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The third (1999) edition of the Direction of Time offered far more revisions
and additions than the second one in 1992. During the seven years in between,
several fields of research related to the arrow of time had shown remarkable
progress. For example, decoherence proved to be the most ubiquitous man-
ifestation of the quantum arrow, while articles on various interpretations
of quantum theory (many of them with inbuilt time-asymmetric dynamical
aspects) can and do now regularly appear in reputed physics journals. There-
fore, most parts of Chap. 4 were completely rewritten and some new sections
added, while the second part of Chap. 3 was affected by these changes in or-
der to prepare for the discussion of measurements and dynamical maps within
the framework of classical ensemble theory.

However, all parts of the book have been revised, and some of them com-
pletely rewritten, whilst essentially maintaining the book’s overall structure.
Some of its new aspects may be listed here:
The Introduction now attempts to distinguish rigorously between those time
asymmetries which still preserve dynamical determinism, and the various
‘irreversiblities’ (arrows of time proper) which are the subject of this book.
In Chap. 2, the concept of forks of causality is contrasted to that of forks
of indeterminism (to be used in Chaps. 3 and 4), while the treatment of the
radiation reaction of a moving charge (Sect. 2.3) had to be updated.
Sects. 3.2–3.4 have been given a new structure, while a discussion of semi-
groups and their physical meaning has been added to Sect. 3.4.
In Chap. 4, only Sects. 4.1 and 4.5 (the former Sect. 4.3 on exponential decay)
are not entirely new. In particular, there is now an extended separate Sect. 4.3
on decoherence. Sects. 4.4 (on quantum dynamical maps) and 4.6 (on the time
arrow in various interpretations of quantum theory) is now added.
In Chap. 5, the thermodynamics of acceleration is now presented separately
(Sect. 5.2), while Sect. 5.3 on the expansion of the universe contains a discus-
sion of the consistency of cosmic two-time boundary conditions. The dynam-
ical interpretation of general relativity with its concept of intrinsic time is
discussed in Sect. 5.4.
Chap. 6 now covers all aspects of quantum cosmology and thus includes, as
Sect. 6.1, the material of the former Sect. 5.2.2 on phase transitions of the
vacuum with their consequences on entropy capacity. In Sect. 6.2 on quan-
tum gravity, emphasis is on timelessness, which is enforced by quantization
of a reparametrization invariant theory. There is a new Sect. 6.2.2 on the
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emergence of classical time along the lines of the Tomonaga-Schwinger equa-
tion, while Sect. 6.2.3 describes some speculations on the impact of quantum
cosmology on the concept of black holes and their thermodynamical proper-
ties. A numerical toy model has been appended after the Epilog in order to
illustrate some typical arguments of stastistical mechanics.

I also hope that most disadvantages which had resulted from the fact
that I previously had (very unfortunately) translated many parts of the first
edition from the German lecture notes that preceded it (Zeh 1984), have
now been overcome. Two new books on the arrow of time (Price 1996 and
Schulman 1997) have recently appeared. They are both well written, and
they discuss many important aspects of ‘irreversible’ physics in a consistent
and illuminating manner — often nicely complementing each other as well
as this book. However, I differ from their views in two respects: I regard
gravity (not least its quantized form) as basic for the arrow of time, as I try
to explain in Chaps. 5 and 6, and I do not think that the problem of quantum
measurements can be solved by means of an appropriate final condition in a
satisfactory way (see Footnote 4 of Chap. 4).

I wish to thank Julian Barbour, Erich Joos, Claus Kiefer, Joachim
Kupsch, York Ramachers, Huw Price, Fritz Rohrlich, Paul Sheldon and Max
Tegmark for their comments on early versions of various parts of the manu-
script.

Heidelberg, April 1999 H.-D. Zeh

The fourth edition contains revisions throughout the whole book. There
are many new formulations and arguments, several new comments and ref-
erences, and three minor error corrections (on page 22, 112 and 146 of the
third edition). It is now planned to be published in Spring 2001. Therefore,
this preliminary internet version will not be further updated.

For this edition I am grateful to David Atkinson (for a very helpful dis-
cussion of radiation damping — Sect. 2.3), to Larry Schulman (for comments
on the problem of simultaneous arrows of time — Sect. 3.1.2), and to Paul
Sheldon (for a discussion of the compatibility of closed time-like curves with
quantum theory — Chap. 1). The most efficient help, this time, came from
John Free, who carefully edited the whole book (not only for matters of
English language).

Heidelberg, February 2001 H.-D. Zeh
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The asymmetry of nature under a ‘reversal of time’ (that is, a reversal of mo-
tion and change) appears only too obvious, as it deeply affects our own form
of existence. If physics is to justify the hypothesis that its laws control ev-
erything that happens in nature, it should be able to explain (or consistently
describe) this fundamental asymmetry which defines what may be called a
direction in time or even — as will have to be discussed — a direction of
time. Surprisingly, the very laws of nature are in pronounced contrast to this
fundamental asymmetry: they are essentially symmetric under time reversal.
It is this discrepancy that defines the enigma of the direction of time, while
there is no lack of asymmetric formalisms or pictures that go beyond the
empirical dynamical laws.

It has indeed proven appropriate to divide the formal dynamical descrip-
tion of nature into laws and initial conditions. Wigner (1972), in his Nobel
Prize lecture, called it Newton’s greatest discovery, since it demonstrates that
the laws by themselves are far from determining nature. The formulation of
these two pieces of the dynamical description requires that appropriate kine-
matical concepts (formal states or configurations z, say), which allow the
unique mapping (or ‘representation’) of all possible states of physical sys-
tems, have already been defined on empirical grounds.

For example, consider the mechanics of N mass points. Each state z is
then equivalent to N points in three-dimensional space, which may be rep-
resented in turn by their 3N coordinates with respect to a certain frame
of reference. States of physical fields are instead described by certain func-
tions on three-dimensional space. If the laws of nature, in particular in their
relativistic form, contain kinematical elements (that is, constraints for kine-
matical concepts that would otherwise be too general), such as divB = 0
in electrodynamics, one should distinguish them from the dynamical laws
proper. This is only in formal contrast to relativistic spacetime symmetry
(see Sect. 5.4).

The laws of nature, thus refined to their purely dynamical sense, describe
the time dependence of physical states, z(t), in a general form — usually by
means of differential equations. They are called deterministic if they uniquely
determine the state at time t from that (and possibly its time derivative) at
any earlier or later time, that is, from an appropriate initial or final condition.
This symmetric causal structure of dynamical determinism is stronger than
the traditional concept of causality, which requires that every event in nature
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must possess a specific cause (in its past), while not necessarily an effect (in
its future). The Principle of Sufficient Reason can be understood in this
asymmetric causal sense that would depend on an absolute direction of time.

However, only since Newton do we interpret uniform motion as ‘event-
less’, while acceleration requires a force as the modern form of causa movens
(sometimes assumed to act in a retarded, but hardly ever in an advanced
manner). From the ancient point of view, terrestrial bodies were regarded as
eventless or ‘natural’ when at rest, celestial ones when moving in circular or-
bits (including epicycles), or when at rest on the celestial (‘crystal’) spheres.
These motions thus did not require any dynamical causes according to this
picture, similar to uniform motion today. None of the traditional causes (nei-
ther physical nor other ones) ever questioned the fundamental asymmetry in
(or of) time, as there were no conflicting symmetric dynamical laws yet.

Newton’s concept of a force as determining acceleration (the second time
derivative of the ‘state’) forms the basis of the formal Hamiltonian concept of
states in phase space (with corresponding dynamical equations of first order
in time). First order time derivatives of states in configuration space, required
to define momenta, can be freely chosen as part of the initial conditions. In its
Hamiltonian form, this part of the kinematics may appear as dynamics, since
the definition of canonical momentum depends in general on a dynamical
concept (the Lagrangean).

Physicists after Newton could easily recognize friction as a possible
source of the apparent asymmetry of conventional causality. While differ-
ent motions starting from the same unstable position of rest require different
initial perturbations, friction (if understood as a fundamental force) could de-
terministically bring different motions to the same rest. States at which the
symmetry of determinism may thus come to an end (perhaps asymptotically)
are called attractors in some theories.

The term ‘causality’ is unfortunately used with quite different mean-
ings. In physics it is often synonymous with determinism, or it refers to the
relativistic speed limit for the propagation of causal influences (hence of in-
formation). In philosophy it may refer to the existence of laws of nature
in general. In (phenomenological) mathematical physics, dynamical deter-
minism is often understood to apply in the ‘forward’ direction of time only
(thus allowing attractors — see Sect. 3.4). Time reversal-symmetric deter-
minism was discovered only with the laws of mechanics, when friction could
either be neglected, or was recognized as being based on thermodynamics. An
asymmetric concept of ‘intuitive causality’ that is compatible with (though
different from) symmetric determinism will be defined and discussed in the
introduction to Chap. 2.

The time reversal symmetry of determinism as a concept does not require
symmetric dynamical laws. For example, the Lorentz force ev×B, acting on a
charged particle, and resulting from a given external magnetic field, changes
sign under time reversal (defined by a replacement of t with −t, hence as
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a reversal of motion 1), as it is proportional to the velocity v. Nonetheless,
determinism applies in both directions of time.

This time reversal asymmetry of the equation of motion would be can-
celled by a simultaneous space reflection, which would reverse the magnetic
field. Similar ‘compensated asymmetries’ may be found in many other situa-
tions, with more or less physical symmetry operations (see Sachs 1987). As
an example, the formal asymmetry of the Schrödinger equation under time
reversal is cancelled by complex conjugation of the wave function on con-
figuration space. This can be described by an anti-unitary operation T that
leaves the configuration basis unchanged, Tc|q〉 = c∗|q〉, for complex num-
bers c. For technical reasons, T may be chosen to contain other self-inverse
operations, such as multiplication with the Dirac matrix β. As a further triv-
ial application, consider the time reversal of states in classical phase space,
{q, p} → {q,−p}. This transformation restores symmetry under a formal time
reversal p(t), q(t) → p(−t), q(−t). In quantum theory it corresponds to the
transformation T |p〉 = |−p〉 that results from the complex conjugation of the
wave function eipq which defines the state |p〉 = (2π)−1/2

∫
dqeipq|q〉.

For trajectories z(t), one usually includes the transformation t→ −t into
the action of T rather than applying it only to the state z: Tz(t) := zT (−t),
where zT := Tz is the ‘time-reversed state’. In the Schrödinger picture of
quantum theory this is automatically taken care of by the anti-unitarity of T
when commuted with the time translation eiHt by means of a time reversal
invariant Hamiltonian H. In this sense, ‘T invariance’ means time reversal
invariance. When discussing time reversal, one usually assumes invariance
under translations in time, in order not to specify an arbitrary origin for the
time reversal transformation t→ −t.

The time reversal asymmetry characterizing weak forces responsible for
K-meson decay is balanced by an asymmetry under CP transformation,
where C and P are charge conjugation and spatial reflection, respectively.
The latter do not reflect a time reversal elsewhere (such as the reversal of a
magnetic field that is caused by external currents). Only if the compensating
symmetry transformation represents an observable, such as CP , and is not
the consequence of a time reversal elsewhere, does one speak of a violation of
time reversal invariance.

The possibility of compensating for a dynamical time reversal asymmetry
by another asymmetry (observable or not) reflects the prevailing symmetry
of determinism. This is in fundamental contrast to genuine ‘irreversibilities’,
which form the subject of this book. No time reversal asymmetry of deter-
ministic laws would be able to explain such irreversibilities.

1 Any distinction between reversal of time and reversal of motion (or change, in gen-
eral) is meaningful only with respect to some concept of absolute or external time (see
Chap. 1). An asymmetry of the fundamental dynamical laws would define (or presume) an
absolute direction of time — just as Newton’s equations define absolute time up to linear
transformations (including a reversal of its sign, which is thus not absolutely defined in the

absence of asymmetric fundamental forces).



4 Introduction Prelim. 4th edtn. (Nov 00): www.time-direction.de

All known fundamental laws of nature are symmetric under time reversal
after compensation by an appropriate symmetry transformation, T̂ , say, since
these laws are deterministic. For example, T̂ = CPT in particle physics, while
T̂{E(r),B(r)} = {E(r),−B(r)} in classical electrodynamics. This means
that for any trajectory z(t) that is a solution of the dynamical laws there is
a time-reversed solution z

T̂
(−t), where z

T̂
is the ‘time-reversed state’ of z,

obtained by applying the compensating symmetry transformation.
‘Initial’ conditions (contrasted to the dynamical laws) are understood as

conditions which fix the integration constants, that is, which select particular
solutions of the equations of motion. They could just as well be regarded as
final conditions, even though this would not reflect the usual operational
(hence asymmetric) application of the theory. These initial conditions are to
select the solutions which are ‘actually’ found in nature. In modern versions
of quantum field theory, even the boundary between laws of nature and initial
conditions blurs. Certain parameters which are usually regarded as part of
the laws (such as those characterizing the mentioned CP violation) may
have arisen by spontaneous symmetry-breaking (an indeterministic irreversible
process of disputed nature in quantum theory — see Sects. 4.6 and 6.1).

An individual (contingent) trajectory z(t) is generically not symmetric
under time reversal, that is, not identical with z

T̂
(−t). If z(t) is sufficiently

complex, the time-reversed process is not even likely to occur anywhere else in
nature within reasonable approximation. However, most phenomena observed
in nature violate time reversal symmetry in a less trivial way if considered
as whole classes of phenomena. The members of some class may be found
abundant, while the time-reversed class is not present at all. Such symmetry
violations will be referred to as ‘fact-like’ — in contrast to the mentioned
CP symmetry violations, which are called ‘law-like’. In contrast to what is
often claimed in textbooks, this asymmetric appearance of nature cannot
be explained by statistical arguments. If the laws are invariant under time
reversal when compensated by another symmetry transformation, there must
be precisely as many solutions in the time-reversed class as in the original
one (see Chap. 3).

General classes of phenomena which characterize a direction in time have
since Eddington been called arrows of time. The most important ones are:

1. Radiation: In most situations, fields interacting with local sources are
appropriately described by retarded (outgoing or defocusing) solutions. For
example, a spherical wave is observed after a point-like source event, propa-
gating away from it. This leads to a damping of the source motion (see Item 5).
For example, one may easily observe ‘spontaneous’ emission (in the absence
of incoming radiation), while absorption without any outgoing radiation is
hardly ever found. Even an ideal absorber leads to retarded consequences in
the corresponding field (shadows) — see Chap. 2.

2. Thermodynamics: The Second Law dS/dt ≥ 0 is often regarded as a law of
nature. In microscopic description it has instead to be interpreted as fact-like
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(see Chap. 3). This arrow of time is certainly the most important one. Because
of its applicability to human memory and other physiological processes it may
be responsible for the impression that time itself has a direction (related to
the apparent flow of time — see Chap. 1).

3. Evolution: Dynamical ‘self-organization’ of matter, as observed in biolog-
ical and social evolution, for example, may appear to contradict the Second
Law. However, it is in agreement with it if the entropy of the environment is
properly taken into account (Sect. 3.4).

4. Quantum Mechanical Measurement: The probability interpretation of
quantum mechanics is usually understood as a fundamental indeterminism
of the future. Its interpretation and compatibility with the deterministic
Schrödinger equation constitutes a long-standing open problem of modern
physics. Quantum ‘events’ are often dynamically described by a collapse of
the wave function, in particular during the process of measurement. In the
absence of a collapse, quantum mechanical interaction leads to growing en-
tanglement (quantum nonlocality) — see Chap. 4.

5. Exponential Decay: Unstable states (in particular quantum mechanical
‘particle resonances’) usually fade away exponentially with increasing time
(see Sect. 4.5), while exponential growth is only observed in self-organizing
situations (cf. Item 3 above).

6. Gravity seems to ‘force’ all matter to contract with increasing time accord-
ing its attractivity. However, this is another prejudice about the causal action
of forces. Gravity leads to the acceleration of contraction (or deceleration of
expansion) in both directions of time, since acceleration is a second time
derivative. The observed contraction of complex gravitating systems (such as
stars) against their internal pressure is in fact controlled by thermodynami-
cal and radiation phenomena. Such gravitating objects are characterized by a
negative heat capacity, and classically even by the ability to contract without
limit in accordance with the Second Law (see Chap. 5). In general relativity
this leads to the occurrence of asymmetric future horizons through which ob-
jects can only disappear. The discussion of quantum fields in the presence of
such black holes during recent decades has led to the further conclusion that
horizons must possess fundamental thermodynamical properties (tempera-
ture and entropy). This is remarkable, since horizons characterize spacetime,
hence time itself. On the other hand, expansion against gravity is realized
by the universe as a whole. Since it represents a unique process, this cosmic
expansion does not define a class of phenomena. For this and other reasons
it is often conjectured to be the ‘master arrow’ from which all other arrows
may be derived (see Sects. 5.3 and 6.2.1).

In spite of their fact-like nature, these arrows of time, in particular the
thermodynamical one, have been regarded by some of the most eminent physi-
cists as even more fundamental than the dynamical laws. For example, Ed-
dington (1928) wrote:
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“The law that entropy always increases holds, I think, the supreme position
among the laws of nature. If someone points out to you that your pet theory
of the universe is in disagreement with Maxwell’s equations – then so much
the worse for Maxwell’s equations. ... but if your theory is found to be against
the second law of thermodynamics, I can give you no hope; there is nothing
for it but to collapse in deepest humiliation.”

And Einstein (1949) remarked:

“It” (thermodynamics) “is the only physical theory of universal content con-
cerning which I am convinced that, within the framework of the applicability
of its basic concepts, it will never be overthrown.”

Regardless of whether these remarks will always remain valid, their meaning
should be understood correctly. They were hardly meant to express doubts
in the derivability of this ‘fundamental’ thermodynamical arrow of time from
presumed dynamical laws in the manner of Boltzmann (see Chap. 3). Rather,
they seem to express their authors’ conviction in the invariance of the derived
results under modifications and generalizations of these laws. However, the
derivation will be shown to require important assumptions about the initial
state of the universe. If the Second Law is fact-like in this sense, its violation
or reversal must at least be compatible with the dynamical laws.

The arrows of time listed above describe an asymmetry in the history
of the physical world under a formal reversal of time. This history can be
considered as a whole, like a complete movie film sitting on the desk, or
an ordered stack of static picture frames (‘states’), without any selection
of a present (one specific ‘actual’ frame) or an external distinction between
beginning and end. This is sometimes called the ‘block universe view’ (cf.
Price 1996), and contrasted to that of an evolving universe (based on the
concept of a ‘flow of time’, picture by picture, as seen by an external movie
viewer as a definer of ‘absolute’ time for the movie).

It appears doubtful that these different view points should have different
power of explaining an asymmetry in the content of the movie, even though
they are regarded as basically different by many philosophers, and also by
some physicists (Prigogine 1980, von Weizsäcker 1982) — see also Chap. 1.
The second point of view is related to the popular position that the past be
‘fixed’, while the future is ‘open’ and does ‘not yet exist’. The asymmetry of
history is then regarded as the ‘outcome’ (or the consequence) of this time-
directed ‘process of coming-into-being’. (The abundance of quotation marks
indicates how our language is loaded with prejudice about the flow of time.)
The fact that there are documents, such as fossils, only about the past, and
that we cannot remember the future, 2 appears as evidence for this ‘structure
of time’ (as it is called), which is also referred to as the ‘historical nature’
(Geschichtlichkeit) of the world.

2 “It’s a bad memory that only works backwards” says the White Queen to Alice.
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However, the asymmetry of the movie film can be discussed regardless
of its presentation or production (if any). The relation between the memory
that is contained in an individual frame and the history itself is no more
than a property of this movie that is sitting on the desk. If such asymmetric
relations exist(!) throughout the whole movie, an internal observer could
know its content only at the (intrinsically defined) ‘end’. Nonetheless he could
conceive of a ‘potential’ whole movie even in (‘during’) the asymmetric movie,
in particular if he discovers dynamical laws. He could neither argue against
the existence of the remaining part of the movie, nor prove it, as his time
is part of the content of the movie. It has to be read from clocks showing
up on the picture frames — but not from the watch of an external movie
viewer or any frame numbers (see also Chap. 1 and Sect. 5.4). The concept
of existence is here evidently used with various meanings, while the debate
essentially becomes one about words. Within our world movie, concepts like
fixed and open (or actual versus potential) can be meaningful only either as
statements about practical abilities of predicting and retrodicting, or about
dynamical models used to describe it.

The objection that the historical nature of the world be a prerequisite
(in the Kantian sense) for the fact that it can be experienced at all does
not exclude the possibility (or necessity) of describing it in terms of those
laws and concepts that have been extracted from this experience. They may
then be hypothetically extrapolated to form a ‘world model’, whereby the
historical nature may turn out not to apply to other spacetime regions (see
Sect. 5.3).

In classical physics, the Second Law (or its microscopic roots) is usually
regarded as the physical basis of the historical nature of the world. Its statis-
tical interpretation would then mean that this ‘structure of time’ (that is, its
apparent direction) is merely the consequence of contingent facts which char-
acterize our specific world. For example, one has to explain thermodynami-
cally why there are observations, but no ‘un-observations’ in which initially
present information (memory about the future) would disappear by means of
a controlled interaction between the observing and observed systems. Such
conceivable processes have to be distinguished from the familiar ones (‘for-
getting’), which represent a loss of information characterized by an increase
of entropy in the memory device (see Sect. 3.3.)

The concept of information would thus arise as a consequence of thermo-
dynamics (and not the other way, as is sometimes claimed). The inconsistency
of presuming extra-physical concepts of information or ‘operation’ has often
been discussed by means of Maxwell’s demon. In particular, the ‘free will’ of
the experimenter should not be misused to explain the specific (low entropy)
initial conditions that he prepares in his laboratory. If the experimenter were
not required to obey the thermodynamical laws himself (as exemplified by the
demon), his actions could readily create the thermodynamical arrow of time
observed in his experiments. Nonetheless, there has always been speculation
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that the intervention by conscious beings must require new fundamental laws
— a possibility that cannot, of course, be absolutely excluded.

The indeterminism observed in quantum phenomena has often been in-
terpreted as evidence for such a fundamental asymmetry characterizing ob-
servations (by humans?). This may be documented by many statements, such
as Heisenberg’s famous remark in the spirit of idealism that “a particle tra-
jectory is created by our act of observing it,” 3 or von Weizsäcker’s “what has
been observed exists with certainty.” 4 One can similarly understand Bohr’s
statement: “Only an observed quantum phenomenon is a phenomenon.” Bohr
insisted that a quantum measurement cannot be analyzed as a dynamical
physical process (“there is no quantum world”). A similar view can be found
in Pauli’s letter to Born (Einstein and Born 1969): “The appearance of a
definite position x0 during an observation ... is then regarded as a creation
existing outside the laws of nature.” 5 Born often expressed his satisfaction
with quantum mechanics, as he felt that his probability interpretation saved
free will from the determinism of classical laws.

The extra-physical time arrow is clearly used in all operational formula-
tions of quantum theory (such as probabilistic relations connecting prepara-
tions and measurements — thus restricted to laboratory physics). A careful
distinction between temporal and logical aspects of actual and ‘counterfac-
tual’ measurements can be found in Mermin (1998).

Most of these formulations rely on a given (absolute) direction of time.
This should then be reflected by the dynamical description of quantum mea-
surements and ‘measurement-like processes’ — even in the block universe
picture. The impact of such concepts (provided they are justified) on the
formal physical description should therefore be precisely located.

Much of the philosophical debate about time is concerned with linguistic
problems, some of them simply arising from the pre-occupied usage of the
tenses, particularly for the verb ‘to be’ (see Smart 1967, or Price 1996). How-
ever, Aristotle’s famous (pseudo-)problem regarding the meaning of today’s
statement that there be a sea battle tomorrow does not only survive in Sein
und Zeit, but even in quantum theory in the form of an occasional confusion
of logic with dynamics (‘logic of time’ — see Butterfield and Isham 1999).

The prime intention of this book is to discuss the relations between dif-
ferent arrows of time, and to search for a common master arrow. Toward this
end, open problems will have to be pointed out. In the traditional fields they
have often been pragmatically put aside, while they may become essential in
conjunction with more recent theoretical developments, which seem to have
fundamental cosmological implications (see Chaps. 5 and 6).

3 “Die Bahn entsteht erst dadurch, daß wir sie beobachten.”
4 “Was beobachtet worden ist, existiert gewiß.”
5 “Das Erscheinen eines bestimmten Ortes x0 bei der Beobachtung ... wird dann als

außerhalb der Naturgesetze stehende Schöpfung aufgefaßt.”
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The concept of time has been discussed since the earliest records of philos-
ophy, when science had not yet become a separate subject. It is rooted in
the subjective experience of the ‘passing’ present or moment of awareness,
which appears to ‘flow’ through time and thereby dynamically to separate
the past from the future. This has led to the formal representation of time by
the real numbers, and of the present by a point that ‘moves’ in the direction
characterized by their sign.

The mechanistic concept of time avoids any subjective foundation, as it
is defined by the motion of objects (in particular celestial bodies). It is often
attributed to Aristotle, although he seems to have regarded this presumably
more ancient concept as insufficient. 1 A concept of time defined (not merely
measured) by motion may appear to be a circular conception, since motion
is defined as change with (that is, dependence on) time, thus rendering the
metaphor of the flow of time a tautology (see e. g. Williams 1951). However,
this concept remains a convenient tool for comparing simultaneous motions,
provided an appropriate concept of simultaneity of different events (such as

1 “Time is neither identical with movement nor capable of being separated from it”
(Physics, Book IV). This may sound like an argument for some absoluteness of time.
However, the traditional philosophical debate about time is usually linked to (and often
confused with) the psychological and epistemological problem of the awareness of time
‘in the soul’ (and hence related to the problem of consciousness). This is understandable
for ancient philosophers, who could neither have anticipated the role of physico-chemical
processes (i. e., molecular motions) in the brain as ‘controlling the mind’, nor were in pos-
session of reasonable clocks to give time a precise operational meaning for fast phenomena.
According to Flasch (1993), Albertus Magnus (ca. 1200-1280) was the first philosopher
who supported a rigorously ‘physical’ concept of time, since he insisted that time exists
in nature, while the soul merely perceives it: “Ergo esse temporis non dependet ab anima,
sed temporis perceptio.”

Another confusing issue of time in early philosophy, represented by some of Zeno’s
paradoxes, was the mathematical problem of the real numbers, required to characterize
the continuum. Before the discovery of calculus, mathematical concepts (‘instruments of
the soul’) were often thought to be restricted to the natural (or rational) numbers, while
reality would correspond to the conceptually inaccessible continuum. Therefore, periodic
motion was essential for ‘counting’ time in order to grasp it, not only to provide a measure.
Uniform circular motion then appears natural.

Since Newton, and even more so since Einstein, the concept of ‘time in nature’ has
almost exclusively been elaborated by physicists. The adjective ‘physical’ in the title of

this chapter is thus not meant as a restriction.
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points on different orbits in space) is available. In pre-relativistic physics, the
simultaneity of events is operationally defined by their simultaneous obser-
vation (which presumes a local concept of simultaneity), while it is formally
characterized by the separate concepts of space and time. The possibility of
comparing different motions provides a sufficient conception for all meaning-
ful temporal statements about nature, while clocks are based on motion (or
change), too. All ‘properties of time’ must then be abstractions from relative
motion and its empirical laws.

Physicists contributing to the concept of time have in general been care-
ful to avoid any hidden regress to the powerful prejudice of absolute time.
Their modern conception of time may indeed be described as the complete
elimination of absolute time, and hence also of absolute motion. This elimina-
tion may be likened to the derivation of ‘timeless orbits’ from time-dependent
ones, such as the function r(φ), obtained from the time-dependent coordi-
nates r(t) and φ(t) for motion in a plane by eliminating t. In this way, all
motions (in their general sense of all changes) qi(t) are in principle replaced
with ‘timeless’ trajectories qi(q0) in a global configuration space, where q0
may be chosen as the position of the hand of an appropriate ‘clock’.

These time-less trajectories may yet be described by means of a physically
meaningless parameter λ in the form qi(λ), where equal values of λ charac-
terize the simultaneity of different qi’s. This parametric form was explicitly
used in Jacobi’s formulation of mechanics (Sect. 5.4), since astronomers with-
out precise clocks (such as atomic ones) had to define time operationally as
global ephemeris time in terms of the celestial orbits which result from their
calculations. Since Jacobi’s principle was applied to Newton’s theory, its suc-
cess nonetheless confirmed Newton’s hypothetical absolute time, defined as
a parameter that simplifies the equations of motion (Poincaré 1902). It is a
non-trivial empirical aspect of nonrelativistic physics that such a preferred
time parameter is defined uniquely up to linear transformations. This prop-
erty of Newton’s absolute time then allows one to compare different time
intervals.

Even the topology (ordering) of time may be regarded as the consequence
of this choice of an appropriate time parameter that, in particular, allows
motion to appear continuous. According to this radical view, the ‘timeless
history’ of the whole universe is equivalent to an unordered ‘heap of states’
(or a stack of shuffled movie frames) that can be uniquely ordered and given
a measure of distance only by the relations between their intrinsic struc-
tures (Barbour 1986, 1994a). This view will lead to entirely novel aspects in
quantum gravity (see Sect. 6.2). If certain states from the stack (called ‘time
capsules’ by Barbour) contain intrinsically consistent correlations represent-
ing ‘memories’, they may give rise to the impression of a flow of time to
observers intrinsic to the system (such as the universe), since these observers
would ‘remember’ properties of those global states which they interpret as
forming ‘their present past’.
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The concept of absolute motion thus shares the fate of the flow of time.
‘Time reversal’ can only be meaningfully defined as relative reversal of mo-
tion (for example, relative to such physiological processes which physically
control the subjective awareness of time and memory). He who regards this
mechanistic concept of time as insufficient should be able to explain what
a reversal of all motion could mean. Ancient versions of a concept of time
based on motion may instead have been understood as a ‘causal control’ of
all motion on earth by the ‘external’ motion of (and on) the celestial sphere
— an idea of which astrology is still a relic.

According to Mach’s principle (see Barbour and Pfister 1995), the con-
cept of absolute time is not only kinematically redundant — it should not
even play any dynamical role as a preferred (heuristic) parameter, such as it
does in Newton’s theory. 2 Similarly ‘relativistic’ ideas (still in the sense of an
absolute global concept of simultaneity) were already formulated by Leibniz,
Huygens, and later by Berkeley. They may even have prevented Leibniz from
co-discovering Newton’s mechanics. Leibniz’s conception led him to a defini-
tion of time by the motion of the universe as a whole. An exactly periodic
universe would then describe the recurrence of the same time. This concept
is far more rigorous than its ancient predecessor in not ascribing a special
role to the motion of the celestial bodies (for example, as causing motion on
earth). Even Newton found the motivation for his functional concept of abso-
lute physical time in the empirical laws of motion which he was discovering,
and which were later modified by Einstein, among other things on the basis
of Mach’s principle.

The concept of mechanistic time (based on motion according to the laws
of nature) neither specifies a direction nor any point that might represent
the present. By taking into account thermodynamic phenomena (including
friction, which, in contrast to Newton’s understanding, is not a fundamental
force), one may complement it with a phenomenological direction, thus arriv-
ing at the concept of a thermodynamico-mechanistic time. The empirical basis
of this concept is the observation that the thermodynamical arrow of time
always and everywhere points in the same direction. Explaining this fact (or
possibly its range of validity) must be part of the physics of time asymmetry.
As will be explained, this problem is a physical one, whereas physics does not
even offer any conceptual means for deriving the concept of a present that
would distinguish the past from the future (see also the Epilog).

The concept of a present seems to have as little to do with the concept
of time itself as color has to do with light (or with the nature of objects re-
flecting it). Both the present and color are merely aspects of how we perceive

2 Mach himself was not very clear about whether he intended to postulate what is now
often called his principle, or rather to prove such a principle meaningless (see Norton 1995).
A related confusion between the trivial invariance of a theory under a mere rewriting of the
laws in terms of new coordinates (‘Kretzschmann invariance’) and the nontrivial invariance
of the laws under coordinate transformations has even survived in general relativity (Norton

1989).
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time and light, respectively. Indeed, just as most information that is con-
tained in the frequency spectrum of observed light has been lost in the eye or
the visual cortex long before it can cause any brain activities associated with
consciousness, all information about events which are separated in time by
as little as two or three seconds seems to be integrated into certain neuronal
‘states of being conscious’ (see Pöppel, Schill, and von Steinbüchel 1990).
The ‘moments of awareness’ may even be discrete rather than reflecting the
time continuum in terms of which the corresponding physical brain activities
are successfully described. Continuous time then appears epistemologically as
a heuristic abstraction — just as all concepts describing ‘reality’. Similarly,
the topology of colors (forming the color circle), or the identification of very
different frequency mixtures of light as the same color, may be readily under-
stood in terms of neuronal structures and activities. However, neither their
subjective appearance (such as ‘blue’) nor the subjective appearance of the
present can be derived from physical and physiological concepts. Nonetheless,
the subjectively experienced direction of the apparent ‘passage’ of time may
be understood as a consequence of the thermodynamical (objective) arrow
that controls neurobiological processes, and thus allows memories of the past
and only of the past to occur in those states-of-being-conscious.

In Einstein’s special theory of relativity, the mechanistic or thermo-
dynamico-mechanistic concept of time is applied locally, that is, along time-
like world lines. These proper times, although being anholonomous (that is,
path-dependent — as exemplified in the twin paradox), still possess the hypo-
thetical absoluteness of Newton’s time, since they are assumed to be defined
(or to ‘exist’) even in the absence of anything that moves and thus may rep-
resent a clock. The absolute claim of proper time to control all conceivable
motion is then formulated in the principle of relativity. However, any simul-
taneity of moments of time (events) at different locations in space is wholly
arbitrary, as it would merely represent the choice of coordinates in space-
time. Objective geometrical and physical properties can instead be defined
‘absolutely’, that is, independent of any choice of coordinates. An example is
the abstract spacetime metric (to be distinguished from its basis-dependent
representation by a matrix gµν) with its derived geometric concepts such as
proper times and the light cone structure. Hence, one may still define a space-
time future and past relative to every spacetime point P (see Fig. 1.1), and
unambiguously compare this orientation of light cones at different space time
points by means of their path-independent parallel transport. This allows one
to distinguish globally between forward and backward directions of time, and
thus again to define a global thermodynamico-mechanistic concept of time. 3

These concepts are still applicable to general relativity if one excludes
non-orientable manifolds, which would permit the continuous transport of

3 While superluminal objects (‘tachyons’) may be compatible with the relativistic light
cone structure, they would pose severe problems to thermodynamics or the formulation of

a physically reasonable boundary value problem (cf. Sect. 2.1).
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Fig. 1.1. (a) Local spacetime structure according to the theory of relativity. Spacetime
future and past are defined relative to every event P , and independent of any choice
of a frame of reference. (b) In conventional units (large numerical value of the speed
of light) the light cone opens widely, so its exterior seems to degenerate into a space-like
hypersurface of ‘absolute’ simultaneity. What we observe as an apparently objective present
is in reality the backward light cone with respect to the subjective Here-and-Now P . Since
only nonrelativistic speeds are relevant in our macroscopic neighbourhood, this apparent
simultaneity seems also to coincide with the spacetime border to events which we (now)
can in principle affect by our ‘free will’ (or things we can ‘kick’)

forward light cones into backward ones. One may also have to exclude solu-
tions of the Einstein equations with closed time-like curves (world lines which
return into their own past). Although compatible with general relativity, such
spacetimes would not allow one to distinguish the past of an event on this
curve from its future. What cosmic boundary conditions to the metric are
required to exclude such spacetime geometries ‘fact-like’?

If local states of matter are unambiguously defined at each spacetime
point, a closed time-like curve must lead back to the same physical state
(including all memories and clocks). This would be inconsistent with a per-
sisting thermodynamical arrow and/or ‘free will’ along closed world lines,
and thus eliminates the infamous paradox of murdering one’s own grandfa-
ther. A ‘spacetime traveler’ would either have to stay on a loop in a periodic
manner, or to meet his older self already at his first arrival at their meeting
point — both in conflict with an evolutionary universe. Spacetime ‘travel’
is a misconception, related to that of the flow of time. It is, therefore, not
surprising that spacetime geometries with closed time-like curves seem to be
dynamically unstable (and thus could never arise) in the presence of thermo-
dynamically normal matter (Penrose 1969, Friedman et al. 1990, Hawking
1992, Maeda, Ishibashi, and Narita 1998). Nonetheless, such scenarios are
apparently quite popular even among certain well known relativists.

If closed time-like curves can in fact be neglected, then our spacetime can
still be time-ordered by means of a monotonic foliation. While there have been
speculations about ‘time warps’ in quantum gravity (see Morris, Thorne and
Yurtsever 1988, Frolov and Novikov 1990), their consistent description would
have to take into account the rigorous revision of the concept of time that
is required in this theory (see Sect. 6.2). Any quasi-classical spacetime would
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here already require the time arrow of decoherence (see Sects. 4.3 and 6.2.2).
In quantum theory, the dynamically evolving states are generically strongly
entangled, that is, nonlocal (Sect. 4.2). Therefore, they cannot evolve locally
(along time-like curves in spacetime).

In contrast to flat (Minkowski) spacetime, in general relativity world lines
may begin and end on spacetime singularities at finite values of their proper
times. This prevents the general applicability of Zermelo’s recurrence objec-
tion that was raised against Boltzmann’s statistical mechanics (see Chap. 3).

The most important novel aspect of general relativity for the concept
of time is the dynamical role played by spacetime geometry. It puts the ge-
ometry of space-like hypersurfaces in the position of ‘physical objects’ that
evolve dynamically and interact with matter (see Sect. 5.4). In this way, spa-
tial geometry becomes a physical clock, and the spirit of Leibniz and Mach
may finally be fulfilled by completely eliminating any relic of absolute time.
Traditionally, proper times (defined by the abstract metric) are regarded as
a prerequisite for the formulation of dynamical laws rather than as properties
of a dynamical object. In general relativity, however, the spacetime metric is
not the exclusive definer of time as a controller of motion (although geometry
still dominates over matter because of the large value of the Planck mass —
see Sect. 6.2.2). This situation is reminiscent of Leibniz’s elimination of the
special role played by the celestial bodies, when defining time by all relative
motion in the universe. The dynamical role of geometry also permits (and
requires) the quantization of time (Sect. 6.2).

This physicalization of time (that may formally appear as its elimination)
in accordance with Mach’s principle then allows one to speak of a direction
of time instead of a direction in time, provided an appropriate asymmetry in
the spacetime history of our universe does exist. However, as a consequence
of the quantization of gravity, even the concept of a history of the universe
as a parametrizable succession of global states has to be abandoned. The
conventional concept of time can only be upheld as a quasi-classical approx-
imation.

General literature: Reichenbach 1956, Mittelstaedt 1976, Whitrow 1980, Denbigh 1981,
Barbour 1989
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After a stone has been dropped into a pond, one observes concentrically di-
verging (‘defocussing’) waves. Similarly, after an electric current has been
switched on, one finds a retarded electromagnetic field that is moving away
from its source. Since the fundamental laws of nature, which describe these
phenomena, are invariant under time-reversal, they are equally compatible
with the reverse phenomena, in which concentrically focussing waves (and
whatever was caused by the stone — such as heat) would ‘conspire’ in order
to eject the stone out of the water. Deviations from the time reversal sym-
metry of the laws would modify this argument only in detail, as one merely
had to alter the reverse phenomena correspondingly (cf. the Introduction).
Such reverse phenomena have, however, never been observed in nature. The
absence of focusing processes in high-dimensional configuration space may
similarly describe the time arrow of thermodynamics (Chap. 3) or, when ap-
plied to wave functions, even that of quantum theory (see Sect. 4.6).

Electromagnetic radiation will here be considered as an example for wave
phenomena in general. It may be described in terms of the four-potential Aµ,
which in the Lorentz gauge obeys the wave equation

−∂ν∂νAµ(r, t) = 4πjµ(r, t) with ∂ν∂ν = −∂2
t +∆ , (2.1)

with c = 1, where the notations ∂µ := ∂/∂xµ and ∂µ := gµν∂ν are used
together with Einstein’s convention of summing over identical upper and
lower indices. When an appropriate boundary condition is imposed, one may
write Aµ as a functional of the sources jµ. For two well known boundary
conditions one obtains the retarded and the advanced potential,

A
µ
ret(r, t) =

∫
jµ(r, t− |r − r′|)

|r − r′| d3r′ , (2.2a)

A
µ
adv(r, t) =

∫
jµ(r, t+ |r − r′|)

|r − r′| d3r′ . (2.2b)

These two functionals of jµ(r, t) are related to one another by a time reversal
transformation (see (2.5) below). Their linear combinations are also solutions
of the wave equation (2.1).

At this point, many textbooks argue somewhat mysteriously that ‘for
reasons of causality’, or ‘for physical reasons’, only the retarded fields, derived
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from the potential (2.2a) according to Fµνret := ∂µAνret − ∂νA
µ
ret, may occur.

This is evidently an independent condition, based on causal experience. It
is added to the deterministic laws such as (2.1), which emerged historically
from the traditional concept of causality. This example allows us to formulate
in a preliminary way what seems to be meant by this intuitive notion of
causality: correlated effects (that is, non-local regularities such as coherent
waves) must always possess a local common cause (in their past).1 However,
this asymmetric notion of causality is a major explanandum of the physics
concerned with the direction of time. As pointed out in the Introduction, it
cannot be derived from known dynamical laws.

The popular argument that advanced fields are not found in nature be-
cause of their improbable initial correlations is known from statistical mechan-
ics, but absolutely insufficient (see Chap. 3). The observed retarded phenom-
ena are precisely as improbable among all possible ones, since they contain
equally improbable final correlations. Their ‘causal’ explanation from an ini-
tial conditions would just beg the question.

Some authors have claimed that retarded waves represent emission, while
advanced ones have to be used to describe absorption. However, this inter-
pretation ignores the vital fact that absorbers give rise to retarded shadows
(that is, to retarded waves that interfer destructively with incoming ones). In
spite of the retardation, energy may thus flow from the electromagnetic field
into an antenna. When incoming fields are present (as is the generic case),
retardation does not necessarily mean emission of energy (see Sect. 2.1).

At the beginning of the last century, Ritz proposed a radical solution of
the problem by postulating the exclusive existence of retarded waves as a law.
Such time-directed action at a distance is equivalent to fixing the boundary
conditions for the electromagnetic field in a universal manner. The field would
then not possess any degrees of freedom.

This proposal, probably supported by many physicists at that time, led
to a famous controversy with Einstein, who favored the point of view that re-
tardation of radiation can be explained by thermodynamical arguments. Ein-
stein, too, argued by means of an action-at-a-distance theory (see Sect. 2.4),
which had played an important role historically because of its analogy with

1 In the case of a finite number of effects (correlated future ‘events’) resulting from
one local cause, this situation is often described as a ‘fork’ in spacetime (cf. Horwich 1987,
Sect. 4.8). This fork of causality should not be confused with the fork of indeterminism
(in configuration space and time), which points to different (in general global) potential
states rather than to different events (see Footnote 7 of Chap. 3 and Fig. 3.8). The fork of
causality (‘intuitive causality’) also characterizes measurements and the documentation of
their results, that is, the formation and distribution of information. It is related to Reichen-
bach’s (1956) concept of branch systems, and to Price’s (1996) principle of independence
of incoming influences (PI3). Insofar as it describes the cloning and spreading of informa-
tion, it represents an overdetermination of the past by the future (Lewis 1986), observed
as a consistency of documents about the macroscopic past. These correlations let the past
appear ‘fixed’ (unaffected by local events), while complete documents about microscopic

history would be in conflict with thermodynamics and quantum theory.
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Newton’s non-retarded gravitation. At the end of their dispute, both authors
published a short letter in order to formulate their different opinions. After
an introductory sentence, according to which retarded and advanced fields
are equivalent “in some situations”, the letter reads as what appears also to
be a verbal compromise (Einstein and Ritz 1909 — my translation): 2

“While Einstein believes that one may restrict oneself to this case without
essentially restricting the generality of the consideration, Ritz regards this
restriction as not allowed in principle. If one accepts the latter point of view,
experience requires one to regard the representation by means of the retarded
potentials as the only possible one, provided one is inclined to assume that
the fact of the irreversibility of radiation processes has to be present in the
laws of nature. Ritz considers the restriction to the form of the retarded
potentials as one of the roots of the Second Law, while Einstein believes that
the irreversibility is exclusively based on reasons of probability.”

Ritz thus conjectured that the thermodynamical arrow of time might be
explained by the retardation of electrodynamics because of the latter’s uni-
versal importance for all matter. However, if one does not want to modify
mechanics in a similar way, the retardation of mechanical waves (such as
sound) would have to be explained quite differently (for example, by using
thermodynamical arguments again).

In Maxwell’s local field theory the problem does not appear to be so
rigorously defined, since in every bounded region of spacetime there may
be ‘free fields’ which do not possess any sources in this region. Therefore,
one can consistently understand Ritz’s hypothesis only cosmologically: all
fields must possess advanced sources (‘causes’ in their past) somewhere in
the universe. While the above-discussed examples demonstrate that the time
arrow of radiation does not just reflect the way how boundary conditions
are posed, in cosmological context this becomes even more evident from the
time-reversed question: “Do all fields in the universe possess a retarded source
(a sink in time-directed terms), that is, will they all vanish somewhere in
the future?” This assumption would be physically equivalent to the absorber
theory of radiation, a T -symmetric action-at-a-distance theory to be discussed
in Sect. 2.4). The observed asymmetries would then require an asymmetry in
the distribution of sources in the distant past and future.

2 The original text reads: “Während Einstein glaubt, daß man sich auf diesen Fall
beschränken könne, ohne die Allgemeinheit der Betrachtung wesentlich zu beschränken,
betrachtet Ritz diese Beschränkung als eine prinzipiell nicht erlaubte. Stellt man sich
auf diesen Standpunkt, so nötigt die Erfahrung dazu, die Darstellung mit Hilfe der re-
tardierten Potentiale als die einzig mögliche zu betrachten, falls man der Ansicht zuneigt,
daß die Tatsache der Nichtumkehrbarkeit der Strahlungsvorgänge bereits in den Grundge-
setzen ihren Ausdruck zu finden habe. Ritz betrachtet die Einschränkung auf die Form
der retardierten Potentiale als eine der Wurzeln des Zweiten Hauptsatzes, während Ein-
stein glaubt, daß die Nichtumkehrbarkeit ausschließlich auf Wahrscheinlichkeitsgründen

beruhe.”
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2.1 Retarded and Advanced Form
of the Boundary Value Problem

In order to distinguish the indicated pseudo-problem that concerns only the
definition of ‘free’ fields from the physically meaningful question, one has
to investigate the general boundary value problem for hyperbolic differential
equations (such as the wave equation). This can be done by means of Green’s
function, defined as a solution of the specific inhomogeneous wave equation

−∂ν∂νG(r, t; r′, t′) = 4πδ3(r − r′)δ(t− t′) , (2.3)

with an appropriate boundary condition in space and time. Some of the con-
cepts and methods to be devoloped below will be applicable in a similar form
in Sect. 3.2 to the investigation of solutions of the Liouville equation (Hamil-
ton’s equations for ensembles). Using (2.3), a solution of the inhomogeneous
wave equation (2.1) may then be written in the form of pure source terms

Aµ(r, t) =
∫
G(r, t; r′, t′)jµ(r′, t′) d3r′ dt′ . (2.4)

The boundary conditions for G(r, t; r′, t′) determine here those for Aµ(r, t).
Special (retarded or advanced) solutions are obtained from Green’s functions
Gret and Gadv, which are defined as

Gadv
ret

(r, t; r′, t′) :=
δ(t− t′ ± |r − r′|)

|r − r′| . (2.5)

The potentials Aµret and Aµadv resulting from (2.4) are thus functionals of
sources on the past or future light-cone of their arguments, respectively.

In contrast, Kirchhoff’s formulation of the boundary value problem al-
lows one to express any solution Aµ(r, t) of the wave equation by means
of Green’s function G(r, t; r′, t′) with arbitrary boundary conditions. This
can be done by using the three-dimensional Green’s theorem (valid for all
sufficiently regular functions G and Aµ)∫
V

[G(r, t; r′, t′)∆′Aµ(r′, t′)−Aµ(r′, t′)∆′G(r, t; r′, t′)] d3r′

=
∫
∂V

[G(r, t; r′, t′)∇′Aµ(r′, t′)−Aµ(r′, t′)∇′G(r, t; r′, t′)] · dS′ ,
(2.6)

where ∆ = ∇2, while ∂V is the boundary of the spatial volume V , and t′ is a
fixed time. Multiplying (2.3) with Aµ(r′, t′), integrating over the δ-functions
on the right hand side (RHS), twice integrating by parts with respect to t′

on the left hand side (LHS), and using (2.1) and (2.6), one obtains
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Aµ(r, t) =

t2∫
t1

∫
V

G(r, t; r′, t′)jµ(r′, t′) d3r′ dt′

− 1
4π

∫
V

[G(r, t; r′, t′)∂t′A
µ(r′, t′)−Aµ(r′, t′)∂t′G(r, t; r′, t′)] d3r′

∣∣∣t2
t1

+
1

4π

t2∫
t1

∫
∂V

[G(r, t; r′, t′)∇′Aµ(r′, t′)−Aµ(r′, t′)∇′G(r, t; r′, t′)] · dS′ dt′

≡ ‘source term’ + ‘boundary terms’ . (2.7)

For every spacetime point P (r, t) within the boundary, both (past and fu-
ture) light cones will in general contribute to the terms occurring in (2.7), as
indicated in Fig. 2.1.

P

t1

t2

t

x

Fig. 2.1. Kirchhoff’s boundary value problem, including initial, final and spatial bound-
aries. Sources (thick world lines) and boundaries contribute to the electromagnetic poten-
tial Aµ at the spacetime point P from events (open circles) on the light cones (dashed
lines) according to any freely chosen Green’s function

The T -symmetry of this representation of the potential as a sum of a
source term and boundary terms in the past and future can be broken by the
choice of one or the other asymmetric Green’s functions (2.5). The spacetime
boundary required for determining the potential at time t then assumes one of
the two forms indicated in Fig. 2.2. Hence, the same potential can be written
according to one or the other RHS of

Aµ = source term + boundary terms = A
µ
ret +A

µ
in

= A
µ
adv +A

µ
out . (2.8)

For example, Aµin is here that solution of the homogeneous equations which
coincides with Aµ for t = t1. Aµret and Aµadv vanish by definition for t = t1
or t = t2, respectively. Any situation can therefore be described as an initial
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Fig. 2.2. Two representations of the same electromagnetic potential at time t by means
of retarded or advanced Green’s functions. They require data on boundaries (indicated by
the solid lines) corresponding to an initial or a final-value problem, respectively

or final value problem. This symmetry represents T -symmetric determinism,
while ‘causality’ is often used as an ad hoc argument for choosing Gret.

However, two temporal boundary conditions would in general lead to con-
sistency problems even if individually incomplete (see also Sect. 5.3). Fields
formally resulting from different past and future sources (that is, retarded
and advanced fields) do not add — except in mixed representations of the
same field. In field theory, no (part of the) field ‘belongs to’ a certain source
(in contrast to action-at-a-distance theories). Rather, sources in a bounded
spacetime volume determine only the difference between the (‘real’) outgoing
and incoming fields (as an anti-symmetric relation between them — similar
to the action of S − 1 in the interaction picture of the S-matrix). In causal
language, where A

µ
in is assumed to be ‘given’, the source always ‘creates’

precisely its retarded field.
From a physical point of view, spatial boundary conditions always repre-

sent an interaction with the spatial environment. For infinite spatial volume,
V →∞3, (when the light cone cannot reach ∂V within finite time t− t1), or
in a closed universe, one loses this boundary term in (2.7), and thus obtains
the pure initial value problem (t > t1),

Aµ = Aµret +Aµin ≡
t∫

t1

∫
R3

Gret(r, t; r′, t′)jµ(r′, t′) d3r′ dt′ +

1
4π

∫
R3

[Gret(r, t; r′, t1)∂t1A
µ(r′, t1)−Aµ(r′, t1)∂t1Gret(r, t; r′, t1)] d3r′ ,

(2.9a)

and correspondingly the pure final value problem (t < t2),

Aµ = Aµadv +Aµout ≡
t2∫
t

∫
R3

Gadv(r, t; r′, t′)jµ(r′, t′) d3r′ dt′ −

1
4π

∫
R3

[Gadv(r, t; r′, t2)∂t2A
µ(r′, t2)−Aµ(r′, t2)∂t2Gadv(r, t; r′, t2)] d3r′ .

(2.9b)
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The different signs at t1 and t2 are due to the fact that the gradient in the
direction of the outward-pointing normal vector has now been written as a
derivative with respect to t1 (inward) or t2 (outward).

One finds the retarded potential Aµ = A
µ
ret precisely if Aµin = 0. (Only

its ‘Coulomb part’, required by Gauß’s law, and often regarded as kinematics,
must always be contained in A

µ
in as a consequence of charge conservation.)

In scattering theory, a condition fixing the incoming wave (usually as a plane
wave) is called a Sommerfeld radiation condition. Aside from its gauge con-
tribution it describes the actual physical situation. Therefore, the physical
problem is not which of the two forms, (2.9a) or (2.9b), is correct (both are),
but:

1. Why does the Sommerfeld radiation condition A
µ
in = 0 (in contrast to

A
µ
out = 0) approximately apply in most situations?

2. Why are initial conditions more useful than final conditions?

The second question is related to what in the Introduction has been called the
historical nature of the world. Answers to these questions will be discussed
in Sect. 2.2.

The form (2.7) of the four-dimensional boundary value problem, charac-
teristic of determinism in field theory, applies to partial differential equations
of the hyperbolic type (that is, with a Lorentzian signature −+++). Elliptic
type equations would instead lead to the Dirichlet or von Neumann prob-
lem, which require values of the field or its normal derivative on a complete
closed boundary (which in spacetime would include past and future). Only
hyperbolic equations lead generally to ‘propagating’ solutions that allow one
to impose free initial conditions. They are thus responsible for the concept of
a dynamical state of the field. (See also Sect. 6.2 for an application to ‘static’
quantum gravity).

As is well known, the wave equation with its hyperbolic signature can be
derived from Newton’s equations as the continuum limit for a spatial lattice
of mass points, kept at their positions by means of harmonic forces. For a
linear chain, md2qi/dt

2 = −k[(qi−qi−1−a)−(qi+1−qi−a)] with k > 0, this
is the limit a→ 0 for fixed ak and m/a. The crucial restriction to ‘attractive’
forces (k > 0) may appear surprising, since Newton’s equations are always
deterministic, and allow one to pose initial conditions regardless of the type
or sign of the forces. Vibrating systems are, however, characterized by a stable
equilibrium (here described by the lattice constant a). An elliptic differential
equation (with signature ++++) would result in the same limit a→ 0 from
the dynamics of variables qi with repulsive forces (k < 0) for deviations from
their unstable equilibrium. Their singular repulsion away from this equilib-
rium would cause the particle distances qi− qi−1 to explode instantaneously.
The unstable trivial solution qi − qi−1 = a is in this case the only eigensolu-
tion of the Dirichlet problem with eigenvalue 0 (derived from the condition of
a bounded final state). Mathematically, the dynamically diverging solutions
simply do not ‘exist’ any more in the continuum limit.
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For second order wave equations, the hyperbolic signature forms the
basis for all (exact or approximate) conservation laws, which give rise to the
continuity of ‘objects’ in time (including the ‘identity’ of observers if described
as dynamical structures on a continuum). For example, the free wave equation
has solutions with a fixed form f(z ± ct), while the Klein-Gordon equation
with a positive variable m2 = V (r, t) has unitary solutions i∂φ(r, t)/∂t =
±
√
−∆+ V φ(r, t). These dynamical consequences of the metric, which lead

to ‘wave tubes’ rather than wave packets, seem to be crucial for what appears
as the inevitable ‘progression of time’ (in contrast to our freedom to move in
space). However, the direction of this apparent flow of time requires additional
conditions.

In this Section, the boundary value problem has been discussed for fields
in the presence of given sources. In general, these sources would have to be
dynamically determined in turn from these fields by means of the Lorentz
force. For a charge continuum, the resulting coupled system of equations
(magneto-hydrodynamics) is, of couse, still T-symmetric, while all consider-
ations regarding the retardation of the electromagnetic fields in this and the
following Section remain valid. New problems will arise with the idealization
of point charges or rigid charged ‘objects’ (see Sect. 2.3).

2.2 Thermodynamical and Cosmological
Properties of Absorbers

Wheeler and Feynman (1945, 1949) took up the Einstein-Ritz controversy
about the relation of the two time arrows of radiation and thermodynam-
ics in two important papers. Their analysis essentially confirms Einstein’s
point of view, provided his ‘reasons of probability’ are replaced with ‘ther-
modynamical reasons’. Statistical reasons allone will prove insufficient for
deriving a thermodynamical arrow (see Chap. 3.) The major part of Wheeler
and Feynman’s work is again based on a T -symmetric action-at-a-distance
theory, which is particularly suited for representing the arguments in their
historical context. From the point of view of local field theory (that for good
reasons is preferred today), this description may appear somewhat disturb-
ing or even misleading. Their absorber theory of radiation will therefore be
postponed to Sect. 2.4, while the relevant physical properties of absorbers will
now be discussed in the language of conventional field theory.

A relation between the two time arrows can be derived from presumed
thermodynamical aspects of absorbers (in the ‘ideal’ case with infinite heat
capacity at absolute zero). They can be described by the following definition:

A spacetime region is an ‘(ideal) absorber’ if any radiation in it is (immedi-
ately) thermalized at the absorber temperature T (= 0).
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The process of thermalization used in this definition is based on the arrow of
time defined by the Second Law. For electromagnetic waves it can be phe-
nomenologically described in terms of the Maxwell equations by means of a
complex refractive index, whereby the sign of the imaginary part character-
izes the thermodynamical time direction. The above definition means that
no radiation propagates within ideal absorbers, and in particular that no
radiation may leave the absorbing region (along forward light-cones). This
property can be applied to the boundary value problem (see Fig. 2.3):

Absorbers forming (parts of) a spacetime boundary in (2.7) do not contribute
by means of the retarded Green’s function (except for their thermal radiation).

x

t

absorber

Fig. 2.3. An ideal absorber as a boundary does not contribute by means of Gret. It would
formally contribute (destructively) as a ‘source’ inside the spacetime region of interest.
(Arrows represent here the formal time direction of retardation.)

This boundary condition simplifies the initial value problem. If the space-
like part ∂V of the boundary required for the retarded form of the boundary
value problem depicted in Fig. 2.2 consists entirely of ideally absorbing walls
(as is usually the case in a laboratory in the frequency range well above that
of relevant heat radiation), the condition Aµin = 0 is effective shortly after the
initial time t1 that is used to define the ‘incoming’ field. In this case, precisely
the retarded fields of sources inside the laboratory will be present. On the
other hand, absorbers on the boundary do not restrict the contribution of
Gadv; in the nontrivial case one has Aµout 6= 0. In this laboratory situation,
the radiation arrow may thus easily be derived from the thermodynamical
arrow that characterizes absorbers.

Do similar arguments also apply to situations outside absorbing bound-
aries, in particular in astronomy? The night sky does in fact appear black,
representing a condition A

µ
in ≈ 0, although the present universe is transpar-

ent to visible light. Can the darkness of the night sky then be understood in
a realistic cosmological model? For the traditional (static and homogeneous)
model of the universe this was impossible, a situation called Olbers’ paradox
after one of the first astronomers who recognized this problem. The total
brightness B of the sky would then be given by

B = 4π

∞∫
0

%La(r)r2 dr , (2.10)
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where % is the number density of sources (essentially the fixed stars), while
La(r) = L̄/r2 is their mean apparent luminosity. In the static and homoge-
neous situation (L̄, % = constant) this integral diverges linearly, and the night
sky should be infinitely bright. The screening of distant sources by closer ones
would reduce this result to a finite value, corresponding to a sky as bright as
the mean surface of a star. It would not help to take into account dark matter
in the universe, since this would have to be in thermal equilibrium with the
radiation in this case. An eternal homogeneous universe should therefore be
found in the situation of a ‘heat death’ (see Chap. 3).

Olbers’ paradox could be resolved on empirical grounds after Hubble
had discovered the cosmic redshift of galaxies, proportional to their distance.
They indicated an expanding universe, and therefore its origin in a big bang at
a finite time of order 1010 years in the past. According to Wien’s displacement
law Ta ∝ λ−1, the increase of all wave lengths λ with the expansion parameter
a(t) leads to the reduction of the apparent temperature Ta of the sources.
Because of Stefan and Boltzmann’s law, L ∝ T 4, the apparent brightness
of the stars, La, would then decrease with distance faster than r−2. In a
homogeneous (though expanding) universe, the brightness of the sky is given
by

B ∝
τmax∫
0

%(t0 − τ)L̄(t0 − τ)
[
a(t0 − τ)
a(t0)

]4

dτ , (2.11)

where t0 is the present, while τmax is the age of the transparent universe. If
the total number of sources had not changed, their density would have varied
with %(t0− τ) ∝ [a(t0− τ)]−3. If their mean absolute luminosity, L̄, had also
remained constant, the integrand would be proportional to a(t0 − τ)/a(t0).
The integral (2.11) converges in most realistic cosmologies, in particular for
a finite cosmic age τmax, while times as far back as 1023y, that is, 1013 times
the Hubble age, would have to dominate in the integral in order to produce
a night sky as bright as the surface of stars (Harrison 1977).

Starlight is therefore completely negligible for the background radiation
of the night sky. While this argument resolves Olbers’ paradox, it is neither
sufficient to explain the cosmological condition A

µ
in ≈ 0, nor is it realistic,

since the nature of the sources must have changed drastically during the early
history of the universe. During its ‘radiation era’ our universe was very hot.
Matter was ionized and almost homogeneous (cf. Wu, Lahav, and Reeves
1999), representing a non-ideal absorber with temperature of several thou-
sand degrees (see Fig. 2.4). Because of the expansion, its thermal radiation
has now cooled down to its observed value of 2.7 K, compatible with the
darkness of the night sky.

The cosmic expansion, which is vital for this quantitative argument, is
thus also essential for the drastic thermodynamical non-equilibrium on the
cosmic scale, that is, the contrast between cold interstellar space and the
hot stars (which are gaining their energy from gravitational contraction —
see Chap. 5). For this reason, the expansion of the universe has often been
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non-ideal absorber

t=10    a1 0

t=3.10   a5

t = 0 T =  ¥
T = 4.10  K

3

T = 2.7 K

Fig. 2.4. The cosmological initial value problem for the electromagnetic radiation. The
thermal contribution of the non-ideal absorber represented by the hot, ionized matter
during the radiation era has now cooled down to the measured background radiation of
2.7 K (which can be neglected for most purposes)

proposed as the master arrow of time. However, it would be quite insuffi-
cient to use such causal arguments for this purpose. For indeed, in order to
reverse thermodynamical processes in a contracting universe, incoming radi-
ation would have to form precisely the advanced fields of its future sources,
and thus interfere with their retarded fields in a destructive manner. The
scenario of fields and phenomenological absorbers in an expanding universe
is far too simple to describe a master arrow. This discussion will be resumed
in Sects. 5.3 and 6.2.

The thermodynamical arrow entered this derivation of the radiation ar-
row through the assumption of negligible (in the ideal case vanishing) thermal
radiation on the future ‘light shadows’ of absorbers, in particular the absorber
represented by the cosmic radiation era. Hogarth (1962) suggested instead
that the time arrow of radiation requires a change in the opacity of intergalac-
tic matter (cosmic absorbers) during the evolution of the universe. However,
this assumption is neither sufficient nor necessary, since absorbers specify a
direction in time even when they do not essentially change. Their thermal
equilibrium is not equivalent to the absence of any microscopic asymmetry
(see the Appendix for an example). Hogarth’s proposal was apparently moti-
vated by the T -symmetric (and therefore thermodynamically inappropriate)
definition of absorbers used by Wheeler and Feynman (Sect. 2.4).

These conclusions regarding the retardation of electromagnetic radiation
apply in principle to all wave phenomena. The only exception may be gravity,
since even the radiation era may have been transparent to gravitons. 3 Ritz’s
conjecture of a law-like nature of the retardation of electrodynamic fields will
therefore be reconsidered and applied to gravity in Chap. 5.

3 The retardation of gravitational waves has been indirectly confirmed by double pul-

sars (see Taylor 1994).
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2.3 Radiation Damping

The emission of electromagnetic radiation by a charged particle that is ac-
celerated by an external force requires that the particle reacts by losing the
irradiated energy. Similar to the force of friction, this radiation reaction in
the effective equation of motion must change sign under time reversal. As will
be explained, this can be understood as a consequence of the retardation of
the field when acting on its own source, even though the retardation seems to
disappear at the position of a point source. However, the self-interaction of
point-like charges leads to singularities (infinite mass renormalization) which
need care when being separated from that part of the interaction which is
responsible for radiation damping. While these problems can be avoided if
any self-interaction is eliminated by means of the action-at-a-distance theory
(described in Sect. 2.4), others then arise in their place.

Consider the trajectory of a charged particle, represented by means of its
Lorentzian coordinates zµ as functions of proper time τ . The corresponding
four-velocity and four-acceleration are vµ := dzµ/dτ and aµ := d2zµ/dτ2,
respectively. From vµvµ = −1 one obtains by differentiation vµaµ = 0 and
vµȧµ = −aµaµ. In a rest frame, defined by vk = 0 (with k = 1, 2, 3), one has
a0 = 0. The four-current density of this point charge is given by

jµ(xν) = e
∫
vµ(τ)δ4[xν − zν(τ)] dτ . (2.12)

Its retarded field Fµνret = 2∂[µA
ν]
ret := ∂µAνret−∂νA

µ
ret is known as the Liénard-

Wiechert field. The retarded or advanced fields can be written in an invariant
manner (see, for example, Rohrlich 1965) as

F
µν
ret/adv

(xσ) = ±2e
%

d

dτ

v[µRν]

%

=
2e
%2
v[µ uν] +

2e
%

{
a[µ vν] − u[µ vν]au ± u[µ aν]

}
, (2.13)

with vµ and aµ taken at times τret or τadv, respectively.
In this expression,

Rµ := xµ − zµ
(
τret/adv

)
=: (uµ ± vµ)% , (2.14)

with uµvµ = 0 and uµuµ = 1, is the light-like vector pointing from the re-
tarded or advanced spacetime position zµ of the source to the point xµ where
the field is considered. Obviously, % is the distance in space and in time be-
tween these points in the rest frame of the source, while
au := aµuµ is the component of the acceleration in the direction of the
spatial distance vector uµ. Retardation or advancement are enforced by the
condition of Rµ being light-like, that is, RµRµ = 0.
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On the RHS of (2.13), second line, the field consists of two parts, the
first one proportional to 1/%2, the second one to 1/%. They are called the
generalized Coulomb field (‘near-field’) and the radiation field (‘far-field’),
respectively. Since the stress energy tensor

Tµν =
1

4π

(
FµαFα

ν +
1
4
gµνFαβFαβ

)
(2.15)

is quadratic in the fields, it consists of three parts characterized by their
powers of %. For example, one has

T
µν
ret := Tµν(Fµνret ) =

e2

4π%4

(
uµuν − vµvν − 1

2
gµν
)

+
e2

2π%3

{
au
RµRν

%2
− [v(µ au + a(µ]

Rν)

%

}

+
e2

4π%2
(a2
u − aλaλ)

RµRν

%2
, (2.16)

where braces around pairs of indices define symmetrization: v(µRν) :=
(vµRν + vνRµ)/2. Here, Tµν is the ν-component of the current of the µ-
component of four-momentum. In particular, T 0k is the Poynting-vector
in the chosen Lorentz system, and Tµνd3σν is the flux of four-momentum
through an element d3σν of a hypersurface. If d3σν is space-like (a volume
element), this ‘flux’ describes its energy-momentum (‘momenergy’) content,
otherwise it is the flux through a surface element during an element of time.

t
y

x

τ
τ+∆τ

z ( )µ τ

Fig. 2.5. Spacetime support of the retarded field of a world line element ∆τ of a point
charge is located between two light cones (co-axial only in the rest frame of the source).
Flux of field momentum crosses light cones in the near-field region of the charge

The retarded field caused by an element of the world line of the point
charge between τ and τ +∆τ has support between forward light cones of the
two end points, that is, on a thin four-dimensional conic shell (see Fig. 2.5).
The intersection of the cones with a space-like hyperplane forms a spherical
shell (concentric only in the rest frame at time τ , and in the figure depicted
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two-dimensionally as a narrow ring). The integral of the stress-energy tensor
over this spherical spatial shell,

∆Pµ =
∫
Tµν d3σν , (2.17)

is the four-momentum of the field on this hyperplane ‘caused’ by the world
line element ∆zµ. In general, this momentum is not conserved along light
cones, since (2.16) contains a momentum flux orthogonal to the cones, due
to the dragging of the near-field by the charge. (Therefore, Teitelboim 1970
suggested a different splitting of the energy-momentum tensor. It leads to a
time-asymmetric electron dressing — valid only for ‘given’ Fin.) However, this
flux component vanishes in the far-zone, where Tµν is proportional to RµRν .
In this region the integral (2.17) describes the four-momentum radiated away
from the trajectory of the charge during the interval ∆τ ,

∆Pµ →
%→∞

∆P
µ
rad =

2
3

e2aλaλv
µ∆τ =: <vµ∆τ . (2.18)

The quantity < = 2
3e

2aλaλ is called the invariant rate of radiation. In the co-
moving rest frame (vk = 0) one recovers the non-relativistic Larmor formula,

∆P 0
rad = vµ∆P

µ
rad =

2
3
e2aλaλ∆t =

2
3
e2a2∆t . (2.19)

One confirms that the energy transfer into radiation in a positive interval of
time cannot be negative. This is a consequence of the presumed retardation.
It means that an accelerated charged particle must lose energy regardless of
the direction of the driving external force.

Larmor’s formula led to a certain confusion when it was applied to a
charged particle in a gravitational field by means of the principle of equiva-
lence. Because of its dependence on acceleration, (2.18) is restricted to inertial
frames. In general relativity, inertial frames are freely falling. According to
the principle of equivalence, a freely falling charge should then not radiate,
while a charge ‘at rest’ in a gravitational field (under the influence of non-
gravitational forces) should do so. This problem was not understood until
Mould (1964) demonstrated that the response of a detector to radiation, too,
depends on its acceleration (see also Fugmann and Kretzschmar 1991).

In general relativity, the principle of equivalence is only locally mean-
ingful. However, a homogeneous gravitational field (as it would result from
a massive plane) is described by flat spacetime. It is globally equivalent to a
rigid field of uniform accelerations aµ on Minkowski spacetime. This field cor-
responds to a set of ‘parallel’ hyperbolic trajectories with constant (but dif-
ferent) accelerations aµaµ. These trajectories define rigid accelerated frames,
since they preserve their distance in their common comoving rest frames. To-
gether with their proper times they define the curved Rindler coordinates in
spacetime (see (5.15) and Fig. 5.5 in Sect. 5.2).
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The equivalence principle can therefore be applied globally to a homoge-
neous gravitational field. It requires that an inertial (freely falling) detector
is not affected by an inertial charge, while a detector ‘at rest’ is excited. The
latter would remain idle in the presence of a charge being ‘equivalently at
rest’ (that is, at a fixed or even uniformly changing distance). A detector-
independent definition of total radiation also turns out to depend on accel-
eration (as it should for consistency) because of the occurrence of spacetime
horizons for truly uniform acceleration (see Boulware 1980 and Sect. 5.2).

The emission of energy according to (2.19) thus requires a deceleration
of the point charge in order to conserve total energy. It should be possible to
derive this consequence directly from the fundamental dynamical equations.
They are given by the Lorentz force,

Fµself(τ) = eFµνret [zσ(τ)]vν(τ) , (2.20)

of the particle’s self-field (its field at the position of the point charge itself).
However, this expression leads into problems caused by the fact that the
electromagnetic force acts only on the point charge, where the self-field is
singular (its Coulomb part even with 1/%2), while an essential part of the
accelerated mass is contained in the co-moving Coulomb field. Dirac (1938)
was able to show that the T -symmetric part F̄µν of the retarded field,

F
µν
ret = 1

2 (Fµνret + F
µν
adv) + 1

2 (Fµνret − F
µν
adv) ≡: F̄µν + F

µν
rad , (2.21)

is alone responsible for the infinite mass renormalization, while its T -anti-
symmetric part, Fµνrad, remains regular and does indeed describe the radiation
reaction when treated properly.

In order to prove the second part of this statement, one has to expand
all quantities in (2.13) up to the third order in terms of the retardation
∆τret = τret − τ , for example

vν(τret) = vν(τ +∆τret) = vν(τ) +∆τreta
µ(τ)

+ 1
2∆τ

2
retȧ

µ(τ) + 1
6∆τ

3
retä

µ(τ) + · · · . (2.22)

All terms which are singular at the position of the point charge itself cancel
from the antisymmetric difference of retarded and advanced fields, and one
obtains (cf. Rohrlich 1965, p. 142)

F
µν
rad = −4e

3
ȧ[µ vν] . (2.23)

The resulting T-antisymmetric Lorentz self-force (the Abraham four-vector)

Fµrad := eF
µν
radvν =

2e2

3
(ȧµ + vµȧνvν) =

2e2

3
(ȧµ − vµaνaν) (2.24)
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(using aνvν = 0 in the second step) should then describe the radiation reac-
tion of a point charge. It leads to a nonlinear equation of motion (the Lorentz-
Dirac equation). However, while the second term is in accordance with (2.18),
the ȧµ-term is ill-defined (see below). Together with the mass renormaliza-
tion term due to F̄µν it must describe the required four-momentum transfer
from the point charge to its singular near-field.

In a rest frame (with vk = 0 and a0 = 0) one obtains

F0
rad = −2e2

3
a2 and Fkrad =

2e2

3
dak

dt
. (2.25)

Therefore, the radiation reaction represents non-relativistically a force pro-
portional to the change of acceleration, dak/dt, while its fourth component
describes the energy loss in accordance with the non-negative invariant rate of
radiation (2.18). The latter was defined by the energy flux through a distant
sphere on the future light-cone. This is often used to ‘derive’ the radiation
reaction (2.25). However, global conservation laws may be used only if all
their contributions are taken into account. For example, there is no simi-
lar conservation of three-momentum of the bare point charge and its far-field.
The reason is the aforementioned momentum flux of the near field orthogonal
to the future light-cone of the moving charge, which is required to keep the
Coulomb field co-moving. For this reason, the uniformly accelerated charge
may radiate with < 6= 0 even though the ‘radiation reaction’ Fµrad (including
its ill-defined term) vanishes in this case, as can be shown separately for its
two relevant components, Fµradaµ and Fµradvµ.

If the boundary condition Fµνin = 0 does not hold, the complete electro-
magnetic force on a point charge is given by

maµ = Fµ = Fµin + Fµrad = Fµout −F
µ
rad (2.26)

(cf. Sect. 2.1 and (2.21)). The renormalization terms, caused by the T -sym-
metric part of the self-field, have now been brought to the LHS in the form
∆maµ. Equation (2.26) still exhibits the T -symmetry, but the latter may be
broken fact-like by the given initial condition Fµνin (in contrast to the uncon-
trollable outgoing radiation contained in Fµνout). The Lorentz-Dirac equation,
based on (2.24) and the first RHS of (2.26), may then be written in the form

m(aµ − τ0ȧµ) = Kµ(τ) := Fµin −<v
µ , (2.27)

where τ0 = 2e2/3mc2 is the time required for light to travel a distance of the
order of the ‘classical electron radius’ e2/mc.

Both terms of (2.27) that result from the radiation reaction (2.24) change
sign under time reversal (or the replacement of retarded with advanced fields).
While the second one represents the friction-type radiation damping −<vk,
required for the conservation of energy, the first one (called the Schott term) is
proportional to the third time-derivative of the position in an inertial frame. A
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solution to the equation of motion (2.27) would thus require three initial vec-
tors as integration constants (the initial acceleration in addition to the usual
initial position and velocity). Evidently, information has been lost through
differentiation by the expansion (2.22). Even for Fµin = 0, the Lorentz-Dirac
equation (2.27) admits runaway solutions, non-relativistically in the form of
an exponentially increasing self-acceleration, ak(t) = ak(0) exp(t/τ0).

Because of this information loss, the Lorentz-Dirac equation can only
describe a necessary condition for the motion of the point charge. In the free
case, unphysical runaway solutions could simply be eliminated by fixing the
artificial integration constant by the condition ak(0) = 0. Unfortunately, this
would still lead to runaway as soon as an external force is turned on. Since
the formal solution to (2.27) with respect to aµ is

maµ(τ) = eτ/τ0

maµ(0)− 1
τ0

τ∫
0

e−τ
′/τ0Kµ(τ ′)dτ ′

 , (2.28)

Dirac proposed to fix the initial acceleration in terms of the future force
according to maµ(0) = (1/τ0)

∫∞
0 e−τ

′/τ0Kµ(τ ′)dτ ′. The substitution τ ′ →
τ ′ + τ then leads to Dirac’s equation of motion,

maµ(τ) =

∞∫
0

Kµ(τ + τ ′)
e−τ

′/τ0

τ0
dτ ′ . (2.29)

It represents a Newtonian (second order) equation of motion with an ‘acausal
force’ Kµ. This force contains the required nonlinear deceleration −<vk (the
radiation reaction proper), but acts according to a distribution in time that
ends with a sharp maximum at the ‘correct’ time τ ′ = 0 after growing expo-
nentially with a time constant τ0 in advance of the ‘correct’ force. How could
this ‘acausality’ be derived from the Lorentz force by means of retarded fields?

Moniz and Sharp (1977) demonstrated that the pathological behavior
of this ‘classical electron’ is the consequence of a mass renormalization that
exceeds the physical electron mass (so that the bare mass becomes negative).
For example, if the point charge is replaced with a rigid charged sphere of
radius r0 in its rest frame, one obtains, by using the now everywhere regular
retarded field, an equation of motion that was first proposed by Caldirola
(1956), and later derived by Yaghjian (1992) as an approximation. It reads

m0a
µ(τ) = Fµin(τ) +

2e2

3r0

vµ(τ − 2r0) + vµ(τ)vν(τ)vν(τ − 2r0)
2r0

, (2.30)

where m0 is the bare mass. The retardation 2r0 in the arguments is the travel
time of the electromagnetic field within this model electron. It would change
sign for advanced fields (consistent only in conjunction with given Fµout).
Taylor expansion of (2.30) with respect to 2r0 (equivalent to (2.22)), and
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using vµvµ = −1 and its time derivatives, leads in first order to a finite mass
renormalization (4/3 of the electrostatic mass), and in second order back
to the Lorentz-Dirac equation. The expectation that this limit of a point
charge (r0 → +0) might lead to a T-symmetric equation of motion (Rohrlich
1998) is thus unjustified (Zeh 1999a). While (2.30) can be regarded as a
non-Markovian master equation (see Sect. 3.2), the Lorentz-Dirac equation
corresponds to its Markovian limit, valid for slowly varying fields. In this
sense, the radiation reaction has to be calculated from the given history in
order to determine the acceleration (rather than its derivative) towards the
future (right derivative).

The force acting on the rigid ‘electron’ according to (2.30) is the asym-
metric difference between a decelerating and an accelerating friction type
force. For positive bare and physical masses it does not lead to runaway, al-
though it may possess complicated non-analytic solutions, in particular for
forces varying on a time scale shorter than the light travel time within the
charged sphere. Dirac’s preacceleration of the center of mass, now explained
by the extended charge distribution, is avoided in (2.30) by the presumed
rigidity of the sphere, which requires additional forces of constraint.

A discussion of the history of electron theory may be found in Rohrlich
(1997). It indicates that the concept of a non-inertial point charge is in-
consistent with classical electrodynamics, while external forces acting on a
dynamically stable charge distribution would disturb its shape and structure.
A quantum mechanical ground state may be protected against deformation
by its large excitation energy. Before praising advantages of QED compared
to the classical theory, however, one should pay attention to the question
which of the dangerous terms have simply been omitted in this theory. Be-
cause of quantum entanglement, composite quantum objects (such as particle
plus field) cannot be described in three-dimensional space (see Sect. 4.2).

General literature: Rohrlich 1965, 1997, Levine, Moniz and Sharp 1977, Boulware 1980

2.4 The Absorber Theory of Radiation

Ritz’s retarded action-at-a-distance theory, mentioned at the beginning of
this chapter, eliminates all electromagnetic degrees of freedom by postulating
the cosmological initial condition Aµin = 0. Since electromagnetic forces would
then act only on the forward light-cones of their sources, this theory cannot
be compatible with Newton’s third law, which requires the equivalence of
action and reaction. The reaction to a retarded action must be advanced. 4

4 In field theory, sources and fields interact locally in spacetime. For this reason the

self-force (2.24) could not be derived from the flux of field momentum in the far-zone.
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i j i j i j i j

= = =

Fig. 2.6. Different interpretations of the same interaction term of the Hamiltonian for a
pair of particles

In order to warrant energy-momentum conservation, an action-at-a-distance
theory has to be formulated in a T -symmetric way, as done by Fokker (1929)
by means of his action,

I =
∫

(T − V ) dt =
∑
i

mi

∫
dτi

− 1
2

∑
i6=j

eiej

∫∫
v
µ
i vjµδ[(z

ν
i − zνj )(ziν − zjν)] dτi dτj . (2.31)

Here, indices i and j are particle numbers. (A sum over i 6= j defines a double
sum excluding equal indices, while a sum over i(6= j) indicates a sum over
i only, excluding a given value j.) In (2.31), the particle positions zµi and
velocities vµi have to be taken at the proper time τi of the corresponding
particle, for example zµi = z

µ
i (τi).

Expanding the δ-function in the potential energy according to

δ(∆zν∆zν) = δ(∆z2
0−∆z2) =

1
2|∆z| [δ(∆z0−|∆z|)+δ(∆z0 + |∆z|)] (2.32)

(with ∆zν = zνi −zνj ) preserves its symmetric form. By integrating either over
τi or over τj , one obtains, respectively, the first or second of the following
expressions (first two graphs of Fig. 2.6),

ei
2

∫
[Aµret,j(z

σ
i ) +A

µ
adv,j(z

σ
i )]viµ dτi

≡ ej
2

∫
[Aµadv,i(z

σ
j ) +A

µ
ret,i(z

σ
j )]vjµ dτj . (2.33)

A
µ
ret,j and Aµadv,j are the retarded and advanced potential of the j-th particle

according to (2.2a) and (2.2b). However, if the integral is always carried
out with respect to the particle on the backward light-cone of the other
one, one obtains, in spite of the preserved T -symmetry of the theory, only
contributions in terms of retarded potentials (third graph),

ei
2

∫
Aµret,j(z

σ
i )viµ dτi +

ej
2

∫
Aµret,i(z

σ
j )vjµ dτj , (2.34)
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and similarly, but time reversed, for the advanced potentials (fourth graph).
Einstein seems to mean this equivalence of different forms of the interaction
(in his Letter with Ritz quoted in the introduction to this chapter).

However, the Euler-Lagrange equations resulting from (2.31) always lead
to T -symmetric forces which are in accordance with Newton’s third law:

ma
µ
i =

ei
2

∑
j( 6=i)

[Fµνret,j(z
σ
i ) + Fµνadv,j(z

σ
i )]vi,ν . (2.35)

According to (2.8), this would require the cosmological boundary condition
F
µν
in +Fµνout = 0 in Maxwell’s theory. These derived equations of motion differ

from the empirically required ones,

ma
µ
i = ei

∑
j( 6=i)

Fµνret,j(z
σ
i )vi,ν +

ei
2

[Fµνret,i(z
σ
i )− Fµνadv,i(z

σ
i )]vi,ν , (2.36)

not only by the replacement of half the retarded with half the advanced forces,
but also by the missing radiation reaction Fµrad,i (the asymmetric self-force).
While the problem of a mass renormalization has disappeared, (2.35) seems
to be in drastic conflict with reality. Moreover, it contains a complicated
dynamical meshing of the future with the past that does not in any obvious
way permit the formulation of an initial-value problem.

The two equations of motion, (2.35) and (2.36), differ precisely by a force
that would result from the sum of the T -asymmetric fields of all particles,
F
µν
rad,total =

∑
j

1
2 (Fµνret,j − Fµνadv,j). Since the retarded and advanced fields

appearing in this expression possess identical sources, their difference solves
the homogeneous Maxwell equations, and thus represents a free field. There-
fore, it (the difference) may consistently be assumed to vanish for all times.
As there are no retarded fields at the beginning of the universe, this would
require

∑
j F

µν
adv,j(big bang) = 0 as a global constraint to all future sources.

If the condition Fµνrad,total = 0 were valid, the advanced effects of all
charged matter in the universe would precisely double the retarded forces
in (2.35), cancel the advanced ones, and imitate a self-interaction that is
responsible for radiation damping. This is an example for the equivalence of
apparently quite different dynamical representations of deterministic theories,
such as causal or teleological, local or global ones.

Instead of referring to a cosmic initial condition, Wheeler and Feyn-
man (1945) tried to derive the vanishing sum of asymmetric fields from the
assumption that the total charged matter in the universe behaves as an ‘ab-
sorber’ in a sense that is very different from Sect. 2.2. They assumed that the
T -symmetric field F̄ resulting from all particles in the universe, and accord-
ing to (2.35) determining the force on an additional ‘test particle’, vanishes
for statistical reasons (destructive interference) in a presumed empty space
surrounding all matter of this ‘island universe’. This assumption, in the form∑

j

F̄
µν
j :=

∑
j

1
2

[Fµνret,j + Fµνadv,j ] ⇒ 0 , (2.37)
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constitutes their cosmic absorber condition. Since the retarded and advanced
fields vanish by definition in the asymptotic past or future, respectively,
Wheeler and Feynman concluded by means of the homogeneous Maxwell
equations that the total asymmetric field must vanish everywhere.

The consistency of this procedure is far from being obvious. A sim-
ilar problem would arise for an expanding and recollapsing universe that
were sandwiched between two thermodynamically opposite radiation eras (ab-
sorbers with opposite thermodynamical arrows of time) — see Sect. 5.3. As
explained in Sect. 2.1, the compatibility of double-ended (two-time) bound-
ary conditions is highly nontrivial, and similar to an eigenvalue problem. The
consistency problem is particularly severe for a classical universe that remains
optically transparent (Davies and Twamley 1993).

In contrast to the physical absorbers of Sect. 2.2, the absorber condition
is T -symmetric. This has led to many misunderstandings. For example, rather
than adding the vanishing antisymmetric term to (2.35), one might as well
subtract it in order to obtain the time-reversed representation

ma
µ
i = ei

∑
j( 6=i)

Fµνadv,j(z
σ
i )vi,ν −

ei
2

[Fµνret,i(z
σ
i )− Fµνadv,i(z

σ
i )]vi,ν . (2.38)

Though being as correct as (2.36) under the absorber condition, (2.38) de-
scribes advanced actions and a radiation reaction that leads to reversed damp-
ing (exponential growth).

Therefore, Wheeler and Feynman’s absorber condition cannot explain
the observed radiation arrow. Neither (2.36) nor (2.38) would describe the
asymmetric empirical situation. Evidently, in general only a limited number of
‘obvious sources’ contribute noticeably to the retarded sum (2.36). Otherwise,
retardation would have never been recognized. This means that the retarded
contribution of all ‘other’ sources (those which form the ‘universal absorber’)
must interfere destructively,∑

i∈ absorbers

Fµνret,i ≈ 0 ‘inside’ universal absorber (2.39)

(see Fig. 2.7). This is possible (except for the remaining thermal radiation)
if the absorber particles approach thermal equilibrium by means of collisions
after having been accelerated by the retarded field. Therefore, one can not
expect ∑

i∈ absorbers

F
µν
adv,i ≈ 0 ‘inside’ universal absorber (2.39′)

to hold in a symmetric way.
In order to justify the applicability of (2.36) (in contrast to that of

(2.38)), one still needs the asymmetric condition that has been derived in
Sect. 2.2 from the thermodynamical arrow of time under certain cosmologi-
cal assumptions. Any motion of absorber particles is dissipated as heat af-
ter it has been induced. While in field theory the field may be regarded
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'absorber'

' inside' 'outside'

∑
i∈ absorbers

Fret,i ≈ 0
∑
i

(Fret,i + Fadv,i) = 0

Fig. 2.7. T -symmetric (‘outside’) and T -asymmetric (‘inside’) absorber conditions of a
model universe with an action-at-a-distance electrodynamics

as ‘matter’ with its own temperature, action-at-a-distance theory ascribes
thermodynamical properties only to the charges. In the former description,
the relation between electromagnetic and thermodynamical arrows is just an
example of the universality of the thermodynamical arrow (see Sect. 3.1.2).
As will be argued in Chap. 5, the observed arrows may have emerged from
an initial homogeneous thermal equilibrium (the radiation era) by means of
inhomogeneous gravitational contraction.

With these remarks, I also hope to put to rest objections raised by Pop-
per (1956) against the thermodynamical foundation of the radiation arrow
— see also Price (1996). The only ‘unusual’ aspect of electromagnetic fields
(when regarded as matter) is their weak coupling, which may greatly de-
lay their thermalization in the absence of absorbers. It is this property that
allows light and radio waves to serve as an excellent information medium.

Therefore, the T -symmetric ‘absorber condition’ (2.37) would explain
the equivalence of various forms of electrodynamics, but not the time arrow
of radiation. In action-at-a-distance theory there is no free radiation, while
the radiation reaction is the effect of advanced forces ‘caused’ by future ab-
sorbers. If the universe remained transparent for all times in some direction
and at some frequency, an appropriately beamed emitter of electromagnetic
radiation should not draw any power according to the absorber theory. As it
always seems to do so (Partridge 1973), the absorber theory may be indeed
be ruled out in a forever expanding universe. If similarly applied to gravita-
tional fields, it would be in conflict with the observed energy loss of double
pulsars.

General literature: Wheeler and Feynman 1945, 1949, Hoyle and Narlikar 1995
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The thermodynamical arrow of time is characterized by the increase of en-
tropy according to the Second Law, postulated by Clausius in 1865 on the
basis of Carnot’s cycle. It can be written in the form

dS

dt
=
{
dS

dt

}
ext

+
{
dS

dt

}
int

,

with dSext =
dQ

T
and

{
dS

dt

}
int

≥ 0 , (3.1)

where S is the phenomenological entropy of a bounded system, while dQ is the
total inward flow of heat through its boundary (see also the local form (3.1’)
on page 57). The heat flux is usually not written as a derivative dQ/dt, since
its integral would not represent a ‘function of state’ Q(t), while it does, of
course, define the time-integrated flux in the actual process. The first term of
(3.1) vanishes by definition for ‘thermodynamically closed’ systems. Since the
whole universe is defined as an absolutely closed system (even if infinite), its
total entropy, or the mean entropy of co-expanding volume elements, should
according to this law evolve towards its maximum — the so-called Wärmetod
(heat death). The phenomenological thermodynamical concepts used in (3.1)
or (3.1’), in partucular the temperature, apply only in situations of partial
(local) equilibrium.

Statistical physics is expected to provide a foundation of phenomeno-
logical thermodynamics — including the Second Law. While in principle all
physical concepts are phenomenological, this term is here used to empha-
size the existence of a (conceivably complete) ‘microscopic’ description that
awaits the application of statistical methods.

Statistical considerations are indeed essential for the understanding of
the mechanisms of ‘irreversible’ processes (those with {dS/dt}int > 0). How-
ever, statistics as an aspect of counting has nothing a priori to do with dynam-
ics. Therefore, it cannot by itself single out a direction in time. The statistical
justification of ‘irreversible’ processes requires additional assumptions, which
often remain unnoticed, since they appear ‘natural’ to our prejudiced causal
way of thinking. They cannot be derived by means of statistical arguments
from the symmetric dynamical laws, and therefore have to be analyzed in
order to reveal the true origin of the thermodynamical arrow.
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The attempt to explain this fundamental asymmetry on the basis of the
‘historical nature’ of the world, that is, from the assumption that the past
be ‘fixed’ (and therefore neither requires nor allows statistical retrodiction)
would clearly represent a circular argument. This view must itself be rooted in
the time asymmetry of the physical world. The existence of knowledge or in-
formation about the past corresponds to a time-asymmetric relation between
documents and their objects, equivalent to the asymmetric ‘causal’ relation
between retarded electromagnetic fields and ‘their’ sources (Sect. 2.1). For
example, light contains information about objects in the more or less re-
cent past, as we can see when we open our eyes. Thus, documents represent
an asymmetry in the physical world, and do not simply reflect the way the
boundary conditions are posed (as initial or final ones). On the other hand, a
certain (objectivizable) observer-relatedness of statistical concepts seems to
be required for these concepts to be justified.

In a statistical description, ‘irreversible’ processes are of the form

improbable state →
t

probable state,

where the probability ratio is usually a huge number. These probabilities are
defined by the size of certain sets of elementary states (called ‘representative
ensembles’ by Tolman 1938) which contain the real state of the considered
system (a point in its configuration space) as a member. This measure of
probability changes while a state moves along its trajectory through different
sets. If the representative ensembles are operationally defined, for example
by means of a preparation procedure, they are often called macroscopic or
thermodynamical states. Their physical justification is a major objective of
the theory.

Since the above processes possess microscopic realizations, they are more
probable than those of the kind

improbable state →
t

improbable state.

Their overwhelming occurrence in nature can thus be statistically derived
from the presumption of an improbable initial state. In the operational ap-
proach, such an assumption is simply taken for granted. In a cosmological
context, it has occasionally been called the Kaltgeburt (cold birth) of the
universe, although a low temperature need not be its essential aspect (see
Sect. 5.3). However, such an assumption appears quite unreasonable precisely
for statistical reasons, since (1) there are just as many processes of the type

probable state →
t

improbable state,

and (2) far more of the kind

probable state →
t

probable state.

The latter describe equilibrium. Hence, for statistical reasons we should ex-
pect to find the world in the situation of a heat death.
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The first of these two objections is Loschmidt’s Umkehreinwand (re-
versibility objection). It is based on the property that each trajectory has pre-
cisely one time-reversed counterpart.1 If, for example, z(t) ≡ {qi(t),
pi(t)}i=1...3N describes a trajectory in 6N -dimensional phase space (Γ -space)
according to the Hamiltonian equations, then the time-reversed trajectory,
zT(−t) ≡ {qi(−t),−pi(−t)}, is also a solution of the equations of motion (cf.
the Introduction). If the entropy S of a state z can be defined as a function of
state, S = F (z), with F (z) = F (zT), then Loschmidt’s objection means that
for every solution with dS/dt > 0 there is precisely a corresponding one with
dS/dt < 0. In statistical theories, F (z) is defined as a monotonic function
(conveniently the logarithm) of the measure of the mentioned set of states
to which z belongs. The property F (z) = F (zT) is then a consequence of
the fact that the transformation z → zT represents a symmetry, while the
stronger objection (2) of above means that there are far more solutions with
dS/dt ≈ 0.

In order to describe the thermodynamical arrow of time statistically,
one either has to derive the Kaltgeburt in some form from a new and fun-
damental assumption, or simply to postulate it. The Second Law is by no
means incompatible with deterministic or T-symmetric dynamical laws; it is
just extremely improbable, and therefore in conflict with unbiased statistical
reasoning. The widespread ‘double standard’ of readily accepting improbable
initial conditions while rejecting similar final ones has been duly criticized by
Price (1996).

Another historically relevant objection (Zermelo’s Wiederkehreinwand
or recurrence objection) is mathematically correct, but does not apply to a
sufficiently young universe (as ours seems to be). It can be based on a theorem
by Poincaré which states that every bounded mechanical system will return
as close as one wishes to its initial state within a sufficiently large time. The
entropy of closed systems would therefore have to return to its former values,
provided only the function F (z) is continuous. This is a special case of the
quasi-ergodic theorem which asserts that every system will come arbitrarily
close to any point on the hypersurface of fixed energy (and possibly of fixed
other analytical constants of the motion) within finite time.

While these theorems are mathematically correct, the recurrence objec-
tion fails to apply, since the age of our universe is much smaller than the
Poincaré times of a gas consisting of as few as ten or twenty particles. Their
recurrence to the vicinity of their initial states (or their coming close to any
other similarly specific state) can therefore be practically excluded. (The for-
mal objection that Zermelo’s argument does not apply to ensembles — which

1 Often T (or CPT) symmetry of the dynamics is used in this argument. This has
misled to the by no means justified expectation that the difficulties in deriving the Sec-
ond Law may be overcome by dropping this symmetry. However, as already pointed out
in the Introduction, the crucial point in Loschmidt’s argument is determinism, which is
often reflected by the possibility of compensating for T asymmetry by another symmetry

violation (see also Sect. 3.4).
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are used to describe macroscopic systems — does in turn not apply to reality,
since an ensemble does not represent the real physical state.) Many ‘founda-
tions’ of irreversible thermodynamics are based on a formal idealization that
leads to infinite Poincaré recurrence times (for example by using the ‘ther-
modynamical limit’ of infinite particle number). They are quite irrelevant
in our universe of finite age, and they would not invalidate the reversibility
objection (or the equilibrium expectation). Rather, they illustrate that some
kind of Kaltgeburt is required in order to derive the thermodynamical arrow.

The theory of thermodynamically irreversible processes thus has to ad-
dress two main problems:
1. The investigation of realistic mechanisms which describe the dynamical

evolution away from certain (presumed) improbable initial states. This is
usually achieved in the form of master equations, which mimic a law-like
T-asymmetry — analogous to Ritz’s retarded action-at-a-distance in elec-
trodynamics. Their ensemble dynamics is equivalent to a stochastic process
for individual states (applicable in the ‘forward’ direction of time). These
asymmetric dynamical equations may then even describe the emergence
of order (Sect. 3.4).

2. The precise characterization of the required improbable initial states. This
leads again to the quest for an appropriate cosmic initial condition, similar
to Aµin = 0 for the radiation arrow (cf. Sects. 2.2 and 5.3).

3.1 The Derivation of Classical Master Equations

Statistical physics is concerned with systems consisting of a huge number
of microscopic constituents. These are known to obey quantum mechanics.
However, this theory has always been haunted by interpretational problems
regarding the stochastic nature of ‘quantum events’. This probabilistic nature
of quantum theory is in general understood as representing a fundamental
(albeit not precisely defined) irreversible dynamical element, that would have
to be taken into account in a microscopic description of thermodynamical
systems. In contrast, classical mechanics is deterministic and well defined.
Therefore, classical statistical mechanics will be discussed in this chapter
for conceptual consistency and later comparison with quantum statistical
mechanics — even though it is based on an incorrect microscopic theory. Most
thermodynamical properties of a gas, for example, can in fact be modelled by
a system of interacting classical mass points (see (4.20)). While the present
section follows historical routes, a more general and systematic formalism
will be presented in Sect. 3.2.
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3.1.1 µ-Space Dynamics and Boltzmann’s H-Theorem

The state of a mechanical system of N classical (distinguishable) particles
can either be represented by one point in its 6N -dimensional phase space
(‘Γ -space’), or by N ordered points in six-dimensional ‘µ-space’ (the single-
particle phase space). If the particles are not distinguished from one another,
these N points form a discrete distribution in µ-space. It is equivalent to the
ensemble of N ! points in Γ -space, which result from all particle permutations.
Because of the large number of particles forming macroscopic systems (of the
order 1023), Boltzmann (1866, 1896) used continuous (smoothed) distribu-
tions (or phase space densities) %µ(p, q). This harmless looking difference will
turn out to have important consequences. Two types of argument have been
proposed for its justification:

1. The formal thermodynamical limit N → ∞ represents an idealization for
which the mathematically disturbing Poincaré recurrence times become
infinite. Mathematical proofs may then appear to be rigorous, where in
fact they are approximations. While often convenient, this procedure may
conceal physically important aspects, in particular when the above limit
is interchanged with others.

2. Slightly ‘uncertain’ positions and momenta, corresponding to small vol-
ume elements in Γ -space, ∆VΓ = (∆Vµ)N (that is, infinite ensembles of
states), may also lead to smooth distributions, since N ! volume elements
easily overlap even for a diluted gas according to N !∆VΓ ≈ (N∆Vµ)N .
Although uncertainties slightly larger than distances between the particles
are sufficient for the smoothing, they have drastic dynamical consequences
in the generic situation of interacting particles. However, these uncertain-
ties cannot be based on the quantum mechanical uncertainty relations with
their corresponding phase space cells of size h3N , since equivalent prob-
lems reappear in quantum theory if phase space points are consistently
replaced with wave functions (see Sect. 4.1.1).

The time dependence of an individual point {pi(t), qi(t)} in Γ -space
(with i = 1 . . . 3N), described by Hamilton’s equations, is equivalent to the
simultaneous time dependence of all N points in µ-space. Therefore, the time
dependence of an ensemble in Γ -space (represented in general by a distribu-
tion %Γ ) determines that of the corresponding smooth density %µ. In contrast
to the dynamics in Γ -space (Sect. 3.1.2), however, this dynamics is not ‘au-
tonomous’: the time derivative of a non-singular density %µ is not determined
by %µ. The reason is that %Γ cannot be recovered from %µ in order to de-
termine the latter’s time derivative from that of the former. The mapping of
Γ -space distributions on µ-space distributions cannot be uniquely inverted,
as it destroys information about correlations between the particles (see also
Fig. 3.1 below and the subsequent discussion). The smooth µ-space distribu-
tion may characterize a ‘macroscopic state’ in the sense mentioned in the
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introduction to this chapter. Therefore, the envisioned chain of computation

%µ → %Γ
H→ d%Γ

dt
→ ∂%µ

∂t
, (3.2)

which would be required to derive an autonomous dynamics for %µ, is bro-
ken at its first link. Boltzmann’s attempt to bridge this gap by statistical
arguments will turn out to be the source of the time direction asymmetry
in his statistical mechanics, and similarly in other descriptions of irreversible
processes. His procedure specifies a direction in time in a phenomenologically
justified way, while it was apparently meant to represent an approximation
rather than a modification of the T-symmetric Hamiltonian dynamics. The
question is, under what circumstances it may be valid.

Boltzmann postulated a dynamical law of the form

∂%µ
∂t

=
{
∂%µ
∂t

}
free+ext

+
{
∂%µ
∂t

}
collision

. (3.3)

Its first term is defined to describe motion under external forces only. It can
be written as a continuity equation in µ-space,{

∂%µ
∂t

}
free+ext

= −divµ jµ := −∇q · (q̇%µ)−∇p · (ṗ%µ)

= −∇q ·
( p
m
%µ

)
−∇p · (F ext%µ) , (3.4)

where jµ is the 6-dimensional current density in µ-space. In the absence of
particle interactions this equation describes the dynamics of the ‘phase space
fluid’ exactly. It represents the local conservation of probability in µ-space
according to the deterministic Hamiltonian equations, which hold separately
for each particle in this case. Each point in µ-space (each single-particle
state) moves continuously on its orbit, ruled by the external forces F ext, and
thereby retaining its individual probability that is determined by the initial
condition for %µ.

For the second (non-trivial) term Boltzmann proposed his Stoßzahlansatz
(collision equation), which will here be formulated under the following sim-
plifying assumptions:

1) F ext = 0 ‘no external forces’
2) %µ(p, q, t) = %µ(p, t) ‘homogeneous distribution’

The second condition is dynamically consistent for translation-invariant in-
teractions. From these assumptions one obtains {∂%µ/∂t}free+ext = 0. The
Stoßzahlansatz is then written in the plausible form

∂%µ
∂t

=
{
∂%µ
∂t

}
collision

= gains− losses , (3.5)



3.1 The Derivation of Classical Master Equations 43

that is, as a balance equation. Its two terms on the RHS are explicitly de-
fined by means of transition rates w(p1p2;p′1p

′
2) for particle pairs from p′1p

′
2

to p1p2. They are usually (in a low density approximation) assumed to be
determined by the two-particle scattering cross sections, and have to satisfy
conservation laws. Because of this description in terms of probabilities for a
discontinuous change of momenta, the collisions cannot be represented by a
local conservation of probability in µ-space, and therefore do not assume the
form of a continuity equation (3.4).

The Stoßzahlansatz (3.5) reads explicitly

∂%µ(p1, t)
∂t

=
∫

[w(p1p2;p′1p
′
2)%µ(p′1, t)%µ(p′2, t)

− w(p′1p
′
2;p1p2)%µ(p1, t)%µ(p2, t)] d

3p2 d
3p′1 d

3p′2 . (3.6)

It is the prototype of a master equation as an irreversible balance equation
based on probabilistic transition rates. How can it be irreversible in spite of
representing an approximation to the reversible Hamiltonian dynamics? This
can clearly not be true in general, but only for special solutions which select
an arrow of time. These solutions cannot even be probable.

For further simplification, invariance of the transition rates under colli-
sion inversion

w(p1p2;p′1p
′
2) = w(p′1p

′
2;p1p2) (3.7)

will be assumed. It may be derived from invariance under space reflection
and time reversal, although these two symmetries do not necessarily have to
be separately valid. The Stoßzahlansatz then assumes the form

∂%µ(p1, t)
∂t

=
∫

[w(p1p2;p′1p
′
2)[%µ(p′1, t)%µ(p′2, t)

− %µ(p1, t)%µ(p2, t)] d
3p2 d

3p′1 d
3p′2 . (3.8)

In order to demonstrate the irreversibility described by the Stoßzahl-
ansatz, it is useful to consider Boltzmann’s H-functional

H[%µ] :=
∫
%µ(p, q, t) ln %µ(p, q, t) d3p d3q = N ln %µ , (3.9)

proportional to the mean logarithm of probability. The mean f̄ of a function
f(p, q) is here defined as f̄ :=

∫
f(p, q)%µ(p, q) d3p d3q/N , in accordance

with the normalization
∫
%µ(p, q) d3p d3q = N . Because of this fixed nor-

malization, the H-functional is large for narrow distributions, but small for
wide ones. A discrete point (or δ-distribution), for example, would lead to
H[%µ] = ∞, while a distribution being constant on a volume of size Vµ,
%µ = N/Vµ, gives H[%µ] = N(lnN − lnVµ). (H is defined up to an additive
constant, depending on the choice of a unit volume element in phase space.)
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One may now derive Boltzmann’s H-theorem,

dH[%µ]
dt

≤ 0 , (3.10)

by differentiating H[%µ] with respect to time, while using the collision equa-
tion in the form (3.8):

dH[%µ]
dt

= V

∫
∂%µ(p1, t)

∂t
[ln %µ(p1, t) + 1] d3p1

= V

∫
w(p1p2;p′1p

′
2)[%µ(p′1, t)%µ(p′2, t)− %µ(p1, t)%µ(p2, t)]

× [ln %µ(p1, t) + 1] d3p1 d
3p2 d

3p′1 d
3p′2 . (3.11)

The last expression may be conveniently reformulated by using the symme-
tries under collision inversion (3.7), and under particle permutation,
w(p1p2;p′1p

′
2) = w(p2p1;p′2p

′
1). (Otherwise this combined symmetry would

be required to hold for short chains of collisions, at least.) Rewriting the inte-
gral as a sum of the four different permutations of the integration variables,
one obtains

dH[%µ]
dt

=
V

4

∫
w(p1p2;p′1p

′
2)[%µ(p′1, t)%µ(p′2, t)− %µ(p1, t)%µ(p2, t)]

× {ln[%µ(p1, t)%µ(p2, t)]

− ln[%µ(p′1, t)%µ(p′2, t)]}d3p1 d
3p2 d

3p′1 d
3p′2 ≤ 0 . (3.12)

The integrand is now manifestly non-positive, since the logarithm is a mono-
tonically increasing function of its argument. This concludes the proof of
(3.10).

In order to recognize the connection of the H-functional with entropy,
one may consider the Maxwell distribution %M,

%M(p) :=
N

V

exp(−p2/2mkT )√
(2πmkT )3

. (3.13)

Its H-functional H[%M] has two important properties:

1. It represents a minimum for given energy, E =
∫
%µ(p)[p2/2m] d3p ≈∑

i p
2
i /2m. A proof will be given in a somewhat more general form in

Sect. 3.1.2. (Unconstrained statistical reasoning would predict infinite en-
ergy, since the phase space volume grows non-relativistically with its 3N/2-
th power.) %M must therefore represent an equilibrium distribution under
the Stoßzahlansatz if the latter is assumed to conserve energy.

2. One obtains explicitly

H[%M] = V

∫
%M(p) ln %M(p) d3p

= −N
(

ln
V

N
+

3
2

lnT + constant
)

. (3.14)
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If one compares this expression with the entropy of a mole of a monatomic
ideal gas according to phenomenological thermodynamics,

Sideal(V, T ) = R

(
lnV +

3
2

lnT
)

+ constant , (3.15)

one recognizes (up to the phenomenologically undefined, possibly N-de-
pendent constant)

Sideal = −kH[%M] =: Sµ[%M] , (3.16)

where k = R/N .
If the entropy is thus interpreted as representing a measure of the width

of the particle distribution in µ-space, the Stoßzahlansatz describes success-
fully the evolution towards a Maxwell distribution with its ensemble param-
eter T that is recognized as the temperature (which determines the mean
energy in this ensemble).

This success seems to be the origin of the ‘myth’ of the statistical foun-
dation of the thermodynamical arrow of time. However, statistical arguments
can neither explain why the Stoßzahlansatz is a good approximation in one
and only one direction of time, nor tell us whether Sµ is always an appro-
priate definition of entropy. It will indeed turn out to be insufficient when
correlations between particles become essential, as is, for example, the case
for real gases or solid bodies. Taking them into account requires more general
concepts, which were first proposed by Gibbs. His approach will also allow
us to formulate the exact ensemble dynamics in Γ -space, although it can still
not explain the origin of the thermodynamical arrow of time.

3.1.2 Γ -Space Dynamics and Gibbs’ Entropy

In the preceding section, Boltzmann’s smooth phase space density %µ was
identified as representing small uncertainties in positions and momenta: it
is equivalent to an infinite number (a continuum) of states, described by
a volume element ∆VΓ (or any other Γ -space distribution) rather than a
‘real’ point. An objective state would have to be represented by a point (or
a δ-distribution) in Γ -space, or by a sum over N δ-functions in µ-space (if
particles are not distinguished). It would, therefore, lead to an infinite value
of Boltzmann’s H-functional.

However, the finite value of Sµ, derived from the smooth µ-space dis-
tribution, is not merely a measure of this arbitrary smoothing procedure. If
points are replaced with small (but not too small) volume elements in phase
space, this leads to a smooth distribution %µ whose width reflects that of
the discrete distribution. Therefore, Sµ does characterize the real N -particle
state. The formal ‘renormalization of entropy’, which is part of this smoothing
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procedure, adds an infinite positive contribution to the infinite negative en-
tropy corresponding to a point — such that the remaining finite sum is physi-
cally meaningful. The ‘representative ensemble’ resulting from the smoothing
defines a finite measure of probability in the sense of the introduction to this
chapter for each point in Γ -space. It depends only negligibly on the precise
smoothing conditions, provided the discrete µ-space distribution is already
smooth in the mean.

The ensemble concept introduced by Gibbs (1902) is different from Boltz-
mann’s from the outset. He considered probability densities %Γ (p, q) (with∫
%Γ (p, q) dp dq = 1 — from now on writing p := p1 . . . p3N , q := q1 . . . q3N

and dp dq := d3Np d3Nq for short) which are meant to describe incomplete in-
formation about microscopic degrees of freedom, for example characterizing a
macroscopic (incomplete) preparation procedure. Boltzmann’s H-functional
is then replaced by Gibbs’ formally analogous extension in phase η,

η[%Γ ] := ln %Γ =
∫
%Γ (p, q) ln %Γ (p, q) dp dq , (3.17)

that leads to an ensemble entropy SΓ := −kη[%Γ ]. For a probability density
being constant on a phase space volume element of size ∆VΓ (while vanish-
ing otherwise) one has η[%Γ ] = − ln∆VΓ . The entropy SΓ = k ln∆VΓ is a
logarithmic measure of the size of this volume element that is uniformly oc-
cupied by the ensemble, but does not characterize a real many-particle state
(a point), as Boltzmann’s entropy is supposed to do.

For a smooth distribution of statistically independent particles, %Γ =∏N
i=1[%µ(pi, qi)/N ], one obtains nonetheless

η[%Γ ] =
N∑
i=1

∫
[%µ(pi, qi)/N ] ln[%µ(pi, qi)/N ] d3pi d

3qi

=
∫
%µ(p, q)[ln %µ(p, q)− lnN ] d3p d3q = H[%µ]−N lnN .

(3.18)

In this important special case one thus recovers Boltzmann’s statistical en-
tropy Sµ (with all its advantages) — except for the term kN lnN ≈ k lnN !,
that can be interpreted as the mixing entropy of the gas with itself. Although
merely an additive constant in systems with fixed particle number, it would
lead to observable contributions at variance with experiments in situations
where the particle number may vary dynamically. Large particle numbers
would then acquire far too large statistical weights. This physically inappro-
priate mixing entropy (that led to confusion in Gibbs’ approach although it
had already been known as a problem to Maxwell) disappears when Gibbs’
ensemble concept is applied to quantum states defined in the occupation
number representation. 2 After borrowing this result from quantum theory,

2 The popular argument that this term has to be dropped because of the indistin-
guishability of particles is certainly wrong, since kinematically different (even though op-
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one can therefore justify Boltzmann’s entropy in terms of ensemble entropy
for statistically uncorrelated particles.

Furthermore, SΓ is maximized under the constraint of fixed mean en-
ergy, Ē =

∫
H(p, q)%Γ (p, q) dp dq, by the canonical (or Gibbs’) distribution

%can := Z−1 exp(−H(p, q)/kT ). The latter can be derived from a variational
procedure with the additional constraint of fixed normalization of probability,∫
%Γ (p, q) = 1, that is, from

δ{η[%Γ ] + α

∫
%Γ (p, q) dp dq + β

∫
H(p, q)%Γ (p, q) dp dq}

=
∫
{ln %Γ (p, q) + (α+ 1) + βH(p, q)}δ%Γ (p, q) dp dq = 0 ,

(3.19)

with Lagrange parameters α and β. Its solution is

%can = exp{−[βH(p, q)− α− 1]} =: Z−1 exp{−βH(p, q)} , (3.20)

and one recognizes β = 1/kT and the partition function (sum over states)
Z :=

∫
e−βH(p,q) dp dq = e−α−1. By using the ansatz % = eχ+∆χ with

eχ := %can, an arbitrary (not necessarily small) variation ∆χ(p, q), the above
constraints, and the general inequality ∆χe∆χ ≥ ∆χ, one may even show
that the canonical distribution represents an absolute maximum of this en-
tropy. In statistical thermodynamics (and in contrast to phenomenological
thermodynamics) entropy is thus a more fundamental concept than tem-
perature, which applies only to special (canonical or equivalent) probability
distributions, while a formal entropy is defined for all ensembles.

One can similarly show that SΓ is maximized by the micro-canonical
ensemble %micro ≡ δ(E − H(p, q)) if constrained by the condition of fixed
energy, H(p, q) = E. Although essentially equivalent for most applications,
the canonical and the microcanonical distribution characterize two different
situations: systems with and without energy exchange with a heat bath.

For non-interacting particles, H =
∑
i[p

2
i /2m + V (qi)], one obtains a

factorizing canonical distribution %Γ (p, q) =
∏
i[%µ(pi, qi)/N ] (as considered

in (3.18)) with a µ-space distribution given by %µ(p, q) ∝ N exp{−[p2/2m+
V (q)]/kT}. This is a Maxwell distribution multiplied by the barometric for-
mula. However, the essential advantage of the canonical Γ -space distribution

erationally indistinguishable) states would have to be counted individually for statisti-
cal purposes. Different classical states related by particle permutation would dynamically
retain their individual probabilities. The use of µ-space distributions, such as in Boltz-
mann’s statistical mechanics, is similarly unjustified from a classical point of view, unless
the probabilities were multiplied by the empirically excluded weight factors N ! again. In-
distinguishability and identity (assumed for ‘quantum particles’) are different concepts.
The absence of mixing entropy from systems with variable particle number can only be
understood in terms of quantum mechanical concepts (see (4.20)). Even the difference
N lnN − lnN ! ≈ N − lnN , usually neglected in this argument, can be physically un-
derstood, as it counts those particle number fluctuations which occur in open systems

described by a grand canonical distribution with a chemical potential (see page 69).
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(3.20) over Boltzmann’s is its ability to describe equilibrium correlations be-
tween particles. This has been demonstrated in particular by the cluster
expansion of Ursell and Mayer (see Mayer and Mayer 1940), in more re-
cent terminology called an expansion by N -point functions, and technically a
predecessor of Feynman graphs. The distribution (3.20) must, however, not
include macroscopic degrees of freedom (such as the shape of a solid body
— see also Sect. 3.3.1). In the case of a rotationally symmetric Hamiltonian,
for example, the solid body in thermodynamical equilibrium would other-
wise have to be physically characterized by a symmetric distribution of all
its orientations in space rather than by a definite orientation. Similarly, its
center of mass would always have to be expected close to the minimum of
an external potential (see also Fröhlich 1973). However, these macroscopic
variables are dynamically robust rather than being ergodic. When calculating
an appropriate representative ensenble according to (3.19), one has to impose
the additional constraint of ‘given’ values for them (see also Sect. 3.3.1).

Gibbs’ extension in phase η thus appears superior to Boltzmann’s H-
functional (3.9). Unfortunately, the corresponding ensemble entropy SΓ has
two (related) defects, which render it entirely unacceptable for representing
physical entropy: (1) in blunt contrast to the Second Law it remains constant
under exact (Hamiltonian) dynamics, and (2) it is obviously not a local or
additive concept (that would define an entropy density in space).

The exact ensemble dynamics may be formulated in analogy to (3.4) by
using the 6N -dimensional continuity equation,

∂%Γ
∂t

+ divΓ (%ΓvΓ ) = 0 . (3.21)

It describes the conservation of probability for each volume element as it
moves through Γ -space as a bundle of trajectories. The 6N -dimensional ve-
locity vΓ may be substituted using the Hamiltonian equations,

vΓ ≡ (ṗ1, . . . , ṗ3N , q̇1, . . . , q̇3N )

=
(
−∂H
∂q1

, . . . ,− ∂H

∂q3N
,
∂H

∂p1
, . . . ,

∂H

∂p3N

)
. (3.22)

After rewriting (3.21) by employing the identity divΓ (%ΓvΓ ) = %Γ divΓvΓ +
vΓ · gradΓ %Γ , one may use the Liouville theorem,

divΓvΓ = − ∂2H

∂p1∂q1
− · · · − ∂2H

∂p3N∂q3N

+
∂2H

∂q1∂p1
+ · · · +

∂2H

∂q3N∂p3N
≡ 0 , (3.23)

which characterizes an ‘incompressible flow’ in Γ -space. In this way one ob-
tains the Liouville equation,
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∂%Γ
∂t

= −vΓ · gradΓ %Γ

=
3N∑
n=1

(
∂H

∂qn

∂%Γ
∂pn

− ∂H

∂pn

∂%Γ
∂qn

)
= {H, %Γ } , (3.24)

where {a, b} defines the Poisson bracket. This equation represents the ex-
act Hamiltonian dynamics for ensembles %Γ (p, q, t) under the assumption of
individually conserved probabilities.

From this picture of an incompressible flow one may expect that the
ensemble entropy SΓ (the measure of ‘extension in phase’) remains constant.
This can indeed be formally confirmed by differentiating (3.17) with respect
to time, inserting (3.24), and repeatedly integrating by parts:

dSΓ
dt

=
∫

(ln %Γ + 1)%̇Γ dp dq

=
∫

(ln %Γ + 1)
3N∑
n=1

(
∂H

∂qn

∂%Γ
∂pn

− ∂H

∂pn

∂%Γ
∂qn

)
dp dq

= −
∫ 3N∑

n=1

(
∂H

∂qn

∂ ln %Γ
∂pn

− ∂H

∂pn

∂ ln %Γ
∂qn

)
%Γ dp dq

= −
∫ 3N∑

n=1

(
∂H

∂qn

∂%Γ
∂pn

− ∂H

∂pn

∂%Γ
∂qn

)
dp dq = 0 . (3.25)

A more instructive proof may be obtained by multiplying the Liouville
equation (3.24) with i in order to cast the dynamics into a form that is
analogous to the Schrödinger equation,

i
∂%Γ
∂t

= i{H, %Γ } =: L̂%Γ . (3.26)

The operator L̂ (acting on probability densities) is called the Liouville opera-
tor. In accordance with this analogy one may use the formal solution %Γ (t) =
exp(−iL̂t)%Γ (0), valid if ∂L̂/∂t = 0 (cf. Prigogine 1962). The Liouville opera-
tor is Hermitean with respect to the inner product 〈%Γ , %Γ ′〉 :=

∫
%∗Γ %

′
Γ dp dq

(that is, 〈%Γ , L̂%′Γ 〉 = 〈L̂%Γ , %′Γ 〉), as can again be shown by partial integra-
tion. This means that the Liouville equation conserves these inner products.
For example, for %′Γ = ln %Γ one has

d

dt
〈%Γ , ln %Γ 〉 =

d

dt
ln %Γ = 0 , (3.27)

since the Liouville operator, when applied to a function f(%Γ ), satisfies the
same Leibniz chain rule L̂f(%Γ ) = (df/d%Γ )L̂%Γ as the time derivative.
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The norm corresponding to this inner product, ‖%Γ ‖2 = 〈%Γ , %Γ 〉 =∫
%2
Γ dp dq = %Γ , is then also dynamically invariant. It represents a linear

measure of extension in phase (a linear ensemble entropy 3), and thus has to
be distinguished from the probability norm

∫
%Γ dp dq = 1̄ = 1. The conser-

vation of these measures under a Liouville equation confirms in turn that the
Γ -space volume is an appropriate measure for non-countable sets of states
(Ehrenfest and Ehrenfest 1911): the thus defined ‘number’ of states must not
change under an appropriately defined determinism. A more fundamental
justification of this measure can be derived from the conservation of proba-
bilities of discrete quantum states (see Sect. 4.1).

The conservation of ensenble entropy that exact dynamics imposes is
unacceptable for physical entropy. Thus Gibbs introduced a more subtle con-
cept of entropy; one that he derived from his famous ink drop analogy: A
drip of ink into a glass of water is assumed to behave as an incompressible
fluid when the water is stirred. Although its volume has then to remain con-
stant, the whole glass of water will appear homogeneously colored after a
short while. Only a microscopic examination would reveal that the ink had
simply rearranged itself in many thin tubes, which still occupied a volume of
its initial size.

Therefore, Gibbs defined his new entropy SGibbs by means of a coarse-
grained distribution %cg, obtained by averaging over non-overlapping small
(but fixed) 6N -dimensional volume elements ∆Vm (m = 1, 2, . . .) which cover
the whole Γ -space:

%cg(p, q) =
1

∆Vm

∫
∆Vm

%(p′, q′) dp′ dq′ =:
∆pm
∆Vm

for p, q ∈ ∆Vm . (3.28)

The resulting ensemble entropy is then given by

SGibbs := −kη[%cg] = −k
∑
m

∆pm ln
∆pm
∆Vm

. (3.29)

As already mentioned in connection with the smoothing of Boltzmann’s µ-
space distributions, the justification of this procedure by the uncertainty
relations, and thus choosing the size of these phase space cells as h3N (or
N !h3N ), may be tempting, but would clearly be inconsistent with classical
mechanics. The consistent quantum mechanical treatment (Chap. 4) leads
again to the conservation of ensemble entropy (now for ensembles of wave
functions). ‘Quantum cells’ of size h3N can be justified only as convenient
units of phase space volume in order to obtain the same normalization of
entropy as in the classical limit of quantum statistical mechanics, where en-
semble entropy vanishes for pure states (those that correspond to one cell -
see (4.20)).

3 See Wehrl (1978) for further measures, which are, however, not always monotonically
related to one another. The conventional logarithmic measure is usually preferred because

of the resulting additivity of the entropies of statistically independent subsystems.
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The increase of Gibbs’ entropy can now be understood according to
the ink drop analogy. While the volume of the compact ink droplet is only
slightly increased by moderate coarse-graining, that of a dense web of thin
tubes (obtained by stirring) is considerably enlarged. Even though the coarse-
graining itself is quite artificial, its efficiency depends on the shape of the
volume to which it is applied. This is reminiscent of Boltzmann’s µ-space
densities, which characterize properties of the discrete particle distributions.
Now, since there are evidently far more droplet shapes with a large surface
than compact ones, the former have to be regarded as more probable. For
statistical reasons one should hardly ever find a compact droplet (which is
known to be true for three-dimensional droplets in the absence of surface
tension).

However, there remains an essential difference between a droplet of ink in
water and a dynamical volume element in phase space. While extension and
shape of a droplet are real physical properties, the individual state of a classi-
cal mechanical system is always represented by a point in phase space. Course
graining of the ink distribution may be likened to Boltzmann’s smoothing
procedure (that preserves properties of the real particle distribution), while
Gibbs’ entropy for a real state p, q, SGibbs = f(p, q) := k ln∆Vm0 (resulting
if p, q ∈ ∆Vm0), does not characterize this state.

Gibbs’ procedure is therefore usually applied to phase space densities
representing (incomplete) information from the outset. His entropy measures
the enlargeability by coarse-graining of some status of knowledge. Its in-
crease, dSGibbs/dt ≥ 0, under a deterministic (information-conserving) dy-
namical law describes transformation of coarse-grained (macroscopic) infor-
mation, assumed to be present initially, into fine-grained information, which
is thus regarded as ‘irrelevant’ (Sect. 3.2). However, this information concept
conflicts with the idea of entropy as a objective physical quantity that is inde-
pendent of any information held by an observer. This fundamental problem
will be further discussed in Sect. 3.3 and later chapters.

Similar to smoothing in µ-space, the operation of coarse-graining cannot
be uniquely inverted, since it destroys information. The intended chain of
calculation,

%cg → %
L̂→ ∂%

∂t
→ ∂%cg

∂t
, (3.30)

in analogy to (3.2), is again broken at its first link. A new autonomous dynam-
ics has therefore been proposed for %cg, in analogy to the Stoßzahlansatz, by
complementing the Hamiltonian dynamics with a dynamical coarse-graining,
applied in small but finite time steps ∆t:{

∂%cg

∂t

}
master

:=
[e−iL̂∆t%cg]cg − %cg

∆t
. (3.31)

In this form it may be also regarded as a variant of the Unifying Principle
thas was proposed by Lewis (1967). Instead of dynamically applying Gibbs’
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coarse-graining, Lewis himself suggested maximizing the entropy under the
constraint of certain fixed ‘macroscopic’ quantities (see also Jaynes’ theory
in Sect. 3.3.1).

Equation (3.31) is reasonable if the corresponding probability increments
∆∆pm (cf. 3.28) are proportional to ∆t for small but finite time intervals
∆t, thus describing transition rates between the cells ∆Vm. This important
condition will be discussed in a more general form in Sect. 3.2, and when
deriving the Pauli equation (4.17). Master equations such as (3.31) ensure
a monotonic entropy increase. Their approximate validity requires that the
microscopic (fine-grained) information remains dynamically irrelevant for the
evolution of the coarse-grained one. Except in the case of equilibrium, this
can at most be true in one direction of time.

Boltzmann’s dynamics, described by his Stoßzahlansatz, can be similarly
interpreted, as it neglects all particle correlations after they have formed in
collisions (similar to fine-grained information). It, too, is based on the as-
sumption that the interval ∆t is finite and large in terms of collision times.
The effect of a collision on the phase space distribution may be illustrated in
two-dimensional momentum space (Fig. 3.1): a collision between two particles
with small momentum uncertainties ∆p1 and ∆p2 leads deterministically to
a correlating (deformed) volume element of the same size ∆VΓ . (In a com-
plete description, momenta would also be correlated with particle positions.)
Subsequent neglect of the arising correlations will then enlarge this volume
element (∆V ′Γ > ∆VΓ ). However, neglecting such statistical correlations has
no effect on the real phase space point.

∆VΓ

p1∆p1

∆p2

p2

∆VΓ

∆V 'Γ

p1∆p '1

∆p '2

p2

collision

Fig. 3.1. Transformation of information about particle momenta into information about
correlations between them as the basis of the H-theorem.

The question under what precise mathematical conditions certain sys-
tems are indeed ‘mixing’ in the sense of the plausible ink drop analogy (in a
stronger version referred to as K-systems after Kolmogorov) is investigated
in ergodic theory (see Arnol’d and Avez 1968, or Mackey 1989). Non-ergodic
systems are usually pathological in forming sets of measure zero, or in be-
ing unstable against unavoidable perturbations. Otherwise they define robust
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(usually macroscopic) properties. Such situations have been claimed to ex-
ist generically (Yoccoz 1992), although their general physical meaning and
relevance has never been established.

The strongest mixing is required for the finest conceivable coarse-graining.
This is defined by its nontrivial limit ∆VΓ → 0, which can also be formal-
ized as a weak convergence for measures on phase space. It may be used
to obtain infinite Poincaré recurrence times for isolated systems. However,
this is neither required in a universe of finite age, nor would it be realistic,
since quantum theory limits the entropy capacity available in the form of
unlimited fine-graining of phase space. For this quantum mechanical reason
there can be no ‘overdetermination’ of the microscopic past in spite of the
validity of microscopic causality (cf. Footnote 1 of Chap. 2 and the end of
Sect. 5.3). However, it is important to notice that all concepts of mixing are
T-symmetric. In order to explain the time asymmetry of the Second Law
(‘irreversibility’), they have to be used dynamically in a specific direction of
time.

Dynamical coarse-graining (as in (3.31)) may also be represented by an
‘uncertain’ Hamiltonian. An ensemble of Hamiltonians describes an indeter-
minism similar to stochastic dynamical models (used for calculating ‘forward’
in time). Even very small such uncertainties may be sufficient to completely
destroy fine-grained information within a short time interval. For example,
Borel (1924) estimated the effect of a changed gravitational force caused on
earth by the displacement of a mass of the order of grams by a few centimeters
at the distance of Sirius. He could demonstrate that it would completely alter
the microscopic state of gas molecules in a vessel under normal conditions
within seconds. Although the distortions of individual molecular trajectories
are extremely small, they are amplified in each subsequent collision by a fac-
tor of the order of l/R, the ratio of the mean free path over the molecular
radius. This extreme sensitivity to the environment describes in effect a local
microscopic indeterminism. 4 In many situations, the microscopic distortions
may even co-determine macroscopic effects (thus causing an effective macro-
scopic indeterminism), as discussed at length in the theory of chaos (‘butterfly
effect’).

The essence of Borel’s argument for our purpose is that microscopic
states of macroscopic systems, aside from the whole universe, may never be
treated as dynamically isolated — even when they are thermodynamically
closed in the sense of dSext = 0. The dynamical coarse-graining that is part
of the master equation (3.31) may indeed be ascribed to perturbations by the
environment — provided they can be treated stochastically in the forward
direction of time. This important dynamical assumption is yet another form of
the intuitive causality that has been discussed at the beginning of Chap. 2 as a

4 While the effect of Borel’s gravitational distortions is drastically reduced in quantum
gravity (or for any other relevant long range quantum interaction), other environmental
effects (such as ‘decoherence’) become important unless there are stabilizing energy gaps

in the considered systems (see Sects. 4.3.3 and 5.3).
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manifestation of the arrow of time. The representative ensembles that are used
in statistical thermodynamics may be understood as those which arise (and
are maintained) by this stochastic nature of the unavoidable perturbations,
while ‘robust’ properties are regarded as macroscopic.

While the intrinsic dynamics of a macroscopic physical system may thus
transform coarse-grained information into fine-grained, interaction with the
environment transforms the resulting fine-grained information very efficiently
into practically useless correlations with distant systems. The sensitivity of
microscopic states of macroscopic systems to their environment strongly indi-
cates that simultaneously existing opposite arrows of time in different regions
of the universe would be inconsistent with one another. This universality of
the arrow of time seems to be its most important property. It has been
regarded as an example of global symmetry breaking, although this classifi-
cation would not yet exclude the far more probable symmetric (equilibrium)
universe.

Schulman (1999) has recently challenged this conclusion by presenting
an explicit counter example. However, his model is based on unrealistic and
possibly inconsistent assumptions. It presumes (partial) two-time boundary
conditions which are not dynamically independent (similar to the Wheeler-
Feynman type boundary conditions — cf. Sects. 2.1 and 2.4). Such condi-
tions may furthermore be insufficient to define arrows of time unless they
had both causally evolved from their respective (opposite) ‘pasts’ (see also
Casati, Chirikov and Zhirov 2000). This would dramatically enhance the con-
sistency problem. Most importantly, Schulman’s specific model is not based
on Hamiltonian dynamics, but rather on ‘cat maps’, which do not reflect
Borel’s extreme sensitivity to very weak interactions.

In order to reverse the thermodynamical arrow of time in a bounded sys-
tem, it would, therefore, not suffice to “go ahead and reverse all momenta”in
it, as ironically suggested by Boltzmann as an answer to Loschmidt. In an
interacting Laplacean universe, the Poincaré cycles of a subsystem could only
be those of the entire universe, since a (quasi-)periodicity of the subsystem
state would require the same periodicity of its effective Hamiltonian (which
in turn depends on its environment). Time reversal with thermodynamical
aspects has nonetheless been achieved for quantum mechanical spin waves,
which are strongly protected against external perturbations by their weak
interaction (similar to electromagnetic waves), and which furthermore allow
a sudden sign reversal of their Hamiltonian in order to simulate time reversal
(Rhim, Pines and Waugh 1971).

Spin wave experiments also demonstrate that an exactly closed system in
thermodynamical equilibrium may still contain an arrow of time in the form of
‘hidden correlations’. If the system has just reached equilibrium with respect
to a certain kind of (generalized) coarse-graining, it appears T-symmetric,
although its fine-grained information would still determine the direction and
distance in time to its closest low-entropy state (see the Appendix for a nu-
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merical example). Systems affected by Borel’s argument can not be reversed
by local manipulations.

3.2 Zwanzig’s General Formalism of Master Equations

Boltzmann’s Stoßzahlansatz (3.6) for µ-space distributions and the master
equation (3.31) for coarse-grained Γ -space distributions can thus be under-
stood in a similar way. There are indeed many other master equations follow-
ing this general strategy, which are to suit different purposes. Zwanzig (1960)
succeeded in formalizing them in a general and instructive manner, that also
reveals their analogy with retarded electrodynamics as another manifestation
of the arrow of time (see (3.39) – (3.46) below).

The basic concept of Zwanzig’s formalism are idempotent mappings P̂ ,
defined on probability distributions %(p, q),

% → %rel := P̂ % with P̂ 2 = P̂ and %irrel := (1− P̂ )% . (3.32)

Their interpretation and motivation will be explained by means of a number
of examples below. If these mappings reduce the information content of %
to what is then called its ‘relevant’ part %rel, they may be regarded as a
generalized coarse-graining. In order to interpret %rel as a probability density
again, one has to require its non-negativity and, for convenience,∫

%rel dp dq =
∫
% dp dq = 1 , (3.33a)

that is, ∫
%irrel dp dq =

∫
(1− P̂ )% dp dq = 0 . (3.33b)

Reduction of information means

SΓ [P̂ %] ≥ SΓ [%] (3.34)

(or similarly for any other measure of ensemble entropy).
Lewis’ master equation (3.31) may then be written in the more general

form {
∂%rel

∂t

}
master

:=
P̂ e−iL̂∆t%rel − %rel

∆t
. (3.35)

It describes a monotonic increase of the corresponding entropy S[%rel]. How-
ever, in contrast to Zwanzig’s approach, to be discussed below, phenomeno-
logical master equations such as (3.35) are often understood as describing a
fundamental indeterminism that would replace the Hamiltonian dynamics.
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In most applications, Zwanzig’s idempotent operations P̂ are linear and
Hermitean with respect to the inner product for probability distributions
defined above (3.27). In this case they are projection operators, which project
out some ‘relevant component’ of the original distribution. If such a projection
obeys (3.33a) for every %, it must leave the equipartition invariant, P̂1 = 1,
as can be seen from the inner product of this equation with an arbitrary
distribution %.

However, Zwanzig’s dynamical formalism may also be meaningful for
non-Hermitian or even non-linear idempotent mappings P̂ (cf. Lewis 1967,
Willis and Picard 1974). These mappings are then not projections any more:
they may even create new information. A trivial example for the creation
of information is the nonlinear mapping of all probability distributions onto
a fixed one, P̂ % := %0 for all %, regardless of whether they contain %0 as a
component. The physical meaning of such generalizations will be discussed
in Sects. 3.4 and 4.4. In the following we will concentrate on information-
reducing mappings.

Zwanzig’s ‘projection’ concept is deliberately kept general in order to
permit a wealth of applications. Examples introduced so far are coarse-
graining, P̂cg% := %cg, as defined in (3.28)), and the neglect of correlations
between particles described in µ-space:

P̂µ%(p, q) :=
N∏
i=1

%µ(pi, qi)
N

, with

%µ(p, q) :=
N∑
i=1

∫
%(p, q)δ3(p− pi)δ3(q − qi) dp dq . (3.36)

(As before, boldface letters represent three-dimensional vectors, while p, q
is a point in Γ -space.) This particular application of the general concept
defines a non-linear though information-reducing ‘Zwanzig projection’. Most
arguments, valid for linear operators P̂ , can here still be applied to the linearly
resulting objects %µ(p, q) (which do not live in Γ -space) rather than their
products P̂µ%(p, q) (which do). In quantum theory, this procedure is related
to the Hartree or mean field approximation. Boltzmann’s complete ‘relevance
concept’ can be written as P̂Boltzmann = P̂µP̂cg, which leads to the convenient
smooth µ-space distribution even when applied to points (or a sum of δ-
functions) in Γ -space. An obvious generalization of P̂Boltzmann consists of
a projection onto two-particle correlation functions. In this way a complete
hierarchy of relevance concepts in terms of n-point functions (equivalent to a
cluster expansion) can be defined.

A particularly important concept of relevance that is often not even
noticed is locality (see e.g. Penrose and Percival 1962). It is required for the
additivity of entropy that has been presumed in the fundamental phenomeno-
logical equation (3.1), and is required for the concept of an entropy density,
S =

∫
s(r) d3r. The corresponding Zwanzig projection of locality can be
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symbolically written as

P̂local% :=
∏
k

%∆Vk . (3.37)

It neglects all statistical correlations beyond an appropriate small distance in
three-dimensional space. The probability distributions %∆V k are here defined
by integrating out all degrees of freedom outside each respective volume ele-
ment ∆Vk. The volume elements have to be assumed large enough to contain
a sufficient number of particles in order to preserve dynamically relevant short
range correlations (as required in real gases). For volume elements ∆Vk with
physically open boundaries, their probability distributions %∆V k in (3.37)
have to include variable particle number.

Locality is also presumed when one writes (3.1) in its differential (local)
form as a ‘continuity inequality’ for the entropy density s,

∂s

∂t
+ divjs ≥ 0 , (3.1′)

with an entropy current js. Further assumptions and approximations lead to
phenomenological entropy-producing terms on the RHS (such as
κ(gradT )2/T 2 in the case of heat conduction), and thus to a continuity equa-
tion with phenomenological sources for the entropy defined by this relevance
concept (cf. Landau and Lifschitz 1959, Glansdorff and Prigogine 1971).

The general applicability of (3.1′) demonstrates that the concept of phys-
ical entropy is always based on the relevance of locality. Therefore, produc-
tion of physical entropy can be generally understood as the transformation
of local information into nonlocal correlations (similar to Fig. 3.1). This is in
accordance with the conservation of ensemble entropy and intuitive causal-
ity. The Second Law thus depends crucially on the dynamical irrelevance
of microscopic correlations for the future (as assumed in the Stoßzahlansatz,
for example). Since this ‘microscopic causality’ cannot be observed as easily
as the retardation of macroscopic radiation, its validity under all circum-
stances has been questioned (Price 1996). However, it (or its generalization
to quantum correlations — see Sect. 4.2) is not only confirmed by the success
of the Stoßzahlansatz and similar master equations, but also by microscopic
scattering experiments, or the widely-observed phenomenon of exponential
decay (Sect. 4.5). Irreproducible conspiratorial behavior cannot be excluded
in principle, though.

The Zwanzig projection of locality is again ineffective on δ-functions
in Γ -space — just as P̂µ, but unlike P̂Boltzmann. Therefore, it is not able
to define a non-singular entropy as a function of state, that is, in the form
SΓ [P̂ δ6N ]. Real (microscopic) states of classical systems are always local,
as they define states of their local subsystems. This will be fundamentally
different in quantum mechanics (Chap.4).

Boltzmann’s relevance concept P̂µ evidently neglects all correlations be-
tween particles. The coarse graining over ∆p and ∆q, required to obtain
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smooth distributions in µ-space, may remain small for individual particles in
a dense gas, even though the corresponding distance in configuration space,
(3N)1/2∆q, written in terms of the mean coordinate difference ∆q, is quite
large. ‘Collective’ coordinate differences may similarly become large in spite
of small differences of particle coordinates. They may be relevant for certain
macroscopic phenomena, such as lattice vibrations. In quantum theory they
may even give rise to new ‘particle’ concepts (phonons).

As mentioned shortly after Fig. 3.1, coarse-graining as a relevance con-
cept may also enter in a hidden form (corresponding to its nontrivial limit
∆VΓ → 0 taken before any formal limit t → ∞) by considering only non-
singular measures on phase space (thus excluding δ-functions). The dynam-
ical effect of this formal idealization may be mathematically signalled by
a ‘unitary inequivalence’ between the Liouville equation and the resulting
master equation (see Misra 1978 or Mackey 1989).

Effective equations of motion for individual particles can also be under-
stood as master equations if environmental degrees of freedom, such as heat
or emitted radiation (described in Sect. 2.3), are ‘eliminated’ in an appropri-
ate way. Further examples of Zwanzig projections will be defined through-
out the book, in particular in Chap. 4 for quantum mechanical applications,
where the relevance of locality leads to the important concept of decoherence.
Different schools and methods of irreversible thermodynamics may even be
categorized by the concepts of relevance which they prefer, and which they
typically regard as ‘natural’ or ‘fundamental’ (cf. Grad 1961). However, the
mere conceptual justification of a relevance concept (‘paying attention’) does
not yet warrant its dynamical autonomy in the form of a master equation.
(See the Appendix for an explicit example.) For example, locality is relevant
because of the locality of interactions.

The dynamical locality of interactions is therefore essential for the very
concept of systems, and in this way even for that of a local observer as the
ultimate referee for what is relevant. Different local systems may thus possess
different thermodynamical equilibrium parameters (such as space-dependent
temperature). Exceptional (weakly interacting) systems may even possess
different temperatures (of different things) at the same place. An example is
the solar corona (an electron gas surrounding the sun), which is much hotter
than the baryonic solar surface. In the extreme case, dynamically decoupled
systems would represent ‘separate worlds’.

Rather than postulating a phenomenological master equation (3.35) in
analogy to Boltzmann, Zwanzig reformulated the exact Hamiltonian dynam-
ics of %rel regardless of any specific choice of P̂ . It cannot generally be au-
tonomous (of the form ∂%rel/∂t = f(%rel)), 5 but has to be written as

∂%rel

∂t
= f(%rel, %irrel) , (3.38)

5 In mathematical physics, the term ‘autonomous dynamics’ is often understood as
the absence of any explicit time dependence in the dynamics (regardless of its origin).
Moreover, ‘states’ are there usually operationally defined (by a preparation procedure, for



3.2 Zwanzig’s General Formalism of Master Equations 59

in order to eliminate %irrel by means of certain assumptions. The procedure
is analogous to the elimination of the electromagnetic degrees of freedom by
means of the condition Aµin = 0 when deriving a retarded action-at-a-distance
theory (Sect. 2.2). In both cases, empirically justified boundary conditions
which specify a time direction are assumed to hold for the degrees of freedom
that are to be eliminated.

Toward this end the Liouville equation i∂%/∂t = L̂% is decomposed into
its relevant and irrelevant parts by multiplying it by P̂ or 1− P̂ , respectively,

i
∂%rel

∂t
= P̂ L̂%rel + P̂ L̂%irrel (3.39a)

i
∂%irrel

∂t
= (1− P̂ )L̂%rel + (1− P̂ )L̂%irrel . (3.39b)

This corresponds to representing of the Liouville operator by a matrix of
operators

L̂ =
(

P̂ L̂P̂ P̂ L̂(1− P̂ )
(1− P̂ )L̂P̂ (1− P̂ )L̂(1− P̂ )

)
. (3.40)

Equation (3.39b) for %irrel, with (1− P̂ )L̂%rel regarded as an inhomogeneity,
may then be formally solved by the method of the variation of constants
(interaction representation). This leads to

%irrel(t) = e−i(1−P̂ )L̂(t−t0)%irrel(t0)

− i

t−t0∫
0

e−i(1−P̂ )L̂τ (1− P̂ )L̂%rel(t− τ) dτ , (3.41)

as may be confirmed by differentiation.
If t > t0, (3.41) is analogous to the retarded form (2.9a) of the boundary

value problem in electrodynamics. In this case, τ ≥ 0, and %rel(t − τ) may
be interpreted as an advanced source for the ‘retarded’ %irrel(t). Substituting
this formal solution (3.41) into (3.39a) leads to three terms on the RHS, viz.

i
∂%rel(t)
∂t

= I + II + III

≡ P̂ L̂%rel(t) + P̂ L̂e−i(1−P̂ )L̂−(t−t0)%irrel(t0) − i

t−t0∫
0

Ĝ(τ)%rel(t− τ) dτ .

(3.42)
The integral kernel of the last term,

Ĝ(τ) := P̂ L̂e−i(1−P̂ )L̂τ (1− P̂ )L̂P̂ , (3.43)

example). In general they represent ensembles of microscopic states. This may easily lead

to confusion, in particular in a ‘statistical interpretation’ of quantum theory (Chap. 4).
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relevant channel

irrelevant channel

I

II
III

t0 t = t t

rirrel 0(t )

r trel( )

Fig. 3.2. Retarded form of the exact dynamics for the relevant information according
to Zwanzig’s pre-master equation. In addition to the instantaneous ‘self-interaction’ I,
there is the contribution II arising from the ‘incoming’ irrelevant information, and the re-
tarded term III in analogy to electromagnetic action at a distance, resulting from ‘advanced
sources’ in the whole time interval between t0 and t (cf. the left part of Fig. 2.2.)

corresponds to the retarded Green’s function of Sect. 2.1 (if t > t0).
Equation (3.42) is exact and does not as yet describe time asymmetric

physics. Since it forms the first step in this derivation of master equations,
it is known as a pre-master equation. The meaning of its three terms is il-
lustrated in Fig. 3.2. The first one is the ‘trivial part’, which describes the
direct interaction of %rel with itself. In Boltzmann’s µ-space dynamics (3.3),
it would correspond to {∂%µ/∂t}free+ext. It vanishes if P̂ L̂P̂ = 0 (as is often
the case). 6

The second term is usually omitted by presuming the absence of irrele-
vant initial information: %irrel(t0) = 0. If relevant information happens to be
present initially, it can be transformed into irrelevant information. (Because
of the asymmetry between P̂ and 1 − P̂ , irrelevant information would have
to be measured by −S[%] + S[%rel] rather than −S[%irrel].)

The vital third term is non-Markovian (non-local in time), as it depends
on the whole time interval between t0 and t. Its retarded form (for t > t0) is
compatible with the intuitive concept of causality. This term becomes approx-
imately Markovian (while in general remaining time asymmetric) if %rel(t−τ)
varies slowly over a relatively short ‘relaxation time’ τ0 during which Ĝ(τ)
becomes negligible by dissipating its information. In (3.42), Ĝ(τ) may then in
lowest order be assumed to be proportional to a δ-function in τ . This assump-
tion is also contained in Boltzmann’s Stoßzahlansatz. In analogy to action-at-
a-distance theories, this third term of the pre-master equation assumes the

6 Since the (indirectly acting) non-trivial terms contribute only in second or higher
order of time, the time derivative defined by the master equation (3.35) would vanish in
the limit ∆t → 0. This corresponds to what in quantum theory is known as the quantum
Zeno paradox (Misra and Sudarshan 1977), also called watched pot behavior or the watchdog
effect. It describes an immediate loss of ‘information’ from the irrelevant channel (or its
dynamically relevant parts — see later in the discussion), such that it has no chance to react
on its relevant counterpart. Fast information loss may be induced by an efficient coupling
to the environment, for example. Since this efficiency depends on the level density (Joos

1984), the Zeno effect is mainly important in quantum mechanical systems.
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form of an effective direct interaction (instantaneous in this nonrelativistic
case) between the relevant degrees of freedom. (In electrodynamics, charge
positions are the ‘relevant’ variables.) In statistical physics, this ‘interaction’
describes the dynamics of ensembles.

Markovian behavior may may now be derived from assumptions which
simultaneously explain the general dyanamical applicability of the initial con-
dition %irrel ≈ 0 at all times (provided it holds in the very distant past —
again in analogy to Aµin ≈ 0 in electrodynamics). Consider the action of the
operator (1− P̂ )L̂P̂ that appears on the RHS of the kernel (3.43). Because of
the structure of a typical Liouville operator, it transforms information from
%rel only into specific parts of %irrel. In the theory of nuclear reactions such
parts are called doorway states (Feshbach 1962). For example, if the Hamil-
tonian contains no more than two-particle interactions, L̂P̂µ creates at most
two-particle correlations. Only the subsequent application of the propagator
exp[−i(1 − P̂ )L̂τ ] is then able to produce states ‘deeper’ in the irrelevant
channel (many-particle correlations in this case) — see Fig. 3.3. However,
recurrence from the depths of the irrelevant channel is related to Poincaré
recurrence times, and may be neglected in the normal case. If the relaxation
time, now defined as the time required for the transfer of information from
the doorway ‘states’ into deeper parts of the irrelevant channel, is of the order
τ0, say, one may assume Ĝ(τ) ≈ 0 for τ À τ0, as required for the Markovian
δ-function approximation Ĝ(τ) ≈ Ĝ0δ(τ).

relevant channel

t0 t = t t

doorway channel

deep states

Fig. 3.3. The large information capacity of the irrelevant channel and the specific structure
of the interaction together facilitate the disappearance of information into the depth of the
irrelevant channel if an appropriate initial condition holds

Essential for the validity of this picture is the large information capac-
ity of the irrelevant channel (similar to that of the electromagnetic field in
Chap. 2, but exceeding it by far). For example, correlations between parti-
cles require far more information than the single particle distribution %µ. A
fundamental cosmological assumption,

%irrel(t0) = 0 , (3.44)

at a time t0 in the finite past (similar to the cosmological Aµin = 0 at the
big bang) is therefore quite powerful — even though it is a probable condi-
tion. Any irrelevant information formed later from the initial ‘information’
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relevant channel

∆t

doorway channel

deep states

Fig. 3.4. The master equation represents ‘alternating dynamics’, usually describing a
monotonic loss of relevant information

contained in %rel(t0) (that is, from any specification of the initial state) may
be expected to remain dynamically negligible in (3.42) for a very long time.
It would be essential, however, for calculating backwards in time.

The assumption %irrel ≈ 0 has thus to be understood in a dynamical
sense: any newly formed contribution to %irrel must remain irrelevant in
the ‘forward’ direction of time. The dynamics for %rel may then appear au-
tonomous (while it cannot be exact). For example, all correlations between
subsystems seem to require advanced local causes, but no similar (retarded)
effects. Otherwise they would be interpreted as a conspiracy, the deterministic
version of causae finales.

Under these assumptions one obtains as a first step from (3.42) the non-
Markovian dynamics

∂%rel(t)
∂t

= −
t−t0∫
0

Ĝ(τ)%rel(t− τ) dτ . (3.45)

The upper boundary of the integral can here be replaced by a constant T that
is large compared to τ0, but small compared to any (theoretical) recurrence
time for Ĝ(τ). If %rel(t) may now be assumed constant over time intervals of
the order of the relaxation time τ0, corresponding to an already prevailing
partial (e. g. local) equilibrium, one obtains the nontrivial Markovian limit
(τ0 → +0),

∂%rel(t)
∂t

≈ −Ĝret%rel(t) , (3.46a)

with

Ĝret :=

T∫
0

Ĝ(τ) dτ . (3.46b)

A similar nontrivial limit of vanishing retardation led to the Lorentz-Dirac
equation with its asymmetric radiation reaction in Sect. 2.3. The integral
(3.46b) can be formally evaluated after inserting (3.43), although it is more
conveniently computed after applying this operator to a specific %(t). (See
the explicit evaluation for discrete quantum mechanical states in Sect. 4.1.2.)
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The autonomous master equation (3.46) describes again an alternat-
ing dynamics of the type (3.35) (see Fig. 3.4). Irrelevant information may
be disregarded within short but finite time intervals ∆t (now representing
the relaxation time τ0). If P̂ only destroys information, the master equation
describes never-decreasing entropy,

dSΓ [%rel]
dt

≥ 0 . (3.47)

This corresponds to a positive operator Ĝret (as can most easily be shown for
the linear measure of entropy).

For example, a phenomenological probability-conserving Markovian mas-
ter equation for a system with ‘macroscopic states’ described by a (set of)
‘relevant’ variable(s) α, that is, %rel(t) ≡ %(α, t), (see also Sects. 3.3 and 3.4)
can be written as

∂%(α, t)
∂t

=
∫

[w(α, α′)%(α′, t)− w(α′, α)%(α, t)] dα′ . (3.48)

The transition rates w(α, α′) define Ĝret in the form of the integral kernel
Ĝret(α, α′) = −w(α, α′)+δ(α, α′)

∫
w(α, α′′)dα′′. If they satisfy a generalized

time inversion symmetry,

w(α, α′)
σ(α)

=
w(α′, α)
σ(α′)

, (3.49)

where σ(α) may represent the density of microscopic states with respect to
the variable α, that is, σ := dn/dα, an H-theorem can again be derived in
analogy to (3.12) for the generalized H-functional

Hgen[%(α)] :=
∫
%(α) ln

%(α)
σ(α)

dα = ln p . (3.50)

The second RHS is correct, since probabilities p for the individual microscopic
states (when assumed to depend only on α) are given by p(α) = %(α)/σ(α).
The entropy −kHgen is also known as the relative entropy of %(α) with respect
to the measure σ(α). It is often introduced phenomenologically as part of the
macroscopic description.

For w(α′, α) = f(α)δ′(α−α′), one obtains the deterministic ‘drift’ limit
of the master equation (3.48) — corresponding to the first term of (3.42).
It defines the first order of the Kramers-Moyal expansion, equivalent to
an expansion of %(α′, t) in terms of powers of α′ − α. The second order,
w(α′, α) = f(α)δ′(α−α′) + g(α)δ′′(α−α′), leads to the Fokker-Planck equa-
tion as the lowest irreversible approximation (see de Groot and Mazur 1962,
Röpke 1987). It is formally analogous to the Lorentz-Dirac equation as the
lowest non-trivial order in the Taylor expansion of the Caldirola equation
(2.30). A master equation is generally equivalent to a (stochastic) Langevin
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equation applied to the individual trajectories α(t) that would form an en-
semble represented by %(α, t).

In contrast to the Liouville equation (3.26), the master equation (3.46)
or (3.35) cannot be unitary with respect to the inner product for proba-
bility distributions defined previous to (3.27). While total probability may
be conserved, that of the individual trajectories is not in this case (see also
Sect. 3.4). Information-reducing master equations describe an indeterministic
evolution, which in general determines only an ever-increasing ensemble of
different potential successors for each macroscopic state (such as a point in
α-space). 7 As discussed above, this is compatible with microscopic determin-
ism if — as is perhaps statistically reasonable under the assumption (3.44)
— that information which is transformed from relevant to irrelevant in the
course of time no longer has any relevant effects for future times of interest.
The validity of this assumption depends on the dynamics and on the specific
initial conditions.

Time-reversed (‘anti-causal’) effects would have to be derived from a
final condition %irrel(tf ) = 0 in the far future by applying the correspond-
ing approximations to (3.42). However, it is an empirical fact that such a
condition, analogous to Aµout = 0 in electrodynamics, does not describe our
observed universe. An exact boundary condition %irrel(t0) = 0 at some ac-
cessible time t0 would for similar statistical reasons lead to a non-decreasing
entropy for t > t0, but to non-increasing entropy for t < t0, hence to an
entropy minimum at t = t0. This emphasizes once again the T-symmetry of
statistical considerations.

While the (statistically probable) assumption (3.44) led to the master
equation (3.46), it would by itself not characterize an arrow of time. With-
out an improbable assumption about %rel(ti), the approximate validity of
the equality sign in (3.47) would be overwhelmingly probable. The condition
(3.44) could then be dynamically appropriate in both directions of time. Im-
probable, though required as the vital assumption for an arrow of time, is only
an initial condition S[%rel]¿ Smax. Retarded action-at-a-distance electrody-

7 The frequently used idea of a ‘fork’, defined in configuration space, to characterize a
dynamical indeterminism may be misleading, since it seems to imply unique predecessors.
This is wrong, as can be recognized, for example, in an equilibrium situation. In the case of
a stochastic dynamical law that is defined on a closed set of states, a state must, in general,
also be reached from different predecessors. This would define an inverse fork. Inverse forks
may also describe a pure forward-determinism (a ‘semigroup’, that contains attractors). All
these structures are meant to characterize the dynamical law. They are neither properties
of the (f)actual history (which is assumed to evolve along a definite trajectory regardless
of the dynamical law), nor of an evolving ensemble that represents incomplete knowledge.

However, only unique predecessors may give rise to recordable histories (where history
can be reconstructed from the records). The historical nature of the world is thus based
on the existence of unique past histories for those macroscopic quantities which represent
documents or can be reliably documented. (See also Footnote 1 of Chap. 2, Fig. 3.8, and
the discussion which concludes this Chapter.) On the other hand, a macroscopic history
that was completely determined from its macroscopic past would be in conflict with the

notion of (an apparent) free will.
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namics would be trivial, too, (and equivalent to its advanced counterpart) if
all sources were absorbers in the thermodynamical sense. The low entropy
initial condition is responsible for the formation of that irrelevant information
which would be required for correctly calculating %rel(t) backwards in time.

The main conclusions derived in this and the previous section can thus
be listed as follows:
1. The ensemble entropy SΓ does not represent physical entropy, since (a)

it would diverge for a real physical state (a point in phase space), (b) it
is otherwise not additive for composite systems (in particular, it is not
an integral over an entropy density), and (c) it remains constant under
deterministic dynamics (in contrast to the Second Law). For indetermin-
istic dynamics it would increase from a given value in both directions of
time (except in equilibrium). This demonstrates drastically indeed that en-
semble entropy, representing incomplete information, is not an objective
physical quantity (see Kac 1959).

2. Coarse-grained (or ‘relevant’) entropy, when defined as a function of the
deterministically evolving microscopic state, would in general fluctuate,
most of the time remaining close to its maximum value. However, it may
increase during a very long time (by far exceeding the present age of the
universe) if the universe had begun in an appropriate state of extremely low
entropy (see Sect. 5.3). While a Zwanzig projection can be chosen for con-
venience in order to derive a master equation (if dynamically consistent),
the initial condition must be specified as a real condition characterizing
this universe.

3. Only a relevance concept of locality, such as (3.37), is able to describe the
additivity of phenomenological entropy.

4. Any coarse-grained entropy could be forced never to decrease by an ap-
propriate modification of the corresponding ensemble dynamics, such as
in (3.35). This may either represent new physics or an approximation to
the situation described in item 2.

General literature: Jancel 1963, Balian 1991
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3.3 Thermodynamics and Information

3.3.1 Thermodynamics Based on Information

As explained in the previous section, Gibbs’ probability densities or ensem-
bles %Γ represent incomplete (‘macroscopic’) information about the micro-
scopic state (point in phase space) that in classical mechanics is assumed to
represent the physical state. Similarly, Zwanzig’s projection operators (gen-
eralized coarse-grainings) P̂ are motivated by incomplete observability (or
preparation) of macroscopic systems. Parameters characterizing ensembles,
in particular the entropy, would then be fundamentally observer-related (that
is, meaningless for the real physical states). In Gibbs’ approach the ensembles
seem to describe actual knowledge, while for Zwanzig (or Boltzmann) they
may be based on a shared (‘objectivized’) limitation of knowledge common to
a certain class of potential observers, such as those who can only utilize infor-
mation contained in the single-particle distribution %µ. 8 For this reason, the
(generalized) course-graining P̂ is kept fixed, and not regarded as co-moving
according to the Liouville equation. However, the concepts of information or
knowledge would be extra-physical ones if the carrier of this information were
not described as a physical system, too, (see Sect. 3.3.2).

Jaynes (1957) generalized Gibbs’ statistical methods by rigorously apply-
ing Shannon’s (1948) formal information concept to physical systems. Shan-
non’s measure of information for a probability distribution {pi} over a set of
elements distinguished by an index i,

I :=
∑
i

pi ln pi ≤ 0 , (3.51a)

is defined in analogy to Boltzmann’s H, and therefore also called negentropy.
However, since it is meant to measure lacking information, it corresponds
more closely to Gibbs’ η. It is often normalized relative to its value for mini-
mum information, pi = p

(0)
i (where p(0)

i = 1/N if i = 1 . . . N , unless different
statistical weights of the ‘elements’ i arise from a more fundamental level of
description):

Irel = I(pi|p(0)
i ) :=

∑
i

pi ln(pi/p
(0)
i ) = lnN +

∑
i

pi ln pi ≥ 0 . (3.51b)

This renormalized measure of information may remain finite for diverging I
in the limit N →∞. With an appropriate modification it can even be applied

8 The term ‘objectivized’ presumes the basically subjective (observer-related) status
of what is to be objectivized. In contrast, the term ‘objective’ is in physics often used
synonymously with ‘real’, and then means the assumed or conceivable existence regardless

of its (f)actual observation.
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to a continuum. While working with renormalized quantities may simply be
convenient from a mathematical point of view, renormalization is physically
meaningful even if it did involve infinities.

Jaynes based his approach on the assumption that in general only a small
subset of all state functions α(p, q) of a macroscopic system can be known.
Therefore, he introduced new ‘representative ensembles’, %α(p, q) or %ᾱ(p, q),
defined to maximize the entropy functional SΓ [%] under the constraints of
fixed values α or fixed mean values ᾱ :=

∫
α(p, q)%(p, q) dp dq, respectively.

They represent minimum information under this constraint. The entropy thus
becomes a function of α or ᾱ according to S(ᾱ) := SΓ [%ᾱ], for example. This
generalization of Gibbs’ ideas has turned out useful for many applications.

As mentioned in Sect. 3.1.2, this information-theoretical foundation con-
trasts strongly with the understanding of entropy as an observer-independent
physical quantitiy that can be objectively measured. On the other hand, the
dependence on a certain basis of information may be quite appropriate. For
example, the numerical value of SΓ [%] depends in a reasable way on whether
or not % contains information about actual density fluctuations, or about the
isotopic composition of a gas. The probability pfluct(α) for the occurrence of
some quantity α in thermodynamical equilibrium was successfully calculated
by Einstein in his theory of Brownian motion from the expression

pfluct(α) =
exp{S(α)/k}

exp{S[%can]/k} , (3.52)

thus exploiting the interpretation of entropy as a measure of probability. The
probability for other quantities to be found immediately after the occurrence
of this fluctuation would then have to be calculated from the ‘conditioned’
ensemble %α rather than from %can.

Similarly, a star cluster (that is, a big enough collection of macroscopic
objects) possesses meaningful temperature and entropy S 6= 0 from the point
of view that the motion of the individual stars is regarded as ‘microscopic’.
The same statistical considerations as used for molecules then show that their
velocity distribution must be Maxwell’s. Imagine, in contrast, the viewpoint
of an (only classically conceivable) external super-observer of the individ-
ual molecules in a gas! Entropy is here indeed defined as depending on the
basis of consideration. Its objectivity in thermodynamics can only be un-
derstood as reflecting a common perspective shared by us human observers.
This perspective must represent our situation as physical systems: we can
hardly observe molecular dynamics without disturbing it, while the reaction
of stellar dynamics to our observational intervention is negligible.

In order to regard ensembles as consistently representing actual infor-
mation, one has to allow for ‘external dynamics’ affecting the probabilities,
such as %Γ (p, q, t). For example, in addition to the observer-independent Li-
ouville equation that describes the motion of each member of the ensemble
according to the Hamiltonian equations, one would have to take into account
any change of information, such as its increase by a new observation or its
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reduction during a loss of memory. The corresponding physical processes now
occur in an external observer or storage and measurement device, but not in
the considered system itself (although possibly induced by interaction with
them — see the following subsection). A loss of memory, for example, might
be associated with dissipation in the physical information carrier. However,
in contrast to Jaynes’ interpretation, the physical concept of entropy is based
on the assumption that certain (‘easily accessible’ or ‘controllable’) quanti-
ties, such as mean density, temperature and other macroscopic variables, are
always given (but nothing else). This physical entropy does then not depend
on the information actually at hand. For example, it does not depend on
whether or how accurately the temperature has been measured; it is simply
defined as a function of temperature.

Let α(p, q) represent such (sets of) ‘relevant’ quantities (cf. (3.48)) which
are assumed to be given (possibly within some uncertainty ∆α). The Hamil-
tonian H(p, q) is in general one of them. The subsets of states p, q within
intervals α0 −∆α < α(p, q) < α0, with widths ∆α defined, for example, by
Jaynes’ representative ensembles for given mean values, define subvolumes of
Γ -space. (Any finer resolution would regard fluctuations as being relevant,
unless α is a constant of the motion for the considered system.) For a single
parameter α, these volume elements can be written as ∆Vα := (dV/dα)∆α,
with V (α0) :=

∫
α(p,q)<α0

dp dq. In high-dimensional N-particle phase space,
the size of the interval ∆α is quite irrelevant, since contributions to the vol-
ume integral for a compact region α(p, q) < α0 are strongly peaked just below
the surface defined by α0. In reasonable units, the term ln∆α can then be
neglected under the logarithm, ln∆Vα, that defines entropy.

One may now define a new useful Zwanzig projection P̂macro by averaging
over these subsets:

P̂macro%(p, q) :=
∆pα
∆Vα

:=
1

∆Vα

∫
∆Vα

%(p′, q′) dp′ dq′ for p, q ∈ ∆Vα . (3.53)

If discrete values αi are defined for convenience according to αi+∆α = αi+1,
the entropy SΓ [P̂macro%] splits into two sums,

SΓ [P̂macro%] = −k
∫
P̂macro% ln(P̂macro%) dp dq

= −k
∑
i

∆Vαi
∆pαi
∆Vαi

ln
∆pαi
∆Vαi

= −k
∑
i

∆pαi ln∆pαi +
∑
i

∆pαik ln∆Vαi . (3.54)

(Notice the similarity to the concept of relative information (3.50) or (3.51b)
— see also Schlögl 1966.) The first term in the last line describes the entropy
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corresponding to the lacking macroscopic information about α. The second
term is the mean ‘physical entropy’ with respect to this macroscopic ensem-
ble. The physical entropy S(α) := k ln∆Vα ≈ SΓ [%α] thus measures the size
of Jaynes’ representative ensembles %α, or, in Planck’s language, the number
of complexions, that is, the number of microscopic states which may repre-
sent the macroscopic ‘state’ (here defined by the interval ∆α). In the special
case α(p, q) := H(p, q) one obtains the entropy of the canonical ensemble as a
function of the mean (or maximum) energy. If ∆α = ∆E is chosen infinites-
imal, one obtains the entropy of the micro-canonical ensemble, relevant for
energetically closed systems. 9

Although the first term on the RHS of (3.54) is usually much smaller
than the second one, it is essential for a complete and consistent discussion
of information processing and measurement (see Sect. 3.3.2). An example
of the partition of the ensemble entropy into physical entropy and entropy
of lacking information, one that is not plagued by renormalization prob-
lems, is provided by the particle number in a grand canonical ensemble,
Z−1 exp[−(H − µN)/kT ]. This particle number is assumed to be ‘given’ (al-
though in general not known) once the vessel that was in equilibrium with a
particle reservoir characterized by the chemical potential µ has been closed.
The system is thereafter represented by a canonical ensemble with fixed N ,
while the relative contribution of that part of the original ensemble entropy
which has now become entropy of lacking information about the exact particle
number N is of the order lnN/N (Casper and Freier 1973). This contribu-
tion to the entropy is often neglected by using the ‘approximation’ N ! ≈ NN .
The argument demonstrates, however, that this different choice of ensembles
is dynamically motivated (by their robustness), and that the difference be-
tween the number of permutations, N !, of a fixed number N of particles and
the factor NN arising from the grand canonical ensemble with mean particle
number N (see (4.30)) has an interpretation (cf. Footnote 2).

While the concept of physical entropy, defined above, does not depend on
actual information any more, the choice of ‘macroscopic’ subsets, character-
ized by functions of state α(p, q), is still motivated by their ‘controllability’,
and therefore may appear artificial from a strictly objective point of view. In
general, those variables α are regarded as macroscopic which are represented
by subspaces of phase space that are densely populated by a trajectory (in
the sense of quasi-ergodicity) within a short time (in relevant units). The
quantitative aspect of quasi-ergodicity within these robust subspaces relies
on a measure of Γ -space distance that — as has been pointed out before
— is not invariant under canonical transformations. The macroscopic vari-
ables α themselves (or their mean values) are instead assumed to vary slowly

9 The infinite renormalization which is required for the definition of an entropy density
or a corresponding measure as a function of α is due to the fact that the classical entropy
has no lower bound (as it would arise from a fundamental minimum size of phase space
cells). This allows the measure of information about a continuous quantity to grow beyond

all limits (cf. 3.51b).
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and controllably — even under the influence of ‘normal’ perturbations, or
during observation. Robust quantities, represented by such subspaces, define
‘approximate constants of the motion’ (or adiabatically changing collective
variables).

Since this definition of robustness is based on qualitative aspects, the re-
lated concepts cannot usually be defined with mathematical rigor in realistic
cases. For example, the positions and shapes of droplets forming in a conden-
sation process, or even more so those of the walls of a vessel, are evidently
robust properties, although they do not represent exact constants of the mo-
tion. A certain freedom in the choice of macroscopic quantities remains, such
as whether or not fluctuations are to be taken into account. One may even
speculate about the possibility of replacing the apparently universal concept
of thermodynamical entropy with a hierarchy of similar concepts (depending
on various degrees of robustness, defined by their relaxation time scales, for
example).

An actual microscopic trajectory q(t) determines all macroscopic ones
that are defined as functions of state, α(t) := α(p(t), q(t)). As discussed in
Sect. 3.1.2, the macroscopic dynamics is in general not deterministic by itself
(not autonomous), since different trajectories starting from the same α(t0)
may lead to different α(t1) — depending on the microscopic state p(t0), q(t0)
which happens to represent α(t0) in reality. This macroscopic indeterminism
is relevant, in particular, for fluctuations or phase transitions.

In contrast, the determinism of a dynamical model (such as Laplacean
mechanics) is defined by the mere existence of a unique mapping of appro-
priate initial (or final) states onto complete trajectories. This concept of de-
terminism is independent of the availability of an (analytic or algorithmic)
procedure for explicitly constructing these trajectories in terms of conven-
tional coordinates (‘integrability’). It is therefore also independent of any
practical limitation in computability, which forms the basis of Kolmogorov’s
(1954) entropy and is often used for the definition of chaos (see Schuster
1984, or Hao-Bai-Lin 1987). In classical mechanics, this deterministic dy-
namical mapping is generically defined by Newton’s equations (cf. Bricmont
1996 for his lucid criticism of the popular misuse of the concept of chaos in
this connection).

Trajectories could be described in principle in a trivial way in terms of
the constants of motion. The latter (to be used as new coordinates or ‘co-
evolving grids’ — see App. B of Zurek 1989) are mathematically singular (and
therefore often denied to exist) only in their relation to conventional (local)
coordinates, but not in any absolute sense. It was indeed one of the great
lessons from the theory of relativity that physics and spacetime geometry
(‘reality’) are independent of the choice of coordinates, while the ancient
Greeks were not even able to overcome Zeno’s paradox of Achilles and the
tortoise by a transformation to more appropriate ‘coordinates’ of description.
We should similarly be able to overcome all mathematical limitations in the
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construction of canonical transformations, and again rely on the assumption
of a coordinate-free ‘reality’ (at least in classical mechanics).

These mathematical difficulties may nonetheless reflect the complex and
non-trivial physical relation between the universe and its ‘observing parts’.
Observers are evidently not in any simple way related to the constants of the
motion — the reason why we feel ‘time flow’. 10 Some authors have related
the problems of a universe that contains its observers (physical self-reference)
to Gödel’s undecidability theorems, which apply to logical systems that allow
formal self-reference (see Wheeler 1979, Smullyan 1981). However, one cannot
conclude that the assumption of an observer-independent reality is excluded
just because of the latter’s limited observability — as has even been sug-
gested in order to explain quantum ‘uncertainty’ (Popper 1950, Born 1955,
Brillouin 1962, Cassirer 1977, Prigogine 1980). There is a fundamental dif-
ference between the impossibility of ever knowing the precise classical state
of the universe and the incompatibility of its existence with certain empirical
facts. While the former is often derived precisely by using classical concepts,
the latter is a consequence of the crucial experiments.

3.3.2 Information Based on Thermodynamics

Macroscopic indeterminsim, represented by Einstein’s probabilities for fluctu-
ations (3.52), may in principle give rise to a decrease of physical entropy S(α)
in accordance with microscopic determinism. This requires a transformation
of irrelevant into relevant information, which is illustrated by the first step of
Fig. 3.5 for the case of a measurement of a (classical) microscopic quantity.
Problems may arise if the physical realization of information by documents,
computers or brains is here not properly taken into account.

As is well known since the days of Maxwell’s demon, any change of
information must be described as a physical process together with its ther-
modynamical consequences. He assumed this demon to operate a microscopic
sliding door between two compartments in such a way that only fast molecules
may enter the first compartment, but slow molecules the second one. His ac-
tion would then lead to a temperature and pressure difference, and thus admit
the construction of a perpetuum mobile of the second kind.

Evidently, the demon has here to invest his information about the mo-
menta and positions of the molecules. Smoluchowski (1912) objected that the
demon, as a physical system, would himself have to obey the Second Law:
his ‘operational’ description has to be replaced with a dynamical one. In phe-
nomenological terms, the lowering of the entropy of the gas, corresponding
to the arising temperature difference, must at least be compensated for by
an increase in the demon’s entropy. If the demon is assumed to be a finite

10 “Time goes, you say? Ah no! Alas, time stays, we go.” (Austin Dobson – discovered

in Gardner 1967)
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Fig. 3.5. Entropy relative to the status of information during a classical measurement. In
the first step in the figure the state of the observer changes depending on that of the system.
The second step represents the subsequent reset of the ‘observer’ or device (Bennett 1973),
required in order to repeat the measurement. Areas represent sets of microscopic states
of the subsystems (while those of uncorrelated combined systems would be represented
by their direct products). The lower case letters a and b characterize the property to be
measured; 0, A and B the corresponding ‘memory states’ of the observer, while A′ and B′

are their effects in the thermal environment, required for a deterministic reset. The ‘physical
entropy’ (defined to add for subsystems) measures the phase space of all microscopic degrees
of freedom, including the property to be measured. Because of this presumed additivity,
the physical entropy neglects statistical correlations (dashed lines, which indicate sums of
products of sets) as being ‘irrelevant’ in the future — hence Sphysical ≥ Sensemble. I is the
amount of information held by the observer. S0 is at least k ln 2 in this simple case of two
equally probable values a and b. (From Chap. 2 of Giulini et al. 1996)

and thermodynamically closed system, his increasing Brownian motion would
ultimately prevent him from acting properly (by making his ‘hands tremble’).

The increase in the demon’s entropy may also be interpreted as a de-
crease in his information about the gas molecules. Therefore, from this gedan-
ken experiment with a physical demon, Szilard (1929) extracted a fundamen-
tal information-theoretical aspect. In accordance with Maxwell’s demon he
assumed that an ‘intelligent being’ must be in possession of the required in-
formation about the molecules, and able to utilize it. Szilard concluded that,
in order to lower the entropy of the gas by an amount −∆S > 0, the demon
needs the minimum information

∆I = −∆S
k

, (3.55)

compatible with Boltzmann-Gibbs’ interpretation of entropy, or Einstein’s
expression (3.52).

Szilard’s main argument was based on a model ‘gas’ consisting of a single
molecule in a vessel of volume V . Thermodynamical aspects are introduced by
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means of collisions of the molecule with the walls, leading to equilibration of
the molecule’s motion with a surrounding heat bath (see Fig. 3.6). A piston is
then vertically inserted without using energy in order to separate two partial
volumes V1 and V2. This partition of the volume is robust in the sense of
Sect. 3.3.1. According to (3.54) this procedure therefore transforms part of the
entropy of the ‘gas’ into entropy of lacking information. If the experimenter
knows (only) in which partial volume i the molecule resides, corresponding
to a Shannon measure ∆Ii = ln[(V1 + V2)/Vi], with i = 1 or 2, he is able to
retrieve the mechanical energy

∆Ai =

V1+V2∫
Vi

p dV =

V1+V2∫
Vi

kT

V
dV = −kT ln

Vi
V1 + V2

(3.56)

by allowing the piston to move away from the region where the molecule is.
The molecule’s mean kinetic energy may thereby be kept constant by the
reversible transfer of heat from the external reservoir with temperature T .
This process lowers the entropy of the reservoir by an amount

∆Si = −∆Ai
T

= k ln
Vi

V1 + V2
= −k∆Ii , (3.57)

in accordance with (3.55).

T

Fig. 3.6. Szilard’s Gedanken engine completely transforms thermal energy into mechanical
energy by using information

According to Smoluchkowski, one could avoid referring to knowledge or
information by using a ‘mechanical rectifier’ (such as a ratchet) that causes
the piston to move in the appropriate direction. However, this rectifier would
ultimately have to perform thermal motion large enough to make it useless,
corresponding to the demon’s trembling hands (see also Feynman, Leighton
and Sands 1963, Vol. I, p. 46-1). One may conclude that utilizing knowledge
for making decisions (for example in the brain) is equivalent to the operation
of a ‘rectifier’. It is here essential that the rectifier cannot be reset to its
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original state without getting rid of entropy — usually in the form of heat
(Bennett 1987). For this reason the mechanism cannot work reversibly in a
closed system.

Brillouin (1962), when elaborating on ideas originally presented by Ga-
bor in lectures given in 1952 (see Gabor 1964), emphasized that Szilard’s ‘in-
telligent being’ may have to acquire its information. Since this process must
also be compatible with the Second Law, Brillouin postulated his negentropy
principle

∆S′ − k∆I ≥ 0 , (3.58)

which states that any gain in information ∆I has to be accompanied by some
process of dissipation leading to the production of thermodynamical entropy
∆S′. Gabor and Brillouin exemplified this by the transfer of entropy to the
information medium (usually light). Thereby they referred to its quantum
aspect (photons), since classical light would represent an infinite entropy
capacity. Because of the minimum information required according to Szilard,
the construction of a perpetuum mobile of the second kind would be excluded.
However, the relation (3.58) is also confirmed by the above example of a
directly coupled mechanical rectifier, without any explicit reference to an
information medium.

All non-phenomenological arguments are here based on two assumptions:
(1) Global determinism, which requires that an ensemble of N different states
(or N ensembles of equal measure) must have N different successors, which
have to be counted by the total ensemble entropy. Different states may evolve
into the same final state only by an appropriate interaction with the envi-
ronment that transfers this difference to the latter (for example, in the form
of heat). (2) Intuitive causality, which asserts that uncontrollable ‘perturba-
tions’ by the environment can only enlarge the ensemble. It gives rise to the
inequality sign in equations such as (3.58). If thermodynamical concepts ap-
ply, the transfer of ensemble entropy ∆S must be accompanied by a transfer
of energy according to ∆Q = T∆S. This conclusion has led to the interpre-
tation of entropy as a measure of degradation of energy.

This equivalence of information and negative entropy also suggests that
pure information processing (in a computer) can in principle be performed
reversibly. However, arithmetical operations are often logically irreversible
in the sense that two factors cannot be recovered from their product. (In a
mechanical computer this operation may require friction.) In the theory of
computing this led to the conjecture that a minimum entropy k ln 2 has to
be produced for each bit of information in each elementary calculational step
(Landauer 1961). It was refuted by Bennett (1973 — see also Bennett and
Landauer 1985). In their analysis, the logically lost information (‘garbage
bits’) — even if randomized — is still regarded as ‘relevant’ in the thermody-
namical sense (that is, not yet as heat). For this reason, the entropy creation
is deferred to the reset or clearing of the memory which is required in order
to allow the computer to work reversibly (see the second step of Fig. 3.5).
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All these conclusions support the view that information has to be physi-
cally realized (and therefore to be compatible with the laws of thermodynam-
ics), rather than representing an extra-physical concept that has to be pre-
sumed in the statistical foundation of thermodynamics. On the other hand,
mathematical theorems do not represent information (as, for example, as-
sumed by Landauer 1996), since logic deals exclusively with tautologies (or
‘analytical judgements’) from an epistemological point of view — though in
mathematics with highly complex and nontrivial ones.

General literature: Denbigh and Denbigh (1985), Bennett (1987), Leff and Rex (1990)

3.4 Semigroups and the Emergence of Order

In physical systems, ‘order’ is represented by states of low entropy. For ex-
ample, the rectifier used in the previous section for representing Maxwell’s
demon must display ordered (regular) behavior. The emergence of order from
disorder in nature, also called self-organization of matter, may appear to
contradict the Second Law with its general trend towards disorder or chaos.
This has often been misinterpreted as a ‘discrepancy between Clausius and
Darwin’. However, the fundamental phenomenological equation (3.1) permits
entropy to decrease locally. Its first term allows physical entropy (again de-
fined as an extensive quantity by means of P̂local) to be transferred to the
environment. If this environment is not in complete thermal equilibrium, and
is characterized by at least two different temperatures, T1 and T2, a local
decrease of entropy dSext = dQ1/T1 +dQ2/T2 < 0 does not even require any
net transfer of heat, compatible with dQ1 + dQ2 = 0. (The sign of dS is here
always meant to refer to positive time increments dt.) This local decrease of
entropy is thus not in conflict with its global increase according to the Second
Law (see also Sect. 5.3).

In statistical terms, the number of states in a dynamically representative
ensemble (cf. Sect. 3.1.2) may decrease in accordance with determinism and
intuitive causality, provided the ensemble characterizing the state of the envi-
ronment increases accordingly — precisely as during the ‘reset’ of a memory
device, indicated in Fig. 3.5. In Laplacean description, the outcome of evo-
lution would be determined by the microscopic initial state of the whole
universe.

An important special case is the situation of stationary non-equilibrium
(Fließgleichgewicht), characterized by dS = dSint + dSext = 0 and positive
entropy production, dSint > 0, (Bertalanffi 1953). It may support ordered
states as dissipative structures. The standard example, known as Bénard’s
instability, describes convective heat transfer through a thin horizontal layer
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of a liquid in the form of ordered convection cells, which optimize the pro-
cess of thermal equilibration between two reservoirs of different temperatures.
In a finite universe, this stationary situation can only represent a transient
local phenomenon. The emergence of structure is often connected with the
breaking of symmetries (in particular the symmetry under translations), sim-
ilar to a phase transition. In deterministic description, an initial microscopic
asymmetry is thereby amplified to the macroscopic scale.

For similar reasons, Boltzmann suggested that biological processes here
on earth are facilitated by the temperature difference between the sun (with
its 6000 K surface temperature) and the dark universe (at 2.7 K, as we know
today). At the earth, the solar radiation has an energy density much lower
than that of a black body with the same spectrum (temperature). Since
photon number is not conserved (not even robust), a canonical distribution
exp(−H/kT ) in the occupation number representation does not only deter-
mine the spectral distribution as a function of temperature, but also the
intensity (photon density). A gas with conserved particle number would in-
stead allow one to choose the mean density independently — either by fixing
the particle number by closing the vessel, or by fixing the chemical potential
(in a grand canonical ensemble) by connecting the vessel to a particle reser-
voir. A photon from the sun can be very efficiently transformed into many
soft photons, which together possess much higher physical entropy.

While order may appear to be an objective property (in contrast to in-
formation), an absolute concept of order that is not simply defined by means
of phenomenological entropy is as elusive as an objective concept of informa-
tion or relevance (see Denbigh 1981, p.147, or Ford 1989). Low entropy, on
the other hand, may characterize complex as well as simple states (which do
not have any potential for order). For reasons similar to those discussed to-
wards the end of Sect. 3.3.1, the definition of order in terms of ‘computability’
would again depend on the choice of ‘relevant’ variables. For example, the
obvious order observed in a crystal lattice is not invariant under canonical
transformations in their most general sense. How, then, may the order of an
organism be conceptually and absolutely distinguished from the ‘chaotic’ cor-
relations arising from molecular collisions in a gas? Robustness may represent
an essential attribute of ordered complexity. One could alternatively define
correlations operationally as representing order if they have the potential of
causing local macroscopic effects (such as interference in X-ray scattering
from an atomic lattice). This would readily describe the sudden ‘decay of
order’ in a dying organism, but it would presume an absolute direction in
time — related to that of intuitive causality.

Many self-organizing systems include chemical reactions. They are then
phenomenologically described by irreversible rate equations which determine
the change of concentrations X,Y, . . .. These concentrations are ‘macroscopic’
in the sense of Sect. 3.2 or 3.3.1 if they are robust. In statistical terms, rate
equations form a generalized Stoßzahlansatz that includes rearrangement col-
lisions between different kinds of molecules, which are assumed to be in partial
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equilibrium (at the same temperature T ). These rate equations are therefore
special master equations (as derived in Sect. 3.2) for these ‘relevant’ degrees
of freedom X,Y, . . ..

Rate equations determine trajectories in the configuration space of con-
centrations (here representing the macroscopic variables α of Sect. 3.1.1).11

For closed systems these trajectories may eventually approach that point in
their configuration space which describes equilibrium. Symmetric determin-
ism must come to an end at such attractors (see Fig. 3.7a), although this may
require infinite time. A mechanical example of an attractor in the presence of
friction is provided by the phase space point v := dx/dt = 0 and V (x) = Vmin.
The corresponding equation of motion, such as dv/dt = −av − gradV , ne-
glects any stochastic response from the energy-absorbing degrees of freedom
(which would in principle be required for non-vanishing temperature by the
fluctuation-dissipation theorem). Similar to the Lorentz-Dirac equation of
Sect. 2.3, this equation is deterministic (for finite times) even though it is
asymmetric under time reversal.

Fig. 3.7a,b. Standard representation of an attractor (a) and a limit cycle (b) as exam-
ples of phenomenologically irreversible dynamics in the configuration space of macroscopic
variables α ≡ X,Y

Points in the space of macroscopic variables X,Y or x, v (macroscopic
‘states’ α, in general) describe the physical states incompletely. They rep-
resent large subspaces of the complete Γ -space (that may here include the
environment). Volume elements of equal size in the space of macroscopic vari-
ables may therefore possess very different ensemble measure. Parameter space
volume is not dynamically conserved in general — neither exactly nor under
a rate equation. For example, the immediate vicinity of an equilibrium ‘state’
X0, Y0 (such as v = 0, V (x) = Vmin in the mechanical example) covers most
of the whole Γ -space of the complete system (or some subspace representing
conserved quantities) in the sense of the fundamental measure. A parameter
space should therefore be clearly distinguished from the fundamental space
of elementary states.

11 As the rate equations are of first order in time, this configuration space is often called

a phase space.
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In the specific mechanical example of friction, the modified macroscopic
phase space measure dx dv/v nonetheless happens to be dynamically in-
variant. Time reversal can here be compensated for by the transformation
v → 1/v in order to restore a formal T-symmetry (similar to the ‘symmetric
violations’ of time-reversal invariance mentioned in the Introduction). The
remaining symmetry is reflected in a conserved generalized H-functional (cf.
(3.50) and (3.51b)),

Hgen :=
∫
%(v, x) ln[|v| %(v, x)] dv dx . (3.59)

This defines a reference density %0 = |v|−1 that describes a formal equilibrium
measure on this macroscopic phase space. In situations of quasi-stationary
non-equilibrium, macroscopic trajectories described by effective irreversible
equations of motion may approach certain closed curves which do not corre-
spond to maximum entropy. They may represent dissipative structures (see
Fig. 3.7b), and are called limit cycles.

Open systems are also described by means of phenomenological semi-
groups, defined as dynamical maps acting on ensembles. These maps are es-
sentially equivalent to time-integrated master equations, and thus again ap-
plicable only in the ‘forward’ direction of time (in contrast to the reversible
group of time translations, valid for dynamically closed systems). Occasion-
ally, such ensembles are regarded as the fundamental kinematical objects of
the theory, which need not consist of any elements that would describe real-
ity completely. ‘Determinism’ is then understood as a forward determinism
for these formal ensembles. Maps are called irreversible if they form genuine
semigroups, that is, if they cannot be uniquely inverted as maps on ensem-
bles.

This irreversibility of maps may not only represent a dynamical inde-
terminism of elementary states: it also represents resets and attractors (de-
creasing entropy). 12 In order to describe a reset, the master equation (3.46a)
has to be based on a non-Hermitean Zwanzig projector that ‘creates’ relevant
information in the formalism. In a globally deterministic context, its micro-
scopic realization must contain some way of getting rid of information (as
discussed in Sect. 3.3.2). As can be seen from the second step of Fig. 3.5, the
reset transforms local information into nonlocal correlations (also depicted
in Fig. 3.1), where it is particularly irrelevant (uncontrollable). This transfor-
mation is interpreted as a production of physical entropy, while the ensemble
entropy is conserved. The presumed absence of ‘conspiratorial’ correlations

12 Therefore, some authors have proposed a redefinition of entropy that would always
allow subsystem entropy to grow under a semigroup, even when local entropy is reduced
in accordance with (3.1) — see Mackey (1989). For example, the relative entropy of a
system (cf. 3.51b) with respect to a canonical distribution with temperature of an external
heat bath would increase even when the temperature of the system is lowered by thermal
contact. Such a redefinition is certainly physically misleading, even though it may be useful

for certain purposes.
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(which could dynamically reduce physical entropy) describes the irreversibil-
ity of the semigroup in microscopic terms.

As semigroups are defined to act on ensembles (which represent incom-
plete information), their inversion does in general not represent a reversal
of the microscopic dynamics (‘time reversal’). Similarly, their forward deter-
minism is not equivalent to microscopic determinism. A map may not be
invertible as a map even though the underlying dynamical transformation of
microscopic states can be reversed (not necessarily uniquely — just as the
individual forward evolution is here not necessarily presumed to be uniquely
determined).

Individual indeterminism and attractors are illustrated on a finite set
of states in Fig. 3.8. An asymmetric dynamical indeterminism (b) is repre-
sented by a diverging fork (cf. Footnote 7), while an attractor is characterized
by a converging (or ‘inverse’) fork (c). The indeterminism characterizing an
incompletely defined Hamiltonian is dynamically symmetric (a). On a contin-
uum of states, a measure would first have to be chosen, usually by means of
its invariance under an assumed fundamental deterministic dynamics of the
closed system. (This may represent a problem if determinism is to be given up
fundamentally.) Semigroups may be conveniently studied on various discrete
state spaces (where measures of states are trivial), for example by means
of the model of ‘deterministic cellular automata’ (cf. Kauffman 1991). Their
merging trajectories (representing attractors) are equivalent to the shrinking
of phase space volume elements in the continuum model with friction that
led to the generalized H-functional (3.59).

(a) (b) (c) (d)

Fig. 3.8. Dynamical transformation of states on a discrete and finite ‘phase space’ con-
sisting of four states only: (a) T-symmetric indeterminism (representing an incompletely
determined Hamiltonian); (b) asymmetric indeterminism, representing a law-like increase
of ensemble entropy (cannot be defined everywhere on finite sets); (c) attractor (reset); (d)
discrete caricature of a Frobenius-Perron map (see text). The symmetric indeterminism
(a) would appear asymmetric (similar to (b)) when applied to a low-entropy initial ensem-
ble (for example, an individual state) in a given direction of time. It would then describe
the usual increase of ensemble entropy by uncontrollable ‘perturbations’. The distinction
between (b) and (c) requires an absolute direction of time

Forward-deterministic dynamical maps are often defined by means of
nonlinear transformations of individual states (points in phase space). A
popular (though not very physical) one-dimensional toy model of a semi-
group is the Bernoulli shift, defined by the mapping α → 2α mod 1 on the
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interval (0, 1]. (Its α-measure is invariant under translations in α.) The dy-
namical increase of this ‘phase space volume’ dα by multiplication by 2 in
this map can be uniquely inverted on the continuum although it represents
a physical indeterminism. The second term, mod1, characterizes the semi-
group property as in Fig. 3.8c. Both dynamical parts are here combined in
order to form a Frobenius-Perron map, defined everywhere on the interval
in spite of representing a genuine semigroup (symbolically indicated on the
discrete set by Fig. 3.8d). Multiplication by 2 has been added to the semi-
group operation mod1 in order to compensate for the decrease of ensemble
entropy. The forward indeterminism, obvious in the discrete case, is often
overlooked on the continuum, where the topology-conserving stretching of
‘phase space’ α may appear deterministic without a measure. However, the
‘topological time asymmetry’ represented by the Frobenius-Perron map may
be phenomenologically relevant, as it is able to describe the formation of
macroscopic diversity. Realistic attractors must be of mixed type in order to
comply with the fluctuation-dissipation theorem.

Many similar dynamical maps are discussed in the literature. They are
(at most) of phenomenological value, and have little explanatory power from a
fundamental statistical point of view. Their investigators often seem to regard
the underlying individual microscopic dynamics as irrelevant. The ensembles
being mapped dynamically are then treated as real states of physical objects.
This must, of course, lead to confusion from a fundamental point of view.
‘Statistical theories’ based on dynamical maps are occasionally even used in
a ‘minimal’ interpretation of quantum mechanics (see Sect. 4.4). The misuse
of purely formal ensembles as describing physical states is thereby reversed by
identifying wave functions (that is, elementary quantum mechanical states)
with ensembles. However, the conclusion that quantum phenomena cannot
be explained in any such ‘simple way’ was already drawn by Bohr before the
advent of matrix and wave mechanics (when his theory with Kramers and
Slater had failed).

The description of thermodynamical systems far from equilibrium (cf.
Glansdorff and Prigogine 1971) remains usually phenomenological. This un-
satisfactory situation may partly be due to the fact that spontaneous sym-
metry breaking, related to the emergence of new structures, seems to be
based on the fundamental quantum mechanical indeterminism (see Chap. 4
and Sect. 6.1). The onset of structure is phenomenologically described by
means of unstable fluctuations of certain quantities α, whose probabilities
are calculated by means of Einstein’s formula (3.52). An instability arises
for them when the second derivative ∂2S/∂α2 at a stationary point of S(α)
become negative in value during the adiabatic change of an external param-
eter. In this way, new robust quantities in the sense of Sect. 3.3.1 (cf. also
Sect. 4.3.2) emerge, and physical entropy is transformed into entropy of lack-
ing information, distinguished according to (3.54).

General literature: Glansdorff and Prigogine 1971, Haken 1978, Cross and Hohenburg
(1993)
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I shall close this chapter with the discussion of an objection against the
probability interpretation of entropy when applied to the whole universe and
its evolution. It was first raised by Bronstein and Landau (1933), and later
in a more explicit form by von Weizsäcker (1939).

Obviously, the present state of the universe does not only possess an
entropy Sα(now) that is much smaller than its equilibrium value Sequil, but
it also contains documents which consistently indicate that the entropy has
been increasing during the past, dSα(t)/dt > 0. One may now compare the
probability for the formation of such documents (including our private mem-
ories) from a mere chance fluctuation with that for their presumed evolution-
ary formation in a historical process, that seems to be supported by these
documents. In the latter case, one has

Sα(yesterday) < Sα(now) ¿ Sequil . (3.60)

However, if Einstein’s measure of probability in terms of entropy (3.52) were
applicable to the universe, the formation of its present state in a chance
fluctuation — as improbable as it may intuitively appear — would be far
more probable than its evolution from a state with much lower entropy in
the distant past. This objection undermines Boltzmann’s explanation of the
thermodynamical arrow of time as arising from a grand fluctuation that oc-
curred in an eternal universe (see Sect. 5.3), since this fluctuation could be
replaced with a more probable smaller one.

The argument just described requires that the left inequality of (3.60)
remains valid if not only local (‘physical’) entroopy, but also those non-local
correlations which represent the convincing consistency of documents about
history are taken into account. Their existence in a historical universe is equiv-
alent to Lewis’ ‘overdetermination of the past’ (cf. Footnote 1 of Chap. 2). 13

Nonetheless, David Hume’s fundamental insight that we can never predict
anything with certainty (not even that the sun will rise again) applies to
the past as well. The reliability of memories and documents is in principle
as doubtful as that of predictions; only the local present (of which we are
subjectively aware) cannot be questioned. Hence, even Kant’s premise that
we are making experience cannot be taken for granted. Not what has been
observed, only our (perhaps deceiving) ‘memory’ is beyond doubt. St. Au-
gustine already concluded in his Confessiones that the past and the future
‘exist’ only in the present — namely as memory and expectation ‘in the
soul’. This long-standing philosophical debate seems to be deeply affected by
thermodynamical considerations.

St. Augustin’s epistemologically rigorous concept of reality, that applies
only to the present, is evidently too restrictive to form a ‘world model’, even
though any generalization must remain hypothetical in principle (Poincaré
1902, Vaihinger 1911). The probabilistic objection against the evolutionary

13 States containing consistent (though possibly deceiving) documents were called time-

capsules by Barbour (1994a) — see Sect. 6.2.2.
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picture of the world, even if formally correct, will thus hardly be accepted
as demonstrating that causality is only an illusion, based on an accident.
Einstein’s probabilities (3.52) for the occurrence of non-equilibrium states α,
based on the statistical interpretation of entropy, can indeed be justified only
for those macroscopic properties α which occur repeatedly within relevant
times (‘quasi-ergodically’) on a generic trajectory — that is, for properties
which are not robust on relevant timescales.

Physical cosmology can fortunately be based on the more economic hy-
pothesis of a universe of finite age. A homogenous (structureless) low entropy
initial state appears as a more plausible assumption than a complex state with
the same value of entropy. Probabilities for later states have then to be calcu-
lated as probabilities for histories that lead to them. For example, the folding
of protein chains is calculated along trajectories of monotonically increasing
entropy (according to a master equation). Final configurations not accessi-
ble through such histories would thus be excluded. (Quantum mechanically
there is always a small tunneling probability.) Most probable are then those
final states that are accessible through the most probable histories, but not
those at an absolute entropy maximum. This picture would explain consistent
documents.

Similar ideas have been applied to biological evolution by Lloyd and
Pagels (1988). Whether the life-carrying situation of our world, including
the existence of scientists observing it, is probable in this sense (that is,
whether most of the microscopic states which are compatible with the initial
conditions would lead to similar situations), or whether further ‘anthropic’
selection criteria are required, has never been estimated in a reliable and
unbiased way. Only at a tremendously greater age of the universe than its
present one could a state of maximum entropy be reached via improbable
intermediate states or through quantum mechanical tunnelling (Dyson 1979).
The early age of the universe would then remain the major unexplained
improbable fact.

A ‘plausible’ low-entropy initial state of the universe will be considered
in Sect. 5.3. To be realistic, a quantum mechanical description has to be used
for this purpose. Quantum indeterminism, whatever its correct interpretation
(see Sect. 4.6), may even allow the assumption of a unique ‘initial’ state of
the universe (with a small entropy capacity) — see Chap. 6. However, the
outcome of evolution (including ourselves) has to be presumed as a possibility
in the configuration space defined by the fundamental kinematical concepts,
regardless of all probability arguments.



4. The Quantum Mechanical Arrow of Time
– Prelim. 4th edtn. (Mar 01): www.time-direction.de

The dynamics of probability distributions on classical phase space, discussed
under various aspects in Chap. 3, may be formally translated into quantum
mechanics by means of the canonical quantization rules. Many authors of
standard textbooks therefore maintain that the foundation of irreversibility
in quantum mechanics is the same, in principle, as in classical physics. There
could then only be quantitative differences arising from different spectral
properties of the ‘corresponding’ Liouville operators. However, this approach
to statistical quantum mechanics completely ignores the fundamentally dif-
ferent interpretation of concepts that formally correspond to one another
(such as probability distributions and density operators — see Sect. 4.2).
Therefore, it conceals important properties of quantum theory (compare the
Introduction), which may be essential for irreversibility in general, viz.:

1. The quantum mechanical probability interpretation contains an indeter-
minism of controversial origin. Most physicists seem to regard it as rep-
resenting an objective and law-like dynamical indeterminism (cf. Fig. 3.8),
and some even as an extra-physical master arrow of time. Others have
instead suggested that one may explain the unpredictability of quantum
mechanical measurement results (or measurement-like events) in terms of
conventional statistical arguments, that is, by means of thermodynamical
fluctuations which occur during the required amplification process in the
measurement device. If, however, this question is circumvented by inter-
preting the wave function as representing ‘human knowledge as an inter-
mediate level of reality’ (Heisenberg 1956), Maxwell’s demon, discussed
in Sect. 3.3.2, may return through the quantum back door. Therefore, the
foundation of irreversibility seems to be intimately related to the interpre-
tation of quantum theory (see Sect. 4.6).

2. The quantum theory is kinematically nonlocal. The generic many-particle
wave function ψ(r1, r2, . . . , rN ), which represents a ‘pure’ quantum state,
describes quantum correlations between subsystems. They are not due to
incomplete information (even though they may lead to such statistical cor-
relations in measurements). Similarly, a state of quantum field theory is
given by a wave functional of fields which are defined all over space. This
‘entanglement’ is a direct consequence of the superposition principle. In
quantum theory, the state of the whole generically does not define states
of its parts. This is in fundamental contrast to the completely determined
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many-particle state of classical mechanics: a point in phase space remains
a point when projected onto a subsystem. This kinematical indeterminacy
of the parts describes a non-trivial ‘wholeness’ of nature, which cannot, as
in classical physics, be interpreted as a mere dynamical interconnectedness
(that may lead to statistical correlations in ensembles). Moreover, it has
nothing to do with Heisenberg’s uncertainty (or ‘indeterminacy’) relations,
which signal the limited validity of classical concepts for describing physi-
cal states. The uncertainty relations apply even when individual quantum
states are defined for all subsystems. Therefore, the Zwanzig projection
of locality (3.37) has in general a nontrivial effect when applied to pure
states; it defines non-vanishing local (‘physical’) entropy even for a com-
pletely determined (‘real’) state of the whole.

These basic differences between classical and quantum statistical physics will
be discussed after their formal analogy has been set up in Sect. 4.1.

4.1 The Formal Analogy

4.1.1 Application of Quantization Rules

The formal transition from classical to quantum statistical mechanics, de-
fined by ‘quantization rules’, replaces functions of state, f(p, q), with ‘corre-
sponding’ operators F = f(P,Q), and Poisson brackets between them with
commutators. In this way, the Liouville equation (3.26) becomes

i
∂%Γ
∂t

= i{H, %Γ } =: L̂%Γ → i
∂%

∂t
= [H, %] =: L̂% . (4.1)

It is then called the quantum Liouville or von Neumann equation. The clas-
sical probability densities %Γ (p, q) are thus replaced with density operators
%. The caret ˆ is here meant to distinguish the new operators, which act on
the quantum mechanical Hilbert space operators (such as the density opera-
tors), from these Hilbert space operators themselves. In the formal analogy,
the new ‘superoperators’ (as they are sometimes called) correspond to the
operators that were defined in Sect. 3.1.2 as acting on probability densities.
The Hilbert space operators form again a Hilbert space if an inner product
〈〈A,B〉〉 := Trace{A†B} is defined for them, in analogy to the inner product
〈a, b〉 =

∫
a∗(p, q)b(p, q) dp dq that applies to classical probability densities

(cf. the text above (3.27)).
Furthermore, all mean values f̄ for functions of state f(p, q) with respect

to the probability densities %Γ (p, q) have to be replaced with expectation
values 〈F 〉,

f̄ :=
∫
f(p, q)%Γ (p, q) dp dq → 〈F 〉 := Trace{F%} . (4.2)
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However, in spite of this formal analogy, a density operator can not be in-
terpreted simply as representing an ensemble of states that would define
ensembles of values for all functions of state (see below). Since (4.2) implies

ln % → 〈ln %〉 = Trace{% ln %} , (4.3)

the quantum mechanical entropy functional corresponding to the ensemble
entropy SΓ becomes von Neumann’s entropy,

S[%] := −kTrace{% ln %} . (4.4)

The dynamics of the statistical operators, defined by the right equation
(4.1), is unitary, with a formal solution

%(t) = U(t)%(0)U†(t) , (4.5)

and U(t) = exp(−iHt) for time-independent Hamiltonians. This warrants
conservation of the von Neumann entropy under the von Neumann equation,

Trace{%(t) ln %(t)} = Trace{U(t)%(0)U†(t)U(t) ln %(0)U†(t)}
= Trace{%(0) ln %(0)} . (4.6)

As classical determinism (the conservation of probabilities for individual tra-
jectories) can similarly be described by the unitary time-dependence (3.26),
the formal argument in (4.6) could also be used in classical ensemble me-
chanics.

The square of the Hilbert space norm of a density operator,

‖%‖2 := 〈〈%, %〉〉 = Trace{%2} = 〈%〉 , (4.7)

defines again a linear measure of (neg-)entropy that is also conserved under
the unitary dynamics (4.1). This entropy is often normalized according to
Slin = 〈(1 − %)〉 (such that 0 ≤ S < 1). In contrast, the probability norm,
Trace{%} = 〈1〉 = 1, characterizes the Banach space of trace class oper-
ators (those with a non-vanishing trace). This formal space is popular in
open systems quantum mechanics (Sect. 4.4), since total probability must be
conserved even under phenomenological stochastic equations of motion that
describe an increase of ensemble entropy, S or Slin.

In further formal analogy to classical ensemble mechanics, any coarse-
grained (or relevant) information measured by Trace{(P̂ %) ln(P̂ %)} is in gen-
eral not conserved. Zwanzig projection operators P̂ are here again idempotent
operators on the Hilbert space of density operators, with additional proper-
ties Trace{P̂ %} = 1 and positive P̂ % for all %, as in Sect. 3.2.

Statistical operators (that is, density operators) % may be represented
by various ensembles of wave functions ψα with probabilities pα in the form
% =

∑
α |ψα〉pα〈ψα| (see Sect. 4.2). In the time-dependent eigenbasis of %(t),
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where the states ψα(t) form an orthonormal set, ‖%‖2 is given by the in-
variant sum

∑
α p

2
α. Its conservation (or that of 〈ln %〉 =

∑
pα ln pα) thus

represents the individual conservation of these diagonal elements in the mov-
ing basis in analogy to the conservation of a co-moving phase space volume
in deterministic classical mechanics.

The matrix elements of the density operator with respect to a random
basis {φn},

%mn =
∑
α

〈φm|ψα〉pα〈ψα|φn〉 , (4.8)

are in general small for m 6= n because of random phases in the sum over α.
Pauli (1928) referred to this random phase approximation when he neglected
off-diagonal matrix elements while deriving his master equation (4.17) below.
However, they can in general be small only individually, while remaining
essential as a whole. The neglect of off-diagonal elements in a certain basis,

P̂diag%mn := %mmδmn , (4.9)

defines instead the most important Zwanzig projection of quantum statistical
mechanics, which regards these off-diagonal elements (or any interference
between the states of this basis) as ‘irrelevant’. It has nothing to do with the
usual diagonalization of Hermitean operators in their eigenrepresentation.
The inequality

Trace{P̂diag% ln(P̂diag%)} =
∑
n

%nn ln %nn

≤ Trace{% ln %} =
∑
mn

%mn(ln %)nm (4.10)

is called Klein’s lemma — cf. (3.34). It is a consequence of the fact that P̂diag
is a genuine projection operator (cf. Sect. 3.2).

An obvious generalization of (4.9) is

P̂semidiag% :=
∑
n

Pn%Pn , (4.9′)

where {Pn} (no caret!), with PmPn = Pmδmn, is a complete set of projection
operators on mutually orthogonal subspaces of the Hilbert space of quan-
tum states. In quantum field theory, projections on ‘unitarily inequivalent’
separable subspaces of Hilbert space, sometimes even regarded as ‘distinct
Hilbert spaces’, are often chosen for this purpose. However, these decompo-
sitions of non-separable Hilbert spaces are no less arbitrary than any other
P̂semidiag (though often useful in the case of large numbers of effective degrees
of freedom). If imposed axiomatically, the relevance concept (4.9′) represents
a superselection rule (Wick, Wightman and Wigner 1952, Jauch 1968, Hepp
1972). This suggests that superselection rules may have a similar dynami-
cal origin as the ‘thermodynamically macroscopic’ concepts of Chap. 3 — a
possibility that will be further investigated and confirmed in Sect. 4.3.
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4.1.2 Master Equations and Quantum Indeterminism

The Hamiltonian of a quantum mechanical system is often written in the
form H = H0 + H1 in order to derive a master equation in terms of a
perturbation expansion with respect to H1. However, the main purpose of
this split Hamiltonian is to define a relevance concept of type (4.9) or (4.9′)
by means of the eigenbasis of H0. It may then (but need not) further be used
in a time-dependent perturbation expansion with respect to the off-diagonal
elements of H in this representation (all contained in H1).

The dynamics of P̂diag% is the dynamics of the diagonal elements of %.
According to (4.1) one has in any representation (now writing P̂diag = P̂ for
short)

i
d%mm
dt

=
∑
n

(Hmn%nm − %mnHnm)

≡
∑

n( 6=m)

(Hmn%nm − %mnHnm) =̂ P̂ L̂(1− P̂ )% . (4.11)

Since the diagonal matrix elements of % thus do not contribute to the RHS,
the first term of Zwanzig’s pre-master equation (3.42), representing P̂ L̂P̂ ,
vanishes for this relevance concept. The terms remaining in (4.11) describe
the coupling to the ‘irrelevant’ off-diagonal elements, and demonstrate that
the diagonal elements can obey autonomous dynamics only in the trivial
case (cf. Footnote 6 of Chap. 3, regarding the quantum Zeno effect). Because
of the formal analogy, the rest of Zwanzig’s method can then be applied,
provided the required approximations are valid. The propagator exp[−i(1 −
P̂ )L̂τ ] occurring in the operator Ĝret of the Markovian approximation (3.46)
defines here a closed (and therefore incomplete, though highly non-trivial)
dynamics of the off-diagonal elements %mn.

Pauli’s master equation is obtained from (3.46) and (3.43) by using a
perturbation expansion in terms of the off-diagonal elements of the Hamilto-
nian for calculating Ĝret =

∫ T
0 Ĝ(τ) dτ . These off-diagonal elements are thus

assumed to be small, but not extremely small (the master equation would
become trivial if they vanished exactly). This emphasizes again the dynamical
foundation of the concept of relevance.

Consider the last three factors of the RHS of the integral kernel (3.43)
when applied to %,

(1− P̂ )L̂P̂ % = (1− P̂ )[H, P̂%] =̂ Hmn(%nn − %mm) . (4.12)

This expression depends only on the off-diagonal elements of H. The projec-
tion 1 − P̂ is ineffective, as P̂ L̂P̂ = 0. Similarly, one has for the first three
factors applied to any matrix X:

P̂ L̂(1− P̂ )X =̂
∑
k( 6=m)

(HmkXkm −XmkHkm) . (4.13)
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Hence, Ĝret is at least of second order in the off-diagonal elements of H. When
neglecting all higher orders according to Pauli, one may express the propaga-
tor exp[−i(1−P̂ )L̂τ ] solely in terms of diagonal elements of H, Hmm =: E(0)

m .
This means

e−i(1−P̂ )L̂τX =̂ e−i(E
(0)
m −E(0)

n )τXmn , (4.14)

and one obtains

P̂ L̂(1− P̂ )e−i(1−P̂ )L̂τ (1− P̂ )L̂P̂ %

=̂
∑
n

|Hmn|22 cos[(E(0)
m − E(0)

n )τ ](%mm − %nn) . (4.15)

This result corresponds to a Born approximation in terms of the off-diagonal
elements of the Hamiltonian. The time integral required to obtain Ĝret ac-
cording to (3.46) leads to the resonance factor

T∫
0

cos[(E(0)
m − E(0)

n )τ ] dτ =
sin[(E(0)

m − E(0)
n )T ]

(E(0)
m − E(0)

n )
, (4.16)

familiar from time-dependent perturbation theory. In the limit T → ∞ it
becomes a δ-function times π, and (3.46) can be written (Pauli 1928)

d%mm
dt

= 2π
∑
n

|Hmn|2δ(E(0)
m − E(0)

n )(%nn − %mm)

=:
∑
n

Amn(%nn − %mm) (4.17)

This Pauli equation is similar to other master equations, such as (3.48), while
the coefficients Amn, defined on the RHS, are transition rates in analogy to
Boltzmann’s w(p1p2,p

′
1p
′
2) of Sect. 3.1.1. If H1 contains only two-particle

interactions, the sum over n may again be written as a sum over particle
pairs. According to the above definition, the coefficients Amn conserve energy
and satisfy the symmetry under collision inversion, Amn = Anm, (cf. (3.7)).
Therefore, the Pauli equation conserves total probability,

∑
n d%nn/dt = 0.

One may use the explicit form of the Pauli equation to discuss, in this
case, the validity of the approximations used when deriving the master equa-
tion (3.46) — see e. g. Jancel (1963). This validity depends on the spectrum
of the Hamiltonian, but is limited by Poincaré recurrences in practice only in
unrealistic models or exceptional situations. The discrete spectra of realistic
macroscopic quantum systems do not lead to a behavior that is essentially
different from that of a continuous spectrum, since the time scales of relevant
quasi-periodicities would by far exceed the age of the universe. Quantum sys-
tems may even exhibit ‘classical chaos’ (Habib, Shizume and Zurek 1998). On
the other hand, a continuous spectrum would by no means justify an arrow
of time (as is often claimed). The negligibility of recurrences for all times
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of interest — whether they exist in principle or not — forms a T-symmetric
property. The physical importance of the difference between discrete and con-
tinuous spectra seems to be grossly overestimated in mathematical statistical
physics.

The δ-function in (4.17) is meaningful only under an integral over E, or
as an approximation under a sum over m. Therefore, Pauli combined groups
of states with macroscopically equivalent energies to form ‘cells’ (subspaces)
with corresponding coarse-grained probabilities (see also van Kampen 1954).
Joos (1984) was able to show that the off-diagonal elements %mn between
such macroscopically different subspaces disappear by interaction with an
environment that satisfies a Sommerfeld condition of lacking conspiratorial
correlations (‘decoherence’ — see Sect. 4.3). This justifies Pauli’s cells and
the corresponding random phase ‘approximation’ dynamically.

When applied to a single initial state (with %00 = 1), Pauli’s equation
(4.17) assumes the form of Fermi’s Golden Rule in the Born approximation.
Replacing the sum over initial states n with an energy integral and a sum
over remaining quantum numbers β, that is,

∑
n · · · →

∑
β

∫
σβ(E) . . . dE

(with a partial density of states σβ(E)), and similarly substituting m →
E′, α for the final states, one obtains for the integrated probabilities, %αα :=∫
%E′α,E′ασα(E′)dE′,

d%αα
dt

= 2π|H0α(E)|2σα(E) for α 6= 0 , (4.18)

where Hα0(E) := HαE,0E , while E is the energy of the initial state.
Although this Golden Rule can thus be derived as a formal approxima-

tion from the unitary dynamics (4.11), it is mainly used to describe stochastic
decay and other ‘quantum transitions’. (Coherent exponential decay accord-
ing to the Schrödinger equation will be discussed in Sect. 4.5.) In contrast,
Boltzmann’s probabilistic transition rates w(p1p2,p

′
1p
′
2) refer to ensembles

of individually-deterministic collision trajectories (distinguished by their im-
pact parameter). This difference reflects the fact that the formal concept of a
density operator is already based on the probability interpretation. Nobody
has ever been able to argue consistently how these fundamental quantum
probabilities could be derived from an ensemble interpretation of the wave
function. (Bohm’s theory will be briefly discussed in Sect. 4.6.) In particular,
the entropy (4.4) does not contain any contribution that could represent the
missing information that would characterize this ensemble (as in Fig. 3.5 for
classical measurements).

Pauli’s equation does indeed resemble Born’s original formulation of the
probability interpretation by means of his Born approximation (Born 1926).
Born used it initially to describe ‘quantum jumps’ between Schrödinger’s
stationary eigenstates of Hamiltonians H0 that characterize isolated micro-
scopic systems (such as atoms). 1 In quantum field theory, a similar splitting of

1 Although Born may not have always been using his concepts consistently, in his third
(here quoted) paper on the probability interpretation he evidently describes probabilities
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the Hamiltonian is used to define the interaction picture. The special role at-
tributed to the eigenstates of H0 as representing the ‘real’ physical states, dy-
namically connected only through discrete jumps, was historically motivated
by their correspondence to Bohr’s discrete atomic electron orbits. Quantum
jumps (or a ‘collapse of the wave function’) are, of course, incompatible with
deterministic trajectories in Hilbert space, that is, with wave functions evolv-
ing according to a Schrödinger equation. The system Hamiltonians H0 are
thus assumed not to contain any interaction that is responsible for stochastic
transitions. This early attempt to objectivize the probability interpretation
(or the relevant observables) by a dynamical process is therefore based on an
approximation. (Recall the trivial consequences for entropy according to the
Pauli equation when exact energy eigenstates are used as a basis of relevance!
Or could the Schrödinger equation nonetheless be exact? — See Sect. 4.6.)

The general structure of the Pauli equation is preserved even when the
perturbation expansion in terms of the off-diagonal elements of H (in a cer-
tain basis) is not used. The new equation is known as Van Hove’s ‘exact’
master equation (van Hove 1957). It represents Zwanzig’s master equation
for the projection (4.9) without any further approximation. In particular, if
the chosen basis of relevance is the independent particle basis, the matrix
elements Hmn appearing in the Pauli equation have merely to be replaced
with the elements of the T -matrix, usually defined as T := (S − 1)/2πi,
where S is the two-particle scattering matrix. This procedure presumes the
negligibility of many-particle collisions, while now treating the two-particle
collisions exactly (as in Boltzmann’s Stoßzahlansatz). However, the adjective
‘exact’ for van Hove’s equation is misleading even for diluted gases, as it refers
only to the calculation of Ĝret, but not to the derivation of the master equa-
tion (3.46) itself. Similarly, Born’s probability interpretation, when applied
to measurements, depends on the choice of ‘observables’ even when the Born
approximation is not used for calculating the corresponding probabilities.

In analogy to theH-theorem (3.10), one may again show that the entropy
corresponding to the Zwanzig projection P̂diag never decreases under the
Pauli or Van Hove equation:

dS[P̂diag%]
dt

= −kd (
∑
%mm ln %mm)
dt

≥ 0 . (4.19)

This entropy depends crucially on the chosen representation, that is, on the
specific concept of relevance used in this master equation.

Because of the formal analogy, the classical canonical distribution,
%can(p, q) = Z−1 exp[−H(p, q)/kT ], is replaced with the canonical density

for jumps into new stationary wave functions — not probabilities for the occurrence of
classical (such as particle) properties. In scattering or decay problems one has to identify
the final stationary states with plane waves. Born then associated the latter with parti-
cle momenta according to de Broglie’s relation. One year before the formulation of the
uncertainty relations this was not recognized as being in conflict (in principle) with the

measurement of the particle at the position of the detector.
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operator, %can = Z−1 exp(−H/kT ). It can be derived precisely as in (3.19)
by maximizing the entropy S[%] under the constraint of fixed mean energy.
The so-called ‘new statistics’ (Bose or Fermi statistics) in terms of particles is
then automatically obtained by applying this method to the quantum states
of (free) fields (conveniently described in the occupation number representa-
tion), or equivalently to symmetric or antisymmetric particle wave functions.
Only when expressed in terms of classical particle states does it appear as a
new and ad hoc introduced method for counting them. The success of quan-
tum statistics is indeed one of the strongest arguments against particles (in
their original sense of point-like objects in space, distinguishable by their
trajectories) as a fundamental kinematical concept.

This conclusion is further supported by the absence of Gibbs’ self-mixing
entropy (cf. page 69). The empirically correct measure on phase space,
d3Np d3N q/h3NN !, may be derived, for example, for the partition function
Z of a grand canonical ensemble, pE,N (µ, T ) = exp[−(E − µN)/kT ]. If this
expression is evaluated by means of the familiar textbook approximation in
the occupation number representation |{nk}〉 for ‘single-particle’ wave func-
tions with wave numbers k = p/h̄ on a large space volume V , one obtains for
diluted gases (where E =

∑
k εkNk, with εk = p(k)2/2m and εk − µÀ kT )

Z(µ, T ) =
∑
{nk}

exp

[
−
∑
k

(εk − µ)nk
kT

]

≈
∑
N

V N

h3NN !
exp

(
Nµ

kT

)∫
exp

(
−

N∑
i=1

p2
i

2mkT

)
d3Np

≈
∑
N

[
V

h3N
exp

( µ

kT

)∫
exp

(
− p2

2mkT

)
d3p

]N
(4.20)

(with N =
∑
nk). The factorials N ! ≈ NN in the denominator are here

required in order to compensate for the sum over all permutations of the N
momenta pi that are contained in this N -fold integral, since they all represent
the same occupation states of wave modes. The corresponding density matrix,
and therefore the partition function, factorizes in terms of wave modes k
(‘single particle states’) rather than in terms of particles. The factorials thus
need no longer be introduced ad hoc as in a particle picture.

General literature: Jancel 1963
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4.2 Ensembles versus Entanglement

Quantum wholeness is analyzable

In the previous section, the von Neumann equation was derived from the
Liouville equation by applying formal quantization rules. The dynamics of
the density matrix, obtained in this way, is unitary. Therefore, it conserves
S[%], while the Pauli (or Van Hove) equation, albeit derived from it as an
approximation, appears to be superior, as it is able to describe quantum
indeterminism and the increase of ensemble entropy characterizing the un-
predictable outcome of measurement-like events.

The Liouville equation itself was obtained in Sect. 3.1.2 by applying
Hamilton’s (that is, Newton’s) equations to ensembles that represent incom-
plete knowledge of classical states. Since the quantization of the Hamiltonian
dynamics of mechanical systems leads to the Schrödinger equation, one may
as well first quantize and then consider ensembles of solutions ψα with cor-
responding probabilities pα, now describing incomplete knowledge about the
wave function (see Fig. 4.1). This procedure may offer deeper insight into the
meaning of the density matrix than did its formal foundation.

Hamilton Liouville

Schrödinger von Neumann

incomplete knowledge

quanti-
zation

Fig. 4.1. Two routes from classical mechanics to the von Neumann equation

According to this ensemble interpretation, probabilities pα, but not the
density matrix %(q, q′), correspond conceptually to the probability distribu-
tions %Γ (p, q). The meaning of the density matrix can only be appreciated
when considering ensemble expectation values of observables A, that is, mean
values of expectation values with respect to different wave functions ψα:

〈A〉 :=
∑
α

pα〈ψα|A|ψα〉 = Trace{A%} =
∑
n

an〈φn|%|φn〉 , (4.21)

with
% :=

∑
α

|ψα〉pα〈ψα| and A :=
∑
n

|φn〉an〈φn| .

The symbol 〈A〉 denotes here a twofold mean; with respect to the ensemble
of quantum states ψα with their probabilities pα, and with respect to the
quantum mechanical indeterminism of measurement results an with their
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probabilities |〈φn|ψα〉|2, valid for given quantum states ψα. In this way, the
concept of a density matrix depends on the probability interpretation of the
wave function — though not on any specific kinematical concepts (fundamen-
tal variables) representing the objects to which these probabilities apply, 2 or
where and how they might dynamically arise (see Sect. 4.6).

An ensemble interpretation of the density matrix according to % =∑
α |ψα〉pα〈ψα| does not require the members ψα of the ensemble of wave

functions to be mutually orthogonal. They may in general even form an over-
complete set. Therefore, the ensemble cannot be uniquely recovered from the
density matrix. Von Neumann’s entropy (4.4) describes an ensemble entropy
according to S[%] = −k

∑
pα ln pα only for the specific ensemble consisting

of the orthonormal eigenstates of %. Similar to classical statistical mechanics,
its conservation reflects dynamical determinism — provided the Hilbert state
norms are also conserved. This does not only require determinism, but also
the unitarity of the Schrödinger equation (not just that of the von Neumann
equation), since the formal density matrix does not distinguish between norm
and probability of a wave function.

The mapping of ensembles of wave functions onto those which diago-
nalize their density matrix is an information-reducing idempotent operation,
similar to a Zwanzig projection. Nonetheless, one may derive the autonomous
von Neumann equation (4.1) from the ensemble interpretation and by using
the further assumption that all wave functions defining the ensemble satisfy
a Schrödinger equation i∂ψα/∂t = Hψα with one and the same Hamiltonian
H. Although analogous arguments are used in classical statistical mechanics,
presuming the Hamiltonian to be ‘given’ does not appear quite consistent
while regarding states as incompletely known. The exact Hamiltonian would
in general depend on the uncontrollably varying state of the environment.

Instead of describing an ensemble of wave functions, a density matrix
may also represent the local (or ‘reduced’) perspective of entangled quan-
tum systems. The generic quantum state of any two combined systems with
variables x and y, say, may be written as

ψ(x, y) =
∑
m,n

cmnφm(x)Φn(y) . (4.22)

For spatially separate subsystems, this entanglement represents the funda-
mental concept of quantum nonlocality in its successful kinematical form. For
example, it leads to Bell’s theorem (in all its variants — cf. Bell 1964 and
Greenberger, Horne, Shimony and Zeilinger 1990) and to so-called quantum
teleportation. (The latter does not port anything, since what is to be ‘ported’
has to be carefully prepared as a component of the nonlocal initial state.)

2 If these ‘objects’ of the probability interpretation were themselves represented by
wave functions (such as eigenfunctions of ‘observables’), the ensemble corresponding to all
possible outcomes of all possible measurements would be quite different from the initial
ensemble (which may be trivial in consisting of one state only). Nonetheless, probabilities

for all these outcomes are appropriately postulated by the pragmatic rules used in (4.21).
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All measurements performed at one subsystem (described by φ(x), say)
can be characterized by expectation values for observables Aφ,

〈Aφ〉 := Trace{Aφ%total} = Traceφ{Aφ%φ} , (4.23)

where %φ is defined as a partial trace, %φ := TraceΦ{%total}, while %total may
represent a wave function (or pure state), %total := |ψ〉〈ψ|. This new kind
of density matrix is explicitly given by the expansion coefficients cmn of the
total state in (4.22),

(%φ)mm′ := 〈φm|%φ|φm′〉 =
∑
n

cmnc
∗
m′n , (4.24)

rather than by a statistical distribution pα according to
∑
α cαmpαc

∗
αm′ .

Although the LHS of (4.24) cannot be distinguished by means of local
operations from a density matrix describing an ensemble of states, it is thus
evident that it does not represent one. This may be illustrated by the physi-
cally meaningful total angular momentum eigenstate of two distant particles.
Therefore, the ‘apparent ensemble’ or ‘improper mixture’ (d’Espagnat 1966)
must not be used to explain the probability interpretation (4.23) on that it
was based. The fundamental difference between proper and improper mix-
tures cannot be overcome (though perhaps it can be obscured) by using the
formal limit of an infinity of degrees of freedom (see Hepp 1972). Statistical
operators, sometimes fundamentally postulated to describe open systems, are
insufficient for a complete description, as they neglect nonlocal quantum cor-
relations. Such formalisms remain blind to the measurement problem (see
below and Sect. 4.6).

Any density matrix, such as %φ or %Φ, is Hermitean and can therefore
be diagonalized in the form %φ =

∑
n |φ̃n〉pn〈φ̃n| that defines its eigenbasis

{φ̃n}. This is a formal ensemble of orthogonal states, operationally meaningful
only for the subsystem. By using this diagonal form and (4.24), one observes
that all eigenvalues pn are non-negative. Phenomenological dynamical maps
(see Sect. 4.4) must therefore be chosen ‘completely positive’ by hand, that
is, they have to conserve this property for all density matrices.

For an entangled state such as (4.22), the eigenbasis of both subsystem
density matrices defines the Schmidt canonical form,

ψ(x, y) =
∑
k

√
pkφ̃k(x)Φ̃k(y) , (4.25)

which, in contrast to (4.22), is a single sum (Schmidt 1907, Schrödinger 1935).
All phase factors of the coefficients

√
pk in (4.25) have here been absorbed into

the orthonormal states φ̃k or Φ̃k. For given subsystems, this representation
(and hence its time dependence — see Kübler and Zeh 1973 3) is defined by
the state ψ of the total system (except for accidental degeneracy of the pk’s).

3 In this and earlier papers, I translated Schrödinger’s Verschränkung with ‘quantum
correlations’, while the rate at which two factorizing systems start to become entangled

(related to the decoherence rate) was referred to as a ‘de-separation parameter’.
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Complete neglect of the correlations between two subsystems can be
described by a nonlinear (though information-reducing) Zwanzig projection,

P̂sep% := %φ ⊗ %Φ . (4.26)

The stronger Zwanzig projection of locality, P̂local% =
∏
k %∆Vk , leading to a

density matrix that factorizes, as in (3.37), with respect to small volume ele-
ments ∆Vk in space, would again be required in order to arrive at the approx-
imate concept of an entropy density s(r). Since indistinguishable particles
can not be used to define subsystems, genuine entanglement does not include
the formal correlations that describe symmetrization or antisymmetrization
of the wave function. These pseudo-correlations are merely an artifact that
remains from using classical particle concepts — cf. (4.20).

As a consequence of the nonlocality of quantum states, and in funda-
mental contrast to classical physics, the entropy S[P̂sep%] (or S[P̂local%]) of
a completely defined (pure) quantum state is in general nontrivial (it does
not vanish). In this case the quantum entropy measures entanglement — not
lacking information. As states of the subsystems do not exist, they cannot
be merely unknown. The understanding of entanglement as “relative infor-
mation” is an incomplete, often misleading analogy. The objective apparent
ensembles, which are defined for all subsystems, may even define the rep-
resentative ensembles often used (and sometimes questioned) in statistical
thermodynamics (cf. Tolman 1938). However, an explanation is now required
for the fact that (1) microscopic systems are usually found in pure states
(such as eigenstates of their Hamiltonians H0), and (2) that the macroscopic
world is successfully described in terms of local (classical) concepts rather
than in terms of their superpositions.

A local concept of relevance that, in contrast to P̂sep, preserves all ‘sta-
tistical’ correlations (those based on incomplete information) while dropping
quantum correlations (entanglement) may be defined by the Zwanzig projec-
tion of classical correlations only, P̂classical. In the Schmidt-canonical repre-
sentation it is defined as

P̂classical(|ψ〉〈ψ|) :=
∑
k

pk|φ̃k〉〈φ̃k| ⊗ |Φ̃k〉〈Φ̃k| . (4.27)

Quantum correlations would here require a double sum over k and k′ (in
another basis a sum over two pairs of indices). The RHS can be regarded as
describing incomplete information about a presumed product state.

Quantum entanglement has also been discussed for ‘mixed states’ of
the total (‘bipartite’) system (Werner 1989, Peres 1996). Its consequences
are then suppressed either by averaging over the corresponding ensemble of
completely defined states, or by tracing out the environment that gives rise
to this reduced state. However, it would obviously be misleading to define
such a situation as ‘not entangled’.
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A random pure state (4.22) does not lead to the ‘statistical’ result %irrel ≈
0 (compare (3.44)) for the relevance concept (4.26), since only the improbable
factorizing states would not contain any correlations. (The reader may wish to
skip the rest of this somewhat technical paragraph.) For example, the linear
entropy according to (4.7), given by Slin = 1−

∑
kk′ |%kk′ |2 if normalized to

vanish for a pure state, assumes its maximum in a Hilbert space of dimension
D, Smax

lin = 1 − 1/D, for the mixture %kk′ = δkk′/D. For pure states in
the tensor product of two Hilbert spaces with dimensions M and N (hence
with D = MN) one obtains for the mean linear subsystem entropy in either
subsystem (Lubkin 1978)

S̄sublin = 1− M +N

D + 1
< 1− 1

M
and < 1− 1

N
. (4.28)

This vanishes only for M = 1 or N = 1. Since the linear information Ilin :=
1− Slin is multiplicative for products of density matrices (rather than being
additive as is its logarithmic measure), its value for the total system is given
by Ilin[P̂sep%pure] = (Isublin )2, as the entropies of the subsystems must be
equal for a pure total state (see (4.25)). For D À 1 one has, according to
(4.28), Īlin[P̂sep%pure] ≈ (M+N)2

MN Imin
lin (≈ M

N I
min
lin for M À N), with Imin

lin =
1−Smax

lin = 1/MN (valid for mixtures). While %irrel = (1−P̂sep)% vanishes in a
random mixture

∑
α |ψα〉pα〈ψα|, the mean information for pure total states,∑

α pαIlin[(1 − P̂sep)|ψα〉〈ψα|], does not. Since the irrelevant information is
measured by I[%]− I[P̂sep%] (rather than by I[(1− P̂sep)%]), the random pure
state (with Slin[%] = Smin

lin = 0) must possess large local entropy Slin[P̂ %], and
therefore has to carry its information predominantly in %irrel.

Similar relations hold for the logarithmic entropy (Page 1993, Foong and
Kanno 1994). It is impossible to reach Smax for M À N with a pure total
state. Because of Iφ = IΦ, the local information about the larger system
cannot be entirely transformed into correlations. However, every (small) sub-
system of the quantum universe that is completely described must essentially
possess maximum entropy for a random global state.

In general, a reduced density matrix no longer obeys a von Neumann
equation if the total wave function ψ evolves according to a Schrödinger
equation. Its dynamics cannot be autonomous. Although it can be explicitly
formulated (Kübler and Zeh 1973, Pearle 1979), its solution would in general
require solving the Schrödinger equation for the total system. Indeed, %φ
multiplied by the unit operator in Φ-subspace represents another (linear)
Zwanzig projection,

P̂sub%total := %φ ⊗ 1Φ . (4.29)

Phenomenological master equations for %φ, introduced in analogy to Boltz-
mann’s Stoßzahlansatz, are referred to as ‘open systems’ quantum dynamics
(see Sect. 4.4). They are often derived by assuming an uncorrelated environ-
ment in the form of a heat bath (Favre and Martin 1968, Davies 1976). While
this is analogous to Boltzmann’s chaos assumption for statistical correlations,
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master equations must explain heat baths (that is, canonical ensembles de-
scribed by a temperature parameter) rather than presuming their existence.
(Cf. the concepts of reference densities and relative entropy in Sects. 3.3.1
and 4.4.)

The expectations values (4.21) and (4.23), which led to the concept of a
density matrix, both rely on Born’s probabilities for the outcome of measure-
ments. Von Neumann (1932) proposed a model interaction that was meant
to describe ideal measurements (or measurements of the first kind) dynami-
cally. It is defined as a unitary transformation φnΦ0→

t
φnΦn, where φn is an

eigenstate of an observable, A =
∑
n |φn〉an〈φn|, while Φ0 and Φn are the

initial state of the apparatus and its final ‘pointer positions’, respectively.
If the states φn are mutually orthogonal, this transition represents a fork
of causality in classical configuration space (cf. Footnote 1 of Chap. 2). The
observable A is thus defined by this interaction up to the scale factor an. If
the microscopic system is initially in one of the eigenstates of A, it does not
change during an ideal measurement, while the apparatus evolves into the
corresponding pointer state Φn. (Non-ideal measurements could be similarly
described by replacing φn on the RHS of the unitary transformation above
with a different final state φ′n.)

However, for a general initial state,
∑
n cnφn, one obtains for the same

interaction, and for the same initial state of the apparatus, 4(∑
n

cnφn

)
Φ0 →

t

∑
n

cnφnΦn =: ψ . (4.30)

The RHS is now an entangled state, while an ensemble of different measure-
ment results (that is, of states φnΦn with probabilities |cn|2), would require
the fork of causality to be replaced with a fork of indeterminism. (The for-
mal ‘plus’ characterizing the superposition would have to be replaced with
an ‘or’.) This discrepancy represents the quantum measurement problem. The
subsystem density matrices resulting from these two types of fork are iden-

4 The assumption that the initial quantum state Φ0 of the apparatus does not depend
on the state of the microscopic system before any interaction is another application of intu-
itive causality (see also Sect. 4.6). Schulman (1986, 1997) made an attempt to understand
the measurement process, and even to determine its quasi-classical outcome, in terms of the
Schrödinger equation by assuming that the apparatus ‘knows’ the measurement result in
advance (equivalent to the existence of ‘anti-causal correlations’). The speculative nature
of this proposal is illustrated by the fact that Price (1996) made essentially the opposite
suggestion, viz., that the wave aspects of quantum mechanics be explained by means of
advanced correlations between classical particles (see also Cramer 1986). None of these
proposals explains how the ‘special states’ that they require could evolve (backwards in
time) from a universal final condition (at the big crunch, for example) in a similar way as
initial states are believed to form through evolution from a low entropy big bang. In this
respect they represent wishful thinking. If, however, values of dynamical variables were
allowed to be freely chosen or restricted at arbitrary times, this could be used to ‘explain’
all kinds of miracles. Our (seemingly-so) freedom to choose initial conditions only is an

empirical manifestation of the arrow or time.
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tical, since there is no way of distinguishing these different situations opera-
tionally by a local observation. As emphasized above, this argument does not
explain the fork of indeterminism that is at the heart of the probability in-
terpretation. If the pointer states Φn are also mutually orthogonal (as has to
be assumed for a measurement), both sides of (4.30) are Schmidt-canonical.

This measurement problem is independent of the complexity of the mea-
surement device (which may give rise to thermodynamically irreversible be-
havior), and of the presence of fluctuations or perturbations caused by the
environment, since the states Φ may be defined to describe this complexity
completely, and even to include the whole ‘rest of the world’. The popular
argument that the quantum mechanical indeterminism might, in analogy to
the classical situation, be caused by thermal fluctuations during a measure-
ment process (cf. Sect. 3.3 or Peierls 1985, for example) is incompatible with
universal unitarity. It would require the existence of an initial ensemble of mi-
croscopic states which in principle had to determine the outcome. However,
the ensemble entropy of the RHS of (4.30) does not characterize an ensemble
that would allow the measurement to be interpreted as in Fig. 3.5.

If both systems in (4.30) are microscopic, the dynamics representing the
fork of causality can even be reversed in practice in order to demonstrate
that all components still exist. It may lead to observable consequences that
depend on all of them, including their relative phases. This prohibits the
interpretation of (4.30) as a dynamical fork of indeterminism (a fork between
mere possibilities), even though von Neumann’s fork of causality is defined
(in terms of branching wave packets) in a classical configuration space. The
transition from quantum to classical (Sect. 4.3) can be understood only if it
explains why the fundamental arena for wave functions often appears as a
space of ‘classical’ configurations.

The interaction (4.30) illustrates why subsystems by themselves cannot,
in general, obey unitary dynamics. Similar arguments hold for interacting
systems with merely classical correlations (where % = P̂classical%). In this case,
the effective subsystem Hamiltonian Hφ, say, would depend on the state Φk
of the other system through a partial expectation value,

H
(k)
φ (t) = 〈Φk(t)|H|Φk(t)〉Op . (4.31a)

This may be compared with the effective Hamiltonian of a genuinely classical
subsystem, defined by

Hφ(p1 . . . qN , t) = H (p1 . . . qn; pn+1(t) . . . qN (t)) . (4.31b)

Here, particle numbers 1 . . . n are meant to characterize the subsystem corre-
sponding to the quantum states φ in (4.31a). Each element of the ensemble
would then satisfy another Hamiltonian or Schrödinger equation. This is in
contrast to the assumptions leading to the Liouville or von Neumann equation
for the density matrix in (4.21). Neglecting these correlations dynamically by
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using P̂sep in a master equation, such as (3.36), would amount to applying
the whole resulting ensemble of sub-Hamiltonians (in the forward direction
of time) to each individual element of the ensembles of states of the sub-
systems. However, only under the dynamically unstable classical assumption
% = P̂classical% would the quantum mechanical situation simply be equivalent
to the classical one discussed in Sect. 3.1.2 (cf. Fig. 3.1).

It should be kept in mind, therefore, that the local concepts of relevance,
P̂sep, P̂local and P̂classical, appear ‘natural’ only to our classical prejudice. In
the unusual situation of EPR/Bell type experiments, quantum correlations
become relevant even for local observers. Dynamical locality, described by
means of point interactions in the underlying classical field theory, merely
warrants the dynamical consistency of these concepts of relevance, such as
the approximate validity of autonomous master equations for P̂local%.

General literature: d’Espagnat 1976, 1983

4.3 Decoherence

In science, new ideas are at first completely neglected,

later fiercely attacked, and finally regarded as well known

Konrad Lorenz

The concept of decoherence as a consequence of entanglement was originally
born out of the idea of spontaneous symmetry breaking in microscopic systems
(Zeh 1965, 1967) when applied to the universe as another closed quantum
system (which contains its own observer, however). Using the terminology
introduced above, decoherence may be technically defined as the justifica-
tion of a specific P̂semidiag for a given subsystem by presuming the relevance
of the corresponding P̂sub (cf. (4.29)). If this P̂semidiag turns out to be dy-
namically valid under all normal circumstances, its eigenspaces characterize
‘quasi-classical’ properties. Thus, classical concepts emerge through unavoid-
able and practically irreversible interaction with the environment. They do
not have to be presumed as an independent fundamental ingredient, required
for an interpretation of the formalism.

In the theory of decoherent histories (Omnès 1992, Gell-Mann and Hartle
1993), decoherence is introduced as a condition for dynamically ‘consistent’
probabilities (Griffiths 1984). It is not necessarily based on entanglement
(Omnès 1999), and insofar not equivalent to environmental decoherence.

Equation (4.30) was meant to describe the controllable interaction of a
microscopic system φ with an appropriate measurement device (with ‘pointer’
states Φn). Its fact-like asymmetry (leading from factorizing to entangled
states) could be reversed with sufficient effort if both subsystems were mi-
croscopic. In analogy to particle emission, this situation may be regarded as
‘virtual decoherence’. For genuine quantum measurements, the pointer states
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Φn must be macroscopic (cf. Gottfried 1966, for example). Assume now that
the pointer states in (4.30) are replaced with states of an uncontrollable
(such as thermal) environment of the φ-system, while the latter represents a
macroscopic object, such as a pointer. Then (4.30) cannot be reversed, and
decoherence may be regarded as ‘real’. Measurements which lead to macro-
scopic pointer positions cannot be undone.

The uncontrollable (inter)action (4.30) is analogous to Boltzmann’s Stoß-
zahlansatz in creating correlations which propagate away, while it describes
the specific quantum aspect of delocalizing phase relations. Its time arrow
may therefore be referred to as quantum causality. True measurements ac-
cording to (4.30) must indeed be irreversible in order to avoid the possibility of
quantum erasure (restoration of interference, or recoherence). ‘Erasure’ would
require that every single scattered particle were recovered in order to undo
the decoherence. Experiments demonstrating quantum erasure in certain mi-
croscopic systems (cf. Kwiat, Steinberg and Chiao 1992) do not necessarily
recover the whole initial superposition — they may partially rebuild it by
using an appropriate further collapse of the wave function.

The resulting local (reduced) density matrix %φ in the sense of (4.23)
represents only an apparent (seemingly-so) ensemble of quasiclassical states.
In contrast to ‘phase averaging’ based on incomplete information (as used
by Pauli or van Kampen — cf. Sect. 4.1.2), decoherence is an objective (in-
dividual) dynamical process. The interaction with the environment, which
leads to ever-increasing entanglement, is practically unavoidable for most
systems in all realistic situations (Zeh 1970, 1971, 1973, Leggett 1980, Zurek
1981, 1982a, Joos and Zeh 1985). It is this universal and quantitative as-
pect of entanglement that seems to have been greatly overlooked for a long
time, during which macroscopic objects were unsuccessfully described by a
Schrödinger equation. Decoherence is extremely efficient, since it does not
require an environment that acts on the system (as it would have to do in
order to induce ‘distortions’ or Brownian motion). Neither the concepts of
conserved momentum and energy nor that of an environmental heat bath are
required. Decoherence may occur far from any (partial) equilibrium. In this
respect it is comparable with Borel’s unavoidable interaction at astronomical
distances, mentioned in Sect. 3.1.2.

The process of decoherence acts on a much shorter time scale than ther-
mal relaxation or dissipation (Joos and Zeh 1985, Zurek 1986). It means
that there are no approximately closed macroscopic systems (save the whole
universe). On the other hand, systematic decoherence requires the concept
of a ‘normal’ environment that monitors certain properties (represented by
subspaces). The latter then appear as ‘classical facts’, which seem to exist
regardless of their observation, while their superpositions are never observed.

Some important applications of decoherence are described below.

General literature: Zurek 1991, Giulini et al. 1996
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4.3.1 Trajectories

In an imagined two-slit interference experiment with ‘bullets’ (or perhaps
more realistically with small dust grains or macro-molecules), not only their
passage through the slits, but their whole path would be ‘measured’ by scat-
tered molecules or photons under all realistic circumstances. For macroscopic
objects one could simply confirm this by opening one’s eyes. Therefore, no
interference fringes could ever be observed — even if the resolution of the
registration device were fine enough. (An interference experiment with meso-
scopic molecules has recently been successfully performed by Arndt et al.
1999.) Classical objects resemble alpha particles in a cloud chamber (Mott
1929), since they can never be regarded as being isolated (as can be arranged
for microscopic objects). Their unavoidable entanglement with their environ-
ment (Fig. 4.2) leads to a ‘reduced’ density matrix that can be conveniently
represented by an ever-increasing ensemble of narrow wave packets follow-
ing slightly stochastic trajectories. As a by-product, this result demonstrates
that the concept of an S-matrix (with its presumed free asymptotic states)
does not apply to macroscopic objects.

Fig. 4.2. Time dependence of the coherence length l(t) for the center of mass of a small dust
grain of 10−14 g with radius 10−5 cm under continuous measurement by thermal radiation.
The six curves refer to two initially pure Gaussian wave packets, differing by their initial
widths l(0), and to three different temperatures T of the radiation. T = 0 describes the
dispersion of the wave packet according to the Schrödinger equation, which holds otherwise
as an approximation for a limited time only. Scattering of atoms and molecules is in general
far more efficient than that of thermal photons — even in intergalactic space. Brownian
motion becomes relevant only for l(t)→ λth. (From Joos and Zeh 1985)
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For a continuous variable, decoherence competes with the dispersion of
the wave packet that is reversibly described by the Schrödinger equation.
Even the apparently small scattering rate of photons, atoms, or molecules in
intergalactic space off small dust particles would suffice to destroy all coher-
ence in a spreading center of mass wave packet (see Fig. 4.2). An otherwise
free particle, for example, is then dynamically described by the master equa-
tion

i
∂%(x, x′, t)

∂t
=

1
2m

(
∂2

∂x′2
− ∂2

∂x2

)
%− iλ(x− x′)2% , (4.32)

which can be derived from a universal Schrödinger equation by assuming the
future irrelevance of all correlations with the environment (cf. Joos’ Chap. 3
and App. 1 of Giulini et al. 1996). The coefficient λ is here determined by
the rate of scattering, and its efficiency to orthogonalize states of the envi-
ronment. One does not have to postulate a fundamental semigroup in order
to describe open quantum systems (see Sect. 4.4). If the environment forms
a heat bath, (4.32) describes the infinite-mass limit of quantum Brownian
motion (cf. Caldeira and Leggett 1983, Zurek 1991, Hu, Paz and Zhang 1992,
Omnès 1997). This demonstrates that even for entirely negligible recoil (which
is responsible for noise and friction) there remains an important effect that is
based on quantum nonlocality. Although Brownian fluctuations are required
in a thermal environment, they affect the density matrix of macroscopic de-
grees of freedom much less than decoherence.

Classical properties (e. g. shapes and positions of droplets) thus emerge
from the wave function (and are maintained) by a process that cannot prac-
tically be reversed. Particle aspects (such as tracks in a bubble chamber)
are described by the reduced density matrix because of unavoidable interac-
tions with the environment. The disappearance of interference between partial
waves during a welcher Weg experiment (Scully, Englert and Walther 1991)
does not require any wave-particle ‘complementarity’. Similarly, there is no
superluminal tunnelling (see Chiao 1998) in a consistent quantum descrip-
tion, since all parts of a wave packet propagate (sub-) luminally, while its
group velocity does not represent propagation of any physical objects.

Master equations for open systems, such as (4.32), can also be derived
by means of the decoherence functional (Feynman and Vernon 1963, Men-
sky 1979). Feynman’s path integral is thereby used as a tool for calculating
the propagation of a global density matrix, while the environment is again
continuously traced out after getting entangled with the considered system.
The intuitive concept of an ensemble of paths (representing different possible
trajectories) is appropriate only if this treatment leads to their decoherence.
A ‘restriction’ of the path integral (Mensky 2000) would introduce a phe-
nomenological collapse of the wave function.

All quasi-classical phenomena, even those representing ‘reversible’ me-
chanics, are based on this de facto irreversible decoherence. It describes a
perpetual production of objective physical entropy (increasing entanglement),
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which may be macroscopically negligible, but is large in terms of bits. If the
quasi-classical trajectories are chaotic, this entropy production may be con-
trolled by the classical Lyapunov exponent (Zurek and Paz 1994, Monteoliva
and Paz 2000), even though this concept of entropy does not depend on any
(initial) uncertainties that may grow in the direction of calculation, as in the
classical theory of chaos (cf. Sect. 3.1.2).

General literature: Omnès 1997

4.3.2 Molecular Configurations as Robust States

Chiral molecules, such as the right- or left-handed sugars, represent another
elementary property controlled by decoherence. A chiral state is described
by a wave function, but in contrast to the otherwise analogous spin-3 state
of an ammonia molecule, say, not by an energy eigenstate (see Zeh 1970,
Primas 1983, Woolley 1986). The reason is that it is chirality (but not parity)
that is continuously ‘measured’, for example by scattered air molecules. (For
sugar molecules under normal conditions decoherence requires a time scale
of the order 10−9sec — see Joos and Zeh 1985.) Measurements of the parity
of sugar molecules, or their preparation in energy eigenstates, are therefore
practically excluded, since this would require an even stronger coupling to
the corresponding apparatus.

As a dynamical consequence, each individual molecule in a bag of sugar
must then retain its chirality, while a parity state — if it had come into ex-
istence in a mysterious or expensive way — would almost immediately ‘col-
lapse’ into a definite chirality (with equal probabilities). Parity is thus not
conserved for sugar molecules, while chirality would be confirmed ‘without
demolition’ when measured twice. (A mixture of chiralities would be oper-
ationally identical to a mixture of parities only in the pathological case of
exactly equal probabilities.)

This dynamical robustness of certain properties under the influence of
the environment seems to characterize what we usually regard as ‘real facts’
(in the operational sense), such as spots on the photographic plate, or any
other ‘pointer states’ of a measurement device. The concept of robustness is
thereby compatible with a (regular) time dependence, as exemplified in the
previous section for the center of mass motion of macroscopic objects. Since
entropy production by interaction with the environment is least for a density
matrix that is already diagonal in terms of robust states, this property has
been called a ‘predictability sieve’, and proposed as a definition of classical
states (Zurek, Habib and Paz 1993).

Robustness gives rise to quasi-classical trajectories in terms of wave pack-
ets, and it seems to be essential for the physical concept of memory (as in
DNA, brains or computers) — with the exception of proposed quantum com-
puters, which are extremely vulnerable to decoherence (Haroche and Rai-
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mond 1996, Ekert and Jozsa 1996 — see also Zurek 1998). Even ‘states of
being conscious’ (cf. Chap. 1) that are able to communicate seem to be quasi-
classical (Tegmark 2000). In contrast to these robust properties, which can be
assumed (for all further consequences) to exist as ‘facts’ regardless of their
measurement, potentially measurable quantities are called ‘counterfactual’.
Their superpositions must not be assumed to describe ensembles of definite
(really existing though unknown) properties. These different situations can
be well analyzed and understood in terms of decoherence.

Chemists know that atomic nuclei in large molecules have to be de-
scribed classically (for example by rigid configurations, which may vibrate
or rotate in a time-dependent manner), while the electrons are represented
by stationary or adiabatically comoving wave functions. This asymmetric be-
havior is often attributed, by means of a Born-Oppenheimer approximation,
to the large mass ratio. However, this argument is insufficient, since the same
approximation can be applied to energy eigenstates of small molecules with
their discrete energy bands. A similar case is now also studied in quantum
gravity, where one claims that the ‘classicality’ of spacetime can be explained
by merely employing a Born-Oppenheimer approximation with respect to the
inverse Planck mass (see Sect. 6.2.2). It cannot be saved by means a WKB
approximation for the massive variables, since this would not exclude broad
wave functions (instead of the required narrow wave packets moving along
trajectories). The WKB approximation can only explain the propagation of
wave fronts according to geometrical optics, and therefore the stability of
narrow wave packets once they have formed.

The formation of pseudo-classical wave packets for the atomic nuclei in
large molecules or for the gravitational field can instead again be explained
by decoherence (Joos and Zeh 1985, Unruh and Zurek 1989, Kiefer 1992 —
see also Sect. 4.3.4). For example, the positions of nuclei are permanently
monitored by scattering of (other) molecules. But why only the nuclei (or
ions), and why not including those in very small molecules? The answer can
only be quantitative, and it is based on a delicate balance between internal
dynamics and interaction with the environment, whereby the density of states
plays a crucial role (Joos 1984). Depending on the specific situation, one will
either obtain an approximately unitary evolution, a master equation (with
time asymmetry arising from quantum causality), or complete freezing of the
motion (quantum Zeno effect). The situation becomes relatively simple only
for a ‘free’ massive particle, which is described by (4.32).

General literature: Joos’ Chap. 3 of Giulini et al. 1996
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4.3.3 Charge Superselection

Gauß’ law, q = 1
4π

∫
E · dS, tells us that every local charge is correlated with

its Coulomb field on a sphere at any distance. A superposition of different
charges,∑

q

cqψ
total
q =

∑
q

cqχqΨ
field
q =

∑
q

cqχqΨ
near
q Ψfarq

=:
∑
q

cqχ
dressed
q Ψfarq ,

(4.33)

therefore represents an entangled state of the charge and its field. Here, χq
describes the bare charge, while Ψfieldq = Ψnearq Ψfarq is the wave functional
of its complete field, symbolically written as a tensor product of a near-field
and a far-field (cf. Sect. 2.3). The dressed (physical) charge state would then
be described by a density matrix of the form

%local =
∑
q

|χdressedq 〉|cq|2〈χdressedq | (4.34)

if the states of the far field are mutually orthogonal (uniquely distinguishable)
for different charge q. The charge is thus decohered by its own Coulomb field,
and no charge superselection rule has to be postulated (see Giulini, Kiefer
and Zeh 1995). The formal decoherence of the bare charge by its near-field
remains unobservable, since experiments can only be performed with dressed
charges.

While this result is satisfactory from a theoretical point of view, a more
practical question is, at what distance and on what time scale the superposi-
tion of two different locations of a point charge (such as an electron during an
interference experiment) are observationally destroyed by the corresponding
state of the dipole field. A classical retarded Coulomb field would contain
complete information about the precise path of the charge. However, since
interference between different electron paths has been observed over distances
of the order of millimeters at least (Nicklaus and Hasselbach 1993), the QED
equivalent to Coulomb fields seems to contribute to decoherence only by its
monopole component.

This conclusion (which emerged from discussions with E. Joos) can be
readily understood in quantum mechanical terms, since photons with infinite
wave length (representing static Coulomb fields) cannot distinguish different
charge positions (even though the number of virtual photons may diverge).
Static dipole (or higher) moments do not possess far-fields, defined to decrease
with 1/r2. Therefore, of the Coulomb field, only the ‘topological’ Gauß con-
straint ∂µFµ0 = 4πj0 remains in QED. The observed (retarded) Coulomb
field must then be completely described in terms of transverse photons, rep-
resented by the vector potential A (with divA = 0 in the Coulomb gauge),
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and restricted to states obeying the Gauß constraint. In this picture, only
the spatial distribution of electric field lines — not their total flux — forms
dynamical degrees of freedom that have to be quantized. In this sense, charge
decoherence has been regarded as ‘kinematical’, although it might as well be
assumed to be dynamically caused by the retarded field of the (conserved)
charge in its past. Note, however, that a kinematical Coulomb constraint is
in conflict with the concept of a physical Hilbert space that is spanned by
direct products of local states.

Dipole and higher moments (which can define position differences of a
point charge), can thus be measured by their environment either through
emission (or scattering) of transversal (‘real’) photons, or by the irreversible
polarization of nearby matter (Kübler and Zeh 1973, Zurek 1982a, Anglin
and Zurek 1996). The decoherence of individual electrons within solid bodies
is discussed in Imry (1997).

The emission of photons would require acceleration. For example, a tran-
sient dipole of charge e and maximum distance d, existing for a time interval
t, involves accelerations a of at least the order d/t2. According to Larmor’s
formula (cf. Sect. 2.3), the intensity of radiation is then at least 2

3e
2a2. In

order to resolve the position difference, the emitted radiation has to consist
of photons with energy greater than h̄c/d (that is, wave lengths smaller than
d). The probability that information about the dipole is radiated away (by
at least one photon) is then very small (of the order αZ2(d/ct)3, where α is
the fine structure constant and Z the charge number). In more realistic cases,
such as interference experiments with electrons, stronger accelerations will
be involved, but would still cause negligible decoherence in most situations.
This limitation of the information capacity of an electromagnetic field by its
quantum character must also give rise to an upper bound for the efficiency
of interactions used in Borel’s argument of Sect. 3.1.2.

The gravitational field of a point mass is analogous to the Coulomb field
of a point charge. Superpositions of different mass should therefore be deco-
hered by the quantum state of the monopole contribution of spatial curvature,
and thus give rise to a mass superselection rule. However, superpositions of
slightly differing masses evidently exist, since they form the time-dependent
states of local systems, which would otherwise be excluded. This situation
seems not to be sufficiently understood.

Nothing would remain of the Coulomb field in QED if the total charge
of the quantum universe vanished exactly (cf. Giulini, Kiefer and Zeh 1995).
The gravitational counterpart of this conclusion is the absence of time from
a closed universe in quantized general relativity (see Sect. 6.2).

General literature: Giulini’s Chap. 6 of Giulini et al. 1996



4.3 Decoherence 107

4.3.4 Classical Fields and Gravity

Not only are the quantum states of charged particles decohered by their fields,
but also the quantum field states may in turn be decohered by the sources
on which they (re)act. In this case, ‘coherent states’, that is, Schrödinger’s
time-dependent but dispersion-free Gaußian wave packets for the amplitudes
of classical wave modes (eigenmodes of coupled oscillators), have been shown
to be robust for similar reasons as chiral molecules or the wave packets de-
scribing the center of mass motion of quasi-classical particles (Kübler and
Zeh 1973, Kiefer 1992, Zurek, Habib and Paz 1993, Habib et al. 1996). This
explains why macroscopic states of neutral boson fields usually appear as
classical fields, and why superpositions of macroscopically different ‘mean
fields’ or different vacua (Sect. 6.1) have never been observed. In particular,
quantum (field) theory must not and need not be reduced to a description
of scattering processes, with probabilities interpretation for asymptotically
isolated fragments.

These coherent (minimum uncertainty) harmonic oscillator states are
defined for each wave mode k as the (overcomplete) eigenstates |αk〉 of the
non-Hermitean photon annihilation operators ak with complex eigenvalues
αk (that is, ak|αk〉 = αk|αk〉). They are Gaußian wave packets, centered
at a time-dependent mean field αk(t) = α0

ke
iωt, where Re(αk) and Im(αk)

are analogous to the mean position and momentum of a mechanical oscilla-
tor wave packet. Since the Hamiltonian that describes the interaction with
charged sources is usually linear in the field operators ak or a†k, these coher-
ent states form a robust ‘pointer basis’ under normal conditions: they cause
negligible entanglement with their environment (formed by their sources).

In contrast to these superpositions of many different photon numbers
(that is, oscillator quantum numbers), one-photon states resulting from the
decay of one of several different individual atoms (or even the n-photon states
resulting from the decay of a different number n of atoms) are unable to
interfere with one another, since they are correlated with mutually orthogonal
final states (which have different atoms in their ground state). Two incoherent
components of a one-photon state may then appear (using Dirac’s language)
as ‘different’ photons, although photons are not conceptually distinguishable
from one another. In contrast, a coherent macroscopic (‘collective’) state
of the source would react negligibly (judged in terms of the inner Hilbert
space product) when as a whole emitting a photon. It would thus be able
to produce the coherent (‘classical’) field states discussed above (see also
Kiefer 1998). In his textbook, Dirac (1947) discussed also states of two (or
more) photons correlated to the same state of the source, which would then
have to contain two (or more) decayed atoms. They may be described by a
symmetrized product of one-photon waves. Although these states form one
coherent component of QED, their two (or more) one-photon probabilities
(measured as light intensity) add again without interference (except for the
exchange terms, which give rise to the Hanbury Brown-Twiss effect).
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Superpositions of two different quasi-classical (coherent) states, c1|α1〉+
c2|α2〉, have been produced and maintained for a short time as one-mode laser
fields (k now omitted) in a cavity (Monroe et al. 1996). In order to prepare
them, coherent field states are used as mesoscopic pointers in a ‘measurement’
that distinguishes two energy eigenstates |±〉 of a highly excited (Rydberg)
atom by means of the von Neumann type interaction |±〉|α〉 → |±〉|αe±iθ〉.
(The phase factor e±iθ applies here to the eigenvalue α of the field mode, not
to its Hilbert state |α〉.) The common time dependence eiωt of these one-mode
states cancels. Since the Rydberg states |±〉 can be rotated in their formal
state space while being in ‘Ramsey zones’ (just as spin can be rotated in space
in a magnetic field), they can be brought into a superposition, |+〉±|−〉, which
upon measurement leads to

(|+〉 ± |−〉) |α〉 → |+〉 |αe+iθ〉 ± |−〉 |αe−iθ〉 . (4.35)

If θ is now chosen as π/2, and the atomic state ‘rotated’ again by π/2, the
states |±〉 are correlated with field superpositions |α〉 ± | − α〉. They can be
projected out by detecting that the atom is in the state |+〉 or |−〉. The field
superpositions obtained in this way can then be probed and thus confirmed by
means of a second Rydberg atom passing through the cavity. If the states |±α〉
are regarded as classical, their superpositions may be likened to Schrödinger’s
much-discussed superposition of a cat being dead or alive. Unfortunately, a
cat cannot be similarly transformed from alive to dead in a reversible process,
since it would decohere too fast. The mesoscopic superposition must also
decohere, although on a time scale that is slow enough to allow it to be
monitored as a smooth process (Davidovich et al. 1996, Brune et al. 1996).
There is evidently no discontinuous ‘quantum jump’ from the superposition
into a definite quasi-classical state (see Sect. 4.3.5).

Similar arguments as those used above for electromagnetic fields apply
to spacetime curvature in quantum gravity (Joos 1986, Kiefer 1999 — for
applications to quantum cosmology see Chap. 6). One does not have to know
its precise form (that may be part of an elusive unified quantum field the-
ory) in order to conclude that the quantum states of matter and geometry
(as far as this distinction remains valid) must be entangled and give rise to
mutual decoherence. The classical appearance of spacetime geometry with
its fixed light cone structure (that is presumed in conventional quantum field
theory) is thus no reason not to quantize gravity. The beauty of Einstein’s
theory can hardly be ranked so much higher than that of Maxwell’s as would
be necessary in order to justify its exemption from quantization. An exactly
classical gravitational field interacting with a quantum particle would even
be incompatible with the uncertainty relations — as is known from the early
Bohr-Einstein debate. The resulting density matrix (functional) for the grav-
itational tensor field as a ‘quantum system’ must therefore be expected to
represent an apparent mixture of different quasi-classical curvature states (to
which even the observer is correlated — see Sects. 4.6 and 6.2).
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Moreover, the entropy and thermal radiation characterizing a black hole
or an accelerated Unruh detector (Sects. 5.1 and 5.2) are consequences of the
entanglement between relativistic vacua on two half-spaces separated by an
event horizon. This entanglement entropy measures the same type of ‘ap-
parent’ ensembles as the entropy produced according to the master equation
(4.32) for a macroscopic mass point. An event horizon need not be differ-
ent from any other quasi-classical property. Nonetheless, the disappearance
of coherence behind an (even virtual) horizon has been regarded as a fun-
damental (law-like) violation of unitarity, and even as the final source of all
irreversibility (see Sects. 4.4, 5.1 and 6.2). This does in no way appear justified
(cf. Kiefer, Müller and Singh 1994).

General literature: Kiefer’s Chap. 4 of Giulini et al 1996, Kiefer 1999

4.3.5 Quantum Jumps

Quantum particles are often observed as flashes on a scintillation screen, or
heard as ‘clicks’ from a Geiger counter. These macroscopic phenomena are
then interpreted as being caused by point-like objects passing through the
observing instrument during a short time interval, while this is in turn under-
stood as evidence for the discontinuous decay of an excited state (such as an
atomic nucleus). A rate for stochastic ‘decay events’ is equivalent to a mas-
ter equation. A constant rate describes exponential decay. Discrete quantum
jumps between two energy eigenstates have also been directly monitored for
single atoms in a cavity which are strongly coupled to an observing device
(Nagourney, Sandberg and Dehmelt 1986, Sauter et al. 1986). Therefore, cre-
ation and annihilation operators are often understood as describing discrete
events, even though they occur in a Hamiltonian.

The Schrödinger equation, on the other hand, describes a wave func-
tion (usually with angular distribution according to a spherical harmonic)
smoothly leaking out of a decaying system (such as a ‘particle’ in a potential
well). This contrast between observed discrete events and the Schrödinger
equation is clearly the empirical root of the probability interpretation in
terms of particles. Since probability is conserved, a wave function can exhibit
exponential time dependence only in a limited region of space (usually an
expanding sphere with radius determined by the time of formation of the
decaying state and the speed of the decay fragments). The complete wave
function represents a superposition (rather than an ensemble) of different de-
cay times. Their interference and the dispersion of the outgoing wave lead to
further deviations from an exponential law. Although they are too small to
be observed in free decay, they have been confirmed as ‘coherent state vec-
tor revival’ for photons emitted into cavities with reflecting walls (Rempe,
Walther and Klein 1987).
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The appearance of ‘particles’ following tracks in a cloud chamber has
been explained in Sect. 4.3.1 in terms of an apparent ensemble of narrow wave
packets. Similar wave packets occur at counters or photographic plates, thus
indicating ‘quantum events’. Therefore, the same decoherence which describes
localization in space also explains localization in time. Neither particles nor
quantum jumps are required as fundamental concepts (Zeh 1993, Paz and
Zurek 1999). Whenever decay fragments (or the decaying object before de-
cay) interact appropriately with their environment, any interference between
‘decayed’ and ‘not yet decayed’ disappears on a very short (though finite) de-
coherence time scale, just as as in the case of a superposition of Schrödinger
cats. This time scale is in general far shorter than the time resolution in
genuine measurements. If it is even shorter than relaxation into a linear time
dependence (defining a decay rate), decay may be strongly suppressed (‘quan-
tum Zeno effect’) — see Joos (1984) for its non-phenomenological description.

If the decay status is permanently ‘monitored’ (in general uncontrol-
lably), a set of identical decaying objects is more appropriately described
by a decay rate than by a Schrödinger equation. After their formation this
would define an exact exponential law, and it would not admit any inter-
ference between different decay times. Similarly, sufficiently distinct decay
energies forming an initial superposition are usually absorbed into differ-
ent final states of the environment. Microscopic systems with their discrete
energy levels must therefore decohere into eigenstates of their own Hamilto-
nians. This explains why stationary states characterize the atomic world, and
von Neumann spoke of an Eingriff (intervention) required for their change.

It seems that this situation of continuously monitored decay has led to
the myth of quantum theory as a stochastic theory for fundamental quantum
events (cf. Jadczyk 1995). Bohr (1928) remarked that “the essence” (of quan-
tum theory) “may be expressed in the so-called quantum postulate, which
attributes to any atomic process an essential discontinuity, or rather individ-
uality . . . ” (my italics). This statement is in conflict with many macroscopic
quantum phenomena that have now been observed. Heisenberg and Pauli
similarly emphasized their preference for matrix mechanics because of its
(evidently misleading) superiority in describing discontinuities. However, ac-
cording to the Schrödinger equation (and recent experiments), the underlying
entanglement processes are smooth. The short decoherence time scales mimic
quantum jumps between energy eigenstates, while arising narrow wave pack-
ets are interpreted as particles or classical variables (even though classical
properties have to be restricted in validity by the uncertainty relations in
order to comply with the Fourier theorem).

While the description in terms of time-dependent entangled wave func-
tions may now appear as a consistent picture, an important question remains
open: how do the probabilities which were required to justify the concept of a
density matrix in Sect. 4.2 have to be understood if they do not describe quan-
tum jumps or the occurrence of classical properties in fundamental ‘events’.
This discussion will be resumed in Sect. 4.6.
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4.4 Quantum Dynamical Maps

The phenomenological description of open quantum systems by means of semi-
groups leads to some novel aspects compared to their classical counterparts
(Sect. 3.4). For example, quantum dynamical maps have been used to formal-
ize von Neumann’s ‘first intervention’ (the reduction of the wave function)
as part of the dynamics (cf. Kraus 1971). This is possible, since semigroups
can not only describe the transition of pure states into ensembles of mea-
surement results, but also the ‘selection’ of an individual outcome. Otherwise
they are equivalent to an entropy-enlarging Zwanzig-type master equation
with respect to P̂sub (or its equivalent in terms of path integrals — Feynman
and Vernon 1963). Although the ‘irrelevant’ correlations with the environ-
ment, which would arise according to the exact global formalism, represent
quantum entanglement, they are usually not distinguished from classical sta-
tistical correlations when it comes to applications. (This point of view is
equivalent to a popular but insufficient ‘naive’ interpretation of decoherence,
which pretends to derive genuine ensembles).

Quantum theory is sometimes even defined as describing open systems by
means of a dynamical semigroup, that is as though it were a time-asymmetric
local statistical theory. (Hence the term ‘statistical operator’ for the density
operator.) However, this ‘minimal statistical interpretation’ is absolutely in-
sufficient, as it entirely neglects the difference between genuine and apparent
ensembles, and thus all consequences of entanglement beyond the consid-
ered systems (quantum nonlocality). The superposition principle has even
been claimed to be derivable (cf. Ludwig 1990), although it is then simply
re-introduced in some hidden form (for example by changing the laws of
statistics).

Semigroups are certainly mathematically elegant and powerful. There-
fore, they would form candidates for new theories if conventional (Hamilto-
nian) quantum theory should prove wrong as a universal theory. The ques-
tion is whether mathematical elegance here warrants physical relevance or is
merely convenient within a certain approximation. To quote Lindblad (1976):
“It is difficult, however, to give physically plausible conditions . . . which rig-
orously imply a semigroup law of motion for the subsystem. . . . Applications
. . . have led some authors to introduce the semigroup law as the fundamental
dynamical postulate for open (non-Hamiltonian) systems.” Such a law would
fundamentally introduce an arrow of time (see Sect. 4.6), but it would depend
on the choice of systems (and in some cases contradict experiments that have
already been performed).

The simplest quantum systems (such as spinors) are described by a two-
dimensional Hilbert space. Their density matrix may be written by means of
the Pauli matrices σi (i = 1, 2, 3) in the form

% =
1
2

(1 + σ · π) , (4.36)
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where the (mathematically) real polarization vector π = Trace{σ%} — that
is, the expectation value of all spin components — completely defines % as a
general Hermitean 2× 2 matrix of trace 1. The latter is in turn equivalent to
a (genuine or apparent) ensemble of orthogonal spinors. The length of π is a
measure of purity, since Trace{%2} = (1 + π2)/2, with π2 ≤ 1. A pure state
corresponds to a unit polarization vector, while an arbitrary density matrix
(a general ‘state’ in the language of mathematical physics) is characterized
by the mean value π =

∑
α pαπα of all unit vectors πα in an ensemble of

spinors that may represent this density matrix.
A general trace-preserving linear operator P̂ on % must be defined on 1

and σ in order to be completely defined:

P̂1 := 1 + π0 · σ P̂σ := A · σ , (4.37)

with a real vector π0 and a linear vector transformation A. P̂ is idempotent
(a Zwanzig ‘projector’) if A2 = A and π0 · A = 0 (A = 0, for example).
If π0 6= 0, P̂ creates new information — even from the unit matrix (cf.
Sect. 3.2).

Dynamical combination of the projection P̂ with a Hamiltonian evolu-
tion (describing a rotation of π) in the form of a master equation leads to
the Bloch equation for the vector π(t),

dπ

dt
= ω × (π − π0)−

∑
i

γi(πi − πi0)ei (4.38)

in a certain vector basis {ei} (cf. Gorini, Kossakowski and Sudarshan 1976).
Values of γi < 0 or |π0| > 1 would violate the positivity of the density ma-
trix at some t > 0 (cf. Sect. 4.2), and thus have to be excluded. 5 The second
term on the RHS describes anisotropic damping towards π0. This creation
of information may describe very different situations, such as equilibration
with an external heat bath of given temperature, or evolution towards a cer-
tain measurement result. π0 is often referred to as characterizing a reference
state, while the relative entropy with respect to it (cf. (3.51b)) never decreases
under the Bloch equation (even when the genuine local entropy does). How-
ever, hermiticity of P̂ (corresponding to a genuine projection operator) would
require π0 = 0 and A = A†, that is, a projection of vectors π in space.

If the two-dimensional Hilbert space describes something else than spin,
such as isotopic spin or a K, K̄ system, the polarization vector lives in an
abstract three-dimensional space, with environmental conditions that cannot
simply be ‘rotated’. The abstract formalism can also be generalized to n-
dimensional Hilbert spaces. For this purpose the Pauli matrices have to be

5 As mentioned in Sect. 4.2, all subsystem density matrices remain positive under a
global Hamiltonian dynamics, and even under a collapse of the global state vector. However,
this property of ‘complete positivity’ has to be separately postulated for phenomenological
quantum dynamical maps (cf. Kraus 1971), thus further illustrating that these maps do

not describe a fundamental aspect of quantum theory.
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replaced with the (n2 − 1) Hermitean generators of SU(n), while the real
‘coherence vectors’ (the generalizations of the polarization vector π) now live
in the vector space spanned by them. For example, SU(3) gives rise to the
‘eight-fold way’. The most important difference is that there are now more
than one (in fact, n−1) commuting Hermitean generators. They may contain
a nontrivial subset that is decohered under all realistic environmental condi-
tions, and thus may form the center of a phenomenological set of observables
(the set of ‘classical observables’ — cf. Sect. 4.3). For example, maps of den-
sity matrices of dimension n = 4 which decohere with respect to a certain
basis would reproduce Figs. 3.8a, c and d.

In the infinite-dimensional Hilbert space of quantum mechanics, the
Wigner function

W (p, q) :=
1
π

∫
e2ipx%(q + x, q − x) dx

≡ 1
2π

∫ ∫
δ

(
q − z + z′

2

)
eip(z−z

′)%(z, z′) dzdz′ =: Trace{Σp,q%}
(4.39a)

(written in analogy to π = Trace{σ%}) assumes the role of the coherence
vector π. Evidently,

Σp,q(z, z′) :=
1

2π
eip(z−z

′) δ(q − z + z′

2
) (4.39b)

is a generalization of the Pauli matrices (with ‘vector’ index p, q). On a finite
interval of length L, Σp,q would require the additional term − 1

2πLeip(z−z
′)

in order to warrant tracelessness.
Therefore, the Wigner function is a continuous set of expectation val-

ues, which form the components (one for each point in phase space) of a
generalized coherence vector. This ‘vector’ of expectation values again char-
acterizes the density matrix % completely, and regardless of its interpretation
(Sect. 4.2). It does in general neither represent an individual quantum state
nor a probability distribution on phase space. The latter follows from the neg-
ative values allowed for W , even though one may calculate all expectation
values in the form of an ensemble mean, < F >=

∫
f(p, q)W (p, q)dpdq.

Lindblad (1976) was able to generalize the Bloch equation to infinite-
dimensional Hilbert spaces. He wrote it (applicable to the density matrix)
as

i
∂%

∂t
= [H, %]− i

2

∑
k

(
L
†
kLk%+ %L

†
kLk − 2Lk%L

†
k

)
, (4.40)

with arbitrary generators Lk in Hilbert space. It describes creation (localiza-
tion) of information, that is, a local decrease of the corresponding von Neu-
mann entropy, if and only if some generators do not commute with their Her-
mitean conjugates L†k. This can be shown by applying the non-Hamiltonian
terms of (4.40) to the unit matrix % = 1. Otherwise it describes information
loss (a genuine Zwanzig projection). This can also be seen from the general
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representation of a Zwanzig projector in quantum mechanical Hilbert space,
P̂ % =

∑
k Vk%V

†
k , which is analogous to the square root of a positive oper-

ator in its eigenbasis for Vk = V
†
k . If L†k = Lk, the Lindblad terms can be

written in the form of a double commutator, L2%+ %L2 − 2L%L = [L, [L, %]].
For L =

√
2λx one recovers (4.32), that is, decoherence in the x-basis, which

could be derived from unitary interaction with the environment (and shown
to be practically unavoidable for macroscopic variables).

One may similarly describe other ‘unread’ measurements and their cor-
responding loss of phase relations. However, ‘damping’ towards a pure state
(a semigroup proper), represented by the second term of (4.38) with a unit
vector π0, allows one also to describe the evolution into a (freely chosen)
definite measurement outcome (a ‘collapse’ — in contrast to local or global
unitary evolution). This can then readily be dynamically combined with a
stochastic formalism that represents an appropriate dice (or random number
generator) that is defined to select pure states according to the Born-von Neu-
mann probabilities (Bohm and Bub 1966, Pearle 1976, Gisin 1984, Belavkin
1988, Diósi 1988). If applied continuously, such as by means of the Itô pro-
cess, this formalism describes measurements phenomenologically as smooth
indeterministic processes.

Many explicit models have been proposed in the literature (see Sta-
matescu’s Chap. 8 of Giulini et al. 1996). Some of them merely replace the
apparent ensemble arising through decoherence for a bounded open system
with a genuine one (Gisin and Percival 1992). The system under consideration
is thereby assumed always to possess its own (in general unknown) state ψ(t)
that follows an indeterministic trajectory in its Hilbert space according to a
quantum Langevin equation — in conflict with the exact global dynamics.
Therefore, this quantum state diffusion model is essentially equivalent to what
I have above called the ‘naive interpretation’ of decoherence. It may serve as
an intuitive picture (or tool) for many practical purposes if (and insofar as)
it selects the dynamically robust wave packets (see Diósi and Kiefer 2000).
However, it would be seriously misleading if this formalism (based on the
concept of a density matrix) gave the impression of deriving a real collapse
just by taking into account the interaction with the environment. 6

Many contributions in the literature remain ambiguous about their true
intentions, or simply disregard the difference between genuine and apparent
ensembles (proper and improper mixtures). In particular, the quantum state
diffusion model is inappropriate for formulating a new (fundamental) dynam-
ical law (such as an objective collapse). The pure state ψ(t) that it postulates
to exist for any open system would in general not define states for its sub-
systems (which could as well be chosen as the system, and would then lead

6 Note that Schrödinger was worried about correlated superpositions of cats,
|0〉|dead〉 + |1〉|alive〉. He did not attempt to produce uncorrelated superpositions of cats
as in the experiment discussed in Sect. 4.3.4. Therefore, he might not have been entirely

satisfied with decoherence, although he would have had to take it into account.



4.5 Exponential Decay and ‘Causality’ in Scattering 115

to a different stochastic evolution). The picture of a trajectory of quantum
states ψ(t) for a macroscopic system that is not the whole universe is simply
in drastic conflict with quantum nonlocality.

Other models have therefore been suggested to reproduce the observed
statistical aspects of quantum theory by means of fundamental modifications
of the Schrödinger equation. Since they cannot remove all entanglement, they
cannot describe trajectories of wave functions for all systems. Measurements
would then just form special applications of a more general stochastic quan-
tum dynamics, describing an increase of ensemble entropy, while the sub-
sequent reading of the outcome has to be described as in Fig. 3.5. These
modifications of a universal Schrödinger equation were originally suggested
in the form of stochastic ‘hits’ (jumps), assumed to act in addition to the
unitary evolution, and to suppress coherence with growing distance (Ghi-
rardi, Rimini and Weber 1986). They were chosen in such a way that they
rarely affect individual particles, but are important for entangled aggregates
of many particles in order to describe their classical aspects in an objective
way. This proposal was later formulated as a continuous process, as indicated
above (Pearle 1989, Ghirardi, Pearle and Rimini 1990). Since these models
lead to novel predictions, they can be distinguished from a universally valid
Schrödinger equation. In their original form they would either be completely
camouflaged by environmental decoherence (Joos 1986, Tegmark 1993), or are
ruled out by existing experiments (Pearle and Squires 1994). They cannot be
excluded in general, provided one allows them to occur in the observational
chain of interactions well after environmental decoherence has occurred (see
Sect. 4.6). Their precise form would then be hard to guess in the absence of
any empirical hints.

Several authors suggested searching for the root of a fundamental quan-
tum indeterminism in gravity. Their main motivation is the apparently clas-
sical nature of spacetime curvature. However, as indicated in Sect. 4.3.4 (and
further elaborated in Sect. 6.2), spacetime curvature must not be presumed
to be classical. Collapse models along these lines have been proposed in a
more or less explicit form (Penrose 1986, Károlyházy, Frenkel and Lukácz
1986). They either treat the quantum state of the gravitational field as an
environment for matter in a specific quantum state diffusion model (as criti-
cized above — see also Diósi 1987), or they use an arising event horizon as a
‘natural’ boundary to cut off entanglement dynamically (Hawking 1987, Ellis,
Mohanty and Nanopoulos 1989). Even though this specific boundary between
a ‘system’ and its environment may appear fundamental, it could still not be
used to define an objective physical process. In particular, a horizon depends
on the observer’s trajectory (see Sect. 5.3). This proposal certainly does not
lead to genuine ensembles of global states, unless explicitly so postulated in an
invariant form as a fundamental modification of unitary quantum dynamics.

General literature: Alicki and Lendi 1987, Diósi and Lukács 1994, Kupsch’s Chap. 7 of
Giulini et al. 1996
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4.5 Exponential Decay and ‘Causality’ in Scattering

There are only a few absolutely stable ‘particles’ (elementary quantum ob-
jects), while all others are observed as decaying on vastly different time
scales. In quantum theory they can be formally represented by complex en-
ergies (with a negative imaginary part for the conventional sign of the time-
dependent Schrödinger equation). Even though microscopic, they have to be
regarded as open systems — an excited atom in vacuum, for example, as
when coupled to a heat bath of zero temperature. Open space represents an
irreversible absorber with infinite capacity according to this initial condition.

On the other hand, the S-matrix with its corresponding complex poles is
usually regarded as describing fundamental microscopic dynamics (defined in-
dependently of any fact-like initial conditions). Exponential decay then seems
to characterize a fundamental direction in time (cf. Prigogine 1980), simi-
lar to Ritz’s retarded electrodynamics (Chap. 2). Since there are no energy
eigenstates with complex eigenvalues (‘Gamow vectors’) in Hilbert space, this
situation has even led to the introduction of the concept of ‘rigged Hilbert
spaces’ as a fundamental generalization of the space of quantum mechanical
states (Böhm 1978). As will be discussed, however, there is absolutely no
reason for introducing new basic concepts. Decaying systems may be well
described dynamically in conventional quantum mechanical terms, such as
those used so far in this book, provided they are (for good reasons) assumed
to decay only approximately according to an exponential law.

Exponential decay of a quantity A corresponds to a constant loss rate,

dA

dt
= −λA , (4.41)

for λ > 0, with a rate of change, dA/dt, thus completely determined by A
itself. The asymmetry under time reversal described by this equation could
be law-like, although it occurs usually as a consequence of a special ini-
tial condition, similar to that characterizing irreversible master equations.
If, in particular, A is a conserved quantity, any back-flow that is in prin-
ciple required must actually be negligible. This would represent a fact-like
T-asymmetry that can be explained by means of a sufficiently large and ini-
tially empty reservoir (comparable to the irrelevant channel used in Sect. 3.2).
If recurrence times are sufficiently large, the exponential law (4.41) remains
an excellent approximation for a very long time.

This disappearance of a ‘substance’ A is an entirely classical picture.
However, the time dependence (4.41) is best known from stochastic radioac-
tive decay, where A represents the non-decay probability. It is then regarded
as the standard example of quantum indeterminism — understood as fun-
damental and law-like. This interpretation of (4.41) would mean that decay
events occur at unpredictable though definite instants in time (see below and
Sect. 4.1.2).
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The exponential law (4.41), if valid beyond the ‘trivial range’ λt ¿ 1,
defines an elementary master equation (3.46a), with a Green’s function Ĝret
given by the decay rate λ. Its foundation on time-symmetric fundamental dy-
namics (such as a universal Schrödinger equation) requires the usual assump-
tions, for example the negligibility of any back-flow into ‘doorway states’,
which are directly coupled to A (cf. Fig. 3.4). Therefore, a conserved quan-
tity has to disappear fast from such doorway states into ‘deeper’ (dynamically
more distant) states, which must form a large reservoir.

A simple model is provided by the T-symmetric finite reaction chain

dAn
dt

= −(λn + λn−1)An + λnAn+1 + λn−1An−1 (4.42)

with n = 0 . . . N , λ−1 = λN = 0, and the (statistically improbable) initial
condition An6=0 ≈ 0. n = 1 corresponds here to the doorway channel of
Sect. 3.2. For λ0 ¿ λn6=0 one obtains

dA0

dt
≈ −λ0A0 , (4.43)

as long as A1 ¿ A0. This requires only λt ¿ N , rather than λt ¿ 1, since
all An6=0 will relax into partial equilibrium An6=0 ≈ A1 on a short time scale
(or just propagate away for N →∞).

Exponential decay can also be described by a deterministic wave equa-
tion on a continuum, where the small transition rate λ0 is represented by a
potential barrier. The Schrödinger equation does not describe the conserved
quantity (‘probability’) itself, but rather its amplitude. An exact general time
dependence according to a complex energy, ψ(t) ∝ exp[−i(E − iγ)t], would
not be compatible with unitarity, that is, with the hermiticity of the Hamil-
tonian. However, it may well represent an approximation that is valid in a
bounded though possibly large spacetime region (Khalfin 1958, Petzold 1959,
Peres 1980a) — similar to the reaction chain (4.42). Distant regions in space
form a large and empty reservoir if a corresponding Sommerfeld condition
holds.

In scattering theory, unstable states correspond to poles in the analyt-
ically continued S-matrix Snn′(k) at points k = k1 − ik2 in the lower right
half-plane (k1 > 0 and k2 > 0), where k is the wave number, k2 = 2mE. In
the restricted spacetime region where exponential behavior holds (after the
incoming flux producing the decaying system has ceased), the wave function
is dominated by the Breit-Wigner part (i. e., the pole contribution). This re-
quires a (positive) delay during the scattering process, which can be described
by means of the relevant partial wave ψl(r, t)Ylm(θ, φ). Its radial factor ψl(r, t)
may be expanded in terms of energy eigenstates, ψ(k)

l (r, t) := φk,l(r)e−iω(k)t,
in the form
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ψl(r, t) =

∞∫
0

fl(k)ψ(k)
l (r, t) dk

→
r→∞

∞∫
0

fl(k)
e−ikr − (−)lSl(k)eikr

r
e−iω(k)t dk , (4.44)

where Sl(k) = e2iδl(k) is the corresponding diagonal element of the S-matrix.
For sufficiently large values of t, the factor e−iω(k)t oscillates rapidly

with k. This leads to destructive interference under the integral, except in
regions of r and t where the phase kr + ω(k)t (for the incoming wave), or
kr−ω(k)t+2δl(k) (for the outgoing one), is practically independent of k over
the width of the wave packet (centered at k0, say). For the outgoing wave,
for example, this means

d

dk
(kr − ω(k)t+ 2δl(k))|k0

≈ 0 ⇒ r ≈ dω(k0)
dk0

t− 2
dδl(k0)
dk0

. (4.45)

A noticeable delay compared to propagation with the group velocity dω/dk
requires a large value of dδl/dk, such as in the vicinity of a pole. For suffi-
ciently large times t but not too large distances r from the scattering center,
and for initial momentum packets much wider than the resonance width, only
the pole contribution remains. For it one may write

Sl(k) = e2iδl(k) ≈ k − k1 − ik2

k − k1 + ik2
, (4.46)

and hence k0 = k1 for the surviving wave packet that represents the decaying
state. In this spacetime region, the contribution of the pole to (4.46) is given
by its residue, hence

ψl(r, t) →
t→∞

−(−)lfl(k1)

∞∫
0

k − k1 − ik2

k − k1 + ik2

ei[kr−ω(k)t]

r
dk

≈ (−)l2πk2fl(k1)
ei[k1r−ω(k1)t]

r
exp

[
k2

(
r − dω(k1)

dk1
t

)]
(4.47)

(assuming k2 ¿ k1). In the last factor one recognizes the ‘imaginary part of
the energy’, γ = k2 dω(k1)/dk1.

A positive delay (a ‘retardation’) of the scattered wave at the resonance
requires

dδl
dk
≈ − d

dk

(
−arctg

k2

k − k1

)
=

k2

(k − k1)2 + k2
2

> 0 . (4.48)
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The pole must therefore reside in the lower half-plane. This condition is
often referred to as causality in scattering, since the retardation specifies a
direction in time related to intuitive causality. This position of the poles is
also used for deriving dispersion relations in T - or TCP -symmetric quantum
field theory. However, no time direction can result from the structure of the
S-matrix, since this structure is a unique consequence of the time reversal-
invariant Hamiltonian. The condition k2 > 0 describes a fact-like direction in
time that would be reversed for scattering states with a reversed boundary
condition. One would thus have to fix the outgoing wave rather than the
incoming one as a narrow packet in time or distance. Such exponentially
growing states would require the ‘decay products’ to come in as coherent and
exponentially increasing waves during a sufficient (usually very long) span of
time. A similar asymmetry, caused by boundary conditions, occurred in the
retarded radiation reaction of extended charges (2.30). Therefore, the time
arrow of exponential decay is determined by the boundary condition contained
in (4.44), rather than by the position of poles in the S-matrix. The latter
represents the exact dynamics with all its symmetries.

The investigation of wave packets for massive particles in free space be-
yond the pure pole contribution (Petzold 1959, Winter 1961, Peres 1980a)
shows that deviations from the exponential law become essential for small
and for very large times. In the extreme limit (when the decaying wave func-
tion has become unobservably small), exponential decay is replaced with a
power law. This conclusion is in conflict with the idea of local objects being
stochastically emitted into infinite space. It must instead be interpreted as
a coherent back-flow (dispersion) of the outgoing wave packet. While repre-
senting a very small effect in absolute terms, this back-flow is even further
reduced (or at least decohered) whenever the decay products interact with
surrounding matter. In the usual case of strong coupling to the environment
(corresponding to measurement or absorption), the exponential law holds for
all times, provided ‘quantum causality’ remains valid. On the other hand,
decay by emission of weakly interacting photons inside the reflecting walls of
a cavity leads to detectable deviations from exponential decay. This has been
observed as ‘coherent revival’ of the decaying state (see Rempe, Walther and
Klein 1987, Haroche and Kleppner 1989), and in other situations (Wilkinson
et al. 1997). These deviations from the exponential law depend crucially on
the density of available final states. For example, coherent decay into a single
final state is well known for leading to harmonic oscillation.

The Breit-Wigner contribution (4.47) describes a non-normalizable wave
packet. This result is an artifact of the pure pole approximation. The nor-
malized state is correctly described by the wave packet fl(k) in (4.44), which
has been replaced by a constant in (4.47). In an exact treatment, its square-
integrable tails warrant normalizability even for large t by correcting the pure
Breit-Wigner contribution.
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In general, the scattering process would have to be described by a nor-
malized time-dependent density matrix,

%lm,l′m′(r, r
′; t) →

r→∞

∞∫
0

∞∫
0

%lm,l′m′(k, k
′)

e−ikr − (−)lSl(k)eikr

r

× eik′r′ − (−)l
′
S∗l′(k

′)e−ik′r′

r′
e−i[ω(k)−ω(k′)]t dk dk′ , (4.49)

with %lm,l′m′(k, k′) determined by a preparation procedure. After completion
of the direct scattering process, and in the case of a resonance in the l0-wave,
this leads approximately to

%lm,l′m′(r, r
′; t) →

t→∞
δll0δl′l0%l0m,l0m′(k1, k1)

×
∞∫
0

∞∫
0

k − k1 − ik2

k − k1 + ik2

k′ − k1 + ik2

k′ − k1 − ik2

ei(kr−k′r′)

rr′
e−i[ω(k)−ω(k′)]t dk dk′ (4.50)

in the relevant space-time region. This approximation describes again a pure
Breit-Wigner wave packet (or at most a mixture of magnetic quantum num-
bers in the case of rotational symmetry).

Hence, there are no exactly exponential states (Gamow vectors) which
would require or justify the ‘rigging’ of the Hilbert space of quantum me-
chanics. Similarly, there are no exact energy (or particle number) eigenstates
in reality, since their infinite exponential tails according to exp(−

√
−2mEr)

can never form within finite time (in accordance with the time-energy uncer-
tainty relation). Otherwise, for example if exact energy eigenstates did occur
by means of instantaneous quantum jumps, they would lead to superluminal
effects (as has even been found surprising — see Hegerfeldt 1994). Even non-
relativistically, stable or decaying states must form dynamically, that is, in
accordance with a time-dependent Schrödinger equation. This holds similarly
for controlled entanglement (as suggested for ‘teleportation’ experiments —
cf. Sect. 4.2). An exactly bounded spatial support for a relativistic quan-
tum state (such as the light cone describing ‘relativistic causality’) requires
small (practically unobservable) uncertainties in energy and particle number,
related to the Casimir effect or the Unruh radiation (see Sect. 5.2). Neglect-
ing this consequence of quantum field theory (by arguing solely in terms
of single-particle states, for example) leads to inconsistencies which illustrate
the danger of remaining formal while not discriminating between fundamental
and phenomenological concepts. (Cf. also Bohm, Doebner and Kielanowski
1998 for apparent time-asymmetries induced by presuming macroscopic op-
erations.)

Radioactive decay is in practice investigated by means of collections of
many identical decaying systems (atoms, say). If these atoms are distinguish-
able by their position, their total state may be described as a direct product.
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According to the Schrödinger equation, each factor state will then evolve
into a normalized superposition of its initial state (with an exponentially de-
creasing amplitude) and a direct product of its final state with a state for
the emitted particle (including the latter’s effect on the environment). The
precise time-dependence of these components depends on what happens to
wave function of the decay fragments (whether it is reflected or absorbed, or
propagates towards infinity — as discussed above).

If the emitted particles (now assumed not to be reflected somewhere)
are regarded as part of the environment (and thus traced out), the remain-
ing N -atom density matrix describes a time-dependent apparent ensemble of
product states with n atoms, say, in their final, and N − n atoms in their
initial state. Their probabilities in this ensemble, pn(t), reflects the exponen-
tial time-dependence of the Schrödinger amplitudes. (In general, components
with the same number n but differing individual decayed atoms also deco-
here from one another — see Sect. 4.3.4). This apparent ensemble, represented
by the probabilities pn(t), is dynamically well described by a master equa-
tion. Therefore, it is equivalent to an ensemble of solutions of a stochastic
(Langevin type) equation that describes individual ‘histories’ n(t). In terms of
a universal Schrödinger equation, the number of decayed atoms n is a ‘robust’
property in the sense of Sect. 4.3.2 if decay is monitored by the environment.
The various branches of the wave function arising by the fast but smooth
action of decoherence then describe individual histories n(t) which represent
successions of almost discrete quantum jumps (as discussed in Sect. 4.3.5).

4.6 The Time Arrow of Various Interpretations
of Quantum Theory

The truth could not be worth much

if everybody was a little bit right

One often hears the remark that physicists who completely agree about all
applications of quantum mechanics may not only differ entirely about its
interpretation, but even on what the problem is and whether there really
is one! It seems that the deepest discrepancies of this kind are still rooted
in the difference between Heisenberg’s and Schrödinger’s approaches. While
Heisenberg kept relying on fundamental classical concepts (suggesting only
a limitation of their ‘certainty’), Schrödinger described microscopic physi-
cal states by (‘certain’) wave functions on an (in general high-dimensional)
classical configuration space, which would thereby replace three-dimensional
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space as the ‘arena of reality’. 7 Whether wave functions or particular op-
erators (representing ‘observables’) carry the dynamical time-dependence is
merely a consequence of the thus chosen ‘picture’.

Although both pictures are known to be equivalent in some pragmatic
sense, most physicists seem to subscribe to one or the other (or perhaps a
variant thereof) when it comes to interpretations (‘probabilities for what?’).
Typically, in the Schrödinger picture one regards the collapse of the wave
function as a dynamical process, while in the Heisenberg picture it is viewed as
an (extra-physical) increase of ‘human knowledge’. However, any foundation
of the concept of information or knowledge would require an ensemble. I
hope that keeping this difference in mind for the rest of this section may
help to avoid some misunderstandings that often lead to emotional debate.
One should therefore give a consistent account of what is pragmatically done
when the theory is so successfully applied. Which concepts are fundamentally
required, rather than being approximately derived, or mere tradition and
prejudice?

For example, physical entropy, which quantifies irreversibility by its in-
crease, is in quantum statistical mechanics defined by means of von Neu-
mann’s functional of the density matrix (4.4). According to Sect. 4.2, it mea-
sures the size of (genuine or apparent) ensembles of mutually orthogonal
(hence operationally distinguishable) wave functions. While only genuine en-
sembles represent incomplete information, the time-dependence of the density
matrix determines that of local entropy in general. Conservation of global von
Neumann entropy reflects the unitarity of the von Neumann equation (when
applicable) — equivalent to the unitarity and determinism of the Schrödinger
equation. No ensemble of classical nor any other variables representing the po-
tential values of observables is ‘counted’ by von Neumann’s entropy. Fig. 3.5,
characterizing classical measurements, can therefore not be applied to quan-
tum measurements. In terms of quantum states it has to be replaced with
Fig. 4.3, which contains a collapse of the wave function. The transition from
a superposition to an ensemble (depicted by the second step) affects the final
value of von Neumann’s ‘ensemble’ entropy (that would otherwise be reduced
by the increase of information, as in Fig. 3.5).

A wave function and a set of classical configurations are used in Bohm’s
quantum theory (Bohm 1952, Bohm and Hiley 1993). This theory is often

7 This contrast between the Heisenberg and the Schrödinger picture does not represent
the ‘dualism’ between two competing classical concepts (particles and waves in space) that
is often claimed to be part of one (the Copenhagen) interpretation. In classical theory,
particle positions and wave amplitudes (fields) characterize different physical objects, both
required to define states (or configurations) of general physical systems. A dualism (or
‘complementarity’), used to characterize quantum objects, should simply be regarded as
a conceptual inconsistency (while it is often interpreted as reflecting the absence of a mi-
croscopic physical ‘reality’). Applying such a dualism dynamically (with varying concepts
just as required) could readily be used to ‘derive’ the indeterministic master equations
of Sect. 4.1.2. A critical historical account of the early development of these conceptual

aspects of quantum theory can be found in Beller (1996, 1999).
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Fig. 4.3. Quantum measurement of a superposition |a〉+|b〉 by means of a collapse process,
here assumed to be triggered by the macroscopic pointer position. The initial entropy S0

is smaller by one bit than in Fig. 3.5 (and may in principle vanish), since there is no
initial ensemble a/b for the property to be measured. Dashed lines before the collapse now
represent quantum entanglement. (Compare the ensemble entropies with those of Fig. 3.5!)
The collapse itself is often divided into two steps (see (4.51) below): first increasing the
ensemble entropy by replacing the superposition with an ensemble, and then lowering it by
reducing the ensemble (applying the ‘or’ — for macroscopic pointers only). The increase
of ensemble entropy, observed in the final state of the Figure, is a consequence of the first
step of the collapse. It brings the entropy up to its classical initial value of Fig. 3.5. (From
Chap. 2 of Giulini et al. 1996.)

praised for exactly reproducing all predictions of conventional quantum the-
ory in a deterministic way. However, this is not surprising, since it leaves
Schrödinger’s wave function entirely untouched, while the classical trajecto-
ries, which determine all observed quantities according to this model, remain
unobservable (‘surrealistic’) in order to reproduce the empirically required
quantum indeterminism by means of their presumed statistical distribution.

Although wave functions and points in configuration space are here both
assumed to be real, 8 they are treated quite differently. While the former is
usually regarded as ‘given’, the latter is always represented by an ensemble

8 “No one can understand this theory until he is willing to think of ψ as a real objective
field rather than just a ‘probability amplitude’ ” (Bell 1981). This remark reflects Bell’s
conclusion drawn from the violation of his inequality (nonlocality). It applies also to the
objective collapse theories which he later preferred in order to avoid the ‘extravagant’
or ‘empty’ wave function components that would exist according to Everett’s as well as

Bohm’s theories. No classical concepts are fundamentally used in collapse theories.
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(without thereby contributing to the entropy). Any increase of knowledge in
a quantum measurement would here be taken into account by calculating
the entropy (by means of the usual expression S[P̂ |ψ〉〈ψ|]) from the pro-
jection of the total wave function onto the corresponding subspace (that is,
from a component ψ) — even though there is no objective collapse in this
theory. A justification of this asymmetric treatment of wave functions and
classical variables seems hard to find (cf. Zeh 1999b). Moreover, this the-
ory destroys the powerful symmetry under canonical transformations. Only
positions represent their observed values, while velocities are unobservable,
and the observed values of apparent momenta arise during measurements
in an uncontrollable way. Bohm’s trajectories in configuration space include
the classical electromagnetic fields rather than photons (see Holland 1993).
This has further painful consequences for other boson fields, or for ‘intrinsic’
degrees of freedom which do not define a classical configuration space.

Regardless of any interpretation, the density matrix of local macroscopic
systems (such as measurement devices) is dynamically affected by decoher-
ence; this is the most efficient and most ubiquitous irreversible process in
nature. The process of decoherence is based on ‘quantum causality’, that is,
on the future irrelevance of nonlocal entanglement — a kinematical aspect
of wave functions. In this way, decoherence is able to explain classical prop-
erties and (apparent) stochastic quantum events in terms of smoothly but
indeterministically evolving local wave packets.

While decoherence thus eliminates the basic motivation for the Heisen-
berg-Bohr interpretation (that presumes classical concepts, and their values
as ‘coming into being’ during fundamental irreversible events — see Pauli’s
remark on the last page of the Introduction), this aspect of decoherence may
not have been duly appreciated even by some authors who significantly con-
tributed to it (Omnès 1988, 1992, Gell-Mann and Hartle 1990, 1993 — see
also Omnès 1998). Guided by the Heisenberg picture they investigate con-
sequences of decoherence on certain ‘consistency conditions’ (originally pro-
posed by Griffiths 1984), which are assumed to regulate the applicability (or
various kinds of ‘truth’) of varying classical concepts at successive (usually
discrete) times within variable intervals of uncertainty. However, environ-
mental decoherence allows one to derive quasi-classical concepts (all that is
needed) in terms wave packets — close to what Schrödinger had originally in
mind. Their apparent ensembles, formally described by the density matrix,
obey master equations (such as (4.32)), and in this way consistently define
probabilities for quasi-classical ‘histories’ (see Chap. 2 of Giulini et al. 1996).

In contrast to Bohm’s or Everett’s theory (see below), Griffith’s consis-
tent histories presume an absolute quantum arrow (see Hartle 1998) — just
as collapse models do. Their selection by a formal ‘consistency’ requirement
may indeed be inconsistent itself (Kent 1997), while derived probabilistic mas-
ter equations do not hold exactly. These consistent histories have also been
claimed to be equivalent to trajectories of wave functions that are assumed,
according to the quantum state diffusion model, to exist for all systems. How-
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ever, such an assumption is in conflict with quantum nonlocality (Diósi et al.
1995, Brun 2000 — cf. Sect. 4.4).

According to the theory of decoherence, physical objects may appear in
terms of (more or less certain) values of ‘observables’, while they act (dynam-
ically) as wave functions (for example by determining the scattering ampli-
tudes of projectiles probing them). In this sense the wave function is ‘actual’,
while quasi-classical variables emerge from it by means of decoherence. Any
interpretation of quantum theory that does not assume the wave function to
be ‘real’ has to explain its ‘actuality’. In the Heisenberg picture one would
have to explain coherence and nonlocality — not decoherence and localiza-
tion. Most of the ‘surprising’ quantum phenomena that have been observed
(and that have all been predicted from the superposition principle or the wave
function) represent ‘paradoxes’ only when described by classical or other local
concepts.

Wave functions are usually rejected as representing reality because they
are not defined on three-dimensional space. However, precisely this nonlo-
cality has been experimentally confirmed in many ways. This can only have
surprised believers in particles or hidden variables. Although entanglement
has been known since the advent of wave mechanics, it has until recently
rarely been regarded as an aspect of reality. The wave function would then
merely represent a dynamical tool that may even lose meaning after an ‘in-
dividual atomic process’ (or an experiment) ended. However, entanglement
is crucial for many observable consequences, for example the very accurately
known ground state energy of the Helium atom, total angular momentum
of two combined systems, or the fractional quantum Hall effect. It has now
been confirmed to exist, and to remain observable, over very large distances
(Tittel et al. 1998).

Even Schrödinger (1935), in the title of an important paper about en-
tanglement, referred quite insuffiently to ‘probability relations’ rather than
nonlocal states. Quantum nonlocality is not only generic, but evidently actual
in the literal sense used above: it has real individual (not only statistical) con-
sequences. We should therefore face it as part of reality instead of retreating
to Copenhagen irrationalism. In its uncontrollable (‘noisy’) and unavoidable
form (Zeh 1970) it describes decoherence. Traditionally, these effects have
been misinterpreted as ‘distortion by collisions’ (or momentum transfer by
‘kicks’ — see Knight 1998 for his critical remarks).

On the other hand, the concept of apparent ensembles of wave func-
tions, or the density matrix in general, presumes a probability interpretation
(as has been explained in Sect. 4.2), while the question ‘probabilities for (or
information about) what?’ has not yet been answered at a fundamental level.
The success of decoherence as well as many other quantum phenomena seem
to favor the answer: wave packets in a high-dimensional ‘configuration’ space.
For example, the consistent description of a spot on the photographic plate
(regarded as a ‘pointer’) requires the concept of an altered wave function in
order to take into account the physico-chemical basis of this spot. Similarly,
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a hydrogen atom has to be assumed to ‘be’ in a quantum state rather than
in one of the classical configurations contained in a corresponding ensemble.
The strongest support yet for this conclusion seems to come from an analysis
of the decoherence of neuronal states in the brain (Tegmark 2000, see also
Zeh 2000). These quasi-classical neuronal states would form the final link
(or the ultimate pointer basis) in a chain of observational interactions, all
describable in terms of interacting wave functions.

This situation was evidently the reason for postulating a collapse of the
wave function as a real dynamical process (von Neumann’s ‘first interven-
tion’). Despite frequent claims to the contrary, the collapse has never been
part of the Copenhagen interpretation, even though quantum jumps are used
as an argument against a wave function representing reality. The collapse may
be formulated in two steps (cf. Fig. 4.3):

|ψ〉〈ψ| =
∑
mn

|φm〉cmc∗n〈φn|︸ ︷︷ ︸ →
∑
n

|φn〉|cn|2〈φn|︸ ︷︷ ︸ → |φn0〉〈φn0 |︸ ︷︷ ︸ ,

with S = 0 → S ≥ 0 → S = 0 .

(4.51)

They represent (1) the replacement of a pure state with an ensemble (char-
acterized by an increase of von Neumann’s ensemble entropy), and (2) the
selection of a specific state (thus lowering the ensemble entropy as depicted by
Fig. 3.5). The first step can be described by a master equation that represents
information loss, while the complete stochastic process (4.51) corresponds to
a Langevin equation for wave functions (Sect. 4.4). Since the latter describes
an individual physical process, it has to be used when calculating the chang-
ing physical entropy according to (3.54), while the master equation describes
an ensemble that represents entanglement as well as lacking information.

If macroscopic properties α, say, are again regarded as ‘always given’ (as
in Sect. 3.3.1), physical entropy can be characterized by a function S(α) =
k lnNα, similar to the last term of (3.54), where Nα is now the dimension of
the subspace representing a fixed value (or interval) of α. The time depen-
dence of this entropy,

S(t) = S(α(t)) , (4.52)

is then determined by the macroscopic dynamics α(t), which in general in-
cludes the collapse of the wave function, that is, its projection onto sub-
spaces corresponding to definite macroscopic properties. This means that the
stochastic collapse is part of the macroscopic dynamics α(t) — regardless of
the interpretation of the wave function. It is dynamically objectivized by the
process of decoherence, describing an apparent collapse. In contrast to clas-
sical Hamiltonian dynamics, which determines the time dependence of any
macroscopic quantity, α(t) := α(p(t), q(t)) (cf. Sect. 3.3.1), the Schrödinger
equation does not determine α(t). Therefore, the dynamics (4.30) cannot just
describe a transformation of negentropy into information in accordance with
the negentropy principle (3.58). In other words, not even macroscopically dif-
ferent states have to possess (macroscopically or microscopically) different
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predecessors (‘sufficient reasons’). Such causal predecessors would have to be
counted by the initial ensemble entropy as in Fig. 3.5.

Does the collapse, if used in this way as part of the dynamics of wave
functions, now specify an arrow of time that could even be responsible for ir-
reversible thermodynamics? The ensemble entropy (4.4) would increase only
during the auxiliary first step of the collapse (describing incomplete knowl-
edge of the outcome). For entangled systems, an individual (‘real’) collapse,

ψ =
∑
n

cnφnΦn →
t
φn0Φn0 , (4.53)

occurring after an interaction of type (4.30), for example, does not alter the
ensemble entropy. However, it specifies an arrow in so far as it transforms
the entangled state into a factorizing one. Therefore, the additive (‘physical’)
entropy decreases for this process (after it may have correspondingly increased
during the interaction (4.30)), since

S[P̂sep|ψ〉〈ψ|] ≥ S[P̂sep|φn0Φn0〉〈φn0Φn0 |] = 0 . (4.54)

An objective collapse has never been observed as a dynamical process.
It has nonetheless to be taken into account regardless of its interpretation
before (or, at least, when) the observer becomes aware of the macroscopic
pointer position. As he thereby becomes himself quantum correlated with the
pointer state Φn0 , the corresponding ‘state of being conscious’ in his brain
also becomes a pure state in this respect as a consequence (if not the cause)
of this collapse. This ‘observer state’ (whatever it may be in detail) can thus
be used for postulating a psycho-physical parallelism in accordance with von
Neumann‘s intentions (see also London and Bauer 1939). At this point it is
particularly helpful that neuronal states, which characterize objective brain
activities, are themselves subject to decoherence (Tegmark 2000). There is no
need for genuine classical (or any other novel) variables anywhere in between
the observed microscopic system and the brain of the observer. On the other
hand, spontaneous localization of the pointer position in an apparatus would
not by itself lead to an entirely pure state of being conscious. While this
description of observations by conscious beings remains vague in detail, it is
all that is in principle required for a physical formulation in terms of wave
functions. Although a ‘real’ collapse is usually assumed to occur as soon
as the relevant phase relations have irreversibly become inaccessible in the
environment, this assumption is merely convenient, as it comes close to a
classical description.

Does the entropy-reducing collapse, wherever it may occur (or simply
be applied), then have to be regarded as a quantum mechanical revival of
Maxwell’s demon, who could classically be exorcized in Sect. 3.3.2? Lubkin
(1987) demonstrated that, just as in the classical case, this entropy decrease
according to the collapse cannot be utilized in a cyclic process that would
allow the construction of a perpetuum mobile of the second kind. However,
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it may have essential consequences during the unique process of cosmic evo-
lution (see Sect. 6.1).

It is noteworthy that the conventional collapse contains an extension
of intuitive causality to a region where by assumption it cannot be con-
firmed. In its usual form, the expression |〈φ′k|φn(∆t)〉|2 (with φn(∆t) :=
exp(−iH∆t)φn) defines the probability of finding the state φ′k in an appro-
priate measurement at time t2 = t1 +∆t, provided the system was found in
the state φn in a previous measurement (of the first kind) at time t1. This
interpretation assumes the wave function did collapse to the state φn during
the first measurement, and then evolves unitarily according to the Hamilto-
nian H until it is measured again. An equivalent (though unconventional)
time-reversed interpretation may be obtained from the identity of the above
matrix element with 〈φ′k(−∆t)|φn〉. This means that the wave function could
as well be assumed to collapse during the first measurement in an ‘acausal’
manner from a ‘conspiratorial’ (advanced) state φn into a state φ′k(−∆t)
that will then evolve according to the Schrödinger equation into the state
φ′k = φ′k(0) just before the second measurement starts (see also Footnote 4
and Penrose 1979). These two versions of the collapse are indicated in Fig. 4.4.
The second one is counterintuitive, since the observed system would have to
‘know in advance’ what kind of measurement will be performed, and when.
Its exclusion is therefore again an application of intuitive causality, while the
equivalence of the two descriptions is based on the T-symmetry of the formal
quantum probabilities (Aharonov, Bergmann and Lebowitz 1964).
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Fig. 4.4. Behavior of the wave function in the case of retarded (conventional) and advanced
collapse. In contrast to classical waves, the choice of the usual (‘retarded’) interpretation
of the collapse is a matter of pure convention

In contrast to the advanced electromagnetic fields (Sect. 2.4), which can
be excluded empirically by means of small test charges, our preference for
the causal version of the collapse is a pure matter of convention. However,
‘macroscopic’ registration devices Φ that are continuously monitored by the
environment (in accordance with the time arrow of quantum causality) have
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to be assumed to possess objective pointer positions at all times, similar to
a classical field but usually including a ‘memory’. In this case, their states
during two successive measurements have to be described, regardless of the
chosen collapse version, by Φ0(t) for t < t1, by Φn(t) for t1 < t < t2, and
by Φnk(t) for t > t2 (see also Bläsi and Hardy 1995). In the unconventional
collapse version, for example, the evolution of the complete system is depicted
by Fig. 4.5.

exp[-iH(t-t )]1 n nf F exp[-iH(t-t )] '2 k nφ F ? Fnk
t

t2t1

Unconventional interpretation:

Fig. 4.5. Behavior of the total wave function under the unconventional assumption of
advanced collapse and ‘continuous measurement’ of the pointer position Φ. Only the wave
function of the microscopic system φ, but not that of the macroscopic pointer, depends on
the convention

If the wave function were assumed to represent an ensemble of some real
and local variables (including the classical ones), the possibility of their post-
selection by means of later measurements would lead to further ‘surprising’
consequences (cf. Aharonov et al. 1987, Peres 1994, Aharonov and Vaidman
1996, Kastner 1998). They add to other paradoxes that occur in this class of
interpretations, such as the superluminal influence which would be required
to explain quantum nonlocality. In the Schrödinger picture there simply is
no ensemble for postselecting from. Rather, the wave function is assumed
to collapse in an indeterministic and T-asymmetric way. In its conventional
retarded form this cannot lead to any advanced consequences (not even un-
observable ones) which would mimic postselection.

Choosing the retarded collapse in order to conform with intuitive causal-
ity even in the unobservable range of the quantum world model is an example
of the heuristic fictions that are widely used in science (Poincaré 1902, Vai-
hinger 1911). In principle, the choice of the retarded electromagnetic fields
(2.36) also served merely to simplify the description, since the uncontrollable
‘distant’ sources forming the cosmic absorber can then be neglected. However,
it is a nontrivial empirical fact that (2.36), but not (2.38), leads to a simplifi-
cation. In contrast, the freely evolving quantum state can by assumption not
be confirmed in this sense.

These ambiguities in the dynamics of wave functions can be avoided if
the asymmetric collapse is assumed not to affect the physical reality that is
assumed to be described by the wave function. According to a proposal first
seriously put forth by Everett, all components of an entangled superposition,
as it may form in a measurement according to (4.30), are assumed to ‘exist’
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as one universal superposition. There is then no law-like quantum arrow of
time — but how can there be measurements with definite results?

It is appropriate to distinguish Everett’s original relative state interpre-
tation from the many worlds interpretation (DeWitt 1971, Deutsch 1997),
which is essentially based on the Heisenberg picture, or alternatively on an
ensemble of Feynman paths in configuration space (see Sokolovski 1998).
In the many-worlds interpretation there is a time-dependent (dynamically
growing) ensemble of many classical ‘worlds’. This is not meant to describe
lacking information about one ‘real’ world, but all worlds in the ensemble
are assumed to exist simultaneously. A reduction of this ensemble can then
only reflect the observer’s indeterministically evolving identity (defined by
his position in this ‘multiverse’). This interpretation will be further discussed
in the context of quantum gravity (towards the end of Sect. 6.2.2), where any
time dependence disappears from the fundamental description.

Everett’s interpretation is instead based on the Schrödinger picture:
“This paper proposes to regard pure wave mechanics as a complete the-
ory.” (Everett 1957, see also Zeh 1970, 1973, 1979). In this description there
are no observables on a fundamental level (only interactions in terms of a
Schrödinger equation). Hence, there is no Heisenberg picture and no (certain
or uncertain) classical world. It must therefore be conceptually compared
with, but dynamically contrasted to, collapse models, which also describe
pointer positions and states of observers in terms of wave packets. 9 The ulti-
mate observer states (χobsn , say) need not even represent quasi-classical states.
Everett’s conclusion from his assumption that the Schrödinger equation be
always valid was that all components of (4.30) — but not any classical paths
or histories — remain in existence in one superposition,

∑
ψ(n)χobsn . (“All

components are actual.”) The point is that they can be experienced only sep-
arately because of their different robust states χobsn , which are here postulated
on empirical grounds to represent subjective observers. (No definite observer
state can be defined in the global Everett wave function.)

Since configuration space assumes the role of space as the arena of re-
ality in all versions of the Schrödinger picture, the fork of indeterminism
that seems to characterize quantum theory is here re-interpreted as a fork
of causality (see Footnote 1 of Chap. 2). All observer states χobsn (with dif-
ferent n) remember the same pre-measurement history. To all of them, the
rest of the world is described by their respective ‘relative states’ ψ(n) (their
co-factor states, which these observers may normalize for convenience). Ac-
cording to the global Schrödinger equation, these relative states represent
that part of the quantum world that the pure observer states exclusively in-
teract with once decoherence has dynamically decoupled the corresponding
‘branches’. For example, when position of a quantum object that is in a broad

9 Von Neumann used phenomenological observables in order to define his measurement
interactions (4.30). Their algebra is fundamental only for constructing a specific Hilbert

space and the quantum Hamiltonian by means of the quantization rules of Sect. 4.1.1.
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wave function is measured by means of a macroscopic measurement device,
its localized components form different quasi-classical ‘worlds’ (dynamically
independent components with their own observer states). The formal ‘plus’
of a superposition is thereby objectively reduced to an effective ‘and’, while
the ‘or’ has only subjective meaning (though objectivized with respect to
correlated versions of different observers).

Only if both factors of all components of the Everett wave function
were defined to be mutually orthogonal, would the sum of their products,∑
ψ(n)χobsn , resemble the Schmidt representation (4.25) (Kübler and Zeh

1973, Zeh 1973, 1979, Albrecht 1992, 1993). Moreover, this representation
would depend on the precise border line between observer and the rest of
the world. Everett considered relative states with respect to general states
of general subsystems, and he assumed the components to be dynamically
autonomous after a measurement. However, only continuous measurement
through the environment leads to decoherence, and defines robust pointer
states or branches (cf. Tegmark 1998). Macroscopic systems are not dynam-
ically isolated after completion of an interaction (in contrast to microscopic
systems after completion of a scattering process).

Since ‘the other’ robust components, which exist according to the Schö-
dinger equation, are not observable to ‘us’, the assumption of their existence
is operationally meaningless, and the Everett interpretation is thus indis-
tinguishable from the collapse interpretation. However, the collapse is then
equally meaningless. In the Everett interpretation this equivalence requires
the additional assumption that components only branch into further ones
with increasing time, but practically never (re)combine according to∑

n

cnφnΦn →
t

(∑
n

cnφn

)
Φ0 . (4.55)

Because of the T-symmetric Schrödinger dynamics, this requires that there
are no suitable (conspiratorial) components n 6= n0 available as an initial
condition on the LHS in the real quantum world that is assumed to be de-
scribed by the Everett wave function. The law-like arrow of the collapse thus
becomes a fact-like arrow. This ‘quantum causality’ is analogous to Boltz-
mann’s Stoßzahlansatz, which assumes that correlations are irrelevant after
being formed in collisions. (This fact-like quantum arrow would also be re-
quired in Bohm’s theory, as its ‘empty’ branches of the wave function may
otherwise lead to recoherence, and guide the classical trajectory along irre-
producibly arising new wave packets.)

One may postulate an appropriate initial condition by requiring that all
existing nonlocal quantum correlations (such as those on the LHS of (4.55))
are retarded, that is, have been caused somewhere during the past history
of the quantum universe. At the big bang (t = 0, say) one would then have
something like

ψ(t→ +0) = lim
∆Vk→0

∏
k

ψ0
∆Vk

, (4.56)
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with definite quantum states ψ∆Vk on small volume elements ∆Vk. The pro-
jector on this initial state is defined to be invariant under the Zwanzig projec-
tion P̂local. The assumption (4.56) appears ‘natural’ only to our causal preju-
dice (thus applying the double standard in Price’s terminology). In contrast to
its classical counterpart of initially absent (or future-irrelevant) correlations,
this condition is not a statistical one (meaningful for an ensemble), but a con-
dition to the real universal quantum state. It would explain both the absence
of recoherence and the validity of thermodynamical master equations.

Since the ‘Everett branching’ is thus not based on an objective dynamical
law (such as a collapse), it does not define a precise algorithm (as required
by Kent and McElwaine 1997). The definition of Everett branches is instead
related to von Neumann’s problem of defining a psycho-physical parallelism
in quantum mechanical terms (that is, the above-mentioned observer states
ψobs — see Zeh 1970, 1979, 2000, Squires 1990, Lockwood 1996).

Even though Everett branches can be sufficiently defined, they do not yet
possess any probabilities, since they are all assumed to exist once (with dif-
ferent albeit intrinsically meaningless norms). Everett’s claim that the prob-
ability interpretation is a consequence of the formalism does not seem to be
entirely justified. Therefore, Graham (1970) considered series of N equivalent
measurements (N subsequent branchings — similar to the n decay events dis-
cussed at the end of Sect. 4.5). He was able to show that the total norm of all
those resulting Everett branches which represent series of outcomes that dif-
fer significantly from the formal quantum mechanical probabilities vanishes
in the limit N → ∞ (see also Jammer 1974). While this result permits a
compact formulation of the probability postulate (by assuming merely that
we happen to live in an Everett branch of non-negligible norm), it requires
that all branches contribute to this norm precisely according to their proba-
bilities that are to be derived. 10 While stochastic collapse models postulate
quantum probabilities as part of their dynamics, the Everett interpretation
has equivalently to assume that ‘we’ are living in a branch that has been
selected in accordance with the Hilbert space norm (see also Sect. 6.2.2).

General literature: Jammer 1974, Busch, Lahti and Mittelstaedt 1991, d’Espagnat 1995,
Chap. 2 of Giulini et al. 1996

10 This may be confirmed by the statistical distribution of frequencies of results obtained
in N subsequent measurements which distinguish between states |1〉 and |2〉 in the same
(independently prepared) initial superpositions a|1〉 + b|2〉. Since the number of branches
which contain n ‘spin-ups’, say, is given by the binomial coefficient

(N
n

)
regardless of a and b,

the distribution of outcomes n, p(n), forms a Poisson distribution centered at the required
value only if each branch component contributes to the norm with weight |a|2n|b|2(N−n).
This is precisely its weight according to the probability postulate. (Example provided by

Erich Joos)
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In the framework of general relativity, gravity is a consequence of spacetime
curvature. Its dynamical laws are still symmetric under time reversal. How-
ever, if the actual global spacetime structure defines an arrow of time (as in
an expanding universe), this must be reflected by the dynamics of all mat-
ter. While this had been well known, it came as a surprise during the early
seventies that the most strongly gravitating systems possess properties that
have to be described in thermodynamical terms, thus indicating an intimate
connection between these apparently quite different fields of physics.

Gravitating systems are thermodynamically peculiar even in Newton’s
theory, since they possess negative heat capacities as a consequence of the
universal attractivity of this force. In particular, forces depending homoge-
neously on the minus second power of distance, such as gravity and Coulomb
forces, lead according to the virial theorem to the relation

Ekin = −1
2Epot = −E (5.1)

between the mean values of kinetic and potential energies, and therefore be-
tween them and the total energy. This virial theorem is usually valid in a
statistical (ergodic) sense only. For bound systems it applies to mean values
over a (quasi-) period of the motion, for quasi-bound systems it holds ap-
proximately for mean values over sufficiently large times. In quantum theory
it applies to expectation values of proper (normalizable) energy eigenstates,
as can be shown by using Fock’s ansatz ψ(λr1, . . . , λrN ) and the homogene-
ity of T and V in a variational procedure δ(〈ψ|T + V |ψ〉/〈ψ|ψ〉) = 0 with
respect to λ. The theorem must then also hold for mixtures which are diag-
onal in energy eigenstates, or (approximately) if non-diagonal terms can be
neglected because of random phases. (For relativistic generalizations of the
virial theorem see Gourgoulkon and Bonazzola 1994).

The anti-intuitive negative sign relating kinetic and total energy in (5.1)
means, for example, that satellites are accelerated by weak friction in the
earth’s atmosphere, and that stars heat up by radiating energy away. (This
second example is valid only as far as the quantum mechanical zero-point
energy does not dominate Ekin = Trace{%T} — as it does in white dwarf
stars or solid bodies. Early astrophysicists believed that stars always cool
down after exhausting their fuel.) It also means that the heat flow from hot
to cold objects that are governed by gravity causes a thermal inhomogeneity
to grow.
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As an example, consider two monatomic ideal gases with entropies given
according to (3.14) by

Si = kNi
(

3
2 lnTi − ln %i + Ci

)
(5.2)

(with i = 1, 2, and constants Ci). Since the internal energy, U = Ekin, is
here given by U = (3/2)NkT , the net change of entropy resulting from an
exchange of energy, δU1 = −δU2, and of particles, δN1 = −δN2, becomes for
fixed volumes Vi or for fixed densities %i = Ni/Vi

δStotal = δS1 + δS2 =
(

1
T1
− 1
T2

)
δU1 + k

(
3
2

ln
T1

T2
− ln

%1

%2

)
δN1 . (5.3)

This describes entropy changes δS1 and δS2 with opposite sign, but can-
celling only in thermodynamical equilibrium (T1 = T2 and %1 = %2). An en-
tropy increase in accordance with the Second Law is in this normal situation
achieved by a reduction of thermal and density inhomogeneities (aside from
the transient thermo-mechanical effect, that is, a thermally induced pressure
difference due to the temperature dependence of the second term).

However, the density of a star is not a free variable that can be kept
fixed. Since a normal star, which will here for simplicity be assumed to be
in thermal equilibrium, may in very good approximation be described as an
ideal gas, its volume is related to the potential energy, and by means of the
virial theorem then also to the temperature, according to

NT ∝ U = Ekin ∝ −Epot ∝
N2

R
∝ N2

V 1/3
, (5.4)

that is, V ∝ N3/T 3. The entropy (5.2) of a star is therefore

Sstar = kN
(

3
2 lnT − lnN + lnV + C

)
= kN

(
−3

2 lnT + 2 lnN + C ′
)

. (5.5)

In the second line the signs of lnT and lnN are reversed. The total entropy
change, δSstar + δSgas, of a star embedded in an interstellar gas becomes
(using the virial theorem Estar = −Ustar again)

δStotal =
(

1
Tstar

− 1
Tgas

)
δEstar + k ln

(
C ′′N2

star%gas

(TstarTgas)3/2

)
δNstar . (5.3′)

While heat still flows from the hot star into the cold gas according to the
Second Law, this leads now to further increase of the star’s temperature, and
to accretion of matter provided Nstar is large enough. Thermal and density
inhomogeneities thus grow in the generic astrophysical situation, although
‘pathological’ (non-ergodic) solutions do exist, such as gravitationally col-
lapsing spherical matter shells or pressure-free dust spheres, where the virial
theorem does not hold.
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This demonstrates that the gravitational contraction of normal stars
is dynamically controlled by thermodynamics, but not by gravity itself. If
the thermodynamical arrow of time did change direction in a recontracting
universe (as first suggested by Gold 1962 — see Sect. 5.3), stars and similar
gravitating objects would have to re-expand during that epoch.

A homogeneous universe thus describes a state of very low entropy (im-
probable but ‘simple’ in the sense discused at the end of Chap. 3). This leads
to the question whether its potential inhomogeneous contraction under grav-
itational forces represents an entropy capacity that is sufficient to explain
the observed thermodynamical arrow of time. The Kaltgeburt could then be
replaced with a homogeneous birth, while inhomogeneous contraction leads
to the required thermodynamical non-equilibrium.

In order to estimate the improbability (negentropy) of a homogeneous
universe, one has to know the maximum entropy that can be gained from
gravitational contraction. Possible limits of the negative heat capacity are:

a) Quantum degeneracy (primarily of electrons). It is essential for the stability
of solid gravitating bodies and of white dwarfs. By emitting heat these
objects can cool down ‘normally’ rather than heating up.

b) Repulsive short range forces. They may be important in neutron stars,
while they have similar consequences as a degenerate electron gas.

c) Gravitation itself. Even in Newton’s theory, any radiation with bounded
propagation velocity that is affected by gravity cannot escape from the
surface of a sufficiently massive object. If this speed limit is as universal as
gravity (as it is according to the theory of relativity), any further collapse
of the mass distribution remains irrelevant to an external observer. The
maximum radius from which light may escape for a given mass defines an
event horizon. Matter disappearing behind the horizon — whatever will
happen to it — cannot participate any more in the thermodynamics of the
universe, while only its external gravitational field remains observable.

Such non-relativistic black holes were discussed as early as 1795 by Laplace,
and even before him by J. Mitchel. In general relativity, black holes are de-
scribed by specific spacetime structures. This theory leads to the further
consequence that neither of the first two bounds to gravitational contraction
may prevent an object of sufficiently large mass (that may always be formed
by accretion of matter) from collapsing into a black hole. In case (b), re-
pulsive forces give rise to a positive potential energy, which must eventually
dominate as a source of gravity, while for (a) the increasing zero point pres-
sure of the fermions forces them to combine into effective bosons, with all of
them being able to occupy the same spatial state.

Therefore, black holes define an upper limit for the entropy production
by gravitational contraction of matter from the point of view of an external
observer. But what is the entropy of a black hole? This question cannot be
answered by the investigation of relativistic stars, that is, of equilibrium sys-
tems, since the essential stages of the collapse proceed irreversibly. However,
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a unique and finite answer is obtained from a quantum aspect of black holes,
viz. their Hawking radiation (Sect. 5.1).

Since the curvature of space represents the gravitational degrees of free-
dom in general relativity, it may carry entropy by itself. The dynamics of
spatial curvature (regarded as the time-dependent state — see Sect. 5.4) is
described by Einstein’s equations

Gµν = 8πTµν , (5.6)

(in units of G = c = 1), where Tµν is the energy-momentum tensor of matter.
These equations define an initial (or final) value problem again, since they
are generically of hyperbolic type (cf. Sect. 2.1). The Einstein tensor Gµν is a
linear combination of the components of the Ricci tensor Rµν := Rλµλν , that
is, a trace of the Riemann curvature tensor. Forming this trace is analogous
to forming the d’Alembertian in the wave equation (2.1) for the electromag-
netic potential from the tensor of its second derivatives ∂ν∂λAµ. Aside from
the nonlinearities responsible for the self-interaction of gravity, the Riemann
curvature tensor is similarly defined by the second derivatives of the metric
gµν , which thus assumes the role of the gravitational potential (analogous to
Aµ in electrodynamics). In both cases, the trace of the tensor of derivatives
is determined locally by the sources, while its trace-free parts represent the
local field variables, which can be chosen freely as initial conditions.

Penrose (1969, 1981) used this freedom to conjecture that the trace-free
part of the curvature tensor (the Weyl tensor) was zero when the universe
began. This situation describes a ‘vacuum state of gravity’, that is, a state of
minimum gravitational entropy, and a space as flat as is compatible with the
sources. It is analogous to the cosmic initial condition Aµin = 0 for the electro-
magnetic field discussed in Sect. 2.2 (with Gauß’ law as a similar constraint).
Gravity would then represent an exactly retarded field, requiring ‘causes’
in the form of advanced sources. Since Penrose intends to explain the ther-
modynamical arrow from this initial condition (see Sect. 5.3), his conjecture
revives Ritz’s position in his controversy with Einstein (mentioned in Chap. 2)
by applying it to gravity rather than electrodynamics.

In the big bang scenario, the beginning of the universe is characterized by
a time-like curvature singularity (where time itself begins). Penrose used this
fact to postulate his Weyl tensor hypothesis to past singularities in general,
since this would allow only one (homogenous) past singularity (the big bang
itself). However, in the absence of an absolute direction of time the past
would then be distinguished from the future precisely and solely by this
boundary condition. If the Weyl tensor condition could be derived from other
assumptions (that did not ad hoc specify an asymmetry in time), it would
have to be valid for future singularities as well.
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5.1 Thermodynamics of Black Holes

In order to discuss the spacetime geometry of black holes, it is convenient to
consider the static and spherically symmetric vacuum solution discovered by
Schwarzschild, and originally expected to represent a point mass. In terms of
spherical spatial coordinates this solution is described by the metric

ds2 = −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2) . (5.7)

Here, r measures the size of a sphere (but not the distance from r = 0). This
metric form is singular at r = 0 and r = 2M , but the second singularity, at
the Schwarzschild radius r = 2M , is merely the result of an inappropriate
choice of these coordinates. The condition r = 2M describes a surface with
area A = 4π(2M)2 (using Planck units G = c = h̄ = kB = 1 from now
on). In its interior (that is, for r < 2M) one has gtt = 2M/r − 1 > 0
and grr = (1 − 2M/r)−1 < 0. Therefore, r and t interchange their physical
meaning as spatial and temporal coordinates. The internal solution is not
static, while the genuine singularity at r = 0 represents a time-like boundary
rather than the space point expected by Schwarzschild.

Physical (time-like or light-like) world lines, that is, curves with ds2 ≤ 0,
hence with (dr/dt)2 ≤ (1 − 2M/r)2 → 0 for r → 2M , can only approach
the Schwarzschild radius parallel to the t-axis (see Fig. 5.1). Therefore, the
interior region r < 2M is physically accessible only via t→ +∞ or t→ −∞,
albeit within finite proper time. These world lines can be extended regularly
into the interior when t goes beyond ±∞. Their proper times continue into
the finite future (for t > +∞) or past (for t < −∞) with the new time
coordinate r → 0. There are hence two internal regions (II and IV in the
figure), with their own singularities at r = 0 (at a finite distance in proper
times). These internal regions must in turn each have access to a new external
region, also in their past or future, respectively, via different Schwarzschild
surfaces at r = 2M , but with opposite signs of t = ±∞. There, proper times
have to decrease with growing t. These two new external regions may then
be identified with one another in the simplest possible topology (region III
in the figure).

This complete Schwarzschild geometry may be regularly described by
means of the Kruskal-Szekeres coordinates u and v, which eliminate the co-
ordinate singularity at r = 2M . In the external region they are related to the
Schwarzschild coordinates r and t by

u =
√

r

2M
− 1 er/4M cosh

(
t

4M

)
(5.8a)

v =
√

r

2M
− 1 er/4M sinh

(
t

4M

)
. (5.8b)
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Fig. 5.1. Extension of the Schwarzschild solution from ‘our world’ beyond the two coordi-
nate singularities at r = 2M , t = ±∞. Each point in the diagram represents a 2-sphere of
size 4πr2. A consistent orientation of forward light cones (required from the continuation
of physical orbits, such as those represented by dashed lines) is indicated in the different
regions. There are also two genuine curvature singularities with coordinate values r = 0

The Schwarzschild metric in terms of these new coordinates reads

ds2 =
32M2

r
e−r/2M (−dv2 + du2) + r2(dθ2 + sin2 θ dφ2) , (5.9)

with r = r(u, v). It is evidently regular for r → 2M and t→ ±∞, where u and
v may remain finite. The Kruskal coordinates are chosen in such a way that
future light cones everywhere form an angle of 45◦ around the +v-direction
(see Fig. 5.2). Sector I is again the external region outside the Schwarzschild
radius (‘our world’). One also recognizes the two distinct internal regions II
and IV (connected only through the ‘instantaneous sphere’ that is represented
by the origin, u = v = 0) with their two separate singularities r = 0. Both
Schwarzschild surfaces are light-like, and thus represent one-way passages
for physical orbits. Their interpretation as past and future horizons is now
evident. Sector III represents the second asymptotically flat ‘universe’. (It is
not connected with the original one by a rotation in space, since u is not
limited to positive values like a radial coordinate.)

This vacuum solution of the Einstein equations is clearly T-symmetric,
that is, symmetric under reflection at the hyperplane v = 0 (or any other
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Fig. 5.2. Completed Schwarzschild solution represented in terms of Kruskal coordinates.
Forward light cones appear now everywhere with a 45◦ opening angle around the +v-
direction. Horizons are indicated by dense-dotted lines, possible orbits as dashed lines.
Although the future horizon, say, moves in the outward direction with the speed of light
from an inertial point of view, it does not increase in size. The center of the Kruskal di-
agram defines an ‘instantaneous sphere’ as a symmetry center, even though it does not
specify a specific external time t0

hyperplane t = constant). Therefore, it does neither represent a black hole,
nor would it be compatible with the Weyl tensor hypothesis. In the absence of
gravitational sources, the Ricci tensor must vanish according to the Einstein
equations (5.6), while a singular curvature can only be due to the rest of the
Riemann tensor (the Weyl tensor).

A black hole is instead defined as an asymmetric spacetime structure that
arises dynamically by the gravitational collapse of matter. For example, if the
infalling geodetic sphere indicated by the dashed line passing through Sectors
I and II of Fig. 5.2 represents the collapsing surface of a spherically symmetric
star, the vacuum solution is valid only outside it. Neither a past horizon with
its past singularity, nor a second asymptotically flat spacetime exist in this
case. They are indeed excluded by regular initial conditions. The coordinates
u and v can be extended into the interior only with different interpretation
(see Fig. 5.3a, where u = 0 is chosen as the center of the collapsing star).
This black hole is drastically asymmetric under time reversal, as it contains
only a future horizon and a future singularity.

Because of the symmetry of the Einstein equations, a time-reversed black
hole — not very appropriately called a white hole (Fig. 5.3b) — must also
represent a solution. However, its existence in nature would be excluded by
the Weyl tensor hypothesis. If it were the precise mirror image of a black
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Fig. 5.3a,b. Geometry of a Schwarzschild black hole (a) which forms by the gravitational
collapse of a spherically symmetric mass, and its time-reverse (b) — usually called a white
hole

hole, the white hole could describe a star (perhaps with planets carrying life)
emerging from a past horizon. This would be inconsistent with an arrow of
time that is valid everywhere in the external region. If a white hole were
allowed to exist, we could receive light from its singularity, although this
light would be able to carry retarded information about the vicinity of the
singularity only if our arrow of time extended into this region. This seems to
be required for thermodynamical consistency, but may be in conflict with an
initial singularity (see Sect. 5.3).

Similar to past singularities, also space-like singularities — so-called
naked singularities — could be ‘visible’ to us. They, too, were assumed to
be absent by Penrose. However, this Cosmic Censorship assumption cannot
generally be imposed directly as an initial condition. Rather, it has to be
understood as a conjecture about the nature of singularities which may form
dynamically during a collapse from generic initial value data which com-
ply with the Weyl tensor hypothesis. Although counterexamples (in which
naked singularities form during a gravitational collapse from appropriate ini-
tial conditions) have been explicitly constructed, they seem either to form
sets of measure zero (which could be selected by imposing exact symmetries
that would be thermodynamically unstable in the presence of quantum mat-
ter fields), or to remain hidden behind black hole horizons (see Wald 1997,
Brady, Moss and Myers 1998). In the first case, they may be compared with
pathological mechanical systems that have occasionally been considered as
counterexamples to ergodic behavior. This analogy may readily indicate a
relationship between these aspects of general relativity and statistical ther-
modynamics.

The Schwarzschild-Kruskal metric may be generalized to become the
Kerr-Newman metric, which describes axially symmetric black holes with an-
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gular momentum J and chargeQ. This solution is of fundamental importance,
since its external part characterizes the final stage of any gravitationally col-
lapsing object. For t→ +∞ (although very soon in excellent approximation
during a collapse) every black hole may be completely described by the three
parameters M,J and Q (except for Lorentz transformations and transla-
tions). This result is known as the no-hair theorem, as it means that black
holes cannot maintain any external structure (‘no hair’). It requires that the
collapsing star radiates away all higher multipoles of matter and charge (in
accordance with a Sommerfeld radiation condition), while conserved quanti-
ties connected with short-range forces, such as the lepton or baryon number,
disappear from observability. A white hole would therefore require coherently
incoming (advanced) radiation in order to ‘grow hair’. For this reason, white
holes seem to be incompatible with the radiation arrow of our world. (For
their fate — if they had ever come into existence — see Eardley 1974, or
Barrabès, Brady and Poisson 1993).

If the internal structure of a black hole is regarded as irrelevant for our
future in the sense of statistical thermodynamics (in accordance with the no-
hair theorem), the gravitational collapse appears to violate baryon and lepton
number conservation. Even the entropy carried by collapsing matter would
disappear from this point of view, in violation of the Second Law. A ‘real’
violation of any of these conservation (or non-conservation) laws would occur
at the singularity that according to a singularity theorem must always arise
behind a future horizon in the presence of ‘normal’ matter (see Hawking and
Ellis 1973).

Spacetime singularities have particularly dramatic consequences in quan-
tum theory because of the latter’s kinematical nonlocality (cf. Sect. 4.2).
Consider a global quantum state, propagating on space-like hypersurfaces
(‘simultaneities’), which define an arbitrary foliation of spacetime and thereby
a time coordinate t. If these hypersurfaces somewhere met a singularity, not
only the state on this singularity, but also its entanglement with the rest of the
universe would cease to exist. In classical description, correlations can exist
only as a consequence of incomplete information. Quantum mechanically, def-
inite states would remain left for the non-singular rest of the universe only if
the complete state approached the factorizing form ψ = ψsingularityψelsewhere
whenever a singularity forms. Unless all correlations with arising singularities
vanished conspiratorially in this way (thus representing a strong final condi-
tion), the non-singular part of the universe would for objective reasons have
to be described by a density matrix % rather than a pure state. Therefore,
several authors have argued that quantum gravity must violate unitarity and
CPT invariance, and this idea has created a popular speculation ground for
introducing an objective dynamical collapse of the wave function induced
by gravity (Wald 1980, Penrose 1986, Károlyházy, Frenkel and Lukácz 1986,
Diósi 1987, Ellis, Mohanty and Nanopoulos 1989, Percival 1997, Hawking and
Ross 1997). Future horizons could then well explain the first step of (4.51).
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This indeterminism of a global state vector would not only be incon-
sistent with canonical quantum gravity (Sect. 6.2), it may also be avoided
in quantum field theory on a classical spacetime if the foliation defining a
time coordinate is always chosen never to encounter a singularity. For exam-
ple, the spherical Schwarzschild-Kruskal metric could be foliated according
to Schwarzschild time t in the external region, and according to the new
time coordinate r < 2M (rather than the Kruskal time coordinate v) in its
interior. This choice, which would always leave the whole black hole inte-
rior in our infinite future, has been advocated by ’t Hooft (1990). A general
singularity-free foliation is given by York time, which is defined by hyper-
surfaces of constant extrinsic spatial curvature scalar K (that describes the
embedding into spacetime — see Qadir and Wheeler 1985). Such a foliation
appears reasonable, in particular since consequences of an elusive unified field
theory may become relevant close to curvature singularities.

This salvation of global unitarity is irrelevant to (local) observers who
remain outside the horizon, since the reality accessible to them can be com-
pletely described by a density matrix %ext in the sense of a Zwanzig projection
P̂sub (cf. (4.26)) — regardless of the choice of a global foliation. The non-
unitary dynamics of these density matrices has the same origin as it did in the
quantum mechanical subsystems of Sect. 3.3: entanglement. The horizon ap-
pears only as a natural objectivization of the boundary, valid for all external
observers. One may therefore appropriately describe the phenomenological
properties of black holes (including their Hawking radiation — see below) re-
gardless of their singularities. (The latter may even signal the need for a new
theory). In a universe that is compatible with the Weyl tensor condition, this
‘effective non-unitarity’ of black holes mimics an indeterminism that would
represent a quantum mechanical arrow of time, although this consequence
does not require black holes and horizons (cf. Chap. 4 and Sect. 6.2.3).

From the point of view of an external observer, the information about
matter collapsing under the influence of gravity becomes irreversibly irrele-
vant, except for the conserved observable quantities M,J and Q. However,
the mass of a Kerr-Newman black hole is not completely lost (even if Hawk-
ing radiation is neglected). Its rotational and electromagnetic contributions
can be recovered by means of a process discovered by Penrose (1969) — see
Fig. 5.4. It requires boosting a rocket in the ergosphere, the region between
the Kerr-Newman horizon, r+ := M +

√
M2 −Q2 − (J/M)2, and the static

limit, r0(θ) := M+
√
M2 −Q2 − (J/M)2 cos2 θ. In this ergosphere, the cyclic

coordinate φ becomes time-like (gφφ < 0) as a consequence of extreme rela-
tivistic frame dragging. Because of the properties of this metric, ejecta from
the booster which fall into the horizon may possess negative energy with re-
spect to an asymptotic frame (even though this energy is locally positive).
Similar arguments hold if the ejecta carry electric charge with a sign opposite
to the black hole charge Q. In both cases the mass of the black hole may be
reduced by reducing its charge or angular momentum.
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Fig. 5.4. Extraction of rotational energy from a black hole by means of the Penrose mech-
anism, using a booster in the ergosphere close to the horizon

The efficiency of this process of drawing energy from a black hole is
limited — precisely as for a heat engine. According to a geometro-dynamical
theorem (Hawking and Ellis 1973), the area A of a future horizon (or the sum
of several such horizon areas) may never decrease. For all known processes
which involve black holes, this can be written in analogy to thermodynamics
as

dM = dMirrev +Ω dJ + ΦdQ (5.10)

(Christodoulou 1970), where the ‘irreversible mass change’ dMirrev ≥ 0 is
given by the change of total area of future horizons, dMirrev = κ

8π dA. Here,
κ is the surface gravity, which turns out to be constant on the horizon. Φ
is the electrostatic potential at the horizon, and Ω the angular velocity de-
fined by the dragging of inertial frames at the horizon. The last two terms
in this equation describe work done reversibly at the black hole by adding
angular momentum or charge, while the first one is analogous to T dS be-
cause of the inequality dA/dt ≥ 0. All quantities are defined not with respect
to a local frame (where they may diverge), but rather with respect to an
asymptotic rest frame of the black hole (where they remain regular because
of their diverging red-shift). For the Schwarzschild metric, the surface gravity
is κ = 1/4M . The quantities Φ and Ω are also constant on the horizon, in
analogy to other thermodynamical equilibrium parameters, such as pressure
and chemical potential, which appear in the expression for the work done on
a thermodynamical system in the form µdN − pdV .

These analogies led to the proposal of the following Laws of Black Hole
Dynamics, which form a complete analogy to the Laws of Thermodynamics
(cf. Bekenstein 1973, Bardeen, Carter and Hawking 1973, Israel 1986):

0. The surface gravity of a black hole must approach an equilibrium value
κ(M,Q, J) everywhere on the horizon for t→∞.

1. The total energy of black holes and external matter, measured from asymp-
totically flat infinity, is constant in time.

2. The sum of the surface areas of all horizons, A :=
∑
iA(Mi, Qi, Ji), never

decreases:
dA

dt
≥ 0 . (5.11)
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3. It is impossible to reduce the surface gravity to zero by a finite number of
physical operations.

The analogy between this version of the third law and its thermodynamical
counterpart may have to be modified for other versions because of the nega-
tive heat capacity of a black hole. In particular, the surface area A does not
disappear with vanishing surface gravity in a similar way as the entropy does
with vanishing temperature.

Bekenstein conjectured that these analogies are not just formal, but in-
dicate genuine thermodynamical properties of black holes. He proposed not
only a complete equivalence of thermodynamical and spacetime-geometrical
laws and concepts, but even their unification. In particular, in order to ‘legal-
ize’ the transformation of thermodynamical entropy into black hole entropy
A (when dropping hot matter into a black hole), he required that instead of
the two separate Second Laws, dS/dt ≥ 0 and dA/dt ≥ 0, there be only one
Unified Second Law

d(S + αA)
dt

≥ 0 , (5.12)

with an appropriate constant α. Its value remains undetermined from the
analogy, since the term κ

8π dA, equivalent to T dS, may as well be written
as κ

8πα d(αA). The black hole temperature Tbh := κ
8πα must classically be

expected to vanish, since the black hole would otherwise have to emit heat
radiation proportional to AT 4

bh according to Stefan and Boltzmann’s law. The
constant α should therefore be infinite, and so should the black hole entropy
Sbh := αA. This would require the absence of processes, otherwise allowed
by the Unified Second Law, wherein black hole entropy is transformed into
thermodynamical entropy (this would violate the area theorem).

Nonetheless, Bekenstein suggested a finite value for α (of the order of
unity in Planck units). This was confirmed by means of quantum field the-
ory by Hawking’s (1975) prediction of black hole radiation. His calculation
revealed that black holes must emit heat radiation according to the value
α = 1/4. This process may be described by means of virtual particles with
negative energy tunnelling from a virtual ergosphere into the singularity
(York 1983), while their correlated partners with positive energy may then
propagate towards infinity. (Again, all energy values refer to an asymptotic
frame of reference). The probabilities for these processes lead precisely to a
black body radiation with temperature

Tbh =
κ

2π
, (5.13)

and therefore to the black hole entropy 1

1 It is important to realize that this is a general result — independent of the precise
nature of contributing fields. Therefore, it cannot be used to support any specific theory
(such as M-theory). Physical theories can only be confirmed by comparison with empirical

data.
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Sbh =
A

4
. (5.14)

The mean wave length of the emitted radiation is of the order A1/2.
A black hole not coupled to any quantum fields (α =∞) would possess

the temperature T = 0 and infinite entropy, corresponding to an ideal ab-
sorber in the sense of Sect. 2.2. This is indeed a general property of classical
black body radiation, that is, of classical electromagnetic waves in thermal
equilibrium (Gould 1987). According to (5.13), a black hole of solar mass
would possess a temperature Tbh ≈ 10−6 K. In the presence of the 2.7 K
background radiation, it would absorb far more energy than it emits (even
in the absence of dust or any other matter). Only a black hole of less than
about 3 × 10−7 solar masses is sufficiently small, thus hot enough to lose
mass at the present temperature of the universe (Hawking 1976). There also
exists a solution that describes T-symmetric ‘holes’ embedded in an isotropic
heat bath of its own temperature (Zurek and Page 1984). Instead of a future
horizon and a future singularity it describes a spatial singularity at r = 0,
representing negative mass. It seems to be unstable against quantum fluctu-
ations of the metric in the region of the Schwarzschild radius, signalling the
need for quantum gravity.

A small black hole may completely decay into thermal radiation. The
resulting entropy has been estimated to be slightly larger than the black hole
entropy if the radiation is emitted into empty space (Zurek 1982b). Since the
future horizon and the singularity would thereby also disappear, one seems
now confronted with a genuine global indeterminism — regardless of any
choice of foliations. This problem is known as the information loss paradox.

Several possible resolutions of this paradox have been discussed in the
literature. Conventional quantum theory would require that the entropy of
the radiation is merely a result of its statistical description, which regards
photon correlations as irrelevant. The photons in this black body radiation
may be entangled to form a pure total state (as they would according to
a Schrödinger equation that was formulated on a foliation with slices that
never hit the singularity). A similar pure global state of radiation would arise
according to the unitary description if a macroscopic body decayed from a
high energy pure state into its ground state by emitting many photons (Page,
1980). This state of the radiation field can for all practical purposes (local
or independent photon measurements) be assumed to be a thermal mixture.
However, quantum correlations between photons of the incoming (advanced)
radiation of a white hole would be dynamically relevant for it to ‘grow hair’.
A general correlation between the time arrows of horizons and radiation has
been derived in the form of a ‘consistency condition’ for certain de Sitter type
universes by Gott and Li (1997). Their model is remarkable in possessing
different arrows of time in different spacetime regions (separated by an event
horizon).

In spite of the absence of any explicit mechanism, this proposal of a
unitary description of thermal radiation arising from black hole evaporation
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remains conventional (except for the possible violation of baryon and lepton
number conservation). While not even the Stoßzahlansatz is in conflict with
microscopic determinism, non-zero physical entropy has been shown to be
compatible with a pure state in Sect. 4.2. However, the complete information
representing the pure state can only be contained in the whole superposition
of all Everett branches. It would be absolutely lost in a genuine collapse.

Therefore, the description of black holes by a probabilistic super-scatter-
ing matrix $ (Hawking 1976) could have similar roots as the apparent col-
lapse of the wave function or the Stoßzahlansatz. An S- (or $-) matrix would
in any case not represent a meaningful concept for describing black holes,
which — like all macroscopic objects — never become ‘asymptotically free’
because of their never ending decoherence by their environment (Demers
and Kiefer 1996). Microscopic ‘holes’, which could be described as quan-
tum objects by means of an S-matrix, cannot possess the classical properties
‘black’ or ‘white’, that are analogous to the chirality of sugar molecules —
cf. Sect. 4.3.2). They can only be expected to exist as T eigenstates in their
symmetric or anti-symmetric superpositions of black and white.

According to other proposals, a black hole remnant that conserves all
relevant properties (including lepton and baryon number and the complete
entanglement with the environment) must always be left behind when a black
hole is transformed into radiation. A third possibility will be discussed in
Sect. 6.2.3.

General literature: Bekenstein 1980, Unruh and Wald 1982

5.2 Thermodynamics of Acceleration

While the time arrow of black holes is defined by their classical spacetime
structure, Hawking radiation is a consequence of quantum fields on their
spacetime. The existence of this radiation requires the presence of an event
horizon, which in turn depends on the world line of an ‘observer of refer-
ence’ (or a family of observers, such as all inertial ones in a flat asymptotic
spacetime). For example, the future horizon at r = 2M would not exist for
an inertial detector freely falling into the black hole, in contrast to one being
held at a certain distance r > 2M . The latter would feel a gravitational force
unless it were in appropriate rotational motion.

Homogeneous gravitational forces are ‘equivalent’ to uniformly accel-
erated frames of reference. 2 Must accelerated detectors then be expected
to register heat radiation in an inertial vacuum — similar to the classical

2 Homogeneous gravitational fields do not imply spacetime curvature. The popular
error that they do has led to the folklore that accelerated systems have to be described
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Fig. 5.5. Horizons appearing in Minkowski spacetime to uniformly accelerated observers
(characterized by hyperbolic orbits % := (x2− t2)/4 = constant), with proper accelerations
given by a = (2

√
%)−1. The distance d between two parallel observers (who share co-moving

rest frames and asymptotes) remains constant

electromagnetic radiation that they would measure in the Coulomb field of
an inertial charge (Sect. 2.3) and equivalent to (5.13)? Horizons may indeed
exist in flat spacetime for non-inertial observers. For example, there would
be a past and a future horizon for a uniformly accelerated observer in flat
Minkowski spacetime, given by the asymptotes of his hyperbolic relativistic
orbit (see Fig. 5.5). This observer shares his horizons with a whole family of
‘parallelly accelerated’ ones (who require different accelerations in order to
remain on parallel hyperbolae — similar to two observers at different fixed
distances from a black hole). These observers also share comoving rest frames,
and thus define accelerated rigid frames with fixed distances d in spite (or
rather because) of their different acceleration.

In the x, t-plane this situation appears analogous to the Schwarzschild-
Kruskal spacetime (Fig. 5.2), although it is singularity-free, since each point
in the diagram now represents a flat R2 rather than a 2-sphere. If the accel-
eration began at a certain finite time, no past horizon would exist (in analogy
to a T-asymmetric black hole). The orbits of this family of observers can be
used to define a new spatial coordinate %(x, t) that is constant along each
orbit and may be conveniently scaled by %(x, 0) = x2/4. Together with a
new time coordinate φ(x, t) that is related to proper times τ along the or-
bits by dτ =

√
% dφ, and the flat coordinates y and z, it defines the Rindler

coordinates in flat spacetime. In region I of Fig. 5.5 they are related to the
Minkowski coordinates by

x = 2
√
% cosh

φ

2
and t = 2

√
% sinh

φ

2
. (5.15)

by general relativity. However, all that is required is curved spacetime coordinates and the

identification of inertial frames with freely falling (apparently accelerated) ones.
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The proper accelerations a along % = constant are given by a(%) = (2
√
%)−1,

while the resulting non-Minkowskian representation of the Lorentz metric,

ds2 = −% dφ2 + %−1 d%2 + dy2 + dz2 , (5.16)

describes a coordinate singularity at % = 0 that is analogous to r − 2M = 0
for the Schwarzschild solution. The Minkowski coordinates can therefore be
compared with the Kruskal coordinates u and v of Fig. 5.2, while the Rindler
coordinates are analogous to the Schwarzschild coordinates.

The Rindler coordinates are also useful for describing the uniformly ac-
celerated point charge of Sect. 2.3 and its relation to a co-accelerated detector,
(even though this situation does not possess the full cylinder symmetry of
the coordinates). The radiation propagating along the forward light cone of
an event on the accelerated world line of the charge must somewhere hit the
latter’s future horizon, and asymptotically disappear completely into region
II from the point of view of an inertial observer. However, it would require
infinite time for the radiation to reach the horizon if described in terms of
co-accelerated (Lorentz-rotated) simultaneities φ = constant, which must
all intersect the horizon at the origin. These simultaneities also characterize
co-accelerated detectors (those at a fixed distance ∆% from the charge).

This may explain why, from the point of view of an inertial observer, but
not for a co-accelerated one, the accelerated charge radiates (Boulware 1980).
While Dirac’s radiation reaction (2.24) vanishes for uniform acceleration,
the distinction between near-fields and far-fields by their powers of distance
according to (2.13), and therefore the definition of radiation, depends on the
acceleration of the reference frame. Time reversal symmetry is expressed by
the fact that in region I the total retarded field of the charge is identical with
its advanced field (except on the horizons), while one has either only retarded
outgoing fields in region II, or only advanced incoming fields in region IV
(or any superposition of these cases). Therefore, even though global inertial
frames are absolutely defined in special relativity, only relative acceleration
between source and detector is relevant if uniform.

Unruh (1976) was indeed able to show — similar to Mould (1964) for
classical radiation — that an accelerated ‘particle’ detector in the inertial
vacuum of a quantum field must register isotropic thermal radiation with an
Unruh temperature

TU :=
a

2π
=

ah̄

2πckB
. (5.17)

This is precisely what had to be expected in analogy to (5.13) according to
the principle of equivalence. However, the response of a detector cannot be a
matter of perspective or definition (as was the distinction between radiation
and near-field).

Unruh’s result can also be derived by representing the inertial Minkowski
vacuum |0M〉 in terms of ‘Rindler particle states’, which are defined as har-
monic wave modes factorizing in the Rindler coordinates (with frequency
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Ω with respect to the time coordinate φ). 3 If plane wave modes ei(kx−ωt)

(Minkowski modes) are expanded in terms of these Rindler modes, this ex-
pansion induces a Bogoljubow transformation, a+

k → b+Ωs :=
∑
k(αΩs,ka

+
k +

βΩs,kak), for the corresponding ‘particle’ creation operators. In this relation,
the index s = I or III specifies two Rindler modes (both with time depen-
dence e−iΩφ) which vanish in the regions III or I of Fig. 5.5, respectively. On
flat simultaneities through the origin they are thus complete on half-spaces
with x > 0 or x < 0. These Bogoljubow transformations linearly combine
creation and annihilation operators, since the non-linear coordinate trans-
formations do not preserve the sign of the frequency (ω or Ω). These signs
distinguish particle and anti-particle modes in the usual interpretation, and
the two terms appearing in the Fourier representation of the field operator,
Φ(r, t) ∝

∫
{exp[i(kx+ωt)]ak + exp[i(kx−ωt)]a+

k } dk, do not transform sep-
arately in this general case.

In terms of the Rindler particle representation, the Minkowski vacuum
assumes the entangled form of a BCS ground state of superconductivity,

|0M〉 =
∏
Ω

[√
1− e−4πΩ

∑
n

e−2πΩn |n〉Ω,I |n〉Ω,III

]
(5.18)

(Bardeen, Cooper and Schrieffer 1957), where |n〉Ω,s = (n!)−1/2(b+Ωs)
n|0R〉

are the Rindler particle occupation number eigenstates. The Rindler vacuum
|0R〉, defined by bΩs|0R〉 = 0 for all Ω and s, is therefore different from
the Minkowski vacuum. In terms of Minkowski particles it still forms a pure
state — not a thermal mixture. (The Hawking radiation remaining after the
disappearance of a black hole may be expected to form a similar coherent
superposition.) The global concepts of quantum particles and their vacua are
thus not invariant under non-Lorentzian transformations. In contrast, the
actual quantum state is invariant and physically defined (‘real’), while its
interpretation in terms of particle numbers depends on a ‘reference basis’in
Hilbert space that represents the kinematical status of the corresponding ob-
servational instruments. In particular, the Rindler basis (or any ‘observable’
defined in terms of it) characterizes measurements by means of correspond-
ingly accelerated devices, while a specific ‘vacuum’ represents an actual state
(defined or prepared by means of physical, usually cosmological, boundary
conditions). This difference would be obscured in the Heisenberg picture.

Equation (5.18) is the Schmidt canonical representation (4.25) of nonlo-
cal quantum correlations between the two sectors I and III (which together
are spatially complete for hyperplanes intersecting the origin x = t = 0). It
illustrates the kinematical nonlocality of a relativistic Minkowski vacuum (see

3 According to the discussion in Sects. 4.3 and 4.6, the term ‘particles’ here means
field modes with their occupation numbers (oscillator quantum numbers). The concept of
classical particles should be avoided on a fundamental level of quantum theory. For exam-
ple, Feynman diagrams merely form an intuitive scheme for calculating the propagation of

quantum states (wave functionals) Ψ(t).
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also Gerlach 1988). The diagonal elements of the reduced density matrix that
describes the corresponding ‘mixed state’ on sectors I or III in the sense of
P̂sep are proportional to exp(−4πnΩ) for each frequency Ω. They represent a
canonical distribution with dimensionless temperature 1/4π (compatible with
the dimensionless time coordinate φ). Since proper times along the world lines
%, y, z = constant are given by dτ =

√
% dφ = (2a)−1 dφ, the physical ener-

gies are 2anΩ. The (%-dependent) temperature is therefore T = a/2π — in
accordance with (5.17). Disregarding quantum correlations with the other
half-space thus leads to the apparent ensemble of states representing a heat
bath. As the detector requires measurement times ∆t of the order of (aΩ)−1

in order to resolve a frequency Ω, the acceleration has to remain approxi-
mately uniform during this interval of time in order to mimic the presence of
an event horizon for this mode.

Although the result (5.17) might have been expected according to the
principle of equivalence, the latter is in general only locally applicable. Non-
inertial rigid systems are an exception valid for uniform acceleration in flat
spacetime (cf. Sect. 2.3). Therefore, Unruh radiation cannot be globally com-
pared with Hawking radiation. While the whole future light cone of an event
on the world line of a uniformly accelerated object will asymptotically inter-
sect the latter’s horizon, only part of the future light cone of an event in the
external region of a black hole will ever enter its internal region. Similarly,
only part of the (past) celestial sphere of an observer may have come close to
a black hole horizon, where Hawking radiation originates. (The horizon tends
to cover the whole celestial sphere of an observer approaching a black hole
as a consequence of spacetime curvature. He would have to speed towards
the remaining ‘hole in the sky’ in order not to be swallowed.) Such geomet-
ric aspects also determine the generalized Sommerfeld radiation condition
that characterizes a specific ‘vacuum’ (Unruh 1976). Only in the immediate
neighbourhood of the horizon can the freely falling observer be equivalent to
the inertial one in flat spacetime, and therefore experience a vacuum. While
the Unruh radiation is isotropic and T-symmetric, the Hawking radiation
specifies a direction in space as well as in time by its non-vanishing energy
flux.

A real and observable Rindler vacuum of QED could be produced by a
uniformly accelerated ideal mirror (Davies and Fulling 1977). A mirror, rep-
resenting a plane boundary condition to the field, leads to the removal of an
infinite number of field modes (those not matching the boundary condition)
with their infinite zero-point energy. For an inertial mirror this leads to an
infinite renormalization of energy, defining a ‘dressed mirror’. The dressing
would not be additive — though still meaningful — for several parallel mir-
rors set at a fixed distance in their rest frame, while the adiabatic variation
of their distances would give rise to the finite and observable Casimir effect
(a force between two closely-spaced mirrors). An accelerated mirror, acting
as an accelerated boundary, produces a quantum state that would be expe-
rienced as a vacuum by a co-accelerated detector, but as a thermal bath by
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an inertial one. A uniformly accelerated mirror would completely determine
this QED state on the concave side of its spacetime hyperbola in Fig. 5.5,
while the convex side offers the freedom of additional boundary conditions
in regions II or IV (similar to the classical field of a uniformly accelerated
charge). According to the equivalence principle, the mirror would even have
to ‘drag’ inertial frames if it were an ideal ‘graviton mirror’. (A virtual accel-
erated graviton mirror can be mimicked by a massive plane, since the mass
causes relative uniform acceleration between the innertial frames of the two
half-spaces.)

The thermodynamical effects of acceleration or curvature are too small
to be confirmed with presently available techniques. (For this reason, Beken-
stein and Hawking could not yet receive the Nobel prize.) However, they
are the consequence of combining two well established theories, and they are
all required for the consistency of Bekenstein’s generalized thermodynamics.
This has been demonstrated by means of beautiful gedanken experiments
with cyclic processes in the vicinity of black holes (Unruh and Wald 1982).

Although the boosted detector in flat spacetime is widely ‘equivalent’ to
one at a fixed distance from a black hole, its excitation energy is provided
by a quite different source. In the case of acceleration, the energy must be
drawn from the booster, while for a black hole it would have to reduce the
latter’s mass, and ultimately lead to its disappearance. However, since the
presence of Hawking radiation depends on the inertial state of the observer,
the black hole’s mass loss must then also be observer-dependent (Hawking’s
observer-dependent back-reaction of the metric). To quote Hawking (1976):

“If spacetime is quantized, one has to abandon the idea of a metric which is
independent of the observer. . . . The reason is that to determine where one is
in space-time one has to ‘measure’ the metric, and this act of measurement
places one in one of the different branches of the wave function in the Everett-
Wheeler interpretation.”

This requires taking into account quantum gravity (Sect. 6.2), while similar
arguments would apply to the fuel consumption of the booster according to
quantum mechanics on classical (such as flat) spacetime.

General literature: Birrell and Davies 1983

5.3 Expansion of the Universe

Modern cosmology is based on the global spacetime structure, which is de-
scribed by the same theory (Einstein’s general relativity) that was used to
describe black holes in Sect. 5.1. Since Hubble’s discovery of 1923 we know
that the universe is expanding. This is often regarded as a confirmation of
general relativity (by an effect that Einstein missed predicting by introduc-
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ing his cosmological constant, while it was present in Friedmann’s solutions
of 1922). However, a dynamical universe could as well have been discussed
in terms of Newton’s theory. In the spherically symmetric case, one would
even have obtained the same expansion law (although this model would then
have specified an inertial center). Apparently, applying the laws of mechanics
and gravity to the whole universe met almost as much reservation (until the
beginning of this century) as had their application to the celestial objects
a few hundred years earlier. (Kepler and his contemporaries were surprised
that planets ‘fly like the birds’.) In particular, a static universe would require
a new and fundamental repulsive force in order to compensate gravity — pre-
cisely what Einstein’s cosmological constant was supposed to do before the
discovery of the Hubble flow. In an open universe these consequences could
at most be obscured, but not avoided. In Newton’s theory, too, an expanding
universe would require a big bang that provided the ordered initial kinetic
energy.

In Einstein’s theory, a homogeneous and isotropic universe is described
by the Friedmann-Robertson-Walker (FRW) metric,

ds2 = −dt2 + a(t)2
{
dχ2 +Σ2(χ)

[
dθ2 + sin2 θ dφ2

]}
, (5.19)

withΣ(χ) = sinχ, sinhχ, or χ, depending on the sign of the spatial curvature,
k = +1,−1 or 0, respectively. The Friedmann time coordinate t in (5.19)
represents the proper time of objects which are at rest in these coordinates
(‘comoving clocks’). This metric may remain valid at the big bang (for a = 0)
in accordance with the Weyl tensor hypothesis. Its Weyl tensor does indeed
always vanish, although this model can be generalized by means of a multipole
expansion on the Friedmann sphere (see Halliwell and Hawking 1985, and
Sect. 5.4).

The FRW metric depends only on the expansion parameter a(t). Its dy-
namics, derived from the Einstein equations (5.6) with an added cosmological
constant, then assumes the form of an ‘energy integral’ (with vanishing value
of the energy) for a(t), or for some function of it. For example, one obtains
for its logarithm, α = ln a,

1
2

(
1
a

da

dt

)2

=
1
2

(
dα

dt

)2

= −V (α) . (5.20)

This logarithmic measure of spatial extension, α, which sends the big bang
to minus infinity, will prove convenient in Sect. 6.2. The Friedmann potential
V (α) is given by the energy density of matter, %(a), the cosmological constant
Λ, and the spatial curvature k/a2, as

V (α) = −4π%(eα)
3

− Λ

3
+ ke−2α . (5.21)

Essentially the same equation (without curvature term and cosmological con-
stant, but with variable energy) is obtained from Newton’s dynamics for the
radius of a gravitating homogeneous sphere of matter (Bondi 1961).
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The energy density % may depend on a in various ways. In the matter-
dominated epoch it is proportional to a−3, while during the radiation era —
at less than 10−3 times the present age of the universe — it changed with
with a−4, since all wave lengths expand with a. Much earlier (for extremely
high matter density or curvature), novel and yet speculative theories may
have been important. Several proposed quantum field theories imply that
the vacuum state of matter fields went through phase transitions in this era
(see Sect. 6.1). They may be characterized by an energy density that is inde-
pendent of a (as during a condensation process). In this era, the matter term
in the potential V would simulate a cosmological constant. Other contribu-
tions, due to a dilaton field, have been postulated in string theory as being
relevant in the still earlier Planck era (of the order a. 1).

The Friedmann potential V (α) is indicated in Fig. 5.6. Just as in classical
mechanics, allowed regions require positive kinetic energy E − V = −V > 0,
while V = 0 defines turning points of the cosmic expansion. An upper turning
point describes a recollapsing universe, while a lower turning point represents
a ‘bouncing’ universe (without big bang or big crunch singularities).

Fig. 5.6. Schematic behavior of the ‘potential energy’ for the dynamics of ln a (assuming
positive spatial curvature). Turning points of the motion are defined by V = 0. Recent
observations of distant supernovae indicate that the universe has already passed the max-
imum of the potential V (which would then have to lie below the axis). Therefore, V will
always remain negative, while the dynamical effect of curvature remains negligible

Different eras, described by different equations of state %(a), may pos-
sess different analytical solutions a(t). For a dominating (fundamental or
simulated) cosmological constant, a(t) = ce±Ht, with a ‘Hubble’ constant
H = ȧ/a = α̇. This situation is called a de-Sitter era. For a matter or radi-
ation dominated universe, a(t) = c′t2/3 or a(t) = c′′t1/2, respectively, while
for very large values of a (low matter densities), and in the absence of a
fundamental cosmological constant, the curvature term would dominate. For
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positive curvature it would then require reversal of the expansion at some
time. (See also the model (5.34) and Fig. 5.7 in the subsequent section!)

The finite age of an expanding universe with an initial singularity (a big
bang) leads to the consequence that the backward light cones of two events
might nowhere overlap. These events would then not possess any (partial)
common cause. A sphere formed by the light front originating in a point-like
event at the big bang (where a(0) = 0) is called a causality horizon. Its radius
s(t) at Friedmann time t is given by

s(t) =

t∫
0

a(t)
a(t′)

dt′ . (5.24)

For matter- or radiation-dominated universes this integral converges even
though a(t)→ 0 for t→ 0, and for vanishing cosmological constant, s remains
smaller than the semi-circumference of a closed Friedmann universe. Only
(growing) regions of the universe may then be causally connected. Quantum
entanglement may also be expected to require local causes, and therefore to
be limited to distances within the causality horizon. This would explain the
initial condition (4.56), while it leaves the homogeneity of the universe (that
is, its simultaneous beginning) unexplained.

This latter horizon problem was the main motivation for postulating
a phase transition of the vacuum that leads to an early de-Sitter phase (an
exponentially expanding universe). The big bang singularity can then in prin-
ciple be shifted arbitrarily far into the past, depending on the duration of this
phase transition. However, in an extremely short time span (of the order of
10−33 sec) the universe, and with it all causality horizons, would inflate by a
huge factor that was sufficient for the whole now observable 2.7 K background
radiation to be causally connected (Linde 1979).

While the Friedmann model is an exact solution of the Einstein equa-
tions, and apparently an approximation to the large scale behavior of the real
universe, it is not thermodynamically stable against density fluctuations (as
discussed at the beginning of this chapter and in Sect. 5.1). This instability is
expected to explain the formation of galaxies, galaxy clusters, and possibly
larger structures in the present universe. Breaking translational symmetry
may either require small inhomogeneities as a seed, or result from ‘quantum
fluctuations’ that become ‘real’ by means of decoherence (see Calzetta and
Hu 1995, Kiefer, Polarski and Starobinsky 1998, and Sect. 6.1). The second
mechanism is also known to lead to a quantum limit for the retardation (hys-
teresis) of phase transitions. The onset of these structures is now believed
being observed in the cosmic background radiation.

The arrow of time characterizing these irreversible processes is thus based
again on an improbable cosmic initial condition: homogeneity. Boltzmann
(1896) already discussed the Second Law in a cosmological context. Under the
assumption of an infinite universe in space and time, he concluded that we,
here and now, happen to live in the aftermath of a gigantic cosmic fluctuation.
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Its maximum (that is, the state of lowest entropy) must have occurred in the
distant past in order to explain the existence of fossils and other documents
in terms of causal history and evolution. This improbable assumption (cf.
the remarks at the end of Chap. 3) is an application of the weak anthropic
principle (Carr and Rees 1979, Barrow and Tipler 1986): we could not exist
at another place and time according to this mechanistic world model.

How improbable is the novel initial condition of homogeneity that Boltz-
mann did not even recognize as an essential assumption? We may calculate
just how improbable from the entropy by means of Einstein’s relation (3.52).
The conventional physical entropy of a homogeneous state in local equilib-
rium is proportional to the number of particles, N . Gravitational entropy is
negligible in the present state of our universe. However, the number of pho-
tons in the 2.7 K background radiation exceeds that of massive particles by a
factor 108. (The mean entropy of a baryon is approximately the same as that
of a photon under present conditions — both are of order kB .) A standard
model of a closed universe, with 1080 baryons (now often regarded merely as
a causally connected ‘bubble’ in an infinite world), would therefore possess
an entropy of order 1088 (the number of photons).

In Planck units, the area of a horizon of a neutral spherical black hole
of mass M is given by A = 4π(2M)2. Its entropy thus grows with the second
power of its mass,

Sbh = 4πM2 . (5.25)

Merging black holes will therefore produce a considerable amount of entropy.
If the standard universe of 1080 baryons consisted of 1023 solar mass black
holes (since Msun ≈ 1057mbaryon), it would possess a total entropy of order
10100, that is, 1012 times its present value. If most of the matter eventually
formed a single black hole, this value would increase by another factor 1023.
The probability for the present, almost homogeneous universe of 2.7K is
therefore a mere

phom ≈
exp(1088)
exp(10123)

= exp(1088 − 10123) ≈ exp(−10123) , (5.26)

when compared with its most probable state in this logarithmic approxima-
tion (Penrose 1981). Gravitational contraction offers an enormous entropy
capacity for structure and complexity to evolve out of homogeneity in accor-
dance with the Second Law (even though the Second Law may not represent
the complete story — cf. Figs. 3.5 and 4.3).

This improbable initial condition of homogeneity as the origin of the Sec-
ond Law is different from Gold’s (1962) proposal to derive the thermodynam-
ical time arrow from expansion in a causal way (cf. Price 1996 and Schulman
1997 for critical discussions). While it is true that any non-adiabatic expan-
sion of an inhomogeneous equilibrium system (such as droplets in a saturated
gas) leads to a retarded non-equilibrium in our causal world, this would as
well be true for non-adiabatic contraction. The growing space (and thus phase
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space, representing increasing entropy capacity) has often been proposed as
the master arrow of time, although it is clearly insufficient to explain causal-
ity (such as non-equilibrium being caused by expansion or contraction). Non-
adiabatic compression of a vessel would lead to retarded pressure waves emit-
ted from the walls, but not to a reversal of the thermodynamical arrow. The
quantitative arguments demonstrate that the phase space created by gravi-
tational contraction (ultimately into black holes) is far more important than
that due to the cosmic expansion.

There are other examples of using causality in thermodynamical argu-
ments rather than deriving it in this cosmic scenario. Gal-Or (1974) dis-
cussed retarded equilibration caused by the slow nuclear reactions in stars.
Even though nuclear fusion controls the time scale and energy production
during early stages of stellar contraction, its entropy production is marginal
compared to black hole formation. Another example of causal reasoning is
provided by a positive cosmological constant that may counteract gravity and
induce accelerated expansion. Can it then also reverse the gravitational trend
towards inhomogeneity, or even causally explain the observed homogeneity?

This has indeed been suggested on the basis of the cosmological no-hair
conjecture (Hawking and Moss 1982), which states that the universe must lose
all structure and become homogeneous during inflation. However, this conjec-
ture is questionable, since the long range forces described by a cosmological
constant cannot force local gravitating systems, in particular black holes, to
expand fast and enter a state of homogeneity. (Expanding white holes would
require acausally incoming advanced radiation, as explained in Sect. 5.1.) The
expansion of diluted parts of the universe would thus accelerate faster under
the influence of a cosmological constant than that of its denser parts (unless
this difference were compensated by a conspiratorial inhomogeneous initial
expansion velocity), thus causing inhomogeneities to grow. ‘Proofs’ of this
no-hair conjecture had therefore to exclude positive spatial curvature.

However, a cosmological constant simulated by a phase transition of the
vacuum during the early stages of the universe could overcompensate the ef-
fect of gravity until strong inhomogeneities begin to form. Therefore, Davies
(1983, 1984) suggested that the homogeneity of our universe was caused by its
inflation (see also Page 1984, Goldwirth and Piran 1991). This would mean
that the Weyl tensor ‘cooled down’ as a consequence of this driven spatial
expansion — similar to the later occurring red-shifting of the electromagnetic
radiation. While these direct implications of the expansion define reversible
processes, equilibration (in the radiation era or during the phase transition)
would be irreversible in the statistico-thermodynamical sense (based on mi-
croscopic causality).

This explanation of homogeneity would still have to exclude strong initial
inhomogeneities (initial black holes, in particular). In order to represent a
causal explanation, it would require the state that precedes inflation to be
even less probable than the homogenous state after inflation. What would
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then happen backwards in time to those many inhomogeneous states which
are ‘now’ conceivable?

These questions may be appropriately discussed in terms of a recollaps-
ing universe. Its consistent analysis is meaningful regardless of what will ever
happen to our own universe. Would the thermodynamical arrow have to re-
verse direction when the universe starts recollapsing towards the big crunch
after having reached maximum extension? The answer would have to be ‘yes’
if the cosmic expansion represents the master arrow, but it is often ‘no’ on
the basis of causal arguments continued into this region (as it proved suffi-
cient to counter Gold’s original argument). Several authors argued that the
background radiation would first have to heat up through wave lenghth con-
traction (blue shifting), while the temperature gradient between interstellar
space and the fixed stars would then be inverted only long after the universe
has reached its maximum extension. However, this argument presupposes the
overall validity of the ‘retarded causality’ in question, that is, the absence of
conspiratorial correlations in the contraction phase. It would be justified if the
relevant improbable initial condition, such as Penrose’s Weyl tensor hypoth-
esis, held at only one ‘end’ of this cosmic history. The absence or negligibility
of irreproducible conspiratorial events in our present epoch seeems to indi-
cate either that the universe is globally asymmetric in time, or that it is still
‘improbably young’ when related to its total duration.

Davies (1984) argued similarly that there can be no reversed inflation at
the big crunch, since correlations required for an inverse phase transitions can
be excluded as improbable. Instead of a homogeneous big crunch one would
either obtain ‘de-Sitter bubbles’, which would reverse the cosmic contraction
locally and lead to an inhomogeneous ‘bounce’, or inhomogenous singularities
at variance with a reversed Weyl tensor condition, or both. This argument
fails, however, if the required correlations are caused in the backward direction
of time by a final condition that is thermodynamically symmetric in time to
the initial one (cf. also Sect. 6.2.3). Similarly, if the big bang were replaced
with a non-singular homogeneous bounce in some way, entropy must have
decreased previous to the bounce. In all cases, an observer complying with
the Second Law would experience an expanding universe.

On the other hand, a low entropy big crunch together with a low en-
tropy big bang would constrain the possible histories of the universe far more
than the low entropy condition at one end. The general boundary value prob-
lem (cf. Sect. 2.1) leaves only one complete (initial or final) condition free.
Although a condition of low entropy does not define the initial state com-
pletely, statistically independent two-time boundary conditions would square
the probability (5.26), that is,

ptwo−time = p2
hom ≈ [exp(−10123)]2 ≈ exp(−10123.301) . (5.27)

The RHS may appear as a small correction to (5.26) in this exponential form,
but an element of phase space as small as described by (5.27) would be much
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smaller than a Planck cell (that represents a pure quantum state). A two-time
boundary condition of homogeneity may thus be inconsistent with ‘ergodic’
quantum cosmology.

The consistency of two-time boundary conditions has been investigated
for simple deterministic (dynamically closed) systems (see Cocke 1967 for
mechanical, and Schulman 1997 for wave mechanical systems). For example,
an open Friedmann universe with vanishing cosmological constant would not
even allow two boundaries with a = 0, but rather expand forever (in one
time direction) in a drastically asymmetric way. Davies and Twamley (1993)
discussed the situation of classical electromagnetic radiation in an expanding
and recollapsing universe. According to their estimates, our universe will
remain essentially transparent all the way between the two opposite radiation
eras (in spite of the reversible frequency shift over many orders of magnitude
in between). Following an argument by Gell-Mann and Hartle they then
concluded that the light emitted causally by all stars before the ‘turning of
the tide’ must propagate according to the Maxwell equations, and remain
dominant until the reversed radiation era is reached. Therefore, our universe
should possess a macroscopically asymmetric history even if it were bound
to recontract.

Craig (1996) argued on this basis, but by assuming cosmic history to
be essentially symmetric, that the brightness of our night sky at optical fre-
quencies would have to contain a homogeneous component (that is, a non-
Planckian high frequency tail in the isotropic background radiation) with
intensity at least equalling the intensity of the light now observed from all
stars and galaxies. This conclusion assumes tacitly that the retarded radia-
tion emitted by all galaxies before the turning of the tide is different from
the advanced radiation from (thermodynamically reversed) galaxies during
the contraction phase. If this advanced radiation were identical with the re-
tarded one (cf. Sect. 2.1), this would require the light from the expansion era
to ‘conspire’ in order to focus on sources during the formal contraction era.
Even though the star light would considerably spread in space during the life
cycle of a long-lasting recollapsing universe, it would classically preserve all
information about its origin, and thus not be compatible with local reversed
sources in our distant future. Therefore, Craig assumed the star light from
one side to continue into the radiation era on the temporally opposite side
(so that the total intensity is doubled).

However, these conclusions are invalidated when the photon aspect of
electromagnetic radiation is taken into account. The restricted information
content of photons, emphasized already by Brillouin (1962), was essential
also for establishing limits to Borel’s argument of Sect. 3.1.2 (cf. Sect. 4.3.3).
Each photon, even if emitted into intergalactic space as a spherical wave,
disappears from the whole quasi-classical universe as soon as it is absorbed
somewhere. There is an asymmetry between emission and absorption in the
conventional quantum description (cf. Fig. 4.4). If the absorber is itself de-
scribed quantum mechanically, the localization of the absorbed photon is a
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consequence of decoherence — reflecting the fact that wave functions live in
configuration space rather than in space. In quantum cosmology (without
taking into account quantum gravity yet), a reversal of this process would
require many Everett components to conspire in order to recohere, while the
corresponding final condition for the total Everett wave function would not be
in any obvious conflict with the initial condition. If the Schrödinger dynamics
were instead modified by a collapse of the wave function, this new dynami-
cal law would also have to be reversed in time for Craig’s considerations to
remain valid.

This problem of consistent cosmic two-time boundary conditions will
assume a conceptually novel form in the context of quantum gravity, since
any concept of time then disappears from cosmology (Sect. 6.2).

5.4 Geometrodynamics and Intrinsic Time

In general relativity, the ‘block universe picture’ is traditionally preferred to
a dynamical description, as its unified spacetime concept is then manifest. (A
historically remarkable exception, aside from cosmology, is the Oppenheimer-
Snyder model of gravitational collapse.) Only during the second half of the
last century has the dynamical (Hamiltonian) approach to general relativ-
ity been appropriately explored, particularly by Arnowitt, Deser and Misner
(1962). This has not always been welcomed, as it seems to destroy the beauty
of relativistic spacetime symmetry by re-introducing a 3+1 (space and time)
representation. However, only in this form can the dynamical content of gen-
eral relativity be fully appreciated. A similarly asymmetric form in spite of
relativistic invariance is known from the dynamical description of the elec-
tromagnetic field in terms of the vector potential A (cf. Chap. 21 of Misner,
Thorne and Wheeler 1973).

This dynamical reformulation of the theory requires the separation of
unphysical gauge degrees of freedom (which in general relativity simply rep-
resent the choice of coordinates), and the skilful handling of boundary terms.
The result of this technically demanding procedure turns out to have a simple
interpretation. It describes the dynamics of spatial three-geometry, (3)G(t),
that is, a propagation of the intrinsic curvature of space-like hypersurfaces
with respect to a time coordinate t that labels a foliation of the dynamically
arising spacetime. This foliation has to be chosen during the construction
of the solution. The extrinsic curvature, describing the embedding of the
three-geometries into spacetime, is represented by the corresponding canoni-
cal momenta. The configuration space of the three-geometries (3)G has been
dubbed superspace by Wheeler. Trajectories in this superspace define four-
dimensional spacetime geometries (4)G.
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This 3+1 description may appear ugly not only as it hides Einstein’s
beautiful spacetime concept, but also since the required foliation by means of
space-like hypersurfaces (on which (3)G is defined) is arbitrary. Hence, many
trajectories (3)G(t) represent the same spacetime (4)G, which is the physi-
cally meaningful object. Only in special situations (such as the FRW metric
(5.19)) may there be a ‘preferred choice’ of coordinates, which reflects their
exceptional symmetry. The time coordinate t of a given foliation is just one of
the four arbitrary (physically meaningless) spacetime coordinates. As a pa-
rameter labelling trajectories it could as well be eliminated and replaced with
one of the dynamical variables (cf. Chap. 1), such as the size of an expanding
universe. The resulting four-geometry then defines all spacetime distances —
including all proper times of real or imagined local objects (‘clocks’). Clas-
sically, spacetime may always be assumed to be filled with a ‘dust of test
clocks’ of negligible mass (cf. Brown and Kuchař 1995). However, they are
not required to define proper times (except operationally); in general rela-
tivity, time as a metric property is itself a dynamical variable (see below).
According to the principle of relativity, proper time then assumes the role of
Newton’s absolute time as a controller of motion for all material clocks.

Einstein’s equations (5.6) are second order differential equations, similar
to the wave equation (2.1). They may therefore be expected to determine
the metric gµν(x, y, z, t) by means of two boundary conditions for gµν — at
t0 and t1, say. (For t1 → t0 this would correspond to gµν and its ‘velocity’
at t0. This pair may then also determine the extrinsic curvature.) Since the
time coordinate is physically meaningless, its value on the boundaries is ir-
relevant; two metric functions on three-space, g(0)

µν (x, y, z) and g
(1)
µν (x, y, z),

are sufficient. Not even their order is geometrically essential, since there is no
absolute direction of light cones. Similarly, the t-derivative of gµν , resulting
in the limit t1 → t0, is required only up to a numerical factor (that specifies
a meaningless initial ‘speed of three-geometry’ in superspace).

If one similarly eliminates all spatial coordinates from the metric gµν , it
describes precisely the coordinate-independent three-geometry (3)G. In the
‘normal’ situation, the coordinate-independent content of the Einstein equa-
tions should then determine the complete four-dimensional spacetime geome-
try in between, and in general also beyond, two spatial geometries, (3)G(0) and
(3)G(1). Although the general existence and uniqueness of a solution to this
boundary value problem remains an open mathematical problem (Bartnik
and Fodor 1993, Giulini 1998), this does not seem to be physically relevant.

The procedure is made transparent by writing the metric with respect
to a chosen foliation as(

g00 g0l

gk0 gkl

)
=
(
N iNi −N2 Nl

Nk gkl

)
. (5.28)

The submatrix gkl(x, y, z, t) (with k, l = 1, 2, 3) on a hypersurface t = constant
is now its spatial metric there, while the lapse function N(x, y, z, t) and
the three shift functions Ni(x, y, z, t) define arbitrary increments of time



5.4 Geometrodynamics and Intrinsic Time 161

and space coordinates, respectively, for a normal transition to a neighbor-
ing space-like hypersurface. These four gauge functions have to be chosen for
convenience when solving an initial value problem.

The six functions forming the remaining symmetric matrix gkl(x, y, z, t)
still contain three gauge functions representing the spatial coordinates. Their
initial choice is specified by the initial matrix g(0)

kl (x, y, z), while the free shift
functions determine their change with time. The three remaining, geometri-
cally meaningful functions may be physically understood as representing the
two (spin) components of gravitational waves and the ‘many-fingered’ (local)
physical time of relativity, that is, a function that defines the increase of
proper times along all time-like world lines connecting points on two neigh-
boring space-like hypersurfaces. These three degrees of freedom need not
always be practically separable; all three are gauge-free dynamical variables.
In contrast, the lapse function N(x, y, z, t), here in conjunction with the shift
functions, determines merely how a specific time coordinate is related to this
many-fingered physical time.

Therefore, the three-geometry (3)G, representing the dynamical state of
general relativity, is itself the ‘carrier of information on physical time’ (Baier-
lein, Sharp and Wheeler 1962): it contains physical time rather than depend-
ing on it. By means of the Einstein equations, (3)G determines a continuum
of physical clocks, that is, all time-like distances from an ‘initial’ (3)G0 (pro-
vided a solution of the corresponding boundary value problem does exist).
Given yesterday’s geometry, today’s geometry could not be tomorrow’s —
an absolutely non-trivial statement, since (3)G0 by itself is not a complete
initial condition that would determine the solution of (5.6) up to a gauge. A
mechanical clock can meaningfully go ‘wrong’, while for a rotating star one
would have to know the initial orientation and the initial rotation velocity
in order to read time from motion. However, a speed of three-geometry (in
contrast to its direction in superspace) would be as tautological as a ‘speed
of time’. Time cannot be time-dependent in any nontrivial way.

In this sense, Mach’s principle (not only with respect to time) 4 is an-
chored in general relativity: time must be realized by physical (dynamical)
objects. Dynamical laws (as required by Mach) that do not specify (or depend
on) an absolute time are characterized by their reparametrization invariance,
that is, invariance under monotonic transformations, t → t′ = f(t). In gen-
eral relativity, the time parameter t labels trajectories in superspace by the
values of a time coordinate. No specific choice may ‘simplify’ the laws accord-
ing to Poincaré (cf. Chap. 1), and no distinction between active and passive
reparametrizations remains meaningful (see Norton 1989).

Newton’s equations are, of course, not invariant under such a repara-
metrization. His time t is not merely an arbitrary parameter, but repre-
sents a dynamically preferred (absolute) time. Its reparametrization would
be characterized by ‘Kretzschmann invariance’, that is, the trivial invari-

4 See Barbour and Pfister (1995) for various interpretations of Mach’s principle.
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ance of the theory under a rewriting of the dynamical laws (for example,
by adding a pseudo-force). Nonetheless, Newton’s equations can be brought
into a reparametrization-invariant form by parametrizing the time variable t
itself, t(λ), and treating it as an additional dynamical variable with respect
to λ. If L(q, q̇) is the original Lagrangean, this leads to the new variational
principle

δ

∫
L̃

(
q,
dq

dλ
,
dt

dλ

)
dλ := δ

∫
L

(
q,
dq

dλ

dλ

dt

)
dt

dλ
dλ = 0 , (5.29)

where t(λ) has to be varied as a dynamical variable, too. This procedure
describes the true meaning of the ‘∆-variation’ that often appears somewhat
mysteriously in analytical mechanics. Evidently, (5.29) is invariant under the
reparametrization λ→ λ′ = f(λ).

Eliminating the formal variable t from (5.29) leads to Jacobi’s princi-
ple (see below), that was partially motivated by the pragmatic requirements
of astronomers who did not have better clocks than the objects they were
describing dynamically. Their best available clock time was ephemeris time,
defined by stellar positions that were taken from tables of ephemeris which
were produced by their colleagues. Since celestial motions are usually strongly
‘perturbed’ by other celestial objects, they do not offer any obvious possibility
to define Newton’s time operationally. Jacobi’s principle allowed astronomers
to solve the equations of motion without explicitly using Newton’s time. The
dynamical system (5.29) is now often used as a toy model for reparametriza-
tion invariant theories. Einstein’s equations of general relativity, on the other
hand, are invariant under reparametrization of their original time coordinate,
t → t′ = f(t), without any further parametrization t(λ). There is no time
beyond the many-fingered dynamical variable (3)G any more!

In (5.29), dt/dλ =: N(λ) may be regarded as a Newtonian lapse function.
For a time-independent Lagrangean L, t appears as a cyclic variable in this
formalism. Its canonical momentum, pt := ∂L̃/∂N = L −

∑
piq̇i = −H,

which is conserved in this case, is remarkable only as its quantization leads to
the time-dependent Schrödinger equation. However, the ‘super-Hamiltonian’
H̃ that describes the thus extended system is trivial:

H̃ :=
∑

pi
dqi
dλ

+ pt
dt

dλ
− L̃ = N

(∑
pi
dqi
dt
−H − L

)
≡ 0 . (5.30)

More dynamical content can be extracted from Dirac’s procedure of
treating N(λ) rather than t(λ) as a new variable. The corresponding mo-
mentum, pN := ∂L̃/∂(dN/dλ) ≡ 0, has to be regarded as a constraint, while
the new super-Hamiltonian is

H̃ :=
∑

pi
dqi
dλ

+ pN
dN

dλ
− L̃ = NH . (5.30′)

Although dN/dλ can here not be eliminated in the normal way by inverting
the definition of canonical momentum, it drops out everywhere except in the
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derivative ∂H̃/∂pN , as it occurs only multiplied with the factor pN which
vanishes. The two new resulting Hamiltonian equations are (1) the identically
fulfilled dN/dλ = ∂H̃/∂pN = dN/dλ, and (2) dpN/dλ = −∂H̃/∂N = −H.
Because of pN ≡ 0 one obtains the (secondary) Hamiltonian constraint H =
0 (but not ≡ 0), characteristic for reparametrization invariant theories. In
general relativity, there are also three momentum constraints, characterizing
invariance under spatial coordinate transformations which are ‘dynamically’
related by the shift functions.

Because of (5.30), with pt = −H, Hamilton’s principle (5.29) can be
written as δ

∫
(
∑
piq̇i − H)dt = 0. For fixed energy, H = E, the second

term, H, can be omitted under the integral in the variation. For the usual
quadratic form of the kinetic energy, 2T =

∑
aij q̇iq̇j =

∑
piq̇i = 2(E − V ),

the integrand under the variation can then be written in a form that is
homogeneously linear in dqi/dλ,

δ

∫ √
2(E − V )

∑
aij

dqi
dλ

dqj
dλ

dλ = 0 . (5.31)

This is Jacobi’s principle (cf. Lanczos 1970), useful for given energy. It is
manifestly invariant under reparametrization of λ, as it describes only time-
less orbits. Even though the equations of motion could be simplified by using
Newton’s time, (5.31) does evidently not depend on the choice of λ.

Since the energy E depends on absolute velocities in Newton’s theory,
Jacobi’s principle would be ‘Machian’ only if the fixed energy represented
a universal constraint. Therefore, Barbour and Bertotti (1982) suggested an
illuminating nonrelativistic model of Machian mechanics. Their action prin-
ciple in analogy to (5.31),

δ

∫ √
−V Tdt = 0 , (5.32)

is universally invariant under reparametrizations of t (just as general relativ-
ity). Nothing new can then be discovered from parametrizing t in order to
vary t(λ) as in (5.29). Barbour and Bertotti also eliminated absolute rotations
from their configuration space. While this has other important consequences,
it is irrelevant for the problem of time. In general relativity, this ‘Leibniz
group’, consisting of time reparametrizations and spatial rotations, has to be
generalized to the whole group of diffeomorphisms (general coordinate trans-
formations). In order to eliminate any absolute meaning of a time coordinate
on spacetime, the Hamiltonian constraint has to be a function on space.

This situation has been carefully analyzed by Barbour (1994a,b). He
refers to the empty physical content of a parametrization of t in the form t(λ),
in contrast to (5.29) in Newton’s theory, as timelessness. This terminology
may be misleading — not only because there are various concepts of time
(see also Rovelli 1995). I will argue in Sect. 6.2 that the rigorous timelessness
of the Wheeler-DeWitt equation (viz., the absence of any time parameter) is a
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specific quantum aspect, as it reflects the absence of classical trajectories, or
the time-energy uncertainty relation in the case of a Hamiltonian constraint.
In classical general relativity, even a constrained Hamiltonian would define
a time parameter for a trajectory that describes cosmic history, but not any
meaningful concept of a ‘speed of cosmic history’, which would have to include
a ‘speed of physical time’.

In a general sense, global time may thus be defined by the succession of
global physical states (a trajectory through a universal configuration space).
Even the topology of this succession (its continuity and order up to a reversal)
is determined by intrinsic properties of these states. No external parameter is
required for this purpose. In general relativity, the global states are ambiguous
(they depend on the chosen spacetime foliation), while the resulting spacetime
geometry is invariantly defined. The latter determines many-fingered time
(that is, invariant proper times) for all world lines of local objects (such
as ‘test clocks’ or observers). In contrast to Newtonian action-at-a-distance
gravity, proper time as a controller of motion is defined as a local concept.
However, the dynamical laws define relative motion, since the metric is itself
a dynamical object. A preferred global time parameter that ‘simplified’ these
dynamical laws would be regarded as absolute time.

In the Friedmann model (5.19), where N ≡ 1, the increment of the
time coordinate t is identical (up to a sign) with the increment of proper
times τ of ‘comoving’ matter (being at rest in the chosen coordinates with
Ni = 0). In general, the time coordinate t corresponds to the physically
meaningless parameter λ of (5.29), while τ is a local version of Newton’s
time t as the controller of motion. Since homogeneity is presumed on all
chosen simultaneities in this simple model, the many fingers of time form one
closed ‘fist’.

Elimination of the global time parameter t would here merely reproduce
the equation of state, %(a) as the corresponding ‘trajectory’, since % is not
a dynamical degree of freedom. There is evidently no intrinsic distinction
between expansion and contraction. The single variable a would determine
proper times τ for comoving matter up to this degeneracy, since ȧ2 is given
as a function of a by the energy constraint (5.20). (Because of similar ambi-
guities, the boundary condition by means of two three-geometries is usually
formulated as a ‘thin sandwich problem’.)

Matter can also be described dynamically by means of a homogeneous
scalar field Φ(t), for example with an energy density

% = 1
2 (Φ̇2 +m2Φ2) , (5.33)

while keeping the symmetries of the Friedmann model intact. The Hamil-
tonian of this model (without cosmological constant) with respect to the
variables α = ln a and Φ reads

H =
e−3α

2

(
p2
α − p2

Φ + ke4α −m2Φ2e6α
)

, (5.34)
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Fig. 5.7. Returning classical orbit representing the dynamics of a closed Friedmann uni-
verse, described by its expansion parameter a and a homogeneous massive scalar field Φ.
The dotted curve represents vanishing Friedmann potential, V = 0. For slightly larger
initial values Φ(a0) than chosen in the example, the ‘inflation era’ (that is, the rising non-
oscillating lower right part of the orbit) would extend over many orders of magnitude in a
before the orbit entered the ‘matter-dominated era’, where it would then perform a huge
number of oscillations before arriving at its turning point of the expansion, amax. (After
Hawking and Wu 1985)

where k is again the sign of the spatial curvature, while the canonical mo-
menta are pα = e3αα̇/N and pΦ = −e3αΦ̇/N . A timeless trajectory for a
closed universe (k = 1) in this model is depicted in Fig. 5.7.

The symmetry of this model can be relaxed by means of a multipole
expansion on the Friedmann sphere,

Φ(χ, θ, φ) =
∑

anlmQ
n
lm(χ, θ, φ) , (5.35)

where Qnlm(χ, θ, φ) are three-dimensional spherical harmonics (Halliwell and
Hawking 1985). The variable Φ in (5.33) represents the monopole component,
Φ = a000, since Q0

00 = 1. A similar expansion of the metric tensor field gkl
requires vector and tensor harmonics in addition to the scalar harmonics
Qnlm. Only the tensor harmonics turn out to represent physical (geometrical)
properties, while the scalar and vector harmonics describe gauge degrees of
freedom. In particular, the time parameter t does not exactly represent proper
time of comoving matter any more in this ‘perturbed Friedmann model’.

If there is a Hamiltonian constraint, H(p, q) = 0 in its general form, mul-
tiplication of the Hamiltonian with a function f(p, q), H → H ′ = fH = 0,
would induce an orbit-dependent reparametrization t → t′(t), with dt′/dt =
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f(p(t), q(t)), as can be seen by writing down the new Hamiltonian equations.
For example, the choice f ≡ −1 would induce an inversion of the time pa-
rameter for all trajectories. Therefore, the factor e−3α in (5.34) is irrelevant
for the time-less trajectory.

In (5.34) and its generalizations, the kinetic energy of matter occurs with
a negative sign (that is, with negative dynamical mass), since it entered the
Hamiltonian as a source of gravity (representing negative potential energy). In
Friedmann type models, all gauge-free geometric degrees of freedom but the
global expansion parameter a (or its logarithm) share this property (Giulini
and Kiefer 1994, Giulini 1995). The kinetic energy is thus not positive definite
in cosmology, while the metric that it defines in infinite-dimensional super-
space is super-Lorentzian (with signature −+ + + + + . . .) in this case.

In the familiar case of mechanics, vanishing kinetic energy, E − V = 0,
describes turning points of the motion. However, since there are no forbidden
regions for indefinite kinetic energy, the boundary V = V −E = 0 need here
not force the trajectories to come to a halt and reverse direction. In gen-
eral, this condition now describes a smooth transition between ‘subluminal’
and ‘superluminal’ directions in superspace (not in space!) — see Fig. 5.7. A
trajectory would be reflected from an infinite potential ‘barrier’ only if this
were either negative at a time-like boundary, or positive at a space-like one.
Reversal of the cosmic expansion at amax requires the vanishing of an appro-
priate Veff(α) that includes the actual kinetic energy of the other degrees of
freedom (similar to the effective radial potential in the Kepler problem).

In the Friedmann model, a point on the trajectory in configuration space
determines Friedmann time t (that could be read from comoving test clocks)
— except where the curve intersects itself. In a mini-superspace with more
than two degrees of freedom (with a material clock, for example), physical
time on a trajectory is generically determined uniquely by the dynamical
state. This demonstrates that the essential requirement for the state to rep-
resent a carrier of information about time is reparametrization invariance of
the dynamical laws — not its spacetime geometrical interpretation.

A drastic abuse of a time parameter is entertained in Veneziano’s (1991)
string model, based on a dilaton field Φ (with dynamics different from (5.34)).
Its equations of motion lead to a time dependence of the form f(t− t0), with
an integration constant t0 that determines the value of the time parameter
at the big bang (where α = −∞). A translation t0 → t0 +T would be mean-
ingless (as pointed out already by Leibniz). The solution for t < t0, where
expansion accelerates exponentially in this model, has been interpreted as
‘pre-big-bang’, while the absence of a smooth connection between pre- and
post-big-bang has then been regarded as a ‘graceful exit problem’ (Brustein
and Veneziano 1994). However, this (in any case speculative) model has sim-
ply two different solutions, which could possibly be related through an infinite
parameter time, t = ±∞ — similar to Schwarzschild time at a horizon. Co-
ordinate times t < t0 would then represent physical times later than t > t0,
while a continuation through t0 is merely formal (Dabrowski and Kiefer 1997).
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The shift functions Ni of (5.28) can be chosen to vanish even when sym-
metries are absent. The secondary momentum constraints Hi := ∂H̃/∂Ni = 0
(which conserve vanishing canonical momenta pNi , and which are fulfilled au-
tomatically for the Friedmann solution because of its symmetry) have then
to be solved explicitly. The lapse function N(x, y, z, t) now determines truly
many-fingered time (as a spatial field on the dynamically evolving hyper-
surface) with respect to the coordinate t. If, nonetheless, N is chosen as a
function of t only, the foliation proceeds everywhere according to physical
time (normal to the hypersurface) with fixed ‘comoving’ coordinates.

This is not always a convenient choice. For example, observers passing
very close by a black hole horizon (without entering it) would experience an
extreme time dilation (or observe the stars moving very fast through a little
hole in the sky). In a recollapsing universe they could enter the expansion
era within relatively short proper time. (This would render the immediate
vicinity of horizons very sensitive to any conceivable cosmic final condition —
see Zeh 1983 and Sect. 6.2.3.) In this case, a foliation according to York time,
mentioned in Sect. 5.1, may be appropriate, since it arrives ‘simultaneously’
at all final singularities. Note, however, that the external curvature scalar K,
which defines York time, is not a function of state, f((3)G).

Among the simplest inhomogeneous models are the spherically symmet-
ric ones, with a metric

ds2 = −N(χ, t)2dt2 + L(χ, t)2dχ2 +R(χ, t)2
[
dθ2 + sin2 θdφ2

]
. (5.36)

They contain one remaining spatial gauge function, that has to be eliminated
by means of the momentum constraint Hχ = 0. It is analogous to Gauß’ law
in electrodynamics, as it refers to the radial coordinate.

Qadir (1988) proposed an illustrative toy model for such an inhomo-
geneous universe (Fig. 5.8). It forms a generalization of the Oppenheimer-
Snyder model for the gravitational collapse of a homogeneous spherical dust
cloud (see Misner, Thorne and Wheeler 1973, Chap. 32). The latter model
pastes a spherical spatial boundary of a contracting, positive curvature Fried-
mann universe smoothly and consistently onto the spatial boundary of a
Schwarzschild-Kruskal solution that extends to spatial infinity. Qadir con-
nects the Schwarzschild solution in turn with another (much larger) partial
Friedmann universe with much smaller mass density. This pasting at two
spatial boundaries, with Friedmann coordinate values χ1 and χ2, say, is con-
sistent if the masses of the two partial Friedmann universes are identical, and
can thus be identified with the Schwarzschild mass M . The interpolating vac-
uum region is a strip from Fig. 5.2, spatially bounded by two non-intersecting
geodesics which lead from the past to the future Kruskal singularity.

In order to comply with the Weyl tensor hypothesis as much as pos-
sible, Qadir assumed the two partial Friedmann universes to touch at the
big bang. (In this deterministic model, an initial inhomogeneity is required
as a seed.) Since the denser part of this toy universe feels stronger gravita-
tional attraction, it contracts (or its expansion decelerates) faster. An empty
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Fig. 5.8. Qadir’s ‘suture model’ of a collapsing homogeneous dust cloud, I, in an expanding
and recollapsing Friedmann universe, III. The Friedmann surfaces at χ1 (left) and χ2 (right)
are initially identified. The Weyl tensor, representing the gravitational degrees of freedom,
is chosen to vanish initially (except at the spatial boundary between the two regions), but
will evolve and grow with the emerging interpolating ‘Schwarzschild-Kruskal corridor’, II,
(a strip from Fig. 5.2). This corridor, with vanishing stress-energy tensor, must build up
between the two regions with different positive spatial curvatures and energy densities. The
spatial boundaries of the three spacetime regions have to be identified (including proper
times on them, all chosen to start at the big bang). In a picture due to Penrose, the local
crunch inside the black hole (region I) together with its attached Kruskal singularity (in
region II) appears as a ‘stalactite’ hanging from the ceiling (representing the big crunch
singularity — in region III). In contrast, there is only one (piecewise homogeneous) big
bang singularity (a flat floor in Penrose’s picture) at K = −∞, that has been chosen as
the first slice of the foliation (with t = 0)

‘Schwarzschild corridor’ must then form at the density discontinuity, and
grow in size with increasing temporal distance from the big bang. As the
energy-momentum tensor vanishes in the Schwarzschild-Kruskal region, its
curvature is entirely due to the Weyl tensor, while the latter vanishes inside
the two partial Friedmann universes. The time arrow of this process of ‘grav-
itational monopole radiation’ (the formation of the corridor with its non-zero
gravitational degrees of freedom) is once more a consequence of the special
initial condition.

This model is certainly interesting as an illustration of the Weyl tensor
hypothesis, but it does not describe statistical (entropic) aspects. For this
purpose, many degrees of freedom (such as transversal gravitational waves)
would have to be taken into account. Qadir’s cosmic evolution process simply
describes an example of motion away from the chosen initial state; motion
similar to that normally found in unbound mechanical systems (regardless of
any statistical considerations). The term ‘initial’ refers here to the starting
point of the computation, but not necessarily to a physical direction of time.

General literature: Chap. 21 of Misner, Thorne and Wheeler 1973
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Our mistake is not that we take our theories too

seriously, but that we do not take them seriously

enough. Stephen Weinberg (1977)

The founders of quantum theory invented their theory as a theory of atoms,
that was soon successfully applied also to other microscopic systems. Macro-
scopic objects were thought to require the established classical concepts. This
point of view still seems to form the majority opinion among physicists in
spite of their assertion that quantum theory be universally valid. We have
seen in Sect. 4.3 that this schizophrenic position is not inevitable, since deco-
herence allows quasi-classical concepts to emerge from quantum mechanical
ones within reasonable assumptions.

Everett (1957) seems to have first seriously considered a wave function
of the universe (that must contain internal observers, required for its inter-
pretation). Although he had in mind the quantization of general relativity
with its cosmological aspects, Everett applied his ideas, which were based on
a time-dependent Schrödinger equation, to nonrelativistic quantum theory.
His main interpretational obstacle was the entanglement arising from mea-
surements described by means of von Neumann’s unitary interaction (4.30).
This led him to his ‘extravagant’ interpretation (in Bell’s words) in terms of
many quasi-classical ‘branches’, which are separately experienced but are all
assumed to exist in one superposition that defines the true and dynamically
consistent quantum world. Beyond measurements proper and occasional in-
teractions he does not seem to have regarded entanglement as particularly
important (cf. Tegmark 1998).

The quantitative considerations reviewed in Sect. 4.3 have shown that
uncontrollable (‘measurement-like’) interactions of von Neumann’s type are
essential and unavoidable for almost all systems under all realistic circum-
stances. Strong entanglement is, therefore, a generic aspect of quantum the-
ory. The more macroscopic a system, the stronger its entanglement with its
environment. The concept of a (pure) quantum state can be consistently ap-
plied only to the universe as a whole (Zeh 1970, Gell-Mann and Hartle 1990).
This seems to be a far more powerful argument for quantum cosmology than
merely an attempt to quantize general relativity or some unified field theory.

The quantum state of the universe must then also include quantum
gravity (entangled with matter) with its novel conceptual consequences (see
Sect. 6.2). However, many quantum cosmological aspects may be formulated
on a quasi-classical background spacetime, using a fixed foliation, parametriz-
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ed by a time coordinate t. Global states can then be dynamically described
by means of a time-dependent Schrödinger equation with respect to this co-
ordinate time t. This dynamics will be derived from quantum gravity (with
its concept of an intrinsic time) in Sect. 6.2.2 as an approximation. Global
states (such as those of quantum fields) depend on a foliation (or a reference
frame) even on flat spacetime, while the density matrix of any local system
should be invariant under a change of foliation that preserves the local rest
frame — a requirement that does not seem to have attracted much attention.

If the quantum universe is thus conceptually regarded as a whole, it
does not decohere, since there is no environment. Decoherence is meaningful
only for subsystems of the universe, and with respect to observations by other
subsystems (Wheeler’s ‘observer-participators’). If, furthermore, no objective
collapse of the wave function is assumed to apply, one is forced to accept
Everett’s ‘extravagant’ wave function, which is a superposition of all ‘possible’
outcomes of measurements and measurement-like processes that ever occured
in the universe. This global quantum state may always be assumed to be pure,
since a global density matrix could be consistently interpreted as representing
incomplete information about such a pure state. A measurement that merely
selects a subset from those states which diagonalize this density matrix would
be equivalent to a classical measurement (as depicted in Fig. 3.5 — in contrast
to Fig. 4.3).

Initial and (nontrivial) final density matrices for the universe were sug-
gested by Gell-Mann and Hartle (1994) to be used in Griffith’s expression
for probabilities of ‘consistent histories’. Applied to individual measurements
(cf. Sect. 4.6), final conditions would describe postselection, as discussed by
Aharonov and Vaidman (1991) — see also Vaidman (1997). In contrast to
Everett or collapse models, these interpretations do not assume the wave
function to represent reality.

The decoherence of subsystems according to a global time-dependent
Schrödinger equation leads dynamically to robust branches. They form ap-
proximately autonomous components that may factorize in the form
φobs1φobs2 . . . ψrest with respect to observer states describing robust (objec-
tivizable) memory (cf. Sect. 4.3.2 and Tegmark 2000). This specific unitary
evolution requires an arrow of time corresponding to a cosmic initial condi-
tion of type (4.56). Branching into components which contain definite ob-
server states has to be taken into account in any effective dynamics that
is to describe the history of the (quasi-classical) ‘observed world’ in quan-
tum mechanical terms (cf. Fig. 4.3). It need not represent an objective (albeit
objectivizable) fundamental dynamical process. The decrease of physical en-
tropy, characterizing this ‘apparent collapse’ into a specific outcome, may be
negligible on a thermodynamical scale in the usual situation of a measure-
ment. Yet it may have dramatic consequences for phase transitions which
describe a dynamical symmetry-breaking of the global vacuum. This will
now be discussed:
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6.1 Phase Transitions of the Vacuum

Heisenberg (1957), and Nambu and Jona-Lasinio (1961), invented the concept
of a vacuum that breaks symmetries of a fundamental Hamiltonian ‘sponta-
neously’ (fact-like) — just as most physical states do. This suggestion is
based on an analogy between the vacuum (the ground state of quantum
field theory) and the phenomenological ground states of macroscopic systems,
such as ferromagnets or solid bodies in general. Such ground states lead to
specific modes of excitation, which in quantum theory define quasi-particles
(phonons, for example). They form ‘Fock spaces’, spanned by their corre-
sponding occupation number states. Similarly, a symmetry-violating vacuum
may lead to Goldstone bosons, based on space-dependent oscillations about
the macroscopic (collective) ‘orientation’ in the abstract space that is spanned
by the generators of the presumed symmetry group. At their low initial exci-
tation, the new effective degrees of freedom may then represent a very large
entropy (or heat) capacity.

A symmetry-breaking (quasi-classical) ‘ground state’ is in general not
an eigenstate of the symmetric (fundamental) Hamiltonian; it just forms the
ground state of an effective (asymmetric) Fock space Hamiltonian. While
those nondiagonal elements of the fundamental Hamiltonian which connect
states of different collective orientation (lying in different Fock spaces) may
become very small (or even vanish in a certain mathematical idealization),
they remain essential for the definition of the exact eigenstates, since the
coresponding diagonal elements must be equal under the assumed symmetry.

While the symmetry-breaking vacuum was initially assumed to be uni-
versally given as part of the theory (in order to define its ‘absolute vacuum’),
its excitations were used to form time-dependent states dynamically con-
trolled by the Fock space Hamiltonian. The analogy was later generalized to
describe a dynamical phase transition of the vacuum (in accordance with the
exact Hamiltonian) during early stages of the universe. It may be caused, for
example, by a varying external parameter (such as energy density, reflect-
ing the expansion of the universe). The arising ‘unitarily inequivalent’ Fock
spaces represent robust Everett branches (unless there is an objective collapse
into one of them). Even the P or CP -violating terms of the weak-interaction
Hamiltonian may have dynamically emerged in this way.

A popular model for describing symmetry-breaking in quantum field
theory is the ‘Mexican hat’ or ‘wine bottle potential’ of the type V (Φ) =
a|Φ|4−b|Φ|2 (with a, b ≥ 0) for a fundamental complex matter field Φ (such as
a Higgs field). It is assumed to possess a degenerate minimum on a circle in the
complex plane with |Φ| = Φ0 > 0. The classical field configurations of lowest
energy may then be written as Φ ≡ Φ0eiα, with an arbitrary phase α. They
break the Hamiltonian’s symmetry under rotations in the complex Φ-plane.
These classical ground states correspond to different quantum mechanical
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vacuum states |α〉. One of them, |α0〉, say, is assumed to characterize our
observed world (while the value of α0 is physically meaningless).

A dynamical phase transition of the vacuum is now described by as-
suming that the universe was initially in the symmetric vacuum |Φ ≡ 0〉 (a
symmetric initial condition, or SIC — cf. Conradi and Zeh 1991 in a related
context). This became a ‘false’ vacuum (relative minimum) by means of a
changing parameter. It is then assumed to undergo a transition into a Fock
space coresponding to one of the ‘physical vacua’ |α〉. If potential energy
is thereby released in a ‘slow role’ (similar to latent heat), it must be trans-
formed into excitations (particle creation). However, just as in a normal phase
transition, a symmetric state cannot evolve unitarily into an asymmetric one
in accordance with a symmetric Hamiltonian. If the initial state is assumed
to be pure, a unitary evolution can only lead to a symmetric superposition of
all symmetry-breaking states. For example, the superposition of all physical
vacua,

|0sym〉 =
1
N

∫
|α〉 dα 6= |Φ ≡ 0〉 , (6.1)

may possess even lower energy than |α〉, and thus define the ground state
of the exact theory. In view of the success of the Schrödinger equation, this
consequence should not simply be regarded as ‘formal’, in particular in the
absence of any external observer of the quantum universe. A globally sym-
metric superposition of type (6.1) would remain intact even when each of
its component on the RHS contains or develops uncontrollable excitations
in its own Fock space. A similar intrinsic symmetry breaking is known from
deformed nuclei when forming angular momentum eigenstates by means of
superpositions of different orientations in space, or from BCS states of super-
conductivity when forming particle number eigenstates in an analogous way
(Zeh 1967). It describes intrinsic complexity, but not a global asymmetry. If
πα := i∂/∂α generates a gauge transformation, equation (6.1) describes a
state obeying a gauge constraint, πα|ψ〉 = 0 (see Sect. 6.2).

An objective transition into one of the components would require a col-
lapse of the state vector — similar to measurements or phase transitions in
conventional description. Later emerging and evolving excitations may then
lead to an observer. In the Everett interpretation, one obtains a superposi-
tion of different α-‘worlds’ (branches) with their corresponding α-observers.
The question whether they all ‘exist’ could be answered operationally only
by manipulating them to interfere locally (to ‘recohere’ — cf. (4.55)). While
the superposition of different orientations, say, of a solid body would be do-
cohered by its environment, a global vacuum can only be entangled with its
intrinsic excitations. The ‘order parameter’ appears as a classical quantity (a
fact) whenever a robust memory state of an observer is (or can only become)
quantum correlated to it rather than to its superpositions.

As a consequence of the degeneracy, each homogeneous classical state α0

permits small space-dependent oscillations, α0+∆α(r, t). Quantum mechani-
cally they describe the massless Goldstone bosons (excitations with vanishing
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energy in the limit of infinite wave length). Their thermodynamically relevant
degrees of freedom are thus created by the apparent indeterminism of the in-
trinsic symmetry breaking. It is remarkable that the most important cosmic
entropy capacities are represented by zero-mass fields, viz., electromagnetic
and gravitational fields (Zeh 1986a, Joos 1987). If, for example, the electro-
magnetic degrees of freedom had emerged by means of symmetry-breaking,
this would dynamically explain the Ritz conjecture of Chap. 2.

In contrast to the false vacuum, the symmetric superposition (6.1) de-
scribes a nonlocal (entangled) state — even in the absence of any excitations.
If, for simplicity, one neglects the relativistic correlations of the vacuum dis-
cussed in Sect. 5.3, each vacuum |α〉 may, just as the false vacuum, be written
as a direct product of vacua on volume elements ∆Vk,

|α〉 ≈
∏
k

|α∆Vk〉 . (6.2)

This non-relativistic approximation describes a pure vacuum state on all
volume elements (local subsystems). The superposition (6.1) would instead
lead to a mixed state,

%∆Vk ∝
∫
|α∆Vk〉〈α∆Vk | dα , (6.3)

when subjected to a Zwanzig projection P̂sub, This density matrix, mean-
ingful only to an imaginary external observer (who does not ‘live’ in one of
the Fock spaces), describes a canonical distribution of Goldstone bosons with
infinite temperature (where e−E/kT → 1) with respect to each of the vacua.
Therefore, only a (genuine or apparent) collapse into one component gives
rise to the pure (cold) vacuum experienced by the local observer.

Degeneracy parameters such as α (or other macroscopic field quantities
arising from a phase transition) need not have the same value throughout
the whole universe, but may be different in various spatial regions (similar
to a ferromagnet again). If these regions are macroscopic, and thus deco-
here and become ‘real’, they break translational symmetry (Calzetta and
Hu 1995, Kiefer, Polarski and Starobinsky 1998). Any homegeneous super-
position of microscopic inhomogeneities would represent ‘virtual’ symmetry
breaking (‘vacuum fluctuations’) — related to virtual decoherence (Sect. 4.3).

If a phase transition of the vacuum were able in a similar way to explain
the Weyl tensor hypothesis in a causal manner (as discussed in Sect. 5.3), it
would establish a master arrow of time. If this required a genuine collapse of
the wave function as a fundamentally asymmetric process, there would indeed
be no reason to expect the reverse situation after the ‘turning of the tide’
in an imagined recontracting universe. If it is instead described by means
of decoherence on the basis of the Everett interpretation (presuming T- or
CPT-symmetric dynamics), one has to assume fact-like ‘quantum causality’
(as described (4.56)), which may or may not be reversed, depending on the
boundary conditions at the big bang and the big crunch. (See the following
section for a time-less description in quantum gravity, however.)



174 6. The Time Arrow in Quantum Cosmology – Prelim. 4th edtn. (Feb 01): www.time-direction.de

6.2 Quantum Gravity and the Quantization of Time

Many physicists seem to believe that quantum gravity is still elusive, or even
that quantum theory and general relativity are incompatible with one an-
other. This prejudice derives from a number of quite different roots:

Einstein’s attitude regarding quantum theory is well known. In partic-
ular, he is said to have remarked that a quantization of general relativity
would be ‘childish’. Another objection is based on the argument that gravi-
tons may be unobservable, and the quantization of gravity hence not required
(von Borzeszkowski and Treder 1988). However, a classical gravitational field
or spacetime metric is inconsistent with quantum mechanics, since it would
always allow one to determine the exact energy of a quantum object — in
conflict with the uncertainty relations. This has been known since the early
Bohr-Einstein debate (see Jammer 1974, for example), while other consis-
tency questions were raised by Page and Geilker (1982). Concepts of quan-
tum gravity are essential in cosmology and for a master arrow of time (as
will be discussed). The classical appearance of spacetime cannot be regarded
as an argument against its quantization, since these classical aspects may
be understood within a universal quantum theory in a similar way as other
quasi-classical properties have been (cf. Sect. 4.3).

The most popular objection against quantum gravity holds that straight-
forward quantization of general relativity does not lead to a renormalizable
theory, and is therefore inconsistent. This argument would be valid if quan-
tum gravity were understood as an exact theory. However, it can only be
expected to represent an ‘effective theory’ that describes specific low energy
aspects of an elusive unified field theory. We know that QED, too, has to be
modified and replaced with electro-weak theory at high energies, while it rep-
resents an excellent and consistent description of all relevant phenomena at
low energies. Its most general quantum aspects (described in terms of QED
wave functionals that are not restricted to perturbation theory and Feyn-
man diagrams) are studied with atomic and laser physics (cf. Sect. 4.3.4). An
analogous (though technically and conceptually more demanding) canonical
method of quantizing general relativity leads to the Wheeler-DeWitt equation
(6.4) below (DeWitt 1967). Why should the Einstein equations be saved from
quantization, while the Maxwell equations are not? The mere combination
of two well-established theories (quantum theory and general relativity) can
hardly be regarded as speculative as, for example, a theory of superstrings.
(The latter would have to include quantum gravity as an effective low energy
theory.) Nonetheless, the conceptual consequences of quantum gravity are
profound.

Of course, the construction of a unified theory represents the major chal-
lenge to quantum field theory at its fundamental level. While its consequences
must become essential in the vicinity of spacetime singularities (inside black
holes or close to the big bang), they fortunately seem to be irrelevant for
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most conceptual quantum cosmological questions. The latter may thus be
discussed by using effective quantum gravity. In contrast, models of unified
field theories have so far mostly been studied at their classical level (perhaps
including effective quantum correction terms), even though they are often
motivated by quantum aspects (such as the renormalizability of perturbation
theory). The suggestion that M-theory may eventually lead to a derivation of
quantum theory (Witten 1997) seems to be based on a misunderstanding of
quantum mechanics.

Much progress in canonical gravity has been achieved during recent years
by using loop integrals (based on Ashtekhar variables) instead of local met-
ric fields (Ashtekhar 1987, 1991, Rovelli and Smolin 1990). This approach
offers fundamental insights into the consequences of general diffeomorphism
invariance, since only the knot structure of these loops remains invariantly
meaningful. Knots can be classified by discrete numbers, which are then of-
ten misinterpreted as quantum aspects, although they merely characterize
certain classical solutions (or ‘modes’ — similar to multipoles in electrody-
namics). Quantization (that is, application of the superposition principle) is
rarely more than mentioned in this approach. Therefore, the Wheeler-DeWitt
equation in its field representation appears to be the method of choice in
quantum cosmology.

A major problem that nonetheless prevents many physicists from accept-
ing the Wheeler-DeWitt equation as correctly describing quantum general
relativity is the absence of any time parameter in the case of a closed uni-
verse (see Isham 1992). According to the Hamiltonian formulation, indicated
in Sect. 5.4, one would naively expect free gravity to be described by a time-
dependent wave functional on the configuration space of three-geometries,
Ψ [(3)G, t], dynamically governed by a Schrödinger equation, i∂Ψ/∂t = HΨ .
However, there is neither an absolute time any more, nor are there trajectories
of appropriate physical clock variables which could give this equation a phys-
ical interpretation. Different three-geometries (3)G (classically the carriers of
‘information’ about many-fingered time) occur instead as arguments of these
wave functionals. In the absence of trajectories (3)G(t) (that is, spacetime
geometries (4)G), neither proper times nor time coordinates are available.
Therefore, it appears quite consistent (cf. Zeh 1984, 1986b) that the quan-
tized form of the Hamiltonian constraint, HΨ = 0, completely removes any
time parameter t from the wave function of any closed (though not necessarily
finite) universe. 1

If matter is now represented by a single scalar field Φ on space-like hy-
persurfaces that are defined by their three-geometries (3)G — leading to a

1 Only because of the Heisenberg picture is the equation Hψ = Eψ usually called a
stationary Schrödinger equation, while in wave mechanical terms it describes static solu-
tions. Even ‘vacuum fluctuations’ represent static quantum correlations (entanglement).
Similarly, eigenvalues of the momentum operator are no more than formally analogous to
classical momenta (which are defined as time derivatives). These conceptual subtleties will

turn out to be essential for a consistent interpretation of the Wheeler-DeWitt equation.
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Hamiltonian as in (5.34) —, the Wheeler-DeWitt equation assumes the form

HΨ [Φ,(3)G] = 0 . (6.4)

Even though it represents dynamics, this does not describe a one-dimensional
succession of states (or a history that may be labelled by a parameter t).
This is the natural quantum consequence of a classically missing absolute
time (the absence of any preferred time parameter). In contrast, classical
general relativity still describes parametrizable trajectories in its configura-
tion space, which allow the unique (one-dimensional) ordering of motion by
comparison with physical clocks (‘physical time’). While their reparametriza-
tion invariance leads to the Hamiltonian constraint, the latter’s quantized
form requires the wave function of the closed universe to be static. Although
quasi-trajectories may then still be justified by means of intrinsic decoherence
within a WKB approximation (see Sect. 6.2.2), the absence of any fundamen-
tal trajectories in configuration space or in Hilbert space leads to the new
problem of how to pose a fundamental ‘initial’ condition of low entropy that
would be able to explain the arrow of time in the conventional way.

In (6.4), the matter field Φ represents symbolically all matter, includ-
ing material clocks that are dynamically controlled by the metric. A ‘dust
of test clocks’ (as classically always conceivable without affecting the geom-
etry) would in quantum theory decohere a superposition of different three-
geometries, since these clocks would ‘measure’ proper time along their world
lines. (This does indeed come close to what really happens in our universe.)

An uncertainty relation between time and energy has always been known
in quantum mechanics. It forms an incomplete analogy to that between posi-
tion and momentum (cf. Aharonov and Bohm 1961), since no time operator,
canonically conjugate to the Hamiltonian, can be defined in a natural way,
while a classical time parameter t is used in the Schrödinger equation. In
quantum field theory, the coordinates xk are parameters, too, rather than
dynamical variables that have to be replaced by operators (see Hilgevoord
1998). All uncertainty relations reflect the Fourier theorem for wave func-
tions depending on configuration space and time (even though t does not
label any representation in Hilbert space). A fixed energy (frequency) for a
closed system thus rules out any time dependence.

If time were consistently defined by motion (as discussed in Chap. 1),
there could indeed be no time dependence in the Schrödinger equation for a
closed quantum universe (such as the one governed by (5.32)). Instead of an
absolute time parameter t, one would have to refer to a physical clock variable
u, say, that then has to be quantized, too. The time-dependent wave func-
tion ψ(x, t) is thus replaced with an entangled wave function ψ(x, u) (Peres
1980b, Page and Wootters 1983, Wootters 1984). A quasi-classical time-less
trajectory could then only be represented by a narrow ‘standing wave tube’
in this configuration space. In the conventional probability interpretation,
ψ(x, u) would describe a probability amplitude for ‘time’ u — not at u. Only
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wave functions for given values u0, ψ(x, u0), could be interpreted as ‘time’-
dependent quantum states for x. Why do we always observe states ‘at’ such
a definite time rather than their superpositions? We have to expect the rel-
evant clock variables u (such as those contained in the three-geometry (3)G)
to be quasi-classical for reasons discussed in Sect. 4.3.

The Schrödinger equation of quantum mechanics is applied to local sys-
tems with respect to classical proper times. Spatially extended relativistic
systems can be dynamically described only with respect to a foliation in
terms of three-geometries. The corresponding global Hamiltonian will in gen-
eral depend on this foliation in a complicated manner. If the spacetime metric
is classically given, the dynamics with respect to a foliation defines the dy-
namics with respect to many-fingered physical time, which is determined by
the change of the classical (3)G. In quantum gravity with matter, Ψ [Φ,(3)G] is
the formal ‘timeless’ probability amplitude for configurations of matter and
geometry as they may occur on space-like slices for all foliations.

Equation (6.4) does not yet represent the Wheeler-DeWitt equation in a
form that can be used. Practically, one has to represent the three-geometry
(3)G by a metric hkl = gkl(x1, x2, x3) with respect to a certain choice of
coordinates (cf. Sect. 5.4). The wave functional Ψ [hkl] must then be invariant
under spatial coordinate transformations. This is guaranteed by the three
secondary momentum constraints, classically described as Hi = 0 (with i =
1, 2, 3). In their quantum mechanical form they have again to be imposed as
constraints on the wave function, HiΨ [hkl] = 0, similar to the Hamiltonian
constraint. The wave functional Ψ [hkl] represents Ψ [(3)G] if the momentum
constraints are fulfilled.

General literature: DeWitt 1967, Wheeler 1979

6.2.1 Quantization of the Friedmann Universe

A toy model of a quantum universe can be defined in analogy to the clas-
sical Friedmann universe described in Sect. 5.3 by presuming homogeneity
and isotropy (Kaup and Vitello 1974, Blyth and Isham 1975). While the
corresponding Wheeler-DeWitt equation may then simply be obtained by
quantizing the classical model, it does not represent an approximation to
reality. Symmetry requirements are much stronger in their quantum mechan-
ical form than they are classically. For example, the rotation of a macroscop-
ically spherical body reproduces a macroscopically equivalent state, whereas
a spherically symmetric quantum state would remain invariant under this
symmetry transformation. Translations and rotations are thus identity oper-
ations in a quantum Friedmann universe. For similar reasons, an intrinsically
spherical quantum object does not possess any rotational degrees of freedom.
Rotational spectra are restricted to situations of ‘strong intrinsic symmetry-
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breaking’ (Zeh 1967). The quantum Friedmann model therefore has to be
regarded as merely a very first step in constructing a realistic model of the
quantum universe (except close to the big bang). The configuration space
based on this simple model is usually called a ‘mini-superspace’ (cf. Sect. 5.4).

If the Hamiltonian (5.34) is quantized in the conventional way in its field
representation, canonical momenta have to be replaced with the correspond-
ing differential operators. In general this leads to a factor-ordering problem
for the Hamiltonian, since commutators [p, q] vanish classically, and terms
proportional to them could thus be arbitrarily added before quantization.
Although (5.34) looks quite ‘normal’, its straight-forward translation into a
Wheeler-DeWitt equation,

e−3α

2

(
∂2

∂α2
− ∂2

∂Φ2
− ke4α +m2e6αΦ2

)
Ψ(α,Φ) = 0 , (6.5)

is far from being trivial. For example, the result would have been different for
quantization in terms of the expansion parameter a instead of its logarithm
α. The differential operator used in (6.5) is the invariant d’Alembertian with
respect to DeWitt’s superspace metric that is defined by the quadratic form
representing the kinetic energy. This factor-ordering is analogous to that for
a point mass in flat space when described in terms of non-cartesian coordi-
nates. The pre-factor e−3α/2 can then be omitted from the Wheeler-DeWitt
equation (6.5).

Even though the Wheeler-DeWitt equation is a stationary Schrödinger
equation, with kinetic energy represented by a Laplace type operator, (6.5)
and its higher-dimensional generalizations to more complex Friedmann type
universes are hyperbolic (similar to a Klein-Gordon equation with variable
mass) for reasons explained in Sect. 5.4. This situation offers the surprising
possibility of formulating an intrinsic initial value problem (cf. Sect. 2.1) in
spite of the absence of any time parameter. The logarithmic expansion param-
eter α may be regarded as a time-like variable with respect to this intrinsic
dynamics. The wave function on a ‘space-like’ hypersurface in superspace
(for example at a fixed value of α) then defines an intrinsic dynamical state.
It is essentially the overall attractive nature of gravity that is responsible
for this property of the superspace metric. 2 However, a time-like variable
in superspace that controls this intrinsic quantum dynamics has clearly to
be distinguished from many-fingered time intself, or from a time coordinate
t; these are both functions on spacetime, and therefore applicable only in a
quasi-classical approximation (see Sect. 6.2.2).

The big bang and a conceivable big crunch would ‘coincide’ with re-
spect to this intrinsic ‘quantum dynamical time’ α, whereas the expansion of
the universe would be a tautology. However, all correlations of the expansion

2 The possibility and physical relevance of a signature change in superspace (Kiefer
1989, Giulini and Kiefer 1994) does not appear to be well understood. It may perhaps be

circumvented from a local point of view by an appropriate choice of spacetime foliation.
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parameter α with physical clocks (including physiological ones) remain mean-
ingful. (External test clocks are excluded from a closed quantum universe.)
The concept of a reversal of the cosmic expansion remains an artifact of the
classical description in terms of trajectories. But what would ‘happen’ to a
quasi-classical universe that were classically bound to recontract at a later
time?

One may study the corresponding quantum state (its Wheeler-DeWitt
wave function) in analogy to the ‘stationary’ wave function (that is, a super-
position of incoming and outgoing waves) of a quantum particle with fixed
energy E, reflected from a spatial potential barrier. A concept of time is then
often introduced by means of ‘corresponding’ trajectories, although this sit-
uation is more correctly described dynamically in terms of time-dependent
wave packets. However, in fundamentally static quantum gravity there is no
reference phase e−iωt that would allow one to define moving wave packets
by means of a phase velocity eik(x−vt) for any dynamical variable x. Hence,
there is no distinction between expanding and contracting wave components
of the universe according to the sign of e±ikα.

Intrinsic quantum dynamics with respect to the ‘variable’ α may also be
written by means of a Klein-Gordon type reduced Hamiltonian. For example,
in mini-superspace it assumes the form

− ∂2

∂α2
Ψ(α,Φ) =

(
− ∂2

∂Φ2
+ V (α,Φ)

)
Ψ(α,Φ) =: H2

redΨ(α,Φ) . (6.6)

This intrinsic dynamics is non-unitary (though still deterministic) not only
because of the second ‘time’ derivative, but mainly since H2

red is not a non-
negative operator. The ‘reduced norm’,

∫
|Ψ(α,Φ)|2 dΦ, is thus not generally

conserved with respect to the intrinsic dynamics. This is consistent with the
interpretation of α as a physical ‘variable’, and with the interpretation of
Ψ as a probability amplitude for ‘time’ (rather than depending on time).
Although there is a conserved formal ‘relativistic’ two-current density in this
mini-superspace,

j := Im (Ψ∗∇Ψ) , (6.7)

its direction depends on the sign of i = ±
√
−1 again, which no longer has

physical meaning in the absence of a time derivative i∂Ψ/∂t from the Wheeler-
DeWitt equation. Since there is no good reason to consider complex boundary
conditions in superspace, this current density must even be expected to vanish
for the total (Everett) wave function. In analogy to a timeless trajectory, one
now obtains a ‘standing wave’ representing timeless reality.

This intrinsic dynamics cannot be expected to be symmetric under the
new ‘time reversal’ α → −α because of the α-dependence of the potential
V (although even this symmetry under ‘duality transformations’ has been
proposed in certain string models). This intrinsic dynamical (law-like) asym-
metry would then open up the possibility of deriving an arrow of time with
respect to the expansion of the universe without imposing asymmetric bound-
ary conditions by hand.
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Because of the analogy between the Wheeler-DeWitt equation and the
stationary description of quantum particles, it is suggestive to represent the
individual history of our observed universe in quantum mechanical terms
by a narrow ‘wave tube’ that approximately follows a classical trajectory
in superspace. Again, the case of an expanding and recontracting universe,
with positive spatial curvature, k = +1, (cf. Fig. 5.7) is particularly illustra-
tive. Its trajectories in mini superspace would reverse direction with respect
to α at some αmax. According to classical determinism, half of the trajec-
tory (if defined to represent the collapsing universe) would be regarded as
the successor of the other half (representing the ‘expansion’ era). However,
this deterministic relation is symmetric, since there is no absolute dynam-
ical direction. The wave determinism described by the hyperbolic equation
(6.6), on the other hand, proceeds always with growing α, and permits one to
freely choose the whole initial condition, consisting of Ψ and ∂Ψ/∂α, on any
‘space-like’ hypersurface in superspace (e. g. at a small value of α). One may
thus exclude precisely that part of the wave tube which would be required by
classical determinism (Zeh 1988). How can these two forms of determinism
be reconciled?

This problem can again be solved in analogy to conventional stationary
states of quantum mechanics — now assumed to possess negative mass with
respect to one variable in a formal configuration space. The simplest model of
a recollapsing (and rebouncing) universe is a free ‘particle’ reflected between
the walls of a rectangular box, where solutions (such as real-valued wave
tubes) can be formed as superpositions of products of trigonometric func-
tions matching the boundary conditions. (The boundaries would have to be
represented by positive infinite space-like and negative infinite time-like po-
tential barriers.) In order to allow nontrivial zero-energy solutions, HΨ = 0,
the box lengths Li have to be commensurable when taking into account the
mass ratio, that is, Lα/LΦ =

√
−mΦ/mα k/l, with integers k and l.

Similar stationary wave tubes may be constructed analytically for an
indefinite harmonic oscillator Hamiltonian with subtracted zero point energy,
that is, for a two-dimensional ‘particle’ in the potential 2V (Φ, α) = (ω2

ΦΦ
2 −

ωΦ)−(ω2
αα

2−ωα). In the commensurable case, ωα/ωΦ = l/k, solutions to the
constraintHΨ = 0 may be expanded in terms of the factorizing eigensolutions
Θnα(

√
ωαα)ΘnΦ(

√
ωΦΦ) of H, with eigenvalues E = Eα + EΦ = −nαωα +

nΦωΦ = 0, in the form

Ψ(α,Φ) =
∑
n

cnΘnk(
√
ωαα)Θnl(

√
ωΦΦ) . (6.8)

They represent propagating wave tubes rather than packets as long as the
reduced energy defined by H2

red of (6.6) is positive (see Fig. 6.1). If the coeffi-
cients cn are chosen to define an ‘initial’ Gaussian wave packet in Φ at ‘time’
α = 0, centered at some Φ0 6= 0 and with ∂Ψ/∂α = 0, say, the resulting
tube-like solutions follow Lissajous figures, as discussed by DeWitt (1967)
for classical orbits in mini-superspace. In the anti-isotropic case (ωα = ωΦ,
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Fig. 6.1. Coherent ‘wave tube’ Ψ(α,Φ) for the anisotropic indefinite harmonic oscillator
(with ωΦ : ωα = 7 : 1) as a toy model of a periodically recollapsing and rebouncing
quantum universe. It is plotted for the sector α > 0 and Φ < 0 only, since the potential
and the chosen solutions are symmetric under reflections at both the α and the Φ axis,
in contrast to Figs. 5.7 and 6.2. Interference occurs in regions where different parts of a
‘wave tube’ overlap. It would be suppressed by taking into account additional variables
(see Sect. 6.2.2), since decoherence corresponds to the projection of the density matrix
from high-dimensional superspace (where the wave tubes have little chance to come close
to each other) on mini-superspace. (The intrinsic structure of the wave tube is here not
completely resolved by the chosen grid size.)

that is, k = l = 1) they form ellipses. If one requires ∂Ψ/∂α = 0 at α = 0,
only the even quantum numbers nΦ remain available for an expansion of
initial states Ψ(0, Φ).

In contrast to Schrödinger’s time-dependent coherent states for the con-
ventional harmonic oscillator, which follow classical trajectories without chang-
ing their shape, these ‘upside-down oscillators’ display a rich intrinsic struc-
ture that represents relativistic ‘rest energy oscillations’ while following their
quasi-classical trajectories. Wave packets on different parts of a trajectory
must interfere whenever they come closer than the widths of their wave tubes.
This happens particularly in the region of the classical turning point.

The wave functions (6.8) are chosen to satisfy the boundary condition of
normalizability in Φ and α. This choice is responsible for the reflection of wave
tubes at the potential barriers. It would be an unusual condition for a con-
ventional time parameter, since in quantum mechanics there are no turning
points in time. In quantum gravity, the ‘final’ condition restricts the freedom
of choice of initial conditions, but this is consistent with the interpretation of
α as a dynamical variable. On the other hand, any degeneracy of the solution
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(6.8) would demonstrate that this boundary condition of normalizability at
α → ±∞ does not completely determine the state, but offers some freedom
for ‘initial’ conditions. In particular, a ‘final’ condition of normalizability in
α (such as for a Friedmann universe that is bound to recontract) would elim-
inate just half of a complete set of solutions of this second order equation
(the exponentially increasing ones) — certainly a much weaker restriction
than a low entropy final condition would be (cf. (5.27)). Tube-like solutions
may then mimic the classical determinism of returning orbits, since they are
forced to contain the returning wave tubes from the ‘beginning’ (or, as in the
right half plane of Fig. 6.1, at α = 0).

A similar treatment can be applied, with some further approximations,
to the Wheeler-DeWitt equation with a Friedmann Hamiltonian (6.5) (Kiefer
1988). The oscillator potential with respect to Φ may here be assumed to be
weakly α-dependent over many classical oscillations in Φ (shown in Fig. 5.7)
except for small values of α. If α-dependent oscillator wave functions Θn(Φ)
are now defined by the eigenvalue equation(
− ∂2

∂Φ2
+m2e6αΦ2

)
Θn

(√
me3αΦ

)
= (2n+1)me3αΘn

(√
me3αΦ

)
, (6.9)

one may expand
Ψ(α,Φ) =

∑
n

cn(α)Θn(
√
me3αΦ) . (6.10)

This leads, in the adiabatic approximation with respect to α (that may here
be based on the Born-Oppenheimer expansion in terms of the inverse Planck
mass – see Banks 1985), to decoupled equations for the coefficients cn(α),(

+
∂2

∂α2
+ 2En(α)

)
cn(α) = 0 . (6.11)

For positive spatial curvature, k = 1, the ‘effective potentials’ 2En(α)
= (2n+ 1)me3α − ke4α become negative for α→ +∞. Even though V (α,Φ)
is positive almost everywhere in this limit (cf. (5.34)), the Φ-oscillations are
finally drawn into the narrow region V < 0 (in the vicinity of the α-axis —
see Fig. 5.7) by their damping due to the α-dependence of En.

If one requires square integrability for α → ∞ again, only those partial
wave solutions cn(α) which exponentially die out in this limit are admitted.
Wave packets consisting of oscillator states with quantum numbers n ≈ n0,
say, (see Fig. 6.2) are reflected from the repulsive potential at their corre-
sponding classical turning points — very much like fixed energy solutions of
the Schrödinger equation that are reflected from a potential barrier in space.

In the Friedmann model, however, wave tubes cannot remain narrow
wave packets in Φ during reflection, since the turning point of the n-th par-
tial wave, an = eαn = (2n + 1)m, depends strongly on n. For a < an the
coefficients cn(α) can, according to Kiefer, be written by means of a ‘scatter-
ing’ phase shift as a sum of incoming and outgoing waves. In lowest WKB
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Fig. 6.2. Real-valued wave tube of the ‘time’-dependent (damped) oscillator (6.5) in adi-
abatic approximation without taking into account the reflection at amax (that is, the first
term of (6.12a) is used only). Expansion parameter a = eα is plotted upward, the amplitude
of a massive scalar field Φ from left to right

approximation one has

cn(α) ∝ cos [φn(α) + n∆φ] + cos
[
φn(α)− n∆φ+

π

4
an

2
]

. (6.12a)

Here,

φn(α) := (
an
4
− a

2
)
√
a(an − a) +

[
arcsin(1− 2a

an
)− π

2

]
a2
n

8
− π

4
(6.12b)

is a function of α and αn, while the integration constant ∆φ is the phase of
the corresponding classical Φ-oscillation at its turning point in α. If complex
factors c0n are chosen in (6.12a) before substitution into (6.10) in such a way
that the first cosines describe a coherent wave packet, the ‘scattering phase
shifts’ πan2/4 of the second cosine terms cause the reflected wave to spread
widely (see Fig. 6.3). Only for pathological potentials, such as the indefinite
harmonic oscillator (6.8), or for integer values of m2/2 in the specific model
(6.4), could the phase shift differences be omitted as multiples of π.

Therefore, even this WKB approximation can in general not describe an
expanding and recollapsing quasi-classical universe by means of (‘initially’
prepared) wave packets that propagate as narrow tubes. The concept of a
universe expanding and recollapsing along a certain trajectory in superspace
(hence of the corresponding quasi-classical spacetime) is as incompatible with
quantum cosmology as the concept of an electron orbit in the hydrogen atom
is with quantum mechanics. Many ‘expanding’ quasi-trajectories (wave tubes)
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Fig. 6.3. Same as Fig. 6.2, but with contribution of reflected part (second term of (6.12a))
included. The coherent wave tube that is assumed to represent the expanding universe is
here hardly recognizable against the background of the diffuse contribution representing
the recontracting universe(s)

have to be superposed in order to describe one quasi-trajectory representing
the collapse era (and vice versa).

These compatibility problems for boundary conditions do not occur for
the (non-normalizable) Wheeler-DeWitt wave function that represents for-
ever expanding universes (k= -1, for example). On the other hand, an addi-
tional boundary condition (selecting wave functions which vanish exponen-
tially for α → −∞) would further restrict the solutions, and could permit
eigensolutions with eigenvalue zero (required by the Hamiltonian constraint)
only in singular cases. The commensurable anisotropic oscillator (6.8) is a
toy model. Solutions of (6.5) with k = 0 or −1 are not square integrable
for α→ +∞. Such models without any repulsive potential for large a would
have to be excluded if normalizability were required in order to obtain a
Hilbert space for wave functions on superspace. Normalization in Φ → ±∞
has already been taken into account by the ansatz (6.10).

These qualitative properties of the Wheeler-DeWitt wave function in
mini-superspace must in principle be expected to remain valid when further
‘space-like’ degrees of freedom are added in order to form a more realistic
model (Sect. 6.2.2). They should similarly apply to unified field theories that
contain gravity. Regarded as a toy model for a closed universe, Ψ(α,Φ) obeys
the Wheeler-DeWitt equation, while in the presence of additional variables
it would be subject to strong decoherence (Zeh 1986b, Kiefer 1987).

General literature: Ryan 1972, Kiefer 1988
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6.2.2 The Emergence of Classical Time

If classical time emerges, it cannot emerge in classical time

According to Sect. 5.4, in general relativity or other reparametrization in-
variant classical theories there is no absolute time defined as a dynamically
preferred global time parameter. The dynamical succession of global states,
which may be conveniently described by means of a time coordinate, depends
furthermore on the choice of a foliation, while the invariant spacetime geom-
etry defines many-fingered physical time, that is, invariant proper times as
local controllers of motion along all world lines.

In quantum gravity, no global time parameter is available at all, since
there are no trajectories in superspace (that is, no one-dimensional succes-
sions of classical states). Two given three-geometries can then not be dynam-
ically connected in a way that would determine a classical four-geometry in
between. Therefore, no world lines in spacetime are defined (hence no many-
fingered proper times which could control Schrödinger equations for local
systems). Three-geometry is no ‘carrier of information about time’ any more,
while the foliation of a pure manifold (without a metric) would lack physical
or geometrical (hence operational) meaning.

We know from Chap. 4 that the Schrödinger equation can be exact only
as a global equation. Its application to all matter in the whole universe would
require the global foliation of a classical spacetime. While the foliation can
nonetheless be chosen to proceed only locally (defining a ‘finger of time’), the
Wheeler-DeWitt equation in its static form defines ‘entangled dynamics’ for
states of matter and three-geometry.

How can classical time (either in the form of many-fingered time, or as a
parameter for the dynamics of global states) be recovered from the Wheeler-
DeWitt equation? This would require concepts and methods as discussed in
Sect. 4.3, where quasi-classical quantities emerged dyamically and irreversibly
by means of decoherence. This dynamics of decoherence has to be modified
in a way that is appropriate for the timeless Wheeler-DeWitt equation: for if
classical time emerges, it cannot emerge in classical time. Similarly, classical
spacetime cannot itself have entered existence in a global ‘quantum event’
(cf. Sect. 4.3.5).

In the local field representation, the general Wheeler-DeWitt equation
can be explicitly written in its gauge-dependent form (DeWitt 1967) as

− 1
2M

∑
klk′l′

Gklk′l′
δ2Ψ

δhklδhk′l′
− 2M

√
h(R− 2Λ)Ψ +HmatterΨ = 0 (6.13)

(disregarding factor ordering, for simplicity). Here, Ψ is a functional of the
six independent functions hkl = gkl (k, l = 1, 2, 3), which represent the
spatial metric on the hypersurface. h is their determinant, R the corre-
sponding spatial Riemann curvature scalar, and Λ the cosmological constant.
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M1/2 := (32πG)−1/2 is the Planck mass, and Hmatter the Hamiltonian den-
sity of matter, implicitly depending on the metric through kinetic energy
terms. Gklk′l′ := (hkk′hll′ +hkl′hlk′ − 2hklhk′l′)/2

√
h is DeWitt’s superspace

metric with respect to the six symmetric pairs of indices kl. It has the locally
hyperbolic signature −+ + + ++, hence one minus sign at each space point.
The global Hamiltonian H is obtained by integrating the density (6.13) over
space. This integral is required in addition to the sum over vector indices in
order to define the complete Laplacean in configuration space as a sum over
all dynamical variables.

The Wheeler-DeWitt equation (6.13) is local at the cost of gauge de-
grees of freedom. Their elimination requires the wave functional to obey the
three momentum constraints (cf. Sect. 5.4), in their quantum mechanical form
written as HkΨ = (δΨ/δhkl)|l = 0, where |l is the covariant derivative with
respect to the spatial metric hkl. They represent three functional differen-
tial equations for the functional Ψ [hkl]. Functional integration of the (one)
Wheeler-DeWitt equation (6.13) then leaves two functions as integration con-
stants, even though there is no explicit time dependence. These two degrees
of freedom at each space point may be regarded as representing the two com-
ponents of the graviton field. Only in special situations (and by means of
nonlocal variables) can they be analytically separated from the gauge vari-
ables and intrinsic time. In the superspace region that describes Friedmann
type universes, all but one of the negative kinetic energy terms of the Wheeler-
DeWitt equation (one at each space point) represent gauge degrees of freedom
(cf. Footnote 2).

The value of the Planck mass that appears in (6.13) is large compared
to elementary particle masses. This suggests a Born-Oppenheimer expansion
with respect to 1/M in analogy to molecular physics (Banks 1985). The wave
function will then adiabatically depend on the massive variables. However,
since there is no environment to the universe, the wave function Ψ cannot
decohere into narrow wave tubes. This situation resembles small molecules (or
deformed nuclei), which are usually found in their energy eigenstates rather
than in states describing quasi-classical motion — in spite of the validity
of the same Born-Oppenheimer approximation as used for large molecules.
However, as a novel aspect of quantum cosmology, the universe contains its
own observers, while a molecule or a nucleus can only be observed from
outside. Because of the adiabatic correlation of the observer with the rest
of the world, the quantum state of geometry then appears classical to him
(cf. Sect. 4.6 and see below).

In order to arrive at a semiclassical dynamical description of spacetime
geometry, 3 one has to use the ansatz

Ψ [hkl, Φ] = exp[iS0(hkl)]χ(hkl, Φ) , (6.14)

3 Occasionally the term ‘semiclassical quantum gravity’ is used to characterize quan-
tized fields on a classical spacetime background. However, this would represent a new

(probably inconsistent) theory rather than an approximation to quantum gravity.
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where again matter is represented by a spatial scalar field Φ. S0 is defined
as a solution of the Hamilton-Jacobi equation of geometro-dynamics (Peres
1962), with a self-consistent source (here often called the ‘backreaction’) de-
rived as an expectation value

〈
χ|Tµν |χ

〉
from the resulting matter states χ.

This is similar to the treatment of classical orbits for the atomic nuclei in
large molecules, calculated by means of an effective potential obtained from
the adiabatic electron state. If the exact boundary conditions are appropriate
(and approximations to them appropriately chosen for the Hamilton-Jacobi
function), the matter wave function χ may indeed depend weakly (‘adiabati-
cally’) on the massive variables hkl in certain regions of configuration space.
As this spatial metric describes the three-geometry as the carrier of informa-
tion about time along every WKB trajectory, the dependence on (3)G(hkl)
may be regarded as a generalized physical time dependence of the matter states
χ(Φ).

Since the Hamilton-Jacobi equation describes an ensemble of dynam-
ically independent trajectories in the configuration space of the three-geo-
metries, the remaining equation for the matter states χ can be integrated
along those trajectories. This procedure becomes particularly convenient af-
ter the exponential function exp(iS0) has been raised to the usual second
order WKB approximation (that includes a ‘pre-factor’ which warrants the
conservation of stationary probability currents). In its local form, (6.13), the
Wheeler-DeWitt equation can then be written as a Tomonaga-Schwinger
equation (Lapchinsky and Rubakov 1979, Banks 1985):

i
∑
klk′l′

Gklk′l′
δS0

δhkl

δχ

δhk′l′
= Hmatterχ . (6.15)

Its LHS has the form of a functional derivative of χ in the direction of a local
component of the functional gradient ∇S0 in the configuration space of three-
geometries. Written as i∇S0 · ∇χ =: idχ/dτ , it defines local (many-fingered)
physical time τ for each trajectory in superspace (hence on each classical
spacetime described by S0). Because of its limited validity it may be called a
WKB time. In contrast to the original Tomonaga-Schwinger equation, (6.15)
is here applied to a broad coherent wave function on superspace; but neither
to an individual spacetime nor to a Hamilton-Jacobi ensemble of them.

The local equation (6.15) represents a global Schrödinger equation for
matter with respect to all fingers of time (since τ is a function on space), and
for all quasi-classical spacetimes contained in this superposition. Higher or-
ders of the WKB approximation lead to corrections to this derived Schrödinger
dynamics (Kiefer and Singh 1991). The local fingers of time may also be com-
bined by integrating (6.15) over three-space (Giulini 1995). This integration
elevates the local inner product ∇S0 · ∇χ in (6.15), that is the sum over
klk′l′ by means of the Wheeler-DeWitt metric, to a global one. It defines (re-
gardless of any choice of spacetime coordinates) the ‘progression’ of a global
dynamical time on all those spacetimes (that is, trajectories in superspace)
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which are described by the Hamilton-Jacobi function S0. The definition of
coordinates requires lapse and shift functions N and Nk (Sect. 5.4), which
would then also lead to formal velocities ḣkl according to

ḣkl = −NGklk′l′
δS0

δhk′l′
+Nk|l +Nl|k . (6.16)

It may be convenient to identify the global time τ (a dynamical foliation) with
the time coordinate resulting from the lapse function N (for vanishing Ni,
as done for the metrically meaningful Friedmann time t in (5.19)). Since τ is
defined for all WKB-trajectories (thus ‘simultaneously’ characterizing their
corresponding variable three-geometries), it also defines a foliation of super-
space (Giulini and Kiefer 1994). While spacetime foliations are meaningful
only in the WKB approximation, the dynamical foliation of superspace may
represent a general concept of quantum gravity for Friedmann-type universes.

Essential for the result (6.15) was the ansatz (6.14) with a complex expo-
nential. This form (with real S0) will in general not be compatible with the
physical boundary conditions, since there is no reason to presume a complex
wave function of the universe. This defect of the ansatz can be overcome by
replacing (6.14) with its real part, Ψ → Ψ+Ψ∗. The two terms may then sep-
arately obey (6.15) and its complex conjugate to an excellent approximation,
similar to the various WKB trajectories (or wave tubes) which all together
form the wave front of geometrical optics described by S. This robust sep-
aration of Ψ and Ψ∗ may be referred to as intrinsic decoherence (Halliwell
1989, Kiefer 1992), although it has always been implicitly presumed when the
Born-Oppenheimer approximation was applied to calculating energy eigen-
states of small molecules. It may also be regarded as an example of strong
intrinsic symmetry breaking (cf. Sect. 6.1, or Sect. 9.6 of Giulini et al. 1996).

If the matter states χ in (6.14) contain observer systems, they have
to assume the form of superpositions of product states χenvχobs, where
the environment χenv represents the rest of the matter world. According
to (6.15), these states ‘evolve’ approximately along dynamical foliations of
quasi-classical spacetimes. Realistically, the environment as well as the ob-
server must thereby always ‘measure’ (that is, dynamically depend on) the
three-geometry. While the environment leads to the latter’s decoherence, and
thus to an apparent ensemble of spatial geometries, a definite (subjective)
state of the observer selects a specific geometry (as indicated by Hawking’s
remark quoted at the end of Sect. 5.2). These conclusions are based on an
appropriate form of quantum causality in order to avoid recoherence (4.55).

The Born-Oppenheimer approximation with respect to the Planck mass
(only) is not always quite appropriate. Macroscopic matter variables may
also be described by a WKB approximation, while certain geometric modes
(such as gravitational waves) may not. These variables could then be shifted
in (6.14) between S and χ (cf. Vilenkin 1989). For example, Halliwell and
Hawking (1985) applied the WKB approximation to the monopoles α and Φ
which characterize the quantum Friedmann universe (6.5). The corresponding
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trajectories a(t), Φ(t) in mini-superspace are classical approximations to the
wave tubes discussed in Sect. 6.2.1, while t is the Friedmann time. Wave func-
tions for the (nonlocal) higher multipole amplitudes of matter and geometry
can then be described by a derived Schrödinger equation, similar to (6.15).
This choice of nonlocal variables offers the advantage of separating physical
degrees of freedom (in this case the pure tensor modes) from the remaining
pure gauge modes. As mentioned in Sect. 5.4, the physical tensor modes all
occur with a dynamical mass of the same sign (here chosen positive) as the
matter modes, while only the monopole variable a (or α = ln a) has negative
dynamical mass. This result is the basis of the conjecture that the expansion
parameter may serve as a dynamical time variable in superspace. In the sim-
ple dynamical model proposed by Halliwell and Hawking, the monopoles a
and Φ are then very efficiently decohered by the tensor modes (Zeh 1986b,
Kiefer 1987) — see also (6.17) below.

Solutions of the Tomonaga-Schwinger equation (6.15) require initial con-
ditions with respect to the global time parameter τ . In order to describe
our observed time-asymmetric universe, these initial conditions must include
those which are responsible for the arrow(s) of time (such as quantum causal-
ity, essential for decoherence). However, these initial conditions cannot be
freely chosen any more, since this equation has been derived from the Wheeler-
DeWitt equation. Therefore, the initial conditions have similarly to be de-
rived from the boundary conditions of the Wheeler-DeWitt wave function.
For these boundary conditions, the hyperbolic nature of the Wheeler-DeWitt
equation becomes essential. As discussed in Sect. 6.2.1, it means that intrinsically-
initial conditions may be posed at any fixed value of a time-like variable in
superspace (such as α). ‘Before’ anything may evolve with respect to clas-
sical time, classical time must itself emerge from an appropriate boundary
condition according to the ‘intrinsic dynamics’ (6.13).

If the approximately-derived Schrödinger (or Tomonaga-Schwinger) equa-
tion along a WKB trajectory in superspace of geometry, as applied to the
derived initial condition, describes measurements, it is practically useless for
calculating ‘backwards’ in global time τ . One would have to know all (ob-
served and unobserved) final branches of the total matter wave function χ
(such as those that have unitarily arisen during measurements in the past).
In the ‘forward’ direction, even this global Schrödinger equation for matter
has to be replaced with a master equation if decoherence of the quantum
state of matter by gravity is phenomenologically taken into account (just as
matter decoheres geometry in accordance with the Born-Oppenheimer ap-
proximation — cf. Sect. 4.3.4). This provides an explanation in terms of the
Wheeler-DeWitt equation for the oft-proposed gravity-induced collapse of the
wave function. Most proposals of this kind of collapse do indeed owe their
motivation to the decoherence of matter by geometry (while some of them
then claim to solve the problem of measurement by once more confusing the
genuine and apparent ensembles distinguished in Sect. 4.2).
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The asymmetric time evolution of the observed world thus requires a
specific (low entropy) structure of the Wheeler-DeWitt wave function (of
type (4.56), for example) in a region of superspace where the relevant WKB
trajectories have one of their ends (such as at small values of a). This sug-
gests an appropriate boundary condition for Ψ at α → −∞, in accordance
with the hyperbolic nature of the Wheeler-DeWitt equation. If this boundary
condition also justifies a WKB approximation according to the ansatz (6.14),
the Schrödinger equation may be integrated along trajectories in superspace
over cosmological times τ . However, because of these rather stringent condi-
tions, the validity of a Schrödinger or master equation for matter and other
appropriate variables cannot always and everywhere be taken for granted.
It would be mistaken to integrate these equations while losing dynamically
relevant information in the corresponding direction of calculation.

This limited validity of the Schrödinger or master equation would become
particularly important in a recontracting universe (cf. Sect. 5.3). If a master
equation can be derived for all or most WKB trajectories with respect to that
direction of τ that coincides with increasing a, it cannot remain valid along
a classical spacetime history that turns into recontraction. One would then
expect effects of an apparent two-time boundary condition, similar to the
true two-time boundary conditions discussed by Davies and Twamley (1993)
— cf. Fig. 6.3.

‘Simplicity’ of the initial wave function has often been suggested in the
form of a symmetry (e.g. Conradi and Zeh 1991). An example is the false vac-
uum of the Higgs field (Sect. 6.1). Another model may be defined by means
of an appropriate set of variables xi (such as higher multipoles on the Fried-
mann sphere) in addition to the time-like variable α, with a Hamiltonian
(cf. (6.6))

H =
∂2

∂α2
+H2

red

=
∂2

∂α2
+
∑
i

(
− ∂2

∂x2
i

+ Vi(α, xi)

)
+ Vint(α, {xi}) ,

(6.17)

and Vint → 0 for α→ −∞, for example. 4 This would be compatible with an
initial condition (in α) of the kind Ψ →

∏
i χi(xi), as conjectured in (4.56)

for local variables. If the equation H2
redψn = ε2nψn defines the α-dependent

eigenstates ψn(α, {xi}) of H2
red, solutions to HΨ = 0 can be written in anal-

ogy to (6.10) as Ψ(α, {xi}) =
∑
n cn(α)ψn(α, {xi}). The eigenstates ψn must

then adiabatically develop correlations induced by the interaction Vint. In

4 If the large Planck mass is absorbed into the variables of geometry (such as α→
√
Mα

in (6.17) when compared with (6.13)), the Born-Oppenheimer approximation may be based
on the resulting weak dependence of the potential on the new variable rather than on
an expansion in terms of 1/

√
M . However, the validity of the approximation depends

invariantly on the actual boundary conditions.
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an adiabatic WKB approximation one obtains for cn(α) the exponentials
exp(±i

∫
εn(α)dα). (As explained in Sect. 6.2.1, the sign of the exponent does

here not distinguish between expansion and contraction.) A similar model has
recently been studied by Halliwell (2000).

These simple models are sufficient in principle to describe a recollapsing
quantum universe by means of a potential barrier at α = αmax, say, (with
ε2n(α) < 0 for α > αmax) and with a boundary condition of low entropy at
α→ −∞ (or at some αmin). (For a two-dimensional model see Fukuyama and
Morikawa 1989.) The boundary condition at αmax selects ‘standing waves’
cn ∝ sin(

∫ αmax
α εndα), which force stationary wave tubes to ‘turn around’

and continue ‘backwards’ in α (Zeh 1988). What will then happen to their
entropy and the arrow of time?

Formal entropy would trivially depend on α only (regardless of any WKB
trajectories or wave tubes) if it were calculated from the complete Wheeler-
DeWitt wave function Ψ at fixed α in the form S(α) = −kTracexi [P̂ % ln(P̂ %)],
with % = |Ψ〉〈Ψ |, and, for example, P̂ = P̂sep or P̂local. However, for a quasi-
classical universe one has to define entropy as a function of macroscopic
variables, S(α, yi), along trajectories in a midi-superspace spanned by α(τ)
and yi(τ), with trace over the remaining ‘microscopic’ or ‘irrelevant’ variables
only. If the macroscopic variables justify a WKB approximation all the way
from α = −∞ to α = −∞ (from big bang to big crunch), one may suggest
postulating low entropy conditions at α → −∞ in a certain region of this
hypersurface of midi-superspace, and assume that the quasi-classical history
of our observed universe, approximately following a curve α(τ), yi(τ), had
one end in this region.

However, neither would the suggestion of such a specific region appear
reasonably motivated, nor is this description compatible with quantum grav-
ity. In realistic models of a quantum Friedmann universe, the wave tubes
spread widely and overlap each other for α → −∞. Boundary conditions
can then not be appropriately localized in different regions, and low en-
tropy cannot be expected at but one end of a turning quasi-trajectory. The
semi-realistic quantum Friedmann model of Sect. 6.2.1 demonstrates further-
more that quasi-classical spacetimes cannot individually be continued beyond
their turning point, but are subject to drastic coherent ‘quantum scattering’
over all of mini-superspace (cf. Fig. 6.3). This phenomenon would be cru-
cial for the arrow of time, as it is incompatible with an evolving entropy,
S(τ) := S(α(τ), yi(τ)), close to the turning point.

Page (1985) and Hawking (1985) arrived at the opposite conclusion re-
garding the arrow of time in a recontracting universe when insisting on semi-
classical or classical approximations and methods (see the discussion at the
end of Zeh 1994). This is not surprising, since they applied their specific
initial condition to just one end of their Feynman paths in mini-superspace
(which become trajectories in their subsequent WKB approximation), with-
out consistently relating them to a static Wheeler-DeWitt wave function.
Their ad hoc choice of a classical time-direction is present already in the
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Hartle-Hawking (‘no boundary’) boundary condition (Hartle and Hawking
1983), without any semiclassical approximation. Feynman path integrals are
defined as a tool for calculating the propagation of wave functionals with
respect to an external time parameter t. Propagation is thereby assumed
to proceed in a given direction of this parameter, even though Feynman
diagrams may contain formal particle lines going back and forth in time.
Parametrizable paths in superspace with starting points on a boundary (at
the parameter value t = 0, say) would be required in order to distinguish
between their ‘first’ and ‘second’ intersection with a time-like hypersurface
(such as a = constant) in an expanding and recontracting universe. Simi-
lar concepts cannot be reasonably defined for an absolutely stationary wave
function (see Kiefer and Zeh 1995). In particular, quasi-classical wave tubes
can only be justified by an ‘irreversible’ process of decoherence with respect
to an intrinsic dynamical parameter, such as α.

A static wave function of quantum mechanics is often interpreted in a
time-dependent way. This may have its roots either in the time-dependent
theory, where moving wave packets may be formed as superpositions, or in
the Heisenberg picture (cf. Sect. 4.6), where definite values of ‘observables’
are assumed to ‘occur’ irreversibly (see Hartle 1998). This second possibility
would require an external concept of time (such as that defined by the external
observer or classical apparatus in the Copenhagen interpretation).

A remarkable time-less probability interpretation of the wave function
in terms of presumed classical configurations has been proposed by Bar-
bour (1994a,c). Similar to Bohm’s model, Barbour’s classical configurations
include all (spatial) fields, hence also three-geometries. In contrast to con-
ventional quantum theory, this superspace (of geometry and matter) is not
only assumed to support the wave function(al), but also an ensemble of clas-
sical states (which are tacitly assumed to describe states of local observers).
This ensemble is postulated to possess ‘statistical weights’ according to |Ψ |2.
However, unlike Bohm’s model, this is not an initial condition that has to be
dynamically preserved by means of (unobservable) dynamics. There are no
‘surrealistic’ trajectories any more, since there is no fundamental time in this
model. Reality is absolutely time-less in Barbour’s theory.

Now, the structure of the Wheeler-DeWitt wave function (arising from
the WKB approximation) favors statistical weights for those classical states
which lie on apparent histories. This result is analogous to Mott’s (1929) de-
scription of α-particle tracks in a cloud chamber, where the (static) wave func-
tion suppresses configurations which represent droplets not approximately
lying along particle tracks (even though many different quasi-tracks con-
tribute to the whole quantum state). Barbour calls such states ‘time cap-
sules’, since they possess consistent memories, here without a corresponding
history. ‘Time is in the instant’ (in the state), as he would say — the instant
is not in time (in a history). All classical states in the ensemble are regarded
as ‘real’ (similar to the objective reality of all past and future states on a
one-dimensional history in the block universe description) — although with
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different ‘statistical weights’. The weights are here postulated to describe
probabilities as to where we (in the sense of objectivized subjectivity) may
find our universe in superspace; they do neither describe a stochastic time
evolution nor incomplete knowledge (about one real state). Their sole pur-
pose is to exclude states at small values of |Ψ | from representing our actual
(observed) universe. This is similar to the Everett interpretation (Sect. 4.6),
where states of reality need not be classical configurations, however.

One may characterize this interpretation by saying that the traditional
concept of global physical time (a one-dimensional succession of global states)
is replaced with the multi-dimensional concept of a (real) wave function. This
entirely novel conception of the wave function as a generalization of time
is remarkable, even though Julian Barbour (1997) rejects it (mainly — I
think — because he insists on regarding classical general relativity as already
timeless).

According to this interpretation, the electron in a specified hydrogen
atom, for example, is defined to have a position (though not any velocity or
momentum). Since this position is not part of a memorized or documented
(real or apparent) history, we are led to believe that it ‘actually’ exists simul-
taneously at all its positions which lie in the support of the wave function. Its
effects on measurement devices are in fact dynamically ‘caused’ by all these
positions — according to the intrinsic dynamics of the static wave function,
but not by a one-dimensional history. Barbour’s interpretation would explain
why the arena for the wave function is a classical configuration space, while
removing the most disturbing aspect of the Bohm model, viz., unobservable
classical trajectories. However, other disadvantages persist — for example
the fundamental role of just those classical concepts which could be derived
from wave mechanical ones by means of decoherence in Sect. 4.3. While the
presumed classical states would thus provide an answer to the pointer basis
problem, this very answer seems to be quite artificial and based on prejudice
(traditionalism) — similar to Bohm’s choice of classical concepts.

General literature: Kiefer 1994

6.2.3 Black Holes in Quantum Cosmology

During the early days of general relativity, the spacetime region behind a
black hole horizon was regarded as meaningless, since it is inaccessible to ob-
servers in the external region. From their positivistic point of view, it would
‘not exist’. Later one realized that world lines, including those of observers,
can smoothly be continued beyond the horizon towards the singularity within
finite physical time. The new conclusion, that the internal region of black
holes be physically ‘normal’ (although for a limited future only), remained
essentially applicable to Bekenstein-Hawking black holes with their thermo-
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dynamical aspects (Sect. 5.1). However, arguments indicating a genuine (pos-
sibly dramatic) quantum nature of the event horizon have also been raised
(’t Hooft 1990, Keski-Vakkuri et al. 1995, Li and Gott 1998).

While a consistent quantum description of black holes has not yet been
given (for attempts see Kiefer and Louko 1998, or Vaz and Witten 1998),
semiclassical black holes have been discussed by means of available concepts
(Kiefer 1997). When combined with quantum cosmology, they lead to impor-
tant novel consequences, which seem to revive the initial doubts about the
meaning and existence of black hole interiors.

Consider the Schwarzschild metric (Fig. 5.1) as far as it is relevant for
a black hole formed by collapsing matter (Fig. 5.3a), where the Kruskal re-
gions III and IV do not occur. Its dynamical (3+1) description in terms of
three-geometries depends on the choice of a foliation (cf. the Oppenheimer-
Snyder model described in Box 32.1 of Misner, Thorne and Wheeler 1973).
Three-geometries which intersect the event horizon may spatially extend to
the singularity at r = 0, and thus render the global quantum states that they
carry prone to consequences of a yet elusive unified field theory. However,
a foliation according to Schwarzschild time t would describe regular three-
geometries for t < ∞, and they could be continued in time beyond t = ∞
by means of the new time coordinate r (with physical time growing with
decreasing r from r = 2M to r = 0). The black hole interior with its sin-
gularity would always remain in our formal future according to this regular
foliation. Therefore, the latter seems to be appropriate for the formulation of
a cosmological boundary condition (in superspace), that may determine an
arrow of time.

For a discussion assume again that the expansion of this classical uni-
verse is reversed at a finite Schwarzschild time t = tturn much bigger than
the formation time of the black hole (Fig. 6.4). No horizon exists on this
Schwarzschild simultaneity t = tturn. If the cosmic time arrow does change
direction (while the universe passes through an era of thermodynamical indef-
initeness), the gravitationally collapsing matter close to the expected horizon
will very soon (in terms of its own proper time) enter the era where radia-
tion is advanced in the sense of Chap. 2. The black hole can then no longer
‘lose hair’ by emitting retarded radiation: it must instead ‘grow hair’ in an
anti-causal manner (Fig. 6.5). According to a ‘time-reversed no-hair theorem’
it has to re-expand when the universe starts recontracting (Zeh 1994, Kiefer
and Zeh 1995).

This scenario does not contradict the geometro-dynamical theorems
about a monotonic growth of black hole areas, since no horizons ever form. A
classical spacetime will not even exist close to the ‘turning of the tide’. Here
decoherence is replaced with recoherence. Only region I of Fig. 5.1 then ap-
plies. However, events which appear ‘later’ than tturn in the classical picture
are ‘earlier’ in the sense of the fundamental dynamics of the Wheeler-DeWitt
equation (6.6) — and therefore also in the thermodynamical sense. This quan-
tum cosmological model describes an apparent (quasi-classical) two-time Weyl
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Fig. 6.4. Classical trajectory of a collapsing dust shell (or the surface of a collapsing star) in
a thermodynamically symmetric universe, represented in compressed Schwarzschild coor-
dinates (with Schwarzschild metric valid only outside the shell). Due to scale compression,
light rays appear almost horizontally in the graphic. For t > tturn, advanced radiation from
the (then) formal past (in our future) would focus onto the black hole, and ‘cause’ it to
re-expand and grow hair in this scenario, while contemporary observers would experience
time in the opposite direction. No horizon ever forms. Because of the drastic quantum
effects close to the turning point of a Friedmann universe (cf. Fig. 6.3), there will in gen-
eral be no more than a ‘probabilistic’ connection between quasi-classical expansion and
contraction eras of the universe. (From Kiefer and Zeh 1995)

tensor (or similar) condition (cf. Fig. 6.5). In quantized general relativity, the
two apparently different boundaries are identical, and thus represent one and
the same condition. The problem of their consistency (Sect. 5.4) is consider-
ably relaxed, since it is reduced to the ‘final’ condition of normalizability for
a→∞.

The description used so far in this section does not directly apply to
a forever-expanding universe, where the arrow would preserve its direction
along a complete quasi-trajectory from a = 0 to a = +∞. The Wheeler-
DeWitt wave function is then not normalizable for a → ∞. However, as
a symmetric generalization of the Weyl tensor hypothesis, one may require
this wave function to vanish on all somewhere-singular three-geometries. This
would again lead to important thermodynamical and quantum effects close
to event horizons (Zeh 1983), and drastically affect the possibility of contin-
uing a quasi-classical spacetime beyond them. These consequences would be
unobservable in practice by external observers, since the immediate vicinity
of a future horizon remains outside their backward light cones for any finite
future. In order to receive information from the vicinity of a future horizon,
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Fig. 6.5. Quasi-classical picture of a thermodynamically T-symmetric quantum universe
with ‘black-and-white holes’ that re-expand by anti-causal effects. Instead of horizons and
singularities there are merely spacetime regions of large curvature in this scenario. They
may serve as a short-cut in proper time between big bang and big crunch (or between the
presumed eras of opposite arrows of time). ‘Information-gaining systems’ could not sur-
vive as such. In quantum cosmology there is no unique connection between quasi-classical
histories (Everett branches) represented by the upper and lower halves of the Figure

one has to come dangerously close to it (see Fig. 5.2, where the light cone
structure is made evident).

These conclusions do indeed seem to throw serious doubts on the va-
lidity of a classical continuation of spacetime into black hole interiors. Event
horizons in classical general relativity may signal the presence of drastic ther-
modynamical effects rather than representing ‘physically normal’ regions of
spacetime. Even though their observable consequences depend on the world
lines (accelerations, in particular) of the required detectors (Sect. 5.2), global
quantum states, such as a specific ‘vacuum’, are invariantly defined (though
not invariantly observed). These global states may define an objective arrow
of time, including ‘quantum causality’, by means of a fundamental boundary
condition for the Wheeler-DeWitt wave function.
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Four weeks before his death, Albert Einstein wrote in a letter of condo-
lence to the family of his life-long friend Michael Besso (Dukas and Hoffman
1979): 1 “For us believing physicists, the division into past, present and fu-
ture has merely the meaning of an albeit obstinate illusion.” There is no
doubt that Einstein meant this remark seriously. Evidently, it refers to the
four-dimensional (‘static’) spacetime picture of a ‘block universe’ that his
theory of relativity uses so efficiently. This picture seems to be at variance
with the experience of a present passing through time (the ‘flow’ or ‘passage
of time’). In contrast, the objective (classical) spacetime framework contains
only a concept of local events, which may be regarded as a set of dynamically
related here-and-nows. Because of these empirical dynamical relations, char-
acterized by time-symmetric laws, a local present can be viewed as formally
‘moving’ along the world line of an observer (a succession of appropriate lo-
cal groups of events), dynamically controlled by proper time, while the global
dynamical state depends on an arbitrarily chosen foliation of the objective
and invariant spacetime (Sect. 5.4).

In Hermann Weyl’s words: “The objective world simply is; it does not
happen. Only to the gaze of my consciousness, crawling upward along the life
line of my body, does a section of this world come to life as a fleeting image in
space that continuously changes in time.” Any objectivization of subjective
empirical evidence can thus not be restricted to space, as it used to be in the
pre-relativistic concept of an objective global present. For this reason, Price
(1996) chose the subtitle ‘A View from Nowhen’ to his book on time’s ar-
row. However, whether the objective world ‘simply is’, or rather ‘comes into
being’, seems to be a pure matter of words (or description). Weyl’s ‘is’ does
not exclude dynamical time. The four- (or more-) dimensional ‘static’ view
is by no means specific to the theory of relativity. It does not even require
deterministic laws, as it was already referred to by St. Augustine in his Con-
fessiones. He regarded it as a divine view of the world — presumably as he
understood it as a complete description, not merely as a conceptual frame-
work. A mortal physicist may at least conceive of the future history of the
world (though with less confidence than about the past). Even Laplace could
not expect his model world as being practically determinable (cf. Sect. 3.3);

1 “Für uns gläubige Physiker hat die Scheidung zwischen Vergangenheit, Gegenwart

und Zukunft nur die Bedeutung einer wenn auch hartnäckigen Illusion.”
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he had to assume an extra-physical demon for this purpose. The argument
that the future cannot be exactly known to physical systems, such as humans
or computers, should not be confused with an indeterminism of the empiri-
cally founded dynamical laws (as often done in the popular theory of chaos
— cf. Bricmont 1996).

The peculiarity of the subjective present, often mistakenly regarded as
part of an objective ‘structure of time’, was emphasized by Einstein in a con-
versation with Carnap. According to Carnap (1963), “Einstein said that the
problem of the Now worried him seriously. He explained that the experience
of the Now means something special for man, something essentially different
from the past and the future, but that this important difference does not
and cannot occur within physics. That this experience cannot be grasped by
science seemed to him a matter of painful but inevitable resignation.” So he
concluded “that there is something essential about the Now which is just
outside the realm of science.”

Carnap emphasized, however, that Einstein agreed with him (in contrast
to Bergson and other philosophers) that this situation does not indicate a
defect of the physical concept of time. (The non-confirmation of a prejudice
is easily viewed as a defect.) It should rather be understood as reflecting the
missing definition of a psycho-physical parallelism that would then have to
take into account the fundamental and underivable empirical here-and-now
character of subjective awareness, which forms the basis of any observation
of reality.

The ‘divine world picture’ of a block universe, such as that based on
relativistic spacetime, does not contain any concept of a present, and can
therefore not describe any flow of time that we (seem to) experience as we
‘live in time’, that is, in the local instant. Does this subjective (and precisely
therefore real) experience now fundamentally induce a time asymmetry that
would otherwise be absent from the observed world? Einstein’s above-quoted
remark is indeed often misinterpreted for supporting an arrow of time that
is an illusion, based on the subjective observer who ‘moves’ in a certain
direction of time. It is, therefore, frequently mentioned by the information-
theoretical school of statistical mechanics (Sect. 3.3.1), or in favor of an extra-
physical concept of (growing) ‘human knowledge’ (Heisenberg’s ‘idealistic’
interpretation of the wave function). The increase of entropy would then only
be meaningful with respect to information-gaining human observers whose
extra-physical growth of knowledge would determine in which direction of
time statistical reasoning has to be applied.

In various chapters of the book I have tried to explain that the concept
of entropy, which is crucial for most time asymmetric phenomena, is indeed
observer-related by means of a relevance concept on that it has to be based.
This observer-relatedness of the macroscopic description of our physical world
is particularly important in quantum mechanics, and — as it turned out —
even for the emergence of a classical concept of time from a timeless quan-
tum world. However, the time-asymmetry of the phenomena could always
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be traced back (at least in principle) to an asymmetric structure of physical
reality, and perhaps ultimately to that of the wave function of the universe.
The concept of an objective physical reality could thereby be upheld as a
heuristic fiction 2 (that is all it can ever mean) — for example by means of a
collapse of the wave function, or in the Everett interpretation (cf. Sect. 4.6).

Memories must then also be asymmetric (in relation to their sources)
because of the asymmetric structure of the physical world. This may be suf-
ficient to explain the apparent flow of time once there is a psycho-physical
parallelism based on the moment of awareness. Only this (not necessarily
asymmetric) concept of a local present is fundamentally subjective — not
the asymmetry between past and future. What we usually call the identity of
a person (who changes considerably during his lifetime) is ‘in reality’ nothing
but a particularly strong causal (fact-like asymmetric) connection between
different local physical states which represent the individual carriers of a sub-
jective present. The here-and-now subjectivity as the center of all awareness
is a concept that goes beyond objective reality, although it must severely
affect our perception of the ‘real world’.

These latter remarks are essentially based on a classical description. As
is well known at least since von Neumann’s (1932) book, the formulation
of a psycho-physical parallelism based on instantaneous states of local sys-
tems encounters severe problems in quantum theory because of the latter’s
kinematical nonlocality. Generically, there are no local physical states any
more. I have therefore tried to explain in Sects. 4.6 and 6.2.2 that the en-
forced reformulation of this parallelism (or epi-phenomenalism) in terms of
the nonlocal wave function of the universe does in my opinion offer the chance
of simultaneously solving the quantum measurement problem and justifying
the (objectivizable) observer-relatedness of entropy. This universal quantum
theory (based on the Everett interpretation) describes the empirical quan-
tum indeterminism in a deterministic or even time-less quantum world by
means of observers with an indeterministic identity. Within the conceptual
framework of quantum theory, this unconventional interpretation seems to be
enforced by the profound contrast between quantum nonlocality (non-trivial
‘wholeness’) and the also empirically founded locality of the observer in space-
time.

The canonical quantization of general relativity (or of any unified field
theories containing it) led in Sect. 6.2 to the problem of wave functionals (su-

2 The notion of a ‘fiction’ thus does here not contradict that of reality. Instead, it
emphasizes the impossibility of proving a certain reality. For example, Einstein’s gläubiger
Physiker (believing physicist) may express the belief in an objective reality (preferentially
a local one) to be described by the physical formalism. As an admirer of Hume (but not
of Kant — see Franck 1949) Einstein is obviously aware of this hypothetical character
of reality. The evidence that nature appears comprehensible was regarded by Einstein as
“the most incomprehensible thing about nature”. One should here recall that Descartes
and Hume raised their doubts and criticism, which essentially forces us into fictionalism,
against any attempts of obtaining absolute certainty in the empirical sciences — not against

any more or less hidden reality — see d’Espagnat (1995).
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perpositions) of fields defined on global three-geometries (global simultane-
ities). They do not form a one-dimensional succession (a ‘history’). Just as
nonlocal quantum mechanical states in general, these global quantum states
define states of local subsystems only in certain components (branches).
While they must be defined on the space of states for all foliations of all
possible spacetimes, the local density matrix of the observer system should
be invariant under re-foliations which preserve its local inertial spacetime
frame. This situation may perhaps suggest a reformulation (or modification)
of quantum theory in a way that does not require the concept of global
states (on artificial simultaneities). However, the fact that entangled global
superpositions can and do lead to observable effects (such as in EPR/Bell
type experiments and decoherence) must have profound consequences on any
possible future theory.

The combination of our two most general and successful theories also
seems to indicate that the concept of a black hole interior becomes doubtful
(Sect. 6.3). Although we cannot perform experiments to confirm this conclu-
sion, we may be able to find out what we would observe according to our
theory in such extreme situations. Nonetheless, the question why the beau-
tiful conceptual spacetime symmetry of Maxwell’s and Einstein’s theories is
of limited validity represents the greatest mystery of present day theoretical
physics. It is, therefore, not too surprising — but utterly discomforting —
that some relativists and modern field theorists seem to be adopting forms
and interpretations of quantum theory that begin to deviate from those which
had to be invented by low energy physicists on empirical grounds.

Our physical world models (or heuristic fictions) must, of course, be-
come more and more speculative with increasing extrapolation away from
those realms of knowledge that are ‘directly’ accessible to our senses and
observing instruments. Since their novel conceptions seem to be essential for
explaining the observed ‘direction of time’, we have to trust in the steadily
growing wealth of experience. This (apparent?) historical process, that is it-
self based on the phenomenological arrow of time, has often revealed the
limited validity of our ‘everyday concepts’ that were derived from our direct
sense impressions. While this situation emphasizes the provisional status of
our knowledge, it should also motivate us to base cosmological considera-
tions on concepts of presently widest applicability (although not on merely
speculative ones) — concepts which therefore have to be ‘abstract’. Physical
models have to be tried to their intrinsically defined limits if they are to be
regarded as candidates for a description of reality.



Appendix: A Simple Numerical Toy Model

Various elementary models, intended to illustrate statistical methods in phys-
ics, can be found in the literature. Best known may be the urn model (Ehren-
fest and Ehrenfest 1911) and the ring model (Kac 1959). Both are based on
stochastic dynamics, applied in a given time direction. The model discussed
below is deterministic, with specific assumptions applied to initial conditions.
Its main intention is to illustrate the concept of a Zwanzig projection with
the simple example of coarse-graining in space. This is used for the definition
of entropy and in a master equation. However, it fails to represent a good ap-
proximation in the master equation, thereby demonstrating the importance
of dynamical requirements for a useful Zwanzig projection.

The model is defined by a swarm of nP free particles (i = 1, . . . , nP ),
moving with fixed velocities vi = v0 + ∆vi on a ‘ring’ (a periodic interval)
with a length of nS ‘units cells’ (j = 1, . . . , nS), whereby the ∆vi’s form a ho-
mogeneous random distribution within boundaries ±∆v/2. Coarse-graining
is defined over each cell. All particles are assumed to start in cell j = 1.

Our Zwanzig concept of relevance is also assumed to imply the identifica-
tion of all (distinguishable) particles, thus leading to an ‘occupation number
representation on cells’. Since the momenta are assumed constant, only the
spatial distribution of particles has to be considered. If nj particles are in the
j-th cell, the entropy according to this Zwanzig projection is given by

S = −
nS∑
j=1

nj
nP

ln
nj
nP

. (A.1)

It vanishes initially under the condition stated above, while its maximum,
Smax = lnnS , holds for equipartition, nj = nP /nS . With respect to this
coarse-grained entropy, the model has a statistical Poincaré recurrence time
tPoincaré = nnP−1

S , while the relaxation time, required for the approach to
equipartition, is of the order nS/∆v. It is very short, since this coarse-graining
is not robust. Other equilibrium distributions could easily be produced by
using intervals of different lengths.

The first plot of the Mathematica notebook 1 below (plot1) shows the
entropy evolution during the first 2000 units of time in the case of a relaxation
time scale of about 1000 units (with nP = 100 and nS = 20). Only integer

1 Programming help by E. Joos is acknowledged.
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numbers of time units are used in the plot in order to eliminate disturbing
lattice effects. At some later time (plot2), the coarse-grained representation
does not reveal any information about the existence of a low-entropy state
in the recent past any more (although this information must still exist, since
the motion could in principle be reversed).

One can now simply enforce a two-time boundary condition (Sect. 5.3)
by restricting all velocity variables ∆vi to integer multiples of nS divided by
a large integer (e. g., by rounding them off at a certain figure). The changes
induced thereby are negligible for medium times, although the evolution is
now exactly periodic over a large time that is nonetheless a very small fraction
of the statistical Poincaré recurrence time. Relative entropy minima may
occur at rational fractions of this period (such as 2/5, considered in plot3).

If the coarse-graining is applied dynamically, one obtains a master equa-
tion, valid for mean occupation numbers n̄j(t) in an ensemble of individual
solutions. For v0 = 0 it would read (cf. (4.42))

dn̄j
dt

= λ(n̄j−1 + n̄j+1 − 2n̄j) , (A.2)

where λ (in this case given by ∆v/8) is the mean rate for a particle to move by
one cell in one or the other direction. The same result is obtained for v0 6= 0
in the center of mass frame, that is, when the mean motion (according to v0)
is treated exactly. (Otherwise, Galileo invariance would be lost.) The lower
curve of plot4 shows the resulting monotonic increase of ensemble entropy,
compared with the individual solution of plot1.

Evidently, the two curves agree only for the first 2/∆v units of time.
This demonstrates that this Zwanzig projection is not very appropriate for
dynamical purposes, since some fine-grained information remains dynamically
relevant. Here, the individually conserved velocities lead to relevant correla-
tions between position and velocity. The master equation, which does not
distinguish between individual particles, allows them even to change their
direction of motion. A slightly improved long-time approximation can there-
fore be obtained by assuming all particles to diffuse in the same direction
— equivalent to using a reference frame that moves with a velocity −∆v/2
in the center-of-mass frame (upper curve of plot4). However, this procedure
still neglects dynamically relevant correlations representing the fact that the
most distant particles continue travelling fastest. These correlations remain
dynamically relevant until most particles have travelled the whole interval
(the relaxation time), as can be recognized in plot4.

Stochastic individual histories nj(t) representing the master equation
(A.2), that describes an ensemble, can be produced from a Langevin equa-
tion (dynamically using a random number generator). Their histories are
not determined by initial states. Similar arguments apply to a quantum me-
chanical Itô process (Sect. 4.4), which can be used to describe an apparent
ensemble that would represent an open system in a closed universe even in
the deterministic Everett interpretation.
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       Notebook: A Toy Model

         1. Definitions

nS = 20;
nP = 100;
v0 = 1.;
Dv = .02;

shannon@x_D := If@x == 0, 0., N@x Log@xDDD

entropMax = Log@nSD �� N

2.995732274

poincareTime = nS^HnP - 1L �� N

6.338253001´ 10128

relaxTime = nS� Dv

1000.

          2. Initial Values

SeedRandom@2D

v = Table@v0 + Dv HRandom@D - .5L, 8nP<D;

x0 = Table@Random@D, 8 nP<D;

<< "Statistics`DescriptiveStatistics`"

8Mean@x0D, Mean@vD, Variance@vD<

80.5156437577, 0.9997682434, 0.00003356193642<
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          3. Exact Model

entropy@t_D := ModuleA8cellnb, n, e<,

i

k

jjjjjjcellnb = Ceiling@Mod@v t + x0, nSDD;

Do@n@iD = Count@cellnb, iD, 8i, nS<D;

e = NALog@nPD -
Új=1
nS shannon@n@jDD

�������������������������������������������������������
nP

E
y

{

zzzzzz E

plot1 = ListPlot@Table@8t, entropy@tD<, 8t, -50, 2000, 5<D,
PlotJoined ® True, Frame ® True, PlotRange ® 80, entropMax<D;
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plot2 = ListPlot@Table@8t, entropy@tD<, 8t, 10000, 12000, 5<D,
PlotJoined ® True, Frame ® True, PlotRange ® 80, entropMax<D;
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          4. Two-Time Boundary Condition

v =
Floor@10000 vD
���������������������������������������������

10000
;

period = 10000 nS

200000

plot3 = ListPlot@Table@8t, entropy@tD<, 8t, 79000, 81000, 5<D,
PlotJoined ® True, Frame ® True, PlotRange ® 80, entropMax<D;
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          5. Master Equation

l = Dv� 8

0.0025

equList = Table@n@jD'@tD == l H-2 n@jD@tD
+ n@Mod@j, nSD + 1D@tD + n@Mod@j - 2, nSD + 1D@tDL, 8j, nS< D;

iniList = Join@ 8n@1D@0D == nP<, Table@n@jD@0D == 0., 8j, 2, nS<D D;
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nSolution = NDSolve@Join@equList, iniListD, Table@n@jD,
8j, nS<D, 8t, 0, 2000< D;

entropyMaster@t_D := N@Log@nPDD -
Új=1
nS shannon@n@jD@tDD

�����������������������������������������������������������������
nP

�. nSolution �� First

plotMasterShort = ListPlot@Table@8x, entropyMaster@xD <,
8x, 0, 2000, 20<D , PlotJoined -> True, PlotRange ->
80, entropMax<, DisplayFunction -> IdentityD;

equList = Table@n@jD'@tD == 4 l H-n@jD@tD
+ n@Mod@j - 2, nSD + 1D@tDL, 8j, nS< D;

nSolution = NDSolve@Join@equList, iniListD, Table@n@jD,
8j, nS<D, 8t, 0, 2000< D;

plotMasterLong = ListPlot@Table@8x, entropyMaster@xD <,
8x, 0, 2000, 20<D , PlotJoined -> True, PlotRange ->
80, entropMax<, DisplayFunction -> IdentityD;

plot4 = Show@plot1, plotMasterShort, plotMasterLongD;
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Böhm, A. (1978): The Rigged Hilbert Spaces and Quantum Mechanics (Sprin-

ger) – [116]
Bohm, A., Doebner, H.-D., and Kielanowski, P. (1998): Irreversibility and

Causality (Springer) – [120]
Bohm, D. (1952): A suggested Interpretation of the Quantum Theory in

Terms of “Hidden” Variables. Phys.Rev. 85, 166; dto. 85, 180 – [122]
Bohm, D., and Bub, J. (1966): A proposed solution of the measurement

problem in quantum mechanics by a hidden variable theory. Rev. Mod.
Phys. 38, 453 – [114]

Bohm, D., and Hiley, B. (1993): The Undivided Universe: an Ontological
Interpretation of Quantum Mechanics (Routledge and Kegan) – [122]

Bohr, N. (1928): The Quantum Postulate and the Recent Development of
Atomic Theory. Nature 121, 580 – (WZ) – [110]
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