mathematica  cannot work out whether x^2 +  3x ==  2 is
True or False. As a result, it leaves the equation in the symbolic form x^2 + 3x == 2. 

You can manipulate symbolic equations in Mathematica in many ways. One common goal is to rearrange the equations
so as to “solve”  for a particular set of variables. 

Here is a symbolic equation. 

In[1]:= x^2 + 3x == 2

Out[1]= 3 x + x2 2

You can use the function Reduce to reduce the equation so as to give “solutions”  for x. The result, like the original equation, 
can be viewed as a logical statement. 

In[2]:= Reduce[%, x]

Out[2]= x 1
2
I−3 − è!!!!!!17 M »» x 1

2
I−3 + è!!!!!!17 M

The quadratic equation x^2 + 3x == 2  can be thought of as an implicit statement about the value of x. As shown in
the  example  above,  you  can  use  the  function  Reduce  to  get  a  more  explicit  statement  about  the  value  of  x.  The
expression produced by Reduce has the form x == r1  || x == r2 . This expression is again a logical statement, which
asserts that either x is equal to r1 , or x is equal to r2 . The values of x that are consistent with this statement are exactly
the same as the ones that are consistent with the original quadratic equation. For many purposes, however, the form that
Reduce gives is much more useful than the original equation. 

You can combine and manipulate equations just like other logical statements. You can use logical connectives such as
|| and && to specify alternative or simultaneous conditions. You can use functions like LogicalExpand, as well as
FullSimplify, to simplify collections of equations. 

For  many  purposes,  you  will  find  it  convenient  to  manipulate  equations  simply  as  logical  statements.  Sometimes,
however, you will actually want to use explicit solutions to equations in other calculations. In such cases, it is conve-
nient to convert equations that are stated in the form lhs == rhs into transformation rules of the form lhs -> rhs. Once
you have the solutions to an equation in the form of explicit transformation rules, you can substitute the solutions into
expressions by using the /. operator.  

Reduce produces a logical statement about the values of x corresponding to the roots of the quadratic equation. 

In[3]:= Reduce[ x^2 + 3x == 2, x ]

Out[3]= x 1
2
I−3 − è!!!!!!17 M »» x 1

2
I−3 + è!!!!!!17 M
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ToRules converts the logical statement into an explicit list of transformation rules. 

In[4]:= {ToRules[ % ]}

Out[4]= 99x →
1
2
I−3 − è!!!!!!17 M=, 9x →

1
2
I−3 + è!!!!!!17 M==

You can now use the transformation rules to substitute the solutions for x into expressions involving x. 

In[5]:= x^2 + a x /. %

Out[5]= 9 1
4
I−3 − è!!!!!!17 M2 +

1
2
I−3 − è!!!!!!17 M a, 1

4
I−3 + è!!!!!!17 M2 +

1
2
I−3 + è!!!!!!17 M a=

The function Solve produces transformation rules for solutions directly. 

In[6]:= Solve[ x^2 + 3x == 2, x ]

Out[6]= 99x →
1
2
I−3 − è!!!!!!17 M=, 9x →

1
2
I−3 + è!!!!!!17 M==

3.4.2 Equations in One Variable

The main equations that Solve and related Mathematica functions deal with are polynomial equations. 

It is easy to solve a linear equation in x. 

In[1]:= Solve[ a x + b == c , x ]

Out[1]= 99x →
−b + c
a

==

One can also solve quadratic equations just by applying a simple formula. 

In[2]:= Solve[ x^2 + a x + 2 == 0 , x ]

Out[2]= 99x →
1
2
I−a −

è!!!!!!!!!!!!!!!!
−8 + a2 M=, 9x →

1
2
I−a +

è!!!!!!!!!!!!!!!!
−8 + a2 M==

Mathematica can also find exact solutions to cubic equations. Here is the first solution to a comparatively simple cubic equation. 

In[3]:= Solve[ x^3 + 34 x + 1 == 0 , x ] [[1]]

Out[3]= 9x → −34
i
k
jjjjj

2
3 I−9 + è!!!!!!!!!!!!!!!!!471729 M

y
{
zzzzz
1ê3

+
I 1

2 I−9 + è!!!!!!!!!!!!!!!!!471729 MM1ê3
32ê3

=

For cubic and quartic equations the results are often complicated, but for all equations with degrees up to four Mathe-
matica is always able to give explicit formulas for the solutions. 

An important feature of these formulas is that they involve only radicals: arithmetic combinations of square roots, cube
roots and higher roots. 

It is a fundamental mathematical fact, however,  that for equations of degree five or higher,  it is no longer possible in
general to give explicit formulas for solutions in terms of radicals.   

There are some specific equations for which this is still possible, but in the vast majority of cases it is not. 
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This constructs a degree six polynomial. 

In[4]:= Expand[ Product[x^2 - 2 i, {i, 3}] ]

Out[4]= −48 + 44 x2 − 12 x4 + x6

For a polynomial that factors in the way this one does, it is straightforward for Solve to find the roots. 

In[5]:= Solve[% == 0, x]

Out[5]= 98x → −2<, 8x → 2<, 9x → −è!!!2 =, 9x → è!!!2 =, 9x → −è!!!6 =, 9x → è!!!6 ==

This constructs a polynomial of degree eight. 

In[6]:= Expand[x^2 - 2 /. x -> x^2 - 3 /. x -> x^2 - 5]

Out[6]= 482 − 440 x2 + 144 x4 − 20 x6 + x8

The polynomial does not factor, but it can be decomposed into nested polynomials, so Solve can again find explicit formulas for 
the roots. 

In[7]:= Solve[% == 0, x]

Out[7]= 99x → −$%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 −
"###############3 − è!!!2 =, 9x → $%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 −

"###############3 − è!!!2 =, 9x → −$%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 +
"###############3 − è!!!2 =, 9x → $%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 +

"###############3 − è!!!2 =,

9x → −$%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 −
"###############3 + è!!!2 =, 9x → $%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 −

"###############3 + è!!!2 =, 9x → −$%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 +
"###############3 + è!!!2 =, 9x → $%%%%%%%%%%%%%%%%%%%%%%%%%%%%5 +

"###############3 + è!!!2 ==

Root@ f ,  k D the  k th  root of the equation  f  @ x D  ==  0 

Implicit representation for roots. 

No explicit formulas for the solution to this equation can be given in terms of radicals, so Mathematica uses an implicit symbolic 
representation.  

In[8]:= Solve[x^5 - x + 11 == 0, x]

Out[8]= 88x → Root@11 − #1 + #15 &, 1D<, 8x → Root@11 − #1 + #15 &, 2D<,
8x → Root@11 − #1 + #15 &, 3D<, 8x → Root@11 − #1 + #15 &, 4D<, 8x → Root@11 − #1 + #15 &, 5D<<

This finds a numerical approximation to each root. 

In[9]:= N[%]

Out[9]= 88x → −1.66149<, 8x → −0.46194 − 1.565 <, 8x → −0.46194 + 1.565 <,
8x → 1.29268 − 0.903032 <, 8x → 1.29268 + 0.903032 <<

If what you want in the end is a numerical solution, it is usually much faster to use NSolve from the outset. 

In[10]:= NSolve[x^5 - x + 11 == 0, x]

Out[10]= 88x → −1.66149<, 8x → −0.46194 − 1.565 <, 8x → −0.46194 + 1.565 <,
8x → 1.29268 − 0.903032 <, 8x → 1.29268 + 0.903032 <<
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Root objects provide an exact, though implicit, representation for the roots of a polynomial. You can work with them
much as you would work with Sqrt[2] or any other expression that represents an exact numerical quantity. 

Here is the Root object representing the first root of the polynomial discussed above. 

In[11]:= r = Root[#^5 - # + 11 &, 1]

Out[11]= Root@11 − #1 + #15 &, 1D

This is a numerical approximation to its value. 

In[12]:= N[r]

Out[12]= −1.66149

Round does an exact computation to find the closest integer to the root. 

In[13]:= Round[r]

Out[13]= −2

If you substitute the root into the original polynomial, and then simplify the result, you get zero. 

In[14]:= FullSimplify[ x^5 - x + 11 /. x -> r ]

Out[14]= 0

This finds the product of all the roots of the original polynomial. 

In[15]:= FullSimplify[ Product[Root[11 - # + #^5 &, k], {k, 5}] ]

Out[15]= −11

The complex conjugate of the third root is the second root. 

In[16]:= Conjugate[ Root[11 - # + #^5 &, 3] ]

Out[16]= Root@11 − #1 + #15 &, 2D

If the only symbolic parameter that exists in an equation is the variable that you are solving for, then all the solutions to
the equation  will  just  be  numbers.  But  if  there  are  other  symbolic parameters in  the equation,  then the solutions  will
typically be functions of these parameters.   

The solution to this equation can again be represented by Root objects, but now each Root object involves the parameter a. 

In[17]:= Solve[x^5 + x + a == 0, x]

Out[17]= 88x → Root@a + #1 + #15 &, 1D<, 8x → Root@a + #1 + #15 &, 2D<,
8x → Root@a + #1 + #15 &, 3D<, 8x → Root@a + #1 + #15 &, 4D<, 8x → Root@a + #1 + #15 &, 5D<<
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When a is replaced with 1, the Root objects can be simplified, and some are given as explicit radicals. 

In[18]:= Simplify[ % /. a -> 1 ]

Out[18]= 98x → Root@1 − #12 + #13 &, 1D<, 9x → −
1
2

I− + è!!!3 M=, 9x →
1
2

I + è!!!3 M=,
8x → Root@1 − #12 + #13 &, 2D<, 8x → Root@1 − #12 + #13 &, 3D<=

This shows the behavior of the first root as a function of a. 

In[19]:= Plot[Root[#^5 + # + a &, 1], {a, -2, 2}]

-2 -1 1 2

-1

-0.5

0.5

1

Out[19]=  Graphics 

This finds the derivative of the first root with respect to a. 

In[20]:= D[Root[#^5 + # + a &, 1], a]

Out[20]= −
1

1 + 5 Root@a + #1 + #15 &, 1D4

If you give Solve any n th -degree polynomial equation, then it will always return exactly n  solutions, although some
of  these  may be  represented  by  Root  objects.  If  there  are  degenerate  solutions,  then  the  number  of  times  that  each
particular solution appears will be equal to its multiplicity.   

Solve gives two identical solutions to this equation. 

In[21]:= Solve[(x - 1)^2 == 0, x]

Out[21]= 88x → 1<, 8x → 1<<

Here are the first four solutions to a tenth degree equation. The solutions come in pairs. 

In[22]:= Take[Solve[(x^5 - x + 11)^2 == 0, x], 4]

Out[22]= 88x → Root@11 − #1 + #15 &, 1D<, 8x → Root@11 − #1 + #15 &, 1D<,
8x → Root@11 − #1 + #15 &, 2D<, 8x → Root@11 − #1 + #15 &, 2D<<

Mathematica also knows how to solve equations which are not explicitly in the form of polynomials. 
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Here is an equation involving square roots. 

In[23]:= Solve[ Sqrt[x] + Sqrt[1 + x] == a, x]

Out[23]= 99x →
1 − 2 a2 + a4

4 a2
==

And here is one involving logarithms. 

In[24]:= Solve[ Log[x] + Log[1 - x] == a, x ]

Out[24]= 99x →
1
2
I1 − è!!!!!!!!!!!!!!!!!1 − 4 a M=, 9x →

1
2
I1 + è!!!!!!!!!!!!!!!!!1 − 4 a M==

So long as it can reduce an equation to some kind of polynomial form, Mathematica will always be able to represent its
solution  in  terms  of  Root  objects.  However,  with  more  general  equations,  involving  say  transcendental  functions,
there is no systematic way to use Root objects, or even necessarily to find numerical approximations.  

Here is a simple transcendental equation for x. 

In[25]:= Solve[ArcSin[x] == a, x]

Out[25]= 88x → Sin@aD<<

There is no solution to this equation in terms of standard functions. 

In[26]:= Solve[Cos[x] == x, x]

Solve::tdep :  The equations appear to involve the
variables to be solved for in an essentially non−algebraic way.

Out[26]= Solve@Cos@xD x, xD

Mathematica can nevertheless find a numerical solution even in this case. 

In[27]:= FindRoot[Cos[x] == x, {x, 0}]

Out[27]= 8x → 0.739085<

Polynomial equations in one variable only ever have a finite  number of  solutions.  But transcendental  equations  often
have an infinite number. Typically the reason for this is that functions like Sin in effect have infinitely many possible
inverses.  With the default  option setting InverseFunctions->True,  Solve  will  nevertheless assume that there
is  a  definite  inverse  for  any  such  function.  Solve  may  then  be  able  to  return  particular  solutions  in  terms  of  this
inverse function. 

Mathematica returns a particular solution in terms of ArcSin, but prints a warning indicating that other solutions are lost. 

In[28]:= Solve[Sin[x] == a, x]

Solve::ifun :  Inverse functions are being used by Solve, so some solutions
may not be found; use Reduce for complete solution information.

Out[28]= 88x → ArcSin@aD<<
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Here the answer comes out in terms of ProductLog. 

In[29]:= Solve[Exp[x] + x + 1 == 0, x]

InverseFunction::ifun :  

Inverse functions are being used. Values may be lost for multivalued inverses.

Solve::ifun :  Inverse functions are being used by Solve, so some solutions
may not be found; use Reduce for complete solution information.

Out[29]= 99x → −1 − ProductLogA 1 E==

If you ask Solve to solve an equation involving an arbitrary function like f, it will by default try to construct a formal
solution in terms of inverse functions. 

Solve by default uses a formal inverse for the function f. 

In[30]:= Solve[f[x] == a, x]

InverseFunction::ifun :  

Inverse functions are being used. Values may be lost for multivalued inverses.

Out[30]= 88x → fH−1L@aD<<

This is the structure of the inverse function. 

In[31]:= InputForm[%]

Out[31]//InputForm= 

{{x -> InverseFunction[f, 1, 1][a]}}

InverseFunction@ f  D the inverse function of  f  
InverseFunction@ f ,  k,  n D the inverse function of the  n 

-argument function  f  with respect to its  k th  argument

Inverse functions. 

This returns an explicit inverse function. 

In[32]:= InverseFunction[Tan]

Out[32]= ArcTan

Mathematica can do formal operations on inverse functions. 

In[33]:= D[InverseFunction[f][x^2], x]

Out[33]= 
2 x

f @fH−1L@x2DD

While Solve  can only give specific solutions to an equation,  Reduce  can give a representation of a whole solution
set. For transcendental equations, it often ends up introducing new parameters, say with values ranging over all possi-
ble integers. 
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This is a complete representation of the solution set. 

In[34]:= Reduce[Sin[x] == a, x]

Out[34]= C@1D ∈ Integers && Hx π − ArcSin@aD + 2 π C@1D »» x ArcSin@aD + 2 π C@1DL

Here again is a representation of the general solution. 

In[35]:= Reduce[Exp[x] + x + 1 == 0, x]

Out[35]= C@1D ∈ Integers && x −1 − ProductLogAC@1D, 1 E

As discussed at more length in Section 3.4.9, Reduce allows you to restrict the domains of variables. Sometimes this
will let you generate definite solutions to transcendental equations—or show that they do not exist. 

With the domain of x restricted, this yields definite solutions. 

In[36]:= Reduce[{Sin[x] == 1/2, Abs[x] < 4}, x]

Out[36]= x −
7 π
6

»» x π
6
»» x 5 π

6

With x constrained to be real, only one solution is possible. 

In[37]:= Reduce[Exp[x] + x + 1 == 0, x, Reals]

Out[37]= x −1 − ProductLogA 1 E

Reduce knows there can be no solution here. 

In[38]:= Reduce[{Sin[x] == x, x > 1}, x]

Out[38]= False

3.4.3 Advanced Topic: Algebraic Numbers

Root@ f ,  k D the  k th  root of the polynomial equation  f  @ x D  ==  0 

The representation of algebraic numbers. 

When you enter a Root object, the polynomial that appears in it is automatically reduced to a minimal form. 

In[1]:= Root[24 - 2 # + 4 #^5 &, 1]

Out[1]= Root@12 − #1 + 2 #15 &, 1D

This extracts the pure function which represents the polynomial, and applies it to x. 

In[2]:= First[%][x]

Out[2]= 12 − x + 2 x5
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Root  objects  are the way that Mathematica  represents algebraic numbers.  Algebraic numbers have the property that
when you perform algebraic operations on them, you always get a single algebraic number as the result. 

Here is the square root of an algebraic number. 

In[3]:= Sqrt[Root[2 - # + #^5 &, 1]]

Out[3]= 
"####################################################Root@2 − #1 + #15 &, 1D

RootReduce reduces this to a single Root object. 

In[4]:= RootReduce[%]

Out[4]= Root@2 − #12 + #110 &, 6D

Here is a more complicated expression involving an algebraic number. 

In[5]:= Sqrt[2] + Root[2 - # + #^5 &, 1]^2

Out[5]= 
è!!!2 + Root@2 − #1 + #15 &, 1D2

Again this can be reduced to a single Root object, albeit a fairly complicated one. 

In[6]:= RootReduce[%]

Out[6]= Root@14 − 72 #1 + 25 #12 − 144 #13 − 88 #14 − 8 #15 + 62 #16 − 14 #18 + #110 &, 2D

RootReduce@ expr D attempt to reduce  expr to a single  Root object
ToRadicals@ expr D attempt to transform  Root objects to explicit radicals

Operations on algebraic numbers. 

In this simple case the Root object is automatically expressed in terms of radicals. 

In[7]:= Root[#^2 - # - 1 &, 1]

Out[7]= 
1
2
I1 − è!!!5 M

When cubic polynomials are involved, Root objects are not automatically expressed in terms of radicals. 

In[8]:= Root[#^3 - 2 &, 1]

Out[8]= Root@−2 + #13 &, 1D

ToRadicals attempts to express all Root objects in terms of radicals. 

In[9]:= ToRadicals[%]

Out[9]= 21ê3
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If Solve and ToRadicals do not succeed in expressing the solution to a particular polynomial equation in terms of
radicals,  then  it  is  a  good  guess  that  this  fundamentally  cannot  be  done.  However,  you  should  realize  that  there  are
some special cases in which a reduction to radicals is in principle possible, but Mathematica  cannot find it.  The sim-
plest  example  is  the  equation  x5 + 20 x + 32 = 0,  but  here  the  solution  in  terms  of  radicals  is  very  complicated.  The
equation x6 - 9 x4 - 4 x3 + 27 x2 - 36 x - 23 is another example, where now x = 2

1ÅÅÅÅ3 + 3
1ÅÅÅÅ2  is a solution. 

This gives a Root object involving a degree six polynomial. 

In[10]:= RootReduce[2^(1/3) + Sqrt[3]]

Out[10]= Root@−23 − 36 #1 + 27 #12 − 4 #13 − 9 #14 + #16 &, 2D

Even though a simple form in terms of radicals does exist, ToRadicals does not find it. 

In[11]:= ToRadicals[%]

Out[11]= Root@−23 − 36 #1 + 27 #12 − 4 #13 − 9 #14 + #16 &, 2D

Beyond degree four, most polynomials do not have roots that can be expressed at all in terms of radicals. However, for
degree  five  it  turns  out  that  the  roots  can  always  be  expressed  in  terms  of  elliptic  or  hypergeometric  functions.  The
results, however, are typically much too complicated to be useful in practice.   

RootSum@ f ,  form D the sum of  form @ x D for all  x 
satisfying the polynomial equation  f  @ x D  ==  0 

Normal@ expr D the form of  expr with  RootSum 

replaced by explicit sums of  Root objects

Sums of roots. 

This computes the sum of the reciprocals of the roots of 1 + 2 x + x5 . 

In[12]:= RootSum[(1 + 2 # + #^5)&, (1/#)&]

Out[12]= −2

Now no explicit result can be given in terms of radicals. 

In[13]:= RootSum[(1 + 2 # + #^5)&, (# Log[1 + #])&]

Out[13]= RootSum@1 + 2 #1 + #15 &, Log@1 + #1D #1 &D

This expands the RootSum into a explicit sum involving Root objects. 

In[14]:= Normal[%]

Out[14]= Log@1 + Root@1 + 2 #1 + #15 &, 1DD Root@1 + 2 #1 + #15 &, 1D +

Log@1 + Root@1 + 2 #1 + #15 &, 2DD Root@1 + 2 #1 + #15 &, 2D +

Log@1 + Root@1 + 2 #1 + #15 &, 3DD Root@1 + 2 #1 + #15 &, 3D +

Log@1 + Root@1 + 2 #1 + #15 &, 4DD Root@1 + 2 #1 + #15 &, 4D +

Log@1 + Root@1 + 2 #1 + #15 &, 5DD Root@1 + 2 #1 + #15 &, 5D
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3.4.4 Simultaneous Equations

You can give Solve  a list of simultaneous equations to solve. Solve  can find explicit solutions for a large class of
simultaneous polynomial equations. 

Here is a simple linear equation with two unknowns. 

In[1]:= Solve[ { a x + b y == 1, x - y == 2 } , {x, y} ]

Out[1]= 99x → −
−1 − 2 b
a + b

, y → −
−1 + 2 a
a + b

==

Here is a more complicated example. The result is a list of solutions, with each solution consisting of a list of transformation rules 
for the variables. 

In[2]:= Solve[{x^2 + y^2 == 1, x + y == a}, {x, y}]

Out[2]= 99x →
1
2
Ia −

è!!!!!!!!!!!!!2 − a2 M, y →
1
2
Ia +

è!!!!!!!!!!!!!2 − a2 M=, 9x →
a
2

+
è!!!!!!!!!!!!!2 − a2

2
, y →

1
2
Ia −

è!!!!!!!!!!!!!2 − a2 M==

You can use the list of solutions with the /. operator. 

In[3]:= x^3 + y^4 /. % /. a -> 0.7

Out[3]= 80.846577, 0.901873<

Even when Solve cannot find explicit solutions, it often can “unwind”  simultaneous equations to produce a symbolic result in 
terms of Root objects. 

In[4]:= First[ Solve[{x^2 + y^3 == x y, x + y + x y == 1}, {x, y}] ]

Out[4]= 9x →
1
2
I1 − Root@1 − 3 #1 + #12 + 2 #13 + 2 #14 + #15 &, 1D2 −

Root@1 − 3 #1 + #12 + 2 #13 + 2 #14 + #15 &, 1D3 −

Root@1 − 3 #1 + #12 + 2 #13 + 2 #14 + #15 &, 1D4M,
y → Root@1 − 3 #1 + #12 + 2 #13 + 2 #14 + #15 &, 1D=

You can then use N to get a numerical result. 

In[5]:= N[ % ]

Out[5]= 8x → −3.4875, y → −1.80402<

The  variables  that  you  use  in  Solve  do  not  need  to  be  single  symbols.  Often  when  you  set  up  large  collections  of
simultaneous equations, you will want to use expressions like a[i] as variables.  

Here is a list of three equations for the a[i]. 

In[6]:= Table[ 2 a[i] + a[i-1] == a[i+1], {i, 3} ]

Out[6]= 8a@0D + 2 a@1D a@2D, a@1D + 2 a@2D a@3D, a@2D + 2 a@3D a@4D<
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This solves for some of the a[i]. 

In[7]:= Solve[ % , {a[1], a[2], a[3]} ]

Out[7]= 99a@1D → −
1
12

H5 a@0D − a@4DL, a@2D → −
1
6
H−a@0D − a@4DL, a@3D → −

1
12

Ha@0D − 5 a@4DL==

Solve@ eqns,  8  x1,  x2, … <  D solve  eqns for the specific objects  xi  
Solve@ eqns D try to solve  eqns for all the objects that appear in them

Solving simultaneous equations. 

If you do not explicitly specify objects to solve for, Solve will try to solve for all the variables. 

In[8]:= Solve[ { x + y == 1, x - 3 y == 2 } ]

Out[8]= 99x →
5
4
, y → −

1
4
==

†  Solve@ 8  lhs1  == rhs1 ,  lhs2  == rhs2, … <,  vars D 

†  Solve@ lhs1  == rhs1   &&  lhs2  == rhs2   && … ,  vars D 

†  Solve@ 8  lhs1 ,  lhs2, … <   ==  8  rhs1,  rhs2, … <,  vars D 

Ways to present simultaneous equations to Solve. 

If you construct simultaneous equations from matrices, you typically get equations between lists of expressions. 

In[9]:= {{3,1},{2,-5}}.{x,y}=={7,8}

Out[9]= 83 x + y, 2 x − 5 y< 87, 8<

Solve converts equations involving lists to lists of equations. 

In[10]:= Solve[%, {x, y}]

Out[10]= 99x →
43
17

, y → −
10
17

==

You can use LogicalExpand to do the conversion explicitly.  

In[11]:= LogicalExpand[%%]

Out[11]= 2 x − 5 y 8 && 3 x + y 7

In some kinds of computations, it is convenient to work with arrays of coefficients instead of explicit equations. You
can construct such arrays from equations by using CoefficientArrays. 

3.4.5 Generic and Non-Generic Solutions

If you have an equation like 2 x == 0, it is perfectly clear that the only possible solution is x -> 0. However, if you
have an equation like a x == 0, things are not so clear. If a is not equal to zero, then x -> 0 is again the only solution.
However, if a is in fact equal to zero, then any value of x is a solution. You can see this by using Reduce.   

12 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



Solve implicitly assumes that the parameter a does not have the special value 0. 

In[1]:= Solve[ a x == 0 , x ]

Out[1]= 88x → 0<<

Reduce, on the other hand, gives you all the possibilities, without assuming anything about the value of a. 

In[2]:= Reduce[ a x == 0 , x ]

Out[2]= a 0 »» x 0

A basic difference between Reduce and Solve is that Reduce gives all the possible solutions to a set of equations,
while Solve  gives only the generic  ones. Solutions are considered “generic”  if they involve conditions only on the
variables that you explicitly solve for, and not on other parameters in the equations. Reduce and Solve also differ in
that Reduce always returns combinations of equations, while Solve gives results in the form of transformation rules. 

Solve@ eqns,  vars D find generic solutions to equations
Reduce@ eqns,  vars D reduce equations, maintaining all solutions

Solving equations. 

This is the solution to an arbitrary linear equation given by Solve. 

In[3]:= Solve[a x + b == 0, x]

Out[3]= 99x → −
b
a
==

Reduce gives the full version, which includes the possibility a==b==0. In reading the output, note that && has higher precedence 
than ||. 

In[4]:= Reduce[a x + b == 0, x]

Out[4]= b 0 && a 0 »» a ≠ 0 && x −
b
a

Here is the full solution to a general quadratic equation. There are three alternatives. If a is non-zero, then there are two solutions 
for x, given by the standard quadratic formula. If a is zero, however, the equation reduces to a linear one. Finally, if a, b and c are 
all zero, there is no restriction on x. 

In[5]:= Reduce[a x^2 + b x + c == 0, x]

Out[5]= a ≠ 0 &&
i
k
jjjjx

−b −
è!!!!!!!!!!!!!!!!!!!!b2 − 4 a c
2 a

»» x −b +
è!!!!!!!!!!!!!!!!!!!!b2 − 4 a c
2 a

y
{
zzzz »»

a 0 && b ≠ 0 && x −
c
b
»» c 0 && b 0 && a 0

When  you  have  several  simultaneous  equations,  Reduce  can  show  you  under  what  conditions  the  equations  have
solutions. Solve shows you whether there are any generic solutions.    

This shows there can never be any solution to these equations. 

In[6]:= Reduce[ {x == 1, x == 2}, x ]

Out[6]= False
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There is a solution to these equations, but only when a has the special value 1. 

In[7]:= Reduce[ {x == 1, x == a}, x ]

Out[7]= a 1 && x 1

The solution is not generic, and is rejected by Solve. 

In[8]:= Solve[ {x == 1, x == a}, x ]

Out[8]= 8<

But if a is constrained to have value 1, then Solve again returns a solution. 

In[9]:= Solve[ {x == 1, x == a, a == 1}, x ]

Out[9]= 88x → 1<<

This equation is true for any value of x. 

In[10]:= Reduce[ x == x , x ]

Out[10]= True

This is the kind of result Solve returns when you give an equation that is always true. 

In[11]:= Solve[ x == x , x ]

Out[11]= 88<<

When you work with systems of linear equations, you can use Solve to get generic solutions, and Reduce to find out
for what values of parameters solutions exist. 

Here is a matrix whose i, j th  element is i + j . 

In[12]:= m = Table[i + j, {i, 3}, {j, 3}]

Out[12]= 882, 3, 4<, 83, 4, 5<, 84, 5, 6<<

The matrix has determinant zero. 

In[13]:= Det[ m ]

Out[13]= 0

This makes a set of three simultaneous equations. 

In[14]:= eqn = m . {x, y, z} == {a, b, c}

Out[14]= 82 x + 3 y + 4 z, 3 x + 4 y + 5 z, 4 x + 5 y + 6 z< 8a, b, c<

Solve reports that there are no generic solutions. 

In[15]:= Solve[eqn, {x, y, z}]

Out[15]= 8<
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Reduce, however, shows that there would be a solution if the parameters satisfied the special condition a == 2b - c. 

In[16]:= Reduce[eqn, {x, y, z}]

Out[16]= a 2 b − c && y −6 b + 5 c − 2 x && z 5 b − 4 c + x

For nonlinear equations, the conditions for the existence of solutions can be much more complicated. 

Here is a very simple pair of nonlinear equations. 

In[17]:= eqn = {x y == a, x^2 y^2 == b}

Out[17]= 8x y a, x2 y2 b<

Solve shows that the equations have no generic solutions. 

In[18]:= Solve[eqn, {x, y}]

Out[18]= 8<

Reduce gives the complete conditions for a solution to exist. 

In[19]:= Reduce[eqn, {x, y}]

Out[19]= b 0 && a 0 && x 0 »» Ia −è!!!b »» a è!!!b M && x ≠ 0 && y
a
x

3.4.6 Eliminating Variables

When you write down a set of simultaneous equations in Mathematica,  you are specifying a collection of constraints
between variables. When you use Solve, you are finding values for some of the variables in terms of others, subject to
the constraints represented by the equations.   

Solve@ eqns,  vars,  elims D find solutions for  vars , eliminating the variables  elims 
Eliminate@ eqns,  elims D rearrange equations to eliminate the variables  elims 

Eliminating variables. 

Here are two equations involving x, y and the “parameters”  a and b. 

In[1]:= eqn = {x + y == 6a + 3b, y == 9a + 2 x}

Out[1]= 8x + y 6 a + 3 b, y 9 a + 2 x<

If you solve for both x and y, you get results in terms of a and b. 

In[2]:= Solve[eqn, {x, y}]

Out[2]= 88x → −a + b, y → 7 a + 2 b<<
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Similarly, if you solve for x and a, you get results in terms of y and b. 

In[3]:= Solve[eqn, {x, a}]

Out[3]= 99x → −
1
7
H−9 b + yL, a → −

1
7
H2 b − yL==

If you only want to solve for x, however, you have to specify whether you want to eliminate y or a or b. This eliminates y, and so 
gives the result in terms of a and b. 

In[4]:= Solve[eqn, x, y]

Out[4]= 88x → −a + b<<

If you eliminate a, then you get a result in terms of y and b. 

In[5]:= Solve[eqn, x, a]

Out[5]= 99x → −
1
7
H−9 b + yL==

In some cases, you may want to construct explicitly equations in which variables have been eliminated. You can do this
using Eliminate. 

This combines the two equations in the list eqn, by eliminating the variable a. 

In[6]:= Eliminate[eqn, a]

Out[6]= 9 b − y 7 x

This is what you get if you eliminate y instead of a. 

In[7]:= Eliminate[eqn, y]

Out[7]= b − x a

As a more sophisticated example of Eliminate, consider the problem of writing x5 + y5  in terms of the “symmetric
polynomials”  x + y  and x y .  

To solve the problem, we simply have to write f in terms of a and b, eliminating the original variables x and y. 

In[8]:= Eliminate[ {f == x^5 + y^5, a == x + y, b == x y}, {x, y} ]

Out[8]= f a5 − 5 a3 b + 5 a b2

In dealing with sets  of  equations,  it  is  common to consider  some of  the objects  that  appear  as true “variables”,  and
others  as  “parameters”.  In  some  cases,  you  may  need  to  know  for  what  values  of  parameters  a  particular  relation
between the variables is always satisfied. 

SolveAlways@ eqns,  vars D solve for the values of parameters for which the  
eqns are satisfied for all values of the  vars 

Solving for parameters that make relations always true. 
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This finds the values of parameters that make the equation hold for all x. 

In[9]:= SolveAlways[a + b x + c x^2 == (1 + x)^2, x]

Out[9]= 88a → 1, b → 2, c → 1<<

This equates two series. 

In[10]:= Series[a Cos[x] + b Cos[2x] + Cos[3x], {x, 0, 3}] == Series[Cosh[x], {x, 0, 3}]

Out[10]= H1 + a + bL + J−
9
2

−
a
2

− 2 bN x2 + O@xD4 1 +
x2

2
+ O@xD4

This finds values of the undetermined coefficients. 

In[11]:= SolveAlways[%, x]

Out[11]= 99a →
10
3

, b → −
10
3
==

3.4.7 Solving Logical Combinations of Equations

When you give a list of equations to Solve, it assumes that you want all the equations to be satisfied simultaneously.
It is also possible to give Solve more complicated logical combinations of equations. 

Solve assumes that the equations x + y == 1 and x - y == 2 are simultaneously valid. 

In[1]:= Solve[{x + y == 1, x - y == 2}, {x, y}]

Out[1]= 99x →
3
2
, y → −

1
2
==

Here is an alternative form, using the logical connective && explicitly. 

In[2]:= Solve[ x + y == 1 && x - y == 2, {x, y}]

Out[2]= 99x →
3
2
, y → −

1
2
==

This specifies that either x + y == 1 or x - y == 2. Solve gives two solutions for x, corresponding to these two possibilities. 

In[3]:= Solve[ x + y == 1 || x - y == 2, x ]

Out[3]= 88x → 1 − y<, 8x → 2 + y<<

Solve gives three solutions to this equation. 

In[4]:= Solve[x^3 == x, x]

Out[4]= 88x → −1<, 8x → 0<, 8x → 1<<

If you explicitly include the assertion that x != 0, one of the previous solutions is suppressed. 

In[5]:= Solve[x^3 == x && x != 0, x]

Out[5]= 88x → −1<, 8x → 1<<
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Here is a slightly more complicated example. Note that the precedence of || is lower than the precedence of &&, so the equation is 
interpreted as (x^3 == x && x != 1) || x^2 == 2, not x^3 == x && (x != 1 || x^2 == 2). 

In[6]:= Solve[x^3 == x && x != 1 || x^2 == 2 , x]

Out[6]= 98x → −1<, 8x → 0<, 9x → −è!!!2 =, 9x → è!!!2 ==

When you use Solve, the final results you get are in the form of transformation rules. If you use Reduce or Elimi
nate, on the other hand, then your results are logical statements, which you can manipulate further. 

This gives a logical statement representing the solutions of the equation x^2 == x. 

In[7]:= Reduce[x^2 == x, x]

Out[7]= x 0 »» x 1

This finds values of x which satisfy x^5 == x but do not satisfy the statement representing the solutions of x^2 == x. 

In[8]:= Reduce[x^5 == x && !%, x]

Out[8]= x −1 »» x − »» x

The logical statements produced by Reduce can be thought of as representations of the solution set for your equations.
The logical connectives &&, || and so on then correspond to operations on these sets. 

eqns1   »»  eqns2  union of solution sets
eqns1   &&  eqns2  intersection of solution sets

!eqns complement of a solution set
Implies@ eqns1,  eqns2  D the part of  eqns1  that contains  eqns2  

Operations on solution sets. 

You may often find it convenient to use special notations for logical connectives, as discussed in Section 3.10.4. 

The input uses special notations for Implies and Or. 

In[9]:= Reduce[x^2 == 1 ⇒ (x == 1 fi x == -1), x]

Out[9]= True

3.4.8 Inequalities

Just as the equation x^2 + 3x == 2 asserts that x^2 + 3x is equal to 2, so also the inequality  x^2 + 3x > 2 asserts
that x^2 + 3x is greater than 2. In Mathematica, Reduce works not only on equations, but also on inequalities.  

Reduce@ 8  ineq1,  ineq2, … <,  x D reduce a collection of inequalities in  x 

Manipulating univariate inequalities. 
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This pair of inequalities reduces to a single inequality. 

In[1]:= Reduce[{0 < x < 2, 1 < x < 4}, x]

Out[1]= 1 < x < 2

These inequalities can never simultaneously be satisfied. 

In[2]:= Reduce[{x < 1, x > 3}, x]

Out[2]= False

When applied to an equation, Reduce[eqn, x] tries to get a result consisting of simple equations for x of the form x
== r1 , … . When applied to an inequality, Reduce[ineq, x] does the exactly analogous thing, and tries to get a result
consisting of simple inequalities for x of the form l1  < x < r1 , … . 

This reduces a quadratic equation to two simple equations for x. 

In[3]:= Reduce[x^2 + 3x == 2, x]

Out[3]= x 1
2
I−3 − è!!!!!!17 M »» x 1

2
I−3 + è!!!!!!17 M

This reduces a quadratic inequality to two simple inequalities for x. 

In[4]:= Reduce[x^2 + 3x > 2, x]

Out[4]= x <
1
2
I−3 − è!!!!!!17 M »» x >

1
2
I−3 + è!!!!!!17 M

You can think of the result generated by Reduce[ineq, x] as representing a series of intervals, described by inequali-
ties. Since the graph of a polynomial of degree n  can go up and down as many as n  times, a polynomial inequality of
degree n  can give rise to as many as n ê 2 + 1 distinct intervals. 

This inequality yields three distinct intervals. 

In[5]:= Reduce[(x - 1)(x - 2)(x - 3)(x - 4) > 0, x]

Out[5]= x < 1 »» 2 < x < 3 »» x > 4

The ends of the intervals are at roots and poles. 

In[6]:= Reduce[1 < (x^2 + 3x)/(x + 1) < 2, x]

Out[6]= −1 − è!!!2 < x < −2 »» −1 + è!!!2 < x < 1

Solving this inequality requires introducing ProductLog. 

In[7]:= Reduce[x - 2 < Log[x] < x, x]

Out[7]= −ProductLogA−
1
2 E < x < −ProductLogA−1, −

1
2 E

Transcendental  functions  like  sin HxL  have  graphs  that  go  up  and down infinitely  many times, so  that  infinitely many
intervals can be generated. 
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The second inequality allows only finitely many intervals. 

In[8]:= Reduce[{Sin[x] > 0, 0 < x < 20}, x]

Out[8]= 0 < x < π »» 2 π < x < 3 π »» 4 π < x < 5 π »» 6 π < x < 20

This is how Reduce represents infinitely many intervals. 

In[9]:= Reduce[{Sin[x] > 0, 0 < x}, x]

Out[9]= C@1D ∈ Integers && H0 < x < π »» C@1D ≥ 1 && 2 π C@1D < x < π + 2 π C@1DL

Fairly simple inputs can give fairly complicated results. 

In[10]:= Reduce[{Sin[x]^2 + Sin[3x] > 0, x^2 + 2 < 20}, x]

Out[10]= −3 è!!!2 < x < −π »» 2 ArcTanA 1
3
I−4 − è!!!7 ME < x < 2 ArcTanA 1

3
I−4 + è!!!7 ME »»

0 < x <
π
2
»» π

2
< x < π »» 2 π + 2 ArcTanA 1

3
I−4 − è!!!7 ME < x < 3 è!!!2

If you have inequalities that involve <= as well as <, there may be isolated points where the inequalities can be satis-
fied. Reduce represents such points by giving equations. 

This inequality can be satisfied at just two isolated points. 

In[11]:= Reduce[(x^2 - 3x + 1)^2 <= 0, x]

Out[11]= x
1
2
I3 − è!!!5 M »» x 1

2
I3 + è!!!5 M

This yields both intervals and isolated points. 

In[12]:= Reduce[{Max[Sin[2x], Cos[3x]] <= 0, 0 < x < 10}, x]

Out[12]= x π
2
»» 5 π

6
≤ x ≤ π »» 3 π

2
≤ x ≤

11 π
6

»» x 5 π
2

»» 17 π
6

≤ x ≤ 3 π

Reduce@ 8  ineq1   

ineq2, … <,  8  x1,  x2, … <  D 

reduce a collection of inequalities in several variables

Multivariate inequalities. 

For  inequalities  involving  several  variables,  Reduce  in  effect  yields  nested  collections  of  interval  specifications,  in
which later variables have bounds that depend on earlier variables. 

This represents the unit disk as nested inequalities for x and y. 

In[13]:= Reduce[x^2 + y^2 < 1, {x, y}]

Out[13]= −1 < x < 1 && −
è!!!!!!!!!!!!!1 − x2 < y <

è!!!!!!!!!!!!!1 − x2

In geometrical terms, any linear inequality divides space into two halves. Lists of linear inequalities thus define polyhe-
dra,  sometimes  bounded,  sometimes  not.  Reduce  represents  such  polyhedra  in  terms  of  nested  inequalities.  The
corners of the polyhedra always appear among the endpoints of these inequalities. 
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This defines a triangular region in the plane. 

In[14]:= Reduce[{x > 0, y > 0, x + y < 1}, {x, y}]

Out[14]= 0 < x < 1 && 0 < y < 1 − x

Even a single triangle may need to be described as two components. 

In[15]:= Reduce[{x > y - 1, y > 0, x + y < 1}, {x, y}]

Out[15]= −1 < x ≤ 0 && 0 < y < 1 + x »» 0 < x < 1 && 0 < y < 1 − x

Lists of inequalities in general represent regions of overlap between geometrical objects. Often the description of these
can be quite complicated. 

This represents the part of the unit disk on one side of a line. 

In[16]:= Reduce[{x^2 + y^2 < 1, x + 3y > 2}, {x, y}]

Out[16]= 
1
10

I2 − 3 è!!!6 M < x <
1
10

I2 + 3 è!!!6 M && 2 − x
3

< y <
è!!!!!!!!!!!!!1 − x2

Here is the intersection between two disks. 

In[17]:= Reduce[{(x - 1)^2 + y^2 < 2, x^2 + y^2 < 2}, {x, y}]

Out[17]= 1 − è!!!2 < x ≤
1
2
&& −

è!!!!!!!!!!!!!!!!!!!!!!!!1 + 2 x − x2 < y <
è!!!!!!!!!!!!!!!!!!!!!!!!1 + 2 x − x2 »» 1

2
< x < è!!!2 && −

è!!!!!!!!!!!!!2 − x2 < y <
è!!!!!!!!!!!!!2 − x2

If the disks are too far apart, there is no intersection. 

In[18]:= Reduce[{(x - 4)^2 + y^2 < 2, x^2 + y^2 < 2}, {x, y}]

Out[18]= False

Here is an example involving a transcendental inequality. 

In[19]:= Reduce[{Sin[x y] > 1/2, x^2 + y^2 < 3/2}, {x, y}]

Out[19]= −$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%3
4

+
1
12

è!!!!!!!!!!!!!!!!!!!81 − 4 π2 < x < −
1
2
$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1

3
I9 −

è!!!!!!!!!!!!!!!!!!!81 − 4 π2 M && −
è!!!!!!!!!!!!!!!!!3 − 2 x2

è!!!2
< y <

π
6 x

»»

1
2
$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1

3
I9 −

è!!!!!!!!!!!!!!!!!!!81 − 4 π2 M < x < $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%3
4

+
1
12

è!!!!!!!!!!!!!!!!!!!81 − 4 π2 && π
6 x

< y <
è!!!!!!!!!!!!!!!!!3 − 2 x2

è!!!2

If you have inequalities that involve parameters, Reduce automatically handles the different cases that can occur, just
as it does for equations. 

The form of the intervals depends on the value of a. 

In[20]:= Reduce[(x - 1)(x - a) > 0, x]

Out[20]= a ≤ 1 && Hx < a »» x > 1L »» a > 1 && Hx < 1 »» x > aL
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One gets a hyperbolic or an elliptical region, depending on the value of a. 

In[21]:= Reduce[x^2 + a y^2 < 1, {x, y}]

Out[21]= y ∈ Reals &&
i

k

jjjjjja < 0 &&
i

k

jjjjjjx ≤ −1 &&
i

k

jjjjjjy < −$%%%%%%%%%%%%%%%%1 − x2
a

»» y > $%%%%%%%%%%%%%%%%1 − x2
a

y

{

zzzzzz »»

−1 < x < 1 »» x ≥ 1 &&
i

k

jjjjjjy < −$%%%%%%%%%%%%%%%%1 − x2
a

»» y > $%%%%%%%%%%%%%%%%1 − x2
a

y

{

zzzzzz
y

{

zzzzzz »»

a 0 && −1 < x < 1 »» a > 0 && −1 < x < 1 && −$%%%%%%%%%%%%%%%%1 − x2
a

< y < $%%%%%%%%%%%%%%%%1 − x2
a

y

{

zzzzzz

Reduce  tries to give you a complete description of the region defined by a set of inequalities. Sometimes, however,
you may just want to find individual instances of values of variables that satisfy the inequalities. You can do this using
FindInstance.    

FindInstance@ 

ineqs,  8  x1,  x2, … <  D 

try to find an instance of the  xi  satisfying  ineqs 

FindInstance@ ineqs,  vars,  n D try to find  n instances

Finding individual points that satisfy inequalities. 

This finds a specific instance that satisfies the inequalities. 

In[22]:= FindInstance[{Sin[x y] > 1/2, x^2 + y^2 < 3/2}, {x, y}]

Out[22]= 99x → −
118
151

, y → −
149
185

==

This shows that there is no way to satisfy the inequalities. 

In[23]:= FindInstance[{Sin[x y] > 1/2, x^2 + y^2 < 1/4}, {x, y}]

Out[23]= 8<

FindInstance is in some ways an analog for inequalities of Solve for equations. For like Solve, it returns a list
of  rules  giving  specific  values  for  variables.  But  while  for  equations  these  values  can  generically  give  an  accurate
representation  of  all  solutions,  for  inequalities  they  can only  correspond  to  isolated  sample points  within  the  regions
described by the inequalities. 

Every time you call FindInstance  with specific input,  it will give the same output.  And when there are instances
that correspond to special, limiting, points of some kind, it will preferentially return these. But in general, the distribu-
tion  of  instances  returned  by  FindInstance  will  typically  seem somewhat  random.  Each  instance  is,  however,  in
effect a constructive proof that the inequalities you have given can in fact be satisfied. 

If you ask for one point in the unit disk, FindInstance gives the origin. 

In[24]:= FindInstance[x^2 + y^2 <= 1, {x, y}]

Out[24]= 88x → 0, y → 0<<

This finds 500 points in the unit disk. 

In[25]:= FindInstance[x^2 + y^2 <= 1, {x, y}, 500];
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Their distribution seems somewhat random. 

In[26]:= ListPlot[{x, y} /. %, AspectRatio->Automatic]

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Out[26]=  Graphics 

3.4.9 Equations and Inequalities over Domains

Mathematica  normally assumes that variables which appear in equations can stand for arbitrary complex numbers. But
when  you  use  Reduce,  you  can  explicitly  tell  Mathematica  that  the  variables  stand  for  objects  in  more  restricted
domains. 

Reduce@ expr,  vars,  dom D reduce  eqns over the domain  dom 
Complexes complex numbers    

Reals real numbers    
Integers integers    

Solving over domains. 

Reduce by default assumes that x can be complex, and gives all five complex solutions. 

In[1]:= Reduce[x^6 - x^4 - 4x^2 + 4 == 0, x]

Out[1]= x −1 »» x 1 »» x −è!!!2 »» x − è!!!2 »» x è!!!2 »» x è!!!2

But here it assumes that x is real, and gives only the real solutions. 

In[2]:= Reduce[x^6 - x^4 - 4x^2 + 4 == 0, x, Reals]

Out[2]= x −1 »» x 1 »» x −è!!!2 »» x è!!!2

And here it assumes that x is an integer, and gives only the integer solutions. 

In[3]:= Reduce[x^6 - x^4 - 4x^2 + 4 == 0, x, Integers]

Out[3]= x −1 »» x 1
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A single polynomial equation in one variable will always have a finite set of discrete solutions. And in such a case one
can think of Reduce[eqns,  vars, dom]  as just filtering the solutions by selecting the ones that happen to lie in the
domain dom. 

But as soon as there are more variables, things can become more complicated, with solutions to equations correspond-
ing to parametric curves or  surfaces in which the values of some variables can depend on the values of others.  Often
this  dependence  can  be  described  by  some  collection  of  equations  or  inequalities,  but  the  form  of  these  can  change
significantly when one goes from one domain to another. 

This gives solutions over the complex numbers as simple formulas. 

In[4]:= Reduce[x^2 + y^2 == 1, {x, y}]

Out[4]= y −
è!!!!!!!!!!!!!1 − x2 »» y è!!!!!!!!!!!!!1 − x2

To represent solutions over the reals requires introducing an inequality. 

In[5]:= Reduce[x^2 + y^2 == 1, {x, y}, Reals]

Out[5]= −1 ≤ x ≤ 1 && Iy −
è!!!!!!!!!!!!!1 − x2 »» y è!!!!!!!!!!!!!1 − x2 M

Over the integers, the solution can be represented as equations for discrete points. 

In[6]:= Reduce[x^2 + y^2 == 1, {x, y}, Integers]

Out[6]= x −1 && y 0 »» x 0 && y −1 »» x 0 && y 1 »» x 1 && y 0

If your input involves only equations, then Reduce will by default assume that all variables are complex. But if your
input  involves  inequalities,  then  Reduce  will  assume  that  any  algebraic  variables  appearing  in  them are  real,  since
inequalities can only compare real quantities. 

Since the variables appear in an inequality, they are assumed to be real. 

In[7]:= Reduce[{x + y + z == 1, x^2 + y^2 + z^2 < 1}, {x, y, z}]

Out[7]= −
1
3

< x < 1 &&
1 − x
2

−
1
2
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!1 + 2 x − 3 x2 < y <

1 − x
2

+
1
2
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!1 + 2 x − 3 x2 && z 1 − x − y

Complexes polynomial  !=  0 ,  xi   ==  Root@…  D 

Reals Root@…  D  <  xi   <  Root@…  D ,  xi   ==  Root@…  D 

Integers arbitrarily complicated

Schematic building blocks for solutions to polynomial equations and inequalities. 

For systems of polynomials over real and complex domains, the solutions always consist of a finite number of compo-
nents, within which the values of variables are given by algebraic numbers or functions. 

Here the components are distinguished by equations and inequations on x. 

In[8]:= Reduce[x y^3 + y == 1, {x, y}, Complexes]

Out[8]= x 0 && y 1 »» x ≠ 0 && Hy Root@−1 + #1 + x #13 &, 1D »»
y Root@−1 + #1 + x #13 &, 2D »» y Root@−1 + #1 + x #13 &, 3DL
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And here the components are distinguished by inequalities on x. 

In[9]:= Reduce[x y^3 + y == 1, {x, y}, Reals]

Out[9]= x < −
4
27

&& y Root@−1 + #1 + x #13 &, 1D »» x −
4
27

&& Jy −3 »» y 3
2
N »»

−
4
27

< x < 0 && Hy Root@−1 + #1 + x #13 &, 1D »» y Root@−1 + #1 + x #13 &, 2D »»
y Root@−1 + #1 + x #13 &, 3DL »» x ≥ 0 && y Root@−1 + #1 + x #13 &, 1D

While  in  principle  Reduce  can  always  find  the  complete  solution  to  any  collection  of  polynomial  equations  and
inequalities  with  real  or  complex  variables,  the  results  are  often  very  complicated,  with  the  number  of  components
typically growing exponentially as the number of variables increases. 

With 3 variables, the solution here already involves 8 components. 

In[10]:= Reduce[x^2 == y^2 == z^2 == 1, {x, y, z}]

Out[10]= z −1 && y −1 && x −1 »» z −1 && y −1 && x 1 »»
z −1 && y 1 && x −1 »» z −1 && y 1 && x 1 »» z 1 && y −1 && x −1 »»
z 1 && y −1 && x 1 »» z 1 && y 1 && x −1 »» z 1 && y 1 && x 1

As  soon  as  one  introduces  functions  like  Sin  or  Exp,  even  equations  in  single  real  or  complex  variables  can  have
solutions with an infinite number of components. Reduce labels these components by introducing additional parame-
ters. By default, the nth  parameter in a given solution will be named C[n]. In general you can specify that it should be
named f[n] by giving the option setting GeneratedParameters -> f. 

The components here are labeled by the integer parameter c1 . 

In[11]:= Reduce[Exp[x] == 2, x, GeneratedParameters -> (Subscript[c, #]&)]

Out[11]= c1 ∈ Integers && x Log@2D + 2 π c1

Reduce can handle equations not only over real and complex variables, but also over integers. Solving such Diophan-
tine equations can often be a very difficult problem. 

Describing the solution to this equation over the reals is straightforward. 

In[12]:= Reduce[x y == 8, {x, y}, Reals]

Out[12]= Hx < 0 »» x > 0L && y 8
x

The solution over the integers involves the divisors of 8. 

In[13]:= Reduce[x y == 8, {x, y}, Integers]

Out[13]= x −8 && y −1 »» x −4 && y −2 »» x −2 && y −4 »»
x −1 && y −8 »» x 1 && y 8 »» x 2 && y 4 »» x 4 && y 2 »» x 8 && y 1

Solving an equation like this effectively requires factoring a large number. 

In[14]:= Reduce[{x y == 7777777, x > y > 0}, {x, y}, Integers]

Out[14]= x 4649 && y 1673 »» x 32543 && y 239 »» x 1111111 && y 7 »» x 7777777 && y 1
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Reduce  can  solve  any  system  of  linear  equations  or  inequalities  over  the  integers.  With  m  linear  equations  in  n
variables, n - m  parameters typically need to be introduced. But with inequalities, a much larger number of parameters
may be needed. 

Three parameters are needed here, even though there are only two variables. 

In[15]:= Reduce[{3x - 2y > 1, x > 0, y > 0}, {x, y}, Integers]

Out[15]= HC@1D » C@2D » C@3DL ∈ Integers && C@1D ≥ 0 && C@2D ≥ 0 &&
C@3D ≥ 0 && Hx 2 + 2 C@1D + C@2D + C@3D && y 2 + 3 C@1D + C@2D »»
x 2 + 2 C@1D + C@2D + C@3D && y 1 + 3 C@1D + C@2DL

With  two  variables,  Reduce  can  solve  any  quadratic  equation  over  the  integers.  The  result  can  be  a  Fibonacci-like
sequence, represented in terms of powers of quadratic irrationals. 

Here is the solution to a Pell equation. 

In[16]:= Reduce[{x^2 == 13 y^2 + 1, x > 0, y > 0}, {x, y}, Integers]

Out[16]= C@1D ∈ Integers && C@1D ≥ 1 && x
1
2
II649 − 180 è!!!!!!13 MC@1D + I649 + 180 è!!!!!!13 MC@1DM &&

y −
I649 − 180 è!!!!!!13 MC@1D − I649 + 180 è!!!!!!13 MC@1D

2 è!!!!!!13

The actual values for specific C[1] as integers, as they should be. 

In[17]:= FullSimplify[% /. Table[{C[1] -> i}, {i, 4}]]

Out[17]= 8x 649 && y 180, x 842401 && y 233640,
x 1093435849 && y 303264540, x 1419278889601&& y 393637139280<

Reduce can handle many specific classes of equations over the integers. 

Here Reduce finds the solution to a Thue equation. 

In[18]:= Reduce[x^3 - 4 x y^2 + y^3 == 1, {x, y}, Integers]

Out[18]= x −2 && y 1 »» x 0 && y 1 »» x 1 && y 0 »»
x 1 && y 4 »» x 2 && y 1 »» x 508 && y 273

Changing the right-hand side to 3, the equation now has no solution. 

In[19]:= Reduce[x^3 - 4 x y^2 + y^3 == 3, {x, y}, Integers]

Out[19]= False

Equations over the integers sometimes have seemingly quite random collections of solutions. And even small changes
in equations can often lead them to have no solutions at all. 

For  polynomial  equations  over  real  and  complex  numbers,  there  is  a  definite  decision  procedure  for  determining
whether or not any solution exists. But for polynomial equations over the integers, the unsolvability of Hilbert's Tenth
Problem demonstrates that there can never be any such general procedure. 

For  specific  classes of  equations,  however,  procedures  can be found,  and  indeed many are implemented in Reduce.
But handling different classes of equations can often seem to require whole different branches of number theory, and
quite different kinds of computations. And in fact it is known that there are universal integer polynomial equations, for
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which  filling  in  some  variables  can  make  solutions  for  other  variables  correspond  to  the  output  of  absolutely  any
possible program. This then means that for such equations there can never in general be any closed-form solution built
from fixed elements like algebraic functions. 

If  one includes functions like Sin,  then even for  equations involving  real  and complex numbers the same issues can
arise. 

Reduce here effectively has to solve an equation over the integers. 

In[20]:= Reduce[Sin[Pi x]^2 + Sin[Pi y]^2 + (x^2 + y^2 - 25)^2 == 0, {x, y}, Reals]

Out[20]= x −5 && y 0 »» x −4 && Hy −3 »» y 3L »»
x −3 && Hy −4 »» y 4L »» x 0 && Hy −5 »» y 5L »»
x 3 && Hy −4 »» y 4L »» x 4 && Hy −3 »» y 3L »» x 5 && y 0

Reduce@ eqns,  vars,  Modulus−> n D find solutions modulo  n 

Handling equations involving integers modulo n. 

Since there are only ever a finite number of possible solutions for integer equations modulo n, Reduce can systemati-
cally find them. 

This finds all solutions modulo 4. 

In[21]:= Reduce[x^5 == y^4 + x y + 1, {x, y}, Modulus -> 4]

Out[21]= x 1 && y 0 »» x 1 && y 3 »» x 2 && y 1 »»
x 2 && y 3 »» x 3 && y 2 »» x 3 && y 3

Reduce@ expr,  vars,  dom D specify a default domain for all variables
Reduce@ 8  expr1, … 

,  x1  œ  dom1, … <,  vars D 

explicitly specify individual domains for variables

Different ways to specify domains for variables. 

This assumes that x is an integer, but y is a real. 

In[22]:= Reduce[{x^2 + 2y^2 == 1, x ∈ Integers, y ∈ Reals}, {x, y}]

Out[22]= x −1 && y 0 »» x 0 && i
k
jjjy −

1
è!!!2

»» y 1
è!!!2

y
{
zzz »» x 1 && y 0

Reduce normally treats complex variables as single objects. But in dealing with functions that are not analytic or have
branch cuts, it sometimes has to break them into pairs of real variables Re[z] and Im[z].  

The result involves separate real and imaginary parts. 

In[23]:= Reduce[Abs[z] == 1, z]

Out[23]= −1 ≤ Re@zD ≤ 1 && JIm@zD −"#######################1 − Re@zD2 »» Im@zD "#######################1 − Re@zD2 N
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Here again there is a separate condition on the imaginary part. 

In[24]:= Reduce[Log[z] == a, {a, z}]

Out[24]= −π < Im@aD ≤ π && z a

Reduce  by default assumes that variables that appear algebraically in inequalities are real. But you can override this
by explicitly specifying Complexes  as the default  domain. It  is  often useful in such cases to be able to specify that
certain variables are still real. 

Reduce by default assumes that x is a real. 

In[25]:= Reduce[x^2 < 1, x]

Out[25]= −1 < x < 1

This forces Reduce to consider the case where x can be complex. 

In[26]:= Reduce[x^2 < 1, x, Complexes]

Out[26]= −1 < Re@xD < 0 && Im@xD 0 »» Re@xD 0 »» 0 < Re@xD < 1 && Im@xD 0

Since x does not appear algebraically, Reduce immediately assumes that it can be complex. 

In[27]:= Reduce[Abs[x] < 1, x]

Out[27]= −1 < Re@xD < 1 && −"#######################1 − Re@xD2 < Im@xD < "#######################1 − Re@xD2

Here x is a real, but y can be complex. 

In[28]:= Reduce[{Abs[y] < Abs[x], x ∈ Reals}, {x, y}]

Out[28]= x < 0 && −
è!!!!!!x2 < Re@yD <

è!!!!!!x2 && −"#########################x2 − Re@yD2 < Im@yD < "#########################x2 − Re@yD2 »»

x > 0 && −
è!!!!!!x2 < Re@yD <

è!!!!!!x2 && −"#########################x2 − Re@yD2 < Im@yD < "#########################x2 − Re@yD2

FindInstance@ expr,
 8  x1,  x2, … <,  dom D 

try to find an instance of the  xi  in  dom satisfying  expr 

FindInstance@ 

expr,  vars,  dom,  n D 

try to find  n instances

Complexes the domain of complex numbers    
Reals the domain of real numbers    

Integers the domain of integers    
Booleans the domain of booleans H True and  False L    

Finding particular solutions in domains. 

Reduce always returns a complete representation of the solution to a system of equations or inequalities. Sometimes,
however, you may just want to find particular sample solutions. You can do this using FindInstance. 

If FindInstance[expr, vars, dom] returns {} then this means that Mathematica  has effectively proved that expr
cannot be satisfied for any values of variables in the specified domain. When expr  can be satisfied, FindInstance
will normally pick quite arbitrarily among values that do this, as discussed for inequalities in Section 3.4.8. 
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Particularly  for  integer  equations,  FindInstance  can  often  find  particular  solutions  to  equations  even  when
Reduce cannot find a complete solution. In such cases it usually returns one of the smallest solutions to the equations. 

This finds the smallest integer point on an elliptic curve. 

In[29]:= FindInstance[{x^2 == y^3 + 12, x > 0, y > 0}, {x, y}, Integers]

Out[29]= 88x → 47, y → 13<<

One feature of FindInstance is that it also works with Boolean expressions whose variables can have values True
or False.  You can use FindInstance  to determine whether  a particular  expression is  satisfiable,  so that  there is
some choice of truth values for its variables that makes the expression True.  

This expression cannot be satisfied for any choice of p and q. 

In[30]:= FindInstance[p && ! (p || ! q), {p, q}, Booleans]

Out[30]= 8<

But this can. 

In[31]:= FindInstance[p && ! (! p || ! q), {p, q}, Booleans]

Out[31]= 88p → True, q → True<<

3.4.10 Advanced Topic: The Representation of Solution Sets

One can think  of  any  combination of  equations  or  inequalities as  implicitly defining a region  in some kind  of  space.
The fundamental function of Reduce is to turn this type of implicit description into an explicit one. 

An  implicit  description  in  terms  of  equations  or  inequalities  is  sufficient  if  one  just  wants  to  test  whether  a  point
specified by values of variables is in the region. But to understand the structure of the region, or to generate points in it,
one typically needs a more explicit description, of the kind obtained from Reduce. 

Here are inequalities that implicitly define a semicircular region. 

In[1]:= semi = x > 0 && x^2 + y^2 < 1

Out[1]= x > 0 && x2 + y2 < 1

This shows that the point H1 ê 2, 1 ê 2L  lies in the region. 

In[2]:= semi /. { x -> 1/2, y -> 1/2 }

Out[2]= True

Reduce gives a more explicit representation of the region. 

In[3]:= Reduce[semi, {x, y}]

Out[3]= 0 < x < 1 && −
è!!!!!!!!!!!!!1 − x2 < y <

è!!!!!!!!!!!!!1 − x2
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If we pick a value for x consistent with the first inequality, we then immediately get an explicit inequality for y. 

In[4]:= % /. x -> 1/2

Out[4]= −
è!!!3
2

< y <
è!!!3
2

Reduce[expr, 8x1, x2, … <] is set up to describe regions by first giving fixed conditions for x1 , then giving condi-
tions  for  x2  that  depend  on  x1 ,  then  conditions  for  x3  that  depend  on  x1  and  x2 ,  and  so  on.  This  structure  has  the
feature that it allows one to pick points by successively choosing values for each of the xi  in turn—in much the same
way as when one uses iterators in functions like Table. 

This gives a representation for the region in which one first picks a value for y, then x. 

In[5]:= Reduce[semi, {y, x}]

Out[5]= −1 < y < 1 && 0 < x <
è!!!!!!!!!!!!!1 − y2

In some simple cases the region defined by a system of equations or inequalities will end up having only one compo-
nent. In such cases, the output from Reduce will be of the form e1  && e2  && …  where each of the ei  is an equation or
inequality involving variables up to xi . 

In most cases, however, there will be several components, represented by output containing forms such as u1  || u2  ||
… .  Reduce  typically  tries  to  minimize  the  number  of  components  used  in  describing  a  region.  But  in  some  cases
multiple parametrizations may be needed to cover a single connected component, and each one of these will appear as a
separate component in the output from Reduce. 

In representing  solution sets,  it  is  common to find that several  components  can be described together  by using forms
such as …  && (u1  || u2) && … . Reduce by default does this so as to return its results as compactly as possible. You
can use LogicalExpand to generate an expanded form in which each component appears separately. 

In generating the most compact results, Reduce sometimes ends up making conditions on later variables xi  depend on
more of the earlier xi  than is strictly necessary. You can force Reduce to generate results in which a particular xi  only
has minimal dependence on earlier xi  by giving the option Backsubstitution->True.  Usually this will  lead to
much larger output, although sometimes it may be easier to interpret.  

By default, Reduce expresses the condition on y in terms of x. 

In[6]:= Reduce[x^2 + y == 4 && x^3 - 4y == 8, {x, y}]

Out[6]= Ix 2 »» x −3 − è!!!3 »» x −3 + è!!!3 M && y 4 − x2

Backsubstituting allows conditions for y to be given without involving x. 

In[7]:= Reduce[x^2 + y == 4 && x^3 - 4y == 8, {x, y}, Backsubstitution -> True]

Out[7]= x 2 && y 0 »» x − I−3 + è!!!3 M && y −2 I− + 3 è!!!3 M »»
x I3 + è!!!3 M && y 2 I + 3 è!!!3 M

CylindricalDecomposition@ 

expr,  8  x1,  x2, … <  D 

generate the cylindrical algebraic decomposition of  expr 

Cylindrical algebraic decomposition. 
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For  polynomial  equations  or  inequalities  over  the reals,  the structure  of  the result  returned by Reduce  is  typically a
cylindrical algebraic  decomposition  or  CAD.  Sometimes Reduce  can yield a  simpler form. But in all  cases you can
get the complete CAD by using CylindricalDecomposition. 

3.4.11 Advanced Topic: Quantifiers

In a statement like x^4 + x^2 > 0, Mathematica  treats the variable x as having a definite, though unspecified, value.
Sometimes, however,  it is useful to be able to make statements about whole collections of possible values for x. You
can do this using quantifiers. 

ForAll@ x,  expr D expr holds for all values of  x 
ForAll@ 8  x1,  x2, … <,  expr D expr holds for all values of all the  xi  

ForAll@ 8  x1,  x2, … <,  cond,  expr D expr holds for all  xi  satisfying  cond 
Exists@ x,  expr D there exists a value of  x for which  expr holds

Exists@ 8  x1,  x2, … <,  expr D there exist values of the  xi  for which  expr holds
Exists@ 8  x1, … <,  cond,  expr D there exist values of the  xi  satisfying  cond for which  expr holds

The structure of quantifiers. 

You can work with quantifiers in Mathematica  much as you work with equations, inequalities or logical connectives.
In most cases, the quantifiers will not immediately be changed by evaluation. But they can be simplified or reduced by
functions like FullSimplify and Reduce. 

This asserts that an x exists that makes the inequality true. The output here is just a formatted version of the input. 

In[1]:= Exists[x, x^4 + x^2 > 0]

Out[1]= ∃x x2 + x4 > 0

FullSimplify establishes that the assertion is true. 

In[2]:= FullSimplify[%]

Out[2]= True

This gives False, since the inequality fails when x is zero. 

In[3]:= FullSimplify[ForAll[x, x^4 + x^2 > 0]]

Out[3]= False

Mathematica  supports a version of the standard notation for quantifiers used in predicate logic and pure mathematics.
You can input "  as î[ForAll]  or Çfa , and you can input $  as î[Exists]  or Çex . To make the notation precise,
however,  Mathematica  makes the quantified variable a subscript.  The conditions on the variable can also be given in
the subscript, separated by a comma. 
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∀x expr  ForAll@ x,  expr D 

∀8x1,x2,…< expr  ForAll@ 8  x1,  x2, … <,  expr D 

∀x,cond expr  ForAll@ x,  cond,  expr D 

∃x expr  Exists@ x,  expr D 

∃8x1,x2,…< expr  Exists@ 8  x1,  x2, … <,  expr D 

∃x,cond expr  Exists@ x,  cond,  expr D 

Notation for quantifiers. 

Given a statement that  involves quantifiers,  there are certain important cases where it is possible to resolve it into an
equivalent statement in which the quantifiers have been eliminated. Somewhat like solving an equation, such quantifier
elimination turns  an  implicit statement about  what  is  true  for  all  x  or  for  some x  into  an  explicit  statement about  the
conditions under which this holds. 

Resolve@ expr D attempt to eliminate quantifiers from  expr 
Resolve@ expr,  dom D attempt to eliminate quantifiers

with all variables assumed to be in domain  dom 

Quantifier elimination. 

This shows that an x exists that makes the equation true. 

In[4]:= Resolve[Exists[x, x^2 == x^3]]

Out[4]= True

This shows that the equations can only be satisfied if c obeys a certain condition. 

In[5]:= Resolve[Exists[x, x^2 == c && x^3 == c + 1]]

Out[5]= −1 − 2 c − c2 + c3 0

Resolve can always eliminate quantifiers from any collection of polynomial equations and inequations over complex
numbers,  and  from  any  collection  of  polynomial  equations  and  inequalities  over  real  numbers.  It  can  also  eliminate
quantifiers from Boolean expressions. 

This finds the conditions for a quadratic form over the reals to be positive. 

In[6]:= Resolve[ForAll[x, a x^2 + b x + c > 0], Reals]

Out[6]= c > 0 && Jb < 0 && a >
b2

4 c
»» b 0 && a ≥ 0 »» b > 0 && a >

b2

4 c
N

This shows that there is a way of assigning truth values to p and q that makes the expression true. 

In[7]:= Resolve[Exists[{p, q}, p || q && ! q], Booleans]

Out[7]= True

You can also use quantifiers with Reduce. If you give Reduce  a collection of equations or inequalities, then it will
try to produce a detailed representation of the complete solution set. But sometimes you may want to address a more
global  question,  such  as  whether  the  solution  set  covers  all  values  of  x,  or  whether  it  covers  none  of  these  values.
Quantifiers provide a convenient way to specify such questions. 
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This gives the complete structure of the solution set. 

In[8]:= Reduce[x^2 + x + c == 0, {c, x}, Reals]

Out[8]= c <
1
4
&& Jx −

1
2

−
1
2
è!!!!!!!!!!!!!!1 − 4 c »» x −

1
2

+
1
2
è!!!!!!!!!!!!!!1 − 4 c N »» c 1

4
&& x −

1
2

This instead just gives the condition for a solution to exist. 

In[9]:= Reduce[Exists[x, x^2 + x + c == 0], {c}, Reals]

Out[9]= c ≤
1
4

It is possible to formulate a great many mathematical questions in terms of quantifiers. 

This finds the conditions for a circle to be contained within an arbitrary conic section. 

In[10]:= Reduce[ForAll[{x, y}, x^2 + y^2 < 1, a x^2 + b y^2 < c], {a, b, c}, Reals]

Out[10]= a ≤ 0 && Hb ≤ 0 && c > 0 »» b > 0 && c ≥ bL »» a > 0 && Hb < a && c ≥ a »» b ≥ a && c ≥ bL

This finds the conditions for a line to intersect a circle. 

In[11]:= Reduce[Exists[{x, y}, x^2 + y^2 < 1, r x + s y == 1], {r, s}, Reals]

Out[11]= r < −1 »» −1 ≤ r ≤ 1 && Is < −
è!!!!!!!!!!!!!1 − r2 »» s >

è!!!!!!!!!!!!!1 − r2 M »» r > 1

This defines q to be a general monic quartic. 

In[12]:= q[x_] := x^4 + b x^3 + c x^2 + d x + e

This finds the condition for all pairs of roots to the quartic to be equal. 

In[13]:= Reduce[ForAll[{x, y}, q[x] == 0 && q[y] == 0, x == y], {b, c, d, e}]

Out[13]= c
3 b2

8
&& d

b3

16
&& e

b4

256
»» b 0 && c 0 && d 0 && e 0

Although quantifier elimination over the integers is in general a computationally impossible problem, Mathematica can
do it in specific cases. 

This shows that è!!!2  cannot be a rational number. 

In[14]:= Resolve[Exists[{x, y}, x^2 == 2 y^2 && y > 0], Integers]

Out[14]= False

è!!!!!!!!!9 ê 4  is, though. 

In[15]:= Resolve[Exists[{x, y}, 4 x^2 == 9 y^2 && y > 0], Integers]

Out[15]= True
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3.4.12 Minimization and Maximization

Minimize@ expr,  8  x1,  x2, … <  D minimize  expr 
Minimize@ 8  expr,
 cons <,  8  x1,  x2, … <  D 

minimize  expr subject to the constraints  cons 

Maximize@ expr,  8  x1,  x2, … <  D maximize  expr 
Maximize@ 8  expr,
 cons <,  8  x1,  x2, … <  D 

maximize  expr subject to the constraints  cons 

Minimization and maximization. 

Minimize  and  Maximize  yield  lists  giving  the  value  attained  at  the  minimum  or  maximum,  together  with  rules
specifying where the minimum or maximum occurs. 

This finds the minimum of a quadratic function. 

In[1]:= Minimize[x^2 - 3x + 6, x]

Out[1]= 9 15
4

, 9x →
3
2
==

Applying the rule for x gives the value at the minimum. 

In[2]:= x^2 - 3x + 6 /. Last[%]

Out[2]= 
15
4

This maximizes with respect to x and y. 

In[3]:= Maximize[5 x y - x^4 - y^4, {x, y}]

Out[3]= 9 25
8

, 9x → −
è!!!5
2

, y → −
è!!!5
2

==

Minimize[expr,  x]  minimizes  expr  allowing  x  to  range  over  all  possible  values  from  -¶  to  +¶ .
Minimize[8expr,  cons<,  x]  minimizes  expr  subject  to  the  constraints  cons  being  satisfied.  The  constraints  can
consist of any combination of equations and inequalities. 

This finds the minimum subject to the constraint x ¥ 3. 

In[4]:= Minimize[{x^2 - 3x + 6, x >= 3}, x]

Out[4]= 86, 8x → 3<<

This finds the maximum within the unit circle. 

In[5]:= Maximize[{5 x y - x^4 - y^4, x^2 + y^2 <= 1}, {x, y}]

Out[5]= 92, 9x → −
1
è!!!2

, y → −
1
è!!!2

==
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This finds the maximum within an ellipse. The result is fairly complicated. 

In[6]:= Maximize[{5 x y - x^4 - y^4, x^2 + 2y^2 <= 1}, {x, y}]

Out[6]= 8−Root@−811219 + 320160 #1 + 274624 #12 − 170240 #13 + 25600 #14 &, 1D,
8x → Root@25 − 102 #12 + 122 #14 − 70 #16 + 50 #18 &, 2D,
y → Root@25 − 264 #12 + 848 #14 − 1040 #16 + 800 #18 &, 1D<<

This finds the maximum along a line. 

In[7]:= Maximize[{5 x y - x^4 - y^4, x + y == 1}, {x, y}]

Out[7]= 9 9
8
, 9x →

1
2
, y →

1
2
==

Minimize and Maximize can solve any linear programming problem in which both the objective function expr and
the constraints cons involve the variables xi  only linearly.  

Here is a typical linear programming problem. 

In[8]:= Minimize[{x + 3 y, x - 3 y <= 7 && x + 2y >= 10}, {x, y}]

Out[8]= 9 53
5

, 9x →
44
5

, y →
3
5
==

They can also in principle solve any polynomial programming  problem in which the objective function and the con-
straints  involve  arbitrary  polynomial  functions  of  the  variables.  There  are  many  important  geometrical  and  other
problems that can be formulated in this way. 

This solves the simple geometrical problem of maximizing the area of a rectangle with fixed perimeter. 

In[9]:= Maximize[{x y, x + y == 1}, {x, y}]

Out[9]= 9 1
4
, 9x →

1
2
, y →

1
2
==

This finds the maximal volume of a cuboid that fits inside the unit sphere. 

In[10]:= Maximize[{8 x y z, x^2 + y^2 + z^2 <= 1}, {x, y, z}]

Out[10]= 9 8
3 è!!!3

, 9x → −
1
è!!!3

, y → −
1
è!!!3

, z →
1
è!!!3

==

An  important  feature  of  Minimize  and  Maximize  is  that  they  always  find  global  minima  and  maxima.  Often
functions will have various local minima and maxima at which derivatives vanish. But Minimize and Maximize use
global methods to find absolute minima or maxima, not just local extrema. 
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Here is a function with many local maxima and minima. 

In[11]:= Plot[x + 2 Sin[x], {x, -10, 10}]

-10 -5 5 10

-10

-5

5

10

Out[11]=  Graphics 

Maximize finds the global maximum. 

In[12]:= Maximize[{x + 2 Sin[x], -10 <= x <= 10}, x]

Out[12]= 9è!!!3 +
8 π
3

, 9x →
8 π
3

==

If  you  give  functions  that  are  unbounded,  Minimize  and  Maximize  will  return  -¶  and  +¶  as  the  minima  and
maxima.  And  if  you  give  constraints  that  can  never  be  satisfied,  they  will  return  +¶  and  -¶  as  the  minima  and
maxima, and Indeterminate as the values of variables.  

One subtle  issue is  that  Minimize  and Maximize  allow both  non-strict  inequalities  of  the form x  <=  v,  and  strict
ones of the form x < v. With non-strict inequalities there is no problem with a minimum or maximum lying exactly on
the boundary x -> v. But with strict inequalities, a minimum or maximum must in principle be at least infinitesimally
inside the boundary. 

With a strict inequality, Mathematica prints a warning, then returns the point on the boundary. 

In[13]:= Minimize[{x^2 - 3x + 6, x > 3}, x]

Minimize::wksol :  Warning: There is no minimum in the region
described by the contraints; returning a result on the boundary.

Out[13]= 86, 8x → 3<<

Minimize and Maximize normally assume that all variables you give are real. But by giving a constraint such as x
œ  Integers you can specify that a variable must in fact be an integer. 

This does maximization only over integer values of x and y. 

In[14]:= Maximize[{x y, x^2 + y^2 < 120 && (x | y) ∈ Integers}, {x, y}]

Out[14]= 856, 8x → −8, y → −7<<
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3.5 Calculus

3.5.1 Differentiation

D@ f ,  x D partial derivative  ∑ÅÅÅÅÅÅÅ∑x f  

D@ f ,  x1,  x2, … D multiple derivative  ∑ÅÅÅÅÅÅÅÅÅ∑x1
 ∑ÅÅÅÅÅÅÅÅÅ∑x2

...  f  

D@ f ,  8  x,  n <  D n th  derivative  ∑n
ÅÅÅÅÅÅÅÅÅ∑xn f  

D@ f ,  x,  NonConstants 

 −>  8  v1,  v2, … <  D 

∑ÅÅÅÅÅÅÅ∑x f  with the  vi  taken to depend on  x  

Partial differentiation operations. 

This gives ∑ÅÅÅÅÅÅÅ∑x  xn . 

In[1]:= D[x^n, x]

Out[1]= n x−1+n

This gives the third derivative. 

In[2]:= D[x^n, {x, 3}]

Out[2]= H−2 + nL H−1 + nL n x−3+n

You can differentiate with respect to any expression that does not involve explicit mathematical operations.  

In[3]:= D[ x[1]^2 + x[2]^2, x[1] ]

Out[3]= 2 x@1D

D does partial differentiation. It assumes here that y is independent of x. 

In[4]:= D[x^2 + y^2, x]

Out[4]= 2 x

If y does in fact depend on x, you can use the explicit functional form y[x]. Section 3.5.4 describes how objects like y'[x] 
work. 

In[5]:= D[x^2 + y[x]^2, x]

Out[5]= 2 x + 2 y@xD y @xD

Instead of giving an explicit function y[x], you can tell D that y implicitly depends on x. D[y, x, NonConstants->{y}] 
then represents ∑yÅÅÅÅÅÅÅ∑x , with y implicitly depending on x.  

In[6]:= D[x^2 + y^2, x, NonConstants -> {y}]

Out[6]= 2 x + 2 y D@y, x, NonConstants → 8y<D

Printed from the Mathematica Help Browser 1

©1988-2003 Wolfram Research, Inc. All rights reserved.



3.5.2 Total Derivatives

Dt@ f  D total differential  d  f  

Dt@ f ,  x D total derivative  d fÅÅÅÅÅÅÅÅÅd x  

Dt@ f ,  x1,  x2, … D multiple total derivative  dÅÅÅÅÅÅÅÅÅÅd x1
 dÅÅÅÅÅÅÅÅÅÅd x2

...  f  

Dt@ f ,  x,  Constants 

 −>  8  c1,  c2, … <  D 

total derivative with  ci  constant Hi.e.,  d  ci = 0  L

y ê:  Dt@ y,  x D  =  0 set  d yÅÅÅÅÅÅÅÅd x = 0  

SetAttributes@ c,  ConstantD define  c to be a constant in all cases

Total differentiation operations. 

When  you  find  the  derivative  of  some  expression  f  with  respect  to  x ,  you  are  effectively  finding  out  how  fast  f
changes as you vary x . Often f  will depend not only on x , but also on other variables, say y  and z . The results that you
get then depend on how you assume that y  and z  vary as you change x . 

There are two common cases. Either y  and z  are assumed to stay fixed when x  changes,  or  they are allowed to vary
with x . In a standard partial derivative ∑ fÅÅÅÅÅÅÅÅ∑x , all variables other than x  are assumed fixed. On the other hand, in the total
derivative d fÅÅÅÅÅÅÅÅÅd x , all variables are allowed to change with x . 

In Mathematica, D[f, x] gives a partial derivative, with all other variables assumed independent of x. Dt[f, x] gives
a total derivative,  in which all variables are assumed to depend on x.  In both cases, you can add an argument to give
more information on dependencies.  

This gives the partial derivative ∑ÅÅÅÅÅÅÅ∑x  Hx2 + y2L . y is assumed to be independent of x. 

In[1]:= D[x^2 + y^2, x]

Out[1]= 2 x

This gives the total derivative dÅÅÅÅÅÅÅÅd x  Hx2 + y2L . Now y is assumed to depend on x. 

In[2]:= Dt[x^2 + y^2, x]

Out[2]= 2 x + 2 y Dt@y, xD

You can make a replacement for d yÅÅÅÅÅÅÅÅd x . 

In[3]:= % /. Dt[y, x] -> yp

Out[3]= 2 x + 2 y yp

You can also make an explicit definition for d yÅÅÅÅÅÅÅÅd x . You need to use y/: to make sure that the definition is associated with y. 

In[4]:= y/: Dt[y, x] = 0

Out[4]= 0
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With this definition made, Dt treats y as independent of x. 

In[5]:= Dt[x^2 + y^2 + z^2, x]

Out[5]= 2 x + 2 z Dt@z, xD

This removes your definition for the derivative of y. 

In[6]:= Clear[y]

This takes the total derivative, with z held fixed. 

In[7]:= Dt[x^2 + y^2 + z^2, x, Constants->{z}]

Out[7]= 2 x + 2 y Dt@y, x, Constants → 8z<D

This specifies that c is a constant under differentiation. 

In[8]:= SetAttributes[c, Constant]

The variable c is taken as a constant. 

In[9]:= Dt[a^2 + c x^2, x]

Out[9]= 2 c x + 2 a Dt@a, xD

The function c is also assumed to be a constant.   

In[10]:= Dt[a^2 + c[x] x^2, x]

Out[10]= 2 x c@xD + 2 a Dt@a, xD

This gives the total differential d  Hx2 + c y2L .  

In[11]:= Dt[x^2 + c y^2]

Out[11]= 2 x Dt@xD + 2 c y Dt@yD

You can make replacements and assignments for total differentials. 

In[12]:= % /. Dt[y] -> dy

Out[12]= 2 c dy y + 2 x Dt@xD

3.5.3 Derivatives of Unknown Functions

Differentiating a known function gives an explicit result. 

In[1]:= D[Log[x]^2, x]

Out[1]= 
2 Log@xD

x
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Differentiating an unknown function f gives a result in terms of f'. 

In[2]:= D[f[x]^2, x]

Out[2]= 2 f@xD f @xD

Mathematica applies the chain rule for differentiation, and leaves the result in terms of f'. 

In[3]:= D[x f[x^2], x]

Out[3]= f@x2D + 2 x2 f @x2D

Differentiating again gives a result in terms of f, f' and f''. 

In[4]:= D[%, x]

Out[4]= 6 x f @x2D + 4 x3 f @x2D

When a function has more than one argument, superscripts are used to indicate how many times each argument is being differenti-
ated. 

In[5]:= D[g[x^2, y^2], x]

Out[5]= 2 x gH1,0L@x2, y2D

This represents ∑ÅÅÅÅÅÅÅ∑x  ∑ÅÅÅÅÅÅÅ∑x  ∑ÅÅÅÅÅÅÅ∑y  g Hx, yL . Mathematica assumes that the order in which derivatives are taken with respect to different 
variables is irrelevant. 

In[6]:= D[g[x, y], x, x, y]

Out[6]= gH2,1L@x, yD

You can find the value of the derivative when x = 0 by replacing x with 0. 

In[7]:= % /. x->0

Out[7]= gH2,1L@0, yD

f  '@ x D first derivative of a function of one variable

f JnN  @ x D n th  derivative of a function of one variable

f In1 ,n2 ,… M  @ x D derivative of a function of several variables,  
ni  times with respect to variable  i 

Output forms for derivatives of unknown functions. 

3.5.4 Advanced Topic: The Representation of Derivatives

Derivatives  in  Mathematica  work  essentially  the  same as  in  standard  mathematics.  The  usual  mathematical notation,
however,  often  hides  many details.  To  understand  how derivatives  are  represented  in  Mathematica,  we  must  look  at
these details. 

The  standard  mathematical  notation  f£ H0L  is  really  a  shorthand  for  dÅÅÅÅÅÅÅd t  f  HtL »t=0 ,  where  t  is  a  “dummy  variable”.
Similarly,  f£ Hx2L  is  a  shorthand  for  dÅÅÅÅÅÅÅd t  f  HtL »t=x2 .  As  suggested  by  the  notation  f£ ,  the  object  dÅÅÅÅÅÅÅd t  f  HtL  can  in  fact  be

4 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



viewed as a “pure  function”,  to be evaluated with a particular choice of its parameter t . You can think of the opera-
tion of differentiation as acting on a function f , to give a new function, usually called f£ .  

With  functions  of  more  than  one  argument,  the  simple  notation  based  on  primes  breaks  down.  You  cannot  tell  for
example  whether  g£ H0, 1L  stands  for  dÅÅÅÅÅÅÅd t  g Ht, 1L »t=0  or  dÅÅÅÅÅÅÅd t  g H0, tL »t=1 ,  and  for  almost  any  g ,  these  will  have  totally
different  values.  Once  again,  however,  t  is  just  a  dummy  variable,  whose  sole   purpose  is  to  show  with  respect  to
which “slot”  g  is to be differentiated. 

In Mathematica, as in some branches of mathematics, it is convenient to think about a kind of differentiation that acts
on  functions,  rather  than  expressions.  We  need  an  operation  that  takes  the  function  f ,  and  gives  us  the  derivative
function  f£ . Operations such as this that act on functions, rather than variables, are known in mathematics as function-
als. 

The object f' in Mathematica is the result of applying the differentiation functional to the function f. The full form of
f' is in fact Derivative[1][f]. Derivative[1] is the Mathematica differentiation functional. 

The arguments in the functional Derivative[n1, n2, … ] specify how many times to differentiate with respect to
each “slot”  of the function on which it acts. By using functionals to represent differentiation, Mathematica avoids any
need to introduce explicit “dummy  variables”.  

This is the full form of the derivative of the function f. 

In[1]:= f' // FullForm

Out[1]//FullForm= 

Derivative@1D@fD

Here an argument x is supplied. 

In[2]:= f'[x] // FullForm

Out[2]//FullForm= 

Derivative@1D@fD@xD

This is the second derivative. 

In[3]:= f''[x] // FullForm

Out[3]//FullForm= 

Derivative@2D@fD@xD

This gives a derivative of the function g with respect to its second “slot”.  

In[4]:= D[g[x, y], y]

Out[4]= gH0,1L@x, yD

Here is the full form. 

In[5]:= % // FullForm

Out[5]//FullForm= 

Derivative@0, 1D@gD@x, yD
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Here is the second derivative with respect to the variable y, which appears in the second slot of g. 

In[6]:= D[g[x, y], {y, 2}] // FullForm

Out[6]//FullForm= 

Derivative@0, 2D@gD@x, yD

This is a mixed derivative. 

In[7]:= D[g[x, y], x, y, y] // FullForm

Out[7]//FullForm= 

Derivative@1, 2D@gD@x, yD

Since Derivative only specifies how many times to differentiate with respect to each slot, the order of the derivatives is 
irrelevant. 

In[8]:= D[g[x, y], y, y, x] // FullForm

Out[8]//FullForm= 

Derivative@1, 2D@gD@x, yD

Here is a more complicated case, in which both arguments of g depend on the differentiation variable. 

In[9]:= D[g[x, x], x]

Out[9]= gH0,1L@x, xD + gH1,0L@x, xD

This is the full form of the result. 

In[10]:= % // FullForm

Out[10]//FullForm= 

Plus@Derivative@0, 1D@gD@x, xD, Derivative@1, 0D@gD@x, xDD

The  object  f'  behaves  essentially  like  any  other  function  in  Mathematica.  You  can  evaluate  the  function  with  any
argument, and you can use standard Mathematica /. operations to change the argument. (This would not be possible if
explicit dummy variables had been introduced in the course of the differentiation.) 

This is the Mathematica representation of the derivative of a function f, evaluated at the origin. 

In[11]:= f'[0] // FullForm

Out[11]//FullForm= 

Derivative@1D@fD@0D

The result of this derivative involves f' evaluated with the argument x^2. 

In[12]:= D[f[x^2], x]

Out[12]= 2 x f @x2D

You can evaluate the result at the point x = 2 by using the standard Mathematica replacement operation. 

In[13]:= % /. x->2

Out[13]= 4 f @4D

6 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



There is some slight subtlety when you need to deduce the value of f' based on definitions for objects like f[x_].  

Here is a definition for a function h. 

In[14]:= h[x_] := x^4

When you take the derivative of h[x], Mathematica first evaluates h[x], then differentiates the result. 

In[15]:= D[h[x], x]

Out[15]= 4 x3

You can get the same result by applying the function h' to the argument x. 

In[16]:= h'[x]

Out[16]= 4 x3

Here is the function h' on its own. 

In[17]:= h'

Out[17]= 4 #13 &

The function  f'  is  completely determined by  the  form of  the  function  f.  Definitions  for  objects  like  f[x_]  do  not
immediately  apply  however  to  expressions  like  f'[x].  The  problem  is  that  f'[x]  has  the  full  form
Derivative[1][f][x], which nowhere contains anything that explicitly matches the pattern f[x_]. In addition,
for many purposes it is convenient to have a representation of the function f' itself, without necessarily applying it to
any arguments. 

What Mathematica  does is to try and find the explicit form of a pure function  which represents the object f'.  When
Mathematica  gets  an expression  like Derivative[1][f],  it  effectively converts  it  to  the explicit  form D[f[#],
#]& and then tries to evaluate the derivative. In the explicit form, Mathematica  can immediately use values that have
been  defined  for  objects  like  f[x_].  If  Mathematica  succeeds  in  doing  the  derivative,  it  returns  the  explicit
pure-function result. If it does not succeed, it leaves the derivative in the original f' form. 

This gives the derivative of Tan in pure-function form. 

In[18]:= Tan'

Out[18]= Sec@#1D2 &

Here is the result of applying the pure function to the specific argument y. 

In[19]:= %[y]

Out[19]= Sec@yD2

3.5.5 Defining Derivatives

You can define the derivative in Mathematica  of a function f of one argument simply by an assignment like f'[x_]
= fp[x].  

Printed from the Mathematica Help Browser 7

©1988-2003 Wolfram Research, Inc. All rights reserved.



This defines the derivative of f  HxL  to be f  p HxL . In this case, you could have used = instead of :=. 

In[1]:= f'[x_] := fp[x]

The rule for f'[x_] is used to evaluate this derivative. 

In[2]:= D[f[x^2], x]

Out[2]= 2 x fp@x2D

Differentiating again gives derivatives of f  p . 

In[3]:= D[%, x]

Out[3]= 2 fp@x2D + 4 x2 fp @x2D

This defines a value for the derivative of g  at the origin. 

In[4]:= g'[0] = g0

Out[4]= g0

The value for g'[0] is used. 

In[5]:= D[g[x]^2, x] /. x->0

Out[5]= 2 g0 g@0D

This defines the second derivative of g, with any argument. 

In[6]:= g''[x_] = gpp[x]

Out[6]= gpp@xD

The value defined for the second derivative is used. 

In[7]:= D[g[x]^2, {x, 2}]

Out[7]= 2 g@xD gpp@xD + 2 g @xD2

To define derivatives of functions with several arguments, you have to use the general representation of derivatives in
Mathematica. 

f  '@ x _D  :=  rhs define the first derivative of  f  
Derivative@ n D@ f  D@ x _D  :=  rhs define the  n th  derivative of  f  

Derivative@ m,  n, … 
D@ g D@ x _,  _, … D  :=  rhs 

define derivatives of  g with respect to various arguments

Defining derivatives. 

This defines the second derivative of g with respect to its second argument. 

In[8]:= Derivative[0, 2][g][x_, y_] := g2p[x, y]
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This uses the definition just given. 

In[9]:= D[g[a^2, x^2], x, x]

Out[9]= 4 x2 g2p@a2, x2D + 2 gH0,1L@a2, x2D

3.5.6 Indefinite Integrals

The Mathematica function Integrate[f, x] gives you the indefinite integral Ÿ f d  x . You can think of the operation
of indefinite integration as being an inverse of differentiation. If you take the result from Integrate[f, x], and then
differentiate it, you always get a result that is mathematically equal to the original expression f. 

In  general,  however,  there  is  a  whole  family  of  results  which  have  the  property  that  their  derivative  is  f.
Integrate[f, x]  gives you an  expression whose derivative is f. You can get other expressions by adding an arbi-
trary constant of integration, or indeed by adding any function that is constant except at discrete points.  

If  you fill  in  explicit  limits for  your  integral,  any such constants  of  integration must cancel  out.  But  even though the
indefinite integral can have arbitrary constants added, it is still often very convenient to manipulate it without filling in
the limits. 

Mathematica applies standard rules to find indefinite integrals. 

In[1]:= Integrate[x^2, x]

Out[1]= 
x3

3

You can add an arbitrary constant to the indefinite integral, and still get the same derivative. Integrate simply gives you an 
expression with the required derivative. 

In[2]:= D[ % + c, x]

Out[2]= x2

This gives the indefinite integral Ÿ d xÅÅÅÅÅÅÅÅÅÅÅÅx2-1 . 

In[3]:= Integrate[1/(x^2 - 1), x]

Out[3]= 
1
2
Log@−1 + xD −

1
2
Log@1 + xD

Differentiating should give the original function back again. 

In[4]:= D[%, x]

Out[4]= 
1

2 H−1 + xL −
1

2 H1 + xL

You need to manipulate it to get it back into the original form. 

In[5]:= Simplify[%]

Out[5]= 
1

−1 + x2
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The Integrate function assumes that any object that does not explicitly contain the integration variable is indepen-
dent  of  it,  and  can  be  treated  as  a  constant.  As  a  result,  Integrate  is  like  an  inverse  of  the  partial  differentiation
function D.  

The variable a is assumed to be independent of x. 

In[6]:= Integrate[a x^2, x]

Out[6]= 
a x3

3

The integration variable can be any expression that does not involve explicit mathematical operations.  

In[7]:= Integrate[x b[x]^2, b[x]]

Out[7]= 
1
3
x b@xD3

Another  assumption  that  Integrate  implicitly  makes  is  that  all  the  symbolic  quantities  in  your  integrand  have
“generic”  values. Thus, for example, Mathematica will tell you that Ÿ xn „ x  is xn+1

ÅÅÅÅÅÅÅÅÅÅÅn+1  even though this is not true in the
special case n = -1.  

Mathematica gives the standard result for this integral, implicitly assuming that n is not equal to -1. 

In[8]:= Integrate[x^n, x]

Out[8]= 
x1+n

1 + n

If you specifically give an exponent of -1, Mathematica produces a different result. 

In[9]:= Integrate[x^-1, x]

Out[9]= Log@xD

You should realize that the result for any particular integral can often be written in many different forms. Mathematica
tries to give you the most convenient form, following principles such as avoiding explicit complex numbers unless your
input already contains them. 

This integral is given in terms of ArcTan. 

In[10]:= Integrate[1/(1 + a x^2), x]

Out[10]= 
ArcTanAè!!!a xE

è!!!a

This integral is given in terms of ArcTanh. 

In[11]:= Integrate[1/(1 - b x^2), x]

Out[11]= 
ArcTanhAè!!!b xE

è!!!b
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This is mathematically equal to the first integral, but is given in a somewhat different form. 

In[12]:= % /. b -> -a

Out[12]= 
ArcTanhAè!!!!!!−a xE

è!!!!!!−a

The derivative is still correct. 

In[13]:= D[%, x]

Out[13]= 
1

1 + a x2

Even though they look quite different, both ArcTan[x] and -ArcTan[1/x] are indefinite integrals of 1 ê H1 + x2L . 

In[14]:= Simplify[D[{ArcTan[x], -ArcTan[1/x]}, x]]

Out[14]= 9 1
1 + x2

, 1
1 + x2

=

Integrate chooses to use the simpler of the two forms. 

In[15]:= Integrate[1/(1 + x^2), x]

Out[15]= ArcTan@xD

3.5.7 Integrals That Can and Cannot Be Done

Evaluating integrals is much more difficult than evaluating derivatives. For derivatives, there is a systematic procedure
based  on  the  chain  rule  that  effectively  allows  any  derivative  to  be  worked  out.  But  for  integrals,  there  is  no  such
systematic procedure. 

One of the main problems is that it is difficult to know what kinds of functions will be needed to evaluate a particular
integral. When you work out a derivative, you always end up with functions that are of the same kind or simpler than
the ones you started with. But when you work out integrals, you often end up needing to use functions that are much
more complicated than the ones you started with. 

This integral can be evaluated using the same kind of functions that appeared in the input. 

In[1]:= Integrate[Log[x]^2, x]

Out[1]= x H2 − 2 Log@xD + Log@xD2L

But for this integral the special function LogIntegral is needed. 

In[2]:= Integrate[Log[Log[x]], x]

Out[2]= x Log@Log@xDD − LogIntegral@xD
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It is not difficult to find integrals that require all sorts of functions. 

In[3]:= Integrate[Sin[x^2], x]

Out[3]= $%%%%%%π
2

FresnelSA$%%%%%%2
π

xE

Simple-looking integrals can give remarkably complicated results. Often it is convenient to apply Simplify to your answers. 

In[4]:= Simplify[ Integrate[Log[x] Exp[-x^2], x] ]

Out[4]= −x HypergeometricPFQA9 1
2
, 1

2
=, 9 3

2
, 3

2
=, −x2E +

1
2
è!!!π Erf@xD Log@xD

This integral involves an incomplete gamma function. Note that the power is carefully set up to allow any complex value of x. 

In[5]:= Integrate[Exp[-x^a], x]

Out[5]= −
x HxaL−1êa Gamma@ 1

a , xaD
a

Mathematica includes a very wide range of mathematical functions, and by using these functions a great many integrals
can be done. But it is still possible to find even fairly simple-looking integrals that just cannot be done in terms of any
standard mathematical functions. 

Here is a fairly simple-looking integral that cannot be done in terms of any standard mathematical functions. 

In[6]:= Integrate[Sin[x]/Log[x], x]

Out[6]= ‡ Sin@xD
Log@xD  x

The main point  of  being able to  do an  integral  in  terms of  standard  mathematical functions is  that  it  lets  one use the
known properties of these functions to evaluate or manipulate the result one gets. 

In  the  most  convenient  cases,  integrals  can  be  done  purely  in  terms  of  elementary  functions  such  as  exponentials,
logarithms and trigonometric functions. In fact, if you give an integrand that involves only such elementary functions,
then one of the important capabilities of Integrate is that if the corresponding integral can be expressed in terms of
elementary functions, then Integrate will essentially always succeed in finding it.   

Integrals of rational functions are straightforward to evaluate, and always come out in terms of rational functions, logarithms and 
inverse trigonometric functions. 

In[7]:= Integrate[x/((x - 1)(x + 2)), x]

Out[7]= 
1
3
Log@−1 + xD +

2
3
Log@2 + xD

The integral here is still of the same form, but now involves an implicit sum over the roots of a polynomial. 

In[8]:= Integrate[1/(1 + 2 x + x^3), x]

Out[8]= RootSumA1 + 2 #1 + #13 &, Log@x − #1D
2 + 3 #12

&E
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This finds numerical approximations to all the root objects. 

In[9]:= N[%]

Out[9]= H−0.19108 − 0.088541 L Log@H−0.226699 − 1.46771 L + xD −

H0.19108 − 0.088541 L Log@H−0.226699 + 1.46771 L + xD + 0.38216 Log@0.453398 + xD

Integrals of trigonometric functions usually come out in terms of other trigonometric functions. 

In[10]:= Integrate[Sin[x]^3 Cos[x]^2, x]

Out[10]= 
1
30

Cos@xD3 H−7 + 3 Cos@2 xDL

This is a fairly simple integral involving algebraic functions. 

In[11]:= Integrate[Sqrt[x] Sqrt[1 + x], x]

Out[11]= 
1
4
Iè!!!x è!!!!!!!!!!!1 + x H1 + 2 xL − ArcSinhAè!!!x EM

Here is an integral involving nested square roots. 

In[12]:= Integrate[Sqrt[x + Sqrt[x]], x]

Out[12]= 

"###############è!!!x + x J"###############1 + è!!!x x1ê4 I−3 + 2 è!!!x + 8 xM + 3 ArcSinh@x1ê4DN

12"###############1 + è!!!x x1ê4

By nesting elementary functions you sometimes get integrals that can be done in terms of elementary functions. 

In[13]:= Integrate[Cos[Log[x]], x]

Out[13]= 
1
2
x HCos@Log@xDD + Sin@Log@xDDL

But more often other kinds of functions are needed. 

In[14]:= Integrate[Log[Cos[x]], x]

Out[14]= 
x2

2
− x Log@1 + 2 xD + x Log@Cos@xDD +

1
2

PolyLog@2, − 2 xD

Integrals like this typically come out in terms of elliptic functions. 

In[15]:= Integrate[Sqrt[Cos[x]], x]

Out[15]= 2 EllipticEA x
2
, 2E

But occasionally one can get results in terms of elementary functions alone. 

In[16]:= Integrate[Sqrt[Tan[x]], x]

Out[16]= 
1

2 è!!!2
 I−2 ArcTanA1 − è!!!2 è!!!!!!!!!!!!!!!!!Tan@xD E + 2 ArcTanA1 + è!!!2 è!!!!!!!!!!!!!!!!!Tan@xD E +

LogA−1 + è!!!2 è!!!!!!!!!!!!!!!!!Tan@xD − Tan@xDE − LogA1 + è!!!2 è!!!!!!!!!!!!!!!!!Tan@xD + Tan@xDEM
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Beyond  working  with  elementary  functions,  Integrate  includes  a  large  number  of  algorithms  for  dealing  with
special functions. Sometimes it uses a direct generalization of the procedure for elementary functions. But more often
its strategy is first to try to write the integrand in a form that can be integrated in terms of certain sophisticated special
functions,  and  then  having  done  this  to  try  to  find  reductions  of  these  sophisticated  functions  to  more familiar  func-
tions. 

To integrate this Bessel function requires a generalized hypergeometric function. 

In[17]:= Integrate[BesselJ[0, x], x]

Out[17]= x HypergeometricPFQA9 1
2
=, 91, 3

2
=, −

x2

4
E

To integrate an elliptic integral also requires a generalized hypergeometric function. 

In[18]:= Integrate[EllipticK[x], x]

Out[18]= 
1
2

π x HypergeometricPFQA9 1
2
, 1

2
=, 82<, xE

Sometimes the integrals can be reduced to more familiar forms. 

In[19]:= Integrate[x^3 BesselJ[0, x], x]

Out[19]= −x2 H−2 BesselJ@2, xD + x BesselJ@3, xDL

A large book of integral tables will list perhaps a few thousand indefinite integrals. Mathematica can do essentially all
of these integrals. And because it contains general algorithms rather than just specific cases, Mathematica can actually
do a vastly wider range of integrals.    

You could expect to find this integral in any large book of integral tables. 

In[20]:= Integrate[Log[1 - x]/x, x]

Out[20]= −PolyLog@2, xD

To do this integral, however, requires a more general algorithm, rather than just a direct table look up. 

In[21]:= Integrate[Log[1 + 3 x + x^2]/x, x]

Out[21]= −Log@xD LogA1 −
2 x

−3 + è!!!5
E − Log@xD LogA1 +

2 x
3 + è!!!5

E +

Log@xD Log@1 + 3 x + x2D − PolyLogA2, 2 x
−3 + è!!!5

E − PolyLogA2, −
2 x

3 + è!!!5
E

Particularly if you introduce new mathematical functions of your own, you may want to teach Mathematica  new kinds
of integrals. You can do this by making appropriate definitions for Integrate. 

In  the  case  of  differentiation,  the  chain  rule  allows  one  to  reduce  all  derivatives  to  a  standard  form,  represented  in
Mathematica  using Derivative. But for integration, no such similar standard form exists, and as a result you often
have to make definitions for several different versions of the same integral. Changes of variables and other transforma-
tions can rarely be done automatically by Integrate.   
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This integral cannot be done in terms of any of the standard mathematical functions built into Mathematica. 

In[22]:= Integrate[Sin[Sin[x]], x]

Out[22]= ‡ Sin@Sin@xDD x

Before you add your own rules for integration, you have to remove write protection. 

In[23]:= Unprotect[Integrate]

Out[23]= 8Integrate<

You can set up your own rule to define the integral to be, say, a “Jones”  function. 

In[24]:= Integrate[Sin[Sin[a_. + b_. x_]], x_] := Jones[a, x]/b

Now Mathematica can do integrals that give Jones functions. 

In[25]:= Integrate[Sin[Sin[3x]], x]

Out[25]= 
1
3
Jones@0, xD

As it turns out, the integral Ÿ sin Hsin HxLL „ x  can in principle be represented as an infinite sum of 2 F1  hypergeometric
functions, or as a suitably generalized Kampé de Fériet hypergeometric function of two variables.   

3.5.8 Definite Integrals

Integrate@ f ,  x D the indefinite integral  Ÿ f d  x  

Integrate@ f ,  8  x,  xmin,  xmax <  D the definite integral  Ÿxmin
xmax f d  x  

Integrate@ f ,  8  x,  xmin,
 xmax <,  8  y,  ymin,  ymax <  D 

the multiple integral  Ÿxmin
xmaxd  x Ÿymin

ymaxd  y f  

Integration functions. 

Here is the integral Ÿa
bx2 d  x . 

In[1]:= Integrate[x^2, {x, a, b}]

Out[1]= 
1
3
H−a3 + b3L

This gives the multiple integral Ÿ0
ad  x Ÿ0

bd  y Hx2 + y2L . 

In[2]:= Integrate[x^2 + y^2, {x, 0, a}, {y, 0, b}]

Out[2]= 
1
3
a b Ha2 + b2L
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The y integral is done first. Its limits can depend on the value of x. This ordering is the same as is used in functions like Sum and 
Table. 

In[3]:= Integrate[x^2 + y^2, {x, 0, a}, {y, 0, x}]

Out[3]= 
a4

3

In simple cases, definite integrals can be done by finding indefinite forms and then computing appropriate limits. But
there is a vast range of integrals for which the indefinite form cannot be expressed in terms of standard mathematical
functions, but the definite form still can be. 

This indefinite integral cannot be done in terms of standard mathematical functions. 

In[4]:= Integrate[Cos[Sin[x]], x]

Out[4]= ‡ Cos@Sin@xDD x

This definite integral, however, can be done in terms of a Bessel function. 

In[5]:= Integrate[Cos[Sin[x]], {x, 0, 2Pi}]

Out[5]= 2 π BesselJ@0, 1D

Here is an integral where the indefinite form can be found, but it is much more efficient to work out the definite form directly. 

In[6]:= Integrate[Log[x] Exp[-x^2], {x, 0, Infinity}]

Out[6]= −
1
4
è!!!π HEulerGamma + Log@4DL

Just because an integrand may contain special functions, it does not mean that the definite integral will necessarily be complicated. 

In[7]:= Integrate[BesselK[0, x]^2, {x, 0, Infinity}]

Out[7]= 
π2

4

Special functions nevertheless occur in this result. 

In[8]:= Integrate[BesselK[0, x] BesselJ[0, x], {x, 0, Infinity}]

Out[8]= 
Gamma@ 1

4 D
2

4 è!!!!!!!2 π

The integrand here is simple, but the definite integral is not. 

In[9]:= Integrate[Sin[x^2] Exp[-x], {x, 0, Infinity}]

Out[9]= 
1

2 è!!!2
 J−è!!!2 HypergeometricPFQA81<, 9 3

4
,

5
4
=, −

1
64

E + è!!!π JCosA 1
4
E + SinA 1

4
ENN

Even when you can find  the  indefinite  form of  an  integral,  you will  often  not  get  the  correct  answer  for  the  definite
integral if you just subtract the values of the limits at each end point. The problem is that within the domain of integra-
tion there may be singularities whose effects are ignored if you follow this procedure.   
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Here is the indefinite integral of 1 ê x2 . 

In[10]:= Integrate[1/x^2, x]

Out[10]= −
1
x

This subtracts the limits at each end point. 

In[11]:= Limit[%, x->2] - Limit[%, x->-2]

Out[11]= −1

The true definite integral is divergent because of the double pole at x = 0. 

In[12]:= Integrate[1/x^2, {x, -2, 2}]

Out[12]= ∞

Here is a more subtle example, involving branch cuts rather than poles. 

In[13]:= Integrate[1/(1 + a Sin[x]), x]

Out[13]= 
2 ArcTanA a+Tan@ x

2 Dè!!!!!!!!!!!!
1−a2

E
è!!!!!!!!!!!!!1 − a2

Taking limits in the indefinite integral gives 0. 

In[14]:= Limit[%, x -> 2Pi] - Limit[%, x -> 0]

Out[14]= 0

The definite integral, however, gives the correct result which depends on a . 

In[15]:= Integrate[1/(1 + a Sin[x]), {x, 0, 2Pi}]

Out[15]= 
4 π

è!!!!!!!!!!!!!!!!!4 − 4 a2

Integrate@ f ,  8  x,  xmin,  xmax 
<,  PrincipalValue  −>  TrueD 

the Cauchy principal value of a definite integral

Principal value integrals. 

Here is the indefinite integral of 1 ê x . 

In[16]:= Integrate[1/x, x]

Out[16]= Log@xD

Substituting in the limits -1 and +2 yields a strange result involving i p . 

In[17]:= Limit[%, x -> 2] - Limit[%, x -> -1]

Out[17]= − π + Log@2D
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The ordinary Riemann definite integral is divergent. 

In[18]:= Integrate[1/x, {x, -1, 2}]

Integrate::idiv :  Integral of 1
x

does not converge on 8−1, 2<.

Out[18]= ‡
−1

2 1
x

 x

The Cauchy principal value, however, is finite. 

In[19]:= Integrate[1/x, {x, -1, 2}, PrincipalValue->True]

Out[19]= Log@2D

When  parameters  appear  in  an  indefinite  integral,  it  is  essentially  always  possible  to  get  results  that  are  correct  for
almost all values of these parameters. But for definite integrals this is no longer the case. The most common problem is
that a definite integral may converge only when the parameters that appear in it satisfy certain specific conditions. 

This indefinite integral is correct for all n ∫ -1. 

In[20]:= Integrate[x^n, x]

Out[20]= 
x1+n

1 + n

For the definite integral, however, n  must satisfy a condition in order for the integral to be convergent. 

In[21]:= Integrate[x^n, {x, 0, 1}]

Out[21]= IfARe@nD > −1,
1

1 + n
, Integrate@xn, 8x, 0, 1<, Assumptions → Re@nD ≤ −1DE

If n  is replaced by 2, the condition is satisfied. 

In[22]:= % /. n -> 2

Out[22]= 
1
3

option name default value 

GenerateConditions Automatic whether to generate explicit conditions
Assumptions 8< what relations about parameters to assume

Options for Integrate. 

With the assumption n > 2, the result is always 1 ê H1 + nL . 

In[23]:= Integrate[x^n, {x, 0, 1}, Assumptions -> (n > 2)]

Out[23]= 
1

1 + n

Even when a definite integral is convergent, the presence of singularities on the integration path can lead to discontinu-
ous  changes  when  the  parameters  vary.  Sometimes  a  single  formula  containing  functions  like  Sign  can  be  used  to
summarize the result. In other cases, however, an explicit If is more convenient. 
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The If here gives the condition for the integral to be convergent. 

In[24]:= Integrate[Sin[a x]/x, {x, 0, Infinity}]

Out[24]= IfAIm@aD 0, 1
2

π Sign@aD, IntegrateA Sin@a xD
x

, 8x, 0, ∞<, Assumptions → Im@aD ≠ 0EE

Here is the result assuming that a  is real. 

In[25]:= Integrate[Sin[a x]/x, {x, 0, Infinity}, Assumptions -> Im[a] == 0]

Out[25]= 
1
2

π Sign@aD

The result is discontinuous as a function of a . The discontinuity can be traced to the essential singularity of sin HxL  at x = ¶ . 

In[26]:= Plot[%, {a, -5, 5}]

-4 -2 2 4

-1.5

-1

-0.5

0.5

1

1.5

Out[26]=  Graphics 

There is no convenient way to represent this answer in terms of Sign, so Mathematica generates an explicit If. 

In[27]:= Integrate[Sin[x] BesselJ[0, a x]/x, {x, 0, Infinity}, Assumptions -> Im[a] == 0]

Out[27]= IfAa2 > 1,
a ArcSin@ 1

a D
Abs@aD , π

2
E
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Here is a plot of the resulting function of a . 

In[28]:= Plot[Evaluate[%], {a, -5, 5}]
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0.5

0.75

1
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1.5

Out[28]=  Graphics 

3.5.9 Manipulating Integrals in Symbolic Form

When  Mathematica  cannot  give  you  an  explicit  result  for  an  integral,  it  leaves  the  integral  in  a  symbolic  form.  It  is
often useful to manipulate this symbolic form.  

Mathematica cannot give an explicit result for this integral, so it leaves the integral in symbolic form. 

In[1]:= Integrate[x^2 f[x], x]

Out[1]= ‡ x2 f@xD x

Differentiating the symbolic form gives the integrand back again. 

In[2]:= D[%, x]

Out[2]= x2 f@xD

Here is a definite integral which cannot be done explicitly. 

In[3]:= Integrate[f[x], {x, a[x], b[x]}]

Out[3]= ‡
a@xD

b@xD
f@xD x

This gives the derivative of the definite integral. 

In[4]:= D[%, x]

Out[4]= −f@a@xDD a @xD + f@b@xDD b @xD
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Here is a definite integral with end points that do not explicitly depend on x. 

In[5]:= defint = Integrate[f[x], {x, a, b}]

Out[5]= ‡
a

b

f@xD x

The partial derivative of this with respect to u is zero. 

In[6]:= D[defint, u]

Out[6]= 0

There is a non-trivial total derivative, however. 

In[7]:= Dt[defint, u]

Out[7]= −Dt@a, uD f@aD + Dt@b, uD f@bD

3.5.10 Differential Equations

As discussed in Section 1.5.9,  you can use the Mathematica  function DSolve  to find symbolic solutions to ordinary
and partial differential equations. 

Solving  a  differential  equation  consists  essentially  in  finding  the  form  of  an  unknown  function.  In  Mathematica,
unknown  functions  are  represented  by  expressions  like  y[x].  The  derivatives  of  such  functions  are  represented  by
y'[x], y''[x] and so on. 

The Mathematica  function DSolve  returns as its result a list of rules for functions.  There is a question of how these
functions are represented. If you ask DSolve to solve for y[x], then DSolve will indeed return a rule for y[x]. In
some cases, this rule may be all you need. But this rule, on its own, does not give values for y'[x] or even y[0]. In
many  cases,  therefore,  it  is  better  to  ask  DSolve  to  solve  not  for  y[x],  but  instead  for  y  itself.  In  this  case,  what
DSolve will return is a rule which gives y as a pure function, in the sense discussed in Section 2.2.5. 

If you ask DSolve to solve for y[x], it will give a rule specifically for y[x]. 

In[1]:= DSolve[y'[x] + y[x] == 1, y[x], x]

Out[1]= 88y@xD → 1 + −x C@1D<<

The rule applies only to y[x] itself, and not, for example, to objects like y[0] or y'[x]. 

In[2]:= y[x] + 2y'[x] + y[0] /. %

Out[2]= 81 + −x C@1D + y@0D + 2 y @xD<

If you ask DSolve to solve for y, it gives a rule for the object y on its own as a pure function. 

In[3]:= DSolve[y'[x] + y[x] == 1, y, x]

Out[3]= 88y → Function@8x<, 1 + −x C@1DD<<
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Now the rule applies to all occurrences of y. 

In[4]:= y[x] + 2y'[x] + y[0] /. %

Out[4]= 82 + C@1D − −x C@1D<

Substituting the solution into the original equation yields True. 

In[5]:= y'[x] + y[x] == 1 /. %%

Out[5]= 8True<

DSolve@ eqn,  y @ x D,  x D solve a differential equation for  y @ x D 

DSolve@ eqn,  y,  x D solve a differential equation for the function  y 

Getting solutions to differential equations in different forms. 

In standard mathematical notation, one typically represents solutions to differential equations by explicitly introducing
“dummy  variables”  to represent the arguments of the functions that appear. If all you need is a symbolic form for the
solution,  then  introducing  such  dummy  variables  may  be  convenient.  However,  if  you  actually  intend  to  use  the
solution in a variety of other computations, then you will usually find it better to get the solution in pure-function form,
without  dummy  variables.  Notice  that  this  form,  while  easy  to  represent  in  Mathematica,  has  no  direct  analog  in
standard mathematical notation. 

DSolve@ 8  eqn1,  eqn2,
… <,  8  y1,  y2, … <,  x D 

solve a list of differential equations

Solving simultaneous differential equations. 

This solves two simultaneous differential equations. 

In[6]:= DSolve[{y[x] == -z'[x], z[x] == -y'[x]}, {y, z}, x]

Out[6]= 99z → FunctionA8x<, 1
2

−x H1 + 2 xL C@1D −
1
2

−x H−1 + 2 xL C@2DE,

y → FunctionA8x<, −
1
2

−x H−1 + 2 xL C@1D +
1
2

−x H1 + 2 xL C@2DE==

Mathematica returns two distinct solutions for y in this case. 

In[7]:= DSolve[y[x] y'[x] == 1, y, x]

Out[7]= 99y → FunctionA8x<, −è!!!2 è!!!!!!!!!!!!!!!!!!!x + C@1D E=, 9y → FunctionA8x<, è!!!2 è!!!!!!!!!!!!!!!!!!!x + C@1D E==

You  can  add  constraints  and  boundary  conditions  for  differential  equations  by  explicitly  giving  additional  equations
such as y[0] == 0. 

This asks for a solution which satisfies the condition y[0] == 1. 

In[8]:= DSolve[{y'[x] == a y[x], y[0] == 1}, y[x], x]

Out[8]= 88y@xD → a x<<
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If you ask Mathematica to solve a set of differential equations and you do not give any constraints or boundary condi-
tions, then Mathematica will try to find a general solution to your equations. This general solution will involve various
undetermined constants. One new constant is introduced for each order of derivative in each equation you give. 

The default is that these constants are named C[n], where the index n starts at 1 for each invocation of DSolve. You
can  override  this  choice,  by  explicitly  giving  a  setting  for  the  option  GeneratedParameters.  Any  function  you
give is applied to each successive index value n to get the constants to use for each invocation of DSolve. 

The general solution to this fourth-order equation involves four undetermined constants. 

In[9]:= DSolve[y''''[x] == y[x], y[x], x]

Out[9]= 88y@xD → x C@1D + −x C@3D + C@2D Cos@xD + C@4D Sin@xD<<

Each independent initial or boundary condition you give reduces the number of undetermined constants by one. 

In[10]:= DSolve[{y''''[x] == y[x], y[0] == y'[0] == 0}, y[x], x]

Out[10]= 88y@xD → −x HC@3D + 2 x C@3D − 2 x C@4D − 2 x C@3D Cos@xD + x C@4D Cos@xD + x C@4D Sin@xDL<<

You should  realize that  finding exact  formulas  for  the solutions  to differential  equations  is  a  difficult  matter.  In  fact,
there are only fairly few kinds of equations for which such formulas can be found, at least in terms of standard mathe-
matical functions. 

The most widely investigated differential equations are linear ones, in which the functions you are solving for, as well
as their derivatives, appear only linearly. 

This is a homogeneous first-order linear differential equation, and its solution is quite simple. 

In[11]:= DSolve[y'[x] - x y[x] == 0, y[x], x]

Out[11]= 99y@xD →
x2
2 C@1D==

Making the equation inhomogeneous leads to a significantly more complicated solution. 

In[12]:= DSolve[y'[x] - x y[x] == 1, y[x], x]

Out[12]= 99y@xD →
x2
2 C@1D +

x2
2 $%%%%%%π

2
ErfA x

è!!!2
E==

If  you  have  only  a  single  linear  differential  equation,  and  it  involves  only  a  first  derivative  of  the  function  you  are
solving for, then it turns out that the solution can always be found just by doing integrals.   

But as soon as you have more than one differential equation, or more than a first-order derivative, this is no longer true.
However,  some  simple  second-order  linear  differential  equations  can  nevertheless  be  solved  using  various  special
functions from Section 3.2.10. Indeed, historically many of these special functions were first introduced specifically in
order to represent the solutions to such equations.  

This is Airy's equation, which is solved in terms of Airy functions.  

In[13]:= DSolve[y''[x] - x y[x] == 0, y[x], x]

Out[13]= 88y@xD → AiryAi@xD C@1D + AiryBi@xD C@2D<<
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This equation comes out in terms of Bessel functions. 

In[14]:= DSolve[y''[x] - Exp[x] y[x] == 0, y[x], x]

Out[14]= 99y@xD → BesselIA0, 2 è!!!!!!x E C@1D + 2 BesselKA0, 2 è!!!!!!x E C@2D==

This requires Mathieu functions. 

In[15]:= DSolve[y''[x] + Cos[x] y[x] == 0, y, x]

Out[15]= 99y → FunctionA8x<, C@1D MathieuCA0, −2, x
2
E + C@2D MathieuSA0, −2, x

2
EE==

Occasionally second-order linear equations can be solved using only elementary functions. 

In[16]:= DSolve[x^2 y''[x] + y[x] == 0, y[x], x]

Out[16]= 99y@xD → è!!!x C@1D CosA 1
2
è!!!3 Log@xDE + è!!!x C@2D SinA 1

2
è!!!3 Log@xDE==

Beyond  second  order,  the  kinds  of  functions  needed  to  solve  even  fairly  simple  linear  differential  equations  become
extremely  complicated.  At  third  order,  the  generalized  Meijer  G  function  MeijerG  can  sometimes  be  used,  but  at
fourth  order  and beyond absolutely no  standard mathematical functions are typically adequate,  except  in very special
cases. 

Here is a third-order linear differential equation which can be solved in terms of generalized hypergeometric functions. 

In[17]:= DSolve[y'''[x] + x y[x] == 0, y[x], x]

Out[17]= 99y@xD → C@1D HypergeometricPFQA8<, 9 1
2
,

3
4
=, −

x4

64
E +

x C@2D HypergeometricPFQA8<, 8 3
4 ,

5
4 <, − x4

64 E
2 è!!!2

+

1
8
x2 C@3D HypergeometricPFQA8<, 9 5

4
, 3

2
=, −

x4

64
E==

This requires more general Meijer G functions. 

In[18]:= DSolve[y'''[x] + Exp[x] y[x] == 0, y[x], x]

Out[18]= 88y@xD → C@1D HypergeometricPFQ@8<, 81, 1<, − xD +

C@2D MeijerG@88<, 8<<, 880, 0<, 80<<, − xD +

C@3D MeijerG@88<, 8<<, 880, 0, 0<, 8<<, xD<<

For nonlinear differential equations, only rather special cases can usually ever be solved in terms of standard mathemati-
cal functions.  Nevertheless,  DSolve  includes fairly general  procedures  which allow it  to handle almost all  nonlinear
differential equations whose solutions are found in standard reference books. 

First-order nonlinear differential equations in which x  does not appear on its own are fairly easy to solve. 

In[19]:= DSolve[y'[x] - y[x]^2 == 0, y[x], x]

Out[19]= 99y@xD →
1

−x − C@1D ==
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This Riccati equation already gives a significantly more complicated solution.  

In[20]:= DSolve[y'[x] - y[x]^2 == x, y[x], x] // FullSimplify

Out[20]= 99y@xD →
è!!!x I−BesselJA− 2

3 ,
2 x3ê2
3 E + BesselJA 2

3 ,
2 x3ê2
3 E C@1DM

BesselJ@ 1
3 ,

2 x3ê2
3 D + BesselJ@− 1

3 ,
2 x3ê2
3 D C@1D ==

This Bernoulli equation, however, has a fairly simple solution.  

In[21]:= DSolve[y'[x] - x y[x]^2 - y[x] == 0, y[x], x]

Out[21]= 99y@xD → −
x

− x + x x − C@1D ==

This Abel equation can be solved but only implicitly.  

In[22]:= DSolve[y'[x] + x y[x]^3 + y[x]^2 == 0, y[x], x]

Solve::tdep :  The equations appear to involve the
variables to be solved for in an essentially non−algebraic way.

Out[22]= SolveA 1
2

i

k
jjjjjj
2 ArcTanhA −1−2 x y@xDè!!!!5 E

è!!!5
+ LogA −1 − x y@xD H−1 − x y@xDL

x2 y@xD2 E
y

{
zzzzzz C@1D − Log@xD, y@xDE

Beyond  ordinary  differential  equations,  one  can  consider  differential-algebraic  equations  that  involve  a  mixture  of
differential and algebraic equations.   

This solves a differential-algebraic equation. 

In[23]:= DSolve[{y'[x] + 3z'[x] == 4 y[x] + 1/x, y[x] + z[x] == 1}, {y[x], z[x]}, x]

Out[23]= 99y@xD →
3
2

+
1
18

H− −2 x C@1D − 9 −2 x H3 2 x + ExpIntegralEi@2 xDLL,

z@xD → −
1
2

+
1
18

H −2 x C@1D + 9 −2 x H3 2 x + ExpIntegralEi@2 xDLL==

DSolve@ eqn,  y @ x1,
 x2, … D,  8  x1,  x2, … <  D 

solve a partial differential equation for  y @ x1,  x2, … D 

DSolve@ eqn,  y,  8  x1,  x2, … <  D solve a partial differential equation for the function  y 

Solving partial differential equations. 

DSolve  is  set  up  to  handle  not  only  ordinary  differential  equations  in  which  just  a  single  independent  variable
appears, but also partial differential equations in which two or more independent variables appear. 

This finds the general solution to a simple partial differential equation with two independent variables. 

In[24]:= DSolve[D[y[x1, x2], x1] + D[y[x1, x2], x2] == 1/(x1 x2), y[x1, x2], {x1, x2}]

Out[24]= 99y@x1, x2D →
−Log@x1D + Log@x2D + x1 C@1D@−x1 + x2D − x2 C@1D@−x1 + x2D

x1 − x2
==
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Here is the result represented as a pure function. 

In[25]:= DSolve[D[y[x1, x2], x1] + D[y[x1, x2], x2] == 1/(x1 x2), y, {x1, x2}]

Out[25]= 99y → FunctionA8x1, x2<, −Log@x1D + Log@x2D + x1 C@1D@−x1 + x2D − x2 C@1D@−x1 + x2D
x1 − x2

E==

The basic mathematics of partial differential equations is considerably more complicated than that of ordinary differen-
tial  equations.  One  feature  is  that  whereas  the  general  solution  to  an  ordinary  differential  equation  involves  only
arbitrary constants, the general solution to a partial differential equation, if it can be found at all, must involve arbitrary
functions.  Indeed,  with  m  independent  variables,  arbitrary  functions  of  m - 1  arguments  appear.  DSolve  by  default
names these functions C[n]. 

Here is a simple PDE involving three independent variables. 

In[26]:= (D[#, x1] + D[#, x2] + D[#, x3])& [y[x1, x2, x3]] == 0

Out[26]= yH0,0,1L@x1, x2, x3D + yH0,1,0L@x1, x2, x3D + yH1,0,0L@x1, x2, x3D 0

The solution involves an arbitrary function of two variables. 

In[27]:= DSolve[%, y[x1, x2, x3], {x1, x2, x3}]

Out[27]= 88y@x1, x2, x3D → C@1D@−x1 + x2, −x1 + x3D<<

Here is the one-dimensional wave equation. 

In[28]:= (c^2 D[#, x, x] - D[#, t, t])& [y[x, t]] == 0

Out[28]= −yH0,2L@x, tD + c2 yH2,0L@x, tD 0

The solution to this second-order equation involves two arbitrary functions. 

In[29]:= DSolve[%, y[x, t], {x, t}]

Out[29]= 99y@x, tD → C@1DAt −
è!!!!!!c2 x
c2

E + C@2DAt +
è!!!!!!c2 x
c2

E==

For an ordinary differential equation, it is guaranteed that a general solution must exist, with the property that adding
initial or boundary conditions simply corresponds to forcing specific choices for arbitrary constants in the solution. But
for partial  differential  equations this is  no longer  true.  Indeed,  it  is  only for  linear  partial  differential and a few other
special types that such general solutions exist.  

Other  partial  differential  equations  can be  solved  only  when specific  initial  or  boundary  values  are  given,  and  in  the
vast majority of cases no solutions can be found as exact formulas in terms of standard mathematical functions. 

Since y and its derivatives appear only linearly here, a general solution exists. 

In[30]:= DSolve[x1 D[y[x1, x2], x1] + x2 D[y[x1, x2], x2] == Exp[x1 x2], y[x1, x2], {x1, 
x2}]

Out[30]= 99y@x1, x2D →
1
2
JExpIntegralEi@x1 x2D + 2 C@1DA x2

x1
EN==
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This weakly nonlinear PDE turns out to have a general solution. 

In[31]:= DSolve[D[y[x1, x2], x1] + D[y[x1, x2], x2] == Exp[y[x1, x2]], y[x1, x2], {x1, 
x2}]

Out[31]= 88y@x1, x2D → −Log@−x1 − C@1D@−x1 + x2DD<<

Here is a nonlinear PDE which has no general solution. 

In[32]:= DSolve[D[y[x1, x2], x1] D[y[x1, x2], x2] == a, y[x1, x2], {x1, x2}]

Out[32]= DSolve@yH0,1L@x1, x2D yH1,0L@x1, x2D a, y@x1, x2D, 8x1, x2<D

3.5.11 Integral Transforms and Related Operations

Laplace Transforms

LaplaceTransform@ expr,  t,  s D the Laplace transform of  expr 
InverseLaplaceTransform@ 

expr,  s,  t D 

the inverse Laplace transform of  expr 

One-dimensional Laplace transforms. 

The Laplace transform of a function f  HtL  is given by Ÿ0
¶

 f  HtL e-s t „ t . The inverse Laplace transform of F HsL  is given
for suitable g  by 1ÅÅÅÅÅÅÅÅÅÅ2 p i  Ÿg-i ¶

g+i ¶F HsL es t  „ s .   

Here is a simple Laplace transform. 

In[1]:= LaplaceTransform[t^4 Sin[t], t, s]

Out[1]= 
24 H1 + 5 s2 H−2 + s2LL

H1 + s2L5

Here is the inverse. 

In[2]:= InverseLaplaceTransform[%, s, t]

Out[2]= t4 Sin@tD

Even simple transforms often involve special functions. 

In[3]:= LaplaceTransform[1/(1 + t^2), t, s]

Out[3]= CosIntegral@sD Sin@sD +
1
2
Cos@sD Hπ − 2 SinIntegral@sDL

Here the result involves a Meijer G function. 

In[4]:= LaplaceTransform[1/(1 + t^3), t, s]

Out[4]= 
MeijerGA88 2

3 <, 8<<, 880, 1
3 ,

2
3 ,

2
3 <, 8<<, s3

27 E
2 è!!!3 π

Printed from the Mathematica Help Browser 27

©1988-2003 Wolfram Research, Inc. All rights reserved.



The Laplace transform of a Bessel function involves a hypergeometric function. 

In[5]:= LaplaceTransform[BesselJ[n, t], t, s]

Out[5]= 
Is +

è!!!!!!!!!!!!!1 + s2 M−n

è!!!!!!!!!!!!!1 + s2

Laplace transforms have the property that they turn integration and differentiation into essentially algebraic operations.
They are therefore commonly used in studying systems governed by differential equations. 

Integration becomes multiplication by 1 ê s  when one does a Laplace transform. 

In[6]:= LaplaceTransform[Integrate[f[u], {u, 0, t}], t, s]

Out[6]= 
LaplaceTransform@f@tD, t, sD

s

LaplaceTransform@ expr,
 8  t1,  t2, … <,  8  s1,  s2, … <  D 

the multidimensional Laplace transform of  expr 

InverseLaplaceTransform@ expr,
 8  s1,  s2, … <,  8  t1,  t2, … <  D 

the multidimensional inverse Laplace transform of  expr 

Multidimensional Laplace transforms. 

Fourier Transforms

FourierTransform@ expr,  t,  w  D the Fourier transform of  expr 
InverseFourierTransform@ 

expr,  w,  t D 

the inverse Fourier transform of  expr 

One-dimensional Fourier transforms. 

Here is a Fourier transform. 

In[1]:= FourierTransform[1/(1 + t^4), t, ω]

Out[1]= J 1
4

+
4
N − H1+ L ωè!!!!2 è!!!π I è!!!!2 ω I− +

è!!!!2 ωM UnitStep@−ωD + I1 −
è!!!!2 ωM UnitStep@ωDM

This finds the inverse. 

In[2]:= InverseFourierTransform[%, ω, t]

Out[2]= 
1

1 + t4

In Mathematica the Fourier transform of a function f  HtL  is by default defined to be 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p
 Ÿ-¶

¶
 f  HtL ei w t „ t . The inverse

Fourier transform of F HwL  is similarly defined as 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p
 Ÿ-¶

¶
 F HwL e-i w t  „ w . 

In  different  scientific  and  technical  fields  different  conventions  are  often  used  for  defining  Fourier  transforms.  The
option FourierParameters in Mathematica allows you to choose any of these conventions you want. 

28 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



common

convention 

setting Fourier transform inverse Fourier transform 

Mathematica 
default

80,  1< 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p
 Ÿ-¶

¶
 

f  HtL ei w t „ t

 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p
 Ÿ-¶

¶
 F  HwL e-i w t „ w 

pure
mathematics

81,  −1< Ÿ-¶

¶
 f  

HtL e-i w t „ t
 1ÅÅÅÅÅÅÅÅ2 p  Ÿ-¶

¶
 F HwL ei w t „ w 

classical
physics

8−1,  1< 1ÅÅÅÅÅÅÅÅ2 p  Ÿ-¶

¶
 

f  HtL ei w t „ t
 Ÿ-¶

¶
 F HwL e-i w t  „ w 

modern
physics

80,  1< 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p
 Ÿ-¶

¶
 

f  HtL ei w t „ t

 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p
 Ÿ-¶

¶
 F  HwL e-i w t „ w 

systems
engineering

81,  −1< Ÿ-¶

¶
 f  

HtL e-i w t „ t
 1ÅÅÅÅÅÅÅÅ2 p  Ÿ-¶

¶
 F HwL ei w t „ w 

signal
processing

80,  −2  Pi< Ÿ-¶

¶
 f  HtL

e-2 p i w t „ t
 Ÿ-¶

¶
 F HwL e2 p i w t  „ w 

general case 8  a,  b <  "##############»b»ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH2 pL1-a  Ÿ-¶

¶
 

f  HtL ei b w t  „ t

 "##############»b»ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH2 pL1+a  Ÿ-¶

¶
 F HwL e-i b w t  „ w 

Typical settings for FourierParameters with various conventions. 

Here is a Fourier transform with the default choice of parameters. 

In[3]:= FourierTransform[Exp[-t^2], t, ω]

Out[3]= 
− ω2

4

è!!!2

Here is the same Fourier transform with the choice of parameters typically used in signal processing. 

In[4]:= FourierTransform[Exp[-t^2], t, ω, FourierParameters->{0, -2 Pi}]

Out[4]= −π2 ω2 è!!!π

FourierSinTransform@ 

expr,  t,  w D 

Fourier sine transform

FourierCosTransform@ 

expr,  t,  w D 

Fourier cosine transform

InverseFourierSinTransform@ 

expr,  w,  t D 

inverse Fourier sine transform

InverseFourierCosTransform@ 

expr,  w,  t D 

inverse Fourier cosine transform

Fourier sine and cosine transforms. 

In  some applications  of  Fourier  transforms,  it  is  convenient  to  avoid  ever  introducing  complex exponentials.  Fourier
sine and cosine transforms correspond to integrating respectively with sin Hw tL  and cos Hw tL  instead of exp Hi w tL , and
using limits 0 and ¶  rather than -¶  and ¶ . 
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Here are the Fourier sine and cosine transforms of e-t . 

In[5]:= {FourierSinTransform[Exp[-t], t, ω], FourierCosTransform[Exp[-t], t, ω]}

Out[5]= 9
"#####2

π ω

1 + ω2
,

"#####2
π

1 + ω2 =

FourierTransform@ expr,  
8  t1,  t2, … <,  8  w1,  w2, … <  D 

the multidimensional Fourier transform of  expr 

InverseFourierTransform@ expr,
 8  w1,  w2, … <,  8  t1,  t2, … <  D 

the multidimensional inverse Fourier transform of  expr 

FourierSinTransform@ expr,  
8  t1,  t2, … <,  8  w1,  w2, … <  D ,  
FourierCosTransform@ expr,
 8  t1,  t2, … <,  8  w1,  w2, … <  D

the multidimensional sine and cosine Fourier transforms of  expr 

InverseFourierSinTransform@ 

expr,  8  w1,  w2, … 
<,  8  t1,  t2, … <  D ,  
InverseFourierCosTransform@ 

expr,  8  w1,  w2, … <,  8  t1,  t2, … <  D 

the multidimensional inverse
Fourier sine and cosine transforms of  expr 

Multidimensional Fourier transforms. 

This evaluates a two-dimensional Fourier transform. 

In[6]:= FourierTransform[(u v)^2 Exp[-u^2-v^2], {u, v}, {a, b}]

Out[6]= 
1
32

H−2 + a2L H−2 + b2L − 1
4 Ha2+b2L

This inverts the transform. 

In[7]:= InverseFourierTransform[%, {a, b}, {u, v}]

Out[7]= −u2−v2 u2 v2

Z Transforms

ZTransform@ expr,  n,  z D Z transform of  expr 
InverseZTransform@ expr,  z,  n D inverse Z transform of  expr 

Z transforms. 

The Z transform of a function f  HnL  is given by ⁄n=0
¶ f  HnL z-n . The inverse Z transform of F HzL  is given by the contour

integral 1ÅÅÅÅÅÅÅÅÅÅ2 p i  ò F HzL zn-1 „ z . Z transforms are effectively discrete analogs of Laplace transforms. They are widely used
for solving difference equations, especially in digital signal processing and control  theory. They can be thought  of as
producing generating functions, of the kind commonly used in combinatorics and number theory. 

This computes the Z transform of 2-n . 

In[1]:= ZTransform[2^-n, n, z]

Out[1]= 
2 z

−1 + 2 z
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Here is the inverse Z transform. 

In[2]:= InverseZTransform[%, z, n]

Out[2]= 2−n

The generating function for 1 ê n!  is an exponential function. 

In[3]:= ZTransform[1/n!, n, z]

Out[3]= 
1
z

3.5.12 Generalized Functions and Related Objects

In  many practical  situations  it  is  convenient  to  consider  limits in  which a fixed amount of  something is  concentrated
into  an  infinitesimal  region.  Ordinary  mathematical  functions  of  the  kind  normally  encountered  in  calculus  cannot
readily  represent  such  limits.  However,  it  is  possible  to  introduce  generalized  functions  or  distributions  which  can
represent these limits in integrals and other types of calculations. 

DiracDelta@ x D Dirac delta function  d HxL  
UnitStep@ x D unit step function, equal to 0 for  x < 0  and 1 for  x > 0  

Dirac delta and unit step functions. 

Here is a function concentrated around x = 0. 

In[1]:= Plot[Sqrt[50/Pi] Exp[-50 x^2], {x, -2, 2}, PlotRange->All]

-2 -1 1 2

1

2

3

4

Out[1]=  Graphics 

Printed from the Mathematica Help Browser 31

©1988-2003 Wolfram Research, Inc. All rights reserved.



As n  gets larger, the functions become progressively more concentrated. 

In[2]:= Plot[Evaluate[Sqrt[n/Pi] Exp[-n x^2] /. n -> {1, 10, 100}], {x, -2, 2}, 
PlotRange->All];

-2 -1 1 2

1

2

3

4

5

For any n > 0, their integrals are nevertheless always equal to 1. 

In[3]:= Integrate[Sqrt[n/Pi] Exp[-n x^2], {x, -Infinity, Infinity}, Assumptions -> n > 0]

Out[3]= 1

The limit of the functions for infinite n  is effectively a Dirac delta function, whose integral is again 1. 

In[4]:= Integrate[DiracDelta[x], {x, -Infinity, Infinity}]

Out[4]= 1

DiracDelta evaluates to 0 at all real points except x = 0. 

In[5]:= Table[DiracDelta[x], {x, -3, 3}]

Out[5]= 80, 0, 0, DiracDelta@0D, 0, 0, 0<

Inserting  a  delta  function  in  an  integral  effectively  causes  the  integrand  to  be  sampled  at  discrete  points  where  the
argument of the delta function vanishes. 

This samples the function f with argument 2. 

In[6]:= Integrate[DiracDelta[x - 2] f[x], {x, -4, 4}]

Out[6]= f@2D

Here is a slightly more complicated example. 

In[7]:= Integrate[DiracDelta[x^2 - x - 1], {x, 0, 2}]

Out[7]= 
1
è!!!5
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This effectively counts the number of zeros of cos HxL  in the region of integration. 

In[8]:= Integrate[DiracDelta[Cos[x]], {x, -30, 30}]

Out[8]= 20

The  unit  step  function  UnitStep[x]  is  effectively  the  indefinite  integral  of  the  delta  function.  It  is  sometimes
known as the Heaviside function, and is variously denoted H  HxL , q HxL , m HxL , and U  HxL . It does not need to be consid-
ered as a generalized function, though it has a discontinuity at x = 0. The unit step function is often used in setting up
piecewise  continuous  functions,  and  in  representing  signals  and  other  quantities  that  become  non-zero  only  beyond
some point. 

The indefinite integral of the delta function is the unit step function. 

In[9]:= Integrate[DiracDelta[x], x]

Out[9]= UnitStep@xD

This generates a square wave. 

In[10]:= Plot[UnitStep[Sin[x]], {x, 0, 30}]

5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

Out[10]=  Graphics 

Here is the integral of the square wave. 

In[11]:= Integrate[UnitStep[Sin[x]], {x, 0, 30}]

Out[11]= 5 π

The value of the integral depends on whether a  lies in the interval H-2, 2L . 

In[12]:= Integrate[f[x] DiracDelta[x - a], {x, -2, 2}]

Out[12]= f@aD

DiracDelta and UnitStep often arise in doing integral transforms. 
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The Fourier transform of a constant function is a delta function. 

In[13]:= FourierTransform[1, t, ω]

Out[13]= 
è!!!!!!!2 π DiracDelta@ωD

The Fourier transform of cos HtL  involves the sum of two delta functions. 

In[14]:= FourierTransform[Cos[t], t, ω]

Out[14]= $%%%%%%π
2

DiracDelta@−1 + ωD + $%%%%%%π
2

DiracDelta@1 + ωD

Dirac delta functions can be used in DSolve to find the impulse response or Green's function of systems represented
by linear and certain other differential equations. 

This finds the behavior of a harmonic oscillator subjected to an impulse at t = 0. 

In[15]:= DSolve[{x''[t] + r x[t] == DiracDelta[t], x[0]==0, x'[0]==1}, x[t], t]

Out[15]= 99x@tD →
SinAè!!!r tE UnitStep@tD

è!!!r
==

DiracDelta@ x1,  x2, … D multidimensional Dirac delta function equal to 0 unless all the  
xi  are zero

UnitStep@ x1,  x2, … D multidimensional unit step function, equal to 0 if any of the  
xi  are negative

Multidimensional Dirac delta and unit step functions. 

Related  to  the  multidimensional  Dirac  delta  function  are  two  integer  functions:  discrete  delta  and  Kronecker  delta.
Discrete  delta  d Hn1, n2, …L  is  1  if  all  the  ni = 0,  and  is  zero  otherwise.  Kronecker  delta  dn1  n2  …  is  1  if  all  the  ni  are
equal, and is zero otherwise. 

DiscreteDelta@ n1,  n2, … D discrete delta  d Hn1, n2, …L  
KroneckerDelta@ n1,  n2, … D Kronecker delta  dn1  n2  …  

Integer delta functions. 

34 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



3.6 Series, Limits and Residues

3.6.1 Making Power Series Expansions

Series@ expr,  8  x,  x0,  n <  D find the power series expansion of  expr 
about the point  x = x0  to order at most  Hx - x0Ln  

Series@ expr,  8  x,  
x0,  nx  <,  8  y,  y0,  ny  <  D 

find series expansions with respect to  y then  x 

Functions for creating power series. 

Here is the power series expansion for exp HxL  about the point x = 0 to order x4 . 

In[1]:= Series[ Exp[x], {x, 0, 4} ]

Out[1]= 1 + x +
x2

2
+
x3

6
+

x4

24
+ O@xD5

Here is the series expansion of exp HxL  about the point x = 1. 

In[2]:= Series[ Exp[x], {x, 1, 4} ]

Out[2]= + Hx − 1L +
1
2

Hx − 1L2 +
1
6

Hx − 1L3 +
1
24

Hx − 1L4 + O@x − 1D5

If Mathematica does not know the series expansion of a particular function, it writes the result symbolically in terms of derivatives. 

In[3]:= Series[ f[x], {x, 0, 3} ]

Out[3]= f@0D + f @0D x +
1
2
f @0D x2 +

1
6
fH3L@0D x3 + O@xD4

In mathematical terms, Series can be viewed as a way of constructing Taylor series for functions. 

The  standard  formula  for  the  Taylor  series  expansion  about  the  point  x = x0  of  a  function  g HxL  with  k th  derivative
gHkL HxL  is  g HxL = ‚

k=0

¶
gHkL Hx0L Hx-x0Lk

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅk! .  Whenever  this  formula  applies,  it  gives  the  same  results  as  Series.  (For
common functions, Series nevertheless internally uses somewhat more efficient algorithms.) 

Series can also generate some power series that involve fractional and negative powers, not directly covered by the
standard Taylor series formula. 

Here is a power series that contains negative powers of x. 

In[4]:= Series[ Exp[x]/x^2, {x, 0, 4} ]

Out[4]= 
1
x2

+
1
x

+
1
2

+
x
6

+
x2

24
+

x3

120
+

x4

720
+ O@xD5

Here is a power series involving fractional powers of x. 

In[5]:= Series[ Exp[Sqrt[x]], {x, 0, 2} ]

Out[5]= 1 + è!!!x +
x
2

+
x3ê2

6
+

x2

24
+ O@xD5ê2

Printed from the Mathematica Help Browser 1

©1988-2003 Wolfram Research, Inc. All rights reserved.



Series can also handle series that involve logarithmic terms.  

In[6]:= Series[ Exp[2x] Log[x], {x, 0, 2} ]

Out[6]= Log@xD + 2 Log@xD x + 2 Log@xD x2 + O@xD3

There are, of course, mathematical functions for which no standard power series exist. Mathematica  recognizes many
such cases. 

Series sees that exp H 1ÅÅÅÅx L  has an essential singularity at x = 0, and does not produce a power series.  

In[7]:= Series[ Exp[1/x], {x, 0, 2} ]

Series::esss :  Essential singularity encountered in
1
x +O 1  1 D3.

Out[7]= 
1
x

Series can nevertheless give you the power series for exp H 1ÅÅÅÅx L  about the point x = ¶ .   

In[8]:= Series[ Exp[1/x], {x, Infinity, 3} ]

Out[8]= 1 +
1
x

+
1
2
J 1
x
N
2

+
1
6
J 1
x
N
3

+ OA 1
x
E
4

Especially when negative powers occur, there is some subtlety in exactly how many terms of a particular power series
the function Series will generate. 

One way to understand what happens is to think of the analogy between power series taken to a certain order, and real
numbers  taken  to  a  certain  precision.  Power  series  are  “approximate  formulas”  in  much  the  same  sense  as
finite-precision real numbers are approximate numbers.   

The procedure that Series follows in constructing a power series is largely analogous to the procedure that N follows
in constructing a real-number approximation. Both functions effectively start by replacing the smallest pieces of your
expression  by  finite-order,  or  finite-precision,  approximations,  and  then  evaluating  the  resulting  expression.  If  there
are, for example, cancellations, this procedure may give a final result whose order or precision is less than the order or
precision that you originally asked for. Like N, however, Series has some ability to retry its computations so as to get
results to the order you ask for. In cases where it does not succeed, you can usually still get results to a particular order
by asking for a higher order than you need. 

Series compensates for cancellations in this computation, and succeeds in giving you a result to order x3 . 

In[9]:= Series[ Sin[x]/x^2, {x, 0, 3} ]

Out[9]= 
1
x

−
x
6

+
x3

120
+ O@xD4

When you make a power series expansion in a variable x, Mathematica  assumes that all objects that do not explicitly
contain x  are in  fact  independent  of  x.  Series  thus does  partial  derivatives  (effectively using D)  to  build  up  Taylor
series. 

Both a and n are assumed to be independent of x.   

In[10]:= Series[ (a + x)^n , {x, 0, 2} ]

Out[10]= an + a−1+n n x + J−
1
2
a−2+n n +

1
2
a−2+n n2N x2 + O@xD3
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a[x] is now given as an explicit function of x. 

In[11]:= Series[ (a[x] + x)^n, {x, 0, 2} ]

Out[11]= a@0Dn + n a@0D−1+n H1 + a @0DL x +

J 1
2
H−1 + nL n a@0D−2+n H1 + a @0DL2 +

1
2
n a@0D−1+n a @0DN x2 + O@xD3

You can use Series to generate power series in a sequence of different variables. Series works like Integrate,
Sum and so on, and expands first with respect to the last variable you specify.  

Series performs a series expansion successively with respect to each variable. The result in this case is a series in x, whose 
coefficients are series in y. 

In[12]:= Series[Exp[x y], {x, 0, 3}, {y, 0, 3}]

Out[12]= 1 + Hy + O@yD4L x + J y
2

2
+ O@yD4N x2 + J y

3

6
+ O@yD4N x3 + O@xD4

3.6.2 Advanced Topic: The Representation of Power Series

Power series are represented in Mathematica as SeriesData objects.  

The power series is printed out as a sum of terms, ending with O[x] raised to a power. 

In[1]:= Series[Cos[x], {x, 0, 4}]

Out[1]= 1 −
x2

2
+

x4

24
+ O@xD5

Internally, however, the series is stored as a SeriesData object. 

In[2]:= InputForm[%]

Out[2]//InputForm= 

SeriesData[x, 0, {1, 0, -1/2, 0, 1/24}, 0, 5, 1]

By  using  SeriesData  objects,  rather  than  ordinary  expressions,  to  represent  power  series,  Mathematica  can  keep
track of the order and expansion point, and do operations on the power series appropriately. You should not normally
need to know the internal structure of SeriesData objects. 

You can recognize  a  power  series  that  is  printed  out  in  standard  output  form by the presence of  an O[x]  term. This
term mimics the standard mathematical notation O HxL , and represents omitted terms of order x . For various reasons of
consistency, Mathematica  uses the notation O[x]^n for omitted terms of order xn , corresponding to the mathematical
notation O HxLn , rather than the slightly more familiar, though equivalent, form O HxnL .  

Any time that an object  like O[x]  appears in a sum of terms, Mathematica  will in fact convert  the whole sum into a
power series. 

The presence of O[x] makes Mathematica convert the whole sum to a power series. 

In[3]:= a x + Exp[x] + O[x]^3

Out[3]= 1 + H1 + aL x +
x2

2
+ O@xD3
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3.6.3 Operations on Power Series

Mathematica allows you to perform many operations on power series. In all cases, Mathematica gives results only to as
many terms as can be justified from the accuracy of your input. 

Here is a power series accurate to fourth order in x . 

In[1]:= Series[ Exp[x], {x, 0, 4} ]

Out[1]= 1 + x +
x2

2
+
x3

6
+

x4

24
+ O@xD5

When you square the power series, you get another power series, also accurate to fourth order. 

In[2]:= %^2

Out[2]= 1 + 2 x + 2 x2 +
4 x3

3
+
2 x4

3
+ O@xD5

Taking the logarithm gives you the result 2x, but only to order x4 . 

In[3]:= Log[%]

Out[3]= 2 x + O@xD5

Mathematica  keeps  track  of  the  orders  of  power  series  in  much  the  same  way  as  it  keeps  track  of  the  precision  of
approximate real numbers. Just as with numerical calculations, there are operations on power series which can increase,
or decrease, the precision (or order) of your results. 

Here is a power series accurate to order x10 . 

In[4]:= Series[ Cos[x], {x, 0, 10} ]

Out[4]= 1 −
x2

2
+

x4

24
−

x6

720
+

x8

40320
−

x10

3628800
+ O@xD11

This gives a power series that is accurate only to order x6 . 

In[5]:= 1 / (1 - %)

Out[5]= 
2
x2

+
1
6

+
x2

120
+

x4

3024
+

x6

86400
+ O@xD7

Mathematica also allows you to do calculus with power series.    

Here is a power series for tan HxL . 

In[6]:= Series[Tan[x], {x, 0, 10}]

Out[6]= x +
x3

3
+
2 x5

15
+
17 x7

315
+
62 x9

2835
+ O@xD11
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Here is its derivative with respect to x. 

In[7]:= D[%, x]

Out[7]= 1 + x2 +
2 x4

3
+
17 x6

45
+
62 x8

315
+ O@xD10

Integrating with respect to x gives back the original power series. 

In[8]:= Integrate[%, x]

Out[8]= x +
x3

3
+
2 x5

15
+
17 x7

315
+
62 x9

2835
+ O@xD11

When you perform an operation that involves both a normal expression and a power series, Mathematica  “absorbs”
the normal expression into the power series whenever possible. 

The 1 is automatically absorbed into the power series. 

In[9]:= 1 + Series[Exp[x], {x, 0, 4}]

Out[9]= 2 + x +
x2

2
+
x3

6
+

x4

24
+ O@xD5

The x^2 is also absorbed into the power series. 

In[10]:= % + x^2

Out[10]= 2 + x +
3 x2

2
+
x3

6
+
x4

24
+ O@xD5

If you add Sin[x], Mathematica generates the appropriate power series for Sin[x], and combines it with the power series you 
have. 

In[11]:= % + Sin[x]

Out[11]= 2 + 2 x +
3 x2

2
+

x4

24
+ O@xD5

Mathematica also absorbs expressions that multiply power series. The symbol a is assumed to be independent of x. 

In[12]:= (a + x) %^2

Out[12]= 4 a + H4 + 8 aL x + H8 + 10 aL x2 + H10 + 6 aL x3 + J6 +
29 a
12

N x4 + O@xD5

Mathematica  knows  how  to  apply  a  wide  variety  of  functions  to  power  series.  However,  if  you  apply  an  arbitrary
function to a power series, it is impossible for Mathematica to give you anything but a symbolic result.  

Mathematica does not know how to apply the function f to a power series, so it just leaves the symbolic result. 

In[13]:= f[ Series[ Exp[x], {x, 0, 3} ] ]

Out[13]= fA1 + x +
x2

2
+
x3

6
+ O@xD4E
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3.6.4 Advanced Topic: Composition and Inversion of Power Series

When you manipulate power series, it is sometimes convenient to think of the series as representing functions,  which
you can, for example, compose or invert. 

ComposeSeries@ 

series1,  series2, … D 

compose power series

InverseSeries@ series,  x D invert a power series

Composition and inversion of power series. 

Here is the power series for exp HxL  to order x5 . 

In[1]:= Series[Exp[x], {x, 0, 5}]

Out[1]= 1 + x +
x2

2
+
x3

6
+

x4

24
+

x5

120
+ O@xD6

This replaces the variable x  in the power series for exp HxL  by a power series for sin HxL . 

In[2]:= ComposeSeries[%, Series[Sin[x], {x, 0, 5}]]

Out[2]= 1 + x +
x2

2
−
x4

8
−

x5

15
+ O@xD6

The result is the power series for exp Hsin HxLL . 

In[3]:= Series[Exp[Sin[x]], {x, 0, 5}]

Out[3]= 1 + x +
x2

2
−
x4

8
−

x5

15
+ O@xD6

If  you  have  a  power  series  for  a  function  f  HyL ,  then  it  is  often  possible  to  get  a  power  series  approximation  to  the
solution  for  y  in  the  equation  f  HyL = x .  This  power  series  effectively  gives  the  inverse  function  f-1 HxL  such  that
f  H f-1 HxLL = x .  The operation of  finding the power series for an inverse function is sometimes known as reversion  of
power series.  

Here is the series for sin HyL . 

In[4]:= Series[Sin[y], {y, 0, 5}]

Out[4]= y −
y3

6
+

y5

120
+ O@yD6

Inverting the series gives the series for sin-1 HxL . 

In[5]:= InverseSeries[%, x]

Out[5]= x +
x3

6
+
3 x5

40
+ O@xD6

Composing the two series gives the identity function. 

In[6]:= ComposeSeries[%, %%]

Out[6]= y + O@yD6
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3.6.5 Converting Power Series to Normal Expressions

Normal@ expr D convert a power series to a normal expression

Converting power series to normal expressions. 

As discussed above, power series in Mathematica are represented in a special internal form, which keeps track of such
attributes as their expansion order. 

For some purposes, you may want to convert power series to normal expressions. From a mathematical point of view,
this corresponds to truncating the power series, and assuming that all higher-order terms are zero. 

This generates a power series, with four terms. 

In[1]:= t = Series[ ArcTan[x], {x, 0, 8} ]

Out[1]= x −
x3

3
+
x5

5
−
x7

7
+ O@xD9

Squaring the power series gives you another power series, with the appropriate number of terms. 

In[2]:= t^2

Out[2]= x2 −
2 x4

3
+
23 x6

45
−
44 x8

105
+ O@xD10

Normal truncates the power series, giving a normal expression. 

In[3]:= Normal[%]

Out[3]= x2 −
2 x4

3
+
23 x6

45
−
44 x8

105

You can now apply standard algebraic operations. 

In[4]:= Factor[%]

Out[4]= −
1
315

x2 H−315 + 210 x2 − 161 x4 + 132 x6L

SeriesCoefficient@ series,  n D give the coefficient of the  n  th  order term in a power series

Extracting coefficients of terms in power series. 

This gives the coefficient of x7  in the original power series. 

In[5]:= SeriesCoefficient[t, 7]

Out[5]= −
1
7
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3.6.6 Solving Equations Involving Power Series

LogicalExpand@ 

series1   ==  series2  D 

give the equations obtained by equating
corresponding coefficients in the power series

Solve@ series1   == 

 series2,  8  a1,  a2, … <  D 

solve for coefficients in power series

Solving equations involving power series. 

Here is a power series. 

In[1]:= y = 1 + Sum[a[i] x^i, {i, 3}] + O[x]^4

Out[1]= 1 + a@1D x + a@2D x2 + a@3D x3 + O@xD4

This gives an equation involving the power series. 

In[2]:= D[y, x]^2 - y == x

Out[2]= H−1 + a@1D2L + H−a@1D + 4 a@1D a@2DL x + H−a@2D + 4 a@2D2 + 6 a@1D a@3DL x2 + O@xD3 x

LogicalExpand generates a sequence of equations for each power of x. 

In[3]:= LogicalExpand[ % ]

Out[3]= −1 + a@1D2 0 && −1 − a@1D + 4 a@1D a@2D 0 && −a@2D + 4 a@2D2 + 6 a@1D a@3D 0

This solves the equations for the coefficients a[i]. You can also feed equations involving power series directly to Solve. 

In[4]:= Solve[ % ]

Out[4]= 99a@3D → −
1
12

, a@1D → 1, a@2D →
1
2
=, 8a@3D → 0, a@1D → −1, a@2D → 0<=

Some  equations  involving  power  series  can  also  be  solved  using  the  InverseSeries  function  discussed  in
Section 3.6.4. 

3.6.7 Summation of Series

Sum@ expr,  8  n,  nmin,  nmax <  D find the sum of  expr as  n goes from  nmin to  nmax 

Evaluating sums. 

Mathematica recognizes this as the power series expansion of ex .  

In[1]:= Sum[x^n/n!, {n, 0, Infinity}]

Out[1]= x
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This sum comes out in terms of a Bessel function.  

In[2]:= Sum[x^n/(n!^2), {n, 0, Infinity}]

Out[2]= BesselIA0, 2 è!!!x E

Here is another sum that can be done in terms of common special functions. 

In[3]:= Sum[n! x^n/(2n)!, {n, 1, Infinity}]

Out[3]= 
1
2

xê4 è!!!π è!!!x ErfA
è!!!x
2

E

Generalized hypergeometric functions are not uncommon in sums.  

In[4]:= Sum[x^n/(n!^4), {n, 0, Infinity}]

Out[4]= HypergeometricPFQ@8<, 81, 1, 1<, xD

There are many analogies between sums and integrals. And just as it is possible to have indefinite integrals, so indefi-
nite sums can be set up by using symbolic variables as upper limits.  

This is effectively an indefinite sum. 

In[5]:= Sum[k, {k, 0, n}]

Out[5]= 
1
2
n H1 + nL

This sum comes out in terms of incomplete gamma functions.  

In[6]:= Sum[x^k/k!, {k, 0, n}]

Out[6]= 
x H1 + nL Gamma@1 + n, xD

Gamma@2 + nD

This sum involves polygamma functions.  

In[7]:= Sum[1/(k+1)^4, {k, 0, n}]

Out[7]= 
π4

90
−
1
6
PolyGamma@3, 2 + nD

Taking the difference between results for successive values of n  gives back the original summand. 

In[8]:= FullSimplify[ % - (% /. n->n-1) ]

Out[8]= 
1

H1 + nL4

Mathematica  can do essentially all sums that are found in books of tables. Just as with indefinite integrals,  indefinite
sums of expressions involving simple functions tend to give answers that involve more complicated functions. Definite
sums, like definite integrals, often, however, come out in terms of simpler functions. 
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This indefinite sum gives a quite complicated result. 

In[9]:= Sum[Binomial[2k, k]/3^(2k), {k, 0, n}]

Out[9]= 
3
è!!!5

−
H 9

4 L
−1−n

Gamma@ 3
2 + nD Hypergeometric2F1@1, 3

2 + n, 2 + n, 4
9 Dè!!!π Gamma@2 + nD

The definite form is much simpler. 

In[10]:= Sum[Binomial[2k, k]/3^(2k), {k, 0, Infinity}]

Out[10]= 
3
è!!!5

Here is a slightly more complicated definite sum. 

In[11]:= Sum[PolyGamma[k]/k^2, {k, 1, Infinity}]

Out[11]= 
1
6
H−EulerGamma π2 + 6 Zeta@3DL

3.6.8 Solving Recurrence Equations

If you represent the nth  term in a sequence as a[n], you can use a recurrence equation  to specify how it is related to
other terms in the sequence.      

RSolve takes recurrence equations and solves them to get explicit formulas for a[n]. 

This solves a simple recurrence equation. 

In[12]:= RSolve[{a[n] == 2 a[n-1], a[1] == 1}, a[n], n]

Out[12]= 88a@nD → 2−1+n<<

This takes the solution and makes an explicit table of the first ten a[n]. 

In[13]:= Table[a[n] /. First[%], {n, 10}]

Out[13]= 81, 2, 4, 8, 16, 32, 64, 128, 256, 512<

RSolve@ eqn,  a @ n D,  n D solve a recurrence equation

Solving a recurrence equation. 

This solves a recurrence equation for a geometric series. 

In[14]:= RSolve[{a[n] == r a[n-1] + 1, a[1] == 1}, a[n], n]

Out[14]= 99a@nD →
−1 + rn

−1 + r
==
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This gives the same result. 

In[15]:= RSolve[{a[n+1] == r a[n] + 1, a[1] == 1}, a[n], n]

Out[15]= 99a@nD →
−1 + rn

−1 + r
==

This gives an algebraic solution to the Fibonacci recurrence equation. 

In[16]:= RSolve[{a[n] == a[n-1] + a[n-2], a[1] == a[2] == 1}, a[n], n]

Out[16]= 99a@nD → −
I−5 + è!!!5 M I−I 1

2 −
è!!!!5
2 M

n
+ I 1

2 +
è!!!!5
2 M

n
M

5 I−1 + è!!!5 M
==

RSolve can be thought of as a discrete analog of DSolve. Many of the same functions generated in solving differen-
tial equations also appear in finding symbolic solutions to recurrence equations. 

This generates a gamma function, which generalizes the factorial. 

In[17]:= RSolve[{a[n] == n a[n-1], a[1] == 1}, a[n], n]

Out[17]= 88a@nD → Gamma@1 + nD<<

This second-order recurrence equation comes out in terms of Bessel functions. 

In[18]:= RSolve[{a[n + 1] == n a[n] + a[n - 1], a[1] == 0, a[2] == 1}, a[n], n]

Out[18]= 99a@nD →
BesselI@n, −2D BesselK@1, 2D − BesselI@1, −2D BesselK@n, 2D
BesselI@2, −2D BesselK@1, 2D − BesselI@1, −2D BesselK@2, 2D ==

RSolve  does  not  require  you  to  specify  explicit  values  for  terms  such  as  a[1].  Like  DSolve,  it  automatically
introduces undetermined constants C[i] to give a general solution. 

This gives a general solution with one undetermined constant. 

In[19]:= RSolve[a[n] == n a[n-1], a[n], n]

Out[19]= 88a@nD → C@1D Gamma@1 + nD<<

RSolve  can  solve  equations  that  do  not  depend  only  linearly on  a[n].  For  nonlinear  equations,  however,  there  are
sometimes several distinct solutions that must be given. Just as for differential equations, it is a difficult matter to find
symbolic solutions to recurrence equations, and standard mathematical functions only cover a limited set of cases. 

Here is the general solution to a nonlinear recurrence equation. 

In[20]:= RSolve[{a[n] == a[n + 1] a[n - 1]}, a[n], n]

Out[20]= 88a@nD → C@1D Cos@ n π
3 D+C@2D Sin@ n π

3 D<<

This gives two distinct solutions. 

In[21]:= RSolve[a[n] == (a[n + 1] a[n - 1])^2, a[n], n]

Out[21]= 99a@nD → C@2D CosAn ArcTanAè!!!!!!!15 EE+C@1D SinAn ArcTanAè!!!!!!!15 EE=,
9a@nD →

2 π
3 +C@2D CosAn ArcTanAè!!!!!!!15 EE+C@1D SinAn ArcTanAè!!!!!!!15 EE==
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RSolve  can  solve  not  only  ordinary  difference  equations  in  which  the  arguments  of  a  differ  by  integers,  but  also
q-difference equations in which the arguments of a are related by multiplicative factors.    

This solves the q -difference analog of the factorial equation. 

In[22]:= RSolve[a[q n] == n a[n], a[n], n]

Out[22]= 99a@nD → n
1
2 I−1+ Log@nD

Log@qD M C@1D==

Here is a second-order q -difference equation. 

In[23]:= RSolve[a[n] == a[q n] + a[n/q], a[n], n]

Out[23]= 99a@nD → C@1D CosA π Log@nD
3 Log@qD E + C@2D SinA π Log@nD

3 Log@qD E==

RSolve@ 8  eqn1,  eqn2, … <,  

8  a1  @ n D,  a2  @ n D, … <,  n D 

solve a coupled system of recurrence equations

Solving systems of recurrence equations. 

This solves a system of two coupled recurrence equations. 

In[24]:= RSolve[{a[n] == b[n - 1] + n, b[n] == a[n - 1] - n, a[1] == b[1] == 1}, {a[n], 
b[n]}, n]

Out[24]= 99a@nD →
1
4
H4 + 3 H−1Ln + H−1L2 n + 2 H−1L2 n nL, b@nD →

1
4
H4 − 3 H−1Ln − H−1L2 n − 2 H−1L2 n nL==

RSolve@ eqns,  a @ n1,
 n2, … D,  8  n1,  n2, … <  D 

solve partial recurrence equations

Solving partial recurrence equations. 

Just  as one can set up partial  differential  equations that  involve functions of  several variables,  so one can also set up
partial recurrence equations that involve multi-dimensional sequences. Just as in the differential equations case, general
solutions to partial recurrence equations can involve undetermined functions.   

This gives the general solution to a simple partial recurrence equation. 

In[25]:= RSolve[a[i + 1, j + 1] == i j a[i, j], a[i, j], {i, j}]

Out[25]= 99a@i, jD →
Gamma@iD Gamma@jD C@1D@i − jD

Gamma@1 − i + jD ==

3.6.9 Finding Limits

In  doing  many  kinds  of  calculations,  you  need  to  evaluate  expressions  when  variables  take  on  particular  values.  In
many cases, you can do this simply by applying transformation rules for the variables using the /. operator. 
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You can get the value of cos Hx2L  at 0 just by explicitly replacing x  with 0, and then evaluating the result. 

In[1]:= Cos[x^2] /. x -> 0

Out[1]= 1

In some cases, however, you have to be more careful. 

Consider,  for  example,  finding  the  value  of  the  expression  sin HxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅx  when  x = 0.  If  you  simply  replace  x  by  0  in  this
expression,  you get  the indeterminate result  0ÅÅÅÅ0 .  To find  the correct  value of  sin HxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅx  when x = 0,  you need to take the
limit. 

Limit@ expr,  x  −>  x0  D find the limit of  expr when  x approaches  x0  

Finding limits. 

This gives the correct value for the limit of sin HxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅx  as x Ø 0. 

In[2]:= Limit[ Sin[x]/x, x -> 0 ]

Out[2]= 1

No finite limit exists in this case. 

In[3]:= Limit[ Sin[x]/x^2, x -> 0 ]

Out[3]= ∞

Limit can find this limit, even though you cannot get an ordinary power series for x log HxL  at x = 0. 

In[4]:= Limit[ x Log[x], x -> 0 ]

Out[4]= 0

The same is true here. 

In[5]:= Limit[ ( 1 + 2 x ) ^ (1/x), x -> 0 ]

Out[5]= 2

The value of Sign[x] at x=0 is 0.  

In[6]:= Sign[0]

Out[6]= 0

Its limit, however, is 1. The limit is by default taken from above. 

In[7]:= Limit[Sign[x], x -> 0]

Out[7]= 1

Not all functions have definite limits at particular points. For example, the function sin H1 ê xL  oscillates infinitely often
near x = 0, so it has no definite limit there. Nevertheless, at least so long as x  remains real, the values of the function
near x = 0  always lie between -1  and 1. Limit  represents values with bounded variation using Interval  objects.

Printed from the Mathematica Help Browser 13

©1988-2003 Wolfram Research, Inc. All rights reserved.



In  general,  Interval[8xmin,  xmax<]  represents  an  uncertain  value  which  lies  somewhere  in  the  interval  xmin  to
xmax. 

Limit returns an Interval object, representing the range of possible values of sin H1 ê xL  near its essential singularity at x = 0. 

In[8]:= Limit[ Sin[1/x], x -> 0 ]

Out[8]= Interval@8−1, 1<D

Mathematica can do arithmetic with Interval objects. 

In[9]:= (1 + %)^3

Out[9]= Interval@80, 8<D

Mathematica represents this limit symbolically in terms of an Interval object. 

In[10]:= Limit[ Exp[Sin[x]], x -> Infinity ]

Out[10]= IntervalA9 1 , =E

Some  functions  may  have  different  limits  at  particular  points,  depending  on  the  direction  from  which  you  approach
those points. You can use the Direction option for Limit to specify the direction you want. 

Limit@ expr,  x  −>  
x0,  Direction  −>  1D 

find the limit as  x  approaches  x0  from below

Limit@ expr,  x  −>  
x0,  Direction  −>  −1D 

find the limit as  x  approaches  x0  from above

Directional limits. 

The function 1 ê x  has a different limiting value at x = 0, depending on whether you approach from above or below. 

In[11]:= Plot[1/x, {x, -1, 1}]
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-100

-75

-50

-25

25

50
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Out[11]=  Graphics 
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Approaching from below gives a limiting value of -¶ . 

In[12]:= Limit[ 1/x, x -> 0, Direction -> 1 ]

Out[12]= −∞

Approaching from above gives a limiting value of ¶ . 

In[13]:= Limit[ 1/x, x -> 0, Direction -> -1 ]

Out[13]= ∞

Limit makes no assumptions about functions like f[x] about which it does not have definite knowledge. As a result,
Limit remains unevaluated in most cases involving symbolic functions. 

Limit has no definite knowledge about f, so it leaves this limit unevaluated. 

In[14]:= Limit[ x f[x], x -> 0 ]

Out[14]= Limit[xf[x], x→ 0]

3.6.10 Residues

Limit[expr, x -> x0] tells you what the value of expr is when x tends to x0 . When this value is infinite, it is often
useful instead to know the residue of expr when x equals x0 . The residue is given by the coefficient of Hx - x0L-1  in the
power series expansion of expr about the point x0 . 

Residue@ expr,  8  x,  x0  <  D the residue of  expr when  x equals  x0  

Computing residues. 

The residue here is equal to 1. 

In[1]:= Residue[1/x, {x, 0}]

Out[1]= 1

The residue here is zero. 

In[2]:= Residue[1/x^2, {x, 0}]

Out[2]= 0
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3.7 Linear Algebra

3.7.1 Constructing Matrices

Table@ f ,  8  i,  m <,  8  j,  n <  D build an  män  matrix where  f  is a function of  
i and  j that gives the value of the  i, j  th  entry

Array@ f ,  8  m,  n <  D build an  män  matrix whose  i, j  th  entry is  f  @ i,  j D 

DiagonalMatrix@ list D generate a diagonal matrix with the elements of  
list on the diagonal

IdentityMatrix@ n D generate an  nän  identity matrix
Normal@SparseArray@ 8  8  i1 ,  j1  <  −> 

v1 ,  8  i2 ,  j2  <  −> v2 , … <,  8  m,  n <  DD 

make a matrix with nonzero values  vk  at positions  8  ik ,  jk  <  

Functions for constructing matrices. 

This generates a 2ä2 matrix whose i, j th  entry is a[i, j]. 

In[1]:= Table[a[i, j], {i, 2}, {j, 2}]

Out[1]= 88a@1, 1D, a@1, 2D<, 8a@2, 1D, a@2, 2D<<

Here is another way to produce the same matrix. 

In[2]:= Array[a, {2, 2}]

Out[2]= 88a@1, 1D, a@1, 2D<, 8a@2, 1D, a@2, 2D<<

DiagonalMatrix makes a matrix with zeros everywhere except on the leading diagonal. 

In[3]:= DiagonalMatrix[{a, b, c}]

Out[3]= 88a, 0, 0<, 80, b, 0<, 80, 0, c<<

IdentityMatrix[n] produces an nän  identity matrix. 

In[4]:= IdentityMatrix[3]

Out[4]= 881, 0, 0<, 80, 1, 0<, 80, 0, 1<<

This makes a 3ä4 matrix with two nonzero values filled in. 

In[5]:= Normal[SparseArray[{{2, 3}->a, {3, 2}->b}, {3, 4}]]

Out[5]= 880, 0, 0, 0<, 80, 0, a, 0<, 80, b, 0, 0<<
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MatrixForm prints the matrix in a two-dimensional form. 

In[6]:= MatrixForm[%]

Out[6]//MatrixForm= 

i

k

jjjjjjj
0 0 0 0
0 0 a 0
0 b 0 0

y

{

zzzzzzz

Table@0,  8  m <,  8  n <  D a zero matrix
Table@Random@  D,  8  m <,  8  n <  D a matrix with random numerical entries

Table@If@ i  >=  j,  
1,  0D,  8  i,  m <,  8  j,  n <  D 

a lower-triangular matrix

Constructing special types of matrices with Table. 

Table evaluates Random[ ] separately for each element, to give a different pseudorandom number in each case. 

In[7]:= Table[Random[ ], {2}, {2}]

Out[7]= 880.0560708, 0.6303<, 80.359894, 0.871377<<

SparseArray@ 8  <,  8  n,  n <  D a zero matrix
SparseArray@ 8  i _, 

 i _ <   −>  1,  8  n,  n <  D 

an  nän  identity matrix

SparseArray@ 8  i _,  j _ 

<  ê; i >= j  −>  1,  8  n,  n <  D 

a lower-triangular matrix

Constructing special types of matrices with SparseArray. 

This sets up a general lower-triangular matrix. 

In[8]:= SparseArray[{i_, j_}/;i>=j -> f[i, j], {3, 3}] // MatrixForm

Out[8]//MatrixForm= 

i

k

jjjjjjj
f@1, 1D 0 0
f@2, 1D f@2, 2D 0
f@3, 1D f@3, 2D f@3, 3D

y

{

zzzzzzz

3.7.2 Getting and Setting Pieces of Matrices

m @@ i,  j DD the  i, j  th  entry
m @@ i DD the  i  th  row

m @@All,  i DD the  i  th  column
Take@ m,  8  i0 ,  i1  <,  8  j0 ,  j1  <  D the submatrix with rows  i0  

through  i1  and columns  j0  through  j1  
m @@ 8  i1 , … ,  ir  <,  8  j1 , … ,  js  <  DD the  räs  submatrix with elements having row indices  

ik  and column indices  jk  
Tr@ m,  ListD elements on the diagonal

ArrayRules@ m D positions of nonzero elements

Ways to get pieces of matrices. 
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Matrices in Mathematica  are  represented  as  lists  of  lists. You can use all  the standard Mathematica  list-manipulation
operations on matrices. 

Here is a sample 3ä3 matrix. 

In[1]:= t = Array[a, {3, 3}]

Out[1]= 88a@1, 1D, a@1, 2D, a@1, 3D<, 8a@2, 1D, a@2, 2D, a@2, 3D<, 8a@3, 1D, a@3, 2D, a@3, 3D<<

This picks out the second row of the matrix. 

In[2]:= t[[2]]

Out[2]= 8a@2, 1D, a@2, 2D, a@2, 3D<

Here is the second column of the matrix. 

In[3]:= t[[All, 2]]

Out[3]= 8a@1, 2D, a@2, 2D, a@3, 2D<

This picks out a submatrix. 

In[4]:= Take[t, {1, 2}, {2, 3}]

Out[4]= 88a@1, 2D, a@1, 3D<, 8a@2, 2D, a@2, 3D<<

m  =  8  8  a11 ,  a12 , … 
<,  8  a21 ,  a22 , … <, … <  

assign  m to be a matrix

m @@ i,  j DD  =  v reset element  8  i,  j <  to be  v 
m @@ i DD  =  v reset all elements in row  i to be  v 

m @@ i DD  =  8  v1 ,  v2 , … <  reset elements in row  i to be  8  v1 ,  v2 , … <  
m @@All,  j DD  =  v reset all elements in column  j to be  v 

m @@All,  j DD  =  8  v1 ,  v2 , … <  reset elements in column  j to be  8  v1 ,  v2 , … <  

Resetting parts of matrices. 

Here is a 2ä2 matrix. 

In[5]:= m = {{a, b}, {c, d}}

Out[5]= 88a, b<, 8c, d<<

This resets the 2, 2 element to be x, then shows the whole matrix. 

In[6]:= m[[2, 2]] = x; m

Out[6]= 88a, b<, 8c, x<<

This resets all elements in the second column to be z. 

In[7]:= m[[All, 2]] = z; m

Out[7]= 88a, z<, 8c, z<<
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This separately resets the two elements in the second column. 

In[8]:= m[[All, 2]] = {i, j}; m

Out[8]= 88a, i<, 8c, j<<

This increments all the values in the second column. 

In[9]:= m[[All, 2]]++; m

Out[9]= 88a, 1 + i<, 8c, 1 + j<<

3.7.3 Scalars, Vectors and Matrices

Mathematica represents matrices and vectors using lists. Anything that is not a list Mathematica considers as a scalar. 

A  vector  in  Mathematica  consists  of  a  list  of  scalars.  A  matrix  consists  of  a  list  of  vectors,  representing  each  of  its
rows. In order to be a valid matrix, all the rows must be the same length, so that the elements of the matrix effectively
form a rectangular array.  

VectorQ@ expr D give  True if  expr 
has the form of a vector, and  False otherwise

MatrixQ@ expr D give  True if  expr 
has the form of a matrix, and  False otherwise

Dimensions@ expr D a list of the dimensions of a vector or matrix

Functions for testing the structure of vectors and matrices. 

The list {a, b, c} has the form of a vector. 

In[1]:= VectorQ[ {a, b, c} ]

Out[1]= True

Anything that is not manifestly a list is treated as a scalar, so applying VectorQ gives False. 

In[2]:= VectorQ[ x + y ]

Out[2]= False

This is a 2ä3 matrix. 

In[3]:= Dimensions[ {{a, b, c}, {ap, bp, cp}} ]

Out[3]= 82, 3<

For a vector, Dimensions gives a list with a single element equal to the result from Length. 

In[4]:= Dimensions[ {a, b, c} ]

Out[4]= 83<
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This object does not count as a matrix because its rows are of different lengths. 

In[5]:= MatrixQ[ {{a, b, c}, {ap, bp}} ]

Out[5]= False

3.7.4 Operations on Scalars, Vectors and Matrices

Most mathematical functions in Mathematica are set up to apply themselves separately to each element in a list. This is
true in particular of all functions that carry the attribute Listable. 

A consequence is that most mathematical functions are applied element by element to matrices and vectors. 

The Log applies itself separately to each element in the vector. 

In[1]:= Log[ {a, b, c} ]

Out[1]= 8Log@aD, Log@bD, Log@cD<

The same is true for a matrix, or, for that matter, for any nested list. 

In[2]:= Log[ {{a, b}, {c, d}} ]

Out[2]= 88Log@aD, Log@bD<, 8Log@cD, Log@dD<<

The differentiation function D also applies separately to each element in a list. 

In[3]:= D[ {x, x^2, x^3}, x ]

Out[3]= 81, 2 x, 3 x2<

The sum of two vectors is carried out element by element. 

In[4]:= {a, b} + {ap, bp}

Out[4]= 8a + ap, b + bp<

If you try to add two vectors with different lengths, you get an error. 

In[5]:= {a, b, c} + {ap, bp}

Thread::tdlen :  Objects of unequal length in 8a, b, c< + 8ap, bp< cannot be combined.

Out[5]= 8ap, bp< + 8a, b, c<

This adds the scalar 1 to each element of the vector. 

In[6]:= 1 + {a, b}

Out[6]= 81 + a, 1 + b<
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Any object that is not manifestly a list is treated as a scalar. Here c is treated as a scalar, and added separately to each element in 
the vector. 

In[7]:= {a, b} + c

Out[7]= 8a + c, b + c<

This multiplies each element in the vector by the scalar k.  

In[8]:= k {a, b}

Out[8]= 8a k, b k<

It  is  important  to  realize  that  Mathematica  treats  an  object  as  a  vector  in  a  particular  operation  only  if  the  object  is
explicitly a list at the time when the operation is done. If the object is not explicitly a list, Mathematica always treats it
as a scalar. This means that you can get different results, depending on whether you assign a particular object to be a
list before or after you do a particular operation. 

The object p is treated as a scalar, and added separately to each element in the vector. 

In[9]:= {a, b} + p

Out[9]= 8a + p, b + p<

This is what happens if you now replace p by the list {c, d}. 

In[10]:= % /. p -> {c, d}

Out[10]= 88a + c, a + d<, 8b + c, b + d<<

You would have got a different result if you had replaced p by {c, d} before you did the first operation. 

In[11]:= {a, b} + {c, d}

Out[11]= 8a + c, b + d<

3.7.5 Multiplying Vectors and Matrices

c  v ,  c  m , etc. multiply each element by a scalar
v.v ,  v.m ,  m.v ,  m.m , etc. vector and matrix multiplication

Cross@ v,  v D vector cross product Halso input as  v  ä   v L
Outer@Times,  t,  u D outer product

Different kinds of vector and matrix multiplication. 

This multiplies each element of the vector by the scalar k. 

In[1]:= k {a, b, c}

Out[1]= 8a k, b k, c k<
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The “dot”  operator gives the scalar product of two vectors. 

In[2]:= {a, b, c} . {ap, bp, cp}

Out[2]= a ap + b bp + c cp

You can also use dot to multiply a matrix by a vector. 

In[3]:= {{a, b}, {c, d}} . {x, y}

Out[3]= 8a x + b y, c x + d y<

Dot is also the notation for matrix multiplication in Mathematica. 

In[4]:= {{a, b}, {c, d}} . {{1, 2}, {3, 4}}

Out[4]= 88a + 3 b, 2 a + 4 b<, 8c + 3 d, 2 c + 4 d<<

It is important to realize that you can use “dot”  for both left- and right-multiplication of vectors by matrices. Mathemat-
ica  makes no distinction between “row”  and “column”  vectors.  Dot carries out whatever operation is possible. (In
formal terms, a.b contracts the last index of the tensor a with the first index of b.)  

Here are definitions for a matrix m and a vector v. 

In[5]:= m = {{a, b}, {c, d}} ; v = {x, y}

Out[5]= 8x, y<

This left-multiplies the vector v by m. The object v is effectively treated as a column vector in this case. 

In[6]:= m . v

Out[6]= 8a x + b y, c x + d y<

You can also use dot to right-multiply v by m. Now v is effectively treated as a row vector. 

In[7]:= v . m

Out[7]= 8a x + c y, b x + d y<

You can multiply m by v on both sides, to get a scalar. 

In[8]:= v . m . v

Out[8]= x Ha x + c yL + y Hb x + d yL

For  some  purposes,  you  may  need  to  represent  vectors  and  matrices  symbolically,  without  explicitly  giving  their
elements. You can use dot to represent multiplication of such symbolic objects.  

Dot effectively acts here as a non-commutative form of multiplication. 

In[9]:= a . b . a

Out[9]= a.b.a
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It is, nevertheless, associative. 

In[10]:= (a . b) . (a . b)

Out[10]= a.b.a.b

Dot products of sums are not automatically expanded out. 

In[11]:= (a + b) . c . (d + e)

Out[11]= Ha + bL.c.Hd + eL

You can apply the distributive law in this case using the function Distribute, as discussed in Section 2.2.10. 

In[12]:= Distribute[ % ]

Out[12]= a.c.d + a.c.e + b.c.d + b.c.e

The “dot”  operator gives “inner  products”  of vectors, matrices, and so on. In more advanced calculations, you may
also need to construct outer or Kronecker products of vectors and matrices. You can use the general function Outer to
do this.

The outer product of two vectors is a matrix. 

In[13]:= Outer[Times, {a, b}, {c, d}]

Out[13]= 88a c, a d<, 8b c, b d<<

The outer product of a matrix and a vector is a rank three tensor.  

In[14]:= Outer[Times, {{1, 2}, {3, 4}}, {x, y, z}]

Out[14]= 888x, y, z<, 82 x, 2 y, 2 z<<, 883 x, 3 y, 3 z<, 84 x, 4 y, 4 z<<<

Outer products will be discussed in more detail in Section 3.7.11. 

3.7.6 Matrix Inversion

Inverse@ m D find the inverse of a square matrix

Matrix inversion. 

Here is a simple 2ä2 matrix. 

In[1]:= m = {{a, b}, {c, d}}

Out[1]= 88a, b<, 8c, d<<

This gives the inverse of m. In producing this formula, Mathematica implicitly assumes that the determinant a d - b c is non-zero.  

In[2]:= Inverse[ m ]

Out[2]= 99 d
−b c + a d

, −
b

−b c + a d
=, 9−

c
−b c + a d

, a
−b c + a d

==
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Multiplying the inverse by the original matrix should give the identity matrix. 

In[3]:= % . m

Out[3]= 99−
b c

−b c + a d
+

a d
−b c + a d

, 0=, 90, −
b c

−b c + a d
+

a d
−b c + a d

==

You have to use Together to clear the denominators, and get back a standard identity matrix. 

In[4]:= Together[ % ]

Out[4]= 881, 0<, 80, 1<<

Here is a matrix of rational numbers. 

In[5]:= hb = Table[1/(i + j), {i, 4}, {j, 4}]

Out[5]= 99 1
2

,
1
3

,
1
4

,
1
5
=, 9 1

3
,

1
4

,
1
5

,
1
6
=, 9 1

4
,

1
5

,
1
6

,
1
7
=, 9 1

5
,

1
6

,
1
7

,
1
8
==

Mathematica finds the exact inverse of the matrix. 

In[6]:= Inverse[hb]

Out[6]= 88200, −1200, 2100, −1120<, 8−1200, 8100, −15120, 8400<,
82100, −15120, 29400, −16800<, 8−1120, 8400, −16800, 9800<<

Multiplying by the original matrix gives the identity matrix. 

In[7]:= % . hb

Out[7]= 881, 0, 0, 0<, 80, 1, 0, 0<, 80, 0, 1, 0<, 80, 0, 0, 1<<

If you try to invert a singular matrix, Mathematica prints a warning message, and returns the inverse undone.  

In[8]:= Inverse[ {{1, 2}, {1, 2}} ]

Inverse::sing :  Matrix 881, 2<, 81, 2<< is singular.

Out[8]= Inverse@881, 2<, 81, 2<<D

If  you  give  a  matrix  with  exact  symbolic or  numerical  entries,  Mathematica  gives  the  exact  inverse.  If,  on  the  other
hand, some of the entries in your matrix are approximate real numbers, then Mathematica finds an approximate numeri-
cal result. 

Here is a matrix containing approximate real numbers. 

In[9]:= m = {{1.2, 5.7}, {4.2, 5.6}}

Out[9]= 881.2, 5.7<, 84.2, 5.6<<

This finds the numerical inverse. 

In[10]:= Inverse[ % ]

Out[10]= 88−0.325203, 0.33101<, 80.243902, −0.0696864<<
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Multiplying by the original matrix gives you an identity matrix with small numerical errors. 

In[11]:= % . m

Out[11]= 881., −1.25442 × 10−16<, 81.00831 × 10−17, 1.<<

You can get rid of the small off-diagonal terms using Chop. 

In[12]:= Chop[ % ]

Out[12]= 881., 0<, 80, 1.<<

When you try to invert a matrix with exact numerical entries, Mathematica can always tell whether or not the matrix is
singular.  When  you invert  an  approximate numerical matrix,  Mathematica  can  usually  not  tell  for  certain whether  or
not  the  matrix  is  singular:  all  it  can  tell  is  for  example  that  the  determinant  is  small  compared  to  the  entries  of  the
matrix. When Mathematica suspects that you are trying to invert a singular numerical matrix, it prints a warning.  

Mathematica prints a warning if you invert a numerical matrix that it suspects is singular. 

In[13]:= Inverse[ {{1., 2.}, {1., 2.}} ]

Inverse::sing :  Matrix 881., 2.<, 81., 2.<< is singular.

Out[13]= Inverse@881., 2.<, 81., 2.<<D

If you work with high-precision approximate numbers, Mathematica will keep track of the precision of matrix inverses
that you generate.  

This generates a 6ä6 numerical matrix with entries of 50-digit precision. 

In[14]:= m = N [ Table[ GCD[i, j] + 1, {i, 6}, {j, 6} ], 20 ] ;

This takes the matrix, multiplies it by its inverse, and shows the first row of the result. 

In[15]:= (m . Inverse[m]) [[1]]

Out[15]= 81.000000000000000000, 0. × 10−19, 0. × 10−19, 0. × 10−20, 0. × 10−20, 0. × 10−20<

This generates a 50-digit numerical approximation to a 6ä6 Hilbert matrix. Hilbert matrices are notoriously hard to invert 
numerically. 

In[16]:= m = N[Table[1/(i + j - 1), {i, 6}, {j, 6}], 20] ;

The result is still correct, but the zeros now have lower accuracy. 

In[17]:= (m . Inverse[m]) [[1]]

Out[17]= 81.000000000000000, −0. × 10−15, 0. × 10−14, −0. × 10−14, 0. × 10−14, −0. × 10−14<

Inverse works only on square matrices. Section 3.7.10 discusses the function PseudoInverse, which can also be
used with non-square matrices. 
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3.7.7 Basic Matrix Operations

Transpose@ m D transpose
Inverse@ m D matrix inverse

Det@ m D determinant
Minors@ m D matrix of minors

Minors@ m,  k D k  th  minors
Tr@ m D trace

CharacteristicPolynomial@ 

m,  x D 

characteristic polynomial

Some basic matrix operations. 

Transposing  a  matrix  interchanges  the  rows  and  columns in  the  matrix.  If  you transpose  an  män  matrix,  you get  an
näm  matrix as the result. 

Transposing a 2ä3 matrix gives a 3ä2 result. 

In[1]:= Transpose[ {{a, b, c}, {ap, bp, cp}} ]

Out[1]= 88a, ap<, 8b, bp<, 8c, cp<<

Det[m]  gives  the  determinant  of  a  square  matrix  m.  Minors[m]  is  the  matrix  whose  Hi, jL th  element  gives  the
determinant of the submatrix obtained by deleting the Hn - i + 1L th  row and the Hn - j + 1L th  column of m. The Hi, jL th

cofactor of m is H-1Li+ j  times the Hn - i + 1, n - j + 1L th  element of the matrix of minors. 

Minors[m, k] gives the determinants of the k äk  submatrices obtained by picking each possible set of k  rows and k
columns from m. Note that you can apply Minors to rectangular, as well as square, matrices. 

Here is the determinant of a simple 2ä2 matrix. 

In[2]:= Det[ {{a, b}, {c, d}} ]

Out[2]= −b c + a d

This generates a 3ä3 matrix, whose i, j th  entry is a[i, j]. 

In[3]:= m = Array[a, {3, 3}]

Out[3]= 88a@1, 1D, a@1, 2D, a@1, 3D<, 8a@2, 1D, a@2, 2D, a@2, 3D<, 8a@3, 1D, a@3, 2D, a@3, 3D<<

Here is the determinant of m. 

In[4]:= Det[ m ]

Out[4]= −a@1, 3D a@2, 2D a@3, 1D + a@1, 2D a@2, 3D a@3, 1D + a@1, 3D a@2, 1D a@3, 2D −

a@1, 1D a@2, 3D a@3, 2D − a@1, 2D a@2, 1D a@3, 3D + a@1, 1D a@2, 2D a@3, 3D

The trace or spur of a matrix Tr[m] is the sum of the terms on the leading diagonal.   
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This finds the trace of a simple 2ä2 matrix. 

In[5]:= Tr[{{a, b}, {c, d}}]

Out[5]= a + d

MatrixPower@ m,  n D n th  matrix power
MatrixExp@ m D matrix exponential

Powers and exponentials of matrices. 

Here is a 2ä2 matrix. 

In[6]:= m = {{0.4, 0.6}, {0.525, 0.475}}

Out[6]= 880.4, 0.6<, 80.525, 0.475<<

This gives the third matrix power of m. 

In[7]:= MatrixPower[m, 3]

Out[7]= 880.465625, 0.534375<, 80.467578, 0.532422<<

It is equivalent to multiplying three copies of the matrix. 

In[8]:= m . m . m

Out[8]= 880.465625, 0.534375<, 80.467578, 0.532422<<

Here is the millionth matrix power. 

In[9]:= MatrixPower[m, 10^6]

Out[9]= 880.466667, 0.533333<, 80.466667, 0.533333<<

This gives the matrix exponential of m. 

In[10]:= MatrixExp[m]

Out[10]= 881.7392, 0.979085<, 80.8567, 1.86158<<

Here is an approximation to the exponential of m, based on a power series approximation. 

In[11]:= Sum[MatrixPower[m, i]/i!, {i, 0, 5}]

Out[11]= 881.73844, 0.978224<, 80.855946, 1.86072<<

3.7.8 Solving Linear Systems

Many  calculations  involve  solving  systems  of  linear  equations.  In  many  cases,  you  will  find  it  convenient  to  write
down the equations explicitly, and then solve them using Solve. 
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In  some  cases,  however,  you  may  prefer  to  convert  the  system of  linear  equations  into  a  matrix  equation,  and  then
apply matrix manipulation operations to solve it. This approach is often useful when the system of equations arises as
part of a general algorithm, and you do not know in advance how many variables will be involved. 

A system of linear equations can be stated in matrix form as m.x = b , where x  is the vector of variables. 

Note that if  your system of equations is sparse,  so that most of the entries in the matrix m  are zero,  then it is best to
represent  the  matrix  as  a  SparseArray  object.  As  discussed  in  Section 3.7.12,  you  can  convert  from  symbolic
equations to SparseArray  objects using CoefficientArrays.  All the functions described in this section work
on SparseArray objects as well as ordinary matrices. 

LinearSolve@ m,  b D a vector  x which solves the matrix equation  m.x  ==  b 
NullSpace@ m D a list of basis vectors whose linear

combinations satisfy the matrix equation  m.x  ==  0 

MatrixRank@ m D the number of linearly independent rows of  m 
RowReduce@ m D a simplified form of  m 

obtained by making linear combinations of rows

Solving and analyzing linear systems. 

Here is a 2ä2 matrix. 

In[1]:= m = {{1, 5}, {2, 1}}

Out[1]= 881, 5<, 82, 1<<

This gives two linear equations. 

In[2]:= m . {x, y} == {a, b}

Out[2]= 8x + 5 y, 2 x + y< 8a, b<

You can use Solve directly to solve these equations. 

In[3]:= Solve[ %, {x, y} ]

Out[3]= 99x → −
1
9
Ha − 5 bL, y → −

1
9
H−2 a + bL==

You can also get the vector of solutions by calling LinearSolve. The result is equivalent to the one you get from Solve. 

In[4]:= LinearSolve[m, {a, b}]

Out[4]= 9 1
9
H−a + 5 bL,

1
9
H2 a − bL=

Another way to solve the equations is to invert the matrix m, and then multiply {a, b} by the inverse. This is not as efficient as 
using LinearSolve. 

In[5]:= Inverse[m] . {a, b}

Out[5]= 9−
a
9

+
5 b
9

, 2 a
9

−
b
9
=
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RowReduce performs a version of Gaussian elimination and can also be used to solve the equations. 

In[6]:= RowReduce[{{1, 5, a}, {2, 1, b}}]

Out[6]= 991, 0, 1
9
H−a + 5 bL=, 90, 1, 1

9
H2 a − bL==

If you have a square matrix m  with a non-zero determinant, then you can always find a unique solution to the matrix
equation m.x = b  for any b . If, however, the matrix m  has determinant zero, then there may be either no vector, or an
infinite number of vectors x  which satisfy m.x = b  for a particular b . This occurs when the linear equations embodied
in m  are not independent.  

When m  has determinant zero, it is nevertheless always possible to find nonzero vectors x  that satisfy m.x = 0 . The set
of  vectors  x  satisfying  this  equation  form  the  null  space  or  kernel  of  the  matrix  m .  Any  of  these  vectors  can  be
expressed as a linear combination of a particular set of basis vectors, which can be obtained using NullSpace[m]. 

Here is a simple matrix, corresponding to two identical linear equations. 

In[7]:= m = {{1, 2}, {1, 2}}

Out[7]= 881, 2<, 81, 2<<

The matrix has determinant zero. 

In[8]:= Det[ m ]

Out[8]= 0

LinearSolve cannot find a solution to the equation m.x = b  in this case. 

In[9]:= LinearSolve[m, {a, b}]

LinearSolve::nosol :  Linear equation encountered which has no solution.

Out[9]= LinearSolve@881, 2<, 81, 2<<, 8a, b<D

There is a single basis vector for the null space of m. 

In[10]:= NullSpace[ m ]

Out[10]= 88−2, 1<<

Multiplying the basis vector for the null space by m gives the zero vector. 

In[11]:= m . %[[1]]

Out[11]= 80, 0<

There is only 1 linearly independent row in m. 

In[12]:= MatrixRank[ m ]

Out[12]= 1

NullSpace  and MatrixRank  have to determine whether particular combinations of  matrix elements are zero.  For
approximate numerical matrices, the Tolerance option can be used to specify how close to zero is considered good
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enough.  For  exact  symbolic  matrices,  you  may  sometimes  need  to  specify  something  like  ZeroTest->(Full
Simplify[#]==0&) to force more to be done to test whether symbolic expressions are zero.  

Here is a simple symbolic matrix with determinant zero. 

In[13]:= m = {{a, b, c}, {2 a, 2 b, 2 c}, {3 a, 3 b, 3 c}}

Out[13]= 88a, b, c<, 82 a, 2 b, 2 c<, 83 a, 3 b, 3 c<<

The basis for the null space of m contains two vectors. 

In[14]:= NullSpace[m]

Out[14]= 99−
c
a

, 0, 1=, 9−
b
a

, 1, 0==

Multiplying m by any linear combination of these vectors gives zero. 

In[15]:= Simplify[m . (x %[[1]] + y %[[2]])]

Out[15]= 80, 0, 0<

An important feature of functions like LinearSolve and NullSpace is that they work with rectangular, as well as
square, matrices.  

When you represent a system of linear equations by a matrix equation of the form m.x = b , the number of columns in
m  gives the number of variables, and the number of rows gives the number of equations. There are a number of cases. 

Underdetermined number of equations less than the number of
variables; no solutions or many solutions may exist

Overdetermined number of equations more than the
number of variables; solutions may or may not exist

Nonsingular number of independent equations equal to the number of
variables, and determinant non-zero; a unique solution exists

Consistent at least one solution exists
Inconsistent no solutions exist

Classes of linear systems represented by rectangular matrices. 

This asks for the solution to the inconsistent set of equations x = 1 and x = 0. 

In[16]:= LinearSolve[{{1}, {1}}, {1, 0}]

LinearSolve::nosol :  Linear equation encountered which has no solution.

Out[16]= LinearSolve@881<, 81<<, 81, 0<D

This matrix represents two equations, for three variables. 

In[17]:= m = {{1, 3, 4}, {2, 1, 3}}

Out[17]= 881, 3, 4<, 82, 1, 3<<
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LinearSolve gives one of the possible solutions to this underdetermined set of equations. 

In[18]:= v = LinearSolve[m, {1, 1}]

Out[18]= 9 2
5

, 1
5

, 0=

When a matrix represents an underdetermined system of equations, the matrix has a non-trivial null space. In this case, the null 
space is spanned by a single vector. 

In[19]:= NullSpace[m]

Out[19]= 88−1, −1, 1<<

If you take the solution you get from LinearSolve, and add any linear combination of the basis vectors for the null space, you 
still get a solution. 

In[20]:= m . (v + 4 %[[1]])

Out[20]= 81, 1<

The number of  independent  equations  is  the rank  of  the matrix MatrixRank[m].  The number  of  redundant  equa-
tions is Length[NullSpace[m]]. Note that the sum of these quantities is always equal to the number of columns
in m.   

LinearSolve@ m D generate a function for solving equations of the form  
m  .  x  ==  b 

Generating LinearSolveFunction objects. 

In some applications, you will want to solve equations of the form m.x = b  many times with the same m , but different
b . You can do this efficiently in Mathematica by using LinearSolve[m] to create a single LinearSolveFunc
tion that you can apply to as many vectors as you want. 

This creates a LinearSolveFunction. 

In[21]:= f = LinearSolve[{{1, 4}, {2, 3}}]

Out[21]= LinearSolveFunction@82, 2<, <>D

You can apply this to a vector. 

In[22]:= f[{5, 7}]

Out[22]= 9 13
5

, 3
5
=

You get the same result by giving the vector as an explicit argument to LinearSolve. 

In[23]:= LinearSolve[{{1, 4}, {2, 3}}, {5, 7}]

Out[23]= 9 13
5

, 3
5
=
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But you can apply f to any vector you want. 

In[24]:= f[{-5, 9}]

Out[24]= 9 51
5

, −
19
5
=

3.7.9 Eigenvalues and Eigenvectors

Eigenvalues@ m D a list of the eigenvalues of  m 
Eigenvectors@ m D a list of the eigenvectors of  m 

Eigensystem@ m D a list of the form  8  eigenvalues,  eigenvectors <  
Eigenvalues@  N@ m D  D , etc. numerical eigenvalues

Eigenvalues@  N@ m,  p D  D , etc. numerical eigenvalues, starting with  p  -digit precision
CharacteristicPolynomial@ 

m,  x D 

the characteristic polynomial of  m 

Eigenvalues and eigenvectors. 

The eigenvalues of a matrix m  are the values li  for which one can find non-zero vectors vi  such that m.vi = li vi . The
eigenvectors are the vectors vi . 

The characteristic polynomial  CharacteristicPolynomial[m,  x]  for  an nän  matrix is given by Det[m  -  x
IdentityMatrix[n]]. The eigenvalues are the roots of this polynomial. 

Finding the eigenvalues of  an nän  matrix in general  involves solving an n th -degree polynomial equation.  For  n ¥ 5,
therefore, the results cannot in general be expressed purely in terms of explicit radicals. Root objects can nevertheless
always  be  used,  although  except  for  fairly  sparse  or  otherwise  simple  matrices  the  expressions  obtained  are  often
unmanageably complex.  

Even for a matrix as simple as this, the explicit form of the eigenvalues is quite complicated. 

In[1]:= Eigenvalues[ {{a, b}, {-b, 2a}} ]

Out[1]= 9 1
2
I3 a −

è!!!!!!!!!!!!!!!!!!!a2 − 4 b2 M, 1
2
I3 a +

è!!!!!!!!!!!!!!!!!!!a2 − 4 b2 M=

If  you give a matrix of approximate real numbers,  Mathematica  will  find the approximate numerical eigenvalues and
eigenvectors. 

Here is a 2ä2 numerical matrix. 

In[2]:= m = {{2.3, 4.5}, {6.7, -1.2}}

Out[2]= 882.3, 4.5<, 86.7, −1.2<<

The matrix has two eigenvalues, in this case both real. 

In[3]:= Eigenvalues[ m ]

Out[3]= 86.31303, −5.21303<
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Here are the two eigenvectors of m. 

In[4]:= Eigenvectors[ m ]

Out[4]= 880.746335, 0.66557<, 8−0.513839, 0.857886<<

Eigensystem computes the eigenvalues and eigenvectors at the same time. The assignment sets vals to the list of eigenvalues, 
and vecs to the list of eigenvectors. 

In[5]:= {vals, vecs} = Eigensystem[m]

Out[5]= 886.31303, −5.21303<, 880.746335, 0.66557<, 8−0.513839, 0.857886<<<

This verifies that the first eigenvalue and eigenvector satisfy the appropriate condition. 

In[6]:= m . vecs[[1]] == vals[[1]] vecs[[1]]

Out[6]= True

This finds the eigenvalues of a random 4ä4 matrix. For non-symmetric matrices, the eigenvalues can have imaginary parts.  

In[7]:= Eigenvalues[ Table[Random[ ], {4}, {4}] ]

Out[7]= 82.30022, 0.319764 + 0.547199 , 0.319764 − 0.547199 , 0.449291<

The function Eigenvalues always gives you a list of n  eigenvalues for an nän  matrix. The eigenvalues correspond
to the roots of the characteristic polynomial for the matrix, and may not necessarily be distinct. Eigenvectors, on
the other hand, gives a list of eigenvectors which are guaranteed to be independent. If the number of such eigenvectors
is  less  than  n ,  then  Eigenvectors  appends  zero  vectors  to  the  list  it  returns,  so  that  the  total  length  of  the  list  is
always n .   

Here is a 3ä3 matrix. 

In[8]:= mz = {{0, 1, 0}, {0, 0, 1}, {0, 0, 0}}

Out[8]= 880, 1, 0<, 80, 0, 1<, 80, 0, 0<<

The matrix has three eigenvalues, all equal to zero. 

In[9]:= Eigenvalues[mz]

Out[9]= 80, 0, 0<

There is, however, only one independent eigenvector for the matrix. Eigenvectors appends two zero vectors to give a total of 
three vectors in this case. 

In[10]:= Eigenvectors[mz]

Out[10]= 881, 0, 0<, 80, 0, 0<, 80, 0, 0<<
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Eigenvalues@ m,  k D the largest  k eigenvalues of  m 
Eigenvectors@ m,  k D the corresponding eigenvectors of  m 
Eigenvalues@ m,  − k D the smallest  k eigenvalues of  m 

Eigenvectors@ m,  − k D the corresponding eigenvectors of  m 

Finding largest and smallest eigenvalues. 

Eigenvalues  sorts  numeric  eigenvalues  so  that  the  ones  with  large  absolute  value  come first.  In  many situations,
you  may  be  interested  only  in  the  largest  or  smallest  eigenvalues  of  a  matrix.  You  can  get  these  efficiently  using
Eigenvalues[m, k] and Eigenvalues[m, -k]. 

This computes the exact eigenvalues of an integer matrix. 

In[11]:= Eigenvalues[{{1, 2}, {3, 4}}]

Out[11]= 9 1
2
I5 + è!!!!!!33 M, 1

2
I5 − è!!!!!!33 M=

The eigenvalues are sorted in decreasing order of size. 

In[12]:= N[%]

Out[12]= 85.37228, −0.372281<

This gives the three eigenvalues with largest absolute value. 

In[13]:= Eigenvalues[Table[N[Tan[i/j]], {i, 10}, {j, 10}], 3]

Out[13]= 810.044, 2.94396 + 6.03728 , 2.94396 − 6.03728 <

Eigenvalues@ 8  m,  a <  D the generalized eigenvalues of  m with respect to  a 
Eigenvectors@ 8  m,  a <  D the generalized eigenvectors of  m 

CharacteristicPolynomial@ 

8  m,  a <,  x D 

the generalized characteristic polynomial of  m 

Generalized eigenvalues and eigenvectors. 

The  generalized  eigenvalues  for  a  matrix  m  with  respect  to  a  matrix  a  are  defined  to  be  those  li  for  which
m.vi = li a.vi . 

The generalized eigenvalues correspond to zeros of the generalized characteristic polynomial Det[m - x a]. 

Note that while ordinary matrix eigenvalues always have definite values, some generalized eigenvalues will always be
Indeterminate if the generalized characteristic polynomial vanishes, which happens if m  and a  share a null space.
Note also that generalized eigenvalues can be infinite.   

These two matrices share a one-dimensional null space, so one generalized eigenvalue is Indeterminate. 

In[14]:= Eigenvalues[{{{1.5, 0}, {0, 0}}, {{2, 0}, {1, 0}}}]

Out[14]= 80., Indeterminate<
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3.7.10 Advanced Matrix Operations

SingularValueList@ m D the list of non-zero singular values of  m 
SingularValueList@ m,  k D the  k largest singular values of  m 

SingularValueList@ 8  m,  a <  D the generalized singular values of  m with respect to  a 
Norm@ m,  p D the  p -norm of  m 

Finding singular values and norms of matrices. 

The singular values of a matrix m  are the square roots of the eigenvalues of m.m* , where *  denotes Hermitian trans-
pose.  The  number  of  such  singular  values  is  the  smaller  dimension  of  the  matrix.  SingularValueList  sorts  the
singular  values  from  largest  to  smallest.  Very  small  singular  values  are  usually  numerically  meaningless.  With  the
option setting Tolerance  ->  t,  SingularValueList  drops  singular  values that  are less than a fraction t  of  the
largest singular value. For approximate numerical matrices, the tolerance is by default slightly greater than zero.

If you multiply the vector for each point in a unit sphere in n-dimensional space by an män  matrix m , then you get an
m-dimensional ellipsoid, whose principal axes have lengths given by the singular values of m . 

The 2-norm of a matrix Norm[m, 2] is the largest principal axis of the ellipsoid, equal to the largest singular value of
the matrix. This is also the maximum 2-norm length of m.v  for any possible unit vector v .   

The p-norm of a matrix Norm[m, p] is in general the maximum p-norm length of m.v  that can be attained. The cases
most often considered are p = 1, p = 2  and p = ¶ . Also sometimes considered is the Frobenius norm, whose square is
the trace of m.m* .  

LUDecomposition@ m D the LU decomposition
CholeskyDecomposition@ m D the Cholesky decomposition

Decomposing matrices into triangular forms. 

When  you  create  a  LinearSolveFunction  using  LinearSolve[m],  this  often  works  by  decomposing  the
matrix m into triangular forms, and sometimes it is useful to be able to get such forms explicitly. 

LU  decomposition  effectively  factors  any  square  matrix  into  a  product  of  lower-  and  upper-triangular  matrices.
Cholesky decomposition  effectively factors any Hermitian positive-definite matrix into a product of a lower-triangular
matrix and its Hermitian conjugate, which can be viewed as the analog of finding a square root of a matrix. 

PseudoInverse@ m D the pseudoinverse
QRDecomposition@ m D the QR decomposition

SingularValueDecomposition@ 

m D 

the singular value decomposition

SingularValueDecomposition@ 

8  m,  a <  D 

the generalized singular value decomposition

Orthogonal decompositions of matrices. 

The standard  definition  for  the  inverse  of  a  matrix fails  if  the  matrix  is  not  square  or  is  singular.  The pseudoinverse
mH-1L  of  a  matrix  m  can  however  still  be  defined.  It  is  set  up  to  minimize  the  sum  of  the  squares  of  all  entries  in
m.mH-1L - I ,  where I  is the identity matrix. The pseudoinverse is sometimes known as the generalized inverse, or the
Moore-Penrose inverse. It is particularly used in doing problems related to least-squares fitting.  
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QR  decomposition  writes  any  matrix  m  as  a  product  q* r ,  where  q  is  an  orthonormal  matrix,  *  denotes  Hermitian
transpose, and r  is a triangular matrix, in which all entries below the leading diagonal are zero. 

Singular value decomposition, or SVD, is an underlying element in many numerical matrix algorithms. The basic idea
is to write any matrix m  in the form usv* , where s  is a matrix with the singular values of m  on its diagonal, u  and v  are
orthonormal matrices, and v*  is the Hermitian transpose of v. 

JordanDecomposition@ m D the Jordan decomposition
SchurDecomposition@ m D the Schur decomposition

SchurDecomposition@ 8  m,  a <  D the generalized Schur decomposition

Functions related to eigenvalue problems. 

Most  matrices  can  be  reduced  to  a  diagonal  matrix  of  eigenvalues  by  applying  a  matrix  of  their  eigenvectors  as  a
similarity transformation. But even when there are not enough eigenvectors to do this, one can still reduce a matrix to a
Jordan form  in which there are both eigenvalues and Jordan blocks on the diagonal. Jordan decomposition in general
writes any matrix in the form as sjs-1 . 

Numerically  more  stable  is  the  Schur  decomposition,  which  writes  any  matrix  m  in  the  form  qtq* ,  where  q  is  an
orthonormal matrix, and t  is block upper triangular. 

3.7.11 Advanced Topic: Tensors

Tensors  are mathematical objects that give generalizations of vectors and matrices. In Mathematica,  a tensor is repre-
sented as a set of lists, nested to a certain number of levels. The nesting level is the rank of the tensor. 

rank  0 scalar
rank  1 vector
rank  2 matrix
rank  k rank  k tensor

Interpretations of nested lists. 

A tensor  of  rank  k  is  essentially  a  k -dimensional  table  of  values.  To  be  a  true  rank  k  tensor,  it  must  be  possible  to
arrange the elements in the table in a k -dimensional cuboidal array. There can be no holes or protrusions in the cuboid. 

The indices that specify a particular element in the tensor correspond to the coordinates in the cuboid. The dimensions
of the tensor correspond to the side lengths of the cuboid. 

One simple way that a rank k  tensor can arise is in giving a table of values for a function of k  variables. In physics, the
tensors that occur typically have indices which run over the possible directions in space or spacetime. Notice, however,
that there is no built-in notion of covariant and contravariant  tensor indices in Mathematica: you have to set these up
explicitly using metric tensors.  
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Table@ f ,  8  i1 ,  n1  <,  
8  i2 ,  n2  <, … ,  8  ik ,  nk  <  D 

create an  n1 än2 ä ...änk  
tensor whose elements are the values of  f  

Array@ a,  8  n1 ,  n2 , … ,  nk  <  D create an  n1 än2 ä ...änk  
tensor with elements given by applying  a to each set of indices

ArrayQ@ t,  n D test whether  t is a tensor of rank  n 
Dimensions@ t D give a list of the dimensions of a tensor
ArrayDepth@ t D find the rank of a tensor
MatrixForm@ t D print with the elements of  t arranged in a two-dimensional array

Functions for creating and testing the structure of tensors. 

Here is a 2ä3ä2 tensor. 

In[1]:= t = Table[i1+i2 i3, {i1, 2}, {i2, 3}, {i3, 2}]

Out[1]= 8882, 3<, 83, 5<, 84, 7<<, 883, 4<, 84, 6<, 85, 8<<<

This is another way to produce the same tensor. 

In[2]:= Array[(#1 + #2 #3)&, {2, 3, 2}]

Out[2]= 8882, 3<, 83, 5<, 84, 7<<, 883, 4<, 84, 6<, 85, 8<<<

MatrixForm displays the elements of the tensor in a two-dimensional array. You can think of the array as being a 2ä3 matrix of 
column vectors. 

In[3]:= MatrixForm[ t ]

Out[3]//MatrixForm= 

i

k

jjjjjjjjjjjj

J 2
3
N J 3

5
N J 4

7
N

J 3
4
N J 4

6
N J 5

8
N

y

{

zzzzzzzzzzzz

Dimensions gives the dimensions of the tensor. 

In[4]:= Dimensions[ t ]

Out[4]= 82, 3, 2<

Here is the 111 element of the tensor. 

In[5]:= t[[1, 1, 1]]

Out[5]= 2

ArrayDepth gives the rank of the tensor. 

In[6]:= ArrayDepth[ t ]

Out[6]= 3

The rank of a tensor is equal to the number of indices needed to specify each element. You can pick out subtensors by
using a smaller number of indices. 
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Transpose@ t D transpose the first two indices in a tensor
Transpose@ t,  8  p1 ,  p2 , … <  D transpose the indices in a tensor so that the  k th  becomes the  pk  th

Tr@ t,  f  D form the generalized trace of the tensor  t 
Outer@ f ,  t1 ,  t2  D form the generalized outer product of the tensors  

t1  and  t2  with multiplication operator  f  
t1   .  t2  form the dot product of  t1  and  t2  

Hlast index of  t1  contracted with first index of  t2  L
Inner@ f ,  t1 ,  t2 ,  g D form the generalized inner product, with multiplication operator  

f  and addition operator  g 

Tensor manipulation operations. 

You can think of a rank k  tensor as having k  “slots”  into which you insert indices. Applying Transpose  is effec-
tively a way of reordering these slots. If you think of the elements of a tensor as forming a k -dimensional cuboid, you
can view Transpose as effectively rotating (and possibly reflecting) the cuboid. 

In the most general case, Transpose allows you to specify an arbitrary reordering to apply to the indices of a tensor.
The function Transpose[T, 8 p1 , p2 , … , pk <], gives you a new tensor T£  such that the value of T£

i1  i2... ik  is given
by Tip1  ip2 ... ipk

. 

If you originally had an np1
änp2

ä ...änpk
 tensor, then by applying Transpose, you will get an n1 än2 ä ...änk  tensor. 

Here is a matrix that you can also think of as a 2ä3 tensor. 

In[7]:= m = {{a, b, c}, {ap, bp, cp}}

Out[7]= 88a, b, c<, 8ap, bp, cp<<

Applying Transpose gives you a 3ä2 tensor. Transpose effectively interchanges the two “slots”  for tensor indices. 

In[8]:= mt = Transpose[m]

Out[8]= 88a, ap<, 8b, bp<, 8c, cp<<

The element m[[2, 3]] in the original tensor becomes the element m[[3, 2]] in the transposed tensor. 

In[9]:= { m[[2, 3]], mt[[3, 2]] }

Out[9]= 8cp, cp<

This produces a 2ä3ä1ä2 tensor. 

In[10]:= t = Array[a, {2, 3, 1, 2}]

Out[10]= 8888a@1, 1, 1, 1D, a@1, 1, 1, 2D<<, 88a@1, 2, 1, 1D, a@1, 2, 1, 2D<<,
88a@1, 3, 1, 1D, a@1, 3, 1, 2D<<<, 888a@2, 1, 1, 1D, a@2, 1, 1, 2D<<,
88a@2, 2, 1, 1D, a@2, 2, 1, 2D<<, 88a@2, 3, 1, 1D, a@2, 3, 1, 2D<<<<
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This transposes the first two levels of t. 

In[11]:= tt1 = Transpose[t]

Out[11]= 8888a@1, 1, 1, 1D, a@1, 1, 1, 2D<<, 88a@2, 1, 1, 1D, a@2, 1, 1, 2D<<<,
888a@1, 2, 1, 1D, a@1, 2, 1, 2D<<, 88a@2, 2, 1, 1D, a@2, 2, 1, 2D<<<,
888a@1, 3, 1, 1D, a@1, 3, 1, 2D<<, 88a@2, 3, 1, 1D, a@2, 3, 1, 2D<<<<

The result is a 3ä2ä1ä2 tensor. 

In[12]:= Dimensions[ tt1 ]

Out[12]= 83, 2, 1, 2<

If you have a tensor that contains lists of the same length at different levels, then you can use Transpose  to effec-
tively collapse different levels.   

This collapses all three levels, giving a list of the elements on the “main  diagonal”.  

In[13]:= Transpose[Array[a, {3, 3, 3}], {1, 1, 1}]

Out[13]= 8a@1, 1, 1D, a@2, 2, 2D, a@3, 3, 3D<

This collapses only the first two levels. 

In[14]:= Transpose[Array[a, {2, 2, 2}], {1, 1}]

Out[14]= 88a@1, 1, 1D, a@1, 1, 2D<, 8a@2, 2, 1D, a@2, 2, 2D<<

You can also use Tr to extract diagonal elements of a tensor. 

This forms the ordinary trace of a rank 3 tensor. 

In[15]:= Tr[Array[a, {3, 3, 3}]]

Out[15]= a@1, 1, 1D + a@2, 2, 2D + a@3, 3, 3D

Here is a generalized trace, with elements combined into a list. 

In[16]:= Tr[Array[a, {3, 3, 3}], List]

Out[16]= 8a@1, 1, 1D, a@2, 2, 2D, a@3, 3, 3D<

This combines diagonal elements only down to level 2. 

In[17]:= Tr[Array[a, {3, 3, 3}], List, 2]

Out[17]= 88a@1, 1, 1D, a@1, 1, 2D, a@1, 1, 3D<,
8a@2, 2, 1D, a@2, 2, 2D, a@2, 2, 3D<, 8a@3, 3, 1D, a@3, 3, 2D, a@3, 3, 3D<<

Outer  products,  and  their  generalizations,  are  a  way  of  building  higher-rank  tensors  from  lower-rank  ones.  Outer
products are also sometimes known as direct, tensor or Kronecker products.

From a structural point of view, the tensor you get from Outer[f, t, u] has a copy of the structure of u inserted at
the “position”  of each element in t.  The elements in the resulting structure are obtained by combining elements of t
and u using the function f. 
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This gives the “outer  f”  of two vectors. The result is a matrix. 

In[18]:= Outer[ f, {a, b}, {ap, bp} ]

Out[18]= 88f@a, apD, f@a, bpD<, 8f@b, apD, f@b, bpD<<

If you take the “outer  f”  of a length 3 vector with a length 2 vector, you get a 3ä2 matrix. 

In[19]:= Outer[ f, {a, b, c}, {ap, bp} ]

Out[19]= 88f@a, apD, f@a, bpD<, 8f@b, apD, f@b, bpD<, 8f@c, apD, f@c, bpD<<

The result of taking the “outer  f”  of a 2ä2 matrix and a length 3 vector is a 2ä2ä3 tensor. 

In[20]:= Outer[ f, {{m11, m12}, {m21, m22}}, {a, b, c} ]

Out[20]= 888f@m11, aD, f@m11, bD, f@m11, cD<, 8f@m12, aD, f@m12, bD, f@m12, cD<<,
88f@m21, aD, f@m21, bD, f@m21, cD<, 8f@m22, aD, f@m22, bD, f@m22, cD<<<

Here are the dimensions of the tensor. 

In[21]:= Dimensions[ % ]

Out[21]= 82, 2, 3<

If  you  take  the  generalized  outer  product  of  an  m1 äm2 ä ...ämr  tensor  and  an  n1 än2 ä ...äns  tensor,  you  get  an
m1 ä ...ämr än1 ä ...äns  tensor. If the original tensors have ranks r  and s , your result will be a rank r + s  tensor. 

In terms of indices, the result of applying Outer to two tensors Ti1  i2... ir  and U j1  j2... js  is the tensor Vi1  i2... ir  j1  j2... js  with
elements f[Ti1  i2... ir ,U j1  j2... js ]. 

In  doing  standard  tensor  calculations,  the  most common function  f  to  use  in  Outer  is  Times,  corresponding  to  the
standard outer product. 

Particularly in doing combinatorial calculations, however,  it  is  often convenient  to take f  to be List.  Using Outer,
you can then get combinations of all possible elements in one tensor, with all possible elements in the other.  

In constructing Outer[f, t, u] you effectively insert a copy of u at every point in t. To form Inner[f, t, u], you
effectively  combine  and  collapse  the  last  dimension  of  t  and  the  first  dimension  of  u.  The  idea  is  to  take  an
m1 äm2 ä ...ämr  tensor and an n1 än2 ä ...äns  tensor, with mr = n1 , and get an m1 äm2 ä ...ämr-1 än2 ä ...äns  tensor as
the result. 

The  simplest  examples  are  with  vectors.  If  you  apply  Inner  to  two  vectors  of  equal  length,  you  get  a  scalar.
Inner[f, v1 , v2 , g] gives a generalization of the usual scalar product, with f playing the role of multiplication, and
g playing the role of addition.  

This gives a generalization of the standard scalar product of two vectors.

In[22]:= Inner[f, {a, b, c}, {ap, bp, cp}, g]

Out[22]= g@f@a, apD, f@b, bpD, f@c, cpDD
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This gives a generalization of a matrix product. 

In[23]:= Inner[f, {{1, 2}, {3, 4}}, {{a, b}, {c, d}}, g]

Out[23]= 88g@f@1, aD, f@2, cDD, g@f@1, bD, f@2, dDD<, 8g@f@3, aD, f@4, cDD, g@f@3, bD, f@4, dDD<<

Here is a 3ä2ä2 tensor. 

In[24]:= a = Array[1&, {3, 2, 2}]

Out[24]= 8881, 1<, 81, 1<<, 881, 1<, 81, 1<<, 881, 1<, 81, 1<<<

Here is a 2ä3ä1 tensor. 

In[25]:= b = Array[2&, {2, 3, 1}]

Out[25]= 8882<, 82<, 82<<, 882<, 82<, 82<<<

This gives a 3ä2ä3ä1 tensor. 

In[26]:= a . b

Out[26]= 88884<, 84<, 84<<, 884<, 84<, 84<<<,
8884<, 84<, 84<<, 884<, 84<, 84<<<, 8884<, 84<, 84<<, 884<, 84<, 84<<<<

Here are the dimensions of the result. 

In[27]:= Dimensions[ % ]

Out[27]= 83, 2, 3, 1<

You can think of Inner as performing a “contraction”  of the last index of one tensor with the first index of another.
If  you  want  to  perform contractions  across  other  pairs  of  indices,  you  can  do  so  by  first  transposing  the  appropriate
indices into the first or last position, then applying Inner, and then transposing the result back. 

In many applications of tensors, you need to insert signs to implement antisymmetry. The function Signature[8 i1 ,
i2 , … <],  which gives the signature of a permutation, is often useful for this purpose. 

Outer@ f ,  t1 ,  t2 , … D form a generalized outer product by
combining the lowest-level elements of  t1  ,  t2  , …

Outer@ f ,  t1 ,  t2 , … ,  n D treat only sublists at level  n as separate elements
Outer@ f ,  t1 ,  t2 , … ,  n1 ,  n2 , … D treat only sublists at level  ni  in  ti  as separate elements

Inner@ f ,  t1 ,  t2 ,  g D form a generalized inner
product using the lowest-level elements of  t1  

Inner@ f ,  t1 ,  t2 ,  g,  n D treat only sublists at level  n in  t1  as separate elements

Treating only certain sublists in tensors as separate elements. 

Here every single symbol is treated as a separate element. 

In[28]:= Outer[f, {{i, j}, {k, l}}, {x, y}]

Out[28]= 888f@i, xD, f@i, yD<, 8f@j, xD, f@j, yD<<, 88f@k, xD, f@k, yD<, 8f@l, xD, f@l, yD<<<
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But here only sublists at level 1 are treated as separate elements. 

In[29]:= Outer[f, {{i, j}, {k, l}}, {x, y}, 1]

Out[29]= 88f@8i, j<, xD, f@8i, j<, yD<, 8f@8k, l<, xD, f@8k, l<, yD<<

3.7.12 Sparse Arrays

Many large-scale applications of linear algebra involve matrices that have many elements, but comparatively few that
are  non-zero.  You  can  represent  such  sparse  matrices  efficiently  in  Mathematica  using  SparseArray  objects,  as
discussed  in  Section 2.4.5.  SparseArray  objects  work  by  having  lists  of  rules  that  specify  where  non-zero  values
appear.   

SparseArray@ list D a  SparseArray version of an ordinary list
SparseArray@ 8  8  i1 ,  j1  <   −>  v1 ,  

8  i2 ,  j2  <   −>  v2 , … <,  8  m,  n <  D 

an  män  sparse array with element  8  ik ,  jk  <  having value  vk  

SparseArray@ 8  8  i1 ,  j1  <,  8  i2 ,  j2  <,
… <   −>  8  v1 ,  v2 , … <,  8  m,  n <  D 

the same sparse array

Normal@ array D the ordinary list corresponding to a  SparseArray 

Specifying sparse arrays. 

As discussed  in  Section 2.4.5,  you can use  patterns  to  specify  collections of  elements in  sparse  arrays.  You can also
have sparse arrays that correspond to tensors of any rank. 

This makes a 50ä50 sparse numerical matrix, with 148 non-zero elements. 

In[1]:= m = SparseArray[{{30, _} -> 11.5, {_, 30} -> 21.5, {i_, i_} -> i}, {50, 50}]

Out[1]= SparseArray@<148>, 850, 50<D

This shows a visual representation of the matrix elements. 

In[2]:= ListDensityPlot[-m]
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Out[2]=  DensityGraphics 
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Here are the four largest eigenvalues of the matrix. 

In[3]:= Eigenvalues[m, 4]

Out[3]= 8129.846, −92.6878, 12.8319, 2.42012<

Dot gives a SparseArray result. 

In[4]:= m . m

Out[4]= SparseArray@<2500>, 850, 50<D

You can extract parts just like in an ordinary array. 

In[5]:= %[[20, 20]]

Out[5]= 647.25

You can apply most standard  structural  operations  directly to  SparseArray  objects,  just  as  you would  to ordinary
lists. When the results are sparse, they typically return SparseArray objects. 

Dimensions@ m D the dimensions of an array
ArrayRules@ m D the rules for non-zero elements in an array

m @@ i,  j DD element  i ,  j 
m @@ i DD the  i th  row

m @@All,  j DD the  i th  column
m @@ i,  j DD  =  v reset element  i ,  j 

A few structural operations that can be done directly on SparseArray objects. 

This gives the first column of m. It has only 2 non-zero elements. 

In[6]:= m[[All, 1]]

Out[6]= SparseArray@<2>, 850<D

This adds 3 to each element in the first column of m. 

In[7]:= m[[All, 1]] = 3 + m[[All, 1]]

Out[7]= SparseArray@<2>, 850<, 3D

Now all the elements in the first column are non-zero. 

In[8]:= m[[All, 1]]

Out[8]= SparseArray@<50>, 850<D

This gives the rules for the non-zero elements on the second row. 

In[9]:= ArrayRules[m[[2]]]

Out[9]= 881< → 3, 82< → 2, 830< → 21.5, 8_< → 0<
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SparseArray@ rules D generate a sparse array from rules
CoefficientArrays@ 8  eqns1 ,
 eqns2 , … <,  8  x1 ,  x2 , … <  D 

get arrays of coefficients from equations

Import@" file .mtx"D import a sparse array from a file

Typical ways to get sparse arrays. 

This generates a tridiagonal random matrix. 

In[10]:= SparseArray[{i_, j_}/;Abs[i-j] <= 1 :> Random[], {100, 100}]

Out[10]= SparseArray@<298>, 8100, 100<D

Even the tenth power of the matrix is still fairly sparse. 

In[11]:= MatrixPower[%, 10]

Out[11]= SparseArray@<1990>, 8100, 100<D

This extracts the coefficients as sparse arrays. 

In[12]:= s = CoefficientArrays[{c + x - z == 0, x + 2 y + z == 0}, {x, y, z}]

Out[12]= 8SparseArray@<1>, 82<D, SparseArray@<5>, 82, 3<D<

Here are the corresponding ordinary arrays. 

In[13]:= Normal[%]

Out[13]= 88c, 0<, 881, 0, −1<, 81, 2, 1<<<

This reproduces the original forms. 

In[14]:= s[[1]] + s[[2]] . {x, y, z}

Out[14]= 8c + x − z, x + 2 y + z<

CoefficientArrays can handle general polynomial equations. 

In[15]:= s = CoefficientArrays[{c + x^2 - z == 0, x^2 + 2 y + z^2 == 0}, {x, y, z}]

Out[15]= 8SparseArray@<1>, 82<D, SparseArray@<2>, 82, 3<D, SparseArray@<3>, 82, 3, 3<D<

The coefficients of the quadratic part are given in a rank 3 tensor. 

In[16]:= Normal[%]

Out[16]= 88c, 0<, 880, 0, −1<, 80, 2, 0<<,
8881, 0, 0<, 80, 0, 0<, 80, 0, 0<<, 881, 0, 0<, 80, 0, 0<, 80, 0, 1<<<<

This reproduces the original forms. 

In[17]:= s[[1]] + s[[2]] . {x, y, z} + s[[3]] . {x, y, z} . {x, y, z}

Out[17]= 8c + x2 − z, x2 + 2 y + z2<
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For  machine-precision  numerical  sparse  matrices, Mathematica  supports  standard  file  formats  such as Matrix  Market
(.mtx) and Harwell-Boeing. You can import and export matrices in these formats using Import and Export.  
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3.8 Numerical Operations on Data

3.8.1 Basic Statistics

Mean@ list D mean HaverageL
Median@ list D median Hcentral valueL

Max@ list D maximum value
Variance@ list D variance

StandardDeviation@ list D standard deviation
Quantile@ list,  q D q th  quantile

Total@ list D total

Basic descriptive statistics operations. 

Given a list with n  elements xi , the mean Mean[list] is defined to be m HxL = x =êêê  ⁄ xi ên . 

The variance Variance[list] is defined to be var HxL = s2 HxL = ⁄Hxi - m HxLL2 ê n . 

The standard deviation StandardDeviation[list] is defined to be s HxL =
è!!!!!!!!!!!!!var HxL . 

If  the elements in  list  are  thought  of  as  being selected at  random according to some probability distribution,  then the
mean gives an estimate of where the center of the distribution is located, while the standard deviation gives an estimate
of how wide the dispersion in the distribution is. 

The median  Median[list]  effectively gives the value at the half-way point in the sorted list Sort[list].  It is  often
considered  a  more  robust  measure  of  the  center  of  a  distribution  than  the  mean,  since  it  depends  less  on  outlying
values.  

The  q th  quantile  Quantile[list,  q]  effectively  gives  the  value  that  is  q  of  the  way  through  the  sorted  list
Sort[list]. 

For a list of length n , Mathematica defines Quantile[list, q] to be Sort[list][[Ceiling[n q]]]. 

There  are,  however,  about  ten  other  definitions  of  quantile  in  use,  all  potentially  giving  slightly  different  results.
Mathematica covers the common cases by introducing four quantile parameters in the form Quantile[list, q, 88a,
b<, 8c, d<<]. The parameters a  and b  in effect define where in the list should be considered a fraction q  of the way
through. If this corresponds to an integer position, then the element at that position is taken to be the q th  quantile. If it
is not an integer position, then a linear combination of the elements on either side is used, as specified by c  and d . 

The position in a sorted list s  for the q th  quantile is taken to be k = a + Hn + bL q . If k  is an integer, then the quantile is
s[[k]].  Otherwise,  it  is  s[[Floor[k]]]  +  (s[[Ceiling[k]]]  -  s[[Floor[k]]])  (c  +  d  Fractional
Part[k]), with the indices taken to be 1 or n if they are out of range. 
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8  8  0,  0 < ,  8  1,  0 <  <  inverse empirical CDF HdefaultL
8  8  0,  0 < ,  8  0,  1 <  <  linear interpolation HCalifornia methodL

8  8  1ê2,  0 < ,  8  0,  0 <  <  element numbered closest to  q n  
8  8  1ê2,  0 < ,  8  0,  1 <  <  linear interpolation Hhydrologist methodL

8  8  0,  1 < ,  8  0,  1 <  <  mean-based estimate HWeibull methodL
8  8  1,  −1 < ,  8  0,  1 <  <  mode-based estimate

8  8  1ê3,  1ê3 < ,  8  0,  1 <  <  median-based estimate
8  8  3ê8,  1ê4 < ,  8  0,  1 <  <  normal distribution estimate

Common choices for quantile parameters. 

Whenever d = 0, the value of the q th  quantile is always equal to some actual element in list, so that the result changes
discontinuously  as  q  varies.  For  d = 1,  the  q th  quantile  interpolates  linearly  between  successive  elements  in  list.
Median is defined to use such an interpolation. 

Note that Quantile[list, q] yields quartiles when q = m ê 4 and percentiles when q = m ê 100.   

Mean@ 8  x1 ,  x2 , … <  D the mean of the  xi  
Mean@ 8  8  x1 ,  y1 , … 

<,  8  x2 ,  y2 , … <, … <  D 

a list of the means of the  xi  ,  yi  , …

Handling multidimensional data. 

Sometimes each item in your data may involve a list of values. The basic statistics functions in Mathematica automati-
cally apply to all corresponding elements in these lists. 

This separately finds the mean of each “column”  of data. 

In[1]:= Mean[{{x1, y1}, {x2, y2}, {x3, y3}}]

Out[1]= 9 1
3
Hx1 + x2 + x3L,

1
3
Hy1 + y2 + y3L=

Note that you can extract the elements in the ith  “column”  of a multidimensional list using list[[All, i]]. 

The  standard  set  of  packages  distributed  with  Mathematica  includes  several  for  doing  more  sophisticated  statistical
analyses, as mentioned in Section 1.6.7. 

3.8.2 Curve Fitting

There are many situations where one wants to find a formula that best fits a given set of  data. One way to do this in
Mathematica is to use Fit. 

Fit@ 8  f 1 ,  f 2 , … <,
 8  fun1 ,  fun2 , … <,  x D 

find a linear combination of the  funi  that best fits the values  f i  

Basic linear fits. 
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Here is a table of the first 20 primes. 

In[1]:= fp = Table[Prime[x], {x, 20}]

Out[1]= 82, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71<

Here is a plot of this “data”.  

In[2]:= gp = ListPlot[ fp ]
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Out[2]=  Graphics 

This gives a linear fit to the list of primes. The result is the best linear combination of the functions 1 and x.  

In[3]:= Fit[fp, {1, x}, x]

Out[3]= −7.67368 + 3.77368 x

Here is a plot of the fit. 

In[4]:= Plot[%, {x, 0, 20}]
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Out[4]=  Graphics 
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Here is the fit superimposed on the original data. 

In[5]:= Show[%, gp]
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Out[5]=  Graphics 

This gives a quadratic fit to the data. 

In[6]:= Fit[fp, {1, x, x^2}, x]

Out[6]= −1.92368 + 2.2055 x + 0.0746753 x2

Here is a plot of the quadratic fit. 

In[7]:= Plot[%, {x, 0, 20}]
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Out[7]=  Graphics 
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This shows the fit superimposed on the original data. The quadratic fit is better than the linear one. 

In[8]:= Show[%, gp]
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Out[8]=  Graphics 

8  f 1 ,  f 2 , … <  data points obtained when a single coordinate takes on values  
1 ,  2 , …

8  8  x1 ,  f 1  <,  8  x2 ,  f 2  <, … <  data points obtained when a single coordinate takes on values  
x1  ,  x2  , …

8  8  x1 ,  y1 , … ,  f 1  <,
 8  x2 ,  y2 , … ,  f 2  <, … <  

data points obtained with values  
xi  ,  yi  , … of a sequence of coordinates

Ways of specifying data. 

If  you  give  data  in  the  form 8 f 1 ,  f 2 ,  … <  then  Fit  will  assume that  the  successive  f i  correspond  to  values  of  a
function  at  successive  integer  points  1,  2,  … .  But  you  can  also  give  Fit  data  that  corresponds  to  the  values  of  a
function at arbitrary points, in one or more dimensions. 

Fit@ data,  8  fun1 ,  

fun2 , … <,  8  x,  y, … <  D 

fit to a function of several variables

Multivariate fits. 

This gives a table of the values of x , y  and 1 + 5 x - x y . You need to use Flatten to get it in the right form for Fit. 

In[9]:= Flatten[ Table[ {x, y, 1 + 5x - x y}, {x, 0, 1, 0.4}, {y, 0, 1, 0.4} ], 1]

Out[9]= 880, 0, 1<, 80, 0.4, 1<, 80, 0.8, 1<, 80.4, 0, 3.<, 80.4, 0.4, 2.84<,
80.4, 0.8, 2.68<, 80.8, 0, 5.<, 80.8, 0.4, 4.68<, 80.8, 0.8, 4.36<<

This produces a fit to a function of two variables. 

In[10]:= Fit[ % , {1, x, y, x y}, {x, y} ]

Out[10]= 1. + 5. x + 4.53999 × 10−15 y − 1. x y

Fit  takes  a  list  of  functions,  and  uses  a  definite  and  efficient  procedure  to  find  what  linear  combination  of  these
functions gives the best least-squares fit  to your data. Sometimes, however,  you may want to find a nonlinear fit that
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does  not  just  consist  of  a  linear  combination of  specified  functions.  You can do  this  using FindFit,  which  takes a
function of any form, and then searches for values of parameters that yield the best fit to your data. 

FindFit@ data,  form,
 8  par1 ,  par2 , … <,  x D 

search for values of the  pari  that make  form best fit  data 

FindFit@ data,  
form,  pars,  8  x,  y, … <  D 

fit multivariate data

Searching for general fits to data. 

This fits the list of primes to a simple linear combination of terms. 

In[11]:= FindFit[fp, a + b x + c Exp[x], {a, b, c}, x]

Out[11]= 8a → −6.78932, b → 3.64309, c → 1.26883 × 10−8<

The result is the same as from Fit. 

In[12]:= Fit[fp, {1, x, Exp[x]}, x]

Out[12]= −6.78932 + 1.26883 × 10−8 x + 3.64309 x

This fits to a nonlinear form, which cannot be handled by Fit. 

In[13]:= FindFit[fp, a x Log[b + c x], {a, b, c}, x]

Out[13]= 8a → 1.42076, b → 1.65558, c → 0.534645<

By  default,  both  Fit  and  FindFit  produce  least-squares  fits,  which  are  defined  to  minimize  the  quantity
c2 = ⁄i » ri »2 ,  where  the  ri  are  residuals  giving  the  difference  between  each  original  data point  and  its  fitted value.
One can, however, also consider fits based on other norms. If you set the option NormFunction -> u, then Find
Fit will attempt to find the fit that minimizes the quantity u[r], where r is the list of residuals. The default is Norm
Function -> Norm, corresponding to a least-squares fit.  

This uses the ¶ -norm, which minimizes the maximum distance between the fit and the data. The result is slightly different from 
least-squares. 

In[14]:= FindFit[fp, a x Log[b + c x], {a, b, c}, x, NormFunction -> (Norm[#, Infinity] 
&)]

Out[14]= 8a → 1.15077, b → 1.0023, c → 1.04686<

FindFit works by searching for values of parameters that yield the best fit. Sometimes you may have to tell it where
to start in doing this search. You can do this by giving parameters in the form 88a, a0 <, 8b, b0 <, … < . FindFit also
has various options that you can set to control how it does its search. 
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option name default value 

NormFunction Norm the norm to use
AccuracyGoal Automatic number of digits of accuracy to try to get
PrecisionGoal Automatic number of digits of precision to try to get
WorkingPrecision MachinePrecis

ion 

precision to use in internal computations

MaxIterations 100 maximum number of iterations to use
StepMonitor None expression to evaluate whenever a step is taken
EvaluationMonitor None expression to evaluate whenever  

form is evaluated
Method Automatic method to use

Options for FindFit. 

3.8.3 Approximate Functions and Interpolation

In many kinds of numerical computations, it is convenient to introduce approximate functions. Approximate functions
can be  thought  of  as  generalizations  of  ordinary  approximate real  numbers.  While  an approximate real  number gives
the  value  to  a  certain  precision  of  a  single  numerical  quantity,  an  approximate  function  gives  the  value  to  a  certain
precision  of  a  quantity  which  depends  on  one  or  more  parameters.  Mathematica  uses  approximate  functions,  for
example,  to  represent  numerical  solutions  to  differential  equations  obtained  with  NDSolve,  as  discussed  in  Section
1.6.4. 

Approximate functions in Mathematica  are represented by InterpolatingFunction  objects. These objects work
like the pure functions discussed in Section 2.2.5. The basic idea is that when given a particular argument, an Interpo
latingFunction object finds the approximate function value that corresponds to that argument. 

The  InterpolatingFunction  object  contains  a  representation  of  the  approximate  function  based  on  interpola-
tion.  Typically  it  contains  values  and  possibly  derivatives  at  a  sequence  of  points.  It  effectively  assumes  that  the
function varies smoothly between these points. As a result, when you ask for the value of the function with a particular
argument, the InterpolatingFunction object can interpolate to find an approximation to the value you want. 

Interpolation@ 8  f 1 ,  f 2 , … <  D construct an approximate function with values  
f i  at successive integers

Interpolation@ 8  8  
x1 ,  f 1  <,  8  x2 ,  f 2  <, … <  D 

construct an approximate function with values  f i  at points  xi  

Constructing approximate functions. 

Here is a table of the values of the sine function. 

In[1]:= Table[{x, Sin[x]}, {x, 0, 2, 0.25}]

Out[1]= 880, 0<, 80.25, 0.247404<, 80.5, 0.479426<, 80.75, 0.681639<, 81., 0.841471<,
81.25, 0.948985<, 81.5, 0.997495<, 81.75, 0.983986<, 82., 0.909297<<

This constructs an approximate function which represents these values. 

In[2]:= sin = Interpolation[%]

Out[2]= InterpolatingFunction@880., 2.<<, <>D
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The approximate function reproduces each of the values in the original table. 

In[3]:= sin[0.25]

Out[3]= 0.247404

It also allows you to get approximate values at other points. 

In[4]:= sin[0.3]

Out[4]= 0.2955

In this case the interpolation is a fairly good approximation to the true sine function. 

In[5]:= Sin[0.3]

Out[5]= 0.29552

You  can  work  with  approximate  functions  much as  you  would  with  any  other  Mathematica  functions.  You  can  plot
approximate functions, or perform numerical operations such as integration or root finding. 

If you give a non-numerical argument, the approximate function is left in symbolic form. 

In[6]:= sin[x]

Out[6]= InterpolatingFunction@880., 2.<<, <>D@xD

Here is a numerical integral of the approximate function. 

In[7]:= NIntegrate[sin[x]^2, {x, 0, Pi/2}]

Out[7]= 0.78531

Here is the same numerical integral for the true sine function. 

In[8]:= NIntegrate[Sin[x]^2, {x, 0, Pi/2}]

Out[8]= 0.785398
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A plot of the approximate function is essentially indistinguishable from the true sine function. 

In[9]:= Plot[sin[x], {x, 0, 2}]
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Out[9]=  Graphics 

If you differentiate an approximate function, Mathematica  will return another approximate function that represents the
derivative. 

This finds the derivative of the approximate sine function, and evaluates it at p ê 6.  

In[10]:= sin'[Pi/6]

Out[10]= 0.865372

The result is close to the exact one. 

In[11]:= N[Cos[Pi/6]]

Out[11]= 0.866025

InterpolatingFunction  objects contain all the information Mathematica  needs about approximate functions. In
standard  Mathematica  output  format,  however,  only  the  part  that  gives  the  domain  of  the  InterpolatingFunc
tion  object  is printed explicitly. The lists of actual parameters used in the InterpolatingFunction  object are
shown only in iconic form. 

In standard output format, the only part of an InterpolatingFunction object printed explicitly is its domain. 

In[12]:= sin

Out[12]= InterpolatingFunction@880., 2.<<, <>D

If you ask for a value outside of the domain, Mathematica prints a warning, then uses extrapolation to find a result.  

In[13]:= sin[3]

InterpolatingFunction::dmval :  

Input value 83< lies outside the range of data in the
interpolating function. Extrapolation will be used.

Out[13]= 0.0155471
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The more information you give about the function you are trying to approximate, the better the approximation Mathe-
matica  constructs  can be.  You can,  for  example,  specify  not  only  values  of  the  function  at  a  sequence  of  points,  but
also derivatives. 

Interpolation@ 8  8  x1 ,  8  
f 1 ,  df 1 ,  ddf 1 , … <  <, … <  D 

construct an approximate
function with specified derivatives at points  xi  

Constructing approximate functions with specified derivatives. 

Interpolation works by fitting polynomial curves between the points you specify. You can use the option Inter
polationOrder  to specify the degree of these polynomial curves. The default setting is InterpolationOrder
-> 3, yielding cubic curves. 

This makes a table of values of the cosine function. 

In[14]:= tab = Table[{x, Cos[x]}, {x, 0, 6}] ;

This creates an approximate function using linear interpolation between the values in the table. 

In[15]:= Interpolation[tab, InterpolationOrder -> 1]

Out[15]= InterpolatingFunction@880, 6<<, <>D

The approximate function consists of a collection of straight-line segments. 

In[16]:= Plot[%[x], {x, 0, 6}]
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Out[16]=  Graphics 
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With the default setting InterpolationOrder -> 3, cubic curves are used, and the function looks smooth. 

In[17]:= Plot[Evaluate[Interpolation[tab]][x], {x, 0, 6}]
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Out[17]=  Graphics 

Increasing  the  setting  for  InterpolationOrder  typically  leads  to  smoother  approximate  functions.  However,  if
you increase the setting too much, spurious wiggles may develop. 

ListInterpolation@ 8  8  f 11 ,
 f 12 , … <,  8  f 21 , … <, … <  D 

construct an approximate function from
a two-dimensional grid of values at integer points

ListInterpolation@ list,  8  8  
xmin,  xmax <,  8  ymin,  ymax <  <  D 

assume the values are from an
evenly spaced grid with the specified domain

ListInterpolation@ list,  8  8  
x1 ,  x2 , … <  ,  8  y1 ,  y2 , … <  <  D 

assume the values are from a grid with the specified grid lines

Interpolating multidimensional arrays of data. 

This interpolates an array of values from integer grid points. 

In[18]:= ListInterpolation[ Table[1.5/(x^2 + y^3), {x, 10}, {y, 15}]]

Out[18]= InterpolatingFunction@881., 10.<, 81., 15.<<, <>D

Here is the value at a particular position. 

In[19]:= %[6.5, 7.2]

Out[19]= 0.00360759

Here is another array of values. 

In[20]:= tab = Table[1.5/(x^2 + y^3), {x, 5.5, 7.2, .2}, {y, 2.3, 8.9, .1}] ;

To interpolate this array you explicitly have to tell Mathematica the domain it covers. 

In[21]:= ListInterpolation[tab, {{5.5, 7.2}, {2.3, 8.9}}]

Out[21]= InterpolatingFunction@885.5, 7.2<, 82.3, 8.9<<, <>D
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ListInterpolation works for arrays of any dimension, and in each case it produces an InterpolatingFunc
tion object which takes the appropriate number of arguments.  

This interpolates a three-dimensional array. 

In[22]:= ListInterpolation[ Array[#1^2 + #2^2 - #3^2 &, {10, 10, 10}]] ;

The resulting InterpolatingFunction object takes three arguments. 

In[23]:= %[3.4, 7.8, 2.6]

Out[23]= 65.64

Mathematica  can  handle  not  only  purely  numerical  approximate  functions,  but  also  ones  which  involve  symbolic
parameters. 

This generates an InterpolatingFunction that depends on the parameters a and b. 

In[24]:= sfun = ListInterpolation[{1 + a, 2, 3, 4 + b, 5}]

Out[24]= InterpolatingFunction@881, 5<<, <>D

This shows how the interpolated value at 2.2 depends on the parameters. 

In[25]:= sfun[2.2] // Simplify

Out[25]= 2.2 − 0.048 a − 0.032 b

With the default setting for InterpolationOrder used, the value at this point no longer depends on a. 

In[26]:= sfun[3.8] // Simplify

Out[26]= 3.8 + 0.864 b

In working with approximate functions, you can quite often end up with complicated combinations of Interpolat
ingFunction  objects.  You can always tell  Mathematica  to  produce  a single InterpolatingFunction  object
valid over a particular domain by using FunctionInterpolation. 

This generates a new InterpolatingFunction object valid in the domain 0 to 1. 

In[27]:= FunctionInterpolation[x + sin[x^2], {x, 0, 1}]

Out[27]= InterpolatingFunction@880., 1.<<, <>D

This generates a nested InterpolatingFunction object. 

In[28]:= ListInterpolation[{3, 4, 5, sin[a], 6}]

Out[28]= InterpolatingFunction@881, 5<<, <>D

This produces a pure two-dimensional InterpolatingFunction object. 

In[29]:= FunctionInterpolation[a^2 + %[x], {x, 1, 3}, {a, 0, 1.5}]

Out[29]= InterpolatingFunction@881., 3.<, 80., 1.5<<, <>D
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FunctionInterpolation@ 

expr,  8  x,  xmin,  xmax <  D 

construct an approximate function by evaluating  
expr with  x ranging from  xmin to  xmax 

FunctionInterpolation@ 

expr,  8  x,  xmin,  xmax <,
 8  y,  ymin,  ymax <, … D 

construct a higher-dimensional approximate function

Constructing approximate functions by evaluating expressions. 

3.8.4 Fourier Transforms

A common operation in analyzing various kinds of data is to find the Fourier transform, or spectrum, of a list of values.
The idea is typically to pick out components of the data with particular frequencies, or ranges of frequencies.    

Fourier@ 8  u1 ,  u2 , … ,  un  <  D Fourier transform
InverseFourier@ 

8  v1 ,  v2 , … ,  vn  <  D 

inverse Fourier transform

Fourier transforms. 

Here is some data, corresponding to a square pulse.  

In[1]:= {-1, -1, -1, -1, 1, 1, 1, 1}

Out[1]= 8−1, −1, −1, −1, 1, 1, 1, 1<

Here is the Fourier transform of the data. It involves complex numbers. 

In[2]:= Fourier[%]

Out[2]= 80. + 0. , −0.707107 − 1.70711 , 0. + 0. , −0.707107 − 0.292893 ,
0. + 0. , −0.707107 + 0.292893 , 0. + 0. , −0.707107 + 1.70711 <

Here is the inverse Fourier transform. 

In[3]:= InverseFourier[%]

Out[3]= 8−1., −1., −1., −1., 1., 1., 1., 1.<

Fourier works whether or not your list of data has a length which is a power of two. 

In[4]:= Fourier[{1, -1, 1}]

Out[4]= 80.57735 + 0. , 0.57735 − 1. , 0.57735 + 1. <

This generates a length-200 list containing a periodic signal with random noise added. 

In[5]:= data = Table[ N[Sin[30 2 Pi n/200] + (Random[ ] - 1/2)], {n, 200} ] ;
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The data looks fairly random if you plot it directly. 

In[6]:= ListPlot[ data, PlotJoined -> True ]

50 100 150 200
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Out[6]=  Graphics 

The Fourier transform, however, shows a strong peak at 30 + 1, and a symmetric peak at 201 - 30, reflecting the frequency 
component of the original signal near 30 ê 200. 

In[7]:= ListPlot[ Abs[Fourier[data]], PlotJoined -> True, PlotRange -> All ]
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Out[7]=  Graphics 

In  Mathematica,  the  discrete  Fourier  transform  vs  of  a  list  ur  of  length  n  is  by  default  defined  to  be
1ÅÅÅÅÅÅÅÅÅÅè!!!!n

 ‚
r=1

n
ur e2 p i Hr-1L Hs-1Lên . Notice that the zero frequency term appears at position 1 in the resulting list. 

The  inverse  discrete  Fourier  transform  ur  of  a  list  vs  of  length  n  is  by  default  defined  to  be
1ÅÅÅÅÅÅÅÅÅÅè!!!!n

 ‚
s=1

n
vs e-2 p i Hr-1L Hs-1Lên . 

In different scientific and technical fields different conventions are often used for defining discrete Fourier transforms.
The option FourierParameters in Mathematica allows you to choose any of these conventions you want.    
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common

convention 

setting discrete Fourier

transform 

inverse discrete Fourier transform 

Mathematica 
default

80,  1< 1ÅÅÅÅÅÅÅÅÅn1ê2  ‚
r=1

n
ur 

e2 p i Hr-1L Hs-1Lên
 1ÅÅÅÅÅÅÅÅÅn1ê2  ‚

s=1

n
vs e-2 p i Hr-1L Hs-1Lên  

data analysis 8−1,  1< 1ÅÅÅÅn  ‚
r=1

n
ur 

e2 p i Hr-1L Hs-1Lên
 ⁄s=1

n vs e-2 p i Hr-1L Hs-1Lên  

signal
processing

81,  −1< ⁄r=1
n ur 

e-2 p i Hr-1L Hs-1Lên
 1ÅÅÅÅn  ‚

s=1

n
vs e2 p i Hr-1L Hs-1Lên  

general case 8  a,  b <  1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅnH1-aLê2  ‚
r=1

n
ur 

e2 p i b Hr-1L Hs-1Lên

 

1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅnH1+aLê2  ‚
s=1

n
vs e-2 p i b Hr-1L Hs-1Lên  

Typical settings for FourierParameters with various conventions. 

Fourier@ 8  8  u11 ,  u12 ,
… <,  8  u21 ,  u22 , … <, … <  D 

two-dimensional Fourier transform

Two-dimensional Fourier transform. 

Mathematica  can find Fourier transforms for data in any number of dimensions. In n  dimensions, the data is specified
by a list nested n  levels deep. Two-dimensional Fourier transforms are often used in image processing. 

3.8.5 Convolutions and Correlations

Convolution  and  correlation  are  central  to  many kinds  of  operations  on  lists  of  data.  They are  used  in  such  areas  as
signal  and  image  processing,  statistical  data  analysis,  approximations  to  partial  differential  equations,  as  well  as
operations on digit sequences and power series.    

In both convolution and correlation the basic idea is to combine a kernel list with successive sublists of a list of data.
The  convolution  of  a  kernel  Kr  with  a  list  us  has  the  general  form ⁄r Kr us-r ,  while  the  correlation  has  the  general
form ⁄r Kr us+r . 

ListConvolve@ kernel,  list D form the convolution of  kernel with  list 
ListCorrelate@ kernel,  list D form the correlation of  kernel with  list 

Convolution and correlation of lists. 

This forms the convolution of the kernel {x, y} with a list of data. 

In[1]:= ListConvolve[{x,y}, {a,b,c,d,e}]

Out[1]= 8b x + a y, c x + b y, d x + c y, e x + d y<

This forms the correlation. 

In[2]:= ListCorrelate[{x,y}, {a,b,c,d,e}]

Out[2]= 8a x + b y, b x + c y, c x + d y, d x + e y<
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In this case reversing the kernel gives exactly the same result as ListConvolve. 

In[3]:= ListCorrelate[{y, x}, {a,b,c,d,e}]

Out[3]= 8b x + a y, c x + b y, d x + c y, e x + d y<

This forms successive differences of the data. 

In[4]:= ListCorrelate[{-1,1}, {a,b,c,d,e}]

Out[4]= 8−a + b, −b + c, −c + d, −d + e<

In forming sublists to combine with a kernel, there is always an issue of what to do at the ends of the list of data. By
default, ListConvolve and ListCorrelate never form sublists which would “overhang”  the ends of the list of
data. This means that the output you get is normally shorter than the original list of data. 

With an input list of length 6, the output is in this case of length 4. 

In[5]:= ListCorrelate[{1,1,1}, Range[6]]

Out[5]= 86, 9, 12, 15<

In practice one often wants to get output that is as long as the original list of data. To do this requires including sublists
that overhang one or both ends of the list of data. The additional elements needed to form these sublists must be filled
in with some kind of “padding”.  By default, Mathematica takes copies of the original list to provide the padding, thus
effectively treating the list as being cyclic. 

ListCorrelate@ kernel,  list D do not allow overhangs on either side Hresult shorter than  list L
ListCorrelate@ kernel,  list,  1D allow an overhang on the right Hresult same length as  list L

ListCorrelate@ kernel,  list,  −1D allow an overhang on the left Hresult same length as  list L
ListCorrelate@ 

kernel,  list,  8  −1,  1 <  D 
allow overhangs on both sides Hresult longer than  list L

ListCorrelate@ 

kernel,  list,  8  kL ,  kR  <  D 

allow particular overhangs on left and right

Controlling how the ends of the list of data are treated. 

The default involves no overhangs. 

In[6]:= ListCorrelate[{x, y}, {a, b, c, d}]

Out[6]= 8a x + b y, b x + c y, c x + d y<

The last term in the last element now comes from the beginning of the list. 

In[7]:= ListCorrelate[{x, y}, {a, b, c, d}, 1]

Out[7]= 8a x + b y, b x + c y, c x + d y, d x + a y<

Now the first term of the first element and the last term of the last element both involve wraparound. 

In[8]:= ListCorrelate[{x, y}, {a, b, c, d}, {-1, 1}]

Out[8]= 8d x + a y, a x + b y, b x + c y, c x + d y, d x + a y<
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In the general case ListCorrelate[kernel, list, 8kL , kR <] is set up so that in the first element of the result, the
first element of list appears multiplied by the element at position kL  in kernel, and in the last element of the result, the
last element of list appears multiplied by the element at position kR  in kernel. The default case in which no overhang is
allowed on either side thus corresponds to ListCorrelate[kernel, list, 81, -1<]. 

With a kernel of length 3, alignments {-1, 2} always make the first and last elements of the result the same. 

In[9]:= ListCorrelate[{x, y, z}, {a, b, c, d}, {-1, 2}]

Out[9]= 8c x + d y + a z, d x + a y + b z, a x + b y + c z, b x + c y + d z, c x + d y + a z<

For many kinds of data, it is convenient to assume not that the data is cyclic, but rather that it is padded at either end by
some fixed element, often 0, or by some sequence of elements. 

ListCorrelate@ 

kernel,  list,  klist,  p D 

pad with element  p 

ListCorrelate@ kernel,
 list,  klist,  8  p1 ,  p2 , … <  D 

pad with cyclic repetitions of the  pi  

ListCorrelate@ 

kernel,  list,  klist,  list D 

pad with cyclic repetitions of the original data

ListCorrelate@ 

kernel,  list,  klist,  8  <  D 

include no padding

Controlling the padding for a list of data. 

This pads with element p. 

In[10]:= ListCorrelate[{x, y}, {a, b, c, d}, {-1, 1}, p]

Out[10]= 8p x + a y, a x + b y, b x + c y, c x + d y, d x + p y<

A common case is to pad with zero. 

In[11]:= ListCorrelate[{x, y}, {a, b, c, d}, {-1, 1}, 0]

Out[11]= 8a y, a x + b y, b x + c y, c x + d y, d x<

In this case q appears at one end, and p at the other. 

In[12]:= ListCorrelate[{x, y}, {a, b, c, d}, {-1, 1}, {p, q}]

Out[12]= 8q x + a y, a x + b y, b x + c y, c x + d y, d x + p y<

Different choices of kernel allow ListConvolve and ListCorrelate to be used for different kinds of computa-
tions. 

This finds a moving average of data. 

In[13]:= ListCorrelate[{1,1,1}/3, {a,b,c,d,e}, {-1,1}]

Out[13]= 9 a
3

+
d
3

+
e
3

, a
3

+
b
3

+
e
3

, a
3

+
b
3

+
c
3

, b
3

+
c
3

+
d
3

, c
3

+
d
3

+
e
3

, a
3

+
d
3

+
e
3

, a
3

+
b
3

+
e
3
=
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Here is a Gaussian kernel. 

In[14]:= kern = Table[Exp[-n^2/100]/Sqrt[2. Pi], {n, -10, 10}] ;

This generates some “data”.  

In[15]:= data = Table[BesselJ[1, x] + 0.2 Random[ ], {x, 0, 10, .1}] ;

Here is a plot of the data. 

In[16]:= ListPlot[data];
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This convolves the kernel with the data. 

In[17]:= ListConvolve[kern, data, {-1, 1}] ;

The result is a smoothed version of the data. 

In[18]:= ListPlot[%]
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3

4

Out[18]=  Graphics 

You can use ListConvolve and ListCorrelate to handle symbolic as well as numerical data. 
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This forms the convolution of two symbolic lists. 

In[19]:= ListConvolve[{a,b,c}, {u,v,w}, {1, -1}, 0]

Out[19]= 8a u, b u + a v, c u + b v + a w, c v + b w, c w<

The result corresponds exactly with the coefficients in the expanded form of this product of polynomials. 

In[20]:= Expand[(a + b x + c x^2)(u + v x + w x^2)]

Out[20]= a u + b u x + a v x + c u x2 + b v x2 + a w x2 + c v x3 + b w x3 + c w x4

ListConvolve and ListCorrelate work on data in any number of dimensions. 

This imports image data from a file. 

In[21]:= g = ReadList["fish.data", Number, RecordLists->True];

Here is the image. 

In[22]:= Show[Graphics[Raster[g], AspectRatio->Automatic]]

Out[22]=  Graphics 

This convolves the data with a two-dimensional kernel. 

In[23]:= ListConvolve[{{1,1,1},{1,-8,1},{1,1,1}}, g] ;
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This shows the image corresponding to the data. 

In[24]:= Show[Graphics[Raster[%], AspectRatio->Automatic]]

Out[24]=  Graphics 

RotateLeft@ list,  8  d1 ,  d2 , … <  D ,  
RotateRight@ list,  8  d1 ,  d2 , … <  D 

rotate elements cyclically by  di  positions at level  i 

PadLeft@ list,  8  n1 ,  n2 , … <  D ,  
PadRight@ list,  8  n1 ,  n2 , … <  D 

pad with zeros to create an  n1 än2 ä… array

Take@ list,  m1 ,  m2 , … 
D ,  Drop@ list,  m1 ,  m2 , … D 

take or drop  mi  elements at level  i 

Other functions for manipulating multidimensional data. 

3.8.6 Cellular Automata

Cellular automata provide a convenient way to represent many kinds of systems in which the values of cells in an array
are updated in discrete steps according to a local rule. 

CellularAutomaton@ 

rnum,  init,  t D 

evolve rule  rnum from  init for  t steps

Generating a cellular automaton evolution. 

This starts with the list given, then evolves rule 30 for four steps. 

In[1]:= CellularAutomaton[30, {0, 0, 0, 1, 0, 0, 0}, 4]

Out[1]= 880, 0, 0, 1, 0, 0, 0<, 80, 0, 1, 1, 1, 0, 0<,
80, 1, 1, 0, 0, 1, 0<, 81, 1, 0, 1, 1, 1, 1<, 80, 0, 0, 1, 0, 0, 0<<

This defines a simple function for displaying cellular automaton evolution. 

In[2]:= CAPlot[data_] := ListDensityPlot[Reverse[Max[data] - data], AspectRatio -> 
Automatic, Mesh -> False, FrameTicks -> None]
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This shows 100 steps of rule 30 evolution from random initial conditions. 

In[3]:= CAPlot[CellularAutomaton[30, Table[Random[Integer], {250}], 100]]

Out[3]=  DensityGraphics 

8  a1 ,  a2 , … <  explicit list of values  ai  
8  8  a1 ,  a2 , … <,  b <  values  ai  superimposed on a  b background

8  8  a1 ,  a2 , … <,  blist <  values  ai  superimposed on a background of repetitions of  blist 
8  8  8  a11 ,  a12 , … <,  8  d1  <  <, … <,  blist values  ai j  at offsets  di  

Ways of specifying initial conditions for one-dimensional cellular automata. 

If you give an explicit list of initial values, CellularAutomaton will take the elements in this list to correspond to
all the cells in the system, arranged cyclically. 

The right neighbor of the cell at the end is the cell at the beginning. 

In[4]:= CellularAutomaton[30, {1, 0, 0, 0, 0}, 1]

Out[4]= 881, 0, 0, 0, 0<, 81, 1, 0, 0, 1<<

It is often convenient to set up initial conditions in which there is a small “seed”  region, superimposed on a constant
“background”.  By  default,  CellularAutomaton  automatically  fills  in  enough  background  to  cover  the  size  of
pattern that can be produced in the number of steps of evolution you specify. 
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This shows rule 30 evolving from an initial condition containing a single black cell. 

In[5]:= CAPlot[CellularAutomaton[30, {{1}, 0}, 100]]

Out[5]=  DensityGraphics 

This shows rule 30 evolving from an initial condition consisting of a {1,1} seed on a background of repeated {1,0,1,1} 
blocks. 

In[6]:= CAPlot[CellularAutomaton[30, {{1, 1}, {1, 0, 1, 1}}, 100]]

Out[6]=  DensityGraphics 

Particularly  in  studying  interactions  between  structures,  you  may  sometimes  want  to  specify  initial  conditions  for
cellular automata in which certain blocks are placed at particular offsets. 
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This sets up an initial condition with black cells at offsets ≤40. 

In[7]:= CAPlot[CellularAutomaton[30, {{{ {1}, {-40} }, {{1}, {40}}}, 0}, 100]]

Out[7]=  DensityGraphics 

n k =2 ,  r =1 , elementary rule
8  n,  k <  general nearest-neighbor rule with  k colors

8  n,  k,  r <  general rule with  k colors and range  r  
8  n,  8  k,  1 <  <  k -color nearest-neighbor totalistic rule

8  n,  8  k,  1 < ,  r <  k -color range  r totalistic rule
8  n,  8  k,  8  wt1 ,  wt2 , … , <  < ,  r <  rule in which neighbor  i is assigned weight  wti  

8  n,  kspec,  8  8  off 1  <,
 8  off 2  <, … ,  8  off s  <  <  <  

rule with neighbors at specified offsets

8  fun,  8  <,  rspec <  rule obtained by applying function  fun to each neighbor list

Specifying rules for one-dimensional cellular automata. 

In  the  simplest  cases,  a  cellular  automaton  allows  k  possible  values  or  “colors”  for  each  cell,  and  has  rules  that
involve up to r  neighbors  on each side. The digits of the “rule  number”  n  then specify what the color of a new cell
should be for each possible configuration of the neighborhood.  

This evolves a single neighborhood for 1 step. 

In[8]:= CellularAutomaton[30, {1,1,0}, 1]

Out[8]= 881, 1, 0<, 81, 0, 0<<

Here are the 8 possible neighborhoods for a k = 2, r = 1 cellular automaton. 

In[9]:= Table[IntegerDigits[i,2,3],{i,7,0,-1}]

Out[9]= 881, 1, 1<, 81, 1, 0<, 81, 0, 1<, 81, 0, 0<, 80, 1, 1<, 80, 1, 0<, 80, 0, 1<, 80, 0, 0<<

This shows the new color of the center cell for each of the 8 neighborhoods. 

In[10]:= Map[CellularAutomaton[30, #, 1][[2,2]]&, %]

Out[10]= 80, 0, 0, 1, 1, 1, 1, 0<
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For rule 30, this sequence corresponds to the base-2 digits of the number 30. 

In[11]:= FromDigits[%, 2]

Out[11]= 30

This runs the general k = 3, r = 1 rule with rule number 921408. 

In[12]:= CAPlot[CellularAutomaton[{921408, 3, 1}, {{1}, 0}, 100]]

Out[12]=  DensityGraphics 

For a general cellular automaton rule, each digit of the rule number specifies what color a different possible neighbor-
hood of 2 r + 1  cells should yield. To find out  which digit  corresponds to which neighborhood,  one effectively treats
the cells in a neighborhood as digits in a number. For an r = 1  cellular automaton, the number is obtained from the list
of elements neig in the neighborhood by neig . 8k^2, k, 1< . 

It is sometimes convenient to consider totalistic cellular automata, in which the new value of a cell depends only on the
total  of  the  values  in  its  neighborhood.  One  can  specify  totalistic  cellular  automata  by  rule  numbers  or  “codes”  in
which each digit refers to neighborhoods with a given total value, obtained for example from neig . 81, 1, 1< . 

In  general,  CellularAutomaton  allows  one  to  specify  rules  using  any  sequence  of  weights.  Another  choice
sometimes convenient is 8k, 1, k< , which yields outer totalistic rules. 
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This runs the k = 3, r = 1 totalistic rule with code number 867. 

In[13]:= CAPlot[CellularAutomaton[{867, {3, 1}, 1}, {{1}, 0}, 100]]

Out[13]=  DensityGraphics 

Rules with range r  involve all  cells with offsets  -r  through +r .  Sometimes it is  convenient  to think about  rules that
involve only cells with specific offsets. You can do this by replacing a single r with a list of offsets. 

Any k = 2  cellular automaton rule can be thought of as corresponding to a Boolean function. In the simplest case, basic
Boolean functions like And or Nor take two arguments. These are conveniently specified in a cellular automaton rule
as  being  at  offsets  {{0},  {1}}.  Note  that  for  compatibility  with  handling  higher-dimensional  cellular  automata,
offsets must always be given in lists, even for one-dimensional cellular automata. 

This generates the truth table for 2-cell-neighborhood rule number 7, which turns out to be the Boolean function Nand. 

In[14]:= Map[CellularAutomaton[{7, 2, {{0}, {1}}}, #, 1][[2, 2]] &, {{1, 1}, {1, 0}, {0, 
1}, {0, 0}}]

Out[14]= 80, 1, 1, 1<

Rule numbers provide a highly compact way to specify cellular automaton rules. But sometimes it is more convenient
to specify rules by giving an explicit function that should be applied to each possible neighborhood. 
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This runs an additive cellular automaton whose rule adds all values in each neighborhood modulo 4. 

In[15]:= CAPlot[CellularAutomaton[{Mod[Apply[Plus, #], 4]&, {}, 1}, {{1}, 0}, 100]]

Out[15]=  DensityGraphics 

The function is given a second argument, equal to the step number. 

In[16]:= CAPlot[CellularAutomaton[{Mod[Apply[Plus, #] + #2, 4]&, {}, 1}, {{1}, 0}, 100]]

Out[16]=  DensityGraphics 
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When you specify rules by functions, the values of cells need not be integers.  

In[17]:= CAPlot[CellularAutomaton[{Mod[1/2 Apply[Plus, #], 1] &, {}, 1}, {{1}, 0}, 100]]

Out[17]=  DensityGraphics 

They can even be symbolic. 

In[18]:= Simplify[CellularAutomaton[{Mod[Apply[Plus, #], 2] &, {}, 1}, {{a}, 0}, 2], a ∈ 
Integers]

Out[18]= 880, 0, a, 0, 0<, 80, Mod@a, 2D, Mod@a, 2D, Mod@a, 2D, 0<,
8Mod@Mod@a, 2D, 2D, 0, Mod@3 Mod@a, 2D, 2D, 0, Mod@Mod@a, 2D, 2D<<

CellularAutomaton@ 

rnum,  init,  t D 

evolve for  t steps, keeping all steps

CellularAutomaton@ 

rnum,  init,  t,  −1D 

evolve for  t steps, keeping only the last step

CellularAutomaton@ 

rnum,  init,  t,  8  spect  <  D 

keep only steps specified by  spect  

Selecting which steps to keep. 

This runs rule 30 for 5 steps, keeping only the last step. 

In[19]:= CellularAutomaton[30, {{1}, 0}, 5, -1]

Out[19]= 881, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1<<

This keeps the last 2 steps. 

In[20]:= CellularAutomaton[30, {{1}, 0}, 5, -2]

Out[20]= 880, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0<, 81, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1<<

The step specification spect  works  very much like taking elements from a list with Take.  One difference,  though,  is
that  the initial  condition for  the cellular automaton is considered  to be step 0.  Note that  any step specification of  the
form 8… <  must be enclosed in an additional list. 
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All all steps  0 through  t HdefaultL
u steps  0 through  u 

−u the last  u steps
8  u <  step  u 

8  u1 ,  u2  <  steps  u1  through  u2  
8  u1 ,  u2 ,  d  <  steps  u1  ,  u1   +  d  , #...

Cellular automaton step specifications. 

This evolves for 100 steps, but keeps only every other step. 

In[21]:= CAPlot[CellularAutomaton[30, {{1}, 0}, 100, {{1, -1, 2}}]]

Out[21]=  DensityGraphics 

CellularAutomaton@ 

rnum,  init,  t D 

keep all steps, and all relevant cells

CellularAutomaton@ 

rnum,  init,  t,  8  spect ,  specx  <  D 

keep only specified steps and cells

Selecting steps and cells to keep. 

Much as you can specify which steps to keep in a cellular automaton evolution, so also you can specify which cells to
keep. If you give an initial condition such as 8a1 , a2 , … <, blist, then ai  is taken to have offset 0 for the purpose of
specifying which cells to keep. 

All all cells that can be affected by the specified initial condition
Automatic all cells in the region that differs from the background HdefaultL

0 cell aligned with beginning of  aspec 
x cells at offsets up to  x on the right

−x cells at offsets up to  x on the left
8  x <  cell at offset  x to the right

8−x <  cell at offset  x to the left
8  x1 ,  x2  <  cells at offsets  x1  through  x2  

8  x1 ,  x2 ,  dx <  cells  x1  ,  x1   +  dx , …

Cellular automaton cell specifications. 
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This keeps all steps, but drops cells at offsets more than 20 on the left. 

In[22]:= CAPlot[CellularAutomaton[30, {{1}, 0}, 100, {All, {-20, 100}}]]

Out[22]=  DensityGraphics 

This keeps just the center column of cells. 

In[23]:= CellularAutomaton[30, {{1}, 0}, 20, {All, {0}}]

Out[23]= 881<, 81<, 80<, 81<, 81<, 81<, 80<, 80<, 81<,
81<, 80<, 80<, 80<, 81<, 80<, 81<, 81<, 80<, 80<, 81<, 80<<

If you give an initial condition such as 88a1 , a2 , … <, blist< , then CellularAutomaton will always effectively do
the  cellular  automaton  as  if  there  were  an  infinite  number  of  cells.  By  using  a  specx  such  as  8x1 ,  x2 <  you  can  tell
CellularAutomaton  to include only cells at specific offsets x1  through x2  in its output. CellularAutomaton
by default includes cells out just far enough that their values never simply stay the same as in the background blist. 

In  general,  given  a  cellular  automaton  rule  with  range  r,  cells  out  to  distance  r  t  on  each  side  could  in  principle  be
affected in the evolution of the system. With specx  being All,  all these cells are included; with the default setting of
Automatic, cells whose values effectively stay the same as in blist are trimmed off. 
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By default, only the parts that are not constant black are kept. 

In[24]:= CAPlot[CellularAutomaton[225, {{1}, 0}, 100]]

Out[24]=  DensityGraphics 

Using All for specx  includes all cells that could be affected by a cellular automaton with this range. 

In[25]:= CAPlot[CellularAutomaton[225, {{1}, 0}, 100, {All, All}]]

Out[25]=  DensityGraphics 

CellularAutomaton generalizes quite directly to any number of dimensions. 

30 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



8  n,  k,  8  r1 ,  r2 , … ,  rd  <  <  d  -dimensional rule with  
H2 r1 + 1LäH2 r2 + 1Lä…äH2 rd + 1L  neighborhood

8  n,  8  k,  1 < ,  8  1,  1 <  <  two-dimensional 9-neighbor totalistic rule
8  n,  8  k,  8  8  0,  1,  0 < ,  8  1,  1, 

 1 < ,  8  0,  1,  0 <  <  < ,  8  1,  1 <  <  
two-dimensional 5-neighbor totalistic rule

8  n,  8  k,  8  8  0,  k,  0 < ,  8  k,  1, 

 k <,  8  0,  k,  0 <  <  < ,  8  1,  1 <  <  
two-dimensional 5-neighbor outer totalistic rule

8  n  +  k ^5  H k  −  1L,  8  k,  8  
8  0,  1,  0 < ,  8  1,  4  k  +  1,  
1 < ,  8  0,  1,  0 <  <  < ,  8  1,  1 <  <  

two-dimensional 5-neighbor growth rule

Higher-dimensional rule specifications. 

This is the rule specification for the two-dimensional 9-neighbor totalistic cellular automaton with code 797. 

In[26]:= code797 = {797, {2, 1}, {1, 1}};

This gives steps 0 and 1 in its evolution. 

In[27]:= CellularAutomaton[code797, {{{1}}, 0}, 1]

Out[27]= 8880, 0, 0<, 80, 1, 0<, 80, 0, 0<<, 880, 0, 0<, 80, 0, 0<, 80, 0, 0<<<

This shows step 70 in the evolution. 

In[28]:= CAPlot[First[CellularAutomaton[code797, {{{1}}, 0}, 70, -1]]]

Out[28]=  DensityGraphics 
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This shows all steps in a slice along the x  axis. 

In[29]:= CAPlot[Map[First, CellularAutomaton[code797, {{{1}}, 0}, 70, {All, {0}, All}]]]

Out[29]=  DensityGraphics 
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3.9 Numerical Operations on Functions

3.9.1 Numerical Mathematics in Mathematica

One of the important features of Mathematica is its ability to give you exact, symbolic, results for computations. There
are,  however,  computations  where  it  is  just  mathematically  impossible  to  get  exact  “closed  form”  results.  In  such
cases, you can still often get approximate numerical results. 

There is no “closed  form”  result for Ÿ0
1

 sin Hsin HxLL „ x . Mathematica returns the integral in symbolic form. 

In[1]:= Integrate[Sin[Sin[x]], {x, 0, 1}]

Out[1]= ‡
0

1

Sin@Sin@xDD x

You can now take the symbolic form of the integral, and ask for its approximate numerical value. 

In[2]:= N[%]

Out[2]= 0.430606

When Mathematica cannot find an explicit result for something like a definite integral, it returns a symbolic form. You
can take this symbolic form, and try to get an approximate numerical value by applying N. 

By giving a second argument to N, you can specify the numerical precision to use. 

In[3]:= N[ Integrate[Sin[Sin[x]], {x, 0, 1}], 40 ]

Out[3]= 0.4306061031206906049123773552484657864336

If you want to evaluate an integral numerically in Mathematica, then using Integrate and applying N to the result is
not  the most efficient  way to do  it.  It  is  better  instead to use the function NIntegrate,  which immediately gives  a
numerical  answer,  without  first  trying  to  get  an  exact,  symbolic,  result.  You  should  realize  that  even  when  Inte
grate does not in the end manage to give you an exact result, it may spend a lot of time trying to do so. 

NIntegrate evaluates numerical integrals directly, without first trying to get a symbolic result. 

In[4]:= NIntegrate[ Sin[Sin[x]], {x, 0, 1} ]

Out[4]= 0.430606

Integrate NIntegrate definite integrals
Sum NSum sums
Product NProduct products
Solve NSolve solutions of algebraic equations
DSolve NDSolve solutions of differential equations
Maximize NMaximize maximization

Symbolic and numerical versions of some Mathematica functions.
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3.9.2 The Uncertainties of Numerical Mathematics

Mathematica  does operations like numerical integration very differently from the way it does their symbolic counter-
parts.   

When you do a symbolic integral, Mathematica takes the functional form of the integrand you have given, and applies
a sequence of exact symbolic transformation rules to it, to try and evaluate the integral.  

When you do a numerical integral, however, Mathematica does not look directly at the functional form of the integrand
you have given. Instead, it simply finds a sequence of numerical values of the integrand at particular points, then takes
these values and tries to deduce from them a good approximation to the integral.  

An  important  point  to  realize  is  that  when  Mathematica  does  a  numerical  integral,  the  only  information  it  has  about
your  integrand  is  a  sequence  of  numerical  values  for  it.  To  get  a  definite  result  for  the  integral,  Mathematica  then
effectively has to make certain assumptions about the smoothness and other properties of your integrand. If you give a
sufficiently pathological integrand, these assumptions may not be valid, and as a result, Mathematica  may simply give
you the wrong answer for the integral. 

This problem may occur,  for  example, if  you try to integrate numerically a function which has a very thin spike at  a
particular position. Mathematica samples your function at a number of points, and then assumes that the function varies
smoothly between these points. As a result, if none of the sample points come close to the spike, then the spike will go
undetected, and its contribution to the numerical integral will not be correctly included. 

Here is a plot of the function exp H-x2L . 

In[1]:= Plot[Exp[-x^2], {x, -10, 10}, PlotRange->All]

-10 -5 5 10

0.2

0.4

0.6

0.8

1

Out[1]=  Graphics 

NIntegrate gives the correct answer for the numerical integral of this function from -10 to +10. 

In[2]:= NIntegrate[Exp[-x^2], {x, -10, 10}]

Out[2]= 1.77245
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If, however, you ask for the integral from -1000 to 1000, NIntegrate will miss the peak near x = 0, and give the wrong 
answer. 

In[3]:= NIntegrate[Exp[-x^2], {x, -1000, 1000}]

NIntegrate::ploss :  

Numerical integration stopping due to loss of precision. Achieved
neither the requested PrecisionGoal nor AccuracyGoal; suspect
one of the following: highly oscillatory integrand or the true
value of the integral is 0. If your integrand is oscillatory
try using the option Method−>Oscillatory in NIntegrate.

Out[3]= 1.34946 × 10−26

Although NIntegrate follows the principle of looking only at the numerical values of your integrand, it nevertheless
tries to make the best possible use of the information that it can get. Thus, for example, if NIntegrate  notices that
the estimated error  in the integral in a particular region is large, it will take more samples in that region. In this way,
NIntegrate tries to “adapt”  its operation to the particular integrand you have given.  

The  kind  of  adaptive  procedure  that  NIntegrate  uses  is  similar,  at  least  in  spirit,  to  what  Plot  does  in  trying to
draw smooth curves for functions. In both cases, Mathematica tries to go on taking more samples in a particular region
until it has effectively found a smooth approximation to the function in that region. 

The kinds of problems that can appear in numerical integration can also arise in doing other numerical operations on
functions. 

For example, if you ask for a numerical approximation to the sum of an infinite series, Mathematica  samples a certain
number of terms in the series, and then does an extrapolation to estimate the contributions of other terms. If you insert
large terms far out in the series, they may not be detected when the extrapolation is done, and the result you get for the
sum may be incorrect. 

A similar problem arises when you try to find a numerical approximation to the minimum of a function. Mathematica
samples only a finite number of values, then effectively assumes that the actual function interpolates smoothly between
these values. If in fact the function has a sharp dip in a particular region, then Mathematica may miss this dip, and you
may get the wrong answer for the minimum. 

If you work only with numerical values of functions,  there is simply no way to avoid the kinds of problems we have
been discussing. Exact symbolic computation, of course, allows you to get around these problems. 

In  many  calculations,  it  is  therefore  worthwhile  to  go  as  far  as  you  can  symbolically,  and  then  resort  to  numerical
methods only at the very end. This gives you the best chance of avoiding the problems that can arise in purely numeri-
cal computations. 
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3.9.3 Numerical Integration

N@Integrate@ expr,
 8  x,  xmin,  xmax <  DD 

try to perform an integral exactly, then find
numerical approximations to the parts that remain

NIntegrate@ expr,
 8  x,  xmin,  xmax <  D 

find a numerical approximation to an integral

NIntegrate@ expr,  8  x,  xmin,  
xmax <,  8  y,  ymin,  ymax <, … D 

multidimensional numerical integral  Ÿxmin
xmaxd  x Ÿymin

ymaxd  y ...  expr  

NIntegrate@ expr,  8  x,  
xmin,  x1 ,  x2 , … ,  xmax <  D 

do a numerical integral along a line, starting at  
xmin , going through the points  xi  , and ending at  xmax

Numerical integration functions. 

This finds a numerical approximation to the integral Ÿ0
¶

 e-x3
 „ x . 

In[1]:= NIntegrate[Exp[-x^3], {x, 0, Infinity}]

Out[1]= 0.89298

Here is the numerical value of the double integral Ÿ-1
1

 d  x Ÿ-1
1

 d  y Hx2 + y2L . 

In[2]:= NIntegrate[x^2 + y^2, {x, -1, 1}, {y, -1, 1}]

Out[2]= 2.66667

An important feature of NIntegrate is its ability to deal with functions that “blow  up”  at known points. NInte
grate automatically checks for such problems at the end points of the integration region. 

The function 1 ëè!!!x  blows up at x = 0, but NIntegrate still succeeds in getting the correct value for the integral. 

In[3]:= NIntegrate[1/Sqrt[x], {x, 0, 1}]

Out[3]= 2.

Mathematica can find the integral of 1 ëè!!!x  exactly. 

In[4]:= Integrate[1/Sqrt[x], {x, 0, 1}]

Out[4]= 2
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NIntegrate detects that the singularity in 1 ê x  at x = 0 is not integrable. 

In[5]:= NIntegrate[1/x, {x, 0, 1}]

NIntegrate::slwcon :  

Numerical integration converging too slowly; suspect one of the
following: singularity, value of the integration being 0, oscillatory
integrand, or insufficient WorkingPrecision. If your integrand is
oscillatory try using the option Method−>Oscillatory in NIntegrate.

NIntegrate::ncvb :  NIntegrate failed to converge to prescribed accuracy
after 7 recursive bisections in x near x = 4.369993747903698`*^-57.

Out[5]= 23953.1

NIntegrate  does not automatically look for singularities except at the end points of your integration region. When
other  singularities  are  present,  NIntegrate  may  not  give  you  the  right  answer  for  the  integral.  Nevertheless,  in
following  its  adaptive  procedure,  NIntegrate  will  often  detect  the  presence  of  potentially  singular  behavior,  and
will warn you about it. 

NIntegrate does not handle the singularity in 1 ëè!!!!!!!!!» x »  in the middle of the integration region. However, it warns you of a 
possible problem. In this case, the final result is numerically quite close to the correct answer. 

In[6]:= NIntegrate[1/Sqrt[Abs[x]], {x, -1, 2}]

NIntegrate::slwcon :  

Numerical integration converging too slowly; suspect one of the
following: singularity, value of the integration being 0, oscillatory
integrand, or insufficient WorkingPrecision. If your integrand is
oscillatory try using the option Method−>Oscillatory in NIntegrate.

NIntegrate::ncvb :  NIntegrate failed to converge to prescribed
accuracy after 7 recursive bisections in x near x = −0.00390625.

Out[6]= 4.79343

If you know that your integrand has singularities at particular points, you can explicitly tell NIntegrate to deal with
them. NIntegrate[expr, 8x, xmin, x1 , x2 , … , xmax<] integrates expr from xmin to xmax, looking for possible
singularities at each of the intermediate points xi .   

This again gives the integral Ÿ-1
2

 1 ëè!!!!!!!!!» x » d  x , but now explicitly deals with the singularity at x = 0. 

In[7]:= NIntegrate[1/Sqrt[Abs[x]], {x, -1, 0, 2}]

Out[7]= 4.82843

You can also use the list of intermediate points xi  in NIntegrate  to specify an integration contour to follow in the
complex plane. The contour is taken to consist of a sequence of line segments, starting at xmin, going through each of
the xi , and ending at xmax. 

This integrates 1 ê x  around a closed contour in the complex plane, going from -1, through the points -i , 1 and i , then back to 
-1. 

In[8]:= NIntegrate[1/x, {x, -1, -I, 1, I, -1}]

Out[8]= 1.11022 × 10−16 + 6.28319
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The integral gives 2 p i , as expected from Cauchy's Theorem.  

In[9]:= N[ 2 Pi I ]

Out[9]= 0. + 6.28319

option name default value 

MinRecursion 0 minimum number of recursive
subdivisions of the integration region

MaxRecursion 6 maximum number of recursive
subdivisions of the integration region

SingularityDepth 4 number of recursive subdivisions to use before
doing a change of variables at the end points

MaxPoints Automatic maximum total number
of times to sample the integrand

Special options for NIntegrate. 

When NIntegrate tries to evaluate a numerical integral, it samples the integrand at a sequence of points. If it finds
that the integrand changes rapidly in a particular region, then it recursively takes more sample points in that region. The
parameters MinRecursion and MaxRecursion specify the minimum and maximum number of levels of recursive
subdivision to use. Increasing the value of MinRecursion guarantees that NIntegrate will use a larger number of
sample points. MaxRecursion limits the number of sample points which NIntegrate will ever try to use. Increas-
ing  MinRecursion  or  MaxRecursion  will  make  NIntegrate  work  more  slowly.  SingularityDepth
specifies how many levels of recursive subdivision NIntegrate  should try before it concludes that the integrand is
“blowing  up”  at one of the endpoints, and does a change of variables. 

With the default settings for all options, NIntegrate misses the peak in exp H-x2L  near x = 0, and gives the wrong answer for 
the integral. 

In[10]:= NIntegrate[Exp[-x^2], {x, -1000, 1000}]

NIntegrate::ploss :  

Numerical integration stopping due to loss of precision. Achieved
neither the requested PrecisionGoal nor AccuracyGoal; suspect
one of the following: highly oscillatory integrand or the true
value of the integral is 0. If your integrand is oscillatory
try using the option Method−>Oscillatory in NIntegrate.

Out[10]= 1.34946 × 10−26

With the option MinRecursion->3, NIntegrate samples enough points that it notices the peak around x = 0. With the 
default setting of MaxRecursion, however, NIntegrate cannot use enough sample points to be able to expect an accurate 
answer. 

In[11]:= NIntegrate[Exp[-x^2], {x, -1000, 1000}, MinRecursion->3]

NIntegrate::ncvb :  NIntegrate failed to converge to prescribed
accuracy after 7 recursive bisections in x near x = 7.8125`.

Out[11]= 0.99187
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With this setting of MaxRecursion, NIntegrate can get an accurate answer for the integral. 

In[12]:= NIntegrate[Exp[-x^2], {x, -1000, 1000}, MinRecursion->3, MaxRecursion->10]

Out[12]= 1.77245

Another way to solve the problem is to make NIntegrate break the integration region into several pieces, with a small piece that 
explicitly covers the neighborhood of the peak. 

In[13]:= NIntegrate[Exp[-x^2], {x, -1000, -10, 10, 1000}]

Out[13]= 1.77245

For  integrals  in  many  dimensions,  it  can  take  a  long  time  for  NIntegrate  to  get  a  precise  answer.  However,  by
setting the option MaxPoints, you can tell NIntegrate  to give you just a rough estimate, sampling the integrand
only a limited number of times. 

This gives an estimate of the volume of the unit sphere in three dimensions. 

In[14]:= NIntegrate[If[x^2 + y^2 + z^2 < 1, 1, 0], {x, -1, 1}, {y, -1, 1}, {z, -1, 1}, 
MaxPoints->10000]

Out[14]= 4.18106

Here is the precise result. 

In[15]:= N[4/3 Pi]

Out[15]= 4.18879

3.9.4 Numerical Evaluation of Sums and Products

NSum@ f ,  8  i,  imin,  imax <  D find a numerical approximation to the sum  ⁄i=imin
imax f  

NSum@ f ,  8  i,  imin,  imax,  di <  D use step  di in the sum
NProduct@ f ,  8  i,  imin,  imax <  D find a numerical approximation to the product  ¤i=imin

imax f  

Numerical sums and products. 

This gives a numerical approximation to ‚
i=1

¶ 1ÅÅÅÅÅÅÅÅÅÅÅÅi3+i! . 

In[1]:= NSum[1/(i^3 + i!), {i, 1, Infinity}]

Out[1]= 0.64703

There is no exact result for this sum, so Mathematica leaves it in a symbolic form. 

In[2]:= Sum[1/(i^3 + i!), {i, 1, Infinity}]

Out[2]= ‚
i=1

∞
1

i3 + i!
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You can apply N explicitly to get a numerical result. 

In[3]:= N[%]

Out[3]= 0.64703

The way NSum works is to include a certain number of terms explicitly, and then to try and estimate the contribution of
the  remaining  ones.  There  are  two  approaches  to  estimating  this  contribution.  The  first  uses  the  Euler-Maclaurin
method,  and  is  based  on  approximating  the  sum  by  an  integral.  The  second  method,  known  as  the  Wynn  epsilon
method,  samples a  number  of  additional  terms in  the  sum, and  then tries  to  fit  them to  a polynomial multiplied by a
decaying exponential. 

option name default value 

Method Automatic Integrate HEuler-Maclaurin methodL or  
Fit HWynn epsilon methodL

NSumTerms 15 number of terms to include explicitly
NSumExtraTerms 12 number of terms to use for

extrapolation in the Wynn epsilon method

Special options for NSum. 

If you do not explicitly specify the method to use, NSum will try to choose between the methods it knows. In any case,
some implicit assumptions about the functions you are summing have to be made. If these assumptions are not correct,
you may get inaccurate answers. 

The most common place to use NSum is in evaluating sums with infinite limits. You can, however, also use it for sums
with finite limits. By making implicit assumptions about the objects you are evaluating, NSum can often avoid doing as
many function evaluations as an explicit Sum computation would require. 

This finds the numerical value of ⁄n=0
100 e-n  by extrapolation techniques. 

In[4]:= NSum[Exp[-n], {n, 0, 100}]

Out[4]= 1.58198

You can also get the result, albeit much less efficiently, by constructing the symbolic form of the sum, then evaluating it numeri-
cally. 

In[5]:= Sum[Exp[-n], {n, 0, 100}] //N

Out[5]= 1.58198

NProduct works in essentially the same way as NSum, with analogous options. 
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3.9.5 Numerical Solution of Polynomial Equations

When Solve cannot find explicit solutions to polynomial equations, it returns a symbolic form of the result in terms of Root 
objects. 

In[1]:= Solve[x^5 + 7x + 1 == 0, x]

Out[1]= 88x → Root@1 + 7 #1 + #15 &, 1D<,
8x → Root@1 + 7 #1 + #15 &, 2D<, 8x → Root@1 + 7 #1 + #15 &, 3D<,
8x → Root@1 + 7 #1 + #15 &, 4D<, 8x → Root@1 + 7 #1 + #15 &, 5D<<

You can get numerical solutions by applying N. 

In[2]:= N[%]

Out[2]= 88x → −0.142849<, 8x → −1.11308 − 1.15173 <,
8x → −1.11308 + 1.15173 <, 8x → 1.1845 − 1.15139 <, 8x → 1.1845 + 1.15139 <<

This gives the numerical solutions to 25-digit precision. 

In[3]:= N[%%, 25]

Out[3]= 88x → −0.1428486455250044341134116<,
8x → −1.113077976547710735600398− 1.151734362151674305046770 <,
8x → −1.113077976547710735600398+ 1.151734362151674305046770 <,
8x → 1.184502299310212952657104− 1.151390075408837074699147 <,
8x → 1.184502299310212952657104+ 1.151390075408837074699147 <<

You can use NSolve to get numerical solutions to polynomial equations directly, without first trying to find exact results. 

In[4]:= NSolve[x^7 + x + 1 == 0, x]

Out[4]= 88x → −0.796544<, 8x → −0.705298 − 0.637624 <, 8x → −0.705298 + 0.637624 <,
8x → 0.123762 − 1.05665 <, 8x → 0.123762 + 1.05665 <,
8x → 0.979808 − 0.516677 <, 8x → 0.979808 + 0.516677 <<

NSolve@ poly ==0,  x D get approximate numerical solutions to a polynomial equation
NSolve@ poly ==0,  x,  n D get solutions to  n -digit precision

Numerical solution of polynomial equations. 

NSolve will always give you the complete set of numerical solutions to any polynomial equation in one variable. 

You can also get numerical solutions to sets of simultaneous polynomial equations. You can use Solve to “unwind”
the simultaneous equations, and then apply N to get numerical results. 
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Solve writes the solution in terms of roots of a polynomial in one variable. 

In[5]:= First[ Solve[{x^2 + y^2 == 1, x^3 + y^3 == 2}, {x, y}]]

Out[5]= 9x →

1
3

Root@3 + 3 #12 − 4 #13 − 3 #14 + 2 #16 &, 1D I−3 − 6 Root@3 + 3 #12 − 4 #13 − 3 #14 + 2 #16 &, 1D −

Root@3 + 3 #12 − 4 #13 − 3 #14 + 2 #16 &, 1D2
+ 4 Root@3 + 3 #12 − 4 #13 − 3 #14 + 2 #16 &, 1D3

+

2 Root@3 + 3 #12 − 4 #13 − 3 #14 + 2 #16 &, 1D4M,

y → Root@3 + 3 #12 − 4 #13 − 3 #14 + 2 #16 &, 1D=

You can apply N to get a numerical result. 

In[6]:= N[%]

Out[6]= 8x → −1.09791 + 0.839887 , y → −1.09791 − 0.839887 <

3.9.6 Numerical Root Finding

NSolve  gives you a general way to find numerical approximations to the solutions of polynomial equations. Finding
numerical  solutions  to  more  general  equations,  however,  can  be  much  more  difficult,  as  discussed  in  Section  3.4.2.
FindRoot gives you a way to search for a numerical solution to an arbitrary equation, or set of equations.        

FindRoot@ lhs == rhs,  8  x,  x0  <  D search for a numerical solution to the equation  
lhs == rhs , starting with  x=x0  

FindRoot@ 8  eqn1 ,  eqn2 , … 

<,  8  8  x,  x0  <,  8  y,  y0  <, … <  D 

search for a numerical solution to the simultaneous equations  eqni  

Numerical root finding. 

The curves for cos HxL  and x  intersect at one point. 

In[1]:= Plot[{Cos[x], x}, {x, -1, 1}]
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Out[1]=  Graphics 

10 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



This finds a numerical approximation to the value of x  at which the intersection occurs. The 0 tells FindRoot what value of x  to 
try first. 

In[2]:= FindRoot[Cos[x] == x, {x, 0}]

Out[2]= 8x → 0.739085<

In trying to find a solution to your equation, FindRoot starts at the point you specify, and then progressively tries to
get closer and closer to a solution. Even if your equations have several solutions, FindRoot  always returns the first
solution it finds. Which solution this is will depend on what starting point you chose. If you start sufficiently close to a
particular solution, FindRoot will usually return that solution. 

The equation sin HxL = 0 has an infinite number of solutions of the form x = n p . If you start sufficiently close to a particular 
solution, FindRoot will give you that solution. 

In[3]:= FindRoot[Sin[x] == 0, {x, 3}]

Out[3]= 8x → 3.14159<

If you start with x = 6, you get a numerical approximation to the solution x = 2 p . 

In[4]:= FindRoot[Sin[x] == 0, {x, 6}]

Out[4]= 8x → 6.28319<

If you want FindRoot to search for complex solutions, then you have to give a complex starting value. 

In[5]:= FindRoot[Sin[x] == 2, {x, I}]

Out[5]= 8x → 1.5708 + 1.31696 <

This finds a zero of the Riemann zeta function. 

In[6]:= FindRoot[Zeta[1/2 + I t] == 0, {t, 12}]

Out[6]= 8t → 14.1347 − 9.35323 × 10−15 <

This finds a solution to a set of simultaneous equations. 

In[7]:= FindRoot[{Sin[x] == Cos[y], x + y == 1}, {{x, 1}, {y, 1}}]

Out[7]= 8x → −1.85619, y → 2.85619<

The variables  used by FindRoot  can have values  that  are  lists.  This  allows you to find  roots  of  functions that  take
vectors as arguments. 

This is a way to solve a linear equation for the variable x. 

In[8]:= FindRoot[{{1, 2}, {3, 4}} . x == {5, 6}, {x, {1, 1}}]

Out[8]= 8x → 8−4., 4.5<<
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This finds a normalized eigenvector x and eigenvalue a. 

In[9]:= FindRoot[{{{1, 2}, {3, 4}} . x == a x, x.x == 1}, {{x, {1, 1}}, {a, 1}}]

Out[9]= 8x → 80.415974, 0.909377<, a → 5.37228<

3.9.7 Numerical Solution of Differential Equations

The  function  NDSolve  discussed  in  Section  1.6.4  allows  you  to  find  numerical  solutions  to  differential  equations.
NDSolve  handles  both  single  differential  equations,  and  sets  of  simultaneous  differential  equations.  It  can  handle  a
wide  range  of  ordinary  differential  equations  as  well  as  some partial  differential  equations.  In  a  system of  ordinary
differential  equations there can be any number of  unknown functions yi ,  but  all  of  these functions must depend on a
single  “independent  variable”  x,  which  is  the  same  for  each  function.  Partial  differential  equations  involve  two  or
more independent variables. NDSolve can also handle differential-algebraic equations that mix differential equations
with algebraic ones. 

NDSolve@ 8  eqn1 ,  eqn2 ,
… <,  y,  8  x,  xmin,  xmax <  D 

find a numerical solution for the function  
y with  x in the range  xmin to  xmax 

NDSolve@ 8  eqn1 ,  eqn2 , … <,  8  

y1 ,  y2 , … <,  8  x,  xmin,  xmax <  D 

find numerical solutions for several functions  yi  

Finding numerical solutions to ordinary differential equations. 

NDSolve represents solutions for the functions yi  as InterpolatingFunction objects. TheInterpolating
Function  objects  provide  approximations  to  the  yi  over  the  range  of  values  xmin  to  xmax  for  the  independent
variable x. 

NDSolve finds solutions iteratively. It starts at a particular value of x, then takes a sequence of steps, trying eventually
to cover the whole range xmin to xmax. 

In order to get started, NDSolve has to be given appropriate initial or boundary conditions for the yi  and their deriva-
tives. These conditions specify values for yi [x], and perhaps derivatives yi '[x], at particular points x. In general, at
least for ordinary differential equations, the conditions you give can be at any x: NDSolve will automatically cover the
range xmin to xmax.  

This finds a solution for y with x in the range 0 to 2, using an initial condition for y[0]. 

In[1]:= NDSolve[{y'[x] == y[x], y[0] == 1}, y, {x, 0, 2}]

Out[1]= 88y → InterpolatingFunction@880., 2.<<, <>D<<

This still finds a solution with x in the range 0 to 2, but now the initial condition is for y[3]. 

In[2]:= NDSolve[{y'[x] == y[x], y[3] == 1}, y, {x, 0, 2}]

Out[2]= 88y → InterpolatingFunction@880., 2.<<, <>D<<

Here is a simple boundary value problem. 

In[3]:= NDSolve[{y''[x] + x y[x] == 0, y[0] == 1, y[1] == -1}, y, {x, 0, 1}]

Out[3]= 88y → InterpolatingFunction@880., 1.<<, <>D<<
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When you use NDSolve, the initial or boundary conditions you give must be sufficient to determine the solutions for
the yi  completely. When you use DSolve  to find symbolic solutions to differential equations, you can get away with
specifying  fewer  initial  conditions.  The  reason  is  that  DSolve  automatically  inserts  arbitrary  constants  C[i]  to
represent degrees of freedom associated with initial conditions that you have not specified explicitly. Since NDSolve
must give a numerical solution, it cannot represent these kinds of additional degrees of freedom. As a result, you must
explicitly give all the initial or boundary conditions that are needed to determine the solution. 

In a typical case, if you have differential equations with up to n th  derivatives, then you need to give initial conditions
for up to Hn - 1L th  derivatives, or give boundary conditions at n  points. 

With a third-order equation, you need to give initial conditions for up to second derivatives. 

In[4]:= NDSolve[ { y'''[x] + 8 y''[x] + 17 y'[x] + 10 y[x] == 0, y[0] == 6, y'[0] == -20, 
y''[0] == 84}, y, {x, 0, 1} ]

Out[4]= 88y → InterpolatingFunction@880., 1.<<, <>D<<

This plots the solution obtained.

In[5]:= Plot[Evaluate[ y[x] /. % ], {x, 0, 1}]
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Out[5]=  Graphics 

With a third-order equation, you can also give boundary conditions at three points. 

In[6]:= NDSolve[ { y'''[x] + Sin[x] == 0, y[0] == 4, y[1] == 7, y[2] == 0 }, y, {x, 0, 2}]

Out[6]= 88y → InterpolatingFunction@880., 2.<<, <>D<<

Mathematica allows you to use any appropriate linear combination of function values and derivatives as boundary conditions. 

In[7]:= NDSolve[{ y''[x] + y[x] == 12 x, 2 y[0] - y'[0] == -1, 2 y[1] + y'[1] == 9}, y, 
{x, 0, 1}]

Out[7]= 88y → InterpolatingFunction@880., 1.<<, <>D<<

In most cases, all the initial conditions you give must involve the same value of x, say x0 . As a result, you can avoid
giving both xmin and xmax  explicitly. If you specify your range of x as 8x, x1 < , then Mathematica  will automatically
generate a solution over the range x0  to x1 . 
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This generates a solution over the range 0 to 2. 

In[8]:= NDSolve[{y'[x] == y[x], y[0] == 1}, y, {x, 2}]

Out[8]= 88y → InterpolatingFunction@880., 2.<<, <>D<<

You can give initial conditions as equations of any kind. In some cases, these equations may have multiple solutions. In
such cases, NDSolve will correspondingly generate multiple solutions. 

The initial conditions in this case lead to multiple solutions. 

In[9]:= NDSolve[{y'[x]^2 - y[x]^2 == 0, y[0]^2 == 4}, y[x], {x, 1}]

Out[9]= 88y@xD → InterpolatingFunction@880., 1.<<, <>D@xD<,
8y@xD → InterpolatingFunction@880., 1.<<, <>D@xD<,
8y@xD → InterpolatingFunction@880., 1.<<, <>D@xD<,
8y@xD → InterpolatingFunction@880., 1.<<, <>D@xD<<

Here is a plot of all the solutions. 

In[10]:= Plot[Evaluate[ y[x] /. % ], {x, 0, 1}]
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Out[10]=  Graphics 

You can use NDSolve to solve systems of coupled differential equations. 

This finds a numerical solution to a pair of coupled equations. 

In[11]:= sol = NDSolve[ {x'[t] == -y[t] - x[t]^2, y'[t] == 2 x[t] - y[t], x[0] == y[0] == 
1}, {x, y}, {t, 10}]

Out[11]= 88x → InterpolatingFunction@880., 10.<<, <>D,
y → InterpolatingFunction@880., 10.<<, <>D<<
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This plots the solution for y from these equations. 

In[12]:= Plot[Evaluate[y[t] /. sol], {t, 0, 10}]
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Out[12]=  Graphics 

This generates a parametric plot using both x and y. 

In[13]:= ParametricPlot[Evaluate[{x[t], y[t]} /. sol], {t, 0, 10}, PlotRange -> All]
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Out[13]=  Graphics 

Unknown functions in differential equations do not necessarily have to be represented by single symbols. If you have a
large number of unknown functions, you will often find it more convenient, for example, to give the functions names
like y[i]. 

This constructs a set of five coupled differential equations and initial conditions. 

In[14]:= eqns = Join[ Table[ y[i]'[x] == y[i-1][x] - y[i][x], {i, 2, 4} ], {y[1]'[x] == 
-y[1][x], y[5]'[x] == y[4][x], y[1][0] == 1}, Table[ y[i][0] == 0, {i, 2, 5}] ]

Out[14]= 8y@2D @xD y@1D@xD − y@2D@xD, y@3D @xD y@2D@xD − y@3D@xD,
y@4D @xD y@3D@xD − y@4D@xD, y@1D @xD −y@1D@xD, y@5D @xD y@4D@xD,
y@1D@0D 1, y@2D@0D 0, y@3D@0D 0, y@4D@0D 0, y@5D@0D 0<
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This solves the equations. 

In[15]:= NDSolve[eqns, Table[y[i], {i, 5}], {x, 10}]

Out[15]= 88y@1D → InterpolatingFunction@880., 10.<<, <>D,
y@2D → InterpolatingFunction@880., 10.<<, <>D,
y@3D → InterpolatingFunction@880., 10.<<, <>D,
y@4D → InterpolatingFunction@880., 10.<<, <>D,
y@5D → InterpolatingFunction@880., 10.<<, <>D<<

Here is a plot of the solutions. 

In[16]:= Plot[ Evaluate[Table[y[i][x], {i, 5}] /. %], {x, 0, 10} ]
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Out[16]=  Graphics 

NDSolve can handle functions whose values are lists or arrays. If you give initial conditions like y[0] == 8v1 , v2 ,
… , vn <], then NDSolve will assume that y is a function whose values are lists of length n. 

This solves a system of four coupled differential equations. 

In[17]:= NDSolve[{y''[x] == -Table[Random[], {4}, {4}] . y[x], y[0] == y'[0] == Table[1, 
{4}]}, y, {x, 0, 8}]

Out[17]= 88y → InterpolatingFunction@880., 8.<<, <>D<<
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Here are the solutions. 

In[18]:= With[{s = y[x] /. First[%]}, Plot[{s[[1]], s[[2]], s[[3]], s[[4]]}, {x, 0, 8}, 
PlotRange -> All]]
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Out[18]=  Graphics 

option name default value 

MaxSteps Automatic maximum number of steps in  x to take
StartingStepSize Automatic starting size of step in  x to use
MaxStepSize Infinity maximum size of step in  x to use
NormFunction Automatic the norm to use for error estimation

Special options for NDSolve. 

NDSolve has many methods for solving equations, but essentially all of them at some level work by taking a sequence
of steps in the independent variable x, and using an adaptive procedure to determine the size of these steps. In general,
if the solution appears to be varying rapidly in a particular region, then NDSolve  will reduce the step size or change
the method so as to be able to track the solution better. 

This solves a differential equation in which the derivative has a discontinuity. 

In[19]:= NDSolve[ {y'[x] == If[x < 0, 1/(x-1), 1/(x+1)], y[-5] == 5}, y, {x, -5, 5}]

Out[19]= 88y → InterpolatingFunction@88−5., 5.<<, <>D<<
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NDSolve reduced the step size around x = 0 so as to reproduce the kink accurately. 

In[20]:= Plot[Evaluate[y[x] /. %], {x, -5, 5}]
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Out[20]=  Graphics 

Through  its  adaptive  procedure,  NDSolve  is  able  to  solve  “stiff”  differential  equations  in  which  there  are  several
components which vary with x at very different rates. 

In these equations, y varies much more rapidly than z. 

In[21]:= sol = NDSolve[ {y'[x] == -40 y[x], z'[x] == -z[x]/10, y[0] == z[0] == 1}, {y, 
z}, {x, 0, 1}]

Out[21]= 88y → InterpolatingFunction@880., 1.<<, <>D,
z → InterpolatingFunction@880., 1.<<, <>D<<

NDSolve nevertheless tracks both components successfully. 

In[22]:= Plot[Evaluate[{y[x], z[x]} /. sol], {x, 0, 1}, PlotRange -> All]
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Out[22]=  Graphics 

NDSolve  follows the general procedure of reducing step size until it tracks solutions accurately. There is a problem,
however, when the true solution has a singularity. In this case, NDSolve  might go on reducing the step size forever,
and  never  terminate.  To  avoid  this  problem,  the  option  MaxSteps  specifies  the  maximum  number  of  steps  that
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NDSolve  will  ever  take  in  attempting  to  find  a  solution.  For  ordinary  differential  equations  the  default  setting  is
MaxSteps -> 10000. 

NDSolve stops after taking 10000 steps. 

In[23]:= NDSolve[{y'[x] == -1/x^2, y[-1] == -1}, y[x], {x, -1, 0}]

NDSolve::mxst :  

Maximum number of 10000 steps reached at the point x == −1.00413 × 10−172.

Out[23]= 88y@xD → InterpolatingFunction@88−1., −1.00413 × 10−172<<, <>D@xD<<

There is in fact a singularity in the solution at x = 0. 

In[24]:= Plot[Evaluate[y[x] /. %], {x, -1, 0}]
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Out[24]=  Graphics 

The default setting for MaxSteps should be sufficient for most equations with smooth solutions. When solutions have
a complicated structure, however, you may occasionally have to choose larger settings for MaxSteps. With the setting
MaxSteps -> Infinity there is no upper limit on the number of steps used. 

To take the solution to the Lorenz equations this far, you need to remove the default bound on MaxSteps. 

In[25]:= NDSolve[ {x'[t] == -3 (x[t] - y[t]), y'[t] == -x[t] z[t] + 26.5 x[t] - y[t], 
z'[t] == x[t] y[t] - z[t], x[0] == z[0] == 0, y[0] == 1}, {x, y, z}, {t, 0, 
200}, MaxSteps->Infinity ]

Out[25]= 88x → InterpolatingFunction@880., 200.<<, <>D,
y → InterpolatingFunction@880., 200.<<, <>D,
z → InterpolatingFunction@880., 200.<<, <>D<<
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Here is a parametric plot of the solution in three dimensions. 

In[26]:= ParametricPlot3D[Evaluate[{x[t], y[t], z[t]} /. %], {t, 0, 200}, PlotPoints -> 
10000]
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Out[26]=  Graphics3D 

When NDSolve  solves  a  particular  set  of  differential  equations,  it  always  tries  to  choose  a  step size appropriate  for
those equations. In some cases, the very first step that NDSolve makes may be too large, and it may miss an important
feature in the solution. To avoid this problem, you can explicitly set the option StartingStepSize  to specify the
size to use for the first step. 

NDSolve@ 8  eqn1 ,  eqn2 ,
… <,  y,  8  x,  xmin,  xmax <  D 

find a numerical solution for  
y with  x in the range  xmin to  xmax 

NDSolve@ 8  eqn1 ,  eqn2 , … <,  8  

y1 ,  y2 , … <,  8  x,  xmin,  xmax <  D 

find numerical solutions for all the  yi  

Finding numerical solutions to differential-algebraic equations. 

The equations you give to NDSolve do not necessarily all have to involve derivatives; they can also just be algebraic.
You can use NDSolve to solve many such differential-algebraic equations. 

This solves a system of differential-algebraic equations. 

In[27]:= NDSolve[{x'[t] == y[t]^2 + x[t] y[t], 2 x[t]^2 + y[t]^2 == 1, x[0] == 0, y[0] == 
1}, {x, y}, {t, 0, 5}]

Out[27]= 88x → InterpolatingFunction@880., 5.<<, <>D,
y → InterpolatingFunction@880., 5.<<, <>D<<
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Here is the solution. 

In[28]:= Plot[Evaluate[{x[t], y[t]} /. %], {t, 0, 5}]
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Out[28]=  Graphics 

NDSolve@ 8  eqn1 ,  eqn2 ,
… <,  u,  8  t,  tmin,  tmax <  ,  

8  x ,  xmin,  xmax <, … D 

solve a system of partial differential equations for  u 

NDSolve@ 8  eqn1 ,  eqn2 , … <,
 8  u1 ,  u2 , … <,  8  t,  tmin,  tmax 
<  ,  8  x ,  xmin,  xmax <, … D 

solve a system of partial
differential equations for several functions  ui  

Finding numerical solutions to partial differential equations. 

This finds a numerical solution to the wave equation. The result is a two-dimensional interpolating function. 

In[29]:= NDSolve[{D[u[t, x], t, t] == D[u[t, x], x, x], u[0, x] == Exp[-x^2], 
Derivative[1,0][u][0, x] == 0, u[t, -6] == u[t, 6]}, u, {t, 0, 6}, {x, -6, 6}]

Out[29]= 88u → InterpolatingFunction@880., 6.<, 8..., −6., 6., ...<<, <>D<<
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This generates a plot of the result. 

In[30]:= Plot3D[Evaluate[u[t, x] /. First[%]], {t, 0, 6}, {x, -6, 6}, PlotPoints->50]
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Out[30]=  SurfaceGraphics 

This finds a numerical solution to a nonlinear wave equation. 

In[31]:= NDSolve[ {D[u[t, x], t, t] == D[u[t, x], x, x] + (1 - u[t, x]^2)(1 + 2u[t, x]), 
u[0, x] == Exp[-x^2], Derivative[1, 0][u][0, x] == 0, u[t, -10] == u[t, 10]}, u, 
{t, 0, 10}, {x, -10, 10}]

Out[31]= 88u → InterpolatingFunction@880., 10.<, 8..., −10., 10., ...<<, <>D<<

Here is a 3D plot of the result. 

In[32]:= Plot3D[Evaluate[u[t, x] /. First[%]], {t, 0, 10}, {x, -10, 10}, PlotPoints->80]
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Out[32]=  SurfaceGraphics 
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This is a higher-resolution density plot of the solution. 

In[33]:= DensityPlot[Evaluate[u[10 - t, x] /. First[%%]], {x, -10, 10}, {t, 0, 10}, 
PlotPoints -> 200, Mesh -> False]
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Out[33]=  DensityGraphics 

Here is a version of the equation in 2+1 dimensions. 

In[34]:= eqn = D[u[t, x, y], t, t] == D[u[t, x, y], x, x] + D[u[t, x, y], y, y]/2 + (1 - 
u[t, x, y]^2)(1 + 2u[t, x, y])

Out[34]= uH2,0,0L@t, x, yD H1 + 2 u@t, x, yDL H1 − u@t, x, yD2L +
1
2

uH0,0,2L@t, x, yD + uH0,2,0L@t, x, yD

This solves the equation. 

In[35]:= NDSolve[{eqn, u[0, x, y] == Exp[-(x^2 + y^2)], u[t, -5, y] == u[t, 5, y], u[t, 
x, -5] == u[t, x, 5], Derivative[1, 0, 0][u][0, x, y] == 0}, u, {t, 0, 4}, {x, 
-5, 5}, {y, -5, 5}]

Out[35]= 88u →

InterpolatingFunction@880., 4.<, 8..., −5., 5., ...<, 8..., −5., 5., ...<<, <>D<<
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This generates an array of plots of the solution. 

In[36]:= Show[GraphicsArray[ Partition[ Table[Plot3D[Evaluate[u[t, x, y] /. First[%]], 
{x, -5, 5}, {y, -5, 5}, PlotRange -> All, PlotPoints -> 100, Mesh -> False, 
DisplayFunction -> Identity], {t, 1, 4}], 2]]]
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Out[36]=  GraphicsArray 

3.9.8 Numerical Optimization

FindMinimum@ f ,  8  x,  x0  <  D search for a local minimum in  f  , starting from the point  x  =  x0  
FindMinimum@ f ,  8  
8  x,  x0  <,  8  y,  y0  <, … <  D 

search for a local minimum in a function of several variables

FindMaximum@ f ,  8  x,  x0  <  D search for a local maximum in  f  , starting from the point  x  =  x0  
FindMaximum@ f ,  8  
8  x,  x0  <,  8  y,  y0  <, … <  D 

search for a local maximum in a function of several variables

Searching for minima and maxima. 

This finds the value of x  which minimizes G HxL , starting from x = 2. 

In[1]:= FindMinimum[Gamma[x], {x, 2}]

Out[1]= 80.885603, 8x → 1.46163<<

The last element of the list gives the value at which the minimum is achieved. 

In[2]:= Gamma[x] /. Last[%]

Out[2]= 0.885603

Like FindRoot, FindMinimum and FindMaximum work by starting from a point, then progressively searching for
a  minimum  or  maximum.  But  since  they  return  a  result  as  soon  as  they  find  anything,  they  may  give  only  a  local
minimum or maximum of your function, not a global one. 
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This curve has two local minima. 

In[3]:= Plot[x^4 - 3x^2 + x, {x, -3, 2}]
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Out[3]=  Graphics 

Starting at x = 1, you get the local minimum on the right. 

In[4]:= FindMinimum[x^4 - 3 x^2 + x, {x, 1}]

Out[4]= 8−1.07023, 8x → 1.1309<<

This gives the local minimum on the left, which in this case is also the global minimum. 

In[5]:= FindMinimum[x^4 - 3 x^2 + x, {x, -1}]

Out[5]= 8−3.51391, 8x → −1.30084<<

NMinimize@ f ,  x D try to find the global minimum of  f  
NMinimize@ f ,  8  x,  y, … <  D try to find the global minimum over several variables

NMaximize@ f ,  x D try to find the global maximum of  f  
NMaximize@ f ,  8  x,  y, … <  D try to find the global maximum over several variables

Finding global minima and maxima. 

This immediately finds the global minimum. 

In[6]:= NMinimize[x^4 - 3x^2 + x, x]

Out[6]= 8−3.51391, 8x → −1.30084<<

NMinimize  and  NMaximize  are  numerical  analogs  of  Minimize  and  Maximize.  But  unlike  Minimize  and
Maximize  they  usually  cannot  guarantee  to  find  absolute  global  minima  and  maxima.  Nevertheless,  they  typically
work well when the function f is fairly smooth, and has a limited number of local minima and maxima. 

Printed from the Mathematica Help Browser 25

©1988-2003 Wolfram Research, Inc. All rights reserved.



NMinimize@ 8  f ,
 cons <,  8  x,  y, … <  D 

try to find the global minimum of  f  subject to constraints  cons 

NMaximize@ 8  f ,
 cons <,  8  x,  y, … <  D 

try to find the global maximum of  f  subject to constraints  cons 

Finding global minima and maxima subject to constraints. 

With the constraint x > 0, NMinimize will give the local minimum on the right. 

In[7]:= NMinimize[{x^4 - 3x^2 + x, x > 0}, x]

Out[7]= 8−1.07023, 8x → 1.1309<<

This finds the minimum of x + 2y within the unit circle. 

In[8]:= NMinimize[{x + 2y, x^2 + y^2 <= 1}, {x, y}]

Out[8]= 8−2.23607, 8x → −0.447214, y → −0.894427<<

In this case Minimize can give an exact result. 

In[9]:= Minimize[{x + 2y, x^2 + y^2 <= 1}, {x, y}]

Out[9]= 9−è!!!5 , 9x → −
1
è!!!5

, y → −
2
è!!!5

==

But in this case it cannot. 

In[10]:= Minimize[{Cos[x + 2y], x^2 + y^2 <= 1}, {x, y}]

Out[10]= Minimize@8Cos@x + 2 yD, x2 + y2 ≤ 1<, 8x, y<D

This gives a numerical approximation, effectively using NMinimize. 

In[11]:= N[%]

Out[11]= 8−0.617273, 8x → 0.447214, y → 0.894427<<

If both the objective function f and the constraints cons are linear in all variables, then minimization and maximization
correspond  to  a  linear  programming  problem.  Sometimes  it  is  convenient  to  state  such  problems  not  in  terms  of
explicit equations, but instead in terms of matrices and vectors. 

LinearProgramming@ c,  m,  b D find the vector  x  which minimizes  c.x  
subject to the constraints  m.x ¥ b  and  x ¥ 0  

LinearProgramming@ c,  m,  b,  l D use the constraints  m.x ¥ b  and  x ¥ l  

Linear programming in matrix form. 

Here is a linear programming problem in equation form. 

In[12]:= Minimize[{2x + 3y, x + 5y >= 10, x - y >= 2, x >= 1}, {x, y}]

Out[12]= 9 32
3

, 9x →
10
3

, y →
4
3
==

26 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



Here is the corresponding problem in matrix form. 

In[13]:= LinearProgramming[{2, 3}, {{1, 5}, {1, -1}, {1, 0}}, {10, 2, 1}]

Out[13]= 9 10
3

, 4
3
=

You can specify a mixture of equality and inequality constraints by making the list b be a sequence of pairs 8bi , si < . If
si  is 1, then the ith  constraint is mi  . x ¥  bi . If si  is 0 then it is mi  . x == bi , and if si  is -1 then it is mi  . x §  bi . 

This makes the first inequality use § . 

In[14]:= LinearProgramming[{2, 3}, {{1, 5}, {1, -1}, {1, 0}}, {{10, -1}, {2, 1}, {1, 1}}]

Out[14]= 82, 0<

In LinearProgramming[c,  m,  b,  l],  you can make l  be  a  list  of  pairs  88 l1 ,  u1 <,  8 l2 ,  u2 <,  … <  representing
lower and upper bounds on the xi . 

In doing large linear programming problems, it is often convenient to give the matrix m as a SparseArray object. 

3.9.9 Advanced Topic: Controlling the Precision of Results

In doing  numerical operations  like NDSolve  and NMinimize,  Mathematica  by default  uses  machine numbers.  But
by  setting  the  option  WorkingPrecision  ->  n  you  can  tell  it  to  use  arbitrary-precision  numbers  with  n-digit
precision. 

This does a machine-precision computation of a numerical integral. 

In[1]:= NIntegrate[Sin[Sin[x]], {x, 0, 1}]

Out[1]= 0.430606

This does the computation with 30-digit arbitrary-precision numbers. 

In[2]:= NIntegrate[Sin[Sin[x]], {x, 0, 1}, WorkingPrecision -> 30]

Out[2]= 0.430606103120690604912377

When you give a setting for WorkingPrecision, this typically defines an upper limit on the precision of the results
from a computation. But within this constraint you can tell Mathematica how much precision and accuracy you want it
to try to get. You should realize that for many kinds of numerical operations, increasing precision and accuracy goals
by only a few digits can greatly increase the computation time required. Nevertheless, there are many cases where it is
important to ensure that high precision and accuracy are obtained. 

WorkingPrecision the number of digits to use for computations
PrecisionGoal the number of digits of precision to try to get

AccuracyGoal the number of digits of accuracy to try to get

Options for controlling precision and accuracy. 
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This gives a result to 25-digit precision. 

In[3]:= NIntegrate[Sin[Sin[x]], {x, 0, 1}, WorkingPrecision -> 30, PrecisionGoal -> 25]

Out[3]= 0.430606103120690604912377355248

50-digit precision cannot be achieved with 30-digit working precision. 

In[4]:= NIntegrate[Sin[Sin[x]], {x, 0, 1}, WorkingPrecision -> 30, PrecisionGoal -> 50]

NIntegrate::tmap :  

NIntegrate is unable to achieve the tolerances specified by the
PrecisionGoal and AccuracyGoal options because the working precision is
insufficient. Try increasing the setting of the WorkingPrecision option.

Out[4]= 0.430606103120690604912377355248

Giving a particular setting for WorkingPrecision, each of the functions for numerical operations in Mathematica
uses certain default settings for PrecisionGoal  and AccuracyGoal.  Typical is the case of NDSolve,  in which
these default settings are equal to half the setting given for WorkingPrecision. 

The  precision  and  accuracy  goals  normally  apply  both  to  the  final  results  returned,  and  to  various  norms  or  error
estimates for  them. Functions for  numerical operations in Mathematica  typically try to refine their  results  until  either
the specified precision goal or accuracy goal is reached. If the setting for either of these goals is Infinity, then only
the other goal is considered. 

In doing ordinary numerical evaluation with N[expr, n], Mathematica  automatically adjusts its internal computations
to  achieve  n-digit  precision  in  the  result.  But  in  doing  numerical  operations  on  functions,  it  is  in  practice  usually
necessary to specify WorkingPrecision and PrecisionGoal more explicitly. 

3.9.10 Advanced Topic: Monitoring and Selecting Algorithms

Functions  in Mathematica  are  carefully  set  up  so that  you normally do  not  have to know how they work  inside.  But
particularly  for  numerical  functions  that  use  iterative  algorithms,  it  is  sometimes  useful  to  be  able  to  monitor  the
internal progress of these algorithms. 

StepMonitor an expression to evaluate whenever a successful step is taken
EvaluationMonitor an expression to evaluate

whenever functions from the input are evaluated

Options for monitoring progress of numerical functions. 

This prints the value of x every time a step is taken. 

In[1]:= FindRoot[Cos[x] == x, {x, 1}, StepMonitor :> Print[x]]

0.750364

0.739113

0.739085

0.739085

Out[1]= 8x → 0.739085<

28 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



Note the importance of using option :> expr rather than option -> expr. You need a delayed rule :> to make expr be
evaluated each time it is used, rather than just when the rule is given. 

Reap and Sow provide a convenient way to make a list of the steps taken. 

In[2]:= Reap[FindRoot[Cos[x] == x, {x, 1}, StepMonitor :> Sow[x]]]

Out[2]= 88x → 0.739085<, 880.750364, 0.739113, 0.739085, 0.739085<<<

This counts the steps. 

In[3]:= Block[{ct = 0}, {FindRoot[Cos[x] == x, {x, 1}, StepMonitor :> ct++], ct}]

Out[3]= 88x → 0.739085<, 4<

To take a successful step towards an answer, iterative numerical algorithms sometimes have to do several evaluations
of the functions they have been given. Sometimes this is because each step requires, say, estimating a derivative from
differences  between function  values,  and sometimes it  is  because several  attempts are needed to achieve a successful
step. 

This shows the successful steps taken in reaching the answer. 

In[4]:= Reap[FindRoot[Cos[x] == x, {x, 5}, StepMonitor :> Sow[x]]]

Out[4]= 88x → 0.739085<,
88−0.741028, −0.285946, 0.526451, 0.751511, 0.739119, 0.739085, 0.739085<<<

This shows every time the function was evaluated. 

In[5]:= Reap[FindRoot[Cos[x] == x, {x, 5}, EvaluationMonitor :> Sow[x]]]

Out[5]= 88x → 0.739085<, 885., −109.821, −6.48206, −0.741028, 3.80979,
−0.285946, 1.44867, 0.526451, 0.751511, 0.739119, 0.739085, 0.739085<<<

The pattern of evaluations done by algorithms in Mathematica can be quite complicated. 

In[6]:= ListPlot[Reap[NIntegrate[1/Sqrt[x], {x, -1, 0, 1}, EvaluationMonitor :> 
Sow[x]]][[2, 1]]]

100 200 300 400

-0.3

-0.2

-0.1

0.1

0.2

0.3

Out[6]=  Graphics 
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Method  −>  Automatic pick methods automatically HdefaultL
Method  −>  " name " specify an explicit method to use

Method  −>  8  " name ", 

 8  " par1  "  −>  val1 , … <  <  
specify more details of a method

Method options. 

There  are  often  several  different  methods  known  for  doing  particular  types  of  numerical  computations.  Typically
Mathematica  supports  most generally  successful  ones that  have been discussed in the literature,  as  well  as many that
have not. For any specific problem, it goes to considerable effort to pick the best method automatically. But if you have
sophisticated knowledge of a problem, or are studying numerical methods for their own sake, you may find it useful to
tell  Mathematica  explicitly  what  method  it  should  use.  The  Reference  Guide  lists  some  of  the  methods  built  into
Mathematica; others are discussed in Section A.9.4 or in advanced or on-line documentation. 

This solves a differential equation using method m, and returns the number of steps and evaluations needed. 

In[7]:= try[m_] := Block[{s=e=0}, NDSolve[{y''[x] + Sin[y[x]] == 0, y'[0] == y[0] == 1}, 
y, {x, 0, 100}, StepMonitor :> s++, EvaluationMonitor :> e++, Method -> m]; {s, 
e}]

With the method selected automatically, this is the number of steps and evaluations that are needed. 

In[8]:= try[Automatic]

Out[8]= 81118, 2329<

This shows what happens with several other possible methods. The Adams method that is selected automatically is the fastest. 

In[9]:= try /@ {"Adams", "BDF", "ExplicitRungeKutta", "ImplicitRungeKutta", 
"Extrapolation"}

Out[9]= 881118, 2329<, 82415, 2861<, 8474, 4749<, 8277, 7200<, 883, 4650<<

This shows what happens with the explicit Runge-Kutta method when the difference order parameter is changed. 

In[10]:= Table[try[{"ExplicitRungeKutta", "DifferenceOrder" -> n}], {n, 4, 9}]

Out[10]= 883522, 14090<, 8617, 4321<, 8851, 6810<, 8474, 4742<, 8291, 3785<, 8289, 4626<<

3.9.11 Advanced Topic: Functions with Sensitive Dependence on Their Input

Functions that are specified by simple algebraic formulas tend to be such that when their input is changed only slightly,
their output also changes only slightly. But functions that are instead based on executing procedures quite often show
almost  arbitrarily  sensitive  dependence  on  their  input.  Typically  the  reason  this  happens  is  that  the  procedure
“excavates”  progressively less and less significant digits in the input. 

This shows successive steps in a simple iterative procedure with input 0.1111. 

In[1]:= NestList[FractionalPart[2 #]&, 0.1111, 10]

Out[1]= 80.1111, 0.2222, 0.4444, 0.8888, 0.7776,
0.5552, 0.1104, 0.2208, 0.4416, 0.8832, 0.7664<
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Here is the result with input 0.1112. Progressive divergence from the result with input 0.1111 is seen. 

In[2]:= NestList[FractionalPart[2 #]&, 0.1112, 10]

Out[2]= 80.1112, 0.2224, 0.4448, 0.8896, 0.7792,
0.5584, 0.1168, 0.2336, 0.4672, 0.9344, 0.8688<

The action  of  FractionalPart[2  x]  is  particularly  simple in  terms of  the  binary  digits  of  the  number  x:  it  justs
drops the first one, and shifts the remaining ones to the left. After several steps, this means that the results one gets are
inevitably sensitive to digits that are far to the right, and have an extremely small effect on the original value of x.   

This shows the shifting process achieved by FractionalPart[2 x] in the first 8 binary digits of x. 

In[3]:= RealDigits[Take[%, 5], 2, 8, -1]

Out[3]= 8880, 0, 0, 1, 1, 1, 0, 0<, 0<, 880, 0, 1, 1, 1, 0, 0, 1<, 0<,
880, 1, 1, 1, 0, 0, 1, 0<, 0<, 881, 1, 1, 0, 0, 1, 0, 0<, 0<, 881, 1, 0, 0, 0, 1, 1, 1<, 0<<

If you give input only to a particular precision, you are effectively specifying only a certain number of digits. And once
all these digits have been “excavated”  you can no longer get accurate results, since to do so would require knowing
more digits  of  your original  input.  So long as you use arbitrary-precision numbers,  Mathematica  automatically keeps
track of this kind of degradation in precision, indicating a number with no remaining significant digits by 0. × 10e , as
discussed in Section 3.1.5. 

Successive steps yield numbers of progressively lower precision, and eventually no precision at all. 

In[4]:= NestList[FractionalPart[40 #]&, N[1/9, 20], 20]

Out[4]= 80.11111111111111111111, 0.4444444444444444444, 0.77777777777777778,
0.1111111111111111, 0.44444444444444, 0.777777777778, 0.11111111111,
0.444444444, 0.77777778, 0.111111, 0.4444, 0.778, 0.1, 0. × 10−1,
0. × 101, 0. × 103, 0. × 104, 0. × 106, 0. × 107, 0. × 109, 0. × 1011<

This asks for the precision of each number. Zero precision indicates that there are no correct significant digits. 

In[5]:= Map[Precision, %]

Out[5]= 820., 19., 17.641, 15.1938, 14.1938, 12.8348, 10.3876, 9.38764, 8.02862,
5.58146, 4.58146, 3.22244, 0.77528, 0., 0., 0., 0., 0., 0., 0., 0.<

This shows that the exact result is a periodic sequence. 

In[6]:= NestList[FractionalPart[40 #]&, 1/9, 10]

Out[6]= 9 1
9

, 4
9

, 7
9

, 1
9

, 4
9

, 7
9

, 1
9

, 4
9

, 7
9

, 1
9

, 4
9
=

It is important to realize that if you use approximate numbers of any kind, then in an example like the one above you
will  always  eventually  run  out  of  precision.  But  so  long  as  you  use  arbitrary-precision  numbers,  Mathematica  will
explicitly show you any decrease in precision that is occurring. However, if you use machine-precision numbers, then
Mathematica will not keep track of precision, and you cannot tell when your results become meaningless. 
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If you use machine-precision numbers, Mathematica will no longer keep track of any degradation in precision. 

In[7]:= NestList[FractionalPart[40 #]&, N[1/9], 20]

Out[7]= 80.111111, 0.444444, 0.777778, 0.111111, 0.444444, 0.777778,
0.111111, 0.444445, 0.77781, 0.112405, 0.496185, 0.847383,
0.89534, 0.813599, 0.543945, 0.757813, 0.3125, 0.5, 0., 0., 0.<

By iterating the operation FractionalPart[2 x] you extract successive binary digits in whatever number you start
with.  And  if  these  digits  are  apparently  random—as in  a  number  like  p—then the  results  will  be  correspondingly
random. But if the digits have a simple pattern—as in any rational number—then the results you get will be correspond-
ingly simple. 

By iterating  an  operation  such  as  FractionalPart[3/2  x]  it  turns  out  however  to  be  possible  to  get  seemingly
random sequences even from very simple input.  This is  an example of a very general phenomenon first  identified by
me in the mid-1980s, which has nothing directly to do with sensitive dependence on input.  

This generates a seemingly random sequence, even starting from simple input. 

In[8]:= NestList[FractionalPart[3/2 #]&, 1, 15]

Out[8]= 91, 1
2

, 3
4

, 1
8

, 3
16

, 9
32

, 27
64

, 81
128

, 243
256

,

217
512

,
651

1024
,

1953
2048

,
1763
4096

,
5289
8192

,
15867
16384

,
14833
32768

=

After the values have been computed, one can safely find numerical approximations to them. 

In[9]:= N[%]

Out[9]= 81., 0.5, 0.75, 0.125, 0.1875, 0.28125, 0.421875, 0.632813, 0.949219,
0.423828, 0.635742, 0.953613, 0.43042, 0.64563, 0.968445, 0.452667<

Here are the last 5 results after 1000 iterations, computed using exact numbers. 

In[10]:= Take[N[NestList[FractionalPart[3/2 #]&, 1, 1000]], -5]

Out[10]= 80.0218439, 0.0327659, 0.0491488, 0.0737233, 0.110585<

Using machine-precision numbers gives completely incorrect results. 

In[11]:= Take[NestList[FractionalPart[3/2 #]&, 1., 1000], -5]

Out[11]= 80.670664, 0.0059966, 0.0089949, 0.0134924, 0.0202385<

Many  kinds  of  iterative  procedures  yield  functions  that  depend  sensitively  on  their  input.  Such  functions  also  arise
when  one  looks  at  solutions  to  differential  equations.  In  effect,  varying  the  independent  parameter  in  the  differential
equation is a continuous analog of going from one step to the next in an iterative procedure.  

This finds a solution to the Duffing equation with initial condition 1. 

In[12]:= NDSolve[{x''[t] + 0.15 x'[t] - x[t] + x[t]^3 == 0.3 Cos[t], x[0] == -1, x'[0] == 
1}, x, {t, 0, 50}]

Out[12]= 88x → InterpolatingFunction@880., 50.<<, <>D<<
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Here is a plot of the solution. 

In[13]:= Plot[Evaluate[x[t] /. %], {t, 0, 50}]
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0.5

1

1.5

Out[13]=  Graphics 

Here is the same equation with initial condition 1.001. 

In[14]:= NDSolve[{x''[t] + 0.15 x'[t] - x[t] + x[t]^3 == 0.3 Cos[t], x[0] == -1, x'[0] == 
1.001}, x, {t, 0, 50}]

Out[14]= 88x → InterpolatingFunction@880., 50.<<, <>D<<

The solution progressively diverges from the one shown above. 

In[15]:= Plot[Evaluate[x[t] /. %], {t, 0, 50}]
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Out[15]=  Graphics 
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3.10 Mathematical and Other Notation

3.10.1 Special Characters

Built into Mathematica  are  a  large number  of  special  characters intended for  use in mathematical and other  notation.
Section A.12.1 gives a complete listing. 

Each  special  character  is  assigned  a  full  name  such  as  î[Infinity].  More  common  special  characters  are  also
assigned aliases,  such as Çinf ,  where  Ç  stands for  the Â  key.  You can set  up additional  aliases using the Input
Aliases notebook option discussed in Section 2.11.11. 

For special characters that are supported in standard dialects of TeX, Mathematica also allows you to use aliases based
on TeX names. Thus, for example, you can enter î[Infinity] using the alias Ç\infty . Mathematica also supports
aliases such as Ç&infin  based on names used in SGML and HTML. 

Standard  system  software  on  many  computer  systems  also  supports  special  key  combinations  for  entering  certain
special characters. On a Macintosh, for example, Option-5 will produce ¶  in most fonts. With the notebook front end
Mathematica automatically allows you to use special key combinations when these are available, and with a text-based
interface you can get Mathematica to accept such key combinations if you set an appropriate value for $Character
Encoding.  

† Use a full name such as î @InfinityD 

† Use an alias such as Â infÂ 

† Use a TeX alias such as Â \inftyÂ 

† Use an SGML or HTML alias such as Â &infinÂ 

† Click on a button in a palette
† Use a special key combination supported by your computer system

Ways to enter special characters. 

In  a  Mathematica  notebook,  you  can  use  special  characters  just  like  you  use  standard  keyboard  characters.  You  can
include special characters both in ordinary text and in input that you intend to give to Mathematica. 

Some special characters are set up to have an immediate meaning to Mathematica. Thus, for example, p  is taken to be
the symbol Pi. Similarly, ¥  is taken to be the operator >=, while ‹  is equivalent to the function Union. 

p  and ¥  have immediate meanings in Mathematica. 

In[1]:= π ≥ 3

Out[1]= True

‹  or î[Union] is immediately interpreted as the Union function. 

In[2]:= {a, b, c} ‹ {c, d, e}

Out[2]= 8a, b, c, d, e<
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ü  or î[SquareUnion] has no immediate meaning to Mathematica. 

In[3]:= {a, b, c} ü {c, d, e}

Out[3]= 8a, b, c< ü 8c, d, e<

Among ordinary characters such as E and i, some have an immediate meaning to Mathematica, but most do not. And
the same is true of special characters. 

Thus, for example, while p  and ¶  have an immediate meaning to Mathematica, l  and  do not. 

This allows you to set up your own definitions for l  and . 

l  has no immediate meaning in Mathematica. 

In[4]:= λ[2] + λ[3]

Out[4]= λ@2D + λ@3D

This defines a meaning for l . 

In[5]:= λ@x_D :=
è!!!!!!!!!!!!!
x2 − 1

Now Mathematica evaluates l  just as it would any other function. 

In[6]:= λ[2] + λ[3]

Out[6]= 2 è!!!2 + è!!!3

Characters such as l  and  are treated by Mathematica as letters—just like ordinary keyboard letters like a or b. 

But characters such as ∆  and ü  are treated by Mathematica as operators. And although these particular characters are
not assigned any built-in meaning by Mathematica, they are nevertheless required to follow a definite syntax. 

ü  is an infix operator. 

In[7]:= {a, b, c} ü {c, d, e}

Out[7]= 8a, b, c< ü 8c, d, e<

The definition assigns a meaning to the ü  operator. 

In[8]:= x_ ü y_ := Join[x, y]

Now ü  can be evaluated by Mathematica. 

In[9]:= {a, b, c} ü {c, d, e}

Out[9]= 8a, b, c, c, d, e<

The details of how input you give to Mathematica  is interpreted depends on whether you are using StandardForm
or  TraditionalForm,  and  on  what  additional  information  you  supply  in  InterpretationBox  and  similar
constructs. 
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But unless you explicitly override its built-in rules by giving your own definitions for MakeExpression, Mathemat-
ica will always assign the same basic syntactic properties to any particular special character. 

These properties not only affect the interpretation of the special characters in Mathematica input, but also determine the
structure  of  expressions  built  with  these  special  characters.  They also  affect  various  aspects  of  formatting;  operators,
for example, have extra space left around them, while letters do not. 

Letters a ,  E ,  p  ,  X  ,   , etc.
Letter-like forms ¶ ,  «  ,  °  ,  £  , etc.

Operators ∆  ,  ∑  ,  º  ,  F  , etc.

Types of special characters. 

In  using  special  characters,  it  is  important  to  make sure  that  you  have  the  correct  character  for  a  particular  purpose.
There are quite a few examples of characters that look similar, yet are in fact quite different. 

A  common issue  is  operators  whose  forms are  derived  from letters.  An  example is  ⁄  or  î[Sum],  which  looks  very
similar to S  or î[CapitalSigma]. 

As  is  typical,  however,  the  operator  form  ⁄  is  slightly  less  elaborate  and  more  stylized  than  the  letter  form  S .  In
addition, ⁄  is an extensible character which grows depending on the summand, while S  has a size determined only by
the current font. 

⁄   S  î @SumD , î @CapitalSigmaD 

¤   P î @ProductD , î @CapitalPiD 

‹  U î @UnionD , keyboard  U 

œ   e  î @ElementD , î @EpsilonD 

„  d î @DifferentialDD , keyboard  d 

µ   m  î @MicroD , î @MuD 

Þ   Å  î @AngstromD , î @CapitalARingD 

«   Ø  î @EmptySetD , î @CapitalOSlashD 

A  A î @CapitalAlphaD , keyboard  A 

Â  i î @ImaginaryID , keyboard  i 

Different characters that look similar. 

In cases such as î[CapitalAlpha] versus A, both characters are letters. However, Mathematica treats these charac-
ters as different, and in some fonts, for example, they may look quite different.  

The result contains four distinct characters. 

In[10]:= Union[ {\[CapitalAlpha], A, A, \[Mu], \[Mu], \[Micro]} ]

Out[10]= 8A, Α, µ, µ<

Traditional mathematical notation occasionally uses ordinary letters as operators. An example is the d in a differential
such as dx that appears in an integral. 

To make Mathematica  have a precise and consistent syntax, it is necessary at least in StandardForm  to distinguish
between an ordinary d and the „  used as a differential operator. 

The way Mathematica  does this  is  to use a special character  „  or  î[DifferentialD]  as the differential  operator.
This special character can be entered using the alias Çdd . 
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Mathematica uses a special character for the differential operator, so there is no conflict with an ordinary d. 

In[11]:= ‡ xd x

Out[11]= 
x1+d

1 + d

When  letters  and  letter-like  forms  appear  in  Mathematica  input,  they  are  typically  treated  as  names of  symbols.  But
when  operators  appear,  functions  must  be  constructed  that  correspond  to  these  operators.  In  almost  all  cases,  what
Mathematica  does  is  to  create  a  function  whose  name  is  the  full  name  of  the  special  character  that  appears  as  the
operator. 

Mathematica constructs a CirclePlus function to correspond to the operator ∆ , whose full name is î[CirclePlus]. 

In[12]:= a ⊕ b ⊕ c // FullForm

Out[12]//FullForm= 

CirclePlus@a, b, cD

This constructs an And function, which happens to have built-in evaluation rules in Mathematica. 

In[13]:= a fl b fl c // FullForm

Out[13]//FullForm= 

And@a, b, cD

Following the correspondence between operator names and function names, special characters such as ‹  that represent
built-in  Mathematica  functions  have  names  that  correspond  to  those  functions.  Thus,  for  example,  π  is  named  î
[Divide] to correspond to the built-in Mathematica function Divide, and fl  is named î[Implies] to correspond
to the built-in function Implies. 

In  general,  however,  special  characters  in  Mathematica  are  given  names that  are  as  generic  as  possible,  so  as  not  to
prejudice different uses. Most often, characters are thus named mainly according to their appearance. The character ∆
is  therefore  named  î[CirclePlus],  rather  than,  say  î[DirectSum],  and  º  is  named  î[TildeTilde]  rather
than, say, î[ApproximatelyEqual]. 

µ   ä  î @TimesD , î @CrossD 

fl   Ô  î @AndD , î @WedgeD 

fi   Ó  î @OrD , î @VeeD 

Ø   Ø î @RuleD , î @RightArrowD 

fl   fl î @ImpliesD , î @DoubleRightArrowD 

  =  î @LongEqualD , keyboard  = 

*   *  î @StarD , keyboard  ∗ 

î   \  î @BackslashD , keyboard î
ÿ  . î @CenterDotD , keyboard  . 

Ô   ^ î @WedgeD , keyboard  ^ 

˝   ˝  î @VerticalBarD , keyboard  » 

»   »  î @VerticalSeparatorD , keyboard

Different operator characters that look similar. 

There are sometimes characters that look similar but which are used to represent different operators.  An example is î
[Times]  and  î[Cross].  î[Times]  corresponds  to  the  ordinary  Times  function  for  multiplication;  î[Cross]
corresponds to the Cross function for vector cross products. The ä  for î[Cross] is drawn slightly smaller than µ  for
Times, corresponding to usual careful usage in mathematical typography. 
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The î[Times] operator represents ordinary multiplication. 

In[14]:= {5, 6, 7} \[Times] {2, 3, 1}

Out[14]= 810, 18, 7<

The î[Cross] operator represents vector cross products. 

In[15]:= {5, 6, 7} \[Cross] {2, 3, 1}

Out[15]= 8−15, 9, 3<

The two operators display in a similar way—with î[Times] slightly larger than î[Cross]. 

In[16]:= {a × b, a  b}

Out[16]= 8a b, a b<

In  the  example  of  î[And]  and  î[Wedge],  the  î[And]  operator—which  happens  to  be  drawn  slightly
larger—corresponds to the built-in Mathematica function And, while the î[Wedge] operator has a generic name based
on the appearance of the character and has no built-in meaning. 

You can mix î[Wedge] and î[And] operators. Each has a definite precedence. 

In[17]:= a \[Wedge] b \[And] c \[Wedge] d // FullForm

Out[17]//FullForm= 

And@Wedge@a, bD, Wedge@c, dDD

Some of the special characters commonly used as operators in mathematical notation look similar to ordinary keyboard
characters. Thus, for example, Ô  or î[Wedge] looks similar to the ^ character on a standard keyboard. 

Mathematica  interprets  a  raw  ^  as  a  power.  But  it  interprets  Ô  as  a  generic  Wedge  function.  In  cases  such  as  this
where  there  is  a  special  character  that  looks  similar  to  an  ordinary  keyboard  character,  the  convention  is  to  use  the
ordinary keyboard character as the alias for the special character. Thus, for example, Ç^  is the alias for î[Wedge].  

The raw ^ is interpreted as a power, but the Ç^  is a generic wedge operator. 

In[18]:= {x ^ y, x ^  y}

Out[18]= 8xy, x Ôy<

A related convention is that when a special character is used to represent an operator that can be typed using ordinary
keyboard characters, those characters are used in the alias for the special character. Thus, for example, Ç->  is the alias
for Ø  or î[Rule], while Ç&&  is the alias for fl  or î[And]. 

Ç->  is the alias for î[Rule], and Ç&&  for î[And]. 

In[19]:= {x ->  y, x &&  y} // FullForm

Out[19]//FullForm= 

List@Rule@x, yD, And@x, yDD

The most extreme case of characters that look alike but work differently occurs with vertical bars. 
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form character name alias interpretation 

x  »  y keyboard  » Alternatives@ x,  y D 

x  »   y î @VerticalSeparatorD Ç »  VerticalSeparator@ x,  y D 

x  ˝   y î @VerticalBarD Ç â  »  VerticalBar@ x,  y D 

†   x  §  î @LeftBracketingBarD Ç l»  BracketingBar@ x D 

î @RightBracketingBarD Ç r»  

Different types of vertical bars. 

Notice that the alias for î[VerticalBar] is Çâ| , while the alias for the somewhat more common î[VerticalSep
arator] is Ç| . Mathematica  often gives similar-looking characters similar aliases; it is a general convention that the
aliases for the less commonly used characters are distinguished by having spaces at the beginning. 

Ç  nnn Ç  built-in alias for a common character
Ç  â  nnn Ç  built-in alias for similar but less common character
Ç.nnn Ç  alias globally defined in a  Mathematica session
Ç,nnn Ç  alias defined in a specific notebook

Conventions for special character aliases. 

The notebook front end for Mathematica often allows you to set up your own aliases for special characters. If you want
to, you can overwrite the built-in aliases. But the convention is to use aliases that begin with a dot or comma. 

Note that whatever aliases you may use to enter special characters, the full names of the characters will always be used
when the characters are stored in files. 

3.10.2 Names of Symbols and Mathematical Objects

Mathematica by default interprets any sequence of letters or letter-like forms as the name of a symbol. 

All these are treated by Mathematica as symbols. 

In[1]:= 8ξ, Σα, R∞, , ℵ, ∠ABC, ‡X, m…n<

Out[1]= 8ξ, Σα, R∞, , ℵ, ∠ABC, ‡X, m…n<

form character name alias interpretation 

p  î @PiD Ç p  , Ç pi  equivalent to  Pi 

¶ î @InfinityD Ç inf  equivalent to  Infinity 

‰  î @ExponentialED Ç ee  equivalent to  E 

Â  î @ImaginaryID Ç ii  equivalent to  I 

ü  î @ImaginaryJD Ç jj  equivalent to  I 

Symbols with built-in meanings whose names do not start with capital English letters. 

Essentially  all  symbols  with  built-in  meanings  in  Mathematica  have  names  that  start  with  capital  English  letters.
Among the exceptions are ‰  and Â , which correspond to E and I respectively. 
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Forms such as ‰  are used for both input and output in StandardForm. 

In[2]:= {  ^ (2 π ),  ^ π}

Out[2]= 81, π<

In OutputForm ‰  is output as E. 

In[3]:= OutputForm[%]

Out[3]//OutputForm= 

{1, E^Pi}

Out[3]//OutputForm= 
"     Pi
{1, E  }"

In  written  material,  it  is  standard  to  use  very  short  names—often single  letters—for most  of  the  mathematical objects
that one considers. But in Mathematica, it is usually better to use longer and more explicit names. 

In written material you can always explain that a particular single-letter name means one thing in one place and another
in another  place.  But  in  Mathematica,  unless  you use different  contexts,  a  global  symbol with  a  particular  name will
always be assumed to mean the same thing. 

As  a  result,  it  is  typically  better  to  use  longer  names,  which  are  more  likely  to  be  unique,  and  which  describe  more
explicitly what they mean. 

For variables to which no value will be assigned, or for local symbols, it is nevertheless convenient and appropriate to
use short, often single-letter, names. 

It is sensible to give the global function LagrangianL a long and explicit name. The local variables can be given short names. 

In[4]:= LagrangianL@φ_, µ_D = H φL2 + µ2 φ2

Out[4]= µ2 φ2 + H φL2
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form input interpretation 

xn  x ‚Î _Ï n ‚Î 

â  Ï or  x î _ n 
Subscript@ x,  n D 

x+  x ‚Î _Ï+‚Î 

â  Ï or  x î _+ 

SubPlus@ x D 

x−  x ‚Î _Ï−‚Î 

â  Ï or  x î _− 

SubMinus@ x D 

x∗  x ‚Î _Ï∗‚Î 

â  Ï or  x î _∗ 

SubStar@ x D 

x+  x ‚Î ^Ï+‚Î 

â  Ï or  x î ^+ 

SuperPlus@ x D 

x−  x ‚Î ^Ï−‚Î 

â  Ï or  x î ^− 

SuperMinus@ x D 

x∗  x ‚Î ^Ï∗‚Î 

â  Ï or  x î ^∗ 

SuperStar@ x D 

x†  x ‚Î ^Ï dg‚Î 

â  Ï or  x î 
^î@DaggerD 

SuperDagger@ x D 

x̄  x ‚Î &Ï_‚Î 

â  Ï or  x î &_ 

OverBar@ x D 

x”  x ‚Î &Ï vec‚Î 

â  Ï or  x î &î@
RightVectorD 

OverVector@ x D 

x  x ‚Î &Ï∼‚Î 

â  Ï or  x î &∼ 

OverTilde@ x D 

x̂  x ‚Î &Ï^‚Î 

â  Ï or  x î &^ 

OverHat@ x D 

x  x ‚Î &Ï.‚Î 

â  Ï or  x î &. 

OverDot@ x D 

x̄  x ‚Î +Ï_‚Î 

â  Ï or  x î +_ 

UnderBar@ x D 

x StyleBox@ x,  
FontWeight−>"
Bold"D 

x 

Creating objects with annotated names. 

Note that with a notebook front end, you can typically change the style of text using menu items. Internally the result
will be to insert StyleBox objects, but you do not need to do this explicitly. 

option typical default value

SingleLetterItalics Automatic whether to use italics
for single-letter symbol names

An option for cells in a notebook. 

It  is  conventional  in  traditional  mathematical  notation  that  names  consisting  of  single  ordinary  English  letters  are
normally  shown  in  italics,  while  other  names  are  not.  If  you  use  TraditionalForm,  then  Mathematica  will  by
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default  follow  this  convention.  You  can  explicitly  specify  whether  you  want  the  convention  followed  by  setting  the
SingleLetterItalics option for particular cells or cell styles. 

3.10.3 Letters and Letter-like Forms

Greek Letters
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form full name aliases 

a î @AlphaD Ç a  , Ç alpha

b î @BetaD Ç b  , Ç beta

g î @GammaD Ç g  , Ç gamma

d î @DeltaD Ç d  , Ç delta

e î @EpsilonD Ç e  , Ç epsilon

¶ î @CurlyEpsilonD Ç ce  , Ç cepsilon

z î @ZetaD Ç z  , Ç zeta

h î @EtaD Ç h  , Ç et  , Ç eta

q î @ThetaD Ç q  , Ç th  , Ç theta

J î @CurlyThetaD Ç cq  , Ç cth  , Ç ctheta

i î @IotaD Ç i  , Ç iota

k î @KappaD Ç k  , Ç kappa

¿ î @CurlyKappaD Ç ck  , Ç ckappa

l î @LambdaD Ç l  , Ç lambda

m î @MuD Ç m  , Ç mu

n î @NuD Ç n  , Ç nu

x î @XiD Ç x  , Ç xi

o î @OmicronD Ç om  , Ç omicron

p î @PiD Ç p  , Ç pi

v î @CurlyPiD Ç cp  , Ç cpi

r î @RhoD Ç r  , Ç rho

· î @CurlyRhoD Ç cr  , Ç crho

s î @SigmaD Ç s  , Ç sigma

V î @FinalSigmaD Ç fs

t î @TauD Ç t  , Ç tau

u î @UpsilonD Ç u  , Ç upsilon

f î @PhiD Ç f  , Ç ph  , Ç phi

j î @CurlyPhiD Ç j  , Ç cph  , Ç cphi

c î @ChiD Ç c  , Ç ch  , Ç chi

y î @PsiD Ç y  , Ç ps  , Ç psi

w î @OmegaD Ç o  , Ç w  , Ç omega

¸ î @DigammaD Ç di  , Ç digamma

º î @KoppaD Ç ko  , Ç koppa

¹ î @StigmaD Ç sti  , Ç stigma

» î @SampiD Ç sa  , Ç sampi

form full name aliases

A î @CapitalAlphaD Ç A

B î @CapitalBetaD Ç B

G î @CapitalGammaD Ç G

D î @CapitalDeltaD Ç D

E î @CapitalEpsilonD Ç E

Z î @CapitalZetaD Ç Z

H î @CapitalEtaD Ç H

Q î @CapitalThetaD Ç Q

I î @CapitalIotaD Ç I

K î @CapitalKappaD Ç K

L î @CapitalLambdaD Ç L

M î @CapitalMuD Ç M

N î @CapitalNuD Ç N

X î @CapitalXiD Ç X

O î @CapitalOmicronD Ç O

P î @CapitalPiD Ç P

R î @CapitalRhoD Ç R

S î @CapitalSigmaD Ç S

T î @CapitalTauD Ç T

U î @CapitalUpsilonD Ç U

¢ î @CurlyCapitalUpsilonD Ç c

F î @CapitalPhiD Ç F

C î @CapitalChiD Ç C

Y î @CapitalPsiD Ç Y

W î @CapitalOmegaD Ç O

² î @CapitalDigammaD Ç D

´ î @CapitalKoppaD Ç K

³ î @CapitalStigmaD Ç S

µ î @CapitalSampiD Ç S

The complete collection of Greek letters in Mathematica. 

You can use Greek letters as the names of symbols. The only Greek letter with a built-in meaning in StandardForm
is p , which Mathematica takes to stand for the symbol Pi. 

10 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



Note that  even though p  on  its  own is  assigned a built-in meaning,  combinations such as p 2  or  x p  have no built-in
meanings. 

The  Greek  letters  S  and  P  look  very  much  like  the  operators  for  sum  and  product.  But  as  discussed  above,  these
operators are different characters, entered as î[Sum] and î[Product] respectively. 

Similarly, e  is different from the œ  operator î[Element], and m  is different from µ or î[Micro]. 

Some capital Greek letters such as î[CapitalAlpha] look essentially the same as capital English letters. Mathemat-
ica however treats them as different characters, and in TraditionalForm it uses î[CapitalBeta], for example,
to denote the built-in function Beta. 

Following  common convention,  lower-case  Greek  letters  are  rendered  slightly  slanted  in  the  standard  fonts  provided
with Mathematica, while capital Greek letters are unslanted. 

Almost  all  Greek  letters  that  do  not  look  similar  to  English  letters  are  widely  used  in  science  and  mathematics.  The
capital xi X  is rare, though it is used to denote the cascade hyperon particles, the grand canonical partition function and
regular language complexity. The capital upsilon U  is also rare, though it is used to denote b b

êê
 particles, as well as the

vernal equinox.  

Curly  Greek letters  are  often  assumed to  have  different  meanings  from their  ordinary  counterparts.  Indeed,  in  pure
mathematics a single formula can sometimes contain both curly and ordinary forms of a particular letter. The curly pi
v  is rare, except in astronomy. 

The final  sigma  V  is  used  for  sigmas that  appear  at  the  ends  of  words  in  written  Greek;  it  is  not  commonly used in
technical notation. 

The digamma  ¸ , koppa  º , stigma  ¹  and sampi »  are archaic Greek letters. These letters provide a convenient exten-
sion to the usual set of Greek letters. They are sometimes needed in making correspondences with English letters. The
digamma  corresponds  to  an  English  w,  and  koppa  to  an  English  q.  Digamma  is  occasionally  used  to  denote  the
digamma function PolyGamma[x]. 

Variants of English Letters

form full name alias 

î @ScriptLD Ç scl

î @ScriptCapitalED Ç scE

î @ScriptCapitalHD Ç scH

î @ScriptCapitalLD Ç scL

 î @GothicCapitalCD Ç goC

 î @GothicCapitalHD Ç goH

¬ î @GothicCapitalID Ç goI

√ î @GothicCapitalRD Ç goR

form full name alias 

 î @DoubleStruckCapitalCD Ç dsC

 î @DoubleStruckCapitalRD Ç dsR

 î @DoubleStruckCapitalQD Ç dsQ

 î @DoubleStruckCapitalZD Ç dsZ

 î @DoubleStruckCapitalND Ç dsN

Ò î @DotlessID
Ô î @DotlessJD
ƒ î @WeierstrassPD Ç wp

Some commonly used variants of English letters. 

By using menu items in the notebook front end, or explicit StyleBox objects, you can make changes in the font and
style  of  ordinary  text.  However,  such  changes  are  usually  discarded  whenever  you  send  input  to  the  Mathematica
kernel. 
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Script,  gothic  and double-struck characters are  however  treated as  fundamentally different  from their  ordinary forms.
This means that even though a C that is italic or a different size will be considered equivalent to an ordinary C when fed
to the kernel, a double-struck   will not. 

Different styles and sizes of C are treated as the same by the kernel. But gothic and double-struck characters are treated as differ-
ent. 

In[1]:= C + C +C +  + 

Out[1]= 3 C +  + 

In  standard  mathematical  notation,  capital  script  and  gothic  letters  are  sometimes  used  interchangeably.  The
double-struck letters, sometimes called blackboard or openface letters, are conventionally used to denote specific sets.
Thus, for example,   conventionally denotes the set of complex numbers, and   the set of integers. 

Dotless  i  and  j  are  not  usually  taken  to  be  different  in  meaning  from  ordinary  i  and  j;  they  are  simply  used  when
overscripts are being placed on the ordinary characters. 

î[WeierstrassP] is a notation specifically used for the Weierstrass P function WeierstrassP. 

full names aliases 

î @ScriptAD – î @ScriptZD Ç sca  – Ç scz lower-case script letters
î @ScriptCapitalAD 

– î @ScriptCapitalZD
Ç scA  – Ç scZ upper-case script letters

î @GothicAD – î @GothicZD Ç goa  – Ç goz lower-case gothic letters
î @GothicCapitalAD 

– î @GothicCapitalZD
Ç goA  – Ç goZ upper-case gothic letters

î @DoubleStruckAD 

– î @DoubleStruckZD
Ç dsa  – Ç dsz lower-case double-struck letters

î @DoubleStruckCapitalAD 

 – î @DoubleStruckCapitalZD
Ç dsA  – Ç dsZ upper-case double-struck letters

Complete alphabets of variant English letters. 

Hebrew Letters

form full name alias 

¡ î @AlephD Ç al

¼ î @BetD

form full name 

½ î @GimelD
¾ î @DaletD

Hebrew characters. 

Hebrew characters are used in mathematics in the theory of transfinite sets; ¡0  is for example used to denote the total
number of integers. 
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Units and Letter-like Mathematical Symbols

form full name alias 

µ î @MicroD Ç mi

° î @MhoD Ç mho

Þ î @AngstromD Ç Ang

Ñ î @HBarD Ç hb

¢ î @CentD Ç cent

£ î @SterlingD
€ î @EuroD
¥ î @YenD

form full name alias 

° î @DegreeD Ç deg

« î @EmptySetD Ç es

¶ î @InfinityD Ç inf

‰ î @ExponentialED Ç ee

Â î @ImaginaryID Ç ii

ü î @ImaginaryJD Ç jj

þ î @DoubledPiD Ç pp

ý î @DoubledGammaD Ç gg

Units and letter-like mathematical symbols. 

Mathematica treats °  or î[Degree] as the symbol Degree, so that, for example, 30° is equivalent to 30 Degree. 

Note that µ, Þ  and «  are all distinct from the ordinary letters m  (î[Mu]), Å  (î[CapitalARing]) and Ø  (î[Capi
talOSlash]). 

Mathematica  interprets  ¶  as  Infinity,  ‰  as  E,  and  both  Â  and  ü  as  I.  The characters  ‰ ,  Â  and  ü  are  provided  as
alternatives to the usual upper-case letters E and I. 

þ  and ý  are not by default assigned meanings in StandardForm. You can therefore use þ  to represent a pi that will
not automatically be treated as Pi. In TraditionalForm ý  is interpreted as EulerGamma. 

form full name alias 

∑ î @PartialDD Ç pd

„ î @DifferentialDD Ç dd

ÿ î @CapitalDifferentialDD Ç DD

form full name alias 

“ î @DelD Ç del

⁄ î @SumD Ç sum

¤ î @ProductD Ç prod

Operators that look like letters. 

“  is an operator while Ñ , °  and ¥  are ordinary symbols. 

In[1]:= {∇ f, —^2, 45°, 5000¥} // FullForm

Out[1]//FullForm= 

List@Del@fD, Power@\[HBar], 2D, Times@45, DegreeD, Times@5000, \[Yen]DD
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Shapes, Icons and Geometrical Constructs

form full name alias 

ä î @FilledVerySmallSquareD Ç fvssq

ã î @EmptySmallSquareD Ç essq

† î @FilledSmallSquareD Ç fssq

á î @EmptySquareD Ç esq

î @GraySquareD Ç gsq

à î @FilledSquareD Ç fsq

Ó î @DottedSquareD
ñ î @EmptyRectangleD
ð î @FilledRectangleD
í î @EmptyDiamondD
ì î @FilledDiamondD

form full name alias 

é î @EmptySmallCircleD Ç esci

è î @FilledSmallCircleD Ç fsci

ç î @EmptyCircleD Ç eci

î @GrayCircleD Ç gci

æ î @FilledCircleD Ç fci

ó î @EmptyUpTriangleD
ò î @FilledUpTriangleD
õ î @EmptyDownTriangleD
ô î @FilledDownTriangleD
ø î @FivePointedStarD Ç ∗5

÷ î @SixPointedStarD Ç ∗6

Shapes. 

Shapes  are  most  often  used  as  “dingbats”  to  emphasize  pieces  of  text.  But  Mathematica  treats  them  as  letter-like
forms, and also allows them to appear in the names of symbols. 

In  addition  to  shapes  such  as  î[EmptySquare],  there  are  characters  such  as  î[Square]  which  are  treated  by
Mathematica as operators rather than letter-like forms. 

form full name alias 

Ÿ î @MathematicaIconD Ç math

⁄ î @KernelIconD
¤ î @LightBulbD
‹ î @WarningSignD
› î @WatchIconD

form full name aliases 

Ã î @HappySmileyD Ç :L  , Ç :−L
Õ î @NeutralSmileyD Ç :−»
Œ î @SadSmileyD Ç :−H
œ î @FreakedSmileyD Ç :−@

Ł î @WolfD Ç wf  , Ç wolf

Icons. 

You can use icon characters just like any other letter-like forms. 

In[1]:= Expand[(Ã + )^4]

Out[1]= Ã4 + 4 Ã3 + 6 Ã2 2 + 4 Ã 3 + 4

form full name 

— î @AngleD
¬ î @RightAngleD
− î @MeasuredAngleD

form full name 

® î @SphericalAngleD
ó î @EmptyUpTriangleD
¯ î @DiameterD

Notation for geometrical constructs. 

Since  Mathematica  treats  characters  like  —  as  letter-like  forms,  constructs  like  —BC  are  treated  in  Mathematica  as
single symbols. 
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Textual Elements

form full name alias 

– î @DashD Ç −

— î @LongDashD Ç −−

• î @BulletD Ç bu

¶ î @ParagraphD
§ î @SectionD
¿ î @DownQuestionD Ç d?

¡ î @DownExclamationD Ç d!

form full name alias 

£ î @PrimeD Ç '

≥ î @DoublePrimeD Ç ''

æ î @ReversePrimeD Ç `

ø î @ReverseDoublePrimeD Ç ``

« î @LeftGuillemetD Ç g<<

» î @RightGuillemetD Ç g>>

… î @EllipsisD Ç ...

Characters used for punctuation and annotation. 

form full name 

© î @CopyrightD
® î @RegisteredTrademarkD
™ î @TrademarkD
Ù î @FlatD
Ú î @NaturalD
Û î @SharpD

form full name alias 

† î @DaggerD Ç dg

‡ î @DoubleDaggerD Ç ddg

® î @ClubSuitD
© î @DiamondSuitD
™ î @HeartSuitD
´ î @SpadeSuitD

Other characters used in text. 

form full name alias 

î @HorizontalLineD Ç hline

î @VerticalLineD Ç vline

… î @EllipsisD Ç ...

∫ î @CenterEllipsisD
ª î @VerticalEllipsisD
∑ î @AscendingEllipsisD
∏ î @DescendingEllipsisD

form full name alias 

† î @UnderParenthesisD Ç uH
ê î @OverParenthesisD Ç oH
Ä î @UnderBracketD Ç u@
p î @OverBracketD Ç o@
ß î @UnderBraceD Ç u 8  Ç

ó î @OverBraceD Ç o 8  Ç

Characters used in building sequences and arrays. 

The under and over braces grow to enclose the whole expression. 

In[1]:= Underoverscript[Expand[(1 + x)^4], \[UnderBrace], \[OverBrace]]

Out[1]= 1 + 4 x + 6 x2 + 4 x3 + x4´̈ ¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨̈̈ ¨̈ ≠ Æ¨¨¨¨¨¨¨¨̈¨¨¨¨¨¨¨̈ ¨̈
õúúúúúúúúúúúúúúúúúúúúù ûúúúúúúúúúúúúúúúúúúú

Extended Latin Letters

Mathematica supports all the characters commonly used in Western European languages based on Latin scripts. 

form full name alias 

à î @AGraveD Ç a`

á î @AAcuteD Ç a'

form full name alias 

À î @CapitalAGraveD Ç A`

Á î @CapitalAAcuteD Ç A'
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â î @AHatD Ç a^

ã î @ATildeD Ç a∼

ä î @ADoubleDotD Ç a"

å î @ARingD Ç ao

î @ABarD Ç a−

î @ACupD Ç au

æ î @AED Ç ae

î @CAcuteD Ç c'

ç î @CCedillaD Ç c,

î @CHacekD Ç cv

è î @EGraveD Ç e`

é î @EAcuteD Ç e'

î @EBarD Ç e−

ê î @EHatD Ç e^

ë î @EDoubleDotD Ç e"

î @ECupD Ç eu

ì î @IGraveD Ç i`

í î @IAcuteD Ç i'

î î @IHatD Ç i^

ï î @IDoubleDotD Ç i"

î @ICupD Ç iu

ð î @EthD Ç d−

Ç î @LSlashD Ç lê
ñ î @NTildeD Ç n∼

ò î @OGraveD Ç o`

ó î @OAcuteD Ç o'

ô î @OHatD Ç o^

õ î @OTildeD Ç o∼

ö î @ODoubleDotD Ç o"

î @ODoubleAcuteD Ç o''

ø î @OSlashD Ç oê
š î @SHacekD Ç sv

ù î @UGraveD Ç u`

ú î @UAcuteD Ç u'

û î @UHatD Ç u^

ü î @UDoubleDotD Ç u"

î @UDoubleAcuteD Ç u''

ý î @YAcuteD Ç y'

þ î @ThornD Ç thn

ß î @SZD Ç sz  , Ç ss

Â î @CapitalAHatD Ç A^

Ã î @CapitalATildeD Ç A∼

Ä î @CapitalADoubleDotD Ç A"

Å î @CapitalARingD Ç Ao

î @CapitalABarD Ç A−

î @CapitalACupD Ç Au

Æ î @CapitalAED Ç AE

î @CapitalCAcuteD Ç C'

Ç î @CapitalCCedillaD Ç C,

î @CapitalCHacekD Ç Cv

È î @CapitalEGraveD Ç E`

É î @CapitalEAcuteD Ç E'

î @CapitalEBarD Ç E−

Ê î @CapitalEHatD Ç E^

Ë î @CapitalEDoubleDotD Ç E"

î @CapitalECupD Ç Eu

Ì î @CapitalIGraveD Ç I`

Í î @CapitalIAcuteD Ç I'

Î î @CapitalIHatD Ç I^

Ï î @CapitalIDoubleDotD Ç I"

î @CapitalICupD Ç Iu

Ð î @CapitalEthD Ç D−

Æ î @CapitalLSlashD Ç Lê
Ñ î @CapitalNTildeD Ç N∼

Ò î @CapitalOGraveD Ç O`

Ó î @CapitalOAcuteD Ç O'

Ô î @CapitalOHatD Ç O^

Õ î @CapitalOTildeD Ç O∼

Ö î @CapitalODoubleDotD Ç O"

î @CapitalODoubleAcuteD Ç O''

Ø î @CapitalOSlashD Ç Oê
Š î @CapitalSHacekD Ç Sv

Ù î @CapitalUGraveD Ç U`

Ú î @CapitalUAcuteD Ç U'

Û î @CapitalUHatD Ç U^

Ü î @CapitalUDoubleDotD Ç U"

î @CapitalUDoubleAcuteD Ç U''

Ý î @CapitalYAcuteD Ç Y'

Þ î @CapitalThornD Ç Thn

Variants of English letters. 
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Most of the characters shown are formed by adding diacritical marks to ordinary English letters. Exceptions include î
[SZ] ß , used in German, and î[Thorn] þ  and î[Eth] ð, used primarily in Old English. 

You can make additional characters by explicitly adding diacritical marks yourself. 

char ‚Î &Ï  mark ‚Î 

â  Ï or î H char î & mark î L 

add a mark above a character

char ‚Î +Ï  mark ‚Î 

â  Ï or î H char î + mark î L 

add a mark below a character

Adding marks above and below characters. 

form alias full name 

'  Hkeyboard characterL î 
@RawQuoteD 

acute accent

£  Ç '  î @PrimeD acute accent
`  Hkeyboard characterL î @

RawBackqu
oteD 

grave accent

æ  Ç `  î @
ReversePr
imeD 

grave accent

. .  Hkeyboard charactersL umlaut or diaeresis
^  Hkeyboard characterL î 

@RawWedgeD 

circumflex or hat

é  Ç esci  î @
EmptySmal
lCircleD 

ring

.  Hkeyboard characterL î @RawDotD dot
~  Hkeyboard characterL î 

@RawTildeD 

tilde

_  Hkeyboard characterL î @
RawUnders
coreD 

bar or macron

«  Ç hc  î @HacekD hacek or check
Ò  Ç bv  î @BreveD breve
Ú  Ç dbv  î @

DownBreveD 

tie accent

≥  Ç ''  î @
DoublePri
meD 

long umlaut

fi  Ç cd  î @CedillaD cedilla

Diacritical marks to add to characters. 
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3.10.4 Operators

Basic Mathematical Operators

form full name alias 

µ î @TimesD Ç ∗

π î @DivideD Ç div

, î @SqrtD Ç sqrt

form full name alias 

ä î @CrossD Ç cross

≤ î @PlusMinusD Ç +−

¡ î @MinusPlusD Ç −+

Some operators used in basic arithmetic and algebra. 

Note that the ä  for î[Cross] is distinguished by being drawn slightly smaller than the µ  for î[Times]. 

x  µ   y Times@ x,  y D multiplication
x  π   y Divide@ x,  y D division
,   x Sqrt@ x D square root

x  ä   y Cross@ x,  y D vector cross product
≤   x PlusMinus@ x D Hno built-in meaningL
x  ≤   y PlusMinus@ 

x,  y D 

Hno built-in meaningL

¡   x MinusPlus@ x D Hno built-in meaningL
x  ¡   y MinusPlus@ 

x,  y D 

Hno built-in meaningL

Interpretation of some operators in basic arithmetic and algebra. 

Operators in Calculus

form full name alias 

“ î @DelD Ç del

∑ î @PartialDD Ç pd

„ î @DifferentialDD Ç dd

⁄ î @SumD Ç sum

¤ î @ProductD Ç prod

form full name alias

Ÿ î @IntegralD Ç i

ò î @ContourIntegralD Ç c

ô î @DoubleContourIntegralD
ö î @CounterClockwiseContourIntegralD Ç c

õ î @ClockwiseContourIntegralD Ç c

Operators used in calculus. 
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Logical and Other Connectives

form full name aliases 

fl î @AndD Ç &&  , Ç and

fi î @OrD Ç »»  , Ç or

Ÿ î @NotD Ç !  , Ç not

œ î @ElementD Ç el

" î @ForAllD Ç fa

$ î @ExistsD Ç ex

± î @NotExistsD Ç !ex

î @XorD Ç xor

î @NandD Ç nand

î @NorD Ç nor

form full name alias 

fl î @ImpliesD Ç =>

V î @RoundImpliesD
\ î @ThereforeD Ç tf

‹ î @BecauseD
¢ î @RightTeeD
¤ î @LeftTeeD
£ î @DoubleRightTeeD
¥ î @DoubleLeftTeeD
' î @SuchThatD Ç st

» î @VerticalSeparatorD Ç »
: î @ColonD Ç :

Operators used as logical connectives. 

The operators fl , fi  and Ÿ  are interpreted as corresponding to the built-in functions And, Or and Not, and are equiva-
lent to the keyboard operators &&, || and !. The operators ,  and  correspond to the built-in functions Xor, Nand
and Nor. Note that Ÿ  is a prefix operator. 

xfly  and  xVy  are  both  taken  to  give  the  built-in  function  Implies[x,  y].   xœy  gives  the  built-in  function
Element[x, y].  

This is interpreted using the built-in functions And and Implies. 

In[1]:= 3 < 4 fl x > 5 ⇒ y < 7

Out[1]= Implies@x > 5, y < 7D

Mathematica supports most of the standard syntax used in mathematical logic. In Mathematica, however, the variables
that  appear  in  the  quantifiers  " ,  $  and  ±  must  appear  as  subscripts.  If  they  appeared  directly  after  the  quantifier
symbols then there could be a conflict with multiplication operations. 

"  and $  are essentially prefix operators like ∑ . 

In[2]:= ∀x ∃y φ@x, yD êê FullForm
Out[2]//FullForm= 

ForAll@x, Exists@y, \[Phi]@x, yDDD
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Operators Used to Represent Actions

form full name alias 

ë î @SmallCircleD Ç sc

∆ î @CirclePlusD Ç c+

 î @CircleMinusD Ç c−

≈ î @CircleTimesD Ç c∗

Ÿ î @CircleDotD Ç c.

ù î @DiamondD Ç dia

ÿ î @CenterDotD Ç .

* î @StarD Ç star

ª î @VerticalTildeD
î î @BackslashD Ç \

form full name alias 

Ô î @WedgeD Ç ^

Ó î @VeeD Ç v

‹ î @UnionD Ç un

ù î @UnionPlusD
› î @IntersectionD Ç inter

û î @SquareIntersectionD
ü î @SquareUnionD
ˇ î @CoproductD Ç coprod

[ î @CapD
\ î @CupD
Ñ î @SquareD Ç sq

Operators typically used to represent actions. All the operators except î[Square] are infix. 

Following Mathematica's usual convention, all the operators in the table above are interpreted to give functions whose
names are exactly the names of the characters that appear in the operators. 

The operators are interpreted as functions with corresponding names. 

In[1]:= x ⊕ y [ z // FullForm

Out[1]//FullForm= 

CirclePlus@x, Cap@y, zDD

All the operators in the table above, except for Ñ , are infix, so that they must appear in between their operands. 

Bracketing Operators

form full name alias 

d î @LeftFloorD Ç lf

t î @RightFloorD Ç rf

` î @LeftCeilingD Ç lc

p î @RightCeilingD Ç rc

P î @LeftDoubleBracketD Ç @@
T î @RightDoubleBracketD Ç DD

form full name alias 

X î @LeftAngleBracketD Ç <

\ î @RightAngleBracketD Ç >

† î @LeftBracketingBarD Ç l»
§ î @RightBracketingBarD Ç r»
∞ î @LeftDoubleBracketingBarD Ç l»»
¥ î @RightDoubleBracketingBarD Ç r»»

Characters used as bracketing operators. 

d  x t  Floor@ x D 

`  x p  Ceiling@ x D 

m P  i, j, … T  Part@ m,  i,  j, … D 

X  x,y, … \  AngleBracket@ x,  y, … D 

†  x,y, … §  BracketingBar@ x,  y, … D 

∞  x,y, … ¥  DoubleBracketingBar@ x,  y, … D 

Interpretations of bracketing operators. 
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Operators Used to Represent Relations

form full name alias 

ã î @EqualD Ç ==

î @LongEqualD Ç l=

ª î @CongruentD Ç ===

~ î @TildeD Ç ~ Ç

º î @TildeTildeD Ç ~ ~ Ç

> î @TildeEqualD Ç ~ =

@ î @TildeFullEqualD Ç ~ ==

? î @EqualTildeD Ç = ~  Ç

P î @HumpEqualD Ç h=

Q î @HumpDownHumpD
^ î @CupCapD
U î @DotEqualD

form full name alias 

∫ î @NotEqualD Ç !=

T î @NotCongruentD Ç !===

L î @NotTildeD Ç ! ~  Ç

M î @NotTildeTildeD Ç ! ~  ~  Ç

N î @NotTildeEqualD Ç ! ~  = Ç

= î @NotTildeFullEqualD Ç ! ~  ==Ç

O î @NotEqualTildeD Ç != ~  Ç

R î @NotHumpEqualD Ç !h=

S î @NotHumpDownHumpD
_ î @NotCupCapD
∂ î @ProportionalD Ç prop

› î @ProportionD
Operators usually used to represent similarity or equivalence. 

The special character ã  (or î[Equal]) is an alternative input form for ==. ∫  is used both for input and output. 

In[1]:= {a == b, a  b, a != b, a ≠ b}

Out[1]= 8a b, a b, a ≠ b, a ≠ b<

form full name alias 

¥ î @GreaterEqualD Ç >=

§ î @LessEqualD Ç <=

r î @GreaterSlantEqualD Ç >ê
b î @LessSlantEqualD Ç <ê
s î @GreaterFullEqualD
c î @LessFullEqualD
t î @GreaterTildeD Ç > ~ Ç

d î @LessTildeD Ç < ~ Ç

p î @GreaterGreaterD
` î @LessLessD
q î @NestedGreaterGreaterD
a î @NestedLessLessD
˜ î @GreaterLessD
ˆ î @LessGreaterD
š î @GreaterEqualLessD
Š î @LessEqualGreaterD

form full name alias 

x î @NotGreaterEqualD Ç !>=

h î @NotLessEqualD Ç !<=

y î @NotGreaterSlantEqualD Ç !>ê
i î @NotLessSlantEqualD Ç !<ê
z î @NotGreaterFullEqualD
j î @NotLessFullEqualD
{ î @NotGreaterTildeD Ç !> 

k î @NotLessTildeD Ç !< 

v î @NotGreaterGreaterD
f î @NotLessLessD
w î @NotNestedGreaterGreaterD
g î @NotNestedLessLessD
™ î @NotGreaterLessD
‰ î @NotLessGreaterD
u î @NotGreaterD Ç !>

e î @NotLessD Ç !<

Operators usually used for ordering by magnitude. 
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form full name alias 

Õ î @SubsetD Ç sub

  î @SupersetD Ç sup

Œ î @SubsetEqualD Ç sub=

û î @SupersetEqualD Ç sup=

œ î @ElementD Ç el

œ î @ReverseElementD Ç mem

form full name alias 

Ã î @NotSubsetD Ç !sub

 î @NotSupersetD Ç !sup

 î @NotSubsetEqualD Ç !sub=

 î @NotSupersetEqualD Ç !sup=

– î @NotElementD Ç !el

 î @NotReverseElementD Ç !mem

Operators used for relations in sets. 

form full name 

î @SucceedsD
 î @PrecedesD

î @SucceedsEqualD
 î @PrecedesEqualD

î @SucceedsSlantEqualD
‚ î @PrecedesSlantEqualD
“ î @SucceedsTildeD
ƒ î @PrecedesTildeD
@ î @RightTriangleD
0 î @LeftTriangleD
A î @RightTriangleEqualD
1 î @LeftTriangleEqualD
B î @RightTriangleBarD
2 î @LeftTriangleBarD
| î @SquareSupersetD
l î @SquareSubsetD
} î @SquareSupersetEqualD
m î @SquareSubsetEqualD

form full name 

” î @NotSucceedsD
„ î @NotPrecedesD
• î @NotSucceedsEqualD
‡ î @NotPrecedesTildeD
– î @NotSucceedsSlantEqualD
† î @NotPrecedesSlantEqualD
— î @NotSucceedsTildeD
… î @NotPrecedesEqualD
C î @NotRightTriangleD
3 î @NotLeftTriangleD
D î @NotRightTriangleEqualD
4 î @NotLeftTriangleEqualD
E î @NotRightTriangleBarD
5 î @NotLeftTriangleBarD
~ î @NotSquareSupersetD
n î @NotSquareSubsetD
Œ î @NotSquareSupersetEqualD
o î @NotSquareSubsetEqualD

Operators usually used for other kinds of orderings. 

form full name alias 

˝ î @VerticalBarD Ç â  »
˛ î @DoubleVerticalBarD Ç â  »»

form full name alias 

I î @NotVerticalBarD Ç !»
J î @NotDoubleVerticalBarD Ç !»»

Relational operators based on vertical bars. 

Operators Based on Arrows and Vectors

Operators based on arrows are often used in pure mathematics and elsewhere to represent various kinds of transforma-
tions or changes. 
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Ø  is equivalent to ->. 

In[1]:= x + y /. x → 3

Out[1]= 3 + y

form full name alias 

Ø î @RuleD Ç −>

ß î @RuleDelayedD Ç :>

form full name alias 

fl î @ImpliesD Ç =>

V î @RoundImpliesD
Arrow-like operators with built-in meanings in Mathematica. 

form full name alias 

Ø î @RightArrowD Ç â  −>

≠ î @LeftArrowD Ç <−

¨ î @LeftRightArrowD Ç <−>

ö î @LongRightArrowD Ç −−>

ô î @LongLeftArrowD Ç <−−

õ î @LongLeftRightArrowD Ç <−−>

z î @ShortRightArrowD
y î @ShortLeftArrowD
# î @RightTeeArrowD
" î @LeftTeeArrowD
! î @RightArrowBarD
{ î @LeftArrowBarD
fl î @DoubleRightArrowD Ç â  =>

› î @DoubleLeftArrowD Ç â  <=

ñ î @DoubleLeftRightArrowD Ç <=>

ï î @DoubleLongRightArrowD Ç ==>

ì î @DoubleLongLeftArrowD Ç <==

ó î @DoubleLongLeftRightArrowD Ç <==>

form full name 

Æ î @UpArrowD
∞ î @DownArrowD
ò î @UpDownArrowD
& î @UpTeeArrowD
' î @DownTeeArrowD
$ î @UpArrowBarD
% î @DownArrowBarD
fi î @DoubleUpArrowD
‡ î @DoubleDownArrowD
ë î @DoubleUpDownArrowD
V î @RightArrowLeftArrowD
W î @LeftArrowRightArrowD
\ î @UpArrowDownArrowD
] î @DownArrowUpArrowD
ä î @LowerRightArrowD
á î @LowerLeftArrowD
à î @UpperLeftArrowD
â î @UpperRightArrowD

Ordinary arrows. 
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form full name alias 

1 î @RightVectorD Ç vec

0 î @LeftVectorD
2 î @LeftRightVectorD
4 î @DownRightVectorD
3 î @DownLeftVectorD
5 î @DownLeftRightVectorD
- î @RightTeeVectorD
, î @LeftTeeVectorD
/ î @DownRightTeeVectorD
. î @DownLeftTeeVectorD
) î @RightVectorBarD
( î @LeftVectorBarD
+ î @DownRightVectorBarD
* î @DownLeftVectorBarD
F î @EquilibriumD Ç equi

G î @ReverseEquilibriumD

form full name 

@ î @LeftUpVectorD
B î @LeftDownVectorD
6 î @LeftUpDownVectorD
C î @RightUpVectorD
E î @RightDownVectorD
7 î @RightUpDownVectorD
< î @LeftUpTeeVectorD
= î @LeftDownTeeVectorD
> î @RightUpTeeVectorD
? î @RightDownTeeVectorD
8 î @LeftUpVectorBarD
9 î @LeftDownVectorBarD
: î @RightUpVectorBarD
; î @RightDownVectorBarD
L î @UpEquilibriumD
M î @ReverseUpEquilibriumD

Vectors and related arrows. 

All the arrow and vector-like operators in Mathematica are infix. 

In[2]:= x F y L z

Out[2]= x F yheiiz

form full name alias 

¢ î @RightTeeD Ç rT

¤ î @LeftTeeD Ç lT

¦ î @UpTeeD Ç uT

§ î @DownTeeD Ç dT

form full name 

£ î @DoubleRightTeeD
¥ î @DoubleLeftTeeD

Tees. 

3.10.5 Structural Elements and Keyboard Characters

full name alias 

î @InvisibleCommaD Ç ,

î @InvisibleApplicationD Ç @

î @InvisibleSpaceD Ç is

full name alias 

î @AlignmentMarkerD Ç am

î @NoBreakD Ç nb

î @NullD Ç null

Invisible characters. 
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In the input there is an invisible comma between the 1 and 2. 

In[1]:= m12

Out[1]= m1,2

Here there is an invisible space between the x and y, interpreted as multiplication. 

In[2]:= FullForm@xyD
Out[2]//FullForm= 

Times@x, yD

î[Null] does not display, but can take modifications such as superscripts. 

In[3]:= f@x, aD

Out[3]= f@x, aD

The î[AlignmentMarker] does not display, but shows how to line up the elements of the column. 

In[4]:= GridBox[{{"b \[AlignmentMarker]+ c + d"}, {"a + b \[AlignmentMarker]+ c"}}, 
ColumnAlignments->"\[AlignmentMarker]"] // DisplayForm

Out[4]//DisplayForm= 
b + c + d

a + b + c

full name alias 

î @VeryThinSpaceD Ç â  Ç

î @ThinSpaceD Ç â  â  Ç

î @MediumSpaceD Ç â  â  â  Ç

î @ThickSpaceD Ç â  â  â  â  Ç

î @InvisibleSpaceD Ç is

î @NewLineD

full name 

î @NegativeVeryThinSpaceD
î @NegativeThinSpaceD
î @NegativeMediumSpaceD
î @NegativeThickSpaceD
î @NonBreakingSpaceD
î @IndentingNewLineD

Spacing and newline characters. 

form full name alias 

É î @SelectionPlaceholderD Ç spl

form full name alias 

Ñ î @PlaceholderD Ç pl

Characters used in buttons. 

In the buttons in a palette, you often want to set up a template with placeholders to indicate where expressions should
be inserted. î[SelectionPlaceholder]  marks the position where an expression that is currently selected should
be  inserted  when  the  contents  of  the  button  are  pasted.  î[Placeholder]  marks  other  positions  where  subsequent
expressions can be inserted. The Tab key will take you from one such position to the next. 
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form full name alias 

â î @SpaceIndicatorD Ç space

Ô î @RoundSpaceIndicatorD
¿ î @ReturnIndicatorD Ç ret

Á î @ReturnKeyD Ç â  ret

Â î @EscapeKeyD Ç â  esc

Ç î @AliasIndicatorD Ç esc

form full name alias 

‚ î @ControlKeyD Ç ctrl

· î @CommandKeyD Ç cmd

Î î @LeftModifiedD Ç @
Ï î @RightModifiedD Ç D
Ì î @CloverLeafD Ç cl

Representations of keys on a keyboard. 

In describing how to enter input into Mathematica, it is sometimes useful to give explicit representations for keys you
should press. You can do this using characters like ¿  and Â . Note that â  and Ô  are actually treated as spacing charac-
ters by Mathematica. 

This string shows how to type α2 . 

In[5]:= "\[EscapeKey]a\[EscapeKey] \[ControlKey]\[LeftModified]^\[RightModified]2 
\[ControlKey]\[LeftModified]\[SpaceIndicator]\[RightModified]"

Out[5]= ÂaÂ ‚Î^Ï2 ‚Î Ï

form full name 

Ö î @ContinuationD
á î @LeftSkeletonD
à î @RightSkeletonD

form full name 

Ü î @SkeletonIndicatorD
Ý î @ErrorIndicatorD

Characters generated in Mathematica output. 

Mathematica uses a î[Continuation] character to indicate that the number continues onto the next line. 

In[6]:= 60!

Out[6]= 8320987112741390144276341183223364380754172606361245952449277696409600000000000000
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form full name 

î @RawTabD
î @NewLineD
î @RawReturnD
î @RawSpaceD

! î @RawExclamationD
" î @RawDoubleQuoteD
# î @RawNumberSignD
$ î @RawDollarD
% î @RawPercentD
& î @RawAmpersandD
' î @RawQuoteD
H î @RawLeftParenthesisD
L î @RawRightParenthesisD
* î @RawStarD
+ î @RawPlusD
, î @RawCommaD
- î @RawDashD
. î @RawDotD

form full name 

ê î @RawSlashD
: î @RawColonD
; î @RawSemicolonD
< î @RawLessD
= î @RawEqualD
> î @RawGreaterD
? î @RawQuestionD
ü î @RawAtD
@ î @RawLeftBracketD
î î @RawBackslashD
D î @RawRightBracketD
^ î @RawWedgeD
_ î @RawUnderscoreD
` î @RawBackquoteD
8 î @RawLeftBraceD
» î @RawVerticalBarD
< î @RawRightBraceD
~ î @RawTildeD

Raw keyboard characters. 

The fonts  that  are  distributed  with  Mathematica  contain  their  own renderings  of  many ordinary  keyboard  characters.
The reason for this is that standard system fonts often do not contain appropriate renderings. For example, ^ and ~ are
often drawn small and above the centerline, while for clarity in Mathematica  they must be drawn larger and centered
on the centerline.  
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Appendix 
This  Appendix  gives  a  definitive  summary  of  the  complete  Mathematica  system.  Most  of  what  it  contains  you  will
never need to know for any particular application of Mathematica. 

You  should  realize  that  this  Appendix  describes  all  the  features  of  Mathematica,  independent  of  their  importance  in
typical usage. 

Other parts of this book are organized along pedagogical  lines, emphasizing important points,  and giving details only
when they are needed. 

This Appendix gives all the details of every feature. As a result, you will often find obscure details discussed alongside
very common and  important  functions.  Just  remember that  this  Appendix  is  intended for  reference purposes,  not  for
sequential reading. Do not be put off by the complexity of some of what you see; you will almost certainly never have
to use it. But if you do end up having to use it, you will probably be happy that it is there. 

By experimenting with  Mathematica,  you  may find  features  that  go  beyond what  is  described  in  this  Appendix.  You
should  not  use  any  such  features:  there  is  no  certainty  that  features  which  are  not  documented  will  continue  to  be
supported in future versions of Mathematica.  
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A.1 Basic Objects

A.1.1 Expressions

Expressions are the main type of data in Mathematica.  

Expressions can be written in the form h[e1 , e2 , … ]. The object h is known generically as the head  of the expres-
sion. The ei  are termed the elements of the expression. Both the head and the elements may themselves be expressions.  

The  parts  of  an  expression  can  be  referred  to  by  numerical  indices.  The  head  has  index  0;  element  ei  has  index  i.
Part[expr, i] or expr[[i]] gives the part of expr with index i. Negative indices count from the end. 

Part[expr, i1 , i2 , … ], expr[[i1 , i2 , … ]] or Extract[expr, 8 i1 , i2 , … <] gives the piece of expr found by
successively extracting parts of subexpressions with indices i1 , i2 , … . If you think of expressions as trees, the indices
specify which branch to take at each node as you descend from the root. 

The pieces of an expression that are specified by giving a sequence of exactly n indices are defined to be at level n in
the expression. You can use levels to determine the domain of application of functions like Map. Level 0 corresponds
to the whole expression.  

The depth  of an expression is defined to be the maximum number of indices needed to specify any part of the expres-
sion, plus one. A negative level number -n refers to all parts of an expression that have depth n. 

A.1.2 Symbols

Symbols are the basic named objects in Mathematica.  

The name of a symbol must be a sequence of letters, letter-like forms and digits, not starting with a digit. Upper- and
lower-case letters are always distinguished in Mathematica.  

aaaaa user-defined symbol
Aaaaa system-defined symbol

$ Aaaa global or internal system-defined symbol
aaaa $ symbol renamed in a scoping construct
aa $ nn unique local symbol generated in a module

Conventions for symbol names. 

Essentially  all  system-defined  symbols  have  names  that  contain  only  ordinary  English  letters,  together  with  numbers
and $. The exceptions are p , ¶ , ‰ , Â  and ü . 

System-defined  symbols  conventionally  have  names  that  consist  of  one  or  more  complete  English  words.  The  first
letter of each word is capitalized, and the words are run together. 

Once  created,  an  ordinary  symbol  in  Mathematica  continues  to  exist  unless  it  is  explicitly  removed  using  Remove.
However, symbols created automatically in scoping constructs such as Module carry the attribute Temporary which
specifies that they should automatically be removed as soon as they no longer appear in any expression. 

When a new symbol is to be created, Mathematica  first applies any value that has been assigned to $NewSymbol  to
strings giving the name of the symbol, and the context in which the symbol would be created. 
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If  the  message  General::newsym  is  switched  on,  then  Mathematica  reports  new  symbols  that  are  created.  This
message is switched off by default. Symbols created automatically in scoping constructs are not reported.  

If the message General::spell is switched on, then Mathematica prints a warning if the name of a new symbol is
close to the names of one or more existing symbols. 

A.1.3 Contexts

The  full  name  of  any  symbol  in  Mathematica  consists  of  two  parts:  a  context,  and  a  short  name.  The  full  name  is
written in the form context`name. The context context` can contain the same characters as the short name. It may also
contain any number of context mark characters `, and must end with a context mark.    

At any point in a Mathematica  session, there is a current context $Context and a context search path  $Context
Path consisting of a list of contexts. Symbols in the current context, or in contexts on the context search path can be
specified by giving only their short names.  

name search  $Context , then  $ContextPath ;
create in  $Context if necessary

` name search  $Context only; create there if necessary
context ` name search  context only; create there if necessary

` context ` name search  $Context` context only; create there if necessary

Contexts used for various specifications of symbols. 

With  Mathematica  packages,  it  is  conventional  to  associate  contexts  whose  names  correspond  to  the  names  of  the
packages. Packages typically use BeginPackage and EndPackage to define objects in the appropriate context, and
to add the context to the global $ContextPath. EndPackage prints a warning about any symbols that were created
in a package but which are “shadowed”  by existing symbols on the context search path. 

The context is included in the printed form of a symbol only if it would be needed to specify the symbol at the time of
printing.  

A.1.4 Atomic Objects

All expressions in Mathematica are ultimately made up from a small number of basic or atomic types of objects.  

These  objects  have  heads  which  are  symbols  that  can  be  thought  of  as  “tagging”  their  types.  The  objects  contain
“raw  data”,  which can usually be accessed only by functions specific to the particular type of object. You can extract
the head of the object using Head, but you cannot directly extract any of its other parts.  

Symbol symbol Hextract name using  SymbolName L
String character string  " cccc " 

Hextract characters using  Characters L
Integer integer Hextract digits using  IntegerDigits L

Real approximate real number Hextract digits using  RealDigits L
Rational rational number Hextract parts using  

Numerator and  Denominator L
Complex complex number Hextract parts using  Re and  Im L

Atomic objects. 
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Atomic objects in Mathematica are considered to have depth 0 and yield True when tested with AtomQ. 

As an optimization for some special kinds of computations, the raw data in Mathematica  atomic objects can be given
explicitly using Raw[head, "hexstring"]. The data is specified as a string of hexadecimal digits, corresponding to an
array  of  bytes.  When  no  special  output  form exists,  InputForm  prints  special  objects  using  Raw.  The  behavior  of
Raw differs from one implementation of Mathematica to another; its general use is strongly discouraged. 

A.1.5 Numbers

Integer integer  nnnn 
Real approximate real number  nnn.nnn 

Rational rational number  nnnênnn 
Complex complex number  nnn  +  nnn  I 

Basic types of numbers. 

All numbers in  Mathematica  can contain any number  of  digits.  Mathematica  does  exact  computations when possible
with integers and rational numbers, and with complex numbers whose real and imaginary parts are integers or rational
numbers. 

There  are  two  types  of  approximate  real  numbers  in  Mathematica:  arbitrary  precision  and  machine  precision.  In
manipulating  arbitrary-precision  numbers,  Mathematica  always  tries  to  modify  the  precision  so  as  to  ensure  that  all
digits actually given are correct. 

With machine-precision numbers, all computations are done to the same fixed precision, so some digits given may not
be correct. 

Unless  otherwise  specified,  Mathematica  treats  as  machine-precision  numbers  all  approximate  real  numbers  that  lie
between $MinMachineNumber  and $MaxMachineNumber  and that are input with less than $MachinePreci
sion digits. 

In  InputForm,  Mathematica  prints  machine-precision  numbers  with  $MachinePrecision  digits,  except  when
trailing digits are zero. 

In  any  implementation  of  Mathematica,  the  magnitudes  of  numbers  (except  0)  must  lie  between  $MinNumber  and
$MaxNumber. Numbers with magnitudes outside this range are represented by Underflow[ ] and Overflow[ ].  

A.1.6 Character Strings

Character strings in Mathematica can contain any sequence of characters. They are input in the form "ccccc".  

The individual characters can be printable ASCII (with character codes between 32 and 126),  or in general any 8- or
16-bit characters. Mathematica uses the Unicode character encoding for 16-bit characters. 

In input form, 16-bit characters are represented when possible in the form î[name], and otherwise as î:nnnn. 

Null bytes can appear at any point within Mathematica strings. 
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A.2 Input Syntax

A.2.1 Entering Characters

† Enter it directly He.g.  + L
† Enter it by full name He.g. î @AlphaD L
† Enter it by alias He.g. Ç a  L Hnotebook front end onlyL
† Enter it by choosing from a palette Hnotebook front end onlyL
† Enter it by character code He.g. î 053 L

Typical ways to enter characters. 

All printable ASCII characters can be entered directly. Those that are not alphanumeric are assigned explicit names in
Mathematica, allowing them to be entered even on keyboards where they do not explicitly appear. 

î @RawSpaceD 

! î @RawExclamationD 

" î @RawDoubleQuoteD 

# î @RawNumberSignD 

$ î @RawDollarD 

% î @RawPercentD 

& î @RawAmpersandD 

' î @RawQuoteD 

H î @RawLeftParenthesisD 

L î @RawRightParenthesisD 

∗ î @RawStarD 

+ î @RawPlusD 

, î @RawCommaD 

− î @RawDashD 

. î @RawDotD 

ê î @RawSlashD 

: î @RawColonD 

; î @RawSemicolonD 

< î @RawLessD 

= î @RawEqualD 

> î @RawGreaterD 

? î @RawQuestionD 

@ î @RawAtD 

@ î @RawLeftBracketD 

î î @RawBackslashD 

D î @RawRightBracketD 

^ î @RawWedgeD 

_ î @RawUnderscoreD 

` î @RawBackquoteD 

8  î @RawLeftBraceD 

» î @RawVerticalBarD 

<  î @RawRightBraceD 

∼ î @RawTildeD 

Full names for non-alphanumeric printable ASCII characters. 

All characters which are entered into the Mathematica kernel are interpreted according to the setting for the Charac
terEncoding option for the stream from which they came. 

In the Mathematica front end, characters entered on the keyboard are interpreted according to the current setting of the
CharacterEncoding option for the current notebook. 
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î @ Name D a character with the specified full name
î nnn a character with octal code  nnn 

î . nn a character with hexadecimal code  nn 
î : nnnn a character with hexadecimal code  nnnn 

Ways to enter characters. 

Codes  for  characters  can  be  generated  using  ToCharacterCode.  The  Unicode  standard  is  followed,  with  various
extensions. 

8-bit  characters  have  codes  less  than  256;  16-bit  characters  have  codes  between  256  and  65535.  Approximately  750
characters are assigned explicit names in Mathematica. Other characters must be entered using their character codes. 

îî single backslash Hdecimal code 92L
î b backspace or Control-H Hdecimal code 8L
î t tab or Control-I Hdecimal code 9L
î n newline or Control-J Hdecimal code 10; full name î @NewLineD L
î f form feed or Control-L Hdecimal code 12L
î r carriage return or Control-M Hdecimal code 13L

î 000 null byte Hcode 0L
Some special 8-bit characters. 

A.2.2 Types of Input Syntax

This appendix describes the standard input syntax used by Mathematica. This input syntax is the one used by default in
InputForm and StandardForm. You can modify the syntax by making definitions for MakeExpression[expr,
form]. 

Options can be set to specify what form of input should be accepted by a particular cell in a notebook or from a particu-
lar stream. 

The input syntax in TraditionalForm, for example, is different from that in InputForm and StandardForm. 

In general, what input syntax does is to determine how a particular string or collection of boxes should be interpreted
as an expression. When boxes are set up, say with the notebook front end, there can be hidden Interpretation
Box or TagBox objects which modify the interpretation of the boxes. 

A.2.3 Character Strings

" characters " a character string
î " a literal  " in a character string

îî a literal î in a character string
î < …î > a substring in which newlines are interpreted literally

î !îH …î L a substring representing two-dimensional boxes

Entering character strings. 

Character strings can contain any sequence of 8- or 16-bit characters. Characters entered by name or character code are
stored the same as if they were entered directly. 
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Single  newlines  followed  by  spaces  or  tabs  are  converted  to  a  single  space  when  a  string  is  entered,  unless  these
characters occur within î< … î>, in which case they are left unchanged.  

Within î!î( … î) any box structures represented using backslash sequences can be used. 

A.2.4 Symbol Names and Contexts

name symbol name
` name symbol name in current context

context ` name symbol name in specified context

Symbol names and contexts. 

Symbol names and contexts can contain any characters that are treated by Mathematica  as letters or letter-like forms.
They can contain digits but cannot start with them. 

A.2.5 Numbers

digits integer
digits.digits approximate number

base ^^ digits integer in specified base
base ^^ digits.digits approximate number in specified base

mantissa ∗^ n scientific notation H mantissa  ä  10n  L
base ^^ mantissa ∗^ n scientific notation in specified base H mantissa  ä  basen  L

number ` machine-precision approximate number
number ` s arbitrary-precision number with precision  s 

number `` s arbitrary-precision number with accuracy  s 

Input forms for numbers. 

Numbers can be entered with the notation base^^digits  in any base from 2 to 36. The base itself is given in decimal.
For bases larger than 10, additional digits are chosen from the letters a– z or A– Z. Upper- and lower-case letters are
equivalent for these purposes. Floating-point numbers can be specified by including . in the digits sequence.  

In scientific notation, mantissa can contain ` marks. The exponent n must always be an integer, specified in decimal.   

The precision or accuracy s can be any real number; it does not need to be an integer. 

In the form base^^number`s the precision s is given in decimal, but it gives the effective number of digits of precision
in the specified base, not in base 10. 

An approximate number x is taken to be machine precision if the number of digits given in it is Ceiling[$Machine
Precision] + 1 or less. If more digits are given, then x is taken to be an arbitrary-precision number. The accuracy
of x is taken to be the number of digits that appear to the right of the decimal point, while its precision is taken to be
Log[10, Abs[x]] + Accuracy[x]. 

A number entered in the form 0``s is taken to have precision Indeterminate and accuracy s. 
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A.2.6 Bracketed Objects

Bracketed  objects  use  explicit  left  and  right  delimiters  to  indicate  their  extent.  They  can  appear  anywhere  within
Mathematica input, and can be nested in any way. 

The delimiters in bracketed objects  are matchfix operators.  But  since these delimiters explicitly enclose all  operands,
no precedence need be assigned to such operators. 

H∗  any  text  ∗L comment
HexprL parenthesization: grouping of input

Bracketed objects without comma-separated elements. 

Comments can be nested, and can continue for any number of lines. They can contain any 8- or 16-bit characters.  

Parentheses must enclose a single complete expression; neither (e, e) nor ( ) are allowed. 

8  e1 ,  e2 , … <  List@ e1 ,  e2 , … D 

X   e1 ,  e2 , …  \  AngleBracket@ e1 ,  e2 , … D 

d   expr  t  Floor@ expr D 

`   expr  p  Ceiling@ expr D 

†   e1 ,  e2 , …  §  BracketingBar@ e1 ,  e2 , … D 

∞   e1 ,  e2 , …  ¥  DoubleBracketingBar@ e1 ,  e2 , … D 

î H input î L input or grouping of boxes

Bracketed objects that allow comma-separated elements. 

Throughout this book the notation  …  is used to stand for any sequence of expressions. 

8e1 , e2 , … <  can include any number of elements, with successive elements separated by commas. 

{ } is List[ ], a list with zero elements. 

X  e1 , e2 , … \  can be entered as î[LeftAngleBracket] e1 , e2 , … î[RightAngleBracket]. 

The character î[InvisibleComma] can be used interchangeably with ordinary commas; the only difference is that î
[InvisibleComma] will not be displayed. 

When the delimiters are special characters, it is a convention that they are named î[LeftName] and î[RightName]. 

î( … î) is used to enter boxes using one-dimensional strings. Note that within the outermost î( … î) in a piece of input
the syntax used is slightly different from outside, as described in Section A.2.9. 

h @ e1 ,  e2 , … D standard expression
e @@ i1 ,  i2 , … DD Part@ e,  i1 ,  i2 , … D 

e P   i1 ,  i2 , …  T  Part@ e,  i1 ,  i2 , … D 

Bracketed objects with heads. 

Bracketed objects  with heads  explicitly delimit all  their  operands  except  the head.  A precedence must be assigned to
define the extent of the head. 
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The precedence of h[e]  is high enough that !h[e] is interpreted as Not[h[e]]. However, h_s[e] is interpreted as
(h_s)[e]. 

A.2.7 Operator Input Forms

Characters that are not letters, letter-like forms or structural elements are treated by Mathematica  as operators. Mathe-
matica  has built-in rules for interpreting all operators. The functions to which these operators correspond may or may
not,  however,  have  built-in  evaluation  or  other  rules.  Cases  in  which  built-in  meanings  are  by  default  defined  are
indicated by 0  in the tables below. 

Operators that construct two-dimensional boxes—all of which have names beginning with back-slash—can only be used
inside  î(  … î).  The  table  below  gives  the  interpretations  of  these  operators  within  î!î(  … î).  Section A.2.9  gives
interpretations when no î! is included. 

expr  and  expri  any expression
symb any symbol
patt any pattern object

string  and  stringi  " cccc " or a sequence of letters, letter-like forms and digits
filename like  string , but can include additional characters described below

0  built-in meanings exist

Objects used in the tables of operator input forms. 

operator form full form grouping 

forms representing
numbers Hsee Section  A.2.5L 
forms representing
symbols Hsee Section  A.2.4L 
forms representing character
strings Hsee Section  A.2.3L 
expr :: string MessageName@ 

expr,  " string "D 

expr :: string1  :: string2  MessageName@ 

expr,  " string1  

",  " string2  "D 

forms containing  
# Hsee Section  A.2.7L 
forms containing  
% Hsee Section  A.2.7L 
forms containing  
_ Hsee Section  A.2.7L 
<<  filename Get@" filename "D 

expr1
expr2  Overscript@ 

expr1 ,  expr2  D 

e
IeeM

 

expr1  î &  expr2  Overscript@ 

expr1 ,  expr2  D 

e î &H e î & eL 

expr1
expr2

 Underscript@ 

expr1 ,  expr2  D 

e
He

eL
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expr1  î +  expr2  Underscript@ 

expr1 ,  expr2  D 

e î +H e î + eL 

expr1
expr2

expr3  Underoverscri
pt@ expr1 ,  

expr2 ,  expr3  D 

expr1  î +  expr2  î %  expr3  Underoverscri
pt@ expr1 ,  

expr2 ,  expr3  D 

expr1  î &  expr2  î %  expr3  Underoverscri
pt@ expr1 ,  

expr3 ,  expr2  D 

expr1expr2
 Subscript@ 

expr1 ,  expr2  D 

eHeeL  

expr1  î _  expr2  Subscript@ 

expr1 ,  expr2  D 

e î _H e î _ eL 

expr1  î _  expr2  î %  expr3  Power@
Subscript@ 

expr1 ,  expr2  D, 

 expr3  D 

î ! boxes Hinterpreted
version of  boxes L

expr1 ?expr2  PatternTest@ 

expr1 ,  expr2  D 

expr1  @ expr2 , … D expr1  @ expr2 , … D He @ e DL@ e D 

expr1  @@ expr2 , … DD Part@ expr1 ,
 expr2 , … D 

He @@ e DDL@@ e DD 

expr1  P  expr2 , … T  Part@ expr1 ,
 expr2 , … D 

He P  e TL P  e T  

expr1Pexpr2,…T  Part@ expr1 ,
 expr2 , … D 

HePeTLPeT  

î ∗ expr Hboxes constructed
from  expr L

Operator input forms, in order of decreasing precedence, part one.

operator form full form grouping 

expr ++ Increment@ 

expr D 

expr −− Decrement@ 

expr D 

++ expr PreIncrement@ 

expr D 

−− expr PreDecrement@ 

expr D 

expr1   @  expr2  expr1  @ expr2  D e  @  H e  @  eL 

expr1   expr2  Hinvisible
application, input as  
expr1  Ç @   expr2  L
expr1  @ expr2  D 
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expr1   ∼  expr2   ∼  expr3  expr2  @ 

expr1 ,  expr3  D 

He  ∼  e  ∼  eL  ∼  e  ∼  e 

expr1   ê@  expr2  Map@ expr1 ,
 expr2  D 

e  ê@  H e  ê@  eL 

expr1   êê@  expr2  MapAll@ 

expr1 ,  expr2  D 

e  êê@  H e  êê@  eL 

expr1   @@  expr2  Apply@ 

expr1 ,  expr2  D 

e  @@  H e  @@  eL 

expr1   @@@  expr2  Apply@ expr1 ,
 expr2 ,  8  1 <  D 

e  @@@  H e  @@@  eL 

expr! Factorial@ 

expr D 

expr !! Factorial2@ 

expr D 

expr ' Derivative@1D@ 

expr D 

expr1   <>  expr2   <>  expr3  StringJoin@ 

expr1 ,  expr2 ,

 expr3  D 

e  <>  e  <>  e 

expr1   ^  expr2  Power@ 

expr1 ,  expr2  D 

e ^H e^eL 

expr1
expr2  Power@ 

expr1 ,  expr2  D 

eHeeL  

expr1expr2

expr3  Power@
Subscript@ 

expr1 ,  expr2  D, 

 expr3  D 

expr1  î ^  expr2  î %  expr3  Power@
Subscript@ 

expr1 ,  expr3  D, 

 expr2  D 

vertical arrow and vector operators 

,  expr Sqrt@ expr D ,  J,  eN 

î @  expr Sqrt@ expr D î @Hî@ eL 

î @  expr î %  n Power@ 

expr,  1ê n D 

Ÿ   expr1   „  expr2  Integrate@ 

expr1 ,  expr2  D 

Ÿ   H Ÿ   e  „   eM  „   e 

Ÿe1

e2 e3 e4  Integrate@ e3 ,
 8  e4 ,  e1 ,  e2  <  D 

Ÿ   H Ÿ   e  „   eM  „   e 

other integration
operators: see Section  A.2.7 
∂expr1

expr2  D@ expr2 ,  expr1  D ∂eH∂e eL  

“   expr Del@ expr D “   H “   eL 

Ñ   expr Square@ expr D Ñ   H Ñ   eL 

Operator input forms, in order of decreasing precedence, part two. 
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operator form full form grouping 

expr1   ë   expr2   ë   expr3  SmallCircle@ 

expr1 ,  expr2 ,
 expr3  D 

e  ë   e  ë   e 

expr1   Ÿ   expr2   Ÿ   expr3  CircleDot@ 

expr1 ,  expr2 ,
 expr3  D 

e  Ÿ   e  Ÿ   e 

expr1   ∗∗  expr2   ∗∗  expr3  NonCommutativ
eMultiply@ 

expr1 ,  expr2 ,
 expr3  D 

e  ∗∗  e  ∗∗  e 

expr1   ä   expr2   ä   expr3  Cross@ expr1 ,
 expr2 ,  expr3  D 

e  ä   e  ä   e 

expr1   .  expr2   .  expr3  Dot@ expr1 ,  

expr2 ,  expr3  D 

e  .  e  .  e 

−expr Times@−1, 

 expr D 

+expr expr 
≤   expr PlusMinus@ 

expr D 

¡   expr MinusPlus@ 

expr D 

expr1   ê  expr2  expr1   H expr2  L^-1 He  ê  eL  ê  e 
expr1   π   expr2  Divide@ 

expr1 ,  expr2  D 

He  π   eL  π   e 

expr1  î ê  expr2  Divide@ 

expr1 ,  expr2  D 

He î ê e Lîê e 

expr1   î   expr2   î   expr3  Backslash@ 

expr1 ,  expr2 ,
 expr3  D 

e  î   e  î   e 

expr1   ù   expr2   ù   expr3  Diamond@ expr1 ,
 expr2 ,  expr3  D 

e  ù   e  ù   e 

expr1   Ô   expr2   Ô   expr3  Wedge@ expr1 ,
 expr2 ,  expr3  D 

e  Ô   e  Ô   e 

expr1   Ó   expr2   Ó   expr3  Vee@ expr1 ,  

expr2 ,  expr3  D 

e  Ó   e  Ó   e 

expr1   ≈   expr2   ≈   expr3  CircleTimes@ 

expr1 ,  expr2 ,
 expr3  D 

e  ≈   e  ≈   e 

expr1   ÿ   expr2   ÿ   expr3  CenterDot@ 

expr1 ,  expr2 ,
 expr3  D 

e  ÿ   e  ÿ   e 

expr1   expr2   expr3  Times@ expr1 ,
 expr2 ,  expr3  D 

e  e  e 

expr1   ∗  expr2   ∗  expr3  Times@ expr1 ,
 expr2 ,  expr3  D 

e  ∗  e  ∗  e 
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expr1   µ   expr2   µ   expr3  Times@ expr1 ,
 expr2 ,  expr3  D 

e  µ   e  µ   e 

expr1   *   expr2   *   expr3  Star@ expr1 ,  

expr2 ,  expr3  D 

e  *   e  *   e 

¤e1=e2
e3 e4  Product@ e4 ,  

8  e1 ,  e2 ,  e3  <  D 

¤   H ¤   eL 

expr1   ª   expr2   ª   expr3  VerticalTilde@ 

expr1 ,  expr2 ,
 expr3  D 

e  ª   e  ª   e 

expr1   ˇ   expr2   ˇ   expr3  Coproduct@ 

expr1 ,  expr2 ,
 expr3  D 

e  ˇ   e  ˇ   e 

expr1   [   expr2   [   expr3  Cap@ expr1 ,  

expr2 ,  expr3  D 

e  [   e  [   e 

Operator input forms, in order of decreasing precedence, part three. 

operator form full form grouping 

expr1   \   expr2   \   expr3  Cup@ expr1 ,  

expr2 ,  expr3  D 

e  \   e  \   e 

expr1   ∆   expr2   ∆   expr3  CirclePlus@ 

expr1 ,  expr2 ,
 expr3  D 

e  ∆   e  ∆   e 

expr1      expr2  CircleMinus@ 

expr1 ,  expr2  D 

He     eL     e 

⁄e1=e2
e3 e4  Sum@ e4 ,  8  

e1 ,  e2 ,  e3  <  D 

⁄   H ⁄   eL 

expr1   +  expr2   +  expr3  Plus@ expr1 ,  

expr2 ,  expr3  D 

e  +  e  +  e 

expr1   −  expr2  expr1   +  

H−1  expr2L 

He  −  eL  −  e 

expr1   ≤   expr2  PlusMinus@ 

expr1 ,  expr2  D 

He  ≤   eL  ≤   e 

expr1   ¡   expr2  MinusPlus@ 

expr1 ,  expr2  D 

He  ¡   eL  ¡   e 

expr1   ›   expr2  Intersection@ 

expr1 ,  expr2  D 

e  ›   e  ›   e 

other intersection operators 
expr1   ‹   expr2  Union@ 

expr1 ,  expr2  D 

e  ‹   e  ‹   e 

other union operators 
expr1   ==  expr2  Equal@ 

expr1 ,  expr2  D 

e  ==  e  ==  e 

expr1   ã   expr2  Equal@ 

expr1 ,  expr2  D 

e  ã   e  ã   e 

expr1     expr2  Equal@ 

expr1 ,  expr2  D 

e    e    e 

expr1   !=  expr2  Unequal@ 

expr1 ,  expr2  D 

e  !=  e  !=  e 
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expr1   ∫   expr2  Unequal@ 

expr1 ,  expr2  D 

e  ∫   e  ∫   e 

other equality
and similarity operators 
expr1   >  expr2  Greater@ 

expr1 ,  expr2  D 

e  >  e  >  e 

expr1   >=  expr2  GreaterEqual@ 

expr1 ,  expr2  D 

e  >=  e  >=  e 

expr1   ¥   expr2  GreaterEqual@ 

expr1 ,  expr2  D 

e  ¥   e  ¥   e 

expr1   r   expr2  GreaterEqual@ 

expr1 ,  expr2  D 

e  r   e  r   e 

expr1   <  expr2  Less@ 

expr1 ,  expr2  D 

e  <  e  <  e 

expr1   <=  expr2  LessEqual@ 

expr1 ,  expr2  D 

e  <=  e  <=  e 

expr1   §   expr2  LessEqual@ 

expr1 ,  expr2  D 

e  §   e  §   e 

expr1   b   expr2  LessEqual@ 

expr1 ,  expr2  D 

e  b   e  b   e 

other ordering operators 
expr1   ˝   expr2  VerticalBar@ 

expr1 ,  expr2  D 

e  ˝   e  ˝   e 

expr1   I   expr2  NotVerticalBar
@ expr1 ,  expr2  D 

e  I   e  I   e 

expr1   ˛   expr2  DoubleVertica
lBar@ 

expr1 ,  expr2  D 

e  ˛   e  ˛   e 

expr1   J   expr2  NotDoubleVert
icalBar@ 

expr1 ,  expr2  D 

e  J   e  J   e 

Operator input forms, in order of decreasing precedence, part four. 

operator form full form grouping 

horizontal arrow
and vector operators 
diagonal arrow operators 
expr1   ===  expr2  SameQ@ 

expr1 ,  expr2  D 

e  ===  e  ===  e 

expr1   =!=  expr2  UnsameQ@ 

expr1 ,  expr2  D 

e  =!=  e  =!=  e 

expr1   œ   expr2  Element@ 

expr1 ,  expr2  D 

e  œ   e  œ   e 

expr1   –   expr2  NotElement@ 

expr1 ,  expr2  D 

e  –   e  –   e 

expr1   Õ   expr2  Subset@ 

expr1 ,  expr2  D 

e  Õ   e  Õ   e 

expr1       expr2  Superset@ 

expr1 ,  expr2  D 

e      e      e 
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other set relation operators 
∀expr1

expr2  ForAll@ 

expr1 ,  expr2  D 

∀e H∀e eL  

∃expr1
expr2  Exists@ 

expr1 ,  expr2  D 

∃e H∃e eL  

±expr1
expr2  NotExists@ 

expr1 ,  expr2  D 

±e H±e eL  

!expr Not@ expr D !H! eL 

Ÿ   expr Not@ expr D Ÿ   H Ÿ   eL 

expr1   &&  expr2   &&  expr3  And@ expr1 ,  

expr2 ,  expr3  D 

e  &&  e  &&  e 

expr1   fl   expr2   fl   expr3  And@ expr1 ,  

expr2 ,  expr3  D 

e  fl   e  fl   e 

expr1     expr2     expr3  Nand@ expr1 ,  

expr2 ,  expr3  D 

e    e    e 

expr1     expr2     expr3  Xor@ expr1 ,  

expr2 ,  expr3  D 

e    e    e 

expr1   »»  expr2   »»  expr3  Or@ expr1 ,  

expr2 ,  expr3  D 

e  »»  e  »»  e 

expr1   fi   expr2   fi   expr3  Or@ expr1 ,  

expr2 ,  expr3  D 

e  fi   e  fi   e 

expr1     expr2     expr3  Nor@ expr1 ,  

expr2 ,  expr3  D 

e    e    e 

expr1   fl   expr2  Implies@ 

expr1 ,  expr2  D 

e fl  He fl  eL 

expr1   V   expr2  Implies@ 

expr1 ,  expr2  D 

e V  He V  eL 

expr1   ¢   expr2  RightTee@ 

expr1 ,  expr2  D 

e  ¢   H e  ¢   eL 

expr1   £   expr2  DoubleRightTee
@ expr1 ,  expr2  D 

e  £   H e  £   eL 

expr1   ¤   expr2  LeftTee@ 

expr1 ,  expr2  D 

He  ¤   eL  ¤   e 

expr1   ¥   expr2  DoubleLeftTee@ 

expr1 ,  expr2  D 

He  ¥   eL  ¥   e 

expr1   '   expr2  SuchThat@ 

expr1 ,  expr2  D 

e  '   H e  '   eL 

expr .. Repeated@ expr D 

expr ... RepeatedNull@ 

expr D 

expr1   »  expr2  Alternatives@ 

expr1 ,  expr2  D 

e  »  e  »  e 

symb:expr Pattern@ 

symb,  expr D 

patt:expr Optional@ 

patt,  expr D 

Operator input forms, in order of decreasing precedence, part five. 
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operator form full form grouping 

expr1   ê;  expr2  Condition@ 

expr1 ,  expr2  D 

He ê; e Lê; e 

expr1   −>  expr2  Rule@ 

expr1 ,  expr2  D 

e  −>  H e  −>  eL 

expr1   Ø   expr2  Rule@ 

expr1 ,  expr2  D 

e  Ø   H e  Ø  eL 

expr1   :>  expr2  RuleDelayed@ 

expr1 ,  expr2  D 

e  :>  H e  :>  eL 

expr1   ß   expr2  RuleDelayed@ 

expr1 ,  expr2  D 

e  ß   H e  ß  eL 

expr1   ê.  expr2  ReplaceAll@ 

expr1 ,  expr2  D 

He  ê.  eL  ê.  e 

expr1   êê.  expr2  ReplaceRepeat
ed@ expr1 ,
 expr2  D 

He  êê.  eL  êê.  e 

expr1   +=  expr2  AddTo@ 

expr1 ,  expr2  D 

e  +=  H e  +=  eL 

expr1   −=  expr2  SubtractFrom@ 

expr1 ,  expr2  D 

e  −=  H e  −=  eL 

expr1   ∗=  expr2  TimesBy@ 

expr1 ,  expr2  D 

e  ∗=  H e  ∗=  eL 

expr1   ê=  expr2  DivideBy@ 

expr1 ,  expr2  D 

e  ê=  H e  ê=  eL 

expr  & Function@ expr D 

expr1   :   expr2  Colon@ 

expr1 ,  expr2  D 

e  :   e  :   e 

expr1   êê  expr2  expr2  @ expr1  D He  êê  eL  êê  e 
expr1   »   expr2  VerticalSepar

ator@ 

expr1 ,  expr2  D 

e  »   e  »   e 

expr1   \   expr2  Therefore@ 

expr1 ,  expr2  D 

e  \   H e  \   eL 

expr1   ‹   expr2  Because@ 

expr1 ,  expr2  D 

He  ‹   eL  ‹   e 

expr1   =  expr2  Set@ expr1 ,
 expr2  D 

e  =  H e  =  eL 

expr1   :=  expr2  SetDelayed@ 

expr1 ,  expr2  D 

e  :=  H e  :=  eL 

expr1   ^=  expr2  UpSet@ 

expr1 ,  expr2  D 

e  ^=  H e  ^=  eL 

expr1   ^:=  expr2  UpSetDelayed@ 

expr1 ,  expr2  D 

e  ^:=  H e  ^:=  eL 

symb ê:  expr1   =  expr2  TagSet@ symb,
 expr1 ,  expr2  D 

symb ê:  expr1   :=  expr2  TagSetDelayed@ 

symb,  expr1 ,
 expr2  D 
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expr  =. Unset@ expr D 

symb ê:  expr  =. TagUnset@ 

symb,  expr D 

expr  >>  filename Put@ expr,  
" filename "D 

expr  >>>  filename PutAppend@ expr,
 " filename "D 

expr1 ;expr2 ;expr3  CompoundExpre
ssion@ expr1 ,

 expr2 ,  expr3  D 

expr1 ;expr2 ; CompoundExpre
ssion@ expr1 ,
 expr2 ,  NullD 

expr1  î `  expr2  FormBox@ 

expr2 ,  expr1  D 

e î `  H e î `  eL 

Operator input forms, in order of decreasing precedence, part six. 

special input form full form 

# Slot@1D 

# n Slot@ n D 

## SlotSequence@1D 

## n SlotSequence@ n D 

% Out@  D 

%% Out@−2D 

%% … % H n timesL Out@− n D 

% n Out@ n D 

_ Blank@  D 

_ expr Blank@ expr D 

__ BlankSequence@  D 

__ expr BlankSequence@ expr D 

___ BlankNullSequence@  D 

___ expr BlankNullSequence@ expr D 

_. Optional@Blank@  DD 

symb _ Pattern@ symb,  Blank@  DD 

symb _ expr Pattern@ symb,  Blank@ expr DD 

symb __ Pattern@ symb,  BlankSequence@  DD 

symb __ expr Pattern@ symb,  BlankSequence@ expr DD 

symb ___ Pattern@ symb,  BlankNullSequence@  DD 

symb ___ expr Pattern@ symb,  BlankNullSequence@ expr DD 

symb _. Optional@Pattern@ symb,  Blank@  DDD 

Additional input forms, in order of decreasing precedence. 

Special Characters

Special  characters  that  appear  in  operators  usually  have  names  that  correspond  to  the  names  of  the  functions  they
represent.  Thus the character ∆  has name î[CirclePlus]  and yields the function CirclePlus.  Exceptions are î
[GreaterSlantEqual], î[LessSlantEqual] and î[RoundImplies]. 
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The delimiters in matchfix operators have names î[LeftName] and î[RightName]. 

Section A.12.1 gives a complete listing of special characters that appear in operators. 

keyboard characters special character  

−> î @RuleD  Ø  

:> î @RuleDelayedD  ß  

== î @EqualD  ã 

!= î @NotEqualD  ∫  

keyboard characters special character  

>= î @GreaterEqualD  ¥  

>= î @GreaterSlantEqualD  r  

<= î @LessEqualD  §  

<= î @LessSlantEqualD  b  

Keyboard and special characters with the same interpretations. 

keyboard character  special character  

î @RawColonD  : î @ColonD  :  

î @RawTildeD  ∼ î @TildeD  ~  

î @RawWedgeD  ^ î @WedgeD  Ô  

î @RawWedgeD  ^ î @AndD  fl  

î @RawStarD  ∗ î @StarD  *  

î @RawBackslashD î î @BackslashD  î  

keyboard character  special character  

î @RawDotD  . î @CenterDotD  ÿ  

î @RawVerticalBarD  » î @VerticalBarD  ˝  

î @RawVerticalBarD  » î @VerticalSeparator

î @RawVerticalBarD  » î @LeftBracketingBar

î @RawDashD  − î @DashD  –  

... î @EllipsisD  … 

Some keyboard and special characters with different interpretations.  

Precedence and the Ordering of Input Forms

The tables of input forms are arranged in decreasing order of precedence. Input forms in the same box have the same
precedence.  Each  page  in  the  table  begins  a  new  box.  As  discussed  in  Section  2.1.3,  precedence  determines  how
Mathematica  groups  terms  in  input  expressions.  The  general  rule  is  that  if  ≈  has  higher  precedence  than  ∆ ,  then
a ∆ b ≈ c  is interpreted as a ∆ Hb ≈ cL , and a ≈ b ∆ c  is interpreted as Ha ≈ bL ∆ c . 

Grouping of Input Forms

The third columns in the tables show how multiple occurrences of a single input form, or of several input forms with
the same precedence, are grouped. For example, a/b/c is grouped as (a/b)/c (“left  associative”),  while a^b^c is
grouped  as a^(b^c)  (“right  associative”).  No grouping  is  needed in an expression like a  +  b  +  c,  since Plus  is
fully associative, as represented by the attribute Flat.  

Precedence of Integration Operators

Forms such as Ÿ  expr1  „  expr2  have an “outer”  precedence just below Power, as indicated in the table above, but an
“inner”  precedence just above ⁄ . The outer precedence determines when expr2  needs to be parenthesized; the inner
precedence determines when expr1  needs to be parenthesized. 

î[ContourIntegral],  î[ClockwiseContourIntegral]  and  î[DoubleContourIntegral]  work  the
same as î[Integral]. 

See Section A.2.8 for two-dimensional input forms associated with integration operators. 

Spaces and Multiplication

Spaces in Mathematica denote multiplication, just as they do in standard mathematical notation. In addition, Mathemat-
ica takes complete expressions that are adjacent, not necessarily separated by spaces, to be multiplied together.  
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†  x  y  z  ö   x∗y∗z 

†  2x  ö   2∗x 

†  2Hx+1L  ö   2∗Hx+1L 

†  cHx+1L  ö   c∗Hx+1L 

†  Hx+1LHy+2L  ö   Hx+1L∗Hy+2L 

†  x!  y  ö   x!∗y 

†  x!y  ö   x!∗y 

Alternative forms for multiplication. 

An expression like x!y could potentially mean either (x!)*y or x*(!y). The first interpretation is chosen because
Factorial has higher precedence than Not. 

Spaces within single input forms are ignored.  Thus, for example, a  +  b  is equivalent to a+b.  You will often want to
insert spaces around lower precedence operators to improve readability. 

You  can  give  a  “coefficient”  for  a  symbol  by  preceding  it  with  any  sequence  of  digits.  When  you  use  numbers  in
bases larger than 10, the digits can include letters. (In bases other than 10, there must be a space between the end of the
coefficient, and the beginning of the symbol name.)  

†  x^2y , like  x^2  y , means  Hx^2L  y 

†  xê2y , like  xê2  y , means  Hxê2L  y 

†  xy is a single symbol, not  x∗y 

Some cases to be careful about. 

Spaces to Avoid

You should avoid inserting any spaces between the different characters in composite operators such as /., =. and >=.
Although in some cases such spaces are allowed, they are liable to lead to confusion. 

Another case where spaces must be avoided is between the characters of the pattern object x_. If you type x _, Mathe-
matica will interpret this as x*_, rather than the single named pattern object x_. 

Similarly, you should not insert any spaces inside pattern objects like x_:value. 

Spacing Characters

† Ordinary keyboard space Hî @RawSpaceD L
† î @VeryThinSpaceD , î @ThinSpaceD , ..., î @ThickSpaceD 

† î @NegativeVeryThinSpaceD , î @NegativeThinSpaceD , ..., î @NegativeThickSpaceD 

†  â  Hî @SpaceIndicatorD L
Spacing characters equivalent to an ordinary keyboard space. 

Relational Operators

Relational operators can be mixed. An expression like a > b >= c is converted to Inequality[a, Greater, b,
GreaterEqual,  c],  which  effectively  evaluates  as  (a  >  b)  &&  (b  >=  c).  (The  reason  for  the  intermediate
Inequality form is that it prevents objects from being evaluated twice when input like a > b >= c is processed.)   
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File Names

Any  file  name  can  be  given  in  quotes  after  <<,  >>  and  >>>.  File  names  can  also  be  given  without  quotes  if  they
contain only alphanumeric characters, special characters and the characters `, /, ., î, !, -, _, :, $, *, ~ and ?, together
with  matched  pairs  of  square  brackets  enclosing  any  characters  other  than  spaces,  tabs  and  newlines.  Note  that  file
names given without quotes can be followed only by spaces, tabs or newlines, or by the characters ),  ],  <  as well as
semicolon and comma. 

A.2.8 Two-Dimensional Input Forms

xy  Power@ x,  y D 
x
y  Divide@ x,  y D 

è!!!x  Sqrt@ x D 
è!!!xn  Power@ x,  1ê n D 

a11 a12 …
a21 a22 …

 88a11, a12, …<, 8a21, a22, …<<  

∂x y  D@ y,  x D 

∂x,… y  D@ y,  x, … D 

Ÿxmin
xmax y  x  Integrate@ y,  8  x,  xmin

Ÿxmin
xmax

 y w x
z  Integrate@ y  wê z,  8  x,

⁄
x=xmin

xmax
y  Sum@ y,  8  x,  xmin,  xmax

¤
x=xmin

xmax
y  Product@ y,  8  x,  xmin,

Two-dimensional input forms with built-in evaluation rules. 

Any array of expressions represented by a GridBox is interpreted as a list of lists. Even if the GridBox has only one
row, the interpretation is still 88a1 , a2 , … << . 

In the form Ÿxmin
xmax y w x

z   the limits xmin and xmax can be omitted, as can y and w.  

xy  Subscript@ x,  y D 

x+  SubPlus@ x D 

x−  SubMinus@ x D 

x∗  SubStar@ x D 

x+  SuperPlus@ x D 

x−  SuperMinus@ x D 

x∗  SuperStar@ x D 

x†  SuperDagger@ x D 

x
y

 Overscript@ x,  y D 

x
y

 Underscript@ x,  y D 

x̄  OverBar@ x D 

x”  OverVector@ x D 

x  OverTilde@ x D 

x̂  OverHat@ x D 

x  OverDot@ x D 

x̄  UnderBar@ x D 

Two-dimensional input forms without built-in evaluation rules. 

There is no issue of precedence for forms such as è!!!x  and x̂  in which operands are effectively spanned by the opera-
tor.  For forms such as xy  and x†  a left  precedence does need to be specified, so such forms are included in the main
table of precedences above. 
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A.2.9 Input of Boxes

† Use a palette
† Use control keys
† Use î !îH input î L , together with ‚Î !Ï 
† Use ‚Î ∗Ï 

Ways to input boxes. 

Control Keys

‚Î 1Ï or ‚Î !Ï activate î ! form
‚Î 2Ï or ‚Î @Ï square root
‚Î 5Ï or ‚Î %Ï switch to alternate position He.g. subscript to superscriptL
‚Î 6Ï or ‚Î ^Ï superscript
‚Î 7Ï or ‚Î &Ï overscript
‚Î 8Ï or ‚Î ∗Ï enter raw boxes
‚Î 9Ï or ‚Î HÏ begin a new cell within an existing cell
‚Î 0Ï or ‚Î LÏ end a new cell within an existing cell
‚Î −Ï or ‚Î _Ï subscript
‚Î =Ï or ‚Î +Ï underscript

‚Î ¿  Ï HControl-ReturnL create a new row in a  GridBox 

‚Î ,Ï create a new column in a  GridBox 

‚Î .Ï expand current selection
‚Î êÏ fraction

‚Î â  Ï HControl-SpaceL return from current position or state
‚Î Ø  Ï, ‚Î ≠  Ï, ‚Î Æ  Ï, ‚Î ∞  Ï move an object by minimal increments on the screen

Standard control keys. 

On  English-language  keyboards  both  forms  will  work  where  alternates  are  given.  On  other  keyboards  the  first  form
should work but the second may not. 

Boxes Constructed from Text

When textual input that you give is used to construct boxes, as in StandardForm or TraditionalForm cells in a
notebook, the input is handled slightly differently from when it is fed directly to the kernel. 

The  input  is  broken  into  tokens,  and  then  each  token  is  included  in  the  box  structure  as  a  separate  character  string.
Thus, for example, xx+yyy is broken into the tokens "xx", "+", "yyy". 

† symbol name He.g.  x123 L
† number He.g.  12.345 L
† operator He.g.  += L
† spacing He.g.  â  L
† character string He.g.  "text" L

Types of tokens in text used to construct boxes. 

A RowBox is constructed to hold each operator and its operands. The nesting of RowBox objects is determined by the
precedence of the operators in standard Mathematica syntax. 
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Note that spacing characters are not automatically discarded. Instead, each sequence of consecutive such characters is
made into a separate token. 

String-Based Input

î H …î L input raw boxes
î !îH …î L input and interpret boxes

Inputting raw and interpreted boxes. 

Any textual input that you give between î( and î) is taken to specify boxes to construct. The boxes are only interpreted
if you specify with î! that this should be done. Otherwise x î^ y is left for example as SuperscriptBox[x, y], and
is not converted to Power[x, y]. 

Within the outermost î( … î), further î( … î) specify grouping and lead to the insertion of RowBox objects. 

î H box1 ,  box2 , …î L RowBox@ box1 ,  box2 , … D 

box1  î ^  box2  SuperscriptBox@ box1 ,  box2  D 

box1  î _  box2  SubscriptBox@ box1 ,  box2  D 

box1  î _  box2  î %  box3  SubsuperscriptBox@ box1 ,  box2 ,  box3  D 

box1  î &  box2  OverscriptBox@ box1 ,  box2  D 

box1  î +  box2  UnderscriptBox@ box1 ,  box2  D 

box1  î +  box2  î %  box3  UnderoverscriptBox@ box1 ,  box2 ,  box3  D 

box1  î ê  box2  FractionBox@ box1 ,  box2  D 

î @  box SqrtBox@ box D 

form î `  box FormBox@ box,  form D 

î ∗  input construct box by interpreting  input 
î â  insert a space
î n insert a newline
î t indent at the beginning of a line

String-based ways of constructing raw boxes. 

In string-based input between î( and î) spaces, tabs and newlines are discarded. îâ  can be used to insert a single space.
Special  spacing  characters  such  as  î[ThinSpace],  î[ThickSpace]  or  î[NegativeThinSpace]  are  not
discarded. 

A.2.10 The Extent of Input Expressions

Mathematica will treat all input that you give on a single line as being part of the same expression. 

Mathematica  allows  a  single  expression  to  continue  for  several  lines.  In  general,  it  treats  the  input  that  you  give  on
successive lines as belonging to the same expression whenever no complete expression would be formed without doing
this. 

Thus, for example, if one line ends with =, then Mathematica will assume that the expression must continue on the next
line. It will do the same if for example parentheses or other matchfix operators remain open at the end of the line. 

If at the end of a particular line the input you have given so far corresponds to a complete expression, then Mathemat-
ica will normally begin immediately to process that expression. 
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You can however explicitly tell Mathematica that a particular expression is incomplete by putting a î or a Ö  (î[Contin
uation]) at the end of the line. Mathematica  will then include the next line in the same expression, discarding any
spaces or tabs that occur at the beginning of that line. 

If you are using StandardForm input in a notebook front end, then Mathematica will also not treat an expression on
a  particular  line  as  being  complete  if  the  line  that  follows  it  could  not  be  complete without  being  combined with  its
predecessor. Thus, for example, if a line begins with an infix operator such as µ  or /, then Mathematica  will combine
this line with the previous one to try to obtain a complete expression. If a line begins with + , - , ≤ , or another operator
that can be used both in infix or prefix form, then Mathematica  will still combine the line with the previous one, but
will issue a warning to say what it is doing. 

A.2.11 Special Input

?symbol get information
?? symbol get more information
?s1   s2  … get information on several objects

!command execute an external command
!! file display the contents of an external file

Special input lines. 

In  most  implementations  of  Mathematica,  you  can  give  a  line  of  special  input  anywhere  in  your  input.  The  only
constraint is that the special input must start at the beginning of a line. 

Some implementations of Mathematica may not allow you to execute external commands using !command. 

A.2.12 Front End Files

Notebook files as well as front  end initialization files can contain a subset of standard Mathematica  language syntax.
This syntax includes: 

† Any Mathematica expression in FullForm.  

† Lists in 8… <  form. The operators ->, :> and &. Function slots in # form.  

† Special characters in î[Name], î:xxxx or î.xx form.  

† String representation of boxes involving î(, î) and other backslash operators.  

† Mathematica comments delimited by (* and *).  
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A.3 Some General Notations and Conventions

A.3.1 Function Names

The names of built-in functions follow some general guidelines.    

† The name consists of complete English words, or standard mathematical abbreviations. American spelling is used.  

† The first letter of each word is capitalized.  

† Functions whose names end with Q usually “ask  a question”,  and return either True or False.  

† Mathematical functions that are named after people usually have names in Mathematica of the form PersonSymbol.    

A.3.2 Function Arguments

The main expression or object on which a built-in function acts is usually given as the first argument to the function.
Subsidiary parameters appear as subsequent arguments.  

The following are exceptions: 

† In functions like Map and Apply, the function to apply comes before the expression it is to be applied to. 

† In scoping constructs such as Module and Function, local variables and parameter names come before bodies.  

† In functions like Write and Display, the name of the file is given before the objects to be written to it.  

For mathematical functions, arguments that are written as subscripts in standard mathematical notation are given before
those that are written as superscripts. 

A.3.3 Options

Some built-in functions can take options. Each option has a name, represented as a symbol, or in some cases a string.
Options are set by giving rules of the form name->value  or name:>value.  Such rules must appear after all the other
arguments in a function. Rules for different options can be given in any order. If you do not explicitly give a rule for a
particular option, a default setting for that option is used. 

Options@ f  D give the default rules for all options associated with  f  
Options@ expr D give the options set in a particular expression

Options@ expr,  name D give the setting for the option  name in an expression
AbsoluteOptions@ expr,  name D give the absolute setting for  name ,

even if its actual setting is  Automatic 

SetOptions@ f ,  name −> value, … D set default rules for options associated with  f  

Operations on options. 
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A.3.4 Part Numbering

n element  n Hstarting at  1 L
−n element  n from the end
0 head

All all elements

Numbering of parts. 

A.3.5 Sequence Specifications

All all elements
None no elements

n elements  1 through  n 
−n last  n elements

8  n <  element  n only
8  m,  n <  elements  m through  n HinclusiveL

8  m,  n,  s <  elements  m through  n in steps of  s 

Specifications for sequences of parts. 

The  sequence  specification  8m,  n,  s<  corresponds  to  elements  m,  m  +  s,  m  +  2s,  … ,  up  to  the  largest  element  not
greater than n. 

Sequence  specifications  are  used  in  the  functions  Drop,  Ordering,  StringDrop,  StringTake,  Take  and
Thread.   

A.3.6 Level Specifications

n levels  1 through  n 
Infinity levels  1 through  Infinity 

8  n <  level  n only
8  n1 ,  n2  <  levels  n1  through  n2  

Heads  −>  True include heads of expressions
Heads  −>  False do not include heads of expressions

Level specifications. 

The  level  in  an  expression  corresponding  to  a  non-negative  integer  n  is  defined  to  consist  of  parts  specified  by  n
indices. A negative level number -n represents all parts of an expression that have depth n. The depth of an expression,
Depth[expr], is the maximum number of indices needed to specify any part, plus one. Levels do not include heads of
expressions,  except with the option setting Heads  ->  True.  Level 0  is the whole expression.  Level -1  contains all
symbols and other objects that have no subparts. 

Ranges of levels specified by 8n1 , n2 <  contain all parts that are neither above level n1 , nor below level n2  in the tree.
The  ni  need  not  have  the  same  sign.  Thus,  for  example,  {2,  -2}  specifies  subexpressions  which  occur  anywhere
below the top level, but above the leaves, of the expression tree. 
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Level  specifications  are  used  by  functions  such  as  Apply,  Cases,  Count,  FreeQ,  Level,  Map,  MapIndexed,
Position, Replace and Scan. Note, however, that the default level specifications are not the same for all of these
functions.       

Functions with level specifications visit different subexpressions in an order that corresponds to depth-first traversal of
the expression tree, with leaves visited before roots. The subexpressions visited have part specifications which occur in
an order which is lexicographic, except that longer sequences appear before shorter ones.   

A.3.7 Iterators

8  imax <  iterate  imax times
8  i,  imax <  i goes from  1 to  imax in steps of  1 

8  i,  imin,  imax <  i goes from  imin to  imax in steps of  1 

8  i,  imin,  imax,  di <  i goes from  imin to  imax in steps of  di 
8  i,  imin,  imax <,
 8  j,  jmin,  jmax <, …

i goes from  imin to  imax , and for each value of  
i ,  j goes from  jmin to  jmax , etc.

Iterator notation. 

Iterators are used in such functions as Sum, Table, Do and Range. 

The  iteration  parameters  imin,  imax  and  di  do  not  need  to  be  integers.  The  variable  i  is  given  a  sequence  of  values
starting  at  imin,  and  increasing  in  steps  of  di,  stopping  when  the  next  value  of  i  would  be  greater  than  imax.  The
iteration parameters can be arbitrary symbolic expressions, so long as (imax-imin)/di is a number.  

When several iteration variables are used, the limits for the later ones can depend on the values of earlier ones. 

The variable i can be any symbolic expression; it need not be a single symbol. The value of i is automatically set up to
be  local  to  the  iteration  function.  This  is  effectively  done  by  wrapping  a  Block  construct  containing  i  around  the
iteration function.  

The procedure for evaluating iteration functions is described in Section A.4.2. 

A.3.8 Scoping Constructs

Function@ 8  x, … <,  body D local parameters
lhs  −>  rhs  and  lhs  :>  rhs local pattern names

lhs  =  rhs  and  lhs  :=  rhs local pattern names
With@ 8  x  =  x0 , … <,  body D local constants

Module@ 8  x, … <,  body D local variables

Scoping constructs in Mathematica. 

Scoping constructs allow the names of certain symbols to be local. 

When nested scoping constructs are evaluated, new symbols are automatically generated in the inner scoping constructs
so as to avoid name conflicts with symbols in outer scoping constructs. 

In general, symbols with names of the form xxx are renamed xxx$. 
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When a transformation rule or definition is used, ReplaceAll  (/.) is effectively used to replace the pattern names
that appear on the right-hand side. Nevertheless, new symbols are generated when necessary to represent other objects
that appear in scoping constructs on the right-hand side. 

Each time it is evaluated, Module generates symbols with unique names of the form xxx$nnn  as replacements for all
local variables that appear in its body. 

A.3.9 Ordering of Expressions

The  canonical  ordering  of  expressions  used  automatically  with  the  attribute  Orderless  and  in  functions  such  as
Sort satisfies the following rules: 

† Integers, rational and approximate real numbers are ordered by their numerical values.  

† Complex numbers are ordered by their real parts, and in the event of a tie, by the absolute values of their imaginary parts.  

† Symbols are ordered according to their names, and in the event of a tie, by their contexts.  

† Expressions are usually ordered by comparing their parts in a depth-first manner. Shorter expressions come first.  

† Powers and products are treated specially, and are ordered to correspond to terms in a polynomial.  

† Strings are ordered as they would be in a dictionary, with the upper-case versions of letters coming after lower-case ones. Ordinary 
letters appear first, followed in order by script, Gothic, double-struck, Greek and Hebrew. Mathematical operators appear in order 
of decreasing precedence.  

A.3.10 Mathematical Functions

The mathematical functions such as Log[x] and BesselJ[n, x] that are built into Mathematica  have a number of
features in common.  

† They carry the attribute Listable, so that they are automatically “threaded”  over any lists that appear as arguments.   

† They carry the attribute NumericFunction, so that they are assumed to give numerical values when their arguments are 
numerical.   

† They give exact results in terms of integers, rational numbers and algebraic expressions in special cases.  

† Except for functions whose arguments are always integers, mathematical functions in Mathematica can be evaluated to any 
numerical precision, with any complex numbers as arguments. If a function is undefined for a particular set of arguments, it is 
returned in symbolic form in this case.   

† Numerical evaluation leads to results of a precision no higher than can be justified on the basis of the precision of the arguments. 
Thus N[Gamma[27/10], 100] yields a high-precision result, but N[Gamma[2.7], 100] cannot.  

† When possible, symbolic derivatives, integrals and series expansions of built-in mathematical functions are evaluated in terms of 
other built-in functions.   

A.3.11 Mathematical Constants

Mathematical constants such as E and Pi that are built into Mathematica have the following properties: 

† They do not have values as such.  

† They have numerical values that can be found to any precision.  

† They are treated as numeric quantities in NumericQ and elsewhere.   

† They carry the attribute Constant, and so are treated as constants in derivatives.   
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A.3.12 Protection

Mathematica  allows you to make assignments that override the standard operation and meaning of built-in Mathemat-
ica objects. 

To make it difficult to make such assignments by mistake, most built-in Mathematica  objects have the attribute Pro
tected. If you want to make an assignment for a built-in object, you must first remove this attribute. You can do this
by calling the function Unprotect.   

There  are  a  few  fundamental  Mathematica  objects  to  which  you  absolutely  cannot  assign  your  own  values.  These
objects carry the attribute Locked, as well as Protected. The Locked attribute prevents you from changing any of
the attributes, and thus from removing the Protected attribute.  

A.3.13 String Patterns

Functions  such  as  StringMatchQ,  Names  and  Remove  allow  you  to  give  string  patterns.  String  patterns  can
contain metacharacters, which can stand for sequences of ordinary characters. 

∗ zero or more characters
@ one or more characters excluding upper-case letters

îî ∗ etc. literal  ∗ , etc.

Metacharacters used in string patterns. 
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A.4 Evaluation

A.4.1 The Standard Evaluation Sequence

The  following  is  the  sequence  of  steps  that  Mathematica  follows  in  evaluating  an  expression  like  h[e1 ,  e2 ,  … ].
Every time the expression changes, Mathematica effectively starts the evaluation sequence over again.  

† If the expression is a raw object (e.g., Integer, String, etc.), leave it unchanged.  

† Evaluate the head h of the expression.  

† Evaluate each element ei  of the expression in turn. If h is a symbol with attributes HoldFirst, HoldRest, HoldAll or 
HoldAllComplete, then skip evaluation of certain elements.   

† Unless h has attribute HoldAllComplete strip the outermost of any Unevaluated wrappers that appear in the ei .  

† Unless h has attribute SequenceHold, flatten out all Sequence objects that appear among the ei .   

† If h has attribute Flat, then flatten out all nested expressions with head h.  

† If h has attribute Listable, then thread through any ei  that are lists.  

† If h has attribute Orderless, then sort the ei  into order.  

† Unless h has attribute HoldAllComplete, use any applicable transformation rules associated with f that you have defined for 
objects of the form h[ f[e1 , … ], …  ].   

† Use any built-in transformation rules associated with f for objects of the form h[ f[e1 , … ], … ].  

† Use any applicable transformation rules that you have defined for h[e1 , e2 , … ] or for h[ … ][ … ].  

† Use any built-in transformation rules for h[e1 , e2 , … ] or for h[ … ][ … ].  

A.4.2 Non-Standard Argument Evaluation

There  are  a  number  of  built-in  Mathematica  functions  that  evaluate  their  arguments  in  special  ways.  The  control
structure While is an example. The symbol While has the attribute HoldAll. As a result, the arguments of While
are not evaluated as part  of  the standard evaluation process.  Instead, the internal code for While  evaluates the argu-
ments in a special way. In the case of While, the code evaluates the arguments repeatedly, so as to implement a loop. 

Control structures arguments evaluated in a sequence determined
by control flow He.g.,  CompoundExpression L

Conditionals arguments evaluated only when they
correspond to branches that are taken He.g.,  If ,  Which L

Logical operations arguments evaluated only when they are needed
in determining the logical result He.g.,  And ,  Or L

Iteration functions first argument evaluated for each step in the iteration He.g.,  
Do ,  Sum ,  Plot L

Tracing functions form never evaluated He.g.,  Trace L
Assignments first argument only partially evaluated He.g.,  Set ,  AddTo L

Pure functions function body not evaluated He.g.,  Function L
Scoping constructs variable specifications not evaluated He.g.,  Module ,  Block L
Holding functions argument maintained in unevaluated form He.g.,  

Hold ,  HoldPattern L
Built-in functions that evaluate their arguments in special ways. 
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Logical Operations

In  an  expression  of  the  form  e1 &&e2 &&e3  the  ei  are  evaluated  in  order.  As  soon  as  any  ei  is  found  to  be  False,
evaluation  is  stopped,  and  the  result  False  is  returned.  This  means  that  you  can  use  the  ei  to  represent  different
“branches”  in a program, with a particular branch being evaluated only if certain conditions are met.  

The Or  function  works  much like And;  it  returns  True  as  soon  as  it  finds any argument that  is  True.  Xor,  on  the
other hand, always evaluates all its arguments. 

Iteration Functions

An iteration function such as  Do[f, 8 i, imin, imax<] is evaluated as follows:

† The iteration specification is evaluated. If it is not found to be of the form 8 i, imin, imax< , the evaluation stops. 

† The value of the iteration variable i is made local, effectively using Block.  

† imin and imax are used to determine the sequence of values to be assigned to the iteration variable i.  

† The iteration variable is successively set to each value, and f is evaluated in each case.  

† The local values assigned to i are cleared.  

If there are several iteration variables, the same procedure is followed for each variable in turn, for every value of all
the preceding variables. 

Unless  otherwise  specified,  f  is  not  evaluated  until  a  specific  value  has  been  assigned  to  i,  and  is  then  evaluated  for
each  value  of  i  chosen.  You  can  use  Evaluate[f]  to  make  f  be  evaluated  immediately,  rather  than  only  after  a
specific value has been assigned to i. 

Assignments

The left-hand sides of assignments are only partially evaluated. 

† If the left-hand side is a symbol, no evaluation is performed.  

† If the left-hand side is a function without hold attributes, the arguments of the function are evaluated, but the function itself is not 
evaluated.  

The right-hand side is evaluated for immediate (=), but not for delayed (:=), assignments. 

Any  subexpression  of  the  form  HoldPattern[expr]  that  appears  on  the  left-hand  side  of  an  assignment  is  not
evaluated, but is replaced by the unevaluated form of expr before the assignment is done.  

A.4.3 Overriding Non-Standard Argument Evaluation

f  @ expr1 , … ,  

Evaluate@ exprn  D,  … D 

evaluates the argument  exprn  ,
whether or not the attributes of  f  specify that it should be held

Overriding holding of arguments. 

By  using  Evaluate,  you  can  get  any  argument  of  a  function  evaluated  immediately,  even  if  the  argument  would
usually be evaluated later under the control of the function.  
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A.4.4 Preventing Evaluation

Mathematica  provides various functions which act as “wrappers”  to prevent the expressions they contain from being
evaluated. 

Hold@ expr D treated as  Hold@ expr D in all cases
HoldComplete@ expr D treated as  HoldComplete@ expr D with upvalues disabled

HoldForm@ expr D treated as  expr for printing
HoldPattern@ expr D treated as  expr in rules, definitions and patterns
Unevaluated@ expr D treated as  expr when arguments are passed to a function

Wrappers that prevent expressions from being evaluated. 

A.4.5 Global Control of Evaluation

In the evaluation procedure described above, two basic kinds of steps are involved: 

† Iteration: evaluate a particular expression until it no longer changes.  

† Recursion: evaluate subsidiary expressions needed to find the value of a particular expression.  

Iteration leads to evaluation chains in which successive expressions are obtained by the application of various transfor-
mation rules. 

Trace shows evaluation chains as lists, and shows subsidiary evaluations corresponding to recursion in sublists. 

The  expressions  associated  with  the  sequence  of  subsidiary  evaluations  which  lead  to  an  expression  currently  being
evaluated are given in the list returned by Stack[ ]. 

$RecursionLimit maximum recursion depth
$IterationLimit maximum number of iterations

Global variables controlling the evaluation of expressions. 

A.4.6 Aborts

You can ask Mathematica to abort at any point in a computation, either by calling the function Abort[ ], or by typing
appropriate interrupt keys. 

When asked to abort, Mathematica will terminate the computation as quickly as possible. If the answer obtained would
be incorrect or incomplete, then Mathematica returns $Aborted instead of giving that answer. 

Aborts can be caught using CheckAbort, and can be postponed using AbortProtect. 
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A.5 Patterns and Transformation Rules

A.5.1 Patterns

Patterns stand for classes of expressions. They contain pattern objects which represent sets of possible expressions.  

_ any expression
x _ any expression, given the name  x 

x:pattern a pattern, given the name  x 
pattern  ?  test a pattern that yields  True when  test is applied to its value

_ h any expression with head  h 
x _ h any expression with head  h , given the name  x 

__ any sequence of one or more expressions
___ any sequence of zero or more expressions

x __  and  x ___ sequences of expressions, given the name  x 
__ h  and  ___ h sequences of expressions, each with head  h 

x __ h  and  x ___ h sequences of expressions with head  h , given the name  x 
x _: v an expression with default value  v 

x _ h:v an expression with head  h and default value  v 
x _. an expression with a globally defined default value

Optional@ x _ h D an expression that must have head  
h , and has a globally defined default value

pattern .. a pattern repeated one or more times
pattern ... a pattern repeated zero or more times

pattern1   »  pattern2   » … a pattern which matches at least one of the  patterni  
pattern  ê;  cond a pattern for which  cond evaluates to  True 

HoldPattern@ pattern D a pattern not evaluated
Verbatim@ expr D an expression to be matched verbatim

Pattern objects. 

When  several  pattern  objects  with  the  same  name  occur  in  a  single  pattern,  all  the  objects  must  stand  for  the  same
expression. Thus f[x_, x_] can stand for f[2, 2] but not f[2, 3]. 

In a pattern object such as _h, the head h can be any expression, but cannot itself be a pattern. 

A pattern object such as x__  stands for a sequence  of expressions. So, for example, f[x__]  can stand for f[a, b,
c], with x being Sequence[a, b, c]. If you use x, say in the result of a transformation rule, the sequence will be
spliced into the function in which x appears. Thus g[u, x, u] would become g[u, a, b, c, u]. 

When  the  pattern  objects  x_:v  and  x_.  appear  as  arguments  of  functions,  they  represent  arguments  which  may  be
omitted. When the argument corresponding to x_:v  is omitted, x  is taken to have value v.  When the argument corre-
sponding to x_. is omitted, x is taken to have a default value  that is associated with the function in which it appears.
You can specify this default value by making assignments for Default[f] and so on. 
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Default@ f  D default value for  x _. 

when it appears as any argument of the function  f  
Default@ f ,  n D default value for  x _. when it appears as the  

n th  argument Hnegative  n count from the endL
Default@ f ,  n,  tot D default value for the  n th  

argument when there are a total of  tot arguments

Default values. 

A pattern like f[x__, y__, z__] can match an expression like f[a, b, c, d, e] with several different choices
of x, y and z. The choices with x and y of minimum length are tried first. In general, when there are multiple __ or
___ in a single function, the case that is tried first takes all the __ and ___ to stand for sequences of minimum length,
except the last one, which stands for “the  rest”  of the arguments. 

When  x_:v  or  x_.  are  present,  the  case  that  is  tried  first  is  the  one  in  which  none  of  them correspond  to  omitted
arguments. Cases in which later arguments are dropped are tried next.  

Orderless f  @ x,  y D and  f  @ y,  x D are equivalent
Flat f  @ f  @ x D,  y D and  f  @ x,  y D are equivalent

OneIdentity f  @ x D and  x are equivalent

Attributes used in matching patterns. 

Pattern objects like x_ can represent any sequence of arguments in a function f with attribute Flat. The value of x in
this case is f applied to the sequence of arguments. If f has the attribute OneIdentity, then e is used instead of f[e]
when x corresponds to a sequence of just one argument. 

A.5.2 Assignments

lhs  =  rhs immediate assignment:  rhs is evaluated at the time of assignment
lhs  :=  rhs delayed assignment:  rhs 

is evaluated when the value of  lhs is requested

The two basic types of assignment in Mathematica. 

Assignments  in  Mathematica  specify  transformation  rules  for  expressions.  Every  assignment  that  you  make  must  be
associated with a particular Mathematica symbol.  

f  @ args D  =  rhs assignment is associated with  f  HdownvalueL
t ê:  f  @ args D  =  rhs assignment is associated with  t HupvalueL
f  @ g @ args DD  ^=  rhs assignment is associated with  g HupvalueL

Assignments associated with different symbols. 

In the case of an assignment like f[args] = rhs, Mathematica looks at f, then the head of f, then the head of that, and so
on, until it finds a symbol with which to associate the assignment. 

When  you  make  an  assignment  like  lhs  ^=  rhs,  Mathematica  will  set  up  transformation  rules  associated  with  each
distinct symbol that occurs either as an argument of lhs, or as the head of an argument of lhs. 
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The transformation rules associated with a particular  symbol s  are always stored in a definite order,  and are tested in
that order when they are used. Each time you make an assignment, the corresponding transformation rule is inserted at
the end of the list of transformation rules associated with s, except in the following cases: 

† The left-hand side of the transformation rule is identical to a transformation rule that has already been stored, and any /; condi-
tions on the right-hand side are also identical. In this case, the new transformation rule is inserted in place of the old one.  

† Mathematica determines that the new transformation rule is more specific than a rule already present, and would never be used if it 
were placed after this rule. In this case, the new rule is placed before the old one. Note that in many cases it is not possible to 
determine whether one rule is more specific than another; in such cases, the new rule is always inserted at the end.  

A.5.3 Types of Values

Attributes@ f   D attributes of  f  
DefaultValues@ f   D default values for arguments of  f  

DownValues@ f   D values for  f  @…  D ,  f  @ … D@ … D , etc.
FormatValues@ f   D print forms associated with  f  

Messages@ f   D messages associated with  f  
NValues@ f   D numerical values associated with  f  
Options@ f   D defaults for options associated with  f  

OwnValues@ f   D values for  f  itself
UpValues@ f   D values for … @ … ,  f  @ … D, … D 

Types of values associated with symbols. 

A.5.4 Clearing and Removing Objects

expr  =. clear a value defined for  expr 
f  ê:  expr  =. clear a value associated with  f  defined for  expr 

Clear@ s1 ,  s2 , … D clear all values for the symbols  si  ,
except for attributes, messages and defaults

ClearAll@ s1 ,  s2 , … D clear all values for the  si  ,
including attributes, messages and defaults

Remove@ s1 ,  s2 , … D clear all values, and then remove the names of the  si  

Ways to clear and remove objects. 

Clear,  ClearAll  and  Remove  can  all  take  string  patterns  as  arguments,  to  specify  action  on  all  symbols  whose
names match the string pattern. 

Clear, ClearAll and Remove do nothing to symbols with the attribute Protected. 

A.5.5 Transformation Rules

lhs  −>  rhs immediate rule:  rhs is evaluated when the rule is first given
lhs  :>  rhs delayed rule:  rhs is evaluated when the rule is used

The two basic types of transformation rules in Mathematica. 
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Replacements for  pattern  variables  that  appear  in  transformation  rules  are  effectively  done  using  ReplaceAll  (the
/. operator). 
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A.6 Files and Streams

A.6.1 File Names

name .m Mathematica language source file
name .nb Mathematica notebook file
name .ma Mathematica notebook file from before Version 3
name .mx Mathematica expression dump

name .exe MathLink executable program
name .tm MathLink template file
name .ml MathLink stream file

Conventions for file names. 

Most files used by Mathematica  are completely system independent.  .mx  and .exe  files are however system depen-
dent.  For  these  files,  there  is  a  convention  that  bundles  of  versions  for  different  computer  systems have  names with
forms such as name/$SystemID/name. 

In general, when you refer to a file, Mathematica tries to resolve its name as follows: 

† If the name starts with !, Mathematica treats the remainder of the name as an external command, and uses a pipe to this command.  

† If the name contains metacharacters used by your operating system, then Mathematica passes the name directly to the operating 
system for interpretation.  

† Unless the file is to be used for input, no further processing on the name is done.  

† Unless the name given is an absolute file name under your operating system, Mathematica will search each of the directories 
specified in the list $Path.  

† If what is found is a directory rather than a file, then Mathematica will look for a file name/$SystemID/name.  

For names of the form name` the following further translations are done in Get and related functions: 

† A file name.mx is used if it exists.  

† A file name.m is used if it exists.  

† If name is a directory, then the file name/init.m is used if it exists.  

† If name.mx is a directory, then name.mx/$SystemID/name.mx is used if it exists.  

In Install, name` is taken to refer to a file or directory named name.exe. 

A.6.2 Streams

InputStream@" name ",  n D input from a file or pipe
OutputStream@" name ",  n D output to a file or pipe

Types of streams. 
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option name default value 

CharacterEncoding $CharacterEnc
oding 

encoding to use for special characters

DOSTextFormat True whether to output files with
MS-DOS text-mode conventions

FormatType InputForm default format for expressions
PageWidth 78 number of characters per line
TotalWidth Infinity maximum number of

characters in a single expression

Options for output streams. 

You can test options for streams using Options, and reset them using SetOptions. 
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A.7 Mathematica Sessions

A.7.1 Command-Line Options and Environment Variables

−pwfile Mathematica password file
−pwpath path to search for a  Mathematica password file

−run Mathematica input to run Hkernel onlyL
−initfile Mathematica initialization file
−initpath path to search for initialization files

−noinit do not run initialization files
−mathlink communicate only via  MathLink

Typical command-line options for Mathematica executables. 

If  the  Mathematica  front  end  is  called  with  a  notebook  file  as  a  command-line  argument,  then this  notebook  will  be
made the initial selected notebook. Otherwise, a new notebook will be created for this purpose. 

Mathematica  kernels  and  front  ends  can  also  take  additional  command-line  options  specific  to  particular  window
environments. 

$MATHINIT command-line environment for the  
Mathematica front end, as well as  MathReader

$MATHKERNELINIT command-line environment for the  Mathematica kernel
$MATHEMATICA_BASE setting for  $BaseDirectory 

$MATHEMATICA_USERBASE setting for  $UserBaseDirectory 

Environment variables. 

If  no  command-line  options  are  explicitly  given,  Mathematica  will  read  the  values  of  operating  system environment
variables, and will use these values like command lines. 

A.7.2 Initialization

On startup, the Mathematica kernel does the following: 

† Perform license management operations.  

† Run Mathematica commands specified in any -runfirst options passed to the kernel executable.  

† Run Mathematica commands specified in any -run options passed to the kernel executable.  

† Run the Mathematica commands in the user-specific kernel init.m file.  

† Run the Mathematica commands in the system-wide kernel init.m file.  

† Load init.m and Kernel/init.m files in Autoload directories.  

† Begin running the main loop.   

A.7.3 The Main Loop

All Mathematica sessions repeatedly execute the following main loop: 
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† Read in input.  

† Apply $PreRead function, if defined, to the input string.  

† Print syntax warnings if necessary.  

† Apply $SyntaxHandler function if there is a syntax error.  

† Assign InString[n].  

† Apply $Pre function, if defined, to the input expression.  

† Assign In[n].  

† Evaluate expression.  

† Apply $Post function, if defined.  

† Assign Out[n], stripping off any formatting wrappers.  

† Apply $PrePrint function, if defined.  

† Assign MessageList[n] and clear $MessageList.  

† Print expression, if it is not Null.  

† Increment $Line.  

† Clear any pending aborts.  

Note that if you call Mathematica via MathLink from within an external program, then you must effectively create your
own main loop, which will usually differ from the one described above. 

A.7.4 Messages

During  a  Mathematica  session  messages  can  be  generated  either  by  explicit  calls  to  Message,  or  in  the  course  of
executing other built-in functions. 

f  :: name :: lang a message in a specific language
f  :: name a message in a default language

General:: name a general message with a given name

Message names. 

If no language is specified for a particular message, text for the message is sought in each of the languages specified by
$Language. If f::name is not defined, a definition for General::name is sought. If still no message is found, any
value defined for $NewMessage is applied to f and "name". 

Off[message]  prevents  a  specified  message  from  ever  being  printed.  Check  allows  you  to  determine  whether
particular messages were generated during the evaluation of an expression. $MessageList and MessageList[n]
record all the messages that were generated during the evaluation of a particular line in a Mathematica session. 

Messages are specified as strings to be used as the first argument of StringForm. $MessagePrePrint is applied
to each expression to be spliced into the string. 
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A.7.5 Termination

Exit@  D or  Quit@  D terminate  Mathematica 
$Epilog symbol to evaluate before  Mathematica exits

$IgnoreEOF whether to exit an interactive  Mathematica 
session when an end-of-file character is received

end.m file to read when  Mathematica terminates

Mathematica termination. 

There are several ways to end a Mathematica  session. If you are using Mathematica  interactively, typing Exit[ ] or
Quit[ ] on an input line will always terminate Mathematica. 

If you are taking input for Mathematica from a file, Mathematica will exit when it reaches the end of the file. If you are
using Mathematica  interactively, it will still exit if it receives an end-of-file character (typically ‚ÎdÏ). You can stop
Mathematica from doing this by setting $IgnoreEOF=True.  

A.7.6 Network License Management

single-machine license a process must always run on a specific machine
network license a process can run on any machine on a network

Single-machine and network licenses. 

Copies of Mathematica can be set up with either single-machine or network licenses. A network license is indicated by
a  line  in  the  mathpass  file  starting  with  !name,  where  name  is  the  name  of  the  server  machine  for  the  network
license. 

Network  licenses  are  controlled  by  the  Mathematica  license  management  program  mathlm.  This  program  must  be
running whenever a Mathematica  with a network license is being used. Typically you will want to set up your system
so that mathlm is started whenever the system boots.  

† Type  .îmathlm directly on the command line
† Add  mathlm as a Windows service

Ways to start the network license manager under Microsoft Windows. 

† Type  .êmathlm directly on the Unix command line
† Add a line to start  mathlm in your central  êetcêrc.local boot file
† Add a  crontab entry to start  mathlm 

Ways to start the network license manager on Macintosh and Unix systems. 

When  mathlm  is  not  started  directly  from a  command line,  it  normally  sets  itself  up  as  a  background  process,  and
continues  running  until  it  is  explicitly  terminated.  Note  that  if  one  mathlm  process  is  running,  any  other  mathlm
processes you try to start will automatically exit immediately. 
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−logfile  file write server messages to  file 
−pwfile  file use the specified  mathpass file Hdefault  .êmathpass L
−timeout  n suspend license from stopped  

Mathematica jobs after  n hours Hdefault infinityL
−restrict  file use the script contained in  file 

to limit or deny access to specified users or machines
−install install  mathlm as a Windows service HMicrosoft Windows onlyL

−uninstall  file uninstall  mathlm 

as a Windows service HMicrosoft Windows onlyL
−formatlog  string display server messages in a format specified by  string 

−localtime use local time instead of the default
Greenwich Mean Time in server messages

−trfile  file use the substitute text specified in  
file as the text of error messages,

−verbose  n print server messages to  stdout 

with the level of verbosity determined by  
n , an integer between 1 and 4

−help print the MathID and a list of all command-line options
−logginglevel  n control verbosity of messages to  

logfile with  n , an integer between 1 and 4
−trlang  language use built-in translations, where  language can be  

english ,  french ,  german , or  japanese
−noremotemonitor disable MonitorLM queries

from hosts other than the MathLM server

Command-line options for mathlm. 

You can use the mathlm -restrict file to tell the network license manager to authorize only certain sessions. The
detailed syntax of a restriction script is explained in the Network Mathematica System Administrator's Guide. 

monitorlm a program to monitor network license activity

Monitoring network license activity. 

You can use the program monitorlm  to  get  information on current  Mathematica  license activity on your computer
network. 

−server  name report license activity on the server specified by  
name —thismust be the first argument

−template  file use the format specified by  file as a template for the output
−output  file write output to  file 
−localtime use local time instead of the default Greenwich Mean Time

−format  format write output in the specified format, which can be  
text ,  html ,  cgi , or  file 

Command-line options for monitorlm. 
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A.8 Mathematica File Organization

A.8.1 Mathematica Distribution Files

A full Mathematica installation consists of something over 2200 separate files, arranged in a total of about 280 directo-
ries under  the main installation directory.  The location of the main installation directory is determined at install  time.
From within a Mathematica kernel, its name is given by the value of $InstallationDirectory. 

C:îProgram â  FilesîWolfram 

â  ResearchîMathematicaî5.0 

Windows

êApplicationsêMathematica 

 5.0.app 

Macintosh

êusrêlocalêmathematica Unix

Default locations for the Mathematica installation directory. 

The executable programs that launch Mathematica are typically in the main installation directory. Sometimes there may
also be links to them, or scripts accessing them, in other locations. From within a Mathematica kernel, First[$Com
mandLine] gives the full name of the executable program corresponding to that kernel. 

Mathematica Mathematica front end
MathKernel Mathematica kernel, usually with its own text-based interface

math Mathematica kernel to be run in a terminal or shell
mcc script for preprocessing and compiling  MathLink C source files

Typical executable programs accessible from the installation directory. 

The  main  installation  directory  has  three  standard  subdirectories  that  contain  material  distributed  with  Mathematica.
Under normal circumstances, none of the contents of these directories should ever be modified, except, for example, if
you choose to edit a shared style sheet. 

AddOns bundled  Mathematica add-ons
Documentation Mathematica system documentation

SystemFiles Mathematica system files

Top-level subdirectories of the main installation directory. 

Particularly on Unix systems, Mathematica  often has executable files for different computer architectures and systems
stored  in  a  single  overall  directory  structure.  Each  system  is  in  a  subdirectory  with  a  name  given  by  $SystemID.
Some resource directories may also contain files specific both to particular languages and particular computing environ-
ments. These files are given in subdirectories such as Japanese/Windows. 
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KernelêBinariesê system kernel binaries or elements for each computer system
KernelêSystemResourcesê system system-specific  .mx files used by the kernel

KernelêTextResources message and text files used by the kernel
FrontEndêBinariesê system front end binaries or elements for each computer system

FrontEndêSystemResources files used by the front end in each window system environment
FrontEndêTextResources message and text files used by the front end

FrontEndêStyleSheets default notebook style sheets
FrontEndêPalettes default palette notebooks

Librariesê system MathLink and other libraries used by the kernel and front end
Fonts Mathematica fonts, often copied to a central directory

CharacterEncodings specifications of character encodings
SpellingDictionaries spelling dictionaries

SystemDocumentationê env Unix  man pages and other environment-specific documentation
GraphicsêBinariesê system PostScript interpreters and graphics programs

GraphicsêSystemResources PostScript definitions and other resources for graphics
GraphicsêPackages packages for setting up graphics

Installation various auxiliary programs used in installation,
called automatically by the main installer program

IncludeFiles files for inclusion in other programs
Java files for the Java Runtime Environment Hif neededL

Typical subdirectories of the SystemFiles directory. 

Bundled with versions of Mathematica  are various standard add-on items. These are placed in the AddOns  subdirec-
tory of the main installation directory. 

StandardPackages standard add-on packages distributed with  Mathematica
MathLink MathLink development material

JLink J êLink material
NETLink .NETêLink material

Typical subdirectories of the AddOns directory. 

The default contents of the Mathematica Help Browser are stored in the Documentation directory. BrowserCate
gories files in each subdirectory set up the categories used in the Help Browser. BrowserIndex files provide data
for the master index.   

RefGuide reference guide and examples for built-in functions
MainBook the complete text of this book

AddOns documentation for standard add-on items
GettingStarted introductory documentation, and demos

OtherInformation additional information

Typical subdirectories of the Documentation directory. 

A.8.2 Loadable Files

You can  customize your  Mathematica  by  adding  files  that  can  loaded into  the system under  different  circumstances.
Such files are conventionally placed in either system-wide or user-specific base directories.       
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$BaseDirectory system-wide base directory for files to be loaded by  Mathematica 
$UserBaseDirectory user-specific base directory for files to be loaded by  Mathematica 

Base directories for files to be loaded by Mathematica. 

C:îDocuments â  and â  SettingsîAll 

â  UsersîApplication 

â  DataîMathematica 

Windows

êLibraryêMathematica Macintosh
êusrêshareêMathematica Unix

Typical values of $BaseDirectory.

C:îDocuments â  and 

â  Settingsî username î 
Application â  DataîMathematica 

Windows

∼êLibraryêMathematica Macintosh
∼ê.Mathematica Unix

Typical values of $UserBaseDirectory.

You can specify different  locations for  these directories by setting operating system environment variables when you
launch Mathematica, as discussed in Section A.7.1. 

Applications Mathematica application packages
Autoload packages to be autoloaded on startup
FrontEnd front end initialization files

Kernel kernel initialization files
Licensing license management files

SystemFiles general system files

Typical subdirectories of Mathematica base directories. 

Some files in base directories serve as configuration files, automatically used by the Mathematica kernel or front end. 

Kernelêinit.m run when the kernel is started
Kernelêend.m run when the kernel is terminated

FrontEndêinit.m read when the front end is started
SystemFilesê
FrontEndêStyleSheetsê 

customized notebook style sheets

SystemFilesê
FrontEndêPalettesê 

additional palettes to appear in the front end menu

Some typical kernel and front end configuration files. 

Kernel configuration files can contain any Mathematica commands. These commands can test global variables such as
$SystemID and $MachineName to determine what operations to perform. Front end configuration files can contain
only certain special commands, as described in Section A.2.12. 
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Applicationsê nameê named add-on applications
Autoloadê nameê add-ons to be loaded automatically when  Mathematica is started

Subdirectories under $BaseDirectory and $UserBaseDirectory. 

With the  default  setting for  the kernel  $Path  variable,  an  add-on can be  loaded from within a  Mathematica  session
simply by using the command <<name`. This will load the init.m file for the add-on, which should in turn be set up
to load other necessary files or packages. 

By  placing  an  add-on  under  the  Autoload  subdirectory  of  $BaseDirectory  or  $UserBaseDirectory,  you
can have Mathematica automatically load the add-on whenever you start the kernel or the front end.  

init.m or  Kernelêinit.m an initialization file to be loaded by the kernel
FrontEndêinit.m an initialization file to be loaded by the front end

Documentationê documentation to be found by the front end

Typical possible contents of the directory for an add-on. 

Note  that  with  the  default  setting  for  the  front  end  documentation  path,  all  documentation  in  Documentation
directories will automatically show up in the front end Help Browser. 
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A.9 Some Notes on Internal Implementation

A.9.1 Introduction

General  issues  about  the  internal  implementation of  Mathematica  are  discussed  in  Section 1.12.  Given  here  are  brief
notes on particular features. 

These notes  apply to Version 5.  Algorithms and other  aspects  of  implementation are subject  to  change in future ver-
sions. 

It should be emphasized that these notes give only a rough indication of basic methods and algorithms used. The actual
implementation usually involves many substantial additional elements. 

Thus,  for  example,  the  notes  simply  say  that  DSolve  solves  second-order  linear  differential  equations  using  the
Kovacic algorithm. But the internal code which achieves this is over 60 pages long, includes a number of other algo-
rithms, and involves a great many subtleties. 

A.9.2 Data Structures and Memory Management

A Mathematica  expression internally consists of a contiguous array of pointers, the first to the head, and the rest to its
successive elements. 

Each expression contains a special form of hash code which is used both in pattern matching and evaluation. 

For every symbol there is a central symbol table entry which stores all information about the symbol. 

Most raw objects such as strings and numbers are allocated separately; unique copies are however maintained of small
integers and of certain approximate numbers generated in computations. 

Every piece of memory used by Mathematica maintains a count of how many times it is referenced. Memory is automat-
ically freed when this count reaches zero. 

The contiguous storage of elements in expressions reduces memory fragmentation and swapping. However, it can lead
to the copying of a complete array of pointers when a single element in a long expression is modified. Many optimiza-
tions based on reference counts and pre-allocation are used to avoid such copying. 

When appropriate,  large lists  and  nested  lists  of  numbers  are  automatically stored  as  packed  arrays  of  machine-sized
integers or real  numbers. The Mathematica  compiler is automatically used to compile complicated functions that will
be  repeatedly  applied  to  such  packed  arrays.  MathLink,  DumpSave,  Display,  as  well  as  various  Import  and
Export formats, make external use of packed arrays.  

A.9.3 Basic System Features

Mathematica  is  fundamentally an  interpreter  which  scans  through  expressions  calling internal  code pointed to by the
symbol table entries of heads that it encounters. 

Any  transformation  rule—whether given  as  x  ->  y  or  in  a  definition—is automatically  compiled  into  a  form  which
allows for rapid pattern matching. Many different types of patterns are distinguished and are handled by special code. 

A form of hashing that takes account of blanks and other features of patterns is used in pattern matching. 
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The internal code associated with pattern matching is approximately 250 pages long. 

When a large number of definitions are given for a particular symbol, a hash table is automatically built using a version
of Dispatch so that appropriate rules can quickly be found. 

A.9.4 Numerical and Related Functions

Number representation and numerical evaluation

è Large integers and high-precision approximate numbers are stored as arrays of base 232  or 264  digits, depending on the lengths of 
machine integers. 

è Precision is internally maintained as a floating-point number. 

è IntegerDigits, RealDigits and related base conversion functions use recursive divide-and-conquer algorithms. Similar 
algorithms are used for number input and output. 

è N uses an adaptive procedure to increase its internal working precision in order to achieve whatever overall precision is requested. 

è Floor, Ceiling and related functions use an adaptive procedure similar to N to generate exact results from exact input.  

Basic arithmetic

è Multiplication of large integers and high-precision approximate numbers is done using interleaved schoolbook, Karatsuba, 
three-way Toom-Cook and number-theoretic transform algorithms. 

è Machine-code optimization for specific architectures is achieved by using GMP. 

è Integer powers are found by a left-right binary decomposition algorithm. 

è Reciprocals and rational powers of approximate numbers use Newton's method. 

è Exact roots start from numerical estimates. 

è Significance arithmetic is used for all arithmetic with approximate numbers beyond machine precision.  

Pseudorandom numbers

è Random uses the Wolfram rule 30 cellular automaton generator for integers. 

è It uses a Marsaglia-Zaman subtract-with-borrow generator for real numbers. 

Number-theoretical functions

è GCD interleaves the HGCD algorithm, the Jebelean-Sorenson-Weber accelerated GCD algorithm, and a combination of Euclid's 
algorithm and an algorithm based on iterative removal of powers of 2. 

è PrimeQ first tests for divisibility using small primes, then uses the Miller-Rabin strong pseudoprime test base 2 and base 3, and 
then uses a Lucas test. 

è As of 1997, this procedure is known to be correct only for n < 1016 , and it is conceivable that for larger n  it could claim a 
composite number to be prime. 

è The package NumberTheory`PrimeQ` contains a much slower algorithm which has been proved correct for all n . It can return 
an explicit certificate of primality. 

è FactorInteger switches between trial division, Pollard p - 1, Pollard rho and quadratic sieve algorithms. 

è The package NumberTheory`FactorIntegerECM` contains an elliptic curve algorithm suitable for factoring some very 
large integers. 

è Prime and PrimePi use sparse caching and sieving. For large n , the Lagarias-Miller-Odlyzko algorithm for PrimePi is used, 
based on asymptotic estimates of the density of primes, and is inverted to give Prime. 
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è LatticeReduce uses the Lenstra-Lenstra-Lovasz lattice reduction algorithm. 

è To find a requested number of terms ContinuedFraction uses a modification of Lehmer's indirect method, with a 
self-restarting divide-and-conquer algorithm to reduce the numerical precision required at each step. 

è ContinuedFraction uses recurrence relations to find periodic continued fractions for quadratic irrationals. 

è FromContinuedFraction uses iterated matrix multiplication optimized by a divide-and-conquer method.  

Combinatorial functions

è Most combinatorial functions use sparse caching and recursion. 

è Factorial, Binomial and related functions use a divide-and-conquer algorithm to balance the number of digits in subprod-
ucts. 

è Fibonacci[n] uses an iterative method based on the binary digit sequence of n. 

è PartitionsP[n] uses Euler's pentagonal formula for small n, and the non-recursive Hardy-Ramanujan-Rademacher method for 
larger n. 

è ClebschGordan and related functions use generalized hypergeometric series. 

Elementary transcendental functions

è Exponential and trigonometric functions use Taylor series, stable recursion by argument doubling, and functional relations. 

è Log and inverse trigonometric functions use Taylor series and functional relations.  

Mathematical constants

è Values of constants are cached once computed. 

è Binary splitting is used to subdivide computations of constants. 

è Pi is computed using the Chudnovsky formula. 

è E is computed from its series expansion. 

è EulerGamma uses the Brent-McMillan algorithm. 

è Catalan is computed from a linearly convergent Ramanujan sum.  

Special functions

è For machine precision most special functions use Mathematica-derived rational minimax approximations. The notes that follow 
apply mainly to arbitrary precision. 

è Orthogonal polynomials use stable recursion formulas for polynomial cases and hypergeometric functions in general. 

è Gamma uses recursion, functional equations and the Binet asymptotic formula. 

è Incomplete gamma and beta functions use hypergeometric series and continued fractions. 

è PolyGamma uses Euler-Maclaurin summation, functional equations and recursion. 

è PolyLog uses Euler-Maclaurin summation, expansions in terms of incomplete gamma functions and numerical quadrature. 

è Zeta and related functions use Euler-Maclaurin summation and functional equations. Near the critical strip they also use the 
Riemann-Siegel formula. 

è StieltjesGamma uses Keiper's algorithm based on numerical quadrature of an integral representation of the zeta function. 

è The error function and functions related to exponential integrals are all evaluated using incomplete gamma functions. 

è The inverse error functions use binomial search and a high-order generalized Newton's method. 
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è Bessel functions use series and asymptotic expansions. For integer orders, some also use stable forward recursion. 

è The hypergeometric functions use functional equations, stable recurrence relations, series expansions and asymptotic series. 
Methods from NSum and NIntegrate are also sometimes used. 

è ProductLog uses high-order Newton's method starting from rational approximations and asymptotic expansions. 

è Elliptic integrals are evaluated using the descending Gauss transformation.  

è Elliptic theta functions use series summation with recursive evaluation of series terms. 

è Other elliptic functions mostly use arithmetic-geometric mean methods. 

è Mathieu functions use Fourier series. The Mathieu characteristic functions use generalizations of Blanch's Newton method.  

Numerical integration

è With Method->Automatic, NIntegrate uses GaussKronrod in one dimension, and MultiDimensional otherwise. 

è If an explicit setting for MaxPoints is given, NIntegrate by default uses Method->QuasiMonteCarlo. 

è GaussKronrod: adaptive Gaussian quadrature with error estimation based on evaluation at Kronrod points. 

è DoubleExponential: non-adaptive double-exponential quadrature. 

è Trapezoidal: elementary trapezoidal method. 

è Oscillatory: transformation to handle certain integrals containing trigonometric and Bessel functions. 

è MultiDimensional: adaptive Genz-Malik algorithm. 

è MonteCarlo: non-adaptive Monte Carlo. 

è QuasiMonteCarlo: non-adaptive Halton-Hammersley-Wozniakowski algorithm. 

Numerical sums and products

è If the ratio test does not give 1, the Wynn epsilon algorithm is applied to a sequence of partial sums or products. 

è Otherwise Euler-Maclaurin summation is used with Integrate or NIntegrate.  

Numerical differential equations

è For ordinary differential equations, NDSolve by default uses an LSODA approach, switching between a non-stiff Adams method 
and a stiff Gear backward differentiation formula method.  

è For linear boundary value problems the Gel'fand-Lokutsiyevskii chasing method is used. 

è Differential-algebraic equations use IDA, based on repeated BDF and Newton iteration methods. 

è For Hn + 1L -dimensional PDEs the method of lines is used. 

è NDSolve supports explicit Method settings that cover most known methods from the literature. 

è The code for NDSolve and related functions is about 1400 pages long.  

Approximate equation solving and optimization

è Polynomial root finding is done based on the Jenkins-Traub algorithm. 

è For sparse linear systems, Solve and NSolve use several efficient numerical methods, mostly based on Gauss factoring with 
Markowitz products (approximately 250 pages of code). 

è For systems of algebraic equations, NSolve computes a numerical Gröbner basis using an efficient monomial ordering, then uses 
eigensystem methods to extract numerical roots. 

è FindRoot uses a damped Newton's method, the secant method and Brent's method. 
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è With Method->Automatic and two starting values, FindMinimum uses Brent's principal axis method.With one starting value 
for each variable, FindMinimum uses BFGS quasi-Newton methods, with a limited memory variant for large systems. 

è If the function to be minimized is a sum of squares, FindMinimum uses the Levenberg-Marquardt method (Method->Leven
bergMarquardt). 

è LinearProgramming uses simplex and revised simplex methods, and with Method->"InteriorPoint" uses primal-dual 
interior point methods. 

è For linear cases, NMinimize and NMaximize use the same methods as LinearProgramming. For nonlinear cases, they use 
Nelder-Mead methods, supplemented by differential evolution, especially when integer variables are present.   

Data manipulation

è Fourier uses the FFT algorithm with decomposition of the length into prime factors. When the prime factors are large, fast 
convolution methods are used to maintain O Hn log HnLL  asymptotic complexity. 

è For real input, Fourier uses a real transform method. 

è ListConvolve and ListCorrelate use FFT algorithms when possible. For exact integer inputs, enough digits are computed 
to deduce exact integer results. 

è InterpolatingFunction uses divided differences to construct Lagrange or Hermite interpolating polynomials. 

è Fit works using singular value decomposition. FindFit uses the same method for the linear least-squares case, the Levenberg--
Marquardt method for nonlinear least-squares, and general FindMinimum methods for other norms. 

è CellularAutomaton uses bit-packed parallel operations with bit slicing. For elementary rules, absolutely optimal Boolean 
functions are used, while for totalistic rules, just-in-time-compiled bit-packed tables are used. In two dimensions, sparse 
bit-packed arrays are used when possible, with only active clusters updated.  

Approximate numerical linear algebra

è Machine-precision matrices are typically converted to a special internal representation for processing. 

è SparseArray with rules involving patterns uses cylindrical algebraic decomposition to find connected array components. Sparse 
arrays are stored internally using compressed sparse row formats, generalized for tensors of arbitrary rank.  

è For dense arrays, LAPACK algorithms extended for arbitrary precision are used when appropriate. 

è BLAS technology is used to optimize for particular machine architectures.  

è LUDecomposition, Inverse, RowReduce and Det use Gaussian elimination with partial pivoting. LinearSolve uses the 
same methods, together with iterative improvement for high-precision numbers. 

è For sparse arrays, LinearSolve uses UMFPACK multifrontal direct solver methods and with Method->"Krylov" uses 
Krylov iterative methods preconditioned by an incomplete LU factorization. Eigenvalues and Eigenvectors use ARPACK 
Arnoldi methods.    

è SingularValueDecomposition uses the QR algorithm with Givens rotations. PseudoInverse, NullSpace and 
MatrixRank are based on SingularValueDecomposition. 

è QRDecomposition uses Householder transformations. 

è SchurDecomposition uses QR iteration. 

è MatrixExp uses Schur decomposition.   

Exact numerical linear algebra

è Inverse and LinearSolve use efficient row reduction based on numerical approximation. 

è With Modulus->n, modular Gaussian elimination is used. 

è Det uses modular methods and row reduction, constructing a result using the Chinese Remainder Theorem. 
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è Eigenvalues works by interpolating the characteristic polynomial. 

è MatrixExp uses Putzer's method or Jordan decomposition.  

A.9.5 Algebra and Calculus

Polynomial manipulation

è For univariate polynomials, Factor uses a variant of the Cantor-Zassenhaus algorithm to factor modulo a prime, then uses Hensel 
lifting and recombination to build up factors over the integers. 

è Factoring over algebraic number fields is done by finding a primitive element over the rationals and then using Trager's algorithm. 

è For multivariate polynomials Factor works by substituting appropriate choices of integers for all but one variable, then factoring 
the resulting univariate polynomials, and reconstructing multivariate factors using Wang's algorithm. 

è The internal code for Factor exclusive of general polynomial manipulation is about 250 pages long. 

è FactorSquareFree works by finding a derivative and then iteratively computing GCDs. 

è Resultant uses either explicit subresultant polynomial remainder sequences or modular sequences accompanied by the Chinese 
Remainder Theorem. 

è Apart uses either a version of the Padé technique or the method of undetermined coefficients. 

è PolynomialGCD and Together usually use modular algorithms, including Zippel's sparse modular algorithm, but in some 
cases use subresultant polynomial remainder sequences.

è For multivariate polynomials the Chinese Remainder Theorem together with sparse interpolation are also used.  

Symbolic linear algebra

è RowReduce, LinearSolve, NullSpace and MatrixRank are based on Gaussian elimination. 

è Inverse uses cofactor expansion and row reduction. Pivots are chosen heuristically by looking for simple expressions. 

è Det uses direct cofactor expansion for small matrices, and Gaussian elimination for larger ones. 

è MatrixExp finds eigenvalues and then uses Putzer's method. 

è Zero testing for various functions is done using symbolic transformations and interval-based numerical approximations after 
random numerical values have been substituted for variables.  

Exact equation solving and reduction

è For linear equations Gaussian elimination and other methods of linear algebra are used. 

è Root objects representing algebraic numbers are usually isolated and manipulated using validated numerical methods. With 
ExactRootIsolation->True, Root uses for real roots a continued fraction version of an algorithm based on Descartes' rule 
of signs, and for complex roots the Collins-Krandick algorithm. 

è For single polynomial equations, Solve uses explicit formulas up to degree four, attempts to reduce polynomials using Factor 
and Decompose, and recognizes cyclotomic and other special polynomials. 

è For systems of polynomial equations, Solve constructs a Gröbner basis. 

è Solve and GroebnerBasis use an efficient version of the Buchberger algorithm. 

è For non-polynomial equations, Solve attempts to change variables and add polynomial side conditions. 

è The code for Solve and related functions is about 500 pages long. 

è For polynomial systems Reduce uses cylindrical algebraic decomposition for real domains and Gröbner basis methods for 
complex domains. 
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è With algebraic functions, Reduce constructs equivalent purely polynomial systems. With transcendental functions, Reduce 
generates polynomial systems composed with transcendental conditions, then reduces these using functional relations and a 
database of inverse image information. 

è CylindricalDecomposition uses the Collins-Hong algorithm with Brown-McCallum projection for well-oriented sets and 
Hong projection for other sets. CAD construction is done by Strzebonski's genealogy-based method using validated numerics 
backed up by exact algebraic number computation. For zero-dimensional systems Gröbner basis methods are used.  

è For Diophantine systems, Reduce solves linear equations using Hermite normal form, and linear inequalities using Contejean--
Devie methods. For univariate polynomial equations it uses an improved Cucker-Koiran-Smale method, while for bivariate 
quadratic equations, it uses Hardy-Muskat-Williams methods for ellipses, and classical techniques for Pell and other cases. 
Reduce includes specialized methods for about 25 classes of Diophantine equations, including the Tzanakis-de Weger algorithm 
for Thue equations.  

è With prime moduli, Reduce uses linear algebra for linear equations and Gröbner bases over prime fields for polynomial equa-
tions. For composite moduli, it uses Hermite normal form and Gröbner bases over integers. 

è  Resolve mainly uses an optimized subset of the methods from Reduce. 

è Reduce and related functions use about 350 pages of Mathematica code and 1400 pages of C code.  

Exact optimization

è For linear cases, Minimize and Maximize use exact linear programming methods. For polynomial cases they use cylindrical 
algebraic decomposition.  

Simplification

è FullSimplify automatically applies about 40 types of general algebraic transformations, as well as about 400 types of rules for 
specific mathematical functions. 

è Generalized hypergeometric functions are simplified using about 70 pages of Mathematica transformation rules. These functions 
are fundamental to many calculus operations in Mathematica. 

è FunctionExpand uses an extension of Gauss's algorithm to expand trigonometric functions with arguments that are rational 
multiples of p . 

è Simplify and FullSimplify cache results when appropriate. 

è When assumptions specify that variables are real, polynomial constraints are handled by cylindrical algebraic decomposition, while 
linear constraints are handled by the simplex algorithm or Loos-Weispfenning linear quantifier elimination. For strict polynomial 
inequalities, Strzebonski's generic CAD algorithm is used. 

è When assumptions involve equations among polynomials, Gröbner basis methods are used. 

è For non-algebraic functions, a database of relations is used to determine the domains of function values from the domains of their 
arguments. Polynomial-oriented algorithms are used whenever the resulting domains correspond to semi-algebraic sets. 

è For integer functions, several hundred theorems of number theory are used in the form of Mathematica rules.  

Differentiation and integration

è Differentiation uses caching to avoid recomputing partial results. 

è For indefinite integrals, an extended version of the Risch algorithm is used whenever both the integrand and integral can be 
expressed in terms of elementary functions, exponential integral functions, polylogarithms and other related functions. 

è For other indefinite integrals, heuristic simplification followed by pattern matching is used. 

è The algorithms in Mathematica cover all of the indefinite integrals in standard reference books such as Gradshteyn-Ryzhik. 

è Definite integrals that involve no singularities are mostly done by taking limits of the indefinite integrals. 

è Many other definite integrals are done using Marichev-Adamchik Mellin transform methods. The results are often initially 
expressed in terms of Meijer G functions, which are converted into hypergeometric functions using Slater's Theorem and then 
simplified. 
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è Integrate uses about 500 pages of Mathematica code and 600 pages of C code.  

Differential equations

è Systems of linear equations with constant coefficients are solved using matrix exponentiation. 

è Second-order linear equations with variable coefficients whose solutions can be expressed in terms of elementary functions and 
their integrals are solved using the Kovacic algorithm. 

è Higher-order linear equations are solved using Abramov and Bronstein algorithms. 

è Systems of linear equations with rational function coefficients whose solutions can be given as rational functions are solved using 
Abramov-Bronstein elimination algorithms. 

è Linear equations with polynomial coefficients are solved in terms of special functions by using Mellin transforms. 

è When possible, nonlinear equations are solved by symmetry reduction techniques. For first-order equations classical techniques are 
used; for second-order equations and systems integrating factor and Bocharov techniques are used. 

è The algorithms in Mathematica cover most of the ordinary differential equations in standard reference books such as Kamke.  

è For partial differential equations, separation of variables and symmetry reduction are used. 

è For differential-algebraic equations, a method based on isolating singular parts by core nilpotent decomposition is used.  

è DSolve uses about 300 pages of Mathematica code and 200 pages of C code.  

Sums and products

è Polynomial series are summed using Bernoulli and Euler polynomials. 

è Series involving rational and factorial functions are summed using Adamchik techniques in terms of generalized hypergeometric 
functions, which are then simplified. 

è Series involving polygamma functions are summed using integral representations. 

è Dirichlet and related series are summed using pattern matching. 

è For infinite series, d'Alembert and Raabe convergence tests are used. 

è The algorithms in Mathematica cover at least 90% of the sums in standard reference books such as Gradshteyn-Ryzhik. 

è Products are done primarily using pattern matching. 

è Sum and Product use about 100 pages of Mathematica code.  

Series and limits

è Series works by recursively composing series expansions of functions with series expansions of their arguments. 

è Limits are found from series and using other methods.  

Recurrence equations

è RSolve solves systems of linear equations with constant coefficients using matrix powers. 

è Linear equations with polynomial coefficients whose solutions can be given as hypergeometric terms are solved using van Hoeij 
algorithms.  

è Systems of linear equations with rational function coefficients whose solutions can be given as rational functions are solved using 
Abramov-Bronstein elimination algorithms. 

è Nonlinear equations are solved by transformation of variables, Göktas symmetry reduction methods or Germundsson trigonometric 
power methods.  

è The algorithms in Mathematica cover most of the ordinary and q -difference equations ever discussed in the mathematical litera-
ture. 
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è For difference-algebraic equations, a method based on isolating singular parts by core nilpotent decomposition is used.   

A.9.6 Output and Interfacing

Graphics

è Hidden-surface elimination for 3D graphics is done so as to be independent of display resolution. 

è A custom-written PostScript interpreter is used to render graphics in the front end. 

è Notebooks use a custom platform-independent bitmap image format.  

Front end

è The front end uses MathLink both for communication with the kernel, and for communication between its different internal 
components. 

è All menu items and other functions in the front end are specified using Mathematica expressions. 

è Configuration and preference files use Mathematica language format. 

è The Help Browser is based on Mathematica notebooks generated from the same source code as this book.  

Notebooks

è Notebooks are represented as Mathematica expressions. 

è Notebook files contain additional cached outline information in the form of Mathematica comments. This information makes 
possible efficient random access. 

è Incremental saving of notebooks is done so as to minimize rewriting of data, moving data already written out whenever possible. 

è Platform-independent double-buffering is used by default to minimize flicker when window contents are updated. 

è Autoscrolling uses a control-theoretical mechanism to optimize smoothness and controllability. 

è All special characters are platform-independently represented using Unicode. Mapping tables are set up for specific Kanji and other 
fonts. 

è Spell checking and hyphenation are done using algorithms and a 100,000-word standard English dictionary, together with a 
20,000-word technical dictionary, with 5000 Mathematica and other words added. Spelling correction is done using textual and 
phonetic metrics.   

MathLink

è In OSI terms, MathLink is a presentation-level protocol, which can be layered on top of any transport medium, both message-based 
and stream-based. 

è MathLink encodes data in a compressed format when it determines that both ends of a link are on compatible computer systems. 

è MathLink can transmit out-of-band data such as interrupts as well as Mathematica expressions. 

è When possible MathLink is implemented using dynamically linked shared libraries.  

Expression formatting

è The front end uses a directed acyclic graph to represent the box structure of formatted expressions. 

è Boxes are interpreted using a two-dimensional generalization of an operator precedence parser. 

è Incremental parsing is used to minimize structure and display updating. 

è Character spacing and positioning are determined from font data and operator tables. 
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è Line breaking is globally optimized throughout expressions, based on a method similar to the one used for text layout in TeX. 

è During input, line breaking is set up so that small changes to expressions rarely cause large-scale reformatting; if the input needs to 
jump, an elliptical cursor tracker momentarily appears to guide the eye.  

è Expression formatting uses about 2000 pages of C code.  
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A.10 Listing of Major Built-in Mathematica Objects

Introduction

This section gives an alphabetical list of built-in objects which are supported in Mathematica Version 5.

The list does not include objects such as CirclePlus  that are associated with operators such as ∆ , but which have
no built-in values. 

The list  also does  not  include objects  that  are defined in Mathematica  packages,  even those  distributed as a standard
part of the Mathematica system. 

Note also that options which appear only in a single built-in Mathematica function are sometimes not given as separate
entries in the list. 

A few objects in the list, mostly ones related to external operations, are not available on some computer systems. 

New in Version …  indicates in what version of Mathematica a function first appeared. 

Modified in Version …  indicates in what version substantial changes of functionality were last made. 

The internal code of Mathematica is continually improved and enhanced, and between each major version the code for
a great many built-in functions is modified in some way or another. So even if an object is not indicated by  Modified in
…  in this listing, it may well have been substantially enhanced in its efficiency or in the quality of results it gives. 

This  listing  includes  only  standard  built-in  Mathematica  objects  that  reside  in  the  System`  context.  In  a  typical
version of Mathematica there may be additional objects present both in the System` context, as well as in the Devel
oper`  and Experimental`  contexts.  For  production  work it is best to use only documented objects in the Sys
tem`  context,  since  the specifications  of  other  objects  may change in future  versions.  The online documentation for
your  version  of  Mathematica  may  contain  information  on  Developer`  and  Experimental`  objects.  Further
information is available at the Wolfram Research website.  

System` built-in objects given in this listing
Developer` advanced objects intended for  Mathematica developers

Experimental` objects provided on an experimental basis

Contexts for built-in objects. 

In  many  versions  of  Mathematica,  you  can  access  the  text  given  in  this  section  directly,  typically  using  the  Help
Browser (see Section 1.3.8). Typing ?F to the Mathematica kernel will also give you the main description of the object
F from this section. 

More information on related packages mentioned in this listing can be found using the Help Browser, or by looking at
Standard Add-on Packages  published by Wolfram Research. Note that the specifications of functions in packages are
subject to incompatible changes in future versions of Mathematica. 

Many functions listed below are implemented using Mathematica  programs which are distributed in source code form
with most versions of Mathematica. Information on the location of these programs can be found in online documenta-
tion.  

There are a total of 1226 objects in this listing. 
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Conventions in This Listing

text  in  this  style literal  Mathematica 
input that you type in as it is printed He.g., function namesL

text  in  this  style expressions that you fill in He.g., function argumentsL
object1 ,  object2 , … a sequence of any number of expressions

Conventions used in the list of built-in objects. 
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Listing

Abort

AbortProtect

Abs

AbsoluteDashing

AbsoluteOptions

AbsolutePointSize

AbsoluteThickness

AbsoluteTime

AbsoluteTiming

AccountingForm

Accuracy

AccuracyGoal

Active

AddTo

AdjustmentBox

AiryAi

AiryAiPrime

AiryBi

AiryBiPrime

Algebraics

All

Alternatives

AmbientLight

AnchoredSearch

And

AnimationDirection

AnimationDisplayTime

Apart

AppellF1

Append

AppendTo

Apply

ArcCos
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ArcCosh

ArcCot

ArcCoth

ArcCsc

ArcCsch

ArcSec

ArcSech

ArcSin

ArcSinh

ArcTan

ArcTanh

Arg

ArithmeticGeometricMean

Array

ArrayDepth

ArrayRules

ArrayQ

AspectRatio

AspectRatioFixed

Assuming

Assumptions

AtomQ

Attributes

AutoIndent

AutoItalicWords

Automatic

AutoSpacing

Axes

AxesEdge

AxesLabel

AxesOrigin

AxesStyle

Background

BaseForm

Begin
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BeginPackage

BernoulliB

BesselI

BesselJ

BesselK

BesselY

Beta

BetaRegularized

Binomial

BitAnd

BitNot

BitOr

BitXor

Blank

BlankNullSequence

BlankSequence

Block

Booleans

Boxed

BoxRatios

BoxStyle

Break

ButtonBox

ButtonData

ButtonEvaluator

ButtonExpandable

ButtonFrame

ButtonFunction

ButtonMargins

ButtonMinHeight

ButtonNote

ButtonNotebook

ButtonSource

ButtonStyle

Byte
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ByteCount

C

Cancel

CarmichaelLambda

Cases

Catalan

Catch

Ceiling

Cell

CellAutoOverwrite

CellBaseline

CellDingbat

CellEditDuplicate

CellEvaluationDuplicate

CellFrame

CellFrameMargins

CellGroupData

CellGrouping

CellLabel

CellLabelAutoDelete

CellMargins

CellOpen

CellPrint

CellTags

CellularAutomaton

CForm

Character

CharacteristicPolynomial

CharacterEncoding

CharacterRange

Characters

ChebyshevT

ChebyshevU

Check

CheckAbort
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CholeskyDecomposition

Chop

Circle

Clear

ClearAll

ClearAttributes

ClebschGordan

ClipFill

Close

CMYKColor

Coefficient

CoefficientArrays

CoefficientList

Collect

ColorFunction

ColorFunctionScaling

ColorOutput

ColumnAlignments

ColumnForm

ColumnLines

ColumnsEqual

ColumnSpacings

ColumnWidths

Compile

Compiled

CompiledFunction

Complement

Complex

Complexes

ComplexExpand

ComplexInfinity

ComplexityFunction

ComposeList

ComposeSeries

Composition
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CompoundExpression

Condition

Conjugate

Constant

Constants

Context

Contexts

Continue

ContinuedFraction

ContourGraphics

ContourLines

ContourPlot

Contours

ContourShading

ContourStyle

ConversionRules

Copyable

CopyDirectory

CopyFile

Cos

Cosh

CoshIntegral

CosIntegral

Cot

Coth

Count

CreateDirectory

Cross

Csc

Csch

Cuboid

Cyclotomic

CylindricalDecomposition

D

Dashing
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Date

DeclarePackage

Decompose

Decrement

DedekindEta

Default

DefaultColor

DefaultDuplicateCellStyle

DefaultNewCellStyle

Definition

Degree

Deletable

Delete

DeleteCases

DeleteDirectory

DeleteFile

DelimiterFlashTime

Denominator

DensityGraphics

DensityPlot

Depth

Derivative

Det

DiagonalMatrix

Dialog

DialogProlog

DialogSymbols

DigitBlock

DigitCount

DigitQ

Dimensions

DiracDelta

DirectedInfinity

Directory

DirectoryName
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DirectoryStack

DiscreteDelta

Disk

Dispatch

Display

DisplayForm

DisplayFunction

DisplayString

Distribute

Divide

DivideBy

Divisors

DivisorSigma

Do

Dot

DownValues

DragAndDrop

Drop

DSolve

Dt

DumpSave

E

EdgeForm

Editable

Eigensystem

Eigenvalues

Eigenvectors

Element

Eliminate

EllipticE

EllipticExp

EllipticF

EllipticK

EllipticLog

EllipticNomeQ

10 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



EllipticPi

EllipticTheta

EllipticThetaPrime

Encode

End

EndOfFile

EndPackage

EngineeringForm

Environment

Epilog

Equal

Erf

Erfc

Erfi

ErrorBox

EulerE

EulerGamma

EulerPhi

Evaluatable

Evaluate

EvaluationMonitor

EvaluationNotebook

Evaluator

EvenQ

ExcludedForms

Exists

Exit

Exp

Expand

ExpandAll

ExpandDenominator

ExpandNumerator

ExpIntegralE

ExpIntegralEi

Exponent
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ExponentFunction

Export

ExportString

Expression

ExpToTrig

ExtendedGCD

Extension

Extract

FaceForm

FaceGrids

Factor

Factorial

Factorial2

FactorInteger

FactorList

FactorSquareFree

FactorSquareFreeList

FactorTerms

FactorTermsList

False

Fibonacci

FileByteCount

FileDate

FileNames

FileType

Find

FindFit

FindInstance

FindList

FindMaximum

FindMinimum

FindRoot

First

Fit

FixedPoint
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FixedPointList

Flat

Flatten

FlattenAt

Floor

Fold

FoldList

FontColor

FontFamily

FontSize

FontSlant

FontSubstitutions

FontTracking

FontWeight

For

ForAll

Format

FormatType

FormBox

FortranForm

Fourier

FourierCosTransform

FourierSinTransform

FourierTransform

FractionalPart

FractionBox

Frame

FrameBox

FrameLabel

FrameStyle

FrameTicks

FreeQ

FresnelC

FresnelS

FromCharacterCode
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FromContinuedFraction

FromDate

FromDigits

FrontEndExecute

FullDefinition

FullForm

FullGraphics

FullSimplify

Function

FunctionExpand

FunctionInterpolation

Gamma

GammaRegularized

GaussianIntegers

GCD

GegenbauerC

General

GenerateConditions

GeneratedCell

GeneratedParameters

Get

Glaisher

GoldenRatio

Goto

Graphics

Graphics3D

GraphicsArray

GraphicsSpacing

GrayLevel

Greater

GreaterEqual

GridBaseline

GridBox

GridDefaultElement

GridLines

14 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



GroebnerBasis

GroupPageBreakWithin

HarmonicNumber

Head

Heads

HermiteH

HiddenSurface

Hold

HoldAll

HoldAllComplete

HoldComplete

HoldFirst

HoldForm

HoldPattern

HoldRest

HTMLSave

Hue

Hypergeometric0F1

Hypergeometric0F1Regularized

Hypergeometric1F1

Hypergeometric1F1Regularized

Hypergeometric2F1

Hypergeometric2F1Regularized

HypergeometricPFQ

HypergeometricPFQRegularized

HypergeometricU

Hyphenation

I

Identity

IdentityMatrix

If

IgnoreCase

Im

ImageMargins

ImageResolution
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ImageRotated

ImageSize

Implies

Import

ImportString

In

Increment

Indeterminate

Infinity

Infix

Information

InitializationCell

Inner

Input

InputAliases

InputAutoReplacements

InputForm

InputNotebook

InputStream

InputString

Insert

Install

InString

Integer

IntegerDigits

IntegerExponent

IntegerPart

IntegerQ

Integers

Integrate

InterpolatingFunction

InterpolatingPolynomial

Interpolation

InterpretationBox

Interrupt
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Intersection

Interval

IntervalIntersection

IntervalMemberQ

IntervalUnion

Inverse

InverseBetaRegularized

InverseEllipticNomeQ

InverseErf

InverseErfc

InverseFourier

InverseFourierCosTransform

InverseFourierSinTransform

InverseFourierTransform

InverseFunction

InverseFunctions

InverseGammaRegularized

InverseJacobiSNInverseJacobiCN1 InverseLaplaceTransform

InverseSeries

InverseWeierstrassP

InverseZTransform

JacobiAmplitude

JacobiP

JacobiSNJacobiCN1 JacobiSymbol

JacobiZeta

Join

JordanDecomposition

Khinchin

KleinInvariantJ

KroneckerDelta

Label

LaguerreL

LanguageCategory

LaplaceTransform

Last
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LatticeReduce

LCM

LeafCount

LegendreP

LegendreQ

Length

LerchPhi

Less

LessEqual

LetterQ

Level

Lighting

LightSources

Limit

LimitsPositioning

Line

LinearProgramming

LinearSolve

LinearSolveFunction

LineIndent

LineIndentMaxFraction

LineSpacing

LinkClose

LinkConnect

LinkCreate

LinkInterrupt

LinkLaunch

LinkObject

LinkPatterns

LinkProtocol

LinkRead

LinkReadyQ

Links

LinkWrite

List
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Listable

ListContourPlot

ListConvolve

ListCorrelate

ListDensityPlot

ListInterpolation

ListPlay

ListPlot

ListPlot3D

Locked

Log

LogGamma

LogicalExpand

LogIntegral

LowerCaseQ

LUDecomposition

MachineNumberQ

MachinePrecision

Magnification

MakeBoxes

MakeExpression

MantissaExponent

Map

MapAll

MapAt

MapIndexed
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A.11 Listing of C Functions in the MathLink Library

Introduction

Listed here are functions provided in the MathLink Developer Kit.    

These  functions  are  declared  in  the  file  mathlink.h,  which  should  be  included  in  the  source  code  for  any  Math-
Link-compatible program. 

Unless you specify #define MLPROTOTYPES 0 before #include "mathlink.h" the functions will be included
with standard C prototypes. 

The following special types are defined in mathlink.h: 

† MLINK: a MathLink link object (analogous to LinkObject in Mathematica)  

† MLMARK: a mark in a MathLink stream  

† MLENV: MathLink library environment   

The following constants are set up when a MathLink template file is processed: 

† MLINK stdlink: the standard link that connects a program built from MathLink templates to Mathematica 

† MLENV stdenv: the standard MathLink environment in a program built from MathLink templates   

All  functions  described  here  are  C  language  functions.  They  can  be  called  from  other  languages  with  appropriate
wrappers. 

The functions have the following general features: 

† Those which return int yield a non-zero value if they succeed; otherwise they return 0 and have no effect.  

† In a program set up using MathLink templates, the link to Mathematica is called stdlink.  

† Functions which put data to a link do not deallocate memory used to store the data.  

† Functions which get data from a link may allocate memory to store the data.  

† Functions which get data from a link will not return until the necessary data becomes available. A yield function can be registered 
to be called during the wait.  

MLAbort

† int MLAbort is a global variable set when a program created using mcc or mprep has been sent an 
abort interrupt. 

† LinkInterrupt[link] can be used to send an abort interrupt from Mathematica to a program connected to a particular link. 

† See Section 2.13.13.

MLActivate()

† int MLActivate(MLINK link) activates a MathLink connection, waiting for the program at the other 
end to respond. 
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† MLActivate() can be called only after MLOpenArgv() or MLOpenString(). 

† See Section 2.13.14.

MLCheckFunction()

† int MLCheckFunction(MLINK link, char *name, long *n) checks that a function whose head 
is a symbol with the specified name is on link, and stores the number of the arguments of the function in 
n. 

† MLCheckFunction() returns 0 if the current object on the link is not a function with a symbol as a head, or if the name of the 
symbol does not match name. 

† See Section 2.13.4.

† See also: MLGetFunction. 

MLClearError()

† int MLClearError(MLINK link) if possible clears any error on link and reactivates the link. 

† MLClearError() returns 0 if it was unable to clear the error. This can happen if the error was for example the result of a link 
no longer being open. 

† See Section 2.13.13.

MLClose()

† void MLClose(MLINK link) closes a MathLink connection. 

† Calling MLClose() does not necessarily terminate a program at the other end of the link. 

† Any data buffered in the link is sent when MLClose() is called. 

† Programs should close all links they have opened before terminating. 

† See Section 2.13.12 and Section 2.13.14.

† See also: MLDeinitialize. 

MLCreateMark()

† MLMARK MLCreateMark(MLINK link) creates a mark at the current position in a sequence of 
expressions on a link. 

† Calling MLCreateMark() effectively starts recording all expressions received on the link. 

† See Section 2.13.12.

† See also: MLLoopbackOpen. 

MLDeinitialize()
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† void MLDeinitialize(MLENV env) deinitializes functions in the MathLink library. 

† An appropriate call to MLDeinitialize() is generated automatically when an external program is created from MathLink 
templates. 

† Any external program that uses the MathLink library must call MLDeinitialize() before exiting. 

† MLClose() must be called for all open links before calling MLDeinitialize(). 

† See Section 2.13.14.

MLDestroyMark()

† int MLDestroyMark(MLINK link, MLMARK mark) destroys the specified mark on a link. 

† Calling MLDestroyMark() disowns memory associated with the storage of expressions recorded after the mark. 

† See Section 2.13.12.

MLDisownByteString()

† void MLDisownByteString(MLINK link, unsigned char *s, long n) disowns memory 
allocated by MLGetByteString() to store the array of character codes s. 

† See Section 2.13.5.

† See also: MLDisownString. 

MLDisownIntegerArray()

† void MLDisownIntegerArray(MLINK link, int *a, long *dims, char **heads, long d) 
disowns memory allocated by MLGetIntegerArray() to store the array a, its dimensions dims and 
the heads heads. 

† See Section 2.13.4.

MLDisownIntegerList()

† void MLDisownIntegerList(MLINK link, int *a, long n) disowns memory allocated by 
MLGetIntegerList() to store the array a of length n. 

† See Section 2.13.4.

MLDisownRealArray()

† void MLDisownRealArray(MLINK link, double *a, long *dims, char **heads, long d) 
disowns memory allocated by MLGetRealArray() to store the array a, its dimensions dims and the 
heads heads. 
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† See Section 2.13.4.

MLDisownRealList()

† void MLDisownRealList(MLINK link, double *a, long n) disowns memory allocated by 
MLGetRealList() to store the array a of length n. 

† See Section 2.13.4.

MLDisownString()

† void MLDisownString(MLINK link, char *s) disowns memory allocated by MLGetString() 
to store the character string s. 

† See Section 2.13.4.

† See also: MLDisownUnicodeString. 

MLDisownSymbol()

† void MLDisownSymbol(MLINK link, char *s) disowns memory allocated by MLGetSymbol() 
or MLGetFunction() to store the character string s corresponding to the name of a symbol. 

† See Section 2.13.4 and Section 2.13.4.

MLDisownUnicodeString()

† void MLDisownUnicodeString(MLINK link, unsigned short *s, long n) disowns 
memory allocated by MLGetUnicodeString() to store the string s. 

† See Section 2.13.5.

† See also: MLDisownString. 

MLEndPacket()

† int MLEndPacket(MLINK link) specifies that a packet expression is complete and is ready to be 
sent on the specified link. 

† MLEndPacket() should be called to indicate the end of any top-level expression, regardless of whether its head is a standard 
packet. 

† See Section 2.13.9 and Section 2.13.14.

MLError()

4 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



† long MLError(MLINK link) returns a constant identifying the last error to occur on link, or 0 if none 
has occurred since the previous call to MLClearError(). 

† You can get a textual description of errors by calling MLErrorMessage(). 

† Constants corresponding to standard MathLink errors are defined in mathlink.h. 

† See Section 2.13.13.

MLErrorMessage()

† char *MLErrorMessage(MLINK link) returns a character string describing the last error to occur 
on link. 

† See Section 2.13.13.

MLEvaluateString()

† int MLEvaluateString(MLINK link, char *string) sends a string to Mathematica for 
evaluation, and discards any packets sent in response. 

† The code for MLEvaluateString() is not included in the MathLink library, but is generated automatically by mcc or mprep 
in processing MathLink template files. 

† MLEvaluateString("Print[î"stringî"]") will cause string to be printed in a Mathematica session at the other end of the 
link. 

† See Section 2.13.3 and Section 2.13.9.

MLFlush()

† int MLFlush(MLINK link) flushes out any buffers containing data waiting to be sent on link. 

† If you call MLNextPacket() or any of the MLGet*() functions, then MLFlush() will be called automatically. 

† If you call MLReady(), then you need to call MLFlush() first in order to ensure that any necessary outgoing data has been sent. 

† See Section 2.13.14.

† See also: MLReady. 

MLGetArgCount()

† int MLGetArgCount(MLINK link, long *n) finds the number of arguments to a function on link 
and stores the result in n. 

† See Section 2.13.12.

MLGetByteString()
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† int MLGetByteString(MLINK link, unsigned char **s, long *n, long spec) gets a string 
of characters from the MathLink connection specified by link, storing the codes for the characters in s 
and the number of characters in n. The code spec is used for any character whose Mathematica 
character code is larger than 255. 

† MLGetByteString() allocates memory for the array of character codes. You must call MLDisownByteString() to disown 
this memory. 

† MLGetByteString() is convenient in situations where no special characters occur. 

† The character codes used by MLGetByteString() are exactly the ones returned by ToCharacterCode in Mathematica. 

† The array of character codes in MLGetByteString() is not terminated by a null character. 

† Characters such as newlines are specified by their raw character codes, not by ASCII forms such as în. 

† See Section 2.13.5.

† See also: MLGetString, MLGetUnicodeString. 

MLGetDouble()

† int MLGetDouble(MLINK link, double *x) gets a floating-point number from the MathLink 
connection specified by link and stores it as C type double in x. 

† MLGetDouble() is normally equivalent to MLGetReal(). 

† See notes for MLGetReal(). 

† See Section 2.13.5.

† See also: MLGetFloat. 

MLGetFloat()

† int MLGetFloat(MLINK link, float *x) gets a floating-point number from the MathLink 
connection specified by link and stores it as C type float in x. 

† See notes for MLGetReal(). 

† See Section 2.13.5.

MLGetFunction()

† int MLGetFunction(MLINK link, char **s, long *n) gets a function with a symbol as a head 
from the MathLink connection specified by link, storing the name of the symbol in s and the number of 
arguments of the function in n. 

† MLGetFunction() allocates memory for the character string corresponding to the name of the head of the function. You must 
call MLDisownSymbol() to disown this memory. 

† External programs should not modify the character string s. 

† MLGetFunction(link, &s, &n) has the same effect as MLGetNext(link); MLGetArgCount(link, &n); MLGet
Symbol(link, &s). 
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† See Section 2.13.4.

† See also: MLGetNext. 

MLGetInteger()

† int MLGetInteger(MLINK link, int *i) gets an integer from the MathLink connection specified 
by link and stores it in i. 

† If the data on the link corresponds to a real number, MLGetInteger() will round it to an integer. 

† If the data on the link corresponds to an integer too large to store in a C int on your computer system, then MLGetInteger() 
will fail, and return 0. 

† You can get arbitrary-precision integers by first using IntegerDigits to generate lists of digits, then calling MLGetInteger
List(). 

† See Section 2.13.4.

† See also: MLGetShortInteger, MLGetLongInteger. 

MLGetIntegerArray()

† int MLGetIntegerArray(MLINK link, int **a, long **dims, char ***heads, long *d) 
gets an array of integers from the MathLink connection specified by link, storing the array in a, its 
dimensions in dims and its depth in d. 

† The array a is laid out in memory like a C array declared as int a[m][n]… . 

† heads gives a list of character strings corresponding to the names of symbols that appear as heads at each level in the array. 

† MLGetIntegerArray() allocates memory which must be disowned by calling MLDisownIntegerArray(). 

† External programs should not modify the arrays generated by MLGetIntegerArray(). 

† See Section 2.13.4.

† See also: MLGetIntegerList. 

MLGetIntegerList()

† int MLGetIntegerList(MLINK link, int **a, long *n) gets a list of integers from the 
MathLink connection specified by link, storing the integers in the array a and the length of the list in n. 

† MLGetIntegerList() allocates memory for the array of integers. You must call MLDisownIntegerList() to disown this 
memory. 

† External programs should not modify the array generated by MLGetIntegerList(). 

† See notes for MLGetInteger(). 

† See Section 2.13.4.

† See also: MLGetIntegerArray, MLGetByteString. 

MLGetLongInteger()
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† int MLGetLongInteger(MLINK link, long *i) gets an integer from the MathLink connection 
specified by link and stores it as a C long in i. 

† See notes for MLGetInteger(). 

† See Section 2.13.5.

MLGetNext()

† int MLGetNext(MLINK link) goes to the next object on link and returns its type. 

† The following values can be returned: 

MLTKERR error

MLTKINT integer

MLTKFUNC composite function

MLTKREAL approximate real number

MLTKSTR character string

MLTKSYM symbol

† MLTKINT and MLTKREAL do not necessarily signify numbers that can be stored in C int and double variables. 

† See Section 2.13.12.

† See also: MLGetArgCount. 

MLGetReal()

† int MLGetReal(MLINK link, double *x) gets a floating-point number from the MathLink 
connection specified by link and stores it in x. 

† If the data on the link corresponds to an integer, MLGetReal() will coerce it to a double before storing it in x. 

† If the data on the link corresponds to a number outside the range that can be stored in a C double on your computer system, then 
MLGetReal() will fail, and return 0. 

† You can get arbitrary-precision real numbers by first using RealDigits to generate lists of digits, then calling MLGetInteger
List(). 

† MLGetReal() is normally equivalent to MLGetDouble(). 

† See Section 2.13.4.

† See also: MLGetFloat, MLGetDouble, MLGetRealList. 

MLGetRealArray()

† int MLGetRealArray(MLINK link, double **a, long **dims, char ***heads, long *d) 
gets an array of floating-point numbers from the MathLink connection specified by link, storing the 
array in a, its dimensions in dims and its depth in d. 

† The array a is laid out in memory like a C array declared as double a[m][n]… . 

† heads gives a list of character strings corresponding to the names of symbols that appear as heads at each level in the array. 
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† MLGetRealArray() allocates memory which must be disowned by calling MLDisownRealArray(). 

† External programs should not modify the arrays generated by MLGetRealArray(). 

† See Section 2.13.4.

MLGetRealList()

† int MLGetRealList(MLINK link, double **a, long *n) gets a list of floating-point numbers 
from the MathLink connection specified by link, storing the numbers in the array a and the length of the 
list in n. 

† MLGetRealList() allocates memory for the array of numbers. You must call MLDisownRealList() to disown this 
memory. 

† External programs should not modify the array generated by MLGetRealList(). 

† See notes for MLGetReal(). 

† See Section 2.13.4.

MLGetShortInteger()

† int MLGetShortInteger(MLINK link, short *i) gets an integer from the MathLink connection 
specified by link and stores it as a C short in i. 

† See notes for MLGetInteger(). 

† See Section 2.13.5.

MLGetString()

† int MLGetString(MLINK link, char **s) gets a character string from the MathLink connection 
specified by link, storing the string in s. 

† MLGetString() allocates memory for the character string. You must call MLDisownString() to disown this memory. 

† External programs should not modify strings generated by MLGetString(). 

† MLGetString() creates a string that is terminated by î0. 

† MLGetString() stores single î characters from Mathematica as pairs of characters îî. 
† MLGetString() stores special characters from Mathematica in a private format. 

† See Section 2.13.5.

† See also: MLGetByteString, MLGetUnicodeString. 

MLGetSymbol()

† int MLGetSymbol(MLINK link, char **s) gets a character string corresponding to the name of a 
symbol from the MathLink connection specified by link, storing the resulting string in s. 
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† MLGetSymbol() allocates memory for the character string. You must call MLDisownSymbol() to disown this memory. 

† MLGetSymbol() creates a string that is terminated by î0. 

† See Section 2.13.4 and Section 2.13.12.

MLGetUnicodeString()

† int MLGetUnicodeString(MLINK link, unsigned short **s, long *n) gets a character 
string from the MathLink connection specified by link, storing the string in s as a sequence of 16-bit 
Unicode characters. 

† MLGetUnicodeString() allocates memory for the character string. You must call MLDisownUnicodeString() to 
disown this memory. 

† External programs should not modify strings generated by MLGetUnicodeString(). 

† MLGetUnicodeString() stores all characters directly in 16-bit Unicode form. 

† 8-bit ASCII characters are stored with a null high-order byte. 

† See Section 2.13.5.

† See also: MLGetString, MLGetByteString. 

MLInitialize()

† MLENV MLInitialize(0) initializes functions in the MathLink library. 

† An appropriate call to MLInitialize() is generated automatically when an external program is created from MathLink 
templates. 

† Any external program that uses the MathLink library must call MLInitialize() before calling any other MathLink library 
functions. 

† See Section 2.13.14.

MLLoopbackOpen()

† MLINK MLLoopbackOpen(MLENV env, long *errno) opens a loopback MathLink connection. 

† In an external program set up with MathLink templates, the environment stdenv should be used. 

† You can use loopback links to effectively store Mathematica expressions in external programs. 

† See Section 2.13.12.

† See also: MLCreateMark. 

MLMain()

† int MLMain(int argc, char **argv) sets up communication between an external program started 
using Install and Mathematica. 
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† The code for MLMain() is generated automatically by mprep or mcc. 

† MLMain() opens a MathLink connection using the parameters specified in argv, then goes into a loop waiting for CallPacket 
objects to arrive from Mathematica. 

† MLMain() internally calls MLOpenArgv(). 

† See Section 2.13.3.

MLNewPacket()

† int MLNewPacket(MLINK link) skips to the end of the current packet on link. 

† MLNewPacket() works even if the head of the current top-level expression is not a standard packet type. 

† MLNewPacket() does nothing if you are already at the end of a packet. 

† See Section 2.13.13 and Section 2.13.14.

† See also: MLNextPacket. 

MLNextPacket()

† int MLNextPacket(MLINK link) goes to the next packet on link and returns a constant to indicate 
its head. 

† See Section 2.13.14.

† See also: MLNewPacket. 

MLOpenArgv()

† MLINK MLOpenArgv(MLENV env, char **argv0, char **argv1, long *errno) opens a 
MathLink connection taking parameters from an argv array. 

† MLInitialize() must be called before MLOpenArgv(). 

† MLOpenArgv() scans for the following at successive locations starting at argv0 and going up to just before argv1: 

"−linkconnect" connect to an existing link H LinkConnect L
"−linkcreate" create a link H LinkCreate L
"−linklaunch" launch a child process H LinkLaunch L
"−linkname",  " name " the name to use in opening the link

"−linkprotocol",  " protocol " the link protocol to use H tcp ,  pipes , etc.L

† MLOpenArgv() is not sensitive to the case of argument names. 

† MLOpenArgv() ignores argument names that it does not recognize. 

† MLOpenArgv() is called automatically by the MLMain() function created by mprep and mcc. 

† With a main program main(int argc, char *argv[]) typical usage is MLOpenArgv(env, argv, argv+argc, errno). 

† Avoiding an explicit argc argument allows MLOpenArgv() to work independent of the size of an int. 

† On some computer systems, giving 0 for argv0 and argv1 will cause arguments to be requested interactively, typically through a 
dialog box. 
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† See Section 2.13.14.

† See also: MLActivate, MLOpenString. 

MLOpenString()

† MLINK MLOpenString(MLENV env, char *string, long *errno) opens a MathLink connection 
taking parameters from a character string. 

† MLInitialize() must be called before MLOpenString(). 

† MLOpenString() takes a single string instead of the argv array used by MLOpenArgv(). 

† Arguments in the string are separated by spaces. 

† On some computer systems, giving NULL in place of the string pointer will cause arguments to be requested interactively, typically 
through a dialog box. 

† See Section 2.13.14.

† See also: MLActivate, MLOpenArgv. 

MLPutArgCount()

† int MLPutArgCount(MLINK link, long n) specifies the number of arguments of a composite 
function to be put on link. 

MLPutByteString()

† int MLPutByteString(MLINK link, unsigned char *s, long n) puts a string of n characters 
starting from location s to the MathLink connection specified by link. 

† All characters in the string must be specified using character codes as obtained from ToCharacterCode in Mathematica. 

† Newlines must thus be specified in terms of their raw character codes, rather than using în. 

† MLPutByteString() handles only characters with codes less than 256. 

† It can handle both ordinary ASCII as well as ISO Latin-1 characters. 

† See Section 2.13.5.

† See also: MLPutString, MLPutIntegerList. 

MLPutDouble()

† int MLPutDouble(MLINK link, double x) puts the floating-point number x of C type double to 
the MathLink connection specified by link. 

† See notes for MLPutReal(). 

† See Section 2.13.5.

MLPutFloat()
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† int MLPutFloat(MLINK link, double x) puts the floating-point number x to the MathLink 
connection specified by link with a precision corresponding to the C type float. 

† The argument x is typically declared as float in external programs, but must be declared as double in MLPutFloat() itself 
in order to work even in the absence of C prototypes. 

† See notes for MLPutReal(). 

† See Section 2.13.5.

MLPutFunction()

† int MLPutFunction(MLINK link, char *s, long n) puts a function with head given by a 
symbol with name s and with n arguments to the MathLink connection specified by link. 

† After the call to MLPutFunction() other MathLink functions must be called to send the arguments of the function. 

† See Section 2.13.4.

† See also: MLPutString. 

MLPutInteger()

† int MLPutInteger(MLINK link, int i) puts the integer i to the MathLink connection specified by 
link. 

† You can send arbitrary-precision integers to Mathematica by giving lists of digits, then converting them to numbers using From
Digits. 

† See Section 2.13.4 and Section 2.13.12.

† See also: MLGetInteger, MLPutShortInteger, MLPutLongInteger, MLPutIntegerList. 

MLPutIntegerArray()

† int MLPutIntegerArray(MLINK link, int *a, long *dims, char **heads, long d) puts 
an array of integers to the MathLink connection specified by link to form a depth d array with 
dimensions dims. 

† The array a must be laid out in memory like a C array declared explicitly as int a[m][n]… . 

† If heads is given as NULL, the array will be assumed to have head List at every level. 

† The length of the array at level i is taken to be dims[i]. 

† See Section 2.13.4.

† See also: MLPutIntegerList. 

MLPutIntegerList()

† int MLPutIntegerList(MLINK link, int *a, long n) puts a list of n integers starting from 
location a to the MathLink connection specified by link. 
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† See Section 2.13.4.

† See also: MLPutIntegerArray, MLPutByteString. 

MLPutLongInteger()

† int MLPutLongInteger(MLINK link, long i) puts the long integer i to the MathLink connection 
specified by link. 

† See notes for MLPutInteger(). 

† See Section 2.13.5.

MLPutNext()

† int MLPutNext(MLINK link, int type) prepares to put an object of the specified type on link. 

† The type specifications are as given in the notes for MLGetNext(). 

† See Section 2.13.12.

† See also: MLPutArgCount. 

MLPutReal()

† int MLPutReal(MLINK link, double x) puts the floating-point number x to the MathLink 
connection specified by link. 

† You can send arbitrary-precision real numbers to Mathematica by giving lists of digits, then converting them to numbers using 
FromDigits. 

† MLPutReal() is normally equivalent to MLPutDouble(). 

† See Section 2.13.4 and Section 2.13.12.

† See also: MLPutRealList, MLPutFloat, MLPutDouble. 

MLPutRealArray()

† int MLPutRealArray(MLINK link, double *a, long *dims, char **heads, long d) puts 
an array of floating-point numbers to the MathLink connection specified by link to form a depth d array 
with dimensions dims. 

† The array a must be laid out in memory like a C array declared explicitly as double a[m][n]… . 

† If heads is given as NULL, the array will be assumed to have head List at every level. 

† The length of the array at level i is taken to be dims[i]. 

† See Section 2.13.4.

† See also: MLPutRealList. 

MLPutRealList()
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† int MLPutRealList(MLINK link, double *a, long n) puts a list of n floating-point numbers 
starting from location a to the MathLink connection specified by link. 

† See Section 2.13.4.

† See also: MLPutRealArray. 

MLPutShortInteger()

† int MLPutShortInteger(MLINK link, int i) puts the integer i to the MathLink connection 
specified by link, assuming that i contains only the number of digits in the C type short. 

† The argument i is typically declared as short in external programs, but must be declared as int in MLPutShortInteger() 
itself in order to work even in the absence of C prototypes. 

† See notes for MLPutInteger(). 

† See Section 2.13.5.

MLPutString()

† int MLPutString(MLINK link, char *s) puts a character string to the MathLink connection 
specified by link. 

† The character string must be terminated with a null byte, corresponding to î0 in C. 

† A raw backslash in the string must be sent as two characters îî. 
† Special characters can be sent only using the private format returned by MLGetString(). 

† See Section 2.13.5.

† See also: MLPutByteString, MLPutUnicodeString, MLPutSymbol. 

MLPutSymbol()

† int MLPutSymbol(MLINK link, char *s) puts a symbol whose name is given by the character 
string s to the MathLink connection specified by link. 

† The character string must be terminated with î0. 

† See Section 2.13.4 and Section 2.13.12.

† See also: MLPutString. 

MLPutUnicodeString()

† int MLPutUnicodeString(MLINK link, unsigned short *s, long n) puts a string of n 
16-bit Unicode characters to the MathLink connection specified by link. 

† All characters are assumed to be 16 bit. 

† 8-bit characters can be sent by having the higher-order byte be null. 
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† See Section 2.13.5.

† See also: MLPutString, MLPutByteString. 

MLReady()

† int MLReady(MLINK link) tests whether there is data ready to be read from link. 

† Analogous to the Mathematica function LinkReadyQ. 

† MLReady() is often called in a loop as a way of polling a MathLink connection. 

† MLReady() will always return immediately, and will not block. 

† You need to call MLFlush() before starting to call MLReady(). 

† See Section 2.13.14.

MLSeekMark()

† MLMARK MLSeekMark(MLINK link, MLMARK mark, long n) goes back to a position n expressions 
after the specified mark on a link. 

† See Section 2.13.12.

MLTransferExpression()

† int MLTransferExpression(MLINK dest, MLINK src) transfers an expression from one 
MathLink connection to another. 

† src and dest need not be distinct. 

† src and dest can be either loopback or ordinary links. 

† See Section 2.13.12.
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A.12 Listing of Named Characters

Introduction

This  section  gives  a  list  of  all  characters  that  are  assigned  full  names in  Mathematica  Version  5.  The  list  is  ordered
alphabetically by full name. 

The standard Mathematica fonts support all of the characters in the list. 

There are a total of 727 characters in the list. 

Çaaa  stands for ÂaaaÂ . 

Interpretation of Characters

The interpretations given  here  are those used in StandardForm  and InputForm.  Most  of  the interpretations also
work in TraditionalForm. 

You can override the interpretations by giving your own rules for MakeExpression. 

Letters and letter-like forms used in symbol names
Infix operators e.g.  x  ∆   y 

Prefix operators e.g.  Ÿ   x 
Postfix operators e.g.  x! 

Matchfix operators e.g.  X  x \  

Compound operators e.g.  Ÿ   f   „   x 
Raw operators operator characters that can be typed on an ordinary keyboard

Spacing characters interpreted in the same way as an ordinary space
Structural elements characters used to specify

structure; usually ignored in interpretation
Uninterpretable elements characters indicating missing information

Types of characters. 

The precedences of operators are given in Section A.2.7. 

Infix operators for which no grouping is specified in the listing are interpreted so that for example x ∆  y ∆  z becomes
CirclePlus[x, y, z]. 

Naming Conventions

Characters  that  correspond  to  built-in  Mathematica  functions  typically have  names corresponding  to  those  functions.
Other characters typically have names that are as generic as possible. 

Characters with different names almost always look at least slightly different. 
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î @Capital…D upper-case form of a letter
î @Left…D and î @Right…D pieces of a matchfix operator Halso arrowsL

î @Raw…D a printable ASCII character
î @…IndicatorD a visual representation of a keyboard character

Some special classes of characters. 

style Script ,  Gothic , etc.
variation Curly ,  Gray , etc.

case Capital , etc.
modifiers Not ,  Double ,  Nested , etc.
direction Left ,  Up ,  UpperRight , etc.

base A ,  Epsilon ,  Plus , etc.
diacritical mark Acute ,  Ring , etc.

Typical ordering of elements in character names. 

Aliases

Mathematica supports both its own system of aliases, as well as aliases based on character names in TeX and SGML or
HTML.  Except  where  they  conflict,  character  names  corresponding  to  plain  TeX,  LaTeX and  AMSTeX are  all  sup-
ported. Note that TeX and SGML or HTML aliases are not given explicitly in the list of characters below. 

Ç  xxx Ç  ordinary  Mathematica alias
Ç  î xxx Ç  TeX alias
Ç& xxx Ç  SGML or HTML alias

Types of aliases. 

The following general conventions are used for all aliases: 

† Characters that are alternatives to standard keyboard operators use these operators as their aliases (e.g. Ç->  for Ø , Ç&&  for fl ).  

† Most single-letter aliases stand for Greek letters.  

† Capital-letter characters have aliases beginning with capital letters.  

† When there is ambiguity in the assignment of aliases, a space is inserted at the beginning of the alias for the less common character 
(e.g. Ç->  for î[Rule] and Çâ->  for î[RightArrow]).  

† ! is inserted at the beginning of the alias for a Not character.  

† TeX aliases begin with a backslash î.  
† SGML aliases begin with an ampersand &.  

† User-defined aliases conventionally begin with a dot or comma.  

Font Matching

The special fonts provided with Mathematica  include all the characters given in this listing. Some of these characters
also appear in certain ordinary text fonts. 

When rendering  text  in  a  particular  font,  the Mathematica  notebook  front  end  will  use  all  the characters  available in
that font. It will use the special Mathematica fonts only for other characters. 

A choice is made between Times-like, Helvetica-like (sans serif) and Courier-like (monospaced) variants to achieve the
best matching with the ordinary text font in use. 
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AAcute

á  î[AAcute]

† Alias: Ça' . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[CapitalAAcute] . 

ABar

  î[ABar]

† Alias: Ça- . 

† Letter. 

† Included in ISO Latin-4. 

† Used in transliterations of various non-Latin alphabets. 

† See Section 3.10.3.

† See also: î[CapitalABar] . 

ACup

  î[ACup]

† Alias: Çau . 

† Letter. 

† Included in ISO Latin-2. 

† Used in transliterations of Cyrillic characters. 

† See Section 3.10.3.

† See also: î[CapitalACup] . 

ADoubleDot

ä  î[ADoubleDot]

† Alias: Ça" . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 1.10.7 and Section 3.10.3.

† See also: î[CapitalADoubleDot] , î[EDoubleDot] . 
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AE

æ  î[AE]

† Alias: Çae . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[CapitalAE] . 

AGrave

à  î[AGrave]

† Alias: Ça` . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 1.10.7 and Section 3.10.3.

† See also: î[CapitalAGrave] . 

AHat

â  î[AHat]

† Alias: Ça^ . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[CapitalAHat] . 

Aleph

¡  î[Aleph]

† Alias: Çal . 

† Hebrew letter. 

† Sometimes called alef. 

† Used in pure mathematics to denote transfinite cardinals. 

† See Section 1.10.8 and Section 3.10.3.

† See also: î[Bet] , î[Gimel] , î[Dalet] . 
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AliasIndicator

Ç  î[AliasIndicator]

† Alias: Çesc . 

† Letter-like form. 

† Representation of the indicator for special character aliases in Mathematica. 

† î[AliasIndicator] is an inactive letter-like form, used in describing how to type aliases. 

† An active character of the same appearance is typically obtained by typing Escape. 

† See Section 3.10.5.

† See also: î[EscapeKey] , î[SpaceIndicator] , î[ReturnIndicator] . 

AlignmentMarker

  î[AlignmentMarker]

† Alias: Çam . 

† Letter-like form. 

† Invisible by default on display. 

† Used as a marker to indicate for example how entries in a GridBox column should be lined up. 

† See Section 2.9.11 and Section 3.10.5.

† See also: î[InvisibleComma] , î[InvisibleSpace] , î[Null] , î[NoBreak] . 

Alpha

a  î[Alpha]

† Aliases: Ça , Çalpha . 

† Greek letter. 

† Not the same as î[Proportional]. 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[CapitalAlpha] . 

And

fl  î[And]

† Aliases: Ç&& , Çand . 

† Infix operator with built-in evaluation rules. 

† x fl  y is by default interpreted as And[x, y], equivalent to x && y. 

† Not the same as î[Wedge]. 
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† Drawn slightly larger than î[Wedge]. 

† See Section 1.10.4, Section 3.10.1 and Section 3.10.4.

† See also: î[Or] , î[Nand] , î[Not] . 

Angle

—  î[Angle]

† Letter-like form. 

† Used in geometry to indicate an angle, as in the symbol —  ABC. 

† See Section 1.10.8 and Section 3.10.3.

† See also: î[MeasuredAngle] , î[SphericalAngle] , î[RightAngle] . 

Angstrom

Þ  î[Angstrom]

† Alias: ÇAng . 

† Letter-like form. 

† Unit corresponding to 10-10  meters. 

† Not the same as the letter î[CapitalARing]. 

† See Section 1.10.8 and Section 3.10.3.

† See also: î[ARing] , î[Micro] , î[EmptySmallCircle] , î[HBar] . 

ARing

å  î[ARing]

† Alias: Çao . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 1.10.7 and Section 3.10.3.

† See also: î[CapitalARing] , î[EmptySmallCircle] . 

AscendingEllipsis

∑  î[AscendingEllipsis]

† Letter-like form. 

† Used to indicate omitted elements in a matrix. 

† See Section 3.10.3.

† See also: î[DescendingEllipsis] , î[VerticalEllipsis] , î[Ellipsis] . 
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ATilde

ã  î[ATilde]

† Alias: Ça~ Ç. 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[CapitalATilde] . 

Backslash

î  î[Backslash]

† Alias: Ç\ . 

† Infix operator. 

† x î  y is by default interpreted as Backslash[x, y]. 

† Used in mathematics for set difference. 

† Also used to separate arguments of elliptic functions. 

† Sometimes used to indicate x divides y. 

† See Section 1.10.8 and Section 3.10.4.

† See also: î[RawBackslash] , î[Colon] , î[VerticalBar] , î[Continuation] . 

Because

‹  î[Because]

† Infix operator. 

† x ‹  y is by default interpreted as Because[x, y]. 

† x ‹  y ‹  z groups as (x ‹  y) ‹  z. 

† See Section 3.10.4.

† See also: î[Therefore] , î[LeftTee] , î[FilledRectangle] , î[Proportion] . 

Bet

¼  î[Bet]

† Alias: Çbe . 

† Hebrew letter. 

† Sometimes called beth. 

† Used in pure mathematics in the theory of transfinite cardinals. 
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† See Section 3.10.3.

† See also: î[Aleph] . 

Beta

b  î[Beta]

† Aliases: Çb , Çbeta . 

† Greek letter. 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[CapitalBeta] , î[SZ] . 

Breve

Ò  î[Breve]

† Alias: Çbv . 

† Letter-like form. 

† Used in an overscript position as a diacritical mark. 

† See Section 3.10.3.

† See also: î[DownBreve] , î[Cup] , î[RoundSpaceIndicator] , î[Hacek] . 

Bullet

•   î[Bullet]

† Alias: Çbu . 

† Letter-like form. 

† See Section 1.10.8 and Section 3.10.3.

† See also: î[FilledSmallCircle] , î[FilledCircle] . 

CAcute

  î[CAcute]

† Alias: Çc' . 

† Letter. 

† Included in ISO Latin-2. 

† See Section 3.10.3.

† See also: î[CapitalCAcute] . 
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Cap

[  î[Cap]

† Infix operator. 

† x [  y is by default interpreted as Cap[x, y]. 

† Used in pure mathematics to mean cap product. 

† Sometimes used as an overscript to indicate arc between. 

† See Section 3.10.4.

† See also: î[Cup] , î[Intersection] , î[CupCap] , î[DownBreve] . 

CapitalAAcute

Á  î[CapitalAAcute]

† Alias: ÇA' . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[AAcute] . 

CapitalABar

  î[CapitalABar]

† Alias: ÇA- . 

† Letter. 

† Included in ISO Latin-4. 

† See Section 3.10.3.

† See also: î[ABar] . 

CapitalACup

  î[CapitalACup]

† Alias: ÇAu . 

† Letter. 

† Included in ISO Latin-2. 

† Used in transliterations of Cyrillic characters. 

† See Section 3.10.3.

† See also: î[ACup] . 
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CapitalADoubleDot

Ä  î[CapitalADoubleDot]

† Alias: ÇA" . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 1.10.7 and Section 3.10.3.

† See also: î[ADoubleDot] . 

CapitalAE

Æ  î[CapitalAE]

† Alias: ÇAE . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[AE] . 

CapitalAGrave

À  î[CapitalAGrave]

† Alias: ÇA` . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[AGrave] . 

CapitalAHat

Â  î[CapitalAHat]

† Alias: ÇA^ . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[AHat] . 
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CapitalAlpha

A  î[CapitalAlpha]

† Aliases: ÇA , ÇAlpha . 

† Greek letter. 

† Not the same as English A. 

† See Section 3.10.1 and Section 3.10.3.

† See also: î[Alpha] . 

CapitalARing

Å  î[CapitalARing]

† Alias: ÇAo . 

† Letter. 

† Included in ISO Latin-1. 

† Not the same as î[Angstrom]. 

† See Section 1.10.7 and Section 3.10.3.

† See also: î[ARing] . 

CapitalATilde

Ã  î[CapitalATilde]

† Alias: ÇA~ Ç. 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[ATilde] . 

CapitalBeta

B  î[CapitalBeta]

† Aliases: ÇB , ÇBeta . 

† Greek letter. 

† Used in TraditionalForm for Beta. 

† Not the same as English B. 

† See Section 3.10.3.

† See also: î[Beta] . 
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CapitalCAcute

  î[CapitalCAcute]

† Alias: ÇC' . 

† Letter. 

† Included in ISO Latin-2. 

† See Section 3.10.3.

† See also: î[CAcute] . 

CapitalCCedilla

Ç  î[CapitalCCedilla]

† Alias: ÇC, . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[CCedilla] . 

CapitalCHacek

  î[CapitalCHacek]

† Alias: ÇCv . 

† Letter. 

† Included in ISO Latin-2. 

† See Section 3.10.3.

† See also: î[CHacek] . 

CapitalChi

C  î[CapitalChi]

† Aliases: ÇCh , ÇChi , ÇC . 

† Greek letter. 

† Not the same as English X. 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[Chi] , î[CapitalXi] . 
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CapitalDelta

D  î[CapitalDelta]

† Aliases: ÇD , ÇDelta . 

† Greek letter. 

† Not the same as î[EmptyUpTriangle]. 

† Sometimes used in mathematics to denote Laplacian. 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[Delta] , î[Del] . 

CapitalDifferentialD

ÿ  î[CapitalDifferentialD]

† Alias: ÇDD . 

† Compound operator. 

† ÿ  can only be interpreted by default when it appears with Ÿ  or other integral operators. 

† Used in mathematics to indicate a functional differential. 

† See Section 3.10.3.

† See also: î[DifferentialD] , î[DoubleStruckD] . 

CapitalDigamma

²  î[CapitalDigamma]

† Aliases: ÇDi , ÇDigamma . 

† Special Greek letter. 

† Analogous to English W. 

† See Section 3.10.3.

† See also: î[Digamma] . 

CapitalEAcute

É  î[CapitalEAcute]

† Alias: ÇE' . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[EAcute] . 
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CapitalEBar

  î[CapitalEBar]

† Alias: ÇE- . 

† Letter. 

† Included in ISO Latin-4. 

† See Section 3.10.3.

† See also: î[EBar] . 

CapitalECup

  î[CapitalECup]

† Alias: ÇEu . 

† Letter. 

† Not included in ISO Latin. 

† See Section 3.10.3.

† See also: î[ECup] . 

CapitalEDoubleDot

Ë  î[CapitalEDoubleDot]

† Alias: ÇE" . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[EDoubleDot] . 

CapitalEGrave

È  î[CapitalEGrave]

† Alias: ÇE` . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[EGrave] . 
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CapitalEHat

Ê  î[CapitalEHat]

† Alias: ÇE^ . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[EHat] . 

CapitalEpsilon

E  î[CapitalEpsilon]

† Aliases: ÇE , ÇEpsilon . 

† Greek letter. 

† Not the same as English E. 

† See Section 3.10.3.

† See also: î[Epsilon] . 

CapitalEta

H  î[CapitalEta]

† Aliases: ÇEt , ÇEta , ÇH . 

† Greek letter. 

† Not the same as English H. 

† See Section 3.10.3.

† See also: î[Eta] . 

CapitalEth

Ð  î[CapitalEth]

† Alias: ÇD- . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[Eth] . 
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CapitalGamma

G  î[CapitalGamma]

† Aliases: ÇG , ÇGamma . 

† Greek letter. 

† Used in TraditionalForm for Gamma. 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[Gamma] , î[CapitalDigamma] . 

CapitalIAcute

Í  î[CapitalIAcute]

† Alias: ÇI' . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[IAcute] . 

CapitalICup

  î[CapitalICup]

† Alias: ÇIu . 

† Letter. 

† Included in ISO Latin-2. 

† See Section 3.10.3.

† See also: î[ICup] . 

CapitalIDoubleDot

Ï  î[CapitalIDoubleDot]

† Alias: ÇI" . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[IDoubleDot] . 
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CapitalIGrave

Ì  î[CapitalIGrave]

† Alias: ÇI` . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[IGrave] . 

CapitalIHat

Î  î[CapitalIHat]

† Alias: ÇI^ . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[IHat] . 

CapitalIota

I  î[CapitalIota]

† Aliases: ÇI , ÇIota . 

† Greek letter. 

† Not the same as English I. 

† See Section 3.10.3.

† See also: î[Iota] . 

CapitalKappa

K  î[CapitalKappa]

† Aliases: ÇK , ÇKappa . 

† Greek letter. 

† Not the same as English K. 

† See Section 3.10.3.

† See also: î[Kappa] . 
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CapitalKoppa

´  î[CapitalKoppa]

† Aliases: ÇKo , ÇKoppa . 

† Special Greek letter. 

† Analogous to English Q. 

† See Section 3.10.3.

† See also: î[Koppa] . 

CapitalLambda

L  î[CapitalLambda]

† Aliases: ÇL , ÇLambda . 

† Greek letter. 

† Not the same as î[Wedge]. 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[Lambda] . 

CapitalLSlash

Æ  î[CapitalLSlash]

† Alias: ÇL/ . 

† Letter. 

† Included in ISO Latin-2. 

† See Section 3.10.3.

† See also: î[LSlash] . 

CapitalMu

M  î[CapitalMu]

† Aliases: ÇM , ÇMu . 

† Greek letter. 

† Not the same as English M. 

† See Section 3.10.3.

† See also: î[Mu] . 
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CapitalNTilde

Ñ  î[CapitalNTilde]

† Alias: ÇN~ Ç. 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[NTilde] . 

CapitalNu

N  î[CapitalNu]

† Aliases: ÇN , ÇNu . 

† Greek letter. 

† Not the same as English N. 

† See Section 3.10.3.

† See also: î[Nu] . 

CapitalOAcute

Ó  î[CapitalOAcute]

† Alias: ÇO' . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[OAcute] . 

CapitalODoubleAcute

  î[CapitalODoubleAcute]

† Alias: ÇO'' . 

† Letter. 

† Included in ISO Latin-2. 

† See Section 3.10.3.

† See also: î[ODoubleAcute] . 
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CapitalODoubleDot

Ö  î[CapitalODoubleDot]

† Alias: ÇO" . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 1.10.7 and Section 3.10.3.

† See also: î[ODoubleDot] . 

CapitalOGrave

Ò  î[CapitalOGrave]

† Alias: ÇO` . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[OGrave] . 

CapitalOHat

Ô  î[CapitalOHat]

† Alias: ÇO^ . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[OHat] . 

CapitalOmega

W  î[CapitalOmega]

† Aliases: ÇO , ÇOmega , ÇW . 

† Greek letter. 

† Used as the symbol for ohms. 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[Omega] , î[Mho] . 

20 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



CapitalOmicron

O  î[CapitalOmicron]

† Aliases: ÇOm , ÇOmicron . 

† Greek letter. 

† Not the same as English O. 

† See Section 3.10.3.

† See also: î[Omicron] . 

CapitalOSlash

Ø  î[CapitalOSlash]

† Alias: ÇO/ . 

† Letter. 

† Included in ISO Latin-1. 

† Not the same as î[EmptySet] or î[Diameter]. 

† See Section 3.10.1 and Section 3.10.3.

† See also: î[OSlash] . 

CapitalOTilde

Õ  î[CapitalOTilde]

† Alias: ÇO~ Ç. 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[OTilde] . 

CapitalPhi

F  î[CapitalPhi]

† Aliases: ÇPh , ÇPhi , ÇF . 

† Greek letter. 

† Used in TraditionalForm for LerchPhi. 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[Phi] . 
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CapitalPi

P  î[CapitalPi]

† Aliases: ÇP , ÇPi . 

† Greek letter. 

† Used in TraditionalForm for EllipticPi. 

† Not the same as î[Product]. 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[Pi] . 

CapitalPsi

Y  î[CapitalPsi]

† Aliases: ÇPs , ÇPsi , ÇY . 

† Greek letter. 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[Psi] . 

CapitalRho

R  î[CapitalRho]

† Aliases: ÇR , ÇRho . 

† Greek letter. 

† Not the same as English P. 

† See Section 3.10.3.

† See also: î[Rho] . 

CapitalSampi

µ  î[CapitalSampi]

† Aliases: ÇSa , ÇSampi . 

† Special Greek letter. 

† See Section 3.10.3.

† See also: î[Sampi] . 

CapitalSHacek
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Š  î[CapitalSHacek]

† Alias: ÇSv . 

† Letter. 

† Included in ISO Latin-2. 

† See Section 3.10.3.

† See also: î[SHacek] . 

CapitalSigma

S  î[CapitalSigma]

† Aliases: ÇS , ÇSigma . 

† Greek letter. 

† Not the same as î[Sum]. 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[Sigma] . 

CapitalStigma

³  î[CapitalStigma]

† Aliases: ÇSti , ÇStigma . 

† Special Greek letter. 

† See Section 3.10.3.

† See also: î[Stigma] . 

CapitalTau

T  î[CapitalTau]

† Aliases: ÇT , ÇTau . 

† Greek letter. 

† Not the same as English T. 

† See Section 3.10.3.

† See also: î[Tau] . 

CapitalTheta

Q  î[CapitalTheta]

Printed from the Mathematica Help Browser 23

©1988-2003 Wolfram Research, Inc. All rights reserved.



† Aliases: ÇTh , ÇTheta , ÇQ . 

† Greek letter. 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[Theta] . 

CapitalThorn

Þ  î[CapitalThorn]

† Alias: ÇThn . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[Thorn] . 

CapitalUAcute

Ú  î[CapitalUAcute]

† Alias: ÇU' . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[UAcute] . 

CapitalUDoubleAcute

  î[CapitalUDoubleAcute]

† Alias: ÇU'' . 

† Letter. 

† Included in ISO Latin-2. 

† See Section 3.10.3.

† See also: î[UDoubleAcute] . 

CapitalUDoubleDot

Ü  î[CapitalUDoubleDot]

† Alias: ÇU" . 

† Letter. 

† Included in ISO Latin-1. 
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† See Section 1.10.7 and Section 3.10.3.

† See also: î[UDoubleDot] . 

CapitalUGrave

Ù  î[CapitalUGrave]

† Alias: ÇU` . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[UGrave] . 

CapitalUHat

Û  î[CapitalUHat]

† Alias: ÇU^ . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[UHat] . 

CapitalUpsilon

U  î[CapitalUpsilon]

† Aliases: ÇU , ÇUpsilon . 

† Greek letter. 

† Not commonly used. 

† Used in physics for b b
êê

 particles, and in the quantum theory of measurement. 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[CurlyCapitalUpsilon] , î[Upsilon] . 

CapitalXi

X  î[CapitalXi]

† Aliases: ÇX , ÇXi . 

† Greek letter. 

† Not commonly used. 

† Used for grand canonical partition function, cascade hyperon and regular language complexity. 
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† See Section 1.10.1 and Section 3.10.3.

† See also: î[Xi] . 

CapitalYAcute

Ý  î[CapitalYAcute]

† Alias: ÇY' . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[YAcute] . 

CapitalZeta

Z  î[CapitalZeta]

† Aliases: ÇZ , ÇZeta . 

† Greek letter. 

† Used in TraditionalForm for JacobiZeta. 

† Not the same as English Z. 

† See Section 3.10.3.

† See also: î[Zeta] . 

CCedilla

ç  î[CCedilla]

† Alias: Çc, . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 1.10.7 and Section 3.10.3.

† See also: î[CapitalCCedilla] . 

Cedilla

fi  î[Cedilla]

† Alias: Çcd . 

† Letter-like form. 

† Used in an underscript position as a diacritical mark. 
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† See Section 3.10.3.

† See also: î[Hacek] , î[Breve] . 

Cent

¢  î[Cent]

† Alias: Çcent . 

† Letter-like form. 

† Currency symbol, used as in 5¢. 

† See Section 3.10.3.

CenterDot

·  î[CenterDot]

† Alias: Ç. . 

† Infix operator. 

† x ÿ  y is by default interpreted as CenterDot[x, y]. 

† Used to indicate various forms of multiplication, particularly dot products of vectors. 

† Sometimes used to indicate concatenation or composition. 

† Used in the British mathematical tradition as a decimal point. 

† See Section 3.10.1 and Section 3.10.4.

† See also: î[CenterEllipsis] , î[RawDot] , î[CircleDot] . 

CenterEllipsis

∫  î[CenterEllipsis]

† Letter-like form. 

† Used to indicate omitted elements in a row of a matrix. 

† See Section 3.10.3.

† See also: î[Ellipsis] , î[VerticalEllipsis] , î[CenterDot] . 

CHacek

  î[CHacek]

† Alias: Çcv . 

† Letter. 

† Included in ISO Latin-2. 
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† See Section 1.10.7 and Section 3.10.3.

† See also: î[CapitalCHacek] , î[SHacek] . 

Chi

c  î[Chi]

† Aliases: Çch , Çchi , Çc . 

† Greek letter. 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[CapitalChi] , î[Xi] . 

CircleDot

Ÿ  î[CircleDot]

† Alias: Çc. . 

† Infix operator. 

† x Ÿ  y is by default interpreted as CircleDot[x, y]. 

† Used in mathematics for various operations related to multiplication, such as direct or tensor products. 

† Also sometimes used to indicate a vector pointing out of the page. 

† See Section 3.10.4.

† See also: î[CircleTimes] , î[CenterDot] . 

CircleMinus

  î[CircleMinus]

† Alias: Çc- . 

† Infix operator. 

† x   y is by default interpreted as CircleMinus[x, y]. 

† See Section 3.10.4.

† See also: î[CirclePlus] . 

CirclePlus

∆  î[CirclePlus]

† Alias: Çc+ . 

† Infix operator. 

† x ∆  y is by default interpreted as CirclePlus[x, y]. 

† Used in mathematics for various operations related to addition, such as direct sum and addition modulo two. 
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† Also sometimes used to indicate a vector pointing into the page. 

† See Section 1.10.8 and Section 3.10.4.

† See also: î[CircleTimes] , î[CircleMinus] , î[Xor] . 

CircleTimes

≈  î[CircleTimes]

† Alias: Çc* . 

† Infix and prefix operator. 

† x ≈  y is by default interpreted as CircleTimes[x, y]. 

† Used in mathematics for various operations related to multiplication, such as direct or tensor products. 

† Also sometimes used to indicate a vector pointing into the page. 

† See Section 1.10.8 and Section 3.10.4.

† See also: î[CircleDot] , î[Times] , î[Cross] , î[Wedge] , î[CirclePlus] . 

ClockwiseContourIntegral

õ  î[ClockwiseContourIntegral]

† Alias: Çccint . 

† Compound operator (see Section A.2.7). 

† õ  f „ x is by default interpreted as ClockwiseContourIntegral[f, x]. 

† See Section 3.10.4.

† See also: î[CounterClockwiseContourIntegral] , î[ContourIntegral] . 

CloverLeaf

Ì  î[CloverLeaf]

† Alias: Çcl . 

† Letter-like form. 

† Used on Macintosh and other computers to indicate command keys. 

† See Section 3.10.5.

† See also: î[CommandKey] . 

ClubSuit

®  î[ClubSuit]
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† Letter-like form. 

† See Section 3.10.3.

† See also: î[DiamondSuit] , î[HeartSuit] , î[SpadeSuit] . 

Colon

:  î[Colon]

† Alias: Ç: . 

† Infix operator. 

† x :  y is by default interpreted as Colon[x, y]. 

† Used in mathematics to mean “such  that”.  

† Occasionally used to indicate proportion. 

† Used to separate hours and minutes in times. 

† See Section 3.10.4.

† See also: î[SuchThat] , î[VerticalSeparator] , î[Exists] , î[ForAll] , î[RawColon] , î[Proportion] , î
[Therefore] . 

CommandKey

·  î[CommandKey]

† Alias: Çcmd . 

† Letter-like form. 

† Representation of the Command or Alt key on a keyboard. 

† See Section 3.10.5.

† See also: î[CloverLeaf] , î[LeftModified] , î[ControlKey] , î[EscapeKey] . 

Congruent

ª  î[Congruent]

† Alias: Ç=== . 

† Infix similarity operator. 

† x ª  y is by default interpreted as Congruent[x, y]. 

† Used in mathematics for many notions of equivalence and equality. 

† See Section 1.10.8 and Section 3.10.4.

† See also: î[NotCongruent] , î[Equal] , î[TildeFullEqual] , î[CupCap] , î[LeftRightArrow] . 

Continuation
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Ö  î[Continuation]

† Alias: Çcont . 

† Structural element. 

† Used at the end of a line of input to indicate that the expression on that line continues onto the next line. 

† Equivalent in meaning to î at the end of a line. 

† Not the same as î[DescendingEllipsis]. 

† See Section 3.10.5.

† See also: î[RawBackslash] , î[Backslash] , î[ReturnIndicator] . 

ContourIntegral

ò  î[ContourIntegral]

† Alias: Çcint . 

† Compound operator (see Section A.2.7). 

† ò  f „ x is by default interpreted as ContourIntegral[f, x]. 

† See Section 3.10.4.

† See also: î[ClockwiseContourIntegral] , î[DoubleContourIntegral] . 

ControlKey

‚  î[ControlKey]

† Alias: Çctrl . 

† Letter-like form. 

† Representation of the Control key on a keyboard. 

† See Section 3.10.5.

† See also: î[LeftModified] , î[CommandKey] , î[EscapeKey] , î[ReturnKey] . 

Coproduct

ˇ  î[Coproduct]

† Alias: Çcoprod . 

† Infix operator. 

† x ˇ  y is by default interpreted as Coproduct[x, y]. 

† ˇ  x is by default interpreted as Coproduct[x]. 

† Coproduct is used as an abstract dual to the operation of multiplication, most often in infix form. 

† See Section 3.10.4.

† See also: î[Product] , î[Wedge] , î[Vee] , î[CircleTimes] , î[SquareUnion] . 
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Copyright

©  î[Copyright]

† Letter-like form. 

† See Section 3.10.3.

† See also: î[RegisteredTrademark] . 

CounterClockwiseContourIntegral

ö  î[CounterClockwiseContourIntegral]

† Alias: Çcccint . 

† Compound operator (see Section A.2.7). 

† ö  f „ x is by default interpreted as CounterClockwiseContourIntegral[f, x]. 

† See Section 3.10.4.

† See also: î[ClockwiseContourIntegral] , î[ContourIntegral] . 

Cross

ä  î[Cross]

† Alias: Çcross . 

† Infix operator with built-in evaluation rules. 

† x ä  y is by default interpreted as Cross[x, y]. 

† Not the same as î[Times]. 

† î[Cross] represents vector cross product, while î[Times] represents ordinary multiplication. 

† î[Cross] is drawn smaller than î[Times]. 

† See Section 1.10.4, Section 3.10.1 and Section 3.10.4.

† See also: î[CircleTimes] . 

Cup

\  î[Cup]

† Infix operator. 

† x \  y is by default interpreted as Cup[x, y]. 

† Used in pure mathematics to mean cup product. 

† See Section 3.10.4.

† See also: î[Cap] , î[Union] , î[CupCap] , î[RoundSpaceIndicator] , î[Breve] . 
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CupCap

^  î[CupCap]

† Infix similarity operator. 

† x ^  y is by default interpreted as CupCap[x, y]. 

† Used in mathematics for various notions of equivalence, usually fairly weak. 

† f ^  g is often specifically used to indicate that f/g has bounded variation. 

† See Section 3.10.4.

† See also: î[NotCupCap] , î[Cap] , î[Cup] . 

CurlyCapitalUpsilon

¢  î[CurlyCapitalUpsilon]

† Aliases: ÇcU , ÇcUpsilon . 

† Greek letter. 

† Not commonly used. 

† Used in astronomy for mass to light ratio. 

† See Section 3.10.3.

† See also: î[CapitalUpsilon] . 

CurlyEpsilon

¶  î[CurlyEpsilon]

† Aliases: Çce , Çcepsilon . 

† Greek letter. 

† Not the same as î[Element]. 

† Used in physics for Fermi energy and dielectric constant. 

† See Section 3.10.3.

† See also: î[Epsilon] , î[ScriptCapitalE] . 

CurlyKappa

¿  î[CurlyKappa]

† Aliases: Çck , Çckappa . 

† Greek letter. 

† See Section 3.10.3.

† See also: î[Kappa] . 
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CurlyPhi

j  î[CurlyPhi]

† Aliases: Çj , Çcph , Çcphi . 

† Greek letter. 

† Commonly used as a variant of f . 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[Phi] . 

CurlyPi

v  î[CurlyPi]

† Aliases: Çcp , Çcpi . 

† Greek letter. 

† Not commonly used, except in astronomy. 

† See Section 3.10.3.

† See also: î[Pi] , î[Omega] . 

CurlyRho

·  î[CurlyRho]

† Aliases: Çcr , Çcrho . 

† Greek letter. 

† See Section 3.10.3.

† See also: î[Rho] . 

CurlyTheta

J  î[CurlyTheta]

† Aliases: Çcq , Çcth , Çctheta . 

† Greek letter. 

† Used in TraditionalForm for EllipticTheta and RiemannSiegelTheta. 

† See Section 3.10.3.

† See also: î[CapitalTheta] , î[Theta] . 

Dagger
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†   î[Dagger]

† Alias: Çdg . 

† Letter-like form and overfix operator. 

† x†  is by default interpreted as SuperDagger[x]. 

† See Section 1.10.8 and Section 3.10.3.

† See also: î[DoubleDagger] . 

Dalet

¾  î[Dalet]

† Alias: Çda . 

† Hebrew letter. 

† Sometimes called daleth. 

† Used occasionally in pure mathematics in the theory of transfinite cardinals. 

† See Section 3.10.3.

† See also: î[Aleph] . 

Dash

–   î[Dash]

† Alias: Ç- . 

† Letter-like form. 

† See Section 3.10.3.

† See also: î[LongDash] , î[HorizontalLine] . 

Degree

°  î[Degree]

† Alias: Çdeg . 

† Letter-like form with built-in value. 

† Interpreted by default as the symbol Degree. 

† 30°  is interpreted as 30 Degree. 

† The symbol °  is sometimes used in mathematics to indicate the interior of a set. 

† Not the same as î[SmallCircle] or î[EmptySmallCircle]. 

† See Section 1.10.4 and Section 3.10.3.

† See also: î[Prime] , î[DoublePrime] . 
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Del

“  î[Del]

† Alias: Çdel . 

† Prefix operator. 

† “ f is by default interpreted as Del[f]. 

† Used in vector analysis to denote gradient operator and its generalizations. 

† Used in numerical analysis to denote backward difference operator. 

† Also called nabla. 

† Not the same as î[EmptyDownTriangle]. 

† See Section 3.10.3 and Section 3.10.4.

† See also: î[CapitalDelta] , î[PartialD] , î[Square] . 

Delta

d  î[Delta]

† Aliases: Çd , Çdelta . 

† Greek letter. 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[PartialD] , î[Del] , î[CapitalDelta] . 

DescendingEllipsis

∏  î[DescendingEllipsis]

† Letter-like form. 

† Used to indicate omitted elements in a matrix. 

† Not the same as î[Continuation]. 

† See Section 3.10.3.

† See also: î[AscendingEllipsis] , î[VerticalEllipsis] , î[Ellipsis] . 

Diameter

¯  î[Diameter]

† Letter-like form. 

† Used in geometry. 

† Not the same as î[CapitalOSlash] or î[EmptySet]. 

† See Section 3.10.3.
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Diamond

ù  î[Diamond]

† Alias: Çdia . 

† Infix operator. 

† x ù  y is by default interpreted as Diamond[x, y]. 

† See Section 3.10.4.

† See also: î[EmptyDiamond] , î[FilledDiamond] , î[DiamondSuit] . 

DiamondSuit

©  î[DiamondSuit]

† Letter-like form. 

† Sometimes used to indicate the end of a proof. 

† Not the same as î[Diamond] or î[EmptyDiamond]. 

† See Section 3.10.3.

† See also: î[ClubSuit] . 

DifferentialD

„  î[DifferentialD]

† Alias: Çdd . 

† Compound operator with built-in evaluation rules. 

† „  can only be interpreted by default when it appears with Ÿ  or other integral operators. 

† Ÿ  f „ x is by default interpreted as Integrate[f, x]. 

† î[DifferentialD] is also used in TraditionalForm to indicate total derivatives. 

† See Section 1.10.4, Section 1.10.4, Section 3.10.1, Section 3.10.3 and Section 3.10.4.

† See also: î[PartialD] , î[CapitalDifferentialD] , î[Delta] . 

Digamma

¸  î[Digamma]

† Aliases: Çdi , Çdigamma . 

† Special Greek letter. 

† Analogous to English w. 

† Sometimes used to denote PolyGamma[x]. 
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† See Section 3.10.3.

† See also: î[CapitalDigamma] , î[Koppa] , î[Stigma] , î[Sampi] . 

Divide

÷  î[Divide]

† Alias: Çdiv . 

† Infix operator with built-in evaluation rules. 

† x π  y is by default interpreted as Divide[x, y] or x / y. 

† x π  y π  z groups as (x π  y) π  z. 

† See Section 1.10.4 and Section 3.10.4.

† See also: î[Times] , î[Proportion] , î[Backslash] . 

DotEqual

U  î[DotEqual]

† Alias: Ç.= . 

† Infix similarity operator. 

† x U  y is by default interpreted as DotEqual[x, y]. 

† Used to mean approximately equal, or in some cases, “image  of”,  or “equal  by definition”.  

† See Section 3.10.4.

† See also: î[TildeEqual] , î[RightArrow] . 

DotlessI

Ò  î[DotlessI]

† Letter. 

† Used when an i will have an overscript on top. 

† May or may not match the ordinary i from the text font. 

† See Section 3.10.3.

† See also: î[DotlessJ] , î[Iota] . 

DotlessJ

Ô  î[DotlessJ]

† Letter. 

† Used when a j will have an overscript on top. 

† May or may not match the ordinary j from the text font. 
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† See Section 3.10.3.

† See also: î[DotlessI] . 

DottedSquare

Ó  î[DottedSquare]

† Letter-like form. 

† See Section 3.10.3.

† See also: î[EmptySquare] , î[Placeholder] . 

DoubleContourIntegral

ô  î[DoubleContourIntegral]

† Compound operator (see Section A.2.7). 

† ô  f „ s is by default interpreted as ContourIntegral[f, s]. 

† Used to indicate integrals over closed surfaces. 

† See Section 3.10.4.

† See also: î[ContourIntegral] , î[Integral] . 

DoubleDagger

‡   î[DoubleDagger]

† Alias: Çddg . 

† Letter-like form. 

† See Section 3.10.3.

† See also: î[Dagger] . 

DoubledGamma

ý  î[DoubledGamma]

† Alias: Çgg . 

† Letter-like form. 

† Not by default assigned any interpretation in StandardForm. 

† Interpreted as EulerGamma in TraditionalForm. 

† Not the same as î[Gamma]. 

† See Section 3.10.3.

† See also: î[DoubledPi] , î[ExponentialE] , î[DoubleStruckA] . 
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DoubleDownArrow

‡  î[DoubleDownArrow]

† Infix arrow operator. 

† x ‡  y is by default interpreted as DoubleDownArrow[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[DownArrow] , î[DoubleUpArrow] . 

DoubledPi

þ  î[DoubledPi]

† Alias: Çpp . 

† Letter-like form. 

† Not by default assigned any interpretation. 

† Not the same as î[Pi]. 

† See Section 3.10.3.

† See also: î[DoubledGamma] , î[ExponentialE] , î[DoubleStruckA] . 

DoubleLeftArrow

›  î[DoubleLeftArrow]

† Alias: Çâ<= . 

† Infix arrow operator. 

† x ›  y is by default interpreted as DoubleLeftArrow[x, y]. 

† Extensible character. 

† Ç<=  is the alias for î[LessEqual]. The alias for î[DoubleLeftArrow] has a space at the beginning. 

† See Section 3.10.4.

† See also: î[DoubleLongLeftArrow] , î[LeftArrow] , î[DoubleRightArrow] . 

DoubleLeftRightArrow

ñ  î[DoubleLeftRightArrow]

† Alias: Ç<=> . 

† Infix arrow operator. 

† x ñ  y is by default interpreted as DoubleLeftRightArrow[x, y]. 

† Used in mathematics to indicate logical equivalence. 
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† Extensible character. 

† See Section 3.10.4.

† See also: î[DoubleLongLeftRightArrow] , î[LeftRightArrow] , î[RightArrowLeftArrow] , î[LeftArrow-
RightArrow] , î[Congruent] , î[Implies] . 

DoubleLeftTee

¥  î[DoubleLeftTee]

† Infix operator. 

† x ¥  y is by default interpreted as DoubleLeftTee[x, y]. 

† x ¥  y ¥  z groups as (x ¥  y) ¥  z. 

† Used in mathematics to indicate various strong forms of logical implication of x from y—often tautological implication. 

† See Section 3.10.4 and Section 3.10.4.

† See also: î[LeftTee] , î[DoubleRightTee] . 

DoubleLongLeftArrow

ì  î[DoubleLongLeftArrow]

† Alias: Ç<== . 

† Infix arrow operator. 

† x ì  y is by default interpreted as DoubleLongLeftArrow[x, y]. 

† See Section 3.10.4.

† See also: î[DoubleLeftArrow] , î[LongLeftArrow] , î[DoubleLongRightArrow] . 

DoubleLongLeftRightArrow

ó  î[DoubleLongLeftRightArrow]

† Alias: Ç<==> . 

† Infix arrow operator. 

† x ó  y is by default interpreted as DoubleLongLeftRightArrow[x, y]. 

† See Section 3.10.4.

† See also: î[DoubleLeftRightArrow] , î[LongLeftRightArrow] , î[RightArrowLeftArrow] , î[LeftArrow-
RightArrow] . 

DoubleLongRightArrow

ï  î[DoubleLongRightArrow]
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† Alias: Ç==> . 

† Infix arrow operator. 

† x ï  y is by default interpreted as DoubleLongRightArrow[x, y]. 

† See Section 3.10.4.

† See also: î[DoubleRightArrow] , î[LongRightArrow] , î[DoubleLongLeftArrow] . 

DoublePrime

≥  î[DoublePrime]

† Alias: Ç'' . 

† Letter-like form. 

† Used to indicate angles in seconds or distances in inches. 

† See Section 3.10.3.

† See also: î[Prime] , î[ReverseDoublePrime] . 

DoubleRightArrow

fl  î[DoubleRightArrow]

† Alias: Çâ=> . 

† Infix arrow operator. 

† x fl  y is by default interpreted as DoubleRightArrow[x, y]. 

† Used in mathematics to indicate various strong forms of convergence. 

† Also used to indicate algebraic field extensions. 

† Not the same as î[Implies]. 

† Extensible character. 

† See Section 3.10.1 and Section 3.10.4.

† See also: î[DoubleLongRightArrow] , î[RightArrow] , î[DoubleLeftArrow] . 

DoubleRightTee

£  î[DoubleRightTee]

† Infix operator. 

† x £  y is by default interpreted as DoubleRightTee[x, y]. 

† x £  y £  z groups as x £  (y £  z). 

† Used in mathematics to indicate various strong forms of logical implication—often tautological implication. 

† In prefix form, used to indicate a tautology. 

† See Section 3.10.4 and Section 3.10.4.

† See also: î[RightTee] , î[DoubleLeftTee] . 
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DoubleStruckA … DoubleStruckZ

 …   î[DoubleStruckA] … î[DoubleStruckZ]

† Aliases: Çdsa  through Çdsz . 

† Letters. 

† Treated as distinct characters rather than style modifications of ordinary letters. 

† Contiguous character codes from the private Unicode character range are used, even though a few double-struck characters are 
included in ordinary Unicode. 

† See Section 3.10.3.

† See also: î[DoubleStruckCapitalA] , î[GothicA] , î[ScriptA] , etc. 

DoubleStruckCapitalA … DoubleStruckCapitalZ

 …   î[DoubleStruckCapitalA] … î[DoubleStruckCapitalZ]

† Aliases: ÇdsA  through ÇdsZ . 

† Letters. 

† Treated as distinct characters rather than style modifications of ordinary letters. 

†  ,  ,  ,  ,  ,   are used respectively to denote the sets of natural numbers, integers, rationals, reals, complex numbers and 
quaternions. 

† Contiguous character codes from the private Unicode character range are used, even though a few capital double-struck characters 
are included in ordinary Unicode. 

† See Section 3.10.3.

† See also: î[GothicCapitalA] , î[ScriptCapitalA] , etc. 

DoubleUpArrow

fi  î[DoubleUpArrow]

† Infix arrow operator. 

† x fi  y is by default interpreted as DoubleUpArrow[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[UpArrow] , î[DoubleDownArrow] . 

DoubleUpDownArrow

ë  î[DoubleUpDownArrow]

† Infix arrow operator. 

† x ë  y is by default interpreted as DoubleUpDownArrow[x, y]. 
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† Extensible character. 

† See Section 3.10.4.

† See also: î[UpDownArrow] , î[UpArrowDownArrow] , î[DownArrowUpArrow] . 

DoubleVerticalBar

˛  î[DoubleVerticalBar]

† Alias: Çâ|| . 

† Infix operator. 

† x ˛  y is by default interpreted as DoubleVerticalBar[x, y]. 

† Used in mathematics to indicate that x exactly divides y. 

† Used in geometry to mean “parallel  to”.  

† Not the same as î[LeftDoubleBracketingBar], î[RightDoubleBracketingBar]. 

† Ç||  is the alias for î[Or]. The alias for î[DoubleVerticalBar] has a space at the beginning. 

† See Section 3.10.4.

† See also: î[VerticalBar] , î[VerticalSeparator] , î[NotDoubleVerticalBar] . 

DownArrow

∞  î[DownArrow]

† Infix arrow operator. 

† x ∞  y is by default interpreted as DownArrow[x, y]. 

† Used to indicate monotonic decrease to a limit. 

† Sometimes used for logical nor. 

† Sometimes used in prefix form to indicate the closure of a set. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[DownTeeArrow] , î[DownArrowBar] , î[DoubleDownArrow] , î[LeftDownVector] , î[UpArrow] . 

DownArrowBar

%  î[DownArrowBar]

† Infix arrow operator. 

† x %  y is by default interpreted as DownArrowBar[x, y]. 

† Sometimes used as an indicator of depth. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[DownTeeArrow] , î[DownArrow] , î[LeftDownVectorBar] , î[UpArrowBar] . 
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DownArrowUpArrow

]  î[DownArrowUpArrow]

† Infix arrow operator. 

† x ]  y is by default interpreted as DownArrowUpArrow[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[UpDownArrow] , î[DoubleUpDownArrow] , î[UpArrowDownArrow] , î[UpEquilibrium] . 

DownBreve

Ú  î[DownBreve]

† Alias: Çdbv . 

† Letter-like form. 

† Used in an overscript position as a diacritical mark. 

† See Section 3.10.3.

† See also: î[Breve] , î[Cap] . 

DownExclamation

¡  î[DownExclamation]

† Alias: Çd! . 

† Letter-like form. 

† Used in Spanish. 

† See Section 3.10.3.

† See also: î[RawExclamation] , î[DownQuestion] . 

DownLeftRightVector

5  î[DownLeftRightVector]

† Infix arrow-like operator. 

† x 5  y is by default interpreted as DownLeftRightVector[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[LeftRightVector] , î[Equilibrium] , î[RightUpDownVector] . 
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DownLeftTeeVector

.  î[DownLeftTeeVector]

† Infix arrow-like operator. 

† x .  y is by default interpreted as DownLeftTeeVector[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[LeftTeeVector] , î[LeftVectorBar] . 

DownLeftVector

3  î[DownLeftVector]

† Infix arrow-like operator. 

† x 3  y is by default interpreted as DownLeftVector[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[LeftVector] , î[LeftTeeVector] , î[LeftArrow] , î[LeftUpVector] . 

DownLeftVectorBar

*  î[DownLeftVectorBar]

† Infix arrow-like operator. 

† x *  y is by default interpreted as DownLeftVectorBar[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[LeftVectorBar] , î[LeftTeeVector] . 

DownQuestion

¿  î[DownQuestion]

† Alias: Çd? . 

† Letter-like form. 

† Used in Spanish. 

† See Section 3.10.3.

† See also: î[RawQuestion] , î[DownExclamation] . 
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DownRightTeeVector

/  î[DownRightTeeVector]

† Infix arrow-like operator. 

† x /  y is by default interpreted as DownRightTeeVector[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[RightTeeVector] , î[RightVectorBar] . 

DownRightVector

4  î[DownRightVector]

† Infix arrow-like operator. 

† x 4  y is by default interpreted as DownRightVector[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[RightVector] , î[RightTeeVector] , î[RightArrow] , î[RightUpVector] . 

DownRightVectorBar

+  î[DownRightVectorBar]

† Infix arrow-like operator. 

† x +  y is by default interpreted as DownRightVectorBar[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[RightVectorBar] , î[RightTeeVector] . 

DownTee

§  î[DownTee]

† Alias: ÇdT . 

† Infix operator. 

† x §  y is by default interpreted as DownTee[x, y]. 

† See Section 3.10.4.

† See also: î[UpTee] , î[RightTee] , î[DownTeeArrow] . 
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DownTeeArrow

'  î[DownTeeArrow]

† Infix arrow operator. 

† x '  y is by default interpreted as DownTeeArrow[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[DownArrowBar] , î[RightDownTeeVector] , î[DownTee] , î[UpTeeArrow] . 

EAcute

é  î[EAcute]

† Alias: Çe' . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 1.10.7 and Section 3.10.3.

† See also: î[CapitalEAcute] . 

EBar

  î[EBar]

† Alias: Çe- . 

† Letter. 

† Included in ISO Latin-4. 

† Used in transliterations of various non-Latin alphabets. 

† See Section 3.10.3.

† See also: î[CapitalEBar] . 

ECup

  î[ECup]

† Alias: Çeu . 

† Letter. 

† Not included in ISO Latin. 

† Used in transliterations of Cyrillic characters. 

† See Section 3.10.3.

† See also: î[CapitalECup] . 
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EDoubleDot

ë  î[EDoubleDot]

† Alias: Çe" . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[CapitalEDoubleDot] , î[IDoubleDot] , î[ADoubleDot] . 

EGrave

è  î[EGrave]

† Alias: Çe` . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 1.10.7 and Section 3.10.3.

† See also: î[CapitalEGrave] . 

EHat

ê  î[EHat]

† Alias: Çe^ . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[CapitalEHat] . 

Element

œ  î[Element]

† Alias: Çel . 

† Infix operator with built-in evaluation rules. 

† x œ  y is by default interpreted as Element[x, y]. 

† Not the same as î[Epsilon]. 

† See Section 1.10.4, Section 1.10.8, Section 3.10.4 and Section 3.10.4.

† See also: î[NotElement] , î[ReverseElement] , î[Euro] . 
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Ellipsis

…  î[Ellipsis]

† Alias: Ç... . 

† Letter-like form. 

† Used to indicate omitted elements in a row of a matrix. 

† î[Ellipsis] on its own will act as a symbol. 

† See Section 3.10.3.

† See also: î[CenterEllipsis] , î[VerticalEllipsis] , î[AscendingEllipsis] , î[HorizontalLine] , î
[LeftSkeleton] , î[RawDot] . 

EmptyCircle

ç  î[EmptyCircle]

† Alias: Çeci . 

† Letter-like form. 

† Not the same as the infix operator î[SmallCircle]. 

† See Section 3.10.3.

† See also: î[EmptySmallCircle] , î[FilledCircle] , î[Degree] . 

EmptyDiamond

í  î[EmptyDiamond]

† Letter-like form. 

† See Section 3.10.3.

† See also: î[Diamond] , î[FilledDiamond] . 

EmptyDownTriangle

õ  î[EmptyDownTriangle]

† Letter-like form. 

† Not the same as î[Del]. 

† See Section 3.10.3.

† See also: î[EmptyUpTriangle] , î[FilledDownTriangle] , î[FilledUpTriangle] , î[LeftTriangle] , î
[NotLeftTriangle] , î[NotRightTriangle] , î[RightTriangle] . 

EmptyRectangle
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ñ  î[EmptyRectangle]

† Letter-like form. 

† See Section 3.10.3.

† See also: î[FilledRectangle] . 

EmptySet

«  î[EmptySet]

† Alias: Çes . 

† Letter-like form. 

† Not the same as î[CapitalOSlash] or î[Diameter]. 

† See Section 1.10.8 and Section 3.10.3.

EmptySmallCircle

é  î[EmptySmallCircle]

† Alias: Çesci . 

† Letter-like form. 

† Not the same as the infix operator î[SmallCircle]. 

† Used as an overscript to add ring diacritical marks. 

† See Section 3.10.3.

† See also: î[FilledSmallCircle] , î[Degree] , î[ARing] , î[Angstrom] . 

EmptySmallSquare

ã  î[EmptySmallSquare]

† Alias: Çessq . 

† Letter-like form. 

† Not the same as the operator î[Square]. 

† Not the same as î[Placeholder]. 

† See Section 3.10.3.

† See also: î[EmptySquare] , î[FilledSmallSquare] . 

EmptySquare

á  î[EmptySquare]
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† Alias: Çesq . 

† Letter-like form. 

† Not the same as the operator î[Square]. 

† Not the same as î[Placeholder]. 

† See Section 3.10.3.

† See also: î[FilledSquare] , î[GraySquare] , î[DottedSquare] , î[EmptyRectangle] . 

EmptyUpTriangle

ó  î[EmptyUpTriangle]

† Letter-like form. 

† Used in geometry to indicate a triangle, as in the symbol óABC. 

† Not the same as î[CapitalDelta]. 

† See Section 3.10.3 and Section 3.10.3.

† See also: î[FilledUpTriangle] , î[EmptyDownTriangle] , î[RightTriangle] , î[Angle] . 

EnterKey

Û  î[EnterKey]

† Alias: Çent . 

† Letter-like form. 

† Representation of the Enter key on a keyboard. 

† Used in describing how to type textual input. 

† 

† See also: î[ReturnKey] , î[ReturnIndicator] , î[ControlKey] , î[CommandKey] . 

Epsilon

e  î[Epsilon]

† Aliases: Çe , Çepsilon . 

† Greek letter. 

† Not the same as î[Element]. 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[CurlyEpsilon] , î[CapitalEpsilon] , î[Eta] , î[Euro] . 

Equal

ã  î[Equal]
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† Alias: Ç== . 

† Infix operator with built-in evaluation rules. 

† x ã  y is by default interpreted as Equal[x, y] or x == y. 

† î[Equal] is drawn longer than î[RawEqual]. 

† See Section 1.10.4 and Section 3.10.4.

† See also: î[LongEqual] , î[NotEqual] , î[Congruent] , î[Rule] . 

EqualTilde

?  î[EqualTilde]

† Alias: Ç=~ Ç. 

† Infix similarity operator. 

† x ?  y is by default interpreted as EqualTilde[x, y]. 

† See Section 3.10.4.

† See also: î[NotEqualTilde] . 

Equilibrium

F  î[Equilibrium]

† Alias: Çequi . 

† Infix arrow-like operator. 

† x F  y is by default interpreted as Equilibrium[x, y]. 

† Used in chemistry to represent a reversible reaction. 

† Extensible character. 

† See Section 1.10.8 and Section 3.10.4.

† See also: î[ReverseEquilibrium] , î[RightArrowLeftArrow] , î[LeftRightArrow] , î[LeftRightVector] 
, î[UpEquilibrium] .

ErrorIndicator

Ý  î[ErrorIndicator]

† Uninterpretable element. 

† Generated to indicate the position of a syntax error in messages produced by functions like Get and ToExpression. 

† Shown as ^^^ in OutputForm. 

† î[ErrorIndicator] indicates the presence of a syntax error, and so by default generates an error if you try to interpret it. 

† See also: î[LeftSkeleton] . 

EscapeKey
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Â  î[EscapeKey]

† Alias: Çâesc . 

† Letter-like form. 

† Representation of the escape key on a keyboard. 

† Used in describing how to type aliases for special characters in Mathematica. 

† Çesc  is the alias for î[AliasIndicator]. The alias for î[EscapeKey] has a space at the beginning. 

† See Section 3.10.5.

† See also: î[AliasIndicator] , î[RawEscape] , î[ReturnKey] , î[ControlKey] , î[CommandKey] . 

Eta

h  î[Eta]

† Aliases: Çet , Çeta , Çh . 

† Greek letter. 

† Used in TraditionalForm for DedekindEta. 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[CapitalEta] , î[Epsilon] . 

Eth

ð  î[Eth]

† Alias: Çd- . 

† Letter. 

† Included in ISO Latin-1. 

† Used in Icelandic and Old English. 

† See Section 3.10.3.

† See also: î[CapitalEth] , î[Thorn] , î[PartialD] . 

Euro

€  î[Euro]

† Letter-like form. 

† Sign for euro European currency, as in € 5. 

† See Section 3.10.3.

† See also: î[Epsilon] , î[Element] , î[Sterling] . 

Exists
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$  î[Exists]

† Alias: Çex . 

† Compound operator. 

† ∃x y  is by default interpreted as Exists[x, y]. 

† See Section 3.10.4.

† See also: î[NotExists] . 

ExponentialE

‰  î[ExponentialE]

† Alias: Çee . 

† Letter-like form with built-in value. 

† ‰  is interpreted by default as the symbol E, representing the exponential constant. 

† See Section 3.10.2 and Section 3.10.3.

† See also: î[DifferentialD] , î[ImaginaryI] . 

FilledCircle

æ  î[FilledCircle]

† Alias: Çfci . 

† Letter-like form. 

† Used as a dingbat. 

† See Section 3.10.3.

† See also: î[Bullet] , î[FilledSmallCircle] , î[SmallCircle] , î[EmptyCircle] . 

FilledDiamond

ì  î[FilledDiamond]

† Letter-like form. 

† See Section 3.10.3.

† See also: î[Diamond] , î[EmptyDiamond] . 

FilledDownTriangle

ô  î[FilledDownTriangle]

† Letter-like form. 

† See Section 3.10.3.
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† See also: î[EmptyDownTriangle] , î[EmptyUpTriangle] , î[FilledUpTriangle] , î[LeftTriangle] , î
[NotLeftTriangle] , î[NotRightTriangle] , î[RightTriangle] . 

FilledRectangle

ð  î[FilledRectangle]

† Letter-like form. 

† Used in mathematics to indicate the end of a proof. 

† See Section 3.10.3.

† See also: î[EmptyRectangle] . 

FilledSmallCircle

è  î[FilledSmallCircle]

† Alias: Çfsci . 

† Letter-like form. 

† Used as a dingbat. 

† See Section 3.10.3.

† See also: î[Bullet] , î[FilledCircle] , î[EmptySmallCircle] . 

FilledSmallSquare

†  î[FilledSmallSquare]

† Alias: Çfssq . 

† Letter-like form. 

† Used as a dingbat. 

† Not the same as î[SelectionPlaceholder]. 

† See Section 3.10.3.

† See also: î[FilledSquare] , î[EmptySmallSquare] , î[Square] . 

FilledSquare

à  î[FilledSquare]

† Alias: Çfsq . 

† Letter-like form. 

† Used as a dingbat. 

† Not the same as î[SelectionPlaceholder]. 
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† See Section 3.10.3.

† See also: î[FilledSmallSquare] , î[EmptySquare] , î[Square] , î[GraySquare] , î[FilledRectangle] . 

FilledUpTriangle

ò  î[FilledUpTriangle]

† Letter-like form. 

† See Section 3.10.3.

† See also: î[EmptyDownTriangle] , î[EmptyUpTriangle] , î[FilledDownTriangle] , î[LeftTriangle] , î
[NotLeftTriangle] , î[NotRightTriangle] , î[RightTriangle] . 

FilledVerySmallSquare

ä  î[FilledVerySmallSquare]

† Alias: Çfvssq . 

† Letter-like form. 

† Used as a dingbat. 

† See Section 3.10.3.

† See also: î[FilledSmallSquare] , î[Square] . 

FinalSigma

V  î[FinalSigma]

† Alias: Çfs . 

† Greek letter. 

† Used in written Greek when s  occurs at the end of a word. 

† Not commonly used in technical notation. 

† Not the same as î[Stigma]. 

† See Section 3.10.3.

† See also: î[Sigma] . 

FivePointedStar

ø  î[FivePointedStar]

† Alias: Ç*5 . 

† Letter-like form. 

† Not the same as the operator î[Star]. 
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† See Section 3.10.3.

† See also: î[SixPointedStar] , î[Star] , î[RawStar] . 

Flat

Ù  î[Flat]

† Letter-like form. 

† Used to denote musical notes. 

† Sometimes used in mathematical notation. 

† See Section 3.10.3.

† See also: î[Sharp] , î[Natural] . 

ForAll

"  î[ForAll]

† Alias: Çfa . 

† Compound operator. 

† ∀x y  is by default interpreted as ForAll[x, y]. 

† See Section 3.10.4.

† See also: î[Exists] , î[Not] . 

FreakedSmiley

œ  î[FreakedSmiley]

† Alias: Ç:-@ . 

† Letter-like form. 

† See Section 3.10.3.

† See also: î[HappySmiley] , î[NeutralSmiley] , î[SadSmiley] , î[WarningSign] . 

Gamma

g  î[Gamma]

† Aliases: Çg , Çgamma . 

† Greek letter. 

† Used in TraditionalForm for EulerGamma and StieltjesGamma. 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[DoubledGamma] , î[CapitalGamma] , î[Digamma] . 
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Gimel

½  î[Gimel]

† Alias: Çgi . 

† Hebrew letter. 

† Used occasionally in pure mathematics in the theory of transfinite cardinals. 

† See Section 3.10.3.

† See also: î[Aleph] . 

GothicA … GothicZ

 …   î[GothicA] … î[GothicZ]

† Aliases: Çgoa  through Çgoz . 

† Letters. 

† Treated as distinct characters rather than style modifications of ordinary letters. 

† Used in pure mathematics. 

† Contiguous character codes from the private Unicode character range are used, even though a few gothic characters are included in 
ordinary Unicode. 

† See Section 3.10.3.

† See also: î[GothicCapitalA] , î[ScriptA] , î[DoubleStruckA] , etc. 

GothicCapitalA … GothicCapitalZ

 …   î[GothicCapitalA] … î[GothicCapitalZ]

† Aliases: ÇgoA  through ÇgoZ . 

† Letters. 

† Treated as distinct characters rather than style modifications of ordinary letters. 

† ¬  is used to denote imaginary part; √  is used to denote real part. 

† Used in pure mathematics and theory of computation. 

† Contiguous character codes from the private Unicode character range are used, even though a few capital gothic characters are 
included in ordinary Unicode. 

† See Section 3.10.3.

† See also: î[GothicA] , î[ScriptCapitalA] , î[DoubleStruckCapitalA] , etc. 

GrayCircle

  î[GrayCircle]
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† Alias: Çgci . 

† Letter-like form. 

† Used as a dingbat. 

† Generated internally by Mathematica, rather than being an explicit font character. 

† See Section 3.10.3.

† See also: î[FilledCircle] , î[GraySquare] . 

GraySquare

  î[GraySquare]

† Alias: Çgsq . 

† Letter-like form. 

† Used as a dingbat. 

† Generated internally by Mathematica, rather than being an explicit font character. 

† See Section 3.10.3.

† See also: î[FilledSquare] , î[EmptySquare] . 

GreaterEqual

¥  î[GreaterEqual]

† Alias: Ç>= . 

† Infix operator with built-in evaluation rules. 

† x ¥  y is by default interpreted as GreaterEqual[x, y]. 

† See Section 1.10.4 and Section 3.10.4.

† See also: î[GreaterSlantEqual] , î[GreaterFullEqual] , î[NotGreaterEqual] . 

GreaterEqualLess

š  î[GreaterEqualLess]

† Infix ordering operator. 

† x š  y is by default interpreted as GreaterEqualLess[x, y]. 

† See Section 3.10.4.

† See also: î[LessEqualGreater] .

GreaterFullEqual

s  î[GreaterFullEqual]
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† Infix ordering operator. 

† x s  y is by default interpreted as GreaterFullEqual[x, y]. 

† See Section 3.10.4.

† See also: î[GreaterEqual] , î[GreaterSlantEqual] , î[NotGreaterFullEqual] . 

GreaterGreater

p  î[GreaterGreater]

† Infix ordering operator. 

† x p  y is by default interpreted as GreaterGreater[x, y]. 

† Not the same as î[RightGuillemet]. 

† See Section 1.10.8 and Section 3.10.4.

† See also: î[NestedGreaterGreater] , î[NotGreaterGreater] , î[NotNestedGreaterGreater] . 

GreaterLess

˜  î[GreaterLess]

† Infix ordering operator. 

† x ˜  y is by default interpreted as GreaterLess[x, y]. 

† See Section 3.10.4.

† See also: î[GreaterEqualLess] , î[NotGreaterLess] . 

GreaterSlantEqual

r  î[GreaterSlantEqual]

† Alias: Ç>/ . 

† Infix operator with built-in evaluation rules. 

† x r  y is by default interpreted as GreaterEqual[x, y]. 

† See Section 3.10.4.

† See also: î[GreaterEqual] , î[GreaterFullEqual] , î[NotGreaterSlantEqual] . 

GreaterTilde

t  î[GreaterTilde]

† Alias: Ç>~ Ç. 

† Infix ordering operator. 

† x t  y is by default interpreted as GreaterTilde[x, y]. 
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† See Section 1.10.8 and Section 3.10.4.

† See also: î[NotGreaterTilde] . 

Hacek

«  î[Hacek]

† Alias: Çhc . 

† Letter-like form. 

† Used primarily in an overscript position. 

† Used as a diacritical mark in Eastern European languages. 

† Sometimes used in mathematical notation, for example in C ech cohomology. 

† See Section 3.10.3.

† See also: î[Vee] , î[Breve] . 

HappySmiley

Ã  î[HappySmiley]

† Aliases: Ç:) , Ç:-) . 

† Letter-like form. 

† See Section 3.10.3.

† See also: î[NeutralSmiley] , î[SadSmiley] , î[FreakedSmiley] , î[Wolf] . 

HBar

Ñ  î[HBar]

† Alias: Çhb . 

† Letter-like form. 

† Used in physics to denote Planck's constant divided by 2 p ; sometimes called Dirac's constant. 

† See Section 1.10.8 and Section 3.10.3.

† See also: î[Angstrom] . 

HeartSuit

™  î[HeartSuit]

† Letter-like form. 

† See Section 3.10.3.

† See also: î[ClubSuit] . 
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HorizontalLine

_  î[HorizontalLine]

† Alias: Çhline . 

† Letter-like form. 

† Extensible character. 

† Thickness can be adjusted using the SpanThickness option in StyleBox. 

† See Section 3.10.3.

† See also: î[Dash] , î[LongDash] , î[VerticalSeparator] . 

HumpDownHump

Q  î[HumpDownHump]

† Infix similarity operator. 

† x Q  y is by default interpreted as HumpDownHump[x, y]. 

† Used to indicate geometrical equivalence. 

† See Section 3.10.4.

† See also: î[HumpEqual] , î[NotHumpDownHump] . 

HumpEqual

P  î[HumpEqual]

† Alias: Çh= . 

† Infix similarity operator. 

† x P  y is by default interpreted as HumpEqual[x, y]. 

† Sometimes used to mean “approximately  equal”  and sometimes “difference  between”.  

† See Section 3.10.4.

† See also: î[HumpDownHump] , î[TildeEqual] , î[NotHumpEqual] . 

IAcute

í  î[IAcute]

† Alias: Çi' . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 1.10.7 and Section 3.10.3.

† See also: î[CapitalIAcute] . 
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ICup

  î[ICup]

† Alias: Çiu . 

† Letter. 

† Included in ISO Latin-2. 

† Used in transliterations of Cyrillic characters. 

† See Section 3.10.3.

† See also: î[CapitalICup] . 

IDoubleDot

ï  î[IDoubleDot]

† Alias: Çi" . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[CapitalIDoubleDot] , î[EDoubleDot] , î[ADoubleDot] . 

IGrave

ì  î[IGrave]

† Alias: Çi` . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[CapitalIGrave] . 

IHat

î  î[IHat]

† Alias: Çi^ . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[CapitalIHat] . 
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ImaginaryI

Â  î[ImaginaryI]

† Alias: Çii . 

† Letter-like form with built-in value. 

† Â  is interpreted by default as the symbol I, representing è!!!!!!!
-1 . 

† See Section 3.10.1, Section 3.10.2 and Section 3.10.3.

† See also: î[ImaginaryJ] , î[ExponentialE] . 

ImaginaryJ

ü  î[ImaginaryJ]

† Alias: Çjj . 

† Letter-like form with built-in value. 

† ü  is interpreted by default as the symbol I, representing è!!!!!!!
-1 . 

† Used in electrical engineering. 

† See Section 3.10.2 and Section 3.10.3.

† See also: î[ImaginaryI] , î[ExponentialE] . 

Implies

fl  î[Implies]

† Alias: Ç=> . 

† Infix operator with built-in evaluation rules. 

† x fl  y is by default interpreted as Implies[x, y]. 

† x fl  y fl  z groups as x fl  (y fl  z). 

† Not the same as î[DoubleRightArrow]. 

† î[DoubleRightArrow] is extensible; î[Implies] is not. 

† See Section 1.10.4, Section 3.10.1, Section 3.10.4 and Section 3.10.4.

† See also: î[RoundImplies] , î[SuchThat] , î[RightArrow] , î[Rule] . 

IndentingNewLine

  î[IndentingNewLine]

† Alias: Çnl . 

† Raw operator. 

† Forces a line break in an expression, maintaining the correct indenting level based on the environment of the line break. 
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† See Section 2.9.11 and Section 3.10.5.

† See also: î[NewLine] , î[NoBreak] . 

Infinity

¶  î[Infinity]

† Alias: Çinf . 

† Letter-like form with built-in value. 

† ¶  is interpreted by default as the symbol Infinity. 

† See Section 1.10.4, Section 3.10.2 and Section 3.10.3.

Integral

Ÿ  î[Integral]

† Alias: Çint . 

† Compound operator with built-in evaluation rules. 

† Ÿ  f „  x is by default interpreted as Integrate[f, x]. 

† Ÿa
b

 f „  x is by default interpreted as Integral[f, 8x, a, b<]. a and b must appear as a subscript and superscript, respectively. 

† Ÿ  a ë  b „  x is by default output as Ÿ  (a ë  b) „  x whenever ë  is an operator with a precedence lower than * . 

† Note the use of „ , entered as Çdd  or î[DifferentialD], rather than ordinary d. 

† See Section 1.10.4, Section 1.10.4 and Section 3.10.4.

† See also: î[ContourIntegral] . 

Intersection

›  î[Intersection]

† Alias: Çinter . 

† Infix operator with built-in evaluation rules. 

† x ›  y is by default interpreted as Intersection[x, y]. 

† The character ›  is sometimes called “cap”;  but see also î[Cap]. 

† Çint  gives î[Integral] not î[Intersection]. 

† See Section 1.10.4 and Section 3.10.4.

† See also: î[Union] , î[SquareIntersection] , î[Cap] , î[Wedge] . 

InvisibleApplication

  î[InvisibleApplication]
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† Alias: Ç@ . 

† Structural element with built-in meaning. 

† î[InvisibleApplication] is by default not visible on display, but is interpreted as function application. 

† f Ç@  x is interpreted as f @ x or f[x]. 

† î[InvisibleApplication] can be used as an invisible separator between functions or between functions and their argu-
ments. 

† See Section 1.10.4 and Section 3.10.5.

† See also: î[InvisibleSpace] , î[InvisibleComma] , î[RawAt] . 

InvisibleComma

  î[InvisibleComma]

† Alias: Ç, . 

† Structural element with built-in meaning. 

† î[InvisibleComma] is by default not visible on display, but is interpreted on input as an ordinary comma. 

† î[InvisibleComma] can be used as an invisible separator between indices, as in Mi j . 

† See Section 1.10.4 and Section 3.10.5.

† See also: î[AlignmentMarker] , î[Null] , î[InvisibleSpace] , î[RawComma] . 

InvisibleSpace

  î[InvisibleSpace]

† Alias: Çis . 

† Spacing character. 

† î[InvisibleSpace] is by default not visible on display, but is interpreted on input as an ordinary space. 

† î[InvisibleSpace] can be used as an invisible separator between variables that are being multiplied together, as in x y . 

† See Section 2.9.11, Section 3.10.5 and Section 3.10.5.

† See also: î[AlignmentMarker] , î[Null] , î[VeryThinSpace] , î[RawSpace] . 

Iota

i  î[Iota]

† Aliases: Çi , Çiota . 

† Greek letter. 

† Not commonly used. 

† Used in set theory to indicate an explicitly constructible set. 

† See Section 3.10.3.

† See also: î[CapitalIota] , î[DotlessI] . 
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Kappa

k  î[Kappa]

† Aliases: Çk , Çkappa . 

† Greek letter. 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[CurlyKappa] , î[CapitalKappa] . 

KernelIcon

⁄  î[KernelIcon]

† Letter-like form. 

† Icon typically used for the Mathematica kernel. 

† This icon is a trademark of Wolfram Research. 

† See Section 3.10.3.

† See also: î[MathematicaIcon] . 

Koppa

º  î[Koppa]

† Aliases: Çko , Çkoppa . 

† Special Greek letter. 

† Analogous to English q. 

† Appeared between p  and r  in early Greek alphabet; used for Greek numeral 90. 

† See Section 3.10.3.

† See also: î[CapitalKoppa] , î[Digamma] , î[Stigma] , î[Sampi] . 

Lambda

l  î[Lambda]

† Aliases: Çl , Çlambda . 

† Greek letter. 

† Used in TraditionalForm for ModularLambda. 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[CapitalLambda] . 
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LeftAngleBracket

X  î[LeftAngleBracket]

† Alias: Ç< . 

† Matchfix operator. 

† X  x \  is by default interpreted as AngleBracket[x]. 

† Used in the form Xx\  to indicate expected or average value. 

† Called bra in quantum mechanics. 

† Used in the form Xx, y\  to indicate various forms of inner product. 

† Used in the form Xx, y, … \  to denote an ordered set of objects. 

† Not the same as î[RawLess]. 

† Extensible character; grows by default to limited size. 

† See Section 3.10.4.

† See also: î[RightAngleBracket] , î[LeftFloor] , î[LeftCeiling] . 

LeftArrow

≠  î[LeftArrow]

† Alias: Ç<- . 

† Infix arrow operator. 

† x ≠  y is by default interpreted as LeftArrow[x, y]. 

† Sometimes used in computer science to indicate assignment: x gets value y. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[LongLeftArrow] , î[ShortLeftArrow] , î[DoubleLeftArrow] , î[LeftTeeArrow] , î[LeftArrow-
Bar] , î[LowerLeftArrow] , î[LeftVector] , î[LeftTriangle] , î[RightArrow] . 

LeftArrowBar

{  î[LeftArrowBar]

† Infix arrow operator. 

† x {  y is by default interpreted as LeftArrowBar[x, y]. 

† Sometimes used to indicate a backtab. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[LeftTeeArrow] , î[LeftVectorBar] , î[DownArrowBar] , î[RightArrowBar] . 
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LeftArrowRightArrow

W  î[LeftArrowRightArrow]

† Infix arrow operator. 

† x W  y is by default interpreted as LeftArrowRightArrow[x, y]. 

† Used in mathematics to indicate logical equivalence. 

† Sometimes used to indicate chemical equilibrium. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[RightArrowLeftArrow] , î[LeftRightArrow] , î[DoubleLeftRightArrow] , î[Equilibrium] , î
[UpArrowDownArrow] . 

LeftBracketingBar

†  î[LeftBracketingBar]

† Alias: Çl| . 

† Matchfix operator. 

† †  x §  is by default interpreted as BracketingBar[x]. 

† Used in mathematics to indicate absolute value (Abs), determinant (Det), and other notions of evaluating size or magnitude. 

† Not the same as î[VerticalBar]. 

† Drawn in monospaced fonts with a small left-pointing tee to indicate direction. 

† Extensible character. 

† See Section 3.10.1 and Section 3.10.4.

† See also: î[LeftDoubleBracketingBar] , î[LeftTee] . 

LeftCeiling

`  î[LeftCeiling]

† Alias: Çlc . 

† Matchfix operator with built-in evaluation rules. 

† `  x p  is by default interpreted as Ceiling[x]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[RightCeiling] , î[LeftFloor] , î[LeftAngleBracket] . 

LeftDoubleBracket
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P  î[LeftDoubleBracket]

† Alias: Ç[[ . 

† Compound operator with built-in evaluation rules. 

† mP i,j, … T  is by default interpreted as Part[m, i, j, … ]. 

† Sometimes used in mathematics to indicate a class of algebraic objects with certain variables or extensions. 

† Extensible character; grows by default to limited size. 

† See Section 1.10.4 and Section 3.10.4.

† See also: î[RawLeftBracket] , î[LeftDoubleBracketingBar] . 

LeftDoubleBracketingBar

∞  î[LeftDoubleBracketingBar]

† Alias: Çl|| . 

† Matchfix operator. 

† ∞  x ¥  is by default interpreted as DoubleBracketingBar[x]. 

† Used in mathematics to indicate taking a norm. 

† Sometimes used for determinant. 

† Sometimes used to indicate a matrix. 

† Not the same as î[DoubleVerticalBar]. 

† Drawn in monospaced fonts with a small left-pointing tee to indicate direction. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[LeftBracketingBar] . 

LeftDownTeeVector

=  î[LeftDownTeeVector]

† Infix arrow-like operator. 

† x =  y is by default interpreted as LeftDownTeeVector[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[RightDownTeeVector] , î[LeftDownVectorBar] , î[DownTeeArrow] , î[LeftUpTeeVector] . 

LeftDownVector

B  î[LeftDownVector]

Printed from the Mathematica Help Browser 71

©1988-2003 Wolfram Research, Inc. All rights reserved.



† Infix arrow-like operator. 

† x B  y is by default interpreted as LeftDownVector[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[RightDownVector] , î[LeftDownTeeVector] , î[DownArrow] , î[UpEquilibrium] , î[LeftUpVec-
tor] . 

LeftDownVectorBar

9  î[LeftDownVectorBar]

† Infix arrow-like operator. 

† x 9  y is by default interpreted as LeftDownVectorBar[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[RightDownVectorBar] , î[LeftDownTeeVector] , î[DownArrowBar] , î[LeftUpVectorBar] . 

LeftFloor

d  î[LeftFloor]

† Alias: Çlf . 

† Matchfix operator with built-in evaluation rules. 

† d  x t  is by default interpreted as Floor[x]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[RightFloor] , î[LeftCeiling] , î[LeftAngleBracket] . 

LeftGuillemet

«  î[LeftGuillemet]

† Alias: Çg<< . 

† Letter-like form. 

† Used as opening quotation marks in languages such as Spanish. 

† Not the same as î[LessLess]. 

† Not the same as î[LeftSkeleton]. 

† Guillemet is sometimes misspelled as guillemot. 

† See Section 3.10.3.

† See also: î[RightGuillemet] . 
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LeftModified

Î  î[LeftModified]

† Alias: Ç[ . 

† Letter-like form. 

† Used in documenting control and command characters. 

† keyî[LeftModified]charî[RightModified] is used to indicate that char should be typed while key is being pressed. 

† Not the same as î[RawLeftBracket]. 

† See Section 3.10.5.

† See also: î[ControlKey] , î[CommandKey] , î[RightModified] . 

LeftRightArrow

¨  î[LeftRightArrow]

† Alias: Ç<-> . 

† Infix arrow operator. 

† x ¨  y is by default interpreted as LeftRightArrow[x, y]. 

† Used in mathematics for various notions of equivalence and equality. 

† Extensible character. 

† See Section 1.10.8 and Section 3.10.4.

† See also: î[LongLeftRightArrow] , î[DoubleLeftRightArrow] , î[LeftArrowRightArrow] , î[LeftRight-
Vector] , î[Equilibrium] , î[UpDownArrow] . 

LeftRightVector

2  î[LeftRightVector]

† Infix arrow-like operator. 

† x 2  y is by default interpreted as LeftRightVector[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[DownLeftRightVector] , î[Equilibrium] , î[ReverseEquilibrium] , î[LeftRightArrow] , î
[RightArrowLeftArrow] , î[RightUpDownVector] . 

LeftSkeleton

á  î[LeftSkeleton]
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† Uninterpretable element. 

† á  n à  is used on output to indicate n omitted pieces in an expression obtained from Short or Shallow. 

† î[LeftSkeleton] indicates the presence of missing information, and so by default generates an error if you try to interpret it. 

† Not the same as î[LeftGuillemet]. 

† See Section 3.10.5.

† See also: î[RightSkeleton] , î[SkeletonIndicator] , î[Ellipsis] , î[ErrorIndicator] . 

LeftTee

¤  î[LeftTee]

† Alias: ÇlT . 

† Infix operator. 

† x ¤  y is by default interpreted as LeftTee[x, y]. 

† x ¤  y ¤  z groups as (x ¤  y) ¤  z. 

† Used in mathematics to indicate the lack of logical implication or proof. 

† See Section 3.10.4 and Section 3.10.4.

† See also: î[DoubleLeftTee] , î[LeftTeeArrow] , î[LeftTeeVector] , î[RightTee] , î[DownTee] , î[Left-
BracketingBar] .

LeftTeeArrow

"  î[LeftTeeArrow]

† Infix arrow operator. 

† x "  y is by default interpreted as LeftTeeArrow[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[LeftTeeVector] , î[LeftTee] , î[RightTeeArrow] , î[DownTeeArrow] . 

LeftTeeVector

,  î[LeftTeeVector]

† Infix arrow-like operator. 

† x ,  y is by default interpreted as LeftTeeVector[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[DownLeftTeeVector] , î[LeftVectorBar] , î[LeftVector] , î[LeftTeeArrow] . 

LeftTriangle
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0  î[LeftTriangle]

† Infix ordering operator. 

† x 0  y is by default interpreted as LeftTriangle[x, y]. 

† Used in pure mathematics to mean “normal  subgroup of”.  

† See Section 3.10.4.

† See also: î[LeftTriangleEqual] , î[LeftTriangleBar] , î[LeftArrow] , î[NotLeftTriangle] , î[Right-
Triangle] , î[EmptyUpTriangle] , î[FilledUpTriangle] . 

LeftTriangleBar

2  î[LeftTriangleBar]

† Infix ordering operator. 

† x 2  y is by default interpreted as LeftTriangleBar[x, y]. 

† See Section 3.10.4.

† See also: î[LeftTriangle] , î[LeftTriangleEqual] , î[LeftArrowBar] , î[NotLeftTriangleBar] . 

LeftTriangleEqual

1  î[LeftTriangleEqual]

† Infix ordering operator. 

† x 1  y is by default interpreted as LeftTriangleEqual[x, y]. 

† See Section 3.10.4.

† See also: î[LeftTriangle] , î[LeftTriangleBar] , î[PrecedesEqual] , î[NotLeftTriangleEqual] , î
[RightTriangleEqual] . 

LeftUpDownVector

6  î[LeftUpDownVector]

† Infix arrow-like operator. 

† x 6  y is by default interpreted as LeftUpDownVector[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[RightUpDownVector] , î[UpEquilibrium] , î[UpArrowDownArrow] , î[LeftRightVector] . 

LeftUpTeeVector

<  î[LeftUpTeeVector]
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† Infix arrow-like operator. 

† x <  y is by default interpreted as LeftUpTeeVector[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[RightUpTeeVector] , î[LeftUpVectorBar] , î[UpTeeArrow] , î[LeftDownTeeVector] . 

LeftUpVector

@  î[LeftUpVector]

† Infix arrow-like operator. 

† x @  y is by default interpreted as LeftUpVector[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[RightUpVector] , î[LeftUpTeeVector] , î[UpArrow] , î[UpEquilibrium] , î[LeftDownVec-
tor] . 

LeftUpVectorBar

8  î[LeftUpVectorBar]

† Infix arrow-like operator. 

† x 8  y is by default interpreted as LeftUpVectorBar[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[RightUpVectorBar] , î[LeftUpTeeVector] , î[UpArrowBar] , î[LeftDownVectorBar] . 

LeftVector

0  î[LeftVector]

† Infix arrow-like operator. 

† x 0  y is by default interpreted as LeftVector[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[DownLeftVector] , î[LeftTeeVector] , î[LeftVectorBar] , î[LeftArrow] , î[RightVector] , 
î[LeftUpVector] . 

LeftVectorBar

(  î[LeftVectorBar]
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† Infix arrow-like operator. 

† x (  y is by default interpreted as LeftVectorBar[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[DownLeftVectorBar] , î[LeftTeeVector] , î[LeftArrowBar] . 

LessEqual

§  î[LessEqual]

† Alias: Ç<= . 

† Infix operator with built-in evaluation rules. 

† x §  y is by default interpreted as LessEqual[x, y]. 

† See Section 1.10.4 and Section 3.10.4.

† See also: î[LessSlantEqual] , î[LessFullEqual] , î[NotLessEqual] . 

LessEqualGreater

Š  î[LessEqualGreater]

† Infix ordering operator. 

† x Š  y is by default interpreted as LessEqualGreater[x, y]. 

† See Section 3.10.4.

† See also: î[GreaterEqualLess] .

LessFullEqual

c  î[LessFullEqual]

† Infix ordering operator. 

† x c  y is by default interpreted as LessFullEqual[x, y]. 

† See Section 3.10.4.

† See also: î[LessEqual] , î[LessSlantEqual] , î[NotLessFullEqual] . 

LessGreater

ˆ  î[LessGreater]

† Infix ordering operator. 

† x ˆ  y is by default interpreted as LessGreater[x, y]. 

† See Section 3.10.4.

† See also: î[LessEqualGreater] , î[NotLessGreater] . 
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LessLess

`  î[LessLess]

† Infix ordering operator. 

† x `  y is by default interpreted as LessLess[x, y]. 

† Not the same as î[LeftGuillemet]. 

† See Section 3.10.4.

† See also: î[NestedLessLess] , î[NotLessLess] , î[NotNestedLessLess] . 

LessSlantEqual

b  î[LessSlantEqual]

† Alias: Ç</ . 

† Infix operator with built-in evaluation rules. 

† x b  y is by default interpreted as LessEqual[x, y]. 

† See Section 3.10.4.

† See also: î[LessEqual] , î[LessFullEqual] , î[NotLessSlantEqual] . 

LessTilde

d  î[LessTilde]

† Alias: Ç<~ Ç. 

† Infix ordering operator. 

† x d  y is by default interpreted as LessTilde[x, y]. 

† See Section 3.10.4.

† See also: î[NotLessTilde] . 

LightBulb

¤  î[LightBulb]

† Letter-like form. 

† See Section 3.10.3.

LongDash

—  î[LongDash]
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† Alias: Ç-- . 

† Letter-like form. 

† See Section 3.10.3.

† See also: î[Dash] , î[HorizontalLine] . 

LongEqual

  î[LongEqual]

† Infix operator with built-in evaluation rules. 

† x  y is by default interpreted as Equal[x, y] or x == y. 

† î[LongEqual] is drawn longer than î[RawEqual]. 

† Used as an alternative to î[Equal]. 

† See Section 1.10.4, Section 3.10.1 and Section 3.10.4.

† See also: î[Equal] , î[NotEqual] , î[Congruent] . 

LongLeftArrow

ô  î[LongLeftArrow]

† Alias: Ç<-- . 

† Infix arrow operator. 

† x ô  y is by default interpreted as LongLeftArrow[x, y]. 

† See Section 3.10.4.

† See also: î[LeftArrow] , î[DoubleLongLeftArrow] , î[LongRightArrow] , î[LongLeftRightArrow] . 

LongLeftRightArrow

õ  î[LongLeftRightArrow]

† Alias: Ç<--> . 

† Infix arrow operator. 

† x õ  y is by default interpreted as LongLeftRightArrow[x, y]. 

† See Section 3.10.4.

† See also: î[LeftRightArrow] , î[DoubleLongLeftRightArrow] , î[LeftArrowRightArrow] , î[Equilib-
rium] . 

LongRightArrow

ö  î[LongRightArrow]
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† Alias: Ç--> . 

† Infix arrow operator. 

† x ö  y is by default interpreted as LongRightArrow[x, y]. 

† Not the same as î[Rule]. 

† See Section 1.10.8 and Section 3.10.4.

† See also: î[RightArrow] , î[DoubleLongRightArrow] , î[LongLeftArrow] , î[LongLeftRightArrow] . 

LowerLeftArrow

á  î[LowerLeftArrow]

† Infix arrow operator. 

† x á  y is by default interpreted as LowerLeftArrow[x, y]. 

† Extensible character; grows by default to limited size. 

† See Section 3.10.4.

† See also: î[LeftArrow] , î[UpperRightArrow] . 

LowerRightArrow

ä  î[LowerRightArrow]

† Infix arrow operator. 

† x ä  y is by default interpreted as LowerRightArrow[x, y]. 

† Extensible character; grows by default to limited size. 

† See Section 3.10.4.

† See also: î[RightArrow] , î[UpperLeftArrow] . 

LSlash

Ç  î[LSlash]

† Alias: Çl/ . 

† Letter. 

† Included in ISO Latin-2. 

† See Section 3.10.3.

† See also: î[CapitalLSlash] . 

MathematicaIcon

Ÿ  î[MathematicaIcon]

80 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



† Alias: Çmath . 

† Letter-like form. 

† Icon typically used for Mathematica. 

† Based on a stellated icosahedron. 

† This icon is a trademark of Wolfram Research. 

† See Section 3.10.3.

† See also: î[KernelIcon] . 

MeasuredAngle

−  î[MeasuredAngle]

† Letter-like form. 

† Used in geometry to indicate an angle, as in the symbol −  ABC. 

† See Section 3.10.3.

† See also: î[Angle] , î[SphericalAngle] , î[RightAngle] . 

MediumSpace

  î[MediumSpace]

† Alias: Çâ â â Ç. 

† Spacing character. 

† Width: 4/18 em. 

† Interpreted by default just like an ordinary î[RawSpace]. 

† Sometimes used in output as a separator between digits in numbers. 

† See Section 2.9.11 and Section 3.10.5.

† See also: î[ThinSpace] , î[ThickSpace] , î[NegativeMediumSpace] , î[NonBreakingSpace] , î[SpaceIndi-
cator] . 

Mho

°  î[Mho]

† Alias: Çmho . 

† Letter-like form. 

† Used to denote the inverse ohm unit of conductance. 

† "Mho" is "ohm" spelled backwards. 

† Occasionally called “agemo”  in pure mathematics. 

† Used to denote characteristic subgroups, and in set theory to denote functions of sets with special properties. 

† See Section 3.10.3.

† See also: î[CapitalOmega] . 
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Micro

µ  î[Micro]

† Alias: Çmi . 

† Letter-like form. 

† Used as a prefix in units to denote 10-6 . 

† Not the same as î[Mu]. 

† See Section 1.10.8 and Section 3.10.3.

† See also: î[Angstrom] . 

MinusPlus

¡  î[MinusPlus]

† Alias: Ç-+ . 

† Prefix or infix operator. 

† ¡  x is by default interpreted as MinusPlus[x]. 

† x ¡  y is by default interpreted as MinusPlus[x, y]. 

† See Section 3.10.4.

† See also: î[PlusMinus] . 

Mu

m  î[Mu]

† Aliases: Çm , Çmu . 

† Greek letter. 

† Used in TraditionalForm for MoebiusMu. 

† Not the same as î[Micro]. 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[CapitalMu] . 

Nand

  î[Nand]

† Alias: Çnand . 

† Infix operator with built-in evaluation rules. 

† x  y is by default interpreted as Nand[x, y]. 
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† See Section 3.10.4.

† See also: î[And] , î[Not] , î[Nor] , î[VerticalBar] . 

Natural

Ú  î[Natural]

† Letter-like form. 

† Used to denote musical notes. 

† Sometimes used in mathematical notation, often as an inverse of numbering operations represented by î[Sharp]. 

† See Section 1.10.8 and Section 3.10.3.

† See also: î[Flat] , î[Sharp] . 

NegativeMediumSpace

 î[NegativeMediumSpace]

† Alias: Ç-â â â Ç. 

† Negative spacing character. 

† Used to bring characters on either side closer together. 

† Width: -4 ê 18 em. 

† Interpreted by default just like an ordinary î[RawSpace]. 

† See Section 2.9.11 and Section 3.10.5.

† See also: î[NegativeThinSpace] , î[NegativeThickSpace] , î[MediumSpace] . 

NegativeThickSpace

 î[NegativeThickSpace]

† Alias: Ç-â â â â Ç. 

† Negative spacing character. 

† Used to bring characters on either side closer together. 

† Width: -5 ê 18 em. 

† Interpreted by default just like an ordinary î[RawSpace]. 

† See Section 2.9.11 and Section 3.10.5.

† See also: î[NegativeMediumSpace] , î[ThickSpace] . 

NegativeThinSpace

 î[NegativeThinSpace]
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† Alias: Ç-â â Ç. 

† Negative spacing character. 

† Used to bring characters on either side closer together. 

† Width: -3 ê 18 em. 

† Interpreted by default just like an ordinary î[RawSpace]. 

† See Section 2.9.11 and Section 3.10.5.

† See also: î[NegativeVeryThinSpace] , î[NegativeMediumSpace] , î[ThinSpace] . 

NegativeVeryThinSpace

 î[NegativeVeryThinSpace]

† Alias: Ç-â Ç. 

† Negative spacing character. 

† Used to bring characters on either side closer together. 

† Width: -1 ê 18 em. 

† Interpreted by default just like an ordinary î[RawSpace]. 

† See Section 2.9.11 and Section 3.10.5.

† See also: î[NegativeThinSpace] , î[VeryThinSpace] . 

NestedGreaterGreater

q  î[NestedGreaterGreater]

† Infix ordering operator. 

† x q  y is by default interpreted as NestedGreaterGreater[x, y]. 

† See Section 3.10.4.

† See also: î[GreaterGreater] , î[NotGreaterGreater] , î[NotNestedGreaterGreater] . 

NestedLessLess

a  î[NestedLessLess]

† Infix ordering operator. 

† x a  y is by default interpreted as NestedLessLess[x, y]. 

† Used to denote “much  less than”.  

† Occasionally used in measure theory to denote “absolutely  continuous with respect to”.  

† See Section 3.10.4.

† See also: î[LessLess] , î[NotLessLess] , î[NotNestedLessLess] . 

NeutralSmiley
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Õ  î[NeutralSmiley]

† Alias: Ç:-| . 

† Letter-like form. 

† See Section 3.10.3.

† See also: î[HappySmiley] , î[SadSmiley] , î[FreakedSmiley] . 

NewLine

  î[NewLine]

† Raw operator. 

† Inserted whenever a raw newline is entered on the keyboard. 

† Forces a line break in an expression, fixing the indenting level at the time when the line break is inserted. 

† î[NewLine] represents a newline on any computer system, independent of the underlying character code used on that computer 
system. 

† See Section 2.9.11, Section 3.10.5 and Section 3.10.5.

† See also: î[IndentingNewLine] , î[RawReturn] . 

NoBreak

  î[NoBreak]

† Alias: Çnb . 

† Letter-like form. 

† Used to indicate that no line break can occur at this position in an expression. 

† See Section 2.9.11 and Section 3.10.5.

† See also: î[NonBreakingSpace] , î[NewLine] , î[Continuation] , î[AlignmentMarker] , î[Null] , î
[InvisibleSpace] . 

NonBreakingSpace

   î[NonBreakingSpace]

† Alias: Çnbs . 

† Spacing character. 

† Generates a space with the same width as î[RawSpace], but with no line break allowed to occur on either side of it. 

† See Section 2.9.11 and Section 3.10.5.

† See also: î[NoBreak] , î[InvisibleSpace] , î[NewLine] . 

Nor
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  î[Nor]

† Alias: Çnor . 

† Infix operator with built-in evaluation rules. 

† x  y is by default interpreted as Nor[x, y]. 

† See Section 3.10.4.

† See also: î[Xor] , î[Or] , î[Not] . 

Not

¬  î[Not]

† Aliases: Ç! , Çnot . 

† Prefix operator with built-in evaluation rules. 

† Ÿ  x is by default interpreted as Not[x], equivalent to !x. 

† See Section 3.10.4.

† See also: î[RightTee] , î[And] , î[Or] . 

NotCongruent

T  î[NotCongruent]

† Alias: Ç!=== . 

† Infix similarity operator. 

† x T  y is by default interpreted as NotCongruent[x, y]. 

† See Section 3.10.4.

† See also: î[NotEqual] , î[Congruent] . 

NotCupCap

_  î[NotCupCap]

† Infix similarity operator. 

† x _  y is by default interpreted as NotCupCap[x, y]. 

† See Section 3.10.4.

† See also: î[CupCap] . 

NotDoubleVerticalBar

J  î[NotDoubleVerticalBar]
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† Alias: Ç!|| . 

† Infix operator. 

† x J  y is by default interpreted as NotDoubleVerticalBar[x, y]. 

† Used in geometry to mean “not  parallel to”.  

† See Section 3.10.4.

† See also: î[DoubleVerticalBar] , î[NotVerticalBar] , î[UpTee] . 

NotElement

–  î[NotElement]

† Alias: Ç!el . 

† Infix set relation operator with built-in evaluation rules. 

† x –  y is by default interpreted as NotElement[x, y]. 

† See Section 1.10.8 and Section 3.10.4.

† See also: î[Element] , î[NotReverseElement] . 

NotEqual

∫  î[NotEqual]

† Alias: Ç!= . 

† Infix operator with built-in evaluation rules. 

† x ∫  y is by default interpreted as Unequal[x, y]. 

† See Section 1.10.4 and Section 3.10.4.

† See also: î[Equal] , î[NotCongruent] , î[GreaterLess] . 

NotEqualTilde

O  î[NotEqualTilde]

† Alias: Ç!=~ Ç. 

† Infix similarity operator. 

† x O  y is by default interpreted as NotEqualTilde[x, y]. 

† See Section 3.10.4.

† See also: î[EqualTilde] . 

NotExists

±  î[NotExists]
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† Alias: Ç!ex . 

† Compound operator. 

† ±x y  is by default interpreted as NotExists[x, y]. 

† See Section 3.10.4.

† See also: î[Exists] , î[ForAll] . 

NotGreater

u  î[NotGreater]

† Alias: Ç!> . 

† Infix ordering operator. 

† x u  y is by default interpreted as NotGreater[x, y]. 

† u  is equivalent to §  only for a totally ordered set. 

† See Section 3.10.4.

† See also: î[RawGreater] . 

NotGreaterEqual

x  î[NotGreaterEqual]

† Alias: Ç!>= . 

† Infix ordering operator. 

† x x  y is by default interpreted as NotGreaterEqual[x, y]. 

† See Section 3.10.4.

† See also: î[GreaterEqual] , î[GreaterFullEqual] , î[GreaterSlantEqual] , î[NotGreaterFullEqual] , î
[NotGreaterSlantEqual] . 

NotGreaterFullEqual

z  î[NotGreaterFullEqual]

† Infix ordering operator. 

† x z  y is by default interpreted as NotGreaterFullEqual[x, y]. 

† See Section 3.10.4.

† See also: î[GreaterEqual] , î[GreaterFullEqual] , î[GreaterSlantEqual] , î[NotGreaterEqual] , î
[NotGreaterSlantEqual] . 

NotGreaterGreater

v  î[NotGreaterGreater]
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† Infix ordering operator. 

† x v  y is by default interpreted as NotGreaterGreater[x, y]. 

† See Section 3.10.4.

† See also: î[GreaterGreater] , î[NestedGreaterGreater] , î[NotNestedGreaterGreater] . 

NotGreaterLess

™  î[NotGreaterLess]

† Infix ordering operator. 

† x ™  y is by default interpreted as NotGreaterLess[x, y]. 

† See Section 3.10.4.

† See also: î[GreaterLess] . 

NotGreaterSlantEqual

y  î[NotGreaterSlantEqual]

† Alias: Ç!>/ . 

† Infix ordering operator. 

† x y  y is by default interpreted as NotGreaterSlantEqual[x, y]. 

† See Section 3.10.4.

† See also: î[GreaterEqual] , î[GreaterFullEqual] , î[GreaterSlantEqual] , î[NotGreaterEqual] , î
[NotGreaterFullEqual] . 

NotGreaterTilde

{  î[NotGreaterTilde]

† Alias: Ç!>~ Ç. 

† Infix ordering operator. 

† x {  y is by default interpreted as NotGreaterTilde[x, y]. 

† See Section 3.10.4.

† See also: î[GreaterTilde] . 

NotHumpDownHump

S  î[NotHumpDownHump]

† Infix similarity operator. 

† x S  y is by default interpreted as NotHumpDownHump[x, y]. 
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† See Section 3.10.4.

† See also: î[HumpDownHump] . 

NotHumpEqual

R  î[NotHumpEqual]

† Alias: Ç!h= . 

† Infix similarity operator. 

† x R  y is by default interpreted as NotHumpEqual[x, y]. 

† See Section 3.10.4.

† See also: î[HumpEqual] . 

NotLeftTriangle

3  î[NotLeftTriangle]

† Infix ordering operator. 

† x 3  y is by default interpreted as NotLeftTriangle[x, y]. 

† See Section 3.10.4.

† See also: î[NotLeftTriangleBar] , î[NotLeftTriangleEqual] , î[NotRightTriangle] , î[LeftTriangle] 
. 

NotLeftTriangleBar

5  î[NotLeftTriangleBar]

† Infix ordering operator. 

† x 5  y is by default interpreted as NotLeftTriangleBar[x, y]. 

† See Section 3.10.4.

† See also: î[NotLeftTriangle] , î[NotLeftTriangleEqual] , î[NotRightTriangleBar] , î[LeftTriangle-
Bar] . 

NotLeftTriangleEqual

4  î[NotLeftTriangleEqual]

† Infix ordering operator. 

† x 4  y is by default interpreted as NotLeftTriangleEqual[x, y]. 

† See Section 3.10.4.

† See also: î[NotLeftTriangle] , î[NotLeftTriangleBar] , î[NotRightTriangleEqual] , î[LeftTriangle-
Equal] . 
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NotLess

e  î[NotLess]

† Alias: Ç!< . 

† Infix ordering operator. 

† x e  y is by default interpreted as NotLess[x, y]. 

† e  is equivalent to ¥  only for a totally ordered set. 

† See Section 3.10.4.

† See also: î[RawLess] . 

NotLessEqual

h  î[NotLessEqual]

† Alias: Ç!<= . 

† Infix ordering operator. 

† x h  y is by default interpreted as NotLessEqual[x, y]. 

† See Section 3.10.4.

† See also: î[LessEqual] , î[LessFullEqual] , î[LessSlantEqual] , î[NotLessFullEqual] , î[NotLess-
SlantEqual] . 

NotLessFullEqual

j  î[NotLessFullEqual]

† Infix ordering operator. 

† x j  y is by default interpreted as NotLessFullEqual[x, y]. 

† See Section 3.10.4.

† See also: î[LessEqual] , î[LessFullEqual] , î[LessSlantEqual] , î[NotLessEqual] , î[NotLessSlant-
Equal] . 

NotLessGreater

‰  î[NotLessGreater]

† Infix ordering operator. 

† x ‰  y is by default interpreted as NotLessGreater[x, y]. 

† See Section 3.10.4.

† See also: î[LessGreater] . 
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NotLessLess

f  î[NotLessLess]

† Infix ordering operator. 

† x f  y is by default interpreted as NotLessLess[x, y]. 

† See Section 3.10.4.

† See also: î[LessLess] , î[NestedLessLess] , î[NotNestedLessLess] . 

NotLessSlantEqual

i  î[NotLessSlantEqual]

† Alias: Ç!</ . 

† Infix ordering operator. 

† x i  y is by default interpreted as NotLessSlantEqual[x, y]. 

† See Section 3.10.4.

† See also: î[LessEqual] , î[LessFullEqual] , î[LessSlantEqual] , î[NotLessEqual] , î[NotLessFull-
Equal] . 

NotLessTilde

k  î[NotLessTilde]

† Alias: Ç!<~ Ç. 

† Infix ordering operator. 

† x k  y is by default interpreted as NotLessTilde[x, y]. 

† See Section 3.10.4.

† See also: î[LessTilde] . 

NotNestedGreaterGreater

w  î[NotNestedGreaterGreater]

† Infix ordering operator. 

† x w  y is by default interpreted as NotNestedGreaterGreater[x, y]. 

† See Section 3.10.4.

† See also: î[GreaterGreater] , î[NestedGreaterGreater] , î[NotGreaterGreater] . 

NotNestedLessLess
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g  î[NotNestedLessLess]

† Infix ordering operator. 

† x g  y is by default interpreted as NotNestedLessLess[x, y]. 

† See Section 3.10.4.

† See also: î[LessLess] , î[NestedLessLess] , î[NotLessLess] . 

NotPrecedes

„  î[NotPrecedes]

† Infix ordering operator. 

† x „  y is by default interpreted as NotPrecedes[x, y]. 

† See Section 3.10.4.

† See also: î[Precedes] . 

NotPrecedesEqual

…  î[NotPrecedesEqual]

† Infix ordering operator. 

† x …  y is by default interpreted as NotPrecedesEqual[x, y]. 

† See Section 3.10.4.

† See also: î[NotPrecedesSlantEqual] , î[NotPrecedesTilde] , î[PrecedesEqual] . 

NotPrecedesSlantEqual

†  î[NotPrecedesSlantEqual]

† Infix ordering operator. 

† x †  y is by default interpreted as NotPrecedesSlantEqual[x, y]. 

† See Section 3.10.4.

† See also: î[NotPrecedesEqual] , î[PrecedesSlantEqual] . 

NotPrecedesTilde

‡  î[NotPrecedesTilde]

† Infix ordering operator. 

† x ‡  y is by default interpreted as NotPrecedesTilde[x, y]. 

† See Section 3.10.4.

† See also: î[NotPrecedesEqual] , î[PrecedesTilde] . 
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NotReverseElement

  î[NotReverseElement]

† Alias: Ç!mem . 

† Infix set relation operator. 

† x   y is by default interpreted as NotReverseElement[x, y]. 

† See Section 3.10.4.

† See also: î[ReverseElement] , î[NotElement] . 

NotRightTriangle

C  î[NotRightTriangle]

† Infix ordering operator. 

† x C  y is by default interpreted as NotRightTriangle[x, y]. 

† See Section 3.10.4.

† See also: î[NotRightTriangleBar] , î[NotRightTriangleEqual] , î[NotLeftTriangle] , î[RightTrian-
gle] . 

NotRightTriangleBar

E  î[NotRightTriangleBar]

† Infix ordering operator. 

† x E  y is by default interpreted as NotRightTriangleBar[x, y]. 

† See Section 3.10.4.

† See also: î[NotRightTriangle] , î[NotRightTriangleEqual] , î[NotLeftTriangleBar] , î[RightTrian-
gleBar] . 

NotRightTriangleEqual

D  î[NotRightTriangleEqual]

† Infix ordering operator. 

† x D  y is by default interpreted as NotRightTriangleEqual[x, y]. 

† See Section 3.10.4.

† See also: î[NotRightTriangle] , î[NotRightTriangleBar] , î[NotLeftTriangleEqual] , î[RightTrian-
gleEqual] . 

NotSquareSubset
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n  î[NotSquareSubset]

† Infix set relation operator. 

† x n  y is by default interpreted as NotSquareSubset[x, y]. 

† See Section 3.10.4.

† See also: î[NotSquareSubsetEqual] , î[SquareSubset] . 

NotSquareSubsetEqual

o  î[NotSquareSubsetEqual]

† Infix set relation operator. 

† x o  y is by default interpreted as NotSquareSubsetEqual[x, y]. 

† See Section 3.10.4.

† See also: î[NotSquareSubset] , î[SquareSubsetEqual] . 

NotSquareSuperset

~  î[NotSquareSuperset]

† Infix set relation operator. 

† x ~  y is by default interpreted as NotSquareSuperset[x, y]. 

† See Section 3.10.4.

† See also: î[NotSquareSupersetEqual] , î[SquareSuperset] . 

NotSquareSupersetEqual

Œ  î[NotSquareSupersetEqual]

† Infix set relation operator. 

† x Œ  y is by default interpreted as NotSquareSupersetEqual[x, y]. 

† See Section 3.10.4.

† See also: î[NotSquareSuperset] , î[SquareSupersetEqual] . 

NotSubset

Ã  î[NotSubset]

† Alias: Ç!sub . 

† Infix set relation operator. 

† x Ã  y is by default interpreted as NotSubset[x, y]. 
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† See Section 3.10.4.

† See also: î[NotSubsetEqual] , î[Subset] . 

NotSubsetEqual

  î[NotSubsetEqual]

† Alias: Ç!sub= . 

† Infix set relation operator. 

† x   y is by default interpreted as NotSubsetEqual[x, y]. 

† See Section 3.10.4.

† See also: î[NotSubset] , î[SubsetEqual] . 

NotSucceeds

”  î[NotSucceeds]

† Infix ordering operator. 

† x ”  y is by default interpreted as NotSucceeds[x, y]. 

† See Section 3.10.4.

† See also: î[NotSucceedsEqual] , î[Succeeds] . 

NotSucceedsEqual

•  î[NotSucceedsEqual]

† Infix ordering operator. 

† x •  y is by default interpreted as NotSucceedsEqual[x, y]. 

† See Section 3.10.4.

† See also: î[NotSucceedsSlantEqual] , î[NotSucceedsTilde] , î[SucceedsSlantEqual] . 

NotSucceedsSlantEqual

–  î[NotSucceedsSlantEqual]

† Infix ordering operator. 

† x –  y is by default interpreted as NotSucceedsSlantEqual[x, y]. 

† See Section 3.10.4.

† See also: î[NotSucceedsEqual] , î[SucceedsSlantEqual] . 

NotSucceedsTilde
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—  î[NotSucceedsTilde]

† Infix ordering operator. 

† x —  y is by default interpreted as NotSucceedsTilde[x, y]. 

† See Section 3.10.4.

† See also: î[NotSucceedsEqual] , î[SucceedsTilde] . 

NotSuperset

  î[NotSuperset]

† Alias: Ç!sup . 

† Infix set relation operator. 

† x   y is by default interpreted as NotSuperset[x, y]. 

† See Section 3.10.4.

† See also: î[NotSupersetEqual] , î[Superset] . 

NotSupersetEqual

  î[NotSupersetEqual]

† Alias: Ç!sup= . 

† Infix set relation operator. 

† x   y is by default interpreted as NotSupersetEqual[x, y]. 

† See Section 3.10.4.

† See also: î[NotSuperset] , î[SupersetEqual] . 

NotTilde

L  î[NotTilde]

† Alias: Ç!~ Ç. 

† Infix similarity operator. 

† x L  y is by default interpreted as NotTilde[x, y]. 

† See Section 3.10.4.

† See also: î[Tilde] . 

NotTildeEqual

N  î[NotTildeEqual]
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† Alias: Ç!~= . 

† Infix similarity operator. 

† x N  y is by default interpreted as NotTildeEqual[x, y]. 

† See Section 3.10.4.

† See also: î[NotTildeFullEqual] , î[TildeEqual] , î[TildeFullEqual] . 

NotTildeFullEqual

=  î[NotTildeFullEqual]

† Alias: Ç!~== . 

† Infix similarity operator. 

† x =  y is by default interpreted as NotTildeFullEqual[x, y]. 

† See Section 3.10.4.

† See also: î[NotTildeEqual] , î[NotCongruent] , î[TildeFullEqual] . 

NotTildeTilde

M  î[NotTildeTilde]

† Alias: Ç!~~ Ç. 

† Infix similarity operator. 

† x M  y is by default interpreted as NotTildeTilde[x, y]. 

† See Section 3.10.4.

† See also: î[TildeTilde] . 

NotVerticalBar

I  î[NotVerticalBar]

† Alias: Ç!| . 

† Infix operator. 

† x I  y is by default interpreted as NotVerticalBar[x, y]. 

† Used in mathematics to mean x does not divide y. 

† See Section 3.10.4.

† See also: î[VerticalBar] , î[NotDoubleVerticalBar] . 

NTilde

ñ  î[NTilde]
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† Alias: Çn~ Ç. 

† Letter. 

† Included in ISO Latin-1. 

† See Section 1.10.7 and Section 3.10.3.

† See also: î[CapitalNTilde] . 

Nu

n  î[Nu]

† Aliases: Çn , Çnu . 

† Greek letter. 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[CapitalNu] , î[Vee] . 

Null

  î[Null]

† Alias: Çnull . 

† Letter-like form. 

† Can be used to place subscripts and superscripts without having a visible base. 

† See Section 3.10.5.

† See also: î[InvisibleComma] , î[InvisibleSpace] , î[AlignmentMarker] . 

OAcute

ó  î[OAcute]

† Alias: Ço' . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[CapitalOAcute] . 

ODoubleAcute

  î[ODoubleAcute]

† Alias: Ço'' . 

† Letter. 

† Included in ISO Latin-2. 
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† Used in Hungarian, for example in the name Erd≥os. 

† See Section 3.10.3.

† See also: î[CapitalODoubleAcute] , î[UDoubleAcute] . 

ODoubleDot

ö  î[ODoubleDot]

† Alias: Ço" . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 1.10.7 and Section 3.10.3.

† See also: î[ODoubleAcute] , î[CapitalODoubleDot] . 

OGrave

ò  î[OGrave]

† Alias: Ço` . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 1.10.7 and Section 3.10.3.

† See also: î[CapitalOGrave] . 

OHat

ô  î[OHat]

† Alias: Ço^ . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[CapitalOHat] . 

Omega

w  î[Omega]

† Aliases: Ço , Çomega , Çw . 

† Greek letter. 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[CapitalOmega] , î[CurlyPi] , î[Omicron] . 
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Omicron

o  î[Omicron]

† Aliases: Çom , Çomicron . 

† Greek letter. 

† Not the same as English o. 

† See Section 3.10.3.

† See also: î[CapitalOmicron] , î[Omega] . 

Or

fi  î[Or]

† Aliases: Ç|| , Çor . 

† Infix operator with built-in evaluation rules. 

† x fi  y is by default interpreted as Or[x, y], equivalent to x || y. 

† Not the same as î[Vee]. 

† Drawn slightly larger than î[Vee]. 

† See Section 1.10.4, Section 3.10.1 and Section 3.10.4.

† See also: î[And] , î[Xor] , î[Nor] , î[Not] . 

OSlash

ø  î[OSlash]

† Alias: Ço/ . 

† Letter. 

† Included in ISO Latin-1. 

† Not the same as î[EmptySet]. 

† See Section 1.10.7 and Section 3.10.3.

† See also: î[CapitalOSlash] . 

OTilde

õ  î[OTilde]

† Alias: Ço~ Ç. 

† Letter. 

† Included in ISO Latin-1. 
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† See Section 3.10.3.

† See also: î[CapitalOTilde] . 

OverBrace

ó  î[OverBrace]

† Alias: Ço8 Ç. 

† Letter-like form. 

† Extensible character. 

† See Section 3.10.3.

† See also: î[OverBracket] , î[OverParenthesis] , î[UnderBrace] . 

OverBracket

p  î[OverBracket]

† Alias: Ço[ . 

† Letter-like form. 

† Extensible character. 

† See Section 3.10.3.

† See also: î[OverParenthesis] , î[OverBrace] , î[UnderBracket] , î[HorizontalLine] . 

OverParenthesis

ê  î[OverParenthesis]

† Alias: Ço( . 

† Letter-like form. 

† Extensible character. 

† See Section 3.10.3.

† See also: î[OverBracket] , î[OverBrace] , î[UnderParenthesis] . 

Paragraph

¶  î[Paragraph]

† Letter-like form. 

† See Section 3.10.3.

† See also: î[Section] . 
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PartialD

∑  î[PartialD]

† Alias: Çpd . 

† Prefix operator with built-in evaluation rules. 

† ∂x y  is by default interpreted as D[y, x]. 

† ∑  is used in mathematics to indicate boundary. 

† Çd  gives î[Delta], not î[PartialD]. 

† You can use î[InvisibleComma] in the subscript to ∑  to give several variables without having them separated by visible 
commas. 

† See Section 1.10.4, Section 1.10.4, Section 3.10.3 and Section 3.10.4.

† See also: î[Delta] , î[Del] , î[DifferentialD] , î[Eth] . 

Phi

f  î[Phi]

† Aliases: Çph , Çphi , Çf . 

† Greek letter. 

† Used in TraditionalForm for EulerPhi and GoldenRatio. 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[CurlyPhi] , î[CapitalPhi] . 

Pi

p  î[Pi]

† Aliases: Çp , Çpi . 

† Greek letter with built-in value. 

† Interpreted by default as the symbol Pi. 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[DoubledPi] , î[CapitalPi] , î[CurlyPi] . 

Placeholder

Ñ  î[Placeholder]

† Alias: Çpl . 

† Letter-like form. 

† Used to indicate where expressions can be inserted in a form obtained by pasting the contents of a button. 
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† Not the same as î[EmptySquare]. 

† See Section 1.10.12, Section 2.11.3 and Section 3.10.5.

† See also: î[SelectionPlaceholder] , î[RawNumberSign] . 

PlusMinus

±  î[PlusMinus]

† Alias: Ç+- . 

† Prefix or infix operator. 

† ≤  x is by default interpreted as PlusMinus[x]. 

† x ≤  y is by default interpreted as PlusMinus[x, y]. 

† See Section 1.10.8 and Section 3.10.4.

† See also: î[MinusPlus] . 

Precedes

  î[Precedes]

† Infix ordering operator. 

† x   y is by default interpreted as Precedes[x, y]. 

† Used in mathematics to indicate various notions of partial ordering. 

† Often applied to functions and read “ x is dominated by y”.  

† See Section 3.10.4.

† See also: î[PrecedesEqual] , î[Succeeds] , î[NotPrecedes] . 

PrecedesEqual

  î[PrecedesEqual]

† Infix ordering operator. 

† x   y is by default interpreted as PrecedesEqual[x, y]. 

† See Section 3.10.4.

† See also: î[PrecedesSlantEqual] , î[PrecedesTilde] , î[SucceedsEqual] , î[NotPrecedesEqual] . 

PrecedesSlantEqual

‚  î[PrecedesSlantEqual]

† Infix ordering operator. 

† x ‚  y is by default interpreted as PrecedesSlantEqual[x, y]. 
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† See Section 3.10.4.

† See also: î[PrecedesEqual] , î[SucceedsSlantEqual] , î[NotPrecedesSlantEqual] . 

PrecedesTilde

ƒ  î[PrecedesTilde]

† Infix ordering operator. 

† x ƒ  y is by default interpreted as PrecedesTilde[x, y]. 

† See Section 3.10.4.

† See also: î[PrecedesEqual] , î[SucceedsTilde] , î[NotPrecedesTilde] . 

Prime

£  î[Prime]

† Alias: Ç' . 

† Letter-like form. 

† Used to indicate angles in minutes or distances in feet. 

† Used in an overscript position as an acute accent. 

† See Section 3.10.3.

† See also: î[DoublePrime] , î[ReversePrime] , î[RawQuote] . 

Product

¤  î[Product]

† Alias: Çprod . 

† Compound operator with built-in evaluation rules. 

† ¤
i

imax
f  is by default interpreted as Product[f, 8 i, imax<]. 

† ¤
i=imin

imax
f  is by default interpreted as Product[f, 8 i, imin, imax<]. 

† Not the same as the Greek letter î[CapitalPi]. 

† See Section 1.10.4, Section 1.10.4, Section 3.10.1, Section 3.10.3 and Section 3.10.4.

† See also: î[Coproduct] , î[Sum] , î[Times] . 

Proportion

›  î[Proportion]

† Infix relational operator. 

† x ›  y is by default interpreted as Proportion[x, y]. 

Printed from the Mathematica Help Browser 105

©1988-2003 Wolfram Research, Inc. All rights reserved.



† Used historically to indicate equality; now used to indicate proportion. 

† See Section 3.10.4.

† See also: î[Divide] , î[Proportional] , î[Colon] , î[Therefore] . 

Proportional

∂  î[Proportional]

† Alias: Çprop . 

† Infix relational operator. 

† x ∂  y is by default interpreted as Proportional[x, y]. 

† Not the same as î[Alpha]. 

† See Section 1.10.8 and Section 3.10.4.

† See also: î[Proportion] . 

Psi

y  î[Psi]

† Aliases: Çps , Çpsi , Çy . 

† Greek letter. 

† Used in TraditionalForm for PolyGamma. 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[CapitalPsi] . 

RawAmpersand

&  î[RawAmpersand]

† Raw operator. 

† Equivalent to the ordinary ASCII character with code 38. 

† See Section 3.10.5.

† See also: î[And] . 

RawAt

@  î[RawAt]

† Raw operator. 

† Equivalent to the ordinary ASCII character with code 64. 

† See Section 3.10.5.

† See also: î[RawAmpersand] , î[SmallCircle] . 

106 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



RawBackquote

`  î[RawBackquote]

† Raw operator. 

† Equivalent to the ordinary ASCII character with code 96. 

† See Section 3.10.5.

† See also: î[RawQuote] , î[Prime] . 

RawBackslash

î  î[RawBackslash]

† Raw operator. 

† Equivalent to the ordinary ASCII character with code 92. 

† Equivalent in strings to îî. 
† See Section 3.10.5.

† See also: î[Backslash] . 

RawColon

:  î[RawColon]

† Raw operator. 

† Equivalent to the ordinary ASCII character with code 58. 

† See Section 3.10.5.

† See also: î[Colon] . 

RawComma

,  î[RawComma]

† Raw operator. 

† Equivalent to the ordinary ASCII character with code 44. 

† See Section 3.10.5.

† See also: î[InvisibleComma] . 

RawDash

-  î[RawDash]
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† Raw operator. 

† Equivalent to the ordinary ASCII character with code 45. 

† As an overscript, used to indicate conjugation or negation. 

† Also used to indicate an average value or an upper value. 

† In geometry, used to denote a line segment. 

† As an underscript, used to indicate a lower value. 

† x−  is interpreted as SuperMinus[x]. 

† x−  is interpreted as SubMinus[x]. 

† Not the same as the letter-like form î[Dash]. 

† See Section 3.10.5.

† See also: î[RawPlus] , î[HorizontalLine] . 

RawDollar

$  î[RawDollar]

† Letter-like form. 

† Equivalent to the ordinary ASCII character with code 36. 

† See Section 3.10.5.

RawDot

.  î[RawDot]

† Raw operator. 

† Equivalent to the ordinary ASCII character with code 46. 

† As an overscript, used to indicate time derivative. 

† x  is interpreted as OverDot[x]. 

† See Section 3.10.5.

† See also: î[CenterDot] , î[Ellipsis] . 

RawDoubleQuote

"  î[RawDoubleQuote]

† Raw operator. 

† Equivalent to the ordinary ASCII character with code 34. 

† Equivalent to î" in strings. 

† See Section 3.10.5.

† See also: î[RawQuote] , î[Prime] . 
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RawEqual

=  î[RawEqual]

† Raw operator. 

† Equivalent to the ordinary ASCII character with code 61. 

† See Section 3.10.5.

† See also: î[Equal] , î[NotEqual] . 

RawEscape

   î[RawEscape]

† Raw element. 

† Equivalent to the non-printable ASCII character with code 27. 

† Used in entering aliases for special characters in Mathematica. 

† See also: î[AliasIndicator] , î[EscapeKey] . 

RawExclamation

!  î[RawExclamation]

† Raw operator. 

† Equivalent to the ordinary ASCII character with code 33. 

† See Section 3.10.5.

† See also: î[DownExclamation] . 

RawGreater

>  î[RawGreater]

† Raw operator. 

† Equivalent to the ordinary ASCII character with code 62. 

† Not the same as î[RightAngleBracket]. 

† See Section 3.10.5.

† See also: î[NotGreater] . 

RawLeftBrace

{  î[RawLeftBrace]
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† Raw operator. 

† Equivalent to the ordinary ASCII character with code 123. 

† Extensible character. 

† See Section 3.10.5.

† See also: î[RawRightBrace] . 

RawLeftBracket

[  î[RawLeftBracket]

† Raw operator. 

† Equivalent to the ordinary ASCII character with code 91. 

† Extensible character. 

† See Section 3.10.5.

† See also: î[LeftDoubleBracket] , î[RawRightBracket] , î[RightDoubleBracket] . 

RawLeftParenthesis

(  î[RawLeftParenthesis]

† Raw operator. 

† Equivalent to the ordinary ASCII character with code 40. 

† Extensible character. 

† See Section 3.10.5.

† See also: î[RawRightParenthesis] . 

RawLess

<  î[RawLess]

† Raw operator. 

† Equivalent to the ordinary ASCII character with code 60. 

† Not the same as î[RightAngleBracket]. 

† See Section 3.10.5.

† See also: î[NotLess] . 

RawNumberSign

#  î[RawNumberSign]

† Raw operator. 

† Equivalent to the ordinary ASCII character with code 35. 
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† Not the same as î[Sharp]. 

† See Section 3.10.5.

† See also: î[Placeholder] . 

RawPercent

%  î[RawPercent]

† Raw operator. 

† Equivalent to the ordinary ASCII character with code 37. 

† See Section 3.10.5.

RawPlus

+  î[RawPlus]

† Raw operator. 

† Equivalent to the ordinary ASCII character with code 43. 

† See Section 3.10.5.

† See also: î[RawDash] . 

RawQuestion

?  î[RawQuestion]

† Raw operator. 

† Equivalent to the ordinary ASCII character with code 63. 

† See Section 3.10.5.

† See also: î[DownQuestion] . 

RawQuote

'  î[RawQuote]

† Raw operator. 

† Equivalent to the ordinary ASCII character with code 39. 

† See Section 3.10.5.

† See also: î[Prime] , î[RawDoubleQuote] . 

RawReturn
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  î[RawReturn]

† Spacing character. 

† Equivalent to the ordinary ASCII character with code 13. 

† Can be entered as îr. 

† Not always the same as î[NewLine]. 

† See Section 3.10.5.

† See also: î[ReturnIndicator] .

RawRightBrace

}  î[RawRightBrace]

† Raw operator. 

† Equivalent to the ordinary ASCII character with code 125. 

† Extensible character. 

† See Section 3.10.5.

† See also: î[RawLeftBrace] . 

RawRightBracket

]  î[RawRightBracket]

† Raw operator. 

† Equivalent to the ordinary ASCII character with code 93. 

† Extensible character. 

† Not the same as î[RightModified]. 

† See Section 3.10.5.

† See also: î[LeftDoubleBracket] , î[RawLeftBracket] , î[RightDoubleBracket] . 

RawRightParenthesis

)  î[RawRightParenthesis]

† Raw operator. 

† Equivalent to the ordinary ASCII character with code 41. 

† Extensible character. 

† See Section 3.10.5.

† See also: î[RawLeftParenthesis] . 
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RawSemicolon

;  î[RawSemicolon]

† Raw operator. 

† Equivalent to the ordinary ASCII character with code 59. 

† See Section 3.10.5.

RawSlash

/  î[RawSlash]

† Raw operator. 

† Equivalent to the ordinary ASCII character with code 47. 

† Extensible character; grows by default to limited size. 

† See Section 3.10.5.

† See also: î[Divide] . 

RawSpace

   î[RawSpace]

† Spacing character. 

† Equivalent to the ordinary ASCII character with code 32. 

† See Section 2.9.11 and Section 3.10.5.

† See also: î[NonBreakingSpace] , î[MediumSpace] , î[SpaceIndicator] , î[InvisibleSpace] . 

RawStar

*  î[RawStar]

† Raw operator. 

† Equivalent to the ordinary ASCII character with code 42. 

† In addition to one-dimensional uses, x∗  is by default interpreted as SuperStar[x]. 

† x∗  is often used in mathematics to indicate a conjugate, dual, or completion of x. 

† See Section 3.10.5.

† See also: î[Star] , î[Times] , î[SixPointedStar] . 

RawTab
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  î[RawTab]

† Spacing character. 

† Equivalent to the ordinary ASCII character with code 9. 

† Can be entered in strings as ît. 

† See Section 3.10.5.

† See also: î[RightArrowBar] . 

RawTilde

~  î[RawTilde]

† Raw operator. 

† Equivalent to the ordinary ASCII character with code 126. 

† In addition to one-dimensional uses, x  is by default interpreted as OverTilde[x]. 

† See Section 3.10.5.

† See also: î[Tilde] , î[NotTilde] . 

RawUnderscore

_  î[RawUnderscore]

† Raw operator. 

† Equivalent to the ordinary ASCII character with code 95. 

† x̄  is interpreted as OverBar[x]. 

† x̄  is interpreted as UnderBar[x]. 

† See Section 3.10.5.

† See also: î[Dash] . 

RawVerticalBar

|  î[RawVerticalBar]

† Raw operator. 

† Equivalent to the ordinary ASCII character with code 124. 

† Extensible character. 

† See Section 3.10.5.

† See also: î[VerticalBar] , î[LeftBracketingBar] . 

RawWedge
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^  î[RawWedge]

† Raw operator. 

† Equivalent to the ordinary ASCII character with code 94. 

† In addition to one-dimensional uses, x̂  is by default interpreted as OverHat[x]. 

† x̂  is used for many purposes in mathematics, from indicating an operator form of x to indicating that x is an angle. 

† See Section 3.10.5.

† See also: î[Wedge] . 

RegisteredTrademark

®  î[RegisteredTrademark]

† Letter-like form. 

† Used as a superscript to indicate a registered trademark such as Mathematica. 

† Typically used only on the first occurrence of a trademark in a document. 

† See Section 3.10.3.

† See also: î[Trademark] , î[Copyright] . 

ReturnIndicator

¿  î[ReturnIndicator]

† Alias: Çret . 

† Letter-like form. 

† Representation of the return or newline character on a keyboard. 

† Used in showing how textual input is typed. 

† See Section 3.10.5.

† See also: î[ReturnKey] , î[EnterKey] , î[Continuation] , î[ControlKey] , î[CommandKey] , î[SpaceIndi-
cator] , î[NonBreakingSpace] . 

ReturnKey

Á  î[ReturnKey]

† Alias: Çâret . 

† Letter-like form. 

† Representation of the Return key on a keyboard. 

† Used in describing how to type textual input. 

† Çret  is the alias for î[ReturnIndicator]. The alias for î[ReturnKey] has a space at the beginning. 

† See Section 3.10.5.

† See also: î[EnterKey] , î[ReturnIndicator] , î[ControlKey] , î[CommandKey] . 
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ReverseDoublePrime

ø  î[ReverseDoublePrime]

† Alias: Ç`` . 

† Letter-like form. 

† See Section 3.10.3.

† See also: î[DoublePrime] , î[Prime] , î[ReversePrime] . 

ReverseElement

œ  î[ReverseElement]

† Alias: Çmem . 

† Infix set relation operator. 

† x œ  y is by default interpreted as ReverseElement[x, y]. 

† Not the same as î[SuchThat]. 

† See Section 3.10.4.

† See also: î[Element] , î[NotReverseElement] . 

ReverseEquilibrium

G  î[ReverseEquilibrium]

† Infix arrow-like operator. 

† x G  y is by default interpreted as ReverseEquilibrium[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[Equilibrium] , î[ReverseUpEquilibrium] , î[LeftArrowRightArrow] , î[LeftRightArrow] . 

ReversePrime

æ  î[ReversePrime]

† Alias: Ç` . 

† Letter-like form. 

† Used in an overscript position as a grave accent. 

† See Section 3.10.3.

† See also: î[DoublePrime] , î[Prime] , î[ReverseDoublePrime] , î[RawBackquote] . 
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ReverseUpEquilibrium

M  î[ReverseUpEquilibrium]

† Infix arrow-like operator. 

† x M  y is by default interpreted as ReverseUpEquilibrium[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[UpEquilibrium] , î[DownArrowUpArrow] , î[RightUpDownVector] , î[Equilibrium] . 

Rho

r  î[Rho]

† Aliases: Çr , Çrho . 

† Greek letter. 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[CurlyRho] , î[CapitalRho] . 

RightAngle

¬  î[RightAngle]

† Letter-like form. 

† Used in geometry to indicate a right angle, as in the symbol ¬  ABC. 

† See Section 3.10.3.

† See also: î[Angle] , î[MeasuredAngle] , î[UpTee] . 

RightAngleBracket

\  î[RightAngleBracket]

† Alias: Ç> . 

† Matchfix operator. 

† X  x \  is by default interpreted as AngleBracket[x]. 

† Used in the form Xx\  to indicate expected or average value. 

† Called ket in quantum mechanics. 

† Used in the form Xx, y\  to indicate various forms of inner product. 

† Used in the form Xx, y, … \  to denote an ordered set of objects. 

† Not the same as î[RawGreater]. 

† Extensible character; grows by default to limited size. 
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† See Section 3.10.4.

† See also: î[LeftAngleBracket] . 

RightArrow

Ø  î[RightArrow]

† Alias: Çâ-> . 

† Infix arrow operator. 

† Used for many purposes in mathematics to indicate transformation, tending to a limit or implication. 

† Used as an overscript to indicate a directed object. 

† Not the same as î[Rule]. 

† Ç->  is the alias for î[Rule]. The alias for î[RightArrow] has a space at the beginning. 

† Extensible character. 

† See Section 3.10.1 and Section 3.10.4.

† See also: î[LongRightArrow] , î[ShortRightArrow] , î[DoubleRightArrow] , î[RightTeeArrow] , î
[RightArrowBar] , î[UpperRightArrow] , î[RightVector] , î[RightTriangle] , î[LeftArrow] , î
[HorizontalLine] , î[Implies] . 

RightArrowBar

!  î[RightArrowBar]

† Infix arrow operator. 

† x !  y is by default interpreted as RightArrowBar[x, y]. 

† Used in mathematics to indicate an epimorphism. 

† Sometimes used to indicate a tab. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[RightTeeArrow] , î[RightVectorBar] , î[UpArrowBar] , î[LeftArrowBar] , î[RawTab] . 

RightArrowLeftArrow

V  î[RightArrowLeftArrow]

† Infix arrow operator. 

† x V  y is by default interpreted as RightArrowLeftArrow[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[LeftArrowRightArrow] , î[LeftRightArrow] , î[DoubleLeftRightArrow] , î[Equilibrium] , î
[UpArrowDownArrow] . 
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RightBracketingBar

§  î[RightBracketingBar]

† Alias: Çr| . 

† Matchfix operator. 

† †  x §  is by default interpreted as BracketingBar[x]. 

† Used in mathematics to indicate absolute value (Abs), determinant (Det), and other notions of evaluating size or magnitude. 

† Not the same as î[VerticalBar]. 

† Drawn in monospaced fonts with a small right-pointing tee to indicate direction. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[RightDoubleBracketingBar] , î[RightTee] . 

RightCeiling

p  î[RightCeiling]

† Alias: Çrc . 

† Matchfix operator with built-in evaluation rules. 

† `  x p  is by default interpreted as Ceiling[x]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[LeftCeiling] , î[RightFloor] . 

RightDoubleBracket

T  î[RightDoubleBracket]

† Alias: Ç]] . 

† mP i,j, … T  is by default interpreted as Part[m, i, j, … ]. 

† Extensible character; grows by default to limited size. 

† See Section 3.10.4.

† See also: î[RawRightBracket] , î[RightDoubleBracketingBar] . 

RightDoubleBracketingBar

¥  î[RightDoubleBracketingBar]

† Alias: Çr|| . 

† Matchfix operator. 
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† ∞  x ¥  is by default interpreted as DoubleBracketingBar[x]. 

† Used in mathematics to indicate taking a norm. 

† Sometimes used for determinant. 

† Sometimes used to indicate a matrix. 

† Not the same as î[DoubleVerticalBar]. 

† Drawn in monospaced fonts with a small right-pointing tee to indicate direction. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[RightBracketingBar] . 

RightDownTeeVector

?  î[RightDownTeeVector]

† Infix arrow-like operator. 

† x ?  y is by default interpreted as RightDownTeeVector[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[LeftDownTeeVector] , î[RightDownVectorBar] , î[DownTeeArrow] , î[RightUpTeeVector] . 

RightDownVector

E  î[RightDownVector]

† Infix arrow-like operator. 

† x E  y is by default interpreted as RightDownVector[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[LeftDownVector] , î[RightDownTeeVector] , î[DownArrow] , î[UpEquilibrium] , î[RightUp-
Vector] . 

RightDownVectorBar

;  î[RightDownVectorBar]

† Infix arrow-like operator. 

† x ;  y is by default interpreted as RightDownVectorBar[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[LeftDownVectorBar] , î[RightDownTeeVector] , î[DownArrowBar] , î[RightUpVectorBar] . 
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RightFloor

t  î[RightFloor]

† Alias: Çrf . 

† Matchfix operator with built-in evaluation rules. 

† d  x t  is by default interpreted as Floor[x]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[LeftFloor] , î[RightCeiling] . 

RightGuillemet

»  î[RightGuillemet]

† Alias: Çg>> . 

† Letter-like form. 

† Used as closing quotation marks in languages such as Spanish. 

† Not the same as î[GreaterGreater]. 

† Not the same as RightSkeleton. 

† Guillemet is sometimes misspelled as guillemot. 

† See Section 3.10.3.

† See also: î[LeftGuillemet] . 

RightModified

Ï  î[RightModified]

† Alias: Ç] . 

† Letter-like form. 

† Used in documenting control and command characters. 

† keyî[LeftModified]charî[RightModified] is used to indicate that char should be typed while key is being pressed. 

† Not the same as î[RawRightBracket]. 

† See Section 3.10.5.

† See also: î[ControlKey] , î[CommandKey] , î[LeftModified] . 

RightSkeleton

à  î[RightSkeleton]
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† Uninterpretable element. 

† á  n à  is used on output to indicate n omitted pieces in an expression obtained from Short or Shallow. 

† î[RightSkeleton] indicates the presence of missing information, and so by default generates an error if you try to interpret it. 

† Not the same as î[RightGuillemet]. 

† See Section 3.10.5.

† See also: î[LeftSkeleton] , î[SkeletonIndicator] , î[Ellipsis] . 

RightTee

¢  î[RightTee]

† Alias: ÇrT . 

† Infix operator. 

† x ¢  y is by default interpreted as RightTee[x, y]. 

† x ¢  y ¢  z groups as x ¢  (y ¢  z). 

† Used in mathematics to indicate logical implication or proof. 

† See Section 1.10.8, Section 3.10.4 and Section 3.10.4.

† See also: î[DoubleRightTee] , î[RightTeeArrow] , î[RightTeeVector] , î[LeftTee] , î[DownTee] , î
[RightBracketingBar] . 

RightTeeArrow

#  î[RightTeeArrow]

† Infix arrow operator. 

† x #  y is by default interpreted as RightTeeArrow[x, y]. 

† Used in mathematics to indicate a transformation, often the action of a mapping on a specific element in a space. 

† Also used in logic to indicate deducibility. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[RightTeeVector] , î[RightTee] , î[LeftTeeArrow] , î[UpTeeArrow] . 

RightTeeVector

-  î[RightTeeVector]

† Infix arrow-like operator. 

† x -  y is by default interpreted as RightTeeVector[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[DownRightTeeVector] , î[RightVectorBar] , î[RightVector] , î[RightTeeArrow] . 
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RightTriangle

@  î[RightTriangle]

† Infix ordering operator. 

† x @  y is by default interpreted as RightTriangle[x, y]. 

† Used in pure mathematics to mean “contains  as a normal subgroup”.  

† See Section 1.10.8 and Section 3.10.4.

† See also: î[RightTriangleEqual] , î[RightTriangleBar] , î[RightArrow] , î[NotRightTriangle] , î
[LeftTriangle] , î[EmptyUpTriangle] , î[FilledUpTriangle] , î[RightAngle] . 

RightTriangleBar

B  î[RightTriangleBar]

† Infix ordering operator. 

† x B  y is by default interpreted as RightTriangleBar[x, y]. 

† See Section 3.10.4.

† See also: î[RightTriangle] , î[RightTriangleEqual] , î[RightArrowBar] , î[NotRightTriangleBar] . 

RightTriangleEqual

A  î[RightTriangleEqual]

† Infix ordering operator. 

† x A  y is by default interpreted as RightTriangleEqual[x, y]. 

† See Section 3.10.4.

† See also: î[RightTriangle] , î[RightTriangleBar] , î[SucceedsEqual] , î[NotRightTriangleEqual] , î
[LeftTriangleEqual] . 

RightUpDownVector

7  î[RightUpDownVector]

† Infix arrow-like operator. 

† x 7  y is by default interpreted as RightUpDownVector[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[LeftUpDownVector] , î[UpEquilibrium] , î[UpArrowDownArrow] , î[LeftRightVector] . 

RightUpTeeVector

Printed from the Mathematica Help Browser 123

©1988-2003 Wolfram Research, Inc. All rights reserved.



>  î[RightUpTeeVector]

† Infix arrow-like operator. 

† x >  y is by default interpreted as RightUpTeeVector[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[LeftUpTeeVector] , î[RightUpVectorBar] , î[UpTeeArrow] , î[RightDownTeeVector] . 

RightUpVector

C  î[RightUpVector]

† Infix arrow-like operator. 

† x C  y is by default interpreted as RightUpVector[x, y]. 

† Used in pure mathematics to indicate the restriction of x to y. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[LeftUpVector] , î[RightUpTeeVector] , î[UpArrow] , î[UpEquilibrium] , î[RightDownVec-
tor] . 

RightUpVectorBar

:  î[RightUpVectorBar]

† Infix arrow-like operator. 

† x :  y is by default interpreted as RightUpVectorBar[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[LeftUpVectorBar] , î[RightUpTeeVector] , î[UpArrowBar] , î[RightDownVectorBar] . 

RightVector

1  î[RightVector]

† Alias: Çvec . 

† Infix and overfix arrow-like operator. 

† x 1  y is by default interpreted as RightVector[x, y]. 

† Used in mathematics to indicate weak convergence. 

† x”  is by default interpreted as OverVector[x]. 

† Used in mathematics to indicate a vector quantity. 

† Sometimes used in prefix form as a typographical symbol to stand for “see  also”.  

† Extensible character. 
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† See Section 3.10.4.

† See also: î[DownRightVector] , î[RightTeeVector] , î[RightVectorBar] , î[RightArrow] , î[LeftVec-
tor] , î[RightUpVector] . 

RightVectorBar

)  î[RightVectorBar]

† Infix arrow-like operator. 

† x )  y is by default interpreted as RightVectorBar[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[DownRightVectorBar] , î[RightTeeVector] , î[RightArrowBar] . 

RoundImplies

V  î[RoundImplies]

† Infix operator with built-in evaluation rules. 

† x V  y is by default interpreted as Implies[x, y]. 

† x V  y V  z groups as x V  (y V  z). 

† Not the same as î[Superset]. 

† See Section 3.10.4 and Section 3.10.4.

† See also: î[Implies] , î[SuchThat] , î[RightArrow] , î[Rule] . 

RoundSpaceIndicator

Ô  î[RoundSpaceIndicator]

† Spacing character. 

† Interpreted by default as equivalent to î[RawSpace]. 

† See Section 3.10.5.

† See also: î[SpaceIndicator] , î[Cup] , î[Breve] . 

Rule

Ø  î[Rule]

† Alias: Ç-> . 

† Infix operator with built-in evaluation rules. 

† x Ø  y is by default interpreted as x -> y or Rule[x, y]. 

† x Ø  y Ø  z groups as x Ø  (y Ø  z). 
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† î[Rule] is not the same as î[RightArrow]. 

† See Section 1.10.4, Section 3.10.1 and Section 3.10.4.

† See also: î[RuleDelayed] . 

RuleDelayed

ß  î[RuleDelayed]

† Alias: Ç:> . 

† Infix operator with built-in evaluation rules. 

† x ß  y is by default interpreted as x :> y or RuleDelayed[x, y]. 

† x ß  y ß  z groups as x ß  (y ß  z). 

† See Section 3.10.4.

† See also: î[Rule] , î[Colon] , î[RightArrow] . 

SadSmiley

Œ  î[SadSmiley]

† Alias: Ç:-( . 

† Letter-like form. 

† See Section 3.10.3.

† See also: î[HappySmiley] , î[NeutralSmiley] , î[FreakedSmiley] . 

Sampi

»  î[Sampi]

† Aliases: Çsa , Çsampi . 

† Special Greek letter. 

† Appeared after w  in early Greek alphabet; used for Greek numeral 900. 

† See Section 3.10.3.

† See also: î[CapitalSampi] , î[Digamma] , î[Stigma] , î[Koppa] . 

ScriptA … ScriptZ

 …   î[ScriptA] … î[ScriptZ]

† Aliases: Çsca  through Çscz . 

† Letters. 

† Treated as distinct characters rather than style modifications of ordinary letters. 

† î[ScriptL]  is a commonly used form. 
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† Contiguous character codes from the private Unicode character range are used, even though a few script characters are included in 
ordinary Unicode. 

† See Section 3.10.3.

† See also: î[ScriptCapitalA] , î[GothicA] , î[DoubleStruckA] , etc. 

ScriptCapitalA … ScriptCapitalZ

 …   î[ScriptCapitalA] … î[ScriptCapitalZ]

† Aliases: ÇscA  through ÇscZ . 

† Letters. 

† Treated as distinct characters rather than style modifications of ordinary letters. 

†  is sometimes called Euler's E. 

† î[ScriptCapitalE] is not the same as î[CurlyEpsilon]. 

†  is sometimes used to denote Fourier transform. 

†  is sometimes used to denote Laplace transform. 

†  and  are used in physics to denote Hamiltonian and Lagrangian density. 

† î[ScriptCapitalP] is not the same as î[WeierstrassP]. 

† Contiguous character codes from the private Unicode character range are used, even though a few capital script characters are 
included in ordinary Unicode. 

† See Section 3.10.3.

† See also: î[GothicCapitalA] , î[DoubleStruckCapitalA] , etc. 

Section

§  î[Section]

† Letter-like form. 

† See Section 3.10.3.

† See also: î[Paragraph] . 

SelectionPlaceholder

É  î[SelectionPlaceholder]

† Alias: Çspl . 

† Letter-like form. 

† Used to indicate where the current selection should be inserted when the contents of a button are pasted by NotebookApply. 

† Not the same as î[FilledSquare]. 

† See Section 1.10.12, Section 2.11.3 and Section 3.10.5.

† See also: î[Placeholder] . 
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SHacek

š  î[SHacek]

† Alias: Çsv . 

† Letter. 

† Included in ISO Latin-2. 

† See Section 3.10.3.

† See also: î[CapitalSHacek] , î[CHacek] . 

Sharp

Û  î[Sharp]

† Letter-like form. 

† Used to denote musical notes. 

† Sometimes used in mathematical notation, typically to indicate some form of numbering or indexing. 

† Not the same as î[RawNumberSign]. 

† See Section 3.10.3.

† See also: î[Flat] , î[Natural] . 

ShortLeftArrow

y  î[ShortLeftArrow]

† Infix arrow operator. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[LeftArrow] , î[LongLeftArrow] . 

ShortRightArrow

z  î[ShortRightArrow]

† Infix arrow operator. 

† Not the same as î[Rule]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[RightArrow] , î[LongRightArrow] . 
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Sigma

s  î[Sigma]

† Aliases: Çs , Çsigma . 

† Greek letter. 

† Used in TraditionalForm for DivisorSigma and WeierstrassSigma. 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[CapitalSigma] , î[FinalSigma] . 

SixPointedStar

÷  î[SixPointedStar]

† Alias: Ç*6 . 

† Letter-like form. 

† Not the same as the operator î[Star]. 

† See Section 3.10.3.

† See also: î[FivePointedStar] , î[Star] , î[RawStar] . 

SkeletonIndicator

Ü  î[SkeletonIndicator]

† Uninterpretable element. 

† Ü  name Ü  is used on output to indicate an expression that has head name, but whose arguments will not explicitly be given. 

† î[SkeletonIndicator] indicates the presence of missing information, and so by default generates an error if you try to 
interpret it. 

† See Section 3.10.5.

† See also: î[LeftSkeleton] , î[Ellipsis] . 

SmallCircle

ë  î[SmallCircle]

† Alias: Çsc . 

† Infix operator. 

† x ë  y is by default interpreted as SmallCircle[x, y]. 

† Used to indicate function composition. 

† Not the same as the letter-like form î[EmptyCircle]. 

† Not the same as î[Degree]. 

Printed from the Mathematica Help Browser 129

©1988-2003 Wolfram Research, Inc. All rights reserved.



† See Section 1.10.8 and Section 3.10.4.

† See also: î[FilledCircle] , î[CircleDot] , î[CircleTimes] . 

SpaceIndicator

â  î[SpaceIndicator]

† Alias: Çspace . 

† Spacing character. 

† Interpreted by default as equivalent to î[RawSpace]. 

† See Section 2.9.11 and Section 3.10.5.

† See also: î[RoundSpaceIndicator] , î[ThinSpace] , î[ReturnIndicator] .

SpadeSuit

´  î[SpadeSuit]

† Letter-like form. 

† See Section 3.10.3.

† See also: î[ClubSuit] . 

SphericalAngle

®  î[SphericalAngle]

† Letter-like form. 

† Used in geometry to indicate a spherical angle, as in the symbol ®  ABC. 

† See Section 3.10.3.

† See also: î[Angle] , î[MeasuredAngle] . 

Sqrt

,  î[Sqrt]

† Alias: Çsqrt . 

† Prefix operator with built-in evaluation rules. 

† ,  x is by default interpreted as Sqrt[x]. 

† ‚Î@Ï, ‚Î2Ï or î@ yields a complete SqrtBox object. 

† î[Sqrt] is equivalent when evaluated, but will not draw a line on top of the quantity whose square root is being taken. 

† See Section 3.10.4.
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Square

Ñ  î[Square]

† Alias: Çsq . 

† Prefix operator. 

† Ñ  x is by default interpreted as Square[x]. 

† Used in mathematical physics to denote the d'Alembertian operator. 

† Sometimes used in number theory to indicate a quadratic residue. 

† Not the same as î[EmptySquare]. 

† See Section 3.10.4.

† See also: î[Del] . 

SquareIntersection

û  î[SquareIntersection]

† Infix operator. 

† x û  y is by default interpreted as SquareIntersection[x, y]. 

† See Section 1.10.8 and Section 3.10.4.

† See also: î[SquareUnion] , î[Intersection] , î[Wedge] . 

SquareSubset

l  î[SquareSubset]

† Infix set relation operator. 

† x l  y is by default interpreted as SquareSubset[x, y]. 

† Used in computer science to indicate that x is a substring occurring at the beginning of y. 

† See Section 3.10.4.

† See also: î[NotSquareSubset] , î[SquareSuperset] . 

SquareSubsetEqual

m  î[SquareSubsetEqual]

† Infix set relation operator. 

† x m  y is by default interpreted as SquareSubsetEqual[x, y]. 

† See Section 3.10.4.

† See also: î[NotSquareSubsetEqual] . 
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SquareSuperset

|  î[SquareSuperset]

† Infix set relation operator. 

† x |  y is by default interpreted as SquareSuperset[x, y]. 

† Used in computer science to indicate that x is a substring occurring at the end of y. 

† See Section 3.10.4.

† See also: î[NotSquareSuperset] , î[SquareSubset] . 

SquareSupersetEqual

}  î[SquareSupersetEqual]

† Infix set relation operator. 

† x }  y is by default interpreted as SquareSupersetEqual[x, y]. 

† See Section 3.10.4.

† See also: î[NotSquareSupersetEqual] . 

SquareUnion

ü  î[SquareUnion]

† Infix operator. 

† x ü  y is by default interpreted as SquareUnion[x, y]. 

† Used in mathematics to denote various forms of generalized union, typically of disjoint subspaces. 

† See Section 3.10.4.

† See also: î[SquareIntersection] , î[Union] , î[UnionPlus] , î[Vee] , î[Coproduct] . 

Star

*  î[Star]

† Alias: Çstar . 

† Infix operator. 

† x *  y is by default interpreted as Star[x, y]. 

† Used to denote convolution and generalized forms of multiplication. 

† Sometimes used in prefix form to indicate dual. 

† Not the same as î[SixPointedStar] or î[RawStar]. 

† î[RawStar] is the character entered for superscripts. 
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† See Section 3.10.1 and Section 3.10.4.

† See also: î[Times] , î[Cross] . 

Sterling

£  î[Sterling]

† Letter-like form. 

† Currency symbol for British pound sterling, as in £  5. 

† Used in mathematics to denote Lie derivative. 

† See Section 1.10.8 and Section 3.10.3.

† See also: î[RawNumberSign] , î[Euro] . 

Stigma

¹  î[Stigma]

† Aliases: Çsti , Çstigma . 

† Special Greek letter. 

† Appeared between e  and z  in early Greek alphabet; used for Greek numeral 6. 

† Not the same as î[FinalSigma]. 

† See Section 3.10.3.

† See also: î[CapitalStigma] , î[Digamma] , î[Koppa] , î[Sampi] . 

Subset

Õ  î[Subset]

† Alias: Çsub . 

† Infix set relation operator. 

† x Õ  y is by default interpreted as Subset[x, y]. 

† Usually used in mathematics to indicate subset; sometimes proper subset. 

† See Section 3.10.4.

† See also: î[SubsetEqual] , î[SquareSubset] , î[Element] , î[Precedes] , î[LeftTriangle] , î[NotSub-
set] . 

SubsetEqual

Œ  î[SubsetEqual]

† Alias: Çsub= . 

† Infix set relation operator. 
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† x Œ  y is by default interpreted as SubsetEqual[x, y]. 

† See Section 3.10.4.

† See also: î[NotSubsetEqual] . 

Succeeds

  î[Succeeds]

† Infix ordering operator. 

† x  y is by default interpreted as Succeeds[x, y]. 

† Used in mathematics to indicate various notions of partial ordering. 

† Often applied to functions and read “ x dominates y”.  

† See Section 1.10.8 and Section 3.10.4.

† See also: î[SucceedsEqual] , î[Precedes] , î[NotSucceeds] . 

SucceedsEqual

‘  î[SucceedsEqual]

† Infix ordering operator. 

† x  y is by default interpreted as SucceedsEqual[x, y]. 

† See Section 3.10.4.

† See also: î[SucceedsSlantEqual] , î[SucceedsTilde] , î[PrecedesEqual] , î[NotSucceedsEqual] . 

SucceedsSlantEqual

’  î[SucceedsSlantEqual]

† Infix ordering operator. 

† x  y is by default interpreted as SucceedsSlantEqual[x, y]. 

† See Section 3.10.4.

† See also: î[SucceedsEqual] , î[PrecedesSlantEqual] , î[NotSucceedsSlantEqual] . 

SucceedsTilde

“  î[SucceedsTilde]

† Infix ordering operator. 

† x “  y is by default interpreted as SucceedsTilde[x, y]. 

† See Section 3.10.4.

† See also: î[SucceedsEqual] , î[PrecedesTilde] , î[NotSucceedsTilde] . 
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SuchThat

'  î[SuchThat]

† Alias: Çst . 

† Infix operator. 

† x '  y is by default interpreted as SuchThat[x, y]. 

† x '  y '  z groups as x '  (y '  z). 

† Not the same as î[ReverseElement]. 

† See Section 3.10.4.

† See also: î[Exists] , î[ForAll] , î[Colon] , î[VerticalBar] . 

Sum

⁄  î[Sum]

† Alias: Çsum . 

† Compound operator with built-in evaluation rules. 

† ⁄
i

imax
f  is by default interpreted as Sum[f, 8 i, imax<]. 

† ⁄
i=imin

imax
f  is by default interpreted as Sum[f, 8 i, imin, imax<]. 

† Not the same as the Greek letter î[CapitalSigma]. 

† See Section 1.10.4, Section 1.10.4, Section 3.10.1, Section 3.10.3 and Section 3.10.4.

† See also: î[Product] , î[Integral] . 

Superset

   î[Superset]

† Alias: Çsup . 

† Infix set relation operator. 

† x    y is by default interpreted as Superset[x, y]. 

† Usually used in mathematics to indicate superset; sometimes proper superset. 

† Not the same as î[RoundImplies]. 

† See Section 1.10.8 and Section 3.10.4.

† See also: î[SupersetEqual] , î[SquareSuperset] , î[ReverseElement] , î[Succeeds] , î[RightTrian-
gle] , î[NotSuperset] . 

SupersetEqual

Printed from the Mathematica Help Browser 135

©1988-2003 Wolfram Research, Inc. All rights reserved.



û  î[SupersetEqual]

† Alias: Çsup= . 

† Infix set relation operator. 

† x û  y is by default interpreted as SupersetEqual[x, y]. 

† See Section 3.10.4.

† See also: î[NotSupersetEqual] . 

SZ

ß  î[SZ]

† Aliases: Çsz , Çss . 

† Letter. 

† Used in German. 

† Sometimes called s sharp, ess-zed or ess-zet. 

† Usually transliterated in English as ss. 

† Upper-case form is SS. 

† Included in ISO Latin-1. 

† See Section 1.10.7 and Section 3.10.3.

† See also: î[Beta] . 

Tau

t  î[Tau]

† Aliases: Çt , Çtau . 

† Greek letter. 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[CapitalTau] , î[Theta] . 

Therefore

\  î[Therefore]

† Alias: Çtf . 

† Infix operator. 

† x \  y is by default interpreted as Therefore[x, y]. 

† x \  y \  z groups as x \  (y \  z). 

† See Section 1.10.8 and Section 3.10.4.

† See also: î[Because] , î[Implies] , î[RightTee] , î[FilledRectangle] , î[Proportion] . 

136 Printed from the Mathematica Help Browser

©1988-2003 Wolfram Research, Inc. All rights reserved.



Theta

q  î[Theta]

† Aliases: Çth , Çtheta , Çq . 

† Greek letter. 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[CurlyTheta] , î[CapitalTheta] , î[Tau] . 

ThickSpace

  î[ThickSpace]

† Alias: Çâ â â â Ç. 

† Spacing character. 

† Width: 5/18 em. 

† Interpreted by default just like an ordinary î[RawSpace]. 

† See Section 2.9.11 and Section 3.10.5.

† See also: î[MediumSpace] , î[NegativeThickSpace] , SpaceIndicator. 

ThinSpace

  î[ThinSpace]

† Alias: Çâ â Ç. 

† Spacing character. 

† Width: 3/18 em. 

† Interpreted by default just like an ordinary î[RawSpace]. 

† See Section 2.9.11 and Section 3.10.5.

† See also: î[VeryThinSpace] , î[MediumSpace] , î[NegativeThinSpace] , î[SpaceIndicator] . 

Thorn

þ  î[Thorn]

† Alias: Çthn . 

† Letter. 

† Included in ISO Latin-1. 

† Used in Icelandic and Old English. 

† See Section 3.10.3.

† See also: î[CapitalThorn] , î[Eth] . 
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Tilde

~  î[Tilde]

† Alias: Ç~ . 

† Infix similarity operator. 

† x ~  y is by default interpreted as Tilde[x, y]. 

† Used in mathematics for many notions of similarity or equivalence. 

† Used in physical science to indicate approximate equality. 

† Occasionally used in mathematics for notions of difference. 

† Occasionally used in prefix form to indicate complement or negation. 

† Not the same as î[RawTilde]. 

† See Section 1.10.8 and Section 3.10.4.

† See also: î[NotTilde] , î[VerticalTilde] , î[Not] . 

TildeEqual

>  î[TildeEqual]

† Alias: Ç~= . 

† Infix similarity operator. 

† x >  y is by default interpreted as TildeEqual[x, y]. 

† Used to mean approximately or asymptotically equal. 

† Also used in mathematics to indicate homotopy. 

† See Section 1.10.8 and Section 3.10.4.

† See also: î[TildeTilde] , î[TildeFullEqual] , î[NotTildeEqual] . 

TildeFullEqual

@  î[TildeFullEqual]

† Alias: Ç~== . 

† Infix similarity operator. 

† x @  y is by default interpreted as TildeFullEqual[x, y]. 

† Used in mathematics to indicate isomorphism, congruence and homotopic equivalence. 

† See Section 3.10.4.

† See also: î[TildeEqual] , î[Congruent] , î[NotTildeFullEqual] . 

TildeTilde
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º  î[TildeTilde]

† Alias: Ç~ ~ Ç. 

† Infix similarity operator. 

† x º  y is by default interpreted as TildeTilde[x, y]. 

† Used for various notions of approximate or asymptotic equality. 

† Used in pure mathematics to indicate homeomorphism. 

† See Section 1.10.8 and Section 3.10.4.

† See also: î[TildeEqual] , î[NotTildeTilde] . 

Times

×  î[Times]

† Alias: Ç* . 

† Infix operator with built-in evaluation rules. 

† x µ  y is by default interpreted as Times[x, y], which is equivalent to x y or x * y. 

† Not the same as î[Cross]. 

† î[Times] represents ordinary multiplication, while î[Cross] represents vector cross product. 

† î[Times] is drawn larger than î[Cross]. 

† See Section 1.10.4, Section 3.10.1 and Section 3.10.4.

† See also: î[Star] , î[CircleTimes] , î[Divide] , î[Wedge] . 

Trademark

™  î[Trademark]

† Letter-like form. 

† Used to indicate a trademark that may not be registered. 

† Typically used only on the first occurrence of a trademark in a document. 

† See Section 3.10.3.

† See also: î[RegisteredTrademark] , î[Copyright] . 

UAcute

ú  î[UAcute]

† Alias: Çu' . 

† Letter. 

† Included in ISO Latin-1. 
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† See Section 3.10.3.

† See also: î[CapitalUAcute] . 

UDoubleAcute

  î[UDoubleAcute]

† Alias: Çu'' . 

† Letter. 

† Included in ISO Latin-2. 

† Used in Hungarian. 

† See Section 3.10.3.

† See also: î[CapitalUDoubleAcute] . 

UDoubleDot

ü  î[UDoubleDot]

† Alias: Çu" . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 1.10.7 and Section 3.10.3.

† See also: î[UDoubleAcute] , î[CapitalUDoubleDot] . 

UGrave

ù  î[UGrave]

† Alias: Çu` . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 1.10.7 and Section 3.10.3.

† See also: î[CapitalUGrave] . 

UHat

û  î[UHat]

† Alias: Çu^ . 

† Letter. 

† Included in ISO Latin-1. 
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† See Section 3.10.3.

† See also: î[CapitalUHat] . 

UnderBrace

ß  î[UnderBrace]

† Alias: Çu8 Ç. 

† Letter-like form. 

† Extensible character. 

† See Section 3.10.3.

† See also: î[UnderBracket] , î[UnderParenthesis] , î[OverBrace] . 

UnderBracket

Ä  î[UnderBracket]

† Alias: Çu[ . 

† Letter-like form. 

† Extensible character. 

† See Section 3.10.3.

† See also: î[UnderParenthesis] , î[UnderBrace] , î[OverBracket] , î[HorizontalLine] . 

UnderParenthesis

†  î[UnderParenthesis]

† Alias: Çu( . 

† Letter-like form. 

† Extensible character. 

† See Section 3.10.3.

† See also: î[UnderBracket] , î[UnderBrace] , î[OverParenthesis] . 

Union

‹  î[Union]

† Alias: Çun . 

† Infix operator with built-in evaluation rules. 

† x ‹  y is by default interpreted as Union[x, y]. 

† The character ‹  is sometimes called “cup”;  but see also î[Cup] . 
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† See Section 1.10.4, Section 3.10.1 and Section 3.10.4.

† See also: î[Intersection] , î[SquareUnion] , î[UnionPlus] , î[Cup] , î[Vee] . 

UnionPlus

ù  î[UnionPlus]

† Infix operator. 

† x ù  y is by default interpreted as UnionPlus[x, y]. 

† Used to denote union of multisets, in which multiplicities of elements are added. 

† See Section 3.10.4.

† See also: î[Union] , î[CirclePlus] . 

UpArrow

Æ  î[UpArrow]

† Infix arrow operator. 

† x Æ  y is by default interpreted as UpArrow[x, y]. 

† Sometimes used in mathematics to denote generalization of powers. 

† Used to indicate monotonic increase to a limit. 

† Sometimes used in prefix form to indicate the closure of a set. 

† Extensible character. 

† See Section 1.10.8 and Section 3.10.4.

† See also: î[UpTeeArrow] , î[UpArrowBar] , î[DoubleUpArrow] , î[LeftUpVector] , î[DownArrow] , î
[Wedge] , î[RawWedge] . 

UpArrowBar

$  î[UpArrowBar]

† Infix arrow operator. 

† x $  y is by default interpreted as UpArrowBar[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[UpTeeArrow] , î[LeftUpVectorBar] . 

UpArrowDownArrow

\  î[UpArrowDownArrow]
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† Infix arrow operator. 

† x \  y is by default interpreted as UpArrowDownArrow[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[DownArrowUpArrow] , î[UpDownArrow] , î[DoubleUpDownArrow] , î[UpEquilibrium] . 

UpDownArrow

ò  î[UpDownArrow]

† Infix arrow operator. 

† x ò  y is by default interpreted as UpDownArrow[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[UpArrowDownArrow] , î[DoubleUpDownArrow] , î[LeftUpDownVector] , î[UpEquilibrium] . 

UpEquilibrium

L  î[UpEquilibrium]

† Infix arrow-like operator. 

† x L  y is by default interpreted as UpEquilibrium[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[ReverseUpEquilibrium] , î[UpArrowDownArrow] , î[LeftUpDownVector] , î[Equilibrium] . 

UpperLeftArrow

à  î[UpperLeftArrow]

† Infix arrow operator. 

† x à  y is by default interpreted as UpperLeftArrow[x, y]. 

† Extensible character; grows by default to limited size. 

† See Section 3.10.4.

† See also: î[UpperRightArrow] , î[LeftArrow] . 

UpperRightArrow

â  î[UpperRightArrow]

† Infix arrow operator. 

† x â  y is by default interpreted as UpperRightArrow[x, y]. 
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† Extensible character; grows by default to limited size. 

† See Section 3.10.4.

† See also: î[UpperLeftArrow] , î[RightArrow] . 

Upsilon

u  î[Upsilon]

† Aliases: Çu , Çupsilon . 

† Greek letter. 

† See Section 3.10.3.

† See also: î[CapitalUpsilon] . 

UpTee

¦  î[UpTee]

† Alias: ÇuT . 

† Infix relational operator. 

† x ¦  y is by default interpreted as UpTee[x, y]. 

† Used in geometry to indicate perpendicular. 

† Used in number theory to indicate relative primality. 

† See Section 3.10.4.

† See also: î[RightAngle] , î[NotDoubleVerticalBar] , î[DownTee] . 

UpTeeArrow

&  î[UpTeeArrow]

† Infix arrow operator. 

† x &  y is by default interpreted as UpTeeArrow[x, y]. 

† Extensible character. 

† See Section 3.10.4.

† See also: î[UpArrowBar] , î[LeftUpTeeVector] , î[UpTee] , î[DownTeeArrow] . 

Vee

Ó  î[Vee]

† Alias: Çv . 

† Infix operator. 

† x Ó  y is by default interpreted as Vee[x, y]. 
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† Used to indicate various notions of joining, and as a dual of î[Wedge] . 

† Not the same as î[Or]. 

† Drawn slightly smaller than î[Or]. 

† Sometimes used in prefix form to indicate the total variation of a function. 

† See Section 1.10.8 and Section 3.10.4.

† See also: î[Wedge] , î[Union] , î[SquareUnion] , î[Nu] , î[Hacek] . 

VerticalBar

˝  î[VerticalBar]

† Alias: Çâ| . 

† Infix operator. 

† x ˝  y is by default interpreted as VerticalBar[x, y]. 

† Used in mathematics to indicate that x divides y. 

† Also sometimes called Sheffer stroke, and used to indicate logical NAND. 

† Not the same as î[VerticalSeparator], which is drawn longer. 

† Not the same as î[LeftBracketingBar] and î[RightBracketingBar], which are drawn with a small tee to indicate 
their direction. 

† Ç|  is the alias for î[VerticalSeparator]. The alias for î[VerticalBar] has a space at the beginning. 

† See Section 1.10.8 and Section 3.10.4.

† See also: î[RawVerticalBar] , î[Nand] , î[NotVerticalBar] , î[DoubleVerticalBar] , î[Backslash] , î
[HorizontalLine] . 

VerticalEllipsis

ª  î[VerticalEllipsis]

† Letter-like form. 

† Used to indicate omitted elements in columns of a matrix. 

† See Section 3.10.3.

† See also: î[Ellipsis] , î[AscendingEllipsis] , î[VerticalBar] . 

VerticalLine

^  î[VerticalLine]

† Alias: Çvline . 

† Letter-like form. 

† Extensible character. 

† Not the same as î[VerticalSeparator] or î[VerticalBar], which are infix operators. 

† Not the same as î[LeftBracketingBar] and î[RightBracketingBar], which are matchfix operators, drawn with a 
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small tee to indicate their direction. 

† See Section 3.10.3.

† See also: î[RawVerticalBar] , î[HorizontalLine] , î[VerticalEllipsis] , î[UpArrow] . 

VerticalSeparator

»  î[VerticalSeparator]

† Alias: Ç| . 

† Infix operator. 

† x »  y is by default interpreted as VerticalSeparator[x, y]. 

† Used in mathematics for many purposes, including indicating restriction and standing for “such  that”.  

† Also used to separate arguments of various mathematical functions. 

† Extensible character; grows by default to limited size. 

† Not the same as î[VerticalBar], which is drawn shorter. 

† Not the same as î[LeftBracketingBar] and î[RightBracketingBar], which are drawn with a small tee to indicate 
their direction. 

† Not the same as î[VerticalLine], which is a letter-like form, and is indefinitely extensible. 

† See Section 1.10.8 and Section 3.10.4.

† See also: î[RawVerticalBar] , î[NotVerticalBar] , î[DoubleVerticalBar] , î[Colon] , î[SuchThat] , î
[HorizontalLine] . 

VerticalTilde

ª  î[VerticalTilde]

† Infix operator. 

† x ª  y is by default interpreted as VerticalTilde[x, y]. 

† Used in mathematics to mean wreath product. 

† See Section 3.10.4.

† See also: î[Tilde] . 

VeryThinSpace

  î[VeryThinSpace]

† Alias: Çâ Ç. 

† Spacing character. 

† Width: 1/18 em. 

† Interpreted by default just like an ordinary î[RawSpace]. 

† See Section 2.9.11 and Section 3.10.5.

† See also: î[ThinSpace] , î[NegativeVeryThinSpace] , î[AlignmentMarker] , î[Null] , î[Invisible-
Comma] . 
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WarningSign

‹  î[WarningSign]

† Letter-like form. 

† Based on an international standard road sign. 

† See Section 3.10.3.

† See also: î[WatchIcon] . 

WatchIcon

›  î[WatchIcon]

† Letter-like form. 

† Used to indicate a calculation that may take a long time. 

† See Section 3.10.3.

† See also: î[WarningSign] . 

Wedge

Ô  î[Wedge]

† Alias: Ç^ . 

† Infix operator. 

† x Ô  y is by default interpreted as Wedge[x, y]. 

† Used to mean wedge or exterior product and other generalized antisymmetric products. 

† Occasionally used for generalized notions of intersection. 

† Not the same as î[And], î[CapitalLambda] or î[RawWedge]. 

† See Section 1.10.8 and Section 3.10.4.

† See also: î[Vee] , î[UpArrow] , î[Intersection] , î[SquareIntersection] , î[CircleTimes] . 

WeierstrassP

ƒ  î[WeierstrassP]

† Alias: Çwp . 

† Letter. 

† Used to denote the function WeierstrassP. 

† Not the same as î[ScriptCapitalP]. 

† See Section 3.10.3.
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Wolf

Ł  î[Wolf]

† Aliases: Çwf , Çwolf . 

† Letter-like form. 

† Iconic representation of a wolf. 

† See Section 3.10.3.

Xi

x  î[Xi]

† Aliases: Çx , Çxi . 

† Greek letter. 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[CapitalXi] , î[Chi] , î[Zeta] . 

Xor

  î[Xor]

† Alias: Çxor . 

† Infix operator with built-in evaluation rules. 

† x  y is by default interpreted as Xor[x, y]. 

† See Section 3.10.4.

† See also: î[Nor] , î[Or] , î[CirclePlus] . 

YAcute

ý  î[YAcute]

† Alias: Çy' . 

† Letter. 

† Included in ISO Latin-1. 

† See Section 3.10.3.

† See also: î[CapitalYAcute] . 

Yen
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¥  î[Yen]

† Letter-like form. 

† Currency symbol for Japanese yen, as in ¥5000. 

† See Section 3.10.3.

Zeta

z  î[Zeta]

† Aliases: Çz , Çzeta . 

† Greek letter. 

† Used in TraditionalForm for Zeta and WeierstrassZeta. 

† See Section 1.10.1 and Section 3.10.3.

† See also: î[CapitalZeta] , î[Xi] . 
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A.13 Incompatible Changes

A.13.1 Since Version 1

Every new version of Mathematica  contains many new features. But careful design from the outset has allowed nearly
total compatibility to be maintained between all versions. As a result, almost any program written, say, for Mathemat-
ica Version 1 in 1988 should be able to run without change in Mathematica Version 5—though it will often run consider-
ably faster. 

One inevitable problem, however, is that if a program uses names that begin with upper-case letters, then it is possible
that  since  the  version  when  the  program  was  first  written,  built-in  functions  may  have  been  added  to  Mathematica
whose names conflict with those used in the program. 

In  addition,  to  maintain  the  overall  coherence  of  Mathematica  a  few  functions  that  existed  in  earlier  versions  have
gradually been dropped—first becoming undocumented, and later generating warning messages if used. Furthermore, it
has  in  a  few  rare  cases  been  necessary  to  makes  changes  to  particular  functions  that  are  not  compatible  with  their
earlier operation. 

This section lists all major incompatible changes from Mathematica Version 1 onward. 

A.13.2 Between Versions 1 and 2

† 260 new built-in objects have been added, some of whose names may conflict with names already being used.  

† Accumulate has been superseded by FoldList; Fold has been added.  

† Condition (/;) can now be used in individual patterns as well as in complete rules, and does not evaluate by default.  

† The functionality of Release has been split between Evaluate and ReleaseHold.  

† Compose has been superseded by Composition.  

† Debug has been superseded by Trace and related functions.  

† Power no longer automatically makes transformations such as Sqrt[x^2]Øx.  

† Limit now by default remains unevaluated if it encounters an unknown function.  

† Mod now handles only numbers; PolynomialMod handles polynomials.  

† CellArray has been superseded by Raster and RasterArray.  

† FontForm takes a slightly different form of font specification.  

† Framed has been superseded by Frame and related options.  

† ContourLevels and ContourSpacing have been superseded by Contours.  

† Plot3Matrix has been superseded by ViewCenter and ViewVertical.  

† FromASCII and ToASCII have been superseded by FromCharacterCode and ToCharacterCode respectively.  

† Alias has been superseded by $PreRead.  

† ResetMedium has been subsumed in SetOptions, and $$Media has been superseded by Streams.  

† StartProcess has been superseded by Install and by MathLink.  

† Additional parts devoted to Mathematica as a programming language, and to examples of Mathematica packages, have been 
dropped from The Mathematica Book.  
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A.13.3 Between Versions 2 and 3

† 259 new built-in objects have been added, some of whose names may conflict with names already being used.  

† N[expr, n] now always tries to give n digits of precision if possible, rather than simply starting with n digits of precision.  

† All expressions containing only numeric functions and numerical constants are now converted to approximate numerical form 
whenever they contain any approximate numbers.  

† Many expressions involving exact numbers that used to remain unevaluated are now evaluated. Example: Floor[(7/3)^20].  

† Plus and Times now apply built-in rules before user-defined ones, so it is no longer possible to make definitions such as 2+2=5.  

† The operator precedence for . and ** has been changed so as to be below ^. This has the consequence that expressions previously 
written in InputForm as a . b ^ n must now be written as (a . b)^n. V2Get[file] will read a file using old operator 
precedences.  

† î^ is now an operator used to generate a superscript. Raw octal codes must be used instead of î^A for inputting control characters.  

† In Mathematica notebooks, several built-in Mathematica functions are now output by default using special characters. Example: 
x->y is output as xØy in StandardForm.  

† More sophisticated definite integrals now yield explicit If constructs unless the option setting GenerateConditions->
False is used.  

† HeldPart[expr, i, j, … ] has been superseded by Extract[expr, 8 i, j, … <, Hold].  

† Literal[pattern] has been replaced by HoldPattern[pattern]. Verbatim[pattern] has been introduced. Functions like 
DownValues return their results wrapped in HoldPattern rather than Literal.  

† ReplaceHeldPart[expr, new, pos] has been superseded by ReplacePart[expr, Hold[new], pos, 1].  

† ToHeldExpression[expr] has been superseded by ToExpression[expr, form, Hold].  

† Trig as an option to algebraic manipulation functions has been superseded by the explicit functions TrigExpand, TrigFac
tor and TrigReduce.  

† AlgebraicRules has been superseded by PolynomialReduce.  

† The option LegendreType has been superseded by an additional optional argument to LegendreP and LegendreQ.  

† WeierstrassP[u, 8g2 , g3 <] now takes g2  and g3  in a list.  

† $Letters and $StringOrder now have built-in values only, but these handle all possible Mathematica characters.  

† StringByteCount is no longer supported.  

† Arbitrary-precision approximate real numbers are now given by default as digits`prec in InputForm. This behavior is controlled 
by $NumberMarks.  

† Large approximate real numbers are now given by default as digits*^exponent in InputForm.  

† HomeDirectory[ ] has been replaced by $HomeDirectory.  

† Dump has been superseded by DumpSave.  

† $PipeSupported and $LinkSupported are now obsolete, since all computer systems support pipes and links.  

† LinkOpen has been superseded by LinkCreate, LinkConnect and LinkLaunch.  

† Subscripted has been superseded by RowBox, SubscriptBox, etc.  

† Subscript and Superscript now represent complete subscripted and superscripted quantities, not just subscripts and 
superscripts.  

† FontForm and DefaultFont have been superseded by StyleForm and TextStyle.  

In the notebook front end, changes that were made include: 

† The file format for notebooks has been completely changed in order to support new notebook capabilities.  

† Notebook files are now by default given .nb rather than .ma extensions; .mb files are now superfluous.  
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† The front end will automatically ask to convert any old notebook that you tell it to open.  

† The kernel command NotebookConvert can be used to convert notebook files from Version 2 to Version 3 format.  

† The default format type for input cells is now StandardForm rather than InputForm.  

† The organization of style sheets, as well as the settings for some default styles, have been changed.  

† Some command key equivalents for menu items have been rearranged.  

A.13.4 Between Versions 3 and 4

† 61 new built-in objects have been added, some of whose names may conflict with names already being used.  

† N[0] now yields a machine-precision zero rather than an exact zero.  

† FullOptions has been superseded by AbsoluteOptions, which yields results in the same form as Options.  

† Element[x, y] or x ∈ y  now has built-in evaluation rules.  

† The symbols I and E are now output in StandardForm as Â  (î[ImaginaryI]) and ‰  (î[ExponentialE]) respectively.  

† A new second argument has been added to CompiledFunction to allow easier manipulation and composition of compiled 
functions.  

A.13.5 Between Versions 4 and 5

† 44 completely new built-in objects have been added, some of whose names may conflict with names already being used.  

† Precision and Accuracy now return exact measures of uncertainty in numbers, not just estimates of integer numbers of digits. 

† Precision now returns the symbol MachinePrecision for machine numbers, rather than the numerical value $Machine
Precision.  

† N[expr, MachinePrecision] is now used for numerical evaluation with machine numbers; N[expr, $MachinePreci
sion] generates arbitrary-precision numbers.  

† ConstrainedMin and ConstrainedMax have been superseded by Minimize, Maximize, NMinimize and NMaximize.  

† SingularValues has been superseded by SingularValueList and SingularValueDecomposition. Singular
ValueDecomposition uses a different and more complete definition.  

† FindRoot[f, 8x, 8x0 , x1 <<] is now used to specify a starting vector value for x, rather than a pair of values. The same is true 
for FindMinimum.  

† DSolveConstants has been superseded by the more general option GeneratedParameters.  

† TensorRank has been replaced by ArrayDepth.  

† $TopDirectory has been superseded by $InstallationDirectory and $BaseDirectory.  

† The default setting for the MathLink LinkProtocol option when connecting different computer systems is now "TCPIP" 
rather than "TCP".  
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A.14 Developer Context Objects in Mathematica 5

A.14.1 Introduction

The  objects  listed  below  are  included  in  the  Developer`  context  in  Mathematica  Version  5;  some  of  them  may
change or be moved to the System` context in subsequent versions of Mathematica. 

The  Developer`  context  includes  functions  that  directly  access  specific  internal  algorithms  and  capabilities  of
Mathematica that are normally used only as part of more general functions. 

Developer` name access a specific object in the  Developer` context
<<Developer` set up to be able to access all  Developer` objects by name

Ways to access functions in the Developer` context. 

Note  that  <<Developer`  adds  the  Developer`  context  to  your  $ContextPath .  You  can  remove  it  again  by
explicitly modifying the value of $ContextPath . You can set up to access Developer` context objects automati-
cally in all Mathematica sessions by adding <<Developer` to your init.m file. 

Developer`BesselSimplify

† BesselSimplify[expr] transforms Bessel functions in expr, trying to either decrease the number of 
Bessel functions, or convert Bessel functions into more elementary functions. 

† BesselSimplify is automatically used inside FullSimplify and FunctionExpand. 

Developer`BitLength

† BitLength[n] gives the number of binary bits necessary to represent the integer n. 

† For positive n, BitLength[n] is effectively an efficient version of Floor[Log[2, n]] + 1. 

† For negative n it is equivalent to BitLength[BitNot[n]]. 

† See also: IntegerExponent, MantissaExponent. 

Developer`BitShiftLeft

† BitShiftLeft[n, d] shifts the binary bits in the integer n to the left by d places, padding with zeros 
on the right. 

† BitShiftLeft[n, d] is equivalent to n 2^d. 

† Negative values of d shift to the right. 

Developer`BitShiftRight
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† BitShiftRight[n, d] shifts the binary bits in the integer n to the right by d places, dropping bits 
that are shifted past the units position on the right.  

† BitShiftRight[n, d] is equivalent to IntegerPart[n/2^d]. 

† Negative values of d shift to the left. 

† See also: MantissaExponent. 

Developer`ClearCache

† ClearCache[ ] clears internal caches of stored results. 

† ClearCache is useful if one needs to generate worst-case timing results independent of previous computations. 

† ClearCache["Numeric"] clears only caches of numeric results. 

† ClearCache["Symbolic"] clears only caches of symbolic results. 

† See also: Update. 

Developer`ClipboardNotebook

† ClipboardNotebook[ ] gives the notebook object corresponding to the invisible notebook 
corresponding to the clipboard for copy and paste operations. 

† It is possible to both read and write to the clipboard notebook. 

† See also: NotebookWrite, SelectedNotebook, EvaluationNotebook. 

Developer`FibonacciSimplify

† FibonacciSimplify[expr, assum] tries to simplify combinations of symbolic Fibonacci numbers 
in expr using assumptions assum. 

† Example: Developer`FibonacciSimplify[Fibonacci[n-1]+Fibonacci[n-2], Element[n, Inte
gers]]öFibonacci@nD . 

† FibonacciSimplify can typically perform transformations only when arguments of Fibonacci numbers are specified to be 
integers. 

† FibonacciSimplify is automatically used inside FullSimplify and FunctionExpand. 

Developer`FileInformation

† FileInformation["name"] gives information about the file with the specified name. 

† FileInformation gives a list of rules which include information on the name, size and modification time of a file. 

† ToDate can be used to convert modification times to dates. 

† See also: FileNames, FileDate, FileByteCount, AbsoluteOptions, NotebookInformation. 
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Developer`FromPackedArray

† FromPackedArray[expr] unpacks expr so that its internal representation is not a packed array. 

† Using FromPackedArray will not change results generated by Mathematica, but can reduce speed of execution and increase 
memory usage. 

† If expr is not a packed array, FromPackedArray[expr] returns expr unchanged. 

† See also: ToPackedArray, PackedArrayQ, ByteCount. 

Developer`GammaSimplify

† GammaSimplify[expr] transforms gamma functions in expr, trying to either decrease the number of 
gamma functions, or convert combinations of them into more elementary functions. 

† GammaSimplify is automatically used inside FullSimplify and FunctionExpand. 

Developer`HelpBrowserNotebook

† HelpBrowserNotebook[ ] gives the notebook object corresponding to the notebook portion of the 
Help Browser window. 

† See also: MessagesNotebook, SelectedNotebook, EvaluationNotebook. 

Developer`HermiteNormalForm

† HermiteNormalForm[m] gives the Hermite normal form of an integer matrix m. 

† The result is given in the form 8u, r<  where u is a unimodular matrix, r is an upper triangular matrix, and u . m == r. 

† See also: RowReduce, LatticeReduce. 

Further Examples

Developer`HessenbergDecomposition

† HessenbergDecomposition[m] gives the Hessenberg decomposition of a matrix m. 

† The result is given in the form 8p, h<  where p is a unitary matrix such that p . h . Conjugate[Transpose[p]] == m. 

† See also: SchurDecomposition. 

Developer`MachineIntegerQ
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† MachineIntegerQ[expr] returns True if expr corresponds to a machine-sized integer, and False 
otherwise. 

† On a typical computer system machine-sized integers must lie in the range -231 + 1 to +231 - 1 or -263 + 1 to +263 - 1. 

† Results from Mathematica are not affected by whether an integer is machine-sized or not; the speed of operations may however be 
affected. 

† See also: $MaxMachineInteger, Precision. 

Developer`MessagesNotebook

† MessagesNotebook[ ] gives the notebook to which messages generated by the notebook front end 
will be sent. 

† MessagesNotebook returns a NotebookObject. 

† See also: SelectedNotebook, EvaluationNotebook. 

Developer`NotebookConvert

† NotebookConvert["name"] converts a Mathematica notebook from a previous version of 
Mathematica to one for the current version. 

† NotebookConvert takes a file named name.ma or name and generates a file named name.nb. 

† Notebook conversion is done automatically by the front end if you try to open a Version 2 notebook. 

† See also: NotebookGet. 

Developer`NotebookInformation

† NotebookInformation[obj] gives information about the notebook represented by the specified 
notebook object. 

† NotebookInformation gives a list of rules which include information on times when data associated with the notebook was 
most recently modified. 

† ToDate can be used to convert these times to dates. 

† See also: AbsoluteOptions, FileInformation. 

Developer`PackedArrayForm

† PackedArrayForm[expr] prints with packed arrays in expr shown in summary form, without all of 
their elements explicitly given. 

† See also: Short, Shallow. 

Developer`PackedArrayQ
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† PackedArrayQ[expr] returns True if expr is a packed array in its internal representation, and 
returns False otherwise. 

† PackedArrayQ[expr, type] returns True if expr is a packed array of objects of the specified type. 

† PackedArrayQ[expr, type, rank] returns True if expr is a packed array of the specified rank. 

† Supported types are Integer, Real and Complex. 

† See also: ToPackedArray, ByteCount. 

Developer`PolyGammaSimplify

† PolyGammaSimplify[expr] transforms polygamma functions in expr, trying to either decrease the 
number of polygamma functions, or convert combinations of them into more elementary functions. 

† PolyGammaSimplify is automatically used inside FullSimplify and FunctionExpand. 

Developer`PolyLogSimplify

† PolyLogSimplify[expr] transforms polylogarithm functions in expr, trying to either decrease the 
number of polylogarithm functions, or convert combinations of them into more elementary functions. 

† PolyLogSimplify is automatically used inside FullSimplify and FunctionExpand. 

Developer`PolynomialDivision

† PolynomialDivision[p, q, x] gives a list of the quotient and remainder of p and q, treated as 
polynomials in x. 

† The remainder will always have a degree not greater than q. 

† See also: PolynomialQuotient, PolynomialRemainder, PolynomialReduce. 

Further Examples

Developer`ReplaceAllUnheld

† ReplaceAllUnheld[expr, rules] applies a rule or list of rules in an attempt to transform each 
subpart of expr that would be automatically evaluated. 

† ReplaceAll operates on all subparts of an expression; ReplaceAllUnheld operates only on those subparts that would 
normally be evaluated. 

† Example: Developer`ReplaceAllUnheld[If[a, a, a], a->b]öIf@b, a, aD . 

† See also: ReplaceAll, Hold, Verbatim. 

Developer`SetSystemOptions
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† SetSystemOptions["name"->value] sets a specified system option. 

† See also: SystemOptions. 

Developer`SystemOptions

† SystemOptions[ ] gives the current settings for all system options. 

† SystemOptions["name"] gives the current setting for the system option with the specified name. 

† System options specify internal parameters relevant to the operation of Mathematica on particular computer systems. 

† See also: SetSystemOptions. 

Developer`ToPackedArray

† ToPackedArray[expr] uses packed arrays if possible in the internal representation of expr. 

† Using ToPackedArray will not change results generated by Mathematica, but can enhance speed of execution and reduce 
memory usage. 

† ToPackedArray is effectively used automatically by many functions that generate large lists. 

† ToPackedArray will successfully pack full lists of any depth containing machine-sized integers and machine-sized approximate 
real and complex numbers. 

† ToPackedArray[expr, type] will when possible convert entries in expr to be of the specified type. 

† Possible types are: Integer, Real and Complex. 

† Only machine-sized numbers can be stored in packed form. 

† The option Tolerance->tol can be used to specify when small numerical values can be ignored in conversion to more restrictive 
types, and when they must prevent conversion to packed form. 

† See also: FromPackedArray, ByteCount. 

Developer`TrigToRadicals

† TrigToRadicals[expr] converts trigonometric functions to radicals whenever possible in expr. 

† TrigToRadicals operates on trigonometric functions whose arguments are rational multiples of p . 

† TrigToRadicals is automatically used inside FullSimplify and FunctionExpand. 

Developer`ZeroQ

† ZeroQ[expr] returns True if built-in transformations allow it to be determined that expr is 
numerically equal to zero, and returns False otherwise. 

† ZeroQ uses a combination of symbolic transformations and randomized numerical evaluation. 

† If ZeroQ[expr] returns False it does not necessarily mean that expr is mathematically not equal to zero; all it means is that 
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built-in transformations did not allow this to be determined. 

† See also: ImpliesQ. 

Developer`ZetaSimplify

† ZetaSimplify[expr] transforms zeta functions in expr, trying to either decrease the number of zeta 
functions, or convert combinations of them into more elementary functions. 

† ZetaSimplify is automatically used inside FullSimplify and FunctionExpand. 

Developer`$MaxMachineInteger

† $MaxMachineInteger gives the maximum integer that is represented internally as a single atomic 
data element on your computer system. 

† $MaxMachineInteger is typically 2n-1 - 1 on a computer system that is referred to as an n -bit system. 

† Arithmetic operations involving integers smaller than $MaxMachineInteger are typically faster than those involving larger 
integers. 

† See also: MachineIntegerQ, $MaxMachineNumber, $MachinePrecision. 
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A.15 Experimental Context Objects in Mathematica 5

A.15.1 Introduction

The objects listed below are experimental in Mathematica  Version 5, and are subject to change in subsequent versions
of Mathematica.  

Experimental  ̀name access a specific object in the  Experimental` context
<<Experimental` set up to be able to access all  Experimental` objects by name

Ways to access functions in the Experimental` context. 

Note  that  <<Experimental`  adds  the  Experimental`  context  to  your  $ContextPath.  You  can  remove  it
again  by  explicitly  modifying  the  value  of  $ContextPath.  You  can  set  up  to  access  Experimental`  context
objects automatically in all Mathematica sessions by adding <<Experimental` to your init.m file. 

Experimental`BinaryExport

† BinaryExport[channel, expr, format] exports expr to channel as binary data in the specified 
format. 

† The basic elements that can appear in the format specification are: 

"Byte" 8-bit unsigned integer

"Character8" 8-bit character

"Character16" 16-bit character

"Complex64" IEEE single-precision complex number

"Complex128" IEEE double-precision complex number

"Integer8" 8-bit signed integer

"Integer16" 16-bit signed integer

"Integer32" 32-bit signed integer

"Integer64" 64-bit signed integer

"Real32" IEEE single-precision real number

"Real64" IEEE double-precision real number

"Real128" IEEE quadruple-precision real number

"TerminatedString" null-terminated string of 8-bit characters

"UnsignedInteger8" 8-bit unsigned integer

"UnsignedInteger16" 16-bit unsigned integer

"UnsignedInteger32" 32-bit unsigned integer

"UnsignedInteger64" 64-bit unsigned integer

† These elements can be combined in lists or other expressions. 

† The pattern format.. represents a sequence of one or more copies of a format. 

† Example: 8"Byte"..<  represents a list of one or more bytes. 

† 8"Integer32", "Real32"<.. represents a list of one or more repetitions of a 32-bit integer followed by a single-precision 
real. 
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† The expressions format and expr are assumed to have the same structure, except for the replacement of patt.. by explicit 
sequences. 

† Elements are sent as exported data in the order that they would be accessed by a function such as MapAll. 

† BinaryExport coerces data to correspond to the format specifications given. 

† Integers that do not fit have their high-order bits dropped. 

† The channel used in BinaryExport can be a file specified by its name, a pipe or an OutputStream. 

† Under Windows, the output stream must have been opened with DOSTextFormat->False. 

† When BinaryExport exports data to an output stream, it leaves the stream position directly after what it has exported. 

† If BinaryExport opens a file or pipe, it closes it again when it is finished. 

† The following options can be given: 

ByteOrdering Automatic what byte ordering to assume

CharacterEncoding Automatic what encoding to use for characters

† See also: BinaryImport, BinaryExportString, Export, FromCharacterCode. 

Experimental`BinaryExportString

† BinaryExportString[expr, format] returns a string corresponding to expr exported as binary 
data. 

† See notes for BinaryExport. 

Experimental`BinaryImport

† BinaryImport[channel, format] imports binary data from channel in the specified format. 

† The basic elements that can appear in the format specification are: 

"Byte" 8-bit unsigned integer

"Character8" 8-bit character

"Character16" 16-bit character

"Complex64" IEEE single-precision complex number

"Complex128" IEEE double-precision complex number

"Integer8" 8-bit signed integer

"Integer16" 16-bit signed integer

"Integer32" 32-bit signed integer

"Integer64" 64-bit signed integer

"Real32" IEEE single-precision real number

"Real64" IEEE double-precision real number

"Real128" IEEE quadruple-precision real number

"TerminatedString" null-terminated string of 8-bit characters

"UnsignedInteger8" 8-bit unsigned integer

"UnsignedInteger16" 16-bit unsigned integer

"UnsignedInteger32" 32-bit unsigned integer

"UnsignedInteger64" 64-bit unsigned integer
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† These elements can be combined in lists or other expressions. 

† The pattern format.. represents a sequence of one or more copies of a format. 

† Example: 8"Byte"..<  represents a list of one or more bytes. 

† 8"Integer32", "Real32"<.. represents a list of one or more repetitions of a 32-bit integer followed by a single-precision 
real. 

† BinaryImport returns an object in which each element of the format specification has been replaced by imported data. 

† Numerical elements are returned as Mathematica numbers; character and string elements are returned as Mathematica strings. 

† Elements in a format specification are filled from imported data in the order that they would be accessed by a function such as 
MapAll. 

† The channel used in BinaryImport can be a file specified by its name, a pipe or an InputStream. 

† Under Windows, the input stream must have been opened with DOSTextFormat->False. 

† When BinaryImport imports data from an input stream, it leaves the stream position directly after what it has imported. 

† If BinaryImport opens a file or pipe, it closes it again when it is finished. 

† The following options can be given: 

ByteOrdering Automatic what byte ordering to assume

CharacterEncoding Automatic what encoding to use for characters

Path $Path the path to search for files

† See also: BinaryExport, BinaryImportString, Import, ToCharacterCode. 

Experimental`BinaryImportString

† BinaryImportString["string", format] imports binary data from a string in the specified format. 

† See notes for BinaryImport. 

Experimental`CompileEvaluate

† CompileEvaluate[expr] compiles expr and then evaluates the resulting compiled code. 

† CompileEvaluate[expr] always evaluates to the same result as expr alone, but is faster for certain types of expressions, 
particularly ones representing large numerical computations. 

† See also: Compile. 

Experimental`ExistsRealQ

† ExistsRealQ[ineqs, 8x1 , x2 , … <] tests whether there exist real values of the xi  for which the 
inequalities and equations ineqs are satisfied. 

† See also: ForAllRealQ, ImpliesRealQ, FindInstance, Eliminate, CylindricalDecomposition. 

Further Examples
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Experimental`FileBrowse

† FileBrowse[ ] brings up a file browser to pick the name of a file. 

† FileBrowse returns as a string the absolute name of the file picked. 

† FileBrowse["name"] brings up a file browser with the specified default file name. 

† FileBrowse["name", "directory"] brings up a file browser starting in the specified directory. 

† FileBrowse can be used to find names of files for both reading and writing. 

† FileBrowse is intended primarily for use with local kernels. 

† See also: FileNames, Get, Put. 

Experimental`ForAllRealQ

† ForAllRealQ[ineqs, 8x1 , x2 , … <] tests whether for all real values of the xi  the inequalities and 
equations ineqs are satisfied. 

† See also: ExistsRealQ, ImpliesRealQ, SolveAlways, CylindricalDecomposition. 

Further Examples

Experimental`ImpliesQ

† ImpliesQ[expr1 , expr2 ] tests whether the expression expr1  implies expr2 . 

† ImpliesQ returns False if it cannot determine whether expr1  implies expr2 , using any of its built-in transformation rules. 

† The related function Implies[expr1 , expr2 ] remains unevaluated if it cannot immediately determine whether expr1  implies 
expr2 . 

† See also: Implies, ImpliesRealQ, FullSimplify. 

Further Examples

Experimental`ImpliesRealQ

† ImpliesRealQ[ineqs1 , ineqs2 ] tests whether the inequalities and equations ineqs1  imply the ineqs2  
for all real values of all variables. 

† See also: ForAllRealQ, ExistsRealQ, ImpliesQ, CylindricalDecomposition. 

Further Examples

Experimental`ValueFunction
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† ValueFunction[symb] represents a function to be applied whenever the symbol symb gets a new 
value.  

† The assignment ValueFunction[symb] = f specifies that whenever symb gets a new value val, the expression f[symb, val] 
should be evaluated. 

† If the value of symb is cleared, f[symb] is evaluated. 

† ValueFunction takes account of all ways that the value of a symbol can be changed, not just Set. 

† See also: Trace. 

Experimental`$EqualTolerance

† $EqualTolerance gives the number of decimal digits by which two numbers can disagree and still 
be considered equal according to Equal. 

† The default setting is equal to Log[10, 2^7], corresponding to a tolerance of 7 binary digits. 

† See also: $MachineEpsilon. 

Experimental`$SameQTolerance

† $SameQTolerance gives the number of decimal digits by which two numbers can disagree and still 
be considered the same according to SameQ. 

† The default setting is equal to Log[10, 2], corresponding to a tolerance of one binary digit. 

† See also: $MachineEpsilon. 
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