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and subsequent physical, chemical and transport properties. This textbook gives a complete
account of electron theory in both periodic and non-periodic metallic systems.
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experimental results as much as possible. The book starts with the basics of one-electron band
theory and progresses to cover up-to-date topics such as high-Tc superconductors and quasi-
crystals. The relationship between theory and potential applications is also emphasized. The
material presented assumes some knowledge of elementary quantum mechanics as well as the
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Preface

This book is an English translation of my book on the electron theory of
metals first published in two parts in 1995 and 1996 by Uchida Rokakuho,
Japan, the content of which is based on the lectures given for advanced under-
graduate and graduate students in the Department of Applied Physics and in
the Department of Crystalline Materials Science, Nagoya University, over the
last two decades. Some deletions and additions have been made. In particular,
the chapter concerning electron transport properties is divided into two in the
present book: chapters 10 and 11. The book covers the fundamentals of the
electron theory of metals and also the greater part of current research interest
in this field. The first six chapters are aimed at the level for advanced under-
graduate students, for whom courses in classical mechanics, electrodynamics
and an introductory course in quantum mechanics are called for as prerequi-
sites in physics. It is thought to be valuable for students to make early contact
with original research papers and a number of these are listed in the References
section at the end of the book. Suitable review articles and more advanced text-
books are also included. Exercises, and hints and answers are provided so as to
deepen the understanding of the content in the book.

It is intended that this book should assist students to further their training
while stimulating their research interests. It is essentially meant to be an intro-
ductory textbook but it takes the subject up to matters of current research
interest. I consider it to be very important for students to catch up with the
most recent research developments as soon as possible. It is hoped that this
book will be found helpful to graduate students and to specialists in other
branches of physics and materials science. It is also designed in such a way that
the reader can find interest in learning some more practical applications which
possibly result from the physical concepts treated in this book.

I am pleased to acknowledge the valuable discussions that I have had with
many colleagues throughout the world, which include Professors T. B.

xi



Massalski, K. Ogawa, M. Itoh, T. Fukunaga, H. Sato, T. Matsuda and H.
Ikuta, also Drs E. Belin-Ferré, J. M. Dubois and T. Takeuchi. I would like to
thank them all for their interest and helpfulness. With regard to the actual pro-
duction of this book, the situation is more straightforward. In this regard, I
would especially like to thank Professor M. Itoh, Shimane University and
Professor K. Ogawa, Yokohama City University, for allowing me to include
some of their own thoughts in my textbook. I am also grateful to Dr Brian
Watts of Cambridge University Press for his advice on form and substance, and
assistance with the English of the book at the final stage of its preparation.

Uichiro Mizutani
Nagoya
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Chapter One

Introduction

1.1 What is the electron theory of metals?

Each element exists as either a solid, or a liquid, or a gas at ambient tempera-
ture and pressure. Alloys or compounds can be formed by assembling a
mixture of different elements on a common lattice. Typically this is done by
melting followed by solidification. Any material is, therefore, composed of a
combination of the elements listed in the periodic table, Table 1.1. Among
them, we are most interested in solids, which are often divided into metals,
semiconductors and insulators. Roughly speaking, a metal represents a
material which can conduct electricity well, whereas an insulator is a material
which cannot convey a measurable electric current. At this stage, a semicon-
ductor may be simply classified as a material possessing an intermediate char-
acter in electrical conduction. Most elements in the periodic table exist as
metals and exhibit electrical and magnetic properties unique to each of them.
Moreover, we are well aware that the properties of alloys differ from those of
their constituent elemental metals. Similarly, semiconductors and insulators
consisting of a combination of several elements can also be formed.
Therefore, we may say that unique functional materials may well be synthe-
sized in metals, semiconductors and insulators if different elements are inge-
niously combined.

A molar quantity of a solid contains as many as 1023 atoms. A solid is formed
as a result of bonding among such a huge number of atoms. The entities
responsible for the bonding are the electrons. The physical and chemical prop-
erties of a given solid are decided by how the constituent atoms are bonded
through the interaction of their electrons among themselves and with the
potentials of the ions. This interaction yields the electronic band structure
characteristic of each solid: a semiconductor or an insulator is described by
a filled band separated from other bands by an energy gap, and a metal by
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Table 1.1. Periodic table of the elements

1H

1.008
1s

2He

4.003

1s2

3Li

6.941
2s

4Be

9.012
2s2

5B

10.81
2s22p

6C

12.01
2s22p2

7N

14.01
2s22p3

8O

16.00
2s22p4

9F

19.00
2s22p5

10Ne

20.18
2s22p6

11Na

22.99
3s

12Mg

24.31
3s2

13Al

26.98
3s23p

14Si

28.09
3s23p2

15P

30.97
3s23p3

16S

32.07
3s23p4

17Cl

35.45
3s23p5

18Ar

39.95
3s23p6

31Ga

69.72
4s24p

32Ge

72.59
4s24p2

33As

74.92
4s24p3

34Se

78.96
4s24p4

35Br

79.90
4s24p5

36Kr

83.80
4s24p6

49In

114.8
5s25p

50Sn

118.7
5s25p2

51Sb

121.8
5s25p3

52Te

127.6
5s25p4

53I

126.9
5s25p5

54Xe

131.3
5s25p6

81Tl

204.4
6s26p

82Pb

207.2
6s26p2

83Bi

209.0
6s26p3

84Po

—
6s26p4

85At

—
6s26p5

86Rn

—
6s26p6

19K

39.10
4s

20Ca

40.08
4s2

21Sc

44.96
4s23d

22Ti

47.88
4s23d2

23V

50.94

24Cr

52.00

25Mn

54.94
4s23d5

26Fe

55.85
4s23d6

27Co

58.93
4s23d7

28Ni

58.69
4s23d8

29Cu

63.55
4s3d10

30Zn

65.39
4s23d10

37Rb

85.47
5s

38Sr

87.62
5s2

39Y

88.91
5s24d

40Zr

91.22
5s24d2

41Nb

92.91
5s4d4

42Mo

95.94
5s4d5

43Tc

—
5s4d6

44Ru

101.1
5s4d7

45Rh

102.9
5s4d8

46Pd

106.4
4d10

47Ag

107.9
5s4d10

48Cd

112.4
5s24d10

55Cs

132.9
6s

56Ba

137.3
6s2

Lantha-
nide

72Hf

178.5
6s25d24f14

73Ta

180.9
6s25d3

74W

183.9
6s25d4

75Re

186.2
6s25d5

76Os

190.2
6s25d6

77Ir

192.2
5d9

78Pt

195.1
6s5d9

79Au

197.0
6s5d10

80Hg

200.6
6s25d10

87Fr

—
7s

88Ra

226.0
7s2

Acti-
nide

Lantha-
nide

Acti-
nide

66Dy

162.5
6s24f10

67Ho

164.9
6s24f11

68Er

167.3
6s24f12

69Tm

168.9
6s24f13

70Yb

173.0
6s24f14

71Lu

175.0
6s25d4f14

57La

138.9
6s25d

58Ce

140.1
6s24f2

59Pr

140.9
6s24f3

60Nd

144.2
6s24f4

61Pm

—
6s24f5

62Sm

150.4
6s24f6

63Eu

152.0
6s24f7

64Gd

157.3
6s25d4f7

65Tb

158.9
6s25d4f8

98Cf

—

99Es

—

100Fm

—

101Md

—

102No

—

103Lr

—

89Ac

227.0
7s26d

90Th

232.0
7s26d2

91Pa

231.0
7s26d5f2

92U

238.0
7s26d5f3

93Np

237.0
7s25f5

94Pu

—
7s25f6

95Am

—
7s25f7

96Cm

—
7s26d5f7

97Bk

—

Symbol
atomic
weight

atomic
number

outer electron
configurations

in the ground state

4s23d3 4s3d5



overlapping continuous bands. The resulting electronic structure affects signif-
icantly the observed electron transport phenomena. The electron theory of
metals in the present book covers properties of electrons responsible for the
bonding of solids and electron transport properties manifested in the presence
of external fields or a temperature gradient.

Studies of the electron theory of metals are also important from the point
of view of application-oriented research and play a vital role in the develop-
ment of new functional materials. Recent progress in semiconducting devices
like the IC (Integrated Circuit) or LSI (Large Scale Integrated circuit), as well
as developments in magnetic and superconducting materials, certainly owe
much to the successful application of the electron theory of metals. As another
unique example, we may refer to amorphous metals and semiconductors,
which are known as non-periodic solids having no long-range order in their
atomic arrangement. Amorphous Si is now widely used as a solar-operated
battery for small calculators.

It may be worthwhile mentioning what prior fundamental knowledge is
required to read this book. The reader is assumed to have taken an elementary
course of quantum mechanics. We use in this text terminologies such as the
wave function, the uncertainty principle, the Pauli exclusion principle, the per-
turbation theory etc., without explanation. In addition, the reader is expected
to have learned the elementary principles of classical mechanics and electro-
magnetic dynamics.

The units employed in the present book are mostly those of the SI system,
but CGS units are often conventionally used, particularly in tables and figures.
Practical units are also employed. For example, the resistivity is expressed in
units of V-cm which is a combination of CGS and SI units. Important units-
dependent equations are shown in both SI and CGS units.

1.2 Historical survey of the electron theory of metals

In this section, the reader is expected to grasp only the main historical land-
marks of the subject without going into details. The electron theory of metals
has developed along with the development of quantum mechanics. In 1901,
Planck [1]† introduced the concept of discrete energy quanta, of magnitude hn,
in the theory of a “black-body” radiation, to eliminate deficiencies of the clas-
sical Rayleigh and Wien approaches. Here h is called the Planck constant and
n is the frequency of the electromagnetic radiation expressed as the ratio of
the speed of light c over its wavelength l. In 1905, Einstein [2] explained the

1.2 Historical survey of the electron theory of metals 3
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photoelectric effect (generation of current by irradiation) by making assump-
tions similar to those of Planck. He assumed the incident light to be made up
of energy portions (or “photons” as named later) having discrete energies in
multiples of hn but that it still behaves like waves with the corresponding fre-
quency. The assumption about a relationship between wave-like and particle-
like behavior of light had not been easily accepted at that time.

In 1913, Bohr [3] proposed the electron shell model for the hydrogen atom.
He assumed that an electron situated in the field of a positive nucleus was
restricted to only certain allowed orbits and that it could “fall” from one orbit
to another thereby emitting a quantity of radiation with an energy equal to the
difference between the energies of the two orbits. In 1914, Franck and Hertz [4]
found that electrons in mercury vapor accelerated by an electric field would
cause emission of monochromatic radiation with the wavelength 253.6 nm only
when their energy exceeds 4.9 eV. This was taken as a demonstration for the
correctness of Bohr’s postulate.1

There is, however, a difficulty in the semiclassical theory of an atom pro-
posed by Bohr. According to the classical theory, an electron revolving round
a nucleus would lose its energy by emitting radiation and eventually spiral into
the nucleus. An enormous amount of effort was expended to resolve this
paradox in the period of time between 1913 and 1926, when the quantum
mechanical theory became ultimately established. In 1923, Compton [5] dis-
covered that x-rays scattered from a light material such as graphite contained
a wavelength component longer than that of the incident beam. A shift of
wavelength can be precisely explained by considering the conservation of
energy and momentum between the x-ray photons and the freely moving elec-
trons in the solid. This clearly demonstrated that electromagnetic radiation
treated as particles can impart momenta to particles of matter and it created a
need for constructing a theory compatible with the dual nature of radiation
having both wave and particle properties.

In 1925, Pauli [6] postulated a simple sorting-out principle by thoroughly
studying a vast amount of spectroscopic data including those associated with
the Zeeman effect described below. Pauli found the reason for Bohr’s assign-
ment of electrons to the various shells around the nuclei for different elements
in the periodic table. Pauli’s conclusion, which is now known as the “exclusion
principle”, states that not more than two electrons in a system (such as an
atom) should exist in the same quantum state. This became an important basis

4 1 Introduction

11 Radiation with l5253.6 nm is emitted upon the transition from the 6s6p 3P1 excited state to the 6s2 1S0
ground state in mercury. According to Bohr’s postulate, some excited atoms would fall into the ground
state thereby emitting radiation with the wavelength l5253.6 nm. Insertion of l5253.6 nm into DE5
hc/l exactly yields the excitation energy of 4.9 eV.



in the construction of quantum mechanics. Another important idea was set
forth by de Broglie [7] in 1924. He suggested that particles of matter such as
electrons, might also possess wave-like characteristics, so that they would also
exhibit a dual nature. The de Broglie relationship is expressed as
l5h/p5h/mv, where p is the momentum of the particle and l is the wave-
length. A wavelength is best associated with a wave-like behavior and a
momentum is best associated with a particle-like behavior. According to this
hypothesis, electrons should exhibit a wave-like nature. Indeed, Davisson and
Germer [8] discovered in 1927 that accelerated electrons are diffracted by a Ni
crystal in a similar manner to x-rays. The formulation of quantum mechanics
was completed in 1925 by Heisenberg [9]. Our familiar Schrödinger equation
was established in 1926 [10].

The beginning of the electron theory of metals can be dated back to the
works of Zeeman [11] and J. J. Thomson [12] in 1897. Zeeman studied the pos-
sible effect of a magnetic field on radiation emitted from a flame of sodium
placed between the poles of an electromagnet. He discovered that spectral lines
became split into separate components under a strong field. He supposed that
light is emitted as a result of an electric charge, really an electron, vibrating in
a simple harmonic motion within an atom and could determine from this
model the ratio of the charge e to the mass m of a charged particle.

At nearly the same time, J. J. Thomson demonstrated that “cathode rays” in
a discharge tube can be treated as particles with a negative charge, and he could
independently determine the ratio (2e)/m. Soon, the actual charge (2e) was
separately determined and, as a result, the electron mass calculated from the
ratio (2e)/m turned out to be extremely small compared with that of an atom.
In this way, it had been established by 1900 that the negatively charged parti-
cles of electricity, which are now known as electrons, are the constituent parts
of all atoms and are responsible for the emission of electromagnetic radiation
when atoms become excited and their electrons change orbital positions.

The classical theory of metallic conductivity was presented by Drude [13] in
1900 and was elaborated in more detail by Lorentz [14] originally in 1905. Drude
applied the kinetic theory of gases to the freely moving electrons in a metal by
assuming that there exist charged carriers moving about between the ions with
a given velocity and that they collide with one other in the same manner as do
molecules in a gas. He obtained the electrical conductivity expression
s5ne2t/m, which is still used as a standard formula. Here, n is the number of
electrons per unit volume and t is called the relaxation time which roughly cor-
responds to the mean time interval between successive collisions of the electron
with ions. He also calculated the thermal conductivity in the same manner and
successfully provided the theoretical basis for the Wiedemann–Frantz law

1.2 Historical survey of the electron theory of metals 5



already established in 1853. It states that the ratio of the electrical and thermal
conductivities of any metal is a universal constant at a given temperature.

Lorentz later reinvestigated the Drude theory in a more rigorous manner by
applying Maxwell–Boltzmann statistics to describe the velocities of the electrons.
However, a serious difficulty was encountered in the theory. If the Boltzmann
equipartition law mv25 kBT is applied to the electron gas, one immediately
finds the velocity of the electron to change as . According to the Drude
model, the mean free path is obviously temperature independent, since it is cal-
culated from the scattering cross-section of rigid ions. This results in a resistivity
proportional to , provided that the number of electrons per unit volume n is
temperature independent.2 However, people at that time had been well aware that
the resistivity of typical metals increases linearly with increasing temperature well
above room temperature. In order to be consistent with the equipartition law, one
had to assume n to change as 1/ÏwT in metals. This was not physically accepted.

The application of the equipartition law to the electron system was appar-
ently the source of the problem. Indeed, the true mean free path of electrons is
found to be as long as 20 nm for pure Cu even at room temperature (see Section
10.2).3 Another serious difficulty had been realized in the application of the
Boltzmann equipartition law to the calculation of the specific heat of free elec-
trons, which resulted in a value of R. The well-known Dulong–Petit law holds
well even for metals in which free electrons are definitely present. This means
that the additional specific heat of R is somehow missing experimentally. We
had to wait for the establishment of quantum mechanics to resolve the failure
of the Boltzmann equipartition law when applied to the electron gas.

Quantum mechanics imposes specific restrictions on the behavior of electron
particles. The Heisenberg uncertainty principle [15] does not permit an exact
knowledge of both the position and the momentum of a particle and, as a
result, particles obeying the quantum mechanics must be indistinguishable. In
1926, Fermi [16] and Dirac [17] independently derived a new form of statisti-
cal mechanics based on the Pauli exclusion principle. In 1927, Pauli [18] applied
the newly derived Fermi–Dirac statistics to the calculation of the paramagne-
tism of a free-electron gas.

In 1928, Sommerfeld [19] applied the quantum mechanical treatment to the
electron gas in a metal. He retained the concept of a free electron gas originally
introduced by Drude and Lorentz, but applied to it the quantum mechanics
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12 The resistivity r is given by r5mv/n(2e)2L, where m is the mass of electron, v is its velocity, n is the
number of electrons per unit volume, L is the mean free path for the electron and (2e) is the electronic
charge (see Section 10.2).

13 By applying quantum statistics to the electron gas, we will find (in Section 10.2) the true electron velocity
responsible for electron conduction in typical metals to be of the order of 106 m/s and temperature inde-
pendent. Instead, the mean free path is shown to be temperature dependent.



coupled with the Fermi–Dirac statistics. The specific heat, the thermionic emis-
sion, the electrical and thermal conductivities, the magnetoresistance and the
Hall effect were calculated quite satisfactorily by replacing the ionic potentials
with a constant averaged potential equal to zero. The Sommerfeld free-electron
model could successfully remove the difficulty associated with the electronic
specific heat derived from the equipartition law.

The Sommerfeld model was, however, unable to answer why the mean free
path of electrons reaches 20 nm in a good conducting metal like silver at room
temperature. Indeed, electrons in a metal are moving in the presence of strong
Coulomb potentials due to ions. Therefore the success based on the concept of
free-electron behavior was received at that time with a great deal of surprise.
The ionic potential is periodically arranged in a crystal. In 1928, Bloch [20]
showed that the wave function of a conduction electron in the periodic poten-
tial can be described in the form of a plane wave modulated by a periodic func-
tion with the period of the lattice, no matter how strong the ionic potential.
The wave function is called the Bloch wave. The Bloch theorem provided the
basis for the electrical resistivity; the entity that is responsible for the scatter-
ing of electrons is not the strong ionic potential itself but the deviation from
its periodicity. Based on the Bloch theorem, Wilson [21] in 1931 was able to
describe a band theory, which embraces metals, semiconductors and insulators.
The main frame of the electron theory of metals had been matured by about
the middle of the 1930s. We can see it by reading the well-known textbooks by
Mott and Jones [22] and Wilson [23] published in 1936.

Before ending this section, the most notable achievements since the 1940s in
the field of the electron theory of metals may be briefly mentioned. Bardeen
and Brattain invented the point-contact transistor in 1948–49 [24]. For this
achievement, the Nobel prize was awarded to Bardeen, Brattain and Shockley
in 1956. Superconductivity is a phenomenon in which the electrical resistivity
suddenly drops to zero at its transition temperature Tc. The theory of super-
conductivity was established in 1957 by Bardeen, Cooper and Schrieffer [25].
The so called BCS theory has been recognized as one of the greatest accom-
plishments in the electron theory of metals since the advent of the Sommerfeld
free-electron theory. Naturally, the higher the superconducting transition tem-
perature, the more likely are possible applications. A maximum superconduct-
ing transition temperature had been thought to be no greater than 30–40 K
within the framework of the BCS theory. However, a new material, which
undergoes the superconducting transition above 30 K, was discovered in 1986
[26] and has received intense attention from both fundamental and practical
points of view. This was not an ordinary metallic alloy but a cuprate oxide with
a complex crystal structure. More new superconductors in this family have
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been discovered successively and the superconducting transition temperature
Tc has increased to be above 90 K in 1987, above 110 K in 1988 and almost
140 K in 1996. The electronic properties manifested by these superconducting
oxides have become one of the most exciting and challenging topics in the field
of the electron theory of metals.

Originally, the electron theory of metals was constructed for crystals where
the existence of a periodic potential was presupposed. Subsequently, an elec-
tron theory treatment of a disordered system, where the periodicity of the ionic
potentials is heavily distorted, was also recognized to be significantly impor-
tant. Liquid metals are typical of such disordered systems. More recently,
amorphous metals and semiconductors have received considerable attention
not only from the viewpoint of fundamental physics but also from many pos-
sible practical applications. In addition to these disordered materials, a non-
periodic yet highly ordered material known as a quasicrystal was discovered by
Shechtman et al. in 1984 [27]. The icosahedral quasicrystal is now known to
possess two-, three- and five-fold rotational symmetry which is incompatible
with the translational symmetry characteristic of an ordinary crystal. The elec-
tron theory should be extended to these non-periodic materials and be cast into
a more universal theory.

1.3 Outline of this book

Chapters 2 and 3 are devoted to the description of the Sommerfeld free-
electron theory. The free-electron model and the concept of the Fermi surface
are discussed in Chapter 2. The Fermi–Dirac distribution function is intro-
duced in Chapter 3 and is applied to calculate the electronic specific heat and
the thermionic emission. Pauli paramagnetism is also discussed as another
example of the application of the Fermi–Dirac distribution function.

Before discussing the motion of electrons in a periodic lattice, we have to
study how the periodic lattice can be described in both real and reciprocal
space. Fundamental properties associated with both the periodic lattice and
lattice vibrations in both real and reciprocal space are dealt with in Chapter 4.
In Chapter 5, the Bloch theorem is introduced and then the energy spectrum
of conduction electrons in a periodic lattice potential is given in the nearly-free-
electron approximation. The mechanism for the formation of an energy gap
and its relation to Bragg scattering are described. The concept of the Brillouin
zone and its construction are then shown. The Fermi surface and its interac-
tion with the Brillouin zone are considered and the definitions of a metal, a
semiconductor and an insulator are given.

In Chapter 6, the Fermi surfaces and the Brillouin zones in elemental metals
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and semimetals in the periodic table are presented. The reader will discover
how the Fermi surface–Brillouin zone interaction in an individual metal results
in its own unique electronic band structure. In Chapter 7, the experimental
techniques and the principles involved in determining the Fermi surface of
metals are introduced. The behavior of conduction electrons in a magnetic field
is also treated in this chapter. In Chapter 8, electronic band structure calcula-
tion techniques are introduced. The electron theory in alloys is treated in
Chapter 9.

Transport phenomena of electrons in crystalline metals are discussed in both
Chapters 10 and 11. The derivation of the Boltzmann transport equation and
its application to the electrical conductivity are discussed in Chapter 10. In
Chapter 11, other transport properties including thermal conductivity,
thermoelectric power, Hall coefficient and optical properties are discussed
within the framework of the Boltzmann transport equation. At the end of
Chapter 11, the basic concept of the Kubo formula is introduced. Super-
conducting phenomena are presented in Chapter 12, including the introduc-
tion of basic theories such as the London theory and BCS theory. The
superconducting properties of high-Tc-superconducting materials are also
briefly discussed. In Chapter 13, we focus on the electronic structure and elec-
tron transport phenomena in magnetic metals and alloys. For example, the
resistivity minimum phenomenon known as the Kondo effect, which is
observed when a very small amount of magnetic impurities is dissolved in a
non-magnetic metal, is described.

The chapters up to 13 are based on the one-electron approximation. But its
failure has been recognized to be crucial in the high-Tc-superconducting
cuprate oxides and related materials. The materials in this family have been
referred to as strongly correlated electron systems. The electronic structure and
electron transport properties of a strongly correlated electron system have been
studied extensively in the last decade. Its brief outline is, therefore, introduced
in Chapter 14. Finally, the electron theory of non-periodic systems, including
liquid metals, amorphous metals and quasicrystals is discussed in Chapter 15.

Exercises are provided at the end of most chapters. The reader is asked to
solve them since this will certainly assist in the understanding of the chapter
content and ideas. Hints and answers are given at the end of the book.
References pertinent to each chapter are listed at the end of the book. Several
modern textbooks on solid state physics that include the electron theory of
metals are also listed [28–32].
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Chapter Two

Bonding styles and the free-electron model

2.1 Prologue

The electron theory of metals pursues the development of ideas that lead to an
understanding of various properties manifested by different kinds of materials
on the basis of the electronic bondings among constituent atoms. Here the
concept of the energy band plays a key role and is introduced in Section 2.2.
Condensed matter is often classified in terms of bonding mechanisms; metal-
lic bonding, covalent bonding, ionic bonding and van der Waals bonding.
After their brief introduction in Section 2.3, we focus on metallic bonding and
discuss the Sommerfeld free-electron model in Sections 2.4–2.6. The construc-
tion of the Fermi sphere is discussed in Section 2.7.

2.2 Concept of an energy band

Let us first briefly consider the electron configurations in a free atom. The
central-field approximation is useful to describe the motion of each electron in
a many-electron atom, since the repulsive interaction between the electrons can
be included on an average as a part of the central field. Because of the spheri-
cal symmetry of the field, the motion of each electron can be conveniently
described in polar coordinates r, u and f centered at the nucleus. All three var-
iables r, u and f are needed to describe electron motion in three-dimensional
space. In quantum mechanics, the three degrees of freedom lead to three
different quantum numbers, by which the stationary state or the quantum state
of an electron is specified; the principal quantum number n, which takes a pos-
itive integer, the azimuthal or orbital angular momentum quantum number ,,
which takes integral values from zero to n21, and the magnetic quantum
number m, which can vary in integral steps from 2, to ,, including zero.
Furthermore, the spin quantum number s, which takes either or 2 , is needed1
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to describe the spin motion of each electron. The letters s, p, d, f, . . ., are often
used to signify the states with ,50, 1, 2, 3, . . ., each preceded by the principal
quantum number n.

Because of the Pauli exclusion principle, no two electrons are assigned to the
same quantum state. For the lowest energy state of the atom, the electrons must
be assigned to states of the lowest energy possible. The first two electrons are
accommodated in the quantum states n51, ,50, m50 and s56 , which is
denoted as (1s)2. Here, the superscript denotes the number of electrons in the
1s state. The third and fourth electrons have to occupy the next lowest energy
level with the quantum state n52, ,50, m50 and s56 or (2s)2. The next six
electrons, from the fifth up to the tenth electron, are accommodated in the
quantum states n52, ,51, m561 and 0 with s56 or (2p)6. The next higher
energy level corresponds to the quantum state n53, ,50, m50 and s56 or
(3s)2. We can continue this process up to the last electron, the number of which
is equal to the atomic number of a given atom. The electron configurations for
all elements in the periodic table can be constructed in this manner and are
listed in Table 1.1.

An isolated Na atom is positioned in the periodic table with atomic number
11. Since it possesses a total of 11 electrons, its electron configuration (its
ground state) can be expressed as (1s)2(2s)2(2p)6(3s)1 with four different orbital
energy levels 1s, 2s, 2p and 3s. Now we consider a system consisting of a molar
quantity of 1023 identical Na atoms separated from each other by a distance
far larger than the scale of each atom. All energy levels including those of the
outermost 3s electrons must be degenerate, i.e., identical in all 1023 atoms, as
long as the neighboring wave functions do not overlap with each other.

What happens when the interatomic distance is uniformly reduced to an
atomic distance of a few-tenths nm? Figure 2.1 illustrates the probability
density of the 1s, 2s, 2p and 3s electrons of two free Na atoms separated by 0.37
nm corresponding to the nearest neighbor distance in sodium metal. It is clear
that the 3s wave functions overlap substantially so that some of the 3s electrons
belong to both atoms, but the 1s, 2s and 2p wave functions remain still isolated
from each other. This means that the degenerate 3s energy levels begin to be
“lifted” (i.e., begin possessing slightly different energies), but other levels are
still degenerate, when the interatomic distance is reduced to the order of the
lattice constant of sodium metal.

As is shown schematically in Fig. 2.2, the energy levels for the 1023 3s elec-
trons are split into quasi-continuously spaced energies when the interatomic
distance is reduced to a few-tenths nm. The quasi-continuously spaced energy
levels thus formed are called an energy band. Since each level accommodates
two electrons with up and down spins, the 3s band must be half-filled by 3s
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Figure 2.1. 1s, 2s, 2p and 3s wave functions for a free Na atom. Identical wave func-
tions are shown in duplicate both at the origin and 3.7 Å (or 0.37 nm) corresponding
to the interatomic distance in Na metal. P(r) represents r times the radial wave func-
tion R(r). P(r)5rR(r) is used as a measure of the probability density, since the prob-
ability of finding electrons in the spherical shell between r and r1dr is defined as
4pr2|R(r)|2dr. The wave functions are reproduced from D. R. Hartree and W. Hartree,

Proc. Roy. Soc. (London) 193 (1947) 299.
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Figure 2.2. Schematic illustration for the formation of an energy band. The energy
levels for a huge number of Na free atoms are degenerate when their interatomic dis-
tances are very large. The outermost 3s electrons form an energy band when the inter-

atomic distance becomes comparable to the lattice constant of sodium metal.



electrons. The 3p level is unoccupied in the ground state of a free Na atom. But
the 3p states in sodium metal also form a similar band and mix with the 3s band
without a gap between them. As can be understood from the argument above,
the energy distribution of the outermost electrons (the valence electrons)
spreads into a quasi-continuous band when a solid is formed. This is referred
to as the electronic band structure or valence band structure of a solid.

2.3 Bonding styles

We discussed in the preceding section how a piece of sodium metal is formed
when a large number of Na atoms are brought together. Now we look into
more details of the 3s-band structure shown in Fig. 2.2. The lowest energy level
«0 obtained after lifting the 1023-fold degeneracy is shown in Fig. 2.3 as a func-
tion of interatomic distance r [1,2]. It is seen that the energy «0 takes its
minimum at r5rmin. Because of the Pauli exclusion principle, only two elec-
trons with up and down spins among the 1023 3s electrons can occupy this
lowest energy level and the next 3s electron must go to the next higher level. As
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Figure 2.3. Cohesive energy in metallic bonding. Na metal is used as an example. The
curve «0(r) represents the lowest energy of electrons with the wave vector k50 (see the
lowest curve for the 3s electrons in Fig. 2.2), while the curve WF represents an average
kinetic energy per electron. «I represents the ionization energy needed to remove the
outermost 3s electron in a free Na atom to infinity and «0 is the cohesive energy.
The position of the minimum in the cohesive energy gives an equilibrium interatomic

distance r0.



mentioned in the preceding section, one-half of the 3s-band is filled with elec-
trons. This implies that a large amount of kinetic energy is furnished to the elec-
trons. As will be seen in Section 2.7, an average kinetic energy WF per electron
is given by equation (2.24). It increases with decreasing interatomic distance,
as shown in Fig. 2.3 (see Exercise 2.2). A distance r0, at which the value of
«01WF takes its minimum, corresponds to the equilibrium interatomic dis-
tance observed in sodium metal.

The reason why sodium metal can exist as a solid at ambient temperature
arises from the fact that the value of «01WF is lower than the ionization energy
«I of a free Na atom. The quantity «c5|«01WF|2|«I| is called the cohesive
energy and takes its minimum at r5r0. In other words, the 3s electrons can
lower their total energy when they form an energy band and gain cohesive
energy by overlapping their wave functions. As a result, each 3s electron no
longer belongs to any particular atom but moves about almost freely in the
system. The freely moving electrons in a band are called valence electrons or
simply free electrons. They are responsible for the electron conduction in a
metal. In this sense, these electrons are also called conduction electrons.

The remaining ten electrons associated with Na atoms are composed of two
1s electrons, two 2s electrons and six 2p electrons. They are still bound to the
nucleus of each given Na atom and maintain their own degenerate energy levels
in a free atom. All these bound electrons are called core electrons. The sum of
the charges due to the nucleus and the core electrons results in a net charge
equal to 1e centered at the nucleus. This assembly constitutes a positive ion.
Hence, sodium metal is viewed as a solid containing 3s valence electrons
moving freely in the potential due to the periodic array of positive Na1 ions.
The net charge of all valence electrons is just equal and opposite in sign to that
of the positive ions to maintain charge neutrality. As emphasized above, such
a uniform distribution of the valence electrons in the presence of positive ionic
potential fields lowers the total energy and thus gains a finite cohesive energy
to stabilize a solid. The formation of a solid in this style is called metallic
bonding.

Apart from metallic bonding, there are three other bonding styles: ionic
bonding, covalent bonding and van der Waals bonding. Typical examples of
ionic bonding are the crystals NaCl and KCl. They are made up of positive and
negative ions, which are alternately arranged at the lattice points of two inter-
penetrating simple cubic lattices. The electron configurations for both K1 and
Cl2 ions in a KCl crystal are equally given as (1s)2(2s)2(2p)6(3s)2(3p)6. Figure
2.4 shows the overlap of the 3p wave functions associated with K1 and Cl2 free
ions separated by a distance equal to 0.315 nm. It can be seen that the overlap

14 2 Bonding styles and the free-electron model



of 3p electron wave functions is less significant relative to that in metallic
bonding. The cohesive energy in ionic bonding is gained mainly by the electro-
static interaction arising from the Coulomb force exerted by oppositely
charged ions.

Representative elements characteristic of covalent bonding are C, Si and Ge.
Figure 2.5 shows the 3s and 3p wave functions of two free Si atoms separated
by the nearest neighbor distance of 0.235 nm in solid Si. The overlap of wave
functions is substantial and is apparently similar to that of the outermost elec-
tron wave functions in metallic bonding. A clear difference from the metallic
bonding style cannot be realized, as far as Fig. 2.5 is concerned. The most
salient feature of covalent bonding is found in the directional bonding charac-
teristic between the neighboring atoms, illustrated schematically in Fig. 2.6.

Inert gases like He, Ne and Ar are electrically neutral and extremely stable
as gases at ambient temperatures and pressures. Inert gases, except for He,
solidify at low temperatures. For example, the melting points for Ne and Ar are
24.56 and 83.81 K, respectively. Helium does not solidify even at absolute zero
under normal pressures because of a large zero-point motion. More than 25
atmospheric pressures are needed for its solidification at about 2 K. The van
der Waals force, which is much weaker than the Coulomb force, is responsible
for the bonding of these gases. Indeed, the cohesive energy in solid Ne and Ar
is 0.5 and 1.85 kcal/mol, respectively, which is very small relative to that in
other bonding styles, for example 26 kcal/mol for Na metal, 98.9 kcal/mol for
Fe, 107 kcal/mol for Si and 178 kcal/mol for NaCl [3].
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Figure 2.4. 3p wave functions for K1 and Cl2 ions, both being separated by 3.15 Å
(or 0.315 nm) corresponding to the interatomic distance in a KCl crystal. P(r)5rR(r),
where R(r) is the radial wave function (see caption to Fig. 2.1). The overlap of wave
functions is small at the midpoint. The bonding is due mainly to the electrostatic inter-
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2.4 Motion of an electron in free space

The motion of an electron in free space, where the potential V is zero every-
where, can be described by the simplest form of the Schrödinger equation:

2 =2c (x, y, z)52 c (x, y, z)5Ec (x, y, z), (2.1)

where ", m, E, c are, respectively, the Planck constant divided by 2p, the mass
of an electron, its energy eigenvalue and wave function. Equation (2.1) can be
decomposed into three independent equations involving only a single variable
x, y or z by setting c (x, y, z)5X(x)Y( y)Z(z) and E5Ex1Ey1Ez:
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Figure 2.5. 3s and 3p wave functions of a free Si atom. Two identical wave functions
are shown: one at the origin and the other at 2.35 Å (or 0.235 nm) corresponding to
the interatomic distance in solid Si (atom positions are marked by ✕ in the figure). The
overlaps of 3s and 3p wave functions are substantial at the midpoint between the two
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2 X 0(x)5ExX(x),

2 Y 0( y)5EyY( y), (2.2)

and

2 Z 0(z)5EzZ(z).

Here, superscript 0 denotes the second derivative. Equation (2.2) can be easily
solved as

X(x)5A1e
ikxx1B1e

2ikxx, Ex5 ,

Y( y)5A2e
ikyy1B2e

2ikyy, Ey5 , (2.3)

and

Z(z)5A3e
ikzz1B3e

2ikzz, Ez5 .

The total wave function c (x, y, z)5X(x)Y( y)Z(z) is now expressed as a linear
combination of eight different plane waves:

c (x, y, z)5 cje
i(6kxx6kyy6kzz), (2.4)

where cj ( j51 up to 8) is a numerical coefficient. Equation (2.4) represents a
plane wave, which is characterized by wave numbers kx, ky and kz correspond-
ing to x, y and z components of the wave vector k.
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Figure 2.6. Schematic illustration of directional covalent bonding between
neighboring atoms.



The energy of an electron in three-dimensional free space is given by

E5 (kx
21ky

21kz
2)5 , (2.5)

where the wave vector k satisfies the relation

k25kx
21ky

21kz
2. (2.6)

The wave number k is related to the wavelength l through the equation

k5 . (2.7)

The wave number is in units of the inverse of length. It is also clear from equa-
tion (2.5) that the energy of an electron is proportional to the square of the
wave number, i.e., its wave number dependence is parabolic.

2.5 Free electron under the periodic boundary condition

An electron in a metal must be confined in a finite space. The effect of a finite
size of a system on the motion of an electron must be taken into account. For
the sake of simplicity, we set y5z50 in equation (2.4) and treat the problem
as a one-dimensional system with x as a variable. The electron wave function
c(x) is assumed along a line with the length L. Let us impose now the follow-
ing condition on it:

c (x1L)5c (x). (2.8)

Equation (2.8) is obtained when both ends of the line are connected so as to
form an endless ring. In this way, the finite size of a system can be taken into
account while circumventing the difficulty associated with a singular end point.
This is called the periodic boundary condition.

An insertion of equation (2.4) into equation (2.8) immediately leads to

c1e
ikxx(eikxL21)1c2e

2ikxx(e2ikxL21)50.

This relation must hold for an arbitrary choice of c1 and c2. This is possible if
the wave number kx satisfies the relation:

kxL52pnx

or

kx5 nx (nx50, 61, 62, 63, . . . ). (2.9)
2p

L

2p

l

"2k2

2m1 "2

2m2
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Equation (2.9) indicates that the wave number can take only a discrete set of
values in units of 2p/L, since nx are integers including zero.1 We have learned
that a confinement of electrons to a system of a finite size (we selected a dis-
tance L along x) results in the quantization of the wave number.

An extension to three-dimensional space immediately leads to the following
wave function:

c (x, y, z)5 exp(ik·r) (2.10)

and the wave vector

k5 (nxi 1nyj 1nzk ), (2.11)

where the wave vector k is expressed in the cartesian coordinate system with
unit vectors i , j and k and integers nx, ny and nz including zero. Thus, the com-
ponents kx, ky and kz in the wave vector k are given by ki5(2p/L)ni and take
discrete sets of values. The quantity V in equation (2.10) represents the volume
of a cube with the edge length L. The three-dimensional space encompassed
by equation (2.11) is called reciprocal space or k-space, since the wave vector k
possesses the dimension reciprocal to the length L in the real space.

The periodic ionic potential is certainly present in a real metal. To a first
approximation, however, the periodic potential may be replaced by an averaged
constant value, which can be arbitrarily set equal to zero. This yields the
Schrödinger equation (2.1) with the periodic boundary condition. This is
the free-electron model in a metal. The energy of a free-electron subjected to
the periodic boundary condition with the size L in x-, y- and z-directions can
be written as

E5 (nx
21ny

21nz
2), (2.12)

where nx, ny and nz are integers including zero. The probability density of an
electron at the position r with a wave vector k turns out to be constant:

|ck(r)|25c*
k(r)ck(r)5 . (2.13)

This means that the wave function (2.10) of the free electron under the periodic
boundary condition represents a travelling wave and that the probability
density is uniform everywhere in a system.
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11 The function satisfying equation (2.8) is generally expanded in the Fourier series c(x)5 Cne
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An operation of the momentum operator p52i"= to the free-electron wave
function immediately leads to

pc5 =exp(ik·r)5"kc. (2.14)

Equation (2.14) gives us a very important relation

p5"k (2.15)

for the free electron.2 Equation (2.15) means that the wave vector plays the
same role as the momentum of an electron. In this sense, reciprocal space is
sometimes referred to as momentum space.

2.6 Free electron in a box

Let us suppose that the potential V(x, y, z) is zero everywhere inside a cube with
edge length L but is infinite at each face. Then, the wave function c (x, y, z) must
be zero at the face. Here we use again a one-dimensional system with x as a vari-
able. An application of the boundary condition c(0)50 and c (L)50 to equa-
tion (2.4) yields the relation sin(kxL)50. The kx value satisfying this relation
must be of the form:

kx5 nx (nx51, 2, 3, . . .). (2.16)

Equation (2.16) indicates that the value of kx is discrete in units of p/L. The
wave function after normalization is given by

c(x)5 sin . (2.17)

Note that the wave function exists only in the range 0#x#L and becomes
strictly zero at both ends x50 and x5L. Therefore, equation (2.17) represents
a stationary wave. The probability density |ck(x)|2 of electrons at x is no longer
constant but changes as a function of x. Another important point to be noted
is that, as opposed to equation (2.9), nx in equation (2.16) takes only a positive
integer. It is clear that the wave function with a negative nx is the same as that
with the corresponding positive one except for the reversal of a sign in the nor-
malization factor and, hence, they are identical. In addition, the wave function
with nx50 is zero everywhere in the range 0#x#L. This must be excluded
because of a physically meaningless solution.
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12 This relation fails for electrons in a periodic potential. We will learn in Section 5.3 that the wave vector k
no longer represents solely the momentum of an electron.



The discussion above can be extended to a three-dimensional system without
difficulty. The total wave function is written as

c (x, y, z)5 . (2.18)

The energy of free electron confined in a cube with edge length L is easily cal-
culated as

E5 5 (nx
21ny

21nz
2). (2.19)

As emphasized above, equation (2.10) represents a travelling wave whereas
equation (2.18) represents a stationary wave. It must be kept in mind that the
energy eigenvalue given in equation (2.19) is 4 times as large as that in equation
(2.12). This difference is caused by the choice of different boundary conditions
imposed on the free electrons. We will consider it again at the end of Section 2.7.

2.7 Construction of the Fermi sphere

As discussed in Section 2.2, the polar coordinate (r, u, w) representation is the
most convenient to describe the motion of an electron revolving around a
nucleus. Its stationary state can be specified in terms of four quantum numbers:
principal quantum number n, azimuthal quantum number ,, magnetic
quantum number m and spin quantum number s.3 These four numbers, called
good quantum numbers, comprise a set which describes the revolving motion
of an inner electron. A unique quantum state (n, ,, m, s) is assigned to each
inner electron according to the Pauli exclusion principle.

The motion of the free electron can be better described using cartesian coor-
dinates. Hence, this means that a set of quantum numbers (n, ,, m, s) is no
longer adequate. Instead, a set of (kx, ky, kz, s) – three cartesian components of
the wave vector k plus the spin quantum number – must be used as good
quantum numbers to describe the motion of the free electron, as shown in
equations (2.10) and (2.11).
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13 The magnetic quantum number m appears as a good quantum number in the z-component of the angular
momentum Lz given by Lz52i"­/­f. Hence, the motion associated with the variable f solely determines
the value of m. The principal quantum number n appears in the energy eigenvalue of the Hamiltonian,
which is expressed in terms of all three variables r, u and f. The azimuthal quantum number , is related
to the square of the angular momentum L2, which involves two variables u and f. Accordingly, both the
principal and azimuthal quantum numbers are determined from the electron motion involving more than
two variables.



There exist 6.0231023 valence electrons per mole in a monovalent metal such
as sodium discussed in Section 2.3. Suppose that the valence electrons in
sodium metal are entirely free and that the molar shape of the metal piece is in
the form of a cube with edge length L. As discussed in Section 2.5, reciprocal
space is quantized in units of 2p/L in all three directions kx, ky and kz, when
the periodic boundary condition is employed. The Pauli exclusion principle
should be applied to each electron; no two electrons can go into the same
quantum state (kx, ky, kz, s). In addition, we know from equation (2.12) that the
energy E of the free electron is proportional to nx

21ny
21nz

2. Keeping these two
conditions in mind, we can construct the ground state for the assembly of free
electrons in reciprocal space.

The reciprocal space is now filled with electrons so as to minimize the total
energy or nx

21ny
21nz

2 in accordance with the Pauli exclusion principle. First,
two electrons with up and down spins can go into the lowest energy state «0

given by nx5ny5nz50 or (0, 0, 0). As shown in Fig. 2.7, the origin in recipro-
cal space is filled by these two electrons. Next, twelve electrons can go to the next
lowest energy states, which are given by the following six identical (nx, ny, nz)
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Figure 2.7. Construction of the Fermi sphere. The reciprocal space is quantized in
units of 2p/L in the kx-, ky- and kz-directions and is made up of cubes with edge length
2p/L as indicated in the figure. Electrons of up and down spins occupy the corner of
each cube or integer set (nx, ny, nz) in accordance with the Pauli exclusion principle
while making nx

21ny
21nz

2 as low as possible. The sphere with radius kF represents
the Fermi sphere.



values (1, 0, 0), (0, 1, 0), (0, 0, 1), (21, 0, 0), (0, 21, 0) and (0, 0, 21). This process
is continued until all electrons up to the Avogadro number of 6.0231023 fill the
reciprocal space. We end up with a sphere in reciprocal space, which is also illus-
trated in Fig. 2.7. The electron sphere thus obtained is called the Fermi sphere
and its surface the Fermi surface. It should be emphasized that the Fermi sphere
is constructed on the basis of the free-electron model with the periodic boun-
dary condition described in Section 2.5. As will be discussed in Chapter 5, the
deviation from the free-electron model becomes substantial and the distortion
of the Fermi surface from a sphere occurs in many metals.

As discussed above, two electrons with up and down spins are accommo-
dated in the volume (2p/L)3 in reciprocal space. Let us suppose that the total
number of free electrons per mole is equal to N0 and that the Fermi sphere with
the radius kF is formed when N0 electrons fill the reciprocal space. Then, we
immediately obtain the following proportional relation:

: 25 : N0.

From this, we obtain the Fermi radius kF given by

kF5 , (2.20)

where V is the volume equal to V5L3.
The radius kF of the Fermi sphere for sodium metal is calculated in the fol-

lowing way. As shown in Table 2.1, a mole of sodium metal weighs 22.98 g with
its density 0.97 g/cm3. Since it is a monovalent metal, N0 in equation (2.20) is
equal to the Avogadro number NA. An insertion of numerical values NA5

6.0231023 and V523.6931021 nm3 results in a Fermi radius kF59.1 nm21 for
sodium metal. Consider the mole of sodium metal to be a cube with edge
length L. Then, L turns out to be 2.87 cm and the unit length 2p/L in recipro-
cal space to be of the order of 1027 nm21. Hence, the condition kF..(2p/L) is
well satisfied. This implies that the quantized points in units of 2p/L in recip-
rocal space are very densely distributed and, hence, the Fermi surface is very
smooth and almost continuous.

The energy of a free electron with the Fermi radius kF is calculated by insert-
ing equation (2.20) into equation (2.5);

EF5 , (2.21)

where N0 is obviously the total number of electrons in volume V and EF is
called the Fermi energy. As can be understood from the argument above, a
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Table 2.1. Structures and fundamental properties for representative elements in the periodic table

atomic atomic crystal structure and density
number element weight (g) lattice constants at 300 K (g/cm3) characteristic features

3 Li 6.941 bcc: a53.5 0.534 lightest metal
6 C 12.011 hex.: a52.46, c56.70 2.25 graphite, semiconductor

diamond: a53.567 3.51 diamond, semiconductor
11 Na 22.98 bcc: a54.22 0.97 the most free-electron-like metal
12 Mg 24.305 hcp: a53.2, c55.21 1.74 divalent light metal
13 Al 26.981 fcc: a54.04 2.69 trivalent free-electron-like metal
14 Si 28.085 diamond: a55.43 2.34 semiconductor
20 Ca 40.078 fcc: a55.582 1.54 divalent fcc metal
22 Ti 47.867 hcp: a52.95 c54.68 4.54 one of the 3d-transition metals, non-magnetic
26 Fe 55.845 bcc: a52.86 7.86 ferromagnetic metal, Curie temperature TC51043 K
27 Co 58.933 hcp: a52.56, c54.07 8.8 ferromagnetic metal, Curie temperature TC51400 K
28 Ni 58.693 fcc: a53.52 8.85 ferromagnetic metal, Curie temperature TC5631 K
29 Cu 63.546 fcc: a53.61 8.93 noble metal, monovalent, electrically good conductor
30 Zn 65.39 hcp: a52.66, c54.94 7.12 divalent metal, easily cleaved in its c-plane
47 Ag 107.868 fcc: a54.085 10.50 noble metal with the lowest resistivity
79 Au 196.966 fcc: a54.078 19.3 noble metal
82 Pb 207.2 fcc: a54.95 11.34 tetravalent, nearly free-electron-like metal, superconductor

transition temperature Tc57.2 K
83 Bi 208.980 rhomb: a54.54, c511.86 9.8 semimetal

Note:
bcc: body-centered cubic, hex: hexagonal, fcc: face-centered cubic, hcp: hexagonal close-packed, rhomb: rhombohedral. The lattice
constants are in units of Å (1 Å50.1 nm).



finite Fermi energy stems from the Pauli exclusion principle. Let us remove the
suffix F in EF and 0 in N0 in equation (2.21) and assume that E and N are var-
iables. Then, the variable E in equation (2.21) represents a maximum energy
obtained when the N free electrons per volume V fill in the reciprocal space.
The quantity dN/dE can be easily calculated from equation (2.21) and is given
in the form of

N(E )5 , (2.22)

where N(E ) is called the electron density of states, since N(E )DE represents the
number of electrons in an energy interval DE.

As is clear from equation (2.22), the density of states N(E ) exhibits a para-
bolic energy dependence in the free-electron model. This is shown schemati-
cally in Fig. 2.8. Note that the electrons fill energy levels from zero up to the
Fermi energy. A total number N of free electrons per volume V is obtained by
integrating equation (2.22) from zero to the Fermi energy EF:

N5e
0

EF N(E )dE . (2.23)

dN
dE
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Figure 2.8. The parabolic density of states for free electrons. The states are filled with
electrons up to the Fermi energy EF. The filled area is shaded.



An average kinetic energy WF per electron can be calculated:

WF5 EF. (2.24)

The magnitude of the Fermi energy for typical metals is now quantitatively
evaluated on the basis of the free-electron model. First, numerical constants
"51.05310227 erg s and m59.1310228 g are inserted into equation (2.21). If
we express the volume V and energy E in units of nm3 and eV, respectively, we
obtain

EF536.4631022 eV, (2.25)

where N is the number of free electrons in volume V. It is often convenient to
take the volume per atom, V, in place of V. Then, N becomes equal to the
number of valence electrons per atom. This is often denoted as e/a. Let us take
again sodium metal. It has the bcc structure with a lattice constant a of 0.422
nm. The volume per atom is then given as V5(0.422)3/250.0376 nm3. Since
sodium metal is monovalent, e/a51. The Fermi energy turns out to be 3.2 eV
by inserting these values into equation (2.25).

Table 2.2 lists the Fermi energy EF
free calculated from equation (2.25) in the

free-electron model and the value of EF
band from band calculations (see Chapter

8) for representative metals in the periodic table. It can be seen that the Fermi
energy ranges from a few eV to above 10 eV and increases with increasing
valency; 2–3 eV for monovalent alkali metals, 7 eV for divalent Mg, 11 eV for
trivalent Al. It is to be noted that the Fermi energy is rather large for the noble
metals Cu, Ag and Au, though they are also monovalent (see Exercise 2.4).

The Fermi energy is sometimes expressed in units of temperature through
the relation EF5kBTF. TF is called the Fermi temperature. For instance, the
Fermi temperature reaches about 60 000 K for a metal with EF55 eV. This is
higher than the temperature of the Sun. As already mentioned, the existence
of such a high Fermi temperature for typical metals is the natural consequence
of the Pauli exclusion principle. The Fermi wavelength is defined as lF52p/kF

from equation (2.7). It is easily checked that the value of the Fermi wavelength
is a few tenths nm for metals like sodium and turns out to be comparable to the
lattice constant. Electrons deep below the Fermi surface possess lower energies
and, hence, longer wavelengths. It is also worthwhile mentioning that in Table
2.2 EF

free does not always agree well with EF
band but the disagreement is generally

not too serious in many metals, indicating that the free-electron model is not
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too bad. The electron theory of metals beyond the free-electron model will be
discussed in Chapter 5 and subsequent chapters.

We end this section by considering the Fermi sphere when the free electrons
are confined in a cubical box, as described in Section 2.6. We learned that the
scale of the quantization for the wave vector k is different, depending on the
choice of the boundary conditions. The value of nx in equation (2.16) takes
only a positive integer and the interval p/L is one-half that in equation (2.9).
On the other hand, the energy eigenvalue given by equation (2.19) is one-
quarter that given by equation (2.12). Physical quantities like the Fermi energy
and the Fermi radius should be independent of the boundary condition
imposed. Remember that the Fermi sphere, when being confined in a box, is
defined only in the positive octant kx.0, ky.0 and kz.0 in reciprocal space
with the interval p/L. Therefore, the Fermi radius for N0 electrons per volume
V is calculated from the proportional relation;

: 25 : N0. (2.26)

This leads to the same formula as equation (2.20) obtained under the periodic
boundary condition. In this way, we could prove that physical quantities like
the Fermi energy and the Fermi radius are indeed independent of the bound-
ary conditions. Unless otherwise stated, the reciprocal space defined by the
periodic boundary condition will be employed in the remaining chapters.
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Table 2.2. Fermi energies in representative metals

element e/a V(Å)3 E F
free (eV) E F

band (eV) E F
free/E F

band

Cu 1.0 11.81 7.03 9.09 0.77
Ag 1.0 17.06 5.50 7.5 0.73
Au 1.0 16.96 5.52 9.4 0.58
Zn 2.0 15.24 9.42 10.8 0.87
Cd 2.0 21.58 7.59 8.85 0.86
Be 2.0 8.13 14.31 11.9 1.20
Mg 2.0 23.23 7.09 7.1 1.0
Al 3.0 16.60 11.65 11.3 1.0
K 1.0 71.32 2.12 2.24 0.94
Na 1.0 37.71 3.24 3.30 0.98
b-Cu50Zn50 1.50 12.76 8.75 9.93 0.88

Source:
T. B. Massalski and U. Mizutani, Prog. Mat. Sci. 22 (1978) 151



Exercises

2.1 We found the expectation value of the momentum of the travelling wave
to be proportional to the wave vector (see equation (2.15)). Show that the
expectation value for the momentum becomes zero when the electron wave
function is given by equation (2.17). Remember that equation (2.17) is obtained
by the superposition of two travelling waves with wave numbers k and 2k and
represents a stationary wave.

2.2 An equilibrium position of atoms in a metal is slightly shifted from the
value of rmin corresponding to the minimum of the eigenvalue «0 for the wave
function with the wave number k50. Because of the Pauli exclusion principle,
electrons are distributed over the energy range from zero to the Fermi energy.
Use equation (2.24) and show that the average kinetic energy WF is expressed
as

WF5 . (2Q.1)

The r dependence of WF is drawn in Fig. 2.3. (The r dependence of the lowest
state energy «0 is derived from the Wigner–Seitz method. See details in refer-
ence 1 or 2.)

2.3 The wave vector is quantized in units of 2p/L by applying the periodic
boundary condition to a cube with edge length L. Suppose that we have a
sodium thin film with dimensions Lx5Ly51 cm and Lz51026 cm510 nm and
apply the periodic boundary condition to this system. Show how reciprocal
space is quantized in this two-dimensional system and calculate the Fermi
energy. Calculate also the density of states and compare the results with the
corresponding three-dimensional system.

2.4 Consider why the Fermi energy in noble metals like Cu, Ag and Au is much
higher than that in the alkali metals, despite the fact that they are all mono-
valent.
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Chapter Three

Electrons in a metal at finite temperatures

3.1 Prologue

In Chapter 2, we constructed the Fermi sphere of free-electrons with the radius
kF in reciprocal space. It represents the distribution of the quantized electronic
states at absolute zero, in which the states in k#kF are all occupied but those
in k.kF are vacant. At finite temperatures, thermal energy would excite some
electrons in the range k#kF into the range k.kF. The redistribution of elec-
trons will occur so as not to violate the Pauli exclusion principle. As noted in
Section 2.7, the Fermi energy in typical metals is of the order of several eV and
is equivalent to ,10000K on the temperature scale. Hence, only electrons near
the Fermi surface can be excited at temperatures below ,1000K. The aim of
the present chapter is to formulate first the Fermi–Dirac distribution function,
which determines the distribution of electronic states or the Fermi surface at
finite temperatures, and then to deduce the temperature dependence of various
physical properties due to conduction electrons by calculating relevant quan-
tities involving the Fermi–Dirac distribution function.

3.2 Fermi–Dirac distribution function (I)

We know that the velocity of dilute gas molecules obeys the Maxwell–
Boltzmann distribution law. Unfortunately, however, classical statistics cannot
be applied to the conduction electron system in metals because of an extremely
high electron density of the order of 1028–1029/m3. As emphasized in the pre-
ceding chapter, an electron carries a spin of and particles with a half-integer
spin should obey the Pauli exclusion principle. In addition, they are indistin-
guishable from each other. Our first objective in this section is to deduce the
statistical distribution function under these two conditions imposed by
quantum mechanics.

1
2
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Electrons occupy discrete states in intervals of 2p/L in k-space so as to
conform with the Pauli exclusion principle. For the sake of simplicity, we
assume that these allowed states are seats for electrons to be taken. At absolute
zero, seats below the Fermi energy EF are occupied and those above EF are
vacant. At finite temperatures, some electrons below EF would be excited to
higher energies, thus leaving some seats below it vacant and some seats above
it occupied. We now try to derive mathematical expressions for the electron dis-
tribution as functions of energy and temperature.

Figure 3.1 shows a quarter of the cross-section of the Fermi sphere cut
through its origin. The k-space is sliced into an assembly of a number of con-
centric spheres centered at its origin. Each sphere is assumed to be equally
spaced in energy. A constant energy Ei5"2k2

i /2m is assigned to the i-th sphere.
As emphasized in Section 2.7, the k-space is quantized with an interval of
2p/L. Hence, electrons on the concentric sphere with energy Ei can be seated
only on (2p/L)-spaced allowed seats. Zi, the total number of seats available for
electrons with energy Ei is proportional to the surface area of the sphere with
the radius ki. As illustrated in Fig. 3.1, at finite temperatures some electrons
take seats above EF, leaving some unoccupied seats below EF.

Let us suppose that Ni electrons are seated on a spherical surface with energy
Ei. Here Ni#Zi holds. We can calculate in a statistical manner how many ways
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Figure 3.1. A quarter of the cross-section of the Fermi sphere at a finite temperature.
The cross-section is cut through its origin. Equi-energy surfaces marked as Ei consist
of a series of concentric circles. EF refers to the Fermi energy. The occupied and

unoccupied seats are marked by solid and open circles, respectively.



there are of distributing Ni electrons over Zi seats. Remember that Ni electrons
are indistinguishable from each other and that the number of electrons taken
on each seat is at most one because of the Pauli exclusion principle. Let us name
the Zi seats as a1, a2, a3, a4, . . . and let the number of electrons on a seat be 0,
1, 1, 0, 1, 0, 1, . . . . In this case, the Ni occupied seats are a2, a3, a5, a7, . . . ,
whereas the (Zi2Ni) vacant seats are a1, a4, a6, . . . . In this example, the first
electron was seated on a2. But there are Zi ways for the first electron to choose
a seat. The second electron has (Zi21) ways for its choice. There are in total
Zi! ways of choosing seats, since vacant seats must also be counted. Among
them, however, the configuration a2, a3, . . . cannot be distinguished from a3,
a2, . . . . Hence, the Ni! ways for the occupied seats and (Zi2Ni)! ways for the
unoccupied seats must be excluded. Thus, the number of distinguishable ways
vi for distributing Ni electrons over Zi seats must satisfy the relation:

viNi!(Zi2Ni)!5Zi!. (3.1)

Equation (3.1) holds for any energy Ei. Hence, the total number of distinguish-
able ways W is given by the product of vi over all possible states:

W5 vi5 (3.2)

According to statistical mechanics, an average value of any macroscopically
observed physical quantity is given by the most probable distribution of micro-
scopically possible states [1]. This is equivalent to maximizing the value of W
under the condition that the total number of electrons N5 Ni and the total

energy E5 NiEi are kept constant. For this particular purpose, it is conve-

nient to use the method of Lagrangian multipliers and to find the maximum of
lnW in place of W itself. This is reduced to solving a set of equations involv-
ing two unknown coefficients a and b:

lnW1a N2 Ni 1b E2 NiEi 50. (3.3)

By taking the logarithm of equation (3.2), we obtain

lnW5 [lnZi!2 ln(Zi2Ni)!2 lnNi!]. (3.4)

Equation (3.4) can be rewritten by using the Stirling formula lnN!<NlnN2N,
which holds well when N..1:
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lnW5 [ZilnZi2(Zi2Ni)ln(Zi2Ni)2NilnNi]. (3.5)

This is valid, since Zi..1 and Ni..1. Now the calculation of equation (3.3) is
straightforward and leads to the following expression:

ln 5a1bEj

or

, (3.6)

where the ratio Nj /Zj represents the probability of occupying states of energy
Ej. From now on, we remove the suffix j and continue our discussion by assum-
ing equation (3.6) to hold as a continuous function of energy E.

The coefficients a and b in equation (3.6) must be determined. Let us con-
sider first the coefficient b. Suppose that the temperature of the electron system
is raised so high that the density of the electron gas becomes dilute, i.e., N,,Z.
Under such a high-temperature limit, the denominator in equation (3.6) must
become very large and, hence, exp(a1bE )..1 holds. Then, equation (3.6) can
be approximated as

<exp(2a2bE ) (3.7)

at high temperatures. The statistical distribution (3.7) obtained at the high-
temperature limit should approach the Boltzmann distribution function, from
which we can deduce the relation b51/kBT.

The other Lagrangian multiplier a is determined in relation to the total
number of electrons N5 Ni, which must be conserved at any temperature T.

As discussed in Section 2.7, the total number of electrons at absolute zero is
directly linked with the Fermi energy EF through equation (2.21). We learned
above that the Fermi surface is blurred at high temperatures. Nevertheless, we
assume the Fermi energy at temperature T to be still well defined and denote it
as EF(T ). We will learn below that a proper choice of a must be 2EF(T )/kBT.1

An insertion of a and b thus obtained into equation (3.6) leads to

f (E,T )5 . (3.8)
N
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1 An alternative derivation of the coefficient a and b will be explained in Section 4.7, where the
Bose–Einstein distribution function is discussed.



The function f (E,T ) or f (E ) is called the Fermi–Dirac distribution function or
simply the Fermi distribution function. Particles like electrons, obeying the
Fermi–Dirac statistics, are called fermions. The energy dependence of the
Fermi–Dirac distribution function f (E,T ) is shown in Fig. 3.2. One can easily
check that f (E,T ) in the limit T→0 becomes a step function: f (E )51 meaning
all seats are filled for E#EF (0) and f (E )50 meaning all seats are vacant for
E.EF(0). This reproduces well the Fermi sphere at absolute zero discussed in
Section 2.7. At finite temperatures, equation (3.8) yields 0, f (E ),1 only in the
vicinity of E5EF(T ). This can also reproduce well the Fermi sphere at finite
temperatures, where both occupied and unoccupied states coexist only around
E5EF(T ). The distribution functions at two different temperatures T1 and T2

are shown in Fig. 3.2. In this way, we have proved a proper choice of a and b
and obtained the mathematical formula to describe the electron distribution at
finite temperatures.

The Fermi energy EF(T ) at a finite temperature is sometimes called the
Fermi level. Since the value is determined from the total number N of particles,
it is also called the chemical potential and denoted as the Greek letter z, pro-
nounced “zeta”.2 The region in which 0,f (E ),1 holds extends further about
EF(T ) as the temperature rises. It can be easily checked from equation (3.8) that
the smeared region is of the order of kBT. It is also noted that f (EF)5 holds
at any temperature.

As mentioned earlier, the Fermi energy in typical metals is of the order of
several eV, which is far larger than the thermal energy at room temperature

1
2
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2 The Helmholtz free energy F for a system consisting of N identical particles is expressed as
dF5SdT2pdV1zdN. The chemical potential z is defined as z5(­F/­N )T,V. See also Section 4.7.
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Figure 3.2. Fermi–Dirac distribution function. The smeared region 0# f(E )#1
extends over kBT about the Fermi energy EF at finite temperatures. It increases with

increasing temperature (T2.T1). A change in the Fermi energy is ignored here.



(kBT 5 0.025 eV). Hence, the degree of smearing about the Fermi energy is very
small at ordinary temperatures. This means that only electrons in the very
vicinity of the Fermi energy can possess the freedom to be excited and all other
electrons below it are essentially frozen. Electrons in the frozen state are often
referred to as being degenerate. The tail of the Fermi–Dirac distribution func-
tion is extended to a higher energy with increasing temperature, as is seen in
Fig. 3.2. The energy distribution of the tail can be approximated by the
Boltzmann distribution function given by equation (3.7).

We learned that equation (3.8), with a and b chosen in the way discussed
above, can describe well the energy distribution of electrons at finite tempera-
tures. We still need to know how the Fermi energy EF(T ) at a finite tempera-
ture introduced in connection with the coefficient a is related to the Fermi
energy EF(0) at absolute zero defined by equation (2.21).

3.3 Fermi–Dirac distribution function (II)

In this section, we discuss the series expansion of the integral involving the
Fermi–Dirac distribution function at ordinary temperatures, where the rela-
tion kBT,,EF(T ) holds. The integral we consider is expressed in the form

I5 f (E,T ) dE, (3.9)

where f (E,T ) is the Fermi–Dirac distribution function and F(E ) is a physically
meaningful arbitrary function, which vanishes at E50. Examples of F(E ) will
be described later. Integrating equation (3.9) by parts leads to

I5[ f (E )F(E )]`
02 F(E ) dE. (3.10)

The first term vanishes, since f (`)50 and F(0)50. One can easily check from
equation (3.8) that the derivative 2df (E )/dE is finite only in the vicinity of
EF(T ). Hence, it is legitimate to expand the function F(E ) about EF(T ) by
using the Taylor theorem:

F(E )5F(EF(T ))1[E2EF(T )]

1 [E2EF(T )]2 1··· . (3.11)3d 2F(E )
dE2 4

E5EF(T )
11
22
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dE 4
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dEE

`

0

1dF(E )
dE 2E

`
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The integral I is rewritten by inserting equation (3.11) into equation (3.10):

I52F(EF) dE2 (E2EF) dE

2 (E2EF)2 dE2 ···. (3.12)

Equation (3.12) is further rewritten by using the following relations:

2 dE5f (0)2f (`)51 (3.13)

and

(E2EF)n dE

5 d

5 <

52cn(kBT )n (n: even integer)
50 (n: odd integer). (3.14)

Here the lower limit 2EF(T )/kBT in the integral was replaced by 2` in the last

expression. The coefficient 2cn is calculated as 2c25 , 2c45 , 2c65 , ···.

Equation (3.12) is finally reduced to the expansion formula:

I5F [EF(T )]1 (kBT )2 1···. (3.15)

We can calculate various electronic properties at a finite temperature by using
equation (3.15).

As one of its applications, we now show how the Fermi energy at a finite tem-
perature EF(T ) is related to that at absolute zero EF(0). An arbitrary function
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F(E ) is taken as F(E )5e0
E N(E )dE, where N(E ) is the density of states

of conduction electrons defined by equation (2.22). Since dF(E )/dE5N(E ),
equation (3.9) is reduced to I5e0

` N(E )f (E )dE, which obviously represents
the total number of electrons N. Now, equation (3.15) is explicitly written
as

N5 N(E )f (E )dE5 N(E )dE1 (kBT )2 1···. (3.16)

The left-hand side can be replaced by N5e0
EF(0) N(E )dE, since N is independent

of temperature. By equating this with equation (3.16), we obtain

N(E )dE5 N(E )dE1 (kBT )2 1 ···,

which is approximated as follows by ignoring higher-order terms:

N(E )dE2 N(E )dE1 (kBT )2 <0. (3.17)

The difference between EF(T ) and EF(0) is so small that the integrand N(E )
may be treated as a constant in the interval between them. Equation (3.17) is
then simplified as

[EF(T )2EF(0)]N(EF(0))1 (kBT )2 50

or

EF(T )5EF(0)2 (kBT )2 . (3.18)

We have derived in this way the temperature dependence of the Fermi energy.
Suppose that the density of states is given by the free-electron model and is

written as N(E )5C from equation (2.22). We have N9(EF)/N(EF)5EF/2,
since N9(E )5dN(E )/dE5C/2 . Its insertion into equation (3.18) results inÏE

ÏE
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EF(T )5EF(0) (3.19)

in the free-electron model. Equation (3.19) tells us that the Fermi energy
decreases with increasing temperature. Its magnitude is of the order of
[kBT/EF(0)]2 and amounts to only 1/10000 at room temperature. The change in
the Fermi energy in the free-electron model is illustrated schematically in Fig.
3.3. Note that equation (3.19) holds only for the free-electron model. Indeed,
an increase or decrease in the Fermi energy with increasing temperature is
decided by the sign of dN(E )/dE at the Fermi level.

3.4 Electronic specific heat

Various electronic properties can be calculated by making use of equation
(3.15). The electronic specific heat is considered first. When a given heat DQ is
fed into a system at temperature T from outside under adiabatic conditions, the
temperature of the system will increase by DT. The ratio DQ/DT after normal-
ization to a molar quantity defines the specific heat at temperature T. The spe-
cific heat of the conduction electron system, which is called the electronic
specific heat, can be easily calculated by using equation (3.15).

31 2 1p2

1221
kBT

EF(0)2
2

4
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Figure 3.3. Free-electron-like density of states curve N(E ) multiplied by the
Fermi–Dirac distribution function f(E ). The shaded area represents the density of
states occupied by electrons at a finite temperature. The Fermi energy at a finite

temperature changes by an amount given by equation (3.19) relative to that at 0 K.



The internal energy Uel of the electron system is expressed as

Uel(T )5 EN(E )f (E,T )dE, (3.20)

where the subscript “el” refers to conduction electrons. F(E ) in this case is
chosen as F(E )5e0

E EN(E )dE and is inserted into equation (3.15). We obtain

Uel(T )5 EN(E )dE1 (kBT )2 1 ···

5 EN(E )dE1 EN(E )dE1 (kBT )2N(EF(0))

1 (kBT )2EF(0) 1 ···

5U02 (kBT )2EF(0)

1 (kBT )2EF(0)

1 (kBT )2N(EF(0))1 ···

5U01 (kBT )2N(EF(0))1 ···. (3.21)

Here U0 represents the internal energy of the electron system at absolute zero.
The electronic specific heat Cel is calculated by differentiating equation (3.21)
with respect to temperature:

Cel(T )5 5 k2
BN(EF(0))T, (3.22)

where the subscript “V” is attached to emphasize that the temperature deriva-
tive is taken under constant volume. Equation (3.22) is known as the formula
for the electronic specific heat. It is proportional to the absolute temperature
and the density of states at the Fermi level at 0 K. The linearly temperature
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dependent coefficient in equation (3.22) is called the electronic specific heat
coefficient and is frequently expressed in the units of mJ/mol.K2 as

g5 k2
BN(EF(0))52.358N(EF(0)), (3.23)

where N(EF(0)) is in units of states/eV. atom. Note here that equation (3.22) is
derived without reference to the free-electron model. This formula can be
applied to any electron system, where the free-electron model does not neces-
sarily hold.

Figure 3.3 shows the parabolic free-electron-like density of states multiplied
by the Fermi–Dirac distribution function at temperature T. The shaded area
indicates the region occupied by electrons. As emphasized earlier, both occu-
pied and vacant states coexist in a region kBT about EF(T ). Only electrons in
this energy region can be excited to higher energy states by absorbing energy
from outside. The number of electrons involved is roughly given by
N(EF(0))·kBT. The magnitude of energy that these electrons can receive must
be of the order of kBT at temperature T and, hence, a change in the internal
energy DU is approximately given by N(EF(0))(kBT )2. The electronic specific
heat is derived by differentiating this with respect to temperature. This gives rise
to the electronic specific heat Cel proportional to N(EF(0))k2

BT. The present
argument clearly explains why the Fermi–Dirac statistics result in the electronic
specific heat in the form of equation (3.22).

We discuss as a next step the magnitude of the electronic specific heat. For
the sake of simplicity, the free-electron model is assumed. Equation (2.22) is
easily rewritten as

N(EF(0))5 [EF(0)]1/25 , (3.24)

where N is the total number of electrons and TF is the Fermi temperature
defined in Section 2.7. Therefore, the electronic specific heat is reduced to

Cel5 N

in the free-electron model. The total number of electrons per mole is given by
the product of the Avogadro number NA and the valency n0 of the constituent
atom, so kBN5n0kBNA5n0R, where R is the gas constant. Thus the electronic
specific heat can be expressed in the form

C el
Fermi–Dirac5 , (3.25)1p2n0R

2 21 T
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2
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where the superscript “Fermi–Dirac” emphasizes that equation (3.25) is
derived by applying the Fermi–Dirac statistics to the electron system.

It is interesting, at this stage, to compare the results above with the case
where electrons are treated as classical particles. According to the Boltzmann
equipartition law, the energy kBT/2 is furnished to each degree of freedom.
Therefore, the specific heat of n0NA electrons obeying classical statistics is
reduced to

C el
classical5 . (3.26)

A ratio of equation (3.25) over (3.26) leads to

. (3.27)

The ratio turns out to be about 1/60 at room temperature, if the Fermi temper-
ature TF of 53104 K is inserted. This means that the electronic specific heat at
room temperature is merely 1/60 that derived in the classical statistics.

The well-known Dulong–Petit law states that the specific heat near room
temperature is almost 3R, regardless of whether the substances are metals or
insulators. The Boltzmann equipartition law yields the electronic specific heat
of 3/2n0R in addition to the lattice specific heat of 3R. The reason why the
Dulong–Petit law holds even for metals used to be a puzzle. However, this
dilemma was resolved when the electron theory based on the Fermi–Dirac sta-
tistics was established by Sommerfeld, as described above (see also Section 1.2).

3.5 Low-temperature specific heat measurement

We discuss in this section how we measure experimentally the electronic spe-
cific heat of a given sample. Generally speaking, metals are characterized by
possessing a finite electronic specific heat coefficient.3 As far as non-magnetic
metals are concerned, their total specific heat is well expressed as a sum of the
electronic specific heat and the lattice specific heat (see the definition of non-
magnetic metals in Section 3.6). As will be described in Section 4.8, the lattice
specific heat below about 10K can be well approximated by the Debye model
and is expressed as a function of temperature in the form

C el
Fermi–Dirac

C el
classical 511

p2n0R
2 2 T

TF

13n0R
2 2 25 1p2

3 2 1 T
TF

2

­(3n0NAkBT/2)
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5
3n0R
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3 A material is definitely an insulator if N(EF(0)) is zero. However, localized states can be formed at the
Fermi level in a disordered system. Hence, some insulators possess a finite N(EF(0)). See more details in
Sections 15.8.5 and 15.14.



Clattice(T )5aT 3, (3.28)

where a is the lattice specific heat coefficient. As emphasized in the preceding
section, the electronic specific heat at room temperature amounts to only 1/100
time the lattice specific heat of approximately 3R and, hence, is negligibly
small.4 However, the lattice specific heat decreases in proportion to T 3 at low
temperatures, whereas the electronic specific heat decreases only in proportion
to T. Therefore, the electronic specific heat becomes larger than the lattice spe-
cific heat below a certain temperature. This generally occurs below about 10K
in ordinary metals. When the specific heat measurement is carried out in this
temperature range, the electronic specific heat can be easily separated from the
lattice specific heat by following the prescription described below.

The specific heat below about 10K in non-magnetic metals is given by the
sum of the electronic specific heat and the T 3-dependent lattice specific heat:

C(T )5gT1aT 3, (3.29)

where the lattice specific heat coefficient a, as will be discussed in Section 4.8,
is related to the Debye temperature QD through the relation

QD5 . (3.30)

By dividing both sides of equation (3.29) by T, we obtain

5g1aT 2. (3.31)

The measured specific heat C at temperature T is divided by T and the result-
ing C/T values are plotted against T 2. The data would fall on a straight line
with a slope a and an intercept g, provided that equation (3.31) holds well.

Figure 3.4 shows the data for pure Zn in the form of C/T versus T 2. It is seen
that the data are well fitted to a straight line except for a small gradual upward
deviation at high temperatures and also a large sharp deviation of a few data
points in the lowest temperature range. An upward deviation at higher temper-
atures is due to the deviation of the lattice specific heat from the Debye model.
The deviation below 1K is caused by the superconducting transition of pure
Zn.5 Both the electronic and lattice specific heat coefficients can be determined
from the intercept and slope, respectively, of the data shown in Fig. 3.4. Table
3.1 lists the electronic specific heat coefficient and the Debye temperature

C
T

112p4R
5a 2

1/3
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4 Note that the ratio C el
Fermi–Dirac/Clattice is n0 /2 times that in equation (3.27), when Clattice53R. A ratio of 1/120

is roughly obtained when n051.
5 The specific heat in the superconducting state is discussed in Section 12.7. The superconducting transi-

tion temperature of pure Zn is 0.85K (see Table 12.1).



deduced from low-temperature specific heat measurements for representative
metals. Included are the electronic specific heat coefficient derived from band
calculations (see Chapter 8) and also from equation (3.25) in the free-electron
model.

As can be seen from Table 3.1, the experimentally derived electronic specific
heat coefficient gexp generally deviates from the corresponding free-electron
value gF, which is calculated from equations (3.23) and (3.24) as

gF50.136(A/d)2/3(e/a)1/3 mJ/mol·K 2, (3.32)

by inserting the atomic weight A in g, the density d in g/cm3 and the number of
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T 2(K2)

Figure 3.4. Low-temperature specific heat of pure Zn. The electronic specific heat
coefficient can be determined from the intercept by extrapolating the data to 0K.
The lattice specific heat coefficient is derived from its slope. [U. Mizutani,

Japan. J. Appl. Phys. 10 (1971) 367]



electrons per atom e/a introduced in Section 2.7. According to equation (3.24),
the density of states at the Fermi level is inversely proportional to EF(0)
(5"2k2

F/2m) in the free-electron model. Hence, the measured electronic specific
heat may be linearly scaled in terms of the mass of the electron. The ratio
gexp/gF is often employed as a parameter to judge the deviation from the free-
electron model:

;m*
th, (3.33)

where the dimensionless parameter m*
th is referred to as the thermal effective

mass. The density of states at the Fermi level in a real metal certainly deviates
from the free-electron model. The value obtained from band calculations is
listed as gband in Table 3.1. The value of gband is sometimes lower but, in other
cases, higher than gF, depending on the band structure of a given substance. In
addition to the band structure effect, many-body effects including elec-
tron–phonon and electron–electron interactions are known to affect the value
of m*

th. In particular, the electron–phonon interaction is theoretically predicted
to enhance m*

th and is believed to be responsible for the reason why the value of
gexp, even for a free-electron-like metal such as sodium, is always 10–40% higher
than the value of gband [2].

gexp

gF
5

m*

m

3.5 Low-temperature specific heat measurement 43

Table 3.1. Electronic specific heat coefficient and Debye temperature in metals

element e/a gexp(mJ/mol·K2) gF(mJ/mol·K2) gband(mJ/mol·K2) gexp/gF QD (K)

Na 1 1.38 1.13 1.06 1.22 157
K 1 2.08 1.67 1.72 1.24 91
Cu 1 0.690 0.503 0.68 1.37 342
Ag 1 0.641 0.642 0.636 0.99 223
Au 1 0.725 0.640 1.14 163
Mg 2 1.30 0.995 1.06 1.30 396
Zn 2 0.638 0.750 0.70 0.85 319
Cd 2 0.688 0.947 0.85 0.73 209
Al 3 1.348 0.910 0.966 1.48 428
Pb 4 3.04 1.49 2.04 106

Note:
e/a: number of electrons per atom
gexp: measured electronic specific heat coefficient
gF: electronic specific heat coefficient in the free-electron model
gband: electronic specific heat coefficient derived from band calculations
QD: Debye temperature derived from low-temperature specific heat measurements



3.6 Pauli paramagnetism

As mentioned in Section 2.6, each electron possesses a freedom associated with
its spin and carries a magnetic moment arising from its angular momentum. In
this section, we dicuss first the magnetism in the electron system by treating
electrons as classical particles. In Fig. 3.5, the magnetic moment carried by a
classical particle is denoted by m. Magnetic moments in a unit volume are ran-
domly oriented at high temperatures because of thermal agitation. The mag-
netic field H is applied to this system. An energy 2mHcosu is gained, when the
magnetic moment m makes an angle u with the applied field H. In classical
statistics, a component of the magnetic moment along the magnetic field,
mz5mcosu, can take arbitrary values in the range 2m#mz#m.

The probability of aligning the magnetic moment at angle u must be propor-
tional to the Boltzmann factor exp(mHcosu/kBT ). In addition, the number of
magnetic moments aligned at angles between u and u1du is proportional to
the shaded area shown in Fig. 3.5. Hence, the probability p(u)du of finding the
magnetic moment at angles between u and u1du is given by

p(u)du5 . (3.34)

The magnetization M is defined as the sum of the magnetic moments in a
unit volume. Hence, its component parallel to H is calculated as follows:

exp1mHcos u
kBT 2sin udu

E
p

0

exp1mH cosu

kBT 2sin udu
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Figure 3.5. The magnetic moment m makes an angle u with the applied field H.



M(T )5NmKcosuL

5Nm cosup(u)du

5Nm , (3.35)

where N is the number of electrons in a unit volume. Equation (3.35) is re-
written using new variables a and x defined as a5mH/kBT and x5cos u:

M(T )5Nm

5Nm

5Nm coth a2 . (3.36)

The function L(a)5coth a21/a appearing in equation (3.36) is often called
the Langevin function. L(a)→1 is obtained in the limit a→`. In other words,
the magnetization M approaches Nm and all magnetic moments are aligned
along the direction of the magnetic field, when the magnetic field is increased.
As its opposite limit, we consider the case a,,1, which corresponds to a very
weak magnetic field or high temperatures. Since a is very small, the Langevin
function L(a) can be expanded in a series:

L(a)5 1 ···. (3.37)

If only the first term in the series is retained, we obtain

M(T )5 H. (3.38)
Nma
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Equation (3.38) indicates that the magnetization is proportional to the mag-
netic field and the magnetic susceptibility, defined as the ratio of M over H, is
reduced to the form:

x(T ); . (3.39)

Thus, the magnetic susceptibility in a system consisting of N particles, each
carrying magnetic moment m, is found to be inversely proportional to the abso-
lute temperature. This is known as the Curie law.

We find the Curie law to hold when electrons are treated as classical parti-
cles bearing a magnetic moment. But this is certainly not true for electron
systems obeying the Pauli exclusion principle. We have to treat them using
quantum statistics. The component of the magnetic moment along the direc-
tion of the magnetic field is quantized.6 In Fig. 2.7, we assigned both a spin-up
electron with ms5 and a spin-down electron with ms52 to a given quantized
state in k-space without differentiating between them. But now they have to be
treated separately in the magnetic field, since a spin-up electron parallel to the
field raises its energy by mBH, whereas a spin-down electron antiparallel to the
field lowers its energy by the same amount.7 As a result, the density of states
curves for spin-up and spin-down electrons are shifted relative to each other, as
shown in Fig. 3.6.

We have just stated that the energy difference 2mBH arises between spin-up
and spin-down electrons when a magnetic field is applied. Alternatively, we
may say that the energy 2mBH is gained by flipping an electron spin along the
energetically favorable direction. Because of the Pauli exclusion principle, only
electrons in the range kBT in the neighborhood of the Fermi level are involved.
The number of relevant electrons is roughly given by N(EF(0))·kBT and, hence,
N in equation (3.38) should be replaced by N(EF(0))·kBT. Equation (3.39) is
thus rewritten as

x5 (3.40)
m2

BN(EF(0))kBT
3kBT
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6 In quantum mechanics, a component of the magnetic moment along the direction of the magnetic field
is expressed as mz52gmsmB, where ms is the spin quantum number equal to or 2 , the g-factor is equal
to 2.0023 and mB is the Bohr magneton. Note that a minus sign arises from the fact that the electronic
charge (2e) is negative. The Bohr magneton mB5m0e"/2m50.927310220 erg·gauss2151.165310229

Wb·m refers to the magnetic moment on the atomic scale. The value of mz takes only two possible values
mz57mB for ms56 , respectively. The interaction energy U52m·H of the electron spin in the presence
of a magnetic field is accordingly given by U56mBH.

7 The names “spin-up” and “spin-down” are assigned to the positive and negative sign of the spin quantum
number ms, respectively.
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for conduction electrons subjected to quantum statistics. Equation (3.40) indi-
cates that the magnetic susceptibility associated with spins of conduction elec-
trons is temperature independent and proportional to the density of states at
the Fermi level.

Equation (3.15) is now applied to calculate more rigorously the magnetic
susceptibility at a finite temperature. As is clear from Fig. 3.6, the magnetiza-
tion at an arbitrary temperature arises as a result of the shift of the spin-up
band relative to the spin-down band and is expressed as

M(T )5 [N(E1mBH )2N(E2mBH )] f (E,T )dE, (3.41)

where the coefficient ( ) is introduced to reduce the density of states shown in
Fig. 2.8 to one-half so as to differentiate spin-up and spin-down electrons. If
the magnetic field is sufficiently small, the quantity in the square brackets can
be expanded in a series:
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Figure 3.6. The free-electron density of states in the presence of a magnetic field, the
direction of which is shown in the figure. The arrow in the bands indicates the direc-
tion of the electron spin. Note that the direction of the magnetic moment is opposite
to it, as mentioned in footnote 6. The spin-up electrons with ms5 raise their ener-
gies by mBH, whereas the spin-down electrons with ms52 lower their energy by the

same amount.
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M(T )5 N(E )1mBH 1 ···

2 N(E )2mBH 1 ··· f (E,T )dE>m2
BH f (E,T )dE. (3.42)

By taking F(E )5 dE in equation (3.42), we can write equation

(3.15) as 

I5 f (E,T )dE

5N(EF(T ))1 (kBT )2 1 ···. (3.43)

The magnetic susceptibility is then deduced to be

x(T )5m2
BN(EF(0))1O(T 2). (3.44)

Note here that N(EF(T )) is replaced by N(EF(0)), since the difference between
them is of the second-order correction proportional to T 2 and is included in
O(T 2) together with the second term of equation (3.43) (see Exercise 3.1).
Equation (3.44) expresses the paramagnetic susceptibility due to spins of con-
duction electrons. This is known as the Pauli paramagnetism, since it was first
derived by Pauli, as introduced in Section 1.2. It is proportional to the density
of states at the Fermi level at absolute zero, N(EF(0)), in the same manner as
the electronic specific heat coefficient discussed in the preceding section.

The density of states at the Fermi level reduces to N(EF(0))53N/2kBTF in
the free-electron model. Hence the magnetic susceptibility for the free-electron
system can be expressed as

x5 , (3.45)

where TF is the Fermi temperature. Equation (3.45) is now compared with
equation (3.39) derived from classical statistics. Its ratio turns out to be

. (3.46)
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Here the value of m in equation (3.39) is replaced by 6mB to allow a direct com-
parison with equation (3.45). The ratio is calculated to be about 3/100 at room
temperature, if TF553104 K is inserted.

There are contributions to magnetic susceptibility other than the Pauli par-
amagnetism in metals. First, we consider the motion of conduction electrons
in the presence of a magnetic field. They are subjected to a spiral motion due
to the Lorentz force in the magnetic field (see Section 7.2). Suppose that the
magnetic field is applied in the z-direction. The electron orbit is projected to a
circle in the xy-plane and gives rise to a circular current. This yields a magnetic
field opposite to the direction of the applied field. Magnetism induced in the
direction opposite to the applied field is called diamagnetism. The magnetism
associated with spiral motion caused by the Lorentz force is rigorously treated
via quantum mechanics by Landau [3] and is called the Landau diamagnetism.
The absolute value of the Landau diamagnetism becomes equal to one-third
that of the Pauli paramagnetism in the free-electron model. The net magnetic
susceptibility of the free-electron system is given by the sum of the Pauli par-
amagnetism and the Landau diamagnetism and is explicitly written in units of
e.m.u./mol in the following form:

xfree5 m2
BN(EF)

51.24331026(A /d )2/3(e/a)1/3, (3.47)

where A is the atomic weight in g, d is the density in (g/cm3) and e/a is the
number of electrons per atom.

Each inner core electron also contributes to the magnetic susceptibility. The
applied magnetic field penetrates the orbit of each core electron and induces a
current in the direction opposite to the field. This leads again to diamagnetism.
The diamagnetism of ions is shown to be independent of temperature and its
magnitude is comparable to that of the Pauli paramagnetism [4]. Therefore,
there exist three temperature independent contributions to the magnetic sus-
ceptibility: Pauli paramagnetism, Landau diamagnetism and diamagnetism
due to ions. Hence, their separation by utilizing the temperature dependence is
not feasible in contrast to the electronic specific heat discussed in the preced-
ing section.

We have so far studied the temperature independent para- and diamagne-
tism. Substances characterized by a sum of these temperature independent
magnetic susceptibilities are called non-magnetic. They are treated separately
from magnetic substances characterized by ferromagnetism, antiferromagne-
tism, paramagnetism obeying the Curie–Weiss law and other complicated mag-
netisms like spin-glass. More details concerning magnetic metals will be
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32

3.6 Pauli paramagnetism 49



discussed in Chapter 13. The magnetic susceptibility data for typical non-
magnetic metals are summarized in Table 3.2.

3.7 Thermionic emission

We have studied, in the previous two sections, physical properties that conduc-
tion electrons exhibit and learned how the Fermi–Dirac distribution function
determines their quantities and temperature dependence. In this section, we
discuss the phenomenon of conduction electrons at high temperatures such
that the Fermi–Dirac distribution function is replaced by the Maxwell–
Boltzmann distribution function. Our aim is to determine under what condi-
tions electrons confined in a metal can escape from it. It is more convenient to
treat electrons as particles possessing a velocity v and a momentum p. As is
clear from Fig. 3.7, a minimum energy f required to remove an electron having
the Fermi energy EF from a metal is given by f5E02EF. Here E0 is the work
needed to remove to infinity an electron at the lowest energy state in the valance
band and f is called the work function. Obviously, an electron in a metal can
be excited into a vacuum if its energy E is higher than EF1f.

Let us take the yz-plane as the surface of a metal and consider the electron
whose x-component of the velocity is vx. The condition for the electron to
escape from a metal is given by

$EF1f. (3.48)
mv2

x

2
5

p2
x

2m
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Table 3.2. Magnetic susceptibility in non-magnetic metals

element e/a d (g/cm3) A (g) xexp (1026/mol) xion (1026/mol) xfree (1026/mol)

Na 1.0 0.966 22.989 13.81 23.7 10.3
K 1.0 0.909 39.102 17.91 213.1 15.2
Cu 1.0 8.932 63.54 25.46 219.3 4.60
Ag 1.0 10.50 107.87 219.52 242.3 5.87
Au 1.0 19.281 196.967 227.91 258.4 5.85
Mg 2.0 1.737 24.305 6.07 22.9 9.09
Zn 2.0 7.134 65.37 29.15 215.5 6.85
Cd 2.0 8.647 112.4 219.67 233.9 8.65
Al 3.0 2.698 26.981 16.19 22.3 8.32

Note:
d: mass density, A: atomic weight, xexp: experimentally observed magnetic
susceptibility, xion: calculated magnetic susceptibility due to ions and xfree: free-
electron magnetic susceptibility calculated from equation (3.45).



For example, heating a metal in a vacuum causes some electrons to escape from
the metal, since the tail of the Fermi–Dirac distribution function is extended
to such high energies that there appear electrons satisfying equation (3.48).
This phenomenon is called thermionic emission.8

The emission current density Jx per unit area of metal surface is expressed
as

Jx5neKvxL5 5 , (3.49)

where KvxL is an average velocity component vx per electron, n is the number of
electrons per unit volume n5N/V. A lower limit vx0

of the integral in equation
(3.49) is determined from the relation (3.48):

5 5EF1f.

The total number of electrons in a metal at temperature T can be written as

N5 f (k,T )d k5 f (p,T ) . (3.50)

Thus, one can easily derive the relation dN5 f (p,T )dp by taking its1 2V
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8 The entities ejected from a metal by heating it in a vacuum were originally thought to be ions and the term
“thermionic” was adopted. Strictly, it should be called “thermoelectronic emission”.

Figure 3.7. Work function f in a metal. The shaded area represents the valence band.
The energy E0 is needed to excite an electron at the bottom of the valence band to the

vacuum level.



derivative. Equation (3.49) is now reduced to the form of

Jx5 (e`
2`

e`
2`

f ( px,py,pz,T )dpydpz)dpx. (3.51)

The work function f in ordinary metals is of the order of a few eV, as listed in
Table 3.3, and is far larger than the thermal energy kBT. Hence, the relation
E2EF.f..kBT holds. This means that the Fermi–Dirac distribution func-
tion f (p,T ) can be well approximated by the Maxwell–Boltzmann distribution
function:

f (p,T )>exp 5exp exp . (3.52)

Equation (3.52) is inserted into equation (3.51). We can easily calculate inte-
grals involved in equation (3.51) as follows:

exp dpy5 e2y 2dy5

and

exp dpz5 ,Ï2pmkBT12
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z

2mkBT2E
`

2`
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Table 3.3. Thermionic properties
of metals

element A (amp/cm2·K2) f (eV)

W 75 4.5
Ta 55 4.2
Ni 30 4.6
Cr 48 4.6
Ca 60 3.2
Cs 160 1.8
Mo 60 4.3

Note:
A is defined by equation (3.54)



where e`
2`

e2y2 dy5 is used. The integral involving the x-component is
different from the others and is calculated as

exp dpx52kBT e`
x0

xexp(2x2) dx5 kBTexp(2x2
0)

5kBTexp 5kBTexp ,

where we put px5(2mkBT )1/2x. A substitution of these results back into equa-
tion (3.51) leads to the well-known formula:

Jx5AT 2exp , (3.53)

where A is given by

A5 <120 . (3.54)

Equation (3.53) is known as the Richardson–Dushman equation [5]. The
emission current density Jx is measured as a function of temperature. The data
fall on a straight line when log(Jx /T 2) is plotted against 1/T. This implies that
the use of Maxwell–Boltzmann statistics even for the conduction electron
system is valid at high temperatures. The slope of the line determines the work
function f and the intercept the value of A. Some data for typical metals are
listed in Table 3.3. The emission current is known to be very sensitive to the
degree of oxidation of the metal surface. This is the main reason why the meas-
ured value often deviates from the theoretical value of 120 amp/cm2·K2.

Exercise

3.1 The Pauli paramagnetism is given by equation (3.44). Calculate its second-
order correction term O(T 2), proportional to T 2. Estimate its contribution (%)
relative to the first term for pure Cu in the free-electron model.
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Chapter Four

Periodic lattice, and lattice vibrations in crystals

4.1 Prologue

In Chapter 3, we discussed fundamental properties manifested by conduction
electrons without explicitly considering possible effects of a periodic ion poten-
tial. In other words, our discussion was limited to the context of the free-
electron model. However, we will soon realize that the free-electron model is
too simple and that the behavior of the conduction electrons in a real metal can
be understood only if the effect of the periodic ion potential is properly taken
into account. Prior to our discussion, we need to study lattice properties asso-
ciated with the periodic array of ions. We learned in Chapters 2 and 3 that
reciprocal space is convenient to describe the electronic state of a conduction
electron subject to the Pauli exclusion principle. We show in this chapter that
both static and dynamical properties of the periodic lattice are also conven-
iently described in terms of reciprocal space.

4.2 Periodic structure and reciprocal lattice vectors

An arbitrary perodic function f (r) having the translational symmetry of period
l is expressed as

f (r1l)5f (r), (4.1)

where r is a position vector in three-dimensional real space. For the sake of sim-
plicity, we consider a one-dimensional system, where equation (4.1) is reduced
to f (x1l )5f (x). Note that equation (4.1) is mathematically equivalent to
equation (2.8), where the size L of a crystal is simply replaced by l. A crystal
has another characteristic periodicity arising from a periodic arrangement of
its atoms. This is the lattice constant a in a crystal, which is now taken as the
period l in equation (4.1).
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Any periodic function with a lattice constant a can be expanded into the
Fourier series:

f (x)5 Ane , (4.2)

where n represents integers ranging over 2` to ̀ . A new variable gn is assigned
to the variable (2p/a)n appearing in the exponent. Note that gn is a discrete var-
iable in reciprocal space. Equation (4.2) is then rewritten as

f (x)5 Agn
eignx. (4.3)

Since any lattice vector l in a one-dimensional crystal is expressed as lm5ma
with an arbitrary integer m, we have the relation eign·lm51 for any gn5(2p/a)n
with an arbitrary integer n. Indeed, this relation assures f (x) to be a periodic
function of a. The Fourier coefficient Agn

in equation (4.3) is easily deduced to
be

Agn
5 f (x)e2ign ·xdx. (4.4)

It is important to realize that the coefficient Agn
is determined solely from infor-

mation about f (x) in the unit cell with the lattice constant a.
The discussion above may be easily extended to a three-dimensional crystal

characterized by the lattice constant a in x-, y- and z-directions. The lattice
vector l is written as a(lx, ly, lz), where lx, ly and lz are integers. Equation (4.3) is
then generalized to

f (r)5 Agnxnynz
eignxnynz

·r, (4.5)

where the vector gnxnynz
is defined as (2p/a) (nx, ny, nz) with integers nx, ny and

nz. An inner product of the vectors gnxnynz
and llxlylz

results in

gnxnynz
·llxlylz

5 nxlxa1 nylya1 nzlza

52p3(nxlx1nyly1nzlz), (4.6)

justifying again the relation exp(ignxnynz
·llxlylz

)51.
Equation (4.5) can be further extended to more general three-dimensional

periodic structures. The lattice vector llxlylz
or simply l is written in the form of

l5lxax1lyay1lzaz, (4.7)
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where ax,ay and az are basic vectors (also called primitive translation vectors)
in real space and lx, ly and lz are integers to specify a particular lattice site. As
its complementary quantity, we introduce the reciprocal lattice vector gnxnynz

or
g defined as

g52p(nxbx1nyby1nzbz), (4.8)

where each basic vector bi (i5x, y and z) is chosen perpendicular to the plane
formed by the two basic vectors aj ( j5y, z and x) and ak (k5z, x and y) in real
space. In other words, the relation (ai·bj)50 holds in the case of iÞj. In addi-
tion, the vectors are normalized so as to satisfy the relation (ai·bi)51. The three
basic vectors bx, by and bz satisfying these conditions can be expressed1 as

bx5 , by5 and bz5 . (4.9)

An inner product of the two complementary vectors l and g results in multi-
ples of 2p and, hence, the relation eig·l51 holds again. The space encompassed
by the basic vectors given by equation (4.9) or the 2pbx, 2pby, 2pbz forms the
reciprocal space because of the possession of a dimension reciprocal to the
lattice vector l in real space.

The reciprocal lattice vector g, say, for a simple cubic lattice is quantized in
intervals of 2p/a and possesses the same dimension as the wave vector of con-
duction electrons defined in Section 2.5. Indeed, as mentioned above, equa-
tion (4.1) is of the same form as the periodic boundary condition of equation
(2.8). The period in equation (2.8) is the system size or the edge length L of a
metal cube. Instead, the lattice constant a in a crystal is taken as the period
in equation (4.1). This difference is reflected in the interval of the quantiza-
tion in reciprocal space. An interval of the quantized wave vector in equation
(2.9) is 2p/L, whereas it is now 2p/a. The ratio L/a is of the order of 108 for
a metal in a molar quantity, since the edge length L of the metal is about 1cm
while the lattice constant a is a few-tenths nm. It can be easily shown that the
magnitude of the shortest reciprocal lattice vector appearing in equation (4.8)
is 2p/a, which is comparable to the Fermi diameter 2kF obtained from equa-
tion (2.20).

Various band calculation techniques are discussed in Chapter 8, where we
repeatedly use the series expansion like equation (4.5) in terms of the recipro-
cal lattice vector gnxnynz

(2`,ni,`; i5x, y and z) for any periodic function
with the lattice constant a.

[axay]
(ax[ayaz])

[azax]
(ax[ayaz])

[ayaz]
(ax[ayaz])
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1 It is easily checked that the relation ax·(ay3az)5ay·(az3ax)5az·(ax3ay)5V holds, where V represents
the volume of the cell formed by the basis vectors.



4.3 Periodic lattice in real space and in reciprocal space

As is clear from the argument above, a three-dimensional arrangement of
points satisfying the translational symmetry in the form of equation (4.7)
forms a lattice and its space is called a space lattice. A crystal is made up of
structurally identical units or bases (singular basis) consisting of either a single
atom, a pair of atoms or even a molecule located at every lattice point in a
Bravais lattice.2 In the preceding section, we pointed out that the three basic
vectors ax, ay and az are defined in real space such that all lattice points can be
mapped by the lattice vector given by equation (4.7). Likewise, the three basic
vectors bx, by and bz are defined in reciprocal space such that all reciprocal
points can be mapped by the reciprocal lattice vector given by equation (4.8).

A simple cubic lattice with the lattice constant a is obtained, if the basic
vectors ax, ay and az are perpendicular to each other and their magnitudes are
all equal to a. The corresponding reciprocal space is constructed by the set of
the basic vectors bx, by and bz being perpendicular to each other with their mag-
nitude equal to 1/a. It can be easily checked that each basic vector bi is parallel
to ai. Obviously, a simple cubic lattice is formed in reciprocal space and the
reciprocal lattice vector gnxnynz

is expressed as (2p/a)(nx ny nz).
Let us take in a given space lattice three arbitrary lattice points, which do not

happen to fall simultaneously on a single straight line. Then, we can define a
plane on which these three lattice points are included. We can construct an infi-
nite number of equivalent parallel planes in the space lattice. They are called a
set of the lattice planes or crystal planes.

Figure 4.1 shows some important lattice planes in a cubic crystal. A set of
the lattice planes can be specified by using the Miller indices. First, we find the
intercept of a given plane with the crystal axes defined by the three basic
vectors ax, ay and az. Then, the reciprocals of these three numbers are reduced
to a set of the smallest integers by multiplying some common integer in the case
of fractional numbers. The set of integers h, k and l thus obtained is enclosed
in parentheses and is expressed as (hkl ). These are called the Miller indices.
Note here that the construction of the Miller indices involves the process of
taking reciprocals and, hence, produces a quantity in reciprocal space. For
example, let us consider the plane intersecting with the x- and y-axes at the
coordinates (1,0,0) and (0,1,0) but parallel to the z-axis in the cartesian co-

ordinates. The reciprocal of the intercept is given by and the Miller

indices are denoted as (110).
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2 The arrangement of a unit assembly or basis in a crystal remains invariant under translation and symme-
try operations [1]. The symmetry elements include the one-, two-, three-, four- and six-fold rotation axes
about a lattice point, mirror plane, inversion center and rotation–inversion axes. In three-dimensional
crystals, the thirty-two permissible point groups give rise to 14 different Bravais or space lattices.



We consider the lattice plane specified by the Miller indices (hkl ) in a cubic
crystal. By definition, the three coordinates, where one of the planes inter-

sects with the x-, y- and z-axes, are given as , and ,

respectively, where N is a common multiple of h, k and l. Note that the number
of possible N is infinite so that the Miller indices (hkl ) refer to the set of an infi-
nite number of parallel planes.

Let us consider a plane in the set of the (hkl ) planes. Its equation is obvi-
ously expressed as

hx1ky1lz5N, (4.10)

where N is an integer. Take a lattice point (xo, yo,zo) in this plane. The lattice vector
pointing to the coordinate (xo, yo, zo) is given by lxoyozo

5xoax1yoay1zoaz. Consider
the reciprocal lattice vector ghkl52p(hbx1kby1l bz), in which the three integers
h, k and l refer to the Miller indices (hkl ) of this plane. An inner product of
these two vectors immediately results in

g·l52p(hxo1kyo1lzo)52pN (4.11)

by using equations (4.9) and (4.10).
The left-hand side of equation (4.11) is rewritten as )g)·)l)cos u5 )g)dN, where

u is the angle between g and l and dN;)l)cos u is the length of the vector l pro-
jected on the vector g, as shown in Fig. 4.2. Now equation (4.11) is reduced to

dN5 , (4.12)

representing the distance from the origin to this plane. This implies that the
reciprocal lattice vector ghkl is perpendicular to the set of (hkl ) lattice planes. It
is also noted that the value of d5dN /N corresponds to the distance between the
adjacent planes and is given by d52p/)g). To summarize, a single reciprocal

2pN
*g*

10,0,
N
l 210,

N
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Figure 4.1. (100), (110) and (111) lattice planes in a cubic crystal.



lattice vector ghkl is uniquely assigned to a set of (hkl ) lattice planes and is per-
pendicular to it. This is illustrated schematically in Fig. 4.2.

The distance between adjacent planes in the set of the (hkl ) planes in the
simple cubic lattice is calculated from the relation d52p/)g):

d5 , (4.13)

where a is the lattice constant. This means that the set of the lattice planes con-
sisting of smaller Miller indices gives rise to a wider value of d. Since the atom
density in a crystal is everywhere uniform, its density on a given plane becomes
denser with increasing interplanar distance.3 For example, Fig. 4.3 shows the
(100) and (310) planes projected onto the xy-plane in the simple cubic lattice.
It is seen that the atoms are more densely distributed on the (100) planes than
on the (310) planes.

We now study the important role of the reciprocal lattice vector in relation
to x-ray diffraction phenomena. Suppose that an incident x-ray with wave-
length l falls at a glancing angle u on the crystal plane. We consider this situa-
tion in reciprocal space. As shown schematically in Fig. 4.4(a), the center of the

a

Ï(h2 1 k2 1 l2)
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3 The parellelepiped defined by the three basis vectors ax, ay and az is called a primitive cell. There is always
one lattice point per primitive cell. The argument in this paragraph holds true, as long as a primitive cell
is concerned. But it is no longer valid when the Bravais lattice is employed. Note that the Bravais lattices
for the fcc and bcc structures contain 4 and 2 atoms in their unit cells, respectively. The primitive cells for
the bcc and fcc lattices are shown in Figs. 5.12 and 5.14, respectively.

u

Figure 4.2. Cross-section cut across the xy-plane for a simple cubic crystal with
lattice constant a. The z-axis is perpendicular to the page. The cross-section of the
family of (110) lattice planes and the corresponding (110) reciprocal lattice vector are

shown. They are perpendicular to each other.
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Figure 4.3. (100) and (310) lattice planes with the corresponding reciprocal lattice
vectors.
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Figure 4.4. Bragg reflections in (a) reciprocal space and (b) real space. Open circles
in (b) represent atoms to emphasize the real space.



circle with the radius 2p/l is positioned at a point O, where the incident x-ray
intersects with the lattice plane DE. The line AO refers to the direction of the
incident x-ray beam. The point B, at which the extrapolated line AO intersects
with the circle, is chosen as the origin in reciprocal space. The point C repre-
sents the intersection of the reflected x-ray beam with the circle. A simple geo-
metric consideration immediately leads to the relation AC // DE and, hence, the
plane AC would possibly belong to the same set as the lattice plane DE. In
addition, we see that the vector BC is always perpendicular to the set of the
planes and, thus, it coincides with the direction of the reciprocal lattice vector.
If the point C coincides with the reciprocal lattice point, then the vector BC
obviously represents the reciprocal lattice vector gn associated with the set of
the lattice planes (DE and AC ). Equation (4.12) tells us that the magnitude of
the vector BC must be equal to multiples of 2p/d or 2pn/d, where n is a posi-
tive integer, and the set of the lattice planes (DE and AC ) is characterized by
the interplanar distance d.

As a next step, we discuss how the geometry shown in Fig. 4.4(a) is related
to x-ray diffraction phenomena. The circle in Fig. 4.4(a) represents the cross-
section of a sphere in three-dimensional space. The sphere is called the Ewald
sphere. The vector AO corresponds to the wave vector k of the incident x-ray
beam, since its magnitude is equal to the radius 2p/l of the Ewald sphere. The
wave vector k9 of the reflected x-ray beam makes an angle 2u with the incident
beam but its magnitude OC is still 2p/l. This indicates that the scattering of
the x-ray beam due to the lattice planes is elastic. We see, therefore, that the two
relations k95k1gn and )k)5 )k9) are simultaneously satisfied. This is called the
Laue condition. The simple trigonometry in Fig. 4.4(a) easily proves the Laue
condition to be equivalent to the Bragg law discussed below.

Figure 4.4(b) illustrates the situation where the incident x-ray beam is
reflected from two successive crystal planes DE and FG in real space. It can be
seen that the waves reflected at N in the plane FG take a path longer by the dis-
tance (ON–OM ) than the waves reflected at O in the plane DE. A constructive
interference between these two waves will occur when the path difference
(ON–OM ) equals a multiple of the wavelength or nl. This is the basic idea for
diffraction phenomena to occur and leads to the famous Bragg law 2dsinu

5nl, where d is the interplanar distance. The integer n is called the order of
reflection. Reflections with n51 and n$2 are often referred to as the first- and
higher-order reflections, respectively.

The interrelationship between Fig. 4.4(a) and (b) becomes clearer if we
understand the physical meaning of the integer n appearing in the reciprocal
lattice vector gn in Fig. 4.4(a). The integer n is different from the variable N in
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equation (4.12).4 Let us denote the Miller indices for the set of lattice planes
shown in Fig. 4.4(b) as (hkl ) and their interplanar distance as d. The Bragg
condition leads to 2dsinu5l and the magnitude of the corresponding recipro-
cal lattice vector is 2p/d. Consider the reciprocal lattice vector gnh nk nl. Its mag-
nitude is n times as large as that of the reciprocal lattice vector ghkl and, hence,
is equal to 2p/d 952pn/d, which may be the case in Fig. 4.4(a). The correspond-
ing Bragg condition 2d 9sinu5l is alternatively written as 2dsinu5nl. The
diffracted x-ray is, therefore, considered as either a first-order reflection from
the set of (nh nk nl ) planes with a spacing d 9(5d/n) or the n-th order reflection
from the set of (hkl ) lattice planes with the spacing d. For example, let us con-
sider the set of (220) planes in the simple cubic lattice. The length of the recip-
rocal lattice vector (220) is twice as large as that of the reciprocal lattice vector
(110). Note that the (220) planes in the simple cubic lattice do not contain
atoms but the reciprocal lattice vector (220) is meaningful and refers to second-
order reflections from the (110) planes.

As a practical example, let us take the fcc lattice with lattice constant a, as
shown in Fig. 4.5(a). The lattice plane which intersects with the x-, y- and

z-axes at , (0,`,0) (0,0,`), respectively, is expressed as (200) in the Miller

indices. Planes which are parallel to this plane and separated by multiples of
the interplanar distance a/2, are all equivalent and constitute the set of (200)
planes. The corresponding reciprocal lattice vector is denoted as g5

1a
2
,0,02
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4 The integer N in equation (4.12) is used to assign a particular lattice plane among an infinite number of
equivalent lattice planes. On the other hand, the integer n appearing in Fig. 4.4(a) represents a higher-
order reflection of diffracted waves. Since dN5Nd and gn;ng hold, N and n refer to an integer in real and
reciprocal spaces, respectively.

Figure 4.5. (a) (200) and (111) lattice planes in fcc unit cell. (b) Corresponding bcc
unit cell in reciprocal space.



(2p/a)(200) or simply (200).5 The (200) reciprocal lattice vector is directed
along the kx-axis in reciprocal space with a magnitude |g | 5(2p/a)·254p/a.
The (2n 00) reciprocal lattice vector corresponds to the n-th-order reflections
from the (200) planes. This is illustrated in Fig. 4.5(b).

The waves diffracted by the set of (100) planes in the fcc lattice cancel out as
a result of the phase difference p because of the presence of an intervening
plane (see the (200) plane in Fig. 4.5(a)) between two adjacent (100) planes and,
hence, their intensity is reduced to zero. This is known as the extinction rule.6

Hence, the (100) reciprocal lattice vector does not appear in the case of the fcc
lattice. The reciprocal lattice vector g111 with a magnitude 2p /a is assigned
to the set of the (111) planes. In a similar manner, we see that the lattice plane
passing through the atoms at (a/2, 0, a/2) and (0, a/2, a/2) and parallel to the z-
axis constitutes the set of the (220) planes. The corresponding g220 reciprocal
lattice vector points to the corner of the cube in reciprocal space, as shown in
Fig. 4.5(b).

The non-vanishing reciprocal lattice vectors associated with (111), (200),
(020), (002), (220), (202), (022) and (222) planes obtained from the fcc lattice
form the unit of the bcc lattice in reciprocal space, as shown in Fig. 4.5(b). The
space outside the unit cell is filled by the reciprocal lattice vector of the higher-
order reflections. For example, the reciprocal lattice vectors (400) and (600) rep-
resent the second- and third-order reflections from the set of the (200) planes.
Thus, we see that the fcc structure in real space yields the bcc structure in recip-
rocal space. We can also easily check that the bcc structure in real space yields
the fcc structure in reciprocal space.

To summarize, an infinite number of equivalent lattice planes in real space
is reduced to a single reciprocal lattice vector in reciprocal space. It is not con-
venient to treat an infinite number of periodic lattice planes in real space.
Instead, we can treat them all together as a single point in reciprocal space. This
is made possible because of the periodic nature of the lattice structure in real
space. We will study more about this unique feature in Chapter 5 in connection
with the behavior of conduction electrons in a periodic potential field.
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5 Since the Miller indices are defined as a set of three mutually prime integers, the (nh, nk, nl ) can be reduced
to (hkl ). For example, the (200) planes in the fcc lattice are reduced to (100) planes. This definition has
been conventionally used in discussing the lattice planes in real space such as the slip planes in a crystal.
However, the discussion in reciprocal space needs to differentiate the (200) planes from the (100) planes,
as is explained here.

6 The extinction rule for the fcc and bcc lattices is stated as follows. The diffraction intensity in the fcc lattice
vanishes when the Miller indices involve both even and odd integers, whereas in the bcc lattice it vanishes
when the sum of indices h1k1l is odd.
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4.4 Lattice vibrations in one-dimensional monatomic lattice

We have so far treated the assembly of atoms as being fixed at their equilibrium
positions in a perfect periodic lattice. This is the argument at absolute zero. But
the atoms are vibrating about their equilibrium positions at finite temperatures,
resulting in disruption of the periodicity of the lattice. The aim in this section
is to study how disruption of the lattice periodicity due to thermal virbations
can be treated in reciprocal space.

We consider a one-dimensional model, in which an infinite number of iden-
tical atoms of mass M are spaced periodically with the lattice constant a, as
shown in Fig. 4.6. Each atom is connected to its neighboring atoms through a
spring with a force constant b. This is called the linear chain model. A displace-
ment of the l-th atom or the atom at the position la is denoted as ula, where l is
an integer. The equation of motion of the l-th atom is then expressed as

M 5b(u(l11)a1u(l21)a22ula). (4.14)

Such an equation can be written for every atom in a linear chain. Hence, we
have an infinite number of similar equations of motion in real space. To avoid
handling an infinite number of equations, we transform equation (4.14) into
reciprocal space by assuming its solution in the form

ula5j(t)eiqla. (4.15)

An insertion of equation (4.15) into equation (4.14) yields

M 5b(eiqa1e2iqa22)j
d 2j

dt2

d 2ula

dt2
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Figure 4.6. Lattice vibrations in a one-dimensional monatomic lattice with lattice
constant a. The cases u(l21)a.0, ula,0 and u(l11)a.0, are shown.



5 24bsin2 j. (4.16)

Note here that this transformation can eliminate the variable l associated with
a position of the atom and gives rise to the equation of motion for a simple-
harmonic oscillator. Indeed, an infinite number of equations in real space are
replaced by a single equation for the amplitude of the wave with the wave
number q, which describes the collective motion of atoms over a linear chain.
This is called a lattice wave, characterized by a wave number in reciprocal space.

As long as the stationary state is concerned, the time-dependent amplitude
j(t) must take the form of j(t)5j0exp(ivt). Then, we easily obtain a solution
of equation (4.16) as

v5 sin . (4.17)

Equation (4.17) gives the relation between the angular frequency v and wave
number q and is called the dispersion relation for the lattice wave. As shown in
Fig. 4.7, the frequency v takes it maximum value of vmax5 at qmax5

6p /a.
As is clear from equation (4.15), motions of individual atoms are trans-

formed into lattice waves propagating throughout the lattice and are best
described in terms of the wave number in reciprocal space. But, the entities
responsible for the displacement are periodically arranged atoms with a lattice
constant a. This feature must be reflected in reciprocal space. The lattice vector
in one-dimensional (real) space is expressed as lm5ma (m: integer), whereas the
corresponding reciprocal lattice vector is expressed as gn5(2p/a)n (n: integer)
where l and g are not shown in bold type in one-dimensional (reciprocal) space.
Hence, the relation eig·l51 always holds between them. Let us choose an arbi-
trary wave vector7 q outside the region 2p/a,q#p/a and add the reciprocal
lattice vector gn5(2p/a)n so as to bring q1gn into the region 2p/a,q#p/a.
According to equation (4.15), the displacement of the m-th atom is given by uma

5jei(q1gn)ma but is reduced to uma5jeiqma because ei [(2p/a)n]·ma51. This holds for an
arbitrary atom in the chain. Therefore, we confirm that lattice waves with wave
vectors q and q1gn give rise to the same atom displacements in the linear chain.
This proves that a given normal mode of lattice vibrations in real space can be
equally described by any lattice waves characterized by the wave vectors differ-
ing by the reciprocal lattice vector (see Exercise 4.1 and Fig. 4A.1). Therefore,

Ï(4b/M )

1qa
2 2UÎ4b

MU

1qa
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7 The words “wave vector” are intentionally used in place of “wave number” in spite of this being in one-
dimensional space.



we need to consider wave vectors only in the range 2p/a,q#p/a in the
description of lattice vibrations. This region in reciprocal space is called the
first Brillouin zone and is obtained by bisecting the shortest reciprocal lattice
vectors g152p/a and g

21522p/a.
Equation (4.17) can be approximated as v5(b/M)1/2aq, when the wave

number q is small (aq,,1). A linearly q-dependent frequency reminds us of
the well-known formula v5sq5(c/r)1/2q for vibrations of an elastic medium
like a rubber [1]. Here s is the sound velocity in cm/s, c is the elastic stiffness
constant in dyne/cm2 and r is the density in g/cm3. One can easily check that b
5ca holds, since b is in units of dyne/cm and r5M /a3 in a three-dimensional
system. Though atoms are assumed to be periodically spaced with the lattice
constant a in the linear chain model, we see that, in the long wavelength limit
where aq,,1 holds, the system can be treated as an elastic continuum. This is
indeed the region where the wavelength of the lattice wave is much longer than
the lattice constant. It must be noted that the transformation (4.15) is based on
the periodicity of the lattice with a period a. This yields the periodic structure
with the period of 2p/a in reciprocal space, as discussed in the preceding
section. Therefore, the dispersion relation in the range 2p/a,q#p/a shown
in Fig. 4.7 can be extended periodically outside this range in reciprocal space.

4.5 Lattice vibrations in a crystal

We saw in Section 2.5 that the wave vector of the conduction electron is quan-
tized by imposing the periodic boundary condition to its wave function. The
same boundary condition must be applied to lattice vibrations because of the
finite size of a crystal. A one-dimensional crystal containing N atoms with the
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Figure 4.7. Dispersion relation of the lattice vibrations for a one-dimensional
monatomic lattice with lattice constant a.



lattice constant a is first considered. Its total length is obviously L5Na.8 The
periodic boundary condition is applied in such a way that the atom at the posi-
tion l95l coincides with that at the position l95l1L by connecting both ends
of a linear chain. Now the displacement of the atom at the position l should
be the same as that of the atom at the position (l1L):

u(l )5u(l1L). (4.18)

The periodic boundary condition (4.18) is equivalent to that given by equation
(2.8) for the conduction electron and equation (4.1) for any periodic function.
By inserting equation (4.15) into equation (4.18), we immediately deduce the
relation eiqL51, which results in9

q5 n n561, 62, . . ., 6 . (4.19)

Equation (4.19) indicates that the wave number of the lattice wave is quan-
tized and can take only a discrete set of values. One has to recognize an essen-
tial difference between equations (4.19) and (2.9). In the case of the conduction
electron system, there exists no limitation to the quantized wave number given
by equation (2.9). On the other hand, a one-dimensional linear chain consists
of N atoms and, hence, the degrees of freedom are limited to N. The degrees
of freedom must be conserved upon the transformation from real space to
reciprocal space. This implies that the number of allowed integers n in equa-
tion (4.19) must be N, which results in n5N/2 and n52N/2 as the maximum
and minimum in n, respectively. The corresponding maximum and minimum
wave numbers are immediately reduced to qmax5p/a and qmin52p/a from
equation (4.19). This agrees with an upper and a lower limit of the first
Brillouin zone discussed in Section 4.4. To summarize, lattice vibrations in a
one-dimensional periodic lattice consisting of N atoms with the lattice con-
stant a are described as N independent lattice waves, which are often referred
to as N modes of lattice waves. They are discretely distributed in intervals of
2p/L in the range 2p/a,q#p/a.

The discussion above can be easily extended to a three-dimensional system.
We consider a rectangular crystal with edge length Lx, Ly and Lz, which crys-
tallizes in a simple cubic structure with the lattice constant a. Since Li5Nia (i
5x,y,z) holds along the three crystal axes, the total degrees of freedom are

N
2 212p

L
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8 In Section 2.6, a uniform potential was assumed in a box with edge length L. Here, in the discussion of
lattice vibrations, N atoms are periodically spaced with a lattice constant a in a box with edge length
L5Na.

9 Equation (4.18) assures the translational symmetry with the period L. Hence, the function u(l ) can be

expanded in the Fourier series as u(l )5 Bne
i (2p/L)nl (see Table 4.1).o
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obviously equal to 3NxNyNz or simply 3N, where N5NxNyNz is the total
number of atoms in the crystal. The corresponding lattice waves should also
possess 3N degrees of freedom. An extension of the argument for the one-
dimensional linear chain immediately leads to the conclusion that x-, y- and z-
components of the wave vector q are quantized in the form of [(2p/Lx)nx,
(2p/Ly)ny, (2p/Lz)nz], when the periodic boundary condition (4.18) is applied to
the respective directions in real space. Obviously, the integer ni is confirmed in
the region 2Ni /2,ni#Ni /2 (i5x,y,z) and, hence, the component of the wave
vector is confined in the region 2p/a,qi#p/a (i5x,y,z).

There are six shortest equivalent reciprocal lattice vectors in a simple cubic
lattice with the lattice constant a. They are denoted as g5(2p/a)(6100), g5

(2p/a)(0610) and g5(2p/a)(0061). The cube bounded by p/a,qi#p/a (i5
x,y,z) in reciprocal space is constructed by bisecting perpendicularly these six
equivalent reciprocal lattice vectors.10 The cube thus obtained with edge length
2p/a is called the first Brillouin zone for the simple cubic lattice. As is clear from
the argument above, N independent wave vectors are accommodated in the first
Brillouin zone. However, this is only one-third the degrees of freedom in the
three-dimensional lattice consisting of N atoms, since each atom has three
degrees of freedom. Hence, the lattice wave for a three-dimensional crystal
cannot be uniquely specified even when N independent wave vectors are desig-
nated. The remaining degrees of freedom can be specified in relation to the
freedom associated with the direction of the displacement of atoms in a crystal.

Two transverse and one longitudinal wave modes can exist for each wave
vector. The transverse wave mode refers to the wave where the displacement of
atoms is perpendicular to the propagation direction or the direction of the
wave vector. There are two transverse modes corresponding to two degrees of
freedom associated with the in-plane motion of atoms. On the other hand, the
longitudinal wave mode refers to the wave where the displacement of atoms is
parallel to the propagation direction and, thus, there is only one degree of
freedom in the longitudinal wave. In this way, the lattice wave in the three-
dimensional lattice can be uniquely assigned by specifying the wave vector q
and the direction of the displacement of atoms, the latter of which is differen-
tiated by the type of polarization pi(i51, 2, 3). To summarize, lattice vibrations
in a three-dimensional crystal consisting of N atoms are described by 3N inde-
pendent lattice wave modes in the first Brillouin zone.
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in the range 2p/a,qi#p/a.



4.6 Lattice waves and phonons

As mentioned in Section 1.2, Planck explained the wavelength dependence of
the intensity of radiation emitted from a black-body at high temperatures by
assuming that a light wave is composed of a set of oscillators and that the
energy of an oscillator with the frequency v is quantized in discrete units of hv
in the form

E5nhv (n50, 1, 2, 3, . . .), (4.20)

where h is the Planck constant. This is indeed a revolutionary idea, since an
oscillator takes an arbitrary energy in classical theory.

In 1905, Einstein explained the photoelectric effect by assuming that light is
made up of photons having discrete energies given by equation (4.20). Two years
later, Einstein further extended the concept of the particle-like nature of a light
wave to lattice vibrations and calculated the temperature dependence of the
lattice specific heat by assuming lattice vibrations to be described as an assem-
bly of harmonic oscillators possessing a common frequency v0. The Einstein
model could successfully account for a rapid decrease in the lattice specific heat
from 3R with decreasing temperature below room temperature (see Fig. 4.10).

According to equation (4.16), the motion of the lattice wave in each mode
can be described by that of a harmonic oscillator. In quantum mechanics, the
energy eigenvalue of a harmonic oscillator with wave vector q and angular fre-
quency vq can be expressed as

Eq,pi
5(nq,pi

1 )"vq,pi
(nq50, 1, 2, 3, . . .), (4.21)

where "5h/2p, v52pv and pi (i51, 2, 3) is the type of polarization [1]. For
brevity, the suffix pi is hereafter dropped, unless otherwise stated. We say from
equation (4.21) that the lattice vibration in the mode q gives rise to an energy state,
which is gained by creating nq particles having energy "vq. The quantum of
energy for excitations of the lattice wave is called a phonon in analogy with the
photon in the electromagnetic wave. It is stated that a given lattice mode is excited
to nq phonons or the mode is occupied by nq phonons. As temperature increases,
lattice waves at shorter wavelengths or larger wave vectors are more excited. In
the next section, the number of phonons at a finite temperature T is calculated.

4.7 Bose–Einstein distribution function

The Pauli exclusion principle acts on particles with a half-integer spin and
forces only one particle to be assigned to a given quantum state. On this basis,

1
2
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in Section 3.2, the Fermi–Dirac distribution function was deduced. In contrast,
the Pauli exclusion principle is no longer applicable to particles with integer
spin including zero. Both photons and phonons are in this family, since their
spin is zero. Thus, any number of particles can be assigned to a given quantum
state. Quantum statistics in this family is described by the Bose–Einstein distri-
bution function, the derivation of which is shown below.

For the sake of simplicity, we show in Fig. 4.8 all possible ways in which five
indistinguishable particles are distributed over two seats. It is possible to put all
five particles in seat ‘1’ or ‘conversely’ to put them in seat ‘2’. There are, in total,
six different ways as shown in Fig. 4.8. These are the ways in which the parti-
cles obeying the Bose–Einstein distribution function are distributed.

The argument above can be easily extended to the calculation for the ways
of distributing Ni particles over Zi seats at energy Ei. Let us remind ourselves
how we deduced the ways of distribution in the case of N55 and Z52. One
realizes that the illustration shown in Fig. 4.8 is equivalent to calculating the
coefficient of x5 in the expansion of the binomial (11x1x21. . .)2. In general,
the ways of distribution of Ni particles over Zi seats can be obtained by calcu-
lating the coefficient xNi in the binomial (11x1x21. . .)Zi. The binomial can
be expanded as

(11x1x21. . .)Zi

5(12x)2Zi

511Zix1 x21. . . 1 xNi1. . .. (4.22)

Hence, the coefficient of xNi is obtained as

5 . (4.23)

The total ways of distributing particles with integer spin are given by a product
of the terms like equation (4.23) over all possible energy states Ei:

(Zi 1 Ni 2 1)!
Ni !(Zi 2 1)!

Zi(Zi 1 1) · · · (Zi 1 Ni 2 1)
Ni !

Zi(Zi 1 1) · · · (Zi 1 Ni 2 1)
Ni !

Zi(Zi 1 1)
2!

70 4 Periodic lattice, and lattice vibrations in crystals

seat 1

seat 2

Figure 4.8. Ways of distribution in the case of Z52 and N55 in Bose–Einstein
statistics.



W5 . (4.24)

As discussed in Section 3.2, we must find a maximum in lnW in place of W
under the conditions that the total energy E5 EiNi and the total number of

particles N5 Ni are conserved. The method of Lagrangian multipliers is

again employed. The resulting equation is explicitly written as

lnW1a N2 Ni 1b E2 NiEi 50. (4.25)

A straightforward calculation by inserting equation (4.24) into (4.25) leads to

. (4.26)

In this section, we try to derive the coefficients a and b in a way different
from that described in Section 3.2. Equation (4.25) may be expressed in the
form of a total derivative:

d(lnW2aN2bE )50. (4.27)

The lnW in equation (4.27) is related to entropy S through the Boltzmann rela-
tion S5kB lnW. Now equation (4.27) is rewritten as

d 2aN2bU 50, (4.28)

where the energy E is replaced by the symbol U to emphasize the internal
energy of a system. The coefficients a and b are obviously derived from equa-
tion (4.28) as a5(1/kB)(­S/­N )UV and b5(1/kB)(­S/­U )NV. According to the
thermodynamics, we have the relation

TdS5dU1pdV2zdN, (4.29)

where z is the chemical potential and p is pressure. A comparison of equations
(4.28) with (4.29) under the condition dV50 immediately leads to a52z/kBT
and b51/kBT. In this way, we arrive at the final form of equation (4.26):

n(E, T )5 . (4.30)

This is the Bose–Einstein distribution function at temperature T.
The total number of particles is not conserved in a system such as phonons,

since it is zero at absolute zero but increases with increasing temperature.

1
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Hence, the condition N5oiNi must be omitted and the coefficient a disappears
from equation (4.27). The resulting distribution function turns out to be

n(E, T )5 . (4.31)

This is often called the Planck distribution function. The number of
phonons excited at a finite temperature T should obey the Planck distribution
function. Since the energy of phonons is given by equation (4.21),11 its inser-
tion into equation (4.31) yields the Planck distribution function for phonons:

nq(T )5 . (4.32)

By using equation (4.32), we can express the internal energy due to lattice
vibrations at temperature T as follows:

Ulattice(T )5 nq,pi
(T )"vq,pi

5 "vq ,pi
/ , (4.33)

where the sum is taken over all permissible wave vectors q and types of pola-
rization pi. If the thermal energy kBT exceeds the maximum possible phonon
energy "vq at high temperatures, the exponential function can be expanded and
the lattice energy for a molar quantity is reduced to 3kBNAT or 3RT, consistent
with the equipartition law derived from the classical theory. However, when the
temperature is lowered, phonons preferentially occupy low energy states in
accordance with the Planck distribution function. We will discuss this situation
in more detail in the next section.

4.8 Lattice specific heat

We discussed in Section 3.4 the specific heat of conduction electrons obeying
Fermi–Dirac statistics and compared it with that derived from classical statis-
tics. According to the equipartition law, the energy kBT/2 is partitioned to each
degree of freedom. In the case of lattice vibrations, the total energy per atom
consists of its kinetic energy and potential energy, thus resulting in an energy
of 3kBT per atom in a three-dimensional system.12 This leads to the lattice

3 1
exp("vq,pi

/kBT) 2 14o
q

o
pi

o
q

o
pi

1
exp("vq /kBT) 2 1

1
exp(E /kBT) 2 1
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12 We consider a system in which the Hamiltonian H is expressed as H5op(ai p
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2
i 85kBT/2 hold, where 7 8 means a thermal average. This is known as the equipartition law

of energy.



specific heat per mole equal to 3kBNA53R and explains the Dulong–Petit law
in the framework of the classical equipartition law.

The lattice specific heat can be calculated over a whole temperature range by
utilizing the concept of phonons and the Planck distribution function. For this
purpose, we need to calculate the internal energy given by equation (4.33) for
lattice vibrations. Equation (4.33) is, however, not convenient because of the
summation over wave vectors. In the case of conduction electrons, the internal
energy was calculated by employing the density of states defined by equation
(3.20). In the same spirit, we replace the summation over a vector quantity by
an integral over a scalar quantity. We introduce the phonon density of states
or the frequency spectrum D(v)dv, which represents the number of lattice
modes in a frequency interval between v and v1dv. By using the frequency
spectrum, we can rewrite equation (4.33) as

Ulattice(T )5 "vD(v)n(v,T )dv, (4.34)

where "v is the energy of phonons and n(v,T ) is the Planck distribution func-
tion given by equation (4.32). An upper limit vD in the integral represents the
maximum frequency available in the phonon system. Its derivation will be
shown below. Equation (4.34) has the same form as equation (3.20) for the
internal energy of conduction electrons.

The frequency spectrum must be calculated for a given solid. As mentioned
earlier, Einstein regarded lattice vibrations of N atoms as an assembly of 3N
independent harmonic oscillators with a given frequency v0. Specifically, the
Einstein model assumes the delta-function at v5v0 in the frequency spectrum.
However, as mentioned in Section 3.5, the Debye model is more appropriate to
describe the lattice specific heat over a wide temperature range.

In the Debye model, the dispersion relation v5sq is assumed over the fre-
quency range where the integral in equation (4.34) is carried out. Here a pro-
portional constant s represents the sound velocity propagating through a
substance. Strictly speaking, the sound velocity depends not only on the type
of polarization but also on the direction along which it propagates (see Fig.
4.14). The Debye model ignores such complexities and assumes an averaged
velocity s, irrespective of the polarization modes as well as the directions of the
sound propagation. For example, the dispersion relation shown in Fig. 4.7
obtained from the linear chain model conforms well with the Debye model
v5sq at small wave numbers.

The wave vector in reciprocal space is quantized in intervals of 2p/L. Since
three degrees of freedom are assigned to each wave vector in a three-
dimensional system, the number of independent lattice modes, N(q), enclosed

E
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0
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by a sphere with a radius q is calculated from the following proportional rela-
tion:

: N(q)5 : 3 (4.35)

or

N(q)5 q3. (4.36)

The total number of independent lattice modes must be equal to 3N for a
system containing N atoms. Since this gives a maximum in N(q), the corre-
sponding maximum wave number qD, which is called the Debye radius, is
obtained as

qD5 . (4.37)

The sphere with the radius qD is called the Debye sphere and its volume is
equal to that of the first Brillouin zone in reciprocal space. It can be easily
checked that 1/qD is of the order of an atomic distance. The maximum or cut-
off frequency vD corresponding to the Debye radius is therefore given by

vD5s 6p2 , (4.38)

which is employed as an upper limit of the integral in equation (4.34).
Since the frequency spectrum D(v)dv represents the number of lattice

modes in the interval v and v1dv per unit volume, it is easily calculated in the
Debye model as follows:

D(v)dv5 dv5 dv

5 dv5 dv, (4.39)

where the dispersion relation v5sq is inserted. The frequency spectrum given
by equation (4.39) is depicted in Fig. 4.9. It is proportional to v2 and is cut off

at the Debye frequency vD.
The Debye temperature is defined as the characteristic temperature corre-

sponding to the cut-off frequency through the relation "vD5kBQD and is expli-
citly written as
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QD5 6p2 . (4.40)

The Debye temperature depends linearly on the sound velocity s propagating
in a substance.

The internal energy of lattice vibrations is now explicitly written by insert-
ing equations (4.32) and (4.39) into equation (4.34):

Ulattice5 (4.41)

where x5"v/kBT and

xD5 6p2 5 . (4.42)

The lattice specific heat in the Debye model is obtained by differentiating equa-
tion (4.41) with respect to temperature:

Clattice59NkB . (4.43)

Equation (4.43) is called the Debye formula for the lattice specific heat, indi-
cating that the lattice specific heat can be calculated as a function of tempera-
ture, once the Debye temperature is given.
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Figure 4.9. Frequency spectrum D(v) in the Debye model. D(v) is also called the
phonon density of states. The cut-off frequency vD is determined from the equation

3N5 D(v)dv.E
vD

0



It is interesting at this stage to examine the Debye formula at high and low
temperatures. At high temperatures satisfying T..QD, the upper limit xD in
the integral becomes small and, hence, the variable x must be small. Thus, the
exponential function can be expanded into a series. In this limit, we can easily
see that the lattice specific heat approaches 3R, in good agreement with the
value expected from the classical equipartition law discussed earlier. In con-
trast, the upper limit in the integral may be replaced by infinity at low temper-
atures T,,QD. Now the integral in equation (4.41) is reduced to

56z(4)56 , (4.44)

where z(n) is called the Riemann zeta function. Thus, the internal energy at low
temperatures T,,QD is calculated as

Ulattice5 . (4.45)

The lattice specific heat at low temperatures is obtained by differentiating equa-
tion (4.45) with respect to temperature:

Clattice5 5234NkB . (4.46)

As is clear from equation (4.46), the lattice specific heat at low temperatures
decreases in proportion to the cube of absolute temperature but is inversely
proportional to the cube of the Debye temperature. It is experimentally well
confirmed that the T 3-law holds well in the temperature range T/QD,0.1 for
various solids as shown below.

Equation (4.43) indicates that the lattice specific heat is scaled in terms of the
reduced temperature T/QD. Figure 4.10 shows the temperature dependence of
the lattice specific heat calculated from equation (4.43), together with experi-
mentally derived specific heats for various substances, which include Ag and Al
as metals, graphite as a semimetal, alumina (Al2O3) as an oxide and KCl as an
ionic compound. It is clear that the lattice specific heat for all kinds of sub-
stances, when plotted against the reduced temperature T/QD, falls well on the
calculated curve, indicating the validity of the Debye model. The lattice spe-
cific heat approaches the value of 3R at temperatures T/QD.1, being well con-
sistent with the Dulong–Petit law at high temperatures. At low temperatures
T,,QD, however, it rapidly decreases and approaches zero in accordance with
the T 3-law.
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4.9 Acoustic phonons and optical phonons

We have so far discussed lattice vibrations in a monatomic system. Different
modes appear in lattice vibrations when two or more different atoms are peri-
odically arranged. As its simplest form, we consider the diatomic linear chain
model, in which two different atoms possess masses M and m (M.m) and they
are alternatively arranged in a periodic lattice with a lattice constant a, as
shown in Fig. 4.11. The unlike atoms are coupled through a force constant b.
Atoms with mass m are located at even-numbered lattice points 2l, 2l12, . . .,
while atoms with mass M are located at at odd-numbered lattice points 2l21,
2l11, . . . .

Equations of motion for atoms at even- and odd-numbered lattice points are
written as

m 5b(u(2l11)a1u(2l21)a22u2la)

M 5b(u(2l12)a1u2la22u(2l11)a). (4.47)

Solutions of these two equations may be found by assuming the displacements
of atoms in the form of

d2u(2l11)a

dt2

d2u2la

dt2
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Figure 4.10. Temperature dependence of the specific heat for several solids. The tem-
perature is normalized with respect to the Debye temperature. For example, the Debye
temperatures for Ag and Al are 220 and 430 K, respectively. The theoretical curve
derived from the Debye model is shown as a solid curve. The value of 3R is shown as
a dashed line. [F. Seitz, The Modern Theory of Solids (McGraw-Hill, New York, 1940)]



u2la5j0exp[i(vt12laq)]

u(2l11)a5h0exp{i[vt1(2l11)aq]}. (4.48)

Equation (4.47) is then reduced to

2v2mj05bh0(e
iqa1e2iqa)22bj0

2v2Mh05bj0(e
iqa1e2iqa)22bh0. (4.49)

The set of homogeneous equations has a non-trivial solution only when the
determinant of the coefficients of the two variables j0 and h0 is equal to zero:

2b2mv2 22bcos qa)22bcos qa 2b2Mv2)50.

This yields the dispersion relation between the frequency v and wave number
q in the following form:

v25b 6b . (4.50)

Figure 4.12 shows the dispersion relation in the case of M.m. In the region
where q is small, the two solutions in equation (4.50) can be simplified as

v5 qa (4.51)

and

v5 . (4.52)

Equation (4.51) arises from a negative sign in equation (4.50) and indicates that
the frequency v is proportional to the wave number q (note that sinq.q). This
agrees with equation (4.17) at small q obtained from the monatomic linear
chain model. The dispersion relation (4.50) with a negative sign yields the curve
appearing at a lower frequency in Fig. 4.12. This is referred to as the acoustic
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Figure 4.11. Lattice vibrations for one-dimensional diatomic lattice with lattice con-
stant a. A larger atom with mass M is placed at odd-numbered sites and a smaller atom

with mass m at even-numbered sites.



branch. Phonons associated with this branch are called acoustic phonons. The
frequency spectrum in the acoustic branch in the low-q region is well approxi-
mated by the Debye model.

Equation (4.52), which arises from a positive sign in equation (4.50), indi-
cates that the frequency v is independent of the wave number q. Indeed, the
dispersion relation (4.50) with a positive sign yields the curve appearing at a
high-frequency region, as shown in Fig. 4.12. This is called the optical branch.
Phonons in this branch are called optical phonons. The frequency spectrum in
the low-q region is characterized by a delta-function-like peak at the frequency
given by equation (4.52). Thus, the Einstein model is appropriate to evaluate
the contribution of optical phonons to the specific heat.13

The difference in the characteristic features of acoustic and optical modes
may be explained by using a diatomic linear chain model. One can easily check
from equations (4.49) and (4.52) that the ratio of the amplitudes for small q in
the optical branch results in j0 /h052M/m. This means that the two atoms
vibrate against each other, as shown in Fig. 4.13(b). Suppose that the two types
of atoms are of opposite electric charge as in ionic crystals such as KF and
NaCl. Then, the vibration of positive and negative ions in opposition to one
another will be excited by an electric fields or an electromagnetic wave. This is
the reason why it is called the optical branch.
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13 The specific heat in the Einstein model approaches 3R at high temperatures in good agreement with the
Dulong–Petit law. At low temperatures, the exponential temperature dependence appears instead of the
T 3-law (see Exercise 4.2). For example, the alkali metal–graphite intercalation compounds like C8Rb and
C8Cs consist of light carbon atoms and heavy alkali atoms. The optical modes appear in their dispersion
relation. The low-temperature specific heat exhibits an exponential temperature dependence and can be
well analyzed using the Einstein model [2].

Figure 4.12. Dispersion relation of the lattice vibrations for a one-dimensional
diatomic lattice with lattice constant a.



4.10 Lattice vibration spectrum and Debye temperature

The dispersion relation for lattice vibrations can be experimentally derived
from the measurement of neutron inelastic scattering [1]. Fig. 4.14 shows the
dispersion relation measured for pure Cu where the ordinate v is the frequency
of lattice vibrations. It can be seen that the slope of the longitudinal wave, L,
is steeper than those of the two transverse waves, T1 and T2, indicating that the
sound velocity of the longitudinal wave is faster than that of the transverse
waves.

The frequency spectrum for pure Cu can be calculated from the dispersion
relation shown in Fig. 4.14. The results are shown in Fig. 4.15(a), along with
the Planck distribution function at three different temperatures in (b). Note
that the abscissas for both data are shown on the same scale. We can see that
the spectrum is parabolic at low frequencies in good agreement with equation
(4.39), expected from the Debye model. By comparing (a) with (b), we can
immediately see how an increase in temperature contributes to the excitation
of lattice waves having high frequencies. For example, only lattice waves con-
sistent with the Debye model are excited at low temperatures but the deviation
from the Debye model is obviously significant at high temperatures.

The Debye temperature is an important parameter in characterizing lattice
vibrations of a solid. As will be discussed in Chapter 10, the Debye tempera-
ture plays a key role in the discussion of the temperature dependence of the
electrical resistivity in metals. The Debye temperature defined as equation
(4.40) is proportional to the sound velocity. As mentioned in Section 4.4, the
sound velocity in a continuum is expressed as s5 , whereas the linear
chain model gives rise to the expression s5 a. Therefore, the Debye
temperature is increased when the interatomic force constant b or the elastic

Ï(b/M)
Ïc/r
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(a) acoustic mode (b) optical mode

Figure 4.13. (a) Acoustic mode, and (b) optical mode in a one-dimensional diatomic
lattice consisting of two different atoms, masses M and m. Open and solid circles

represent heavy and light atoms, respectively.



stiffness constant c is increased. For instance, the Debye temperature of
diamond reaches a value as high as 2000K, since its mass is low and its inter-
atomic force constant is high because of the prevailing covalent bonding. On
the other hand, the Debye temperature of lead is as low as only 106K, as listed
in Table 3.1. This is because its mass is heavy and the interatomic force con-
stant is low.

Phenomena concerning lattice vibrations are often universally scaled in
terms of the dimensionless temperature T/QD. The temperature dependence of
the specific heat shown in Fig. 4.10 is one of the examples. Similarly, the data
for the temperature dependence of the electrical resistivity, when normalized
with respect to the Debye temperature, fall on a universal curve, regardless of
the metals involved (see Fig. 10.9). The Debye temperature is experimentally
determined from measurements of the specific heat and the elastic stiffness
constant [3]. Values for representative metals deduced from specific heat meas-
urements are listed in Table 3.1.

4.11 Conduction electrons, set of lattice planes and phonons

In the free-electron system, we pointed out that the wave vector is equivalent
to the momentum of the electron and is quantized in intervals of 2p/L. Owing
to the requirement of the Pauli exclusion principle, the ground state for the
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Figure 4.14. Dispersion relation of pure Cu derived from an inelastic neutron scat-
tering experiment. The measurements were done using different orientations of a single
crystal. T1, T2 and L refer to the two transverse and one longitudinal wave modes,

respectively. [R. M. Nicklow et al., Phys. Rev. 164 (1967) 922]



assembly of conduction electrons forms a well-defined Fermi sphere in recip-
rocal space. Sets of an infinite number of equivalent lattice planes are formed
in three-dimensional periodic arrays of atoms in a crystal. Each set of lattice
planes denoted by the Miller indices (hkl ) gives rise to a corresponding recip-
rocal lattice vector ghkl in reciprocal space. A deviation from the equilibrium
position of atoms due to thermal vibrations can be described in terms of lattice
waves propagating through a crystal. We showed that the wave vector charac-
terizing the lattice wave is quantized in intervals of 2p/L but is confined within
the first Brillouin zone bounded by planes bisecting perpendicularly the short-
est reciprocal lattice vectors. We learned that states of both conduction elec-
trons and phonons are described in terms of the wave vector in reciprocal
space. Their characteristic features are summarized in Table 4.1 (pp. 84–5).

82 4 Periodic lattice, and lattice vibrations in crystals

Figure 4.15. (a) Frequency spectrum of pure Cu. The spectrum is deduced from the
dispersion relation shown in Fig. 4.14. (b) Planck distribution function at 10, 100 and
340 K. Note that the Debye temperature of pure Cu is 340 K. A deviation from the
Debye model at high energies is due to the proximity of the Debye sphere to the

Brillouin zone.



Exercises

4.1 Consider a one-dimensional ring onto which 100 identical atoms are peri-
odically positioned with a spacing a52. Thus, its circumference L is 200.
Suppose that a transverse lattice wave with wave vector q5(2p/L)n5

(2p/200)40 is excited. Draw this lattice wave and mark the vertical displace-
ment of atoms. Add the reciprocal lattice vector g5(2p/a)5(2p/2) to the wave
vector above and draw the lattice wave thus obtained. Check that the displace-
ment of atoms remains unchanged when the wave vector is shifted by the recip-
rocal lattice vector.

4.2(a) Derive the internal energy and specific heat due to lattice vibrations in
the Einstein model with the characteristic frequency v0.

(b) Show that the lattice specific heat at low temperatures T,,QE is
approximated as

Clattice53R exp 1 ··· (4Q.1)

and that at high temperatures T.QE, as

Clattice53R (4Q.2)

where the Einstein temperature QE is defined as QE5 .
"v0

kB

31 2
1
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QE
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Table 4.1. Conduction electrons, set of lattice planes and lattice vibrations in a crystal metal
[Numbers in parentheses, e.g. (2.8), refer to equations in text.]

conduction electrons set of lattice planes lattice vibrations (phonons)

periodic functions in real periodic boundary condition lattice periodicity periodic boundary condition
space (one-dimensional plus lattice periodicity

system) c(x1L)5c(x) (2.8) f(x1a)5f (x) (4.1) u(l1L)5u(l) (4.18)
f(x1a)5f (x) (4.1)

c(x): wave function of electrons f(x): a function having lattice u(l): displacement of atoms
periodicity

period: crystal size L period: lattice constant a period: crystal size L and
L<108 Å a<3–4 Å lattice constant a

quantization in reciprocal c(x)5 Cne f(x)5 Ane u(x)5 Bne
space (one-dimensional system)

quantization of wave vector quantization of reciprocal quantization of wave vector
lattice vector

kn5 n (n50, 61, 62, . . .) gn5 n (n561, 62, . . .) qn5 n n561, 62, . . . ,6

in the first Brillouin zone

(2`,kn,`) (2`,gn,`) 2 ,qn#

Fermi sphere and Debye sphere Fermi radius Debye radius
(three-dimensional system)

kF5 (2.20) qD5 (4.37)36p 21N
V 24

1/3

33p 21N
V 24

1/3

p

a
p

a

N
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N: number of electrons in N: number of atoms in volume
volume V V

characteristic features in conduction electron in periodic lattice (Bloch wave)
reciprocal space → Chapter 5

Bloch wave function

ck(x1l )5exp(ikl )ck(x) (5.14)

→ another form of a periodic function

electronic state with wave factor k1g is identical to that with lattice vibration with wave
wave vector k. vector q1g is identical to that

with wave vector q.

reduction to the first Brillouin zone → see Section 5.3

2 electrons per atom are accommodated in the first Brillouin zone. 3N independent modes in the
first Brillouin zone

quantum statistics f(E, T): Fermi–Dirac distribution function (3.8) n(v, T): Planck distribution
function (4.32)

In the free-electron model, In the Debye model,

dispersion relation E5"2k2/2m (2.5) v5sq

density of states N(E)5C (2.22) D(v)5Cv2 (4.39)

internal energy Uel5 f (E,T )N(E )EdE (3.20) Ulattice5 n (v,T )D(v)"vdv

(4.34)

specific heat Cel5gT (3.22) Clattice5aT3 (T,,QD) (4.46)

E
vD

0

E
`

0

ÏE



Chapter Five

Conduction electrons in a periodic potential

5.1 Prologue

In the present chapter, we study first the Bloch theorem, which plays a key role
in describing the motion of the conduction electron in a periodic potential, and
discuss how the free-electron E–k relation is perturbed by the periodic poten-
tial. The reciprocal space is partitioned into polyhedra bounded by planes
normal to the reciprocal lattice vectors at their midpoints, and the energy gap,
the magnitude of which depends on the Fourier component of the ionic poten-
tial, appears across the plane of each polyhedron. This is the Brillouin zone
introduced in Chapter 4. The Fermi surface representing the momentum dis-
tribution of conduction electrons is also constructed in reciprocal space. The
effect of the periodic potential on the conduction electron can be treated in
reciprocal space in terms of the interaction of the Fermi surface with the
Brillouin zone. We will show that the band structure unique to a given material
emerges as a result of distortion of the Fermi surface upon its approach to the
zone planes, its subsequent contacts with and overlaps across them.

5.2 Cosine-type periodic potential

We consider first the motion of the conduction electron in a one-dimensional
cosine-type periodic potential. Its potential is expressed as

V(x)52A cos , (5.1)

where 2A is the amplitude of the potential and a is the lattice constant. The
cosine-type potential is illustrated in Fig. 5.1. The motion of the conduction
electron in the cosine-type potential (5.1) can be described by the Schrödinger
equation:

12px
a 2

86



2A cos c (x)5Ec (x), (5.2)

where E is the energy eigenvalue of the conduction electron. Let us rewrite
equation (5.2) by using dimensionless variables defined as j5(px/a),
«5(8mEa2/h2) and h5(8mAa2/h2). The Schrödinger equation is now simplified
as

1(«1hcos2j)c50. (5.3)

We solve equation (5.3) under the two extreme conditions.

(1) «..h or E..A
Since the energy E of the conduction electron is much higher than the ampli-

tude of the potential A, the term hcos2j in equation (5.3) can be ignored. The
Schrödinger equation is reduced to

1«c50.

This is similar to equation (2.1) for the free electron and, hence, the wave func-
tion can be expressed as a linear combination of two plane waves:

c (j )5c1e
ikjj1c2e

2ikjj.

(2) «,,h or E,,A
In contrast to case (1), the energy E of the conduction electron is much

d 2c

dj 2

d 2c

dj 2

12px
a 212 "2

2m 2 d 2c (x)
dx2
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Figure 5.1. Energy of conduction electron in cosine-type periodic potential.



smaller than the amplitude of the potential A and, thus, the electron must be
confined near the bottom of the cosine-type potential. This means that only
the motion near j50 needs to be considered. The potential in equation (5.3) is
then approximated as

hcos2j<h(122j2),

since j is small. The resulting Schrödinger equation is reduced to

1(«922hj2)c50.

The potential in this equation is proportional to the square of the coordinate
j, thereby representing the motion of a harmonic oscillator. As discussed in
Section 4.6, its energy eigenvalue is given by

«95 "v (n50, 1, 2, 3, . . .),

where v represents the angular frequency characterizing the oscillation of the
electron at the bottom of the potential. The energy eigenvalue obtained under
the two extreme cases is illustrated schematically in Fig. 5.1. In case (1), the
electron can propagate freely in space, since the amplitude of the potential is
negligibly small relative to the kinetic energy of the electron. The energy eigen-
value is given by equation (2.5) and forms a continuous band, as discussed in
Chapter 2. In contrast, the electron is captured in the potential well in case (2).
The discrete energy level is given by that of a harmonic oscillator. In this
chapter, we deal with the situation where the energy of the electron is compar-
able to the amplitude of the potential or E<A. We will learn that energy gaps
open up within the continuous band, as schematically illustrated in Fig. 5.1.

5.3 Bloch theorem

We study in this section the Bloch theorem and prove it by using a one-dimen-
sional periodic lattice consisting of N monatomic ions with lattice constant a.
The ionic potential located at the origin x50 is defined in the range
2a /2,x#a /2 and denoted as V(x). The ionic potential located at its nearest
neighbor position x5a is then expressed as V(x1a) in the range a /2,x#3/2a.
Because of its identical nature, V(x)5V(x1a) holds. In the same manner, we
obtain

V(x)5V(x1a)5V(x12a)5 · · · 5V(x1(N21)a), (5.4)

1n 1
1
22

d 2c

dj 2
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where V(x1ma) is defined in the range (2a /2)1ma,x#(a /2)1ma (m50, 1,
2, . . ., N21).

The periodic boundary condition is imposed in such a way that the ion at
x50 coincides with that at the position x5Na. This forms a ring of length Na,
onto which N lattice points are evenly distributed with the lattice constant a.
Now we have the relation

V(x);V(x1Na), (5.5)

where the symbol ; emphasizes that both V(x) and V(x1Na) refer to the same
potential. The Schrödinger equation in each unit cell can be expressed as

1V(x)c (x)5Ec (x)

1V(x1a)c(x1a)5Ec (x1a)

A

1V(x1(N21)a)c(x1 (N21)a)5Ec(x1(N21)a).
(5.6)

Note that ionic potentials periodically arranged with the lattice constant a are
identical. For example, the identity of the wave functions c (x) with c (x1a)
means that they should possess the same energy eigenvalue E but that c(x) can
differ from c (x1a) by a phase factor. They are therefore written as

c(x1a)5lc(x) )l)51. (5.7)

By repeating this process N times to reach the N-th unit cell, we finally obtain
the relation

c(x1Na)5lNc (x).

However, the N-th one is nothing but the cell at x50 and, hence, c (x1Na)5

c (x) holds. This results in

lN51,

which is solved as

l5exp ,

where n is an integer in the range of 0 up to N21.

12pni
N 2

12 "2

2m 2 d 2c (x 1 (N 2 1)a)
dx2

12 "2

2m 2 d 2c (x 1 a)
dx2

12 "2

2m 2 d 2c (x)
dx2
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The Bloch theorem in a one-dimensional lattice is stated as follows. The wave
function c (x) for an electron propagating in the periodic potential with the
period a can be expressed as

c (x)5exp u(x), (5.8)

where an arbitrary function u(x) is a periodic function of a and satisfies the
relation

u(x1ma)5u(x), (5.9)

with a positive integer m. In order to prove the Bloch theorem, we first assume
equation (5.8) to hold. Then, we can prove below that the function u(x) must
satisfy equation (5.9). Let the variable x in equation (5.8) to be replaced by x1

ma. We have

c (x1ma)5exp u(x1ma)

5exp exp u(x1ma)

5lm exp u(x1ma). (5.10)

The relation l5exp (2pni /N) obtained above is inserted to reach the last line.
If we apply equation (5.7) m times to c (x), then we get the relation
c (x1ma)5lmc(x). By inserting equation (5.8) into it, we have

c (x1ma)5lmc(x)5lm exp u(x). (5.11)

A comparison of equations (5.10) and (5.11) immediately leads us to conclude
that an arbitrary function c(x) must satisfy equation (5.9).

A quantity of (2p/Na)n or (2p/L)n in equation (5.8) may be replaced by a
new variable k, since it is of the same form as the wave number defined by equa-
tion (2.9) for free electrons. By this replacement, the wave function (5.8) is sim-
plified to c (x)5exp(ikx)u(x), allowing us to envisage c (x) as the plane wave
exp(ikx) modulated by the periodic function u(x). Here it is important to keep
in mind that the variable k of the free electron was originally introduced as the
wave number of the plane wave in free space, whereas the new variable above
appeared in relation to the periodicity of the lattice. Before discussing its

12pnix
Na 2

12pnix
Na 2

12pnix
Na 212pmni

N 2

32pni(x 1 ma)
Na 4

12pinx
Na 2
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unique nature, we extend the Bloch theorem to a three-dimensional periodic
lattice.

Let us assume the periodic potential in a crystal where the position of each
ion is specified by the lattice vector l5lxax1lyay1lzaz (lx, ly, lz5integers) in
equation (4.7). The wave function c(r) of the electron in the periodic potential
can be expressed in the form

ck(r)5exp(i k·r)uk(r), (5.12)

where uk(r) satisfies the relation

uk(r1l)5uk(r). (5.13)

Here the vector k is of the same form as the wave vector in equation (2.11) for
the free electron. This is called the Bloch theorem. The wave function expressed
by equation (5.12) is called the Bloch wave or Bloch state.

The Bloch theorem is very important. By applying this theorem, the wave
function in a macroscopic crystal containing as many atoms as the Avogadro
number can be determined by solving the Schrödinger equation into which
information from just one unit cell is inserted. This unique advantage stems
from the fact that the wave function everywhere in a crystal is automatically
decided, once uk(r) in the unit cell, say, at l50 is specified. Therefore, the Bloch
theorem is responsible for the successful development of band structure calcu-
lations for a ‘macroscopic’ crystal, which we will study in Chapter 8. We show,
in Fig. 5.2, an example of the Bloch wave in a one-dimensional system, where
uk(x) is positioned at the center of the unit cell. Once the function uk(r) in the
unit cell is given, the wave function extending over the crystal is completely
decided by the product of the plane wave ei k·r and the periodic function uk(r),
as shown in Fig. 5.2(b).

It is of great importance for the reader to recognize how physical quantities
associated with the wave vector k in the Bloch wave differ from those derived
from the free-electron model. For example, "k is found to be the eigenvalue of
the momentum operator 2i"= in the free-electron model (see equation (2.14)).
If it is operated to the Bloch wave function (5.12), one can easily find that "k
is no longer its eigenvalue. This is because the ionic potential exerts a force on
the electron through the function uk(r).

To study further the characteristic features of the Bloch wave function, we
can rewrite equation (5.12) in the following form:

ck(r1l )5exp(i k·l)ck(r). (5.14)

As discussed in Section 4.2, the reciprocal lattice vector g is defined so as
to satisfy the relation exp(6ig·l)51, where l is the lattice vector defined by
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equation (4.7). Keeping this in mind, we can replace the wave vector k of the
Bloch wave by the wave vector k5k96g:

ck(r1l)5exp(i k·l)ck(r)

5exp(6ig·l) exp(i k9·l)ck(r)

5exp(i k9·l)ck(r). (5.15)

A comparison of equations (5.14) and (5.15) tells us that the Bloch state of the
wave vector k is equally describable in terms of the wave vector k′ different
from it by the reciprocal lattice vector g.

This is a property unique to the Bloch wave or Bloch electron. Multiply both
sides of k5k96g by ". Then, it is viewed as representing the momentum con-
servation law of the Bloch electron, indicating that the Bloch electron
exchanges its momentum with the lattice by the amount 6"g. What does 6"g
mean? It is assigned to an infinite array of identical lattice planes specified by
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Figure 5.2. (a) The periodic function uk(x) centered at the origin of the unit cell in the
range 2a/2,x#a/2. (b) The Bloch wave constructed by using the function shown in
(a). Only the real part is shown. The function uk(x) is placed at every origin of the unit
cell and modulated by the plane wave exp(ikx). A solid circle represents the ion at the 

center of each unit cell.



the reciprocal lattice vector g and has nothing to do with phonons. It may
merely refer to the motion of the lattice as a whole. Thus, the momentum "k
of the Bloch wave cannot be uniquely determined as the momentum inherent
to an electron but involves arbitrariness associated with a whole motion of the
lattice. This is the reason why the momentum "k is often called the crystal
momentum of the Bloch wave.

Let us consider a special case where the magnitude of the periodic potential
is reduced infinitesimally small. We call it the periodic empty-lattice, under
which the electron should resume the free-electron band structure but the peri-
odicity of the lattice and, hence, the concept of the Bloch wave remains valid.
This is a hypothetical model but helps the reader to gain further insight into
the role of the periodic potential. The free-electron wave function ck(r)5exp
(i k·r) must be its eigenfunction but still obeys the Bloch theorem. The wave
function may be rewritten as

ck(r)5exp[i(k6g)·r]exp(7ig·r)

5exp(i k9·r)u
7g(r), (5.16)

where k95k6g and u
7g(r)5exp(7ig·r). Equation (5.16) satisfies the Bloch

theorem, since u
7g(r1l)5exp(7ig·(r1l)]5exp(7ig·r)5u

7g(r). It is now inter-
esting to examine the E–k relation of the Bloch electron in the periodic empty-
lattice potential. By reflecting the periodic nature of the lattice, the Bloch state
of the wave vector k should be identical to that of the wave vector k6g but yet
the energy eigenvalue is given by the free-electron value (see Exercise 5.2).

A one-dimensional monatomic lattice with lattice constant a is assumed. In
this particular case, the reciprocal lattice vector becomes multiples of 2p/a.
Since the Bloch states k and k6g possess the same eigenstate, we can always
transfer the Bloch state of any wave vector into the region 2p/a,kx#p/a.
This is called the reduction to the first Brillouin zone. We will learn more about
the operation of the reduction in Section 5.11. This unique property in recip-
rocal space is caused by the periodic array of ions in a crystal and has already
been discussed in relation to lattice vibrations in Section 4.4.

5.4 Kronig–Penney model

By making full use of the Bloch theorem, we can study the effect of the peri-
odic potential on the E–k relation of the conduction electron. For this purpose,
the Kronig–Penney model is known to be quite instructive. The model assumes
a periodic square-well potential in one-dimensional space, as indicated in Fig.
5.3. The Schrödinger equation in one-dimensional space is generally written as
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1V(x)c(x)5Ec(x). (5.17)

The potential V(x) in Fig. 5.3 is zero in the range 0,x#a and, hence, the free-
electron wave function given by equation (2.3a) is obviously its solution:

c (x)5Aeiax1Be2iax, E5 (5.18)

i.e., "a5 . The solution in the range 2b,x#0 depends on the energy
of the conduction electron. Let us assume that the potential height V0 is higher
than the energy of the electron, i.e., V0.E. The wave function is then written
as

c(x)5Cebx1De2bx, (5.19)

where "b5 . Similarly, the wave function in the range
a,x#a1b can be expressed as

c(x)5C9eb[x2(a1b)]1D9e2b[x2(a1b)], (5.20)

where the coefficients C9 and D9 are no longer independent of the coefficients
C and D in equation (5.19), as is discussed below.

Remember that the square-well potential is periodic and, hence, the wave
function must satisfy the Bloch theorem. We emphasized in connection with
equation (5.14) that the wave function at any lattice site l is decided, once
the wave function, say at the origin, is given. The two wave functions separated
by the interatomic distance a are related to each other through
c(x1a)5exp(ika)c(x). As is clear from the argument above, the wave number
k of the Bloch wave serves to connect the wave functions at different lattice sites
over a whole crystal. In the present case, the wave function in the region
a,x#a1b should differ from that in the region 2b,x#0 by the phase
exp[ik(a1b)], since its period is (a1b). Therefore, the Bloch theorem results in

Ï2m(V0 2 E )

Ï2mE

"2a2

2m

12 "2

2m 2 1d 2c (x)
dx2 2
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Figure 5.3. Periodic potential in the Kronig–Penney model.



C95Cexp[ik(a1b)] (5.21)

and

D95Dexp[ik(a1b)]. (5.22)

In other words, we say that the Bloch theorem introduces the wave number k
as a variable to let the wave function extend over a whole system.

The wave functions given by equations (5.18), (5.19) and (5.20) must be
smoothly connected across two boundaries x50 and x5a. This is done by
causing both the wave function and its derivative dc(x)/dx to be continuous
across the boundaries. Thus, we obtain four linear homogeneous equations
from the boundary conditions. The non-trivial solutions can be derived only if
the determinant of the coefficients vanishes. The determinantal equation
yields

sinhbbsinaa1coshbbcosaa5cos k(a1b). (5.23)

Equation (5.23) is too complex to conceive its physical meaning. The periodic
square-well potential may be replaced by a periodic delta-function by taking
the limits b→0 and V0→` while keeping b2b finite. By introducing a new
parameter defined as

lim
b→ 0
b→ `

5P, (5.24)

we can reduce equation (5.23) to

P 1cos aa5cos ka. (5.25)

Equation (5.25) represents the E–k relation of the conduction electron, since a
is a function of E through the relation "a5 .

Unfortunately, equation (5.25) is a transcendental equation and cannot be
solved analytically. Its graphical analysis allows us to extract essential features
in the Kronig–Penney model. The parameter P in equation (5.24) is set equal
to the arbitrary value P53p /2. The left-hand side of equation (5.25) is plotted
in Fig. 5.4 as a function of aa. Since the right-hand side of equation (5.25) is
a cosine function, the value in the left-hand side must fall in the range 21 to 1.
In other words, the allowed solution aa of equation (5.25) is found only in the
range marked by a thick line in Fig. 5.4.

The minima and maxima of the allowed aa values are derived from the con-
dition cos ka561, which results in k5np /a, (n561, 62, . . .). The dispersion

Ï2mE

sin aa
aa

1b2ab
2 2

b2 2 a2

2ab
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relation can be numerically calculated and the results are shown in Fig. 5.5. We
see that the E–k relation deviates from the free-electron parabola given by
equation (2.5) and an energy discontinuity appears at every k5np /a, (n561,
62, . . .). Obviously, there exist energy ranges which electrons are not allowed
to occupy. Each of these energy ranges is called a forbidden energy band.
Notice that forbidden energy band appears as a result of the interaction of the
conduction electron with the periodic lattice potential.

What happens when the parameter P and, hence, the magnitude of the periodic
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Figure 5.4. The function appearing in the left-hand side of equation (5.25) in the
Kronig–Penney model. Its allowed region is limited from 21 to 11. Hence, the value

of aa is allowed only in regions marked by thick lines.

Figure 5.5. E–k relation obtained from the Kronig–Penney model. The dashed curve
represents the free-electron parabolic band. [A. Sommerfeld and H. Bethe,

Elektronentheorie der Metalle, (Springer-Verlag, 1967)]



potential is reduced to zero? The allowed aa range expands while the forbidden
band disappears. As a result, the free-electron-like parabolic band is resumed. On
the other hand, the aa range is converged into points np, (n561, 62, . . .), when
P is increased to infinity. The relation aa5np immediately leads to

E5 . (5.26)

We see that equation (5.26) agrees with the energy eigenvalue given by equa-
tion (2.19), for an electron confined in a one-dimensional box with length a.

5.5 Nearly-free-electron model

The Schrödinger equation for the conduction electron in a periodic potential
can be solved in a more general way than that in the Kronig–Penney model. In
a three-dimensional periodic lattice, the Schrödinger equation is expressed as

=2c(r)1V(r)c(r)5Ec(r), (5.27)

where V(r) is a periodic potential and c(r) is the Bloch wave function given by
equation (5.12). For simplicity, we assume a simple cubic lattice with lattice
constant a. The ionic potential V(r) is certainly a periodic function with period
a in x-, y- and z-directions. Let us choose the origin of the potential so as to
satisfy the condition

V(r)dr50. (5.28)

Because of its possession of the periodicity a in real space, the ionic potential
can be expanded into a series in terms of the reciprocal lattice vector
gn5(2p/a)n:

V(r)5 Vnexp 2i n·r 5 Vnexp(2ign·r), (5.29)

where the components nx, ny and nz of the vector n take both positive and neg-
ative integers. A set of three integers of the vector n corresponds to the Miller
indices for the relevant lattice planes, as discussed in Section 4.3.1

The Bloch wave function c(r) given by equation (5.12) is also a periodic
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1 Note that the suffix n in gn is also a vector.



function with period a, since it involves the periodic function uk(r). Thus, c(r)
is similarly expanded into a series:

c(r)5ei k·r Anexp 2i n·r 5ei k·r Anexp(2ign·r), (5.30)

where all three components nx, ny and nz cover again both positive and nega-
tive integers.

The Fourier coefficients Vn and An in equations (5.29) and (5.30) are given
by

Vn5 V(r)exp(ign·r)dr (5.31)

and

An5 uk(r)exp(ign·r)dr. (5.32)

Note that the Fourier components Vn and An are determined solely from infor-
mation in the unit cell. The Fourier component Vn can be calculated from equa-
tion (5.31) for a given ionic potential. The component An is determined by
solving the Schrödinger equation, as will be shown below.

The Schrödinger equation is now explicitly rewritten below by inserting
equations (5.29) and (5.30) into equation (5.27):

=2c (r)1 Vnexp(2ign·r)·exp(i k·r) Anexp(2ign·r)

5E exp(i k·r) Anexp(2ign·r), (5.33)

where the first term is simply expressed as c (r) to avoid a lengthy expression.
We pick up the coefficient of exp[i(k2gn)·r] in equation (5.33) and obtain an
infinite set of linear homogeneous equations for An:

E2 k92 An5 An9
Vn2n9

, (5.34)

where k925(k2gn)2. These equations are solvable, provided that the determi-
nant of the coefficients vanishes. This yields the E–k relation in the same
manner as described in the treatment of the Kronig–Penney model. However,
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we cannot solve the determinantal equation in a rigorous manner, since the var-
iable n extends from 2` to 1`. But it can be easily solved in the case of the
periodic empty-lattice model (see Exercise 5.2).

The concept of the pseudopotential will be introduced in Section 8.7. The
effective ionic potential V(r) which the conduction electron experiences in
metals like Na and Al is so small that the condition E..V(r) holds. In such a
case, the contribution An due to the ionic potential must be small and the wave
function is dominated by the plane wave. This is called the nearly-free-electron
model or shortened as the NFE model. As mentioned above, the coefficient An
is determined for each set of lattice planes specified by the Miller indices (nx,
ny, nz) or the reciprocal lattice vector gn5(2p/a)n. It was mentioned in Section
4.3 that, the smaller the Miller indices for a given set of lattice planes, the higher
is the atomic density in the lattice plane. Hence, we need to consider sets of
lattice planes having relatively small Miller indices.

This situation is further simplified such that the Bloch wave consists of only
two waves: one the plane wave corresponding to the free-electron state and the
other the wave associated with a single set of lattice planes with the Miller
indices (nxnynz) or the reciprocal lattice vector gn. This is the two-wave approx-
imation. Now the wave function (5.30) is expressed as

c(r)5exp(i k·r)[A01Anexp(2ign·r)]. (5.35)

An infinite number of equations (5.34) are reduced to two equations corre-
sponding to n5(0 0 0) and n5(nxnynz). The first equation for n5(0 0 0) is expli-
citly written as

E2 k2 A05 An′V2n9
5A0V01AnV2n,

where V0 is zero, as defined by equation (5.28). It is noted that, if the ionic
potential V(r) is real, its Fourier component satisfies the relation V

2n5V *
n.

2

As a result, we obtain

E2 k2 A02V *
nAn50. (5.36)

The second equation for n5(nxnynz) is likewise written as

E2 k92 An5 An′Vn2n9
5A0Vn1AnV0,o

n950,n
41 "2
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2 V
2n5V *

n is immediately derived from equation (5.31), when V(r) is real. In addition, Vn becomes real if a
symmetric potential V(r)5V(2r) is assumed. Hence, Vn5V

2n5V *
n is obtained.



which is reduced to

E2 k92 An2VnA050. (5.37)

The determinant of the coefficients A0 and An in equations (5.36) and (5.37)
must vanish to obtain non-trivial solutions. This immediately yields the rela-
tion

E(k)5( )[(E01En)6 ], (5.38)

where E05"2k2/2m and En5"2(k2gn)2/2m. Equation (5.38) represents the E–k
relation for the conduction electron in the periodic potential due to the set of
lattice planes with Miller indices (nxnynz) or the reciprocal lattice vector gn.

Let us take the set of lattice planes with the Miller indices (100) in a simple
cubic lattice with the lattice constant a. Note that the (100) lattice planes are
parallel to the yz-plane and, thus, affect the motion of electrons propagating
only along the x-axis, as can be seen from equation (5.35). An infinite number
of unperturbed parabola En005"2(k2gn00)2/2m can be drawn, which are cen-
tered at reciprocal lattice vectors gn005(2p/a)(n00) with n50, 61, 62, ... . They
are shown in Fig. 5.6 as dashed curves.

We examine the E–k relation given by equation (5.38) for the conduction
electron propagating along the x-direction. The contribution of the periodic
potential appears as the square-root of 4V *

nVn in equation (5.38). Let us
suppose that this term is small and consider first the region near k50. A com-
parison of the first term with the second one in the square-root leads to

(E02E100)25 k22 k2 < ..4V *
100V100,

where the suffix x in kx is omitted. The term 4V*
100V100 can be neglected and

equation (5.38) in the vicinity of k50 is reduced to

E
6

(k)5( )[(E01E100)6 )E02E100)].

We have two solutions, depending on the choice of a plus or minus sign. As is
clear from Fig. 5.6, E100.E0 holds in this region. Thus, the lowest energy state
in the vicinity of k50 is obtained by taking a minus sign in the above solution:

E
2

(k)5( ) [E01E1002E1001E0]5E05

in good agreement with the free-electron expression given by equation (2.5).
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We consider next the regions near k56p /a, where two parabolic bands
E05"2k2/2m and E1005("2/2m)[k2(2p/a)]2 intersect each other. In these
regions, the small term 4V *

100V100 begins to play a dominant role, since
(E02E100)

2 in equation (5.38) becomes negligibly small. At k56p /a, equation
(5.38) is obviously reduced to

E
6

(k)5( )[E01E10062 )V100 )]. (5.39)

Let us denote 2)V100) as DE100. Then, equation (5.39) is rewritten as

E
2

(k)5

and

E
1

(k)5 . (5.40)

Here, the first term, representing an average of the two free-electron values,
coincides with the free-electron value at k56p /a. Owing to the second term,
the energy state E

2
(k) is lowered by the amount (DE100/2) relative to the free-

electron value, whereas E
1

(k) is raised by the same amount. The E–k relation
for the conduction electron is, therefore, well approximated by the free-electron
parabolic band near k50 but is strongly perturbed by the presence of the
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Figure 5.6. E–k relation obtained from equation (5.38) in the nearly-free-electron
model. The dashed curve represents the free-electron parabola. DE100 indicates the
energy gap across the {100} zone planes. The shaded area corresponds to the first zone.
The electronic states marked by A9 and A0 can be reduced to the first zone by shifting

wave vectors equal to appropriate reciprocal lattice vectors.



periodic potential in the vicinity of k56p /a. This is shown by a thick curve
in Fig. 5.6.

The deviation from the free-electron parabolic band gradually increases, as
k approaches 6p /a, and the electron is allowed to take the energy state of
either E

2
(k) or E

1
(k) at k56p /a. This means that the electron is not allowed

to take energies between E
2

(k) and E
1

(k) and, hence, there appears an energy
discontinuity of magnitude DE100 at k56p /a. The energy region between
E

2
(k) and E

1
(k) is called the forbidden band and DE100 is the energy gap. The

formation of the energy gap has been already pointed out in the discussion of
the Kronig–Penney model in Section 5.4.

We emphasized in Section 5.3 that the wave function in the periodic poten-
tial must satisfy the Bloch theorem and that the Bloch state remains unchanged
if the wave vector is shifted by an appropriate reciprocal lattice vector.
Obviously, the wave function (5.30) employed in the NFE model was chosen to
satisfy the Bloch theorem. In Fig. 5.6, we can draw an infinite number of NFE
dispersion curves centered at reciprocal lattice vectors gn005(2p /a)(n00) with
n50, 61, 62, . . . , all of which are equivalent to one another. For example, the
Bloch states of the wave vectors marked as A9 and A0 in Fig. 5.6 can be reduced
to the states in the first Brillouin zone 2p /a,k#p /a by adding the reciprocal
lattice vectors 2p /a and 2(2p /a), respectively. In this way, the Bloch state
having the wave vector outside the first zone can be transferred to an equiva-
lent state in the first zone.

Once the E–k relation thus obtained is reduced to the first zone (see Fig.
5.21(b)), we obtain a series of E–k curves stacked in the first Brillouin zone,
each being separated by an energy gap. It is seen that an energy gap appears at
k50 in higher energy bands. Indeed, the energy E becomes a multi-valued
function of the wave vector in the first zone. Each band is given an index n (note
that the band index n takes only a positive integer).

Thus far, we have explained the effect of the periodic potential on the disper-
sion relation of the conduction electron, by using the set of (100) lattice planes.
Our argument can be extended to any set of lattice planes with other Miller
indices. As can be seen from equation (5.39), the magnitude of the energy gap
DEn depends on the Fourier component Vn of the periodic potential specified
by the reciprocal lattice vector gn. We learned in this way that the effect of the
periodic potential is to produce an energy gap in the band structure. In the next
section, we consider the formation of this energy gap from the point of view of
the diffraction phenomena of the Bloch wave.
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5.6 Energy gap and diffraction phenomena

In Section 4.3, we discussed the Bragg scattering of an x-ray beam incident to
lattice planes in a three-dimensional periodic lattice. Here we apply the Laue
condition to a Bloch wave incident to the lattice planes. It consists of the two
conditions k95k6g and )k)5 )k9), where k and k9 are the wave vectors of the
Bloch electron before and after the scattering by lattice planes with the recip-
rocal lattice vector g. The E–k relation of the Bloch electron is given by an infi-
nite number of equivalent bands separated by the reciprocal lattice vectors, as
shown in Fig. 5.6. The two conditions above are combined to a single relation
)k)5 )k6g), which is equivalent to k25(k6g)2. We see, therefore, that the Laue
condition is fulfilled at the wave vector where two parabolic bands in Fig. 5.6
intersect and an energy gap is produced. As discussed in Section 4.3, this is
equivalent to the Bragg condition (see Exercise 5.3).

Let us check the argument above by using a one-dimensional monatomic
lattice with the lattice constant a, through which the Bloch wave k propagates.
As illustrated in Fig. 5.7, the Bragg condition 2dsinu5nl is immediately
reduced to k5np /a, since d5a, l52p /k and u5p /2 hold. This is indeed the
wave number at which the energy gap appears (see Fig. 5.6). Thus, we see that
the Bragg condition results in the energy gap. It is also noted that k5np /a with
n$2 or n#22 corresponds to the higher-order reflection in the Bragg scatter-
ing.

The incident Bloch wave having the wave number k5p /a is assumed to prop-
agate to the right by taking a direction to the right as being positive in Fig. 5.7.
The wave number k9 of the reflected wave is immediately deduced to be
k952p /a, since we can choose g522p /a to satisfy the Laue conditions
k95k1g and )k)5 )k9). As illustrated schematically in Fig. 5.7, the Bloch wave
changes its direction by 180° due to the Bragg reflection and the reflected wave
propagates to the left. We may alternatively say that the Bloch electron is elas-
tically backscattered from the periodically arranged ions and that the crystal
momentum "g52"(2p /a) is transferred from a whole periodic lattice to the
electron to change its direction by 180°
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Figure 5.7. Bragg scattering in a one-dimensional lattice. The scattering angle u
is p/2.



We further discuss why the energy gap appears when the Bragg condition
is satisfied at k56p /a. For simplicity, the Bloch wave is constructed within
the two-wave approximation given by equation (5.35). Consider the Bragg
condition due to lattice planes having the reciprocal lattice vector g52p /a.
The Bloch wave is then expressed by a linear combination of the unperturbed
plane wave A0e

ikx and the wave A1 exp[i{k2(2p /a)}x] perturbed by the lattice
planes:

c(x)5exp(ikx) A01A1 exp2i x . (5.41)

One can easily check from equations (5.36) and (5.37) that the relation A056

A1 holds, when k56p /a. Therefore, we find that the Bloch wave given by equa-
tion (5.41) is reduced to the form of either sin(px/a) or cos(px/a). This is
understood as follows: the running wave k5p /a is reflected to the wave
k952p /a by receiving the crystal momentum g522p /a from the lattice
planes and the reflected wave k52p /a is again reflected to the wave k95p /a
by receiving the crystal momentum g52p /a from the lattice planes. This
process is infinitely repeated, resulting in a cosine- or sine-type stationary wave.
Remember that the wavelength l of the stationary wave is twice as large as the
lattice constant, or l52a.

The cosine-type stationary wave yields the maximum probability density at
x50 or the center of the ionic potential. The potential at x50 is the deepest
and, hence, the energy of the cosine-type Bloch wave is lowered relative to that
corresponding to a uniform density of free electrons. The sine-type stationary
wave yields the maximum probability density at the middle of the neighboring
ions, where the ionic potential is the highest. Hence, the energy of the sine-type
Bloch wave is raised relative to that of the free electron. This is illustrated in
Fig. 5.8 [1]. Thus, the difference in energy between these two stationary states
must be responsible for the formation of the energy gap DE at k56p /a. It is
now clear that E

2
(k) and E

1
(k) in equation (5.40) possess the cosine- and sine-

type wave functions, respectively.
As is clear from the argument above, the Laue or Bragg condition in a three-

dimensional periodic lattice is expressed as

)k)5 )k2gn), (5.42)

where g is the reciprocal lattice vector corresponding to the set of lattice planes
with Miller indices (nxnynz). Equation (5.42) is viewed as arising from repeated
elastic scattering of the Bloch electron incident on the lattice planes, upon
which the momentum "gn is transferred back and forth between the electron
and the whole lattice. The Bragg condition (5.42) will be employed in the

4612p

a 235
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following sections to examine the condition for the formation of the energy gap
in representative crystal structures.

5.7 Brillouin zone of one- and two-dimensional periodic lattices

As discussed in Sections 5.4 through 5.6, an energy gap appears successively at
every k5np /a with n561, 62, . . . in a one-dimensional monatomic periodic
lattice. The region centered at k50 is bounded by the first energy gap at k5p /a
and k52p /a. The region 2p /a,k#p /a is called the first Brillouin zone. The
second, third, fourth, . . . Brillouin zones can be successively defined outside
the first Brillouin zone, as illustrated in Fig. 5.9. The n-th zone with n$2 is split
into positive and negative regions of equal length. We can easily confirm that
its total length is always equal to 2p /a.

The construction of Brillouin zones can be extended to two- and three-
dimensional lattices. The Bragg condition (5.42) is most conveniently used for
this purpose. As shown in Fig. 5.10, the Bragg condition (5.42) is always satis-
fied, provided that the wave vector k of the electron falls on the plane formed
by bisecting perpendicularly the reciprocal lattice vector gn.

Using this as a guide, we first construct Brillouin zones for a two-dimen-
sional square lattice with the lattice constant a. Any lattice vector of this lattice
can be expressed as l5nxax1nyay. Here ax and ay are the primitive translation
vectors (also called basic vectors), defined as ax5ai and ay5aj , where i and
j are unit vectors along the x- and y-axes. The reciprocal lattice vector can be
easily calculated as gn5(2p /a)(nxi 1ny j ) by applying equation (4.9) to the
two-dimensional lattice, where nx and ny are arbitrary integers. The shortest
reciprocal vectors among the set of (nx,ny) are those with (1,0), (21,0), (0,1) and
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Figure 5.8. (a) The periodic potential with lattice constant a. (b) The probability
densities of sine- and cosine-type stationary wave functions in the periodic potential.
[C. Kittel, Introduction to Solid State Physics, (John Wiley & Sons, Inc., Second

Edition, 1953)]



(0,21). The first Brillouin zone is constructed by bisecting perpendicularly
these four reciprocal lattice vectors. We obtain a square with edge length 2p /a
centered at the origin k50. Similarly, the second zone is obtained from the
second shortest reciprocal lattice vectors with the set of (1,1), (1,21), (21,1)
and (21,21).

Figure 5.11 illustrates a series of the Brillouin zones for a two-dimensional
square lattice, beginning from the first up to the tenth zone. It is interesting to
note that each higher zone (n$2) is split into small pieces but that they are
always summed up to a total area equal to (2p /a)2. Hence, all zones have an
equal area in a two-dimensional lattice (equal volume in a three-dimensional
lattice), regardless of the shape of each piece or the number of pieces from
which the Brillouin zone is made up.

5.8 Brillouin zone of bcc and fcc lattices

The bcc and fcc structures, together with the hcp structure, are known to exist
most abundantly in real metals and alloys. In this section, we construct the
Brillouin zone for the bcc lattice. Figure 5.12 shows the bcc lattice in three differ-
ent ways. The cubic unit cell with the lattice constant a shown in Fig. 5.12(a)
contains two atoms. The volume per atom is, therefore, a3/2. The primitive
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Figure 5.9. Brillouin zones in a one-dimensional lattice.
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Figure 5.10. Bragg condition obtained by bisecting perpendicularly the reciprocal
lattice vector.



translation vectors ax, ay and az for the bcc lattice are shown in Fig. 5.12 (b) and
are given by:

ax5 (2li 2lj 1lk ),

ay5 (li 1lj 1lk )

az5 (2li 1lj 2lk ), (5.43)

where i , j , k are unit vectors in cartesian coordinates. The primitive cell
formed from the primitive translation vectors is shown in Fig. 5.12 (b). Its
volume must be a3/2, since it contains a single atom. This is easily checked by
calculating V5ax·(ay3az).

There is another representation. A polyhedron is formed by bisecting per-
pendicularly the shortest lattice vectors drawn from a given atom. It consists of
eight {111} planes and six {002} planes in the bcc lattice.3 A whole space can

1a
22
1a
22
1a
22
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3 There are eight equivalent (111), (11̄1), (111̄), (1̄11), (1̄1̄1), (1̄11̄), (11̄1̄) and (1̄1̄1̄) planes. They are altogether
expressed as {111} planes. Similarly, (002), (020), (200), (002̄), (02̄0) and (2̄00) planes are grouped as {002}
planes.

zone

2π/a

2π/a

Figure 5.11. Brillouin zones of a two-dimensional square lattice. [L.Brillouin, Wave
Propagation in Periodic Structures, (Dover Publications, 1953)]



be covered by stacking the polyhedra without any overlap or void space. The
volume of the polyhedron must be a3/2, since it contains only a single atom at
its center. The polyhedron is called the Wigner–Seitz cell. It is noted that the
construction of the Wigner–Seitz cell in real space is the same as that of the
Brillouin zone in reciprocal space.

We are now ready to construct the Brillouin zone of the bcc lattice. The prim-
itive translation vectors in reciprocal space can be obtained by inserting equa-
tion (5.43) into equation (4.9):

bx5 (2li 1lk ),

by5 (lj 1lk )

bz5 (2li 1lj ). (5.44)

Any reciprocal lattice vector for the bcc lattice is now obtained by inserting
equation (5.44) into equation (4.8):

ghkl52p(hbx1kby1l bz)

ghkl5 [(2h2l )i 1(k1l )j 1(h1k)k ]. (5.45)

The first Brillouin zone can be constructed from planes normal to the shortest
reciprocal lattice vectors in equation (5.45) at the midpoint. They are the fol-
lowing twelve vectors with the choice of (h561, k50, l50), (h50, k571,
l561) and so on:

12p

a 2

12p

a 2
12p

a 2
12p

a 2
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Figure 5.12. Unit cells of the bcc lattice. (a) Cubic unit cell, (b) primitive cell with
translation vectors and (c) the Wigner–Seitz cell bounded by eight {111} regular

hexagonal planes and six {002} square planes.



gnn905 (6 i 6j ) (n51 or 21 and n951 or 21)

g0nn9
5 (6 j 6k ) (n51 or 21 and n951 or 21)

gn0n9
5 (6 i 6k ) (n51 or 21 and n951 or 21) (5.46)

The twelve equivalent reciprocal lattice vectors are denoted altogether as g110

and the corresponding twelve zone planes as {110} planes.4 The first Brillouin
zone thus constructed is the rhombic dodecahedron bounded by twelve {110}
planes and is shown in Fig. 5.13. This is similar to the Wigner–Seitz cell of the
fcc lattice, as will be shown in Fig. 5.14(c). Indeed, it must be noted that the
primitive reciprocal translation vectors in equation (5.44) are of the same form
as the primitive translation vectors of the fcc lattice in equation (5.48) and that
the difference is found only in the coefficients 2p/a and a/2.

Once the volume of the rhombic dodecahedron is obtained, we can easily

12p

a 2
12p

a 2
12p

a 2
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4 The suffix (hkl ) of the reciprocal lattice vector ghkl in equation (5.45) refers to the (bx, by, bz) coordinate
system. However, the suffix (nn9n0) in gnn9n0

in equation (5.46) conventionally refers to the (i , j , k ) coordi-
nate system. The same rule is applied for the fcc lattice (see equation (5.50)).

Figure 5.13. The first Brillouin zone of the bcc lattice. The zone is bounded by twelve
{110} rhombic dodecahedral planes. The origin at k50 and the center of the {110}

plane are called the G and N points, respectively.



calculate the number of electrons per atom accommodated in the first Brillouin
zone of the bcc lattice. We make use of the fact that the first Brillouin zone of
the bcc lattice is similar to the Wigner–Seitz cell of the fcc lattice, the volume
of which is obviously equal to a3/4. The translation from real space to recipro-
cal space can be easily done by substituting 2p/a for a/2. By rewriting the
volume a3/4 in the form of 2(a /2)3, one can easily deduce the volume of the first
Brillouin zone of the bcc lattice as

VB52 . (5.47)

Now let us assume a bcc metal cube with edge length L. The reciprocal space
is quantized in intervals 2p /L and, hence, 2(L/2p)3 electrons can be accommo-
dated in a unit volume of reciprocal space. The factor 2 arises from the degrees
of freedom of spin. Since the volume of the first Brillouin zone is given by
equation (5.47), we can fit [2V/(2p)]332(2p /a)354V/a3 electrons in the first
zone, where V5L3. It is seen that the number of electrons accommodated in
the first zone depends on the volume of the metal. Since there exist 2V/a3 atoms
in a volume V of the bcc metal, we derive the following axiom:

“The first Brillouin zone of the bcc lattice can accommodate
2 electrons per atom.”

As a next example, we discuss the Brillouin zone of the fcc lattice. Figure 5.14
shows the fcc lattice in three different ways. The cubic unit cell with the lattice
constant a is shown in Fig. 5.14(a). Its volume per atom is a3/4, since the unit
cell contains four atoms. Figures 5.14(b) and (c) represent the primitive cell and
the Wigner–Seitz cell of the fcc lattice, respectively. The volume of the primi-
tive cell of the fcc lattice is a3/4. It is clear from Fig. 5.14(b) that the primitive
translation vectors of the fcc lattice are given by

12p

a 2
3
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Figure 5.14. Unit cells of the fcc lattice. (a) Cubic unit cell, (b) primitive cell with
primitive translation vectors and (c) the Wigner–Seitz cell bounded by twelve {110}

rhombic dodecahedral planes.



ax5 (2li 1lk ),

ay5 (lj 1lk )

az5 (2li 1lj ). (5.48)

Equation (5.48) is of the same form as equation (5.44) except for the difference
in the coefficient. The primitive translation vectors in reciprocal space are cal-
culated by inserting equation (5.48) into equation (4.9):

bx5 (2li 2lj 1lk),

by5 (li 2lj 1lk )

bz5 (li 1lj 1lk ). (5.49)

This agrees with the primitive translation vectors of the bcc lattice given by
equation (5.43) except for the difference in the coefficient. Any arbitrary recip-
rocal lattice vector is now expressed as

ghkl52p(hbx1kby1l bz)

5 [(2h1k2l )i 1(2h1k1l )j 1(h1k2l )k ]. (5.50)

The shortest non-zero reciprocal lattice vectors arise from those like h51,
k5l50 and also those like h5k5l51 and h5k5l521. They are explicitly
written as

g1115 (li 1lj 1lk); g111̄5 (li 1lj 2lk )

g11̄15 (li 2lj 1lk ); g1̄115 (2li 1lj 1lk )

g1̄1̄15 (2li 2lj 1lk ); g11̄1̄ 5 (li 2lj 2lk )

g1̄11̄5 (2li 1lj 2lk ); g1̄1̄1̄ 5 (2li 2lj 2lk ). (5.51)12p
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The eight {111} zone planes are formed by bisecting perpendicularly these
reciprocal lattice vectors. However, a whole reciprocal space cannot be covered
only with these planes. The next shortest reciprocal lattice vectors arise from
those like h5k51, l50. They are given by

g2005 (2i ); g2̄005 (22i ) and g0205 (2j )

g02̄05 (22j ); g0025 (2k ) and g002̄ 5 (22k) (5.52)

The six {002} planes can be formed from these reciprocal vectors. A combina-
tion of both eight {111} planes and six {002} planes forms the truncated octa-
hedron consisting of fourteen planes in total, as shown in Fig. 5.15. This is the
first Brillouin zone of the fcc lattice and is similar to the Wigner–Seitz cell of
the bcc lattice shown in Fig. 5.12(c). Therefore, we see that a whole reciprocal
space of the fcc lattice can be covered with the repetition of the truncated octa-
hedron.

We can easily calculate the number of electrons per atom accommodated in
the first Brillouin zone of the fcc lattice in the same way as in the bcc lattice.
The volume of the Wigner–Seitz cell of the bcc lattice is obviously equal to a3/2.
This is rewritten as 4(a/2)3, into which 2p/a is inserted in place of a/2. The
volume of the first Brillouin zone of the fcc lattice is therefore deduced as

12p

a 212p

a 212p

a 2
12p

a 212p

a 212p

a 2
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Figure 5.15. The first Brillouin zone of the fcc lattice. The zone is bounded by eight
{111} regular hexagonal planes and six {002} square planes. The origin, the center of
the {111} plane and the center of the {002} planes are named G, L and X points, respec-

tively. Other representative symmetry points K and W are also indicated.



VB54(2p/a)3 and the number of electrons accommodated in the first Brillouin
zone is 2(L/2p)334(2p/a)358V/a3. Since a fcc metal with its volume V con-
tains 4V/a3 atoms, we derive another important axiom:

“The first Brillouin zone of the fcc lattice can accommodate
2 electrons per atom”.

5.9 Brillouin zone of hcp lattice

There are many metals and alloys which crystallize into the hexagonal close-
packed structure (hereafter abbreviated as hcp). This is the structure obtained
by stacking atomic planes consisting of closely packed hard spheres in the
sequence ABAB . . . .5 The hcp lattice is shown in Fig. 5.16. The basal plane
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5 Either hcp or fcc structure can be formed by packing hard spheres as closely as possible. The layer “A” is
formed by placing six spheres around the central sphere in contact with each other in a given plane. The
second layer “B” is formed by placing a sphere in a hollow formed by three neighboring spheres in the layer
A. There are two choices for the position of spheres in the third layer C. One way is to place a sphere in
layer C on top of the sphere in layer A, thereby making layer C identical to layer A. This yields the ABAB
. . . stacking in the hcp lattice. The other way is to place a sphere in layer C on top of the hollow in layer
A. This yields the ABCBC . . . stacking in the fcc lattice.

Figure 5.16. Unit cell of the hcp lattice. The primitive cell is shown by thick lines. The
angle between the primitive translation vectors a1 and a2 makes 120°, while that
between a1 and i makes 60°. The unit vectors i , j , and k are perpendicular to each other.



with a hexagonal symmetry is called the ab-plane and its perpendicular axis the
c-axis. The atomic distance between the top and bottom planes of the unit cell
is often denoted as c and the shortest atomic distance in the ab-plane as a. The
axial ratio c/a turns out to be 51.633 for hexagonal closest-packing of
hard spheres. There are deviations from the ideal value in real metals: c/a5

1.568 for Be, 1.623 for Mg, 1.856 for Zn and 1.886 for Cd. There exist six atoms
in the unit cell shown in Fig. 5.16. Its primitive cell is drawn by thick lines. Four
corner atoms in both top and bottom planes are summed up to a single atom
belonging to this primitive cell. There is one additional atom inside the primi-
tive cell, but its presence is ignored for the moment. The primitive translation
vectors are given by

a15 i 2 j ,

a25 i 1 j

a35ck . (5.53)

Its volume is easily calculated to be a2c/2. The corresponding primitive
translation vectors in reciprocal space are obtained as

b15 li 1 j

b25 li 1 j

b35 [lk ]. (5.54)

An arbitrary reciprocal lattice vector is then expressed as

gn1n2n3
52p(n1b11n2b21n3b3)

52p (n11n2)i 1 (2n11n2)j 1 n3k . (5.55)

The shortest non-zero reciprocal lattice vectors arise from those like n151,
n250, n350 and are explicitly written as6

411
c21 1

Ï3a2311
a2

12p

c 2
41 1

Ï3212p

a 23
412 1

Ï3212p

a 23

Ï3

1Ï3a
2 21a

22

1Ï3a
2 21a

22

Ï8/3
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6 In the hcp lattice, the suffix (n1n2n3) in the reciprocal lattice vector gn1n2n3
in equation (5.56) conven-

tionally refers to the (b1, b2, b3) coordinate system. This is different from the choice of the (i , j , k ) coor-
dinate system for the bcc and fcc lattices.



g1005 li 1 j ; g1̄005 2li 1 j

g0105 li 1 j ; g01̄05 2li 2 j

g1105 i ; g1̄1̄05 2 i

g0015 [lk ]; g001̄5 [2lk ]. (5.56)

The first Brillouin zone of the hcp primitive cell can be constructed from planes
bisecting perpendicularly the reciprocal lattice vectors given by equation (5.56).
The result is shown in Fig. 5.17(a). It is clear that the first six reciprocal lattice
vectors are responsible for creating the side surfaces of the regular hexagonal
prism and the last two for its top and bottom surfaces. The six side surfaces are
referred to as {100} planes, and the top and bottom surfaces as {001} planes.

The situation in the real hcp lattice is slightly different. As mentioned above,
there is an intervening atomic layer through the center of the unit cell. The
diffracted wave from the {001} planes is cancelled with that from the interven-
ing planes as a result of the phase difference p between them. Thus, the inten-
sity of the diffracted wave due to the {001} planes is reduced to zero and the
energy gap disappears. This is known as the extinction rule mentioned in
Section 4.3.

The second Brillouin zone is shown in Fig. 5.17(b). This is constructed
from two {002} planes, twelve {101} planes and six {100} planes. In the hcp
lattice, the smallest zone bounded by planes having finite energy gaps is not
given by the first Brillouin zone because of the absence of the energy gap

12p

c 212p

c 2
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Ï32312p

a 241 2

Ï32312p

a 2

41 1

Ï3a2312p
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Ï3a2312p
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Figure 5.17. Brillouin zones of the hcp lattice. (a) The first zone, and (b) second zone.
The dashed area indicates the {100} planes. (c) The Jones zone. The following relations

hold. AG5p/c, GG52p/c, GM52p/ and GL5 (2p/ ) .Ï1 1 (3/4)(a/c)2Ï3aÏ3a



across the {001} planes but is made up from a combination of the first and
second Brillouin zones. As shown in Fig. 5.17(c), it consists of two
{002}planes, six {100} planes and twelve {101} planes. This is often called the
Jones zone.

One can easily check that the first Brillouin zone for the hcp lattice in Fig.
5.17(a) contains one electron per atom, since the primitive cell contains two
atoms. Thus, two electrons per atom can be fitted into the combined first and
second zones in Fig. 5.17(b). The number of electrons per atom filled in the
Jones zone is calculated to be

n522 . (5.57)

Its derivation is left for the reader as Exercise 5.4.

5.10 Fermi surface–Brillouin zone interaction

We have seen in the preceding section that the Brillouin zone appears in recip-
rocal space as an assembly of polyhedra bounded by planes normal to the
reciprocal lattice vectors at their midpoints and we constructed the Brillouin
zone for the bcc, fcc and hcp lattices. A finite energy gap appears across the
Brillouin zone plane, unless the extinction rule holds. The presence of an
energy gap leads to the deviation of the E–k relation from the free-electron par-
abolic band in the vicinity of the Brillouin zone. The Fermi surface begins to
be distorted from a sphere before making contacts with the Brillouin zone
planes. We will study in this section more details about the interaction of the
Fermi surface with the Brillouin zone.

According to equation (2.20), the radius of the Fermi sphere is determined
by the number of electrons per atom and the volume per atom V, since N0/V
in equation (2.20) is equal to (e/a)/V. The number of electrons per atom is
abbreviated as e/a and is often referred to as the electron concentration. Let us
consider a hypothetical simple cubic metal with the lattice constant a and
assume the Fermi sphere to expand as a function of only the electron concen-
tration e/a while keeping the lattice constant unchanged.

The first Brillouin zone for the simple cubic lattice is given by a cube with
edge length 2p/a. The second and third Brillouin zones are also constructed
from planes normal to the second and third shortest reciprocal lattice vectors
at their midpoints. They are depicted in Figs 5.18(a), (b) and (c). The third zone
looks complex but can be easily understood, if a comparison is made with the
Brillouin zone of the two-dimensional square lattice shown in Fig. 5.11. This
is because the latter corrresponds to a cross-section of the former cut through

13
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the origin k50 parallel to the kxky-plane. The origin in reciprocal space is often
denoted as G in the notation of band calculations.

Figure 5.18(d) shows a series of cross-sections of the Fermi surface having
various electron concentrations, together with cross-sections of the first,
second and higher Brillouin zones. One can easily check that 2 electrons per
atom can be accommodated in each Brillouin zone of the simple cubic lattice.
Let us suppose first a monovalent metal in a simple cubic structure. Its Fermi
sphere must occupy exactly 50% of the first Brillouin zone in volume, though
one can easily calculate the ratio of the Fermi radius over the distance GX to
be (3p2)1/3/p50.98. Let us assume a hypothetical metal having a much smaller
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Figure 5.18. Brillouin zones of the simple cubic lattice with lattice constant a. (a) The
first zone, (b) the second zone (the first zone is seen as dashed lines), (c) the third zone,
and (d) the cross-section of the Fermi surface and the Brillouin zones obtained by
cutting through the G point parallel to the kxky-plane. In (d), the Fermi surface con-
tours with various electron concentrations e/a are shown by dashed curves: (1) spheri-
cal surface with e/aø0.5, (2) distortion is seen along GX directions (distorted area is
shown by hatches), (3) the Fermi surface partly touches the first zone, and (4) a part of
the Fermi surface appears in the second zone (the Fermi surface with e/a52.0 is shown

by a solid curve).



Fermi sphere, say a metal with e/a50.5. Then we can draw the free-electron-
like spherical Fermi surface for this metal, which is shown by the dashed curve
(1) in Fig. 5.18(d). In this case, the effect of the periodic potential on the con-
duction electron can be fully neglected and the free-electron model holds well.

The metal A with e/a50.5 is alloyed with a divalent metal B while keeping
the crystal structure and its lattice constant unchanged. An average electron
concentration for an Al2xBx alloy is given by e/a50.5(12x)12x51.5x10.5.
For example, e/a51.25 is obtained for an equiatomic alloy A0.5B0.5. An increase
in electron concentration expands the Fermi radius according to equation
(2.20) and the Fermi surface approaches six equivalent {100} zone planes.
Since the distance GX is the shortest from the origin to the zone plane, the
Fermi sphere begins to be distorted in the area perpendicular to GX as a result
of a decrease in slope of the E–k curve relative to the corresponding free-
electron value. This gives rise to a swollen Fermi surface with six equivalent
swollen areas. A cross-section of this surface is illustrated schematically by the
dashed curve (2) in Fig. 5.18(d). (Note that only four of the swollen areas,
marked by hatches, are seen in cross-section.)

Further increase in the electron concentration makes the Fermi surface to
touch the Brillouin zone boundary, as shown by the dashed curve (3). Note
that the Fermi surface (3) becomes discontinuous, being separated into pieces
by the zone boundary, since states on the zone are no longer a part of the
Fermi surface (note that the Fermi surface refers to a constant energy
surface). When the electron concentration increases further and reaches 2.0,
the first Brillouin zone is, in principle, fully filled. However, some electrons
would jump into the second zone before filling the corner of the first zone,
provided that their energies are high enough to overcome the energy gap
across the zone plane. This means that a part of the Fermi surface appears in
the second zone but the rest remains in the first zone, leaving unoccupied
states or “holes” in the first zone. The Fermi surface thus obtained is shown
by the solid curve (4) in Fig. 5.18(d).

The E–k relations along the 〈100〉 and 〈110〉 directions in Fig. 5.18(d) are
depicted schematically in Fig. 5.19. Using the E–k relations as a guide, we
discuss more about the Fermi surface (4), where some electrons occupy the
second zone prior to a complete filling of the first zone. The Fermi level may
be viewed as the surface of the water when “water” of electrons is poured into
a “pot” formed by the E–k curves. One can easily understand from Fig. 5.19
that, whether or not the “water surface”, i.e., the Fermi level, appears in the
second zone, certainly depends on the magnitude of the energy gaps across the
{100} and {110} planes and their relative positions. A hypothetical simple
cubic solid with e/a52.0 becomes a metal, if the energy gap across the {100}
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planes is small enough to allow electrons to enter the second zone while leaving
some holes in the first zone.

If the energy gap across the {100} planes is very large, electrons can no
longer enter the second zone but have to fill the corner of the first zone. The
first zone is completely filled with electrons and the Fermi surface disappears
when e/a52.0. Electrons cannot be excited into higher zones, unless the energy
supplied from external sources, say by heating or applying an electric field, is
high enough for the electrons to overcome a large energy gap. In such a case,
our hypothetical solid becomes an insulator.

Whether a given material is a metal or an insulator can be judged by check-
ing the presence or absence of electrons at the Fermi level in both the first and
higher zones over all directions in reciprocal space. In other words, a metal is
defined as a substance in which the Fermi surface exists and the density of
states at the Fermi level is finite at absolute zero. In contrast, an insulator,
including a semiconductor, is defined as a substance in which the Fermi surface
is absent. The density of states representation is the most convenient means for
this purpose. Once the E–k relation is calculated along various directions of the
reciprocal lattice vectors, the Fermi surface can be constructed in reciprocal
space. The density of states curve is then calculated by counting the number of
states in the energy interval DE.
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Figure 5.19. E–k relations along 〈100〉 and 〈110〉 directions for the band structure of
the simple cubic lattice shown in Fig. 5.18. It can be seen that electrons are overlapped 

to the second zone across the {100} planes.



Figures 5.20(a), (b) and (c) schematically illustrate the density of states
curves for a metal, a semiconductor and an insulator, respectively. In the case
of (a), the Fermi level sits in the middle of the density of states curve. This is
typical of the band structure of a metal. In the cases of (b) and (c), the com-
pletely filled density of states, which is often called the valence band, is separ-
ated by an energy gap from the completely unoccupied density of states, which
is called the conduction band. This is the band structure of a semiconductor
and an insulator. As shown in Fig. 5.20(c), the energy gap is fairly large in insu-
lators. In a semiconductor, the energy gap is reasonably small and comparable
to the thermal energy kBT. Thus, it is an insulator at low temperatures but
becomes conductive at higher temperatures. This is because some electrons
begin to be thermally excited into higher zones and excited electrons contrib-
ute to the electron conduction. The excitation of electrons into higher zones
leaves behind an equal number of holes in the first zone. Such materials are
referred to as intrinsic semiconductors (see more details in Section 6.9).

As has been noted, each Brillouin zone generally accommodates two elec-
trons per atom. Hence, a material having an even number of valence electrons
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Figure 5.20. Schematic density of states curves. (a) Metals, (b) semiconductors, and
(c) insulators.



per atom tends to become either a semiconductor or an insulator. For example,
both Si and Ge possess 4 valence electrons per atom and are indeed known as
semiconductors. As another example, the GaAs compound consisting of 50
at.% trivalent Ga and 50 at.% pentavalent As, is also characterized by having
4 valence electrons per atom on average and is typical of a semiconductor. But
it must be noted that materials having an even number of valence electrons per
atom do not always become a semiconductor or an insulator. For instance,
divalent Be, Mg, Zn and Cd, all of which crystallize into the hcp structure, are
metals, though the combined first and second zones can just accommodate 2
electrons per atom. As will be shown in Chapter 6, a situation similar to the
Fermi surface (4) in Fig. 5.18(d) occurs and the density of states like that in
Fig. 5.20(a) is observed in all these divalent metals.

5.11 Extended, reduced and periodic zone schemes

The E–k relation of the conduction electrons in a one-dimensional periodic
lattice with the lattice constant a is reproduced in Fig. 5.21(a). The energy gap
appears not only at k56(p/a) but also at every k5(p/a)n with n$2 or n#22.
It is clear that the free-electron parabola is cut into segments at k5np/a. This
representation is called the extended zone scheme.

There are two alternative representations, which are also equally important
in practical use. We have emphasized that the Bloch state k remains unchanged
if its wave vector is shifted by an appropriate reciprocal lattice vector. As is
clear from Fig. 5.21(a), the E–k curves in the regions p/a,k#2p/a and
22p/a,k#2p/a belong to the second Brillouin zone. They can be shifted in
a negative and a positive direction by the reciprocal lattice vector of 2p/a,
respectively, so that they can be reduced into the first zone. Similarly, the n-th
zone can be reduced into the first zone. The results after applying this opera-
tion to both the second and third Brillouin zones are shown in Fig. 5.21(b).
This representation is called the reduced zone scheme. The E–k relation in the
reduced zone scheme becomes a multi-valued function of the wave vector. As
mentioned in Section 5.5, bands are labelled to distinguish them. The band
index n51 is assigned to the lowest band and n52, 3 and so on to higher bands.

As the third representation, the n-th zone after reducing to the first zone can
be extended periodically with the period of 2p/a outside the first zone. This
representation is called the periodic zone scheme or repeated zone scheme.
Figure 5.21(c) shows the E–k relation in the first, second and third zones in the
periodic zone scheme.

The choice of zone scheme becomes important when the Fermi surface
extends to higher zones. We still assume a simple cubic lattice with the lattice
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Figure 5.21. E–k relations in (a) the extended zone scheme, (b) the reduced zone
scheme, and (c) the periodic (or repeated) zone scheme.
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Figure 5.22. The cross-section of the Fermi surface and the Brillouin zones of the
simple cubic lattice (see Fig. 5.18(d)). (a) The Brillouin zones and the Fermi surface in
the extended zone scheme. The Fermi surface is partly shown in the periodic (or
repeated) zone scheme. (b) The Fermi surface of holes in the second zone in the
periodic zone scheme. (c) The Fermi surface of electrons in the third zone in the peri-
odic zone scheme. (d) The Fermi surface of electrons in the fourth zone in the periodic

zone scheme.



constant a and use the cross-section (see Fig. 5.18(d)) of its Brillouin zones cut
through the G point parallel to the kxky-planes. Furthermore, the periodic
empty-lattice model is assumed so that the energy gap across each zone plane
is set equal to zero. We consider the situation where the first zone is completely
filled with electrons and the Fermi surface exists in the second, third and fourth
zones, as shown in Fig. 5.22(a). The cross-section of the Fermi surface is given
by a circle because of the absence of the energy gap. We can draw as many
Fermi circles centered at reciprocal lattice points as we wish.

Figure 5.22(a) corresponds to the extended zone scheme, in which each
Fermi surface is drawn as a continuous circle. But one realizes that the Fermi
circle in a higher zone is no longer continuous. For instance, the electron states
in the second zone are disconnected by the third and fourth zones and exist as
four equivalent segments marked by (A), (B), (C) and (D). Similarly, the elec-
tron states in the third and fourth zones are separated into eight and four equiv-
alent segments, respectively, as can be seen from Fig. 5.22(a).

The reduced zone scheme can eliminate this inconvenience. We explain this,
using the Fermi surface in the second zone. The portions (A), (B), (C) and (D)
are shifted downwards, upwards, to the right and to the left, respectively, by an
amount equal to the reciprocal lattice vector 2p/a. This operation brings four
separated segments of the electron states into the first zone and, as a result, the
Fermi surface becomes connected as a single loop without disruption, as
shown in Fig. 5.22(b). This is the Fermi surface of the second zone in the
reduced zone scheme. The Fermi surface is no longer a circle but looks like a
curved window. Note that the portions (A), (B), (C) and (D) appear along the
corner of the first zone and, hence, electrons are present outside the Fermi
surface but absent inside. Such a Fermi surface is called the Fermi surface of
holes. In Fig. 5.22(b), the reduced Fermi surface is periodically extended to
neighboring zones to represent it in the periodic zone scheme.

The Fermi surface in the third zone is more disconnected than that in the
second zone. Fig. 5.22(c) in the periodic zone scheme is obtained by reducing the
Fermi surface in the third zone. A petal-like Fermi surface emerges under this
operation. This is the Fermi surface of electrons, since the states around the G
point are filled with electrons. Similarly, the Fermi surface in the fourth zone is
reduced into the first zone. The results in the periodic zone scheme are shown in
Fig. 5.22(d). This is again the Fermi surface of electrons. It is seen that the Fermi
surface in the reduced and periodic zone schemes consists of an assembly of seg-
ments of the spherical Fermi surface but loses its spherical appearance. Note
that the energy gap across the zone is finite in real metals and that the actual
Fermi surface in the reduced zone scheme is certainly perturbed by the energy
gap and deviates from spherical curvature particularly near the zone planes.
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The Fermi surfaces of respresentative metals in the periodic table will be dis-
cussed in Chapter 6. We will see that the reduced and periodic zone schemes
are frequently used to represent the Fermi surfaces of polyvalent metals.

Exercises

5.1 The wave vector of the Bloch electron is not uniquely determined but
involves an arbitrariness associated with any reciprocal lattice vector. Show
that this unique property can be explained by expanding the periodic function
uk(r) in equation (5.12) into a series in the same way as equation (5.30).

5.2 Solve equation (5.34) and draw the dispersion relation of electrons in a
one-dimensional periodic empty-lattice, where the magnitude of the ionic
potential is reduced to be infinitesimally small. Note that, though the period-
icity of the lattice remains, the energy dispersion relation is given by E5k2 in
atomic units, where "51 and m51⁄2.

5.3 Derive the Bragg condition 2dsinu5ml from the Laue condition
k25(k2gn)

2, where gn is the reciprocal lattice vector for the set of lattice planes
with the Miller indices (nxnynz).

5.4 Calculate the number of electrons per atom filled in (a) the first zone and
(b) the Jones zone of the hcp lattice shown in Fig. 5.17.
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Chapter Six

Electronic structure of representative elements

6.1 Prologue

The basic ideas and fundamental concepts of the electron theory of metals
have been discussed in Chapters 1 to 5. In the present chapter, we present the
electronic structure of real metals and semiconductors selected from elements
in the periodic table and show how the electronic structure of various elements
changes across the periodic table.

6.2 Elements in the periodic table

Table 6.1 lists representative elements in the periodic table, which are classified
in terms of the crystal structure and characteristic features, such as valencies.
Most elements crystallize into bcc, fcc or hcp structures, though some other
elements like Ga, In, Hg and Bi possess more complicated structures. We
discuss the electronic structures of representative elements in bcc, fcc and hcp
structures whose Brillouin zones have already been discussed in Chapter 5.

6.3 Alkali metals

All the alkali metals Li, Na, K, Rb and Cs are located in the very left-hand
column in the periodic table (see Table 1.1) and crystallize in the bcc structure.1

There is only one outermost electron in the 2s, 3s, 4s, 5s and 6s orbit, respec-
tively, in the free atom. Upon the formation of the bcc metal, they serve to form
the valence band containing one electron per atom. This is the reason why each
is called a monovalent metal. As has been discussed in Section 5.8, the first
Brillouin zone of the bcc lattice can accommodate 2 electrons per atom and,
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1 A phase transformation from the bcc to an hcp structure has been reported to occur at 78 and 35 K for Li
and Na, respectively.



hence, one would expect the Fermi surface to remain spherical away from the
{110} zone planes of the Brillouin zone (see Fig. 5.13).

The E–k relations of Na metal have been calculated in the three directions
GN, GP and GH in the Brillouin zone of the bcc lattice. The results are shown
in Fig. 6.1. Of the three directions, the point N corresponding to the center of
the {110} planes is the closest to the origin G. Its Fermi level is situated at an
energy lower than that marked as N91, which would be denoted as E

2
(kN) in an

expression similar to equation (5.40). This clearly means that the E–k relations
up to the Fermi level are well approximated by the free-electron-like parabola
in all directions studied. The energy gap across the {110} planes is calculated
to be only 0.018 Ry (see Appendix 1) or 0.25 eV. Indeed, the energy gap denoted
as N12N91 in Fig. 6.1 is hardly visible and the Fermi surface of Na metal is
nearly spherical, as illustrated in Fig. 6.2. The de Haas–van Alphen effect
measurements, which will be discussed in Section 7.2, proved the presence of a
spherical Fermi surface in the bcc Na metal [1,2].2

Na metal is known to be almost a free-electron-like metal. This is no longer
true in other alkali metals. The E–k relations calculated for Li metal are shown
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2 The de Haas–van Alphen effect, which provides information about the extremal area of cross-section of
the Fermi surface (see Section 7.2), requires low temperatures, say, below 4 K. The phase transformation
in Na could be suppressed by quenching the sample to low temperatures. The de Haas–van Alphen effect
has proved that the distortion of the Fermi surface from a free-electron sphere is less than 0.1% in Na [2].
However, the suppression of the phase transformation has not been successful in Li and, hence, no de
Haas–van Alphen effect has been reported for the bcc Li [1].

Table 6.1. Representative elements in the periodic table

structurea characteristic features elements

bcc monovalent metals Li, Na, K, Rb, Cs
transition metals V, Cr, Fe, Nb, Mo, Ta, W

fcc monovalent metals Cu, Ag, Au
divalent metals Ca, Sr
trivalent metals Al
tetravalent metals Pb
transition metals Ni, Pd, Pt, Rh, Ir

hcp divalent metals Be, Mg, Zn, Cd
trivalent metals Tl
transition metals Sc, Ti, Y, Zr, La, Hf, Co, Ru, Re, Os

hexagonal semimetals C (graphite)
rhombic semimetals Bi, Sb
diamond semiconductors C (diamond), Si, Ge

Note:
a The crystal structure refers to that at room temperature. For example, Fe
transforms to the fcc structure known as g-Fe in the range 1185–1667 K.
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Figure 6.1. E–k relations along GN, GP and GH directions of pure Na metal. Note
that the dimensionless wave number ka/2p is employed. [F. S. Ham, Phys. Rev. 128

(1962) 82]

Figure 6.2. The Fermi surface and the first Brillouin zone of bcc Na metal. See also
Fig. 5.13. Symmetry points G, N, P and H are marked.



in Fig. 6.3. The Fermi level is positioned at an energy slightly lower than E
2

(kN)
marked as N91 in Fig. 6.3. Hence, its Fermi surface is very close to but has no
contact with the {110} zone planes. The energy gap across the {110} zone
planes is given by EN1

2EN91
in Fig. 6.3 and amounts to 0.209 Ry or 2.8 eV. This

is fairly large in comparison with that in Na metal. It can be clearly seen that
the slope of the E–k curve at the Fermi level in the GN direction is already well
suppressed relative to those in other directions GP and GH because of the effect
of the {110} energy gap. As a consequence, the Fermi surface is no longer
spherical but bulges along the 〈110〉 direction, as was explained by using the
Fermi surface (3) in Fig. 5.18(d).

Figure 6.4 shows the density of states curve of Li metal calculated from the
E–k relations in Fig. 6.3. A cusp at about 3.7 eV followed by a sharp decline in
the density of states is certainly caused by simultaneous contacts of the Fermi
surface with the twelve {110} zone planes. The density of states anomaly like
the cusp above is often called the van Hove singularity. The Fermi level is
located at the position prior to the cusp, where the density of states exhibits a
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Figure 6.3. E–k relations of pure Li metal along GN, GP and GH directions. Note
that the dimensionless wave number ka/2p is employed. [F. S. Ham, Phys. Rev. 128

(1962) 82]



sharply increasing slope beyond the free-electron parabola shown by a dashed
curve. Thus, we see from Fig. 6.4 that the Fermi surface of Li metal has not
touched the Brillouin zone but bulges due to its proximity to the Brillouin zone.

A substantial deviation from the free-electron model in Li metal arises
because the Li atom has a very small ion core consisting of only (1s)2 electrons
so that the valence electron is much closer to the nucleus than in other alkali
metals. Indeed, the lattice constant of Li metal is 0.351 nm at room tempera-
ture, which is shorter than that (0.429 nm) of Na metal.

6.4 Noble metals

Cu, Ag and Au are all known as the noble metals having an fcc structure. The
outermost 4s, 5s and 6s electrons form the valence band in the respective
metals. They constitute, therefore, another group of monovalent metals. Their
Fermi surfaces had been believed to be fully contained within the first Brillouin
zone of the fcc lattice without contact with the zone planes. However, Pippard
discovered in 1957 [3] through the measurement of the anomalous skin effect
that the Fermi surface of pure Cu has already touched the {111} zone planes.
Subsequently, the detailed structure of the Fermi surface of Cu, Ag and Au has
been accurately determined from the measurement of the de Haas–van Alphen
effect [1, 4].

Figure 6.5 shows the Fermi surface of pure Cu in the repeated zone scheme.
It is seen that the Fermi surface protrudes along the 〈111〉 direction and makes
simultaneous contacts with eight {111} zone planes. Because of this contact,
the Fermi surface is no longer isolated in the first zone but is multiply con-
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Figure 6.4. Density of states curve of bcc Li metal. A cusp is caused by the interac-
tion with the {110} zone planes of the first Brillouin zone. [F. S. Ham, Phys. Rev. 128

(1962) 2524]



nected to neighboring zones through the center of the hexagonal {111} zone
planes in the repeated zone scheme. The narrow region in contact with the
{111} planes is called a “neck”. In the figure, the orbit marked as “B100” is
drawn parallel to the {200} zone planes. This spherical orbit is called the
“belly” and corresponds to the maximum circular cross-section of the Fermi
surface. The neck diameter is experimentally determined to be 0.19p, 0.14p and
0.18p for Cu, Ag and Au, where p refers to the diameter of the belly in the
respective metals [1].

The E–k relations and corresponding density of states curve for pure Cu are
shown in Figs. 6.6(a) and (b), respectively. We mentioned above that its Fermi
surface has eight necks in the 〈111〉 directions. The location of the Fermi level
EF above the energy E

2
(kL), which is marked as L92 in Fig. 6.6(a), confirms the

presence of the neck.
As another unique feature of the electronic structure of noble metals, the

parabolic E–k relation is intervened by the less dispersive E–k curves due to 3d
electrons centered at about a few eV below the Fermi level. This means that the
4s and 4p free-electron-like states are hybridized with the 3d states to form a
composite band. In spite of strong hybridization, ten 3d electrons per atom are
distributed in a rather narrow energy range. This is why the 3d electron density
of states is very high, as shown in Fig. 6.6(b).

The Fermi surface of a noble metal should occupy only 50% by volume of
the first Brillouin zone of the fcc lattice. Nevertheless, we learned that the
Fermi surface of noble metals is in contact with the {111} zone planes. The
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Figure 6.5. The Fermi surface and the first Brillouin zone of pure Cu metal in the
periodic zone scheme. See Fig. 5.15 for symbols of symmetry points. [J. M. Ziman,

Adv. Phys. 10 (1961) 1]



reason for the contact has been interpreted as arising from the aforementioned
hybridization effect of the extended 4s and 4p states with more localized 3d
states at energies immediately below the Fermi level.

6.5 Divalent metals

As listed in Table 6.1, Ca and Sr are divalent fcc metals. The electronic config-
urations of the Ca free atom are composed of (1s)2, (2s)2, (2p)6, (3s)2, (3p)6 and
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Figure 6.6. (a) E–k relations and (b) the corresponding density of states curve of pure
Cu metal. Dotted data points in (b) represent the integrated density of states, i.e., the
total number of 3d, 4s and 4p electrons per atom integrated up to the energy E.
[V. L. Moruzzi, J. F. Janak and A. R. Williams, Calculated Electronic Properties of

Metals (Pergamon Press, 1978)]



(4s)2 electrons. The two outermost 4s electrons per atom contribute to the for-
mation of the valence band of Ca metal. Since the number of electrons per
atom, e/a, is equal to 2.0, it is just high enough to fill the first Brillouin zone.
However, a Fermi surface does exist, as is depicted in Fig. 6.7 in the extended
zone scheme. The Fermi surface marked by hatches indicates electrons over-
lapped into the second Brillouin zone across the points L. Naturally, the same
amount of holes must be left behind in the first zone. This is found at the
corners W in the first zone. This is why Ca becomes a metal in spite of e/a5

2.0. A metal is said to be compensated, when there exist an equal number of
holes and electrons in the two successive zones.

There is another group of divalent metals in the periodic table. It consists of
Be, Mg, Zn and Cd, all of which crystallize into the hcp structure. Here we
present the electronic structure of Zn metal. The two outermost 4s electrons
form the valence band in Zn metal. It may be noted that its narrow 3d band
can be ignored, since it is positioned slightly below the bottom of the valence
band and is scarcely hybridized with the valence electrons. The Fermi surface
of Zn metal calculated on the basis of the free-electron model is shown in Fig.
6.8 in the extended zone scheme. It is clear that electrons overlap into the higher
zone across the points G and K.

Figure 6.9 shows the cross-section of constant energy surfaces including the
Fermi surface of pure Zn and that of the first and second Brillouin zones cut
through the GL plane both in (a) the extended and (b) the reduced zone
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Figure 6.7. The Fermi surface and the first Brillouin zone of pure Ca. The hatched
regions represent electrons overlapped into the second zone across the points L. Holes
can be seen in the first zone around the points W. [A. P. Cracknell, The Fermi Surface

of Metals (Taylor & Francis Ltd, 1971)]



schemes. One can easily see how segments of holes in the second zone are
folded into the first zone by shifting them by appropriate reciprocal lattice
vectors and a continuous Fermi surface of holes is formed. The stereographic
Fermi surface of holes in the second zone is shown in Fig. 6.10 in the reduced
zone scheme. It is often called the “monster” from its appearance. It is known
that the free-electron model holds fairly well in Zn metal. However, it is inter-
esting to note that the Fermi surface in the reduced zone scheme looks signifi-
cantly different from the free-electron-like sphere.
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Figure 6.8. The free-electron Fermi surface and the Brillouin zone of pure Zn in the
extended zone scheme. Electrons are overlapped into higher zones across the points G,
L and K in the free-electron model. [C. H. Barrett and T. B. Massalski, Structure of

Metals and Alloys (McGraw-Hill, 1966)]

{002}

{002}

{101}

{100}

{100}

{101}

(b)(a)

Figure 6.9. Reduction of the second zone to the first zone in hcp Zn. (a) Cross-section
of the constant energy surfaces cut through GL in the extended zone scheme. The solid
curve corresponds to the Fermi surface of Zn. (b) Reduction of (a) into the first zone.
The Fermi surface of holes of Zn is shown by hatches. Electron overlaps across the
{101} zone planes are believed to be absent in pure Zn. [T. B. Massalski, U. Mizutani

and S. Noguchi, Proc. Roy. Soc. (London) A343 (1975) 363] 



6.6 Trivalent metals

Al, Ga, In and Tl are grouped together as IIIB trivalent metals. As their repre-
sentative, we consider Al metal, in which the free-electron model holds well
again. It is a fcc metal and its valence band is formed from two 3s and one 3p
electrons per atom. Figure 6.11 shows the free-electron sphere corresponding
to e/a53.0, together with the first and second Brillouin zones. Since its Fermi
surface is more expanded than that of the divalent Ca, the first zone is fully
occupied by electrons and, thus, the Fermi surface is absent there. However,
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Figure 6.10. Fermi surface of holes in the second zone of pure Zn in the reduced zone
scheme. The cross-section shown in Fig. 6.9 corresponds to that at the point V.
[C. H. Barrett and T. B. Massalski, Structure of Metals and Alloys (McGraw-Hill,

New York 1966)]

Figure 6.11. The free-electron Fermi surface and the first and second Brillouin zones
of fcc Al in the extended zone scheme. Electrons overlap into the third and fourth

zones.



electrons are overlapped into the third and fourth zones, leaving a large number
of holes in the second zone.

The E–k relations obtained from the band calculations for Al metal are
shown in Fig. 6.12. It is clear that electrons overlap into higher zones not only
across the energy gaps at the points L and X but also across those at the points
K and W. Figure 6.13 shows the Fermi surface of holes in the second zone in
the reduced zone scheme. Similarly, the Fermi surface of electrons in the third
zone, which is also named the “monster”, is shown in Fig. 6.14 in the reduced
zone scheme.
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Figure 6.12. E–k relations in pure Al. [V. L. Moruzzi, J. F. Janak and A. R. Williams,
Calculated Electronic Properties of Metals (Pergamon Press, 1978)]

Figure 6.13. The Fermi surface of holes in the second Brillouin zone of pure Al in
the reduced zone scheme. [W. A. Harrison, Pseudopotentials in the Theory of

Metals (W. A. Benjamin, New York, 1966)]



6.7 Tetravalent metals and graphite

Pb is a tetravalent fcc metal, in which two 6s and two 6p electrons per atom
form its valence band. The free-electron model is also relatively well applicable
to Pb metal. Hence, a Fermi sphere having a slightly larger diameter than that
of Al metal shown in Fig. 6.11 can be used as a guide and the Fermi surface is
constructed along the same lines as discussed for pure Al. We show in Fig. 6.15
only the Fermi surface of electrons in the third zone in the reduced zone
scheme. It can be seen that the Fermi surface is formed along the edge of the
Brillouin zone but that its diameter becomes certainly thicker and more
uniform than that of Al (see Fig. 6.14) because of an increased electron con-
centration e/a to 4.0. The Fermi surface of electrons of Pb in the third zone is
called the “jungle gym” because of the appearance of the multiply-connected
tube-like Fermi surface.

We have so far studied how the Fermi surface of representative metals
changes with increasing electron concentration e/a from 1.0 to 4.0. All of these
metals are characterized by the possession of a large Fermi surface. However,
there are several elements in the periodic table which exhibit an electronic band
structure intermediate between metals and semiconductors. They are called
semimetals. Graphite is typical of semimetals and forms its valence band from
two 2s and 2p electrons per atom. As shown in Fig. 6.16, the crystal structure
of graphite is hexagonal: a regular hexagonal network in the ab-plane is dom-
inated by covalent bonding, whereas the layers are bonded by the weak van der
Waals interaction.
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Figure 6.14. The Fermi surface of electrons in the third Brillouin zone of pure Al in
the reduced zone scheme. [A. P. Cracknell, The Fermi Surface of Metals (Taylor &

Francis Ltd, 1971)]



The essence of the electronic structure of graphite can be well extracted from
a two-dimensional lattice model [5]. As shown by hatches in Fig. 6.16, the unit
cell in the two-dimensional ab-plane contains two carbon atoms. The rectan-
gular cartesian coordinates are chosen with the origin O at the center of the
regular hexagon. The primitive translation vectors are then given by equation
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Figure 6.15. The Fermi surface of electrons in the third Brillouin zone of pure Pb.
The Fermi surface is called the “jungle gym”. [A. P. Cracknell, The Fermi Surface of

Metals (Taylor & Francis Ltd, 1971)]

Figure 6.16. Crystal structure of graphite. The unit cell in the two-dimensional lattice
model is marked by hatches and contains two atoms.



(5.53), in which a350. The corresponding reciprocal lattice vectors are easily
calculated by setting k 50 in equation (5.54). The first Brillouin zone turns out
to be a regular hexagon as expected from Fig. 5.17(a). This is shown in Fig.
6.17.

As noted above, there are two carbon atoms in the two-dimensional unit cell
and each carbon atom carries four valence electrons. Hence, we need to consider
a total of eight electrons per unit cell. According to the band calculations [5],
the 2s, 2px and 2py orbitals between the nearest neighbor carbon atoms hybri-
dize with one another to yield the bonding and antibonding bands in the ab-
plane (see Section 13.2). They are denoted as either the sp2 orbital or the s-band.

The remaining 2pz orbital oriented towards the c-axis can only weakly inter-
act with the neighboring 2pz orbitals in the ab-plane. Here a hybridization with
the 2s, 2px and 2py orbitals is essentially negligible. This yields relatively narrow
bonding and antibonding states, both of which are called the p-band. The
resulting E–k relations are shown in Fig. 6.18. The position of the Fermi level
is determined by putting six electrons in the bonding s-band and the remain-
ing two electrons in the bonding p-band, as is shown in Fig. 6.18. The Fermi
level is positioned at the energy which separates the bonding and antibonding
p-bands. Graphite in the two-dimensional model can be viewed as possessing
the band structure characteristic of a semiconductor with a vanishing energy
gap.

In real (three-dimensional) graphite, there is a weak interaction between the
layers and, hence, the effect along the c-axis must be taken into account. The
first Brillouin zone should become a regular hexagonal prism, as indicated in
Fig. 5.17(a). The interlayer interaction arises mainly from the 2pz orbitals. The
degeneracy in the p-band at the point P in the Brillouin zone is lifted as a result
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Figure 6.17. The first Brillouin zone in the two-dimensional lattice model for
graphite.



of the interlayer interaction.3 Indeed, as shown in Fig. 6.19, small ellipsoidal
Fermi surfaces of both electrons and holes have been observed through the
measurement of the de Haas–van Alphen effect and independently confirmed
by the band calculations [5,6]. A material characterized by the possession of
small Fermi surfaces of both electrons and holes is called a semimetal. The cal-
culated density of states curve of graphite is shown in Fig. 6.20. It can be seen
that the two bands slightly overlap each other so that electrons and holes
coexist at the Fermi level.
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3 The states in the p-band are doubly degenerate at the point P in the two-dimensional lattice model. In the
three-dimensional analysis, the unit cell becomes a regular hexagonal prism in which four carbon atoms
are contained. A new E–k relation emerges along the HKH direction as a result of the interlayer interac-
tion. It consists of four bands: non-degenerate E1 and E2 bands and a doubly-degenerate E3 band [5].

E
ne

rg
y 

(R
y)

2

1

3

2

1

Figure 6.18. E–k relations of graphite obtained from the two-dimensional lattice
model. [G. S. Painter and D. E. Ellis, Phys. Rev. B1 (1970) 4747]

Electrons
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Figure 6.19. The Fermi surface of electrons and holes of pure graphite in the reduced
zone scheme. The point K corresponds to the point P in Fig. 6.17. [A. P. Cracknell,

The Fermi Surface of Metals (Taylor and Francis, Ltd, 1971)]



6.8 Pentavalent semimetals

Among elements in group VB in the periodic table, As, Sb and Bi are known
as semimetals. Owing to the possession of small Fermi surfaces, de Haas and
van Alphen were able to measure in 1930, for the first time, the oscillatory mag-
netic susceptibility with increasing applied magnetic field for a Bi single crystal,
the details of which will be described in Section 7.2. Its electronic structure was
analyzed by Mott and Jones in 1936 [7,8]. Thus, Bi was one of the few elements
the electronic structure of which was explored both experimentally and theo-
retically as early as the 1930s.

In spite of the possession of an odd number of electrons per atom, its electri-
cal conductivity is very low. This suggests the presence of a very small Fermi
surface in an almost completely filled zone. The crystal structure of Bi belongs
to the trigonal space group with two atoms per unit cell but is conveniently con-
structed from a simple cubic lattice by slight displacement of atoms. We take a
rhombohedral unit cell containing two atoms in a simple cubic lattice, as shown
in Fig. 6.21, and distort it so as to sharpen the rhombohedral angles from 60°
to a. Then, a central atom marked BC is shifted along its diagonal axis. The
first Brillouin zone is constructed by choosing the rhombohedral unit cell con-
taining two atoms. Thus, it can accommodate ten electrons per unit cell because
of the donation of two 6s and three 6p outermost electrons per atom.

Jones [8] proposed that the zones bounded by six {11̄0} side planes, three

6.8 Pentavalent semimetals 141

Energy  (eV)

holeselectronsN
(E

)(
10

20
st

at
es

/e
V

 c
m3 )

Figure 6.20. Density of states curve near the Fermi level in pure graphite. The Fermi
level is located at about 20.02 eV, since the origin of the energy is taken at the point H

in the E3 band. [M. S. Dresselhaus et al., Phys. Rev. 15B (1977) 3180]



{221} top planes and three {221} bottom planes can accommodate ten elec-
trons per unit cell with considerable energy gaps across these zone boundaries.
This is called the Jones zone.4 Bi would then have become an insulator, pro-
vided that ten electrons per unit cell just fill the Jones zone. However, in order
to account for a low but finite electrical conductivity of Bi, Jones argued that
a small number of electrons overlap outside of the Jones zone across the center
of the {110} planes, leaving a compensating number of holes at some corners
of the zone, as shown in Fig. 6.22 (see more details in [1]).

Both experimental and theoretical studies of the determination of the Fermi
surface topology have been called “Fermiology”. As can be understood from
the discussion above, the Fermi surface of semimetals like graphite and Bi is
much smaller than that of typical metals. The smaller the Fermi surface, the
more easily the signal of the de Haas–van Alphen effect measurement can be
detected (see Section 7.2). The possession of a small Fermi surface coupled
with an ease in the preparation of a single crystal certainly enabled exploration
of the electronic structure of Bi in the very early days of investigations on the
Fermiology.
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4 Certain sets of planes in reciprocal space, which have large energy gaps across them, enclose a symmetri-
cal region containing about the same number of states as the number of valence electrons per atom or unit
cell. Such a region is called the Jones zone or large zone, since its volume is usually larger than that of the
true Brillouin zone [8]. The Jones zone for the hcp lattice is shown in Fig. 5.17(c). The Jones zone is not
necessarily fully filled with an even number of electrons per atom or unit cell.

Figure 6.21. Crystal structure of Bi. The rhombohedral lattice can be formed by
reducing a from 60o and shifting the body-centered atom (BC) down the diagonal
of the rhombohedron. [J. M. Ziman, Electrons and Phonons (Clarendon Press,

Oxford, 1962)]



6.9 Semiconducting elements without and with dopants

The elements C (diamond), Si, Ge and Sn(a) belong to the group IVB elements
in the periodic table and all of them are covalently bonded. These elements
possess the diamond structure, as illustrated in Fig. 6.23. It is composed of two
interpenetrating fcc lattices and, hence, the structure is fcc but with two atoms
in each unit cell. As a result, the first Brillouin zone is the same as that for the
ordinary fcc structure. In Si, two 3s and two 3p electrons per atom are hybri-
dized to form directionally-bonded states and the Brillouin zone is completely
filled with eight electrons per unit cell. Hence, no Fermi surface exists.
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Figure 6.22. The Fermi surface of electrons and holes of pure Bi in the Jones zone.
[J. M. Ziman, Electrons and Phonons (Clarendon Press, Oxford, 1962)] 

Figure 6.23. Crystal structure of Si in the diamond structure. There are eight atoms
in the unit cell. [W. Shockley, Electrons and Holes in Semiconductors (van Nostrand

Co., 1950)]



The band structure calculations of Si have been performed, using the
pseudopotential method described in Section 8.7. The E–k relations and the
resulting density of states of pure Si are shown in Figs. 6.24 and 6.25, respec-
tively, where the binding energy is scaled relative to the top of the valence band.
The valence band is formed from a combination of the bonding orbitals on the
two sublattices and is fully filled with eight electrons per unit cell. The conduc-
tion band, which is formed from antibonding combinations of the orbital wave
functions, is unoccupied and is separated from the valence band by an energy
gap DEg. As can be seen from Fig. 6.24, the top of the valence band is found at
point G but the bottom of the conduction band lies at 0.82X along the GX
directions. A difference in energy between these two states gives rise to the
energy gap DEg50.48 eV in the band calculations.5

Electrons in the valence band begin to be thermally excited with increasing
temperature. Once electrons are excited into the conduction band, an equal
amount of holes is left behind in the valence band. The material of this type is
called an intrinsic semiconductor. The electronic structure of intrinsic semi-
conductors is often conventionally illustrated as shown in Fig. 6.26. The Fermi
level is located in the middle of the forbidden gap, as long as the mass of the
electron in the conduction band is equal to that of the hole in the valence
band [9]. The temperature dependence of the conductivity s is almost linear
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5 The calculated energy gap of 0.48 eV is underestimated. Energy gaps of typical semiconductors are as
follows: 5.3 eV for C (diamond), 1.1 eV for Si, 0.7 eV for Ge, 2.8 eV for SiC, 4.6 eV for BN and 1.4 eV for
GaAs.

Figure 6.24. E–k relations of pure Si. DEg indicates the energy gap. [M. T. Yin and
M. L. Cohen, Phys. Rev. B26 (1982) 5668] 



on the logs–1/T plot for both Si and Ge over a wide temperature range above
room temperature, being typical of intrinsic semiconductors [9].

Semiconducting properties are known to be very susceptible to the addition
of very small, controlled amounts of intentionally added “impurities” or alloy-
ing elements. Such alloys are called extrinsic semiconductors and such addi-
tions dopants. Let us take Si as a host semiconductor. Its semiconducting
properties depend significantly on whether pentavalent or trivalent impurities
are added.

Pentavalent atoms like P, As and Sb from group VB of the periodic table will
have one more valence electron than is required for the covalent bonding. The
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Figure 6.25. Density of states curve of pure Si calculated from the E–k relations in
Fig. 6.24. The hatched area represents the valence band filled with electrons. The con-
duction band is separated from the valence band by the energy gap. [M. T. Yin and

M. L. Cohen, Phys. Rev. B26 (1982) 5668] 
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Figure 6.26. Schematic illustration of the band structure of an intrinsic semiconduc-
tor. The binding energy is measured in a vertical direction. The valence band and con-
duction band are separated by the energy gap DEg. It is 1.1 eV for Si. Energies at the
top of the valence band and the bottom of the conduction band are denoted as Ev and

Ec, respectively.



extra electron bound to the impurity atom may be easily excited into the con-
duction band, provided that the temperature is high enough to promote it there
from a level in the gap. This leaves a positive ion behind and four remaining
valence electrons which form a covalent bond in the same manner as in the host
Si atoms.

As is clear from the argument above, the impurity level is formed just below
the bottom of the conduction band and an electron in the impurity level can
be easily excited into the conduction band even near room temperature. This is
illustrated in Fig. 6.27(a). The impurity level is called the donor level, since it
donates electrons to the conduction band. The excited electrons in the conduc-
tion band serve as a carrier with a negative charge. Therefore, the semiconduc-
tors doped in this way are called n-type semiconductors.

In contrast, trivalent atoms like B, Al, Ga and In from group IIIB in the peri-
odic table possess one electron less than the number required for covalent
bonding. Hence, an electron from one of the adjacent Si atoms will enter the
orbit about the trivalent impurity atom. This causes the trivalent atom to be
negatively charged and the host Si atoms to lose an electron in this process. As
illustrated in Fig. 6.27(b), the impurity level is formed just above the top of the
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Figure 6.27. Schematic illustration of the band structure of a doped semiconductor.
(a) n-type semiconductor. The energy of the donor level is marked Ed. The energy
difference Ec2Ed is about 0.045 eV for P in Si. (b) p-type semiconductor. The energy
of the acceptor level is marked Ea. The energy difference Ea2Ev is about 0.045 eV
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valence band and can accept electrons from the valence band, thereby leaving
holes in the valence band. Hence, the impurity level is often called the accep-
tor level. Holes in the valence band now serve as a carrier with a positive charge
(see Section 10.5). Thus, the semiconductors containing such dopants are
called p-type semiconductors.

It is possible to prepare both n- and p-type regions in a Si single crystal,
which are separated from one another by a narrow interface region less than 1
micrometer thick. The interface is called the p–n junction and exhibits very
important electrical properties known as rectification and transistor action.
Rectification is a phenomenon in which a large current flows when a voltage is
applied across the junction in one direction but only a small current will flow
when the direction of the voltage is reversed. Its mechanism can be explained
on the basis of the electronic structure illustrated in Fig. 6.27 [9].
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Chapter Seven

Experimental techniques and principles of electronic
structure-related phenomena

7.1 Prologue

Experimental techniques and principles which provide information about the
electronic structure of metals are presented in this chapter. They may be clas-
sified into three types of experiments: first, Fermiology or the determination
of the Fermi surface; second, determination of the energy spectra for occupied
and unoccupied electronic states across the Fermi level; and third, measure-
ments associated with the E–k dispersion relations.

7.2 de Haas–van Alphen effect

There are several experimental techniques for the determination of the Fermi
surface topology. Among them, measurement of the de Haas–van Alphen
effect (hereafter abbreviated as dHvA effect) has long been recognized as one
of the most powerful and accurate methods [1]. The dHvA effect refers to the
phenomenon in which the magnetic susceptibility in a single crystal oscillates
as a function of the applied magnetic field at low temperatures. The oscillations
of the magnetic susceptibility were observed for the first time in 1930 by de
Haas and van Alphen for a Bi single crystal cooled to liquid-hydrogen temper-
atures. As will be described later, an extremal area of the cross-section of the
Fermi surface normal to the applied magnetic field can be deduced from
the period of the oscillations. In order to understand the physics, we begin by
studying the behavior of the conduction electron in magnetic field.

The conduction electron moving with the velocity v in the presence of electri-
cal and magnetic fields experiences the Lorentz force given by

F5(2e)(E1v3B) F5(2e) E1 3H [CGS], (7.1)241v
c3
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where (2e) is the electronic charge and c is the speed of light. In this section,
we ignore the first term and consider only the effect of the magnetic field on the
motion of the conduction electron. Equation (7.1) implies that the electron
rotates in a closed orbit, if the velocity v has no component along the magnetic
field B. If there is a non-zero component of the velocity in the direction of B,
the electron will be subjected to a helical motion. In any event, the magnetic
field alters the direction of v but not its magnitude. Thus, the energy of the elec-
tron is kept unchanged.

As will be discussed in Section 10.4, the force F exerted on the Bloch elec-
tron of wave vector k is generally expressed as F5"d k/dt, where " is the Planck
constant divided by 2p. Its insertion into equation (7.1) yields

5(2e)(v3B), 5 (v3H) [CGS], (7.2)

where B (5m0H) is the applied field. Thus, the motion of an electron of wave
vector k can be described in reciprocal space as rotating in a closed orbit on a
constant energy surface normal to the magnetic field B. By integrating equa-
tion (7.2) with respect to time, we obtain

k2k05 (r3B), k2k05 (r3H) [CGS], (7.3)

where r is the position vector of the electron and k0 is a constant. Equation (7.3)
means that the trajectory of the electron in reciprocal space has the same shape
as that in real space but is rotated by 90° and scaled by the factor (2e)B/".

The closed orbit of the Bloch electron in the magnetic field is quantized in
the same manner as the electron orbit of a free atom. The Bohr–Sommerfeld
quantization rule for the motion of the Bloch electron in the magnetic field is
explicitly written as

r("k1(2e)A)ds5 n1 ", r "k1 ds5 n1 " [CGS], (7.4)

where n is a positive integer including zero and A is the vector potential defined
as B5rotA. The integral in equation (7.4) is carried out over the closed orbit
of the electron in real space. Using the Gauss theorem, we can rewrite the
second term in equation (7.4) as

(2e)r Ads5(2e) ee rotAdS5(2e) ee BdS5(2e)BS, (7.5)

where S represents the area of the closed orbit in real space. The first term in
equation (7.4) is also rewritten by inserting equation (7.3) with k050:

21
212( 2 e)A

c121
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1( 2 e)
"c 21( 2 e)
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r"k ds52(2e)B·rr3ds522(2e)BS. (7.6)

By combining equations (7.5) and (7.6), we obtain

eBS5 n1 ", (7.7)

where the electronic charge e appears as a positive quantity in this equation.
Let us denote the area of the closed orbit in reciprocal space as A(«), where

« represents the constant energy of the electron. As is clear from equation (7.3),
the area A(«) is related to the area S of the closed orbit in real space through
the relation

A(«)5 S. (7.8)

Equation (7.7) is rewritten as

An(«)5 n1 , (7.9)

where the suffix n in A(«) emphasizes that the area enclosed by the electron
orbit is quantized and can take only discrete sets of values corresponding to
the principal quantum number n. We see from equation (7.9) that the enclosed
area differs by 2peB/", when the electron jumps from a given orbit to an adja-
cent one.

Suppose that the magnetic field is applied along the z-axis. As described
above, the Bloch electron circulates in the kxky-plane normal to the magnetic
field in reciprocal space. This means that its degree of freedom is reduced to
one in the kxky-plane and, hence, only a single parameter n is needed to describe
its stationary circular motion. In other words, the magnetic field deprives the
electron of one degree of freedom in its three-dimensional motion. Indeed,
three independent quantum numbers kx, ky and kz of the wave vector k are
reduced to two quantum numbers n and kz in the presence of a magnetic field
along the z-axis.

As a consequence, the spherical Fermi surface of the free electron is replaced
by a set of concentric cylinders whose axis is along the z-direction. This is illus-
trated in Fig. 7.1(a). Note that the quantum number kz along the z-direction is
not affected by the magnetic field at all. The concentric circles specified by the
principal quantum number n50, 1, 2, 3, . . . can be obtained by projecting the
Fermi surface of the concentric cylinders onto the kxky-plane, as shown in Fig.
7.1(b).

We are now ready to study the oscillatory behavior of the magnetic

21
2112peB
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1eB
" 2

2

21
21
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susceptibility, i.e., the dHvA effect. For the sake of simplicity, we assume that
the metal we are considering is essentially non-magnetic and obeys the free-
electron model. The magnetic field is applied along the z-axis. The energy
eigenvalue of the free electron in the magnetic field is obtained as

«5 n1 "vc1 (n50, 1, 2, . . .), (7.10)

where n is the principal quantum number and vc is defined as vc5eB/m (see
Exercise 7.3). The corresponding «2kz relations consist of a discrete set of
parabola with different integers n, as shown in Fig. 7.2. They are called the
Landau levels. It is clear that each electronic state is specified by a set of two
quantum numbers n and kz.

A change in the energy distribution of the conduction electrons, say at kz5

0, is illustrated schematically in Fig. 7.3, when the applied magnetic field is

"2k2
z

2m21
21
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Figure 7.1. (a) The free-electron Fermi surface in the presence of a magnetic field
along the z-axis. (b) Its projection onto the kxky-plane.



increased from H1 to H3. Since vcin equation (7.10) is proportional to the mag-
netic field, the separation of the adjacent Landau levels is widened with
increasing magnetic field. The wider the energy separation, the more electrons
should be accommodated in a given level. For instance, the lowest level with
n50 is increased with increasing magnetic field from H1 to H2. Thus, the energy
of electrons with n50 is certainly increased. But the level with n50 at H5H2

can accommodate more electrons, since vcis increased. Thus, some of the elec-
trons with n51 at H5H1 fall to the lowest state with n50 at H5H2, contrib-
uting to a lowering of the total energy. In this way, the net change in the internal
energy with varying magnetic field is expected to be small. Indeed, it has been
theoretically proved that the net change in the internal energy vanishes, as long
as the Landau levels are below the Fermi level EF. But the situation at EF is
different, since the cancellation effect mentioned above does not occur.

The internal energy U of the conduction electrons depends critically on the
closeness of the highest occupied Landau level to the Fermi level EF. As shown
in Fig. 7.3(b), the internal energy is minimized at H5H1, where the highest
occupied Landau level has just passed EF and is emptied. These electrons must
be absorbed in the next highest Landau level below EF. This is possible, since
the area An(«) in equation (7.9) increases with increasing magnetic field. With
increasing magnetic field, the highest Landau level moves up until it coincides
with EF at H5H2. Here the internal energy is a maximum. Further increase in
the field raises this Landau level above EF again so that the level is emptied. As
a result, the internal energy is decreased at H5H3. This process is repeated
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Figure 7.2. «–kz relation given by equation (7.10). The Landau level refers to each
parabola specified by n.



every time the Landau level passes the Fermi level, resulting in oscillations of
the internal energy of the conduction electrons as a function of the magnetic
field.

The oscillating internal energy of the conduction electron system is reflected
in various electronic properties. The magnetic susceptibility is given by the
differentiation of the internal energy with respect to the magnetic field. Hence,
the magnetic susceptibility oscillates as a function of the magnetic field. This
is the dHvA effect. The specific heat is derived from the differentiation of the
internal energy with respect to temperature. Hence, the specific heat also oscil-
lates with increasing magnetic field. This is known as magneto-thermal
oscillation. The de Haas–Shubnikov effect refers to the oscillations of the
electrical resistivity as a function of a magnetic field. Similarly, an oscillatory
behavior is observed in the Hall coefficient and the thermoelectric power. The
present discussion of the dHvA effect is rather qualitative. A more rigorous
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Figure 7.3. (a) Magnetic field dependence of the Landau level at absolute zero. With
increasing magnetic field, the separation between the adjacent levels is widened and the
population of electrons marked by solid circles in each level increases. The Landau
level with n50 is shown to be raised with increasing magnetic field. (b) Corresponding

change in the internal energy.



mathematical treatment of the dHvA effect can been found in the literature [2].
Let us denote magnetic fields as B1 (5m0H1) and B2 (5m0H2), when the two

successive Landau levels n and n21 pass the Fermi level. From equation (7.9),
we can derive the relation

D . (7.11)

We see that, if the dHvA signal is plotted as a function of an inverse of the
magnetic field, an extremal cross-section of the Fermi surface, A(«), normal to
the applied field can be deduced from the period of oscillations given by equa-
tion (7.11) (see Exercise 7.2).

The Fermi surface topology in a given metal or semimetal can be determined
by measuring the quantum oscillations in magnetic fields applied along differ-
ent directions relative to the principal crystal axes of a single crystal. An accu-
rate measurement of the period of the oscillations can be made, even though
the signal itself is rather weak. The Fermi radius, say in pure Cu, can be deter-
mined with an accuracy of 0.001%. Figure 7.4 shows the first observation of
the oscillatory magnetic susceptibility of a Bi single crystal by de Haas and van
Alphen in 1930. Note here that the applied field, not its inverse, is taken as the
horizontal axis and, hence, the oscillation is not periodic. The data for pure Zn
measured in 1962, i.e., 32 years after the pioneering work by de Haas and van
Alphen are shown in Fig. 7.5 for comparison.

The measurement of the quantum oscillations discussed above depends
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Figure 7.4. Oscillatory behavior of the magnetic susceptibility of a Bi single crystal
measured by de Haas and van Alphen in 1930. Open circle and triangle refer to the data
when the magnetic field is applied parallel to and perpendicular to the two-fold axis of
the sample, respectively. The measuring temperature was 14.2 K. [W. J. de Haas and
P. M. van Alphen, Communications from the Physical Laboratory at the University of

Leiden 212a (1930) 3]



critically on the formation of the Landau level. The level is formed as a result
of the revolving motion of the conduction electron caused by the Lorentz force
in the magnetic field. The higher the applied magnetic field, the smaller its
revolving radius is (see Exercise 7.3). The revolving motion would be disturbed
by scattering of the electrons by impurities and phonons. The Landau levels
and, hence, the quantum oscillations will disappear if the electron is scattered
before the completion of a revolution. Therefore, the electron mean free path
must be long enough to guarantee a revolving motion in the magnetic field. It
requires a high purity single crystal and the measurement must be made at very
low temperatures under high magnetic fields. This certainly limits the materi-
als that can be studied. Indeed, the dHvA effect has been measured exclusively
on pure elements and intermetallic compounds with a stoichiometric compo-
sition, in which the electron mean free path is very long at low temperatures.
Fermiology of pure elements has been well established through extensive
studies of the quantum oscillations in the period 1960–70. In contrast, progress
in the Fermiology of alloys has been much slower. The Fermi surface of dilute
alloys containing less than 1 at.% solute atoms has been studied by the dHvA
effect only in the late 1970s and the 1980s.

7.3 Positron annihilation

The positron annihilation experiment is known as an alternative technique to
determine the topology of the Fermi surface [3]. For example, the radioactive
isotope Na22 or Cu64 decays by emitting a positron, which can be used as a
probe to study the Fermi surface. A positron with high energy, when penetrat-
ing into a metal sample, gradually loses its kinetic energy by interacting with
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Figure 7.5. dHvA oscillations of pure Zn measured by the torque method.
Oscillations with two different periods can be seen. They are attributed to the two
extremal areas of the arm in the “monster” shown in Fig. 6.10. [A. S. Joseph and 

W. L. Gordon, Phys. Rev. 126 (1962) 489]



the electron clouds in the metal. Its energy is eventually decreased to the order
of the thermal energy kBT, 0.025 eV at 300 K. This low-energy positron, which
is called a thermal positron, finally annihilates with a conduction electron in
the metal. At this incident, a pair of gamma-rays are emitted in order to con-
serve the energy and momentum between the annihilating electron and posi-
tron. This process is shown schematically in Fig. 7.6. Here the momentum of
the thermal positron is ignored relative to "k of the conduction electron. By
denoting the angle between the two gamma-rays as u, we obtain

"kz52mc sin <mcu (7.12)

from the momentum conservation law. Equation (7.12) indicates that the meas-
urement of the angle u between the pair of gamma-rays enables us to deter-
mine the momentum component kz of the conduction electron.

A typical positron annihilation setup is illustrated in Fig. 7.7. A sample is
mounted between the pole pieces of a magnet, which serves to focus the posi-
trons from a radioactive source like Na22 onto the face of the sample. The two
gamma-ray detectors equipped with NaI(Tl) scintillators are located behind

1u

22
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Figure 7.6. A pair of gamma-rays emitted upon the annihilation of the positron and
electron. The momenta of the electron, positron and gamma-ray are denoted as "kz,

0 and mc, respectively.



lead slits and are connected through a coincidence circuit in order to detect a
pair of gamma-rays emitted simultaneously upon the annihilation of the posi-
tron with an electron. The angle between the two photons (or a pair of gamma-
rays) is nearly 180º within a few milliradians. Because of such a small deflected
angle, a “long-slit” geometry has been devised.

Its principle is illustrated in Fig. 7.8. Suppose that one of the two photons is
detected by a counter c1 and that its partner photon will hit the plane of the
counter c2 at coordinates Lu and Lf, where L is the distance from the sample.
The value of L must be very large. For instance, Lu amounts to the order of a
millimeter when L is 10 m, since the angles u and f are only a few milliradians.
As is clear from equation (7.12), the momentum components pz and py of the
annihilating electron can be deduced from the relations u5pz /mc and
f5py/mc, respectively.

The usual “long-slit” setup uses two long counters with horizontal slits,
both of which subtend a large horizontal angle so that the momentum distri-
bution over the y-component can be integrated. As is clear from the setup, the
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Figure 7.7. Principles of the positron annihilation technique.
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Figure 7.8. A “long-slit” setup for counting a pair of gamma-rays upon annihilation
of the positron and electron.



x-component is also integrated. We can measure the coincidence rate N( pz) as
a function of pz by shifting one of the horizontal slits relative to the other along
the z-axis. The N( pz) measured by the long-slit geometry is given by

N( pz)5ee r(p)dpxdpy, (7.13)

where px, py and pz are the three components of the momentum of the annihi-
lating electron and r(p) is the density of electrons with the momentum p.

For the sake of simplicity, a spherical Fermi surface is assumed. The number
of conduction electrons at a given pz must be proportional to the area A( pz) of
its cross-section normal to the pz-axis. As is shown in Fig. 7.9(a), we have

N( pz)~A( pz)5p( p2
F2p2

z). (7.14)

It is now clear that the resulting N( pz)2pz curve in the free-electron model
should be parabolic. This is shown in Fig. 7.9(b). The value of pz at which
N(pz)50 yields the Fermi momentum or the Fermi cut-off. The N( pz)2pz spec-
trum is called the angular correlation curve in positron annihilation measure-
ments.

The angular correlation curve in real metals always deviates from a parab-
ola owing to a departure from the free-electron model. Fujiwara and Sueoka
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Figure 7.9. (a) The cross-section of the free-electron Fermi sphere cut at a given pz
parallel to the kxky-plane. (b) The corresponding angular correlation curve.



were the first to confirm the presence of the neck along the 〈111〉 direction of
a Cu single crystal by positron annihilation measurements. Their data are
reproduced in Fig. 7.10. The presence of the neck can be clearly observed in
the angular correlation curve.

The positron annihilation measurement is not as accurate as the dHvA
effect. However, as is clear from its principle, it does not depend on the mean
free path of the conduction electron. Hence, the positron annihilation tech-
nique is applicable not only to concentrated crystalline alloys but also to non-
periodic substances like liquid metals and amorphous alloys. It is also true that
the measurement does not necessarily require low temperatures. There is,
however, a serious drawback in positron annihilation experiments because of
the possession of a positive charge: the positron tends to be repelled from the
vicinity of positive ions and, instead, is attracted to lattice defects like vacan-
cies. Therefore, caution is needed to check if the observed electronic structure
is free from disturbances due to such defects.
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Figure 7.10. (Lower) Angular correlation curve for pure Cu. (Upper) Schematic view
of its Fermi surface. [K. Fujiwara and O. Sueoka, J. Phys. Soc. Jpn 21 (1966) 1947]



7.4 Compton scattering effect

The x-ray Compton scattering experiment is known to serve as a tool to extract
information similar to the angular correlation curve in the positron annihila-
tion measurement [4]. Compton discovered in 1923 that x-rays scattered from
elements like graphite have a wavelength longer than that of the incident beam.
This is the Compton effect, as already mentioned in Section 1.2 in connection
with the historical survey on the electron theory of metals.

Figure 7.11 illustrates the scattering event of the incident x-ray photon with
an electron at rest. The energy conservation law can be stated as

E15E21Eel, (7.15)

where E1 is the energy of the incident photon and E2 and Eel are the energies of
the photon and electron, respectively, after scattering. This is explicitly written
as

hn15hn21mc2 , (7.16)

where b is the ratio of the velocity v of the electron after scattering over the
speed of light c. We use the momentum conservation law in two directions: one
parallel to the incident x-ray and the other perpendicular to it. They are
expressed as

cosu1 cosf (7.17)
mcb

Ï1 2 b2

hn1

c
5

hn2

c

1 1

Ï1 2 b2 2 12
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v

Figure 7.11. Energy and momentum conservation upon scattering of a photon with
an electron at rest.



and

05 sinu2 sinf, (7.18)

where u and f represent the scattering angles of photon and electron relative
to the incident beam, respectively, as indicated in Fig. 7.11.

We can rewrite the equations above in terms of the wavelengths l15c/n1 and
l25c/n2 for the incident and scattered photon, respectively. The variable f is
eliminated from equations (7.17) and (7.18) by making use of the trigonomet-
ric relation sin2f1cos2f51. Then we obtain the relation

2m2c2. (7.19)

Equation (7.16) is also rewritten in terms of the wavelength and is squared:

2 12mch 1m2c25 . (7.20)

By subtracting equation (7.19) from equation (7.20), we obtain the well-known
relation:

Dl5l22l15 sin2 . (7.21)

It is now clear that the wavelength of the x-ray photon, when scattered by an
angle u after collision with an electron at rest, should become longer than that
of the incident x-ray by the amount given by equation (7.21). It is also true that
the shift of the wavelength depends only on the scattering angle and is inde-
pendent of the material exposed to the x-ray photons. For instance, the shift is
0.002 43 nm when u5p/2.

As opposed to the prediction from equation (7.21), the “Compton scattered”
x-ray line is always broader when measured in a metal. In the treatment
described above, the electron is assumed to be at rest. This is certainly not true
in a metal. The conduction electron has its own momentum distribution even
at absolute zero as a result of the Pauli exclusion principle. A collision of
photons with a moving electron can be properly taken into account as a
Doppler effect. A shift of the wavelength of the scattered x-ray photons must
be given as a sum of equation (7.21) and the term arising from the Doppler
effect:

Dl5 sin2 12(l1l2)
1/2 sin , (7.22)1u
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where pz represents the component of the electron momentum along the direc-
tion of the scattered photon. The broadening of the Compton scattered line is
due to the fact that the scattered x-ray profile reflects the electron momentum
distribution through the Doppler term in equation (7.22).

The Compton profile J( pz) is determined by the probability that the scat-
tered electron has a component of momentum pz:

J( pz)5eer(p)dpxdpy, (7.23)

where px, py and pz are the three components of the electron momentum p and
r(p) represents the density of electrons with momentum p. In the case of the
free-electron model, equation (7.23) is easily reduced to

J( pz)5p2
F2p2

z ( p#pF)
and

50 ( p.pF), (7.24)

where pF is the Fermi momentum (see Exercise 7.4).
As is clear from the argument above, we see that information similar to the

angular correlation curve in the positron annihilation experiment can be
derived from the Compton experiment. The determination of the electron
momentum distribution from the Compton effect does not rely on the mean
free path of the conduction electron. Hence, it can be equally applied to non-
periodic substances like amorphous alloys. Recently, a substantial improve-
ment in the resolution has been achieved by making use of very intense x-rays
emitted from a synchrotron radiation source. It is also worth noting that, in
contrast to the positron annihilation, the Compton measurement utilizes an
electromagnetic wave as a probe and, hence, is free from the difficulties asso-
ciated with the preferential annihilation of positrons with lattice defects in a
sample.

7.5 Photoemission spectroscopy

The electronic structure of a solid can be explored by analyzing the energy dis-
tribution of photoelectrons emitted upon irradiation of a sample by electro-
magnetic waves [5–7]. Ultraviolet rays in the energy range 10–50 eV and
characteristic x-rays have both been used as irradiating sources in the labora-
tory setup. Ultraviolet photoemission spectroscopy uses ultraviolet rays as an
irradiating source (UPS). A helium gas discharge lamp has often been
employed to produce ultraviolet rays with energies of 21.22 and 40.82 eV. Its
natural line width is very sharp and is in the neighborhood of 1 meV. The char-
acteristic Ka emission lines of an x-ray tube, especially Mg-Ka (1253.6 eV) and
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Al-Ka (1486.6 eV) lines, have also been frequently employed. The technique is
referred to as x-ray photoemission spectroscopy and is abbreviated as XPS. A
typical natural line width is 1.0–1.4 eV and is much wider than that of the UPS
irradiating source. However, a curved quartz crystal monochrometer can be
fitted to the Al-Ka source to suppress unwanted radiation and reduce its line
width to as small as 0.16 eV. The principle of a typical spectrometer is illus-
trated in Fig. 7.12.

More recently, a very intense radiation with an arbitrary wavelength in the
energy range 10 to several 100 eV is available from a synchrotron radiation
accelerator. The availability of synchrotron radiation has eliminated the need
for the separate disciplines of the UPS and XPS techniques, but both tech-
niques are still frequently employed in many laboratories.

The basic idea of why the photoemission spectrum provides information on
the electronic structure of a given substance is illustrated in Fig. 7.13. In both
the UPS and XPS techniques, a monochromatized radiation impinges on the
surface of a sample kept in a high vacuum of 1029–10210 Torr. The electron at
the Fermi level can escape from a metal, provided that the radiation is strong
enough to excite it beyond the work function f. Further higher-excitation
energy is needed to “pull out” electrons below the Fermi level. Since the energy
hv of the exciting photons is kept fixed, the binding energy EB of the electronic
state relative to the Fermi level can be determined by measuring the kinetic
energy Ekin of the photoelectron:
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Figure 7.12. Schematic illustration of a photoelectron spectrometer. Photoelectrons
emitted from a sample are deflected in roughly circular orbits and focused on a multi-

channel detector by which their energies are analyzed.



Ekin5hn2f2EB. (7.25)

The photoemission process comprises three processes: (1) electrons are first
optically excited to states at higher energy, (2) the photoexcited electrons move
through the lattice to the surface of a sample and (3) they escape from the
surface into vacuum. The number of photoelectrons emitted from the surface
of a sample is then expressed as
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Figure 7.13. Relationship between the electronic structure and the photoemission
spectrum. The electronic structure of pure Al is taken as an example. The XPS

spectrum is schematically shown in the lower diagram.



n(Ekin,hn)~Ni(E )·Nf (E1hn)·f (E,T )·sopt(E, hn)·Pt(E,hn)·Pe(E,hn), (7.26)

where Ni(E ) is the initial density of states at the energy E, Nf (E1hn) is the final
density of states at the energy E1hn, f (E,T ) is the Fermi–Dirac distribution
function at temperature T, sopt(E, hn) is the optical transition probability or an
average cross-section for all states at the energy E, Pt(E,hn) is the electron trans-
port function and Pe(E,hn) is the escape function. The measured intensity
I(Ekin,hn) of emitted photoelectrons is proportional to the number of photo-
electrons n(Ekin,hn) but is perturbed by the natural line width of the photon
source and the spectrometer resolution. It is therefore expressed as

I(Ekin,hn)~[n(Ekin,hn)·SA(Ekin)]·RA(Ekin,hn), (7.27)

where SA(Ekin) denotes the analyzer sensitivity and RA(Ekin,hn) the total reso-
lution function determined by the photon source and the spectrometer, which
is accounted for by convolution.

We wish to extract information about the initial density of states Ni(EB) at
the binding energy EB from the measured photoelectron spectra. However, this
does not always represent well the Ni(EB) profile because of the presence of
several correction terms in equation (7.26). In particular, the final density of
states Nf (EB1hn) significantly affects the measured spectrum when the excita-
tion energy is very low, say below 10 eV. We will discuss this point later.

There are other correction terms in equation (7.26). The measurement is
carried out at a finite temperature T. Thus, the Fermi–Dirac distribution func-
tion f (E,T ) thermally smears the density of states at the Fermi level, as dis-
cussed in Section 3.3. The optical transition probability or the photoionization
cross-section sopt(E, hn) also plays an important role. This term represents the
strength of the interaction between the incident photon and the electron in a
solid. The subshell photoionization cross-section of various elements in the
periodic table has been calculated in the excitation energy range 10.2 to 8047.8
eV by Yeh and Lindau [8]. The observed spectrum should be analyzed, using
this tabulated data as a guide.

Because of its low excitation energy, the UPS measurement is well suited to
study the valance band structure in the binding energy range 0–20 eV. Its reso-
lution is inherently high and can be improved to 2–10 meV, particularly if
special precautions are taken.1 The effect of the photoionization cross-section
and the final density of states on the measured spectrum is of particular impor-
tance in UPS measurements.

Figure 7.14(a) shows the atomic subshell photoionization cross-section of
Sn. It can be seen that the cross-section for the Sn 5p state exceeds that of the
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1 The resolution of the energy analyzer has reached a level of just a few meV. In addition, for a sample cooled
down to 10 K to suppress the thermal broadening at the Fermi edge, the overall resolution has been
claimed to be reduced to a level less than 62 meV.



5s state by three orders of magnitude at low excitation energies around 10–15
eV but the situation reverses above about 40 eV. By utilizing this unique exci-
tation energy dependence of the cross-section, one can study the detailed elec-
tronic states in the valence band. A typical example is shown in Fig. 7.14(b).
The UPS spectra of liquid Sn were taken at different excitation energies. It can
be seen that the peak at about 6 eV gradually grows with increasing excitation
energy and that a double-peaked structure clearly emerges when the excitation
energy reaches 40.8 eV. Based on the energy dependence of the photoioniza-
tion cross-section, Fig. 7.14(a), we can easily identify the states immediately
below the Fermi level and those at higher binding energies as the 5p and 5s
states, respectively, in the valence band of liquid Sn. As is clear from the argu-
ment above, the energy dependence of the photoionization cross-section is sig-
nificant and a correct interpretation of the measured spectrum is made possible
only if its effect is properly considered. It is also worthwhile noting that the
excitation energy dependence of the cross-section is quite common to all s and
p valence electrons of polyvalent metals from Al to Bi.

The effect of the final density of states is also important in the interpretation
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(a) (b)

Figure 7.14. (a) Atomic subshell photoionization cross-sections calculated for Sn.
[J. J. Yeh and I. Lindau, At.Data and Nucl.Data Tables 32, (1985) 1]. (b) XPS and UPS
valence band spectra of liquid Sn. [G. Indlekofer, PhD thesis, Universität Basel (1987)]



of UPS spectra, particularly when the excitation energy is lower than 10 eV.
This is because the final density of states is not structureless but is perturbed
by the periodic potential of the lattice. Hence, the selection rule associated with
the optical transition must be taken into account on the basis of given E–k rela-
tions. Indeed, the photoemission spectrum in a crystal is known to depend on
whether the optical transition is direct or indirect [9] (see Section 11.9). In the
case of disordered materials like liquid metals and amorphous alloys, however,
the wave vector k is no longer conserved upon optical transition. Hence, the
UPS spectrum in a disordered system better reflects the initial density of states
in excitation energies, at least above about 10 eV.

In contrast to the UPS measurements, the excitation energy in the XPS experi-
ment generally exceeds 1000 eV. Thus, the final density of states is structureless
and can be ignored. Core electrons having large binding energies can also be
excited. A typical XPS spectrum for pure Cu taken with the monochromatized
Al-Ka radiation is shown in Fig. 7.15. It is clear that peaks associated with the
core electrons down to the 2p level are observed. By analyzing the position and
intensity of the core electron spectrum, one can identify the atomic species and
their compositions in an alloy sample. Therefore, the XPS technique has proved
to be powerful not only to study the electronic state in a solid but also to carry
out the chemical analysis of a sample. In this respect, the XPS technique is some-
times called Electron Spectroscopy for Chemical Analysis (ESCA). However, the
resolution in XPS even with monochromatized radiation is, at best, 0.3–0.5 eV
and would fail to detect fine structures in the valence band.

In spite of a limited resolution relative to UPS, XPS valence band spectra
have been frequently measured by using a monochromatized Al-Ka radiation.
The valence band spectrum can be obtained by accumulating signals of photo-
electrons emitted from states at low binding energies, say, down to about 15 eV.
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Figure 7.15. XPS spectrum of pure Cu. The Fermi level is taken as the origin. Peaks
arising from Auger electrons are also observed.



Figure 7.16 shows the XPS valence band spectra of pure Cu, V and Si, along
with (inset) the density of states curve derived from band calculations. We see
that the measured XPS spectra reflect well the calculated valence band struc-
tures. The Fermi level is in the middle of the 3d band in pure V, whereas in pure
Cu the 3d band is fully filled and the Fermi level is situated in the well-extended
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Figure 7.16. XPS valence band spectra for (a) pure Cu, (b) pure V and (c) pure Si.
The Fermi level is located at the origin. The XPS apparatus with monochromated Al-
Ka line is claimed to give a resolution better than 0.25 eV (ESCA-300, Seiko
Electronics Industry). Insets show the valence band spectra obtained from band calcu-
lations. [V. L. Moruzzi et al. Calculated Electronic Properties of Metals (Pergamon

Press, 1978)]



valence band consisting of 4s and 4p electrons. As discussed in Section 6.9, Si
is a semiconductor. The XPS spectrum clearly shows the absence of a sharp
Fermi cut-off in Si in contrast to its presence in pure Cu and V metals.

We see from Fig. 7.16 that the XPS valence band spectra reproduce reason-
ably well the calculated valence band structures for three representative ele-
ments in the periodic table. However, the situation is not so simple in the case
of alloys. The photoionization cross-section strongly depends on the atomic
species of the constituent elements in an alloy. As a result, the contribution of
each element to the valence band spectrum is, in many cases, not proportional
to its composition. Hence, the observed XPS valence band spectrum in an alloy
does not always resemble the calculated valence band structures (see, for
example, Fig. 9.18). Many-body effects also cannot be neglected when inter-
preting the XPS data in terms of the existing band calculations.2

The incident radiation penetrates into a solid to a depth of the order of
several tens of atomic layers and interacts with electrons in that region, induc-
ing optical transitions in its immediate vicinity. Once the electron is photoex-
cited, it must travel to the surface of a sample. The mean escape depth of the
photoexcited electron, given by the term Pt(E, hn) in equation (7.26), has been
evaluated as a few nm over the excitation energy range 10 eV up to above 1000
eV [5, 6]. Hence, the measured spectrum is very sensitive to the surface condi-
tion of a sample. Although the measurement is carried out under an ultra-high
vacuum, contamination such as oxides on the sample surface must be carefully
removed prior to the photoemission measurement. The surface contamination
can be removed either by Ar gas sputtering or by cleaving or even polishing
mechanically the surface of the sample in a high vacuum. The band structure
investigation by means of the XPS and UPS measurements is also free from the
mean free path of the electron. Hence, the photoemission measurement can be
applied to any material, regardless of the presence or absence of the lattice peri-
odicity.

7.6 Inverse photoemission spectroscopy

Photoemission experiments can be made in a reversed mode by impinging elec-
trons of varying energies onto a sample and detecting the photons that are
excited by them. The principle is illustrated schematically in Fig. 7.17. The
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2 The removal of an electron from a core level produces a strong perturbation of the remaining core elec-
trons. They will be redistributed to screen the hole. The energy gained in this relaxation process is carried
away by the emitted electron. Hence, its energy is influenced. A similar effect has been observed even in the
valence electrons, if the band width is narrow. For example, the 3d band in pure Zn is centered at about
8 eV below EF with a width of only 1 eV. The XPS measurement reveals the Zn 3d band to be centered at
10 eV below EF. This difference is believed to originate from a change in the total energy of the system
associated with the relaxation process. [J. Hafner et al., J. Phys. F: Metal Phys. 18 (1988) 2583]



incident electrons excite both valence and core electrons in the sample.
However, a less-frequent process also occurs, which involves the direct deceler-
ation of an incident electron with simultaneous emission of electromagnetic
radiation called Bremsstrahlung. The impinging electron occupies a previously
empty state above the Fermi level, as shown in Fig. 7.17. This process may be
considered as the inverse of the photoemission process, since the role of initial
and final states is exchanged and the initially unoccupied state is filled by the
decelerated electron. The unoccupied state above the Fermi level can be chosen
by varying the acceleration voltage Vacc while keeping "v0 constant (iso-
chromat) in Fig. 7.17. This is the reason why this technique is called either
Inverse Photoemission Spectroscopy (IPES) or alternatively Bremsstrahlung
Isochromat Spectroscopy (BIS).
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Figure 7.17. Energy diagram of the inverse photoemission process. Note that, by
applying the acceleration voltage Vacc to the cathode, we can raise its Fermi level by that
amount relative to that in the sample. (Ev: vacuum level; Ie2

: intensity distribution of
emitted electrons; D(E): density of states; Eu: unoccupied state energy; "v0: x-ray
photon energy; Fcath: work function of cathode; T: temperature.) [J. K. Lang and

Y. Baer, Rev. Sci. Instrum. 50 (1979) 221]



It is possible to measure both XPS and IPES spectra in the same apparatus
on the same sample by using the combined XPS–IPES spectrometer equipped
with a monochromatized Al-Ka x-ray source. In the IPES mode, only photons
of 1486.6 eV can be filtered by the bent quartz crystal monochrometer designed
for the Al-Ka radiation. Its intensity is recorded as a function of the accelera-
tion potential Vacc applied to the cathode.
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Figure 7.18. Combined XPS and IPES spectra for pure La, Ce and Gd metals.
Vertical bars indicate the positions and calculated intensities of the 4f final states. The
spin configuration of an atom is often denoted as (2S+1)LJ in the Russell–Saunders
nomenclature. Capital letters S, P, D, F are used for L50, 1, 2, 3, respectively. (See
Section 13.3.) [J. K. Lang, Y. Baer and P. A. Cox, J. Phys. F: Metal Phys. 11 (1981) 121]



Figure 7.18 shows the combined XPS–IPES spectra for pure La, Ce and Gd
metals [10]. Since the partially filled 4f orbitals maintain their localized char-
acter in solids, a multiplet structure is clearly observed in both XPS and IPES
spectra. This is different from the situation in the transition metals, where the
Fermi level falls in the partially filled 3d, 4d and 5d bands [11]. Consider the
Hund rule ground state of the configurations (4f)n. Then one observes the final
states of (4f)n21 in XPS and (4f)n11 in IPES (see Sections 13.3 and 14.6), indi-
cating the apparent failure of the one-electron approximation (see Sections
14.1–14.5). For example, the 7F0 and 7F6 states observed in XPS and IPES
spectra of Gd correspond to the Hund ground states of Eu and Tb, which are
positioned next to Gd in the periodic table and possess one less and one more
4f electron, respectively, than does Gd.

7.7 Angular-resolved photoemission spectroscopy (ARPES)

In addition to the angular-integrated photoemission spectroscopy discussed in
Section 7.5, the angular-resolved photoemission spectroscopy technique has
been developed as a powerful tool to determine the energy dispersion curves with
high accuracy. ARPES uses a single crystal in the geometry shown in Fig. 7.19.
The solid angle of detection DV is made small so that photoelectrons in a narrow
k-interval only are detected. There are four major parameters in the ARPES
experiments: two exit angles q and w specifying the direction of the photoelec-
trons, their kinetic energy Ekin and the energy of the impinging radiation "v.

We assume a direct transition between an initial state Ei and a final state Ef,
both of which are measured with respect to the Fermi energy, as indicated in
Fig. 7.20. The measured quantity is the kinetic energy Ekin of a photoelectron
detected at an angle q relative to the normal of the sample surface. Knowing
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Figure 7.19. Geometry of the ARPES measurements. [S. Hüfner, Photoelectron
Spectroscopy, Springer Series in Solid State Physics, vol. 82, edited by M. Cardona,

(Springer-Verlag, Berlin 1995)]



the work function f and radiation energy "v, one obtains the final and initial
state energies from the relations:

Ef5Ekin1f (7.28)

and

Ei5Ef2"v, (7.29)

where the initial state energy Ei is a negative quantity and is equal to the
binding energy EB if its sign is reversed, i.e., EB52Ei.

The intensity of a photoelectron emerging in a direction q from a sample is
measured as a function of its kinetic energy Ekin. In the photoemission process,
only the parallel component of the wave vector to the surface of the sample is
conserved. Since the photoelectron emerging outside the sample may well be
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approximated as a free electron with mass m, the parallel component of the
wave vector K of a photoexcited electron in the crystal is directly determined
from the measured kinetic energy Ekin through the relation:

K
||
pe5 sin q5K

||
, (7.30)

where K
||
pe and K

||
are the parallel components of the wave vector of both pho-

toelectron and photoexcited electron in the crystal, respectively, and q is the
exit angle shown in Fig. 7.19.

The perpendicular component of the wave vector of the photoelectron is
obviously given by

K
'
pe5 . (7.31)

However, this is not equal to K
'

of the photoexcited electron in a crystal
because of the presence of the work function f. In addition, the value of K

'

cannot be uniquely determined, unless the final state energy Ef is given. As is
shown in Fig. 7.20, the final state energy may be approximated by Ef5("2/2m)
(K

||
21K 2

'
)1U0 in the free-electron model, where U0 is the inner potential rela-

tive to the Fermi level. An insertion of equations (7.28) and (7.30) leads to

K
'

5 . (7.32)

We see that the wave vector K of the photoexcited electron in a crystal can now
be determined from equations (7.30) and (7.32) for a given exit angle q, pro-
vided that two parameters f and U0 are reliably fixed.

For the sake of simplicity, we take the normal emission condition q50 and
try to explain how the E–k relations in Cu are deduced from the measured
photoemission spectrum. Let us assume that the photoemission spectrum con-
sisting of three peaks 1, 2 and 3 was obtained by exciting valence electrons to
the free-electron states with the radiation "v. In Fig. 7.20, (upper right), the
spectrum is shown as a function of the kinetic energy Ekin of the photoelectron,
which is measured relative to the vacuum level Ev. The wave vectors of the pho-
toelectron corresponding to the three peaks in the spectrum are denoted as
K

'
pe(i ) with i51, 2 and 3. The inner potential U0 is chosen to be 28.6 eV cor-

responding to the bottom of the sp band in pure Cu (see the point G in Fig.
6.3), whereas the work function f is experimentally determined from equations
(7.28) and (7.29).

The determination of the E–k
'

relations is straightforward. First, the energy
of the initial state Ei(i ) corresponding to the peak i is easily calculated as
2Ei(i)5"v2(Ekin(i)1f) from equations (7.28) and (7.29). They are located in
Fig. 7.20 as three horizontal dotted lines Ei(1) to Ei(3). Then, the correspond-
ing K

'
(i ) values are calculated from equation (7.32) and plotted as three verti-

cal dotted lines in Fig. 7.20. As will be discussed in Section 11.9, the wave vector

Ï(2m /"2)(Ekin cos2q 1 f 2 U0)

Ï(2m /"2)Ekin cos2q

Ï(2m /"2)Ekin
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is conserved upon optical transition and, hence, the value of K
'

(i ) for the
photoexcited electron is equal to K

'
(i ) of the electron in the valence band

except for the arbitrariness in the choice of an appropriate reciprocal lattice
vector. The resulting three intersections are displaced horizontally to the left
by an appropriate reciprocal lattice vector g. The resulting three E–k

'
values

are shown in Fig. 7.20.
The full E–k

'
relations in a given direction can be mapped by repeating the

same procedure under different incident photon energies "v over the range 10
to 100 eV available in the synchrotron radiation experiment. The E–k

'
rela-

tions along GKX of pure Cu thus derived are shown in Fig. 7.21 along with the
calculated band structure of Burdick. The agreement between the theory and
ARPES experiment is remarkable. More details can be found in the literature
[7].
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Figure 7.21. Band structure of pure Cu along the GKX line derived from the ARPES
measurements on a (110) crystal surface. The full curve is due to Burdick’s band
calculations. The height of the rectangle data points indicates experimental uncer-
tainty. Three parabolic curves represent K-dependence of the initial energy

Ei5("2K 2/2m)1U02"v. [P. Thiry et al., Phys. Rev. Lett. 43 (1979) 82]



7.8 Soft x-ray spectroscopy

The soft x-ray spectroscopy technique has also been frequently employed to
explore the electronic structure and can supplement information derived from
the photoemission studies discussed in Section 7.5 [12, 13]. Here, soft x-ray
refers to an x-ray with a wavelength longer than a few-tenths nm which is
emitted or absorbed upon a transition of an electron in a solid. Soft x-ray emis-
sion and absorption spectra reflect the occupied and unoccupied density of
states below and above the Fermi level, respectively. The soft x-ray emission
and absorption spectroscopies are abbreviated as SXES and SXAS, respec-
tively.

We discuss first the SXES experiment, using pure Al as an example. The elec-
tronic structure of pure Al is shown in Fig. 7.22(b). An electron beam acceler-
ated to energies of 10–15 keV is imparted onto the surface of an Al sample to
excite the 1s core electron in the ground state. The characteristic x-ray is
emitted upon the transition of an electron from a higher level to fill the vacant
1s level. Owing to the selection rule, the transition is allowed only when D,51,
where D, is the difference in the azimuthal quantum number between the initial
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Figure 7.22. Principles of soft x-ray emission spectroscopy. (a) An electron is excited
out of the K shell by irradiating the sample with an electron beam, thereby creating a
hole in the K shell. (b) The Al-Kb emission takes place when an electron in the valence
band falls into the vacant 1s level. This reflects the energy distribution of the Al-3p
electrons because of the selection rule. The Al-Ka transition from 2p to 1s levels is

also shown.



and final states. For example, the Al-Ka line refers to the transition from the
2p to the 1s level and is used as an irradiating source in XPS measurements.

Information about the valence band structure can be extracted from the Al-
Kb spectrum in the case of Al metal and Al-based alloys. This corresponds to
the transition from the 3p to the 1s level. Remember that the Al-3p electron
forms the valence band together with the Al-3s electron. Thus, the Al-Kb spec-
trum is no longer a sharp line but is broadened, reflecting the Al-3p electron
distribution in the valence band.

Soft x-rays emitted from a sample are diffracted by a crystal spectrometer
so that only x-rays with the wavelength l satisfying the Bragg condition
2dsin u5nl are detected. Here d is the grating space of a crystal in the spectro-
meter. By varying the angle u of the crystal, we can measure the x-ray intensity
as a function of the wavelength l, which is converted to energy E through the rela-
tion E5hn5hc/l. The Fermi level cannot be determined solely from the SXES
measurement. In the case of the Al-Kb spectrum, we measure first the Al-Ka

line, from which the energy difference between Al-2p and Al-1s levels is
deduced. Independently, the binding energy of the Al-2p level relative to the
Fermi level can be determined from the XPS measurement. A sum of these two
enables us to locate the Fermi level in the Al-Kb spectrum. In contrast to
photoemission spectroscopy, the SXES measurement is less sensitive to surface
contamination of the sample, since electron irradiation can create holes in the
core level of atoms in the region down to a few mm below the surface of a
sample and, thus, the emitted soft x-ray reflects well a bulk property.

We need to study more details about the intensity of the x-ray emitted from
the sample in order to analyze the SXES spectrum. As mentioned above, a hole
is created in the inner core level by the electron irradiation. Now the electron
in the higher energy level Ei is allowed to fill the hole in the core level with the
energy Ec in accordance with the selection rule. Here the subscripts i and c refer
to the initial state and the final core level, respectively. An x-ray photon of
energy "v5Ei2Ec is emitted. According to radiation theory, the transition
probability I(v) per unit time for the spontaneous emission can be expressed
as

I(v)5 )〈cc)r)ci〉)
2, (7.33)

where ci and cc represent the electron wave function corresponding to the
initial state and the final core level, respectively.3

4e2v3

3"c3
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3 When a solid is exposed to radiation, the electron distribution in a given atom is polarized due to the alter-
nating electric field of the electromagnetic wave. The polarized electron distribution is approximated by an
electric dipole (2e)r, as long as its wavelength is longer than the orbital radius of a core electron. See, for
example, L. I. Schiff, Quantum Mechanics (Second Edition, McGraw-Hill, New York, 1955, pp. 251–261).



As noted above, we are interested in the transition of an electron from the
valence band into the core level Ec. The wavefunction ci in the initial state must
be that of the Bloch electron, which is described in terms of the wave vector k
and the band index n (see Section 5.5 and also Exercise 5.2). Equation (7.33) is
then rewritten as

I(v)~v3 )〈cc)r)cn,k〉)2 d(En,k2Ec2"v). (7.34)

As will be discussed in Chapter 8, the wave function of the Bloch electron in
the valence band can be expanded into the form:

cn,k(r)5N21/2 bnk,ømYøm(u, f)Rø (Enk, r), (7.35)

where N is the number of unit cells in a crystal, Rø is the radial wave function
and Yøm is the spherical harmonic function specified by the azimuthal quantum
number , and magnetic quantum number m (see equation (8.65)). In this rep-
resentation, the wavefunction of the Bloch electron is decomposed into the s,
p, d, f, . . . components having space-symmetries characteristic of electrons in
a free atom.

The numbers of electrons having the s, p and d symmetries in the energy
interval between E and E1dE are denoted as ns(E )dE, np(E )dE and nd(E )dE,
respectively. The partial density of states, nø(E ), of the quantum number , can
be expressed as

nø (E )5 )bnk,øm)2 d(Enk2E ), (7.36)

where the coefficient bnk,øm in equation (7.35) is determined by solving the
Schrödinger equation.

The transitions of the electron to the 1s state of the K shell and to the 2p
state of the L shell are the most important in SXES measurements. As empha-
sized above, the selection rule D,51 must be fulfilled to allow these transitions.
Therefore, the respective x-ray intensities are given by

IK(v)~[MpK(E )]2 np(E )d(E2E1s2"v), (7.37)
and

IL(v)~ [MsL(E )]2 ns(E )1 [MdL]2 nd(E ) d(E2E2p2"v), (7.38)

where MpK(E ), for example, represents the matrix element associated with the
transition of the electron in the p states in the valence band to the 1s final state
and is proportional to an integral involving the product of these two radial
wave functions. Thus, the more these two wave functions overlap, the higher is
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the x-ray intensity. Equation (7.37) is called the K-transition and the corre-
sponding spectrum provides information about the p partial density of states.
Similarly, equation (7.38) refers to the L-transition and provides information
about the sum of both s and d partial density of states.

Figure 7.23 shows the SXES emission spectra for pure Al metal and Al2O3

oxide. A sharp peak at 1487 eV is identified as the Al-Ka line due to the tran-
sition from Al-2p to Al-1s levels. Its wavelength is about 8 Å, being typical of
soft x-rays. The broad Al-Kb spectrum appearing in the energy range
1550–1560 eV is caused by the transition from the 3p states in the valence band
to the 1s level and reflects the Al-3p partial density of states. The Fermi level is
located at 1560 eV. The intensity of the Al-Kb spectrum sharply increases
below the Fermi level in Al metal but remains low in Al2O3. This clearly indi-
cates the difference in the electronic structure between the metal and the insu-
lating oxide.

The Al- and Si-Kb SXES emission spectra representing the 3p electron dis-
tribution are shown in Fig. 7.24. A difference in the valence band structure
between the Al metal and semiconducting Si is clearly seen. The SXES spec-
trum of Al metal is well approximated by the free-electron model, whereas that
of Si is characteristic of a semiconducting material, as manifested by the lack
of the density of states at the Fermi level and a narrow band width.

At the end of this section, we briefly discuss the SXAS technique,4 where one
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4 EXAFS (extended x-ray absorption fine structure) is known as a tool to determine the atomic structure
about the central excited atom, which is deduced by analyzing the oscillatory fine structure in the x-ray
absorption spectrum extending over hundreds of electron volts above the edge. Its near-edge structure in
the 30–50 eV range, automatically recorded in the EXAFS spectrum, is caused by the electronic process,
which is ignored for structural analysis. The SXAS technique discussed here exactly corresponds to this
near-edge structure and is alternatively called XANES (x-ray absorption near-edge structure) or NEXAFS
(near-edge x-ray absorption fine structure).
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Figure 7.23. SXES spectra for pure Al metal and Al2O3. (a) a1,2 is the Al-Ka charac-
teristic line and corresponds to the transition from 2p1/2 and 2p3/2 to the 1s level. (b)
Both a3a4 and a5a6 are satellites of the a line. (c) Kb spectrum corresponds to the
transition from the 3p band to 1s level and reflects the Al-3p electron distribution.
The Fermi level is located at 1560 eV. See the binding energy of Al 1s level shown in

Fig. 7.13.



measures the intensity of a monochromatic radiation transmitted through a
thickness x of the material being studied.5 A synchrotron radiation source
equipped with a crystal monochrometer is employed for the measurement. The
photoabsorption cross-section suddenly increases and the intensity of trans-
mitted radiation sharply drops, when the radiation energy exceeds a threshold
corresponding to the excitation of a core electron to unoccupied states above
the Fermi level. In the dipole approximation, an increase in the photoabsorp-
tion cross-section at the threshold is given by

Ds(v)5 "v 〈cf ) rj )cc〉 nø (E ), (7.39)

where the summation is extended over all core electrons in a given atom, nø (E )
is the partial density of the final state and a is the fine structure constant [13].6
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5 The electron-yield detection technique is also employed, particularly when a thin film is not available. It
utilizes the non-radiative core hole annihilation process by Auger electron emission, the yield of which is
proportional to the x-ray absorption coefficient. The current produced by Auger electrons escaping from
the sample upon irradiation is measured.

6 A summation over all core electrons is needed in a strict sense, since a hole created in a given level perturbs
energy states of all remaining core electrons (see footnote 2, p. 169). Equation (7.33) is given in the one-
electron approximation and the summation is omitted.
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Figure 7.24. Al-Kb and Si-Kb SXES spectra of pure Al metal and pure Si crystal.
Both reflect the respective 3p electron distribution. The (E2E0)

3/2 relation holds in the
free-electron model. [K. Tanaka, Nihon Kinzoku Gakkai Kaiho 15 (1976) 753 (in

Japanese)]



The SXAS spectrum obtained by scanning the radiation energy reflects unoc-
cupied density of states with an appropriate symmetry permitted by the selec-
tion rule.

If one measures both SXEX and SXAS data for a given sample, detailed
information about the electronic structure across the Fermi level can be
extracted. As an example, the Kb-emission and K-absorption spectra of pure
Al and Al2O3 are shown in Fig. 7.25. The difference in the electronic structure
between the two solids can be more clearly seen than the data in Fig. 7.23. A
sharp Fermi edge is seen in Al metal, whereas an energy gap of 10.8 eV is found
in the insulating Al2O3.

The electronic properties, particularly the bonding mechanism among
various constituent elements in an alloy or an intermetallic compound, can be
more efficiently and thoroughly studied if both the photoemission and soft x-
ray spectroscopies are combined and, moreover, if both sets of data are further
supplemented with data obtained from electronic specific heat measurements
and band calculations [14].

7.9 Electron-energy-loss spectroscopy (EELS)

In the preceding section, we have discussed soft x-ray absorption spectroscopy,
from which information about the unoccupied partial density of states above
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Figure 7.25. Soft x-ray Kb-emission and K-absorption spectra of pure Al (solid
circles) and Al2O3 (open circles) are shown on the same energy scale. The Fermi level is
located at E50. All spectra are normalized to their maximum intensity. [Courtesy Dr

Esther Belin-Ferré]



the Fermi level can be deduced. In the transmission electron microscope, elec-
trons generally lose energy in passing through a specimen. As described below,
the unoccupied partial density of states can also be studied with a transmission
electron microscope combined with a magnetic prism-type spectrometer by
measuring the energy loss of incident electrons due to the inelastic scattering
by the excitation of core or valence electrons. Basic principles in the electron-
energy-loss spectroscopy (EELS) measurements are briefly discussed in this
section.

The cross-section for inelastic scattering of an incident electron, which
accompanies an excitation of electrons in a solid, is generally given by

ds5 )〈F)V(r))I〉)2 d(E2Ef1Ei)p
2dpdV, (7.40)

where the initial state )I 〉 and the final state )F 〉 refer to those in a whole system
consisting of the incident electron and electrons in a solid, p2dpdV is the
number of electrons scattered into a solid angle dV in the momentum range p
and p1dp and V(r) is the interaction potential of the incident electron with
electrons in a solid. The d-function in equation (7.40) assures energy conserva-
tion upon scattering.

The initial state )I 〉 in a whole system is described as the product of the free-
electron wave function ei k0·r of the incident electron and the initial state )i 〉 of
the electrons in a solid. The final state )F 〉 is likewise expressed as ei k·r ) f 〉. By
inserting the relation E5p2/2m or p2dp5m"k·dE, we obtain

〈 f )eV(r)exp(iq·r)dr)i 〉 ·d(Ef2Ei2E ), (7.41)

where q is the momentum transfer vector equal to q5k02k. The ratio k/k0 may
be approximated as unity for the fast incident electrons.

The interaction potential V(r) is given by the sum of the Coulomb potentials
acting between the incident electron and nucleus and between the incident elec-
tron and electron in a solid:

V(r)52 1 , (7.42)

where Zi is the atomic number and Ri and rj are the coordinates of nucleus i
and electron j in the solid, respectively. It can be shown that the contribution
of the first term to equation (7.41) vanishes because of the orthogonality of the
wave functions )i 〉 and ) f 〉. Instead, a finite contribution arises from the second
term of equation (7.42), when it is inserted into equation (7.41). Since the
Fourier component of the second term is easily calculated as
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exp(iq·r)dr5 exp(iq·rj), (7.43)

equation (7.41) is reduced to the form:

〈 f ) exp(iq·rj))i 〉 ·d(Ef2Ei2E ), (7.44)

where S(q, E )5 〈 f ) exp(iq·rj))i 〉 ·d(Ef2Ei2E ) is called the dynamical

structure factor (see Section 10.11).
By choosing an appropriate energy range in the spectrometer, one can

measure the EELS spectrum associated with the excitation of either valence
electrons or core electrons in a solid. If the core electron is excited, the magni-
tude of the vector rj in equation (7.44) is of the order of the radius of the core
orbital rc. As long as the scattering angle is small, the momentum transfer
vector q must be small and the relation q,,rc

21 holds. Since the dipole approx-
imation is validated in this limit, we see that there is a one-to-one correspon-
dence between the energy loss process of the incident electron and the x-ray
absorption process given by equation (7.39). The transition involved is cer-
tainly dominated by the dipole selection rule (D,561). The measured inten-
sity of the incident electron in the energy loss spectrum is expressed as

I(E )~P(E )n(E ), (7.45)

where P(E ) is the energy-dependent matrix element and n(E ) is the partial
density of states with an appropriate symmetry. The fine structures in the
energy region near the core-edge onset are expected to reflect the unoccu-
pied partial density of states n(E ), since P(E ) varies slowly as a function of
energy.

Figure 7.26 shows the L2 and L3 edge EELS spectra of several 3d-transition
metals, the data of which were obtained by using thin specimens 100–300 Å in
thickness.7 The L2 and L3 edges correspond to a transition from the 2p3/2 and
2p1/2 core levels to unoccupied 3d partial density of states above the Fermi
level, respectively. It can be seen that, because of an increase in the spin–orbit
interaction, the separation of the L2 and L3 edges increases across the periodic
table from 6 eV in Ti to 20 eV in Cu.

Information about the electronic structure of the 3d transition metals can
be extracted from the fine structure in the L2 and L3 spectra (Energy Loss
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7 An EELS sample must be very thin not only to allow the transmission of the electron beam but also to
suppress multiple inelastic scattering.



Near-Edge Structure or ELNES). Putting detailed discussions aside, we simply
focus on the widths of the L2 and L3 peaks, both of which should reflect the
width of the unoccupied 3d band. This is depicted in Fig. 7.27(a) for four
metals Ti, Cr, Ni and Cu. The observed L3 width decreases from 4.6 eV in Ti
to 3.0 eV in Ni in accordance with a decrease in the unoccupied band width, as
shown in Fig. 7.27(b). It is noted that Cu has a filled 3d band and, hence, does
not exhibit a sharp peak but only steps are seen at the two edges (see Fig. 7.26).
The fine structure near the L2 and L3 edges in Cu has been discussed with ref-
erence to the unoccupied density of states predicted from band calculations
[15]. It is also noted that the EELS technique is powerful to single out the unoc-
cupied partial density states of alloys, since the electronic transition involved
is specific to each constituent element.

7.10 Optical reflection and absorption spectra

The color of a metal, or more precisely the optical reflection or absorption
spectrum, is closely related to its valence band structure. Let us consider why
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Figure 7.26. L2 and L3 EELS spectra of Ti, Cr, Ni and Cu metals. [R. D. Leapman,
L. A. Grunes and P. L. Fejes, Phys. Rev. B26 (1982) 614]
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Figure 7.27. (a) Calculated 3d density of states in Ti, Cr, Ni and Cu metals. [D. A.
Papaconstantopoulos, Handbook of the Band Structure of Elemental Solids (Plenum
Press, New York, 1986)] The width of the unoccupied 3d band is marked. (b) Measured
L3 widths read from Fig. 7.26 as a function of the unoccupied 3d band width shown

in (a).



pure Cu metal is red in color. Figure 7.28 indicates the reflection spectra for
pure Cu and Ni. It is clear that radiation in the long-wavelength region down
to 6000 Å is almost 100% reflected in Cu whereas a decrease in the reflectance
is already quite noticeable in pure Ni in this low energy range. We see from Fig.
7.28 that the red color of pure Cu originates from the fact that radiation cov-
ering the visible red to infrared region is almost completely reflected from its
surface.

As will be described in Section 11.9, conduction electrons in a metal can
absorb an electromagnetic wave by resonating with the alternating electric field
of the electromagnetic wave. This is absorption of light due to plasma oscilla-
tion. The absorption of the electromagnetic wave also occurs upon the inter-
band transition of electrons in a solid. A combination of the plasma oscillation
and the interband transition determines the reflection spectrum of a given
metal.

The valence band structure of pure Cu was already shown in Fig. 6.6 and
also in Fig. 7.16(a). The top of the 3d band lies at about 2 eV below the Fermi
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Figure 7.28. (a) Reflectance spectra for (a) pure Ni and (b) pure Cu metals. Both sets
of data are shown on the same energy scale. Upper ordinate shows the wavelength con-
verted from energy E through the relation l(Å)512 396/E (eV). [F. Wooten, Optical

Properties of Solids (Academic Press, 1972)]



level. A rapid decrease in the reflectance above 2 eV has been attributed to the
absorption due to the interband transition from the top of the 3d band to the
Fermi level. In other words, electromagnetic waves having energies higher than
2 eV can be absorbed, since 3d electrons are allowed to jump to unoccupied
states above the Fermi level. According to the band calculations, a critical
wavelength is indeed found to be about 6000 Å. Radiation with wavelengths
longer than this has too low an energy to excite the electrons and, hence, is
reflected without being absorbed. In contrast, the Fermi level is located in the
middle of the 3d band in pure Ni. Thus, there is no threshold in the interband
transition and absorption takes place even when the photon energy is small.
This is the reason why pure Ni exhibits a gradual decrease in reflectance with
increasing photon energy without any threshold value.

Figure 7.29 shows the absorption spectra for a series of a-phase fcc Cu–Zn
alloys. Here the absorptivity is defined as (1002R) in %, where R is the reflec-
tance. In addition, the wavelength is taken as the horizontal axis. Hence, the
one-to-one correspondence with Fig. 7.28 can be seen if both ordinate and
abscissa are reversed. The absorption edge of pure Cu is located at about
5800Å. The absorption edge is seen to displace gradually toward a shorter
wavelength with increasing Zn content. This implies that visible light up to
almost yellow in color begins to be reflected with the addition of Zn to Cu.
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Figure 7.29. Optical absorption spectra of a-phase Cu–Zn alloys. The absorption
edge displaces toward shorter wavelengths with increasing Zn content. [M. A. Biondi

and J. A. Rayne, Phys. Rev. 115 (1959) 1522]



Indeed, we know that a brass is yellowish in color, like gold. The electron con-
centration e/a increases with increasing Zn content. Hence, this results in an
increase in the Fermi level and thereby increases the threshold energy beyond
that of pure Cu. We see from the discussion above that measurements of
optical absorption or reflection spectrum allow us to provide valuable informa-
tion about the electronic structure of metals and alloys.

Exercises

7.1 The Schrödinger equation for a free electron in a magnetic field is
expressed as

["=1(2e)A]2 c5Ec, (7Q.1)

where A is the vector potential. If the magnetic field is applied along the z-axis
so that B5(0, 0, B), then we can choose the vector potential as A5(0, xB, 0).
Show that the Schrödinger equation (7Q.1) is reduced to that for a one-dimen-
sional harmonic oscillator and its eigenvalue is expressed as equation (7.10).

7.2 Consider a metal whose Fermi surface is composed of an ellipsoid of rev-
olution having the z-axis as its long axis. Apply the magnetic field along its z-
axis, as shown in Fig. 7Q.1. Explain why the extremal cross-section of the

1
2m
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Figure 7Q.1. The Fermi surface of the ellipsoid of revolution about the kz-axis.
[Courtesy Dr Keiichi Ogawa]



Fermi surface at kz50 normal to the magnetic field is obtained from the period
of the dHvA periodic oscillations.

7.3 The free electron moving with the velocity v in the magnetic field B expe-
riences the Lorentz force and rotates in closed orbit in the plane normal to the
field. As is clear from Exercise 7.1, the angular frequency vc is expressed as
vc5eB/m and the radius r of the cyclotron motion is given as

r5 . (7Q.2)

We also learned from equation (7.10) that the energy separation in the adjacent
Landau levels is equal to

DE5"vc5 . (7Q.3)

Suppose that we measure the dHvA signals for pure Cu by applying a
maximum magnetic field of 50 kOe or 5 tesla and that the Fermi energy of pure
Cu is 7.0 eV, as given by the free-electron model (see Table 2.1).

(a) Calculate the radius r in equation (7Q.2) for the electron at the Fermi level
and compare it with the mean free path of a conduction electron in high-purity
Cu at 4 K. The latter is estimated from its residual resistivity of 731029 V-cm
(see footnote 10 in Chapter 15).
(b) Calculate the separation of the adjacent Landau levels in equation (7Q.3).
(c) Calculate the quantum number n of the Landau level corresponding to the
Fermi energy.

7.4 The intensity of the Compton spectrum is given by equation (7.23). Show
that it is reduced to equation (7.24) in the free-electron model.
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Chapter Eight

Electronic structure calculations

8.1 Prologue

There exist as many conduction electrons as the Avogadro number in a molar
quantity of an ordinary metal. Nevertheless, we have employed in previous
chapters the one-electron Schrödinger equation as if only a single conduction
electron were to exist in a metal, regardless of whether it is a free-electron or
the Bloch electron. A conduction electron in a solid should interact not only
with an array of positive ions but also with all the other electrons. Can we
ignore the electron–electron interaction, which exerts a repulsive Coulomb
force between conduction electrons? In this chapter, we begin with the
Hamiltonian describing a whole assembly of electrons in the presence of the
nuclear potential and discuss the validity of the so-called one-electron approx-
imation. Following the justification of the one-electron approximation, we
introduce several band calculation techniques. Our main aim in this chapter is
to grasp characteristic features of each band calculation rather than the
detailed derivations of equations.

8.2 One-electron approximation

The non-relativistic Schrödinger equation for a system of N electrons in the
presence of nuclei at fixed positions is expressed as

1VeeC1VenC5EC, (8.1)

where Vee is the Coulomb potential energy due to electron–electron interaction,
Ven is that due to electron–nucleus interaction and E is the energy eigenvalue
in this system. The Coulomb potential energy summed over N electrons is given
by
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Vee5 , (8.2)

where (2e) is the electronic charge and ri is the position vector pointing to the
i-th electron. A numerical coefficient appears, since the identical pairs (i, j )
and ( j,i ) are independently counted. Similarly, the Coulomb potential energies
over N electrons in the field due to the Nn nuclei with the atomic number Z

a
is

given by

Ven52e2 , (8.3)

where R
a

is the position vector of the a-th nucleus.
Because of the presence of the electron–electron interaction energy Vee,

attempts to solve equation (8.1) rigorously are indeed difficult and known as
many-body problems. In previous chapters, we adopted the one-electron
approximation, in which each electron is treated as an independent particle in
a periodic potential, by presuming that other conduction electrons do not
affect its motion at all. This does not look to be easily justified. Nevertheless,
all band calculations described below rely essentially on the one-electron
approximation. Prior to the introduction of various band calculations, we con-
sider in this section how the electron–electron interaction can be properly
treated within the context of the one-electron approximation.

The wave function C satisfying equation (8.1) depends on coordinates of all
electrons and nuclei:

C5C(r1, z1, r2, z2, …, rN, zN, R1, R2, …, RNn
), (8.4)

where ri and zi are the space and spin coordinates of the i-th electron and Ri is
the fixed coordinate of the i-th nucleus at absolute zero. The spin variable zi

takes on the two values 11 or 21 for spin-up and spin-down, respectively. The
Pauli exclusion principle requires that the wave function (8.4) should be anti-
symmetric with respect to an interchange in the space and spin coordinates of
any pair of electrons:

C(…, ri , zi ,…, rj , zj ,…)52C(…,rj , zj ,…ri , zi ,…). (8.5)

It is clear from equation (8.5) that C50 when ri5rj and zi5zj. Thus, we see
that the requirement of the antisymmetric wave function is equivalent to the
Pauli exclusion principle, which states that not more than two electrons can
share the same quantum state.

Let us assume that the minimum energy eigenvalue Emin is obtained as a solu-
tion of equation (8.1). The ground state energy E0 of a system is given as
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Emin1Vnn, where Vnn is the nuclear potential energy. The cohesive energy of a
solid discussed in Section 2.2 is then defined as

U5E02 E0,i, (8.6)

where E0,i is the ground-state energy of the i-th isolated atom [1].
The wave function in equation (8.4) involves the coordinates of all electrons.

We cannot solve the Schrödinger equation in a many-electron system, unless
some approximation is made in equation (8.4). The total wave function is
assumed to be given by the product of the wave functions, each of which
depends only on the coordinates of a given electron:

CH5c1(r1)x1(z1)c2(r2)x2(z2)c3(r3)x3(z3) ··· cN(rN)xN(zN), (8.7)

where ci(ri) and xi(zi) represent the orbital wave function and spin function of
the i-th electron, respectively and the suffix “H” represents Hartree, as will be
described below.

Unfortunately, equation (8.7) does not satisfy the antisymmetry requirement
of equation (8.5). For the moment, we will ignore this and try to solve equa-
tion (8.1) by using equation (8.7) as a trial function. According to the varia-
tional principle, the wave functions ci(ri) and xi(zi) are determined so as to
minimize the expectation value of a total energy eC*

HHCHdr1dr2 ··· drNdz1dz2

··· dzN. Since the Hamiltonian is independent of spin variables, its integration,
or more precisely summation, is reduced to unity. Hence, only the integral over
the position variables remains. It is shown [2] that the total energy is minimized
when the wave function ci(ri) satisfies the following Schrödinger equation:

2 =2ci1VH,i(ri)ci5«ici, (8.8)

where the potential function VH,i(ri) is expressed as

VH,i(ri)52e2 1(2e)2 dr9j. (8.9)

Here the one-electron energy «i is independent of spin states.
Equation (8.8) with a choice of the potential (8.9) was first derived by

Hartree in 1928 and is called the Hartree approximation. The first term on the
right-hand side of equation (8.9) represents the Coulomb potential energy of
the electron at position ri arising from interaction with all the nuclei, while the
second term represents the Coulomb energy of that electron arising from inter-
action with all the other electrons, whose probability density at the position r9j
is given by the absolute square of the wave function cj(r9j ). The integration is
carried out over the coordinates of all electrons except the one at ri. Thus, the
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Hartree potential means that the electron under consideration experiences the
electrostatic field of the nuclei and a time-averaged electrostatic field created by
all remaining electrons. We see that the Hartree field serves as the effective one-
electron potential and that the Hartree approximation reduces a many-electron
problem to the one-electron Schrödinger equation. The Hartree approximation
is known as the best one-electron wave function in the framework of a single
product form of wave functions for the ground state.

It is noted that the solution cj(r9j ) of the Schrödinger equation (8.8) appears
in the numerator of the second term in equation (8.9). We are therefore faced
with the problem of solving an integro-differential equation self-consistently.
First, a set of approximate wave functions cj(rj) is chosen as a trial function
and the N potential functions are calculated by inserting them into equation
(8.9). Then equation (8.8) becomes the ordinary one-electron Schrödinger
equation, from which the wave function cj(rj) can be calculated. Once the
eigenfunctions cj(r9j ) are derived, we recalculate the potential functions and
solve the Schrödinger equation again. A whole cycle of calculations is repeated
until a satisfactory self-consistency is achieved.

Let us consider a metal in which N ions each carrying a positive charge (1e),
are periodically arranged in a volume V. The free-electron model discussed in
Chapter 3 is equivalent to replacing the first term in equation (8.9) by a uniform
charge distribution with the density (1e)N/V. As a natural consequence, the
distribution of conduction electrons also becomes uniform. This is called the
jellium model. The absolute square of the wave function appearing in the inte-
grand of the second term in equation (8.9) now becomes )ck(r))251/V, as is
clear from equation (2.13). Thus, the second term is reduced to (2e)2N/V and
cancels the first term. Therefore, we see that the free-electron model is a special
case of the Hartree equation, in which the ionic potential is replaced by a
uniform charge distribution.

Once the one-electron wave function ci(ri) is determined, the total wave
function is given by the product in the form of equation (8.7). As mentioned
above, the total wave function must be antisymmetric with respect to any inter-
change in the space and spin coordinates in accordance with the Pauli exclu-
sion principle. The sign of the total wave function must change upon an odd
number of interchanges in the space and spin coordinates. Such an antisym-
metric wave function can be expressed as

c1(r1)x1(z1) c1(r2)x1(z2) ··· c1(rN)x1(zN)

CHF5
c2(r1)x2(z1) c2(r2)x2(z2) ··· c2(rN)x2(zN)

(8.10)
A A AA A*

cN(r1)xN(z1) cN(r2)xN(z2) ··· cN(rN)xN(zN)
*
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Equation (8.10) is called the Slater determinant. The new Schrödinger equa-
tion can be obtained if equation (8.10) is employed as a trial function in the
variational principle. Now the following term newly appears as an extra poten-
tial energy [2]:

VX (ri)52(2e)2 cj(rj)dxixj
, (8.11)

where the Kronecker-delta d
xix j

takes either 1 or zero, depending on whether
the spin states xi and x j are parallel or antiparallel to one another, respectively.
Thus, this term remains finite only for electrons with parallel spins. Equation
(8.11) is called the exchange integral. The one-electron Schrödinger equation
(8.8) with the potential terms given by a sum of equations (8.9) and (8.11) is
called the Hartree–Fock equation.

The Coulomb repulsive force acts between any pair of conduction electrons
in a real metal and, hence, they cannot behave independently but tend to keep
apart from one another. The repulsive electron–electron interaction is called
the Coulomb correlation. In the Hartree equation, the electron–electron inter-
action is treated in such a way that each electron moves in an average field
created by all remaining electrons. Thus, the Coulomb correlation is completely
ignored. In the Hartree–Fock equation, an average field is employed in the
same spirit as in the Hartree equation. However, the Pauli exclusion principle
is included so that two electrons with parallel spins are not allowed to occupy
the same position. In other words, a kind of repulsive interaction, which is
different from the Coulomb correlation, is taken into account between elec-
trons with parallel spins. This is called the exchange energy. Here it is impor-
tant to remember that the Hartree-Fock equation exaggerates the role of the
exchange interaction between electrons with parallel spins, since the Coulomb
correlation is completely ignored. The difference between the Coulomb corre-
lation and the exchange energy is referred to as the correlation energy. In other
words, we should evaluate properly the Coulomb correlation either by incor-
porating the correlation energy to the Hartree–Fock solution or by adding
both exchange and correlation energies to the Hartree solution.

The evaluation of the correlation energy is a formidable task because the
Coulomb interaction decays only as 1/r and, hence, remains significant over
many atomic distances. Bohm and Pines [3] showed that the Coulomb inter-
action in a homogeneous electron gas is reduced to the screened Coulomb
interaction in the form of exp(2lr)/r, if the long-wavelength contribution is
subtracted as the collective motion of electrons, which is known as the
plasmon. It is noted that the screened Coulomb interaction is effective only
over a short distance. The ground-state energy per electron for a homogeneous
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electron gas has been calculated by Nozieres and Pines [4] and the result is
expressed as

«05«kin1«X1«C5 1(0.031lnRs20.115) [Ry] (8.12)

where the first two terms «kin and «X represent the kinetic and exchange ener-
gies arising from the Hartree–Fock solution, respectively, and the third term is
newly derived as the correlation energy «C. The parameter Rs is the radius of a
sphere containing one electron on average and related to the electron density r
through the relation r5(4pR3

s/3)21. The value of Rs is often expressed in units
of the Bohr radius (a05"2/me250.05292 [nm] and is calculated as Rs53.21,
3.96 and 4.8 nm for Li, Na and K, respectively.1 Equation (8.12) is known to
hold well in the range 2,Rs,6, in which the electron density of typical metals
falls.

8.3 Local density functional method

Before discussing the local density functional method, we summarize the diffi-
culties in the Hartree and Hartree–Fock approximations. Let us place one spin-
up electron at r50 in the N-electron system and consider the electron density
r(r) near r50 caused by the remaining (N21) electrons. In the Hartree approx-
imation, each electron propagates in a time-averaged field created by all the
other electrons and, hence, r(r) is constant, as illustrated in Fig. 8.1(a). In the
Hartree–Fock approximation, the probability of finding a spin-up electron in
the vicinity of r50 becomes very small because of the Pauli exclusion princi-
ple. However, no such restriction exists for the spin-down electron. As a result,
the electron distribution in the Hartree–Fock approximation depends on the
direction of spin, as shown in Fig. 8.1(b). In a real metal, the Coulomb corre-
lation between electrons should exist regardless of the direction of spin and a
true distribution should be like that shown in Fig. 8.1(c).

Equation (8.12) takes into account both the exchange and correlation ener-
gies but is valid only for a homogeneous electron gas. The electron distribution
in a real metal is no longer homogeneous because of the presence of ionic
potentials. The local density functional or LDF method allows us to treat prop-
erly the Coulomb correlation within the one-electron approximation even in
systems where the electron distribution is no longer homogeneous.

2.21
Rs

2 2
0.916

Rs
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nm corresponding to the radius of the 1s orbit of the hydrogen atom in the Bohr model. The energy is in
the units of Rydbergs equal to me 4/2"2 or 13.6 eV corresponding to the ionization energy of the hydro-
gen atom.
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The LDF method was developed by Kohn and Sham in 1965 [5], and
Schlüter and Sham [6]. Let us consider a metal in which the ionic potential and
electron density at the position r are Vion(r) and r(r), respectively.2 The poten-
tial energy at the position r is obviously given by r(r)Vion(r). The total energy
in the ground state of this system is expressed as

E5eVion(r)r(r)dr1F [r], (8.13)

where F [r] plays the role of the kinetic energy. Here it is assumed that F [r] does
not explicitly depend on the coordinate of each electron but only on the elec-
tron density r(r) at the position r. F [r] is called the functional of the density
r(r). Hohenberg and Kohn [7] applied the variational principle and established
a very important theorem, which states that the total energy of a system under
a given external field V(r) minimizes when a true electron density r(r) is found.
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2 The ionic potential Vion(r) is obtained by replacing the atomic number Z
a

by the valency Z in the first term
of the Hartree potential given by equation (8.9). The value of Z is the difference between the nuclear
charge and that of the core electrons.

Figure 8.1. Electron density distribution formed by (N21) electrons when a spin-up
electron is placed at r50. (a) Hartree approximation, (b) Hartree–Fock approximation

and (c) LDF approximation.

(a)

(b)

(c)



This theorem assures that, no matter what electron–electron interaction exists,
a true electron density r(r) would be determined by the variational principle
even in the presence of the ionic potential Vion(r).

The functional F[r] is reduced to the kinetic energy Ts[r] of electrons in a
non-interacting system or a system in the absence of the electron–electron
interaction.3 In contrast, the functional F [r] in the interacting system is
assumed to be given by a sum of Ts[r] and the exchange and correlation energy
EXC[r] [5]:

F [r]5Ts[r]1EXC[r]. (8.14)

Our next step is to derive the function EXC[r]. Kohn and Sham considered the
case, where r(r) changes only slowly in space, and approximated EXC[r] as

EXC[r]5er(r)«XC(r)dr, (8.15)

were «XC(r) is the sum of the exchange and correlation energies in a homoge-
neous electron gas with the density r. Note that the electron density depen-
dence of «XC(r) can be theoretically evaluated for a homogeneous electron gas
as in equation (8.12). Hence, EXC(r) in the presence of V(r) can be calculated,
once we know r(r). The usefulness of the local density functional method stems
from the fact that the kinetic energy in the non-interacting system is still
employed as a main term in the interacting system and the remaining contri-
butions are all collected together into EXC[r].

A solution for minimizing the total energy can be found by using the local
density r(r) as a variable in the variational principle [5,6]. It has the form:

dr(r) 1Vion(r)1(2e)2 dr91mXC(r(r)) dr50, (8.16)

where

mXC(r(r))5 (8.17)

is called the chemical potential. The second and third terms in equation (8.16)
represent the Hartree potential and the fourth term or equation (8.17) corre-
sponds to the contributions from the exchange and correlation energies. In
addition to equation (8.16), the following condition is imposed:

d(r«XC(r))
dr

6r(r9)
)r 2 r9)E5dTs[r]

dr(r)E
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edr(r)dr50, (8.18)

where the integration is carried out over the whole volume of a specimen. The
Schrödinger equation derived from both equations (8.16) and (8.18) can be
explicitly written as

2 =21Vion(r)1(2e)2 dr91mXC(r(r)) ci(r)5«ici(r), (8.19)

where the electron density r(r) is given by

r(r)5 )ci(r))2. (8.20)

Equations (8.19) and (8.20) form two basic equations in the LDF method.
In the derivation of its solution, the most appropriate r(r) is first assumed and
the fourth term in equation (8.19) is calculated by using the «XC(r) for a homo-
geneous electron gas. Now the Schrödinger equation (8.19) can be solved. Once
the wave function is obtained, a new electron density r(r) is calculated from
equation (8.20). The same procedure is repeated by using a newly derived r(r)
until a self-consistent electron density r(r) is deduced.

The local density functional method turned out to be successful in dealing
with the exchange and correlation energies of an interacting electron system
and has been frequently employed to calculate the ground-state energy in
various systems. The ground-state energy is expressed in the form [5]:

E5 «i2 drdr91 r(r){«XC[r(r)]2mXC[r(r)]}dr. (8.21)

Moruzzi et al. (1977) have calculated the cohesive energy of 26 elements in the
periodic table via the LDF method and found a good agreement with the
experimental data [8]. Lang and Kohn applied the LDF method to calculate
the work function and surface energy in various metals and achieved a great
success by using the one-electron approximation [9].

In the discussion above, the local electron density r(r) is optimized without
differentiating the direction of spins. Instead, spin-up and spin-down electrons
can be independently treated so that magnetically polarized substances can
equally be handled. This is called the local spin-density functional method. Its
details are described elsewhere [10].

The exchange energy in equation (8.17), when the correlation energy is
ignored, can be written as

mx(r(r))5 [3p2r(r)]1/3, (8.22)1( 2 e)2

p 2
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in the case of a homogeneous electron gas. In 1951, more than 10 years earlier
than the development of the LDF method, Slater obtained a similar expres-
sion, which is times that of equation (8.22), and expressed the exchange
energy in the form of

mXa
(r(r))5 mX(r(r)) (8.23)

by choosing the parameter a so as to be best appropriate to each substance.
This technique is often called the Xa method and has been employed for the
calculations of the electronic structure of a cluster.

8.4 Band theories in a perfect crystal

A number of band calculation techniques for valence electrons in a periodic
potential have been developed on the basis of the one-electron approximation
discussed in Sections 8.2–8.3. The one-electron Schrödinger equation is written
as

2 =2c (r)1V(r)c (r)5Ec (r), (8.24)

where V(r) is an effective one-electron potential consisting of the Hartree
potential and the contribution mXC[r(r)] from the exchange and correlation
energies. The potential V(r) should satisfy the periodic conditions given by
equations (5.4) and (5.5) in the case of a crystal. As a consequence, the wave
function deduced from equation (8.24) must satisfy the Bloch theorem, which
introduces the wave vector k through the relation

ck(r1l)5exp(ik·l)ck(r), (8.25)

where l is the lattice vector given by equation (4.7). As has been stressed in
Sections 5.3–5.4, the wave vector k plays such a role that, once the wave func-
tion at the position r is given, the wave function at the position r1l is deter-
mined from equation (8.25). Since the lattice vector applies to all lattice sites in
a crystal, this is equivalent to saying that the wave function is extended over the
whole crystal. Thus, the energy eigenvalue in equation (8.24) is determined as
a function of the wave vector k for a given crystal. Indeed, the band calcula-
tions aim at finding the energy eigenvalue of the Schrödinger equation (8.24)
at as many states k as possible in the irreducible wedge within the Brillouin
zone and, once this is done, the occupied and unoccupied density of states and
the Fermi surface can be calculated.
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The Bloch wave function is alternatively expressed in the form of

ck(r)5exp(ik·r)uk(r), (8.26)

where the function uk(r) is periodic with the period of a lattice. Hence, uk(r) can
be expanded into the Fourier series:

uk(r)5 ak(gn)exp(ign·r), (8.27)

where gn is the reciprocal lattice vector of a given crystal. By inserting equation
(8.27) into equation (8.26), we obtain

ck(r)5 ak(gn)exp[i(k1gn)·r]. (8.28)

Equation (8.28) means that an arbitrary Bloch wave function can be
expanded in terms of the plane waves having all possible reciprocal lattice
vectors gn. Here the plane waves exp[i(k1gn)·r] constitute a complete set of
functions and the construction of any Bloch wave function by summing basis
functions over all reciprocal lattice vectors as in equation (8.28) is called
taking the Bloch sum.

The absolute square of the coefficient )ak(gn))
2 represents the probability

density of finding the state of the wave vector k1gn at the position r. As shown
in Fig. 5.2, the wave function of the Bloch wave oscillates rapidly in the core
region in order to be orthogonal to the wave functions of core electrons. Thus,
an extremely large number of plane waves are needed to express such rapidly
varying wave functions and the coefficient ak(gn) remains significant up to large
reciprocal lattice vectors gn. Indeed, the nearly-free-electron (NFE) model in
Section 5.5 employed plane waves as basis functions in the construction of the
Bloch wave function. Obviously, it is not efficient for practical band calcula-
tions. We take different basis functions in the realistic band calculations, as will
be described below.

8.5 Tight-binding method

The NFE method was formulated by Bethe in 1928. In the same year, Bloch
developed a different approach and employed atomic orbitals rather than plane
waves as basis functions. The revolving motion of the electron in a free atom is
expressed by the Schrödinger equation:

2 =2f(r)1[Ua(r)2E ]f (r)50, (8.29)
"2

2m
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where f(r) is the atomic orbital wave function and Ua(r) is the potential of a
free atom.

The motion of the conduction electron in a crystal is described by the
Schrödinger equation:

2 =2c (r)1[V(r)2E ]c (r)50, (8.30)

where c(r) is the wave function of the conduction electron moving in a peri-
odic potential V(r). The wave function c (r) in a crystal is constructed from the
superposition of the atomic orbital wave functions in the form:

ck(r)5 eik·lf (r2 l), (8.31)

where the Bloch wave vector k is introduced to allow the wave function to
extend over a whole crystal. Indeed, one can easily confirm that equation (8.31)
satisfies the Bloch condition c (r1l)5exp(ik·l)c (r). The summation in equa-
tion (8.31) runs over all lattice vectors in real space. The band calculation
method by which the Bloch function is constructed from atomic orbital wave
functions is called the tight-binding method or, alternatively, the linear combi-
nations of atomic orbitals (LCAO) method.

The energy eigenvalue is obtained as an expectation value of the
Hamiltonian in equation (8.30) and is calculated by inserting the wave function
(8.31) into equation (8.30):

E5 c*
kHc kdr/ c*

kc kdr

5E01 eik·ln f*(r1ln)[V(r)2Ua(r)]f (r)dr, (8.32)

where E0 satisfies the Schrödinger equation of a free atom:

2 =21Ua(r2 l) f (r2 l)5E0f(r2 l). (8.33)

The integration in equation (8.32) should be carried out over the whole crystal.
However, we assume that the overlap of the wave function is so small that it
extends only up to the nearest neighbor atoms. Now equation (8.33) is easily
reduced to

E5E02a2g eik·Rn. (8.34)o
n
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Here the summation counts only the nearest neighbor atoms around a given
atom and the vector Rn points to the corresponding lattice sites. The coeffi-
cients a and g are explicitly given by

a52ef*(r)[V(r)2Ua(r)]f(r)dr (8.35)

and

g52ef*(r1Rn)[V(r)2Ua(r)]f(r)dr, (8.36)

where a and g are positive, since [V(r)2Ua(r)] is negative.
For simplicity, we take a simple cubic lattice with the lattice constant a. Since

there are six nearest neighbor atoms at positions Rn5 (6ai , 6aj , 6ak), equa-
tion (8.34) is reduced to the form:

E5E02a22g(cos kxa1cos kya1cos kza). (8.37)

It is clear that the energy is expressed as a function of the wave numbers kx, ky

and kz with the period 2p/a,kx #p/a, 2p/a,ky #p/a and 2p/a,kz #p /a
and that the energy band is extended over the range 12g. The cube in recipro-
cal space enclosed by 2p/a,kx #p/a, 2p/a,ky #p/a and 2p/a,kz #p /a
corresponds to the first Brillouin zone. The energy given by equation (8.37) is
found to be proportional to k2, when the wave vector k is small.

The equi-energy surfaces of equation (8.37) in the first Brillouin zone are
drawn in Fig. 8.2. The Fermi surface is seen to be spherical when k is small. But
as k increases, the Fermi surface begins to bulge along three orthogonal direc-
tions and eventually touches the six equivalent zone planes (see Fig. 8.2(b)). A
constant-energy surface always intersects the zone planes perpendicularly. This
is easily understood, since the derivative dE/dkx along the kx-direction or the
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Figure 8.2. The equi-energy surface in the first Brillouin zone of the simple cubic
lattice calculated in the tight-binding method: (a) spherical surface near the bottom of
the band, (b) the band is half-filled and the Fermi surface makes partial contact with
the face of the Brillouin zone, and (c) the Fermi surface when the first zone is almost

filled. [From ref. 2.]



normal to the zone plane becomes zero at kx56p/a. It is noted that the k2

dependence holds well up to the region close to kx56p/a in the NFE model,
but it holds only in the small-k region in the tight-binding model.

8.6 Orthogonalized plane wave method

In 1940, Herring proposed the band calculation technique called the orthogo-
nalized plane wave or OPW method. He considered that a conduction electron
would propagate nearly as a free-electron in the intermediate region between
neighboring ions in a crystal and that the wave function in this region could be
approximated by a single plane wave. On the other hand, the Bloch wave func-
tion should rapidly oscillate upon entering the core region, because it corre-
sponds to the core state at higher energies and, hence, must be orthogonal to
the wave functions of the existing core electrons. Thus, it is time-consuming to
expand such a spatially rapidly changing wave function in terms of plane
waves, since too many plane waves are needed. Herring proposed to employ as
basis functions the “orthogonalized plane wave”, which is defined as

Xk(r)5 exp(ik·r)2 mk, jck, j(r) (8.38)

where V is the volume per atom and ck, j(r) appearing in the second term refers
to the Bloch wave function in equation (8.32) constructed from the atomic orbi-
tals. The superscript j is used to differentiate the orbital of the core electron
and, hence, corresponds to its quantum state, such as 1s, 2s, 2p, . . . wave func-
tions. The coefficient mk, j is determined so that the OPW wave function is
orthogonal to that of each core electron.

We now construct a trial eigenfunction of the Schrödinger equation (8.24)
by using as basis functions the OPW functions rather than the plane waves in
the NFE model or the atomic orbitals in the LCAO model. As mentioned in
Section 8.4, any Bloch wave function of the wave vector k can be constructed
by a superposition of the basis functions. The OPW functions are chosen as
more efficient basis functions and the Bloch sum is taken over all possible recip-
rocal lattice vectors:

ck(r)5 C(k1gn)Xk1gn
(r). (8.39)

Obviously, the expansion in terms of the OPW functions would reduce the
number of “waves” in comparison with the plane wave expansion in the NFE
model or the atomic orbital expansion in the tight-binding method, in order to
achieve the same accuracy for the eigenfunction. By inserting equation (8.39)
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into equation (8.24), we obtain a set of linear homogeneous equations for the
coefficient C(k1gn):

)k1gn)
22E dmn1Umn C(k1gm)50, (8.40)

where Umn is given by

Umn(E )5Vmn1 (mk1gm,i)
*mk1gn,i.(E2Ei). (8.41)

Note here that (E2Ei) is always positive, since the energy E of the valence elec-
tron is always higher than the energy Ei of the core electron. The derivation of
equations (8.40) and (8.41) can be done in the same manner as that of equa-
tion (5.34) in the NFE model.4 The set of equations (8.40) has physically mean-
ingful solutions only if the determinant of the matrix of the coefficients is zero.
The energy eigenvalue E is determined for a given k as the roots of the deter-
minantal equation. Since all the matrix elements are linear in energy, this equa-
tion can be solved by its diagonalization.

A superposition of only a few OPW functions has been proved sufficient to
get reliable energy eigenvalues for certain types of solids. Indeed, attempts to
improve the calculation by adding more OPWs have been often unsuccessful.
The wave function of the core electron in a crystal is not identical to that of the
atomic orbital in a free atom and, hence, the orthogonalization is not rigorous
in a solid. The OPW method is more advantageous when the potential func-
tions V(r) overlap between neighboring atoms as in covalent solids like Si and
Ge [1]. But it is less effective for transition metals, where the valence band is
composed of both sp and d electrons. The motion of the d electrons cannot be
well described by the OPW functions, since they are not so tightly bound to the
nucleus but yet they cannot be treated as free-electrons. As will be discussed
later, the APW and KKR methods are more appropriate in band calculations
for transition metals like Cu and Fe.

8.7 Pseudopotential method

The pseudopotential method [11] is an extension of the OPW method. As has
been discussed in the preceding section, the wave function of the conduction

o
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4 If we write eik·rAgn
;C(k1gn) in equation (5.30), then equation (5.34) is rewritten as

)k1gn)
22E dmn1Vmn C(k1gm)50

in the same form as equation (8.40). Here, dmn represents the “Kronecker-delta”, defined as unity if m5
n and zero otherwise.
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electron rapidly oscillates upon entering the core region and enhances its
kinetic energy as a result of the orthogonalization to the wave functions of core
electrons. The ionic potential in equation (8.24) is attractive to the conduction
electron and, hence, its Fourier component Vmn in the first term of equation
(8.41) is always negative. In contrast, the second term is positive and acts as a
repulsive potential, as mentioned in Section 8.6. The Umn(E ) in equation (8.41),
being regarded as the Fourier component of an effective potential the conduc-
tion electron experiences in a crystal, becomes very small owing to the cancel-
lation of the two competing terms. The Fourier transform of the Umn(E ) into
a real space is called the pseudopotential. The pseudopotential thus obtained
is illustrated schematically in Fig. 8.3.

Band calculations based on the pseudopotential method have been per-
formed by approximating the pseudopotential in an analytical form. For
example, Ashcroft employed the so called empty-core model [11]. As illustrated
in Fig. 8.4, the empty-core model assumes the Coulomb potential outside the
radius RM but a constant 2A0 inside RM. The value of RM is often chosen to
be equal to the ionic radius and the depth of the well A0 to be zero. In the NFE
model, the ionic potential was expanded in terms of the plane waves (see equa-
tion (5.30)). In the case of the bare Coulomb potential, it is expanded as

2 5 Vqe
iq·)ri2rj ) (8.42)

with its Fourier component

Vq52 . (8.43)
4pe2

q2

o
q
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Figure 8.3. Bare Coulomb potential V(r) and pseudopotential U(r).



The Fourier transformed pseudopotential for pure A1 is calculated using the
empty-core model and reproduced in Fig. 8.5, along with the Fourier trans-
form of the bare Coulomb potential given by equation (8.43). The bare
Coulomb potential (dashed curve) becomes infinite at q50 and gradually
approaches zero while keeping negative values with increasing q. In contrast,
the Fourier transform of the pseudopotential is finite at q50, crosses zero at a
value q0 and approaches zero while oscillating about the horizontal axis with
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Figure 8.4. Pseudopotential in the empty-core model. [V. Heine and D. Weaire, Solid
State Physics, 24 (1970) 249].

(Ry)

U(q)

q/2kF

q0

Figure 8.5. Pseudopotential U(q) of pure Al. The abscissa represents the wave
number normalized with respect to the Fermi diameter 2kF. The two solid circles indi-
cate the values of U(q) deduced from the experimental data at the (111) and (200) recip-
rocal lattice vectors. The dashed curve shows the bare Coulomb potential given by
equation (8.43). The data for pure Al is reproduced from M. L. Cohen and V. Heine,

Solid State Physics, 24 (1970) 37.



increasing q. These oscillations are not shown because of the limited range of
q.

We noted in Section 5.5 that the energy gap across the Brillouin zone planes
is proportional to the Fourier component of the ionic potential (see equation
(5.39)). The first Brillouin zone of fcc A1 is composed of the (111) and (200)
reciprocal lattice vectors. Since the pseudopotential crosses zero near the recip-
rocal lattice vector (111), as shown in Fig. 8.5, the values of both U111 and U200

become very small. For example, the value of U111 for pure A1 is determined
as 0.018 Ry or 0.24 eV [11]. Such small values cannot be achieved if the bare
Coulomb potential is used.

By using the pseudopotential approach, we can clearly demonstrate that the
(111) and (200) reciprocal lattice vectors in fcc metals like A1 and Pb fall close
to the value of q0 in the pseudopotential. This leads to fairly small energy gaps
across these zone planes. Similar situations occur in other non-transition
metals in different crystal structures [11]. This explains why the free-electron
model works well for simple polyvalent metals in spite of the presence of ionic
potentials.

8.8 Augmented plane wave method

The augmented plane wave or APW method was developed by Slater in 1937.
The essence of this technique exists in the approximation of the ionic potential
by the so-called muffin-tin potential, which is spherically symmetric within
some radius about each lattice site and is constant outside. Its three-dimen-
sional structure may be envisaged by a muffin-tin pan, shown in Fig. 8.6, which
is a kitchen utensil used to bake cakes in an oven and has a group of connected
cups which, in the figure, are about 5cm in diameter and 2cm in depth. A peri-
odic array of cups simulates well the image of the muffin-tin potentials.
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Figure 8.6. Muffin-tin pan. It illustrates well the muffin-tin potential in the APW
method.



Figure 8.7 illustrates schematically the array of the muffin-tin potentials for
a crystal consisting of only one atom species. As mentioned above, the muffin-
tin potential in a given cell is spherically symmetric within the region r#a and,
hence, is expressed as

v(r)5v()r)), (8.44)

whereas the potential is constant in the region r.a. Here the radius a is chosen
in such a way that the spherically symmetric potential at a given lattice site does
not overlap with the neighboring one. In other words, the diameter 2a must be
smaller than the edge length of the Wigner–Seitz cell shown by a dashed square
in Fig. 8.7(a). The constant potential in the range r.a is called the muffin-tin
zero and often is set equal to zero.

Let us consider the muffin-tin potential v(r2 l) at the lattice vector l, where
the position vector r of the electron is measured from the origin O. Now the
total potential each electron experiences at the position r must be summed over
all lattice vectors in a crystal and is expressed as
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Figure 8.7. (a) Muffin-tin potential in the simple cubic lattice. A dashed square rep-
resents the Wigner–Seitz cell. The origin O is taken at an arbitrary lattice site in the
lattice. Both lattice vector l and position vector r are measured relative to the origin O.
(b) The muffin-tin potential is spherically symmetric in the range r#a and constant

outside.



V(r)5 v(r2 l). (8.45)

For the moment, we consider only a single muffin-tin potential at l50. The
potential in the region r#a maintains spherical symmetry and, hence, the wave
function in the Schrödinger equation (8.24) is exactly solved as

clm(r)5Y,m(u,f)R,(r) (8.46)

in spherical coordinates. Here Y,m(u,f) is a spherical harmonic with the azi-
muthal quantum number , and magnetic quantum number m. The (u,f) rep-
resents the direction of the vector r. The radial function R,(r) is a solution of
the differential equation

2 (V(r)2E ) R,(r)50, (8.47)

where R,(r) must be regular at the origin so that the relation lim
r→0

rR,(r)50
should hold.

An augmented plane wave or APW function is now constructed for a system
where muffin-tin potentials are periodically arranged. Since the spherical sym-
metry of the potential is maintained in the region r#a at every lattice site, the
wave function in the region r#a may well be expressed as

x(E,r)5 a,mR,(E,r)Y,m(u,f), (8.48)

where the azimuthal quantum number , is, in practice, taken up to about 10 or
12 in the APW band calculations. In the region r$a, the electron sees a con-
stant potential and, thus, the solution of the Schrödinger equation should be
written as

x(k,r)5exp(ik·r), (8.49)

where k is the wave vector of the plane wave.
Equation (8.49) is expanded in the spherical harmonics as

eik·r54p i ,j,(kr)Y *
,m(uk,fk)Y,m(u,f), (8.50)

where j,(kr) is the spherical Bessel function of order , and both (u,f) and
(uk,fk) represent the polar angles of the vectors r and k, respectively. Equations
(8.48) and (8.49) must be continuous across the boundary r5a. By equating
equations (8.48) and (8.50), we obtain

a,m54pi ,Y *
,m(uk,fk)j,(ka)R,(E,a). (8.51)
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Note that the wave function becomes continuous across the boundary r5a but
there is a possible jump in the first derivative of the wave function there.

The wave function described by equations (8.48) and (8.49) with the coeffi-
cients given by equation (8.51) is called the APW function. However, the peri-
odicity of the lattice has not yet been considered. The wave vector k in equation
(8.49) must be replaced by the Bloch wave vector or k1gn, where gn is the recip-
rocal lattice vector. As has been emphasized, any Bloch wave function of a
given wave vector k can be expanded in terms of basis functions with all pos-
sible wave vectors k1gn. Here the APW functions are chosen as basis func-
tions. In other words, we need to take the Bloch sum of the APW functions in
the same spirit as the OPW method discussed in Section 8.6. A trial Bloch wave
function ck(r) is, therefore, written as

ck(r)5 C(k1gn)xk1gn
(E,r), (8.52)

where the Bloch condition xk(E,r)5 eik·lx(E, r2 l) holds.

An insertion of equation (8.52) into equation (8.24) leads to a set of linear
homogeneous equations concerning the coefficient C(k1gn):

)k1gn)
22E dmn1Fmn C(k1gm)50. (8.53)

This equation is found to be of the same form as equation (8.40) in the OPW
method and also equation (5.34) in the NFE method. The Fourier component
Vmn is now replaced by Fmn in the APW method. The function Fmn is given by

Fmn(E )5 {2[(k1gm)·(k1gn)2E ]} 

14p Y,m(k1gm)*j, ()k1gm)a) j, ()k1gn)a)Y,m(k1gn). (8.54)

The physical picture of equation (8.54) is less clear than that of equation (8.41)
in the OPW method. It looks as if it does not depend on the muffin-tin poten-
tial v(r). But it does, since the logarithmic derivative of the radial wave func-
tion R9,(E,a)/R,(E,a) in the second term of equation (8.54) is decided by the
muffin-tin potential v(r).

The determinant of the coefficient C(k1gn) must be zero in order to yield a
physically meaningful non-zero solution. As opposed to the OPW or NFE
methods, all the matrix elements depend on the energy E either explicitly as
in equation (8.53) or implicitly through equation (8.54). Thus, the secular

R9,(E,a)
R,(E,a)o
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j,()gm 2 gn )a)
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4pa2

V

6251o
m

o
l

o
gn

210 8 Electronic structure calculations



determinant can be computed for a given value of E, which can then be varied
until a root is found. Though the non-linear problem requires a great deal of
computing time, the APW method has been proved to be very powerful in
allowing accurate band calculations for various metals including transition
metals like Fe and Cu.

8.9 Korringa–Kohn–Rostoker method

In 1947, Korringa proposed a band calculation technique based on the multi-
ple scattering theory but no practical applications were made at the time
because of the lack of large computers and less acquaintance with the multi-
ple scattering theory. In 1954, Kohn and Rostoker [12] proved that the deriva-
tion of the energy eigenvalue from the multiple scattering theory is equivalent
to that derived from the variational principle. Since then, it has been realized
that the application of the multiple scattering theory provides as rigorous a
foundation as other band calculations based on the variational principle and
that it is substantially efficient from the computational point of view. This tech-
nique is called the Korringa–Kohn–Rostoker or KKR method. The APW and
KKR methods are now recognized as more accurate techniques in band calcu-
lations.

We have two basic equations in the multiple scattering theory:

c (r)5x(r)1 co
n(r) (8.55)

and

c i
n(r)5x(r)1 co

p(r). (8.56)

The first equation (8.55) implies that the total wave function c (r) can be given
by the unperturbed wave function x(r) in the absence of the scatterers plus the
sum of the waves co

n(r) propagating outward from all the scatterers. Similarly,
the wave function c i

n(r) incident to the n-th scatterer is given by the unperturbed
wave function x(r) plus the sum of the waves c o

p(r) propagating outward from
all scatterers except the n-th scatterer. One can easily find from these two equa-
tions that the total wave function is also expressed as c (r)5c i

n(r)1c o
n(r).

Let us suppose the wave function c (r9) to be scattered at the position r9 by
the ionic potential v(r92 l) with the lattice vector l. For the moment, we assume
that a single ionic potential exists at the position l. Now the strength of the sca-
tering of the wave function c(r9) by the potential v(r92 l) would be propor-
tional to v(r92 l)c (r9). In the context of the multiple scattering theory, the wave

o
pÞn

o
n
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function c(r) at the position r is considered to be formed by combining the
wavelets of strength v(r92 l)c (r9) generated at all different points r9. To formu-
late this, we introduce the Green function G(k,r2r9), which is defined as a
quantity transmitting the wave functions c (r9) at all different positions r9 to the
wave function c (r) at the position r through the scattering due to the potential
v(r92 l) and write down in the following form:

c (r)5eG(k,r2r9)v(r92l)c (r9)dr9, (8.57)

where k2 is the kinetic energy E in atomic units.
Equation (8.57) describes the motion of the electron when scattered by the

potential v(r92 l). Hence, it must be related to the corresponding Schrödinger
equation. As will be shown below, the Green function in equation (8.57) has to
be explicitly written as

G(k,r2r9)52 , (8.58)

in order to reconcile equation (8.57) with the Schrödinger equation (8.24).
Let us consider in general the relation +c (r)5F(r), where + is an arbitrary

linear operator. This relation states that a function F(r) is generated, when + is
operated to a function c (r). The Green function G(r,r9) is defined in such a way
that the delta function is generated under the operation + or +G(r,r9)5

d(r2r9). The Schrödinger equation (8.24) is rewritten in atomic units as

{=21k2}c (r)5V(r)c(r), (8.59)

where the energy E is replaced by E5k2. One can easily show that +G(r,r9)5

d(r2r9) holds, if +5=21k2 and the Green function is given by equation (8.58)
(see Exercise 8.2).

Let us multiply by the Green function G(k,r2r9) on both sides of equation
(8.59) and integrate both sides with respect to r9 over a whole space;

e{=21k2}G(k,r2r9)c(r9)dr95eG(k,r2r9)V(r9)c (r9)dr9. (8.60)

This immediately results in equation (8.57), since the left-hand side is obviously
reduced to the wave function c (r). We have confirmed in this way that equa-
tion (8.57) is indeed the Schrödinger equation in the integral form.

The argument above has been limited to the scattering due to a single ionic
potential. It is easily extended to a periodic lattice, where identical muffin-tin
potentials given by equation (8.44) are periodically arranged:

V(r)5 v(r2 l).o
l

1
4p

exp(ik)r 2 r9))
)r 2 r9)
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The wave function in the periodic lattice is characterized by the Bloch wave
vector k. Equation (8.57) is therefore extended to the case in a crystal:

ck(r)5 G(k,r2r9)v(r92 l)ck(r9)dr9

5 G(k,r2r9)v(r92 l)exp(ik·l)ck(r92 l)dr9, (8.61)

where the second line is obtained by inserting the Bloch condition (5.14).
Equation (8.61) means that the wave function at the position r is determined
by the sum of the contributions from wavelets scattered from all equivalent
muffin-tin potentials with the lattice vectors l. Equation (8.61) is often rewritten
as

ck(r)5eG(k,k;r2r0)v(r0)ck(r0)dr0, (8.62)

where G(k,k;r2r0) is called the structure Green function [13] and is defined as

G(k,k;r2r0); G(k,r2(r01 l))exp(ik·l)

52 exp(ik·l). (8.63)

The structure Green function is convenient to describe the motion of electrons
in a periodic crystal and serves as transmitting all the wavelets at the position
r0 scattered from periodic potentials with lattice vectors l to the position r.

The Bloch wave function ck(r) can be obtained as a solution of the
Schrödinger equation (8.62) in a periodic potential V(r). Equation (8.62) may
be solved by using the variational principle. According to Ziman [13], both
sides of equation (8.62) are multiplied by c*

k(r)v(r) with subsequent integraton
over the variable r. A functional L is defined as

L5 c*
k(r)v(r)ck(r)dr

2 c*
k(r)v(r)G(k,k;r2r0)v(r0)ck(r0)drdr0. (8.64)

The eigenfunction is found by minimizing L. Here we need to integrate only
over a single Wigner–Seitz cell, because the muffin-tin potential is zero outside
each atomic sphere.

Since the muffin-tin potential is spherically symmetric inside each cell, a trial
Bloch function ck(r) is conveniently expressed as

EEo
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ck(r)5 Ck,,mR,(E,r)Y,m(u,f), (8.65)

in the same form as equation (8.48). By inserting equation (8.65) into equation
(8.64), we obtain a quadratic function in the coefficient C,m:

L5 L,m;,9m9
C,mC*

,9m9
(8.66)

and

L,m;,9m9
5S,m;,9m9

1kd,,9
dmm9

, (8.67)

where j, and n, are ,-th order spherical Bessel functions and spherical
Neumann functions, respectively, and d,,9

and dmm9
are Kronecker-deltas. L,

indicates the logarithmic derivative of the radial wave function R,(r) at the
muffin-tin radius. Both real and imaginary parts of the complex variable C,m

are determined so as to minimize the functional L. This leads to the determi-
nantal equation )L,m;,9m9

)50. By solving this equation, we obtain the band
structure, i.e., the wave vector dependence of the energy E.

Finally, we will briefly discuss the first and second terms in equation (8.67).
The first term S,m;,9m9

emerges from the Green function in equation (8.64). As
is clear from equation (8.63), it does not depend on the wave function but con-
tains information only about the crystal structure, since it takes the sum over
the lattice vector l. The parameter S,m;,9m9

is called the structure factor and is a
function of k (or energy E ) and the wave vector k. Once it is tabulated for a
given crystal structure, it does not need be calculated again. The second term
involves the logarithmic derivative L,. Since the product v(r)ck(r) in the first
term of equation (8.64) can be replaced by {=21k2}c (r), the volume integral
is transformed to a surface integral by using the Green theorem. As a result,
both the derivative of the wave function and the Green function appear. This
explains why L, appears in the second term of equation (8.67). The character-
istic features of a given material are brought in through the logarithmic deriv-
ative L, of the radial wave function. This is because L, depends on the
muffin-tin potential, as is seen from equation (8.54).

The KKR method is alternatively called the Green function method. As is
clear from the argument above, the muffin-tin potential is used in the same way
as in the APW method. The APW method relies on solving a secular equation
for a trial wave function obtained by superimposing the APW functions over
reciprocal lattice vectors (see equation (8.52)), whereas the KKR method takes
the lattice sum in real space first (see equation (8.63)) and then solves the deter-
minantal equation. The advantage of the KKR method lies in a complete

n9, 2 n,L,

j9, 2 j,L,

o
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separation of the structure-dependent term S,m;,9m9
from the muffin-tin poten-

tial dependent term, thereby contributing to the enhanced efficiency in compu-
tation. The KKR method is known to be very accurate for metals but less so
for covalent crystals.

8.10 LMTO method

The band calculation techniques so far discussed are divided into two main
approaches; one uses a trial wave function, which is formed as linear combina-
tions of basis functions like plane waves in the NFE method and orthogonal-
ized plane waves in the OPW method; and the other expands the wave function
into a set of energy-dependent partial waves and applies a matching condition
for partial waves at the muffin-tin sphere like the APW and KKR methods.
Both approaches have their advantages and disadvantages.

In the former, the application of the variational principle to the Schrödinger
equation leads to the eigenvalue equations:

(H
=

2E O
=

)·a50 or (H k
l9m9lm2E k

jO
k
l9m9lm)ak

l9m9lm50, (8.68)

where [H
=

] and [O
=

] are the Hamiltonian and overlap matrices and a is a vector
consisting of the expansion coefficients. An advantage of using energy-
independent basis functions as in the NFE and LCAO methods is that all the
matrix elements in the secular determinant are linear in energy, allowing a fast
computation in solving the secular equation. However, a proper choice of the
basis functions is important to have a sufficiently small basis set.

In the latter, it is possible to solve the Schrödinger equation exactly in terms
of the energy-dependent partial-wave expansions like equation (8.48) in the
APW method. A matching condition of equation (8.51) eventually leads to
equation (8.54) in the APW method. The way in which the matching condition
is formulated depends on the partial-wave methods chosen, but the result is
reduced to a set of linear homogeneous equations:

M
=

·a50 or P,9m9,,m(E )2Sk
,9m9,,m(E ) ak

,9m9,,m50, (8.69)

where the secular matrix M
=

has a complicated, non-linear energy dependence
in contrast to equation (8.68). As a consequence, the partial-wave methods,
even for moderately sized matrices, require more computer time than the eigen-
value problem in the fixed-basis approach. However, the partial-wave methods
are advantageous in providing solutions of an arbitrary accuracy for a given
muffin-tin potential and, as has been emphasized earlier, information about the
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potential enters the secular equation only through the logarithmic derivative of
the wave function at the muffin-tin sphere.

The APW and KKR methods are capable of calculating accurately the band
structures for a wide class of materials but have required substantial computa-
tional effort to obtain truly self-consistent calculations. The Linear-Muffin-Tin
Orbital or LMTO method was developed by Andersen and his group [14, 15]
for solving the band structure problem in more efficient and physically more
transparent ways. The LMTO method is constructed so as to combine the
desirable features of the fixed-basis and partial-wave methods and has been
recognized as one of the most efficient techniques to determine the one-
electron band structure in crystalline solids with a fast computation time
without sacrificing the accuracy.

The outline of the LMTO method will be described by following the scheme
developed by Skriver [16]. To begin with, the KKR method combined with the
Atomic Sphere Approximation or the KKR–ASA method is discussed to facil-
itate the understanding of the LMTO method. The Wigner–Seitz polyhedral
cell is replaced by an atomic sphere having the same volume. The resulting
sphere with the radius r0 is called the Wigner–Seitz sphere or atomic sphere.
This is illustrated in Fig. 8.8. One of the centers is taken as its origin r50. As
noted above, the radial wave function R,(E,r) is the exact solution of the
Schrödinger equation (8.47), since the spherically symmetric muffin-tin poten-
tial is assumed. Now the muffin-tin orbital in the atomic sphere is defined as

x,m(E,r)5i,Y,m(u,f) R,(E,r)1p, (E ) (r,r0), (8.70)

where Y,m(u,f) is the spherical harmonic already appearing in equation (8.46).
The second term is ingeniously added, the reason of which will be discussed below.

The potential outside the sphere r.r0 is assumed to be zero and, hence, the
tail of the muffin-orbital must be expressed as (r0/r),11 there. This is a solution
of the Laplace equation =2x50, which is equivalent to the Schrödinger equa-
tion having zero kinetic and potential energies.5 Thus, the muffin-tin orbital in
the region r.r0 can be written as

x,m(E,r)5i,Y,m(u,f) (r.r0). (8.71)

The function p,(E ) in the second term of equation (8.70) is determined so as
to make both (8.70) and (8.71) continuous across r5r0. The result is given by

1r0

r 2
,11

1 r
r0
2

,
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5 Put k250 and V(r)50 in equation (8.59). The radial wave function can be expressed by a linear combi-
nation of the spherical Bessel and spherical Neumann functions in spherical corrdinates (see equation
(8.87) and also Section 13.8). In the region where r is small, it is approximated as A(r/r0),1B(r0/r),11.



p,(E )5 , (8.72)

where

D,(E )5 . (8.73)

This is the matching condition for the partial waves and D,(E ) is indeed a
quantity similar to L, in equation (8.67) in the KKR method.

Now we consider the contribution from all the other atomic spheres in a crystal.
All the tails arising from the atomic spheres located at the lattice vector l are
summed up over the whole crystal and the value at the position r is reduced to

i,Y,m(u,f), (8.74)

where k is introduced as the Bloch wave vector. Equation (8.74) can be
expanded in a power series about r50:

i,9Y,9m9
(u,f)S k

,9m9,,m, (8.75)

where Sk
,9m9,,m is the structure factor which appeared in equation (8.67).
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r0

Figure 8.8. Wigner–Seitz cell and its replacement by a Wigner–Seitz sphere with a
radius ro. [From ref. 16].



A final wave function extending over the crystal may be constructed by
taking the lattice sum of equation (8.70):

ajk
,m eik·lx,m(E,r2 l), (8.76)

where the superscript j in the coefficient ajk
,m represents the band index. In the

region r,r0 of each atomic sphere, the first term i,Ylm(u, f)R,(E,r) in equation
(8.70) is a correct solution to the Schrödinger equation. Thus, the wave func-
tion inside the sphere in a crystal should be generalized as

aj k
,mi,Y,m(u,f)R,(E,r). (8.77)

However, there exists the contribution arising from the second term in equa-
tion (8.70), which remains finite inside the sphere at r50. This is explicitly
written as

aj k
,mi,Y,m(u,f)p,(E ) . (8.78)

Now the reason for the addition of the second term in equation (8.70) is clear.
Equation (8.78) is needed in order to cancel the contribution of equation (8.75)
arising from the tails of all the other muffin-tin orbitals. This is the principal
idea in the multiple scattering theory employed in the KKR method. The con-
dition for the tail cancellation leads to a set of linear, homogeneous equations:

P,(E )d,9,dm9m2Sk
,9m9,,m aj k

,m50, (8.79)

where P,(E ) is obviously given by

P,(E )52(2,11)p,(E ). (8.80)

The determinant of the coefficients aj k
,m in equation (8.79) must be zero to have

physically meaningful solutions:

det[P,(E )d,9,dm9m2Sk
,9m9,,m]50. (8.81)

The first term in equation (8.81) depends only on the potential function P,(E ),
which is uniquely determined from the muffin-tin potential in an atomic
sphere. The second term involves only the structure factor Sk

,9m9,,m and is
uniquely determined, once a crystal structure is given. Hence, the characteris-
tic feature of the KKR method is preserved in this treatment.
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The KKR–ASA method has employed the energy-dependent orbital (8.70)
and results in the non-linear energy dependence in P,(E ). To proceed further
with our discussion, we introduce the muffin-tin potential shown in Fig. 8.9. A
spherically symmetric potential exists in a muffin-tin sphere with a radius a and
a constant potential VMTZ called the muffin-tin zero in the intermediate region
between the neighboring muffin-tin potentials.

We assume electrons to propagate in the intermediate region with a constant
wave number k5 . The muffin-tin potential in the LMTO is defined
as

VMT(r)5V(r)2VMTZ (r#a) (8.82)

and

ÏE 2 VMTZ
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VMT (r )

rRl(E, r)

Figure 8.9. (a) Wigner–Seitz atomic sphere with radius r0 and muffin-tin sphere with
radius a. Neighboring Wigner–Seitz spheres are partially drawn so as to make contact
with the muffin-tin sphere at the center. (b) The radial wave function. (c) Muffin-tin
approximation for the ionic potential. (d) Muffin-tin potential defined by equations

(8.82) and (8.83). [From ref. 16].



VMT(r)50 (r.a), (8.83)

in which V(r) is spherically symmetric. Note that VMTZ is negative in sign. As
can be seen in Fig. 8.9(d), VMT(r) becomes zero in the region r.a but the elec-
tron now possesses the kinetic energy k25E2VMTZ.

The Schrödinger equation in the presence of a single muffin-tin potential is
expressed as

[2=21 VMT(r)2k2]c,,m(E,r)50. (8.84)

Its solution c,,m(E,r) is written as

c,,m(E,r)5i ,Y,m(u,f)R,(E,r), (8.85)

where R, (E,r) in the region r#a satisfies the radial Schrödinger equation

1VMT(r)2k2 rR,(E,r)50. (8.86)

R,(E,r) in the region r.a, where VMT(r)50, is the solution of

rR,(E,r)50. (8.87)

Equation (8.87) is called the Helmholtz wave equation and its solution is given
by a linear combination of the spherical Bessel function j,(kr) and the spheri-
cal Neumann function n,(kr). The wave function in the region r.a is expanded
in terms of the phase-shifted spherical waves in contrast to the plane wave
expansion (8.49) in the APW method.

Based on the arguments above, we newly redefine the muffin-tin orbitals as

x,m(E,k,r)5i,Y,m(u,f)kn,(kr). (r.a) (8.88)

and

x,m(E,k,r)5i,Y,m(u,f)[R,(E,r)1k cot(h,)j, (kr)] (r#a), (8.89)

where h, is the phase shift of the ,-th partial wave. The coefficient cot(h,) is
chosen in such a way that the partial wave is everywhere continuous and differ-
entiable. The muffin-tin orbitals above are determined so as to be regular both
at the origin and infinity.6 They are a generalization of equations (8.70) and
(8.71), which were derived under the condition k250. As noted in footnote 11
(p. 406) in Chapter 13, the spherical Bessel function j,(kr) and the spherical

32
d2

dr2 1
,(, 1 1)

r2 2 k24

432
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6 The radial part of equation (8.88) must be of the form k[n,(kr)2cot(h,)j(kr)]. But in order to avoid its
divergence at r→`, the term 1kcot(h,)j(kr) is added. This makes the muffin-tin orbital to be regular at
infinity and introduces the term kcot(h,)j(kr) in equation (8.89).



Neumann function n,(kr) are approximated as (r/r0)
, and (r/r0)

2,21, respec-
tively, when kr is small. Indeed, equations (8.88) and (8.89) are reduced to
equations (8.70) and (8.71) when kr,,1. We realize that p,(E ) in equation
(8.70) is replaced by cot(h,) in equation (8.89).

The muffin-tin orbitals (8.88) and (8.89) are still energy dependent and,
hence, are computationally inefficient. It is necessary to employ a fixed-basis
set which leads to a computationally more efficient eigenvalue problem like
equation (8.68). Andersen replaced the energy variable E in R,(E,r) by a fixed
but arbitrary energy Ev and constructed energy-independent muffin-tin orbitals
composed of the partial radial wave function R,(Ev,r) and their first energy
derivative Ṙ,(Ev,r). We need to know why the energy-independent muffin-tin
orbital can be constructed from the sum of R,(Ev,r) and its energy derivative
Ṙ,(Ev,r) [15].

To facilitate the discussion, a homonuclear diatomic molecule is considered.
As shown in Fig. 8.10, two atomic orbitals f,m(r) are positioned at r50 and
r5R. The bonding and antibonding molecular orbitals may be approximated
by using a linear combination of the atomic orbitals (LCAO):

cbonding (EB, r)<f,m(r)1(21),f,m(r2R) (8.90)

and

cantibonding (EA, r)<f,m(r)2(21),f,m(r2R), (8.91)

where EB and EA are energies of the bonding and antibonding states.
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Rr0 r0

φ,m(r ) φ,m(r2R)

A

B

Figure 8.10. flm(r) represents the atomic orbital. The bonding and antibonding
molecular orbitals in a homonuclear diatomic molecule are marked as B and A, respec-
tively. r0 denotes the cell boundary. Molecular orbitals are shown only in the left cell.

[From ref. 16.]



The muffin-tin potential is spherically symmetric in the region well inside the
core in a diatomic molecule. Hence the bonding and antibonding molecular
wave functions would be exactly given by

cbonding(EB, r)5 a,mR,m(EB,r)Y,m(u,f) (8.92)

and

cantibonding(EA, r)5 a9,mR,m(EA,r)Y,m(u,f) (8.93)

Since the atomic orbital f,m(r) is reduced to [cbonding(r)1cantibonding(r)]/2 from
equations (8.90) and (8.91), the molecular orbital in a given cell should be aug-
mented as

a,m[R,m(EB,r)1R,m(EA,r)]Y,m(u,f)< a,mR,m(Ev,r)Y,m(u,f), (8.94)

where Ev is some energy between EB and EA. Similarly, the atomic orbital
f(r2R) in the cell is given by [(21),/2][cbonding (r)2cantibonding (r)] and contrib-
utes as a tail at r50. Hence, the molecular orbital given by equation (8.94)
should be further augmented by the amount:

a,m[R,m(EB,r)2R,m(EA,r)]Y,m(u,f)

< a,m (E2Ev)Y,m(u,f), (8.95)

In a solid, a continuous band is formed in the energy range over EB and EA

and the corresponding wave function is constructed by all possible combina-
tions of bonding and antibonding states between nearest neighbors through-
out a crystal. We consider the energy-dependent radial wave function R,m(E,r)
at any lattice site to be constructed from the sum of the head of the energy-
independent orbital and the tails of the energy-independent orbitals from all
the other sites in a crystal. In other words, the augmented muffin-tin orbital
R,m(E,r) is effectively replaced by the sum of equation (8.94) and (8.95) and is
expressed as

R,m(E,r)<R,m(Ev,r)1(E2Ev)Ṙ,m(Ev,r). (8.96)

Here we see that equation (8.96) is the first two terms of the Taylor expansion
of R,m(E,r). The muffin-tin orbitals thus obtained can be made continuous and
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differentiable everywhere and orthogonal to the wave functions of the core
electrons.

Because of the replacement of the energy E by a fixed energy Ev in the radial
wave function, the LMTO method is no longer exact for the muffin-tin poten-
tial but the error in the energy is shown to be only of fourth order in the differ-
ence E k

j2Ev. The Bloch wave is constructed by taking the Bloch sum of the
energy-independent muffin-tin orbitals. A trial function is given by the linear
combination of muffin-tin orbitals thus obtained. A use of the variational prin-
ciple in conjunction with the energy-independent muffin-tin orbitals results in
a secular equation of the form (8.68), linear in energy. The energy eigenvalue
can be computed by diagonalizing the secular equation in the form of equation
(8.68). Readers who need more detailed information about the LMTO method
should consult the literature [14–16].

Exercises

8.1 Equation (8.37) is derived for the simple cubic lattice in the tight-binding
method. We consider the eight nearest neighbor atoms in the lattice with the
lattice constant a. Their atom positions are denoted as Rn5(61/2a, 61/2a,
61/2a). Show that equation (8.37) is reduced to

E5E02a28g cos kxa·cos kya ·cos kza (8Q.1)

8.2 Show that the Green function G(k,r2r9)52(1/4p)exp(ik)r2r9))/)r2r9)
satisfies the Schrödinger equation {=21k2}G(k, r2r9)5d(r2r9). Here,
d(r2r9) represents the delta function, which goes to infinity when r5r9 and
zero otherwise.

1
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1
2

1
2

Exercises 223



Chapter Nine

Electronic structure of alloys

9.1 Prologue

We have so far discussed the electronic structure of metals and semiconductors
existing as elements in the periodic table and have assumed a crystal to be
ideally perfect without containing any defects like impurities, vacancies, dislo-
cations and grain boundaries. In reality, no metal is perfectly free from such
defects, which certainly disturb the periodicity of the lattice and cause scatter-
ing of the Bloch electron. Foreign elements can be intentionally added to a
given metal, resulting in the formation of an alloy. When the amount of the
added element is dilute, the added atoms may be treated as impurities. But
when its concentration exceeds several atomic %, the interaction among the
added atoms is no longer neglected. In this chapter, we discuss first the effect
of an impurity atom on the electronic structure of a host metal and then move
on to discuss the electronic structure of concentrated alloys.

9.2 Impurity effect in a metal

Let us consider first a perfect metal crystal consisting of the atom A with the
valency Z1. All atoms become positive ions with the valency 1Z1 by releasing
the outermost Z1 electrons per atom to form the valence band. As a result, con-
duction electrons carrying negative charges are uniformly distributed over any
atomic site with equal probability densities and maintain charge neutrality
with the array of ions with positive charges. Now we replace the atom A at a
given lattice site by the atom B with valency Z2 (Z2.Z1). Effectively, a point
charge equal to DZ5Z22Z1 is formed at the atom B and the uniform charge
distribution is disrupted.

The excess potential at a distance r away from a point charge e is given by
e2DZ/r in vacuum. But this is no longer true in a metal, where freely moving
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conduction electrons are attracted by the positive point charge at the atom B
and thereby it is largely screened. The excess potential is known to be reduced
to

U(r)5 , (9.1)

where 1/l is called the screening radius. We will describe below the derivation
of equation (9.1) in the context of the so-called Thomas–Fermi approxima-
tion.

The density of conduction electrons r(r) at distance r from the atom B cer-
tainly deviates from the average density r0(r) existing prior to its introduction.
The following Poisson equation holds in the vicinity of atom B:

=2U(r)524pe2[r(r)2r0(r)], (9.2)

where U(r) represents the impurity potential caused by atom B with its excess
charge. The Fermi energy EF is related to r0(r) through equation (2.21) in a pure
metal. Because of the presence of the potential U(r), equation (2.21) is mod-
ified such that

EF1U(r)5 [3p2 r(r)]2/3 (9.3)

or

r(r)5 . (9.4)

The term [11(U(r)/EF)]3/2 can be expanded in a series, since U(r),,EF.
Accordingly, equation (9.4) is approximated as

r(r)5r0 . (9.5)

An insertion of equation (9.5) into equation (9.2) yields the relation

=2U(r)5l2U(r), (9.6)

where l is given by

l5 . (9.7)

Since U(r) in equation (9.6) is spherically symmetric and involves only the
radial distance r as a variable, it is reduced to the form:
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5l2U(r). (9.8)

One can easily check that equation (9.1) is the solution of equation (9.8). The
screened potential is shown as a solid curve in Fig. 9.1 in comparison with a
bare Coulomb potential (dashed curve). It can be seen that the range of the
potential the impurity atom exerts is substantially reduced due to the screen-
ing by the conduction electrons.1 The parameter l is often called the
Thomas–Fermi screening parameter.

Consider the case where a single Zn atom is introduced into Cu metal.
Obviously, each Cu atom becomes a Cu11 ion by releasing one 4s electron per
atom to the valence band. The Zn impurity atom possessing two outermost 4s
electrons would become a Zn12 ion by releasing these two electrons. Hence, a
positive point charge with the excess valency DZ51 remains on the Zn atom.
The magnitude of the screening radius 1/l turns out to be about 0.055 nm, if the
values of EF57 eV and r0<8.531028/m3 appropriate to pure Cu are inserted
into equation (9.7). One can realize how effective the screening effect is, since it
is much shorter than the interatomic distance of 0.255 nm in pure Cu.

9.3 Electron scattering by impurity atoms and the Linde law

The screening potential, equation (9.1), is formed in a metal when an impurity
atom is introduced. The periodic potential is thereby disturbed and conduction

1
r2

d
dr 1r2 dU(r)

dr 2
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1 As is clear from equation (9.7), a large number of freely moving conduction electrons must be present in
order to screen the excess charge of an impurity ion. This is true in a metal. In the case of a semiconduc-
tor, such a screening effect does not occur because of the scarcely populated conduction band and, instead,
the impurity level or donor level is formed in the energy gap (see Section 6.9).
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Figure 9.1. Bare Coulomb potential (dashed curve) and screened Coulomb potential
(solid curve).



electrons are scattered. As will be shown in Section 10.7, only electrons at the
Fermi level contribute to the resistivity. Let us assume elastic scattering so that
the conduction electron with wave vector k on the Fermi surface is scattered
into the state of k9 on the Fermi surface by the impurity atom. Thus, the rela-
tion )k)5 )k9)5kF holds, where kF is the Fermi radius. The differential cross-
section upon scattering is expressed as

s(u)5 , (9.9)

where K represents the magnitude of the scattering vector K5k92k.2

The number of impurity atoms per unit volume, Nimp, is assumed to be so
low that the interaction between the impurities can be neglected. By using the
resistivity formula (10.7), we can write the excess resistivity due to the impur-
ity scattering as

Dr5 , (9.10)

where L is the mean free path of the conduction electron given by the product
of the relaxation time t and the Fermi velocity vF. Since the mean free path of
the conduction electron is given by 1/L52p ep

0 (12cosu)s(u)sinudu (see
Section 10.10), equation (9.10) is rewritten as

Dr5 (12cosu)

5 , (9.11)

where n is the density of conduction electrons in the host metal. The variable
u represents an angle between the wave vectors k and k9 and is called the scat-
tering angle. The last line in equation (9.11) can be easily obtained by using the
relation )K)52kFsin(u/2), which holds in the case of elastic scattering, as shown
in Fig. 10.6.
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2 The differential cross-section of the conduction electron due to the impurity potential U(r) is expressed
in the Born approximation as s(u)5(m/2p"2)2 )U(K ))2, where U(K ) is the Fourier transform of the
excess potential given by U(K )5eeeU(r)e2i K·rdr. An insertion of equation (9.1) leads to
U(K )524pDZe2/(K21l2). See more details in L. I. Schiff, “Quantum Mechanics”, (McGraw-Hill, New
York, 1955), Chapter 8, Section 30.



Equation (9.11) indicates that the resistivity increase upon impurity scatter-
ing is proportional to (DZ )2 or the square of the valency difference between the
impurity atom and the host metal. The (DZ )2 dependence is clearly seen in Fig.
9.2, where the resistivity increment upon the addition of one atomic % of
various elements to pure Cu or pure Ag, is plotted against DZ. This is known
as the Linde law. When monovalent Ag or Au is added to Cu or vice versa, the
valency difference is obviously zero and, hence, no resistivity increase is
expected from equation (9.11). Indeed, the resistivity increment in this case is
much smaller than that when the polyvalent element is added. But it is still
finite. Even when an element having the same valency as the host metal is
added, the difference in ionic potential and atomic size would disturb the peri-
odic structure, thereby resulting in an impurity scattering.

It is worthwhile mentioning that the Linde law no longer holds when the
solute concentration exceeds about 5 at.%. Now the impurity–impurity inter-
action cannot be ignored. We will consider concentrated alloys in the next
section.

9.4 Phase diagram in the Au–Cu alloy system and the Nordheim law

We select in this section the Au–Cu alloy system as one of the simplest but rep-
resentative alloy systems and try to explain how the disruption of the lattice
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alloys

alloys

Figure 9.2. The Linde law. The DZ dependence of the increment of resistivity upon
adding 1 at.% of various elements (as indicated) to Cu and Ag. DZ is the difference in
valency between the solute and the noble metal matrix. The value of DZ is taken to be
0, 21, 22 and 23, for Ni, Co, Fe and Mn, respectively. [F. Seitz, The Modern Theory

of Solids (McGraw-Hill, New York, 1940)]



periodicity gives rise to scattering of the Bloch electrons. First of all, we intro-
duce the phase diagram which shows the phase appearing at a given concen-
tration and at a given temperature in a given alloy system. In the phase diagram
for an A–B binary alloy system, the horizontal and vertical axes represent the
concentration of the atom A or B and the temperature, respectively. Each equi-
librium phase is bounded by phase boundaries. The concentration is expressed
either by the atomic % or weight %. Atomic % is more frequently employed in
physics. Atomic %A, which is often abbreviated as at.%A, indicates the number
of A atoms in 100 atoms and, hence, x at.%A is equal to (1002x) at.%B in the
A–B binary alloy system. Each phase is stabilized by minimizing its free energy
at a given temperature and concentration. An equilibrium phase diagram can
be constructed by determining the phase boundary by experiments or thermo-
dynamic calculations.

Figure 9.3 shows the equilibrium phase diagram of the Au–Cu system. It can
be easily seen that Au and Cu melt at 1064 and 1085 °C, respectively. The region
marked as “L” represents the liquid phase. The curve connecting the tempera-
tures at which the liquid begins to solidify, is called the liquidus curve. The liq-
uidus curve in this system is convex downward, indicating that the melting
point in the alloys is lowered relative to those of the pure metals. There is
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Figure 9.3. Phase diagram of Au–Cu alloy system. [Binary Phase Diagrams, edited
by T. B. Massalski, H. Okamoto, P. R. Subramanian and L. Kacprzak, (ASM, 1990)]



another curve underneath, below which the alloy is fully solidified. This is
called the solidus curve. The liquidus and solidus curves meet in the pure metals
at both ends, indicating that the temperature remains unchanged upon cooling
the melt until all of the liquid completes its solidification. In the alloys, with
the exception of that containing 44 at.%Cu, both liquid and solid phases
coexist in the region bounded by the liquidus and solidus curves.

Solid phases extend below the solidus curve. Here each solid phase occupies
its own region in a given phase diagram and its crystal structure is uniquely
assigned. Both Au and Cu are fcc. The fcc phase in the Au–Cu system extends
from both Au and Cu sides and covers the whole concentration range at high
temperatures. Au and Cu atoms are randomly distributed over the fcc lattice
with probabilities proportional to their concentration. Though the Au and Cu
atoms occupy the lattice sites in an fcc periodic lattice, the conduction electrons
are scattered because the periodic potential is disturbed by their random occu-
pation. Such a phase is called disordered. The unit cell of the disordered fcc
Au–Cu alloy is shown in Fig. 9.4(a). As mentioned above, at high temperatures
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Figure 9.4. (a) Disordered Au25Cu75 alloy. The dotted circle indicates that each
atomic site contains a Au (or Cu) atom in proportion to the probability of 25 (or 75) %.
(b)–(d) Unit cells of AuCu3, AuCu I and AuCu II ordered structures, respectively. The
AuCu II phase has a long-period superlattice structure along the b-axis. [C. S. Barrett

and T. B. Massalski, Structure of Metals (McGraw Hill, New York, 1966)]



the disordered fcc phase extends over the entire concentration range. This is the
formation of a complete solid solution.

There exist several intermetallic compounds AuCu3, AuCu I, AuCu II and
Au3Cu in the Au–Cu alloy system below 410 °C. Their unit cells are shown in
Fig. 9.4(b)–(d). All these compounds form a completely periodic structure,
since the lattice sites which Au and Cu atoms occupy are uniquely assigned.
They are each called an ordered alloy or an intermetallic compound. From the
point of view of x-ray or neutron diffraction studies, reflections which are inde-
pendent of the degree of order are called fundamental reflections, as is the case
in Fig. 9.4(a), whereas reflections which vanish if the order vanishes are called
superlattice reflections, as is the case in (b)–(d). The structure giving rise to the
latter is called a superlattice or superstructure.

The disordered Au–Cu alloy can be retained at room temperature by rapidly
solidifying the molten alloy. Its resistivity at room temperature exhibits a par-
abolic concentration dependence with a maximum at 50 at.%Au, as shown in
Fig. 9.5. Its behavior is, therefore, well approximated as

r ~ x(12x), (9.12)

where x is the concentration of the Au. This is known as the Nordheim law,
indicating that the degree of the disruption of the periodic potential increases
with increasing solute concentration and reaches its maximum at 50 at.%Au.
However, it can be seen from Fig. 9.5 that the resistivity drops sharply when an
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Figure 9.5. Concentration dependence of the resistivity at room temperature in
Au–Cu alloy system. “Annealed” means that the sample was heat-treated to form
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intermetallic compound is formed. This is due to the restoration of the peri-
odic potential, resulting in a substantial reduction in the scattering of conduc-
tion electrons.

9.5 Hume-Rothery rule

Figure 9.6 shows the equilibrium phase diagrams for the Cu–Zn, Cu–Ga and
Cu–Ge alloy systems. No complete solid solution is formed in these phase dia-
grams, since Cu is fcc, while its partner elements Zn, Ga and Ge crystallize into
hcp, orthorhombic and diamond structures, respectively. As is clearly seen
from Fig. 9.6, different phases appear successively with increasing concentra-
tion of the partner element. The fcc phase extending from pure Cu is called the
a-phase. It is also called a primary solid solution of Cu. Its maximum solubil-
ity limit is found to be 38.3 at.%Zn, 19.9 at.%Ga and 11.8 at.%Ge in the
Cu–Zn, Cu–Ga and Cu–Ge alloy systems, respectively. Thus, we see that the
maximum solubility limit decreases with increasing valency of the partner
element.

The b- and b9-phases appear next to the a-phase in the neighborhood of 50
at.%Zn in the Cu–Zn system. The b-phase, Fig. 9.7(a), is disordered bcc and
stable at high temperatures but transforms into the b9-phase at low tempera-
tures. The b9-phase has the CsCl-type ordered structure, as shown in Fig.
9.7(b). The b-phase exists at around 25 at.%Ga at high temperatures in the
Cu–Ga system. But the hcp z-phase appears instead of the b9-phase at low tem-
peratures. The z-phase exists in the vicinity of 15 at.%Ge in the Cu–Ge system.
All this evidence indicates that the concentration range over which the b- and
z-phases are stable, moves to lower solute concentrations with increasing
valency of the solute elements Zn, Ga and Ge.

Further increase in the solute concentration leads to the formation of the
cubic g-phase in both Cu–Zn and Cu–Ga systems. As shown in Fig. 9.8, the g-
phase is constructed by stacking three bcc cells in x-, y- and z-directions and
subsequently removing the center and corner atoms with slight displacements
of the remaining atoms. Its unit cell contains a total of 52 atoms. Further
increase in solute concentration leads to the formation of the hcp «-phase.
Finally, the phase diagram in the Cu–Zn system is terminated by the hcp h-
phase, which is a primary solid solution of Cu in Zn.

We found above that the different phases appear successively and systemati-
cally with increasing amount of the element added to the noble metal Cu and
that their stable concentration range, including the solubility limit of the
primary Cu solid solution, is shifted to lower concentrations with an increase in
the valency of the solute element. These features are quite regularly observed
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Figure 9.6. Phase diagram of (a) Cu–Zn, (b) Cu–Ga and (c) Cu–Ge alloy systems.
[Binary Phase Diagrams, edited by T. B. Massalski, H. Okamoto, P. R. Subramanian

and L. Kacprzak, (ASM, 1990)]



not only in Cu-based alloys but also in Ag- and Au-based alloys, as long as the
partner element is chosen from the polyvalent elements like Mg, Zn, Al, Ga, Sn,
Pb and so on in the periodic table. Hume-Rothery revealed empirically that
these phases are stabilized at a unique electron concentration or electrons per
atom, e/a, regardless of the atom species of the solute element added to the noble
metal. This is known as the Hume-Rothery rule and is illustrated in Fig. 9.9.3

The fcc a-phase exists at electron concentrations e/a below 1.4 and is
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3 Hume-Rothery pointed out several factors responsible for the stabilization of an alloy. (1) Atom size-factor
effect. The favorable size-factor is bounded by limits of about 20 % or radius ratios 0.8–1.2. (2) The electro-
chemical factor. An increasing difference between the electronegativities of the two metals enhances the
tendency for the formation of an alloy (see footnote 4, p. 443 in Section 14.5 for the definition of electro-
negativity). (3) A tendency for definite crystal structures to occur at characteristic e/a.

disordered (A2 type) ordered (B2 type)

Figure 9.7. Unit cells of (a) disordered bcc (A2 type) and (b) ordered (B2 or CsCl-
type) Cu50Zn50 alloy. The ordered and disordered alloys are also called the b9- and b-
brasses, respectively. Each lattice site in the disordered phase contains a Cu or Zn atom
with equal probability. [C. S. Barrett and T. B. Massalski, Structure of Metals,

(McGraw-Hill, New York, 1966)]

Figure 9.8. Unit cell of the g-phase Cu–Zn alloy. (a) The structure obtained by stack-
ing together 33333 bcc unit cells along the x-, y- and z-directions, contains 54 atoms.
(b) The unit cell of the g-phase is obtained from (a) by removing the center and corner
atoms, with remaining atoms displaced along the directions marked by arrows.

[T. B. Massalski and U. Mizutani, Prog. Mat. Sci. 22 (1978) 151]



followed by the bcc b-phase in the neighborhood of e/a51.5 at high tempera-
tures, which is replaced either by its ordered CsCl-type b9-phase or by the hcp
z-phase at low temperatures. In the vicinity of e/a51.5, the m-phase contain-
ing 20 atoms in its b-Mn-type cubic unit cell appears in certain alloy systems
like Ag–Al and Cu–Si systems. The complex cubic g-phase is stabilized at
about e/a51.6 and the hcp «-phase in the range 1.7,e/a,1.9. The hcp h-
phase appears as a primary solid solution of Zn and Cd and is centered at e/a
52.0. Because of their locations at particular electron concentrations, these
alloys are called the electron compounds or the Hume-Rothery electron phases.
Judging from its strong e/a dependence, it has been naturally thought that the
interaction of the Fermi surface with the Brillouin zone must play a critical role
in stabilizing these electron phases.

9.6 Electronic structure in Hume-Rothery alloys

We learned in the preceding section that alloying destroys the periodicity of the
lattice potential and thus results in scattering of the Bloch electron. The Fermi
surface is constructed under the assumption that the wave vector k of the Bloch
electron is a good quantum number. The wave vector k changes upon scatter-
ing of the Bloch electron. In other words, the lifetime of the Bloch electron
becomes finite, when it is scattered by the non-periodic potential. The wave
vector k can be no longer taken as a good quantum number, if its lifetime
becomes too short. In spite of such fundamental difficulties, experimental and
theoretical works have provided ample evidence that the concept of the Fermi
surface and Brillouin zone is still valid even in concentrated crystalline alloys.
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We will discuss below several important works on the Hume-Rothery electron
phases.

Figure 9.10 shows the Zn concentration dependence of the Fermi surface
measured by the positron annihilation experiment for a-phase Cu–Zn single
crystal alloys. The average electron concentration e/a increases with increasing
Zn concentration, since the valencies of Cu and Zn are 1 and 2, respectively.
Within the framework of the free-electron model, the radius of the Fermi
surface should increase with increasing Zn concentration in accordance with
equation (2.20). But, we have to recall that the Fermi surface of pure Cu has
already touched the {111} zone planes of its Brillouin zone, as shown in Fig.
6.5. As explained in Section 7.3, positron annihilation measurements would be
best suited to examine experimentally how the Fermi surface of pure Cu
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Figure 9.10. Fermi surface of a-phase Cu–Zn alloys revealed by positron annihila-
tion experiments. An expansion of the Fermi surface with increasing Zn concentration
can be clearly seen. Here, py and pz represent y- and z-components of the electron
momentum (see equation (7.12)). [M. Haghgooie, S. Berko and U. Mizutani, Proc.
of 5th Int. Conf. on Positron Annihilation (The Japan Institute of Metals, Japan, 1979)]



changes with increasing Zn concentration in the a-phase. As demonstrated in
Fig. 9.10, the expansion of the Fermi surface, including the radius of the neck
around the {111} zone planes with increasing e/a, can be clearly observed.
Obviously, Fig. 9.10 proves the validity of the concept of the Fermi surface and
the Brillouin zone in such concentrated alloys.

Now we discuss the electronic structure of more concentrated alloys or inter-
mediate compounds. Among them, the disruption of the periodic potential in
the b9-phase is small because of the ordered structure. As a result, the de
Haas–van Alphen measurement is feasible for this particular alloy and its
Fermi surface has been accurately determined. The Brillouin zone and the
Fermi surface of the b9-phase Cu–Zn alloy are shown in Figs. 9.11(a) and (b),
respectively. Since it forms the CsCl-type ordered structure, the cubic zone
enclosed by the six {100} planes is newly formed inside the first Brillouin zone
of the bcc lattice shown in Fig. 7.10. The Fermi surface makes contacts with
the {110} planes and the Fermi surface of holes is left at the corners R of the
{100} zone planes. The Fermi surface of holes in the reduced zone scheme is
shown in Fig. 9.11(b) as dotted curves.

The construction of the Brillouin zone for the complex cubic g-phase is not
simple, since its unit cell, shown in Fig. 9.8, contains 52 atoms [1]. As discussed
in Section 5.6, the Bragg reflection of the Bloch electrons is responsible for the
formation of an energy gap across the Brillouin zone planes. There is one-to-
one correspondence between the Bragg scattering of the incident x-ray or elec-
tron beam and that of the conduction electrons in a periodic lattice. Thus, the
family of the crystal planes which yield strong x-ray diffraction lines or strong
electron diffraction spots would give rise to the Brillouin zone planes having a
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Figure 9.11. (a) Brillouin zone and (b) Fermi surface of the b9-phase Cu–Zn alloy.
[T. B. Massalski and U. Mizutani, Prog. Mat. Sci. 22 (1978) 151]



sizable energy gap. The strongest x-ray diffraction lines for the g-phase arise
from the family of the {330} and {411} crystal planes. There are 12 equivalent
planes which include (303), (033), etc., in the family of the {330} planes, and
24 equivalent planes in the family of the {411} planes. Hence, the Jones zone
(see footnote 4, p. 142 in Chapter 6) consisting of a total of 36 zone planes can
be constructed for the g-phase, as shown in Fig. 9.12.

The volume of the Jones zone is calculated as 45(2p/a)3, where a is the lattice
constant of the g-phase [2]. Since the unit cell contains 52 atoms, the volume
per atom is equal to a3/52. One can easily find that the zone accommodates 1.73
electrons per atom. Since the ratio of the volume of an inscribed sphere to that
of the polyhedron is 2p/5√2<0.89, a spherical Fermi surface would touch the
Brillouin zone at about 1.54 electrons per atom. The presence of the energy
gaps will tend to distort the Fermi surface, resulting in a contact with the zone
planes at an e/a value lower than 1.54. The fact that the g-phase is stable above
e/a51.6 suggests that the Fermi surface is already in contact with the zone
planes over the stable concentration range.

It is also important to note that the contact of the Fermi surface with the
Jones zone planes occurs simultaneously at many equivalent points. After the
contact, electrons would fill the corners of the Jones zone, thereby resulting in
a rapid decline in the density of states with increasing electron concentration.
Indeed, the electronic specific heat in the g-phase has been reported to decrease
very sharply with increasing electron concentration e/a. As shown in Fig. 9.13,
this unique behavior can be understood by assuming that the Fermi surface has
touched the {330} and {411} zone planes and that the Fermi level in the g-
phase falls on the subsequent declining slope of the density of states curve.

Finally, we discuss the electronic structure of the z- and «-phase Hume-
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Figure 9.12. The Jones zone of the g-phase Cu–Zn alloy. [T. B. Massalski and 
U. Mizutani, Prog. Mat. Sci. 22 (1978) 151]



Rothery phases, both of which crystallize into the hcp structure. The alloys in
this family are existent over a wide electron concentration range, e/a51.4 to
1.9, as illustrated in Fig. 9.9. Figure 9.14 shows the e/a dependence of the elec-
tronic specific heat coefficient for many hcp Hume-Rothery alloys. For compar-
ison, the density of states curves calculated for hcp Zn and Be metals are
incorporated. The electronic specific heat coefficient exhibits a large peak cen-
tered at e/a51.5. The formation of the peak can be interpreted as the overlap
of electrons across the {100} zone planes coupled with contact with the {101}
zone planes in the hcp Brillouin zone shown in Fig. 6.9. Based on the data
shown in Fig. 9.14, Massalski and Mizutani proposed in 1978 a possible Fermi
surface for the z-phase Hume-Rothery alloys. This is illustrated in Fig. 9.15.

Koike et al. measured in 1982 the positron annihilation angular correlation
curves for the z-phase Cu–Ge and Ag–Al alloys. Their results are reproduced
in Fig. 9.16. The angular correlation curve clearly shows a bulge in the emit-
ting g-ray angle ranging from 4 to 6 mrad for the samples with e/a51.45 (15
at.%Ge) and 1.57 (28.5 at.%Al). They interpreted this bulge as arising from the
overlap of electrons into the second zone across the centers M of the {100}
zone planes. This is shown in Fig. 9.16(a) and (b). However, the bulge disap-
pears and the Fermi surface becomes more spherical for the sample with e/a5

1.72 (36 at.%Al). Thus, the Fermi surface becomes more free-electron-like, as
shown in (c). They also revealed that the Fermi surface of electrons in the
second zone bulges towards the points L of the {101} zone planes at e/a51.45
but makes contact with the {101} planes at e/a51.57 and that the neck exists
around the points G of the {002} zone planes. All these features are consistent
with the diagram shown in Fig. 9.15.
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Figure 9.13. The calculated density of states curve (solid line) and the e/a-dependence
of the measured electronic specific heat coefficient (open circles) in the g-phase Cu–Zn

alloys. [T. B. Massalski and U. Mizutani, Prog. Mat. Sci. 22 (1978) 151]



As can be understood from the argument above, the electronic structure of
the concentrated Hume-Rothery alloys can be well described in terms of the
Fermi surface perturbed by the presence of the Brillouin zone unique to the
respective crystal structures. This indicates that the electronic structure of these
Hume-Rothery electron compounds can be basically discussed in the frame-
work of the nearly-free-electron model [1].

9.7 Stability of the Hume-Rothery alloys

The discussion of the stability of a given phase at absolute zero has been consid-
ered as one of the most important topics in the electron theory of metals. In prin-
ciple, one has to evaluate not only the energy associated with the conduction
electrons but also the energy associated with the ionic lattice. However, as
indicated in Fig. 9.9, the concentration range for the existence of the stable
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Figure 9.14. Electron concentration dependence of the electronic specific heat coeffi-
cient in hcp Hume-Rothery alloys. It can be seen that the data fall on a universal curve,
regardless of the alloy system. The peak is formed near e/a51.5. The calculated density
of states curves (dashed lines) for pure Zn and Be are shown for comparison.

[T. B. Massalski and U. Mizutani, Prog. Mat. Sci. 22 (1978) 151]
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Figure 9.15. Fermi surface of an hcp Hume-Rothery alloy estimated from the data
in Fig. 9.14. The {100} overlap and {101} contact are predicted to be present.

[T. B. Massalski and U. Mizutani, Prog. Mat. Sci. 22 (1978) 151] 

Figure 9.16. Positron annihilation angular correlation curves taken along the 〈110〉
direction (GK direction in Fig. 5.17(a)) for the z-phase Ag–Al (e/a51.57, 1.72 and
1.80) and Cu–Ge (e/a51.45) alloys. Resulting Fermi surfaces for alloys with e/a5(a)
1.45, (b) 1.57 and (c) 1.72, respectively. [S. Koike, M. Hirabayashi, T. Suzuki and 

M. Hasegawa, Phil. Mag. B 45 (1982) 261] 



Hume-Rothery phases depends strongly on the electron concentration e/a, as if
it is independent of the atomic species involved. The Hume-Rothery rule suggests
that the energy of the conduction electron system plays a critical role in stabiliz-
ing these electron phases. In the present section, we focus on the Hume-Rothery
electron phases based on noble metals, in which the nearly-free-electron model is
believed to be applicable, and discuss to what extent the stability of the phase can
be described in the framework of the Fermi surface–Brillouin zone interaction.

Let us briefly recall the Fermi surface–Brillouin zone interaction discussed
in Section 5.10. The E–k relation becomes flat and the Fermi surface begins to
be distorted from a sphere, when it approaches the zone planes (see Fig. 5.19).
As a result, the density of states is enhanced relative to the free-electron-like
parabolic band, as shown in Fig. 5.20. Further increase in the electron concen-
tration causes the Fermi surface to touch the zone planes. Once the Fermi
surface touches the zone planes, the density of states sharply drops, resulting
in a cusp or peak called the van Hove singularity in the density of states curve.
This feature is already depicted in Fig. 9.13 in relation to the electronic
structure of the g-phase. Therefore, we see that the Fermi surface–Brillouin
zone interaction gives rise to a peak and subsequent rapid fall in the density of
states curve. The size of this effect depends not only on the magnitude of the
energy gap across the zone planes but also on the multiplicity of the equivalent
zone planes.

According to equation (2.24), the internal energy of the conduction electron
system at absolute zero is expressed as

U5 EN(E)dE, (9.13)

where N(E) is the electron density of states.
Let us consider the phase competition in the range 1.0#e/a#1.5 of the

Cu–Zn alloy system, in which the a- and b-phases are competing. The electron
concentration dependent Fermi surfaces of the a-phase alloys have already
been shown in Fig. 9.10. By using this as a guide, one can obtain the density of
states curve as a function of e/a or energy for the a-phase alloys. Suppose that
we can repeat the same procedure for the competing bcc b-phase. Once the
density of states for the phases of interest are obtained, the internal energy can
be calculated from equation (9.13) and be plotted against e/a to see if the
energy for the fcc a-phase is the lowest in the e/a range below 1.4.

Such calculations were indeed attempted by Jones in 1937 for the competi-
tion between the a- and b-phases in the Cu–Zn system. He assumed a spheri-
cal Fermi surface for pure Cu and concluded that the Fermi surface in the

E
EF

0
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a-phase touches the {111} zone planes at e/a51.36 and that the density of
states curve begins to drop sharply after passing the peak when e/a increases
beyond 1.36. In contrast, he showed that the density of states curve for the
competing bcc b-phase causes its first peak at e/a51.48 due to the contact of
the spherical Fermi surface with the {110} zone planes. The density of states
curves calculated by Jones for the two competing phases are shown in Fig. 9.17.
The calculation of the energy by inserting the density of states in Fig. 9.17 into
equation (9.13) led Jones to conclude that the bcc structure is energetically
favored relative to the fcc structure, when e/a exceeds 1.4 in the Cu–Zn alloy
system. This explained well at that time the Hume-Rothery rule for the compe-
tition between the a- and b-phases in the Cu–Zn system. However, as described
in Section 6.4, Pippard clearly demonstrated in 1957 that the contact of the
Fermi surface with the {111} zone planes has occurred even in pure Cu. This
finding invalidated the basic assumption made by Jones.

Heine and Weaire [3] discussed the same problem and evaluated a change in
the energy of the conduction electron system when the Fermi surface touches
the particular zone plane in the context of the pseudopotential method.
According to their calculations, the energy of the conduction electron system,
when plotted against e/a, exhibits only a slight change in its slope upon its
contact with the zone plane without the formation of a clear minimum. They
stressed that the energy gain upon contact with the zone plane is too small to
account for the relative stability of the competing phases, particularly when the
number of equivalent zone planes responsible for the Fermi surface contact is
small, as is the case in fcc and bcc structures. They further noted that the reason
why the Cu metal is fcc cannot be explained without taking into account the
presence of the 3d band in the middle of its valence band and admitted the
difficulty in the theoretical interpretation of the Hume-Rothery rule.

Let us roughly evaluate the energy of the conduction electron system by
including the 3d-band contribution in pure Cu. The density of states curve
shown in Fig. 6.6 may be employed for this purpose. The total energy calcu-
lated from equation (9.13) turns out to be of the order of 105 cal/mol. Now con-
sider a hypothetical bcc Cu, in which the position and shape of the 3d band
happens to be the same as that in the fcc structure, though this is not physically
acceptable. In other words, we assume that the energy difference originates only
from the difference in the Fermi surface–Brillouin zone interaction in the same
spirit as Jones did. The difference is immediately found to be less than 100
cal/mol. This is a mere 0.1 % of the total energy of the conduction electron
system [1]. It is almost impossible to evaluate the total electronic energy for
competing phases to an accuracy of 0.1 % using the valence band structure like
that shown in Fig. 6.6.

The first-principle band calculations like the LMTO method discussed in
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Chapter 8 are now believed to be the most reliable and efficient to evaluate the
energy of the conduction electron system. Because of the rapid progress in
computer science, fairly accurate band calculations have now been made pos-
sible at least for pure metals and well-defined intermetallic compounds. As will
be described in the next section, great progress has also been made for band
calculations of concentrated alloys. But it is still difficult to calculate the elec-
tronic energy of concentrated alloys with accuracies of less than 100 cal/mol
or 1024 eV/atom. Thus, a theoretical understanding of the Hume-Rothery rule
shown in Fig. 9.9 is still far from being achieved.

Though an understanding of the relative stability of phases is extremely diffi-
cult, there are a number of works which point to the importance of the contri-
bution of the electronic energy in the stabilization of the phase involved. In
particular, when the number of equivalent zone planes are high, the Fermi
surface would touch those planes simultaneously and the resulting effect on the
electronic energy becomes substantial. The situation shown in Fig. 9.13 for the
g-phase is known as a typical example.

Quasicrystals are characterized by five-fold rotational symmetry incompat-
ible with the translational symmetry in real space and by the possession of
many equivalent zone planes in reciprocal space (see Sections 15.11 and 15.12).
The question has been addressed as to why a quasicrystal can exist as a stable
phase in nature. It has been proposed that the electronic energy can be reduced
by the simultaneous contact by its Fermi surface with a large number of equiv-
alent zone planes, thereby contributing to the stabilization of this unique
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Figure 9.17. The density of states curves for fcc and bcc phases. The peaks in the fcc
and bcc structures are caused by Fermi surface contacts with the {111} and {110} zone

planes, respectively. [H. Jones, Proc. Phys. Soc. A49 (1937) 250]



quasiperiodic structure. Band calculations for a quasicrystal are not possible,
since its unit cell is infinitely large. Instead, band calculations have been per-
formed for the approximant crystal, which possesses locally the same atomic
structure as that of the quasicrystal and is taken as an analog to the quasicrys-
tal. As shown in Fig. 15.22, a deep pseudogap, which is believed to be charac-
teristic of a material possessing icosahedral symmetry, appears near the Fermi
level and causes electrons near the Fermi level to push into higher binding ener-
gies. This is believed to contribute to a lowering of the electronic energy of a
quasicrystal.

9.8 Band theories for binary alloys

All band calculations discussed in Chapter 8 are based on the Bloch theorem
and, hence, are applicable only for perfectly periodic metals and semiconduc-
tors. In this section, we will discuss band structure calculations for concen-
trated alloys. As mentioned in Section 9.4, an intermetallic compound having
a superlattice structure tends to be formed in a system where the chemical
bonding between the unlike atoms A and B is strong. The Au–Cu system in
Section 9.4 is indeed typical of such examples.

A disordered alloy is defined as one in which the two different atoms A and
B are randomly distributed over the periodic lattice sites at probabilities
proportional to their concentration. Since the atoms A and B occupy only
lattice sites, the alloy is called substitutional. Even in a substitutional disor-
dered alloy, there exists some tendency for the atomic pair A–B to be formed
more preferentially or less preferentially than that expected from the average
concentration. This results in short-range order (see Section 15.2), but its
incorporation into band calculations is certainly not simple. In contrast to a
substitutional alloy, small atoms such as hydrogen, carbon or nitrogen, when
dissolved in a metal, are known to occupy tetrahedral or octahedral interstitial
sites in the periodic lattice of host atoms. They are often referred to as intersti-
tial alloys and treated separately from substitutional alloys. In the following,
we discuss band calculations for a substitutional disordered alloy.

The total potential in a substitutional disordered alloy is expressed as

V(r)5 vX(r2ln), (9.14)

where vX(r2ln) is the muffin-tin potential at the position r due to the ion X
whose position is specified by the lattice vector ln. The subscript X stands for
either ion A or B so that vA(r2ln) indicates the potential of the ion A.

The rigid-band model is known as the simplest model for such an alloy and
assumes vA(r)5vB(r) in equation (9.14) by ignoring the difference in the potentials
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of ions A and B. Thus, the electronic structure of the pure metal A is assumed to
be the same as that of the pure metal B or any compositions in the alloy A–B. The
Fermi level is chosen so as to be consistent with the electron concentration of a
given alloy. The rigid band model may be appropriate when the two elements A
and B possess the same crystal structure and are immediate neighbors in the peri-
odic table. For example, the rigid band model has been applied to the electronic
structure of the Cu–Ni and Ag–Pd alloys. However, as will be discussed later in
this section, recent photoemission spectroscopy experiments prove that the rigid
band model fails even in such binary alloy systems.

The virtual crystal approximation or VCA model is devised as a model
superior to the rigid band model. It assumes the periodic potential in an alloy
to be given by

V0(r)5 vav(r2ln), (9.15)

where vav(r) is expressed as

vav(r)5cAvA(r)1cBvB(r). (9.16)

Here cA and cB are concentrations of atoms A and B, respectively, and satisfy
the relation cA1cB51. Once the periodic potential (9.15) is employed, all
band calculation techniques for pure metals described in Chapter 8 can be
applied.

The resulting energy eigenvalue E0 and wave function c0,k(r) represent the
solution of the Schrödinger equation for an average periodic potential but are
certainly approximate, since the VCA potential (9.15) is different from the true
potential (9.14). Its first-order correction to the approximate energy eigenvalue
E0 is expressed as

DE(k)5ec0,k(r)*[V(r)2V0(r)]c0,k(r)dr, (9.17)

where [V(r)2V0(r)] is the difference between the true potential and the VCA
potential. However, the application of the Bloch theorem (5.14) to equation
(9.15) leads to DE(k)50. This indicates that the energy eigenvalue E0 is a fairly
good approximate solution. Though the VCA model is very simple, it has been
recognized as a fairly reasonable model for alloys, as long as the difference
between vA(r) and vB(r) is small or the band structure at energies much higher
than the potential is concerned.

A more elaborate model, which is applicable beyond the limit of the VCA
model, has been developed. This is the coherent potential approximation or
CPA method and has been derived by extending the KKR method based on
the multiple scattering theory discussed in Section 8.9. The potentials at all
lattice sites except for a given central site are replaced by the effective potential
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w(E, r). Now the atom A is located at this central site and its potential is
denoted as vA(r). The conduction electron propagates in a periodic potential

VCPA(E, r)5 w(E, r2ln) (9.18)

as a Bloch electron but is scattered by the potential vA(r) when it arrives at the
central site. The same argument holds for atom B. This is equivalent to impur-
ity scattering in an otherwise perfect crystal.

As mentioned in Section 8.9, the wave c i(r) incident to the ion potential
located at the lattice vector ln is not independent of the outward wave co(r) scat-
tered from this atom but is related to it through the relation (8.57):

co(r)5 eG(k, r2r9)v(r92ln)c
i(r9)dr9, (9.19)

where G(k, r2r9) is the Green function and v(r92ln) is the potential at the posi-
tion ln. The potential v(r92ln) at each lattice site is replaced by a more general
quantity called the t-matrix Tn(E, r9, r0).4 Furthermore, the difference potential
[v

a
(r2ln)2w(E, r2ln)] created by substituting the potential of atom A or B for

the effective potential is also replaced by the corresponding t-matrix tA(E, r, r9)
or tB(E, r, r9). Hence, tA(E, r, r9) depends not only on vA but also on VCPA(E,
r). In the CPA calculations, the atom A or B is arbitrarily chosen from N atoms
and the potential of the remaining (N21) atoms is replaced by the effective
potential. But the effective potential is given by the sum of the concentration-
weighted A and B atom potentials. Hence, the sum of the concentration-
weighted tA(E, r, r9) and tB(E, r, r9) must be zero:

cAtA(E, r, r9)1cBtB(E, r, r9)50. (9.20)

This relation suppresses the scattering so as to be consistent with the presence
of the effective potential w(E, r). The CPA band calculations are known to yield
correct results even at low energies comparable to the ion potential, where the
VCA method breaks down. It is also consistent with the VCA method at ener-
gies higher than the potential. More details of the CPA method can be found
in the literature [5].

o
n
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n
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4 The scattering cross-section is expressed as s(u)5(m/2p"2)2)kc1(k9))V(r))f(k)l)2,where f(k) is the incident
wave and c1(k9) is the scattered wave. Since )c1(k9)l and )f(k)l cannot be basis vectors in the same repre-
sentation, it is convenient to introduce a matrix so as to satisfy the relation
kc1(k9))V(r))f(k)l5kf (k9))T )f (k)l. The matrix T is called the transition matrix or t-matrix. We may use
co(r)5eG(k, r2r9)V(r9)c i(r9)dr9 in equation (8.57). The co(r) in the left-hand side is calculated by substi-
tuting ei k·r for c i(r9). In the next step, the co(r) thus obtained is substituted for c i(r9) to obtain a new co(r).
This process is iterated until a self-consistent solution is achieved. The resulting co(r) is employed as
)c1(k9)l and inserted into kc1(k9))V(r))f(k)l5kf (k9))T )f (k)l. The t-matrix is now expressed as the power
series of V(r). If we take only the first term in this expansion, the scattered wave function c1(k) is replaced
by the incident wave function f (k). This is the Born approximation and is valid only if V(r) is small. See
more details in ref. [4].



CPA band calculations have been applied to many concentrated alloys since
its development in 1970 and its usefulness has been proved. As an example, we
show in Fig. 9.18 band calculations based on VCA and CPA methods and
compare them with the XPS valence band profiles for a series of the Cu–Ni fcc
alloys.

Ni and Cu are fcc and located next to each other in the periodic table (see
Table 1.1). Furthermore, a complete solid solution is formed in this system. Ni
is known to be ferromagnetic with a Curie temperature of 631 K while Cu is
known to be non-magnetic. The Curie temperature decreases with increasing
Cu concentration and the ferromagnetism disappears at 60 at.%Cu (see Section
13.5). According to the rigid-band model, the addition of Cu would fill the
holes of the Ni 3d band and filling is believed to be completed at 60 at.%Cu,
since Cu has one more electron than Ni. Hence, the disappearance of the ferro-
magnetism in the Cu–Ni system has been thought to be taken as validating of
the rigid-band model [6]. However, both CPA band calculations and photo-
emission experiments clearly show that the overall valence band profile drasti-
cally changes upon alloying and bands unique to the alloys are formed. One
finds that CPA band calculations reproduce the XPS data better than VCA cal-
culations.
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Figure 9.18. The valence band for a series of Cu–Ni alloys (a) calculated by CPA, (b)
measured by XPS and (c) calculated by VCA. The peaks A and B in (b) can be ascribed
to the Cu-3d and Ni-3d sub-bands. [J. S. Faulkner, Prog. Mat. Sci. 27 (1982) 1, for band

calculations and S. Hüfner et al., Phys. Rev. Lett. 28 (1972) 488, for the XPS data]



Chapter Ten

Electron transport properties in periodic systems (I)

10.1 Prologue

Electron transport properties can be investigated by measuring the response of
conduction electrons to a temperature gradient or to external fields such as an
electric field, a magnetic field, or a combination of these applied to a specimen.
In this chapter, we study basic transport properties with subsequent derivation
of the Boltzmann transport equation. The electrical conductivity is then for-
mulated in the light of the Boltzmann transport equation. The temperature-
dependent electrical resistivity expression known as the Baym resistivity
formula is derived by taking into account the electron–phonon interaction and
is applied to obtain the well-known Bloch–Grüneisen law for a crystal metal.
The remaining transport properties including the thermal conductivity, the
thermoelectric power, the Hall effect and the magnetoresistance will be dis-
cussed in Chapter 11.

10.2 The Drude theory for electrical conductivity

In Chapter 2, we learned that electrons on the Fermi surface in a metal like Na
carry a Fermi wave number kF of the order of a few 10 nm21, which is con-
verted to a Fermi velocity vF of approximately 106 m/s through the relation
vF5"kF/m . In spite of such high velocities of electrons on the Fermi surface,
no electrical current can flow, unless an electric field is applied. The reason for
this is that the Fermi surface is always symmetric with respect to the origin in
reciprocal space and that there always exists an electron with 2vF for the elec-
tron with vF. Obviously, a current flows only when the applied field displaces
the Fermi sphere from the origin and its symmetrical geometry breaks.

In the present section, basic properties concerning the electrical conduction
are discussed by treating conduction electrons as charged particles obeying the
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free-electron model. Let us apply the electric field Ex along the x-direction to
the assembly of free electrons. The equation of motion for each electron is then
expressed as

5(2e)Ex, (10.1)

where the charge of the electron is denoted as (2e) to emphasize the posses-
sion of a negative charge. Equation (10.1) is immediately reduced to
kx5[(2e)Ex/"]t1kx0

and the wave number kx increases indefinitely with
increasing time. This means that the Fermi sphere moves as a whole endlessly
in a direction opposite to the applied field and the electrical current becomes
infinitely large.

This does not happen in a real metal. Instead, a steady current flows, as long
as a constant field is applied. A scattering process must be involved so that elec-
trons cannot be endlessly accelerated by the electric field. We introduce the
relaxation time t as a measure of the frequency of the scattering of the con-
duction electron. The electron is accelerated by the electric field only in the time
interval t before being scattered by lattice vibrations and/or defects like impur-
ity atoms. We consider the steady state to be established after the Fermi sphere
is displaced by a certain amount by the electric field. Thus, the flow of a finite
current, when the electric field is switched on, is entirely due to the presence of
a scattering mechanism.

In order to introduce the scattering term in equation (10.1), we define the
drift velocity vD as

vD5 , (10.2)

where the summation is taken over n conduction electrons per unit volume.
We see that the drift velocity corresponds to a velocity per electron averaged
over a whole assembly of the conduction electrons and that it becomes
finite, only when the field is applied and the Fermi sphere is displaced from the
origin.

A steady state will be established in a time of the order of t upon the appli-
cation of an electric field E. The equation of motion of the conduction elec-
tron in the presence of an electric field E is then expressed as

m 5(2e)E, (10.3)

where the second term proportional to the drift velocity represents the fric-
tional force and plays a role in resisting the accelerated motion of the electron.

1dvD

dt
1

vD

t 2

o
n
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The reason why t is called the relaxation time is as follows. Suppose the elec-
tric field is turned off. The process for the drift velocity vD to decrease to zero
will follow the equation of motion:

m 50,

the solution of which is reduced to vD(t)5vD(0)exp(2t/t). The parameter t
obviously represents the time for the drift velocity to decay to 1/e times vD(0).

The relation dvD/dt50 should hold in equation (10.3), when the steady state
is reached. Equation (10.3) is immediately solved as

vD5 . (10.4)

The Fermi sphere is thus displaced by the amount Dkx5(m/")vD5(2e)tE/",
when the electric field is applied, say, along the x-axis, as illustrated in Fig. 10.1.

Since the electrical current density J is defined as J5n(2e)vD, equation
(10.4) is rewritten as

J5 E, (10.5)

where n is the number of conduction electrons per unit volume. Equation (10.5)
obviously explains Ohm’s law. For simplicity, we assume an isotropic metal,
where the electrical conductivity is defined as the ratio of the current density
over the electric field, s5J/E, in a scalar quantity. The electrical conductivity
is explicitly written as

s5 . (10.6)
ne2t

m

1ne2t

m 2

( 2 e)tE
m

1dvD

dt
1

vD

t 2
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Figure 10.1. The Fermi surface establishes a steady state after a displacement of
(2e)tE/" in the presence of an electric field E.



The electrical resistivity r, being defined as an inverse to the conductivity, is
also frequently employed:

r5 . (10.7)

The relation (10.6) was first derived by Drude in 1900 before the advent of
quantum theory and is often referred to as the Drude conductivity formula.
The electrical conductivity and the resistivity at 273 K for representative metals
in the periodic table are listed in Table 10.1, along with the temperature coeffi-
cient of the resistivity or TCR.

Let us estimate the magnitude of the relaxation time t of the conduction
electron by inserting the measured resistivity into equation (10.7). First, we
note that t is deduced in units of [s], if all relevant quantities in equation (10.7)
are inserted in SI units:1

m
ne2t
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11 A multiplication factor 9.031011 must be used if the resistivity, mass of the electron, its charge and the
number density are inserted in units of V-cm, g, esu and cm23, respectively:

59.031011 [s].
m

rne2 5
[g]

[V-cm][cm]23[esu]2 5
[g]

5 107

(3 3 109)261[erg][s]
[esu]2 2[esu]2

[cm]2

Table 10.1. Electron transport properties of metals at 273 K

element electrical conductivity, s resistivity, r TCRa, a
(3106 / V-m) (mV-cm) (31023/K)

Li 11.81 8.55 4.37
Na 23.41 4.27 5.55
Cu 64.51 1.55 4.33
Ag 66.51 1.55 4.15
Au 49.51 2.04 3.98
Mg 25.41 3.94 4.25
Ca 28.51 3.65 4.25
Zn 18.31 5.45 4.20
Al 40.51 2.50 4.67
Pb 5.17 19.35 4.22
Bi 0.93 107.10
Ti 2.38 42.11 5.55
V 0.54 18.25
Fe 11.51 8.71 6.57
Zr 2.47 40.55 4.05
W 20.41 4.89 4.83

Note:
a Temperature coefficient of resistivity (TCR): a273 K5(1/r)(dr/dT )T5273 K



5 . (10.8)

The value of t in pure Cu at room temperature is easily deduced to be
t52.73310214 s by inserting the electron mass m59.1310231 kg, its charge
)e)51.6310219 coulomb, the number density n58.931063631023/63.545

0.8431029 m23 and the observed resistivity r51.5531028 V-m into equation
(10.8). The mean free path given by the product of the relaxation time and the
Fermi velocity turns out to be of the order of a few tens nm, since the Fermi
velocity is of the order of 106 m/s.

It is important to realize how the drift velocity vD differs from the Fermi
velocity vF in magnitude. The drift velocity vD is easily calculated to be of the
order of 1022 m/s for pure Cu, if a typical value of E510 [V]/[m] is inserted
into equation (10.4), together with the relaxation time obtained above. Thus,
we see that the drift velocity vD is about 1028 times the Fermi velocity vF.

The drift velocity defined by equation (10.4) depends on the magnitude of
the applied electric field and, hence, is not appropriate as a physical quantity
specific to a given material. The drift velocity per electric field is defined as the
mobility m and is given by

m5 (10.9)

The mobility of the electron becomes negative, since the electronic charge is
negative, but an absolute value is conventionally used.

The mobility of pure Cu is immediately calculated to be 4.731023

[m]2/[volt][s] by inserting the relaxation time obtained above into equation
(10.9). The mobility is often expressed in practical units of [cm]2/[volt][s]. Its
conversion from CGS units results in a numerical factor 1/300 as shown below:

5 5 5 .

(10.10)5 3(3 3 109)21[coulomb][cm]2

1027[ joule][s] 45 1 1
30023

[cm]2

[volt][s]4

33
esu

coulomb4[coulomb][cm]2

3 erg
joule4[ joule][s] 43 [esu][cm]2

[g][cm]2[s]22[s]43[esu][s]
[g] 4( 2 e)t

m

vD

E
5

( 2 e)t
m

[kg]

31 joule
coulomb2 / 1coulomb

s 24[m]22[coulomb]2

5 [s]

m
rne2 5

[kg]
[V-m][m]23[coulomb]2 5

[kg]

3 volt
ampere4[m]22[coulomb]2
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The mobility of Cu turns out to be m547 [cm]2/[volt][s], indicating that the
conduction electron drifts 47 cm per second, if 1 volt is applied to a pure Cu
rod, 1 cm in length.

Finally, it is worth noting that the mobility is given by the product of the
electrical conductivity in equation (10.6) and the Hall coefficient given by equa-
tion (11.38):

m5sRH, m5csRH [CGS], (10.11)

where c is the speed of light. This relation is often employed to determine the
mobility experimentally.

10.3 Motion of electrons in a crystal: (I) – wave packet of electrons

In the preceding section, we discussed very basic properties of electron trans-
port phenomena by treating the electron with a mass m and a charge (2e) in
the free-electron model. The equation of motion given by equation (10.3) is
based on classical mechanics. This is not satisfactory in a crystal metal, since
the conduction electron must be described in terms of the Bloch state of the
wave vector k. The effect of the band structure on the electron transport prop-
erties cannot be taken into account, as long as electrons are treated as classical
particles.

In quantum mechanics, a particle of energy « is equivalent to a wave of
angular frequency v through the well-known relation «5"v.2 A medium is
said to possess a dispersion, if the frequency v depends on the wave vector k.
In such a dispersive medium, a wave packet can be constructed by superimpos-
ing waves having different wave vectors in the vicinity of a given angular fre-
quency v. The velocity of the wave packet is called the group velocity and is
defined as vk5=kvk5(1/") (­«(k)/­k). The group velocity in the free-electron
model is reduced to vk5"k/m, since its energy dispersion is «5"2k2/2m.

We now construct the wave packet from the free electrons and derive its
equation of motion in the presence of a potential V(x) in a one-dimensional
system. The time-dependent Schrödinger equation for the electron is given by

2 1V(x)C(x, t)5i" , (10.12)

where C(x, t) is the time-dependent wave function. If the Hamiltonian is inde-
pendent of time so that the system is conservative, the wave function can be

­C(x,t)
­t

"2

2m
­2C(x,t)

­x2
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12 In the remaining chapters, except for Chapter 15, the symbol E or E is reserved for the electric field and
the energy of the electron is hereafter denoted as «(k).



separated into the form C(x, t)5c (x) f (t). By inserting this into equation
(10.12), we obtain a solution C(x, t)5ck(x)e2i«(k)t /". Here ck(x) is a time-
independent eigenfunction and «(k) is the corresponding eigenvalue of the
following Schrödinger equation:

2 1V(x)ck(x)5«(k)ck(x) . (10.13)

A general solution of equation (10.12) in a conservative system is written in the
form:

C(x, t)5 A(k)ck(x)e2i«(k)t /" (10.14a)

and, if the energy spectrum is continuous, the sum may be replaced by an inte-
gral:

C(x, t)5eA(k)ck(x)e2i«(k) t /"dk. (10.14b)

Let us assume that the coefficient A(k) is large only in a particular range of
the wave number k. For instance, the Gaussian function A(k)5ce2a2(k2K )2 takes
its maximum at k5K and falls to 1/e times the maximum at k2K561/a.
Equation (10.14b) can be easily calculated, when A(k) , ck(x) and «(k) are given
by the Gaussian function, the plane wave ei[kx2v(k)t] and the dispersion relation
«(k)5"2k2/2m of the free electron, respectively (see Exercise 10.1). One can find
that the amplitude of the wave function C(x, t) is virtually zero except at the very
center of the wave packet. This is the wave packet of the conduction electrons.

An average of the x-coordinate corresponding to the center of the wave
packet is calculated from

,x.5 C *(x, t)xC(x, t)dx. (10.15)

The group velocity of the wave packet is then obtained by differentiating both
sides of equation (10.15) with respect to time:

5 xC*(x, t) 1xC(x, t) dx. (10.16)

The right-hand side of equation (10.16) can be obtained by multiplying equa-
tion (10.12) by xC*(x, t) and then subtracting its complex conjugate multiplied
by xC(x, t) with subsequent integration over x. By repeating integrations by
parts twice, we obtain

i" 5 C*(x, t) dx, (10.17)
­C*(x, t)

­tE
`

2`

"2

m
d,x.

dt

2­C*(x, t)
­t

­C(x, t)
­t1E

`

2`

d,x.

dt

E
`

2`

o
k

"2

2m
­2ck(x)

dx2
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where 
x→6`
lim C(x, t)50 is used as a boundary condition. Equation (10.17) is 

further differentiated with respect to time and then integration by parts leads
to the relation:

m 5 dx. (10.18)

After equation (10.12) is inserted into equation (10.18), integration by parts is
again carried out to reach the final form:

m 52 dx

1 V(x) dx

52 C*(x, t)C(x, t)dx52 . (10.19)

Equation (10.19) indicates that the wave packet follows the Newton equation
of motion in the potential field V(x) [1]. Thus, the wave packet can be treated
as if it is a classical particle, provided that the wave packet is well localized in
reciprocal space.

The wave function of the conduction electron in a crystal should be
described by the Bloch wave. The time-dependent Bloch wave may be written
as

Ck(r, t)5uk(r)ei k·re2i«(k)t /". (10.20)

A wave packet can be constructed from Bloch waves in the same way as that
from plane waves in equation (10.14) and is expressed as

C(r, t)5eA(k9)uk9
(r)ei [k9·r2«(k9)t/"]d k9, (10.21)

where A(k9) has a sharp maximum at k95k and falls rapidly to zero as soon as
k9 departs from k.3

7­V(x)
­x 8­V

­xE
`

2`

1C* ­C

­x
1 C

­C*

­x 2E
`

2`

1­2C*

­x2

­C

­x
1

­2C

­x2

­C*

­x 2E
`

2`

"2

2m
d 2,x.

dt2

1­C*

­t
­C

­x
2

­C

­t
­C*

­x 2E
`

2`

"

i
d 2,x.

dt2
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13 The width Dk of the wave packet should be much smaller than the size of the first Brillouin zone. Hence,
Dk,,2p/a should hold, where a is the lattice constant. The uncertainty principle requires Dx·Dp<" or
Dx·Dk<1. This leads to Dx..a /2p. Hence, the wave packet will extend over several atomic spacings in
real space.



The integration can be done only in the vicinity of k95k. Hence, the energy
eigenvalue «(k9) of the Bloch electron can be expanded about k95k as follows:

«(k9)5«(k)1(k92k)·=k«(k)1··· . (10.22)

Equation (10.21) is now approximated as

C(r, t)5ei [k·r2«(k)t/"]eA(k9)uk9
(r)ei [r2t=k«(k) /"]·(k92k)d k9. (10.23)

The periodic function uk9
(r) is assumed to vary slowly with k9 in the limited

range centered at k95k and is pulled outside the integral. Then we obtain

C(r, t)5Ck(r, t)eA(k9)ei[r2t=k«(k) /"] ·(k92k)d k9. (10.24)

Here Ck(r, t) is the Bloch wave given by equation (10.20) and, hence, )Ck(r, t))2

remains unchanged with time. According to equation (10.24), the wave packet
centered at k95k displaces its position by t=k«(k)/" after t seconds. This
implies that the group velocity of the wave packet is given by

v5 =k«(k). (10.25)

It is now clear that the effect of the band structure energy «(k) of the Bloch
electron on electron transport phenomena enters through the group velocity of
the wave packet.

10.4 Motion of electrons in a crystal: (II)

We assume that equation (10.25) holds valid when the electric field E is applied
to a metal. Then the work done by the field on a wave packet having group
velocity v is obviously given by

(2e)E·v5 E·=k«(k). (10.26)

Since the work must be equal to the change in the electron energy d«/dt, we
obtain

(2e)E·v5 . (10.27)

A comparison of equations (10.26) and (10.27) immediately leads to the well-
known relation

E. (10.28)
d k
dt

5
( 2 e)

"

d«

dt
5 1­«(k)

­k 21d k
dt 2

( 2 e)
"

1
"
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We see that equation (10.1) is now extended to the Bloch wave in a crystal.
In other words, the wave packet centered at the wave vector k propagates with
a constant velocity in reciprocal space under a given electric field E. The dis-
cussion above holds true, as long as the concept of the wave packet is justified
for the Bloch state. We proceed with our discussion in the framework of this
justification and, hence, the conduction electron or the Bloch electron or
simply the electron is hereafter meant as the wave packet.

The «–k relation for a typical metal is depicted in Fig. 10.2(a). The
energy gap appears at the zone boundary. Let us consider the motion of the
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Figure 10.2. (a) «–k relation of the Bloch electron in the first Brillouin zone, (b)
corresponding group velocity and (c) effective mass. Points A and D correspond to

inflection points in the «–k relation.



conduction electron characterized by the band structure energy «(k) in the
presence of an electric field. First, we take the electron of k50 and apply the
electric field in the negative direction along the x-axis. Then we need to con-
sider only one-dimensional motion along the x-direction. The electron carry-
ing a negative charge experiences the force (2e)E and begins to travel in a
positive direction in accordance with equation (10.28). In the case of free elec-
trons without involving any scattering mechanism, the Fermi sphere moves
indefinitely under the operation of the electric field (see Section 10.2). But we
now have the band structure shown in Fig. 10.2. The electron departs from the
origin O and reaches point B after passing the inflection point A in the «–k rela-
tion. However, point B is identical to point C, which is separated by the recip-
rocal lattice vector from point B. Thus, the electron reaching point B reappears
at point C and returns to the origin after passing another inflection point D.
This motion will be indefinitely repeated in the first Brillouin zone enclosed by
the points B and C.

The Bragg reflection takes place in the periodic potential, whenever the elec-
tron reaches point B or C, and the Fermi sphere moves back and forth endlessly
within the first Brillouin zone. Of course, the repeated motion of the electron
between points B and C has nothing to do with the scattering and, hence,
makes no contribution to the resistivity. As mentioned in Section 10.2, the scat-
tering mechanism must be introduced to bring the Fermi sphere to a steady
state after a certain displacement upon application of the electric field.

The acceleration of the conduction electron can be calculated by differen-
tiating equation (10.25) with respect to time with a subsequent use of equations
(10.27) and (10.28):

5 =k«(k)5 =k 5 =k[E·=k«(k)] (10.29)

or

5 Ej (10.30)

in the vector component representation.
Now we can find the one-to-one correspondence with the classical particle

having its mass m and charge (2e). The Newton equation of motion for the
classical particle in an electric field E is given by

5 E. (10.31)
( 2 e)

m
dv
dt

( 2 e)
"2 o

j
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­ki­kj

dvi
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( 2 e)
"21d«(k)

dt 21
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"

d
dt

dv
dt
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Equation (10.31) may be extended to the form dvi /dt5(2e) (1/m*)ijEj by

replacing the mass of the free electron by the effective mass tensor m*
ij. A com-

parison with equation (10.30) leads to the relation:

ij

5 , (10.32)

where m* is called the effective mass of the electron in a crystal and is a tensor.
We see that the band structure is also reflected in the effective mass through the
second derivative of the «–k relation.

The group velocity and the effective mass of an electron, whose «–k relation
is shown in Fig. 10.2(a), can be calculated from equations (10.25) and (10.32).
The results are shown in Figs. 10.2(b) and (c); the group velocity increases
almost linearly in the range OA and reaches its maximum at point A with a
subsequent decrease to zero at point B. Then, it reappears at point C and
decreases up to the point D, from which its slope changes to a positive sign
before returning to the origin O.

Suppose that the conduction electron with wave vector k is travelling in the
periodic potential associated with the family of lattice planes having the recip-
rocal lattice vector g. The wave function ck(r)5ei k·r (11aeig·r1be2ig·r) repre-
sents the Bloch state.4 In a one-dimensional periodic potential of lattice
constant a, the shortest reciprocal lattice vector g is equal to g52p/a. Consider
first the region 0,k#p/a. The electron wave eikx describes its motion to the
right, whereas the electron wave ei [k2(2p/a)]x describes that to the left by receiv-
ing the backward crystal momentum "g from the family of lattice planes. In
the region OA, the «–k relation is free-electron-like and, hence, both co-
efficients a and b are zero and the motion of the electron can be well described
by the wave function eikx. However, once the electron passes point A, it begins
to receive the crystal momentum from the periodic potential, resulting in a
decrease in the slope of the «–k relation. This corresponds to an increase in the
coefficient b of the electron wave ei [k2(2p/a)]x running to the left. At point B, the
slope of the «–k relation is reduced to zero and the energy gap is opened.
Indeed, here a50 and b51 hold and the standing wave [e i(p/a)x6e2i(p/a)x] is
formed at point B, where k5p/a. This corresponds to the Bragg reflection, as
discussed in Section 5.6. The group velocity at point B is reduced to zero, as
indicated in Fig. 10.2(b).

We have emphasized above that point C is equivalent to point B and, hence,

1
"2

­2«(k)
­ki­kj

1 1
m*2

o
j
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14 If we write uk(r)511aeig·r1be2ig·r, then we can easily confirm the relation uk(r1l)511aeig·(r1l)

1be2ig·(r1l)5uk(r) for any lattice vector l.



the electron reaching point B appears at point C. As a matter of fact, the group
velocity at point C is also zero. In the region 2p/a,k#0, the electron wave eikx

is running to the left, whereas the wave ei [k1(2p/a)]x runs to the right. In the region
from point C to point D, the coefficient a in the wave ei[k1(2p/a)]x decreases grad-
ually from unity. Once the electron passes point D, both coefficients a and b
become zero. Thus, the wave function is reduced to the plane wave eikx and free-
electron behavior is resumed.

As is clear from the argument above, the conduction electron propagating
in the periodic potential in the presence of an electric field receives the crystal
momentum of 2"g or 1"g from the lattice planes, when moving through
regions AB and CD. The mixing of the electron wave ei (k2g)x with the plane
wave eikx in the region AB is viewed as a braking motion due to the crystal
momentum acting against the acceleration of the wave packet by the electric
field and eventually forces the electron to form a standing wave at point B.
Thus, we see that the electron in regions AB and CD behaves as if it is accel-
erated by the field in a direction opposite to that for the free electron. This is
the reason why the effective mass becomes negative in this region, Fig.
10.2(c).

So far we have discussed only the effect of the electric field on the motion of
the conduction electron. Equation (10.28) may be extended to the case where
a magnetic field is also present:

5 (E1v3B), 5 E1 3H [CGS], (10.33)

where the second term has already appeared in equation (7.2). Unfortunately,
this term cannot be deduced in the same way as the derivation of equations
(10.26) to (10.28), because d k/dt is no longer parallel to v in the presence of a
magnetic field. We proceed with our discussion by presuming that equation
(10.33) can be extended to the Bloch wave in the presence of both electric and
magnetic fields. Note that the velocity in equation (10.33) can be calculated
from equation (10.25).

10.5 Electrons and holes

In a semiconductor like Si, discussed in Section 6.9, the valence band is separ-
ated from the conduction band by an energy gap of the order of 1 eV. At abso-
lute zero, the valence band is completely filled with electrons, whereas the
conduction band is completely empty. Its «(k)–k relation is shown in Fig. 10.3.
The electrical current density due to the wave packet centered at the wave
vector k in the valence band is expressed as jk5(2e)vk. Let us consider the
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motion of the remaining electrons in the valence band, when a single electron
in the valence band is excited into the conduction band.

If the Brillouin zone corresponding to the valence band is fully filled with
electrons, no current can flow and, hence, J5ok (2e)vk50 must hold. Now
we assume the situation such that the electron of wave vector k in the valence
band is excited into the conduction band so that the state k is left vacant.
The net current would vanish if the resulting vacancy is filled with an elec-
tron carrying the current density Jk5(2e)vk, and, hence, the relation
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(B)

(A)

Figure 10.3. «–k relation of valence and conduction bands in an intrinsic semicon-
ductor. Upward and right directions are taken as positive directions of the energy and
wave vector in coordinates (A), whereas downward and left directions as positive direc-
tions in coordinates (B), respectively. Coordinates (A) are used to describe the motion
of an electron near the bottom of the conduction band. Coordinates (B) are used to

describe that of a hole near the top of the valence band.



(ok9Þk(2e)vk9)1(2e)vk50 holds. Therefore, the current density due to the
vacant state can be expressed as

Jk5 (2e)vk52(2e)vk5(1e)vk, (10.34)

indicating that the vacant state in the valence band behaves as if it carries a pos-
itive charge.

Let us apply the electric field to a valence band containing one vacant state.
All remaining electrons move into a direction opposite to the electric field E
due to the external force (2e)E. The vacant state is also forced to move together
with the electrons and follows equation (10.30) in the same way as all the
remaining electrons. But we must remember that the «(k)–k curve of the
valence band is convex upward and that the group velocity calculated from
equation (10.25) decreases with increasing wave vector k, resulting in a nega-
tive effective mass. This refers to the motion in the coordinates marked as (2m*,
2e) in Fig. 10.3. However, the use of a negative effective mass for the vacant
state is not convenient. We will employ below the alternative coordinates shown
as (B) in Fig. 10.3 to describe the motion of the vacant state.

As discussed above, the motion of the vacant state is expressed in the ordi-
nary coordinates as

(2m*) 5(2e)E, (10.35)

which is rewritten as

m* 52(2e)E5(1e)E. (10.36)

Now we see that the vacant state behaves as a particle possessing a positive
effective mass with a positive charge in the coordinates (B) marked as (1m*,
1e) in Fig. 10.3. The vacant state is called a positive hole. Note that the posi-
tive direction of its energy axis must be taken downward in order to meet the
condition m*.0. At the same time, the positive direction of the wave vector k
must be taken toward the left because of the possession of a positive charge
(1e) opposite to that of an electron. Note that we have been accustomed to the
coordinates (A) to describe the motion of electrons in the conduction band
characterized by a parabolic band, as in Fig. 5.6. Both coordinates (A) and (B)
are chosen as being symmetric with respect to the origin. A motion of a hole
downward along its energy axis raises the energy of the electron system, since
it is equivalent to the motion of an electron upward by the same amount.

dv
dt

dv
dt

o
k9Þk
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The valence band of a semiconductor at absolute zero is completely filled
with electrons. We can alternatively say that the conduction band is completely
filled with positive holes. At finite temperatures, some electrons in the valence
band are excited into the conduction band, while holes in the conduction band
are excited into the valence band. The «(k)–k relation in the conduction band
corresponds to the excitation of electrons into the Brillouin zone filled with pos-
itive holes and constitutes a one-to-one correspondence with the excitation of
positive holes in the valence band. The energy axis of the respective excitations
is always chosen such that the energy increases with increasing wave number k.

10.6 Boltzmann transport equation

We have learned in the preceding sections that an electron accelerated by exter-
nal fields establishes a steady state through the scattering process due to distur-
bances in an otherwise perfectly periodic potential in a crystal. The Boltzmann
transport equation is formulated by considering the balance of the distribution
function in the steady state brought about by external fields in the presence of
the scattering process for an electron or a hole at the position r represented as
the wave packet centered at the wave vector k.

First, we consider a system, in which only a temperature gradient exists and
causes the electron to diffuse with the velocity vk. Since the electron travels a
distance vk·Dt after Dt, the electron distribution f (r, k, t) at the position (r, k)
in the phase space at a time t would be equal to that at the position (r2vk·Dt,
k) at the time t2Dt.5 In other words, the relation f (r, k, t)5f (r2vk·Dt, k, t2Dt)
is assumed to hold. A change in the electron distribution due to diffusion is
then approximated as

5

52vk · 52vk·=f (r, k), (10.37)

where vk·=f (r, k)5vkx
·(­f /­x)1vky

·(­f /­y)1vkz
·(­f /­z).

In contrast to a temperature gradient, both electrical and magnetic fields
cause the wave vector k to change in accordance with equation (10.33). In the

­f (r,k)
­r

f (r 2 vk·Dt,k,t 2 Dt) 2 f (r,k,t 2 Dt)
Dt1­f (k)

­t 2
diffusion

5
f (r,k,t) 2 f (r,k,t 2 Dt)

Dt
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15 According to classical mechanics, the motion of an assembly of n particles is completely determined,
once their position coordinates q1, q2, q3, . . . qn and their conjugate momenta p1, p2, p3, . . . pn are given
at a time t. Any state is described as a point in the 2n-dimensional space consisting of mutually perpen-
dicular q1, q2, q3, . . . qn, p1, p2, p3, . . . pn axes. This is called the phase space. The motion of particles is
given by a trajectory in the phase space. In the present section, the wave vector k is used in place of the
momentum p.



same manner as above, the electron distribution f (r, k, t) at the position (r, k)
at a time t would be equal to that at the position (r, k2(­k/­t)Dt, t2Dt) at the
time t2Dt. By inserting the resulting relation f (r, k, t)5f (r, k2(­k/­t)Dt,
t2Dt)) into equation (10.33), we find the electron distribution to change at the
rate:

5

52 · 52 (E1vk3B) · . (10.38)

Establishing a steady state means that a change in the electron distribution
caused by external fields and/or a temperature gradient is balanced with that
of the scattering process (­f /­t). Since a net change in the electron distribution
df /dt is given by the sum of the three contributions:

, (10.39)

we have the relation df /dt50 in the steady state. An insertion of equations
(10.37) and (10.38) into equation (10.39) gives rise to the Boltzmann transport
equation:

2vk·=f (r, k)2 (E1vk3B)· . (10.40)

The steady state electron distribution function f (r, k) in the presence of
external fields and/or a temperature gradient must deviate from the
Fermi–Dirac distribution function f0(«k, T ) which applies at thermal equilib-
rium. We write the deviations as

f (r, k)5f (r, k)2f0(«k, T ), (10.41)

and assume f(r, k) to be small. Equation (10.40) is now rewritten as
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by inserting equation (10.41). The term involving the magnetic field in the left-
hand side always vanishes, since

vk3B· 5vk3B· 5(vk3B·vk)" 50,

where A3B·C is calculated by taking the vector product A3B with subsequent
scalar product with the vector C. The term E·(­f/­k) in the right-hand side is
shown to be of the order of E 2, as will be seen from equation (10.46), and is
neglected because of the deviation from Ohm’s law.

By taking both the temperature and energy derivatives of the Fermi–Dirac
distribution function, we easily obtain the following relation:

52 ,

where f0(«k, T )51/{exp[(«k2z)/kBT ]11} and z is the chemical potential.
Equation (10.40) is now reduced to the form:

vk· =T1(2e) E2

52 1vk· 1 (vk3B)· . (10.42)

This is the linearized Boltzmann transport equation. The term =z is included
as an extra electric field, since it represents an effective field associated with a
change in the chemical potential induced by the temperature gradient [2].

We have not yet considered the scattering term in the right-hand side of
equation (10.42). The change in the electron distribution due to scattering is
generally expressed as

{Q(k, k9) f (k9)[12f (k)]2Q(k9, k) f (k)[12f (k9)]}, (10.43)

where Q(k, k9) represents the transition probability in the scattering event. The
term f (k9)[12f (k)] in the curly bracket indicates that the electron of the state
k9 is scattered into the vacant state k and increases (­f (k)/­t)scatter, whereas the
second term f (k)[12f (k9)] decreases it.

The calculation of (­f (k)/­t)scatter is a formidable task, since equation (10.43)
involves a complicated summation. The relaxation time approximation is fre-
quently employed to avoid this difficulty. The scattering term is then simplified
as

2 5 , (10.44)
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where t is the relaxation time and f (r, k) represents the deviation of the distri-
bution function from equilibrium, as defined by equation (10.41).

10.7 Electrical conductivity formula

We consider in this section the linearized Boltzmann transport equation, where
only an electric field is applied to a metal at a constant temperature. Equation
(10.42) becomes

2 5 vk·(2e)E. (10.45)

Here the term vk· in the right-hand side of equation (10.42) vanishes, since

the system is everywhere at a constant temperature so that f (r) is independent
of the position vector r. By using the relaxation time approximation, we can
rewrite equation (10.45) as

5 vk·(2e)E. (10.46)

In Section 3.7, we obtained the relation n5(1/4p3)eee f0 (k)d k, where n is the
number of electrons per unit volume. The current density is then expressed as

J5 vk f (k)d k5 vk[ f (k)2f 0(k)]d k

5 vkf(k)d k, (10.47)

where eeevk f0(k)d k is obviously zero.
Equation (10.47) is further rewritten by inserting equation (10.46):

J5 tvk(vk·E) d k

5 tvk(vk·E) , (10.48)

where the following relation is used:

d k5 dS dk
'

5 dS 5 dS , (10.49)

where eedS indicates the integral over a constant energy surface and edk
'

is
the integral along its normal direction. Now it is important to note that
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equation (10.48) contains the term (2­f0 /­«), which is finite only in the very
vicinity of the Fermi level and behaves like the delta function (see Section 3.3).
As a consequence, only electrons at the Fermi level can contribute to the
current density, leaving the surface integral over the Fermi surface in equation
(10.48).

Equation (10.48) is, therefore, deduced to be

J5 .E, (10.50)

where vk'
in the denominator represents the component of the velocity of the

electron perpendicular to the Fermi surface and is calculated from equation
(10.25). It is also noted that there exist two velocity vectors in the numerator
and that the one to the left-hand side is parallel to the current density J,
whereas the other forms a scalar product with the electric field E. The electri-
cal conductivity tensor is defined in Section 10.2 as J5sE or Ji5ojsijEj. A
comparison with equation (10.50) leads to

sij5 (10.51a)

or

s5 (10.51b)

in the vector representation. The two velocity vectors in the integrand are
called the diadic and become a tensor.

For the sake of simplicity, we take an isotropic metal like a bcc or fcc metal.
The diagonal and off-diagonal elements of the conductivity tensor satisfy the
relations sij5s and sij50 with iÞ j. In addition, vk'

5vF holds on the Fermi
surface. The electrical conductivity for an isotropic metal is then written as

s5 5 , (10.52)

where SF is the area of the Fermi surface and the relation v2
F5oi5x,y,zv

2
i 53v2

i is
used. Following equation (10.49), we can express the electron density of states
per unit volume, N(«), as
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This leads to the well-known relation

N(«)d«5 d«. (10.53)

By using equation (10.53), one can alternatively write equation (10.52) as

s5 5 LFvFN(«F), (10.54)

where LF is the mean free path of the conduction electron at the Fermi level
and is equal to LF5tvF. Equation (10.54) indicates that the electrical conduc-
tivity is determined only by electrons at the Fermi level and is proportional to
the number of electrons at the Fermi level N(«F), their velocity vF and the mean
free path LF.

Equations (10.52), or its alternative, equation (10.54), is frequently used as
the conductivity formula for isotropic systems including liquid metals and
amorphous metals. We have so far derived two conductivity formulae; one,
equation (10.6) in Section 10.2 and the other, equation (10.54). The number of
electrons n per unit volume is contained in equation (10.6), so that one may
think that all electrons in the Fermi sphere contribute to the electrical conduc-
tivity.6 This is not correct. In the derivation of equation (10.6), we employed
the drift velocity defined by equation (10.2). Remember that states having
velocities v and 2v cancel their contributions and that only states in the very
vicinity of the Fermi surface which were previously unoccupied (or occupied)
but are newly occupied (or unoccupied) after its displacement due to the elec-
tric field, are responsible for the cause of a finite drift velocity. They are indeed
electrons at the Fermi level, as is seen in Fig. 10.2.

Equation (10.46) is inserted into equation (10.41). Then we obtain

f (r, k)5f0(«k, T )1 tvk·(2e)E

5f0(«k, T )1 (2e)tvk·E

The last expression can be regarded as the first two terms of the Taylor expan-
sion of the function f0(«k2(2e)tvk·E, T ). Hence, we have

f (r, k)>f0(«k2(2e)tvk·E, T ). (10.55)
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immediately leads to equation (10.54). Therefore, it is important to realize that the relaxation time
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Equation (10.55) implies that the steady state electron distribution can be
approximated by displacing the Fermi–Dirac distribution function which
applies at thermal equilibrium by an amount equal to (2e)tvk·E. This is illus-
trated in Fig. 10.4, where one can clearly see that electrons deep below the
Fermi level do not contribute to the electron conduction.

10.8 Impurity scattering and phonon scattering

Let us consider the electron transport phenomenon by taking pure Cu at room
temperature as an example. The relaxation time was already calculated in
Section 10.2 by using the resistivity value listed in Table 10.1. The mean free
path turns out to be about 20 nm from the relation LF5vFt. Since the lattice
constant of pure Cu is 0.36 nm, the mean free path is about 50 times the lattice
constant and thus the conduction electron can propagate over several tens of
atomic distances without being scattered even at room temperature.

As mentioned in Section 1.2, the mean free path of the conduction electron
was calculated to be only a few-tenths nm in the Drude model based on clas-
sical mechanics. The Drude theory failed to explain why the conduction elec-
tron in a pure metal can travel over many atomic distances without being
scattered. This difficulty was resolved by the Bloch theorem discussed in
Section 5.3.

We learned in Chapter 5 that the conduction electron propagates in the form
of c (r)5e i k·ruk(r) in a periodic potential. The Bloch theorem assures that the
wave vector k remains unchanged in the periodic lattice. This is equivalent to
saying that electrons are not scattered, as long as the potential is perfectly peri-
odic. The electrical resistance arises only when its periodicity is disturbed.
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There are two sources of disturbance: one, the static source, which includes
impurity atoms, vacancies, dislocations and grain boundaries and the other, the
dynamical source due to lattice vibrations. The static source of scattering leads
to temperature-independent electrical resistivities, as has already been dis-
cussed in Sections 9.2 and 9.3, whereas lattice vibrations give rise to tempera-
ture-dependent resistivities. The interaction of the conduction electron with
lattice vibrations is called electron–phonon interaction and will be a central
issue in Sections 10.11 and 10.12.

The total resistivity in metals and alloys can be expressed as the sum of these
two contributions:

r5rlattice1rimp, (10.56)

where rlattice is the resistivity due to lattice vibrations and rimp is that due to
impurities and defects. The value of rlattice in a perfect crystal metal decreases
with decreasing temperature and becomes zero at absolute zero when the
thermal vibrations cease. In contrast, rimp is temperature-independent, as men-
tioned above.

Equation (10.56) is called the Matthiessen rule. One may measure the tem-
perature dependence of the resistivity at low temperatures to separate rlattice

from rimp. The data for pure Na are shown in Fig. 10.5. It can be seen that the
resistivity is almost temperature independent below about 10 K. This is the
contribution of rimp and is called the residual resistivity. The lower the value of
rimp, the purer is the metal. The ratio of the resistivity at room temperature over
that at 4.2 K, corresponding to the boiling point of liquid helium, r300 K/r4.2 K,
is referred to as the residual resistivity ratio (RRR or 3R) and is used as a
measure to judge the purity of a metal. For instance, a very pure Cu metal
whose 3R exceeds 10 000 is commercially available.

10.9 Band structure effect on the electron transport equation

We calculated in Section 9.3 the increment in the resistivity upon adding a
single impurity atom or a small number of impurity atoms in an otherwise
perfect crystal. In this treatment (see footnote 2, p. 227), the plane wave was
used to calculate the scattering probability:

U(K)5eeee2i k9·rU(r)ei k·rdr5eeeei K·rU(r)dr, (10.57)

where U(r) is the impurity potential. Remember that the metal of interest is a
perfect crystal, unless an impurity atom is added. Then the Bloch wave should
be used in place of the plane wave as an unperturbed wave function in the cal-
culation of equation (10.57). Indeed, we have emphasized the band structure
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effect of the conduction electron on the electron transport in Sections
10.3–10.4. Admittedly, the calculation of a matrix element like equation
(10.57) is laborious, if the Bloch wave has to be used. Instead, it is convenient
if the plane wave approximation is justified even for a crystal. The aim of this
section is to focus on how the band structure effect is incorporated into the elec-
tron transport equation within the framework of the plane wave approxima-
tion.

To begin with, the Wannier function is introduced [2]. As shown in Section
8.5, a Bloch wave function can be constructed from a set of atomic orbital wave
functions in the tight-binding method. Here, rather than using atomic orbital
wave functions, we expand the Bloch wave function in the n-th band in the fol-
lowing form:

ck,n5 e i k·lan(r2l), (10.58)

where an(r2l) is the Wannier function at the lattice site l, which is similar to
atomic orbital wave functions but is more artificially designed so as to satisfy
the orthogonality conditions described below.
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Figure 10.5. Temperature dependence of the electrical resistivity for pure Na at low
temperatures. The temperature-dependent part of the resistivity due to elec-
tron–phonon interaction is denoted as rlattice. Three different data sets yield different
residual resistivities owing to a slight difference in purity of the samples. The inset
shows a log–log plot for the temperature–dependent rlattice. The relation rlattice5T5

holds well for pure Na. [D. K. C. MacDonald and K. Mendelssohn, Proc. Roy. Soc.
(London) A202 (1950) 103]



Multiplying by e2i k·l on both sides of equation (10.58) and subsequently
summing over all possible k, we obtain

an(r2l)5 e2i k·lck,n(r), (10.59)

where the relation okei k·(l92l)5Ndll9 is used. It can be shown that the Wannier
function an(r2l) in the n-th band is orthogonal to an9

(r2l) in the n9-th band,
where nÞn9, and that an(r2l) at the lattice site l is orthogonal to an(r2l9) at the
lattice site l9 in the same n-th band, where lÞl9. Indeed, one can easily confirm
the relation

ea*
n(r2l)an(r2l9)dr5dll9, (10.60)

by using the orthogonality condition of the Bloch functions ck9,n(r) and ck,n(r).
As is clear from the argument above, the Wannier function can be expressed as
the sum of the Bloch waves in a given single band and is peaked at the individ-
ual lattice sites. The Wannier functions constitute the complete orthogonal set
of wave functions (see Exercise 10.2). This is the reason why the Wannier func-
tion is more convenient than the atomic orbitals, for which the orthogonality
condition fails at different lattice sites.

Let us write the Hamiltonian for the conduction electron propagating in the
periodic potential V0(r) as H05("2/2m)=21V0(r) and add to it the perturbing
potential U(r) as an impurity potential. The Schrödinger equation is given by

[H01U(r)]c(r)5«c (r). (10.61)

The wave function in equation (10.61) is expanded in terms of the Wannier
functions:

c(r)5 fn(l)an(r2l), (10.62)

where fn(l) is reduced to (1/ )ei k·l, if c (r) is the Bloch wave. But we tempo-
rarily assume a more general function fn(l), which is called the envelope func-
tion. Equation (10.62) is inserted into equation (10.61) and then the
summation is taken over all lattice sites after multiplying by a*

n9
(r2l9) on both

sides. We have

a*
n9

(r2l9)(H01U )an(r2l)fn(l)dr5« fn9
(l9). (10.63)Eo
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Since H0 is the Hamiltonian in a completely periodic potential,
H0ck,n5«n(k)ck,n holds, where ck,n is the Bloch wave function and «n(k) is its
energy eigenvalue. By using equations (10.59) and (10.58), we obtain

H0an(r2l)5 e2i k·l H0ck,n5 e2i k·l«n(k)ck,n

5 e2i k·l«n(k) ei k·l9an(r2l9)5 «n,l2l9an(r2l9),

where «n,l is defined as

«n,l5 e2i k·l«n(k). (10.64)

Equation (10.63) is now rewritten as

{dnn9
«n,l2l91Unn9

(l, l9)}fn(l)5« fn9
(l9), (10.65)

where Unn9
(l, l9) is defined as

Unn9
(l, l9)5ea*

n9
(r2l9)U(r)an(r2l)dr. (10.66)

Obviously, information about the band structure of the conduction electron
in the n-th band is contained in the energy eigenvalue «n(k), which appears in
the first term of equation (10.65) as «n,l. Now a new operator «(2i =) is intro-
duced by replacing the wave vector k in «n(k) by 2i= and is operated on the
function f (r). We have the following relation:

«n(2i =) f (r)5 «n,le
il·(2i=)f (r)

5 «n,l[11l·=1 (l·=)21. . .] f (r)5 «n,l f (r1l). (10.67)

Since we had the relation «n(2i=) f (l9)5 «n,l2l9f (l), equation (10.65) is

reduced to

«n9
(2i =)fn9

(l9)1 Unn9
(l, l9)fn(l)5«fn9

(l9). (10.68)

Equation (10.68) is defined at each lattice vector l9. Let us assume that the
conduction electron is in the n-th band and that the potential U(r) varies only

o
n,l

o
l

o
l

1
2o

l

o
l

o
n,l

1
N o

k

o
l9

o
l9

1
N o

k

1

ÏN o
k

1

ÏN o
k

274 10 Electron transport properties in periodic systems (I)



slowly over nearest neighbor distances in a given metal. Then the potential U(r)
in equation (10.66) may be pulled out from the integral and Unn(l, l9)<0 holds
if lÞ l9 because of the orthogonality condition for the Wannier function. If a
discrete variable l9 is replaced by an arbitrary variable r and the non-vanishing
term Unn(l9, l9) by [U(r)]r5l9, we reach the final expression:

{«n(2i =)1U(r)}fn(r)5«fn(r). (10.69)

Equation (10.69) represents the wave equation for an electron propagating
in the perturbing potential field U(r). The band structure effect enters through
the operator «n(2i =) and the envelope function serves as the wave function.
The envelope function for the Bloch wave is certainly the plane wave, i.e.,
fn(r)5ei k·r. Therefore, we conclude that the plane wave can be used in place of
the Bloch wave and that the band structure effect is incorporated through
«n(2i =) in dealing with the scattering phenomenon due to the perturbing
potential U(r) in an otherwise perfect crystal.

For example, let us consider the case in which the energy eigenvalue near the
bottom of the conduction band is expressed as «(k)5"2k2/2m*. The
Schrödinger equation (10.69) can be expressed as

=21U(r) c(r)5«c(r), (10.70)

where the effect of the periodic potential is included in the effective mass m*.
This explains why the plane wave approximation is applicable to the scattering
phenomenon in a crystal, as is the case in Section 9.3.

10.10 Ziman theory for the electrical resistivity

Following the discussion in the preceding section, we treat the conduction elec-
tron in a crystal as being described by the plane wave of the wave vector k and
consider the situation, where the electron in the state k is scattered into the
unoccupied state k9 due to thermal vibrations of ions. According to equation
(10.43), the scattering term is expressed in the integral form:

5 {Q(k9→k) f (k9)[12f (k)]2Q(k→k9) f (k)[12f (k9)}d k9,

where the terms Q(k9→k) and Q(k→k9) represent the transition probability
associated with the scattering of the electron into and out of the state k, respec-
tively. The relation Q(k9→k)5Q(k→k9) holds for an isotropic system.

1 V
8p32E1­f (k)

­t 2
scatter

212
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The linearized Boltzmann transport equation (10.45) in the presence of a
constant electric field E for an isotropic metal is then simplified as

vk·(2e)E52 { f (k9)[12f (k)]2f (k)[12f (k9)]}Q(k, k9)d k9

5 { f (k)2f (k9)}Q(k, k9)d k9. (10.71)

In the present section, we assume the scattering potential U(r) to be so weak
that the Born approximation is justified. In addition, the scattering involved is
assumed to be elastic. Then the transition probability Q(k, k9) is given by

Q(k, k9)5 )〈k9)U(r))k〉)2d(«k9
2«k), (10.72)

where d(«k9
2«k) assures the energy conservation of the electron in the scatter-

ing event. For simplicity, we consider a crystal consisting of a single element at
finite temperatures. The scattering potential U(r) in this case is given by the sum
of individual pseudopotentials Up(r) over the whole lattice:

U(r)5 Up(r2Rl), (10.73)

where Rl5l1ul, l is the lattice vector defined by equation (4.7) and ul is the dis-
placement vector of the ion at l caused by thermal vibrations.7 The potential
U(r) is no longer periodic because of a finite ul at finite temperatures and gives
rise to a finite resistivity.8

The matrix element involved in equation (10.72) is explicitly written as

〈k9)U(r))k〉5 e2i k9·rU(r)ei k·rdr

5 ei(k2k9)·Rl.eei(k2k9)(r2Rl )Up(r2Rl)d(r2Rl). (10.74)

Since the integral is independent of the position vector Rl, we can rewrite equa-
tion (10.74) in the form:

〈k9)U(r))k〉5Uk9k5Up(K)S(K), (10.75)
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17 The potential U(r) in equation (10.73) is reduced to V0(r) in equation (10.61) at absolute zero and, thus,
its definition is different from that in equation (10.61). The suffix l in ul is also a vector.

18 According to equation (10.100), the displacement vector ul is expressed in terms of the excitation of
phonons. Note that phonons are not created by the zero-point energy at absolute zero. Hence, the zero-
point energy does not contribute to the resistivity.



where K5k92k is the scattering vector and is related to the scattering angle u
through the relation sin(u/2)5K/2kF in elastic scattering, as shown in Fig. 10.6.

The functions Up(K) and S(K) in equation (10.75) are defined as

Up(K)5 Up(r)e2i K·rdr (10.76)

and

S(K)5 2i K·Rl, (10.77)

where N is the number of ions in the volume V. The functions Up(K) and S(K)
are called the atomic form factor and static structure factor, respectively, since
Up(K) involves information only about the single ionic potential Up(r) whereas
the function S(K) only about the spatial distribution of ions. Now equation
(10.72) is reduced to the form:

Q(k, k9)5 )Up(K))2 d(«k9
2«k), (10.78)

where a(K) is defined as NS*(K)S(K) and is called the interference function or
simply the static structure factor.

We can easily prove the relation

f (k)2f (k9)5 t(2e)E·(vk2vk9
), (10.79)

by using f (k)2f0(k)5t(2­f0/­«)vk·(2e)E derived from equation (10.46) in
combination with the relations f0(«k)5f0(«k9

) and (2­f0/­«k)5(2­f0/­«k9
),

which are valid in elastic scattering. Equation (10.71) is then reduced to

vk·(2e)E5 t(2e)E·(vk2vk9
) Q(k, k9)d k9,612
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Figure 10.6. Elastic scattering of electron on the Fermi surface.



which is further simplified by eliminating (2e)(2­f0/­«) from both sides and
by assuming that the relaxation time t is independent of the wave vector k9. We
have

5 Q(k, k9)d k95 Q(k, k9)d k9, (10.80)

where the transition probability of equation (10.78) is given by

Q(k, k9)d k95Q(k, k9) d«dS5 )Up(K))2 d(«k9
2«k) d«dS.

(10.81)

If the Fermi surface is spherical, vk9
//k9 and vk//k hold. Then we could

confirm the relation [12(vk9
·E)/(vk·E)]5(12cos u), where u is the scattering

angle between k and k9 (see Exercise 10.3). By inserting this relation together
with equation (10.81) into equation (10.80), we obtain

5 )Up(K))2 (12cos u)dS d(«k9
2«k) d«

5 )Up(K))2a(K)(12cos u)dS d(«k9
2«F) d«

5 )Up(K))2a(K)(12cos u)sinudu,

where dS52pk2
Fsinudu and d(«k9

2«F) ensures that the elastic scattering occurs
on the Fermi surface. The resistivity formula is finally obtained by inserting the
relaxation time thus obtained into equation (10.7):

r5 )Up(K))2a(K)(12cos u)sinudu

5 a(K ))Up(K ))2K 3 dK, (10.82)

where V0 is the volume per atom. The relation sin(u/2)5K/2kF is used to reach
the second line. This is the Ziman formula for the electrical resistivity [3].

The weighing factor (12cos u) in equation (10.82) carries the physical
meaning such that the forward scattering with u50 makes no contribution to
the resistivity, while the back scattering with u5p makes the largest contribu-
tion, equal to 2. In systems where nimp impurities per unit volume are uniformly
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distributed in an otherwise perfectly periodic lattice, we obtain the following
equation:

52pnimp (12 cos u)s(u)sin u du, (10.83)

where L is the mean free path of the conduction electron and s(u) is the diffe-
rential scattering cross-section for each impurity (see Section 9.3).9 Note that
both equations (10.82) and (10.83) are derived from the Boltzmann transport
equation. To validate these transport equations, the mean free path L of the
conduction electron must be longer than its wavelength lF:

L.lF or LkF. . (10.84)

This is known as the Ioffe–Regel criterion, since they pointed out, for the first
time, that a mean free path of the conduction electron shorter than lF is impos-
sible. The condition LkF<1/2p is equivalent to L<a in ordinary metals [5],
where a is an average atomic distance (see Section 15.9).

At this stage, it should be remarked that equation (10.82) cannot be applied
to describe the electron transport of a perfect crystal at absolute zero, where
ul50 and the potential U(r) given by equation (10.73) resumes a perfectly peri-
odic potential V0(r). The corresponding structure factor in equation (10.82) is
reduced to the delta function d(K2g), where g is the reciprocal lattice vector.
It is obviously zero unless K5g. Furthermore, the scattering with K5g makes
no contribution to resistivity, as discussed in Section 10.4. Hence, equation
(10.82) seemingly explains a vanishing resistivity at absolute zero. However,
this is not a proper argument. A vanishing resistivity for a perfect crystal at
absolute zero should be discussed on the basis of the Bloch theorem. Equation
(10.82) is valid only when a non-periodic source of scattering is present and can
be treated with the second-order perturbation theory. Indeed, Ziman [3] suc-
cessfully applied equation (10.82) to the resistivity behavior in simple liquid
metals like liquid Na, where the periodic lattice vector l is no longer defined but
the assumption of elastic scattering is justified.10 As will be discussed in Section
15.2, the distribution of ions is by no means periodic in liquid and amorphous
metals.

So far we have treated the scattering of the conduction electron as being
elastic. Scattering with a static source of disturbances like impurity atoms can
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19 The differential scattering cross-section s(u) is related to the transition probability Q(u) through the rela-
tion s(u)5Q(u)/v, where v is the velocity of a particle [4].

10 At high temperatures, T.QD, elastic scattering dominates. This is the reason for the success of the Ziman
theory to simple liquid metals. See footnote 12, p. 284 and Section 11.4.



be treated as being elastic but scattering with lattice vibrations occurs through
the exchange of energy with phonons. Thus, consideration of the inelastic elec-
tron–phonon interaction is essential in treating electron transport phenomena
in both periodic and non-periodic metals at finite temperatures. We will derive
the electrical resistivity formula at a finite temperature in Sections 10.11 and
10.12. Readers who are not acquainted with an advanced course of quantum
mechanics may wish to skip the next two sections.

10.11 Electrical resistivity due to electron–phonon interaction

In this section, mathematical formulation for the DC electrical conductivity due
to inelastic electron–phonon interaction will be given, following the formula-
tion by Itoh [6]. We start again with equation (10.71) based on the Boltzmann
transport equation for an isotropic metal consisting of only a single element:

vk·(2e)E5 { f (k9)[12f (k)]2f (k)[12f (k9)]}Q(k, k9)d k9.

(10.85)

The transition probability associated with the scattering of the electron from
the state k to k9 is then expressed as

Q(k→k9)5 〈k9, f ) Up(r2Rl))k, i 〉 d(«k9
2«k1Ef2Ei), (10.86)

where the electron in the state )k〉 of the energy «k is scattered into the final state
)k9〉 of the energy «k9

, which accompanies the transition of a phonon from the
state )i〉 of energy Ei to the final state ) f 〉 of energy Ef. The relevant matrix
element is calculated by using the plane waves of the wave vectors k and k9:

k9, f Up(r2Rl) k, i 5〈 f ) e2i k9·r Up(r2Rl)e
i k·r dr)i〉

5 〈 f ) ei(k2k9)·Rl )i〉. ei(k2k9)·(r2Rl )Up(r2Rl)d(r2Rl)

5 〈 f ) e2i K·Rl )i〉.Up(K), (10.87)

where K is the scattering vector defined as K5k92k. As noted in the preced-
ing section, Up(K)5(N/V )ee2i K·r9Up(r9)dr9 is independent of the position
vector Rl, regardless of whether the system is periodic or non-periodic.
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We consider the process such that the electron in the state k of energy «i is
scattered into the final state k9 of energy «f by emitting or absorbing a phonon
of energy «f2«i5"v. Note that v is either positive or negative and that the
transition probability Q(K, v) becomes v-dependent. By inserting equation
(10.87) into equation (10.86), we obtain

Q(K, v)5 Up(K) 〈i ) e i K·Rl9) f 〉〈 f ) e2i K·Rl )i 〉·d(«f2«i2"v)

52p Up(K) , (10.88)

where a(K, v)5NS*(K, v)S(K, v) is called the dynamical structure factor
[7, 8]. It is reduced to

a(K, v)5 ei K·(l2l9) e ivt e2i K·ul 9(t)ei K·ul (0)
T , (10.89)

where the bracket 〈. . .〉T represents a thermal average of the system in equilib-
rium with the heat bath at temperature T and is explicitly given by

〈A〉T5 ,

where b51/kBT (see Exercise 10.4).
The scattering rate (­f /­t)scatter associated with the absorption and emission

of a phonon q of energy "v is explicitly written as

5 dv Up(K) a(2K, v) f (k9)[12f (k)]d(«k2«k9
1"v)

2 dv Up(K) a(K, v) f (k)[12f (k9)]d(«k9
2«k1"v), (10.90)

where the summationok9
is employed in place of the integration (V/8p3)ed k9.

The scattering processes involved in equation (10.90) are schematically illus-
trated in Fig. 10.7.

We make use of the relation

a(2K, 2v)5e2b"va(K, v), (10.91)
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which is known as the detailed balance condition at temperature T (see
Exercise 10.5). The frequency v is replaced by 2v in the first term of equation
(10.90) and the relation (10.91) is inserted. Then the first term in equation
(10.90) is rewritten as

dv Up(K) a(2K, 2v) f (k9)[12f (k)]d(«k2«k9
2"v)

5 dv Up(K) e2b"va(K, v) f (k9)[12f (k)]d(«k9
2«k1"v),

where the relation d(x)5d(2x) is used. Its insertion into equation (10.89) yields

5 dv Up(K) a(K, v){e2b"vf (k9)[12f (k)]

2f (k)[12f (k9)]}d(«k9
2«k1"v). (10.92)

When both electrons and phonons are in thermal equilibrium, the distribution
function f (k) is reduced to the Fermi–Dirac distribution function and one can
easily confirm that (­f /­t)50.

The Boltzmann transport equation (10.85) in the presence of a constant elec-
tric field is now reduced to the form:

(2e)(vk·E) 5 dv Up(K) a(K, v)

3{e2b"vf (k9)[12f (k)]2f (k)[12f (k9)]}

3d(«k9
2«k1"v). (10.93)
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Figure 10.7. Electron–phonon interaction: emission and absorption of phonons due
to the first and second terms in equation (10.90).



If the relaxation time approximation is employed again, the Boltzmann trans-
port equation (10.93) is simplified as

(2e)(vk·E) 5 dv Up(K) a(K, v)

3(2e){tk(vk·E)2tk9
(vk9

·E)}

3 d(«k9
2«k1"v)bvn(v), (10.94)

where n(v) is the Planck distribution function given by n(v)51/(eb"v21) (see
Exercise 10.6). Since the applied field E is taken along any direction for an iso-
tropic metal, we choose it to be parallel to the direction of vk, i.e., E//vk. To sim-
plify further, the relaxation time tk is assumed to be independent of the wave
vector k and is denoted as t. In addition, )vk)5 )vk9

) is assumed. Then, the
Boltzmann transport equation above is reduced to

5 dv Up(K) a(K, v)(12cosukk9
)d(«k9

2«k1"v)bvn(v), (10.95)

where ukk9
is the angle between the two vectors vk and vk9

.
An insertion of equation (10.95) into equation (10.7) leads to the resistivity

formula due to the inelastic electron–phonon interaction. If a spherical Fermi
surface is assumed for an isotropic metal, the summation over the wave vector
k9 can be replaced by the integration over the whole of k9-space.11 Since vk is
parallel to k, ukk9

becomes an angle between k and k9. The calculations can be
performed in the same way as equation (10.82). The resistivity formula for an
isotropic metal at a finite temperature is finally deduced to be

r5 K 3 Up(K ) dK a(K, v)bvn(v)dv, (10.96)

where the upper limit 2kF of the integral corresponds to the maximum momen-
tum transfer and arises when ukk9

5p. Here the electron of wave number kF is
elastically scattered into the state 2kF and, hence, )K )5 )(2kF)2kF )52kF holds
(see Fig. 10.6). Equation (10.96) is regarded as the generalization of equation
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11 The following relation holds, when the summation is replaced by an integration: ok9
d(«k9

2«k1"v)3 . . .
5(V/8p3)e `

0 k92dk9 edS . . . 1/(­«k9
/­k9)d(«k9

2«F1"v). An electron in the state k contributing to the resis-
tivity is on the Fermi surface and, hence, «k is replaced by the Fermi energy «F. Since "v is always lower
than kBQD and is much smaller than «F, the last term is well approximated as d(«k9

2«k1"v)>d(«k9
2«F).

Therefore, the same argument as that employed in the derivation of equation (10.82) is applied.



(10.82) and is known as the Baym resistivity formula [9]. This equation will be
employed in the next section to discuss the temperature dependence of the
electrical resistivity due to electron–phonon interaction for an isotropic metal.
As will be discussed below, the Baym formula is applied over a wide tempera-
ture range from well below to well above the Debye temperature for both peri-
odic and non-periodic metals.12

10.12 Bloch–Grüneisen law

In this section, we apply the Baym resistivity formula (10.96) to a perfect crystal
metal at finite temperatures and obtain the theoretical expression for the tem-
perature dependence of the electrical resistivity known as the Bloch–Grüneisen
law. For this purpose, we need to evaluate the dynamical structure factor in
equation (10.89):

a(K, v)5 e i K·(l2l9) eivt〈e2i K·ul9(t)ei K·ul (0)〉T ,

where l and l9 are the lattice vectors corresponding to equilibrium atom positions
at absolute zero and ul and ul9 are the displacement vectors of the relevant atoms.
The dynamical structure factor can be quantitatively evaluated in the framework
of the harmonic oscillator approximation and can be explicitly written as

a(K, v)5 e i K·(l2l9) e ivte22Wll9(K)exp〈(K·ul9(t))(K·ul (0))〉T,(10.97)

where 2Wll9(K) is defined as

2Wll9(K); {〈(K·ul(0))2〉T1〈(K·ul9(t))
2〉T}, (10.98)

and is called the Debye–Waller factor (see Exercise 10.7). Our system is
assumed again to be composed of a single element. The Debye–Waller factor
2Wll9(K) is now independent of the lattice vector l and, hence, the suffices l and
l9 in 2Wll9(K) are omitted in the rest of our discussion. Our main objective is,
therefore, to calculate a thermal average of exp{〈[K·ul9(t)][K·ul(0)]〉T} in equa-
tion (10.97).

1
2

dt
2pE
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N o
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12 At high temperatures T.QD, as in liquid metals, the term b"vn(v) can be approximated as
b"vn(v)5b"v/(eb"v2 1)5b"v/[(11b"v 1 . . .)21]<1. If we write a(K )5e `

2`
a(K,v)dv, then we see

that the Baym formula is reduced to the Ziman formula of equation (10.82) (see also Section 15.8). Energy
transfer by phonons is always limited by kBQD and becomes smaller than the spread kBT of the
Fermi–Dirac distribution function at T.QD. This is the reason why electron scattering can be treated
quasi-elastically at high temperatures.



The exponential term in equation (10.97) may be expanded as

exp{〈(K·ul9(t)(K·ul(0))〉T}5 {〈(K·ul9(t))(K·ul(0))〉T}m, (10.99)

where the m-th term in this expansion is called the m-phonon process. The zero-
and one-phonon processes corresponding to m50 and m51 play the domi-
nant role, as discussed below. The displacement of the atom at the lattice site l
is expanded in phonon modes as follows:

ul(t)5 e j
q(aqe

i(q·l2vqt)1a1
qe2i(q·l2vqt)), (10.100)

where M is the mass of the constituent atom, e j
q is the j-th polarization vector

of the mode q and a1
q and aq are the phonon creation and annihilation opera-

tors, respectively.
The zero-phonon contribution is obtained by replacing the exponential term

in equation (10.97) by unity. This results in

a(0)(K, v)5 ei K·(l2l9)d(v)e22W(K)5d(v)e22W(K)a(K2g), (10.101)

where a(K2g)5(1/N ) ei K·(l2l9)5d(K2g) refers to the static structure factor

and remains finite only when K5g or k5k91g. This means that an electron
exchanges its momentum with the lattice by any reciprocal lattice vector g.
The delta function d(v) leads to «k9

5«k and assures the scattering to be elastic.
As has been discussed in Section 10.4, an exchange of the momentum equal
to any reciprocal lattice vector g makes no contribution to the resistivity,
though the magnitude of a(0)(K, v) decreases with increasing temperature due
to the temperature dependence of the Debye–Waller factor e22W (see Exercise
10.8).

The one-phonon contribution with m51 gives rise to a finite electrical resis-
tivity at finite temperatures due to inelastic electron–phonon interaction and
can be evaluated by inserting equation (10.100) into the quantity
〈(K·ul9(t))(K·ul(0))〉T:

〈(K·ul9(t))(K·ul(0))〉T

5 〈(ase
i(q·l92vst)1a1

se
2i(q·l92vst))(as9

eiq9·l1a1
s9
e2iq9·l)〉TK

a
K

a9
es

aes
a

9
9,

(10.102)
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where s is used to abbreviate the pair of indices (q, j ). The following relations
hold for a thermal average of the matrix elements involving creation and anni-
hilation operators:

〈a1
s9
as〉T5nsds9s, 〈asa

1
s9
〉T5(11ns)ds9s, 〈a1

s9
a1

s 〉T5〈as9
as〉T50, (10.103)

where ns is the Planck distribution function for phonons of the mode s5(q, j ).
The one-phonon contribution to the dynamical structure factor is reduced
to

a(1)(K, v)5e22W(K)

3 K
a
K

a9
es

aes
a9 [ei(K2q)·(l2l9)d(v2vs)(ns11)1ei(K1q)·(l2l9)d(v1vs)ns]

5e22W(K) (K·ej
q)

2 [a(K2q)(v 2vq)(nq11)1a(K1q)d(v1vq)nq],

(10.104)

where a(K6q)5d(K6q1g) represents the static structure factor, the details of
which are discussed shortly later. The delta function d(v6vq) implies the
energy conservation law «k9

2«k56"vq, indicating that the absorption or emis-
sion of a phonon of wave vector q upon the electron scattering from state k to
k9 is accompanied by the energy transfer 6"vq between the electron and
phonon systems. Hence, the scattering involved is inelastic.

The resistivity of a crystal metal at finite temperatures mainly arises via
equation (10.104). The displacement of atoms from their equilibrium positions
disrupts the periodicity of the lattice and contributes to the resistivity through
inelastic scattering of electrons with the absorption or emission of phonons.
Since equation (10.104) involves only a single phonon, the scattering is referred
to as the one-phonon process. Higher-order terms in the power series of equa-
tion (10.99) give rise to the multiple-phonon processes but their contribution is
neglected in the present discussion.

The structure factor a(K6q) in equation (10.104) remains finite when
K6q5g or k2k96q5g. This represents the momentum conservation law in
the one-phonon process. The process with g50 and, hence, K5 6q is referred
to as the normal process. Here an electron of wave vector k is scattered into the
state k9 by emitting or absorbing a phonon of wave vector q, as shown in Fig.
10.7. Obviously, an arbitrariness appears in the momentum conservation law
when gÞ0. The scattering process with gÞ0 is called the Umklapp process. It
is illustrated in Fig. 10.8. The latter becomes important when the temperature

1 1
vq
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2M2o
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1 1
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dependence of the resistivity of a metal needs to be quantitatively evaluated.
In the present discussion, we consider only the normal process and discuss
qualitatively the temperature dependence of the electrical resistivity of a
crystal metal below.

There is another important term (K·e j
q)

2 in equation (10.104). Here the pola-
rization vector ej

q has three modes with j5(x, y, z). As discussed in Section 4.5,
they are two transverse waves and one longitudinal wave for a given wave vector
in a three-dimensional system. Since we consider only the normal process, in
which the scattering vector K is equal to the wave vector q, the product K·eq can
be replaced by q·eq. Thus, this term disappears for the transverse waves, since
q'eq. In other words, we learn that only the longitudinal wave with q//eq can
contribute to the resistivity in the one-phonon normal process.

The one-phonon normal term a(1)(K, v) in equation (10.104) is now inserted
into the Baym resistivity formula given by equation (10.96). The frequency-
dependent part is explicitly written as
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Figure 10.8. Umklapp process in electron–phonon interaction. (a) Large-angle scat-
tering is made possible even at low temperatures with the assistance of the reciprocal
lattice vector. Note that the phonon wave vector q is small at low temperatures. (b)
Umklapp process in the repeated zone scheme. A minimum wave number qmin is
required to allow the Umklapp process to occur. [J. M. Ziman, Principles of the Theory

of Solids (Cambridge University Press, 1964)]



a(1)(K, v)bvn(v)dv

5 dvbvn(v) vq
21{(nq11)d(q2K)d(v 2vq)1nqd(q1K)d(v 1vq)}

5 b{vq[n(vq)11]n(vq)vq
211(2v

2q)n(v
2q)n(2v

2q)v2q
21}

5 b{(nq11)nq1nq(nq11)}

5 b(nq11)nq, (10.105)

where the relations vq5v
2q and n(2vq)52[n(vq)11] are used. Now the resis-

tivity due to the inelastic one-phonon normal process is deduced to be

r5 q5)Up(q))2bn(vq)[n(vq)11]dq, (10.106)

where the upper limit of the integral is replaced by the maximum phonon wave
number qmax, since the variable K in the integral is equal to q in the normal
process.

Let us take the ratio of equation (10.106) at temperature T over that at the
Debye temperature QD. A new variable x5b"v is rewritten as
x5"v/kBT5(v/vD)/(T/QD)5(q/qD)(QD/T ) in the Debye model. We see that
the maximum value of x at any temperature T is replaced by QD/T, since
qmax5qD. The ratio is then easily calculated as

. (10.107)

This indicates that the temperature-dependent resistivity can be normalized
with respect to that at the Debye temperature. This is known as the
Bloch–Grüneisen law and reminds us of equation (4.41) for the lattice specific
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heat discussed in Section 4.8. Indeed, as shown in Fig. 10.9, the resistivity data
for various simple metals fall on a universal Bloch–Grüneisen curve when
r(T )/r(QD) is plotted as a function of T/QD.

At high temperatures T$QD, all phonon modes are excited. Since the rela-
tion "v#"vD,kBT or b"v,1 holds, we have

bn(vq){n(vq)11}5 · 5 · < kBT.

Hence, equation (10.106) at T$QD can be approximated as

r5 q5)Up(q))2 dq5 q3)Up(q))2dq~ ,

(10.108)
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Au QD5175 K
Na QD5202 K
Cu QD5333 K
Al QD5395 K
Ni QD5472 K
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Figure 10.9. Temperature dependence of the electrical resistivity for various metals.
The Debye temperature is deduced so as to fit the experimental data to equation
(10.107). There is reasonable agreement with the Debye temperature deduced from the
low-temperature specific heat (see Table 3.1). [J. Bardeen, J. Appl. Phys. 11 (1940) 88]



where the upper limit is replaced by the Debye radius corresponding to the
available maximum wave number in the Debye model (see Section 4.8).13 We
see that the resistivity of a crystal metal increases linearly with increasing tem-
perature in the range T$QD. Indeed, as shown in Fig. 10.10, a linear temper-
ature dependence of resistivity holds well for typical metals like Cu, Au and Pt
over a wide temperature range. For example, pure Cu with QD5333 K exhib-
its an almost linear temperature dependence in the temperature range from 80
K up to about 800 K.

With decreasing temperature below QD, phonons having smaller wave
vectors become dominant and, hence, the magnitude of the scattering vector
K is also decreased in the one-phonon normal process. Thus, the resistivity at
T#QD turns out to be

r5 q6
D)Up(0))2 x5 dx, (10.109)

where )Up(K ))2 is replaced by )Up(0))2, since )Up(K ))2 is almost independent of
K at low K values (see Fig. 15.10). If the upper limit QD/T is further replaced
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13 Note the difference from footnote 12 on p. 284, where the high-temperature limit is taken in the Baym
resistivity formula. Instead, equation (10.108) is derived by incorporating only the one-phonon normal
process into the Baym formula.

(T
)/

(Θ
D
)

T/ΘD

r
r

Figure 10.10. Normalized electrical resistivity versus normalized temperature for
pure metals in high-temperature range. [K. Schröder, Handbook of Electrical

Resistivities of Binary Metallic Alloys (CRC Press, Florida, 1983)]



by infinity at T,,QD, then the integral becomes a numerical constant equal
to

x5 dx5 x5e2x(112e2x13e22x14e23x1 . . .)dx

55! 55!z(5)>12031.03695124.428, (10.110)

where z(5) is the Riemann zeta function (see equation (4.44)). Consequently,
we find that the resistivity of a metal increases with increasing temperature in
proportion to T 5 at temperatures T,,QD or normally below about 20 K. This
behavior is roughly seen in Fig. 10.9 in the range T/QD#0.15 for various
metals. More straightforward demonstration for the T 5-law was already shown
in the inset to Fig. 10.5 for pure Na metal below 20 K.

Only lattice waves with long wavelengths or shorter wave vectors can survive
in a perfect crystal at low temperatures T,,QD. As a result, the scattering
angle becomes smaller and smaller with decreasing temperature. Thus, the T 5-
law at low temperatures is the manifestation of the survival of only small-
angle scattering. The Bloch–Grüneisen law, particularly the T 5-law, is a
phenomenon characteristic of a crystalline metal, where the mean free path of
the conduction electron is much longer than the atomic distance. The
Bloch–Grüneisen law breaks down in non-periodic solids like amorphous
alloys and quasicrystals, where the mean free path of the conduction electron
is shortened because of the failure of the Bloch theorem and often becomes
comparable to an average atomic distance. However, we will show that the
Baym resistivity formula can be equally applied to relatively low-resistivity
non-periodic metals over a wide temperature range from T,,QD to T$QD,
provided that L.l in equation (10.84) is still satisfied. More details will be
discussed in Section 15.8.

Exercises

10.1 Let us assume that A(k) in equation (10.14b) is given by the Gaussian func-
tion A(k)5ce2a2(k2K )2, where c, a and K are constants. In the free-electron model,
the wave function and the energy eigenvalue are given by ck(x)5ei[kx2v(k)t] and
v(k)5«(k)/"5"k2/2m, respectively. Calculate the wave packet and its probabil-
ity density at time t. Show that its group velocity is equal to v5"K/m.

10.2 The Bloch wave ck(r)5(1/√N
—

)u(r)ei k·r is assumed for an electron in a
simple cubic lattice with the lattice constant d.
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10.1 (a) Show that the Wannier function centered at the origin is expressed as

a(r)5u(r) . (10Q.1)

10.1 (b) Draw the Wannier function and show that the Wannier functions
centered at different lattice sites are mutually orthogonal.

10.3 Prove the relation [12(vk9
·E)/(vk·E)]512cos u in equation (10.80). Since

the relaxation time t is assumed to be independent of the wave vector k, one
can choose the vector k parallel to the electric field E without losing its gener-
ality. Then (12cosu) is immediately obtained. Show this relation by using
spherical trigonometry, when the direction of the vector k is arbitrarily chosen
relative to E.

10.4 Show that the dynamical structure factor is given by equation (10.89).

10.5 Derive equation (10.91).

10.6 Derive equation (10.94).

10.7 Derive the dynamical structure factor given by equation (10.97) from
equation (10.89).

10.8 Calculate the temperature dependence of the Debye–Waller factor e22W

by using the Debye model for lattice vibrations.

sin1px
d 2 · sin1py

d 2 · sin1pz
d 2

1px
d 2 · 1py

d 2 · 1pz
d 2
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Chapter Eleven

Electron transport properties in periodic systems (II)

11.1 Prologue

In this chapter, electron transport properties other than the electrical resistiv-
ity and conductivity are presented. Included are the thermal conductivity, the
thermoelectric power, the Hall coefficient and the optical conductivity, all of
which will be discussed again within the framework of the linearized
Boltzmann transport equation in combination with the relaxation time
approximation. At the end of this chapter, the basic concept of the Kubo
formula is introduced.

11.2 Thermal conductivity

The thermal conductivity k is defined as the ratio of the thermal current
density or the flow of heat U over the temperature gradient =T across a speci-
men;

U5k(2=T ). (11.1)

In contrast to the electrical conduction, the thermal current is conveyed by
both electrons and phonons. The total thermal conductivity k in a metal is
given by the sum of conductivities, not resistivities, due to both carriers:

k5kel1kph, (11.2)

where kel and kph are the electronic and lattice thermal conductivities, respec-
tively.

The inverse, 1/k, is called the thermal resistivity and denoted as W. In the
same manner as the derivation of equation (10.56), known as the Matthiessen
rule, the total electronic thermal resistivity Wel or 1/kel is given by

Wel5W el
imp1W el

lattice, (11.3)

293



where W el
imp and W el

lattice represent the thermal resistivities due to impurities and
lattice vibrations, respectively. Likewise, the phonon thermal resistivity Wph or
1/kph consists of contributions due to imperfections, phonon–electron and
Umklapp phonon–phonon interactions [1–4].1 The thermal conductivity data
for representative metals, alloys and insulators are listed in Table 11.1. It is clear
that the thermal conductivity of metals is generally much higher than that of
insulators, indicating that conduction electrons carry more heat than
phonons.2

According to the kinetic theory of gases, the thermal conductivity k can be
expressed as

k5 CvL, (11.4)

where C is the specific heat of carriers per unit volume, v is the average veloc-
ity and L is the mean free path [1–3]. We first discuss the temperature depen-
dence of the electronic thermal conductivity in metals by applying equation
(11.4) to the electron gas in a metal.

There are two different scattering sources in electronic thermal conduction,
as indicated in equation (11.3). The mean free path L of the conduction elec-
tron due to impurity scattering is obviously temperature independent. In addi-
tion, we are well aware that the electronic specific heat Cel is proportional to
the absolute temperature T, whereas the Fermi velocity vF is independent of
T. Therefore, kel is expected to be proportional to the absolute temperature

1
3
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11 The normal phonon–phonon interaction does not contribute to the thermal resisitivity [1].
12 As is listed in Table 11.1, sapphire is a very good thermal conductor, particularly below 50 K, though it

is an insulator.

Table 11.1. Thermal conductivity data for metals, alloys and insulators

maximum thermal conductivity temperature at kmax
substance kmax (watt/cm·K) (K)

Cu 20–40 20–30
Cu99.9Zn0.1 8.7 30
Cu99Zn1 3 40
Cu90Zn10 1 60
Cu74.5Zn25.5 0.7 100
graphite 0.1 60
stainless steel 0.1–0.2 100–300
sapphire 60 30–40
nylon 0.001 20



and, hence, the resistivity W el
imp would behave as W el

imp5b/T. The more impure
the sample, the shorter the mean free path and, hence, the larger the coefficient
b.

The temperature dependence of the electronic thermal resistivity due to
lattice vibrations can also be deduced without difficulty. In the Debye model,
the number of phonons decreases in proportion to T 3 with decreasing temper-
ature in the range T,,QD.3 Thus, the mean free path of the conduction elec-
tron would increase as T23 with decreasing temperature. By inserting Cel~T,
L~T23 and the temperature-independent Fermi velocity into equation (11.4),
we obtain the relation

W el
lattice5aT 2, (11.5)

where a is a numerical coefficient. The temperature dependence of the elec-
tronic thermal resistivity is, therefore, described as Wel5aT 21(b/T ). The total
thermal conductivity k at low temperatures in a metal is then written as

k5kel1kph5(1/Wel)1kph5 1kph. (11.6)
1

aT 2 1 (b /T )
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13 The number of phonons per unit volume can be calculated from n5e0
vD D(v)n(v,T )dv, where D(v) is the

phonon density of states and n(v,T ) is the Planck distribution function (see Section 4.8). Since D(v) ~v2

holds in the Debye model, n~T 3e0
vD x2dx/(ex21) is immediately deduced.
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Figure 11.1. Temperature dependence of the electronic thermal conductivity in a
metal. A decrease in b indicates an increase in the purity of a specimen.



Figure 11.1 illustrates the temperature dependence of the electronic thermal
conductivity for three sets of the parameters a and b. The purer the sample of
a metal, the smaller is the impurity coefficient b so that the maximum in the
electronic thermal conductivity will be more enhanced. For instance, the tem-
perature dependence of the thermal conductivity of two lithium metal samples
is shown in Fig. 11.2. It can be seen that the data reflect well the temperature
dependence of the electronic thermal conductivity and that the Li2 sample
must be purer than the Li1 sample.

We learned above that the electronic thermal conductivity rapidly decreases
with increasing solute concentration in an alloy. The phonon thermal conduc-
tivity also decreases but its rate of decrease is much slower than that of kel so that
the ratio kph/k sharply increases on alloying. This means that the relative contri-
bution of the phonon thermal conductivity to the total increases with increas-
ing solute concentration in an alloy. Here we simply note that the ratio kph/k at
about 10 K is only 0.002 for pure Cu but becomes 0.3 for the Cu80Zn20 alloy [2].

11.3 Electronic thermal conductivity

In this section, we formulate the electronic thermal conductivity by using the
linearized Boltzmann transport equation in combination with the relaxation
time approximation. Both the electrical current density J and thermal current
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Figure 11.2. Temperature dependence of the thermal conductivity of two lithium
metal samples. [Reproduced from K. Mendelssohn and H. M. Rosenberg, Solid State
Physics, edited by F. Seitz and D. Turnbull, (Academic Press, New York, 1961) vol.12]



density U are expressed as linear functions of the electric field E and tempera-
ture gradient =T in the following forms:

J5LEEE1LET=T (11.7a)

and

U5LTEE1LTT=T, (11.7b)

where LEE is the electrical conductivity, LET and LTE are interconnected
through the relation LET52LTE /T.4 The thermal conductivity is measured
under the condition J50. Hence, we can find the thermal conductivity to be
equal to k5 2(LTT2LTE·LET /LEE) from equations (11.7a) and (11.7b).

At first sight, one may think from the analogy with the expression for the
electrical current density that the thermal current density U is simply given by
U5(1/4p 3)evk«(k) f (r,k)d k. Indeed, the thermal current is equal to the energy
current, as long as J50. However, there is a phenomenon like the Peltier effect,
in which both heat and electrical charge are carried simultaneously. Here the
thermal current is no longer equal to the energy current. The degenerate Fermi
gas in the case of J.0 gives rise to an energy flow equal to [J/(2e)]z, since we
have already learned from equation (10.54) that electrons at the Fermi level
«F(;z) convey the current density J. This must be subtracted from the energy
current to derive the flow of heat. The thermal current density is, therefore,
expressed as

U5 vk«(k) f (r,k)d k2 z

5 [«(k)2z]vk[f (r,k)2f0(k)]d k, (11.8)

where the current density was already defined as J5((2e)/4p3)evk f (r,k)d k.
The second line in equation (11.8) is easily derived, since evk f0(k)d k50 and
e«(k)vk f0(k)d k50.

We try to solve the linearized Boltzmann transport equation under the con-
dition that only the temperature gradient =T exists in a metal. The relaxation
time approximation given by equation (10.44) is again employed and incorpo-
rated into equation (10.42). The resulting equation becomes

f (r,k)2f0(«k,T )5 tvk· =T1(2e) , (11.9)1E 2
=z

( 2 e)2432 1«(k) 2 z

T 212
­f0

­«2

E1
4p3

1 J
( 2 e)2E1

4p3

11.3 Electronic thermal conductivity 297

14 The relation LET52LTE /T is known as the Kelvin relation and proved in relation to the Onsager relations
[1]. The use of the linearized Boltzmann transport equation with the relaxation time approximation does
not violate the Kelvin relation. This is easily confirmed by inserting equation (11.9) into equations (10.47)
and (11.8).



where E is not zero, since the thermal conductivity is measured for a specimen
on an open electrical circuit. As discussed above, the term («(k)2z) appears to
represent the flow of heat. The term =z /(2e) implies that the chemical poten-
tial gradient gives rise to an additional field to induce a diffusional current.
Thus, we consider {E2[=z /(2e)]} to serve as an effective electric field.

The thermal conductivity can be evaluated by inserting the first term in the
right-hand side of equation (11.9) into equation (11.8);

U52 [«(k)2z ]2t(k)vkvk d k· ,

which can be rewritten as

U52 vkvkt(k)[«(k)2z]2 d«· . (11.10)

Since equation (11.10) involves the derivative of the Fermi–Dirac distribution
function, the expansion theorem of equation (3.15) can be applied. Then we
obtain

U52 vkvkt(k) 1

(kBT )2 vkvkt(k) 1... .

or

U52 [«(k)2z]2 1. . . . ,

(11.11)

where s(«) is given by equation (10.51) and represents the electrical conductiv-
ity when its Fermi energy is «. A straightforward calculation of equation
(11.11) with subsequent insertion of «5z leads to a very simple expression:

U52 =T. (11.12)

As is clear from the derivation above, we have calculated the coefficient LTT

in equation (11.7b). The thermal conductivity was defined as
k52LTT(12LTE·LET /LEE·LTT). However, one can easily show the correction
term LTE·LET /LEE·LTT to be of the order of (T /TF)2, if the free electron model
is applied to a metal having the Fermi temperature TF (see Exercise 11.1). Since
(T /TF)2 is negligibly small in ordinary metals, the electronic thermal conduc-
tivity is well represented by

kel5 s(T ), (11.13)
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where s(T ) is the electrical conductivity at temperature T. This leads to the
Wiedemann–Franz law mentioned in Section 1.2. Here it is important to
discuss the universality of the relation (11.13).

An insertion of the expression (10.54) for the electrical conductivity into
equation (11.13) introduces the electron density of states at the Fermi level,
which is alternatively expressed in terms of the electronic specific heat coeffi-
cient given by equation (3.22). Now one can immediately see that equation
(11.13) is reduced to the same form as equation (11.4). Equation (11.13) is
derived without any special assumption about the band structure but is derived
in the framework of the linearized Boltzmann transport equation coupled with
the relaxation time approximation. A more rigorous treatment can prove that
equation (11.13) is valid when the scattering of electrons is elastic and the relax-
ation time is independent of energy [6].

We have formulated, in Sections 10.11 and 10.12, the Bloch–Grüneisen law
by incorporating the inelastic electron–phonon interaction into the Boltzmann
transport equation, and pointed out that the inelastic scattering effect is of fun-
damental importance in discussing electron transport in the temperature range
T,QD (see Section 10.11). This indicates that the Wiedemann–Franz law
would fail at temperatures below QD. Indeed, one cannot evaluate the elec-
tronic thermal resistivity due to lattice vibrations simply by inserting into equa-
tion (11.13) the temperature dependence of the electrical resistivity given by
equations (10.108) and (10.109).

11.4 Wiedemann–Franz law and Lorenz number

As mentioned in Section 1.2, the Wiedemann–Franz law states that the ratio of
the electronic thermal conductivity over the electrical conductivity, say, at
room temperature becomes constant, regardless of the metal concerned.
Indeed, the following relation is immediately derived from equation (11.13):

L0; , (11.14)

where L0 is called the limiting Lorenz number and is a universal constant equal
to 2.4531028 volt2/K2. The measured Lorenz number and thermal conductiv-
ity for typical metals at 273 K are listed in Table 11.2. One can clearly see that
the deviation of the measured Lorenz number L from the limiting value L0 is
rather small at 273 K in most metals.

The Wiedemann–Franz law would fail when the temperature is lowered below
273 K, since the inelastic scattering effect becomes substantial. We show below
that inelastic scattering contributes to the electrical and thermal conductions in
a different way so that its role can be qualitatively extracted by studying the

kel

sT
5

p2

3
k2

B

( 2 e)2
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temperature dependence of the measured Lorenz number over a wide tempera-
ture range.

The electron distributions in both electrical and thermal conduction pro-
cesses are illustrated in Fig. 11.3 [1]. First, the electrical conduction is reviewed.
As shown in Figs. 11.3(a), the Fermi surface of a metal specimen is shifted as
a whole when an electric field is applied. This implies that more electrons travel
to the right than to the left. Scattering processes are needed to establish a steady
state. We learned in Section 10.12 that the scattering angle involved becomes
smaller and smaller with decreasing temperature due to the fact that phonons
of only small wave vectors remain active. At low temperatures, therefore, elec-
trons cannot be transferred from one side of the Fermi surface to the other in
a single jump. This leads to the well-known T 5-law for the electrical resistivity
at low temperatures.

Electron distributions are different in the thermal conduction process. As
shown in Fig. 11.3(b), the temperature gradient across a sample causes more
electrons to be distributed above the Fermi level on the right and more elec-
trons below it on the left. This means that we have more “hot” electrons on the
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Table 11.2. Thermal conductivity k and
measured Lorenz number L for typical

metals at 273 K

element k (W/m·K) L (1028 V2/K2)

Ag 436 2.34
Al 236 2.10
Au 318 2.39
Ca 186 2.13
Cs 37 2.51
Cu 404 2.27
Fe 80 2.57
K 98 2.24
Li 65 2.05
Mg 151 2.29
Na 142 2.23
Ni 93 2.19
Pb 36 2.50
Pd 72 2.57
Pt 72 2.59
Rb 56 2.30
Ru 131 2.52
Sn 62 2.51
Zn 127 2.60



right-hand side of the Fermi surface and more “cold” electrons on the left-
hand side, resulting in the flow of heat. We can see from Fig. 11.3(b) that there
are horizontal and vertical scattering processes. Obviously, the horizontal
process favors large-angle scattering, which is abundant at high temperatures
but becomes scarce at low temperatures in both electrical and thermal conduc-
tion. The vertical process is unique to thermal conduction and requires a single
jump with a small scattering angle but the energy must be exchanged with
phonons so that the scattering involved must be inelastic. At high temperatures
T.QD, however, the vertical process is no longer well defined, since smeared
region kBT across the Fermi sphere exceeds the maximum phonon energy of
kBQD. We call such scattering of electrons quasi-elastic. In such a quasi-elastic
scattering regime, the vertical process is ineffective and the ratio L/L0 tends to
unity, leading to the validity of the Wiedemann–Franz law.

With decreasing temperature below QD, the vertical process begins to play
its unique role in thermal conduction and the thermal current is more substan-
tially reduced than expected from the Wiedemann–Franz law. This results in a
lowering of the ratio L/L0 below unity and the Wiedemann-Franz law gradu-
ally breaks down with decreasing temperature, as shown in Fig. 11.4. As
another unique feature, we point to the dependence of the ratio L/L0 on the
purity of a specimen in the temperature range well below QD. Consider, first,
an ideally pure metal free from impurity scattering at low temperatures
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(a) electrical conduction (b) thermal conduction

J U

ε ε

"Hot"
electrons

f(ε) f(ε)

Figure 11.3. Electron distributions and scattering process in (a) electrical conduction
and (b) thermal conduction. The dashed curve in each represents the electron distribu-
tion in the presence of external fields: (a) E and (b) =T. [Reproduced from J. M. Ziman,

Principles of the Theory of Solids (Cambridge University Press, 1964)]



T,,QD. We know that the number of phonons decreases with decreasing tem-
perature and eventually vanishes at absolute zero. As discussed in Section 11.2,
the electronic thermal resistivity due to lattice vibrations decreases as T 2, while
the electrical resistivity rlattice decreases as T 5 with decreasing temperature.
Thus, we see that the ratio L/L0 tends towards zero as T 2 in a pure metal, as
illustrated in Fig. 11.4, curve (a). If a specimen is impure, curves (b)–(d),
impurity scattering dominates at low temperatures T,,QD. Since the impur-
ity scattering is elastic, the ratio approaches unity again and the
Wiedemann–Franz law revives in the range where the temperature-indepen-
dent residual resistivity is observed. Therefore, Fig. 11.4 is instructive to see the
role of the elastic and inelastic scattering of conduction electrons over a wide
temperature range for a given metal specimen.

Before ending this section, we summarize the conditions for the
Wiedemann–Franz law to be valid. (1) The phonon thermal conductivity can
be ignored relative to the electronic thermal conductivity or is subtracted from
the total thermal conductivity. (2) The elastic scattering should dominate. This
is realized either at high temperatures T.QD or at low temperatures where
only the residual resistivity is observed. (3) The relaxation time involved in the
electronic thermal conductivity is the same as that in the electrical conductiv-
ity so that the same scattering mechanism must be responsible for both of them.

11.5 Thermoelectric power

The linearized Boltzmann transport equation (11.9) is inserted into the expres-
sion for the electrical current density given by equation (10.47):
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~T 2

Figure 11.4. Temperature dependence of L/Lo, where Lo is the limiting value given
by equation (11.14). Curve (a) refers to an ideally perfect crystal metal with zero resid-
ual resistivity. The residual resistivity increases in the sequence (b) to (d). [Reproduced
from H. M. Rosenberg, Low Temperature Solid State Physics, (Clarendon Press,

Oxford 1963)]



J5 vkvk d«·E9

1 vkvk d«·(2=T ), (11.15)

where E95E2[=z /(2e)]. We see from equation (11.15) that the relation
s5LEE holds under the isothermal condition =T50, since the electrical con-
ductivity s is defined as J5sE. The second term in equation (11.15) indicates
that the temperature gradient can also induce an electrical current. This is the
thermoelectric effect.

Let us assume that a metal is in a temperature gradient =T but is electrically
open so that J50 holds. Equation (11.7a) leads to the relation

E5Q=T, (11.16)

where

Q52 . (11.17)

The coefficient Q is called the absolute thermoelectric power or the Seebeck
coefficient.

Equation (11.16) implies that an electric field is generated due to a tempera-
ture gradient across a specimen. In order to observe this effect, one has to set
up a closed circuit consisting of two metals A and B with junctions at different
temperatures T1 and T2. This is illustrated in Fig. 11.5. The electromotive force
f around the circuit is calculated by integrating the electric field E along the
wire:

1LET
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Figure 11.5. Circuit for the measurement of the Seebeck effect.



f5 EAdx1 EBdx1 EAdx5 QA dx1 QB dx

5 QAdT1 QBdT5 (QB2QA)dT. (11.18)

We find that the voltage generated in the circuit is obtained by integrating the
difference in the thermoelectric power of the two metals between the tempera-
tures T1 and T2 at the two junctions. This is known as the Seebeck effect.

The expression for the thermoelectric power Q is derived as follows. The
numerator 2LET in equation (11.17) is explicitly calculated from equation
(11.15) in the form:

2LET5 vkvk d«,

which can be expanded around the Fermi energy in the same way as in equa-
tion (11.9):

5 · vkvk(«2z)
«5z

1 (kBT )2 («2z) vkvk 12 vkvk
«5z

1. . . .

Here the terms involving («2z) disappear at the Fermi energy z. Thus, 2LET

is reduced to

2LET5 (kBT )2 · vkvk
«5z

. (11.19)

As mentioned earlier, the denominator LEE represents the electrical conductiv-
ity and is explicitly written as

LEE5 vkvk
«5z

5[s(«)]
«5z

. (11.20)

Therefore, the thermoelectric power Q is formulated as
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where s(«) is the electrical conductivity when the Fermi level is «. Thus, the
thermoelectric power can be calculated, once the energy dependence of the
conductivity is given.

Equation (11.16) implies that a potential difference ex2
x1

Edx is generated,
when a temperature difference DT5T22T1 exists between the two points x1

and x2 in a metal bar. The potential difference is often expressed as sTDT
(in volt), where sT is called the Thomson coefficient. By using the Thomson
coefficient sT, the Seebeck coefficient in equation (11.16) can be expressed as
Q5eT

0 (sT /T )dT.5 If an electronic charge (2e) flows up through the tempera-
ture gradient dT, a heat equal to (2e)sTdT must be evolved per electron.
Hence, we obtain the relation sT5Cel /n(2e), where Cel is the electronic specific
heat per unit volume and n is the number of electrons involved. Its insertion
into the relation above immediately results in

Q5 dT5 , (11.22)

where s is the electronic entropy density. We see, therefore, that the thermo-
electric power can also be discussed in terms of the carrier entropy in the
system.

Let us apply the free-electron model to the electrical conductivity formula
given by equation (10.52). Since the relation s(«)~«3/2 holds, its insertion into
equation (11.21) results in

Qfree5 <24.253102 [mV/K], (11.23)

where TF is the Fermi temperature. Note that the thermoelectric power for
ordinary metals is fairly small in magnitude, since T/TF is only 0.001–0.005 at
room temperature. Equation (11.23) is equally obtained, if the free-electron
expression N(«F)53n/2kBTF is inserted into equation (11.22).

As a typical example, we show in Fig. 11.6 the temperature dependence of
the thermoelectric power for a well-annealed strain-free pure Al metal

T
TF

p2kBT
2( 2 e)TF

s
n( 2 e)3 1

n( 2 e)4E
T

0

Cel

T
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15 In order to find the interrelations among the Seebeck coefficient Q, the Thomson coefficient sT and the
Peltier coefficient P, we consider a closed circuit consisting of two metals A and B with junctions at differ-
ent temperatures T15T and T25T1dT. The total e.m.f. df generated in the circuit due to the tempera-
ture difference dT between the junctions is given by df5DP1DsdT, where DP5PA2PB is heat liberated
or absorbed at the junctions and Ds5sA2sB. The thermocouple thus formed is considered as a heat
engine, which works between two temperatures T1 and T2 and produces the electrical energy df. Its effi-
ciency is defined as dT/T, which is alternatively expressed as the ratio of the electrical energy df available
for external work over the heat DP. Hence, we have dT/T5df /DP or df5(DP/T )dT. Its comparison
with the relation above leads to Ds5DP/T or sT5P/T. By using equation (11.18), we obtain
dQ/dT52d 2f /dT 252d (P/T )/dT5P/T 25sT/T.



(99.999%), together with the free-electron behavior obtained by inserting the
Fermi temperature TF51.353105 K of pure Al into equation (11.23).
Obviously, the experimental data deviate substantially from the free-electron
model and exhibit a minimum at about 70 K. The formation of the minimum
has been attributed to the phonon drag effect unique to a crystal metal, where
the phonon mean free path is long. The phonon drag effect will be discussed in
the next section.

There is another thermoelectric phenomenon known as the Peltier effect.
Two different metals A and B are joined and connected to a battery, as shown
in Fig. 11.7. An electrical current density J is fed through the circuit while the
circuit is maintained at a uniform temperature. Now equations (11.7a) and
(11.7b) are reduced to U5LTEE and J5LEEE, from which we obtain

U5PJ, (11.24)

where

P5 . (11.25)

The coefficient P is called the Peltier coefficient and is related to the thermo-
electric power Q through the relation:

Q52 . (11.26)1LET

LEE
25 1LTE /T
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T(Κ)
Figure 11.6. Temperature dependence of the thermoelectric power of pure Al. The
solid line represents the free-electron behavior obtained by inserting into equation

(11.23) the Fermi temperature of 1.353105 K. [Courtesy Dr T. Matsuda]



Equation (11.24) implies that an electrical current fed to the circuit generates
thermal currents UA5PAJ and UB5PBJ in the metals A and B, respectively.
Thus, a heat flux (PA2PB)J will be emitted at one junction and absorbed at
the other junction. As a consequence, the one junction becomes hotter, the
other junction colder. This is the Peltier effect.

11.6 Phonon drag effect

As has been discussed in the preceding section, a voltage is generated between
the two ends of a sample across which a temperature gradient =T exists.
However, there exists no current flow due to conduction electrons because of
an open circuit. Instead, phonons at the high-temperature end are driven to the
colder end under a finite temperature gradient. If the mean free path of the
phonon is very long, then the collision of one phonon with other phonons is
so scarce that its energy cannot be released to the lattice system. Instead,
phonons can exchange their energy with electrons, since the relaxation time for
the phonon–electron interaction is much shorter than that for the
phonon–phonon interaction. This means that the extra local energy carried by
a phonon is fed back to the electron system, resulting in a new extra electric
field because of J50. The generation of the electric field in the electron system
due to the flow of the non-equilibrium phonon is called the phonon drag effect,
where “phonon drag” refers to the situation where electrons are carried along
by the flow of phonons caused by the temperature gradient.

We discuss the phonon drag effect following Rosenberg [3]. As shown in Fig.
11.8, a temperature gradient dT/dx is assumed along the axis of a metal bar
with a unit cross-section. The temperature at the center of the region 2L,
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Figure 11.7. Circuit for the measurement of the Peltier effect.



corresponding to twice the mean free path, is T. Let us suppose that the
thermal current density of the phonon is equal to U(T1L)dT/dx)) at the “hot”
end, where the temperature is T1L)dT/dx). Similarly, the thermal current
density is U(T2L)dT/dx)) at the “cold” end, where the temperature is
T2L)dT/dx). The difference in thermal energy in the region over 2L will be

U T1L 2U T2L 52LClattice , (11.27)

where Clattice is defined as Clattice5dU/dT and represents the lattice specific heat
per unit volume. This extra energy has to be absorbed in this region, where the
only sink available is that provided by 2Ln electrons. Thus, the extra energy
must be converted into an electric field DE and its magnitude is derived from
the relation:

2Ln(2e)DE52LClattice 52LClattice=T

yielding,

DE5 =T. (11.28)

The thermoelectric power due to phonon drag, DE5Qph. drag=T, is given by

Qph. drag5 . (11.29)

One can easily calculate the thermoelectric power due to phonon drag at
T.QD to be 286 mV/K by inserting Clattice53R expected from the
Dulong–Petit law into equation (11.29). This is much larger than the measured
value. This indicates the failure of equation (11.29) at T.QD. Indeed, the mean
free path of the phonon becomes so short that the phonon drag effect is known

Clattice

( 2 e)n

Clattice

( 2 e)n

UdT
dxU
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dxU2UdT
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Figure 11.8. Phonon drag effect. [Reproduced from H. M. Rosenberg, Low
Temperature Solid State Physics (Clarendon Press, Oxford, 1963)]



to become unimportant at such high temperatures. On the other hand, the
lattice specific heat decreases as T 3 below about 20 K and, hence, the phonon
drag effect becomes ineffective again at low temperatures. This means that it is
most significant in the intermediate temperature range around T/QD<0.2 and
is responsible for the formation of a deep valley like that shown in Fig. 11.6 for
pure Al.

The valley becomes shallower in alloys because of the shortening of the
mean free path of phonons due to the disruption of the periodic lattice. The
phonon drag effect is essentially absent in amorphous alloys because of the
lack of lattice periodicity. Hence, the temperature dependence of the thermo-
electric power in amorphous alloys is attributed to other effects like the inelas-
tic electron–phonon interaction and the energy dependence of the relaxation
time [5].

11.7 Thermoelectric power in metals and semiconductors

The interpretation of the measured thermoelectric power is not straight-
forward even in simple metals [6,7]. For example, the sign of the thermoelectric
power Q in the alkali metals cannot be correctly predicted from the free-
electron model. As listed in Table 11.3, its sign is positive for Li but is negative
for Na and K, though all these metals possess a single-electron Fermi surface.
The diversity of its trends has been discussed in relation to the energy depen-
dence of the relaxation time and inelastic electron–phonon interaction [7]. A
positive thermoelectric power has also been observed in monovalent noble
metals. As shown in Fig. 11.9, its temperature dependence is quite complex and
a positive thermoelectric power dominates over the whole temperature range.
Contact of the Fermi surface with the {111} zone planes has been suggested to
play an important role in its behavior.

Setting aside such difficulties in the theoretical interpretation, much attention
has been directed to synthesize thermoelectric device materials to convert effi-
ciently heat to electricity or vice versa. As is clear from the argument above, ordi-
nary metals possess the Fermi temperature of 104–105 K and, thus, the resulting
thermoelectric power is, at most, 10–20 mV/K. A large value of Q should be
achievable, not in metals, but in heavily doped semiconductors. Figure 11.10
illustrates the carrier concentration dependence of the thermoelectric power or
carrier entropy together with that of the resistivity, thermal conductivity and
dimensionless figure of merit for an idealized semiconductor [8]. Here the
dimensionless figure of merit ZT is defined as ZT5TQ2/kr, where T is the abso-
lute temperature, k is the thermal conductivity and r is electrical resistivity, and
represents the heat–current conversion efficiency for a thermoelectric material.
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Table 11.3. Absolute
thermoelectric power of various

substances

substance Q (mV/K) at 273 Ka

Ag 1.38
Al 21.61
Au 1.74
Ca 10.31
Cd 2.56
Cs 20.91
Cu 1.51
Fe 16.21
K 212.81
Li 10.61
Mg 21.47
Na 25.81
Pb 21.25
Pd 29.71
Rb 29.47
Bi2Te3 1250 (p); 2300 (n)
FeSi2 1250 (p); 2250 (n)

Note:
a The measuring temperatures for
Bi2Te3 and FeSi2 are 300–500 K
and above 900 K, respectively.

Q
(µ

V
/K

)

T(Κ)
Figure 11.9. Temperature dependence of the thermoelectric power of the noble
metals Cu, Ag and Au. [D. K. C. MacDonald, Principles of Thermoelectricity (John

Wiley & Sons, Inc., New York 1962) p. 71]
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The thermoelectric power Q is expected to reach a value as high as 500–600
mV/K for a carrier concentration of 1017–1018 cm. As shown in Table 11.3, com-
pounds like Bi2Te3 and FeSi2 exhibit a thermoelectric power of a few hundreds
mV/K and are considered as the most efficient thermoelectric device materials
available at present. Further increase in Q beyond several hundreds mV/K, while
suppressing the electrical resistivity and thermal conductivity to be as low as
possible, is of urgent need from the viewpoint of practical applications. It is also
interesting from the fundamental point of view to pursue if there is any theo-
retical limit to the upper value of Q in the metallic regime. It is indeed quite chal-
lenging to explore marginal solids characterized by a deep pseudogap at the
Fermi level near the metal–insulator transition (see section 15.14), in which the
electronic entropy is expected to increase through interaction with excitations
like phonons and spin fluctuations.

11.8 Hall effect and magnetoresistance

The Hall effect is a phenomenon observed in the presence of both electric and
magnetic fields and its measurement is generally carried out using the configu-
ration shown in Fig. 11.11. An electrical current is fed along the x-direction in
a rectangular specimen and a magnetic field is applied along the z-direction.
Since no current flows along the y- and z-directions, the condition Jy5Jz50
holds. We will learn below that the transverse electric field Ey is developed along
the y-direction. This is called the Hall effect.

The Hall effect can be treated by incorporating two external forces (2e)E
and (2e)vk3B into the linearized Boltzmann transport equation. Taking the
directions of the external fields as E5(E, 0, 0) and B5(0, 0, B), we can write
equation (10.42) as

(2e)Evx 5 B vx 2vy . (11.30)2­f

­kx

­f

­ky
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magnetic flux density B

current density J
transverse electric field E

Figure 11.11. The geometry for the Hall effect measurement.



where we have also employed the relaxation time approximation. Since the
magnetic field affects only the x- and y-components of the wave vectors, the
function f in equation (10.44) may be assumed to have a form [7]:

f5akx1bky. (11.31)

Equation (11.31) and the free-electron relations vx5"kx/m and vy5"ky/m are
inserted into equation (11.30). This allows us to determine the coefficients a
and b and then the components sxx and sxy of the conductivity tensor (see
Exercise 11.2). Other components, like syy and szz, are similarly calculated by
applying the external electric field E along y- and z-directions.

The resulting conductivity tensor defined as J5sE for electrons under the
condition B5(0, 0, B) is explicitly written as

1
0

2sij5 0 , (11.32)

0 0 1

where a5vct and vc5(1e)B/m. The resistivity tensor defined as E5rJ for
electrons under the condition B5(0, 0, B) is obtained by inversion of equation
(11.32):

rij5 . (11.33)

Since the Hall measurement is carried out by feeding a current perpendicu-
lar to the magnetic field, we must employ equation (11.33) instead of equation
(11.32). It is clear from equation (11.33) that the current density J5(Jx, 0, 0)
gives rise to a y-component of the electric field Ey, which is perpendicular to
the directions of both current and magnetic field. This is explicitly written as

Ey52a Jx52 · BzJx5 BzJx,

where a5(1e)Bzt/m. The Hall coefficient RH is defined as the coefficient of
BzJx in the transverse electric field Ey:

RH5 . (11.34)
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It is clear that RH in the free-electron model is independent of the magnetic field
and depends only on the number of electrons per unit volume.

The Hall effect of either electrons or holes may be discussed in a simpler but
less rigorous way by replacing the right-hand side of equation (10.3) by the
Lorentz force given in equation (7.1):

m* 5(7e)(E1vD3B) m* 5(7e) E1 vD3H [CGS],

(11.35)

where 7 refers to the sign of the charge of the respective carriers. Since the con-
dition dvD/dt50 holds in the steady state, we get

vD5 (E1vD3B). (11.36)

As shown in Fig. 11.11, we choose the z-axis as the direction of the magnetic
field and use the relations vc5(1e)Bz /m* and J5n(7e)vD.6 Now the following
relations, consistent with equation (11.32), are immediately obtained from
equation (11.36):

Jx5 (Ex7vctEy)

Jy5 (vctEx6Ey) (11.37)

Jz5 Ez.

Since no current flows along the y- and z-directions in the configuration shown
in Fig. 11.11, the condition Jy5Jz5 0 holds. This leads to Ey57vctEx or
RH51/n(7e) for electrons and holes, respectively.

The Hall coefficient for either the electron or hole is expressed as

RH5 RH5 [CGS], (11.38)

where q is the electric charge of the carriers and n is the number of carriers
per unit volume. The carrier is an electron if q5(2e), while it is a hole if q5

(1e).
The Hall coefficient is negative and temperature independent in the free-

electron model. The density of the conduction electron n is related to the Fermi
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6 vc5(1e)H/m*c in CGS units, where c is the speed of light.



radius kF through equation (2.20) in the free-electron model. Thus, the value of
n or kF can be experimentally derived by measuring the Hall coefficient for
metals where the free-electron model holds well. The Fermi diameter 2kF is
obtained from

2kF51.13931023()RH))21/3, (11.39)

where the Hall coefficient and the Fermi diameter are in the units of m3/A·s and
(Å)21, respectively. The Hall coefficient in the free-electron model may be
simply calculated from the relation:

)RH
free)51.036310211 , (11.40)

where A is the atomic weight in g, d is the mass density in (g/cm3) and e/a is the
number of carriers per atom. The Hall coefficients at room temperature in low
magnetic fields for typical metals are listed in Table 11.4, along with the corre-
sponding free-electron values. A close agreement with the free-electron value is

3 A
d · (e /a)4
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Table 11.4. Hall coefficients in pure elements

Hall coefficient from
Hall coefficient at 300K the free-electron model

metal e/a RH
300 K (310211 m3/A·s) RH

free (310211 m3/A·s) RH
300 K/RH

free

Li 1 215 000 213.4 1.12
Na 1 225.800 224.6 1.05
K 1 235 000 247.1 0.74
Cu 1 25.070 27.35 0.69
Ag 1 28.800 210.6 0.83
Au 1 27.080 210.6 0.67
Mg 2 28.300 27.23 1.14
Ca 2 217.800 213.5 1.31
Zn 2 5.500 24.74 21.16
Cda 2 3.9 (13.9) 26.74 20.57 (22.0)
Al 3 23.440 23.45 0.99
In 3 20.216 25.43 0.04
Sn 4 20.220 24.21 0.05
Pb 4 0.098 24.59 20.02
As 450 000
Sb 2198 000
Bi 254 000.000

Note:
a The values of 3.9 and (13.9) are obtained with the magnetic field parallel to and
perpendicular to the c-axis, respectively.



observed only in limited number of metals, for example Na. The sign of the
Hall coefficient in the divalent metals Zn and Cd is positive and a significant
deviation from the free-electron model is apparent.

As discussed in Chapter 6, both electron and hole Fermi surfaces coexist in
polyvalent metals like Zn, Al and Pb. Let us assume that we have two types of
carriers, i.e., electrons and holes. In the configuration such that J'B and E'B,
the current density for each of the carriers is reduced to the form [1]:

Ji5 E2 B3E, (11.41)

where si is the conductivity of the i-th carrier and bi5qiti /mi (see Exercise
11.3).7 The total current is obviously equal to

J5J11J25 E2 B3E. (11.42)

The Hall coefficient at low magnetic fields is then deduced to be

R5 , (11.43)

where R1 and R2 are the Hall coefficient for the respective carriers (see Exercise
11.4). We see that the sign of the Hall coefficient is determined by the balance
between the electrons and holes having R1,0 and R2.0, respectively. A posi-
tive Hall coefficient in divalent metals like Zn and Cd means that the hole con-
tribution dominates over the electron contribution. In such two-carrier metals,
the Hall coefficient often exhibits a strong temperature dependence. In contrast
to a single-carrier metal, the relaxation time is involved in the Hall coefficient
through si and its temperature dependence is believed to be responsible for that
of the Hall coefficient. The temperature dependence of the Hall coefficient for
typical metals is shown in Fig. 11.12. The presence of the Brillouin zone in
crystal metals yields electrons and holes having different effective masses and
relaxation times. The Hall coefficient reflects the anisotropy of the electronic
structure and exhibits substantial deviation from the free-electron behavior. In
contrast, the Hall coefficient in amorphous alloys is essentially temperature
independent because of the lack of anisotropy of the Fermi surface (see
Section 15.6).

Finally, the magnetoresistance is briefly discussed. It is clear from equation
(11.33) that the electric field in the direction of the current density J5(J, 0, 0)
is not affected by the magnetic field. This implies that the magnetoresistance
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Drxx defined as [rxx(B)2rxx(0)] is equal to zero. In real metals, however, Drxx is
finite and increases with increasing magnetic field. This is the magnetoresis-
tance effect and can be explained in the two-band model [1]. The transverse
magnetoresistance refers to the resistivity defined as the component of E along
J in the presence of magnetic field perpendicular to both E and J and is
deduced to be

. (11.44)

Equation (11.44) indicates that Drxx is always positive but disappears when
b15b2 and that it is proportional to B2, as long as the magnetic field is low.

11.9 Interaction of electromagnetic wave with metals (I)

The optical reflectance or absorption spectrum of a material can be measured
by subjecting it to electromagnetic radiation. Information on the electronic
structure of a solid can be extracted from the spectrum itself or even more spe-
cifically from the optical conductivity deduced from the spectrum [9,10].

Different optical excitations are illustrated in Fig. 11.13. The transitions
marked 1 or 2 refer to a direct transition or vertical transition, where an elec-
tron is excited vertically from one band to another without altering the wave
vector of the electron. A direct transition occurs, since the momentum of the
absorbed photon is very small compared with the shortest reciprocal lattice
vector in the Brillouin zone and the change in the electron wave vector can be
ignored (see Fig. 11.14). The “oblique” transitions marked 3 and 4 are called

Drxx

rxx(0)
; 

rxx(B) 2 rxx(0)
rxx(0)

5
s1s2(b1 2 b2)2B2

(s1 1 s2)2 1 B2(b1s1 1 b2s2)2
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Figure 11.12. Temperature dependence of the Hall coefficient of pure metals Cd, Zn
and Cu. [K. E. Saeger and R. Lück, Phys. Kondens. Materie 9 (1963) 91]



indirect transitions, since an additional momentum is needed to satisfy the
momentum conservation law. An indirect transition is made possible by
creating a phonon of wave vector q during the transition so that the relation
kelectron1qphonon5qphoton<0 holds. There is no threshold energy for indirect
transitions. The transitions marked 1, 2 and 3 are induced between different
bands and are called interband transitions. The transition marked 4 occurs
within a given band and is called an intraband transition.

We have already shown the absorption spectra for Cu–Zn alloys in Section
7.10 and discussed the shift of the absorption edge towards shorter wave-
lengths due to an increase in the Zn concentration. It was mentioned that the
absorption edge corresponds to the transition of electrons at the top of the Cu
3d band to unoccupied states immediately above the Fermi level. This is an
interband transition induced by the electromagnetic wave. In addition to the
interband transitions, the optical spectra reflect the motion of both bound elec-
trons and conduction electrons driven by the electromagnetic field. We will
study in this section basic properties of electrons in a metal interacting with
electromagnetic waves.

The propagation of the electromagnetic wave in a metal can be described in
terms of the Maxwell equations. We assume that the metal is isotropic and that
the dielectric constant « in the electric displacement D5««0E and the perme-
ability m in the magnetic flux density B5mm0H are independent of the position
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Figure 11.13. Interband (1 to 3) and intraband (4) transitions due to optical excitations.



vector r throughout the metal, where «0 and m0 are those in vacuum.8 Since no
external charge exists, the Maxwell equations are explicitly written as

divE50 divE50 [CGS] (11.45a)

rotE52mm0 rotE52 [CGS] (11.45b)

divH50 divH50 [CGS] (11.45c)

rotH5sE1««0 E rotH5 sE1 [CGS], (11.45d)

where s is the optical conductivity. By using the vector identity rot(rotE)5

grad(divE)2=2E, we eliminate the magnetic field H from equations (11.45b)
and (11.45d) and obtain

=2E5««0mm0 1smm0 =2E5 1 [CGS]. (11.46)

In contrast to the polarization P, the magnetization M can resonate with exter-
nal rf-fields of a few 109 Hz (1 Hz51 s21), which is much lower than the fre-
quency of radiation in the optical region (see Fig. 11.14). Hence, the
interaction of M with radiation in the optical region can be ignored. For sim-
plicity, we assume hereafter non-magnetic metals, where m51 or M50.

Let us consider an incident wave running in the x-direction in vacuum. Its y-
component is obviously expressed as Ey(incident)~exp[i(q̂x2vt)], where q̂ is
the x-component of the wave vector of the radiation. The wave is attenuated,
when it is transmitted in a medium. This means that the wave vector involves
an imaginary part and is expressed in a complex quantity as

q̂5n̂q5(n1ik)q, (11.47)

where n̂, n and k are called the complex refractive index, refractive index and
extinction coefficient, respectively. The transmitted wave is then written as

Ey(trans)~exp{i [(n1ik)qx2vt]}5exp(2kqx)exp{i (nqx2vt)}.(11.48)

Thus we see that, when the wave propagates in a medium with refractive index
n and extinction coefficient k, its velocity is reduced to 1/n and the wave is
damped by a fraction exp(22pk/n) per wavelength.
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18 D5««0E5«0E1P and B5mm0H5m0H1M in SI units. Note also c25«0m0 in SI units where
m054p31027 henry/m and «05107/4pc258.85310212 farad/m. In CGS units, «051 and m051.



The dispersion relation is obtained by inserting E5E0exp[i(q̂·r2vt)] into
equation (11.46):

q̂25m0v
2 «(v)«01i q̂25 «(v)1i [CGS]. (11.49)

A comparison of equation (11.49) with equation (11.47) leads to

n22k25«(v) n22k25«(v) [CGS] (11.50)

and

2nk5 2nk5 [CGS], (11.51)

where v5q/ in SI units (v5cq in CGS units). Though n, k and «(v) are
dimensionless, s(v)/«0 and s(v) are in units of s21 in SI and CGS units, respec-
tively.9 We see that both dielectric constant and optical conductivity can be
determined from the equations above by measuring the refractive index and
extinction coefficient of the electromagnetic wave either reflected from a metal
or transmitting through a thin film.

Equation (11.45d) is often rewritten as

rotH5 5«̂(v)«0 rotH5 5 [CGS], (11.52)

where the complex dielectric constant «̂(v) is defined as Dtot5«̂(v)«0E. The
total electric displacement Dtot includes not only contributions from “free” and
“bound” electrons in a solid but also «0(­E/­t) in vacuum [10].10 Since the elec-
tric field E varies as e2ivt with time, a comparison with equation (11.45d) results
in

«̂(v)5«(v)1i «̂(v)5«(v)1i [CGS]. (11.53)

Equation (11.45d) is alternatively expressed as

rotH5Jtot1«0 5ŝ(v)E1«0 rotH5 s(v)E1 [CGS], (11.54)
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19 The conductivity s in the units of [V]21[m]21 is converted to that of [s]21 by dividing s by 4p«0 in SI units,
whereas it is directly converted to [s]21 in CGS units:

5 · 5 · 5 [SI]

[s]5 5 5 5 5 [CGS].

10 Free and bound electrons are intentionally put in quotation marks because of the difficulty in separating
them in high-frequency AC fields, as is discussed at the end of this section.
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where the complex optical conductivity ŝ(v) is defined as Jtot5ŝ (v)E. Here
the second term «0(­E/­t) must be added, since the total current density Jtot

describes currents only from electrons in a solid. In the same way as above, we
obtain

5 1i{v[12«(v)]} ŝ (v)5s(v)1 {v[12«(v)]} [CGS]. (11.55)

We find that the response of a medium to an oscillatory electric field can be
described by the v-dependent dielectric constant «(v) or the conductivity s(v).
In the DC limit, the conductivity strictly describes the motion of conduction
electrons and the dielectric constant the displacement of bound electrons. Such
a clear distinction is blurred in the case of the AC field at high frequencies
where vt..1 is satisfied. However, we conventionally reserve s(v) as a quan-
tity to describe the response to electrons in partially filled bands and «(v) that
of bound electrons or those in completely filled bands [6].

11.10 Interaction of electromagnetic wave with metals (II)

Both the dielectric constant and optical conductivity are functions of the wave
vector q and angular frequency v and denoted as «(q, v) and s(q, v), respec-
tively. The q dependence certainly results from their spatial dispersion. Figure
11.14 depicts the relationship between the energy of the electromagnetic wave
in a vacuum and the corresponding wavelength, wave vector and frequency.
The measurement of optical properties is generally carried out at wavelengths
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Figure 11.14. Wavelength, wave vector, frequency and energy of electromagnetic
wave in a vacuum. The following relations hold among the relevant quantities: v5«/"
51.519351015« [s21 or Hz], q5v/c55.0631024« [Å]21 and l52p/q51.243104/« [Å],
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in the infrared (IR)-to-ultraviolet (UV) region or 0.1 to about 50 eV in ener-
gies. Note that the magnitude q of the wave vector in this energy range is less
than 0.1 Å21 and is much smaller than the shortest reciprocal lattice vector in
the Brillouin zones of an ordinary metal. Hence, the q dependence is generally
neglected (see also Section 11.9).

Now we study the response of the conduction electron upon exposure to an
electromagnetic wave with an oscillating electric field E5E0exp(2ivt) in the
high-frequency range vt..1 so that an electron is not allowed to make colli-
sions within the period of the rapidly oscillating field. Since ­f /­t is not zero,
the linearized Boltzmann transport equation (10.42) is replaced by

2(2e)v·E 2 v3B · 52 (11.56)

and, as before, we have employed the relaxation time approximation. In
response to the oscillating field E5E0exp(2ivt), the distribution function
would also oscillate as f5f2f05f0exp(2ivt). Further, the third term involv-
ing the magnetic field is neglected, since a change in the electron wave vector
can be ignored.11 Therefore, an insertion of this relation into equation (11.56)
results in

f5 · . (11.57)

This is an extension of the relation for a static electric field, equation (10.46).
The conductivity due to the oscillating electric field can be easily obtained by
following the same procedure as described in Section 10.7. The complex optical
conductivity is now given by

ŝ (v)5 . (11.58)

Equation (11.58) is valid in the range vt..1 and is known as the Drude
expression for the optical conductivity or AC conductivity.

The complex conductivity given by equation (11.58) is decomposed into its
real and imaginary parts:

ŝ (v)5 , (11.59)

where s(0)5n(2e)2t/m*
opt is the electrical conductivity at zero frequency or the

DC electrical conductivity given by equation (10.6). The parameter m*
opt

s(0)
1 2 ivt

5
s(0)

1 1 v2t2 1 i
s(0)vt

1 1 v2t2

n( 2 e)2

m
1

1 2 ivt

­f0

­«

( 2 e)v · Et

1 2 ivt

f

t

­f
­k

( 2 e)
"

­f0

­«

­f
­t

322 11 Electron transport properties in periodic systems (II)

11 It is also noted that v3B·(­f0/­k)5v3B·(­f0 /­«)(­«/­k)~v3B·v50 holds in the case of the equilibrium
distribution function.



appearing in the denominator is often called the optical effective mass of the
conduction electron.

The complex optical conductivity is alternatively expressed as

ŝ (v)5s1(v)1is2(v). (11.60)

A comparison with equations (11.55), (11.59) and (11.60) leads to the follow-
ing expression for its real and imaginary parts:

s1(v)5s(v)5 s1(v)5 [CGS]

(11.61)

and

s2(v)5v«0[12«(v)]5s(0) 5 s2(v)5 [CGS],

(11.62)

where vp is called the plasma frequency defined as

vp5 vp5 [CGS]. (11.63)

The plasma frequency is associated with the cooperative oscillations of the
assembly of conduction electrons driven by the alternating electric field. It is
clear from equation (11.63) that vp depends on the number of conduction
electrons n per unit volume and the effective mass m*

opt. For instance, an inser-
tion of an appropriate number density n into equation (11.63) yields
vp59.231015 s21 (56 eV) and 2.431016 s21 (514.9 eV) for monovalent Na
and trivalent Al metals, respectively.

The complex dielectric constant «̂(v) is also often expressed as
«̂(v)5«1(v)1i«2(v). Then, we obtain from equations (11.53) and (11.62)

«1(v)5«(v)512 «1(v)5«(v)512 [CGS] (11.64)

and

«2(v)5 «2(v)5 [CGS]. (11.65)

Equations (11.50) and (11.51) are now rewritten as

n22k25«(v)512s(0) 512 (11.66)
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and

2nk5«2(v)5 · 5 · . (11.67)

The electron scattering has been treated above in terms of the relaxation time
approximation but, more precisely, the AC conductivity has to be treated by
using the linear-response theory known as the Kubo formula, the outline of
which will be described in Section 11.12. For example, the following formula
known as the sum rule is derived [11]:

«2(v)vdv5 dv5 «2(v)vdv54p s1(v)dv5 [CGS].

(11.68)

11.11 Reflectance measurement

In this section, we describe the reflectance measurement and the method to
extract the optical constants like the dielectric constants and optical conduc-
tivity from the measured spectrum. A sample with a well-polished surface is
placed in a vacuum and the reflectance is measured as a function of the fre-
quency v by directing an electromagnetic wave (again in the IR-to-UV region)
onto the surface. Let us assume the incident light to be perpendicular to the
surface of the sample. We introduce the ratio r̂(v) defined as

r̂(v)5Eref /Ein5r(v)e iu(v), (11.69)

where Ein and Eref are the electric field of the incident and reflected light and
r(v) and u(v) are the amplitude and the phase of r̂(v), respectively. They are
related to the optical constants n and k through the relation [9]:

r(v)eiu(v)5 . (11.70)

Equation (11.70) indicates that the optical constants n and k can be deter-
mined, once the amplitude and phase of the reflectance are known.
Accordingly, the dielectric constant «(v) and optical conductivity s(v) are
deduced from equations (11.50) and (11.51).

In the reflectance measurement, one can measure only the ratio of the inten-
sity of the reflected wave over that of the incident one. The measured reflec-
tance R is therefore given as functions of the optical constants as follows:

R5 r̂*r̂5r*(v)r(v)5 , (11.71)
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where r̂* and r* represent the complex conjugates of r̂ and r. As is clear from
equation (11.71), the phase cannot be experimentally determined. This
hampers the determination of the dielectric constant solely from reflectance
data.

The amplitude and phase are, however, not independent of each other but
are linked through the Kramers–Kronig relation:

u(v)52 ` dv9, (11.72)

where ̀ indicates the principal integration [9]. We measure, first, the reflectance
spectrum over as wide a frequency range as possible, for example, 0.1 eV up to
50 eV. By inserting the resulting data into equation (11.72), the frequency
dependence of the phase can be determined. Once the amplitude and phase are
determined for a given frequency, then the optical constants n and k can be cal-
culated from equation (11.70).

11.12 Reflectance spectrum and optical conductivity

We consider the reflectance spectrum and the resulting optical conductivity
spectrum for pure Al and graphite as representatives of a typical metal and
semimetal. The reflectance spectrum for pure Al is shown in Fig. 11.15(a). The
reflectance exceeds 80% in the region v,vp(vp514.7 eV) but drops sharply to
almost zero above vp. This is a feature characteristic of a metal and is called a

ln r(v9)
(v9)2 2 v2E

`

0

2v

p
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Figure 11.15. (a) Reflectance and (b) optical conductivity spectra of pure Al. A small
dip at 1.5 eV in (a) is due to the interband transition, which is enhanced in (b).

[H. Ehrenreich, H. R. Philipp and B. Segall, Phys. Rev. 132 (1963) 1918]



Drude-type spectrum. The abrupt change in reflectance at v<vp is called the
Drude edge. A small minimum at about 1.5 eV is due to the interband transi-
tion discussed in section 11.9.

Let us consider first the high-frequency range vt ..1, where the electron
relaxation time t is so long for fixed v that electrons are simply accelerated by
the radiation without collisions. Equations (11.66) and (11.67) can be approx-
imated as

n22k2<12 (11.73)

and

2nk5 · <0. (11.74)

In the case of pure Al, the relaxation time t of the conduction electron is of
the order of 10214 s, as deduced from its DC conductivity of s(0)<1017 s21 (see
Section 10.2).12 Hence, the condition vt..1 is satisfied for electromagnetic
waves in the range v.1015 s21 corresponding to the visible ultraviolet region
(see Fig. 11.14). If v.vp (vp<1016 s21 for pure Al), k must be reduced to zero.
This means that the radiation can propagate through a metal without attentu-
ation and, hence, the metal becomes transparent in this range. However, when
v decreases well below vp, n,,k should hold from equation (11.73). Under
such circumstances, the reflectance approaches unity, as can be seen from equa-
tion (11.71). This explains why the reflectance exceeds 80% below vp but drops
to zero in the range v.vp.

When the condition vt,,1 is satisfied, the conduction electron is scattered
by defects like lattice vibrations in a time shorter than a single oscillation
induced by the oscillating electric field. We can no longer rely on equations
(11.66) and (11.67). Instead, the dielectric constant «(v) in equation (11.49)
may be ignored in the approach to the DC limit and equations (11.50) and
(11.51) are then approximated as

n<k (11.75)

and

2nk5 . (11.76)

where s(0) is in units of s21. Let us use again the values of t<10214 s and
s(0)<1017 s21 appropriate for pure Al. Since v,,1/t<1014 s21, the ratio s(0)/v

s(0)
v

1v2
p

v221 1
vt2

v2
p

v2
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12 The value of s54.03107/V-m for pure Al in Table 10.1 yields s <1017 s21 (see footnote 9, p. 320).



in equation (11.76) would be very large and, hence, nk..1 holds. This means that
both n and k must be large so that the reflectance R in equation (11.71) is very
close to unity and total reflection occurs in the infrared region, where vt,,1.

The optical conductivity spectrum of pure Al shown in Fig. 11.15(b) is
typical of a metal with a high conductivity. Its extrapolation to zero frequency
corrresponds to the DC conductivity. The value of s(0)51.5531017 s21 thus
obtained is in reasonable agreement with the DC conductivity of 3.5931017 s21

for bulk Al. A rapid decay in the optical conductivity with increasing frequency
reflects the (11v2)21 dependence of the Drude relation given by equation
(11.61). A deep minimum at an energy of 1.5 eV is due to the interband tran-
sition associated with the W2→W1 in the energy band of pure Al [12].

The dielectric constants «1(v) and «2(v) and the optical conductivity s(v) for
pure graphite were determined by application of the Kramers–Kronig relation
to the measured reflectance spectrum shown in Fig. 11.16(a). The p-bands (see
Section 6.7) are mainly responsible for the intra- and interband transitions in
the range below 9 eV and a broad peak near 15 eV is ascribed to an interband
transition involving 3 electrons per atom in the s-band.

The optical conductivity spectrum is shown in Fig. 11.16(b). Drude-type
behavior is no longer observed. The optical conductivity extrapolated to zero
energy or frequency is about 931014 s21, which is 1/6000 that of pure Al. Note
that the scale of the ordinate in Fig. 11.16(b) is 1/10 that in Fig. 11.15(b). This
is consistent with the DC electrical resistivity data: the value in the ab-plane of
pure graphite at room temperature is of the order of 103 mV-cm and is about
1000 times that of pure Al.

Since transitions involving the 1s core level can be neglected in pure graph-
ite, the effective number of electrons neff

per atom can be calculated by insert-
ing the measured «2(v) into equation (11.68) in the integral range from 0 to an
energy "v. The result is shown in Fig. 11.17. A plateau appears at neff

51 elec-
tron/atom with subsequent saturation to an neff

value of 4 electrons/atom. This
clearly indicates that only electrons in the p-band contribute to the optical exci-
tation up to about 9 eV whereas the transitions involving s-electrons set in at
higher energies. Because of this apparent separated behavior, two plasma fre-
quencies vp are deduced: one associated with only p-electrons characterized by
vp512.7 eV and the other with combined p- and s-electrons by vp525.2 eV
[13]. It is important to note here that s-electrons well below the Fermi level can
contribute to the plasma oscillations as well. It is true that electrons even in an
insulator respond as if they were free electrons, provided that the frequency v
of the electromagnetic wave exceeds v0 corresponding to the band gap. This is
because the photon energy becomes greater than the binding energy of the elec-
trons and the insulator exhibits metallic reflectance in this energy region.
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11.13 Kubo formula

All the discussions so far developed in Chapters 10 and 11 are based on the
Boltzmann transport equation, which is derived from the local balance in the
steady state of the electron distribution in the phase space without taking into
account the microscopic structure of a solid. Furthermore, a rigorous solution
of the Boltzmann transport equation is not generally achieved because of its
complicated integro–differential equation. To circumvent this difficulty, we
have simplified the situation such that the deviation from an equilibrium state
is small enough to linearize the Boltzmann transport equation. Indeed, the lin-
earized Boltzmann transport equation (10.42) was employed to discuss the
various transport properties in the preceding sections.
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Figure 11.16. (a) Reflectance and (b) optical conductivity spectra of graphite. Note
that reflectance (%) is plotted on a logarithmic scale. [From E. A. Taft and 

H. R. Philipp, Phys. Rev. 138 (1965) A197]



The Kubo formula [14] is constructed on a more general ground than the
Boltzmann transport equation and derived by employing as its basis the theory
of Brownian motion put forward by Einstein in 1905 [15]. Prior to the deriva-
tion of the Kubo formula, we will study first the Einstein relation. As discussed
in Section 10.2, the equation of motion for the free electron in the presence of
the electric field E was expressed in equation (10.3) as

m 5(2e)E,

where vD is the drift velocity. The conductivity formula of equation (10.6) was
derived by assuming the steady state condition given by dvD/dt50. Strictly
speaking, however, the motion of the Brownian particles cannot be rigorously
described in terms of equation (10.3), since each particle experiences compli-
cated forces from its surroundings and maintains an average kinetic energy
consistent with the equipartition law of kBT/2. If we denote this random force
as F(t), equation (10.3) may be replaced by

m 5(2e)E1F(t), (11.77)

where F(t) is fluctuating with time t but its time-average must be zero. In other
words, equation (10.3) can be regarded as the equation of motion of a particle
after averaging over many particles.

We are now interested in the motion of the assembly of the Brownian parti-
cles in the absence of the electric field E in equation (11.77):

m 5F(t), (11.78)1dvD

dt
1

vD

t 2

1dvD

dt
1

vD

t 2

1dvD

dt
1

vD

t 2
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Figure 11.17. Effective number of electrons per atom versus energy, obtained from
numerical integration of experimental «2(v) for pure graphite. [From E. A. Taft and 
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from which we can deduce the famous Einstein relation

D5 kBT5 kBT, (11.79)

where D is called the diffusion coefficient of the Brownian particle carrying the
electronic charge (1e) and m is the mobility defined as m5(1e)t/m in equation
(10.9) (see Exercise 11.5).13

Let us consider the physical meaning of the diffusion coefficient D of parti-
cles subjected to the Brownian motion. Suppose that the distribution of parti-
cles is perturbed at a given instant to cause some heterogeneity in an otherwise
homogeneous system. Such a perturbation will be smeared out by the diffusion
of particles through the random motion of each particle. The flow of the
Brownian particles due to diffusion is driven by the concentration gradient:

2D , (11.80)

where n(x) is the number density of the Brownian particles. A minus sign indi-
cates that the particles are driven to diffuse in the direction to reduce the con-
centration gradient. An increasing rate of the number density in a given volume
element must be equal to the difference in the number of particles entering and
leaving this element:

52 2D 5D . (11.81)

Equation (11.81) is known as the Fick equation.
The diffusion coefficient D in the left-hand side of equation (11.79) charac-

terizes the Brownian motion of particles drifting in the system and, hence, is
associated with statistical fluctuations. On the other hand, the term t/m in its
right-hand side represents the frictional effect of particles driven under the
action of an external force, such as an electric field for charged particles, and,
hence, is associated with the dissipation observed after smoothing out the statis-
tical fluctuations. We see, therefore, that the Einstein relation (11.79) connects
two quantities stemming from different origins, i.e., fluctuations and dissipation.

Now we are ready to study the Kubo formula. First, let us assume that a par-
ticle at position x(0) at a time t50 diffuses to the position x(t) at the time t5t.
The diffusion coefficient D is formulated as

D5lim
t→`

〈{x(t)2x(0)}2〉5lim
t→`

, (11.82)
7Dx28

2t
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13 The diffusion coefficient D involves no activation energy. Since the mobility m is related to D by the
Einstein relation, the product mT or D can be finite at T50.



where 〈 〉 represents an average over the particle ensemble. The square of the
displacement Dx of the particle in a time t is expressed in the integral form as

〈Dx2〉5 v(t9)dt9· v(t0)dt0 5 dt9 〈v(t9)v(t0)〉dt0

52 dt9 〈v(t9)v(t0)〉dt052 dt9 〈v(t9)v(t91t)〉dt,

where the second line is easily obtained by changing the integration path as
indicated in Fig. 11.18. Now D is rewritten as

D5lim
t→`

5lim
t→`

dt9· 〈v(t9)v(t91t)〉dt5 〈v(t)v(t1t)〉dt.(11.83)

Equation (11.83) holds true, provided that the integrale0
t2t9〈v(t9)v(t91t)〉dt

converges more rapidly than the increasing rate of t. Thus, the diffusion coeffi-
cient is expressed in terms of the correlation function of the velocity of parti-
cles (see Exercise 11.5). By inserting the Einstein relation (11.79) and the
diffusion coefficient in equation (11.83) into equation (10.6) for the Drude
expression of the conductivity, we obtain

s5 〈v(0)v(t)〉dt. (11.84)E
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The electrical conductivity can be more generally expressed in the form of a
tensor:

sij5 〈Ji(0)Ji(t)〉dt. (11.85)

where the current density J given by J5(2e) vi is used instead of the

velocity. As is clear from the argument above, equation (11.85) may be consid-
ered as the application of the Einstein relation to the conduction electron
system.

Suppose that the conduction electron system in the absence of the external
electric field is in thermal equilibrium. The current density J in the system is
fluctuating with time as a natural motion of the conduction electrons. We can
evaluate the conductivity tensor by integrating the correlation function
〈Ji(0)Ji(t)〉 over the time-dependent fluctuations. Equation (11.85) can be
further extended to the system where an alternating electric field with the fre-
quency v is applied. The resulting AC conductivity is expressed as

sij(v)5 〈Ji(0)Ji(t)〉e
2ivtdt. (11.86)

Equation (11.86) can be further extended to the situation where the transport
phenomenon is treated in quantum mechanics. The Kubo formula for the
electrical conductivity is finally obtained in the following form:

sij(v)5 TrrJi(2i"l)Jj(t)dl e2ivtdt, (11.87)

where r is the density matrix of the system in thermal equilibrium, Ji is the
current operator and Tr stands for the trace of the matrix [16].

The Boltzmann transport equation introduced in Section 10.6 refers to the
transport equation determining the steady state electron distribution in the
presence of external fields. In its practical use, the deviation from the equilib-
rium state is assumed to be so small that the linearized approximation is vali-
dated. As has been emphasized, its validity is lost when the scattering becomes
strong and the mean free path of the conduction electron becomes comparable
to an atomic distance. On the other hand, the Kubo formula is rigorous in the
framework of the linear-response theory. The Kubo formula can be applied to
systems like transition metals and their alloys, where scattering of conduction
electrons is strong.
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Exercises

11.1 The thermal conductivity is given by k52LTT(12LTELET /LEELTT).
Show that the correction term LTELET /LEELTT is of the order of (T/TF)2 for
ordinary metals, where TF is the Fermi temperature. Use equations (11.12),
(11.19) and (11.20) and the relation s(«)~«3/2 in the free-electron model.

11.2 Derive the components sxx and sxy of the conductivity tensor by insert-
ing equation (11.31) into equation (11.30) under the conditions E5(E, 0, 0)
and B5(0, 0, B).

11.3 In the presence of both an electric field E and a magnetic field B, the rela-
tion E5(J/s)1bB3J/s holds, indicating that the electric field to produce the
current density J has two components [1]. In the Hall effect measurement, we
choose the configurations J'B so that the second term gives rise to a trans-
verse electric field. This is the Hall effect. Note that E and J are in the same
plane but are neither parallel nor perpendicular to each other.

Show that the inversion of the relation above results in

J5[s/(11b2B2)] E2[sb/(11b2B2)]B3E.

Use a right-angled triangle for the relevant vectors E, J/s and bB3J/s [1].

11.4 Prove equation (11.43) by using equation (11.42).

11.5 Derive the Einstein relation from equation (11.78) by using the velocity
correlation function defined as f(t)5〈v(0)v(t)〉.
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Chapter Twelve

Superconductivity

12.1 Prologue

We learned in Chapter 10 that lattice vibrations in a metal always give rise to
a finite resistivity and that it disappears only when the metal resumes perfectly
periodic ion potentials at absolute zero. However, there are many metals the
resistivity of which completely vanishes at finite temperatures. Kamerlingh
Onnes from the Netherlands, is famous for his success in liquefying helium
for the first time in 1908. During his extensive studies on the electrical resis-
tivity of various metals by immersing them in liquid helium, he happened to
discover in 1911 [1] that the resistivity of mercury suddenly drops to zero at
4.2K, the boiling point of liquid helium at 1 atmospheric pressure. This is the
superconducting phenomenon discovered three years after his helium lique-
faction.

Since then, superconductivity has been discovered in many metals, alloys
and compounds. As listed in Table 12.1, the value of the superconducting tran-
sition temperature Tc of elements in the periodic table is always less than 10K.
Many researchers have attempted to synthesize new superconductors with as
high a Tc value as possible. In 1986, Bednorz and Müller [2] revealed that the
electrical resistivity of La–Ba–Cu–O sharply dropped at about 35K and van-
ished below about 13K and pointed out the possibility of synthesizing a new
high-Tc superconducting oxide. Their work opened up a new era for the
research of high-Tc superconductors and the Nobel Prize in physics was
awarded to them in 1987 for their discovery.

The mechanism of superconductivity had remained unsettled for many
years as one of the most inexplicable phenomena in physics until Bardeen,
Cooper and Schrieffer put forward the historic theory in 1957 [3]. The BCS
theory successfully accounted for various observed properties inherent in the
superconducting state and has been regarded as a milestone in the development
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of the electron theory of metals. In this chapter, we discuss the electron theory
of superconductivity by introducing first London’s phenomenological theory
and then describing how experimental and theoretical works have been con-
densed into the successful construction of the BCS theory. Basic properties of
the DC and AC Josephson effects, high-Tc superconducting oxides and appli-
cation-oriented studies of the type-II superconductors are also discussed.

12.2 Meissner effect

The mechanism of superconductivity cannot be resolved only from the resis-
tanceless phenomenon. The understanding of the behavior of a superconduc-
tor upon the application of a magnetic field is crucial. The superconducting
state is lost and the normal state resumed if an applied magnetic field exceeds
some critical value Hc.

1 The field Hc is called the critical magnetic field. The
value of Hc is zero at Tc but increases rapidly with decreasing temperature, as
shown in Fig. 12.1. The value of Hc obtained by extrapolation to absolute zero
for various superconducting elements in the periodic table is listed in Table 12.1,
together with the value of Tc. It can be seen that the lower the Tc, the lower the
Hc and that the value of Hc in elements is generally lower than about 2 kOe. It
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1 The non-superconducting state is referred to as the normal state in this chapter.

Table 12.1. Superconducting properties of pure metals

critical magnetic field
superconducting transition extrapolated to 0 K

element temperature Tc (K) Hc (Oe)

Al 1.18 99
Ga 1.09 51
Hg 4.15 412
In 3.4 293
La 5.9 1600
Mo 0.92 98
Nb 9.2 1950
Pb 7.2 803
Ru 0.49 66
Sn 3.7 309
Ta 4.39 830
Ti 0.39 100
V 5.3 1020
Zn 0.85 53
Zr 0.55 47



is known that the value of Hc depends on the purity of a material and the higher
the purity of the material, the lower the value of Hc. Some superconducting
compounds discussed later exhibit values of Hc exceeding 200 kOe or 20 tesla.

Since the superconducting state is perfectly conductive, the electric field E
inside a superconductor must be zero. Thus, the Maxwell equation yields

� �rotE�0 � �rotE�0 [CGS], (12.1)

where B is the applied magnetic flux density.
Let us assume the situation such that the magnetic field is applied to a spec-

imen above Tc and then its temperature is lowered below Tc. This sequence of
operations is called field cooling and abbreviated as FC. When a specimen is
above Tc, the magnetic field uniformly penetrates through it, as shown in Fig.
12.2(a). When the temperature is lowered below Tc in the presence of a mag-
netic field (H�Hc), the specimen enters the superconducting state. The
Maxwell equation (12.1), however, implies that the magnetic flux B inside the
specimen will remain unchanged with time. If this were true, the magnetic field
would have remained penetrating in the specimen, as shown in Fig. 12.2(b). A
simple extension of this conjecture would result in a permanent magnet as
shown in Fig. 12.2(c), if the applied field is switched off.

��B
�t �

1
c��B

�t �

336 12 Superconductivity

T (K)

Figure 12.1. Temperature dependence of the critical magnetic field in pure metals.
[D. Shoenberg, Superconductivity (Cambridge University Press, 1952)]



Alternatively, we may cool the specimen below Tc and subsequently apply a
magnetic field in what is called the zero field cooling or ZFC mode. Since there
was no magnetic flux in the superconductor, equation (12.1) requires the
absence of flux in the specimen when the magnetic field is applied, as shown in
Fig. 12.2(d). So, the application of the Maxwell equation to a perfect conduc-
tor would lead to a strange situation such that the magnetic field distribution
in the superconductor depends on the sequence of application of the magnetic
field and cooling of the specimen.

To ascertain this, Meissner and Ochsenfeld [4] measured the magnetic field
distribution around a superconductor in 1933. They found that the magnetic
field inside the superconductor always remains zero, as in Fig. 12.2(d), regard-
less of whether the FC or ZFC mode is employed. This has ruled out the situ-
ation in the FC mode shown in Fig. 12.2(b) and (c). Indeed, the magnetic fluxes
are always expelled from the specimen, as long as the applied field is lower than
the critical magnetic field Hc. This is called the Meissner effect and has been
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Figure 12.2. (a) Magnetic flux distribution in the presence of a magnetic field at
T�Tc. The specimen is in the normal state. (b) Subsequent flux distribution, when the
temperature in (a) is lowered below Tc. (c) Flux distribution, when the magnetic field
is switched off in (b). (d) Flux distribution, when the magnetic field is applied after
cooling below Tc. Cases (b) and (c) are not observed but case (d) is observed,

regardless of the FC or ZFC mode.



considered as one of the most fundamental properties of a superconductor,
together with the phenomenon of zero resistance.

The Meissner effect looks to be at variance with the Maxwell equation (12.1).
This difficulty can be resolved if a superconductor is magnetized in an opposite
direction to cancel the external field Hext. Once the superconducting state is
attained, surface currents are induced such that the resultant field in the sample
is zero, i.e., B�0. Since B��0Hext�M holds, the magnetic susceptibility is
immediately deduced to be 	�M/�0Hext��1.2 As is clear from this, a supercon-
ductor exhibits an extremely large diamagnetism (recall the magnitude of the
magnetic susceptibility in non-magnetic metals to be of the order of 10�6/mol,
as listed in Table 3.2). Because of this, a superconductor is indeed a perfectly
diamagnetic material. The surface current continues to flow, as long as the super-
conducting state is maintained. There must be some small but finite surface layer
in which the current flows. Therefore, the condition B�0 fails in this surface
layer. The depth of the layer is often referred to as the penetration depth.

12.3 London theory

In 1935, F. London and H. London [5] considered the superconducting state
to be characterized by both zero electrical resistance and the Meissner effect
and expressed these two phenomena in terms of the Maxwell equations. As has
been noted, the electric field E inside a superconductor must be zero, but let us
assume that E is instantly generated. Then, the superconducting electron would
be subjected to the equation of motion described by equation (10.3). But the
second term, corresponding to the friction, would not exist because of zero
resistance. Hence we obtain

ms �qsE, (12.2)

where ms, vs and qs are the mass, drift velocity and charge of the superconduct-
ing electron, respectively. The superconducting current density Js is then given
by

Js�nsqsvs, (12.3)

where ns is the number of superconducting electrons per unit volume.3 An
insertion of equation (12.3) into equation (12.2) leads to

dvs

dt
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12 Since B�H�4
M in CGS units, 	�M/Hext��1/4
 holds.
13 We will learn in Section 12.11 that the “superconducting electron” is, in fact, a pair of electrons, called the

Cooper pair with mass ms�2m and electron charge qs�(�2e). Its number density ns is one-half the
number of electrons n per unit volume. Hence, the current density is expressed as Js�nsqsvs�(n/2)(�2e)vs
�n(�e)vs, provided that all n electrons form the pair



E. (12.4)

As discussed in the preceding section, the Meissner effect describes the phe-
nomenon manifested by a superconductor in a magnetic field. The magnetic
field is related to the electric field and the current through the Maxwell equa-
tions:

rotE�� rotE�� [CGS], (12.5)

rotH�J� rotH� J� [CGS] (12.6)

and
divB�0. (12.7)

We ignore the time derivative of the displacement current D in the steady state
and solve the Maxwell equations in the region very close to the surface of a
superconductor. The permeability � is approximated as that in a vacuum so
that B��0H holds.4

Equation (12.6) is therefore written as

rotB��0Js rotB� Js [CGS]. (12.8)

On the other hand, an insertion of equation (12.4) into equation (12.5) yields

� rot � rot [CGS].

If we replace by rot from equation (12.8), we obtain

� rot rot � rot rot [CGS]. (12.9)

By using the vector identity rot rotḂ�grad divḂ��2Ḃ, together with equation
(12.7), we can rewrite equation (12.9) as

�2 � �2 � [CGS]. (12.10)��B
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14 In the preceding section, we stressed that the magnetic susceptibility 	 is equal to �1 inside a supercon-
ductor, i.e., the permeability ��0. This is true well inside a superconductor where the surface current
completely dies away. In the present section, we are solving the Maxwell equations in the surface layer
where the shielding effect increases from zero (���0) to that producing a perfect diamagnetism (��0).
In the surface layer, � is approximated as �0.



For the sake of simplicity, we consider a semi-infinite superconductor having
a plane boundary and apply a magnetic field parallel to this boundary. The
direction normal to the boundary is taken as the x-axis. Equation (12.10) is
now reduced to

� Ḃx � Ḃx [CGS].

The solution is immediately found to be

Ḃx(x)�Ḃx,0 exp , (12.11)

where a�ms/nsqs
2�0. Equation (12.11) indicates that, on account of its expo-

nential decay, the time derivative of Bx cannot penetrate deeply inside the
superconductor.

Equation (12.11) is derived by using only the zero resistance phenomenon.
The Meissner effect must be included, which imposes stricter restrictions such
that the magnetic flux density B itself should vanish inside a superconductor.
F. London and H. London [5] suggested that the Meissner effect might be cor-
rectly described in terms of equation (12.10) with the variable B instead of the
derivative �B/�t. Now equation (12.10) is phenomenologically replaced by

�2B� B �2B� B [CGS]. (12.12)

Equation (12.12) indicates that the magnetic flux density B should fall off expo-
nentially in the superconductor and describes well the Meissner effect (see
Exercise 12.1). All �B/�t appearing in equations (12.5) to (12.10) are now
replaced by B. In place of equation (12.9), we obtain

B� rotJs B� rotJs [CGS]. (12.13)

This is known as the London equation.
As is clear from the argument above, the London equation cannot explain the

mechanism of superconductivity but imposes some limitation to the Maxwell
equations and successfully describes the most fundamental features of super-
conductivity, i.e., zero resistance and the Meissner effect. The solution of equa-
tion (12.12) indicates that the value of B decreases by 1/e at x� measured
from the surface of a superconductor. The characteristic distance �L is given by

�L� �L� [CGS], (12.14)

which is often referred to as the London penetration depth.
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Let us assume that one electron per atom contributes as a superconducting
electron in a simple cubic lattice with the lattice constant of 0.3nm. Since its
density is ns�3.7
1028m�3, the penetration depth �L turns out to be about
10�8m from equation (12.14). We see how small the penetration depth is.
Equation (12.14) also indicates that the penetration depth increases with
increasing temperature towards Tc because of a decreasing number of super-
conducting electrons ns (see Section 12.12). This is consistent with the observed
temperature dependence of the penetration depth. But the actual penetration
depth is not precisely described by the London theory because of its oversim-
plification.

12.4 Thermodynamics of a superconductor

Prior to the discussion of the microscopic theory of superconductivity, it is
instructive to describe the thermodynamics of a superconductor based on the
discussions developed in the preceding section. The superconducting state is
uniquely determined if the temperature T and magnetic field H are fixed as
external parameters. Let us denote the free energies for the superconducting
and normal states as Gs(T,H) and Gn(T,H), respectively. Since the supercon-
ducting state is more stable in the temperature range T�Tc in zero field, we
must have Gs�Gn in this range. When a magnetic field H is applied to a super-
conductor, the shielding surface current flows and a perfect diamagnetism
appears. The resulting magnetic energy per unit volume is expressed as

� M·dH� �0H·dH� � M·dH� H·dH� [CGS],

(12.15)

where M���0H (M�(�1/4
)H in CGS units) is inserted. Hence, we obtain

Gs(T,H)�Gs(T,0)� Gs(T,H)�Gs(T,0)� [CGS]. (12.16)

A superconductor generally exhibits only a weak para- or diamagnetism in its
normal state. As discussed in Section 3.6, its magnetic susceptibility is so small
in the normal state that we can ignore any contribution made by the presence
of a magnetic field to the free energy. Thus we have

Gn(T,H)�Gn(T,0). (12.17)

Since the free energy of the superconducting state should coincide with that of
the normal state at the critical field Hc, the relation Gs(T,Hc)�Gn(T,Hc) holds.
Therefore, we obtain
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Gs(T,0)�Gn(T,0)� Gs(T,0)�Gn(T,0)� [CGS]. (12.18)

A differentiation of both sides of equation (12.18) with respect to tempera-
ture yields the entropy in the respective states:

Ss�� �Sn��0Hc Ss�Sn� [CGS]. (12.19)

As is clear from Fig. 12.1, dHc/dT is always negative, resulting in the relation
Ss�Sn. This means that in the range T�Tc the entropy of the superconduct-
ing state is always lower than that of the normal state, i.e., the superconduct-
ing state is more ordered than the normal state.

The specific heat is calculated by differentiating equation (12.19) with respect
to temperature and then multiplying by T:

Cs�Cn��0T

Cs�Cn� [CGS]. (12.20)

Equation (12.20) at T�Tc is reduced to

�C(Tc)��0Tc �C(Tc)� [CGS], (12.21)

since Hc�0 at T�Tc. Equation (12.21) is always positive, indicating that, at
T�Tc, the specific heat in the superconducting state is higher than that in the
normal state. Indeed, this behavior has been confirmed by experiments, as will
be shown in Fig. 12.3, Section 12.7.

We see from equation (12.18) that the free energy in the superconducting
state is smaller by H 2

c/8
 than that in the normal state. For example, the value
of Hc for pure Al metal is 99 Oe, as listed in Table 12.1. Thus, the free energy
difference is about 390 erg/cm3. We know that pure Al metal possesses three
conduction electrons per atom. If all of them serve as superconducting elec-
trons, then the free energy difference per electron is deduced to be 2.7
10�9eV.
According to the BCS theory, which will be discussed in Section 12.12, this
energy is found to be of the order of (kBTc)

2/�F. By inserting Tc�1.19K from
Table 12.1 and �F�11.6eV from Table 2.1 into the BCS expression, we obtain

�3.91
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which is in good agreement with that estimated from equation (12.18) based on
thermodynamics. In general, the energy per particle associated with the phase
transition is known to be of the order of kBTc, where Tc is the phase-transition
temperature. Thus the energy involved in the superconducting transition is
smaller by kBTc/�F than that in the ordinary phase transition. This is a feature
unique to the superconducting phenomenon.

12.5 Ordering of the momentum

We are well aware that, when a particle with electronic charge qs moves with
velocity v in the presence of a magnetic flux density B, the Lorentz force qsvB is
exerted on the particle in a direction perpendicular to the plane formed by the
two vectors v and B. The Lorentz force does not affect the magnitude of the veloc-
ity but changes the direction of the motion of the particle. As a consequence, the
charged particle moves on a circle in the plane perpendicular to the direction of
the magnetic field. At first sight, one might think that the momentum remains
unchanged, since the magnitude of the velocity is unchanged. But this is not true.
The effect of a change in the direction of the velocity caused by the magnetic field
must be included. The total momentum of the superconducting electron moving
in the magnetic field must be given by the sum of the ordinary kinetic momen-
tum mvs and the momentum associated with the magnetic field:

ps�mvs�qsA, (12.22)

where A is the vector potential defined as B�rotA. By taking the rotation of
equation (12.22) and inserting it into the London equation (12.13), then we
obtain

rotps�0. (12.23)

There exists some arbitrariness in the choice of the vector potential A. We
can impose the relation divA�0 and the normal component of both the vector
potential A and vs to diminish at the surface of an isolated superconductor as
additional constraints.5 Apart from this, the equation of continuity assures the
relation divJs�0. Now the divergence of equation (12.22) immediately results
in the relation divps�0. We find the important relation ps�0 as a solution sub-
jected to the conditions above.
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15 By using the vector potential A and scalar potential �, one can write the electric field E and magnetic flux
density B as E��grad���A/�t and B�rotA, respectively. However, the vector potential A and scalar
potential � are not uniquely decided. They can be written as A��A+grad� and �����(��/�t) without
altering values of E and B, where � is an arbitrary scalar function. Hence, an additional restriction can
be imposed. We choose the London gauge where the conditions divA�0 and A

�
�0 hold on any exter-

nal surface of an isolated superconductor.



The London equation now leads to the important conclusion that the
momentum of the superconducting electron in the magnetic field remains zero.
Since the London equation describes the superconducting state in terms of
macroscopic quantities based on the drift velocity in equation (10.2), the above
conclusion should imply that an average of the momenta over a large number
of superconducting electrons is zero.

F. London proposed a new concept of the long-range order for the average
momentum of the superconducting electrons [6]. His proposal is stated such
that all the superconducting electrons are in the state ps�0, regardless of the
presence or absence of a magnetic field. The first term mvs in equation (12.22)
is postulated to be zero in the absence of a magnetic field. When the magnetic
field is applied, the superconducting electrons begin to move coherently with
the velocity vs��(qs/ms)A so as to maintain the condition ps�0 inside the
superconductor. This is nothing but the induced surface current discussed in
Section 12.2. His proposal is certainly in conflict with the Pauli exclusion prin-
ciple. However, soon after it was proved that he had indeed pointed to the
essence of the superconducting mechanism.

12.6 Ginzburg–Landau theory

Ginzburg and Landau [7] constructed a phenomenological theory to account
for the ordered state of a superconductor on the basis of the Landau theory as
it relates to a second-order phase transition. Following Landau, the free energy
of the superconducting state just below the transition temperature Tc is
assumed to be only slightly lowered relative to that of the normal state and the
difference is expanded in powers of an order parameter �:

Gs�Gn��(T )	� 	2� 	� 	4� ···, (12.24)

where � is assumed to vanish at T�Tc. The parameter � is further assumed to
be a linear function of temperature, i.e.,

���0(T�Tc) (12.25)

in the temperature range not too far below Tc. Since the relation 	� 	2�

�0(Tc�T )/� is deduced below Tc from the equilibrium condition �Gs/� 	� 	�0,
a comparison of equation (12.24) with equation (12.18) immediately results in
the relation Hc(T )�(2�2

0 /��0)
1/2(Tc�T ).

Equation (12.24) is limited to the case where the order parameter is constant
throughout a superconductor. Ginzburg and Landau took into account the

�(T )
2
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spatial variation in the order parameter and added the term �	�� 	2 to equation
(12.24). They could derive two sets of the Ginzburg–Landau equations by
minimizing the free energy with respect to the order parameter � and the vector
potential A for the magnetic field. The so-called GL equations have led to
various interesting solutions. For example, an obvious solution �
0 describes
the normal state whereas the solution of ��(�� /�)1/2 and A�0 reproduces
well the Meissner effect. For weak magnetic fields, the solution is reduced to
the same form as the London equation.

Let us briefly discuss the physical implication of the order parameter � (r).
The phase in the wave function of the conduction electron in the normal state
is random and, hence, no interference occurs among wave functions of the
normal electrons. A different situation exists in the superconducting state. The
ordered state with ps�0, which is deduced from the London equation, would
correspond to the state where all wave functions of the superconducting elec-
trons are coherent and characterized by a single amplitude and phase.

If a large number of superconducting wave functions are coherent, the sum
of the amplitude would be increased in proportion to the number of supercon-
ducting electrons. Thus, the superconducting state can be described by a
macroscopic wave function. Ginzburg and Landau intuitively considered the
order parameter � (r) as a kind of a “wave function” for a “particle” in the
superconducting state. If the wave function is expressed as � (r)� 	� 	ei�, then
	�(r)	2 would be proportional to the density of superconducting electrons at the
position r. Suppose that the phase � follows the relation ��kx��0 along
the x-direction. Now a spatial change in the phase yields the momentum of the
superconducting electron because of the obvious relation d�/dx�k�ps/�.

The state with ps�0 is, therefore, equivalent to the possession of a spatially
independent phase and amplitude of the wave function. As a result, � (r)
becomes uniform throughout a superconductor. When a magnetic field is
applied, the second term in equation (12.22) becomes finite. But, as discussed
in the preceding section, the velocity vs�� (qs/ms)A is induced so as to main-
tain ps�0. Therefore, we see that the Meissner effect can be interpreted as a
phenomenon which makes �(r) uniform throughout a superconductor even in
the presence of the magnetic field.

As will be discussed in Section 12.15, Abrikosov extended the GL theory and
could successfully provide the theoretical basis for type-II superconductors
(see Section 12.15). In the following sections, we focus on the experimental
studies showing evidence of the energy gap in a superconductor and the
isotope effect on the transition temperature, both of which served as very
important observations in understanding the mechanism of superconductivity.
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12.7 Specific heat in the superconducting state

Figure 12.3 shows the low-temperature specific heat data in the form of C/T
against T 2 for pure Nb metal. The Nb metal undergoes a superconducting
transition at 9.2K. Thus, the data below Tc in the absence of a magnetic field
represent the specific heat behavior in the superconducting state. Since the crit-
ical magnetic field Hc of pure Nb is 1950 Oe, as is listed in Table 12.1, the mag-
netic field of 10000 Oe can completely suppress the superconducting
transition. Indeed, the C/T against T 2 data fall on a straight line, indicating res-
toration of the normal state. The electronic specific heat coefficient can be
obtained by extrapolating the linear trend of the data in the normal state to
absolute zero.

As is clear from Fig. 12.3, when approaching Tc from higher temperatures
the specific heat in the absence of a magnetic field jumps at Tc and subsequently
decreases gradually toward zero with decreasing temperature. The electronic
specific heat in the superconducting state can be fitted to an exp(�2�/kBT )-
type temperature dependence in contrast to the �T dependence in the normal
state. Indeed, the exponential temperature dependence can be deduced from
the BCS theory, which will be described in Section 12.12. The fact that the data
in Fig. 12.3 no longer fall on a straight line but approach zero exponentially
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Figure 12.3. Temperature dependence of the low-temperature specific heat in the
form of C/T versus T 2 for pure Nb in the presence and absence of a magnetic field H.

[H. A. Leupold and H. A. Boorse, Phys. Rev. 134 (1964) A1322]



with decreasing temperature can be taken as evidence that the superconduct-
ing electrons do not obey the Fermi–Dirac statistics.

The specific heat jump at Tc without involving any latent heat indicates that
the phase transition from the normal to superconducting state is of the second-
order. A low-temperature phase is generally more ordered relative to a high-
temperature phase. The motion of conduction electrons in the normal state is
of course random. Instead, the motion of electrons in the superconducting
state must be ordered, as has been discussed in previous sections. In addition,
the exp(�2�/kBT )-type temperature dependence indicates the presence of an
energy gap in the superconducting phase.

12.8 Energy gap in the superconducting state

The presence of an energy gap in a superconductor has been also confirmed by
other experiments. For example, the absorption of an infrared electromagnetic
wave by a superconductor occurs only when its frequency exceeds some criti-
cal value �0. The value of �0 for typical superconducting metals lies in the range
of 1011Hz, from which the energy gap is estimated to be of the order of
10�1meV. Note that the energy gap in a superconductor is about 1/1000 that in
a semiconductor (for example, 1eV for Si).

The tunneling experiment has proved to be very powerful in determining the
magnitude of the energy gap. As shown in Fig. 12.4(a), a very thin insulating
layer of 1–2nm thickness is sandwiched between a superconductor and a
normal metal. The current–voltage characteristics for this device are shown in
Fig. 12.4(c). We see that the tunneling current begins to flow only when the bias
voltage exceeds some critical value V0. This is the demonstration for the pres-
ence of the energy gap 2� in a superconductor. Indeed, the value of the energy
gap can be obtained from the relation ��eV0 into which the measured V0 value
is inserted. The energy gaps 2� determined by this technique for pure metals
like Al, V and Nb are in the range 0.5–1meV.

12.9 Isotope effect

The superconducting transition temperature Tc is found to depend on the mass
M of the isotope for a given element. This is called the isotope effect and has
played a crucial role in the construction of the BCS theory. For instance, when
the Hg isotope changes its mass from 199.5 to 203.4g, the value of Tc changes
from 4.185 to 4.146K. This is shown in Fig. 12.5. The experimental data can
be fitted to the relation:

M�Tc�constant, (12.26)
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Figure 12.4. Measurement of the energy gap in a superconductor. A thin insulating
layer is sandwiched between a metal and superconductor. (a) Energy levels before
applying a voltage. (b) A voltage is applied to overcome the energy gap so that elec-
trons in the normal metal can tunnel to the superconductor. (c) The resulting I–V

characteristic. The energy gap is obtained from the voltage V0��/e.

lo
g 

T c

Figure 12.5. Superconducting transition temperature plotted against the mass of the
isotope in mercury on a log–log diagram. [C. A. Reynolds, B. Serin and L. B. Nesbitt,

Phys. Rev. 84 (1951) 691]



where � is deduced to be 0.504. According to equations (4.17) and (4.40), the
Debye temperature �D is proportional to 1/ . Hence, the ratio Tc/�D

becomes constant. This finding clearly indicates the importance of the interac-
tion of the conduction electron with lattice vibrations in the superconducting
state.

12.10 Mechanism of superconductivity–Fröhlich theory

We have so far presented the most important experimental evidences which
have served as clues to resolve the mechanism of superconductivity. In this
section, our attention is directed to the theoretical progress and the Fröhlich
theory is first outlined. In Sections 10.8 to 10.10, it was emphasized that a finite
electrical resistivity originates from the static and dynamical disruptions of the
periodic potentials and that the Bloch–Grüneisen law describing the tempera-
ture dependence of the resistivity in normal metals can be formulated by incor-
porating the electron–phonon interaction into the Boltzmann transport
equation. This clearly means that the electron–phonon interaction determines
the electrical resistivity at finite temperatures. However, as demonstrated by the
isotope effect, the interaction of electrons with lattice vibrations must play a
crucial role in the resistanceless phenomenon of superconductivity. Fröhlich [8]
pointed out, for the first time, in 1950, that this seemingly paradoxical matter
is not impossible.

Fröhlich considered that the region left behind along the passage of a con-
duction electron would become slightly excessive in positive charges as a result
of the displacement of neighboring ions. If this is so, another electron may be
naturally attracted by this positively charged region. This process would give
rise to a weak but attractive interaction between the two electrons and is taken
as a possible mechanism to stabilize the superconducting state.

The attractive electron–electron interaction proposed by Fröhlich is sche-
matically illustrated in Fig. 12.6. We consider two electrons having wave vectors
k1 and k2 and assume that their states change into k�1 and k�2 after the interac-
tion involving a phonon of wave vector q. The whole process may be divided
into two halves. In the first half of the process, a phonon of the wave vector q
is emitted when the electron k1 is scattered into k�1. But this phonon is immedi-
ately absorbed in the second half of the process, in which another electron k2

is scattered into k�2. The momentum conservation law assures k1�q�k�1 and
k2�q�k�2 in the first and second halves of the process, respectively. We imme-
diately obtain k1�k2�k�1�k�2, indicating that the momentum of the two elec-
trons is conserved in this process.

What about the energy conservation law? The emitted phonon can survive

�M
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only in the intermediate state and its lifetime �t is very short. Thus, the energy
conservation law no longer holds between the initial and the intermediate states
or between the intermediate and final states because of the uncertainty princi-
ple in energy �E.�t��. Such a short-lived phonon is called the virtual phonon
and the scattering involved the virtual phonon process. The second-order
perturbation theory [8] gives rise to an energy change given by

�k1�q,k2�q	V 	k1,k2
� , (12.27)

where Mk�q,k satisfying the relation Mk1�q,k1
�Mk2�q,k2

, is the matrix element
associated with the absorption or emission of a phonon of wave vector q, �(k)
and �(k�q) are the energies of the electron before and after the emission of the
phonon, respectively, and ��q is the energy of the emitted phonon. As men-
tioned above, the denominator is not zero. The interaction energy becomes neg-
ative for the narrow range of energy where 	�(k)��(k�q)	���q holds. This
leads to an attractive electron–electron interaction. Once this mechanism
works, the total energy of the system is lowered relative to that in the normal
state at absolute zero. Fröhlich considered this energy gain to be responsible for
the stabilization of the superconducting state.

The total energy gain would be roughly given by N(�F)(��D)2, since �� in
equation (12.27) involves an average phonon energy ��D per electron and the
number of electrons involved in this process must be N(�F)��D. Since N(�F)�

(n/�F) holds in the free-electron model, where n is the number of conduction
electrons per unit volume, we obtain the energy gain per electron as

� � · � � . (12.28)
(kB�D)2
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Figure 12.6. Electron–electron interaction mediated by the emission and absorption
of a virtual phonon.



We immediately obtain ��/n�1/M, since �D�1/ . This explains the
isotope effect discussed in Section 12.9. However, we noted in Section 12.4 that
the energy gain per electron is (kBTc)

2/�F rather than (kB�D)2/�F. Thus, we see
that the Fröhlich theory overestimates it by an amount equal to (�D/Tc)

2.

12.11 Formation of the Cooper pair

Since the advent of the Fröhlich theory, people have tended to believe that the
stability of the superconducting state is brought about by a lowering of the
total energy in the electron system through the attractive interaction between
the two electrons mediated by the virtual phonon. However, we have also
emphasized in Sections 12.5 and 12.6 that the average momentum of supercon-
ducting electrons is zero and that the long-range order of the momentum must
be a characteristic feature in the superconducting state.

Conduction electrons are subject to the Pauli exclusion principle. But how
can this obvious fact be reconciled with a state of zero momentum? A particle
with zero spin obeys the Bose statistics. For example, the He4 atom, which is
typical of the Bose particle, enters a superfluid state below 2.19K and can pass
through a hole, however small its size. London has shown that the superfluid-
ity of He4 particles arises as a result of a condensation into a state of zero
momentum. Condensation into a zero momentum state may be realized if the
two electrons form a bound state via the attractive electron–electron interac-
tion and the resulting pair of electrons behaves as a single particle obeying the
Bose statistics. Now the question arises as to what electrons can form such a
pair. In 1956 Cooper pointed out that, if two electrons interacting with an
attractive force are placed immediately above the Fermi sphere at absolute zero,
the two electrons form a bound state and their total energy is lowered relative
to 2�F, even though the attractive interaction is very weak.

We assume that the phonon-mediated electron–electron interaction is respon-
sible for the attractive interaction between the two electrons. The energy states
below the Fermi energy �F are completely occupied by electrons at absolute zero.
Two electrons with energies �1 and �2 are added immediately above �F so as not
to violate the Pauli exclusion principle. Then the following relation holds:

�1��2� [(kF��k1)
2�(kF��k2)

2]� ���q, (12.29)

where �k� 	�k1��k2	 and the relation �1��2���q is used. Equation (12.29)
indicates that the momenta of the two electrons must be confined within the
range �k�m�q/�kF across the Fermi level. This is illustrated schematically in
Fig. 12.7.

�2kF�k
m

�2

2m

�M
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Following the symbols used in Fig. 12.6, we denote the wave vectors of a pair
of electrons before scattering as k1 and k2, and those after scattering as k�1 and
k�2 . We have two relations k�1�k1�q and k�2�k2�q. If we write K�k1�k2,
then the relation K�k�1�k�2 holds. Furthermore, all these wave vectors must be
found within the shell between kF and kF��k. The phonon emission and
absorption processes are shown in Fig. 12.7(a) and (b), respectively. They are
combined in a single diagram by sharing both q and K, as shown in (c).

It is now clear that the scattering satisfying both conditions K�k1�k2 and
K�k�1�k�2 is limited to the hatched area formed by the overlap of the two
spherical shells. The shaded area must be maximized in order to cause such
attractive electron–electron scattering processes to occur as frequently as pos-
sible. This is realized, when K�0 or the two Fermi spheres completely overlap
each other. In other words, the electron of wave vector k should be paired with
an electron of wave vector �k. In addition, the lowest state is realized when
the two electrons have opposite spins ↑ and ↓. The entity formed by such an
interaction is called a Cooper pair. Both the spin quantum number S and its z-
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Figure 12.7. Formation of Cooper pair. (a) Emission and (b) absorption of a virtual
phonon. The dotted shell across the Fermi level represents �k in equation (12.29). (c)
Total process combining (a) and (b). Only in the region where the two shells overlap
can scatterings (a) and (b) occur simultaneously for a phonon of an arbitrary wave

vector q.



component Sz of the resultant spin S of a Cooper pair are therefore zero. This
is called the singlet state.6

The triplet states 	k↑,�k↑
, 	k↓,�k↓
 and �	k↑,�k↓
� 	k↓,�k↑
�/ char-
acterized by the spin quantum number S�1 and Sz�1, �1 and 0, respectively,
may also be taken as possible candidates. However, they are theoretically
proved not to form the bound state. To summarize, the total energy of the con-
duction electron system can be most effectively lowered when the spin-up elec-
tron of wave vector k is paired with the spin-down electron of wave vector �k.
A Cooper pair is hereafter denoted as (ki↑,�ki↓).

12.12 The superconducting ground state and excited states in the BCS theory

Bardeen, Cooper and Schrieffer had to struggle further to relate a single
“Cooper pair” with the many-electron theory and to cope with the overlap of
many pairs. Schrieffer portrayed the problem in an analogy with couples
dancing on a crowded floor [9]: “Even though partners dance apart for consid-
erable periods and even though other dancers come between, each pair remains
a couple. The problem was to represent this situation mathematically.”

BCS successfully constructed the wave function by taking a linear combina-
tion of many normal-state configurations in which the Bloch states are occu-
pied by a pair of opposite momenta and spins:

�(r1,r2)� ai�(ki↑,�ki↓), (12.30)

where the sum extends over all possible pair configurations within a range
�k�m�q/�kF about kF and 	ai 	

2 represents the probability of finding a pair of
electrons with the states ki↑ and ki↓. The wave function given by equation
(12.30) is called a Cooper pair. Therefore, it is important to realize that each
Cooper pair is composed of the Bloch states with all possible wave vectors ki.

Once the attractive interaction between two electrons dominates over the
repulsive screened Coulomb interaction, the system would produce as many
Cooper pairs as possible to lower its energy. BCS [3] showed how this attractive

�
i

�2
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16 Consider the wave function �
���

(r1,r2) of a pair of electrons, positioned at r1 and r2, respectively. This func-
tion depends only on the relative coordinate r1�r2
r and is given by the product of the orbital and spin
wave functions: �

���
(r)��(r)·(1/ )(	↑↓
� 	↓↑
) (see Section 14.3). Suppose the orbital function � (r) to

be the eigen function of the resultant orbital angular momentum L (see Section 13.3). Then, its eigen value
can be specified in terms of the quantum number L�0, 1, 2, 3 ··· or s, p, d, f, ··· symmetries. Since the spin
function in the BCS ground state is characterized by the singlet state, the orbital wave function must be
symmetric, i.e., � (r)�� (�r). Hence, only s, d, ··· waves are permissible. In the BCS theory, a constant
attractive interaction is assumed so that an energy gap opens in any direction in reciprocal space (see equa-
tion (12.33)). This is consistent with the s-type orbital wave function for the paired electrons. In the case
of high-Tc superconductors, a number of experimental studies indicate the existence of anisotropy in the
energy gap and are consistent with the possession of d-wave symmetry.

�2



interaction can give rise to a cooperative many-particle state which is lower in
energy than the normal state by an amount proportional to (��D)2 in agreement
with the isotope effect. They constructed the ground-state wave function in the
superconducting state by using a Hartree-like approximation and expressed it
as a product of the individual Cooper pair wave functions given by equation
(12.30):

�0(r1,r2, ... , rn0
)��(r1,r2)�(r3,r4) ... ,�(rn�1,rn) (12.31)

where n is the total number of electrons participating in the superconductivity,
rn is the position coordinate of the n-th electron and the �s on the right-hand
side are the same for all pairs. The square of the many-electron wave function
(12.31) gives the probability of finding superconducting electrons at r1, r2, ... , rn0
regardless of their momenta. The Cooper pair �(rn�1,rn) involved in equation
(12.31) can be regarded as a single particle obeying the Bose–Einstein statistics.

The ground-state energy per electron in the superconducting state is shown
to be lower than that in the normal state by the amount:

, (12.32)

where N(�F) is the density of states at the Fermi level in the normal state and
� is one-half the energy gap characteristic of the superconducting state, as
already mentioned in Sections 12.7 and 12.8. In the BCS theory, the net attrac-
tive interaction is assumed to be constant, regardless of the direction in recip-
rocal space. Then, the energy gap 2� is deduced as

��2��Dexp , (12.33)

where V is a constant matrix element representing the strength of the net
attractive interaction and ��D is the mean phonon energy.

We noted in Section 12.10 that the Fröhlich theory predicted the energy gain
per electron to be proportional to (kB�D)2/�F in equation (12.28) and that it is
too large to account for the experimental data. In the BCS theory, kB�D is
replaced by �, which is smaller by the exponential factor than ��D. The
number of Cooper pairs is gradually destroyed with increasing temperature
and, accordingly, the energy gap 2� decreases and vanishes at the supercon-
ducting transition temperature Tc. As shown in Fig. 12.8, a good agreement
with the BCS theory is found in the temperature dependence of the energy gap
determined from tunneling measurements. According to the BCS theory, the
superconducting transition temperature Tc is approximated as

kBTc��(0). (12.34)

��
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N(�F)V�

��
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 � �1
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This relation immediately leads to the isotope effect in equation (12.26), since
the relation kBTc��(0)���D�1/ holds.

BCS also evaluated the wave function and energy in the excited states and
calculated the free energy, from which the specific heat and critical magnetic
field were calculated. Their results can explain these experimental data very
well. The Meissner effect is also well interpreted. In this way, the BCS theory
could successfully provide the theoretical basis for various properties inherent
in the superconducting state.

When the net electron–electron interaction becomes attractive, all electrons
within the range �k�m�q/�kF about kF are coupled to form Cooper pairs in
the ground state. The paired electrons described by the wave function (12.31)
are repeatedly scattered between single-electron states so that their motions can
no longer be distinguished as a result of so frequent scattering events. This
means that the wave vector k specifying a single-electron state in the vicinity of
the Fermi level is no longer a good quantum number and that the Fermi sphere
corresponding to the BCS ground state is blurred within the range ��D across
the Fermi level. This is illustrated in Fig. 12.9. Thus, the electronic states in the
superconducting ground state cannot be uniquely described in reciprocal
space.

Let us discuss the excited states of a superconductor. We have already shown
in Sections 12.7 and 12.8 the presence of a small energy gap, as evidenced from
various experiments like infrared absorption, specific heat and tunneling
experiments. As is clear from equation (12.30), the wave function of the Cooper
pair is composed of all possible single-electron states having a set of the wave
vectors (ki↑ and �ki↓) within the range �k�m�q /�kF about kF. Thus, all

�M
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Figure 12.8. Normalized energy gap versus normalized temperature derived from
tunneling experiments for superconducting In, Sn and Pb. The dashed curve is derived

from the BCS theory. [I. Giaever and K. Megerle, Phys. Rev. 122 (1961) 1101]



allowed wave vectors are used up to form a Cooper pair while the electrons in
each pair should always have equal but opposite momenta. Hence, the
momenta of the paired electrons cannot be freely increased when energy is
imparted to a superconductor. The only possible way to expend the energy is
to break up a Cooper pair. According to the BCS theory, the minimum amount
of energy needed is 2� given by equation (12.33) and is able to produce two
electrons with well-defined wave vectors.

As is clear from the argument above, both ground and excited states in a
superconductor can be more precisely described by an energy spectrum rather
than in reciprocal space. As shown in Fig. 12.10(a), all Cooper pairs are con-
densed into a single energy level �0 in the ground state at absolute zero. If the
Cooper pair receives energies higher than the energy gap 2�, then the pair is
broken into two independent electrons. The resulting electrons, which are
called quasiparticles, are subjected to the Fermi statistics. This is schematically
illustrated in Fig. 12.10(a). The energy spectrum of the quasiparticles, there-
fore, represents the excited states of a superconductor.

As has been discussed in Section 10.5, the excitation of electrons into the
conduction band conversely results in the excitation of holes in the valence
band. Such representation can be used also in a superconductor. An energy
spectrum for the quasiparticles in a superconductor at a finite temperature
below Tc is expressed as shown in Fig. 12.10(b). One can see that the quasipar-
ticles cannot occupy states in the energy range 2� across the Fermi level. This
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Figure 12.9. The Fermi sphere in the superconducting state at 0 K. The Fermi sphere
within ��D is smeared as a result of the attractive electron–electron interaction medi-
ated by phonons. The electronic structure in the superconducting state is no

longer well described in reciprocal space.



is the forbidden energy gap of a superconductor. It is, therefore, important to
note that a well-defined energy gap exists, though the Fermi sphere is blurred
in reciprocal space even at absolute zero. The density of states near the Fermi
level in a superconductor is enhanced as a result of the congestion of the energy
levels, as shown in Fig. 12.10.

Now it is obvious that the entity responsible for the long-range order of the
momentum London proposed is the Cooper pair. Because of their resultant
zero spin, Cooper pairs can behave as Bose particles and, because of the resul-
tant zero momentum, the system is in an ordered state. In the BCS theory, the
energy gap 2� is shown to remain unchanged even when a magnetic field is
applied. This means that the density of the Cooper pairs and, hence, the
ordered state, remains unchanged. This leads to the possession of a uniform
order parameter in a superconductor, being consistent with the
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Energy levels of 
the Cooper pairs 
and quasiparticles

Energy levels of quasi- 
particles (electrons 
and holes)

�F
�0

Figure 12.10. (a) All Cooper pairs in the ground state are in the energy level �0. The
lowest excited energy of the two quasiparticles (electrons) is 2� higher than �0. Each
level is filled by two electrons with spin-up and spin-down, since the quasiparticle obeys
the Fermi statistics. (b) Energy levels for the excited states of a superconductor. The
Fermi level for electrons is raised by � relative to that in the normal state. Likewise,
the Fermi level for holes is lowered by �. Accordingly, the energy gap 2� is opened.



Ginzburg–Landau theory discussed in Section 12.6 and is indeed the charac-
teristic feature of the Meissner effect.

12.13 Secret of zero resistance

Now a naive question is addressed as to why the resistance becomes zero in the
superconducting state. Before answering this, we will briefly review the electron
conduction in the normal state. We have shown in Section 10.2 that the Fermi
surface moves as a whole to the direction parallel to the electric field E. The
direction of the wave vector randomly changes on the Fermi surface, as soon
as the conduction electron is scattered by imperfections like phonons and
impurities. The Fermi sphere is displaced only by a certain distance in the pres-
ence of a constant field and a steady state is established within the relaxation
time  , as is illustrated in Fig. 10.1. This is Ohm’s law and gives rise to a finite
resistivity equal to !�E/J. Electron conduction in the normal state is illus-
trated schematically in Fig. 12.11.

As emphasized in the preceding section, the superconducting state is in a
constrained condition such that the momentum of the paired electrons cannot
be altered at will. Indeed, the energy 2�(0) is needed to destroy the Cooper pair
at absolute zero. As a consequence, the scattering which changes the direction
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Figure 12.11. Motion of conduction electrons in the normal state. Large and small
circles represent ions and conduction electrons, respectively. The momentum of each
conduction electron is shown by a small arrow.When an electric field (marked by the
white arrow) is applied, all conduction electrons gain additional momentum and the

drift velocity defined by equation (10.2).



of the wave vector is prohibited for the paired electrons. This situation is shown
schematically in Fig. 12.12. Once a current is induced, each Cooper pair
acquires the same velocity vector v in parallel to the applied field. Thus, the
drift velocity of all Cooper pairs must be v. Thus, we see that all the Cooper
pairs acquire the same momentum and shift the Fermi surface endlessly in a
direction parallel to the field. A current flowing without disturbing the ordered
state is indeed a resistanceless conduction. Therefore, once a current is induced
by applying the magnetic field to a superconducting ring, it persists forever as
long as the Cooper pairs remain stable.

12.14 Magnetic flux quantization in a superconducting cylinder

F. London predicted that the long-range order of the momentum would result
in a specific quantum effect [6]. If a Cooper pair gains a finite momentum P as
discussed in the preceding section, its wave function is presented by

�P��(r1,r2)e
iP·r/�, (12.35)

where �(r1,r2) is the wave function of the Cooper pair given by equation
(12.30). Equation (12.35) obviously indicates that the pair travels with the
momentum P without being scattered throughout the whole volume of a
superconductor. This means that the phase coherence of the traveling wave is
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Figure 12.12. Motion of electrons in the superconducting state. When a supercon-
ductor is connected to a current source, all Cooper pairs receive the same drift veloc-
ity and, hence, the same momentum, in a direction (indicated by the white arrows)
opposite to the applied field E. The effective range where the attractive interaction
extends is shown by a dashed circle. This is the coherence length. Its diameter is about

100 nm for pure metals like Pb.



infinitely long and that the quantum effect should be manifested on a macro-
scopic scale. For example, we consider a superconducting cylinder and apply a
magnetic field parallel to its axis. As discussed in Section 12.2, a surface current
is induced such that the resultant field in the cylinder is zero, i.e., B�0. This is
the Meissner effect and the manifestation of a perfect diamagnetism. The cir-
culating surface current induces a magnetic flux inside the cylinder. London
suggested that the magnetic flux trapped in a superconducting cylinder would
be quantized in the units of h/e, since an orbiting electron forms a stationary
standing wave in the same manner as an electron in a free atom.

We know that the orbit of a core electron around a nucleus is quantized and
takes only discrete values. This is the phenomenon in a microscopic atom. The
orbit of the superconducting electrons circulating in the cylinder is really on a
macroscopic scale and the phase coherence extends over centimeters. London’s
prediction was proved experimentally in 1961 [10]. The trapped magnetic fluxes
are not only quantized but also the units are h/2e, which is just one-half the
value predicted by London. This can be easily understood, since the supercon-
ducting electron has a charge (�2e) instead of (�e) as a result of the forma-
tion of the Cooper pair. This experiment demonstrated the great intuition of
London and the validity of the BCS theory. In Section 12.2, the charge of the
superconducting electron is intentionally expressed as qs but now it is proved
to be qs��2e.

12.15 Type-I and type-II superconductors

Upon the exposure to magnetic fields below Hc, a superconductor exhibits a
perfect diamagnetism and the magnetic susceptibility is given by 	�M/�0Hext

��1(	��1/4
 in CGS units). Once the magnetic field exceeds Hc, the super-
conducting state is transformed into the normal state, the magnetization of
which becomes practically zero or, more precisely, of the order of 10�5mol as
listed in Table 3.2 (in CGS units). Therefore, the magnetic field dependence of
the magnetization forms a triangle as shown in Fig. 12.13(a). The supercon-
ducting pure elements like Pb, Sn and Hg exhibit a magnetization curve like
that shown in Fig. 12.13(a). They are called type-I superconductors.

All superconductors do not always exhibit such behavior. The magnetiza-
tion curve shown by Fig. 12.13(b) is observed in type-II superconductors.
There are two critical magnetic fields Hc1 and Hc2, which are called the lower
and upper critical fields, respectively. As will be discussed below, the magnetic
fluxes begin to penetrate into the superconductor in a quantized form and the
superconducting state is gradually destroyed, once the applied field exceeds
Hc1. It is completely transformed to the normal state, only when the applied
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field exceeds the value of Hc2. Both superconducting and normal states coexist
in magnetic fields between Hc1 and Hc2. This is called the mixed state. The resis-
tivity remains zero up to Hc2.

Prior to a discussion of a type-II superconductor, it may be worthwhile dis-
cussing the intermediate state in a type-I superconductor. For example, we
apply a magnetic field to a type-I superconducting sphere. The density of the
magnetic lines becomes the thickest along the equator perpendicular to the
magnetic field. This can be seen in Fig. 12.2(d). When the applied field reaches

of the critical field Hc, the magnetic field at the equator has already reached
Hc and the magnetic field begins to penetrate into the superconductor. The
whole sphere becomes normal when the applied field reaches Hc. The state in
the fields Hc"H"Hc is called the intermediate state and is a mixture of the
superconducting and normal states.7

As is clear from the argument above, the boundary energy plays a crucial role
in determining if the intermediate state or the mixed state is formed upon appli-
cation of the magnetic field. The magnetic flux penetrates into the supercon-
ductor over the distance of the penetration depth � to cancel the flux density

2
3

2
3
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17 An intermediate state is realized when the boundary energy is positive, whereas the mixed state is realized
when it is negative. Normal and superconducting phases in the intermediate state are fairly large in size
and can be seen with the naked eye. In the mixed state, the magnetic fluxes enter into the superconduct-
ing phase in a quantized form and are distributed over the superconducting phase with a size less than
10�8m. Note that only its core is in the normal state, as is illustrated schematically in Fig. 12.14.

(a)

(b)

Figure 12.13. Magnetization curve for (a) ideal type-I and (b) ideal type-II super-
conductors. The magnetization curves shown are reversible in both cases.



inside. A positive magnetic energy is built up in the superconductor and its
value increases from zero to �0H

2 per unit volume, as given by equation
(12.15), over the distance � in the superconductor. This positive magnetic
energy competes with the negative contribution to the free energy due to elec-
tron ordering in the superconducting state. The value of the order parameter
�� (r)�2, which represents the density of the superconducting electrons, must be
finite and uniform well inside the superconducting region. The ordering energy
certainly lowers the free energy of the superconducting region relative to the
normal region. However, if the order parameter changes abruptly at the boun-
dary, the kinetic energy goes to infinity there. Therefore, the order parameter
�� (r)�2 has to increase gradually from zero to a finite value over the distance �
in order to minimize an increase in the kinetic energy. The distance � is called
the coherence length and is known to be essentially equivalent to the coherence
length introduced in the BCS theory to characterize the spatial correlation of
the paired electrons. The coherence length in type-I superconductors is known
to be about ��10�6m (�103nm) but that in type-II superconductors is much
shorter because of the decreasing mean free path of electrons.8 The competing
magnetic and ordering energies cancel near the boundary only if ���.

Ginzburg and Landau [7] showed that the boundary energy becomes posi-
tive and the intermediate state is stabilized, if the ratio ���/� is lower than
1/ �0.707. For instance, the Ginzburg–Landau constant � for pure Pb is 0.4
and satisfies this condition. On the other hand, the boundary energy becomes
negative, if �	1/ . Now the magnetic field can penetrate into a super-
conductor by dividing it into as many thin normal states as we wish. Abrikosov
[11] later extended the Ginzburg and Landau theory and showed theoretically
that, when the magnetic field exceeds Hc1, the magnetic fluxes begin to pene-
trate into the superconductor in a quantized form and the mixed state persists
up to the upper critical field Hc2. The Abrikosov theory provided the theoreti-
cal basis for a superconductor with �	1/ and established a very important
ground for the application-oriented research on superconductors. In summary,
we see that type-II superconductors are designated as those with �	1/
while type-I superconductors as those with �
1/ .

12.16 Ideal type-II superconductors

The magnetization curve observed in a real superconductor of either type-I or
type-II is always more or less irreversible due to the presence of unavoidable
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2
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18 The coherence length �0 in an ideally pure metal is decided by its intrinsic property, while that in an impure
metal or alloy decreases with a decrease in the electron mean free path �e. In an impure specimen, the

coherence length � is approximated as . [A. B. Pippard, Physica 19 (1953) 765.]
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impurities and defects. However, we consider in this section the mixed state of
an “ideal” type-II superconductor, which is defined as that whose magnetiza-
tion curve is reversible in both increasing and decreasing magnetic fields, as
illustrated in Fig. 12.13(b). The mixed state is achieved by applying a magnetic
field in the range Hc1"H"Hc2. The resulting quantized magnetic flux distri-
bution is illustrated schematically in Fig. 12.14(a). It is seen that the flux lines
are distributed uniformly in the superconducting matrix. Its core, through
which the magnetic flux penetrates, is in the normal state and the supercon-
ducting current is circulating around it. The magnetic flux lines repel each other
and form a close-packed regular triangular lattice to minimize the repulsive
energy. Figure 12.14(b) illustrates how the order parameter or the number
density of superconducting electrons approaches zero towards the center of the
magnetic flux lines in the region 2#, whereas (c) shows how the magnetic flux
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Figure 12.14. Schematic illustration of the mixed state in an ideal type-II supercon-
ductor. (a) Magnetic flux distribution penetrating into the superconductor. A circle
with an arrow indicates the screening current flowing around a quantized flux line. The
magnetic fluxes are distributed so as to form a close-packed regular triangular lattice.
(b) Number density distribution of the superconducting electrons, where 2# represents
the coherence length. (c) Magnetic flux density distribution, where 2� represents the

penetration depth. [From ref. 12.]



penetrates into the superconducting region within the range 2�. As the applied
magnetic field H is increased beyond Hc1, the density of the quantized fluxes
increases in the superconductor and the average distance between neighboring
fluxes is gradually reduced. At the upper critical field Hc2, the magnetization M
becomes essentially zero as shown in Fig. 12.13(b), and the magnetic flux
density B equals �0Hc2. The superconductor is completely transformed into the
normal state. In ideal type-II superconductors, the superconducting current is
hardly conveyed in contrast to the non-ideal one containing various types of
imperfections, which will be discussed in the following section.

12.17 Critical current density in type-II superconductors

Type-II superconductors, which exhibit a large hysteresis in the magnetization
curve, are practically of great importance, since they are capable of carrying a
large amount of superconducting current. To begin with, we discuss the two
different types of currents flowing through a superconductor. One is the trans-
port current supplied from an external source and the other is the screening
current induced by applying a magnetic field to a superconductor. Hence, the
total current density is given by

J�Ji�JH, (12.36)

where Ji is the transport current and JH is the screening current [12]. There is
a maximum superconducting current density above which a finite resistivity
appears. This is defined as the critical current density Jc. In a type-I supercon-
ductor, a finite resistance appears when the sum of the applied magnetic field
and the magnetic field caused by the transport current exceeds the critical field
Hc at any point on the surface of the superconductor. Thus, the stronger the
external field, the smaller the value of the Jc is. In other words, the critical
current density for type-I superconductors is simply decided by the value of the
critical magnetic field.

The behavior of Jc is more complex in type-II superconductors, because the
superconducting current flows not only just at the surface but also around the
magnetic fluxes distributed inside the superconductor. First, we consider an
ideal type-II superconductor, to which a magnetic field exceeding the lower crit-
ical field Hc1 is applied along its z-axis, as illustrated in Fig. 12.14(a). We know
that the screening current JH flows around each quantized magnetic flux. Since
the distribution of magnetic fluxes is everywhere uniform in the ideal type-II
superconductor, the x-components of JH circulating around the adjacent mag-
netic fluxes are equal in magnitude but opposite in direction to each other so
that they cancel out and give rise to no net current. This is indeed an obvious
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solution from the Maxwell equation rotB��0Js (rotB�(4
/c)Js in CGS units),
since rotB�0 holds in the case of a spatially uniform magnetic flux distribution.

In a “non-ideal” type-II superconductor, defects or non-superconducting
precipitates are present as pinning centers and, because of this, the magnetiza-
tion curve becomes irreversible. As emphasized in Fig. 12.14(b), the core of the
magnetic flux is in the normal state. Thus, the magnetic flux tends to be trapped
or pinned by these non-superconducting regions, because, otherwise, the mag-
netic flux has to expend some extra energy to destroy the superconducting state.
Clearly, the flux pinning effect must be responsible for the manifestation of the
irreversible magnetization curve.

In type-II superconductors containing pinning centers, the distribution of
magnetic fluxes is no longer uniform. Consider such a type-II superconductor
having an infinite xz-plane and a finite length L in the y-direction with the mag-
netic field applied along the z-axis. The flux distribution is not uniform, as illus-
trated in Fig. 12.15(a). We see clearly that the magnetic fluxes are more
concentrated near the surface than at the center because of the pinning effect,
giving rise to a gradient in the magnetic flux distribution along the y-direction.
This is shown in Fig. 12.15(b). Obviously, the cancellation of the screening
current JH no longer occurs when the magnetic flux distribution has a finite
gradient. Indeed, the Maxwell equation above results in a net critical current
flowing along the x-direction, as shown in Fig. 12.15(c).

When the current density J appears in the presence of the magnetic flux
density B, the Lorentz force F�J
B is generated. If the pinning force Fp per
unit length of core is stronger than the Lorentz force, the pinned magnetic
fluxes will not move. Thus, the superconducting current density Js can flow
along the x-direction in the presence of the magnetic field. However, when the
Lorentz force exceeds the pinning force, the magnetic flux begins to move. A
finite �B/�t gives rise to a voltage through equation (12.5), resulting in a finite
resistance. Thus, it is critically important to introduce intentionally effective
pinning centers into type-II superconductors so as to achieve as high a criti-
cal current density as possible. This is equivalent to making the hysteresis in
the irreversible magnetization curve as large as possible (see Fig. 12.23).

Type-II superconductors have received much attention from the point of
view of their practical applications. For example, a very high magnetic field can
be produced by winding a solenoid coil with wires of a type-II superconduct-
ing material and feeding a large superconducting current through it. This is a
superconducting magnet. A superconducting magnet capable of producing
magnetic fields up to 18 tesla is commercially available. The superconducting
properties of representative type-II superconducting materials are listed in
Table 12.2.
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The Nb–Ti and Nb3Sn superconductors have been widely used as super-
conducting wires in a superconducting magnet.9 Figure 12.16 shows the mag-
netic field dependence of the critical current density Jc at 4.2K for these
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19 A complete solid solution is formed in the Nb–Ti system. Superconducting Nb–Ti composite wire con-
sists of a larger number of Nb–Ti filaments of the composition near Nb40Ti60 embedded in a Cu matrix.
This is achieved by repeated cold elongation with subsequent annealing in the range 300–500°C to pre-
cipitate alpha-Ti fine particles which act as pinning centers in the superconducting matrix. The supercon-
ducting characteristics in the Nb–Zr system are poorer than those in Nb–Ti alloys. Because of its brittle
nature, the Nb–Zr is not commercially produced as superconducting wire.
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Figure 12.15. (a) Distribution of the magnetic fluxes in a type-II superconductor
containing pinning centers. A magnetic field is applied parallel to the z-axis. The spec-
imen is assumed to be infinitely long in both x- and z-directions but L in the y-direc-
tion. (b) The derivative of the z-component flux density, �Bz /�y, is assumed to be

constant. (c) The critical current density Jc flows along the x-direction.
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Table 12.2. Superconducting characteristics of representative type-II
superconducting materials

superconducting Hc2 (T)
material Tc (K) at 4.2 K structure

V3Ga 14.8 23.61 A15
Nb3Sn 18.0 26.01 A15
Nb3Al 18.7 29.51 A15
Nb3Ga 20.2 33.01 A15
Nb3Ge 22.5 37.01 A15
Nb–Tia 10.1 12.11 bcc
PbMo6S8 15.1 541.0 hexagonalb

Note:
a See footnote 9, p. 366, concerning the Nb–Ti system.
b The compound crystallizes into the hexagonal structure at ambient temperatures
but transforms into a triclinic structure at low temperatures. There exist a number of
isomorphous compounds given by the chemical formula MxMo6X8 (1�x�4) with
M�Pb, Sn, In, Zn, Cd, Al, Cu, Ag or any 3d-transition metal from Cr to Ni and
X�chalcogen (O, S, Se, Te) or halogen (F, Cl, Br, I). They were studied extensively
by a French chemist, R. Chevrel, and christened “Chevrel compounds”. Most of
them undergo a transition to the superconducting state at low temperatures.
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Figure 12.16. Applied magnetic field dependence of the critical current density at 4.2
K for various superconducting materials. (See footnote 9, concerning Nb–Ti and
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superconducting materials. It is clear that Jc values exceeding 50000A/cm2 have
been achieved at 4.2K in a magnetic field of 10 tesla for Nb–Ti and of 19 tesla
for Nb3Sn.

12.18 Josephson effect

We have shown in Section 12.8 that the energy gap of a superconductor can be
deduced by measuring the tunneling current passing through a very thin insu-
lating layer sandwiched between a superconductor and a normal metal. In this
experiment, the tunneling current begins to flow only when the electron at the
Fermi level in the normal metal can tunnel through the insulating layer. This
condition is fulfilled when the applied voltage exceeds the energy gap. What
happens if two superconductors are separated by a very thin insulating layer?
Now we have to study the tunneling condition for the Cooper pair supercon-
ducting electrons.

A macroscopic wave function is formed in a superconductor, since a large
number of Cooper pairs constitute a coherent state as described in Sections
12.12–12.14. Let us write the macroscopic wave function as �(r)� 	�	ei� with its
phase shift �. Suppose we have two superconductors A and B. If A and B are
independent, then their phase shifts �A and �B are also independent of each
other. However, the situation changes if A and B are separated by a very thin
insulating layer, the thickness of which is narrower than the coherence length
of the Cooper pair electrons. Now the Cooper pair electrons in superconduc-
tor A can tunnel into superconductor B across the insulating layer. As a result
of the tunneling effect, �A and �B become no longer independent. Josephson
[13] proved that the tunneling current is crossing the insulating layer is given by

is�icsin(�B��A)�icsin��, (12.37)

where ic is the maximum superconducting tunneling current obtained when
���
/2. Here ic is often called the Josephson critical current. According to
equation (12.37), the phase difference �� is not uniquely determined from the
measured is but takes either 2
n��� or 2
n�(
���).

The device consisting of two superconductors separated by a very thin insu-
lating layer is called the Josephson device and its junction the Josephson junc-
tion. For example, the Pb–PbO–Pb Josephson device is made of two Pb metal
layers having Tc�7.2K and a PbO insulating layer of about 1nm. The I–V
characteristics shown in Fig. 12.17(a) can be obtained if the current I is fed to
the Josephson device and the voltage across it is measured. No voltage is gen-
erated, as long as the feeding current is lower than ic. This implies that the
superconducting tunneling current flows without any voltage drop between the
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two superconductors. The I–V characteristic along the line 0A in Fig. 12.17(a)
is often called the DC Josephson effect.

The value of the phase difference �� increases with increasing current I and
reaches its critical value I�ic at ���
/2. Once the current I exceeds ic, the
voltage jumps from point A to point B in the I–V characteristics. At this
instant, the device gives rise to a voltage equal to 2�/e, where 2� refers to the
energy gap of the superconductor deduced from equation (12.33). By further
increase in the current I, we obtain a more or less linearly changing I–V char-
acteristic shown as the line BC. Hysteresis appears and follows the path
C–B–D, when the current I is decreased from point C. The I–V characteristic
corresponding to C–B–D is due to the tunneling of the quasiparticles produced
by the destruction of the Cooper pairs and is different from the Josephson
effect.
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Figure 12.17. (a) I–V characteristics for the Josephson device. 0A represents the DC
Josephson effect. (b) Phase difference versus DC Josephson current in region 0A in (a).



Let us discuss the AC Josephson effect which appears when a DC voltage V
is applied across the junction. Under this condition, the superconducting tun-
neling current passing the junction changes with time and behaves as an alter-
nating current. This implies that the phase difference �� becomes time
dependent. Josephson [13] derived theoretically that the time-dependent phase
difference is related to the DC voltage V through the relation:

2eV�� . (12.38)

By integrating equation (12.38) with respect to time, we obtain

��� Vt�(��)0��t�(��)0, (12.39)

where ��(2e/�)V is the angular frequency. An insertion of this relation into
equation (12.37) yields

is�icsin[�t�(��)0], (12.40)

showing that an alternating current component appears in the Josephson
current. The AC Josephson effect has been confirmed by experiments and has
contributed to the development of a technique to measure a DC voltage with
a very high precision and to determine the universal constant e/h very accu-
rately.

The understanding of the DC and AC Josephson effects may be facilitated
by making use of a close analogy between a Josephson junction and a pendu-
lum [12]. Let us consider the general case in which the superconducting tunnel-
ing currents are time dependent. Then, equation (12.38) assures the presence
of a DC voltage in the circuit. Because of the presence of the DC voltage across
the junction, quasiparticles cross the junction through the normal tunneling
process. This must be resistive and can be represented by a resistance R across
the junction. In addition, the insulating junction layer would possess a capac-
itance C, since the two superconducting metal surfaces are parallel and in close
proximity to one another. Summing up these contributions, we can draw an
equivalent circuit as shown in Fig. 12.18(a). If the current I is supplied from a
constant current source, then the following equation holds:

I�C �icsin��. (12.41)

The relation V�0 should hold when the current I is increased from zero to ic.
Here the first and second terms in the right-hand side are absent and only the
third term remains. This corresponds to the line 0A in the I–V characteristics

dV
dt

�
V
R

�2e
� �

d��

dt
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shown in Fig. 12.17(a). Once I exceeds ic, the DC voltage appears and equation
(12.38) holds. Its insertion into equation (12.41) yields

I� �icsin��. (12.42)

We see from equation (12.42) that the total current I is now expressed in terms
of the phase difference associated with the superconducting tunneling current.

Equation (12.42) represents the differential equation involving the first and
second derivatives and sine function of the phase difference. One can easily
show that the motion of the rigid pendulum shown in Fig. 12.18(b) can be
described in terms of the same differential equation as equation (12.42). The
rigid pendulum has its arm of length l with a bob of mass m at its lower end.
The pendulum can rotate freely about the pivot P. Let us apply a torque T to
the pendulum. The Newton equation of motion is given by

M �T�mgl sin��$ , (12.43)

where � is the deflection angle and M is the moment of inertia of the pendu-
lum about P. Here the first term in the right-hand side represents the external
torque, the second term the contribution due to the weight of the bob and the
third term that due to the viscous force proportional to angular velocity d�/dt,

d�

dt
d 2�

dt2

C�

2e
 
d 2��

dt2 �
�

2eR
 
d��

dt
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(b)

(a)

P

l

Figure 12.18. (a) Equivalent circuit to the Josephson junction and (b) the rigid
pendulum.



which arises from the movement of the pendulum in air. This equation is easily
rearranged to the same form as equation (12.42):

T�M �$ �mglsin�. (12.44)

A comparison of equation (12.44) with equation (12.42) immediately leads
to the following one-to-one correspondence. First, the phase difference ��

plays the same role as the deflection angle � of the pendulum. The total current
I fed from the current source is equivalent to the external torque T. The capac-
itance C and the inverse of the resistance 1/R correspond to the moment of
inertia M and the viscous damping $, respectively. We also see that the super-
conducting tunneling current is�icsin�� corresponds to the horizontal dis-
placement x�lsin� of the bob and the voltage V�(�/2e)(d /dt)�� across the
junction to the angular velocity d�/dt of the pendulum.

Obviously, an increase in the current I is equivalent to an increase in the
torque T. When the torque is small, the pendulum stops at a constant deflec-
tion angle �. Thus d�/dt is zero. This explains why there is no voltage at the
Josephson junction when a current is small. However, when the deflection angle
reaches ��
/2 corresponding to the horizontal position of the pendulum, the
restoring torque due to gravity reaches its maximum value of mgl. This cer-
tainly corresponds to the situation where the superconducting tunneling
current reaches its critical value of ic.

If we further increase the torque T, the condition T�mgl sin� holds so that
the pendulum rises and passes through the vertical position. Once the deflec-
tion angle exceeds the vertical position, then both applied and restoring
torques act in the same direction. Now the pendulum continues to rotate
around its axis, so long as the torque continues to be applied. Here the angular
velocity d�/dt is no longer zero but becomes finite. We immediately see that a
finite d�/dt corresponds to the appearance of a DC voltage across the
Josephson junction. Once the current I exceeds the critical value ic, the I–V
characteristic jumps from point A to point B in Fig. 12.17(a). This explains the
AC Josephson effect on the basis of the analogy with the motion of a rigid pen-
dulum.

Let us once again consider the situation where the pendulum continues to
rotate. By projecting the rotational motion of the pendulum onto a horizontal
plane, we can describe its motion as an oscillator with amplitude 2l. As is clear
from Fig. 12.18(b), the position of the projected bob is given by lsin�, whereas
the corresponding quantity in the Josephson junction is icsin��. We see, there-
fore, that the oscillation of the pendulum with amplitude 2l is equivalent to that
of the superconducting tunneling current with amplitude 2ic.

d�

dt
d 2�

dt2
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The angular velocity is not constant but varies during each revolution. The fre-
quency of the rotation in the pendulum is defined as (1/2
)�d�/dt�, where �d�/dt�
is the time average of the angular velocity over one cycle. Similarly, the supercon-
ducting tunneling current oscillates across the junction with the frequency v
expressed as v�(1/2
)�d(��)/dt
. The frequency of the superconducting tunnel-
ing current can be calculated by inserting equation (12.38) into this relation:

v� VDC, (12.45)

where the DC component VDC denotes the time average of the voltage. Hence,
we see that the frequency v of the oscillation is related to the DC voltage across
the junction.

The AC Josephson tunneling effect is observed as a ripple of frequency
(2e/h)VDC superimposed onto the DC voltage VDC. The coefficient 2e/h is equal
to 4.836
1014 [hertz/volt] and, hence, a DC voltage of 1�V gives rise to a fre-
quency of 483.6MHz. We have thus established a technique of measuring the
DC voltage very accurately by making use of the relation (12.45), since the fre-
quency of the electromagnetic wave can be measured with a much higher pre-
cision than the DC voltage. The DC voltage determined by this technique has
been adopted as the standard voltage. The presence of the AC component in
the AC Josephson effect can also be confirmed by measuring the emission of
the electromagnetic wave with the frequency v from the junction, though its
intensity is very weak.

12.19 Superconducting quantum interference device (SQUID) magnetometer

A SQUID magnetometer utilizing the Josephson effect has been developed and
is widely used in many laboratories because of its high sensitivity to extremely
weak magnetic fields. It consists of a superconducting ring containing one or
more Josephson junctions. Here we will discuss the superconducting ring with
two junctions [12], as depicted in Fig. 12.19.

A measuring current I is supplied to this circuit. Since the ring is symmetri-
cal, it is precisely divided into two and I /2 flows through each junction. Now a
magnetic field of gradually increasing flux density B is applied perpendicular
to the plane of the ring and a circular current i is induced within the ring. Thus,
the current i�(I /2) flows through the right-hand side of the ring, whereas the
current i�(I /2) flows through the left-hand side. The phase change around any
closed superconducting circuit must be equal to an integral multiple of 2
 in
order to assure the coherence of the Cooper pair wave function throughout the
superconducting ring.

1
2


 �d��

dt 
�
1

2

 
2e
�

 �V
 �
2e
h
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Let us assume the phase difference of the tunneling current passing through
the Josephson junctions in the right- and left-hand sides of the ring to be � and
�, respectively, and the phase difference caused by the magnetic field to be
��(B). If the ring is superconducting everywhere, we should have the relation:

������(B)�2
n, (12.46)

where n is an integer. The phase difference due to the magnetic field can be
expressed as a function of the applied field or the magnetic flux �a passing
through the ring in the following form [12]:

��(B)� , (12.47)

where �0 is a quantum magnetic flux equal to �0�h/2e�2.0678
10�15 tesla
m2 mentioned in Section 12.14.10

The relation ����
[n�(�a/�0)] holds in equation (12.46), when the meas-
uring current I is turned off. The parameter � is no longer equal to �, when the
current I is on. Since ��� remains constant, we can write

��
 �&�n � ��a

�0
��

�2
�a

�0
�
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10 �0�hc/2e�2.0678
10�7 gauss cm2 in CGS units. A quantized flux unit is called the flux quantum or
fluxon or fluxoid.

B

�

Z

Y

X W

Figure 12.19. Principle of a SQUID magnetometer. X and W represent Josephson
junctions. The current I is fed through the junctions and the magnetic field of flux
density B is applied in a direction perpendicular to the plane of the ring. [From ref. 12.]



and

��
 �&, (12.48)

where & depends on the magnitude of the measuring current I. Now equation
(12.37) is explicitly written as

i� �icsin

and

i� �icsin (12.49)

An elimination of i from these two equations immediately leads to

I�2iccos sin&. (12.50)

Since sin&"1, we have the relation

I"2iccos . (12.51)

Equation (12.51) indicates that the critical measuring current is given by
Ic�2iccos	
(�a/�0)	, which is shown in Fig. 12.20 as a function of the applied
field �a. It exhibits oscillations with a period of �0 and takes its maxima when-
ever the magnetic flux �a becomes a multiple of �0. Hence, the magnetic fluxes
passing through the ring can be measured as multiples of �0. The measurement

�

�a

�0
�

�
 �n �
�a

�0
��

�
 �n �
�a

�0
�� &�I

2

�
 �n �
�a

�0
�� &�I

2

�n � ��a

�0
��
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Figure 12.20. Oscillating critical measuring current in presence of applied magnetic
field in SQUID magnetometer. [From ref. 12.]



of such a digitized quantity can be made very accurately, particularly since the
magnitude of �0 is extremely small. This is the reason why a very weak mag-
netic field can be measured by using a SQUID magnetometer. For example,
magnetic fields as small as 10�10 Oe, like a brain wave, can be measured. The
SQUID magnetometer is being very widely used not only in the fields of science
and technology but also in medical science.

12.20 High-Tc superconductors

Until 1986, the Nb3Ge compound with Tc equal to 23K had been recognized
as the superconductor having the highest superconducting transition temper-
ature. Bednorz and Müller [2] observed in 1986 a sharp drop in resistivity below
35K in a La–Ba–Cu–O compound and suggested the possibility of synthesiz-
ing a high-Tc superconducting oxide. Immediately after their report, Tanaka’s
group in the University of Tokyo confirmed that the (La1�xSrx)2CuO4 com-
pounds exhibit both a resistivity zero and the Meissner effect below 33K and
took this as evidence for the onset of superconductivity. Since then, researches
to synthesize new superconducting ceramic oxides have been intensively
carried out all over the world.

In 1987, Wu et al. discovered the YBa2Cu3O7 compound, which undergoes
a superconducting transition at 90K. Its crystal structure was identified later,
and is shown in Fig. 12.21. In 1988, Maeda et al. synthesized a
Bi–Sr–Ca–Cu–O compound with the onset Tc value of 110K and Sheng and
Hermann a Tl–Ba–Ca–Cu-O compound with a Tc of 110K. The highest Tc

value reported so far is 164K, which was revealed in HgBa2Ca2Cu3O8 under a
pressure of 31GPa. All these high-Tc superconductors possess CuO2 planes in
a layered structure, as shown in Fig. 12.21, which are now known to be respon-
sible for conveying superconducting currents. Representative high-Tc super-
conductors are listed in Table 12.3. The electronic structure and electron
transport properties of high-Tc cuprate superconductors have been extensively
studied in the last decade in both superconducting and normal states with the
aim of clarifying the mechanism of superconductivity. Its development will be
briefly outlined in Chapter 14.

High-Tc superconducting materials have also received strong attention from
the point of view of practical applications. Though a number of superconduct-
ors with Tc exceeding 77K, the boiling point of liquid nitrogen, have been syn-
thesized, it does not necessarily mean that they are immediately ready for
practical use. As mentioned in Section 12.17, the development of a type-II
superconductor having a high Jc value in the presence of magnetic fields is crit-
ically important. Indeed, we have shown in Fig. 12.16 that ordinary low-Tc
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superconductors like Nb–Ti and Nb3Sn exhibit Jc values exceeding 50000A/cm2

in a magnetic field of 10 tesla at 4.2K and have already been employed as super-
conducting wires in commercially available superconducting magnets.

A large number of data has been reported concerning the critical current
densities of high-Tc superconductors. For example, a Bi2223-type supercon-
ductor with the chemical formula (BiPb)2Sr2Ca2Cu3Ox has been synthesized as
tapes. Figure 12.22 shows the magnetic field dependence of the critical current
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Figure 12.21. Crystal structure of YBa2Cu3O7�&
. The parameter & (0"&"1) indi-

cates the deficiency of oxygen atoms in the Cu–O chain. YBa2Cu3O7 with &�0 corre-
sponds to 100 % occupation of oxygen atoms and exhibits superconductivity with

Tc�92 K. [See, for example, J. D. Jorgensen et al., Phys. Rev. B 41 (1990) 1863]
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density for this material reported in 1995. At 4.2K a critical current density
exeeding 105A/cm2 can be achieved even in the presence of a magnetic field of
20 tesla. Unfortunately, however, it drops substantially at 77K, being
12000A/cm2 in a magnetic field of 1 tesla and dropping to the order of only
103A/cm2 when a magnetic field of only 0.5 tesla is applied perpendicular to
the plane in which the current flows (open circles). This clearly indicates that
the pinning effect is severely weakened at 77K in Bi2223-type superconductors.
A similar situation exists in the case of Bi2212-type superconductors.

As mentioned in Section 12.16, the critical factor determining achievement
of high critical current densities is whether or not effective pinning centers can
be introduced in the superconducting matrix. The introduction of pinning
centers effective even at 77K is much easier in rare earth–123 type supercon-
ductors than in Bi2223-type superconductors.

The magnetization curve shown in Fig. 12.23 is for the Nd123 superconduc-
tor synthesized by the melt-processing technique [14], through which non-
superconducting Nd4Ba2Cu2O10 fine particles can be homogeneously dispersed
throughout the superconducting matrix. The critical current density Jc can be
determined from the current above which a finite resistance appears. We call
the value thus determined the transport Jc. Alternatively, the value of Jc can be
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Figure 12.22. Magnetic field dependence of the critical current density of a Ag-
sheathed Bi2223 superconducting tape made by packing Bi2223 powder into an Ag tube
followed by plastic deformation. The bottom abscissa scale applies only to data at 77.3K,
the top to data at 4.2, 20 and 27 K. The c-axis of the Bi2223 phase is oriented preferen-
tially perpendicular to the surface due to the mechanical deformation. [M. Ueyama

et al., Adv. in Superconductivity VII, Proc. ISS ’94 (Springer, Tokyo 1995)]



evaluated from the magnetization curve by applying the Bean critical-state
model [15]. For the sake of simplicity, consider a rectangular specimen with the
dimensions L
L
2d with L��2d and apply the magnetic field parallel to the
L
L plane, as in Fig. 12.15(a). This may be approximated as an infinite plane
with a thickness 2d with the magnetic field parallel to the plane. According to
the Bean model, the critical current density Jc at a given applied field is easily
calculated by inserting the measured width �MH in the hysteresis curve, as
marked in Fig. 12.23, into the relation:

Jc� �20�MH /(2d ), (12.52)

where Jc, �MH and d are in the practical units of A/cm2, emu/cm3 and cm,
respectively [15]. The critical current density Jc thus obtained for the data in
Fig. 12.23 is deduced to be 45000A/cm2 in a magnetic field of 1 tesla at 77K.

Once the magnetic fluxes are pinned in a superconductor, they essentially
remain there after the magnetic field is removed, so long as the specimen is in
the superconducting state. As a result, the superconductor behaves as a perma-
nent magnet. Recently, the fabrication of an extremely strong superconducting
permanent magnet has been reported [16]. A c-axis oriented SmBa2Cu3O7�&

superconductor, 36mm in diameter, was grown by the melt-processing tech-
nique. Non-superconducting Sm2BaCuO5 fine particles a few �m in diameter
and Ag particles 20–50�m in size were homogeneously distributed in the
superconducting 123-phase matrix. The Ag particles dispersed in the matrix

�MH

�0d
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Figure 12.23. Magnetization curve at 77 K for a NdBa2Cu3O7�&
superconducting

quasi-single crystal grown by the melt-processing technique. The sample was 1.8
mm
1.75 mm
0.87 mm in size and the magnetic field applied parallel to the c-axis.

[A. Takagi et al., Physica C250 (1995) 222]



enhanced the mechanical strength against fracture during magnetization and
thermal cycling. The sample was then magnetized by cooling it below Tc in the
presence of a magnetic field. The trapped field distribution, which was meas-
ured after the removal of the applied magnetic field, is shown in Fig. 12.24(a).
It can be seen that the trapped magnetic flux density reaches 1.7 tesla at the
center of the superconductor at 77K. Its value could be increased to 9 tesla by
magnetizing it at 25K. The Nd2Fe14B magnet, known as the most powerful per-
manent magnet available at present, possesses a magnetic flux density of only
0.25 tesla 0.5mm above its surface, as shown in Fig. 12.24(b).11 This clearly
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11 Alloys with the formulae Nd2Fe14�xCoxB and Nd2�yDyyFe14B are often employed in the fabrication of
Nd–Fe–B permanent magnets.
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Figure 12.24. (a) Trapped flux distribution at 77 K for a SmBa2Cu3O7�&
supercon-

ductor, 36 mm in diameter. The axial component Bz was measured by scanning the Hall
sensor 1.1 mm above the surface of the sample. [From ref.16] (b) Trapped flux distri-
bution 0.5 mm above the surface of a commercially available Nd–Fe–B permanent
magnet, 22 mm in diameter. (See footnote 11, below, concerning the Nd–Fe–B system.)



demonstrates the strength of a superconducting permanent magnet, which is
known as a “Superconducting Bulk Magnet (SBM)”. Its development is very
promising and, hopefully SBMs will be used in various applications, such as a
superconducting motor, by taking full advantage of the extremely high trapped
fields.

Exercises

12.1 Show that �2Js�(�0nsqs
2/ms)Js by using the London equation �2B�

(�0nsqs
2/ms)B in equation (12.12). This indicates that the screening current

Jsobeys the same spatial distribution as the penetrated magnetic flux density.

12.2 A permanent current is induced in a superconducting ring with circum-
ference L by approaching a permanent magnet. Apply the Sommerfeld condi-
tion (7.4) and show that the magnetic flux penetrating the ring is quantized.
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Chapter Thirteen

Magnetism, electronic structure and electron
transport properties in magnetic metals

13.1 Prologue

In Section 3.6, we explained the magnetism of simple metals, such as Na, Zn
and Al, as arising from contributions due to both conduction electrons and
ion cores. The former gives rise to Pauli paramagnetism and Landau diamag-
netism whereas the latter the diamagnetism associated with the orbital motion
of the core electrons. The magnetic susceptibility of these metals is essentially
temperature independent and is only of the order of 1025mol, as listed in
Table 3.2. This weak magnetism scarcely affects the electron transport prop-
erties. For this reason, these metals and their alloys are classified as non-
magnetic metals. In this chapter, we discuss the magnetism and its effect on the
electron transport of magnetic metals. Here magnetic metals include: ferro-
magnetic and antiferromagnetic ones possessing spontaneous magnetization
below the ordering temperatures called the Curie temperature and the Néel
temperature, respectively; spin-glasses; and paramagnetic ones whose mag-
netic susceptibility obeys the Curie–Weiss law down to low temperatures. In
all cases, a magnetic moment is present and substantially affects the electron
transport properties.

There are a number of excellent textbooks concerning both basic and appli-
cation-oriented magnetism [1–5]. The emphasis in the present chapter is placed
on the interrelationship between magnetism and the electronic structure and
electron transport properties of magnetic metals.

13.2 Classification of crystalline metals in terms of magnetism

Crystalline metals can be divided into five different groups in terms of magne-
tism, as listed in Table 13.1. Metals in groups (I) to (IV) are characterized by
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Table 13.1. Classification of crystalline metals and alloys in terms of magnetism

magnetic system non-magnetic system

group I II III IV V
ferromagnetism weak spin-glass or paramagnetism weak 

ferromagnetism magnetically paramagnetism
dilute alloys or

diamagnetism

representative Fe, Co, Ni ZrZn2, Sc3In Au–(Fe), Cu–(Fe) Ti, Zr, Nb Na, Mg, Al,
metals and Cu, Ag, Au,
alloys Zn, Pb

characteristic (TC.300 K) (TC,,300 K) the spin weak temperature temperature
features of Fe 1043 K ZrZn2 21K freezing dependence of independent
magnetism Co 1400 K Sc3In 5.5 K temperature magnetic magnetic

Ni 631 K in spin-glass susceptibility susceptibility
or Curie–Weiss due to Pauli
type magnetic paramagnetism
susceptibility
in dilute alloys
(Kondo effect)

resistivity Fe 9.7 Nb 14.5 Al 2.69
at 300 K Co 6.2 Mo 5.7 Cu 1.67
(mV-cm) Ni 6.8 Pd 10.8 Na 4.6



the possession of a Fermi level either in the d band or the d states.1 Among
them, those in groups (I) to (III) are magnetic whereas those in group (IV) are
non-magnetic. Metals in group (V) possess a Fermi level in the sp band and are
certainly non-magnetic.2

Group (I) contains ferromagnetic metals and alloys with a Curie tempera-
ture well above room temperature. Here the Curie temperature TC refers to the
temperature above which ferromagnetism becomes unstable and is taken over
by paramagnetism. The temperature dependence of magnetization at low tem-
peratures in group (I) metals may be well described in terms of spin wave exci-
tations, which will be discussed in Section 13.4. The metals Fe, Co, Ni and their
alloys belong to this group. Antiferromagnetic metals and alloys with a Néel
temperature TN above 300K are also included in group (I).

Metals and alloys in group (II) also exhibit spontaneous magnetization only
at low temperatures. However, the temperature dependence of magnetization
is no longer described in terms of the spin wave approximation. The ZrZn2 and
Sc3In intermetallic compounds are included in this group. The details of the
weak ferromagnetism will be found in the literature [6].

Metals and alloys in group (III) carry a localized moment but exhibit no
spontaneous magnetization down to the lowest temperature available. Spin-
glass is classified within this group. It is defined as a substance obeying the
Curie–Weiss law down to the spin freezing temperature Tf, below which the
randomly oriented magnetic moments are “frozen” in motion without result-
ing in any spontaneous magnetization. Paramagnetic metals and alloys
obeying the Curie law down to the lowest temperature available are also
included in group (III). Among these are dilute alloys, in which very small
amounts of impurity atoms carrying finite magnetic moments are dissolved.
As a typical example, we cite a Cu metal containing only a few ppm of Fe
atoms. A resistivity minimum phenomenon is often observed at low tempera-
tures in these magnetically dilute alloys and is known as the Kondo effect. Here
the s–d interaction plays a critical role and has been discussed as one of the
most exciting topics in the electron theory of metals in 1970s and 80s.

Metals and alloys in group (IV) carry no localized magnetic moments and
are non-magnetic, though the Fermi level is situated in the middle of the d
band. Hence, a relatively large Pauli paramagnetism is observed. The magnetic
susceptibility shows only a weak temperature dependence of the Pauli
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11 There are other series of magnetic metals containing the rare-earth and actinide elements, in which 4f and
5f electrons form an incomplete shell, respectively, and are responsible for yielding the magnetic moment.

12 Note that the p-like states always mix with the s-like states in a solid, even though only s electrons exist as
outermost electrons in a free atom. In particular, electronic states near the Fermi level are dominated by
the p-like states in typical mono- and divalent metals like Na, K, Mg, Zn, etc. Hence, the valence elec-
trons in a solid are simply referred to as sp electrons.



paramagnetism (see Exercise 3.1). Typical transition metals like Ti, V, Zr, Nb,
Mo, Pd, Pt and their alloys are included in this group. Metals and alloys pos-
sessing a Fermi level in the sp band are classified within group (V). All non-
magnetic metals like Na, Cu, Ag, Au, Mg, Zn, Al, Pb and their alloys belong
to this group. The electronic properties of metals and alloys in group (V) have
already been discussed in previous chapters.

As will be discussed in Chapter 15, amorphous alloys are also classified into
five groups in the same way as in Table 13.1: groups (I) to (IV) include amor-
phous alloys possessing a Fermi level in the d band, whereas group (V) include
those in the sp band. In the former, both sp and d electrons coexist at the Fermi
level and, in principle, may equally contribute to the electron conduction. This
is indeed true for high-resistivity amorphous alloys, where the mean free path
of the sp-electrons is shortened and is comparable to an average atomic dis-
tance (see Section 15.5). In the case of crystals, however, the Bloch theorem
holds and, hence, the mean free path of the sp electrons is much longer than an
average atomic distance so that only sp electrons are responsible for the electri-
cal conduction. Instead, the d electrons at the Fermi level in group (I) to (IV)
crystal metals are assumed to be immobile.

13.3 Orbital and spin angular momenta of a free atom and of atoms in a 
solid

Our aim in this section is to study the origin of the magnetic moment of the
free atom or ion and those in a solid. It is well known that the 3d-transition
metals Fe, Co and Ni are ferromagnetic at room temperature. The electronic
configurations in the corresponding free atom are composed of (1s)2, (2s)2,
(2p)6, (3s)2, (3p)6 core electrons plus the (3d)n and (4s)2 outer electrons, where
the integer n is 6, 7 and 8 for Fe, Co and Ni, respectively. Since the Ar core con-
sisting of 18 inner electrons forms a closed shell and each orbital is shared by
equal numbers of spin-up and spin-down electrons, its total orbital and spin
angular momenta are reduced to zero. Thus, the Ar core bears no magnetic
moment and can be ignored in the rest of the discussion.

The electron configurations outside the Ar core determine the magnetic
structure in a free atom. The 3d orbitals can accommodate a total of 10 elec-
trons per atom. However, the energy difference between the 4s and 3d orbitals
is so small that the 4s orbitals are often occupied prior to the occupation of the
3d orbitals, and the 3d orbitals form an incomplete shell. As noted in footnote
1, p. 385, 4f and 5f orbitals also form an incomplete shell in the rare-earth and
actinide metals and their alloys, respectively. In the present section, we discuss
exclusively the magnetism involving either 3d or 4f electrons.
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When more than two electrons occupy the incomplete shell, the quantum
number , of the orbital angular momentum and its z-component m, of each
electron no longer act as good quantum numbers owing to the presence of
the electron–electron Coulomb interaction.3 It is necessary to consider how the
orbital and spin momenta of the 3d or 4f electrons are combined to form the
momentum of the atom. The orbital angular momentum li of the i-th electron
in an incomplete shell is added vectorially to form a resultant orbital momen-
tum L for the atom and the spin angular momentum si is added likewise to form
a resultant spin angular momentum S.

The quantum number L of the resultant angular momentum L for an atom
having two electrons specified by orbital angular momenta l1 and l2 is allowed
to take the values:

L5(,11,2), (,11,221), ... , ),12,2) (13.1)

where ,1 and ,2 are their respective quantum numbers. The same rule is applied
to S. Both L and S and their z-components ML and MS are conserved and
employed as good quantum numbers in a free atom or ion.4 A magnetic
moment is associated with finite angular momenta L and S.5

Let us consider the spin configuration of the V13 free ion having two 3d elec-
trons outside the Ar core. These two 3d electrons possess the same quantum
numbers ,15,252. Hence, allowed values of L for the V13 ion are 4, 3, 2, 1
and 0 whereas those of S are 1 and 0. Among various combinations of L and
S, the electronic states incompatible with the Pauli exclusion principle must be
excluded. For example, L54 can take nine different ML values in the range 4
to 24 and the (L54, ML54) state arises when m,1

5m,2
52. Similarly, S51

can take three different MS values equal to 1, 0 and 21 and the (S51, MS51)
state arises when ms1

5ms2
5 . Thus, we see that the two 3d electrons occupy

the same electronic state ,52, m,52 and ms5 when the quantum number of
the ion is assigned to L54 and S51. This is in conflict with the Pauli exclu-
sion principle and must be excluded. Further simple manipulations lead to the
following five states being allowed: (L54, S50), (L53, S51), (L52, S50),

1
2

1
2
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13 The quantum number of the orbital angular momentum , is alternatively called the azimuthal quantum
number and allowed to take the values ,50, 1, 2, ··· (n21), where n is the principal quantum number. The
magnetic quantum number m, determines the component of the orbital angular momentum in the direc-
tion of the applied field and takes (2,+1) values given by m,5,, (,21), ···, 2(,21), 2,. The spin
quantum number s represents an intrinsic angular momentum about an internal axis and its z-component
ms can take either 1/2 or 21/2. The spin angular momentum and its z-components are "/2 and 6"/2,
respectively.

14 The eigenvalue of the square of the orbital angular momentum L2 for a free atom is given by L(L+1)"2

or )L)5 ". Similarly, we have )S)5 ".
15 The magnetic moment m is related to both orbital and spin angular momenta through the relation )m)5

gmB , where g is unity for J5L and 2 for J5S. The parameter g is called the Landé g-factor and
is given by g5(3/2)+{S(S+1)2L(L+1)}/{2J(J+1)}[refs. 1, 2].

ÏJ(J 1 1)

ÏS(S 1 1)ÏL(L 1 1)



(L51, S51) and (L50, S50).6 Among them, we must know which spin con-
figuration results in the ground state with the lowest energy.

The spin configuration of the free atom or ion in its ground state is deter-
mined by the Hund rule, which is stated as a combination of the following
rules:

1. The quantum number S of the resultant spin angular momentum is decided by max-
imizing msi

consistent with the Pauli exclusion principle (see Section 14.3).

2. The quantum number L of the resultant orbital angular momentum is decided by
maximizing m,i

consistent with rule (1).

3. J for a shell less than half occupied is given by J5 )L2S ), while that for a shell more
than half occupied is given by J5L1S.

When more than two electrons enter the 3d or 4f orbitals, their spins are
aligned in parallel to each other to maximize the resultant spin angular
momentum S. Among those satisfying rule (1), the spin configuration with the
maximum resultant orbital angular momentum minimizes the total energy of
the free atom or ion. The application of the Hund rule to the V31 free ion
immediately leads to the combination of S5 1 51 and L521153 or 3F2 in
its ground state. The ground state of a free atom or ion may be conveniently
assigned by positioning electrons in a matrix of column ms and row m, so as to
be consistent with the Hund rule above. As an example, the determination of
the ground state of the Dy31 ion possessing (4f)9 electrons in its 4f shell is illus-
trated in Fig. 13.1.

We have shown above that the spin configuration of the free atom can be
specified in terms of a combination of the resultant orbital and spin angular
momentum quantum numbers L and S. The 3d orbitals in the free atom are
degenerate corresponding to the different z-components ML of the quantum
number L. Because of this, the expectation value of the orbital angular
momentum remains finite (see Exercise 13.1). Note that both L and S in the
free atom or ion are not separately observed but what we observe is the total
angular momentum J given by their vector sum L6S.

Let us now consider 3d-transition metal ions in a solid. The degeneracy of
the 3d orbitals is lifted owing to exposure to the crystalline electric field induced
by surrounding ions, and the expectation value of the orbital angular momen-
tum L for any non-degenerate state vanishes [1–3] (see Exercise 13.1). This is

1
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16 The spin configuration of an atom is often denoted as (2S11)LJ following the Russel–Saunders nomencla-
ture. Capital letters S,P,D,F,G,H, ··· are used in place of L50, 1, 2, 3, 4, 5, ···, respectively. For example,
(L53, S51 and J52) is expressed as 3F2.



known as quenching of the 3d orbital angular momentum. On the other hand,
the spin state does not depend on the orbital motion of the 3d electrons and,
hence, is not influenced by the crystalline electric field. Thus, the magnetic
moment associated with 3d-transition metal ions arises almost exclusively from
their resultant spin angular momentum S. The L, S and J values of the free
atom in the 3d-transition metal series consistent with the Hund rule are shown
in Fig. 13.2(a), and the observed magnetic moment for the 3d-transition metal
ions in a solid is shown in Fig. 13.2(b). It is clear that the measured moment
arises essentially from the spin angular momentum S.

The rare-earth element generally exists as a trivalent ion in metals and com-
pounds by releasing the outermost (5d)1 and (6s)2 electrons as conduction elec-
trons. It is also important to note that the orbitals of 4f electrons are closer to
the nucleus than those of the (5s)2 and (5p)6 electrons, which form a closed shell
so that the 4f electrons are almost completely screened from the crystalline
electric field in a solid. Therefore, the orbital angular momentum in a free atom
remains conserved in a solid [1–5]. This is the reason why the magnetic moment
associated with the total angular momentum J is observed in the rare-earth
metals, as shown in Fig. 13.3.

In the following sections, we discuss ferromagnetism in the 3d-transition
metals. It is noted that the 3d electrons in a metal are not moving as freely as
the sp electrons but are not so tightly bound to each atom as core electrons.
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Figure 13.1. Spin configuration of (4f)9 electrons in an incomplete shell. The nine 4f elec-
trons in the Dy31 ion are filled in the shell so as to be consistent with the Hund rule. Its

ground state is L55, S55/2 and J515/2 otherwise expressed as 6H15/2.



This intermediate character of the 3d electrons cannot be rigorously treated in
the electron theory of metals. The magnetism associated with the 3d electrons
has been discussed in terms of the two different approaches: the localized elec-
tron model versus the itinerant electron model.

13.4 Localized electron model and spin wave theory

In Section 3.6, we derived the Curie law by assuming the conduction electron
as a classical particle carrying a magnetic moment. As a matter of fact,
Langevin assumed each atom in a metal to bear a localized magnetic moment
and derived the Curie law by calculating the distribution of the component of
the localized moment parallel to the external field in the thermal equilibrium
with its surroundings at temperature T. In 1907, Weiss proposed a new theory
concerning the origin of ferromagnetism by introducing the concept of an
internal magnetic field into the Langevin theory [1, 2]. Here the internal mag-
netic field is assumed to be proportional to the spontaneous magnetization M.

390 13 Magnetism in magnetic metals

Figure 13.2. (a) L, S and J of free atom in the 3d-transition metal series. (b) Observed
magnetic moment (open circles) together with the calculated values of and

of the 3d-transition metal ion in a solid.gÏJ(J 1 1)
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He obtained not only the condition for the onset of ferromagnetism but also
the Curie–Weiss law, which describes the temperature dependence of the mag-
netic susceptibility in the paramagnetic state above the Curie temperature.

The energy of the atomic spins aligned by the internal field can be equated
with the thermal energy at the Curie temperature where the ferromagnetism
collapses. The internal field Hi, therefore, satisfies the relation

nmBHi>kBTC, (13.2)

where TC is the Curie temperature and mB is the Bohr magneton (see Section
3.6). Here each atom is assumed to possess the magnetic moment nmB. As listed
in Table 13.2, we have n52.2 and TC51043K for pure Fe metal. The internal
field turns out to be an extremely large value of Hi573106 Oe or 700 tesla for
Fe. Since a static magnetic field available in a laboratory is at most 23105 Oe
or 20 tesla, we realize how strong is the internal field. The origin of such an
extremely large magnetic field cannot be explained within the framework of
classical theory.

The very strong internal field originates from the exchange interaction of the
3d electrons. Let us first study the exchange interaction of two electrons in the
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Figure 13.3. (a) L, S and J of free atom in the rare-earth series. J5L2S holds for
less than half-filled shells and otherwise J5L1S. (b) Observed magnetic moment
(open circles) and the calculated values of of the rare-earth ions in a solid.gÏJ(J 1 1)



hydrogen molecule. According to the Pauli principle, the total wave function
given by the product of the orbital and spin wave functions must be antisym-
metric. The orbital wave function in a hydrogen molecule is antisymmetric if
the spin configuration forms the triplet state or S51.7 Conversely, it is symmet-
ric if the singlet state or S50 is formed. We can calculate the expectation value
for the ground state of a hydrogen molecule by using symmetric and antisym-
metric orbital wave functions.

The difference in the ground-state energy is explicitly written as

J5

5 f*
1(r1)f

*
2(r2) f1(r2)f2(r1)dr1dr2,

(13.3)

where «s and «t are the ground-state energies in the singlet and triplet states,
respectively (see Section 14.3). The energy difference given by equation (13.3)
is called the exchange integral J, since the integrand involves the various
Coulomb energy terms multiplied by the orbital wave functions fi(r1) and fi(r2)
with their coordinates exchanged. As is clear from equation (13.3), the

1 e2
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17 There are four possible spin configurations for the two electrons in a hydrogen molecule. The triplet state
refers to (↑↑), (↑↓+↓↑) and (↓↓) configurations or S51 with MS51, 0 and 21. All of them are symmet-
ric with respect to an interchange of spin variables. The singlet state refers to (↑↓2↓↑) or S50 with MS
50. It is antisymmetric with respect to spin variables (see Sections 12.11 and 14.3).

Table 13.2. Magnetic properties of several ferromagnetic metals and
intermetallic compounds

spontaneous
magnetization

magnetic moment Curieextrapolated to 0 K
extrapolated to 0 K temperature

substance (gauss/cm3) (Wb/m2) (mB)a (K)

Fe 1744 0.175 2.216 1043
Co 1435 0.145 1.721 1400
Ni 512 0.051 0.616 631
Gd 1980 0.198 7.011 293
Dy 3030 0.292 10.211 85
MnBi 675 0.068 3.521 630
Cu2MnAl 580 0.058 4.011 603

Note:
B5m0H1M (SI) and B5H14pM (CGS)
a See footnote 6 on p. 46 in Chapter 3.



exchange integral J can be equivalently viewed as arising from the difference in
alignments of spins, i.e., the triplet or singlet states, though it originates from
the electrostatic Coulomb energy.

As is clear from the argument above, the Hamiltonian for the exchange
energy between the two atom spins located at the lattice sites i and j can be for-
mulated as the scalar product of the spin operators Si and Sj:

Hspin52 JijSi·Sj, (13.4)

where Jij is an exchange integral given by equation (13.3). This is called the
Heisenberg model. The exchange integral is related to the overlap of the charge
distributions of the atoms i and j. Hence, it is often a good approximation to
consider the exchange interaction of a given atom only with its nearest neigh-
bor atoms and write Jij simply as J in the right-hand side of equation (13.4).
When J.0, the lowest ground-state energy is achieved by making the two atom
spins Si and Sj parallel to each other. This leads to the ferromagnetic coupling
of the two spins and the triplet state is formed. On the other hand, when J,0,
the two spins are antiferromagnetically coupled and the singlet state is formed.

At absolute zero, all spins are oriented in one direction in a ferromagnetic
metal.8 As discussed in Section 3.6, the magnetization is defined as the vector
sum of the magnetic moments per unit volume. The value at a maximum, where
all relevant magnetic moments are aligned in one direction, is termed satura-
tion magnetization. For the moment, we treat the spin operator of the j-th atom
given by equation (13.4) as a classical spin angular momentum Sj and assume
N identical spins to be equally spaced on a circle. The total exchange energy in
this system is written as

U522J Sj·Sj11. (13.5)

Its value is obviously equal to U0522NJS2, since Sj·Sj115S2 holds. Let us con-
sider the first excited state by reversing one spin in this system. The energy of the
system is increased to U15U018JS 2.9 This is, however, energetically unfavor-
able. Instead, we can construct an energetically more favorable excited state with

o
N

j51

o
i
o
jÞi

13.4 Localized electron model and spin wave theory 393

18 A ferromagnet is composed of a number of regions called magnetic domains, inside which the magnetic
moments are fully aligned in one direction due to the exchange interaction. The directions of magnetiza-
tions in different domains need not be parallel to each other. Hence, approximately zero resultant mag-
netization, the state of which is called “demagnetized”, can be realized, for example, by heating a
ferromagnet above the Curie temperature with subsequent cooling to room temperature in the absence of
a magnetic field. The size of a magnetic domain is widely ranged over 10–1000mm and can be larger than
or smaller than a crystal grain. See more details in references [1, 2].

19 Suppose the j-th spin to be reversed in equation (13.5). The total energy is expressed as
U522J{···1Sj21·Sj1Sj·Sj111···}522J{(N22)S2}22J{Sj21·Sj1Sj·Sj11}. The relation 22J(Sj21·Sj1

Sj·Sj11) 52(2J)3(22S2) holds, since the spin at the j-th site is antiferromagnetically coupled with its
neighboring spins. This leads to U5U018JS2.



one spin effectively reversed. This is realized by sharing the reversal of one spin
by all N spins in the lattice, as illustrated in Fig. 13.4. This is called a spin wave
excitation. Magnons are created as quasiparticles by quantization of the spin
waves. The spin wave theory was initially proposed by Bloch in 1930 analogous to
the concept of phonons for the collective motion of lattice waves. The lattice wave
describes oscillations in the relative positions of atoms on a lattice whereas the
spin wave describes those in the relative orientations of atom spins on a lattice.

The dispersion relation of the spin waves for a ferromagnetic simple cubic
metal with lattice constant a is given by

"v52JS z2 cos(k·d) , (13.6)

where z is the number of the nearest neighbor atoms, d is the vector pointing
to the nearest neighbor atom with )d)5a, v is the angular frequency and k is
the wave vector of the spin waves [1–5] (see Exercise 13.2). The summation in
equation (13.6) is taken over the z nearest neighbor atoms.

The distribution function of magnons at a finite temperature T is given by
the Planck distribution function in the same way as that of phonons discussed
in Section 4.7:

n(v,T )5 . (13.7)

The magnetization at temperature T is easily calculated from equations (13.6)
and (13.7):

, (13.8)

where D(v) is the magnon density of states and Q is the number of atoms in a
unit cell, which is equal to 1, 2 and 4 for a simple cubic, body-centered cubic
and face-centered cubic lattice, respectively. Equation (13.8) is called the Bloch
T 3/2-law and can describe well the temperature dependence of magnetization
of ferromagnetic metals and alloys in group (I) at low temperatures well below
the Curie temperature TC.
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Figure 13.4. Excitations of spin waves viewed from (a) side and (b) top.



13.5 Itinerant electron model

The metals Fe, Co and Ni are typical of ferromagnetic metals, since their atom
spins are ferromagnetically coupled with the exchange integral J.0. If all 3d
electrons are localized at each atom, the magnetic moment per atom must be
an integer multiple of the Bohr magneton mB. However, as listed in Table 13.2,
the observed magnetic moments of Fe, Co and Ni metals are non-integers and
are equal to 2.2mB, 1.7mB and 0.6mB, respectively. This means that the 3d elec-
trons are not completely localized at each atom.

The itinerant electron model assumes that the 3d electron propagates in the
lattice as a Bloch wave. Let us assume the numbers of spin-up and spin-down
electrons per unit volume to be N↑ and N↓, respectively. The total number of
electrons N per unit volume and the quantity M proportional to the magnet-
ization, are given by

N5N↑1N↓ (13.9a)

and

M5N↓2N↑. (13.9b)

By using the parameters N and M, we can write the exchange energy as

«X5JN↓·N↑5 J(N 22M 2). (13.10)

Stoner [7] employed the molecular field approximation to treat the exchange
interaction between the 3d Bloch electrons and assumed the molecular field or
exchange integral J in equation (13.10) to be independent of the wave vector
of the Bloch wave. According to equation (13.10), the exchange energy can be
lowered by generating a finite magnetization. The magnetization arises by shift-
ing the spin-up band relative to the spin-down band, as shown in Fig. 13.5.
Electrons must be transferred from the spin-down band to the spin-up band so
as to coincide the Fermi level between the two sub-bands. The transfer of elec-
trons results in an increase in the kinetic energy.

Let us assume that the exchange interaction causes a shift of the spin-up
band relative to the spin-down band by the amount equal to 2D. An increase
in kinetic energy is then approximated as

D«kin>N(«F)D2

5 M 2, (13.11)3 1
4N(«F)4

1
4
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where N(«F) is the density of states of 3d electrons at the Fermi level (see
Exercise 13.3).10 The total energy change associated with the generation of
magnetization is given by the sum of equations (13.10) and (13.11):

«5 M 21 ···. (13.12)

The energy is lowered if the coefficient of M 2 is negative. In other words, the
ferromagnetic state is stabilized if the relation holds:

JN(«F).1. (13.13)

Equation (13.13) is known as the Stoner condition for stabilizing the ferro-
magnetic state in the itinerant electron model. It is clear from equation (13.13)
that the ferromagnetic state is certainly favored when the exchange integral J is
large but that it is also favored if the density of states at the Fermi level is
high. The reason for the need of a high density of states at the Fermi level is to

1
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10 The magnetization induced by the applied magnetic field in a non-magnetic metal was given by equation
(3.41). In a ferromagnet, spontaneous magnetization appears at absolute zero. We obtain from Fig. 13.5
the following relation:

M5 [N(«+D)2N(«2D)]d«>2D d«52D·N(«F).3dN(«)
d« 4E
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Figure 13.5. Splitting of spin-up and spin-down sub-bands due to the exchange
energy. The Fermi level «o

F without the exchange energy is shown by the thin line. The
Fermi level is displaced to «o

F1D and «F
o2D in the respective bands due to the exchange

energy. A new Fermi energy «F is formed after charge transfer.



minimize an increase in the kinetic energy upon the transfer of electrons from
the spin-down band to the spin-up band.

Figure 13.6 shows the calculated valence band structure for the spin-up and
spin-down electrons in ferromagnetic Ni metal. It can be seen that the spin-up
band is shifted to higher binding energies relative to the spin-down band
because of the exchange energy. The Fermi level is determined by fitting a total
of 10 electrons per atom into the hybridized 3d and 4s bands. It is clear that the
3d spin-up band is fully filled by electrons while the Fermi level falls in the
middle of the 3d spin-down band, leaving holes in this sub-band. The number
of holes per atom is calculated to be 0.6. This is obviously proportional to the
magnetization of pure Ni metal and is consistent with the observed non-integer
value listed in Table 13.2.

Figure 13.7 shows the solute concentration dependence of the saturation
magnetic moment for various Ni-based fcc alloys. It is clear that magnetization
disappears at 60 at.%Cu or x50.6 in the Ni12xCux alloys and that the concen-
tration at which magnetization vanishes decreases with increasing valency of
the solute atom. This is easily understood from the electronic structure of pure
Ni discussed above. In the case of the Ni12xCux alloys, the Cu atom has a total
of 11 electrons whereas the Ni atom has 10 electrons outside the Ar core elec-
trons. Since an average electron concentration for the Ni12xCux alloy is given
by 11x110(12x)5101x, the Ni 3d spin-down band possessing 0.6 holes per
atom will be filled when x50.6 or 60 at.%Cu. If the Zn atom is dissolved into
Ni metal, an average electron concentration for the Ni12xZnx alloy is given by
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Figure 13.6. Valence band in the ferromagnetic state of pure Ni. The spin-up band is
shifted to lower binding energies relative to the spin-down band due to the exchange
energy. [D.A. Papaconstantopoulos, Handbook of the Band Structure of Elemental

Solids (Plenum Press, 1986)] 



12x110(12x)51012x. Hence, the Ni 3d spin-down band will be filled at x5

0.3. Similarly, one can easily confirm that the addition of trivalent Al and
quadravalent Sn atoms to Ni metal would fill the Ni sub-band when their con-
centrations reach 20 and 15 at.%, respectively. This is clearly seen in Fig. 13.7.

Figure 13.8 shows the observed saturation magnetization of various 3d-tran-
sition metal alloys as a function of the number of electrons per atom e/a
outside the Ar core electrons. This is known as the Slater–Pauling curve. As dis-
cussed above, magnetization disappears at an average electron concentration of
10.6 when the Ni metal is alloyed with an element having more electrons than
Ni. When Ni is alloyed with an element having less electrons than Ni, the mag-
netic moment increases by 1mB as the number of electrons per atom decreases
by unity. In other words, the data obtained for the fcc Fe–Ni, Fe–Co, Ni–Co
and Ni–Cu alloys fall on a straight line with a slope of 21 which intercepts the
horizontal axis at e/a510.6. A maximum magnetization of 2.5mB is obtained
at 70 at.%Fe–Co. The Slater–Pauling curve corresponding to the straight line
with a slope of 21 on the right-hand side is readily explained within the frame-
work of the itinerant electron model.

The magnetization always decreases when the early transition metal elements
like V, Cr and Mn are alloyed with Fe, Co and Ni metals. The data fall on more
or less straight lines with a slope of 11, each starting from pure Fe, Co and Ni.
The nuclear charge for an early transition metal ion is smaller than those of Fe,
Co and Ni because of their location to the left in the periodic table. This
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Figure 13.7. Solute concentration dependence of saturation magnetic moment in
Ni1002xMx alloys. The number in parentheses indicates the number of valence electrons
per atom. [A. H. Morrish, The Physical Principles of Magnetism John Wiley &
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indicates that the ionic potential fastening the 3d electrons to the nucleus is
weaker so that the 3d electrons around an early transition metal atom would be
more easily released and occupy the 3d orbitals of the neighboring late transition
metal atoms like Fe, Co and Ni. Friedel explained in this way why the addition of
the early transition metals to Fe, Co and Ni always decreases magnetization.
Indeed, neutron diffraction experiments reveal that the early transition metal
atoms like Cr and V carry no magnetic moment when dissolved in Fe, Co and Ni
metals. The interpretation due to Friedel takes into account the localized nature
of the magnetic moment while relying on the itinerant electron model.

The itinerant electron model was successful in explaining not only the fact that
the magnetic moment in 3d-transition metals and alloys is in non-integer multi-
ples of the Bohr magneton but also the electron concentration dependence of
magnetization in the Slater–Pauling curve. However, there exist other phenom-
ena which cannot be well accounted for in terms of the itinerant electron model.
For example, the itinerant model is unable to explain the T 3/2-law for the temper-
ature dependence of magnetization in ferromagnetic metals at low temperatures
and the Curie–Weiss law of the magnetic susceptibility at high temperatures
above the Curie temperature. Both are deeply related to the phenomenon called
spin fluctuation [6]. The failure of the itinerant electron model stems from the
fact that the average field approximation employed is limited within the second-
order perturbation theory and that the spin fluctuations or electron correlation
effects have to go beyond the second-order perturbation theory.

Although both localized and itinerant electron models are limited in their
applicability, the 3d electrons were identified experimentally as itinerant elec-
trons in the 1960s by the de Haas–van Alphen effect for the ferromagnetic metals
Fe and Ni. In the localized model, the 3d electrons are assumed to be localized
in real space, whereas, in the itinerant model, the Bloch state is localized in
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Figure 13.8. The Slater–Pauling curve representing the dependence of the saturation
magnetization on the number of 3d electrons per atom in 3d-transition metal alloys.



reciprocal space. More recently, various efforts have been directed to construct
more self-consistent models by introducing spin fluctuations into the itinerant
electron model [6]. The weak ferromagnetic metals in group (II) may be charac-
terized by the excitation of modes only with small wave vectors, whereas ordi-
nary ferromagnets in group (I) by the excitation of all modes up to large wave
vectors. The latter, when it is Fourier-transformed, gives rise to the localized
electron picture in real space.

13.6 Electron transport in ferromagnetic metals

As shown in Fig. 13.6, the valence band of the 3d-transition metals like Ni con-
sists of the superposition of a narrow 3d band over a wide 4s band and the
density of states at the Fermi level is shared by both 3d electrons and 4s or 4p
electrons. Our first objective in this section is to discuss the role of the sp and
d electrons at the Fermi level in the electron transport of the 3d-transition
metals. As listed in Table 10.1, the resistivity of transition metals like Ti, Cr and
Fe is always higher than that of simple sp-electron metals like Al and Cu.

Mott [8] tried to explain why a transition metal always possesses a larger
resistivity than a simple metal in group (V). He assumed that sp electrons at the
Fermi level exclusively convey the electrical current and placed an emphasis on
the fact that the density of states at the Fermi level in the transition metal is
very high because of its location in the middle of the d band. As is clear from
equations (10.81) and (10.82) coupled with equation (10.53), the scattering
probability 1/t of the conduction electron is proportional to the final density
of states at the Fermi level. This means that the higher the density of states at
the Fermi level, the more frequently sp conduction electrons are scattered into
it. A higher final density of states at the Fermi level would result in a shorter
relaxation time t and, in turn, a higher resistivity in transition metals. This is
the Mott s–d scattering model (see Section 15.8.3).

The temperature dependence of the normalized electrical resistivity of pure
Ni and Pd is plotted in Fig. 13.9. Pure Ni is ferromagnetic below 631K while
pure Pd remains paramagnetic over the whole temperature range. We can
immediately see from Fig. 13.9 that the resistivity in the ferromagnetic state is
lower than that in the paramagnetic state and that spin ordering apparently
causes a reduction in resistivity.

Mott argued the lowering of the resistivity in the ferromagnetic state of pure
Ni in terms of his s–d scattering model. As shown in Fig. 13.6, the spin-up band
in pure Ni is displaced relative to the spin-down band owing to the exchange
interaction in the ferromagnetic state, resulting in a complete filling of the spin-
up band. Mott pointed out that, at low temperatures, spin-orientation of the
conduction electron must be unchanged upon scattering so that spin-up
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conduction electrons in Ni cannot make transitions to the spin-up d band
because it is full. This implies that these electrons would have a longer mean
free path than those with the opposite spin. Above the Curie temperature,
however, s–d transitions should occur equally for both spin-up and spin-down
electrons, since Ni becomes paramagnetic. Thus, nickel above the Curie tem-
perature behaves in the same manner as Pd. However, the interpretation based
on the Mott s–d scattering model is not universal. For example, the Mott model
encounters difficulty in interpreting a decrease in resistivity upon the ferromag-
netic transition of Gd [4], where the 4f electrons are responsible for the onset
of ferromagnetism but the 4f band is located about 8 eV below the Fermi level
«F so that there is no chance for sp conduction electrons at «F to be scattered
into the 4f states (see Fig. 7.18 and Section 13.11).

The temperature dependence of the electrical resistivity in ferromagnetic
metals at low temperatures has been often discussed in terms of the elec-
tron–magnon interaction. It was emphasized in Section 10.8 that the electrical
resistivity arises from the disruption of a periodicity of the lattice. At absolute
zero, all the magnetic moments in a ferromagnetic metal (strictly speaking, in a
magnetic domain) are completely oriented in one direction so that the Bloch
state would not be disturbed at all. At finite temperatures, however, the localized
moment begins to be thermally agitated, the motion of which is well described
in terms of the excitation of spin waves or magnons. Therefore, both phonons
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and magnons are excited at finite temperatures and interact with the conduction
electrons. The resistivity below the Curie temperature may be explained by
taking into account both electron–phonon and electron–magnon interactions.

Because of the coexistence of scattering due to phonons and magnons, the
temperature dependence of the electrical resistivity in ferromagnetic metals in
group (I) is expected to differ from that derived from the Bloch–Grüneisen law,
which leads to an exponent n55 in r01ATn at low temperatures, as discussed
in Section 10.12. The temperature dependence of the resistivity for typical tran-
sition metals at low temperatures is shown in Fig. 13.10 on a normalized
log–log scale. In contrast to non-magnetic metals like pure Na with n55, the
exponent n for ferromagnetic metals is distributed in the range 2–3. A smaller
exponent is believed to originate from the electron–magnon interaction in
ferromagnetic metals.
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13.7 Electronic structure of magnetically dilute alloys

The electronic structure and electron transport properties of magnetic metals
and alloys in group (III) will be discussed in Sections 13.7–13.11. First, non-
magnetic metals containing magnetic impurities will be discussed. By magnetic
impurities we mean impurities that contribute a Curie–Weiss term to the sus-
ceptibility. In Section 9.3, we discussed the increment of resistivity upon the
addition of 1 at.% polyvalent metals like Zn, Ga, Ge, etc., to the noble metals
Cu and Ag. There the impurity potential was approximated by the screened
Coulomb potential given by equation (9.1), from which the differential cross-
section of equation (9.9) is calculated. Though the Linde rule can be explained
from equation (9.10), it overestimates the experimental value, indicating the
limit of applicability of the Thomas–Fermi approximation employed in
Section 9.3. In this section, we focus on the scattering phenomenon in a system
where a single magnetic impurity, Fe, is embedded in a non-magnetic metal, Cu.

Let us locate a single Fe atom at the center of a Cu metal sphere with the
radius R. Since the impurity potential can be assumed to be spherically sym-
metric, the wave function of the scattered wave is expressed in terms of spher-
ical coordinates as c (r,u,w)5R(r)Y,m(u,w), where R(r) is the radial wave
function and Y,m(u,w) is the ,-th-order spherical harmonic function [9]. The
radial wave function R(r) satisfies the following Schrödinger equation:

[E2V(r)]2 R(r)50,

which is rewritten as

R(r)50, (13.14)

where k252mE/"2 and U(r)5(2m/"2)V(r). It can be seen that the potential field
is given by the sum of the attractive Coulomb potential U(r) and the repulsive
centrifugal potential ,(,11)/r2 arising from the orbital angular momentum of
the electron, and that the centrifugal potential increases as the quantum
number , increases.

For the sake of simplicity, the ion potential U(r) of the Fe atom is truncated
at the distance r5r0 and set to zero in the range r.r0. As illustrated in Fig.
13.11, a thick curve represents the potential with ,50 experienced by the 3s
electron. Owing to the presence of the centrifugal potential, a potential barrier
is formed for electrons with ,$1 in the vicinity of r5r0. The total potential
after adding the centrifugal potential ,(,11)/r2 for electrons with ,$1 is
shown by a thin curve. Let us consider the scattering of an electron with a pos-
itive energy by this potential. Then the motion of the electron may be treated

1
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in the same manner as that in the tunneling phenomenon for the square-
potential shown in the inset to Fig. 13.11.

The ionic potential of the Fe atom is shallower than that of Cu because of
its smaller atomic number. Hence, the 3d level of the Fe atom would appear
between the top of the Cu 3d band and the Fermi level. Since U(r)50 in the
range r.r0, we take this as the origin of the energy axis and adjust the bottom
of the Cu 4s band to coincide with this energy. This is illustrated in Fig. 13.12.
The 3s and 3p electrons of the Fe atom will form core levels with negative ener-
gies but the energy level of the 3d electrons will be formed at a positive energy.
If the potential barrier were absent, the conduction electron with a positive
energy would have been only weakly scattered by the impurity potential.
Instead, the existing potential barrier would enhance the tendency of the inci-
dent electron to localize in the range r#r0.

As shown in Fig. 13.12, the incident electron with a positive energy inter-
acts strongly with the Fe 3d states because of the presence of the potential
barrier. However, some portion of the incident electron can escape from the
impurity potential and mix with the wave function of the electrons forming
the valence band of pure Cu. Thus the conduction electron coupled with the
3d electron is extended over a certain range in both real space and energies and
results in a narrow energy band near the Fermi level. The amplitude of the
wave function with ,52 is certainly enhanced in the range r#r0. The presence
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Figure 13.11. Impurity potential due to an Fe atom embedded in pure Cu. Its poten-
tial U(r) is approximated as the Coulomb potential in the range r#r0 and zero in r.r0.
A potential barrier is formed for electrons with ,$1 as a result of the centrifugal poten-

tial. Its role may be approximated by the positive square-well potential shown inset.



of such electronic states was pointed out for the first time by Friedel in 1956,
who named it the virtual bound state [10]. As will be discussed in the next
section, the formation of the virtual bound state is believed to be responsible
for an increase in the residual resistivity when small amounts of 3d-transition
metal atoms are uniformly distributed within the matrix of a non-magnetic
metal like pure Cu.

13.8 Scattering of electrons in a magnetically dilute alloy – “partial wave
method”

We discuss in this section the use of the partial wave method to treat the scat-
tering phenomenon of the conduction electron due to a magnetic impurity
atom. The impurity atom is again located at the center of a metal sphere with
radius R and the wave function of the conduction electron is expressed as
c (r,u,w)5R(r)Y,m(u,w). At a position far from the impurity atom, the scattered
wave function may be well approximated as a superposition of the wave func-
tion propagating radially outward from the center of the impurity atom and
the incident plane wave along the z-direction:

c (r,u,w)
r→
→̀ A eikz1 f (u,w)eikr . (13.15)41

r3
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Figure 13.12. Impurity potential and 3s, 3p and 3d energy levels of an Fe atom
embedded in pure Cu.



We calculate the radial wave function in a system having the impurity poten-
tial shown in Fig. 13.11. First consider the region r.r0, where the potential
U(r) is zero. A general solution of equation (13.14) is obviously given by a
linear combination of the spherical Bessel function j, (r) and the spherical
Neumann function n,(r).11 Since their coefficients can be taken as cosh, and
sinh,, we immediately obtain its general solution as

R, (r)5A,[cosh, j, (kr)2sinh, n, (kr)], (13.16)

where h, is real.12 At a position far from the potential, the spherical Bessel and
spherical Neumann functions can be replaced by their asymptotic forms and
equation (13.16) is approximated as

R, (r)
r→
→̀ (kr)21A,sin(kr2 ,p1h,). (13.17)

In the absence of the impurity potential, the phase shift h, must be zero and
the wave function should be of the form:

R, (r)5A, j, (kr)
r→
→̀ (kr)21A, sin(kr2 ,p), (13.18)

where n,(r) is excluded because of its divergence at r50. We see that the scat-
tering effect due to the potential U(r) in the range r#r0 is represented by the
phase shift h,. The scattering effect vanishes, when the phase shift is equal to
either 0 or p.

The radial wave function in the range r#r0 has to be smoothly connected to
equation (13.16). From this, the phase shift is uniquely determined. Practically,
the logarithmic derivative of R,, d lnR, /dr=(1/R,)(dR, /dr), obtained from
inside and outside of r0 must be equated at r5r0. The value can be easily cal-
culated in the range r.r0 from equation (13.16). But the value in the range

1
2

1
2
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11 The spherical Bessel function j, (r) and spherical Neumann function n, (r) are defined in terms of the
Bessel function J, (r):

j, (r)5 J,1(1/2)(r) and n,(r)5(21),11 J
2,2(1/2)(r).

They are approximated as

j, (r)
r→
→̀ cos r2 (,+1)p and n, (r)

r→
→̀ sin r2 (,+1)p

j, (r)
r→0
→ and n, (r)

r→0
→ 2 .

The spherical Neumann function goes to infinity at r50.
12 A choice of cosh, and sinh, as the coefficients automatically satisfies the normalization condition, since

the probability densities are proportional to cos2h,: sin2h,.
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r#r0 depends on the choice of the potential U(r) and, in general, cannot be
analytically solved. If we denote it as g,, then we have the following relation as
the boundary condition:

5g,, (13.19)

which is rewritten as

tanh,5 . (13.20)

Any scattered wave function can be expanded into a linear combination of
the spherical functions with all possible quantum numbers ,. As shown in Fig.
13.13, the spherical Bessel function j, (kr) takes its maximum at rmax<2,/k and
is approximated as j, (r)~r, at r→0. Hence, only partial waves with small ,s
satisfying the condition rmax,r0 need be considered.13 This is because all higher
partial waves satisfying rmax.r0 are small in the range r#r0 where the poten-
tial U(r) is substantial.

The phase shift disappears even for partial waves having such small ,s, if the
numerator of equation (13.20) happens to be zero. The Thomas–Fermi

k j9,(kr0) 2 g, j,(kr0)
kn9,(kr0) 2 g,n,(kr0)

k[ j9,(kr0) cosh, 2 n9,(kr0) sinh,]
j,(kr0) cosh, 2 n,(kr0) sinh,
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13 The magnitude of r0 is of the order of a few Å, while the Fermi wave vector is about 1.35 Å21 in pure Cu.
Thus, the relation r0<(4,5)/kF roughly holds and the components , higher than 3 may be neglected.

Figure 13.13. (a) Spherical Bessel functions for three values of ,. The range of r0 for
typical metals like Cu is shown by hatches. (b) Spherical Neumann functions for the

same three values of ,. See footnote 11, p. 406.



approximation discussed in Section 9.2 overestimates the increment of resis-
tivity upon the addition of a small amount of a non-magnetic impurity like
Zn to pure Cu. The reason for this is that the scattering of the 4s wave with ,
50 and the 4p wave with ,51 causes the numerator of equation (13.20) to be
small enough to weaken the scattering. The situation is different when a tran-
sition metal element like Fe and Cr is added to Cu. Now the denominator of
equation (13.20) becomes close to zero for the 3d wave with ,52. As will be
discussed in the next section, the phase shift h2 passes p/2 at the energy «0 and
results in strong scattering when «0 coincides with the Fermi level.

The differential scattering cross-section s(u) is expressed as

s(u)5 ) f (u))25 (2,11)eih, sinh,P,(cosu) , (13.21)

where P,(cosu) is the Legendre polynomial [8] (see footnote 4, p. 247, in Section
9.8). The total scattering cross-section is obtained by integrating equation
(13.21) over a whole solid angle:

s52p s(u)sinudu5 (2,11)sin2h,. (13.22)

The factor (12cosu) must be incorporated in the scattering cross-section con-
tributing to the electrical resistivity (see Section 10.10). The transport cross-
section str is then calculated as

str52p s(u)(12cosu)sinudu5 (,11)sin2(h,2h,11) (13.23)

(see Exercise 13.4). The electrical resistivity containing Nimp impurities in unit
volume is now given by

r5 (,11)sin2(h,2h,11), (13.24)

where n is the number of conduction electrons in unit volume and h, is the
phase shift of the ,-th partial wave at the Fermi level. This is the resistivity
formula in the partial wave method.

At the end of this section, we derive the Friedel sum rule which is often
employed as an additional constraint to be satisfied in the partial wave method.
In Section 2.6, the wave vector of the conduction electron was quantized by
confining the electron in a cube with edge length L. Instead, the conduction
electron is now confined in a sphere with radius R. The boundary condition is
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imposed such that the spherical wave function (13.17) vanishes at the boundary
r5R. Then the wave vector is quantized in the form:

knR2 1h,(kn)5np (n5 61, 62, 63, ···). (13.25)

The differentiation of n in equation (13.25) with respect to the wave vector kn

yields the relation dn/dk5(R/p)[11R21(dh, /dk)]. Since each , is (2,11)-fold
degenerate, the density of states in the range k to k1dk turns out to be

n(k)dk5 (2,11) dk. (13.26)

We are interested in a change in the density of states induced by an impur-
ity atom located at the center of a metal sphere. The impurity atom introduces
an excess nuclear charge eDZ, which must be screened by the same amount of
the electronic charge, as required from the charge neutrality condition. Here
DZ represents the difference in the valency between the impurity and matrix,
as was introduced in Section 9.3. Thus, a redistribution of conduction electrons
occurs and results in a change in the density of states in the energy range « to
«1d«. This is easily calculated from equation (13.26):

Dn(k)dk5 (2,11) dk5 (2,11) d«;Dn(«)d«

and, hence,

Dn(«)d«5 (2,11) d«. (13.27)

The total excess electronic charge is obtained by integrating equation (13.27)
up to the Fermi level. This must be equal to the excess nuclear charge eDZ:

DZ52 Dn(«)d«5 (2,11)h,(«F), (13.28)

where the factor 2 is due to the spin degeneracy. Equation (13.28) is known as
the Friedel sum rule [10]. The Friedel sum rule is very useful when one intends
to construct an impurity potential better than the Thomas–Fermi one. The
phase shift is calculated from equation (13.20) but the resulting phase shift
must be determined so as to satisfy the Friedel sum rule.

We showed above that the excess nuclear charge around the impurity atom
is screened by conduction electrons on an atomic scale. However, there are
oscillations in the screening charge distribution that fall off rapidly with
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distance. The screened potential of a point charge contains a term proportional
to

f(r)< cos2kFr (13.29)

at distance r from an impurity atom. The oscillations are known as the Friedel
oscillations [11]. It is shown that the presence of a sharp Fermi edge is respon-
sible for oscillations of the screened potential with a wavelength of 1/2kF (see
Section 15.6).

13.9 Scattering of electrons by magnetic impurities

We noted in Section 13.8 that there is an energy «0 at which the ,52 partial
wave causes the denominator in equation (13.20) to be zero. This occurs when
the incident electron has an energy near «3d in Fig. 13.12 and the phase shift h2

becomes equal to p/2. This is called resonant scattering and enhances the ten-
dency for these electrons to localize inside the potential barrier as a result of
the centrifugal potential.

The energy dependence of the phase shift h2 for the ,52 partial wave is
depicted in Fig. 13.14(a). It passes through p/2 within a narrow energy range
centered at «0, which is close to «3d in Fig. 13.12. As is clear from Fig. 13.14(a),
the derivative dh/d« is largest at «0 and so is Dn from equation (13.27), result-
ing in a sharp peak in the density of states at «5«0 with the width D. This is
the virtual bound state and is illustrated in Fig. 13.14(b).

1
r3
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Figure 13.14. Energy dependence of (a) phase shift and (b) partial density of states
for ,52. [J. Kondo, Kinzoku Densi Ron (Shokabo, Tokyo 1983) (in Japanese)]



The electronic specific heat coefficient is naturally enhanced when the virtual
bound state is formed across the Fermi level. We expect from equation (13.24)
that the electrical resistivity is also enhanced. Figure 13.15 shows the increment
in the electrical resistivity induced when 1 at.% of the 3d-transition metal
element M is dissolved in fcc Al. Clearly, the resistivity increment is largest for
M5Cr. Friedel interpreted this unique behavior in such a way that, within the
context of the rigid-band model, the peak of the virtual bound state moves to
higher binding energy with increasing atomic number in the series of the 3d-
transition metals in the periodic table and happens to pass across the Fermi
level of pure Al when M5Cr. Indeed, he noted in his paper [10] that the reso-
nant effect is intuitively realized from the experimental data shown in Fig.
13.15, in which the M dependence of Dr is clearly not monotonic but exhibits
a maximum at Cr.14

There is another important effect associated with a magnetic impurity
embedded in a non-magnetic metal [12]. As was already noted, magnetic
impurities would possibly exhibit a Curie–Weiss-type magnetic susceptibility
x5C/(T2TC), where T is the temperature and TC is the Curie temperature.
These impurities are either from the 3d-transition element series or the 4f rare-
earth series in the periodic table. Unfortunately, the Curie–Weiss behavior
cannot be explained within an average field approximation, as discussed in
Section 13.5.
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14 The Friedel model is employed to explain transport properties in dilute alloys dissolving only less than 1
at.% of the transition metal element in simple metals like A1. As shown in Fig. 13.14(b), the height of the
virtual bound state is at most two times that of the sp band and its width is generally less than 1eV.
Therefore, the electronic structure of a magnetically dilute alloy is entirely different from that to which the
Mott s–d scattering model is applied. The Mott s–d scattering model is applied to an alloy composed of
transition metal elements as major components, where the d band is 2–10 times that of the sp band and
extends over several eV across the Fermi level. See also Section 15.8.

Figure 13.15. Residual resistivity due to addition of 1 at.% transition metal impurity
to pure Al. [From ref. 10.]



Let us consider again a system where a single 3d-transition metal atom is
embedded in a non-magnetic metal like Al and assume that this impurity atom
possesses only one spin-up 3d electron. Suppose that a spin-down 3d electron
is added to the same orbit as the already existing spin-up 3d electron. The addi-
tion of this electron increases the energy of the system by U as a result of the
Coulomb repulsive interaction. In the atomic 3d orbitals, the Coulomb inter-
action is very large and is of the order of 30eV. Its magnitude is reduced to
1–7eV for 3d electrons in a metallic environment due partly to the delocaliza-
tion of the orbital and due partly to screening by the other electrons. This is
still fairly large and plays a key role in the following discussions.

In 1961, Anderson [13] discussed the criterion for the appearance of the local
magnetic moment under the simplest condition of non-degenerate 3d orbitals.
He assumed that the energy of a second spin-up electron increases by the
Coulomb energy U if the first spin-down electron has already occupied the
lowest 3d orbital with the energy «0. Furthermore, the matrix element V
between the conduction electron and the 3d electron is introduced to allow the
conduction electron to enter into and/or escape from the 3d orbital. Anderson
predicted the local moment to appear, provided that the conditions «01

U..«F and «0,,«F, together with )«01U2«F)..D and )«F2«0)..D, are
satisfied. Since the energy of the second spin-up electron is «01U, this state will
not be occupied, as indicated in Fig. 13.16. Therefore, the 3d orbital is filled
only by the spin-down 3d electron, resulting in the appearance of the magnetic
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Figure 13.16. Anderson model for the formation of localized moment. [From ref. 13.]



moment. In contrast, the magnetic moment will not appear, if both energy
levels «0 and «01U appear above or below the Fermi level. The effective
exchange coupling J between the localized spin and conduction electron is
expressed as a function of the parameters U and V and is shown to be negative
for scattering of conduction electrons near the Fermi level.

The width D of the virtual bound state increases in proportion to the density
of states at the Fermi level of the host metal and the magnitude of the matrix
element V representing the degree of the mixing of the localized wave function
inside the barrier and the spherical wave function outside [14,15]. Its width in
Al-based alloys is believed to be greater than that in Cu-based alloys, since the
density of states at the Fermi level in pure Al is definitely higher than that in
pure Cu (see Table 3.1, in which their electronic specific heat coefficients, pro-
portional to their density of states at the Fermi level, are listed). The ratio pD/U
is often used as a measure for the occurrence of the localized moment: its for-
mation is unfavorable when the ratio is larger than unity. Instead, the localized
moment will be formed, when the ratio is lower than unity, as in the case where
impurities such as Mn and Fe are dissolved in pure Cu.

In the Anderson model, the interaction of the conduction electron with the
3d electrons was treated within an average field approximation and, hence, the
dynamical effect associated with the flipping of the localized spin was not
included. Let us consider the 3d spin-up electron at the impurity site. There is
a chance of the spin-down conduction electron jumping into the impurity
potential to cause the direction of the 3d spin-up electron to reverse after scat-
tering. The phenomenon associated with the exchange of the spin orientation
between the magnetic moment of the impurity atom and that of the conduc-
tion electron is called spin fluctuation. The lifetime of localized spin fluctua-
tions is denoted as tsf, which is meaningful only when the virtual bound state
is well defined. A moment can exist if t

D
,,tsf, where t

D
5"/D describes the

relaxation time for an electron from the virtual bound state to the continuum.15

The question of the existence of a localized moment is, however, a matter of
time or temperature [15]. It depends on whether or not the spin fluctuations can
be sufficiently slow that there appears to be a moment on the time-scale of our
experimental probe. The relaxation time associated with thermal fluctuations
at temperature T is defined as t5"/kBT. For example, a moment may be
observed even in a simple metal at temperatures T.TF, where the measuring
time-scale t is shorter than tF5"/EF. The reason why the moment is absent in
simple metals at ordinary temperatures arises from the fact that the measuring
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15 The width D is generally of the order of 0.5 eV or 5000K on the temperature scale, equivalent to a life-
time of t

D
<1.3310215s. The value of tsf is of the order of t

D
in the non-magnetic limit but increases with

increasing U or decreasing ratio pD/U [15].



temperature is so low or the measuring time-scale so long that we observe only
an average over repeated flips of spins. In the present case, a localized moment
will not be observed at low temperatures, where the condition t

D
,,tsf,t or

T,Tsf,,T
D

is satisfied. Here the frequency of spin fluctuations is so high over
the thermal fluctuation time-scale t that only an average of up- and down-spins
is observed. However, a localized moment will become observable at high tem-
peratures T.Tsf and the magnetic susceptibility will obey the Curie–Weiss-
type temperature dependence.

Let us summarize the magnetic properties of a magnetically dilute alloy as a
function of temperature and Coulomb energy U. Obviously, a localized
moment will not appear and the temperature-independent Pauli paramagnetic
susceptibility will dominate, when U is zero. Its value is given by N(«F)m2

B. In
contrast, a localized moment appears, when U becomes large and satisfies the
condition pD/U,1. Thus, the magnetic susceptibility obeys the Curie law
owing to the moment localized at the impurity atom. However, the moment
will apparently disappear at low temperatures where the condition
T,Tsf,,T

D
is satisfied. This behavior is schematically illustrated in Fig.

13.17.

13.10 s–d interaction and Kondo effect

When a small amount of Fe impurities are added to pure Cu, a resistivity
minimum appears at low temperatures and the resistivity increases logarithmi-
cally with further decrease in temperature, as is shown in Fig. 13.18. This
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Figure 13.17. Temperature dependence of magnetic susceptibility with Coulomb
energy U as a parameter. The arrows indicate the temperatures above which spinfluc-
tuations dominate. [J. Kondo, Kinzoku Densi Ron (Shokabo, Tokyo 1983) (in Japanese)]



unique electron transport behavior was a theoretical puzzle for a long time. The
experimental data showed that there exists a correlation between the presence
of the Curie–Weiss term due to the local magnetic moment and the occurrence
of the resistance minimum and that the resistivity increment observed below
the resistivity minimum temperature is linearly proportional to the concentra-
tion of magnetic impurities. The latter fact apparently ruled out the possibility
of an impurity–impurity interaction and, instead, suggested an isolated impur-
ity phenomenon.

Even though the magnetic moments of the 3d-transition metal impurities
dissolved in a non-magnetic host metal are isolated from each other, an inter-
action between them can be mediated through the conduction electrons. This
is called the s–d interaction. In 1964, Kondo made the first important step
toward the understanding of this unique phenomenon and employed the s–d
exchange Hamiltonian

Hsd522J(r2Rn)(s ·Sn), (13.30)

where s is the spin operator of the conduction electron at the position r, Sn is
that of the 3d impurity atom at the position Rn, and J(r2Rn) is the exchange
integral between s and Sn [14]. Kondo treated the s–d interaction Hsd as a per-
turbation and calculated the scattering probability of the conduction electron
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Figure 13.18. Temperature dependence of the electrical resistivity for Cu containing
0.044 at.%Fe. Data for pure Cu are also shown. [J. M. Ziman, Electrons and Phonons

(Clarendon Press, Oxford Press, 1962) p.344]



by taking its effect up to the third-order. The resistivity due to the s–d inter-
action is given by

rspin5cr0p
2[N(«F)]2J 2S(S11) 114JN(«F)log , (13.31)

where c is the impurity concentration, and N(«F) is the density of states at «F

in a flat band of width 2D [12, 14, 15].
The total resistivity is expressed as the sum of the Bloch–Grüneisen contri-

bution due to the electron–phonon interaction and the s–d interaction given by
equation (13.31). We have already shown in Section 10.12 that the former, say
in pure Cu, is well approximated as r01AT 5 at low temperatures. Hence, the
total resistivity in a dilute magnetic alloy is expressed as

r5r01AT 51BlogT, (13.32)

where r0 is the residual resistivity and A and B are numerical constants. Note
that the resistivity minimum occurs when the exchange constant J and, hence,
the coefficient B is negative. Equation (13.32) yields a resistivity minimum at
Tmin5()B )/5A)1/5 and the resistivity increases logarithmically with decreasing
temperature below Tmin, consistent with the experimental data shown in Fig.
13.18.

The second term in equation (13.31), derived for the first time by Kondo, rep-
resents a many-body effect arising from the scattering process in which the
spins of the conduction electron and localized electron are flipped [12,14,15].
According to equation (13.31), the dimensionless parameter JN(«F)log(kBT/D)
eventually leads to a divergence with decreasing temperature, no matter how
small is the quantity JN(«F). This indicates the breakdown of the perturbation
theory at temperatures below the so-called Kondo temperature defined as

TK5 exp[21/)J )N(«F)]. (13.33)

A more comprehensive theory was needed to explain the difficulty involved
in the logarithmic divergence as well as the actual ground state of the conduc-
tion electron–magnetic impurity system. The search for such a theory became
known as the “Kondo problem” and attracted much theoretical interest in the
late 1960s and early 1970s [12]. Briefly, an antiferromagnetic coupling between
the localized spin and the spin of the conduction electron is essential in the
Kondo effect. It induces spin polarization of the conduction electron in a direc-
tion opposite to that of the localized moment and cancels completely the local-
ized moment, leading to the formation of a singlet state S50 at absolute zero.

We can say that the Curie law holds in the temperature range above the

D
kB

kBT
D 43

416 13 Magnetism in magnetic metals



Kondo temperature TK but that spin fluctuations become substantial in the
temperature range below TK and gradually approaches the singlet state at abso-
lute zero. Figure 13.19(a) shows the Kondo temperature TK for the metals Cu
and Au containing various 3d-transition metal impurities. It has also been
established that various physical properties exhibit unique temperature depen-
dences across the Kondo temperature. The magnetic moment, electrical resis-
tivity, specific heat and thermoelectric power are shown schematically in Fig.
13.19(b) as a function of temperature normalized with respect to the Kondo
temperature TK.

As is seen from Fig. 13.19(a), the Kondo temperature varies over a wide
range, depending on the combination of magnetic impurity atom and non-
magnetic host metal. For example, the Kondo temperature TK is only 0.01K in
the Cu–(Mn) system and the logarithmic temperature dependence of resistiv-
ity is observed below about 10K. In contrast, TK is 300K in the Au–(V) system,
where the logarithmic temperature dependence is observed in the range
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Figure 13.19. (a) Kondo temperature for Cu (d) and Au (s) alloyed with various 3d-
transition metal impurities. (b) Temperature dependence of the magnetic moment m2,
electrical resistivity r, specific heat CV and thermoelectric power S. Temperature is nor-
malized with respect to the Kondo temperature. Solid curves are based on experimen-
tal behavior with the properties of the pure host material subtracted. The dashed
portions have not been examined experimentally and represent predictions based on
theory. [M. D. Daybell, Magnetism edited by H.Suhl, (Academic Press, 1973) vol.5,

pp. 121–147]



300–1000K. Figure 13.19(b) clearly shows that the localized moment tends to
zero while the resistivity is saturated and becomes temperature independent at
temperatures well below TK.

The Kondo effect is observed over the whole concentration range 0#x#1 in
some rare-earth compounds RExM12xX, where the rare-earth element RE such
as Ce and Yb is substituted by an element M such as Y or La and X stands for
simple metals like Cu, Al and so on. For example, in CexLa12xCu6 alloys, the
localized magnetic moment due to 4f-electrons resides at each Ce31 ion and
forms a periodic lattice. With increasing Ce concentration, the f electrons begin
to move together with the conduction electrons [16]. Hence, the electronic struc-
ture and electron transport properties are dominated by conduction electrons
with an extremely heavy effective mass. This is often referred to as the “heavy
fermion”system and various-rare earth and actinide alloys based on Ce, Yb and
U are classified into the family of dense Kondo systems or Kondo lattices [12].

13.11 RKKY interaction and spin-glass

In order to discuss the line width of the nuclear spin resonance, Ruderman and
Kittel [17] showed in 1954 that the two nuclear spins in nearest neighbor atoms
interact via the conduction electron through the relation

2 n2 F(2kFRnm)(In·Im), (13.34)

where In and Im are nuclear spins of the neighboring atoms, n is the number of
conduction electrons per atom, «F is the Fermi energy, kF is the Fermi radius,
A is the hyperfine coupling constant between the nuclear spins, Rnm is the dis-
tance between the two nuclei and the function F(x) is given by

F(x)5 . (13.35)

The oscillatory function F(x) decreases in an inverse proportion to the third
power of the distance.16

Kasuya in 1956 applied equation (13.34) to the interaction of the conduc-
tion electron with the localized magnetic moment, instead of the nuclear spin,
and discussed the temperature dependence of the electrical resistivity in ferro-
magnetic metals like Gd [18]. Here the nuclear spins In and Im in equation

2 x cos x 1 sin x
x4

A2

«F

2p

9
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16 The second term is generally negligible relative to the first term. For instance, take pure Cu. Following the
discussion in Section 2.7, the Fermi diameter 2kF of pure Cu is 2.7 Å21. Since the nearest neighbor dis-
tance is 2.56 Å, the variable x defined as x52kFRnm is found to be 6.9. The ratio of the second term over
the first one is of the order of 1022.



(13.34) are replaced by the localized magnetic spins Sn and Sm and the hyper-
fine coupling constant A by the s–d exchange constant J. Equation (13.34) is
rewritten as

2 n2 F(2kFRnm)(Sn·Sm), (13.36)

where the function F(x) is the same as in equation (13.35). Yosida in 1957 con-
sidered that the interaction given by equation (13.36) causes spin polarization
of the conduction electron around the localized magnetic moment and showed
that the spatial distribution of the spin polarization of the conduction electron
is described by equation (13.35) [19]. We see that the spin of the conduction elec-
tron mediates two localized moments at m-th and n-th sites, their positions being
not necessarily an immediate neighbor. Equation (13.36) has been referred to as
the RKKY interaction after Ruderman, Kittel, Kasuya and Yosida.

The heavy rare-earth metals Gd, Tb, Dy, Ho, Er and Tm undergo ferro-
magnetic transitions at 293, 219, 89, 20, 20 and 32K, respectively, but their spin
configurations are complex. As has been noted in Section 13.3, the 4f electrons
bear a localized moment but direct interaction between them is weak because
they are almost fully screened by the 5s and 5p outer electrons. The interaction
between the 4f magnetic moments must be brought about by the spin of the
conduction electrons. The formation of complex magnetic structures in heavy
rare-earth metals has been discussed in terms of the RKKY interaction [2–4].

Figure 13.20 shows the temperature dependence of the magnetic susceptibil-
ity measured under an alternating magnetic field for Au containing 1 and 2
at.%Fe. The smaller the amplitude of the alternating magnetic field, the
sharper is the peak of the magnetic susceptibility. The temperature correspond-
ing to the peak is called the spin freezing temperature Tf. Below Tf, the motion
of the spins in the paramagnetic state freezes while keeping their directions at
random. This unique magnetic state is called a spin-glass. Its origin has also
been discussed in terms of the RKKY interaction given by equations (13.35)
and (13.36), which gives rise to either ferromagnetic or antiferroagnetic cou-
pling as a function of the distance x or Rnm between two neighboring spins.

The temperature dependence of the electrical impurity resistivity for Au
alloys containing differing amounts of Fe is shown in Fig. 13.21. A resistivity
minimum typical of the Kondo effect is observed at 11K when the Fe concen-
tration is only 0.01 at.%. An increase in the Fe concentration induces the
RKKY interaction among the magnetic moments of the Fe atoms and yields
a resistivity maximum. The magnetic state is characterized by a spin-glass when
the Fe concentration exceeds about 0.15 at.%, where the resistivity minimum
disappears. Note also the broad maximum observed over the concentration

J2

«F o
n,m

2p

9
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range 0.06 to 0.25 at.%. The theoretical treatment for the electron transport
mechanism in a spin-glass is complex and further details may be found in the
literature [4].

13.12 Magnetoresistance in ferromagnetic metals

Fe–Co and Fe–Ni ferromagnetic alloys are used as magnetic field sensors
because they possess a large magnetoresistance. The magnetoresistance can be
longitudinal or transverse, depending on whether the magnetic field is applied
in a direction parallel to or perpendicular to the direction of the electrical
current, respectively. Figure 13.22 shows the change in the normalized resistiv-
ity upon the application of a magnetic field, either in the longitudinal or in the
transverse direction, to demagnetized pure Ni. These are called the longitudi-
nal and transverse magnetoresistance, respectively.17 An initial large change in
resistivity is accompanied by growth of magnetic domains parallel to the direc-
tion of the magnetic field. Once it is saturated, the resistivity changes more or
less linearly with increasing magnetic field. The intercepts obtained by back-
extrapolating the linearly dependent behavior may be denoted as r// and r

'
in
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17 The term “magnetoresistance”, meaning the change in resistance or resistivity upon the application of a
magnetic field, is expressed in different ways: (1) DR5R(H )2R(0); (2) DR/R(0); (3) R(H )/R(0); (4) Dr5
r(H )2r(0); (5) Dr/r(0); and (6) r(H )/r(0), where R(H ) and r(H ) are the resistance and resistivity, respec-
tively, in an applied magnetic field H.

Figure 13.20. Temperature dependence of AC magnetic susceptibility for Au con-
taining 1 and 2 at.%Fe. A solid curve refers to the data where the magnetic field is

extrapolated to zero. [V. Cannella and J. A. Mydosh, Phys. Rev. B6 (1972) 4220]



the longitudinal and transverse configurations, respectively. Now the anisot-
ropy in magnetoresistance is defined as

5(r//2r
'

)/r//. (13.37)

The ratio Dr/r// is often called FAR or ferromagnetic anisotropy of resistivity.
The largest value of FAR at room temperature so far reported in the literature

Dr

r//
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Figure 13.21. Temperature dependence of electrical resistivity for fcc Au–Fe alloys.
Concentrations are given in at.%Fe. Dr is the impurity resistivity, defined as ralloy2rAu.

[P. J. Ford, T. E. Whall and J. W. Loram, Phys. Rev. B2 (1970) 1547]



is 6.5% for the Ni70Co30 alloy. The value increases with decreasing temperature
and exceeds 10% at the liquid nitrogen temperature of 77K.

The FAR effect has been discussed in terms of the two-current model origi-
nally proposed by Mott [8]. Magnetization in ferromagnetic metals arises as a
result of the splitting of the spin-up or majority-spin band relative to the spin-
down or minority-spin band, as shown in Fig. 13.6. Mott suggested that
conduction electrons in ferromagnetic metals can propagate by repeating scat-
tering events without changing spin orientations at temperatures well below the
Curie temperature (see Section 13.6).18 This implies that the spin-up and spin-
down conduction electrons can be treated independently. Electron conduction
in ferromagnetic metals may be conveniently discussed by using a parallel
circuit due to the currents of spin-up and spin-down conduction electrons. This
is the Mott two-current model [8]. As can be recognized from Fig. 13.6, the
valence band structure differs substantially, depending on the spin orientation.
This suggests that the spin-up and spin-down conduction electrons would
possess different relaxation times.
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18 In Sections 13.9–13.11, we were considering metals in group (III) of Table 13.1, where the spin fluctua-
tions play a dominant role. In this section, we are discussing the electron transport properties of ferro-
magnetic metals in group (I), where the spin fluctuations may be ignored.

i // H

i ' H

Figure 13.22. Longitudinal and transverse magnetoresistance of pure Ni.
[E. Englert, Ann. Phys. 14 (1932) 589]



In order to discuss the electron transport on the basis of the two-current
model, one must find a way to separate the spin-up electron conduction from
the spin-down one. This is made possible by measuring the resistivity for
pseudo-binary dilute alloys. For instance, Ni-based ferromagnetic alloys in the
form of Ni97A32xBx have been studied [20]. The concentration dependence of
the resistivity is plotted in Fig. 13.23 for the Ni97Co32xRhx alloys. According to
the two-current model, the electron conduction of this ternary alloy is
described by using the equivalent circuit shown in Fig. 13.24 and the resultant
resistivity is given by

r5 , (13.38)

where cA and cB are the concentrations of the elements A and B and cA1cB53
holds in the present case. r

↑
A and r↑

B represent the residual resistivity caused by
the scattering of the spin-up electrons by A and B atoms, respectively. Four
unknown parameters r↑

A, r
↑
B, r

↓
A and r↓

B are involved in this equation. We can
determine them by measuring the resistivities for more than four samples with
different concentrations.

Such experiments have been carried out for a large number of pseudo-binary
dilute alloys [20]. For instance, Ni97Cr32xMx alloys with M5Al, Fe, Mn, Ti,
etc. were prepared to study the effect of the addition of Cr on Ni. In this way,

(cArA
↑ 1 cBrB

↑)(cArA
↓ 1 cBrB

↓)
cArA

↑ 1 cBrB
↑ 1 cArA

↓ 1 cBrB
↓
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Figure 13.23. Longitudinal resistivity at 4.2 K for Ni97Co32xRhx alloys.
[J. W. F. Dorleijn and A. R. Miedema, J. Phys. F: Metal Phys. 5 (1975) 1543]



the values of r↑
Cr and r↓

Cr are deduced. The validity of the model may be judged
by checking whether or not the resulting value is independent of the atomic
species M. Indeed, the values of r↑

Cr and r↓
Cr turned out to be 25 and 6mV-cm,

respectively, without depending seriously on the atomic species M. The resis-
tivity increment due to spin-up and spin-down conduction electrons per 1 at.%
addition of various transition metal elements to Ni is plotted in Fig. 13.25 for
3d-, 4d- and 5d-transition metal series. It can be seen that the resistivity incre-
ment r↓ due to the spin-down electron is always larger for the lighter elements
Ti, Zr and Hf and decreases with increasing atomic number in the respective
series.

The FAR can be calculated within the two-current model in the following
form [20]:

, (13.39)

where the ratio Dr/r// in the left-hand side represents the FAR and can be deter-
mined from experiments, and the parameter a, defined as a5r

↓
///r

↑
//, can be read

off from Fig. 13.25. The resulting FAR measured at 4.2K is plotted in Fig.
13.26 as a function of a for a number of Ni-based alloys. The data fall on a
hyperbolic curve shown by the solid line, indicating the coefficients (Dr/r//)

↑

and (Dr/r//)
↓ in equation (13.39) to be uniquely determined for Ni-based alloys.

Indeed, the least square fitting of the data points to equation (13.39) results in
(Dr/r//)

↑5 110% and (Dr/r//)
↓522%. The parameters thus obtained may be

considered to reflect the electronic structure of the host metal Ni. Then we can
say that the spin-up conduction electrons in Ni possess a larger scattering cross-
section in the longitudinal configuration than in the transverse configuration
whereas the anisotropy is small for the spin-down electrons.

Dr

r//

5 1 a

1 1 a2 1
Dr

r//
2

↑
1 1 1

1 1 a2 1
Dr

r//
2

↓
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Figure 13.24. Equivalent circuit based on the two-current model of the residual resis-
tivity at 4.2 K for a ferromagnetic metal containing cA % of A atoms and cB % of B

atoms. [J. W. F. Dorleijn and A. R. Miedema, J. Phys. F: Metal Phys. 5 (1975) 487]



It is noted from equation (13.39) that the magnitude of FAR in a dilute alloy
is mainly decided by the resistivity ratio a of the spin-down conduction elec-
trons over the spin-up electrons. This tendency holds true even in concentrated
alloys, though the theoretical understanding of the FAR effect in concentrated
alloys is still beyond our reach. Aside from the theoretical analysis, the largest
FAR has been obtained at 30 at.%Co in the Ni–Co system and the second
largest at 15 at.%Fe in the Ni–Fe system. Magnetic field sensors have been com-
mercially manufactured using these alloys.

Before ending this section, we briefly discuss the giant magnetoresistance
effect (abbreviated as GMR) discovered in Fe/Cr multilayered films in 1988
[21]. The Fe/Cr multilayered film consists of alternate stacks of the ferromag-
netic Fe and non-magnetic Cr layers. As is shown in Fig. 13.27, the resistivity
is found to decrease substantially upon application of magnetic fields, result-
ing in the ratio [r(H50)2r(H520 kOe)]/r(H50) amounting to 50% at 4.2K.

13.12 Magnetoresistance in ferromagnetic metals 425

Figure 13.25. Residual resistivity due to spin-up and spin-down electrons for Ni
containing various transition metals. [J. W. F. Dorleijn and A. R. Miedema, J. Phys. F:

Metal Phys. 5 (1975) 487]
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Figure 13.26. a dependence of FAR at 4.2 K for Ni-based alloys. The solid curve
refers to equation (13.39) with the coefficients (Dr/r

211)↑ and (Dr/r
211)↓ set equal to

10 and 22%, respectively. [J. W. F. Dorleijn and A. R. Miedema, J. Phys. F:
Metal Phys. 5 (1975) 1543]

R /R (H 5 0)

(Fe 30Å / Cr 9Å)40

Magnetic field (k Oe)

Figure 13.27. Magnetoresistance of [Fe 30 Å/Cr 9 Å)]40 superlattice at 4.2 K. The
current is along [110] and the magnetic field is in the layer plane ●a parallel to the
current direction, ●b perpendicular to the current and ●c perpendicular to the layer

plane. [From ref. 21.]



The occurrence of the GMR effect has been interpreted as arising from spin-
dependent electron scattering in the film.

Figure 13.28(a) represents the situation where magnetizations of the ferro-
magnetic layers, as marked by arrows, are forced to be aligned parallel to the
direction of the external magnetic field. The 3d band in the Fe layer is split into
spin-up and spin-down sub-bands due to the exchange energy U. We consider
spin-up and spin-down electrons to experience different average potentials
(«Fe2U ) and («Fe1U ), respectively, where «Fe is the mean energy of the Fe-3d
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Figure 13.28. GMR mechanism in Fe/Cr multilayered film. The electron scattering
path of spin-up (solid line) and spin-down (hatched line) electrons (a) in the presence
and (b) in the absence of a magnetic field. The horizontal dotted lines indicate the
average potentials «Fe6U and «Cr associated with Fe-3d and Cr-3d states. The poten-
tials experienced by spin-up and spin-down electrons across the layers are marked by

solid and hatched lines, respectively.



band in the absence of U. Such band splitting does not occur in the non-
magnetic Cr layers. But its ionic potential is shallower than that of Fe, since Cr
has a smaller atomic number than Fe. Thus, «Fe,«Cr holds, where «Cr is the
mean energy of the Cr-3d band. The detailed calculations show that «Fe1

U<«Cr. This means that spin-down electrons can propagate through the
boundary between the layers without being heavily scattered, whereas spin-up
electrons are heavily scattered there due to the large potential barrier. This is
illustrated schematically in Fig. 13.28(a).

In the absence of a magnetic field, the magnetizations in neighboring Fe
layers couple antiferromagnetically, as shown in Fig. 13.28(b). Now the poten-
tial barrier at every boundary acts almost equally for both spin-up and spin-
down electrons as a result of the reversal of the magnetization in every other
Fe layer. Hence, both spin-up and spin-down electrons are equally scattered
by the disorder at the boundary, resulting in a larger resistance. This is believed
to be responsible for the sharp decrease in resistance upon application of a
magnetic field and to explain the GMR effect in the Fe/Cr multilayered film
[22]. As is clear from Fig. 13.27, an extremely large applied magnetic field of
20–40kOe is needed to extract the maximum GMR effect in multilayered films
like Fe/Cr. This is certainly not favorable in practical applications. Readers
may find recent progress in the development of GMR devices in the literature
[22].

13.13 Hall effect in magnetic metals

The Hall effect in magnetic metals is measured using the same geometrical con-
figuration as shown in Fig. 11.11. The magnetic field is applied along the z-
direction while the electrical current is fed along the x-direction of a specimen
and the resulting Hall voltage generated in the y-direction is measured. As
mentioned in Section 11.8, a conduction electron subject to the Lorentz force
contributes to the Hall effect. If the Hall resistivity rH is defined as the ratio of
the transverse field Ey over the current density Jx, then we immediately have the
relation rH5RHBz from equation (11.34) for non-magnetic metals. Obviously,
measured values of rH, when plotted against the applied magnetic induction
Bz, fall on a straight line passing through the origin, since RH is independent of
Bz. This is, however, no longer true in magnetic metals because of the addi-
tional contribution arising from the localized magnetic moment.

Figure 13.29(a) shows the Hall resistivity of the ferromagnetic Ni97Al3 alloy
as a function of the magnetic field applied along the z-direction. It is seen that
the Hall resistivity initially increases very rapidly but its slope becomes
small with increasing magnetic field. As is illustrated schematically in (b), the
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non-linear behavior of the rH–B curve is decomposed into the normal Hall
effect due to the Lorentz force and a strongly temperature-dependent compo-
nent proportional to magnetization Mz, and is explicitly written as

rH5 5R0Bz1RsMz, (13.40)

where R0 is the normal Hall coefficient and Rs is called the anomalous Hall
coefficient. The second term can be present in a ferromagnetic domain even in

Ey

Jx
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0
Figure 13.29. (a) Magnetic field dependence of the Hall resistivity for Ni97Al3 alloy
at 4.2 K. (b) The Hall resistivity is decomposed into the normal and anomalous

contributions. [From refs. 20 and 23.]



the absence of an applied field. Thus, it is a spontaneous contribution to rH in
this case. The normal Hall coefficient is deduced from a slope of the rH–B curve
at high magnetic fields while the anomalous Hall coefficient can be roughly esti-
mated from the initial slope. More details about the Hall coefficient in ferro-
magnetic metals will be found in the literature [23].

Finally, we consider the Hall effect in the paramagnetic state above the Curie
temperature, where the magnetization Mz can be expressed as Mz5xm0H. Now
equation (13.40) is rewritten as

RH; 5R01 RS<R01xRs, (13.41)

where x in the denominator can be ignored relative to unity. For example, the
magnetic susceptibility of Co above its Curie temperature (TC51400K)
follows well the Curie–Weiss law. The data shown in Fig. 13.30 were obtained
by measuring the magnetic susceptibility and Hall coefficient for pure Co above
its Curie temperature. The data in the solid and liquid states fall on respective
lines with different slopes and intercepts. The normal Hall coefficient R0 and
the anomalous Hall coefficient Rs are derived from the intercept and slope,
respectively. One can clearly see that the normal Hall coefficient in the para-
magnetic state in pure Co is positive.

x

1 1 x

Ey

JxBz
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Figure 13.30. Hall coefficient versus magnetic susceptibility per volume for liquid
and solid Co. In each state, the normal and anomalous Hall coefficients are derived
from the intercept and slope, respectively, of the straight line drawn through the data
points. [H.-J. Güntherodt et al., Liquid Metals, (The Institute of Physics, 1977)

p. 342]



Exercises

13.1 The expectation value of the z-component of the orbital angular momen-
tum, 7Lz8, vanishes when the degeneracy is lifted and a single level is the lowest
in energy. We study this by considering one electron in a p-state (L51).
The three degenerate wave functions in the free atom are denoted by p

11, p0 and
p

21 where the subscript refers to ML. Suppose that the atom is exposed to the
crystalline field of rhombic symmetry given by V(x, y, z)5Ax21By2 1Cz2. By
taking linear combinations of p

11, p0 and p
21, one can construct non-degener-

ate wave functions so as to make each of them to be real. They are given by c1

5( p
111p

21)/ 5xf (r), c252 i( p
112p

21)/ 5yf (r) and c35p05zf (r).

(a) Show that all non-diagonal elements ec*
iVcjdt (iÞ j ) vanish but that three

diagonal elements are finite and result in the splitting of the degenerate energy
level into three.

(b) Show that the expectation value of Lz given by ec*
iLzcidt for i51, 2, 3 is

zero. This is called the quenching of the orbital angular momentum.

13.2 Equation (13.6) is reduced to the form "v5(2JSa2)k2 at the long-
wavelength limit ka,,1. Show that the density of states for magnons is given
by D(v)5(1/4p2) ("/2JSa2)3/2v1/2. Calculate the total number of magnons at
temperature T by inserting the density of states into the expression oknk5

e`
0 n(v, T )D(v)dv and then derive equation (13.8) by using the relation oknk/NS

e`
0 5DM/M(0).

13.3 Derive equation (13.11) by using Figure 13.5.

13.4 Derive equations (13.22) and (13.23) from equation (13.21).

Ï2Ï2
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Chapter Fourteen

Electronic structure of strongly correlated
electron systems

14.1 Prologue

There exists a family of solids, in which the electron–electron interaction plays
so substantial a role that the one-electron approximation fails. This is known
as the strongly correlated electron system. Historically, De Boer and Verwey
were the first to point out, as early as in 1937, that NiO in the NaCl structure
should be metallic, since the Fermi level falls in the middle of the Ni-3d band.
This already posed serious difficulty in the one-electron band calculations at
that time, since NiO is known to exist as a transparent insulator having a band
gap of a few eV. Peierls noted in the same year that this difficulty stemmed from
the neglect of the repulsive interaction between the electrons and that the elec-
tron–electron interaction must be treated beyond the Hartree–Fock one-elec-
tron approximation [1].

Various transition metal oxides, including NiO and various layered
perovskite cuprates, the latter being known to undergo a transition to the
superconducting state upon carrier doping, have now been recognized as solids
typical of a strongly correlated electron system. Their electronic structures and
electron transport properties have been extensively studied in the last ten years,
i.e., the 1990s. In this chapter, we introduce first the concept of the Fermi liquid
theory, which justified the one-electron approximation for electrons near the
Fermi level in ordinary metals and alloys, and then extend our discussion to
cases where the one-electron approximation fails because of the electron–
electron interaction. The Hubbard model is introduced as a model appropriate
to describe the short-range motion of electrons transferring from one atomic
site to another in competion with the on-site repulsive Coulomb interaction.
Finally, the electronic structure of the cuprate compounds is briefly discussed
on the basis of the Hubbard model.
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14.2 Fermi liquid theory and quasiparticle

Landau considered that any homogeneous system composed of a large number
of particles has low-lying excited states of waves and introduced the concept of
the quasiparticle to describe the waves.1 A typical example is an assembly of
atoms, from which lattice waves are excited and phonons are created as quasi-
particles. He extended the idea to describe the low-lying excited states of the
interacting electron system in terms of quasiparticles. The interacting electron
system is called the electron liquid or the Fermi liquid in contrast to an ideal
electron gas or the Fermi gas for the case of non-interacting electrons. The
Coulomb interaction between electrons is included in the energy dispersion of
the quasiparticle. As described below, the Fermi liquid theory developed by
Landau has justified the one-electron approximation for electrons near the
Fermi level in interacting electron systems. Indeed, all discussions so far made
are based on the one-electron approximation and the Schrödinger equation is
constructed by assuming each conduction electron experiences an average
Coulomb field created by other electrons.

The repulsive Coulomb force is exerted between any two electrons and the
Coulomb potential energy is inversely proportional to their distance apart,
regardless of the quantum states involved. As noted in Section 8.2, the
Coulomb interaction between the conduction electrons in a metal is reduced to
the screened short-range potential exp(2lr)/r, because the Fourier compo-
nents of the Coulomb potential in the range of short wave vectors are separ-
ated as collective excitations, called the plasmon. As a result, the Coulomb
interaction is screened at large distances and each electron effectively keeps
other electrons away from its neighbors and behaves as if it carries a “positively
charged” cloud along with it. This effect is reflected in the energy dispersion
relation of the conduction electron, which may be written as

«(k)5"2k 2/2m*, (14.1)

where m* is called the effective mass of the quasiparticle or quasielectron and
may be slightly different from that of the non-interacting free-electron.

The Fermi liquid theory developed by Landau assumes a one-to-one corre-
spondence between the interacting and non-interacting electron systems. The
quasiparticle is defined in such a way that the energy of each electron is mod-
ified when the interaction between electrons is gradually turned on. Hence, the
quantum state of the quasiparticle is still uniquely assigned in terms of its
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momentum p and position vector r and the number of quasiparticles is defined
as f (p,r)dpdr/h3 in the phase space dpdr, where f (p,r) is the distribution function.
The quasiparticle is assumed to carry the electronic charge (2e) in the same way
as the non-interacting free-electron and to interact with the ionic potentials. In
this way, the energy dispersion for the quasiparticle can be uniquely defined.

The energy of a quasiparticle with the wave vector k is expressed in terms of
equation (14.1) by using the effective mass m*. These quasiparticles are shown
to be stable at energies close to the Fermi level but to dissipate with time due
to transitions to other states at energies far from the Fermi level [2]. Thus, the
Fermi liquid at absolute zero possesses a well-defined Fermi surface. The Fermi
liquid theory has provided a firm basis for the notion of a Fermi surface, elec-
tron transport theories and electronic properties dominated by electrons near
the Fermi level even in the presence of the electron–electron interaction. For
example, the electronic specific heat in the interacting electron system is proved
to be linearly proportional to the absolute temperature while the Pauli para-
magnetic susceptibility is shown to be independent of temperature. The Fermi
liquid theory can be applied successfully to a system forming an extended band
in ordinary metals and alloys. The aim of this chapter is, however, to discuss
the electronic structure of strongly correlated electron systems, which goes
beyond the framework of the Fermi liquid theory.

14.3 Electronic states of hydrogen molecule and the
Heitler–London approximation

In order to recognize the limit of the one-electron approximation, we try to
solve the equation of motion for the two-electron system of a hydrogen mole-
cule while intentionally ignoring the electron–electron interaction between the
two electrons [3]. Since each electron interacts only with two protons 1 and 2,
the Schrödinger equation (8.1) is explicitly written as

c (r1,r2)5Ec(r1,r2), (14.2)

where ri is the position vector of the i-th electron, Ri is that of the i-th proton
and c (r1,r2) is the molecular orbital wave function of the two electrons. Let us
rewrite equation (14.2) as

(H11H2)c(r1,r2)5Ec (r1,r2), (14.3)

where

Hi52 2 (i51, 2). (14.4)
e2

)ri 2 R1)
2

e2

)ri 2 R2)
"2

2m
=2

i

3o
i51,2

12
"2

2m
=2

i 2
e2

)ri 2 R1)
2

e2

)ri 2 R2)24
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Since Hi represents the one-electron Hamiltonian, we drop the subscript i from
equation (14.4) and write the Schrödinger equation as

Hc (r)5«c(r), (14.5)

where c (r) is the one-electron wave function and « is its energy in the presence
of the two protons. The solutions of equation (14.5) with the lowest energy «0

and the second-lowest energy «1 are denoted as c0(r) and c1(r), respectively.
Now we consider the total orbital wave function c(r1,r2) for two electrons in

a hydrogen molecule within the one-electron approximation. Equation (14.3)
at the lowest energy Es52«0 is simply given by the product of c0(r1) and c0(r2):

cs(r1,r2)5c0(r1)c0(r2). (14.6)

Equation (14.6) is the symmetric orbital wave function, since it is unchanged
upon the interchange of the coordinates 1 and 2. Similarly, the state with the
next-lowest energy Et5«01«1 can be written as

ct(r1,r2)5c0(r1)c1(r2)2c0(r2)c1(r1), (14.7)

which is antisymmetric with respect to the interchange in the coordinates. Here
the relation Es,Et holds, since Es2Et5«02«1,0.

Prior to the discussion of the failure of the one-electron approximation, we
consider the singlet and triplet states of the hydrogen molecule. As noted in
Section 8.2, the total wave function given by the product of the orbital and spin
wave functions must be antisymmetric with respect to an interchange in the
space and spin coordinates in accordance with the Pauli exclusion principle. The
spin wave function must be antisymmetric (or symmetric), if the orbital wave
function is symmetric (or antisymmetric). The spin states of a two-electron
system like the hydrogen molecule are given by a linear combination of the four
different states )↑↑8, )↑↓8, )↓↑8 and )↓↓8:

()↑↓82 )↓↑8), )↑↑8, ()↑↓81 )↓↑8), )↓↓8, (14.8)

Obviously, the first spin state is antisymmetric while the latter three are sym-
metric with respect to an interchange of spins. The quantum number of the
resultant spins and their z-components for the two-electron system is easily
found to be S50, 1, 1 and 1 and Sz50, 1, 0 and 21, respectively (see Exercise
14.1). Thus, we see that the singlet state (S50 and Sz50) must accompany the
symmetric orbital wave function given by equation (14.6), whereas the triplet
state (S51 and Sz51, 0 and 21) must accompany the antisymmetric orbital
wave function given by equation (14.7).

As pointed out in Section 8.5, the extended wave function is constructed

1

Ï2
1

Ï2
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from a linear combination of atomic orbitals in the tight-binding method.
This method is preferably called the molecular orbital method, when applied
to a molecule like the hydrogen molecule. It may be appropriate to approxi-
mate c(r1,r2) in equation (14.3) particularly in the immediate vicinity of each
nucleus, where the molecular orbital should resemble an atomic orbital.
Since N52, there are only two different linear combinations of the wave
functions:

c0(r)5f1(r)1f2(r) (14.9a)
and

c1(r)5f1(r)2f2(r), (14.9b)

where fi(r) is the 1s atomic orbital wave function of the hydrogen atom at the
positions i51 and 2. Equation (14.9a) represents the bonding molecular
orbital of a given electron, since the probability density )c0(r))2 is finite at a posi-
tion intermediate between two protons. On the other hand, equation (14.9b)
represents the antibonding molecular orbital, since the probability density
becomes zero there. This is illustrated schematically in Fig. 14.1.

The symmetric and antisymmetric total orbital wave functions for the hydro-
gen molecule containing two electrons at positions r1 and r2 are now con-
structed by inserting equation (14.9) into equations (14.6) and (14.7),
respectively:

cs(r1,r2)5c0(r1)c0(r2)

5f1(r1)f2(r2)1f2(r1)f1(r2)1f1(r1)f1(r2)1f2(r1)f2(r2) (14.10)
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Figure 14.1. (Left) Atomic orbital wave functions of a diatomic molecule and (right)
antibonding and bonding molecular orbital wave functions; with corresponding

energy levels.



and
ct(r1,r2)5c0(r1)c1(r2)2c0(r2)c1(r1)

52[f2(r1)f1(r2)2f1(r1)f2(r2)]. (14.11)

The first and second terms in equation (14.10) describe the motion of each elec-
tron in orbit around the respective protons i51 and 2, whereas the third and
fourth ones describe the electronic state of the H2 ion plus the bare proton,
since two electrons simultaneously occupy the same orbit in one of the two
protons. If we were to include the electron–electron interaction in equation
(14.2), then the third and fourth terms should not have occurred because of an
increase in the Coulomb repulsion between the two electrons. Now it is clear
that equation (14.10) cannot be taken as the ground state in the hydrogen mole-
cule, since the electron–electron interaction cannot be neglected.

In order to discuss properly the ground state of the hydrogen molecule, one
must retain only the first and second terms of equation (14.10) but drop the
third and fourth terms:

cs(r1,r2)5f1(r1)f2(r2)1f2(r1)f1(r2). (14.12)

Indeed, the Heitler–London model chooses equations (14.11) and (14.12) as
the wave functions appropriate to the triplet and singlet states of the hydrogen
molecule, respectively. As is clear from the argument above, the tight-binding
approximation automatically includes terms in which the Coulomb repulsive
energy is inevitably increased as a result of the simultaneous occupation of two
electrons in the same orbit around a given atom.

Before ending this section, we can calculate the energy difference between the
triplet and singlet states of the hydrogen molecule from equations (14.11) and
(14.12). It is easily obtained as

DE5Es2Et

52 f*
1(r1)f

*
2(r2) 1 2 2 f1(r2)f2(r1)dr1dr2.

(14.13)

The integral in equation (14.13) was already referred to as an exchange integral
in Section 13.4. The first and second terms in the bracket always give rise to
positive contributions whereas the third and fourth terms negative contribu-
tions. Since the third and fourth terms can be rewritten as

I125 f*
1(r1) f2(r1)dr1 f*

2(r2)f1(r2)dr2

5 f*
1(r1)f2(r1)dr1 f*

2(r2) f1(r2)dr2,2e2

)r2 2 R2)1EE
E2e2

)r1 2 R1)1E

2e2

)r2 2 R2)
e2

)r1 2 R1)
e2

)R1 2 R2)
e2

)r1 2 r2)1EE
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we find both terms to be equal to each other. If the two electrons enter differ-
ent orbits in a given atom, the integral ef*

1(r)f2(r)dr in equation (14.13) van-
ishes because of the orthogonality of the wave functions. The second term also
vanishes for the same reason. Then, we obtain Es.Et, since the remaining first
term is always positive. This means that the energy of the system can be lowered
by aligning two spins in different orbits parallel to each other. This leads to the
Hund rule discussed in Section 13.3. On the other hand, the integral I12

becomes finite when the orthogonality condition no longer holds, which occurs
when electrons occupy orbits around different atoms as in the hydrogen mole-
cule. In this case, equation (14.13) generally becomes negative and the singlet
state becomes more stable. This is the case for the hydrogen molecule, as shown
in Fig. 14.2.

14.4 Failure of the one-electron approximation in a strongly correlated
electron system

In this section, we extend our discussion of the diatomic molecule with N52 to
that of the system with N5N. The tight-binding method is employed, in which
the Bloch wave is constructed from a linear combination of the wave functions
of the free atom. One can immediately realize that equation (8.31) is derived as
an extension of equation (14.9) with N52 to a crystal with N5N; the wave
functions with k50 and p/a in equation (8.31) for N52 lead to the bonding and

438 14 Strongly correlated electron systems

E
ne

rg
y 

(R
y) t

s

Figure 14.2. Energy of the hydrogen molecule in the Heitler–London model. The
symbols s(↑↓) and t(↑↑) refer to the symmetric and antisymmetric orbital wave func-
tions, respectively. The energy is taken to be zero, when two hydrogen atoms are infi-
nitely apart. The distance is normalized with respect to the Bohr radius a050.053 nm.



antibonding molecular orbital wave functions of equation (14.9), respectively.2

The antisymmetric total wave function can be constructed from equation (8.31)
in the determinantal form (8.10) in the same way as the derivation of equations
(14.10) and (14.11) with N52. Obviously, the same difficulty associated with the
third and fourth terms in equation (14.10), i.e., the simultaneous occupation of
two electrons in the same orbit around a given atom occurs, unless some means
like the Heitler–London approximation is incorporated into it to circumvent the
occurence of such unfavorable electronic configurations.

We now consider a cuprate compound typical of a strongly correlated elec-
tron system, which undergoes a transition to the superconducting state by
carrier doping, and show how the one-electron approximation fails when
applied to it. A large number of high-Tc cuprate compounds crystallize into the
layered perovskite structure, in which the CuO2 plane and the so-called “block
layer” are stacked, as sketched in Fig. 14.3 [4]. The block layer represents an
intervening layer composed of metal ions and oxygen ions.

As a typical example, we show the crystal structure of the La22xSrxCuO4

compound in Fig. 14.4. It consists of a repetition of the rock salt-type La2O2

block layer and the CuO2 plane. The CuO2 plane per cell is charged to 22, since
Cu and O atoms are ionized to 12 and 22, respectively. The average charge of
the block layer must be 12 in order to maintain charge neutrality in the whole
crystal. The replacement of La31 by Sr21 ions in the La22xSrxCuO4 compound
causes the charge of the block layer to decrease to 3(22x)12x24522x and
the difference x must be compensated for in the CuO2 plane to maintain charge
neutrality. This means that the excess positive charge enters into the CuO2

plane and makes it to be conductive. This is called hole doping.
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f1(r)1f2(r) or c1(r)5f1(r)2f2(r), since k5np/a (n50 and 1).

o
l50,a

Figure 14.3. Alternate stacks of block layer and CuO2 plane of the high-Tc cuprate
superconductors.



The one-electron band calculations have been performed for such oxides. For
example the electronic structure of the undoped La2CuO4 compound has been
calculated by the linear augmented plane wave (LAPW) method in combination
with the local density functional method (see Section 8.3). The results are repro-
duced in Fig. 14.5 [5]. A fairly large hole Fermi surface is centered at X. This
clearly indicates the formation of a metal, though this undoped compound is an
antiferromagnetic insulator. This is indeed a demonstration of the failure of the
ordinary band calculations, even though the electron–electron interaction is
taken into account through the use of the local density functional method.

In spite of the apparent failure of the band calculations, we can identify
essential features from the calculated electronic structure. First, bands asso-
ciated with La appear above the Fermi level EF in good agreement with a full
ionization of the La ion: La-5d states appear at about 12 eV and La-4f orbi-
tals form flat bands at about14 eV. The bands labeled A and B in Fig. 14.5 are
confirmed to originate from hybridization of the 3dx22y2 orbitals of Cu sites
with 2p

s
orbitals of the neighboring oxygen atoms of the CuO2 plane, which is
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illustrated schematically in Fig. 14.6. This hybridization results in one hole on
each Cu site, which gives rise to a large Fermi surface centered at the point X
in Fig. 14.5. As will be discussed in the next section, we see that the failure of
the one-electron band calculations stems from the difficulty in evaluating prop-
erly the Coulomb repulsive energy associated with the Cu-3d orbital.

14.5 Hubbard model and electronic structure of a strongly correlated
electron system

Hubbard [6] proposed a model which is capable of describing the extended
electronic states expected from the band theories on the one hand and the local-
ized states dominated by the on-site Coulomb energy on the other. The
Hubbard Hamiltonian is expressed as

H52 t (c1
i↑cj ↑1c1

i↓cj ↓)1U ni↑ni↓, (14.14)o
i

o
i, j
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Figure 14.5. Energy bands for La2CuO4 in the bct Brillouin zone [5]. A and B rep-
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where c1
i ↑ creates a spin-up electron at site i, cj ↓ annihilates a spin-down elec-

tron at the site j and ni↑5c1
i↑ci↑ represents the number of spin-up electrons at

site i and takes either 0 or unity. The second term indicates that the energy of
the system increases by U when an spin-down electron is added to an orbit
where a spin-up electron already exists.3 The parameter U is called the on-site
Coulomb energy. The parameter t in the first term is called the transfer inte-
gral or the hopping matrix element and represents the kinetic energy involved
upon the transfer of a spin-up electron at site j to a neighboring site i without
changing its spin orientation. The band becomes more extended, as the trans-
fer integral t increases. Thus, we see that the Hubbard model treats the
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3 The electron with spin-up need not be considered because of the Pauli exclusion principle.
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Figure 14.6. (a) Three-dimensional electronic configurations of the CuO2 plane and
(b) that within the CuO2 plane. The square unit cell contains one Cu atom (d) and two

oxygen atoms (s).



Hamiltonian as a short-range phenomenon in contrast to the ordinary band
calculations.

Let us consider again the CuO2 plane in the layered perovskite cuprate com-
pounds and apply the Hubbard model to it by focusing on the local electronic
structure in the CuO2 plane. There exist two oxygen atoms per Cu atom in the
CuO2 plane, and hence, the molecular wave function is constructed by a linear
combination of six 2p and five 3d orbitals. The electronic structure of the CuO2

plane exposed to a three-dimensional octahedral crystalline field of tetragonal
symmetry is depicted in Fig. 14.7. As emphasized in Section 14.4, the hybrid-
ization of the 3dx22y2 orbitals of Cu sites with 2p

s
orbitals of the neighboring

oxygen atoms in the CuO2 plane is critically important and gives rise to
bonding and antibonding states. This is shown schematically in Fig. 14.7. Here
it is important to remember that the oxygen atom has a very high electronega-
tivity in comparison to other atoms.4 Because of this nature, two electrons, one
spin-up and the other spin-down, in the dx22y2–p

s
orbital reside exclusively on

the oxygen site and only one spin-up electron is left in the dx22y2 orbital on the
Cu site.

Since all dx22y2 orbitals on Cu21 sites are half-filled, we can in principle add
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4 Pauling [7] introduced a quantity termed electronegativity x to discuss the nature of bonds between unlike
atoms. It represents the power of an atom in a molecule to attract an electron to itself. Electronegativity
values for relevant elements are as follows: Ti (1.5), V (1.6), Cr (1.6), Mn (1.5), Fe (1.8), Co (1.8), Ni (1.8),
Cu (1.9), Zn (1.6) and O (3.5). Hence, the oxygen atom attracts more electrons than transition metal
atoms. The square of the electronegativity difference of the atom pair is called the ionic resonance energy
D. The larger the electronegativity difference or the ionic resonance energy, the stronger is the ionic char-
acter of the bond. Conversely, a bond with a small value of D will be more covalent.
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Figure 14.7. Electronic structure of CuO2 plane in a crystalline field of tetragonal
symmetry. The dx22y2 orbital is the only relevant one in the plane. The essential features

are well reflected in the «2k relation shown in Fig. 14.5.



a spin-down electron without any violation of the Pauli exclusion principle.
This is indeed the case in metals, as shown in Fig. 14.5. However, when the con-
dition U..t holds in equation (14.14), the addition of the spin-down electron
raises the on-site Coulomb energy by U. This leads to the formation of a new
3d band of the spin-down electrons at the energy U above the 3d band of the
spin-up electrons. These are called the upper and lower Hubbard bands, which
are separated by the energy U. Note that the band calculations based on the
one-electron approximation are unable to produce this unique band structure.
Hindrance of the electron transfer from site i to its neighbors means that the
system becomes an insulator in spite of the fact that the band is only half-filled.
An insulator thus obtained is called a Mott–Hubbard insulator.

The energy «i of the i-th electron in a metal crystal is obtained as the solu-
tion of equation (8.8) in the one-electron approximation. According to
Koopmans theorem [8], the difference in the total energy of an N- and an
(N21)-electron system is equal to the energy of the electron that has been
omitted. This theorem is based on the assumption that the individual one-elec-
tron wave functions are the same in both N- and (N21)-electron systems.
Koopmans theorem obviously fails for the Mott–Hubbard insulator. As is
clear from the argument above, the one-electron band picture breaks down
when the Coulomb energy U plays a critical role for a half-filled band. This is
a characteristic feature of a strongly correlated electron system.

Research on the metal–insulator transition induced by strong electron–
electron interaction dates back many years. For instance, data of the metal–
insulator transition for the V2O3 system, which is known as a typical
Mott–Hubbard insulator, are depicted in Fig. 14.8 [9]. It can be seen that the
metal–insulator transition temperature systematically changes with either
varying pressure or substitution of Cr or Ti for V and that the antiferromag-
netic insulating phase is stable at low temperatures but transforms into the
metallic phase at high temperatures.

14.6 Electronic structure of 3d-transition metal oxides

We have emphasized so far the importance of the on-site repulsive Coulomb
energy associated with the 3d orbital. As noted above, the p orbitals of the
neighboring oxygen atoms also play a crucial role in the electronic structure
near the Fermi level. The energy needed for the transfer of 3d electrons to the
oxygen atom is important. The charge transfer energy or resonance energy D,
which is essentially proportional to the square of the electronegativity differ-
ence [7], is employed as its measure (see footnote 4). The value of D between
the 3d-transition metal atom and a neighboring oxygen atom tends to decrease
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with increasing atomic number and, as a result, the positions of both upper and
lower Hubbard bands of the 3d orbitals come closer to the O-2p band. The
interplay between the two parameters U and D determines the essential feature
of the electronic structure of a strongly correlated electron system [10].

Figure 14.9(a) illustrates the electronic structure of a system with D.U,
where the p band of a non-metallic element such as oxygen is located far below
the lower Hubbard band. When the band width W is wider than the on-site
Coulomb energy U, the upper and lower Hubbard bands are combined into a
single band into which the Fermi level falls. This is the case for an ordinary
metal. However, if U.W holds, the upper and lower Hubbard bands are
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(V12xMx)2O3

Figure 14.8. Generalized phase diagram of transition temperature as a function of
pressure and as a function of doping with M5Cr or Ti in (V12xMx)2O3 system. Solid
and open circles are obtained from the temperature dependence of resistivity at 1 atm
for mixed oxides on increasing and decreasing temperature, respectively. Triangles,
squares and diamonds are obtained for x50; x50.04, M5Cr; and x50.04, M5Ti,
respectively, for increasing (solid) and decreasing (open) pressure (or temperature),
respectively. The pressure was scaled to the composition, i.e., 4 kbar/division, using the
difference in the critical pressure for the “V2O3” and “x50.04, M5Cr” samples (for

more details, see ref. [9]).
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Figure 14.9. Electronic structure of (a) Mott–Hubbard insulator and (b) charge
transfer-type insulator in comparison with the corresponding metals. The parameter D
is large in (a) but small in (b). The ground state refers to the system with N electrons.
The system is excited to those with (N21) or (N11) electrons either by ejecting one
photoelectron from the occupied states or by absorbing one electron in the unoccupied
state. Both (N21) or (N11) states can be observed by photoemission and inverse
photoemission experiments but the N-electron states cannot be observed. Contrary to
normal metals, the electronic structure in a strongly correlated system depends on how

many electrons are involved in the system.



separated by an energy gap, resulting in the Mott–Hubbard insulator. Here the
p band is unimportant. Typical examples are the early transition metal oxides
like Cr2O3, Ti2O3 and V2O3, the data for the last one being shown in Fig. 14.8.

The electronic structure for a system with D,U is shown in Fig. 14.9(b).
Here the p band of the non-metallic element appears at an energy between the
lower and upper Hubbard bands and strongly hybridizes with the d orbitals.
An energy gap opens between the p band and the upper Hubbard band. This
is typical of the electronic structure of a charge transfer-type insulator. Indeed,
the formation of such an electronic structure has been experimentally con-
firmed by means of photoemission spectroscopy for late transition metal
oxides like NiO and many cuprates. Table 14.1 lists the parameters U and D
deduced from photoemission spectroscopy measurements [11]. It is clear that
CuO and NiO are charge transfer-type insulators while VO is a Mott–Hubbard
insulator. Insulators of both types are often collectively called Mott insula-
tors.

14.7 High-Tc cuprate superconductors

A high-Tc cuprate superconductor is obtained near the composition where a
charge transfer-type insulator is stabilized. As discussed in Section 14.4, high-
Tc cuprate superconductors such as La22xSrxCuO4 (0.05,x,0.26) (Fig. 14.4)
and YBa2Cu3O72d

(0#d,0.5) (Fig. 12.21) are characterized by the possession
of a two-dimensional layered perovskite structure formed by stacking CuO2

planes separated by block layers. The electronic configuration of the Cu atom
in the CuO2 plane is 3d9, thereby each Cu atom being occupied by a hole with
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Table 14.1. Coulomb
energy U and charge
transfer energy D in

strongly correlated systems
[11]

system U (eV) D (eV)

CuO 7.5 3.9
NiO 7.5 4.9
FeO 7.3 6.5
MnO 7.0 7.5
VO (,2) ,9
Fe2O3 8.9 3.9



the dx22y2 symmetry. The resulting 3dx22y2 band is half-filled and is split into the
upper and lower Hubbard bands. The oxygen 2p

s
band appears in between

them, as indicated in Fig. 14.9(b). Hence, their undoped parent compounds are
typical of a charge transfer-type insulator. The hole with the dx22y2 symmetry
resides on each Cu atom in the CuO2 plane and carries a magnetic moment of
S5 , which aligns antiferromagnetically at low temperatures.

Mobile holes can be doped into the CuO2 plane by substituting a Sr21 ion
for a La31 ion in the block layers in La22xSrxCuO4.

5 This means that electrons
in the oxygen 2p

s
band are depleted or, equivalently, holes are introduced into

the oxygen p
s

band. Now holes in the CuO2 plane are responsible for the elec-
tron conduction and superconductivity as well. Electron doping is also made
possible, for example, by substituting a Ce41 ion for a Nd31 ion in the
Nd22yCeyCuO42d

system. As shown in Fig. 14.10, the superconducting phase
appears next to the antiferromagnetic insulating phase with an increase in
either electron or hole concentrations. It is also clear that an excessive increase
in the carrier concentration suppresses the superconducting phase and,

1
2
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5 By analogy with semiconductors, the word “doping” is often employed to describe the introduction of
carriers to the CuO2 plane. Note, however, that the concentration of dopant is only in the range of a few
ppm up to 0.1 at.% in semiconductors but is ranged over 5–10 at.% in high-Tc superconductors. Thus, the
effect of the distortion of the crystal on the electronic structure must be significant in the latter.
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instead, stabilizes the non-superconducting metallic phase. This suggests that
superconductivity appears only when the metallic nature is still insufficient.

A successive appearance of phases is quite commonly observed for a large
number of high-Tc cuprates and, hence, a universal phase diagram can be
drawn as a function of the concentration of carriers doped into the antiferro-
magnetic insulating phase of the parent compound. This is shown in Fig.
14.11. The superconducting transition temperature Tc increases up to the so-
called optimum concentration co. But it begins to decrease with further
increase in carrier concentration beyond co and the superconducting phase is
finally replaced by a paramagnetic non-superconducting metallic phase. The
superconducting region is often divided into three: the optimum doped region
centered at co; the underdoped region in the range c,co; and the overdoped
region in the range c.co. Observed physical properties above Tc are known to
be strongly dependent on the three distinctive regions.
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The electrical resistivity in the ab-plane of various cuprate compounds in the
optimum doped region obeys surprisingly well a linear temperature depen-
dence over a very wide temperature range covering from just above Tc up to
1000K, in contrast to the behavior expected from the Bloch–Grüneisen law
shown in Fig. 10.9. Deviation from a linear temperature dependence is,
however, evident in both overdoped and underdoped regions. The electronic
properties observed at temperatures above Tc are unique, in the sense that these
behaviors cannot be consistently interpreted in terms of the ordinary transport
theories applicable to normal metals. The presence of a “pseudogap” below T*

in the underdoped region is indicated from measurements such as neutron
inelastic scattering [12].6 Extensive studies have been carried out to clarify if the
observed gap in the range Tc,T,T * is related to the signature of the residual
energy gap inherent in either superconductivity or spin fluctuations associated
with the S5 spin on the Cu site. A more detailed discussion of the mechanism
of superconductivity for the cuprate compounds goes beyond the level of the
present book. References are listed for further studies of this topic [11, 12].

Exercise

14.1 As shown in equation (14.8), there are four spin functions for two elec-
trons in the hydrogen molecule. One can easily assign the quantum numbers
with S50, 1, 1 and Sz50, 1, 21 to the (1/ )()↑↓82 )↓↑8), )↑↑8 and )↓↓8 states,
respectively. In contrast, it is not so obvious why the quantum numbers S51
and Sz50 are assigned to the (1/ )()↑↓81 )↓↑8) state. Show this by using the
following relations for the resultant spin operator S and spin operators S1 and
S2 for electrons 1 and 2:

S 25(S11S2)
25S2

11S2
212(Sx1Sx21Sy1Sy21Sz1Sz2), (14Q.1)

where spin operators are explicitly written as

S 25 "2 , Sx5 , Sy5 , Sz5 . (14Q.2)11
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6 The term “pseudogap” was originally introduced by Mott for the dip in the density of states across the
Fermi level, which grows upon the expansion of liquid mercury (see Sections 15.9 and 15.14). The origin
of the pseudogap in this section is obviously different.



Chapter Fifteen

Electronic structure and electron transport
properties of liquid metals, amorphous metals and

quasicrystals

15.1 Prologue

When a crystal is melted, the periodic lattice is destroyed and the atomic dis-
tribution is randomized. This causes the Bloch theorem to fail in liquid metals.
The discussion of the conduction electron in liquid metals dates back as early
as 1936 when the Mott and Jones book [1] on the electron theory of metals was
first published. Since the 1970s, new melt-quenching techniques have been
developed and amorphous alloys stable at room temperature have become
available in ribbon form. Abundant production of thermally stable amorphous
alloys has enabled us to study their electron transport properties down to very
low temperatures and has certainly widened the research field in the electron
theory of a non-periodic system.

In 1984, Shechtman et al. [2] revealed that the electron diffraction pattern of
the melt-quenched Al86Mn14 alloy exhibits two-, three- and five-fold symme-
tries incompatible with the translational symmetry of a crystal and suggested
that this material belongs to a new family of substances different from crystals.
Since then a number of solids of this class have been discovered along with
progress in theoretical studies [3]. They are indeed new solids classified, in crys-
tallographic terms, as quasicrystals. Because of the possession of five-fold sym-
metry incompatible with the translational symmetry, the Bloch theorem breaks
down. Hence, they are grouped together with liquid metals and amorphous
alloys into the category of non-periodic systems in spite of the possession of a
high degree of ordering, evidenced from very sharp Bragg reflections.

The fundamental understanding of the atomic structure of quasicrystals has
been deepened through the construction of a quasiperiodic Penrose lattice
obtained by projecting lattice points in a selected region of a six-dimensional
lattice onto a three-dimensional physical space.1 The concept of the periodic
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11 Penrose is a mathematician famous for his remarkable work on a plane tiling with five-fold symmetry by
building up two rhombs with a specific quasiperiodicity and long-range order (see Section 15.11).



Penrose lattice, which carries the same local structure as that of the quasiperi-
odic one, was also established. Complex compounds like the Frank–Kasper
compound (see Section 15.11) have now been found to possess such a lattice.
Such compounds are called approximants. The atomic structure of the periodic
Penrose lattice gradually converges to a quasiperiodic one as the degree of
“approximation” becomes less and less. Hence, studies of various approxi-
mants together with quasicrystals and amorphous alloys are important to
bridge the gap between the periodic and non-periodic solids. In this chapter, we
discuss the electronic structure and electron transport properties of liquid
metals, amorphous alloys and quasicrystals as non-periodic systems, and
approximants as periodic systems having large lattice constants, in the range
1–2.5 nm.

15.2 Atomic structure of liquid and amorphous metals

The atomic structure of a crystal can be uniquely determined, once its unit cell
is defined. This is possible because of its possession of translational symmetry.
However, the unit cell cannot be defined in liquid and amorphous metals
because of the disordered distribution of atoms. Figure 15.1 illustrates the
atom distribution in a liquid metal and an amorphous solid in comparison with
that in a gas and in a crystal. Let us take one of the atoms as an origin and plot
the number of atoms found between the two radii r and r1dr from the origin.
The results are shown in the right-hand side of Fig. 15.1. Obviously, the distri-
bution of atoms in a crystal is described by a series of delta functions, since a
definite number of atoms are found at a definite distance.

In contrast, the density of atoms in a gas is so low that their distribution is
independent of the distance r except for the region below the diameter of the
atom a, where two neighboring atoms cannot be geometrically overlapped.
This is no longer true in the case of liquid metals and amorphous solids
because the density is high. Indeed, some correlation in the atom distribution
is clearly visible in both cases, as shown in Fig. 15.1. The distribution is again
zero in the region r#a because of the geometrical restriction mentioned above.
There is a prominent peak at the nearest neighbor distance in both liquids and
amorphous solids, indicating that the probability of finding atoms at this dis-
tance is high. This is called the first peak. Further peaks corresponding to the
second, third, . . . nearest neighbor distances appear with increasing distance r
but their intensities are rapidly weakened and eventually converge into an
average density. The oscillatory function shown in Figs. 15.1(b) and (c) is a
characteristic feature of liquid metals and amorphous solids and is referred to
as the pair distribution function.
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The pair distribution function g(r) is mathematically defined as follows. The
number of atoms found in the volume element dr(54pr2dr) at the radius r from
an atom at r50 is expressed as

r0g(r)4pr2dr, (15.1)

where r05N/V is an average number density given by the ratio of N atoms over
the volume V. Since the volume of the spherical shell, 4pr2dr, increases with
increasing radius r, the number of atoms involved in the shell increases and the
quantity in equation (15.1) divided by 4pr2dr naturally approaches the average
number density r0. Thus, we obtain the relation

lim
r→`

g(r)51. (15.2)
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Figure 15.1. Distributions of atoms with radius a/2 and the corresponding pair dis-
tribution functions in (a) gas, (b) liquid, (c) amorphous solid and (d) crystal. (b) and
(c) are drawn on a plane projected from the three-dimensional space so that atoms are

positioned as if they are overlapped.



The pair distribution function g(r) can be determined experimentally by
using x-rays, electrons or neutrons. We consider below the x-ray diffraction
technique for the structural analysis of a disordered system. Figure 15.2 illus-
trates the situation where the incident x-ray of the wave vector k0 is scattered
into the wave of the wave vector k through an angle u by two atoms located at
the positions O and M. From a simple geometrical consideration, we can easily
find that the difference in the optical path of the two scattered waves is given
by

→
OB2

→
AM5r·(k2k0), (15.3)

where r is the distance between the two atoms. The scattering vector K is
defined as K5k2k0. It is clear from Fig. 15.2 that the relation )K)5
(4p/l)sin(u/2) holds, where l is the wavelength of the incident x-rays.

The amplitude AM(K) of the x-ray scattered by the atom at the position M
is related to Ao(K) by the atom at the position O through the phase shift:

AM(K)5Ao(K)exp(2 i K·r). (15.4)

The intensity I(K) of the x-rays scattered from N identical atoms is then calcu-
lated as

I(K)5 )A(K))25 )Ao(K))2 exp(2 i K·ri)exp(i K·rj)

5f 2 N1 exp[2 i K·(ri2rj)] , (15.5)6o
N
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Figure 15.2. X-ray scattering due to atoms at O and M.



where f5Ao(K ), called the atomic scattering factor or scattering amplitude,
depends on the atomic species involved and the magnitude of K or the scatter-
ing angle in the case of x-rays.2

The atom distribution in liquid and amorphous metals is assumed to be iso-
tropic or spherically symmetric. Hence, both the intensity I(K) and the atomic
scattering factor f would solely depend on the magnitude of the scattering wave
vector K. Equation (15.5) is now further rewritten in the form:

S(K ); 511 exp[2 i K·(ri2rj)], (15.6)

where S(K ) is called the structure factor defined by the ratio of the coherent
scattering intensity I(K ) over the non-interfering scattering intensity Nf 2 due
to N atoms.

The pair distribution function g(r) is defined as

r(r)5r0g(r)5 d(r2(rj2ri)) 2d(r), (15.7)

where r(r) is the number-density function, r0 is the average number density
already defined, d(r) is the delta function and k···lV is to take the sum over atom
pairs i–j with a distance r apart in the volume V [4]. Since the relation
lim
r→`

(1/N )koN
j51o

N
i51d(r2(rj2ri))lV5r0 holds, equation (15.7) is consistent with 

equation (15.2). Furthermore, the delta function in the second term of equa-
tion (15.7) assures g(0)50.3 Now let us multiply both sides of equation (15.7)
by exp(2i K·r)dr and integrate over the volume V:

exp[2 i K·(ri2rj)]511r0 g(r)exp(2 i K·r)dr,

where the relation ed(r2r9)exp(2 i K·r)dr5exp(2 i K·r9) is used. Here the left-
hand side of this equation is nothing but the structure factor. Thus we find that
the structure factor is linked with the pair distribution function through the
relation:

S(K )511r0eg(r)exp(2 i K·r)dr. (15.8)
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12 The x-ray scattering amplitude depends on K because the dimensions of the core electron distribution are
comparable to the x-ray wavelength. In the case of neutron scattering, the amplitude is independent of K,
since the size of the nucleus, of the order of 1024nm, is small in comparison with the neutron wavelength
of 10nm.

13 Note that the delta function is in the units of [length]23, since the relation eVd(r)dr51 holds. Thus, the
right-hand side of equation (15.7) has the dimension of [length]23 and represents the number density in
the volume V.



Since an isotropic atom distribution is assumed for liquid and amorphous
metals, we have g(r)5g(r). The volume integral in equation (15.8) is explicitly
rewritten in polar coordinates as

S(K )5114pr0 [g(r)21]r2 dr14pr0 r2 dr, (15.9)

where the third term contributes to the structure factor only through the
forward scattering in the region K<0.4 Since this term corresponds to the case
with g(r)51, it represents the diffraction effect due to a body having a rigor-
ously uniform density and cannot be distinguished from a direct beam. The
measurements are always carried out to avoid the effect due to the direct beam.
Hence, we will ignore the third term in the rest of our discussion.

The structure factor is now written as

S(K )5114pr0 [g(r)21]r2 dr. (15.10)

The pair distribution function g(r) is obtained by the Fourier transformation
of equation (15.10):

g(r)511 [S(K )21]K 2 dK. (15.11)

The pair distribution function is experimentally determined as follows: the
coherent scattering intensity I(K ) is first derived by subtracting incoherent con-
tributions such as inelastic scattering from the diffraction spectrum. The struc-
ture factor S(K ) is then calculated by taking the ratio of I(K ) over the intensity
Nf 2 of non-interfering scattering due to N atoms. The pair distribution func-
tion is finally obtained by inserting the resulting S(K ) into equation (15.11).

Figure 15.3 shows the structure factor S(K ) and the pair distribution func-
tion g(r) for liquid and amorphous Ni. It is clear that the overall atomic struc-
tures of liquid and amorphous Ni resemble each other, unless a detailed
comparison is made. It is also noted that both S(K ) and g(r) oscillations rapidly
decrease their intensity with increasing K and r, respectively. This is a charac-
teristic feature observed in both liquid and amorphous metals. The first peak
in S(K ) appears at the wave number Kp, which is roughly equal to the inverse
of the average atomic distance r0 corresponding to the first peak in g(r). There
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14 When K is sizeable, the function (sin Kr)/Kr oscillates around the r-axis and converges to zero with increas-
ing r. Its positive and negative contributions to the integral are largely cancelled and, hence, the third term
can be neglected, so long as K is not too close to zero.



exists no measurable difference in the position of the first peak between the
liquid and the amorphous metal. However, a close inspection of the spectra
reveals the following differences between them:

1. The intensity of the first peak in both S(K ) and g(r) of the amorphous phase is
stronger than that of the liquid phase.

2. The second peak of S(K ) and g(r) is often split into two components in the amor-
phous phase but generally not in the liquid phase.

3. The oscillatory behavior in the amorphous phase persists up to a greater distance
than that in the liquid phase.

The differences mentioned above originate from the fact that the atom distri-
bution in the amorphous phase is more dense than that in the liquid phase.
Indeed, the packing density of atoms in a liquid metal is about 0.5, whereas
that in an amorphous metal is generally about 0.7 and is closer to that in a
crystal metal.

We have so far compared the atomic structure of liquid and amorphous
phases in a single-component system. However, an amorphous phase is most
frequently obtained in an alloy system. The atomic structure of a multi-
component liquid or amorphous alloy depends not only on the geometrical
arrangements of the atoms but also on the number of ways of distributing the
different chemical species over short and medium ranges.5 Let us consider a
binary alloy system composed of atom A and atom B. There are three different
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15 The short-range structure in an amorphous alloy refers to that of nearest neighboring atoms around a
given atom and is often discussed in terms of the coordination number and average atomic distance in
comparison with those of its parent crystal. The medium-range structure generally refers to the connec-
tivity of the short-range one and extends to the range of second or third nearest neighbor atoms.

Figure 15.3. (a) Structure factor and (b) its pair distribution function of liquid and
amorphous Ni. Kp refers to the wave number corresponding to the first peak of the

structure factor. [Y. Waseda et al., J. Mat. Sci. 12 (1977) 1927]



atom pairs A–A, B–B and A–B. If the number of the relevant atom pair is larger
than its statistical average, then we say that there exists a favorable bonding in
this atom pair. Conversely, a tendency to repulsive bonding appears if it is
smaller than the statistical average. The deviation from the statistical average is
often discussed in terms of a chemical short-range order. If attractive bonding
dominates, the atomic distance would be shortened relative to the sum of the
Goldschmidt radii of the two atoms.6 There always exists some short-range
order in amorphous alloys, though its degree depends on the system chosen. We
will learn later that the short-range order affects substantially the electronic
properties of amorphous alloys.

Let us denote the atomic scattering factors of atoms A and B to be fA and
fB, respectively, in an A–B alloy. The amplitude of the scattered x-rays is given
by

A(K)5fA exp(2 i K·ri(A))1fB exp(2 i K·ri(B)), (15.12)

where the subscript i(a) means that the i-th atom is a5A or B and N5NA1

NB is the total number of atoms in a volume V. The coherent scattering inten-
sity is obtained by taking the product of equation (15.12) with its complex
conjugate:

I(K )5 )A(K))25 f *
a

f
b

exp[2 i K·(ri(a)2rj(b))]

5f 2
A exp[2 i K·(ri(A)2rj(A))]1f 2

B exp[2 i K·(ri(B)2rj(B))]

12fA fB exp[2 i K·(ri(A)2rj(B))], (15.13)

where sums appearing in the first, second and third terms correspond to the
partial structure factors of the atom pairs A–A, B–B and A–B, respectively, in
the same manner as equation (15.6) for the single-component system.

Ashcroft and Langreth [5] defined the partial structure factor for the atom
pair a–b as
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16 The traditional sets of ionic radii of each element determined by Goldschmidt et al. (1926) and Pauling
(1927) have been used with considerable success. More comprehensive values of ionic radii have been com-
piled by Shannon and Prewitt [Acta Cryst. B25 (1969) 925]. They are all referred to as the Goldschmidt
radius.
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a
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b
)21/2 exp[2 i K·(ri(a)2rj(b))]2dK,0 , (15.14)

where the second term dK,0 in the curly bracket appears to exclude the forward
scattering. By using the Ashcroft–Langreth structure factor in equation
(15.14), we can rewrite equation (15.13) as

I(K )5N (c
a
c

b
)1/2f

a
f

b
S

ab
(K ), (15.15)

where c
a
5N

a
/N represents the concentration of a atoms, where a is A or B.

The number-density function r
ab

(r) is introduced to represent the number of
b atoms found at a radius r from the atom a at the origin. The partial pair dis-
tribution function g

ab
(r) is defined as

r
ab

(r)5c
b
r0gab

(r)

5N
a
21 d[r2(ri(a)2rj(b))]

V

2d
ab

d(r), (15.16)

where the symbol d
ab

in the second term of the right-hand side indicates that
it is unity for the like atom pair a–a while it is zero for the unlike atom pair
a–b. This assures the condition g

ab
(0)50. As has already been defined in equa-

tion (15.7), the bracket k···lV is to take the sum over atom pairs with a distance
r apart in the volume V. We multiply both sides of equation (15.16) by
exp(2i k·r)dr and integrate over the volume V in the same way as in the single-
component system. The partial structure factor S

ab
(K ) defined by equation

(15.14) is now expressed in terms of g
ab

(r) as follows:

S
ab

(K )5d
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1(c
a
c

b
)1/2r0e[g

ab
(r)21]exp(2 i K·r)dr. (15.17)

This definition of the partial structure factor is, however, not unique. Faber
and Ziman [6] employed a different expression for the partial structure factor
in their discussion of the electron transport properties of liquid binary alloys.
They define the partial structure factor a

ab
(K ) in terms of the partial pair dis-

tribution function g
ab

(r) in the form:

a
ab

(K )511r0e[g
ab

(r)21]exp(2 i K·r)dr. (15.18)

By using the Faber–Ziman partial structure factor, one can write the coherent
scattering intensity of equation (15.13) as
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which is further rewritten as

I(K )5N{cAcB[ fA(K )2fB(K )]21 f
a
(K )f

b
(K )a

ab
(K )} (15.20)

for a binary A–B alloy system. Here the K dependence of fA and fB is explicitly
indicated (see footnote 2, p. 455).

The partial pair distribution function g
ab

(r) for an isotropic system is
obtained by the Fourier transformation of equation (15.18):

g
ab

(r)511 [a
ab

(K )21]K2 dK. (15.21)

The number of the structure factors is increased to three in a binary system:
aAA, aBB and aAB. Thus, we need three independent equations (15.15) or (15.20)
to determine uniquely the three partial structure factors. Once they are
obtained, the local atomic structure can be calculated from equation (15.21) or
the Fourier transformation of equation (15.17).

Figure 15.4 shows the local atomic structure of the amorphous Ni81B19 alloy
derived from the neutron diffraction technique. In the case of neutrons, the
atomic scattering factor in equation (15.15) or (15.20) is replaced by the neutron
scattering amplitude b. By making full use of the fact that the isotope 62Ni pos-
sesses a negative scattering amplitude, one can intentionally prepare a so-called
“neutron zero-alloy” having zero scattering amplitude by mixing an appropri-
ate amount of 62Ni and natural Ni which has a positive scattering amplitude.7

The scattering from the Ni atoms is cancelled to zero in the zero-alloy. Hence,
we can accurately determine the partial structure factor SB2B associated with
the boron B–B atom pair as if it were in a single-component system.
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17 The neutron wave function scattered from a nucleus is expressed as the sum of the incident plane wave
and the scattered spherical wave: c5e2ikx2(b/r)e2ikr, where b is the scattering amplitude. The phase shift
between incident wave and scattered wave at the nucleus site is p or b.0 in many nuclei but is zero or b,0
in some nuclei like 62Ni. Scattering amplitudes in the istopes of Ni are as follows. 58Ni: b51.44310212cm
(68%), 60Ni: b50.28310212 cm (26 %), 62Ni: b520.87310212cm (3.6%). The values in parentheses indi-
cate the natural abundances.



We still need information about the local atomic structure around the Ni
atom. Hence, two other samples with the same composition must be prepared,
one using only 62Ni and the other only natural Ni. By solving the three inde-
pendent equations thus obtained, one can determine the remaining partial
structure factors associated with the Ni–Ni and Ni–B atom pairs. As shown
in Fig. 15.4, the B–B atom pair exhibits the largest separation among the three
different atom pairs and the B atom is always surrounded by Ni atoms
without allowing other B atoms as its nearest neighbors. In contrast, the Ni-
B atom pair is formed at the shortest distance, thereby lending support to the
formation of a strong covalent bonding between Ni and B atoms. As is clearly
understood from the argument above, the atomic structure of a binary amor-
phous alloy is by no means simply given by a random mixture of two differ-
ent atom species but is characterized by a short-range order unique to a given
alloy system.
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Figure 15.4. Partial pair distribution functions of the amorphous Ni81B19 alloy.
Partial pair distribution function is defined as Gij(r)54pr0[gij(r)21]. [P .Lamparter et

al., Z. Naturforsch., 37a (1982) 1223]



15.3 Preparation of amorphous alloys

Unique preparation techniques must be devised to synthesize amorphous
alloys, since they exist only as a metastable phase. The currently available tech-
niques may be divided into three: gas quenching, melt quenching and solid
state reaction. In the gas quenching technique, an amorphous film can be pre-
pared by depositing gas atoms or gas molecules onto a substrate. Gas evapo-
ration and sputtering methods are included in this group. The melt-quenching
technique has been widely used as a powerful tool to produce an amorphous
alloy in a ribbon form since the early 1970s when a single-roll spinning wheel
apparatus was developed. The mechanical alloying technique has received
much attention since 1980s and has been recognized as a method to produce
amorphous powders through a solid state reaction without involving a melting
process. For example, an amorphous phase can be formed even in the immis-
cible Cu–Ta system by mechanical alloying [7].

In the gas evaporation method, atoms are evaporated in a vacuum by
heating a metal or an alloy and are deposited onto a substrate. The atom arriv-
ing at the substrate carries a kinetic energy of, at most, 0.1 eV, which is of the
order of the thermal energy at the melting point. Thus, an amorphous phase
would be formed, if the diffusion of atoms after the deposition can be ade-
quately suppressed. For this reason, the substrate is often kept at low temper-
atures. In 1954, Buckel and Hilsch were able to prepare amorphous thin films
by evaporating pure elements such as Bi onto a substrate at 4.2K cooled by
liquid helium [8]. They discovered that amorphous Bi becomes metallic and
undergoes a superconducting transition at about 6K. As discussed in Section
6.8, Bi possesses the electronic structure typical of a semimetal as a result of
the Fermi surface–Brillouin zone interaction. The disappearance of the
Brillouin zone upon amorphization must be responsible for the onset of a
metallic state and superconductivity. However, these amorphous pure metals
are immediately crystallized when the temperature is raised to around 20K.
Hence, studies of the atomic structure and electronic properties were fairly
limited.

In the DC sputtering technique, argon gas is ionized by applying several hun-
dreds to thousands of volts between the anode and cathode plates, which face
each other in the Ar gas atmosphere of 1021–1022 Torr. The target is bom-
barded by accelerated ionized Ar particles and a large momentum is trans-
ferred from the bombarding ion to the atoms in the target. The energy of the
ejected target atoms during sputtering reaches about 10eV so that the sputtered
film is generally more firmly adhered to the substrate than that prepared by gas
evaporation in a vacuum. However, the temperature of the substrate is inevita-
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bly increased during sputtering and, hence, the substrate is often cooled by
water. An amorphous alloy film having a crystallization temperature well above
room temperature can be relatively easily prepared by the DC sputtering
method. The sputtering rate is practically very important and is now increased
to as high as 1 mm/min so that an amorphous film of the order of 0.1 mm thick-
ness can be prepared by continuous sputtering over 2 days.

In 1960 Duwez and his group [9] developed the gun technique of splat
quenching, which enables fine molten droplets produced by a shock wave to be
impinged onto a water-cooled Cu substrate with a cooling rate reaching
108–1010K/s. For example, the amorphous Au70Si30 alloy could be formed in the
form of tiny flakes about 0.2mm2 in area and 10mm in thickness. They were
still far from practical use at that time. In 1969, Pond and Maddin [10] suc-
ceeded in producing amorphous ribbons by ejecting molten alloy onto the
inner wall of a rotating metal drum. In 1970, Chen and Miller [11] developed
the twin-roll quenching method in which molten alloy was ejected into a
narrow gap between two rotating metal rolls so that an amorphous ribbon with
a uniform thickness could be produced. The single-roll quenching method
being currently widely used was established in 1971–2. Its principle is illus-
trated schematically in Fig. 15.5. The control of the gap is very delicate in the
twin-roll method but the single-roll method is free from this difficulty.
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Figure 15.5. Single-roll melt spinning apparatus. (a) An alloy is inductively melted in
a quartz tube with an orifice at its lower end. (b) After complete melting, the quartz tube
is lowered immediately above the rotating Cu wheel and molten alloy is ejected onto it

through the orifice by applying pressurized Ar gas to it.



Amorphous ribbons can be produced with a cooling rate of about 106K/s in a
large quantity within a short time.

One may wonder if the atomic structure and physical properties of an amor-
phous alloy would depend on the preparation technique and/or on the cooling
rate. However, they generally reflect well its intrinsic nature, irrespective of the
preparation methods. But care must always be exercised to check the quality of
the amorphous phase.

15.4 Thermal properties of amorphous alloys

An amorphous phase is metastable and does not exist in the equilibrium phase
diagram. Hence, it crystallizes upon heating. The temperature at which crys-
tallization occurs is referred to as the crystallization temperature Tx and is gen-
erally several degrees higher than the glass transition temperature discussed
below. Figure 15.6 illustrates the temperature dependence of the free volume
of a given substance. The volume of a liquid decreases with decreasing tem-
perature and discontinuously drops upon solidification at the melting point
Tm, as can be seen in Fig. 15.6 (line AB). During the cooling process, the super-
cooling phenomenon may occur. This is apt to proceed, particularly if the
cooling rate is very high. The motion of atoms in a supercooled liquid
becomes sluggish as the supercooling proceeds. If its viscosity exceeds some
critical value of about 1013 poise, the motion of the atoms is practically
frozen.8 This results in the formation of an amorphous phase.The tempera-
ture at which the viscosity reaches this critical value is called the glass transi-
tion temperature Tg.

Upon heating, the amorphous phase may enter the supercooled liquid state,
if crystallization is somehow suppressed across the glass transition tempera-
ture, but eventually crystallizes, say, at a temperature at point F below the
melting point Tm. The volume corresponding to the first derivative of the free
energy is continuous but its slope changes across the glass transition tempera-
ture marked as the point D. The same is true in the temperature dependence of
the entropy. Thus, the specific heat corresponding to the second derivative of
the free energy shows a discontinuous jump at Tg.

Both the crystallization temperature Tx and glass transition temperature Tg

can be experimentally determined using differential thermal analysis (DTA) or
differential scanning calorimetry (DSC). In both DTA and DSC measure-
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18 A tangential stress proportional to the velocity of the fluid appears, if the velocity is position dependent.
Its proportional coefficient is called the viscosity and expressed in CGS units of poise. 1 poise51
dyne·s/cm250.1 Pa. The viscosity of water at 0°C is 1.7931022 poise.



ments, an amorphous alloy sample is heated together with a reference material
possessing approximately the same heat capacity as the sample. DTA records
the temperature difference between them as a function of temperature whereas
DSC measures the heat supplied by the heater so as to make the temperature
difference zero. The relation Tg,Tx,Tm generally holds. We can determine
both Tg and Tx from the measured spectra, since a small endothermic reaction
occurs at Tg but the exthothermic reaction occurs at Tx in the heating process.
It is to be noted that they are not properties inherent in a given amorphous
alloy but depend on the heating rate. It may also be noted that the DSC meas-
urement allows us to determine the enthalpy difference between an amorphous
phase and the crystallized phases by integrating the total area of the exother-
mic peak upon crystallization.
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Figure 15.6. Temperature dependence of free volume. In thermal equilibrium, liquid
solidifies at A and its volume is decreased to B. This is the melting point Tm. Liquid,
however, solidifies at temperature lower than Tm under rapid cooling. Supercooled
liquid is formed in the region A–D. It solidifies when its viscosity exceeds some critical
value at D. The temperature at D is called the glass transition temperature Tg. The
crystal is formed in the region B–C. When an amorphous solid is heated, it becomes
supercooled liquid at D and crystallizes at F. The temperature at F is called the

crystallization temperature Tx.



15.5 Classification of amorphous alloys

In Section 13.2, we classified crystalline metals into five different groups in
terms of the magnetic state involved. It is also convenient to classify in a similar
manner non-periodic metals including amorphous alloys, liquid alloys and
quasicrystals into five groups to facilitate the discussion of the electron trans-
port properties of these non-periodic substances [12]. The Bloch theorem fails
in a non-periodic system and, hence, the mean free path of sp conduction elec-
trons is certainly shorter than that in a crystal. Thus, the d electrons at the
Fermi level EF having more localized character can contribute to the electron
conduction, together with sp electrons. The behavior of the conduction elec-
trons becomes more complex in magnetic systems because of their interaction
with magnetic moments. Here only amorphous alloys are classified into five
different groups depending on their magnetic state, though a similar classifica-
tion is also possible for quasicrystals and liquid alloys.9

Group (I): ferromagnetic, having a Curie temperature well above 300K.
Group (II): weakly ferromagnetic, having a Curie temperature well below 300K.
Group (III): having no spontaneous magnetization over the whole temperature range.
But they exhibit a strongly temperature-dependent magnetic susceptibility. Those
exhibiting spin-glass behavior and the Kondo effect are included in this group.
Group (IV): non-magnetic, with a fairly large Pauli paramagnetism.
Group (V): non-magnetic, with a small Pauli paramagnetism.

Typical amorphous alloys in the respective groups are listed in Table 15.1.
An emphasis is laid on the difference in the electronic structure between the
group (IV) and (V) alloys. They are all non-magnetic but those in group (IV)
possess EF in the d band, whereas those in group (V) in the sp band. Therefore,
amorphous alloys in which sp electrons dominate the electron transport prop-
erties, are limited only to those in group (V). As will be described later, the
Ziman theory based on the nearly-free-electron model can be applied only to
liquid metals in group (V). Liquid metals in group (V) are sometimes referred
to as simple liquid metals. In order to grasp the essence of the electron theory
of a non-periodic system, we limit our discussion only to the electronic struc-
ture and electron transport properties of non-magnetic liquid metals, amor-
phous alloys and quasicrystals in groups (IV) and (V).
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19 Many quasicrystals are non-magnetic and belong either to group (IV) or group (V). However, the
Mg–Zn–Ho quasicrystal has been identified as a spin-glass [T. J. Sato et al., Phys. Rev. Lett. 81 (1998)
2364] and, hence, is classified in group (III).



15.6 Electronic structure of amorphous alloys

The electronic structure of liquid and amorphous alloys has been studied both
experimentally and theoretically. Measurements such as the de Haas–van
Alphen effect rely on the mean free path, which must be long enough to allow
the conduction electron to make a closed orbit in the presence of a magnetic
field (see Section 7.2). Hence, the mean free path-dependent probes cannot be
applied to non-periodic systems. Instead, measurements of the electronic spe-
cific heat coefficient (Sections 3.4–3.5), magnetic susceptibility (Section 3.6),
positron annihilation (Section 7.3), photoemission spectroscopy (Sections
7.5–7.7), soft x-ray spectroscopy (Section 7.8) and optical properties (Sections
11.9–11.12) have been employed as powerful tools to investigate the electronic
structure of non-periodic systems.

Let us first discuss the main feature of the band structure of liquid and
amorphous alloys. In a crystalline metal, the band structure is uniquely decided
by the interaction of the Fermi surface with the Brillouin zone derived from
the Fourier transformation of the periodic lattice in real space. Even in a dis-
ordered system like liquid and amorphous alloys, we pointed out the presence
of correlations in the atomic arrangements in Section 15.2. In contrast to
Bragg peaks in a crystal, the structure of liquid or amorphous alloys can be
characterized by a main peak at the wave number Kp with subsequent dimin-
ishing oscillations in the structure factor, as indicated in Fig. 15.3(a). The pres-
ence of the main peak in the structure factor is taken as evidence for the
existence of a long-range correlation in the assembly of atoms in liquid metals
and amorphous alloys. In other words, the conduction electron in such non-
periodic systems would experience the effect of a “weak periodicity” when its
wave number coincides with Kp/2 or one-half of the reciprocal lattice vector
(see equation (5.42) in Section 5.6). Indeed, the “smeared Fermi
surface–Brillouin zone” effect gives rise to a faint van Hove singularity across
EF in the valence band spectra of the amorphous Mg–Zn alloy in group (V)
[13]. As will be described below, however, the development of a short-range
order or covalent bonding affects more substantially the electronic structures
near EF in an amorphous alloy and, in turn, electron transport properties, than
the long-range correlation discussed above.

Let us begin with reviewing how the short-range structure in a disordered
system can be incorporated into the theoretical band calculations. Because of
the failure of the Bloch theorem, conventional band calculations which need
information only about the atomic arrangements in a unit cell, have to be aban-
doned. In calculations of the electronic structure of an amorphous A–B alloy,
the interatomic pair potentials of all the atom pairs A–A, B–B and A–B are
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Table 15.1. Classification of amorphous alloys in terms of magnetic states

V
III weak

II spin-glass paramagnetism
I weak or IV or

group ferromagnetism ferromagnetism Kondo state paramagnetism diamagnetism

characteristic Curie Curie presence of the spin x.1024/mol x.1025/mol x,1026/mol
features temperature temperature freezing temperature temperature negligible negligible 

TC.300 K TC,,300 K (spin-glass) dependence of temperature temperature
Curie–Weiss-type the Pauli dependence of dependence of
temperature paramagnetism magnetic magnetic
dependence of susceptibility susceptibility
magnetic g.3 mJ/mol·K2 1.5,g,3 mJ/mol·K2 g,1.5 mJ/mol·K2

susceptibility
(Kondo state)

main carrier d electrons d electrons d electrons or d electrons (sp1d) electrons sp electrons
at the Fermi (sp1d) electrons
level

typical Fe–Co–Zr Fe–Zr Pd–Si–Mn Cu–Zr Ca–Al Mg–Zn–Ga
amorphous Co–B Fe–Hf Fe–Mn–B–Si Cu–Ti Ca–Mg Ag–Cu–Mg
alloys Fe–Co–B–Si Co–Mn–B–Si Ni–Zr Ni–P Ag–Cu–Ge

Y–Al Mo–Ru–P Mg–Cu
La–Al



constructed first and the atomic structure is calculated via molecular dynam-
ics simulations. The interatomic pair potentials calculated for the amorphous
Mg70Zn30 alloy are shown in Fig. 15.7(a). Each pair potential has a deep
minimum at the nearest neighbor distance with subsequent Friedel oscillations
due to the screening charges (see Section 13.8). Once the interatomic pair
potentials are assigned to all atom pairs involved, a high kinetic energy is fed
equally to them to produce a liquid-like atomic structure in the computer. In
the next step, the kinetic energy is rapidly deprived from each atom. All atoms
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will try to find their own stable positions and eventually settle down in the local
minima in the matrix. The resulting partial pair distribution functions for the
amorphous Mg70Zn30 alloy are shown in Fig. 15.7(b). In principle, the atomic
structure thus obtained can reproduce the short-range order characterized by
each interatomic pair potential. Once the atomic structure is constructed in the
computer, the electronic structure is then calculated by using techniques such
as the LMTO-recursion method [13, 14].

The calculations of both the atomic and electronic structures must be con-
tinued until a good agreement is achieved with the radial distribution functions
deduced from neutron and/or x-ray diffraction measurements as well as valence
band structures deduced from measurements such as photoemission spectros-
copy and electronic specific heat coefficient. The effect of the short-range order
on the electronic structure may be clearly singled out in a ternary amorphous
A–(B–C ) alloy by choosing different elements as the third element A.

We show a typical example in Fig. 15.8. The resistivity increases and the Hall
coefficient changes its sign, when trivalent Al atoms are added to the amor-
phous Cu40Y60 alloy, whereas the resistivity monotonically decreases and the
Hall coefficient remains negative when the divalent Mg atom is chosen as the
third element [15]. Photoemission spectroscopy in combination with neutron
diffraction experiments clearly reveals the formation of a strong covalent
bonding in the Al–Y and Al–Cu atom pairs in the amorphous Al–(Cu–Y) alloys
while the Cu–Y bonding is always dominant in the amorphous Mg–(Cu–Y)
alloys. Both atomic and electronic structures have been calculated via molecu-
lar dynamics simulations in combination with the LMTO-recursion method for
both the amorphous Al–(Cu–Y) and Mg–(Cu–Y) alloys [14]. The parameters
involved in the relevant interatomic potentials were optimized until the results
became consistent with the experimentally derived partial radial distribution
functions and valence band structure. A combination of experimental and theo-
retical studies confirmed the formation of bonding states associated with Al–Y
and Al–Cu atom pairs across EF in the amorphous Al–(Cu–Y) alloy. The
observed increase in resistivity in the ternary Al–(Cu–Y) amorphous alloys was
attributed to the unique band structure brought about by the development of
the short-range order upon the addition of Al to the amorphous Cu–Y matrix.
The data discussed above emphasize the importance of the short-range order in
interpreting the electronic structure and electron transport properties of amor-
phous alloys. The importance of the short-range order will be further empha-
sized in the discussion of quasicrystals (see Section 15.13).

The self-consistent determination of both atomic and electronic structures
is essential in a disordered system, where a unit cell cannot be defined. Within
a limited computing time and the limited memory size of a computer, a
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construction of a reliable but efficient scheme to calculate the electronic struc-
ture and electron transport properties of a disordered system is critically
important. It has long been a puzzle why some liquid and amorphous alloys,
like the Al–(Cu–Y) amorphous alloys mentioned above, exhibit a positive Hall
coefficient in spite of the absence of the hole Fermi surface. Tanaka and Itoh
[16] could explain soundly the mechanism of the occurrence of a positive Hall
coefficient in liquid Fe by applying the tight-binding linear muffin-tin orbital-
particle source method developed by Tanaka to the Itoh formula of the Hall
conductivity. It was shown that p–d hybridization near EF must be responsible
for the observed positive Hall coefficient in liquid Fe. It is of great interest to
examine whether their model can be extended to explain the observed positive
Hall coefficient in the amorphous Al–(Cu–Y) alloys, in which bonding states
are formed across EF as a result of the hybridization of the Al-3p states with
the Y-4d and Cu-3d states.

15.7 Electron transport properties of liquid and amorphous metals

One of the most challenging objectives in the studies of liquid and amorphous
alloys is to gain a deeper insight into the electron conduction mechanism in
non-periodic systems. Electron conduction in liquid and amorphous alloys is
certainly due to electrons at EF, whose number density generally amounts to
the order of 1022/cm3. Electron transport in liquid metals was discussed in the
well-known textbook by Mott and Jones first published in 1936 [1]. However,
a breakthrough was brought about by the Ziman theory put forward in 1961,
which successfully explained the electrical resistivity behavior of simple liquid
metals like pure Na and Zn [17]. At the International Conference on Liquid
Metals held in Tokyo in 1972 [18], Ziman reported that the magnitude and tem-
perature dependence of the electrical resistivity of simple liquid metals could
be well accounted for at a quantitative level but that there still existed great
difficulties in the treatment of the electron transport of liquid transition metals.
This implies that the Ziman theory discussed in Section 10.10 had been widely
accepted as a valid model for liquid metals in group (V) but that the role of the
d electrons in the electron conduction of liquid transition metals in group (IV)
still remained unsettled at that time.

The development of a single-roll melt-spinning wheel apparatus in the early
1970s concomitant with the Tokyo conference on liquid metals mentioned
above certainly stimulated studies of various physical properties in amorphous
alloys, since a large number of amorphous ribbon samples could now be rela-
tively easily produced in many laboratories. But almost all amorphous ribbons
thus produced at that time contained transition metals like Fe and Ni as major
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constituent elements. Unfortunately, however, the measured resistivity and its
temperature dependence had been frequently discussed on the basis of the
Ziman theory for simple liquid metals without seriously considering the limit
of its applicability.

We review, at this stage, characteristic features of the electrical resistivity
behavior of liquid and amorphous phases in comparison with those in the crys-
talline phase. To avoid complications due to possible d electron contributions,
we choose the data in group (V) to which the nearly-free-electron model can be
applied. Figure 15.9 shows the temperature dependence of the electrical resis-
tivity of the amorphous Mg70Zn30 alloy in group (V). The data in the liquid
phase are also incorporated. The resistivity decreases slightly with increasing
temperature in the amorphous phase. Thus, the temperature coefficient of
resistivity or TCR (5(1/r)(dr/dT )) is negative in the amorphous phase.
Crystallization proceeds in two steps at about 400 and 500K for this sample
and is accompanied by a larger drop in resistivity at the second crystallization.
The TCR becomes positive after complete crystallization. The room tempera-
ture resistivity is reduced to only 15mV-cm in contrast to 60mV-cm in the
amorphous phase. It is clear that not only the magnitude of the resistivity is
substantially different but also the sign of TCR changes between amorphous
and crystalline phases. In contrast, the resistivity in the liquid phase is close to
the value obtained by extrapolating the temperature dependence of the resis-
tivity in the amorphous phase, and its TCR is negative in agreement with that
in the amorphous phase.
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Figure 15.9. Temperature dependence of electrical resistivity of amorphous and
liquid Mg70Zn30 alloy. The amorphous phase is crystallized at Tx. [Amorphous phase:
T. Matsuda et al., J. Phys. F: Met. Phys. 14 (1984) 1193; liquid phase: S. Steeb et al.,

Z. Metallkunde 61 (1970) 637]



Characteristic features of the electrical resistivities of liquid and amorphous
alloys are summarized below.

1. The residual resistivity of amorphous alloys is generally in the range 20,1000mV-
cm (see Fig. 15.16) and is 5–100 times that in the crystallized phase. The resistivity
values in amorphous alloys are, instead, comparable to those in liquid metals.

2. The resistivity of amorphous alloys changes with temperature only by a few % over
the temperature range 2–300K. The change in resistivity with temperature is also
fairly small in liquid metals.

3. The sign of TCR in amorphous alloys and liquid metals is either positive or nega-
tive and is sometimes extremely close to zero, depending on the composition of a
given alloy system.

As is clear from the discussion above, electron transport properties of amor-
phous alloys are definitely different from those in crystals but are seemingly
similar to those of the corresponding liquid phase. However, we will show
below that there exists a distinctive difference in the electron transport mecha-
nism between liquid and amorphous phases: elastic scattering dominates in the
liquid phase whereas inelastic scattering and/or the quantum interference effect
play a key role in the amorphous phase at temperatures below 300K.

15.8 Electron transport theories in a disordered system

The negative TCR phenomenon is a characteristic feature of a semiconductor
with a well-defined energy gap. Thus, one may address a naive question as to
why a negative TCR, though its magnitude is small, appears for many liquid
and amorphous alloys, in which the carrier concentration is as high as 1022 /cm3

and a well-defined Fermi edge exists without any energy gap. Various theories
have been proposed to shed more light on the electron transport mechanism
including the origin of a negative TCR in a disordered metallic system. As
noted in the preceding section, the Ziman theory developed for simple liquid
metals was frequently employed without much success to explain the occur-
rence of a negative TCR observed in various amorphous alloys in groups (I) to
(IV) in the late 1970s to early 1980s. Apart from the Ziman theory, the
Anderson localization theory in 1958 [19] has played a crucial role in the
progress of the electron theory of a disordered system. Mott [20] has made
further important contributions to this field and laid the basis for the concept
of the weak localization effect in a series of his papers over the period 1966–90.
We discuss below the more fundamental theories and related topics on disor-
dered systems, including those in both marginally metallic and insulating
regimes.
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15.8.1 Ziman theory for simple liquid metals in group (V)

We derived in Section 10.10 the resistivity formula of equation (10.82) by
assuming only elastic scattering in a perfect crystal at finite temperatures.
However, it was emphasized that equation (10.82) is not adequate to describe
the temperature dependence of the resistivity of a crystal because of the neglect
of the inelastic electron–phonon interaction. Its rigorous treatment for a
crystal has been described in Sections 10.11 and 10.12. This does not necessar-
ily mean that equation (10.82) is meaningless.

As a matter of fact, equation (10.82) has more often been referred to as
the Ziman resistivity formula for simple liquid metals, because he derived it for
the first time to describe their resistivity behavior [17]. In place of equation
(10.73), Ziman expressed the total ionic potential for a simple liquid metal
as U(r)5oiUp(r2Ri), where the vector Ri denotes the position of the i-th
ion, the vector r the position of the conduction electron and Up(r2Ri) is
its pseudopotential. Here, the position vector Ri of the ion is fixed in a liquid
metal and the displacement vector ul in equation (10.73) need not be consid-
ered. In other words, we limit ourselves to the interaction of conduction elec-
trons with the static distribution of ions in liquid metals. This is certainly
equivalent to the assumption of elastic scattering of the conduction electron
by ions.

As has been described in Section 10.10, the Ziman resistivity formula is con-
structed on the basis of the following three assumptions. Firstly, the linearized
Boltzmann transport equation is assumed. It implies that the mean free path
of the conduction electron must be longer than an average atomic distance and,
hence, the Ziman theory will work only for systems with resistivities less than
about 150mV-cm.10 Secondly, the Born approximation is assumed to calculate
the transition probability. This is justified by the pseudopotential approach,
which holds only for systems in group (V) but fails for systems in group (IV).
Thirdly, elastic scattering is assumed. This limits the applicability of the Ziman
formula only to liquid metals, because elastic scattering dominates either at
very low temperatures or at temperatures well above the Debye temperature
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10 The mean free path of the conduction electron for crystals and amorphous alloys in types (a) to (c) (see
Fig. 15.12), to which the nearly-free-electron model is applicable, is roughly estimated from the relation

LF5 55.9231025 ,

where A is the atomic weight [g], d is the density [g/cm3], r is the resistivity [V-cm] and LF is the mean free
path [Å]. For example, the mean free path in pure Cu is deduced to be about 260 Å by inserting a resistiv-
ity of 1.6 mV-cm at 300K, whereas that in an amorphous alloy with r5150 mV-cm and A/d<10 is
deduced to be about 4 Å, comparable to an average atomic distance.

A
dr

mvF

ne2r
5

9.1 3 10228 3 108 3 9 3 1011

6 3 1023 3 (4.8 3 10210)2 ·
A
dr



(see Section 11.4). Therefore, we see that the Ziman resistivity formula should
be applicable only to low-resistivity liquid metals and alloys in group (V).

Let us study how the Ziman resistivity formula has been applied to liquid
metals and alloys in group (V), for which a spherical Fermi surface can be rea-
sonably assumed. The elastic scattering of conduction electrons always takes
place on the Fermi surface, as shown in Fig. 10.6. The magnitude K of the scat-
tering vector is then related to the scattering angle u through the relation:

sin . (15.22)

The allowed range of u is obviously 0#u#p and, hence, 0#K#2kF, indicat-
ing that the scattering vector is limited by the diameter of the Fermi sphere.
The integrand in equation (10.82) consists of the interference function a(K ),
the square of the Fourier component of the ion potential, )U(K ))2, and the
weighted factor K 3. Because of the presence of the weighted factor, the contri-
bution of a(K ) and )U(K ))2 to the integral becomes substantial in the K region
only near the upper limit 2kF.

Figure 15.10 illustrates the K dependence of both a(K ) and )U(K ))2 for a

u

2
5

K
2kF

476 15 Liquid metals, amorphous metals and quasicrystals

Figure 15.10. Wave number dependence of integrands a(K ) and |U(K )|2 appearing
in the Ziman theory. The interference function a(K ) is spread as shown by the dashed
curve when temperature T1 is raised to T2. The positions of 2kF corresponding to
various e/a values are shown by vertical lines. |U(K )|2 is obtained by taking the square
of the pseudopotential such as that shown in Fig. 8.5. [U. Mizutani, Prog. Mat. Sci. 28

(1983) 97]



typical liquid metal. The wave number dependence of the pseudopotential was
already shown for pure Al in Fig. 8.5. Generally speaking, the K dependence
of )U(K ))2 is fairly small and flat in the region of our interest (1.0#e/a#4.0 in
Fig. 15.10). Thus, more important is the contribution from the interference
function a(K ), which is shown schematically in Fig. 15.10. It is characterized
by the first main peak centered at the wave number Kp, the inverse of which
roughly corresponds to an average atomic distance of a liquid metal. As
described below, the position of the upper limit 2kF relative to Kp plays a key
role in the Ziman theory.

In monovalent liquid metals like Na, the 2kF value corresponding to e/a5

1.0 is relatively small and the condition 2kF,Kp holds. In divalent liquid metals
like Zn and Cd, the 2kF value is increased and the condition 2kF<Kp holds.
The value of 2kF is further increased in polyvalent liquid metals like Al and Sn,
leading to 2k.KP. As shown in Fig. 15.10, the integration is carried out only
up to the rising slope of the main peak for monovalent metals. The resistivity
value is found to be fairly small, since a(K ) remains relatively small (,1) up to
the upper limit 2kF. Similarly, a(K ) becomes relatively small near 2kF for poly-
valent metals with e/a53.0–4.0 and, thus, the resistivity becomes low again.
The largest resistivity is expected to occur for divalent metals where the upper
limit 2kF coincides with the main peak in a(K ).

The sign of TCR can also be predicted from equation (10.82). When the tem-
perature of a liquid metal is increased, the main peak will be broadened, as
shown by a dashed curve in Fig. 15.10, as a result of an increasing free volume
and structural disorder. The resistivity will increase with increasing tempera-
ture for monovalent metals, since the integration is terminated at the enhanced
outskirts of the main peak, where a(K )T=T2

.a(K )T=T1
holds. This explains well

the occurrence of a positive TCR in monovalent and polyvalent metals.
However, when 2k<Kp is satisfied, a decrease in the height of the main peak
with increasing temperature contributes to reduce the resistivity, thereby
leading to a negative TCR for divalent metals.

The validity of the Ziman theory has been tested for a series of liquid alloys
obtained by adding polyvalent metals like Sn and In to monovalent noble metals
like Cu and Ag, all of which are typical of group (V). The value of 2kF can be
continuously increased with increasing concentration of the polyvalent element.
Both the value of resistivity and the sign of TCR for noble metal alloys are
plotted in Fig. 15.11(a) as a function of 2kF/Kp rather than the concentration of
the polyvalent element. It is clear that both the maximum resistivity and a neg-
ative TCR concurrently occur at 2kF/Kp51, in good agreement with the Ziman
theory. In this way, the Ziman theory has been proved to be successful in inter-
preting the resistivity behavior of simple liquid metals and alloys in group (V).
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(a) group (V) liquid alloys
based on noble metals

(b) group (V) amorphous alloys

30
0K

Figure 15.11. Resistivity as a function of 2kF/Kp for (a) group (V) liquid alloys based
on noble metals [reproduced from G. Busch and H.-J. Güntherodt, Solid State Physics,
vol. 29, edited by H. Ehrenreich, F. Seitz and D. Turnbull, (Academic Press, New York,
1974)] and (b) group (V) amorphous alloys. The sign of the TCR is shown by symbols
1 or 2. [U. Mizutani, Materials Science and Technology edited by R. W. Cahn, P.
Haasen and E. J. Kramer, (VCH, Germany, 1994), vol.3B: Electronic and Magnetic
Properties of Metals and Ceramics, Part II, volume editor K. H. J. Buschow, pp. 97–157]



15.8.2 Baym–Meisel–Cote theory for amorphous alloys in group (V)

The resistivity at 300K for a large number of amorphous alloys in group (V) is
plotted in Fig. 15.11(b) as a function of 2kF/Kp. Its behavior is obviously differ-
ent from that in Fig. 15.11(a) and no clear 2kF/Kp dependence is observed in
amorphous alloys. Regardless of the magnitude of 2kF/Kp, a positive TCR
appears when the resistivity is lower than about 50–60mV-cm and, otherwise,
a negative TCR dominates.11 This clearly demonstrates the failure of the
Ziman theory to explain the resistivity behavior of amorphous alloys even in
group (V).

Among the three underlying assumptions in the Ziman theory, the linearized
Boltzmann transport equation and the Born approximation are equally jus-
tified for amorphous alloys in group (V). However, the assumption of the
elastic scattering collapses in amorphous alloys, since their electron transport
properties are discussed at temperatures well below the Debye temperature QD

or below 300K in most cases. At such low temperatures, ions can no longer be
treated as independent particles but the concept of collective excitations of
phonons must be introduced to treat the thermal vibrations of ions.12 A proper
evaluation of the inelastic electron-phonon interaction is of prime importance
in dealing with the electron transport properties of amorphous alloys in group
(V) at temperatures below QD. We abandon the Ziman theory of equation
(10.82) and, instead, employ the Baym resistivity formula of equation (10.96)
as a starting equation, through which the inelastic electron–phonon interaction
is incorporated.

The Baym resistivity formula of equation (10.96) is more explicitly written
as

r5 a(K,v)dv )U(K ))2K 3dK, (15.23)

where a(K,v) is the dynamical structure factor at frequency v and wave number
K. As noted in Section 10.11, the v-dependent integral in equation (15.23) is
reduced at high temperatures T.QD to
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11 We have pointed out in Fig. 15.9 the similarity of the resistivity behavior in both amorphous and liquid
phases of the Mg70Zn30 alloy. The condition 2kF5Kp is satisfied for this alloy, since both Mg and Zn are
divalent. But the temperature dependence of the resistivity for the amorphous phase in the range 2–300K
can be interpreted only in the context of the Baym–Meisel–Cote theory [21].

12 The lattice specific heat at low temperatures exemplifies the need for introducing the concept of phonons.
At temperatures well above QD, the lattice specific heat of 3R is well explained in terms of the Boltzmann
equipartition law by treating ions as classical individual particles. However, a rapid decrease in the lattice
specific heat below QD can be explained only by taking into account the collective motions of ions (see
Section 4.8).



a(K,v)dv< a(K,v)dv5a(K ), (15.24)

indicating that the dynamical structure factor is replaced by the static structure
factor at T.QD. We see, therefore, that the Ziman equation (10.82) is a high
temperature limit of the Baym equation (15.23).13

In Section 10.12, the Bloch–Grüneisen law is derived by applying the Baym
equation to a crystal metal. Now equation (15.23) is applied to amorphous
alloys in group (V). Its details have been described in successive papers by
Meisel and Cote [21]. They showed that the temperature dependence of the
resistivity for amorphous alloys in group (V) is well approximated as

r5[r01Dr(T )]exp[22W(T )], (15.25)

where r0 is the residual resistivity, Dr(T ) is the term arising from the inelastic
electron–phonon interaction and the exponential term exp[22W(T )] repre-
sents the Debye–Waller factor (see Section 10.12 and Exercise 10.8 for the def-
inition of W(T )) [21]. The term Dr(T ) is shown to exhibit 1T 2 dependence at
low temperatures, say, below 20K, and 1T at higher temperatures. This is com-
pared with the Bloch–Grüneisen law for a crystal metal, where 1T 5 depen-
dence holds at low temperatures and 1T at higher temperatures. The
Debye–Waller factor yields a (12aT 2) dependence at low temperatures and
(12bT ) above about several tens of degrees K (see Exercise 15.1). The valid-
ity of equation (15.25) has been experimentally confirmed by Mizutani [12], as
shown below.

In the case of group (V) amorphous alloys with residual resistivities lower
than about 50–60 mV-cm, the term Dr(T ) dominates and 1T 2 dependence is
observed at temperatures below about 20K whereas 1T at temperatures above
about 30K. Hence, the TCR is positive over the whole temperature range
2–300K. This r–T behavior is hereafter called type (a) and is illustrated in Fig.
15.12. As r0 gradually increases beyond 60 mV-cm, the Debye–Waller factor
begins to play a more important role at higher temperatures. Type (b) is
assigned to the r–T behavior characterized by 1T 2 dependence at low temper-
atures but (12bT ) at higher temperatures. This naturally results in a shallow
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13 As noted in footnote 12, p. 284, in Chapter 10, the reduction of the dynamical structure factor to the static
structure factor at high temperatures is brought about as a result of the smearing of the Fermi distribu-
tion of the order of kBT which exceeds the maximum transfer energy of kBQD between electrons and
phonons. Strictly speaking, this is not equivalent to the assumption of elastic scattering and is often
referred to as quasi-elastic scattering (see Section 11.4).



resistivity maximum at an intermediate temperature, as shown in Fig. 15.12.
With increasing r0, the resistivity maximum is shifted to lower temperatures
and finally vanishes [12]. Now the r–T dependence is dominated only by the
Debye–Waller factor over the whole temperature range: (12aT 2) at low tem-
peratures and (12bT ) at high temperatures. This is type (c), which is obviously
characterized by a negative TCR over the whole temperature range. Type (c) is
generally observed in group (V) amorphous alloys with resistivities in the range
100–150 mV-cm.

The temperature dependence of the electrical resistivities in the range
2–300K for amorphous alloys in both groups (IV) and (V) can be systemati-
cally classified into five different r–T types. They always appear in the sequence
(a)→ (b)→(c)→(d)→(e) with increasing resistivities, as illustrated in Fig.
15.12. The gradual change in types (a)→ (b)→ (c) is accompanied by shorten-
ing of the mean free path down to an average atomic distance [12]. We say,
therefore, that an increase in resistivity in this regime is due entirely to the mean
free path effect and is free from the band structure effect. Indeed, the data are
well explained in terms of equation (15.25) within the framework of the
Baym–Meisel–Cote theory based on the Boltzmann transport equation. The
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Figure 15.12. Temperature dependence of the electrical resistivity of non-magnetic
amorphous alloys in the temperature range 2–300 K. Symbols representing the r–T
types are used in Figs. 15.16 and 15.17. [U. Mizutani, Phys. Stat. Sol. (b) 176 (1993)9]



sign of TCR shown in Fig. 15.11(b) refers to that near room temperature and,
hence, a positive TCR corresponds to type (a) whereas a negative TCR to the
remaining types (b) to (e). This means that the sign of TCR in amorphous
alloys is determined by the interplay between Dr(T )exp[22W(T )] and
r0exp[22W(T )] in equation (15.25) instead of 2kF/Kp in liquid metals.

The r–T types (d) and (e) are exclusively observed in high-resistivity amor-
phous alloys with resistivities exceeding about 200 mV-cm. This indicates that
the mean free path is shortened to an average atomic distance of a few Å. An
increase in resistivity in this regime should be caused by a change in the elec-
tronic structure, since the mean free path can no longer be decreased. The r–T
types (d) and (e) are observed in some group (V) and many group (IV) amor-
phous alloys. They cannot be explained in terms of the Baym–Meisel–Cote
theory but must be treated by theories beyond those based on the Boltzmann
transport equation.

15.8.3 Mott s–d scattering model

Both sp and d electrons coexist at EF in group (IV) amorphous alloys. Since the
electron transport properties are exclusively determined by electrons at EF, it is
a crucial matter to clarify how sp and d electrons share the electron conduc-
tion. Mott [22] explained the reason for the possession of a relatively large
resistivity in the transition liquid metals in terms of the so called s–d scatter-
ing model (see Section 13.6). He assumed that the sp electrons are exclusively
responsible for electron conduction in a transition liquid metal. According to
equations (10.80) and (10.81) coupled with (10.54), the scattering probability
1/t of the conduction electron is found to be proportional to the final density
of states at EF, N(EF). Since EF is located in the middle of the d band in the
transition metal, Mott attributed the observed large resistivity to its large final
density of states.

Mott’s s–d scattering model presumes that the sp conduction electron pos-
sesses a mean free path much longer than that of the d electrons at EF.14 This
condition is certainly better satisfied in a crystal where the Bloch theorem
holds. Its failure in liquid and amorphous alloys causes the mean free path of
sp electrons to be shortened. In particular, we will show in Section 15.9 that
both sp and d electrons would equally contribute to the electron conduction in
amorphous alloys characterized by r–T types (d) or (e).
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14 If the Mott s–d scattering model worked for amorphous alloys in group (IV), then the residual resistivity
r0 would increase in proportion to N(EF) or the electronic specific heat coefficient g. However, as indicated
in Fig. 15.16, this is generally not observed.



15.8.4 Anderson localization theory

As shown in Fig. 15.13(a), we consider the conduction electron with energy E0

to be loosely bound in the periodic potential. The Bloch wave derived from the
tight-binding approximation will form a relatively narrow band with a width
W. Now some disorder is introduced into the potential distribution. Its ampli-
tude is assumed to vary irregularly in the range 2V0/2,V,2V0/2, as shown
in Fig. 15.13(b). Anderson [19] proved that all electrons within the band cannot
form the Bloch wave but localize in real space, if the ratio V0/W exceeds some
critical value. At finite temperatures, localized electrons will be able to
exchange their energy with phonons and to hop from one site to another. This
is termed hopping conduction. The Anderson localization theory has been
further elucidated by Mott and others and concepts such as weak localization,
mobility edge, minimum metallic conductivity, scaling law and metal–insula-
tor transition have been established. More details are to be found in the litera-
ture [20].

As is inferred from equation (15.25), the inelastic electron–phonon interac-
tion plays a key role in determining the temperature dependence of the electri-
cal resistivity in amorphous alloys but its contribution becomes less important
as the residual resistivity increases. The residual resistivity arises from the
elastic scattering of conduction electrons due to random distributions of ions

15.8 Electron transport theories in a disordered system 483

V

V

E0 W

Figure 15.13. Potential arrays in periodic and non-periodic lattices. (a) Electrons
with an average energy E0 form the Bloch state with band width W in the periodic
potential. (b) Electrons are localized if V0/W exceeds some critical value, where V0 rep-
resents the degree of disorder in the potential. [N. F. Mott, Metal–Insulator 

Transitions (Taylor & Francis Ltd, 1990)]



at absolute zero. The elastic scattering is indeed essential in the Anderson local-
ization theory.

Following Bergman [23], we consider why the repetition of the elastic scat-
tering leads to an enhancement of the localization. He introduced two differ-
ent lifetimes of the conduction electron at low temperatures: one the elastic life
time to representing that of the electron in an eigenstate of momentum and the
other the inelastic life time ti in an eigenstate of energy. At low temperatures
below, say, 4K, elastic scattering dominates and the inelastic lifetime becomes
longer than the elastic one by several orders of magnitude. As a result, an elec-
tron of wave vector k is scattered by impurities without losing its phase coher-
ence.

Figure 15.14(a) illustrates the situation where the conduction electron of
wave vector k is scattered into the state 2k by repeated elastic scattering events
with impurities. This implies that a series of elastic scatterings result in back-
scattering. An exactly opposite passage is also equally possible and is shown by
a dashed line. The same elastic processes can be considered on the Fermi
surface in the reciprocal space. As shown in Fig. 5.14(b), two passages refer to
the multiple scatterings: one goes via k91, k92, k93 and the other via k01, k02 and k03
before reaching the state 2k. The repeated elastic scatterings yield the momen-
tum transfers K1, K2, K3 and K4 in the former whereas they yield K4, K3, K2 and
K1 in the latter. Among numerous possible scattering processes, we can show
that the processes mentioned above tend to occur more frequently than others
under the condition of the elastic scattering.
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Figure 15.14. Repeated elastic scattering events of conduction electron and resulting
localization effect in (a) real and (b) reciprocal space. [G. Bergman, Phys. Rev. B28

(1983) 2914]



We can show that the scattering amplitudes A95 )A9)e iu9 and A05 )A0)e iu0

upon multiple scattering from state k to state 2k in these two complementary
passages are the same. Firstly, the scattering probability is proportional to the
product of the Fourier components of the scattering potential,
U(K1)U(K2)U(K3)U(K4), and, hence, is the same for the two passages. Secondly,
the phase remains unchanged and u95u0, since all scatterings involved are
elastic. Thus, we have the relations )A9)5 )A0)5 )A), A9*A05 )A)2 and A9A0*5 )A)2.
The probability density of the electron state of 2k is calculated as

)A91A0)25 )A9)21 )A0)21A9*A01A9A0*54)A)2. (15.26)

However, the third and fourth terms will disappear and the probability density
is reduced to one-half or 2)A)2, if the scattering is inelastic and the two phases
involved are incoherent, namely, u9Þu0. We see, therefore, that the multiple
elastic scattering accompanying the momentum transfer 2kF is more frequent
than others and that the probability density of electrons at the position before
scattering is doubly enhanced. This is indeed the localization effect. The scat-
tering described above is often called the quantum interference effect or 2kF

scattering.
Only elastic scattering survives at absolute zero. Therefore, Anderson local-

ization is prone to occur in systems possessing a high residual resistivity. At
finite temperatures, electrons begin to be scattered inelastically with phonons
so that the phase coherence will be gradually lost during the successive scatter-
ings, thereby leading to delocalization of electrons. Obviously, this yields a neg-
ative TCR in the temperature dependence of the electrical resistivity.

Altshuler and Aronov [24] noted that the electron–electron interaction is
enhanced when the electron tends to be localized. As emphasized in Sections
8.2 and 14.2, the success of the one-electron approximation in normal metals
and alloys is due to the fact that conduction electrons are so mobile that the
Coulomb field is screened by other electrons. However, when electron localiza-
tion sets in and the screening effect is weakened, the electron–electron
Coulomb interaction tends to be enhanced. The enhanced electron–electron
interaction coupled with the weak localization effect causes both the electrical
conductivity s and the Hall coefficient RH to obey a -dependence at tem-
peratures below about 20K in a three-dimensional system [24]:

s(T )5s0(11a ) (T&20K ) (15.27)

and

RH(T )5RH(0)(11b ) (T&20K ). (15.28)ÏT

ÏT

ÏT
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Furthermore, the relation b52a is theoretically predicted [24] and experimen-
tally confirmed [12]. At temperatures above about 30K, the conductivity follows
s~T whereas the Hall coefficient becomes temperature independent [12]. Here
it should be emphasized that the r–T type (d) or (e) (see Fig. 15.12) is converted
to the temperature dependence of the conductivity ( below 20K and 1T
above 30K). This unique feature observed in high-resistivity amorphous alloys
is in sharp contrast to the temperature independent Hall coefficient and succes-
sive change in the r–T types from (a) to (c) for low-resistivity amorphous alloys
in group (V), to which the Baym–Meisel–Cote theory is applicable.

15.8.5 Variable-range hopping model

A system of interest is obviously a metal if the conductivity extrapolated to 0K
is finite and an insulator if it is zero. However, the extrapolation of the meas-
ured conductivity to 0K is generally very delicate even when the measurement
is extended down to, say, 0.5K. It is often indispensable to measure some other
properties to judge if the system is a metal or an insulator. At first sight, one
may consider the measurement of the electronic specific heat coefficient gexp to
be decisive. However, this is not true. As will be shown below, a finite gexp value
remains even in an insulator and plays a key role in the temperature depen-
dence of its conductivity. Hence, a decisive test is often made by analyzing the
temperature dependence of conductivity at low temperatures. We have already
discussed above that the r–T types (d) and (e) appear on the metallic side of
the metal–insulator transition.

The conductivity on the insulating side becomes finite at finite temperatures
through phonon-assisted hopping of electrons. The variable-range hopping
model proposed by Mott [25] assumes that the electronic states at EF are finite
but are localized at 0K. The corresponding wave function generally decays
exponentially at large distances in a spherically symmetrical potential and,
hence, we can write

c (r)<exp(2r/a), (15.29)

where a is its characteristic radius. The two localized states centered at Ri and
Rj can interact through the overlap of the wave functions:

ec*(r2Ri)c (r2Rj)dr<exp(2R/a), (15.30)

where R5 )Ri2Rj). Thus, electrons can hop from site i to site j, only if the
overlap of wave functions is finite. Since the probability P of a transition from
Ri to Rj is proportional to the square of the overlap integral, we have the rela-
tion P~exp(22R/a).
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The energy eigenvalue of each localized state will depend sensitively on the
degree of overlap from wave functions of other centers distributed at random
in the matrix and spread into a band with a characteristic width W at EF. This
is illustrated in Fig. 15.15. Even when R is large enough to make the overlap
integral very small, hopping from site i to site j will still occur if the energy
difference Ei2Ej is compensated for by the absorption or emission of a
phonon. Thus, the probability for hopping will be modulated with the rate of
the excitation of a phonon and is expressed as

P5nphexp(2 )Dij )/kBT )exp(22R/a) (15.31)

where Dij5Ei2Ej and nph is the characteristic frequency of phonons.
Let us assume that only a single site j is available within the distance R from

the site i, provided that their energy difference is within Dij . This implies that
the number of electrons in the energy range Dij across EF must be unity in a
spherical volume with the radius R. This leads to the condition:

R3N(EF)Dij<1, (15.32)

where N(EF) is the density of states per unit volume at EF. By inserting equa-
tion (15.32) into equation (15.31), we obtain the transition probability as a
function of the distance R:

P5nphexp . (15.33)

The most probable hopping will be realized by maximizing equation (15.33).
The condition dP/dR50 yields

R5 T21/4. (15.34)3 9a
8pN(EF)kB

4
1/4

32
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Figure 15.15. Variable-range hopping model. Localized electron can hop from site i
with energy Ei to site j with energy Ej separated by the distance R.



Since the electrical conductivity increases in proportion to the transition prob-
ability, the temperature dependence of the conductivity s(T ) can be expressed
as

s(T )~vphexp , (15.35)

where B5(8/3)(9/8p)1/4[N(EF)kBa3]21/452.062[N(EF)kBa3]21/4. This is known as
the T21/4 law derived from the variable-range hopping model proposed by Mott
[25]. The exponentially dependent T21/4 behavior has often been observed on
the insulating side of the metal–insulator transition (see Fig. 15.29).

15.9 Electron conduction mechanism in amorphous alloys

We assume that, on the metallic side of the metal–insulator transition, all elec-
trons at EF, including both sp and d electrons contribute equally to the electron
conduction and that the conductivity formula s5(e2/3)LFvFN(EF) in equation
(10.54) is still applicable to them. Furthermore, we assume in this limit that
conduction electrons take a minimum diffusion coefficient D5LFvF/3 in the
conductivity formula.15 For the moment, it is set equal to 0.25cm2/s, which is
simply deduced by using LF equal to an average atomic distance of 3 Å and vF

equal to one-fourth of the free-electron Fermi velocity, namely, 0.253108 cm/s.
The reason for this choice will be discussed later.

Figure 15.16 shows sets of measured residual resistivity r0 versus the elec-
tronic specific heat coefficient for a large number of amorphous alloys in
groups (IV) and (V). Here the experimental electronic specific heat coefficient
is assumed to represent N(EF). The dashed curve represents a hyperbolic curve
r0N(EF)5e22D21

min with the minimum diffusion coefficient of Dmin50.25cm2/s
mentioned above. This is our high-resistivity limiting curve. The curve indicates
that the larger the density of states at EF, the lower is the resistivity.

Four different symbols are used in Fig. 15.16 to distinguish the r-T types:
(s) for type (a), (*) for type (b), (2) for type (c), (1) for types (d) and (e). The
data of types (a)→(b)→ (c) always appear in this sequence with increasing
resistivity and all these data fall far below the high-resistivity limiting curve.

32
B

T1/44
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15 Particles can diffuse from a higher to a lower concentration region by repeating random motions, when a
concentration gradient exists in the particle distribution. Here the relation J52Dgradn holds, where J is
its flow, gradn is its concentration gradient and D is the diffusion coefficient (see Section 11.13). No acti-
vation energy is involved in the diffusion process. In a disordered system such as an amorphous alloy, the
conduction electrons do not form the Bloch wave but flow by repeated random scattering with ions. Hence,
motion of electrons can be described in terms of the diffusion process. The diffusion coefficient defined
as equation (11.82) is deduced to be D5(1/3)vL in units of cm2/s. This relation appeared in equation (11.4)
in the derivation of the specific heat and thermal conductivity in the kinetic theory of gases.



Instead, the data of types (d) and (e) appear immediately below the high-
resistivity limiting curve. Obviously, all amorphous alloys in the metallic regime
fall below this limiting curve. This means that amorphous alloys of types (d) or
(e) essentially possess a very low diffusion coefficient of the order of
0.2–0.3cm2/s and that all electrons at EF, whether sp or d electrons, contribute
equally to electron conduction in accordance with the conductivity formula.

Let us consider further the physical meaning of the high-resistivity limiting
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Figure 15.16. Residual resistivity–electronic specific heat coefficient diagram for
groups (I), (IV) and (V) amorphous alloys. The r–T types are shown by the symbols
used in Fig. 15.12. Letters refer to alloy systems: (A) Ag–Cu–X (X5Ge, Si), (B)
Al–Ni–X (X5Si, Ge), (C) Ca–Mg–Al, Ca–Zn, (D) Ni–P, (E) Mo–Ru–P, (F) Ni–Zr–X
(X5Cu, Al, Si, B), (G) Cu–Zr, (H) Ni–Zr, (I) Cu–Zr–Al, (J) Co–B–X (X5Si, Al, Ni).
The dotted curve shows the boundary, across which the TCR near 300 K changes its
sign. The dashed line is the high-resistivity limiting curve. [U. Mizutani, Phys. Stat. Sol.

(b) 176 (1993) 9]



curve in Fig. 15.16. In order to discuss electron transport phenomena in the
high-resistivity metallic regime, Mott [20] introduced the g-parameter defined
as

g5N(EF)/N(EF)free, (15.36)

where N(EF) is the density of states at EF and N(EF)free is the corresponding
free-electron value. The condition g,1 refers to the situation where EF is
located within the valley in the density of states or on a declining slope of the
density of states peak. Mott [20] christened such a valley in the density of states
the “pseudogap”. Obviously, the location of EF within the pseudogap results
in g,1. When the Fermi level is located within the pseudogap, Mott proposed
the electrical conductivity formula of equation (10.52) to be modified in the fol-
lowing form:

s5g2SF
freee2a /12p3", (15.37)

where SF
free is the area of the free-electron Fermi sphere, a is an average atomic

distance and the g-parameter is varied over the range 0#g#1.16 It should be
noted that Mott ingeniously replaced the mean free path LF in equation (10.52)
by an average atomic distance a in equation (15.37) in the spirit of the
Ioffe–Regel criterion discussed in Section 10.10.17 This means that the mean
free path effect is not expected in the high-resistivity limit but only the elec-
tronic structure effect through g2 needs to be considered.

Equation (15.37) may be alternatively expressed in the form of equation
(10.54) where the area of the free-electron Fermi surface is replaced by the
product of N(EF) and the Fermi velocity vF. The g2-dependence of equation
(15.37) is then rewritten as

s5g2(e2/3)avF
freeN(EF)free5(e2/3)agvF

freeN(EF)5(e2/3)avFN(EF), (15.38)

where vF5gvF
free is assumed in order to reconcile equation (15.38) with equa-

tion (10.54).18
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16 What happens when the g-parameter exceeds unity? This corresponds to a Fermi surface positioned just
prior to contact with the Brillouin zone and a Fermi level located prior to the van Hove singularity peak.
In such circumstances, the Fermi velocity, proportional to "21­E/­k is lowered relative to that of the free-
electron value and is approximated as vF5vF

free/g. Note that this differs from vF5gvF
free for g,1. On the

other hand, the scattering probability 1/t is proportional to the final density of states at the Fermi level
and, hence, the g-parameter. The mean free path is then deduced to be LF5vFt5(vF

free/g)(tfree/g)5LF
free/g2.

Insertion of this relation into equation (15.37) restores the free-electron expression s05e2LF
freeSF

free/12p3"
in the case of g.1.

17 Mott [20] referred to the conductivity obtained by inserting g51, SF
free54pk2 and k5p/a for a half-filled

band into equation (15.37) as the Ioffe-Regel conductivity sIR5e2/3"a. The corresponding resistivity is
360mV-cm if a53 Å. This may be used as a rough guide for a critical resistivity, above which the mean
free path effect is lost and, instead, the quantum interference effect dominates (see also footnote 10,
p. 475).

18 This does not hold unconditionally. Strictly speaking, the decomposition of the diffusion coefficient into
the mean free path and the velocity would not be justified in the diffusional motion of electrons.



Mott [20] claimed that the Ziman theory based on the Boltzmann transport
equation is valid when g$1 but that the electron localization effect sets in as g
is lowered below unity. He conjectured the minimum metallic conductivity to
occur at g<0.2–0.3. A system in the range 0.2,g,1 is metallic but the local-
ization effect dominates at low temperatures. The conduction electron in this
metallic regime is said to be weakly localized. As noted in Section 10.2, simple
metals like pure Na, Zn and Al possess a free-electron-like Fermi velocity
almost equal to vF

free5108cm/s. The Fermi velocity for the minimum metallic
conductivity is then roughly estimated to be vF5gvF

free5(0.2–0.3)3108cm/s.
This was chosen earlier as a possible minimum Fermi velocity in the evaluation
of the high-resistivity limiting curve.

The g-parameter can be determined experimentally by taking the ratio of the
measured electronic specific heat coefficient gexp over the corresponding free-
electron value gfree for amorphous alloys in group (V). The parameter can also
be determined from the ratio of the free-electron value over the measured Hall
coefficient [12]. Figure 15.17 shows logarithmic plots of the electrical conduc-
tivity at 300K as a function of the measured g-parameter for amorphous
(Ag–Cu)–Ge and (Ca–Mg)–Al alloys in group (V). Included are the data for
liquid mercury reported by Even and Jortner [26]. They employed an appara-
tus capable of increasing the pressure from 1 to 1600 atm while increasing tem-
perature from 20 to 1475°C and measured the electrical conductivity, the Hall
coefficient and density. It was revealed that the system gradually loses metallic
conduction and approaches an insulating state when the density is decreased
from 13.6 to 8.5g/cm3.

It is clear from Fig. 15.17 that both amorphous alloys and liquid mercury
exhibit essentially the same behavior. The electron conduction is controlled by
the pressure and temperature in liquid mercury and by the concentration of the
non-metallic element like Ge in the amorphous (Ag–Cu)–Ge alloys. The r–T
types for the amorphous alloys are again shown in Fig. 15.17, using the same
symbols as those in Fig. 15.16. It is found that types (a), (b) and (c) fall on the
vertical line with g51 in good agreement with the assumption in the
Baym–Meisel–Cote model, whereas types (d) and (e) fall on a straight line with
a slope of 12. This means that the r–T type (d) or (e) is uniquely observed in
systems characterized by the pseudogap at EF and LF<a, where the Mott rela-
tion s~g2 holds well.

It is worthwhile commenting further on the r–T type (d) or (e). As shown in
Fig. 15.12, a more or less linear temperature dependence persists down to
about 10K for type (d) whereas the concave curvature dominates over the tem-
perature range 10–300K for type (e). Hence, there is apparently a clear differ-
ence in this characteristic feature between types (d) and (e). However, we have
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noted that types (d) and (e) are equally characterized by a -dependence of
conductivity below about 20K, as indicated in equation (15.27), and s~T
above about 30K. Typical data are shown in Fig. 15.18. It was shown that the
Hall coefficient also obeys RH~ below about 20K [12], being consistent
with the theory proposed by Altshuler and Aronov [24] (see Section 15.8). All
these results can be taken as a clear demonstration of the manifestation of the
weak localization effect in amorphous alloys of types (d) and (e) in groups (IV)
and (V). It is important to remind ourselves that the weak localization effect
begins to participate as soon as the g-parameter is lowered below unity in
amorphous alloys. This is because the mean free path LF has already been
decreased to an average atomic distance a prior to the growth of the pseudo-
gap. This is different from the situation in quasicrystals and approximants, as
will be discussed in Section 15.13.

In summary, electron transport phenomena of non-magnetic amorphous

ÏT
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Figure 15.17. g-parameter dependence of conductivity in (●) amorphous (Ag0.5
Cu0.5)1002xGex (0#x#90) alloys, (■) amorphous Ca–Mg–Al alloys and (★) liquid
mercury. The r–T types are shown by symbols used in Fig. 15.12. This also applies to
the square symbols. The corresponding r–T data cannot be measured for liquid

mercury. [U. Mizutani, Phys. Stat. Sol (b) 176 (1993) 9]



alloys can be understood in a unified picture. They are divided into two classes:
one is described by r–T types (a), (b) and (c), the other by type (d) or (e).

1. The r–T types change in accordance with (a)→ (b)→(c) with increasing resistivity
in the low-resistivity regime of 20–200 mV-cm and the successive changes in the r–T
type reflect a decreasing mean free path LF down to an average atomic distance [12].
The electronic structure is approximated by the nearly-free-electron model and the
g-parameter remains essentially equal to unity. The behavior is well explained
within the framework of the Baym–Meisel–Cote theory based on the Boltzmann
transport equation.

2. The r–T type of either (d) or (e) occurs, as soon as the g-parameter is lowered below
unity and the mean free path is constrained by an average atomic distance, and evi-
dences the participation of the weak localization effect, particularly at low temper-
atures. The weak localization effect enhances the electron–electron interaction and
a dependence appears in the temperature dependence of both electrical con-
ductivity and the Hall coefficient below about 20K. The conductivity at 300K is
proportional to g2, in good agreement with the Mott prediction.

ÏT

15.9 Electron conduction mechanism in amorphous alloys 493

Figure 15.18. Log–log plot showing temperature dependence of the conductivity for
the amorphous (Ag0.5Cu0.5)1002xGex (x540, 60) alloys. Square-root temperature
dependence is observed below about 20 K, while T-linear dependence above about

30 K. [U. Mizutani, Phys. Stat. Sol (b) 176 (1993) 9]



15.10 Structure and preparation method of quasicrystals

A quasicrystal is defined as a solid satisfying the following conditions: (1) the
diffraction intensities consist of an infinite number of d-functions, (2) the
number of basic vectors is larger than that of its dimension,19 and (3) rotational
symmetries forbidden in crystals exist. Icosahedral and decagonal quasicrys-
tals may be taken as representative. An icosahedral quasicrystal possesses a
three-dimensional quasiperiodicity with rotational symmetries characteristic
of an icosahedron.20 In contrast, a decagonal quasicrystal possesses a two-
dimensional quasiperiodicity with five-fold symmetry in one plane but period-
icity along the direction perpendicular to it.

There exist both thermally stable and metastable quasicrystals. As in the
preparation of amorphous ribbons, a single-roll melt-spinning apparatus has
been frequently employed to produce quasicrystalline ribbon samples by liquid
quenching. Thermally stable single-grained quasicrystals can be grown by
slow-cooling of the liquid phase in several alloy systems, such as Al–Pd–Mn
and Mg–Zn–Ho [27].

Figure 15.19(a) is a scanning electron micrograph of the thermally stable
icosahedral Al–Cu–Fe quasicrystal. The crystal habit showing a regular pen-
tagon is a clear manifestation of the possession of the five-fold symmetry of its
atomic arrangements. An electron diffraction pattern taken with the incident
electron beam parallel to the five-fold axis is shown in Fig. 15.19(b). The
diffraction spot is very sharp and the five-fold symmetry incompatible with a
crystal is clearly seen. Diffraction patterns with two- and three-fold rotational
symmetries are also observed by rotating the specimen in a manner consistent
with the symmetries in an icosahedron. Therefore, we learn that the atomic
structure of the quasicrystal appearing in both real and reciprocal spaces is
entirely different from that in liquid and amorphous alloys and is characterized
by highly ordered atomic arrangements. However, the five-fold rotational
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19 As discussed in Sections 5.8 and 5.9, we employed three basic vectors to describe the bcc, fcc and hcp
structures. Hence, the number of basic vectors coincides with the dimensionality in a crystal. However,
six and five basic vectors are needed for the description of the icosahedral and decagonal quasicrystals,
respectively.

20 Icosahedral quasicrystals are divided into two groups in terms of the cluster unit building up its structure:
one is described by the Mackay icosahedron containing 54 atoms and the other by the rhombic triacon-
tahedron containing 45 atoms. The former is abbreviated as the MI-type quasicrystal and is suited to
describe the atomic structure of the Al–Mn-type quasicrystal. Typical examples are Al–Pd–Re,
Al–Pd–Mn and Al–Cu–Fe, in which the hybridization effect between Al-3p and transition metal d-states
is substantial. They are classified in group (IV) in Table 15.1. The latter is abbreviated as the RT-type
quasicrystal. Typical examples are Al–Mg–Zn, Al–Li–Cu and Al–Mg–Ag, in which the DOS at the Fermi
level is dominated by the free electron-like sp electrons and the hybridization effect is rather weak. They
are classified in group (V).



symmetry breaks the translational symmetry of atomic arrangements and,
hence, quasicrystals are classified as non-periodic systems.

15.11 Quasicrystals and approximants

A regular pentagon can be defined only if four vectors from a center to the ver-
tices are specified in a plane. Hence, a four-dimensional space is required to
accommodate periodic tilings (see below) having the rotational symmetries of
a pentagon. Similarly, a regular icosahedron is defined by six vectors from the
center to the vertices in three-dimensional space and, hence, a six-dimensional
space is required to accommodate a periodic lattice with icosahedral symme-
tries. A three-dimensional quasiperiodic lattice can be constructed by merging
our three-dimensional physical space into an n-dimensional hyperspace [27,
28]. In the case of icosahedral symmetries, we take a six-dimensional space,
which is tilted relative to the six-dimensional cubic Bravais lattice so that six
edge directions are projected onto the six-fold axes of a regular icosahedron in
the three-dimensional physical space (see footnote 22, p. 497). For the sake of
simplicity, we show below how a one-dimensional quasilattice is constructed
from a two-dimensional hyperspace.

Figure 15.20 illustrates the situation such that the vertical and horizontal
edges of the square lattice in xy-coordinates are projected onto the x9-axis of
the x9y9-coordinates, which are tilted by tanu5t21 relative to the xy-coordi-
nates. Here t is the golden ratio given by t5(11 )/2. The x9-axis is called
the physical space or parallel space, since atoms are projected onto it. Only
lattice points which fall within a band or “window” parallel to the x9-axis are

Ï5
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Figure 15.19. (a) Scanning electron micrograph of Al–Cu–Fe quasicrystal and (b)
electron diffraction pattern showing five-fold rotational symmetry of the same sample.

[A. P. Tsai et al., Jpn. J. Appl. Phys., 26 (1987) L1505]



projected. The width of the window is selected so as to be equal to the projec-
tion of the unit cell of the square lattice onto the y9-axis or the perpendicular
space, as shown in Fig. 15.20. Accordingly, two different basic vectors or tiles
marked as L (long) and S (short) are created in the one-dimensional physical
space.

The two tiles L and S are not randomly distributed but are subjected to the
following rule, when the tilt angle is chosen as the golden ratio t. Its sequence
is obtained by repeating the substitution of L→L1S and S→L, resulting in
the so-called Fibonacci chain.21 The Fibonacci chain is not periodic but has
some order in the appearance of the two different tiles L and S. For example,
L may appear twice successively but is never repeated successively three times.
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21 Fibonacci numbers are generated by the recurrence relation Fn115Fn1Fn21, where F151 and F251. A
simple manipulation leads to the Fibonacci sequence (Fi51, 1, 2, 3, 5, 8, 13, 21, 34, ···). The ratio Fn11/Fn
approximates the golden ratio t and thus Fibonacci approximants are close to quasicrystals in their local
structure.

Figure 15.20. Construction of the one-dimensional Fibonacci lattice by projection
from a two-dimensional square lattice. The x9y9-coordinate system is rotated around
the origin by tanu 51/t relative to the xy-coordinate system. Only the lattice points in

the shaded region, called the “window”, are projected onto the x9-axis.



S never appears twice successively. The local structure over several tiles is
always found elsewhere in the sequence. This implies that the Fibonacci chain
possesses self-similarity or scale invariance in such a way that it transforms into
another Fibonacci chain with a different size through the substitution rule
mentioned above. We call a non-periodic but ordered sequence like the
Fibonacci chain “quasiperiodic”.

Let us construct the Fibonacci lattice by starting from the tile L. The ratio
NL/NS of the long tile L over the short tile S is obviously 1/0 in the zero-th
generation, where NL and NS are the numbers of generated respective tiles. In
the first generation, L and S are created from the parent L. Hence, its
sequence is LS and the ratio NL/NS51/1 is obtained. The second and third
generations yield the sequence LSL with the ratio NL/NS52/1 and LSLLS
with NL/NS53/2, respectively. A repetition of the operation results in the
ratio NL/NS51/0, 1/1, 2/1, 3/2, 5/3, 8/5, ... and the ratio eventually approaches
the golden ratio t. The lattice formed on the one-dimensional physical space
in Fig. 15.20 constitutes the Fibonacci chain and the ratio NL/NS is proved to
be t.

By terminating the operation at the n-th generation, we can construct a peri-
odic structure with a large unit cell consisting of L and S tiles. This is equiva-
lent to projecting the lattice points in the strip, which is tilted to the slope of an
integer ratio NS/NL, onto the x9-axis of the x9y9 coordinates in Fig. 15.20. The
periodic lattice thus obtained is called an approximant, since it closely approx-
imates the quasiperiodic structure. The ratio NS/NL begins from 0/1 and con-
tinues with the sequence of 1/151, 1/250.5, 2/350.66 ··· and approaches the
inverse of the golden ratio t2150.618 ··· with an increasing number of opera-
tions.

Any realistic quasicrystal exists in the three-dimensional physical space. We
consider a simple hypercubic lattice in six-dimensional space with coordinates
X1X2 ··· X6 and the edges of the square lattice are projected onto the three-
dimensional physical space X 91X 92X 93 of the X 91X 92 ··· X 96 coordinates, which are
tilted by the angle ui5tan211/t (i51, 2 and 3) relative to the original space
X1X2X3.

22 The subspace X 91X 92X 93 and its complementary subspace X 94X 95X 96
are called the parallel and perpendicular spaces, respectively. Further, we
choose a rhombic triacontahederon as the window or domain in the perpen-
dicular space X 94X 95X 96 and only lattice edges projected onto it are allowed. Now
the icosahedral quasilattice is constructed by projecting only the allowed lattice
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22 The tilting angles are generally chosen as ui5tan21(qi /pi) (i51, 2, 3). The approximants are obtained by
choosing (q1/p1, q2/p2, q3/p3) equal to the inverse, Ns/NL, of the Fibonacci ratio. For example, the 1/1-1/1-
1/1 approximant is cubic, whereas the 3/2-2/1-2/1 approximant is tetragonal.



edges onto the parallel space X 91X 92X 93.
23 This operation creates the three-

dimensional Penrose quasilattice, which is composed of the two different
rhombohedra without any gap or overlap. The structure thus obtained has the
quasiperiodicity, rotational symmetries characteristic of an icosahedron and
self-similarity discussed above.

A realistic icosahedral quasicrystal is obtained by decorating the Penrose
quasilattice with atoms. Quasicrystals are found in binary or more frequently
ternary alloy systems. Decoration of the quasilattice by two or three differing
atomic species is indeed a formidable task because of the lack of lattice peri-
odicity. The atomic structure of a quasicrystal has been conjectured from that
of its approximant. For instance, Elser and Henley [29] pointed out in 1985 that
the a-phase Al–Mn–Si compound with the lattice constant of 12.68 Å contains
138 atoms in its unit cell and corresponds to the 1/1-1/1-1/1 approximant to the
MI-type Al–Mn quasicrystal.

The AlxMg39.5Zn60.52x (20.5#x#50.5) compound known as the Frank–
Kasper phase contains 160 atoms in its unit cell with the lattice constant of
14.2Å [30, 31].24 This compound is now established as the 1/1-1/1-1/1 approxi-
mant to the RT-type Al–Mg–Zn, Al–Mg–Cu, Al–Mg–Ag and Al–Mg–Pd qua-
sicrystals. In addition to the 1/1-1/1-1/1 approximant, the 2/1-2/1-2/1
approximant with the lattice constant of 22.9Å has been discovered in the
Al–Mg–Zn system [31]. The x-ray diffraction spectra for three different
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23 By applying the cut-projection method, one can produce an icosahedron which subtends the six basic
vectors in the three-dimensional physical and perpendicular spaces, as shown in (a) and (b), respectively.
A simple cubic lattice is formed also in the six-dimensional reciprocal space. Thus, the six reciprocal basic
vectors can be constructed in the three-dimensional physical reciprocal space in the same way as (a). If
these basic vectors are written as bi(i51–6), then any reciprocal lattice vector takes the form of g n1n2n3n4n5n6
5(n1b11n2b21··· n6b6), where (n1n2 ··· n6) denotes a set of integers, called the six-dimensional Miller
indices. For example, (211111) represents the diffraction line obtained when the electron or x-ray beam is
incident parallel to the five-fold axis of an icosahedral quasicrystal. The Brillouin zone is constructed by
planes formed by bisecting perpendicularly the reciprocal lattice vectors.

24 Bergman et al. [Acta Cryst. 10 (1957) 254] originally reported 162 atoms in the unit cell. However, the x-
ray Rietveld analysis for a series of the Al–Mg–Zn 1/1-cubic approximants revealed that 160 atoms exist
in its unit cell [30].

Six independent basic vectors for an icosahedral quasicrystal in (a) parallel and (b) perpendicular spaces.



compounds are shown in Fig. 15.21. The diffraction lines of the quasicrystal are
split into multiple lines in the approximant because of the lowering of the sym-
metry. For example, the (222100) diffraction lines in Fig. 15.21(a) for the quasi-
crystal are 60-fold degenerate but should decompose into (710), (543) and (631)
lines in the 1/1-1/1-1/1 approximant and (10 5 2), (865) and (11 2 0) lines in the
2/1-2/1-2/1 approximant. It is clear from Fig. 15.21 that the diffraction spectrum
of the 2/1-2/1-2/1 approximant more resembles that of the quasicrystal than
does that of the 1/1-1/1-1/1 approximant. From this, we can say that the 2/1-2/1-
2/1 approximant already has an atomic structure fairly close to that of the qua-
sicrystal. So far approximants up to 3/2-2/1-2/1 have been synthesized
experimentally in a bulk form. Further increase in the degree of the approximant
would make the differentiation from the structure of a quasicrystal difficult.
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Figure 15.21. X-ray diffraction patterns of three different compounds in the
Al–Mg–Zn system. (a) Quasicrystal, (b) 2/1-2/1-2/1 approximant and (c) 1/1-1/1-1/1

approximant. [From ref. 31.]



15.12 Electronic structure of quasicrystals

Since its unit cell is infinitely large, one cannot perform band calculations for a
quasicrystal. A periodic boundary condition is imposed in the ordinary k-
space band calculations. This means that band calculations are possible for
approximants. Figure 15.22 shows the density of states calculated for the
Al–Li–Cu 1/1-1/1-1/1 approximant [27, 32]. One can clearly see a V-shaped dip
(valley) immediately below EF. This is the pseudogap. All band calculations so
far reported for various approximants are consistent with the possession of a
pseudogap across EF. The origin of the pseudogap has been ascribed to the
interaction of the Fermi surface with the Brillouin zone consisting of many
equivalent zone planes (see Section 9.7).

The formation of the pseudogap across EF has also been experimentally con-
firmed in thermally stable quasicrystals, metastable quasicrystals and many
approximants through photoemission spectroscopy [27,33], soft x-ray
spectroscopy [34] and electronic specific heat measurements [35]. As a repre-
sentative, we show in Fig. 15.23 combined soft x-ray emission and absorption
spectra for the Al–Cu–Fe quasicrystal in comparison with those of the Hume-
Rothery-type v-phase Al7Cu2Fe compound and pure Al (see Section 7.8) [34].
One can clearly see that a dip or the pseudogap across EF is evident in both
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Figure 15.22. Calculated density of states for the 1/1-1/1-1/1 Al–Li–Cu approximant.
[T. Fujiwara and T. Yokokawa, Phys. Rev. Letters 66 (1991) 333]



quasicrystal and the v-phase compound but not in pure Al.25 The depth of the
pseudogap is much deeper in the quasicrystal than in the v-phase compound.
Another interesting point to be noted is that the calculated density of states
consist of many spiky peaks with a width of the order of 50–100 meV but they
are apparently absent in the measured spectra. Indeed, the presence of spiky
peaks has not been experimentally confirmed even from high-resolution photo-
emission spectroscopy [27, 33] and EELS measurements [36].

Electrons residing near EF would be pushed into higher binding energies
when the pseudogap is formed, thereby leading to a reduction in the electronic
energy of the system. This is essentially the Hume-Rothery mechanism for the
stabilization of these complex electron compounds, as discussed in Section 9.7.
Hence, we believe that the formation of the pseudogap contributes to the sta-
bilization of a quasicrystal and that its depth in the quasicrystal is deeper than
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25 The combined soft x-ray emission and absorption spectra are apparently split at the Fermi level even for
free-electron-like pure Al. For the x-ray processes, the Fermi level of, say, pure Al is set at the inflexion
point of the emission and absorption edges. These two edges result from the convolution product of the
Fermi–Dirac distribution function, which at EF separates occupied from unoccupied states, and the
Lorentzian distribution of the inner level involved in the transition, and, as result, are given in the form
of arctangent curves. Since this inflexion point appears at half the maximum intensity of the arctg func-
tion, an apparent dip results at EF even in pure Al. One can conclude the presence of a pseudogap at EF,
only when the intensity at EF of an Al-based system is lower than half the maximum intensity of pure Al.

Figure 15.23. Soft x-ray Al-3p emission and Al-p absorption spectra for fcc Al (thin
line), v-phase Al7Cu2Fe compound (medium line) and Al62Cu25.5Fe12.5 quasicrystal
(thick line). The emission and absorption spectra are adjusted to the same intensity at
the Fermi level EF. The v-phase compound has the space group P4/mnc with lattice
constants a56.33 Å and c514.81 Å and contains 40 atoms in its unit cell. [Courtesy 

Dr E. Belin-Ferré]



that in the approximants or Hume-Rothery type compounds because of the
possession of higher symmetries and increased multiplicities of equivalent
zone planes in the former [31].

15.13 Electron transport properties in quasicrystals and approximants

As has been described above, the Fermi surface of the quasicrystal is heavily
perturbed by the Brillouin zone and the pseudogap is formed in the vicinity of
EF. This certainly gives rise to a substantial effect on the electron transport
properties. In a crystal, one is well aware that the resistivity decreases with
increasing perfection of the crystallinity. This is a natural consequence of a
decrease in structural imperfections. In contrast to a crystal, the resistivity of
a quasicrystal increases as the quasicrystallinity is increased by heat treatment.
This is a clear signature of the non-periodic nature of the quasilattice.

The electrical conductivity in a quasicrystal may be still described in terms
of equation (10.54). Because of the non-periodicity of lattice potentials, the
mean free path of the conduction electron should be short in quasicrystals. In
addition, the density of states N(EF) at EF is substantially reduced owing to the
formation of the pseudogap. It is also noted that the hybridization effect
between the Al-3p and the d states of the transition metal element, such as Fe,
Pd and Re, is so strong that it causes bonding and antibonding states near EF.
This is coupled with the zone folding effect and yields small energy dispersions,
particularly in the vicinity of EF, which, in turn, result in an enhancement in
the effective mass or a reduction in the Fermi velocity vF. A substantial
enhancement in resistivity in some MI-type quasicrystals is brought about by
a simultaneous reduction in both N(EF) and vF in equation (10.54).

Figure 15.24 shows the temperature dependence of the electrical resistivity
of an amorphous Al–Mg–Pd sample obtained by melt quenching. It increases
substantially upon transformation to the quasicrystalline phase at about 600
K. Indeed, the electronic specific heat coefficient (g50.42mJ/molK2) in the
quasicrystalline phase was found to be lower than that (g50.78mJ/molK2) in
the amorphous phase. This is due to the formation of the pseudogap at EF and
explains the rapid increase in resistivity upon transformation to the quasicrys-
talline phase (see exercise 15.2).

We emphasized in Section 15.6 that the short-range structure significantly
affects the electronic states near EF and, in turn, the electron transport proper-
ties in amorphous alloys. The short-range order develops as a result of the
directional covalent bondings between Al and transition metal atoms and
forms icosahedral clusters in quasicrystals and their approximants. Thus, it is
of great interest to examine how the short-range structure in quasicrystals and
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approximants influences the electron transport properties. The short-range
structure can be reliably determined for the approximants. For example, the
edge length of the icosahedral cluster in various 1/1-1/1-1/1 approximants has
been determined by the Rietveld method [30]. Figure 15.25 shows that the resis-
tivity at 300K sharply increases with decreasing edge length of the icosahedral
cluster. A shortening of the edge length is most likely caused by an increase in
the hybridization effect, which enhances the bonding and antibonding states
near EF and, in turn, contributes to an increase in resistivity.

The temperature dependence of the resistivity over the range 2–300K for
some representative non-magnetic quasicrystals is depicted in Fig. 15.26.
We see that the data follow well the universal behavior shown in Fig. 15.12 for
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Figure 15.24. Temperature dependence of electrical resistivity of the amorphous
Al52Mg18Pd30 alloy heated up to (a) 608 K and (b) 790 K. The resistivity is normalized
with respect to that at 300 K. The quasicrystalline phase can be achieved by lowering
the temperature as shown in (a). The resistivity drops substantially upon crystalliza-
tion above 680 K. The resistivities at 300 K for the amorphous and quasicrystalline
phases are 220 and 780 mV-cm, respectively. [U. Mizutani et al., J. Phys.: Condensed

Matter 6 (1994) 7335]



non-magnetic amorphous alloys in group (IV) and (V). First, we consider the
low-resistivity regime, where the r–T types always change in the sequence
(a)→ (b)→(c) with increasing resistivity in the same way as that in amorphous
alloys. As mentioned in Section 15.8.2, the Baym–Meisel–Cote theory was able
to interpret the data successfully for low-resistivity amorphous alloys in group
(V). Here it is recalled that the integration over the scattering wave number K
in equation (15.23) is limited to the range 0#K#2kF. This is reasonable for
amorphous alloys because of the absence of long-range order. In the case of
quasicrystals and their approximants, the structure factor consists of a series
of sharp Bragg peaks and its information will need to be included up to high
values of K far beyond 2kF. In other words, multiple scattering must be impor-
tant. It is, therefore, surprising that the r–T behavior in low-resistivity quasi-
crystals and their approximants is essentially the same as that in low-resistivity
amorphous alloys. All we can say, at the moment, is that the systematic change
in the r–T types from (a) to (c) reflects the process of decreasing mean free path
toward an average atomic distance and that all three r–T types must be
described within the framework of the Boltzmann transport equation without
invoking the weak localization effect.

It is worthy of noting that the resistivity of an Al–Mg–Zn quasicrystal of a
high quality is 150mV-cm and its r–T type is (c) in spite of the possession of
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the pseudogap at EF [31, 35]. The absence of the weak localization effect for the
pseudogap system with g,1 is different from the case for amorphous alloys,
where the Mott equation (15.37) holds. In other words, the mean free path
effect must be still effective for low-resistivity quasicrystals and their approxi-
mants of r–T types (a) to (c), indicating that the electron experiences more
coherent potentials than that in amorphous alloys.
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Figure 15.26. Temperature dependence of resistivity in various quasicrystals. [U.
Mizutani, “Materials Science and Technology”, edited by R. W. Cahn, P. Haasen and
E. J. Kramer, (VCH, Germany, 1994), vol.3B Electronic and Magnetic Properties of

Metals and Ceramics, Part II, volume editor K. H. J. Buschow, pp. 97–157]



The r–T curve of type (e) is observed in high-resistivity MI-type quasicrys-
tals [27]. The Al–Pd–Mn and Al–Cu–Ru MI-type quasicrystals possess resis-
tivities ranging from 0.01 to 0.1 V-cm. Here the weak localization effect
coupled with the enhanced electron-electron interaction dominates in the same
way as in high-resistivity amorphous alloys. However, the resistivity of the
Al–Pd–Re quasicrystal of a high quality reaches a value as high as 1 V-cm at
4.2K [27]. The temperature dependence of the electrical conductivity of a high
quality Al–Pd–Re quasicrystal is particularly unique and cannot be described
in terms of type (d) or (e). Instead, a power law obeying s~Ta (0.3,a,0.7)
has been reported below 10K [37]. The scattering mechanism for such high-
resistivity quasicrystals has not yet been well clarified.

The r–T characteristic of many 1/1-1/1-1/1 approximants is mostly of type
(a), indicating that the Boltzmann transport mechanism dominates and that
the weak localization effect is absent. No matter how their crystallinity is
improved, their residual resistivity apparently remains finite because of the
presence of inherent chemical disordering [30]. The observation of type (a)
suggests that, due to the restoration of lattice periodicity of 12–14 Å, the con-
duction electron propagates in these approximants in potentials which are
more coherent than those in quasicrystals. It is of great interest to note that
there exist some MI-type 1/1-1/1-1/1 approximants, in which the resistivity
exceeds 1000mV-cm at 300K while the r–T type is still (a). Since the mean free
path LF is longer than a, the Mott conductivity formula (15.37) should be
replaced by

s5g2SF
freee2LF/12p3" (15.39)

for both quasicrystals and approximants of the r–T types (a) to (c). An increase
in resistivity above 1000mV-cm with the absence of the weak localization effect
is possible, if the approximant possesses a small g-parameter around 0.3 so that
the g2-dependent electronic structure effect overwhelms the mean free path
effect which guarantees type (a) [38]. In contrast, the electron transport behav-
ior of the 2/1-2/1-2/1 approximant, which possesses a lattice constant of about
23 Å, is no longer distinguishable from that in quasicrystals.

Finally, we note that the temperature dependence of the Hall coefficient in
quasicrystals and their approximants is generally stronger than that in amor-
phous alloys. Since both electrons and holes coexist in quasicrystals and their
approximants, the discussion based on the two-band model may be appropri-
ate (see Section 11.8). However, the interpretation of the Hall coefficient in
extremely high-resistivity quasicrystals is still far from clear.
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15.14 Electron conduction mechanism in the pseudogap systems

We have seen that the pseudogap is formed across EF through different mech-
anisms. As mentioned in Section 15.9, an expansion of volume at high temper-
atures under high pressures caused the pseudogap to develop in liquid mercury.
In quasicrystals and their approximants, simultaneous contacts of the Fermi
surface with many equivalent Brillouin zone planes are responsible for its for-
mation. In amorphous MxX1002x alloy systems, where M and X stand for a
metal and metalloid element, respectively, the metal–insulator transition
occurs when the concentration of a metallic element M is decreased below
some critical value. We know that the energy gap opens at x50 corresponding
to the pure element X, such as semiconducting amorphous Si or Ge. Hence, the
transition from a metal to an insulator with decreasing metal content can be
viewed as the process of deepening the pseudogap across the Fermi level EF.
We treat both amorphous MxX1002x alloys and quasicrystals as being typical of
pseudogap systems and discuss their characteristic features on a r–gexp

diagram. At the end of this section, we briefly comment on the data in pseudo-
gap systems in different “families” on the r–gexp diagram, which include heavy
fermion and strongly correlated electron systems.

15.14.1 Mott conductivity formula for the pseudogap system

Mott [20] elaborated the electron conduction mechanism for a system with the
pseudogap across EF and formulated the conductivity for a Fermi gas at abso-
lute zero from the Kubo–Greenwood formula in combination with the tight-
binding approximation:

s05r0
215 [N(EF)]2, (15.40)

where a is an average atomic distance, z is the coordination number of the con-
stituent atom and I is the hopping integral defined as

I5ec *
iHcjdr, (15.41)

where ci is the wave function at the site i and H is the tight-binding
Hamiltonian of the electron. The hopping integral in equation (15.41) depends
on the degree of overlap of wave functions over the nearest neighbor atoms: it
is small when the overlap is small. Equation (15.40) indicates that the resistiv-
ity is inversely proportional to the square of N(EF) or the measured electronic
specific heat coefficient gexp in the pseudogap system. Equation (15.40) has pro-
vided a theoretical basis for the validity of equations (15.37) or (15.38) derived

pe2a5zI 2

"
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more intuitively by Mott. Equation (15.40) may be hereafter referred to as the
Mott conductivity equation.

From the experimental point of view, the validity of equation (15.40) must
be tested by choosing a pseudogap system where the resistivity is high enough
to assure the electron mean free path to be constrained by an average atomic
distance. For this reason, non-periodic systems like amorphous alloys and qua-
sicrystals of the r–T type (d) or (e) are best chosen. Further care is directed to
the choice of the resistivity in equation (15.40). Ideally the residual resistivity
r0 is chosen. However, when the resistivity exceeds about 1000mV-cm, the
quantum interference effect, which is not taken into account in equation
(15.40), significantly perturbs the resistivity value at low temperatures. To avoid
this difficulty, we use the resistivity value at 300K in place of r0 in the present
discussion. Indeed, the choice of the resistivity at 300K or at 4.2K does not
matter, as long as the resistivity is lower than 1000mV-cm. This is because the
TCR is always less than 10 %.

Figure 15.27 shows the resistivity at 300K against the measured electronic
specific heat coefficient on a log–log scale for amorphous MxX1002x alloys in
two different families [35]. The first family includes the amorphous
(Ag0.5Cu0.5)1002xGex (20#x#60), (Ag0.5Cu0.5)77.5Si22.5 and Mg70Zn302xSnx (x5

0, 4, 6) alloys in group (V). Their density of states at EF are scarcely affected by
the d states. The second family includes the Al-rich amorphous Al902xNi10Six

(10#x#30) and Al852xNi15Six (15#x#35) alloys, in which only a small
amount of the Ni-3d states constantly coexist with the sp electrons at EF while
the pseudogap is deepened with increasing Si concentration x. Thus, they are
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selected such that the hopping integral I of equation (15.41) in the first family
is larger than that in the second.

It is clear from Fig. 15.27 that the data for the sp electron amorphous alloys con-
stitute a line (A) with a slope of 22 in excellent agreement with equation (15.40)
and that the data in the second family form another parallel straight line (B),
which is slightly displaced to higher resistivities relative to the first, as is expected
from a reduction in I in equation (15.41). Such lines are referred to as Mott-lines.

15.14.2 Family of quasicrystals and their approximants

Sets of data for the resistivity at 300K and the electronic specific heat coefficient
in a large number of icosahedral quasicrystals and their approximants are
plotted in Fig. 15.28 on a log–log diagram [35]. All data points are found to be
fitted well to a Mott-line of the type mentioned above.26 This is a bit surprising,
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26 Data for RT-type quasicrystals are less scattered and are fitted well to line (A) in Fig. 15.27. Data for MI-
type quasicrystals are more scattered and fall on a line slightly above line (B). The larger scatter of the
data points for the MI-type quasicrystals is due partly to the collection of data from different sources in
the literature [35].
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since the r–T types (a) to (c) have been observed in low-resistivity quasicrystals
and approximants as discussed in Section 15.13 and, hence, the mean free path
effect must be effective. But, the experimental confirmation for the presence of
the Mott-line even for the low-resistivity quasicrystals and their approximants
indicates that the mean free path effect is too small to be reflected on the log–log
diagram. It is also inferred that the spiky peaks characteristic of the calculated
DOS (see Fig. 15.22) must be rounded or smeared in real quasicrystals. The
chemical disordering inherent in the atomic structure of approximants and qua-
sicrystals may also be responsible for it [30]. It is noted that such chemical dis-
ordering effects cannot be taken into account in band calculations.

A metal–insulator transition line (MI-line) may be drawn as a rough guide
on the r–gexp diagram. The MI-line refers to the boundary on the r–gexp

diagram, above which no metallic data appear. As discussed in Section 15.9, we
have assumed the electron diffusion coefficient D to take its possible minimum
value of 0.25cm2/s. The MI-line in Fig. 15.28 is indeed the line with D5

0.25cm2/s and is the same as the high-resistivity limiting curve drawn in Fig.
15.16. The metallic regime below the MI-line is shaded in Fig. 15.28. For qua-
sicrystals and approximants, the data point corresponding to the highest resis-
tivity with the lowest electronic specific heat coefficient refers to that of the
Al–Pd–Re quasicrystal of a high quality. This data point is found to fall very
close to the MI-line. It is not possible to judge from Fig. 15.28 if an insulator
in this family is achieved only in the limit of a diminishing carrier concentra-
tion or crosses the MI-line at a finite value of gexp.

15.14.3 Family of amorphous alloys in group (IV)

The change in the atomic and electronic structures and electron transport
properties across the metal–insulator transition was systematically studied in
the amorphous VxSi1002x (7#x#74) alloys [39]. A decrease in the V concentra-
tion lowers the 3d density of states at EF and eventually leads to a semiconduct-
ing amorphous Si. Thus, this is typical of the pseudogap system. From Fig.
15.29, the conductivity for alloys with x.20 can be interpreted in terms of the
quantum interference effect characteristic of a disordered metallic system
whereas those with x,15 in terms of the variable-range hopping model appli-
cable to an insulating regime (see Section 15.8.5). Therefore, the metal–insula-
tor transition occurs in the composition range 15–20 at.%V in this system.

Figure 15.30 shows the V concentration dependence of the electronic spe-
cific heat coefficient for amorphous VxSi1002x alloys. Obviously, the density of
states at EF remains finite even in the insulating regime of x,15. Indeed, the
V-3d states remain finite across EF over the whole concentration range, as
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revealed by V-La soft x-ray spectroscopy.27 The fully localized electronic states
at EF in the range x,15 are ascribed to the V-3d states hybridized with Si-3p
states and are responsible for the observed variable-range hopping conduction.

The resistivity at 300K and the electronic specific heat coefficient in the
amorphous VxSi1002x alloys are incorporated in Fig. 15.28. Here the resistivity
at 300K is again employed to circumvent the difficulty associated with the
quantum interference effect in the metallic side. The data for x.20 fall on a
straight line with a slope of 22 in excellent agreement with the Mott conduc-
tivity equation. However, we realize that the line is substantially shifted to the
right relative to the Mott-line drawn through the data points for amorphous
alloys in Fig. 15.27 and for quasicrystals and approximants in Fig. 15.28. It can
also be noted in Fig. 15.28 that the data points with x,15, marked with symbol
(d), deviate substantially from the extrapolated line. They should not be
plotted on an equal footing, since they are insulators possessing finite localized
states at EF. Thus, we say that, in sharp contrast to the case in quasicrystals,

15.14 Electron conduction mechanism in pseudogap system 511

27 The V-La spectrum is obtained by measuring the radiation emitted upon the transition from the V-3d
band to its 2p level and provides information about the V-3d valence band structure (see Section 7.8).
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the amorphous V–Si pseudogap system enters into an insulating regime by
crossing the MI-line at a finite gexp value on the r–gexp diagram.

15.14.4 Family of “unusual” pseudogap systems

The metal–insulator transition, being characterized by the formation of a
pseudogap at the Fermi level, is encountered in many different systems. Figure
15.31 is a summary of the r–gexp diagram on a log–log scale, in which the data
for different pseudograp systems are plotted together with those of quasicrys-
tals and amorphous VxSi1002x [39] and TiySi1002y [40] alloys. It is clear that the
data for quasicrystals and these amorphous alloys in the metallic regime obey
well the Mott conductivity formula (15.40), as evidenced from excellent line
fitting of the data points with a slope of 22 on the log–log diagram.

There exist metallic systems, in which the datasets (r, gexp) definitely fail to
obey the Mott conductivity formula. The data for Sr12zLazTiO3 [41] being
typical of a strongly correlated electron system, are included in Fig. 15.31 for
the composition range 0.5#z#0.95 (see open squares). The z50.95 sample is
still in the metallic regime while LaTiO3 with z51.0 is an insulator. The mar-
ginally metallic z50.95 sample falls slightly above the MI-line of D5

0.25cm2/s in the r–gexp diagram. However, the data points in the metallic
regime obviously no longer follow the Mott conductivity formula (15.40).

Nishino et al. [42] found that the D03-type Fe2VAl intermetallic compound
exhibits semiconductor-like temperature dependence of the electrical resistiv-
ity, as shown in Fig. 15.32, and that its resistivity of 850mV-cm at 300K
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increases to 3000mV-cm at 4.2K, though photoemission spectroscopy meas-
urements revealed a sharp Fermi cutoff. This system is also classified as a
pseudogap system, since EF is located in a deep pseudogap, as shown in Fig.
15.33. Nevertheless, the electronic specific heat coefficient is deduced to be
14mJ/molK2 and its large enhancement is ascribed to the spin fluctuations
unique to a marginally magnetic alloy.28 The set of (r300K, gexp) data for this
compound falls in the region close to the D50.1cm2/s line in the r–gexp

diagram, well above the MI-line of D50.25cm2/s, even though it must be
located in the metallic regime.

Finally, we discuss briefly the data for amorphous CewSi1002w alloys [43, 44]
which are classified as belonging to the heavy fermion system. The uniqueness
of this system is the possession of an extremely large electronic specific heat
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28 The Curie temperature decreases with increasing x and disappears at x50.33 in the ternary alloys
(Fe12xVx)3Al. Indeed, the Fe2VAl compound exhibits a strong temperature dependence of the magnetic
susceptibility at least down to 4.2K and, hence, is classified as group (III).
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symbols refer to samples characterized as metallic and insulating states, respectively.
The data for amorphous MxSi1002x (M5Ti and V) alloys in the metallic regime as well
as quasicrystals are fitted to lines with the slope of 22, consistent with the Mott con-
ductivity formula (15–40). The shaded area represents the experimentally determined

metallic regime.
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Figure 15.32. Temperature dependence of resistivity in (Fe12xVx)3Al with 0.2#x#
0.35. Samples with x$0.33 exhibit a semiconductor-like behavior. TC indicates the

Curie temperature. [From ref. 42.]

Figure 15.33. Calculated density of states of the Fe2VAl compound. The Fermi level
falls in the minimum of the pseudogap. Inset shows the density of states near the Fermi
level on an expanded scale. [R. Weht and W. E. Pickett, Phys. Rev. B 58 (1998) 6855]



coefficient exceeding 100mJ/mol·K2 but an electrical resistivity fairly compar-
able to that found in amorphous VxSi1002x [39] and TiySi1002y [40] alloys. The
Ce-4f electrons at the Fermi level are believed to play a key role both in
enhancement of the electronic specific heat coefficient and in electron conduc-
tion. With decreasing Ce concentration, however, the electronic specific heat
coefficient does decrease down to about 20mJ/mol·K2 before the transition to
the insulating regime, which occurs when the Ce concentration is reduced to 9
at.%. The transition is clearly seen in Fig. 15.31. It is clear that the data for the
amorphous CewSi1002w alloys neither obey the Mott conductivity formula nor
fall below the MI-line of D50.25cm2/s.

All data points marked by open symbols in Fig. 15.31 have to be regarded as
a metal. The region encompassing open symbols is shaded. It is of great inter-
est to note that the metallic regime apparently extends well above the MI-line
of D50.25cm2/s, when the value of gexp becomes large. Further studies are cer-
tainly needed to explore the electron transport mechanism in the neighborhood
of the experimentally determined metal–insulator transition line in the region
of gexp values exceeding 10 mJ/mol·K2.

Exercises

15.1 The Debye–Waller factor can explain the negative TCR observed in the
r–T types (b) and (c) of amorphous alloys, whose resistivities are in the range
60–150mV-cm (see Section 15.8.2). But it does not play a significant role in the
case of a crystal (see Section 10.12). Discuss why this is so.

15.2 The electrical resistivity of the Al–Mg–Pd amorphous ribbon sample
jumps sharply upon its transformation to the quasicrystalline phase, as shown
in Fig. 15.24. The electronic specific heat coefficient gexp for the amorphous and
quasicrystalline phases was experimentally determined as 0.78 and
0.42mJ/molK2, respectively. Given the resistivity of the amorphous phase to
be 220 mV-cm, estimate the resistivity in the quasicrystalline phase by using the
Mott conductivity equation (15.37). Assume that the mean free path of both
phases is equally constrained by an average atomic distance a.
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Appendix

Values of selected physical constants

quantity symbol value SI CGS

velocity of light c 2.99792458 108m·s21 1010cm·s21

electron mass m 9.1093897 10231kg 10228g
electron charge e 1.60217733310219C 4.80296310210esu
specific charge of the 
electron e/m 1.758819631011C·kg21 5.2764588631017esu·g21

Planck’s constant h 6.6260755 10234 joule·s 10227erg·s
" 1.05457266 10234 joule·s 10227erg·s

quantum flux h/2e 2.0678 10215 tesla·m25Wb 1027 gauss·cm2

Bohr magneton mB5m0e"/2m 1.165310229Wb·m
9.27314310224 joule·tesla21 9.27314310221erg·gauss21

Avogadro’s number NA 6.022136731023mole21 – –
Boltzmannn’s constant kB 1.380658 10223 joule·K21 10216erg·deg21

gas constant R0 8.314510 1joule·mole21·deg21 107erg·mole21·deg21

standard volume of V0 22.41410 1023m3·mole21 103cm3·mole21

perfect gas at 0°C, l atm
Bohr radius a0 5.29177249 10211m 1029cm
permittivity of free «0 – 107/4pc258.854310212 fared·m21 1
space
permeability of free m0 – 4p3102751.25731026henry·m21 1
space

Conversions: 1 eV51.60217733310219 joule51.60217733310212erg57.3531022Ry
1 eV58.06554103105m2158.06554103103cm21

1 Ry513.6058eV
1 eV51.1604453104K
1 cal54.186joule
1 nm510Å51029m51027cm



Principal symbols (by chapter)

Chapter 1
l : wavelength
p: momentum
v: velocity of electron
m: mass of electron
(2e): electronic charge
s: electrical conductivity
n: number of electrons per volume
t: relaxation time
kB: Boltzmann constant
T: absolute temperature
L: mean free path of electron
R: gas constant
Tc: superconducting transition temperature

Chapter 2
n: principal quantum number
,: azimuthal or orbital angular momentum quantum number
m: magnetic quantum number
s: spin quantum number
WF: average kinetic energy per electron
«I: ionization energy
«c: cohesive energy
r0: equilibrium interatomic distance
c(x,y,z): wave function of electron
m: mass of electron
": Planck constant divided by 2p

E: energy eigenvalue of electron
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kx, ky, kz, and k: wave number of electron k5

l: wavelength of electron
L: edge length of a metal cube
nx, ny, nz: arbitrary integers
V: volume of a system
k: wave vector of free electron
p: electron momentum
kF: Fermi radius
N0: total number of electrons per mole
NA: Avogadro number
EF: Fermi energy
N(E ): electron density of states
N: total number of electrons per volume V
e/a: number of valence electrons per atom
V: volume per atom
TF: Fermi temperature

Chapter 3
Ei: energy of electron in i-th sphere
Zi: number of states available for electrons with energy Ei

Ni: number of electrons with energy Ei

vi: number of distinguishable ways in distributing Ni electrons over Zi states with
energy Ei

W: total number of distinguishable ways
N: total number of electrons per volume V
E: total energy of conduction electron system
kB: Boltzmann constant
f (E , T): Fermi–Dirac distribution function at temperature T
EF(T ): Fermi energy at temperature T
EF(0): Fermi energy at absolute zero
F(E ): physically meaningful arbitrary function
DQ: heat input to a sample under an adiabatic condition
DT: temperature increment due to the heat input DQ
Uel: internal energy of the conduction electron system
N(EF(0)): density of states at the Fermi level at 0 K
g: electronic specific heat coefficient
Cel: electronic specific heat
TF: Fermi temperature
NA: Avogadro number
n0: valency of the constituent atom; e/a is alternatively used

Ïk 2
x 1 k 2

y 1 k2
z
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R: gas constant
a: lattice specific heat coefficient
QD: Debye temperature
C: specific heat
gexp: experimentally derived electronic specific heat coefficient
gF: electronic specific heat coefficient in the free-electron model
m*

th: thermal effective mass
gband: electronic specific heat coefficient derived from band calculations
m: magnetic moment of conduction electron
H: magnetic field
u: angle between magnetic moment m and applied field H
p(u)du: probability of finding the magnetic moment at angles between u and u1du

M: component of magnetization parallel to H
L(a): Langevin function

a5

x: magnetic susceptibility
ms: spin quantum number of electron
mB: Bohr magneton
e/a: number of electrons per atom
A: atomic weight
d: mass density
v: velocity of conduction electron
p: electron momentum
E0: work needed to remove to infinity an electron at the lowest energy state in the
valance band
f: work function
J: emission current density
n: number of electrons per unit volume
A: pre-exponential factor in Richardson–Dushman equation

Chapter 4
f (r): arbitrary periodic function
a: lattice constant
An: Fourier coefficient of the periodic function f (x)
llxlylz

or l: lattice vector
lx,ly,lz: component of the lattice vector
gnxnynz

or g: reciprocal lattice vector
ax,ay,az: basic vectors in real space

mH
kBT
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bx,by,bz: basic vectors in reciprocal space
L: edge length of a cube sample
(hkl ): Miller indices
d: interplanar distance
dN: distance from an origin to the lattice plane
k: wave vector of the incident x-ray beam
k9: wave vector of the reflected x-ray beam
u: glancing angle of the incident x-ray beam to the crystal plane
M or m: mass of atom
ula or u(l ): displacement of the l-th atom
b: force constant
j: amplitude of lattice vibrations
q: wave number of lattice vibrations
v: angular frequency of lattice vibrations
s: sound velocity
c: elastic stiffness constant
r: density
N: total number of atoms in a crystal
v: frequency of light wave
R: gas constant
q: wave vector of lattice wave
vq: angular frequency of lattice wave
Zi: number of states available for particles with energy Ei

Ni: number of particles with energy Ei

W: total number of distinguishable ways
N: total number of particles per volume V
E: total energy of a system
kB: Boltzmann constant
z: chemical potential
S: entropy
U: internal energy
p: pressure
n(E, T ): Bose–Einstein distribution function at temperature T
nq(T ): Planck distribution function for phonons
Ulattice(T ): internal energy due to lattice vibrations at temperature T
D(v): phonon density of states or frequency spectrum
N(q): number of lattice modes enclosed by a sphere with the radius q
qD: Debye radius
vD: Debye frequency
QD: Debye temperature
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QE: Einstein temperature
j0 and h0: displacement of atoms

Chapter 5
V(x): ionic potential function
2A: amplitude of the cosine-type ionic potential
a: lattice constant
c(x): wave function of electron
E: energy eigenvalue
j: dimensionless space variable defined as j5px/a
«: dimensionless energy defined as «58mEa2/h2

h: dimensionless amplitude of the ion potential defined as h58mAa2/h2

k: wave number of the Bloch wave
l: lattice vector in a crystal defined as l5lxax1lyay1lzaz

uk(r): periodic function in the Bloch wave function
k: wave vector of the Bloch wave
g or gn: reciprocal lattice vector
"k: crystal momentum of the Bloch electron
V0: potential height of the Kronig–Penney model
a: wave number defined as "a5 in the Kronig–Penney model
b: wave number defined as "b5 in the Kronig–Penney model
a and b: potential width of the Kronig–Penney model
P: parameter defined as lim

b→0
b→`

(b2ab/2)5P in the Kronig–Penney model

Vn: Fourier coefficient of the periodic potential V(r)
An: Fourier coefficient of the Bloch wave function
En: unperturbed energy of the Bloch electron defined as En5"2(k2gn)

2/2m
DE100: energy gap across the {100} zone planes
E

2
(k) and E

1
(k): energies of the Bloch electron defined by equation (5.40)

n: band index
l: wavelength of the Bloch wave
d: interplanar distance
i , j and k : unit vectors in cartesian coordinates
ax, ay, and az: primitive translation vectors in real space
bx, by, and bz: primitive translation vectors in reciprocal space
VB: volume of the first Brillouin zone
c and a: lattice constants of hcp lattice
a1, a2 and a3: primitive translation vectors of hcp lattice in real space
b1, b2 and b3: primitive translation (basic) vectors of hcp lattice in reciprocal space
n or e/a: number of electrons per atom

Ï2m(V0 2 E )
Ï2mE
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Chapter 6
G: origin in reciprocal space
E

2
(kN): energy at the point N in the {110} zone planes in the bcc lattice

e/a: number of electrons per atom
Ec: energy at the bottom of condution band
Ev: energy at the top of valence band
Ed: donor level
Ea: acceptor level
DEg: energy gap

Chapter 7
F: Lorentz force
E: electric field
B(5m0H): magnetic field
(2e): electronic charge
c: speed of light
v: velocity of electron
r: position vector of electron
k: wave vector of electron
n: positive integer including zero
A: vector potential
S: area of the closed orbit of electron in real space
A(«): area of the closed orbit of electron in reciprocal space
vc: cyclotron frequency, defined as vc5eB/m
u: angle between the two gamma-rays in the positron annihilation experiment
r(p): density of electrons with the momentum p
N( pz): coincidence rate in the positron annihilation experiment
A( pz): area of the cross-section of the Fermi sphere normal to the pz-axis
pz: Fermi momentum or the Fermi cut-off

E1: energy of incident photon
E2: energy of photon after scattering
Eel : energy of electron
b: ratio of the velocity of electron over the light speed, v/c
J( pz): probability of the scattered electron with momentum pz

Ekin: kinetic energy of photoelectron
hn: energy of incident photon
f: work function
EB: binding energy of the electronic state in a solid
Ni(E ): initial density of states at the energy E
Nf (E1hn): final density of states at the energy E1hn
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f (E,T ): Fermi–Dirac distribution function at temperature T
sopt(E,hn): optical transition probability or an average cross-section for all states at
the energy E
Pt(E,hn): electron transport function
Pe(E,hn): escape function
n(Ekin,hn): number of photoelectrons
SA(Ekin): analyzer sensitivity
RA(Ekin,hn): total resolution function
Vacc: acceleration voltage
Ei: electron energy of the initial state
Ef: electron energy of the final state
q: exit angle of photoelectron
w: exit angle of photoelectron
K: wave vector of a photoexcited electron in a crystal
Kpe: wave vector of a photoelectron in vacuum
g: reciprocal lattice vector
k: wave vector of the Bloch electron
Uo: inner potential
K

>
pe(i ): wave number corresponding to the peak i in the measured photoemission

spectrum in the normal emission mode
Ekin(i ): kinetic energy of the photoelectron corresponding to the peak i
Ei(i ): initial energy of the electron corresponding to the peak i in the normal
emission mode
k

>
(i ): wave vector of the Bloch electron corresponding to the peak i in the normal

emission mode
l: wavelength of soft x-ray
d: grating space of a crystal in the spectrometer
Ec: energy of the core level
I(v): transition probability per unit time for the spontaneous emission
ci: electron wave function at the initial state
cc: electron wave function at the final core state
cn,k(r): wave function of the valence electron specified by the wave vector k and band
index n
N: number of unit cells in a crystal
R,(Enk,r): radial wave function
Y,m(u,w): spherical harmonic function specified by the azimuthal quantum number ,
and magnetic quantum number m
ns(E ), np(E ) and nd(E ): s-, p- and d-partial density of states
bnk,,m: expansion coefficient
MpK(E ): transition matrix element
Ds(v): increase in the photoabsorption cross-section at the threshold
a: fine structure constant
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)I 8: initial state in a whole system
)F 8: final state in a whole system
V(r): interaction potential of incident electron with electrons in a solid
dV: solid angle
Zi: atomic number
Ri: position vector of nucleus i
rj: position vector of electron j in a solid
q: momentum transfer vector equal to q5k02k
S(q,E ): dynamical structure factor
I(E ): intensity of incident electron
P(E ): energy-dependent matrix element

Chapter 8
N: total number of electrons per unit volume
C: total wave function in a system consisting of electrons and nuclei
Vee: Coulomb potential energy due to electron–electron interaction
Ven: Coulomb potential energy due to electron–nucleus interaction
(2e): electronic charge
ri: position vector pointing to i-th electron
Z

a
: atomic number of a nucleus

R
a
: position vector to a-th nucleus

Nn: number of nuclei per unit volume
ji: spin coordinate of i-th electron
Vnn: nuclear potential energy
E0,i: ground-state energy of i-th isolated atom
ci(ri): wave function of i-th electron
xi(ji): spin function of i-th electron
CH: Hartree wave function
VH,i: Hartree potential
«i: one-electron energy of i-th electron
CHF: Hartree–Fock wave function
d

xix j
: Kronecker-delta

Vx(ri): exchange potential
«0: ground-state energy per electron in a homogeneous electron gas
«kin: kinetic energy per electron in a homogeneous electron gas
«X: exchange energy per electron in a homogeneous electron gas
«C: correlation energy per electron in a homogeneous electron gas
Rs: radius of a sphere containing one electron
r: electron density in a homogeneous electron gas
a0: Bohr radius
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r(r): electron density at the position r
Vion(r): ionic potential at the position r
F [r]: Ts[r]1EXC[r] in the LDF theory
Ts[r]: kinetic energy of electron in non-interacting system
EXC[r]: exchange and correlation energy
«XC(r): exchange and correlation energies in a homogeneous electron gas
mXC(r(r)): chemical potential defined as d(r«XC(r))/dr

mX(r(r)): exchange energy in a homogeneous electron system
mXa

(r(r)): Slater’s exchange energy
V(r): effective one-electron potential consisting of the Hartree potential and mXC(r(r))
l: lattice vector in a crystal
k: Bloch wave vector
ck(r): Bloch wave function
uk(r): periodic function in the Bloch wave function
gn: reciprocal lattice vector
Ua(r): potential of a free atom
f (r): atomic orbital wave function
Rn: position vector pointing to the nearest neighbor lattice sites
i , j and k : unit vectors in cartesian coordinates in real space
a and g: parameters in the tight-binding approximation
Xk(r): OPW function
V: volume per atom
mk, j: coefficient in the OPW function
C(k1gn): OPW expansion coefficient
Umn: Fourier component of the potential in the OPW method
RM: radius in the empty-core model
A0: constant energy in the empty-core model
Vq: Fourier component of bare Coulomb potential
v(r2 l): muffin-tin potential specified by the lattice vector l
,: azimuthal quantum number
m: magnetic quantum number
Y,m(u,f) or Y,m(r̂ ): spherical harmonic function
R,(r): radial wave function in a spherically symmetric potential
xk(E ,r): APW function
j, (kr): spherical Bessel function of order ,
uk and fk: polar angles of the wave vector k
C(k1gn): APW expansion coefficient
Fmn: Fourier component in the APW method
x(r): unperturbed wave function in the multiple scattering theory
co

n(r): wave function propagating outward from all the scatterers
c i

n(r): wave function incident to the n-th scatterer
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G(k,r2r9): Green function
k: kinetic energy E in atomic units
+: arbitrary linear operator
G(k,k;r2r0): structure Green function
L: functional in the KKR method
L,: logarithmic derivative of the radial wave function R,(r) at the muffin-tin radius
S,9m9,,m or Sk

,9m9,,m: structure factor
H
=

: Hamiltonian matrix
O
=

: overlap matrix
a: expansion coefficient vector
r̂: polar angles (u,w) of the position vector r
r0: radius of the Wigner–Seitz sphere or atomic sphere
x,m(E,r): muffin-tin orbital
p,(E ): function appearing in the muffin-tin orbital
a jk

,m: expansion coefficient of the muffin-tin orbital
VMT(r): muffin-tin potential in the LMTO method
VMTZ: muffin-tin zero
a: radius of the muffin-tin sphere
h,: phase shift of the ,-th partial wave
k: wave number defined as in the LMTO method
j,(kr): spherical Bessel function
n,(kr): spherical Neumann function
R,(Ev,r): partial radial wave function at energy Ev

Ṙ,(Ev,r): first derivative of the partial radial wave function at energy Ev

cbonding(EB, r): bonding state with energy EB

cantibonding(EA, r): antibonding state with energy EA

f,m(r): atomic orbital in diatomic molecule

Chapter 9
Z1: valency of the atom
DZ: valence difference between host and impurity atoms
l: Thomas–Fermi screening parameter
U(r): impurity potential
r(r): density of conduction electrons
EF: Fermi energy
s(u): differential cross-section
K: scattering vector
kF: Fermi radius
L: mean free path of conduction electron
Dr: resistivity increment due to impurity scattering

ÏE 2 VMTZ
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vF: Fermi velocity
n: number of electrons per unit volume
Nimp: number of impurity atoms per unit volume
u: scattering angle of conduction electron
x: solute concentration in at.%
U: internal energy of the conduction electron system
N(E ): density of states of electrons
vX(r): muffin-tin potential associated with ion X at the position r
ln: lattice vector for the n-th atom
V0(r): total potential in virtual crystal approximation
vav(r): averaged potential in an alloy
cx: concentration of atom X
c0,k(r): wave function in the virtual crystal approximation
VCPA(E,r): total potential in coherent potential approximation
w(E,r): effective potential
G(k,r2r9): Green function
ci(r): incident wave function
co(r): scattered wave function
Tn(E,r9,r0): t-matrix of potential of n-th ion
tX(E,r,r9): t-matrix of effective potential of ion X

Chapter 10
vF: Fermi velocity
vi: velocity of i-th electron
vD: drift velocity
n: number of conduction electrons per unit volume
E: electric field
t: relaxation time
J: electrical current density
s: electrical conductivity
r: electrical resistivity
m: mobility
RH: Hall coefficient
« or «(k) or «n(k): energy of conduction electron in n-th band
v: angular frequency of electron
vk: group velocity of wave packet
Ck(x,t): time-dependent wave function of the conduction electron
Ck(x): time-independent wave function
Ck(r,t): time-dependent Bloch wave function
g: reciprocal lattice vector
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m*
ij : effective mass tensor

H: magnetic field
(1e): charge of hole
f (r,k,t): steady-state electron distribution function at time t
f0(«k,T ): Fermi–Dirac distribution function at temperature T
f (r,k): form of deviation of distribution function from f0(«k,T )
z: chemical potential
Q(k,k9), Q(k9→k) and Q(k→k9): transition probability
vk>

: velocity component perpendicular to the Fermi surface
SF: area of the Fermi surface
N(«)d«: electron density of states in the energy range « to «1d«

LF: mean free path of the conduction electron at the Fermi level
rlattice: resistivity due to lattice vibrations
rimp: resistivity due to impurities and defects
r300K/r4.2K: residual resistivity ratio (RRR or 3R)
U(r): impurity potential
an(r2 l): Wannier function at lattice site l
ck,n: Bloch wave function in n-th band
N: number of atoms or ions per volume V
V0(r): periodic potential
fn(l): envelope function
Up(r): pseudopotential
ul: displacement vector of atom from its equilibrium lattice site l
Rl: position vector of atom at the lattice site l at finite temperature
K: scattering vector
u: scattering angle
S(K): static structure factor
Up(K): atomic form factor
a(K): interference function or static structure factor
V0: volume per atom
nimp: number of impurities per volume
s(u): differential scattering cross-section
l: wavelength of conduction electron
Ei: energy of the initial phonon state )i8
Ef : energy of the final phonon state ) f 8
«i: energy of the initial electron state k
«f : energy of the final electron state k9

v: angular frequency of phonon
Q(K,v): transition probability of the electron upon emission or absorption of
phonons
a(K,v): dynamical structure factor
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7···8T: thermal average of a system in equilibrium with heat bath at temperature T
b51/kBT
q: phonon wave vector
n(v) or ns: Planck distribution function
ukk9

: angle between velocity vectors vk and vk9

2Wll9(K): Debye–Waller factor
M: mass of the constituent atom
eq, j: j-th polarization vector of the mode q
a1

q: phonon creation operator
aq: phonon annihilation operator
a(1)(K,v): dynamical structure factor due to one-phonon normal process
QD: Debye temperature
qD: Debye radius

Chapter 11
k: thermal conductivity
U: thermal current density or flow of heat
DT: temperature gradient
W: thermal resistivity
C: specific heat of carriers per unit volume
v: average particle velocity
L: mean free path of particle
a: thermal resistivity coefficient due to lattice vibrations
b: thermal resistivity coefficient due to impurities
J: electrical current density
E: electric field
LEE : coefficient defined as J5LEEE
LET : coefficient defined as J5LET=T
LTE : coefficient defined as U5LTEE
LTT :coefficient defined as U5LTT=T
z: chemical potential or Fermi level
«(k): energy of electron of wave vector k
vk: velocity of electron of wave vector k
f (r,k): steady-state electron distribution function
s(«): electrical conductivity at energy «
s(T ): electrical conductivity at temperature T
QD: Debye temperature
L0: limiting Lorenz number
L: measured Lorenz number
Q: absolute thermoelectric power or the Seebeck coefficient
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t : relaxation time of conduction electron
TF: Fermi temperature
sT: Thomson coefficient
s: electronic entropy density
P: Peltier coefficient
Clattice: lattice specific heat per unit volume
Z: figure of merit
B: magnetic flux density
f: form of deviation of distrubution function from f0(«k,T )
sij : conductivity tensor
a5vct

vc5 (1e)B/m
rij : resistivity tensor
RH: Hall coefficient
vD: drift velocity
q: electric charge of carriers
kF: Fermi wave number
A: atomic weight
d: mass density
e/a: number of carriers per atom
Drxx: magnetoresistance defined as [rxx(B)2rxx(0)]
si: conductivity of the i-th carrier
bi5qiti /mi

q: wave vector of phonon or electromagnetic wave
D: electric displacement
m: permeability
«(q,v) or «(v): dielectric constant
v: angular frequency of electromagnetic wave
Dtot: total electric displacement
«̂(v): complex dielectric constant
s(v): optical conductivity
Jtot: total current density
ŝ(v): complex optical conductivity
Ey(incident): y-component of incident electric field
Ey(trans): y-component of transmitted electric field
n: refractive index
k: extinction coefficient
n̂: complex refractive index
m*

opt: optical effective mass
s1(v): real part of the complex conductivity
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s2(v): imaginary part of the complex conductivity
vp: plasma frequency
«1(v): real part of dielectric constant
«2(v): imaginary part of dielectric constant
Ein: electric field of incident radiation
Eref: electric field of reflected radiation
R: reflectance or reflectivity
neff

: effective number of electrons per atom
D: diffusion coefficient
n(x): number density of particles
F: external force
m: mobility

Chapter 12
B: magnetic flux density
Tc: superconducting transition temperature
Hc: critical magnetic field
E: electric field
Hext: external magnetic field
M: magnetization
m0: permeability in a vacuum
x: magnetic susceptibility
ms: mass of superconducting electron
vs: drift velocity of superconducting electron
qs: charge of superconducting electron
Js: superconducting current density
ns: number of superconducting electrons per unit volume
D: displacement current
lL: London penetration depth
Gs(T,H): free energy of superconducting state at temperature T and magnetic field H
Gn(T,H): free energy of normal state at temperature T and magnetic field H
Ss: entropy of superconducting state
Sn: entropy of normal state
Cs: specific heat of superconducting state
Cn: specific heat of normal state
ps: average momentum of superconducting electron
A: vector potential
f: scalar potential
c: order parameter of superconducting state
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h: phase of superconducting wave function
n0: threshold frequency
D: energy gap in superconducting state
M: mass of isotope
QD: Debye temperature
Mk1,k9

1
: matrix element associated with phonon mediated electron–electron

interaction
"vq: energy of emitted phonon
vD: Debye frequency
n: number of conduction electrons per unit volume
S: quantum number of spin angular momentum
Sz: quantum number of z-component of spin angular momentum
F(r1,r2): wave function of Cooper pair
c0(r1,r2,···,rn0

): wave function in BCS ground state
N(«F): density of states at the Fermi level
V: matrix element representing the strength of the net attractive interaction in BCS
theory
FP: Cooper pair wave function traveling with momentum P
Hc1: lower critical magnetic field
Hc2: upper critical magnetic field
j: coherence length
j0: coherence length in a perfectly pure metal
le: electron mean free path
k: Ginzburg–Landau constant
Ji: transport current
JH: screening current
Jc: critical current density
F: Lorentz force per unit length of magnetic flux core
Fp: pinning force per unit length of magnetic flux core
Dh: difference in the phase of Cooper pair wave function
ic: maximum superconducting tunneling current; Josephson critical current
is:superconducting tunneling current
V: DC voltage
R: resistance
C: capacitance
T: torque
u: deflection angle
M: moment of inertia of pendulum
l: length of pendulum arm
k: viscous damping
I: measuring current
i: circular current in SQUID ring
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fa: applied magnetic flux passing through SQUID ring
f0: quantum magnetic flux
DMH: width of magnetization hysteresis curve at magnetic field H

Chapter 13
TC: Curie temperature
TN: Néel temperature
Tf: spin freezing temperature
l or li: orbital angular momentum of i-th electron
, or ,i: quantum number of the orbital angular momentum of i-th electron
m,: quantum number of the z-component of orbital angular momentum l
s or si: spin angular momentum of i-th electron
s or si: quantum number of spin angular momentum of i-th electron
ms: quantum number of z-component of spin angular momentum s
L: resultant orbital angular momentum of an atom or free ion
L: quantum number of resultant orbital angular momentum of an atom or free ion
ML: quantum number of z-component of resultant orbital angular momentum L
S: resultant spin angular momentum of an atom or free ion
S: quantum number of resultant spin angular momentum of an atom or free ion
MS: quantum number of z-component of resultant spin angular momentum S
J: total angular momentum equal to L6S
J: quantum number of total angular momentum
Hi: internal magnetic field
mB: Bohr magneton
n: magnetic moment at 0K in units of mB

J: exchange integral
«s: energy in singlet ground state
«t: energy in triplet ground state
ri: position vector of i-th electron
Ri: position vector of i-th ion
fi(rj): i-th atomic orbital wave function of electron at position rj

Hspin: spin Hamiltonian
Si: resultant spin operator at i-th atom
Jij or J: exchange integral between i- and j-th atoms
U: total exchange energy
z: number of nearest neighbor atoms
d: vector pointing to nearest neighbor atom
v: angular frequency of spin waves
k: wave vector of spin waves
n(v,T ): Planck distribution function at temperature T
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M(T ): magnetization at temperature T
D(v): density of states for spin waves or magnons
Q: number of atoms in a unit cell
N↑: number of spin-up electrons per unit volume
N↓: number of spin-down electrons per unit volume
M: magnetization
N: total number of electrons per unit volume
«X: exchange energy
2D: shift of spin-up band relative to spin-down band
D«kin: increase in kinetic energy of valence electrons due to electron transfer
N(«F): density of states at the Fermi level
e/a: electrons per atom
«F: Fermi level
c(r,u,w): wave function of scattered electron due to a single magnetic impurity
R(r): radial wave function
Y,m(u,w): spherical harmonic function of ,-th partial wave
V(r): impurity potential
U(r): impurity potential defined as U(r)5(2m/"2)V(r)
r0: distance at which the potential is truncated
R: radius of metal sphere
f (u,w): angular function of outgoing wave
j, (r): spherical Bessel function of ,-th partial wave
n, (r): spherical Neumann function of ,-th partial wave
J, (r): Bessel function of ,-th partial wave
h, : phase shift of ,-th partial wave
g, : value of dlnR, /dr in the range r#r0

rmax: position at first maximum of spherical Bessel function
u: scattering angle of conduction electron
s(u): differential scattering cross-section
P,(cosu): Legendre polynomials of ,-th order
s: total scattering cross-section
str: transport cross-section
Nimp: number of impurities per unit volume
n: number of conduction electrons per unit volume
L: mean free path of conduction electron
vF: Fermi velocity
m: mass of conduction electron
Dn(k)dk: change in density of states in range k to k1dk
eDZ: excess nuclear charge
Dn(«)d«: change in density of states in energy range « to «1d«

f (r): screened impurity potential
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kF: Fermi radius
«3d: energy at center of 3d band
«0: energy at center of virtual bound state
D: width of the virtual bound state
Dr: increment in electrical resistivity upon 1 at.% addition of 3d-transition metal
element M to fcc Al
x: magnetic susceptibility
U: Coulomb repulsive energy
tsf: relaxation time of localized spin fluctuations
t

D
: relaxation time of electron escaping from virtual bound state to a continuum

t: relaxation time associated with thermal fluctuations at temperature T
tF: relaxation time associated with the Fermi temperature
Tsf : characteristic temperature associated with spin fluctuations
Hsd: s–d interaction
Rn: position vector of n-th magnetic impurity atom
s: spin angular momentum of conduction electron
Sn: spin angular momentum of n-th magnetic impurity atom
J(r2Rn): exchange integral between s and Sn

rspin: resistivity due to s–d interaction
c: concentration of magnetic impurity
2D: width of flat valence band
r0: residual resistivity
TK: Kondo temperature
F(2kFRnm): RKKY function
In: nuclear spin angular momentum of n-th atom
A: hyperfine coupling constant between nuclear spins
Rnm: distance between two nuclei
r//: longitudinal magnetoresistance
r

'
: transverse magnetoresistance

Dr/r//: FAR or ferromagnetic anisotropy of resistivity
cA: concentration of the element A
r↑

A: residual resistivity caused by scattering of spin-up electron by atom A
r↓

A: residual resistivity caused by scattering of spin-down electron by atom A
a: ratio of r↓

// over r↑
//

rH: Hall resistivity
Ey: transverse electric field
R0: normal Hall coefficient
Rs: anomalous Hall coefficient
Mz: spontaneous magnetization along z-direction
m0: permeability in vacuum
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Chapter 14
m*: effective mass of quasiparticle
f (p,r): distribution function
ri: position vector of i-th electron
Ri: position vector of i-th proton
c(r1,r2): molecular orbital wave function of two electrons in a hydrogen molecule
Hi: one-electron Hamiltonian for i-th electron in the field of two protons
c(r): one-electron wave function in the field of two protons
«: energy of the electron in the field of two protons
cs(r1,r2): symmetric orbital wave function of two electrons in a hydrogen molecule
Es: lowest energy corresponding to singlet state of a hydrogen molecule
Et: next-lowest energy corresponding to triplet state of a hydrogen molecule
ct(r1,r2): antisymmetric orbital wave function of two electrons in a hydrogen
molecule
fi(r): 1s atomic orbital wave function of i-th electron in a hydrogen atom
c1

i ↑: operator to create a spin-up electron at site i
cj ↑: operator to annihilate a spin-up electron at site j
ni↑: number of spin-up electrons at site i
U: on-site Coulomb energy
t: transfer integral or hopping matrix element
x: electronegativity
D: charge transfer energy or resonance energy
W: band width
Tc: superconducting transition temperature
co: optimum carrier concentration
T *: spin gap or pseudogap temperature

Chapter 15
a: diameter of atom
g(r): pair distribution function
r0: average number density
k0: wave vector of incident wave
k: wave vector of scattered wave
u: scattering angle
K: scattering vector
l: wavelength of x-ray
N: number of atoms in a solid
I(K): intensity of scattered x-rays
f: atomic scattering factor or scattering amplitude
S(K ): structure factor
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r(r): radial density function
Kp: wave number corresponding to the first peak of the structure factor
r0: average atomic distance
fA: atomic scattering factor of atom A
A(K): amplitude of scattered x-rays
S

ab
(K ): Ashcroft–Langreth partial structure factor for the atom pair a–b

c
a
: concentration of a atoms

r
ab

(r): number of b atoms found within a shell of thickness dr, radius r from the
atom a at the origin
g

ab
(r): partial pair distribution function for the atom pair a–b, distance r apart

d
ab

: Kronecker delta
a

ab
: Faber–Ziman partial structure factor for the atom pair a–b

Tx: crystallization temperature
Tg: glass transition temperature
Tm: melting temperature
TCR: temperature coefficient of electrical resistivity defined as [5(1/r)(dr/dT )]
Ri: position vector of i-th ion
Up(r2Ri): pseudopotential of i-th ion at position Ri

U(r): total ionic potential
2kF: Fermi diameter
a(K ): interference function
U(K ): Fourier component of the total ionic potential
QD: Debye temperature
a(K,v): dynamical structure factor at frequency v and wave number K
V0: volume per atom
r0: residual resistivity
Dr(T ):resistivity due to the inelastic electron–phonon interaction
e22W(T ): Debye–Waller factor
N(EF): density of states at the Fermi level
W: band width
t0: elastic lifetime
ti: inelastic lifetime
A: scattering amplitude
u: phase change upon scattering
s: electrical conductivity
RH: Hall coefficient
gexp: measured electronic specific heat coefficient
c(r): wave function of the localized electron
a: characteristic radius
Dij : energy difference between two localized states
P: probability of hopping
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nph: jumping frequency of electron due to phonons
R: distance between two localized states
D: electron diffusion coefficient
LF: mean free path of conduction electron
vF: Fermi velocity
g: ratio of density of states at the Fermi level over the corresponding free-electron value
N(EF)free: free-electron density of states at the Fermi level
SF

free: area of the free-electron Fermi sphere
t: golden ratio equal to t5(11 )/2
a: average atomic distance
z: coordination number of the constituent atom
I: hopping integral

Ï5
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Hints and answers

Chapter Two

2.1 Insert c(x)5 sin(pnxx/L) into px5e0
Lc*(x)pxc(x)dx5

e0
Lc*(x) c(x)dx. This is easily shown to be zero.

2.2 An average volume per electron is given by V5(4p/3)r3. Insert this into
equation (2.21).

2.3 Note that a quantized interval in the kz-direction is equal to 2p/Lz52p/10
nm21, which is 106 times larger than that given by 2p/Lx52p/Ly52p/107 nm21

in the kx- and ky-directions. The cross-section of the Fermi sphere in the kykz-
plane passing through kx50 is shown in Fig.2A.1. It can be seen from the figure
that the allowed states marked by dots form a series of planes parallel to the
kxky-plane with the interval Dkz52p/Lz. Let us assign a sequential number to
planes in the kz$0 axis, starting from zero up to (n11). Note that the n-th
plane is below the Fermi surface but the (n11)-th plane is above it. Thus one
obtains the relation

n·Dkz#kF,(n11)·Dkz (2A.1)

or

n2#EF, (n11)2. (2A.2)

Consider the cross-section of the Fermi sphere cut through the l-th plane. A
cross-section becomes a circle with radius rl given by

rl
25kF

22(l·Dkz)
2. (2A.3)

"2(Dkz)2

2m
"2(Dkz)2

2m

12 i"
­

­x2
Ï2/L
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Suppose that Nl electrons are on the l-th plane. Then, the proportional relation

prl
2 : Nl5 · : 2 (2A.4)

holds on the l-th plane. From equations (2A.3) and (2A.4), we obtain

Nl5 (kF
2 2l 2·Dkz

2). (2A.5)

The total number of electrons enclosed by the Fermi sphere can be calculated as

N5N012 {k2
F2l 2·Dkz

2}, (2A.6)

where N0 is the number of electrons on the kxky-plane or 0-th plane and S5

LxLy. Note that the factor 2 appears as a result of the contribution from the
bottom half of the Fermi sphere. Equation (2A.6) can be easily summed to

N5 kF
2(2n11)2 (Dkz)

2 n(n11)(2n11). (2A.7)

Now we remove the suffix F in kF and assume k to be a variable. Using the rela-
tion E5"2k2/2m, we can rewrite equation (2A.7) in the form of

N5 (2n11)E2 (Dkz)
2 n(n11)(2n11). (2A.8)
1
61S

p21mS
p"22

1
61S

p21 S
2p2

o
n

l51
1 S
2p2

1LxLy

2p 2

12p

Ly
212p

Lx
2
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l = 0

l = 2
l =1

l = n
l = n +1

∆kz =
2π
Lz

kF

k

k

z

y

Figure 2A.1. Cross-section of the Fermi sphere in the kykz-plane passing through
kx50. The allowed states are marked by dots. They form a series of planes parallel to

the kxky-plane and are numbered sequentially.



According to equation (2A.2), the lower limit of the Fermi energy is given by

EF
min5 n2. (2A.9)

Hence, an insertion of equation (2A.9) into equation (2A.2) results in Nmin,
which is expressed as

Nmin5 (Dkz)
2(2n11)(2n21)n. (2A.10)

The upper limit of the Fermi energy is simply obtained by replacing n by
(n11). Therefore, the following inequality is derived:

(Dkz)
2(2n11)(2n21)n#N, (Dkz)

2(2n13)(2n11)(n11). (2A.11)

Since its volume is 131026 cm3, the total number of electrons in the sodium
thin film can be calculated as N52.54231016 from its atomic weight of 22.98g.
In addition, we know that S51 cm2 and Dkz52p/Lz52p31026 cm21. By
inserting these numerical values into equation (2A.11), we obtain

(2n11)(2n21)n#12 137,(2n13)(2n11)(n11). (2A.12)

An integer satisfying equation (2A.12) is easily found to be n514. We can cal-
culate from equation (2A.2) the Fermi energy as 2.94,EF,3.38 eV for n514.
Compare this with the value of EF

free53.24 eV for bulk sodium metal (see Table
2.2).

The density of states for a two-dimensional metal can be obtained by
differentiating equation (2A.8) with respect to E:

N2D(E )5 (2n11), (2A.13)

where atomic units with m5"51 are used. Equation (2A.2) can be rewritten
as

n2#E, (n11)2. (2A.14)

On the other hand, as shown in equation (2.22), the density of states for a
three-dimensional metal can be expressed in atomic units as

N3D(E )5 . (2A.15)

For the sake of simplicity, we take LxLy5 and Lz5 p. Then, oneÏ2Ïp

Ï2E1LxLyLz

p2 2

2p2

L2
z

2p2

L2
z

1S
p2

1 S
6p21 S

6p2

1 S
6p2

5"2(Dkz)2

2m 6

Hints and answers 541



obtains N3D(E )52 and N2D5(2n11) with the condition n2#E,(n11)2.
Both curves are shown in Fig.2A.2.

2.4 According to Table 2.2, the volume V per atom in alkali metals is much
larger than that in noble metals. This is caused by the difference in the crystal
structure between them: noble metals crystallize into the close-packed fcc
structure, alkali metals into the bcc structure with a relatively low packing
density. A large value of V results in a higher Fermi energy through equation
(2.21). In addition, the 3d-band is situated in the middle of the valence band
in all three noble metals (see Section 6.4). We will learn that this contributes to
raising the Fermi energy in noble metals. It is worthwhile mentioning that the
difference in the electronic structure between noble metals and alkali metals is
reflected in the bonding strength and, in turn, in physical properties like the
melting point: 371 K for Na, 336.3 K for K, 1358 K for Cu, 1235K for Ag and
1338 K for Au.

Chapter Three

3.1 The Pauli paramagnetic susceptibility is calculated as

x5m2
BN(EF(0)) 11 (kBT )2 .

(3A.1)

63 1
N(EF) 1

d 2N(EF)
dE 2 22 1 1

N(EF)
dN(EF)

dE 2
2

4
E5EF(0)

p2

65

ÏE
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Figure 2A.2. Density of states curves for two- and three-dimensional free-electron
systems.



A ratio of the second term over the first one in the curly bracket turns out to
be

(kBT )2

. (3A.2)
N(E F(0))

Now we use equation (2.22) for the density of states, i.e., N(E )5CÏ·E in the free-
electron model. The relations N9(E )5C/2Ï·E and N 0(E )52C/4EÏ·E are
inserted into equation (3A.2). It is reduced to p2(kBT)2/12[E F(0)]2. An insertion
of the Fermi energy of 7 eV for pure Cu and the thermal energy kBT50.025 eV
at 300 K leads to the ratio of the order of 131025. Hence, the contribution of
the second term over the first one is merely 0.01% for Cu at room temperature.

Chapter Four

4.1 The results are shown in Fig. 4A.1. Atoms are periodically arranged with
the lattice constant a52. The displacement of each atom is shown by a bold
vertical bar. The solid curve represents the lattice wave with the wave vector in
the first Brillouin zone and a dotted curve the lattice wave with the wave vector
larger than the former by the reciprocal lattice vector. Both waves describe the
same displacements of atoms.

4.2(a) The internal energy and specific heat in the Einstein model are deduced
to be

Ulattice5 (4A.1)
3N"v0

exp1"v0

kBT22 1

U31d 2N(EF)
dE 2 22

1
N(EF) 1

dN(EF)
dE 2

2

4
E5EF(0)

Up2

6
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Figure 4A.1. Lattice waves with wave vectors q and q1g, where g is the reciprocal
lattice vector. Bold bar represents the displacement of atoms.



and

Clattice5 , (4A.2)

where x5QE/T.

Chapter Five

5.1 The Bloch wave can be expanded as

ck(r)5exp(i k·r)uk(r)5exp(i k·r) Anexp(2ign·r) (5A.1)

since the function uk(r) is periodic with the period a. If we replace the wave
vector k by k5k91gm, where gm is the reciprocal lattice vector, then we obtain

ck(r)5ei(k91gm)·ruk(r)5ei k9·r Ane
i(gm2gn)·r

5ei k9·r An9
eign9·r5ei k9·ruk9

(r)5ck9
(r). (5A.2)

5.2 Only the diagonal elements remain in the determinant of equation (5.34),
when the ionic potential is zero. Hence, it is immediately solved as

· · · E2 k2 ·[E2k2]· E2 k1 · · ·50. (5A.3)

Equation (5A.3) constitutes a series of parabolas centered at k5(2p/a)n with
n50, 61, 62, . . . . This is illustrated in Fig. 5A.1. The reduced E–k relations
appear successively in the first zone 2p/a,k#p/a. Multi-valued E–k relations
are labelled by the band indices, as shown in Fig. 5A.1. The Bragg condition is
satisfied at the wave number corresponding to the intersection of the successive
parabola. Note that no deviation from the free-electron model occurs at the
intersection k5(p/a)n.

5.3 The relation k25(k2gn)
2 is rewritten as

2k·gn5 )gn)
2. (5A.4)

As mentioned in Section 4.3, the interplanar distance d is expressed as
d52p/)gn). We assume that the wave vector k makes an angle u with gn normal
to the set of the lattice planes. Now equation (5A.4) can be rewritten as
2k·gn52)k)·)gn)cos[(p/2)2u]5 )gn)

2. This turns out to be 2dsinu5l, if the rela-
tion l52p/k is inserted. If this is due to the m-th order reflections, the inter-
planar distance dm must be replaced by dm5d/m. Now we obtain the Bragg
condition 2dsinu5ml.

2p

a 2
2

4132p

a 2
2
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o
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n952`

o
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o
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5.4(a) The volume VB of the first Brillouin zone for a hcp metal is
VB516p3/ a 2c and the number of electrons N accommodated in the first
Brillouin zone for a hcp metal with volume V is N5(2V/8p3)(16p3/
a 2c)54V/ a 2c. Since the total number of atoms in a hcp metal with volume
V is equal to N54V/ a 2c, we obtain the number of electrons per atom
accommodated in the first Brillouin zone of a hcp metal to be equal to (4V/
a 2c)/(4V/ a 2c)51.

(b) We divide the Jones zone, Fig. 5.17(c), into two truncated hexagonal
pyramids and a hexagonal prism. With reference to Fig. 5.17(a), let us denote
the distance from the center G or A to the midpoint of each edge in the bottom-
and top-plane of the truncated pyramid as Lbottom and Ltop, respectively. Lbottom

is obviously equal to GM52p/ a, whereas Ltop is calculated to be [(2p/
a) 2( ap/2c2)] from the proportional relation. Then the volume of the trun-
cated hexagonal pyramid is given by

Vtrunc.pyramid5 (Sbottomhbottom2Stophtop)5 (L3
bottom2L3

top), (5A.5)

where Sbottom (top)56L2
bottom (top)/ is the area of the bottom- and top-hexago-

nal planes and hbottom (top)5(2c/ a)Lbottom (top) is the height of the correspond-
ing pyramids. Now Vtrunc.pyramid is calculated as

Ï3
Ï3

14c
3a211
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Ï3Ï3
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Ï3
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Ï3
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Figure 5A.1. E–k relation of conduction electrons in one-dimensional periodic
empty-lattice with lattice constant a. The hatched area represents the first Brillouin

zone. n refers to the band index.



Vtrunc.pyramid5 (Lbottom2Ltop)[(Lbottom2Ltop)213LbottomLtop]

5 , (5A.6)

where Lbottom2Ltop5 ap/2c2 is inserted.
The volume of the Jones zone is given by the sum of the two truncated hexag-

onal pyramids and the first Brillouin zone:

VJz52Vtrunc.pyramid1V1st zone

5 1 5 .

The number of electrons N accommodated in the Jones zone for an hcp metal
with a volume V is, therefore, derived as

N5 . (5A.7)

Finally, the number of electrons per atom accommodated in the Jones zone is
deduced to be

e/a5 . (5A.8)

Chapter Seven

7.1 Equation (7Q.1) can be rewritten as

c1 2exB c1 c5Ec (7A.1)

or

1 c1 1 c50 (7A.2)

We seek for the solution in the form of c(x, y, z)5exp[i(by1kzz)]u(x). Then,
(7A.2) is reduced to the form:

1 u(x)50 (7A.3)32mE9
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with

E95E2 kz
2.

Equation (7A.3) is further rewritten as

2 u(x)5E9u(x) (7A.4)

Equation (7A.4) represents the one-dimensional harmonic oscillator with the

angular frequency vH5 centred at xo5 . Its eigenvalue is given by

E95 "vH

or

E5 "vH1 kz
2. (7A.5)

7.2 Electrons travel in an orbit on an equi-energy surface normal to the applied
field. Hence, the cross-section of the Fermi surface perpendicular to the mag-
netic field needs to be considered. As shown in Fig. 7A.1, the area of the cross-
section of the ellipsoid at kz50 does not change when the value of kz deviates
from the origin. This is because ­A(kz)/­kz50 at kz50. This means that elec-
trons within Dkz of kz50 can equally participate in the dHvA oscillations. In
other words, the number of participating electrons, when the magnetic field is
varied, is the largest on the Landau level at kz50.

7.3(a) vc5eB/m58.7931011s and 

r5vF/vc5(1.5731026)/(8.7931011)51.7931026m or 1.79mm.

Use the relation L55.9231025 A/r·d, where L is the mean free path in Å, A is
the atomic weight in g, r is the residual resistivity in mV-cm, d is the density in
g/cm3 (footnote 10, p. 475, in Chapter 15). L turns out to be 6 mm so that L.r
holds.

(b) DE5"vc50.5831023 eV
(c) n>«F/"vc57/0.5831023512 068

7.4 The free-electron wave function x(p)5exp(ip·r) is inserted into equation
(7.23). The integrand becomes constant and, hence, the integral is reduced
to

"2

2m1n 1
1
22

1n 1
1
22

1
vH

"b

m
eB
m

"2

2m
­2u(x)

­x2 1 3eB
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x 2
"b

m 4
2
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J( pz)5    2ppdp5p(p2
F2p2

z). (7A.6)

Chapter Eight

8.1 The summation in equation (8.34) for the bcc lattice is calculated as

eik·Rn5exp i (kx1ky1kz) 1exp i (2kx1ky1kz)4a
234a

23o
n

E
0

Ïp2
F 2 p2

z
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Figure 7A.1. The kz dependence of the area of the cross-section normal to the z-axis
is given by a parabola and takes its maximum at kz50. The Fermi surface is also drawn,
where the electronic states contributing to the dHvA effect are marked by the shaded

area. Obviously, available states are more abundant at kz50.
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1exp i (kx2ky1kz) 1exp i (2kx2ky1kz)

1exp i (kx1ky2kz) 1exp i (2kx1ky2kz)

1exp i (kx2ky2kz) 1exp i (2kx2ky2kz)

52 cos exp i (kx1ky) 1exp 2 i (kx1ky)

1exp i (kx2ky) 1exp 2 i (kx2ky)

54 cos cos (kx1ky) 1cos (kx2ky

58 cos cos cos

8.2 Equation =2f (r)54pr(r) is known as the Poisson equation in electrostat-
ics. The electrostatic field f (r2r9), when a point charge is located at the posi-
tion r5r9, is obviously given by f (r2r9)5(1/4p)(1/)r2r9)). This means that
f(r2r9)5(1/4p)(1/)r2r9)) is the solution of equation =2f(r)5d(r2r9). By
using this relation, we obtain

=2G(k,r2r9)52 =2

52exp(ik)r2r9))=2 =2[exp(ik)r2r9))]

52exp(ik)r2r9))d(r2r9)2

5d(r2r9)2k2G(k, r2r9),

where the relation f (x)d(x2a)5f (a)d(x2a) is used.

Chapter Ten

10.1 According to equation (10.14b), the wave packet is explicitly written as

c(x, t)5C exp[2a2(k2K )21i{kx2("k2/2m)t}]dk. (10A.1)E
`
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The argument of the exponential function is rewritten as

2a2j21i{kx2("k2/2m)t}52a2j222bj2g, (10A.2)

where j5k2K, a5a21(i"t/2m), b5 [2x1("Kt/m)] and g5iK(2x1("Kt/2m)).

Equation (10A.1) is calculated as

c(x, t)5 exp . (10A.3)

Equation (10A.3) indicates that the probability density at t50 is equal to
)c(x, t))25(c2p/a2)e2x2/2a2 and the wave packet is represented by the Gaussian
function centered at x50. The uncertainty in position is equal to Dx5a
from its half-width. It is also seen from equation (10A.1) that the wave packet
is broadened over Dk51/a about k5K. Hence, the uncertainty relation
Dx·Dp5 " holds. The probability density of the wave packet at time t
becomes

)c(x, t))25 exp , (10A.4)

indicating that the center of the wave packet is moved to the position
x5"Kt/m. We see, therefore, that the group velocity of the wave packet is
v5"K/m in good agreement with the value calculated from its definition
v5=kv(k))k5K. One can easily check that the wave packet continues to travel
without altering the area in the Gaussian distribution.

10.2 An insertion of the Bloch wave function into the Wannier function leads
to

a(r2l)5 e2i k·l u(r)ei k·r5 e2i k·(l2r). (10A.5)

Since the Brillouin zone of a simple cubic lattice is bounded by 2p/d,ki#p/d
(i5x, y and z), the Wannier function at the origin l50 is calculated as
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5 . (10A.6)

The integration of the product of the two Wannier functions at two differ-
ent sites l5m and n over the whole space is zero as shown below:

a*(x2md )a(x2nd )dx5 · dx

5 · dx

5 dx2 50.

The two Wannier functions located at two different sites are shown in Fig.
10A.1.
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Figure 10A.1. Two Wannier functions centered at the lattice sites x/d51 and 2 along
x-axis in a simple cubic lattice with the lattice constant d. They are orthogonal to

each other.



10.3 We consider the spherical triangle shown in Fig. 10A.2. The points A, B
and C are on the surface of the unit sphere and the vectors k, k9 and E are along
OA, OB and OC directions, respectively. The angles k`k9, k`E and k9`E are
denoted as u, a and b, respectively. According to the cosine rule in spherical
trigonometry,

cos b5cosacosu1sinasinu cosf (10A.7)

Two lines AB9 and AC9 are drawn so as to be perpendicular to the vector k and
to intersect with the lines along the vectors k9 and E, respectively. The cosine
rule for the triangle DOB9C9 and DAB9C9 leads to

B9C925OB921OC9222OB9·OC9 cos b (10A.8)

and

B9C925AB921AC9222AB9·AC9 cos f. (10A.9)

A combination of equations (10A.8) and (10A.9) results in

2OB9·OC9 cos b5(OB922AB92)1(OC922AC92)1 2AB9·AC9cos f

52OA212AB9·AC9 cos f. (10A.10)
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Figure 10A.2. Relation of the electric field E and wave vectors k and k9 in the
spherical triangle ABC. [Courtesy Dr K. Ogawa]



Equation (10A.10) is rewritten as

cosb5 cosf5cosucosa1sinusinacosf. (10A.11)

The relations vk//k and vk9
//k9 hold for the spherical Fermi surface. If we take

the electric field E along the x-direction, we have

12 512 512 , (10A.12)

where E is the electric field. An insertion of equation (10A.11) into (10A.12)
leads to

12 512 512cosu2sinutanacosf.

(10A.13)

Since the relations 1/t5e[12(vk9
·E/vk·E)]Q(u)d k9 and )k)5 )k9)5k hold in

elastic scattering, the scattering probability is calculated to be

5 12 Q(u)sinududf5e(12cosu2sinutanacosf)Q(u)sinududf

5 (12cosu)Q(u)sinududf.

10.4 By comparing the first and second lines in equation (10.88), one can explic-
itly write the dynamical structure factor a(K, v) as

a(K, v)5 〈i ) e2i K·Rl 9) f 〉·〈 f ) ei K·Rl )i 〉·d

5 e ivte2i («f 2«i )t/" 〈i ) e2i K·Rl9) f 〉·〈 f ) ei K·Rl )i , (10A.14)

where the delta function d(v)5 eivt(dt/2p) is replaced by its integration form.

Since Rl5l1ul, we get

a(K, v)5 e2i K·( l2l9) eivte2i(«f 2«i )t/" 〈i )e2i K·ul9) f 〉·〈 f )ei K·ul)i 〉 .

(10A.15)
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Furthermore, the relation

e2i(ef 2ei )t/"〈i )e2iK·ul ) f 〉5〈i )eiH0te2iK·ul(0)eiH0t) f 〉5〈i )e2i K·ul(t)) f 〉 (10A.16)

holds in the Heisenberg representation. Equation (10A.15) is reduced to equa-
tion (10.89), since the relation of 〈i )e2i K·ul9(t)) f 〉·〈 f )e i K·ul(0))i 〉5〈i )e2i K·ul9(t)e i K·ul(0))i 〉
holds [7, 8].

10.5 The dynamical structure factor is explicitly written as

a(K, v)5 〈 f ) ei K·Rl )i 〉 . d 2v , (10A.17)

where Z is the partition function defined as oj e2bej and )〈 f ) ol ei K·Rl )i 〉)2 repre-
sents the probability amplitude of the transition from the state )k, i 〉 to )k9, f 〉.
Now let us replace the arguments K and v in a(K, v) by 2K and 2v. Then, we
obtain

a(2K, 2v)5 〈i ) e1i K·Rl9) f 〉 . 〈 f ) e2i K·Rl )i 〉·d 1v

5 〈 f ) e2i K·Rl )i 〉 . 〈i ) e1i K·Rl9) f 〉·d 2v

5 〈i ) ei K·Rl ) f 〉 ·d 2v 5e2b"va(K, v),

(10A.18)

where )〈i ) ol e i K·Rl ) f 〉)2 represents the probability amplitude of the transition
from the state )k9, f 〉 to )k, i 〉 and the detailed balance condition assures )〈 f ) ol
ei K·Rl )i 〉)25 )〈i ) ol ei K·Rl ) f 〉)2.

10.6 Equation (10.93) is rewritten by substituting f0(k)1f (k) for f (k) with
a subsequent use of the identity e2b"vf0(«k2"v)[(12f0(«k)]5
f0(«k)[12f0(«k2"v)]:
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vk·(2e)E52 dv )Up(K))2a(K, v) d(«k9
2«k1"v)

3{f (k)[11e2b(«k2m)][12f0(k9)]2f(k9)[11eb(«k92m)] f0(k)}, (10A.19)

where the term involving f (k)f(k9) is ignored as higher-order terms. All f (k)s
appearing in the right-hand side are replaced by f (k)5tkvk·(2e)E[­f0(k)/­«].
The quantity in the curly bracket in equation (10A.19) is then reduced to

tk[vk·(2e)E] [11e2b(«k2m)][12f0(k9)]2tk9
[vk9

·(2e)E]

3 [11eb(«k92m)] f0(k) 52 f0(k)[12f0(k9)]{tk[vk·(2e)E]2tk9
[vk9

·(2e)E]} /kBT,

(10A.20)

where the relation f0(k)[12f0(k)]5kBT [2­f0(k)/­«k] is used. The right-hand
side of equation (10A.19) is reduced to

dv )Up(K))2a(K, v){tk[vk·(2e)E]2tk9
[vk9

·(2e)E]}

3d(«k9
2«k1"v)f0(k)[12f0(k9)],

which becomes

dv )Up(K))2a(K, v){tk[vk·(2e)E]2tk9
[vk9

·(2e)E]}

3d(«k9
2«k1"v) "vn(v), (10A.21)

where the relations f0(«k)(12f0[«k2"v)]52[f0(«k)2f0(«k2 "v)]n(v) and
f0(«k2"v)<f0(«k)2"v[­f0(«k)/­«k] are inserted and n(v) is the Planck distribu-
tion function. The Boltzmann transport equation (10.93) is now reduced to
equation (10.94).

10.7 In the dynamical structure factor given by equation (10.89), e2i K·ul9(t) and
ei K·ul(0) do not commute with each other. Here we need to use the relation
eA1B5eAeBe2 [A,B] known as the Baker–Hansdorff theorem, where the two
operators A and B are commuted with each other and satisfy the relation
[A,[A, B]]5[B,[A,B]]50 [A. Messiah, Quantum Mechanics, (North-Holland,
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Amsterdam, 1958) vol. 1, p. 442]. Then, the thermal average in equation (10.89)
can be calculated as

〈e2i K·ul9(t) eiK·ul(0)〉T5〈ei K·[ul(0)2ul9(t)]e [i K·ul(0),2i K·ul9(t)]〉T
5e (K2/2) [ul(0),ul9(t)]〈ei K·(ul(0)2ul9(t))〉T
5e(K2/2)[ul(0),ul9(t)]e2 〈[K·(ul(0)2ul9(t))]

2〉
T

5e(K2/2)[ul(0),ul9(t)]e{2 〈(K·ul(0))2〉
T

2 〈(K·ul9(t))
2〉

T
1 〈(K·ul(0))(K·ul9(t))1(K·ul9(t))(K·ul(0))〉

T
}

5e(K2/2)[ul(0),ul9(t)]e2 {〈(K·ul(0))2〉
T

1〈(K·ul9(t))
2〉

T
}e1 〈2[K·ul(0),K·ul9(t)]12(K·ul9(t))(K·ul(0))〉

T

5e(K2/2)[ul(0),ul9(t)]e2 {〈(K·ul(0))2〉
T

1〈(K·ul9(t))
2〉

T
}e2(K2/2)[ul(0),ul9(t)]e〈(K·ul9(t))(K·ul(0))〉

T ,

(10A.22)

where the relation 〈ei K·(ul(0)2ul9(t)〉T5e2 〈[K·(ul(0)2ul9(t))]
2 〉

T is used. As is shown below,
this relation holds, if lattice vibrations are treated in the harmonic oscillator
approximation.

Since the Hamiltonian is expressed as H5(a1a1 )"v in the harmonic oscil-
lator approximation, we can prove the relation 〈eij( ga1g*a1)〉T5exp[2(j2/2))g)23

coth("v/2kBT )] [A. Messiah, Quantum Mechanics, (North-Holland,
Amsterdam, 1958) vol. 1, p. 450–451]. In a similar way, we can prove the rela-
tion

〈(ga1g*a1)2〉T; 〈n)(ga1g*a1)2)n〉5 )g)2(12y) yn(2n11)

5 )g)2 5 )g)2 coth , (10A.23)

where y5e2"v/kBT and Z5e2"v/2kBT/(12e2"v/kBT)5y1/2/(12y). The second line in
equation (10A.23) is obtained by using the relations 1/(12y)5 o`

n50 yn and
1/(12y)25 o`

n50 (n11)yn and, hence, o`
n50 yn(2n11)5(y11)/(12y)2. A com-

bination with the relation obtained above proves the relation 〈eij( ga1g*a1)〉T5

e2( j2/2)〈( ga1g*a1)2〉T.
Since the first and third exponentials in equation (10A.22) are canceled to

zero, we obtain the relation

〈e2i K·ul9(t)ei K·ul(0)〉T5e2 {〈(K·ul(0))2〉
T1 〈(K·ul9(t))2〉

T}e〈(K·ul9(t))(K·ul(0))〉
T. (10A.24)
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The argument {〈(K·ul(0))2〉T1〈(K·(ul9(t))
2〉T} is the Debye–Waller factor and

is time-independent. Thus, the dynamical structure factor is explicitly written
as

a(K, v)5 e2i K·(l2l9) eivte22Wll9(K)exp〈(K·ul9(t))(K·ul(0))〉T.

10.8 An insertion of equation (10.100) into equation (10.98) for an isotropic
system results in

W(K )5 ea
l (v

m
)eb

l (v
n
)(a1

m
1a

m
)(a1

n
1a

n
) T,

(10A.25)

where ei
l(vm

) is the l-component (l5x, y, z) of the i-th polarization vector of
the mode v

m
. Since 〈(a1

m
1a

m
)(a1

n
1a

n
)〉T5coth("v

m
/2kBT ) holds, we get

W(K )5 K
a
K

b
ea

l (v
m
)eb

l (v
m
)coth("v

m
/2kBT ) . (10A.26)

An average over the three independent directions of the vector K results in

5 ea
l (v

m
)ea

l (v
m
)

5 5 dv d(v2v
m
)

5 dvD(v) ,

where D(v) is the phonon density of states per atom. The application of the
Debye model to D(v) leads to

W(T )5W(0)1 W(0) 1. . . (T,,QD) (10A.27)

W(T )54W(0) 1. . . (T$QD), (10A.28)

where W(0)53("K )2/8 MkBQD.
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Chapter Eleven

11.1 The ratio (2LET/LEE) is the thermoelectric power and is reduced to equa-
tion (11.23) in the free-electron model, where s(«)~«3/2 holds. Thus, the correc-
tion term is calculated as

5

5 (2e)
«5z

T~ (11A.1)

11.2 The x- and y-components of the current density are given by

Jx5 vxf (k)dkxdkydkz5 kx(akx1bky)dkxdkydkz

5 (ak2
x1bkxky)dkxdkydkz, (11A.2)

Jy5 vyf(k)dkxdkydkz5 ky(akx1bky)dkxdkydkz

5 (akykx1bk2
y)dkxdkydkz, (11A.3)

An insertion of equation (11.31) into the x-component in equation (11.30)
yields

2(2e)Evx B (bkx2aky)

and is rewritten as

2(2e)p Evx 5(a2bvct)kx1(b1avct)ky. (11A.4)

Similarly, we obtain the following relation from the y- and z-components in
equation (11.30)

05(a2bvct)kx1(b1avct)ky. (11A.5)
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Equation (11A.5) should hold for any kx and ky. This is possible if a5vc tb and
b52vcta. Multiplication by kx of both sides of equation (11A.4) yields

2(2e)p E vxvx 5(a2bvct)k2
x1(b1avct)kxky. (11A.6)

Further multiplication by [(2e)/4p3]eeedkxdkydkz of both sides yields

2 t E vxvx dkxdkydkz5 (ak2
x1bkxky) dkxdkydkz

2 vct (bk2
x2bkxky) dkxdkydkz.

The quantity in the left-hand side can be calculated in the same way as dis-
cussed in Section 10.7 and the equation above is rewritten as

E5 (ak2
x1bkykx)dkxdkydkz

2 vct (bk2
x2bkykx) dkxdkydkz.

By using equations (10.52) and (11A.2), we have

E5Jx2 vct (bk2
x2akxky) dkxdkydkz

5Jx2 (vct)2 dkxdkydkz. (11A.7)

An insertion of the relations a5vctb and b52vcta yields

5Jx1 (vct)2 (ak2
x1bkykx) dkxdkydkz

5Jx1(vct)2Jx. (11A.8)

The ratio of Jx /Ex is the xx-component of the conductivity tensor. Hence, we
obtain sxx5[n(2e)2t/m] {1/[11(vct)2]}. Similarly, the xy-component sxy of
the conductivity tensor can be calculated by starting from the equation
obtained by multiplying both sides of equation (11A.4) by ky.

EEE1"

m2( 2 e)
4p3

(bk2
x 2 akykx)

vct
EEE1"

m2( 2 e)
4p3

EEE1"

m2( 2 e)
4p33n( 2 e)2t

m 4

EEE1"

m2( 2 e)
4p3

EEE1"

m2( 2 e)
4p33( 2 e)2 tvFSF

12p3" 4

EEE( 2 e)
4p3

EEE( 2 e)
4p3

­f0

­«EEE1m
"21( 2 e)2

4p3 2

­f0

­«1m
"2

Hints and answers 559



11.3 A right-angle nABC is constructed as shown in Fig. 11A.1 by using the
three vectors J/s, E and bB3J/s. nABD is drawn so as to fill ' . By
using the proportional relations, we can easily find 5(b2B2)/s)J and 
5bB3E. Since the relation 5 2 holds in DABD, we have (J/s)
(11b2B2)5E2bB3E.

11.4 In our configurations J5(J, 0, 0) and B5(0, 0, B), equation (11.42) is
reduced to

J5(s11s2)Ex1(s1 b11s2s2)EyB (11A.9)

05(s11s2)Ey2(s1 b11s2b2)ExB (11A.10)

05(s11s2)Ez, (11A.11)

where B2 terms are neglected. An insertion of equation (11A.9) into equation
(11A.10) yields

Ey5 JB5 JB, (11A.12)

where B2 terms are again neglected.

11.5 The velocity correlation function is differentiated with respect to time:

f
· (t)5〈v(0)v·(t)〉. (11A.13)

The insertion of equation (11.78) into equation (11A.13) results in

f
· (t)52 1 .

Since the correlation between F(t) and velocity v(0) must be zero, we have

f
· (t)52 . (11A.14)
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Figure 11A.1. Configurations of vectors E and J/s in the Hall measurements.
Vectors E and J/s are both in the plane of the page and the magnetic field B is

perpendicular to it.



The solution of equation (11A.14) is obviously given by

f(t)5f(0)exp 5〈v(0)2〉exp .

The diffusion constant D in equation (11.83) turns out to be

D5 〈v(0)v(t)〉dt5 f (t)dt5〈v(0)2〉 exp dt5〈v(0)2〉t. (11A.15)

According to the equipartition law of energy, we have m〈v(0)2〉/25kBT/2 and,
hence, obtain the Einstein relation D5〈v(0)2〉t5(t/m)kBT.

Chapter Twelve

12.1 By taking the rotation of B5(2ms/nsq
2
s)rotJs from equation (12.13) with

subsequent use of equation (12.8) and divJs50 from the equation of continu-
ity, we immediately obtain m0Js5(2ms/nsq

2
s)rot rotJs5(2ms/nsq

2
s)=

2Js.

12.2 Equation (7.4) is applied to the present case:

r 1qsA ·ds5nh, (12.A.1)

where the mass of the superconducting paired electrons is 2m, its current
density is Js and n is a positive integer. Equation (7.5) is now written as

rqsA·ds5qseerotAdS5qseeBdS5qsfa, (12A.2)

where fa is the applied magnetic flux passing through the ring and S represents
the area in real space of the closed orbit of the paired electrons. Hence, equa-
tion (12A.1) becomes

rJs·ds1qsfa5nh. (12A.3)

As is clear from Exercise 12.1, the superconducting current Js flows only in the
surface layer characterized by the penetration depth. Thus, the line integral in
equation (12A.3) inside a superconductor is zero. Thus, we obtain

fa5 5nf0, (12A.4)

where f05h/qs.

nh
qs

2m
nsqs

212mJs

nsqs

12
t
t2E

`

0

E
`

0

E
`

0

12
t
t212

t
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Chapter Thirteen

13.1 (a) For example, we have

ec*
1V(x,y,z)c2dt5e) f (r))2xy(Ax21By21Cz2)dt, (13A.1)

which is an odd power of x and, hence, must be zero. Instead, the diagonal
term, such as ec*

1Vc1dt5e) f (r))2(Ax41By21Cz2)dt, is finite. The three energy
levels are reduced to E15Aa1(B1C )b, E25Ba1(C1A)b and E35Ca1(A
1B)b, where

a5ex4) f (r))2dt5ey4) f (r))2dt5ez 4) f (r))2dt

and

b5ex2y2) f (r))2dt5ey2z2) f (r))2dt5ez2x2) f (r))2dt

(b) Since Lz5("/i)[x(­/­y)2y(­/­x)], we have

c*
1Lzc1dt5 ) f (r))2 (Ax41By21Cz2)dt, (13A.2)

which is again an odd function of the variables x and y and thus the integral is
reduced to zero.

More generally we say that a non-degenerate wave function is obtained, if
the admixture of the wave functions with the two z-components of an oppo-
site sign makes the resulting wave function real. The discussion above is typical
of this example. As another example, the admixture of two running waves
(eim,f6e2im,f)/ results in either sinm,f or cosm,f, both of which become
real again. The orbital angular momentum operator is expressed as L5r3p5

("/i )[r3grad] and always involves the imaginary part. The operator for the z-
component of the angular momentum also involves the imaginary part. The
expectation value of the orbital angular momentum for the non-degenerate
wave function is given by

7L85ec*(r)Lc (r)dt5ec*(r)Lc*(r)dt5[ec*(r)Lc (r)dr]*52 7L8, (13A.3)

where c*(r)5c (r) is used. Therefore, we always have 7L850, as long as the wave
function is real.

13.2 The density of states of magnons D(v) is given by (1/2p)34pk2(dk/dv)dv.
An insertion of the dispersion relation "v5(2JSa2)k2 yields

D(v)5 v1/2. (13A.4)
1

4p2 1 "

2JSa22
3/2

Ï2

1x
­

­y
2 y

­

­x2E"

iE
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The calculation of nk is straightforward:

nk5 n(v, T )D(v)dv5 · dv

5 · dx.

The definite integral has the value of (0.0587)(4p)2. The number of atoms per
unit volume is given by Q/a3, where Q is 1, 2 and 4 for simple cubic, bcc and fcc
lattices, respectively. The magnetization M(0) at absolute zero is equal to NS.
Hence, magnetization at finite temperatures M(T ) is calculated as

M(T )5NS2 nk5M(0) 12 nk/NS 5M(0) 12 . (13A.5)

13.3 The numbers of spin-up and spin-down electrons must be equal to N/2
before introduction of the exchange energy D. Hence, we have the relation

N/25 N(«)d«, where N(«) is the total density of states. The spin-down

band is shifted to higher energies by D while the spin-up band to lower energies
by D. If we ignore charge transfer, the Fermi level would be shifted to «o

F1D

and «o
F2D for spin-down and spin-up bands, respectively. Indeed, the solution

of equations N/25 ex
D

N(«2D)d« and N/25 ex
2D

N(«1D)d« is easily found to
be x5«o

F1D and x5«o
F2D, respectively. These are shown by the dashed lines

in Fig. 13.5. There is no net change in the total energy, since we have

U5 «N(«2D)d«1 «N(«1D)d« 2 «N(«)d«50. (13A.6)

So far we have no approximation. However, charge transfer should take
place to bring the two Fermi levels to coincide, as illustrated in Fig. 13A.1(a).
The kinetic energy increases upon the transfer of electrons. To discuss the
kinetic energy, however, we should use Fig. 13A.1(b) in place of Fig. 13A.1(a).
This is because the kinetic energy of both spin-up and spin-down electrons
must be zero at the bottom of each band. Note in Fig. 13A.1(b) that the Fermi
level after the charge transfer is shown by a thick line and is located in a differ-
ent position for the spin-up and spin-down electrons. In other words, the
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new Fermi level «F is formed after the transfer of spin-down electrons in the
shaded area in (b) to the unoccupied state above «o

F in the spin-up band. The
number of electrons in the shaded area is equal to N [«o

F1(D/2)]D and its
average energy is [«o

F2(D/2)]. The average energy will increase to [«o
F1(D/2)]

after the transfer to the spin-up band. The increase in the kinetic energy is,
therefore, given by

D«kin5D N «o
F1 · «o

F1 2N «o
F2 · «o

F2

Its Taylor expansion leads to

D«kin<D2 N(«o
F)1«o

F <D2N(«o
F), (13A.7)

where the second term in the curly bracket is neglected.
The magnetization at absolute zero can be calculated from Fig. 13A.1(a) as

M(0)5 N(«)d«2 N(«22D)d«5 N(«)d«2 N(«)d«E
«F22D

0

E
«F

0

E
«F

2D

E
«F

0

1­N(«)
­« 2

«5«o
F

65

D

2261D

221D

221D

2215
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«o
F

Figure 13A.1. (a) Shift of the spin-up and spin-down sub-bands due to the exchange
energy. To evaluate the kinetic energy, (a) must be redrawn as (b), since the kinetic
energy for spin-up and spin-down electrons is zero at the bottom of the band. The spin-
down electrons in the shaded area are transferred to the spin-up band to establish a

new Fermi level.



5 N(«)d« 2 N(«)d«1 N(«)d« <2D·N(«F). (13A.8)

Combining equations (13A.7) and (13A.8) yields equation (13.11) in the text.
Note that the difference between N(«F) and N(«o

F) is only of the order of D/2«F.

13.4 The differential cross-section can be expressed as

s(u)5 ) f (u))25 (2,11)eih,sinh,P,(cosu) . (13A.9)

The Legendre functions are orthogonal with each other and satisfy the rela-
tions:

P,(cosu)P,9
(cosu)sinudu5 P,(w)P,9

(w)dw50 (,Þ,9)

5 (,5,9) (13A.10)

The total cross-section s given by s52pep

0 s(u)sinudu is calculated by insert-
ing equation (13A.9):

s52p s(u)sinudu5 (2,11)2sin2h,P
2
,(w)dw

5 (2,11)2sin2h,· 5 (2,11)sin2h,. (13.22)

An insertion of equation (13A.7) into the transport cross-section given by str

52pep

0 s(u)(12cosu)sinudu yields

str5 (2,11)eih,sinh,P,(w) (12w) (2,11)eih,sinh,P,(w) dw,

(13A.11)

where w5cosu. The Legendre functions satisfy the following relations:

(,11)P,115(2,11)wP,2,P,21,

wP2
,dw5 [(,11)P,11P,1,P,21P,]dw50E
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wP,P,11dw5 [(,11)P,11P,111,P,21P,11]dw

5 ·(,11)·

Hence, equation (13A.11) is calculated as

str5 (2,11)eih,sinh,P,(w) dw

2 (2,11)eih,sinh,P,(w) w (2,11)eih,sinh,P,(w) dw.

(13A.12)

The first term in equation (13A.12) denoted as I1 is reduced to

I15 (2,11)eih,sinh,P,(w) dw5 (2,11)sin2h,

5 2(,11)sin2h,1 2,sin2h,

5 2(,11)sin2h,1 2(,11)sin2h,+1

5 (,11)(sin2h,1sin2h,+1) (13A.13)

The second term in equation (13A.12) denoted as I2 is reduced to

I252 {(2,11)e2ih,sinh,P,(w)(2,13)eih,+1sinh,+1P,+1(w)

1(2,13)e2ih,+1sinh,+1P,+1(w)(2,11)eih,sinh,P,(w)} dw

52 (2,11)(2,13){ei(h,2h,+1)1e2i(h,2h,+1)}

3sinh,sinh,+1P,+1(w)P,(w)dw
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52 (2,11)(2,13)2cos(h,2h,+1)sinh,sinh,+1·

52 (,11)cos(h,2h,+1)sinh,sinh,+1

52 (,11)(cosh, cosh,+1 sinh,sinh,+11sin2h,sin2h,+1). (13A.14)

The transport cross-section str equal to I11I2 is now given by

str5 (,11)(sin2h,1sin2h,+122cosh, cosh,+1sinh, sinh,+1

22sin2h,sin2h,+1)

5 (,11)(sinh, cosh,+12cosh, sinh,+1)
25 (,11)sin2(h,2h,+1).

(13.23)

Chapter Fourteen

14.1 Note that the spin function is expressed as )↑85 and )↓85 in 

matrix form. The spin function of interest to us is given by

xs5 ()↑↓81 )↓↑8)5 . (14A.1)

A straightforward calculation easily results in S2xs52"2xs and Szxs50.

Chapter Fifteen

15.1 The observed negative TCR in amorphous alloys is of the order of
1024–1025/K and is one or two orders of magnitude smaller than the positive
TCR in a metal crystal. Hence, we are discussing a very small effect in amor-
phous alloys. The Debye–Waller factor arises from the dynamical structure
factor a(K,v) in the Baym resistivity formula (see equation (10.96) and Section
10.12) and appears both in the Bloch–Grüneisen formula for a crystal
(follow the derivation from equations (10.104) to (10.106)) and in the
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Baym–Meisel–Cote formula for amorphous alloys (see equations (15.23) to
(15.25)).

The structure factor a(K,v) at 0K consists of a series of delta functions at
reciprocal lattice vectors in a crystal whereas it is a continuous function of the
wave vector K in an amorphous solid. At finite temperatures, the Debye–Waller
factor in a(K,v) reduces the intensity of the diffraction peak at the reciprocal
lattice vector in crystals. But we know that this does not affect the resistivity in
a crystal. However, the Debye–Waller factor reduces the whole spectrum of
a(K,v) in amorphous alloys, contributing to a decrease in resistivity with
increasing temperature.

15.2 The g-parameter of the amorphous phase may be well approximated as
unity because of the destruction of the Brillouin zone. Then the g-parameter
of the quasicrystalline phase is given by the ratio of the measured electronic
specific heat coefficients of the two phases, i.e., g5gQC/gAmo. The Mott conduc-
tivity formula leads to the relation rQC/rAmo51/g2. We obtain rQC5rAmo/g25

220/(0.42/0.78)25758mV-cm. This is in good agreement with the measured
resistivity of 780mV-cm (see Fig. 15.24).
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black-body 69
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Bloch sum 200, 203, 210, 223
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Boltzmann distribution function 32, 34
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Boltzmann relation 71
Boltzmann transport equation 9, 264–5, 279, 481,
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for isotropic metal 280

bonding band 139
bonding molecular orbital 221–2, 436, 438
bonding state 222, 443, 470, 502
Born approximation 276, 475, 479
Bose–Einstein distribution function 69, 70–1
Bose–Einstein statistics 354
bound state 351, 353
boundary energy 361–2
Bragg condition 62, 103–4, 177
Bragg law 61
Bragg reflection 259–60
Bragg scattering 103, 237
Bravais lattice 57
Bremsstrahlung 170
Bremsstrahlung Isochromat Spectroscopy (BIS)
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Brillouin zone see also first Brillouin zone and
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of bcc lattice 106
of fcc lattice 110
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Brownian motion 329
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superconductors
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power 309
carrier entropy 305, 309
central-field approximation 10
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charge transfer energy 444
charge transfer-type insulator 447–8
chemical disordering 506, 510
chemical potential 33, 71, 197, 266
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chemical short-range order 458
cleaving 169
closed shell 386
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coherent potential approximation (CPA) method
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coherent scattering intensity 455–6, 458–9
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collective motion

of atoms 65
of electrons 194

combined XPS and IPES spectra 171
compensated (metal) 133
complete orthogonal set of wave functions

273
complete solid solution 231, 248
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complex dielectric constant 320, 323
complex optical conductivity 321–3
complex refractive index 319
Compton effect 160
conduction band 120, 144, 261
conduction electrons 14, 81
conductivity formula 488–9
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conductivity tensor 313, 332
Cooper pair 351–60, 368
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core electrons 14
correlation energy 194, 197–9
correlation function 332
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Coulomb correlation 194
Coulomb energy 412, 414, 427
Coulomb field 485
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crystalline electric field 389
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degree of freedom 67, 72
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dense Kondo systems 418
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density of states 36, 199, 409, 500 see also
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direct transition 317
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Hall effect 7
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hole doping 439
hole Fermi surface 316
hole with dx22y2 symmetry 448
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Hubbard Hamiltonian 441
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lattice thermal conductivity 293
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Matthiessen rule 271, 293
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Mott s–d scattering model 400–1, 482
Mott two-current model 422
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Mott-line 509
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muffin-tin radius 214
muffin-tin zero 208, 219
multiple scattering 504,

theory 211, 218, 246
multiple-phonon process 286
multiplet structure 172
multiplicity of equivalent zone planes 241
m-phase 235

n-dimensional hyperspace 495
n-type semiconductor 146
NaI (Tl) scintillators 156
Nd123 superconductor 379
Nd2Fe14B magnet 381
near-edge x-ray absorption fine structure

(NEXAFS) 179
nearest neighbour atoms 201
nearly-free-electron model 97, 99, 200, 241, 466,

473, 493
neck 131, 159, 237
neck diameter 131
negative scattering amplitude 460
negative TCR 474, 477, 481–2, 485
neutron diffraction

measurements 399, 470
technique 460

neutron inelastic scattering 80, 450
neutron scattering amplitude 460
neutron zero-alloy 460
NFE model 203–4 see also nearly-free-electron

model
noble metals 130
non-interacting electrons 433
non-magnetic metals 386
non-periodic system 451, 466
Nordheim law 228, 231
normal Hall coefficient 429–30
normal Hall effect 429
normal modes of lattice vibrations 65
normal process 286
nuclear spin 418
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periodic square-well potential 93
periodic zone scheme 121
permeability 339
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positron annihilation 155, 236
primary solid solution 232

primitive cell 114
primitive translation vector 56, 105–6, 114, 138

in reciprocal space 108, 114
principal quantum number 10–11, 21, 150
pseudo-binary dilute alloys 423
pseudogap 245, 312, 450, 490–2, 500, 502

system 507–8, 510
pseudopotential 99, 205, 276, 475

method 144, 204, 243

quantized flux 364
quantized magnetic flux 364

distribution 363
quantum interference effect 474, 485, 508, 510–11
quantum magnetic flux 374
quantum number of orbital angular momentum

387
quantum oscillations 154–5
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494
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spin fluctuation 399–400, 413, 417, 513
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spin operator 393
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spin-up electron 46, 198, 422, 424, 427–8, 442, 444
splat quenching 463
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static structure factor 277, 285–6, 480
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steady-state electron distribution 270
Stirling formula 31
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superconducting bulk magnet (SBM) 382
superconducting ceramic oxides 376
superconducting current density 365
superconducting electron 338
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t-matrix 247
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Taylor theorem 34
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Thomson coefficient 305
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traveling wave 19
triplet state 392–3, 435, 437
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tunneling effect 368
tunneling experiment 347
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two-wave approximation 99, 104
type-I superconductors 360
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van der Waals force 15
van der Waals interaction 137
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variable-range hopping conduction 511
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vertical scattering process 301
vertical transition 317
virtual bound state 405, 410–11, 413
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