
The Fluctuation Theorem

Denis J. Evans*

Research School of Chemistry, Australian National University, Canberra,
ACT 0200 Australia

and Debra J. Searles

School of Science, Gri� th University, Brisbane, Qld 4111 Australia

[Received 1 February 2002; revised 8 April 2002; accepted 9 May 2002]

Abstract

The question of how reversible microscopic equations of motion can lead to
irreversible macroscopic behaviour has been one of the central issues in statistical
mechanics for more than a century. The basic issues were known to Gibbs.
Boltzmann conducted a very public debate with Loschmidt and others without
a satisfactory resolution. In recent decades there has been no real change in the
situation. In 1993 we discovered a relation, subsequently known as the Fluctuation
Theorem (FT), which gives an analytical expression for the probability of
observing Second Law violating dynamical ¯uctuations in thermostatted dissipa-
tive non-equilibrium systems. The relation was derived heuristically and applied to
the special case of dissipative non-equilibrium systems subject to constant energy
`thermostatting’. These restrictions meant that the full importance of the Theorem
was not immediately apparent. Within a few years, derivations of the Theorem
were improved but it has only been in the last few of years that the generality of the
Theorem has been appreciated. We now know that the Second Law of Thermo-
dynamics can be derived assuming ergodicity at equilibrium, and causality. We
take the assumption of causality to be axiomatic. It is causality which ultimately is
responsible for breaking time reversal symmetry and which leads to the possibility
of irreversible macroscopic behaviour.

The Fluctuation Theorem does much more than merely prove that in large
systems observed for long periods of time, the Second Law is overwhelmingly
likely to be valid. The Fluctuation Theorem quanti®es the probability of observing
Second Law violations in small systems observed for a short time. Unlike the
Boltzmann equation, the FT is completely consistent with Loschmidt’s observa-
tion that for time reversible dynamics, every dynamical phase space trajectory and
its conjugate time reversed `anti-trajectory’, are both solutions of the underlying
equations of motion. Indeed the standard proofs of the FT explicitly consider
conjugate pairs of phase space trajectories. Quantitative predictions made by the
Fluctuation Theorem regarding the probability of Second Law violations have
been con®rmed experimentally, both using molecular dynamics computer simula-
tion and very recently in laboratory experiments.
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1. Introduction
1.1. Overview

Linear irreversible thermodynamics is a macroscopic theory that combines
Navier±Stokes hydrodynamics, equilibrium thermodynamics and Maxwell’s postu-
late of local thermodynamic equilibrium. The resulting theory predicts in the near
equilibrium regime, where local thermodynamic equilibrium is expected to be valid,
that there will be a `spontaneous production of entropy’ in non-equilibrium systems.
This spontaneous production of entropy is characterized by the entropy source
strength, ¼, which gives the rate of spontaneous production of entropy per unit
volume. Using these assumptions it is straightforward to show [1] that

…
dr ¼…r; t† ˆ

…
dr

X
Ji…r; t†Xi…r; t†

± ²
> 0; …1:1†

where Ji…r; t† is one of the Navier±Stokes hydrodynamic ¯uxes (e.g. the stress tensor,
heat ¯ux vector, . . .) at position r and time t and Xi is the thermodynamic force which
is conjugate to Ji…r; t† (e.g. strain rate tensor divided by the absolute temperature or
the gradient of the reciprocal of the absolute temperature, . . . respectively). As
discussed in reference [1], equation (1.1) is a consequence of exact conservation
laws, the Second Law of Thermodynamics and the postulate of local thermodynamic
equilibrium.

The conservation laws (of energy, mass and momentum) can be taken as given.
The postulate of local thermodynamic equilibrium can be justi®ed by assuming
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analyticity of thermodynamic state functions arbitrarily close to equilibrium.y
Assuming analyticity, then local thermodynamic equilibrium is obtained from a
®rst order expansion of thermodynamic properties in the irreversible ¯uxes fXig. We
take this `postulate’ as highly plausibleÐespecially on physical grounds.

However, the rationalization of the Second Law of Thermodynamics is a
di� erent issue. The question of how irreversible macroscopic behaviour, as summar-

ized by the Second Law of Thermodynamics, can be derived from reversible
microscopic equations of motion has remained unresolved ever since the foundation
of thermodynamics. In their 1912 Encyclopaedia article [3] the Ehrenfests made the
comment: Boltzmann did not fully succeed in proving the tendency of the world to go to
a ®nal equilibrium state . . . The very important irreversibility of all observable
processes can be ®tted into the picture: The period of time in which we live happens
to be a period in which the H-function of the part of the world accessible to observation
decreases. This coincidence is not really an accident, it is a precondition for the
existence of life. The view that irreversibility is a result of our special place in space±
time is still widely held [4]. In the present Review we will argue for an alternative, less
anthropomorphic , point of view.

In this Review we shall discuss a theorem that has come to be known as the
Fluctuation Theorem (FT). This `Theorem’ is in fact a group of closely related

Fluctuation Theorems. One of these theorems states that in a time reversible,
thermostatted, ergodic dynamical system, if S…t† ˆ ¡­ J…t†FeV ˆ

„
V

dV ¼…r; t†=kB

is the total (extensive) irreversible entropy production rate, where V is the system
volume, Fe an external dissipative ®eld, J is the dissipative ¯ux, and ­ ˆ 1=kBT
where T is the absolute temperature of the thermal reservoir coupled to the system
and kB is Boltzmann’s constant, then in a non-equilibrium steady state the
¯uctuations in the time averaged irreversible entropy production
·SSt ² …1=t†

„ t

0
ds S…s†, satisfy the relation:

lim
t!1

1

t
ln

p… ·SSt ˆ A†
p… ·SSt ˆ ¡A†

ˆ A: …1:2†

The notation p… ·SSt ˆ A† denotes the probability that the value of ·SSt lies in the range
A to A ‡ dA and p… ·SSt ˆ ¡A† denotes the corresponding probability ·SSt lies in the
range ¡A to ¡A ¡ dA. The equation is valid for external ®elds, Fe, of arbitrary
magnitude. When the dissipative ®eld is weak, the derivation of (1.2) constitutes a
proof of the fundamental equation of linear irreversible thermodynamics, namely
equation (1.1).

Loschmidt objected to Boltzmann’s `proof ’ of the Second Law, on the grounds
that because dynamics is time reversible, for every phase space trajectory there exists

a conjugate time reversed antitrajectory [5] which is also a solution of the equations
of motion.z If the initial phase space distribution is symmetric under time reversal
symmetry (which is the case for all the usual statistical mechanical ensembles) then it
was then argued that the Boltzmann H-function (essentially the negative of the
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dilute gas entropy), could not decrease monotonically as predicted by the Boltzmann

H-theorem.
However, Loschmidt’s observation does not deny the possibility of deriving the

Second Law. One of the proofs of the Fluctuation Theorem given here, explicitly

considers bundles of conjugate trajectory and antitrajectory pairs. Indeed the
existence of conjugate bundles of trajectory and antitrajectory segments is central

to the proof. By considering the measure of the initial phases from which these

conjugate bundles originate, we derive a Fluctuation Theorem which con®rms that
for large systems, or for systems observed for long times, the Second Law of

Thermodynamics is likely to be satis®ed with overwhelming (exponential) likelihood.

The Fluctuation Theorem is really best regarded as a set of closely related
theorems. One reason for this is that the theorem deals with ¯uctuations, and since

one expects the statistics of ¯uctuations to be di� erent in di� erent statistical
mechanical ensembles, there is a need for a set of di� erent, but related theorems.

A second reason for the diversity of this set of theorems is that some theorems refer

to non-equilibrium steady state ¯uctuations, e.g. (1.2), while others refer to transient
¯uctuations. If transient ¯uctuations are considered, the time averages are computed

for a ®nite time from a zero time where the initial distribution function is assumed to

be known: for example it could be one of the equilibrium distribution functions of
statistical mechanics.

Even when the time averages are computed in the steady state, they could be

computed for an ensemble of experiments that started from a known, ergodically
consistent, distribution in the (long distant) past or, if the system is ergodic,

time averages could be computed at di� erent times during the course of a single

very long phase space trajectoryy. As we shall see, the Steady State Fluctuation
Theorems (SSFT) are asymptotic, being valid in the limit of long averaging

times, while the corresponding Transient Fluctuation Theorems (TFT) are exact

for arbitrary averaging times. The TFT can therefore be written,
‰p… ·SSt ˆ A†Š=‰p… ·SSt ˆ ¡A†Š ˆ exp ‰AtŠ; 8 t > 0.

We can illustrate the SSFT expressed in equation (1.2) very simply. Suppose we
consider a shearing system with a constant positive strain rate, ® ² @ux=@y, where ux

is the streaming velocity in the x-direction. Suppose further that the system is of ®xed

volume and is in contact with a heat bath at a ®xed temperature T. Time averages of
the xy-element of the pressure tensor, ·PPxy;t, are proportional to the negative of the

time-averaged entropy production. A histogram of the ¯uctuations in the time-

averaged pressure tensor element could be expected as shown in ®gure 1.1. In accord
with the Second Law, the mean value for ·PPxy;t is negative. The distribution is

approximately Gaussian. As the number of particles increases or as the averaging

time increases we expect that the variance of the histogram would decrease.
For the parameters studied in this example, the wings of the distribution ensure

that there is a signi®cant probability of ®nding data for which the time averaged
entropy production is negative. The SSFT gives a mathematical relationship for the

ratio of peak heights of pairs of data points which are symmetrically distributed

about zero on the x-axis, as shown in ®gure 1.1. The SSFT says that it becomes
exponentially likely that the value of the time-averaged entropy production will be

positive rather than negative. Further, the argument of this exponential grows
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linearly with system size and with the duration of the averaging time. In either the
large system or long time limit the SSFT predicts that the Second Law will hold
absolutely and that the probability of Second Law violations will be zero.

If h. . .i ·SSt>0 denotes an average over all ¯uctuations in which the time-integrated
entropy production is positive, then one can show that from the transient form of
equation (1.2), that

µ
p… ·SSt > 0†
p… ·SSt < 0†

¶
ˆ hexp …¡ ·SStt†i ·SSt<0 ˆ hexp …¡ ·SStt†i¡1

·SSt>0 > 1 …1:3†

gives the ratio of probabilities that for a ®nite system observed for a ®nite time, the
Second Law will be satis®ed rather than violated (see section 4.5). The ratio increases
approximately exponentially with increased time of observation, t, or with system
size (since S is extensive). [There is a corresponding steady state form of (1.3) which
is valid asymptotically, in the limit of long averaging times.] We will refer to the
various transient or steady state forms of (1.3) as transient or steady state, Integrated
Fluctuation Theorems (IFTs).

The Fluctuation Theorems are important for a number of reasons:

(1) they quantify probabilities of violating the Second Law of Thermo-
dynamics;

(2) they are veri®able in a laboratory;
(3) the SSFT can be used to derive the Green±Kubo and Einstein relations for

linear transport coe� cients;
(4) they are valid in the nonlinear regime, far from equilibrium, where Green±

Kubo relations fail;
(5) local versions of the theorems are valid;
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(6) stochastic versions of the theorems have been derived [6±11];
(7) TFT and SSFT can be derived using the traditional methods of non-

equilibrium statistical mechanics and applied to ensembles of transient or
steady state trajectories;

(8) the Sinai±Ruelle±Bowen (SRB) measure from the modern theory of
dynamical systems can be used to derive an SSFT for a single very long
dynamical trajectory characteristic of an isochoric, constant energy steady
state;

(9) FTs can be derived which apply exactly to transient trajectory segments
while SSFTs can be derived which apply asymptotically (t ! 1) to non-
equilibrium steady states;

(10) FTs can be derived for dissipative systems under a variety of
thermodynamic constraints (e.g. thermostatted, ergostatted or unthermos-
tatted, constant volume or constant pressure), and

(11) a TFT can be derived which proves that an ensemble of non-dissipative
purely Hamiltonian systems will with overwhelming likelihood, relax from
any arbitrary initial (non-equilibrium) distribution towards the appropriate
equilibrium distribution.

Point (11). is the analogue of Boltzmann’s H-theorem and can be thought of as a
proof of Le Chatelier’s Principle [12, 13].

In this Review we will concentrate on the ensemble versions of the TFT and
SSFT. A detailed account of the application of the SRB measure to the statistics of a
single dynamical trajectory has been given elsewhere by Gallavotti and Cohen (GC)
[14, 15]. However, it is true to say that for this more strictly dynamical derivation of
the SSFTs there are many unanswered questions. For example, essentially nothing is
known of the application of the SRB measure and GC methods to dynamical
trajectories which are characteristic of systems under various macroscopic thermo-
dynamic constraints (e.g. constant temperature or pressure). All the known results
seem to be applicable only to isochoric, constant energy systems. Also an hypothesis
which is essential to the GC proof of the SSFT, the so-called chaotic hypothesis, is
little understood in terms of how it applies to dynamical systems that occur in
nature. FT have also been developed for general Markov processes by Lebowitz and
Spohn [7] and a derivation of FT using the Gibbs formalism has been considered in
detail by Maes and co-workers [8±10].

1.2. Reversible dynamical systems
A typical experiment of interest is conveniently summarized by the following

example. Consider an electrical conductor (a molten salt for example) subject at say
t ˆ 0, to an applied electric ®eld, E. We wish to understand the behaviour of this
system from an atomic or molecular point of view. We assume that classical
mechanics gives an adequate description of the dynamics. Experimentally we can
only control a small number of variables which specify the initial state of the system.
We might only be able to control the initial temperature T…0†, the initial volume
V…0† and the number of atoms in the system, N , which we assume to be constant.
The microscopic state of the system is represented by a phase space vector of the
coordinates and momenta of all the particles, in an exceedingly high dimensional
spaceÐphase spaceÐfq1; q2; . . . ; qN ; p1; . . . ; pNg ² …q; p† ² C where qi; pi are the
position and conjugate momentum of particle i. There are a huge number of initial
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microstates C …0†, that are consistent with the initial macroscopic speci®cation of the
system …T…0†; V…0†; N†.

We could study the macroscopic behaviour of the macroscopic system by taking
just one of the huge number of microstates that satisfy the macroscopic conditions,
and then solving the equations of motion for this single microscopic trajectory.
However, we would have to take care that our microscopic trajectory C …t†, was a
typical trajectory and that it did not behave in an exceptional way. The best way of
understanding the macroscopic system would be to select a set of N C initial phases
f C j…0†; j ˆ 1; . . . ; N C g and compute the time dependent properties of the macro-
scopic system by taking a time dependent average hA…t†i of a phase function A… C †
over the ensemble of time evolved phases

hA…t†i ˆ
XN C

jˆ1

A… C j…t††=N C :

Indeed, repeating the experiment with initial states that are consistent with the
speci®ed initial conditions is often what an experimentalist attempts to do in the
laboratory. Although the concept of ensemble averaging seems natural and intuitive
to experimental scientists, the use of ensembles has caused some problems and
misunderstandings from a more purely mathematical viewpoint.

Ensembles are well known to equilibrium statistical mechanics, the concept being
®rst introduced by Maxwell. The use of ensembles in non-equilibrium statistical
mechanics is less widely known and understood.y For our experiment it will often be
convenient to choose the initial ensemble which is represented by the set of phases
f C j…0†; j ˆ 1; . . . ; N C g, to be one of the standard ensembles of equilibrium statistical
mechanics. However, sometimes we may wish to vary this somewhat. In any case, in
all the examples we will consider, the initial ensemble of phase vectors will be
characterized by a known initial N-particle distribution function, f … C ; t†, which gives
the probability, f … C ; t† d C , that a member of the ensemble is within some small
neighbourhood d C of a phase C at time t, after the experiment began.

The electric ®eld does work on the system causing an electric current, I, to ¯ow.
We expect that at an arbitrary time t after the ®eld has been applied, the ensemble
averaged current hI…t†i will be in the direction of the ®eld; that the work performed
on the system by the ®eld will generate heatÐOhmic heating, hI…t†i · E; and that
there will be a `spontaneous production of entropy’ hS…t†i ˆ hI…t† · E=T…t†i. It will
frequently be the case that the electrical conductor will be in contact with a heat
reservoir which ®xes the temperature of the system so that T…t† ˆ T…0† ˆ T ; 8t. The
particles in this system constitute a typical time reversible dynamical system.

We are interested in an number of problems suggested by this experiment:

(1) How do we reconcile the `spontaneous production of entropy’, with the time
reversibility of the microscopic equations of motion?

(2) For a given initial phase C j…0† which generates some time dependent current
Ij…t† , can we generate Loschmidt’s conjugate antitrajectory which has a time-
reversed electric current?

(3) Is there anything we can say about the deviations of the behaviour of
individual ensemble members, from the average behaviour?
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In general, it is convenient to consider equations of motion for an N-particle
system, of the form,

_qqi ˆ pi

m
‡ Ci… C † · Fe

_ppi ˆ Fi…q† ‡ Di… C † · Fe ¡ Si¬… C †pi;

9
=

; …1:4†

where Fe is the dissipative external ®eld that couples to the system via the phase
functions C… C † and D… C †, Fi…q† ˆ ¡@F…q†=@qi is the interatomic force on particle i
(and F…q† is the interparticle potential energy), and the last term ¡Si¬… C †pi is a
deterministic time reversible thermostat used to add or remove heat from the system
[16]. The thermostat multiplier is chosen using Gauss’s Principle of Least Constraint
[16], to ®x some thermodynamic constraint (e.g. temperature or energy). The
thermostat employs a switch, Si, which controls how many and which particles
are thermostatted.

The model system could be quite realistic with only some particles subject to the
external ®eld. For example, some ¯uid particles might be charged in an electrical
conduction experiment, while other particles may be chemically distinct, being solid
at the temperatures and densities under consideration. Furthermore these particles
may form the thermal boundaries or walls which thermostat and `contain’ the
electrically charged particles ¯uid particles inside a conduction cell. In this case
Si ˆ 1 only for wall particles and Si ˆ 0 for all the ¯uid particles. This would provide
a realistic model of electrical conduction.

In other cases we might consider a homogeneous thermostat where Si ˆ 1; 8i. It
is worth pointing out that as described, equations (1.4) are time reversible and heat
can be both absorbed and given out by the thermostat. However, in accord with the
Second Law of Thermodynamics, in dissipative dynamics the ensemble averaged
value of the thermostat multiplier is positive at all times, no matter how short,
h¬…t†i > 0; 8t > 0.

One should not confuse a real thermostat composed of a very large (in principle,
in®nite) number of particles with the purely mathematicalÐalbeit convenientÐterm

¬. In writing equation (1.4) it is assumed that the momenta pi are peculiar (i.e.
measured relative to the local streaming velocity of the ¯uid or wall). The thermostat
multiplier may be chosen, for instance, to ®x the internal energy of the system

H0 ²
X

i:Siˆ0

µ
p2

i =2m ‡ 1=2
X

j

F…q†
¶
;

in which case we speak of ergostatted dynamics, or we can constrain the peculiar
kinetic energy of the wall particles

KW ²
X

Siˆ1

p2
i =2m ˆ dCNWkBTw=2; …1:5†

with NW ˆ
P

Si, in which case we speak of isothermal dynamics. The quantity TW

de®ned by this relation is called the kinetic temperature of the wall, and dC is the
Cartesian dimension of the system. For homogeneously thermostatted systems, TW

becomes the kinetic temperature of the whole system and NW becomes just the
number of particles N, in the whole system.

For ergostatted dynamics, the thermostat multiplier, ¬, is chosen as the
instantaneous solution to the equation,
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_HH0… C † ² ¡J… C †V · Fe ¡ 2KW… C †¬… C † ˆ 0; …1:6†

where J is the dissipative ¯ux due to Fe de®ned as

_HHad
0 ² ¡JV · Fe ² ¡

X µ
pi

m
· Di ¡ Fi · Ci

¶
· Fe; …1:7†

_HHad
0 is the adiabatic time derivative of the internal energy and V is the volume of the

system. Equation (1.6) is a statement of the First Law of Thermodynamics for an
ergostatted non-equilibrium system. The energy removed from (or added to) the
system by the ergostat must be balanced instantaneously by the work done on (or
removed from) the system by the external dissipative ®eld, Fe. For ergostatted
dynamics we solve (1.6) for the ergostat multiplier and substitute this phase function
into the equations of motion. For thermostatted dynamics we solve an equation
which is analogous to (1.6) but which ensures that the kinetic temperature of the
walls or system, is ®xed [16]. The equations of motion (1.4) are reversible where the
thermostat multiplier is de®ned in this way.

One might object that our analysis is compromised by our use of these arti®cial
(time reversible) thermostats. However, the thermostat can be made arbitrarily
remote from the system of physical interest [17]. If this is the case, the system
cannot `know’ the precise details of how entropy was removed at such a remote
distance. This means that the results obtained for the system using our simple
mathematical thermostat must be the same as those we would infer for the same
system surrounded (at a distance) by a real physical thermostat (say with a huge heat
capacity). These mathematical thermostats may be unrealistic, however in the ®nal
analysis they are very convenient but ultimately irrelevant devices.

Using conventional thermodynamics, the total rate of entropy absorbed (or
released!) by the ergostat is the energy absorbed by the ergostat divided by its
absolute temperature,

S…t† ˆ 2KW… C †¬… C †=TW…t† ˆ dCNWkB¬…t† ˆ ¡J…t†V · Fe=TW…t†: …1:8†

The entropy ¯owing into the ergostat results from a continuous generation of
entropy in the dissipative system.

The exact equation of motion for the N-particle distribution function is the time
reversible Liouville equation

@f … C ; t†
@t

ˆ ¡ @

@ C
· ‰ _CC f … C ; t†Š; …1:9†

which can be written in Lagrangian form,

df … C ; t†
dt

ˆ ¡f … C ; t† d

d C
· _CC ² ¡L… C † f … C ; t†: …1:10†

This equation simply states that the time reversible equations of motion conserve the
number of ensemble members, N C . The presence of the thermostat is re¯ected in the
phase space compression factor, L… C † ² @ _CC · =@ C , which is to ®rst order in N,

L ˆ ¡dCNW¬. Again one might wonder about the distinction between Hamiltonian
dynamics of realistic systems, where the phase space compression factor is identically
zero and arti®cial ergostatted dynamics where it is non-zero. However, as Tolman
pointed out [18], in a purely Hamiltonian system, the neglect of `irrelevant’ degrees
of freedom (as in thermostats or for example by neglecting solvent degrees of
freedom in a colloidal or Brownian system) inevitably results in a non-zero phase
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space compression factor for the remaining `relevant’ degrees of freedom. Equation
(1.8) shows that there is an exact relationship between the entropy absorbed by an
ergostat and the phase space compression in the (relevant) system.

1.3. Example: SLLOD equations for planar Couette ¯ow
A very important dynamical system is the standard model for planar Couette

¯owÐthe so-called SLLOD equations for shear ¯ow. Consider N particles under
shear. In this system the external ®eld is the shear rate, @ux=@y ˆ ®…t† (the y-gradient
of the x-streaming velocity), and the xy-element of the pressure tensor, Pxy, is the
dissipative ¯ux, J [16]. The equations of motion for the particles are given by the the
so-called thermostatted SLLOD equations,

_qqi ˆ pi=m ‡ i®yi; _ppi ˆ Fi ¡ i®pyi ¡ ¬pi: …1:11†
Here, i is a unit vector in the positive x-direction. At arbitrary strain rates these
equations give an exact description of adiabatic (i.e. unthermostatted) Couette ¯ow.
This is because the adiabatic SLLOD equations for a step function strain rate

@ux…t†=@y ˆ ®…t† ˆ ®Y…t†, are equivalent to Newton’s equations after the impulsive
imposition of a linear velocity gradient at t ˆ 0 (i.e. dqi…0‡†=dt ˆ dqi…0¡†=dt ‡ i®yi)
[16]. There is thus a remarkable subtlety in the SLLOD equations of motion. If one
starts at t ˆ 0¡, with a canonical ensemble of systems then at t ˆ 0‡, the SLLOD
equations of motion transform this initial ensemble into the local equilibrium
ensemble for planar Couette ¯ow at a shear rate ®. The adiabatic SLLOD equations
therefore give an exact description of a boundary driven thermal transport process,
although the shear rate appears in the equations of motion as a ®ctitious (i.e.
unnatural) external ®eld. This was ®rst pointed out by Evans and Morriss in 1984
[19].

At low Reynolds number, the SLLOD momenta, pi, are peculiar momenta and ¬
is determined using Gauss’s Principle of Least Constraint to keep the internal
energy, H0 ˆ Sp2

i =2m ‡ F…q†, ®xed [16]. Thus, for a system subject to pair
interactionsy

F…q† ˆ
XN¡1

iˆ1

XN

j>i

¿…qij†;

¬ ˆ ¡®

µ XN

iˆ1

pxipyi=m ¡ 1=2
XN

i; j

xijFyij

¶¿ XN

iˆ1

p2
i =m

² ¡Pxy®V

¿ XN

iˆ1

p2
i =m ˆ ¡Pxy®V=2K…p†; …1:12†

where Fyij is the y-component of the intermolecular force exerted on particle i by j
and xij ² xj ¡ xi. The corresponding isokinetic form for the thermostat multiplier is,

¬ ˆ

XN

i

Fi · pi ¡ ®

µ XN

iˆ1

pxipyi=m

¶

XN

iˆ1

p2
i =m

: …1:13†
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The ergostatted and thermostatted SLLOD equations of motion, (1.11), (1.12), (1.13),
are time reversible [16]. In the weak ¯ow limit these equations yield the correct Green±
Kubo relation for the linear shear viscosity of a ¯uid [16]. We have also proved that in
this limit, the linear response obtained from the equations of motion, or equivalently
from the Green±Kubo relation are identical to leading order in N the number of
particles. In the far-from-equilibrium regime, Brown and Clarke [20] have shown that
the results for homogeneously thermostatted SLLOD dynamics are indistinguishable
from those for boundary thermostatted shear ¯ow, up to the limiting shear rate above
which a steady state for boundary thermostatted systems is not stable.y

1.4. Lyapunov instability
The Lyapunov exponents are used in dynamical systems theory to characterize

the stability of phase space trajectories. If one imagines two systems that evolve in
time from phase vectors C 1…0†; C 2…0† which initially are very close together
jC 1…0† ¡ C 2…0†j ² dC …0† ! 0, then one can ask how the separation between these
two systems evolves in time. Oseledec’s Theorem says for non-integrable systems
under very general conditions, that the separation vector asymptotically grows or
shrinks exponentially in time. Of course this does not happen for integrable systems,
but then most real systems are not integrable. A system is said to be chaotic if the
separation vector asymptotically grows exponentially with time. Most systems in
Nature are chaotic: the world weather and high Reynolds Number ¯ows are chaotic.
In fact all systems that obey thermodynamics are chaotic. In 1990 the ®rst of a
remarkable set of relationships between phase space stability measures (i.e.
Lyapunov exponents) and thermophysical properties were discovered by Evans et
al. [21] and Gaspard and Nicolis [22]. More recently Lyapunov exponents have been
used to assign dynamical probabilities to the observation of phase space trajectory
segments [14, 15, 23]. This is something quite new to statistical mechanics where
hitherto probabilities had been given (only for equilibrium systems!) on the basis of
the value of the Hamiltonian (i.e. the weights are static).

Suppose the equations of motion (1.4), are written

_CC ˆ G… C ; t†: …1:14†

It is trivial to see that the equation of motion for an in®nitesimal phase space
separation vector, d C , can be written as:

d _CC ˆ T… C ; t† · d C ; …1:15†

where T ² @G… C ; t†=@ C is the stability matrix for the ¯ow. The propagation of the
tangent vectors is therefore given by,

d C …t† ˆ L…t† · d C …0†; …1:16†

where the propagator is:

L…t† ˆ expL

…t

0

ds T…s†
³ ´

…1:17†
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and expL is a left time-ordered exponential. The time evolution of these tangent
vectors is used to determine the Lyapunov spectrum for the system. The Lyapunov
exponents thus represent the rates of divergence of nearby points in phase space.

If d C i…0† is an eigenvector of L…t†T · L…t† and if the Lyapunov exponents are
de®ned as [24]:

f¶i; i ˆ 1; . . . ; 2dNg ˆ lim
t!1

1

2t
ln ‰eigenvalues …L…t†T · L…t††Š; …1:18†

then the Lyapunov exponents describe the growth rates of the set of orthogonal
tangent vectors …eigenvectors of …L…t†T · L…t†††, fd C i…t†; i ˆ 1; 2dCNg,

lim
t!1

1

2t
ln

jd C i…t† · d C i…t†j
jd C i…0† · d C i…0†j ˆ lim

t!1

1

2t
ln

jd C i…0†T · L…t†T · L…t† · dC i…0†j
jd C i…0† · d C i…0†j

ˆ 1

2t
ln

jd C i…0†T · exp ‰2¶itŠ1 · d C i…0†j
d C i…0† · d C i…0†j j

ˆ ¶i; i ˆ 1; . . . ; 2dCN: …1:19†

By convention the exponents are ordered such that ¶1 > ¶2 > ¢ ¢ ¢ > ¶2dCN . It can be
shown that the Lyapunov exponents are independent of the metric used to measure
phase space lengths.

In order to calculate the Lyapunov spectrum, one does not normally use equation
(1.18). Benettin et al. developed a technique whereby the ®nite but small displace-
ment vectors are periodically rescaled and orthogonalized during the course of a
solution of the equations of motion [25, 26]. Hoover and Posch [27] pointed out that
this rescaling and orthogonalization can be carried out continuously by introducing
constraints to the equations of motion of the tangent vectors [28]. With this
modi®cation, orthogonality and tangent vector length are maintained at all times
during the calculation.

In theory, the 2dN eigenvalues of the real symmetric matrix L…t†T · L…t† can also
be used to calculate the Lyapunov spectrum in the limit t ! 1. Since L is dependent
only on the mother trajectory, calculation of the Lyapunov exponents from the
eigenvalues of L…t†T · L…t† does not require the solution of 2dN tangent trajectories as
in the methods mentioned in the previous paragraph. However, after a short time,
numerical di� culties are encountered using this method due to the enormous di� erence
in the magnitude of the eigenvalues of the L…t†T · L…t† matrix.y The use of QR
decompositions (where where L ˆ Q · R and R is a real upper triangular matrix with
positive diagonal elements and Q is a real orthogonal matrix) reduces this problem [24,
29]. Use of the QR decomposition is equivalent to the reorthogonalization/rescaling of
the displacement vectors in the scheme discussed above [30].

We note that the Lyapunov exponents are only de®ned in the long time limit and
if the simulated non-equilibrium ¯uid does not reach a steady state, the exponents will
not converge to constant values. It is useful for the purposes of this work to de®ne
time-dependent exponents as:

f¶i…t; C …0††; i ˆ 1; . . . ; 2dNg ˆ 1

2t
ln feigenvalues ‰L…t; C …0††T · L…t; ¡…0††Šg: …1:20†
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Unlike the Lyapunov exponents, these ®nite time exponents will depend on the
initial phase space vector, C …0† and the length of time over which the tangent vectors
are integrated, and we therefore will refer to them as ®nite-time, local Lyapunov
exponents.

The systems considered here are chaotic: they have at least one positive
Lyapunov exponent. This means that (except for a set of zero measure) points that
are initially close will diverge after some time, and therefore information on the
initial phase space position of the trajectory will be lost. Points that are initially close
will eventually span the accessible phase space of the system. The Lyapunov
exponents of an equilibrium (Hamiltonian) system sum to zero, re¯ecting the phase
space conservation of these system, whereas for systems in thermostatted steady
states, the sum is negative. This indicates that the phase space collapses onto a lower
dimensional attractor in the original phase. The set of Lyapunov exponents, can be
used to calculate the dimension of phase space accessible to a non-equilibrium steady
state. The Kaplan±Yorke dimension of the accessible phase space is de®ned as

DKY ˆ nKY ‡
XnKY

iˆ1

¶i=j¶nKY‡1j;

where nKY is the largest integer or which

XnKY

iˆ1

¶i > 0:

As we shall see, for Second Law satisfying steady states this dimension is always less
than the ostensible dimension of phase space, dCN . Furthermore, an exact relation-
ship between this dimensional reduction and the limiting small ®eld transport
coe� cient, has recently been proved [31].

2. Liouville derivation of FT
2.1. The transient FT

The probability p…dV C … C …t†; t††, that a phase C , will be observed within an
in®nitesimal phase space volume of size

dV¡ ˆ lim
dq;dp!0

dqx1dqy1dqz1dqx2 . . . dqzNdpx1 . . . dpzN

about C …t† at time t, is given by,

p…dV¡… C …t†; t†† ˆ f … C …t†; t†dV C … C …t†; t†; …2:1†

where f … C …t†; t† is the normalized phase space distribution function at the phase C …t†
at time t. Since the Liouville equation (1.9), is valid for all phase points C , it is also
valid for the phase C …t† which has evolved at time t from from C …0† at t ˆ 0.
Integrating the resultant ordinary di� erential equation gives the Lagrangian form
(1.10) of the Kawasaki distribution function [32]:

f … C …t†; t† ˆ exp

µ
¡

…t

0

L… C …s†† ds

¶
f … C …0†; 0†: …2:2†
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Now consider the set of initial phases inside the volume element of size dV C … C …0†; 0†
about C …0†. At time t, these phases will occupy a volume dV C … C …t†; t†. Since by
de®nition, the number of ensemble members within a comoving phase volume is
conserved, equation (2.2) implies,

dV C … C …t†; t† ˆ exp

µ …t

0

L… C …s†† ds

¶
dV C … C …0†; 0†: …2:3†

The exponential on the right hand side of (2.3) gives the relative phase space volume
contraction along the trajectory, from C …0† to C …t†.

Our aim is to determine the ratio of probabilities of observing bundles of
trajectory segments and their conjugate bundles of antisegments. For any
phase space trajectory segment, an antisegment can be constructed using a time
reversal mapping, MT…q; p† ² …q; ¡p†. We will refer to the trajectory starting at
C …0† and ending at C …t† as C …0; t†. If we advance time from 0 to t=2 using the
equations of motion (such as (1.4)), we obtain C …t=2† ˆ exp ‰iL… C …0†; Fe†t=2Š C …0†
where the phase Liouvillean, iL… C ; Fe†, is de®ned as iL… C ; Fe† . . . ˆ
‰ _qq… C ; Fe† · @=@q ‡ _pp… C ; Fe† · @=@pŠ . . . . Continuing to time t gives C …t† ˆ
exp ‰iL… C …t=2†; Fe†t=2ŠC …t=2† ˆ exp ‰iL… C …0†; Fe†tŠ C …0†.

As discussed previously [32], a time-reversed trajectory segment C *…0; t† that is
initiated at time zero, and for which C *…0; t† ˆ MT… C …0; t††, can be constructed by
applying a time-reversal mapping at the midpoint of C …t=2† and propagating
forward and backward in time from this point for a period of t=2 in each direction.
At time zero, this generates C *…0† ˆ exp ‰¡iL… C *…t=2†; Fe†t=2Š C *…t=2† ˆ
MT exp ‰iL… C …t=2†; Fe†t=2ŠC …t=2† ˆ MT C …t†. See reference [32] for further details.
The point C *…0† is related to the point C …t† by a time-reversal mapping. This
provides us with an algorithm for ®nding initial phases which will subsequently
generate the conjugate antisegments. Since the Jacobian of the time-reversal
mapping is unity, dV C … C *…t=2†; t=2† ˆ dV C … C …t=2†; t=2†, the measure of the phase
volume dV C … C …t†; t† is equal to that of dV C …C *…0†; 0†. The ratio of the probabilities
of observing the two volume elements at time zero is:

p…dV C … C …0†; 0††
p…dV C … C *…0†; 0††

ˆ f … C …0†; 0†dVC … C …0†; 0†
f … C *…0†; 0†dVC … C *…0†; 0†

ˆ f … C …0†; 0†
f … C …t†; 0† exp

µ
¡

…t

0

L… C …s†† ds

¶
: …2:4†

It is worth listing the assumptions used in deriving equation (2.4):

(1) The initial distribution f … C ; 0† is symmetric under the time reversal mapping
… f … C ; 0† ˆ f …MT… C †; 0††y [Note: The initial phase space distribution does not
have to be an equilibrium distribution.];
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obtained. Equation (2.4) becomes

P…dV C …0†; …0††
p…dV C *… C *…0†; …0†† ˆ f …C …0†; 0†

f …MT…C …t††; 0† exp

µ
¡

…t

0

L… C …s†† ds

¶
:

Furthermore, alternative reversal mappings to the time reversal map MT (such as the Kawasaki map

[16, 32]) may be necessary to generate the conjugate trajectories in some situationsÐsee section 6.5 and

reference [8].



(2) The equations of motion (1.4), must be reversible;y
(3) The initial ensemble and the subsequent dynamics are ergodically consistent:

f …MT‰C …t†Š; 0† 6ˆ 0; 8 C …0†: …2:5†

Ergodic consistency (2.5) requires that the initial ensemble must actually
contain time reversed phases of all possible trajectory end points. Ergodic

consistency would be violated for example, if the initial ensemble was
microcanonical but the subsequent dynamics was adiabatic and therefore did
not preserve the energy of the system.z

It is convenient to de®ne a dissipation function O… C †,
…t

0

ds O… C …s†† ² ln

µ
f … C …0†; 0†
f … C …t†; 0†

¶
¡

…t

0

L… C …s†† ds

ˆ ·OOtt: …2:6†

We can now calculate the probability ratio for observing a particular time averaged
value A, of the dissipation function ·OOt and its negative, ¡A. This is achieved by
dividing the initial phase space into subregions fdVC …¡i†; i ˆ 1; . . .g centred on an
initial set of phases fC i…0†; i ˆ 1; . . .g. The probability ratio can be obtained by
calculating the corresponding ratio of probabilities that the system is found initially

in those subregions which subsequently generate bundles of trajectory segments with
the requisite time average values of the dissipation function. Thus the probability of
observing the complementary time average values of the dissipation function is given
by the ratio of generating the initial phases from which the subsequent trajectories
evolve. We now sum over all subregions for which the time-averaged dissipation

function takes on the speci®ed values,

ln
p… ·OOt ˆ A†

p… ·OOt ˆ ¡A†
ˆ ln

X

ij ·OOt;iˆA

p…dV C … C i…0†; 0††

X

ij ·OOt;i ˆ¡A

p…dV C … C i…0†; 0††

ˆ ln

X

ij ·OOt;iˆA

p…dV C … C i…0†; 0††

X

ij ·OOt;i ˆA

p…dV C … C *
i…0†; 0††

ˆ ln

X

ij ·OOt;iˆA

p…dV C … C i…0†; 0††

X

ij ·OOt;i ˆA

f … C i…t†; 0†
f … C i…0†; 0† exp

µ …t

0

L… C i…s†† ds

¶
p…dV C … C i…0†; 0††
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z Jarzynski [33] and Crooks [34, 35] treat cases where the dynamics is not ergodically consistent

and thereby obtain expressions for Helmholtz free energy di� erences between di� erent systems. This

work has been widely applied and and extended, see for example [36±38].



ˆ ln

X

ij ·OOt;iˆA

p…dV C … C i…0†; 0††

X

ij ·OOt;iˆA

exp …¡ ·OOt;it†p…dVC … C i…0†; 0††

ˆ At: …2:7†

The notation
P

ij ·OOt;iˆA is used to indicate that the sum is carried out on subvolumes
for which ·OOt ˆ A. In (2.7) we carry out the time-reversal mapping to obtain the
second equality, then substitute equations (2.4) and (2.6). The ®nal equality is
obtained by recognizing that since the summation is only carried out over trajectory
segments with particular values of ·OOt, the exponential term is common and can be
removed from the summation.

We have now completed our derivation of the Transient Fluctuation Theorem
(TFT):

p… ·OOt ˆ A†
p… ·OOt ˆ ¡A†

ˆ exp ‰AtŠ: …2:8†

The form of the above equation applies to any valid ensemble/dynamics combina-
tion, although the precise expression for ·OOt (2.6) is dependent on the ensemble and
dynamics.

The original derivation of the TFT was for homogeneously ergostatted dynamics
carried out over an initial ensemble that was microcanonical . In this simple case

O… C † ˆ ¡L… C † ˆ dCN¬. From equation (1.8) we see that the microcanonical TFT
can be written as

p…‰­ JŠtFe ˆ A†
p…‰­ JŠtFe ˆ ¡A†

ˆ exp ‰¡AVtŠ: …2:9†

If the equations of motion are the homogeneously ergostatted SLLOD equations of
motion for planar Couette ¯ow, the dissipative ¯ux J is just the xy-element of the
pressure tensor, Pxy, and the external ®eld is the strain rate, ®, and we have

p…‰­ PxyŠt® ˆ A†
p…‰­ PxyŠt® ˆ ¡A†

ˆ exp ‰¡AVtŠ: …2:10†

We note that in this case the dissipation function O, is precisely the (dimensionless)
thermodynamic entropy production …since it is equal to the work done on the system
by the external ®eld, ¡Pxy… C †®V , divided by the absolute temperature, kBT… C ††, and
also (because the system is at constant energy), is equal to the entropy absorbed from
the system by the thermostat, …¬… C †

P
p2

i =mkBT†.
If the strain rate is positive then in accord with the Second Law of Thermo-

dynamics Pxy should be negative (since the shear viscosity is positive). The TFT is
consistent with this. In equation (2.10), if A is negative then the right hand side is
positive and therefore the TFT predicts the negative time-averaged values of Pxy will
be much more probable than the corresponding positive values. Further, since Pxy

and the strain rate are intensive, for a ®xed value of the strain rate it becomes
exponentially more unlikely to observe positive values for Pxy as either the system
size or the observation time is increased. In either the large time or the large system
limit, the Second Law will not be violated at all.
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2.2. The steady state FT and ergodicity
We note that in the TFT, time averages are carried out from t ˆ 0, where we have

an initial distribution f … C ; 0†, to some arbitrary later time tÐsee equation (2.6). One
can make the averaging time arbitrarily long. For su� ciently long averaging times t,
we might approximate the time averages in (2.8) by performing the time average not
from t ˆ 0 but from some later time ½R ½ t,

·OO…½R; t† ²
1

t ¡ ½R

…t

½R

ds O…s†: …2:11†

Using this approximation for time averages required in (2.8) and noting that,

·OOt ² 1

t

…t

0

ds O…s† ˆ 1

t ¡ ½R

…t

½R

ds O…s† ‡ O…½R=t† º ·OO…½R; t†; …2:12†

we can derive an asymptotic form of the FT,

lim
t=tR !1

1

t
ln

p… ·OO…½R; t† ˆ A†
p… ·OO…½R; t† ˆ ¡A†

ˆ A: …2:13†

If the system is thermostatted in some way and if after some ®nite transient
relaxation time ½R , it comes to a non-equilibrium steady state, then (2.13) is in fact
an asymptotic Steady State Fluctuation Theorem (SSFT)

lim
t=½R!1

1

t
ln

p… ·OOt;ss ˆ A†
p… ·OOt;ss ˆ ¡A†

ˆ A: …2:14†

In this equation ·OOt;ss denotes the fact that the time averages are only computed after
the relaxation of initial transients (i.e. in a non-equilibrium steady state). It is
understood that the probabilities are computed over an ensemble of long trajectories
which initially (at some long time in the past) were characterized by the distribution
f … C ; 0† at t ˆ 0.

We often expect that the non-equilibrium steady state is unique or ergodic. When
this is so, steady state time averages and statistics are independent of the initial
starting phase at t ˆ 0. Most of non-equilibrium statistical mechanics is based on the
assumption that the systems being studied are ergodic. For example, the Chapman
Enskog solution of the Boltzmann equation is based on the tacit assumption of
ergodicity. Experimentally, one does not usually measure transport coe� cients as
ensemble averages: almost universally transport coe� cients are measured as time
averages, although experimentalists often employ repeated experiments under
identical macroscopic conditions in order to determine the statistical uncertainties
in their measured time averages. They would not expect that the results of their
measurements would depend on the initial (un-speci®able!) microstate. Arguably, the
clearest indication of the ubiquity of non-equilibrium ergodicity, is that empirical
data tabulations assume that transport coe� cients are single valued functions of the
macrostate: (N,V,T) and possibly the strength of the dissipative ®eld. The tacit
assumption of non-equilibrium ergodicity is so widespread that it is frequently
forgotten that it is in fact an assumption . The necessary and su� cient conditions for
ergodicity are not known. However, if the initial ensemble used to obtain equation
(2.14) is the equilibrium ensemble generated by the dynamics when the non-
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equilibrium driving force is removed,y and the system is ergodic then the prob-
abilities referred to in the SSFT (2.14) can be computed not only over an ensemble of
trajectories, but also over segments along a single exceedingly long phase space
trajectory.

This is the version of the Fluctuation Theorem ®rst derived (heuristically) by
Evans et al. in reference [23] and later more rigorously by Gallavotti and Cohen
[14, 15].

3. Lyapunov derivation of FT
The original statement of the SSFT by Evans et al. [23] was justi®ed using

heuristic arguments for the probability of escape of trajectory segments from phase
space tubes (i.e. in®nitesimal, ®xed radius tubes surrounding steady state phase space
trajectory segments). A more rigorous derivation of the theorem, based on similar
arguments but invoking the Markov partitioning of phase space and the Sinai±
Ruelle±Bowen measure was given by Gallavotti and Cohen [14, 15]. However, even
this derivation is not completely rigorous because they had to introduce the Chaotic
Hypothesis in order to complete the proof [14, 15]. The Chaotic Hypothesis has not,
and we believe probably cannot be, proven for realistic systems.

We now show how to derive an FT rigourously using escape rate arguments and
Lyapunov weights. This derivation completely avoids the di� culties of the Chaotic
Hypothesis. As we will see, this new derivation employs a partitioning of phase space
which is analogous in many respects to the Markov Partition employed by Gallavotti
and Cohen. Although our new derivation is rigorous it leads to an exact Transient
Fluctuation Theorem rather than an asymptotic Steady State FT.

The probability of escape from in®nitesimal phase space trajectory tubes is
controlled by the sum of all the ®nite-time local positive Lyapunov exponents,
de®ned in equation (1.20). Previous Lyapunov derivations of the SSFT [14, 15, 23],
assumed either that the initial probability distribution was uniform (e.g. micro-
canonical), or if non-uniform, that variations in the initial density could be ignored
at long times and the asymptotic escape rate would always be dominated by the
exponential of the sum of positive Lyapunov exponents. Here we show that this is
not the case and that consistent with the Liouville derivation of the SSFT (section
2.2), the steady state FT does indeed depend on the initial ensemble and the
dynamics of the system. For an isoenergetic system, the results obtained are identical
to those obtained previously for this system [14, 15, 23, 39, 40].

Consider an ensemble of systems which is initially characterized by a distribution
f … C ; 0†. As before (section 2.1), we assume that the initial distribution is symmetric
under the time reversal mapping. Suppose that a phase space trajectory evolves from
C 0 at t ˆ 0 to C 0…t† at time t. We call this trajectory the mother trajectory. We also
consider the evolution of a set of neighbouring phase points, C …0†, that begin at time
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then the microcanonical ensemble must be used as the initial ensembleÐa canonical initial distribution
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zero within some ®xed region of size determined by d¡: 0 < G¬…0† ¡ G0;¬…0† ˆ
dG¬…0† < dG, 8 ¬ ˆ 1; . . . ; 2dCN (G¬ is the ¬th component of the phase space vector
C , and G0;¬ is the ¬th component of the vector C 0), and that are within the region
surrounding the mother at least at time t, so 0 < dG¬…t† < dG, 8 ¬. Because of

Lyapunov instability, most initial points that are within this initial region will
diverge from the tube at a later time (see ®gure 3.1). The probability

p… C 0…0; t; d C ††, that initial phases start in the mother tube and stay within that tube
is given by,

p…C 0…0; t; dG†† / dG6Nf … C 0; 0† exp

µ
¡

X

¶i>0

¶i…t; C 0†t
¶
; …3:1†

where ¶i…t; C 0† is the ®nite-time, local Lyapunov exponent de®ned in equation (1.20).
Since the system is assumed to be time reversible, there will be a set of

antitrajectories which are also solutions of the equations of motion. We use the
notation C * ˆ MT… C † to denote the time reversal mapping of a phase point. From

®gure 3.1 and the properties of the time reversal mapping we know that
MT C *

0…t† ² C 0 and MT C *
0…0† ² C 0…t†. Further from the time reversibility of the

dynamics the set of positive Lyapunov exponents for the antitrajectory

f¶i…t; C *
0†; ¶i > 0g is identical to minus the set of negative exponents for the

conjugate forward trajectory,
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Figure 3.1. A schematic diagram showing how a trajectory and its conjugate evolve. The
square region emanating from C 0…0† has axes aligned with the eigenvectors of the
tangent vector propagator matrix L…t†T · L…t†. The shaded region thus shows where
initial points in this region will propagate to at time t. For illustrative purposes we
assume a two-dimensional ostensible phase space and that there is one positive time-
dependent local Lyapunov exponent (in the x-direction) and one negative time-
dependent local Lyapunov exponent (in the y-direction).



f¶i…t; C *
0†; ¶i > 0g ˆ ¡f¶i…t; C 0†; ¶i < 0g: …3:2†

Before considering the Lyapunov derivation of the SSFT, it is useful to consider

the computation of phase space averages of a variable A. The ensemble average,

h ·AAti, of the trajectory segment time average, ·AAt… C † , of an arbitrary phase function

A… C †, can be written as,

h ·AAti ˆ
…

d C f … C ; 0† ·AAt… C †: …3:3†

We can partition the initial ostensible phase space into 2dCN-dimensional phase
volume elements that are formed by the set of orthogonal eigenvectors of

L…t; C …0††T · L…t; C …0†† projected from the initial mother phase points f C 0…0†g . By

careful construction of the partition, or mesh, we are able to ensure that each point

in phase space is associated with a single mother phaseÐthat is, it is within a region

about a mother phase point 0 < dG¬…t† < dG, 8 ¬, at least at time t [41]. It is assumed

that the phase volume elements are su� ciently small that any curvature in the

direction of the eigenvectors can be ignored. In practice this phase space can be
constructed as shown in ®gure 3.2. In this ®gure we assume that there is no curvature

in the direction of the eigenvectors over the region considered: this limit will be

approached as dG ! 0.

It should also be noted that although this diagram considers one expanding and

one contracting eigendirection, there is no reason that an equal number of positive

and negative exponents must exist for this construction to be used, and one or more

Lyapunov exponents may be equal to zero. The structure of the steady state is
irrelevant, so it is not necessary for the steady state to be Anosov.y

An arbitrary initial mother phase point is selected and the set of points that are

within the tube de®ned by 0 < dG¬…t† < dG, 8 ¬ are identi®ed. These points are

considered to belong to the ®rst region in the partition. From equation (3.1) it is

clear that the volume occupied by these points at t ˆ 0 is
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Figure 3.2 (concluded). A schematic diagram showing the construction of the partition, or
mesh, used to determine phase space averages using Lyapunov weights. For
convenience, we assume a two-dimensional ostensible phase space, and that there is
one positive and one negative time-dependent local Lyapunov exponent for each
region in the section of phase space shown. The size of phase volume elements is
assumed to be su� ciently small that any curvature in the direction of the eigenvectors
can be ignored.

(b)

(c)

(d)

(e)



dG6N exp

µ
¡

X

¶i>0

¶i…t; C 0†t
¶
:

A second region is constructed in a similar manner, with a new mother phase point
selected to be initially at a point on the corner of the ®rst region, as shown in ®gure
3.2 (c), to ensure there is no overlap of regions in the partition. Again, the set of
points that remain within the tube de®ned by 0 < dG¬…t† < dG, 8 ¬ are identi®ed,
and a second region in the partition is constructed. This is repeated until phase space
is completely partitioned into regions of volume

dG6N exp

µ
¡

X

¶i>0

¶i…t; C 0†t
¶
:

Because these volumes depend on the time-dependent , local Lyapunov exponents, the
volume of each region may di� er, and the partitioning will change as longer
trajectories are considered. Note that because of the uniqueness of solutions, the
time evolved mesh created using this partition never splits into sub-bundles, and one
time evolved phase volume element never mixes with another.y

The partition can be formed as shown in ®gure 3.2. In ®gure 3.2 (a), a point C 0;1 is
selected and the region 0 < dG¬…0† < dG, 8 ¬ is shaded grey. The location of this
region at time t is also shown. In ®gure 3.2 (b), it is shown that the proportion of
points that remain within the tube emanating from C 0;1 will be proportional to the
Lyapunov weight,

exp

µ
¡

X

¶i>0

¶i…t; C 0†t
¶
:

The origin of those points is shaded in black. The black region de®nes the ®rst region
of the partition. In ®gure 3.2 (c), a tube of equal cross-section to that in (a) is formed
at a new origin, C 0;2, on the corner of C 0;1. Again the position of these points at time
t is shown, and in ®gure 3.2 (d), the origin of the points that remain withinin the tube
0 < dG¬…t† < dG, 8 ¬ at time t are indicated by the hatching. The construction is
repeated until phase space is covered and in ®gure 3.2 (e), we show the partitioning of
a small region of phase space. To calculate phase averages, it is necessary to sum
over all regions, with the weight of each region given by the volume of that region
and the initial phase space distribution function for that region.

In the limit dGi ! 0; 8 i, we can compute h ·AAti and phase averages as,

h ·AAti ˆ
lim

dG!0

P
f C 0g

·AAt… C 0† f … C 0…0†; 0† exp

µ
¡

X

¶i>0

¶i…t; C 0†t
¶

lim
dC !0

X

f¡0g
f … C 0…0†; 0† exp

µ
¡

X

¶i >0

¶i…t; C 0†t
¶ …3:4 a†

and
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point, will generally overlap, even at time zero, since they are of constant size but emanate from the

irregularly spaced mesh of f C 0…0†g.



hA…s†i ˆ

lim
dC !0

X

f C 0g
A… C 0…s†† f … C 0…0†; 0† exp

µ
¡

X

¶i>0

¶i…t; C 0†t
¶

lim
dC !0

X

fC 0g
f … C 0…0†; 0† exp

µ
¡

X

¶i>0

¶i…t; C 0†t
¶ ; …3:4 b†

respectively, where we sum over the set of mother phase points
f C 0g ˆ f C 0;i; i ˆ 1; N C 0

g. These equations simply mean that in order to obtain a
phase space average, we sum over all regions in the partition, weighting each with its
volume (determined from the Lyapunov weight given by equation (3.1) which is
equivalent to the Sinai±Ruelle±Bowen (SRB) measure that is used to describe
Anosov systems [14, 15]), and multiplying by the appropriate initial distribution
function.y

We can describe in words what the Lyapunov weights appearing in equations
(3.4 a,b) achieve. On the set of initial phases, our mesh places a greater density of
initial mother phase points in those regions of greatest chaoticityÐthose regions
with the greatest sums of positive local Lyapunov exponents. This is required
because for strongly chaotic regions, trajectories diverge more quickly from the
mother trajectory. In order to compute time averages correctly we need to weight the
time-averaged properties along the mother trajectories, by the product of the initial
distribution at the origin of the mother trajectory, and the measure of the initial
hypervolume of those trajectories which do not escape from the mother trajectory.
These volumes are proportional to the negative exponentials of the sums of positive
local Lyapunov exponents.

An important consequence of equation (3.4) is that it can be used to show that if
the dynamics of a system is not chaotic and its reverse dynamics is also not chaotic,
no transport will occur. If the system is not chaotic there are no positive Lyapunov
exponents, and if the anti-dynamics is also not chaotic, then due to the mapping
given by equation (3.2), all Lyapunov exponents must be zero, and all the Lyapunov
weights will be equal to unity (all the phase space volumes in the mesh will have
equal measure). This means that there will be perfect Loschmidt pairing: the weight
associated with the trajectory starting at C 0 will be identical to that associated
starting at C *

0; and the phase average of any function that is odd under time reversal,
such as a dissipation function, will equal zero. This will apply to systems starting in
any (equilibrium) ensemble since the initial distribution functions are even under
time reversal.

We now apply these concepts to compute the ratio of conjugate averages of the
dissipation function. The dissipation function that we consider is de®ned in equation
(2.6). The ratio of corresponding probabilities is:

Pr… ·OOt ˆ A†
Pr… ·OOt ˆ ¡A†

ˆ lim
dG!0

X

f C 0 j ·OOt… C 0†ˆAg
f … C 0;i…0†; 0† exp

µ
¡

X

¶j >0

¶j…t; C 0;i†t
¶

X

f C 0j ·OOt…C 0†ˆ¡Ag

f … C 0;i…0†; 0† exp

µ
¡

X

¶j>0

¶j…t; C 0;i†t
¶
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{ Although equation (3.4) provides an extremely useful theoretical expression, due to the di� culty

of constructing the partition it does not currently provide a feasible route for numerical calculation of

phase averages for many particle systems.



ˆ lim
dG!0

X

f C 0 j ·OOt…C 0†ˆAg

f … C 0;i…0†; 0† exp

µ
¡

X

¶j >0

¶j…t; C 0;i†t
¶

X

fC 0j ·OOt…C 0†ˆAg

f … C *
0;i…0†; 0† exp

µ
¡

X

¶j>0

_
¶j…t; C *

0;i†t
¶

¶j…t; C *
0;i†t

¶

ˆ lim
dG!0

X

f C 0 j ·OOt…C 0†ˆAg

f … C 0:i…0†; 0† exp

µ
¡

X

¶j >0

¶j…t; C 0:i†t
¶

X

fC 0j ·OOt…C 0†ˆAg
f … C 0;i…t†; 0† exp

µ
‡

X

¶j <0

¶j…t; C 0;i†t
¶ ; …3:5†

where we use the relationships between conjugate trajectories to express the
numerator and denominator in terms of sums over f C 0j ·OOt… C 0† ˆ Ag. The notationP

fC 0
·OOtˆAgj ¢ ¢ ¢ is used to indicate that the sum is carried out over the set of regions

in the mesh for which ·OOt ˆ A. Using (2.6) to substitute for f … C 0;i…t†; 0†, we obtain,

Pr… ·OOt ˆ A†
Pr… ·OOt ˆ ¡A†

ˆ lim
dG!0

X

fC 0j ·OOt…C 0†ˆAg

f … C 0…0†; 0† exp

µ
¡

X

¶i>0

¶i…t; C 0†t
¶

X

f C 0 j ·OOt…C 0†ˆAg

exp ‰¡ ·OOttŠ f … C 0…0†; 0† exp ‰¡·LLttŠ exp

µ
‡

X

¶i<0

¶i…t; C 0†t
¶

ˆ lim
dG!0

X

fC 0j ·OOt…C 0†ˆAg

f … C 0…0†; 0† exp

µ
¡

X

¶i>0

¶i…t; C 0†t
¶

X

f C 0j ·OOt…C 0†ˆAg

exp ‰¡ ·OOttŠ f … C 0…0†; 0† exp

µ
¡

X

¶i>0

¶i…t; C 0†t
¶

ˆ lim
dG!0

exp ‰AtŠ

X

f C 0 j ·OOt… C 0†ˆAg

f … C 0…0†; 0† exp

µ
¡

X

¶i>0

¶i…t; C 0†t
¶

X

f C 0 j ·OOt… C 0†ˆAg

f … C 0…0†; 0† exp

µ
¡

X

¶i>0

¶i…t; C 0†t
¶

ˆ exp ‰AtŠ: …3:6†

To obtain the second line we use the fact that the sum of all the local Lyapunov
exponents is the time average of the phase space compression factor:

·LLt… C 0† ˆ
X

8i

¶i…t; C 0†:

Of course equation (3.6) is identical to the ensemble independent TFT derived
previously (2.8). Furthermore, the same arguments as those presented in section 2.2
can be applied to derive the SSFT (2.14). For an isoenergetic system, the SSFT
derived from equation (3.6) is identical to that obtained previously for this system
[14, 15, 23]. However, if the system is not microcanonical, the Lyapunov weights and
associated SRB measure, do not dominate the weight that results from the non-
uniformity of the initial distribution.
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4. Applications
In sections 2 and 3 we have shown that a general form of the ¯uctuation theorem

can be derived for various ergodically consistent combinations of ensemble and
dynamics. Table 4.1 summarizes the TFT obtained for many of the systems of
interest [6, 42, 43]. In the last row, the exact FT for an ensemble of steady state
trajectory segments is also given. As shown there, this collapses to the usual
asymptotic SSFT in the long time limit [42]. SSFT can be obtained for other
ensembles in a similar manner.

Two classes of system can be considered:

(1) non-equilibrium steady states where the FT predicts the frequency of
occurrence of Second Law violating antitrajectory segments [39, 42]Ðsee
sections 4.1 and 4.2;

(2) non-dissipative systems where the FT describes the free relaxation of systems
towards, rather than further away from, equilibrium such as the free
expansion of gases into a vacuum and mixing in a binary system [43]Ðsee
section 4.3.

In this section we discuss some of these systems in more detail. We also present in
section 4.4, a generalized form of the FT that applies to any phase function that is
odd under time-reversal symmetry and in section 4.5, the integrated form of the FT
(1.3). We use reduced Lennard±Jones units throughout this section [16].

4.1. Isothermal systems
As an example, we consider the TFT for a system which is initially in the

isokinetic ensemble and which undergoes isokinetic dynamics [42] with kinetic
energy K0. The isokinetic distribution function is,

f … C …0†; 0† ˆ fK… C …0†; 0† ˆ exp ‰¡­ H0… C …0††Šd…K… C …0†† ¡ K0†…
d C exp ‰¡­ H0… C †Šd…K… C † ¡ K0†

: …4:1†

Substituting into equation (2.4) gives

p…dVG…C …0†; 0††
p…dVG… C *…0†; 0†† ˆ

fK … C …0†; 0†dVG… C …0†; 0†
fK … C *…0†; 0†dVG… C *…0†; 0†

ˆ exp ‰¡­ H0… C …0††Š
exp ‰¡­ H0… C …t††Š

exp ¡
…t

0

L… C …s†† ds

µ ¶

ˆ exp

µ
­

…t

0

_FF… C …s†† ds† exp

µ
¡

…t

0

L… C …s†† ds

¶
; …4:2†

where we have used the symmetry of the mapping, H0… C *…0†† ˆ H0… C …t††,
dVG… C *…0†; 0† ˆ dVG… C …t†; t† and K… C *…0†; 0† ˆ K… C …t†; t† to obtain the second
equality and H0… C …t†† ˆ H0…C …0†† ‡

„ t

0
_HH0… C …s†† ds ˆ H0… C …0†† ‡

„ t

0
_FF… C …s†† ds to

obtain the ®nal equality. We see that:

O… C † ˆ ­ _FF… C † ¡ L… C †

ˆ ¡­ J… C †VFe …4:3†
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Table 4.1. Transient ¯uctuation formula in various ergodically consistent ensembles.a;b

Isokinetic dynamics ln
p… ·JJt ˆ A†

p… ·JJt ˆ ¡A† ˆ ¡AtFe­ V

Isothermal-isobaricc ln
p…JV t ˆ A†

p…JV t ˆ ¡A†
ˆ ¡AtFe­

Isoenergetic ln
p… ·JJt ˆ A†

p… ·JJt ˆ ¡A†
ˆ ¡AtFe­ V

or ln
p…·LLt ˆ A†

p…·LLt ˆ ¡A†
ˆ ¡At

Isoenergetic boundary driven ¯ow ln
p…·LLt ˆ A†

p…·LLt ˆ ¡A†
ˆ ¡At

NoseÂ -Hoover (canonical) dynamics ln
p… ·JJt ˆ A†

p… ·JJt ˆ ¡A† ˆ ¡AtFe­ V

Wall ergostatted ®eld driven ¯owc ln
p…J­ wall t ˆ A†

p…J­ wall t ˆ ¡A†
ˆ ¡AtFeV or ln

p…·LLt ˆ A†
p…·LLt ˆ ¡A† ˆ ¡At

Wall thermostatted ®eld driven ¯owc ln
p… ·JJt ˆ A†
p… ·JJt ¡ A† ˆ ¡AtFe­ V ¡ ln …hexp ‰·LLtt…1 ¡ ­ system=­ wall†Ši·JJtˆA†

Relaxation of a system with a

non-homogeneous density pro®le

imposed using a potential Fg…q†;
initial canonical distribution

ln

p

³ …t

0

dsFg…s† ˆ A

´

p

³ …t

0

dsFg…s† ˆ ¡A

´ ˆ ¡A­

Adiabatic response to a colour ®eld ln
p… ·JJt ˆ A†

p… ·JJt ˆ ¡A† ˆ ¡AtFe­ V

Isoenergetic dynamics with a

stochastic forced ln
p… ·JJt ˆ A†

p… ·JJt ˆ ¡A† ˆ ¡AtFe­ V or ln
p…·LLt ˆ A†

p…·LLt ˆ ¡A† ˆ ¡At

Steady state isoenergetic dynamics:e ln
p…J­ t ˆ A†

p…J­ t ˆ ¡A†
­ Jt ˆ 1

t

…t0‡t

t0

­ …s†J…s† ds where t0 ¾ ½M

ˆ ¡AtFeV ¡ ln

³½
exp

µ
FeV

³ …t0

0

J…s†­ …s† ds

‡
…2t0‡t

t0 ‡t

J…s†­ …s† ds

´¶¾

·JJ ­ tˆA

´

lim
t!1

1

t
ln

p…J­ t ˆ A†
p…J­ t ˆ ¡A†

ˆ ¡AFeV

a It is assumed that the limit of a large system has been taken so that O…1=N† e� ects can be neglected. Some of these

relationships were presented in reference [33].

b In most cases considered here the dissipative ¯ux, J , is de®ned by ¡JFeV ˆ dHad
0

dt
where H0 is the equilibrium internal

energy, however for the isothermal±isobaric case ¡JFeV ˆ dIad
0

dt
where I0 is the equilibrium enthalpy.

c In these wall ergostatted/thermostatted systems, it is assumed that the energy/temperature of the full system (wall and

¯uid) is ®xed.
d This result is valid for a class of stochastic systems where the stochastic force ensures that the system remains on the

constant-energy zero-total momentum hypersurface. See reference [32] for further details.
e Similar steady state formulae can be obtained for other ensembles. ½M is the Maxwell time that characterizes the time

required for relaxation of the nonequilibrium system into a steady state.



and from equation (2.8) we therefore have,

p… ·JJt ˆ A†
p… ·JJt ˆ ¡A†

ˆ exp ‰¡AtFe­ V Š: …4:4†

The TFT given by equation (4.4) is true at all times for the isokinetic ensemble when
all initial phases are sampled from an equilibrium isokinetic ensemble [42].

4.2. Isothermal±isobaric systems
We consider a system made up of N particles. These particles are identical except

their colour: half the particles are one colour, say, red; whereas the other half are
blue. The system is thermostatted and barostatted and the two coloured species are
driven in opposite directions by an applied colour ®eld. The system is closely related
to electrical conduction but avoids the complications of long ranged electrostatic
forces.

For an isobaric±isothermal ensemble the phase space trajectories are con®ned to
constant hydrostatic pressure and constant peculiar kinetic energy hypersurfaces.
The N-particle phase space distribution function is given by f … C ; V† ¹
d…p ¡ p0†d…K ¡ K0† exp ‰¡­ 0…H0 ‡ p0V†Š, where p is the hydrostatic pressure, V
the system volume, p0, K0 are the ®xed values of the pressure and kinetic energy
and ­ 0 is the Boltzmann factor ­ 0 ˆ 1=…kBT0† ˆ …2K0†=…dCN†. We note that for
isobaric systems the system volume is included as an additional coordinate [16].

The systems we examine are brought to a steady state using both a Gaussian
thermostat and barostat. At time t ˆ 0, a colour ®eld is applied and the response of
the system is monitored for a time, t, that is referred to as the length of the trajectory
segment. The equations of motion used are [16],

_qqi ˆ pi

m
‡ _""qi

_ppi ˆ Fi ¡ iciF c ¡ _""pi ¡ ¬pi

_VV ˆ dV _"";

9
>>>=
>>>;

…4:5†

where

Fi ˆ ¡‰@F…q†Š
‰@F…qiŠ

; _"" ˆ ¡
µ

1

2m

X

i 6ˆj

qij ¢ pij

³
¿ 00

ij ‡
¿ 0

ij

qij

´¶¿µ
1

2

X

i 6ˆj

q2
ij

³
¿ 00

ij ‡
¿ 0

ij

qij

´
‡ 9pV

¶

is the dilation rate [16] and

¬ ˆ ¡ _"" ‡
µ XN

iˆ1

…Fi ¡ iciFc† ¢ pi

¶¿µ XN

iˆ1

pi ¢ pi

¶

is the thermostat multiplier. The particles have a colour `charge’ ci ˆ …¡1†i, so that
they experience opposite forces from the colour ®eld, Fc. For this system, the phase
space compression factor is L…t† ˆ ¡dCN¬ and the dissipative ¯ux, which is
analogous to the electric current density, is de®ned as the time adiabatic time
derivative of the enthalpy

d…H0 ‡ p0V†=dtjad ² _IIad ² ¡JcVFc ˆ ¡Fc

XN

iˆ1

cipxi
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[16] where

Jc ˆ
XN

iˆ1

cipxi=V

is the dissipative ¯ux or the colour current density. Under constant pressure
conditions the rate of change of the enthalpy is equal to the rate of change of the
entropy multiplied by the absolute temperature.

Using equation (2.6), the phase space compression factor and the initial distri-
bution function de®ned above, the dissipation function for this system is

·OOt ˆ ¡ 1

t

…t

0

ds ­ 0Jc…s†V…s†Fc ˆ ¡­ 0‰JcV ŠtFc: …4:6†

Hence, equation (2.7) with this expression yields [44]

p…¡­ 0‰JcV ŠtFc ˆ A†
p…¡­ 0‰JcV ŠtFc ˆ ¡A†

ˆ exp ‰AtŠ: …4:7†

It is straightforward to show that the same expression is obtained when NoseÂ ±
Hoover constraints [16] are applied to the pressure and temperature rather than
Gaussian constraints; or if a combination of these types of thermostat is used.

4.3. Free relaxation in Hamiltonian systems
We now consider the free relaxation of a colour density modulation. Firstly we

need to construct an ensemble of systems with a colour density modulation. Without
loss of generality, consider a system of N particles that for t < 0 is subject to a colour
Hamiltonian,

Hc ˆ H0 ‡ Fc

XN

iˆ1

ci sin …kxi†; …4:8†

where ci ˆ …¡1†i is the colour charge of particle i, k ˆ 2p=L where L is the
boxlength, and

H0 ²
X

i

p2
i =2m ‡

X

i<j

¿…qij†

is a colour blind interaction Hamiltonian (like the potential energy ¿, H0 does not
refer to the colour charges). The colour density modulation can be measured by
averaging the appropriate Fourier component

»c…k† ²
XN

iˆ1

ci sin …kxi†: …4:9†

We assume that for t < 0, the system is in contact with a heat bath. Since the system
is at thermal equilibrium for t < 0, the colour ®eld induces a colour density wave,
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h»c…k; 0†iFc
ˆ

…
d C »c…k† exp ‰¡­ …H0 ‡ Fc»c…k††Š
…

d C exp ‰¡­ …H0 ‡ Fc»c…k††Š

ˆFc!0 ¡­ Fch»c…k†2iFcˆ0: …4:10†

From the last line of (4.10) it is clear that in the weak ®eld limit

limFc!0 h»c…k; 0†iFc
< 0. So at t ˆ 0 the system is initially modulated with a colour

density wave. We wish to consider the behaviour of the system for t > 0, when the
external colour ®eld is `turned o� ’ and the contact between the system and the heat
bath is broken. The system then relaxes freely, under the colour blind interaction
Hamiltonian H0.

For t > 0, no work is done on the system and there is no dissipation. The system
evolves with constant energy; E ˆ H0… C †. No heat is exchanged with the surround-
ings and thus there is no change in the thermodynamic entropy of either the system or
the surroundings.y Nevertheless, according to Le Chatelier’s Principle [12], the
colour density modulation should decay rather than grow as the system becomes
homogeneous with respect to colour.

The `dissipation function’, O… C †, can be determined using equation (2.6). For
t > 0 there is no phase space compression since the dynamics is Newtonian and there
is no applied ®eld. Furthermore, energy is conserved. Therefore, the dissipation
function becomes:

t ·OOt ˆ ­ ‰Hc…t† ¡ Hc…0†Š

ˆ ­ Fc

…t

0

ds _»»c…k; s† ˆ ­ Fc‰»c…k; t† ¡ »c…k; 0†Š: …4:11†

The dissipation function thus gives a direct measurement of the change in the colour
density modulation order parameter. Applying the TFT (2.8) to this system gives,

p‰»c…k; t† ¡ »c…k; 0† ˆ AŠ
p‰»c…k; t† ¡ »c…k; 0† ˆ ¡AŠ

ˆ exp ‰­ FcAŠ; …4:12†

where ­ is the reciprocal temperature of the initial ensemble.
In order to test this equation, we considered a system of 32 particles in two

Cartesian dimensions. The particles interact via a WCA [45] potential and the
equations of motion at t < 0 are

_qqi ˆ pi

m

_ppi ˆ Fi ¡ icikFc cos kxi ¡ ±pi

_±± ˆ 1

Q

³ XN

iˆ1

p2
i

m
¡ dCNkBT

´
;

9
>>>>>>=
>>>>>>;

…4:13†

where ± is the NoseÂ ±Hoover thermostat multiplier [16]. At t ˆ 0, the ®eld and the
thermostat are switched o� and the system is allowed to relax to equilibrium.
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Figure 4.1 shows the modulation in the colour density of the particles at t < 0
and the mixing that occurs as predicted by the Le Chatelier’s Principley when the
®eld is switched o� . The FT for this system would predict that although mixing
would be the most likely outcome, for small systems and short periods of time, the
colour modulation could in fact become stronger. This de-mixing violates Le
Chatelier’s Principle. Figure 4.2 shows a histogram of p…t ·OOt† and ®gure 4.3 shows
that the FT is satis®ed for this system.
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Figure 4.1. Snapshots from a molecular dynamics simulation showing the phase separation
of red and blue particles at t < 0 (with ®eld on) in (a), and their relaxation to
equilibrium (at t ˆ 32) in (b). Here T ˆ 1:0, n ˆ 0:4 and Fc ˆ 2:0.

{ If a system is in stable equilibrium, then any spontaneous change in its parameters must bring

about processes which tend to restore the system to equilibrium [12].



4.4. FT for arbitrary phase functions

The FTs derived above predict the ratio of the probabilities of observing
conjugate values of the dissipation function. As given above, these theorems give

no information on the probability ratios for any functions other than the dissipation

function (2.6). In this section we describe how the FT can be extended to apply to

arbitrary phase functions which have a speci®c parity under time reversal symmetry

[46].
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Figure 4.2. A histogram of the distribution of the dissipation function for a system
containing a colour separated binary system that is relaxing to equilibrium. Here
T ˆ 1:0, n ˆ 0:4, Fc ˆ 2:0 and t ˆ 0:4.

Figure 4.3. A test of the FT given by equation (4.12) for a system containing a colour
separated binary system that is relaxing to equilibrium. Here T ˆ 1:0, n ˆ 0:4,
Fc ˆ 2:0 and t ˆ 0:4.



Let ¿…C † be an arbitrary phase function and de®ne the time average

·¿¿i;t ˆ
1

t

…t

0

ds ¿… C i…s†† …4:14†

for a phase space trajectory: C i…s†. At t ˆ 0 the phase space volume occupied by a
contiguous bundle of trajectories for which f C ijA < ·¿¿i;t < A ‡ dAg is given by
dVC … C …0†; 0† and at time t these phase points will occupy a volume
dVC … C …t†; t† ˆ dVC … C …0†; 0† exp ‰ ·LL…t†tŠ where ·LL…t† is the time-averaged phase space
compression factor along these trajectories. We denote ·¿¿…t† ˆ h ·¿¿i;ti if g, that is the
average value of ·¿¿i;t over the set of contiguous trajectories, f C ig.

If the dynamics is reversible, there will be a contiguous set of initial phases
f C i

*…0†g, given by C i
*…0† ˆ MT…C i…t††, that will occupy a volume dV C … C *…0†; 0† ˆ

dVC … C …t†; t† ˆ dVC … C …0†; 0† exp ‰ ·LL…t†tŠ along which the time-averaged value of the
phase function is ·¿¿i¤;t ˆ MT… ·¿¿i;t†. For any ¿i… C † that is odd under time reversal,
·¿¿i¤;t ˆ ¡ ·¿¿i;t.

The probability ratio of observing trajectories originating in an initial phase
volume and its conjugate phase volume will be related to the initial phase space
distribution function and the size of the volume elements by equation (2.4).
Therefore, from the de®nition of the dissipation function in (2.6) we obtain,

p…dV C … C …0†; 0††
p…dV C … C *…0†; 0†† ˆ exp ‰ ·OOttŠ: …4:15†

It is possible that there are non-contiguous bundles of trajectories for which
f C i A < ·¿¿i;t < A ‡ dA

­­ g, and since these bundles may have di� erent values ·OOt the
probability ratio (4.15) may di� er for each bundle. The probability of observing a
trajectory for which A < ·¿¿t < A ‡ dA, is obtained by summing over the probabilities
of observing these m ˆ 1; M non-contiguous volume elements, dV¡;m… C …0†; 0†. If the
phase function is odd under time reversal symmetry, then the ratio of the probability
of observing trajectories for which A < ·¿¿t < A ‡ dA to the probability of observing
conjugate trajectories, for which ¡A < ·¿¿t < ¡A ‡ dA is,

p… ·¿¿t ˆ A†
p… ·¿¿t ˆ ¡A†

ˆ

XM

mˆ1

p…dV C ;m… C …0†; 0†

XM

mˆ1

p…dVG;m… C *…0†; 0††

ˆ

XM

mˆ1

p…dV C ;m… C …0†; 0††

XM

mˆ1

p…dV C ;m… C …0†; 0† exp …¡ ·OOtt†

ˆ hexp …¡ ·OOtt†i¡1
·¿¿tˆA; …4:16†

where the notation h. . .i·¿¿tˆA refers to the ensemble average over (possibly) non-
contiguous trajectory bundles for which ·¿¿t ˆ A. Equation (4.16) gives the ratio of
the measure of those phase space trajectories for which ·¿¿t ˆ A to the measure of
those trajectories for which ·¿¿t ˆ ¡A: This is the Generalised Transient Fluctuation
Theorem (GTFT) for any phase variable ·¿¿t that is odd under time reversal. Provided
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it has a de®nite parity under time reversal symmetry, the actual form of ·¿¿t is quite
arbitrary. If the phase variable is even, the we obtain the trivial relationship

hexp …¡ ·OOtt†i¡1
·¿¿tˆA ˆ p… ·¿¿t ˆ A†

p… ·¿¿t ˆ A†
ˆ 1: …4:17†

For isoenergetic dynamics initiated from a microcanonical ensemble [42, 46],

p… ·¿¿t ˆ A†
p… ·¿¿t ˆ ¡A†

ˆ hexp …·LLtt†i¡1
·¿¿tˆA ˆ hexp …VFe­ Jtt†i

¡1
·¿¿tˆA …4:18†

while for isokinetic or NoseÂ ±Hoover dynamics initiated from a canonical ensemble
[42, 46],

p… ·¿¿t ˆ A†
p… ·¿¿t ˆ ¡A†

ˆ hexp …VFe­ ·JJtt†i¡1
·¿¿tˆA: …4:19†

Formulas for other ergodically consistent ensembles can be obtained in a similar
manner [42, 46]. Results for various phase functions for a system undergoing
isoenergetic shear ¯ow have been presented in reference [46].

4.5. Integrated FT
The Fluctuation Theorem quanti®es the probability of observing time-averaged

dissipation functions with complimentary values. The Second Law of Thermo-
dynamics only states that the dissipation should be positive rather than negative.
Therefore, it is of interest to construct a ¯uctuation theorem which predicts the
probability ratio that the dissipation function is either positive or negative. When the
statistical error is large and the ensemble sample sizes are small, it is useful to be able
to predict the probability that the entropy production will be positive. The
Integrated form of the FT (IFT) gives a relationship that quanti®es the probability
of observing Second Law violations in small systems observed for a short time.

The TFT can be written as

p… ·OOt ˆ ¡A†
p… ·OOt ˆ A†

ˆ exp …¡At†: …4:20†

We wish to give the probability ratio of observing trajectories with positive and
negative values of ·OOt and so we consider:

p‡…t† ² p… ·OOt > 0†; p¡…t† ² p… ·OOt < 0†: …4:21†

Now

p¡…t†
p‡…t† ˆ

…1

0

dA p… ·OOt ˆ ¡A†
…1

0

dA p… ·OOt ˆ A†
: …4:22†

Using (4.20):

p¡…t†
p‡…t† ˆ

…1

0

dA p… ·OOt ˆ ¡A†
…1

0

dA p… ·OOt ˆ A†
ˆ

…1

0

dA exp …¡At†p… ·OOt ˆ A†
…1

0

dA p… ·OOt ˆ A†
: …4:23†
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The right hand side of this equation is just the ensemble average of exp …¡ ·OOtt†
evaluated over trajectories which have a positive value of A:

p¡…t†
p‡…t† ˆ hexp …¡ ·OOtt†i ·OOt>0: …4:24†

From (4.24) we can also obtain the reciprocal relationship:

p‡…t†
p¡…t†

ˆ 1

hexp …¡ ·OOtt†i ·OOt>0

: …4:25†

Similarly, it can be shown that

p‡…t†
p¡…t†

ˆ hexp …¡ ·OOtt†i ·OOt<0: …4:26†

We note that in actual experiments, where hOi > 0, equations (4.24) and (4.25) have
much smaller statistical uncertainties than (4.26), because rarely observed trajectory
segments with highly negative values of ·OOt will have a large in¯uence on the ensemble
average in (4.26). Consequently (4.26) should be avoided in numerical calculations or
experiments.

Finally we note that equation (4.25) can be used to show that

p¡…t† ˆ
hexp …¡ ·OOtt†i ·OOt>0

‰1 ‡ hexp …¡ ·OOtt†i ·OOt>0Š
; p‡…t† ˆ 1

‰1 ‡ hexp …¡ ·OOtt†i ·OOt>0Š
: …4:27†

Thus far all our equations refer to transient experiments. When t is large, corre-
sponding asymptotic expressions can be determined for steady state averages [47].

5. Green±Kubo relations
The Green±Kubo formulae relate the macroscopic, linear transport coe� cients

of a system to its microscopic equilibrium ¯uctuations. It has been shown that the
Green±Kubo relations (GK) can be derived from the SSFT and the assumption that
the distribution of time-averaged dissipative ¯ux is Gaussian [23, 32, 48]. We
summarize those arguments here.

For simplicity, we ®rstly consider the isokinetic case. In this case ­ is a constant
of the motion: ­ J t ˆ ­ 0

·JJt, and the SSFT (4.4) states,

lim
t!1

1

t
ln

³
p…J t ˆ A†

p…J t ˆ ¡A†

´
ˆ ¡A­ 0VFe: …5:1†

As the averaging time, t, becomes large compared with the Maxwell time, ½M, which
characterizes serial correlations in the dissipative ¯ux, contributions to the trajectory
segment averages of the dissipative ¯ux, { ·JJt}, become statistically independent and
therefore according to the Central Limit Theorem, (CLT), near its mean, the
distribution should approach a Gaussian. We also note that the SSFT requires
averaging times that are longer than the Maxwell time. In order to obtain GK
relations, we require that the distribution can be approximated by a Gaussian for
values of ·JJt º §hJi, where t º O…½M†, and within a few standard deviations of these
values [48]. As the averaging time becomes longer, the variance of the distribution of
time-averaged dissipative ¯uxes becomes ever smaller and it is less and less likely that
it will be well approximated by a Gaussian at ·JJt º hJi and ·JJt º ¡hJi. Furthermore,
as the ®eld is increased, hJij j increases, and therefore this condition will be violated
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at earlier times. If the condition is violated at times that are less than several ½M, then
the ®eld-dependent GK relations will not be valid. The distribution can only be
Gaussian for complementary values of the dissipative ¯ux §hJi and within a few
standard deviations of this value in the zero ®eld limit [48]. Only in the linear regime
will the ®eld-dependent GK relations provide a good estimation of the ®eld-
dependent transport coe� cient [48].

If the distribution is Gaussian, it is easy to show that,

lim
…t!1†

1

t
ln

³
p…­ Jt ˆ ­ A†

p…­ Jt ˆ ¡­ A†

´
ˆ lim

…t!1†

1

t
ln

³
p…J t ˆ A†

p…J t ˆ ¡A†

´

ˆ lim
…t!1†

2AhJiFe

t¼2
Jt

…t; Fe†
; …5:2†

where the averaging time is t, the applied ®eld is Fe and ¼2
J t

…t; Fe† is the variance of
the distribution of { ·JJt}:

¼2
J t

…t; Fe† ˆ h…J…t† ¡ hJiFe
†2iFe

: …5:3†

From equations (5.1) and (5.2) we see that if the t-averaged dissipative ¯uxes are
Gaussian near ·JJt º §hJi (i.e. in the zero ®eld limit), then the limiting zero ®eld
transport coe� cient is given as,y

L…0† ˆ lim
Fe!0

L…Fe† ˆ lim
Fe!0

¡hJiFe

Fe

ˆ lim
…t!1†

1
2 ­ 0Vt¼2

·JJt
…t; Fe ˆ 0†: …5:4†

This equation constitutes an Einstein relation for the linear transport coe� cient,
L…0†. Except for the case of colour conductivity where (5.4) is equivalent to the
standard Einstein expression for the self di� usion coe� cient [49], these zero ®eld
Einstein relations are not well known [48, 50].

If

~LLJ…s; Fe† ² ­ 0V

…1

0

dt exp …¡st†h…J…0† ¡ hJiFe
†…J…t† ¡ hJiFe

†iFe
…5:5†

is the frequency- and ®eld-dependent Green±Kubo transform (GK) of the dissipative
¯ux, then (see reference [32], and the appendix of reference [48]),

lim
…t!1†

t¼2
Jt

…t; Fe† ˆ 2 ~LLJ…0; Fe†
­ 0V

‡ lim
…t!1†

2 ~LL 0
J…0; Fe†
­ 0Vt

ˆ 2 ~LLJ…0; Fe†
­ 0V

; …5:6†

where

~LL 0
J…s; Fe† ² d ~LLJ…s; Fe†

ds
: …5:7†
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{ Note that a Gaussian distribution does not imply a FT. The FT is a much stronger statement: it

speci®es the relationship between the mean and the standard deviation if the distribution is Gaussian,

i.e. ¼…2=Ot† ˆ 2hOi=t. We note that the FT of course, does not require the distribution to be Gaussian.



Combining equations (5.4) and (5.6), shows that if the t-averaged dissipative ¯uxes
are Gaussian near ·JJt º §hJi (i.e. in the zero ®eld limit), then the linear transport
coe� cient, L…0†, is given by the zero frequency Green±Kubo transform of the
dissipative ¯ux,

L…0† ˆ lim
Fe!0

L…Fe† ˆ ~LLJ…0; Fe ˆ 0† ˆ ­ 0V

…1

0

dt hJ…0†J…t†iFeˆ0: …5:8†

This is the well known Green±Kubo expression for the linear transport coe� cient,
L…0†. The relationship between the FT and GK expressions in the linear regime has
been considered previously [7, 32, 51±53].

In the isoenergetic case a similar analysis can be applied. If the distribution is
Gaussian near ·JJt º §hJi, we have,

lim
…t!1†

1

t
ln

³
p…‰­ J Št ˆ B†

p…‰­ J Št ˆ ¡B†

´
ˆ lim

…t!1†

2Bh‰­ J ŠiFe

t¼2

‰­ J Št

ˆ lim
…t!1†

¡2Bh‰­ J ŠiFe

t¼2

‰­ J Štt

: …5:9†

Combining this equation with the ¯uctuation system for this system (see table 4.1)
shows that the Einstein relation for linear transport coe� cients of isoenergetic
systems is,

h­ iFe
L…Fe ˆ 0† ² lim

Fe!0

¡h‰­ J ŠiFe

Fe

ˆ lim
…t!1†

1
2
Vt¼2

‰­ J Št
…t; Fe ˆ 0†; …5:10†

while the corresponding Green±Kubo relation for isoenergetic systems is,

L…0† ˆ lim
Fe!0

L…Fe† ˆ ~LLJ…0; 0† ² Vh­ i¡1
Feˆ0

…1

0

dt h‰­ J Š…0†‰­ JŠ…t†iFeˆ0: …5:11†

Numerical tests verify the correctness of this relationship [48].

6. Causality
6.1. Introduction

The Transient Fluctuation Theorem and time dependent response theory are
meant to model the following types of experiment. One begins an experiment with an
ensemble of systems characterized by some initial (often equilibrium) distribution
function. One then does something to the system (applies or turns o� a ®eld as the
case may be) and one tries to predict what subsequently happens to the system. It is
completely natural that we assume that the probability of subsequent events can be
predicted from the probabilities of ®nding initial phases and a knowledge of
preceding changes in the applied ®eld and environment of the system. The future
state of the system is computed solely from the probabilities of events in the past.
This is called the Axiom of Causality.

It is logically possible to compute the probability of occurrence of present states
from the probabilities of future events, but this seems totally unnatural. Will the
electric light be on now, because at some time in the (near) future, we will throw a
switch which applies the necessary voltage? A major problem with this approach is
that at any given instant, the future states are generally not known! In spite of these
philosophical and practical di� culties, we will explore the logical consequences of
the (unphysical) Axiom of Anticausality .

Mechanics is indi� erent to the direction of timeÐHamilton’s Action Principle
shows this with great clarity. However, mechanics on its own does not give us
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enough information to predict experimental results. We need to know initial or
logically, ®nal conditions. When we model laboratory experiments we require initial
conditions because this is precisely how the experiments are conducted and because
initially, the ®nal state of the system is generally not known. Although we can mimic
the e� ects of time ¯owing backwards (time decrementing) by applying a time reversal
mapping to a set of phases, time nevertheless evolves in a positive sense. Indeed the
e� ectiveness of the time reversal mapping relies on the fact that time only increases.

We now show that if we derive Green±Kubo relations for the transport
coe� cients de®ned by anticausal constitutive relations, ®rstly, these anti-transport
coe� cients have the opposite sign to their causal counterparts and secondly, it
becomes overwhelmingly more likely to observe Second Law violating anticausal
non-equilibrium steady states [40]. This argument shows that in an anticausal world
it becomes overwhelmingly probable to observe ®nal equilibrium microstates that
evolved from Second Law violating non-equilibrium steady states. Although this
behaviour is not seen in the macroscopic world, anticausal behaviour is permitted by
the solution of the time reversible laws of dynamics and we demonstrate, using
computer simulation, how to ®nd phase space trajectories which exhibit anticausal
behaviour.

6.2. Causal and anticausal constitutive relations
Consider the component of the linear response at time t1, dB…t1†, of a system

characterized by a response function L…t1; t2†. The response is due to the application
of an external force F, acting for an in®nitesimal time dt2…> 0†, at time t2, could be
written as,

dB…t1† ˆ L…t1; t2†F…t2†dt2: …6:1†

This is the most general linear, scalar relation between the response and the force
components. If the response of the system is independent of the time at which the
experiment is undertaken …i.e. if the same response is generated when both times
appearing in (6.1) are translated by an amount t: t2 ! t2 ‡ t, t1 ! t1 ‡ t†, then the
response function L…t1; t2† is solely a function of the di� erence between the times at
which the force is applied and the response is monitored,

dB…t1† ˆ L…t1 ¡ t2†F…t2†dt2: …6:2†

The invariance of the response to time translation is called the assumption of
stationarity. Equation (6.2) does not in fact describe the results of actual experiments
because it allows the response at time t1 to be in¯uenced not only by forces in the
past, F…t2†, where t2 < t1, but also by forces that have not yet been applied t2 > t1

[54]. We therefore distinguish between the causal and anticausal response com-
ponents,

dBC…t1† ² ‡LC…t1 ¡ t2†F…t2†dt2; t1 > t2 …6:3 a†

dBA…t1† ² ¡LA…t1 ¡ t2†F…t2†dt2; t1 < t2: …6:3 b†

Later, we will prove that LC…t† ˆ LA…¡t†.
Considering the response at time t to be a linear superposition of in¯uences due

to the external ®eld at all possible previous (or future) times gives,

BC…t† ˆ
…t

¡1
LC…t ¡ t1†F…t1† dt1 …6:4 a†
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for the causal response and,

BA…t† ˆ ¡
…‡1

t

LA…t ¡ t1†F…t1† dt1 …6:4 b†

for the anticausal response.

6.3. Green±Kubo relations for the causal and anticausal linear response functions
To make this discussion more concrete we will discuss Green±Kubo relations for

shear viscosity [16]. Analogous results can be derived for each of the Navier±Stokes
transport coe� cients. We assume that the regression of ¯uctuations in a system at
equilibrium, whose constituent particles obey Newton’s equations of motion, are
governed by the Navier±Stokes equations. We consider the wave vector dependent
transverse momentum density,

J?…ky; t† ²
X

i

pxi…t† exp ‰ikyyi…t†Š; …6:5†

where pxi is the x-component of the momentum of particle i, yi is the y-coordinate of
particle i and ky is the y-component of the wave vector. The (Newtonian) equations
of motion can be used to calculate the rate of change of the transverse momentum
density. They give,

_JJ? ˆ iky

µ X

i

pxipyi exp …ikyyi† ‡ 1

2

X

i; j

yijFxij

1 ¡ exp …ikyyij†
ikyyij

exp …ikyyi†
¶

² ikyPyx…ky; t†: …6:6†

In this equation Fxij is the x-component of the force exerted on particle i by particle j,
yij ² yj ¡ yi and Pxy is the xy-component of the pressure tensor.

We now consider the response of the pressure tensor to a strain rate, ®, applied to
the ¯uid for t > 0 in the causal system and for t < 0 in the anticausal system. In the
causal system the strain rate is turned on at t ˆ 0 while in the anticausal system the
strain rate is turned o� at t ˆ 0. Since the pressure tensor is related to the time
derivative of the transverse momentum current by (6.6) and the strain rate is related
to the Fourier transform of the transverse momentum density by

®…ky; t† ˆ ¡ikyJ?…ky; t†=», the most general linear, stationary and causal constitutive
relation can be written as,

_JJ?…ky; t† ˆ
¡k2

y

»

…t

0

²C…ky; t ¡ s†J?…ky; s† ds; t > 0; …6:7†

where ²C is the causal response function (or memory function) and » is the density.
The corresponding anticausal relation is,

_JJ?…ky; t† ˆ
k2

y

»

…0

t

²A…ky; t ¡ s†J?…ky; s† ds; t < 0; …6:8†

where ²A is the anticausal `response’ function. Note that because t < 0, we ®nd that
the argument (t ¡ s) in (6.8) is less than zero, and we are indeed exploring the
response of the system at times less than zero, which is prior to the changes in the
strain rate that occur at times greater than zero!
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It is straightforward to use standard techniques to evaluate the Green±Kubo
relations for the causal and anticausal shear viscosity coe� cients. In the anticausal
case it is important to remember that the usual Laplace transform,

~FF…s† ²
…‡1

0

F…t† exp …¡st† dt; t ¶ 0 …6:9†

is inappropriate and needs to be replaced by an anti-Laplace transform,

F̂F…s† ²
…0

¡1
F…t† exp …st† dt; t µ 0: …6:10†

[Note: F̂F…s† ˆ
„ 1
0

F…¡t† exp …¡st† dt ˆ ~FF 0…s†, t ¶ 0, where F 0…t† ² F…¡t†:Š We note

that the anti-Laplace transform of a time derivative is _̂FF_FF…s† ˆ F…0† ¡ sF̂F…s† and that
the anti-Laplace transform of a convolution is the product of the anti-Laplace
transforms of the convolutes. By multiplying both sides of equations (6.7) and (6.8)
by J?…¡ky; 0† and taking an (equilibrium) ensemble average, one can easily derive
the following relations for the shear viscosity and the anticausal shear viscosity,

~CC…ky; s† ˆ C…ky; 0†

s ‡
k2

y~²²C…ky; s†
»

;

ĈC…ky; s† ˆ
C…ky; 0†

s ‡
k2

y²̂²A…ky; s†
»

;

…6:11†

where

C…ky; t† ² hJ?…ky; t†J?…¡ky; 0†i; 8 t: …6:12†

More useful relations for the viscosity coe� cients, especially at k ˆ 0, can be
obtained by utilising the equilibrium stress autocorrelation function,

N…ky; t† ²
1

VkBT
hPyx…ky; t†Pyx…¡ky; 0†i; 8 t: …6:13†

Using the fact that N̂N ˆ ¡ �̂CC�CC=k2
yVkBT , one can show [16, 55],

~²²C…ky; s† ˆ
~NN…ky; s†

1 ¡ k2
y

~NN…ky; s†=»s
;

²̂²A…ky; s† ˆ N̂N…ky; s†
1 ¡ k2

yN̂N…ky; s†=»s
:

9
>>>>>=
>>>>>;

…6:14†

At zero wave vector, we ®nd that the causal and anticausal memory functions are
both given by the equilibrium autocorrelation function of the pressure tensor,

²C…t† ˆ ²A…¡t†; where t > 0

² ²…t†; 8 t

ˆ V

kBT
hPyx…t†Pyx…0†i;

9
>>>>=
>>>>;

…6:15†

where we have used Pyx…t†V ˆ limk!0 Pyx…ky; t†. Since equilibrium autocorrelation

functions are symmetric in time, one does not have to distinguish between the
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positive and negative time domains. This proves our assertion made in section 6.2
that LC…t† ˆ LA…¡t†.

Using equations (6.6)±(6.8) and taking the zero wave vector limit, we obtain the
causal response of the xy-component of the pressure tensor,

PyxC…t† ˆ ¡
…t

0

²…t ¡ s†®…s† ds t > 0 …6:16†

and the anticausal response is,

PyxA…t† ˆ
…0

t

²…t ¡ s†®…s† ds t < 0: …6:17†

In the linear regime close to equilibrium the entropy production per unit time,
dS=dt, is given by,

dS
dt

ˆ ¡Pyx…t†®…t†V=T ; …6:18†

where ®…t† is the time-dependent strain rate. From equations (6.16) and (6.17), it is
easy to see that if we conduct two shearing experiments, one on a causal system with
a strain rate history ®C…t† and one on an anticausal system with ®A…t† ˆ §®C…¡t†,
then

dS…t†
dt

­­­­
A

ˆ ¡dS…¡t†
dt

­­­­
C

: …6:19†

This proves that if the causal system satis®es the Second Law of Thermodynamics
then the anticausal system must violate that Law and vice versa.

6.4. Example: the Maxwell model of viscosity
In this section we examine the consequences of the causal and anticausal response

by considering the Maxwell model for linear viscoelastic behaviour [16]. If we
consider the causal response of a system to a two step strain rate ramp:

®C…t† ˆ a 0 < t < t1

®C…t† ˆ b t1 < t < t2

¼
…6:20†

then use the Maxwell memory kernel,

²…t† ˆ G1 exp …¡jtj=½M†; 8 t …6:21†

in equation (6.16) and the fact that the causal, ²C, and anticausal, ²A, Maxwell shear
viscosities in the zero frequency limit are

²C ˆ ²A ˆ G1½M ˆ ²; …6:22†

we ®nd that the causal response is:

PxyC…t† ˆ ¡a²‰1 ¡ exp …¡t=½M†Š; 0 < t < t1

PxyC…t† ˆ ¡a²fexp ‰¡…t ¡ t1†=½MŠ ¡ exp …¡t=½M†g

¡ b²f…1 ¡ exp ‰¡…t ¡ t2†=½MŠg; t1 < t < t2: …6:23†

If we now consider the corresponding anticausal experiment with strain rate
histories given by:

D. J. Evans and D. J Searles1568



The Fluctuation Theorem 1569

Figure 6.1. A schematic diagram of the (a) causal and (b) anticausal response of Pxy to a
two-step strain rate ramp determined using the Maxwell model for linear viscoelastic
behaviour with G1 ˆ 40 and ½M ˆ 0:05 (solid line). In both cases the time
dependence of the strain rate is shown as a dashed line.



®A…t† ˆ a ¡t1 < t < 0

®A…t† ˆ b ¡t2 < t < ¡t1

¼
…6:24†

we ®nd that the anticausal response is:

PxyA…t† ˆ a²‰1 ¡ exp …t=½M†Š; ¡t1 < t < 0

PxyA…t† ˆ a²fexp ‰…t ‡ t1†=½MŠ ¡ exp …t=½M†g

‡ b²f1 ¡ exp ‰…t ‡ t2†=½MŠg; ¡t1 < t < ¡t2: …6:25†

From equations (6.23) and (6.25) it is clear that,

PxyA…t† ˆ ¡PxyC…¡t†: …6:26†

These response functions are shown graphically in ®gure 6.1. A two-step strain rate
ramp with a ˆ 1:0, b ˆ 0:5, t1 ˆ 2 and t2 ˆ 4 was considered. Equations (6.23) and
(6.25) were used to predict the causal and anticausal responses, respectively, of the
xy-component of the pressure tensor. Values of G1 ˆ 40:0 and t ˆ 0:05 were used in
the model. These values were obtained from approximate ®ts to computer simulation
data (see section 6.5).

The data in ®gure 6.1 show that for the causal response, Pxy is zero at equilibrium
(t µ 0) and decreases when the ®eld is applied until the steady state value is obtained.
It remains at the steady value until t ˆ 2, at which time the strain rate is reduced.
Since this system is causal, no change in Pxy occurs until after the strain rate is
reduced, when it increases until the system reaches a new steady state. We display the
anticausal response from t ˆ ¡4 where it is in an antisteady state. Just before the
strain rate is increased (at t ˆ ¡2), Pxy increases to a new antisteady state value.
Using equation (6.18) we see that the the causal response is entropy increasing and
Second Law satisfying, whereas the anticausal response is entropy decreasing and
Second Law violating.

6.5. Phase space trajectories for ergostatted shear ¯ow
We now examine the causal and anticausal response on a microscopic scale and

we consider the relative probability of observing Second Law satisfying and Second
Law violating trajectories by studying a ergostatted system of N particles under
shear.

The ergostatted SLLOD equations of motion (1.11), (1.12) are time reversible
[16]. Therefore for every i-segment C …i†…t†, …0 < t < ½†, there exists a conjugate
trajectory segment C …i…K††…t†, …0 < t < ½† with the property that, Pxy… C …i…K††…t†† ˆ
¡Pxy… C …i†…¡t††, …0 < t < ½†. Thus, the t-averaged shear stress ·PPxy;i;t ²
1=t

„ t

0
ds Pxy… C i…s†† for segment i is equal and opposite to that for its conjugate:

·PPxy;iK ;t ˆ ¡ ·PPxy;i;t. We note that since the solution of the equations of motion is a
unique function of the initial conditions the conjugate segment is also unique.

We have previously shown that for shear ¯ow conjugate segments may be
generated by using a phase space mapping known as a Kawasaki- or K-map [16].
A K-map of a phase, C , is de®ned as a time-reversal map which is followed by a y-
re¯ection. In the case of shear ¯ow the K-map leaves the strain rate unchanged but
changes the sign of the shear stress, that is MK C ˆ MK…x; y; z; px; py; pz; ®† ˆ
…x; ¡y; z; ¡px; py; ¡pz; ®† ² C …K† [16]. It is straightforward to show that the Liouville
operator for the system simulated by equations (1.11) and (1.12),
iL… C ; ®† ²

P
‰ _qqi… C ; ®† · @=@qi ‡ _ppi… C ; ®† · @=@piŠ, has the property that under a K-
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map, MKiL… C ; ®† ˆ iL… C …K†; ®…K†† ˆ ¡iL… C ; ®†. If we assume a strain rate history
such that, ®K…¡t† ˆ ®…t† 8t, then it follows that if a K-map is carried out on an
arbitrary phase C at t ˆ 0, then evolution forward in time from C …K† under a strain
rate ®K…t† is equivalent to time evolution backwards in time from C under the strain
rate history ®…t†, …t < 0†,

Pxy…¡t; C ; ®…¡t†† ˆ exp ‰¡iL… C ; ®…¡t††tŠPxy… C † ˆ ¡Pxy…t; C …K†; ®K…t††: …6:27†

We note that if we do not assume that ®K…¡t† ˆ ®…t† 8t, then there is no general
method for generating conjugate trajectory segments. This is because propagators
with di� erent strain rates do not commute, and the inverse propagator must
therefore retrace the strain rate history of the conjugate propagator but in inverse
historical order.

We will now indicate in more detail, how to construct the conjugate segment, i…K†,
from an arbitrary phase space trajectory segment i [32]. The construction is
illustrated in ®gure 6.2 for the case where the strain rate remains the same for the
duration of the trajectory. A trajectory of length ½ is generated by solving the
equations of motion. The conjugate segment is then constructed by applying a K-
map to the phase at the midpoint of the segment …t ˆ ½=2†, MK C …2† ˆ C …5†. We then
advance in time from the point … C …5††, to t ˆ ½ , by solving the equations of motion
and also go backwards in time from the K-mapped point, t ˆ ½=2, to t ˆ 0. A
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Figure 6.2. Pxy for trajectory segments from a simulation of 200 discs at T ˆ 1:0 and
n ˆ 0:8. A constant strain rate of ® ˆ 1:0 is applied at t ˆ 0. The trajectory segment
C …1;3† was obtained from a forward time simulation. At t ˆ 2, a K-map was applied
to C …2† to give C …5†. Forward and reverse time simulations from this point give the
trajectory segments C …5;6† and C …5;4†, respectively. If one inverts Pxy in Pxy ˆ 0 and
inverts time about t ˆ 2, one transforms the Pxy…t† values for the antisegments C …4;6†
into those for the conjugate segment C …1;3†.



conjugate trajectory of length ½ is thereby produced. This construction has
previously been described in more detail [32].

Clearly, the mapped trajectory is a solution of the equations of motion for the
system, and therefore it would eventually be observed from the ensemble of starting
states. When the K-map is carried out at t ˆ 0, the shear stress is inverted and
equation (6.27) shows that Pxy …½=2 ‡ t; C † ˆ ¡Pxy …½=2 ¡ t; C …K†† and similarly
Pxy …½=2 ¡ t; C † ˆ ¡Pxy…½=2 ‡ t; C …K††, therefore for every point on the original
trajectory there is a unique point on the mapped trajectory with opposite shear
stress. The ½ -averaged shear stress of the conjugate trajectory is opposite to that of
the original trajectory, that is ·PPxy;iK …½† ˆ ¡ ·PPxy;i…½†. Thus, if the original segment was
a Second Law satisfying segment then the conjugate segment is a Second Law
violating segment, and vice versa.

In a causal world, which is described by causal macroscopic constitutive relations
such as (6.4), observed segments are overwhelmingly likely to be Second Law
satisfying. It is a simple matter to apply the arguments of section 2.1 for the special
case of ergostatted shear ¯ow where a simple time reversal map cannot be used, and
must be replaced by the K-map (see footnotey on page 1542). The condition of
ergodic consistency has to be modi®ed slightly to require:

f … C K…t†; 0† 6ˆ 0; 8 C …0†: …6:28†

The result is the TFT given in (2.10).

6.6. Simulation results
We can demonstrate the relationships between the conjugate pairs of trajectories,

the Second Law of Thermodynamics and causal and anticausal response using
numerical simulations of the system described by equations (1.11) and (1.12). Figure
6.2 shows the response of Pxy for a trajectory and its conjugate when a constant
strain rate is applied. The response was determined using non-equilibrium molecular
dynamics simulations of 200 discs in two Cartesian dimensions. The discs interact via
the WCA potential [45],

¿…r† ˆ
4…r¡12 ¡ r¡6† ‡ 1 r < 21=6

0 r > 21=6:

(
…6:29†

Shearing periodic boundary conditions were used to minimize boundary e� ects [16].
The system was maintained at a constant kinetic temperature of T ˆ 1:0 and the
particle density was n ˆ N=V ˆ 0:8. An initial phase was selected from an equi-
librium distribution and a strain rate of ® ˆ 1:0 was applied to the system at t ˆ 0. A
trajectory segment was generated by simulating forward in time to t ˆ 4. The
conjugate trajectory was constructed using the scheme describe above. Examination
of the trajectories shows that Pxy…½ ‡ t† for the Second Law satisfying trajectory is
equal in magnitude but opposite in sign to Pxy…½ ¡ t† for the Second Law violating
trajectory, where t is the time at which the K-map is applied (½ ˆ 2). These results
therefore con®rm the relationship between Pxy of Second Law satisfying trajectories
and Second Law violating conjugate trajectories given by equation (6.27).

The causality of the response is more clearly demonstrated in ®gure 6.3 where the
response of Pxy to a strain rate ramp is shown. Pxy…t† was averaged over 100
individual trajectories to reduce the ¯uctuations in the steady state and giving a

partially ensemble averaged response
_
Pxy…t†. In these simulations 56 discs were used.
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Figure 6.3. ·PPxy (solid line) from non-equilibrium molecular dynamics simulations of 56
particles at T ˆ 1:0 and n ˆ 0:8 undergoing shear ¯ow. The dashed line gives the
time-dependence of the strain rate. In (a) ·PPxy was determined using 1000 trajectories
whose initial phases were selected from an equilibrium distribution, and to which
a two step strain rate was applied. (b) shows ·PPxy for their conjugate trajectories. The
conjugate trajectories were obtained by applying a K-map to the phase of the
trajectory at t ˆ 2, simulating forward and backward in time from this point and
translating in time so that the conjugate trajectory ends at t ˆ 0. Note that the strain
rate history of the conjugate trajectory is reversed.

(a)

(b)



The initial phases of the trajectories shown in ®gure 6.3 were sampled from the

equilibrium distribution at t ˆ 0.
_
Pxy is close to zero at equilibrium and decreases to

near a steady state value after the ®eld is applied. After the strain rate is reduced,
_
Pxy

increases towards a new steady state value.
The conjugate trajectories are shown in ®gure 6.3. They were constructed as

described above and translated in time to begin at t ˆ ¡4. At this time, the system is

in an antisteady state and
_
Pxy remains near its antisteady state value until just before

the the strain rate is changed, when it increases towards a new antisteady state value.
In accord with the TFT, these response curves demonstrate that most initial

phases (here all 100 randomly selected initial phases) satisfy the Second Law and
most phases (again all 100 initial random phases) exhibit response curves that we
would describe as having `causal’ characteristics (i.e. the stress responds to prior
rather then future, changes in the strain rate). Second Law violating conjugate
trajectories respond to the step in the strain rate before it is made, so they are
anticausal. Close inspection of the graph reveals that at all points along pairs of
conjugate trajectories, Pxy…t†trajectory ˆ ¡Pxy…¡t†conjugate trajectory which follows from
(6.27).

The system used in the simulations corresponds to that examined using the
Maxwell model described in section 6.4. Figure 6.3 shows the response, determined
by non-equilibrium molecular dynamics simulation, to the same two step strain rate
ramp which was used to model the response shown in ®gure 6.1. Comparison of
these response curves indicates that the system is reasonably well represented by the
Maxwell model.

7. Experimental con®rmation
The importance of experimental veri®cation of theoretical predictions is self-

evident, and a number of numerical simulations have been carried out to test various
proposed FTs [6, 17, 32, 39±41, 42±44, 46±48, 52, 53, 56±59]. Even if we have
rigorous proofs of mathematical theorems (as in the case of the Fluctuation
Theorems derived here), the applicability of the conditions that are necessary for
the construction of such proofs, to real experimental systems can never be taken for
granted. When we speak of experimental con®rmation of a rigorous theorem, we are
really testing the applicability, to natural systems, of the conditions required by the
theorem. Experiments however serve a second purpose. They tell us the magnitude of
predicted e� ectsÐtheory is often silent on this issue. For asymptotic theorems,
experiments tell how large a variable needs to be before the asymptotic theoretical
prediction is accurate. Here we describe experiments which con®rm the Fluctuation
Theorem and show that for micron sized latex particles trapped by radiation
pressure in an optical trap, the Second Law can be violated for macroscopic times,
namely three seconds, or so.

The Fluctuation Theorem has been tested experimentally in two di� erent studies
[60, 61]. The test by Ciliberto and Laroche considers temperature ¯uctuations in a
¯uid undergoing Rayleigh±Benard convection. The study is somewhat inconclusive
because they are unable to measure the entropy production directly, and they
assumed proportionality between the entropy production and temperature ¯uctua-
tions. If this assumption is valid, it would still be necessary to know the
proportionality constant fully to test the ¯uctuation theorem. However, this
proportionality constant was not known.
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A more satisfactory test has recently been carried out that measures the

¯uctuation in the position of a latex bead in water when it is trapped by laser

tweezers [61]. In this experiment, a laser beam forms an optical trap that is used to

move a micron sized latex bead with respect to its surrounding solvent, water. The
sample cell is on a movable stage, driven in the xy-direction by two piezoelectric

crystals, and the particle can be viewed through a microscope that is also mounted

on the stage. The trajectory of the particle can be displayed on a computer using a

CCD camera, and the particle position is recorded using a quadrant photodiode. The

photodiode provides su� cient resolution to determine forces on the particle to 2

femtonewtons. This experiment enables the position of the particle to be measured to

a resolution of approximately 15 nm. Details of the experimental design are given in
reference [61].

When the laser trap is applied, the latex bead is trapped by a potential well with a

force constant that can be modi®ed by adjusting the laser power. The bead then

¯uctuates about the minimum of the potential energy ®eld formed by the laser trap.

Once the bead is trapped (at t ˆ 0), the movable stage is given a constant

translational velocity that results in a convective ®eld and which imposes, on

average, a drag force on the particle. After some time, the system will reach a steady
state where the average steady-state position is given by the balance of the average

optical trap and drag forces. The average position will from now on be displaced

from the minimum of the optical trap, in the direction of the convective ®eld. Since

we are interested in investigating the transient response of the particle, the experi-

ment is designed for the time required to reach the steady state position to be within

measurable time limits.

These experiments can also be directly simulated using non-equilibrium mol-
ecular dynamics simulations. In the simulation, one particle in a ¯uid is distinguished

from the other particles by giving it a colour charge. This colour charge does not

alter its interaction with other particles, but allows it to be in¯uenced by an applied

colour ®eld. To model the optical trap, a harmonic colour potential is applied to this

particle (designated as particle 1),

Ftrap…q1; t† ˆ 1
2
k…q1…t† ¡ q0…t††

2; …7:1†

where k is the force constant and q0…t† is the position of the optical trap.

The movement of the stage is simulated by shifting the focus of the laser in the

§x-direction with a constant speed, so x0…t† ˆ x0…0† § voptt, where vopt is the speed

of the optical trap. The ¯uid is contained between walls that run parallel to the

direction of the constant force, and the wall particles only are thermostatted using a

NoseÂ ±Hoover thermostat. The wall particles are forced to oscillate about their initial
positions by a harmonic potential and the box is periodic in the x- and y-directions.

For this system, the t ˆ 0 distribution function is

f … C ; q0; _qq0; ±; 0† ¹ exp f¡­ K…p† ‡ F…q† ‡ Ftrap…q1; 0† ‡ 1
2
Q±2Šgd…j _qq0j†;

£
…7:2†

where ­ is the Boltzmann factor, ­ ˆ 1=…kBT†, T the wall temperature, Q is the

e� ective mass of the thermostat [16] and ± is the NoseÂ ±Hoover thermostat multiplier

(de®ned below). For t > 0, the equations of motion are,
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_qq0 ˆ ivopt

_qqi ˆ pi

m
; i > 0

_ppi ˆ Fi ¡ k…qi ¡ q0…t††d1;i ‡ Si…Fwi ¡ ±pi†; i > 0

_±± ˆ 1

Q

XNW

iˆ1

p2
i

m
¡ dCNWkBT

Á !

;

…7:3†

where Fi is the force on the ith particle due to interparticle interactions, d1;i is the
Kronecker delta, NW is the number of wall particles, Si ˆ 1 for wall particles and
Si ˆ 0 otherwise and Fwi is the constraint force on wall particles.

Using equations (2.6), (7.2) and (7.3), the dissipation function that appears in the
TFT (2.8) and the ITFT, is

O… C ; t† ˆ ¡­ vopt · k…q1…t† ¡ q0…t††: …7:4†

A histogram of ·OOt obtained from the numerical simulations is shown in ®gure 7.1,
and tests of the FT for this system are presented in ®gures 7.2 (a,b). Clearly, the TFT
and transient IFT are both satis®ed.
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Figure 7.1. A histogram of ·OOt obtained from a simulation of the transient response of a
trapped particle to the onset of motion of the stage. A ¯uid of 32 particles was
con®ned between parallel walls that were thermostatted using a NoseÂ ±Hoover
thermostat. The temperature of the system was T ˆ 1:0, the particle density of the
¯uid n ˆ 0:3 and the length of the trajectory t ˆ 1:0. The optical trap moved with a
velocity of vopt ˆ 0:5 and a force constant of 1.0 was used in the harmonic potential
that models the optical trap.
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Figure 7.2. (a) A test of the TFT, using numerical simulations of the system described in
®gure 7.1. (b) A test of the transient IFT, using numerical simulations of the system
described in ®gure 7.1.



Due to the relatively large statistical error in the experimental resultsÐwhere 540

trajectories are considered, compared with ¹ 3 £ 105 trajectories in the numerical

simulations presented in ®gures 7.1 and 7.2 (a)Ðthe results were only used to test the

transient IFT. In ®gure 7.3, the experimental results for a test of the transient IFT
are presented. The latex beads were 6.3 mm in diameter; the trapping constant was

k ¹ 0:1 pN mm¡1; the optical trap speed was, vopt ˆ 1:25 mm s¡1 and the reservoir

temperature was 300 K. The results shown in ®gure 7.3 were taken over an ensemble

of 540 transient trajectories. As can be seen in ®gure 7.3 the results are in excellent

agreement with the transient Integrated Fluctuation Theorem. It is worth comment-

ing that we see a signi®cant number of ensemble members which violate the Second

Law of Thermodynamics for times ¹2±3 seconds! Experimental sensitivity limits the
maximum time for which violations can be observed.

It is also worth pointing out that the ®ctitious NoseÂ ±Hoover thermostat used in

part to derive the form for the dissipation function (7.4), tested in the experiment,

does not actually occur in the experiment. However, since in both the theory and the

experiment, the thermostatting occurs only in a region that is remote from the

optical trap (the walls), the dissipation function derived in the theory must also be

valid for the laboratory experiment. There is simply no way that the molecules near
the (experimental or theoretical) optical trap can `know’ how the system is

thermostatted in the remote wall regions. Furthermore, the dissipation function

appearing in the FT (7.4), involves variables that are not NoseÂ ±Hoover speci®c

quantities. The dissipation function refers only to the trap force and velocity, and the

temperature of the thermal reservoir.
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Figure 7.3. A test of the transient IFT for an optical tweezers experiment.



8. Conclusion
In this Review we have derived a family of relationships that have come to be

known collectively as the Fluctuation Theorem. Because the FTs deal with
¯uctuations, the FTs take on di� erent forms for di� erent combinations of initial
ensemble and dynamics (constant energy, temperature, pressure, etc). Broadly
speaking, the FTs give mathematical expressions for the ratio of probabilities that
the time average of the dissipation function, (2.6), takes on complementary values
(§A).

When the mathematical form of the initial ensemble is known, one can derive
what are known as Transient Fluctuation Theorems, which are exact for time-
averaging periods of arbitrary duration. Another family of FTs give asymptotic
expressions for the ratio of probabilities that in an ensemble of non-equilibrium
steady states the time-averaged entropy absorbed by the thermostat, takes on
complementary values (§A). If the non-equilibrium steady state is ergodic then
the distribution of time averaged entropy absorption can be taken from a single very
long phase space dynamical trajectory.

Among the TFTs, if the system starts from some known initial ensemble and
evolves in time in contact with a thermostat or ergostat, then the resulting TFTs
describe the probability ratio that the time averaged entropy absorbed by the
thermostat, takes on complementary values. For such systems the TFT or SSFT
gives a proof of the Second Law of Thermodynamics. This is because the dissipation
function referred to in such FTsÐsee (4.3), (4.6)Ðcan be recognized as the rate at
which entropy is absorbed by the thermostat.

However, if the system is not thermostatted (this excludes all SSFTs of course),
the dissipation function referred to in the relevant TFT is not usually recognizable as
an entropy production or absorption. For example, in section 4.3 we dealt with the
adiabatic relaxation of a modulation in colour density in a ¯uid of otherwise
identical particles. The relaxation takes place under a colour-blind HamiltonianÐ
the natural Hamiltonian for a system of identical but interacting particles. From the
initiation of the experiment, the motion is conservative and Hamiltonian. The colour
labels that we imposed on the ¯uid particles initially, have no thermodynamic
relevanceÐthere is no thermodynamic entropy production. In spite of this, the
resulting TFT enables us to prove that with overwhelming likelihood (exponential
in time and system size) the initial colour modulation will relax (rather than be
ampli®ed) and at long times the system will be homogeneous with respect to
colourÐin complete accord with Le Chatelier’s Principle [12].

The FTs are quite general and they are not restricted to the linear response
regime close to equilibrium. However, as one moves further away from equilibrium,
either the system size or the observation time must be shortened in order actually to
observe signi®cant numbers of ¯uctuations that violate either the Second Law or Le
Chatelier’s Principle. In the linear response regime close to equilibrium, the SSFT
can be used to derive the famous Green±Kubo or Einstein relations for linear
transport coe� cients. Outside the linear response regime the nonlinear Green±Kubo
and Einstein relations, unlike the SSFT, are not valid. In this regime the proof of the
Green±Kubo relations from the SSFT breaks down because the Central Limit
Theorem is insu� ciently strong: it does not apply su� ciently many standard
deviations from the mean.

Various generalizations of the FTs are possible. In section 4.4 we derived FTs for
time averages of arbitrary functions which have a de®nite parity under time reversal
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symmetry. Thus, these Generalized FTs can be applied to variables other than the

dissipation function. For unthermostatted systems where the dissipation function is

not (generally) an entropy production, the Generalized FT can be applied to the

entropy production in order to prove the correctness of the Second Law for these
systems [43].

In section 4.5 we developed an integrated FT which gives the probability ratio

that the time-averaged dissipation function is either positive or negative. When

applied to a thermostatted system such as a particle in a thermostatted optical trap,

the relevant IFT gives the probability ratio that the entropy absorbed by the heat

bath is either positive or negative. This expression has been tested numerically and,

more signi®cantly, in an actual laboratory experiment; see section 7. In the Optical
Tweezers experiment, micron sized latex spheres were observed to move both

towards and against a piconewton sized optical force for periods of approximately

3 seconds. The experimentally observed probability ratios are in statistical agreement

with the prediction of the IFT.

There is an important practical application of the FTs. In recent years there has

been much talk about nanotechnology. People believe that one can scale down

machines, devices and engines to nanometer sizes for a wide range of biological,
electronic and technological purposes. The FTs point out that there is a fundamental

limit to this scaling down process, that small engines are not simply rescaled versions

of their larger counterparts. If the work performed during the duty cycle of any

machine is comparable to the thermal energy per degree of freedom in the system

(i.e. kBT ), the FTs say that there is a signi®cant probability that the machine will

actually run backwards. In violation of the Second Law, heat energy from the

surroundings can be converted into useful work to provide su� cient energy for the
machine to run in reverse. This is an inescapable property of Nature which places a

fundamental constraint on the operation of nanomachines. As you scale down

machines they inescapably run in a mode: `two steps forward and one step back’.

The ratio of forward to backward steps is given by the FT. This must also be the way

that living sub-cellular organelles (machines) operate.

We have a few remarks regarding the reversibility paradox. If every microscopic

law or axiom of Nature is symmetric under time reversal symmetry, then obviously
one cannot derive time asymmetric theorems such as the FTs. Somewhere in the

derivations of the FT given in section 2.3, we must have introduced a time

asymmetric assumption. That assumption was the Axiom of Causality. We

computed the probability of subsequent events (time averages of dissipation

functions) from the probabilities of initially observing those states from which the

subsequent phase space trajectories evolved (6.3 a), (6.4 a).

It is logically possible that the Axiom of Causality could be replaced by its time
conjugate: the Axiom of Anti-Causality. In section 6.3 we showed how an

assumption of anticausality would lead to a response with anticausal characteristics

and we also showed that an assumption of anticausality (6.4 b) leads to anti-Green±

Kubo transport coe� cients which not only lead to negative entropy production but

inescapably lead to characteristic anticausal responsesÐdissipative ¯uxes responding

in advance of future changes in the applied ®elds (see ®gure 6.1)! We have thus
shown that there is a deep connection between Causality and the Second Law of

Thermodynamics. We cannot violate the Second Law for long and still satisfy

causality.
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Had we employed the ®ctitious Axiom of Anticausality (6.4 b), then we would
have derived an anti-Fluctuation Theorem. Instead of equation (2.8) we would have
in its place

‰p… ·OOt ˆ A†Š=‰p… ·OOt ˆ ¡A†Š ˆ exp ‰¡AtŠ!

We remark that for dilute gases an analogous state of a� airs exists with regard to
the calculation of transport coe� cients from the Boltzmann equation. The Boltz-
mann equation is time irreversible and leads to Second Law satisfying transport
coe� cients. This is analogous to the Second Law satisfying Green±Kubo relations
for linear transport coe� cients in ¯uids of arbitrary densityÐsee section 3. In 1960
Cohen and Berlin [62] showed that if the molecular chaos assumption of Boltzmann
is assumed to apply to post-collisional distributions rather than (as Boltzmann
assumed) to pre-collisional distributions, then one can derive an anti-Boltzmann
Equation (our terminology). This use of Boltzmann’s molecular chaos assumption
for pre- and post-collisional distributions is analogous to our use of Boltzmann’s
ansatz before and after the strain rate rampsÐsee section 5. The anti-Boltzmann
equation derived by Cohen and Berlin obeys an anti-H theorem [62] which violates
the Second Law. Consequently, the anti-Boltzmann equation also leads to negative
values for the Navier±Stokes transport coe� cients. So in our view macroscopic
irreversibility ultimately derives from the time reversible laws of motion and the time
asymmetric, Axiom of Causality, (6.4 a).

We remark, as an aside, that from a practical point of view an Axiom of
Anticausality would be di� cult to use in actual calculations since the required
information about the future states of a system usually does not exist. In an
anticausal Universe, knowledge of its present state would enable us to predict the
past but not the future.

One can explore the connection between the Second Law and reversibility
directly. The proof of the TFT given in section 2.1 assumed that the dissipative
®eld took the form of a Heaviside step function in time. However, this assumption is
unnecessary. The proof also applies to systems with time dependent external ®elds of
de®nite parity under time reversal mappings:

MT‰Fe…t†Š ˆ §Fe…T ¡ t†: …8:1†

The initial distribution should be even under time reversal (section 2.1), and the
initial ensemble and dynamics must be ergodically consistent (2.5). When these
conditions are met, the proof given in section 2.1 is still valid and the Fluctuation
Theorem still holds.

We now examine the sub-ensemble averaged transient time dependent responses
of the dissipation function for complementary values of the time averaged dissipa-
tion hO…t†i ·OOtˆA, hO…t†i ·OOtˆ¡A. According to our proof of the TFT, one would expect
that

hO…t†i·OOtˆA ˆ MThO…t†i·OOtˆ¡A ˆ ¡hO…T ¡ t†i ·OOtˆ¡A: …8:2†

This equation is a direct test of our standard proof, in section 2, of the TFT. Given
the time reversibility of the equations of motion equation (8.2) must be correct.
However, in an actual experiment it is by no means obvious that it can be veri®ed in
practice. In a complex many-particle phase space, we expect that there are many
non-contiguous, distinct phase space trajectory bundles that have the speci®ed time-
integrated values of the dissipation function, ·OOt ˆ §A. Each of these distinct
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trajectory bundles i, could have very di� erent time dependent dissipation functions,

Oi…t†. If this is the case it could be very di� cult to sample conjugate trajectory bundle
pairs, i; i*, for which Oi…t† ˆ ¡Oi¤…T ¡ t†. This would make experimental con®rma-
tion of equation (8.2), very di� cult.
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Figure 8.1 Histogram of the distribution of the time-averaged dissipative ¯ux Jxt.

Figure 8.2. The dissipative ¯ux as a function of time for trajectories with conjugate values
(bins 4,4* in ®gure 8.1) of the dissipative ¯ux.



We checked equation (8.2) by performing non-equilibrium molecular dynamics

simulations [63] of an 8-particle, binary 50 : 50 mixture of coloured WCA particles.

The state point studied was T ˆ 1:0, n ˆ 0:4. The temperature was controlled by a

NoseÂ ±Hoover thermostat. In ®gure 8.1 we show the histogram of the dissipative ¯ux.

The system was subject to a three-step colour ®eld, as shown in ®gure 8.2. Figure

8.2 also shows the typical response from conjugate histogram bins to the time
dependent colour ®eld shown in the ®gure. The actual bins shown are 4 and 4*, of

®gure 8.1. However, other conjugate bins show similar results. The subensemble-

averaged current traces each show mixed causal and anticausal characteristics. The

current for bin 4 clearly begins to decrease before the colour ®eld is decreased at

t ˆ 1. Overall, comparing bins 4 and its conjugate 4*, we would say that bin 4

exhibits stronger causal characteristics than does bin 4*.

In ®gure 8.3 we show that within statistical uncertainties the dissipative ¯uxes for
conjugate values of the time-integrated entropy production are, within statistical

uncertainties, time-reversed maps of each otherÐverifying equation (8.2).

The famous problem, the creation of anti-events from events, has no solution.

Although, using simple instructions, the [solution] may be put into words: reverse the

instantaneous velocities of all of the atoms in the UniverseÐLoschmidt, 1876 [5]. For

an ensemble of experiments we see that we can observe conjugate pairs of time-

reversed responses without intervening and reversing particle velocities. All one has
to do is to sort the ensemble of responses on the basis of their time-integrated

dissipation functions (entropy production in thermostatted systems), and to compare

those responses with complementary values of total dissipation. These responses will
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Figure 8.3. The current traces for conjugate histogram bins are related by a time reversal
mapping. The full line is hJx…t†i4 and the dotted line is MThJx…t†i4¤.



be time-reversed mappings of each other. The ratio of probabilities of observing
these complementary time-integrated values of dissipation are given by the Fluctua-
tion Theorem, with Second Law satisfying responses being exponentially dominant.
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