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1 Introduction

Much of chemistry is devoted to the study of existing molecules or the
synthesis of new ones. But, as the number of possible molecules is innu-
merably large, we have to distinguish between \interesting" and \unin-
teresting" molecules. In other words, we select molecular materials on
basis of their properties. What properties are interesting, depends on
the application that we have in mind. Some molecules may have inter-
esting chemical properties (e.g. proteins that may catalyze a particu-
lar biochemical process). Other molecular materials may have interest-
ing optical properties (e.g. cyano-biphenyls that are commonly used in
liquid-crystal displays). And still other materials may have unique me-
chanical properties (e.g. carbon, in the form of diamond, is extremely
hard - unlike carbon in the form of graphite or C60). And clearly there
are many more properties that are potentially interesting.

Obviously, we should like to be able to predict the properties of a sub-
stance, given its atomic composition. Can we? For suÆciently simple,
isolated molecules such as H2, N2, H2O or even a chain molecule such
as polyethylene, the answer is yes. Starting from a quantum-mechanical
description, we can predict certain properties of molecules, such as their
three-dimensional structure (for instance, we can explain why benzene
is 
at, while NH3 is not). We can also compute the charge distribution
in a molecule. This allows us to predict the direction and size of the
dipole moment of a molecule. In addition to the ground-state properties
of a molecule, we can also predict the location of the various excited
states (translation, rotation, vibration and electronic excitation). But,
even if we know all these properties of isolated molecules, we still cannot
predict the properties of a system that contains a macroscopic number
of molecules (N = O(1023)). For instance, how could we predict, on

1



basis of our knowledge of the isolated molecules, that at room tempera-
ture and atmospheric pressure, H2 forms gas, H2O a liquid, and NaCl
an ionic crystal? Below, we give a very incomplete list of macroscopic
properties that we should like to be able to predict:

mechanical thermodynamic

hardness equation of state P (�; T )
strength heat capacity (cv; cp)
dielectric constant chemical potential (�)
refractive index Phase diagram
transport chemical

di�usion equilibrium constant
heat conductivity reaction rate
viscosity catalytic properties
electrical conductivity
What we need is an approach that allows us to predict the \collec-

tive" macroscopic properties of molecular substances, on basis of our
knowledge of the constituent molecules. Naively, one might think that
the only thing that we have to do, in order to compute the properties of
any system, is to solve the Schr�odinger equation for that system. How-
ever, for all but the simplest systems, this is utterly impossible - certainly
for a macroscopic system. How about thermodynamics? Well, thermo-
dynamics only provides us with relations between measurable quantities.
Relations such as

dU = q + w (1)

or
dU = TdS � PdV + �dN (2)

or �
@S

@V

�
T

=

�
@P

@T

�
V

(3)

These relations are valid for any substance. But - precisely for this reason
- it contains no information whatsoever about the molecular composition
of a substance. Hence, neither quantum mechanics nor thermodynamics
can provide us with the relations that we seek. Statistical thermodynam-
ics - the subject of this course - is the approach that provides us with the
theoretical framework to relate the properties of individual molecules to
the macroscopic behavior of molecular substances. In most of the simple
cases that will be discussed during these lectures, we can use pencil and
paper to compute the properties of interest. However, in most practical
cases the calculations become so involved that a computer has to take
over the role of the pencil and paper. Yet the basic approach - statistical
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thermodynamics - is always the same. Before we embark on statistical
thermodynamics, we need to review the core of thermodynamics.

2 Thermodynamics: a brief refresher course.

Thermodynamics is diÆcult because it seems so abstract. However, we
should always bear in mind that thermodynamics is based on experi-
mental observations. For instance, the First Law of thermodynamics ex-
presses the empirical observation that energy is conserved, even though
it can be converted in various forms. The internal energy of a system can
be changed by performing work w on the system or by transferring an
amount of heat q. It is meaningless to speak about the total amount of
heat in a system, or the total amount of work. This is not mysterious: it
is just as meaningless to speak about the number of train-travelers and
the number of pedestrians in a train-station: people enter the station as
pedestrians, and exit as train-travelers or vice versa. However if we add
the sum of the changes in the number of train-travelers and pedestrians,
then we obtain the change in the number of people in the station. And
this quantity is well de�ned. Similarly, the sum of q and w is equal to
the change in the internal energy U of the system

dU = q + w (4)

This is the First Law of thermodynamics. The Second Law seems more
abstract, but it is not. The Second Law is based on the experimental
observation that it is impossible to make an engine that works by con-
verting heat from a single heat bath (i.e. a large reservoir in equilibrium)
into work. This observation is equivalent to another - equally empiri-
cal - observation, namely that heat can never 
ow spontaneously (i.e.
without performing work) form a cold reservoir to a warmer reservoir.
This statement is actually a bit more subtle than it seems because, be-
fore we have de�ned temperature, we can only distinguish hotter and
colder by looking at the direction of heat 
ow. What the Second Law
says is that it is never possible to make heat 
ow spontaneously in the
\wrong" direction. How do we get from such a seemingly trivial state-
ment to something as abstract as entropy? This is most easily achieved
by introducing the concept of a reversible heat engine. A reversible en-
gine is, as the word suggests, an engine that can be operated in reverse.
During one cycle (a sequence of steps that is completed when the engine
is returned into its original state) this engine takes in an amount of heat
q1 from a hot reservoir converts part of it into work w and delivers a
remaining amount of heat q2 to a cold reservoir. The reverse process is
that, by performing an amount of work w, we can take an amount of
heat q2 form the cold reservoir and deliver an amount of heat q1to the
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hot reservoir. Reversible engines are an idealization because in any real
engine there will be additional heat losses. However, the ideal reversible
engine can be approximated arbitrarily closely by a real engine if, at
every stage, the real engine is suÆciently close to equilibrium. As the
engine is returned to its original state at the end of one cycle, its internal
energy U has not changed. Hence, the First Law tells us that

dU = q1 � (w + q2) = 0 (5)

or
q1 = w + q2 (6)

Now consider the \eÆciency" of the engine � � w=q1- i.e. the amount
of work delivered per amount of heat taken in. At �rst, one might think
that � depends on the precise design of our reversible engine. However
this is not true. � is the same for all reversible engines operating between
the same two reservoirs. To demonstrate this, we show that if di�erent
engines could have di�erent values for � then we would contradict the
Second Law in its form \heat can never spontaneously 
ow from a cold
to a hot reservoir". Suppose therefore that we have another reversible
engine that takes in an amount of heat q01 form the hot reservoir, delivers
the same amount of work w, and then delivers an amount of heat q02to
the cold reservoir. Let us denote the eÆciency of this engine by �0: Now
we use the work generated by the engine with the highest eÆciency (say
�) to drive the second engine in reverse. The amount of heat delivered
to the hot reservoir by the second engine is

q01 = w=�0 = q1(�=�
0) (7)

where we have used w = q1�: As, by assumption, �0 < � it follows that
q01 > q1. Hence there is a net heat 
ow form the cold reservoir into the
hot reservoir. But this contradicts the Second Law of thermodynamics.
Therefore we must conclude that the eÆciency of all reversible heat en-
gines operating between the same reservoirs is identical. The eÆciency
only depends on the temperatures t1and t2 of the reservoirs (the temper-
atures t could be measured in any scale, e.g. in Fahrenheit as long as
heat 
ows in the direction of decreasing t). As �(t1; t2) depends only on
the temperature in the reservoirs, then so does the ratio q2=q1 = 1� �:
Let us call this ratio R(t2; t1). Now suppose that we have a reversible
engine that consists of two stages: one working between reservoir 1 and
2, and the other between 2 and 3: In addition, we have another reversible
engine that works directly between 1 and 3: As both engines must be
equally eÆcient, it follows that

R(t3; t1) = R(t3; t2)R(t2; t1) (8)
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This can only be true in general if R(t1; t2) is of the form

R(t2; t1) =
f(t2)

f(t1)
(9)

where f(t) is an, as yet unknown function of our measured tempera-
ture. What we do now is to introduce an \absolute" or thermodynamic
temperature T given by

T = f(t) (10)

Then it immediately follows that

q2
q1

= R(t2; t1) =
T2
T1

(11)

Note that the thermodynamic temperature could just as well have
been de�ned as c� f(t). In practice, c has been �xed such that, around
room temperature, 1 degree in the absolute (Kelvin) scale is equal to 1
degree Celsius. But that choice is of course purely historical and - as it
will turn out later - a bit unfortunate.

Now, why do we need all this? We need it to introduce entropy, this
most mysterious of all thermodynamic quantities. To do so, note that
Eqn.11 can be written as

q1
T1

=
q2
T2

(12)

where q1 is the heat that 
ows in reversibly at the high temperature T1,
and q2 is the heat that 
ows out reversibly at the low temperature T2.
We see therefore that, during a complete cycle, the di�erence between
q1=T1 and q2=T2 is zero. Recall that, at the end of a cycle, the internal
energy of the system has not changed. Now Eqn.12 tells us that there is
also another quantity that we call \entropy" and that we denote by S
that is unchanged when we restore the system to its original state. In the
language of thermodynamics, we call S a state function. We do not know
what S is, but we do know how to compute its change. In the above
example, the change in S was given by �S = (q1=T1)� (q2=T2) = 0: In
general, the change in entropy of a system due to the reversible addition
of an in�nitesimal amount of heat Æqrev from a reservoir at temperature
T is

dS =
Æqrev
T

(13)

We also note that S is extensive. That means that the total entropy of
two non-interacting systems, is equal to the sum of the entropy of the
individual systems. Consider a system with a �xed number of particles
N and a �xed volume V . If we transfer an in�nitesimal amount of heat
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Æq to this system,then the change in the internal energy of the system,
dU is equal to Æq:Hence, �

@S

@U

�
V;N

=
1

T
(14)

The most famous (though not most intuitively obvious) statement of
the Second Law of Thermodynamics is that Any spontaneous change in
a closed system (i.e. a system that exchanges neither heat nor particles
with its environment) can never lead to a decrease of the entropy. Hence,
in equilibrium, the entropy of a closed system is at a maximum. Can
we understand this? Well, let us �rst consider a system with an energy
E, volume V and number of particles N that is in equilibrium. Let us
denote the entropy of this system by S0(E; V;N). In equilibrium, all
spontaneous changes that can happen, have happened. Now suppose
that we want to change something in this system - for instance, we
increase the density in one half and decrease it in the other. As the
system was in equilibrium, this change does not occur spontaneously.
Hence, in order to realize this change, we must perform a certain amount
of work, w (for instance, my placing a piston in the system and moving
it). Let us perform this work reversibly in such a way that E, the
total energy of the system stays constant (and also V and N). The
First Law tells us that we can only keep E constant if, while we do the
work, we allow an amount of heat q, 
ow out of the system, such that
q = w: Eqn.13 tells us that when an amount of heat q 
ows out of the
system, the entropy S of the system must decrease. Let us denote the
entropy of this constrained state by S1(E; V;N) < S0(E; V;N). Having
completed the change in the system, we insulate the system thermally
from the rest of the world, and we remove the constraint that kept the
system in its special state (taking the example of the piston: we make an
opening in the piston). Now the system goes back spontaneously (and
irreversibly) to equilibrium. However, no work is done and no heat is
transferred. Hence the �nally energy E is equal to the original energy
(and V and N) are also constant. This means that the system is now
back in its original equilibrium state and its entropy is once more equal
to S0(E; V;N). The entropy change during this spontaneous change is
equal to �S = S0 � S1:But, as S1 < S0, it follows that �S > 0: As this
argument is quite general, we have indeed shown that any spontaneous
change in a closed system leads to an increase in the entropy. Hence, in
equilibrium, the entropy of a closed system is at a maximum.

From this point on, we can derive all of thermodynamics, except
one \law" - the so-called Third Law of Thermodynamics. The Third
law states that, at T = 0, the entropy of the equilibrium state of pure
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substance equals zero. Actually, the Third Law is not nearly as \basic"
as the First and the Second. And, anyway, we shall soon get a more
direct interpretation of its meaning.

3 Basics of Statistical Thermodynamics

Statistical thermodynamics is a theoretical framework that allows us to
compute the macroscopic properties of systems containing many parti-
cles. In order to `derive' the basic laws of statistical thermodynamics,
we need to use the language of quantum mechanics - but only very lit-
tle. Speci�cally, we need the fact that a quantum mechanical system has
discrete energy levels. Most examples discussed in quantum-chemistry
textbooks concern systems with only one, or a few, particles moving
in a very simple external potential (e.g. the one-dimensional harmonic
oscillator or a particle in a box). For such systems, the degeneracy of en-
ergy levels (i.e. the number of states that have the same energy) will be
small. However, for the systems that are of interest to statistical thermo-
dynamics (i.e. systems with O(1023) particles), the degeneracy of energy
levels is astronomically large - in what follows, it shall turn out that the
word \astronomical" is actually misplaced - the numbers involved are so
large that, by comparison the total number of particles in the universe is
utterly negligible. In what follows, we denote by 
(U; V;N) the number
of energy levels with energy U of a system of N particles in a volume
V . We now express the basic assumption of statistical thermodynamics
as follows: A system with �xed N , V and U is equally likely to be found
in any of its 
(U) energy levels. Much of statistical thermodynamics
follows from this simple (but highly non-trivial) assumption.

To see this, let us �rst consider a system with total energy U that
consists of two weakly interaction sub-systems. In this context, `weakly
interacting' means that the sub-systems can exchange energy but that
we can write the total energy of the system as the sum of the energies
U1 and U2 of the sub-systems. There are many ways in which we can
distribute the total energy over the two sub-systems, such that U1+U2

= U . For a given choice of U1, the total number of degenerate states of
the system is 
1(U1)� 
2(U2). Note that the total number of states is
not the sum but the product of the number of states in the individual
systems. In what follows, it is convenient to have a measure of the
degeneracy of the sub-systems that is extensive (i.e. additive). A logical
choice is to take the (natural) logarithm of the degeneracy. Hence:

ln
(U1; U � U1) = ln
1(U1) + ln
2(U � U1) (15)

We assume that sub-systems 1 and 2 can exchange energy. In fact,
in thermodynamics we often consider such a process: it is simply heat
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transfer (because the two systems do not exchange particles, nor does one
system perform work on the other). What is the most likely distribution
of the energy? We know that every energy state of the total system
is equally likely. But the number of energy levels that correspond to
a given distribution of the energy over the sub-systems, depends very
strongly on the value of U1. We wish to know the most likely value of
U1, i.e. the one that maximizes ln
(U1; U �U1). The condition for this
maximum is that �

@ ln
(U1; U � U1)

@U1

�
N;V;U

= 0 (16)

or, in other words,�
@ ln
1(U1)

@U1

�
N1;V1

=

�
@ ln
2(U2)

@U2

�
N2;V2

: (17)

We introduce the shorthand notation

�(U; V;N) �
�
@ ln
(U; V;N)

@U

�
N;V

: (18)

With this de�nition, we can write Eqn. 17 as

�(U1; V1; N1) = �(U2; V2; N2): (19)

Clearly, if initially we put all energy in system 1 (say), there will be
energy transfer from system 1 to system 2 until Eqn. 19 is satis�ed.
From that moment on, there is no net energy 
ow from one sub-system
to the other, and we say that the two sub-systems are in thermal equi-
librium. This implies that the condition �(U1; V1; N1) = �(U2; V2; N2)
must be equivalent to the statement that the two sub-systems have the
same temperature. ln
 is a state function (of U; V and N), just like S.
Moreover, when thermal equilibrium is reached, ln
 of the total system
is at a maximum, again just like S. This suggests that ln
 is closely
related to S. We note that both S and ln
 are extensive. This suggests
that S is simply proportional to ln
:

S(N; V; U) � kB ln
(N; V; U) (20)

where kB is Boltzmann's constant which, in S.I. units, has the value
1.3806503 10�23J/K. This constant of proportionality cannot be derived
- as we shall see later, it follows from the comparison with experiment.
With this identi�cation, we see that our assumption that all degenerate
energy levels of a quantum system are equally likely immediately implies
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that, in thermal equilibrium, the entropy of a composite system is at a
maximum. Hence, in the statistical picture, the Second Law of ther-
modynamics is not at all mysterious, it simply states that, in thermal
equilibrium, the system is most likely to be found in the state that has
the largest number of degenerate energy levels. The next thing to note
is that thermal equilibrium between sub-systems 1 and 2 implies that
�1 = �2. In thermodynamics, we have another way to express the same
thing: we say that two bodies that are brought in thermal contact are
in equilibrium if their temperatures are the same. This suggests that
� must be related to the absolute temperature. The thermodynamic
de�nition of temperature is

1=T =

�
@S

@U

�
V;N

(21)

If we use the same de�nition here, we �nd that

� = 1=(kBT ) : (22)

It is of course a bit unfortunate that we cannot simply say that S = ln
.
The reason is that, historically, thermodynamics preceded statistical
thermodynamics. In particular, the absolute thermodynamic temper-
ature scale (see below Eqn.11) contained an arbitrary constant that, in
the previous century was chosen such that one degree Kelvin matched
one degree Celsius. If we could have introduced an absolute tempera-
ture scale now, we could have chosen it such that S = ln
 and the new
absolute temperature T 0 would be equal to kBT . However, this would
create many practical problems because, in those units, room tempera-
ture would be of the order of 5 10�21Joule (that is: entropy would be
dimensionless, but temperature would have the dimension of energy).
Few people would be happy with such a temperature scale. So we leave
things as they are.

The Third Law of thermodynamics is also easy to understand from
Eqn20: it simply states that, at T = 0, the number of accessible states
of a pure substance, (
) is equal to one. In other words: at absolute
zero, the system is in its ground state - and this ground state is non-
degenerate.

One �nal comment: we mentioned that 
 is usually \super-astronomically"
large. Let me quantify this: at room temperature the entropy of one
mol of argon is 307:2 Joule/Kelvin and hence 
 = 1010

25

. That is a large
number.... Now we can also understand the Second Law of thermody-
namics - in its form \the entropy of a closed system cannot decrease
spontaneously". Strictly speaking, this is not true. The probability that
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a system spontaneously transform from a state with an entropy SA into
a state with a lower entropy SB is simply equal to


B


A
= exp([SB � SA]=kB) (23)

For instance, the probability that the entropy of one mol of argon at room
temperature spontaneously decreases by as little as 0.00000001% would
still be 10�10

16

which is -for all practical purposes - equal to zero. This
illustrates the fact that Second Law of thermodynamics is an empirical
law (i.e. it states what is or is not observed) and not a mathematical
law - mathematicians would only say that the entropy of a closed system
is unlikely to decrease.

3.1 System at constant temperature

Now that we have de�ned temperature, we can consider what happens
if we have a system (denoted by S) that is in thermal equilibrium with
a large \heat-bath"(B). The total system is closed, i.e. the total energy
U=UB+US is �xed (we assume that the system and the bath are weakly
coupled, so that we may ignore their interaction energy). Now suppose
that the system S is prepared in a speci�c state i with energy �i. The
bath then has an energy UB = U � �i and the degeneracy of the bath is
given by 
B(U � �i). Clearly, the degeneracy of the bath determines the
probability P (�i) to �nd system S in state i.

P (�i) =

B(U � �i)P
i
B(U � �i)

: (24)

To compute 
B(U � �i), we expand ln
B(U � �i) around �i=0.

ln
B(U � �i) = ln
B(U)� �i
@ ln
B(U)

@U
+O(1=U) (25)

or, using Eqns. 21 and 22,

ln
B(U � �i) = ln
B(U)� �i=kBT +O(1=U) (26)

If we insert this result in Eqn. 24, we get

P (�i) =
exp(��i=kBT )P
i exp(��i=kBT )

(27)

This is the well-known Boltzmann distribution for a system at tempera-
ture T . Knowledge of the energy distribution allows us to compute the
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average energy US =< � > of the system at the given temperature T

< � > =
X
i

�iP (�i) =

P
i �i exp(��i=kBT )P
i exp(��i=kBT )

= �@ ln (
P

i exp(��i=kBT ))
@1=kBT

= � @ lnQ

@1=kBT
; (28)

where, in the last line, we have de�ned the partition function Q.

Q �
X
i

exp(��i=kBT ) (29)

If we compare Eqn. 28 with the thermodynamic relation

U =
@A=T

@1=T
;

we see that the Helmholtz free energy A is related to the partition func-
tion Q:

A = �kBT lnQ : (30)

Strictly speaking, A is only �xed up to a constant. Or, what amounts to
the same thing, the reference point of the energy can be chosen arbitrar-
ily. In what follows, we can use Eqn. 30 without loss of generality. The
relation between the Helmholtz free energy and the partition function
is often more convenient to use than the relation between ln
 and the
entropy. As a consequence, Eqn. 30 is the \workhorse" of equilibrium
statistical thermodynamics.

3.1.1 Further links with thermodynamics

Let us go back to the formulation of the second law of thermodynamics
that states that, in a closed system at equilibrium, the entropy of the
system is at a maximum. As argued above, we have a simple under-
standing of this law: the system is most likely to be found in the state
that has the largest degeneracy. Now consider again a thermal reservoir
in contact with a (macroscopic) system, under the condition that sys-
tem plus reservoir are isolated. Then we know that the entropy of this
combined system should be a maximum at equilibrium. As before, we
can write the total degeneracy of system plus bath as


total = 
system(US)
bath(Utotal � US) (31)

where US is the internal energy of the system, and Utotal the total internal
energy of system plus bath. The condition for equilibrium is that the
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derivative with respect to US of ln
total vanishes. As in Eqn.26, we
expand ln
bath(Utotal � US) up to linear order in US and we �nd

ln
total = ln
system(US) + ln
bath(Utotal)� �US (32)

Note that ln
bath(Utotal) does not depend on US. Hence, to �nd the
maximum of ln
total, we have to locate the maximum of ln
system(US)�
�US. Hence, we arrive at the statement that, for a system in contact with
a heat bath, the condition for equilibrium is that ln
system(US)��US is
at a maximum or, what amounts to the same thing �US� ln
system(US)
is at a minimum. Now we make use of the fact that we have identi�ed
kB ln
system with the entropy S of the system. Hence, we conclude that,
at constant temperature, the condition for equilibrium is

�(US � TS) is at a minimum (33)

But from thermodynamics we know that U � TS is nothing else than
the Helmholtz free energy A. Hence, we immediately recover the well-
known statement that - at constant temperature and volume - A is at a
minimum in equilibrium.

Pressure Up to this point we have been considering a system that
exchanges energy with a bath. Now let us consider a system that can
exchange volume with a reservoir. As before, the total energy and the
total volume of system plus reservoir are �xed. Let us denote this total
volume by Vtot and the volume of the system of interest by V: As before,
the condition for equilibrium is that the total entropy is at a maximum.
Hence we have to determine the maximum with respect to V of

ln
(V; Vtot � V ) = ln
sys(V ) + ln
bath(Vtot � V ) (34)

or, using the identi�cation between entropy and kB ln
�
@Ssys
@V

�
U;N

+

�
@Sbath
@V

�
U;N

= 0 (35)

However, from thermodynamics we know that

dS =
dU

T
+
P

T
dV � �

T
dN (36)

and hence �
@S

@V

�
U;N

=
P

T
(37)

This expresses the fact that, if a system and a bath can exchange both
energy and volume, then the conditions for equilibrium are

Tsys = Tbath (38)
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and
Psys = Pbath (39)

In practice, it is often more convenient to use the relation between the
change in volume and the change in Helmholtz free energy A

dA = �PdV � SdT + �dN (40)

and the corresponding expression for the pressure

P = �
�
@A

@V

�
T;N

(41)

to obtain

P = kBT

�
@ lnQ

@V

�
T;N

(42)

Later on, we shall use this expression to compute the pressure of gases
from our knowledge of the partition function.

3.1.2 Fluctuations

Careful readers may have noticed that, in the above sections, we used
two seemingly di�erent expressions for the Helmholtz free energy, namely

A = �kBT lnQ (43)

and
A = U � TS = U � kBT ln
 (44)

It turns out that, in the thermodynamic limit that we usually consider,
these two expressions yield the same result. To see this, consider the
expression for the partition function Q

Q =
X

all quantum states i

exp(���i) (45)

Now let us group all levels with the same energy � together. As before,
we denote the number of energy levels with a particular energy � by 
(�).
Then

Q =
X

all energy levels �


(�) exp(���) (46)

In a macroscopic system, the degeneracy of energy levels is very large.
But, more importantly, it increases very rapidly with �. At the same
time, exp(���) is a very steeply decreasing function of �: As a conse-
quence, the product 
(�) exp(���) is a very sharply peaked function
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of �. Let us expand 
(�) exp(���) around its maximum. Let us denote
the value of � at this maximum by U: First of all, we note that


(U +�U) = 
(U) exp(

�
@ ln


@U

�
�U +

1

2

�
@2 ln


@U2

�
�U2 +O(�U3))

(47)
But we have already determined that, at the maximum, we have�

@ ln


@U

�
= � (48)

Hence


(U +�U) exp(��(U +�U)) = 
(U) exp(��U) exp(1
2

�
@2 ln


@U2

�
�U2

+O(�U3)) (49)

Now, it is easy to verify that�
@2 ln


@U2

�
=

�
@�

@U

�
=

�
@1=kBT

@U

�

= � 1

kBT 2cV
(50)

The important thing to notice is that cV , the isochoric heat capacity of
the system, is an extensive quantity. That is, cV � N . As a conse-
quence, �

@2 ln


@U2

�
� 1

N
(51)

and, in the thermodynamic limit it becomes vanishingly small. The net
result is that, in the thermodynamic limit, we can write

�kBT lnQ � �kBT ln (
(U) exp(��U))
= U � kBT ln
(U) (52)

and therefore the two expression for A that we used are, indeed, equiv-
alent.

4 Towards a molecular picture

The expressions for the Boltzmann distribution (Eqn.27) and the parti-
tion function (Eqn29) are quite general. No assumption was made about
the size of the system - apart from the fact that the thermal reservoir
should be much larger than the system. This implies that we can also
use Eqn.27 to describe the Boltzmann distribution over energy levels of
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a single molecule and we can use Eqn.29to describe the partition func-
tion of an isolated molecule. This is extremely important, because it will
allow us to use our experimental or theoretical knowledge of the energy
levels of isolated molecules to predict the thermal properties of dilute
gases!

Before computing speci�c molecular partition functions, it is useful
to make a few general comments that will simplify the analysis. We are
interested in the calculation of partition functions of the form

q =
all levelsX

i

exp(��ui) (53)

Such sums can easily be evaluated in a number of simple cases where we
know the energy levels from quantum mechanics. Examples (that will be
discussed below) are the case of a one-dimensional harmonic oscillator,
a particle in a one-dimensional box or a rigid, linear rotor. However, in
practice we shall always be interested in systems containing very many
particles that are subject to translation, vibration and rotation (and
possibly also to electronic or spin excitations). It would seem that the
calculation of the partition function of such a complex system is totally
intractable. In fact, for macroscopic systems of strongly interacting par-
ticles, this statement is very nearly true. This is what is commonly called
the "many-body problem". Computing the partition function of - say -
liquid water is not possible analytically and sophisticated numerical sim-
ulation techniques have been developed that allow us to make progress
in this direction. However, there is an important class of problems where
progress can be made without recourse to numerical simulation, namely
the case where the total energy of the system can be written as a sum
of simple contributions. This situation typically arises when there is vir-
tually no interaction between the di�erent particles in the system (i.e.
in the case of an ideal gas). Let us consider a simple example. Suppose
that we have a system with a total energy E; such that

E =
NX
i=1

�i(ni) (54)

where �i(ni) is the energy of the i-th molecule in a quantum state labeled
by the quantum number ni. If all molecules have the same energy levels1,

1We assume that, although the levels of di�erent molecules have the same energy,
they are not physically the same levels. Later, we shall consider what happens if the
levels really are identical.
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the partition function of this system is given by

Q =
1X

n1=1

1X
n2=1

:::
1X

nN=1

exp(��
NX
i=1

�i(ni))

=
1X

n1=1

1X
n2=1

:::
1X

nN=1

NY
i=1

exp(���i(ni))

=

 
1X

n1=1

exp(���1(n1))
! 

1X
n2=1

exp(���2(n2))
!
:::

 
1X

nN=1

exp(���N(nN))
!

= qN (55)

where

q �
1X
n=1

exp(���(n)) (56)

In what follows, we shall often make use of this trick. To give a simple
example, assume that a molecule has only two levels: a ground state
with energy �0 = 0 and an excited state with energy �1 = �. In that
case,

q = exp(�� � 0) + exp(���)
= 1 + exp(���) (57)

and hence
Q = (1 + exp(���))N (58)

4.1 Single-molecule partition function

Quantum mechanics allows us to compute the energy levels of (sim-
ple) isolated molecules. Once we know these energy levels, we can use
Eqn.29 to compute the molecular partition function. From this quantity,
we can the compute a host of important thermodynamical properties of
the individual molecules and, as we shall see later, also of macroscopic
systems containing many (O(1023)) molecules. For instance, we shall
be able to compute the internal energy, the heat-capacity, the pressure
and the chemical potential. From the latter quantity, we shall be able
to predict the equilibrium constants of chemical reactions! But, before
we do this, let us �rst consider the most important classes of molecu-
lar partition functions. Recall that the internal energy of a molecule
can be due to various kinds of motion: translation, rotation, vibration
and electronic excitation are the most common. Usually the energy of
electronic excitations is very large compared to kBT . As a consequence,
the internal energy of a molecule at room temperature is usually due
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to translation, rotation and vibration. Translation is the motion of the
molecule as a whole. As the intra-molecular motion (rotation and vi-
bration) does not depend on its center-of-mass motion, we can write the
energy of a molecule as the sum of the translational energy �tr and the
intra-molecular energy �int due to rotation and vibration. It is often a
fair approximation to assume that rotation and vibration are uncoupled.
In that case, the total intra-molecular energy can be written as

�int = �rot +
mX
i=1

�ivib (59)

where �rot is the rotational energy and �ivib is the energy associated with
i-th vibration (diatomic molecules have only one vibration, poly-atomic
molecules have many - we denote this number by m). The total energy
of a molecule is then

�tot = �trans + �rot +
mX
i=1

�ivib (60)

Of course, the value of �tot depends on the quantum state that the
molecule is in. This quantum state is characterized by a set of quan-
tum numbers k� characterizing the translational motion in directions �
(� = x; y; z), a quantum number J describing the rotational motion and
quantum numbers ni describing the quantum-state associated with the
i-th vibration. If we want to compute the molecular partition function,
we have to evaluate the sum

qmol =
X

kx;ky;kz;;J;n1;:::;nm

exp(���tot) (61)

This expression can be simpli�ed appreciably if the internal energy of
the molecule can be written as the sum of translational, rotational and
vibrational energies. Using

exp(��[�trans+�rot+
mX
i=1

�ivib]) = exp(���trans) exp(���rot)
mY
i=1

exp(���ivib)
(62)

we can write the molecular partition function as a product of a transla-
tional, a rotational and m vibrational partition functions

qmol = qtransqrot

mY
i=1

qivib (63)
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where

qtrans =
X

kx;ky;kz

exp(���trans(kx; ky; kz))

qrot =
X
J

exp(���rot(J))

qivib =
X
ni

exp(���vib(ni))

Hence, we can compute the partition functions for translation, rotation
and vibration separately. The total molecular partition function is then
simply the product. Actually, the situation is slightly more complex:
when computing the total energy of a molecule, we need to know �ground;
the energy of the molecule in its ground state. �ground is a measure for
the binding energy of the molecule. It will turn out to be important later
on (when we compute chemical equilibria). However, for the time being
we ignore this term and simply pretend that the energy of a molecule in
its ground state is zero. Now let us see if we can write down expressions
for the translational, rotational and vibrational partition functions.

4.1.1 Vibration

Let us start with vibration (because it is easiest). If the vibrational
motion is harmonic, we know from quantum mechanics that the vibra-
tional levels are non-degenerate and all equally spaced. If the vibration
frequency of the molecule is �i then the spacing between two levels is
h�i. If we take the potential energy at the bottom of the harmonic
potential to be zero, then the energy of the n-th vibrational state is
�n = (n + 1=2)h�i. The quantity h�i=2 is the zero-point energy of the
harmonic oscillator with frequency �i. The partition function associated
with the i-th vibrational mode is

qivib = exp(��h�i=2)
1X
n=0

exp(�n�h�i) (64)

If we denote exp(��h�i) by xi, then we see that the vibrational partition
function is of the form

qivib = x1=2
1X
n=0

xni (65)

But this is nothing but an in�nite geometric series. As exp(�h�i=kBT ) =
x < 1, we can sum this series and we obtain

qivib =
x1=2

1� x
=

exp(��h�i=2)
1� exp(��h�i) (66)
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The probability to �nd this vibration is in its n-th excited state is

p(ni) =
exp(�(n+ 1=2)�h�i)

qivib
= [1� exp(��h�i)] exp(�n�h�i) (67)

We can also compute the mean vibrational energy. Using Eqn.28 we �nd
that

< �ivib >= �@ ln q
i
vib

@�
= h�i=2+

h�i exp(��h�i)
1� exp(��h�i) = h�i=2+

h�i
exp(�h�i)� 1

(68)
Note that in the classical limit (h ! 0), we �nd that < �ivib >= ��1 =
kBT , irrespective of the frequency.

4.1.2 Translation

Now we use the quantum-mechanical result for the energy levels of a
particle in a box. For a one-dimensional box of length L, these energy
levels are given by

�(n) =
n2h2

8mL2
(69)

The lowest energy level is �(1). However, for macroscopic systems the
average energy is very much large than �(1): Hence, in what follows we
use Eqn.69 to compute the energy of level n, rather than �(n) � �(1).
We can now write down the expression for the translational partition
function for a one-dimensional system:

qxtrans =
1X
n=1

exp(��n
2h2

8mL2
) (70)

In macroscopic systems, the translational level spacing is typically much
smaller than kBT . As a consequence, we can replace the sum in the
expression for qxtrans by an integral

qxtrans �
Z 1

1

dn exp(��n
2h2

8mL2
) (71)

We now change variables. We de�ne x � n
p
�h2=8mL2. Then

qxtrans �
p
8mL2=�h2

Z 1

p
�h2=8mL2

dx exp(�x2) (72)

But, because
p
�h2=8mL2 � 1, we can replace the lower limit of this

integral by 0. The integralZ 1

0

dx exp(�x2) = 1

2

p
� (73)
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and hence
qxtrans =

p
2�mL2=�h2 (74)

The result for a three-dimensional box follows because the total trans-
lational partition function is simply

qtrans = qxtransq
y
transq

z
trans (75)

For convenience, we assume that the particle is contained in a cubic box
with volume V = L3: Then

qtrans =
�
2�mL2=�h2

�3=2
= V

�
2�mkBT=h

2
�3=2

(76)

We can now easily compute the average translational energy of a particle.
First we write qtrans as

qtrans = V
�
2�m=h2

�3=2
��3=2 (77)

Next, we use the relation

< �trans >= �@ ln qtrans
@�

= �@ ln�
�3=2

@�
=

3

2

@ ln�

@�

=
3

2�
=

3

2
kBT (78)

Hence the average translational energy per particle is 3
2
kBT . If we have a

system consisting of N non-interacting particles, we can simply add the
translational energies of all particles and hence the total translational
energy becomes

Etrans =
3

2
NkBT (79)

4.1.3 Rotation

The rotational energy levels of a molecule depend on its symmetry. Here,
we only consider the simplest case: a linear rotor (examples are HCl and
HCN , but not H2O). The energy levels of a linear rotor depend on its
moment of inertia I (see Appendix C.1.2):

EJ = J(J + 1)
�h2

2I
(80)

and the degeneracy of an energy level with quantum number J is equal
to gJ = (2J + 1). The rotational partition function of a linear rotor is
then

qrot =
1X
J=0

(2J + 1) exp[��J(J + 1)�h2=2I] (81)
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This sum can be easily evaluated numerically. But in the \classical"
limit ��h2=2I � 1 it is simple to get an analytical result. In that case
we can write

qrot �
Z 1

0

dJ (2J + 1) exp[��J(J + 1)�h2=2I] (82)

As the largest contribution to this integral comes from terms with J � 1,
we can simplify the integral by noting that 2J +1 � 2J and J(J +1) �
J2. Then

qrot �
Z 1

0

dJ 2J exp[��J2�h2=2I]

=

Z 1

0

dJ2 exp[���h
2

2I
J2] (83)

The latter integral is easy to evaluate if we make the substitution J2 � x

qrot =

Z 1

0

dx exp[���h
2

2I
x]

=
2I

��h2
=

2IkBT

�h2
(84)

As before, we can now compute the average rotational energy per parti-
cle. It is

< �linrot >= �@ ln q
lin
rot

@�

= ��1 = kBT (85)

In the case of non-linear molecules, qrot � T 3=2 in the classical limit. In
that case

< �non�linrot >=
3

2
kBT (86)

Note that, in the �rst paragraph of this section, we mentioned a het-
eronuclear diatomic such as HCl as an example of a linear molecule,
but not the simple homo-nuclear molecules such as H2 or N2:The rea-
son is that, due to the symmetry of these molecules, certain rotational
states are forbidden. Which states are forbidden depends on the nature
of the nuclei. For instance, 14N is a boson (its nuclear spin is zero).
For a diatomic molecule consisting of bosons, the total wave-function
should remain identical if we permute the two nuclei. However, the
wave-functions of a linear rotor have the property that they change sign
if we rotate the molecule over 180 Æ if J is odd. But rotating the molecule
over 180 Æ is equivalent to permuting the two nuclei. And for bosons the
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wave function should not change sign when we do that. Hence in that
case, all states with odd J are excluded. The result is that the rota-
tional partition function is reduced. In the classical limit, this reduction
amounts to a factor 2. Similarly, if the molecule contains two identical
fermionic nuclei (e.g. H2 - nuclear spin 1/2) then the total wavefunction
must change sign if we permute the two nuclei. This would suggest that
only odd J-states are allowed. However, matters are a bit more complex
because it makes a di�erence whether the two nuclear spins are parallel
or anti-parallel. The total wave-function is in this case a product of the
rotational wave function (that is changes sign when J is odd) and a spin
wavefunction that changes sign when the spins are anti-parallel. As the
total wavefunction should change sign under permutation of the two nu-
clei, we �nd that if the spins are parallel, then J must be odd. And if the
spins are anti-parallel then J must be even. In either event, we have to
exclude every second J value (either odd or even). In the classical limit,
the net result is that the total rotational partition function is reduced by
a factor 2;just as for bosons. We call this factor the symmetry number
(�) for the homo-nuclear diatomics. For more complex molecules we can
compute the symmetry number systematically using group-theoretical
arguments (but this would carry too far).

4.2 Many-particle partition function

In the above section, we have given expressions for qmol, the partition
function of isolated molecules in an ideal gas, and for the total energy of
the gas. However, we did not yet write down the partition function for
an ideal gas of N molecules. It would seem that this is trivial. By anal-
ogy to Eqn.55 we would expect that the total partition function simply
equals qNmol. However, this is not the case. In fact, we can demonstrate
experimentally that

QN 6= qNmol (87)

To see this, consider the following experiment. We start with an ideal
gas containing N particles that are all of one and the same kind - say,
argon atoms. In that case, qmol is equal to the translational partition
function. Of these N atoms, we put N=2 in one half of a container with
volume V and the other N=2 particles in the other half. The two halves
of the container are kept at a temperature T . They are separated by
a removable wall. If Eqn.87 were valid, than the total Helmholtz free
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energy of these two systems together would be

Ainitial
total = �2kBT ln

�
V

2

�
2�mkBT=h

2
�3=2�N=2

(88)

= �NkBT ln

�
V

2

�
2�mkBT=h

2
�3=2�

(89)

Now assume that we take out the wall separating the two sub-systems.
If the two halves of the volume had contained di�erent gases, then we
would see irreversible mixing, and the free energy would decrease. But,
as the two halves contain identical particles, removing the wall between
them has no e�ect whatsoever on the total free energy. Yet, if the relation
QN = qNmol were true, we would predict that the new free energy would
be

A�nal
total = �kBT ln

�
V
�
2�mkBT=h

2
�3=2�N

= �NkBT ln
�
V
�
2�mkBT=h

2
�3=2�

(90)

This would imply that the Helmholtz free energy would change by an
amount

A�nal
total � Ainitial

total = �NkBT ln 2 (91)

Clearly, something is wrong with the assumption that, for identical
molecules, QN = qNmol. The resolution of this problem lies in the fact
that we have been overcounting the number of distinct quantum states
in the system. If N identical particles can occupy the same set of quan-
tum levels, then any permutation of the particles over these levels still
yields the same overall quantum state. That is, we can label the overall
quantum state by indicating what levels fi; j; k; l; :::g are occupied. But
it is meaningless to say that particle 1 occupies level i and particle 2
occupies levels j and so on. There is no way in which we could distin-
guish this situation from the one in which particle 2 occupies level i and
particle 1 occupies level j. In short: permutations of identical particles
over a shared set of energy levels, do not correspond to distinct quan-
tum states. This means that there is only one way to place N identical
particles in N distinct quantum states, rather than N ! ways. Now look
at Eqn.55, in particular at the expression

Q =
1X

n1=1

1X
n2=1

:::
1X

nN=1

exp(��
NX
i=1

�i(ni)) (92)

This expression is valid if all sums over the quantum numbers ni refer to
di�erent levels. This is, for instance, the case if we look at N harmonic
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oscillators: the situation where oscillator 1 is in the ground state and
oscillator 2 is in the �rst excited state is not the same as the situation
where oscillator 2 is in the ground state and oscillator 1 is in the �rst
excited state. However, we have two identical particles in the same box,
then the situation where particle 1 is in the ground state and particle 2
is in the �rst excited state is the same as the one where the two particles
are permuted. For that reason, we should count all terms in the sum in
Eqn.92 only once. This means that we should divide the sum in Eqn.55
by N !. Hence, the partition function of a system ofN ideal gas molecules
is

Q =
1

N !

1X
n1=1

1X
n2=1

:::
1X

nN=1

exp(��
NX
i=1

�i(ni))

=
qNmol

N !
(93)

If we now look again at the two volumes with identical gases that were
being combined, we �nd that the initial Helmholtz free energy was

Ainitial
total = �2kBT ln

8><
>:
�
V
2
(2�mkBT=h

2)
3=2
�N=2

(N=2)!

9>=
>; (94)

and

A�nal
total = �kBT ln

8><
>:
�
V (2�mkBT=h

2)
3=2
�N

N !

9>=
>; (95)

The di�erence between these two free energies is

A�nal
total � Ainitial

total = �NkBT ln 2 + kBT ln

�
N !

f(N=2)!g2
�

(96)

Using the Stirling approximation lnN ! � N lnN �N , we �nd that

A�nal
total � Ainitial

total � �NkBT ln 2 +NkBT ln 2 = 0 (97)

Hence the assumption that identical particles are truly indistinguishable
is compatible with the experimental observation that the Helmholtz free
energy does not change when we bring two reservoirs containing identical
particles into contact.

We should add that the above discussion is not completely honest: we
made the implicit assumption that no two particles would be in exactly
the same quantum state. For an ideal gas at room temperature, this
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assumption is quite reasonable. This can be seen as follows: recall that
the molecular partition function is a measure for the number of quantum
state accessible to a molecule. For the translational quantum states, this
number is equal to

nstates � V
�
2�mkBT=h

2
�3=2 � V

�3
(98)

where we have de�ned the \thermal wavelength" � of a particle. The
number of accessible states is equal to the number of volumes �3 that �t
into the macroscopic volume V . To give a speci�c example: for argon
at room temperature, � � 1:7 10�11 m. Hence, the number of accessible
quantum states in one cubic meter is 2 1032: This is much larger than
Avogadro's number. Hence, the probability that two atoms in a dilute gas
will occupy the same level is very small indeed. However, � increases
as the temperature is decreased and at very low temperatures we should
take the possibility into account that two particles may occupy the same
quantum state. Then it becomes important to distinguish between parti-
cles that cannot occupy the same quantum state (fermions) and particles
that can (bosons). We shall not discuss this interesting topic here.

In what follows, we shall therefore assume that the partition function
of an ideal gas of identical molecules is given by

Q =
qNmol

N !
(99)

Now we start to make true on our promise that Statistical Thermody-
namics allows us to predict the thermodynamical properties of a macro-
scopic system solely on basis of our (quantum-mechanical) knowledge
of the constituent molecules. In particular, we are now in a position to
compute all thermodynamical properties of a dilute molecular gas.

Let us begin with the pressure. This is a very important relation
because it allows us to justify the identi�cation

� = 1=kBT:

Using the relation

P = ��1
�
@ lnQ

@V

�
N;�

(100)

we �nd

P = N��1
�
@ ln qmol

@V

�
N;�

(101)

But note that of the di�erent terms in qmol = qtransqrot
Qm

i=1 q
i
vib, only

qtrans depends on the volume V . Hence

P = N��1
�
@ ln qtrans

@V

�
N;T

=
N

�V
(102)
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If we compare this to the experimental (Boyle/Gay-Lussac) relation

P =
nRT

V
(103)

where n is the number of moles of the gas and R is the gas constant,
then it follows that

� =
N

nRT
(104)

The ratio N=n is simply the number of molecules per mole, i.e. Avo-
gadro's number L = 6:022 1023. We denote the ratio R=L by kB (Boltz-
mann's constant). Then

� =
1

kBT
(105)

where kB has the value 1.3806503 10�23J/K.
We can also compute the internal energy of an ideal gas. However,

now we should take translation, rotation and vibration into account.
But, as the total molecular partition function is a product of these indi-
vidual terms, the internal energy

U = �N
�
@ ln qmol

@�

�
(106)

is the sum of a translational, a rotational and a vibrational part.

4.2.1 Monatomic gas.

Let us �rst consider a monatomic gas. In that case qmol = qtrans and we
get (from Eqn.78) that

U =
3

2
NkBT (107)

It then follows immediately that the isochoric heat capacity of an ideal
monatomic gas is

cV =

�
@U

@T

�
N;V

=
3

2
NkB (108)

Let us next compute the Helmholtz free energy of an ideal monatomic
gas

A = �kBT ln

�
V N

N !�3N

�
(109)

Using the Stirling approximation for lnN !;we get

A = �NkBT ln(V=�3) +NkBT lnN �NkBT

= NkBTfln(��3)� 1g (110)
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where � � (N=V ) is the number density of the gas. It is then easy to
obtain an expression for the Gibbs free energy G = A + PV .

G = NkBTfln(��3)� 1g+NkBT

= NkBT ln(��3) (111)

When we recall that, for a one-component system, G = N�, where � is
the chemical potential, then we �nd that

� = kBT ln(��3) (112)

or, if we use the ideal gas law, in the form P = �kBT ,

� = kBT ln(P�3=kBT ) (113)

Using A = U � TS, we can also get a expression for the entropy S from
the expressions for the Helmholtz free energy A and for the internal
energy U . We then �nd the famous Sackur-Tetrode equation for the
entropy of a monatomic gas

S = (U � A)=T

= NkB

�
5

2
� ln(��3)

�
(114)

4.2.2 Polyatomic gases

When discussing the statistical thermodynamics of ideal polyatomic
gases, it is important to bear in mind that the partition function of
such a gas can be written as

Qtotal =
qNtrans
N !

qNinternal (115)

where qinternal is the part of the molecular partition function that con-
tains the contributions due to rotation, vibration and electronic excita-
tion. Due to the factorization of the partition function we can write

Atotal = Atrans �NkBT ln qinternal (116)

Therefore, we can simply add to the translational part of the free energy
the contribution due to the internal degrees of freedom the molecules.
This also holds for the Gibbs free energy G:

Gtotal = Gtrans �NkBT ln qinternal

= NkBT ln(��3)�NkBT ln qinternal (117)

28



Of particular interest is the expression for the chemical potential of an
ideal gas of polyatomic molecules of species �

�� = kBT ln(���
3
�)� kBT ln q�internal (118)

It is useful to cast this expression for the chemical potential in the form
that is often used in thermodynamics

�(P ) = �	 + kBT ln(P=p	) (119)

where p	 is the pressure of the reference state (usually: p	= 1 bar). For
an ideal gas, �� = P�=kBT , where P� is the partial pressure of species
�. Hence, we can write Eqn.113 as

�� = kBT ln(�3
�P�=kBT )� kBT ln q�internal

= kBT ln(P�=p
	) + kBT ln(�3

�p
	=kBT )� kBT ln q�internal (120)

and hence

�	 = �kBT ln

�
q�internalkBT

�3
�p

	

�
(121)

One of the quantities that is often measured in experiments is the
(isochoric) heat capacity cV .

cV =

�
@U

@T

�
N;V

(122)

In the late 19th century, when statistical thermodynamics was being
developed on basis of classical mechanics, the behavior of the heat
capacity of poly-atomic gases was a mystery. It is easy to see why.
The total internal energy of an ideal gas is equal to the sum of the
translational, rotational and vibrational energies. We have computed all
these quantities in the classical limit:

Utrans =
3

2
NkBT

Urot =
3

2
NkBT (for non-linear molecules)

Uvib = NkBT (for every vibrational mode)

The number of vibrational modes of a non-linear molecule containing n
atoms is equal to 3n� 6. Hence, classically, the total energy should be

Uclass = (3n� 3)NkBT (123)

It then follows immediately that, in the classical limit,

cclassicalV = (3n� 3)NkB (124)
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However, this was not at all what was found in experiment. To be
more precise: at high temperatures, this expression appeared to become
valid, but at low temperatures it failed completely. It appeared as if the
vibrations - and sometimes even the rotations - were not contributing
to the heat capacity. This problem was resolved with the advent of
quantum mechanics. Above we have discussed the correct expression
for the average rotational and vibrational energy. For a vibration with
frequency �, the contribution to the internal energy is

Uvib = N < �vib >= �N
�
@ ln qvib
@�

�
=

= Nh�=2 +
Nh�

exp(�h�)� 1
(125)

At low temperatures, this energy approaches a constant value (h�=2 per
oscillator). Let us write �h� � x. Then the expression for the heat
capacity is

cV = NkB
x2 exp(�x)

(1� exp(�x))2 (126)

At high temperatures (x! 0) cV approaches NkB. But at low temper-
atures, the heat capacity goes to zero quite steeply. The explanation of
this \freezing out" of the vibrational heat capacity was one of the early
successes of the merger of quantum mechanics and statistical thermody-
namics.

4.2.3 Interacting systems

It is of course nice to be able to compute the thermodynamical properties
of ideal gases but most substances that we know are not in a phase that
resembles the ideal gas. This means that we should also be able to com-
pute properties of systems consisting of interacting molecules. It turns
out that this problem is most easily tackled in the classical limit. For
convenience, we shall limit the discussion to simple, spherical particles
and we shall ignore the internal degrees of freedom of this particles. This
is an excellent approximation for atoms, and it is quite reasonable for
simple molecules. We then have to consider only the translation parti-
tion function. Above, we have already computed this partition function
for an ideal gas molecule

qtrans = V
�
2�mkBT=h

2
�3=2

=
V

�3
(127)

Now recall that the molecular partition function was nothing but a mea-
sure for the number of quantum states that was accessible to a molecule.
It is simply equal to the number of volumes of size �3 that are contained
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in a volume V . In this example, we have assumed that the ground-state
energy of the molecule was zero. Now suppose that the molecule moves
in a constant external potential U . In that case, all energy levels are
shifted by an amount U and the translational partition function of the
molecule becomes

q0trans =
V exp(��U)

�3
(128)

or, in terms of the number of accessible quantum states: nacc = V exp(��U)=�3.
We now assume that the total volume of the system can be divided into
small volumes �V , such that the external potential may vary from one
box to the next, but is constant within a given box. The number of
accessible quantum states in the i-th box is nacc(i) = �V exp(��Ui)=�

3

and the total number of accessible quantum states (i.e. qtrans) is equal
to

qtrans =
X
i

�V exp(��Ui)=�
3

� 1

�3

Z
dr exp(��U(r)) (129)

Next consider the case that we have N interacting molecules. Every
molecule (denoted by i) is located in a volume �V centered around
a position ri. �V is so small that the total potential energy due to
the interaction between the molecules does not depend on where inside
this volume the molecules are located. Then the number of accessible
quantum states for this speci�c molecular con�guration is:

nstates(r1; r2; ::; rN) =
�V N

N !�3N
exp(��U(r1; r2; ::; rN)) (130)

the factor 1=N ! appears again because permuting identical molecules
over the di�erent volumes �V does not yield a new quantum state.
Finally, to compute the total number of accessible quantum states for
the entire system, we should sum over all possible positions of the volume
elements containing the molecules

Qtrans =
1

N !�3N

X
r1

X
r2

:::
X
rN

�V N exp(��U(r1; r2; ::; rN))

� 1

N !�3N

Z
dr1

Z
dr2:::

Z
drN exp(��U(r1; r2; ::; rN)) (131)

This is the (classical) partition function for a system of N interacting
molecules. If we could compute it for any substance, we would be able
to predict all equilibrium properties of matter. In practice, we can only
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compute the partition function of a system of interacting particles in a
few very special cases (e.g. for a perfect crystal at low temperatures). In
general, we need to use numerical simulations to compute the thermody-
namic properties of normal liquids or solids. The technicalities of these
simulations do not concern us here. The essential fact is that Statistical
Thermodynamics tells us exactly what to compute.

As an example of a calculation that involves intermolecular interac-
tions, let us consider deviations from the ideal gas law. Experimentally,
we know that the pressure of a real gas does not satisfy the ideal-gas
relation PV=NkBT = 1. Rather, we �nd that, as the number density �
(=N=V ) is increased, the deviations from this relation occur

PV

NkBT
= 1 +B2�+B3�

2 + ::: (132)

where B2; B3 etc. are called the second, third etc. virial coeÆcients.
The virial coeÆcients depend on the intermolecular interactions. Here
we shall derive an expression for B2. First, we multiply and divide the
translational partition function by V N . This yields

Qtrans =
V N

N !�3N

Z
dr1
V

Z
dr2
V

:::

Z
drN
V

exp(��U(r1; r2; ::; rN))

=
V N

N !�3N
hexp(��U)i (133)

where the angular brackets denote the average of the Boltzmann factor
exp(��U(r1; r2; ::; rN)) over all possible positions fr1; r2; ::; rNg within
the volume V . At extremely low densities, the molecules are almost
always too far apart to interact and hence the average Boltzmann factor
is simply equal to one. At higher densities, we shall notice the e�ect
of interactions between molecules. Let us assume that the interactions
between molecules are such that a molecule must be within a certain
distance rc in order to experience the potential of the other molecules.
Or, phrased in another way, if there are no molecules within a volume
vc = (4�=3)r3c of a given molecule, then that molecule does not contribute
to the interaction energy. Let us denote by P0 the probability that no
two molecules are within a distance rc: At very low densities, we can
write the average of the Boltzmann factor as

hexp(��U)i = P0 � 1 + P1 < exp(��U) >pair (134)

where P1 denotes the probability that there is exactly one pair of molecules
at a distance less than rc: Because the density is very low, we can ignore
the probability that there will be more than two molecules at a dis-
tance less than rc. In other words, we have either no molecules that are
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interacting (probability P0) or just one pair (probability P1). Clearly,
P0 + P1 = 1 and hence P0 = 1 � P1. Now we should still compute the
average Boltzmann factor for a pair of molecules at a distance less than
rc. It is

< exp(��U) >pair=
1

vc

Z
vc

dr exp(��u(r)) (135)

where u(r) is the potential energy of interaction of a pair of molecules
at a distance r. We can now write

hexp(��U)i = P0 + P1

1

vc

Z
vc

dr exp(��u(r))

= 1� P1 + P1

1

vc

Z
vc

dr exp(��u(r))

= 1� P1

1

vc

Z
vc

dr+ P1

1

vc

Z
vc

dr exp(��u(r))

= 1 + P1

1

vc

Z
vc

dr[ exp(��u(r))� 1] (136)

As we have assumed that the intermolecular interaction vanishes outside
vc (and hence exp(��u(r))� 1 = 0), we need not limit the integration
to the volume vc but can extend it over all space. Now we should still
compute P1, the probability that there is a single pair of (randomly
distributed) molecules within the same volume vc. At low densities, the
probability that there is another molecule in a volume around a given
molecule is simply equal to �vc (where � is the number density of the
molecules). As there are N molecules in the system, and we could have
taken any of these molecules as our \central" molecules, the probability
to �nd a pair is N=2 times larger (the factor 1=2 comes in to avoid double
counting). Hence, at low densities, P1 = N�vc=2 and hence

hexp(��U)i = 1 +
N�

2

Z
dr[ exp(��u(r))� 1] (137)

With this result, we can write

Qtrans � V N

N !�3N

�
1 +

N�

2

Z
dr[ exp(��u(r))� 1]

�
(138)

The pressure P is given by

P

kBT
=
@ lnQtrans

@V

� N

V
�

�2

2

R
dr[ exp(��u(r))� 1]

1 + N�
2

R
dr[ exp(��u(r))� 1]

� �+
�2

2

Z
dr[1� exp(��u(r))] (139)
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where, in the third line, we have used the fact that, at suÆciently low
densities, N�

2

R
dr[ exp(��u(r))� 1]� 1. If we compare this expression

with the virial series (Eqn.132), we �nd that the second virial coeÆcient
is equal to

B2 =
1

2

Z
dr[1� exp(��u(r))] (140)

Again, this is a very important result because it shows that a mea-
surement of the second virial coeÆcient provides information about the
intermolecular interactions. To give a speci�c example: assume that
molecules are hard spheres with a diameter �. For r > �, u(r) = 0 and
hence exp(��u(r)) = 1. For r < �, u(r) =1 and hence exp(��u(r)) =
0. Therefore,

BHS
2 =

1

2

Z �

0

4�r2dr=
2��3

3
(141)

Of course, real molecules do not only repel each other at short distances,
they also attract at larger distances. A very simple model potential that
exhibits both features is the so-called square-well potential. The square-
well potential is equal to the hard-sphere potential for r < �. But for
� < r < �� (with � > 1). the square well potential is attractive:

usw(r) = �� (for � < r < ��) (142)

and
uSW (r) = 0 (for r > ��) (143)

We can easily compute the second virial coeÆcient for this model po-
tential. It is

BSW
2 =

1

2

�Z �

0

4�r2dr � (exp(��)� 1)

Z ��

�

4�r2dr

�

=
2��3

3

�
1� (exp(��)� 1)(�3 � 1)

�
(144)

At very high temperatures (� ! 0), BSW
2 is equal to the hard-sphere

second virial coeÆcient. However, at low temperatures, the term with
exp(��) dominates, and B2 becomes large and negative. The point where
B2 changes sign is called the Boyle temperature. It follows from the
equation: �

1� (exp(��)� 1)(�3 � 1)
�
= 0 (145)

which yields

exp(��) =
�3

�3 � 1
(146)
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or
kBT

�
=

1

ln[�3=(�3 � 1)]
(147)

If we keep � �xed and vary �, we see that for large � (long-ranged
attraction), kBT=� is large (high Boyle temperature), while for � ! 1,
kBT=�! 0 (low Boyle temperature).

It should be stressed that only the lowest few virial coeÆcients can
easily be computed. Hence, when we are interested in the behavior of
dense systems (liquids, solids), the properties of such systems cannot be
computed analytically from Eqn.131. The standard approach to resolve
this problem is to use numerical simulations instead. With the help
of computer simulations, it is possible to compute the thermodynami-
cal properties of arbitrarily complex (macro)molecular systems provided
that: 1.) we can use a "classical" description (i.e. Eqn.131 is valid)
and 2.) we have a good knowledge of the potential energy function
U(r1; r2; ::; rN).

5 Chemical Equilibria

One of the important results of classical thermodynamics was that it
allowed us to write down the conditions for equilibrium. It starts from
the condition that, at constant temperature and pressure, the Gibbs free
energy G is at a minimum in equilibrium. A variation of the Gibbs free
energy can be written as

dG = �SdT + V dP +
X
�

��dn� (148)

where n� denotes the number of moles of species � and �� its chemical
potential. At constant pressure and temperature, dP and dT are zero,
and hence the condition for equilibrium isX

�

��dn� = 0 (149)

In a chemical reaction, the variations dn� are related through the stoi-
chiometry of the reaction. This is usually denoted by

dn� = ��d� (150)

where � measures the progress of the reaction and �� is the stoichiometric
coeÆcient of species �. Hence, the condition for equilibrium isX

�

����d� = 0 (151)
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or, as d� is arbitrary X
�

���� = 0 (152)

Using Eqn.118 for the chemical potential of species �

�� = kBT ln(���
3
�)� kBT ln q�internal

= kBT ln(
p�
kBT

�3
�)� kBT ln q�internal (153)

we �nd that

X
�

��

�
ln(

p�=p
	

kBT=p	
�3
�)� ln q�internal

�
= 0 (154)

where p	 is the pressure of the reference state (e.g. one bar). It then
follows that

X
�

�� ln(p�=p
	) =

X
�

��

�
ln(

kBT

p	�3
�

) + ln q�internal

�
(155)

But X
�

�� ln(p�=p
	) = ln(

Y
�

(p�=p
	)��) = lnK (156)

where K is the equilibrium constant of the reaction. Hence we have
now derived a \molecular" expression for the equilibrium constant of a
chemical reaction of (ideal) gases

lnK =
X
�

�� ln(
kBT

p	�3
�

q�internal) (157)

Before we can actually use this expression, we should note one important
point. Until now, we have, somewhat arbitrarily chosen the ground state
of the molecule as our zero of energy. However, when we compare the
relative stability of di�erent molecules, the di�erence in energy between
the molecular ground states become very important. We can account
for this part of the internal energy by writing

q�internal = exp(����0 )q�;0internal (158)

where q�;0internal is the internal molecular partition function that is ob-
tained when the zero of energy coincides with the molecular ground
state. When we introduce the notation

��0 =
X
�

���
�
0 (159)
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we obtain

lnK = ���0
kBT

+ ln
Y
�

�
kBT

p	�3
�

q�;0internal

���

(160)

Remember that we can determine all terms on the right-hand side of this
equation either from quantum-mechanical calculations or from spectro-
scopic measurements. Hence, we have now achieved one of the prime
objectives of Statistical Thermodynamics: we have obtained an expres-
sion that allows us to predict the equilibrium constant of a gas reaction.
Take for instance the reaction A2 + B2 *) 2AB. For this reaction, the
equilibrium constant is given by

lnK = ���0
kBT

+ ln

�
qAB;0
internal

�3

AB

�2
�
qAA;0
internal

�3

AA

��
qBB;0
internal

�3

BB

� (161)

Using

�3 =
�
h2=2�mkBT

�3=2
(162)

qrot =
2IkBT

��h2
(163)

qivib =
1

1� exp(��h�i) (164)

we can work out the individual (translational, rotational and vibrational)
contributions to the equilibrium constant.

5.0.4 Example

To give an example, consider the reaction

H2 +D2 *) 2HD (165)

As H and D are isotopes, it is a reasonable approximation to assume
that all three molecules have the same bondlength and that they have
the same vibrational force constant, kvib. The molecular ground-states
are, however, not the same, because the zero-point energy (h�=2) of the
molecular vibration is di�erent. Hence,

��0 =
1

2
(2h�HD � h�H2

� h�D2
) (166)

The individual vibration frequencies can be computed using

vHD =
1

2�

s
kvib[mH +mD]

mHmD
(167)
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and similar expressions for �H2
and �D2

. Let us compute the equilibrium
constant in the high-temperature limit.

lnK = ���0
kBT

+ ln
�3
H2
�3
D2

�6
HD

+ ln
(qrotHD)

2

qrotH2
qrotD2

+ ln
(qvibHD)

2

qvibH2
qvibD2

(168)

Let us compute the equilibrium constant in the high-temperature limit
where qrot = 2IkBT=(��h

2) and qivib = kT=h�i. The translational contri-
bution is

ln
�3
H2
�3
D2

�6
HD

= ln
m3

HD

m
3=2
H2
m

3=2
D2

= ln
33

23=243=2

= ln
93=2

23=243=2

=
3

2
ln
9

8
(169)

The rotational contribution is

ln
(qrotHD)

2

qrotH2
qrotD2

� ln
I2HD=�

2
HD

(IH2
=�H2

)(ID2
=�D2

)

= ln
(2=3)2

(1=4)(1=2)
= ln

32

9
(170)

where we have used �H2
= �D2

= 2 and �HD = 1. And, in addition,

I = �r2e (171)

with re(H2) � re(D2) � re(HD), while �H2
= 1

2
mH , �D2

= mH and
�HD = 2

3
mH . The vibrational contribution is

ln
(qvibHD)

2

qvibH2
qvibD2

� ln
�H2

�D2

�2HD

� 1

2
ln
9

8
(172)

and the total equilibrium constant is

lnK = ���0
kBT

+ ln4 (173)
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At very high temperatures, the �rst term becomes small, and the equi-
librium constant approaches 4. This seems surprising: why should the
equilibrium be shifted towards the HD? The reason is that, due to the
symmetry of H2 and D2, the number of accessible (rotational states) of
these molecules is divided by two, and hence the product is divided by
four. And, after all, the equilibrium constant simply measures the ratio
of the number of accessible states of the products and reactants.

6 Macromolecules

Small molecules such as H2 and N2 are very interesting, but most of
(bio)chemistry deals with molecules that are much more complex and
very much larger. Examples are polymers, proteins, DNA etc... For such
complex molecules it is usually very diÆcult, if not outright impossible,
to compute the molecular partition function directly from quantum me-
chanics. It would then seem that we cannot apply the framework of
Statistical Thermodynamics directly to such macromolecular systems.
Although there is some truth to this statement - it is for instance very
diÆcult to predict the properties of proteins in solution - there are many
examples where the fact that the molecule is very large, actually sim-
pli�es matters. An important example of \simple" behavior of complex
molecules is to be found in polymers. Polymers are long chain molecules.
Such molecules tend to be very 
exible - so much so that it is impossible
to speak of the conformation of the molecule. A polymer in solution is
very disordered: it resembles a random coil. It would seem that this
great disorder would make the description of polymers diÆcult, but the
converse is true: the random coil provides the simplest model of a poly-
mers and, as we shall see below, it has several non-trivial properties that
can be observed experimentally.

6.1 Ideal polymers

Let us consider a polymer that consists of N segments of length l. When
this polymer is fully stretched, its total length is equal to Nl. Now
consider what happens if the polymer is fully 
exible - that is, every
segment can rotate freely around the point at which it is connected to
the previous segment. Clearly, this is an oversimpli�cation. However, in
practice, many polymers behave like such freely jointed chain (although
the length l is larger than the size of a monomer). In addition, we assume
that di�erent segments do not interact - this assumption is similar to the
one we make when we say that, to a �rst approximation, a dilute gas
can be described as an ideal gas where the molecules do not interact.
The di�erence in the case of ideal polymers is that, although di�erent
segments do not interact, adjacent segments are connected. Clearly, as
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an ideal polymer can coil up, its size will be less than its contour length
Nl. In fact, it turns out that we can easily compute the average size of an
ideal polymer. In particular, we shall consider the end-to-end distance of
an ideal polymer. First of all, we note that every segment of length l has
a direction. It is therefore convenient to denote the distance between the
beginning and end-point of the i-th segment of the polymer by a vector
li. The total (vector) distance between one end of the polymer and the
other end is

Ree =
NX
i=1

li (174)

What is the average end-to-end distance ? To compute this, we should
average over all possible orientations of the segments

< Ree >=<

NX
i=1

li >=
NX
i=1

< li > (175)

However, all segments can rotate freely. That means that all orientations
are equally likely. In particular, a segment is just as likely to point in
the direction +li as in the direction �li. Hence the average < li >=
0. And therefore < Ree >= 0: This does not mean that the size of
a polymer is vanishingly small, but simply that the polymer has no
preferred orientation. A better measure for the size of a coiled ideal
polymer is the mean-squared end-to-end distance < R2

ee >.

< R2
ee >=

* 
NX
i=1

li

!2+

=

* 
NX
i=1

li

!
�
 

NX
j=1

lj

!+

=

*
NX

i=1;j=1

li � lj
+
=

NX
i=1;j=1

< li � lj > (176)

=
NX

i=1;j=1

l2 < cos �ij >

where �ij is the angle between segments i and j. Now recall that every
segment is free to rotate. That means that the orientation of di�erent
segments i and j are uncorrelated and hence < cos �ij >= 0, for all i 6= j.
However, for i = j, �ii = 0 and hence cos �ii = 1. As a consequence, all
the cross-terms with i 6= j drop out of Eqn.176 and we �nd

< R2
ee >=

NX
i=1

l2 = Nl2 (177)
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Hence, the root mean-squared end-to-end distance isp
< R2

ee > = l
p
N (178)

When we compare this with the contour length Rc of the polymer (i.e.
the length it would have if it were fully stretched), we �nd thatp

< R2
ee >

Rc
=
l
p
N

lN
=

1p
N

(179)

As N is usually quite large (ranging from hundreds to millions), the
typical size of a coiled polymer is much less than that of a stretched
polymer.

We can do better than simply calculating the mean-squared end-
to-end distance of a polymer: we can actually compute the probability
to �nd any given value for Ree. However, to simplify matters, we will
only consider the one-dimensional case. Again, we consider a polymer
consisting of N segments, but now the segments can only point either to
the right or to the left. Let us denote the number of segments pointing
to the right by NR and the number pointing to the left by NL. Let us
denote the di�erence NR � NL by n. Clearly, the end-to-end distance
is equal to �x = nl. We can compute the probability to �nd the chain
in a conformation with a given value of NR � NL. First, consider the
number of ways in which we can have NR segments point to the right,
and NL segments point to the left. This number is


(NR; NL) =
N !

NR!NL!

=
N !

f1
2
(N + n)g!f1

2
(N � n)g! (180)

where we have used the fact that NR = (N +n)=2 and NL = (N �n)=2.
The total number of possible conformations is simply 2N (because every
segment has two possible orientations, and there are N segments). The
probability to have a conformation with NR �NL = n is then

P (
1

2
(N + n);

1

2
(N � n)) =

N !

f1
2
(N + n)g!f1

2
(N � n)g!

�
1

2

�N

(181)

or

lnP (
1

2
(N+n);

1

2
(N�n)) = lnN !�lnf1

2
(N+n)g!�lnf1

2
(N�n)g!�N ln 2

(182)
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We will consider the case that N � 1, and n � N . In that case, we
can use the Stirling approximation (lnx! � x lnx� x+ ln

p
2�x) for all

factorials in the above equation. Then (see Appendix):

lnP (
1

2
(N + n);

1

2
(N � n)) = N lnN + ln

p
2�N

� ln
p
�(N + n)� ln

p
�(N � n)

� 1

2
(N + n) ln(N + n)� 1

2
(N � n) ln(N � n)

(183)

This can be rewritten as

lnP (
1

2
(N + n);

1

2
(N � n)) = �1

2
N ln(1� n2

N2
) + ln

p
2�N

� ln
p
�(N + n)� ln

p
�(N � n)

� 1

2
n ln(1 +

n

N
) +

1

2
n ln(1� n

N
) (184)

We now make use of the fact that n=N � 1, and that ln(1 � x) � �x
for x� 1: We then �nd

lnP (
1

2
(N + n);

1

2
(N � n)) � � n2

2N
� ln

p
�N=2 (185)

From which it follows that

P (
1

2
(N + n);

1

2
(N � n)) =

1p
�N=2

exp(�n2=2N) (186)

However, in this form, the above expression is rarely used. We should
recall that we started by considering a polymer of length N of which NR

segments were pointing to the right. In this expression, NR can take the
values f0; 1; 2; � � � ; Ng. We then converted to the variable n � NR�NL.
n can take the values f�N;�N + 2; � � � ;�4;�2; 0; 2; 4; � � � ; N � 2; Ng
(where we have assumed that N is even. For N is odd, the values would
be f�N;�N + 2; � � � ;�3;�1; 1; 3; � � � ; N � 2; Ng). The point to note
is that when NR changes by one, n changes by two. In the limit of large
N we are usually not interested in the question whether n has a speci�c
value (say 3), but in the probability to �nd n in a given interval �n.
When we compute this probability per unit interval, we have to take
into account that P (1

2
(N +n); 1

2
(N�n)) is given by Eqn.186 for all even

(c.q. odd) values of n and zero otherwise. The probability per unit
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interval is then equal to the average

P (n) = (P (
1

2
(N + n);

1

2
(N � n))n=odd + P (

1

2
(N + n);

1

2
(N � n))n=even)=2

=

�
0 + 1p

�N=2
exp(�n2=2N)

�
2

=
1p
2�N

exp(�n2=2N) (187)

This distribution is then properly normalized, in the sense thatZ 1

�1

P (n)dn = 1 (188)

It is the distribution P (n) that is most commonly used when discussing
the distribution of end-to-end distances in polymers. In summary: the
distribution of end-to-end distances of an ideal polymer is a Gaussian.
From the width of the Gaussian, we can deduce that the mean-squared
end-to-end distance of the one dimensional chain is

< X2
ee >= l2 < n2 >= Nl2 (189)

Finally, we can make a link with thermodynamics. We can compute
the change in entropy involved in stretching a polymer. We start with
Eqn.180 for the number of conformations of a polymer with end-to-end
distance (NR�NL)l. Using the relation between entropy and the number
of states of a system, we can write

S(n) = kB ln
(NR; NL) (190)

and, proceeding as above, we �nd that

S(n) = �n
2kB
2N

+ constant (191)

where the constant accounts for all terms that do not depend on n. Let
us denote the end-to-end elongation of the polymer by Xee = nl. Then

S(x) = �X
2
eekB
2Nl2

+ constant (192)

Now, just as for an ideal gas, the internal energy U of an ideal poly-
mer,depends only on the temperature. If we use

dU = w + q (193)
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with q = TdS and w = FdXee, where F is the restoring force exerted
by the polymer when stretched, then we have

dU = TdS + FdXee (194)

or, at constant temperature,�
@U

@Xee

�
T

= 0 = T

�
@S

@Xee

�
T

+ F (195)

and hence

F = �T
�

@S

@Xee

�
T

(196)

If we use Eqn.192, we �nd that

F =
XeekBT

Nl2
(197)

Hence, the restoring force is linear in the deformation (just as for a
normal spring) but, unlike a metal spring, the spring-constant is propor-
tional to the temperature T . The reason is that the restoring force of an
ideal polymer is purely entropic. Hence, if you pull a rubber band, the
restoring force that you feel is entropic in origin!

One �nal interesting observation: we can also predict what will hap-
pen if we stretch a polymer (or, in practice, a rubber band) adiabatically
- i.e. without exchanging heat with the environment. Using the thermo-
dynamic relation�

@T

@Xee

�
S

�
@Xee

@S

�
T

�
@S

@T

�
Xee

= �1 (198)

we can get an expression for the change in temperature due to the adi-
abatic stretching of the polymer

�
@T

@Xee

�
S

= �

�
@S
@Xee

�
T�

@S
@T

�
Xee

(199)

or, using the relation
�
@S
@T

�
Xee

= cP=T , we get�
@T

@Xee

�
S

=
XeekBT

cPNl2
(200)

As the heat capacity cP is always positive, it follows that the tempera-
ture increases when the polymer material is stretched adiabatically (or
decreases when the force on a polymer material is released). Try it!

44



Note that we can combine Eqn.197 with Eqn.189 to obtain

F =
XeekBT

< X2
ee >

(201)

In other words, the \spring-constant" � of an ideal polymer is equal to

� =
kBT

< X2
ee >

(202)

In the Appendix, we show that this result is also valid for real (i.e.
non-ideal) polymers.

7 Di�usion

7.1 Fick's �rst law

Thus far, we have only considered systems in equilibrium. Let us now
look at a simple example of molecular transport. Suppose that we have
a solution of molecules with concentration c. If an external force F is
acting on this molecules then the molecules will start to move in the
direction of the force. When the molecules move with a drift velocity
< v > with respect to the solvent, then they will experience a friction
force

Ffrict = �f < v > (203)

where f is the friction constant. In steady state, the friction force Ffrict
on the molecule exactly balances the external force Fext and hence

Fext = f < v > (204)

The net 
ux of molecules Jdrift (i.e. the number of molecules that pass
per second through a unit area) is equal to the concentration of the
molecules c times their average velocity

Jdrift = c < v >= c
Fext
f

(205)

Now consider a seemingly unrelated situation: a system in which there
is a concentration gradient. This gradient will give rise to a di�usion

ux that counteracts the concentration gradient. The expression for the
di�usion 
ux is given by Fick's �rst law

Jdiff = �D @c

@x
(206)

where D is the di�usion coeÆcient of the molecules. Now consider what
will happen if we apply an external force to molecules in solution. The
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molecules will start to move in the direction of the force. But, as more
and more molecules are transported, a concentration gradient will build
up. This concentration gradient will give rise to a di�usion current in the
opposite direction. Eventually, the di�usion current will exactly balance
the 
ux due to the external force. When this happens, the system has
reached equilibrium (no more 
uxes). But we know that, in equilibrium,
the concentration of the molecules is given by the Boltzmann distribution

c(x) = c(0) exp(��(U(x)� U(0)) (207)

where U(x) is the (external) potential energy of the molecules at position
x (we assume that the solution is suÆciently dilute that we can ignore
the interactions between the molecules). Hence

Jdiff = �D @

@x
[c(0) exp(��(U(x)� U(0))]

= D�
@U(x)

@x
c(x) (208)

This 
ux is equal and opposite to the 
ux due to the external force F

Jdrift = c(x)
Fext
f

= �c(x)
f

@U(x)

@x
(209)

where we have used the fact that

Fext = �@U(x)
@x

(210)

In equilibrium
Jdrift + Jdiff = 0 (211)

or

�c(x)
f

�
@U(x)

@x

�
= �D�c(x)

�
@U(x)

@x

�
(212)

This shows that the friction coeÆcient f is related to the di�usion coef-
�cient D by

f =
kT

D
(213)

This relation was �rst derived by Einstein.

7.2 Fick's second law

Let us consider a system in which there is a concentration gradient. We
assume that no external forces act on the system. Due to di�usion,
the local concentration will change until it is constant throughout the
system. How does the local concentration c(x; t) change in time? Let us
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�rst consider how the number of particles in a thin slab of 
uid between
x and x +�x changes with time. This slab is bounded by two surfaces
S at x and at x + �x. The number of molecules that pass per second
at point x through the surface into the slab, is equal to J(x; t)S. The
number of molecules that leave the slab per second at point x + �x is
equal to J(x +�x; t)S. The rate of change of the number of molecules
in the slab is then equal to

@N(x; t)

@t
= S(J(x; t)� J(x +�x; t)) (214)

If we now consider the limit �x) 0, we can write

@N(x; t)

@t
= �S�x@J(x; t)

@x
(215)

But S�x is imply the volume of the slab and the concentration c(x; t)
is equal to N(x; t)=(S�x). Hence,

@c(x; t)

@t
= �@J(x; t)

@x
(216)

This equation simply expresses the conservation of the total number of
dissolved particles. If we now combine the conservation law (Eqn.216)
with Fick's �rst law (Eqn.206), we get

@c(x; t)

@t
=

@

@x

�
D
@c(x; t)

@x

�
(217)

and if the di�usion constant does not depend on x, we �nd

@c(x; t)

@t
= D

@2c(x; t)

@x2
(218)

This is Fick's second law: it describes how the local concentration
changes in time due to di�usion. The solution of this equation depends
on the boundary conditions. Let us consider the special case that ini-
tially (i.e. at t = 0) the concentration is sharply peaked at x = 0. In
that case, the solution of Eqn.218 is

c(x; t) =
n0p
4�Dt

exp(�x2=4Dt) (219)

where n0 is the total number of dissolved molecules. Note that the con-
centration pro�le is a Gaussian. The width of the Gaussian is equal to
2Dt. That is: for short time, the Gaussian is very narrow (the concen-
tration is highly localized) but for longer times it broadens. UsingZ 1

�1

dx exp(�ax2) =
r
�

a
(220)
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it is easy to show that the integralZ 1

�1

dxc(x; t) = n0 (221)

In other words, the total number of dissolved molecules is conserved -
as it should.

How far does a molecule travel from the origin in time t? As the
Gaussian distribution is an even function of x, the average displacement
< x(t) >= 0. However, the mean-squared displacement is not equal to
zero. In fact, it is2

< x2(t) >=

R
dxc(x; t)x2R
dxc(x; t)

=

Z
dx

x2p
4�Dt

exp(�x2=4Dt)
= 2Dt (222)

and the root mean-squared displacement
p
< x2 > =

p
2Dt.

7.3 Relation to ideal polymers

The distribution of end-to-end distances of a polymer of Ns segments
with length ls is given by a Gaussian distribution, and so is the distri-
bution of distances traveled in a time interval t by a di�using molecule.
This analogy is more than super�cial. In the case of the polymer, the
Gaussian distribution followed when we considered the number of ways
in which an ideal (one-dimensional) polymer could have NR segments
pointing to the right and NL segments pointing to the left, such that
(NR � NL)ls = x. Di�usion, on the other hand, is due to the random
(Brownian) motion of molecules. Let us describe the motion of such a
molecule as a sequence of jumps with a characteristic length lj (in a gas,
this length lj would be of the order of the mean free path of a molecule
between collisions). Let us denote by � the average number of jumps
that a molecule makes per second. The total number of jumps that a
molecule makes in time t is then Njump = �t. Any jump is equally likely
to be to the right or to the left. The probability that a molecule has
made NR jumps to the right and NL jumps to the left is

P (NR; NL) =
Njump!

NR!NL!

�
1

2

�Njump

(223)

2This is easy to show, usingZ
1

�1

dx exp(�ax2)x2 = �
d

da

Z
1

�1

dx exp(�ax2)
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The distance that such a molecule will have traveled is x = (NR�NL)lj.
For x� Njumplj we can show (using the same techniques as for the ideal
polymers - Eqn.188) that

P (x; t) =
1q

2��l2j t
exp(�x2=(2�l2j t)) (224)

Clearly, the description of the random walk of a di�using molecule is
completely equivalent to the description of the random conformations of
an ideal polymer if we make the following identi�cations:

Njump = �t = Ns (225)

lj = ls (226)

and
2D = �l2j (227)

As Richard Feynman has said: The same equations have the same solu-
tions...
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A Appendix: Essential mathematics.

Elementary Statistical Thermodynamics does not make use of any so-
phisticated mathematics. Here we brie
y review the mathematics that
is most frequently used. Below, we give neither a proper derivation nor
a proof of any of the results that we quote. However, in some cases we
do provide a non-rigorous "justi�cation". We assume that the reader is
familiar with the most common functions and algebraic manipulations.

� Properties of lnx and exp x. The essential properties of loga-
rithms and exponentials are - of course - well known � � �but still
often forgotten.

ln(a� b) = ln a + ln b (228)

exp(a+ b) = (exp a)� (exp b) (229)

� Chain rule

When di�erentiating a function F (u), where u(x) is a function of
the independent variable x, we can use the so-called chain rule

@F (u(x))

@x
=
@F (u)

@u
� @u(x)

@x
(230)

More generally, if F is a function of u and u is a function of v � � �
and y is a function of z, then

@F

@z
=
@F (u)

@u
� @u(v)

@v
� @v(w)

@w
� � � � � @y(z)

@z

� Derivative of exp(ax) and lnx

The derivative of exp(ax):

@ exp(ax)

@x
= a exp(ax) (231)

This result can easily be derived from the de�nition of exp(ax):

exp(ax) = lim
n!1

(1 +
ax

n
)n (232)

Coversely, the primitive function of exp(ax) is a�1 exp(ax).

The derivative of lnx with respect to x is

@ lnx

@x
=

1

x
(233)
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This is easily derived from Eqn.231. If y = lnx, then x = exp(y),
hence

@ lnx

@x
=

@y

@ exp y
=

1

exp y
=

1

x
(234)

Conversely, the primitive function of 1=x is lnx.

� Taylor Expansion

If f(x) and all its derivatives are smooth functions of x, then we
can write:

f(x+a) = f(x)+

�
@f

@x

�
x

a+
1

2!

�
@2f

@x2

�
x

a2+� � �+ 1

n!

�
@nf

@xn

�
x

an+� � �
(235)

The �rst two terms in the Taylor expansion are often used to ap-
proximate f(x + a) if a is suu�ciently small

f(x+ a) � f(x) +

�
@f

@x

�
x

a

Speci�c examples are:

exp(x) � 1 + x

ln(1 + x) � x
p
1 + x � 1

2
x

(1 + x)n � 1 + nx

sin(x) � x

where, in all cases, it has been assumed that x� 1.

� Permuting summation and multiplication

X
i

X
j

X
k

� � �
X
n

aibjck � � � zn =
 X

i

ai

! X
j

bj

! X
k

ck

!
� � �
 X

n

zn

!

(236)
(assuming that all sums converge uniformly)

� Permuting integration and multiplicationZ Z Z
� � �
Z

dx1dx2 � � �dxn f(x1)g(x2) � � � q(xn)

=

�Z
dx1 f(x1)

��Z
dx2 g(x2)

�
� � �
�Z

dxn q(xn)

�
(237)
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In the special case that the functions f; g; � � � ;are all the sameZ Z Z
� � �
Z

dx1dx2 � � �dxn f(x1)f(x2) � � �f(xn)

=

�Z
dx1 f(x1)

��Z
dx2 f(x2)

�
� � �
�Z

dxn f(xn)

�

=

�Z
dx f(x)

�n

(238)

� Geometric series

Consider the sum

S =
nX
i=0

axi (239)

Clearly,

xS =

nX
i=0

axi+1 = S � a+ axn+1 (240)

Hence
S(1� x) = a(1� xn+1) (241)

or

S =
a(1� xn+1)

1� x
(242)

If jxj < 1;we can take the limit n!1:

Sn!1 =
a

1� x
(243)

� Factorials and permutations

The symbol N ! denotes the "factorial" of N . For positive, integer
N , it is de�ned as

N ! = N � (N � 1)� (N � 2)� � � 2� 1

In addition, 0! � 1. The number of permutations of a set of N
labeled objects is equal to N ! . This can be demonstrated by
induction. The number of ways in which a single object can be
ordered is clearly equal to 1, which is equal to 1!. Hence, the
relation holds for N = 1. The next step is to show that if the
relation holds for N objects, it also holds for N + 1 objects. This
is easily demonstrated as follows. Assuming that there are N !
permutations for N objects, then for every permutation there are
N+1 positions in the sequence where we could insert object N+1.
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Hence the total number of permutations for (N + 1) objects is
(N + 1)�N ! = (N + 1)!. This completes the proof.

Now consider the following question: we have N labeled objects
and we wish to count the number of distinct ways that these objects
can be divided into two sets, such that one set containsM elements
and the other N � M elements. For instance, 3 objects can be
distributed in 3 ways over a subset of size one and a subset of size
2:

(1; 23) (2; 31) and (3; 12)

Note that we do not count di�erent permutations within one sub-
set as distinct. To compute this number in general, we consider all
possible permutations of N objects. There are N ! such permuta-
tions. For every permutation, we attribute the �rst M elements to
one set, and the remaining N �M elements to the other. In this
way, we get that the total number of permutations with M ele-
ments in one set and N �M in the other is equal to N !. However,
in this counting procedure, we have considered di�erent permu-
tations of the objects in either set as distinct. To get the total
number of ways to distribute N objects over the two subsets, we
should divide by the number of permutations in the set of M ob-
jects and in the set ofN�M objects. The result is that the number
of ways to divide N objects over two subsets of sizeM and N �M
respectively, is given by

N !

M !(N �M)!

� Binomial and multinomial distributions.

The number of ways to distribute N objects over two classes, in such
a way that M objects end up in class I and N �M objects in class II
is given by

N !

M !(N �M)!
�
�
N

M

�
(244)

For example: the number of ways in which I can throw N coins, such
that M are head and N � M are tail, is

�
N
M

�
. If we assume that the

probability of head and tail are both equal to 1=2, then the probability
that I throw M heads and N �M tails is

P (M;N �M) =

�
N

M

�
2�N (245)
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In the more general case that the probabilities for the two events are
not equal - say the probability to throw head (tail) is p (1� p), then the
probability to throw head M times and tail N �M times is

P (M;N �M) =

�
N

M

�
pM(1� p)N�M (246)

Of course, the sum of the probabilities of all di�erent outcomes should
add up to one

X�
N

M

�
pM(1� p)N�M = (p+ (1� p))N = (1)M = 1 (247)

To give a speci� example, consider two containers, one with volume V1
and the other with volume V2. We assume that the probability that a
molecule will be in volume 1 is equal to V1=(V1 + V2). The probability
to �nd a molecule in volume 2 is then 1� V1=(V1 + V2) = V2=(V1 + V2).
The probability to �nd M molecules in V1and N �M molecules in V2 is
then

P (M;N �M) =

�
N

M

�
V M
1 V N�M

2

(V1 + V2)N
. (248)

The probability to �nd all molecules in volume 1 is

P (N; 0) =
V N
1

(V1 + V2)N
(249)

In case we distribute N objects over a larger number of classes - say m
- the number of realizations is given by

N !Qm
i=1Mi!

(250)

where Mi is the number of objects in class i and
P

Mi = N .

� Some integrals.

Certain integrals occur time and again in statistical physics. First of
all, there are the integrals of the type:Z 1

0

dx xn exp(�ax) (251)

All these integrals can be derived through integration by parts from the
integral Z 1

0

dx exp(�ax) = 1=a (252)
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For instanceZ 1

0

dx x exp(�ax) = �x
a
exp(�ax)j10 +

Z 1

0

dx
exp(�ax)

a

=
1

a2
(253)

The general result is Z 1

0

dx xn exp(�ax) = n!

an+1
(254)

This result can also be obtained by noting that

xn exp(�ax) = (�1)n
�
@n exp(�ax)

@an

�
(255)

and that thereforeZ 1

0

dx xn exp(�ax) = (�1)n
�
@n(1=a)

@an

�
=

n!

an+1
(256)

A second type of integral of particular importance is the Gaussian inte-
gral

I =

Z 1

�1

dx exp(�cx2) (257)

A trick to compute this integral, is to consider its square

I2 =

�Z 1

�1

dx exp(�cx2)
�2

=

Z 1

�1

dx exp(�cx2)
Z 1

�1

dy exp(�cy2)
(258)

We can write the latter product of integrals asZ 1

�1

dx exp(�cx2)
Z 1

�1

dy exp(�cy2) =
Z 1

�1

Z 1

�1

dy dx exp(�cx2) exp(�cy2)
(259)

The latter integral is a two-dimensional integral. It can be simpli�ed by
using the polar coordinates r and �, such that x = r cos� and y = r sin�.
Clearly, x2+y2 = r2. The integration range for � is f0; 2�g and r ranges
from 0 to 1. Finally, we replace the area element dx dy by rd� dr. We
can then write

I2 =

Z 2�

0

d�

Z 1

0

dr r exp(�cr2)

= 2�

Z 1

0

1

2
dr2 exp(�cr2)

= �

Z 1

0

dr2 exp(�cr2)

=
�

c
(260)
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where, in the third line, we have used dr2 = 2r dr. To arrive at the last
equality, we used Eqn.252. HenceZ 1

�1

dx exp(�cx2) =
r
�

c
(261)

� Stirling's approximation

From equations254 and 261 above, we can derive Stirling's approxi-
mation for N !.

N ! =

Z 1

0

dx xN exp(�x) =
Z 1

0

dx exp(�x +N lnx) (262)

where we have used Eqn.254 with a = 1. The integrand is sharply peaked
at x = N: The value of the exponent at x = N is �N + N lnN . The
�rst derivative is zero (we are at a maximum). The second derivative is
�1=N . Hence, we can approximate the integral by

N ! �
Z 1

0

dx exp(�N +N lnN � (x�N)2

2N
)

=

Z 1

�N

du exp(�N +N lnN � u2

2N
) (263)

where we have de�ned u � x � N . As the function is sharply peaked,
we can replace the lower limit of the integration by �1. We then have

N ! � exp(�N +N lnN)

Z 1

�1

du exp(� u2

2N
)

= exp(�N +N lnN)
p
2�N

= NN exp(�N)
p
2�N (264)

where we have used Eqn.261. This is Stirling's approximation for N !.
In fact, Stirling's approximation is the �rst term of a series

N ! = NN exp(�N)
p
2�N

�
1 +

1

12N
+

1

288N2
� 139

51840N3
+ � � �

�
(265)
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B Appendix: Essential Thermodynamics

The First Law of Thermodynamics expresses the conservation of energy.
It can be written as

dU = q + w (266)

The change of the internal energy of the system is equal to the amount
of heat transferred to the system plus the amount of work performed on
the system. The energy of a system is a state function: i.e. when, at
the end of a process, a system is returned to its initial state, then the
internal energy of the system remains unchanged in the process. Note
that work (w) and heat (q) are not state functions.

The Second Law of Thermodynamics was discussed in Section2. The
law is a consequence of the experimental observation that it is not pos-
sible to devise a cyclic process that has as its only consequence that
heat, taken from a reservoir, is completely converted into work. Note
that such a process is not forbidden by the First Law. As explained
in Section2, this allows us to de�ne an absolute temperature scale (T )
and it leads to the introduction of a state function, S, called "Entropy".
In terms of these quantities, the Second Law of Thermodynamics can
be expressed in a di�erent way: A spontaneous process in an isolated
system always results in an increase of the entropy. The change in the
entropy of a system can be written as

dStot =
qrev
T

(267)

where qrev denotes the amount of heat that is reversibly transferred to
the system. The work performed on the system can have many di�erent
forms. It can be mechanical, electrical or chemical.

Having de�ned the internal energy (U), the temperature (T ) and the
entropy (S), we can now use the �rst and second law of thermodynamics
to introduce a number of additional useful relations. Let us �rst consider
a very large, isolated system. Inside this system, we have a small system
with volume V , internal energy U and entropy S: Let us �rst assume
that this system can exchange only heat with the big reservoir around
it. Initially, the reservoir and the system are not in equilibrium. Hence,
spontaneous changes take place that must increase the total entropy.
Let us compute the change in the total entropy of the system due to an
in�nitesimal transfer of heat ( q) between the reservoir and the small
system. The total change in entropy is

dStot = dSres + dSsys � 0 (268)
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As the system can only exchange heat with the reservoir, the First Law
implies that dUsys = q. The change in entropy of the reservoir is equal to
dSres = � q=T . Hence, the total change in entropy can now be expressed
in terms of state functions of the system (and the temperature of the
reservoir):

dStot =
�dUsys

T
+ dSsys = �(dUsys � TdSsys)=T � 0 (269)

As the temperature of the (e�ectively in�nite) reservoir is constant, we
can write

�(dUsys � dTSsys)=T � 0 (270)

or
d(Usys � TSsys) � 0 (271)

As both U and S are state functions, the combination U � TS is also
a state function. The combination U � TS is called the Helmholtz free
energy of the system. It is denoted by the symbol A. The second law
of thermodynamics therefore implies: for a system with a �xed volume
and a �xed number of particles at constant temperature, the Helmholtz
free energy is at a minimum. Similarly, we can derive that, for a system
with a �xed number of particles at constant temperature and pressure,
the state function G � U + PV � TS is at a minimum. G is called
the Gibbs free energy. The only di�erence is that now we must write
dUsys =q+ w, w = �PdVsys: Hence, qrev = dUsys + PdVsys. The change
in the total entropy is then

dStot =
�dUsys � PdVsys

T
+ dSsys = �d(Usys + PVsys � TSsys)

T
� 0

(272)
or dGsys � 0. Finally, we consider a situation where the small system
can exchange heat and particles with the reservoir. In that case, the
work is chemical work

w =
X
i

�idNi (273)

Then we get

dStot =
�dUsys +

P
i �idNi

T
+dSsys = �dUsys �

P
i �idNi � TdSsys
T

� 0

(274)
Another state function that is often useful, is the enthalpy H � U+PV .
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The general relations for in�nitesimal variations in S; U; H; A and G are

dS =
dU

T
+
P

T
dV �

X
i

�i
T
dNi (275)

dU = TdS � PdV +
X
i

�idNi (276)

dH = TdS + V dP +
X
i

�idNi (277)

dA = �SdT � PdV +
X
i

�idNi (278)

dG = �SdT + V dP +
X
i

�idNi (279)

From the above expressions, we can derive a number of Maxwell rela-
tions. Consider an arbitrary state function Q(x; y; z) where x; y and z
are the independent variables that characterize the state point (e.g. the
set (x; y; z) could correspond to (T; V;N) ). We can then write

dQ =

�
@Q

@x

�
y;z

dx +

�
@Q

@y

�
x;z

dy +

�
@Q

@z

�
x;y

dz (280)

Clearly, �
@2Q

@x@y

�
=

�
@2Q

@y@x

�
(281)

If we apply this (for instance) to the thermodynamic state function A,
we get �

@P

@T

�
V;fNig

=

�
@S

@V

�
T;fNig

(282)

�
@�i
@T

�
V;fNig

=

�
@S

@Ni

�
T;V;fNjg

(283)

Other important thermodynamic quantities are the heat capacity at con-
stant volume (CV ) and the heat capacity at constant pressure (CP ):

CV =

�
@U

@T

�
V;fNig

(284)

CP =

�
@H

@T

�
P;fNig

(285)

Finally, any function of state functions is a state function. This is some-
times useful. For instance, consider the state function A=T .

d
A

T
=
dA

T
+ Ad

1

T
=
�SdT � PdV +

P
i �idNi

T
� A

dT

T 2
(286)
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at constant volume and constant number of particles, this becomes�
d
A

T

�
V;fNig

=
�SdT
T

� A
dT

T 2
= �(TS + A)

dT

T 2

=Ud
1

T
(287)

and hence �
@(A=T )

@(1=T )

�
V;fNig

= U (288)

C Appendix: Essential quantum mechanics.

Statistical thermodynamics relates the equilibrium behavior of macro-
scopic systems to the physical properties of the constituent molecules.
As the behavior of individual molecules is determined by the laws of
quantum mechanics, statistical thermodynamics makes extensive use the
results of quantum-mechanical calculations. However, only a very lim-
ited amount of quantum mechanics is needed for the present course.

The most important result of quantum mechanics that we use is
the following: A system can only be found in discrete states. For a
macroscopic isolated system, the number of these discrete states may be
extremely large, but it is �nite and, at least in principle, countable. The
basic assumption of statistical thermodynamics is that, in an isolated
system (i.e. a system with �xed volume, energy and number of particles)
every quantum state occurs with equal probability. If the total number
of states of the system is denoted by 
(N; V; U), then the probability to
�nd the system in any one of these states is 1=
(N; V; U).

C.1 Molecular energy levels

In general, we cannot compute the quantum levels of a macroscopic sys-
tem. However, for isolated molecules, the situation is better. Using the
techniques of quantum chemistry, it is possible to compute molecular
quantum levels with high accuracy. We shall not do this. For the pur-
pose of this course, we shall assume that the motion of a molecule can be
decomposed into individual modes of motion that are uncoupled. Three
modes of motion can be described in the language of classical mechan-
ics. These are: translation (i.e. the motion of the molecular center of
mass), rotation (i.e. the overall rotation of a molecule around its center
of mass) and vibration (i.e. the oscillatory motion that the atoms in
the molecule carry out when we stretch or bend chemical bonds in the
molecule). Loosely, one could call translation, vibration and rotation
\semi-classical" forms of motion. By this I mean that the energy levels
for these forms of motion can be estimated by combining our knowledge
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of the corresponding classical motion with simple \quantization rules".
In addition, certain molecular energy levels cannot be deduced in any
simple way from classical mechanics. These are the levels that are asso-
ciated with excitation of electronic motion in the molecule, and energy
levels that di�er in the state of the spin of the nuclei or electrons in the
atom. If we assume that the various modes of motion are uncoupled, we
can describe them all independently. This is a great simpli�cation. How-
ever, it should be stressed that, in reality, there is always some coupling
between the di�erent modes of motion.

C.1.1 Translation

It is easy to compute the energy levels for a particle of mass m moving
in a one-dimensional box of length L. Classically, the energy of a such
a particle is simply the kinetic energy E = 1

2
mv2 = p2

2m
, where v is

the velocity of the particle and p is its momentum. The only quantum
mechanics that we use is that the momentum p can be written as h=�
where h is Planck's constant and � is the \wavelength" of the particle
and that every energy level of the particle in the box corresponds to a
standing wave. The condition for a standing wave is: L = n�=2, with n
an arbitrary positive integer. Hence, � = 2L=n. If we insert this value
for � in the expression for the classical kinetic energy, we �nd:

En =
(h=�)2

2m
=

n2h2

8mL2
(289)

Although our \derivation" was oversimpli�ed, the answer is correct. Of
course, we live in a three-dimensional world. Hence, the more relevant
question is: what are the energy levels of a particle in a three-dimensional
box ? Let us assume that we have a rectangular box with sides Lx; Ly

and Lz. The energy levels of a particle of mass m in such a box are

En;m;l =
n2h2

8mL2
x

+
m2h2

8mL2
y

+
l2h2

8mL2
z

(290)

For a cubic box with sides L, the levels are

En;m;l =
(n2 +m2 + l2)h2

8mL2
(291)

C.1.2 Rotation

The quantum-mechanical energy levels of a rotating particle depend on
the moment of inertia of the particle. The simplest case is that of a
linear molecule with a moment of inertia I. In general, the moment of
inertia of a linear molecule consisting of n atoms, is given by

I =
nX
i=1

mi(xi �XCM)2
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where mi is the mass of the i-th atom, xi is its position and XCM is the
position of the center of mass - where we have assumed that the molecule
is oriented along the x-axis.

XCM =
nX
i=1

mixi=M

where M =
P

mi. For a diatomic molecule:

I = m1(x1 �XCM)2 +m2(x2 �XCM)2

If we insert the expression for XCM we �nd

I =
m1

M2
(m2x1 �m2x2)

2+

m2

M2
(m1x2 �m1x1)

2

or

I =
m1m2

m1 +m2

(x1 � x2)
2

� �r2e

where
� � m1m2

m1 +m2

de�nes the reduced mass of the diatomic molecule and

re = jx1 � x2j
de�nes its equilibrium length.

Classically, the rotational kinetic energy of such a molecule would be
1
2
I!2 = J2=(2I), where ! is the angular velocity of the molecule and J

its angular momentum. Quantum mechanically, only discrete values of
J2 are allowed, namely J2 = j(j + 1)�h2, where �h = h=(2�) and j is an
arbitrary non-negative integer. Hence the energy levels of a linear rotor
are given by:

Ej =
j(j + 1)�h

2I
(j = 0; 1; 2; : : : ) (292)

Classically, the angular momentum vector can have any orientation in
space. Quantum mechanically, only discrete orientations are allowed.
The number of allowed orientations of the angular momentum of a lin-
ear molecule with rotational quantum number j is equal to (2j + 1).
Hence, di�erent rotational energy levels have di�erent degeneracies. For
instance, for j = 0, the degeneracy is 1, for j = 1, the degeneracy is 3
and so on . . .

The rotational energy levels of nonlinear molecules can also be com-
puted on basis of the knowledge of their moment of inertia (which is now
a tensor). For details, see e.g. Atkins, section 16.4.

62



C.1.3 Vibration

Suppose that we have a classical spring with spring-constant k, i.e. the
relation between the extension x of the spring and the restoring force f
is

f = �kx (293)

From classical mechanics, it is easy to derive that if a particle of mass m
is connected to the spring, then an initial displacement of the spring will
lead to an oscillatory motion with angular frequency ! =

p
k=m. The

classical energy of a harmonic oscillator is: Ecl =
1
2
m!2x2 + 1

2
mv2. For

a periodic motion (e.g. x(t) = x(0) cos(!t) and v(t) = �x(0)! sin(!t)
), the total kinetic energy is: Ecl =

1
2
m!2x2(0). However, quantum-

mechanically not all energies are allowed. It turns out that the allowed
energy levels satisfy

En = (n +
1

2
)h�; (294)

where � is the vibrational frequency (v = w=(2�)). The energy levels of
a single, one-dimensional harmonic oscillator are non-degenerate.

C.1.4 Electronic

To �nd the electronically energy levels of a molecule (�0; �1; �2 etc.), one
really needs to solve the full Schr�odinger equation for this system. More-
over, di�erent molecules will have di�erent electronic energy levels. We
will therefore not attempt to write down any \general" form for the
electronic energy levels of a molecule.

C.1.5 Spin

Electrons have a \spin" of 1
2
. This means that they carry angular mo-

mentum. Similarly, many nuclei have a spin too. Depending on the
nature of the nucleus 7the nuclear spin can be either be integer valued
(0, 1, 2 etc.) or half-integer valued (1

2
; 3
2
, etc.). It turns out that particles

with half-integer spins (\fermions") behave very di�erently from parti-
cles with integer spins (\bosons"). The angular momentum of a particle
with spin can have only discrete orientations in space. The number of
discrete orientations is equal to (2s + 1) where s is the integer or half-
integer that denotes the spin state of the particle. For example, a single
electron can have 2 (= 21

2
+ 1) spin states.

D Appendix: Spring constant of an arbitrary poly-

mer

Consider the average end-to-end distance (< Xee >F ) of an arbitrary
polymer that is being stretched by a force F . A non-ideal polymer with
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a conformation �i has an internal energy Uint(�i) that depends on the
details of that conformation. In addition, due to the external force, the
potential energy of a polymer with end-to-end distance Xee is lowered
by an amount XeeF . The average end-to-end distance of the polymer is

< Xee >F=

P
T
i=1Xee(�i) exp(��(U(�i)�Xee(�i)F ))P
T

i=1 exp(��(U(�i)�Xee(�i)F ))
(295)

where 
T denotes the total number of conformations of the polymer. If
the applied force is suÆciently small, we can write exp(�Xee(�i)F ) �
1 + �Xee(�i)F .

< Xee >F�
P
T

i=1Xee(�i)(1 + �Xee(�i)F ) exp(��(U(�i))P
T
i=1(1 + �Xee(�i)F ) exp(��(U(�i))

(296)

If we now divide and multiply by
P
T

i=1 exp(��(U(�i)), we get

< Xee >F�
P
T

i=1Xee(�i)(1 + �Xee(�i)F ) exp(��(U(�i))P
T
i=1 exp(��(U(�i))

�
P
T

i=1 exp(��(U(�i))P
T
i=1(1 + �Xee(�i)F ) exp(��(U(�i))

=
< Xee >F=0 +�F < X2

ee >F=0

1 + �F < Xee >F=0

(297)

Note that all the averages appearing in this equation are averages for
the unperturbed polymer (i.e. in the absence of an external force). If we
now make use of the fact that < Xee >F=0vanishes (due to symmetry)
we get

< Xee >F= �F < X2
ee >F=0 (298)

This is the relation between force and elongation for a harmonic spring
with force constant

� =
kBT

< X2
ee >

(299)
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