
Words to the reader about how to use this textbook

I. What This Book Does and Does Not Contain

This text is intended for use by beginning graduate students and advanced upper

division undergraduate students in all areas of chemistry.

It provides:

(i) An introduction to the fundamentals of quantum mechanics as they apply to chemistry,

(ii) Material that provides brief introductions to the subjects of molecular spectroscopy and

chemical dynamics,

(iii) An introduction to computational chemistry applied to the treatment of electronic

structures of atoms, molecules, radicals, and ions,

(iv) A large number of exercises, problems, and detailed solutions.

It does not provide much historical perspective on the development of quantum

mechanics. Subjects such as the photoelectric effect, black-body radiation, the dual nature

of electrons and photons, and the Davisson and Germer experiments are not even

discussed.

To provide a text that students can use to gain introductory level knowledge of

quantum mechanics as applied to chemistry problems, such a non-historical approach had

to be followed. This text immediately exposes the reader to the machinery of quantum

mechanics.

Sections 1 and 2 (i.e., Chapters 1-7), together with Appendices A, B, C and E,

could constitute a one-semester course for most first-year Ph. D. programs in the U. S. A.

Section 3 (Chapters 8-12) and selected material from other appendices or selections from

Section 6 would be appropriate for a second-quarter or second-semester course. Chapters

13- 15 of Sections 4 and 5 would be of use for providing a link to a one-quarter or one-

semester class covering molecular spectroscopy. Chapter 16 of Section 5 provides a brief

introduction to chemical dynamics that could be used at the beginning of a class on this

subject.

There are many quantum chemistry and quantum mechanics textbooks that cover

material similar to that contained in Sections 1 and 2; in fact, our treatment of this material

is generally briefer and less detailed than one finds in, for example,     Quantum Chemistry    ,

H. Eyring, J. Walter, and G. E. Kimball, J. Wiley and Sons, New York, N.Y. (1947),

    Quantum Chemistry    , D. A. McQuarrie, University Science Books, Mill Valley, Ca.

(1983),       Molecular Quantum Mechanics   , P. W. Atkins, Oxford Univ. Press, Oxford,

England (1983), or     Quantum Chemistry    , I. N. Levine, Prentice Hall, Englewood Cliffs,



N. J. (1991), Depending on the backgrounds of the students, our coverage may have to be

supplemented in these first two Sections.

By covering this introductory material in less detail, we are able, within the

confines of a text that can be used for a one-year or a two-quarter course, to introduce the

student to the more modern subjects treated in Sections 3, 5, and 6. Our coverage of

modern quantum chemistry methodology is not as detailed as that found in      Modern

    Quantum Chemistry    , A. Szabo and N. S. Ostlund, Mc Graw-Hill, New York (1989),

which contains little or none of the introductory material of our Sections 1 and 2.

By combining both introductory and modern up-to-date quantum chemistry material

in a single book designed to serve as a text for one-quarter, one-semester, two-quarter, or

one-year classes for first-year graduate students, we offer a unique product.

It is anticipated that a course dealing with atomic and molecular spectroscopy will

follow the student's mastery of the material covered in Sections 1- 4. For this reason,

beyond these introductory sections, this text's emphasis is placed on electronic structure

applications rather than on vibrational and rotational energy levels, which are traditionally

covered in considerable detail in spectroscopy courses.

In brief summary, this book includes the following material:

1. The Section entitled The Basic Tools of Quantum Mechanics treats

the fundamental postulates of quantum mechanics and several applications to exactly

soluble model problems. These problems include the conventional particle-in-a-box (in one

and more dimensions), rigid-rotor, harmonic oscillator, and one-electron hydrogenic

atomic orbitals. The concept of the Born-Oppenheimer separation of electronic and

vibration-rotation motions is introduced here. Moreover, the vibrational and rotational

energies, states, and wavefunctions of diatomic, linear polyatomic and non-linear

polyatomic molecules are discussed here at an introductory level. This section also

introduces the variational method and perturbation theory as tools that are used to deal with

problems that can not be solved exactly.

2. The Section Simple Molecular Orbital Theory deals with atomic and

molecular orbitals in a qualitative manner, including their symmetries, shapes, sizes, and

energies. It introduces bonding, non-bonding, and antibonding orbitals, delocalized,

hybrid, and Rydberg orbitals, and introduces Hückel-level models for the calculation of

molecular orbitals as linear combinations of atomic orbitals (a more extensive treatment of



several semi-empirical methods is provided in Appendix F). This section also develops

the Orbital Correlation Diagram concept that plays a central role in using Woodward-

Hoffmann rules to predict whether chemical reactions encounter symmetry-imposed

barriers.

3. The Electronic Configurations, Term Symbols, and States
Section treats the spatial, angular momentum, and spin symmetries of the many-electron

wavefunctions that are formed as antisymmetrized products of atomic or molecular orbitals.

Proper coupling of angular momenta (orbital and spin) is covered here, and atomic and

molecular term symbols are treated. The need to include Configuration Interaction to

achieve qualitatively correct descriptions of certain species' electronic structures is treated

here. The role of the resultant Configuration Correlation Diagrams in the Woodward-

Hoffmann theory of chemical reactivity is also developed.

4. The Section on Molecular Rotation and Vibration provides an

introduction to how vibrational and rotational energy levels and wavefunctions are

expressed for diatomic, linear polyatomic, and non-linear polyatomic molecules whose

electronic energies are described by a single potential energy surface. Rotations of "rigid"

molecules and harmonic vibrations of uncoupled normal modes constitute the starting point

of such treatments.

5. The Time Dependent Processes Section uses time-dependent perturbation

theory, combined with the classical electric and magnetic fields that arise due to the

interaction of photons with the nuclei and electrons of a molecule, to derive expressions for

the rates of transitions among atomic or molecular electronic, vibrational, and rotational

states induced by photon absorption or emission. Sources of line broadening and time

correlation function treatments of absorption lineshapes are briefly introduced. Finally,

transitions induced by collisions rather than by electromagnetic fields are briefly treated to

provide an introduction to the subject of theoretical chemical dynamics.

6. The Section on More Quantitive Aspects of Electronic Structure
Calculations introduces many of the computational chemistry methods that are used

to quantitatively evaluate molecular orbital and configuration mixing amplitudes. The

Hartree-Fock self-consistent field (SCF), configuration interaction (CI),

multiconfigurational SCF (MCSCF), many-body and Møller-Plesset perturbation theories,



coupled-cluster (CC), and density functional or Xα-like methods are included. The

strengths and weaknesses of each of these techniques are discussed in some detail. Having

mastered this section, the reader should be familiar with how potential energy

hypersurfaces, molecular properties, forces on the individual atomic centers, and responses

to externally applied fields or perturbations are evaluated on high speed computers.

II. How to Use This Book: Other Sources of Information and Building Necessary

Background

In most class room settings, the group of students learning quantum mechanics as it

applies to chemistry have quite diverse backgrounds. In particular, the level of preparation

in mathematics is likely to vary considerably from student to student, as will the exposure

to symmetry and group theory. This text is organized in a manner that allows students to

skip material that is already familiar while providing access to most if not all necessary

background material. This is accomplished by dividing the material into sections, chapters

and Appendices which fill in the background, provide methodological tools, and provide

additional details.

The Appendices covering Point Group Symmetry and Mathematics Review are

especially important to master. Neither of these two Appendices provides a first-principles

treatment of their subject matter. The students are assumed to have fulfilled normal

American Chemical Society mathematics requirements for a degree in chemistry, so only a

review of the material especially relevant to quantum chemistry is given in the Mathematics

Review Appendix. Likewise, the student is assumed to have learned or to be

simultaneously learning about symmetry and group theory as applied to chemistry, so this

subject is treated in a review and practical-application manner here. If group theory is to be

included as an integral part of the class, then this text should be supplemented (e.g., by

using the text     Chemical Applications of Group Theory    , F. A. Cotton, Interscience, New

York, N. Y. (1963)).

The progression of sections leads the reader from the principles of quantum

mechanics and several model problems which illustrate these principles and relate to

chemical phenomena, through atomic and molecular orbitals, N-electron configurations,

states, and term symbols, vibrational and rotational energy levels, photon-induced

transitions among various levels, and eventually to computational techniques for treating

chemical bonding and reactivity.



At the end of each Section, a set of Review Exercises  and fully worked out

answers are given. Attempting to work these exercises should allow the student to

determine whether he or she needs to pursue additional background building via the

Appendices .

In addition to the Review Exercises , sets of Exercises and Problems, and

their solutions, are given at the end of each section.

The exercises are brief and highly focused on learning a particular skill. They allow the

student to practice the mathematical steps and other material introduced in the section. The

problems are more extensive and require that numerous steps be executed. They illustrate

application of the material contained in the chapter to chemical phenomena and they help

teach the relevance of this material to experimental chemistry. In many cases, new material

is introduced in the problems, so all readers are encouraged to become actively involved in

solving all problems.

To further assist the learning process, readers may find it useful to consult other

textbooks or literature references. Several particular texts are recommended for additional

reading, further details, or simply an alternative point of view. They include the following

(in each case, the abbreviated name used in this text is given following the proper

reference):

1.     Quantum Chemistry    , H. Eyring, J. Walter, and G. E. Kimball, J. Wiley

and Sons, New York, N.Y. (1947)- EWK.

2.     Quantum Chemistry    , D. A. McQuarrie, University Science Books, Mill Valley, Ca.

(1983)- McQuarrie.

3.      Molecular Quantum Mechanics   , P. W. Atkins, Oxford Univ. Press, Oxford, England

(1983)- Atkins.

4.     The Fundamental Principles of Quantum Mechanics   , E. C. Kemble, McGraw-Hill, New

York, N.Y. (1937)- Kemble.

5.     The Theory of Atomic Spectra   , E. U. Condon and G. H. Shortley, Cambridge Univ.

Press, Cambridge, England (1963)- Condon and Shortley.

6.     The Principles of Quantum Mechanics   , P. A. M. Dirac, Oxford Univ. Press, Oxford,

England (1947)- Dirac.

7.      Molecular Vibrations   , E. B. Wilson, J. C. Decius, and P. C. Cross, Dover Pub., New

York, N. Y. (1955)- WDC.

8.     Chemical Applications of Group Theory    , F. A. Cotton, Interscience, New York, N. Y.

(1963)- Cotton.

9.     Angular Momentum     , R. N. Zare, John Wiley and Sons, New York, N. Y. (1988)-

Zare.



10.    Introduction to Quantum Mechanics   , L. Pauling and E. B. Wilson, Dover Publications,

Inc., New York, N. Y. (1963)- Pauling and Wilson.

11.      Modern Quantum Chemistry    , A. Szabo and N. S. Ostlund, Mc Graw-Hill, New York

(1989)- Szabo and Ostlund.

12.     Quantum Chemistry    , I. N. Levine, Prentice Hall, Englewood Cliffs, N. J. (1991)-

Levine.

13.     Energetic Principles of Chemical Reactions   , J. Simons, Jones and Bartlett, Portola

Valley, Calif. (1983),



Section 1 The Basic Tools of Quantum Mechanics

Chapter 1

Quantum Mechanics Describes Matter in Terms of Wavefunctions and Energy Levels.

Physical Measurements are Described in Terms of Operators Acting on Wavefunctions

I. Operators, Wavefunctions, and the Schrödinger Equation

The trends in chemical and physical properties of the elements described beautifully

in the periodic table and the ability of early spectroscopists to fit atomic line spectra by

simple mathematical formulas and to interpret atomic electronic states in terms of empirical

quantum numbers provide compelling evidence that    some     relatively simple framework

must exist for understanding the electronic structures of all atoms. The great predictive

power of the concept of atomic valence further suggests that molecular electronic structure

should be understandable in terms of those of the constituent atoms.

Much of quantum chemistry attempts to make more quantitative these aspects of

chemists' view of the periodic table and of atomic valence and structure. By starting from

'first principles' and treating atomic and molecular states as solutions of a so-called

Schrödinger equation, quantum chemistry seeks to determine      what underlies    the empirical

quantum numbers, orbitals, the aufbau  principle and the concept of valence used by

spectroscopists and chemists, in some cases, even prior to the advent of quantum

mechanics.

Quantum mechanics is cast in a language that is not familiar to most students of

chemistry who are examining the subject for the first time. Its mathematical content and

how it relates to experimental measurements both require a great deal of effort to master.

With these thoughts in mind, the authors have organized this introductory section in a

manner that    first     provides the student with a brief introduction to the two primary

constructs of quantum mechanics, operators and wavefunctions that obey a Schrödinger

equation,    then      demonstrates the application of these constructs to several chemically

relevant model problems, and    finally      returns to examine in more detail the conceptual

structure of quantum mechanics.

By learning the solutions of the Schrödinger equation for a few model systems, the

student can better appreciate the treatment of the fundamental postulates of quantum

mechanics as well as their relation to experimental measurement because the wavefunctions

of the known model problems can be used to illustrate.



A. Operators

Each physically measurable quantity has a corresponding operator. The eigenvalues

of the operator tell the values of the corresponding physical property that can be observed

In quantum mechanics, any experimentally measurable physical quantity F (e.g.,

energy, dipole moment, orbital angular momentum, spin angular momentum, linear

momentum, kinetic energy) whose classical mechanical expression can be written in terms

of the    cartesian     positions {qi} and momenta {pi} of the particles that comprise the system

of interest is assigned a corresponding quantum mechanical operator F. Given F in terms

of the {qi} and {pi}, F is formed by replacing pj by -ih∂/∂qj and leaving qj untouched.

For example, if

F=Σl=1,N (pl2/2ml + 1/2 k(ql-ql0)2 + L(ql-ql0)),

then

F=Σl=1,N (- h2/2ml ∂2/∂ql2 + 1/2 k(ql-ql0)2 + L(ql-ql0))

is the corresponding quantum mechanical operator. Such an operator would occur when,

for example, one describes the sum of the kinetic energies of a collection of particles (the

Σl=1,N (pl2/2ml ) term, plus the sum of "Hookes' Law" parabolic potentials (the 1/2 Σl=1,N

k(ql-ql0)2), and (the last term in F) the interactions of the particles with an externally

applied field whose potential energy varies linearly as the particles move away from their

equilibrium positions {ql0}.

The sum of the z-components of angular momenta of a collection of N particles has

F=Σ j=1,N (xjpyj - yjpxj),

and the corresponding operator is

F=-ih Σ j=1,N (xj∂/∂yj - yj∂/∂xj).

The x-component of the dipole moment for a collection of N particles



has

F=Σ j=1,N Zjexj, and

F=Σ j=1,N Zjexj ,

where Zje is the charge on the jth particle.

The mapping from F to F is straightforward only in terms of cartesian coordinates.

To map a classical function F, given in terms of curvilinear coordinates (even if they are

orthogonal), into its quantum operator is not at all straightforward. Interested readers are

referred to Kemble's text on quantum mechanics which deals with this matter in detail. The

mapping can always be done in terms of cartesian coordinates after which a transformation

of the resulting coordinates and differential operators to a curvilinear system can be

performed. The corresponding transformation of the kinetic energy operator to spherical

coordinates is treated in detail in Appendix A. The text by EWK also covers this topic in

considerable detail.

The relationship of these quantum mechanical operators to experimental

measurement will be made clear later in this chapter. For now, suffice it to say that these

operators define equations whose solutions determine the values of the corresponding

physical property that can be observed when a measurement is carried out;     only      the values

so determined can be observed. This should suggest the origins of quantum mechanics'

prediction that some measurements will produce discrete or quantized  values of certain

variables (e.g., energy, angular momentum, etc.).

B. Wavefunctions

The eigenfunctions of a quantum mechanical operator depend on the coordinates

upon which the operator acts; these functions are called wavefunctions

In addition to operators corresponding to each physically measurable quantity,

quantum mechanics describes the state of the system in terms of a wavefunction Ψ that is a

function of the coordinates {qj} and of time t. The function |Ψ(qj,t)|2 = Ψ*Ψ gives the

probability density for observing the coordinates at the values qj at time t. For a many-

particle system such as the H2O molecule, the wavefunction depends on many coordinates.

For the H2O example, it depends on the x, y, and z (or r,θ, and φ) coordinates of the ten



electrons and the x, y, and z (or r,θ, and φ) coordinates of the oxygen nucleus and of the

two protons; a total of thirty-nine coordinates appear in Ψ.

In classical mechanics, the coordinates qj and their corresponding momenta pj are

functions of time. The state of the system is then described by specifying qj(t) and pj(t). In

quantum mechanics, the concept that qj is known as a function of time is replaced by the

concept of the probability density for finding qj at a particular value at a particular time t:

|Ψ(qj,t)|2. Knowledge of the corresponding momenta as functions of time is also

relinquished in quantum mechanics; again, only knowledge of the probability density for

finding pj with any particular value at a particular time t remains.

C. The Schrödinger Equation

This equation is an eigenvalue equation for the energy or Hamiltonian operator; its

eigenvalues provide the energy levels of the system

1. The Time-Dependent Equation

If the Hamiltonian operator contains the time variable explicitly, one must solve the

time-dependent Schrödinger equation

How to extract from Ψ(qj,t) knowledge about momenta is treated below in Sec. III.

A, where the structure of quantum mechanics, the use of operators and wavefunctions to

make predictions and interpretations about experimental measurements, and the origin of

'uncertainty relations' such as the well known Heisenberg uncertainty condition dealing

with measurements of coordinates and momenta are also treated.

Before moving deeper into understanding what quantum mechanics 'means', it is

useful to learn how the wavefunctions Ψ are found by applying the basic equation of

quantum mechanics, the     Schrödinger equation    ,  to a few exactly soluble model problems.

Knowing the solutions to these 'easy' yet chemically very relevant models will then

facilitate learning more of the details about the structure of quantum mechanics because

these model cases can be used as 'concrete examples'.

The Schrödinger equation is a differential equation depending on time and on all of

the spatial coordinates necessary to describe the system at hand (thirty-nine for the H2O

example cited above). It is usually written

H Ψ = i h ∂Ψ/∂t



where Ψ(qj,t) is the unknown wavefunction and H is the operator corresponding to the

total energy physical property of the system. This operator is called the Hamiltonian and is

formed, as stated above, by first writing down the classical mechanical expression for the

total energy (kinetic plus potential) in cartesian coordinates and momenta and then replacing

all classical momenta pj by their quantum mechanical operators pj = - ih∂/∂qj .

For the H2O example used above, the classical mechanical energy of all thirteen

particles is

E = Σi { pi2/2me + 1/2 Σj e2/ri,j  - Σa Zae2/ri,a }

+ Σa {pa2/2ma + 1/2 Σb ZaZbe2/ra,b },

where the indices i and j are used to label the ten electrons whose thirty cartesian

coordinates are {qi} and a and b label the three nuclei whose charges are denoted {Za}, and

whose nine cartesian coordinates are {qa}. The electron and nuclear masses are denoted me

and {ma}, respectively.

The corresponding Hamiltonian operator is

H = Σi { - (h2/2me) ∂2/∂qi2 + 1/2 Σj e2/ri,j  - Σa Zae2/ri,a }

+ Σa { - (h2/2ma) ∂2/∂qa2+ 1/2 Σb ZaZbe2/ra,b }.

Notice that H is a second order differential operator in the space of the thirty-nine cartesian

coordinates that describe the positions of the ten electrons and three nuclei. It is a second

order operator because the momenta appear in the kinetic energy as pj2 and pa2,  and the

quantum mechanical operator for each momentum p = -ih ∂/∂q is of first order.

The Schrödinger equation for the H2O example at hand then reads

Σi { - (h2/2me) ∂2/∂qi2 + 1/2 Σj e2/ri,j  - Σa Zae2/ri,a } Ψ

+ Σa { - (h2/2ma) ∂2/∂qa2+ 1/2 Σb ZaZbe2/ra,b } Ψ

= i h ∂Ψ/∂t.

2. The Time-Independent Equation



If the Hamiltonian operator does not contain the time variable explicitly, one can

solve the time-independent Schrödinger equation

In cases where the classical energy, and hence the quantum Hamiltonian, do     not   

contain terms that are explicitly time dependent (e.g., interactions with time varying

external electric or magnetic fields would add to the above classical energy expression time

dependent terms discussed later in this text), the separations of variables techniques can be

used to reduce the Schrödinger equation to a time-independent equation.

In such cases, H is not explicitly time dependent, so one can assume that Ψ(qj,t) is

of the form

Ψ(qj,t) = Ψ(qj) F(t).

Substituting this 'ansatz' into the time-dependent Schrödinger equation gives

Ψ(qj) i h ∂F/∂t = H Ψ(qj) F(t) .

Dividing by Ψ(qj) F(t) then gives

F-1 (i h ∂F/∂t) = Ψ-1 (H Ψ(qj) ).

Since F(t) is only a function of time t, and Ψ(qj) is only a function of the spatial

coordinates {qj}, and because the left hand and right hand sides must be equal for all

values of t and of {qj}, both the left and right hand sides must equal a constant. If this

constant is called E, the    two      equations that are embodied in this separated Schrödinger

equation read as follows:

H Ψ(qj) = E Ψ(qj),

i h ∂F(t)/∂t = ih dF(t)/dt = E F(t).

The first of these equations is called the time-independent Schrödinger equation; it

is a so-called eigenvalue equation in which one is asked to find functions that yield a

constant multiple of themselves when acted on by the Hamiltonian operator. Such functions

are called eigenfunctions of H and the corresponding constants are called eigenvalues of H.



For example, if H were of the form - h2/2M ∂2/∂φ2 = H , then functions of the form exp(i

mφ) would be eigenfunctions because

{ - h2/2M ∂2/∂φ2} exp(i mφ) = { m2 h2 /2M } exp(i mφ).

In this case, { m2 h2 /2M } is the eigenvalue.

When the Schrödinger equation can be separated to generate a time-independent

equation describing the spatial coordinate dependence of the wavefunction, the eigenvalue

E must be returned to the equation determining F(t) to find the time dependent part of the

wavefunction. By solving

ih dF(t)/dt = E F(t)

once E is known, one obtains

F(t) = exp( -i Et/ h),

and the full wavefunction can be written as

Ψ(qj,t) = Ψ(qj) exp (-i Et/ h).

For the above example, the time dependence is expressed by

F(t) = exp ( -i t { m2 h2 /2M }/ h).

Having been introduced to the concepts of operators, wavefunctions, the

Hamiltonian and its Schrödinger equation, it is important to now consider several examples

of the applications of these concepts. The examples treated below were chosen to provide

the learner with valuable experience in solving the Schrödinger equation; they were also

chosen because the models they embody form the most elementary chemical models of

electronic motions in conjugated molecules and in atoms, rotations of linear molecules, and

vibrations of chemical bonds.

II. Examples of Solving the Schrödinger Equation

A. Free-Particle Motion in Two Dimensions



The number of dimensions depends on the number of particles and the number of

spatial (and other) dimensions needed to characterize the position and motion of each

particle

1. The Schrödinger Equation

Consider an electron of mass m and charge e moving on a two-dimensional surface

that defines the x,y plane (perhaps the electron is constrained to the surface of a solid by a

potential that binds it tightly to a narrow region in the z-direction), and assume that the

electron experiences a constant potential V0 at all points in this plane (on any real atomic or

molecular surface, the electron would experience a potential that varies with position in a

manner that reflects the periodic structure of the surface). The pertinent time independent

Schrödinger equation is:

- h2/2m (∂2/∂x2 +∂2/∂y2)ψ(x,y) +V0ψ(x,y) = E ψ(x,y).

Because there are no terms in this equation that    couple    motion in the x and y directions

(e.g., no terms of the form xayb or ∂/∂x ∂/∂y or x∂/∂y), separation of variables can be used

to write ψ as a product ψ(x,y)=A(x)B(y). Substitution of this form into the Schrödinger

equation, followed by collecting together all x-dependent and all y-dependent terms, gives;

- h2/2m A-1∂2A/∂x2 - h2/2m B-1∂2B/∂y2 =E-V0.

Since the first term contains no y-dependence and the second contains no x-dependence,

both must actually be constant (these two constants are denoted Ex and Ey, respectively),

which allows two separate Schrödinger equations to be written:

- h2/2m A-1∂2A/∂x2 =Ex, and

- h2/2m B-1∂2B/∂y2 =Ey.

The total energy E can then be expressed in terms of these separate energies Ex and Ey as

Ex + Ey =E-V0. Solutions to the x- and y- Schrödinger equations are easily seen to be:

A(x) = exp(ix(2mEx/h2)1/2) and exp(-ix(2mEx/h2)1/2) ,



B(y) = exp(iy(2mEy/h2)1/2) and exp(-iy(2mEy/h2)1/2).

Two independent solutions are obtained for each equation because the x- and y-space

Schrödinger equations are both second order differential equations.

2. Boundary Conditions

The boundary conditions, not the Schrödinger equation, determine whether the

eigenvalues will be discrete or continuous

If the electron is entirely unconstrained within the x,y plane, the energies Ex and Ey

can assume any value; this means that the experimenter can 'inject' the electron onto the x,y

plane with any total energy E and any components Ex and Ey along the two axes as long as

Ex + Ey = E. In such a situation, one speaks of the energies along both coordinates as

being 'in the continuum' or 'not quantized'.

In contrast, if the electron is constrained to remain within a fixed area in the x,y

plane (e.g., a rectangular or circular region), then the situation is qualitatively different.

Constraining the electron to any such specified area gives rise to so-called boundary

conditions that impose additional requirements on the above A and B functions.

These constraints can arise, for example, if the potential V0(x,y) becomes very large for

x,y values outside the region, in which case, the probability of finding the electron outside

the region is very small. Such a case might represent, for example, a situation in which the

molecular structure of the solid surface changes outside the enclosed region in a way that is

highly repulsive to the electron.

For example, if motion is constrained to take place within a rectangular region

defined by 0 ≤ x ≤ Lx; 0 ≤ y ≤ Ly, then the continuity property that all wavefunctions must

obey (because of their interpretation as probability densities, which must be continuous)

causes A(x) to vanish at 0 and at Lx. Likewise, B(y) must vanish at 0 and at Ly. To

implement these constraints for A(x), one must linearly combine the above two solutions

exp(ix(2mEx/h2)1/2) and exp(-ix(2mEx/h2)1/2) to achieve a function that vanishes at x=0:

A(x) = exp(ix(2mEx/h2)1/2) - exp(-ix(2mEx/h2)1/2).

One is allowed to linearly combine solutions of the Schrödinger equation that have the same

energy (i.e., are degenerate) because Schrödinger equations are linear differential



equations. An analogous process must be applied to B(y) to achieve a function that

vanishes at y=0:

B(y) = exp(iy(2mEy/h2)1/2) - exp(-iy(2mEy/h2)1/2).

Further requiring A(x) and B(y) to vanish, respectively, at x=Lx and y=Ly, gives

equations that can be obeyed only if Ex and Ey assume particular values:

exp(iLx(2mEx/h2)1/2) - exp(-iLx(2mEx/h2)1/2) = 0, and

exp(iLy(2mEy/h2)1/2) - exp(-iLy(2mEy/h2)1/2) = 0.

These equations are equivalent to

sin(Lx(2mEx/h2)1/2) = sin(Ly(2mEy/h2)1/2) = 0.

Knowing that sin(θ) vanishes at θ=nπ, for n=1,2,3,..., (although the sin(nπ) function

vanishes for n=0, this function vanishes for all x or y, and is therefore unacceptable

because it represents zero probability density at all points in space) one concludes that the

energies Ex and Ey can assume only values that obey:

Lx(2mEx/h2)1/2 =nxπ,

Ly(2mEy/h2)1/2 =nyπ, or

Ex = nx2π2 h2/(2mLx2), and

Ey = ny2π2 h2/(2mLy2), with nx and ny =1,2,3, ...

It is important to stress that it is the imposition of boundary conditions, expressing the fact

that the electron is spatially constrained, that gives rise to quantized energies. In the absence

of spatial confinement, or with confinement only at x =0 or Lx or only

at y =0 or Ly, quantized energies would     not    be realized.

In this example, confinement of the electron to a finite interval along both the x and

y coordinates yields energies that are quantized along both axes. If the electron were

confined along one coordinate (e.g., between 0 ≤ x ≤ Lx) but not along the other (i.e., B(y)



is either restricted to vanish at y=0 or at y=Ly or at neither point), then the total energy E

lies in the continuum; its Ex component is quantized but Ey is not. Such cases arise, for

example, when a linear triatomic molecule has more than enough energy in one of its bonds

to rupture it but not much energy in the other bond; the first bond's energy lies in the

continuum, but the second bond's energy is quantized.

Perhaps more interesting is the case in which the bond with the higher dissociation

energy is excited to a level that is not enough to break it but that is in excess of the

dissociation energy of the weaker bond. In this case, one has two degenerate states- i. the

strong bond having high internal energy and the weak bond having low energy (ψ1), and

ii. the strong bond having little energy and the weak bond having more than enough energy

to rupture it (ψ2). Although an experiment may prepare the molecule in a state that contains

only the former component (i.e., ψ= C1ψ1 + C2ψ2 with C1>>C2), coupling between the

two degenerate functions (induced by terms in the Hamiltonian H that have been ignored in

defining ψ1 and ψ2) usually causes the true wavefunction Ψ = exp(-itH/h) ψ to acquire a

component of the second function as time evolves. In such a case, one speaks of internal

vibrational energy flow giving rise to unimolecular decomposition of the molecule.

3. Energies and Wavefunctions for Bound States

For discrete energy levels, the energies are specified functions the depend on

quantum numbers, one for each degree of freedom that is quantized

Returning to the situation in which motion is constrained along both axes, the

resultant total energies and wavefunctions (obtained by inserting the quantum energy levels

into the expressions for

A(x) B(y) are as follows:

Ex = nx2π2 h2/(2mLx2), and

Ey = ny2π2 h2/(2mLy2),

E = Ex + Ey ,

ψ(x,y) = (1/2Lx)1/2 (1/2Ly)1/2[exp(inxπx/Lx) -exp(-inxπx/Lx)]

[exp(inyπy/Ly) -exp(-inyπy/Ly)], with nx and ny =1,2,3, ...  .



The two (1/2L)1/2 factors are included to guarantee that ψ is normalized:

∫ |ψ(x,y)|2 dx dy = 1.

Normalization allows |ψ(x,y)|2  to be properly identified as a probability density for finding

the electron at a point x, y.

4. Quantized Action Can Also be Used to Derive Energy Levels

There is another approach that can be used to find energy levels and is especially

straightforward to use for systems whose Schrödinger equations are separable. The so-

called classical action (denoted S) of a particle moving with momentum p along a path

leading from initial coordinate qi at initial time ti to a final coordinate qf at time tf is defined

by:

S = ⌡⌠
qi;ti

 qf;tf

 p•dq .

Here, the momentum vector p contains the momenta along all coordinates of the system,

and the coordinate vector q likewise contains the coordinates along all such degrees of

freedom. For example, in the two-dimensional particle in a box problem considered above,

q = (x, y) has two components as does p = (Px, py),

and the action integral is:

S = ⌡⌠
xi;yi;ti

 x f;yf;tf
 (px dx  +  py dy) .

In computing such actions, it is essential to keep in mind the sign of the momentum as the

particle moves from its initial to its final positions. An example will help clarify these

matters.

For systems such as the above particle in a box example for which the Hamiltonian

is separable, the action integral decomposed into a sum of such integrals, one for each

degree of freedom. In this two-dimensional example, the additivity of H:



H = Hx + Hy  = px2/2m + py2/2m + V(x) + V(y)

= - h2/2m ∂2/∂x2 + V(x) - h2/2m ∂2/∂y2 + V(y)

means that px and py can be independently solved for in terms of the potentials V(x) and

V(y) as well as the energies Ex and Ey associated with each separate degree of freedom:

px = ± 2m(Ex - V(x))  

py = ± 2m(Ey - V(y))  ;

the signs on px and py must be chosen to properly reflect the motion that the particle is

actually undergoing. Substituting these expressions into the action integral yields:

S = Sx + Sy

=  ⌡⌠
xi;ti

 x f;tf

  ± 2m(Ex - V(x)) dx   + ⌡⌠
yi;ti

 y f;tf

 ± 2m(Ey - V(y)) dy  .

The relationship between these classical action integrals and existence of quantized

energy levels has been show to involve equating the classical action for motion on a    closed

    path     (i.e., a path that starts and ends at the same place after undergoing motion away from

the starting point but eventually returning to the starting coordinate at a later time) to an

integral multiple of Planck's constant:

Sclosed = ⌡⌠
qi;ti

qf=qi;tf

p•dq  = n h. (n = 1, 2, 3, 4, ...)

Applied to each of the independent coordinates of the two-dimensional particle in a box

problem, this expression reads:

nx h = ⌡⌠
x=0

x=Lx

 2m(Ex - V(x)) dx  + ⌡⌠
x=Lx

x=0

 - 2m(Ex - V(x)) dx  



ny h = ⌡⌠
y=0

y=Ly

 2m(Ey - V(y)) dy  + ⌡⌠
y=Ly

y=0

 - 2m(Ey - V(y)) dy  .

Notice that the sign of the momenta are positive in each of the first integrals appearing

above (because the particle is moving from x = 0 to x = Lx, and analogously for y-motion,

and thus has positive momentum) and negative in each of the second integrals (because the

motion is from x = Lx to x = 0 (and analogously for y-motion) and thus with negative

momentum). Within the region bounded by 0 ≤ x ≤ Lx; 0 ≤ y ≤ Ly, the potential vanishes,

so V(x) = V(y) = 0. Using this fact, and reversing the upper and lower limits, and thus the

sign, in the second integrals above, one obtains:

nx h = 2 ⌡⌠
x=0

x=Lx

 2mEx dx  = 2 2mEx  Lx

ny h = 2 ⌡⌠
y=0

y=Ly

 2mEy dy  = 2 2mEy  Ly.

Solving for Ex and Ey, one finds:

Ex = 
(nxh)2

8mLx2
 

Ey = 
(nyh)2

8mLy2
   .

These are the same quantized energy levels that arose when the wavefunction boundary

conditions were matched at x = 0, x = Lx and y = 0, y = Ly. In this case, one says that the

Bohr-Sommerfeld quantization condition:

n h =  ⌡⌠
qi;ti

qf=qi;tf

p•dq  



has been used to obtain the result.

B. Other Model Problems

1. Particles in Boxes

The particle-in-a-box problem provides an important model for several relevant

chemical situations

The above 'particle in a box' model for motion in two dimensions can obviously be

extended to three dimensions or to one.

For two and three dimensions, it provides a crude but useful picture for electronic states on

surfaces or in crystals, respectively. Free motion within a spherical volume gives rise to

eigenfunctions that are used in nuclear physics to describe the motions of neutrons and

protons in nuclei. In the so-called shell model of nuclei, the neutrons and protons fill

separate s, p, d, etc orbitals with each type of nucleon forced to obey the Pauli principle.

These orbitals are not the same in their radial 'shapes' as the s, p, d, etc orbitals of atoms

because, in atoms, there is an additional radial potential V(r) = -Ze2/r present. However,

their angular shapes are the same as in atomic structure because, in both cases, the potential

is independent of θ and φ. This same spherical box model has been used to describe the

orbitals of valence electrons in clusters of mono-valent metal atoms such as Csn, Cun, Nan

and their positive and negative ions. Because of the metallic nature of these species, their

valence electrons are sufficiently delocalized to render this simple model rather effective

(see T. P. Martin, T. Bergmann, H. Göhlich, and T. Lange, J. Phys. Chem.     95    , 6421

(1991)).

One-dimensional free particle motion provides a qualitatively correct picture for π-

electron motion along the pπ orbitals of a delocalized polyene. The one cartesian dimension

then corresponds to motion along the delocalized chain. In such a model, the box length L

is related to the carbon-carbon bond length R and the number N of carbon centers involved

in the delocalized network L=(N-1)R. Below, such a conjugated network involving nine

centers is depicted. In this example, the box length would be eight times the C-C bond

length.



   Conjugated π Network with 9 Centers Involved

The eigenstates ψn(x) and their energies En represent orbitals into which electrons are

placed. In the example case, if nine π electrons are present (e.g., as in the 1,3,5,7-

nonatetraene radical), the ground electronic state would be represented by a total

wavefunction consisting of a     product    in which the lowest four ψ's are doubly occupied and

the fifth ψ  is singly occupied:

 Ψ = ψ1αψ1βψ2αψ2βψ3αψ3βψ4αψ4βψ5α.

A product wavefunction is appropriate because the total Hamiltonian involves the kinetic

plus potential energies of nine electrons. To the extent that this total energy can be

represented as the sum of nine separate energies, one for each electron, the Hamiltonian

allows a separation of variables

H ≅ Σj H(j)

in which each H(j) describes the kinetic and potential energy of an individual electron. This

(approximate) additivity of H implies that solutions of H Ψ = E Ψ are products of solutions

to H (j) ψ(rj) = Ej ψ(rj).

The two lowest π-excited states would correspond to states of the form

Ψ* = ψ1α ψ1β ψ2α ψ2β ψ3α ψ3β ψ4α ψ5β ψ5α , and

Ψ'* = ψ1α ψ1β ψ2α ψ2β ψ3α ψ3β ψ4α ψ4β ψ6α ,

where the spin-orbitals (orbitals multiplied by α or β) appearing in the above products

depend on the coordinates of the various electrons. For example,



ψ1α ψ1β ψ2α ψ2β ψ3α ψ3β ψ4α ψ5β ψ5α

denotes

ψ1α(r1) ψ1β (r2) ψ2α (r3) ψ2β (r4) ψ3α  (r5) ψ3β (r6) ψ4α (r7) ψ5β 

(r8) ψ5α (r9).

The electronic excitation energies within this model would be

∆E* = π2 h2/2m [ 52/L2 - 42/L2] and

∆E'* = π2 h2/2m [ 62/L2 - 52/L2], for the two excited-state functions described

above. It turns out that this simple model of π-electron energies provides a qualitatively

correct picture of such excitation energies.

This simple particle-in-a-box model does not yield orbital energies that relate to

ionization energies unless the potential 'inside the box'  is specified. Choosing the value of

this potential V0 such that V0 + π2 h2/2m [ 52/L2] is equal to minus the lowest ionization

energy of the 1,3,5,7-nonatetraene radical, gives energy levels (as E = V0 + π2 h2/2m [

n2/L2]) which then are approximations to ionization energies.

The individual π-molecular orbitals

ψn = (2/L)1/2 sin(nπx/L)

are depicted in the figure below for a model of the 1,3,5 hexatriene π-orbital system for

which the 'box length' L is five times the distance RCC between neighboring pairs of

Carbon atoms.



n = 6

n = 5

n = 4

n = 3

n = 2

n = 1

(2/L)
1/2

 sin(nπx/L); L = 5 x RCC

In this figure, positive amplitude is denoted by the clear spheres and negative amplitude is

shown by the darkened spheres; the magnitude of the kth C-atom centered atomic orbital in

the nth π-molecular orbital is given by (2/L)1/2 sin(nπkRCC/L).

This simple model allows one to estimate spin densities at each carbon center and

provides insight into which centers should be most amenable to electrophilic or nucleophilic

attack. For example, radical attack at the C5 carbon of the nine-atom system described

earlier would be more facile for the ground state Ψ than for either Ψ* or Ψ'*. In the

former, the unpaired spin density resides in ψ5, which has non-zero amplitude at the C5

site x=L/2; in Ψ* and Ψ'*, the unpaired density is in ψ4 and ψ6, respectively, both of

which have zero density at C5. These densities reflect the values (2/L)1/2 sin(nπkRCC/L) of

the amplitudes for this case in which L = 8 x RCC for n = 5, 4, and 6, respectively.

2. One Electron Moving About a Nucleus



The Hydrogenic atom problem forms the basis of much of our thinking about

atomic structure. To solve the corresponding Schrödinger equation requires separation of

the r, θ,  and φ variables

[Suggested Extra Reading- Appendix B: The Hydrogen Atom Orbitals]

The Schrödinger equation for a single particle of mass µ moving in a central
potential (one that depends only on the radial coordinate r) can be written as

-
h−2

2µ
 






∂2

∂x2
 +  

∂2

∂y2
 +  

∂2

∂z2
 ψ + V x2+y2+z2   ψ = Eψ.

This equation is not separable in cartesian coordinates (x,y,z) because of the way x,y, and
z appear together in the square root.  However, it is separable in spherical coordinates

-
h−2

2µr2
 






∂

∂r
 








r2 
∂ψ
∂r

  + 
1

r2Sinθ
 
∂
∂θ

 








Sinθ 
∂ψ
∂θ

 

 + 
1

r2Sin2θ
 
∂2ψ
∂φ2

  + V(r)ψ = Eψ .

Subtracting V(r)ψ from both sides of the equation and multiplying by - 
2µr2

h−2
  then moving

the derivatives with respect to r to the right-hand side, one obtains

1

Sinθ
 
∂
∂θ

 








Sinθ 
∂ψ
∂θ

  + 
1

Sin2θ
 
∂2ψ
∂φ2

 

       = -
2µr2

h−2
 ( )E-V(r)  ψ - 

∂
∂r

 








r2 
∂ψ
∂r

 .

Notice that the right-hand side of this equation is a function of r only; it contains no θ or φ
dependence.  Let's call the entire right hand side F(r) to emphasize this fact.

To further separate the θ and φ dependence, we multiply by Sin2θ and subtract the

θ derivative terms from both sides to obtain

∂2ψ
∂φ2

  = F(r)ψSin2θ - Sinθ 
∂
∂θ

 








Sinθ 
∂ψ
∂θ

 .

Now we have separated the φ dependence from the θ and r dependence.  If we now

substitute ψ = Φ(φ) Q(r,θ) and divide by Φ Q, we obtain



 
1

Φ
 
∂2Φ
∂φ2

  = 
1
Q 









F(r)Sin2θ Q - Sinθ 
∂
∂θ

 








Sinθ 
∂Q

∂θ
  .

Now all of the φ dependence is isolated on the left hand side; the right hand side contains

only r and θ dependence.
Whenever one has isolated the entire dependence on one variable as we have done

above for the φ dependence, one can easily see that the left and right hand sides of the
equation must equal a constant.  For the above example, the left hand side contains no r or
θ dependence and the right hand side contains no φ dependence.  Because the two sides are

equal, they both must actually contain no r, θ, or φ dependence; that is, they are constant.
For the above example, we therefore can set both sides equal to a so-called

separation constant that we call -m2 .  It will become clear shortly why we have chosen to
express the constant in this form.

a. The Φ Equation

The resulting Φ equation reads

Φ" + m2Φ = 0

which has as its most general solution

 Φ = Αeimφ + Be-imφ .

We must require the function Φ to be single-valued, which means that

Φ(φ) = Φ(2π + φ) or,

 Aeimφ( )1 -  e2imπ   + Be-imφ( )1 -  e -2imπ   = 0.

This is satisfied only when the separation constant is equal to an integer m = 0, ±1, ± 2, ...
.  and provides another example of the rule that quantization comes from the boundary
conditions on the wavefunction.  Here m is restricted to certain discrete values because the
wavefunction must be such that when you rotate through 2π about the z-axis, you must get
back what you started with.

b. The Θ Equation

Now returning to the equation in which the φ dependence was isolated from the r

and θ dependence.and rearranging the θ terms to the left-hand side, we have

1

Sinθ
 
∂
∂θ

 








Sinθ 
∂Q

∂θ
  - 

m2Q

Sin2θ
  = F(r)Q.



In this equation we have separated θ and r variations so we can further decompose the

wavefunction by introducing Q = Θ(θ) R(r) , which yields

1

Θ
 

1

Sinθ
 
∂
∂θ

 








Sinθ 
∂Θ
∂θ

  - 
m2

Sin2θ
  = F(r)R

R   = -λ,

where a second separation constant, -λ,  has been introduced once the r and θ dependent
terms have been separated onto the right and left hand sides, respectively.

We now can write the θ equation as

1

Sinθ
 
∂
∂θ

 








Sinθ 
∂Θ
∂θ

  - 
m2Θ
Sin2θ

  = -λ Θ,

where m is the integer introduced earlier.  To solve this equation for Θ , we make the

substitutions z = Cosθ and P(z) = Θ(θ) , so 1-z2  = Sinθ , and

∂
∂θ

  = 
∂z

∂θ
 
∂
∂z

  = - Sinθ 
∂
∂z

  .

The range of values for θ was 0 ≤  θ < π , so the range for z is

-1 < z < 1.  The equation for Θ , when expressed in terms of P and z, becomes

d
dz 





(1-z2)  

dP
dz   - 

m2P

1-z2
  + λP = 0.

Now we can look for polynomial solutions for P, because z is restricted to be less than
unity in magnitude.  If m = 0, we first let

P = ∑
k=0

∞
akzk  ,

and substitute into the differential equation to obtain

∑
k=0

∞
(k+2)(k+1) ak+2 zk  - ∑

k=0

∞
(k+1) k akzk  + λ ∑

k=0

∞
akzk  = 0.

Equating like powers of z gives

ak+2 = 
ak(k(k+1)-λ)
(k+2)(k+1)   .



Note that for large values of k

ak+2
ak

  → 
k2





1+

1
k

k2




1+

2
k 



1+

1
k

  = 1.

Since the coefficients do not decrease with k for large k, this series will diverge for z = ± 1

    unless     it truncates at finite order.  This truncation only happens if the separation constant λ
obeys λ = l(l+1), where l is an integer.  So, once again, we see that a boundary condition
(i.e., that the wavefunction be normalizable in this case) give rise to quantization.  In this
case, the values of λ are restricted to l(l+1); before, we saw that m is restricted to 0, ±1, ±
2, .. .

Since this recursion relation links every other coefficient, we can choose to solve
for the even and odd functions separately.  Choosing a0 and then determining all of the
even ak in terms of this a0, followed by rescaling all of these ak to make the function
normalized generates an even solution.  Choosing a1 and determining all of the odd ak in
like manner, generates an odd solution.

For l= 0, the series truncates after one term and results in Po(z) = 1.  For l= 1 the

same thing applies and P1(z) = z.  For l= 2, a2 = -6 
ao
2   = -3ao , so one obtains P2 = 3z2-1,

and so on.  These polynomials are called Legendre polynomials.
For the more general case where m ≠ 0, one can proceed as above to generate a

polynomial solution for the Θ function.  Doing so, results in the following solutions:

P
l
m(z)  = (1-z2)

|m|
2  

 d |m| P
l
 (z)

dz|m|
 .

These functions are called Associated Legendre polynomials, and they constitute the
solutions to the Θ problem for non-zero m values.

The above P and eimφ functions, when re-expressed in terms of θ and φ, yield the
full angular part of the wavefunction for any centrosymmetric potential.  These solutions

are usually written as Yl,m(θ,φ) = P
l
m(Cosθ) (2π)

-1
2  exp(imφ), and are called spherical

harmonics.  They provide the angular solution of the r,θ, φ Schrödinger equation for    any    
problem in which the potential depends only on the radial coordinate.  Such situations
include all one-electron atoms and ions (e.g., H, He+, Li++ , etc.), the rotational motion of
a diatomic molecule (where the potential depends only on bond length r), the motion of a
nucleon in a spherically symmetrical "box" (as occurs in the shell model of nuclei), and the
scattering of two atoms (where the potential depends only on interatomic distance).

c. The R Equation



Let us now turn our attention to the radial equation, which is the only place that the
explicit form of the potential appears.  Using our derived results and specifying V(r) to be
the coulomb potential appropriate for an electron in the field of a nucleus of charge +Ze,
yields:

1

r2
 
d
dr 



r2 

dR
dr   + 







2µ

h−2
 



E +  

Ze2

r  -  
l(l + 1)

r2
  R = 0.

We can simplify things considerably if we choose rescaled length and energy units because

doing so removes the factors that depend on µ,h− , and e.  We introduce a new radial

coordinate ρ and a quantity σ as follows:

ρ = 






-8µE

h−2

1
2  r,  and σ2 = -

µZ2e4

2Eh−2
  .

Notice that if E is negative, as it will be for bound states (i.e., those states with energy
below that of a free electron infinitely far from the nucleus and with zero kinetic energy), ρ
is real.  On the other hand, if E is positive, as it will be for states that lie in the continuum,
ρ will be imaginary.  These two cases will give rise to qualitatively different behavior in the
solutions of the radial equation developed below.

We now define a function S such that S(ρ) = R(r) and substitute S for R to obtain:

1

ρ2
 
d

dρ
 




ρ2 

dS

dρ
  + 









-  
1
4 -  

l(l+1)

ρ2
 +  

σ
ρ

  S = 0.

The differential operator terms can be recast in several ways using

1

ρ2
 
d

dρ
 




ρ2 

dS

dρ
  = 

d2S

dρ2
  + 

2

ρ
 
dS

dρ
  = 

1

ρ
 
d2

dρ2
 (ρS) .

It is useful to keep in mind these three embodiments of the derivatives that enter into the
radial kinetic energy; in various contexts it will be useful to employ various of these.

The strategy that we now follow is characteristic of solving second order
differential equations.  We will examine the equation for S at large and small ρ values.

Having found solutions at these limits, we will use a power series in ρ to "interpolate"
between these two limits.

Let us begin by examining the solution of the above equation at small values of ρ to

see how the radial functions behave at small r.  As ρ→0, the second term in the brackets
will dominate.  Neglecting the other two terms in the brackets, we find that, for small
values of ρ (or r), the solution should behave like ρL and because the function must be

normalizable, we must have L ≥ 0.  Since L can be any non-negative integer, this suggests

the following more general form for S(ρ) :

S(ρ) ≈ ρL e-aρ.



This form will insure that the function is normalizable since S(ρ) → 0 as r → ∞ for all L,

as long as ρ is a real quantity.  If ρ is imaginary, such a form may not be normalized (see
below for further consequences).

Turning now to the behavior of S for large ρ, we make the substitution of S(ρ) into

the above equation and keep only the terms with the largest power of ρ (e.g., first term in
brackets).  Upon so doing,  we obtain the equation

 a2ρLe-aρ = 
1
4  ρLe-aρ ,

which leads us to conclude that the exponent in the large-ρ behavior of S is a = 
1
2 .

Having found the small- and large-ρ behaviors of S(ρ), we can take S to have the

following form to interpolate between large and small ρ-values:

S(ρ) = ρLe
-
ρ
2   P(ρ),

where the function L is expanded in an infinite power series in ρ as P(ρ) = ∑ak ρk .  Again

Substituting this expression for S into the above equation we obtain

P"ρ + P'(2L+2-ρ) + P(σ-L-l) = 0,

and then substituting the power series expansion of P and solving for the ak's we arrive at:

ak+1 = 
(k-σ+L+l) ak

(k+1)(k+2L+2)  .

For large k, the ratio of expansion coefficients reaches the limit 
ak+1
ak

  = 
1
k  , which

has the same behavior as the power series expansion of eρ.  Because the power series
expansion of P describes a function that behaves like eρ for large ρ, the resulting S(ρ)

function would not be normalizable because the e
-
ρ
2  factor would be overwhelmed by this

eρ  dependence.  Hence, the series expansion of P must truncate in order to achieve a
normalizable S function.  Notice that if ρ is imaginary, as it will be if E is in the continuum,
the argument that the series must truncate to avoid an exponentially diverging function no
longer applies.  Thus, we see a key difference between bound (with ρ real) and continuum

(with ρ imaginary) states.  In the former case, the boundary condition of non-divergence
arises; in the latter, it does not.

To truncate at a polynomial of order n', we must have n' - σ + L+ l= 0.  This

implies that the quantity σ introduced previously is restricted to σ = n' + L + l , which is
certainly an integer; let us call this integer n.  If we label states in order of increasing n =
1,2,3,... , we see that doing so is consistent with specifying a maximum order (n') in the



P(ρ) polynomial n' = 0,1,2,... after which the l-value can run from l = 0, in steps of unity
up toL = n-1.

Substituting the integer n for σ , we find that the energy levels are quantized

because σ is quantized (equal to n):

E = -  
µZ2e4

2h−2n2
  and ρ = 

Zr
aon .

Here, the length ao is the so called Bohr radius 








ao =  
h−2

µe2
 ; it appears once the above E-

expression is substituted into the equation for ρ.  Using the recursion equation to solve for
the polynomial's coefficients ak for any choice of n and l quantum numbers generates a so-

called Laguerre polynomial; Pn-L-1(ρ).  They contain powers of ρ from zero through n-l-1.
This energy quantization does not arise for states lying in the continuum because the

condition that the expansion of P(ρ) terminate does not arise.  The solutions of the radial
equation appropriate to these scattering states (which relate to the scattering motion of an
electron in the field of a nucleus of charge Z) are treated on p. 90 of EWK.

In summary, separation of variables has been used to solve the full r,θ,φ
Schrödinger equation for one electron moving about a nucleus of charge Z.  The θ and φ
solutions are the spherical harmonics YL,m (θ,φ).  The bound-state radial solutions

 Rn,L(r) = S(ρ) = ρLe
-
ρ
2  Pn-L-1(ρ)

depend on the n and l quantum numbers and are given in terms of the Laguerre polynomials
(see EWK for tabulations of these polynomials).

d. Summary

To summarize, the quantum numbers l and m arise through boundary conditions

requiring that ψ(θ) be normalizable (i.e., not diverge) and ψ(φ) = ψ(φ+2π). In the texts by

Atkins, EWK, and McQuarrie the differential equations obeyed by the θ and φ components

of Yl,m  are solved in more detail and properties of the solutions are discussed. This

differential equation involves the three-dimensional Schrödinger equation's angular kinetic

energy operator. That is, the angular part of the above Hamiltonian is equal to  h2L2/2mr2,

where L2 is the square of the total angular momentum for the electron.

The radial equation, which is the only place the potential energy enters, is found to

possess both bound-states (i.e., states whose energies lie below the asymptote at which the

potential vanishes and the kinetic energy is zero) and continuum states lying energetically

above this asymptote. The resulting hydrogenic wavefunctions (angular and radial) and



energies are summarized in Appendix B for principal quantum numbers n ranging from 1

to 3 and in Pauling and Wilson for n up to 5.

There are both bound and continuum solutions to the radial Schrödinger equation

for the attractive coulomb potential because, at energies below the asymptote the potential

confines the particle between r=0 and an outer turning point, whereas at energies above the

asymptote, the particle is no longer confined by an outer turning point (see the figure

below).
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The solutions of this one-electron problem form the qualitative basis for much of

atomic and molecular orbital theory. For this reason, the reader is encouraged to use

Appendix B to gain a firmer understanding of the nature of the radial and angular parts of

these wavefunctions. The orbitals that result are labeled by n, l, and m quantum numbers

for the bound states and by l and m quantum numbers and the energy E for the continuum

states. Much as the particle-in-a-box orbitals are used to qualitatively describe π- electrons

in conjugated polyenes, these so-called hydrogen-like orbitals provide qualitative

descriptions of orbitals of atoms with more than a single electron. By introducing the

concept of screening as a way to represent the repulsive interactions among the electrons of

an atom, an effective nuclear charge Zeff can be used in place of Z in the ψn,l,m and En,l to

generate approximate atomic orbitals to be filled by electrons in a many-electron atom. For



example, in the crudest approximation of a carbon atom, the two 1s electrons experience

the full nuclear attraction so Zeff=6 for them, whereas the 2s and 2p electrons are screened

by the two 1s electrons, so Zeff= 4 for them. Within this approximation, one then occupies

two 1s orbitals with Z=6, two 2s orbitals with Z=4 and two 2p orbitals with Z=4 in

forming the full six-electron wavefunction of the lowest-energy state of carbon.

3. Rotational Motion For a Rigid Diatomic Molecule

This Schrödinger equation relates to the rotation of diatomic and linear polyatomic

molecules. It also arises when treating the angular motions of electrons in any spherically

symmetric potential

A diatomic molecule with fixed bond length R rotating in the absence of any

external potential is described by the following Schrödinger equation:

 h2/2µ {(R2sinθ)-1∂/∂θ (sinθ ∂/∂θ) + (R2sin2θ)-1 ∂2/∂φ2 } ψ  = E ψ

or

L2ψ/2µR2 = E ψ.

The angles θ and φ describe the orientation of the diatomic molecule's axis relative to a

laboratory-fixed coordinate system, and µ is the reduced mass of the diatomic molecule

µ=m1m2/(m1+m2). The differential operators can be seen to be exactly the same as those

that arose in the hydrogen-like-atom case, and, as discussed above, these θ and φ
differential operators are identical to the L2 angular momentum operator whose general

properties are analyzed in  Appendix G. Therefore, the same spherical harmonics that

served as the angular parts of the wavefunction in the earlier case now serve as the entire

wavefunction for the so-called rigid rotor: ψ = YJ,M(θ,φ). As detailed later in this text, the

eigenvalues corresponding to each such eigenfunction are given as:

EJ = h2 J(J+1)/(2µR2) = B J(J+1)

and are independent of M. Thus each energy level is labeled by J and is 2J+1-fold

degenerate (because M ranges from -J to J). The so-called rotational constant B (defined as

h2/2µR2) depends on the molecule's bond length and reduced mass. Spacings between



successive rotational levels (which are of spectroscopic relevance because angular

momentum selection rules often restrict ∆J to 1,0, and -1) are given by

∆E = B (J+1)(J+2) - B J(J+1) = 2B(J+1).

These energy spacings are of relevance to microwave spectroscopy which probes the

rotational energy levels of molecules.

The rigid rotor provides the most commonly employed approximation to the

rotational energies and wavefunctions of linear molecules. As presented above, the model

restricts the bond length to be fixed. Vibrational motion of the molecule gives rise to

changes in R which are then reflected in changes in the rotational energy levels. The

coupling between rotational and vibrational motion gives rise to rotational B constants that

depend on vibrational state as well as dynamical couplings,called centrifugal distortions,

that cause the total ro-vibrational energy of the molecule to depend on rotational and

vibrational quantum numbers in a non-separable manner.

4. Harmonic Vibrational Motion

This Schrödinger equation forms the basis for our thinking about bond stretching and angle

bending vibrations as well as collective phonon motions in solids

The radial motion of a diatomic molecule in its lowest (J=0) rotational level can be

described by the following Schrödinger equation:

- h2/2µ r-2∂/∂r (r2∂/∂r) ψ +V(r) ψ = E ψ,

where µ is the reduced mass µ = m1m2/(m1+m2) of the two atoms.

By substituting ψ= F(r)/r into this equation, one obtains an equation for F(r) in which the

differential operators appear to be less complicated:

- h2/2µ d2F/dr2 + V(r) F = E F.

This equation is exactly the same as the equation seen above for the radial motion of the

electron in the hydrogen-like atoms except that the reduced mass µ replaces the electron

mass m and the potential V(r) is not the coulomb potential.



If the potential is approximated as a quadratic function of the bond displacement x =

r-re expanded about the point at which V is minimum:

V = 1/2 k(r-re)2,

the resulting harmonic-oscillator equation can be solved exactly. Because the potential V

grows without bound as x approaches

∞ or -∞, only bound-state solutions exist for this model problem; that is, the motion is

confined by the nature of the potential, so no continuum states exist.

In solving the radial differential equation for this potential (see Chapter 5 of

McQuarrie), the large-r behavior is first examined. For large-r, the equation reads:

d2F/dx2 = 1/2 k x2  (2µ/h2) F,

where x = r-re is the bond displacement away from equilibrium. Defining ξ= (µk/h2)1/4 x

as a new scaled radial coordinate allows the solution of the large-r equation to be written as:

Flarge-r = exp(-ξ2/2).

The general solution to the radial equation is then taken to be of the form:

F = exp(-ξ2/2) ∑
n=0

∞
 ξn C n ,

where the Cn are coefficients to be determined. Substituting this expression into the full

radial equation generates a set of recursion equations for the Cn amplitudes. As in the

solution of the hydrogen-like radial equation, the series described by these coefficients is

divergent unless the energy E happens to equal specific values. It is this requirement that

the wavefunction not diverge so it can be normalized that yields energy quantization. The

energies of the states that arise are given by:

En = h (k/µ)1/2 (n+1/2),

and the eigenfunctions are given in terms of the so-called Hermite polynomials Hn(y) as

follows:



ψn(x) = (n! 2n)-1/2 (α/π)1/4 exp(-αx2/2) Hn(α1/2 x),

where α =(kµ/h2)1/2. Within this harmonic approximation to the potential, the vibrational

energy levels are evenly spaced:

∆E = En+1 - En = h (k/µ)1/2 .

In experimental data such evenly spaced energy level patterns are seldom seen; most

commonly, one finds spacings En+1 - En that decrease as the quantum number n increases.

In such cases, one says that the progression of vibrational levels displays anharmonicity.

Because the Hn are odd or even functions of x (depending on whether n is odd or

even), the wavefunctions ψn(x) are odd or even. This splitting of the solutions into two

distinct classes is an example of the effect of symmetry; in this case, the symmetry is

caused by the symmetry of the harmonic potential with respect to reflection through the

origin along the x-axis. Throughout this text, many symmetries will arise; in each case,

symmetry properties of the potential will cause the solutions of the Schrödinger equation to

be decomposed into various symmetry groupings. Such symmetry decompositions are of

great use because they provide additional quantum numbers (i.e., symmetry labels) by

which the wavefunctions and energies can be labeled.

The harmonic oscillator energies and wavefunctions comprise the simplest

reasonable model for vibrational motion. Vibrations of a polyatomic molecule are often

characterized in terms of individual bond-stretching and angle-bending motions each of

which is, in turn, approximated harmonically. This results in a total vibrational

wavefunction that is written as a product of functions one for each of the vibrational

coordinates.

Two of the most severe limitations of the harmonic oscillator model, the lack of

anharmonicity (i.e., non-uniform energy level spacings) and lack of bond dissociation,

result from the quadratic nature of its potential. By introducing model potentials that allow

for proper bond dissociation (i.e., that do not increase without bound as x=>∞), the major

shortcomings of the harmonic oscillator picture can be overcome. The so-called Morse

potential (see the figure below)

V(r) = De (1-exp(-a(r-re)))2,

is often used in this regard.
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Here, De is the bond dissociation energy, re is the equilibrium bond length, and a is a

constant that characterizes the 'steepness' of the potential and determines the vibrational

frequencies. The advantage of using the Morse potential to improve upon harmonic-

oscillator-level predictions is that its energy levels and wavefunctions are also known

exactly. The energies are given in terms of the parameters of the potential as follows:

En = h(k/µ)1/2 { (n+1/2) - (n+1/2)2 h(k/µ)1/2/4De },

where the force constant k is k=2De a2. The Morse potential supports both bound states

(those lying below the dissociation threshold for which vibration is confined by an outer

turning point) and continuum states lying above the dissociation threshold. Its degree of

anharmonicity is governed by the ratio of the harmonic energy h(k/µ)1/2 to the dissociation

energy De.

III. The Physical Relevance of Wavefunctions, Operators and Eigenvalues



Having gained experience on the application of the Schrödinger equation to several

of the more important model problems of chemistry, it is time to return to the issue of how

the wavefunctions, operators, and energies relate to experimental reality.

In mastering the sections that follow the reader should keep in mind that :

i. It is the molecular system that possesses a set of characteristic wavefunctions and energy

levels, but

ii. It is the experimental measurement that determines the nature by which these energy

levels and wavefunctions are probed.

This separation between the 'system' with its intrinsic set of energy levels and

'observation' or 'experiment' with its characteristic interaction with the system forms an

important point of view used by quantum mechanics. It gives rise to a point of view in

which the measurement itself can 'prepare' the system in a wavefunction Ψ that need not be

any single eigenstate but can still be represented as a combination of the complete set of

eigenstates. For the beginning student of quantum mechanics, these aspects of quantum

mechanics are among the more confusing. If it helps, one should rest assured that all of the

mathematical and 'rule' structure of this subject was created to permit the predictions of

quantum mechanics to replicate what has been observed in laboratory experiments.

Note to the Reader  :

Before moving on to the next section, it would be very useful to work some of the

Exercises and Problems. In particular, Exercises 3, 5, and 12 as well as problems 6, 8, and

11 provide insight that would help when the material of the next section is studied. The

solution to Problem 11 is used throughout this section to help illustrate the concepts

introduced here.

A. The Basic Rules and Relation to Experimental Measurement

Quantum mechanics has a set of 'rules' that link operators, wavefunctions, and

eigenvalues to physically measurable properties. These rules have been formulated not in

some arbitrary manner nor by derivation from some higher subject. Rather, the rules were

designed to allow quantum mechanics to mimic the    experimentally observed facts    as

revealed in mother nature's data. The extent to which these rules seem difficult to



understand usually reflects the presence of experimental observations that do not fit in with

our common experience base.

[Suggested Extra Reading- Appendix C: Quantum Mechanical Operators and Commutation]

The structure of quantum mechanics (QM) relates the wavefunction Ψ and

operators F to the 'real world' in which experimental measurements are performed through

a set of rules (Dirac's text is an excellent source of reading concerning the historical

development of these fundamentals). Some of these rules have already been introduced

above. Here, they are presented in total as follows:

1. The time evolution of the wavefunction Ψ is determined by solving the time-dependent

Schrödinger equation (see pp 23-25 of EWK for a rationalization of how the Schrödinger

equation arises from the classical equation governing waves, Einstein's E=hν, and

deBroglie's postulate that λ=h/p)

ih∂Ψ/∂t = HΨ,

where H is the Hamiltonian operator corresponding to the total (kinetic plus potential)

energy of the system. For an isolated system (e.g., an atom or molecule not in contact with

any external fields), H consists of the kinetic and potential energies of the particles

comprising the system. To describe interactions with an external field (e.g., an

electromagnetic field, a static electric field, or the 'crystal field' caused by surrounding

ligands), additional terms are added to H to properly account for the system-field

interactions.

 If H contains no explicit time dependence, then separation of space and time

variables can be performed on the above Schrödinger equation Ψ=ψ exp(-itE/h) to give

Hψ=Eψ.

In such a case, the time dependence of the state is carried in the phase factor exp(-itE/h); the

spatial dependence appears in ψ(qj).

The so called time independent Schrödinger equation Hψ=Eψ must be solved to

determine the physically measurable energies Ek and wavefunctions ψk of the system. The

most general solution to the full Schrödinger equation ih∂Ψ/∂t = HΨ is then given by

applying exp(-iHt/h) to the wavefunction at some initial time (t=0) Ψ=Σk Ckψk to obtain



Ψ(t)=Σk Ckψk exp(-itEk/h). The relative amplitudes Ck are determined by knowledge of

the state at the initial time; this depends on how the system has been prepared in an earlier

experiment. Just as Newton's laws of motion do not fully determine the time evolution of a

classical system (i.e., the coordinates and momenta must be known at some initial time),

the Schrödinger equation must be accompanied by initial conditions to fully determine

Ψ(qj,t).

Example :

Using the results of Problem 11 of this chapter to illustrate, the sudden ionization of N2 in

its v=0 vibrational state to generate N2+ produces a vibrational wavefunction

Ψ0 = 


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
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that was created by the fast ionization of N2. Subsequent to ionization, this N2 function is

not an eigenfunction of the new vibrational Schrödinger equation appropriate to N2+. As a

result, this function will time evolve under the influence of the N2+ Hamiltonian.

The time evolved wavefunction, according to this first rule, can be expressed in terms of

the vibrational functions {Ψv} and energies {Ev} of the N2+ ion as

Ψ (t) = Σv Cv Ψv exp(-i Ev t/h).

The amplitudes Cv, which reflect the manner in which the wavefunction is prepared (at

t=0), are determined by determining the component of each Ψv in the function Ψ at t=0. To

do this, one uses

⌡⌠Ψv'*  Ψ(t=0) dτ  = Cv',

which is easily obtained by multiplying the above summation by Ψ∗v', integrating, and

using the orthonormality of the {Ψv} functions.

For the case at hand, this results shows that by forming integrals involving

products of the N2 v=0 function Ψ(t=0)
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and various N2+ vibrational functions Ψv, one can determine how Ψ will evolve in time

and the amplitudes of all {Ψv} that it will contain. For example, the N2 v=0 function, upon

ionization, contains the following amount of the N2+ v=0 function:

C0 = ⌡⌠ Ψ0*(N2+)  Ψ0(N2) dτ 

= ⌡⌠

-∞

∞

3.47522 e-229.113(r-1.11642)23.53333e-244.83(r-1.09769)2dr 

As demonstrated in Problem 11, this integral reduces to 0.959. This means that the N2 v=0

state, subsequent to sudden ionization, can be represented as containing |0.959|2 = 0.92

fraction of the v=0 state of the N2+ ion.

This example relates to the well known Franck-Condon principal of spectroscopy in

which squares of 'overlaps' between the initial electronic state's vibrational wavefunction

and the final electronic state's vibrational wavefunctions allow one to estimate the

probabilities of populating various final-state vibrational levels.

In addition to initial conditions, solutions to the Schrödinger equation must obey

certain other constraints in form. They must be continuous functions of all of their spatial

coordinates and must be single valued; these properties allow Ψ* Ψ to be interpreted as a

probability density (i.e., the probability of finding a particle at some position can not be

multivalued nor can it be 'jerky' or discontinuous). The derivative of the wavefunction

must also be continuous except at points where the potential function undergoes an infinite

jump (e.g., at the wall of an infinitely high and steep potential barrier). This condition

relates to the fact that the momentum must be continuous except at infinitely 'steep'

potential barriers where the momentum undergoes a 'sudden' reversal.

2. An experimental measurement of any quantity (whose corresponding operator is F) must

result in one of the eigenvalues fj of the operator F. These eigenvalues are obtained by

solving



Fφj =fj φj,

where the φj are the eigenfunctions of F. Once the measurement of F is made, for that sub-

population of the experimental sample found to have the particular eigenvalue fj, the

wavefunction becomes φj.

The equation Hψk=Ekψk is but a special case; it is an especially important case

because much of the machinery of modern experimental chemistry is directed at placing the

system in a particular energy quantum state by detecting its energy (e.g., by spectroscopic

means).

The reader is strongly urged to also study Appendix C to gain a more detailed and

illustrated treatment of this and subsequent rules of quantum mechanics.

3. The operators F corresponding to    all    physically measurable quantities are Hermitian; this

means that their matrix representations obey (see Appendix C for a description of the 'bra'

| > and 'ket' < | notation used below):

<χj|F|χk> = <χk|F|χj>*= <Fχj|χk>

in any basis {χj} of functions appropriate for the action of F (i.e., functions of the

variables on which F operates). As expressed through equality of the first and third

elements above, Hermitian operators are often said to 'obey the turn-over rule'. This means

that F can be allowed to operate on the function to its right or on the function to its left if F

is Hermitian.

Hermiticity assures that the eigenvalues {fj} are all real, that eigenfunctions {χj}

having different eigenvalues are orthogonal and can be normalized <χj|χk>=δj,k, and that

eigenfunctions having the same eigenvalues can be made orthonormal (these statements are

proven in Appendix C).

4. Once a particular value fj is observed in a measurement of F, this same value will be

observed in all subsequent measurements of F as long as the system remains undisturbed

by measurements of other properties or by interactions with external fields. In fact, once fi

has been observed, the state of the system becomes an eigenstate of F (if it already was, it

remains unchanged):

FΨ =fiΨ.



This means that the measurement process itself may interfere with the state of the system

and even determines what that state will be once the measurement has been made.

Example:

Again consider the v=0 N2 ionization treated in Problem 11 of this chapter. If,

subsequent to ionization, the N2+ ions produced were probed to determine their internal

vibrational state, a fraction of the sample equal to |<Ψ(N2; v=0) | Ψ(N2+; v=0)>|2 = 0.92

would be detected in the v=0 state of the N2+ ion. For this sub-sample, the vibrational

wavefunction becomes, and remains from then on,

Ψ (t) = Ψ(N2+; v=0) exp(-i t E+v=0/ h),

where E+v=0 is the energy of the N2+ ion in its v=0 state. If, at some later time, this sub-

sample is again probed,    all    species will be found to be in the v=0 state.

5. The probability Pk of observing a particular value fk when F is measured, given that the

system wavefunction is Ψ prior to the measurement, is given by expanding Ψ in terms of

the complete set of normalized eigenstates of F

Ψ=Σ j |φj> <φj|Ψ>

and then computing Pk =|<φk|Ψ>|2 . For the special case in which Ψ is already one of the

eigenstates of F (i.e., Ψ=φk),  the probability of observing fj reduces to Pj =δj,k. The set

of numbers Cj = <φj|Ψ> are called the expansion coefficients of Ψ in the basis of the {φj}.

These coefficients, when collected together in all possible products as

Dj,i  = Ci* Cj form the so-called density matrix Dj,i  of the wavefunction Ψ within the {φj}

basis.

Example:

If F is the operator for momentum in the x-direction and Ψ(x,t) is the wave

function for x as a function of time t, then the above expansion corresponds to a Fourier

transform of Ψ



Ψ(x,t) = 1/2π ∫ exp(ikx) ∫ exp(-ikx') Ψ(x',t) dx'  dk.

Here (1/2π)1/2 exp(ikx) is the     normalized     eigenfunction of F =-ih∂/∂x corresponding to

momentum eigenvalue hk. These momentum eigenfunctions are orthonormal:

1/2π ∫ exp(-ikx) exp(ik'x) dx = δ(k-k'),

and they form a complete set of functions in x-space

1/2π ∫ exp(-ikx) exp(ikx') dk = δ(x-x')

because F is a Hermitian operator. The function ∫ exp(-ikx') Ψ(x',t) dx' is called the

momentum-space transform of Ψ(x,t) and is denoted Ψ(k,t); it gives, when used as

Ψ*(k,t)Ψ(k,t), the probability density for observing momentum values hk at time t.

Another Example:

Take the initial ψ to be a superposition state of the form

ψ = a (2p0 + 2p-1 - 2p1) + b (3p0 - 3p-1),

where the a and b ar amplitudes that describe the admixture of 2p and 3p functions in this

wavefunction. Then:

a. If L2  were measured, the value 2h2 would be observed with probability 3 |a|2 + 2 |b|2 =

1, since all of the functions in ψ are p-type orbitals. After said measurement, the

wavefunction would still be this same ψ because this entire ψ is an eigenfunction of L2 .

b. If Lz  were measured for this

ψ = a (2p0 + 2p-1 - 2p1) + b (3p0 - 3p-1),

the values 0h, 1h, and -1h would be observed (because these are the only functions with

non-zero Cm coefficients for the Lz  operator) with respective probabilities | a |2 + | b |2, | -a

|2, and | a |2 + | -b |2 .



c.     After     Lz  were measured, if the sub-population for which -1h had been detected were

subjected to measurement of L2  the value 2h2 would certainly be found because the     new     

wavefunction

ψ' = {-  a 2p-1 - b 3p-1} (|a|2 + |b|2)-1/2

is still an eigenfunction of L2  with this eigenvalue.

d. Again after Lz  were measured, if the sub-population for which -1h

had been observed and for which the wavefunction is now

ψ' = {-  a 2p-1 - b 3p-1} (|a|2 + |b|2)-1/2

were subjected to measurement of the energy (through the Hamiltonian operator), two

values would be found. With probability

| -a |2 (|a|2 + |b|2)-1 the energy of the 2p-1 orbital would be observed; with probability | -b |2

(|a|2 + |b|2)-1 , the energy of the 3p-1 orbital would be observed.

If Ψ is a function of several variables (e.g., when Ψ describes more than one

particle in a composite system), and if F is a property that depends on a subset of these

variables (e.g., when F is a property of one of the particles in the composite system), then

the expansion Ψ=Σ j |φj> <φj|Ψ> is viewed as relating only to Ψ's dependence on the

subset of variables related to F. In this case, the integrals <φk|Ψ> are carried out over only

these variables; thus the probabilities Pk =|<φk|Ψ>|2 depend parametrically on the remaining

variables.

Example:

Suppose that Ψ(r,θ) describes the radial (r) and angular (θ) motion of a diatomic

molecule constrained to move on a planar surface. If an experiment were performed to

measure the component of the rotational angular momentum of the diatomic molecule

perpendicular to the surface (Lz= -ih ∂/∂θ), only values equal to mh (m=0,1,-1,2,-2,3,-

3,...) could be observed, because these are the eigenvalues of Lz :

Lz φm= -ih ∂/∂θ φm = mh φm, where

φm = (1/2π)1/2 exp(imθ).



The quantization of Lz arises because the eigenfunctions φm(θ) must be periodic in θ:

φ(θ+2π) = φ(θ).

Such quantization (i.e., constraints on the values that physical properties can realize) will

be seen to occur whenever the pertinent wavefunction is constrained to obey a so-called

boundary condition (in this case, the boundary condition is φ(θ+2π) = φ(θ)).

Expanding the θ-dependence of Ψ in terms of the φm

Ψ =Σm <φm|Ψ> φm(θ)

allows one to write the probability that mh is observed if the angular momentum Lz is

measured as follows:

Pm = |<φm|Ψ>|2 = | ∫φm*(θ) Ψ(r,θ) dθ |2.

If one is interested in the probability that mh be observed when Lz is measured    regardless

of what bond length r is involved, then it is appropriate to integrate this expression over the

r-variable about which one does not care. This, in effect, sums contributions from all r-

values to obtain a result that is independent of the r variable. As a result, the probability

reduces to:

Pm = ∫ φ*(θ') {∫ Ψ*(r,θ') Ψ(r,θ) r dr} φ(θ) dθ' dθ,

which is simply the above result integrated over r with a volume element  r dr for the two-

dimensional motion treated here.

If, on the other hand, one were able to measure Lz values when r is equal to some specified

bond length (this is only a hypothetical example; there is no known way to perform such a

measurement), then the probability would equal:

Pm r dr = r dr∫ φm*(θ')Ψ*(r,θ')Ψ(r,θ)φm(θ)dθ' dθ = |<φm|Ψ>|2 r dr.

6. Two or more properties F,G, J whose corresponding Hermitian operators F, G, J

commute



FG-GF=FJ-JF=GJ-JG= 0

have    complete sets    of simultaneous eigenfunctions (the proof of this is treated in

Appendix C). This means that the set of  functions that are eigenfunctions of one of the

operators can be formed into a set of functions that are also eigenfunctions of the others:

Fφj=fjφj ==> Gφj=gjφj ==> Jφj=jjφj.

Example:

The px, py and pz orbitals are eigenfunctions of the L2  angular momentum operator

with eigenvalues equal to L(L+1) h2 = 2 h2. Since L2  and Lz  commute and act on the same

(angle) coordinates, they possess a complete set of simultaneous eigenfunctions.

Although the px, py and pz orbitals are     not     eigenfunctions of Lz  , they can be

combined to form three new orbitals: p0 = pz,

p1= 2-1/2 [px + i py], and p-1= 2-1/2 [px - i py] that are still eigenfunctions of L2  but are

now eigenfunctions of Lz  also (with eigenvalues 0h, 1h, and -1h, respectively).

It should be mentioned that if two operators do not commute, they may still have

   some    eigenfunctions in common, but they will not have a complete set of simultaneous

eigenfunctions. For example, the Lz and Lx components of the angular momentum operator

do not commute; however, a wavefunction with L=0 (i.e., an S-state) is an eigenfunction

of both operators.

The fact that two operators commute is of great importance. It means that once a

measurement of one of the properties is carried out, subsequent measurement of that

property or of any of the other properties corresponding to      mutually commuting     operators

can be made without altering the system's value of the properties measured earlier. Only

subsequent measurement of another property whose operator does not commute with F,

G, or J will destroy precise knowledge of the values of the properties measured earlier.

Example:



Assume that an experiment has been carried out on an atom to measure its total

angular momentum L2. According to quantum mechanics, only values equal to L(L+1) h2

will be observed. Further assume, for the particular experimental sample subjected to

observation, that values of L2 equal to 2 h2  and 0 h2 were detected in relative amounts of

64 % and 36 % , respectively. This means that the atom's original wavefunction ψ could be

represented as:

ψ = 0.8 P + 0.6 S,

where P and S represent the P-state and S-state components of ψ. The squares of the

amplitudes 0.8 and 0.6 give the 64 % and 36 % probabilities mentioned above.

Now assume that a subsequent measurement of the component of angular

momentum along the lab-fixed z-axis is to be measured for that sub-population of the

original sample found to be in the P-state. For that population, the wavefunction is now a

pure P-function:

ψ' = P.

However, at this stage we have no information about how much of this ψ' is of m = 1, 0,

or -1, nor do we know how much 2p, 3p, 4p, ... np components this state contains.

Because the property corresponding to the operator Lz  is about to be measured, we

express the above ψ' in terms of the eigenfunctions of Lz:

ψ' = P = Σm=1,0,-1 C'm Pm.

When the measurement of Lz is made, the values 1 h, 0 h, and -1 h will be observed with

probabilities given by |C'1|2, |C'0|2, and |C'-1|2, respectively. For that sub-population found

to have, for example, Lz equal to -1 h,  the wavefunction then becomes

ψ'' = P-1.

At this stage, we do not know how much of 2p-1, 3p -1, 4p -1, ... np-1 this wavefunction

contains. To probe this question another subsequent measurement of the energy

(corresponding to the H operator) could be made. Doing so would allow the amplitudes in

the expansion of the above ψ''= P-1



ψ''= P-1 = Σn C''n nP-1

to be found.

The kind of experiment outlined above allows one to find the content of each

particular component of an initial sample's wavefunction. For example, the original

wavefunction has

0.64 |C''n|2 |C'm|2   fractional content of the various nPm functions. It is analogous to the

other examples considered above because all of the operators whose properties are

measured commute.

Another Example:

Let us consider an experiment in which we begin with a sample (with wavefunction

ψ) that is first subjected to measurement of Lz and then subjected to measurement of L2 and

then of the energy. In this order, one would first find specific values (integer multiples of

h) of Lz and one would express ψ as

ψ = Σm Dm ψm.

At this stage, the nature of each ψm is unknown (e.g., the ψ1 function can contain np1,

n'd1, n''f1, etc. components); all that is known is that ψm has m h as its Lz value.

Taking that sub-population (|Dm|2 fraction) with a particular m h value for Lz and

subjecting it to subsequent measurement of L2 requires the current wavefunction ψm to be

expressed as

ψm = ΣL DL,m ψL,m.

When L2 is measured the value L(L+1) h2 will be observed with probability |Dm,L|2, and

the wavefunction for that particular sub-population will become

ψ'' = ψL,m.

At this stage, we know the value of L and of m, but we do not know the energy of the

state. For example, we may know that the present sub-population has L=1, m=-1, but we

have no knowledge (yet) of how much 2p-1, 3p -1, ... np-1 the system contains.



To further probe the sample, the above sub-population with L=1 and m=-1 can be

subjected to measurement of the energy. In this case, the function ψ1,-1 must be expressed

as

ψ1,-1 = Σn Dn'' nP-1.

When the energy measurement is made, the state nP-1 will be found |Dn''|2  fraction of the

time.

The fact that Lz ,  L2 ,  and H all commute with one another (i.e., are      mutually    

   commutative   ) makes the series of measurements described in the above examples more

straightforward than if these operators did not commute.

In the first experiment, the fact that they are mutually commutative allowed us to

expand the 64 % probable L2  eigenstate with L=1 in terms of functions that were

eigenfunctions of the operator for which measurement was    about    to be made without

destroying our knowledge of the value of L2. That is, because L2  and Lz    can have

   simultaneous eigenfunctions   , the L = 1 function can be expanded in terms of functions that

are eigenfunctions of     both     L2  and Lz. This in turn, allowed us to find experimentally the

sub-population that had, for example -1 h as its value of Lz while retaining knowledge that

the state    remains    an eigenstate of L2  (the state at this time had L = 1    and      m = -1 and was

denoted P-1). Then, when this P-1 state was subjected to energy measurement, knowledge

of the energy of the sub-population could be gained      without    giving up knowledge of the L2

and Lz information; upon carrying out said measurement, the state became nP-1.

We therefore conclude that the act of carrying out an experimental measurement

disturbs the system in that it causes the system's wavefunction to become an eigenfunction

of the operator whose property is measured. If two properties whose corresponding

operators commute are measured, the measurement of the second property does     not    destroy

knowledge of the first property's value gained in the first measurement.

On the other hand, as detailed further in Appendix C, if the two properties (F and

G) do not commute, the second measurement destroys knowledge of the first property's

value. After the first measurement, Ψ is an eigenfunction of F; after the second

measurement, it becomes an eigenfunction of G. If the two non-commuting operators'

properties are measured in the opposite order, the wavefunction first is an eigenfunction of

G, and subsequently becomes an eigenfunction of F.

It is thus often said that 'measurements for operators that do not commute interfere

with one another'. The simultaneous measurement of the position and momentum along the



same axis provides an example of two measurements that are incompatible. The fact that x
= x and px  = -ih ∂/∂x do not commute is straightforward to demonstrate:

{x(-ih ∂/∂x ) χ - (-ih ∂/∂x )x χ} = ih χ ≠ 0.

Operators that commute with the Hamiltonian and with one another form a

particularly important class because each such operator permits each of the energy

eigenstates of the system to be labelled with a corresponding quantum number. These

operators are called symmetry operators. As will be seen later, they include angular

momenta (e.g., L2,Lz, S2, Sz, for atoms) and point group symmetries (e.g., planes and

rotations about axes). Every operator that qualifies as a symmetry operator provides a

quantum number with which the energy levels of the system can be labeled.

7. If a property F is measured for a large number of systems all described by the same Ψ,

the average value <F> of F for such a set of measurements can be computed as

<F> = <Ψ|F|Ψ>.

Expanding Ψ in terms of the complete set of eigenstates of F allows <F> to be rewritten as

follows:

<F> = Σ j fj |<φj|Ψ>|2,

which clearly expresses <F> as the product of the probability Pj of obtaining the particular

value fj when the property F is measured and the value fj.of the property in such a

measurement. This same result can be expressed in terms of the density matrix Di,j  of the

state Ψ defined above as:

<F> = Σ i,j <Ψ|φi> <φi|F|φj> <φj|Ψ> = Σ i,j Ci* <φi|F|φj> Cj

= Σ i,j  Dj,i  <φi|F|φj> = Tr (DF).

Here, DF represents the matrix product of the density matrix Dj,i  and the matrix

representation Fi,j  = <φi|F|φj> of the F operator, both taken in the {φj} basis, and Tr

represents the matrix trace operation.



As mentioned at the beginning of this Section, this set of rules and their

relationships to experimental measurements can be quite perplexing. The structure of

quantum mechanics embodied in the above rules was developed in light of new scientific

observations (e.g., the photoelectric effect, diffraction of electrons) that could not be

interpreted within the conventional pictures of classical mechanics. Throughout its

development, these and other experimental observations placed severe constraints on the

structure of the equations of the new quantum mechanics as well as on their interpretations.

For example, the observation of discrete lines in the emission spectra of atoms gave rise to

the idea that the atom's electrons could exist with only certain discrete energies and that

light of specific frequencies would be given off as transitions among these quantized

energy states took place.

Even with the assurance that quantum mechanics has firm underpinnings in

experimental observations, students learning this subject for the first time often encounter

difficulty. Therefore, it is useful to again examine some of the model problems for which

the Schrödinger equation can be exactly solved and to learn how the above rules apply to

such concrete examples.

The examples examined earlier in this Chapter and those given in the Exercises and

Problems serve as useful models for chemically important phenomena: electronic motion in

polyenes, in solids, and in atoms as well as vibrational and rotational motions. Their study

thus far has served two purposes; it allowed the reader to gain some familiarity with

applications of quantum mechanics and it introduced models that play central roles in much

of chemistry. Their study now is designed to illustrate how the above seven rules of

quantum mechanics relate to experimental reality.

B. An Example Illustrating Several of the Fundamental Rules

The physical significance of the time independent wavefunctions and energies

treated in Section II as well as the meaning of the seven fundamental points given above

can be further illustrated by again considering the simple two-dimensional electronic motion

model.

If the electron were prepared in the eigenstate corresponding to nx =1, ny =2, its

total energy would be

E = π2 h2/2m [ 12/Lx2 + 22/Ly2 ].



If the energy were experimentally measured, this and only this value would be observed,

and this same result would hold for all time as long as the electron is undisturbed.

If an experiment were carried out to measure the momentum of the electron along

the y-axis, according to the second postulate above, only values equal to the eigenvalues of

-ih∂/∂y could be observed. The py eigenfunctions (i.e., functions that obey py F =

-ih∂/∂y F = c F) are of the form

(1/Ly)1/2 exp(iky y),

where the momentum hky can achieve any value; the (1/Ly)1/2 factor is used to normalize

the eigenfunctions over the range 0 ≤ y ≤ Ly. It is useful to note that the y-dependence of ψ
as expressed above [exp(i2πy/Ly) -exp(-i2πy/Ly)] is already written in terms of two such

eigenstates of -ih∂/∂y:

-ih∂/∂y exp(i2πy/Ly) = 2h/Ly  exp(i2πy/Ly) , and

-ih∂/∂y exp(-i2πy/Ly) = -2h/Ly exp(-i2πy/Ly) .

Thus, the expansion of ψ in terms of eigenstates of the property being measured dictated by

the fifth postulate above is already accomplished. The only two terms in this expansion

correspond to momenta along the y-axis of 2h/Ly and -2h/Ly ; the probabilities of

observing these two momenta are given by the squares of the expansion coefficients of ψ in

terms of the normalized eigenfunctions of -ih∂/∂y. The functions (1/Ly)1/2 exp(i2πy/Ly)

and

(1/Ly)1/2 exp(-i2πy/Ly) are such normalized eigenfunctions; the expansion coefficients of

these functions in ψ are 2-1/2 and -2-1/2 , respectively. Thus the momentum 2h/Ly will be

observed with probability (2-1/2)2 = 1/2 and -2h/Ly will be observed with probability (-2-

1/2)2 = 1/2. If the momentum along the x-axis were experimentally measured, again only

two values 1h/Lx and -1h/Lx would be found, each with a probability of 1/2.

The average value of the momentum along the x-axis can be computed either as the

sum of the probabilities multiplied by the momentum values:

<px> = 1/2 [1h/Lx -1h/Lx ] =0,

or as the so-called    expectation value    integral shown in the seventh postulate:



<px> = ∫ ∫ ψ* (-ih∂ψ/∂x) dx dy.

Inserting the full expression for ψ(x,y) and integrating over x and y from 0 to Lx and Ly,

respectively, this integral is seen to vanish. This means that the result of a large number of

measurements of px on electrons each described by the same ψ will yield zero net

momentum along the x-axis.; half of the measurements will yield positive momenta and

half will yield negative momenta of the same magnitude.

The time evolution of the full wavefunction given above for the nx=1, ny=2 state is

easy to express because this ψ is an energy eigenstate:

Ψ(x,y,t) = ψ(x,y) exp(-iEt/h).

If, on the other hand, the electron had been prepared in a state ψ(x,y) that is not a pure

eigenstate (i.e., cannot be expressed as a single energy eigenfunction), then the time

evolution is more complicated. For example, if at t=0 ψ were of the form

ψ = (2/Lx)1/2 (2/Ly)1/2 [a sin(2πx/Lx) sin(1πy/Ly)

+ b sin(1πx/Lx) sin(2πy/Ly) ],

with a and b both real numbers whose squares give the probabilities of finding the system

in the respective states, then the time evolution operator exp(-iHt/h) applied to ψ would

yield the following time dependent function:

Ψ = (2/Lx)1/2 (2/Ly)1/2 [a exp(-iE2,1 t/h) sin(2πx/Lx)

sin(1πy/Ly) + b exp(-iE1,2 t/h) sin(1πx/Lx) sin(2πy/Ly) ],

where

E2,1 = π2 h2/2m [ 22/Lx2 + 12/Ly2 ], and

E1,2 = π2 h2/2m [ 12/Lx2 + 22/Ly2 ].

The probability of finding E2,1 if an experiment were carried out to measure energy would

be |a exp(-iE2,1 t/h)|2 = |a|2; the probability for finding E1,2 would be |b|2. The spatial

probability distribution for finding the electron at points x,y will, in this case, be given by:



|Ψ|2 = |a|2 |ψ2,1|2 + |b|2 |ψ1,2|2 + 2 ab ψ2,1ψ1,2 cos(∆Et/h),

where ∆E is E2,1 - E1,2,

ψ2,1 =(2/Lx)1/2 (2/Ly)1/2 sin(2πx/Lx) sin(1πy/Ly),

and

ψ1,2 =(2/Lx)1/2 (2/Ly)1/2 sin(1πx/Lx) sin(2πy/Ly).

This spatial distribution is not stationary but evolves in time. So in this case, one has a

wavefunction that is not a pure eigenstate of the Hamiltonian (one says that Ψ is a

superposition state or a non-stationary state) whose average energy remains constant

(E=E2,1 |a|2 + E1,2 |b|2) but whose spatial distribution changes with time.

Although it might seem that most spectroscopic measurements would be designed

to prepare the system in an eigenstate (e.g., by focusing on the sample light whose

frequency matches that of a particular transition), such need not be the case. For example,

if very short laser pulses are employed, the Heisenberg uncertainty broadening (∆E∆t ≥ h)

causes the light impinging on the sample to be very non-monochromatic (e.g., a pulse time

of 1 x10-12 sec corresponds to a frequency spread of approximately 5 cm-1). This, in turn,

removes any possibility of preparing the system in a particular quantum state with a

resolution of better than 30 cm-1 because the system experiences time oscillating

electromagnetic fields whose frequencies range over at least 5 cm-1).

Essentially all of the model problems that have been introduced in this Chapter to

illustrate the application of quantum mechanics constitute widely used, highly successful

'starting-point' models for important chemical phenomena. As such, it is important that

students retain working knowledge of the energy levels, wavefunctions, and symmetries

that pertain to these models.

Thus far, exactly soluble model problems that represent one or more aspects of an

atom or molecule's quantum-state structure have been introduced and solved. For example,

electronic motion in polyenes was modeled by a particle-in-a-box. The harmonic oscillator

and rigid rotor were introduced to model vibrational and rotational motion of a diatomic

molecule.



As chemists, we are used to thinking of electronic, vibrational, rotational, and

translational energy levels as being (at least approximately) separable. On the other hand,

we are aware that situations exist in which energy can flow from one such degree of

freedom to another (e.g., electronic-to-vibrational energy flow occurs in radiationless

relaxation and vibration-rotation couplings are important in molecular spectroscopy). It is

important to understand how the simplifications that allow us to focus on electronic or

vibrational or rotational motion arise, how they can be obtained from a first-principles

derivation, and what their limitations and range of accuracy are.



Chapter 2

Approximation Methods Can be Used When Exact Solutions to the Schrödinger Equation

Can Not be Found.

In applying quantum mechanics to 'real' chemical problems, one is usually faced

with a Schrödinger differential equation for which, to date, no one has found an analytical

solution. This is equally true for electronic and nuclear-motion problems. It has therefore

proven essential to develop and efficiently implement mathematical methods which can

provide approximate solutions to such eigenvalue equations. Two methods are widely used

in this context- the variational method and perturbation theory. These tools, whose use

permeates virtually all areas of theoretical chemistry, are briefly outlined here, and the

details of perturbation theory are amplified in Appendix D.

I. The Variational Method

For the kind of potentials that arise in atomic and molecular structure, the

Hamiltonian H is a Hermitian operator that is bounded from below (i.e., it has a lowest

eigenvalue).  Because it is Hermitian, it possesses a complete set of orthonormal

eigenfunctions {ψj}.      Any      function Φ that depends on the same spatial and spin variables

on which H operates and obeys the same boundary conditions that the {ψj} obey can be

expanded in this complete set

Φ = Σ j  Cj ψj.

The expectation value of the Hamiltonian for any such function can be expressed in

terms of its Cj coefficients and the    exact    energy levels Ej of H as follows:

<Φ|H|Φ> = Σij CiCj <ψi|H|ψj> = Σ j|Cj|2 Ej.

If the function Φ is normalized, the sum Σ j |Cj|2 is equal to unity.  Because H is bounded

from below, all of the Ej must be greater than or equal to the lowest energy E0.  Combining

the latter two observations allows the energy expectation value of Φ to be used to produce a

very important inequality:

<Φ|H|Φ> ≥  E0.



The equality can hold only if Φ is equal to ψ0; if Φ contains components along any of the

other ψj, the energy of Φ will exceed E0.

This upper-bound property forms the basis of the so-called     variational method     in

which 'trial wavefunctions' Φ are constructed:

i.  To guarantee that Φ obeys all of the boundary conditions that the exact ψj do and

that Φ is of the proper spin and space symmetry and is a function of the same spatial and

spin coordinates as the ψj;

ii.  With parameters embedded in Φ whose 'optimal' values are to be determined by

making <Φ|H|Φ> a minimum.

It is perfectly acceptable to vary any parameters in Φ to attain the lowest possible

value for <Φ|H|Φ> because the proof outlined above constrains this expectation value to be

above the true lowest eigenstate's energy E0 for    any     Φ.  The philosophy then is that the Φ
that gives the lowest <Φ|H|Φ> is the best because its expectation value is closes to the exact

energy.

Quite often a    trial wavefunction     is expanded as a linear combination of other

functions

Φ = ΣJ CJ ΦJ.

In these cases, one says that a 'linear variational' calculation is being performed. The set of

functions {ΦJ} are usually constructed to obey all of the boundary conditions that the exact

state Ψ obeys, to be functions of the the same coordinates as Ψ, and to be of the same

spatial and spin symmetry as Ψ. Beyond these conditions, the {ΦJ} are nothing more than

members of a set of functions that are convenient to deal with (e.g., convenient to evaluate

Hamiltonian matrix elements <ΦI|H|ΦJ>) and that can, in principle, be made complete if

more and more such functions are included.

For such a trial wavefunction, the energy depends quadratically on the 'linear

variational' CJ coefficients:

<Φ|H|Φ> = ΣIJ CICJ <ΦΙ |H|ΦJ>.

Minimization of this energy with the constraint that Φ remain normalized (<Φ|Φ> = 1 = ΣIJ

CICJ <ΦI|ΦJ>) gives rise to a so-called    secular    or eigenvalue-eigenvector problem:



ΣJ [<ΦI|H|ΦJ> - E <ΦI|ΦJ>] CJ = ΣJ [HIJ - E SIJ]CJ = 0.

If the functions {ΦJ} are orthonormal, then the overlap matrix S reduces to the unit

matrix and the above generalized eigenvalue problem reduces to the more familiar form:

ΣJ HIJ CJ = E CI.

The secular problem, in either form, has as many eigenvalues Ei and eigenvectors

{CiJ} as the dimension of the HIJ matrix as Φ.  It can also be shown that between

successive pairs of the eigenvalues obtained by solving the secular problem at least one

exact eigenvalue must occur (i.e., Ei+1 > Eexact  > Ei, for all i).  This observation is

referred to as 'the bracketing theorem'.

Variational methods, in particular the linear variational method, are the most widely

used approximation techniques in quantum chemistry. To implement such a method one

needs to know the Hamiltonian H whose energy levels are sought and one needs to

construct a trial wavefunction in which some 'flexibility' exists (e.g., as in the linear

variational method where the CJ coefficients can be varied). In Section 6 this tool will be

used to develop several of the most commonly used and powerful molecular orbital

methods in chemistry.

II. Perturbation Theory

[Suggested Extra Reading- Appendix D; Time Independent Perturbation Theory]

Perturbation theory is the second most widely used approximation method in

quantum chemistry. It allows one to estimate the splittings and shifts in energy levels and

changes in wavefunctions that occur when an external field (e.g., an electric or magnetic

field or a field that is due to a surrounding set of 'ligands'- a crystal field) or a field arising

when a previously-ignored term in the Hamiltonian is applied to a species whose

'unperturbed' states are known. These 'perturbations' in energies and wavefunctions are

expressed in terms of the (complete) set of unperturbed eigenstates.

Assuming that    all    of the wavefunctions Φk and energies Ek0 belonging to the

unperturbed Hamiltonian H0 are known

H0 Φk = Ek0 Φk ,



and given that one wishes to find eigenstates (ψk and Ek) of the perturbed Hamiltonian

H=H0+λV,

perturbation theory expresses ψk and Ek as power series in the perturbation strength λ:

ψk = ∑
n=0

∞
 λn  ψk(n) 

Ek = ∑
n=0

∞
 λn  Ek(n) .

The systematic development of the equations needed to determine the Ek(n)  and the ψk(n) is

presented in Appendix D. Here, we simply quote the few lowest-order results.

The zeroth-order wavefunctions and energies are given in terms of the solutions of

the unperturbed problem as follows:

ψk(0) = Φk and Ek(0) = Ek0.

This simply means that one must be willing to identify one of the unperturbed states as the

'best' approximation to the state being sought. This, of course, implies that one must

therefore strive to find an unperturbed model problem, characterized by H0 that represents

the true system as accurately as possible, so that one of the Φk will be as close as possible

to ψk.

The first-order energy correction is given in terms of the zeroth-order (i.e.,

unperturbed) wavefunction as:

Ek(1) = <Φk| V | Φk>,

which is identified as the average value of the perturbation taken with respect to the

unperturbed function Φk. The so-called    first-order wavefunction     ψk(1) expressed in terms

of the complete set  of unperturbed functions {ΦJ} is:

ψk(1) = ∑
j≠k

 < Φj|  V |  Φk>/[ Ek0  - E j0 ]   | Φj>  .



The    second-order energy     correction is expressed as follows:

Ek(2) = ∑
j≠k

|<Φj|  V |  Φk>|2/[ Ek0  - E j0 ]  ,

and the second-order correction to the wavefunction is expressed as

ψk(2) = Σj≠k [ Ek0 - Ej0]-1 Σl≠k{<Φj| V | Φl> -δj,l  Ek(1)}

<Φl| V | Φk> [ Ek0 - El0 ]-1 |Φj>.

An essential point about perturbation theory is that the energy corrections Ek(n) and

wavefunction corrections ψk(n) are expressed in terms of integrals over the unperturbed

wavefunctions Φk involving the perturbation (i.e., <Φj|V|Φl>) and the unperturbed

energies Ej0. Perturbation theory is most useful when one has, in hand, the solutions to an

unperturbed Schrödinger equation that is reasonably 'close' to the full Schrödinger

equation whose solutions are being sought. In such a case, it is likely that low-order

corrections will be adequate to describe the energies and wavefunctions of the full problem.

It is important to stress that although the solutions to the full 'perturbed'

Schrödinger equation are expressed, as above, in terms of sums over all states of the

unperturbed Schrödinger equation, it is improper to speak of the perturbation as creating

excited-state species. For example, the polarization of the 1s orbital of the Hydrogen atom

caused by the application of a static external electric field of strength E  along the z-axis is

described, in first-order perturbation theory, through the sum

Σn=2,∞  φnp0 <φnp0
 | E e r cosθ | 1s> [ E1s - Enp0

 ]-1

over all pz = p0 orbitals labeled by principal quantum number n. The coefficient multiplying

each p0 orbital depends on the energy gap corresponding to the 1s-to-np 'excitation' as well

as the electric dipole integral <φnp0
 | E ercosθ | 1s> between the 1s orbital and the np0

orbital.

This sum describes the polarization of the 1s orbital in terms of functions that have

p0 symmetry; by combining an s orbital and p0 orbitals, one can form a 'hybrid-like' orbital

that is nothing but a distorted 1s orbital. The appearance of the excited np0 orbitals has



nothing to do with forming excited states; these np0 orbitals simply provide a set of

functions that can describe the response of the 1s orbital to the applied electric field.
The relative strengths and weaknesses of perturbation theory and the variational

method, as applied to studies of the electronic structure of atoms and molecules, are
discussed in Section 6.



Chapter 3

The Application of the Schrödinger Equation to the Motions of Electrons and Nuclei in a

Molecule Lead to the Chemists' Picture of Electronic Energy Surfaces on Which Vibration

and Rotation Occurs and Among Which Transitions Take Place.

I. The Born-Oppenheimer Separation of Electronic and Nuclear Motions

Many elements of chemists' pictures of molecular structure hinge on the point of

view that separates the electronic motions from the vibrational/rotational motions and treats

couplings between these (approximately) separated motions as 'perturbations'. It is

essential to understand the origins and limitations of this separated-motions picture.

To develop a framework in terms of which to understand when such separability is

valid, one thinks of an atom or molecule as consisting of a collection of N electrons and M

nuclei each of which possesses kinetic energy and among which coulombic potential

energies of interaction arise. To properly describe the motions of all these particles, one

needs to consider the    full    Schrödinger equation HΨ = EΨ, in which the Hamiltonian H

contains the sum (denoted  He) of the kinetic energies of all N electrons and the coulomb

potential energies among the N electrons and the M nuclei as well as the kinetic energy T of

the M nuclei

T = Σa=1,M ( - h2/2ma ) ∇a2,

H = He + T

He = Σ j { ( - h2/2me ) ∇ j2 - Σa Zae2/rj,a } + Σ j<k e2/rj,k

+ Σa < b  Za Zb e2/Ra,b.

Here, ma is the mass of the nucleus a, Zae2  is its charge, and ∇a2 is the Laplacian with

respect to the three cartesian coordinates of this nucleus (this operator ∇a2 is given in

spherical polar coordinates in Appendix A); rj,a is the distance between the jth electron and

the ath nucleus, rj,k is the distance between the jth and kth electrons, me is the electron's

mass, and Ra,b is the distance from nucleus a to nucleus b.

The full Hamiltonian H thus contains differential operators over the 3N electronic

coordinates (denoted r as a shorthand) and the 3M nuclear coordinates (denoted R as a

shorthand). In contrast, the electronic Hamiltonian He is a Hermitian differential operator in



r-space but     not    in R-space. Although He is indeed a function of the R-variables, it is not a

differential operator involving them.

Because He is a Hermitian operator in r-space, its eigenfunctions Ψi (r|R) obey

He Ψi (r|R) = Ei (R) Ψi (r|R)

for any values of the R-variables, and form a    complete set    of functions of r for any values

of R.  These eigenfunctions and their eigenvalues Ei (R) depend on R only because the

potentials appearing in He depend on R. The Ψi  and Ei are the    electronic wavefunctions

and    electronic energies    whose evaluations are treated in the next three Chapters.

The fact that the set of {Ψi} is, in principle, complete in r-space allows the full

(electronic and nuclear) wavefunction Ψ to have its r-dependence expanded in terms of the

Ψi:

Ψ(r,R) = Σ i Ψi (r|R) Ξi (R) .

The Ξi(R) functions, carry the remaining R-dependence of Ψ and are determined by

insisting that Ψ as expressed here obey the full Schrödinger equation:

( He + T - E ) Σ i Ψi (r|R) Ξi (R) = 0.

Projecting this equation against < Ψj (r|R)| (integrating only over the electronic coordinates

because the Ψj are orthonormal only when so integrated) gives:

 [ (Ej(R) - E) Ξj (R) + T Ξj(R) ] = - Σ i { < Ψj | T | Ψi > (R) Ξi(R)

+ Σa=1,M ( - h2/ma ) < Ψj | ∇a | Ψi >(R) .  ∇a Ξi(R)  },

where the (R) notation in < Ψj | T | Ψi > (R) and < Ψj | ∇a | Ψi >(R) has been used to

remind one that the integrals < ...> are carried out only over the r coordinates and, as a

result, still depend on the R coordinates.

In the Born-Oppenheimer (BO) approximation, one neglects the so-called non-

adiabatic or non-BO couplings on the right-hand side of the above equation. Doing so

yields the following equations for the Ξi(R) functions:

[ (Ej(R) - E) Ξj0 (R) + T Ξj0(R) ] = 0,



where the superscript in Ξi0(R) is used to indicate that these functions are solutions within

the BO approximation only.

These BO equations can be recognized as the equations for the    translational,

   rotational, and vibrational    motion of the nuclei on the 'potential energy surface' Ej (R).

That is, within the BO picture, the electronic energies Ej(R), considered as functions of the

nuclear positions R, provide the potentials on which the nuclei move. The electronic and

nuclear-motion aspects of the Schrödinger equation are thereby separated.

A. Time Scale Separation

The physical parameters that determine under what circumstances the BO

approximation is accurate relate to the motional time scales of the electronic and

vibrational/rotational coordinates.

The range of accuracy of this separation can be understood by considering the

differences in time scales that relate to electronic motions and nuclear motions under

ordinary circumstances. In most atoms and molecules, the electrons orbit the nuclei at

speeds much in excess of even the fastest nuclear motions (the vibrations). As a result, the

electrons can adjust 'quickly' to the slow motions of the nuclei. This means it should be

possible to develop a model in which the electrons 'follow' smoothly as the nuclei vibrate

and rotate.

This picture is that described by the BO approximation. Of course, one should

expect large corrections to such a model for electronic states in which 'loosely held'

electrons exist. For example, in molecular Rydberg states and in anions, where the outer

valence electrons are bound by a fraction of an electron volt, the natural orbit frequencies of

these electrons are not much faster (if at all) than vibrational frequencies. In such cases,

significant breakdown of the BO picture is to be expected.

B. Vibration/Rotation States for Each Electronic Surface

The BO picture is what gives rise to the concept of a manifold of potential energy

surfaces on which vibrational/rotational motions occur.

Even within the BO approximation, motion of the nuclei on the various electronic

energy surfaces is different because the nature of the chemical bonding differs from surface

to surface. That is, the vibrational/rotational motion on the ground-state surface is certainly



not the same as on one of the excited-state surfaces. However, there are a complete set of

wavefunctions Ξ0j,m (R) and energy levels E0j,m  for    each     surface Ej(R) because T + Ej(R)

is a Hermitian operator in R-space for    each     surface (labelled j):

[ T + Ej(R) ] Ξ0j,m (R) = E0j,m  Ξ0j,m  .

The eigenvalues E0j,m  must be labelled by the electronic surface (j) on which the motion

occurs as well as to denote the particular state (m) on that surface.

II. Rotation and Vibration of Diatomic Molecules

For a diatomic species, the vibration-rotation (V/R) kinetic energy operator can be

expressed as follows in terms of the bond length R and the angles θ and φ that describe the

orientation of the bond axis relative to a laboratory-fixed coordinate system:

TV/R = - h2/2µ { R-2 ∂/∂R( R2 ∂/∂R) - R-2 h-2L2 },

where the square of the rotational angular momentum of the diatomic species is

L2 = h2{ (sinθ)-1 ∂/∂θ ((sinθ) ∂/∂θ ) + (sinθ)-2 ∂2/∂φ2}.

Because the potential Ej (R) depends on R but not on θ or φ, the V/R function Ξ0j,m  can be

written as a product of an angular part and an R-dependent part; moreover, because L2

contains the full angle-dependence of TV/R , Ξ0j,n can be written as

Ξ0j,n = YJ,M (θ,φ) Fj,J,v (R).

The general subscript n, which had represented the state in the full set of 3M-3  R-space

coordinates, is replaced by the three quantum numbers J,M, and v (i.e., once one focuses

on the three specific coordinates R,θ, and φ , a total of three quantum numbers arise in

place of the symbol n).

Substituting this product form for Ξ0j,n into the V/R equation gives:

- h2/2µ { R-2 ∂/∂R( R2 ∂/∂R) - R-2 h-2 J(J+1) } Fj,J,v (R)



+ Ej(R) Fj,J,v (R) = E0j,J,v Fj,J,v

as the equation for the vibrational (i.e., R-dependent) wavefunction within electronic state j

and with the species rotating with J(J+1) h2 as the square of the total angular momentum

and a projection along the laboratory-fixed Z-axis of Mh. The fact that the Fj,J,v functions

do not depend on the M quantum number derives from the fact that the TV/R kinetic energy

operator does not explicitly contain JZ; only J2 appears in TV/R.

The solutions for which J=0 correspond to vibrational states in which the species

has no rotational energy; they obey

- h2/2µ { R-2 ∂/∂R( R2 ∂/∂R) } Fj,0,v (R)

+ Ej(R) Fj,0,v (R) = E0j,0,v Fj,0,v .

The differential-operator parts of this equation can be simplified somewhat by substituting

F= R-1χ and thus obtaining the following equation for the new function χ:

- h2/2µ  ∂/∂R ∂/∂R χj,0,v (R) + Ej(R) χj,0,v (R) = E0j,0,v χj,0,v .

Solutions for which J≠0 require the vibrational wavefunction and energy to respond to the

presence of the 'centrifugal potential' given by h2 J(J+1)/(2µR2); these solutions obey the

full coupled V/R equations given above.

A. Separation of Vibration and Rotation

It is common, in developing the working equations of diatomic-molecule

rotational/vibrational spectroscopy, to treat the coupling between the two degrees of

freedom using perturbation theory as developed later in this chapter. In particular, one can

expand the centrifugal coupling h2J(J+1)/(2µR2) around the equilibrium geometry Re

(which depends, of course, on j):

h2J(J+1)/(2µR2) = h2J(J+1)/(2µ[Re2 (1+∆R)2])

= h2 J(J+1)/(2µRe2) [1 - 2 ∆R + ... ],

and treat the terms containing powers of the bond length displacement ∆Rk as

perturbations. The zeroth-order equations read:



- h2/2µ { R-2 ∂/∂R( R2 ∂/∂R) } F0j,J,v (R) +  Ej(R) F0j,J,v (R)

+ h2 J(J+1)/(2µRe2) F0j,J,v  = E0j,J,v F0j,J,v ,

and have solutions whose energies separate

E0j,J,v = h2 J(J+1)/(2µRe2) + Ej,v

and whose wavefunctions are independent of J (because the coupling is not R-dependent in

zeroth order)

F0j,J,v (R) = Fj,v (R).

Perturbation theory is then used to express the corrections to these zeroth order solutions as

indicated in Appendix D.

B. The Rigid Rotor and Harmonic Oscillator

Treatment of the rotational motion at the zeroth-order level described above

introduces the so-called 'rigid rotor' energy levels and wavefunctions: EJ = h2

J(J+1)/(2µRe2) and YJ,M (θ,φ); these same quantities arise when the diatomic molecule is

treated as a rigid rod of length Re. The spacings between successive rotational levels within

this approximation are

∆EJ+1,J = 2hcB(J+1),

where the so-called rotational constant B is given in cm-1 as

B = h/(8π2 cµRe2) .

The rotational level J is (2J+1)-fold degenerate because the energy EJ is independent of the

M quantum number of which there are (2J+1) values for each J: M= -J, -J+1, -J+2, ... J-2,

J-1, J.

The explicit form of the zeroth-order vibrational wavefunctions and energy levels,

F0j,v and E0j,v, depends on the description used for the electronic potential energy surface



Ej(R). In the crudest useful approximation, Ej(R) is taken to be a so-called harmonic

potential

Ej(R) ≈ 1/2 kj (R-Re)2 ;

as a consequence, the wavefunctions and energy levels reduce to

E0j,v = Ej (Re) + h √k/µ ( v +1/2), and

F0j,v (R) = [2v v! ]-1/2 (α/π)1/4 exp(-α(R-Re)2/2) Hv (α1/2 (R-Re)),

where α = (kj µ)1/2/h  and Hv (y) denotes the Hermite polynomial defined by:

Hv (y) = (-1)v exp(y2) dv/dyv exp(-y2).

The solution of the vibrational differential equation

- h2/2µ { R-2 ∂/∂R( R2 ∂/∂R) } Fj,v (R) +  Ej(R) Fj,v (R) = Ej,v Fj,v

is treated in EWK, Atkins, and McQuarrie.

These harmonic-oscillator solutions predict evenly spaced energy levels (i.e., no

anharmonicity) that persist for all v. It is, of course, known that molecular vibrations

display anharmonicity (i.e., the energy levels move closer together as one moves to higher

v) and that quantized vibrational motion ceases once the bond dissociation energy is

reached.

C. The Morse Oscillator

The Morse oscillator model is often used to go beyond the harmonic oscillator

approximation. In this model, the potential Ej(R) is expressed in terms of the bond

dissociation energy De and a parameter a related to the second derivative k of Ej(R) at Re

k = ( d2Ej/dR2) = 2a2De as follows:

Ej(R) - Ej(Re) = De { 1 - exp(-a(R-Re)) }2 .

The Morse oscillator energy levels are given by



E0j,v = Ej(Re) + h √k/µ (v+1/2) -  h2/4 (k/µDe) ( v+1/2)2;

the corresponding eigenfunctions are also known analytically in terms of hypergeometric

functions (see, for example,      Handbook of Mathematical Functions   , M. Abramowitz and I.

A. Stegun, Dover, Inc. New York, N. Y. (1964)). Clearly, the Morse solutions display

anharmonicity as reflected in the negative term proportional to (v+1/2)2  .

D. Perturbative Treatment of Vibration-Rotation Coupling

III. Rotation of Polyatomic Molecules

To describe the orientations of a diatomic or linear polyatomic molecule requires

only two angles (usually termed θ and φ). For any non-linear molecule, three angles

(usually α, β, and γ) are needed. Hence the rotational Schrödinger equation for a non-

linear molecule is a differential equation in three-dimensions.

There are 3M-6 vibrations of a non-linear molecule containing M atoms; a linear

molecule has 3M-5 vibrations. The linear molecule requires two angular coordinates to

describe its orientation with respect to a laboratory-fixed axis system; a non-linear molecule

requires three angles.

A. Linear Molecules

The rotational motion of a linear polyatomic molecule can be treated as an extension

of the diatomic molecule case. One obtains the YJ,M (θ,φ) as rotational wavefunctions and,

within the approximation in which the centrifugal potential is approximated at the

equilibrium geometry of the molecule (Re), the energy levels are:

E0J = J(J+1) h2/(2I) .

Here the total moment of inertia I of the molecule takes the place of µRe2 in the diatomic

molecule case

I = Σa ma (Ra - RCofM)2;



ma is the mass of atom a whose distance from the center of mass of the molecule is (Ra -

RCofM). The rotational level with quantum number J is (2J+1)-fold degenerate again

because there are (2J+1)

M- values.

B. Non-Linear Molecules

For a non-linear polyatomic molecule, again with the centrifugal couplings to the

vibrations evaluated at the equilibrium geometry, the following terms form the rotational

part of the nuclear-motion kinetic energy:

Trot = Σ i=a,b,c (Ji2/2Ii).

Here, Ii is the eigenvalue of the moment of inertia tensor:

Ix,x = Σa ma [ (Ra-RCofM)2 -(xa - xCofM )2]

Ix,y = Σa ma [ (xa - xCofM) ( ya -yCofM) ]

expressed originally in terms of the cartesian coordinates of the nuclei (a) and of the center

of mass in an arbitrary molecule-fixed coordinate system (and similarly for Iz,z , Iy,y , Ix,z

and Iy,z). The operator Ji corresponds to the component of the total rotational angular

momentum J along the direction belonging to the ith eigenvector of the moment of inertia

tensor.

Molecules for which all three principal moments of inertia (the Ii's) are equal are

called 'spherical tops'. For these species, the rotational Hamiltonian can be expressed in

terms of the square of the total rotational angular momentum J2 :

Trot = J2 /2I,

as a consequence of which the rotational energies once again become

EJ = h2 J(J+1)/2I.



However, the YJ,M are not the corresponding eigenfunctions because the operator J2 now

contains contributions from rotations about three (no longer two) axes (i.e., the three

principal axes). The proper rotational eigenfunctions are the DJM,K (α,β,γ) functions

known as 'rotation matrices' (see Sections 3.5 and 3.6 of Zare's book on angular

momentum) these functions depend on three angles (the three Euler angles needed to

describe the orientation of the molecule in space) and three quantum numbers- J,M, and K.

The quantum number M labels the projection of the total angular momentum (as Mh) along

the laboratory-fixed z-axis; Kh is the projection along one of the internal principal axes ( in

a spherical top molecule, all three axes are equivalent, so it does not matter which axis is

chosen).

The energy levels of spherical top molecules are (2J+1)2 -fold degenerate. Both the

M and K quantum numbers run from -J, in steps of unity, to J; because the energy is

independent of M and of K, the degeneracy is (2J+1)2.

Molecules for which two of the three principal moments of inertia are equal are

called symmetric top molecules. Prolate symmetric tops have Ia < Ib = Ic ; oblate symmetric

tops have Ia = Ib < Ic ( it is convention to order the moments of inertia as Ia ≤ Ib ≤ Ic ).

The rotational Hamiltonian can now be written in terms of J2  and the component of J

along the unique moment of inertia's axis as:

Trot = Ja2 ( 1/2Ia - 1/2Ib  ) + J2 /2Ib

for prolate tops, and

Trot = Jc2  ( 1/2Ic  - 1/2Ib ) + J2/2Ib

for oblate tops. Again, the DJM,K (α,β,γ) are the eigenfunctions, where the quantum

number K describes the component of the rotational angular momentum J along the unique

molecule-fixed axis (i.e., the axis of the unique moment of inertia). The energy levels are

now given in terms of J and K as follows:

EJ,K  = h2J(J+1)/2Ib + h2 K2 (1/2Ia - 1/2Ib)

for prolate tops, and

EJ,K  = h2J(J+1)/2Ib + h2K2  (1/2Ic  - 1/2Ib)

for oblate tops.



Because the rotational energies now depend on K  (as well as on J), the

degeneracies are lower than for spherical tops. In particular, because the energies do not

depend on M and depend on the square of K, the degeneracies are (2J+1) for states with

K=0 and 2(2J+1) for states with |K| > 0; the extra factor of 2 arises for |K| > 0 states

because pairs of states with K = |K| and K = |-K| are degenerate.

IV. Summary

This Chapter has shown how the solution of the Schrödinger equation governing

the motions and interparticle potential energies of the nuclei and electrons of an atom or

molecule (or ion) can be decomposed into two distinct problems: (i) solution of the

   electronic    Schrödinger equation for the electronic wavefunctions and energies, both of

which depend on the nuclear geometry and (ii) solution of the     vibration/rotation    

Schrödinger equation for the motion of the nuclei on any one of the electronic energy

surfaces. This decomposition into approximately separable electronic and nuclear-

motion problems remains an important point of view in chemistry. It forms the basis of

many of our models of molecular structure and our interpretation of molecular

spectroscopy. It also establishes how we approach the computational simulation of the

energy levels of atoms and molecules; we first compute electronic energy levels at a 'grid'

of different positions of the nuclei, and we then solve for the motion of the nuclei on a

particular energy surface using this grid of data.

The treatment of electronic motion is treated in detail in Sections 2, 3, and 6

where molecular orbitals and configurations and their computer evaluation is covered. The

vibration/rotation motion of molecules on BO surfaces is introduced above, but should be

treated in more detail in a subsequent course in molecular spectroscopy.

Section Summary

This Introductory Section was intended to provide the reader with an overview of

the structure of quantum mechanics and to illustrate its application to several exactly

solvable model problems. The model problems analyzed play especially important roles in

chemistry because they form the basis upon which more sophisticated descriptions of the

electronic structure and rotational-vibrational motions of molecules are built. The variational

method and perturbation theory constitute the tools needed to make use of solutions of



simpler model problems as starting points in the treatment of Schrödinger equations that are

impossible to solve analytically.

In Sections 2, 3, and 6 of this text, the electronic structures of polyatomic

molecules, linear molecules, and atoms are examined in some detail. Symmetry, angular

momentum methods, wavefunction antisymmetry, and other tools are introduced as needed

throughout the text. The application of modern computational chemistry methods to the

treatment of molecular electronic structure is included. Given knowledge of the electronic

energy surfaces as functions of the internal geometrical coordinates of the molecule, it is

possible to treat vibrational-rotational motion on these surfaces. Exercises, problems, and

solutions are provided for each Chapter. Readers are    strongly     encouraged to work these

exercises and problems because new material that is used in other Chapters is often

developed within this context.



Section 2 Simple Molecular Orbital Theory

In this section, the conceptual framework of molecular orbital theory is developed.

Applications are presented and problems are given and solved within qualitative and semi-

empirical models of electronic structure.     Ab Initio     approaches to these same matters, whose

solutions require the use of digital computers, are treated later in Section 6. Semi-

empirical methods, most of which also require access to a computer, are treated in this

section and in Appendix F.

Unlike most texts on molecular orbital theory and quantum mechanics, this text

treats polyatomic molecules before linear molecules before atoms. The finite point-group

symmetry (Appendix E provides an introduction to the use of point group symmetry) that

characterizes the orbitals and electronic states of non-linear polyatomics is more

straightforward to deal with because fewer degeneracies arise. In turn, linear molecules,

which belong to an axial rotation group, possess fewer degeneracies (e.g., π orbitals or

states are no more degenerate than δ, φ, or γ orbitals or states; all are doubly degenerate)

than atomic orbitals and states (e.g., p orbitals or states are 3-fold degenerate, d's are 5-

fold, etc.). Increased orbital degeneracy, in turn, gives rise to more states that can arise

from a given orbital occupancy (e.g., the 2p2 configuration of the C atom yields fifteen

states, the π2 configuration of the NH molecule yields six, and the ππ* configuration of

ethylene gives four states). For these reasons, it is more straightforward to treat low-

symmetry cases (i.e., non-linear polyatomic molecules) first and atoms last.

It is recommended that the reader become familiar with the point-group symmetry

tools developed in Appendix E before proceeding with this section. In particular, it is

important to know how to label atomic orbitals as well as the various hybrids that can be

formed from them according to the irreducible representations of the molecule's point

group and how to construct symmetry adapted combinations of atomic, hybrid, and

molecular orbitals using projection operator methods. If additional material on group theory

is needed, Cotton's book on this subject is very good and provides many excellent

chemical applications.

Chapter 4

Valence Atomic Orbitals on Neighboring Atoms Combine to Form Bonding, Non-Bonding

and Antibonding Molecular Orbitals

I. Atomic Orbitals



In Section 1 the Schrödinger equation for the motion of a single electron moving

about a nucleus of charge Z was explicitly solved. The energies of these orbitals relative to

an electron infinitely far from the nucleus with zero kinetic energy were found to depend

strongly on Z and on the principal quantum number n, as were the radial "sizes" of these

hydrogenic orbitals. Closed analytical expressions for the r,θ, and φ dependence of these

orbitals are given in Appendix B. The reader is advised to also review this material before

undertaking study of this section.

A. Shapes

Shapes of atomic orbitals play central roles in governing the types of directional

bonds an atom can form.

All atoms have sets of bound and continuum s,p,d,f,g, etc. orbitals. Some of these

orbitals may be unoccupied in the atom's low energy states, but they are still present and

able to accept electron density if some physical process (e.g., photon absorption, electron

attachment, or Lewis-base donation) causes such to occur. For example, the Hydrogen

atom has 1s, 2s, 2p, 3s, 3p, 3d, etc. orbitals. Its negative ion H- has states that involve

1s2s, 2p2, 3s2, 3p2, etc. orbital occupancy. Moreover, when an H atom is placed in an

external electronic field, its charge density polarizes in the direction of the field. This

polarization can be described in terms of the orbitals of the isolated atom being combined to

yield distorted orbitals (e.g., the 1s and 2p orbitals can "mix" or combine to yield sp hybrid

orbitals, one directed toward increasing field and the other directed in the opposite

direction). Thus in many situations it is important to keep in mind that each atom has a full

set of orbitals available to it even if some of these orbitals are not occupied in the lowest-

energy state of the atom.

B. Directions

Atomic orbital directions also determine what directional bonds an atom will form.

Each set of p orbitals has three distinct directions or three different angular

momentum m-quantum numbers as discussed in Appendix G. Each set of d orbitals  has

five distinct directions or m-quantum numbers, etc; s orbitals are unidirectional in that they

are spherically symmetric, and have only m = 0. Note that the degeneracy of an orbital

(2l+1), which is the number of distinct spatial orientations or the number of m-values,



grows with the angular momentum quantum number l of the orbital without bound. 

It is because of the    energy degeneracy     within a set of orbitals, that these distinct

directional orbitals (e.g., x, y, z for p orbitals) may be combined to give new orbitals

which no longer possess specific spatial directions but which have specified angular

momentum characteristics. The act of combining these degenerate orbitals does not change

their energies. For example, the 2-1/2(px +ipy) and

2-1/2(px -ipy)  combinations no longer point along the x and y axes, but instead correspond

to specific angular momenta (+1h and -1h) about the z axis. The fact that they are angular

momentum eigenfunctions can be seen by noting that the x and y orbitals contain φ
dependences of cos(φ) and sin(φ), respectively. Thus the above combinations contain

exp(iφ) and exp(-iφ), respectively. The sizes, shapes, and directions of a few s, p, and d

orbitals are illustrated below (the light and dark areas represent positive and negative

values, respectively).

1s

2s

p orbitals d orbitals

C. Sizes and Energies

Orbital energies and sizes go hand-in-hand; small 'tight' orbitals have large electron

binding energies (i.e., low energies relative to a detached electron). For orbitals on



neighboring atoms to have large (and hence favorable to bond formation) overlap, the two

orbitals should be of comparable size and hence of similar electron binding energy.

The size (e.g., average value or expectation value of the distance from the atomic

nucleus to the electron) of an atomic orbital is determined primarily by its principal quantum

number n and by the strength of the potential attracting an electron in this orbital to the

atomic center (which has some l-dependence too). The energy (with negative energies

corresponding to bound states in which the electron is attached to the atom with positive

binding energy and positive energies corresponding to unbound scattering states) is also

determined by n and by the electrostatic potential produced by the nucleus and by the other

electrons. Each atom has an infinite set of orbitals of each l quantum number ranging from

those with low energy and small size to those with higher energy and larger size.

Atomic orbitals are solutions to an orbital-level Schrödinger equation in which an

electron moves in a potential energy field provided by the nucleus and all the other

electrons. Such one-electron Schrödinger equations are discussed, as they pertain to

qualitative and semi-empirical models of electronic structure in Appendix F. The spherical

symmetry of the one-electron potential appropriate to atoms and atomic ions is what makes

sets of the atomic orbitals degenerate. Such degeneracies arise in molecules too, but the

extent of degeneracy is lower because the molecule's nuclear coulomb and electrostatic

potential energy has lower symmetry than in the atomic case. As will be seen, it is the

symmetry of the potential experienced by an electron moving in the orbital that determines

the kind and degree of orbital degeneracy which arises.

Symmetry operators leave the electronic Hamiltonian H invariant because the

potential and kinetic energies are not changed if one applies such an operator R to the

coordinates and momenta of    all    the electrons in the system. Because symmetry operations

involve reflections through planes, rotations about axes, or inversions through points, the

application of such an operation to a product such as Hψ gives the product of the operation

applied to each term in the original product. Hence, one can write:

R(H ψ) = (RH) (Rψ).

Now using the fact that H is invariant to R, which means that (RH) = H, this result

reduces to:

R(H ψ) = H (Rψ),



which says that R commutes with H:

[R,H] = 0.

Because symmetry operators commute with the electronic Hamiltonian, the wavefunctions

that are eigenstates of H can be labeled by the symmetry of the point group of the molecule

(i.e., those operators that leave H invariant). It is for this reason that one

constructs symmetry-adapted atomic basis orbitals to use in forming molecular orbitals.

II. Molecular Orbitals

Molecular orbitals (mos) are formed by combining atomic orbitals (aos) of the

constituent atoms. This is one of the most important and widely used ideas in quantum

chemistry. Much of chemists' understanding of chemical bonding, structure, and reactivity

is founded on this point of view.

When aos are combined to form mos, core, bonding, nonbonding, antibonding,

and Rydberg molecular orbitals can result.  The mos φi are usually expressed in terms of

the constituent atomic orbitals χa  in the linear-combination-of-atomic-orbital-molecular-

orbital (LCAO-MO) manner:

φi  = Σa Cia χa .

The orbitals on one atom are orthogonal to one another because they are eigenfunctions of a

hermitian operator (the atomic one-electron Hamiltonian) having different eigenvalues.

However, those on one atom are not orthogonal to those on another atom because they are

eigenfunctions of different operators (the one-electron Hamiltonia of the different atoms).

Therefore, in practice, the primitive atomic orbitals must be orthogonalized to preserve

maximum identity of each primitive orbital in the resultant orthonormalized orbitals before

they can be used in the LCAO-MO process. This is both computationally expedient and

conceptually useful. Throughout this book, the atomic orbitals (aos) will be assumed to

consist of such orthonormalized primitive orbitals once the nuclei are brought into regions

where the "bare" aos interact.

Sets of orbitals that are not orthonormal can be combined to form new orthonormal

functions in many ways.  One technique that is especially attractive when the original

functions are orthonormal in the absence of "interactions" (e.g., at large interatomic



distances in the case of atomic basis orbitals) is the so-called symmetric orthonormalization

(SO) method.  In this method, one first forms the so-called overlap matrix

Sµν = <χµ|χν>

for all functions χµ to be orthonormalized.  In the atomic-orbital case, these functions

include those on the first atom, those on the second, etc.

Since the orbitals belonging to the individual atoms are themselves orthonormal, the

overlap matrix will contain, along its diagonal, blocks of unit matrices, one for each set of

individual atomic orbitals.  For example, when a carbon and oxygen atom, with their core

1s and valence 2s and 2p orbitals are combined to form CO, the 10x10 Sµ,ν matrix will

have two 5x5 unit matrices along its diagonal (representing the overlaps among the carbon

and among the oxygen atomic orbitals) and a 5x5 block in its upper right and lower left

quadrants.  The latter block represents the overlaps <χC µ|χOν> among carbon and oxygen

atomic orbitals.

After forming the overlap matrix, the new orthonormal functions χ' µ are defined as

follows:

χ' µ  = Σν (S-1/2)µν χν  .

As shown in Appendix A, the matrix S-1/2  is formed by finding the eigenvalues {λi} and

eigenvectors {Viµ} of the S matrix and then constructing:

(S-1/2)µν = Σ i Viµ Viν (λi)-1/2.

The new functions {χ' µ} have the characteristic that they evolve into the original functions

as the "coupling", as represented in the Sµ,ν matrix's off-diagonal blocks, disappears.

Valence orbitals on neighboring atoms are coupled by changes in the electrostatic

potential due to the other atoms (coulomb attraction to the other nuclei and repulsions from

electrons on the other atoms). These coupling potentials vanish when the atoms are far

apart and become significant only when the valence orbitals overlap one another. In the

most qualitative picture, such interactions are described in terms of off-diagonal

Hamiltonian matrix elements (hab; see below and in Appendix F) between pairs of atomic

orbitals which interact (the diagonal elements haa represent the energies of the various

orbitals and are related via Koopmans' theorem (see Section 6, Chapter 18.VII.B) to the

ionization energy of the orbital). Such a matrix embodiment of the molecular orbital



problem arises, as developed below and in Appendix F, by using the above LCAO-MO

expansion in a variational treatment of the one-electron Schrödinger equation appropriate to

the mos {φi}.

In the simplest two-center, two-valence-orbital case (which could relate, for

example, to the Li2 molecule's two 2s orbitals ), this gives rise to a 2x2 matrix eigenvalue

problem (h11,h12,h22) with a low-energy mo (E=(h11+h22)/2-1/2[(h11-h22)2 +4h212]1/2)

and a higher energy mo (E=(h11+h22)/2+1/2[(h11-h22)2 +4h212]1/2) corresponding to

bonding and antibonding orbitals (because their energies lie below and above the lowest

and highest interacting atomic orbital energies, respectively). The mos themselves are

expressed φ i = Σ Cia χa where the LCAO-MO coefficients  Cia are obtained from the

normalized eigenvectors of the hab matrix. Note that the bonding-antibonding orbital energy

splitting depends on hab2 and on the energy difference (haa-hbb); the best bonding (and

worst antibonding) occur when two orbitals couple strongly (have large hab) and are similar

in energy (haa ≅ hbb).
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In both the homonuclear and heteronuclear cases depicted above, the energy

ordering of the resultant mos depends upon the energy ordering of the constituent aos as

well as the strength of the bonding-antibonding interactions among the aos. For example, if

the 2s-2p atomic orbital energy splitting is large compared with the interaction matrix

elements coupling orbitals on neighboring atoms h2s,2s and h2p,2p , then the ordering

shown above will result. On the other hand, if the 2s-2p splitting is small, the two 2s and

two 2p orbitals can all participate in the formation of the four σ mos. In this case, it is

useful to think of the atomic 2s and 2p orbitals forming sp hybrid orbitals with each atom

having one hybrid directed toward the other atom and one hybrid directed away from the

other atom. The resultant pattern of four σ mos will involve one bonding orbital (i.e., an

in-phase combination of two sp hybrids), two non-bonding orbitals (those directed away

from the other atom) and one antibonding orbital (an out-of-phase combination of two sp

hybrids). Their energies will be ordered as shown in the Figure below.
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Here σn is used to denote the non-bonding σ-type orbitals and σ, σ*, π, and π* are used to

denote bonding and antibonding σ- and π-type orbitals.

Notice that the total number of σ orbitals arising from the interaction of the 2s and

2p orbitals is equal to the number of aos that take part in their formation. Notice also that

this is true regardless of whether one thinks of the interactions involving bare 2s and 2p



atomic orbitals or hybridized orbitals. The only advantage that the hybrids provide is that

they permit one to foresee the fact that two of the four mos must be non-bonding because

two of the four hybrids are directed away from all other valence orbitals and hence can not

form bonds. In all such qualitative mo analyses, the final results (i.e., how many mos there

are of any given symmetry) will     not    depend on whether one thinks of the interactions

involving atomic or hybrid orbitals. However, it is often easier to "guess" the bonding,

non-bonding, and antibonding nature of the resultant mos when thought of as formed from

hybrids because of the directional properties of the hybrid orbitals.

C. Rydberg Orbitals

It is essential to keep in mind that all atoms possess 'excited' orbitals that may

become involved in bond formation if one or more electrons occupies these orbitals.

Whenever aos with principal quantum number one or more unit higher than that of the

conventional aos becomes involved in bond formation,  Rydberg mos are formed.

Rydberg orbitals (i.e., very diffuse orbitals having principal quantum numbers

higher than the atoms' valence orbitals) can arise in molecules just as they do in atoms.

They do not usually give rise to bonding and antibonding orbitals because the valence-

orbital interactions bring the atomic centers so close together that the Rydberg orbitals of

each atom subsume both atoms. Therefore as the atoms are brought together, the atomic

Rydberg orbitals usually pass through the internuclear distance region where they

experience (weak) bonding-antibonding interactions all the way to much shorter  distances

at which they have essentially reached their united-atom limits. As a result, molecular

Rydberg orbitals are molecule-centered and display little, if any, bonding or antibonding

character. They are usually labeled with principal quantum numbers beginning one higher

than the highest n value of the constituent atomic valence orbitals, although they are

sometimes labeled by the n quantum number to which they correlate in the united-atom

limit.

An example of the interaction of 3s Rydberg orbitals of a molecule whose 2s and 2p

orbitals are the valence orbitals and of the evolution of these orbitals into united-atom

orbitals is given below.
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D. Multicenter Orbitals

If aos on one atom overlap aos on more than one neighboring atom, mos that

involve amplitudes on three or more atomic centers can be formed. Such mos are termed

delocalized or multicenter mos.

Situations in which more than a pair of orbitals interact can, of course, occur.

Three-center bonding occurs in Boron hydrides and in carbonyl bridge bonding in

transition metal complexes as well as in delocalized conjugated π orbitals common in

unsaturated organic hydrocarbons. The three pπ orbitals on the allyl radical (considered in

the absence of the underlying σ orbitals) can be described qualitatively in terms of three pπ
aos on the three carbon atoms. The couplings h12 and h23 are equal (because the two CC

bond lengths are the same) and h13 is approximated as 0 because orbitals 1 and 3 are too far

away to interact. The result is a 3x3 secular matrix  (see below and in Appendix F):

h11 h12 0
h21h 22h 23

0   h 32h 33

whose eigenvalues give the molecular orbital energies and whose eigenvectors give the

LCAO-MO coefficients Cia .

This 3x3 matrix gives rise to a bonding, a non-bonding and an antibonding orbital

(see the Figure below). Since all of the haa are equal and h12 = h23, the resultant orbital

energies are :  h11 + √ 2 h12 , h11 , and h11-√2 h12 , and the respective LCAO-MO coefficients

Cia are (0.50, 0.707, 0.50), (0.707, 0.00, -0.707), and (0.50, -0.707, 0.50). Notice that

the sign (i.e., phase) relations of the bonding orbital are such that overlapping orbitals

interact constructively, whereas for the antibonding orbital they interact out of phase. For

the nonbonding orbital, there are no interactions because the central C orbital has zero

amplitude in this orbital and only h12 and h23 are non-zero.
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E. Hybrid Orbitals

It is sometimes convenient to combine aos to form hybrid orbitals that have well

defined directional character and to then form mos by combining these hybrid orbitals. This

recombination of aos to form hybrids is     never     necessary and never provides any

information that could be achieved in its absence. However, forming hybrids often allows

one to focus on those interactions among directed orbitals on neighboring atoms that are

most important.

When atoms combine to form molecules, the molecular orbitals can be thought of as

being constructed as linear combinations of the constituent atomic orbitals. This clearly is

the only reasonable picture when each atom contributes only one orbital to the particular

interactions being considered (e.g., as each Li atom does in Li2 and as each C atom does in

the π orbital aspect of the allyl system). However, when an atom uses more than one of its

valence orbitals within  particular bonding, non-bonding, or antibonding interactions, it is

sometimes useful to combine the constituent atomic orbitals into hybrids and to then use the

hybrid orbitals to describe the interactions. As stated above, the directional nature of hybrid

orbitals often makes it more straightforward to "guess" the bonding, non-bonding, and

antibonding nature of the resultant mos. It should be stressed, however, that exactly the

same quantitative results are obtained if one forms mos from primitive aos or from hybrid

orbitals; the hybrids span exactly the same space as the original aos and can therefore

contain no additional information. This point is illustrated below when the H2O and N2

molecules are treated in both the primitive ao and hybrid orbital bases.



Chapter 5

Molecular Orbitals Possess Specific  Topology, Symmetry, and Energy-Level Patterns

In this chapter the symmetry properties of atomic, hybrid, and molecular orbitals

are treated. It is important to keep in mind that     both        symmetry        and        characteristics of orbital

   energetics and bonding "topology"   , as embodied in the orbital energies themselves and the

interactions (i.e., hj,k values) among the orbitals, are involved in determining the pattern of

molecular orbitals that arise in a particular molecule.

I. Orbital Interaction Topology

The pattern of mo energies can often be 'guessed' by using qualitative information

about the energies, overlaps, directions, and shapes of the aos that comprise the mos.

The orbital interactions determine how many and which mos will have low

(bonding), intermediate (non-bonding), and higher (antibonding) energies, with all

energies viewed relative to those of the constituent atomic orbitals. The general patterns

that are observed in most compounds can be summarized as follows:

i. If the energy splittings among a given atom's aos with the same principal quantum

number are small, hybridization can easily occur to produce hybrid orbitals that are directed

toward (and perhaps away from) the other atoms in the molecule. In the first-row elements

(Li, Be, B, C, N, O, and F), the 2s-2p splitting is small, so hybridization is common. In

contrast, for Ca, Ga, Ge, As, and Br it is less common, because the 4s-4p splitting is

larger. Orbitals directed toward other atoms can form bonding and antibonding mos; those

directed toward no other atoms will form nonbonding mos.

ii. In attempting to gain a qualitative picture of the electronic structure of any given

molecule, it is advantageous to begin by hybridizing the aos of those atoms which contain

more than one ao in their valence shell. Only those aos that are not involved in π-orbital

interactions should be so hybridized.

iii. Atomic or hybrid orbitals that are not directed in a σ-interaction manner toward other

aos or hybrids on neighboring atoms can be involved in π-interactions or in nonbonding

interactions.



iv. Pairs of aos or hybrid orbitals on neighboring atoms directed toward one another

interact to produce bonding and antibonding orbitals. The more the bonding orbital lies

below the lower-energy ao or hybrid orbital involved in its formation, the higher the

antibonding orbital lies above the higher-energy ao or hybrid orbital.

For example, in formaldehyde, H2CO, one forms sp2 hybrids on the C atom; on

the O atom, either sp hybrids (with one p orbital "reserved" for use in forming the π and π*

orbitals and another p orbital to be used as a non-bonding orbital lying in the plane of the

molecule) or sp2 hybrids (with the remaining p orbital reserved for the π and π* orbitals)

can be used. The H atoms use their 1s orbitals since hybridization is not feasible for them.

The C atom clearly uses its sp2 hybrids to form two CH and one CO σ bonding-

antibonding orbital pairs.

The O atom uses one of its sp or sp2 hybrids to form the CO σ bond and antibond.

When sp hybrids are used in conceptualizing the bonding, the other sp hybrid forms a lone

pair orbital directed away from the CO bond axis; one of the atomic p orbitals is involved in

the CO π and π* orbitals, while the other forms an in-plane non-bonding orbital.

Alternatively, when sp2 hybrids are used, the two sp2 hybrids that do not interact with the

C-atom sp2 orbital form the two non-bonding orbitals. Hence, the final picture of bonding,

non-bonding, and antibonding orbitals does not depend on which hybrids one uses as

intermediates.

As another example, the 2s and 2p orbitals on the two N atoms of N2 can be

formed into pairs of sp hybrids on each N atom plus a pair of pπ atomic orbitals on each N

atom. The sp hybrids directed

toward the other N atom give rise to bonding σ and antibonding σ∗ orbitals, and the sp

hybrids directed away from the other N atom yield nonbonding σ orbitals. The pπ orbitals,

which consist of 2p orbitals on the N atoms directed perpendicular to the N-N bond axis,

produce bonding π and antibonding π* orbitals.

v. In general, σ interactions for a given pair of atoms interacting are stronger than π
interactions (which, in turn, are stronger than δ interactions, etc.) for any given sets (i.e.,

principal quantum number) of aos that interact. Hence, σ bonding orbitals (originating from

a given set of aos) lie below π bonding orbitals, and σ* orbitals lie above π* orbitals that

arise from the same sets of aos. In the N2 example, the σ bonding orbital formed from the

two sp hybrids lies below the π bonding orbital, but the π* orbital lies below the σ*

orbital. In the H2CO example, the two CH and the one CO bonding orbitals have low

energy; the CO π bonding orbital has the next lowest energy; the two O-atom non-bonding



orbitals have intermediate energy; the CO π* orbital has somewhat higher energy; and the

two CH and one CO antibonding orbitals have the highest energies.

vi. If a given ao or hybrid orbital interacts with or is coupled to orbitals on more than a

single neighboring atom, multicenter bonding can occur. For example, in the allyl radical

the central carbon atom's pπ orbital is coupled to the pπ orbitals on both neighboring atoms;

in linear Li3, the central Li atom's 2s orbital interacts with the 2s orbitals on both terminal

Li atoms; in triangular Cu3, the 2s orbitals on each Cu atom couple to each of the other two

atoms' 4s orbitals.

vii. Multicenter bonding that involves "linear" chains containing N atoms (e.g., as in

conjugated polyenes or in chains of Cu or Na atoms for which the valence orbitals on one

atom interact with those of its neighbors on both sides) gives rise to mo energy patterns in

which there are N/2 (if N is even) or N/2 -1 non-degenerate bonding orbitals and the same

number of antibonding orbitals (if N is odd, there is also a single non-bonding orbital).

viii. Multicenter bonding that involves "cyclic" chains of N atoms (e.g., as in cyclic

conjugated polyenes or in rings of Cu or Na atoms for which the valence orbitals on one

atom interact with those of its neighbors on both sides and the entire net forms a closed

cycle) gives rise to mo energy patterns in which there is a lowest non-degenerate orbital and

then a progression of doubly degenerate orbitals. If N is odd, this progression includes (N-

1)/2 levels; if N is even, there are (N-2)/2 doubly degenerate levels and a final non-

degenerate highest orbital. These patterns and those that appear in linear multicenter

bonding are summarized in the Figures shown below.
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ix. In extended systems such as solids, atom-based orbitals combine as above to form so-

called 'bands' of molecular orbitals.  These bands are continuous rather than discrete as in

the above cases involving small polyenes. The energy 'spread' within a band depends on

the overlap among the atom-based orbitals that form the band; large overlap gives rise to a

large band width, while small overlap produces a narrow band. As one moves from the

bottom (i.e., the lower energy part) of a band to the top, the number of nodes in the

corresponding band orbital increases, as a result of which its bonding nature decreases. In

the figure shown below, the bands of a metal such as Ni (with 3d, 4s, and 4p orbitals) is

illustrated. The d-orbital band is narrow because the 3d orbitals are small and hence do not

overlap appreciably; the 4s and 4p bands are wider because the larger 4s and 4p orbitals

overlap to a greater extent. The d-band is split into σ, π, and δ components corresponding

to the nature of the overlap interactions among the constituent atomic d orbitals. Likewise,



the p-band is split into σ  and π components. The widths of the σ components of each band

are larger than those of the π components because the corresponding σ overlap interactions

are stronger. The intensities of the bands at energy E measure the densities of states at that

E. The total integrated intensity under a given band is a measure of the total number of

atomic orbitals that form the band.
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II. Orbital Symmetry

Symmetry provides additional quantum numbers or labels to use in describing the

mos. Each such quantum number further sub-divides the collection of all mos into sets that

have vanishing Hamiltonian matrix elements among members belonging to different sets.



Orbital interaction "   topology    " as discussed above plays a most- important role in

determining the orbital energy level patterns of a molecule.     Symmetry     also comes into play

but in a different manner. Symmetry can be used to characterize the core, bonding, non-

bonding, and antibonding molecular orbitals. Much of this chapter is devoted to how this

can be carried out in a systematic manner. Once the various mos have been labeled

according to symmetry, it may be possible to recognize additional degeneracies that may

not have been apparent on the basis of orbital-interaction considerations alone. Thus,

topology provides the basic energy ordering pattern and then symmetry enters to identify

additional degeneracies.

For example, the three NH bonding and three NH antibonding orbitals in NH3,

when symmetry adapted within the C3v point group, cluster into a1 and e mos as shown in

the Figure below. The N-atom localized non-bonding lone pair orbital and the N-atom 1s

core orbital also belong to a1 symmetry.

In a second example, the three CH bonds, three CH antibonds, CO bond and

antibond, and three O-atom non-bonding orbitals of the methoxy radical H3C-O also cluster

into a1 and e orbitals as shown below. In these cases, point group symmetry allows one to

identify degeneracies that may not have been apparent from the structure of the orbital

interactions alone.
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The three resultant molecular orbital energies are, of course, identical to those

obtained without symmetry above. The three LCAO-MO coefficients , now expressing the

mos in terms of the symmetry adapted orbitals are Cis = ( 0.707, 0.707, 0.0) for the

bonding orbital, (0.0, 0.0, 1.00) for the nonbonding orbital, and (0.707, -0.707, 0.0) for

the antibonding orbital. These coefficients, when combined with the symmetry adaptation

coefficients Csa given earlier, express the three mos in terms of the three aos as φi= ΣsaCis

Csa χa ; the sum Σs Cis Csa  gives the LCAO-MO coefficients Cia which, for example, for

the bonding orbital, are ( 0.7072, 0.707, 0.7072), in agreement with what was found

earlier without using symmetry.

The low energy orbitals of the H2O molecule can be used to illustrate the use of

symmetry within the primitive ao basis as well as in terms of hybrid orbitals. The 1s orbital

on the Oxygen atom is clearly a nonbonding core orbital. The Oxygen 2s orbital and its

three 2p orbitals are of valence type, as are the two Hydrogen 1s orbitals. In the absence of

symmetry, these six valence orbitals would give rise to a 6x6 secular problem. By

combining the two Hydrogen 1s orbitals into 0.707(1sL + 1sR) and 0.707(1sL - 1sR)

symmetry adapted orbitals (labeled a1 and b2 within the C2v point group; see the Figure

below), and recognizing that the Oxygen 2s and 2pz orbitals belong to a1  symmetry (the z

axis is taken as the C2 rotation axis and the x axis is taken to be perpendicular to the plane

in which the three nuclei lie) while the 2px orbital is b1 and the 2py orbital is b2 , allows the

6x6 problem to be decomposed into a 3x3 ( a1) secular problem, a 2x2 ( b2) secular

problem and a 1x1 ( b1 ) problem. These decompositions allow one to conclude that there

is one nonbonding b1 orbital (the Oxygen 2px orbital), bonding and antibonding b2 orbitals

( the O-H bond and antibond formed by the Oxygen 2py orbital interacting with 0.707(1sL

- 1sR)),  and, finally, a set of bonding, nonbonding, and antibonding a1 orbitals (the O-H

bond and antibond formed by the Oxygen 2s and 2pz orbitals interacting with 0.707(1sL +

1sR) and the nonbonding orbital formed by the Oxygen 2s and 2pz orbitals combining to

form the "lone pair" orbital directed along the z-axis away from the two Hydrogen atoms).
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Alternatively, to analyze the H2O molecule in terms of hybrid orbitals, one first

combines the Oxygen 2s, 2pz,  2px and 2py orbitals to form four sp3 hybrid orbitals. The

valence-shell electron-pair repulsion (VSEPR) model of chemical bonding (see R. J.

Gillespie and R. S. Nyholm, Quart. Rev.     11     , 339 (1957) and R. J. Gillespie, J. Chem.

Educ.     40     , 295 (1963)) directs one to involve all of the Oxygen valence orbitals in the

hybridization because four σ-bond or nonbonding electron pairs need to be accommodated

about the Oxygen center; no π orbital interactions are involved, of course. Having formed

the four sp3  hybrid orbitals, one proceeds as with the primitive aos; one forms symmetry



adapted orbitals. In this case, the two Hydrogen 1s orbitals are combined exactly as above

to form 0.707(1sL + 1sR) and 0.707(1sL - 1sR). The two sp3  hybrids which lie in the

plane of the H  and O nuclei ( label them L and R) are combined to give symmetry adapted

hybrids: 0.707(L+R) and 0.707(L-R), which are of a1 and b2 symmetry, respectively ( see

the Figure below).  The two sp3  hybrids that lie above and below the plane of the three

nuclei (label them T and B) are also symmetry adapted to form 0.707(T+ B) and 0.707(T-

B), which are of a1 and b1 symmetry, respectively. Once again, one has broken the 6x6

secular problem into a 3x3 a1 block, a 2x2 b2 block and a 1x1 b1 block. Although the

resulting bonding, nonbonding and antibonding a1 orbitals, the bonding and antibonding

b2  orbitals and the nonbonding b1 orbital are now viewed as formed from symmetry

adapted Hydrogen orbitals and four Oxygen sp3  orbitals, they are, of course,    exactly the

   same    molecular orbitals as were obtained earlier in terms of the symmetry adapted primitive

aos. The formation of hybrid orbitals was an intermediate step which could not alter the

final outcome.
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That no degenerate molecular orbitals arose in the above examples is a result of the

fact that the C2v  point group to which H2O and the allyl system belong (and certainly the



Cs subgroup which was used above in the allyl case) has no degenerate representations.

Molecules with higher symmetry such as NH3 , CH4, and benzene have energetically

degenerate orbitals because their molecular point groups have degenerate representations.

B. Linear Molecules

Linear molecules belong to the axial rotation group. Their symmetry is intermediate

in complexity between nonlinear molecules and atoms.

For linear molecules, the symmetry of the electrostatic potential provided by the

nuclei and the other electrons is described by either the C∞v or D∞h group. The essential

difference between these symmetry groups and the finite point groups which characterize

the non-linear molecules lies in the fact that the electrostatic potential which an electron feels

is invariant to rotations of    any     amount about the molecular axis (i.e., V(γ +δγ ) =V(γ ), for

any angle increment δγ). This means that the operator Cδγ  which generates a rotation of the

electron's azimuthal angle γ by an amount δγ about the molecular axis commutes with the

Hamiltonian [h, Cδγ  ] =0.  Cδγ can be written in terms of the quantum mechanical operator

Lz = -ih ∂/∂γ describing the orbital angular momentum of the electron about the molecular

(z) axis:

Cδγ  = exp( iδγ Lz/h).

Because Cδγ  commutes with the Hamiltonian and Cδγ  can be written in terms of Lz , Lz

must commute with the Hamiltonian. As a result, the molecular orbitals φ of a linear

molecule must be eigenfunctions of the  z-component of angular momentum Lz:

-ih ∂/∂γ φ = mh φ.

The electrostatic potential is not invariant under rotations of the electron about the x or y
axes (those perpendicular to the molecular axis), so Lx and Ly do     not    commute with the

Hamiltonian. Therefore, only Lz provides a "good quantum number" in the sense that the

operator Lz commutes with the Hamiltonian.

In summary, the molecular orbitals of a linear molecule can be labeled by their m

quantum number, which plays the same role as the point group labels did for non-linear

polyatomic molecules, and which gives the eigenvalue of the angular momentum of the

orbital about the molecule's symmetry axis. Because the kinetic energy part of the



Hamiltonian contains (h2/2me r2) ∂2/∂γ2 , whereas the potential energy part is independent

of γ , the energies of the molecular orbitals depend on the    square    of the m quantum

number. Thus, pairs of orbitals with m= ± 1 are energetically degenerate; pairs with m= ±
2 are degenerate, and so on. The absolute value of m, which is what the energy depends

on, is called the λ quantum number. Molecular orbitals with λ = 0 are called σ orbitals;

those with λ = 1 are π orbitals; and those with λ = 2 are δ orbitals.

Just as in the non-linear polyatomic-molecule case, the atomic orbitals which

constitute a given molecular orbital must have the same symmetry as that of the molecular

orbital. This means that σ,π, and δ molecular orbitals are formed, via LCAO-MO, from

m=0, m= ± 1, and m= ± 2 atomic orbitals, respectively. In the diatomic N2 molecule, for

example, the core orbitals are of σ symmetry as are the molecular orbitals formed from the

2s and 2pz atomic orbitals (or their hybrids) on each Nitrogen atom. The molecular orbitals

formed from the atomic 2p-1 =(2px- i 2py) and the 2p+1 =(2px + i 2py ) orbitals are of π
symmetry and have m = -1 and +1.



For homonuclear diatomic molecules and other linear molecules which have a center

of symmetry, the inversion operation (in which an electron's coordinates are inverted

through the center of symmetry of the molecule) is also a symmetry operation. Each

resultant molecular orbital can then also be labeled by a quantum number denoting its parity

with respect to inversion. The symbols g (for gerade or even) and u (for ungerade or odd)

are used for this label. Again for N2 , the core orbitals are of σg and σu  symmetry, and the

bonding and antibonding σ orbitals formed from the 2s and 2pσ  orbitals on the two

Nitrogen atoms are of σg and σu symmetry. 

           
ππgπu

σuσg

σ∗σ
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The bonding π molecular orbital pair (with m = +1 and -1) is of πu symmetry whereas the

corresponding antibonding orbital is of πg symmetry. Examples of such molecular orbital

symmetries are shown above.

The use of hybrid orbitals can be illustrated in the linear-molecule case by

considering the N2  molecule. Because two π bonding and antibonding molecular orbital

pairs are involved in N2 (one with m = +1, one with m = -1), VSEPR theory guides one to

form sp hybrid orbitals from each of the Nitrogen atom's 2s and 2pz (which is also the 2p

orbital with m = 0) orbitals. Ignoring the core orbitals, which are of σg and σu symmetry as

noted above, one then symmetry adapts the four sp hybrids (two from each atom) to build

one σg orbital involving a bonding interaction between two sp hybrids pointed toward one

another, an antibonding σu orbital involving the same pair of sp orbitals but coupled with

opposite signs, a nonbonding σg orbital composed of two sp hybrids pointed away from

the interatomic region combined with like sign, and a nonbonding σu orbital made of the

latter two sp hybrids combined with opposite signs. The two 2pm orbitals (m= +1 and -1)

on each Nitrogen atom are then symmetry adapted to produce a pair of bonding πu orbitals

(with m = +1 and -1) and a pair of antibonding πg orbitals (with m = +1 and -1). This

hybridization and symmetry adaptation thereby reduces the 8x8 secular problem (which

would be 10x10 if the core orbitals were included) into a 2x2 σg problem (one bonding and

one nonbonding), a 2x2  σu problem (one bonding and one nonbonding),  an identical pair

of 1x1 πu problems (bonding), and an identical pair of 1x1 πg problems (antibonding).

Another example of the equivalence among various hybrid and atomic orbital points

of view is provided by the CO molecule. Using, for example, sp hybrid orbitals on C and

O, one obtains a picture in which there are: two core σ orbitals corresponding to the O-atom

1s and C-atom 1s orbitals; one CO bonding, two non-bonding, and one CO antibonding

orbitals arising from the four sp hybrids; a pair of bonding and a pair of antibonding π
orbitals formed from the two p orbitals on O and the two p orbitals on C. Alternatively,

using sp2 hybrids on both C and O, one obtains: the two core σ orbitals as above;  a CO

bonding and antibonding orbital pair formed from the sp2 hybrids that are directed along

the CO bond; and a single π bonding and antibonding π* orbital set. The remaining two

sp2 orbitals on C and the two on O can then be symmetry adapted by forming ±
combinations within each pair to yield: an a1 non-bonding orbital (from the + combination)

on each of C and O directed away from the CO bond axis; and a pπ orbital on each of C and

O that can subsequently overlap to form the second π bonding and π* antibonding orbital

pair.

It should be clear from the above examples, that no matter what particular hybrid



orbitals one chooses to utilize in conceptualizing a molecule's orbital interactions,

symmetry ultimately returns to force one to form proper symmetry adapted combinations

which, in turn, renders the various points of view equivalent. In the above examples and in

several earlier examples, symmetry adaptation of, for example, sp2 orbital pairs (e.g., spL2

± spR2) generated orbitals of pure spatial symmetry. In fact, symmetry combining hybrid

orbitals in this manner amounts to forming other hybrid orbitals. For example, the above ±
combinations of sp2 hybrids directed to the left (L) and right (R) of some bond axis

generate a new    sp     hybrid directed along the bond axis but opposite to the sp2 hybrid used

to form the bond and a non-hybridized p orbital directed along the L-to-R direction. In the

CO example, these combinations of sp2 hybrids on O and C produce sp hybrids on O and

C and pπ orbitals on O and C.

C. Atoms

Atoms belong to the full rotation symmetry group; this makes their symmetry

analysis the most complex to treat.

In moving from linear molecules to atoms, additional symmetry elements arise. In

particular, the potential field experienced by an electron in an orbital becomes invariant to

rotations of arbitrary amounts about the x, y, and z axes; in the linear-molecule case, it is

invariant only to rotations of the electron's position about the molecule's symmetry axis

(the z axis). These invariances are, of course, caused by the spherical symmetry of the

potential of any atom. This additional symmetry of the potential causes the Hamiltonian to

commute with all three components of the electron's angular momentum: [Lx , H] =0, [Ly ,

H] =0, and [Lz , H] =0. It is straightforward to show that H also commutes with the

operator L2 = Lx2 + Ly2 + Lz2 , defined as the sum of the squares of the three individual

components of the angular momentum. Because Lx, Ly, and Lz do not commute with one

another, orbitals which are eigenfunctions of H cannot be simultaneous eigenfunctions of

all three angular momentum operators. Because Lx, Ly, and Lz  do commute with L2 ,

orbitals can be found which are eigenfunctions of H, of L2 and of any one component of L;

it is convention to select Lz as the operator which, along with H and L2 , form a mutually

commutative operator set of which the orbitals are simultaneous eigenfunctions.

So, for any atom, the orbitals can be labeled by both l and m quantum numbers,

which play the role that point group labels did for non-linear molecules and λ did for linear

molecules. Because (i) the kinetic energy operator in the electronic Hamiltonian explicitly

contains L2/2mer2 , (ii) the Hamiltonian does not contain additional Lz , Lx, or Ly factors,



and (iii) the potential energy part of the Hamiltonian is spherically symmetric (and

commutes with L2 and Lz), the energies of atomic orbitals depend upon the l quantum

number and are independent of the m quantum number. This is the source of the 2l+1- fold

degeneracy of atomic orbitals.

The angular part of the atomic orbitals is described in terms of the spherical

harmonics Yl,m  ; that is, each atomic orbital φ can be expressed as

φn,l,m = Yl,m  (θ, ϕ ) Rn,l (r).

The explicit solutions for the Yl,m  and for the radial wavefunctions Rn,l are given in

Appendix B. The variables r,θ,ϕ give the position of the electron in the orbital in

spherical coordinates. These angular functions are, as discussed earlier, related to the

cartesian (i.e., spatially oriented) orbitals by simple transformations; for example, the

orbitals with l=2 and m=2,1,0,-1,-2 can be expressed in terms of the dxy, dxz, dyz, dxx-yy ,

and dzz orbitals. Either set of orbitals is acceptable in the sense that each orbital is an

eigenfunction of H; transformations within a degenerate set of orbitals do not destroy the

Hamiltonian- eigenfunction feature. The orbital set labeled with l and m quantum numbers

is most useful when one is dealing with isolated atoms (which have spherical symmetry),

because m is then a valid symmetry label, or with an atom in a local environment which is

axially symmetric (e.g., in a linear molecule) where the m quantum number remains a

useful symmetry label. The cartesian orbitals are preferred for describing an atom in a local

environment which displays lower than axial symmetry (e.g., an atom interacting with a

diatomic molecule in C2v symmetry).

The radial part of the orbital Rn,l(r) as well as the orbital energy εn,l depend on l

because the Hamiltonian itself contains l(l+1)h2/2mer2; they are independent of m because

the Hamiltonian has no m-dependence. For bound orbitals, Rn,l(r) decays exponentially for

large r (as exp(-2r√2εn,l )), and for unbound (scattering) orbitals, it is oscillatory at large r

with an oscillation period related to the deBroglie wavelength of the electron. In Rn,l (r)

there are (n-l-1) radial nodes lying between r=0 and r=∞ . These nodes provide differential

stabilization of low-l orbitals over high-l orbitals of the same principal quantum number n.

That is, penetration of outer shells is greater for low-l orbitals because they have more

radial nodes; as a result, they have larger amplitude near the atomic nucleus and thus

experience enhanced attraction to the positive nuclear charge. The average size (e.g.,

average value of r; <r> = ∫R2n,l r r2 dr) of an orbital depends strongly on n, weakly on l

and is independent of m; it also depends strongly on the nuclear charge and on the potential

produced by the other electrons. This potential is often characterized qualitatively in terms



of an effective nuclear charge Zeff which is the true nuclear charge of the atom Z minus a

screening component Zsc which describes the repulsive effect of the electron density lying

radially inside the electron under study. Because, for a given n,  low-l orbitals penetrate

closer to the nucleus than do high-l orbitals, they have higher Zeff values (i.e., smaller Zsc

values) and correspondingly smaller average sizes and larger binding energies.





Section 2 Simple Molecular Orbital Theory

In this section, the conceptual framework of molecular orbital theory is developed.

Applications are presented and problems are given and solved within qualitative and semi-

empirical models of electronic structure.     Ab Initio     approaches to these same matters, whose

solutions require the use of digital computers, are treated later in Section 6. Semi-

empirical methods, most of which also require access to a computer, are treated in this

section and in Appendix F.

Unlike most texts on molecular orbital theory and quantum mechanics, this text

treats polyatomic molecules before linear molecules before atoms. The finite point-group

symmetry (Appendix E provides an introduction to the use of point group symmetry) that

characterizes the orbitals and electronic states of non-linear polyatomics is more

straightforward to deal with because fewer degeneracies arise. In turn, linear molecules,

which belong to an axial rotation group, possess fewer degeneracies (e.g., π orbitals or

states are no more degenerate than δ, φ, or γ orbitals or states; all are doubly degenerate)

than atomic orbitals and states (e.g., p orbitals or states are 3-fold degenerate, d's are 5-

fold, etc.). Increased orbital degeneracy, in turn, gives rise to more states that can arise

from a given orbital occupancy (e.g., the 2p2 configuration of the C atom yields fifteen

states, the π2 configuration of the NH molecule yields six, and the ππ* configuration of

ethylene gives four states). For these reasons, it is more straightforward to treat low-

symmetry cases (i.e., non-linear polyatomic molecules) first and atoms last.

It is recommended that the reader become familiar with the point-group symmetry

tools developed in Appendix E before proceeding with this section. In particular, it is

important to know how to label atomic orbitals as well as the various hybrids that can be

formed from them according to the irreducible representations of the molecule's point

group and how to construct symmetry adapted combinations of atomic, hybrid, and

molecular orbitals using projection operator methods. If additional material on group theory

is needed, Cotton's book on this subject is very good and provides many excellent

chemical applications.

Chapter 4

Valence Atomic Orbitals on Neighboring Atoms Combine to Form Bonding, Non-Bonding

and Antibonding Molecular Orbitals

I. Atomic Orbitals



In Section 1 the Schrödinger equation for the motion of a single electron moving

about a nucleus of charge Z was explicitly solved. The energies of these orbitals relative to

an electron infinitely far from the nucleus with zero kinetic energy were found to depend

strongly on Z and on the principal quantum number n, as were the radial "sizes" of these

hydrogenic orbitals. Closed analytical expressions for the r,θ, and φ dependence of these

orbitals are given in Appendix B. The reader is advised to also review this material before

undertaking study of this section.

A. Shapes

Shapes of atomic orbitals play central roles in governing the types of directional

bonds an atom can form.

All atoms have sets of bound and continuum s,p,d,f,g, etc. orbitals. Some of these

orbitals may be unoccupied in the atom's low energy states, but they are still present and

able to accept electron density if some physical process (e.g., photon absorption, electron

attachment, or Lewis-base donation) causes such to occur. For example, the Hydrogen

atom has 1s, 2s, 2p, 3s, 3p, 3d, etc. orbitals. Its negative ion H- has states that involve

1s2s, 2p2, 3s2, 3p2, etc. orbital occupancy. Moreover, when an H atom is placed in an

external electronic field, its charge density polarizes in the direction of the field. This

polarization can be described in terms of the orbitals of the isolated atom being combined to

yield distorted orbitals (e.g., the 1s and 2p orbitals can "mix" or combine to yield sp hybrid

orbitals, one directed toward increasing field and the other directed in the opposite

direction). Thus in many situations it is important to keep in mind that each atom has a full

set of orbitals available to it even if some of these orbitals are not occupied in the lowest-

energy state of the atom.

B. Directions

Atomic orbital directions also determine what directional bonds an atom will form.

Each set of p orbitals has three distinct directions or three different angular

momentum m-quantum numbers as discussed in Appendix G. Each set of d orbitals  has

five distinct directions or m-quantum numbers, etc; s orbitals are unidirectional in that they

are spherically symmetric, and have only m = 0. Note that the degeneracy of an orbital

(2l+1), which is the number of distinct spatial orientations or the number of m-values,



grows with the angular momentum quantum number l of the orbital without bound. 

It is because of the    energy degeneracy     within a set of orbitals, that these distinct

directional orbitals (e.g., x, y, z for p orbitals) may be combined to give new orbitals

which no longer possess specific spatial directions but which have specified angular

momentum characteristics. The act of combining these degenerate orbitals does not change

their energies. For example, the 2-1/2(px +ipy) and

2-1/2(px -ipy)  combinations no longer point along the x and y axes, but instead correspond

to specific angular momenta (+1h and -1h) about the z axis. The fact that they are angular

momentum eigenfunctions can be seen by noting that the x and y orbitals contain φ
dependences of cos(φ) and sin(φ), respectively. Thus the above combinations contain

exp(iφ) and exp(-iφ), respectively. The sizes, shapes, and directions of a few s, p, and d

orbitals are illustrated below (the light and dark areas represent positive and negative

values, respectively).

1s

2s

p orbitals d orbitals

C. Sizes and Energies

Orbital energies and sizes go hand-in-hand; small 'tight' orbitals have large electron

binding energies (i.e., low energies relative to a detached electron). For orbitals on



neighboring atoms to have large (and hence favorable to bond formation) overlap, the two

orbitals should be of comparable size and hence of similar electron binding energy.

The size (e.g., average value or expectation value of the distance from the atomic

nucleus to the electron) of an atomic orbital is determined primarily by its principal quantum

number n and by the strength of the potential attracting an electron in this orbital to the

atomic center (which has some l-dependence too). The energy (with negative energies

corresponding to bound states in which the electron is attached to the atom with positive

binding energy and positive energies corresponding to unbound scattering states) is also

determined by n and by the electrostatic potential produced by the nucleus and by the other

electrons. Each atom has an infinite set of orbitals of each l quantum number ranging from

those with low energy and small size to those with higher energy and larger size.

Atomic orbitals are solutions to an orbital-level Schrödinger equation in which an

electron moves in a potential energy field provided by the nucleus and all the other

electrons. Such one-electron Schrödinger equations are discussed, as they pertain to

qualitative and semi-empirical models of electronic structure in Appendix F. The spherical

symmetry of the one-electron potential appropriate to atoms and atomic ions is what makes

sets of the atomic orbitals degenerate. Such degeneracies arise in molecules too, but the

extent of degeneracy is lower because the molecule's nuclear coulomb and electrostatic

potential energy has lower symmetry than in the atomic case. As will be seen, it is the

symmetry of the potential experienced by an electron moving in the orbital that determines

the kind and degree of orbital degeneracy which arises.

Symmetry operators leave the electronic Hamiltonian H invariant because the

potential and kinetic energies are not changed if one applies such an operator R to the

coordinates and momenta of    all    the electrons in the system. Because symmetry operations

involve reflections through planes, rotations about axes, or inversions through points, the

application of such an operation to a product such as Hψ gives the product of the operation

applied to each term in the original product. Hence, one can write:

R(H ψ) = (RH) (Rψ).

Now using the fact that H is invariant to R, which means that (RH) = H, this result

reduces to:

R(H ψ) = H (Rψ),



which says that R commutes with H:

[R,H] = 0.

Because symmetry operators commute with the electronic Hamiltonian, the wavefunctions

that are eigenstates of H can be labeled by the symmetry of the point group of the molecule

(i.e., those operators that leave H invariant). It is for this reason that one

constructs symmetry-adapted atomic basis orbitals to use in forming molecular orbitals.

II. Molecular Orbitals

Molecular orbitals (mos) are formed by combining atomic orbitals (aos) of the

constituent atoms. This is one of the most important and widely used ideas in quantum

chemistry. Much of chemists' understanding of chemical bonding, structure, and reactivity

is founded on this point of view.

When aos are combined to form mos, core, bonding, nonbonding, antibonding,

and Rydberg molecular orbitals can result.  The mos φi are usually expressed in terms of

the constituent atomic orbitals χa  in the linear-combination-of-atomic-orbital-molecular-

orbital (LCAO-MO) manner:

φi  = Σa Cia χa .

The orbitals on one atom are orthogonal to one another because they are eigenfunctions of a

hermitian operator (the atomic one-electron Hamiltonian) having different eigenvalues.

However, those on one atom are not orthogonal to those on another atom because they are

eigenfunctions of different operators (the one-electron Hamiltonia of the different atoms).

Therefore, in practice, the primitive atomic orbitals must be orthogonalized to preserve

maximum identity of each primitive orbital in the resultant orthonormalized orbitals before

they can be used in the LCAO-MO process. This is both computationally expedient and

conceptually useful. Throughout this book, the atomic orbitals (aos) will be assumed to

consist of such orthonormalized primitive orbitals once the nuclei are brought into regions

where the "bare" aos interact.

Sets of orbitals that are not orthonormal can be combined to form new orthonormal

functions in many ways.  One technique that is especially attractive when the original

functions are orthonormal in the absence of "interactions" (e.g., at large interatomic



distances in the case of atomic basis orbitals) is the so-called symmetric orthonormalization

(SO) method.  In this method, one first forms the so-called overlap matrix

Sµν = <χµ|χν>

for all functions χµ to be orthonormalized.  In the atomic-orbital case, these functions

include those on the first atom, those on the second, etc.

Since the orbitals belonging to the individual atoms are themselves orthonormal, the

overlap matrix will contain, along its diagonal, blocks of unit matrices, one for each set of

individual atomic orbitals.  For example, when a carbon and oxygen atom, with their core

1s and valence 2s and 2p orbitals are combined to form CO, the 10x10 Sµ,ν matrix will

have two 5x5 unit matrices along its diagonal (representing the overlaps among the carbon

and among the oxygen atomic orbitals) and a 5x5 block in its upper right and lower left

quadrants.  The latter block represents the overlaps <χC µ|χOν> among carbon and oxygen

atomic orbitals.

After forming the overlap matrix, the new orthonormal functions χ' µ are defined as

follows:

χ' µ  = Σν (S-1/2)µν χν  .

As shown in Appendix A, the matrix S-1/2  is formed by finding the eigenvalues {λi} and

eigenvectors {Viµ} of the S matrix and then constructing:

(S-1/2)µν = Σ i Viµ Viν (λi)-1/2.

The new functions {χ' µ} have the characteristic that they evolve into the original functions

as the "coupling", as represented in the Sµ,ν matrix's off-diagonal blocks, disappears.

Valence orbitals on neighboring atoms are coupled by changes in the electrostatic

potential due to the other atoms (coulomb attraction to the other nuclei and repulsions from

electrons on the other atoms). These coupling potentials vanish when the atoms are far

apart and become significant only when the valence orbitals overlap one another. In the

most qualitative picture, such interactions are described in terms of off-diagonal

Hamiltonian matrix elements (hab; see below and in Appendix F) between pairs of atomic

orbitals which interact (the diagonal elements haa represent the energies of the various

orbitals and are related via Koopmans' theorem (see Section 6, Chapter 18.VII.B) to the

ionization energy of the orbital). Such a matrix embodiment of the molecular orbital



problem arises, as developed below and in Appendix F, by using the above LCAO-MO

expansion in a variational treatment of the one-electron Schrödinger equation appropriate to

the mos {φi}.

In the simplest two-center, two-valence-orbital case (which could relate, for

example, to the Li2 molecule's two 2s orbitals ), this gives rise to a 2x2 matrix eigenvalue

problem (h11,h12,h22) with a low-energy mo (E=(h11+h22)/2-1/2[(h11-h22)2 +4h212]1/2)

and a higher energy mo (E=(h11+h22)/2+1/2[(h11-h22)2 +4h212]1/2) corresponding to

bonding and antibonding orbitals (because their energies lie below and above the lowest

and highest interacting atomic orbital energies, respectively). The mos themselves are

expressed φ i = Σ Cia χa where the LCAO-MO coefficients  Cia are obtained from the

normalized eigenvectors of the hab matrix. Note that the bonding-antibonding orbital energy

splitting depends on hab2 and on the energy difference (haa-hbb); the best bonding (and

worst antibonding) occur when two orbitals couple strongly (have large hab) and are similar

in energy (haa ≅ hbb).
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In both the homonuclear and heteronuclear cases depicted above, the energy

ordering of the resultant mos depends upon the energy ordering of the constituent aos as

well as the strength of the bonding-antibonding interactions among the aos. For example, if

the 2s-2p atomic orbital energy splitting is large compared with the interaction matrix

elements coupling orbitals on neighboring atoms h2s,2s and h2p,2p , then the ordering

shown above will result. On the other hand, if the 2s-2p splitting is small, the two 2s and

two 2p orbitals can all participate in the formation of the four σ mos. In this case, it is

useful to think of the atomic 2s and 2p orbitals forming sp hybrid orbitals with each atom

having one hybrid directed toward the other atom and one hybrid directed away from the

other atom. The resultant pattern of four σ mos will involve one bonding orbital (i.e., an

in-phase combination of two sp hybrids), two non-bonding orbitals (those directed away

from the other atom) and one antibonding orbital (an out-of-phase combination of two sp

hybrids). Their energies will be ordered as shown in the Figure below.
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Here σn is used to denote the non-bonding σ-type orbitals and σ, σ*, π, and π* are used to

denote bonding and antibonding σ- and π-type orbitals.

Notice that the total number of σ orbitals arising from the interaction of the 2s and

2p orbitals is equal to the number of aos that take part in their formation. Notice also that

this is true regardless of whether one thinks of the interactions involving bare 2s and 2p



atomic orbitals or hybridized orbitals. The only advantage that the hybrids provide is that

they permit one to foresee the fact that two of the four mos must be non-bonding because

two of the four hybrids are directed away from all other valence orbitals and hence can not

form bonds. In all such qualitative mo analyses, the final results (i.e., how many mos there

are of any given symmetry) will     not    depend on whether one thinks of the interactions

involving atomic or hybrid orbitals. However, it is often easier to "guess" the bonding,

non-bonding, and antibonding nature of the resultant mos when thought of as formed from

hybrids because of the directional properties of the hybrid orbitals.

C. Rydberg Orbitals

It is essential to keep in mind that all atoms possess 'excited' orbitals that may

become involved in bond formation if one or more electrons occupies these orbitals.

Whenever aos with principal quantum number one or more unit higher than that of the

conventional aos becomes involved in bond formation,  Rydberg mos are formed.

Rydberg orbitals (i.e., very diffuse orbitals having principal quantum numbers

higher than the atoms' valence orbitals) can arise in molecules just as they do in atoms.

They do not usually give rise to bonding and antibonding orbitals because the valence-

orbital interactions bring the atomic centers so close together that the Rydberg orbitals of

each atom subsume both atoms. Therefore as the atoms are brought together, the atomic

Rydberg orbitals usually pass through the internuclear distance region where they

experience (weak) bonding-antibonding interactions all the way to much shorter  distances

at which they have essentially reached their united-atom limits. As a result, molecular

Rydberg orbitals are molecule-centered and display little, if any, bonding or antibonding

character. They are usually labeled with principal quantum numbers beginning one higher

than the highest n value of the constituent atomic valence orbitals, although they are

sometimes labeled by the n quantum number to which they correlate in the united-atom

limit.

An example of the interaction of 3s Rydberg orbitals of a molecule whose 2s and 2p

orbitals are the valence orbitals and of the evolution of these orbitals into united-atom

orbitals is given below.
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D. Multicenter Orbitals

If aos on one atom overlap aos on more than one neighboring atom, mos that

involve amplitudes on three or more atomic centers can be formed. Such mos are termed

delocalized or multicenter mos.

Situations in which more than a pair of orbitals interact can, of course, occur.

Three-center bonding occurs in Boron hydrides and in carbonyl bridge bonding in

transition metal complexes as well as in delocalized conjugated π orbitals common in

unsaturated organic hydrocarbons. The three pπ orbitals on the allyl radical (considered in

the absence of the underlying σ orbitals) can be described qualitatively in terms of three pπ
aos on the three carbon atoms. The couplings h12 and h23 are equal (because the two CC

bond lengths are the same) and h13 is approximated as 0 because orbitals 1 and 3 are too far

away to interact. The result is a 3x3 secular matrix  (see below and in Appendix F):

h11 h12 0
h21h 22h 23

0   h 32h 33

whose eigenvalues give the molecular orbital energies and whose eigenvectors give the

LCAO-MO coefficients Cia .

This 3x3 matrix gives rise to a bonding, a non-bonding and an antibonding orbital

(see the Figure below). Since all of the haa are equal and h12 = h23, the resultant orbital

energies are :  h11 + √ 2 h12 , h11 , and h11-√2 h12 , and the respective LCAO-MO coefficients

Cia are (0.50, 0.707, 0.50), (0.707, 0.00, -0.707), and (0.50, -0.707, 0.50). Notice that

the sign (i.e., phase) relations of the bonding orbital are such that overlapping orbitals

interact constructively, whereas for the antibonding orbital they interact out of phase. For

the nonbonding orbital, there are no interactions because the central C orbital has zero

amplitude in this orbital and only h12 and h23 are non-zero.
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E. Hybrid Orbitals

It is sometimes convenient to combine aos to form hybrid orbitals that have well

defined directional character and to then form mos by combining these hybrid orbitals. This

recombination of aos to form hybrids is     never     necessary and never provides any

information that could be achieved in its absence. However, forming hybrids often allows

one to focus on those interactions among directed orbitals on neighboring atoms that are

most important.

When atoms combine to form molecules, the molecular orbitals can be thought of as

being constructed as linear combinations of the constituent atomic orbitals. This clearly is

the only reasonable picture when each atom contributes only one orbital to the particular

interactions being considered (e.g., as each Li atom does in Li2 and as each C atom does in

the π orbital aspect of the allyl system). However, when an atom uses more than one of its

valence orbitals within  particular bonding, non-bonding, or antibonding interactions, it is

sometimes useful to combine the constituent atomic orbitals into hybrids and to then use the

hybrid orbitals to describe the interactions. As stated above, the directional nature of hybrid

orbitals often makes it more straightforward to "guess" the bonding, non-bonding, and

antibonding nature of the resultant mos. It should be stressed, however, that exactly the

same quantitative results are obtained if one forms mos from primitive aos or from hybrid

orbitals; the hybrids span exactly the same space as the original aos and can therefore

contain no additional information. This point is illustrated below when the H2O and N2

molecules are treated in both the primitive ao and hybrid orbital bases.



Chapter 5

Molecular Orbitals Possess Specific  Topology, Symmetry, and Energy-Level Patterns

In this chapter the symmetry properties of atomic, hybrid, and molecular orbitals

are treated. It is important to keep in mind that     both        symmetry        and        characteristics of orbital

   energetics and bonding "topology"   , as embodied in the orbital energies themselves and the

interactions (i.e., hj,k values) among the orbitals, are involved in determining the pattern of

molecular orbitals that arise in a particular molecule.

I. Orbital Interaction Topology

The pattern of mo energies can often be 'guessed' by using qualitative information

about the energies, overlaps, directions, and shapes of the aos that comprise the mos.

The orbital interactions determine how many and which mos will have low

(bonding), intermediate (non-bonding), and higher (antibonding) energies, with all

energies viewed relative to those of the constituent atomic orbitals. The general patterns

that are observed in most compounds can be summarized as follows:

i. If the energy splittings among a given atom's aos with the same principal quantum

number are small, hybridization can easily occur to produce hybrid orbitals that are directed

toward (and perhaps away from) the other atoms in the molecule. In the first-row elements

(Li, Be, B, C, N, O, and F), the 2s-2p splitting is small, so hybridization is common. In

contrast, for Ca, Ga, Ge, As, and Br it is less common, because the 4s-4p splitting is

larger. Orbitals directed toward other atoms can form bonding and antibonding mos; those

directed toward no other atoms will form nonbonding mos.

ii. In attempting to gain a qualitative picture of the electronic structure of any given

molecule, it is advantageous to begin by hybridizing the aos of those atoms which contain

more than one ao in their valence shell. Only those aos that are not involved in π-orbital

interactions should be so hybridized.

iii. Atomic or hybrid orbitals that are not directed in a σ-interaction manner toward other

aos or hybrids on neighboring atoms can be involved in π-interactions or in nonbonding

interactions.



iv. Pairs of aos or hybrid orbitals on neighboring atoms directed toward one another

interact to produce bonding and antibonding orbitals. The more the bonding orbital lies

below the lower-energy ao or hybrid orbital involved in its formation, the higher the

antibonding orbital lies above the higher-energy ao or hybrid orbital.

For example, in formaldehyde, H2CO, one forms sp2 hybrids on the C atom; on

the O atom, either sp hybrids (with one p orbital "reserved" for use in forming the π and π*

orbitals and another p orbital to be used as a non-bonding orbital lying in the plane of the

molecule) or sp2 hybrids (with the remaining p orbital reserved for the π and π* orbitals)

can be used. The H atoms use their 1s orbitals since hybridization is not feasible for them.

The C atom clearly uses its sp2 hybrids to form two CH and one CO σ bonding-

antibonding orbital pairs.

The O atom uses one of its sp or sp2 hybrids to form the CO σ bond and antibond.

When sp hybrids are used in conceptualizing the bonding, the other sp hybrid forms a lone

pair orbital directed away from the CO bond axis; one of the atomic p orbitals is involved in

the CO π and π* orbitals, while the other forms an in-plane non-bonding orbital.

Alternatively, when sp2 hybrids are used, the two sp2 hybrids that do not interact with the

C-atom sp2 orbital form the two non-bonding orbitals. Hence, the final picture of bonding,

non-bonding, and antibonding orbitals does not depend on which hybrids one uses as

intermediates.

As another example, the 2s and 2p orbitals on the two N atoms of N2 can be

formed into pairs of sp hybrids on each N atom plus a pair of pπ atomic orbitals on each N

atom. The sp hybrids directed

toward the other N atom give rise to bonding σ and antibonding σ∗ orbitals, and the sp

hybrids directed away from the other N atom yield nonbonding σ orbitals. The pπ orbitals,

which consist of 2p orbitals on the N atoms directed perpendicular to the N-N bond axis,

produce bonding π and antibonding π* orbitals.

v. In general, σ interactions for a given pair of atoms interacting are stronger than π
interactions (which, in turn, are stronger than δ interactions, etc.) for any given sets (i.e.,

principal quantum number) of aos that interact. Hence, σ bonding orbitals (originating from

a given set of aos) lie below π bonding orbitals, and σ* orbitals lie above π* orbitals that

arise from the same sets of aos. In the N2 example, the σ bonding orbital formed from the

two sp hybrids lies below the π bonding orbital, but the π* orbital lies below the σ*

orbital. In the H2CO example, the two CH and the one CO bonding orbitals have low

energy; the CO π bonding orbital has the next lowest energy; the two O-atom non-bonding



orbitals have intermediate energy; the CO π* orbital has somewhat higher energy; and the

two CH and one CO antibonding orbitals have the highest energies.

vi. If a given ao or hybrid orbital interacts with or is coupled to orbitals on more than a

single neighboring atom, multicenter bonding can occur. For example, in the allyl radical

the central carbon atom's pπ orbital is coupled to the pπ orbitals on both neighboring atoms;

in linear Li3, the central Li atom's 2s orbital interacts with the 2s orbitals on both terminal

Li atoms; in triangular Cu3, the 2s orbitals on each Cu atom couple to each of the other two

atoms' 4s orbitals.

vii. Multicenter bonding that involves "linear" chains containing N atoms (e.g., as in

conjugated polyenes or in chains of Cu or Na atoms for which the valence orbitals on one

atom interact with those of its neighbors on both sides) gives rise to mo energy patterns in

which there are N/2 (if N is even) or N/2 -1 non-degenerate bonding orbitals and the same

number of antibonding orbitals (if N is odd, there is also a single non-bonding orbital).

viii. Multicenter bonding that involves "cyclic" chains of N atoms (e.g., as in cyclic

conjugated polyenes or in rings of Cu or Na atoms for which the valence orbitals on one

atom interact with those of its neighbors on both sides and the entire net forms a closed

cycle) gives rise to mo energy patterns in which there is a lowest non-degenerate orbital and

then a progression of doubly degenerate orbitals. If N is odd, this progression includes (N-

1)/2 levels; if N is even, there are (N-2)/2 doubly degenerate levels and a final non-

degenerate highest orbital. These patterns and those that appear in linear multicenter

bonding are summarized in the Figures shown below.
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ix. In extended systems such as solids, atom-based orbitals combine as above to form so-

called 'bands' of molecular orbitals.  These bands are continuous rather than discrete as in

the above cases involving small polyenes. The energy 'spread' within a band depends on

the overlap among the atom-based orbitals that form the band; large overlap gives rise to a

large band width, while small overlap produces a narrow band. As one moves from the

bottom (i.e., the lower energy part) of a band to the top, the number of nodes in the

corresponding band orbital increases, as a result of which its bonding nature decreases. In

the figure shown below, the bands of a metal such as Ni (with 3d, 4s, and 4p orbitals) is

illustrated. The d-orbital band is narrow because the 3d orbitals are small and hence do not

overlap appreciably; the 4s and 4p bands are wider because the larger 4s and 4p orbitals

overlap to a greater extent. The d-band is split into σ, π, and δ components corresponding

to the nature of the overlap interactions among the constituent atomic d orbitals. Likewise,



the p-band is split into σ  and π components. The widths of the σ components of each band

are larger than those of the π components because the corresponding σ overlap interactions

are stronger. The intensities of the bands at energy E measure the densities of states at that

E. The total integrated intensity under a given band is a measure of the total number of

atomic orbitals that form the band.
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II. Orbital Symmetry

Symmetry provides additional quantum numbers or labels to use in describing the

mos. Each such quantum number further sub-divides the collection of all mos into sets that

have vanishing Hamiltonian matrix elements among members belonging to different sets.



Orbital interaction "   topology    " as discussed above plays a most- important role in

determining the orbital energy level patterns of a molecule.     Symmetry     also comes into play

but in a different manner. Symmetry can be used to characterize the core, bonding, non-

bonding, and antibonding molecular orbitals. Much of this chapter is devoted to how this

can be carried out in a systematic manner. Once the various mos have been labeled

according to symmetry, it may be possible to recognize additional degeneracies that may

not have been apparent on the basis of orbital-interaction considerations alone. Thus,

topology provides the basic energy ordering pattern and then symmetry enters to identify

additional degeneracies.

For example, the three NH bonding and three NH antibonding orbitals in NH3,

when symmetry adapted within the C3v point group, cluster into a1 and e mos as shown in

the Figure below. The N-atom localized non-bonding lone pair orbital and the N-atom 1s

core orbital also belong to a1 symmetry.

In a second example, the three CH bonds, three CH antibonds, CO bond and

antibond, and three O-atom non-bonding orbitals of the methoxy radical H3C-O also cluster

into a1 and e orbitals as shown below. In these cases, point group symmetry allows one to

identify degeneracies that may not have been apparent from the structure of the orbital

interactions alone.
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The three resultant molecular orbital energies are, of course, identical to those

obtained without symmetry above. The three LCAO-MO coefficients , now expressing the

mos in terms of the symmetry adapted orbitals are Cis = ( 0.707, 0.707, 0.0) for the

bonding orbital, (0.0, 0.0, 1.00) for the nonbonding orbital, and (0.707, -0.707, 0.0) for

the antibonding orbital. These coefficients, when combined with the symmetry adaptation

coefficients Csa given earlier, express the three mos in terms of the three aos as φi= ΣsaCis

Csa χa ; the sum Σs Cis Csa  gives the LCAO-MO coefficients Cia which, for example, for

the bonding orbital, are ( 0.7072, 0.707, 0.7072), in agreement with what was found

earlier without using symmetry.

The low energy orbitals of the H2O molecule can be used to illustrate the use of

symmetry within the primitive ao basis as well as in terms of hybrid orbitals. The 1s orbital

on the Oxygen atom is clearly a nonbonding core orbital. The Oxygen 2s orbital and its

three 2p orbitals are of valence type, as are the two Hydrogen 1s orbitals. In the absence of

symmetry, these six valence orbitals would give rise to a 6x6 secular problem. By

combining the two Hydrogen 1s orbitals into 0.707(1sL + 1sR) and 0.707(1sL - 1sR)

symmetry adapted orbitals (labeled a1 and b2 within the C2v point group; see the Figure

below), and recognizing that the Oxygen 2s and 2pz orbitals belong to a1  symmetry (the z

axis is taken as the C2 rotation axis and the x axis is taken to be perpendicular to the plane

in which the three nuclei lie) while the 2px orbital is b1 and the 2py orbital is b2 , allows the

6x6 problem to be decomposed into a 3x3 ( a1) secular problem, a 2x2 ( b2) secular

problem and a 1x1 ( b1 ) problem. These decompositions allow one to conclude that there

is one nonbonding b1 orbital (the Oxygen 2px orbital), bonding and antibonding b2 orbitals

( the O-H bond and antibond formed by the Oxygen 2py orbital interacting with 0.707(1sL

- 1sR)),  and, finally, a set of bonding, nonbonding, and antibonding a1 orbitals (the O-H

bond and antibond formed by the Oxygen 2s and 2pz orbitals interacting with 0.707(1sL +

1sR) and the nonbonding orbital formed by the Oxygen 2s and 2pz orbitals combining to

form the "lone pair" orbital directed along the z-axis away from the two Hydrogen atoms).
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Alternatively, to analyze the H2O molecule in terms of hybrid orbitals, one first

combines the Oxygen 2s, 2pz,  2px and 2py orbitals to form four sp3 hybrid orbitals. The

valence-shell electron-pair repulsion (VSEPR) model of chemical bonding (see R. J.

Gillespie and R. S. Nyholm, Quart. Rev.     11     , 339 (1957) and R. J. Gillespie, J. Chem.

Educ.     40     , 295 (1963)) directs one to involve all of the Oxygen valence orbitals in the

hybridization because four σ-bond or nonbonding electron pairs need to be accommodated

about the Oxygen center; no π orbital interactions are involved, of course. Having formed

the four sp3  hybrid orbitals, one proceeds as with the primitive aos; one forms symmetry



adapted orbitals. In this case, the two Hydrogen 1s orbitals are combined exactly as above

to form 0.707(1sL + 1sR) and 0.707(1sL - 1sR). The two sp3  hybrids which lie in the

plane of the H  and O nuclei ( label them L and R) are combined to give symmetry adapted

hybrids: 0.707(L+R) and 0.707(L-R), which are of a1 and b2 symmetry, respectively ( see

the Figure below).  The two sp3  hybrids that lie above and below the plane of the three

nuclei (label them T and B) are also symmetry adapted to form 0.707(T+ B) and 0.707(T-

B), which are of a1 and b1 symmetry, respectively. Once again, one has broken the 6x6

secular problem into a 3x3 a1 block, a 2x2 b2 block and a 1x1 b1 block. Although the

resulting bonding, nonbonding and antibonding a1 orbitals, the bonding and antibonding

b2  orbitals and the nonbonding b1 orbital are now viewed as formed from symmetry

adapted Hydrogen orbitals and four Oxygen sp3  orbitals, they are, of course,    exactly the

   same    molecular orbitals as were obtained earlier in terms of the symmetry adapted primitive

aos. The formation of hybrid orbitals was an intermediate step which could not alter the

final outcome.
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That no degenerate molecular orbitals arose in the above examples is a result of the

fact that the C2v  point group to which H2O and the allyl system belong (and certainly the



Cs subgroup which was used above in the allyl case) has no degenerate representations.

Molecules with higher symmetry such as NH3 , CH4, and benzene have energetically

degenerate orbitals because their molecular point groups have degenerate representations.

B. Linear Molecules

Linear molecules belong to the axial rotation group. Their symmetry is intermediate

in complexity between nonlinear molecules and atoms.

For linear molecules, the symmetry of the electrostatic potential provided by the

nuclei and the other electrons is described by either the C∞v or D∞h group. The essential

difference between these symmetry groups and the finite point groups which characterize

the non-linear molecules lies in the fact that the electrostatic potential which an electron feels

is invariant to rotations of    any     amount about the molecular axis (i.e., V(γ +δγ ) =V(γ ), for

any angle increment δγ). This means that the operator Cδγ  which generates a rotation of the

electron's azimuthal angle γ by an amount δγ about the molecular axis commutes with the

Hamiltonian [h, Cδγ  ] =0.  Cδγ can be written in terms of the quantum mechanical operator

Lz = -ih ∂/∂γ describing the orbital angular momentum of the electron about the molecular

(z) axis:

Cδγ  = exp( iδγ Lz/h).

Because Cδγ  commutes with the Hamiltonian and Cδγ  can be written in terms of Lz , Lz

must commute with the Hamiltonian. As a result, the molecular orbitals φ of a linear

molecule must be eigenfunctions of the  z-component of angular momentum Lz:

-ih ∂/∂γ φ = mh φ.

The electrostatic potential is not invariant under rotations of the electron about the x or y
axes (those perpendicular to the molecular axis), so Lx and Ly do     not    commute with the

Hamiltonian. Therefore, only Lz provides a "good quantum number" in the sense that the

operator Lz commutes with the Hamiltonian.

In summary, the molecular orbitals of a linear molecule can be labeled by their m

quantum number, which plays the same role as the point group labels did for non-linear

polyatomic molecules, and which gives the eigenvalue of the angular momentum of the

orbital about the molecule's symmetry axis. Because the kinetic energy part of the



Hamiltonian contains (h2/2me r2) ∂2/∂γ2 , whereas the potential energy part is independent

of γ , the energies of the molecular orbitals depend on the    square    of the m quantum

number. Thus, pairs of orbitals with m= ± 1 are energetically degenerate; pairs with m= ±
2 are degenerate, and so on. The absolute value of m, which is what the energy depends

on, is called the λ quantum number. Molecular orbitals with λ = 0 are called σ orbitals;

those with λ = 1 are π orbitals; and those with λ = 2 are δ orbitals.

Just as in the non-linear polyatomic-molecule case, the atomic orbitals which

constitute a given molecular orbital must have the same symmetry as that of the molecular

orbital. This means that σ,π, and δ molecular orbitals are formed, via LCAO-MO, from

m=0, m= ± 1, and m= ± 2 atomic orbitals, respectively. In the diatomic N2 molecule, for

example, the core orbitals are of σ symmetry as are the molecular orbitals formed from the

2s and 2pz atomic orbitals (or their hybrids) on each Nitrogen atom. The molecular orbitals

formed from the atomic 2p-1 =(2px- i 2py) and the 2p+1 =(2px + i 2py ) orbitals are of π
symmetry and have m = -1 and +1.



For homonuclear diatomic molecules and other linear molecules which have a center

of symmetry, the inversion operation (in which an electron's coordinates are inverted

through the center of symmetry of the molecule) is also a symmetry operation. Each

resultant molecular orbital can then also be labeled by a quantum number denoting its parity

with respect to inversion. The symbols g (for gerade or even) and u (for ungerade or odd)

are used for this label. Again for N2 , the core orbitals are of σg and σu  symmetry, and the

bonding and antibonding σ orbitals formed from the 2s and 2pσ  orbitals on the two

Nitrogen atoms are of σg and σu symmetry. 

           
ππgπu

σuσg

σ∗σ

σ∗σ



The bonding π molecular orbital pair (with m = +1 and -1) is of πu symmetry whereas the

corresponding antibonding orbital is of πg symmetry. Examples of such molecular orbital

symmetries are shown above.

The use of hybrid orbitals can be illustrated in the linear-molecule case by

considering the N2  molecule. Because two π bonding and antibonding molecular orbital

pairs are involved in N2 (one with m = +1, one with m = -1), VSEPR theory guides one to

form sp hybrid orbitals from each of the Nitrogen atom's 2s and 2pz (which is also the 2p

orbital with m = 0) orbitals. Ignoring the core orbitals, which are of σg and σu symmetry as

noted above, one then symmetry adapts the four sp hybrids (two from each atom) to build

one σg orbital involving a bonding interaction between two sp hybrids pointed toward one

another, an antibonding σu orbital involving the same pair of sp orbitals but coupled with

opposite signs, a nonbonding σg orbital composed of two sp hybrids pointed away from

the interatomic region combined with like sign, and a nonbonding σu orbital made of the

latter two sp hybrids combined with opposite signs. The two 2pm orbitals (m= +1 and -1)

on each Nitrogen atom are then symmetry adapted to produce a pair of bonding πu orbitals

(with m = +1 and -1) and a pair of antibonding πg orbitals (with m = +1 and -1). This

hybridization and symmetry adaptation thereby reduces the 8x8 secular problem (which

would be 10x10 if the core orbitals were included) into a 2x2 σg problem (one bonding and

one nonbonding), a 2x2  σu problem (one bonding and one nonbonding),  an identical pair

of 1x1 πu problems (bonding), and an identical pair of 1x1 πg problems (antibonding).

Another example of the equivalence among various hybrid and atomic orbital points

of view is provided by the CO molecule. Using, for example, sp hybrid orbitals on C and

O, one obtains a picture in which there are: two core σ orbitals corresponding to the O-atom

1s and C-atom 1s orbitals; one CO bonding, two non-bonding, and one CO antibonding

orbitals arising from the four sp hybrids; a pair of bonding and a pair of antibonding π
orbitals formed from the two p orbitals on O and the two p orbitals on C. Alternatively,

using sp2 hybrids on both C and O, one obtains: the two core σ orbitals as above;  a CO

bonding and antibonding orbital pair formed from the sp2 hybrids that are directed along

the CO bond; and a single π bonding and antibonding π* orbital set. The remaining two

sp2 orbitals on C and the two on O can then be symmetry adapted by forming ±
combinations within each pair to yield: an a1 non-bonding orbital (from the + combination)

on each of C and O directed away from the CO bond axis; and a pπ orbital on each of C and

O that can subsequently overlap to form the second π bonding and π* antibonding orbital

pair.

It should be clear from the above examples, that no matter what particular hybrid



orbitals one chooses to utilize in conceptualizing a molecule's orbital interactions,

symmetry ultimately returns to force one to form proper symmetry adapted combinations

which, in turn, renders the various points of view equivalent. In the above examples and in

several earlier examples, symmetry adaptation of, for example, sp2 orbital pairs (e.g., spL2

± spR2) generated orbitals of pure spatial symmetry. In fact, symmetry combining hybrid

orbitals in this manner amounts to forming other hybrid orbitals. For example, the above ±
combinations of sp2 hybrids directed to the left (L) and right (R) of some bond axis

generate a new    sp     hybrid directed along the bond axis but opposite to the sp2 hybrid used

to form the bond and a non-hybridized p orbital directed along the L-to-R direction. In the

CO example, these combinations of sp2 hybrids on O and C produce sp hybrids on O and

C and pπ orbitals on O and C.

C. Atoms

Atoms belong to the full rotation symmetry group; this makes their symmetry

analysis the most complex to treat.

In moving from linear molecules to atoms, additional symmetry elements arise. In

particular, the potential field experienced by an electron in an orbital becomes invariant to

rotations of arbitrary amounts about the x, y, and z axes; in the linear-molecule case, it is

invariant only to rotations of the electron's position about the molecule's symmetry axis

(the z axis). These invariances are, of course, caused by the spherical symmetry of the

potential of any atom. This additional symmetry of the potential causes the Hamiltonian to

commute with all three components of the electron's angular momentum: [Lx , H] =0, [Ly ,

H] =0, and [Lz , H] =0. It is straightforward to show that H also commutes with the

operator L2 = Lx2 + Ly2 + Lz2 , defined as the sum of the squares of the three individual

components of the angular momentum. Because Lx, Ly, and Lz do not commute with one

another, orbitals which are eigenfunctions of H cannot be simultaneous eigenfunctions of

all three angular momentum operators. Because Lx, Ly, and Lz  do commute with L2 ,

orbitals can be found which are eigenfunctions of H, of L2 and of any one component of L;

it is convention to select Lz as the operator which, along with H and L2 , form a mutually

commutative operator set of which the orbitals are simultaneous eigenfunctions.

So, for any atom, the orbitals can be labeled by both l and m quantum numbers,

which play the role that point group labels did for non-linear molecules and λ did for linear

molecules. Because (i) the kinetic energy operator in the electronic Hamiltonian explicitly

contains L2/2mer2 , (ii) the Hamiltonian does not contain additional Lz , Lx, or Ly factors,



and (iii) the potential energy part of the Hamiltonian is spherically symmetric (and

commutes with L2 and Lz), the energies of atomic orbitals depend upon the l quantum

number and are independent of the m quantum number. This is the source of the 2l+1- fold

degeneracy of atomic orbitals.

The angular part of the atomic orbitals is described in terms of the spherical

harmonics Yl,m  ; that is, each atomic orbital φ can be expressed as

φn,l,m = Yl,m  (θ, ϕ ) Rn,l (r).

The explicit solutions for the Yl,m  and for the radial wavefunctions Rn,l are given in

Appendix B. The variables r,θ,ϕ give the position of the electron in the orbital in

spherical coordinates. These angular functions are, as discussed earlier, related to the

cartesian (i.e., spatially oriented) orbitals by simple transformations; for example, the

orbitals with l=2 and m=2,1,0,-1,-2 can be expressed in terms of the dxy, dxz, dyz, dxx-yy ,

and dzz orbitals. Either set of orbitals is acceptable in the sense that each orbital is an

eigenfunction of H; transformations within a degenerate set of orbitals do not destroy the

Hamiltonian- eigenfunction feature. The orbital set labeled with l and m quantum numbers

is most useful when one is dealing with isolated atoms (which have spherical symmetry),

because m is then a valid symmetry label, or with an atom in a local environment which is

axially symmetric (e.g., in a linear molecule) where the m quantum number remains a

useful symmetry label. The cartesian orbitals are preferred for describing an atom in a local

environment which displays lower than axial symmetry (e.g., an atom interacting with a

diatomic molecule in C2v symmetry).

The radial part of the orbital Rn,l(r) as well as the orbital energy εn,l depend on l

because the Hamiltonian itself contains l(l+1)h2/2mer2; they are independent of m because

the Hamiltonian has no m-dependence. For bound orbitals, Rn,l(r) decays exponentially for

large r (as exp(-2r√2εn,l )), and for unbound (scattering) orbitals, it is oscillatory at large r

with an oscillation period related to the deBroglie wavelength of the electron. In Rn,l (r)

there are (n-l-1) radial nodes lying between r=0 and r=∞ . These nodes provide differential

stabilization of low-l orbitals over high-l orbitals of the same principal quantum number n.

That is, penetration of outer shells is greater for low-l orbitals because they have more

radial nodes; as a result, they have larger amplitude near the atomic nucleus and thus

experience enhanced attraction to the positive nuclear charge. The average size (e.g.,

average value of r; <r> = ∫R2n,l r r2 dr) of an orbital depends strongly on n, weakly on l

and is independent of m; it also depends strongly on the nuclear charge and on the potential

produced by the other electrons. This potential is often characterized qualitatively in terms



of an effective nuclear charge Zeff which is the true nuclear charge of the atom Z minus a

screening component Zsc which describes the repulsive effect of the electron density lying

radially inside the electron under study. Because, for a given n,  low-l orbitals penetrate

closer to the nucleus than do high-l orbitals, they have higher Zeff values (i.e., smaller Zsc

values) and correspondingly smaller average sizes and larger binding energies.





Chapter 6

Along "Reaction Paths", Orbitals Can be Connected One-to-One According to Their

Symmetries and Energies. This is the Origin of the Woodward-Hoffmann Rules

I. Reduction in Symmetry

As fragments are brought together to form a larger molecule, the symmetry of the

nuclear framework (recall the symmetry of the coulombic potential experienced by electrons

depends on the locations of the nuclei) changes. However, in some cases, certain

symmetry elements persist throughout the path connecting the fragments and the product

molecule. These preserved symmetry elements can be used to label the orbitals throughout

the 'reaction'.

The point-group, axial- and full-rotation group symmetries which arise in non-

linear molecules, linear molecules, and atoms, respectively, are seen to provide quantum

numbers or symmetry labels which can be used to characterize the orbitals appropriate for

each such species. In a physical event such as interaction with an external electric or

magnetic field or a chemical process such as collision or reaction with another species, the

atom or molecule can experience a change in environment which causes the electrostatic

potential which its orbitals experience to be of lower symmetry than that of the isolated

atom or molecule. For example, when an atom interacts with another atom to form a

diatomic molecule or simply to exchange energy during a collision, each atom's

environment changes from being spherically symmetric to being axially symmetric. When

the formaldehyde molecule undergoes unimolecular decomposition to produce CO + H2

along a path that preserves C2v symmetry, the orbitals of the CO moiety evolve from C2v

symmetry to axial symmetry.

It is important, therefore to be able to label the orbitals of atoms, linear, and non-

linear molecules in terms of their full symmetries as well in terms of the groups appropriate

to lower-symmetry situations. This can be done by knowing how the representations of a

higher symmetry group decompose into representations of a lower group. For example, the

Yl,m  functions appropriate for spherical symmetry, which belong to a 2l+1 fold degenerate

set in this higher symmetry, decompose into doubly degenerate pairs of functions Yl,l  , Yl,-

l ; Yl,l-1 , Yl,-1+1;   etc., plus a single non-degenerate function Yl,0 , in axial symmetry.

Moreover, because L2 no longer commutes with the Hamiltonian whereas Lz does, orbitals

with different l-values but the same m-values can be coupled. As the N2 molecule is formed

from two N atoms, the 2s and 2pz orbitals, both of which belong to the same (σ) symmetry

in the axial rotation group but which are of different symmetry in the isolated-atom



spherical symmetry, can mix to form the σg bonding orbital, the σu antibonding, as well as

the σg and σu nonbonding lone-pair orbitals. The fact that 2s and 2p have different l-values

no longer uncouples these orbitals as it did for the isolated atoms, because l is no longer a

"good" quantum number.

Another example of reduced symmetry is provided by the changes that occur as

H2O fragments into OH and H. The σ bonding orbitals (a1 and b2) and in-plane lone pair

(a1) and the σ* antibonding (a1 and b2)  of H2O become a' orbitals (see the Figure below);

the out-of-plane b1 lone pair orbital becomes a'' (in Appendix IV of     Electronic        Spectra       and

    Electronic        Structure        of        Polyatomic         Molecules    , G. Herzberg, Van Nostrand Reinhold Co.,

New York, N.Y. (1966) tables are given which allow one to determine how particular

symmetries of a higher group evolve into symmetries of a lower group).
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To further illustrate these points dealing with orbital symmetry, consider the

insertion of CO into H2 along a path which preserves C2v symmetry. As the insertion

occurs, the degenerate π bonding orbitals of CO become b1 and b2 orbitals. The

antibonding π* orbitals of CO also become b1 and b2. The σg bonding orbital of H2

becomes a1 , and the σu antibonding H2 orbital becomes b2. The orbitals of the reactant



H2CO are energy-ordered and labeled according to C2v symmetry in the Figure shown

below as are the orbitals of the product H2 + CO.

H2CO ==> H2 + CO Orbital Correlation Diagram in C2v Symmetry
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When these orbitals are connected according to their symmetries as shown above,

one reactant orbital to one product orbital starting with the low-energy orbitals and working

to increasing energy, an orbital correlation diagram (OCD) is formed. These diagrams play

essential roles in analyzing whether reactions will have symmetry-imposed energy barriers

on their potential energy surfaces along the reaction path considered in the symmetry

analysis. The essence of this analysis, which is covered in detail in Chapter 12, can be

understood by noticing that the sixteen electrons of ground-state H2CO do     not    occupy their

orbitals with the same occupancy pattern, symmetry-by-symmetry, as do the sixteen

electrons of ground-state H2 + CO. In particular, H2CO places a pair of electrons in the

second b2 orbital while H2 + CO does not; on the other hand, H2 + CO places two

electrons in the sixth a1 orbital while H2CO does not. The mismatch of the orbitals near the

5a1, 6a1, and 2b2 orbitals is the source of the mismatch in the electronic configurations of

the ground-states of H2CO and H2 + CO. These mismatches give rise, as shown in



Chapter 12, to symmetry-caused energy barriers on the H2CO ==> H2 + CO reaction

potential energy surface.

II. Orbital Correlation Diagrams

Connecting the energy-ordered orbitals of reactants to those of products according

to symmetry elements that are preserved throughout the reaction produces an orbital

correlation diagram.

In each of the examples cited above, symmetry reduction occurred as a molecule or

atom approached and interacted with another species. The "path" along which this approach

was thought to occur was characterized by symmetry in the sense that it preserved certain

symmetry elements while destroying others. For example, the collision of two Nitrogen

atoms to produce N2 clearly occurs in a way which destroys spherical symmetry but

preserves axial symmetry. In the other example used above, the formaldehyde molecule

was postulated to decompose along a path which preserves C2v symmetry while destroying

the axial symmetries of CO and H2. The actual decomposition of formaldehyde may occur

along some other path, but    if    it were to occur along the proposed path, then the symmetry

analysis presented above would be useful.

The symmetry reduction analysis outlined above allows one to see new orbital

interactions that arise (e.g., the 2s and 2pz interactions in the N + N ==> N2 example) as

the interaction increases. It also allows one to construct orbital correlation diagrams

(OCD's) in which the orbitals of the "reactants" and "products" are energy ordered and

labeled by the symmetries which are preserved throughout the "path", and the orbitals are

then correlated by drawing lines connecting the orbitals of a given symmetry, one-by-one

in increasing energy, from the reactants side of the diagram to the products side. As noted

above, such orbital correlation diagrams play a central role in using symmetry to predict

whether photochemical and thermal  chemical reactions will experience activation barriers

along proposed reaction paths (this subject is treated in Chapter 12).

To again illustrate the construction of an OCD, consider the π orbitals of 1,3-

butadiene as the molecule undergoes disrotatory closing (notice that this is where a

particular path is postulated; the actual reaction may or may not occur along such a path) to

form cyclobutene. Along this path, the plane of symmetry which bisects and is

perpendicular to the C2-C3 bond is preserved, so the orbitals of the reactant and product are

labeled as being even-e or odd-o under reflection through this plane. It is     not    proper to label

the orbitals with respect to their symmetry under the plane containing the four C atoms;



although this plane is indeed a symmetry operation for the reactants and products, it does

not remain a valid symmetry throughout the reaction path.
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The four π orbitals of 1,3-butadiene are of the following symmetries under the

preserved plane (see the orbitals in the Figure above): π1 = e, π2 = o, π3 =e, π4 = o. The π
and π* and σ and σ* orbitals of cyclobutane which evolve from the four active orbitals of

the 1,3-butadiene are of the following symmetry and energy order: σ = e, π = e, π* = o, σ*

= o. Connecting these orbitals by symmetry, starting with the lowest energy orbital and

going through the highest energy orbital, gives the following OCD:
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σ
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π

π4
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The fact that the lowest two orbitals of the reactants, which are those occupied by the four

π electrons of the reactant, do not correlate to the lowest two orbitals of the products,

which are the orbitals occupied by the two σ and two π electrons of the products, will be

shown later in Chapter 12 to be the origin of the activation barrier for the thermal

disrotatory rearrangement (in which the four active electrons occupy these lowest two

orbitals) of 1,3-butadiene to produce cyclobutene.

If the reactants could be prepared, for example by photolysis, in an excited state

having orbital occupancy π12π21π31 , then reaction along the path considered would not

have any symmetry-imposed barrier because this singly excited configuration correlates to a

singly-excited configuration σ2π1π*1 of the products. The fact that the reactant and product

configurations are of equivalent excitation level causes there to be no symmetry constraints



on the photochemically induced reaction of 1,3-butadiene to produce cyclobutene. In

contrast, the thermal reaction considered first above has a symmetry-imposed barrier

because the orbital occupancy is forced to rearrange (by the occupancy of two electrons)

from the ground-state wavefunction of the reactant to smoothly evolve into that of the

product.

It should be stressed that although these symmetry considerations may allow one to

anticipate barriers on reaction potential energy surfaces, they have nothing to do with the

thermodynamic energy differences of such reactions. Symmetry says whether there will be

symmetry-imposed barriers above and beyond any thermodynamic energy differences. The

enthalpies of formation of reactants and products contain the information about the

reaction's overall energy balance.

As another example of an OCD, consider the N + N ==> N2 recombination reaction

mentioned above. The orbitals of the atoms must first be labeled according to the axial

rotation group (including the inversion operation because this is a homonuclear molecule).

The core 1s orbitals are symmetry adapted to produce 1σg and 1σu orbitals (the number 1 is

used to indicate that these are the lowest energy orbitals of their respective symmetries); the

2s orbitals generate 2σg and 2σu orbitals; the 2p orbitals combine to yield 3σg , a pair of

1πu orbitals, a pair of 1πg orbitals, and the 3σu orbital, whose bonding, nonbonding, and

antibonding nature was detailed earlier. In the two separated Nitrogen atoms, the two

orbitals derived from the 2s atomic orbitals are degenerate, and the six orbitals derived from

the Nitrogen atoms' 2p orbitals are degenerate. At the equilibrium geometry of the N2

molecule, these degeneracies are lifted, Only the degeneracies of the 1πu and 1πg orbitals,

which are dictated by the degeneracy of +m and -m orbitals within the axial rotation group,

remain.

As one proceeds inward past the equilibrium bond length of N2, toward the united-

atom limit in which the two Nitrogen nuclei are fused to produce a Silicon nucleus, the

energy ordering of the orbitals changes. Labeling the orbitals of the Silicon atom according

to the axial rotation group, one finds the 1s is σg , the 2s is σg ,  the 2p orbitals are σu and

πu , the 3s orbital is σg , the 3p orbitals are σu  and πu , and the 3d orbitals are σg , πg ,

and δg. The following OCD is obtained when one connects the orbitals of the two separated

Nitrogen atoms (properly symmetry adapted) to those of the N2 molecule and eventually to

those of the Silicon atom.
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The fact that the separated-atom and united-atom limits involve several crossings in the
OCD can be used to explain barriers in the potential energy curves of such diatomic
molecules which occur at short internuclear distances. It should be noted that the Silicon
atom's 3p orbitals of πu symmetry and its 3d orbitals of σg and δg symmetry correlate with

higher energy orbitals of N2 not with the valence orbitals of this molecule, and that the 3σu
antibonding orbital of N2 correlates with a higher energy orbital of Silicon (in particular, its
4p orbital).



Chapter 7

The Most Elementary Molecular Orbital Models Contain Symmetry, Nodal Pattern, and

Approximate Energy Information

I. The LCAO-MO Expansion and the Orbital-Level Schrödinger Equation

In the simplest picture of chemical bonding, the valence molecular orbitals φi are

constructed as linear combinations of valence atomic orbitals χµ according to the LCAO-

MO formula:

φi = Σµ Ciµ χµ.

The core electrons are not explicitly included in such a treatment, although their effects are

felt through an electrostatic potential

V that has the following properties:

i.  V contains contributions from all of the nuclei in the molecule exerting coulombic

attractions on the electron, as well as coulombic repulsions and exchange interactions

exerted by the other electrons on this electron;

ii.  As a result of the (assumed) cancellation of attractions from distant nuclei and

repulsions from the electron clouds (i.e., the core, lone-pair, and valence orbitals) that

surround  these distant nuclei, the effect of V on any particular mo φi depends primarily on

the atomic charges and local bond polarities of the atoms over which φi  is delocalized.

As a result of these assumptions, qualitative molecular orbital models can be

developed in which one assumes that each mo φi obeys a one-electron Schrödinger

equation

h φi = εi φi.

Here the orbital-level hamiltonian h contains the kinetic energy of motion of the electron

and the potential V mentioned above:

[ - h2/2me ∇2 + V] φi = εi φi .



Expanding the mo φi in the LCAO-MO manner, substituting this expansion into the above

Schrödinger equation, multiplying on the left by χ*ν, and integrating over the coordinates

of the electron generates the following orbital-level eigenvalue problem:

Σµ <χν |- h2/2me ∇2 + V|χµ> Ciµ = εi Σµ <χν |χµ> Ciµ.

If the constituent atomic orbitals {χµ} have been orthonormalized as discussed earlier in

this chapter, the overlap integrals <χν |χµ> reduce to δµ,ν.

II. Determining the Effective Potential V

In the most elementary models of orbital structure, the quantities that explicitly

define the potential V are not computed from first principles as they are in so-called    ab initio    

methods (see Section 6). Rather, either experimental data or results of    ab initio    

calculations are used to determine the parameters in terms of which V is expressed. The

resulting empirical or semi-empirical methods discussed below differ in the sophistication

used to include electron-electron interactions as well as in the manner experimental data or

   ab initio     computational results are used to specify V.

If experimental data is used to parameterize a semi-empirical model, then the model

should not be extended beyond the level at which it has been parameterized. For example,

experimental bond energies, excitation energies, and ionization energies may be used to

determine molecular orbital energies which, in turn, are summed to compute total energies.

In such a parameterization it would be incorrect to subsequently use these mos to form a

wavefunction, as in Sections 3 and 6, that goes beyond the simple 'product of orbitals'

description. To do so would be inconsistent because the more sophisticated wavefunction

would duplicate what using the experimental data (which already contains mother nature's

electronic correlations) to determine the parameters had accomplished.

Alternatively, if results of    ab initio     theory at the single-configuration orbital-product

wavefunction level are used to define the parameters of a semi-empirical model, it would

then be proper to use the semi-empirical orbitals in a subsequent higher-level treatment of

electronic structure as done in Section 6.

A. The Hückel Parameterization of V

In the most simplified embodiment of the above orbital-level model, the following

additional approximations are introduced:



1.  The diagonal values <χµ|- h2 /2me ∇2 + V|χµ>, which are usually denoted αµ,

are taken to be equal to the energy of an electron in the atomic orbital χµ and, as such, are

evaluated in terms of atomic ionization energies (IP's) and electron affinities (EA's):

<χµ|- h2/2me ∇2 + V |χµ> = -IPµ,

for atomic orbitals that are occupied in the atom, and

<χµ|- h2/2me ∇2 + V |χµ> = -EAµ,

for atomic orbitals that are not occupied in the atom.

These approximations assume that contributions in V arising from coulombic

attraction to nuclei other than the one on which χµ is located, and repulsions from the core,

lone-pair, and valence electron clouds surrounding these other nuclei cancel to an extent

that

<χµ| V | χµ> contains only potentials from the atom on which χµ sits.

It should be noted that the IP's  and EA's of valence-state orbitals are not identical

to the experimentally measured IP's and EA's of the corresponding atom, but can be

obtained from such information. For example, the 2p valence-state IP (VSIP) for a Carbon

atom is the energy difference associated with the hypothetical process

C(1s22s2px2py2pz) ==> C+(1s22s2px2py) .

If the energy differences for the "promotion" of C

C(1s22s22px2py) ==> C(1s22s2px2py2pz) ; ∆EC

and for the promotion of C+

C+(1s22s22px) ==> C+(1s22s2px2py) ; ∆EC+

are known, the desired VSIP is given by:

IP2pz
 = IPC  + ∆EC+  - ∆EC .



The EA of the 2p orbital is obtained from the

C(1s22s22px2py) ==> C-(1s22s22px2py2pz)

energy gap, which means that EA2pz
 = EA

C
 . Some common IP's of valence 2p orbitals in

eV are as follows: C (11.16), N (14.12), N+ (28.71), O (17.70), O+ (31.42), F+ (37.28).

2.  The off-diagonal elements <χν |- h2/2me ∇2 + V |χµ> are

taken as zero if χµ  and χν belong to the same atom because the atomic orbitals are

assumed to have been constructed to diagonalize the one-electron hamiltonian appropriate to

an electron moving in that atom. They are set equal to a parameter denoted βµ,ν if χµ and

χν reside on neighboring atoms that are chemically bonded. If χµ and χν reside on atoms

that are not bonded neighbors, then the off-diagonal matrix element is set equal to zero.

3. The geometry dependence of the βµ,ν parameters is often approximated by

assuming that βµ,ν is proportional to the overlap Sµ,ν between the corresponding atomic

orbitals:

βµ,ν = βoµ,ν Sµ,ν .

Here βoµ,ν is a constant (having energy units) characteristic of the bonding interaction

between χµ  and χν; its value is usually determined by forcing the molecular orbital

energies obtained from such a qualitative orbital treatment to yield experimentally correct

ionization potentials, bond dissociation energies, or electronic transition energies.

The particular approach described thus far forms the basis of the so-called      Hückel

     model   . Its implementation requires knowledge of the atomic αµ and β0µ,ν values, which

are eventually expressed in terms of experimental data, as well as a means of calculating the

geometry dependence of the βµ,ν 's (e.g., some method for computing overlap matrices

Sµ,ν ).

B. The Extended Hückel Method

It is well known that bonding and antibonding orbitals are formed when a pair of

atomic orbitals from neighboring atoms interact. The energy splitting between the bonding



and antibonding orbitals depends on the overlap between the pair of atomic orbitals. Also,

the energy of the antibonding orbital lies higher above the arithmetic mean Eave = EA + EB

of the energies of the constituent atomic orbitals (EA and EB) than the bonding orbital lies

below Eave . If overlap is ignored, as in conventional Hückel theory (except in

parameterizing the geometry dependence of βµ,ν), the differential destabilization of

antibonding orbitals compared to stabilization of bonding orbitals can not be accounted for.

By parameterizing the off-diagonal Hamiltonian matrix elements in the following

overlap-dependent manner:

hν ,µ = <χν |- h2/2me ∇2 + V |χµ> = 0.5 K (hµ,µ + hν ,ν) Sµ,ν  ,

and explicitly treating the overlaps among the constituent atomic orbitals {χµ} in solving

the orbital-level Schrödinger equation

Σµ <χν |- h2/2me ∇2 + V|χµ> Ciµ = εi Σµ <χν |χµ> Ciµ,

Hoffmann introduced the so-called extended Hückel method. He found that a value for K=

1.75 gave optimal results when using Slater-type orbitals as a basis (and for calculating the

Sµ,ν). The diagonal hµ,µ elements are given, as in the conventional Hückel method, in

terms of valence-state IP's and EA's. Cusachs later proposed a variant of this

parameterization of the off-diagonal elements:

hν ,µ = 0.5 K (hµ,µ + hν ,ν) Sµ,ν (2-|Sµ,ν |).

For first- and second-row atoms, the 1s or (2s, 2p) or (3s,3p, 3d) valence-state ionization

energies (αµ's), the number of valence electrons (#Elec.) as well as the orbital exponents

(es , ep and ed) of Slater-type orbitals used to calculate the overlap matrix elements Sµ,ν

corresponding are given below.



Atom # Elec. es=ep ed αs(eV) αp(eV) αd(eV)

H 1 1.3 -13.6

Li 1 0.650 -5.4 -3.5

Be 2 0.975 -10.0 -6.0

B 3 1.300 -15.2 -8.5

C 4 1.625 -21.4 -11.4

N 5 1.950 -26.0 -13.4

O 6 2.275 -32.3 -14.8

F 7 2.425 -40.0 -18.1

Na 1 0.733 -5.1 -3.0

Mg 2 0.950 -9.0 -4.5

Al 3 1.167 -12.3 -6.5

Si 4 1.383 1.383 -17.3 -9.2 -6.0

P 5 1.600 1.400 -18.6 -14.0 -7.0

S 6 1.817 1.500 -20.0 -13.3 -8.0

Cl 7 2.033 2.033 -30.0 -15.0 -9.0

In the Hückel or extended Hückel methods no    explicit    reference is made to electron-
electron interactions although such contributions are absorbed into the V potential, and
hence into the αµ and βµ,ν parameters of Hückel theory or the hµ,µ and hµ,ν parameters of
extended Hückel theory. As electron density flows from one atom to another (due to
electronegativity differences), the electron-electron repulsions in various atomic orbitals
changes. To account for such charge-density-dependent coulombic energies, one must use
an approach that includes explicit reference to inter-orbital coulomb and exchange
interactions. There exists a large family of semi-empirical methods that permit explicit
treatment of electronic interactions; some of the more commonly used approaches are
discussed in Appendix F.



Section 3 Electronic Configurations, Term Symbols, and
States

Introductory Remarks- The Orbital, Configuration, and State Pictures of Electronic

Structure

One of the goals of quantum chemistry is to allow practicing chemists to use

knowledge of the electronic states of fragments (atoms, radicals, ions, or molecules) to

predict and understand the behavior (i.e., electronic energy levels, geometries, and

reactivities) of larger molecules. In the preceding Section, orbital correlation diagrams were

introduced to connect the orbitals of the fragments along a 'reaction path' leading to the

orbitals of the products. In this Section, analogous connections are made among the

fragment and product electronic states, again labeled by appropriate symmetries. To realize

such connections, one must first write down N-electron wavefunctions that possess the

appropriate symmetry; this task requires combining symmetries of the occupied orbitals to

obtain the symmetries of the resulting states.

Chapter 8

Electrons are Placed into Orbitals to Form Configurations, Each of Which Can be Labeled

by its Symmetry. The Configurations May "Interact" Strongly if They Have Similar

Energies.

I. Orbitals Do Not Provide the Complete Picture; Their Occupancy By the N Electrons

Must Be Specified

Knowing the orbitals of a particular species provides one information about the

sizes, shapes, directions, symmetries, and energies of those regions of space that are

   available    to the electrons (i.e., the complete set of orbitals that are available). This

knowledge does     not    determine into which orbitals the electrons are placed. It is by

describing the electronic configurations (i.e., orbital occupancies such as 1s22s22p2 or

1s22s22p13s1) appropriate to the energy range under study that one focuses on how the

electrons occupy the orbitals. Moreover, a given configuration may give rise to several

energy levels whose energies differ by chemically important amounts.  for example, the

1s22s22p2 configuration of the Carbon atom produces nine degenerate 3P states, five

degenerate 1D states, and a single 1S state.  These three energy levels differ in energy by

1.5 eV and 1.2 eV, respectively.



II. Even N-Electron Configurations Are Not Mother Nature's True Energy States

Moreover, even single-configuration descriptions of atomic and molecular structure

(e.g., 1s22s22p4 for the Oxygen atom) do not provide fully correct or highly accurate

representations of the respective electronic wavefunctions.  As will be shown in this

Section and in more detail in Section 6, the picture of N electrons occupying orbitals to

form a configuration is based on a so-called "mean field" description of the coulomb

interactions among electrons. In such models, an electron at r is viewed as interacting with

an "averaged" charge density arising from the N-1 remaining electrons:

Vmean field = ⌡⌠ρ
N-1

(r') e2/|r-r'|  dr'  .

Here ρ
N-1

(r') represents the probability density for finding electrons at r', and e2/|r-r'| is

the mutual coulomb repulsion between electron density at r and r'. Analogous mean-field

models arise in many areas of chemistry and physics, including electrolyte theory (e.g., the

Debye-Hückel theory), statistical mechanics of dense gases (e.g., where the Mayer-Mayer

cluster expansion is used to improve the ideal-gas mean field model), and chemical

dynamics (e.g., the vibrationally averaged potential of interaction).

In each case, the mean-field model forms only a starting point from which one

attempts to build a fully correct theory by effecting systematic corrections (e.g., using

perturbation theory) to the mean-field model. The ultimate value of any particular mean-

field model is related to its accuracy in describing experimental phenomena. If predictions

of the mean-field model are far from the experimental observations, then higher-order

corrections (which are usually difficult to implement) must be employed to improve its

predictions. In such a case, one is motivated to search for a better model to use as a starting

point so that lower-order perturbative (or other) corrections can be used to achieve chemical

accuracy (e.g., ± 1 kcal/mole).

In electronic structure theory, the single-configuration picture (e.g., the 1s22s22p4

description of the Oxygen atom) forms the mean-field starting point; the configuration

interaction (CI) or perturbation theory techniques are then used to systematically improve

this level of description.

The single-configuration mean-field theories of electronic structure neglect

   correlations    among the electrons. That is, in expressing the interaction of an electron at r



with the N-1 other electrons, they use a probability density ρ
N-1

(r') that is independent of

the fact that another electron resides at r. In fact, the so-called conditional probability

density for finding one of N-1 electrons at r', given that an electron is at r certainly

depends on r.  As a result, the mean-field coulomb potential felt by a 2px orbital's electron

in the 1s22s22px2py single-configuration description of the Carbon atom is:

Vmean field = 2⌡⌠|1s(r')|2  e2/|r-r'|  dr'  

+ 2⌡⌠|2s(r')|2  e2/|r-r'|  dr' 

+ ⌡⌠|2py(r')|2  e2/|r-r'|  dr'  .

In this example, the density ρ
N-1

(r') is the sum of the charge densities of the orbitals

occupied by the five other electrons

2 |1s(r')|2 + 2 |2s(r')|2 + |2py(r')|2 , and is not dependent on the fact that an electron

resides at r.

III. Mean-Field Models

The Mean-Field Model, Which Forms the Basis of Chemists' Pictures of Electronic

Structure of Molecules, Is Not Very Accurate

The magnitude and "shape" of such a mean-field potential is shown below for the

Beryllium atom. In this figure, the nucleus is at the origin, and one electron is placed at a

distance from the nucleus equal to the maximum of the 1s orbital's radial probability

density (near 0.13 Å). The radial coordinate of the second is plotted as the abscissa; this

second electron is arbitrarily constrained to lie on the line connecting the nucleus and the

first electron (along this direction, the inter-electronic interactions are largest). On the

ordinate, there are two quantities plotted: (i) the Self-Consistent Field (SCF) mean-field

potential ⌡⌠|1s(r')|2  e2/|r-r'|  dr' , and (ii) the so-called Fluctuation potential (F), which is

the true coulombic e2/|r-r'| interaction potential minus the SCF potential.
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As a function of the inter-electron distance, the fluctuation potential decays to zero

more rapidly than does the SCF potential. For this reason, approaches in which F is treated

as a perturbation and corrections to the mean-field picture are computed perturbatively

might be expected to be rapidly convergent (whenever perturbations describing long-range

interactions arise, convergence of perturbation theory is expected to be slow or not

successful). However, the magnitude of F is quite large and remains so over an appreciable

range of inter-electron distances.

The resultant corrections to the SCF picture are therefore quite large when measured

in kcal/mole. For example, the differences ∆E between the true (state-of-the-art quantum

chemical calculation) energies of interaction among the four electrons in Be and the SCF

mean-field estimates of these interactions are given in the table shown below in eV (recall

that 1 eV = 23.06 kcal/mole).

Orb. Pair 1sα1sβ 1sα2sα 1sα2sβ 1sβ2sα 1sβ2sβ 2sα2sβ
∆E in eV 1.126 0.022 0.058 0.058 0.022 1.234

To provide further insight why the SCF mean-field model in electronic structure

theory is of limited accuracy, it can be noted that the average value of the kinetic energy

plus the attraction to the Be nucleus plus the SCF interaction potential for one of the 2s

orbitals of Be with the three remaining electrons in the 1s22s2 configuration is:

< 2s| -h2/2me ∇2 - 4e2/r + VSCF |2s> = -15.4 eV;



the analogous quantity for the 2p orbital in the 1s22s2p configuration is:

< 2p| -h2/2me ∇2 - 4e2/r + V'SCF |2p> = -12.28 eV;

the corresponding value for the 1s orbital is (negative and) of even larger magnitude. The

SCF average coulomb interaction between the two 2s orbitals of 1s22s2 Be is:

⌡⌠|2s(r)|2 |2s(r')|2 e2/|r-r'|  dr dr'   = 5.95 eV.

This data clearly shows that corrections to the SCF model (see the above table)

represent significant fractions of the inter-electron interaction energies (e.g., 1.234 eV

compared to 5.95- 1.234 = 4.72 eV for the two 2s electrons of Be), and that the inter-

electron interaction energies, in turn, constitute significant fractions of the total energy of

each orbital (e.g., 5.95 -1.234 eV = 4.72 eV out of -15.4 eV for a 2s orbital of Be).

The task of describing the electronic states of atoms and molecules from first

principles and in a chemically accurate manner (± 1 kcal/mole) is clearly quite formidable.

The orbital picture and its accompanying SCF potential take care of "most" of the

interactions among the N electrons (which interact via long-range coulomb forces and

whose dynamics requires the application of quantum physics and permutational symmetry).

However, the residual fluctuation potential, although of shorter range than the bare

coulomb potential, is large enough to cause significant corrections to the mean-field picture.

This, in turn, necessitates the use of more sophisticated and computationally taxing

techniques (e.g., high order perturbation theory or large variational expansion spaces) to

reach the desired chemical accuracy.

Mean-field models are obviously approximations whose accuracy must be

determined so scientists can know to what degree they can be "trusted". For electronic

structures of atoms and molecules, they require quite substantial corrections to bring them

into line with experimental fact. Electrons in atoms and molecules undergo dynamical

motions in which their coulomb repulsions cause them to "avoid" one another at every

instant of time, not only in the average-repulsion manner that the mean-field models

embody. The inclusion of instantaneous spatial correlations among electrons is necessary to

achieve a more accurate description of atomic and molecular electronic structure.

IV. Configuration Interaction (CI) Describes the Correct Electronic States



The most commonly employed tool for introducing such spatial correlations into

electronic wavefunctions is called configuration interaction (CI); this approach is described

briefly later in this Section and in considerable detail in Section 6.

Briefly, one employs the (in principle, complete as shown by P. O. Löwdin, Rev.

Mod. Phys.     32    , 328 (1960)) set of N-electron configurations that (i) can be formed by

placing the N electrons into orbitals of the atom or molecule under study, and that (ii)

possess the spatial, spin, and angular momentum symmetry of the electronic state of

interest. This set of functions is then used, in a linear variational function, to achieve, via

the CI technique, a more accurate and dynamically correct description of the electronic

structure of that state. For example, to describe the ground 1S state of the Be atom, the

1s22s2 configuration (which yields the mean-field description) is augmented by including

other configurations such as 1s23s2 , 1s22p2, 1s23p2, 1s22s3s, 3s22s2, 2p22s2 , etc., all

of which have overall 1S spin and angular momentum symmetry. The excited 1S states are

also combinations of all such configurations. Of course, the ground-state wavefunction is

dominated by the |1s22s2| and excited states contain dominant contributions from |1s22s3s|,

etc. configurations. The resultant CI wavefunctions are formed as shown in Section 6  as

linear combinations of all such configurations.

To clarify the physical significance of mixing such configurations, it is useful to

consider what are found to be the two most important such configurations for the ground
1S state of the Be atom:

Ψ ≅ C1 |1s22s2| - C2 [|1s22px2| +|1s22py2| +|1s22pz2 |].

As proven in Chapter 13.III, this two-configuration description of Be's electronic structure

is equivalent to a description is which two electrons reside in the 1s orbital (with opposite,

α and β spins) while the other pair reside in 2s-2p hybrid orbitals (more correctly,

polarized orbitals) in a manner that instantaneously correlates their motions:

Ψ ≅ 1/6 C1 |1s2{[(2s-a2px)α(2s+a2px)β - (2s-a2px)β(2s+a2px)α]

    +[(2s-a2py)α(2s+a2py)β - (2s-a2py)β(2s+a2py)α]

    +[(2s-a2pz)α(2s+a2pz)β -  (2s-a2pz)β(2s+a2pz)α]}|,



where a = 3C2/C1  . The so-called polarized orbital pairs

(2s ± a 2px,y, or z) are formed by mixing into the 2s orbital an amount of the 2px,y, or z

orbital, with the mixing amplitude determined by the ratio of C2 to C1 . As will be detailed

in Section 6, this ratio is proportional to the magnitude of the coupling <|1s22s2

|H|1s22p2| > between the two configurations and inversely proportional to the energy

difference [<|1s22s2|H|1s22s2|> - <|1s22p2|H|1s22p2|>] for these configurations. So, in

general, configurations that have similar energies (Hamiltonian expectation values) and

couple strongly give rise to strongly mixed polarized orbital pairs. The result of forming

such polarized orbital pairs are described pictorially below.

Polarized Orbital 2s and 2p z Pairs 

2s - a 2pz

2s + a 2pz

2s and 2pz

In each of the three equivalent terms in this wavefunction, one of the valence

electrons moves in a 2s+a2p orbital polarized in one direction while the other valence

electron moves in the 2s-a2p orbital polarized in the opposite direction. For example, the

first term [(2s-a2px)α(2s+a2px)β - (2s-a2px)β(2s+a2px)α] describes one electron

occupying a 2s-a2px  polarized orbital while the other electron occupies the 2s+a2px

orbital. In this picture, the electrons reduce their mutual coulomb repulsion by occupying

    different    regions of space; in the SCF mean-field picture, both electrons reside in the same

2s region of space. In this particular example, the electrons undergo    angular correlation     to

"avoid" one another. The fact that equal amounts of x, y, and z orbital polarization appear

in Ψ is what preserves the 1S symmetry of the wavefunction.

The fact that the CI wavefunction



Ψ ≅ C1 |1s22s2| - C2 [|1s22px2 |+|1s22py2| +|1s22pz2 |]

mixes its two configurations with     opposite sign     is of significance. As will be seen later in

Section 6, solution of the Schrödinger equation using the CI method in which two

configurations (e.g., |1s22s2| and |1s22p2|) are employed gives rise to two solutions. One

approximates the ground state wave function; the other approximates an excited state. The

former is the one that mixes the two configurations with opposite sign.

To understand why the latter is of higher energy, it suffices to analyze a function of

the form

Ψ'  ≅ C1 |1s22s2|  + C2 [|1s22px2| +|1s22py2| +|1s22pz2| ]

in a manner analogous to above. In this case, it can be shown that

Ψ'  ≅ 1/6 C1 |1s2{[(2s-ia2px)α(2s+ia2px)β - (2s-ia2px)β(2s+ia2px)α]

+[(2s-ia2py)α(2s+ia2py)β - (2s-ia2py)β(2s+ia2py)α] 

+[(2s-ia2pz)α(2s+ia2pz)β -  (2s-ia2pz)β(2s+ia2pz)α]|}.

There is a fundamental difference, however, between the polarized orbital pairs introduced
earlier φ± = (2s ± a2px,y,or z) and the corresponding functions φ' ± = (2s ± ia2px,y,or z)

appearing here. The probability densities embodied in the former

|φ±|2 = |2s|2 + a2 |2px,y,or z |2 ± 2a(2s 2px,y,or z)

describe constructive (for the + case) and destructive (for the - case) superposition of the
probabilities of the 2s and 2p orbitals. The probability densities of φ' ± are

|φ' ±|2 = (2s ± ia2px,y,or z)*(2s ± ia2px,y,or z)

= |2s|2 + a2 |2px,y,or z |2 .



These densities are identical to one another and do not describe polarized orbital densities.

Therefore, the CI wavefunction which mixes the two configurations with like sign, when
analyzed in terms of orbital pairs, places the electrons into orbitals φ' ±=(2s ± ia2px,y,or z)

whose densities do not permit the electrons to avoid one another. Rather, both orbitals have

the same spatial density |2s|2 + a2

|2px,y,or z |2 , which gives rise to higher coulombic interaction energy for this state.

V. Summary

In summary, the dynamical interactions among electrons give rise to instantaneous

spatial correlations that must be handled to arrive at an accurate picture of atomic and

molecular structure. The simple, single-configuration picture provided by the mean-field

model is a useful starting point, but improvements are often needed.

In Section 6, methods for treating electron correlation will be discussed in greater detail.

For the remainder of this Section, the primary focus is placed on forming proper N-

electron wavefunctions by occupying the orbitals available to the system in a manner that

guarantees that the resultant N-electron function is an eigenfunction of those operators that

commute with the N-electron Hamiltonian.

For polyatomic molecules, these operators include point-group symmetry operators

(which act on    all    N electrons) and the spin angular momentum (S2 and Sz) of    all    of the

electrons taken as a whole (this is true in the absence of spin-orbit coupling which is treated

later as a perturbation). For linear molecules, the point group symmetry operations involve

rotations Rz of all N electrons about the principal axis, as a result of which the total angular

momentum Lz of the N electrons (taken as a whole) about this axis commutes with the

Hamiltonian, H. Rotation of all N electrons about the x and y axes does not leave the total

coulombic potential energy unchanged, so Lx and Ly do not commute with H. Hence for a

linear molecule, Lz , S2, and Sz  are the operators that commute with H. For atoms, the

corresponding operators are L2, Lz, S2, and Sz (again, in the absence of spin-orbit

coupling) where each operator pertains to the total orbital or spin angular momentum of the

N electrons.

To construct N-electron functions that are eigenfunctions of the spatial symmetry or

orbital angular momentum operators as well as the spin angular momentum operators, one

has to "couple" the symmetry or angular momentum properties of the individual spin-

orbitals used to construct the N-electrons functions. This coupling involves forming direct

product symmetries in the case of polyatomic molecules that belong to finite point groups,



it involves vector coupling orbital and spin angular momenta in the case of atoms, and it

involves vector coupling spin angular momenta and axis coupling orbital angular momenta

when treating linear molecules. Much of this Section is devoted to developing the tools

needed to carry out these couplings.



Chapter 9

Electronic Wavefuntions Must be Constructed to Have Permutational Antisymmetry

Because the N Electrons are Indistinguishable Fermions

I. Electronic Configurations

Atoms, linear molecules, and non-linear molecules have orbitals which can be

labeled either according to the symmetry appropriate for that isolated species or for the

species in an environment which produces lower symmetry. These orbitals should be

viewed as regions of space in which electrons can move, with, of course, at most two

electrons (of opposite spin) in each orbital. Specification of a particular occupancy of the

set of orbitals available to the system gives an    electronic configuration    . For example,

1s22s22p4 is an electronic configuration for the Oxygen atom (and for the F+1 ion and the

N-1 ion); 1s22s22p33p1 is another configuration for O, F+1, or N-1. These configurations

represent situations in which the electrons occupy low-energy orbitals of the system and, as

such, are likely to contribute strongly to the true ground and low-lying excited states and to

the low-energy states of molecules formed from these atoms or ions.

Specification of an electronic configuration does not, however, specify a particular

electronic state of the system. In the above 1s22s22p4 example, there are many ways

(fifteen, to be precise) in which the 2p orbitals can be occupied by the four electrons. As a

result, there are a total of fifteen states which cluster into three energetically distinct    levels   ,

lying within this single configuration. The 1s22s22p33p1 configuration contains thirty-six

states which group into six distinct energy levels (the word    level    is used to denote one or

more state with the same energy). Not all states which arise from a given electronic

configuration have the same energy because various states occupy the degenerate (e.g., 2p

and 3p in the above examples) orbitals differently. That is, some states have orbital

occupancies of the form 2p212p102p1-1 while others have 2p212p202p0-1; as a result, the

states can have quite different coulombic repulsions among the electrons (the state with two

doubly occupied orbitals would lie higher in energy than that with two singly occupied

orbitals). Later in this Section and in Appendix G techniques for constructing

wavefunctions for each state contained within a particular configuration are given in detail.

Mastering these tools is an important aspect of learning the material in this text.

In summary, an atom or molecule has many orbitals (core, bonding, non-bonding,

Rydberg, and antibonding) available to it; occupancy of these orbitals in a particular manner

gives rise to a configuration. If some orbitals are partially occupied in this configuration,



more than one state will arise; these states can differ in energy due to differences in how the

orbitals are occupied. In particular, if degenerate orbitals are partially occupied, many states

can arise and have energies which differ substantially because of differences in electron

repulsions arising in these states. Systematic procedures for extracting all states from a

given configuration, for labeling the states according to the appropriate symmetry group,

for writing the wavefunctions corresponding to each state and for evaluating the energies

corresponding to these wavefunctions are needed.  Much of Chapters 10 and 11 are

devoted to developing and illustrating these tools.

II. Antisymmetric Wavefunctions

A. General Concepts

The total electronic Hamiltonian

H = Σ i (- h2/2me ∇i2 -Σa Za e2/ria) +Σ i>j e2/rij +Σa>b Za Zbe2/rab,

where i and j label electrons and a and b label the nuclei (whose charges are denoted Za),

commutes with the operators Pij which permute the names of the electrons i and j. This, in

turn, requires eigenfunctions of H to be eigenfunctions of Pij. In fact, the set of such

permutation operators form a group called the symmetric group (a good reference to this

subject is contained in Chapter 7 of      Group Theory     , M. Hamermesh, Addison-Wesley,

Reading, Mass. (1962)). In the present text, we will not exploit the full group theoretical

nature of these operators; we will focus on the simple fact that all wavefunctions must be

eigenfunctions of the Pij (additional material on this subject is contained in Chapter XIV of

Kemble).

Because Pij obeys Pij * Pij = 1, the eigenvalues of the Pij operators must be +1 or -

1. Electrons are Fermions (i.e., they have half-integral spin), and they have wavefunctions

which are odd under permutation of any pair: Pij Ψ = -Ψ.  Bosons such as photons or

deuterium nuclei (i.e., species with integral spin quantum numbers) have wavefunctions

which obey Pij Ψ = +Ψ.
These permutational symmetries are not only characteristics of the exact

eigenfunctions of H belonging to any atom or molecule containing more than a single

electron but they are also conditions which must be placed on any acceptable model or trial

wavefunction (e.g., in a variational sense) which one constructs.



In particular, within the orbital model of electronic structure (which is developed

more systematically in Section 6), one can not construct trial wavefunctions which are

simple spin-orbital products (i.e., an orbital multiplied by an α or β spin function for each

electron) such as 1sα1sβ2sα2sβ2p1α2p0α. Such spin-orbital product functions      must    be

made permutationally antisymmetric if the N-electron trial function is to be properly

antisymmetric. This can be accomplished for any such product wavefunction by applying

the following    antisymmetrizer operator   :

A = (√1/N!)Σp sp  P,

where N is the number of electrons, P runs over all N! permutations, and sp is +1 or -1

depending on whether the permutation P contains an even or odd number of pairwise

permutations (e.g., 231 can be reached from 123 by two pairwise permutations-

123==>213==>231, so 231 would have sp =1). The permutation operator P in A acts on a

product wavefunction and permutes the ordering of the spin-orbitals. For example, A

φ1φ2φ3 = (1/√6) [φ1φ2φ3 -φ1φ3φ2 -φ3φ2φ1 -φ2φ1φ3 +φ3φ1φ2 +φ2φ3φ1], where the

convention is that electronic coordinates r1, r2, and r3 correspond to the orbitals as they

appear in the product (e.g., the term φ3φ2φ1 represents φ3(r1)φ2(r2)φ1(r3)).

It turns out that the permutations P can be allowed either to act on the "names" or

labels of the electrons, keeping the order of the spin-orbitals fixed, or to act on the spin-

orbitals, keeping the order and identity of the electrons' labels fixed. The resultant

wavefunction, which contains N! terms, is exactly the same regardless of how one allows

the permutations to act. Because we wish to use the above convention in which the order of

the electronic labels remains fixed as 1, 2, 3, ... N, we choose to think of the permutations

acting on the names of the spin-orbitals.

It should be noted that the effect of A on any spin-orbital product is to produce a

function that is a sum of N! terms. In each of these terms the same spin-orbitals appear, but

the order in which they appear differs from term to term. Thus antisymmetrization does not

alter the overall orbital occupancy; it simply "scrambles" any knowledge of which electron

is in which spin-orbital.

The antisymmetrized orbital product A φ1φ2φ3 is represented by the short hand |

φ1φ2φ3 | and is referred to as a     Slater determinant   . The origin of this notation can be made

clear by noting that (1/√N!) times the determinant of a matrix whose rows are labeled by

the index i of the spin-orbital φi and whose columns are labeled by the index j of the

electron at rj is equal to the above function: A φ1φ2φ3 = (1/√3!) det(φi (rj)). The general

structure of such Slater determinants is illustrated below:



(1/N!)
1/2

 det{φ j(r i)} = (1/N!)
1/2

φ 1(1)φ2(1)φ3(1)...φk(1).......φN(1)
φ 1(2)φ2(2)φ3(2)...φk(2).......φN(2)
.
.
.
.
φ 1(Ν)φ2(Ν)φ3(Ν)..φk(Ν)..φN(Ν)

The antisymmetry of many-electron spin-orbital products places constraints on any

acceptable model wavefunction, which give rise to important physical consequences. For

example, it is antisymmetry that makes a function of the form | 1sα1sα | vanish (thereby

enforcing the Pauli exclusion principle) while | 1sα2sα | does not vanish, except at points

r1 and r2 where 1s(r1) = 2s(r2), and hence is acceptable. The Pauli principle is embodied

in the fact that if any two or more columns (or rows) of a determinant are identical, the

determinant vanishes. Antisymmetry also enforces indistinguishability of the electrons in

that |1sα1sβ2sα2sβ | =

- | 1sα1sβ2sβ2sα |. That is, two wavefunctions which differ simply by the ordering of

their spin-orbitals are equal to within a sign (+/- 1); such an overall sign difference in a

wavefunction has no physical consequence because all physical properties depend on the

product Ψ* Ψ , which appears in any expectation value expression.

B. Physical Consequences of Antisymmetry

Once the rules for evaluating energies of determinental wavefunctions and for

forming functions which have proper spin and spatial symmetries have been put forth (in

Chapter 11), it will be clear that antisymmetry and electron spin considerations, in addition

to orbital occupancies, play substantial roles in determining energies and that it is precisely

these aspects that are responsible for energy splittings among states arising from one

configuration. A single example may help illustrate this point. Consider the π1π*1

configuration of ethylene (ignore the other orbitals and focus on the properties of these

two). As will be shown below when spin angular momentum is treated in full, the triplet

spin states of this configuration are:

|S=1, MS=1> = |παπ*α|,

|S=1, MS=-1> = |πβπ*β|,



and

|S=1, MS= 0> = 2-1/2[ |παπ*β| + |πβπ*α|].

The singlet spin state is:

|S=0, MS= 0> = 2-1/2[ |παπ*β| - |πβπ*α|].

To understand how the three triplet states have the same energy and why the singlet

state has a different energy, and an energy different than the MS= 0 triplet even though

these two states are composed of the same two determinants, we proceed as follows:

1. We express the bonding π and antibonding π* orbitals in terms of the atomic p-orbitals

from which they are formed: π= 2-1/2 [ L + R ] and π* = 2-1/2 [ L - R ], where R and L

denote the p-orbitals on the left and right carbon atoms, respectively.

2. We substitute these expressions into the Slater determinants that form the singlet and

triplet states and collect terms and throw out terms for which the determinants vanish.

3. This then gives the singlet and triplet states in terms of atomic-orbital occupancies where

it is easier to see the energy equivalences and differences.

Let us begin with the triplet states:

|παπ*α| = 1/2 [ |LαLα| - |RαRα| + |RαLα| - |LαRα| ]

= |RαLα|;

2-1/2[ |παπ*β| + |πβπ*α|] = 2-1/2 1/2[ |LαLβ| - |RαRβ| + |RαLβ| -

|LαRβ| + |LβLα| - |RβRα| + |RβLα| - |LβRα| ]

= 2-1/2 [ |RαLβ| + |RβLα| ];

|πβπ*β| = 1/2 [ |LβLβ| - |RβRβ| + |RβLβ| - |LβRβ| ]



= |RβLβ|.

The singlet state can be reduced in like fashion:

2-1/2[ |παπ*β| - |πβπ*α|] = 2-1/2 1/2[ |LαLβ| - |RαRβ| + |RαLβ| -

|LαRβ| - |LβLα| + |RβRα| - |RβLα| + |LβRα| ]

= 2-1/2 [ |LαLβ| - |RβRα| ].

Notice that all three triplet states involve atomic orbital occupancy in which one electron is

on one atom while the other is on the second carbon atom. In contrast, the singlet state

places both electrons on one carbon (it contains two terms; one with the two electrons on

the left carbon and the other with both electrons on the right carbon).

In a "valence bond" analysis of the physical content of the singlet and triplet π1π*1

states, it is clear that the energy of the triplet states will lie below that of the singlet because

the singlet contains "zwitterion" components that can be denoted C+C- and C-C+, while the

three triplet states are purely "covalent". This case provides an excellent example of how

the spin and permutational symmetries of a state "conspire" to qualitatively affect its energy

and even electronic character as represented in its atomic orbital occupancies.

Understanding this should provide ample motivation for learning how to form proper

antisymmetric spin (and orbital) angular momentum eigenfunctions for atoms and

molecules.



Chapter 10

Electronic Wavefunctions Must Also Possess Proper Symmetry. These Include Angular

Momentum and Point Group Symmetries

I. Angular Momentum Symmetry and Strategies for Angular Momentum Coupling

Because the total Hamiltonian of a many-electron atom or molecule forms a

mutually commutative set of operators with S2 , Sz , and A = (√1/N!)Σp sp  P, the exact

eigenfunctions of H must be eigenfunctions of these operators. Being an eigenfunction of

A forces the eigenstates to be odd under all Pij. Any acceptable model or trial wavefunction

should be constrained to also be an eigenfunction of these symmetry operators.

If the atom or molecule has additional symmetries (e.g., full rotation symmetry for

atoms, axial rotation symmetry for linear molecules and point group symmetry for non-

linear polyatomics), the trial wavefunctions should also conform to these spatial

symmetries. This Chapter addresses those operators that commute with H, Pij, S2, and Sz

and among one another for atoms, linear, and non-linear molecules.

As treated in detail in Appendix G,  the full non-relativistic N-electron Hamiltonian

of an atom or molecule

H = Σ j(- h2/2m ∇j2 - Σa Zae2/rj,a) + Σ j<k e2/rj,k

commutes with the following operators:

i. The inversion operator i and the three components of the total orbital angular momentum

Lz = Σ jLz(j), Ly, Lx, as well as the components of the total spin angular momentum Sz, Sx,

and Sy for atoms (but not the individual electrons' Lz(j) , Sz(j), etc). Hence, L2, Lz, S2,

Sz are the operators we need to form eigenfunctions of, and L, ML, S, and MS are the

"good" quantum numbers.

ii. Lz = Σ jLz(j), as well as the N-electron Sx, Sy, and Sz  for linear molecules (also i, if

the molecule has a center of symmetry). Hence, Lz, S2, and Sz are the operators we need to

form eigenfunctions of, and ML, S, and MS are the "good" quantum numbers; L no longer

is!

iii. Sx, Sy, and Sz as well as all point group operations for non-linear polyatomic

molecules. Hence S2, Sz, and the point group operations are used to characterize the



functions we need to form. When we include spin-orbit coupling into H (this adds another

term to the potential that involves the spin and orbital angular momenta of the electrons),

L2, Lz, S2, Sz no longer commute with H. However, Jz = Sz + Lz and J2 = (L+S )2  now

do commute with H.

A. Electron Spin Angular Momentum

Individual electrons possess intrinsic spin characterized by angular momentum

quantum numbers s and ms ; for electrons, s = 1/2 and ms = 1/2, or -1/2. The ms =1/2 spin

state of the electron is represented by the symbol α and the ms = -1/2 state is represented by

β. These spin functions obey: S2 α = 1/2 (1/2 + 1)h2 α,
Sz α = 1/2h α, S2 β =1/2 (1/2 + 1) h2β,  and Sz β = -1/2hβ. The α and β spin functions

are connected via lowering S-  and raising S+ operators, which are defined in terms of the x

and y components of S  as follows: S+ = Sx +iSy, and S - = Sx -iSy. In particular S+β =

hα, S+α =0, S-α = hβ,
and S-β =0. These expressions are examples of the more general relations (these relations

are developed in detail in Appendix G) which all angular momentum operators and their

eigenstates obey:

J2 |j,m> = j(j+1)h2 |j,m>,

Jz |j,m> = mh |j,m>,

J+ |j,m> =h {j(j+1)-m(m+1)}1/2 |j,m+1>, and

J- |j,m>  =h {j(j+1)-m(m-1)}1/2 |j,m-1>.

In a many-electron system, one must combine the spin functions of the individual

electrons to generate eigenfunctions of the total Sz =Σ i Sz(i) ( expressions for Sx =Σ i Sx(i)

and Sy =Σ i Sy(i) also follow from the fact that the total angular momentum of a collection

of particles is the sum of the angular momenta, component-by-component, of the individual

angular momenta) and total S2 operators because only these operators commute with the

full Hamiltonian, H, and with the permutation operators Pij. No longer are the individual

S2(i) and Sz(i) good quantum numbers; these operators do not commute with Pij.

Spin states which are eigenfunctions of the total S2 and Sz can be formed by using

angular momentum coupling methods or the explicit construction methods detailed in



Appendix (G). In the latter approach, one forms, consistent with the given electronic

configuration, the spin state having maximum Sz eigenvalue (which is easy to identify as

shown below and which corresponds to a state with S equal to this maximum Sz

eigenvalue) and then generating states of lower Sz values and lower S values using the

angular momentum raising and lowering operators (S- =Σ i S- (i) and

S+ =Σ i S+ (i)).

To illustrate, consider a three-electron example with the configuration 1s2s3s.

Starting with the determinant | 1sα2sα3sα |, which has the maximum Ms =3/2 and hence

has S=3/2 (this function is denoted |3/2, 3/2>), apply S- in the additive form S- =Σ i S-(i) to

generate the following combination of three determinants:

h[| 1sβ2sα3sα | + | 1sα2sβ3sα | + | 1sα2sα3sβ |],

which, according to the above identities, must equal

h 3/2(3/2+1)-3/2(3/2-1)  | 3/2, 1/2>.

So the state |3/2, 1/2> with S=3/2 and Ms =1/2 can be solved for in terms of the three

determinants to give

|3/2, 1/2> = 1/√3[ | 1sβ2sα3sα | + | 1sα2sβ3sα | + | 1sα2sα3sβ | ].

The states with S=3/2 and Ms = -1/2 and -3/2 can be obtained by further application of S- to

|3/2, 1/2> (actually, the Ms= -3/2 can be identified as the "spin flipped" image of the state

with Ms =3/2 and the one with Ms =-1/2 can be formed by interchanging  all α's and β's in

the Ms = 1/2 state).

Of the eight total spin states (each electron can take on either α or β spin and there

are three electrons, so the number of states is 23), the above process has identified proper

combinations which yield the four states with S= 3/2. Doing so consumed the determinants

with Ms =3/2 and -3/2, one combination of the three determinants with MS =1/2, and one

combination of the three determinants with Ms =-1/2. There still remain two combinations

of the Ms =1/2 and two combinations of the Ms =-1/2 determinants to deal with. These

functions correspond to two sets of S = 1/2 eigenfunctions having

Ms = 1/2 and -1/2. Combinations of the determinants must be used in forming the S = 1/2

functions to keep the S = 1/2 eigenfunctions orthogonal to the above S = 3/2 functions

(which is required because S2 is a hermitian operator whose eigenfunctions belonging to

different eigenvalues must be orthogonal). The two independent S = 1/2, Ms = 1/2 states



can be formed by simply constructing combinations of the above three determinants with

Ms =1/2 which are orthogonal to the S = 3/2 combination given above and orthogonal to

each other. For example,

| 1/2, 1/2> = 1/√2[ | 1sβ2sα3sα | - | 1sα2sβ3sα | + 0x | 1sα2sα3sβ | ],

| 1/2, 1/2> = 1/√6[ | 1sβ2sα3sα | + | 1sα2sβ3sα | -2x | 1sα2sα3sβ | ]

are acceptable (as is any combination of these two functions generated by a unitary

transformation ). A pair of independent orthonormal states with S =1/2 and Ms = -1/2 can

be generated by applying S- to each of these two functions ( or by constructing a pair of

orthonormal functions which are combinations of the three determinants with Ms = -1/2 and

which are orthogonal to the S=3/2, Ms = -1/2 function obtained as detailed above).

The above treatment of a three-electron case shows how to generate quartet (spin

states are named in terms of their spin degeneracies 2S+1) and doublet states for a

configuration of the form

1s2s3s. Not all three-electron configurations have both quartet and doublet states; for

example, the 1s2 2s configuration only supports one doublet state. The methods used

above to generate S = 3/2 and

S = 1/2 states are valid for any three-electron situation; however, some of the determinental

functions vanish if doubly occupied orbitals occur as for 1s22s. In particular, the |

1sα1sα2sα | and

| 1sβ1sβ2sβ | Ms =3/2, -3/2 and | 1sα1sα2sβ | and | 1sβ1sβ2sα | Ms = 1/2, -1/2

determinants vanish because they violate the Pauli principle; only | 1sα1sβ2sα | and |

1sα1sβ2sβ | do not vanish. These two remaining determinants form the S = 1/2, Ms = 1/2,

-1/2 doublet spin functions which pertain to the 1s22s configuration. It should be noted that

all closed-shell components of a configuration (e.g., the 1s2 part of 1s22s or the 1s22s2 2p6

part of 1s22s2 2p63s13p1 ) must involve α and β spin functions for each doubly occupied

orbital and, as such, can contribute nothing to the total Ms value; only the open-shell

components need to be treated with the angular momentum operator tools to arrive at proper

total-spin eigenstates.

In summary, proper spin eigenfunctions must be constructed from antisymmetric

(i.e., determinental) wavefunctions as demonstrated above because the    total    S2 and    total    Sz

remain valid symmetry operators for many-electron systems. Doing so results in the spin-

adapted wavefunctions being expressed as combinations of determinants with coefficients

determined via spin angular momentum techniques as demonstrated above. In



configurations with closed-shell components, not all spin functions are possible because of

the antisymmetry of the wavefunction; in particular, any closed-shell parts must involve αβ
spin pairings for each of the doubly occupied orbitals, and, as such, contribute zero to the

total Ms.

B. Vector Coupling of Angular Momenta

Given two angular momenta (of any kind) L1 and L2, when one generates states

that are eigenstates of their vector sum L= L1+L2,

one can obtain L values of L1+L2, L1+L2-1, ...|L1-L2|. This can apply to two electrons for

which the total spin S can be 1 or 0 as illustrated in detail above, or to a p and a d orbital for

which the total orbital angular momentum L can be 3, 2, or 1. Thus for a p1d1 electronic

configuration, 3F, 1F, 3D, 1D, 3P, and 1P energy levels (and corresponding

wavefunctions) arise. Here the term symbols are specified as the spin degeneracy (2S+1)

and the letter that is associated with the L-value. If spin-orbit coupling is present, the 3F

level further splits into J= 4, 3, and 2 levels which are denoted 3F4, 3F3, and 3F2.

This simple "vector coupling" method applies to any angular momenta. However, if

the angular momenta are "equivalent" in the sense that they involve indistinguishable

particles that occupy the same orbital shell (e.g., 2p3 involves 3 equivalent electrons;

2p13p14p1 involves 3 non-equivalent electrons; 2p23p1 involves 2 equivalent electrons and

one non-equivalent electron), the Pauli principle eliminates some of the expected term

symbols (i.e., when the corresponding wavefunctions are formed, some vanish because

their Slater determinants vanish). Later in this section, techniques for dealing with the

equivalent-angular momenta case are introduced. These techniques involve using the above

tools to obtain a list of candidate term symbols after which Pauli-violating term symbols are

eliminated.

C. Non-Vector Coupling of Angular Momenta

For linear molecules, one does     not    vector couple the orbital angular momenta of the

individual electrons (because only Lz not L2 commutes with H), but one does vector couple

the electrons' spin angular momenta. Coupling of the electrons' orbital angular momenta

involves simply considering the various Lz eigenvalues that can arise from adding the Lz

values of the individual electrons. For example, coupling two π orbitals (each of which can

have m = ±1) can give ML=1+1, 1-1, -1+1, and -1-1, or 2, 0, 0, and -2. The level with

ML = ±2 is called a ∆ state (much like an orbital with m = ±2 is called a δ orbital), and the



two states with ML = 0 are called Σ states. States with Lz eigenvalues of ML and - ML are

degenerate because the total energy is independent of which direction the electrons are

moving about the linear molecule's axis (just a π+1 and π-1 orbitals are degenerate).

Again, if the two electrons are non-equivalent, all possible couplings arise (e.g., a

π1π' 1 configuration yields 3∆, 3Σ, 3Σ, 1∆, 1Σ, and 1Σ states). In contrast, if the two

electrons are equivalent, certain of the term symbols are Pauli forbidden. Again, techniques

for dealing with such cases are treated later in this Chapter.

D. Direct Products for Non-Linear Molecules

For non-linear polyatomic molecules, one vector couples the electrons' spin angular

momenta but their orbital angular momenta are not even considered. Instead, their point

group symmetries must be combined, by forming direct products, to determine the

symmetries of the resultant spin-orbital product states. For example, the b11b21

configuration in C2v symmetry gives rise to 3A2 and 1A2 term symbols. The e1e'1

configuration in C3v symmetry gives 3E, 3A2, 3A1, 1E, 1A2, and 1A1 term symbols. For

two equivalent electrons such as in the e2 configuration, certain of the 3E, 3A2, 3A1, 1E,
1A2, and 1A1 term symbols are Pauli forbidden. Once again, the methods needed to

identify which term symbols arise in the equivalent-electron case are treated later.

One needs to learn how to tell which term symbols will be Pauli excluded, and to

learn how to write the spin-orbit product wavefunctions corresponding to each term symbol

and to evaluate the corresponding term symbols' energies.

II. Atomic Term Symbols and Wavefunctions

A. Non-Equivalent Orbital Term Symbols

When coupling non-equivalent angular momenta (e.g., a spin and an orbital angular

momenta or two orbital angular momenta of non-equivalent electrons), one vector couples

using the fact that the coupled angular momenta range from the sum of the two individual

angular momenta to the absolute value of their difference. For example, when coupling the

spins of two electrons, the total spin S can be 1 or 0; when coupling a p and a d orbital, the

total orbital angular momentum can be 3, 2, or 1. Thus for a p1d1 electronic configuration,
3F, 1F, 3D, 1D, 3P, and 1P energy levels (and corresponding wavefunctions) arise. The

energy differences among these levels has to do with the different electron-electron

repulsions that occur in these levels; that is, their wavefunctions involve different



occupancy of the p and d orbitals and hence different repulsion energies. If spin-orbit

coupling is present, the L and S angular momenta are further vector coupled. For example,

the 3F level splits into J= 4, 3, and 2 levels which are denoted 3F4, 3F3, and 3F2. The

energy differences among these J-levels are caused by spin-orbit interactions.

B. Equivalent Orbital Term Symbols

If equivalent angular momenta are coupled (e.g., to couple the orbital angular

momenta of a p2 or d3 configuration), one must use the "box" method to determine which

of the term symbols, that would be expected to arise if the angular momenta were non-

equivalent, violate the Pauli principle. To carry out this step, one forms all possible unique

(determinental) product states with non-negative ML and MS values and arranges them into

groups according to their ML and MS values. For example, the boxes appropriate to the p2

orbital occupancy are shown below:



ML 2 1 0

---------------------------------------------------------

MS 1 |p1αp0α| |p1αp-1α|

0 |p1αp1β| |p1αp0β|, |p0αp1β| |p1αp-1β|,

|p-1αp1β|,

|p0αp0β|

There is no need to form the corresponding states with negative ML or negative MS  values

because they are simply "mirror images" of those listed above. For example, the state with

ML= -1 and MS = -1 is |p-1βp0β|, which can be obtained from the ML = 1, MS = 1 state

|p1αp0α| by replacing α by β and replacing p1 by p-1.

Given the box entries, one can identify those term symbols that arise by applying

the following procedure over and over until all entries have been accounted for:

1. One identifies the highest MS value (this gives a value of the total spin quantum number

that arises, S) in the box. For the above example, the answer is S = 1.

2. For all product states of    this    MS value, one identifies the highest ML value (this gives a

value of the total orbital angular momentum, L, that can arise    for this S    ). For the above

example, the highest ML within the MS =1 states is ML = 1 (not ML = 2), hence L=1.

3. Knowing an S, L combination, one knows the first term symbol that arises from this

configuration. In the p2 example, this is 3P.

4. Because the level with this L and S quantum numbers contains (2L+1)(2S+1) states with

ML and MS quantum numbers running from -L to L and from -S to S, respectively, one

must remove from the original box this number of product states. To do so, one simply

erases from the box one entry with each such ML and MS value. Actually, since the box

need only show those entries with non-negative ML and MS values, only these entries need

be explicitly deleted. In the 3P example, this amounts to deleting nine product states with

ML, MS values of 1,1; 1,0; 1,-1; 0,1; 0,0; 0,-1; -1,1; -1,0; -1,-1.

5. After deleting these entries, one returns to step 1 and carries out the process again. For

the p2 example, the box after deleting the first nine product states looks as follows (those

that appear in italics should be viewed as already cancelled in counting all of the 3P states):

ML 2 1 0

---------------------------------------------------------



MS 1 |p1αp0α| |p1αp-1α|

0 |p1αp1β| |p1αp0β|, |p0αp1β| |p1αp-1β|,

|p-1αp1β|,

|p0αp0β|

It should be emphasized that the process of deleting or crossing off entries in various ML,

MS  boxes involves only    counting     how many states there are; by no means do we identify

the particular L,S,ML,MS wavefunctions when we cross out any particular entry in a box.

For example, when the |p1αp0β| product is deleted from the ML= 1, MS=0 box in

accounting for the states in the 3P level, we do not claim that |p1αp0β| itself is a member of

the 3P level; the |p0αp1β| product state could just as well been eliminated when accounting

for the 3P states. As will be shown later, the 3P state with ML= 1, MS=0 will be a

combination of |p1αp0β| and |p0αp1β|.

Returning to the p2 example at hand, after the 3P term symbol's states have been

accounted for, the highest MS value is 0 (hence there is an S=0 state), and within this MS

value, the highest ML value is 2 (hence there is an L=2 state). This means there is a 1D

level with five states having ML = 2,1,0,-1,-2. Deleting five appropriate entries from the

above box (again denoting deletions by italics) leaves the following box:



ML 2 1 0

---------------------------------------------------------

MS 1 |p1αp0α| |p1αp-1α|

0 |p1αp1β| |p1αp0β|, |p0αp1β| |p1αp-1β|,

|p-1αp1β|,

|p0αp0β|

The only remaining entry, which thus has the highest MS and ML values, has MS = 0 and

ML = 0. Thus there is also a 1S level in the p2 configuration.

Thus, unlike the non-equivalent 2p13p1 case, in which 3P, 1P, 3D, 1D, 3S, and 1S

levels arise, only the 3P, 1D, and 1S arise in the p2 situation. This "box method" is

necessary to carry out whenever one is dealing with equivalent angular momenta.

If one has mixed equivalent and non-equivalent angular momenta, one can

determine    all    possible couplings of the equivalent angular momenta using this method and

then use the simpler vector coupling method to add the non-equivalent angular momenta to

   each     of these coupled angular momenta. For example, the p2d1 configuration can be

handled by vector coupling (using the straightforward non-equivalent procedure) L=2 (the

d orbital) and S=1/2 (the third electron's spin) to    each     of 3P, 1D, and 1S. The result is 4F,
4D, 4P, 2F, 2D, 2P, 2G, 2F, 2D, 2P, 2S, and 2D.

C. Atomic Configuration Wavefunctions

To express, in terms of Slater determinants, the wavefunctions corresponding to

each of the states in each of the levels, one proceeds as follows:

1. For each MS, ML combination for which one can write down only one product function

(i.e., in the non-equivalent angular momentum situation, for each case where only one

product function sits at a given box row and column point), that product function    itself    is

one of the desired states. For the p2 example, the |p1αp0α| and |p1αp-1α| (as well as their

four other ML and MS "mirror images") are members of the 3P level (since they have MS =

±1) and |p1αp1β| and its ML mirror image are members of the 1D level (since they have ML

= ±2).



2. After identifying as many such states as possible by inspection, one uses L± and S±  to

generate states that belong to the same term symbols as those already identified but which

have higher or lower ML  and/or MS  values.

3. If, after applying the above process, there are term symbols for which states have not yet

been formed, one may have to construct such states by forming linear combinations that are

orthogonal to all those states that have thus far been found.

To illustrate the use of raising and lowering operators to find the states that can not

be identified by inspection, let us again focus on the p2 case. Beginning with three of the
3P states that are easy to recognize, |p1αp0α|, |p1αp-1α|, and |p-1αp0α|, we apply S- to

obtain the MS=0 functions:

S- 3P(ML=1, MS=1) = [S-(1) + S-(2)] |p1αp0α|

= h(1(2)-1(0))1/2 3P(ML=1, MS=0)

= h(1/2(3/2)-1/2(-1/2))1/2 |p1βp0α| + h(1)1/2 |p1αp0β|,

so,
3P(ML=1, MS=0) = 2-1/2 [|p1βp0α| + |p1αp0β|].

The same process applied to |p1αp-1α| and |p-1αp0α| gives

1/√2[||p1αp-1β| + |p1βp-1α|] and 1/√2[||p-1αp0β| + |p-1βp0α|],

respectively.

The 3P(ML=1, MS=0) = 2-1/2 [|p1βp0α| + |p1αp0β| function can be acted on with

L- to generate 3P(ML=0, MS=0):

L- 3P(ML=1, MS=0) = [L-(1) + L-(2)] 2-1/2 [|p1βp0α| + |p1αp0β|]

= h(1(2)-1(0))1/2  3P(ML=0, MS=0)

=h(1(2)-1(0))1/2 2-1/2 [|p0βp0α| + |p0αp0β|]

+ h (1(2)-0(-1))1/2 2-1/2 [|p1βp-1α| + |p1αp-1β|],

so,
3P(ML=0, MS=0) = 2-1/2 [|p1βp-1α| + |p1αp-1β|].



The 1D term symbol is handled in like fashion. Beginning with the ML = 2 state

|p1αp1β|, one applies L- to generate the ML = 1 state:

L- 1D(ML=2, MS=0) = [L-(1) + L-(2)] |p1αp1β|

= h(2(3)-2(1))1/2 1D(ML=1, MS=0)

= h(1(2)-1(0))1/2 [|p0αp1β| + |p1αp0β|],

so,
1D(ML=1, MS=0) = 2-1/2 [|p0αp1β| + |p1αp0β|].

Applying L- once more generates the 1D(ML=0, MS=0) state:

L- 1D(ML=1, MS=0) = [L-(1) + L-(2)] 2-1/2 [|p0αp1β| + |p1αp0β|]

= h(2(3)-1(0))1/2 1D(ML=0, MS=0)

= h(1(2)-0(-1))1/2 2-1/2 [|p-1αp1β| + |p1αp-1β|]

+ h(1(2)-1(0))1/2 2-1/2 [|p0αp0β| + |p0αp0β|],

so,
1D(ML=0, MS=0) = 6-1/2[ 2|p0αp0β| + |p-1αp1β| + |p1αp-1β|].

Notice that the ML=0, MS=0 states of 3P and of 1D are given in terms of the three

determinants that appear in the "center" of the p2 box diagram:

1D(ML=0, MS=0) = 6-1/2[ 2|p0αp0β| + |p-1αp1β| + |p1αp-1β|],

3P(ML=0, MS=0) = 2-1/2 [|p1βp-1α| + |p1αp-1β|]

        = 2-1/2 [ -|p-1αp1β| + |p1αp-1β|].

The only state that has eluded us thus far is the 1S state, which also has ML=0 and MS=0.

To construct this state, which must also be some combination of the three determinants

with ML=0 and MS=0, we use the fact that the 1S wavefunction      must    be orthogonal to the



3P and 1D functions because 1S, 3P, and 1D are eigenfunctions of the hermitian operator L2

having different eigenvalues. The state that is normalized and is a combination of p0αp0β|,

|p-1αp1β|, and |p1αp-1β| is given as follows:

1S = 3-1/2 [ |p0αp0β| - |p-1αp1β| - |p1αp-1β|].

The procedure used here to form the 1S state illustrates point 3 in the above prescription for

determining wavefunctions. Additional examples for constructing wavefunctions for atoms

are provided later in this chapter and in Appendix G.

D. Inversion Symmetry

One more quantum number, that relating to the inversion (i) symmetry operator can

be used in atomic cases because the total potential energy V is unchanged when    all    of the

electrons have their position vectors subjected to inversion (i r = -r). This quantum number

is straightforward to determine. Because each L, S, ML, MS, H state discussed above

consist of a few (or, in the case of configuration interaction several) symmetry adapted

combinations of Slater determinant functions, the effect of the inversion operator on such a

wavefunction Ψ can be determined by:

(i) applying i to each orbital occupied in Ψ thereby generating a ± 1 factor for each

orbital (+1 for s, d, g, i, etc orbitals; -1 for p, f, h, j, etc orbitals),

(ii) multiplying these ± 1 factors to produce an overall sign for the character of Ψ
under i.

When this overall sign is positive, the function Ψ is termed "even" and its term symbol is

appended with an "e" superscript (e.g., the 3P level of the O atom, which has

1s22s22p4 occupancy is labeled 3Pe); if the sign is negative Ψ is called "odd" and the term

symbol is so amended (e.g., the 3P level of 1s22s12p1 B+ ion is labeled 3Po).

E. Review of Atomic Cases

The orbitals of an atom are labeled by l and m quantum numbers; the orbitals

belonging to a given energy and l value are 2l+1- fold degenerate. The many-electron

Hamiltonian, H, of an atom and the antisymmetrizer operator A = (√1/N!)Σp sp  P

commute with total Lz =Σ i Lz (i) , as in the linear-molecule case. The additional symmetry

present in the spherical atom reflects itself in the fact that Lx, and Ly now also commute

with H and A . However, since Lz does not commute with Lx or Ly, new quantum



numbers can not be introduced as symmetry labels for these other components of L. A new

symmetry label does arise when L2 = Lz2 + Lx2 + Ly2 is introduced; L2 commutes with H,

A , and Lz, so proper eigenstates (and trial wavefunctions) can be labeled with L, ML, S,

Ms, and H quantum numbers.

To identify the states which arise from a given atomic configuration and to construct

properly symmetry-adapted determinental wave functions corresponding to these

symmetries, one must employ L and ML and S and MS angular momentum tools. One first

identifies those determinants with maximum MS (this then defines the maximum S value

that occurs); within    that set    of determinants, one then identifies the determinant(s) with

maximum ML (this identifies the highest L value). This determinant has S and L equal to its

Ms and ML values (this can be verified, for example for L, by acting on this determinant

with L2 in the form

L2 = L-L+ + Lz2 + hLz

and realizing that L+ acting on the state must vanish);  other members of this L,S energy

level can be constructed by sequential application of S- and L- = Σ i  L-(i) . Having

exhausted a set of (2L+1)(2S+1) combinations of the determinants belonging to the given

configuration, one proceeds to apply the same procedure to the remaining determinants (or

combinations thereof). One identifies the maximum Ms and, within it, the maximum

ML which thereby specifies another S, L label and a new "maximum" state. The

determinental functions corresponding to these L,S (and various ML, Ms ) values can be

constructed by applying S- and L- to this "maximum" state. This process is continued until

all of the states and their determinental wave functions are obtained.

As illustrated above, any p2 configuration gives rise to 3Pe, 1De, and 1Se levels

which contain nine, five, and one state respectively. The use of L and S angular momentum

algebra tools allows one to identify the wavefunctions corresponding to these states. As

shown in detail in Appendix G, in the event that    spin-orbit    coupling causes the

Hamiltonian, H,  not to commute with L or with S  but only with their vector sum J= L +
S , then these L2 S2 Lz Sz eigenfunctions must be coupled (i.e., recombined) to generate J2

Jz eigenstates. The steps needed to effect this coupling are developed and illustrated for the

above p2 configuration case in Appendix G.

In the case of a pair of     non-equivalent    p orbitals (e.g., in a 2p13p1 configuration),

even more states would arise. They can also be found using the tools provided above.

Their symmetry labels can  be obtained by vector coupling (see Appendix G) the spin and

orbital angular momenta of the two subsystems. The orbital angular momentum coupling



with l = 1 and l = 1 gives L = 2, 1, and 0 or D, P, and S states. The spin angular

momentum coupling with s =1/2 and s = 1/2 gives S = 1 and 0, or triplet and singlet states.

So, vector coupling leads to the prediction that 3De, 1De, 3Pe, 1Pe, 3Se, and 1Se states can

be formed from a pair of non-equivalent p orbitals. It is seen that more states arise when

non-equivalent orbitals are involved; for equivalent orbitals, some determinants vanish,

thereby decreasing the total number of states that arise.

III. Linear Molecule Term Symbols and Wavefunctions

A. Non-Equivalent Orbital Term Symbols

Equivalent angular momenta arising in linear molecules also require use of

specialized angular momentum coupling. Their spin angular momenta are coupled exactly

as in the atomic case because both for atoms and linear molecules, S2 and Sz commute with

H. However, unlike atoms, linear molecules no longer permit L2 to be used as an operator

that commutes with H; Lz still does, but L2 does not. As a result, when coupling non-

equivalent linear molecule angular momenta, one vector couples the electron spins as

before. However, in place of vector coupling the individual orbital angular momenta, one

   adds     the individual Lz values to obtain the Lz values of the coupled system. For example,

the π1π' 1 configuration gives rise to S=1 and S=0 spin states. The individual ml values of

the two pi-orbitals can be added to give ML = 1+1, 1-1, -1+1, and -1-1, or 2, 0, 0, and -2.

The ML = 2 and -2 cases are degenerate (just as the ml= 2 and -2 δ orbitals are and the ml=

1 and -1 π orbitals are) and are denoted by the term symbol ∆; there are two distinct ML = 0

states that are denoted Σ. Hence, the π1π' 1 configuration yields 3∆, 3Σ, 3Σ, 1∆, 1Σ, and
1Σ term symbols.

B. Equivalent-Orbital Term Symbols

To treat the equivalent-orbital case π2, one forms a box diagram as in the atom case:

ML 2 1 0

---------------------------------------------------------

MS 1 |π1απ-1α|

0 |π1απ1β| |π1απ-1β|,



|π-1απ1β|

The process is very similar to that used for atoms. One first identifies the highest

MS  value (and hence an S value that occurs) and      within     that MS , the highest ML.

However, the highest ML does     not    specify an L-value, because L is no longer a "good

quantum number" because L2 no longer commutes with H. Instead, we simply take the

highest ML value (and minus this value) as specifying a Σ, Π, ∆, Φ, Γ, etc. term symbol.

In the above example, the highest MS value is MS = 1, so there is an S = 1 level. Within

MS = 1, the highest ML = 0; hence, there is a 3Σ level.

After deleting from the box diagram entries corresponding to MS  values ranging

from -S to S and ML values of ML and - ML, one has (again using italics to denote the

deleted entries):

ML 2 1 0

---------------------------------------------------------

MS 1 |π1απ-1α|

0 |π1απ1β| |π1απ-1β|,

|π-1απ1β|

Among the remaining entries, the highest MS value is MS = 0, and within this MS the

highest ML is ML = 2. Thus, there is a 1∆ state. Deleting entries with MS = 0 and ML = 2

and -2, one has left the following box diagram:

ML 2 1 0

---------------------------------------------------------

MS 1 |π1απ-1α|

0 |π1απ1β| |π1απ-1β|,

|π-1απ1β|

There still remains an entry with MS = 0 and ML = 0; hence, there is also a 1Σ level.

Recall that the non-equivalent π1π' 1 case yielded 3∆, 3Σ, 3Σ, 1∆, 1Σ, and 1Σ term

symbols. The equivalent π2 case yields only  3Σ, 1∆,  and 1Σ term symbols. Again,



whenever one is faced with equivalent angular momenta in a linear-molecule case, one must

use the box method to determine the allowed term symbols. If one has a mixture of

equivalent and non-equivalent angular momenta, it is possible to treat the equivalent angular

momenta using boxes and to then add in the non-equivalent angular momenta using the

more straightforward technique. For example, the π2δ1 configuration can be treated by

coupling the π2 as above to generate 3Σ, 1∆,  and 1Σ and then vector coupling the spin of

the third electron and additively coupling the ml = 2 and -2 of the third orbital. The

resulting term symbols are 4∆, 2∆, 2Γ, 2Σ, 2Σ, and 2∆ (e.g., for the 1∆ intermediate state,

adding the δ orbital's ml values gives total ML values of ML = 2+2, 2-2, -2+2, and

-2-2, or 4, 0, 0, and -4).

C. Linear-Molecule Configuration Wavefunctions

Procedures analogous to those used for atoms can be applied to linear molecules.

However, in this case only S± can be used; L± no longer applies because L is no longer a

good quantum number. One begins as in the atom case by identifying determinental

functions for which ML and MS are unique. In the π2 example considered above, these

states include |π1απ-1α|, |π1απ1β|, and their mirror images. These states are members of

the 3Σ and 1∆ levels, respectively, because the first has MS=1 and because the latter has

ML = 2.

Applying S- to this 3Σ state with MS=1 produces the 3Σ state with MS = 0:

S- 3Σ(ML=0, MS=1) = [S-(1) + S-(2)] |π1απ-1α|

= h(1(2)-1(0))1/2 3Σ(ML=0, MS=0)

= h (1)1/2 [|π1βπ-1α| + |π1απ-1β|],

so,
3Σ(ML=0, MS=0) = 2-1/2 [|π1βπ-1α| + |π1απ-1β|].

The only other state that can have ML=0 and MS=0 is the 1Σ state, which must itself be a

combination of the two determinants, |π1βπ-1α| and |π1απ-1β|, with ML=0 and MS=0.

Because the 1Σ state has to be orthogonal to the 3Σ state, the combination must be

1Σ = 2-1/2 [|π1βπ-1α| - |π1απ-1β|].



As with the atomic systems, additional examples are provided later in this chapter and in

Appendix G.

D. Inversion Symmetry and σv Reflection Symmetry

For homonuclear molecules (e.g., O2, N2, etc.) the inversion operator i (where

inversion of all electrons now takes place through the center of mass of the nuclei rather

than through an individual nucleus as in the atomic case) is also a valid symmetry, so

wavefunctions Ψ may also be labeled as even or odd. The former functions are referred to

as gerade (g) and the latter as ungerade (u) (derived from the German words for even

and odd). The g or u character of a term symbol is straightforward to determine. Again one

(i) applies i to each orbital occupied in Ψ thereby generating a ± 1 factor for each

orbital (+1 for σ, π*, δ, φ*, etc orbitals; -1 for σ*, π, δ*, φ, etc orbitals),

(ii) multiplying these ± 1 factors to produce an overall sign for the character of Ψ
under i.

When this overall sign is positive, the function Ψ is gerade and its term symbol is

appended with a "g" subscript (e.g., the 3Σ level of the O2 molecule, which has

πu4πg*2 occupancy is labeled 3Σg); if the sign is negative, Ψ is ungerade and the term

symbol is so amended (e.g., the 3Π level of the 1σg21σu22σg11πu1 configuration of the

Li2 molecule is labeled 3Πu).

Finally, for linear molecules in Σ states, the wavefunctions can be labeled by one

additional quantum number that relates to their symmetry under reflection of    all    electrons

through a σv plane passing through the molecule's C∞ axis. If Ψ is even, a + sign is

appended as a superscript to the term symbol; if Ψ is odd, a - sign is added.

To determine the σv symmetry of Ψ, one first applies σv to each orbital in Ψ.

Doing so replaces the azimuthal angle φ of the electron in that orbital by 2π-φ; because

orbitals of linear molecules depend on φ as exp(imφ), this changes the orbital into exp(im(-

φ)) exp(2πim) = exp(-imφ). In effect, σv applied to Ψ changes the signs of all of the m

values of the orbitals in Ψ. One then determines whether the resultant σvΨ is equal to or

opposite in sign from the original Ψ by inspection. For example, the 3Σg ground state of

O2, which has a Slater determinant function

|S=1, MS=1> = |π*1απ*-1α|

= 2-1/2 [ π*1(r1)α1 π*-1(r2)α2 - π*1(r2)α2 π*-1(r1)α1 ].



Recognizing that σv π*1 = π*-1 and σv π*-1= π*1, then gives

σv |S=1, MS=1> = |π*1απ*-1α|

= 2-1/2 [ π*-1(r1)α1 π*1(r2)α2 - π*-1(r2)α2 π*1(r1)α1 ]

= (-1) 2-1/2 [ π*1(r1)α1 π*-1(r2)α2 - π*1(r2)α2 π*-1(r1)α1 ],

so this wavefunction is odd under σv which is written as 3Σg-.

E. Review of Linear Molecule Cases

Molecules with axial symmetry have orbitals of σ, π, δ, φ, etc symmetry; these

orbitals carry angular momentum about the z-axis in amounts (in units of h) 0, +1 and -1,

+2 and -2, +3 and -3, etc. The axial point-group symmetries of configurations formed by

occupying such orbitals can be obtained by adding, in all possible ways, the angular

momenta contributed by each orbital to arrive at a set of possible total angular momenta.

The eigenvalue of total Lz = Σ i Lz(i) is a valid quantum number because total Lz commutes

with the Hamiltonian and with Pij; one obtains the eigenvalues of total Lz by adding the

individual spin-orbitals' m eigenvalues because of the additive form of the Lz operator. L2

no longer commutes with the Hamiltonian, so it is no longer appropriate to construct N-

electron functions that are eigenfunctions of L2. Spin symmetry is treated as usual via the

spin angular momentum methods described in the preceding sections and in Appendix G.

For molecules with centers of symmetry (e.g., for homonuclear diatomics or ABA linear

triatomics),  the many-electron spin-orbital product inversion symmetry, which is equal to

the product of the individual spin-orbital inversion symmetries, provides another quantum

number with which the states can be labeled. Finally the σv symmetry of Σ states can be

determined by changing the m values of all orbitals in Ψ and then determining whether the

resultant function is equal to Ψ or to -Ψ.

If, instead of a π2 configuration like that treated above, one had a δ2 configuration,

the above analysis would yield 1Γ , 1Σ and 3Σ symmetries (because the two δ orbitals' m

values could be combined as 2 + 2, 2 - 2 , -2 + 2, and -2 -2); the wavefunctions would be

identical to those given above with the π1 orbitals replaced by δ2 orbitals and π-1 replaced

by δ-2. Likewise, φ2 gives rise to 1Ι, 1Σ, and 3Σ symmetries.



For a π1π' 1 configuration in which two non-equivalent π orbitals (i.e., orbitals

which are of π symmetry but which are not both members of the same degenerate set; an

example would be the π and π* orbitals in the B2 molecule) are occupied, the above

analysis must be expanded by including determinants of the form: |π1απ ' 1α|,

|π-1απ ' -1α|, |π1βπ ' 1β|, |π-1βπ ' -1β|. Such determinants were excluded in the π 2  case

because they violated the Pauli principle (i.e., they vanish identically when π' = π).

Determinants of the form |π' 1απ-1α|, |π' 1απ1β|, |π' -1απ-1β|, |π' 1βπ−1β|, |π' 1απ−1β|, and

|π' 1βπ-1α| are now distinct and must be included as must  the determinants  |π1απ ' -1α|,

|π1απ ' 1β|, |π-1απ ' -1β|, |π1βπ ' −1β|, |π1απ ' −1β|, and |π1βπ ' -1α|, which are analogous to

those used above. The result is that there are more possible determinants in the case of non-

equivalent orbitals. However, the techniques for identifying space-spin symmetries and

creating proper determinental wavefunctions are the same as in the equivalent-orbital case.

For any π2 configuration, one finds 1∆, 1Σ, and 3Σ wavefunctions as detailed

earlier; for the π1π' 1 case, one finds 3∆, 1∆, 3Σ, 1Σ, 3Σ, and 1Σ  wavefunctions by

starting with the determinants with the maximum Ms value, identifying states by their |ML|

values, and using spin angular momentum algebra and orthogonality to generate states with

lower Ms and, subsequently, lower S values. Because L2 is not an operator of relevance in

such cases, raising and lowering operators relating to L are     not    used to generate states with

lower Λ values. States with specific Λ values are formed by occupying the orbitals in all

possible manners and simply computing Λ as the absolute value of the sum of the

individual orbitals' m-values.

If a center of symmetry is present, all of the states arising from π2 are gerade;

however, the states arising from π1π' 1 can be gerade if  π and π' are both g or both u or

ungerade if π and π' are of opposite inversion symmetry.

The state symmetries appropriate to the non-equivalent π1π' 1 case can,

alternatively, be identified by "coupling" the spin and Lz angular momenta of  two

"independent" subsystems-the π1 system which gives rise to 2Π symmetry (with ML =1

and -1 and S =1/2) and the π' 1 system which also give 2Π symmetry. The coupling gives

rise to triplet and singlet spins (whenever two full vector angular momenta | j,m> and |

j',m'> are coupled, one can obtain total angular momentum values of J =j+j', j+j'-1, j+j'-

2,... |j-j'|; see Appendix G for details) and to ML values of 1+1=2, -1-1=-2, 1-1=0 and -

1+1=0 (i.e., to ∆, Σ, and Σ states). The Lz  angular momentum coupling is     not    carried out

in the full vector coupling scheme used for the electron spins because, unlike the spin case

where one is forming eigenfunctions of total S2 and Sz, one is only forming Lz eigenstates

(i.e., L2 is not a valid quantum label). In the case of axial angular momentum coupling, the

various possible ML values of each subsystem are added to those of the other subsystem to





orbitals is used to obtain the symmetry of the product wavefunction: A2 =b1 x b2). The π
=> π* excited configuration 1b112b11 gives 1A1 and 3A1 states because b1 x b1 = A1.

The only angular momentum coupling that occurs in non-linear molecules involves

the electron spin angular momenta, which are treated in a vector coupling manner. For

example, in the lowest-energy state of formaldehyde, the orbitals are occupied in the

configuration 1a122a123a121b224a121b125a122b22. This configuration has only a single

entry in its "box". Its highest MS value is MS = 0, so there is a singlet S = 0 state. The

spatial symmetry of this singlet state is totally symmetric A1 because this is a closed-shell

configuration.

The lowest-energy nπ* excited configuration of formaldehyde has a

1a122a123a121b224a121b125a122b212b11 configuration, which has a total of four entries in

its "box" diagram:

MS = 1 |2b21α2b11α|,

MS = 0 |2b21α2b11β|,

MS = 0 |2b21β2b11α|,

MS = -1 |2b21β2b11β|.

The highest MS value is MS = 1, so there is an S = 1 state. After deleting one entry each

with MS = 1, 0, and -1, there is one entry left with MS = 0. Thus, there is an S = 0 state

also.

As illustrated above, the spatial symmetries of these four S = 1 and S = 0 states are

obtained by forming the direct product of the "open-shell" orbitals that appear in this

configuration: b2 x b1 = A2.

All four states have this spatial symmetry. In summary, the above configuration yields 3A2

and 1A2 term symbols. The π1π*1 configuration 1a122a123a121b224a121b115a122b222b11

produces 3A1 and 1A1 term symbols (because b1 x b1 = A1).

B. Wavefunctions for Non-Degenerate Non-Linear Point Molecules

The techniques used earlier for linear molecules extend easily to non-linear

molecules. One begins with those states that can be straightforwardly identified as unique

entries within the box diagram. For polyatomic molecules with no degenerate

representations, the spatial symmetry of each box entry is identical and is given as the direct

product of the open-shell orbitals. For the formaldehyde example considered earlier, the

spatial symmetries of the nπ* and ππ* states were A2 and A1, respectively.



After the unique entries of the box have been identified, one uses S± operations to

find the other functions. For example, the wavefunctions of the 3A2 and 1A2 states of the

nπ* 1a122a123a121b224a121b125a122b212b11 configuration of formaldehyde are formed by

first identifying the MS = ±1 components of the S = 1 state as |2b2α2b1α| and |2b2β2b1β|

(all of the closed-shell components of the determinants are not explicitly given). Then,

applying S- to the MS = 1 state, one obtains the MS = 0 component (1/2)1/2 [|2b2β2b1α| +

|2b2α2b1β| ]. The singlet state is then constructed as the combination of the two

determinants appearing in the S = 1, MS = 0 state that is orthogonal to this triplet state. The

result is (1/2)1/2 [|2b2β2b1α| - |2b2α2b1β| ].

The results of applying these rules to the nπ* and ππ* states are as follows:

3A2 (Ms = 1) =|1a1α1a1β2a1α2a1β3a1α3a1β1b2α1b2β4a1α4a1β1β1α1b1β

5a1α5a1β2b2α2b1α|,

3A2 (Ms =0) = 1/√2 [|2b2α2b1β| + |2b2β2b1α|],

3A2 (MS = -1) = |2b2β2b1β|,
1A2 = 1/√2 [|2b2α2b1β| - |2b2β2b1α|].

The lowest ππ* states of triplet and singlet spin involve the following:

3A1 (Ms =1) = |1b1α2b1α|,

1A1 = 1/√2 [|1b1α2b1β| - |1b1β2b1α|].

In summary, forming spatial- and spin- adapted determinental functions for

molecules whose point groups have no degenerate representations is straightforward. The

direct product of all of the open-shell spin orbitals gives the point-group symmetry of the

determinant. The spin symmetry is handled using the spin angular momentum methods

introduced and illustrated earlier.

C. Extension to Degenerate Representations for Non-Linear Molecules

Point groups in which degenerate orbital symmetries appear can be treated in like

fashion but require more analysis because a symmetry operation R  acting on a degenerate



orbital generally yields a linear combination of the degenerate orbitals rather than a multiple

of the original orbital (i.e., R φi = χi(R) φi is no longer valid). For example, when a pair of

degenerate orbitals (denoted e1 and e2 ) are involved, one has

R ei =Σ j  Rij ej,

where Rij is the 2x2 matrix representation of the effect of R  on the two orbitals. The effect

of R  on a product of orbitals can be expressed as:

R  eiej =Σk,l Rik Rjl ekel .

The matrix Rij,kl = Rik Rjl represents the effect of R  on the orbital products in the same

way Rik represents the effect of R  on the orbitals. One says that the orbital products also

form a basis for a representation of the point group. The character (i.e., the trace) of the

representation matrix Rij,kl appropriate to the orbital product basis is seen to equal the

product of the characters of the matrix Rik appropriate to the orbital basis: χe2(R) =

χe(R)χe(R), which is, of course, why the term "direct product" is used to describe this

relationship.

For point groups which contain no degenerate representations, the direct product of

one symmetry with another is equal to a unique symmetry; that is, the characters χ(R)

obtained as χa(R)χb(R) belong to a pure symmetry and can be immediately identified in a

point-group character table. However, for point groups in which degenerate representations

occur, such is not the case. The direct product characters will, in general, not correspond to

the characters of a single representation; they will contain contributions from more than one

representation and these contributions will have to be sorted out using the tools provided

below.

A concrete example will help clarify these concepts. In C3v symmetry, the π
orbitals of the cyclopropenyl anion transform according to a1 and e symmetries

                                  a1 e1 e2



and can be expressed as LCAO-MO's in terms of the individual pi orbitals as follows:

a1 =1/√3 [ p1 + p2 + p3], e1 = 1/√2 [ p1 - p3],

and

e2 = 1/√6 [ 2 p2 -p1 -p3].

For the anion's lowest energy configuration, the orbital occupancy a12e2 must be

considered, and hence the spatial and spin symmetries arising from the e2 configuration are

of interest. The character table shown below

          

C3v

e

a2

a1 1                     1                       1

1                    -1                       1

2                      0                      -1

     E                   3σv                     2 C3

allows one to compute the characters appropriate to the direct product (e x e) as χ(E) = 2x2

=4, χ(σv) = 0x0 =0, χ(C3) = (-1)x(-1) =1.

This    reducible    representation (the occupancy of two e orbitals in the anion gives rise to

more than one state, so the direct product e x e contains more than one symmetry

component) can be decomposed into pure symmetry components (labels Γ are used to

denote the irreducible symmetries) by using the decomposition formula given in Appendix

E:

n(Γ) = 1/g ΣR χ(R)χΓ(R).



Here g is the order of the group (the number of symmetry operations in the group- 6 in this

case) and χΓ(R) is the character for the particular symmetry Γ whose component in the

direct product is being calculated.

For the case given above, one finds n(a1) =1, n(a2) = 1, and n(e) =1; so within the

configuration e2 there is one A1 wavefunction, one A2 wavefunction and a pair of E

wavefunctions (where the symmetry labels now refer to the symmetries of the

determinental wavefunctions). This analysis tells one how many different wavefunctions of

various spatial symmetries are contained in a configuration in which degenerate orbitals are

fractionally occupied. Considerations of spin symmetry and the construction of proper

determinental wavefunctions, as developed earlier in this Section, still need to be applied to

each spatial symmetry case.

To generate the proper A1, A2, and E wavefunctions of singlet and triplet spin

symmetry (thus far, it is not clear which spin can arise for each of the three above spatial

symmetries; however, only singlet and triplet spin functions can arise for this two-electron

example), one can apply the following (un-normalized) symmetry projection operators (see

Appendix E where these projectors are introduced) to all  determinental wavefunctions

arising from the e2 configuration:

PΓ = ΣR χΓ(R) R  .

Here, χΓ(R) is the character belonging to symmetry Γ for the symmetry operation R .

Applying this projector to a determinental function of the form |φiφj| generates a sum of

determinants with coefficients determined by the matrix representations Rik:

PΓ |φiφj| = ΣR Σkl χΓ(R) RikRjl |φkφl|.

For example, in the e2 case, one can apply the projector to the determinant with the

maximum Ms value to obtain

PΓ |e1αe2α| = ΣR χΓ(R) [R11R22 |e1αe2α| + R12R21 |e2αe1α|]

= ΣR χΓ(R) [R11R22 -R12R21 ] |e1αe2α|,

or to the other two members of this triplet manifold, thereby obtaining

 PΓ |e1βe2β|  = ΣR χΓ(R) [R11R22 -R12R21 ] |e1βe2β|



and

PΓ 1/√2 [|e1αe2β| +|e1βe2α|] = ΣR χΓ(R) [R11R22 -R12R21 ] 

1/√2[|e1αe2β| +|e1βe2α|] .

The other (singlet) determinants can be symmetry analyzed in like fashion and result in the

following:

PΓ  |e1αe1β| = ΣR χΓ(R){R11R11|e1αe1β| +R12R12 |e2αe2β| +R11R12

[|e1αe2β|-|e1βe2α|]},

PΓ  |e2αe2β| = ΣR χΓ(R){R22R22 |e2αe2β| + R21R21|e1αe1β| + R22R21 

[|e2αe1β| -|e2βe1α|]},

and

PΓ  1/√2[|e1αe2β| - |e1βe2α|] = ΣR χΓ(R) {√2 R11R21|e1αe1β|

+√2 R22R12|e2αe2β| + ( R11R22 +R12R21) [|e1αe2β| -|e1βe2α|]}.

To make further progress, one needs to evaluate the Rik matrix elements for the

particular orbitals given above and to then use these explicit values in the above equations.

The matrix representations for the two e orbitals can easily be formed and are as follows:

   

C'3C3σ''v

σ'vσvE

-1/2  -√3/2
- √3/2   1/2

 -1/2  √3/2
- √3/2  -1/2

-1/2  -√3/2
√3/2  -1/2

-1/2  √3/2
√3/2   1/2

-1  0
0    1

1   0
0   1

.

Turning first to the three triplet functions, one notes that the effect of the symmetry

projector acting on each of these three was the following multiple of the respective function:

ΣR χΓ(R) [R11R22



-R12R21 ]. Evaluating this sum for each of the three symmetries Γ = A1, A2, and E, one

obtains values of 0, 2, and 0 , respectively. That is, the projection of the each of the

original triplet determinants gives zero except for A2 symmetry. This allows one to

conclude that there are no A1  or E triplet functions in this case; the triplet functions are of

pure 3A2 symmetry.

Using the explicit values for Rik matrix elements in the expressions given above for

the projection of each of the singlet determinental functions, one finds only the following

non-vanishing contributions:

(i) For A1 symmetry- P |e1αe1β| = 3[ |e1αe1β| + |e2αe2β|] = P |e2αe2β|,

(ii) For A2 symmetry- all projections vanish,

(iii) For E symmetry- P |e1αe1β| = 3/2 [|e1αe1β| - |e2αe2β|] = -P |e2αe2β|

and P1/√2[|e1αe2β| - |e1βe2α|] = 3 1/√2[|e1αe2β| - |e1βe2α|].

Remembering that the projection process does not lead to a normalized function, although it

does generate a function of pure symmetry, one can finally write down the normalized

symmetry-adapted singlet functions as:

(i) 1A1 =  1/√2[|e1αe1β| + |e2αe2β|],

(ii) 1E = { 1/√2[|e1αe1β| - |e2αe2β|], and 1/√2[|e1αe2β| - |e1βe2α|] }.

The triplet functions given above are:

(iii) 3A2 = { |e1αe2α|, 1/√2[|e1αe2β| +|e1βe2α|], and |e1βe2β| }.

In summary, whenever one has partially occupied degenerate orbitals, the

characters corresponding to the direct product of the open-shell orbitals (as always, closed-

shells contribute nothing to the symmetry analysis and can be ignored, although their

presence must, of course, be specified when one finally writes down complete symmetry-

adapted wavefunctions) must be reduced to identify the spatial symmetry components of

the configuration. Given knowledge of the various spatial symmetries, one must then form

determinental wavefunctions of each possible space and spin symmetry. In doing so, one



starts with the maximum Ms function and uses spin angular momentum algebra and

orthogonality to form proper spin eigenfunctions, and then employs point group projection

operators (which require the formation of the Rik representation matrices). Antisymmetry,

as embodied in the determinants, causes some space-spin symmetry combinations to vanish

(e.g., 3A1 and 3E and 1A2 in the above example) thereby enforcing the Pauli principle. This

procedure, although tedious, is guaranteed to generate all space- and spin-symmetry

adapted determinants for any configuration involving degenerate orbitals. The results of

certain such combined spin and spatial symmetry analyses have been tabulated. For

example, in Appendix 11 of Atkins such information is given in the form of tables of direct

products for several common point groups.

For cases in which one has a     non-equivalent    set of degenerate orbitals (e.g., for a

configuration whose open-shell part is e1e'1), the procedure is exactly the same as above

except that the determination of the possible space-spin symmetries is more

straightforward. In this case, singlet and triplet functions exist for all three space

symmetries- A1, A2, and E, because the Pauli principle does not exclude determinants of

the form |e1αe'1α| or |e2βe'2β|, whereas the equivalent determinants (|e1αe1α| or |e2βe2β|)

vanish when the degenerate orbitals belong to the same set (in which case, one says that the

orbitals are equivalent).

For all point, axial rotation, and full rotation group symmetries, this observation

holds: if the orbitals are equivalent, certain space-spin symmetry combinations will vanish

due to antisymmetry; if the orbitals are not equivalent, all space-spin symmetry

combinations consistent with the content of the direct product analysis are possible. In

either case, one must proceed through the construction of determinental wavefunctions as

outlined above.

V. Summary

The ability to identify all term symbols and to construct all determinental

wavefunctions that arise from a given electronic configuration is important. This

knowledge allows one to understand and predict the changes (i.e., physical couplings due

to external fields or due to collisions with other species and chemical couplings due to

interactions with orbitals and electrons of a 'ligand' or another species) that each state

experiences when the atom or molecule is subjected to some interaction. Such

understanding plays central roles in interpreting the results of experiments in spectroscopy

and chemical reaction dynamics.



The essence of this analysis involves being able to write each wavefunction as a

combination of determinants each of which involves occupancy of particular spin-orbitals.

Because different spin-orbitals interact differently with, for example, a colliding molecule,

the various determinants will interact differently. These differences thus give rise to

different interaction potential energy surfaces.

For example, the Carbon-atom 3P(ML=1, MS=0) = 2-1/2 [|p1βp0α| + |p1αp0β|] and
3P(ML=0, MS=0) = 2-1/2 [|p1βp-1α| + |p1αp-1β|] states interact quite differently in a

collision with a closed-shell Ne atom. The ML = 1 state's two determinants both have an

electron in an orbital directed toward the Ne atom (the 2p0 orbital) as well as an electron in

an orbital directed perpendicular to the C-Ne internuclear axis (the 2p1 orbital); the ML = 0

state's two determinants have both electrons in orbitals directed perpendicular to the C-Ne

axis. Because Ne is a closed-shell species, any electron density directed toward it will

produce a "repulsive" antibonding interaction. As a result, we expect the ML = 1 state to

undergo a more repulsive interaction with the Ne atom than the ML = 0 state.

Although one may be tempted to 'guess' how the various 3P(ML) states interact

with a Ne atom by making an analogy between the three ML states within the 3P level and

the three orbitals that comprise a set of p-orbitals, such analogies are not generally valid.

The wavefunctions that correspond to term symbols are N-electron functions; they describe

how N spin-orbitals are occupied and, therefore, how N spin-orbitals will be affected by

interaction with an approaching 'ligand' such as a Ne atom. The net effect of the ligand will

depend on the occupancy of all N spin-orbitals.

To illustrate this point, consider how the 1S state of Carbon would be expected to

interact with an approaching Ne atom. This term symbol's wavefunction 1S = 3-1/2 [

|p0αp0β| - |p-1αp1β|

- |p1αp-1β|] contains three determinants, each with a 1/3 probability factor. The first,

|p0αp0β|, produces a repulsive interaction with the closed-shell Ne; the second and third,

|p-1αp1β| and |p1αp-1β|, produce attractive interactions because they allow the Carbon's

vacant p0 orbital to serve in a Lewis acid capacity and accept electron density from Ne. The

net effect is likely to be an attractive interaction because of the equal weighting of these

three determinants in the 1S wavefunction. This result could not have been 'guessed' by

making making analogy with how an s-orbital interacts with a Ne atom; the 1S state and an

s-orbital are distinctly different in this respect.



Chapter 11

One Must be Able to Evaluate the Matrix Elements Among Properly Symmetry Adapted N-

Electron Configuration Functions for Any Operator, the Electronic Hamiltonian in

Particular. The Slater-Condon Rules Provide this Capability

I. CSFs Are Used to Express the Full N-Electron Wavefunction

It has been demonstrated that a given electronic configuration can yield several

space- and spin- adapted determinental wavefunctions; such functions are referred to as

configuration state functions (CSFs). These CSF wavefunctions are     not    the exact

eigenfunctions of the many-electron Hamiltonian, H; they are simply functions which

possess the space, spin, and permutational symmetry of the exact eigenstates. As such,

they comprise an acceptable set of functions to use in, for example, a linear variational

treatment of the true states.

In such variational treatments of electronic structure, the N-electron wavefunction

Ψ is expanded as a sum over    all    CSFs that possess the desired spatial and spin symmetry:

Ψ = ΣJ CJ ΦJ.

Here, the ΦJ represent the CSFs that are of the correct symmetry, and the CJ are their

expansion coefficients to be determined in the variational calculation. If the spin-orbitals

used to form the determinants, that in turn form the CSFs {ΦJ}, are orthonormal one-

electron functions (i.e., <φk | φj> = δk,j), then the CSFs can be shown to be orthonormal

functions of N electrons

< ΦJ | ΦK > = δJ,K.

In fact, the Slater determinants themselves also are orthonormal functions of N electrons

whenever orthonormal spin-orbitals are used to form the determinants.

The above expansion of the full N-electron wavefunction is termed a

"configuration-interaction" (CI) expansion. It is, in principle, a mathematically rigorous

approach to expressing Ψ because the set of    all    determinants that can be formed from a

complete set of spin-orbitals can be shown to be complete. In practice, one is limited to the

number of orbitals that can be used and in the number of CSFs that can be included in the

CI expansion. Nevertheless, the CI expansion method forms the basis of the most

commonly used techniques in quantum chemistry.



In general, the optimal variational (or perturbative) wavefunction for any (i.e., the

ground or excited) state will include contributions from spin-and space-symmetry adapted

determinants derived from all possible configurations. For example, although the

determinant with L =1, S = 1, ML =1, Ms =1 arising from the 1s22s22p2 configuration

may contribute strongly to the true ground electronic state of the Carbon atom, there will be

contributions from all configurations which can provide these L, S, ML, and Ms values

(e.g., the 1s22s22p13p1 and 2s22p4 configurations will also contribute, although the

1s22s22p13s1  and 1s22s12p23p1 will not because the latter two configurations are odd

under inversion symmetry whereas the state under study is even).

The mixing of CSFs from many configurations to produce an optimal description of

the true electronic states is referred to as configuration interaction (CI). Strong CI (i.e.,

mixing of CSFs with large amplitudes appearing for more than one dominant CSF) can

occur, for example, when two CSFs from different electronic configurations have nearly

the same Hamiltonian expectation value. For example, the 1s22s2 and 1s22p2 1S

configurations of Be and the analogous ns2 and np2 configurations of all alkaline earth

atoms are close in energy because the ns-np orbital energy splitting is small for these

elements;  the π2 and π∗2 configurations of ethylene become equal in energy, and thus

undergo strong CI mixing, as the CC π bond is twisted by 90° in which case the π and π*

orbitals become degenerate.

Within a variational treatment, the relative contributions of the spin-and space-

symmetry adapted CSFs are determined by solving a secular problem for the eigenvalues

(Ei) and eigenvectors (    C    i) of the matrix representation H of the full many-electron

Hamiltonian H within this CSF basis:

ΣL HK,L Ci,L = Ei Ci,K.

The eigenvalue Ei gives the variational estimate for the energy of the ith state, and the

entries in the corresponding eigenvector Ci,K give the contribution of the Kth CSF to the ith

wavefunction Ψi in the sense that

Ψi =ΣK Ci,K ΦK ,

where ΦK is the Kth  CSF.

II. The Slater-Condon Rules Give Expressions for the Operator Matrix Elements Among

the CSFs



To form the HK,L matrix, one uses the so-called     Slater-Condon rules    which express

all non-vanishing determinental matrix elements involving either one- or two- electron

operators (one-electron operators are additive and appear as

F = Σ i f(i);

two-electron operators are pairwise additive and appear as

G = Σ ij g(i,j)).

Because the CSFs are simple linear combinations of determinants with coefficients

determined by space and spin symmetry, the HI,J matrix in terms of determinants can be

used to generate the HK,L matrix over CSFs.

The Slater-Condon rules give the matrix elements between two determinants

| > = |φ1φ2φ3. . .    φN|

and

| '> = |φ' 1φ' 2φ' 3. . .φ' N|

for    any     quantum mechanical operator that is a sum of one- and two- electron operators (F +

G). It expresses these matrix elements in terms of one-and two-electron integrals involving

the spin-orbitals that appear in | > and | '> and the operators f and g.

As a first step in applying these rules, one must examine | > and | '> and determine

by how many (if any) spin-orbitals | > and | '> differ.  In so doing, one may have to

reorder the spin-orbitals in one of the determinants to achieve maximal coincidence with

those in the other determinant; it is essential to keep track of the number of permutations (

Np) that one makes in achieving maximal coincidence. The results of the Slater-Condon

rules given below are then multiplied by (-1)Np to obtain the matrix elements between the

original | > and | '>. The final result does not depend on whether one chooses to permute |

> or | '>.

Once maximal coincidence has been achieved, the Slater-Condon (SC) rules

provide the following prescriptions for evaluating the matrix elements of any operator F +

G containing a one-electron part F = Σ i f(i) and a two-electron part G = Σ ij g(i,j) (the

Hamiltonian is, of course, a specific example of such an operator; the electric dipole



operator Σ i eri and the electronic kinetic energy - h2/2meΣ i∇i2 are examples of one-electron

operators (for which one takes g = 0); the electron-electron coulomb interaction Σ i>j  e2/rij

is a two-electron operator (for which one takes f = 0)):



The Slater-Condon Rules

(i) If | > and | '> are identical, then

< | F + G | > = Σ i < φi | f | φi > +Σ i>j [< φiφj | g | φiφj > - < φiφj | g | φjφi > ],

where the sums over i and j run over all spin-orbitals in | >;

(ii) If | > and | '> differ by a single spin-orbital mismatch ( φp ≠ φ' p ),

< | F + G | '> = < φp | f | φ' p > +Σ j [< φpφj | g | φ' pφj > - < φpφj | g | φjφ' p > ],

where the sum over j runs over all spin-orbitals in | > except φp ;

(iii) If | > and | '> differ by two spin-orbitals ( φp ≠ φ' p and φq ≠ φ' q),

< | F + G | '> = < φp φq | g | φ' p φ' q > - < φp φq | g | φ' q φ' p >

(note that the F contribution vanishes in this case);

(iv) If | > and | '> differ by three or more spin orbitals, then

< | F + G | '> = 0;

(v) For the identity operator I, the matrix elements < | I | '> = 0 if | > and | '> differ by one

or more spin-orbitals (i.e., the Slater determinants are orthonormal if their spin-orbitals

are).

Recall that each of these results is subject to multiplication by a factor of (-1)Np to

account for possible ordering differences in the spin-orbitals in | > and | '>.

In these expressions,

< φi | f | φj >

is used to denote the one-electron integral

∫ φ*i(r) f(r) φj(r) dr

and

< φiφj | g | φkφl > (or in short hand notation < i j| k l >)

represents the two-electron integral



∫ φ*i(r) φ*j(r') g(r,r') φk(r)φl(r') drdr'.

The notation < i j | k l> introduced above gives the two-electron integrals for the

g(r,r') operator in the so-called Dirac notation, in which the i and k indices label the spin-

orbitals that refer to the coordinates r and the j and l indices label the spin-orbitals referring

to coordinates r'. The r and r' denote r,θ,φ,σ and r',θ ' ,φ' ,σ' (with σ and σ' being the α or

β spin functions). The fact that r and r' are integrated and hence represent 'dummy'

variables introduces index permutational symmetry into this list of integrals. For example,

 < i j | k l> = < j i | l k> = < k l | i j>* = < l k | j i>*;

the final two equivalences are results of the Hermitian nature of g(r,r').

It is also common to represent these same two-electron integrals in a notation

referred to as Mulliken notation in which:

∫ φ*i(r)φ*j(r') g(r,r') φk(r)φl(r') drdr' = (i k | j l).

Here, the indices i and k, which label the spin-orbital having variables r are grouped

together, and j and l, which label spin-orbitals referring to the r' variables appear together.

The above permutational symmetries, when expressed in terms of the Mulliken integral list

read:

 (i k | j l) = (j l | i k) = (k i | l j)* = (l j | k i)*.

If the operators f and g do not contain any electron spin operators, then the spin

integrations implicit in these integrals (all of the φi are spin-orbitals, so each φ is

accompanied by an α or β spin function and each φ* involves the adjoint of one of the α or

β spin functions) can be carried out as <α|α> =1, <α|β> =0, <β|α> =0, <β|β> =1,

thereby yielding integrals over spatial orbitals. These spin integration results follow

immediately from the general properties of angular momentum eigenfunctions detailed in

Appendix G; in particular, because α and β are eigenfunctions of Sz with different

eigenvalues, they must be orthogonal <α|β> = <β|α> = 0.

The essential results of the Slater-Condon rules are:



1. The full N! terms that arise in the N-electron Slater determinants do not have to be

treated explicitly, nor do the N!(N! + 1)/2 Hamiltonian matrix elements among the N! terms

of one Slater determinant and the N! terms of the same or another Slater determinant.

2. All such matrix elements, for    any     one- and/or two-electron operator can be expressed in

terms of one- or two-electron integrals over the spin-orbitals that appear in the

determinants.

3. The integrals over orbitals are three or six dimensional integrals, regardless of how

many electrons N there are.

4. These integrals over mo's can, through the LCAO-MO expansion, ultimately be

expressed in terms of one- and two-electron integrals over the primitive atomic orbitals. It

is only these ao-based integrals that can be evaluated explicitly (on high speed computers

for all but the smallest systems).

III. Examples of Applying the Slater-Condon Rules

It is wise to gain some experience using the SC rules, so let us consider a few

illustrative example problems.

1. What is the contribution to the total energy of the 3P level of Carbon made by the two 2p

orbitals alone? Of course, the two 1s and two 2s spin-orbitals contribute to the total energy,

but we artificially ignore all such contributions in this example to simplify the problem.

Because all nine of the 3P states have the same energy, we can calculate the energy

of any one of them; it is therefore prudent to choose an "easy" one
3P(ML=1,MS=1) = |p1αp0α| .

The energy of this state is < |p1αp0α| H |p1αp0α| >. The SC rules tell us this equals:

I2p1 + I2p0 + <2p12p0| 2p12p0> - <2p12p0| 2p02p1>,

where the short hand notation Ij = <j| f |j> is introduced.

If the contributions from the two 1s and two 2s spin-orbitals are now taken into

account, one obtains a    total    energy that also contains 2I1s + 2I2s + <1s1s|1s1s> +

4<1s2s|1s2s> - 2 <1s2s|2s1s>+ <2s2s|2s2s> + 2<1s2p1|1s2p1> - <1s2p1|2p11s> +

2<1s2p0|1s2p0> - <1s2p0|2p01s> + 2<2s2p1|2s2p1> - <2s2p1|2p12s> + 2<2s2p0|2s2p0> -

<2s2p0|2p02s>.



2. Is the energy of another 3P state equal to the above state's energy? Of course, but it may

prove informative to prove this.

Consider the MS=0, ML=1 state whose energy is:

2-1/2<[|p1αp0β| + |p1βp0α|]| H |<[|p1αp0β| + |p1βp0α|]>2-1/2

 =1/2{I2p1 + I2p0 + <2p12p0| 2p12p0> + I2p1 + I2p0 + <2p12p0| 2p12p0>}

+ 1/2 { - <2p12p0|2p02p1> - <2p12p0|2p02p1>}

=  I2p1 + I2p0 + <2p12p0| 2p12p0> - <2p12p0| 2p02p1>.

Which is, indeed, the same as the other 3P energy obtained above.

3. What energy would the singlet state 2-1/2<[|p1αp0β| - |p1βp0α|] have?

The 3P MS=0 example can be used (changing the sign on the two determinants) to

give

E = I2p1 + I2p0 + <2p12p0| 2p12p0> + <2p12p0| 2p02p1>.

Note, this is the ML=1 component of the 1D state; it is, of course, not a 1P state because no

such state exists for two equivalent p electrons.

4. What is the CI matrix element coupling |1s22s2| and |1s23s2|?

These two determinants differ by two spin-orbitals, so

<|1sα1sβ2sα2sβ| H |1sα1sβ3sα3sβ|> = <2s2s|3s3s> = <2s3s|3s2s>

(note, this is an exchange-type integral).

5. What is the CI matrix element coupling |παπβ| and |π∗απ∗β|?

These two determinants differ by two spin-orbitals, so



<|παπβ| H|π∗απ∗β|> = <ππ |π∗π∗> = <ππ*|π*π>

(note, again this is an exchange-type integral).

6. What is the Hamiltonian matrix element coupling |παπβ| and

2-1/2 [ |παπ*β| - |πβπ*α|]?

The first determinant differs from the π2 determinant by one spin-orbital, as does

the second (after it is placed into maximal coincidence by making one permutation), so

<|παπβ| H| 2-1/2 [ |παπ*β| - |πβπ*α|]>

= 2-1/2[<π|f|π*> + <ππ |π*π>] -(-1) 2-1/2[<π|f|π*> + <ππ |π*π>]

= 21/2 [<π|f|π*> + <ππ |π*π>].

7. What is the element coupling |παπβ| and 2-1/2 [ |παπ*β| + |πβπ*α|]?

<|παπβ| H| 2-1/2 [ |παπ*β| + |πβπ*α|]>

= 2-1/2[<π|f|π*> + <ππ |π*π>] +(-1) 2-1/2[<π|f|π*> + <ππ |π*π>] = 0.

This result should not surprise you because |παπβ| is an S=0 singlet state while 2-1/2 [

|παπ*β| + |πβπ*α|] is the MS=0 component of the S=1 triplet state.

8. What is the r = Σ jerj electric dipole matrix element between |p1αp1β| and 2-1/2[|p1αp0β|

+  |p0αp1β|]? Is the second function a singlet or triplet? It is a singlet in disguise; by

interchanging the p0α and p1β and thus introducing a (-1), this function is clearly identified

as 2-1/2[|p1αp0β| -  |p1βp0α|] which is a singlet.

The first determinant differs from the latter two by one spin orbital in each case, so

<|p1αp1β|r|2-1/2[|p1αp0β| +  |p0αp1β|]> =

2-1/2[<p1|r|p0> + <p1|r|p0>] = 21/2 <p1|r|p0>.



9. What is the electric dipole matrix elements between the
1∆ = |π1απ1β| state and the 1Σ = 2-1/2[|π1απ-1β| +|π-1απ1β|] state?

<2-1/2[|π1απ-1β| +|π-1απ1β|] |r|π1απ1β|>

= 2-1/2[<π-1|r|π1> + <π-1|r|π1>]

=21/2 <π-1|r|π1>.

10. As another example of the use of the SC rules, consider the configuration interaction

which occurs between the 1s22s2 and 1s22p2  1S CSFs in the Be atom.

The CSFs corresponding to these two configurations are as follows:

Φ1 = |1sα1sβ2sα2sβ|

and

Φ2 = 1/√3 [ |1sα1sβ2p0α2p0β| - |1sα1sβ2p1α2p-1β|

- |1sα1sβ2p-1α2p1β| ].

The determinental Hamiltonian matrix elements needed to evaluate the 2x2 HK,L matrix

appropriate to these two CSFs are evaluated via the SC rules. The first such matrix element

is:

< |1sα1sβ2sα2sβ| H |1sα1sβ2sα2sβ| >

= 2h1s + 2h2s + J1s,1s + 4J1s,2s + J2s,2s - 2K1s,2s ,

where

hi = <φi | - h2/2me ∇2 -4e2/r |φi> ,

Ji,j  = <φiφj | e2/r12 |φiφj> ,



and

Kij = <φiφj | e2/r12 |φjφi>

are the orbital-level     one-electron, coulomb, and exchange integrals   , respectively.

Coulomb integrals Jij describe the coulombic interaction of one charge density ( φi2

above) with another charge density (φj2 above); exchange integrals Kij describe the

interaction of an     overlap     charge density (i.e., a density of the form φiφj) with itself ( φiφj

with φiφj in the above).

The spin functions α and β which accompany each orbital in |1sα1sβ2sα2sβ|  have

been eliminated by carrying out the spin integrations as discussed above. Because H

contains no spin operators, this is straightforward and amounts to keeping integrals

<φi | f | φj > only if φi and φj are of the same spin and integrals

< φiφj | g | φkφl > only if φi and φk are of the same spin    and     φj and φl are of the same spin.

The physical content of the above energy (i.e., Hamiltonian expectation value) of the

|1sα1sβ2sα2sβ| determinant is clear: 2h1s + 2h2s is the sum of the expectation values of

the one-electron (i.e., kinetic energy and electron-nuclear coulomb interaction) part of the

Hamiltonian for the four occupied spin-orbitals; J1s,1s + 4J1s,2s + J2s,2s - 2K1s,2s  contains

the coulombic repulsions among all pairs of occupied spin-orbitals minus the exchange

interactions among pairs of spin-orbitals with like spin.

The determinental matrix elements linking Φ1 and Φ2 are as follows:

< |1sα1sβ2sα2sβ| H |1sα1sβ2p0α2p0β| > = < 2s2s | 2p02p0>,

< |1sα1sβ2sα2sβ| H |1sα1sβ2p1α2p-1β| > = < 2s2s | 2p12p-1>,

< |1sα1sβ2sα2sβ| H |1sα1sβ2p-1α2p1β| > = < 2s2s | 2p-12p1>,

where the Dirac convention has been introduced as a shorthand notation for the two-

electron integrals (e.g., < 2s2s | 2p02p0> represents ∫ 2s*(r1)2s*(r2) e2/r12 2p0(r1) 2p0(r2)

dr1 dr2).

The three integrals shown above can be seen to be equal and to be of the exchange-

integral form by expressing the integrals in terms of integrals over cartesian functions and

recognizing identities due to the equivalence of the 2px, 2py, and 2pz orbitals. For example,

< 2s2s | 2p12p-1> = (1√2)2{< 2s 2s | [2px +i 2py] [2px -i 2py] >} =



1/2 {< 2s 2s | x x > + < 2s 2s | y y > +i < 2s 2s | y x > -i < 2s 2s | x y >} =

 < 2s 2s | x x > = K2s,x

(here the two imaginary terms cancel and the two remaining real integrals are equal);

< 2s 2s 2p0 2p0 > = < 2s 2s | z z > = < 2s 2s | x x > = K2s,x

(this is because K2s,z = K2s,x = K2s,y);

< 2s 2s | 2p-12p1 > = 1/2 {< 2s 2s | [2px -i 2py] [2px +i 2py] >} =

< 2s 2s | x x > = ∫ 2s*(r1) 2s*(r2) e2/r12 2px(r1) 2px(r2) dr1 dr2 = K2s,x.

These integrals are clearly of the exchange type because they involve the coulombic

interaction of the 2s 2px,y,or z overlap charge density with itself.

Moving on, the matrix elements among the three determinants in Φ2 are given as

follows:

< |1sα1sβ2p0α2p0β| H |1sα1sβ2p0α2p0β| >

= 2h1s + 2h2p + J1s,1s + J2pz,2pz + 4J1s,2p - 2K1s,2p

(J1s,2p and K1s,2p are independent of whether the 2p orbital is 2px, 2py, or 2pz);

< |1sα1sβ2p1α2p-1β| H |1sα1sβ2p1α2p-1β| >

= 2h1s + 2h2p + J1s,1s + 4J1s,2p - 2K1s,2p + <2p12p-1|2p12p-1>;

< |1sα1sβ2p-1α2p1β| H |1sα1sβ2p-1α2p1β| >

 2h1s + 2h2p + J1s,1s + 4J1s,2p - 2K1s,2p + <2p-12p1|2p-12p1>;

< |1sα1sβ2p0α2p0β| H |1sα1sβ2p1α2p-1β| > = < 2p02p0 | 2p12p-1 >



< |1sα1sβ2p0α2p0β| H |1sα1sβ2p-1α2p1β| > = < 2p02p0 | 2p-12p1 >

< |1sα1sβ2p1α2p-1β| H |1sα1sβ2p-1α2p1β| > = < 2p12p-1 | 2p-12p1 >.

Certain of these integrals can be recast in terms of cartesian integrals for which

equivalences are easier to identify as follows:

< 2p02p0 | 2p12p-1 > = < 2p02p0 | 2p-12p1 > = < z z | x x > = Kz,x;

< 2p12p-1 | 2p-12p1 > = < x x | y y > + 1/2[< x x | x x > - < x y | x y >]

= Kx,y +1/2 [ Jx,x - Jx,y];

<2p12p-1|2p12p-1> = <2p-12p1|2p-12p1> = 1/2(Jx,x + Jx,y).

Finally, the 2x2 CI matrix corresponding to the CSFs Φ1 and Φ2 can be formed

from the above determinental matrix elements; this results in:

H11 = 2h1s + 2h2s + J1s,1s + 4J1s,2s + J2s,2s - 2K1s,2s ;

H12= -K2s,x /√3 ;

H22 = 2h1s + 2h2p + J1s,1s + 4J1s,2p - 2K1s,2p + Jz,z - 2/3 Kz,x.

The lowest eigenvalue of this matrix provides this CI calculation's estimate of the ground-

state 1S energy of Be; its eigenvector provides the CI amplitudes for Φ1 and Φ2 in this

ground-state wavefunction. The other root of the 2x2 secular problem gives an

approximation to another 1S state of higher energy, in particular, a state dominated by the

3-1/2 [|1sα1sβ2p0α2p0β | − |1sα1sβ2p1α2p-1β | − |1sα1sβ2p-1α2p1β |]
CSF.

11. As another example, consider the matrix elements which arise in electric dipole

transitions between two singlet electronic states:

< Ψ1 |E⋅ Σ i eri |Ψ2 >. Here E•Σi eri is the one-electron operator describing the interaction

of an electric field of magnitude and polarization E  with the instantaneous dipole moment



of the electrons (the contribution to the dipole operator arising from the nuclear charges - Σa

Zae2 Ra does not contribute because, when placed between Ψ1 and Ψ2 , this zero-electron

operator yields a vanishing integral because Ψ1 and Ψ2 are orthogonal).

When the states Ψ1 and Ψ2 are described as linear combinations of CSFs as

introduced earlier (Ψi = ΣK CiKΦK), these matrix elements can be expressed in terms of

CSF-based matrix elements < ΦK | Σ i eri |ΦL >. The fact that the electric dipole operator is

a one-electron operator, in combination with the SC rules, guarantees that only states for

which the dominant determinants differ by at most a single spin-orbital (i.e., those which

are "singly excited") can be connected via electric dipole transitions through first order

(i.e., in a one-photon transition to which the < Ψ1 |Σ i eri |Ψ2 > matrix elements pertain). It

is for this reason that light with energy adequate to ionize or excite deep core electrons in

atoms or molecules usually causes such ionization or excitation rather than double

ionization or excitation of valence-level electrons; the latter are two-electron events.

In, for example, the π => π* excitation of an olefin, the ground and excited states

are dominated by CSFs of the form (where all but the "active" π  and π* orbitals are not

explicitly written) :

Φ1 = |   ... παπβ|

and

Φ2 = 1/√2[|   ...παπ*β| - |   ...πβπ*α| ].

The electric dipole matrix element between these two CSFs can be found, using the SC

rules, to be

e/√2 [ < π | r |π* > + < π | r |π* > ] = √2 e < π | r |π* > .

Notice that in evaluating the second determinental integral

< |   ... παπβ| er |   ...πβπ*α| >, a sign change occurs when one puts the two determinants

into maximum coincidence; this sign change then makes the minus sign in Φ2 yield a

positive sign in the final result.

IV. Summary



In all of the above examples, the SC rules were used to reduce matrix elements of

one- or two- electron operators between determinental functions to one- or two- electron

integrals over the orbitals which appear in the determinants. In any    ab initio     electronic

structure computer program there must exist the capability to form symmetry-adapted CSFs

and to evaluate, using these SC rules, the Hamiltonian and other operators' matrix elements

among these CSFs in terms of integrals over the mos that appear in the CSFs. The SC rules

provide not only the tools to compute quantitative matrix elements; they allow one to

understand in qualitative terms the strengths of interactions among CSFs. In the following

section, the SC rules are used to explain why chemical reactions in which the reactants and

products have dominant CSFs that differ by two spin-orbital occupancies often display

activation energies that exceed the reaction endoergicity.



Chapter 12

Along "reaction paths", configurations can be connected one-to-one according to their

symmetries and energies. This is another part of the Woodward-Hoffmann rules

I. Concepts of Configuration and State Energies

A. Plots of CSF Energies Give Configuration Correlation Diagrams

The energy of a particular electronic state of an atom or molecule has been

expressed in terms of Hamiltonian matrix elements, using the SC rules, over the various

spin-and spatially-

adapted determinants or CSFs which enter into the state wavefunction.

E=ΣI,J < ΦΙ | H | ΦJ > CI CJ .

The diagonal matrix elements of H in the CSF basis multiplied by the appropriate CI

amplitudes < ΦΙ | H | ΦI > CI CI  represent the energy of the Ith CSF weighted by the

strength ( CI2 ) of that CSF in the wavefunction. The off-diagonal elements represent the

effects of mixing among the CSFs; mixing is strongest whenever two or more CSFs have

nearly the same energy ( i.e., < ΦΙ | H | ΦI > ≅ < ΦJ |  H | ΦJ > )

and there is strong coupling ( i.e., < ΦΙ | H | ΦJ > is large ). Whenever the

CSFs are widely separated in energy, each wavefunction is  dominated by a single CSF.

B. CSFs Interact and Couple to Produce States and State Correlation Diagrams

Just as orbital energies connected according to their symmetries and plotted as

functions of geometry constitute an orbital correlation diagram, plots of the     diagonal CSF

   energies   , connected according to symmetry, constitute a    configuration correlation diagram      (

CCD ). If, near regions where energies of CSFs of the same symmetry cross (according to

the direct product rule of group theory discussed in Appendix E, only CSFs of the same

symmetry mix because only they have non-vanishing < ΦI | H | ΦJ > matrix elements), CI

mixing is allowed to couple the CSFs to give rise to "avoided crossings", then the CCD is

converted into a so-called    state correlation diagram      ( SCD ).

C. CSFs that Differ by Two Spin-Orbitals Interact Less Strongly than CSFs that Differ by

One Spin-Orbital



The strengths of the couplings between pairs of CSFs whose energies cross are

evaluated through the SC rules. CSFs that differ by more than two spin-orbital occupancies

do not couple; the SC rules give vanishing Hamiltonian matrix elements for such pairs.

Pairs that differ by two spin-orbitals (e.g. |.. φa... φb...| vs |.. φa'... φb'...| ) have interaction

strengths determined by the two-electron integrals

< ab | a'b' > - < ab | b'a'>. Pairs that differ by a single spin-orbital (e.g. |.. φa... ...| vs |..

φa'... ...| ) are coupled by the one- and two- electron parts of H: < a | f | b> + Σ j [< aj | bj> -

< aj | jb > ]. Usually, couplings among CSFs that differ by two spin-orbitals are much

weaker than those among CSFs that differ by one spin-orbital. In the latter case, the full

strength of H is brought to bear, whereas in the former, only the electron-electron coulomb

potential is operative.

D. State Correlation Diagrams

In the SCD, the energies are connected by symmetry but the configurational nature

as reflected in the CI coefficients changes as one passes through geometries where

crossings in the CCD occur. The SCD is the ultimate product of an orbital and

configuration symmetry and energy analysis and gives one the most useful information

about whether reactions will or will not encounter barriers on the ground and excited state

surfaces.

As an example of the application of CCD's and SCD's, consider the disrotatory

closing of 1,3-butadiene to produce cyclobutene. The OCD given earlier for this proposed

reaction path is reproduced below.
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Recall that the symmetry labels e and o refer to the symmetries of the orbitals under

reflection through the one Cv plane that is     preserved     throughout the proposed disrotatory

closing. Low-energy configurations (assuming one is interested in the thermal or low-lying

photochemically excited-state reactivity of this system) for the reactant molecule and their

overall space and spin symmetry are as follows:

(i) π12π22 = 1e21o2 , 1Even

(ii) π12π21π31  = 1e21o12e1 , 3Odd and 1Odd.

For the product molecule, on the other hand, the low-lying states are

(iii) σ2π2 = 1e22e2 , 1Even

(iv) σ2π1π∗1 = 1e22e11o1 , 3Odd , 1Odd.

Notice that although the lowest energy configuration at the reactant geometry π12π22 =

1e21o2  and the lowest energy configuration at the product geometry σ2π2 = 1e22e2 are

both of 1Even symmetry, they are     not    the same configurations; they involve occupancy of

different symmetry orbitals.



In constructing the CCD, one must trace the energies of all four of the above CSFs

(actually there are more because the singlet and triplet excited CSFs must be treated

independently) along the proposed reaction path. In doing so, one must realize that the

1e21o2 CSF has low energy on the reactant side of the CCD because it corresponds to

π12π22 orbital occupancy, but on the product side, it corresponds to σ2π∗2 orbital

occupancy and is thus of very high energy. Likewise, the 1e22e2 CSF has low energy on

the product side where it is σ2π2  but high energy on the reactant side where it corresponds

to π12π32 . The low-lying singly excited CSFs are 1e22e11o1 at both reactant and product

geometries; in the former case, they correspond to π12π21π31  occupancy and at the latter to

σ2π1π∗1 occupancy. Plotting the energies of these CSFs along the disrotatory reaction path

results in the CCD shown below.
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If the two 1Even CSFs which cross are allowed to interact (the SC rules give their

interaction strength in terms of the exchange integral

< |1e21o2 | H | |1e22e2 | > = < 1o1o | 2e2e > = K 1o,2e ) to produce states which are

combinations of the two 1Even CSFs, the following SCD results:
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This SCD predicts that the thermal (i.e., on the ground electronic surface)

disrotatory rearrangement of 1,3-butadiene to produce cyclobutene will experience a

   symmety-imposed barrier    which arises because of the avoided crossing of the two 1Even

configurations; this avoidance occurs because the orbital occupancy pattern (i.e., the

configuration) which is best for the ground state of the reactant is not identical to that of the

product molecule. The SCD also predicts that there should be no symmetry-imposed barrier

for the singlet or triplet excited-state rearrangement, although the reaction leading from

excited 1,3-butadiene to excited cyclobutene may be endothermic on the grounds of bond

strengths alone.

It is also possible to infer from the SCD that excitation of the lowest singlet ππ∗

state of 1,3-butadiene would involve a low quantum yield for producing cyclobutene and

would, in fact, produce ground-state butadiene. As the reaction proceeds along the singlet

ππ∗ surface this 1Odd state intersects the ground 1Even surface on the    reactant side    of the

diagram; internal conversion ( i.e., quenching from the 1Odd to the 1Even surfaces induced

by using a  vibration of odd symmetry to "digest" the excess energy (much like vibronic

borrowing in spectroscopy) can lead to production of ground-state reactant molecules.

Some fraction of such events will lead to the system remaining on the 1Odd surface until,

further along the reaction path, the 1Odd surface again intersects the 1Even surface on the

    product side    at which time quenching to produce ground-state products can occur.



Although, in principle, it is possible for some fraction of the events to follow the 1Odd

surface beyond this second intersection and to thus lead to 1Odd product molecules that

might fluoresce, quenching is known to be rapid in most polyatomic molecules; as a result,

reactions which are chemiluminescent are rare. An appropriate introduction to the use of

OCD's, CCD's, and SCD's as well as the radiationless processes that can occur in thermal

and photochemical reactions is given in the text     Energetic Principles of Chemical Reactions   

, J. Simons, Jones and Bartlett, Boston (1983).

II. Mixing of Covalent and Ionic Configurations

As chemists, much of our intuition concerning chemical bonds is built on simple

models introduced in undergraduate chemistry courses.  The detailed examination of the H2

molecule via the valence bond and molecular orbital approaches forms the basis of our

thinking about bonding when confronted with new systems. Let us examine this model

system in further detail to explore the electronic states that arise by occupying two orbitals

(derived from the two 1s orbitals on the two hydrogen atoms) with two electrons.

In total, there exist     six     electronic states for all such two-orbital, two-electron

systems. The heterolytic fragments  X + Y••   and  X••   + Y produce two singlet states; the

homolytic fragments X• + Y• produce one singlet state and a set of three triplet states

having MS = 1, 0, and -1. Understanding the relative energies of these six states , their

bonding and antibonding characters, and which molecular state dissociates to which

asymptote are important.

Before proceeding, it is important to clarify the notation (e.g., X•, Y•, X, Y••  ,

etc.), which is designed to be applicable to neutral as well as charged species. In all cases

considered here, only two electrons play active roles in the bond formation. These electrons

are represented by the dots. The symbols X• and Y• are used to denote species in which a

single electron is attached to the respective  fragment. By X•• , we mean that both electrons

are attached to the X- fragment; Y  means that neither electron resides on the Y- fragment.

Let us now examine the various bonding situations that can occur; these examples will help

illustrate and further clarify this notation.

A. The H2 Case in Which Homolytic Bond Cleavage is Favored

To consider why the two-orbital two-electron single bond formation case can be

more complex than often thought, let  us consider the H2 system in more detail.  In the

molecular orbital description of H2, both bonding σg and antibonding σu mos appear.



There are two electrons that can both occupy the σg mo to yield the ground electronic state

H2(1Σg+,  σg2); however, they can also occupy both orbitals to yield 3Σu+(σg1σu1) and
1Σu+ (σg1σu1), or both can occupy the σu mo to give the 1Σg+(σu2) state.  As

demonstrated explicitly below, these latter two states dissociate heterolytically to X + Y ••  =

H+ + H-, and are sufficiently high in energy relative to X• + Y• = H + H that we ordinarily

can ignore them. However, their presence and character are important in the development

of a full treatment of the molecular orbital model for H2 and are    essential    to a proper

treatment of cases in which heterolytic bond cleavage is favored.

B. Cases in Which Heterolytic Bond Cleavage is Favored

For some systems one or both of the heterolytic bond dissociation asymptotes

(e.g., X+ Y ••  or X ••  + Y) may be    lower    in energy than the homolytic bond dissociation

asymptote.  Thus, the states that are analogues of the 1Σu+(σg1σu1) and 1Σg+(σu2) states of

H2 can no longer be ignored in understanding the valence states of the XY molecules. This

situation arises quite naturally in systems involving transition metals, where interactions

between empty metal or metal ion orbitals and 2-electron donor ligands are ubiquitous.

Two classes of systems illustrate cases for which heterolytic bond dissociation lies

lower than the homolytic products. The first involves transition metal dimer cations, M2+.

Especially for metals to the right side of the periodic table, such cations can be considered

to have ground-state electron configurations with σ2dndn+1 character, where the d electrons

are not heavily involved in the bonding and the σ bond is formed primarily from the metal

atom s orbitals.  If the σ bond is homolytically broken, one forms X• + Y• = M (s1dn+1)

+ M+ (s1dn). For most metals, this dissociation asymptote lies higher in energy than the

heterolytic products X••  + Y = M (s2dn) + M+ (s0dn+1), since the latter electron

configurations correspond to the ground states for the neutrals and ions, respectively.  A

prototypical species which fits this bonding picture is Ni2+.

The second type of system in which heterolytic cleavage is favored arises with a

metal-ligand complex having an atomic metal ion (with a s0dn+1 configuration) and a two

electron donor, L •• .  A prototype is (Ag  C6H6)+ which was observed to photodissociate

to form X• + Y• = Ag(2S, s1d10) + C6H6+(2B1) rather than the lower energy

(heterolytically cleaved) dissociation limit  Y + X••   =

Ag+(1S, s0d10) + C6H6 (1A1). 

C. Analysis of Two-Electron, Two-Orbital, Single-Bond Formation



1. Orbitals, Configurations and States

The resultant  family of six electronic states can be described in terms of the six

configuration state functions (CSFs) that arise when one occupies the pair of bonding σ
and antibonding σ* molecular orbitals with two electrons. The CSFs are combinations of

Slater determinants formed to generate proper spin- and spatial symmetry- functions. 

The spin- and spatial- symmetry adapted N-electron functions referred to as CSFs

can be formed from one or more Slater determinants. For example, to describe the singlet

CSF corresponding to the closed-shell σ2 orbital occupancy, a single Slater determinant

1Σ (0)  =  |σα σβ|  =  (2)-1/2 { σα(1) σβ(2) -  σβ(1) σα(2)  }

suffices. An analogous expression for the (σ*)2  CSF is given by

1Σ** (0)  =  | σ*ασ*β |  =   (2)−1/2 { σ*α (1) σ*β (2) - σ*α (2) σ*β (1) }.

Also, the MS = 1 component of the triplet state having σσ* orbital occupancy can be

written as a single Slater determinant:

3Σ* (1)  =  |σα σ*α|  =  (2)-1/2 { σα(1) σ* α(2) -  σ* α(1) σα(2)  },

 as can  the MS = -1 component of the triplet state

3Σ
*
(-1)  =  |σβ σ*β|  =  (2)-1/2 { σβ(1) σ* β(2) -  σ* β(1) σβ(2)  }.

However, to describe the singlet CSF and MS = 0 triplet CSF belonging to the σσ*

occupancy, two Slater determinants are needed:

1Σ* (0)  =   
1

2
  [ ]σασ*β -  σβσ*α  

is the singlet CSF and

3Σ
*
(0)  =  

1

2
 [ ]σασ*β + σβσ*α  



is the triplet CSF. In each case, the spin quantum number S, its z-axis projection MS , and

the Λ quantum number are given in the conventional 2S+1Λ(MS) notation.

2. Orbital, CSF, and State Correlation Diagrams

i. Orbital Diagrams

The two orbitals of the constituent atoms or functional groups (denoted sx and sy

for convenience and in anticipation of considering groups X and Y that possess valence s

orbitals) combine to form a bonding σ = σg molecular orbital and an antibonding σ* = σu

molecular orbital (mo).  As the distance R between the X and Y fragments is changed from

near its equilibrium value of Re and approaches infinity, the energies of the σ and σ*

orbitals vary in a manner well known to chemists as depicted below.

E

RRe

*σuσ =

σσg =

YsXs ,

Energies of the bonding σ and antibonding σ* orbitals as functions of interfragment

distance; Re denotes a distance near the equilibrium bond length for XY.

In the heteronuclear case, the sx and sy orbitals still combine to form a bonding σ
and an antibonding σ* orbital, although these orbitals no longer belong to g and u

symmetry.  The energies of these orbitals, for R values ranging from near Re to R→∞, are

depicted below.
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Energies of the bonding σ and antibonding σ* orbitals as functions of internuclear distance.

Here, X is more electronegative than Y.

For the homonuclear case, as R approaches ∞, the energies of the σg and σu

orbitals become degenerate. Moreover, as R → 0, the orbital energies approach those of the

united atom. In the heteronuclear situation, as R approaches ∞,  the energy of the σ orbital

approaches the energy of the sx orbital, and the σ* orbital converges to the sy orbital

energy.  Unlike the homonuclear case, the σ and σ* orbitals are     not    degenerate as R→ ∞.

The energy "gap" between the σ and σ* orbitals at R  = ∞ depends on the electronegativity

difference between the groups X and Y.  If this gap is small, it is expected that the behavior

of this (slightly) heteronuclear system should approach that of the homonuclear X2 and Y2

systems. Such similarities are demonstrated in the next section.

ii. Configuration and State Diagrams

The energy variation in these orbital energies gives rise to variations in the energies

of the six CSFs and of the six electronic states that arise as combinations of these CSFs.

The three singlet (1Σ (0),1Σ* (0), and 1Σ** (0) ) and three triplet (3Σ*(1), 3Σ*(0) and
3Σ*(-1)) CSFs are, by no means, the true electronic eigenstates of the system; they are

simply spin and spatial angular momentum adapted antisymmetric spin-orbital products. In

principle, the set of CSFs ΦΙ  of the same symmetry must be combined to form the proper

electronic eigenstates ΨΚ of the system:



ΨΚ = Σ
Ι
  CΙΚ ΦΙ .

Within the approximation that the valence electronic states can be described adequately as

combinations of the above valence CSFs, the three 1Σ, 1Σ* , and 1Σ** CSFs must be

combined to form the three lowest energy valence electronic states of 1Σ symmetry.  For

the homonuclear case, the 1Σ* CSF does not couple with the other two because it is of

ungerade symmetry, while the other CSFs 1Σ  and1Σ** have gerade symmetry and do

combine.

The relative amplitudes CΙΚ of the CSFs ΦΙ within each state ΨΚ are determined by

solving the configuration-interaction (CI) secular problem:

Σ
J
  〈ΦΙ H ΦJ〉 C

Κ
J
  = EΚ   CΚ

Ι   

for the state energies EΚ  and state CI coefficient vectors CΚ
Ι   . Here, H is the electronic

Hamiltonian of the molecule.

To understand the extent to which the 1Σ and 1Σ**  (and 1Σ* for heteronuclear

cases) CSFs couple, it is useful to examine the energies

〈ΦΙ H ΦΙ〉 of these CSFs for the range of internuclear distances of interest Re<R<∞.
Near Re, where the energy of the σ orbital is substantially below that of the σ* orbital, the

σ2 1Σ CSF lies significantly below the σσ* 1Σ* CSF which, in turn lies below the σ*2

1Σ** CSF; the large energy splittings among these three CSFs simply reflecting the large

gap between the σ and σ*  orbitals. The 3Σ* CSF generally lies below the corresponding
1Σ* CSF by an amount related to the exchange energy between the σ and σ*  orbitals.

As R → ∞, the CSF energies 〈ΦΙ H ΦJ〉 are more difficult to "intuit" because the

σ and σ* orbitals become degenerate (in the homonuclear case) or nearly so. To pursue this

point and arrive at an energy ordering for the CSFs that is appropriate to the R → ∞ region,

it is useful to express each of the above CSFs in terms of the atomic orbitals sx and sy that

comprise σ and σ*.  To do so, the LCAO-MO expressions for σ and σ*,

σ = C [sx + z sy]

and

σ* = C* [z sx  - sy],



are substituted into the Slater determinant definitions of the CSFs.  Here C and C* are the

normalization constants.  The parameter z is 1.0 in the homonuclear case and deviates from

1.0 in relation to the sx and sy orbital energy difference (if sx lies below sy, then z < 1.0; if

sx lies above sy, z > 1.0).

To simplify the analysis of the above CSFs, the familiar homonuclear case in which

z = 1.0 will be examined first.  The process of substituting the above expressions for σ and

σ* into the Slater determinants that define the singlet and triplet CSFs can be illustrated as

follows:

1Σ(0) = σα σβ = C2  (sx + sy) α(sx + sy) β

= C2 [sx α sx β + sy α sy β + sx α sy β + sy α sx β]

The first two of these atomic-orbital-based Slater determinants (sx α sx  β and sy α sy

β) are denoted "ionic" because they describe atomic orbital occupancies, which are

appropriate to the R → ∞ region,  that correspond to X ••  + Y and X + Y ••  valence bond

structures, while sx α sy β and sy α sx β are called "covalent" because they

correspond to X•  + Y• structures.

In similar fashion, the remaining five CSFs may be expressed in terms of atomic-

orbital-based Slater determinants. In so doing, use is made of the antisymmetry of the

Slater determinants

| φ1 φ2 φ3 | =  - | φ1 φ3 φ2 |, which implies that any determinant in which two or more spin-

orbitals are identical vanishes | φ1 φ2 φ2 | =  - | φ1 φ2 φ2 | = 0. The result of decomposing the

mo-based CSFs into their atomic orbital components is as follows:

1Σ** (0)  = σ*α σ*β
= C*2 [ sx α sx β + sy α sy β

− sx α sy β − sy α sx β]

1Σ* (0)  = 
1

2
 [ ]σα σ*β -  σβ σ*α  

= CC* 2  [sx α sx β − sy α sy β]

3Σ* (1) = σα σ*α
= CC* 2sy α sx α



3Σ* (0) =  
1

2
 [ ]σα σ*β +  σβ σ*α  

=CC* 2  [sy α sx β − sx α sy β]

3Σ* (-1) = σα σ*α
= CC* 2sy β sx β

These decompositions of the six valence CSFs into atomic-orbital or valence bond

components allow the R  = ∞ energies of the CSFs to be specified.  For example, the fact

that both 1Σ and 1Σ** contain 50% ionic and 50% covalent structures implies that, as R →
∞, both of their energies will approach the average of the covalent and ionic atomic

energies 1/2 [E (X•)  + E (Y•)  + E (Y) + E ( X
••  ) ].  The 1Σ* CSF energy approaches the

purely ionic value E (Y)+ E (X•• ) as R → ∞. The energies of  3Σ*(0), 3Σ*(1) and 3Σ*(-1)

all approach the purely covalent value E (X•) + E (Y•)  as R → ∞.
The behaviors of the energies of the six valence CSFs as R varies are depicted

below for situations in which the homolytic bond cleavage is energetically favored (i.e., for

which  E (X•) + E (Y•)  <  E (Y)+ E (X•• ) ).
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E

1Σ∗ ∗

R

1Σ

1 Σ ∗

∗
Σ3 E(Y)  + E(X:)

1/2 [E(X•)  + E(Y•)  +  E(Y)  + E(X:)]

E(X•)  + E(Y•)

Configuration correlation diagram for homonuclear case in which homolytic bond cleavage

is energetically favored.

When heterolytic bond cleavage is favored, the configuration energies as functions of

internuclear distance vary as shown below.
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1 Σ ∗

∗
Σ3

1Σ∗∗

1
Σ

E(X•) + E(Y•)

1/2 [E(X•) + E(Y•) + E(Y) + E(X:)]

E(Y) + E(X:)

Configuration correlation diagram for a homonuclear case in which heterolytic  bond

cleavage is energetically favored.

It is essential to realize that the energies 〈ΦΙ HΦΙ〉 of the CSFs do     not    represent

the energies of the true electronic states EK ; the CSFs are simply spin- and spatial-

symmetry adapted antisymmetric functions that form a     basis    in terms of which to expand

the true electronic states.  For R-values at which the CSF energies are separated widely, the

true EK are rather well approximated by individual 〈ΦΙ HΦΙ〉  values; such is the case

near Re.

For the homonuclear example, the 1Σ and 1Σ** CSFs undergo CI coupling to form

a pair of states of 1Σ symmetry (the 1Σ* CSF cannot partake in this CI mixing because it is

of ungerade symmetry; the 3Σ* states can not mix because they are of triplet spin

symmetry). The CI mixing of the 1Σ and 1Σ** CSFs is described in terms of a 2x2 secular

problem











〈1ΣH1Σ〉 〈1ΣH1Σ**〉

〈1Σ**H1Σ〉 〈1Σ**Η1Σ**〉
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



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B
   = E  


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



A

B
   

The diagonal entries are the CSF energies depicted in the above two figures. Using the

Slater-Condon rules, the off-diagonal coupling can be expressed in terms of an exchange

integral between the σ and σ* orbitals:

〈1ΣH1Σ**〉 = 〈σα σβHσ*α σ*β〉 = 〈σσ 1
r12

   σ*σ*〉 = Κσσ*

At R → ∞, where the 1Σ and 1Σ**  CSFs are degenerate, the two solutions to the above CI

secular problem are:

E
+
_ =1/2 [  E (X•) + E (Y•)  + E (Y)+ E (X•• ) ]  -

+
   〈σσ  

1
r12

   σ* σ*〉

with respective amplitudes for the 1Σ and 1Σ** CSFs given by

A
+
-   = ±  1

2
  ; B

+
-   = -+ 

1

2
  .

The first solution thus has

Ψ−  =  
1

2
    [σα σβ - σ*α σ*β]

which, when decomposed into atomic valence bond components, yields

Ψ− = 
1

2
   [ sxα syβ - sxβ syα].

The other root has

Ψ+ = 
1

2
    [σα σβ + σ*α  σ*β]

= 
1

2
    [ sxα  sxβ + sy α  syβ].

Clearly, 1Σ and 1Σ**, which both contain 50% ionic and 50% covalent parts, combine to

produce Ψ_  which is purely covalent and Ψ+ which is purely ionic.



The above strong CI mixing of 1Σ and 1Σ** as R → ∞ qualitatively alters the

configuration correlation diagrams shown above. Descriptions of the resulting valence

singlet and triplet Σ     states    are given below for homonuclear situations in which covalent

products lie below and above ionic products, respectively. Note that in both cases, there

exists a single attractive curve and five (n.b., the triplet state has three curves superposed)

repulsive curves.

∗∗1 Σ

E

R

1 Σ ∗

∗
Σ3

1 Σ

E(Y) + E(X:)

E(X•) + E(Y•)

State correlation diagram for homonuclear case in which homolytic bond cleavage is

energetically favored.
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E(X•) + E(Y•)

E(X:) + E(Y)

State correlation diagram for homonuclear case in which heterolytic bond cleavage is

energetically favored.

If the energies of the sx and sy orbitals do not differ significantly (compared to the

coulombic interactions between electron pairs), it is expected that the essence of the

findings described above for homonuclear species will persist even for heteronuclear

systems.  A decomposition of the six CSFs listed above, using the     heteronuclear    molecular

orbitals introduced earlier yields:

1Σ(0) = C2 [ sxα sxβ +z2 syα syβ
+z  sxα syβ +z syα sxβ]

1Σ**(0) = C*2 [z2 sxα sxβ + syα syβ
-zsxα syβ -z syα sxβ]

1Σ*(0)  = 
CC*

2
  [ 2zsxα sxβ -2z syα syβ

+ ( z2 - 1)syα sxβ + (z2 - 1) sxα syβ]



3Σ*(0) = 
CC*

2
 ( z2 + 1)  [syα sxβ - sxα syβ]

3Σ*(1) =  CC* (z2 + 1)  syα sxα

3Σ*(-1) = CC* (z2 + 1) syβ sxβ

Clearly, the three 3Σ*  CSFs retain purely covalent R → ∞ character even in the

heteronuclear case.  The 1Σ, 1Σ**, and 1Σ* (all three of which can undergo CI mixing

now) possess one covalent and two ionic components of the form sxα syβ + syα
sxβ, sxα sxβ, and  syα syβ.  The three singlet CSFs therefore can be combined to

produce a singlet covalent product function sxα syβ + syα sxβ as well as     both     X + Y
••   and X ••   + Y ionic product wavefunctions

syα syβ and sxα sxβ, respectively. In most situations, the energy ordering of the

homolytic and heterolytic dissociation products will be either  E (X•) + E (Y•) < E (X•• ) +

E (Y ) < E (X) + E (Y•• ) or E (X •• ) + E (Y) < E (X•) + E (Y•) < E (X) + E (Y •• ) .

The extensions of the state correlation diagrams given above to the heteronuclear

situations are described below.
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State correlation diagram for heteronuclear case in which homolytic  bond

cleavage is energetically favored.
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State correlation diagram for heteronuclear case in which heterolytic

bond cleavage to one product is energetically favored but homolytic

cleavage lies below the second heterolytic asymptote.
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State correlation diagram for heteronuclear case in which both heterolytic  bond cleavage

products are energetically favored relative to homolytic cleavage.

Again note that only one curve is attractive and  five are repulsive in all cases. In

these heteronuclear cases, it is the mixing of the 1Σ, 1Σ*, and 1Σ**  CSFs, which varies

with R, that determines which molecular state connects to which asymptote. As the energy

ordering of the asymptotes varies, so do these correlations.

3. Summary



Even for the relatively simple two-electron, two-orbital single-bond interactions

between a pair of atoms or functional groups, the correlations among energy-ordered

molecular states and energy-ordered asymptotic states is complex enough to warrant

considerations beyond what is taught in most undergraduate and beginning graduate

inorganic and physical chemistry classes. In particular, the correlations that arise when one

(or both) of the heterolytic bond dissociation aysmptotes lies below the homolytic cleavage

products are important to realize and keep in mind.

In all cases treated here, the three singlet states that arise produce one and only one

attractive (bonding) potential energy curve; the other two singlet surfaces are repulsive. The

three triplet surfaces are also repulsive. Of course, in arriving at these conclusions, we have

considered only contributions to the inter-fragment interactions that arise from valence-

orbital couplings; no consideration has been made of attractive or repulsive forces that

result from one or both of the X- and Y- fragments possessing net charge. In the latter

case, one must, of course, add to the qualitative potential surfaces described here any

coulombic, charge-dipole, or charge-induced-dipole energies. Such additional factors can

lead to attractive long-range interactions in typical ion-molecule complexes.

 The necessity of the analysis developed above becomes evident when considering

dissociation of diatomic transition metal ions.  Most transition metal atoms have ground

states with electron configurations of the form  s2dn  (for first-row metals, exceptions

include Cr (s1d5 ), Cu (s1d10),  and the s1d9 state of Ni is basically isoenergetic with the

s2d8 ground state).  The corresponding positive ions have ground states with s1dn (Sc, Ti,

Mn, Fe) or s0dn+1 (V, Cr, Co, Ni, Cu) electron configurations .  For each of these

elements, the alternate electron configuration leads to low-lying excited states.

One can imagine forming a M2+ metal dimer ion with a configuration described as

σg2 d2n+1 , where the σg bonding orbital is formed primarily from the metal s orbitals and

the d orbitals are largely nonbonding (as is particularly appropriate towards the right hand

side of the periodic table).  Cleavage of such a σ bond tends to occur heterolytically since

this forms lower energy species, M(s2dn) + M+(s0dn+1), than homolytic cleavage to

M(s1dn+1) + M+(s1dn).  For example, Co2 + dissociates to Co(s2d7) + Co+(s0d8) rather

than to Co(s1d8) + Co+(s1d7),2 which lies 0.85 eV higher in  energy.

Qualitative aspects of the above analysis for homonuclear transition metal dimer

ions will persist for heteronuclear ions.  For example, the ground-state dissociation

asymptote for CoNi+ is the heterolytic cleavage products Co(s2d7) + Ni+(s0d9).  The

alternative heterolytic cleavage to form Co+(s0d8) + Ni(s2d8) is 0.23 eV higher in energy,

while homolytic cleavage can lead to Co+(s1d7) + Ni(s1d9), 0.45 eV higher, or Co(s1d8) +

Ni+(s1d8), 1.47 eV higher. This is the situation illustrated in the last figure above. 



III. Various Types of Configuration Mixing

A. Essential CI

The above examples of the use of CCD's show that, as motion takes place along the

proposed reaction path, geometries may be encountered at which it is    essential    to describe

the electronic wavefunction in terms of a linear combination of more than one CSF:

Ψ = ΣI CI ΦI ,

where the ΦI are the CSFs which are undergoing the avoided crossing. Such essential

configuration mixing is often referred to as treating "   essential CI   ".

B. Dynamical CI

To achieve  reasonable chemical accuracy (e.g., ± 5 kcal/mole) in electronic

structure calculations it is necessary to use a multiconfigurational Ψ even in situations

where no obvious strong configuration mixing (e.g., crossings of CSF energies) is

present. For example, in describing the π2 bonding electron pair of an olefin or the ns2

electron pair in alkaline earth atoms, it is important to mix in doubly excited CSFs of the

form (π*)2 and np2 , respectively. The reasons for introducing such a CI-level treatment

were treated for an alkaline earth atom earlier in this chapter.

Briefly, the physical importance of such doubly-excited CSFs can be made clear by

using the identity:

C1 | ..φα φβ..| - C2 | ..φ' α φ' β..|

= C1/2 { | ..( φ - xφ')α ( φ + xφ')β..| - | ..( φ - xφ')β ( φ + xφ')α..| },

where

x = (C2/C1)1/2 .

This allows one to interpret the combination of two CSFs which differ from one another by

a double excitation from one orbital (φ) to another (φ') as equivalent to a singlet coupling of



two different (non-orthogonal) orbitals (φ - xφ') and (φ  + xφ'). This picture is closely

related to the so-called generalized valence bond (GVB) model that W. A. Goddard and his

co-workers have developed (see, for example, W. A. Goddard and L. B. Harding, Annu.

Rev. Phys. Chem.     29    , 363 (1978)). In the simplest embodiment of the GVB model, each

electron pair in the atom or molecule is correlated by mixing in a CSF in which that electron

pair is "doubly excited" to a correlating orbital. The direct product of all such pair

correlations generates the GVB-type wavefunction. In the GVB approach, these electron

correlations are not specified in terms of double excitations involving CSFs formed from

orthonormal spin orbitals; instead, explicitly non-orthogonal GVB orbitals are used as

described above, but the result is the same as one would obtain using the direct product of

doubly excited CSFs.

In the olefin example mentioned above, the two non-orthogonal "polarized orbital

pairs" involve mixing the π and π* orbitals to produce two left-right polarized orbitals as

depicted below:

       left polarized       right polarized

π −xπ∗π + xπ∗

π∗

π

In this case, one says that the π2 electron pair undergoes left-right correlation when the

(π*)2 CSF is mixed into the CI wavefunction.

In the alkaline earth atom case, the polarized orbital pairs are formed by mixing the ns and

np orbitals (actually, one must mix in equal amounts of p1, p -1 , and p0 orbitals to preserve

overall 1S symmetry in this case), and give rise to angular correlation of the electron pair.

Use of an (n+1)s2 CSF for the alkaline earth calculation would contribute in-out or radial

correlation because, in this case, the polarized orbital pair formed from the ns and (n+1)s

orbitals would be radially polarized.

The use of doubly excited CSFs is thus seen as a mechanism by which Ψ can place

electron     pairs   , which in the single-configuration picture occupy the same orbital, into



different regions of space (i.e., one into a member of the polarized orbital pair) thereby

lowering their mutual coulombic repulsions. Such electron correlation effects are referred to

as "    dynamical electron correlation    "; they are extremely important to include if one expects

to achieve chemically meaningful accuracy (i.e., ± 5 kcal/mole).



Section 4 Molecular Rotation and Vibration

Chapter 13

Treating the full internal nuclear-motion dynamics of a polyatomic molecule is complicated.

It is conventional to examine the rotational movement of a hypothetical "rigid" molecule as

well as the vibrational motion of a non-rotating molecule, and to then treat the rotation-

vibration couplings using perturbation theory.

I. Rotational Motions of Rigid Molecules

In Chapter 3 and Appendix G the energy levels and wavefunctions that describe the

rotation of rigid molecules are described. Therefore, in this Chapter these results will be

summarized briefly and emphasis will be placed on detailing how the corresponding

rotational Schrödinger equations are obtained and the assumptions and limitations

underlying them.

A. Linear Molecules

1. The Rotational Kinetic Energy Operator

As given in Chapter 3, the Schrödinger equation for the angular motion of a rigid

(i.e., having fixed bond length R) diatomic molecule is

 h2/2µ {(R2sinθ)-1∂/∂θ (sinθ ∂/∂θ) + (R2sin2θ)-1 ∂2/∂φ2 } ψ  = E ψ

or

L2ψ/2µR2 = E ψ.

The Hamiltonian in this problem contains only the kinetic energy of rotation; no potential

energy is present because the molecule is undergoing unhindered "free rotation". The

angles θ and φ describe the orientation of the diatomic molecule's axis relative to a

laboratory-fixed coordinate system, and µ is the reduced mass of the diatomic molecule

µ=m1m2/(m1+m2).

2. The Eigenfunctions and Eigenvalues



The eigenvalues corresponding to each eigenfunction are straightforward to find

because Hrot is proportional to the L2 operator whose eigenvalues have already been

determined. The resultant rotational energies are given as:

EJ = h2 J(J+1)/(2µR2) = B J(J+1)

and are independent of M. Thus each energy level is labeled by J and is 2J+1-fold

degenerate (because M ranges from -J to J). The rotational constant B (defined as h2/2µR2)

depends on the molecule's bond length and reduced mass. Spacings between successive

rotational levels (which are of spectroscopic relevance because angular momentum selection

rules often restrict ∆J to 1,0, and -1) are given by

∆E = B (J+1)(J+2) - B J(J+1) = 2B (J+1).

Within this "rigid rotor" model, the absorption spectrum of a rigid diatomic molecule

should display a series of peaks, each of which corresponds to a specific J ==> J + 1

transition. The energies at which these peaks occur should grow linearally with J. An

example of such a progression of rotational lines is shown in the figure below.

The energies at which the rotational transitions occur appear to fit the ∆E = 2B (J+1)

formula rather well. The intensities of transitions from level J to level J+1 vary strongly

with J primarily because the population of molecules in the absorbing level varies with J.



These populations PJ are given, when the system is at equilibrium at temperature T, in

terms of the degeneracy (2J+1) of the Jth level and the energy of this level B J(J+1) :

PJ = Q-1 (2J+1) exp(-BJ(J+1)/kT),

where Q is the rotational partition function:

Q = ΣJ (2J+1) exp(-BJ(J+1)/kT).

For low values of J, the degeneracy is low and the exp(-BJ(J+1)/kT) factor is near unity.

As J increases, the degeracy grows linearly but the exp(-BJ(J+1)/kT) factor decreases more

rapidly. As a result, there is a value of J, given by taking the derivative of (2J+1) exp(-

BJ(J+1)/kT) with respect to J and setting it equal to zero,

2Jmax + 1 = 2kT/B 

at which the intensity of the rotational transition is expected to reach its maximum.

The eigenfunctions belonging to these energy levels are the spherical harmonics

YL,M(θ,φ) which are normalized according to

⌡

⌠

0

π

( ⌡⌠
0

2π

(Y*L,M(θ,φ) YL',M'(θ,φ) sinθ dθ dφ))  = δL,L' δM,M'  .

These functions are identical to those that appear in the solution of the angular part of

Hydrogen-like atoms. The above energy levels and eigenfunctions also apply to the rotation

of rigid linear polyatomic molecules; the only difference is that the moment of inertia I

entering into the rotational energy expression is given by

I = Σa ma Ra2

where ma is the mass of the ath atom and Ra is its distance from the center of mass of the

molecule. This moment of inertia replaces µR2 in the earlier rotational energy level

expressions.



B. Non-Linear Molecules

1. The Rotational Kinetic Energy Operator

The rotational kinetic energy operator for a rigid polyatomic molecule is shown in

Appendix G to be

Hrot = Ja2/2Ia + Jb2/2Ib + Jc2/2Ic

where the Ik (k = a, b, c) are the three principal moments of inertia of the molecule (the

eigenvalues of the moment of inertia tensor). This tensor has  elements in a Cartesian

coordinate system (K, K' = X, Y, Z) whose origin is located at the center of mass of the

molecule that are computed as:

IK,K = Σj mj (Rj2 - R2K,j) (for K = K')

IK,K' = - Σj mj RK,j RK',j (for K ≠ K').

The components of the quantum mechanical angular momentum operators along the three

principal axes are:

Ja = -ih cosχ [cotθ ∂/∂χ - (sinθ)-1∂/∂φ ] - -ih sinχ ∂/∂θ

Jb = ih sinχ [cotθ ∂/∂χ - (sinθ)-1∂/∂φ ] - -ih cosχ ∂/∂θ

Jc = - ih ∂/∂χ.

The angles θ, φ, and χ are the Euler angles needed to specify the orientation of the rigid

molecule relative to a laboratory-fixed coordinate system. The corresponding square of the

total angular momentum operator J2 can be obtained as

J2 = Ja2 + Jb2 + Jc2



= - ∂2/∂θ2 - cotθ ∂/∂θ

- (1/sinθ) (∂2/∂φ2 + ∂2/∂χ2 - 2 cosθ∂2/∂φ∂χ),

and the component along the lab-fixed Z axis JZ is - ih ∂/∂φ.

2. The Eigenfunctions and Eigenvalues for Special Cases

a. Spherical Tops

When the three principal moment of inertia values are identical, the molecule is

termed a spherical top. In this case, the total rotational energy can be expressed in terms

of the total angular momentum operator J2

Hrot = J2/2I.

As a result, the eigenfunctions of Hrot are those of J2 (and Ja as well as JZ both of which

commute with J2 and with one another; JZ is the component of J along the lab-fixed Z-axis

and commutes with Ja  because JZ = - ih ∂/∂φ and Ja = - ih ∂/∂χ act on different angles).

The energies associated with such eigenfunctions are

E(J,K,M) = h2 J(J+1)/2I2,

for all K (i.e., Ja quantum numbers) ranging from -J to J in unit steps and for all M (i.e.,

JZ quantum numbers) ranging from -J to J. Each energy level is therefore (2J + 1)2

degenarate because there are 2J + 1 possible K values and 2J + 1 possible M values for

each J.

The eigenfunctions of J2, JZ and Ja , |J,M,K> are given in terms of the set of

rotation matrices DJ,M,K:

|J,M,K> = 
2J + 1

8  π2
  D*J,M,K(θ,φ,χ)

which obey



J2 |J,M,K> = h2 J(J+1) |J,M,K>,

Ja  |J,M,K> = h K |J,M,K>,

JZ |J,M,K> = h M |J,M,K>.

b. Symmetric Tops

Molecules for which two of the three principal moments of inertia are equal are

called symmetric tops. Those for which the unique moment of inertia is smaller than the

other two are termed prolate symmetric tops; if the unique moment of inertia is larger than

the others, the molecule is an oblate symmetric top.

Again, the rotational kinetic energy, which is the full rotational Hamiltonian, can be

written in terms of the total rotational angular momentum operator J2 and the component of

angular momentum along the axis with the unique principal moment of inertia:

Hrot = J2/2I + Ja2{1/2Ia - 1/2I}, for prolate tops

Hrot = J2/2I + Jc2{1/2Ic - 1/2I}, for oblate tops.

As a result, the eigenfunctions of Hrot are those of J2 and Ja or Jc (and of JZ), and the

corresponding energy levels are:

E(J,K,M) =  h2 J(J+1)/2I2 +  h2 K2 {1/2Ia - 1/2I},

for prolate tops

E(J,K,M) =  h2 J(J+1)/2I2 +  h2 K2 {1/2Ic - 1/2I},

for oblate tops, again for K and M (i.e., Ja or Jc and JZ quantum numbers, respectively)

ranging from -J to J in unit steps. Since the energy now depends on K, these levels are

only 2J + 1 degenerate due to the 2J + 1 different M values that arise for each J value. The

eigenfunctions |J, M,K> are the same rotation matrix functions as arise for the spherical-top

case.



c. Asymmetric Tops

The rotational eigenfunctions and energy levels of a molecule for which all three

principal moments of inertia are distinct (a so-called asymmetric top) can not easily be

expressed in terms of the angular momentum eigenstates and the J, M, and K quantum

numbers. However, given the three principal moments of inertia Ia, Ib, and Ic, a matrix

representation of each of the three contributions to the rotational Hamiltonian

Hrot = Ja2/2Ia + Jb2/2Ib + Jc2/2Ic

can be formed within a basis set of the {|J, M, K>} rotation matrix functions. This matrix

will not be diagonal because the |J, M, K> functions are not eigenfunctions of the

asymmetric top Hrot. However, the matrix can be formed in this basis and subsequently

brought to diagonal form by finding its eigenvectors {Cn, J,M,K} and its eigenvalues {En}.

The vector coefficients express the asymmetric top eigenstates as

Ψn (θ, φ, χ) = ΣJ, M, K Cn, J,M,K |J, M, K>.

Because the total angular momentum J2 still commutes with Hrot, each such eigenstate will

contain only one J-value, and hence Ψn can also be labeled by a J quantum number:

Ψn,J  (θ, φ, χ) = Σ M, K Cn, J,M,K |J, M, K>.

To form the only non-zero matrix elements of Hrot within the |J, M, K> basis, one

can use the following properties of the rotation-matrix functions (see, for example, Zare's

book on Angular Momentum):

<J, M, K| Ja2| J, M, K> = <J, M, K| Jb 2| J, M, K>

= 1/2 <J, M, K| J2 - Jc2 | J, M, K> = h2 [ J(J+1) - K2 ],

<J, M, K| Jc2| J, M, K> = h2 K2,

<J, M, K| Ja2| J, M, K ± 2> = - <J, M, K| Jb 2| J, M, K ± 2>

=  h2 [J(J+1) - K(K± 1)]1/2 [J(J+1) -(K± 1)(K± 2)]1/2

<J, M, K| Jc2| J, M, K ± 2> = 0.



Each of the elements of Jc2, Ja2, and Jb2 must, of course, be multiplied, respectively, by

1/2Ic, 1/2Ia, and 1/2Ib and summed together to form the matrix representation of Hrot. The

diagonalization of this matrix then provides the asymmetric top energies and

wavefunctions.

II. Vibrational Motion Within the Harmonic Approximation

The simple harmonic motion of a diatomic molecule was treated in Chapter 1, and

will not be repeated here. Instead, emphasis is placed on polyatomic molecules whose

electronic energy's dependence on the 3N Cartesian coordinates of its N atoms can be

written (approximately) in terms of a Taylor series expansion about a stable local minimum.

We therefore assume that the molecule of interest exists in an electronic state for which the

geometry being considered is stable (i.e., not subject to spontaneous geometrical

distortion).

The Taylor series expansion of the electronic energy is written as:

V (qk) = V(0) + Σk (∂V/∂qk) qk + 1/2 Σ j,k qj Hj,k qk + ...  ,

where V(0) is the value of the electronic energy at the stable geometry under study, qk is

the     displacement    of the kth Cartesian coordinate away from this starting position, (∂V/∂qk)

is the gradient of the electronic energy along this direction, and the Hj,k are the second

derivative or      Hessian     matrix elements along these directions Hj,k = (∂2V/∂qj∂qk). If the

starting geometry corresponds to a stable species, the gradient terms will all vanish

(meaning this geometry corresponds to a minimum, maximum, or saddle point), and the

Hessian matrix will possess 3N - 5 (for linear species) or 3N -6 (for non-linear molecules)

positive eigenvalues and 5 or 6 zero eigenvalues (corresponding to 3 translational and 2 or

3 rotational motions of the molecule). If the Hessian has one negative eigenvalue, the

geometry corresponds to a transition state (these situations are discussed in detail in

Chapter 20).

From now on, we assume that the geometry under study corresponds to that of a

stable minimum about which vibrational motion occurs. The treatment of unstable

geometries is of great importance to chemistry, but this Chapter deals with vibrations of

stable species. For a good treatment of situations under which geometrical instability is

expected to occur, see Chapter 2 of the text     Energetic Principles of Chemical Reactions    by



J. Simons. A discussion of how local minima and transition states are located on electronic

energy surfaces is provided in Chapter 20 of the present text.

A. The Newton Equations of Motion for Vibration

1. The Kinetic and Potential Energy Matrices

Truncating the Taylor series at the quadratic terms (assuming these terms dominate

because only small displacements from the equilibrium geometry are of interest), one has

the so-called harmonic potential:

V (qk) = V(0) + 1/2 Σ j,k qj Hj,k qk.

The classical mechanical equations of motion for the 3N {qk} coordinates can be written in

terms of the above potential energy and the following kinetic energy function:

T = 1/2 Σ j mj q
•

 j2,

where q
•
 j   denotes the time rate of change of the coordinate qj and mj is the mass of the

atom on which the jth Cartesian coordinate resides. The Newton equations thus obtained

are:

mj q
••

 j = - Σk Hj,k qk

where the force along the jth coordinate is given by minus the derivative of the potential V

along this coordinate (∂V/∂qj) = Σk Hj,k qk within the harmonic approximation.

These classical equations can more compactly be expressed in terms of the time

evolution of a set of so-called mass weighted Cartesian coordinates defined as:

xj = qj (mj)1/2,

in terms of which the Newton equations become

 x
••

 j = - Σk H'j,k xk



and the      mass-weighted Hessian     matrix elements are

H' j,k = Hj,k (mjmk)-1/2.

2. The Harmonic Vibrational Energies and Normal Mode Eigenvectors

Assuming that the xj undergo some form of sinusoidal time evolution:

xj(t) = xj (0) cos(ωt),

and substituting this into the Newton equations produces a matrix eigenvalue equation:

ω2 xj = Σk H'j,k xk

in which the eigenvalues are the squares of the so-called normal mode vibrational

frequencies and the eigenvectors give the amplitudes of motion along each of the 3N mass

weighted Cartesian coordinates that belong to each mode.

Within this harmonic treatment of vibrational motion, the total vibrational energy of

the molecule is given as

E(v1, v2, ··· v3N-5 or 6) = ∑
j=1

3N-5or6
hωj (v j + 1/2) 

as sum of 3N-5 or 3N-6 independent contributions one for each normal mode.  The

corresponding total vibrational wavefunction

Ψ(x1,x2, ··· x3N-5or6) =    ψvj
 (xj)

as a product of 3N-5 or 3N-6 harmonic oscillator functions ψvj
 (xj) are for each normal

mode within this picture, the energy gap between one vibrational level and another in which

one of the vj quantum numbers is increased by unity (the origin of this "selection rule" is

discussed in Chapter 15) is

∆Evj → vj + 1 = h ωj



The harmonic model thus predicts that the "fundamental" (v=0 → v = 1) and "hot band"

(v=1 → v = 2) transition should occur at the same energy, and the overtone (v=0 → v=2)

transitions should occur at exactly twice this energy.

B. The Use of Symmetry

1.  Symmetry Adapted Modes

It is often possible to simplify the calculation of the normal mode frequencies and

eigenvectors by exploiting molecular point group symmetry. For molecules that possess

symmetry, the electronic potential V(qj) displays symmetry with respect to displacements

of symmetry equivalent Cartesian coordinates. For example, consider the water molecule at

its C2v equilibrium geometry as illustrated in the figure below. A very small movement of

the H2O molecule's left H atom in the positive x direction (∆xL) produces the same change

in V as a correspondingly small displacement of the right H atom in the negative x direction

(-∆xR). Similarly, movement of the left H in the positive y direction (∆yL) produces an

energy change identical to movement of the right H in the positive y direction (∆yR).

H

O

Hθ
r2 r1

y

x 

The equivalence of the pairs of Cartesian coordinate displacements is a result of the

fact that the displacement vectors are connected by the point group operations of the C2v

group. In particular, reflection of ∆xL through the yz plane produces - ∆xR, and reflection

of ∆yL through this same plane yields ∆yR.

More generally, it is possible to combine sets of Cartesian displacement coordinates

{qk} into so-called symmetry adapted coordinates {QΓ,j}, where the index Γ labels the

irreducible representation and j labels the particular combination of that symmetry.  These

symmetry adapted coordinates can be formed by applying the point group projection

operators to the individual Cartesian displacement coordinates.



To illustrate, again consider the H2O molecule in the coordinate system described

above.  The 3N = 9 mass weighted Cartesian displacement coordinates (XL, YL, ZL, XO,

YO, ZO, XR, YR, ZR) can be symmetry adapted by applying the following four projection

operators:

PA1 = 1 + σyz + σxy + C2

Pb1 = 1 + σyz - σxy - C2

Pb2 = 1 - σyz + σxy - C2

Pa2 = 1 - σyz - σxy + C2

to each of the 9 original coordinates.  Of course, one will     not    obtain

9 x 4 = 36 independent symmetry adapted coordinates in this manner; many identical

combinations will arise, and only 9 will be independent.

The independent combination of    a      1       symmetry     (normalized to produce vectors of unit

length) are

Qa1,1  = 2-1/2 [XL - XR]

Qa1,2  = 2-1/2 [YL + YR]

Qa1,3  =  [YO]

Those of b2 symmetry are

Qb2,1  = 2-1/2 [XL + XR]

Qb2,2  = 2-1/2 [YL - YR]

Qb2,3  =  [XO],

and the combinations



Qb1,1  = 2-1/2 [ZL + ZR]

Qb1,2 =  [ZO]

are of b1 symmetry, whereas

Qa2,1 = 2-1/2 [ZL - ZR]

is of a2 symmetry.

2.  Point Group Symmetry of the Harmonic Potential

These nine QΓ,j are expressed as unitary transformations of the original mass

weighted Cartessian coordinates:

QΓ,j = ∑
k

 
   CΓ,j,k Xk

These transformation coefficients {CΓ,j,k} can be used to carry out a unitary transformation

of the 9x9 mass-weighted Hessian matrix.  In so doing, we need only form blocks

HΓj,l  = 
∑

k k '
     CΓ,j,k  Hk,k'  (mk mk')-1/2  CΓ,l,k'

within which the symmetries of the two modes are identical.  The off-diagonal elements

H  
Γ Γ'

j  l     = 
∑

k k '
      CΓ,j,k  Hk,k'  (mk mk')-1/2   CΓ',l,k'

vanish because the potential V (qj) (and the full vibrational Hamiltonian H = T + V)

commutes with the C2V point group symmetry operations.

As a result, the 9x9 mass-weighted Hessian eigenvalue problem can be sub divided

into two 3x3 matrix problems ( of a1 and b2 symmetry), one 2x2 matrix of b1 symmetry



and one 1x1 matrix of a2 symmetry.  For example, the a1 symmetry block H
a

1

j  l
   is formed

as follows:
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The b2, b1 and a2 blocks are formed in a similar manner.  The eigenvalues of each of these

blocks provide the squares of the harmonic vibrational frequencies, the eigenvectors

provide the normal mode displacements as linear combinations of the symmetry adapted

{QΓj}.

Regardless of whether symmetry is used to block diagonalize the mass-weighted

Hessian, six (for non-linear molecules) or five (for linear species) of the eigenvalues will

equal zero.  The eigenvectors belonging to these zero eigenvalues describe the 3

translations and 2 or 3 rotations of the molecule.  For example,

1

3
   [XL + XR + XO]

1

3
   [YL + YR + YO]

1

3
   [ZL +ZR + ZO]

are three translation eigenvectors of b2, a1 and b1 symmetry, and

1

2
 (ZL - ZR) 

is a rotation (about the Y-axis in the figure shown above) of a2 symmetry. This rotation

vector can be generated by applying the a2 projection operator to ZL or to ZR.  The fact that

rotation about the Y-axis is of a2 symmetry is indicated in the right-hand column of the C2v



character table of Appendix E via the symbol RZ (n.b., care must be taken to realize that the

axis convention used in the above figure is different than that implied in the character table;

the latter has the Z-axis out of the molecular plane, while the figure calls this the X-axis).

The other two rotations are of b1 and b2 symmetry (see the C2v character table of

Appendix E) and involve spinning of the molecule about the X- and Z- axes of the figure

drawn above, respectively.

So, of the 9 cartesian displacements, 3 are of a1 symmetry, 3 of b2 , 2 of b1, and 1

of a2. Of these, there are three translations (a1, b2, and b1) and three rotations (b2, b1, and

a2). This leaves two vibrations of a1 and one of b2 symmetry. For the H2O example treated

here, the three non zero eigenvalues of the mass-weighted Hessian are therefore of a1 b2 ,

and a1 symmetry.  They describe the symmetric and asymmetric stretch vibrations and the

bending mode, respectively as illustrated below.
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The method of vibrational analysis presented here can work for any polyatomic

molecule.  One knows the mass-weighted Hessian and then computes the non-zero

eigenvalues which then provide the squares of the normal mode vibrational frequencies.

Point group symmetry can be used to block diagonalize this Hessian and to label the

vibrational modes according to symmetry.

III.  Anharmonicity

The electronic energy of a molecule, ion, or radical at geometries near a stable

structure can be expanded in a Taylor series in powers of displacement coordinates as was

done in the preceding section of this Chapter.  This expansion leads to a picture of

uncoupled harmonic vibrational energy levels

E(v1 ... v3N-5or6)  = ∑
j=1

3N-5or6
        hωj (vj + 1/2)



and wavefunctions

ψ(x1 ... x3N-5or6)  =  
∏

j=1
3N-5or6          ψvj (xj).

The spacing between energy levels in which one of the normal-mode quantum

numbers increases by unity

∆Evj  = E(...vj+1 ...) - E (...vj ...) = h ωj

is predicted to be independent of the quantum number vj.  This picture of evenly spaced

energy levels

∆E0  = ∆E1  = ∆E2 = ...

is an incorrect aspect of the harmonic model of vibrational motion, and is a result of the

quadratic model for the potential energy surface V(xj).

A.  The Expansion of E(v) in Powers of (v+1/2).

Experimental evidence clearly indicates that significant deviations from the

harmonic oscillator energy expression occur as the quantum number vj grows.  In Chapter

1 these deviations were explained in terms of the diatomic molecule's true potential V(R)

deviating strongly from the harmonic 1/2k (R-Re)2 potential at higher energy (and hence

larger R-Re) as shown in the following figure.
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At larger bond lengths, the true potential is "softer" than the harmonic potential, and

eventually reaches its asymptote which lies at the dissociation energy De above its

minimum.  This negative  deviation of the true V(R) from 1/2 k(R-Re)2 causes the true

vibrational energy levels to lie below the harmonic predictions.

It is convention to express the experimentally observed vibrational energy levels,

along each of the 3N-5 or 6 independent modes, as follows:

    E(vj) = h[ωj (vj + 1/2) - (ω x)j (vj + 1/2)2 + (ω y)j  (vj + 1/2)3 + (ω z)j (vj + 1/2)4 + ...]

The first term is the harmonic expression.  The next is termed the first anharmonicity; it

(usually) produces a negative contribution to E(vj) that varies as (vj + 1/2)2.  The spacings

between successive vj → vj + 1 energy levels is then given by:

∆Evj = E(vj + 1) - E(vj)

= h [ωj - 2(ωx)j (vj + 1) + ...]

A plot of the spacing between neighboring energy levels versus vj should be linear for

values of vj where the harmonic and first overtone terms dominate.  The slope of such a

plot is expected to be -2h(ωx)j and the small -vj intercept should be h[ωj - 2(ωx)j].  Such a

plot of experimental data, which clearly can be used to determine the ωj and (ωx)j

parameter of the vibrational mode of study, is shown in the figure below.
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B.  The Birge-Sponer Extrapolation

These so-called Birge-Sponer plots can also be used to determine dissociation
energies of molecules.  By linearly extrapolating the plot of experimental ∆Evj values to

large vj values, one can find the value of vj at which the spacing between neighboring

vibrational levels goes to zero.  This value

vj, max specifies the quantum number of the last bound vibrational level for the particular

potential energy function V(xj) of interest.  The dissociation energy De can then be

computed by adding to 1/2hωj (the zero point energy along this mode) the sum of the

spacings between neighboring vibrational energy levels from vj = 0 to vj = vj, max:

De = 1/2hωj + 
∑

vj =  0
vj max        ∆Evj.

Since experimental data are not usually available for the entire range of vj values (from 0 to

vj,max), this sum must be computed using the anharmonic expression for ∆Evj:

∆Evj = h[ωj - 2 (ωx)j (vj + 1/2) + . . .].



Alternatively, the sum can be computed from the Birge-Sponer graph by measuring the area
under the straight-line fit to the graph of ∆Evj or vj from vj = 0 to vj = vj,max.

This completes our introduction to the subject of rotational and vibrational motions
of molecules (which applies equally well to ions and radicals). The information contained
in this Section is used again in Section 5 where photon-induced transitions between pairs of
molecular electronic, vibrational, and rotational eigenstates are examined. More advanced
treatments of the subject matter of this Section can be found in the text by Wilson, Decius,
and Cross, as well as in Zare's text on angular momentum.



Section 5 Time Dependent Processes

Chapter 14

The interaction of a molecular species with electromagnetic fields can cause transitions to

occur among the available molecular energy levels (electronic, vibrational, rotational, and

nuclear spin). Collisions among molecular species likewise can cause transitions to occur.

Time-dependent perturbation theory and the methods of molecular dynamics can be

employed to treat such transitions.

I. The Perturbation Describing Interactions With Electromagnetic Radiation

The full N-electron non-relativistic Hamiltonian H discussed earlier in this text

involves the kinetic energies of the electrons and of the nuclei and the mutual coulombic

interactions among these particles

H = Σa=1,M ( - h2/2ma ) ∇a2 + Σ j  [ ( - h2/2me ) ∇j2 - Σa Zae2/rj,a ]

+ Σ j<k  e2/rj,k  + Σa < b  Za Zb e2/Ra,b.

When an electromagnetic field is present, this is not the correct Hamiltonian, but it can be

modified straightforwardly to obtain the proper H.

A. The Time-Dependent Vector A(r,t) Potential

The only changes required to achieve the Hamiltonian that describes the same

system in the presence of an electromagnetic field are to replace the momentum operators

Pa and pj  for the nuclei and electrons, respectively, by (Pa - Za e/c A(Ra,t)) and (pj - e/c

A(rj,t)). Here Za e is the charge on the ath nucleus, -e is the charge of the electron, and c is

the speed of light.

 The vector potential A depends on time t and on the spatial location r of the particle

in the following manner:

A(r,t) = 2 Ao cos (ωt - k•r).

The circular frequency of the radiation ω (radians per second) and the wave vector k (the

magnitude of k is |k| = 2π/λ, where λ is the wavelength of the light) control the temporal



and spatial oscillations of the photons. The vector Ao characterizes the strength (through

the magnitude of Ao) of the field as well as the direction of the A potential; the direction of

propagation of the photons is given by the unit vector k/|k|. The factor of 2 in the definition

of A allows one to think of A0 as measuring the strength of both exp(i(ωt - k•r)) and exp(-

i(ωt - k•r)) components of the cos (ωt - k•r) function.

B. The Electric E(r,t) and Magnetic H(r,t) Fields

The electric E(r,t) and magnetic H(r,t) fields of the photons are expressed in terms

of the vector potential A as

E(r,t) = - 1/c ∂A/∂t = ω/c 2 Ao sin (ωt - k•r)

H(r,t) =  ∇ x A = k x Ao 2 sin (ωt - k•r).

The E field lies parallel to the Ao vector, and the H field is perpendicular to Ao; both are

perpendicular to the direction of propagation of the light k/|k|. E and H have the same

phase because they both vary with time and spatial location as

sin (ωt - k•r). The relative orientations of these vectors are shown below.
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C. The Resulting Hamiltonian



Replacing the nuclear and electronic momenta by the modifications shown above in

the kinetic energy terms of the full electronic and nuclear-motion hamiltonian results in the

following    additional    factors appearing in H:

Hint = Σ j { (ie h /mec) A(rj,t) • ∇j + (e2/2mec2) |A(rj,t )|2 }

+ Σa { (i Zae h /mac) A(Ra,t) • ∇a + (Za2e2/2mac2) |A(Ra,t )|2 }.

These so-called interaction perturbations Hint are what induces transitions among the

various electronic/vibrational/rotational states of a molecule. The one-electron additive

nature of Hint plays an important role in determining the kind of transitions that Hint can

induce. For example, it causes the most intense electronic transitions to involve excitation

of a single electron from one orbital to another (recall the Slater-Condon rules).

II. Time-Dependent Perturbation Theory

A. The Time-Dependent Schrödinger Equation

The mathematical machinery needed to compute the rates of transitions among

molecular states induced by such a time-dependent perturbation is contained in time-

dependent perturbation theory (TDPT). The development of this theory proceeds as

follows. One first assumes that one has in-hand    all    of the eigenfunctions {Φk} and

eigenvalues {Ek0} that characterize the Hamiltonian H0 of the molecule in the absence of

the external perturbation:

H0 Φk = Ek0 Φk.

One then writes the time-dependent Schrödinger equation

i h ∂Ψ/∂t = (H0 + Hint) Ψ

in which the full Hamiltonian is explicitly divided into a part that governs the system in the

absence of the radiation field and Hint which describes the interaction with the field.

B. Perturbative Solution

By treating H0 as of zeroth order (in the field strength |A0|), expanding Ψ order-by-

order in the field-strength parameter:



Ψ = Ψ0 + Ψ1 + Ψ2 + Ψ3 + ...,

realizing that Hint contains terms that are both first- and second- order in |A0|

H1int = Σ j { (ie h /mec) A(rj,t) • ∇j  }

+ Σa { (i Zae h /mac) A(Ra,t) • ∇a },

H2int = Σ j { (e2/2mec2) |A(rj,t )|2 }

+ Σa {  (Za2e2/2mac2) |A(Ra,t )|2 },

and then collecting together all terms of like power of |A0|, one obtains the set of time-

dependent perturbation theory equations. The lowest order such equations read:

i h ∂Ψ0/∂t = H0 Ψ0

i h ∂Ψ1/∂t  = (H0 Ψ1+ H1int Ψ0)

i h ∂Ψ2/∂t  = (H0 Ψ2+ H2int Ψ0 + H1int Ψ1).

The zeroth order equations can easily be solved because H0 is independent of time.

Assuming that at t = - ∞, Ψ = ψi (we use the index i to denote the initial state), this solution

is:

Ψ0 = Φi exp(- i Ei0 t / h ).

The first-order correction to Ψ0, Ψ1  can be found by (i) expanding Ψ1 in the

complete set of zeroth-order states {Φf}:

Ψ1 = Σf Φf <Φf|Ψ1> = Σf Φf  Cf1,

(ii) using the fact that

H0 Φf  = Ef0 Φf,



and (iii) substituting all of this into the equation that Ψ1 obeys. The resultant equation for

the coefficients that appear in the first-order equation can be written as

i h ∂Cf1/∂t = Σk {Ek0 Ck1 δf,k }+ <Φf| H1int |Φi> exp(- i Ei0 t / h ),

or

i h ∂Cf1/∂t = Ef0 Cf1  + <Φf| H1int |Φi> exp(- i Ei0 t / h ).

Defining

Cf1 (t) = Df1(t) exp (- i Ef0 t / h ),

this equation can be cast in terms of an easy-to-solve equation for the Df1 coefficients:

i h ∂Df1/∂t = <Φf| H1int |Φi> exp( i [Ef0- Ei0 ] t / h ).

Assuming that the electromagnetic field A(r,t) is turned on at t=0, and remains on

until t = T, this equation for Df1 can be integrated to yield:

Df1(t) = (i h)-1 ⌡⌠
0

T

 < Φf|  H1int |Φi> exp( i [Ef0- E i0 ]  t '  /  h  )  dt '  .

C. Application to Electromagnetic Perturbations

1. First-Order Fermi-Wentzel "Golden Rule"

Using the earlier expressions for H1int and for A(r,t)

H1int = Σ j { (ie h /mec) A(rj,t) • ∇j  }

+ Σa { (i Zae h /mac) A(Ra,t) • ∇a }

and



2 Ao cos (ωt - k•r) = Ao { exp [i (ωt - k•r)] + exp [ -i (ωt - k•r)] },

it is relatively straightforward to carry out the above time integration to achieve a final

expression for Df1(t), which can then be substituted into Cf1 (t) = Df1(t) exp (- i Ef0 t / h )

to obtain the final expression for the first-order estimate of the probability amplitude for the

molecule appearing in the state Φf exp(- i Ef0 t / h ) after being subjected to electromagnetic

radiation from t = 0 until t = T. This final expression reads:

Cf1(T) =  (i h)-1 exp (- i Ef0 T / h ) {<Φf | Σ j { (ie h /mec) exp [-ik•rj] A0 • ∇j

+ Σa (i Zae h /mac)  exp [-ik•Ra] A0 • ∇a  | Φi>}    
exp (i (ω +  ωf,i)  T) -  1

i(ω+ωf,i)
 

+ (i h)-1 exp (- i Ef0 T / h ) {<Φf | Σ j { (ie h /mec) exp [ik•rj]A0 • ∇j

+ Σa (i Zae h /mac)  exp [ik•Ra] A0 • ∇a  | Φi>}    
exp (i (-ω +  ωf,i)  T) -  1

i(-ω+ωf,i)
 ,

where

ωf,i = [Ef0- Ei0 ] / h

is the resonance frequency for the transition between "initial" state Φi and "final" state Φf.

Defining the time-independent parts of the above expression as

αf,i = <Φf | Σ j { (e /mec) exp [-ik•rj] A0 • ∇j

+ Σa ( Zae /mac)  exp [-ik•Ra] A0 • ∇a  | Φi>,

this result can be written as

Cf1(T) =  exp (- i Ef0 T / h ) { αf,i  
exp (i (ω +  ωf,i)  T) -  1

i(ω+ωf,i)
 

+ α∗f,i 
exp (-i (ω -  ωf,i)  T) -  1

-i(ω-ωf,i)
   } .



The modulus squared  |Cf1(T)|2 gives the probability of finding the molecule in the final

state Φf  at time T, given that it was in Φi at time  t = 0. If the light's frequency ω is tuned

close to the transition frequency ωf,i of a particular transition, the term whose denominator

contains (ω - ωf,i) will dominate the term with (ω + ωf,i) in its denominator. Within this

"near-resonance" condition, the above probability reduces to:

|Cf1(T)|2 = 2 |αf,i|2  
(1 - cos((ω -  ωf,i)T))

(ω -  ωf,i)2
  

=   4 |αf,i|2  
sin2(1/2(ω -  ωf,i)T)

(ω -  ωf,i)2
   .

This is the final result of the first-order time-dependent perturbation theory treatment of

light-induced transitions between states Φi and Φf.

The so-called sinc- function

 
sin2(1/2(ω -  ωf,i)T)

(ω -  ωf,i)2
   

as shown in the figure below is strongly peaked near ω = ωf,i, and displays secondary

maxima (of decreasing amplitudes) near ω = ωf,i + 2 n π/T , n = 1, 2, ... . In the T → ∞
limit, this function becomes narrower and narrower, and the area under it

⌡

⌠

-∞

∞

 
sin2(1/2(ω -  ωf,i)T)

(ω -  ωf,i)2
 dω    = T/2

⌡

⌠

-∞

∞

 
sin2(1/2(ω -  ωf,i)T)

1/4T2(ω -  ωf,i)2
 dωT/2  

 = T/2
⌡

⌠

-∞

∞

 
sin2(x)

x2
 dx  = π T/2



grows with T. Physically, this means that when the molecules are exposed to the light

source for long times (large T), the sinc function emphasizes ω values near ωf,i (i.e., the

on-resonance ω values). These properties of the sinc function will play important roles in

what follows.

In
te

n
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ω

In most experiments, light sources have a "spread" of frequencies associated with

them; that is, they provide photons of various frequencies. To characterize such sources, it

is common to introduce the spectral source function g(ω) dω which gives the probability

that the photons from this source have frequency somewhere between ω and ω+dω. For

narrow-band lasers, g(ω) is a sharply peaked function about some "nominal" frequency ωo;

broader band light sources have much broader g(ω) functions.

When such non-monochromatic light sources are used, it is necessary to average

the above formula for  |Cf1(T)|2 over the g(ω) dω probability function in computing the

probability of finding the molecule in state Φf after time T, given that it was in Φi up until t

= 0, when the light source was turned on. In particular, the proper expression becomes:

|Cf1(T)|2ave =  4 |αf,i|2 
⌡

⌠

g(ω)  
sin2(1/2(ω -  ωf,i)T)

(ω -  ωf,i)2
 dω  



=  2 |αf,i|2 T
⌡

⌠

-∞

∞

 g(ω)  
sin2(1/2(ω -  ωf,i)T)

1/4T2(ω -  ωf,i)2
 dωT/2  .

If the light-source function is "tuned" to peak near ω = ωf,i, and if g(ω) is much broader (in

ω-space) than the 
sin2(1/2(ω -  ωf,i)T)

(ω -  ωf,i)2
  function, g(ω) can be replaced by its value at the

peak of the 
sin2(1/2(ω -  ωf,i)T)

(ω -  ωf,i)2
  function, yielding:

|Cf1(T)|2ave  =  2 g(ωf,i) |αf,i|2 T
⌡

⌠

-∞

∞

  
sin2(1/2(ω -  ωf,i)T)

1/4T2(ω -  ωf,i)2
 dωT/2  

=  2 g(ωf,i) |αf,i|2 T
⌡

⌠

-∞

∞

  
sin2(x)

x2
 dx  = 2 π g(ωf,i) |αf,i|2 T.

The fact that the     probability     of excitation from Φi  to Φf grows linearly with the time

T over which the light source is turned on implies that the    rate    of transitions between these

two states is constant and given by:

Ri,f = 2 π g(ωf,i) |αf,i|2 ;

this is the so-called first-order Fermi-Wentzel "golden rule" expression for such

transition rates. It gives the rate as the square of a transition matrix element between the two

states involved, of the first order perturbation multiplied by the light source function g(ω)

evaluated at the transition frequency ωf,i.

2. Higher Order Results

Solution of the second-order time-dependent perturbation equations,

i h ∂Ψ2/∂t  = (H0 Ψ2+ H2int Ψ0 + H1int Ψ1)



which will not be treated in detail here, gives rise to two distinct types of contributions to

the transition probabilities between Φi and Φf:

i. There will be matrix elements of the form

<Φf | Σ j { (e2/2mec2) |A(rj,t )|2 }+ Σa {  (Za2e2/2mac2) |A(Ra,t )|2 }|Φi>

arising when H2int couples Φi to Φf .

ii. There will be matrix elements of the form

Σk <Φf | Σ j { (ie h /mec) A(rj,t) • ∇j  }+ Σa { (i Zae h /mac) A(Ra,t) • ∇a } |Φk>

<Φk | Σ j { (ie h /mec) A(rj,t) • ∇j  }+ Σa { (i Zae h /mac) A(Ra,t) • ∇a } |Φi>

arising from expanding H1int Ψ1 = Σk Ck1 H1int|Φk> and using the earlier result for the

first-order amplitudes Ck1. Because both types of second-order terms vary quadratically

with the A(r,t) potential, and because A has time dependence of the form cos (ωt - k•r),

these terms contain portions that vary with time as cos(2ωt). As a result, transitions

between initial and final states Φi and Φf whose transition frequency is ωf,i can be induced

when 2ω = ωf,i; in this case, one speaks of coherent two-photon induced transitions in

which the electromagnetic field produces a perturbation that has twice the frequency of the

"nominal" light source frequency ω.

D. The "Long-Wavelength" Approximation

To make progress in further analyzing the first-order results obtained above, it is

useful to consider the wavelength λ of the light used in most visible/ultraviolet, infrared, or

microwave spectroscopic experiments. Even the shortest such wavelengths (ultraviolet) are

considerably longer than the spatial extent of all but the largest molecules (i.e., polymers

and biomolecules for which the approximations we introduce next are not appropriate).

In the definition of the essential coupling matrix element αf,i

αf,i = <Φf | Σ j  (e /mec) exp [-ik•rj] A0 • ∇j

+ Σa ( Zae /mac)  exp [-ik•Ra] A0 • ∇a  | Φi>,



the factors exp [-ik•rj] and exp[-i k•Ra] can be expanded as:

exp [-ik•rj]   = 1 + (-ik•rj) + 1/2 (-ik•rj)2 + ...

exp[-i k•Ra] = 1 + (-i k•Ra) + 1/2 (-i k•Ra)2 + ...  .

Because |k| = 2π/λ, and the scales of rj and Ra are of the dimension of the molecule, k•rj

and k•Ra are less than unity in magnitude, within this so-called "long-wavelength"

approximation.

1. Electric Dipole Transitions

Introducing these expansions into the expression for αf,i gives rise to terms of

various powers in 1/λ. The lowest order terms are:

αf,i (E1)= <Φf | Σ j (e /mec) A0 • ∇j  + Σa ( Zae /mac) A0 • ∇a  | Φi>

and are called "electric dipole" terms, and are denoted E1. To see why these matrix

elements are termed E1, we use the following identity (see Chapter 1) between the

momentum operator - i  h ∇ and the corresponding position operator r:

∇j = - (me/ h2 ) [ H, rj ]

∇a = - (ma/ h2 ) [ H, Ra ].

This derives from the fact that H contains ∇j and ∇a in its kinetic energy operators (as ∇2a

and  ∇2j ).

Substituting these expressions into the above αf,i(E1) equation and using H Φi or f

= E0i or f Φi or f, one obtains:

αf,i (E1) = (E0f - E0i) A0 • <Φf | Σ j  (e /h2c) rj  + Σa ( Zae /h2c)  Ra  | Φi>

=  ωf,i  A0 • <Φf | Σ j  (e /hc) rj  + Σa ( Zae /hc)  Ra  | Φi>

=  (ωf,i /hc) A0 • <Φf | µ | Φi>,



where µ is the electric dipole moment operator for the electrons and nuclei:

µ = Σ j  e  rj  + Σa  Za e   Ra .

The fact that the E1 approximation to αf,i contains matrix elements of the electric dipole

operator between the initial and final states makes it clear why this is called the electric

dipole contribution to αf,i; within the E1 notation,  the E stands for electric moment and the

1 stands for the first such moment (i.e., the dipole moment).

Within this approximation, the overall rate of transitions is given by:

Ri,f = 2 π g(ωf,i) |αf,i|2

= 2 π g(ωf,i) (ωf,i /hc)2 |A0 • <Φf | µ | Φi> |2.

Recalling that E(r,t) = - 1/c ∂A/∂t = ω/c Ao sin (ωt - k•r), the magnitude of A0 can be

replaced by that of E, and this rate expression becomes

Ri,f  = (2π/h2) g(ωf,i) | E0 • <Φf | µ | Φi> |2.

This expresses the widely used E1 approximation to the Fermi-Wentzel golden rule.

2. Magnetic Dipole and Electric Quadrupole Transitions

When E1 predictions for the rates of transitions between states vanish (e.g., for

symmetry reasons as discussed below), it is essential to examine higher order contributions

to αf,i. The next terms in the above long-wavelength expansion  vary as 1/λ and have the

form:

αf,i(E2+M1)  = <Φf | Σ j  (e /mec) [-ik•rj] A0 • ∇j

+ Σa ( Zae /mac) [-ik•Ra] A0 • ∇a  | Φi>.

For reasons soon to be shown, they are called electric quadrupole (E2) and magnetic dipole

(M1) terms. Clearly, higher and higher order terms can be so generated. Within the long-

wavelength regime, however, successive terms should decrease in magnitude because of

the successively higher powers of 1/λ that they contain.



To further analyze the above E2 + M1 factors, let us label the propagation direction

of the light as the z-axis (the axis along which k lies) and the direction of A0 as the x-axis.

These axes are so-called "lab-fixed" axes because their orientation is determined by the

direction of the light source and the direction of polarization of the light source's E field,

both of which are specified by laboratory conditions. The molecule being subjected to this

light can be oriented at arbitrary angles relative to these lab axes.

With the x, y, and z axes so defined, the above expression for

αf,i (E2+M1) becomes

αf,i(E2+M1)  = - i (A02π/λ )<Φf | Σ j  (e /mec) zj ∂/∂xj

+ Σa ( Zae /mac) za∂/∂xa  | Φi>.

Now writing (for both zj and za)

z ∂/∂x = 1/2 (z ∂/∂x - x ∂/∂z + z ∂/∂x + x ∂/∂z),

and using

∇j = - (me/ h2 ) [ H, rj ]

∇a = - (ma/ h2 ) [ H, Ra ],

the contributions of 1/2 (z ∂/∂x + x ∂/∂z) to αf,i (E2+M1) can be rewritten as

αf,i(E2)  = - i 
(A0  e2π ωf,i)

cλh
  <Φf | Σ j  zj xj  + Σa Za zaxa  | Φi>.

The operator Σ i  zi xj  + Σa Za zaxa  that appears above is the z,x element of the electric

quadrupole moment operator Qz,x ; it is for this reason that this particular component is

labeled E2 and denoted the electric quadrupole contribution.

The remaining 1/2 (z ∂/∂x - x ∂/∂z) contribution to αf,i (E2+M1) can be rewritten in

a form that makes its content more clear by first noting that

1/2 (z ∂/∂x - x ∂/∂z)  = (i/2h) (z px - x pz) = (i/2h) Ly



contains the y-component of the angular momentum operator. Hence, the following

contribution to αf,i (E2+M1) arises:

αf,i (M1) = 
A02π e

2λch 
   <Φf | Σ j Lyj /me + Σa  Za Lya /ma  | Φi>.

The magnetic dipole moment of the electrons about the y axis is

µy ,electrons = Σ j (e/2mec)  Lyj ;

that of the nuclei is

µy ,nuclei = Σa (Zae/2mac)  Lya.

The αf,i (M1) term thus describes the interaction of the magnetic dipole moments of the

electrons and nuclei with the magnetic field (of strength |H| = A0 k) of the light (which lies

along the y axis):

αf,i (M1) = 
|H| 
h    <Φf | µy ,electrons + µy ,nuclei  | Φi>.

The total rate of transitions from Φi  to Φf is given, through first-order in

perturbation theory, by

Ri,f = 2 π g(ωf,i) |αf,i|2,

where αf,i is a sum of its E1, E2, M1, etc. pieces. In the next chapter, molecular symmetry

will be shown to be of use in analyzing these various pieces. It should be kept in mind that

the contributions caused by E1 terms will dominate, within the long-wavelength

approximation, unless symmetry causes these terms to vanish. It is primarily under such

circumstances that consideration of M1 and E2 transitions is needed.

III. The Kinetics of Photon Absorption and Emission

A. The Phenomenological Rate Laws



Before closing this chapter, it is important to emphasize the context in which the

transition rate expressions obtained here are most commonly used. The perturbative

approach used in the above development gives rise to various contributions to the overall

rate coefficient for transitions from an initial state Φi to a final state Φf; these contributions

include the electric dipole, magnetic dipole, and electric quadrupole first order terms as well

contributions arising from second (and higher) order terms in the perturbation solution.

In principle, once the rate expression

Ri,f = 2 π g(ωf,i) |αf,i|2

has been evaluated through some order in perturbation theory and including the dominant

electromagnetic interactions, one can make use of these    state-to-state rates   , which are

computed on a per-molecule basis, to describe the time evolution of the populations of the

various energy levels of the molecule under the influence of the light source's

electromagnetic fields.

For example, given two states, denoted i and f, between which transitions can be

induced by photons of frequency ωf,i, the following kinetic model is often used to describe

the time evolution of the numbers of molecules ni and nf in the respective states:

dni
dt   = - Ri,f ni + Rf,i nf

dnf
dt   = - Rf,i nf + Ri,fni .

Here, Ri,f and Rf,i are the rates (per molecule) of transitions for the i ==> f and

f ==> i transitions respectively. As noted above, these rates are proportional to the intensity

of the light source (i.e., the photon intensity) at the resonant frequency and to the square of

a matrix element connecting the respective states. This matrix element square is |αi,f|2 in the

former case and |αf,i|2 in the latter. Because the perturbation operator whose matrix

elements are αi,f and αf,i is Hermitian (this is true through all orders of perturbation theory

and for all terms in the long-wavelength expansion), these two quantities are complex

conjugates of one another, and, hence |αi,f|2 = |αf,i|2, from which it follows that  Ri,f = Rf,i

. This means that the state-to-state absorption and stimulated emission rate coefficients

(i.e., the rate per molecule undergoing the transition) are identical. This result is referred to

as the principle of microscopic reversibility.



Quite often, the states between which transitions occur are members of    levels    that

contain more than a single state. For example, in rotational spectroscopy a transition

between a state in the J = 3 level of a diatomic molecule and a state in the J = 4 level involve

such states; the respective levels are 2J+1 = 7 and 2J+1 = 9 fold degenerate, respectively.

To extend the above kinetic model to this more general case in which degenerate

levels occur, one uses the number of molecules in each level (Ni and Nf for the two levels

in the above example) as the time dependent variables. The kinetic equations then

governing their time evolution can be obtained by summing the state-to-state equations over

all states in each level

Σi in level I (
dni
dt  ) = 

dNI
dt  

Σf in level F (
dnf
dt  ) = 

dNF
dt  

and realizing that each state within a given level can undergo transitions to all states within

the other level (hence the total rates of production and consumption must be summed over

all states to or from which transitions can occur). This generalization results in a set of rate

laws for the populations of the respective levels:

dNi
dt   = - gf Ri,f Ni + gi Rf,i Nf

dNf
dt   = - gi Rf,i Nf + gf Ri,fNi .

Here, gi and gf are the degeneracies of the two levels (i.e., the number of states in each

level) and the Ri,f and Rf,i, which are equal as described above, are the state-to-state rate

coefficients introduced earlier.

B. Spontaneous and Stimulated Emission

It turns out (the development of this concept is beyond the scope of this text) that

the rate at which an excited level can emit photons and decay to a lower energy level is

dependent on two factors: (i) the rate of stimulated photon emission as covered above,

and (ii) the rate of spontaneous photon emission.  The former rate gf Ri,f (per molecule)

is proportional to the light intensity g(ωf,i) at the resonance frequency. It is conventional to



separate out this intensity factor by defining an intensity independent rate coefficient Bi,f for

this process as:

gf Ri,f = g(ωf,i) Bi,f.

Clearly, Bi,f  embodies the final-level degeneracy factor gf, the perturbation matrix

elements, and the 2π factor in the earlier expression for Ri,f. The spontaneous rate of

transition from the excited to the lower level is found to be    independent     of photon

intensity, because it deals with a process that does not  require collision with a photon to

occur, and is usually denoted Ai,f. The rate of photon-stimulated upward transitions from

state f to state i (gi Rf,i = gi Ri,f in the present case) is also proportional to g(ωf,i), so it is

written by convention as:

gi Rf,i = g(ωf,i) Bf,i .

An important relation between the Bi,f and Bf,i parameters exists and is based on the

identity Ri,f = Rf,i that connects the state-to-state rate coefficients:

(Bi,f)
(Bf,i)

  = 
(gfRi,f)
(giRf,i)

  = 
gf
gi

  .

This relationship will prove useful in the following sections.

C. Saturated Transitions and Transparency

Returning to the kinetic equations that govern the time evolution of the populations

of two levels connected by photon absorption and emission, and adding in the term needed

for spontaneous emission, one finds (with the initial level being of the lower energy):

dNi
dt   = -  gBi,f Ni + (Af,i + gBf,i)Nf

dNf
dt   = - (Af,i + gBf,i)Nf + gBi,f Ni

where g = g(ω) denotes the light intensity at the resonance frequency.



At steady state, the populations of these two levels are given by setting
dNi
dt    = 

dNf
dt    = 0:

Nf
Ni

  = 
(gBi,f)

(Af,i+gBf,i)
  .

When the light source's intensity is so large as to render gBf,i >> Af,i (i.e., when the rate

of spontaneous emission is small compared to the stimulated rate), this population ratio

reaches (Bi,f/Bf,i), which was shown earlier to equal (gf/gi). In this case, one says that the

populations have been saturated by the intense light source. Any further increase in light

intensity will result in    zero     increase in the rate at which photons are being absorbed.

Transitions that have had their populations saturated by the application of intense light

sources are said to display optical transparency because they are unable to absorb (or

emit) any further photons because of their state of saturation.

D. Equilibrium and Relations Between A and B Coefficients

When the molecules in the two levels being discussed reach    equilibrium      (at which

time the 
dNi
dt    = 

dNf
dt    = 0 also holds) with a photon source that itself is in equilibrium

characterized by a temperature T, we must have:

Nf
Ni

   = 
gf
gi

  exp(-(Ef - Ei)/kT) =  
gf
gi

  exp(-h ω/kT)

where gf and gi are the degeneracies of the states labeled f and i. The photon source that is

characterized by an equilibrium temperature T is known as a black body radiator, whose

intensity profile g(ω) (in erg cm-3 sec) is know to be of the form:

g(ω) = 
2(hω)3

πc3h2
 (exp(hω/kT) - 1) -1.

Equating the kinetic result that must hold at equilibrium:

Nf
Ni

  = 
(gBi,f)

(Af,i+gBf,i)
   



to the thermodynamic result:

Nf
Ni

   = 
gf
gi

  exp(-h ω/kT),

and using the above black body g(ω) expression and the identity

(Bi,f)
(Bf,i)

  = 
gf
gi

  ,

one can solve for the Af,i rate coefficient in terms of the Bf,i coefficient. Doing so yields:

Af,i = Bf,i 
2(hω)3

πc3h2  .

E. Summary

In summary, the so-called Einstein A and B rate coefficients connecting a

lower-energy initial state i and a final state f are related by the following conditions:

Bi,f = 
gf
gi

  Bf,i

and

Af,i = 
2(hω)3

πc3h2
  Bf,i.

These phenomenological level-to-level rate coefficients are related to the state-to-state Ri,f

coefficients derived by applying perturbation theory to the electromagnetic perturbation

through

gf Ri,f = g(ωf,i) Bi,f .

The A and B coefficients can be used in a kinetic equation model to follow the time

evolution of the populations of the corresponding levels:



dNi
dt   = -  gBi,f Ni + (Af,i + gBf,i)Nf

dNf
dt   = - (Af,i + gBf,i)Nf + gBi,f Ni .

These equations possess steady state solutions

Nf
Ni

  = 
(gBi,f)

(Af,i+gBf,i)
  

which, for large g(ω), produce saturation conditions:

Nf
Ni

  = 
(Bi,f)
(Bf,i)

  = 
gf
gi

  .



Chapter 15

The tools of time-dependent perturbation theory can be applied to transitions among

electronic, vibrational, and rotational states of molecules.

I. Rotational Transitions

Within the approximation that the electronic, vibrational, and rotational states of a

molecule can be treated as independent,  the total molecular wavefunction of the "initial"

state is a product

Φi = ψei χvi φri

of an electronic function ψei, a vibrational function χvi, and a rotational function φri. A

similar product expression holds for the "final" wavefunction Φf.

In microwave spectroscopy, the energy of the radiation lies in the range of fractions

of a cm-1 through several cm-1; such energies are adequate to excite rotational motions of

molecules but are not high enough to excite any but the weakest vibrations (e.g., those of

weakly bound Van der Waals complexes). In rotational transitions, the electronic and

vibrational states are thus left unchanged by the excitation process; hence ψei = ψef and χvi

= χvf.

Applying the first-order electric dipole transition rate expressions

Ri,f = 2 π g(ωf,i) |αf,i|2

obtained in Chapter 14 to this case requires that the E1 approximation

Ri,f  = (2π/h2) g(ωf,i) | E0 • <Φf | µ | Φi> |2

be examined in further detail. Specifically, the electric dipole matrix elements <Φf | µ | Φi>

with µ = Σ j  e  rj  + Σa  Za e   Ra must be analyzed for Φi and Φf being of the product form

shown above.

The integrations over the electronic coordinates contained in <Φf | µ | Φi>, as well

as the integrations over vibrational degrees of freedom yield "expectation values" of the

electric dipole moment operator because the electronic and vibrational components of Φi

and Φf are identical:



<ψei | µ | ψei> = µ (R)

is the dipole moment of the initial electronic state (which is a function of the internal

geometrical degrees of freedom of the molecule, denoted R); and

<χvi | µ(R) | χvi> = µave

is the vibrationally averaged dipole moment for the particular vibrational state labeled χvi.

The vector  µave has components along various directions and can be viewed as a vector

"locked" to the molecule's internal coordinate axis (labeled a, b, c as below).

depends on
φ  and χ

θ

c

a

 b

Z 

X Y



The rotational part of the <Φf | µ | Φi> integral is not of the expectation value form

because the initial rotational function φir is not the same as the final φfr. This integral has the

form:

<φir |  µave | φfr> = ⌡⌠(Y*L,M (θ,φ)   µave YL',M' (θ,φ) sinθ dθ dφ) 

for linear molecules whose initial and final rotational wavefunctions are YL,M and YL',M' ,

respectively, and

<φir |  µave | φfr> = 
2L + 1

8  π2
 

2L'  + 1

8  π2
  

 ⌡⌠(DL,M,K (θ,φ,χ)  µave D*L',M',K' (θ,φ,χ) sinθ dθ dφ dχ) 

for spherical or symmetric top molecules (here, 
2L + 1

8  π2
   D*L,M,K (θ,φ,χ) are the

normalized rotational wavefunctions described in Chapter 13 and in Appendix G). The

angles θ, φ, and χ refer to how the molecule-fixed coordinate system is oriented with

respect to the space-fixed X, Y, Z axis system.

A. Linear Molecules

For linear molecules, the vibrationally averaged dipole moment  µave lies along the

molecular axis; hence its orientation in the lab-fixed coordinate system can be specified in

terms of the same angles (θ and φ) that are used to describe the rotational functions YL,M

(θ,φ). Therefore, the three components of the <φir |  µave | φfr> integral can be written as:

<φir |  µave | φfr>x  = µ ⌡⌠(Y*L,M (θ,φ) sinθ cosφ YL',M' (θ,φ) sinθ dθ dφ) 

<φir |  µave | φfr>y = µ ⌡⌠(Y*L,M (θ,φ) sinθ sinφ YL',M' (θ,φ) sinθ dθ dφ) 



<φir |  µave | φfr>z = µ ⌡⌠(Y*L,M (θ,φ) cosθ YL',M' (θ,φ) sinθ dθ dφ) ,

where µ is the magnitude of the averaged dipole moment. If the molecule has no

dipole moment, all of the above electric dipole integrals vanish and the intensity of E1

rotational transitions is zero.

The three E1 integrals can be further analyzed by noting that cosθ ∝ Y1,0 ; sinθ
cosφ ∝ Y1,1 + Y1,-1 ; and sinθ sinφ ∝ Y1,1 - Y1,-1 and using the angular momentum

coupling methods illustrated in Appendix G. In particular, the result given in that appendix:

 Dj, m, m' Dl, n, n'

= ΣJ,M,M' <J,M|j,m;l,n> <j,m'; l,n'|J,M'> DJ, M, M'

when multiplied by D*J,M,M' and integrated over sinθ dθ dφ dχ, yields:

⌡⌠(D*J,M,M' Dj ,  m, m' D l ,  n, n' sinθ dθ dφ dχ) 

=  
8π2

2J+1   <J,M|j,m;l,n> <j,m'; l,n'|J,M'>

= 8π2  




j   l   J

m n -M  




j   l   J

m'  n '  -M'  (-1) M+M'.

To use this result in the present linear-molecule case, we note that the DJ,M,K functions and

the YJ,M functions are related by:

YJ,M (θ,φ) = (2J+1)/4π  D*J,M,0 (θ,φ,χ).

The normalization factor is now (2J+1)/4π   rather than (2J+1)/8π2   because the YJ,M are

no longer functions of χ, and thus the need to integrate over 0 ≤ χ ≤ 2π disappears.

Likewise, the χ-dependence of D*J,M,K  disappears for K = 0.

We now use these identities in the three E1 integrals of the form

µ ⌡⌠(Y*L,M (θ,φ) Y1,m (θ,φ) YL',M' (θ,φ) sinθ dθ dφ) ,



with m = 0 being the Z- axis integral, and the Y- and X- axis integrals being combinations

of the m = 1 and m = -1 results. Doing so yields:

µ ⌡⌠(Y*L,M (θ,φ) Y1,m (θ,φ) YL',M' (θ,φ) sinθ dθ dφ) 

= µ 
2L+1

4π
 
2L'+1

4π
 

3

4π
  ⌡⌠(DL,M,0 D*1,m,0 D*L',M',0 sinθ dθ dφ dχ/2π) .

The last factor of 1/2π is inserted to cancel out the integration over dχ that, because all K-

factors in the rotation matrices equal zero, trivially yields 2π. Now, using the result shown

above expressing the integral over three rotation matrices, these E1 integrals for the linear-

molecule case reduce to:

µ ⌡⌠(Y*L,M (θ,φ) Y1,m (θ,φ) YL',M' (θ,φ) sinθ dθ dφ) 

=  µ 
2L+1

4π
 
2L'+1

4π
 

3

4π
  
8π2

2π
  




L '   1   L

M' m -M  




L '   1   L

0 0 -0  (-1) M

=  µ (2L+1)(2L'+1) 
3

4π
    





L '   1   L

M' m -M  




L '   1   L

0 0 -0  (-1) M  .

Applied to the z-axis integral (identifying m = 0), this result therefore vanishes

unless:

M = M'

and

L = L' +1 or L' - 1.

Even though angular momentum coupling considerations would allow L = L' (because

coupling two angular momenta with j = 1 and j = L' should give L'+1, L', and L'-1), the

3-j symbol  




L '   1   L

0 0 -0   vanishes for the L = L' case since 3-j symbols have the following

symmetry







L '   1   L

M' m -M   = (-1)L+L'+1 




L '   1   L

-M' -m M   

with respect to the M, M', and m indices. Applied to the  




L '   1   L

0 0 -0    3-j symbol, this

means that this particular 3-j element vanishes for L = L' since L + L' + 1 is odd and hence

(-1)L + L' + 1 is  -1.

Applied to the x- and y- axis integrals, which contain m = ± 1 components, this

same analysis yields:

 µ (2L+1)(2L'+1) 
3

4π
    





L '   1   L

M'  ±1 -M
 




L '   1   L

0 0 -0  (-1) M

which then requires that

M = M' ± 1

and

L = L' + 1, L' - 1,

with L = L' again being forbidden because of the second 3-j symbol.

These results provide so-called "selection rules" because they limit the L and M

values of the final rotational state, given the L', M' values of the initial rotational state. In

the figure shown below, the L = L' + 1 absorption spectrum of NO at 120 °K is given. The

intensities of the various peaks are related to the populations of the lower-energy rotational

states which are, in turn, proportional to (2 L' + 1) exp(- L'(L'+1) h2/8π2IkT). Also

included in the intensities are so-called line strength factors that are proportional to the

squares of the quantities:

 µ (2L+1)(2L'+1) 
3

4π
    





L '   1   L

M' m -M  




L '   1   L

0 0 -0  (-1) M

which appear in the E1 integrals analyzed above (recall that the rate of photon absorption

Ri,f  = (2π/h2) g(ωf,i) | E0 • <Φf | µ | Φi> |2 involves the squares of these matrix elements).

The book by Zare gives an excellent treatment of line strength factors' contributions to

rotation, vibration, and electronic line intensities.



B. Non-Linear Molecules

For molecules that are non-linear and whose rotational wavefunctions are given in

terms of the spherical or symmetric top functions D*L,M,K , the dipole moment  µave can

have components along any or all three of the molecule's internal coordinates (e.g., the

three molecule-fixed coordinates that describe the orientation of the principal axes of the

moment of inertia tensor). For a spherical top molecule, | µave| vanishes, so E1 transitions

do not occur.

For symmetric top species,  µave lies along the symmetry axis of the molecule, so

the orientation of  µave can again be described in terms of θ and φ, the angles used to locate

the orientation of the molecule's symmetry axis relative to the lab-fixed coordinate system.

As a result, the E1 integral again can be decomposed into three pieces:

<φir | µave| φfr>x = µ ⌡⌠(DL,M,K(θ,φ,χ) cosθ cosφ D*L',M',K' (θ,φ,χ) sinθ dθ dφ dχ) 

<φir |  µave| φfr>y = µ⌡⌠(DL,M,K (θ,φ,χ) cosθ sinφ D*L',M',K' (θ,φ,χ) sinθ dθ dφ dχ) 

 <φir |  µave| φfr>z = µ⌡⌠(DL,M,K (θ,φ,χ) cosθ D*L',M',K' (θ,φ,χ) sinθ dθ dφ dχ) .



Using the fact that cosθ ∝ D*1,0,0 ; sinθ cosφ ∝ D*1,1,0 + D*1,-1,0 ; and sinθ sinφ ∝
D*1,1,0 - D*1,-1,0, and the tools of angular momentum coupling allows these integrals to be

expressed, as above, in terms of products of the following 3-j symbols:

 




L '   1   L

M' m -M  




L '   1   L

K'  0  -K   ,

from which the following selection rules are derived:

 L = L' + 1, L', L' - 1 (but not L = L' = 0),

K = K',

M = M' + m, 

with m = 0 for the Z-axis integral and m =  ± 1 for the X- and Y- axis integrals. In

addition, if K = K' = 0, the L = L' transitions are also forbidden by the second 3-j symbol

vanishing.

II. Vibration-Rotation Transitions

When the initial and final electronic states are identical but the respective vibrational

and rotational states are not, one is dealing with transitions between vibration-rotation states

of the molecule. These transitions are studied in infrared (IR) spectroscopy using light of

energy in the 30 cm-1 (far IR) to 5000 cm-1 range. The electric dipole matrix element

analysis still begins with the electronic dipole moment integral <ψei | µ | ψei> = µ (R), but

the integration over internal vibrational coordinates no longer produces the vibrationally

averaged dipole moment. Instead one forms the vibrational transition dipole integral:

<χvf | µ(R) | χvi> = µf,i

between the initial χi and final χf vibrational states.

A. The Dipole Moment Derivatives

Expressing µ(R) in a power series expansion about the equilibrium bond length

position (denoted Re collectively and Ra,e individually):



µ(R) = µ(Re) + Σa ∂µ/∂Ra (Ra - Ra,e) + ...,

substituting into the <χvf | µ(R) | χvi> integral, and using the fact that χi and χf are

orthogonal (because they are eigenfunctions of vibrational motion on the same electronic

surface and hence of the same vibrational Hamiltonian), one obtains:

<χvf | µ(R) | χvi> = µ(Re) <χvf | χvi> + Σa ∂µ/∂Ra <χvf |  (Ra - Ra,e) | χvi>  + ...

= Σa (∂µ/∂Ra) <χvf |  (Ra - Ra,e) | χvi>  + ...  .

This result can be interpreted as follows:

i. Each independent vibrational mode of the molecule contributes to the µf,i vector an

amount equal to (∂µ/∂Ra) <χvf |  (Ra - Ra,e) | χvi>  + ... .

ii. Each such contribution contains one part (∂µ/∂Ra) that depends on how the molecule's

dipole moment function varies with vibration along that particular mode (labeled a),

iii. and a second part  <χvf |  (Ra - Ra,e) | χvi> that depends on the character of the initial

and final vibrational wavefunctions.

If the vibration does not produce a modulation of the dipole moment (e.g., as with

the symmetric stretch vibration of the CO2  molecule), its infrared intensity vanishes

because (∂µ/∂Ra) = 0. One says that such transitions are infrared "inactive".

B. Selection Rules on the Vibrational Quantum Number in the Harmonic Approximation

If the vibrational functions are described within the harmonic oscillator

approximation, it can be shown that the  <χvf |  (Ra - Ra,e) | χvi> integrals vanish unless vf

= vi +1 , vi -1 (and that these integrals are proportional to (vi +1)1/2 and (vi)1/2 in the

respective cases). Even when χvf and χvi are rather non-harmonic, it turns out that such ∆v

= ± 1 transitions have the largest <χvf |  (Ra - Ra,e) | χvi> integrals and therefore the highest

infrared intensities. For these reasons, transitions that correspond to ∆v = ± 1 are called

"fundamental"; those with ∆v = ± 2 are called "first overtone" transitions.



In summary then, vibrations for which the molecule's dipole moment is modulated

as the vibration occurs (i.e., for which  (∂µ/∂Ra) is non-zero)    and     for which ∆v = ± 1 tend

to have large infrared intensities; overtones of such vibrations tend to have smaller

intensities, and those for which  (∂µ/∂Ra) = 0 have no intensity.

C. Rotational Selection Rules for Vibrational Transitions

The result of all of the vibrational modes' contributions to

Σa (∂µ/∂Ra) <χvf |  (Ra - Ra,e) | χvi> is a vector µtrans that is termed the vibrational

"transition dipole" moment. This is a vector with components along, in principle, all three

of the internal axes of the molecule. For each particular vibrational transition (i.e., each

particular χi and χf) its orientation in space depends only on the orientation of the molecule;

it is thus said to be locked to the molecule's coordinate frame. As such, its orientation

relative to the lab-fixed coordinates (which is needed to effect a derivation of rotational

selection rules as was done earlier in this Chapter) can be described much as was done

above for the vibrationally averaged dipole moment that arises in purely rotational

transitions. There are, however, important differences in detail. In particular,

i. For a linear molecule µtrans can have components either along (e.g., when stretching

vibrations are excited; these cases are denoted σ-cases) or perpendicular to (e.g., when

bending vibrations are excited; they are denoted π cases) the molecule's axis.

ii. For symmetric top species, µtrans need not lie along the molecule's symmetry axis; it can

have components either along or perpendicular to this axis.

iii. For spherical tops, µtrans will vanish whenever the vibration does not induce a dipole

moment in the molecule. Vibrations such as the totally symmetric a1

C-H stretching motion in CH4 do not induce a dipole moment, and are thus infrared

inactive; non-totally-symmetric vibrations can also be inactive if they induce no dipole

moment.

As a result of the above considerations, the angular integrals

     <φir | µtrans | φfr> = ⌡⌠(Y*L,M (θ,φ)  µtrans YL',M' (θ,φ) sinθ dθ dφ) 



and

     <φir | µtrans | φfr> = ⌡⌠(DL,M,K (θ,φ,χ)  µtrans D*L',M',K' (θ,φ,χ) sinθ dθ dφ dχ) 

that determine the rotational selection rules appropriate to vibrational transitions produce

similar, but not identical, results as in the purely rotational transition case.

The derivation of these selection rules proceeds as before, with the following

additional considerations. The transition dipole moment's µtrans components along the lab-

fixed axes must be related to its molecule-fixed coordinates (that are determined by the

nature of the vibrational transition as discussed above). This transformation, as given in

Zare's text, reads as follows:

(µtrans)m = Σk D*1,m,k (θ,φ,χ) (µtrans)k

where (µtrans)m with m = 1, 0, -1 refer to the components along the lab-fixed (X, Y, Z)

axes and (µtrans)k with k = 1, 0, -1 refer to the components along the molecule- fixed (a, b,

c) axes.

This relationship, when used, for example, in the symmetric or spherical top E1

integral:

 <φir | µtrans | φfr> = ⌡⌠(DL,M,K (θ,φ,χ)  µtrans D*L',M',K' (θ,φ,χ) sinθ dθ dφ dχ) 

gives rise to products of 3-j symbols of the form:

 




L '   1   L

M' m -M  




L '   1   L

K'  k  -K   .

The product of these 3-j symbols is nonvanishing only under certain conditions that

provide the rotational selection rules applicable to vibrational lines of symmetric and

spherical top molecules.

Both 3-j symbols will vanish unless

L = L' +1, L', or L'-1.



In the special case in which L = L' =0 (and hence with M = M' =0 = K = K', which means

that m = 0 = k), these3-j symbols again vanish. Therefore, transitions with

L = L' =0 

are again forbidden. As usual, the fact that the lab-fixed quantum number m can range

over m = 1, 0, -1, requires that

M = M' + 1, M', M'-1.

The selection rules for ∆K depend on the nature of the vibrational transition, in

particular, on the component of µtrans along the molecule-fixed axes. For the second 3-j

symbol to not vanish, one must have

K = K' + k,

where k = 0, 1, and -1 refer to these molecule-fixed components of the transition dipole.

Depending on the nature of the transition, various k values contribute.

1. Symmetric Tops

In a symmetric top molecule such as NH3, if the transition dipole lies along the

molecule's symmetry axis, only k = 0 contributes. Such vibrations preserve the molecule's

symmetry relative to this symmetry axis (e.g. the totally symmetric N-H stretching mode in

NH3). The additional selection rule ∆K = 0

is thus obtained. Moreover, for K = K' = 0, all transitions with ∆L = 0 vanish because the

second 3-j symbol vanishes. In summary, one has:

∆K = 0; ∆M = ±1 ,0; ∆L = ±1 ,0 (but L = L' =0 is forbidden and all ∆L = 0 

are forbidden for K = K' = 0)

for symmetric tops with vibrations whose transition dipole lies along the symmetry axis.

If the transition dipole lies perpendicular to the symmetry axis, only

k = ±1 contribute. In this case, one finds

∆K = ±1; ∆M = ±1 ,0; ∆L = ±1 ,0 (neither L = L' =0 nor K = K' = 0 can occur

for such transitions, so there are no additional constraints).



2. Linear Molecules

When the above analysis is applied to a diatomic species such as HCl, only k = 0 is

present since the only vibration present in such a molecule is the bond stretching vibration,

which has σ symmetry. Moreover, the rotational functions are spherical harmonics (which

can be viewed as D*L',M',K' (θ,φ,χ) functions with K' = 0), so the K and K' quantum

numbers are identically zero. As a result, the product of 3-j symbols

 




L '   1   L

M' m -M  




L '   1   L

K'  k  -K   

reduces to

 




L '   1   L

M' m -M  




L'  1  L

0 0 0   ,

which will vanish unless

L = L' +1, L'-1,

but     not    L = L' (since parity then causes the second 3-j symbol to vanish), and

M = M' + 1, M', M'-1.

The L = L' +1 transitions are termed R-branch absorptions and those obeying L = L' -1

are called P-branch transitions. Hence, the selection rules

∆M = ±1,0; ∆L = ±1

are identical to those for purely rotational transitions.

When applied to linear polyatomic molecules, these same selection rules result if the

vibration is of σ symmetry (i.e., has k = 0). If, on the other hand, the transition is of π
symmetry (i.e., has k = ±1), so the transition dipole lies perpendicular to the molecule's

axis, one obtains:

∆M = ±1,0; ∆L = ±1, 0.



These selection rules are derived by realizing that in addition to k = ±1, one has:

(i) a linear-molecule rotational wavefunction that in the v = 0 vibrational level is described

in terms of a rotation matrix DL',M',0 (θ,φ,χ) with no angular momentum along the

molecular axis, K' = 0 ; (ii) a v = 1 molecule whose rotational wavefunction must be given

by a rotation matrix DL,M,1 (θ,φ,χ) with one unit of angular momentum about the

molecule's axis, K = 1. In the latter case, the angular momentum is produced by the

degenerate π vibration itself. As a result, the selection rules above derive from the

following product of 3-j symbols:

  




L '   1   L

M' m -M  




L '   1   L

0 1 -1   .

Because ∆L = 0 transitions are allowed for π vibrations, one says that π vibrations possess

Q- branches in addition to their R- and P- branches (with ∆L = 1 and -1, respectively).

In the figure shown below, the v = 0 ==> v = 1 (fundamental) vibrational

absorption spectrum of HCl is shown. Here the peaks at lower energy (to the right of the

figure) belong to P-branch transitions and occur at energies given approximately by:

E = h ωstretch + (h2/8π2I) ((L-1)L - L(L+1))

= h ωstretch -2 (h2/8π2I) L.

The R-branch transitions occur at higher energies given approximately by:

E = h ωstretch + (h2/8π2I) ((L+1)(L+2) - L(L+1))

= h ωstretch +2 (h2/8π2I) (L+1).

The absorption that is "missing" from the figure below lying slightly below 2900 cm-1 is

the Q-branch transition for which L = L'; it is absent because the selection rules forbid it.



It should be noted that the spacings between the experimentally observed peaks in

HCl are not constant as would be expected based on the above P- and R- branch formulas.

This is because the moment of inertia appropriate for the v = 1 vibrational level is different

than that of the v = 0 level. These effects of vibration-rotation coupling can be modeled by

allowing the v = 0 and v = 1 levels to  have rotational energies written as

E = h ωstretch (v + 1/2) + (h2/8π2Iv) (L (L+1))

where v and L are the vibrational and rotational quantum numbers. The P- and R- branch

transition energies that pertain to these energy levels can then be written as:

EP = h ωstretch  - [ (h2/8π2I1) + (h2/8π2I0) ] L + [ (h2/8π2I1) - (h2/8π2I0) ] L2

ER = h ωstretch  + 2 (h2/8π2I1)

+ [ 3(h2/8π2I1) - (h2/8π2I0) ] L + [ (h2/8π2I1) - (h2/8π2I0) ] L2 .

Clearly, these formulas reduce to those shown earlier in the I1 = I0 limit.

If the vibrationally averaged bond length is longer in the v = 1 state than in the v = 0

state, which is to be expected, I1 will be larger than I0, and therefore [ (h2/8π2I1) -

(h2/8π2I0) ] will be negative. In this case, the    spacing     between neighboring P-branch lines

will increase as shown above for HCl. In contrast, the fact that  [ (h2/8π2I1) - (h2/8π2I0) ]

is negative causes the    spacing     between neighboring R- branch lines to decrease, again as

shown for HCl.

III. Electronic-Vibration-Rotation Transitions



When electronic transitions are involved, the initial and final states generally differ

in their electronic, vibrational, and rotational energies. Electronic transitions usually require

light in the 5000 cm-1 to 100,000 cm-1 regime, so their study lies within the domain of

visible and ultraviolet spectroscopy. Excitations of inner-shell and core orbital electrons

may require even higher energy photons, and under these conditions, E2 and M1

transitions may become more important because of the short wavelength of the light

involved.

A. The Electronic Transition Dipole and Use of Point Group Symmetry

Returning to the expression

Ri,f  = (2π/h2) g(ωf,i) | E0 • <Φf | µ | Φi> |2

for the rate of photon absorption, we realize that the electronic integral now involves

<ψef | µ | ψei> = µf,i (R),

a transition dipole matrix element between the initial ψei and final ψef electronic

wavefunctions. This element is a function of the internal vibrational coordinates of the

molecule, and again is a vector locked to the molecule's internal axis frame.

Molecular point-group symmetry can often be used to determine whether a

particular transition's dipole matrix element will vanish and, as a result, the electronic

transition will be "forbidden" and thus predicted to have zero intensity. If the direct product

of the symmetries of the initial and final electronic states ψei and ψef do not match the

symmetry of the electric dipole operator (which has the symmetry of its x, y, and z

components; these symmetries can be read off the right most column of the character tables

given in Appendix E), the matrix element will vanish.

For example, the formaldehyde molecule H2CO has a ground electronic state (see

Chapter 11) that has 1A1 symmetry in the C2v point group. Its π ==> π* singlet excited

state also has 1A1 symmetry because both the π and π* orbitals are of b1 symmetry. In

contrast, the lowest n ==> π* singlet excited state is of 1A2 symmetry because the highest

energy oxygen centered n orbital is of b2 symmetry and the π* orbital is of b1 symmetry,

so the Slater determinant in which both the n and π* orbitals are singly occupied has its

symmetry dictated by the b2 x b1 direct product, which is A2.



The π ==> π* transition thus involves ground (1A1) and excited (1A1) states whose

direct product (A1 x A1) is of A1 symmetry. This transition thus requires that the electric

dipole operator possess a component of A1 symmetry. A glance at the C2v point group's

character table shows that the molecular z-axis is of A1 symmetry. Thus, if the light's

electric field has a non-zero component along the C2 symmetry axis (the molecule's z-axis),

the π ==> π* transition is predicted to be allowed. Light polarized along either of the

molecule's other two axes cannot induce this transition.

In contrast, the n ==> π* transition has a ground-excited state direct product of B2

x B1 = A2 symmetry. The C2v 's point group character table clearly shows that the electric

dipole operator (i.e., its x, y, and z components in the molecule-fixed frame) has no

component of A2 symmetry; thus, light of no electric field orientation can induce this n ==>

π* transition. We thus say that the n ==> π* transition is E1 forbidden (although it is M1

allowed).

Beyond such electronic symmetry analysis, it is also possible to derive vibrational

and rotational selection rules for electronic transitions that are E1 allowed. As was done in

the vibrational spectroscopy case, it is conventional to expand  µf,i (R) in a power series

about the equilibrium geometry of the initial electronic state (since this geometry is more

characteristic of the molecular structure prior to photon absorption):

µf,i(R) = µf,i(Re) + Σa ∂µf,i/∂Ra (Ra - Ra,e) + ....

B. The Franck-Condon Factors

The first term in this expansion, when substituted into the integral over the

vibrational coordinates, gives  µf,i(Re) <χvf | χvi> , which has the form of the electronic

transition dipole multiplied by the "overlap integral" between the initial and final vibrational

wavefunctions. The  µf,i(Re) factor was discussed above; it is the electronic E1 transition

integral evaluated at the equilibrium geometry of the absorbing state. Symmetry can often

be used to determine whether this integral vanishes, as a result of which the E1 transition

will be "forbidden".

Unlike the vibration-rotation case, the vibrational overlap integrals

<χvf | χvi> do not necessarily vanish because χvf and  χvi are no longer eigenfunctions of

the same vibrational Hamiltonian. χvf is an eigenfunction whose potential energy is the

   final    electronic state's energy surface; χvi has the    initial    electronic state's energy surface as

its potential. The squares of these <χvf | χvi> integrals, which are what eventually enter

into the transition rate expression Ri,f  = (2π/h2) g(ωf,i) | E0 • <Φf | µ | Φi> |2, are called



"Franck-Condon factors". Their relative magnitudes play strong roles in determining

the relative intensities of various vibrational "bands" (i.e., peaks) within a particular

electronic transition's spectrum.

Whenever an electronic transition causes a large change in the geometry (bond

lengths or angles) of the molecule, the Franck-Condon factors tend to display the

characteristic "broad progression" shown below when considered for one initial-state

vibrational level vi and various final-state vibrational levels vf:

vf=   0    1   2   3   4  5  6

|<χi|χf>|2

Final state vibrational Energy (Evf)

Notice that as one moves to higher vf values, the energy spacing between the states (Evf -

Evf-1) decreases; this, of course, reflects the anharmonicity in the excited state vibrational

potential. For the above example, the transition to the vf = 2 state has the largest Franck-

Condon factor. This means that the overlap of the initial state's vibrational wavefunction

χvi is largest for the final state's χvf function with vf = 2.

As a qualitative rule of thumb, the larger the geometry difference between the initial

and final state potentials, the broader will be the Franck-Condon profile (as shown above)

and the larger the vf value for which this profile peaks. Differences in harmonic frequencies

between the two states can also broaden the Franck-Condon profile, although not as

significantly as do geometry differences.



For example, if the initial and final states have very similar geometries and

frequencies along the mode that is excited when the particular electronic excitation is

realized, the following type of Franck-Condon profile may result:

vf=   0    1   2   3   4  5  6

|<χi|χf>|2

Final state vibrational Energy (Evf)

In contrast, if the initial and final electronic states have very different geometries and/or

vibrational frequencies along some mode, a very broad Franck-Condon envelope peaked at

high-vf will result as shown below:

Final state vibrational Energy (Evf)

|<χi|χf>|
2

vf=   0    1   2   3   4  5  6



C. Vibronic Effects

The second term in the above expansion of the transition dipole matrix element Σa

∂µf,i/∂Ra (Ra - Ra,e) can become important to analyze when the first term µfi(Re) vanishes

(e.g.,  for reasons of symmetry). This dipole derivative term, when substituted into the

integral over vibrational coordinates gives

Σa ∂µf,i/∂Ra <χvf | (Ra - Ra,e)| χvi>. Transitions for which µf,i(Re) vanishes but for which

∂µf,i/∂Ra does not for the ath vibrational mode are said to derive intensity through "vibronic

coupling" with that mode. The intensities of such modes are dependent on how strongly the

electronic dipole integral varies along the mode (i.e, on ∂µf,i/∂Ra ) as well as on the

magnitude of the vibrational integral

<χvf | (Ra - Ra,e)| χvi>.

An example of an E1 forbidden but "vibronically allowed" transition is provided by

the singlet n ==> π* transition of H2CO that was discussed earlier in this section. As

detailed there, the ground electronic state has 1A1 symmetry, and the n ==> π* state is of
1A2 symmetry, so the E1 transition integral

<ψef | µ | ψei> vanishes for all three (x, y, z) components of the electric dipole operator µ .

However, vibrations that are of b2 symmetry (e.g., the H-C-H asymmetric stretch

vibration) can induce intensity in the n ==> π* transition as follows:

(i) For such vibrations, the b2 mode's vi = 0 to vf = 1 vibronic integral

<χvf | (Ra - Ra,e)| χvi> will be non-zero and probably quite substantial (because, for

harmonic oscillator functions these "fundamental" transition integrals are dominant- see

earlier);

(ii) Along these same b2 modes, the electronic transition dipole integral     derivative    ∂µf,i/∂Ra

will be non-zero, even though the integral itself µf,i (Re) vanishes when evaluated at the

initial state's equilibrium geometry.

To understand why the derivative ∂µf,i/∂Ra  can be non-zero for distortions

(denoted Ra) of b2 symmetry, consider this quantity in greater detail:

∂µf,i/∂Ra  = ∂<ψef | µ | ψei>/∂Ra

= <∂ψef/∂Ra | µ | ψei> + <ψef | µ | ∂ψei/∂Ra> + <ψef | ∂µ/∂Ra | ψei>.

The third integral vanishes because the derivative of the dipole operator itself

µ = Σ i  e  rj  + Σa  Za e   Ra with respect to the coordinates of atomic centers, yields an

operator that contains only a sum of scalar quantities (the elementary charge e and the



magnitudes of various atomic charges Za); as a result and because the integral over the

electronic wavefunctions <ψef | ψei> vanishes, this contribution yields zero. The first and

second integrals need not vanish by symmetry because the wavefunction derivatives

∂ψef/∂Ra and ∂ψei/∂Ra do     not    possess the same symmetry as their respective

wavefunctions ψef and ψei. In fact, it can be shown that the symmetry of such a derivative

is given by the direct product of the symmetries of its wavefunction and the symmetry of

the vibrational mode that gives rise to the ∂/∂Ra. For the H2CO case at hand, the b2 mode

vibration can induce in the excited 1A2 state a derivative component (i.e., ∂ψef/∂Ra ) that is

of 1B1 symmetry) and this same vibration can induce in the 1A1 ground state a derivative

component of 1B2 symmetry.

As a result, the contribution <∂ψef/∂Ra | µ | ψei> to ∂µf,i/∂Ra  arising from vibronic

coupling within the    excited     electronic state can be expected to be non-zero for components

of the dipole operator µ that are of (∂ψef/∂Ra  x ψei) = (B1 x A1) = B1 symmetry. Light

polarized along the molecule's x-axis gives such a b1 component to µ (see the C2v character

table in Appendix E). The second contribution  <ψef | µ | ∂ψei/∂Ra> can be non-zero for

components of µ that are of ( ψef x ∂ψei/∂Ra) = (A2 x B2) = B1 symmetry; again, light of

x-axis polarization can induce such a transition.

In summary, electronic transitions that are E1 forbidden by symmetry can derive

significant (e.g., in H2CO the singlet n ==> π* transition is rather intense) intensity

through vibronic coupling. In such coupling, one or more vibrations (either in the initial or

the final state) cause the respective electronic wavefunction to acquire (through ∂ψ/∂Ra) a

symmetry component that is different than that of ψ itself. The symmetry of ∂ψ/∂Ra, which

is given as the direct product of the symmetry of ψ and that of the vibration, can then cause

the electric dipole integral <ψ' |µ|∂ψ/∂Ra> to be non-zero even when <ψ' |µ|ψ> is zero.

Such vibronically allowed transitions are said to derive their intensity through vibronic

borrowing.

D. Rotational Selection Rules for Electronic Transitions

Each vibrational peak within an electronic transition can also display rotational

structure (depending on the spacing of the rotational lines, the resolution of the

spectrometer, and the presence or absence of substantial line broadening effects such as



those discussed later in this Chapter). The selection rules for such transitions are derived in

a fashion that parallels that given above for the vibration-rotation case. The major difference

between this electronic case and the earlier situation is that the vibrational transition dipole

moment µtrans appropriate to the former is replaced by µf,i(Re) for conventional (i.e., non-

vibronic) transitions or ∂µf,i/∂Ra (for vibronic transitions).

As before, when µf,i(Re) (or ∂µf,i/∂Ra) lies along the molecular axis of a linear

molecule, the transition is denoted σ and k = 0 applies; when this vector lies perpendicular

to the axis it is called π and k = ±1 pertains. The resultant linear-molecule rotational

selection rules are the same as in the vibration-rotation case:

∆ L = ± 1, and ∆ M = ± 1,0 (for σ transitions).

∆ L = ± 1,0  and ∆ M = ±1,0 (for π transitions).

In the latter case, the L = L' = 0 situation does not arise because a π transition has one unit

of angular momentum along the molecular axis which would preclude both L and L'

vanishing.

For non-linear molecules of the spherical or symmetric top variety, µf,i(Re) (or

∂µf,i/∂Ra) may be aligned along or perdendicular to a symmetry axis of the molecule. The

selection rules that result are

∆ L = ± 1,0; ∆ M = ± 1,0; and ∆K = 0 (L = L' = 0 is not allowed and all ∆L = 

0 are forbidden when K = K' = 0)

which applies when  µf,i(Re) or ∂µf,i/∂Ra lies along the symmetry axis, and

∆ L = ± 1,0; ∆ M = ± 1,0; and ∆K = ± 1 (L = L' = 0 is not allowed)

which applies when  µf,i(Re) or ∂µf,i/∂Ra lies perpendicular to the symmetry axis.

IV. Time Correlation Function Expressions for Transition Rates

The first-order E1 "golden-rule" expression for the rates of photon-induced

transitions can be recast into a form in which certain specific physical models are easily

introduced and insights are easily gained. Moreover, by using so-called equilibrium

averaged time correlation functions, it is possible to obtain rate expressions appropriate to a



large number of molecules that exist in a distribution of initial states (e.g., for molecules

that occupy many possible rotational and perhaps several vibrational levels at room

temperature).

A. State-to-State Rate of Energy Absorption or Emission

To begin, the expression obtained earlier

Ri,f  = (2π/h2) g(ωf,i) | E0 • <Φf | µ | Φi> |2 ,

that is appropriate to transitions between a particular initial state Φi and a specific final state

Φf, is rewritten as

Ri,f  = (2π/h2) ⌡⌠
 

g(ω)  |  E0  • < Φf |  µ |  Φi> |2 δ(ωf,i -  ω) dω .

Here, the δ(ωf,i - ω) function is used to specifically enforce the "resonance condition" that

resulted in the time-dependent perturbation treatment given in Chapter 14; it states that the

photons' frequency ω must be resonant with the transition frequency ωf,i . It should be

noted that by allowing ω to run over positive and negative values, the photon absorption

(with ωf,i positive and hence ω positive) and the stimulated emission case (with ωf,i

negative and hence ω negative) are both included in this expression (as long as g(ω) is

defined as g(|ω|) so that the negative-ω contributions are multiplied by the light source

intensity at the corresponding positive ω value).

The following integral identity can be used to replace the δ-function:

δ(ωf,i - ω) = 
1

2π
  ⌡⌠

-∞

∞

exp[i(ωf,i -  ω)t] dt 

by a form that is more amenable to further development. Then, the state-to-state rate of

transition becomes:



Ri,f = (1/h2) 
⌡

⌠

 

g(ω)  |  E0  • < Φf |  µ |  Φi>|2 ⌡⌠

-∞

∞

exp[i(ωf,i -  ω)t] dt dω .

B. Averaging Over Equilibrium Boltzmann Population of Initial States

If this expression is then multiplied by the equilibrium probability ρi   that the

molecule is found in the state Φi and summed over all such initial states and summed over

all final states Φf that can be reached from Φi with photons of energy h ω, the    equilibrium

   averaged rate of photon absorption     by the molecular sample is obtained:

Req.ave. = (1/h2) Σi, f  ρi

⌡

⌠

 

g(ω)  |  E0  • < Φf |  µ |  Φi>|2 ⌡⌠

-∞

∞

exp[i(ωf,i -  ω)t] dt dω .

This expression is appropriate for an ensemble of molecules that can be in various initial

states Φi with probabilities ρi. The corresponding result for transitions that originate in a

particular state (Φi) but end up in any of the "allowed" (by energy and selection rules) final

states reads:

Rstate i. = (1/h2) Σf ⌡⌠g(ω)  |  E0  • < Φf |  µ |  Φi>|2  

⌡⌠

-∞

∞

exp[i(ωf,i -  ω)t] dtdω .

For a canonical ensemble, in which the number of molecules, the temperature, and the

system volume are specified, ρi takes the form:

ρi  = 
gi  exp(- Ei0/kT)

Q  



where Q is the canonical partition function of the molecules and gi is the degeneracy of the

state Φi whose energy is Ei0.

In the above expression for Req.ave., a double sum occurs. Writing out the elements

that appear in this sum in detail, one finds:

Σi, f  ρi E0 • <Φi | µ | Φf> E0 • <Φf | µ | Φi> expi(ωf,i)t.

In situations in which one is interested in developing an expression for the intensity arising

from transitions to    all    allowed final states, the sum over these final states can be carried out

explicitly by first writing

 <Φf | µ | Φi> expi(ωf,i)t = <Φf |exp(iHt/h) µ exp(-iHt/h)| Φi>

and then using the fact that the set of states {Φk} are complete and hence obey

Σk |Φk><Φk| = 1.

The result of using these identities as well as the Heisenberg definition of the time-

dependence of the dipole operator

µ(t) = exp(iHt/h) µ exp(-iHt/h),

is:

Σi ρi  <Φi | E0 • µ  E0 • µ (t) | Φi> .

In this form, one says that the time dependence has been reduce to that of an equilibrium

averaged (n.b., the Σi ρi <Φi |   | Φi>) time correlation function involving the

component of the dipole operator along the external electric field at t = 0 ( E0 • µ ) and this

component at a different time t  (E0 • µ (t)).

C. Photon Emission and Absorption



If ωf,i is positive (i.e., in the photon absorption case), the above expression will

yield a non-zero contribution when multiplied by exp(-i ωt) and integrated over positive ω-

values. If ωf,i is negative (as for stimulated photon emission), this expression will

contribute, again  when multiplied by exp(-i ωt), for negative ω-values. In the latter

situation, ρi is the equilibrium probability of finding the molecule in the (excited) state from

which emission will occur; this probability can be related to that of the lower state ρf by

ρexcited = ρlower exp[ - (E0excited  - E0lower)/kT ]

= ρlower exp[ - hω/kT ].

In this form, it is important to realize that the excited and lower states are treated as

individual    states   , not as levels that might contain a degenerate set of states.

The absorption and emission cases can be combined into a single     net    expression for

the rate of photon absorption  by recognizing that the latter process leads to photon

production, and thus must be entered with a negative sign. The resultant expression for the

    net rate of decrease of photons    is:

Req.ave.net = (1/h2) Σi  ρi (1 - exp(- h ω/kT) )

    ⌡
⌠

⌡⌠g(ω)  <Φi |  (E0  • µ )  E0  • µ ( t )  |  Φi>  exp(-iωt) dω dt.

D. The Line Shape and Time Correlation Functions

Now, it is convention to introduce the so-called "line shape" function I (ω):

I (ω) =  Σi  ρi ⌡⌠ < Φi |  (E0  • µ )  E0  • µ ( t )  |  Φi>  exp(-iωt) dt

in terms of which the net photon absorption rate is



 Req.ave.net  = (1/h2) (1 - exp(- h ω/kT) ) ⌡⌠ g(ω)  I  (ω) dω .

As stated above, the function

 C (t) = Σi  ρi  <Φi | (E0 • µ ) E0 • µ (t) | Φi>

is called the equilibrium averaged time correlation function of the component of the

electric dipole operator along the direction of the external electric field E0. Its Fourier

transform is I (ω), the spectral line shape function. The convolution of I (ω) with the

light source's g (ω) function, multiplied by

(1 - exp(-h ω/kT) ), the correction for stimulated photon emission, gives the net rate of

photon absorption.

E. Rotational, Translational, and Vibrational Contributions to the Correlation Function

To apply the time correlation function machinery to each particular kind of

spectroscopic transition, one proceeds as follows:

1. For purely rotational transitions, the initial and final electronic and vibrational states

are the same. Moreover, the electronic and vibrational states are not summed over in the

analog of the above development because one is interested in obtaining an expression for a

particular χiv ψie ==> χfv ψfe electronic-vibrational transition's lineshape. As a result, the

sum over final states contained in the expression (see earlier) Σi, f  ρi E0 • <Φi | µ | Φf>

E0 • <Φf | µ (t) | Φi> expi(ωf,i)t applies only to summing over final rotational states. In

more detail, this can be shown as follows:

Σi, f  ρi E0 • <Φi | µ | Φf> E0 • <Φf | µ (t) | Φi>

= Σi, f  ρi E0 • <φir χiv ψie| µ | φfr χiv ψie> E0 • <φfr χiv ψie | µ (t) | φir χiv ψie>

= Σi, f  ρir ρiv ρie E0 • <φir χiv | µ(R) | φfr χiv > E0 • <φfr χiv  | µ (R,t) | φir χiv >

= Σi, f  ρir ρiv ρie E0 • <φir | µave.iv | φfr > E0 • <φfr  | µave.iv (t) | φir >



= Σi  ρir ρiv ρie E0 • <φir | µave.iv  E0 •  µave.iv (t) | φir >.

In moving from the second to the third lines of this derivation, the following identity was

used:

<φfr χiv ψie | µ (t) | φir χiv ψie> = <φfr χiv ψie | exp(iHt/h)

µ exp(-iHt/h) | φir χiv ψie>

= <φfr χiv ψie | exp(iHv,rt/h) µ(R) exp(-iHv,rt/h) | φir χiv ψie>,

where H is the full (electronic plus vibrational plus rotational) Hamiltonian and Hv,r is the

vibrational and rotational Hamiltonian for motion on the electronic surface of the state ψie

whose dipole moment is µ(R). From the third line to the fourth, the (approximate)

separation of rotational and vibrational motions in Hv,r

Hv,r = Hv + Hr

has been used along with the fact that χiv is an eigenfunction of Hv:

Hv χiv  = Eiv  χiv

to write

<χiv  | µ (R,t) |χiv >  = exp(i Hr t/h) <χiv  | exp( iHv t/h)

µ (R) exp(- iHv t/h) | χiv > exp(- iHr t/h)

= exp(i Hr t/h) <χiv  | exp( iEiv t/h)

µ (R) exp(- iEiv t/h) | χiv > exp(- iHr t/h)

= exp(i Hr t/h) <χiv  | µ (R)| χiv > exp(- iHr t/h)



= µave.iv (t).

In effect, µ is replaced by the vibrationally averaged electronic dipole moment  µave,iv for

each initial vibrational state that can be involved, and the time correlation function thus

becomes:

 C (t) = Σi  ρir ρiv  ρie <φir | (E0 • µave,iv ) E0 • µave,iv (t) | φir> ,

where µave,iv (t) is the averaged dipole moment for the vibrational state χiv at time t, given

that it was µave,iv at time t = 0. The time dependence of µave,iv (t) is induced by the

rotational Hamiltonian Hr, as shown clearly in the steps detailed above:

µave,iv (t) = exp(i Hr t/h) <χiv  | µ (R)| χiv > exp(- iHr t/h).

In this particular case, the equilibrium average is taken over the initial rotational states

whose probabilities are denoted ρir , any initial vibrational states that may be populated,

with probabilities ρiv, and any populated electronic states, with probabilities ρie.

2. For vibration-rotation transitions within a single electronic state, the initial and

final electronic states are the same, but the initial and final vibrational and rotational states

differ. As a result, the sum over final states contained in the expression Σi, f  ρi E0 • <Φi |

µ | Φf> E0 • <Φf | µ | Φi> expi(ωf,i)t applies only to summing over final vibrational and

rotational states. Paralleling the development made in the pure rotation case given above,

this can be shown as follows:

Σi, f  ρi E0 • <Φi | µ | Φf> E0 • <Φf | µ (t) | Φi>

= Σi, f  ρi E0 • <φir χiv ψie| µ | φfr χfv ψie> E0 • <φfr χfv ψie | µ (t) | φir χiv ψie>

= Σi, f  ρir ρiv ρie E0 • <φir χiv | µ (R)| φfr χfv > E0 • <φfr χfv  | µ (R,t) | φir χiv >

= Σi, f  ρir ρiv ρie E0 • <φir χiv| µ(Re) + Σa (Ra - Ra,eq)∂µ/∂Ra | φfr χfv>



E0 • <φfr χfv|exp(iHrt/h)(µ(Re) + Σa (Ra - Ra,eq)∂µ/∂Ra)

exp(-iHrt/h)| φirχiv > exp(iωfv,ivt)

= Σir, iv, ie ρir ρiv ρie Σfv,fr Σa <χiv|(Ra - Ra,eq)|χfv>

Σa' <χfv|(Ra' - Ra',eq)|χiv>exp(iωfv,ivt)

E0 • <φir | ∂µ/∂Ra  E0 • exp(iHrt/h)∂µ/∂Ra' exp(-iHrt/h)| φir >

= Σir, iv, ie ρir ρiv ρie Σfv,fr  exp(iωfv,ivt)

 <φir | (E0 • µtrans) E0 • exp(iHrt/h) µtrans exp(-iHrt/h)| φir >,

where the vibrational transition dipole matrix element is defined as before

µtrans = Σa <χiv|(Ra - Ra,eq)|χfv> ∂µ/∂Ra ,

and derives its time dependence above from the rotational Hamiltonian:

µtrans (t) = exp(iHrt/h) µtrans exp(-iHrt/h).

The corresponding final expression for the time correlation function C(t) becomes:

 C (t) = Σi  ρir ρiv  ρie <φir | (E0 • µtrans ) E0 • µtrans (t) | φir>  exp(iωfv,ivt).

The net rate of photon absorption remains:

 Req.ave.net  = (1/h2) (1 - exp(- h ω) ) ⌡⌠ g(ω)  I  (ω) dω ,

where I(ω) is the Fourier transform of C(t).

The expression for C(t) clearly contains two types of time dependences: (i) the

exp(iωfv,ivt), upon Fourier transforming to obtain I(ω), produces δ-function "spikes" at



frequencies ω = ωfv,iv equal to the spacings between the initial and final vibrational states,

and (ii) rotational motion time dependence that causes µtrans (t) to change with time. The

latter appears in the form of a correlation function for the component of µtrans along E0 at

time t = 0 and this component at another time t. The convolution of both these time

dependences determines the from of I(ω).

3. For electronic-vibration-rotation transitions, the initial and final electronic states

are different as are the initial and final vibrational and rotational states. As a result, the sum

over final states contained in the expression Σi, f  ρi E0 • <Φi | µ | Φf> E0 • <Φf | µ | Φi>

expi(ωf,i)t applies to summing over final electronic, vibrational, and rotational states.

Paralleling the development made in the pure rotation case given above, this can be shown

as follows:

Σi, f  ρi E0 • <Φi | µ | Φf> E0 • <Φf | µ (t) | Φi>

= Σi, f  ρi E0 • <φir χiv ψie| µ | φfr χfv ψfe> E0 • <φfr χfv ψfe | µ (t) | φir χiv ψie>

= Σi, f  ρir ρiv ρie E0 • <φir χiv | µi,f(R)| φfr χfv > E0 • <φfr χfv  | µi,f(R,t) | φir χiv

>

= Σi, f  ρir ρiv ρie E0 • <φir | µi,f(Re)| φfr > |<χiv | χfv>|2

E0 • <φfr |exp(iHrt/h) µi,f(Re) exp(-iHrt/h)| φir> exp(iωfv,ivt + i∆Ei,ft/h)

= Σi, f  ρir ρiv ρie  <φir | E0 • µi,f(Re) E0 • µi,f(Re,t) |φir> |<χiv | χfv>|2

 exp(iωfv,ivt + i∆Ei,ft/h),

where

µi,f(Re,t) = exp(iHrt/h) µi,f(Re) exp(-iHrt/h)



is the electronic transition dipole matrix element, evaluated at the equilibrium geometry of

the absorbing state, that derives its time dependence from the rotational Hamiltonian Hr as

in the time correlation functions treated earlier.

This development thus leads to the following definition of C(t) for the electronic,

vibration, and rotation case:

C(t) =  Σi, f  ρir ρiv ρie  <φir | E0 • µi,f(Re) E0 • µi,f(Re,t) |φir> |<χiv | χfv>|2

 exp(iωfv,ivt + i∆Ei,ft/h)

but the net rate of photon absorption remains:

 Req.ave.net  = (1/h2) (1 - exp(- h ω/kT) ) ⌡⌠ g(ω)  I  (ω) dω .

Here, I(ω) is the Fourier transform of the above C(t) and ∆Ei,f is the adiabatic electronic

energy difference (i.e., the energy difference between the v = 0 level in the final electronic

state and the v = 0 level in the initial electronic state) for the electronic transition of interest.

The above C(t) clearly contains Franck-Condon factors as well as time dependence

exp(iωfv,ivt + i∆Ei,ft/h) that produces δ-function spikes at each electronic-vibrational

transition frequency and rotational time dependence contained in the time correlation

function quantity <φir | E0 • µi,f(Re) E0 • µi,f(Re,t) |φir>.

To summarize, the line shape function I(ω) produces the net rate of photon

absorption

 Req.ave.net  = (1/h2) (1 - exp(- h ω/kT) ) ⌡⌠ g(ω)  I  (ω) dω 

in all of the above cases, and I(ω) is the Fourier transform of a corresponding time-

dependent C(t) function in all cases. However, the pure rotation, vibration-rotation, and

electronic-vibration-rotation cases differ in the form of their respective C(t)'s. Specifically,

C (t) = Σi  ρir ρiv  ρie <φir | (E0 • µave,iv ) E0 • µave,iv (t) | φir>

in the pure rotational case,



 C (t) = Σi  ρir ρiv  ρie <φir | (E0 • µtrans ) E0 • µtrans (t) | φir>  exp(iωfv,ivt)

in the vibration-rotation case, and

C(t) =  Σi, f  ρir ρiv ρie  <φir | E0 • µi,f(Re) E0 • µi,f(Re,t) |φir> |<χiv | χfv>|2

 exp(iωfv,ivt + ∆Ei,ft/h)

in the electronic-vibration-rotation case.

All of these time correlation functions contain time dependences that arise from

rotational motion of a dipole-related vector (i.e., the vibrationally averaged dipole µave,iv

(t), the vibrational transition dipole µtrans (t), or the electronic transition dipole µi,f(Re,t))

and the latter two also contain oscillatory time dependences (i.e., exp(iωfv,ivt) or

exp(iωfv,ivt + i∆Ei,ft/h)) that arise from vibrational or electronic-vibrational energy level

differences. In the treatments of the following sections, consideration is given to the

rotational contributions under circumstances that characterize, for example, dilute gaseous

samples where the collision frequency is low and liquid-phase samples where rotational

motion is better described in terms of diffusional motion.

F. Line Broadening Mechanisms

If the rotational motion of the molecules is assumed to be entirely unhindered (e.g.,

by any environment or by collisions with other molecules), it is appropriate to express the

time dependence of each of the dipole time correlation functions listed above in terms of a

"free rotation" model. For example, when dealing with diatomic molecules, the electronic-

vibrational-rotational C(t) appropriate to a specific electronic-vibrational transition becomes:

C(t) =  (qr qv qe qt)-1 ΣJ  (2J+1) exp(- h2J(J+1)/(8π2IkT)) exp(- hνvibvi /kT)

gie  <φJ | E0 • µi,f(Re) E0 • µi,f(Re,t) |φJ> |<χiv | χfv>|2

exp(i [hνvib] t + i∆Ei,f t/h).

Here,



qr = (8π2IkT/h2)

is the rotational partition function (I being the molecule's moment of inertia

I = µRe2, and h2J(J+1)/(8π2I) the molecule's rotational energy for the state with quantum

number J and degeneracy 2J+1)

qv = exp(-hνvib/2kT) (1-exp(-hνvib/kT))-1

is the vibrational partition function (νvib being the vibrational frequency), gie is the

degeneracy of the initial electronic state,

qt = (2πmkT/h2)3/2 V

is the translational partition function for the molecules of mass m moving in volume V, and

∆Ei,f is the adiabatic electronic energy spacing.

The functions <φJ | E0 • µi,f(Re) E0 • µi,f(Re,t) |φJ> describe the time evolution of

the dipole-related vector (the electronic transition dipole in this case) for the rotational state

J. In a "free-rotation" model, this function is taken to be of the form:

<φJ | E0 • µi,f(Re) E0 • µi,f(Re,t) |φJ>

= <φJ | E0 • µi,f(Re) E0 • µi,f(Re,0) |φJ> Cos
h J(J+1) t

4πI
  ,

where

h J(J+1)

4πI
  = ωJ

is the rotational frequency (in cycles per second) for rotation of the molecule in the state

labeled by J. This oscillatory time dependence, combined with the exp(iωfv,ivt + i∆Ei,ft/h)

time dependence arising from the electronic and vibrational factors, produce, when this C(t)

function is Fourier transformed to generate I(ω) a series of δ-function "peaks" whenever

ω = ωfv,iv + ∆Ei,f/h ± ωJ .



The intensities of these peaks are governed by the

(qr qv qe qt)-1 ΣJ  (2J+1) exp(- h2J(J+1)/(8π2IkT)) exp(- hνvibvi /kT) gie

Boltzmann population factors as well as by the |<χiv | χfv>|2 Franck-Condon factors and

the <φJ | E0 • µi,f(Re) E0 • µi,f(Re,0) |φJ> terms.

This same analysis can be applied to the pure rotation and vibration-rotation C(t)

time dependences with analogous results. In the former, δ-function peaks are predicted to

occur at

ω = ± ωJ

and in the latter at

ω = ωfv,iv  ± ωJ ;

with the intensities governed by the time independent factors in the corresponding

expressions for C(t).

In experimental measurements, such sharp δ-function peaks are, of course, not

observed. Even when very narrow band width laser light sources are used (i.e., for which

g(ω) is an extremely narrowly peaked function), spectral lines are found to possess finite

widths. Let us now discuss several sources of line broadening, some of which will relate to

deviations from the "unhindered" rotational motion model introduced above.

1. Doppler Broadening

In the above expressions for C(t), the averaging over initial rotational, vibrational,

and electronic states is explicitly shown. There is also an average over the translational

motion implicit in all of these expressions. Its role has not (yet) been emphasized because

the molecular energy levels, whose spacings yield the characteristic frequencies at which

light can be absorbed or emitted, do not depend on translational motion. However, the

frequency of the electromagnetic field experienced by moving molecules does depend on

the velocities of the molecules, so this issue must now be addressed.

Elementary physics classes express the so-called Doppler shift of a wave's

frequency induced by movement either of the light source or of the molecule (Einstein tells

us these two points of view must give identical results) as follows:



ωobserved = ωnominal (1 + vz/c)-1 ≈ ωnominal (1 - vz/c + ...).

Here, ωnominal is the frequency of the unmoving light source seen by unmoving molecules,

vz is the velocity of relative motion of the light source and molecules, c is the speed of

light, and ωobserved is the Doppler shifted frequency (i.e., the frequency seen by the

molecules). The second identity is obtained by expanding, in a power series, the (1 + vz/c)-

1 factor, and is valid in truncated form when the molecules are moving with speeds

significantly below the speed of light.

For all of the cases considered earlier, a C(t) function is subjected to Fourier

transformation to obtain a spectral lineshape function I(ω), which then  provides the

essential ingredient for computing the net rate of photon absorption. In this Fourier

transform process, the variable ω is assumed to be the frequency of the electromagnetic

field    experienced by the molecules   . The above considerations of Doppler shifting then leads

one to realize that the correct functional form to use in converting C(t) to I(ω) is:

I(ω) = ⌡⌠C(t) exp(-itω(1-vz/c)) dt ,

where ω is the nominal frequency of the light source.

As stated earlier, within C(t) there is also an equilibrium average over translational

motion of the molecules. For a gas-phase sample undergoing random collisions and at

thermal equilibrium, this average is characterized by the well known Maxwell-Boltzmann

velocity distribution:

(m/2πkT)3/2 exp(-m (vx2+vy2+vz2)/2kT) dvx dvy dvz.

Here m is the mass of the molecules and vx, vy, and vz label the velocities along the lab-

fixed cartesian coordinates.

Defining the z-axis as the direction of propagation of the light's photons and

carrying out the averaging of the Doppler factor over such a velocity distribution, one

obtains:

⌡⌠

-∞

∞

exp(-itω(1-vz/c)) (m/2πkT)3/2 exp(-m (vx2+vy2+vz2)/2kT) dvx  dvy dvz 



= exp(-iωt) ⌡⌠

-∞

∞

(m/2πkT)1/2 exp(iωtvz/c) exp(-mvz2/2kT) dvz  

= exp(-iωt) exp(- ω2t2kT/(2mc2)).

This result, when substituted into the expressions for C(t), yields expressions identical to

those given for the three cases treated above     but    with one modification. The translational

motion average need no longer be considered in each C(t); instead, the earlier expressions

for C(t) must each be multiplied by a factor exp(- ω2t2kT/(2mc2)) that embodies the

translationally averaged Doppler shift. The spectral line shape function I(ω) can then be

obtained for each C(t) by simply Fourier transforming:

I(ω) = ⌡⌠

-∞

∞

exp(-iωt) C(t) dt .

When applied to the rotation, vibration-rotation, or electronic-vibration-rotation

cases within the "unhindered" rotation model treated earlier, the Fourier transform involves

integrals of the form:

I(ω) = ⌡⌠

-∞

∞

exp(-iωt) exp(- ω2t2kT/(2mc2))exp(i(ωfv,iv +  ∆Ei,f/h ± ωJ)t) dt .

This integral would arise in the electronic-vibration-rotation case; the other two cases would

involve integrals of the same form but with the ∆Ei,f/h absent in the vibration-rotation

situation and with ωfv,iv + ∆Ei,f/h missing for pure rotation transitions. All such integrals

can be carried out analytically and yield:

I(ω) = 
2mc2π
ω2kT

  exp[ -(ω-ωfv,iv - ∆Ei,f/h ± ωJ)2 mc2/(2ω2kT)].

The result is a series of Gaussian "peaks" in ω-space, centered at:



ω = ωfv,iv + ∆Ei,f/h ± ωJ

with widths (σ) determined by

σ2 = ω2kT/(mc2),

given the temperature T and the mass of the molecules m. The hotter the sample, the faster

the molecules are moving on average, and the broader is the distribution of Doppler shifted

frequencies experienced by these molecules. The net result then of the Doppler effect is to

produce a line shape function that is similar to the "unhindered" rotation model's series of

δ-functions but with each δ-function peak broadened into a Gaussian shape.

2. Pressure Broadening

To include the effects of collisions on the rotational motion part of any of the above

C(t) functions, one must introduce a model for how such collisions change the dipole-

related vectors that enter into C(t). The most elementary model used to address collisions

applies to gaseous samples which are assumed to undergo unhindered rotational motion

until struck by another molecule at which time a randomizing "kick" is applied to the dipole

vector and after which the molecule returns to its unhindered rotational movement.

The effects of such collisionally induced kicks are treated within the so-called

pressure broadening (sometimes called collisional broadening) model by modifying the

free-rotation correlation function through the introduction of an exponential damping factor

exp( -|t|/τ):

<φJ | E0 • µi,f(Re) E0 • µi,f(Re,0) |φJ> Cos 
h J(J+1) t

4πI
   

⇒ <φJ | E0 • µi,f(Re) E0 • µi,f(Re,0) |φJ> Cos 
h J(J+1) t

4πI
   exp( -|t|/τ).

This damping function's time scale parameter τ is assumed to characterize the average time

between collisions and thus should be inversely proportional to the collision frequency. Its

magnitude is also related to the effectiveness with which collisions cause the dipole

function to deviate from its unhindered rotational motion (i.e., related to the collision

strength). In effect, the exponential damping causes the time correlation function <φJ | E0 •



µi,f(Re) E0 • µi,f(Re,t) |φJ> to "lose its memory" and to decay to zero; this "memory" point

of view is based on viewing <φJ | E0 • µi,f(Re) E0 • µi,f(Re,t) |φJ> as the projection of E0

• µi,f(Re,t) along its t = 0 value E0 • µi,f(Re,0) as a function of time t.

Introducing this additional exp( -|t|/τ) time dependence into C(t) produces, when

C(t) is Fourier transformed to generate I(ω),

I(ω) = ⌡⌠

-∞

∞

exp(-iωt)exp(-|t|/τ)exp(-ω2t2kT/(2mc2))exp(i(ωfv,iv+∆Ei,f/h ± ωJ)t)dt .

In the limit of very small Doppler broadening, the (ω2t2kT/(2mc2)) factor can be ignored

(i.e., exp(-ω2t2kT/(2mc2)) set equal to unity), and

I(ω) = ⌡⌠

-∞

∞

exp(-iωt)exp(-|t|/τ)exp(i(ωfv,iv+∆Ei,f/h ± ωJ)t)dt 

results. This integral can be performed analytically and generates:

I(ω) =
1

4π
  { 

1/τ
(1/τ)2+ (ω-ωfv,iv-∆Ei,f/h ± ωJ)2

  +  
1/τ

(1/τ)2+ (ω+ωfv,iv+∆Ei,f/h ± ωJ)2
  },

a pair of Lorentzian peaks in ω-space centered again at

ω = ± [ωfv,iv+∆Ei,f/h ± ωJ].

The full width at half height of these Lorentzian peaks is 2/τ. One says that the individual

peaks have been pressure or collisionally broadened.

When the Doppler broadening can not be neglected relative to the collisional

broadening, the above integral

I(ω) = ⌡⌠

-∞

∞

exp(-iωt)exp(-|t|/τ)exp(-ω2t2kT/(2mc2))exp(i(ωfv,iv+∆Ei,f/h ± ωJ)t)dt 



is more difficult to perform. Nevertheless, it can be carried out and again produces a series

of peaks centered at

ω = ωfv,iv+∆Ei,f/h ± ωJ

but whose widths are determined both by Doppler and pressure broadening effects. The

resultant line shapes are thus no longer purely Lorentzian nor Gaussian (which are

compared in the figure below for both functions having the same full width at half height

and the same integrated area), but have a shape that is called a Voight shape.
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3. Rotational Diffusion Broadening

Molecules in liquids and very dense gases undergo frequent collisions with the

other molecules; that is, the mean time between collisions is short compared to the

rotational period for their unhindered rotation. As a result, the time dependence of the

dipole related correlation function can no longer be modeled in terms of free rotation that is

interrupted by (infrequent) collisions and Dopler shifted. Instead, a model that describes the

incessant buffeting of the molecule's dipole by surrounding molecules becomes

appropriate. For liquid samples in which these frequent collisions cause the molecule's

dipole to undergo angular motions that cover all angles (i.e., in contrast to a frozen glass or



solid in which the molecule's dipole would undergo strongly perturbed pendular motion

about some favored orientation), the so-called rotational diffusion model is often used.

In this picture, the rotation-dependent part of C(t) is expressed as:

<φJ | E0 • µi,f(Re) E0 • µi,f(Re,t) |φJ>

= <φJ | E0 • µi,f(Re) E0 • µi,f(Re,0) |φJ>  exp( -2Drot|t|),

where Drot is the    rotational diffusion constant    whose magnitude details the time

decay in the averaged value of E0 • µi,f(Re,t) at time t with respect to its value at time t = 0;

the larger Drot, the faster is this decay.

As with pressure broadening, this exponential time dependence, when subjected to

Fourier transformation, yields:

I(ω) = ⌡⌠

-∞

∞

exp(-iωt)exp(-2Drot|t|)exp(-ω2t2kT/(2mc2))exp(i(ωfv,iv+∆Ei,f/h ± ωJ)t)dt .

Again, in the limit of very small Doppler broadening, the (ω2t2kT/(2mc2)) factor can be

ignored (i.e., exp(-ω2t2kT/(2mc2)) set equal to unity), and

I(ω) = ⌡⌠

-∞

∞

exp(-iωt)exp(-2Drot|t|)exp(i(ωfv,iv+∆Ei,f/h ± ωJ)t)dt 

results. This integral can be evaluated analytically and generates:

I(ω) =
1

4π
  { 

2Drot

(2Drot)2+ (ω-ωfv,iv-∆Ei,f/h ± ωJ)2
  

+  
2Drot

(2Drot)2+ (ω+ωfv,iv+∆Ei,f/h ± ωJ)2
  },

a pair of Lorentzian peaks in ω-space centered again at

ω = ±[ωfv,iv+∆Ei,f/h ± ωJ].



The full width at half height of these Lorentzian peaks is 4Drot. In this case, one says that

the individual peaks have been broadened via rotational diffusion. When the Doppler

broadening can not be neglected relative to the collisional broadening, the above integral

I(ω) = ⌡⌠

-∞

∞

exp(-iωt)exp(-2Drot|t|)exp(-ω2t2kT/(2mc2))exp(i(ωfv,iv+∆Ei,f/h ± ωJ)t)dt .

is more difficult to perform. Nevertheless, it can be carried out and again produces a series

of peaks centered at

ω = ±[ωfv,iv+∆Ei,f/h ± ωJ]

but whose widths are determined both by Doppler and rotational diffusion effects.

4. Lifetime or Heisenberg Homogeneous Broadening

Whenever the absorbing species undergoes one or more  processes that depletes its

numbers, we say that it has a finite lifetime. For example, a species that undergoes

unimolecular dissociation has a finite lifetime, as does an excited state of a molecule that

decays by spontaneous emission of a photon. Any process that depletes the absorbing

species contributes another source of time dependence for the dipole time correlation

functions C(t) discussed above. This time dependence is usually modeled by appending, in

a multiplicative manner, a factor exp(-|t|/τ). This, in turn modifies the line shape function

I(ω) in a manner much like that discussed when treating the rotational diffusion case:

I(ω) = ⌡⌠

-∞

∞

exp(-iωt)exp(-|t|/τ)exp(-ω2t2kT/(2mc2))exp(i(ωfv,iv+∆Ei,f/h ± ωJ)t)dt .

Not surprisingly, when the Doppler contribution is small, one obtains:

I(ω) =
1

4π
  { 

1/τ
(1/τ)2+ (ω-ωfv,iv-∆Ei,f/h ± ωJ)2

  

+  
1/τ

(1/τ)2+ (ω+ωfv,iv+∆Ei,f/h ± ωJ)2
  }.



In these Lorentzian lines, the parameter τ describes the kinetic decay lifetime of the

molecule. One says that the spectral lines have been lifetime or Heisenberg
broadened by an amount proportional to 1/τ. The latter terminology arises because the

finite lifetime of the molecular states can be viewed as producing, via the Heisenberg

uncertainty relation ∆E∆t > h, states whose energy is "uncertain" to within an amount ∆E.

5. Site Inhomogeneous Broadening

Among the above line broadening mechanisms, the pressure, rotational diffusion,

and lifetime broadenings are all of the homogeneous variety. This means that each

molecule in the sample is affected in exactly the same manner by the broadening process.

For example, one does not find some molecules with short lifetimes and others with long

lifetimes, in the Heisenberg case; the entire ensemble of molecules is characterized by a

single lifetime.

In contrast, Doppler broadening is inhomogeneous in nature because each

molecule experiences a broadening that is characteristic of its particular nature (velocity vz

in this case). That is, the fast molecules have their lines broadened more than do the slower

molecules. Another important example of inhomogeneous broadening is provided by so-

called site broadening. Molecules imbedded in a liquid, solid, or glass do not, at the

instant of photon absorption, all experience exactly the same interactions with their

surroundings. The distribution of instantaneous "solvation" environments may be rather

"narrow" (e.g., in a highly ordered solid matrix) or quite "broad" (e.g., in a liquid at high

temperature). Different environments produce different energy level splittings  ω =

ωfv,iv+∆Ei,f/h ± ωJ (because the initial and final states are "solvated" differently by the

surroundings) and thus different frequencies at which photon absorption can occur. The

distribution of energy level splittings causes the sample to absorb at a range of frequencies

as illustrated in the figure below where homogeneous and inhomogeneous line shapes are

compared.



(a)                                                   (b)

Homogeneous (a) and inhomogeneous (b) band shapes having 
inhomogeneous width ∆ν     , and homogeneous width ∆ν   .INH H

The spectral line shape function I(ω) is further broadened when site inhomogeneity

is present and significant. These effects can be modeled by convolving the kind of I(ω)

function that results from Doppler, lifetime, rotational diffusion, and pressure broadening

with a Gaussian distribution P(∆E) that describes the inhomogeneous distribution of

energy level splittings:

I(ω) = ⌡⌠I0(ω;∆E) P(∆E) d∆E .

Here I0(ω;∆E) is a line shape function such as those described earlier each of which

contains a set of frequencies (e.g., ω = ωfv,iv+∆Ei,f/h ± ωJ = ω + ∆E/h) at which

absorption or emission occurs.

A common experimental test for inhomogeneous broadening involves hole

burning. In such experiments, an intense light source (often a laser) is tuned to a

frequency ωburn that lies within the spectral line being probed for inhomogeneous

broadening. Then, a second tunable light source is used to scan through the profile of the

spectral line, and, for example, an absorption spectrum is recorded. Given an absorption

profile as shown below in the absence of the intense burning light source:



ω
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one expects to see a profile such as that shown below:

ω
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if inhomogeneous broadening is operative.

The interpretation of the change in the absorption profile caused by the bright light

source proceeds as follows:

(i) In the ensemble of molecules contained in the sample, some molecules will absorb at or

near the frequency of the bright light source ωburn; other molecules (those whose

environments do not produce energy level splittings that match ωburn) will not absorb at

this frequency.

(ii) Those molecules that do absorb at ωburn will have their transition saturated by the

   intense    light source, thereby rendering this frequency region of the line profile transparent

to    further    absorption.

(iii) When the "probe" light source is scanned over the line profile, it will induce

absorptions for those molecules whose local environments did not allow them to be

saturated by the ωburn light. The absorption profile recorded by this probe light source's

detector thus will match that of the original line profile,     until   



(iv)  the probe light source's frequency matches ωburn, upon which no absorption of the

probe source's photons will be recorded because molecules that absorb in this frequency

regime have had their transition saturated.

(v) Hence, a "hole" will appear in the spectrum recorded by the probe light source's

detector in the region of ωburn.

Unfortunately, the technique of hole burning does not provide a fully reliable

method for identifying inhomogeneously broadened lines. If a hole is observed in such a

burning experiment, this provides ample evidence, but if one is not seen, the result is not

definitive. In the latter case, the transition may not be strong enough (i.e., may not have a

large enough "rate of photon absorption" ) for the intense light source to saturate the

transition to the extent needed to form a hole.

This completes our introduction to the subject of molecular spectroscopy. More

advanced treatments of many of the subjects treated here as well as many aspects of modern

experimental spectroscopy can be found in the text by Zare on angular momentum as well

as in Steinfeld's text      Molecules and Radiation    , 2nd Edition, by J. I. Steinfeld, MIT Press

(1985).



Chapter 18

The single Slater determinant wavefunction (properly spin and symmetry adapted) is the

starting point of the most common mean field potential. It is also the origin of the molecular

orbital concept.

I. Optimization of the Energy for a Multiconfiguration Wavefunction

A. The Energy Expression

The most straightforward way to introduce the concept of optimal molecular orbitals

is to consider a trial wavefunction of the form which was introduced earlier in Chapter 9.II.

The expectation value of the Hamiltonian for a wavefunction of the multiconfigurational

form

Ψ = ΣI CIΦI ,

where ΦI is a space- and spin-adapted CSF which consists of determinental wavefunctions

|φI1φI2φI3. . .φIN| , can be written as:

E =ΣI,J = 1, M CICJ < ΦI | H | ΦJ > .

The spin- and space-symmetry of the ΦI determine the symmetry of the state Ψ whose

energy is to be optimized.

In this form, it is clear that E is a quadratic function of the CI amplitudes CJ ; it is a

quartic functional of the spin-orbitals because the Slater-Condon rules express each < ΦI |

H | ΦJ > CI matrix element in terms of one- and two-electron integrals < φi | f | φj > and

< φiφj | g | φkφl > over these spin-orbitals.

B. Application of the Variational Method

The     variational    method can be used to optimize the above expectation value

expression for the electronic energy (i.e., to make the functional stationary) as a function of

the CI coefficients CJ and the LCAO-MO coefficients {Cν, i} that characterize the spin-

orbitals. However, in doing so the set of {Cν, i} can not be treated as entirely independent

variables. The fact that the spin-orbitals {φi} are assumed to be orthonormal imposes a set

of constraints on the {Cν, i}:



< φi | φj> = δi,j  = Σµ,ν C*µ,i < χµ| χν > Cν ,j.

These constraints can be enforced within the variational optimization of the energy function

mentioned above by introducing a set of Lagrange multipliers {εi,j} , one for each

constraint condition, and subsequently differentiating

E - Σ i,j  εi,j [ δi,j  - Σµ,ν C*µ,i < χµ| χν > Cν ,j ]

with respect to each of the Cν ,i variables.

C. The Fock and Secular Equations

Upon doing so, the following set of equations is obtained (early references to the

derivation of such equations include A. C. Wahl, J. Chem. Phys.     41     ,2600 (1964) and F.

Grein and T. C. Chang, Chem. Phys. Lett.     12    , 44 (1971); a more recent overview is

presented in R. Shepard, p 63, in Adv. in Chem. Phys. LXIX, K. P. Lawley, Ed., Wiley-

Interscience, New York (1987); the subject is also treated in the textbook     Second

    Quantization Based Methods in Quantum Chemistry    , P. Jørgensen and J. Simons,

Academic Press, New York (1981))) :

Σ J =1, M HI,J   CJ  = E CI ,  I = 1, 2, ... M, and

F φi = Σ j εi,j φj,

where the εi,j  are Lagrange multipliers.

The first set of equations govern the {CJ} amplitudes and are called the CI- secular

equations. The second set determine the LCAO-MO coefficients of the spin-orbitals {φj}

and are called the Fock equations. The Fock operator F is given in terms of the one- and

two-electron operators in H itself as well as the so-called one- and two-electron density

matrices γi,j  and Γi,j,k,l which are defined below. These density matrices reflect the

averaged occupancies of the various spin orbitals in the CSFs of Ψ. The resultant

expression for F is:

F φi = Σ j γi,j  h φj + Σ j,k,l Γi,j,k,l Jj,l  φk,



where h is the one-electron component of the Hamiltonian (i.e., the kinetic energy operator

and the sum of coulombic attractions to the nuclei). The operator Jj,l  is defined by:

Jj,l φk(r) =⌡⌠ φ*j(r ') φl(r')1/|r-r'| dτ'   φk(r),

where the integration denoted dτ' is over the spatial and spin coordinates. The so-called

spin integration simply means that the α or β spin function associated with φl must be the

same as the α or β spin function associated with φj or the integral will vanish. This is a

consequence of the orthonormality conditions <α|α> = <β|β> = 1, <α|β> = <β|α> = 0.

D. One- and Two- Electron Density Matrices

The density matrices introduced above can most straightforwardly be expressed in

terms of the CI amplitudes and the nature of the orbital occupancies in the CSFs of Ψ as

follows:

1. γi,i  is the sum over all CSFs, in which φi is occupied, of the square of the CI coefficient

of that CSF:

γi,i  =ΣI (with φi occupied) C2I .

2. γi,j  is the sum over pairs of CSFs which differ by a single spin-orbital occupancy (i.e.,

one having φi occupied where the other has φj occupied after the two are placed into

maximal coincidence-the sign factor (sign) arising from bringing the two to maximal

coincidence is attached to the final density matrix element):

γi,j  = ΣI,J (sign)( with φi occupied in I where φj is in J) CI CJ .

The two-electron density matrix elements are given in similar fashion:

3. Γi,j,i,j = ΣI (with both φi and φj occupied) CI CI ;

4.   Γi,j,j,i = -ΣI (with both φi and φj occupied) CI CI  = -Γi,j,i,j



(it can be shown, in general that Γi,j,k,l is odd under exchange of i and j, odd under

exchange of k and l and even under (i,j)<=>(k,l) exchange; this implies that Γi,j,k,l

vanishes if i = j or k = l.) ;

5. Γi,j,k,j = Σ I,J (sign)(with φj in both I and J

and φi in I where φk is in J) CICJ

= Γj,i,j,k = - Γi,j,j,k = - Γj,i,k,j;

6. Γi,j,k,l = ΣI,J (sign)( with φi in I where φk is in J and φj in I where φl is in J) CI

CJ

= Γj,i,l,k = - Γj,i,k,l = - Γi,j,l,k = Γj,i,l,k .

These density matrices are themselves quadratic functions of the CI coefficients and

they reflect all of the permutational symmetry of the determinental functions used in

constructing Ψ;  they are a compact representation of all of the Slater-Condon rules as

applied to the particular CSFs which appear in Ψ. They contain all information about the

spin-orbital occupancy of the CSFs in Ψ. The one- and two- electron integrals < φi | f | φj >

and < φiφj | g | φkφl > contain all of the information about the magnitudes of the kinetic and

Coulombic interaction energies.

II. The Single-Determinant Wavefunction

The simplest trial function of the form given above is the single Slater determinant

function:

Ψ = | φ1φ2φ3 ... φN |.

For such a function, the CI part of the energy minimization is absent  (the classic papers in

which the SCF  equations for closed- and open-shell systems are treated are C. C. J.

Roothaan, Rev. Mod. Phys.     23    , 69 (1951);     32    , 179 (1960)) and the density matrices

simplify greatly because only one spin-orbital occupancy is operative. In this case, the

orbital optimization conditions reduce to:

F φi = Σ j εi,j  φj ,



where the so-called Fock operator F is given by

F φi = h φi + Σ j(occupied) [Jj - Kj] φi .

The coulomb (Jj) and exchange (Kj) operators are defined by the relations:

Jj φi = ∫ φ*j(r') φj(r')1/|r-r'| dτ'  φi(r) , and

Kj φi = ∫ φ*j(r') φi(r')1/|r-r'| dτ'  φj(r) .

Again, the integration implies integration over the spin variables associated with the φj

(and, for the exchange operator, φi), as a result of which the exchange integral vanishes

unless the spin function of φj is the same as that of φi; the coulomb integral is non-

vanishing no matter what the spin functions of φj and φi.

The sum over coulomb and exchange interactions in the Fock operator runs only

over those spin-orbitals that are occupied in the trial Ψ. Because a unitary transformation

among the orbitals that appear in Ψ leaves the determinant unchanged (this is a property of

determinants- det (UA) = det (U) det (A) = 1 det (A), if U is a unitary matrix), it is possible

to choose such a unitary transformation to make the εi,j matrix diagonal. Upon so doing,

one is left with the so-called    canonical Hartree-Fock equations   :

F φi =  εi φj,

where εi is the diagonal value of the εi,j  matrix after the unitary transformation has been

applied; that is, εi is an eigenvalue of the εi,j  matrix. These equations are of the eigenvalue-

eigenfunction form with the Fock operator playing the role of an effective one-electron

Hamiltonian and the φi  playing the role of the one-electron eigenfunctions.

It should be noted that the Hartree-Fock equations F φi =  εi φj possess solutions

for the spin-orbitals which appear in Ψ (the so-called     occupied     spin-orbitals) as well as for

orbitals which are not occupied in Ψ ( the so-called     virtual    spin-orbitals). In fact, the F

operator is hermitian, so it possesses a complete set of orthonormal eigenfunctions; only

those which appear in Ψ appear in the coulomb and exchange potentials of the Fock

operator. The physical meaning of the occupied and virtual orbitals will be clarified later in

this Chapter (Section VII.A)



III. The Unrestricted Hartree-Fock Spin Impurity Problem

As formulated above in terms of spin-orbitals, the Hartree-Fock (HF) equations

yield orbitals that do not guarantee that Ψ possesses proper spin symmetry. To illustrate the

point, consider the form of the equations for an open-shell system such as the Lithium atom

Li. If 1sα, 1sβ, and 2sα spin-orbitals are chosen to appear in the trial function Ψ, then the

Fock operator will contain the following terms:

F = h + J1sα + J1sβ + J2sα - [ K1sα + K1sβ + K2sα ] .

Acting on an α spin-orbital φkα with F and carrying out the spin integrations, one obtains

F φkα = h φkα + (2J1s + J2s ) φkα - ( K1s + K2s) φkα .

In contrast, when acting on a β spin-orbital, one obtains

F φkβ = h φkβ + (2J1s + J2s ) φkβ - ( K1s) φkβ .

Spin-orbitals of α and  β type do     not    experience the same exchange potential in this model,

which is clearly due to the fact that Ψ contains two α spin-orbitals and only one β spin-

orbital.

One consequence of the spin-polarized nature of the effective potential in F is that

the optimal 1sα and 1sβ spin-orbitals, which are themselves solutions of F φi = εi φi , do

not have identical orbital energies (i.e., ε1sα ≠ ε1sβ ) and are not spatially identical to one

another ( i.e., φ1sα and φ1sβ do not have identical LCAO-MO expansion coefficients). This

resultant spin polarization of the orbitals in Ψ gives rise to spin impurities in Ψ. That is, the

determinant | 1sα 1s'β 2sα | is not a pure doublet spin eigenfunction although it is an Sz

eigenfunction with Ms = 1/2; it contains both S = 1/2 and S = 3/2 components. If the 1sα
and 1s'β spin-orbitals were spatially identical, then | 1sα 1s'β 2sα | would be a pure spin

eigenfunction with S = 1/2.

The above single-determinant wavefunction is commonly referred to as being of the

unrestricted Hartree-Fock (UHF) type because no restrictions are placed on the spatial

nature of the orbitals which appear in Ψ. In general, UHF wavefunctions are not of pure

spin symmetry for any open-shell system. Such a UHF treatment forms the starting point

of early versions of the widely used and highly successful Gaussian 70 through Gaussian-



8X series of electronic structure computer codes which derive from J. A. Pople and co-

workers (see, for example, M. J. Frisch, J. S. Binkley, H. B. Schlegel, K Raghavachari,

C. F. Melius, R. L. Martin, J. J. P. Stewart, F. W. Bobrowicz, C. M. Rohling, L. R.

Kahn, D. J. Defrees, R. Seeger, R. A. Whitehead, D. J. Fox, E. M. Fleuder, and J. A.

Pople,      Gaussian 86     , Carnegie-Mellon Quantum Chemistry Publishing Unit, Pittsburgh,

PA (1984)).

The inherent spin-impurity problem is sometimes 'fixed' by using the orbitals

which are obtained in the UHF calculation to subsequently form a properly spin-adapted

wavefunction. For the above Li atom example, this amounts to forming a new

wavefunction (after the orbitals are obtained via the UHF process) using the techniques

detailed in Section 3 and Appendix G:

Ψ = 1/√2 [ |1sα 1s'β 2sα | - | 1sβ 1s'α 2sα | ] .

This wavefunction is a pure S = 1/2 state. This prescription for avoiding spin

contamination (i.e., carrying out the UHF calculation and then forming a new spin-pure Ψ)

is referred to as    spin-projection    .

It is, of course, possible to first form the above spin-pure Ψ as a trial wavefunction

and to then determine the orbitals 1s 1s' and 2s which minimize its energy; in so doing, one

is dealing with a spin-pure function from the start. The problem with carrying out this

process, which is referred to as a    spin-adapted     Hartree-Fock calculation, is that the

resultant 1s and 1s' orbitals still do not have identical spatial attributes. Having a set of

orbitals (1s, 1s', 2s, and the virtual orbitals) that form a non-orthogonal set (1s and 1s' are

neither identical nor orthogonal) makes it difficult to progress beyond the single-

configuration wavefunction as one often wishes to do. That is, it is difficult to use a spin-

adapted wavefunction as a starting point for a correlated-level treatment of electronic

motions.

Before addressing head-on the problem of how to best treat orbital optimization for

open-shell species, it is useful to examine how the HF equations are solved in practice in

terms of the LCAO-MO process.

IV. The LCAO-MO Expansion

The HF equations F φi = εi φi comprise a set of integro-differential equations; their

differential nature arises from the kinetic energy operator in h, and the coulomb and

exchange operators provide their integral nature. The solutions of these equations must be



achieved iteratively because the Ji and Ki  operators in F depend on the orbitals φi  which

are to be solved for. Typical iterative schemes begin with a 'guess' for those φi which

appear in Ψ, which then allows F to be formed. Solutions to F φi = εi φi are then found,

and those φi which possess the space and spin symmetry of the occupied orbitals of Ψ and

which have the proper energies and nodal character are used to generate a new F operator

(i.e., new Ji and Ki operators). The new F operator then gives new φi and εi via solution of

the new F φi = εi φi equations. This iterative process is continued until the φi and εi do not

vary significantly from one iteration to the next, at which time one says that the process has

converged. This iterative procedure is referred to as the Hartree-Fock    self-consistent field    

(SCF) procedure because iteration eventually leads to coulomb and exchange potential

fields that are consistent from iteration to iteration.

In practice, solution of F φi = εi φi as an integro-differential equation can be carried

out only for atoms (C. Froese-Fischer, Comp. Phys. Commun.     1     , 152 (1970)) and linear

molecules (P. A. Christiansen and E. A. McCullough, J. Chem. Phys.     67    , 1877 (1977))

for which the angular parts of the φi  can be exactly separated from the radial because of the

axial- or full- rotation group symmetry (e.g., φi = Yl,m  Rn,l (r)  for an atom and φi =

exp(imφ) Rn,l,m (r,θ) for a linear molecule). In such special cases, F φi = εi φi gives rise to

a set of coupled equations for the Rn,l(r) or Rn,l,m(r,θ) which can and have been solved.

However, for non-linear molecules, the HF equations have not yet been solved in such a

manner because of the three-dimensional nature of the φi and of the potential terms in F.

In the most commonly employed procedures used to solve the HF equations for

non-linear molecules, the φi are expanded in a basis of functions χµ according to the

LCAO-MO procedure:

φi = Σµ Cµ,i χµ .

Doing so then reduces F φi = εi φi to a matrix eigenvalue-type equation of the form:

Σν  Fµ,ν Cν ,i = εi Σν  Sµ,ν Cν ,i  ,

where Sµ,ν = < χµ | χν> is the overlap matrix among the atomic orbitals (aos) and

    Fµ,ν = <χµ|h|χν> + Σδ,κ [γδ,κ<χµχδ |g|χνχκ>-γδ,κex<χµχδ|g|χκχν >]

is the matrix representation of the Fock operator in the ao basis.  The coulomb and

exchange- density matrix elements in the ao basis are:



γδ,κ = Σ i(occupied) Cδ,i Cκ,i, and

γδ,κex = Σ i(occ., and same spin)  Cδ,i Cκ,i,

where the sum in γδ,κex runs over those occupied spin-orbitals whose ms value is equal to

that for which the Fock matrix is being formed (for a closed-shell species, γδ,κex = 1/2

γδ,κ).

It should be noted that by moving to a matrix problem, one does not remove the

need for an iterative solution; the Fµ,ν matrix elements depend on the Cν ,i  LCAO-MO

coefficients which are, in turn, solutions of the so-called Roothaan matrix Hartree-Fock

equations- Σν  Fµ,ν Cν ,i  = εi Σν  Sµ,ν Cν ,i .  One should also note that, just as

F φi =  εi φj possesses a complete set of eigenfunctions, the matrix Fµ,ν  , whose dimension

M is equal to the number of atomic basis orbitals used in the LCAO-MO expansion, has M

eigenvalues εi and M eigenvectors whose elements are the Cν ,i. Thus, there are occupied

and virtual molecular orbitals (mos) each of which is described in the LCAO-MO form with

Cν ,i  coefficients obtained via solution of

Σν  Fµ,ν Cν ,i  = εi Σν  Sµ,ν Cν ,i  .

V. Atomic Orbital Basis Sets

A. STOs and GTOs

The basis orbitals commonly used in the LCAO-MO-SCF process fall into two

classes:

1. Slater-type orbitals

χn,l,m (r,θ,φ) = Nn,l,m,ζ  Yl,m (θ,φ) rn-1 e-ζr ,

which are characterized by quantum numbers n, l, and m and exponents (which

characterize the 'size' of the basis function) ζ. The symbol Nn,l,m,ζ denotes the

normalization constant.



2. Cartesian Gaussian-type orbitals

χa,b,c (r,θ,φ) = N'a,b,c,α  xa yb zc exp(-αr2),

characterized by quantum numbers a, b, and c which detail the angular shape and direction

of the orbital and exponents α which govern the radial 'size' of the basis function. For

example, orbitals with a, b, and c values of 1,0,0 or 0,1,0 or 0,0,1 are px , py , and pz

orbitals; those with a,b,c values of 2,0,0 or 0,2,0 or 0,0,2 and

1,1,0 or 0,1,1 or 1,0,1 span the space of five d orbitals and one s orbital (the sum of the

2,0,0 and 0,2,0 and 0,0,2 orbitals is an s orbital because x2 + y2 + z2 = r2 is independent

of θ and φ).

For both types of orbitals, the coordinates r, θ, and φ refer to the position of the

electron relative to a set of axes attached to the center on which the basis orbital is located.

Although Slater-type orbitals (STOs) are preferred on fundamental grounds (e.g., as

demonstrated in Appendices A and B, the hydrogen atom orbitals are of this form and the

exact solution of the many-electron Schrödinger equation can be shown to be of this form

(in each of its coordinates) near the nuclear centers), STOs are used primarily for atomic
and linear-molecule calculations because the multi-center integrals < χaχb| g | χcχd > (each

basis orbital can be on a separate atomic center) which arise in polyatomic-molecule

calculations can not efficiently be performed when STOs are employed. In contrast, such

integrals can routinely be done when Gaussian-type orbitals (GTOs) are used. This

fundamental advantage of GTOs has lead to the dominance of these functions in molecular

quantum chemistry.

To understand why integrals over GTOs can be carried out when analogous STO-
based integrals are much more difficult, one must only consider the orbital products ( χaχc
(r1) and χbχd (r2) ) which arise in such integrals. For orbitals of the GTO form, such

products involve exp(-αa (r-Ra)2) exp(-αc (r-Rc)2). By completing the square in the

exponent, this product can be rewritten as follows:

exp(-αa (r-Ra)2) exp(-αc (r-Rc)2)

= exp(-(αa+αc)(r-R')2) exp(-α'(Ra-Rc)2),

where

R' = [ αa Ra + αcRc ]/(αa + αc) and



α' = αa αc/(αa +αc).

Thus, the product of two GTOs on different centers is equal to a single other GTO at a

center R' between the two original centers. As a result, even a four-center two-electron

integral over GTOs can be written as, at most, a two-center two-electron integral; it turns

out that this reduction in centers is enough to allow all such integrals to be carried out. A

similar reduction does not arise for STOs because the product of two STOs can not be

rewritten as a new STO at a new center.

To overcome the primary weakness of GTO functions, that they have incorrect

behavior near the nuclear centers (i.e., their radial derivatives vanish at the nucleus whereas

the derivatives of STOs are non-zero), it is common to combine two, three, or more GTOs,

with combination coefficients which are fixed and     not    treated as LCAO-MO parameters,

into new functions called contracted GTOs or CGTOs. Typically, a series of tight,

medium, and loose GTOs (i.e., GTOs with large, medium, and small α values,

respectively) are multiplied by so-called contraction coefficients and summed to produce a

CGTO which appears to possess the proper 'cusp' (i.e., non-zero slope) at the nuclear

center (although even such a combination can not because each GTO has zero slope at the

nucleus).

B. Basis Set Libraries

Much effort has been devoted to developing sets of STO or GTO basis orbitals for

main-group elements and the lighter transition metals. This ongoing effort is aimed at

providing standard basis set libraries which:

1. Yield reasonable chemical accuracy in the resultant wavefunctions and energies.

2. Are cost effective in that their use in practical calculations is feasible.

3. Are relatively transferrable in the sense that the basis for a given atom is flexible enough

to be used for that atom in a variety of bonding environments (where the atom's

hybridization and local polarity may vary).

C. The Fundamental Core and Valence Basis

In constructing an atomic orbital basis to use in a particular calculation, one must

choose from among several classes of functions. First, the size and nature of the primary



core and valence basis must be specified. Within this category, the following choices are

common:

1. A      minimal basis    in which the number of STO or CGTO orbitals is equal to the number

of core and valence atomic orbitals in the atom.

2. A     double-zeta    (DZ) basis in which twice as many STOs or CGTOs are used as there are

core and valence atomic orbitals. The use of more basis functions is motivated by a desire

to provide additional variational flexibility to the LCAO-MO process.  This flexibility

allows the LCAO-MO process to generate molecular orbitals of variable diffuseness as the

local electronegativity of the atom varies.  Typically, double-zeta bases include pairs of

functions with one member of each pair having a smaller exponent (ζ or α value) than in

the minimal basis and the other member having a larger exponent.

3. A    triple-zeta    (TZ) basis in which three times as many STOs or CGTOs are used as the

number of core and valence atomic orbitals.

4. Dunning has developed CGTO bases which range from approximately DZ to

substantially beyond TZ quality (T. H. Dunning, J. Chem. Phys.     53    , 2823 (1970); T. H.

Dunning and P. J. Hay in      Methods of Electronic Structure Theory    , H. F. Schaefer, III

Ed., Plenum Press, New York (1977))). These bases involve contractions of primitive

GTO bases which Huzinaga had earlier optimized (S. Huzinaga, J. Chem. Phys.     42    , 1293

(1965)) for use as uncontracted functions (i.e., for which Huzinaga varied the α values to

minimize the energies of several electronic states of the corresponding atom). These

Dunning bases are commonly denoted, for example, as follows for first-row atoms:

(10s,6p/5s,4p), which means that 10 s-type primitive GTOs have been contracted to

produce 5 separate s-type CGTOs and that 6 primitive p-type GTOs were contracted to

generate 4 separate p-type CGTOs. More recent basis sets from the Dunning group are

given in T. Dunning, J. Chem. Phys.     90    , 1007 (1990).

5. Even-tempered basis sets (M. W. Schmidt and K. Ruedenberg, J. Chem. Phys.     71    ,

3961 (1979)) consist of GTOs in which the orbital exponents αk belonging to series of

orbitals consist of geometrical progressions: αk = a βk , where a and β characterize the

particular set of GTOs.

6. STO-3G bases were employed some years ago (W. J. Hehre, R. F. Stewart, and J. A.

Pople, J. Chem. Phys.     51    , 2657 (1969)) but are less popular recently. These bases are

constructed by least squares fitting GTOs to STOs which have been optimized for various

electronic states of the atom. When three GTOs are employed to fit each STO, a STO-3G

basis is formed.

7. 4-31G, 5-31G, and 6-31G bases (R.  Ditchfield, W. J. Hehre, and J. A. Pople, J.

Chem. Phys.     54    , 724 (1971); W. J. Hehre, R.  Ditchfield, and J. A. Pople, J. Chem.



Phys.     56    , 2257 (1972); P. C. Hariharan and J. A. Pople, Theoret. Chim. Acta. (Berl.)     28    ,

213 (1973); R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys.     72    ,

650 (1980)) employ a single CGTO of contraction length 4, 5, or 6 to describe the core

orbital. The valence space is described at the DZ level with the first CGTO constructed

from 3 primitive GTOs and the second CGTO built from a single primitive GTO.

The values of the orbital exponents (ζs or αs) and the GTO-to-CGTO contraction

coefficients needed to implement a particular basis of the kind described above have been

tabulated in several journal articles and in computer data bases (in particular, in the data

base contained in the book      Handbook of Gaussian Basis Sets:  A. Compendium for Ab

   initio Molecular Orbital Calculations   , R. Poirer, R. Kari, and I. G. Csizmadia, Elsevier

Science Publishing Co., Inc., New York, New York (1985)).

Several other sources of basis sets for particular atoms are listed in the Table shown

below (here JCP and JACS are abbreviations for the Journal of Chemical Physics and the

Journal of The American Chemical Society, respectively).

    Literature Reference                                        Basis Type        Atoms   

Hehre, W.J.; Stewart, R.F.; Pople, J.A.           STO-3G                  H-Ar

JCP     51    , 2657 (1969).

Hehre, W.J.; Ditchfield, R.; Stewart, R.F.;

Pople, J.A. JCP     52    , 2769 (1970).

Binkley, J.S.; Pople, J.A.; Hehre, W.J.             3-21G                   H-Ne

JACS     102    , 939 (1980).

Gordon, M.S.; Binkley, J.S.; Pople, J.A.;          3-21G                    Na-Ar

Pietro, W.J.; Hehre, W.J. JACS     104    , 2797 (1982).

Dobbs, K.D.; Hehre, W.J.                                3-21G                   K,Ca,Ga

J. Comput. Chem.     7    , 359 (1986).

Dobbs, K.D.; Hehre, W.J.                                3-21G                   Sc-Zn

J. Comput. Chem.     8,    880 (1987).

Ditchfield, R.; Hehre, W.J.; Pople, J.A.            6-31G                    H

JCP     54    , 724 (1971).



Dill, J.D.; Pople, J.A.                                       6-31G                   Li,B

JCP     62    , 2921 (1975).

Binkley, J.S.; Pople, J.A.                                 6-31G                   Be

JCP     66    , 879 (1977).

Hehre, W.J.; Ditchfield, R.; Pople, J.A.             6-31G                   C-F

JCP     56    , 2257 (1972).

Francl, M.M.; Pietro, W.J.; Hehre, W.J.;           6-31G                   Na-Ar

Binkley, J.S.; Gordon, M.S.; DeFrees, D.J.;

Pople, J.A. JCP     77    , 3654 (1982).

Dunning, T. JCP     53    , 2823 (1970).                  (4s/2s)                   H

                                                                    (4s/3s)                   H

                                                                    (9s5p/3s2p)           B-F

                                                                    (9s5p/4s2p)           B-F

                                                                    (9s5p/5s3p)           B-F

Dunning, T. JCP     55    , 716 (1971).                    (5s/3s)                   H

                                                                    (10s/4s)                 Li

                                                                    (10s/5s)                 Be

                                                                    (10s6p/5s3p)         B-Ne

                                                                    (10s6p/5s4p)         B-Ne

Krishnan, R.; Binkley, J.S.; Seeger, R.;             6-311G                  H-Ne

Pople, J.A. JCP     72    , 650 (1980).

Dunning, unpublished VDZ.                          (4s/2s)                   H

                                                                    (9s5p/3s2)       Li,Be,C-Ne

                                                                    (12s8p/4s3p)       Na-Ar

Dunning, unpublished VTZ.                          (5s/3s)                   H

                                                                    (6s/3s)                  H



                                                                    (12s6p/4s3p)  Li,Be,C-Ne

                                                  (17s10p/5s4p)         Mg-Ar

Dunning, unpublished VQZ.                          (7s/4s)                   H

                                                                    (8s/4s)                   H

                                                                    (16s7p/5s4p)        B-Ne

Dunning, T. JCP     90    , 1007 (1989).                 (4s1p/2s1p)            H

(pVDZ,pVTZ,pVQZ correlation-consistent)     (5s2p1d/3s2p1d)    H

                                                              (6s3p1d1f/4s3p2d1f)   H

                                                              (9s4p1d/3s2p1d)         B-Ne

                                                              (10s5p2d1f/4s3p2d1f) B-Ne

                                                      (12s6p3d2f1g/5s4p3d2f1g)  B-Ne

Huzinaga, S.; Klobukowski, M.; Tatewaki, H.       (14s/2s)            Li,Be

Can. J. Chem.     63    , 1812 (1985).                         (14s9p/2s1p)      B-Ne

                                            (16s9p/3s1p)     Na-Mg

                                                                        (16s11p/3s2p)  Al-Ar

Huzinaga, S.; Klobukowski, M.                     (14s10p/2s1p)         B-Ne

THEOCHEM.     44    , 1 (1988).                            (17s10p/3s1p)        Na-Mg

                                        (17s13p/3s2p)       Al-Ar

                                                               (20s13p/4s2p)        K-Ca

                                                            (20s13p10d/4s2p1d) Sc-Zn

                                                            (20s14p9d/4s3d1d)         Ga

McLean, A.D.; Chandler, G.S.                    (12s8p/4s2p) Na-Ar, P-,S-,Cl-

JCP     72    , 5639 (1980).                              (12s8p/5s3p) Na-Ar, P-,S-,Cl-

        (12s8p/6s4p) Na-Ar, P-,S-,Cl-

        (12s9p/6s4p) Na-Ar, P-,S-,Cl-

          (12s9p/6s5p) Na-Ar, P-,S-,Cl-

Dunning, T.H.Jr.; Hay, P.J. Chapter 1 in          (11s7p/6s4p)         Al-Cl

'Methods of Electronic Structure Theory',

Schaefer, H.F.III, Ed., Plenum Press,



N.Y., 1977.

Hood, D.M.; Pitzer, R.M.; Schaefer, H.F.III  (14s11p6d/10s8p3d)  Sc-Zn

JCP     71    , 705 (1979).

Schmidt, M.W.; Ruedenberg, K.                     ([N]s), N=3-10            H

JCP     71    , 3951 (1979).                                  ([2N]s), N=3-10           He

(regular even-tempered)                           ([2N]s), N=3-14           Li,Be

                                                        ([2N]s[N]p),N=3-11        B,N-Ne

                                                            ([2N]s[N]p),N=3-13            C

                                                            ([2N]s[N]p),N=4-12         Na,Mg

                                                            ([2N-6]s[N]p),N=7-15      Al-Ar

D. Polarization Functions

In addition to the fundamental core and valence basis described above, one usually

adds a set of so-called     polarization functions    to the basis. Polarization functions are

functions of one higher angular momentum than appears in the atom's valence orbital space

(e.g, d-functions for C, N , and O and p-functions for H). These polarization functions

have exponents (ζ or α) which cause their radial sizes to be similar to the sizes of the

primary valence orbitals

( i.e., the polarization p orbitals of the H atom are similar in size to the 1s orbital).  Thus,

they are     not    orbitals which provide a description of the atom's valence orbital with one

higher l-value; such higher-l valence orbitals would be radially more diffuse and would

therefore require the use of STOs or GTOs with smaller exponents.

The primary purpose of polarization functions is to give additional angular

flexibility to the LCAO-MO process in forming the valence molecular orbitals. This is

illustrated below where polarization dπ orbitals are seen to contribute to formation of the

bonding π orbital of a carbonyl group by allowing polarization of the Carbon atom's pπ
orbital toward the right and of the Oxygen atom's pπ orbital toward the left.



              

C O

Polarization functions are essential in strained ring compounds because they provide the

angular flexibility needed to direct the electron density into regions between bonded atoms.

Functions with higher l-values and with 'sizes' more in line with those of the

lower-l orbitals are also used to introduce additional angular correlation into the calculation

by permitting polarized orbital pairs (see Chapter 10) involving higher angular correlations

to be formed. Optimal polarization functions for first and second row atoms have been

tabulated (B. Roos and P. Siegbahn, Theoret. Chim. Acta (Berl.)     17    , 199 (1970); M. J.

Frisch, J. A. Pople, and J. S. Binkley, J. Chem. Phys.     80     , 3265 (1984)).

E. Diffuse Functions

When dealing with anions or Rydberg states, one must augment the above basis

sets by adding so-called diffuse basis orbitals. The conventional valence and polarization

functions described above do not provide enough radial flexibility to adequately describe

either of these cases. Energy-optimized diffuse functions appropriate to anions of most

lighter main group elements have been tabulated in the literature (an excellent source of

Gaussian basis set information is provided in      Handbook of Gaussian Basis Sets   , R.

Poirier, R. Kari, and I. G. Csizmadia, Elsevier, Amsterdam (1985)) and in data bases.

Rydberg diffuse basis sets are usually created by adding to conventional valence-plus-

polarization bases sequences of primitive GTOs whose exponents are smaller than that (call

it αdiff) of the most diffuse GTO which contributes strongly to the valence CGTOs. As a

'rule of thumb', one can generate a series of such diffuse orbitals which are liniarly

independent yet span considerably different regions of radial space by introducing primitive

GTOs whose exponents are αdiff /3, αdiff /9 , αdiff /27, etc.

Once one has specified an atomic orbital basis for each atom in the molecule, the

LCAO-MO procedure can be used to determine the Cν ,i  coefficients that describe the



occupied and virtual orbitals in terms of the chosen basis set. It is important to keep in mind

that the basis orbitals are     not    themselves the true orbitals of the isolated atoms; even the

proper atomic orbitals are combinations (with atomic values for the Cν ,i  coefficients) of the

basis functions. For example, in a minimal-basis-level treatment of the Carbon atom, the 2s

atomic orbital is formed by combining, with opposite sign to achieve the radial node, the

two CGTOs (or STOs); the more diffuse s-type basis function will have a larger Ci,ν

coefficient in the 2s atomic orbital. The 1s atomic orbital is formed by combining the same

two CGTOs but with the same sign and with the less diffuse basis function having a larger

Cν ,i coefficient. The LCAO-MO-SCF process itself determines the magnitudes and signs

of the Cν ,i  .

VI. The Roothaan Matrix SCF Process

The matrix SCF equations introduced earlier

Σν  Fµ,ν Cν ,i  = εi Σν  Sµ,ν Cν ,i

must be solved both for the occupied and virtual orbitals' energies εi and Cν ,i  values. Only

the occupied orbitals' Cν ,i  coefficients enter into the Fock operator

Fµ,ν  = < χµ | h | χν > + Σδ,κ  [γδ,κ< χµ χδ | g | χν χκ >

-  γδ,κex< χµ χδ | g | χκ χν >],

but both the occupied and virtual orbitals are solutions of the SCF equations. Once atomic

basis sets have been chosen for each atom, the     one- and two-electron integrals    appearing in

Fµ,ν  must be evaluated. Doing so is a time consuming process, but there are presently

several highly efficient computer codes which allow such integrals to be computed for s, p,

d, f, and even g, h, and i basis functions. After executing one of these '   integral packages   '

for a basis with a total of N functions, one has available (usually on the computer's hard

disk) of the order of N2/2 one-electron and N4/8 two-electron integrals over these atomic

basis orbitals (the factors of 1/2 and 1/8 arise from permutational symmetries of the

integrals). When treating extremely large atomic orbital basis sets (e.g., 200 or more basis

functions), modern computer programs calculate the requisite integrals but never store them



on the disk. Instead, their contributions to Fµ,ν are accumulated 'on the fly' after which the

integrals are discarded.

To begin the SCF process, one must input to the computer routine which computes

Fµ,ν    initial 'guesses'    for the Cν ,i  values corresponding to the occupied orbitals. These

initial guesses are typically made in one of the following ways:

1. If one has available Cν ,i  values for the system from an SCF calculation performed

earlier at a nearby molecular geometry, one can use these Cν ,i  values to begin the SCF

process.

2. If one has Cν ,i  values appropriate to fragments of the system (e.g., for C and O atoms

if the CO molecule is under study or for CH2 and O if H2CO is being studied), one can use

these.

3. If one has no other information available, one can carry out one iteration of the SCF

process in which the two-electron contributions to Fµ,ν   are ignored ( i.e., take Fµ,ν  = < χµ
| h | χν >) and use the resultant solutions to Σν  Fµ,ν Cν ,i  = εi Σν  Sµ,ν Cν ,i   as initial

guesses for the Cν ,i . Using only the one-electron part of the Hamiltonian to determine

initial values for the LCAO-MO coefficients may seem like a rather severe step; it is, and

the resultant Cν ,i  values are usually far from the converged values which the SCF process

eventually produces. However, the initial Cν ,i  obtained in this manner have proper

symmetries and nodal patterns because the one-electron part of the Hamiltonian has the

same symmetry as the full Hamiltonian.

Once initial guesses are made for the Cν ,i   of the occupied orbitals, the full Fµ,ν
matrix is formed and new εi and Cν ,i  values are obtained by solving Σν  Fµ,ν Cν ,i  = εi Σν
Sµ,ν Cν ,i . These new orbitals are then used to form a new Fµ,ν   matrix from which new εi

and Cν ,i  are obtained. This iterative process is carried on until the εi and Cν ,i  do not vary

(within specified tolerances)  from iteration to iteration, at which time one says that the SCF

process has converged and reached self-consistency.

As presented, the Roothaan SCF process is carried out in a fully    ab        initio     manner in

that all one- and two-electron integrals are computed in terms of the specified basis set; no

experimental data or other input is employed. As described in Appendix F,  it is possible to

introduce approximations to the coulomb and exchange integrals entering into the Fock

matrix elements that permit many of the requisite Fµ,ν elements to be evaluated in terms of

experimental data or in terms of a small set of 'fundamental' orbital-level coulomb

interaction integrals that can be computed in an    ab        initio     manner. This approach forms the

basis of so-called 'semi-empirical' methods. Appendix F provides the reader with a brief

introduction to such approaches to the electronic structure problem and deals in some detail

with the well known Hückel and CNDO- level approximations.



VII. Observations on Orbitals and Orbital Energies

A. The Meaning of Orbital Energies

The physical content of the Hartree-Fock orbital energies can be seen by observing

that Fφi = εi φi  implies that εi can be written as:

εi = < φi | F | φi > = < φi | h | φi > + Σ j(occupied) < φi | Jj - Kj | φi >

= < φi | h | φi > + Σ j(occupied) [ Ji,j - Ki,j  ].

In this form, it is clear that εi is equal to the average value of the kinetic energy plus

coulombic attraction to the nuclei for an electron in φi plus the sum over all of the spin-

orbitals occupied in Ψ of coulomb minus exchange interactions between φi  and these

occupied spin-orbitals. If φi itself is an occupied spin-orbital, the term [ Ji,i - Ki,i]

disappears and the latter sum represents the coulomb minus exchange interaction of φi with

all of the  N-1     other    occupied spin-orbitals. If φi is a virtual spin-orbital, this cancellation

does not occur, and one obtains the coulomb minus exchange interaction of φi with all N of

the occupied spin-orbitals.

In this sense, the orbital energies for occupied orbitals pertain to interactions which

are appropriate to a total of N electrons, while the orbital energies of virtual orbitals pertain

to a system with N+1 electrons. It is this fact that makes SCF virtual orbitals not optimal

(in fact, not usually very good) for use in subsequent correlation calculations where, for

instance, they are used, in combination with the occupied orbitals, to form polarized orbital

pairs as discussed in Chapter 12. To correlate a pair of electrons that occupy a valence

orbital requires double excitations into a virtual orbital that is not too dislike in size.

Although the virtual SCF orbitals themselves suffer these drawbacks, the space they span

can indeed be used for treating electron correlation. To do so, it is useful to recombine (in a

unitary manner to preserve orthonormality) the virtual orbitals to 'focus' the correlating

power into as few orbitals as possible so that the multiconfigurational wavefunction can be

formed with as few CSFs as possible. Techniques for effecting such reoptimization or

improvement of the virtual orbitals are treated later in this text.

B.. Koopmans' Theorem



Further insight into the meaning of the energies of occupied and virtual orbitals can

be gained by considering the following model of the vertical (i.e., at fixed molecular

geometry) detachment or attachment of an electron to the original N-electron molecule:

1. In this model,     both     the parent molecule and the species generated by adding or removing

an electron are treated at the single-determinant level.

2. In this model, the Hartree-Fock orbitals of the parent molecule are used to describe both

the parent and the species generated by electron addition or removal. It is said that such a

model neglects '    orbital relaxation    ' which would accompany the electron addition or

removal (i.e., the reoptimization  of the spin-orbitals to allow them to become appropriate

to the daughter species).

Within this simplified model, the energy difference between the daughter and the

parent species can be written as follows (φk represents the particular spin-orbital that is

added or removed):

1. For electron detachment:

EN-1 - EN = < | φ1φ2 ...φk-1. .φN| H | φ1φ2 ...φk-1. .φN| > -

< | φ1φ2. . .φk-1φk. .φN | H | | φ1φ2. . .φk-1φk. .φN | >

=  − < φk | h | φk > - Σ j=(1,k-1,k+1,N) [ Jk,j - Kk,j ] = - εk  ;

2. For electron attachment:

EN - EN+1 = < | φ1φ2 ...φN| H | φ1φ2 ...φN| > -

< | φ1φ2. . .φNφk | H | | φ1φ2. . . .φN φk| >

=  − < φk | h | φk > - Σ j=(1,N) [ Jk,j - Kk,j ] = - εk .

So, within the limitations of the single-determinant, frozen-orbital model set forth,

the ionization potentials (IPs) and electron affinities (EAs) are given as the negative of the

occupied and virtual spin-orbital energies, respectively. This statement is referred to as

Koopmans' theorem (T. Koopmans, Physica     1    , 104 (1933)); it is used extensively in

quantum chemical calculations as a means for estimating IPs and EAs and often yields

results that are at least qualitatively correct (i.e., ± 0.5 eV).



C. Orbital Energies and the Total Energy

For the N-electron species whose Hartree-Fock orbitals and orbital energies have

been determined, the total SCF electronic energy can be written, by using the Slater-

Condon rules, as:

 E = Σ i(occupied) < φi | h | φi > + Σ i>j(occupied) [ Ji,j - Ki,j ].

For this same system, the sum of the orbital energies of the occupied spin-orbitals is given

by:

Σ i(occupied) εi = Σ i(occupied) < φi | h | φi >

+ Σ i,j(occupied) [ Ji,j - Ki,j ].

These two seemingly very similar expressions differ in a very important way; the sum of

occupied orbital energies, when compared to the total energy, double counts the coulomb

minus exchange interaction energies. Thus, within the Hartree-Fock approximation, the

sum of the occupied orbital energies is     not    equal to the total energy. The total SCF energy

can be computed in terms of the sum of occupied orbital energies by taking one-half of

Σ i(occupied) εi and then adding to this one-half of Σ i(occupied) < φi | h | φi >:

E = 1/2 [Σ i(occupied) < φi | h | φi > + Σ i(occupied) εi].

The fact that the sum of orbital energies is not the total SCF energy also means that

as one attempts to develop a qualitative picture of the energies of CSFs along a reaction

path, as when orbital and configuration correlation diagrams are constructed, one must be

careful not to equate the sum of orbital energies with the total configurational energy; the

former is higher than the latter by an amount equal to the sum of the coulomb minus

exchange interactions.

D.  The Brillouin Theorem

The condition that the SCF energy <|φ1. . .φN| H |φ1. . .φN|> be stationary with respect

to variations δφi  in the occupied spin-orbitals (that preserve orthonormality) can be written



<|φ1. . .δφi. . .φN|H|φ1. . .φi. . .φN|> = 0.

The infinitesimal variation of φi can be expressed in terms of its (small) components along

the other occupied φj and along the virtual φm as follows:   

δφi =  Σ j=occ  Uij φj  + Σm Uim φm.

When substituted into |φ1. . .δφi. . .φΝ|, the terms Σ j'=occ|φ1. . .φj. . .φN|Uij vanish because φj

already appears in the original Slater determinant |φ1. . .φN|, so |φ1. . .φj. . .φΝ| contains φj

twice.  Only the sum over virtual orbitals remains, and the stationary property written

above becomes

Σm Uim<|φ1. . .φm. . .φN| H |φ1. . .φi. . .φN|> = 0.

The Slater-Condon rules allow one to express the Hamiltonian matrix elements

appearing here as

<|φ1. . .φm. . .φN| H |φ1. . .φi. . .φN|> = <φm|h|φi> + Σ j=occ ,≠i <φm|[Jj-Kj]|φi>,

which (because the term with j=i can be included since it vanishes) is equal to the following

element of the Fock operator: <φm|F|φi> = εi δim = 0.  This result proves that Hamiltonian

matrix elements between the SCF determinant and those that are singly excited relative to

the SCF determinant vanish because they reduce to Fock-operator integrals connecting the

pair of orbitals involved in the 'excitation'.  This stability property of the SCF energy is

known as the Brillouin theorem (i.e., that |φ1φiφN| and |φ1. . .φm. . .φN| have zero Hamiltonian

matrix elements    if    the φs are SCF orbitals). It is exploited in quantum chemical calculations

in two manners:

(i) When multiconfiguration wavefunctions are formed from SCF spin-orbitals, it

allows one to neglect Hamiltonian matrix elements between the SCF configuration and

those that are 'singly excited' in constructing the secular matrix.

(ii) A so-called generalized Brillouin theorem (GBT) arises when one deals with

energy optimization for a multiconfigurational variational trial wavefunction for which the

orbitals and CI mixing coefficients are simultaneously optimized. This GBT causes certain

Hamiltonian matrix elements to vanish, which, in turn, simplifies the treatment of electron

correlation for such wavefunctions. This matter is treated in more detail later in this text.





Chapter 19

Corrections to the mean-field model are needed to describe the instantaneous Coulombic

interactions among the electrons. This is achieved by including more than one Slater

determinant in the wavefunction.

Much of the development of the previous chapter pertains to the use of a single

Slater determinant trial wavefunction.  As presented, it relates to what has been called the

unrestricted Hartree-Fock (UHF) theory in which each spin-orbital φi has its own orbital

energy εi and LCAO-MO coefficients Cν ,i ; there may be different Cν ,i  for α spin-orbitals

than for β  spin-orbitals. Such a wavefunction suffers from the spin contamination

difficulty detailed earlier.

To allow for a properly spin- and space- symmetry adapted trial wavefunction and

to permit Ψ to contain more than a single CSF,  methods which are more flexible than the

single-determinant HF procedure are needed. In particular, it may be necessary to use a

combination of determinants to describe such a proper symmetry function. Moreover, as

emphasized earlier, whenever two or more CSFs have similar energies (i.e., Hamiltonian

expectation values) and can couple strongly through the Hamiltonian (e.g., at avoided

crossings in configuration correlation diagrams), the wavefunction must be described in a

multiconfigurational manner to permit the wavefunction to evolve smoothly from reactants

to products. Also, whenever dynamical electron correlation effects are to be treated, a

multiconfigurational Ψ must be used; in this case, CSFs that are     doubly excited     relative to

one or more of the essential CSFs (i.e., the dominant CSFs that are included in the so-

called    reference wavefunction    ) are included to permit polarized-orbital-pair formation.

Multiconfigurational functions are needed not only to account for electron

correlation but also to permit orbital readjustments to occur. For example, if a set of SCF

orbitals is employed in forming a multi-CSF wavefunction, the variational condition that

the energy is stationary with respect to variations in the LCAO-MO coefficients is no longer

obeyed (i.e., the SCF energy functional is stationary when SCF orbitals are employed, but

the MC-energy functional is generally not stationary if SCF orbitals are employed). For

such reasons, it is important to include CSFs that are    singly excited     relative to the dominant

CSFs in the reference wavefunction.

That singly excited CSFs allow for orbital relaxation can be seen as follows.

Consider a wavefunction consisting of one CSF |φ1. . .φi. . .φN| to which singly excited CSFs

of the form |φ1. . .φm. . .φN| have been added with coefficients Ci,m:

Ψ = Σm Ci,m |φ1. . .φm. . .φN| + |φ1. . .φi. . .φN|.



All of these determinants have all of their columns equal except the ith column; therefore,

they can be combined into a single new determinant:

Ψ = |φ1. . .φi' . . .φN|,

where the relaxed orbital φi' is given by

φi' = φi + Σm Ci,m φm.

The sum of CSFs that are singly excited in the ith spin-orbital with respect to |φ1. . .φi. . .φN|

is therefore seen to allow the spin-orbital φi to relax into the new spin-orbital φi'. It is in

this sense that singly excited CSFs allow for orbital reoptimization.

In summary, doubly excited CSFs are often employed to permit polarized orbital

pair formation and hence to allow for electron correlations. Singly excited CSFs are

included to permit orbital relaxation (i.e., orbital reoptimization) to occur.

I. Different Methods

There are numerous procedures currently in use for determining the 'best'

wavefunction of the form:

Ψ = ΣI CI ΦI,

where ΦI  is a spin-and space- symmetry adapted CSF consisting of determinants of the

form  | φI1 φI2 φI3 ... φIN | . Excellent overviews of many of these methods are included in

     Modern Theoretical Chemistry     Vols. 3 and 4, H. F. Schaefer, III Ed., Plenum Press, New

York (1977) and in     Advances in Chemical Physics   , Vols. LXVII and LXIX, K. P.

Lawley, Ed., Wiley-Interscience, New York (1987). Within the present Chapter, these two

key references will be denoted MTC, Vols. 3 and 4, and ACP, Vols. 67 and 69,

respectively.

In all such trial wavefunctions, there are two fundamentally different kinds of

parameters that need to be determined- the CI coefficients CI and the LCAO-MO

coefficients describing the φIk . The most commonly employed methods used to determine

these parameters include:



1. The multiconfigurational self-consistent field ( MCSCF) method in which the

expectation value < Ψ | H | Ψ > / < Ψ | Ψ > is treated variationally and simultaneously

made stationary with respect to variations in the CI and Cν ,i  coefficients subject to the

constraints that the spin-orbitals and the full N-electron wavefunction remain normalized:

<  φi | φj > = δi,j  = Σν ,µ Cν ,i  Sν ,µ Cµ,i , and

ΣI C2I = 1.

The articles by H.-J. Werner and by R. Shepard in ACP Vol. 69 provide up to date

reviews of the status of this approach. The article by A. C. Wahl and G. Das in MTC Vol.

3 covers the 'earlier' history on this topic. F. W. Bobrowicz and W. A. Goddard, III

provide, in MTC Vol. 3, an overview of the GVB approach, which, as discussed in

Chapter 12, can be viewed as a specific kind of MCSCF calculation.

2. The configuration interaction (CI) method in which the

LCAO-MO coefficients are determined first (and independently) via either a single-

configuration SCF calculation or an MCSCF calculation using a small number of CSFs.

The CI coefficients are subsequently determined by making the expectation value < Ψ | H |

Ψ > / < Ψ | Ψ >

stationary with respect to variations in the CI only. In this process, the optimizations of the

orbitals and of the CSF amplitudes are done in separate steps. The articles by I. Shavitt and

by B. O. Ross and P. E. M. Siegbahn in MTC, Vol. 3 give excellent early overviews of

the CI method.

3. The Møller-Plesset perturbation method (MPPT) uses the single-configuration

SCF process (usually the UHF implementation) to first determine a set of LCAO-MO

coefficients and, hence, a set of orbitals that obey Fφi = εi φi . Then, using an unperturbed

Hamiltonian equal to the sum of these Fock operators for each of the N electrons H0 =

Σ i=1,N F(i), perturbation theory (see Appendix D for an introduction to time-independent

perturbation theory) is used to determine the CI amplitudes for the CSFs. The MPPT

procedure is also referred to as the many-body perturbation theory (MBPT) method. The

two names arose because two different schools of physics and chemistry developed them

for somewhat different applications. Later, workers realized that they were identical in their

working equations when the UHF H0 is employed as the unperturbed Hamiltonian. In this

text, we will therefore refer to this approach as MPPT/MBPT.



The amplitude for the so-called    reference    CSF used in the SCF process is taken as

unity and the other CSFs' amplitudes are determined, relative to this one, by Rayleigh-

Schrödinger perturbation theory using the full N-electron Hamiltonian minus the sum of

Fock operators H-H0  as the perturbation. The Slater-Condon rules are used for evaluating

matrix elements of (H-H0) among these CSFs. The essential features of the MPPT/MBPT

approach are described in the following articles: J. A. Pople, R. Krishnan, H. B. Schlegel,

and J. S. Binkley, Int. J. Quantum Chem.     14    , 545 (1978); R. J. Bartlett and D. M. Silver,

J. Chem. Phys.     62    , 3258 (1975); R. Krishnan and J. A. Pople, Int. J. Quantum Chem.

    14    , 91 (1978).

4. The Coupled-Cluster method expresses the CI part of the wavefunction in a

somewhat different manner (the early work in chemistry on this method is described in J.

Cizek, J. Chem. Phys.     45    , 4256 (1966); J. Paldus, J. Cizek, and I. Shavitt, Phys. Rev.

    A5    , 50 (1972); R. J. Bartlett and G. D. Purvis, Int. J. Quantum Chem.     14    , 561 (1978); G.

D. Purvis and R. J. Bartlett, J. Chem. Phys.     76    , 1910 (1982)):

Ψ = exp(T) Φ,

where Φ  is a single CSF (usually the UHF single determinant) which has been used to

independently determine a set of spin-orbitals and LCAO-MO coefficients via the SCF

process. The operator T generates, when acting on Φ, single, double, etc. 'excitations'

(i.e., CSFs in which one, two, etc. of the occupied spin-orbitals in Φ have been replaced

by virtual spin-orbitals). T is commonly expressed in terms of operators that effect such

spin-orbital removals and additions as follows:

T = Σ i,m  tim m+ i + Σ i,j,m,n ti,jm,n  m+ n+ j i + ...,

where the operator m+ is used to denote    creation     of an electron in virtual spin-orbital φm

and the operator j is used to denote    removal    of an electron from occupied spin-orbital φj .

The tim , ti,jm,n, etc. amplitudes, which play the role of the CI coefficients in CC

theory, are determined through the set of equations generated by projecting the Schrödinger

equation in the form

exp(-T) H exp(T) Φ  = E Φ



against CSFs which are single, double, etc. excitations relative to Φ. For example, for

double excitations Φi,jm,n the equations read:

< Φi,jm,n | exp(-T) H exp (T) | Φ >  = E < Φi,jm,n | Φ > = 0;

zero is obtained on the right hand side because the excited CSFs

|Φi,jm,n> are orthogonal to the reference function |Φ>. The elements on the left hand side of

the CC equations can be expressed, as described below, in terms of one- and two-electron

integrals over the spin-orbitals used in forming the reference and excited CSFs.

A. Integral Transformations

All of the above methods require the evaluation of one- and two-electron integrals

over the N atomic     orbital basis:    <χa |f|χb> and <χaχb|g|χcχd>. Eventually, all of these

methods provide their working equations and energy expressions in terms of one- and two-

electron integrals over the N final      molecular orbitals   : <φi|f|φj> and <φiφj|g|φkφl>.

The mo-based integrals can only be evaluated by    transforming     the AO-based integrals as

follows:

<φiφj|g|φkφl> = Σa,b,c,d Ca,iCb,jCc,kCd,l <χaχb|g|χcχd>,

and

<φi|f|φj> = Σa,b Ca,iCb,j <χa |f|χb>.

It would seem that the process of evaluating all N4 of the <φiφj|g|φkφl>, each of which

requires N4 additions and multiplications, would require computer time proportional to N8.

However, it is possible to perform the full transformation of the two-electron integral list in

a time that scales as N5 . This is done by first performing a transformation of the

<χaχb|g|χcχd> to an intermediate array labeled <χaχb|g|χcφl> as follows:

<χaχb|g|χcφl> = Σd Cd,l<χaχb|g|χcχd>.

This partial transformation requires N5 multiplications and additions.

The list <χaχb|g|χcφl> is then transformed to a second-level transformed array

<χaχb|g|φkφl>:



<χaχb|g|φkφl> = Σc Cc,k<χaχb|g|χcφl>,

which requires another N5 operations. This sequential, one-index-at-a-time transformation

is repeated four times until the final <φiφj|g|φkφl> array is in hand. The entire

transformation done this way requires 4N5  multiplications and additions.

Once the requisite one- and two-electron integrals are available in the molecular

orbital basis, the multiconfigurational wavefunction and energy calculation can begin.

These transformations consume a large fraction of the computer time used in most such

calculations, and represent a severe bottleneck to progress in applying    ab initio     electronic

structure methods to larger systems.

B. Configuration List Choices

Once the requisite one- and two-electron integrals are available in the molecular

orbital basis, the multiconfigurational wavefunction and energy calculation can begin. Each
of these methods has its own approach to describing the configurations {ΦJ} included in

the calculation and how the {CJ} amplitudes and the total energy E is to be determined.

The     number of configurations     (NC) varies greatly among the methods and is an

important factor to keep in mind when planning to carry out an ab initio calculation. Under

certain circumstances (e.g., when studying Woodward-Hoffmann forbidden reactions

where an avoided crossing of two configurations produces an activation barrier), it may be

essential to use more than one electronic configuration. Sometimes, one configuration

(e.g., the SCF model) is adequate to capture the qualitative essence of the electronic

structure. In all cases, many configurations will be needed if highly accurate treatment of

electron-electron correlations are desired.
The value of NC determines how much computer time and memory is needed to

solve the NC-dimensional ΣJ HI,J CJ = E CI secular problem in the CI and MCSCF

methods. Solution of these matrix eigenvalue equations requires computer time that scales
as  NC2 (if few eigenvalues are computed) to NC3 (if most eigenvalues are obtained).

So-called    complete-active-space     (CAS)  methods form    all     CSFs that can be created

by distributing N valence electrons among P valence orbitals. For example,  the eight non-
core electrons of H2O might be distributed, in a manner that gives MS = 0, among six

valence orbitals (e.g., two lone-pair orbitals, two OH σ bonding orbitals, and two OH σ*

antibonding orbitals). The number of configurations thereby created is 225 . If the same

eight electrons were distributed among ten valence orbitals 44,100 configurations results;



for twenty and thirty valence orbitals,  23,474,025 and 751,034,025 configurations arise,

respectively. Clearly, practical considerations dictate that CAS-based approaches be limited

to situations in which a few electrons are to be correlated using a few valence orbitals. The

primary advantage of CAS configurations is discussed below in Sec. II. C.

II. Strengths and Weaknesses of Various Methods

A. Variational Methods Such as MCSCF, SCF, and CI Produce Energies that are Upper

Bounds, but These Energies are not Size-Extensive

Methods that are based on making the energy functional

< Ψ | H | Ψ > / < Ψ | Ψ > stationary (i.e., variational methods) yield     upper bounds    to the

lowest energy of the symmetry which characterizes the CSFs which comprise Ψ. These

methods also can provide approximate excited-state energies and wavefunctions (e. g., in

the form of other solutions of the secular equation ΣJ HI,J CJ  = E CI that arises in the CI

and MCSCF methods). Excited-state energies obtained in this manner can be shown to

'bracket' the true energies of the given symmetry in that between any two approximate

energies obtained in the variational calculation, there exists at least one true eigenvalue.

This characteristic is commonly referred to as the 'bracketing theorem' (E. A. Hylleraas

and B. Undheim, Z. Phys.     65    , 759 (1930); J. K. L. MacDonald, Phys. Rev.     43    , 830

(1933)). These are strong attributes of the variational methods, as is the long and rich

history of developments of analytical and computational tools for efficiently implementing

such methods (see the discussions of the CI and MCSCF methods in MTC and ACP).

However, all variational techniques suffer from at least one serious drawback; they

are not size-extensive (J. A. Pople, pg. 51 in     Energy, Structure, and Reactivity    , D. W.

Smith and W. B. McRae, Eds., Wiley, New York (1973)). This means that the energy

computed using these tools can not be trusted to scale with the size of the system. For

example, a calculation performed on two CH3 species at large separation may not yield an

energy equal to twice the energy obtained by performing the same kind of calculation on a

single CH3 species. Lack of size-extensivity precludes these methods from use in extended

systems (e.g., solids) where errors due to improper scaling of the energy with the number

of molecules produce nonsensical results.

By carefully adjusting the kind of variational wavefunction used, it is possible to

circumvent size-extensivity problems for selected species. For example, a CI calculation on

Be2 using    all    1Σg CSFs that can be formed by placing the four valence electrons into the

orbitals 2σg, 2σu , 3σg, 3σu, 1πu, and 1πg can yield an energy equal to twice that of the Be



atom described by CSFs in which the two valence electrons of the Be atom are placed into

the 2s and 2p orbitals in all ways consistent with a 1S symmetry. Such special choices of

configurations give rise to what are called    complete-active-space    (CAS) MCSCF or CI

calculations (see the article by B. O. Roos in ACP for an overview of this approach).

Let us consider an example to understand why the CAS choice of configurations

works. The 1S ground state of the Be atom is known to form a wavefunction that is a

strong mixture of CSFs that arise from the 2s2  and 2p2 configurations:

ΨBe = C1 |1s2 2s2 | + C2 | 1s2 2p2 |,

where the latter CSF  is a short-hand representation for the proper spin- and space-

symmetry adapted CSF

| 1s2 2p2 | = 1/√3 [ |1sα1sβ2p0α2p0β| - |1sα1sβ2p1α2p-1β|

- |1sα1sβ2p-1α2p1β| ].

The reason the CAS process works is that the Be2 CAS wavefunction has the flexibility to

dissociate into the product of two CAS Be wavefunctions:

 Ψ  = ΨBea ΨBeb

= {C1 |1s2 2s2 | + C2 | 1s2 2p2 |}a{C1 |1s2 2s2 | + C2 | 1s2 2p2 |}b,

where the subscripts a and b label the two Be atoms, because the four electron CAS

function distributes the four electrons in all ways among the 2sa, 2sb, 2pa, and 2pb orbitals.

In contrast, if the Be2 calculation had been carried out using only the following CSFs :

| 1σ2g 1σ2u 2σ2g 2σ2u | and all single and double excitations relative to this (dominant)

CSF, which is a very common type of CI procedure to follow, the Be2 wavefunction

would not have contained the particular CSFs | 1s2 2p2 |a | 1s2 2p2 |b because these CSFs

are four-fold excited relative to the | 1σ2g 1σ2u 2σ2g 2σ2u | 'reference' CSF.

In general, one finds that if the 'monomer' uses CSFs that are K-fold excited

relative to its dominant CSF to achieve an accurate description of its electron correlation, a

size-extensive variational calculation on the 'dimer' will require the inclusion of CSFs that

are 2K-fold excited relative to the dimer's dominant CSF. To perform a size-extensive



variational calculation on a species containing M monomers therefore requires the inclusion

of CSFs that are MxK-fold excited relative to the M-mer's dominant CSF.

B. Non-Variational Methods Such as MPPT/MBPT and CC do not Produce Upper

Bounds, but Yield Size-Extensive Energies

In contrast to variational methods, perturbation theory and coupled-cluster methods

achieve their energies from a '   transition formula   ' < Φ | H | Ψ > rather than from an

expectation value

< Ψ | H | Ψ >. It can be shown (H. P. Kelly, Phys. Rev.     131    , 684 (1963)) that this

difference allows non-variational techniques to yield size-extensive energies. This can be

seen in the MPPT/MBPT case by considering the energy of two non-interacting Be atoms.

The reference CSF is Φ = | 1sa2 2sa2 1sb2 2sb2 |; the Slater-Condon rules limit the CSFs in

Ψ which can contribute to

E = < Φ | H | Ψ > = < Φ | H | ΣJ CJ ΦJ >,

to be Φ itself and those CSFs that are singly or doubly excited relative to Φ. These

'excitations' can involve atom a, atom b, or both atoms. However, any CSFs that involve

excitations on both atoms

( e.g., | 1sa2 2sa 2pa 1sb2 2sb 2pb | ) give rise, via the SC rules, to one- and two- electron

integrals over orbitals on both atoms; these integrals ( e.g., < 2sa 2pa | g | 2sb 2pb > )

vanish if the atoms are far apart, as a result of which the contributions due to such CSFs

vanish in our consideration of size-extensivity. Thus, only CSFs that are excited on one or

the other atom contribute to the energy:

E = < Φa Φb | H | ΣJa CJa Φ∗Ja Φb + ΣJb CJb Φa Φ∗Jb >,

where Φa and Φb as well as Φ*Ja and Φ*Jb  are used to denote the a and b parts of the

reference and excited CSFs, respectively.

This expression, once the SC rules are used to reduce it to one- and two- electron

integrals, is of the additive form required of any size-extensive method:

E = < Φa | H | ΣJa CJa ΦJa > + < Φb | H | ΣJb CJb ΦJb >,



and will yield a size-extensive energy    if    the equations used to determine the CJa and CJb

amplitudes are themselves separable. In MPPT/MBPT, these amplitudes are expressed, in

first order, as:

CJa  = < Φa Φb | H | Φ*Ja Φb>/[ E0a + E0b - E*Ja -E0b]

(and analogously for CJb). Again using the SC rules, this expression reduces to one that

involves only atom a:

CJa  = < Φa | H | Φ*Ja >/[ E0a  - E*Ja ].

The additivity of E and the separability of the equations determining the CJ  coefficients

make the MPPT/MBPT energy size-extensive. This property can also be demonstrated for

the Coupled-Cluster energy (see the references given above in Chapter 19. I.4). However,

size-extensive methods have at least one serious weakness; their energies do     not    provide

upper bounds to the true energies of the system (because their energy functional is not of

the expectation-value form for which the upper bound property has been proven).

C. Which Method is Best?

At this time, it may not possible to say which method is preferred for applications

where all are practical. Nor is it possible to assess, in a way that is applicable to most

chemical species, the accuracies with which various methods predict bond lengths and

energies or other properties. However, there are reasons to recommend some methods over

others in specific cases. For example, certain applications require a size-extensive

energy (e.g., extended systems that consist of a large or macroscopic number of units or

studies of weak intermolecular interactions), so MBPT/MPPT or CC or CAS-based

MCSCF are preferred. Moreover, certain chemical reactions (e.g., Woodward-Hoffmann

forbidden reactions) and certain bond-breaking events require two or more 'essential'

electronic configurations. For them, single-configuration-based methods such as

conventional CC and MBTP/MPPT should not be used; MCSCF or CI calculations would

be better. Very large molecules, in which thousands of atomic orbital basis functions are

required, may be impossible to treat by methods whose effort scales as N4 or higher;

density functional methods would be better to use then.

For all calculations, the choice of atomic orbital basis set must be made carefully,

keeping in mind the N4 scaling of the one- and two-electron integral evaluation step and the



N5 scaling of the two-electron integral transformation step. Of course, basis functions that

describe the essence of the states to be studied are essential (e.g., Rydberg or anion states

require diffuse functions, and strained rings require polarization functions).

As larger atomic basis sets are employed, the size of the CSF list used to treat

dynamic correlation increases rapidly. For example, most of the above methods use singly

and doubly excited CSFs for this purpose. For large basis sets, the number of such CSFs,
NC, scales as the number of electrons squared, ne2,  times the number of basis functions

squared, N2 . Since the effort needed to solve the CI secular problem varies as NC2 or

NC3, a dependence as strong as N4 to N6 can result. To handle such large CSF spaces, all

of the multiconfigurational techniques mentioned in this paper have been developed to the

extent that calculations involving of the order of 100 to 5,000 CSFs are routinely

performed and calculations using 10,000, 100,000, and even several million CSFs are

practical.

Other methods, most of which can be viewed as derivatives of the techniques

introduced above, have been and are still being developed. This ongoing process has been,

in large part, stimulated by the explosive growth in computer power and change in

computer architecture that has been realized in recent years. All indications are that this

growth pattern will continue, so ab initio  quantum chemistry will likely have an even larger

impact on future chemistry research and education (through new insights and concepts).

III. Further Details on Implementing Multiconfigurational Methods

A. The MCSCF Method

The simultaneous optimization of the LCAO-MO and CI coefficients performed

within an MCSCF calculation is a quite formidable task. The variational energy functional

is a quadratic function of the CI coefficients, and so one can express the stationary

conditions for these variables in the secular form:

ΣJ HI,J CJ  = E CI .

However, E is a quartic function of the Cν ,i coefficients because each matrix element < ΦI |

H | ΦJ > involves one- and two-electron integrals over the mos φi , and the two-electron

integrals depend quartically on the Cν ,i coefficients. The stationary conditions with respect

to these Cν ,i parameters must be solved iteratively because of this quartic dependence.



It is well known that minimization of a function (E) of several non-linear parameters

(the Cν ,i) is a difficult task that can suffer from poor convergence and may locate local

rather than global minima. In an MCSCF wavefunction containing many CSFs, the energy

is only weakly dependent on the orbitals that are weakly occupied (i.e., those that appear in

CSFs with small CI values); in contrast, E is strongly dependent on the Cν ,i  coefficients of

those orbitals that appear in the CSFs with larger CI values. One is therefore faced with

minimizing a function of many variables (there may be as many Cν ,i as the square of the

number of orbital basis functions) that depends strongly on several of the variables and

weakly on many others. This is a very difficult job.

For these reasons, in the MCSCF method, the number of CSFs is usually kept to a

small to moderate number (e.g., a few to several hundred) chosen to describe essential

correlations (i.e., configuration crossings, proper dissociation) and important dynamical

correlations (those electron-pair correlations of angular, radial, left-right, etc. nature that

arise when low-lying 'virtual' orbitals are present). In such a compact wavefunction, only

spin-orbitals with reasonably large occupations (e.g., as characterized by the diagonal

elements of the one-particle density matrix γi,j) appear. As a result, the energy functional is

expressed in terms of variables on which it is strongly dependent, in which case the non-

linear optimization process is less likely to be pathological.

Such a compact MCSCF wavefunction is designed to provide a good description of

the set of strongly occupied spin-orbitals and of the CI amplitudes for CSFs in which only

these spin-orbitals appear. It, of course, provides no information about the spin-orbitals

that are not used to form the CSFs on which the MCSCF calculation is based. As a result,

the MCSCF energy is invariant to a unitary transformation among these 'virtual' orbitals.

In addition to the references mentioned earlier in ACP and MTC, the following

papers describe several of the advances that have been made in the MCSCF method,

especially with respect to enhancing its rate and range of convergence: E. Dalgaard and P.

Jørgensen, J. Chem. Phys.     69    , 3833 (1978); H. J. Aa. Jensen, P. Jørgensen, and H.

�Ågren, J. Chem. Phys.     87    , 457 (1987); B. H. Lengsfield, III and B. Liu, J. Chem. Phys.

    75    , 478 (1981).

B. The Configuration Interaction Method

In the CI method, one usually attempts to realize a high-level treatment of electron

correlation. A set of orthonormal molecular orbitals are first obtained from an SCF or

MCSCF calculation (usually involving a small to moderate list of CSFs). The LCAO-MO



coefficients of these orbitals are     no longer considered     as variational parameters in the

subsequent CI calculation; only the CI coefficients are to be further optimized.

The CI wavefunction

Ψ = ΣJ CJ ΦJ

is most commonly constructed from CSFs ΦJ  that include:

1. All of the CSFs in the SCF (in which case only a single CSF is included) or MCSCF

wavefunction that was used to generate the molecular orbitals φi . This set of CSFs are

referred to as spanning the '   reference space   ' of the subsequent CI calculation, and the

particular combination of these CSFs used in this orbital optimization (i.e., the SCF or

MCSCF wavefunction) is called the    reference function    .

2. CSFs that are generated by carrying out single, double, triple, etc. level 'excitations'

(i.e., orbital replacements ) relative to reference CSFs. CI wavefunctions limited to include

contributions through various levels of excitation (e.g., single, double, etc. ) are denoted S

(singly excited), D (doubly), SD ( singly and doubly), SDT (singly, doubly, and triply),

and so on.

The orbitals from which electrons are removed and those into which electrons are

excited can be restricted to focus attention on correlations among certain orbitals. For

example, if excitations out of core electrons are excluded, one computes a total energy that

contains no correlation corrections for these core orbitals. Often it is possible to so limit the

nature of the orbital excitations to focus on the energetic quantities of interest (e.g., the CC

bond breaking in ethane requires correlation of the σCC orbital but the 1s Carbon core

orbitals and the CH bond orbitals may be treated in a non-correlated manner).

Clearly, the number of CSFs included in the CI calculation can be far in excess of

the number considered in typical MCSCF calculations; CI wavefunctions including 5,000

to 50,000 CSFs are routinely used, and functions with one to    several million     CSFs are

within the realm of practicality (see, for example, J. Olsen, B. Roos, Poul Jørgensen, and

H. J. Aa. Jensen, J. Chem. Phys.     89    , 2185 (1988) and J. Olsen, P. Jørgensen, and J.

Simons, Chem. Phys. Letters      169    , 463 (1990)).

The need for such large CSF expansions should not come as a surprise once one

considers that (i) each electron pair requires    at least    two CSFs (let us say it requires P of

them, on average, a dominant one and P-1 others which are doubly excited) to form



polarized orbital pairs, (ii) there are of the order of N(N-1)/2 = X electron pairs in an atom

or molecule containing N electrons, and (iii) that the number of terms in the CI

wavefunction scales as PX. So, for an H2O molecule containing ten electrons, there would

be P55 terms in the CI expansion. This is 3.6 x1016 terms if P=2 and 1.7 x1026 terms if

P=3. Undoubtedly, this is an over estimate of the number of CSFs needed to describe

electron correlation in H2O, but it demonstrates how rapidly the number of CSFs can grow

with the number of electrons in the system.

The HI,J matrices that arise in CI calculations are evaluated in terms of one- and

two- electron integrals over the molecular orbitals using the equivalent of the Slater-Condon

rules. For large CI calculations, the full HI,J matrix is not actually evaluated and stored in

the computer's memory (or on its disk); rather, so-called 'direct CI' methods (see the article

by Roos and Siegbahn in MTC) are used to compute and immediately sum contributions to

the sum ΣJ HI,J CJ in terms of integrals, density matrix elements, and approximate values

of the CJ amplitudes. Iterative methods (see, for example, E. R. Davidson, J. Comput.

Phys.     17    , 87 (1975)), in which approximate values for the  CJ  coefficients and energy E

are refined through sequential application of ΣJ HI,J to the preceding estimate of the CJ

vector, are employed to solve these large CI matrix eigenvalue problems.

C. The MPPT/MBPT Method

In the MPPT/MBPT method, once the reference CSF is chosen and the SCF

orbitals belonging to this CSF are determined, the wavefunction Ψ and energy E are

determined in an order-by-order manner. This is one of the primary strengths of the

MPPT/MBPT technique; it does not require one to make further (potentially arbitrary)

choices once the basis set and dominant (SCF) configuration are specified. In contrast to

the MCSCF and CI treatments, one need not make choices of CSFs to include in or exclude

from Ψ. The MPPT/MBPT perturbation equations determine what CSFs must be included

through any particular order.

For example, the first-order wavefunction correction Ψ1

(i.e., Ψ = Φ + Ψ1 through first order) is given by:

Ψ1 = - Σ i<j,m<n < Φi,jm,n | H - H0 | Φ > [ εm-εi +εn -εj ]-1 | Φi,jm,n >

= - Σ i<j,m<n [< i,j |g| m,n >- < i,j |g| n,m >][ εm-εi +εn -εj ]-1 | Φi,jm,n >



where the SCF orbital energies are denoted εk and Φi,jm,n represents a CSF that is     doubly

   excited     relative to Φ. Thus, only doubly excited CSFs contribute to the    first-order

     wavefunction    ; as a result, the energy E is given through second order as:

E = < Φ | H0 | Φ> + < Φ | H - H0 | Φ> + < Φ | H - H0 | Ψ1 >

= < Φ | H | Φ> - Σ i<j,m<n |< Φi,jm,n | H - H0 | Φ >|2/ [ εm-εi +εn -εj ]

= ESCF - Σ i<j,m<n | < i,j | g | m,n > - < i,j | g | n,m > |2/[ εm-εi +εn -εj]

= E0 + E1 +E2.

These contributions have been expressed, using the SC rules, in terms of the two-electron

integrals < i,j | g | m,n > coupling the excited spin-orbitals to the spin-orbitals from which

electrons were excited as well as the orbital energy differences [ εm-εi +εn -εj ]

accompanying such  excitations. In this form, it becomes clear that major contributions to

the correlation energy of the pair of occupied orbitals φi φj are made by double excitations

into virtual orbitals φm φn that have large coupling (i..e., large < i,j | g | m,n > integrals)

and small orbital energy gaps,  [ εm-εi +εn -εj ].

In higher order corrections to the wavefunction and to the energy, contributions

from CSFs that are singly, triply, etc. excited relative to Φ appear, and additional

contributions from the doubly excited CSFs also enter. It is relatively common to carry

MPPT/MBPT calculations (see the references given above in Chapter 19.I.3 where the

contributions of the Pople and Bartlett groups to the development of MPPT/MBPT are

documented) through to third order in the energy (whose evaluation can be shown to

require only Ψ0 and Ψ1). The entire GAUSSIAN-8X series of programs, which have been

used in thousands of important chemical studies, calculate E through third order in this

manner.

In addition to being size-extensive and not requiring one to specify input beyond the

basis set and the dominant CSF, the MPPT/MBPT approach is able to include the effect of

   all    CSFs (that contribute to any given order) without having to find any eigenvalues of a

matrix. This is an important advantage because matrix eigenvalue determination, which is

necessary in MCSCF and CI calculations, requires computer time in proportion to the third

power of the dimension of the HI,J matrix. Despite all of these advantages, it is important to

remember the primary disadvantages of the MPPT/MBPT approach; its energy is not an

upper bound to the true energy and it may not be able to treat cases for which two or more



CSFs have equal or nearly equal amplitudes because it obtains the amplitudes of all but the

dominant CSF from perturbation theory formulas that assume the perturbation is 'small'.

D. The Coupled-Cluster Method

The implementation of the CC method begins much as in the MPPT/MBPT case;

one selects a reference CSF that is used in the SCF process to generate a set of spin-orbitals

to be used in the subsequent correlated calculation. The set of working equations of the CC

technique given above in Chapter 19.I.4 can be written explicitly by introducing the form

of the so-called cluster operator T,

T = Σ i,m  tim m+ i + Σ i,j,m,n ti,jm,n  m+ n+ j i + ...,

where the combination of operators m+ i  denotes    creation     of an electron in virtual spin-
orbital φm  and     removal    of an electron from occupied spin-orbital φi to generate a single

excitation. The operation m+ n+ j i therefore represents a double excitation from φi φj to φm
φn. Expressing the cluster operator T in terms of the amplitudes tim , ti,jm,n , etc. for

singly, doubly, etc. excited CSFs, and expanding the exponential operators in exp(-T) H

exp(T) one obtains:

< Φim | H + [H,T] + 1/2 [[H,T],T] + 1/6 [[[H,T],T],T]

+ 1/24 [[[[H,T],T],T],T] | Φ > = 0;

 < Φi,jm,n | H + [H,T] + 1/2 [[H,T],T] + 1/6 [[[H,T],T],T]

+ 1/24 [[[[H,T],T],T],T] | Φ > = 0;

< Φi,j,km,n,p| H + [H,T] + 1/2 [[H,T],T] + 1/6 [[[H,T],T],T]

+ 1/24 [[[[H,T],T],T],T] | Φ > = 0,

and so on for higher order excited CSFs. It can be shown, because of the one- and two-

electron operator nature of H, that the expansion of the exponential operators truncates

exactly at the fourth power; that is terms such as [[[[[H,T],T],T],T],T] and higher

commutators vanish identically (this is demonstrated in Chapter 4 of     Second Quantization

    Based Methods in Quantum Chemistry    , P. Jørgensen and J. Simons, Academic Press,

New York (1981).



As a result, the exact CC equations are     quartic equations    for the tim , ti,jm,n , etc.

amplitudes. Although it is a rather formidable task to evaluate all of the commutator matrix

elements appearing in the above CC equations, it can be and has been done (the references

given above to Purvis and Bartlett are especially relevant in this context). The result is to

express each such matrix element, via the Slater-Condon rules, in terms of one- and two-

electron integrals over the spin-orbitals used in determining Φ, including those in Φ itself

and the 'virtual' orbitals not in Φ.

In general, these quartic equations must then be solved in an iterative manner and

are susceptible to convergence difficulties that are similar to those that arise in MCSCF-type

calculations. In any such iterative process, it is important to start with an approximation (to

the t amplitudes, in this case) which is reasonably close to the final converged result. Such

an approximation is often achieved, for example, by neglecting all of the terms that are non-

linear in the t amplitudes (because these amplitudes are assumed to be less than unity in

magnitude). This leads, for the CC working equations obtained by projecting onto the

doubly excited CSFs, to:

< i,j | g | m,n >' + [ εm-εi +εn -εj ] ti,jm,n +

Σ i',j',m',n' < Φi,jm,n | H - H0 | Φi',j'm',n' > ti',j'm',n' = 0 ,

where the notation < i,j | g | m,n >' is used to denote the two-electron integral difference <

i,j | g | m,n > - < i,j | g | n,m >. If, in addition, the factors that couple different doubly

excited CSFs are ignored (i.e., the sum over i',j',m',n') , the equations for the t amplitudes

reduce to the  equations for the CSF amplitudes of the first-order MPPT/MBPT

wavefunction:

ti,jm,n = - < i,j | g | m,n >'/ [ εm-εi +εn -εj ] .

As Bartlett and Pople have both demonstrated, there is, in fact, close relationship between

the MPPT/MBPT and CC methods when the CC equations are solved iteratively starting

with such an MPPT/MBPT-like initial 'guess' for these double-excitation amplitudes.

The CC method, as presented here, suffers from the same drawbacks as the

MPPT/MBPT approach; its energy is not an upper bound and it may not be able to

accurately describe wavefunctions which have two or more CSFs with approximately equal

amplitude. Moreover, solution of the non-linear CC equations may be difficult and slowly

(if at all) convergent. It has the same advantages as the MPPT/MBPT method; its energy is



size-extensive, it requires no large matrix eigenvalue solution, and its energy and

wavefunction are determined once one specifies the basis and the dominant CSF.

E. Density Functional Methods

These approaches provide alternatives to the conventional tools of quantum

chemistry. The CI, MCSCF, MPPT/MBPT, and CC methods move beyond the single-

configuration picture by adding to the wave function more configurations whose

amplitudes they each determine in their own way. This can lead to a very large number of

CSFs in the correlated wave function, and, as a result, a need for extraordinary computer

resources.

The density functional approaches are different. Here one solves a set of orbital-

level equations

[ - h2/2me ∇2 - ΣA ZAe2/|r-RA| + ⌡⌠ρ(r')e2/|r-r'|dr' 

+ U(r)] φi = εi φi

in which the orbitals {φi} 'feel' potentials due to the nuclear centers (having charges ZA),

Coulombic interaction with the    total    electron density ρ(r'), and a so-called    exchange-   

   correlation     potential denoted U(r'). The particular electronic state for which the calculation

is being performed is specified by forming a corresponding density ρ(r'). Before going

further in describing how DFT calculations are carried out, let us examine the origins

underlying this theory.

The so-called Hohenberg-Kohn  theorem states that the     ground-state    electron

density ρ(r) describing an N-electron system uniquely determines the potential V(r) in the

Hamiltonian

H = Σ j {-h2/2me ∇j
2 + V(rj) + e2/2 Σk≠j 1/rj,k },



and, because H  determines the ground-state energy and wave function of the system, the

ground-state density ρ(r) determines the ground-state properties of the system. The proof

of this theorem proceeds as follows:

a. ρ(r) determines N because ∫ ρ(r) d3r = N.

b. Assume that there are two distinct potentials (aside from an additive constant that simply

shifts the zero of total energy) V(r) and V’(r) which, when used in H and H’, respectively,

to solve for a ground state produce E0, Ψ (r) and E0’, Ψ’(r) that have the same one-electron

density: ∫ |Ψ|2 dr2 dr3 ... drN = ρ(r)=  ∫  |Ψ’|2 dr2 dr3 ... drN .

c. If we think of Ψ’ as  trial variational wave function for the Hamiltonian H, we know that

E0  < <Ψ’|H|Ψ’> = <Ψ’|H’|Ψ’> + ∫ ρ(r) [V(r) - V’(r)] d3r = E0’ + ∫ ρ(r) [V(r) - V’(r)] d3r.

d. Similarly, taking Ψ as a trial function for the H’ Hamiltonian, one finds that

E0’  < E0 + ∫ ρ(r) [V’(r) - V(r)] d3r.

e. Adding the equations in c and d gives

E0 + E0’ < E0 + E0’,

a clear contradiction.

Hence, there cannot be two distinct potentials V and V’ that give the same ground-

state ρ(r). So, the ground-state density ρ(r) uniquely determines N and V, and thus H, and

therefore Ψ and E0. Furthermore, because Ψ determines all properties of the ground state,

then ρ(r), in principle, determines all such properties. This means that even the kinetic

energy and the electron-electron interaction energy of the ground-state are determined by

ρ(r). It is easy to see that ∫ ρ(r) V(r) d3r = V[ρ] gives the average value of the electron-

nuclear (plus any additional one-electron additive potential) interaction in terms of the

ground-state density ρ(r), but how are the kinetic energy T[ρ] and the electron-electron

interaction Vee[ρ] energy expressed in terms of ρ?

The main difficulty with DFT is that the Hohenberg-Kohn theorem shows that the

    ground-state    values of T, Vee , V, etc. are all unique functionals of the     ground-state    ρ (i.e.,



that they can, in principle, be determined once ρ is given), but it does not tell us what these

functional relations are.

To see how it might make sense that a property such as the kinetic energy, whose

operator -h2 /2me ∇
2 involves derivatives, can be related to the electron density, consider a

simple system of N non-interacting electrons moving in a three-dimensional cubic “box”

potential. The energy states of such electrons are known to be

E  = (h2/2meL
2) (nx

2 + ny
2 +nz

2 ),

where L is the length of the box along the three axes, and nx , ny , and nz  are the quantum

numbers describing the state. We can view nx
2 + ny

2 +nz
2 = R2  as defining the squared

radius of a sphere in three dimensions, and we realize that the density of quantum states in

this space is one state per unit volume in the nx , ny , n z space. Because nx , ny , and nz must

be positive integers, the volume covering all states with energy less than or equal to a

specified energy E = (h2/2meL
2) R2  is 1/8 the volume of the sphere of radius R:

Φ(E) = 1/8 (4π/3) R3 = (π/6) (8meL
2E/h2)3/2 .

Since there is one state per unit of such volume, Φ(E) is also the number of states with

energy less than or equal to E, and is called the    integrated density of states   . The number of

states g(E) dE with energy between E and E+dE, the     density of states   , is the derivative of

Φ:

g(E) = dΦ/dE = (π/4) (8meL
2/h2)3/2 E1/2  .

If we calculate the total energy for N electrons, with the states having energies up to the so-

called     Fermi energy     (i.e., the energy of the highest occupied molecular orbital HOMO)

doubly occupied, we obtain the ground-state energy:

E0 = 2 g(E)EdE
0

EF

∫  = (8π/5) (2me/h
2)3/2 L3 EF

5/2.



The total number of electrons N can be expressed as

N = 2 g(E)dE
0

EF

∫  = (8π/3) (2me/h
2)3/2 L3 EF

3/2,

which can be solved for EF in terms of N to then express E0  in terms of N instead of EF:

E0 = (3h2/10me) (3/8π)2/3 L3 (N/L3)5/3 .

This gives the total energy, which is also the kinetic energy in this case because the

potential energy is zero within the “box”, in terms of the electron density ρ (x,y,z) =

(N/L3). It therefore may be plausible to express kinetic energies in terms of electron

densities ρ(r), but it is by no means clear how to do so for “real” atoms and molecules with

electron-nuclear and electron-electron interactions operative.

In one of the earliest DFT models, the     Thomas-Fermi    theory, the kinetic energy of

an atom or molecule is approximated using the above kind of treatment on a “local” level.

That is, for each volume element in r space, one assumes the expression given above to be

valid, and then one integrates over all r to compute the total kinetic energy:

TTF[ρ] = ∫ (3h2/10me) (3/8π)2/3  [ρ(r)]5/3 d3r = CF  ∫ [ρ(r)]5/3 d3r ,

where the last equality simply defines the CF constant (which is 2.8712 in atomic units).

Ignoring the correlation and exchange contributions to the total energy, this T is combined

with the electron-nuclear V and Coulombic electron-electron potential energies to give the

Thomas-Fermi total energy:

E0,TF [ρ] = CF  ∫ [ρ(r)]5/3 d3r +  ∫ V(r) ρ(r) d3r + e2/2  ∫ ρ(r) ρ(r’)/|r-r’|  d3r d3r’,

This expression is an example of how E0 is given as a    local density functional   

approximation (LDA). The term local means that the energy is given as a functional (i.e., a

function of ρ) which depends only on ρ(r) at points in space but not on ρ(r) at more than

one point in space.

Unfortunately, the Thomas-Fermi energy functional does not produce results that

are of sufficiently high accuracy to be of great use in chemistry. What is missing in this



theory are a. the exchange energy and b. the correlation energy; moreover, the kinetic

energy is treated only in the approximate manner described.

In the book by Parr and Yang, it is shown how Dirac was able to address the

exchange energy for the 'uniform electron gas' (N Coulomb    interacting     electrons moving in

a uniform positive background charge whose magnitude balances the charge of the N

electrons). If the exact expression for the exchange energy of the uniform electron gas is

applied on a local level, one obtains the commonly used Dirac    local density approximation

   to the exchange energy    :

Eex,Dirac[ρ] = - Cx  ∫ [ρ(r)]4/3 d3r,

with Cx = (3/4) (3/π)1/3 = 0.7386 in atomic units. Adding this exchange energy to the

Thomas-Fermi total energy E0,TF [ρ] gives the so-called Thomas-Fermi-Dirac (TFD) energy

functional.

Because electron densities vary rather strongly spatially near the nuclei, corrections

to the above approximations to T[ρ] and Eex.Dirac  are needed. One of the more commonly

used so-called     gradient-corrected     approximations is that invented by Becke, and referred to

as the Becke88 exchange functional:

Eex(Becke88) = Eex,Dirac[ρ] -γ ∫x2 ρ4/3 (1+6 γ x sinh-1(x))-1 dr,

where x =ρ-4/3 |∇ρ |, and γ is a parameter chosen so that the above exchange energy can best

reproduce the known exchange energies of specific electronic states of the inert gas atoms

(Becke finds γ to equal 0.0042). A common gradient correction to the earlier T[ρ] is called

the Weizsacker correction and is given by

δTWeizsacker = (1/72)(  h /me)  ∫ |∇ρ(r)|2/ρ(r) dr.

Although the above discussion suggests how one might compute the ground-state

energy once the ground-state density ρ(r) is given, one still needs to know how to obtain



ρ. Kohn and Sham  (KS) introduced a set of so-called KS orbitals obeying the following

equation:

{-1/2∇2 + V(r)  + e2/2  ∫ ρ(r’)/|r-r’|   dr’ + Uxc(r) }φj = εj φj ,

where the so-called exchange-correlation potential Uxc (r) = δExc[ρ]/δρ(r) could be obtained

by functional differentiation if the exchange-correlation energy functional Exc[ρ] were

known. KS also showed that the KS orbitals {φj} could be used to compute the density ρ

by simply adding up the orbital densities multiplied by orbital occupancies nj :

ρ(r) = Σj nj |φj(r)|2.

(here nj =0,1, or 2 is the occupation number of the orbital φj in the state being studied) and

that the kinetic energy should be calculated as

T = Σj nj <φj(r)|-1/2 ∇ 2 |φj(r)>.

The same investigations of the idealized 'uniform electron gas' that identified the

Dirac exchange functional, found that the correlation energy (per electron) could also be

written exactly as a    function     of the electron density ρ of the system, but only in two

limiting cases- the high-density limit (large ρ) and the low-density limit. There still exists

no exact expression for the correlation energy even for the uniform electron gas that is valid

at arbitrary values of ρ. Therefore, much work has been devoted to creating efficient and

accurate interpolation formulas connecting the low- and high- density uniform electron gas

expressions. One such expression is

EC[ρ] = ∫ ρ(r) εc(ρ) dr,

where

εc(ρ) = A/2{ln(x/X) + 2b/Q tan-1(Q/(2x+b)) -bx0/X0 [ln((x-x0)
2/X)



+2(b+2x0)/Q tan-1(Q/(2x+b))]

is the correlation energy per electron. Here x = rs
1/2 , X=x2 +bx+c, X0 =x0

2 +bx0+c and

Q=(4c - b2)1/2, A = 0.0621814,  x0= -0.409286, b = 13.0720, and c = 42.7198. The

parameter rs is how the density ρ enters since 4/3 πrs
3 is equal to 1/ρ; that is, rs is the radius

of a sphere whose volume is the effective volume occupied by one electron. A reasonable

approximation to the full Exc[ρ] would contain the Dirac (and perhaps gradient corrected)

exchange functional plus the above EC[ρ], but there are many alternative approximations to

the exchange-correlation energy functional. Currently, many workers are doing their best to

“cook up” functionals for the correlation and exchange energies, but no one has yet

invented functionals that are so reliable that most workers agree to use them.

To summarize, in implementing any DFT, one usually proceeds as follows:

1. An atomic orbital basis is chosen in terms of which the KS orbitals are to be expanded.

2. Some initial guess is made for the LCAO-KS expansion coefficients Cjj,a: φj = Σa Cj,a χa.

3. The density is computed as ρ(r) = Σj nj |φj(r)|2 . Often, ρ(r) is expanded in an atomic

orbital basis, which need not be the same as the basis used for the φj, and the expansion

coefficients of ρ are computed in terms of those of the φj . It is also common to use an

atomic orbital basis to expand ρ1/3(r) which, together with ρ, is needed to evaluate the

exchange-correlation functional’s contribution to E0.

4. The current iteration’s density is used in the KS equations to determine the Hamiltonian

{-1/2∇2 + V(r)  + e2/2  ∫ ρ(r’)/|r-r’|   dr’ + Uxc(r) }whose “new” eigenfunctions {φj} and

eigenvalues {εj} are found by solving the KS equations.

5. These new φj  are used to compute a new density, which, in turn, is used to solve a new

set of KS equations. This process is continued until convergence is reached (i.e., until the

φj used to determine the current iteration’s ρ are the same φj that arise as solutions on the

next iteration.

6. Once the converged ρ(r) is determined, the energy can be computed using the earlier

expression



E [ρ] = Σj nj <φj(r)|-1/2 ∇ 2 |φj(r)>+  ∫V(r) ρ(r) dr + e2/2∫ρ(r)ρ(r’)/|r-r’|dr dr’+

Exc[ρ].

In closing this section, it should once again be emphasized that this area is currently

undergoing explosive growth and much scrutiny. As a result, it is nearly certain that many

of the specific functionals discussed above will be replaced in the near future by improved

and more rigorously justified versions. It is also likely that extensions of DFT to excited

states (many workers are actively pursuing this) will be placed on more solid ground and

made applicable to molecular systems. Because the computational effort involved in these

approaches scales much less strongly  with basis set size than for conventional (SCF,

MCSCF, CI, etc.) methods, density functional methods offer great promise and are likely

to contribute much to quantum chemistry in the next decade.



Chapter 20

Many physical properties of a molecule can be calculated as expectation values of a

corresponding quantum mechanical operator. The evaluation of other properties can be

formulated in terms of the "response" (i.e., derivative) of the electronic energy with respect

to the application of an external field perturbation.

I. Calculations of Properties Other Than the Energy

There are, of course, properties other than the energy that are of interest to the

practicing chemist. Dipole moments, polarizabilities, transition probabilities among states,

and vibrational frequencies all come to mind. Other properties that are of importance

involve operators whose quantum numbers or symmetry indices label the state of interest.

Angular momentum and point group symmetries are examples of the latter properties; for

these quantities the properties are precisely specified once the quantum number or

symmetry label is given (e.g., for a 3P state, the average value of L2 is <3P|L2|3P> =

h21(1+1) = 2h2).

Although it may be straightforward to specify what property is to be evaluated,

often computational difficulties arise in carrying out the calculation. For some    ab initio    

methods, these difficulties are less severe than for others. For example, to compute the

electric dipole transition matrix element <Ψ2 | r | Ψ1> between two states Ψ1 and Ψ2,

one must evaluate the integral involving the one-electron dipole operator r = Σ j e rj - Σa e

Za Ra; here the first sum runs over the N electrons and the second sum runs over the nuclei

whose charges are denoted Za. To evaluate such transition matrix elements in terms of the

Slater-Condon rules is relatively straightforward as long as Ψ1 and Ψ2 are expressed in

terms of Slater determinants involving a single set of orthonormal spin-orbitals. If Ψ1 and

Ψ2, have been obtained, for example, by carrying out separate MCSCF calculations on the

two states in question, the energy optimized spin-orbitals for one state will not be the same

as the optimal spin-orbitals for the second state. As a result, the determinants in Ψ1 and

those in Ψ2 will involve spin-orbitals that are not orthonormal to one another. Thus, the SC

rules can not immediately be applied. Instead, a transformation of the spin-orbitals of Ψ1

and Ψ2 to a single set of orthonormal functions must be carried out. This then expresses

Ψ1 and Ψ2 in terms of new Slater determinants over this new set of orthonormal spin-

orbitals, after which the SC rules can be exploited.

In contrast, if Ψ1 and Ψ2 are obtained by carrying out a CI calculation using a

single set of orthonormal spin-orbitals (e.g., with Ψ1 and Ψ2 formed from two different



eigenvectors of the resulting secular matrix), the SC rules can immediately be used to

evaluate the transition dipole integral.

A. Formulation of Property Calculations as Responses

Essentially all experimentally measured properties can be thought of as arising

through the    response     of the system to some externally applied perturbation or disturbance.

In turn, the calculation of such properties can be formulated in terms of the response of the

energy E or wavefunction Ψ to a perturbation. For example, molecular dipole moments µ
are measured, via electric-field deflection, in terms of the change in energy

∆E = µ. E + 1/2 E.  α . E + 1/6 E. E. E. β + ...

caused by the application of an external electric field E which is spatially inhomogeneous,

and thus exerts a force

F = - ∇ ∆E

on the molecule proportional to the dipole moment (good treatments of response properties

for a wide variety of wavefunction types (i.e., SCF, MCSCF, MPPT/MBPT, etc.) are

given in     Second Quantization Based Methods in Quantum Chemistry     , P. Jørgensen and J.

Simons, Academic Press, New York (1981) and in      Geometrical Derivatives of Energy

    Surfaces and Molecular Properties   , P. Jørgensen and J. Simons, Eds., NATO ASI Series,

Vol. 166, D. Reidel, Dordrecht (1985)).

To obtain expressions that permit properties other than the energy to be evaluated in

terms of the state wavefunction Ψ, the following strategy is used:

1. The perturbation V = H-H0 appropriate to the particular property is identified. For dipole

moments (µ), polarizabilities (α), and hyperpolarizabilities (β), V is the interaction of the

nuclei and electrons with the external electric field

V = Σa Zae Ra. E - Σ je rj. E.

For vibrational frequencies, one needs the derivatives of the energy E with respect to

deformation of the bond lengths and angles of the molecule, so V is the sum of all changes

in the electronic Hamiltonian that arise from displacements δRa of the atomic centers



V = Σa  (∇RaH) .  δRa .

2. A power series expansion of the state energy E, computed in a manner consistent with

how Ψ is determined (i.e., as an expectation value for SCF, MCSCF, and CI

wavefunctions or as <Φ|H|Ψ> for MPPT/MBPT or as <Φ|exp(-T)Hexp(T)|Φ> for CC

wavefunctions), is carried out in powers of the perturbation V:

E = E0 + E(1) + E(2) + E(3) + ...

In evaluating the terms in this expansion, the dependence of H = H0+V    and     of Ψ (which is

expressed as a solution of the SCF, MCSCF, ...,  or CC equations for H     not    for H0) must

be included.

3. The desired physical property must be extracted from the power series expansion of ∆E

in powers of V.

B. The MCSCF Response Case

1. The Dipole Moment

To illustrate how the above developments are carried out and to demonstrate how

the results express the desired quantities in terms of the original wavefunction, let us

consider, for an MCSCF wavefunction, the response to an external electric field. In this

case, the Hamiltonian is given as the conventional one- and two-electron operators H0  to

which the above one-electron electric dipole perturbation V is added. The MCSCF

wavefunction Ψ and energy E are assumed to have been obtained via the MCSCF

procedure with H=H0+λV, where λ can be thought of as a measure of the strength of the

applied electric field.

The terms in the expansion of E(λ) in powers of λ:

E = E(λ=0) + λ (dE/dλ)0 + 1/2 λ2 (d2E/dλ2)0 + ...

are obtained by writing the total derivatives of the MCSCF energy functional with respect

to λ and evaluating these derivatives at λ=0



(which is indicated by the subscript (..)0 on the above derivatives):

E(λ=0) = <Ψ(λ=0)|H0|Ψ(λ=0)> = E0,

(dE/dλ)0 = <Ψ(λ=0)|V|Ψ(λ=0)> + 2 ΣJ (∂CJ/∂λ)0 <∂Ψ/∂CJ|H0|Ψ(λ=0)>

+ 2 Σ i,a(∂Ca,i/∂λ)0 <∂Ψ/∂Ca,i|H0|Ψ(λ=0)>

+ 2 Σν (∂χν/∂λ)0 <∂Ψ/∂χν |H0|Ψ(λ=0)>,

and so on for higher order terms. The factors of 2 in the last three terms come through

using the hermiticity of H0 to combine terms in which derivatives of Ψ occur.

The first-order correction can be thought of as arising from the response of the

wavefunction (as contained in its LCAO-MO and CI amplitudes and basis functions χν)

plus the response of the Hamiltonian to the external field. Because the MCSCF energy

functional has been made stationary with respect to variations in the CJ and Ci,a amplitudes,

the second and third terms above vanish:

∂E/∂CJ = 2 <∂Ψ/∂CJ|H0|Ψ(λ=0)> = 0,

∂E/∂Ca,i = 2 <∂Ψ/∂Ca,i|H0|Ψ(λ=0)> =0.

If, as is common, the atomic orbital bases used to carry out the MCSCF energy

optimization are not explicitly dependent on the external field, the third term also vanishes

because (∂χν/∂λ)0 = 0. Thus for the MCSCF case, the first-order response is given as the

average value of the perturbation over the wavefunction with λ=0:

(dE/dλ)0 = <Ψ(λ=0)|V|Ψ(λ=0)>.

For the external electric field case at hand, this result says that the field-dependence of the

state energy will have a linear term equal to

<Ψ(λ=0)|V|Ψ(λ=0)> = <Ψ|Σa Zae Ra. e - Σ je rj. e|Ψ>,

where e is a unit vector in the direction of the applied electric field (the magnitude of the

field λ having already been removed in the power series expansion). Since the dipole



moment is determined experimentally as the energy's slope with respect to field strength,

this means that the dipole moment is given as:

µ = <Ψ|Σa Zae Ra - Σ je rj|Ψ>.

2. The Geometrical Force

These same techniques can be used to determine the response of the energy to

displacements δRa of the atomic centers. In such a case, the perturbation is

V = Σa δRa.  ∇Ra(-Σ i Zae2 /|ri-Ra|)

= - Σa Za e2δRa . Σ i (ri- Ra)/|ri-Ra|3.

Here, the one-electron operator Σ i (ri- Ra)/|ri-Ra|3 is referred to as 'the Hellmann-

Feynman' force operator; it is the derivative of the Hamiltonian with respect to

displacement of center-a in the x, y, or z direction.

The expressions given above for E(λ=0) and (dE/dλ)0 can once again be used, but

with the Hellmann-Feynman form for V. Once again, for the MCSCF wavefunction, the

variational optimization of the energy gives

<∂Ψ/∂CJ|H0|Ψ(λ=0)> = <∂Ψ/∂Ca,i|H0|Ψ(λ=0)> =0.

However, because the atomic basis orbitals are attached to the centers, and because these

centers are displaced in forming V, it is no longer true that (∂χν/∂λ)0 = 0; the variation in

the wavefunction caused by movement of the basis functions now contributes to the first-

order energy response. As a result, one obtains

(dE/dλ)0 = - Σa Za e2δRa . <Ψ|Σ i (ri- Ra)/|ri-Ra|3|Ψ>

+ 2 Σa δRa. Σν (∇Raχν)0 <∂Ψ/∂χν |H0|Ψ(λ=0)>.

The first contribution to the    force   

Fa= - Za e2<Ψ|Σ i (ri- Ra)/|ri-Ra|3|Ψ>



+ 2 Σν (∇Raχν)0 <∂Ψ/∂χν |H0|Ψ(λ=0)>

along the x, y, and z directions for center-a involves the expectation value, with respect to

the MCSCF wavefunction with λ=0, of the Hellmann-Feynman force operator. The second

contribution gives the forces due to infinitesimal displacements of the basis functions on

center-a.

The evaluation of the latter contributions can be carried out by first realizing that

Ψ = ΣJ CJ  |φJ1φJ2φJ3. . .φJn. . .φJN|

with

φj = Σµ Cµ,j χµ

involves the basis orbitals through the LCAO-MO expansion of the φjs. So the derivatives

of the basis orbitals contribute as follows:

Σν (∇Raχν) <∂Ψ/∂χν | = ΣJ Σ j,νCJ Cν ,j <|φJ1φJ2φJ3. . . .∇Raχν. .φJN|.

Each of these factors can be viewed as combinations of CSFs with the same CJ and Cν ,j

coefficients as in Ψ but with the jth spin-orbital involving basis functions that have been

differentiated with respect to displacement of center-a. It turns out that such derivatives of

Gaussian basis orbitals can be carried out analytically (giving rise to new Gaussians with

one higher and one lower l-quantum number).
When substituted into Σν (∇Raχν)0 <∂Ψ/∂χν |H0|Ψ(λ=0)>, these basis derivative

terms yield

Σν (∇Raχν)0 <∂Ψ/∂χν |H0|Ψ(λ=0)>

= ΣJ Σ j,νCJ Cν ,j <|φJ1φJ2φJ3. . . .∇Raχν. .φJN|H0|Ψ>,

whose evaluation via the Slater-Condon rules is straightforward. It is simply the

expectation value of H0 with respect to Ψ (with the same density matrix elements that arise



in the evaluation of Ψ's energy)     but    with the one- and two-electron integrals over the

atomic basis orbitals involving one of these differentiated functions:

<χµχν |g|χγ χδ> ⇒ ∇Ra<χµχν |g|χγ χδ>= <∇Raχµχν |g|χγ χδ>

+<χµ∇Raχν |g|χγ χδ> +<χµχν |g|∇Raχγ χδ> +<χµχν |g|χγ ∇Raχδ>.

In summary, the force Fa felt by the nuclear framework due to a displacement of

center-a along the x, y, or z axis is given as

Fa= - Za e2<Ψ|Σ i (ri- Ra)/|ri-Ra|3|Ψ> + (∇Ra<Ψ|H0|Ψ>),

where the second term is the energy of Ψ but with all atomic integrals replaced by integral

derivatives: <χµχν |g|χγ χδ> ⇒
∇Ra<χµχν |g|χγ χδ>.

C. Responses for Other Types of Wavefunctions

It should be stressed that the MCSCF wavefunction yields especially compact

expressions for responses of E with respect to an external perturbation because of the

variational conditions

<∂Ψ/∂CJ|H0|Ψ(λ=0)> = <∂Ψ/∂Ca,i|H0|Ψ(λ=0)> =0

that apply. The SCF case, which can be viewed as a special case of the MCSCF situation,

also admits these simplifications. However, the CI, CC, and MPPT/MBPT cases involve

additional factors that arise because the above variational conditions do not apply (in the CI

case, <∂Ψ/∂CJ|H0|Ψ(λ=0)> = 0 still applies, but the orbital condition

<∂Ψ/∂Ca,i|H0|Ψ(λ=0)> =0 does not because the orbitals are not varied to make the CI

energy functional stationary).

Within the CC, CI, and MPPT/MBPT methods, one must evaluate the so-called

responses of the CI and Ca,i coefficients (∂CJ/∂λ)0 and (∂Ca,i/∂λ)0 that appear in the full

energy response as (see above)

2 ΣJ (∂CJ/∂λ)0 <∂Ψ/∂CJ|H0|Ψ(λ=0)>+2 Σ i,a(∂Ca,i/∂λ)0<∂Ψ/∂Ca,i|H0|Ψ(λ=0)>. To do so

requires solving a set of response equations that are obtained by differentiating whatever



equations govern the CI  and Ca,i coefficients in the particular method (e.g., CI, CC, or

MPPT/MBPT) with respect to the external perturbation. In the geometrical derivative case,

this amounts to differentiating with respect to x, y, and z displacements of the atomic

centers. These response equations are discussed in      Geometrical Derivatives of Energy

    Surfaces and Molecular Properties   , P. Jørgensen and J. Simons, Eds., NATO ASI Series,

Vol. 166, D. Reidel, Dordrecht (1985). Their treatment is somewhat beyond the scope of

this text, so they will not be dealt with further here.

D. The Use of Geometrical Energy Derivatives

1. Gradients as Newtonian Forces

The first energy derivative is called the gradient g  and is the negative of the force F
(with components along the ath center denoted Fa) experienced by the atomic centers F = -

g  . These forces, as discussed in Chapter 16, can be used to carry out classical trajectory

simulations of molecular collisions or other motions of large organic and biological

molecules for which a quantum treatment of the nuclear motion is prohibitive.

The second energy derivatives with respect to the x, y, and z directions of centers a

and b (for example, the x, y component for centers a and b is Hax,by = (∂2E/∂xa∂yb)0) form

the Hessian matrix H. The elements of H give the local curvatures of the energy surface

along the 3N cartesian directions.

The gradient and Hessian can be used to systematically locate local minima (i.e.,

stable geometries) and transition states that connect one local minimum to another. At each

of these stationary points, all forces and thus all elements of the gradient g  vanish. At a

local minimum, the H matrix has 5 or 6 zero eigenvalues corresponding to translational and

rotational displacements of the molecule (5 for linear molecules; 6 for non-linear species)

and 3N-5 or 3N-6  positive eigenvalues. At a transition state, H has one negative

eigenvalue, 5 or 6 zero eigenvalues, and 3N-6 or 3N-7 positive eigenvalues.

2. Transition State Rate Coefficients

The transition state theory of Eyring or its extensions due to Truhlar and co-

workers (see, for example, D. G. Truhlar and B. C. Garrett, Ann. Rev. Phys. Chem.     35    ,

159 (1984)) allow knowledge of the Hessian matrix at a transition state to be used to

compute a rate coefficient krate appropriate to the chemical reaction for which the transition

state applies.



More specifically, the geometry of the molecule at the transition state is used to

compute a rotational partition function Q†
rot in which the principal moments of inertia Ia,

Ib, and Ic (see Chapter 13) are those of the transition state (the † symbol is, by convention,

used to label the transition state):

Q†
rot = Πn=a,b,c 

8π2InkT

h2  ,

where k is the Boltzmann constant and T is the temperature in °K.

The eigenvalues {ωα} of the mass weighted Hessian matrix (see below) are used to

compute, for each of the 3N-7 vibrations with real and positive ωα values, a vibrational

partition function that is combined to produce a transition-state vibrational partition

function:

Q†
vib = Πα=1,3Ν−7  

exp(-hωα/2kT)

1-exp(-hωα/kT)
   .

The electronic partition function of the transition state is expressed in terms of the activation

energy (the energy of the transition state relative to the electronic energy of the reactants) E†

as:

Q†
electronic = ω† exp(-E†/kT)

where ω† is the degeneracy of the electronic state at the transition state geometry.

In the original Eyring version of transition state theory (TST), the rate coefficient

krate is then given by:

krate = 
kT
h   ω† exp(-E†/kT) 

Q†
rotQ

†
vib

Qreactants
  ,

where Qreactants is the conventional partition function for the reactant materials.

For example, in a bimolecular reaction such as:

F + H2 → FH + H,



the reactant partition function

Qreactants = QF  QH2

is written in terms of the translational and electronic (the degeneracy of the 2P state

produces the 2 (3) overall degeneracy factor) partition functions of the F atom

QF =  






2πmFkT

h2
 
3/2

 2 (3)

and the translational, electronic, rotational, and vibrational partition functions of the H2

molecule

QH2 
= 







2πmH2kT

h2
 
3/2

 
8π2IH2

kT

2h2
  

exp(-hωH2
/2kT)

1-exp(-hωH2
/kT)

  .

The factor of 2 in the denominator of the H2 molecule's rotational partition function is the

"symmetry number" that must be inserted because of the identity of the two H nuclei.

The overall rate coefficient krate (with units sec-1 because this is a rate per collision

pair) can thus be expressed entirely in terms of energetic, geometrical, and vibrational

information about the reactants and the transition state. Even within the extensions to

Eyring's original model, such is the case. The primary difference in the more modern

theories is that the transition state is identified not as the point on the potential energy

surface at which the gradient vanishes and there is one negative Hessian eigenvalue.

Instead, a so-called variational transition state (see the above reference by Truhlar and

Garrett) is identified. The geometry, energy, and local vibrational frequencies of this

transition state are then used to compute, must like outlined above, krate.

3. Harmonic Vibrational Frequencies

It is possible (see, for example, J. Nichols, H. L. Taylor, P. Schmidt, and J.

Simons, J. Chem. Phys.     92    , 340 (1990) and references therein) to remove from H the zero

eigenvalues that correspond to rotation and translation and to thereby produce a Hessian

matrix whose eigenvalues correspond only to internal motions of the system. After doing

so, the number of negative eigenvalues of H can be used to characterize the nature of the



stationary point (local minimum or transition state), and H can be used to evaluate the local

harmonic vibrational frequencies of the system.

The relationship between H and vibrational frequencies can be made clear by

recalling the classical equations of motion in the Lagrangian formulation:

d/dt(∂L/∂q
• j) - (∂L/∂qj) = 0,

where qj denotes, in our case, the 3N cartesian coordinates of the N atoms, and q
•
 j  is the

velocity of the corresponding coordinate. Expressing the Lagrangian L as kinetic energy

minus potential energy and writing the potential energy as a local quadratic expansion about

a point where g  vanishes, gives

L = 1/2 Σ j mj q
•

 j2 - E(0) - 1/2 Σ j,k qj Hj,k qk .

Here, E(0) is the energy at the stationary point, mj is the mass of the atom to which qj

applies, and the Hj,k are the elements of H along the x, y, and z directions of the various

atomic centers.

Applying the Lagrangian equations to this form for L gives the equations of motion

of the qj  coordinates:

mj q
••

 j = - Σk Hj,k qk.

To find solutions that correspond to local harmonic motion, one assumes that the

coordinates qj oscillate in time according to

qj(t) = qj cos(ωt).

Substituting this form for qj(t) into the equations of motion gives

mj ω2 qj = Σk Hj,k qk.

Defining

qj' = qj (mj)1/2



and introducing this into the above equation of motion yields

ω2 qj' = Σk H'j,k qk'  ,

where

H' j,k = Hj,k (mjmk)-1/2

is the so-called      mass-weighted Hessian     matrix.

The squares of the desired harmonic vibrational frequencies ω2  are thus given as

eigenvalues of the mass-weighted Hessian H' :

H'  q'α = ω2α q'α

The corresponding eigenvector, {q'α,j} gives, when multiplied by

mj-1/2, the atomic displacements that accompany that particular harmonic vibration. At a

transition state, one of the ω2α will be negative and 3N-6 or 3N-7 will be positive.

4. Reaction Path Following

The Hessian and gradient can also be used to trace out 'streambeds' connecting

local minima to transition states. In doing so, one utilizes a local harmonic description of

the potential energy surface

E(x) = E(0) + x•g  + 1/2 x•H•x  + ...,

where x  represents the (small) step away from the point x=0  at which the gradient g and

Hessian H have been evaluated. By expressing x  and g  in terms of the eigenvectors vα of

H

Hvα = λα vα,

x = Σα <vα|x> vα = Σα xα vα,

g  = Σα <vα|g> vα = Σα gα vα,



the energy change E(x) - E(0) can be expressed in terms of a sum of independent changes

along the eigendirections:

E(x) - E(0) = Σα[ xα gα +1/2 x2α λα ] + ...

Depending on the signs of gα and of λα, various choices for the displacements xα will

produce increases or decreases in energy:

1. If λα is positive, then a step xα 'along' gα (i.e., one with xα gα positive) will generate

an energy increase. A step 'opposed to' gα will generate an energy decrease if it is short

enough that xα gα is larger in magnitude than 1/2 x2α λα, otherwise the energy will

increase.

2. If λα is negative, a step opposed to gα will generate an energy decrease. A step along

gα will give an energy increase if it is short enough for xα gα to be larger in magnitude

than 1/2 x2α λα, otherwise the energy will decrease.

Thus, to proceed downhill in all directions (such as one wants to do when

searching for local minima), one chooses each xα in opposition to gα and of small enough

length to guarantee that the magnitude of xα gα exceeds that of 1/2 x2α λα for those modes

with λα > 0. To proceed uphill along a mode with λα ' < 0 and downhill along all other

modes with λα > 0, one chooses xα ' along gα ' with xα ' short enough to guarantee that

xα ' gα ' is larger in magnitude than 1/2 x2α ' λα ', and one chooses the other xα opposed to

gα and short enough that xα gα is larger in magnitude than 1/2 x2α λα.

Such considerations have allowed the development of highly efficient potential

energy surface 'walking' algorithms (see, for example, J. Nichols, H. L. Taylor, P.

Schmidt, and J. Simons, J. Chem. Phys.     92    , 340 (1990) and references therein) designed

to trace out streambeds and to locate and characterize, via the local harmonic frequencies,

minima and transition states. These algorithms form essential components of most modern

   ab initio    , semi-empirical, and empirical computational chemistry software packages.



II.     Ab Initio    , Semi-Empirical and Empirical Force Field Methods

A. Ab Initio  Methods

Most of the techniques described in this Chapter are of the    ab initio     type. This

means that they attempt to compute electronic state energies and other physical properties,

as functions of the positions of the nuclei, from first principles without the use or

knowledge of experimental input. Although perturbation theory or the variational method

may be used to generate the working equations of a particular method, and although finite

atomic orbital basis sets are nearly always utilized, these approximations do not involve

'fitting' to known experimental data. They represent approximations that can be

systematically improved as the level of treatment is enhanced.

B. Semi-Empirical and Fully Empirical Methods

Semi-empirical methods, such as those outlined in Appendix F, use experimental

data or the results of    ab initio     calculations to determine some of the matrix elements or

integrals needed to carry out their procedures. Totally empirical methods attempt to describe

the internal electronic energy of a system as a function of geometrical degrees of freedom

(e.g., bond lengths and angles) in terms of analytical 'force fields' whose parameters have

been determined to 'fit' known experimental data on some class of compounds. Examples

of such parameterized force fields were presented in Section III. A of Chapter 16.

C. Strengths and Weaknesses

Each of these tools has advantages and limitations.     Ab initio     methods involve

intensive computation and therefore tend to be limited, for practical reasons of computer

time, to smaller atoms, molecules, radicals, and ions. Their CPU time needs usually vary

with basis set size (M) as at least M4; correlated methods require time proportional to at

least M5 because they involve transformation of the atomic-orbital-based two-electron

integrals to the molecular orbital basis. As computers continue to advance in power and

memory size, and as theoretical methods and algorithms continue to improve,    ab initio    

techniques will be applied to larger and more complex species. When dealing with systems

in which qualitatively new electronic environments and/or new bonding types arise, or

excited electronic states that are unusual,    ab initio     methods are essential. Semi-empirical or

empirical methods would be of little use on systems whose electronic properties have not

been included in the data base used to construct the parameters of such models.



On the other hand, to determine the stable geometries of large molecules that are

made of conventional chemical units (e.g., CC, CH, CO, etc. bonds and steric and

torsional interactions among same), fully empirical force-field methods are usually quite

reliable and computationally very fast. Stable geometries and the relative energetic stabilities

of various conformers of large macromolecules and biopolymers can routinely be predicted

using such tools if the system contains only conventional bonding and common chemical

building blocks. These empirical potentials usually do not contain sufficient flexibility (i.e.,

their parameters and input data do not include enough knowledge) to address processes that

involve rearrangement of the electronic configurations. For example, they can not treat:

1. Electronic transitions, because knowledge of the optical oscillator strengths and of the

energies of excited states is absent in most such methods;

2. Concerted chemical reactions involving simultaneous bond breaking and forming,

because to do so would require the force-field parameters to evolve from those of the

reactant bonding to those for the product bonding as the reaction proceeds;

3. Molecular properties such as dipole moment and polarizability, although in certain fully

empirical models, bond dipoles and lone-pair contributions have been incorporated

(although again only for conventional chemical bonding situations).

Semi-empirical techniques share some of the strengths and weaknesses of    ab initio    

and of fully empirical methods. They treat at least the valence electrons explicitly, so they

are able to address questions that are inherently electronic such as electronic transitions,

dipole moments, polarizability, and bond breaking and forming. Some of the integrals

involving the Hamiltonian operator and the atomic basis orbitals are performed    ab initio    ;

others are obtained by fitting to experimental data. The computational needs of semi-

empirical methods lie between those of the    ab initio     methods and the force-field techniques.

As with the empirical methods, they should never be employed when qualitatively new

electronic bonding situations are encountered because the data base upon which their

parameters were determined contain, by assumption, no similar bonding cases.



Mathematics Review A

I. Matrices

A. Vectors

A vector is an object having n-components

x  = (x1,x2,...xn).

These components may represent, for example, the cartesian coordinates of a particle (in
which case, n=3) or the cartesian coordinates of N particles (in which case, n=3N).
Alternatively, the vector components may have nothing what so ever to do with cartesian or
other coordinate-system positions.

The numbers xi are called the components of the vector x  in the directions of some
n elementary unit vectors:

x  = x1⋅ e1  +  x2⋅ e2  +  x3⋅ e3  +  ... + xn⋅ en

   = x1 











1

0
0
0
0
.
.
.

  + x2 











0

1
0
0
0
.
.
.

  + x3 











0

0
1
0
0
.
.
.

  + ... + xn 











0

0
.
.
.
0
0
1

 

The unit vectors ei, whose exact definition, meaning and interpretation depend on the
particular application at hand, are called basis vectors and form the elements of a     basis   .
They are particularly simple to work with because they are     orthogonal   .  This means that
their dot products vanish ei.ej = 0, unless i = j.  If i = j, then the scalar or dot product is
unity (it is usually convenient, but not necessary, to use bases that are normalized so ei.ei
= 1).  The shorthand way of representing this information is to write

ei.ej = < >eiej   = δij,

where δij is called the Kronecker delta function defined by:

δij = 0, if i ≠ j, and

δij = 1 if i = j.

The above equation for x  provides an example of expressing a vector as a linear
combination of other vectors (in this case, the basis vectors).  The vector x  is expressed as



a linear combination of the unit vectors ei, and the numbers xi are the coefficients in the
linear combination.  Another way of writing this within the summation notation is:

x  = ∑
i

n
xiei .

The idea of a linear combination is an important idea that will be encountered when we
discuss how a matrix operator affects a linear combination of vectors.

B. Products of Matrices and Vectors

If      M      is an n x n matrix with elements Mij, (the first subscript specifies the row
number and the second subscript specifies the column number), then the product      M      x  = y
is a vector whose components (when subscripts i,j,k, etc. appear, they can take any value
1,2,...n unless otherwise specified) are defined as follows:

   yk = ∑
j

n
Mkjxj 

The vector components yk can be understood as either the components of a new
vector y  in the directions of the original basis ei (i=1,2...n) or as the components of the old
vector x in the directions of new bases.

There are always these two ways to view a matrix acting on a vector:
1.  The operation can be thought of as transforming the vector into a different

vector.  This view is called the active view (vector in a different place), and is the
interpretation we will use most often.

2.  The operation can be thought of as expressing the same vector in terms of a
different coordinate system or basis.  This view is called the passive view.

Some examples may help to clarify these perspectives:
For the matrix-vector product





a 0

0 1
 



x

y
  = 



ax

y
 

the active interpretation states that the vector is scaled in the x direction by an amount a.  In
the passive interpretation, the original vector is written in terms of new bases (a-1, 0) and
(0 , 1):





x

y
  = ax 







a-1

0
  + y 



0

1
  .

As another example, consider the following matrix multiplication:

     M     x  = 








Cosθ -Sinθ

Sinθ Cosθ
 






x

y
  = 









(xCosθ - ySinθ)

(xSinθ + yCosθ)
 

In the active interpretation,  the vector whose cartesian and polar representations are:



x  = 






x

y
  = 









rCosφ

rSinφ
  ,

is rotated by an angle θ to obtain:

     M     x  = 








Cosθ -Sinθ

Sinθ Cosθ
 








rCosφ

rSinφ
 

      = 








(rCosφCosθ - rSinφSinθ)

(rCosφSinθ + rSinφCosθ)
 

      = 








rCos(φ+θ)

rSin(φ+θ)
 .

In the passive interpretation, the original vector x  is expressed in terms of a new coordinate

system with axes rotated by -θ with new bases 








Cosθ

-Sinθ
  and 









Sinθ

Cosθ
  .







x

y
  = (xCosθ - ySinθ) 









Cosθ

-Sinθ
  + (xSinθ + yCosθ) 









Sinθ

Cosθ
 

        = 








x(Cos2θ + Sin2θ) + y(SinθCosθ -  SinθCosθ)

y(Cos2θ + Sin2θ) + x(SinθCosθ -  SinθCosθ)
 

        = 






x

y
 

As a general rule, active transformations and passive transformations are inverses
of each other; you can do something    to    
a vector or else do the reverse to the coordinate system.  The two pictures can be
summarized by the following two equations:

(i.)      M      x  = y states the active picture, and

(ii.) x  =      M     -1y states the passive picture.

C. Matrices as Linear Operators



Matrices are examples of linear operators for which

     M     (ax  + by) = a     M     x  + b     M     y ,

which can easily be demonstrated by examining the components:

[     M     (ax+by)]i = ∑
k

Mik(axk +  byk) 

 = a∑
k

Mikxk  + b∑
k

Mikyk 

 = a(     M     x)i+b(     M     y)i.

One can also see that this property holds for a linear combination of many vectors rather than
for the two considered above.

We can visualize how the action of a matrix on arbitrary vectors can be expressed if
one knows its action on the elementary basis vectors.  Given the expansion of x  in the ei,

x  = ∑
i

xiei  ,

one can write

     M     x  = ∑
i

xi     M     ei .

Using the fact that all of the components of ei are zero except one, (ei)i = 1, we see that

(Mei)k = ∑
j

Mkj(ei)j  = Mki

This equation tells us that the i-th column of a matrix,      M     , contains the result of operating on
the i-th unit vector ei with the matrix.  More specifically, the element Mki in the k-th row
and i-th column is the component of      M     ei in the direction of the ek unit vector.  As a
generalization, we can construct any matrix by first deciding how the matrix affects the
elementary unit vectors and then placing the resulting vectors as the columns of the matrix.

II. Properties of General n x n (Square) Matrices

The following operations involving square matrices each of the same dimension are
useful to express in terms of the individual matrix elements:

1. Sum of matrices;     A     +     B     =     C    if Aij + Bij = Cij

2. Scalar multiplication; c     M      =      N     if c Mij = Nij



3. Matrix multiplication;     AB     =     C    if ∑
k

n
AikBkj  = Cij

4. Determinant of a matrix;
The determinant is defined inductively

for n = 1 A = det(A) = A11

for n > 1 A = det(A) = ∑
i

n
Aij det(aij) (-1)(i+j)  ; where

j=1,2,...n and aij is the minor matrix obtained
by deleting the ith row and jth column.

5. There are certain special matrices that are important to know:

A.  The zero matrix; 0ij = 0 for i = 1,2,...n and
j = 1,2,...n

B.  The identity matrix; Iij = δij

(Note (   I         M     )ij = ∑
k

δikMkj  = Mij ,  so    I         M      =      M         I    =      M     )

6. Transpose of a matrix; (MT)ij = Mji

7. Complex Conjugate of a Matrix; (M*)ij = M*ij

8. Adjoint of a Matrix; (M
  )ij = M*ji = (MT)*ij

9. Inverse of a Matrix; if      N           M      =      M           N      =    I    then      N      =      M     -1

10. Trace (or Character) of Matrix; Tr(M) = ∑
i

Mii  

   (sum of diagonal elements)

III. Special Kinds of Square Matrices

If a matrix obeys certain conditions, we give it one of several special names.  These
names include the following:

A.  Diagonal Matrix:  Dij = di δij = dj δij

B.  Real Matrix:       M      =      M     * or Mij = Mij*  (real elements)

C.  Symmetric Matrix:       M      =      M     T or Mij = Mji (symmetric about
     main diagonal)



D.  Hermitian Matrix:       M      =      M     
         or Mij = Mji*

E.  Unitary Matrix:       M     
         =      M     -1

F.  Real Orthogonal       M     
         =      M     T =      M     -1

IV. Eigenvalues and Eigenvectors of a Square Matrix

An eigenvector of a matrix,      M     , is a vector such that

     M     v  = λv

where λ is called the eigenvalue.  An eigenvector thus has the property that when it is
multiplied by the matrix, the     direction     of the resultant vector is unchanged.  The length,
however, is altered by a factor λ.  Note that any multiple of an eigenvector is also an
eigenvector, which we demonstrate as follows:

     M     (av) = a     M     v  = aλv  = λ(av).

Hence, an eigenvector can be thought of as defining a     direction     in n-dimensional
space.  The length (normalization) of the eigenvector is arbitrary; we are free to choose the
length to be anything we please.  Usually we choose the length to be unity (because, in
quantum mechanics, our vectors usually represent some wavefunction that we wish to obey
a normalization condition).

The basic eigenvalue equation can be rewritten as

(     M      - λ   I   )v  = 0

or, in an element-by-element manner, as
(M11-λ)v1

+ M12v2 + M13v3 + ⋅ ⋅ ⋅ M1nvn = 0

M21v1 + (M22-λ)v2
+ M23v3 + ⋅ ⋅ ⋅ M2nvn = 0

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

Mn1v1 + Mn2v2 + Mn3v3 + ⋅ ⋅ ⋅ (Mnn-λ)vn
= 0.

If you try to solve these n equations for all of the elements of the v  vector (v1...vn), you
can eliminate one variable using one equation, a second variable using a second equation,
etc., because the equations are linear.  For example you could solve for v1 using the first
equation and then substitute for v1 in the second equation as you solve for v2, etc.  Then
when you come to the nth equation, you would have n-1 of the variables expressed in
terms of the one remaining variable, vn.

However, you find that you cannot use the remaining equation to solve for the
value of vn; the last equation is found to appear in the form



(C - λ) vn = 0

once the v1,v2,v3, and vn-1 are expressed in terms of vn.  We should not really have
expected to solve for vn since, as we saw above, the length of the vector v  is not
determined from the set of eigenvalue equations.  You find that the only solution is vn = 0 ,
which then implies that all of the other vk = 0 because you expressed them in terms of vn,

unless the eigenvalue λ is chosen to obey λ= C.
Upon analyzing what has gone into the C element, one finds that the vk

(k=1,2,3,...,n-1) were eliminated in favor of vn by successively combining rows of the (     M     

-λ   I   ) matrix.  Thus, (C-λ) can vanish if and only if the last row of (     M      -λ   I   ) is a linear
combination of the other n-1 rows.  A theorem dealing with determinants states that the
rows of a matrix are linearly dependent (i.e., one row is a linear combination of the rest) if
and only if the determinant of the matrix is zero.  We can therefore make the eigenvalue
equation have a solution v  by adjusting λ so the determinant of (     M      -λ   I   ) vanishes.

A. Finding the Eigenvalues

In summary, to solve an eigenvalue equation, we first solve the determinantal
equation:

     M     -λ   I    = 0.

Using the definition of a determinant, one can see that expanding the determinant results in
an nth order polynomial in λ

an(M)λn + an-1(M) λn-1 + ... a1(M)λ + ao(M) = 0,

where the coefficients ai(M) depend on the matrix elements of      M     .  A theorem in algebra
shows that such an equation always has n roots some or all of which may be complex
(e.g., a quadratic equation has 2 roots).  Thus there are n different ways of adjusting the
parameter λ so the determinant vanishes.  Each of these solutions is a candidate for use as

λ in subsequently solving for the v  vector's coefficients.  That is, each λ value has its own
vector v .

B. Finding the Eigenvectors

One can substitute each of these n λ values (λk, k = 1,2,n) back into the eigenvalue

equation , one at a time, and solve for the n eigenvectors v(k).  By using one of the λk

values, the nth equation is guaranteed to be equal to zero, so you use n-1 of the equations to
solve for n-1 of the components in terms of the nth one.  The eigenvectors will then be
determined up to a multiplicative factor which we then fix by requiring normalization:



∑
i

vi*(k)vi(k)  = < >v(k)v(k)   = 1.

This expression now defines the dot or inner product (Hermitian inner product) for vectors
which can have complex valued components.  We use this definition so the dot product of a
complex valued vector with itself is real.

In summary, we have shown how to solve the n equations:

∑
j

Mijvj(k)  = λk vi(k); k = 1,2,...,n.

for the eigenvalues of the matrix λk and the corresponding normalized eigenvectors v(k), k
= 1,2,...n.  Now let us work an example that is chosen to illustrate the concepts we have
learned as well as an additional complication, that of eigenvalue degeneracy.

C. Examples

Consider the following real symmetric matrix:

     M      = 







3 0 0

0 5
2

1
2

0 1
2

5
2

 

The set of eigenvalue-eigenvector equations has non-trivial (v(k) = 0 is "trivial") solutions
if

     Μ      − λk    I   = 0.

In our example, this amounts to







3-λk 0 0

0 5
2
-λk

1
2

0 1
2

5
2
-λk

  = 0 ,

or

| |3-λk  







5
2
-λk

1
2

1
2

5
2
-λk

  = 0 ,

or,

(3-λk)⋅












5

2 -  λk
2
 -  

1
4   = 0 ,

or,



(3-λk) [λk2-5λk+6] = 0 = (3-λk)(λk-3)(λk-2).

There are three real solutions to this cubic equation (why all the solutions are real in this
case for which the      M      matrix is real and symmetric will be made clear later):

1) λ1 = 3,2) λ2 = 3, and 3) λ3 = 2.

Notice that the eigenvalue λk = 3 appears twice; we say that the eigenvalue λk = 3 is

    doubly          degenerate   .  λk = 2 is a     non-degenerate    eigenvalue.

The eigenvectors v(k) are found by plugging the above values for λk into the basic
eigenvalue equation

     M      v(k) = λk v(k)

For the non-degenerate eigenvalue (λ3 = 2), this gives:







3 0 0

0 5
2

1
2

0 1
2

5
2

 







v1(3)

v2(3)

v3(3)

  = 2 







v1(3)

v2(3)

v3(3)

  .

The following algebraic steps can then be followed:

i. 3v1(3) = 2v1(3) implies that v1(3) = 0,

ii.
5
2  v2(3) + 

1
2  v3(3) = 2v2(3), and

iii.
1
2  v2(3) + 

5
2  v3(3) = 2v3(3).

The last two equations can not be solved for both v2(3) and v3(3).  To see the trouble,
multiply equation iii. by 5 and subtract it from equation ii. to obtain

-12 v3(3) = 2v2(3) - 10v3(3),

which implies that v3(3) = -v2(3).  Now, substitute this result into the equation ii. to obtain

5
2  v2(3) + 

1
2 (-v2(3))  = 2v2(3),

or,
2v2(3) = 2v2(3).

This is a trivial identity; it does not allow you to solve for v2(3).
Hence, for this non-degenerate root, one is able to solve for all of the vj elements in terms
of one element that is yet undetermined.

As in all matrix eigenvalue problems, we are able to express (n-1) elements of the
eigenvector v(k) in terms of one remaining element.  However, we can never solve for this
one last element.  So, for convenience, we impose one more constraint (equation to be



obeyed) which allows us to solve for the remaining element of v(k).  We require that the
eigenvectors be     normalized    :

< >v(k)v(k)   = ∑
a

v*a(k) va(k)  = 1.

In our example, this means that

v12(3) + v22(3) + v32(3) = 1,

or,
02 + v22(3) + (-v2(3))2 = 1,

which implies that v2(3) = ± 1

2
  .

So,

v3(3) = ± 1

2
 ,

and finally the vector is given by:

v(3) = ± 









0

1

2

- 1

2

  .

Note that even after requiring normalization, there is still an indeterminancy in the
sign of v(3).  The eigenvalue equation, as we recall, only specifies a direction in space.
The sense or sign is not determined.  We can choose either sign we prefer.

Finding the first eigenvector was not too difficult.  The degenerate eigenvectors are
more difficult to find.  For λ1 = λ2 = 3,







3 0 0

0 5
2

1
2

0 1
2

5
2

 







v1(1)

v2(1)

v3(1)

  = 3 







v1(1)

v2(1)

v3(1)

  .

Again, the algebraic equations can be written as follows:

i. 3v1(1) = 3v1(1);  this tells us nothing!

ii.
5
2  v2(1) + 

1
2  v3(1) = 3v2(1), and



iii.
1
2  v2(1) + 

5
2  v3(1) = 3v3(1).

If we multiply equation iii. by 5 and subtract if from equation ii., we obtain:

-12v3(1) = -15v3(1) + 3v2(1),

or

3v3(1) = 3v2(1),

which implies that v3(1) = v2(1).  So far, all we have is v3(1) = v2(1); we don't know
v1(1) nor do we know either v3(1) or v2(1), and we have used all three equations.

Normalization provides one more equation v12(1) + v22(1) + (v2(1))2 = 1, but we are still
in a situation with more unknowns (2) than equations (1).

One might think that by restricting our eigenvectors to be orthogonal as well as
normalized, we might overcome this difficulty (however, such is not the case, as we now
show).

For our vectors, the constraint that the nondegenerate vector v(3) be orthogonal to
the one we are trying to find v(1), amounts to

< >v(3)v(1)   = 0

v1(3)* v1(1) + v2(3)* v2(1) + v3(3)* v3(1) = 0

0 v1(1) ± 




1

2
 v 2(1) - 

1

2
 (v2(1))   = 0.

We see that v(3) and v(1) are    already      orthogonal regardless of how v2(1) and v3(1) turn
out.  This is shown below to be guaranteed because v(1) and v(3) have different
eigenvalues (i.e., two eigenvectors belonging to different eigenvalues of any symmetric or
hermitian matrix must be orthonogonal).  Hence, this first attempt at finding additional
equations to use has failed.

What about the two degenerate eigenvectors v(1) and v(2)?  Are they also
orthonormal?  So far, we know that these two eigenvectors have the structure

v(1) = 







v1(1)

v2(1)

v3(1)

  , with 1 = v12(1) + 2v22(1).

If we go through all of the above steps for v(2) with λ2 = 3, we will find that this vector
obeys exactly the same set of equations

v(2) = 







v1(2)

v2(2)

v3(2)

  , with 1 = v12(2) + 2v22(2).



We showed above that < >v(1)v(3)   = 0, and it is easy to show that < >v(2)v(3)   = 0 because

the elements of v(2) , thus far, obey the same equations as v(1).
If we also wish to make the two degenerate eigenvectors orthogonal to one another

< >v(1)v(2)   = 0,

then we obtain additional relationships among our yet-undetermined vector amplitudes.  In
particular, we obtain

v1(1)v1(2) + v2(1)v2(2) + v3(1)v3(2) = 0,

or,

v1(1)v1(2) + 2v2(1)v2(2).= 0.

Although progress has been made, we still have four     unknowns    v1(1),v2(1); v1(2),
v2(2) and only     three       equations   :

0 = v1(1) v1(2) + 2v2(1) v2(2) = 0,

1 = v1(1) v1(1) + 2v2(1) v2(1) = 1, and

1 = v1(2) v1(2) + 2v2(2) v2(2) = 1.

It appears as though we are stuck again.  We are; but for good reasons.  We are
trying to find two vectors v(1) and v(2) that are orthonormal and are eigenvectors of      M     
having eigenvalue equal to 3.  Suppose that we do find two such vectors.  Because      M      is a
linear operator,    any     two vectors generated by taking linear combinations of these two
vectors would also be eigenvectors of      M      .  There is a degree of freedom, that of
recombining v(1) and v(2), which can not be determined by insisting that the two vectors
be eigenfunctions.  Thus, in this degenerate-eigenvalue case our requirements do not give
a     unique    pair of eigenvectors.  They just tell us the two-dimensional space in which the
acceptable eigenvectors lie (this difficulty does not arise in nondegenerate cases because
one-dimensional spaces have no flexibility other than a sign.).

So to find    an     acceptable pair of vectors, we are free to make an additional choice.
For example, we can choose one of the four unknown components of v(1) and v(2) equal
to zero.  Let us make the choice v1(1) = 0.  Then the above equations can be solved for the

other elements of v(1) to give v2(1) = ± 
1

2
  = v3(1).  The orthogonality between v(1) and

v(2) then gives 0 = 2 




± 

1

2
  v2(2), which implies that v2(2) = v3(2) = 0; the remaining

equation involving v(2) then gives v1(2) = ± 1.
In summary, we have now found a specific solution once the choice v1(1) = 0 is

made:



v(1) = ± 









0

1

2

1

2

  , v(2) = ± 







1

0

0

  , and v(3) = ± 









0

1

2

- 1

2

 

Other choices for v1(1) will yield different specific solutions.

V.  Properties of Eigenvalues and Eigenvectors of Hermitian Matrices

The above example illustrates many of the properties of the matrices that we will
most commonly encounter in quantum mechanics.  It is important to examine these
properties in more detail and to learn about other characteristics that Hermitian matrices
have.

A.  Outer product

Given any vector v , we can form a square matrix denoted | |v(i)><v(i)  , whose
elements are defined as follows:

| |v(i)><v(i)   = 







v1*(i)v1(i) v1*(i)v2(i)  . . .  v1*(i)vn(i)

v2*(i)v1(i) v2*(i)v2(i)  . . .  v2*(i)vn(i)

 . . .   . . .   . . .   . . .  

vn*(i)v1(i) vn*(i)v2(i)  . . .  vn*(i)vn(i)

 

We can use this matrix to project onto the component of a vector in the v(i) direction. For
the example we have been considering, if we form the projector onto the v(1) vector, we
obtain









0

1

2

1

2

 



0 1

2

1

2
  = 







0 0 0

0 1
2

1
2

0 1
2

1
2

  ,

for v(2), we get







1

0

0

 [ ]1 0 0   = 







1 0 0

0 0 0

0 0 0

  ,

and for v(3) we find











0

1

2

- 1

2

 



0 1

2
- 1

2
  = 







0 0 0

0 1
2

-1
2

0 -1
2

1
2

  .

These three projection matrices play important roles in what follows.

B.  Completeness Relation or Resolution of the Identity

The set of eigenvectors of any Hermitian matrix form a complete set over the space
they span in the sense that  the sum of the projection matrices constructed from these
eigenvectors gives an exact representation of the identity matrix.

∑
i

| |v(i)><v(i)   =    I   .

For the specific matrix we have been using as an example, this relation reads as follows:









0

1

2

1

2

 



0 1

2

1

2
  + 







1

0

0

 [ ]1 0 0   + 









0

1

2

- 1

2

 



0 1

2
- 1

2
  =







1 0 0

0 1 0

0 0 1

  .

Physically, this means that when you project onto the components of a vector in these
three directions, you don't lose any of the vector.  This happens because our vectors are
orthogonal and complete.  The completeness relation means that    any     vector in this three-
dimensional space can be written in terms of v(1), v(2), and v(3)  (i.e., we can use
v(1),v(2),v(3) as a new set of bases instead of e1,e2,e3).

Let us consider an example in which the following vector is expanded or written in
terms of our three eigenvectors:

f  = 







7

-9

12

  = a1 v(1) + a2 v(2) + a3 v(3)

The task at hand is to determine the expansion coefficients, the ai.  These coefficients are
the projections of the given f vector onto each of the v(i) directions:



< >v(1)f   = a1 ,

since,

< >v(1)v(2)   = < >v(1)v(3)   = 0.

Using our three vi vectors and the above f  vector, the following three expansion
coefficients are obtained:

a1 = 



0 1

2

1

2
 







7

-9

12

  = 
3

2
 

< >v(2)f   = 7

< >v(3)f   = -
21

2
 

Therefore, f  can be written as:

f  = 







7

-9

12

  = 
3

2
 









0

1

2

1

2

  + 7 







1

0

0

  - 
21

2
 









0

1

2

- 1

2

  

This works for any vector f , and we could write the process in general in terms of the
resolution of the identity as

f  =    I   f  = ∑
k

| |v(k)><v(k)   f> = ∑
k

|v(k)>  ak ,

This is how we will most commonly make use of the completeness relation as it pertains
to the eigenvectors of Hermitian matrices.

C.  Spectral Resolution of M

It turns out that not only the identity matrix    I    but also the matrix      M      itself can be
expressed in terms of the eigenvalues and eigenvectors. In the so-called spectral
representation of      M      , we have



     M      = ∑
k

λk| |v(k)><v(k)   .

In the example we have been using, the three terms in this sum read

3 







0 0 0

0 1
2

1
2

0 1
2

1
2

  + 3 







1 0 0

0 0 0

0 0 0

  + 2 







0 0 0

0 1
2

-1
2

0 -1
2

1
2

  = 







3 0 0

0 5
2

1
2

0 1
2

5
2

  =      M

This means that a matrix is totally determined if we know its eigenvalues and eigenvectors.

D.  Eigenvalues of Hermitian Matrices are Real Numbers

A matrix can be expressed in terms of any complete set of vectors.  For n x n
matrices, a complete set is any n linearly independent vectors.  For a set of vectors k>, k

= 1,2,...n, the matrix elements of      M      are denoted Mjk or < >jMk  .  If the matrix is Hermitian

then

< >jMk   = < >kMj  * .

If the vectors k> are eigenvectors of      M     , that is, if      M     v(k)> =      M     k> = λkk>, then the
eigenvalues are real.  This can be shown as follows:

< >kMk   = λk < >kk   = < >kMk  * = λk* < >kk  ,

so λk = λk*.  This is a very important result because it forms the basis of the use of
Hermitian operators in quantum mechanics; such operators are used because experiments
yield real results, so to connect with experimental reality, only hermitian operators must
appear.

E.  Nondegenerate Eigenvectors of Hermitian Matrices are Orthogonal

If two eigenvalues are different, λk ≠ λj, then

< >kMj   = λj< >kj   = < >jMk  * = λk* < >jk  * = λk < >kj  ,

which implies that (λk-λj) < >kj   = 0.  Since, by assumption, λk ≠ λj , it must be that < >kj   =

0.  In other words, the eigenvectors are orthogonal.  We saw this earlier in our example
when we "discovered" that v(3) was automatically orthogonal to v(1) and to v(2).

If one has degenerate eigenvalues, λk = λj for some k and j, then the corresponding
eigenvectors are not automatically orthogonal to one another (they are orthogonal to other
eigenvectors), but the degenerate eigenvectors can always be    chosen      to be orthogonal.  We
also encountered this in our earlier example.



In all cases then, one can find n orthonormal eigenvectors (remember we required

< >kk   = 1 as an additional condition so that our amplitudes could be interpreted in terms of

probabilities).  Since any vector in an n- dimensional space can be expressed as a linear
combination of n orthonormal vectors, the eigenvectors form a complete basis set.  This is
why the so-called resolution of the identity, in which the unit matrix can be expressed in
terms of the n eigenvectors of      M     , holds for all hermitian matrices.

F.  Diagonalizing a Matrix using its Eigenvectors

The eigenvectors of      M      can be used to form a matrix that diagonalizes      M     . This
matrix     S     is defined such that the kth column of     S     contains the elements of v(k)

S = 













v1(1) v1(2) ⋅ ⋅ ⋅ v1(n)

v2(1) v2(2) ⋅ ⋅ ⋅ v2(n)

v3(1) v3(2) ⋅ ⋅ ⋅ v3(n)

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

vn(1) vn(2) ⋅ ⋅ ⋅ vn(n)

  .

Then using the above equation one can write the action of      M      on     S     as

∑
j

MijSjk  = ∑
j

Mijvj(k)  = λkvi(k) = Sikλk .

Now consider another matrix     Λ     which is a diagonal matrix with diagonal elements λk, i.e.

Λik = δik λk.

One can easily show using the δjk matrix that

∑
j

Sijδjkλk  = Sikλk ,

since the only non-zero term in the sum is the one in which j = k.  Thus, comparing with
the previous result for the action of      M      on     S     ,

∑
j

MijSjk  = ∑
j

Sijδjkλk  .

These are just the i,kth matrix elements of the matrix equation

     M          S     =     S         Λ     .



Let us assume that an inverse     S    -1 of     S     exists.  Then multiply the above equation on
the left by     S    -1 to obtain

    S    -1      M          S      =     S    -1     S         Λ     =    I        Λ     =     Λ     .

This identity illustrates a so-called similarity transform of      M      using     S    .  Since     Λ     is diagonal,
we say that the similarity transform     S     diagonalizes      M     .  Notice this would still work if we
had used the eigenvectors v(k) in a different order.  We would just get     Λ     with the diagonal
elements in a different order.  Note also that the eigenvalues of      M      are the same as those of
    Λ     since the eigenvalues of     Λ     are just the diagonal elements λk with eigenvectors ek (the
elementary unit vectors)

    Λ    ek = λkek , or, (Λek)i = ∑
j

λkδkjδji  = λkδki = λk(ek)i .

G. The Trace of a Matrix is the Sum of its Eigenvalues

Based on the above similarity transform, we can now show that the trace of a
matrix (i.e., the sum of its diagonal elements) is independent of the representation in which
the matrix is formed, and, in particular, the trace is equal to the sum of the eigenvalues of
the matrix. The proof of this theorem proceeds as follows:

  ∑
k

λk  = Tr(Λ) = ∑
k

(S-1MS) kk = ∑
kij

(Ski-1MijSjk) 

 = ∑
ij

Mij ∑
k

SjkSki-1  = ∑
ij

Mijδji  = ∑
i

Mii  = Tr(M)

H. The Determinant of a Matrix is the Product of its Eigenvalues

This theorem, det(M) = det(Λ), can be proven, by using the theorem that det(AB) =
det(A) det(B), inductively within the expansion by minors of the determinant

λ1λ2λ3. . .λn  = det(Λ) = det (S-1MS) = det(S-1)det(M)det(S)

= det(M) det(S-1) det(S)

= det(M) det(S-1S)

= det(M) det(I) = det(MI) = det(M).

I. Invariance of Matrix Identities to Similarity Transforms



We will see later that performing a similarity transform expresses a matrix in a
different basis (coordinate system).  If, for any matrix     A    , we call     S    -1     A         S     =     A    ', we can
show that performing a similarity transform on a matrix equation leaves the form of the
equation unchanged.  For example, if

    A     +     B         C     =     P         Q         R     ,

performing a similarity transform on both sides, and remembering that     S    -1    S     = I, one finds

    S    -1(    A     +     B         C    )    S     =     S    -1     P         Q         R         S     =

    S    -1    A         S     +     S    -1    B    (    S         S    -1)     C         S     =     S    -1     P    (    S         S    -1)     Q         S         S    -1     R         S    ,

or,

    A    ' +     B    '     C    ' =     P    '     Q    '     R    ' .

J. How to Construct     S    -1

To form     S    -1, recall the eigenvalue equation we began with

     M      v(k) = λk v(k).

If we multiply on the left by     S    -1 and insert     S    -1    S     =    I   , we obtain

    S    -1     M     (    S         S    -1) v(k) = λk     S    -1 v(k),

or,

Λ v(k)' = λk v(k)' .

According to the passive picture of matrix operations, v(k)' =     S    -1 v(k) is the old vector v
expressed in terms of new basis functions which are given by the columns of     S    .  But the
rows of     S    -1 , or equivalently, the columns of     S     have to be orthonormal vectors (using the
definition of an inverse):

∑
j

S-1ijSjk  = δik.

However, the columns of     S     are just the eigenvectors v(k), so the rows of     S    -1 must also
have something to do with v(k).

Now consider the matrix     S    
         .  Its elements are (S

  )kj = Sjk*, so (S
  )kj = vj*(k),

as a result of which we can write



(S
  S)ik = ∑

j
S


ijSjk  = ∑

j

v j*(i)v j(k)  = < >v(i)v(k)   = δik.

We have therefore found     S    -1, and it is     S    
        .  We have also proven the important theorem

stating that any Hermitian matrix      M     , can be diagonalized by a matrix     S     which is unitary

(    S    
         =     S    -1) and whose columns are the eigenvectors of      M     .

VI.  Finding Inverses, Square Roots, and Other Functions of a Matrix Using its
Eigenvectors and Eigenvalues

Since a matrix is defined by how it affects basis vectors upon which it acts, and
since a matrix only changes the lengths, not the directions of its eigenvectors, we can form
other matrices that have the same eigenvectors as the original matrix but have different
eigenvalues in a straightforward manner.  For example, if we want to reverse the effect of
     M     , we create another matrix that reduces the lengths of the eigenvectors by the same
amount that      M      lengthened them.  This produces the inverse matrix.  We illustrate this by
using the same example matrix that we used earlier.

     M     -1 = ∑
k

λk-1| |v(i)><v(i)   (this is defined only if all λk �≠ 0)

1
3 







0 0 0

0 1
2

1
2

0 1
2

1
2

  + 
1
3 







1 0 0

0 0 0

0 0 0

  + 
1
2 







0 0 0

0 1
2

-1
2

0 -1
2

1
2

  = 







1
3

0 0

0 10
24

-2
24

0 -2
24

10
24

  =      M     -1

To show that this matrix obeys      M     -1      M      =     1    , we simply multiply the two matrices together:







1
3

0 0

0 10
24

-2
24

0 -2
24

10
24

 







3 0 0

0 5
2

1
2

0 1
2

5
2

  = 







1 0 0

0 1 0

0 0 1

 

An extension of this result is that a whole family of matrices, each member related
to the original      M      matrix, can be formed by combining the eigenvalues and eigenvectors as
follows:

f(     M     ) = ∑
i

| |v(i)><v(i)   f(λi),



where f is any function for which f(λi) is defined.  Examples include exp(     M     ) , sin(     M     ),

     M     1/2, and (   I   -     M     )-1.  The matrices so constructed (e.g., exp(     M     ) = ∑
i

exp(λi)| |v(i)><v(i)   ) are

proper representations of the functions of      M      in the sense that they give results equal to
those of the function of      M       when acting on any eigenvector of      M      ; because the eigenvectors
form complete sets, this implies that they give identical results when acting on any vector.
This equivalence can be shown most easily by carrying out a power series expansion of the
function of      M      (e.g., of exp(     M     )) and allowing each term in the series to act on an
eigenvector.

VII. Projectors Revisited

In hindsight, the relationships developed above for expressing functions of the
original matrix in terms of its eigenvectors and eigenvalues are not unexpected because each
of the matrices is given in terms of the so-called projector matrices | |v(i)><v(i)  .  As we

saw, the matrix ∑
i

λi| |v(i)><v(i)   behaves just like      M      , as demonstrated below:

∑
i

λi| |v(i)><v(i) (v(j)> = ∑
i

λi|v(i)> δij = λj|v(j)> 

The matrix | |v(i)><v(i)   is called a projector onto the space of eigenvector |v(i)> because its

action on any vector |f> within the class of admissible vectors (2- or 4-dimensional vectors
are in a different class than 3- or 1- or 7- or 96-dimensional vectors)

( )| |v(i)><v(i)  |f> = |v(i)> ( )<v(i)|f>  

gives |v(i)> multiplied by the coefficient of |f> along |v(i)>.
This construction in which a vector is used to form a matrix | |v(i)><v(i)   is called an

"outer product".  The projection matrix thus formed can be shown to be     idempotent   ,
which means that the result of applying it twice (or more times) is identical to the result of
applying it once P P = P.  This property is straightforward to demonstrate.  Let us consider
the projector     P    i ≡ | |v(i)><v(i)  , which, when applied twice yields

| |v(i)><v(i) | |v(i)><v(i)   = | |v(i)>δii<v(i)   = | |v(i)><v(i)  .

Sets of projector matrices each formed from a member of an orthonormal vector set
are mutually     orthogonal   ,  (i.e.,     P    i    P    j = 0 if i ≠ j),
which can be shown as follows:

| |v(i)><v(i) | |v(j)><v(j)   = | |v(i)>δij<v(j)  

         = | |v(i)>0<v(j)   = 0 (i ≠ j)



VIII. Hermitian Matrices and The Turnover Rule

The eigenvalue equation:

     M     |v(i)> = λi|v(i)>,

which can be expressed in terms of its indices as:

∑
j

Mkjvj(i)  = λivk(i),

is equivalent to (just take the complex conjugate):

∑
j

vj*(i)Mkj*  = λivk*(i),

which, for a Hermitian matrix      M     , can be rewritten as:

∑
j

vj*(i)Mjk  = λivk*(i),

or, equivalently, as:

<v(i)|     M      = λi <v(i)|.

This means that the v(i), when viewed as column vectors, obey the eigenvalue identity
     M     |v(i)> = mi|v(i)>.  These same vectors, when viewed as row vectors (and thus complex

conjugated), also obey the eigenvalue relation, but in the "turn over" form <v(i)|     M      = λi

<v(i)| .  For example, in the case we have been studying, the first vector obeys





0 1

2

1

2
 







3 0 0

0 5
2

1
2

0 1
2

5
2

  = 



0 3

2

3

2
  

   = 3 



0 1

2

1

2
  

As a general rule, a hermitian matrix operating on a column vector to the right is
equivalent to the matrix operating on the complex conjugate of the same vector written as a
row vector to the left.  For a non-Hermitian matrix, it is the adjoint matrix operating on the
complex conjugate row vector that is equivalent to the original matrix acting on the column
vector on the right.  These two statements are consistent since, for a Hermitian matrix the
adjoint is identical to the original matrix (often, Hermitian matrices are called "self-adjoint"

matrices for this reason)      M      =      M     
        .



IX.  Connection Between Orthonormal Vectors and Orthonormal Functions.

For vectors as we have been dealing with, the scalar or dot product is defined as we
have seen as follows:

< >v(i)v(j)   ≡ ∑
k

vk*(i)vk(j) .

For functions of one or more variable (we denote the variables collectively as x), the
generalization of the vector scalar product is

< >f(i)f(j)   ≡ ⌡⌠fi*(x)fj(x)dx .

The range of integration and the meaning of the variables x will be defined by the specific
problem of interest; for example, in polar coordinates for one particle, x→r,θ,φ , and for N

particles in a general coordinate system x→ri, r2, . . . ,rN).
If the functions fi(x) are orthonormal;

< >f(i)f(j)   = δij ,

and complete, then a resolution of the identity holds that is similar to that for vectors

∑
i

| |f(i)><f(i)   = ∑
i

fi(x)fi*(x')  = δ(x-x')

where δ(x-x') is called the Dirac delta function.  The δ function is zero everywhere except
at x', but has unit area under it.  In other words,

⌡⌠δ(x-x')g(x')dx'  = g(x) = ∑
i

| |f(i)><f(i)  |g> = ∑
i

fi(x)⌡⌠fi*(x')g(x')dx'  

      = ∑
i

fi(x)ai  ,

where ai is the projection of g(x) along fi(x).  The first equality can be taken as a definition

of δ(x-x').

X. Matrix Representations  of Functions and Operators

As we saw above, if the set of functions {fi(x)} is complete, any function of x can
be    expanded     in terms of the {fi(x)}



g(x) = ∑
i

| |f(i)><f(i)  |g>

       = ∑
i

fi(x)⌡⌠fi*(x')g(x')dx'  

The column vector of numbers ai ≡ ⌡⌠fi*(x')g(x')dx'  is called the    representation     of g(x) in

the fi(x)     basis   .  Note that this vector may have an infinite number of components because
there may be an infinite number of fi(x).

Suppose that the function g(x) obeys some     operator     equation (e.g., an eigenvalue
equation) such as

dg(x)
dx   = αg(x).

Then, if we express g(x) in terms of the {fi(x)}, the equation for g(x) can be replaced by a
corresponding matrix problem for the ai vector coefficients:

∑
i

dfi(x)
dx ⌡⌠fi*(x')g(x')dx'  = α ∑

i

fi(x)⌡⌠fi*(x')g(x')dx'  

If we now multiply by fj*(x) and integrate over x, we obtain

∑
i

⌡
⌠fj*(x)

d
dxfi(x)dx  ai = α ∑

i

⌡⌠fj*(x)fi(x)dx  ai.

If the fi(x) functions are orthonormal, this result simplifies to

∑
i





d

dx  
ji
 ai = α aj

where we have     defined      the      matrix        representation      of 
d
dx  in the {fi} basis by





d

dx  
ji
 ≡ ⌡

⌠fj*(x)
d
dxfi(x)dx .

Remember that ai is the representation of g(x) in the {fi} basis.  So the operator eigenvalue
equation is equivalent to the      matrix     eigenvalue problem    if    the functions {fi} form a
complete set.



Let us consider an example, that of the derivative operator in the orthonormal basis
of Harmonic Oscillator functions.  The fact that the solutions of the quantum Harmonic
Oscillator, ψn(x), are orthonormal and complete means that:

⌡⌠

-∞

+∞

ψn*(x)ψm(x)dx  = δmn.

The lowest members of this set are given as

ψ0(x) = π
-1
4  e

- x 2

2   ,

ψ1(x) = π
-1
4  2

1
2  x e

- x 2

2   ,

ψ2(x) = π
-1
4  8

-1
2 (4x2 - 2)  e

- x 2

2   , ... ,

ψn(x) = AnHn(x)e
- x 2

2   .

The derivatives of these functions are

ψ0(x)' = π
-1
4 (-x)  e

- x 2

2   ,

ψ1(x)' = π
-1
4  2

1
2 








e
- x 2

2  -  x 2  e
- x 2

2   ,

 ,

 = 2
-1
2( )ψ0 -  ψ2   , etc.

In general, one finds that

dψn(x)
dx   = 2

-1
2 





n
1
2 ψn-1 - (n+1)

1
2 ψn+1   .

From this general result, it is clear that the matrix representation of the 
d
dx  operator is given

by



    D     = 2
-1
2 











0 1 0 0 ...

-1 0 2 0 ...

0 - 2 0 3 ...

0 0 - 3 0 ...

. . . . . . . . . . . . . . .

  .

The matrix     D     operates on the unit vectors e0 = (1,0,0...), e1 = (0,1,....) etc. just

like 
d
dx  operates on ψn(x), because these unit vectors are the representations of the ψn(x) in

the basis of the ψn(x), and     D     is the representation of 
d
dx  in the basis of the ψn(x).  Since

any vector can be represented by a linear combination of the ei vectors, the matrix     D    

operates on any vector (a0,a1,a2...) just like 
d
dx  operates on any f(x).  Note that the matrix

is not Hermitian; it is actually antisymmetric.  However, if we multiply     D     by -ih−  we obtain

a Hermitian matrix that represents the operator -ih− d
dx , the momentum operator.

It is easy to see that we can form the matrix representation of  any linear operator
for any complete basis in any space.  To do so, we act on each basis function with the
operator and express the resulting function as a linear combination of the original basis
functions.  The coefficients that arise when we express the operator acting on the functions
in terms of the original functions form the the matrix representation of the operator.

It is natural to ask what  the eigenvalues and eigenfunctions of the matrix you form
through this process mean.  If your operator is the Hamiltonian operator, then the matrix
eigenvectors and eigenvalues are the representations of the solutions to the Schrodinger
equation in this basis.  Forming the representation of an operator reduces the solution of the
operator eigenvalue equation to a matrix eigenvalue equation.

XI. Complex Numbers, Fourier Series, Fourier Transforms, Basis Sets

One of the techniques to which chemists are frequently exposed is Fourier
transforms.  They are used in NMR and IR spectroscopy, quantum mechanics, and
classical mechanics.
Just as we expand a function in terms of a complete set of basis function or a vector in
terms of a complete set of vectors, the Fourier transform expresses a function f(ω) of a

continuous variable ω in terms of a set of orthonormal functions that are not discretely

labeled but which are labeled by a continuous "index" t.  These functions are (2π)
-1
2  e-iω t ,

and the "coefficients" in the expansion

f(ω) = (2π)
-1
2 ⌡⌠

-∞

+∞

e-iω tf(t)dt  ,

are called the Fourier transform f(t) of f(ω).



The orthonormality of the (2π)
-1
2  e-iω t functions will be demonstrated explicitly

later.  Before doing so however, it is useful to review both complex numbers and basis
sets.

A.  Complex numbers

A complex number has a real part and an imaginary part and is usually denoted:

z = x + iy.

For the complex number z, x is the real part, y is the imaginary part, and i = -1 .  This is
expressed as x = Re(z), y = Im(z).  For every complex number z, there is a related one
called its complex conjugate z* = x - iy.

Complex numbers can be thought of as points in a plane where x and y are the
abscissa and ordinate, respectively.  This point of view prompts us to introduce polar
coordinates r and θ to describe complex numbers, with

x = r Cos θ r = (x2 + y2)
1
2 

 or,

y = r Sin θ θ = Tan-1 




y

x   + [π (if x < 0)].

Another name for r is the norm of z which is denoted  z.  The angle θ is sometimes called
the argument of z, arg(z), or the phase of z.

Complex numbers can be added, subtracted, multiplied and divided like real
numbers.  For example, the multiplication of z by z* gives:

zz* = (x + iy) (x - iy) = x2 + ixy - ixy + y2 = x2 + y2 = r2

Thus zz* =  z2 is a real number.

An identity due to Euler is important to know and is quite useful.  It states that

eiθ = Cosθ + iSinθ.

It can be proven by showing that both sides of the identity obey the same differential
equation.  Here we will only demonstrate its plausibility by Taylor series expanding both
sides:

ex = 1 + x + 
x2

2   + 
x3

3!  + 
x4

4!  + ...,

Sin x = x - 
x3

3!  + 
x5

5!  + ...,

and



Cos x = 1 - 
x2

2   + 
x4

4!  + ....

Therefore, the exponential exp(iθ) becomes

eiθ = 1 + iθ + i2
θ2

2   + i3
θ3

3!  + i4
θ4

4!  + i5
θ5

5!  + ...

     = 1 - 
θ2

2   + 
θ4

4!  + ... + i



θ -  

θ3

3! +  
θ5

5! +  . . .  .

The odd powers of θ clearly combine to give the Sine function; the even powers give the
Cosine function, so

eiθ = Cosθ + iSinθ

is established. From this identity, it follows that Cosθ = 
1
2 (eiθ + e-iθ)  and Sinθ = 

1
2  i (eiθ -

e-iθ).
It is now possible to express the complex number z as

z = x + iy

   = rCosθ + irSinθ

   = r(Cosθ + iSinθ)

   = reiθ.

This form for complex numbers is extremely useful.  For instance, it can be used to easily
show that

zz* = reiθ(re-iθ) = r2ei(θ-θ) = r2.

B. Fourier Series

Now let us consider a function that is periodic in time with period T.  Fourier's
theorem states that any periodic function can be expressed in a Fourier series as a linear
combination (infinite series) of Sines and Cosines whose frequencies are multiples of a
fundamental frequency Ω corresponding to the period:

f(t) = ∑
n=0

∞
anCos(nΩt)  + ∑

n=1

∞
bnSin(nΩt) ,



where Ω = 
2π
T  .  The Fourier expansion coefficients are given by projecting f(t) along each

of the orthogonal Sine and Cosine functions:

ao = 
1
T⌡⌠

0

T

f(t)dt ,

an = 
2
T⌡⌠

0

T

f(t)Cos(nΩt)dt ,

bn = 
2
T⌡⌠

0

T

f(t)Sin(nΩt)dt .

The term in the Fourier expansion associated with ao is a constant giving the average value
(i.e., the zero-frequency or DC component) of the function.  The terms with n = 1 contain
the fundamental frequency and higher terms contain the nth harmonics or overtones of the
fundamental frequency.  The coefficients, an and bn, give the amplitudes of each of these
frequencies.  Note that if f(t) is an even function (i.e., if f(t) = f(-t)), bn = 0 for n = 1,2,3...
so the series only has Cosine terms.  If f(t) is an odd function (i.e. f(t) = -f(-t)), an = 0 for
n = 0,1,2,3... and the series only has Sine terms.

 The Fourier series expresses a continuous function as an infinite series of numbers
... ao, a1, b1, a2, b2, ... .  We say that the set of coefficients is a    representation     of the

function in the Fourier basis.  The expansion in the Cos Ωnt and Sin Ωnt basis is useful
because the basis functions are orthogonal when integrated over the interval 0 to T.  An
alternative set of functions is sometimes used to carry out the Fourier expansion; namely

the 




1

T

1
2 exp(iΩnt) functions for n from -∞ to +∞.  Their orthogonality can be proven as

follows:

 
1
T⌡⌠

0

T

ψn*ψmdt  = 
1
T⌡⌠

0

T

exp(i(m-n)Ωt)dt  = 1 if m=n, and

  = 
1
T(i(m-n)Ω) -1(exp(i(m-n)ΩT) - 1) = 0 if m≠ n.

Let us consider the Fourier representation of f(t) in terms of the complex
exponentials introduced above.  For an arbitrary periodic function f(t), we can write

f(t) = ∑
-∞

+∞
cneinΩ t  , where cn = 

1
T

⌡⌠
0

T

f(t)e-inΩ tdt .



This form of the Fourier series is entirely equivalent to the first form and the an and bn can
be obtained from the cn and vice versa.  For example, the cn amplitudes are obtained by

projecting f(t) onto exp(inΩt) as:

cn = 
1
T⌡⌠

0

T

f(t)( )Cos(nΩt) - iSin(nΩt) dt 

     = 
1
T⌡⌠

0

T

f(t)Cos(nΩt)dt  - 
1
T⌡⌠

0

T

f(t)Sin(nΩt)dt ,

but these two integrals are easily recognized as the expansion in the other basis, so

cn = 
1
2  an - 

1
2  i bn = 

1
2 (an - ibn) .

By using complex exponential functions instead of trigonometric functions, we only have
one family of basis functions, einΩ t, but we have twice as many of them.  In this form, if
f(t) is even, then the cn are real, but if f(t) is odd, then cn are imaginary.

It is useful to consider some examples to learn this material.  First, let f(t) be the

odd function f(t) = Sin3t.  Then, one period has elapsed when 3T = 2π, so T = 
2π
3   and Ω

= 3.  For this function, the complex series Fourier expansion coefficients are given by

c0 = 
3

2π
 ⌡⌠

0

2π
3

Sin3tdt  = 0.

c1 = 
3

2π
 ⌡⌠

0

2π
3

Sin3te-i3tdt  = 
3

2π
 ⌡

⌠( )ei3t-e-i3t

2i  e -i3tdt 

     = 
1
2i 

3

2π
 ⌡⌠

0

2π
3

(1-e6it)dt  = 
3

4πi
 



2π

3  -  0   = 
1
2i  = -

i
2 

Because Sin3t is real, it is straightforward to see from the definition of cn that c-n = cn*, as

a result of which c-1 = c1* = +
i
2 .  The orthogonality of the exp(inΩt) functions can be used

to show that all of the higher cn coefficients vanish:

cn = 0 for n ≠ ± 1.



Hence we see that this simple periodic function has just two terms in its Fourier series.  In
terms of the Sine and Cosine expansion, one finds for this same f(t)=Sin3t that an = 0, bn =

0 for n ≠ 1, and b1 = 1.
As another example, let f(t) be

f(t) = t, -π < t < π,

and make f(t) periodic with period 2π (so Ω = 1).  For this function,

c0 = 
1

2π
 ⌡⌠

-π

π
tdt  = 0

cn = 
1

2π
 ⌡⌠

-π

π

te-intdt  = 
1

2πn2
  [e-int(1 + int)] |

-π

π
  

     = 
1

2πn2
 (e-inπ(1 + inπ(1 - inπ))) 

     = 
1

2πn2
 ((-1)n (1 + inπ) - (-1)n (1 - inπ)) 

     = 
(-1)n

2πn2
 (2inπ)  = 

i
n (-1) n   n ≠ 0.

Note that since t is an odd function, cn is imaginary, and as n → ∞, cn approaches zero.

C. Fourier Transforms

Let us now imagine that the period T becomes very long.  This means that the

fundamental frequency Ω = 
2π
T   becomes very small and the harmonic frequencies nΩ are

very close together.  In the limit of an infinite period one has a non-periodic function (i.e.,
an arbitrary function).  The frequencies needed to represent such a function become
continuous, and hence the Fourier sum becomes an integral.

To make this generalization more concrete, we first take the earlier Fourier

expression for f(t) and multiply it by unity in the form 
ΩT

2π
  to obtain:

f(t) = ∑
-∞

∞
cneinΩ tΩT

2π
 .



Now we replace nΩ (which are frequencies infinitesimally close together for sufficiently

long T) by the continuous index ω:

f(t) = 
1

2π
 ∑
n=-∞

∞
(cnT)eiω tΩ .

In the limit of long T, this sum becomes an integral because Ω becomes infinitesimally

small (Ω→dω).  As T grows, the frequency spacing between n and n+1, which is 
2π
T  , as

well as the frequency associated with a given n-value become smaller and smaller.  As a
result, the product cnT evolves into a continuous function of ω which we denote c(ω).
Before, cn depended on the continuous index n, and represented the contribution to the

function f(t) of waves with frequency nΩ.  The function c(ω) is the contribution per unit

frequency to f(t) from waves with frequency in the range ω to ω + dω.  In summary, the
Fourier series expansion evolves into an integral that defines the Fourier transformation of
f(t):

f(t) = 
1

2π
 ⌡⌠

-∞

∞

c(ω)e-iω tdω .

It is convenient to define a new function f(ω) = (2π)
-1
2 c(ω) where f(ω) is called the Fourier

transform of f(t).  The Fourier transform f(ω) is a representation of f(t) in another basis,

that of the orthonormal set of oscillating functions eiω(2π)
-1
2 :

f(t) = 




1

2π

1
2 ⌡⌠f(ω)e-iω tdω .

Earlier, for Fourier series, we had the orthogonality relation among the Fourier
functions:

1
T ⌡⌠

0

T

ψn*ψmdt  = δnm ,

but for the continuous variable ω, we have a different kind of orthogonality

⌡⌠

∞

-∞

ψ*(ω1)ψ(ω2)dt  = δ(ω1-ω2),



where ψ(ωj) = (2π)
-1
2 eiω jt.

The function δ(ω), called the Dirac delta function, is the continuous analog to δnm.

It is zero unless ω = o.  If ω = o, δ(ω) is infinite, but it is infinite in such a way that the

area under the curve is precisely unity.  Its most useful definition is that δ(ω) is the function

which, for arbitrary f(ω), the following identity holds:

⌡⌠

∞

-∞

f(ω)δ(ω−ω')dω  = f(ω' ) .

That is, integrating δ(ω-ω') times any function evaluated at ω just gives back the value of

the function at ω' .
The Dirac delta function can be expressed in a number of convenient ways,

including the following two:

δ(ω-ω') = 
1

2π
 ⌡⌠

∞

-∞

ei(ω -ω ')t dt 

   = lim
a→0

 
π
a  e

-
(ω-ω')2

a2  

As an example of applying the Fourier transform method to a non-periodic
function, consider the localized pulse

f(t) = 





0              t >  T
2

1
T
          - T

2
 ≤ t  ≤ T

2
 

For this function, the Fourier transform is

f(ω) = (2π)
-1
2 ⌡⌠

-∞

∞

f(t)eiω tdt 

       = (2π)
-1
2 

1
T ⌡⌠

-T
2

T
2

e-iω tdt 



       = (2π)
-1
2 

1
T ⌡⌠

-T
2

T
2

(Cosωt - iSinωt)dt 

       = (2π)
-1
2 

1
T ⌡⌠

-T
2

T
2

Cosωtdt + 0 

       = (2π)
-1
2 

1

ωT
 ( )Sinωt  

-T
2

T
2
 
 

       = 




2

π

-1
2  Sin (ωT/2)/ωT.

Note that f(ω) has its maximum value of (2π)
-1
2  for ω = 0 and that f(ω) falls slowly in

magnitude to zero as ω increases in magnitude, while oscillating to positive and negative

values.  However, the primary maximum in f(ω) near zero-frequency has a width that is
inversely proportional to T.  This inverse relationship between the width (T) in t-space and

the width 



2π

T   in ω-space is an example of the uncertainty principle.  In the present case it

means that if you try to localize a wave in time, you must use a wide range of frequency
components.

D. Fourier Series and Transforms in Space

The formalism we have developed for functions of time can also be used for
functions of space variables or any other variables for that matter.  If f(x) is a periodic

function of the coordinate x, with period (repeat distance) 
2π
K  , then it can be represented in

terms of Fourier functions as follows:

f(x) = ∑
n=-∞

∞
fneinKx 

where the coefficients are

fn = 
K

2π
 ⌡⌠
0

2π
K

f(x)e-inKxdx  .



If f(x) is a non-periodic function of the coordinate x, we write it as

f(x) = (2π)
-1
2 ⌡⌠

-∞

∞

f(k)eikxdk 

and the Fourier transform is given as

f(k) = (2π)
-1
2 ⌡⌠

-∞

∞

f(x)e-ikxdx  .

If f is a function of several spatial coordinates and/or time, one can Fourier transform (or
express as Fourier series) simultaneously in as many variables as one wishes.  You can
even Fourier transform in some variables, expand in Fourier series in others, and not
transform in another set of variables.  It all depends on whether the functions are periodic
or not, and whether you can solve the problem more easily after you have transformed it.

E. Comments

So far we have seen that a periodic function can be expanded in a discrete basis set
of frequencies and a non-periodic function can be expanded in a continuous basis set of
frequencies.  The expansion process can be viewed as expressing a function in a different
basis.  These basis sets are the collections of solutions to a differential equation called the
wave equation.  These sets of solutions are useful because they are    complete        sets   .
Completeness means that    any     arbitrary function can be expressed    exactly      as a linear
combination of these functions.  Mathematically, completeness can be expressed as

1 = ⌡⌠ψ(ω)><ψ(ω)dω 

in the Fourier transform case, and

1 = ∑ψn><ψn 

in the Fourier series case.
The only limitation on the function expressed is that it has to be a function that has

the same boundary properties and depends on the same variables as the basis.  You would
not want to use Fourier series to express a function that is not periodic, nor would you
want to express a three-dimensional vector using a two-dimensional or four-dimensional
basis.

Besides the intrinsic usefulness of Fourier series and Fourier transforms for
chemists (e.g., in FTIR spectroscopy), we have developed these ideas to illustrate a point
that is important in quantum chemistry.  Much of quantum chemistry is involved with basis
sets and expansions.  This has nothing in particular to do with quantum mechanics.  Any
time one is dealing with linear differential equations like those that govern light (e.g.
spectroscopy) or matter (e.g. molecules), the solution can be written as linear combinations
of  complete sets of solutions.



XII. Spherical Coordinates

A. Definitions

The relationships among cartesian and spherical polar coordinates are given as
follows:

z = rCosθ r = x2+y2+z2 

x = rSinθ Cosφ θ = Cos-1







z

x2+y2+z2
 

y = rSinθ Sinφφ = Cos-1







x

x2+y2
 

The ranges of the polar variables are 0 < r < ∞, 0 ≤ θ ≤ π, 0 ≤ φ < 2π.

B. The Jacobian in Integrals

In performing integration over all space, it is necessary to convert the multiple
integral from cartesian to spherical coordinates:

⌡⌠dx⌡⌠dy⌡⌠dz  f(x,y,z) → ⌡⌠dr⌡⌠dθ⌡⌠dφ  f(r,θ,φ)�⋅ J,

where J is the so-called Jacobian of the transformation.  J is computed by forming the
determinant of the three-by-three matrix consisting of the partial derivatives relating x,y,z to
r,θ,φ:

J = 






∂(x,y,z)

∂(r,θ,φ)
 

  = 









SinθCosφ SinθSinφ Cosθ

rCosθCosφ rCosθSinφ -rSinθ

-rSinθSinφ rSinθCosφ 0

 

The determinant, J, can be expanded, for example, by the method of diagonals, giving four
nonzero terms:

J = r2Sin3θSin2φ + r2Cos2θSinθCos2φ

  + r2Sin3θCos2φ + r2Cos2θSinθSin2φ

  = r2Sinθ(Sin2θ(Sin2φ + Cos2φ) + Cos2θ(Cos2φ + Sin2φ))



  = r2Sinθ.

Hence in converting integrals from x,y,z to r,θ,φ one writes as a short hand dxdydz =

r2Sinθdrdθdφ .

C. Transforming Operators

In many applications, derivative operators need to be expressed in spherical
coordinates.  In converting from cartesian to spherical coordinate derivatives, the chain rule
is employed as follows:

∂
∂x

  = 
∂r

∂x
 
∂
∂r

  + 
∂θ
∂x

 
∂
∂θ

  + 
∂φ
∂x

 
∂
∂φ

 

    = SinθCosφ 
∂
∂r

  + 
CosθCosφ

r  
∂
∂θ

  - 
Sinφ
rSinθ

 
∂
∂φ

  .

Likewise

∂
∂y

  = SinθSinφ 
∂
∂r

  + 
CosθSinφ

r  
∂
∂θ

  + 
Cosφ
rSinθ

 
∂
∂φ

  ,

and

∂
∂z

  = Cosθ 
∂
∂r

  - 
Sinθ

r  
∂
∂θ

  + 0 
∂
∂φ

  

Now to obtain an expression for 
∂2

∂x2
  and other second derivatives, one needs to take the

following derivatives:

∂2

∂x2
  = SinθCosφ 

∂
∂r

 








SinθCosφ 
∂
∂r

 +  
CosθCosφ

r  
∂
∂θ

 -  
Sinφ
rSinθ

 
∂
∂φ

 

     + 
CosθCosφ

r  
∂
∂θ

 








SinθCosφ 
∂
∂r

 +  
CosθCosφ

r  
∂
∂θ

 -  
Sinφ
rSinθ

 
∂
∂φ

 

          - 
Sinφ
rSinθ

 
∂
∂φ

 








SinθCosφ 
∂
∂r

 +  
CosθCosφ

r  
∂
∂θ

 -  
Sinφ
rSinθ

 
∂
∂φ

 

     = Sin2θCos2φ 
∂2

∂r2
  + 

Cos2θCos2φ
r2

 
∂2

∂θ2
  + 

Sin2φ
r2Sin2θ

 
∂2

θφ2
 



     + 
2SinθCosθCos2φ

r  
∂2

∂r∂θ
  - 

2CosφSinφ
r  

∂2

∂r∂φ
  - 

2CosθCosφSinφ
r2Sinθ

 
∂2

∂θ∂φ
 

     + 



Cos2θCos2φ

r  +  
Sin2φ

r  
∂
∂r

  + 








-
2SinθCosθCos2φ

r2
 +  

Sin2φCosθ
r2Sinθ

 
∂
∂θ

 

     + 






CosφSinφ

r2
 +  

Cos2θCosφSinφ
r2Sin2θ

 
∂
∂φ

 

Analogous steps can be performed for 
∂2

∂y2
  and 

∂2

∂z2
 .  Adding up the three contributions,

one obtains:

∇2 = 
1

r2
 
∂
∂r

 








r2 
∂
∂r

  + 
1

r2Sinθ
 
∂
∂θ

 








Sinθ 
∂
∂θ

  + 
1

r2Sin2θ
 
∂2

∂φ2
  .

As can be seen by reading Appendix G, the terms involving angular derivatives in ∇2 is

identical to -
L2

r2
 , where L2 is the square of the rotational angular momentum operator.

Although in this appendix, we choose to treat it as a collection of differential operators that
gives rise to differential equations in θ and φ to be solved, there are more general tools for
treating all such angular momentum operators. These tools are developed in detail in
Appendix G and are used substantially in the next two chapters.

XIII. Separation of Variables

In solving differential equations such as the Schrödinger equation involving two or
more variables (e.g., equations that depend on three spatial coordinates x, y, and z or r, θ,

and φ or that depend on time t and several spatial variables denoted r), it is sometimes
possible to reduce the solution of this one multi-variable equation to the solution of several
equations each depending on fewer variables. A commonly used device for achieving this
goal is the    separation of variables technique   .

This technique is not always successful, but can be used for the type of cases
illustrated now. Consider a two-dimensional differential equation that is of second order
and of the eigenvalue type:

A ∂2/∂x2 ψ + B ∂2/∂y2 ψ + C ∂ψ/∂x ∂ψ/∂y + D ψ = E ψ.

The solution ψ must be a function of x and y because the differential equation refers to ψ' s
derivatives with respect to these variables.

The separations of variables device assumes that ψ(x,y) can be written as a     product   
of a function of x and a function of y:



ψ(x,y) = α(x) β(y).

Inserting this ansatz into the above differential equation and then dividing by α(x) β(y)
produces:

A α-1 ∂2/∂x2 α + B β-1 ∂2/∂y2 β + C α-1 β-1 ∂α/∂x ∂β/∂y + D = E .

The key observations to be made are:

A. If A if independent of y, A α-1 ∂2/∂x2 α must be independent of y.

B. If B is independent of x, B β-1 ∂2/∂y2 β must be independent of x.

C. If C vanishes and D does not depend on both x and y, then there are no "cross terms" in
the above equations (i.e., terms that contain both x and y). For the sake of argument, let us
take D to be dependent on x only for the remainder of this discussion; the case for which D
depends on y only is handled in like manner.

Under circumstances for which all three of the above conditions are true, the left-hand side
of the above second-order equation in two variables can be written as the sum of

A α-1 ∂2/∂x2 α  + D,

which is independent of y, and

B β-1 ∂2/∂y2 β

which is independent of x.

The full equation states that the sum of these two pieces must equal the eigenvalue E, which
is independent of both x and y.

Because E and  B β-1 ∂2/∂y2 β are both independent of x, the quantity A α-1 ∂2/∂x2

α  + D (as a whole) can     not    depend on x, since

E - B β-1 ∂2/∂y2 β must equal A α-1 ∂2/∂x2 α  + D for all values of x and y. That A α-1

∂2/∂x2 α  + D is independent of x and (by assumption) independent of y allows us to write:

A α-1 ∂2/∂x2 α  + D = ε,

a constant.
Likewise, because E and A α-1 ∂2/∂x2 α  + D are independent of y, the quantity  B

β-1 ∂2/∂y2 β (as a whole) can     not    depend on y, since E - A α-1 ∂2/∂x2 α  - D must equal B

β-1 ∂2/∂y2 β for all values of x and y. That B β-1 ∂2/∂y2 β is independent of y and (by
assumption) independent of x allows us to write:

B β-1 ∂2/∂y2 β = ε' ,



another constant.

The net result is that we now have    two first-order differential equations    of the eigenvalue
form:

A ∂2/∂x2 α  + D α= ε α,

and

B  ∂2/∂y2 β = ε'  β,

and the solution of the original equation has been successfully subjected to separation of
variables. The two eigenvalues ε and ε' of the separated x- and y- equations must obey:

ε + ε' = E,

which follows by using the two separate (x and y) eigenvalue equations in the full two-
dimensional equation that contains E as its eigenvalue.

In summary, when separations of variables can be used, it:
A. Reduces one multidimensional differential equation to two or more lower-dimensional
differential equations.
B. Expresses the eigenvalue of the original equation as a    sum of eigenvlaues    (whose values
are determined via boundary conditions as usual) of the lower-dimensional problems.
C. Expresses the solutions to the original equation as a     product    of solutions to the lower-
dimensional equations (i.e., ψ(x,y) = α(x) β(y), for the example considered above).



The Hydrogen Atom Orbitals B

In Chapter 1 and Appendix A, the angular and radial parts of the Schrödinger
equation for an electron moving in the potential of a nucleus of charge Z were obtained.
These "hydrogen-like" atomic orbitals are proper eigenstates for H, He+, Li++, Be+++ ,
etc. They also serve as useful starting points for treating many-electron atoms and
molecules in that they have been found to be good basis functions in terms of which to
expand the orbitals of most atoms and ions. In this Appendix, we will examine the sizes,
energies, and shapes of these orbitals and consider, in particular, how these properties vary
with principal quanutm number n, charge Z, and angular quantum numbers l and m.

In Chapter 1 and Appendix A, it was shown that the total r, θ, φ dependence of
these so-called hydrogenic orbitals is given as:

ψn,l,m = Yl,m (θ,φ) Rn,l (r),

where the spherical harmonics Yl,m  are expressed in terms of the associated legendre

polynomials Plm(θ) as

Yl,m(θ,φ) = Pl|m|(cosθ) (2π)-1/2 exp(imφ),

and the radial functions Rn,l(r) are given in terms of Laguerre polynomials of order n-l-1,

Ln-l-1(ρ) as follows:

Rn,l(r) = Nn,l ρle-ρ/2 Ln-l-1(ρ) ,

where Nn.l is a normalization constant. Here, the radial coordinate r of the electron is

contained in the variable ρ defined as

ρ = Zr/aon,

where ao is the bohr radius

ao = h2 /µe2 = 0.529 Å.

The energies of these hydrogenic orbitals, relative to an electron infinitely far from the
nucleus and with zero kinetic energy, are

E = - µ Z2 e4/2h2n2 = - 27.21 Z2/2n2 eV.



The n = 1, 2, and 3 wavefunctions are given explicitly as follows:

n=1, l=0, m=0, ψ= (Z/ao)3/2(π)-1/2 exp(-Zr/ao)

n=2, l=0, m=0, ψ = (Z/ao)3/2(2π)-1/2 (1-Zr/2ao)/2 exp(-Zr/2ao)

n=2, l=1, m=0, ψ = (Z/ao)3/2(2π)-1/2 Zr/4ao cosθ exp (-Zr/2ao)

n=2, l=1, m=±1, ψ = (Z/ao)3/2(4π)-1/2 Zr/4ao sinθ exp(±iφ) exp(-Zr/2ao)

n=3, l=0, m=0, ψ = (Z/ao)3/2(3π)-1/2 [27-18Zr/ao+2(Zr/ao)2]/81
exp(-Zr/3ao)

n=3, l=1, m=0, ψ = (Z/ao)3/2(2π)-1/2 2/81 [6Zr/ao-(Zr/ao)2] cosθ
exp(-Zr/3ao)

n=3, l=1, m=±1,ψ = (Z/ao)3/2(π)-1/2  1/81 [6Zr/ao-(Zr/ao)2] sinθ exp(±iφ) exp(-Zr/3ao)

n=3, l=2, m=0, ψ = (Z/ao)3/2(6π)-1/2 1/81 (Zr/ao)2 [3cos2θ -1]
exp(-Zr/3ao)

n=3, l=2, m=±1,ψ = (Z/ao)3/2(π)-1/2 1/81 (Zr/ao)2 sinθ cosθ exp(±iφ) exp(-Zr/3ao)

n=3, l=2, m=±2,ψ = (Z/ao)3/2(4π)-1/2 1/81 (Zr/ao)2 sin2θ exp(±2iφ) exp(-Zr/3ao).

On pages 133-136 of Pauling and Wilson are tabulated the bound-state solutions of this
problem for n ranging up to n=6 and l-values up to l=5.

The above ± m functions are appropriate whenever one wishes to describe orbitals
that are eigenfunctions of Lz, the component of orbital angular momentum along the z-axis.

The functions with ± m quantum numbers can be combined in pairs to give the spatially
oriented functions with which most chemists are familiar:

ψ+ = 2-1/2 [ψm + ψ−m ]

and
ψ- = 2-1/2 [ψm - ψ−m ].

For example, when applied to the 2p±1 functions, one forms the 2px and 2py functions; the
3d±1 functions combine to give the 3dxz and 3dyz functions; and the 3d±2 functions
combine to give the 3dxy and 3dx2-y2 functions. These spatially directed functions are more
appropriate for use whenever one is dealing with the interaction of the atom on which these
orbitals are located with surrounding "ligands" or bonding partners which are spatially
arranged in a manner that destroys the spherical and axial symmetry of the system. One is
permitted to combine the ± m functions in this manner because these pairs of functions are
energetically degenerate; any combination of them is therefore of the same energy.

There are several important points to stress about these hydrogenic atomic
functions:

1. Their energies vary as -Z2/n2, so atoms with higher Z values will have more tightly
bound electrons (for the same n). In a many-electron atom, one often introduces the
concept of an effective nuclear charge Zeff, and takes this to be the full nuclear charge Z
minus the number of electrons that occupy orbitals that reside radially "inside" the orbital in
question. For example, Zeff = 6-2=4 for the n=2 orbitals of Carbon in the 1s22s22p4



configuration. This Zeff is then used to qualitatively estimate the relative energetic stability

by making use of the  - Z2eff/n2 scaling of the energy.

2. The radial sizes of orbitals are governed by the product of
exp(-Zeff r/nao), an rl factor which arises from the small-r limit of ψn,l,m , r1 which enters

because the probability density is |ψ|2 r2, and the highest power of Zr/nao that appears in

the Laguerre polynomial which is (Zr/nao)n-l-1. This product's r-dependence reduces to

exp(-Zeff r/nao) rn, which has a maximum at r = n2 ao/Zeff . So, orbitals with large Zeff
values are smaller and orbitals with larger n-values are larger.

3. The hydrogenic atom energy expression has no l-dependence; the 2s and 2p orbitals
have exactly the same energy, as do the 3s, 3p, and 3d orbitals. This degree of degeneracy
is only present in one-electron atoms and is the result of an additional symmetry (i.e., an
additional operator that commutes with the Hamiltonian) that is not present once the atom
contains two or more electrons. This additional symmetry is discussed on p. 77 of Atkins.

4. The radial part of ψn,l,m involves a polynomial in r of order n-l-1

Ln-l-1(r) = Σk ak rk ,
and the coefficients in these polynomials alternate in sign
(ak = ck (-1)k). As a result, the radial functions possess nodes (i.e., values of r at which

ψn,l,m vanishes) at points where the polynomial is equal to zero. There are n-l-1 such radial

nodes (excluding the nodes at r = ∞  and at r = 0, the latter of which all but s-orbitals
have). A 4s orbital has 3 such radial nodes, and a 3d orbital has none.
Radial nodes provide a means by which an orbital acquires density closer to the nucleus
than its <r2> value would indicate; such enhanced density near the nucleus differentially
stabilizes such orbitals relative to those with the same n but fewer nodes. In the language
commonly used in inorganic chemistry, one says that nodes allow an orbital to "penetrate"
the underlying inner-shell orbitals.

The presence of radial nodes also indicates that the electron has radial kinetic
energy. The 3s orbital with 2 radial nodes has more radial kinetic energy than does the 3p
which, in turn, has more than the 3d. On the other hand, the 3d orbital has the most angular
energy
l(l+1)h2/2mr2 (this is the analog of the rotational energy of a diatomic molecule), the 3p has
an intermediate amount, and the 3s has the least.



Quantum Mechanical Operators and Commutation C

I. Bra-Ket Notation

It is conventional to represent integrals that occur in quantum mechanics in a
notation that is independent of the number of coordinates involved. This is done because
the fundamental structure of quantum chemistry applies to all atoms and molecules,
regardless of how many electronic and atom-center coordinates arise. The most commonly
used notation, which is referred to as 'Dirac' or 'bra-ket' notation, can be summarized as
follows:

A. The wavefunction itself Ψ is represented as a so-called 'ket' |Ψ>.

B. The complex conjugate Ψ* of Ψ is represented as a 'bra' <Ψ|; the complex conjugation
is implied by writing < |.

C. The integral, over all of the N coordinates (q1...qN) on which Ψ depends, of the

product of Ψ* and Ψ is represented as a so-called 'bra-ket' or bracket:

 ⌡⌠
 

 Ψ* Ψ dq1...dqN   = < Ψ | Ψ>.

By convention, the two vertical lines that touch when < Ψ | is placed against | Ψ > are
merged into a single line in this notation.

D. Integrals involving one function (Ψ*) and either another function (Φ) or the result of an

operator A acting on a function (e.g., AΨ or AΦ) are denoted as follows:



⌡⌠
 

 

Ψ* Φ dq1...dqN  = < Ψ | Φ >

⌡⌠
 

 

Ψ* AΨ dq1...dqN  = < Ψ | AΨ > = < Ψ | A | Ψ >

⌡⌠
 

 

Ψ* AΦ dq1...dqN  = < Ψ | AΦ > = < Ψ | A | Φ >

⌡⌠
 

 

(AΨ)* Φ dq1...dqN  = < AΨ | Φ >.

It is merely convention that an 'extra' vertical line (e.g., that appearing in < Ψ | A | Φ >) is
inserted when an operator acting on the ket function appears in the integral.

II. Hermitian Operators

In quantum mechanics, physically measurable quantities are represented by
hermitian operators.  Such operators {R} have matrix representations, in any basis
spanning the space of functions on which the {R} act, that are hermitian:

<φk|R|φ1> = <φ1|R|φk>* = <Rφk|φl>.

The equality of the first and third terms expresses the so-called 'turn-over rule'; hermitian
operators can act on the function to their right or, equivalently, on the function to their left.

Operators that do not obey the above identity are not hermitian. For such operators,
it is useful to introduce the so-called adjoint operator as follows. If for the operator R,
another operator R+ can be found that obeys

 <φk|R|φ1> = <R+ φk|φl> = <φ1|R+|φk>*,

for all {φk} within the class of functions on which R and R+ operate, then R+ is defined to
be the    adjoint     of R. With this definition, it should be clear that hermitian operators are self-
adjoint (i.e., they obey R+= R).

The hermiticity property guarantees that the eigenvalues {λm} of such operators are
real numbers (i.e., not complex) and that the corresponding eigenfunctions {fm}, or their

representations {Vmk} within the {φk} basis

fm = Σk Vmk φk,

corresponding to different eigenvalues are orthonormal and that the eigenfunctions
belonging to degenerate eigenvalues can be made orthonormal.

To prove these claims, start with Rφk = λkφk.  Multiplying on the left by the

complex conjugate of φk and integrating gives <φk|R|φk> = λk <φk|φk>. Taking the



complex conjugate of this equation and using the Hermiticity property <φk|R|φ1> =

<φ1|R|φk>* (applied with k=l) gives λk* = λk.

The orthogonality proof begins with Rφk = λkφk, and Rφl = λlφl. Multiplying the

first of these on the left by <φl| and the second by <φk|

gives <φl|R|φk> = λk <φl|φk> and <φk|R|φl> = λl <φk|φl>. The complex conjugate of the

second reads <φk|R|φl>* = λl <φk|φl>*; using the Hermiticity property this reduces to

<φl|R|φk> = λl <φl|φk>. If λk ≠ λl, this result can be consistent with <φl|R|φk> = λk

<φl|φk> only if <φl|φk> vanishes.

III. Meaning of the Eigenvalues and Eigenfunctions

In quantum mechanics, the eigenvalues of an operator represent the     only     numerical
values that can be observed if the physical property corresponding to that operator is
measured. Operators for which the eigenvalue spectrum (i.e., the list of eigenvalues) is
discrete thus possess discrete spectra when probed experimentally.

For a system in a state     ψ       that is an eigenfunction      of R

R ψ = λψ ,

measurement of the property corresponding to R will yield the value λ.  For example, if an

electron is in a 2p-1 orbital and L2  is measured, the value L(L+1) h2 = 2h2 (and only this
value) will be observed; if Lz is measured, the value -1h (and only this value) will be

observed. If the electron were in a 2px orbital and L2  were measured, the value 2h2 will be
found; however, if Lz is measured, we can not say that only one value will be observed
because the 2px orbital is not an eigenfunction of Lz (measurements in such non-
eigenfunction situations are discussed below).

   In general   ,  if the property R is measured, any one of the eigenvalues {λm} of the
operator R may be observed. In a large number of such measurements (i.e., for an
ensemble of systems all in states described by ψ that may or may not itself be an

eigenfunction of R), the probability or frequency of observing the particular eigenvalue λm

is given by |Cm|2, where Cm  is the expansion coefficient of ψ in the eigenfunctions of R:

ψ = Σµ  Cm fm.

In the special case treated earlier in which ψ is an eigenfunction of R, all but one of the Cm

vanish; hence the probability of observing various λm values is zero except for the     one   
state for which Cm is non-zero.

For a measurement that results in the observation of the particular value λm , a

   subsequent     measurement of R on systems just found to have eigenvalue λm will result,

with 100% certainty, in observation of this    same     value λm . The quantum mechanical
interpretation of this experimental observation it to say that the act of measuring the
property belonging to the operator R causes the wavefunction to be altered. Once this



measurement of R is made, the wavefunction is no longer ψ; it is now fm for those species

for which the value λm is observed.
For example (this example and others included in this Appendix are also treated

more briefly in Chapter 1) , if the initial ψ discussed above were a so-called superposition
state of the form

ψ = a (2p0 + 2p-1 - 2p1) + b (3p0 - 3p-1), then:

A. If L2  were measured, the value 2h2 would be observed with probability 3 |a|2 + 2 |b|2 =
1, since all of the non-zero Cm coefficients correspond to p-type orbitals for this ψ. After

said measurement, the wavefunction would still be this same ψ because this entire ψ is an

eigenfunction of L2 .

B. If Lz were measured for this

ψ = a (2p0 + 2p-1 - 2p1) + b (3p0 - 3p-1),

the values 0h, 1h, and -1h would be observed (because these are the only functions with
non-zero Cm coefficients for the Lz operator) with respective probabilities | a |2 + | b |2, | -a

|2, and | a |2 + | -b |2 .

C.     After     Lz were measured, if the sub-population for which -1h had been detected were

subjected to measurement of L2  the value 2h2 would certainly be found because the     new     
wavefunction

ψ' = {-  a 2p-1 - b 3p-1} (|a|2 + |b|2)-1/2

is still an eigenfunction of L2  with this eigenvalue.

D. Again after Lz were measured, if the sub-population for which -1h
had been observed and for which the wavefunction is now

ψ' = {-  a 2p-1 - b 3p-1} (|a|2 + |b|2)-1/2

were subjected to measurement of the energy (through the Hamiltonian operator), two
values would be found. With probability
| -a |2 (|a|2 + |b|2)-1 the energy of the 2p-1 orbital would be observed; with probability | -b |2

(|a|2 + |b|2)-1 , the energy of the 3p-1 orbital would be observed.

The     general observation      to make is that, given an initial normalized ψ function, and

a physical measurement (with operator R) to be made, one first must express ψ as a linear
combination of the complete set of eigenfunctions of that R:

ψ = Σm  Cm fm.



The coefficients Cm tell, through |Cm|2, the probabilities (since ψ is normalized to unity) of

observing each of the R eigenvalues λm when the measurement is made. Once the
measurement is made, that sub-population of the sample on which the experiment was run
that gave the particular eigenvalue, say λp, now have a wavefunction that no longer is the

above ψ; their wavefunction now is fp.

IV. Experiments Do Not Prepare Only Eigenstates

The above remarks should     not     be interpreted to mean that experiments are limited
to preparing only eigenstates. Just as one can 'pluck' a violin string  or 'pound' a drum
head in any manner, experiments can prepare a system in states that are not pure
eigenfunctions (i.e., states that do not contain just one eigenfunction in their expansion).
However,     no matter how the state is prepared    ,  i   t can be interpreted    ,  via expansion    in the
   complete set of eigenfunctions     of the operator(s) whose properties are to be measured, as a
superposition of eigenfunctions. The superposition amplitudes provide the probabilities of
observing each eigenfunction when the measurement is made.

For example, after the drum head has been hit, its shape will evolve spatially and in
time in a manner that depends on how it was 'prepared' by the initial blow. However, if
one carries out an experiment to detect and frequency-analyze the sound that emanates from
this drum, thereby measuring differences in the eigen-energies of the system, one finds a
set of discrete (quantized) frequencies {ωk} and corresponding amplitudes {Ak}.
Repeating this experiment after a different 'blow' is used to prepare a different initial state
of the drum head, one finds the    same     frequencies {ωk} but     different     amplitudes {Bk}.

The quantum mechanics interpretation of these observations is that the initial state of
the drum head is a superposition of eigenstates:

ψ = Σn Cn fn.

The {Cn} amplitudes are determined by how the drum head is 'prepared' in the blow that

strikes it. As time evolves, ψ progresses according to the time-dependent Schrödinger
equation:

ψ(t) = Σn Cn fn exp(- i En t/ h).

The frequencies emitted by this system will depend on the probability |Cn|2 of the system
being in a particular eigenstate fn and the energy  En of each eigenstate.

The frequency spectrum measured for the drum head motion is therefore seen to
have variable amplitudes for each observed 'peak' because the |Cn|2 vary depending on
how the drum head was prepared. In contrast, the frequencies themselves are not
characteristic of the preparation process but are properties of the drum head itself; they
depend on the eigen-energies of the system, not on how the system is prepared.

This distinction between the characteristic eigenstates of the system with their
intrinsic properties and the act of preparing the system in some state that may be a
superposition of these eigenstates is essential to keep in mind when applying quantum
mechanics to experimental observations.



V. Operators That Commute and the Experimental Implications

Two hermitian operators that commute

[R , S] = RS  - SR = 0

can be shown to possess    complete sets     of simultaneous eigenfunctions. That is, one can
find complete sets of functions that are  eigenfunctions of both R and of S.

The symbol [R , S] is used to denote what is called the    commutator    of the operators
R and S. There are several useful identities that can be proven for commutators among
operators A, B, C, and D, scalar numbers k, and integers n. Several of these are given as
follows:

[A,An] = 0
[kA,B] = [A,kB] = k[A,B]
[A,B+C] = [A,B] + [A,C]
[A+B,C] = [A,C] + [B,C]
[A+B,C+D] = [A,C] + [A,D] + [B,C] + [B,D]
[A,BC] = [A,B]C + B[A,C]
[AB,C] = [A,C]B + A[B,C]
[AB,CD] = [A,C]DB + C[A,D]B + A[B,C]D + AC[B,D].

The physical implications of the commutation of two operators are very important
because they have to do with what pairs of measurements can be made without interfering
with one another. For example, the fact that the x coordinate operator x= x and its
momentum operator px  = -ih ∂/∂x do     not     commute results in the well known Heisenberg

uncertainty relationship ∆x ∆px ≥ h/2  involving measurements of x  and px  .

There are two distinct cases that need to be addressed:

A. If the two operators act on     different coordinates     (or, more generally, on different
sets of coordinates), then they obviously commute. Moreover, in this case, it is
straightforward to find the complete set of eigenfunctions of both operators; one simply
forms a product of any eigenfunction (say fk) of R and any eigenfunction (say gn) of S.
The function fk gn is an eigenfunction of both R and S:

R fk gn = gn (R fk) = gn (λ fk) = λ gn fk = λ fk gn ;

S fk gn = fk (S gn) = fk (µ gn) = µ fk gn .

In these equations use has been made of the fact that gn and fk are functions of different
sets of coordinates that S and R, respectively, act upon.

Product functions such as fk gn yield predictable results when measurements are

performed. If the property corresponding to R is measured, the value λ is observed,    and    
the wavefunction remains
fk gn . If S is measured, the value µ is observed, and the wavefunction remains fk gn . For

example, the two Hermitian operators  -i ∂/∂φ and -i ∂/∂r clearly commute. An
eigenfunction of



-i ∂/∂φ is of the form exp(iaφ) and an eigenfunction of -i ∂/∂r is of the form exp(ibr). The

    product     exp(iaφ) exp(ibr) is an eigenfunction of both -i ∂/∂φ and -i ∂/∂r. The
corresponding eigenvalues are a and b, respectively; only these values will be observed if
measurements of the properties corresponding to -i ∂/∂φ and -i ∂/∂r are made for a system

whose wavefunction is exp(iaφ) exp(ibr).

B. If the operators R and S act on the    same  coordinates     yet still commute, the
implications of their commutation are somewhat more intricate to detail.

As a first step, consider the functions {gn} that are eigenfunctions of S with

eigenvalues {µn}. Now,  act on gn with the SR operator and use the fact that SR = RS to
obtain

 S R gn =  RS gn .

Because the {gn} are eigenfunctions of S having eigenvalues {µn}, this equation further
reduces to:

 S R gn =  R µngn =  µn R gn .

This is a     key result   .  It shows that the function (R gn) is itself    either     an eigenfunction of S
having the same eigenvalue that gn has     or     it vanishes.

If R gn vanishes,  gn clearly is an eigenfunction of R (since R gn = 0 gn) and of S.
On the other hand, if R gn is non-vanishing, it must be an eigenfunction of S having the

same eigenvalue (µn) as gn. If this eigenvalue is non-degenerate (i.e., if gn is the only

function with eigenvalue µn), then R gn must be proportional to gn itself:

R gn = cn gn.

This also implies that gn is an eigenfunction of both R and of S.
Thus far, we can say that functions which are eigenfunctions of S belonging to

    non-degenerate     eigenvalues must also be eigenfunctions of R. On the other hand, if the µn

eigenvalue is degenerate (i.e., there are ω such functions gn, gn', gn'', etc. that are S-

eigenfunctions with the same µn as their eigenvalue), all that can be said is that R gn is

some combination of this ω-fold degenerate manifold of states:

R gn = Σn' cn,n' gn'

where the sum over n' runs only over the states with S-eigenvalues equal to µn. This same
conclusion can be reached no matter which particular state gn among the degenerate
manifold we begin with. Therefore, the above equation holds for    all     {gn} that belong to
this degenerate group of states.

The constants cn,n' form a square (since we act on all ω states and produce

combinations of ω states) Hermitian (since R is Hermitian) matrix; in fact, cn,n' forms the

matrix representation of the operator R within the ω-dimensional space of orthonormal
functions {gn}. As with all Hermitian matrices, a unitary transformation can be employed



to bring it to diagonal form. That is, the ω orthonormal {gn} functions can be unitarily
combined:

Gp = Σn Up,n gn

to produce ω new orthonormal functions {Gp} for which the corresponding matrix
elements cp,p', defined by

R Gp = Σn Up,n R gn = Σn,n' Up,n cn,n' gn

= Σp' Σn,n' Up,n cn,n' U*n',p' Gp' = Σp' cp,p' Gp'

are diagonal

R Gp = cp,p Gp.

This shows that the set of functions (the Gp in this degenerate case) that are eigenfunctions
of S can also be eigenfunctions of R.

C. Summary

In summary, we have shown that if R and S are operators that act on the same set
of coordinates (e.g., -i∂/∂x and x2 or ∂2/∂x2 and

-i∂/∂x), then an eigenfunction of R (denoted fk and having eigenvalue λk) must either (i) be
eigenfunction of S (if its R-eigenvalue is non-degenerate) or (ii)  be a member of a
degenerate set of R eigenfunctions that can be combined among one another to produce
eigenfunctions of S.

An example will help illustrate these points. The px, py and pz orbitals are

eigenfunctions of the L2  angular momentum operator with eigenvalues equal to L(L+1) h2

= 2 h2. Since L2  and Lz commute and act on the same (angle) coordinates, they possess a
complete set of simultaneous eigenfunctions. Although the px, py and pz orbitals are     not   
eigenfunctions of Lz , they can be combined (as above to form the Gp functions) to form

three new orbitals: p0 = pz, p1= 2-1/2 [px + i py], and p-1= 2-1/2 [px - i py] that are still

eigenfunctions of L2  but are now eigenfunctions of Lz also (with eigenvalues 0h, 1h, and -
1h, respectively).

It should be mentioned that if two operators do not commute, they may still have
   some    eigenfunctions in common, but they will not have a complete set of simultaneous
eigenfunctions. For example, the Lz and Lx components of the angular momentum operator
do not commute; however, a wavefunction with L=0 (i.e., an S-state) is an eigenfunction
of both operators.

D. Experimental Significance

We use an example to illustrate the importance of two operators commuting to
quantum mechanics' interpretation of experiments. Assume that an experiment has been
carried out on an atom to measure its total angular momentum L2. According to quantum
mechanics, only values equal to L(L+1) h2 will be observed. Further assume, for the



particular experimental sample subjected to observation, that values of L2 equal to 2 h2  and
0 h2 were detected in relative amounts of 64 % and 36 % , respectively. This means that the
atom's original wavefunction ψ could be represented as:

ψ = 0.8 P + 0.6 S,

where P and S represent the P-state and S-state components of ψ. The squares of the
amplitudes 0.8 and 0.6 give the 64 % and 36 % probabilities mentioned above.

Now assume that a subsequent measurement of the component of angular
momentum along the lab-fixed z-axis is to be measured for that sub-population of the
original sample found to be in the P-state. For that population, the wavefunction is now a
pure P-function:

ψ' = P.

However, at this stage we have no information about how much of this ψ' is of m = 1, 0,
or -1, nor do we know how much 2p, 3p, 4p, ... np component this state contains.

Because the property corresponding to the operator Lz is about to be measured, we

express the above ψ' in terms of the eigenfunctions of Lz:

ψ' = P = Σm=1,0,-1 C'm Pm.

When the measurement of L z is made, the values 1 h, 0 h, and -1 h will be observed with

probabilities given by |C'1|2, |C'0|2, and |C'-1|2, respectively. For that sub-population found
to have, for example, Lz equal to -1 h,  the wavefunction then becomes

ψ' ' = P-1.

At this stage, we do not know how much of 2p-1, 3p -1, 4p -1, ... np-1 this wavefunction
contains. To probe this question another subsequent measurement of the energy
(corresponding to the H operator) could be made. Doing so would allow the amplitudes in
the expansion of the above ψ' '= P-1

ψ' '= P-1 = Σn C' 'n nP-1

to be found.
The kind of experiment outlined above allows one to find the content of each

particular component of an initial sample's wavefunction. For example, the original
wavefunction has
0.64 |C''n|2 |C'm|2   fractional content of the various nPm functions.

Let us consider another experiment in which an initial sample (with wavefunction
ψ) is first subjected to measurement of Lz and then subjected to measurement of L2 and
then of the energy. In this order, one would first find  specific values (integer multiples of
h) of Lz and one would express ψ as

ψ = Σm Dm ψm.



At this stage, the nature of each ψm is unknown (e.g., the ψ1 function can contain np1,

n'd1, n''f1, etc. components); all that is known is that ψm has m h as its Lz value.

Taking that sub-population (|Dm|2 fraction) with a particular m h value for Lz and

subjecting it to subsequent measurement of L2 requires the current wavefunction ψm to be
expressed as

ψm = ΣL DL,m ψL,m.

When L2 is measured the value L(L+1) h2 will be observed with probability |Dm,L|2, and
the wavefunction for that particular sub-population will become

ψ' '  = ψL,m.

At this stage, we know the value of L and of m, but we do not know the energy of the
state. For example, we may know that the present sub-population has L=1, m=-1, but we
have no knowledge (yet) of how much 2p-1, 3p -1, ... np-1 the system contains.

To further probe the sample, the above sub-population with L=1 and m=-1 can be
subjected to measurement of the energy. In this case, the function ψ1,-1 must be expressed
as

ψ1,-1 = Σn Dn' '  nP-1.

When the energy measurement is made, the state nP-1 will be found |Dn' ' |2  fraction of the
time.

We now need to explain how the fact that Lz ,  L2 ,  and H all commute with one
another (i.e., are      mutually  commutative   )  makes the series of measurements described
above more straightforward than if these operators did not commute. In the first
experiment, the fact that they are mutually commutative allowed us to expand the 64 %
probable L2  eigenstate with L=1 in terms of functions that were eigenfunctions of the
operator for which measurement was    about     to be made without destroying our knowledge
of the value of L2. That is, because L2  and Lz can have simultaneous eigenfunctions, the L

= 1 function can be expanded in terms of functions that are eigenfunctions of     both      L2  and
Lz. This in turn, allowed us to find experimentally the sub-population that had, for
example a -1 h value of Lz while retaining knowledge that the state    remains     an eigenstate of

L2  (the state at this time had L = 1    and      m = -1 and was denoted
P-1) Then, when this P-1 state was subjected to energy measurement, knowledge of the

energy of the sub-population could be gained      without     giving up knowledge of the L2 and
Lz information; upon carrying out said measurement, the state became nP-1.

In contrast, if (hypothetically) L2  and Lz  did not commute, the L=1 function
originally detected with 64 % probability would be altered by the subsequent Lz

measurement in a manner that     destroys     our knowledge of L2. The P function could still
have been expanded in terms of the eigenfunctions of the property about to be probed (Lz)

P = Σm=1,0,-1 C'm ψm.



However, because L2  and Lz do not commute in this hypothetical example, the states ψm

that are eigenfunctions of Lz will not, in general, also be eigenfunctions of L2 . Hence,
when Lz is measured and a particular value (say -1 h) is detected, the wavefunction
becomes

ψ' ' '  = ψ-1,

which is     no longer     an eigenfunction of L2  .
The essential observations to be made are:

1. After the first measurement is made (say for operator R), the wavefunction becomes an
eigenfunction of R with a well defined R-eigenvalue (say λ): ψ = ψ(λ).

2. The eigenfunctions of the second operator S (i.e., the operator corresponding to the
measurement about to be made) can be taken to also be eigenfunctions of R if R and S
commute. This then allows ψ(λ) to be expanded in terms of functions that are both R-

eigenfunctions (with eigenvalue λ) and S-eigenfunctions (with various eigenvalues µn):

ψ(λ) = Σn Cn ψ(λ,µn). Upon measurement of S, the wavefunction becomes one of these

ψ(λ,µn) functions. When the system is in this state, both R- and S- eigenvalues are known

precisely; they are λ and µn.

3. The eigenfunctions of the second operator S (i.e., the operator corresponding to the
measurement about to be made) can     not     be taken to also be eigenfunctions of R if R and S
do not commute. The function ψ(λ) can still be expanded in terms of functions that are both

S-eigenfunctions (with various eigenvalues µn): ψ(λ) = Σn Cn ψ(µn). However, because R

and S do not commute, these ψ(µn) functions are not, in general, also R-eigenfunctions;
they are only S-eigenfunctions. Then, upon measurement of S, the wavefunction becomes
one of these ψ(µn) functions. When the system is in this state, the S- eigenvalue is known

precisely; it is µn. The R-eigenvalue is no longer specified. In fact, the new state ψ(µn)
may contain components of all different R-eigenvalues, which can be represented by
expanding ψ(µn) in terms of the R-eigenfunctions: ψ(µn) = Σk Dk ψ(λk). If R were

measured again, after the state has been prepared in ψ(µn), the R-eigenvalues {λk} would

be observed with probabilities {|Dk|2}, and the wavefunction would, for these respective

sub-populations, become ψ(λk).
It should now be clear that the act of carrying out an experimental measurement

disturbs the system in that it causes the system's wavefunction to become an eigenfunction
of the operator whose property is measured. If two properties whose corresponding
operators commute are measured, the measurement of the second property does
    not    destroy knowledge of the first property's value gained in the first measurement. If the
two properties do not commute, the second measurement does destroy knowledge of the
first property's value. It is thus often said that 'measurements for operators that do not
commute interfere with one another'.



Time Independent Perturbation Theory D

Perturbation theory is used in two qualitatively different contexts in quantum
chemistry. It allows one to estimate (because perturbation theory is usually employed
through some finite order and may not even converge if extended to infinite order) the
splittings and shifts in energy levels and changes in wavefunctions that occur when an
external field (e.g., electric or magnetic or that due to a surrounding set of 'ligands'- a
crystal field) is applied to an atom, molecule, ion, or solid whose 'unperturbed' states are
known. These 'perturbations' in energies and wavefunctions are expressed in terms of the
(complete) set of unperturbed states. For example, the distortion of the 2s orbital of a Li
atom due to the application of an external electric field along the y-axis is described by
adding to the (unperturbed) 2s orbital components of py-type orbitals (2p, 3p, etc.):

φ = a 2s + Σn Cn npy.

The effect of adding in the py orbitals is to polarize the 2s orbital along the y-axis. The
amplitudes Cn are determined via the equations of perturbation theory developed below; the
change in the energy of the 2s orbital caused by the application of the field is expressed in
terms of the Cn coefficients and the (unperturbed) energies of the 2s and npy orbitals.

There is another manner in which perturbation theory is used in quantum chemistry
that does     not    involve an externally applied perturbation. Quite often one is faced with
solving a Schrödinger equation to which no exact solution has been (yet) or can be found.
In such cases, one often develops a 'model' Schrödinger equation which in some sense is
designed to represent the system whose full Schrödinger equation can not be solved. The
difference between the Hamiltonia of the full and model problems, H and H0, respectively
is used to     define    a perturbation V=H-H0 . Perturbation theory is then employed to
approximate the energy levels and wavefunctions of the full H in terms of the energy levels
and wavefunctions of the model system (which, by assumption, can be found). The
'imperfection' in the model problem is therefore used as the perturbation. The success of
such an approach depends strongly on how well the model H0 represents the true problem
(i.e., on how 'small' V is). For this reason, much effort is often needed to develop
approximate Hamiltonia for which V is small and for which the eigenfunctions and energy
levels can be found.

I. Structure of Time-Independent Perturbation Theory

A. The Power Series Expansions of the Wavefunction and Energy

Assuming that all wavefunctions Φk and energies Ek0 belonging to the unperturbed

Hamiltonian H0 are known

H0 Φk = Ek0 Φk ,

and given that one wishes to find eigenstates (ψk and Ek) of the perturbed Hamiltonian

H=H0+λV,



perturbation theory begins by expressing ψk and Ek as power series in the perturbation

strength λ:

ψk = Σn=0,∞ λn ψk(n)

Ek = Σn=0,∞ λn Ek(n).

Moreover, it is assumed that, as the strength of the perturbation is reduced to zero, ψk

reduces to one of the unperturbed states Φk and that the full content of Φk in ψk is

contained in the first term ψk(0).

This means that ψk(0) = Φk and Ek(0) = Ek0, and so

ψk = Φk + Σn=1,∞ λn ψk(n) = Φk + ψk'

Ek = Ek0 + Σn=1,∞ λn Ek(n)  = Ek0 + Ek' .

In the above expressions, λ would be proportional to the strength of the electric or
magnetic field if one is dealing with an external-field case. When dealing with the situation
for which V is the imperfection in the model H0, λ is equal to unity; in this case, one thinks

of formulating and solving for the perturbation expansion for variable λ after which λ is set
equal to unity.

B. The Order-by-Order Energy Equations

Equations for the order-by-order corrections to the wavefunctions and energies are
obtained by using these power series expressions in the full Schrödinger equation:

(H-Ek) ψk = 0.

Multiplying through by Φk* and integrating gives the expression in terms of which the total
energy is obtained:

<Φk| H | ψk> = Ek <Φk| ψk> = Ek .

Using the fact that Φk is an eigenfunction of H0 and employing the power series expansion

of ψk allows one to generate the fundamental relationships among the energies Ek(n) and the

wavefunctions ψk(n):

Ek = <Φk| H0 | ψk> + <Φk| V | ψk> = Ek0 + <Φk| λV | Σn=0,∞ λn ψk(n)>.

The lowest few orders in this expansion read as follows:

Ek = Ek0 +λ <Φk| V | Φk> +λ2 <Φk | V | ψk(1)> +λ3 <Φk | V | ψk(2)>+...



If the various ψk(n) can be found, then this equation can be used to compute the order-by-
order energy expansion.

Notice that the first-order energy correction is given in terms of the zeroth-order
(i.e., unperturbed) wavefunction as:

Ek(1) = <Φk| V | Φk>,

the average value of the perturbation taken over Φk.

C. The Order-by-Order Wavefunction Equations

To obtain workable expressions for the perturbative corrections to the wavefunction
ψk, the full Schrödinger equation is first projected against all of the unperturbed eigenstates

{|Φj>}     other than     the state Φk whose perturbative corrections are sought:

<Φj| H | ψk> = Ek  <Φj| ψk>, or

<Φj| H0 | ψk> + λ <Φj| V | ψk> = Ek  <Φj| ψk>, or

<Φj| ψk> Ej0 + λ <Φj| V | ψk> = Ek  <Φj| ψk>, or finally

λ <Φj| V | ψk> = [ Ek - Ej0] <Φj| ψk>.

Next, each component ψk(n) of the eigenstate ψk is expanded in terms of the

unperturbed eigenstates (as they can be because the {Φk} form a complete set of functions):

ψk = Φk + Σ j≠k Σn=1,∞ λn <Φj|ψk(n)>  |Φj> .

Substituting this expansion for ψk into the preceeding equation gives

λ <Φj| V | Φk> + Σ l≠k Σn=1,∞ λn+1 <Φl|ψk(n)> <Φj| V | Φl>

= [ Ek - Ej0] Σn=1,∞ λn <Φj|ψk(n)>.

To extract from this set of    coupled     equations relations that can be solved for the coefficients
<Φj|ψk(n)>, which embodies the desired wavefunction perturbations ψk(n), one collects

together all terms with like power of λ in the above general equation (in doing so, it is

important to keep in mind that Ek itself is given as a power series in λ).

The λ0 terms vanish, and the first-order terms reduce to:

<Φj| V | Φk> = [ Ek0 - Ej0 ] <Φj|ψk(1)>,

which can be solved for the expansion coefficients of the so-called    first-order wavefunction    
ψk(1):



ψk(1) = Σ j <Φj| V | Φk>/[ Ek0 - Ej0 ]  |Φj> .

When this result is used in the earlier expression for the    second-order energy     correction,
one obtains:

Ek(2) = Σ j |<Φj| V | Φk>|2/[ Ek0 - Ej0 ] .

The terms proportional to λ2 are as follows:

Σ l≠k  <Φl|ψk(1)> <Φj| V | Φl>

= [ Ek0 - Ej0]  <Φj|ψk(2)> + Ek(1) <Φj|ψk(1)> .

The solution to this equation can be written as:

<Φj|ψk(2)> = [ Ek0 - Ej0]-1Σ l≠k  <Φl|ψk(1)> {<Φj| V | Φl> -δj,l  Ek(1)}.

Because the expansion coefficients <Φl|ψk(1)> of ψk(1) are already known, they can be

used to finally express the expansion coefficients of ψk(2) totally in terms of zeroth-order
quantities:

 <Φj|ψk(2)> = [ Ek0 - Ej0]-1Σ l≠k {<Φj| V | Φl> -δj,l  Ek(1)}

<Φl| V | Φk> [ Ek0 - El0 ]-1,

which then gives

ψk(2) = Σ j≠k [ Ek0 - Ej0]-1Σ l≠k {<Φj| V | Φl> -δj,l  Ek(1)}

<Φl| V | Φk> [ Ek0 - El0 ]-1 |Φj> .

D. Summary

An essential thing to stress concerning the above development of so-called
Rayleigh-Schrödinger perturbation theory (RSPT) is that each of the energy corrections
Ek(n) and wavefunction corrections ψk(n) are expressed in terms of integrals over the

unperturbed wavefunctions Φk involving the perturbation (i.e., <Φj|V|Φl>) and the

unperturbed energies Ej0. As such, these corrections can be symmetry-analyzed to
determine, for example, whether perturbations of a given symmetry will or will not affect
particular states. For example, if the state under study belongs to a non-degenerate
representation in the absence of the perturbation V, then its first-order energy correction
<Φk|V|Φk> will be non-zero only if V contains a totally symmetric component (because the

direct product of the symmetry of Φk with itself is the totally symmetric representation).
Such an analysis predicts, for example, that the energy of an s orbital of an atom will be
unchanged, in first-order, by the application of an external electric field because the
perturbation



V =  e E .  r

is odd under the inversion operation (and hence can not be totally symmetric). This same
analysis, when applied to Ek(2) shows that contributions to the second-order energy of an s

orbital arise only from unperturbed orbitals φj that are odd under inversion because only in

such cases will the integrals <s | e E .  r | φj > be non-zero.

II. The Møller-Plesset Perturbation Series

A. The Choice of H0

Let us assume that an SCF calculation has been carried out using the set of N spin-
orbitals {φa} that are occupied in the reference configuration Φk to define the corresponding
Fock operator:

F = h  + Σa(occupied) [Ja - Ka] .

Further, we assume that all of the occupied {φa} and virtual {φm} spin-orbitals and orbital
energies have been determined and are available.

This Fock operator is used to define the unperturbed Hamiltonian of Møller-Plesset
perturbation theory (MPPT):

H0 = Σ i F(ri).

This particular Hamiltonian, when acting on    any     Slater determinant formed by placing N
electrons into the SCF spin-orbitals, yields a zeroth order eigenvalue equal to the sum of
the orbital energies of the spin-orbitals appearing in that determinant:

H0 | φj1φj2φj3φj4. . .φjN| = (εj1+εj2+εj3+εj4+...+εjN) | φj1φj2φj3φj4. . .φjN|

because the spin-orbitals obey

F φj = εj φj,

where j runs over all (occupied (a, b, ...) and virtual (m, n, ...)) spin-orbitals. This result
is the MPPT embodiment of H0 Φk = Ek0 Φk.

B. The Perturbation V

The perturbation V appropriate to this MPPT case is the difference between the full
N-electronic Hamiltonian and this H0:

V = H - H0.

Matrix elements of V among determinental wavefunctions constructed from the SCF spin-
orbitals <Φl | V | Φk> can be expressed, using the Slater-Condon rules, in terms of matrix
elements over the full Hamiltonian H



<Φl | V | Φk> = <Φl | H | Φk> - δk,l Ek0,

because each such determinant is an eigenfunction of H0.

C. The MPPT Energy Corrections

Given this particular choice of H0, it is possible to apply the general RSPT energy
and wavefunction correction formulas developed above to generate explicit results in terms
of spin-orbital energies and one- and two-electron integrals, <φi|h|φj> and <φiφj|g|φkφl> =
<ij|kl>, over these spin-orbitals. In particular, the first-order energy correction is given as
follows:

Ek(1) = <Φk|V|Φk> = <Φk|H|Φk> - Σa εa

= Σa εa - Σa<b [Ja,b - Ka,b] - Σa εa

= - Σa<b [Ja,b - Ka,b] = - Σa<b[<ab|ab> - <ab|ba>].

Thus Ek0 (the sum of orbital energies) and Ek(1) (the correction for double counting) add up
to produce the proper expectation value energy.

The second-order energy correction can be evaluated in like fashion by noting that
<Φk| H | Φl> = 0 according to the Brillouin theorem for all singly excited Φl, and that <Φk|

H | Φl> = <ab|mn>- <ab|nm> for doubly excited Φl in which excitations from φa and φb

into φm and φn are involved:

Ek(2)  = Σ j |<Φj| V | Φk>|2/[ Ek0 - Ej0 ]

= Σa<b;m<n |<ab|mn>- <ab|nm>|2/(εa+εb-εm-εn).

D. The Wavefunction Corrections

The first-order MPPT wavefunction can be evaluated in terms of Slater
determinants that are excited relative to the SCF reference function Φk. Realizing again that

the perturbation coupling matrix elements <Φk| H | Φl> are non-zero only for doubly

excited CSF's, and denoting such doubly excited Φl by Φa,b;m,n , the first-order
wavefunction can be written as:

ψk(1) = Σ j <Φj| V | Φk>/[ Ek0 - Ej0 ]  |Φj>

= Σa<b;m<n Φa,b;m,n [<ab|mn>-<ab|nm>]/(εa+εb-εm-εn).

III. Conceptual Use of Perturbation Theory

The first- and second- order RSPT energy and first-order RSPT wavefunction
correction expressions form not only a useful computational tool but are also of great use in
understanding how strongly a perturbation will affect a particular state of the system. By



examining the symmetries of the state of interest Φk (this can be an orbital of an atom or
molecule, an electronic state of same, or a vibrational/rotational wavefunction of a
molecule) and of the perturbation V, one can say whether V will have a significant effect on
the energy Ek of Φk; if <Φk|V|Φk> is non-zero, the effect can be expected to be significant.

Sometimes the perturbation is of the wrong symmetry to directly (i.e., in a first-
order manner) affect Ek. In such cases, one considers whether nearby states {Φj, Ej} exist

which could couple through V with Φk; the second-order energy expression, which

contains Σ j |<Φj| V | Φk>|2/[ Ek0 - Ej0 ] directs one to seek states

whose symmetries are contained in the direct product of the symmetries of V and of Φk    and    
which are close to Ek in energy.

It is through such symmetry and 'coupling matrix element' considerations that one
can often 'guess' whether  a given perturbation will have an appreciable effect on the state
of interest.
The nature of the perturbation is not important to such considerations. It could be the
physical interaction that arises as two previously non-interacting atoms are brought together
(in which case V would have axial point group symmetry) or it could describe the presence
of surrounding ligands on a central transition metal ion (in which case V would carry the
symmetry of the 'ligand field'). Alternatively, the perturbation might describe the electric
dipole interaction of the electrons and nuclei of the atom or molecule with and externally
applied electric field E, in which case V=-Σ j erj. E + Σa Za e Ra. E contains components
that transform as x, y, and z in the point group appropriate to the system (because the
electronic rj and nuclear Ra coordinate vectors so transform).



Point Group Symmetry E

It is assumed that the reader has previously learned, in undergraduate inorganic or
physical chemistry classes, how symmetry arises in molecular shapes and structures and
what symmetry elements are (e.g., planes, axes of rotation, centers of inversion, etc.). For
the reader who feels, after reading this appendix, that additional background is needed, the
texts by Cotton and EWK, as well as most physical chemistry texts can be consulted. We
review and teach here only that material that is of direct application to symmetry analysis of
molecular orbitals and vibrations and rotations of molecules. We use a specific example,
the ammonia molecule, to introduce and illustrate the important aspects of point group
symmetry.

I. The C3v Symmetry Group of Ammonia - An Example

The ammonia molecule NH3 belongs, in its ground-state equilibrium geometry, to

the C3v point group.  Its symmetry     operations    consist of two C3 rotations, C3, C32

(rotations by 120° and 240°, respectively about an axis passing through the nitrogen atom
and lying perpendicular to the plane formed by the three hydrogen atoms), three vertical
reflections, σv, σv' , σv", and the identity operation.  Corresponding to these six     operations   

are symmetry    elements   :  the three-fold rotation axis, C3 and the three symmetry planes σv,

σv'  and σv" that contain the three NH bonds and the z-axis (see figure below).

N

σv'

σv

σxz is σv'' H3

H2

H1

C3 axis (z)

x- axis

y- axis

These six symmetry operations form a mathematical     group    .  A group is defined as a
set of objects satisfying four properties.

1. A combination rule is defined through which two group elements are combined to
give a result which we call the product.  The product of two elements in the group
must also be a member of the group (i.e., the group is closed under the combination
rule).

2. One special member of the group, when combined with any other member of the
group, must leave the group member unchanged (i.e., the group contains an
identity element).



3. Every group member must have a reciprocal in the group.  When any group
member is combined with its reciprocal, the product is the identity element.

4. The associative law must hold when combining three group members (i.e., (AB)C
must equal A(BC)).

The members of symmetry groups are symmetry operations; the combination rule is
successive operation.  The identity element is the operation of doing nothing at all.  The
group properties can be demonstrated by forming a multiplication table.  Let us label the
rows of the table by the first operation and the columns by the second operation.  Note that
this order is important because most groups are     not       commutative   .  The C3v  group
multiplication table is as follows:

E C3 C32 σv σv' σv" second operation

E E C3 C32 σv σv' σv"
C3 C3 C32 E σv' σv" σv

C32 C32 E C3 σv" σv σv'

σv σv σv" σv' E C32 C3

σv' σv' σv σv" C3 E C32

σv" σv" σv' σv C32 C3 E

First
operation

Note the reflection plane labels do not move. That is, although we start with H1 in the σv

plane, H2 in σv'', and H3 in σv", if H1 moves due to the first symmetry operation, σv

remains fixed and a different H atom lies in the σv plane.

II. Matrices as Group Representations

In using symmetry to help simplify molecular orbital or vibration/rotation energy
level calculations, the following strategy is followed:
1. A set of M objects belonging to the constituent atoms (or molecular fragments, in a more
general case) is introduced. These objects are the orbitals of the individual atoms (or of the
fragments) in the m.o. case; they are unit vectors along the x, y, and z directions located on
each of the atoms, and representing displacements along each of these directions, in the
vibration/rotation case.
2. Symmetry tools are used to combine these M objects into M new objects each of which
belongs to a specific symmetry of the point group. Because the hamiltonian (electronic in
the m.o. case and vibration/rotation in the latter case) commutes with the symmetry
operations of the point group, the matrix representation of H within the symmetry adapted
basis will be "block diagonal". That is, objects of different symmetry will not interact; only
interactions among those of the same symmetry need be considered.

To illustrate such symmetry adaptation, consider symmetry adapting the 2s orbital
of N and the three 1s orbitals of H. We begin by determining how these orbitals transform
under the symmetry operations of the C3v point group.  The act of each of the six
symmetry operations on the four atomic orbitals can be denoted as follows:



(SN,S1,S2,S3) →
E

 (SN,S1,S2,S3)

→
C3

 (SN,S3,S1,S2)

→
C32

 (SN,S2,S3,S1)

→
σv

 (SN,S1,S3,S2)

→
σv"

 (SN,S3,S2,S1)

→
σv'

 (SN,S2,S1,S3)

Here we are using the active view that a C3 rotation rotates the molecule by 120°.  The

equivalent passive view is that the 1s basis functions are rotated -120°.  In the C3 rotation,
S3 ends up where S1 began, S1, ends up where S2 began and S2 ends up where S3 began.

These transformations can be thought of in terms of a matrix multiplying a vector
with elements (SN,S1,S2,S3).  For example, if D(4) (C3) is the representation matrix giving
the C3 transformation, then the above action of C3 on the four basis orbitals can be
expressed as:

D(4)(C3) 







SN

S1

S2

S3

  = 







1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

 







SN

S1

S2

S3

  = 







SN

S3

S1

S2

 

We can likewise write matrix representations for each of the symmetry operations of the
C3v point group:

D(4)(C32) = 







1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

   ,  D(4)(E) = 







1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 

D(4)(σv) = 







1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

   ,  D(4)(σv') = 







1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 



D(4)(σv") = 







1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 

It is easy to verify that a C3 rotation followed by a σv reflection is equivalent to a σv'
reflection alone.  In other words

σv C3 = σv' , or, 

 S1  

   

S2  S3

    →
C3

    

 S3  

   

S1  S2

    →
σv

    

 S3  

   

S2  S1

 

Note that this same relationship is carried by the matrices:

D(4)(σv) D(4)(C3) = 









1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 









1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

  = 









1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

  = D(4)(σv')

Likewise we can verify that C3  σv = σv" directly and we can notice that the matrices also
show the same identity:

D(4)(C3) D(4)(σv) = 









1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

 









1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

  = 









1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

  = D(4)(σv").

In fact, one finds that the six matrices, D(4)(R), when multiplied together in all 36 possible
ways obey the same multiplication table as did the six symmetry operations. We say the
matrices form a representation of the group because the matrices have all the properties of
the group.

A. Characters of Representations

One important property of a matrix is the sum of its diagonal elements

Tr(D) = ∑
i

 D ii  = χ.

χ is called the trace or    character    of the matrix.  In the above example
χ(E) = 4
χ(C3) = χ(C32) = 1

χ(σv) = χ(σv') = χ(σv") = 2.



The importance of the characters of the symmetry operations lies in the fact that they do not
depend on the specific basis used to form them. That is, they are invariant to a unitary or
orthorgonal transformation of the objects used to define the matrices. As a result, they
contain information about the symmetry operation itself and about the    space    spanned by the
set of objects. The significance of this observation for our symmetry adaptation process
will become clear later.

Note that the characters of both rotations are the same as are those of all three
reflections. Collections of operations having identical characters are called    classes   .  Each
operation in a    class    of operations has the same    character     as other members of the class.
The character of a class depends on the space spanned by the basis of functions on which
the symmetry operations act. Above we used (SN,S1,S2,S3) as a basis.

B. Another Basis and Another Representation

If, alternatively, we use the one-dimensional basis consisting of the 1s orbital on the
N-atom, we obtain different characters, as we now demonstrate.

The act of the six symmetry operations on this SN can be represented as follows:

SN →
E

  SN; SN →
C3

  SN; SN →
C32

   SN;

SN →
σv

  SN; SN →
σv'

  SN; SN →
σv"

   SN.
We can represent this group of operations in this basis by the one-dimensional set of
matrices:

D(1) (E) = 1; D(1) (C3) = 1; D(1) (C32) = 1,

D(1) (σv) = 1; D(1)(σv") = 1; D(1) (σv') = 1.
Again we have

D(1) (σv) D(1) (C3) = 1 ⋅  1 = D(1) (σv"), and

D(1) (C3) D(1) (σv) = 1 ⋅  1 = D(1) (σv' ) .
These six matrices form another representation of the group. In this basis, each character is
equal to unity. The representation formed by allowing the six symmetry operations to act
on the 1s N-atom orbital is clearly not the same as that formed when the same six
operations acted on the (SN,S1,S2,S3) basis. We now need to learn how to further analyze
the information content of a specific representation of the group formed when the symmetry
operations act on any specific set of objects.

III. Reducible and Irreducible Representations

A. A Reducible Representation

Note that every matrix in the four dimensional group representation labeled D(4) has
the so-called     block diagonal    form

1 0 0 0
0
0 3 x 3 matrix
0



This means that these D(4) matrices are really a combination of two separate group
representations (mathematically, it is called a     direct sum      representation). We say that D(4) is
reducible into a one-dimensional representation D(1) and a three-dimensional representation
formed by the 3x3 submatrices which we will call D(3).

D(3)(E) = 








1 0 0

0 1 0

0 0 1

 ;   D(3)(C3) = 








0 0 1

1 0 0

0 1 0

 ;   D(3)(C32) = 








0 1 0

0 0 1

1 0 0

 

D(3)(σv) = 








1 0 0

0 0 1

0 1 0

 ;   D(3)(σv') = 








0 0 1

0 1 0

1 0 0

 ;   D(3)(σv") = 








0 1 0

1 0 0

0 0 1

 

The characters of D(3) are χ(E) = 3, χ(2C3) = 0, χ(3σv) = 1. Note that we would have

obtained this D(3) representation directly if we had originally chosen to examine the basis
(S1,S2,S3); also note that these characters are equal to those of D(4) minus those of D(1).

B. A Change in Basis

Now let us convert to a new basis that is a linear combination of the original
S1,S2,S3 basis:

T1 = S1 + S2 + S3

T2 = 2S1 - S2 - S3

T3 = S2 - S3

(Don't worry about how we construct T1, T2, and T3 yet.  As will be demonstrated later,
we form them by using symmetry projection operators defined below)  We determine how
the "T" basis functions behave under the group operations by allowing the operations to act
on the Sj and interpreting the results in terms of the Ti. In particular,

(T1,T2 ,T3) →
σv

 (T1,T2,-T3) ; (T1,T2,T3) →
E

 (T1,T2,T3) ;

(T1,T2,T3) →
σv'

 (S3+S2+S1,2S3-S2-S1,S2-S1)  = (T1, -1
2
 T2 - 3

2
 T3, -1

2
 T2 + 1

2
 T3);

(T1,T2,T3) →
σv"

 (S2+S1+S3,2S2-S1-S3,S1-S3)  = (T1, -1
2
 T2 + 3

2
 T3, 1

2
 T2 + 1

2
 T3);

(T1,T2,T3) →
C3

 (S3+S1+S2,2S3-S1-S2,S1-S2)  = (T1, -1
2
 T2 - 

3
2
 T3, 1

2
 T2 - 

1
2
 T3);

(T1,T2,T3) →
C32

 (S2+S3+S1,2S2-S3-S1,S3-S1)  = (T1, -1
2
 T2 + 3

2
 T3, -1

2
 T2 - 

1
2
 T3).

So the matrix representations in the new Ti basis are:



D(3)(E) = 







1 0 0

0 1 0

0 0 1

 ;D(3)(C3) = 







1 0 0

0 -1
2

-3
2

0 +1
2

-1
2

 ;

D(3)(C32) = 







1 0 0

0 -1
2

+3
2

0 -1
2

-1
2

 ;D(3)(σv) = 







1 0 0

0 1 0

0 0 -1

 ;

D(3)(σv') = 







1 0 0

0 -1
2

-3
2

0 -1
2

+1
2

 ;D(3)(σv") = 







1 0 0

0 -1
2

+3
2

0 +1
2

+1
2

 .

C. Reduction of the Reducible Representation

These six matrices can be verified to multiply just as the symmetry operations
do; thus they form another three-dimensional representation of the group. We see that in the
Ti basis the matrices are block diagonal. This means that the space spanned by the Ti
functions, which is the same space as the Sj span, forms a    reducible representation     that can
be decomposed into a one dimensional space and a two dimensional space (via formation of
the Ti functions). Note that the characters (traces) of the matrices are not changed by the
change in bases.

The one-dimensional part of the above reducible three-dimensional
representation is seen to be the same as the totally symmetric representation we arrived at
before, D(1).  The two-dimensional representation that is left can be shown to be    irreducible   
; it has the following matrix representations:

D(2)(E) = 






1 0

0 1
 ; D(2)(C3) = 





-1

2
-3
2

+1
2

-1
2

 ; D(2)(C32) = 





-1

2
+3

2

-1
2

-1
2

 ;

D(2)(σv) = 






1 0

0 -1
 ; D(2)(σv') = 





-1

2
-3
2

-1
2

+1
2

 ; D(2)(σv") = 





-1

2
+3

2

+1
2

+1
2

 .

The characters can be obtained by summing diagonal elements:
χ(E) = 2, χ(2C3) = -1, �χ(3σv) = 0.

D. Rotations as a Basis



Another one-dimensional representation of the group can be obtained by taking
rotation about the Z-axis (the C3 axis) as the object on which the symmetry operations act:

Rz →
E

  Rz; Rz →
C3

  Rz; Rz →
C32

  Rz';

Rz →
σv

  -Rz; Rz →
σv"

  -Rz; Rz →
σv'

  -Rz.

In writing these relations, we use the fact that reflection reverses the sense of a rotation.
The matrix representations corresponding to this one-dimensional basis are:

D(1)(E) = 1; D(1)(C3) = 1; D(1)(C32) = 1;

D(1)(σv) = -1;D(1)(σv") = -1; D(1) (σv') = -1.
These one-dimensional matrices can be shown to multiply together just like the symmetry
operations of the C3v group. They form an    irreducible    representation of the group (because
it is one-dimensional, it can not be further reduced). Note that this one-dimensional
representation is not identical to that found above for the 1s N-atom orbital, or the T1
function.

E. Overview

We have found three distinct irreducible representations for the C3v symmetry
group; two different one-dimensional and one two dimensional representations.  Are there
any more?  An important theorem of group theory shows that the number of irreducible
representations of a group is equal to the number of classes.  Since there are three classes
of operation, we have found    all    the irreducible representations of the C3v point group.
There are no more.

The irreducible representations have standard names the first D(1) (that arising
from the T1 and 1sN orbitals) is called A1, the D(1) arising from Rz is called A2 and D(2) is
called E (not to be confused with the identity operation E).

Thus, our original D(4) representation was a combination of two A1

representations and one E representation. We say that D(4) is a direct sum representation:
D(4) = 2A1 �⊕  E. A consequence is that the characters of the combination representation

D(4) can be obtained by adding the characters of its constituent irreducible representations.

E 2C3 3σv
A1 1  1 1
A1 1  1 1
E 2 -1 0

2A1 ⊕ E 4  1 2

F. How to Decompose Reducible Representations in General

Suppose you were given only the characters (4,1,2).  How can you find out
how many times A1, E, and A2 appear when you reduce D(4) to its irreducible parts?  You
want to find a linear combination of the characters of A1, A2 and E that add up (4,1,2).

You can treat the characters of matrices as vectors and take the dot product of A1 with D(4)









1 1 1 1 1 1

E C3  σv   
  ⋅  











4 E

1 C3

1  

2 σv

2  

2  

  = 4 + 1 + 1 + 2 + 2 + 2 = 12.

The vector (1,1,1,1,1,1) is not normalized; hence to obtain the component of (4,1,1,2,2,2)
along a unit vector in the (1,1,1,1,1,1) direction, one must divide by the norm of

(1,1,1,1,1,1); this norm is 6. The result is that the reducible representation contains 
12
6   = 2

A1 components. Analogous projections in the E and A2 directions give components of 1
and 0, respectively. In general, to determine the number nΓ of times irreducible

representation Γ appears in the reducible representation with characters χred, one calculates

nΓ = 
1
g ∑

R

χ
Γ(R)χred(R) ,

where g is the order of the group and χΓ(R) are the characters of the Γth irreducible
representation.

G. Commonly Used Bases

We could take    any     set of functions as a basis for a group representation.
Commonly used sets include: coordinates (x,y,z) located on the atoms of a polyatomic
molecule (their symmetry treatment is equivalent to that involved in treating a set of p
orbitals on the same atoms), quadratic functions such as d orbitals - xy,yz,xz,x2-y2,z2, as
well as rotations about the x, y and z axes.  The transformation properties of these very
commonly used bases are listed in the character tables shown at the end of this appendix.

H. Summary

 The basic idea of symmetry analysis is that any basis of orbitals, displacements,
rotations, etc. transforms either as one of the irreducible representations or as a direct sum
(reducible) representation. Symmetry tools are used to first determine how the basis
transforms under action of the symmetry operations. They are then used to decompose the
resultant representations into their irreducible components.

III. Another Example

A. The 2p Orbitals of Nitrogen

For a function to transform according to a specific irreducible representation
means that the function, when operated upon by a point-group symmetry operator, yields a
linear combination of the functions that transform according to that irreducible
representation.  For example, a 2pz orbital (z is the C3 axis of NH3) on the nitrogen atom

belongs to the A1 representation because it yields unity times itself when C3, C32, σv ,

σv' ,σv"  or the identity operation act on it.  The factor of 1 means that 2pz has A1 symmetry



since the characters (the numbers listed opposite A1 and below E, 2C3, and 3σv in the C3v
character table) of all six symmetry operations are 1 for the A1 irreducible representation.

The 2px and 2py orbitals on the nitrogen atom transform as the E representation

since C3, C32, σv, σv' ,  σv" and the identity operation map 2px and 2py among one
another.  Specifically,

         C3 






2px

2py
  = 









Cos120° -Sin120°

Sin120° Cos120°
 






2px

2py
 ;

        C32






2px

2py
  = 









Cos240° -Sin240°

Sin240° Cos240°
 






2px

2py
 ;

          E 






2px

2py
  = 







1 0

0 1
 






2px

2py
 ;

        σv 






2px

2py
  = 







-1 0

0 1
 






2px

2py
 ;

        σv'  






2px

2py
  = 









+1

2
+ 3

2

+ 3
2

-1
2

 






2px

2py
 ;

        σv" 






2px

2py
  = 









+1

2
- 3

2

- 3
2

-1
2

 






2px

2py
 .

The 2 x 2 matrices, which indicate how each symmetry operation maps 2px and 2py into

some combinations of 2px and 2py, are the representation matrices ( D(IR)) for that
particular operation and for this particular irreducible representation (IR).  For example,









+1

2
+ 3

2

+ 3
2

-1
2

  = D(E)(σv')

This set of matrices have the same characters as D(2) above, but the individual matrix
elements are different because we used a different basis set (here 2px and 2py ; above it was
T2 and T3). This illustrates the invariance of the trace to the specific representation; the trace
only depends on the space spanned, not on the specific manner in which it is spanned.

B. A Short-Cut

A short-cut device exists for evaluating the trace of such representation matrices
(that is, for computing the characters). The diagonal elements of the representation matrices



are the projections along each orbital of the effect of the symmetry operation acting on that
orbital.  For example, a diagonal element of the C3 matrix is the component of C32py along
the 2py direction.  More rigorously, it

is  ⌡⌠2py*C32pydτ .  Thus, the character of the C3 matrix is the sum of ⌡⌠2px*C32pydτ  and

⌡⌠2px*C32pxdτ . In general, the character χ of any symmetry operation S can be computed

by allowing S to operate on each orbital φi, then projecting Sφi along φi (i.e., forming

⌡⌠φi*Sφidτ ), and summing these terms,

 ∑
i

 ⌡⌠φi*Sφidτ  = χ(S).

If these rules are applied to the 2px and 2py orbitals of nitrogen within the C3v
point group, one obtains

χ(E) = 2, χ(C3) = χ(C32) = -1, χ(σv) = χ(σv") = χ(σv') = 0.

This set of characters is the same as D(2) above and agrees with those of the E
representation for the C3v point group. Hence, 2px and 2py belong to or transform as the E
representation.  This is why (x,y) is to the right of the row of characters for the E
representation in the C3v character table. In similar fashion, the C3v character table states
that dx2−y2 and dxy orbitals on nitrogen transform as E, as do dxy and dyz, but dz2
transforms as A1.

Earlier, we considered in some detail how the three 1sH orbitals on the hydrogen
atoms transform.  Repeating this analysis using the short-cut rule just described, the traces
(characters) of the 3 x 3 representation matrices are computed by allowing E, 2C3, and

3σv to operate on 1sH1, 1sH2, and 1sH3 and then computing the component of the

resulting function along the original function. The resulting characters are χ(E) = 3, χ(C3)

= χ(C32) = 0, and χ(σv) = χ(σv') = χ(σv") = 1, in agreement with what we calculated
before.

Using the orthogonality of characters taken as vectors we can reduce the above
set of characters to A1 + E.  Hence, we say that our orbital set of three 1sH orbitals forms
a    reducible    representation consisting of the sum of A1 and E IR's.  This means that the
three 1sH orbitals can be combined to yield one orbital of A1 symmetry and a     pair    that
transform according to the E representation.

IV.  Projector Operators:  Symmetry Adapted Linear Combinations of Atomic Orbitals

To generate the above A1 and E symmetry-adapted orbitals, we make use of so-
called symmetry projection operators PE and PA1.  These operators are given in terms of
linear combinations of products of characters times elementary symmetry operations as
follows:

PA1 = ∑
S

 χ
A(S) S 



PE = ∑
S

 χ
E(S) S 

where S ranges over C3, C32, σv, σv' and σv" and the identity operation.  The result of
applying PA1 to say 1sH1 is

PA1 1sH1 = 1sH1 + 1sH2 + 1sH3 + 1sH2 + 1sH3 + 1sH1

   = 2(1sH1 + 1sH2 + 1sH3) = φA1,

which is an (unnormalized) orbital having A1 symmetry.  Clearly, this same φA1  would
be generated by PA1 acting on 1sH2 or 1sH3.  Hence, only one A1 orbital exists.
Likewise,

PE1sH1 = 2 ⋅  1sH1 - 1sH2 - 1sH3 ≡ φE,1

which is     one    of the symmetry adapted orbitals having E symmetry.  The other E orbital
can be obtained by allowing PE to act on 1sH2 or 1sH3:

PE1sH2 = 2 ⋅  1sH2 - 1sH1 - 1sH3 ≡ φE,2

PE1sH3 = 2 ⋅  1sH3 - 1sH1 - 1sH2 = φE,3 .
It might seem as though    three    orbitals having E symmetry were generated, but only two
of these are really independent functions.  For example, φE,3 is related to φE,1 and φE,2 as
follows:

φE,3 = -(φE,1 + φE,2).

Thus, only φE,1 and φE,2 are needed to span the two-dimensional space of the E

representation.  If we include φE,1 in our set of orbitals and require our orbitals to be

orthogonal, then we must find numbers a and b such that φ' E = aφE,2 + bφE,3 is

orthogonal to φE,1: ⌡⌠φ' E φE,1dτ = 0.  A straightforward calculation gives a = -b or φ' E = a

(1sH2 - 1sH3) which agrees with what we used earlier to construct the Ti functions in
terms of the Sj functions.

V. Summary

Let us now summarize what we have learned.  Any given set of atomic orbitals
{φi}, atom-centered displacements or rotations can be used as a basis for the symmetry

operations of the point group of the molecule.  The characters χ(S) belonging to the
operations S of this point group within any such space can be found by summing the

integrals ⌡⌠φi*Sφidτ  over all the atomic orbitals (or corresponding unit vector atomic

displacements).  The resultant characters will, in general, be reducible to a combination of

the characters of the irreducible representations χi(S).  To decompose the characters χ(S)

of the reducible representation to a sum of characters χi(S) of the irreducible
representation



χ(S) = ∑
i

 ni  χi(S) ,

it is necessary to determine how many times, ni, the i-th irreducible representation occurs
in the reducible representation.  The expression for ni is (see the text by Cotton)

ni = 
1
g ∑

S

 χ(S) χi(S) 

in which g is the order of the point group; the total number of symmetry operations in the
group (e.g., g = 6 for C3v).

For example, the reducible representation χ(E) = 3, χ(C3) = 0, and χ(σv) = 1
formed by the three 1sH orbitals discussed above can be decomposed as follows:

nA1 = 
1
6 (3 ⋅  1 + 2 ⋅  0 ⋅  1 + 3 ⋅  1 ⋅  1)  = 1,

nA2 = 
1
6 (3 ⋅  1 + 2 ⋅  0 ⋅  1 + 3 ⋅  1 ⋅  (-1))  = 0,

nE = 
1
6 (3 ⋅  2 + 2 ⋅  0 ⋅  (-1) + 3 ⋅  1 ⋅  0)  = 1.

These equations state that the three 1sH orbitals can be combined to give one A1 orbital
and, since E is degenerate, one     pair    of E orbitals, as established above.  With knowledge
of the ni, the symmetry-adapted orbitals can be formed by allowing the projectors

Pi = ∑
i

 χi(S) S 

to operate on each of the primitive atomic orbitals.  How this is carried out was illustrated
for the 1sH  orbitals in our earlier discussion. These tools allow a symmetry
decomposition of any set of atomic orbitals into appropriate symmetry-adapted orbitals.

Before considering other concepts and group-theoretical machinery, it should
once again be stressed that these same tools can be used in symmetry analysis of the
translational, vibrational and rotational motions of a molecule.  The twelve motions of
NH3 (three translations, three rotations, six vibrations) can be described in terms of
combinations of displacements of each of the four atoms in each of three (x,y,z)
directions.  Hence, unit vectors placed on each atom directed in the x, y, and z directions
form a basis for action by the operations {S} of the point group.  In the case of NH3, the
characters of the resultant 12 x 12 representation matrices form a reducible representation

in the C2v point group:  χ(E) = 12, χ(C3) = χ(C32) = 0,  χ(σv) = χ(σv') = χ (σv") = 2.

(You should try to prove this.  For example under σv, the H2 and H3 atoms are
interchanged, so unit vectors on either one will not contribute to the trace.  Unit z-vectors
on N and H1 remain unchanged as well as the corresponding y-vectors.  However, the x-

vectors on N and H1 are reversed in sign.  The total character for σv' the H2 and H3
atoms are interchanged, so unit vectors on either one will not contribute to the trace.  Unit
z-vectors on N and H1 remain unchanged as well as the corresponding y-vectors.

However, the x-vectors on N and H1 are reversed in sign.  The total character for σv is
thus 4 - 2 = 2.  This representation can be decomposed as follows:

nA1 = 
1
6  [1⋅ 1⋅ 12 + 2⋅ 1⋅ 0 + 3⋅ 1⋅ 2] = 3,

nA2 = 
1
6  [1⋅ 1⋅ 12 + 2⋅ 1⋅ 0 + 3⋅ (-1)⋅ 2] = 1,



nE   = 
1
6  [1⋅ 2⋅ 12 + 2⋅ (-1)⋅ 0 + 3⋅ 0⋅ 2] = 4.

From the information on the right side of the C3v character table, translations of all four
atoms in the z, x and y directions transform as A1(z) and E(x,y), respectively, whereas
rotations about the z(Rz), x(Rx), and y(Ry) axes transform as A2 and E.  Hence, of the
twelve motions, three translations have A1 and E symmetry and three rotations have A2
and E symmetry.  This leaves six vibrations, of which two have A1 symmetry, none have
A2 symmetry, and two (pairs) have E symmetry.  We could obtain symmetry-adapted
vibrational and rotational bases by allowing symmetry projection operators of the
irreducible representation symmetries to operate on various elementary cartesian (x,y,z)
atomic displacement vectors.  Both Cotton and Wilson, Decius and Cross show in detail
how this is accomplished.

VI.  Direct Product Representations

A. Direct Products in N-Electron Wavefunctions

We now return to the symmetry analysis of orbital products.  Such knowledge
is important because one is routinely faced with constructing symmetry-adapted N-
electron configurations that consist of products of N individual orbitals.  A point-group
symmetry operator S, when acting on such a product of orbitals, gives the product of S
acting on each of the individual orbitals

S(φ1φ2φ3. . .φN) = (Sφ1) (Sφ2) (Sφ3) ... (SφN).

For example, reflection of an N-orbital product through the σv plane in NH3 applies the
reflection operation to all N electrons.

Just as the individual orbitals formed a basis for action of the point-group
operators, the configurations (N-orbital products) form a basis for the action of these
same point-group operators.  Hence, the various electronic configurations can be treated
as functions on which S operates, and the machinery illustrated earlier for decomposing
orbital symmetry can then be used to carry out a symmetry analysis of configurations.

Another shortcut makes this task easier. Since the symmetry adapted individual
orbitals {φi, i = 1, ..., M} transform according to irreducible representations, the
representation matrices for the N-term products shown above consist of products of the
matrices belonging to each φi. This matrix product is not a simple product  but a     direct
    product   .  To compute the characters of the direct product matrices, one multiplies the
characters of the individual matrices of the irreducible representations of the N orbitals
that appear in the electron configuration.  The direct-product representation formed by the
orbital products can therefore be symmetry-analyzed (reduced) using the same tools as
we used earlier.

For example, if one is interested in knowing the symmetry of an orbital
product of the form a12a22e2  (note:  lower case letters are used to denote the symmetry of
electronic orbitals) in C3v symmetry, the following procedure is used. For each of the six
symmetry operations in the C2v point group, the     product    of the characters associated with

each of the    six     spin orbitals (orbital multiplied by α or β spin) is formed

χ(S) = ∏
i

 χi(S)  = (χA1(S))2 (χA2(S))2 (χE(S))2.



In the specific case considered here, χ(E) = 4, χ(2C3) = 1, and χ(3σv) = 0 (You should
try this.).  Notice that the contributions of any doubly occupied nondegenerate orbitals

(e.g., a12, and a22) to these direct product characters χ(S) are unity because for    all   

operators (χk(S))2 = 1 for any one-dimensional irreducible representation.  As a result,
only the singly occupied or degenerate orbitals need to be considered when forming the

characters of the reducible direct-product representation χ(S).  For this example this

means that the direct-product characters can be determined from the characters χE(S) of

the two active (i.e., nonclosed-shell) orbitals - the e2 orbitals.  That is, χ(S) = χE(S) ⋅
χE(S).

From the direct-product characters χ(S) belonging to a particular electronic
configuration (e.g., a12a22e2), one must still decompose this list of characters into a sum

of irreducible characters.  For the example at hand, the direct-product characters χ(S)
decompose into one A1, one A2, and one E representation.  This means that the e2

configuration contains A1, A2, and E symmetry elements. Projection operators analogous
to those introduced earlier for orbitals can be used to form symmetry-adapted orbital
products from the individual basis orbital products of the form  a12a22exmeym' , where m
and m' denote the occupation (1 or 0) of the two degenerate orbitals ex and ey. When
dealing with indistinguishable particles such as electrons, it is also necessary to further
project the resulting orbital products to make them antisymmetric (for Fermions) or
symmetric (for Bosons) with respect to interchange of any pair of particles. This step
reduces the set of N-electron states that can arise. For example, in the above e2

configuration case, only 3A2, 1A1, and 1E states arise; the 3E, 3A1, and 1A2 possibilities

disappear when the antisymmetry projector is applied. In contrast, for an e1e'1
configuration, all states arise even after the wavefunction has been made antisymmetric.
The steps involved in combining the point group symmetry with permutational
antisymmetry are illustrated in Chapter 10. In Appendix III of     Electronic        Spectra       and
    Electronic        Structure        of        Polyatomic         Molecules    , G. Herzberg, Van Nostrand Reinhold
Co., New York, N.Y. (1966) the resolution of direct products among various
representations within many point groups are tabulated.

B. Direct Products in Selection Rules

Two states ψa and ψb that are eigenfunctions of a Hamiltonian Ho  in the
absence of some external perturbation (e.g., electromagnetic field or static electric field or
potential due to surrounding ligands) can be "coupled" by the perturbation V only if the
symmetries of V and of the two wavefunctions obey a so-called selection rule. In
particular, only if the coupling integral (see Appendix D which deals with time
independent perturbation theory)

⌡⌠ ψa*  V  ψb  dτ  = Va,b

is non-vanishing will the two states be coupled by V .
The role of symmetry in determining whether such integrals are non-zero can

be demonstrated by noting that the integrand, considered as a whole, must contain a
component that is invariant under all of the group operations (i.e., belongs to the totally



symmetric representation of the group). In terms of the projectors introduced above in
Sec. IV, of this Appendix we must have

 ∑
S

 χA(S) S ψa*  V  ψb 

not vanish. Here the subscript A denotes the totally symmetric representation of the
group. The symmetry of the product ψa* V ψb is, according to what was covered earlier

in this Section, given by the direct product of the symmetries of ψa*  of V and of ψb. So,
the conclusion is that the integral will vanish unless this triple direct product contains,
when it is reduced to its irreducible components, a component of the totally symmetric
representation.

To see how this result is used, consider the integral that arises in formulating
the interaction of electromagnetic radiation with a molecule within the electric-dipole
approximation:

⌡⌠ψa*   r  ψb  dτ .

Here  r is the vector giving, together with e, the unit charge, the quantum mechanical
dipole moment operator

r = e∑
n

 Zn Rn  - e∑
j

 rj ,

where Zn and Rn are the charge and position of the nth nucleus and rj is the position of

the jth electron. Now, consider evaluating this integral for the singlet n→π* transition in

formaldehyde. Here, the closed-shell ground state is of 1A1 symmetry and the excited
state, which involves promoting an electron from the non-bonding b2 lone pair orbital on

the Oxygen into the π* b1 orbital on the CO moiety, is of 1A2 symmetry (b1x b2 = a2).
The direct product of the two wavefunction symmetries thus contains only a2 symmetry.
The three components (x, y, and z) of the dipole operator have, respectively, b1, b2, and
a1 symmetry. Thus, the triple direct products give rise to the following possibilities:

a2 x b1 = b2,
a2 x b2 = b1,
a2 x a1 = a2 .

There is no component of a1 symmetry in the triple direct product, so the integral

vanishes. This allows us to conclude that the n→π* excitation in formaldehyde is electric
dipole forbidden.

VII. Overview

This appendix has reviewed how to make a symmetry decomposition of a
basis of atomic orbitals (or cartesian displacements or orbital products) into irreducible
representation components.  This tool is most helpful when constructing the orbital
correlation diagrams that form the basis of the Woodward-Hoffmann rules.  We also
learned how to form the direct-product symmetries that arise when considering
configurations consisting of products of symmetry-adapted spin orbitals.  This step is
essential for the construction of configuration and state correlation diagrams upon which
one ultimately bases a prediction about whether a reaction is allowed or forbidden.
Finally, we learned how the direct product analysis allows one to determine whether or
not integrals of products of wave functions with operators between them vanish.  This
tool is of utmost importance in determining selection rules in spectroscopy and for



determining the effects of external perturbations on the states of the species under
investigation.



Character Tables
C1  E
A  1

Cs  E σh

A'  1  1 x,y,Rz x2,y2,z2,xy
A"  1 -1 z,Rx,Ry yz,xz

Ci  E  i
Ag  1  1 Rx,Ry,Rz x2,y2,z2,xy,xz,yz
Au  1 -1 x,y,z

C2  E C2

A  1  1 z,Rz x2,y2,z2,xy
B  1 -1 x,y,Rx,Ry yz,xz

D2  E C2(z) C2(y) C2(x)
A  1  1  1  1 x2,y2,z2

B1  1  1 -1 -1 z,Rz xy
B2  1 -1  1 -1 y,Ry xz
B3  1 -1 -1  1 x,Rx yz

D3  E 2C3 3C2

A1  1  1  1 x2+y2,z2

A2  1  1 -1 z,Rz
E  2 -1  0 (x,y)(Rx,Ry) (x2-y2,xy)(xz,yz)



D4  E 2C4   C2
(=C42)

2C2' 2C2"

A1  1  1  1  1  1 x2+y2,z2

A2  1  1  1 -1 -1 z,Rz
B1  1 -1  1  1 -1 x2-y2

B2  1 -1  1 -1  1 xy
E  2  0 -2  0  0 (x,y)(Rx,Ry) (xz,yz)

C2v  E C2 σv(xz) σv'(yz)
A1  1  1  1  1 z x2,y2,z2

A2  1  1 -1 -1 Rz xy
B1  1 -1  1 -1 x,Ry xz
B2  1 -1 -1  1 y,Rx yz

C3v  E 2C3 3σv

A1  1  1  1 z x2+y2,z2

A2  1  1 -1 Rz
E  2 -1  0 (x,y)(Rx,Ry) (x2-y2,xy)(xz,yz)

C4v  E 2C4 C2 2σv 2σd

A1  1  1  1  1  1 z x2+y2,z2

A2  1  1  1 -1 -1 Rz
B1  1 -1  1  1 -1 x2-y2

B2  1 -1  1 -1  1 xy
E  2  0 -2  0  0 (x,y)(Rx,Ry) (xz,yz)

C2h  E C2  i σh

Ag  1  1  1  1 Rz x2,y2,z2,xy
Bg  1 -1  1 -1 Rx,Ry xz,yz
Au  1  1 -1 -1 z
Bu  1 -1 -1  1 x,y



D2h  E C2(z) C2(y) C2(x)  i σ(xy) σ(xz) σ(yz)
Ag  1  1  1  1  1  1  1  1 x2,y2,z2

B1g  1  1 -1 -1  1  1 -1 -1 Rz xy
B2g  1 -1  1 -1  1 -1  1 -1 Ry xz
B3g  1 -1 -1  1  1 -1 -1  1 Rx yz
Au  1  1  1  1 -1 -1 -1 -1
B1u  1  1 -1 -1 -1 -1  1  1 z
B2u  1 -1  1 -1 -1  1 -1  1 y
B3u  1 -1 -1  1 -1  1  1 -1 x

D3h  E 2C3 3C2 σh 2S3 3σv

A1'  1  1  1  1  1  1 x2+y2,z2

A2'  1  1 -1  1  1 -1 Rz
E'  2 -1  0  2 -1  0 (x,y) (x2-y2,xy)

A1"  1  1  1 -1 -1 -1
A2"  1  1 -1 -1 -1  1 z
E"  2 -1  0 -2  1  0 (Rx,Ry) (xz,yz)

D4h  E 2C4 C2 2C2' 2C2"  i 2S4 σh 2σv 2σd

A1g  1  1  1  1  1  1  1  1  1  1 x2+y2,z2

A2g  1  1  1 -1 -1  1  1  1 -1 -1 Rz
B1g  1 -1  1  1 -1  1 -1  1  1 -1 x2-y2

B2g  1 -1  1 -1  1  1 -1  1 -1  1 xy
Eg  2  0 -2  0  0  2  0 -2  0  0 (Rx,Ry) (xz,yz)

A1u  1  1  1  1  1 -1 -1 -1 -1 -1
A2u  1  1  1 -1 -1 -1 -1 -1  1  1 z
B1u  1 -1  1  1 -1 -1  1 -1 -1  1
B2u  1 -1  1 -1  1 -1  1 -1  1 -1
Eu  2  0 -2  0  0 -2  0  2  0  0 (x,y)



D6h  E 2C6 2C3 C2 3C2' 3C2"  i 2S3 2S6 σh 3σd 3σv

A1g  1  1  1  1  1  1  1  1  1  1  1  1 x2+y2,z2

A2g  1  1  1  1 -1 -1  1  1  1  1 -1 -1 Rz
B1g  1 -1  1 -1  1 -1  1 -1  1 -1  1 -1
B2g  1 -1  1 -1 -1  1  1 -1  1 -1 -1  1
E1g  2  1 -1 -2  0  0  2  1 -1 -2  0  0 (Rx,Ry) (xz,yz)
E2g  2 -1 -1  2  0  0  2 -1 -1  2  0  0 (x2-y2,xy)
A1u  1  1  1  1  1  1 -1 -1 -1 -1 -1 -1
A2u  1  1  1  1 -1 -1 -1 -1 -1 -1  1  1 z
B1u  1 -1  1 -1  1 -1 -1  1 -1  1 -1  1
B2u  1 -1  1 -1 -1  1 -1  1 -1  1  1 -1
E1u  2  1 -1 -2  0  0 -2 -1  1  2  0  0 (x,y)
E2u  2 -1 -1  2  0  0 -2  1  1 -2  0  0

D2d  E 2S4 C2 2C2' 2σd

A1  1  1  1  1  1 x2+y2,z2

A2  1  1  1 -1 -1 Rz
B1  1 -1  1  1 -1 x2-y2

B2  1 -1  1 -1  1 z xy
E  2  0 -2  0  0 (x,y)(Rx,Ry) (xz,yz)

D3d  E 2C3 3C2  i 2S6 3σd

A1g  1  1  1  1  1  1 x2+y2,z2

A2g  1  1 -1  1  1 -1 Rz
Eg  2 -1  0  2 -1  0 (Rx,Ry) (x2-y2,xy)(xz,yz)

A1u  1  1  1 -1 -1 -1
A2u  1  1 -1 -1 -1  1 z
Eu  2 -1  0 -2  1  0 (x,y)

S4  E S4 C2 S43

A   1  1  1  1 Rz x2+y2,z2

B   1 -1  1 -1 z x2-y2,xy
E {1

1 
 i
-i  

-1
-1  - i

  i  } (x,y)(Rx,Ry) (xz,yz)



T  E 4C3 4C32 3C2 ε=exp(2πi/3)
A   1 1 1  1 x2+y2+z2

E {1
1 

 ε 
 ε* 

 ε*
 ε  

  1
 -1  } (2z2-x2-y2,x2-y2)

T   3 0 0 -1 (Rx,Ry,Rz)(x,y,z) (xy,xz,yz)

Th   E 4C3 4C32 3C2  i 4S6 4S65 3σh ε=exp(2πi/3)
Ag   1 1 1  1  1  1  1  1 x2+y2+z2

Au   1 1 1  1 -1 -1 -1 -1
Eg {1

1 
 ε 
 ε* 

 ε*
 ε  

 1
 1  

 1
 1  

 ε 
 ε* 

 ε*
 ε  

 1
 1

}

(2z2-x2-y2,
x2-y2)

Eu {1
1 

 ε 
 ε* 

 ε*
 ε  

 1
 1  

-1
-1 

 - ε 
 - ε* 

 - ε*
 - ε  

-1
-1 }

Tg   3 0 0 -1  1  0  0 -1 (Rx,Ry,Rz)
Tu   3 0 0 -1 -1  0  0  1 (x,y,z) (xy,xz,yz)

Td  E 8C3 3C2 6S4 6σd

A1  1  1  1  1  1 x2+y2+z2

A2  1  1  1 -1 -1
E  2 -1  2  0  0 (2z2-x2-y2,x2-y2)

T1  3  0 -1  1 -1 (Rx,Ry,Rz)
T2  3  0 -1 -1  1 (x,y,z) (xy,xz,yz)

O  E 6C4 3C2
(=C42)

8C3 6C2

A1  1  1  1  1  1 x2+y2+z2

A2  1 -1  1  1 -1
E  2  0  2 -1  0 (2z2-x2-y2,x2-y2)
T1  3  1 -1  0 -1 (Rx,Ry,Rz)(x,y,z)
T2  3 -1 -1  0  1 (xy,xz,yz)



Oh  E 8C3 6C2 6C4 3C2
(=C42)

 i 6S4 8S6 3σh 6σd

A1g  1  1  1  1  1  1  1  1  1  1 x2+y2+z2

A2g  1  1 -1 -1  1  1 -1  1  1 -1
Eg  2 -1  0  0  2  2  0 -1  2  0 (2z2-x2-y

x2-y2)
T1g  3  0 -1  1 -1  3  1  0 -1 -1 (Rx,Ry,Rz)
T2g  3  0  1 -1 -1  3 -1  0 -1  1 (xy,xz,yz)
A1u  1  1  1  1  1 -1 -1 -1 -1 -1
A2u  1  1 -1 -1  1 -1  1 -1 -1  1
Eu  2 -1  0  0  2 -2  0  1 -2  0
T1u  3  0 -1  1 -1 -3 -1  0  1  1 (x,y,z)
T2u  3  0  1 -1 -1 -3  1  0  1 -1

C∞v  E 2C∞Φ ... ∞σv

A 1≡Σ+  1  1 ...  1 z x2+y2,z2

A2≡Σ-  1  1 ... -1 Rz
E 1≡Π  2 2CosΦ ...  0 (x,y)(Rx,Ry) (xz,yz)
E2≡∆  2 2Cos2Φ ...  0 (x2-y2,xy)
E3≡Φ  2 2Cos3Φ ...  0

... ... ... ... ...

D∞h  E 2C∞Φ ... ∞σv  i 2S∞Φ ... ∞C2

Σg+  1  1 ...  1  1  1 ...  1 x2+y2,z2

Σg-  1  1 ... -1  1  1 ... -1 Rz
Πg  2 2CosΦ ...  0  2 -2CosΦ ...  0 (Rx,Ry) (xz,yz)
∆g  2 2Cos2Φ ...  0  2 2Cos2Φ ...  0 (x2-y2,xy)
... ... ... ... ... ... ... ... ...

Σu+  1  1 ...  1 -1 -1 ... -1 z
Σu-  1  1 ... -1 -1 -1 ...  1
Πu  2 2CosΦ ...  0 -2 2CosΦ ...  0 (x,y)
∆u  2 2Cos2Φ ...  0 -2 -2Cos2Φ ...  0
... ... ... ... ... ... ... ... ...



Qualitative Orbital Picture and Semi-Empirical Methods F

Some of the material contained in the early parts of this Appendix appears, in
condensed form, near the end of Chapter 7. For the sake of completeness and clarity of
presentation, this material is repeated and enhanced here.

In the simplest picture of chemical bonding, the valence molecular orbitals φi are

constructed as linear combinations of valence atomic orbitals χµ according to the LCAO-
MO formula:

φi = Σµ Ciµ χµ.

The core electrons are not explicitly included in such a treatment, although their effects are
felt through an electrostatic potential
V as detailed below. The electrons that reside in the occupied MO's are postulated to
experience an effective potential V that has the following properties:

1.  V contains contributions from all of the nuclei in the molecule exerting
coulombic attractions on the electron, as well as coulombic repulsions and exchange
interactions exerted by the other electrons on this electron;

2.  As a result of the (assumed) cancellation of attractions from distant nuclei and
repulsions from the electron clouds (i.e., the core, lone-pair, and valence orbitals) that
surround  these distant nuclei , the effect of V on any particular MO φi depends primarily

on the atomic charges and local bond polarities of the atoms over which φi  is delocalized.

As a result of these assumptions, qualitative molecular orbital models can be
developed in which one assumes that each MO φi obeys a one-electron Schrödinger
equation

h φi = εi φi.

Here the orbital-level hamiltonian h contains the kinetic energy of motion of the electron
and the potential V mentioned above:

[ - h2/2me ∇2 + V] φi = εi φi .

Expanding the MO φi in the LCAO-MO manner, substituting this expansion into the above

Schrödinger equation, multiplying on the left by χ*ν, and integrating over the coordinates
of the electron generates the following orbital-level eigenvalue problem:

Σµ <χν |- h2/2me ∇2 + V|χµ> Ciµ = εi Σµ <χν |χµ> Ciµ.

If the constituent atomic orbitals {χµ} have been orthonormalized as discussed in Chapter
7, the overlap integrals <χν |χµ> reduce to δµ,ν.

In all semi-empirical models, the quantities that explicitly define the potential V are
not computed from first principles as they are in so-called    ab initio     methods. Rather, either



experimental data or results of    ab initio     calculations are used to determine the parameters in
terms of which V is expressed. The various semi-empirical methods discussed below differ
in the sophistication used to include electron-electron interactions as well as in the manner
experimental data or    ab initio     computational results are used to specify V.

If experimental data is used to parameterize a semi-empirical model, then the model
should not be extended beyond the level at which it has been parameterized. For example,
orbitals obtained from a semi-empirical theory parameterized such that bond energies,
excitation energies, and ionization energies predicted by theory agree with experimental
data should not subsequently be used in a configuration interaction (CI) calculation. To do
so would be inconsistent because the CI treatment, which is designed to treat dynamical
correlations among the electrons, would duplicate what using the experimental data (which
already contains mother nature's electronic correlations) to determine the parameters had
accomplished.

Alternatively, if results of    ab initio     theory at the single-configuration orbital level are
used to define the parameters of a semi-empirical model, it would be proper to use the
semi-empirical orbitals in a subsequent higher-level treatment of electron correlations.

A. The Hückel Model

In the most simplified embodiment of the above orbital-level model, the following
additional approximations are introduced:

1.  The diagonal values <χµ|- h2 /2me ∇2 + V|χµ>, which are usually denoted αµ,

are taken to be equal to the energy of an electron in the atomic orbital χµ and, as such, are
evaluated in terms of atomic ionization energies (IP's) and electron affinities (EA's):

<χµ|- h2/2me ∇2 + V |χµ> = -IPµ,

for atomic orbitals that are occupied in the atom, and

<χµ|- h2/2me ∇2 + V |χµ> = -EAµ,

for atomic orbitals that are not occupied in the atom.
These approximations assume that contributions in V arising from coulombic

attraction to nuclei other than the one on which χµ is located, and repulsions from the core,
lone-pair, and valence electron clouds surrounding these other nuclei cancel to an extent
that
<χµ| V | χµ> contains only potentials from the atom on which χµ sits.

It should be noted that the IP's  and EA's of valence-state orbitals are not identical
to the experimentally measured IP's and EA's of the corresponding atom, but can be
obtained from such information. For example, the 2p valence-state IP (VSIP) for a Carbon
atom is the energy difference associated with the hypothetical process

C(1s22s2px2py2pz) ==> C+(1s22s2px2py).

If the energy differences for the "promotion" of C

C(1s22s22px2py) ==> C(1s22s2px2py2pz) ; ∆EC

and for the promotion of C+



C+(1s22s22px) ==> C+(1s22s2px2py) ; ∆EC+

are known, the desired VSIP is given by:

IP2pz
 = IPC  + ∆EC+  - ∆EC .

The EA of the 2p orbital is obtained from the

C(1s22s22px2py) ==> C-(1s22s22px2py2pz)

energy gap, which means that EA2pz
 = EA

C
 . Some common IP's of valence 2p orbitals in

eV are as follows: C (11.16), N (14.12), N+ (28.71), O (17.70), O+ (31.42), F+ (37.28).

2.  The off-diagonal elements <χν |- h2/2me ∇2 + V |χµ> are

taken as zero if χµ  and χν belong to the same atom because the atomic orbitals are
assumed to have been constructed to diagonalize the one-electron hamiltonian appropriate to
an electron moving in that atom. They are set equal to a parameter denoted βµ,ν if χµ and

χν reside on neighboring atoms that are chemically bonded. If χµ and χν reside on atoms
that are not bonded neighbors, then the off-diagonal matrix element is set equal to zero.

3. The geometry dependence of the βµ,ν parameters is often approximated by

assuming that βµ,ν is proportional to the overlap Sµ,ν between the corresponding atomic
orbitals:

βµ,ν = βoµ,ν Sµ,ν .

Here βoµ,ν is a constant (having energy units) characteristic of the bonding interaction

between χµ  and χν; its value is usually determined by forcing the molecular orbital
energies obtained from such a qualitative orbital treatment to yield experimentally correct
ionization potentials, bond dissociation energies, or electronic transition energies.

The particular approach described thus far forms the basis of the so-called      Hückel
     model   . Its implementation requires knowledge of the atomic αµ and β0µ,ν values, which
are eventually expressed in terms of experimental data, as well as a means of calculating the
geometry dependence of the βµ,ν 's (e.g., some method for computing overlap matrices
Sµ,ν ).

B. The Extended Hückel Method

It is well known that bonding and antibonding orbitals are formed when a pair of
atomic orbitals from neighboring atoms interact. The energy splitting between the bonding
and antibonding orbitals depends on the overlap between the pair of atomic orbitals. Also,
the energy of the antibonding orbital lies higher above the arithmetic mean Eave = EA + EB
of the energies of the constituent atomic orbitals (EA and EB) than the bonding orbital lies
below Eave . If overlap is ignored, as in conventional Hückel theory (except in



parameterizing the geometry dependence of βµ,ν), the differential destabilization of
antibonding orbitals compared to stabilization of bonding orbitals can not be accounted for.

By parameterizing the off-diagonal Hamiltonian matrix elements in the following
overlap-dependent manner:

hν ,µ = <χν |- h2/2me ∇2 + V |χµ> = 0.5 K (hµ,µ + hν ,ν) Sµ,ν  ,

and explicitly treating the overlaps among the constituent atomic orbitals {χµ} in solving
the orbital-level Schrödinger equation

Σµ <χν |- h2/2me ∇2 + V|χµ> Ciµ = εi Σµ <χν |χµ> Ciµ,

Hoffmann introduced the so-called extended Hückel method. He found that a value for K=
1.75 gave optimal results when using Slater-type orbitals as a basis (and for calculating the
Sµ,ν). The diagonal hµ,µ elements are given, as in the conventional Hückel method, in
terms of valence-state IP's and EA's. Cusachs later proposed a variant of this
parameterization of the off-diagonal elements:

hν ,µ = 0.5 K (hµ,µ + hν ,ν) Sµ,ν (2-|Sµ,ν |).

For first- and second-row atoms, the 1s or (2s, 2p) or (3s,3p, 3d) valence-state ionization
energies (αµ's), the number of valence electrons (#Elec.) as well as the orbital exponents
(es , ep and ed) of Slater-type orbitals used to calculate the overlap matrix elements Sµ,ν
corresponding are given below.



Atom # Elec. es=ep ed αs(eV) αp(eV) αd(eV)
H 1 1.3 -13.6
Li 1 0.650 -5.4 -3.5
Be 2 0.975 -10.0 -6.0
B 3 1.300 -15.2 -8.5
C 4 1.625 -21.4 -11.4
N 5 1.950 -26.0 -13.4
O 6 2.275 -32.3 -14.8
F 7 2.425 -40.0 -18.1

Na 1 0.733 -5.1 -3.0
Mg 2 0.950 -9.0 -4.5
Al 3 1.167 -12.3 -6.5
Si 4 1.383 1.383 -17.3 -9.2 -6.0
P 5 1.600 1.400 -18.6 -14.0 -7.0
S 6 1.817 1.500 -20.0 -13.3 -8.0
Cl 7 2.033 2.033 -30.0 -15.0 -9.0

In the Hückel or extended Hückel methods no    explicit    reference is made to electron-
electron interactions although such contributions are absorbed into the V potential, and
hence into the αµ and βµ,ν parameters of Hückel theory or the hµ,µ and hµ,ν parameters of
extended Hückel theory. As electron density flows from one atom to another (due to
electronegativity differences), the electron-electron repulsions in various atomic orbitals
changes. To account for such charge-density-dependent coulombic energies, one must use
an approach that includes explicit reference to inter-orbital coulomb and exchange
interactions. There exists a large family of semi-empirical methods that permit explicit
treatment of electronic interactions; some of the more commonly used approaches are
discussed below.

C. Semi-Empirical Models that Treat Electron-Electron Interactions

1. The ZDO Approximation

Most methods of this type are based on the so-called zero-differential overlap
(ZDO) approximation. Their development begins by using an approximation to the atomic-
orbital-based two-electron integrals introduced by Mulliken:

<χaχb|g|χcχd> = Sa,cSb,d {λa,b + λa,d + λc,b + λc,d}/4,

where Sa,c is the overlap integral between χa and χc , and

λa,b = <χaχb|g|χaχb>

is the    coulomb integral    between the charge densities |χa|2  and |χb|2.
Then, when the so-called zero-overlap approximation

Sa,c = δa,c



is made, the general four-orbital two-electron integral given above reduces to its    zero-   
    differential overlap     value:

<χaχb|g|χcχd> = δa,c δb,d λa,b.

This fundamental approximation allows the two-electron integrals that enter into the
expression for the Fock matrix elements to be expressed in terms of the set of two-orbital
coulomb interaction integrals λa,b as well as experimental or    ab initio     values for valence-
state IP's and EA's, as is now illustrated.

2. Resulting Fock Matrices

Using the ZDO approximation, the Fock matrix elements over the valence atomic
orbitals (the cores are still treated through an effective electrostatic potential as above)

Fµ,ν  = < χµ | h | χν > + Σδ,κ [ γδ,κ< χµ χδ | g | χν χκ >

-  γδ,κex< χµ χδ | g | χκ χν >],

reduce, to:

Fµ,µ = < χµ | h | χµ > + Σε γε,ε λµ,ε -  γµ,µex λµ,µ,

for the diagonal elements and

Fµ,ν = < χµ | h | χν > - γµ,νex λµ,ν

for the off-diagonal elements. Here, h represents the kinetic energy
- h2∇2/2m operator plus the sum of the attractive coulombic potential energies to each of

the nuclei - Σa Za e2/|r-Ra| and the electrostatic repulsions of the core electrons (i.e., all
those not explicitly treated as valence in this calculation) around each of the nuclei.

Further reduction of the     diagonal    Fµ,µ expression is achieved by:

a. Combining terms in the sum Σε involving orbitals χε on atomic centers other than where

χµ sits (atom a) together with the sum of coulomb attractions (which appear in h) over
these same centers:

Σε(not on atom a)  γε,ε λµ,ε

- Σb(not on atom a)<χµ| Zbe2|r-Rb|-1 |χµ>

= Σb,ε(not center a) (γε,ε λµ,ε - Vµ,b ).

This combination represents the net coulombic interaction of |χµ|2 with the total electron
density (first sum) and the total attractive positive density (second sum) on atoms other than
the atom on which χµ sits.



b. Recognizing

< χµ| - h2∇2/2m| χµ> + Σε≠µ( on center a ) γε,ε λµ,ε

- <χµ| Zae2/|r-Ra| |χµ> = Uµ,µ

as the average value of the atomic Fock operator (i.e., kinetic energy plus attractive colomb
potential to that atom's nucleus plus coulomb and exchange interactions with other
electrons on that atom) for an electron in χµ on the nucleus a. As in Hückel theory, the

values of these parameters Uµ,µ , which play the role of the Hückel αµ, can be determined
from atomic valence-state ionization potentials and electron affinities. These quantities, in
turn, may be obtained either from experimental data or from the results of    ab initio    
calculations.

As a result, the diagonal F matrix elements are given by

Fµ,µ = Uµ,µ + (γµ,µ - γµ,µex) λµ,µ  + Σb,ε(not center a) (γε,ε λµ,ε - Vµ,b ).

The evaluation of the quantities entering into this expression and that for the off-diagonal
Fµ,ν elements differs from one semi-empirical method to another; this topic is covered late
in this Appendix.

Reduction of the off-diagonal elements involving orbitals χµ and χν on the    same   
atom (a) is achieved by assuming that the atomic orbitals have been formed in a manner that
makes the contributions to Fµ,ν from atom a vanish

< χµ| - h2∇2/2m| χν> - <χµ| Zae2/|r-Ra| |χν>- γµ,νex λµ,ν

+ Σε(on atom a) γε,ε <χµχε | g | χνχε> = 0,

and then neglecting, to be consistent with the ZDO assumption, the contributions from
atoms other than atom a

- Σb(not center a) <χµ| Zb e2/|r-Rb| |χν> + Σε( not on atom a) γε,ε

<χµχε | g | χνχε> = 0.

Hence, the off-diagonal F matrix elements vanish, Fµ,ν = 0 for χµ and χν  both on the
same atom (a).

The off-diagonal F matrix elements coupling orbitals from different atoms (a and b)
are expressed as

Fµ,ν = < χµ| - h2∇2/2m| χν> - <χµ| Zae2/|r-Ra| |χν>

- <χµ| Zbe2/|r-Rb| |χν>  - γµ,νex λµ,ν  = βµ,ν  - γµ,νex λµ,ν .

Contributions to these elements from atoms other than a and b are neglected, again to be
consistent with the ZDO approximation.

Unlike the Hückel and extended Hückel methods, the semi-empirical approaches
that explicitly treat electron-electron interactions give rise to Fock matrix element



expressions that depend on the atomic-orbital-based density matrix γµ,ν . This quantity is
computed using the LCAO-MO coefficients {Ci,µ} of the occupied molecular orbitals from
the previous iteration of the

Σµ Fν ,µ Ciµ = εi Σµ <χν |χµ> Ciµ

equations. In particular,

γµ,ν = Σi(occupied) ni Ci,µ Ci,ν,

γµ,νex = Σi(occupied and of spin σ)  Ci,µ Ci,ν.

Here, ni is the number (0, 1, or 2) of electrons that occupy the ith molecular orbital, and

spin σ denotes the spin (α or β) of the orbital whose Fock matrix is being formed. For
example, when studying doublet radicals having K doubly occupied orbitals and one half-
filled orbital (K+1) in which an α electron resides, σ is α. In this case, ni = 2 for the first
K orbitals and ni = 1 for the last occupied orbital. Moreover, the Fock matrix elements

Fµ,νβ for β orbitals contains contributions from γµ,νex that are of the form

γµ,νex = Σi=1,K Ci,µ Ci,ν,

while the Fock matrix elements Fµ,να for α orbitals contains

γµ,νex = Σi=1,K Ci,µ Ci,ν + CK+1,µ CK+1,ν.

For both Fµ,να and Fµ,νβ, coulomb contributions arise as

γµ,ν = 2 Σi=1,K Ci,µ Ci,ν + CK+1,µ CK+1,ν.

3. Various Semi-Empirical Methods

a. The Pariser-Parr-Pople (PPP) Method for π-Orbitals

In the PPP method, only the π- orbitals and the corresponding π-electrons are
considered. The parameters included in the F matrix

Fµ,µ = Uµ,µ + (γµ,µ - γµ,µex) λµ,µ  + Σb,ε(not center a) (γε,ε λµ,ε - Vµ,b ).

Fµ,ν = βµ,ν  - γµ,νex λµ,ν

are obtained as follows:

i). The diagonal integrals λa,a , which represent the mutual coulomb repulsions between a
pair of electrons in the valence-state orbital labeled a, can be estimated, as suggested by
Pariser, in terms of the valence-state IP and EA of that orbital:



λa,a = IPa - EAa .

Alternatively, these one-center coulomb integrals can be computed from first principles
using Slater or Gaussian type orbitals.

ii). The off-diagonal coulomb integrals λa,b are commonly approximated either by the
Mataga-Nishimoto formula:

λa,b = e2/(Ra,b + xa,b),

where

xa,b = 2e2 /(λa,a  + λb,b),

or by the Dewar-Ohno-Klopman expression:

λa,b = 
e2 

(R2a,b + 0.25 e4 (1/λa,a  +  1 /λb,b)2)
  .

iii). The valence-state IP's and EA's, Uµ,µ are evaluated from experimental data or from
the results of    ab initio     calculations of the atomic IP's and EA's.

iv). The βµ,ν integrals are usually chosen to make bond lengths, bond energies, or
electronic excitation energies in the molecule agree with experimental data. The geometry
dependence of βµ,ν is often parameterized as in Hückel theory  βµ,ν = βoµ,ν Sµ,ν, and the
overlap is then computed from first principles.

v). The Σb(not center a) Vµ,b term, which represents the coulombic attraction of an electron

in χµ to the nucleus at center b, is often approximated as Zb λµ,ε, where ε labels the one π
orbital on center b, and Zb is the number of π electrons contributed by center b. This
parameterization then permits the attractive interaction for center b to be combined with the
repulsive interaction to give
Σb,ε(not center a) (γε,ε - Zb) λµ,ε .

b. All Valence Electron Methods

The CNDO, INDO, NDDO, MNDO, and MINDO methods all are defined in terms
of an orbital-level Fock matrix with elements

Fµ,µ = Uµ,µ + (γµ,µ - γµ,µex) λµ,µ  + Σb,ε(not center a) (γε,ε λµ,ε - Vµ,b ).

Fµ,ν = βµ,ν  - γµ,νex λµ,ν .

They differ among one another in two ways: (i) in the degree to which they employ the
ZDO approximation to eliminate two-electron integrals, and (ii) in whether they employ



experimental data (MINDO, MNDO, CNDO/S) or results of    ab initio     one-electron
calculations (CNDO, INDO, NDDO) to define their parameters.

The CNDO and CNDO/S methods apply the ZDO approximation to all integrals,
regardless of whether the orbitals are located on the same atom or not. In the INDO
method, which was designed to improve the treatment of spin densities at nuclear centers
and to handle singlet-triplet energy differences for open-shell species, exchange integrals
<χaχb|g|χbχa> involving orbitals χa and χb on the same atom are retained. In the NDDO
approach, the ZDO approximation is applied only to integrals involving orbitals on two or
more different atoms; that is, all one center integrals are retained. The text      Approximate
     Molecular Orbital Theory     by J. A. Pople and D. L. Beveridge, McGraw-Hill, New York
(1970) gives a treatment of several of these semi-empirical methods beyond the
introduction provided here.

To illustrate the differences among the various approaches and to clarify how their
parameters are obtained, let us consider two specific and popular choices- CNDO/2 and
MINDO.

i. The CNDO/2 and CNDO/S Models

In the CNDO/2 approach as originally implemented,    ab initio     (orbital-level)
calculated values of the energies mentioned below are used in determining the requisite
parameters. In the later CNDO/S method, experimental values of these energies are
employed. Briefly, in any CNDO method:

1). The diagonal integrals λa,a , which represent the mutual coulomb repulsions between a
pair of electrons in the valence-state orbital labeled a, are calculated in terms of the valence-
state IP and EA of that orbital:

λa,a = IPa - EAa .

2). The valence-state IP's and EA's, and hence the Uµ,µ are evaluated from the results of
   ab initio      calculations (CNDO/2) or experimental measurement (CNDO/S) of the atomic
IP's and EA's. The expressions used are:

-IPA = Ua,a +(ZA -1) λa,a,

for orbitals χa, and

-EAA = Ub,b + ZA λb,b,

for orbitals χb. Here ZA is the effective core charge of atom A (the nuclear charge minus
the number of "core" electrons not explicitly treated). For first row atoms, several Ua,a and

λa,a values are tabulated below (all quantities are in eV).

H Li Be B C N O F
Us,s -13.6 -5.00 -15.4 -30.37 -50.69 -70.09 -101.3 -129.5
Up,p -3.67 -12.28 -24.7 -41.53 -57.85 -84.28 -108.9

λA,A
12.85 3.46 5.95 8.05 10.33 11.31 13.91 15.23



3). The off-diagonal coulomb integrals λa,b are commonly approximated either by the
Mataga-Nishimoto formula:

λa,b = e2/(Ra,b + xa,b),

where

xa,b = 2e2 /(λa,a  + λb,b),

or by the Dewar-Ohno-Klopman expression:

λa,b = 
e2 

(R2a,b + 0.25 e4 (1/λa,a  +  1 /λb,b)2)
  .

4). As in PPP theory, the term Σb,ε(not center a) (γε,ε λµ,ε - Vµ,b ) is approximated by

Σb,ε(not center a) (γε,ε - Zb) λµ,ε , where Zb is the number of valence electrons contributed

by atom b, and χε is one of the valence electrons on atom b.

5. The βµ,ν parameters are approximated as βµ,ν = Sµ,ν (βa + βb),

where Sµ,ν is the overlap between the orbitals χµ and χν , and βa and βb are atom-
dependent parameters given below for first row atoms:

H Li Be B C N O F

βa(eV) -9 -9 -13 -17 -21 -25 -31 -39

ii. The INDO (and MINDO-Type) Methods

In these methods, the specification of the parameters entering into Fµ,ν is carried
out in the same fashion as in the CNDO/2 approach, except that:

1. The ZDO approximation is made only for two-center integrals; one-center coulomb λa,b

= <χaχb|g|χaχb> and exchange

λa,bex = <χaχb|g|χbχa> integrals are retained. In the INDO approach, the values of these
single-atom integrals are determined by requiring the results of the calculation, performed at
the Fock-like orbital level, to agree with results of    ab initio     Fock-level calculations. In the
MINDO approach, experimental electronic spectra of the particular atom are used to
determine these parameters. The "diagonal" values λa,a are determined, as indicated earlier,
from valence-state energies (   ab initio     for INDO and experimental for MINDO) of the atom
A on which χa resides.

2. The values of the Ua,a parameters are determined according to the following equations:

Us,s = -0.5 (IPH + EAH) -0.5 λs,s

for Hydrogen's 1s orbital;



Us,s = -0.5(IPs + EAs) -(ZA-0.5) λs,s +1/6 (ZA-1.5) G1(s,s)

for Boron through Fluorine's 2s orbitals; and

Up,p = -0.5(IPp + EAp) -(ZA-0.5) λp,p +2/25 (ZA-1.5) F2(p,p) +

1/3 G1(p,p).

Here, F2 and G1 represent the well known Slater-Condon integrals in terms of which the
coulomb and exchange integrals can be expressed:

Fk(nl,n'l') = 
⌡

⌠

0

∞

⌡⌠
0

∞

 |Rnl(r)|2 |Rn'l'(r')|2  2r<k/r>k+1 r2r'2 dr dr'  

Gk(nl,n'l') = 
⌡

⌠

0

∞

⌡⌠
0

∞

 |Rnl(r)Rn'l'(r)|2  2r<k/r>k+1 r2r'2 dr dr'  

and ZA is the effective core charge (the nuclear charge minus the number of "core"
electrons not explicitly treated in the calculation) of the atom A on which the orbitals in
question reside. In the definitions of the integrals, r< and r> represent, respectively, the
smaller and larger of r and r'. Again,    ab initio     calculational data is used in the INDO
method, and experimental data in the MINDO method to fix the parameters entering these
expressions.

D. Summary

As presented, semi-empirical methods are based on a single-configuration picture of
electronic structure. Extensions of such approaches to permit consideration of more than a
single important configuration have been made (for excellent overviews, see     Approximate
     Molecular Orbital Theory     by J. A. Pople and D. L. Beveridge, McGraw-Hill, New York
(1970) and     Valence Theory    , 2nd Ed., by J. N. Murrell, S. F. A. Kettle, and J. M. Tedder,
John Wiley, London (1965)). Pople and co-workers preferred to use data from    ab initio    
calculations in developing sets of parameters to use in such methods because they viewed
semi-empirical methods as approximations to    ab initio     methods. Others use experimental
data to determine parameters because they view semi-empirical methods as models of
mother nature.



Angular Momentum Operator Identities G

I. Orbital Angular Momentum

A particle moving with momentum p at a position r relative to some coordinate
origin has so-called     orbital    angular momentum equal to L = r x p . The three components
of this angular momentum vector in a cartesian coordinate system located at the origin
mentioned above are given in terms of the cartesian coordinates of r and p as follows:

Lz = x py - y px ,

Lx = y pz - z py ,

Ly = z px - x pz .

Using the fact that the quantum mechanical coordinate operators {qk} = x, y, z as
well as the conjugate momentum operators {pj} = px, py, pz are Hermitian, it is possible to
show that Lx, Ly, and Lz are also Hermitian, as they must be if they are to correspond to
experimentally measurable quantities.

Using the fundamental commutation relations among the cartesian coordinates and
the cartesian momenta:

[qk,p j] = qk pj - pj qk = ih δj,k ( j,k = x,y,z) ,

it can be shown that the above angular momentum operators obey the following set of
commutation relations:

[Lx, Ly] = ih Lz ,

[Ly, Lz] = ih Lx ,

[Lz, Lx] = ih Ly .

Although the components of L do not commute with one another, they can be shown to
commute with the operator L2 defined by

L2 = Lx2 + Ly2 + Lz2 .

This new operator is referred to as the square of the total angular momentum operator.
The commutation properties of the components of L allow us to conclude that

complete sets of functions can be found that are eigenfunctions of L2 and of one, but not
more than one, component of L . It is convention to select this one component as Lz, and to

label the resulting simultaneous eigenstates of L2 and Lz as |l,m> according to the
corresponding eigenvalues:

L2 |l,m> = h2 l(l+1) |l,m>, l = 0,1,2,3,....

Lz |l,m> = h m |l,m>, m = ± l, ±(l-1), ±(l-2), ... ±(l-(l-1)), 0.



That these eigenvalues assume the values specified in these identities is proven in
considerable detail below. These eigenfunctions of L2 and of Lz will not, in general, be
eigenfunctions of either Lx or of Ly. This means that any measurement of Lx or Ly will
necessarily change the wavefunction if it begins as an eigenfunction of Lz.

The above expressions for Lx, Ly, and Lz can be mapped into quantum mechanical

operators by substituting x, y, and z as the corresponding coordinate operators and -ih∂/∂x,

-ih∂/∂y, and -ih∂/∂z for px, py, and pz, respectively. The resulting operators can then be
transformed into spherical coordinates by using the techniques provided in Appendix (A),
the results of which are:

Lz =-ih ∂/∂φ ,

Lx = ih {sinφ ∂/∂θ + cotθ cosφ ∂/∂φ} ,

Ly = -ih {cosφ ∂/∂θ - cotθ sinφ ∂/∂φ} ,

L2 = - h2 {(1/sinθ) ∂/∂θ (sinθ ∂/∂θ) + (1/sin2θ) ∂2/∂φ2} .

At this point, it should be again stressed that the above form for L2 appears explicitly when
the kinetic energy operator - h2/2m ∇2 is expressed in spherical coordinates; in particular,

the term L2/2mr2 is what enters. This means that our study of the properties of angular
momenta will also help us to understand the angular-motion components of the
Hamiltonian for spherically symmetric systems (i.e., those for which the potential V
contains no angle dependence, and hence for which the total angle dependence is contained
in the kinetic energy term L2/2mr2).

II. Properties of General Angular Momenta

There are many types of angular momenta that one encounters in chemistry. Orbital
angular momenta, such as that introduced above, arise in electronic motion in atoms, in
atom-atom and electron-atom collisions, and in rotational motion in molecules. Intrinsic
spin angular momentum is present in electrons, H1, H2, C13, and many other nuclei. In
this section, we will deal with the behavior of any and all angular momenta and their
corresponding eigenfunctions.

At times, an atom or molecule contains more than one type of angular momentum.
The Hamiltonian's interaction potentials present in a particular species may or may not
cause these individual angular momenta to be coupled to an appreciable extent (i.e., the
Hamiltonian may or may not contain terms that refer simultaneously to two or more of
these angular momenta). For example, the NH- ion, which has a 2Π ground electronic state

(its electronic configuration is 1sN22σ23σ22pπx22ppy1) has electronic spin, electronic
orbital, and molecular rotational angular momenta. The full Hamiltonian H contains spin-
orbit coupling terms that couple the electronic spin and orbital angular momenta, thereby
causing them individually to not commute with H. H also contains terms that couple the
ion's rotational and electronic angular momenta, thereby making these quantities no longer
"good" quantum numbers (i.e., making the corresponding operators no longer commute
with H).



In such cases, the eigenstates of the system can be labeled rigorously only by
angular momentum quantum numbers j and m belonging to the total angular momentum J.
The total angular momentum of a collection of individual angular momenta is defined,
component-by-component, as follows:

Jk = Σ i Jk(i),

where k labels x, y, and z, and i labels the constituents whose angular momenta couple to
produce J.

For the remainder of this Appendix, we will study eigenfunction-eigenvalue
relationships that are characteristic of all angular momenta and which are consequences of
the commutation relations among the angular momentum vector's three components. We
will also study how one combines eigenfunctions of two or more angular momenta {J(i)}
to produce eigenfunctions of the the total J.

A. Consequences of the Commutation Relations

Any set of three Hermitian operators that obey

[Jx, Jy] = ih Jz ,

[Jy, Jz] = ih Jx ,

[Jz, Jx] = ih Jy ,

will be taken to define an angular momentum J, whose square J2= Jx2 + Jy2 + Jz2

commutes with all three of its components. It is useful to also introduce two combinations
of the three fundamental operators:

J± = Jx ± i Jy ,

and to refer to them as    raising    and    lowering         operators    for reasons that will be made clear
below. These new operators can be shown to obey the following commutation relations:

[J2, J±] = 0,

[Jz, J±] = ± h J± .

These two operators are     not    Hermitian operators (although Jx and Jy are), but they are
adjoints of one another:

J++ = J-,

J-+ = J+,

as can be shown using the self-adjoint nature of Jx and Jy.
Using only the above commutation properties, it is possible to prove important

properties of the eigenfunctions and eigenvalues of J2 and Jz. Let us assume that we have

found a set of simultaneous eigenfunctions of J2 and Jz ; the fact that these two operators



commute tells us that this is possible. Let us label the eigenvalues belonging to these
functions:

J2 |j,m> = h2 f(j,m) |j,m>,

Jz |j,m> = h m |j,m>,

in terms of the quantities m and f(j,m). Although we certainly "hint" that these quantities
must be related to certain j and m quantum numbers, we have not yet proven this, although
we will soon do so. For now, we view f(j,m) and m simply as symbols that represent the
respective eigenvalues. Because both J2 and Jz are Hermitian, eigenfunctions belonging to
different f(j,m) or m quantum numbers must be orthogonal:

<j,m|j',m'> = δm,m' δj,j' .

We now prove several identities that are needed to discover the information about
the eigenvalues and eigenfunctions of general angular momenta that we are after. Later in
this Appendix, the essential results are summarized.

1. There is a Maximum and a Minimum Eigenvalue for Jz
Because all of the components of J are Hermitian, and because the scalar product of

any function with itself is positive semi-definite, the following identity holds:

<j,m|Jx2 + Jy2|j,m> = <Jx<j,m| Jx|j,m> + <Jy<j,m| Jy|j,m>  ≥ 0.

However, Jx2 + Jy2 is equal to J2 - Jz2, so this inequality implies that

<j,m| J2 - Jz2 |j,m> = h2 {f(j,m) - m2} ≥ 0,

which, in turn, implies that m2 must be less than or equal to f(j,m). Hence, for any value of
the total angular momentum eigenvalue f, the z-projection eigenvalue (m) must have a
maximum and a minimum value and both of these must be less than or equal to the total
angular momentum squared eigenvalue f.

2. The Raising and Lowering Operators Change the Jz Eigenvalue but not the J2 Eigenvalue
When Acting on |j,m>

Applying the commutation relations obeyed by J± to |j,m> yields another useful
result:

Jz J± |j,m> - J± Jz |j,m> = ± h J± |j,m>,

J2 J± |j,m> - J± J2 |j,m> = 0.

Now, using the fact that |j,m> is an eigenstate of J2 and of Jz, these identities give

Jz J± |j,m>  = (mh ± h) J± |j,m> = h (m±1) |j,m>,

J2 J± |j,m> = h2 f(j,m) J± |j,m>.



These equations prove that the functions J± |j,m> must either themselves be eigenfunctions

of J2 and Jz, with eigenvalues h2 f(j,m) and h (m+1) or J± |j,m> must equal zero. In the

former case, we see that J± acting on |j,m> generates a new eigenstate with the same J2

eigenvalue as |j,m> but with one unit of h higher in Jz eigenvalue. It is for this reason that
we call J± raising and lowering operators. Notice that, although J± |j,m> is indeed an
eigenfunction of Jz with eigenvalue

(m±1) h, J± |j,m> is not identical to |j,m±1>; it is only proportional to |j,m±1>:

J± |j,m> = C±j,m  |j,m±1>.

Explicit expressions for these C±j,m  coefficients will be obtained below. Notice also that

because the J± |j,m>, and hence |j,m±1>, have the same J2 eigenvalue as |j,m> (in fact,
sequential application of J± can be used to show that all |j,m'>, for all m', have this same

J2 eigenvalue), the J2 eigenvalue f(j,m) must be independent of m. For this reason, f can be
labeled by one quantum number j.

3. The J2 Eigenvalues are Related to the Maximum and Minimum Jz Eigenvalues Which are
Related to One Another

Earlier, we showed that there exists a maximum and a minimum value for m, for
any given total angular momentum. It is when one reaches these limiting cases that J± |j,m>
= 0 applies. In particular,

J+ |j,mmax> = 0,

J- |j,mmin> = 0.

Applying the following identities:

J- J+ = J2 - Jz2 -h Jz ,

J+ J- = J2 - Jz2 +h Jz,

respectively, to |j,mmax> and |j,mmin> gives

h2 { f(j,mmax) - mmax2 - mmax} = 0,

h2 { f(j,mmin) - mmin2 + mmin} = 0,

which immediately gives the J2  eigenvalue f(j,mmax) and f(j,mmin) in terms of mmax or
mmin:

f(j,mmax) = mmax (mmax+1),

f(j,mmin) = mmin (mmin-1).



So, we now know the J2 eigenvalues for |j,mmax> and |j,mmin>. However, we earlier

showed that |j,m> and |j,m-1> have the same J2 eigenvalue (when we treated the effect of
J± on |j,m>) and that the J2 eigenvalue is independent of m. If we therefore define the

quantum number j to be mmax , we see that the J2 eigenvalues are given by

J2 |j,m> = h2 j(j+1) |j,m>.

We also see that

f(j,m) = j(j+1) = mmax (mmax+1) = mmin (mmin-1),

from which it follows that

mmin = - mmax .

4. The j Quantum Number Can Be Integer or Half-Integer
The fact that the m-values run from j to -j in unit steps (because of the property of

the J± operators), there clearly can be only integer or half-integer values for j. In the former
case, the m quantum number runs over -j, -j+1, -j+2, ..., -j+(j-1), 0, 1, 2, ... j;
in the latter, m runs over -j, -j+1, -j+2, ...-j+(j-1/2), 1/2, 3/2, ...j.
Only integer and half-interger values can range from j to -j in steps of unity. Species with
integer spin are known as Bosons and those with half-integer spin are called Fermions.

5. More on J± |j,m>
Using the above results for the effect of J± acting on |j,m> and the fact that J+ and

J- are adjoints of one another, allows us to write:

<j,m| J- J+ |j,m> = <j,m| (J2 - Jz2 -h Jz ) |j,m>

= h2 {j(j+1)-m(m+1)} = <J+<j,m| J+|j,m> = (C+j,m)2,

where C+j,m is the proportionality constant between J+|j,m> and the normalized function
|j,m+1>. Likewise, the effect of J- can be

<j,m| J+ J- |j,m> = <j,m| J+(J2 - Jz2 +h Jz) |j,m>

h2 {j(j+1)-m(m-1)} = <J-<j,m| J-|j,m> = (C-j,m)2,

where C-j,m  is the proportionality constant between J- |j,m> and the normalized |j,m-1>.
Thus, we can solve for C±j,m  after which the effect of J± on |j,m> is given by:

J± |j,m> = h {j(j+1) - m(m±1)}1/2 |j,m±1>.

B. Summary

The above results apply to    any     angular momentum operators. The essential findings
can be summarized as follows:



(i) J2 and Jz have complete sets of simultaneous eigenfunctions. We label these
eigenfunctions |j,m>; they are orthonormal in both their m- and j-type indices: <j,m| j',m'>
= δm,m' δj,j' .

(ii) These |j,m> eigenfunctions obey:

J2 |j,m> = h2 j(j+1) |j,m>, { j= integer or half-integer},

Jz |j,m> = h m |j,m>, { m = -j, in steps of 1 to +j}.

(iii) The raising and lowering operators J± act on |j,m> to yield functions that are

eigenfunctions of J2 with the same eigenvalue as |j,m> and eigenfunctions of Jz with

eigenvalue of (m±1) h :

J± |j,m> = h {j(j+1) - m(m±1)}1/2 |j,m±1>.

(iv) When J± acts on the "extremal" states |j,j> or |j,-j>, respectively, the result is zero.
The results given above are, as stated, general. Any and all angular momenta have

quantum mechanical operators that obey these equations. It is convention to designate
specific kinds of angular momenta by specific letters; however, it should be kept in mind
that no matter what letters are used, there are operators corresponding to J2, Jz, and J± that
obey relations as specified above, and there are eigenfunctions and eigenvalues that have all
of the properties obtained above. For electronic or collisional orbital angular momenta, it is
common to use L2 and Lz ; for electron spin, S2 and Sz are used; for nuclear spin I2 and Iz
are most common; and for molecular rotational angular momentum, N2 and Nz are most

common (although sometimes J2 and Jz may be used). Whenever two or more angular
momenta are combined or coupled to produce a "total" angular momentum, the latter is
designated by J2 and Jz.

III. Coupling of Angular Momenta

If the Hamiltonian under study contains terms that couple two or more angular
momenta J(i), then only the components of the total angular momentum J = Σ i J(i) and J2

will commute with H. It is therefore essential to label the quantum states of the system by
the eigenvalues of Jz and J2  and to construct variational trial or model wavefunctions that
are eigenfunctions of these total angular momentum operators. The problem of angular
momentum coupling has to do with how to combine eigenfunctions of the uncoupled
angular momentum operators, which are given as simple products of the eigenfunctions of
the individual angular momenta Πi |ji,mi>, to form eigenfunctions of J2 and Jz.

A. Eigenfunctions of Jz

Because the individual elements of J are formed additively, but J2 is     not    , it is
straightforward to form eigenstates of

Jz = Σ i Jz(i);



simple products of the form Πi |ji,mi> are eigenfunctions of Jz:

Jz Πi |ji,mi> = Σk Jz(k) Πi |ji,mi> = Σk h mk Πi |ji,mi>,

and have Jz eigenvalues equal to the sum of the individual mk h eigenvalues. Hence, to
form an eigenfunction with specified J and M eigenvalues, one must combine only those
product states Πi |ji,mi> whose mih sum is equal to the specified M value.

B. Eigenfunctions of J2; the Clebsch-Gordon Series

The task is then reduced to forming eigenfunctions |J,M>, given particular values
for the {ji} quantum numbers (e.g., to couple the 3P states of the Si atom, which are

eigenfunctions of L2 and of S2, to produce a 3P1 state which is an eigenfunction of J2 ,
where J=L+S). When coupling pairs of angular momenta { |j,m> and |j',m'>}, the total
angular momentum states can be written, according to what we determined above, as

|J,M> = Σm,m' CJ,Mj,m;j',m' |j,m> |j',m'>,

where the coefficients CJ,Mj,m;j',m' are called vector coupling coefficients (because angular
momentum coupling is viewed much like adding two vectors j and j' to produce another
vector J), and where the sum over m and m' is restricted to those terms for which m+m' =
M. It is more common to express the vector coupling or so-called Clebsch-Gordon (CG)
coefficients as <j,m;j'm'|J,M> and to view them as elements of a "matrix" whose
columns are labeled by the coupled-state J,M quantum numbers and whose rows are
labeled by the quantum numbers characterizing the uncoupled "product basis" j,m;j',m'. It
turns out (see Chapt. 2 of     Angular Momentum     , by R. N. Zare, John Wiley and Sons, New
York, N.Y., (1988)) that this matrix can be shown to be unitary so that the CG coefficients
obey:

Σm,m'  <j,m;j'm'|J,M>* <j,m;j'm'|J',M'> = δJ,J' δM,M'

and
ΣJ,M    <j,n;j'n'|J,M> <j,m;j'm'|J,M>* = δn,m δn',m'.

This unitarity of the CG coefficient matrix allows the inverse of the relation giving
coupled functions in terms of the product functions:

|J,M> = Σm,m' <j,m;j'm'|J,M> |j,m> |j',m'>

to be written as:

|j,m> |j',m'> = ΣJ,M <j,m;j'm'|J,M>* |J,M>

= ΣJ,M <J,M|j,m;j'm'> |J,M>.



This result expresses the product functions in terms of the coupled angular momentum
functions. 

C. Generation of the CG Coefficients

The CG coefficients can be generated in a systematic manner; however, they can
also be looked up in books where they have been tabulated (e.g., see Table 2.4 of Zare's
book on angular momentum; the reference is given above). Here, we will demonstrate the
technique by which the CG coefficients can be obtained, but we will do so for rather
limited cases and refer the reader to more extensive tabulations.

The strategy we take is to generate the |J,J> state (i.e., the state with maximum M-
value) and to then use J- to generate |J,J-1>, after which the state |J-1,J-1> (i.e., the state
with one lower J-value) is constructed by finding a combination of the product states in
terms of which |J,J-1> is expressed (because both |J,J-1> and |J-1,J-1> have the same M-
value M=J-1) which is orthogonal to |J,J-1> (because
|J-1,J-1>  and |J,J-1> are eigenfunctions of the Hermitian operator J2 corresponding to
different eigenvalues, they must be orthogonal). This same process is then used to generate
|J,J-2> |J-1,J-2> and (by orthogonality construction) |J-2,J-2>, and so on.

1. The States With Maximum and Minimum M-Values
We begin with the state |J,J> having the highest M-value. This state must be formed

by taking the highest m and the highest m' values (i.e., m=j and m'=j'), and is given by:

|J,J> = |j,j> |j'j'>.

Only this one product is needed because only the one term with m=j and m'=j' contributes
to the sum in the above CG series. The state

|J,-J> = |j,-j> |j',-j'>

with the minimum M-value is also given as a single product state.
Notice that these states have M-values given as ±(j+j'); since this is the maximum M-value,
it must be that the J-value corresponding to this state is J= j+j'.

2. States With One Lower M-Value But the Same J-Value
Applying J- to |J,J> , and expressing J- as the sum of lowering operators for the

two individual angular momenta:

J- = J-(1) + J-(2)

gives
J-|J,J> = h{J(J+1) -J(J-1)}1/2 |J,J-1>

= (J-(1) + J-(2)) |j,j> |j'j'>

= h{j(j+1) - j(j-1)}1/2 |j,j-1> |j',j'> + h{j'(j'+1)-j'(j'-1)}1/2 |j,j> |j',j'-1>.

This result expresses |J,J-1> as follows:

|J,J-1>= [{j(j+1)-j(j-1)}1/2 |j,j-1> |j',j'>



+ {j'(j'+1)-j'(j'-1)}1/2 |j,j> |j',j'-1>] {J(J+1) -J(J-1)}-1/2;

that is, the |J,J-1> state, which has M=J-1, is formed from the two product states |j,j-1>
|j',j'> and |j,j> |j',j'-1> that have this same M-value.

3. States With One Lower J-Value
To find the state |J-1,J-1> that has the same M-value as the one found above but

one lower J-value, we must construct another combination of the two product states with
M=J-1 (i.e., |j,j-1> |j',j'> and |j,j> |j',j'-1>) that is orthogonal to the combination
representing |J,J-1>; after doing so, we must scale the resulting function so it is properly
normalized. In this case, the desired function is:

|J-1,J-1>= [{j(j+1)-j(j-1)}1/2 |j,j> |j',j'-1>

- {j'(j'+1)-j'(j'-1)}1/2 |j,j-1> |j',j'>] {J(J+1) -J(J-1)}-1/2 .

It is straightforward to show that this function is indeed orthogonal to |J,J-1>.

4. States With Even One Lower J-Value
Having expressed |J,J-1> and |J-1,J-1> in terms of |j,j-1> |j',j'> and |j,j> |j',j'-1>,

we are now prepared to carry on with this stepwise process to generate the states |J,J-2>,
|J-1,J-2> and |J-2,J-2> as combinations of the product states with M=J-2. These product
states are |j,j-2> |j',j'>, |j,j> |j',j'-2>, and |j,j-1> |j',j'-1>. Notice that there are precisely as
many product states whose m+m' values add up to the desired M-value as there are total
angular momentum states that must be constructed (there are three of each in this case).

The steps needed to find the state |J-2,J-2> are analogous to those taken above:

a. One first applies J- to |J-1,J-1> and to |J,J-1> to obtain |J-1,J-2> and |J,J-2>,
respectively as combinations of |j,j-2> |j',j'>, |j,j> |j',j'-2>, and
|j,j-1> |j',j'-1>.

b. One then constructs |J-2,J-2> as a linear combination of the |j,j-2> |j',j'>, |j,j> |j',j'-2>,
and |j,j-1> |j',j'-1> that is orthogonal to the combinations found for  |J-1,J-2> and |J,J-2>.

Once |J-2,J-2> is obtained, it is then possible to move on to form |J,J-3>, |J-1,J-
3>, and |J-2,J-3> by applying J- to the three states obtained in the preceding application of
the process, and to then form |J-3,J-3> as the combination of |j,j-3> |j',j'>, |j,j> |j',j'-3>,
|j,j-2> |j',j'-1>, |j,j-1> |j',j'-2> that is orthogonal to the combinations obtained for |J,J-3>,
|J-1,J-3>, and |J-2,J-3>.

Again notice that there are precisely the correct number of product states (four here)
as there are total angular momentum states to be formed. In fact, the product states and the
total angular momentum states are equal in number and are both members of orthonormal
function sets (because J2(1), Jz(1), J2(2), and Jz(2) as well as J2 and Jz are Hermitian
operators). This is why the CG coefficient matrix is unitary; because it maps one set of
orthonormal functions to another, with both sets containing the same number of functions.

D. An Example

Let us consider an example in which the spin and orbital angular momenta of the Si
atom in its 3P ground state can be coupled to produce various 3PJ states. In this case, the
specific values for j and j' are j=S=1 and j'=L=1. We could, of course take j=L=1 and



j'=S=1, but the final wavefunctions obtained would span the same space as those we are
about to determine.

The state with highest M-value is the 3P(Ms=1, ML=1) state. As shown in Chapter
10 which deals with electronic configurations and states, this particular product
wavefunction can be represented by the product of an αα  spin function (representing S=1,
Ms=1) and a 3p13p0 spatial function (representing L=1, ML=1), where the first function
corresponds to the first open-shell orbital and the second function to the second open-shell
orbital. Thus, the maximum M-value is M= 2 and corresponds to a state with J=2:

|J=2,M=2> = |2,2> = αα 3p13p0 .

Clearly, the state |2,-2> would be given as ββ 3p-13p0.
The states |2,1> and |1,1> with one lower M-value are obtained by applying J- = S-

+ L- to |2,2> as follows:

J- |2,2> = h{2(3)-2(1)}1/2 |2,1>

= (S- + L-) αα 3p13p0 .

To apply S- or L-  to αα 3p13p0, one must realize that each of these operators is, in turn, a
sum of lowering operators for each of the two open-shell electrons:

S- = S-(1) + S-(2),

L- = L-(1) + L-(2).

The result above can therefore be continued as

(S- + L-) αα 3p13p0 = h{1/2(3/2)-1/2(-1/2)}1/2 βα 3p13p0

+ h{1/2(3/2)-1/2(-1/2)}1/2 αβ 3p13p0

+ h{1(2)-1(0)}1/2 αα 3p03p0

+ h{1(2)-0(-1)}1/2 αα 3p13p-1.

So, the function |2,1> is given by

|2,1> = [βα 3p13p0 + αβ 3p13p0 + {2}1/2 αα 3p03p0

+ {2}1/2 αα 3p13p-1]/2,

which can be rewritten as:

|2,1> = [(βα + αβ)3p13p0 + {2}1/2 αα (3p03p0 + 3p13p-1)]/2.



Writing the result in this way makes it clear that |2,1> is a combination of the product states
|S=1,MS=0> |L=1,ML=1> (the terms containing |S=1,MS=0> = 2-1/2(αβ+βα)) and

|S=1,MS=1> |L=1,ML=0> (the terms containing |S=1,MS=1> = αα).
To form the other function with M=1, the |1,1> state, we must find another

combination of |S=1,MS=0> |L=1,ML=1> and |S=1,MS=1> |L=1,ML=0> that is
orthogonal to |2,1> and is normalized. Since

|2,1> = 2-1/2 [|S=1,MS=0> |L=1,ML=1> + |S=1,MS=1> |L=1,ML=0>],

we immediately see that the requisite function is

|1,1> = 2-1/2 [|S=1,MS=0> |L=1,ML=1> - |S=1,MS=1> |L=1,ML=0>].

In the spin-orbital notation used above, this state is:

|1,1> = [(βα + αβ)3p13p0 - {2}1/2 αα (3p03p0 + 3p13p-1)]/2.

Thus far, we have found the 3PJ states with J=2, M=2; J=2, M=1; and J=1, M=1.

To find the 3PJ states with J=2, M=0; J=1, M=0; and J=0, M=0, we must once
again apply the J- tool. In particular, we apply J- to |2,1> to obtain |2,0> and we apply J- to
|1,1> to obtain |1,0>, each of which will be expressed in terms of |S=1,MS=0>
|L=1,ML=0>,  |S=1,MS=1> |L=1,ML=-1>, and |S=1,MS=-1> |L=1,ML=1>. The |0,0>
state is then constructed to be a combination of these same product states which is
orthogonal to |2,0> and to |1,0>. The results are as follows:

|J=2,M=0> = 6-1/2[2 |1,0> |1,0> + |1,1> |1,-1> + |1,-1> |1,1>],

|J=1,M=0> = 2-1/2[|1,1> |1,-1> - |1,-1> |1,1>],

|J=0, M=0> = 3-1/2[|1,0> |1,0> - |1,1> |1,-1> - |1,-1> |1,1>],

where, in all cases, a short hand notation has been used in which the |S,MS> |L,ML>
product stated have been represented by their quantum numbers with the spin function
always appearing first in the product. To finally express all three of these new functions in
terms of spin-orbital products it is necessary to give the |S,MS> |L,ML> products with
M=0 in terms of these products. For the spin functions, we have:

|S=1,MS=1> = αα,

|S=1,MS=0> = 2-1/2(αβ+βα).

|S=1,MS=-1> = ββ.

For the orbital product function, we have:

|L=1, ML=1> = 3p13p0 ,



|L=1,ML=0> = 2-1/2(3p03p0 + 3p13p-1),

|L=1, ML=-1> = 3p03p-1.

E. CG Coefficients and 3-j Symbols

As stated above, the CG coefficients can be worked out for any particular case
using the raising and lowering operator techniques demonstrated above. Alternatively, as
also stated above, the CG coefficients are tabulated (see, for example, Zare's book on
angular momentum the reference to which is given earlier in this Appendix) for several
values of j, j', and J.

An alternative to the CG coefficients is provided by the so-called 3-j coefficients
(see Sec. 2.2 of Zare's book) which are defined in terms of the CG coefficients as follows:





j   j '   J

m m'-M   = (-1)j-j'-M <j,m; j',m'|J,M> (2J+1)-1/2 .

Clearly, these coefficients contain no more or less information than do the CG coefficients.
However, both sets of symbols have symmetries under interchange of the j and m quantum
number that are more easily expressed in terms of the 3-j symbols. In particular, odd
permutations of the columns of the 3-j symbol leave the magnitude unchanged and change
the sign by (-1)j+j'+J, whereas even permutations leave the value unchanged. Moreover,
replacement of all of the m-values (m, m', and M) by their negatives leave the magnitude
the same and changes the sign by (-1)j+j'+J . Table 2.5 in Zare's book (see above for
reference) contains 3-j symbols for J=0, 1/2, 1, 3/2, and 2.

IV. How Angular Momentum Arises in Molecular Quantum Chemistry

A. The Hamiltonian May Commute With Angular Momentum Operators

As is illustrated throughout this text, angular momentum operators often commute
with the Hamiltonian of the system. In such cases, the eigenfunctions of the Hamiltonian
can be made to also be eigenfunctions of the angular momentum operators. This allows one
to label the energy eigenstates by quantum numbers associated with the angular momentum
eigenvalues.

1. Electronic Atomic Hamiltonia Without Spin-Orbit Coupling
For example, the electronic Hamiltonian of atoms, as treated in Chapters 1 and 3 in

which only kinetic and coulombic interaction energies are treated, commutes with L2, and
Lz, where

Lz = Σ j Lz(j)

and

L2 = Lz2 + Lx2 + Ly2 .

The fact that H commutes with Lz, Lx, and Ly and hence L2 is a result of the fact that the
total coulombic potential energies among all the electrons and the nucleus is invariant to
rotations of    all    electrons about the z, x, or y axes (H does not commute with Lz(j) since if



only the jth electron's coordinates are so rotated, the total coulombic potential is altered
because inter-electronic distances change). The invariance of the potential to rotations of all
electrons is, in turn, related to the spherical nature of the atom. As a result, atomic energy
levels for such a Hamiltonian can be labeled by their    total    L and M quantum numbers.

2. Electronic Linear-Molecule Hamiltonia Without Spin-Orbit Coupling
For linear molecules, the coulombic potential is unchanged (because the set of all

inter-particle distances are unchanged) by rotations about the molecular axis (the z axis);
hence H commutes with Lz. H does not commute with Lx or Ly, and thus not L2, because
the potential is altered by rotations about the x or y axes. As a result, linear-molecule
energy levels for such a Hamiltonian can be labeled by their    total    M quantum number,
which in this context is usually replaced by the quantum number Λ = |M|.

3. Spin-Orbit Effects
When spin-orbit couplings are added to the electrostatic Hamiltonian considered in

the text, additional terms arise in H. These terms have the form of a one-electron additive
operator:

HSO = Σ j { ge/2me2c2} rj-1 ∂V/∂Rj S (j) • L(j)

where V is the total coulombic potential the that electron j feels due to the presence of the
other electrons and the nuclei. S (j) and L(j) are the spin- and orbital- angular momentum
operators of electron j, and ge is the electron magnetic moment in Bohr magneton units (ge
= 2.002319). For atoms in which these spin-orbit terms are considered (they are important
for "heavy atoms" because rj-1∂V/∂Rj varies as Z rj-3 for atoms, whose expectation value

varies as Z4), it turns out that neither L2 nor S2 commute with HSO. However, the
"combined" angular momentum

J =  L + S

Jz = Lz + Sz

J2 = Jz2 + Jx2 + Jy2

does commute with HSO, and hence with the full H + HSO Hamiltonian including spin-
orbit coupling. For this reason, the eigenstates of atoms in which spin-orbit coupling is
important can not be labeled by L, M, S, and MS, but only by J and MJ.

B. The Hamiltonian May Contain Angular Momentum Operators

1. Electronic Hamiltonia for Atoms Without Spin-Orbit Effects
There are cases in which the angular momentum operators themselves appear in the

Hamiltonian. For electrons moving around a single nucleus, the total kinetic energy
operator T has the form:

T = Σ j { - h2/2me  ∇j2 }

= Σ j { - h2/2me [ rj-2 ∂/∂rj(rj2∂/∂rj)



- (rj2 sinθj)-1∂/∂θj(sinθj∂/∂θj)

 - (rj sinθj)-2 ∂2/∂φj2 }.

The factor h2 [(sinθj)-1∂/∂θj(sinθj∂/∂θj) + (sinθj)-2 ∂2/∂φj2 ] is L2(j), the square of the

angular momentum for the jth electron. In this case, the Hamiltonian contains L2(j) for the
individual electrons, not the total L2, although it still commutes with the total L2 (which
thus renders L and M good quantum numbers).

2. Linear Rigid-Molecule Rotation
The rotational Hamiltonian for a diatomic molecule as given in Chapter 3 is

Hrot = h2/2µ {(R2sinθ)-1∂/∂θ (sinθ ∂/∂θ) + (R2sin2θ)-1 ∂2/∂φ2 },

where µ is the reduced mass of the molecule, and R is its bond length.
Again, the square of the total rotational angular momentum operator appears in Hrot

Hrot = L2/2µR2.

In this case, the Hamiltonian both contains and commutes with the total L2; it also
commutes with Lz, as a result of which L and M are both good quantum numbers and the

spherical harmonics YL,M(θ,φ) are eigenfunctions of H. These eigenfunctions obey
orthogonality relations:

⌡

⌠

0

π

( ⌡⌠
0

2π

(Y*L,M(θ,φ) YL',M'(θ,φ) sinθ dθ dφ))  = δL,L' δM,M'

because they are eigenfunctions of two Hermitian operators (L2 and Lz) with (generally)
different eigenvalues.

3. Non-Linear Molecule Rotation
For non-linear molecules, when treated as rigid (i.e., having fixed bond lengths,

usually taken to be the equilibrium values or some vibrationally averaged values), the
rotational Hamiltonian can be written in terms of rotation about three axes. If these axes
(X,Y,Z) are located at the center of mass of the molecule but fixed in space such that they
do not move with the molecule, then the rotational Hamiltonian can be expressed as:

Hrot = 1/2 ΣK,K' ωK IK,K' ωK'

where ωK is the angular velocity about the Kth axis and



IK,K = Σj mj (Rj2 - R2K,j) (for K = K')

IK,K' = - Σj mj RK,j RK',j (for K ≠ K')

are the elements of the so-called moment of inertia tensor. This tenor has components along
the axes labeled K and K' (each of which runs over X, Y, and Z). The mj denote the
masses of the atoms (labeled j) in the molecule, RK,j is the coordinate of atom j along the
K-axis relative to the center of mass of the molecule, and Rj is the distance of atom j from

the center of mass (Rj2 = ΣK (RK,j)2).
Introducing a new set of axes x, y, z that also have their origin at the center of

mass, but that rotate with the molecule, it is possible to reexpress Hrot in terms of motions
of these axes. It is especially useful to choose a particular set of such molecule-fixed axes,
those that cause the moment of inertial tensor to be diagonal. This symmetric matrix can, of
course, be made diagonal by first computing Ik,k' (where k and k' run over x, y, and z) for
an arbitrary x, y, z axis choice and then finding the orthogonal transformation (i.e., the
eigenvectors of the I matrix) that brings I to diagonal form. Such molecule-fixed axes
(which we denote as a, b, and c) in which I is diagonal are called principal axes; in terms
of them, Hrot becomes:

Hrot = 1/2 [ Ia ωa2 + Ib ωb2 + Ic ωc2 ].

The angular momentum conjugate to each of these three angular coordinates (each ω is the

time rate of change of an angle of rotation about an axis: ω = d (angle)/dt)) is obtained, as
usual, from the Lagrangian function L = T - V of classical mechanics:

p = ∂L/∂q = ∂(Kinetic Energy- Potential Energy)/∂(dq/dt)

or (using Ja to denote the angular momentum conjugate to ωa and realizing that since this
free rotational motion has no potential energy, L = T = Hrot)

Ja = ∂Hrot/∂ωa = Ia ωa

Jb = Ib ωb

Jc = Ic ωc.

The rotational Hamiltonian can then be written in terms of angular momenta and principal-
axis moments of inertia as:

Hrot = Ja2/2Ia + Jb2/2Ib + Jc2/2Ic.

With respect to this principal axis point of view, the rotation of the molecule is
described in terms of three angles (it takes three angles to specify the orientation of such a
rigid body)  that detail the movement of the a, b, and c axes relative to the lab-fixed X, Y,
and Z axes. It is convention to call these angles θ ' (which can be viewed as the angle



between the lab-fixed Z axis and one of the principal axes- say c- in the molecule), φ' , and

χ'. The volume element for integration over these three angles is sinθ dθ dφ dχ , with φ
and χ running between 0 and 2π, and θ going from 0 to π. These coordinates are described
visually below.

depends on
φ ' and χ'

θ'

c

a

 b

Z 

X Y

The a, b, c, coordinate system can be formed by beginning with the original X, Y, Z
system and sequentially:

(i) rotating about the Z axis by an amount φ', to generate intermediate X' Y', and Z = Z'

axes (X' and Y' being rotated by φ' relative to X and Y);



φ '

Y'

X'

Z = Z'

X Y

(ii) next rotating about the Y' axis by an amount θ ', to generate X'', Y', and Z'' = c axes



θ'

θ'

Z'' = c

X''

Y' = Y''X'

Z'

(iii) and finally rotating about the new Z'' = c axis by an amount χ' to generate the final
X''' = a and Y''' = b axes



Y''' = b

X''' = a

χ'

χ'

Z'

Y''

X''

Z'' = c

θ'

Thus, the original and final coordinates can be depicted as follows:



YX

Z 

 b

a

c

The explicit expressions for the components of the quantum mechanical angular
momentum operators along the three new axes are:

Ja = -ih cosχ [cotθ ∂/∂χ - (sinθ)-1∂/∂φ ] - -ih sinχ ∂/∂θ

Jb = ih sinχ [cotθ ∂/∂χ - (sinθ)-1∂/∂φ ] - -ih cosχ ∂/∂θ

Jc = - ih ∂/∂χ.

The corresponding total angular momentum operator J2 can be obtained as

J2 = Ja2 + Jb2 + Jc

= - ∂2/∂θ2 - cotθ ∂/∂θ



- (1/sinθ) (∂2/∂φ2 + ∂2/∂χ2 - 2 cosθ∂2/∂φ∂χ),

and the component along the original Z axix JZ is still - ih ∂/∂φ.

Returning now to the rigid-body rotational Hamiltonian shown above, there are two
special cases for which exact eigenfunctions and energy levels can be found using the
general properties of angular momentum operators.

a. Spherical and Symmetric Top Energies

The special cases for which Ia = Ib = Ic (the spherical top) and for which Ia = Ib
> Ic (the oblate symmetric top) or Ia > Ib = Ic (the prolate symmetric top) are covered in

Chapter 3. In the former case, the rotational Hamiltonian can be expressed in terms of J2 =
Ja2 + Jb2 + Jc2 because all three moments of inertia are identical:

Hrot = J2/2I,

as a result of which the eigenfunctions of Hrot are those of J2 (and Ja as well as JZ both of

which commute with J2 and with one another; JZ is the component of J along the lab-fixed

Z-axis and commutes with Ja  because JZ = - ih ∂/∂φ and Ja = - ih ∂/∂χ act on different
angles). The energies associated with such eigenfunctions are

E(J,K,M) = h2 J(J+1)/2I2,

for all K (i.e., Ja quantum numbers) ranging from -J to J in unit steps and for all M (i.e.,

JZ quantum numbers) ranging from -J to J. Each energy level is therefore (2J + 1)2

degenarate because there are
2J + 1 possible K values and 2J + 1 M values for each J.

In the symmetric top cases, Hrot can be expressed in terms of J2 and the angular
momentum along the axis with the unique moment of inertia (denoted the a-axis for prolate
tops and the c-axis of oblate tops):

Hrot = J2/2I + Ja2{1/2Ia - 1/2I}, for prolate tops

Hrot = J2/2I + Jc2{1/2Ic - 1/2I}, for oblate tops.

Hrot , along with J2 and Ja (or Jc for oblate tops) and JZ (the component of J along the lab-

fixed Z-axis) form a mutually commutative set of operators. JZ , which is - i h ∂/∂φ, and Ja

(or c), which is - i h ∂/∂χ, commute because they act on different angles. As a result, the

eigenfunctions of Hrot are those of J2 and Ja or Jc (and of JZ), and the corresponding
energy levels are:

E(J,K,M) =  h2 J(J+1)/2I2 +  h2 K2 {1/2Ia - 1/2I},

for prolate tops



E(J,K,M) =  h2 J(J+1)/2I2 +  h2 K2 {1/2Ic - 1/2I},

for oblate tops,

again for K and M (i.e., Ja or Jc and JZ quantum numbers, respectively) ranging from -J to
J in unit steps. Since the energy now depends on K, these levels are only 2J + 1
degenerate due to the
2J + 1 different M values that arise for each J value.

b. Spherical and Symmetric Top Wavefunctions

The eigenfunctions of J2, Ja (or Jc) and JZ clearly play important roles in polyatomic
molecule rotational motion; they are the eigenstates for spherical-top and symmetric-top
species, and they can be used as a basis in terms of which to expand the eigenstates of
asymmetric-top molecules whose energy levels do not admit an analytical solution. These
eigenfunctions |J,M,K> are given in terms of the set of so-called "rotation matrices"
which are denoted DJ,M,K:

|J,M,K> = 
2J + 1

8  π2
  D*J,M,K(θ,φ,χ).

They obey

J2 |J,M,K> = h2 J(J+1) |J,M,K>,

Ja (or Jc for oblate tops) |J,M,K> = h K |J,M,K>,

JZ |J,M,K> = h M |J,M,K>.

It is demonstrated below why the symmetric and spherical top wavefunctions are given in
terms of these DJ,M',M functions.

c. Rotation Matrices

These same rotation matrices arise when the transformation properties of spherical
harmonics are examined for transformations that rotate coordinate systems. For example,
given a spherical harmonic YL,M(θ, φ) describing the location of a particle in terms of polar

angles θ,φ within the X, Y, Z axes, one might want to rotate this function by Euler angles

θ ' ,φ' ,χ' and    evaluate this rotated function at the same physical point   . As shown in Zare's

text on angular momentum, the rotated function Ω YL,M evaluated at the angles θ,φ can be
expressed as follows:

Ω YL,M(θ,φ) = ΣM' DL,M',M(θ ' ,φ' ,χ') YL,M' (θ,φ).

In this form, one sees why the array DJ,M',M is viewed as a unitary matrix, with M'
and M as indices, that describes the effect of rotation on the set of functions {YL,M}. This

mapping from the unrotated set {YL,M} into the rotated set of functions {Ω YL,M} must be



unitary if the sets {Ω YL,M} and {YL,M} are both orthonormal. The unitary matrix carries
an additional index (L in this example) that details the dimension (2L + 1) of the space of
functions whose transformations are so parameterized. An example, for L =1, of a set of
unrotated and rotated functions is shown below.

Unrotated
Functions for L = 1

depends on
φ ' and χ'

θ'

c

a

 b

Z 

X Y



Rotated 
Functions for L =1

YX

Z 

 b

a

c

θ'

depends on
φ ' and χ'

d. Products of Rotation Matrices

An identity that proves very useful when treating coupled angular momenta that are
subjected to rotations of the axes with respect to which their eigenfunctions are quantized
can be derived by combining the above result:

Ω YL,M(θ,φ) = ΣM' DL,M',M(θ ' ,φ' ,χ') YL,M' (θ,φ)

and the expression for couping two angular momenta:

|J,M> = Σm,n <j,m;l,n|J,M> |j,m> |l,n>.

Applying the rotation Ω to the left and right sides of the equation defining |J,M>, gives:

ΣM' DJ, M, M'(Ω) |J,M'>

= Σm',n' <j,m;l,n|J,M> Dj, m, m'(Ω)Dl, n, n'(Ω) |j,m'> |l,n'> .



Multiplying both sides of this equation by <J,M'| and using the orthonormality of the
angular momentum eigenfunctions gives:

DJ, M, M' = Σm',n' <j,m;l,n|J,M> Dj, m, m' Dl, n, n' <J,M'|j,m'; l,n'>.

This result expresses one DJ,M,M' in terms of sums of products of D matrix elements for
angular momenta j, m, m' and l, n, n' that can be coupled to for J, M, M'.

If the above series of operations is applied to the angular momentum coupling
expression in the form:

|j,m> |l,n> = ΣJ,M <J,M|j,m;l,n> |J,M>,

one can obtain:

Σm',n' Dj, m, m'(Ω)Dl, n, n'(Ω) |j,m'> |l,n'>

= ΣJ,M <J,M|j,m;l,n>  ΣM' DJ, M, M' (Ω) |J,M'>.

Multiplying by <j,m'| <l,n'| then yields:

 Dj, m, m' Dl, n, n'

= ΣJ,M,M' <J,M|j,m;l,n> <j,m'; l,n'|J,M'> DJ, M, M'   

which expresses the product of two D matrices as a sum of D matrices whose angular
momentum indices are related to those of the product.

e. Rigid Body Rotational Wavefunctions as Rotation Matrices

This same analysis can be used to describe how a set of functions ψJ,M (θ, φ, χ)
(labeled by a total angular momentum quantum number that determines the number of
functions in the set and an M quantum number that labels the Z-axis projection of this
angular momentum) that are functions of three coordinates θ, φ, χ, transform under
rotation. In particular, one obtains a result analogous to the spherical harmonic expression:

Ω ψJ,M (θ, φ, χ) =  ΣM' DJ,M',M(θ ' ,φ' ,χ') ψJ,M' (θ, φ, χ).

Here ψJ,M (θ, φ, χ) is the original unrotated function evaluated at a point whose angular

coordinates are θ, φ, χ; θ ' ,φ' ,χ' are the Euler angles through which this function is rotated

to obtain the rotated function Ω ψJ,M whose value at the above point is denoted Ω ψJ,M (θ,

φ, χ).

Now, if the angles θ ' ,φ' ,χ' through which the original function is rotated were

   chosen     to equal the angular coordinates θ ,φ ,χ of the point discussed here, then the rotated

function  Ω ψJ,M evaluated at this point could easily be identified. Its value would be



nothing more than the unrotated function ψJ,M evaluated at θ = 0, φ = 0, χ = 0. In this
case, we can write:

Ω ψJ,M (θ, φ, χ) = ψJ,M (0, 0, 0) = ΣM' DJ,M',M(θ ,φ ,χ) ψJ,M' (θ, φ, χ).

Using the unitary nature of the DL,M',M array, this equation can be solved for the ψJ,M' (θ,

φ, χ) functions:

ψJ,M' (θ, φ, χ) = ΣM D*J,M',M(θ ,φ ,χ) ψJ,M (0, 0, 0).

This result shows that the functions that describe the rotation of a rigid body through angles
θ ,φ ,χ must be a combination of rotation matrices (actually D*L,M',M(θ ,φ ,χ) functions).

Because of the normalization of the DL,M,M' (θ, φ, χ) functions:

⌡⌠(D*L',M',K' ( θ,  φ,  χ) DL,M,K ( θ,  φ,  χ) sinθ dθ dφ dχ)  

= 
8π2

2L+1   δL,L' δM,M'  δK,K'

the properly normalized rotational functions that describe spherical or symmetric tops are:

|J,M,K> = 
2J + 1

8  π2
  D*J,M,K(θ,φ,χ)

as given above. For asymmetric top cases, the correct eigenstates are combinations of these
{|J,M,K>} functions:

ψJ,M (θ, φ, χ) = ΣK 
2J + 1

8  π2
   D*J,M,K(θ ,φ ,χ) CK

with amplitudes {CK} determined by diagonalizing the full Hrot Hamiltonian within the
basis consisting of the set of

2J + 1

8  π2
   D*J,M,K(θ ,φ ,χ)

functions.

4. Electronic and Nuclear Zeeman Interactions

When magnetic fields are present, the intrinsic spin angular momenta of the
electrons S (j) and of the nuclei I(k) are affected by the field in a manner that produces
additional energy contributions to the total Hamiltonian H. The Zeeman interaction of an
external magnetic field (e.g., the earth's magnetic field of 4. Gauss or that of a NMR



machine's magnet) with such intrinsic spins is expressed in terms of the following
contributions to H:

Hzeeman  = (ge e/2mec) Σ j Sz(j) H

- (e/2mpc) Σk gk Iz(k) H.

Here gk is the so-called nuclear g-value of the kth nucleus, H  is the strength of the applied
field, mp is the mass of the proton, ge is the electron magnetic moment, and c is the speed

of light. When chemical shieldings (denoted σk), nuclear spin-spin couplings (denoted
Jk,l), and electron-nuclear spin couplings (denoted aj,k) are considered, the following spin-
dependent Hamiltonian is obtained:

H = (ge e/2mec) Σ j Sz(j) H  - (e/2mpc) Σk gk (1-σk)Iz(k) H.

+ h Σ j,k (aj,k/h2) I(k) • S (j) + h Σk,l (Jk,l/h2) I(k) • I(l).

Clearly, the treatment of electron and nuclear spin angular momenta is essential to analyzing
the energy levels of such Hamiltonia, which play a central role in NMR and ESR
spectroscopy.



QMIC program descriptions
Appendix H. QMIC Programs

The Quantum Mechanics in Chemistry (QMIC) programs whose source and executable ver
sions are provided along with the text are designed to be pedagogical in nature; therefore
they are not designed with optimization in mind, and could certainly be improved by
interested students or instructors. The software is actually a suite of progra ms allowing the
student to carry out many different types of ab initio calculations. The student can perform
Hartree-Fock, MP2, or CI calculations, in a single step or by putting together a series of
steps, by running! the programs provided. The software can be found on the world wide
web in several locations:
• at the University of Utah, located at: http://www.chem.uta h.edu

• at the Pacific Northwest National Laboratory, located at:
http://www.emsl.pnl.gov:2080/people/bionames/nichols_ja.html

• at the Oxford Univ ersity Press, located at: http://www.oup-usa.org
These programs are designed to run in very limited environments (e.g. memory, disk, and
CPU power). With the exception of "integral.f" all are written in single precision and use
min imal memory (less than 640K) in most instances. The programs are designed for
simple systems e.g., only a few atoms (usually less than 8) and small basis sets. They do
not use group symmetry, and they use simple Slater det! erminants rather than spin-
adapted configuration state functions to perform the CI. The programs were all originally
developed and run on an IBM RISC System 6000 using AIX v3.2 and Fortran compilers
xlf v2 and v3. All routines compile untouched with gnu compilers and utilities for work
stations and PCs. The gnu utilities were obtained from the ftp server: ftp.coast.net in
directory: simtel/vendors/gnu. Except for very minor modifications all run untouched when
compiled using Language Systems Fortran for the Macintosh. The intrinsics "and", "xor",
and "rshift" have to be replace by their counterparts "iand", "ixor", and "ishft". These
intrinsic functions are only used in program hamilton.f and their replacement functions are
detailed and commented in the hamilton program source. No floating point unit has been
turned on in the compilation. Because of this, computations on chemical systems with lots
of basis functions performed on an old Mac SE can be tiring (the N^5 processes like the
transformation! can take as long as a half hour on these systems). Needless to say all of
these run in less than a minute on the fancier workstations. Special thanks goes to Martin
Feyereisen (Cray Research) for supplying us with very compact subroutines which
evaluate one- and two-electron integrals i n a very simple and straight forward manner.
Brief descriptions of each of the programs in QMIC follow:

    Current QMIC program limits:   
• Maximum number of atoms: 8

• Maximum number of orbitals: 26

• Maximum number of shells: 20

• Ma ximum number of primitives per shell: 7

• Maximum orbital angular momentum: 1

• Maximum number of active orbitals in the CI: 15

! xt• Maximum number of determinants: 350

• Maximum matrix size (row or column): 350



    Program INTEGRAL     This program is designed to calculate on e- and two-electron AO
integrals and to write them out to disk in canonical order (in Dirac <12|12> convention). It
is designed to handle only S and P orbitals. With the program limitations described above,
INTEGRAL memory usage is 542776 bytes.

    Program MOCOEFS     This program is designed to read in (from the keyboard) the LCAO-
MO coefficient matrix and write it out to disk. Alternatively, you can choose to have a unit
matrix (as your initial guess) put out to disk. With the program l imitations described
above, MOCOEFS memory usage is 2744 bytes.

    Program FNCT_MAT     This program is designed to read in a real square matrix, perform a
function on it, and return this new array. Possible fun! ctions, using X as the input matrix,
are:

(1) X^(-1/2), NOTE: X must be real symmetric, and positive definite.

(2) X^(+1/2), NOTE: X must be real symmetric, and positive definite.

(3) X^(-1), NOTE: X must be real symmetric, and have non-zero ei genvalues.

(4) a power series expansion of a matrix to find the transformation matrix:
U = exp(X) = 1 + X + X**2/2! + X**3/3! + ... + X**N/N!

With the program limitations described above, FNCT_MAT memory usage is 1960040
bytes.

    Program FOCK      This program is designed to read in the LCAO-MO coefficient matrix, the
one- and two-electron AO integrals and to form a closed shell Fock matrix (i.e., a Fock
matrix for species with all doubly occupied or bitals). With the program limitations
described above, FOCK memory usage is 255256 bytes.

    Program UTMATU      This program is designed to read in a real matrix, A, a real
transformation matrix, B, perform the ! transformation: X = B(transpose) *A * B, and
output the result. With the program limitations described above, UTMATU memory usage
is 1960040 bytes.

    Program DIAG      This program is designed to read in a real symmetric matrix (but as a
square matrix on disk), diagonalize it, and return all eigenvalues and corresponding
eigenvectors. With the program limitations described above, DIAG memory usage is
738540 bytes.

    Program MATXMAT     This program is designed to read in two real matrices; A and B, and
to mul tiply them together: AB = A * B, and output the result. With the program limitations
described above, MATXMAT memory usage is 1470040 bytes.

    Program FENERGY     This program is designed to read in the LCAO-MO coefficient matrix,
the one- a nd two-electron AO integrals (in Dirac <12|12> convention), and the Fock orbital
energies. Upon transformation of the one- and two-electron integrals from the AO to the
MO basis, the closed shell Hartree - Fock energy is c! alculated in two ways. First,
theenergy is calculated with the MO integrals,

Sum(k) 2*<k|h|k> + Sum(k,l) (2*<k,l|k,l> - <k,l|l,k>) + ZuZv/Ruv.



Secondly, the energy is calculated with the Fock orbital energies and one electron energies
in the MO basis,

Sum( k) (eps(k) + <k|h|k>) + ZuZv/Ruv.

With the program limitations described above, FENERGY memory usage is 1905060
bytes..

    Program TRANS     This program is designed to read in the LCAO-MO coefficient matrix, the
one- and two-elect ron AO integrals (in Dirac <12|12> convention), and to transform the
integrals from the AO to the MO basis, and write these MO integrals to a file. With the
program limitations described above, TRANS memory usage is 1905060 bytes.

    Progra m SCF     This program is designed to read in the LCAO-MO coefficient matrix (or
generate one), the one- and two-electron AO integrals and form a closed shell Fock matrix
(i.e., a Fock matrix for species with all doubly ! occupied orbitals). It then solves the Fock
equations; iterating until convergence to six significant figures in the energy expression. A
modified damping algorithm is used to insure convergence. With the program limitations
described above, SCF memory usage is 259780 bytes.
r     Program MP2     This program is designed to read in the transformed one- and two-electron
integrals and the Fock orbital energies after which it will compute the second order Moller
Plesset perturbation theory energy (MP2). With the program limitat ions described above,
MP2 memory usage is 250056 bytes.

    Program HAMILTON      This program is designed to generate or read in a list of
determinants. You can generate determinants for a CAS (Complete Active Space) of
orbitals or you can inp ut your own list of determinants. Next, if you wish, you may read
in the one- and two-electron MO integrals and form a Hamiltonian matrix over the
determinants. Finally, if you so choose, you may diagonalize the Hamiltoni! an matrix
constructed over the determinants generated. With the program limitations described above,
HAMILTON memory usage is 988784 bytes.

    Program RW_INTS     This program is designed to read the one- and two- electron AO
integrals (in Dirac <12|12> convention) from use r input and put them out to disk in
canonical order. There are no memory limitations associated with program RW_INTS.

    QMLIB     This is a library of subroutines and functions which are used by the QMIC
programs.

   "limits.h"     This is an include file containing ALL the parameters which determine memory
requirements for the QMIC programs.

     Makefile    There are a few versions of Makefiles available: a generic Makefile (Makefile.gnu)
which works with Gnu make on a unix box, a Makefile (Makefile.486) which was used to
make the programs on a 486 PC using other Gnu utilities like "f2c", "gcc", etc. and a
Makefile (Makefile.mac) which was used on the Macintosh.

    BasisL! ib     This is a library file whichcontains gaussian atomic orbital basis sets for
Hydrogen - Neon. The basis sets available to choose from are:

1.) STO3G by Hehre, Stewart, and Pople, JCP, 51, 2657 (1969).
2.) 3-21G by Brinkley, Pople, and Hehre, JACS, 102, 939 (1980 ).
3.) [3s2p] by Dunning and Hay in: Modern Theoretical Chemistry Vol 3, Henry F.

Schaefer III, Ed., 1977, Plenum Press, NY.





The QMIC software is broken up into the following folders (directories):

|------- Doc (potential contributed teaching material)
|
| Source
| /
| /
| /
| /

| /
QMIC --- Examples

| \
| \ RS6000
| \ /
| \ !/

| \ /
| Execs ------ Mac
| | \
| | \

par | | PC486
| |
| |
| |
| |
| |--- Other platforms as
| requested and available
|
|
|------Readme.1st, Readme.2nd

Source - This folder (directory) contains all FORTRAN source code, include files,
Makefiles, and the master copy of the basis set library.

Execs - This folder (directory) contains all the executables as well as the basis set library
file accessed by the "integral" executa! ble (BasisLib). The executables are stored as a self-
extracting archive file. The executables require about 1.3 Mbytes and cannot be held once
extracted on a floppy disk (therefore copy the files to a "hard drive" before extracting ...).

Examples - This folder (directory ) c ontains input and associated output examples.



Section 1 Exercises, Problems, and Solutions

    Review Exercises

1. Transform (using the coordinate system provided below) the following functions
accordingly:

Θ

φ

r

X

Z

Y

a. from cartesian to spherical polar coordinates
3x + y - 4z = 12

b. from cartesian to cylindrical coordinates
y2 + z2 = 9

c. from spherical polar to cartesian coordinates
r = 2 Sinθ Cosφ

2. Perform a separation of variables and indicate the general solution for the following
expressions:

a. 9x + 16y
∂y

∂x
  = 0

b. 2y + 
∂y

∂x
  + 6 = 0

3. Find the eigenvalues and corresponding eigenvectors of the following matrices:

a.  
-1  2
 2  2  

b. 






-2  0  0

 0 -1  2
 0  2  2

 



4. For the hermitian matrix in review exercise 3a show that the eigenfunctions can be
normalized and that they are orthogonal.

5. For the hermitian matrix in review exercise 3b show that the pair of degenerate
eigenvalues can be made to have orthonormal eigenfunctions.

6. Solve the following second order linear differential equation subject to the specified
"boundary conditions":

d2x

dt2
  + k2x(t) = 0 , where x(t=0) = L, and 

dx(t=0)
dt   = 0.

    Exercises

1. Replace the following classical mechanical expressions with their corresponding
quantum mechanical operators.

a. K.E. = 
mv2

2     in three-dimensional space.

b. p = mv , a three-dimensional cartesian vector.
c. y-component of angular momentum: Ly = zpx - xpz.

2. Transform the following operators into the specified coordinates:

a. Lx = 
h−
i  









 y  
∂
∂z

 -  z  
∂
∂y

   from cartesian to spherical polar coordinates.

b. Lz = 
h-

i  
∂
∂φ

  from spherical polar to cartesian coordinates.

3. Match the eigenfunctions in column B to their operators in column A.  What is the
eigenvalue for each eigenfunction?

    Column A        Column B    

i. (1-x2) 
d2

dx2
  - x 

d
dx 4x4 - 12x2 + 3

ii. 
d2

dx2
 5x4

iii. x 
d
dx e3x + e-3x

iv.
d2

dx2
  - 2x 

d
dx x2 - 4x + 2

v. x 
d2

dx2
  + (1-x) 

d
dx 4x3 - 3x

4. Show that the following operators are hermitian.
a. Px
b.  Lx

5. For the following basis of functions (Ψ2p-1
, Ψ2p0

, and Ψ2p+1
), construct the matrix

representation of the Lx operator (use the ladder operator representation of Lx).  Verify that



the matrix is hermitian.  Find the eigenvalues and corresponding eigenvectors.  Normalize
the eigenfunctions and verify that they are orthogonal.

Ψ2p-1
 = 

1

8π1/2
 




Z

a  
5/2 

re-zr/2a Sinθ e-iφ

Ψ2po
 = 

1

π1/2
 




Z

2a  
5/2 

re-zr/2a Cosθ

Ψ2p1
 = 

1

8π1/2
 




Z

a  
5/2 

re-zr/2a Sinθ eiφ

6. Using the set of eigenstates (with corresponding eigenvalues) from the preceding
problem, determine the probability for observing

a z-component of angular momentum equal to 1h-      if    the state is given by the Lx eigenstate

with 0h-   Lx eigenvalue.

7. Use the following definitions of the angular momentum
operators:

Lx = 
h−
i  









 y  
∂
∂z

 -  z  
∂
∂y

  , Ly = 
h−
i  









 z  
∂
∂x

 -  x  
∂
∂z

  ,

Lz = 
h−
i  









 x  
∂
∂y

 -  y  
∂
∂x

  , and L2 = Lx
2  + Ly

2  + Lz
2 ,

and the relationships:

[x ,px] = ih− , [y ,py] = ih− , and [z,pz] = ih− ,
to demonstrate the following operator identities:

a. [Lx,Ly] = ih−  Lz,

b. [Ly,Lz] = ih−  Lx,

c. [Lz,Lx] = ih−  Ly,

d. [Lx,L2] = 0,

e. [Ly,L2] = 0,

f. [Lz,L2] = 0.

8. In exercise 7 above you determined whether or not many of the angular momentum
operators commute.  Now, examine the operators below along with an appropriate given
function.  Determine if the given function is simultaneously an eigenfunction of     both    
operators.  Is this what you expected?

a. Lz, L2, with function: Y
0
0(θ,φ)  = 

1

4π
 .

b. Lx, Lz, with function: Y
0
0(θ,φ)  = 

1

4π
 .

c. Lz, L2, with function: Y
1
0(θ,φ)  = 

3

4π
  Cosθ.



d. Lx, Lz, with function: Y
1
0(θ,φ)  = 

3

4π
  Cosθ.

9. For a "particle in a box" constrained along two axes, the wavefunction Ψ(x,y) as given
in the text was :

Ψ(x,y) = 




1

2Lx

1
2




1

2Ly

1
2 








e

inxπx

Lx  -  e

-inxπx

Lx 







e

inyπy

Ly  -  e

-inyπy

Ly  ,

with nx and ny = 1,2,3, .... Show that this wavefunction is normalized.

10. Using the same wavefunction, Ψ(x,y), given in exercise 9 show that the expectation
value of px vanishes.

11. Calculate the expectation value of the x2 operator for the first two states of the
harmonic oscillator.  Use the v=0 and v=1 harmonic oscillator wavefunctions given below

which are normalized such that ⌡⌠

-∞

+∞

Ψ(x)2dx  = 1.  Remember that Ψ0 = 






α

π
 
1/4

e-αx2/2 and Ψ1

= 






4α3

π
 
1/4

xe-αx2/2.

12. For each of the one-dimensional potential energy graphs shown below, determine:
a. whether you expect symmetry to lead to a separation into odd and even solutions,
b. whether you expect the energy will be quantized, continuous, or both, and
c. the boundary conditions that apply at each boundary (merely stating that Ψ

and/or 
∂Ψ
∂x

  is continuous is all that is necessary).



13. Consider a particle of mass m moving in the potential:
V(x) = ∞ for       x < 0 Region I

V(x) = 0 for 0 ≤ x ≤ L Region II

V(x) = V(V > 0) for       x > L Region III
a. Write the general solution to the Schrödinger equation for the regions I, II, III,

assuming a solution with energy E < V (i.e. a bound state).
b. Write down the wavefunction matching conditions at the interface between

regions I and II and between II and III.
c. Write down the boundary conditions on Ψ for x → ±∞.
d. Use your answers to a. - c. to obtain an algebraic equation which must be

satisfied for the bound state energies, E.



e. Demonstrate that in the limit V → ∞, the equation you obtained for the bound

state energies in d. gives the energies of a particle in an infinite box; En = 
n2h−2π2

2mL2
  ;    n =

1,2,3,...

    Problems

1. A particle of mass m moves in a one-dimensional box of length L, with boundaries at x
= 0 and x = L.  Thus, V(x) = 0 for 0 ≤ x ≤ L, and V(x) = ∞ elsewhere.  The normalized

eigenfunctions of the Hamiltonian for this system are given by Ψn(x) = 




2

L  
1/2

 Sin
nπx
L  , with

En = 
n2π2h−2

2mL2
 , where the quantum number n can take on the values n=1,2,3,....

a. Assuming that the particle is in an eigenstate, Ψn(x), calculate the probability that

the particle is found somewhere in the region 0 ≤ x ≤ L4  .  Show how this probability

depends on n.
b. For what value of n is there the largest probability of finding the particle in 0 ≤ x

≤ L4  ?

c. Now assume that Ψ is a superposition of two eigenstates,

Ψ = aΨn + bΨm, at time t = 0.  What is Ψ at time t?  What energy expectation value does

Ψ have at time t and how does this relate to its value at t = 0?
d. For an experimental measurement which is capable of distinguishing systems in

state Ψn from those in Ψm, what fraction of a large number of systems each described by

Ψ will be observed to be in Ψn?  What energies will these experimental measurements find
and with what probabilities?

e. For those systems originally in Ψ = aΨn + bΨm which were observed to be in

Ψn at time t, what state (Ψn, Ψm, or whatever) will they be found in if a second
experimental measurement is made at a time t' later than t?

f. Suppose by some method (which need not concern us at this time) the system has
been prepared in a nonstationary state (that is, it is not an eigenfunction of H).  At the time
of a measurement of the particle's energy, this state is specified by the normalized

wavefunction Ψ = 




30

L5
 
1/2

x(L-x) for 0 ≤ x ≤ L, and Ψ = 0 elsewhere.  What is the

probability that a measurement of the energy of the particle will give the value En = 
n2π2h−2

2mL2
  

for any given value of n?
g. What is the expectation value of H, i.e. the average energy of the system, for the

wavefunction Ψ given in part f?

2. Show that for a system in a non-stationary state,



Ψ = ∑
j

CjΨje
-iEjt/h

-
 , the average value of the energy does     not    vary with time but the

expectation values of other properties     do     vary with time.

3. A particle is confined to a one-dimensional box of length L having infinitely high walls
and is in its lowest quantum state.  Calculate: <x>, <x2>, <p>, and <p2>.  Using the

definition ∆Α = (<A2> − <A>2)1/2 , to define the uncertainty , ∆A, calculate ∆x and ∆p.

Verify the Heisenberg uncertainty principle that ∆x∆p ≥ h− /2.

4. It has been claimed that as the quantum number n increases, the motion of a particle in a
box becomes more classical.  In this problem you will have an oportunity to convince
yourself of this fact.

a. For a particle of mass m moving in a one-dimensional box of length L, with ends
of the box located at x = 0 and x = L, the classical probability density can be shown to be

independent of x and given by P(x)dx = 
dx
L   regardless of the energy of the particle.  Using

this probability density, evaluate the probability that the particle will be found within the

interval from x = 0 to x = 
L
4 .

b. Now consider the quantum mechanical particle-in-a-box system.  Evaluate the

probability of finding the particle in the interval from x = 0 to x = 
L
4  for the system in its

nth quantum state.
c. Take the limit of the result you obtained in part b as n → ∞.  How does your

result compare to the classical result you obtained in part a?

5. According to the rules of quantum mechanics as we have developed them, if Ψ is the

state function, and φn are the eigenfunctions of a linear, Hermitian operator, A, with

eigenvalues an, Aφn = anφn, then we can expand Ψ in terms of the complete set of

eigenfunctions of A according to Ψ = ∑
n

cnφn , where cn = ⌡⌠φn*Ψ dτ .  Furthermore, the

probability of making a measurement of the property corresponding to A and obtaining a
value an is given by cn2, provided both Ψ and φn are properly normalized.  Thus, P(an) =

cn2.  These rules are perfectly valid for operators which take on a discrete set of
eigenvalues, but must be generalized for operators which can have a continuum of
eigenvalues.  An example of this latter type of operator is the momentum operator, px,

which has eigenfunctions given by φp(x) = Aeipx/h-  where p is the eigenvalue of the px
operator and A is a normalization constant.  Here p can take on any value, so we have a
continuous spectrum of eigenvalues of px.  The obvious generalization to the equation for

Ψ is to convert the sum over discrete states to an integral over the continuous spectrum of
states:

Ψ(x) = ⌡⌠

-∞

+∞

C(p)φp(x)dp  = ⌡⌠

-∞

+∞

C(p)Aeipx/h-dp 



The interpretation of C(p) is now the desired generalization of the equation for the
probability P(p)dp = C(p)2dp.  This equation states that the probability of measuring the

momentum and finding it in the range from p to p+dp is given by C(p)2dp.  Accordingly,
the probability of measuring p and finding it in the range from p1 to p2 is given by

⌡⌠
p1

p2

P(p)dp  = ⌡⌠
p1

p2

C(p)*C(p)dp .  C(p) is thus the probability amplitude for finding the particle

with momentum between p and p+dp.  This is the      momentum representation     of the

wavefunction.  Clearly we must require C(p) to be normalized, so that ⌡⌠

-∞

+∞

C(p)*C(p)dp  = 1.

With this restriction we can derive the normalization constant A = 
1

2πh−
 , giving a direct

relationship between the wavefunction in coordinate space, Ψ(x), and the wavefunction in
momentum space, C(p):

Ψ(x) = 
1

2πh−
 ⌡⌠

-∞

+∞

C(p)eipx/h-dp ,

and by the fourier integral theorem:

C(p) = 
1

2πh−
 ⌡⌠

-∞

+∞

Ψ(x)eipx/h-dx .

Lets use these ideas to solve some problems focusing our attention on the harmonic
oscillator; a particle of mass m moving in a one-dimensional potential described by V(x) =
kx2

2  .

a. Write down the Schrödinger equation in the coordinate representation.
b. Now lets proceed by attempting to write the Schrödinger equation in the

momentum representation.  Identifying the kinetic energy operator T, in the momentum

representation is quite straightforward T = 
p2

2m  = -

Error!.  Writing the potential, V(x), in the momentum representation is not quite as
straightforward.  The relationship between position and momentum is realized in their

commutation relation [x,p] = ih− ,  or  (xp - px) = ih− 
This commutation relation is easily verified in the coordinate representation leaving x
untouched (x  = x.) and using the above definition for p.  In the momentum representation
we want to leave p untouched (p = p.) and define the operator x  in such a manner that the
commutation relation is still satisfied.  Write the operator x  in the momentum
representation.  Write the full Hamiltonian in the momentum representation and hence the
Schrödinger equation in the momentum representation.

c. Verify that Ψ as given below is an eigenfunction of the Hamiltonian in the
coordinate representation.  What is the energy of the system when it is in this state?



Determine the normalization constant C, and write down the normalized ground state
wavefunction in coordinate space.

Ψ(x) = C exp (- mk 
x2

2h−
  ).

d. Now consider Ψ in the momentum representation.  Assuming that an

eigenfunction of the Hamiltonian may be found of the form Ψ(p) = C exp (-αp2),

substitute this form of Ψ into the Schrödinger equation in the momentum representation to

find the value of α which makes this an eigenfunction of H having the same energy as

Ψ(x) had.   Show that this Ψ(p) is the proper fourier transform of Ψ(x).  The following
integral may be useful:

⌡⌠

-∞

+∞

e-βx2Cosbxdx  = 
π
β

  e-b2/4β.

Since this Hamiltonian has no degenerate states, you may conclude that Ψ(x) and Ψ(p)
represent the same state of the system if they have the same energy.

6. The energy states and wavefunctions for a particle in a 3-dimensional box whose lengths
are L1, L2, and L3 are given by

E(n1,n2,n3) = 
h2

8m 












n1

L1

2
 +  





n2

L2

2
 +  





n3

L3

2  
  and

Ψ(n1,n2,n3) = 




2

L1

1
2
 





2

L2

1
2 





2

L3

1
2
 
 Sin







n1πx

L1
 Sin







n2πy

L2
 Sin







n3πz

L3
 .

These wavefunctions and energy levels are sometimes used to model the motion of
electrons in a central metal atom (or ion) which is surrounded by six ligands.

a. Show that the lowest energy    level    is nondegenerate and the second energy    level   
is triply degenerate if L1 = L2 = L3.  What values of n1, n2, and n3 characterize the    states   
belonging to the triply degenerate level?

b. For a box of volume V = L1L2L3, show that for three electrons in the box (two
in the nondegenerate lowest "orbital", and one in the next), a lower    total    energy will result
if the box undergoes a rectangular distortion (L1 = L2 ≠ L3).      which preserves the total

    volume    than if the box remains undistorted (hint: if V is fixed and L1 = L2, then L3 = 
V

L12
  

and L1 is the only "variable").
c. Show that the degree of distortion (ratio of L3 to L1) which will minimize the

total energy is L3 = 2 L1.  How does this problem relate to Jahn-Teller distortions?  Why
(in terms of the property of the central atom or ion) do we do the calculation with fixed
volume?

d. By how much (in eV) will distortion lower the energy (from its value for a cube,

L1 = L2 = L3) if V = 8 Å3 and 
h2

8m  = 6.01 x 10-27 erg cm2.  1 eV = 1.6 x 10-12 erg

7. The wavefunction Ψ = Ae-a| |x   is an exact eigenfunction of some one-dimensional

Schrödinger equation in which x varies from -∞ to +∞.  The value of a is: a = (2�Å)-1.  For



now, the potential V(x) in the Hamiltonian (H = -
h−

2m 
d2

dx2
  + V(x)) for which Ψ(x) is an

eigenfunction is unknown.
a. Find a value of A which makes Ψ(x) normalized.  Is this value unique?  What

units does Ψ(x) have?
b. Sketch the wavefunction for positive and negative values of x, being careful to

show the behavior of its slope near x = 0.  Recall that | |x  is defined as:

| |x  = 
 x  i f  x  > 0

-x if  x < 0
 

c. Show that the derivative of Ψ(x) undergoes a     discontinuity     of magnitude 2(a)3/2

as x goes through x = 0.  What does this fact tell you about the potential V(x)?
d. Calculate the expectation value of | |x  for the above normalized wavefunction

(obtain a numerical value and give its units).  What does this expectation value give a
measure of?

e. The potential V(x) appearing in the Schrödinger equation for which Ψ = Ae-a| |x   is

an exact solution is given by V(x) = 
h−2a
m   δ(x).  Using this potential, compute the

expectation value of the Hamiltonian (H = -
h−

2m 
d2

dx2
  + V(x)) for your normalized

wavefunction.  Is V(x) an attractive or repulsive potential?  Does your wavefunction
correspond to a bound state?  Is <H> negative or positive?  What does the sign of <H> tell

you?  To obtain a numerical value for <H> use 
h−2

2m  = 6.06 x 10-28 erg cm2 and 1eV = 1.6

x 10 -12 erg.

f. Transform the wavefunction, Ψ = Ae-a| |x  , from coordinate space to momentum
space.

g. What is the ratio of the probability of observing a momentum equal to 2ah−  to the

probability of observing a momentum equal to -ah− ?

8. The π-orbitals of benzene, C6H6, may be modeled very crudely using the wavefunctions
and energies of a particle on a ring.  Lets first treat the particle on a ring problem and then
extend it to the benzene system.

a. Suppose that a particle of mass m is constrained to move on a circle (of radius r)
in the xy plane.  Further assume that the particle's potential energy is constant (zero is a
good choice).  Write down the Schrödinger equation in the normal cartesian coordinate
representation.  Transform this Schrödinger equation to cylindrical coordinates where x =
rcosφ, y = rsinφ, and z = z (z = 0 in this case).

Taking r to be held constant, write down the general solution, Φ(φ), to this Schrödinger

equation.  The "boundary" conditions for this problem require that Φ(φ) = Φ(φ + 2π).
Apply this boundary condition to the general solution.  This results in the quantization of
the energy levels of this system.  Write down the final expression for the     normalized    
wavefunction and quantized energies.  What is the physical significance of these quantum



numbers which can have both positive and negative values?  Draw an energy diagram
representing the first five energy levels.

b. Treat the six π-electrons of benzene as particles free to move on a ring of radius
1.40 Å, and calculate the energy of the lowest electronic transition.  Make sure the Pauli
principle is satisfied!  What wavelength does this transition correspond to?  Suggest some
reasons why this differs from the wavelength of the lowest observed transition in benzene,
which is 2600 Å.

9. A diatomic molecule constrained to rotate on a flat surface can be modeled as a planar
rigid rotor (with eigenfunctions, Φ(φ), analogous to those of the particle on a ring) with
fixed bond length r.  At t = 0, the rotational (orientational) probability distribution is

observed to be described by a wavefunction Ψ(φ,0) = 
4

3π
  Cos2φ.  What values, and with

what probabilities, of the rotational angular momentum, 








-ih−
∂
∂φ

 , could be observed in this

system?  Explain whether these probabilities would be time dependent as Ψ(φ,0) evolves

into Ψ(φ,t).

10. A particle of mass m moves in a potential given by

V(x,y,z) = 
k
2(x2 + y2 + z2)  = 

kr2

2  .

a. Write down the time-independent Schrödinger equation for this system.
b. Make the substitution Ψ(x,y,z) = X(x)Y(y)Z(z) and separate the variables for

this system.
c. What are the solutions to the resulting equations for X(x), Y(y), and Z(z)?
d. What is the general expression for the quantized energy levels of this system, in

terms of the quantum numbers nx, ny, and nz, which correspond to X(x), Y(y), and Z(z)?
e. What is the degree of degeneracy of a state of energy

E = 5.5h− k
m  for this system?

f. An alternative solution may be found by making the substitution Ψ(r,θ,φ) =

F(r)G(θ,φ).  In this substitution, what are the solutions for G(θ,φ)?
g. Write down the differential equation for F(r) which is obtained when the

substitution Ψ(r,θ,φ) = F(r)G(θ,φ) is made.  Do not solve this equation.

11. Consider an N2 molecule, in the ground vibrational level of the ground electronic state,
which is bombarded by 100 eV electrons.  This leads to ionization of the N2 molecule to

form N
2
+ .  In this problem we will attempt to calculate the vibrational distribution of the

newly-formed N
2
+  ions, using a somewhat simplified approach.

a. Calculate (according to classical mechanics) the velocity (in cm/sec) of a 100 eV
electron, ignoring any relativistic effects.  Also calculate the amount of time required for a
100 eV electron to pass an N2 molecule, which you may estimate as having a length of 2Å.

b. The radial Schrödinger equation for a diatomic molecule treating vibration as a
harmonic oscillator can be written as:



-
h−2

2µr2
 






∂

∂r
 








r2∂Ψ
∂r

  + 
k
2(r - re) 2Ψ = E Ψ ,

Substituting Ψ(r) = 
F(r)

r  , this equation can be rewritten as:

-
h−2

2µ
 
∂2

∂r2
 F(r) + 

k
2(r - re) 2F(r) = E F(r) .

The vibrational Hamiltonian for the ground electronic state of the N2 molecule within this
approximation is given by:

H(N2) = -
h−2

2µ
 
d2

dr2
  + 

kN2
2 (r - rN2) 2 ,

where rN2  and kN2 have been measured experimentally to be:

rN2 = 1.09769 Å; kN2 = 2.294 x 106 
g

sec2
 .

The vibrational Hamiltonian for the N2+ ion , however, is given by :

H(N2) = -
h−2

2µ
 
d2

dr2
  + 

kN2
+

2 (r - rN2
+) 2 ,

where rN2
+  and kN2

+ have been measured experimentally to be:

rN2
+  = 1.11642 Å; kN2

+  = 2.009 x 106 
g

sec2
 .

In both systems the reduced mass is µ = 1.1624 x 10-23 g.  Use the above information to

write out the ground state vibrational wavefunctions of the N2 and N
2
+  molecules, giving

explicit values for any constants which appear in them.  Note: For this problem use the
"normal" expression for the ground state wavefunction of a harmonic oscillator.  You need
not solve the differential equation for this system.

c. During the time scale of the ionization event (which you calculated in part a), the
vibrational wavefunction of the N2 molecule has effectively no time to change.  As a result,

the newly-formed N
2
+  ion finds itself in a vibrational state which is     not    an eigenfunction of

the     new      vibrational Hamiltonian, H(N
2
+ ).  Assuming that the N2 molecule was originally

in its v=0 vibrational state, calculate the probability that the N
2
+  ion will be produced in its

v=0 vibrational state.

12. The force constant, k, of the C-O bond in carbon monoxide is 1.87 x 106 g/sec2.
Assume that the vibrational motion of CO is purely harmonic and use the reduced mass µ =
6.857 amu.

a. Calculate the spacing between vibrational energy levels in this molecule, in units
of ergs and cm-1.

b. Calculate the uncertainty in the internuclear distance in this molecule, assuming it
is in its ground vibrational level.  Use the ground state vibrational wavefunction (Ψv=0),

and calculate <x>, <x2>, and ∆x = (<x2> - <x>2)1/2.



c. Under what circumstances (i.e. large or small values of k; large or small values
of µ) is the uncertainty in internuclear distance large?  Can you think of any relationship
between this observation and the fact that helium remains a liquid down to absolute zero?

13. Suppose you are given a trial wavefunction of the form:

φ = 
Ze3

πa03
  exp





-Zer1

a0
  exp





-Zer2

a0
 

to represent the electronic structure of a two-electron ion of nuclear charge Z and suppose
that you were also lucky enough to be     given     the variational integral, W, (instead of asking
you to derive it!):

W = 




Ze2 - 2ZZe +  

5
8 Z e  

e2

a0
  .

a. Find the optimum value of the variational parameter Ze for an arbitrary nuclear

charge Z by setting 
dW
dZe

  = 0 .  Find both the optimal value of Ze and the resulting value of

W.
b. The total energies of some two-electron atoms and ions have been experimentally

determined to be:

Z = 1 H- -14.35 eV
Z = 2 He -78.98 eV
Z = 3 Li+ -198.02 eV
Z = 4 Be+2 -371.5 eV
Z = 5 B+3 -599.3 eV
Z = 6 C+4 -881.6 eV
Z = 7 N+5 -1218.3 eV
Z = 8 O+6 -1609.5 eV

Using your optimized expression for W, calculate the estimated total energy of each of
these atoms and ions.  Also calculate the percent error in your estimate for each ion.  What
physical reason explains the decrease in percentage error as Z increases?

c. In 1928, when quantum mechanics was quite young, it was not known whether
the isolated, gas-phase hydride ion, H-, was stable with respect to dissociation into a
hydrogen atom and an electron.  Compare your estimated total energy for H- to the ground
state energy of a hydrogen atom and an isolated electron (system energy = -13.60 eV), and
show that this simple variational calculation erroneously predicts H- to be unstable.  (More
complicated variational treatments give a ground state energy of H- of -14.35 eV, in
agreement with experiment.)

14. A particle of mass m moves in a one-dimensional potential given by H = -
h−2

2m 
d2

dx2
  +

a|x| , where the absolute value function is defined by |x| = x if x ≥ 0 and |x| = -x if x ≤ 0.

a. Use the normalized trial wavefunction φ = 




2b

π

1
4  e

-bx2
  to estimate the energy of

the ground state of this system, using the variational principle to evaluate W(b).



b. Optimize b to obtain the best approximation to the ground state energy of this
system, using a trial function of the form of φ, as given above.  The numerically calculated

exact ground state energy is 0.808616 h−
2
3  m

-1
3  a

-2
3 .  What is the percent error in your

value?

15. The harmonic oscillator is specified by the Hamiltonian:

H = -
h−2

2m 
d2

dx2
  + 

1
2 kx2.

Suppose the ground state solution to this problem were unknown, and that you wish to
approximate it using the variational theorem.  Choose as your trial wavefunction,

φ = 
15
16  a

-5
2 (a2 - x2)  for -a < x < a

φ = 0 for |x| ≥ a
where a is an arbitrary parameter which specifies the range of the wavefunction.  Note that
φ is properly normalized as given.

a. Calculate ⌡⌠

-∞

+∞

φ*Hφdx  and show it to be given by:

⌡⌠

-∞

+∞

φ*Hφdx  = 
5
4 

h−2

ma2
  + 

ka2

14  .

b. Calculate ⌡⌠

-∞

+∞

φ*Hφdx  for a = b





h−2

km

1
4  with b = 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0,

2.5, 3.0, 4.0, and 5.0, and plot the result.
c. To find the best approximation to the true wavefunction and its energy, find the

minimum of ⌡⌠

-∞

+∞

φ*Hφdx  by setting 
d
da ⌡⌠

-∞

+∞

φ*Hφdx  = 0 and solving for a.  Substitute this value

into the expression for

⌡⌠

-∞

+∞

φ*Hφdx  given in part a. to obtain the best approximation for the energy of the ground

state of the harmonic oscillator.
d. What is the percent error in your calculated energy of part c. ?

16. Einstein told us that the (relativistic) expression for the energy of a particle having rest
mass m and momentum p is E2 = m2c4 + p2c2.

a. Derive an expression for the relativistic kinetic energy operator which contains

terms correct through one higher order than the "ordinary" E = mc2 + 
p2

2m 



b. Using the first order correction as a perturbation, compute the first-order
perturbation theory estimate of the energy for the 1s level of a hydrogen-like atom (general
Z).  Show the Z dependence of the result.

Note: Ψ(r)1s = 




Z

a

3
2 





1

π

1
2  e

-Zr
a   and E1s  = -

Z2me4

2h−2
 

c. For what value of Z does this first-order relativistic correction amount to 10% of
the unperturbed (non-relativistic) 1s energy?

17. Consider an electron constrained to move on the surface of a sphere of radius r.  The

Hamiltonian for such motion consists of a kinetic energy term only H0 = 
L2

2mer02
  , where L

is the orbital angular momentum operator involving derivatives with respect to the spherical

polar coordinates (θ,φ).  H0 has the complete set of eigenfunctions ψ
(0)
lm  = Yl,m(θ,φ).

a. Compute the zeroth order energy levels of this system.
b. A uniform electric field is applied along the z-axis, introducing a perturbation V

= -eεz = -eεr0Cosθ , where ε is the strength of the field.  Evaluate the correction to the
energy of the lowest level through second order in perturbation theory, using the identity

Cosθ Yl,m(θ,φ) = 
(l+m+1)(l-m+1)

(2l+1)(2l+3)   Yl+1,m(θ,φ) +

(l+m)(l-m)
(2l+1)(2l-1)  Yl-1,m(θ,φ) .

Note that this identity enables you to utilize the orthonormality of the spherical harmonics.
c. The electric polarizability α gives the response of a molecule to an externally

applied electric field, and is defined by α = -
∂2E

∂2ε
 



ε=0

 
  where E is the energy in the presence

of the field and ε is the strength of the field.  Calculate α for this system.
d. Use this problem as a model to estimate the polarizability of a hydrogen atom,

where r0 = a0 = 0.529 Å, and a cesium atom, which has a single 6s electron with r0 ≈ 2.60

Å.  The corresponding experimental values are αH = 0.6668 Å3 and αCs = 59.6 Å3.

18. An electron moving in a conjugated bond framework can be viewed as a particle in a
box.  An externally applied electric field of strength ε interacts with the electron in a fashion

described by the perturbation V = eε




x  -  

L
2   , where x is the position of the electron in the

box, e is the electron's charge, and L is the length of the box.
a. Compute the first order correction to the energy of the n=1 state and the first

order wavefunction for the n=1 state.  In the wavefunction calculation, you need only

compute the contribution to Ψ 1
(1)  made by Ψ 2

(0) .  Make a rough (no calculation needed)

sketch of Ψ 1
(0)  + Ψ 1

(1)  as a function of x and physically interpret the graph.
b. Using your answer to part a. compute the induced dipole moment caused by the

polarization of the electron density due to the electric field effect µinduced = - e⌡
⌠Ψ*





x  -  

L
2 Ψdx

.  You may neglect the term proportional to ε2 ; merely obtain the term linear in ε.



c. Compute the polarizability, α, of the electron in the n=1 state of the box, and

explain physically why α should depend as it does upon the length of the box L.

Remember that α = 
∂µ
∂ε

 



ε=0

 
 .

Solutions
    Review Exercises

1. The general relationships are as follows:

Θ

φ

r

X

Z

Y

x = r Sinθ Cosφ r2 = x2 + y2 + z2

y = r Sinθ Sinφ Sinθ = 
x2 +  y 2

x2 +  y 2 +  z 2
 

z = r Cosθ Cosθ = 
z

x2 +  y 2 +  z 2
 

Tanφ = 
y
x 

a. 3x + y - 4z = 12
3(rSinθCosφ) + rSinθSinφ - 4(rCosθ) = 12

r(3SinθCosφ + SinθSinφ - 4Cosθ) = 12

b. x = rCosφ r2 = x2 +y2

y = rSinφ Tanφ = 
y
x 

z = z



y2 + z2 = 9
r2Sin2φ + z2 = 9

c. r = 2SinθCosφ

r = 2




x

r  

r2  = 2x
x2 +y2 + z2 = 2x
x2 - 2x +y2 + z2 = 0
x2 - 2x +1 + y2 + z2 = 1
(x - 1)2 + y2 + z2 = 1

2. a. 9x + 16y
∂y

∂x
  = 0

16ydy = -9xdx
16
2  y2 = -

9
2 x2 + c

16y2 = -9x2 + c'
y2

9   + 
x2

16  = c''  (general equation for an ellipse)

b. 2y + 
∂y

∂x
  + 6 = 0

2y + 6 = -
dy
dx  

y + 3 = -
dy
2dx  

-2dx = 
dy

y + 3  

-2x = ln(y + 3) + c
c'e-2x = y + 3
y = c'e-2x - 3

3. a. First determine the eigenvalues:

det 






-1  -  λ  2

 2  2  -  λ
  = 0

(-1 - λ)(2 - λ) - 22 = 0

-2 + λ - 2λ + λ2 - 4 = 0

λ2 - λ - 6 = 0

(λ - 3)(λ + 2) = 0

λ = 3    or    λ = -2.
Next, determine the eigenvectors.  First, the eigenvector associated with eigenvalue -2:

 
-1  2
 2  2  



C11

C21
  = -2 



C11

C21
 



-C11 + 2C21 = -2C11
C11 = -2C21  (Note: The second row offers no new information, e.g. 2C11

+ 2C21 = -2C21)

C112 + C212 = 1  (from normalization)

(-2C21)2 + C212 = 1

4C212 + C212 = 1

5C212 = 1

C212 = 0.2

C21 = 0.2 , and therefore C11 = -2 0.2 .
For the eigenvector associated with eigenvalue 3:

 
-1  2
 2  2  



C12

C22
  = 3 



C12

C22
 

-C12 + 2C22 = 3C12
-4C12 = -2C22
C12 = 0.5C22  (again the second row offers no new information)

C122 + C222 = 1  (from normalization)

(0.5C22)2 + C222 = 1

0.25C222 + C222 = 1

1.25C222 = 1

C222 = 0.8

C22 = 0.8  = 2 0.2 , and therefore C12 = 0.2 .
Therefore the eigenvector matrix becomes:







-2 0.2 0.2

0.2 2 0.2
  

b. First determine the eigenvalues:

det 







-2  -  λ  0  0

 0 -1 -  λ  2
 0  2  2  -  λ

  = 0

det [ ]-2  -  λ   det 






-1  -  λ  2

 2  2  -  λ
  = 0

From 3a, the solutions then become -2, -2, and 3.  Next, determine the eigenvectors.  First
the eigenvector associated with eigenvalue 3 (the third root):







-2  0  0

 0 -1  2
 0  2  2

 






C11

C21
C31

  = 3 






C11

C21
C31

 

-2 C13 = 3C13  (row one)
C13 = 0
-C23 + 2C33 = 3C23  (row two)
2C33 = 4C23
C33 = 2C23  (again the third row offers no new information)

C132 + C232 + C332 = 1  (from normalization)

0 + C232 + (2C23)2 = 1



5C232 = 1

C23 = 0.2 , and therefore C33 = 2 0.2 .
Next, find the pair of eigenvectors associated with the degenerate eigenvalue of -2.  First,
root one eigenvector one:

-2C11 = -2C11  (no new information from row one)
-C21 + 2C31 = -2C21  (row two)
C21 = -2C31  (again the third row offers no new information)

C112 + C212 + C312 = 1  (from normalization)

C112 + (-2C31)2 + C312 = 1

C112 + 5C312 = 1
C11 =

1 - 5C312  (Note: There are now two equations with three unknowns.) 
Second, root two eigenvector two:

-2C12 = -2C12  (no new information from row one)
-C22 + 2C32 = -2C22  (row two)
C22 = -2C32  (again the third row offers no new information)

C122 + C222 + C322 = 1  (from normalization)

C122 + (-2C32)2 + C322 = 1

C122 + 5C322 = 1
C12 =

1 - 5C322  (Note: Again there are now two equations with three unknowns) 
C11C12 + C21C22 + C31C32 = 0  (from orthogonalization)

Now there are five equations with six unknowns.
Arbitrarily choose C11 = 0

C11 = 0 = 1 - 5C312 

5C312 = 1

C31 = 0.2 

C21 = -2 0.2 
C11C12 + C21C22 + C31C32 = 0  (from orthogonalization)

0 + -2 0.2(-2C32)  + 0.2 C32 = 0
5C32 = 0
C32 = 0, C22 = 0, and C12 = 1

Therefore the eigenvector matrix becomes:









0 1 0

-2 0.2 0 0.2
0.2 0 2 0.2

  

4. Show: <φ1|φ1> = 1, <φ2|φ2> = 1, and <φ1|φ2> = 0

<φ1|φ1> =
?
  1

(-2 0.2 )2 + ( 0.2 )2 =
?
  1

4(0.2) + 0.2 =
?
  1



0.8 + 0.2 =
?
  1

1 = 1

<φ2|φ2> =
?
  1

( 0.2 )2 + (2 0.2 )2 =
?
  1

0.2 + 4(0.2) =
?
  1

0.2 + 0.8 =
?
  1

1 = 1

<φ1|φ2> = <φ2|φ1> =
?
  0

-2 0.2 0.2  + 0.2  2 0.2 =
?
  0

-2(0.2) + 2(0.2) =
?
  0

-0.4 + 0.4 =
?
  0

0 = 0

5. Show (for the degenerate eigenvalue; λ = -2): <φ1|φ1> = 1, <φ2|φ2> = 1, and <φ1|φ2> =
0

<φ1|φ1> =
?
  1

0 + (-2 0.2 )2 + ( 0.2 )2 =
?
  1

4(0.2) + 0.2 =
?
  1

0.8 + 0.2 =
?
  1

1 = 1

<φ2|φ2> =
?
  1

12 + 0 + 0 =
?
  1

1 = 1

<φ1|φ2> = <φ2|φ1> =
?
  0

(0)(1) + (-2 0.2 )(0) + ( 0.2 )(0) =
?
  0

0 = 0

6. Suppose the solution is of the form x(t) = eαt, with α unknown.  Inserting this trial
solution into the differential equation results in the following:

d2

dt2
  eαt + k2 eαt = 0

α2 eαt + k2 eαt = 0

(α2 + k2) x(t) = 0

(α2 + k2) = 0

α2 = -k2



α = -k2 

α = ± ik

∴ Solutions are of the form eikt, e-ikt, or a combination of both: x(t) = C1eikt + C2e-ikt.

Euler's formula also states that: e±iθ = Cosθ ± iSinθ, so the previous equation for x(t) can
also be written as:

x(t) = C1{Cos(kt) + iSin(kt)} + C2{Cos(kt) - iSin(kt)}
x(t) = (C1 + C2)Cos(kt) + (C1 + C2)iSin(kt), or alternatively
x(t) = C3Cos(kt) + C4Sin(kt).

We can determine these coefficients by making use of the "boundary conditions".
at t = 0, x(0) = L
x(0) = C3Cos(0) + C4Sin(0) = L
C3 = L

at t = 0, 
dx(0)

dt   = 0

d
dt  x(t) = 

d
dt (C3Cos(kt) + C4Sin(kt)) 

d
dt  x(t) = -C3kSin(kt) + C4kCos(kt)

d
dt  x(0) = 0 = -C3kSin(0) + C4kCos(0)

C4k = 0
C4 = 0

∴ The solution is of the form: x(t) = L Cos(kt)

    Exercises

1. a. K.E. = 
mv2

2   = 




m

m  
mv2

2   = 
(mv)2
2m   = 

p2

2m 

K.E. = 
1

2m(px2 + py2 + pz2) 

K.E. = 
1

2m













h−

i
∂
∂x

2
 +  







h−

i
∂
∂y

2
 +  







h−

i
∂
∂z

2
 

K.E. = 
-h−2

2m





∂2

∂x2
 +  

∂2

∂y2
 +  

∂2

∂z2
 

b. p = mv  = ipx + jpy + kpz

p = 








i






h−

i
∂
∂x

 +  j






h−

i
∂
∂y

 +  k






h−

i
∂
∂z

 

where i, j, and k are unit vectors along the x, y, and z axes.
c. Ly = zpx - xpz

Ly = z 






h−

i
∂
∂x

  - x 






h−

i
∂
∂z

 



2. First derive the general formulas for 
∂
∂x

  , 
∂
∂y

  , 
∂
∂z

  in terms of r,θ, and φ, and 
∂
∂r

  , 
∂
∂θ

  ,

and 
∂
∂φ

  in terms of x,y, and z.  The general relationships are as follows:

x = r Sinθ Cosφ r2 = x2 + y2 + z2

y = r Sinθ Sinφ Sinθ = 
x2 +  y 2

x2 +  y 2 +  z 2
 

z = r Cosθ Cosθ = 
z

x2 +  y 2 +  z 2
 

Tanφ = 
y
x 

First 
∂
∂x

  , 
∂
∂y

  , and 
∂
∂z

  from the chain rule:

∂
∂x

  = 






∂r

∂x
 
y,z

 
∂
∂r

  + 






∂θ

∂x
 
y,z

 
∂
∂θ

  + 






∂φ

∂x
 
y,z

 
∂
∂φ

  ,

∂
∂y

  = 






∂r

∂y
 
x,z

 
∂
∂r

  + 






∂θ

∂y
 
x,z

 
∂
∂θ

  + 






∂φ

∂y
 
x,z

 
∂
∂φ

  ,

∂
∂z

  = 






∂r

∂z
 
x,y

 
∂
∂r

  + 






∂θ

∂z
 
x,y

 
∂
∂θ

  + 






∂φ

∂z
 
x,y

 
∂
∂φ

  .

Evaluation of the many "coefficients" gives the following:







∂r

∂x
 
y,z

 = Sinθ Cosφ , 






∂θ

∂x
 
y,z

 = 
Cosθ Cosφ

r   , 






∂φ

∂x
 
y,z

 = - 
Sinφ

r Sinθ
  ,







∂r

∂y
 
x,z

 = Sinθ Sinφ , 






∂θ

∂y
 
x,z

 = 
Cosθ Sinφ

r   , 






∂φ

∂y
 
x,z

 = 
Cosφ

r Sinθ
  ,







∂r

∂z
 
x,y

 = Cosθ , 






∂θ

∂z
 
x,y

 = - 
Sinθ

r   , and  






∂φ

∂z
 
x,y

 = 0 .

Upon substitution of these "coefficients":
∂
∂x

  = Sinθ Cosφ 
∂
∂r

  + 
Cosθ Cosφ

r  
∂
∂θ

  - 
Sinφ

r Sinθ
 
∂
∂φ

  ,

∂
∂y

  = Sinθ Sinφ 
∂
∂r

  + 
Cosθ Sinφ

r  
∂
∂θ

  + 
Cosφ

r Sinθ
 
∂
∂φ

  , and

∂
∂z

  = Cosθ 
∂
∂r

  - 
Sinθ

r  
∂
∂θ

  + 0 
∂
∂φ

 .

Next 
∂
∂r

  , 
∂
∂θ

  , and 
∂
∂φ

  from the chain rule:

∂
∂r

  = 






∂x

∂r
 
θ,φ

 
∂
∂x

  + 






∂y

∂r
 
θ,φ

 
∂
∂y

  + 






∂z

∂r
 
θ,φ

 
∂
∂z

  ,



∂
∂θ

  = 






∂x

∂θ
 
r,φ

 
∂
∂x

  + 






∂y

∂θ
 
r,φ

 
∂
∂y

  + 






∂z

∂θ
 
r,φ

 
∂
∂z

  , and

∂
∂φ

  = 






∂x

∂φ
 
r,θ

 
∂
∂x

  + 






∂y

∂φ
 
r,θ

 
∂
∂y

  + 






∂z

∂φ
 
r,θ

 
∂
∂z

 .

Again evaluation of the the many "coefficients" results in:







∂x

∂r
 
θ,φ

 = 
x

x2 +  y 2 +  z 2
  , 







∂y

∂r
 
θ,φ

 = 
y

x2 +  y 2 +  z 2
  ,







∂z

∂r
 
θ,φ

 = 
z

x2 +  y 2 +  z 2
  , 







∂x

∂θ
 
r,φ

 = 
x z

x2 +  y 2
  , 







∂y

∂θ
 
r,φ

 = 
y z

x2 +  y 2
  ,







∂z

∂θ
 
r,φ

 = - x2 +  y 2  , 






∂x

∂φ
 
r,θ

 = -y , 






∂y

∂φ
 
r,θ

 = x , and 






∂z

∂φ
 
r,θ

 = 0

Upon substitution of these "coefficients":
∂
∂r

  = 
x

x2 +  y 2 +  z 2
 
∂
∂x

  + 
y

x2 +  y 2 +  z 2
 
∂
∂y

 

 + 
z

x2 +  y 2 +  z 2
 
∂
∂z

 

∂
∂θ

  = 
x z

x2 +  y 2
 
∂
∂x

  + 
y z

x2 +  y 2
 
∂
∂y

  - x2 +  y 2 
∂
∂z

 

∂
∂φ

  = -y 
∂
∂x

  + x 
∂
∂y

  + 0 
∂
∂z

 .

Note, these many "coefficients" are the elements which make up the Jacobian matrix used
whenever one wishes to transform a function from one coordinate representation to
another.  One very familiar result should be in transforming the volume element dxdydz to
r2Sinθdrdθdφ.  For example:

⌡⌠f(x,y,z)dxdydz  =

⌡



⌠

f(x(r,θ,φ),y(r,θ,φ),z(r,θ,φ))



















∂x

∂r θφ 





∂x

∂θ rφ 





∂x

∂φ rθ







∂y

∂r θφ 





∂y

∂θ rφ 





∂y

∂φ rθ







∂z

∂r θφ 





∂z

∂θ rφ 





∂z

∂φ rθ

drdθdφ 

a. Lx = 
h−
i  









 y  
∂
∂z

 -  z  
∂
∂y

  

Lx = 
h−
i 








 rSinθSinφ 








Cosθ 
∂
∂r

 -  
Sinθ

r  
∂
∂θ

 



 -
h−
i 








 rCosθ 








SinθSinφ 
∂
∂r

 +  
CosθSinφ

r  
∂
∂θ

 +  
Cosφ
rSinθ

 
∂
∂φ

 

Lx = - 
h−
i 








 Sinφ 
∂
∂θ

 + CotθCosφ 
∂
∂φ

  

b. Lz = 
h−
i  

∂
∂φ

  = - ih− 
∂
∂φ

 

Lz = 
h−
i  









 - y  
∂
∂x

 +  x  
∂
∂y

  

3.                 B                               B'                           B ' '           
i. 4x4 - 12x2 + 3 16x3 - 24x 48x2 - 24
ii. 5x4 20x3 60x2

iii. e3x + e-3x 3(e3x - e-3x) 9(e3x + e-3x)
iv. x2 - 4x + 2 2x - 4 2
v. 4x3 - 3x 12x2 - 3 24x

B(v.) is an eigenfunction of A(i.):

(1-x2) 
d2

dx2
  - x 

d
dx  B(v.) =

(1-x2) (24x) - x (12x2 - 3)
24x - 24x3 - 12x3 + 3x
-36x3 + 27x
-9(4x3 -3x)  (eigenvalue is -9)

B(iii.) is an eigenfunction of A(ii.):
d2

dx2
  B(iii.) =

9(e3x + e-3x)  (eigenvalue is 9)
B(ii.) is an eigenfunction of A(iii.):

x 
d
dx  B(ii.) =

x (20x3)
20x4

4(5x4)  (eigenvalue is 4)
B(i.) is an eigenfunction of A(vi.):

d2

dx2
  - 2x 

d
dx  B(i) =

(48x2 - 24) - 2x (16x3 - 24x)
48x2 - 24 - 32x4 + 48x2

-32x4 + 96x2 - 24
-8(4x4 - 12x2 + 3)  (eigenvalue is -8)

B(iv.) is an eigenfunction of A(v.):



x 
d2

dx2
  + (1-x) 

d
dx  B(iv.) =

x (2) + (1-x) (2x - 4)
2x + 2x - 4 - 2x2 + 4x
-2x2 + 8x - 4
-2(x2 - 4x +2)  (eigenvalue is -2)

4. Show that:  ⌡⌠f*Agdτ  = ⌡⌠g(Af)*dτ 

a. Suppose f and g are functions of x and evaluate the integral on the left hand side
by "integration by parts":

⌡

⌠

f(x)*(-ih−
∂
∂x

)g(x)dx  

let dv = 
∂
∂x

 g(x)dx  and u = -ih− f(x)*

       v = g(x)        du = -ih−
∂
∂x

 f(x)*dx

Now, ⌡⌠udv  = uv - ⌡⌠vdu  ,

so:

⌡

⌠

f(x)*(-ih−
∂
∂x

)g(x)dx  = -ih− f(x)*g(x) + ih−
⌡

⌠

g(x)
∂
∂x

 f(x)*dx .

Note that in, principle, it is impossible to prove hermiticity     unless    you are given knowledge
of the type of function on which the operator is acting.  Hermiticity requires (as can be seen

in this example) that the term  -ih− f(x)*g(x) vanish when evaluated at the integral limits.
This, in general, will occur for the "well behaved" functions (e.g., in     bound state    quantum
chemistry, the wavefunctions will vanish as the distances among particles approaches
infinity).  So, in proving the hermiticity of an operator, one must be careful to specify the
behavior of the functions on which the operator is considered to act.  This means that an
operator may be hermitian for one class of functions and non-hermitian for another class of
functions.  If we assume that f and g vanish at the boundaries, then we have

⌡

⌠

f(x)*(-ih−
∂
∂x

)g(x)dx  =
⌡

⌠

g(x)








-ih−
∂
∂x

f(x)
*
dx 

b. Suppose f and g are functions of y and z and evaluate the integral on the left hand
side by "integration by parts" as in the previous exercise:

⌡

⌠

f(y,z)*









-ih−








y  
∂
∂z

 -  z  
∂
∂y

g(y,z)dydz  

 = 
⌡

⌠

f(y,z)*









-ih−








y  
∂
∂z

g(y,z)dydz  - 
⌡

⌠

f(y,z)*









-ih−








z  
∂
∂y

g(y,z)dydz  

For the first integral, 
⌡

⌠

f(z)*








-ih−y
∂
∂z

g(z)dz ,



let dv = 
∂
∂z

 g(z)dz u = -ih− yf(z)*

       v = g(z)        du = -ih− y
∂
∂z

 f(z)*dz

so:

⌡

⌠

f(z)*(-ih−y
∂
∂z

)g(z)dz  = -ih− yf(z)*g(z) + ih− y
⌡

⌠

g(z)
∂
∂z

 f(z)*dz

   = 
⌡

⌠

g(z)








-ih−y
∂
∂z

f(z)
*
dz  .

For the second integral, 
⌡

⌠

f(y)*









-ih−z
∂
∂y

g(y)dy ,

let dv = 
∂
∂y

 g(y)dy u = -ih− zf(y)*

       v = g(y)        du = -ih− z
∂
∂y

 f(y)*dy

so:

⌡

⌠

f(y)*(-ih−z
∂
∂y

)g(y)dy  = -ih− zf(y)*g(y) + ih− z
⌡

⌠

g(y)
∂
∂y

 f(y)*dy

      = 
⌡

⌠

g(y)








-ih−z
∂
∂y

f(y)
*
dy 

⌡

⌠

f(y,z)*









-ih−








y  
∂
∂z

 -  z  
∂
∂y

g(y,z)dydz  

= 
⌡

⌠

g(z)








-ih−y
∂
∂z

f(z)
*
dz  - 

⌡

⌠

g(y)








-ih−z
∂
∂y

f(y)
*
dy 

= 
⌡

⌠

g(y,z)








-ih−








y
∂
∂z

 -  z
∂
∂y

f(y,z)
*
dydz  .

Again we have had to assume that the functions f and g vanish at the boundary.

5. L+ = Lx + iLy
L- = Lx - iLy, so

L+ + L- = 2Lx , or Lx = 
1
2(L+ + L-) 

L+ Yl,m  = l(l + 1) - m(m + 1) h−  Yl,m+1

L- Yl,m  = l(l + 1) - m(m - 1) h−  Yl,m-1
Using these relationships:

L- Ψ2p-1
  = 0 , L- Ψ2p0

  = 2h−  Ψ2p-1
  , L- Ψ2p+1

  = 2h−  Ψ2p0
 



L+ Ψ2p-1
  = 2h−  Ψ2p0

  , L+ Ψ2p0
  = 2h−  Ψ2p+1

  , L+ Ψ2p+1
  = 0 , and the

following Lx matrix elements can be evaluated:

Lx(1,1) = < >Ψ2p-1
  

1
2
(L+ +  L-) Ψ2p-1

    = 0

Lx(1,2) = < >Ψ2p-1
  

1
2
(L+ +  L-) Ψ2p0

    = 
2

2  h− 

Lx(1,3) = < >Ψ2p-1
  

1
2
(L+ +  L-) Ψ2p+1

    = 0

Lx(2,1) = < >Ψ2p0
  

1
2
(L+ +  L-) Ψ2p-1

    = 
2

2  h− 

Lx(2,2) = < >Ψ2p0
  

1
2
(L+ +  L-) Ψ2p0

    = 0

Lx(2,3) = < >Ψ2p0
  

1
2
(L+ +  L-) Ψ2p+1

    = 
2

2  h− 

Lx(3,1) = < >Ψ2p+1
  

1
2
(L+ +  L-) Ψ2p-1

    = 0

Lx(3,2) = < >Ψ2p+1
  

1
2
(L+ +  L-) Ψ2p0

    = 
2

2  h− 

Lx(3,3) = 0

This matrix:  











0 2

2
h− 0

2
2

h− 0 2
2

h−

0 2
2

h− 0

  , can now be diagonalized:











0  -  λ 2

2
h− 0

2
2

h− 0  -  λ 2
2

h−

0 2
2

h− 0  -  λ

  = 0









0  -  λ 2

2
h−

2
2

h− 0  -  λ

 (-λ)  - 







2
2

h− 2
2

h−

0 0  -  λ

 



2

2
h−   = 0

Expanding these determinants yields:

(λ2 - 
h−2

2  )(-λ) - 
2h−
2 (-λ)






2h−

2   = 0



-λ(λ2 - h− 2) = 0

-λ(λ - h− )(λ + h− ) = 0

with roots: 0,h− , and -h− 
Next, determine the corresponding eigenvectors:
For λ = 0:











0 2

2
h− 0

2
2

h− 0 2
2

h−

0 2
2

h− 0

 









C11

C21

C31

  = 0 









C11

C21

C31

 

2
2  h− C21 = 0  (row one)

C21 = 0

2
2  h− C11 + 

2
2  h− C31 = 0  (row two)

C11 + C31 = 0
C11 = -C31

C112 + C212 + C312 = 1  (normalization)

C112 + (-C11)2 = 1

2C112 = 1

C11 = 
1

2
  , C21 = 0 , and C31 = -

1

2
  

For λ = 1h− :











0 2

2
h− 0

2
2

h− 0 2
2

h−

0 2
2

h− 0

 









C12

C22

C32

  = 1h− 









C12

C22

C32

 

2
2  h− C22 = h− C12  (row one)

C12 = 
2

2   C22

2
2  h− C12 + 

2
2  h− C32 = h− C22  (row two)

2
2  

2
2   C22 + 

2
2   C32 = C22

1
2  C22 + 

2
2   C32 = C22



2
2   C32 = 

1
2  C22

C32 = 
2

2  C22

C122 + C222 + C322 = 1  (normalization)





2

2  C 22  
2
 + C222 + 



2

2 C22  
2
 = 1

1
2  C222 + C222 +

1
2 C222 = 1

2C222 = 1

C22 = 
2

2  

C12 = 
1
2  , C22 = 

2
2   , and C32 = 

1
2  

For λ = -1h− :











0 2

2
h− 0

2
2

h− 0 2
2

h−

0 2
2

h− 0

 









C13

C23

C33

  = -1h− 









C13

C23

C33

 

2
2  h− C23 = -h− C13  (row one)

C13 = -
2

2   C23

2
2  h− C13 + 

2
2  h− C33 = -h− C23  (row two)

2
2  



-

2
2  C 23   + 

2
2   C33 = -C23

-
1
2  C23 + 

2
2   C33 = -C23

2
2   C33 = -

1
2  C23

C33 = -
2

2  C23

C132 + C232 + C332 = 1  (normalization)





-

2
2  C 23  

2
 + C232 + 



-

2
2 C23  

2
 = 1

1
2  C232 + C232 +

1
2 C232 = 1

2C232 = 1



C23 = 
2

2  

C13 = -
1
2  , C23 = 

2
2   , and C33 = -

1
2  

Show: <φ1|φ1> = 1, <φ2|φ2> = 1, <φ3|φ3> = 1, <φ1|φ2> = 0, <φ1|φ3> = 0, and <φ2|φ3> =
0.

<φ1|φ1> =
?
  1





2

2
2
  + 0 + 



- 2

2
2
 =
?
  1

1
2  + 

1
2 =

?
  1

1 = 1

<φ2|φ2> =
?
  1





1

2
2
  + 



2

2
2
  + 





1

2
2
 =
?
  1

1
4  + 

1
2  + 

1
4 =

?
  1

1 = 1

<φ3|φ3> =
?
  1





-

1
2

2
  + 



2

2
2
  + 





-

1
2

2
 =
?
  1

1
4  + 

1
2  + 

1
4 =

?
  1

1 = 1

<φ1|φ2> = <φ2|φ1> =
?
  0





2

2 



1

2   + ( )0 



2

2   + 



- 2

2 



1

2  =
?
  0





2

4   - 



2

4  =
?
  0

0 = 0

<φ1|φ3> = <φ3|φ1> =
?
  0





2

2 



-

1
2   + ( )0 



2

2   + 



- 2

2 



-

1
2  =

?
  0





-

2
4   + 



2

4  =
?
  0

0 = 0

<φ2|φ3> = <φ3|φ2> =
?
  0





1

2 



-

1
2   + 



2

2 



2

2   + 




1

2 



-

1
2  =

?
  0







-

1
4   + 





1

2   + 




-

1
4  =

?
  0

0 = 0

6. P2p+1
  = 



< >φ2p+1

 Ψ0h−
Lx

2
  

Ψ0h−
Lx

  = 
1

2
  φ2p-1

  - 1

2
  φ2p+1

 

P2p+1
  = 





-

1

2
 < >φ2p+1

 φ2p+1

2
  = 

1
2     (or 50%) 

7. It is useful here to use some of the general commutator relations found in Appendix
C.V.

a. [Lx,Ly] = [ypz - zpy, zpx - xpz]
= [ypz, zpx] - [ypz, xpz] - [zpy, zpx] + [zpy, xpz]
= [y,z]pxpz + z[y,px]pz + y[pz,z]px + yz[pz,px]
- [y,x]pzpz - x[y,pz]pz - y[pz,x]pz - yx[pz,pz]
- [z,z]pxpy - z[z,px]py - z[py,z]px - zz[py,px]
+ [z,x]pzpy + x[z,pz]py + z[py,x]pz + zx[py,pz]

As can be easily ascertained, the only non-zero terms are: [Lx,Ly] = y[pz,z]px +
x[z,pz]py

  = y(-ih− )px + x(ih− )py

  = ih−(-ypx + xpy) 

  = ih− Lz
b. [Ly,Lz] = [zpx - xpz, xpy - ypx]

= [zpx, xpy ] - [zpx, ypx] - [xpz, xpy ] + [xpz, ypx]
= [z,x]pypx + x[z,py]px + z[px,x]py + zx[px,pz]
- [z,y]pxpx - y[z,px]px - z[px,y]px - zy[px,px]
- [x,x]pypz - x[x,py]pz - x[pz,x]py - xx[pz,py]
+ [x,y]pxpz + y[x,px]pz + x[pz,y]px + xy[pz,px]

Again, as can be easily ascertained, the only non-zero
terms are:

[Ly,Lz] = z[px,x]py + y[x,px]pz

  = z(-ih− )py + y(ih− )pz

  = ih−(-zpy + ypz) 

  = ih− Lx
c. [Lz,Lx] = [xpy - ypx, ypz - zpy]

= [xpy, ypz ] - [xpy, zpy] - [ypx, ypz ] + [ypx, zpy]
= [x,y]pzpy + y[x,pz]py + x[py,y]pz + xy[py,pz]
- [x,z]pypy - z[x,py]py - x[py,z]py - xz[py,py]
- [y,y]pzpx - y[y,pz]px - y[px,y]pz - yy[px,pz]
+ [y,z]pypx + z[y,py]px + y[px,z]py + yz[px,py]

Again, as can be easily ascertained, the only non-zero
terms are:

[Lz,Lx] = x[py,y]pz + z[y,py]px



  = x(-ih− )pz + z(ih− )px

  = ih−(-xpz + zpx) 

  = ih− Ly

d. [Lx,L2] = [Lx,Lx2 + Ly2 + Lz2]

  = [Lx,Lx2] + [Lx,Ly2] + [Lx,Lz2]

  = [Lx,Ly2] + [Lx,Lz2]
  = [Lx,Ly]Ly + Ly[Lx,Ly] + [Lx,Lz]Lz + Lz[Lx,Lz]

  = (ih− Lz)Ly + Ly(ih− Lz) + (-ih− Ly)Lz + Lz(-ih− Ly)

  = (ih− )(LzLy + LyLz - LyLz - LzLy)

  = (ih− )([Lz,Ly] + [Ly,Lz]) = 0

e. [Ly,L2] = [Ly,Lx2 + Ly2 + Lz2]

  = [Ly,Lx2] + [Ly,Ly2] + [Ly,Lz2]

  = [Ly,Lx2] + [Ly,Lz2]
  = [Ly,Lx]Lx + Lx[Ly,Lx] + [Ly,Lz]Lz + Lz[Ly,Lz]

  = (-ih− Lz)Lx + Lx(-ih− Lz) + (ih− Lx)Lz + Lz(ih− Lx)

  = (ih− )(-LzLx - LxLz + LxLz + LzLx)

  = (ih− )([Lx,Lz] + [Lz,Lx]) = 0

f. [Lz,L2] = [Lz,Lx2 + Ly2 + Lz2]

  = [Lz,Lx2] + [Lz,Ly2] + [Lz,Lz2]

  = [Lz,Lx2] + [Lz,Ly2]
  = [Lz,Lx]Lx + Lx[Lz,Lx] + [Lz,Ly]Ly + Ly[Lz,Ly]

  = (ih− Ly)Lx + Lx(ih− Ly) + (-ih− Lx)Ly + Ly(-ih− Lx)

  = (ih− )(LyLx + LxLy - LxLy - LyLx)

  = (ih− )([Ly,Lx] + [Lx,Ly]) = 0

8. Use the general angular momentum relationships:

J2|j,m> = h− 2 (j(j+1))|j,m>

Jz|j,m> = h−  m|j,m> ,
and the information used in exercise 5, namely that:

Lx = 
1
2(L+ + L-) 

L+ Yl,m  = l(l + 1) - m(m + 1) h−  Yl,m+1

L- Yl,m  = l(l + 1) - m(m - 1) h−  Yl,m-1
Given that:

Y0,0(θ,φ) = 
1

4π
  = |0,0>



Y1,0(θ,φ) = 
3

4π
  Cosθ = |1,0>.

a. Lz|0,0> = 0
L2|0,0> = 0

Since L2 and Lz commute you would expect |0,0> to be simultaneous eigenfunctions of
both.

b. Lx|0,0> = 0

Lz|0,0> = 0

Lx and Lz     do not    commute.  It is unexpected to find a simultaneous eigenfunction (|0,0>) of
both ... for sure these operators do not have the same full set of eigenfunctions.

c. Lz|1,0> = 0

L2|1,0> = 2h− 2|1,0>
Again since L2 and Lz commute you would expect |1,0> to be simultaneous eigenfunctions
of both.

d. Lx|1,0> = 
2

2  h− |1,-1> + 
2

2  h− |1,1>

Lz|1,0> = 0
Again, Lx and Lz     do not    commute.  Therefore it is expected to find differing sets of
eigenfunctions for both.

9. For:

Ψ(x,y) = 




1

2Lx

1
2




1

2Ly

1
2 einxπx/Lx -  e -inxπx/Lx  einyπy/Ly -  e -inyπy/Ly  

<Ψ(x,y)|Ψ(x,y)> =
?
  1

Let: ax = 
nxπ
Lx

 , and ay = 
nyπ
Ly

  and using Euler's formula, expand the exponentials into Sin

and Cos terms.

Ψ(x,y) = 




1

2Lx

1
2




1

2Ly

1
2 [Cos(axx) + iSin(axx) - Cos(axx) +

iSin(axx)] [Cos(ayy) + iSin(ayy) - Cos(ayy) + iSin(ayy)]

Ψ(x,y) = 




1

2Lx

1
2




1

2Ly

1
2 2iSin(axx) 2iSin(ayy)

Ψ(x,y) = -




2

Lx

1
2




2

Ly

1
2 Sin(axx) Sin(ayy)

<Ψ(x,y)|Ψ(x,y)> = 
⌡

⌠









-




2

Lx

1
2




2

Ly

1
2Sin(axx) Sin(ayy)

2
dxdy 

 = 




2

Lx 



2

Ly
⌡⌠Sin2(axx) Sin2(ayy) dxdy 

Using the integral:



⌡
⌠

0

L

Sin2nπx
L  dx  = 

L
2  ,

<Ψ(x,y)|Ψ(x,y)> = 




2

Lx
 




2

Ly
 



Lx

2  



Ly

2   = 1

10.

<Ψ(x,y)|px|Ψ(x,y)> = 




2

Ly
⌡⌠
0

Ly

Sin2(ayy)dy




2

Lx ⌡

⌠

0

Lx

Sin(axx)(-ih−
∂
∂x

)Sin(axx)dx 

 = 





-ih−2ax

Lx
⌡⌠
0

Lx

Sin(axx)Cos(axx)dx 

But the integral:

⌡⌠
0

Lx

Cos(axx)Sin(axx)dx  = 0,

∴ <Ψ(x,y)|px|Ψ(x,y)> = 0

11. <Ψ0|x2|Ψ0> = 






α

π

1
2 ⌡⌠

-∞

+∞

 e-αx2/2 ( )x2  e-αx2/2 dx 

       = 






α

π

1
2 2 ⌡⌠

0

+∞

x2e-αx2dx 

Using the integral:

⌡⌠
0

+∞

x2n e -βx2dx  = 
1.3...(2n-1)

2n+1 





π

β2n+1

1
2  ,

<Ψ0|x2|Ψ0> = 






α

π

1
2 2 





1

22 





π

α3

1
2 

<Ψ0|x2|Ψ0> = 




1

2α
 

<Ψ1|x2|Ψ1> = 






4α3

π

1
2 ⌡⌠

-∞

+∞

 xe-αx2/2 ( )x2  xe-αx2/2 dx 



= 






4α3

π

1
2
 
 2 ⌡⌠

0

+∞

x4e-αx2/2dx 

Using the previously defined integral:

<Ψ1|x2|Ψ1> = 






4α3

π

1
2
 
 2 





3

23 





π

α5

1
2 

<Ψ1|x2|Ψ1> = 




3

2α
 

12.



13.



a. ΨI(x) = 0

ΨII(x) = Ae
i 2mE/h−2 x

  + Be
-i 2mE/h−2 x

 

ΨIII(x) = A'e
i 2m(V-E)/h−2 x

  + B'e
-i 2m(V-E)/h−2 x

 

b. I ↔ II
ΨI(0) = ΨII(0)

ΨI(0) = 0 = ΨII(0) = Ae
i 2mE/h−2 (0)

  + Be
-i 2mE/h−2 (0)

 
0 = A + B
B = -A
Ψ'I(0) = Ψ'II(0) (this gives no useful information since

  Ψ'I(x) does not exist at x = 0)

II ↔ III
ΨII(L) = ΨIII(L)

Ae
i 2mE/h−2 L

  + Be
-i 2mE/h−2 L

  = A'e
i 2m(V-E)/h−2 L

 

+ B'e
-i 2m(V-E)/h−2 L

 
Ψ'II(L) = Ψ'III(L)

A(i 2mE/h−2 )e
i 2mE/h−2 L

  - B(i 2mE/h−2 )e
-i 2mE/h−2 L

 

= A'(i 2m(V-E)/h−2 )e
i 2m(V-E)/h−2 L

 

 - B'(i 2m(V-E)/h−2 )e
-i 2m(V-E)/h−2 L

 

c. as x → -∞, ΨI(x) = 0

as x → +∞, ΨIII(x) = 0 ∴ A' = 0



d. Rewrite the equations for ΨI(0) = ΨII(0), ΨII(L) = ΨIII(L), and Ψ'II(L) =

Ψ'III(L) using the information in 13c:
B = -A (eqn. 1)

Ae
i 2mE/h−2 L

  + Be
-i 2mE/h−2 L

  = B'e
-i 2m(V-E)/h−2 L

 
(eqn. 2)

A(i 2mE/h−2 )e
i 2mE/h−2 L

  - B(i 2mE/h−2 )e
-i 2mE/h−2 L

 

= - B'(i 2m(V-E)/h−2 )e
-i 2m(V-E)/h−2 L

 (eqn. 3)
substituting (eqn. 1) into (eqn. 2):

Ae
i 2mE/h−2 L

  - Ae
-i 2mE/h−2 L

  = B'e
-i 2m(V-E)/h−2 L

 

A(Cos( 2mE/h−2  L) + iSin( 2mE/h−2  L))

- A(Cos( 2mE/h−2  L) - iSin( 2mE/h−2  L))

= B'e
-i 2m(V-E)/h−2 L

 

2AiSin( 2mE/h−2  L) = B'e
-i 2m(V-E)/h−2 L

 

Sin( 2mE/h−2  L) = 
B'
2Ai e

-i 2m(V-E)/h−2 L
 (eqn. 4)

substituting (eqn. 1) into (eqn. 3):

A(i 2mE/h−2 )e
i 2mE/h−2 L

  + A(i 2mE/h−2 )e
-i 2mE/h−2 L

 

= - B'(i 2m(V-E)/h−2 )e
-i 2m(V-E)/h−2 L

 

A(i 2mE/h−2 )(Cos( 2mE/h−2  L) + iSin( 2mE/h−2  L))

+ A(i 2mE/h−2 )(Cos( 2mE/h−2  L) - iSin( 2mE/h−2  L))

= - B'(i 2m(V-E)/h−2 )e
-i 2m(V-E)/h−2 L

 

2Ai 2mE/h−2 Cos( 2mE/h−2  L)

= - B'i 2m(V-E)/h−2  e
-i 2m(V-E)/h−2 L

 

Cos( 2mE/h−2  L) = - 
B'i 2m(V-E)/h−2

2Ai 2mE/h−2
  e

-i 2m(V-E)/h−2 L
 

Cos( 2mE/h−2  L) = - 
B' V-E

2A E
  e

-i 2m(V-E)/h−2 L
   (eqn. 5) 



Dividing (eqn. 4) by (eqn. 5):

Sin( 2mE/h−2 L)

Cos( 2mE/h−2 L)
  = 

B'
2Ai 

-2A E

B' V-E
 
e
-i 2m(V-E)/h−2 L

e
-i 2m(V-E)/h−2 L

 

Tan( 2mE/h−2  L) = - 




E

V-E
1/2

 

e. As V→ +∞, Tan( 2mE/h−2  L) → 0

So, 2mE/h−2  L = nπ

En = 
n2π2h−2

2mL2
 

    Problems   

1. a. Ψn(x) = 




2

L

1
2  Sin

nπx
L  

Pn(x)dx = | |Ψn
2(x) dx

The probability that the particle lies in the interval 0 ≤ x ≤ L
4
  is given by:

Pn = ⌡⌠
0

L
4

Pn(x)dx  = 




2

L ⌡
⌠

0

L
4

Sin2




nπx

L dx 

This integral can be integrated to give (using integral equation 10 with θ = 
nπx
L  ):

Pn = 




L

nπ 



2

L ⌡
⌠

0

nπ
4

Sin2




nπx

L d



nπx

L  

Pn = 




L

nπ 



2

L ⌡⌠
0

nπ
4

Sin2θdθ 

Pn = 
2

nπ









-  
1
4Sin2θ +  

θ
2 




nπ

4

0
 

= 
2

nπ





-  
1
4Sin

2nπ
4  +  

nπ
(2)(4)  



= 
1
4  - 

1

2πn
  Sin



nπ

2  

b. If n is even, Sin



nπ

2   = 0 and Pn = 
1
4  .

If n is odd and n = 1,5,9,13, ... Sin



nπ

2   = 1

and Pn = 
1
4  - 

1

2πn
 

If n is odd and n = 3,7,11,15, ... Sin



nπ

2   = -1

and Pn = 
1
4  + 

1

2πn
 

The higher Pn is when     n = 3    .  Then Pn = 
1
4  + 

1

2π3
 

Pn = 
1
4  + 

1

6π
  = 0.303

c. Ψ(t) = e

-iHt

h−  [ ]aΨn +  b Ψm   = aΨne

-iEnt

h−   + bΨme

-iEmt

h−  

HΨ = aΨnEne

-iEnt

h−   + bΨmEme

iEmt

h−  

< >Ψ|H|Ψ   = |a|2En + |b|2Em + a*be

i(En-Em)t

h− < >Ψn|H|Ψm  

+ b*ae

-i(Em-En)t

h− < >Ψm|H|Ψn  

Since < >Ψn|H|Ψm   and < >Ψm|H|Ψn   are zero,

< >Ψ|H|Ψ   = |a|2En + |b|2Em  (note the time independence)

d. The fraction of systems observed in Ψn is |a|2.  The possible energies measured

are En and Em.  The probabilities of measuring each of these energies is |a|2 and |b|2.

e. Once the system is observed in Ψn, it stays in Ψn.

f. P(En) =  < >Ψn|Ψ  
2
 = |cn|2

cn = ⌡
⌠

0

L

2
LSin



nπx

L
30

L5
 x(L-x)dx

    = 
60

L6⌡
⌠

0

L

x(L-x)Sin



nπx

L  dx



    = 
60

L6





L⌡
⌠

0

L

xSin



nπx

L dx -  ⌡
⌠

0

L

x2Sin



nπx

L dx  

These integrals can be evaluated from integral equations 14 and 16 to give:

cn = 
60

L6







L






L2

n2π2
Sin



nπx

L  -  
Lx

nπ
Cos



nπx

L 

L

0
  

- 
60

L6













2xL2

n2π2
Sin



nπx

L  -  






n2π2x2

L2
 -  2

L3

n3π3
Cos



nπx

L 

L

0
  

cn = 
60

L6
 { L3

n2π2
( )Sin(nπ) - Sin(0)  

- 
L2

nπ
( )LCos(nπ) - 0Cos0  )

- ( 2L2

n2π2
( )LSin(nπ) - 0Sin(0)  

- ( )n2π2 -  2
L3

n3π3
 Cos(nπ)

+ 






n2π2(0)

L2
 -  2

L3

n3π3
 Cos(0))}

cn = L-3 60 {- 
L3

nπ
 Cos(nπ) + ( )n2π2 -  2

L3

n3π3
 Cos(nπ)

+ 
2L3

n3π3
 }

cn = 60




-  

1

nπ
(-1)n +  ( )n2π2 -  2

1

n3π3
(-1)n +  

2

n3π3
 

cn = 60










-1

nπ
 +  

1

nπ
 -  

2

n3π3
(-1)n +  

2

n3π3
 

cn = 
2 60

n3π3
 )( )-(-1)n +  1  

|cn|2 = 
4(60)

n6π6
 )( )-(-1)n +  1 2 

If n is even then cn = 0

If n is odd then cn = 
(4)(60)(4)

n6π6
  = 

960

n6π6
 

The probability of making a measurement of the energy and obtaining one of the
eigenvalues, given by:

En = 
n2π2h−2

2mL2
  is:

P(En) = 0 if n is even



P(En) = 
960

n6π6
  if n is odd

g. < >Ψ|H|Ψ   = 
⌡

⌠

0

L





30

L5

1
2x(L-x)







-h−2

2m 
d2

dx2 



30

L5

1
2x(L-x)dx 

 = 




30

L5 





-h−2

2m ⌡

⌠

0

L

x(L-x)








 
d2

dx2
( )xL-x2 dx 

 = 






-15h−2

mL5
⌡⌠
0

L

x(L-x)(-2)dx 

 = 






30h−2

mL5
⌡⌠
0

L

xL-x2dx 

 = 






30h−2

mL5 



L

x2

2 -
x3

3 

L

0
  

 = 






30h−2

mL5 



L3

2 -
L3

3  

 = 






30h−2

mL2 



1

2-
1
3  

 = 
30h−2

6mL2
  = 

5h−2

mL2
 

2. < >Ψ|H|Ψ   = ∑
ij

   Ci*e

iEit

h− < >Ψi|H|Ψj  e

-iEjt

h−  Cj

Since < >Ψi|H|Ψj   = Ejδij

< >Ψ|H|Ψ   = ∑
j

   Cj*CjEje

i(Ej-Ej)t

h−  

< >Ψ|H|Ψ   = ∑
j

Cj*CjEj  (not time dependent) 

For other properties:

< >Ψ|A|Ψ   = ∑
ij

   Ci*e

iEit

h− < >Ψi|A|Ψj  e

-iEjt

h−  Cj

    but,    < >Ψi|A|Ψj   does not necessarily = ajδij.



This is only true if [A,H] = 0.

< >Ψ|A|Ψ   = ∑
ij

   Ci*Cje

i(Ei-Ej)t

h−
< >Ψi|A|Ψj

 

Therefore, in general, other properties are time dependent.

3. For a particle in a box in its lowest quantum state:

Ψ = 
2
L Sin



πx

L  

< >x   = ⌡⌠
0

L

Ψ*xΨdx 

= 
2
L⌡

⌠

0

L

xSin2




πx

L dx 

Using integral equation 18:

= 
2
L






x2

4  -  
xL

4π
Sin



2πx

L  -  
L2

8π2
Cos



2πx

L 

L

0
  

= 
2
L






L2

4  -
L2

8π2
(Cos(2π) - Cos(0))  

= 
2
L



L2

4  

= 
L
2 

< >x2   = ⌡⌠
0

L

Ψ*x2Ψdx 

= 
2
L⌡

⌠

0

L

x2Sin2




πx

L dx 

Using integral equation 19:

= 
2
L






x3

6  -  






x2L

4π
 -  

L3

8π3
Sin



2πx

L  -  
xL2

4π2
Cos



2πx

L 

L

0
  

= 
2
L






L3

6  -  
L2

4π2
(LCos(2π) - (0)Cos(0))  

= 
2
L






L3

6  -  
L3

4π2
 

= 
L2

3   - 
L2

2π2
 



< >p   = ⌡⌠
0

L

Ψ*pΨdx 

= 
2
L⌡


⌠

0

L

Sin



πx

L 





h−

i  
d
dx Sin



πx

L dx 

= 
2h−π
L2i

⌡
⌠

0

L

Sin



πx

L  Cos



πx

L dx 

= 
2h−
Li⌡

⌠

0

L

Sin



πx

L  Cos



πx

L d



πx

L  

Using integral equation 15 (with θ = 
πx
L  ):

= 
2h−
Li








-
1
2Cos2(θ)



π

0
   = 0

< >p2   = ⌡⌠
0

L

Ψ*p2Ψdx 

= 
2
L⌡


⌠

0

L

Sin



πx

L 







-h−2 
d2

dx2
Sin



πx

L dx 

= 
2π2h−2

L3 ⌡
⌠

0

L

Sin2




πx

L dx 

= 
2πh−2

L2 ⌡
⌠

0

L

Sin2




πx

L  d 



πx

L  

Using integral equation 10 (with θ = 
πx
L  ):

= 
2πh−2

L2 





-
1
4Sin(2θ)  +  

θ
2 


π

0
 

= 
2πh−2

L2
 
π
2  = 

π2h−2

L2
 



∆x =  < >x2  -  < >x 2
1
2 

= 






L2

3  -  
L2

2π2
 -  

L2

4

1
2 

= L




1

12 -  
1

2π2

1
2 

∆p =  < >p2  -  < >p 2
1
2 

= 






π2h−2

L2
 -  0

1
2  = 

πh−
L  

∆x ∆p = πh−




1

12 -  
1

2π2

1
2 

= 
h−
2



4π2

12  -  
4
2

1
2 

= 
h−
2



π2

3  -  2
1
2 

Finally, 
h−
2



π2

3  -  2
1
2   >  

h−
2



(3)2

3  -  2
1
2  = 

h−
2 

∴ ∆x ∆p   >  
h−
2 

4. a. ⌡⌠
0

L/4

P(x)dx  = ⌡
⌠

0

L/4

1
Ldx  = 

1
L x



L/4

0
 

= 
1
L 

L
4  = 

1
4  = 25%

Pclassical = 
1
4 (for interval 0 - L/4)

b. This was accomplished in problem 1a. to give:

Pn = 
1
4  - 

1

2πn
  Sin



nπ

2  

(for interval 0 - L/4)

c. Limit
n→∞

  Pquantum = Limit
n→∞

 






1

4 -  
1

2πn
 Sin



nπ

2  

Limit
n→∞

  Pquantum = 
1
4 

Therefore as n becomes large the classical limit is approached.



5. a. The Schrödinger equation for a Harmonic Oscillator in 1-dimensional coordinate

representation, H Ψ(x) = Ex Ψ(x), with the Hamiltonian defined as: H = 
-h−2

2m 
d2

dx2
  + 

1
2 kx2,

becomes:







-h−2

2m 
d2

dx2
 +  

1
2kx2   Ψ(x) = ExΨ(x).

b. The transformation of the kinetic energy term to the momentum representation is

trivial : T = 
px2

2m .  In order to maintain the commutation relation [x ,px] = ih−  and keep the p

operator unchanged the coordinate operator must become x  = ih− d
dpx

 .  The Schrödinger

equation for a Harmonic Oscillator in 1-dimensional momentum representation, H Ψ(px) =

Ep
x Ψ(px), with the Hamiltonian defined as: H = 

1
2m px2 - 

kh−2

2  
d2

dpx2
  , becomes:







1

2mpx2 -  
kh−2

2  
d2

dpx2
   Ψ(px) = Ep

x Ψ(px).

c. For the wavefunction Ψ(x) = C exp (- mk 
x2

2h−
  ) ,

let a = 
mk

2h−
  , and hence Ψ(x) = C exp (-ax2).  Evaluating the derivatives of this expression

gives:
d
dx  Ψ(x) = 

d
dx  C exp (-ax2) = -2axC exp (-ax2)

d2

dx2
  Ψ(x) = 

d2

dx2
  C exp (-ax2) = 

d
dx  -2axC exp (-ax2)

     = (-2axC) (-2ax exp (-ax2)) + (-2aC) (exp (-ax2))
     = (4a2x2 - 2a) Cexp (-ax2).

H Ψ(x) = Ex Ψ(x) then becomes:

H Ψ(x) = 





-h−2

2m(4a2x2 -  2a)  +  
1
2kx2   Ψ(x).

Clearly the energy (eigenvalue) expression must be independent of x and the two terms
containing x2 terms must cancel upon insertion of a:

Ex = 
-h−2

2m





4







mk

2h−

2
x2 -  2

mk

2h−
  + 

1
2 kx2

    = 
-h−2

2m 






4mkx2

4h−2
  +

h−2

2m 
2 mk

2h−
  + 

1
2 kx2

    = -
1
2 kx2 + 

h− mk
2m   + 

1
2 kx2



    = 
h− mk

2m  .

Normalization of Ψ(x) to determine the constant C yields the equation:

C2 
⌡

⌠

-∞

+∞

exp (- mk 
x2

h−
 )   dx = 1.

Using integral equation (1) gives:

C2 2






1

2 π 






mk

h−

-1
2   = 1

C2 







πh−

mk

1
2  = 1

C2 = 






mk

πh−

1
2 

C = 






mk

πh−

1
4 

Therefore, Ψ(x) = 






mk

πh−

1
4 exp (- mk 

x2

2h−
  ) .

d. Proceeding analogous to part c, for a wavefunction in momentum space Ψ(p) =

C exp (-αp2), evaluating the derivatives of this expression gives:
d
dp  Ψ(p) = 

d
dp  C exp (-αp2) = -2αpC exp (-αp2)

d2

dp2
  Ψ(p) = 

d2

dp2
  C exp (-αp2) = 

d
dp  -2αpC exp (-αp2)

     = (-2αpC) (-2αp exp (-αp2)) + (-2αC) (exp (-αp2))

     = (4α2p2 - 2α) Cexp (-αp2).

H Ψ(p) = Ep Ψ(p) then becomes:

H Ψ(p) = 
1

2m p2 - 
kh−2

2  (4α2p2 - 2α)  Ψ(p)

Once again the energy (eigenvalue) expression corresponding to Ep must be independent of

p and the two terms containing p2 terms must cancel with the appropriate choice of α.  We

also desire our choice of α to give us the same energy we found in part c (in coordinate
space).

Ep = 
1

2m p2 - 
kh−2

2  (4α2p2 - 2α) 

Therefore we can find α either of two ways:



(1)
1

2m p2 = 
kh−2

2   4α2p2  , or

(2)
kh−2

2   2α = h
− mk

2m  .

Both equations yield α =  2h− mk -1 .

Normalization of Ψ(p) to determine the constant C yields the equation:

C2 ⌡⌠

-∞

+∞

exp (-2αp2)  dp = 1.

Using integral equation (1) gives:

C2 2





1

2 π ( )2α
-1
2   = 1

C2 π  2 2h− mk -1 -1
2  = 1

C2 π  h− mk
1
2  = 1

C2  πh− mk
1
2  = 1

C2 =  πh− mk
-1
2 

C =  πh− mk
-1
4 

Therefore, Ψ(p) =  πh− mk
-1
4  exp (-p2/(2h− mk ).

Showing that Ψ(p) is the proper fourier transform of Ψ(x) suggests that the fourier integral

theorem should hold for the two wavefunctions Ψ(x) and Ψ(p) we have obtained, e.g.

Ψ(p) = 
1

2πh−
 ⌡⌠

-∞

+∞

Ψ(x)eipx/h-dx  , for

Ψ(x) = 






mk

πh−

1
4 exp (- mk 

x2

2h−
  ) , and

Ψ(p) =  πh− mk
-1
4  exp (-p2/(2h− mk ).

So, verify that:

 πh− mk
-1
4  exp (-p2/(2h− mk )



= 
1

2πh−
 

⌡


⌠

-∞

+∞







mk

πh−

1
4exp (- mk 

x2

2h−
 )  e ipx/h- dx  .

Working with the right-hand side of the equation:

= 
1

2πh−





mk

πh−

1
4 

⌡

⌠

-∞

+∞

exp (- mk 
x2

2h−
 )  







Cos







px

h−
 + iSin







px

h−
dx  ,

the Sin term is odd and the integral will therefore vanish.  The remaining integral can be
evaluated using the given expression:

⌡⌠

-∞

+∞

e-βx2Cosbxdx  = 
π
β

  e-b2/4β

= 
1

2πh−





mk

πh−

1
4 

⌡

⌠

-∞

+∞

exp (-
mk

2h−
 x 2) Cos







p

h−
 x  dx 

= 
1

2πh−





mk

πh−

1
4







2πh−

mk

1
2 

⌡

⌠

-∞

+∞

exp 








-






p2

h−2

2h−

4 mk
  

= 






mk

πh−

1
4




1

mk

1
2 

⌡

⌠

-∞

+∞

exp 






-

p2

2h− mk
  

= 






mk

mkπh−

1
4 

⌡

⌠

-∞

+∞

exp 






-

p2

2h− mk
  

=  h−π mk -1
4 

⌡

⌠

-∞

+∞

exp 






-

p2

2h− mk
   = Ψ(p)Q.E.D.



6. a. The lowest energy level for a particle in a 3-dimensional box is when n1 = 1, n2
= 1, and n3 = 1.  The total energy (with L1 = L2 = L3) will be:

Etotal = 
h2

8mL2
( )n12 +  n 22 +  n 32   = 

3h2

8mL2
 

Note that n = 0 is not possible.  The next lowest energy level is when one of the three
quantum numbers equals 2 and the other two equal 1:

n1 = 1, n2 = 1, n3 = 2
n1 = 1, n2 = 2, n3 = 1
n1 = 2, n2 = 1, n3 = 1.

Each of these three states have the same energy:

Etotal = 
h2

8mL2
( )n12 +  n 22 +  n 32   = 

6h2

8mL2
 

Note that these three states are only degenerate if L1 = L2 = L3.

b. ↑       distortion→     
     ↑  

       ↑↓  ↑↓  
L1 = L2 = L3        L3 ≠ L1 = L2

For L1 = L2 = L3, V = L1L2L3 = L13,

Etotal(L1) = 2ε1 + ε2

= 
2h2

8m





12

L12
 +  

12

L22
 +  

12

L32
  + 

1h2

8m





12

L12
 +  

12

L22
 +  

22

L32
 

= 
2h2

8m



3

L12
  + 

1h2

8m



6

L12
  = 

h2

8m



12

L12
  

For L3 ≠ L1 = L2, V = L1L2L3 = L12L3, L3 = V/L12

Etotal(L1) = 2ε1 + ε2

= 
2h2

8m





12

L12
 +  

12

L22
 +  

12

L32
  + 

1h2

8m





12

L12
 +  

12

L22
 +  

22

L32
 

= 
2h2

8m



2

L12
 +  

1

L32
 + 

1h2

8m



2

L12
 +  

4

L32
 

= 
2h2

8m



2

L12
 +  

1

L32
 +  

1

L12
 +  

2

L32
 

= 
2h2

8m



3

L12
 +  

3

L32
  = 

h2

8m



6

L12
 +  

6

L32
 

In comparing the total energy    at constant volume    of the undistorted box (L1 = L2 = L3)

versus the distorted box (L3 ≠ L1 = L2) it can be seen that:

h2

8m



6

L12
 +  

6

L32
  ≤ 

h2

8m



12

L12
   as long as L3 ≥ L1.

c. In order to minimize the total energy expression, take the derivative of the energy

with respect to L1 and set it equal to zero. 
∂Etotal

∂L1
  = 0



∂
∂L1

 






h2

8m



6

L12
 +  

6

L32
  = 0

But since V = L1L2L3 = L12L3, then L3 = V/L12.  This substitution gives:

∂
∂L1

 






h2

8m





6

L12
 +  

6L14

V2
  = 0







h2

8m





(-2)6

L13
 +  

(4)6L13

V2
  = 0









-
12

L13
 +  

24L13

V2
  = 0







24L13

V2
  = 





12

L13
 

24L16 = 12V2

L16 = 
1
2 V2 = 

1
2( )L12L3

2  = 
1
2 L14L32

L12 = 
1
2 L32

L3 = 2 L1
d. Calculate energy upon distortion:

cube: V = L13, L1 = L2 = L3 = (V)
1
3 

distorted: V = L12L3 = L12 2 L1 = 2 L13

L3 = 2




V

2

1
3  ≠ L1 = L2 = 





V

2

1
3 

∆E = Etotal(L1 = L2 = L3) - Etotal(L3 ≠ L1 = L2)

= 
h2

8m



12

L12
  - 

h2

8m



6

L12
 +  

6

L32
 

= 
h2

8m





12

V2/3
 -  

6(2)1/3

V2/3
 +  

6(2)1/3

2V2/3
 

= 
h2

8m





12 - 9(2)1/3

V2/3
 

Since V = 8Å3, V2/3 = 4Å2 = 4 x 10-16 cm2 , and 
h2

8m  = 6.01 x 10-27 erg cm2:

∆E = 6.01 x 10-27 erg cm2







12 - 9(2)1/3

4 x 10 -16 cm2
 

∆E = 6.01 x 10-27 erg cm2




0.66

4 x 10 -16 cm2
 

∆E = 0.99 x 10-11 erg

∆E = 0.99 x 10-11 erg 




1 eV

1.6 x 10-12 erg
 



∆E = 6.19 eV

7. a. ⌡⌠

-∞

+∞

Ψ*(x)Ψ(x)  dx = 1.

A2 ⌡⌠

-∞

+∞

e-2a| |x   dx = 1.

A2 ⌡⌠

-∞

0

e2ax  dx + A2 ⌡⌠
0

+∞

e-2ax  dx = 1

Making use of integral equation (4) this becomes:

A2




1

2a +  
1
2a   = 

2A2

2a   = 1

A2 = a
A = ± a  , therefore A is not unique.

Ψ(x) = Ae-a| |x   = ± a e-a| |x  

Since a has units of Å-1, Ψ(x) must have units of Å
-1
2 .

b. | |x  = 






 x  i f  x  ≥ 0

-x if  x ≤ 0
 

Ψ(x) = a






 e -ax i f  x  ≥ 0

eax i f  x  ≤ 0
 

Sketching this wavefunction with respect to x (keeping constant a fixed; a = 1) gives:

c.
dΨ(x)

dx   = a






 -ae-ax i f  x  ≥ 0

aeax i f  x  ≤ 0
 

dΨ(x)
dx  

0+ε
 = -a a 

dΨ(x)
dx  

0-ε
 = a a 

The magnitude of discontinuity is a a  + a a  = 2a a  as x goes through x = 0.  This also
indicates that the potential V undergoes a discontinuity of ∞ magnitude at x = 0.

d. < >| |x   = ⌡⌠

-∞

+∞

Ψ*(x)| |x Ψ(x)  dx



   = ( a )2 ⌡⌠

-∞

0

e2ax(-x)  dx + ( a )2 ⌡⌠
0

+∞

e-2ax(x)  dx

   = 2a⌡⌠
0

∞

e-2ax(x)  dx

Making use of integral equation (4) again this becomes:

   = 2a 
1

(2a)2
  = 

1
2a  = 

1

2(2�Å)-1
 

< >| |x   = 1�Å
This expectation value is a measure of the average distance ( )| |x   from the

origin.

e. Ψ(x) = a






 e -ax i f  x  ≥ 0

eax i f  x  ≤ 0
 

dΨ(x)
dx   = a







 -ae-ax i f  x  ≥ 0

aeax i f  x  ≤ 0
 

d2Ψ(x)

dx2
  = a







 a2e-ax i f  x  ≥ 0

a2eax i f  x  ≤ 0
  = a2Ψ(x)

< >H   = < >







- h−
2m

 d2

dx2
 -  h−2a

m
 δ(x)  

< >H   = ⌡

⌠

-∞

+∞

Ψ*(x)








-
h−

2m 
d2

dx2
Ψ(x)  dx - ⌡


⌠

-∞

+∞

Ψ*(x)





h−2a

m  δ(x) Ψ(x)  dx

= -
h−a2

2m ⌡⌠

-∞

+∞

Ψ*(x)Ψ(x)  dx - 
h−2a
m ⌡⌠

-∞

+∞

Ψ*(x)( )δ(x) Ψ(x)  dx

Using the integral equation:

⌡⌠
a

b

f(x)δ(x-x0)dx  = 






f(x0) if a<x0<b

0   otherwise
 

< >H   = -
h−a2

2m(1)  - 
h−2a
m ( a) 2 = -

3h−a2

2m  

= -3 (6.06 x 10-28 erg cm2) (2 x 10-8 cm)-2

= -4.55 x 10-12 erg
= -2.84 eV.

f. In problem 5 the relationship between Ψ(p) and Ψ(x) was derived:



Ψ(p) = 
1

2πh−
 ⌡⌠

-∞

+∞

Ψ(x)e-ipx/h-dx .

Ψ(p) = 
1

2πh−
 ⌡⌠

-∞

+∞

ae-a| |x e-ipx/h-dx .

Ψ(p) = 
1

2πh−
 ⌡⌠

-∞

0

aeaxe-ipx/h-dx  + 
1

2πh−
 ⌡⌠

0

+∞

ae-axe-ipx/h-dx .

= 
a

2πh−





1

a-ip/h−
 +  

1

a+ip/h−
  

= 
a

2πh−





2a

a2+p2/h−2
 

g. 
 Ψ(p=2ah−)

2

 Ψ(p=-ah−)
2  = 







1/(a2+(2ah−)2/h−2)

1/(a2+(-ah−)2/h−2)

2
 

= 






1/(a2+4a2)

1/(a2+a2)

2
 

= 






1/(5a2)

1/(2a2)

2
 

= 




2

5
2
  = 0.16 = 16%

8. a. H = 
-h−2

2m 






∂2

∂x2
 +  

∂2

∂y2
 (cartesian coordinates)

Finding 
∂
∂x

  and
∂
∂y

  from the chain rule gives:

∂
∂x

  = 






∂r

∂x
 
y
 
∂
∂r

  + 






∂φ

∂x
 
y
 
∂
∂φ

   ,  
∂
∂y

  = 






∂r

∂y
 
x
 
∂
∂r

  + 






∂φ

∂y
 
x
 
∂
∂φ

  ,

Evaluation of the "coefficients" gives the following:







∂r

∂x
 
y
 = Cosφ , 







∂φ

∂x
 
y
 = - 

Sinφ
r   ,







∂r

∂y
 
x
 = Sinφ , and  







∂φ

∂y
 
x
 = 

Cosφ
r   ,

Upon substitution of these "coefficients":



∂
∂x

  = Cosφ 
∂
∂r

  - 
Sinφ

r  
∂
∂φ

  = - 
Sinφ

r  
∂
∂φ

 ; at fixed r.

∂
∂y

  = Sinφ 
∂
∂r

  + 
Cosφ

r  
∂
∂φ

  = 
Cosφ

r  
∂
∂φ

 ; at fixed r.

∂2

∂x2
  = 









-  
Sinφ

r  
∂
∂φ 








-  
Sinφ

r  
∂
∂φ

 

      = 
Sin2φ

r2
 
∂2

∂φ2
  + 

SinφCosφ
r2

 
∂
∂φ

  ; at fixed r.

∂2

∂y2
  = 







Cosφ

r  
∂
∂φ 






Cosφ

r  
∂
∂φ

 

      = 
Cos2φ

r2
 
∂2

∂φ2
  - 

CosφSinφ
r2

 
∂
∂φ

  ; at fixed r.

∂2

∂x2
  + 

∂2

∂y2
  = 

Sin2φ
r2

 
∂2

∂φ2
  + 

SinφCosφ
r2

 
∂
∂φ

  + 
Cos2φ

r2
 
∂2

∂φ2
  - 

CosφSinφ
r2

 
∂
∂φ

 

      = 
1

r2
 
∂2

∂φ2
  ; at fixed r.

So, H = 
-h−2

2mr2
 
∂2

∂φ2
 (cylindrical coordinates, fixed r)

   = 
-h−2

2I  
∂2

∂φ2
 

The Schrödinger equation for a particle on a ring then becomes:
HΨ = EΨ

-h−2

2I  
∂2Φ
∂φ2

  = EΦ

∂2Φ
∂φ2

  = 






-2IE

h−2
 Φ

The general solution to this equation is the now familiar expression:

Φ(φ) = C1e-imφ + C2eimφ , where m = 






2IE

h−2

1
2 

Application of the cyclic boundary condition, Φ(φ) = Φ(φ+2π), results in the quantization

of the energy expression: E = 
m2h−2

2I   where m = 0, ±1, ±2, ±3, ...  It can be seen that the

±m values correspond to angular momentum of the same magnitude but opposite

directions.  Normalization of the wavefunction (over the region 0 to 2π) corresponding to +

or - m will result in a value of 




1

2π

1
2  for the normalization constant.



∴ Φ(φ) = 




1

2π

1
2 eimφ

  
(±4)2h−2

2I   

  
(±3)2h−2

2I   

  
(±2)2h−2

2I   

↑↓  ↑↓  
(±1)2h−2

2I   

   ↑↓  
(0)2h−2

2I   

b. 
h−2

2m  = 6.06 x 10-28 erg cm2

h−2

2mr2
  = 

6.06 x 10-28 erg cm2

(1.4 x 10-8 cm)2
  

= 3.09 x 10-12 erg
∆E = (22 - 12) 3.09 x 10-12 erg = 9.27 x 10-12 erg

but ∆E = hν = hc/λ So λ = hc/∆E

λ = 
(6.63 x 10-27 erg sec)(3.00 x 1010 cm sec-1)

9.27 x 10-12 erg
 

   = 2.14 x 10-5 cm = 2.14 x 103 Å
Sources of error in this calculation include:

i. The attractive force of the carbon nuclei is not included in the Hamiltonian.
ii. The repulsive force of the other π-electrons is not included in the Hamiltonian.
iii. Benzene is not a ring.
iv. Electrons move in three dimensions not one.
v. Etc.

9. Ψ(φ,0) = 
4

3π
  Cos2φ.

This wavefunction needs to be expanded in terms of the eigenfunctions of the angular

momentum operator, 








-ih−
∂
∂φ

 .  This is most easily accomplished by an exponential

expansion of the Cos function.

Ψ(φ,0) = 
4

3π



eiφ +  e -iφ

2 



eiφ +  e -iφ

2  

 = 




1

4
4

3π
( )e2iφ +  e -2iφ + 2e (0)iφ  



The wavefunction is now written in terms of the eigenfunctions of the angular momentum

operator, 








-ih−
∂
∂φ

 , but they need to include their normalization constant, 
1

2π
 .

Ψ(φ,0) = 




1

4  
4

3π
 2π 







1

2π
 e2iφ +  

1

2π
 e -2iφ +  2

1

2π
 e (0)iφ  

 = 



1

6






1

2π
 e2iφ +  

1

2π
 e -2iφ +  2

1

2π
 e (0)iφ  

Once the wavefunction is written in this form (in terms of the normalized eigenfunctions of

the angular momentum operator having mh−  as eigenvalues) the probabilities for observing

angular momentums of 0h− , 2h− , and -2h−  can be easily identified as the square of the
coefficients of the corresponding eigenfunctions.

P2h−  = 



1

6
2
  = 

1
6 

P-2h−  = 



1

6
2
  = 

1
6 

P0h−  = 



2

1
6

2
  = 

4
6 

10. a. 



-h−2

2m 





∂2

∂x2
 +  

∂2

∂y2
 +  

∂2

∂z2
 Ψ(x,y,z) + 

1
2 k(x2 + y2 + z2)Ψ(x,y,z)

  = E Ψ(x,y,z) .

b. Let Ψ(x,y,z) = X(x)Y(y)Z(z)







-h−2

2m 





∂2

∂x2
 +  

∂2

∂y2
 +  

∂2

∂z2
 X(x)Y(y)Z(z) + 

1
2 k(x2 + y2 + z2)X(x)Y(y)Z(z)

 = E X(x)Y(y)Z(z) .







-h−2

2m  Y(y)Z(z)
∂2X(x)

∂x2
  + 






-h−2

2m  X(x)Z(z)
∂2Y(y)

∂y2
  + 






-h−2

2m  X(x)Y(y)
∂2Z(z)

∂z2
  +

1
2 kx2X(x)Y(y)Z(z) + 

1
2 ky2X(x)Y(y)Z(z) + 

1
2 kz2X(x)Y(y)Z(z)

 = E X(x)Y(y)Z(z) .
Dividing by X(x)Y(y)Z(z) you obtain:







-h−2

2m 



1

X(x)
∂2X(x)

∂x2
  + 

1
2 kx2 + 






-h−2

2m 



1

Y(y)
∂2Y(y)

∂y2
  + 

1
2 ky2 + 






-h−2

2m 



1

Z(z)
∂2Z(z)

∂z2
  + 

1
2 kz2 = E.

Now you have each variable isolated:
F(x) + G(y) + H(z) = constant

So,







-h−2

2m 



1

X(x)
∂2X(x)

∂x2
  + 

1
2 kx2 = Ex ⇒ 






-h−2

2m
∂2X(x)

∂x2
  + 

1
2 kx2X(x) = ExX(x),









-h−2

2m 



1

Y(y)
∂2Y(y)

∂y2
  + 

1
2 ky2 = Ey ⇒ 






-h−2

2m
∂2Y(y)

∂y2
  + 

1
2 ky2Y(y) = EyY(y),







-h−2

2m 



1

Z(z)
∂2Z(z)

∂z2
  + 

1
2 kz2 = Ez ⇒ 






-h−2

2m
∂2Z(z)

∂z2
  + 

1
2 kz2Z(z) = EzZ(z),

and E = Ex + Ey + Ez.
c. All three of these equations are one-dimensional harmonic oscillator equations

and thus each have one-dimensional harmonic oscillator solutions which taken from the text
are:

Xn(x) = 




1

n!2n

1
2







α

π

1
4 e



-αx2

2  Hn(α
1
2 x) ,

Yn(y) = 




1

n!2n

1
2







α

π

1
4 e



-αy2

2  Hn(α
1
2 y) , and

Zn(z) = 




1

n!2n

1
2







α

π

1
4 e



-αz2

2  Hn(α
1
2 z) ,

where α = 






kµ

h−2

1
2  .

d. Enx,ny,nz
 = Enx

 + Eny
 + Enz

 = 






h−2k

µ

1
2













nx +  

1
2  +  





ny +  

1
2  +  





nz +  

1
2  

e. Suppose E = 5.5






h−2k

µ

1
2 

= 






h−2k

µ

1
2













nx +  n y +  n z +  

3
2  

5.5 = 




nx +  n y +  n z +  

3
2  

So, nx + ny + nz = 4.  This gives rise to a degeneracy of 15.  They are:

States 1-3 States 4-6 States 7-9
n   x   n   y   n   z   n   x   n   y   n   z   n   x   n   y   n   z   
4 0 0 3 1 0 0 3 1
0 4 0 3 0 1 1 0 3
0 0 4 1 3 0 0 1 3

States 10-12 States 13-15
n   x   n   y   n   z   n   x   n   y   n   z   
2 2 0 2 1 1
2 0 2 1 2 1
0 2 2 1 1 2



f. Suppose V = 
1
2 kr2 (independent of θ and φ)

The solutions G(θ,φ) are the spherical harmonics Yl,m(θ,φ).

g. -
h−2

2µr2
 






∂

∂r
 








r2∂Ψ
∂r

  + 
1

r2Sinθ
 
∂
∂θ








Sinθ
∂Ψ
∂θ

 

 + 
1

r2Sin2θ
∂2Ψ
∂φ2

  + 
k
2(r - re) 2Ψ = E Ψ ,

If Ψ(r,θ,φ) is replaced by F(r)G(θ,φ):

-
h−2

2µr2
 






∂

∂r
 








r2∂F(r)G(θ,φ)

∂r
  + 

F(r)

r2Sinθ
 
∂
∂θ








Sinθ
∂G(θ,φ)

∂θ
 

 + 
F(r)

r2Sin2θ
∂2G(θ,φ)

∂φ2
  + 

k
2(r - re) 2F(r)G(θ,φ) = E F(r)G(θ,φ) ,

and the angle dependence is recognized as the L2 angular momentum operator.  Division by
G(θ,φ) further reduces the equation to:

h−2

2µr2
 






∂

∂r
 








r2∂F(r)

∂r
  + 

J(J+1)h−2

2µre2
 F(r) + 

k
2(r - re) 2F(r) = E F(r) .

11. a. 
1
2 mv2 = 100 eV 



1.602 x 10-12 erg

1 eV  

v2 = 






(2)1.602 x 10-10 erg

 9.109 x 10-28g
 

v = 0.593 x 109 cm/sec
The length of the N2 molecule is 2Å = 2 x 10-8 cm.

v = 
d
t  

t = 
d
v  = 

2 x 10 -8 cm

0.593 x 109 cm/sec
  = 3.37 x 10-17 sec

b. The normalized ground state harmonic oscillator can be written (from both in the
text and in exercise 11) as:

Ψ0 = 






α

π
 
1/4

e-αx2/2, where α = 






kµ

h−2

1
2  and x = r - re

Calculating constants;

αN2 = 






(2.294 x 106 g sec-2)(1.1624 x 10-23 g)

(1.0546 x 10-27 erg sec)2

1
2 

= 0.48966 x 1019 cm-2 = 489.66 Å-2

For N2: Ψ0(r) = 3.53333Å
-1
2 e-(244.83Å-2)(r-1.09769Å)2



αN2
+ = 







(2.009 x 106 g sec-2)(1.1624 x 10-23 g)

(1.0546 x 10-27 erg sec)2

1
2 

= 0.45823 x 1019 cm-2 = 458.23 Å-2

For N2+: Ψ0(r) = 3.47522Å
-1
2 e-(229.113Å-2)(r-1.11642Å)2

c. P(v=0) =  < >Ψv=0(N2+)Ψv=0(N2)
2
 

Let P(v=0) = I2 where I = integral:

I= ⌡
⌠

-∞

+∞

(3.47522Å
-1
2e-(229.113Å-2)(r-1.11642Å)2) .

(3.53333Å
-1
2 e-(244.830Å-2)(r-1.09769Å)2)dr

Let C1 = 3.47522Å
-1
2 , C2 = 3.53333Å

-1
2 ,

A1 = 229.113Å-2, A2 = 244.830Å-2,
r1 = 1.11642Å, r2 = 1.09769Å, 

I = C1C2 ⌡⌠

-∞

+∞

e-A1(r-r1)2e-A2(r-r2)2
 dr .

Focusing on the exponential:
-A1(r-r1)2-A2(r-r2)2 = -A1(r2 - 2r1r + r12) - A2(r2 - 2r2r + r22)

     = -(A1 + A2)r2 + (2A1r1 + 2A2r2)r - A1r12 - A2r22

Let A = A1 + A2,
B = 2A1r1 + 2A2r2,
C = C1C2, and

D = A1r12 + A2r22 .

I = C ⌡⌠

-∞

+∞

e-Ar2  + Br - D dr

   = C ⌡⌠

-∞

+∞

e-A(r-r0)2  + D' dr

where -A(r-r0)2 + D' = -Ar2 + Br - D

-A(r2 - 2rr0 + r02) + D' = -Ar2 + Br - D
such that, 2Ar0 = B

-Ar02 + D' = -D



and, r0 = 
B
2A 

D' = Ar02 - D = A
B2

4A2
  - D = 

B2

4A  - D .

I = C ⌡⌠

-∞

+∞

e-A(r-r0)2  + D' dr

   = CeD' ⌡⌠

-∞

+∞

e-Ay2 dy

   = CeD' π
A

 

Now back substituting all of these constants:

I = C1C2
π

A1 +  A 2
  exp







(2A1r1 + 2A2r2)2

4(A1 +  A 2)  -  A1r12 -  A2r22  

I = (3.47522)(3.53333)
π

(229.113) + (244.830)  

. exp



(2(229.113)(1.11642) + 2(244.830)(1.09769))2

4((229.113) + (244.830))  

 . exp( ) - (229.113)(1.11642)2 - (244.830)(1.09769)2  
I = 0.959
P(v=0) = I2 = 0.92

12. a. Eν = 






h−2k

µ

1
2




ν +  

1
2  

∆E = Eν+1 - Eν

     = 






h−2k

µ

1
2







ν + 1  +  

1
2 -  ν -  

1
2   = 







h−2k

µ
 

     = 






(1.0546 x 10-27 erg sec)2(1.87 x 106 g sec-2)

6.857 g / 6.02 x 1023

1
2 

     = 4.27 x 10-13 erg

∆E = 
hc

λ
 

λ = 
hc

∆E
  = 

(6.626 x 10-27 erg sec)(3.00 x 1010 cm sec-1)

4.27 x 10-13 erg
 

   = 4.66 x 10-4 cm



1

λ
  = 2150 cm-1

b. Ψ0 = 






α

π
 
1/4

e-αx2/2

< >x   = < >Ψv=0xΨv=0  

 = ⌡⌠

-∞

+∞

Ψ0*xΨ0dx 

 = 
⌡

⌠

-∞

+∞







α

π

1/2
xe-αx2dx 

 = 
⌡

⌠

-∞

+∞







α

-α2π

1/2
e-αx2d(-αx2) 

 = 






-1

απ
 
1/2

e-αx2 +∞
−∞

  = 0

< >x2   = < >Ψv=0x2Ψv=0  

 = ⌡⌠

-∞

+∞

Ψ0*x2Ψ0dx 

 = 
⌡

⌠

-∞

+∞







α

π

1/2
x2e-αx2dx 

 = 2






α

π
 
1/2

⌡⌠
0

+∞

x2e-αx2dx
 

Using integral equation (4) this becomes:

 = 2






α

π
 
1/2





1

21+1α 





π

α

 1/2

 = 




1

2α
 

∆x = (<x2> - <x>2)1/2.= 




1

2α
 



     = 






h−

2 kµ

1
2  

     = 






(1.0546 x 10-27 erg sec)2

4(1.87 x 106 g sec-2)(6.857 g / 6.02 x 1023)

1
4 

     = 3.38 x 10-10 cm = 0.0338Å

c. ∆x = 






h−

2 kµ

1
2  

The smaller k and µ become, the larger the uncertainty in the internuclear distance becomes.

Helium has a small µ and small force between atoms.  This results in a very large ∆x.  This
implies that it is extremely difficult for He atoms to "vibrate" with small displacement as a
solid even as absolute zero is approached.

13. a. W = 




Ze2 - 2ZZe +  

5
8 Z e  

e2

a0
  

dW
dZe

  = 




2Ze -  2Z  +  

5
8  

e2

a0
  = 0

2Ze - 2Z + 
5
8  = 0

2Ze = 2Z - 
5
8 

Ze = Z - 
5
16  = Z - 0.3125  (Note this is the shielding factor of one 1s

electron to the other).

W = Ze



Ze -  2Z  +  

5
8  

e2

a0
 

W = 




Z -  

5
16 









Z -  

5
16  -  2Z  +  

5
8  

e2

a0
 

W = 




Z -  

5
16 



-Z + 

5
16  

e2

a0
 

W = -




Z -  

5
16 



Z -  

5
16  

e2

a0
  = -





Z -  

5
16

2
 
e2

a0
 

    = - (Z - 0.3125)2(27.21) eV
b. Using the above result for W and the percent error as calculated below we obtain

the following:

%error = 
(Experimental-Theoretical)

Experimental   * 100

Z Atom Experimental Calculated % Error
Z = 1 H- -14.35 eV -12.86 eV 10.38%
Z = 2 He -78.98 eV -77.46 eV 1.92%
Z = 3 Li+ -198.02 eV -196.46 eV 0.79%
Z = 4 Be+2 -371.5 eV -369.86 eV 0.44%



Z = 5 B+3 -599.3 eV -597.66 eV 0.27%
Z = 6 C+4 -881.6 eV -879.86 eV 0.19%
Z = 7 N+5 -1218.3 eV -1216.48 eV 0.15%
Z = 8 O+6 -1609.5 eV -1607.46 eV 0.13%

The ignored electron correlation effects are essentially constant over the range of Z, but this
correlation effect is a larger percentage error at small Z.  At large Z the dominant interaction
is electron attraction to the nucleus completely overwhelming the ignored electron
correlation and hence reducing the overall percent error.

c. Since -12.86 eV (H-) is greater than -13.6 eV (H + e)
this simple variational calculation erroneously predicts H- to be unstable.

14. a. W = ⌡⌠

-∞

∞

φ*Hφdx 

W = 




2b

π

1
2 ⌡


⌠

-∞

∞

e
-bx2









-
h−2

2m 
d2

dx2
 + a|x| e

-bx2
dx 

d2

dx2
  e

-bx2
  = 

d
dx





-2bx e
-bx2

 

       = ( )-2bx 





-2bx e
-bx2

  + 





e
-bx2

( )-2b  

       = 





4b2x2 e
-bx2

  + 





-2b e
-bx2

 
Making this substitution results in the following three integrals:

W = 




2b

π

1
2 








-
h−2

2m  ⌡
⌠

-∞

∞

e
-bx2

 4b2x2 e
-bx2

dx  +





2b

π

1
2 








-
h−2

2m  ⌡
⌠

-∞

∞

e
-bx2

 -2b e
-bx2

dx  +





2b

π

1
2 ⌡

⌠

-∞

∞

e
-bx2

a|x|e
-bx2

dx 



   = 




2b

π

1
2 








-
2b2h−2

m  ⌡
⌠

-∞

∞

x2e
-2bx2

dx  + 




2b

π

1
2 






bh−2

m  ⌡
⌠

-∞

∞

e
-2bx2

dx  +





2b

π

1
2  a ⌡

⌠

-∞

∞

|x|e
-2bx2

dx 

Using integral equations (1), (2), and (3) this becomes:

   = 




2b

π

1
2 








-
2b2h−2

m   2 




1

222b
 

π
2b  + 





2b

π

1
2 






bh−2

m   2 




1

2  
π
2b  +





2b

π

1
2  a 





0!

2b  

   = 







-
bh−2

m  




1

2   + 





bh−2

m   + 




2b

π

1
2




a

2b  

W = 





bh−2

2m   + a 




1

2bπ

1
2 

b. Optimize b by evaluating 
dW
db   = 0

dW
db   = 

d
db














bh−2

2m  +  a  




1

2bπ

1
2  

= 





h−2

2m   - 
a
2 





1

2π

1
2 b

-3
2 

So,  
a
2 





1

2π

1
2 b

-3
2  = 






h−2

2m   or, b
-3
2  = 






h−2

2m  
2
a 





1

2π

-1
2  = 






h−2

ma  2π  ,

and, b = 






ma

2π h−2

2
3  .  Substituting this value of b into the expression for W gives:

W = 





h−2

2m






ma

2π h−2

2
3  + a 





1

2π

1
2







ma

2π h−2

-1
3 

    = 





h−2

2m






ma

2π h−2

2
3  + a 





1

2π

1
2







ma

2π h−2

-1
3 

    = 2
-4
3 π

-1
3h−

2
3 a

2
3 m

-1
3  + 2

-1
3 π

-1
3h−

2
3 a

2
3 m

-1
3 



    = 





2
-4
3π

-1
3 +  2

-1
3π

-1
3 h−

2
3 a

2
3 m

-1
3  = 

3
2 ( )2π

-1
3h−

2
3 a

2
3 m

-1
3 

    = 0.812889106h−
2
3 a

2
3 m

-1
3    in error = 0.5284% !!!!!

15. a. H = -
h−2

2m 
d2

dx2
  + 

1
2 kx2

φ = 
15
16  a

-5
2 (a2 - x2)  for -a < x < a

φ = 0 for |x| ≥ a

⌡⌠

-∞

+∞

φ*Hφdx 

 = 
⌡

⌠

-a

+a

15
16

 a
-5
2 (a2 -  x 2)









-
h−2

2m 
d2

dx2
 +  

1
2kx2 15

16
 a

-5
2 (a2 -  x 2) dx 

 = 




15

16
  a-5

⌡

⌠

-a

+a

(a2 -  x 2)








-
h−2

2m 
d2

dx2
 +  

1
2kx2 (a2 -  x 2) dx  

 = 




15

16
  a-5

⌡

⌠

-a

+a

(a2 -  x 2)







-
h−2

2m
d2

dx2
(a2 -  x 2) dx  

 + 




15

16
  a-5

⌡
⌠

-a

+a

(a2 -  x 2)
1
2kx2(a2 -  x 2) dx  

 = 




15

16
  a-5

⌡

⌠

-a

+a

(a2 -  x 2)







-
h−2

2m  (-2) dx  

 + 




15

32
  a-5 ⌡⌠

-a

+a

(kx2)(a4 -2a2x2 +  x 4) dx  

 = 



15h−2

16m
  a-5 ⌡⌠

-a

+a

(a2 -  x 2)  dx + 




15

32
  a-5 ⌡⌠

-a

+a

a4kx2 -2a2kx4 +  kx6 dx  



 = 



15h−2

16m
  a-5









a2x


 a

-a
 -  

1
3 x 3



 a

-a
  

 + 




15

32
  a-5







a4k

3  x 3



 a

-a
 -

2a2k
5  x 5



 a

-a
 +  

k
7 x 7



 a

-a
   

 = 



15h−2

16m
  a-5





2a3 -  

2
3 a3    + 





15

32
  a-5





2a7k

3  -
4a7k

5  +  
2k
7  a7   

 = 




15

16
  a-5







4h−2

3m  a3 +  
a7k
3  -

2a7k
5  +  

k
7 a7   

 = 




15

16
  a-5







4h−2

3m  a3 +  




k

3 -  
2k
5  +  

k
7  a7   

 = 




15

16
  a-5







4h−2

3m  a3 +  




35k

105 -  
42k
105 +  

15k
105  a7   

 = 




15

16
  a-5







4h−2

3m  a3 +  




8k

105  a7    = 
5h−2

4ma2
  + 

ka2

14  

b. Substituting a = b





h−2

km

1
4  into the above expression for E we obtain:

E = 
5h−2

4b2m





km

h−2

1
2  + 

kb2

14 





h−2

km

1
2 

   = h−  k
1
2  m

-1
2 





5

4 b -2 +  
1
14 b 2   

Plotting this expression for the energy with respect to b having values of 0.2, 0.4, 0.6,
0.8, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, and 5.0 gives:

c. E = 
5h−2

4ma2
  + 

ka2

14  

dE
da  = -

10h−2

4ma3
  + 

2ka
14   = -

5h−2

2ma3
  + 

ka
7   = 0

5h−2

2ma3
  = 

ka
7   and 35h− 2 = 2mka4

 So, a4 = 
35h−2

2mk   , or a = 





35h−2

2mk

1
4 

Therefore φbest = 
15
16 






35h−2

2mk
-5
8 















35h−2

2mk

1
2 -  x 2   ,

and Ebest = 
5h−2

4m






2mk

35h−2

1
2  + 

k
14






35h−2

2mk

1
2  = h−  k

1
2  m

-1
2 





5

14

1
2  .



d. 
Ebest -  E true

Etrue
  = 

h− k
1
2 m

-1
2 













5

14

1
2 -  0 .5

h− k
1
2 m

-1
2 0.5

 

 = 




5

14

1
2 -  0 .5

0.5   = 
0.0976

0.5   = 0.1952 = 19.52%

16. a. E2 = m2c4 + p2c2.

    = m2c4









1  +  
p2

m2c2
 

E = mc2 1  +  
p2

m2c2
 

   ≈ mc2(1 + 
p2

2m2c2
  - 

p4

8m4c4
  + ...)

   = mc2 + 
p2

2m  - 
p4

8m3c2
  + ...)

Let V = -
p4

8m3c2
 

b. E1s
(1)  = < >Ψ(r)1s* V  Ψ(r)1s  

E1s
(1)   = 

⌡

⌠





Z

a

3
2 





1

π

1
2 e

-Zr
a  









-
p4

8m3c2
 




Z

a

3
2 





1

π

1
2 e

-Zr
a  dτ 

Substituting p = -ih− ∇ , dτ = r2dr Sinθdθ dφ, and pulling out constants gives:

E1s
(1)   = 









-
h−4

8m3c2
 




Z

a
3
 




1

π
 ⌡
⌠

0

∞

 e
-Zr

a  ∇2  ∇2  e
-Zr

a  r 2dr ⌡⌠
0

π

Sinθdθ ⌡⌠
0

2π

dφ  .

The integrals over the angles are easy, ⌡⌠
0

2π

dφ  = 2π and ⌡⌠
0

π

Sinθdθ  = 2 .

The work remaining is in evaluating the integral over r.  Substituting

∇2 = 
1

r2
 
∂
∂r

  r2 
∂
∂r

  we obtain:

∇2 e
-Zr

a   = 
1

r2
 
∂
∂r

  r2 
∂
∂r

  e
-Zr

a   = 
1

r2
 
∂
∂r

  r2 
-Z
a   e

-Zr
a   = 

-Z
a  

1

r2
 
∂
∂r

  r2 e
-Zr

a  



  = 
-Z
a  

1

r2
 






∂

∂r
 r 2 e

-Zr
a   = 

-Z
a  

1

r2
 







r2 
-Z
a  e

-Zr
a  +  e

-Zr
a  2r   

  = 
-Z
a  





-Z

a  +  
2
r   e

-Zr
a   = 













Z

a
2
 -  

2Z
ar   e

-Zr
a   .

The integral over r then becomes:

⌡
⌠

0

∞

 e
-Zr

a  ∇2  ∇2  e
-Zr

a  r 2dr  = 
⌡

⌠

0

∞













Z

a
2
 -  

2Z
ar

2
 e

-2Zr
a  r 2dr 

= 
⌡

⌠

0

∞













Z

a
4
 -  

4
r



Z

a
3
 +  

4

r2



Z

a
2

 r 2 e
-2Zr

a dr 

= 
⌡

⌠

0

∞













Z

a
4
r2 -  4





Z

a
3
r  +  4





Z

a
2

 e
-2Zr

a dr 

Using integral equation (4) these integrals can easily be evaluated:

= 2




Z

a
4





a

2Z
3
  - 4





Z

a
3





a

2Z
2
  + 4





Z

a
2





a

2Z  

= 




Z

4a   - 




Z

a   + 2




Z

a   = 




5Z

4a  

So, E1s
(1)  = 









-
h−4

8m3c2
 




Z

a
3
 




1

π
 




5Z

4a   4π = -
5h−4Z4

8m3c2a4
 

Substituting a0 = 
h−2

mee2
  gives:

E1s
(1)  = -

5h−4Z4m4e8

8m3c2h−8
  = -

5Z4me8

8c2h−4
 

Notice that E1s = -
Z2me4

2h−2
  , so, E1s

2 = -
Z4m2e8

4h−4
  and that E1s

(1)  = 
5m
2   E1s

2

c.
E1s

(1)

E1s
  = 







-

5Z4me8

8c2h−4
 








-
2h−2

Z2me4
  = 10% = 0.1

5Z2e4

4c2h−2
  = 0.1 , so, Z2 = 

(0.1)4c2h−2

5e4
 

Z2 = 
(0.1)(4)(3.00x1010)2(1.05x10-27)2

(5)(4.8x10-10)4
 



Z2 = 1.50x103

Z = 39

17. a. H0 ψ
(0)
lm  = 

L2

2mer02
  ψ

(0)
lm  = 

L2

2mer02
  Yl,m(θ,φ)

   = 
1

2mer02
 h− 2 l(l+1) Yl,m(θ,φ)

E
(0)
lm  = 

h−2

2mer02
  l(l+1)

b. V = -eεz = -eεr0Cosθ

E
(1)
00   = < >Y00|V|Y00   = < >Y00|-eεr0Cosθ |Y00  

       = -eεr0< >Y00|Cosθ |Y00  

Using the given identity this becomes:

E
(1)
00   = -eεr0< >Y00|Y10

(0+0+1)(0-0+1)
(2(0)+1)(2(0)+3)  +

-eεr0< >Y00|Y-10
(0+0)(0-0)

(2(0)+1)(2(0)-1) 

The spherical harmonics are orthonormal, thus < >Y00|Y10   = < >Y00|Y-10   = 0, and E
(1)
00   = 0.

E
(2)
00   = ∑

lm≠00

   < >Ylm|V|Y00
2

E
(0)
00 - E

(0)
lm

 

< >Ylm|V|Y00   = -eεr0< >Ylm|Cosθ |Y00  

Using the given identity this becomes:

< >Ylm|V|Y00   = -eεr0< >Ylm|Y10
(0+0+1)(0-0+1)
(2(0)+1)(2(0)+3)  +

-eεr0< >Ylm|Y-10
(0+0)(0-0)

(2(0)+1)(2(0)-1) 

< >Ylm|V|Y00   = -
eεr0

3 < >Ylm|Y10  

This indicates that the only term contributing to the sum in the expression for E
(2)
00   is when

lm = 10 (l=1, and m=0), otherwise

< >Ylm|V|Y00   vanishes (from orthonormality).  In quantum chemistry when using

orthonormal functions it is typical to write the term < >Ylm|Y10   as a delta function, for

example δlm,10  , which only has values of 1 or 0; δij = 1 when i = j and 0 when i ≠ j.  This
delta function when inserted into the sum then eliminates the sum by "picking out" the non-
zero component.  For example,



< >Ylm|V|Y00   = -
eεr0

3
  δlm,10  ,so

E
(2)
00   = ∑

lm≠00

  
e2ε2r02

3  

δlm
'
10

2

E
(0)
00 - E

(0)
lm

   =  
e2ε2r02

3  
1

E
(0)
00 - E

(0)
10

 

E
(0)
00   = 

h−2

2mer02
  0(0+1) = 0 and E

(0)
10   = 

h−2

2mer02
  1(1+1) = 

h−2

mer02
 

Inserting these energy expressions above yields:

E
(2)
00   = -

e2ε2r02

3  
mer02

h−2
  = -

mee2ε2r04

3h−2
 

c. E
   
00   = E

(0)
00   + E

(1)
00   + E

(2)
00   + ...

        = 0 + 0 - 
mee2ε2r04

3h−2
 

        = -
mee2ε2r04

3h−2
 

α = -
∂2E

∂2ε
  = 

∂2

∂2ε
 






mee2ε2r04

3h−2
 

    = 
2mee2r04

3h−2
 

d. α = 
2(9.1095x10-28g)(4.80324x10-10g

1
2cm

3
2s-1)2r04

3(1.05459x10-27 g cm2 s -1)2
 

α = r04 12598x106cm-1 = r04 1.2598Å-1

αH = 0.0987 Å3

αCs = 57.57 Å3

18. a. V = eε




x  -  

L
2   , Ψ

(0)
n   = 





2

L

1
2  Sin



nπx

L   , and

  E
(0)
n   = 

h−2π2n2

2mL2
  .

E
(1)
n=1  = < >Ψ

(0)
n=1|V|Ψ

(0)
n=1   = < >Ψ

(0)
n=1|eε





x  -  L

2
|Ψ

(0)
n=1  

       = 




2

L ⌡
⌠

0

L

Sin2




πx

L
eε





x  -  L

2
dx 



       = 



2eε

L ⌡
⌠

0

L

Sin2




πx

L xdx  - 



2eε

L
L
2⌡

⌠

0

L

Sin2




πx

L dx 

The first integral can be evaluated using integral equation (18) with a = 
π
L :

⌡⌠
0

L

Sin2( )ax xdx  = 
x2

4   - 
x Sin(2ax)

4a   - 
Cos(2ax)

8a2
 


L

0
  = 

L2

4  

The second integral can be evaluated using integral equation (10) with θ = 
πx
L   and dθ = 

π
L  

dx :

⌡
⌠

0

L

Sin2




πx

L dx  = 
L

π
⌡⌠
0

π

Sin2θdθ 

⌡⌠
0

π

Sin2θdθ  = -
1
4 Sin(2θ) + 

θ
2 



π

0
  = 

π
2 

Making all of these appropriate substitutions we obtain:

E
(1)
n=1  = 



2eε

L 





L2

4  -  
L
2 

L

π
 
π
2   = 0

Ψ
(1)
n=1  = 

< >Ψ
(0)
n=2|eε





x  -  L

2
|Ψ

(0)
n=1  Ψ

(0)
n=2

E
(0)
n=1 -  E

(0)
n=2

 

Ψ
(1)
n=1  = 





2

L ⌡

⌠

0

L

Sin



2πx

L eε




x  -  

L
2 Sin



πx

L dx 

h−2π2

2mL2
( )12 -  2 2

 




2

L

1
2 Sin



2πx

L  

The two integrals in the numerator need to be evaluated:

⌡
⌠

0

L

xSin



2πx

L Sin



πx

L dx  , and ⌡
⌠

0

L

Sin



2πx

L Sin



πx

L dx  .

Using trigonometric identity (20), the integral ⌡⌠xCos(ax)dx  = 
1

a2
 Cos(ax) + 

x
a Sin(ax), and

the integral ⌡⌠Cos(ax)dx  = 
1
a  Sin(ax), we obtain the following:



⌡
⌠

0

L

Sin



2πx

L Sin



πx

L dx  = 
1
2





⌡
⌠

0

L

Cos



πx

L dx -  ⌡
⌠

0

L

Cos



3πx

L dx  

    = 
1
2





L

π
Sin



πx

L 

L

0
 -  

L

3π
Sin



3πx

L 

L

0
   = 0

⌡
⌠

0

L

xSin



2πx

L Sin



πx

L dx  = 
1
2





⌡
⌠

0

L

xCos



πx

L dx -  ⌡
⌠

0

L

xCos



3πx

L dx  

= 
1
2













L2

π2
Cos



πx

L  +  
Lx

π
Sin



πx

L 

L

0
 -  







L2

9π2
Cos



3πx

L  +  
Lx

3π
Sin



3πx

L 

L

0
  

= 
L2

2π2
( )Cos(π) - Cos(0)   + 

L2

2π
 Sin(π) - 0

   - 
L2

18π2
( )Cos(3π) - Cos(0)   - 

L2

6π
 Sin(3π) + 0

= 
-2L2

2π2
  - 

-2L2

18π2
  = 

L2

9π2
  - 

L2

π2
  = -

8L2

9π2
 

Making all of these appropriate substitutions we obtain:

Ψ
(1)
n=1  = 





2

L (eε)








-
8L2

9π2
 -  

L
2(0)  

-3h−2π2

2mL2

 




2

L

1
2 Sin



2πx

L  

Ψ
(1)
n=1  = 

32mL3eε

27h−2π4
 




2

L

1
2 Sin



2πx

L  

Crudely sketching Ψ
(0)
n=1  + Ψ

(1)
n=1  gives:

Note that the electron density has been pulled to the left side of the box by the external
field!

b. µinduced = - e⌡
⌠Ψ*





x  -  

L
2 Ψdx ,  where, Ψ =  Ψ

(0)
1  +  Ψ

(1)
1  .

µinduced = - e
⌡

⌠

0

L

 Ψ
(0)
1  +  Ψ

(1)
1

*





x  -  

L
2  Ψ

(0)
1  +  Ψ

(1)
1 dx 

     = -e
⌡

⌠

0

L

Ψ
(0)
1

*





x  -  

L
2 Ψ

(0)
1 dx  - e

⌡

⌠

0

L

Ψ
(0)
1

*





x  -  

L
2 Ψ

(1)
1 dx 



   - e
⌡

⌠

0

L

Ψ
(1)
1

*





x  -  

L
2 Ψ

(0)
1 dx  - e

⌡

⌠

0

L

Ψ
(1)
1

*





x  -  

L
2 Ψ

(1)
1 dx 

The first integral is zero (see the evaluation of this integral for E
(1)
1   above in part a.)  The

fourth integral is neglected since it is proportional to ε2.  The second and third integrals are
the same and are combined:

µinduced = -2e
⌡

⌠

0

L

Ψ
(0)
1

*





x  -  

L
2 Ψ

(1)
1 dx 

Substituting Ψ
(0)
1   = 





2

L

1
2  Sin



πx

L   and Ψ
(1)
1   = 

32mL3eε

27h−2π4
 




2

L

1
2 Sin



2πx

L   , we obtain:

µinduced = -2e
32mL3eε

27h−2π4 



2

L ⌡

⌠

0

L

Sin



πx

L 



x  -  

L
2 Sin



2πx

L dx 

These integrals are familiar from part a:

µinduced = -2e
32mL3eε

27h−2π4 



2

L 







-
8L2

9π2
 

µinduced = 
mL4e2ε

h−2π6
 
210

35
 

c. α = 






∂µ

∂ε ε=0
  = 

mL4e2

h−2π6
 
210

35
 

The larger the box (molecule), the more polarizable the electron density.



Section 2 Exercises, Problems, and Solutions

    Review Exercises:

1. Draw qualitative shapes of the (1) s, (3) p and (5) d "tangent sphere" atomic orbitals
(note that these orbitals represent only the angular portion and     do not    contain the radial
portion of the hydrogen like atomic wavefunctions)  Indicate with ± the relative signs of the
wavefunctions and the position(s) (if any) of any nodes.

2. Define the symmetry adapted "core" and "valence" orbitals of the following systems:
  i. NH3 in the C3v point group,
 ii. H2O in the C2v point group,
iii. H2O2 (cis) in the C2 point group,
iv. N in D∞h, D2h, C2v, and Cs point groups,
 v. N2 in D∞h, D2h, C2v, and Cs point groups.

3. Plot the radial portions of the 4s, 4p, 4d, and 4f hydrogen like atomic wavefunctions.
4. Plot the radial portions of the 1s, 2s, 2p, 3s, and 3p hydrogen like atomic wavefunctions
for the Si atom using screening concepts for any inner electrons.

    Exercises:

1. In quantum chemistry it is quite common to use combinations of more familiar and easy-
to-handle "basis functions" to approximate atomic orbitals.  Two common types of basis
functions are the Slater type orbitals (STO's) and gaussian type orbitals (GTO's).  STO's
have the normalized form:







2ζ

ao

n+1
2 





1

(2n)!

1
2  rn-1 e



-ζr

ao   Yl,m(θ,φ),

whereas GTO's have the form:

N rl e
( )-ζr2

  Yl,m(θ,φ).
Orthogonalize (using Löwdin (symmetric) orthogonalization) the following 1s (core), 2s
(valence), and 3s (Rydberg) STO's for the Li atom given:

Li1s ζ= 2.6906

Li2s ζ= 0.6396

Li3s ζ= 0.1503.
Express the three resultant orthonormal orbitals as linear combinations of these three
normalized STO's.
2. Calculate the expectation value of r for each of the orthogonalized 1s, 2s, and 3s Li
orbitals found in Exercise 1.
3. Draw a plot of the radial probability density (e.g., r2[Rnl(r)]2 with R referring to the
radial portion of the STO) versus r for each of the orthonormal Li s orbitals found in
Exercise 1.

    Problems:

1. Given the following orbital energies (in hartrees) for the N atom and the coupling
elements between two like atoms (these coupling elements are the Fock matrix elements
from standard ab-initio minimum-basis SCF calculations), calculate the molecular orbital



energy levels and 1-electron wavefunctions.  Draw the orbital correlation diagram for
formation of the N2 molecule.  Indicate the symmetry of each atomic and molecular orbital.
Designate each of the molecular orbitals as bonding, non-bonding, or antibonding.

N1s = -15.31*

N2s = -0.86*

N2p = -0.48*

N2 σg Fock matrix*







-6.52

-6.22 -7.06
3.61 4.00 -3.92

 

N2 πg Fock matrix*

[ ]0.28  
N2 σu Fock matrix*







1.02

-0.60 -7.59
0.02 7.42 -8.53

 

N2 πu Fock matrix*

[ ]-0.58  

*The Fock matrices (and orbital energies) were generated using standard STO3G minimum
basis set SCF calculations.  The Fock matrices are in the orthogonal basis formed from
these orbitals.

2. Given the following valence orbital energies for the C atom and H2 molecule draw the
orbital correlation diagram for formation of the CH2 molecule (via a C2v insertion of C into
H2 resulting in bent CH2).  Designate the symmetry of each atomic and molecular orbital in
both their highest point group symmetry and in that of the reaction path (C2v).

C1s = -10.91* H2 σg = -0.58*

C2s = -0.60* H2 σu = 0.67*

C2p = -0.33*

*The orbital energies were generated using standard STO3G minimum basis set SCF
calculations.

3. Using the empirical parameters given below for C and H (taken from Appendix F and
"The HMO Model and its Applications" by E. Heilbronner and H. Bock, Wiley-
Interscience, NY, 1976), apply the Hückel model to ethylene in order to determine the
valence electronic structure of this system.  Note that you will be obtaining the 1-electron
energies and wavefunctions by solving the    secular equation     (as you    always    will when the
energy is dependent upon a set of linear parameters like the MO coefficients in the LCAO-
MO approach) using the definitions for the matrix elements found in Appendix F.

C α
2pπ  = -11.4 eV

C α
sp2  = -14.7 eV

H α
s
  = -13.6 eV

C-C β
2pπ-2pπ  = -1.2 eV



C-C β
sp2-sp2  = -5.0 eV

C-H β
sp2-s

  = -4.0 eV

a. Determine the C=C (2pπ) 1-electron molecular orbital energies and

wavefunctions.  Calculate the π → π* transition energy for ethylene within this model.
b. Determine the C-C (sp2) 1-electron molecular orbital energies and

wavefunctions.
c. Determine the C-H (sp2-s) 1-electron molecular orbital energies and

wavefunctions (note that appropriate choice of symmetry will reduce this 8x8 matrix down
to 4 2x2 matrices; that is, you are encouraged to symmetry adapt the atomic orbitals before
starting the Hückel calculation).  Draw a qualitative orbital energy diagram using the HMO
energies you have calculated.
4. Using the empirical parameters given below for B and H (taken from Appendix F and
"The HMO Model and its Applications" by E. Heilbronner and H. Bock, Wiley-
Interscience, NY, 1976), apply the Hückel model to borane (BH3) in order to determine the
valence electronic structure of this system.

B α
2pπ  = -8.5 eV

B α
sp2  = -10.7 eV

H α
s
  = -13.6 eV

B-H β
sp2-s

  = -3.5 eV

Determine the symmetries of the resultant molecular orbitals in the D3h point group.  Draw
a qualitative orbital energy diagram using the HMO energies you have calculated.
5. Qualitatively analyze the electronic structure (orbital energies and 1-electron
wavefunctions) of PF5.  Analyze only the 3s and 3p electrons of P and the     one    2p bonding
electron of each F.  Proceed with a D3h analysis in the following manner:

a. Symmetry adapt the top and bottom F atomic orbitals.
b. Symmetry adapt the three (trigonal) F atomic orbitals.
c. Symmetry adapt the P 3s and 3p atomic orbitals.
d. Allow these three sets of D3h orbitals to interact and draw the resultant orbital

energy diagram.  Symmetry label each of these molecular energy levels.  Fill this energy
diagram with 10
"valence" electrons.

Solutions
    Review Exercises   

1.



z

x y

z x

y

        

x

y

x

z

y

z

2. i.In ammonia the only "core" orbital is the N 1s and this becomes an a1 orbital in
C3v symmetry.  The N 2s orbitals and 3 H 1s orbitals become 2 a1 and an e set of orbitals.
The remaining N 2p orbitals also become 1 a1 and a set of e orbitals.  The total valence
orbitals in C3v symmetry are 3a1 and 2e orbitals.
2. ii. In water the only core orbital is the O 1s and this becomes an a1 orbital in C2v
symmetry.  Placing the molecule in the yz plane allows us to further analyze the remaining
valence orbitals as: O 2pz = a1, O 2py as b2, and O 2px as b1.  The H 1s + H 1s
combination is an a1 whereas the H 1s - H 1s combination is a b2.
=2. iii. Placing the oxygens of H2O2 in the yz plane (z bisecting the oxygens) and the
(cis) hydrogens distorted slightly in +x and -x directions allows us to analyze the orbitals as
follows.  The core O 1s + O 1s combination is an a orbital whereas the O 1s - O 1s
combination is a b orbital.  The valence orbitals are: O 2s + O 2s = a, O 2s - O 2s = b, O
2px + O 2px = b, O 2px - O 2px = a, O 2py + O 2py = a, O 2py - O 2py = b, O 2pz + O 2pz
= b, O 2pz - O 2pz = a, H 1s + H 1s = a, and finally the H 1s - H 1s = b.
2. iv. For the next two problems we will use the convention of choosing the z axis as
principal axis for the D∞h, D2h, and C2v point groups and the xy plane as the horizontal
reflection plane in Cs symmetry.

D∞h D2h C2v Cs

N 1s σg ag a1 a'

N 2s σg ag a1 a'



N 2px πxu b3u b1 a'

N 2py πyu b2u b2 a'

N 2pz σu b1u a1 a' '
2. v. The Nitrogen molecule is in the yz plane for all point groups except the Cs in
which case it is placed in the xy plane.

D∞h D2h C2v Cs

N 1s + N 1s σg ag a1 a'

N 1s - N 1s σu b1u b2 a'

N 2s + N 2s σg ag a1 a'

N 2s - N 2s σu b1u b2 a'

N 2px + N 2px πxu b3u b1 a'

N 2px - N 2px πxg b2g a2 a'

N 2py + N 2pyπyu b2u a1 a'

N 2py - N 2py πyg b3g b2 a'

N 2pz + N 2pz σu b1u b2 a' '

N 2pz - N 2pz σg ag a1 a' '
3.
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    Exercises   

1. Two Slater type orbitals, i and j, centered on the same point results in the following
overlap integrals:



Sij = 

⌡

⌠

0

2π

⌡


⌠

0

π

⌡

⌠

0

∞







2ζi

a0

ni+
1
2




1

(2ni)!

1
2 r(ni-1)e






-ζir

a0
 Yli,mi(θ,φ).







2ζj

a0

nj+
1
2




1

(2nj)!

1
2 r(nj-1)e






-ζjr

a0
 Ylj,mj(θ,φ).

r2sinθdrdθdφ.

For these s orbitals l = m = 0 and Y0,0(θ,φ) = 
1

4π
 .  Performing the integrations over θ and

φ yields 4π which then cancels with these Y terms.  The integral then reduces to:

Sij = 






2ζi

a0

ni+
1
2




1

(2ni)!

1
2







2ζj

a0

nj+
1
2




1

(2nj)!

1
2⌡

⌠

0

∞

r(ni-1+nj-1)e





-(ζi+ζj)r

a0
r2dr 

    = 






2ζi

a0

ni+
1
2




1

(2ni)!

1
2







2ζj

a0

nj+
1
2




1

(2nj)!

1
2⌡

⌠

0

∞

r(ni+nj)e





-(ζi+ζj)r

a0
dr 

Using integral equation (4) the integral then reduces to:

Sij = 






2ζi

a0

ni+
1
2




1

(2ni)!

1
2







2ζj

a0

nj+
1
2




1

(2nj)!

1
2(ni+nj) ! 







a0

ζi+ζj

ni+nj+1
 .

We then substitute in the values for each of these constants:
for i=1; n=1, l=m=0, and ζ= 2.6906

for i=2; n=2, l=m=0, and ζ= 0.6396

for i=3; n=3, l=m=0, and ζ= 0.1503.
Evaluating each of these matrix elements we obtain:

S11 = (12.482992)(0.707107)(12.482992)
(0.707107)(2.000000)(0.006417)

= 1.000000
S21 = S12 = (1.850743)(0.204124)(12.482992)

(0.707107)(6.000000)(0.008131)
= 0.162673

S22 = (1.850743)(0.204124)(1.850743)
(0.204124)(24.000000)(0.291950)

= 1.000000



S31 = S13 = (0.014892)(0.037268)(12.482992)
(0.707107)(24.000000)(0.005404)

= 0.000635
S32 = S23 = (0.014892)(0.037268)(1.850743)

(0.204124)(120.000000)(4.116872)
= 0.103582

S33 = (0.014892)(0.037268)(0.014892)
(0.037268)(720.000000)(4508.968136)

= 1.000000

S =









1.000000

0.162673 1.000000

0.000635 0.103582 1.000000

 

We now solve the matrix eigenvalue problem S U = λ U.

The eigenvalues, λ, of this overlap matrix are:
[ ] 0.807436  0.999424  1.193139   ,

and the corresponding eigenvectors, U, are:









0.596540 -0.537104 -0.596372

-0.707634 -0.001394 -0.706578

0.378675 0.843515 -0.380905

  .

The λ
-1
2  matrix becomes:

λ
-1
2 =









1.112874 0.000000 0.000000

0.000000 1.000288 0.000000

0.000000 0.000000 0.915492

  .

Back transforming into the original eigenbasis gives S
-1
2 , e.g.

S
-1
2  = Uλ

-1
2 UT

S
-1
2  = 









1.010194

-0.083258 1.014330

0.006170 -0.052991 1.004129

 

The old ao matrix can be written as:

C = 









1.000000 0.000000 0.000000

0.000000 1.000000 0.000000

0.000000 0.000000 1.000000

  .

The new ao matrix (which now gives each ao as a linear combination of the original aos)
then becomes:



C' = S
-1
2  C = 









1.010194 -0.083258 0.006170

-0.083258 1.014330 -0.052991

0.006170 -0.052991 1.004129

 

These new aos have been constructed to meet the orthonormalization requirement C'TSC' =
1 since:







S
-1
2 C

T
  S S

-1
2  C = CTS

-1
2  S S

-1
2  C = CTC = 1 .

But, it is always good to check our result and indeed:

C'TSC' = 









1.000000 0.000000 0.000000

0.000000 1.000000 0.000000

0.000000 0.000000 1.000000

 

2. The least time consuming route here is to evaluate each of the needed integrals first.
These are evaluated analogous to exercise 1, letting χi denote each of the individual Slater
Type Orbitals.

⌡⌠
0

∞

χi r  χjr
2dr  = <r>ij

 = 






2ζi

a0

ni+
1
2




1

(2ni)!

1
2







2ζj

a0

nj+
1
2




1

(2nj)!

1
2⌡

⌠

0

∞

r(ni+nj+1)e





-(ζi+ζj)r

a0
dr 

Once again using integral equation (4) the integral reduces to:

 = 






2ζi

a0

ni+
1
2




1

(2ni)!

1
2







2ζj

a0

nj+
1
2




1

(2nj)!

1
2(ni+nj+1) ! 







a0

ζi+ζj

ni+nj+2
 .

Again, upon substituting in the values for each of these constants, evaluation of these
expectation values yields:

<r>11 = (12.482992)(0.707107)(12.482992)
(0.707107)(6.000000)(0.001193)

= 0.557496
<r>21 = <r>12 = (1.850743)(0.204124)(12.482992)

(0.707107)(24.000000)(0.002441)
= 0.195391

<r>22 = (1.850743)(0.204124)(1.850743)
(0.204124)(120.000000)(0.228228)

= 3.908693
<r>31 = <r>13 = (0.014892)(0.037268)(12.482992)

(0.707107)(120.000000)(0.001902)
= 0.001118

<r>32 = <r>23 = (0.014892)(0.037268)(1.850743)
(0.204124)(720.000000)(5.211889)



= 0.786798
<r>33 = (0.014892)(0.037268)(0.014892)

(0.037268)(5040.000000)(14999.893999)
= 23.286760

⌡⌠
0

∞

χi r  χjr
2dr  = <r>ij = 









0.557496

0.195391 3.908693

0.001118 0.786798 23.286760

 

Using these integrals one then proceeds to evaluate the expectation values of each of the
orthogonalized aos, χ' n, as:

⌡⌠
0

∞

χ' n r  χ' nr2dr  = ∑
i=1

3
  ∑

j=1

3
  C 'niC'nj<r>ij .

This results in the following expectation values (in atomic units):

⌡⌠
0

∞

χ' 1s r  χ' 1sr
2dr  = 0.563240 bohr

⌡⌠
0

∞

χ' 2s r  χ' 2sr
2dr  = 3.973199 bohr

⌡⌠
0

∞

χ' 3s r  χ' 3sr
2dr  = 23.406622 bohr

3. The radial density for each orthogonalized orbital, χ' n, assuming integrations over θ and

φ have already been performed can be written as:

⌡⌠
0

∞

χ' nχ' nr2dr  = ∑
i=1

3
  ∑

j=1

3
  C 'niC'nj⌡⌠

0

∞

RiRjr2dr , where Ri and Rj are the radial portions

of the individual Slater Type Orbitals, e.g.,

RiRjr2 = 






2ζi

a0

ni+
1
2




1

(2ni)!

1
2







2ζj

a0

nj+
1
2




1

(2nj)!

1
2  r(ni+nj)e






-(ζi+ζj)r

a0
 

Therefore a plot of the radial probability for a given orthogonalized atomic orbital, n, will

be : ∑
i=1

3
  ∑

j=1

3
  C 'niC'nj RiRjr2  vs. r.

Plot of the orthogonalized 1s orbital probability density vs r; note there are no nodes.
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Plot of the orthogonalized 2s orbital probability density vs r; note there is one node.
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Plot of the orthogonalized 3s orbital probability density vs r; note there are two nodes in the
0-5 bohr region but they are not distinguishable as such.  A duplicate plot with this nodal
region expanded follows.
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    Problems   
1.
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The above diagram indicates how the SALC-AOs are formed from the 1s,2s, and 2p N
atomic orbitals.  It can be seen that there are 3σg, 3σu, 1πux, 1πuy, 1πgx, and 1πgy SALC-
AOs.  The Hamiltonian matrices (Fock matrices) are given.  Each of these can be
diagonalized to give the following MO energies:

3σg; -15.52, -1.45, and -0.54 (hartrees)

3σu; -15.52, -0.72, and 1.13

1πux; -0.58

1πuy; -0.58

1πgx; 0.28

1πgy; 0.28

It can be seen that the 3σg orbitals are bonding, the 3σu orbitals are antibonding, the 1πux

and 1πuy orbitals are bonding, and the 1πgx and 1πgy orbitals are antibonding.  The
eigenvectors one obtains are in the orthogonal basis and therefore pretty meaningless.
Back transformation into the original basis will generate the expected results for the 1e-

MOs (expected combinations of SALC-AOs).
2. Using these approximate energies we can draw the following MO diagram:



H
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This MO diagram is     not    an orbital correlation diagram but can be used to help generate one.
The energy levels on each side (C and H2) can be "superimposed" to generate the left side
of the orbital correlation diagram and the center CH2 levels can be used to form the right
side.  Ignoring the core levels this generates the following orbital correlation diagram.

Orbital-correlation diagram for the reaction C + H2  -----> CH2 (bent)

a1(bonding)

b2(antibonding)
a1(antibonding)

b1(2pπ)

a1(non-bonding)

b2(bonding)

CH2 (bent)C + H2

σg(a1)

2s(a1)

σu(b2)

2px(b1)     2py(b2)     2pz(a1)



3.
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Using D2h symmetry and labeling the orbitals (f1-f12) as shown above proceed by using
the orbitals to define a reducible representation.which may be subsequently reduced to its
irreducible components.  Use projectors to find the SALC-AOs for these irreps.
3. a. The 2Px orbitals on each carbon form the following reducible representation:

D2h  E  C2(z)  C2(y)  C2(x)  i  σ(xy)  σ(xz)  σ(yz)

Γ2px 2    -2       0       0    0    0        2       -2
The number of irreducible representations may be found by using the following formula:

nirrep = 
1
g∑

R

χred(R)χirrep(R) ,

where g = the order of the point group (8 for D2h).

nAg = 
1
8∑

R

Γ2px(R).Ag(R) 

       = 
1
8 {(2)(1)+(-2)(1)+(0)(1)+(0)(1)+

    (0)(1)+(0)(1)+(2)(1)+(-2)(1)} = 0
Similarly,

nB1g = 0
nB2g = 1
nB3g = 0
nAu = 0
nB1u = 0
nB2u = 0
nB3u = 1

Projectors using the formula:



Pirrep = ∑
R

χirrep(R)R ,

may be used to find the SALC-AOs for these irreducible representations.

PB2g = ∑
R

χB2g
(R) R ,

PB2g f1 = (1)E f1 + (-1)C2(z) f1 + (1)C2(y) f1 + (-1)C2(x) f1 +

     (1)i f1 + (-1)σ(xy) f1 + (1)σ(xz) f1 + (-1)σ(yz) f1
   = (1) f1 + (-1) -f1 + (1) -f2 + (-1) f2 +
      (1) -f2 + (-1) f2 + (1) f1 + (-1) -f1
   = f1 + f1 - f2 - f2 - f2 - f2 + f1 + f1
   = 4f1 - 4f2

Normalization of this SALC-AO (and representing the SALC-AOs with φ) yields:

⌡⌠N(f1 -  f 2)N(f1 -  f 2)dτ  = 1

N2




⌡⌠f1f1dτ -  ⌡⌠f1f2dτ -  ⌡⌠f2f1dτ +  ⌡⌠f2f2dτ   = 1

N2( )1  + 1   = 1
2N2 = 1

N = 
1

2
 

φ1b2g = 
1

2
(f1 - f2)  .

The B3u SALC-AO may be found in a similar fashion:
PB3u f1 = (1) f1 + (-1) -f1 + (-1) -f2 + (1) f2 +

      (-1) -f2 + (1) f2 + (1) f1 + (-1) -f1
   = f1 + f1 + f2 + f2 + f2 + f2 + f1 + f1
   = 4f1 + 4f2

Normalization of this SALC-AO yields:

φ1b3u = 
1

2
(f1 + f2)  .

Since there are only two SALC-AOs and both are of different symmetry types these SALC-
AOs are MOs and the 2x2 Hamiltonian matrix reduces to 2 1x1 matrices.

H1b2g,1b2g = 
⌡
⌠ 1

2
(f1 -  f 2)H

1

2
(f1 -  f 2)dτ 

        =
1
2



⌡⌠f1Hf1dτ -  2 ⌡⌠f1Hf2dτ +  ⌡⌠f2Hf2dτ   

        =
1
2 α

2pπ -  2 β
2pπ-2pπ +  α

2pπ   

        =α
2pπ  - β

2pπ-2pπ 
        = -11.4 - (-1.2) = -10.2

H1b3u,1b3u = 
⌡
⌠ 1

2
(f1 +  f 2)H

1

2
(f1 +  f 2)dτ 



        =
1
2



⌡⌠f1Hf1dτ +  2 ⌡⌠f1Hf2dτ +  ⌡⌠f2Hf2dτ   

        =
1
2 α

2pπ +  2 β
2pπ-2pπ +  α

2pπ   

        =α
2pπ  + β

2pπ-2pπ 
        = -11.4 + (-1.2) = -12.6

This results in a π -> π* splitting of 2.4 eV.

3. b. The sp2 orbitals forming the C-C bond generate the following reducible
representation:

D2h     E  C2(z)  C2(y)  C2(x)  i  σ(xy)  σ(xz)  σ(yz)

ΓCsp2   2     2       0       0    0    0        2        2
This reducible representation reduces to 1Ag and 1B1u
irreducible representations.
Projectors are used to find the SALC-AOs for these irreducible representations.

PAg f3 = (1)E f3 + (1)C2(z) f3 + (1)C2(y) f3 + (1)C2(x) f3 +

    (1)i f3 + (1)σ(xy) f3 + (1)σ(xz) f3 + (1)σ(yz) f3
 = (1) f3 + (1) f3 + (1) f4 + (1) f4 +
    (1) f4 + (1) f4 + (1) f3 + (1) f3
 = 4f3 + 4f4

Normalization of this SALC-AO yields:

φ1ag = 
1

2
(f3 + f4)  .

The B1u SALC-AO may be found in a similar fashion:
PB1u f3 = (1) f3 + (1) f3 + (-1) f4 + (-1) f4 +

     (-1) f4 + (-1) f4 + (1) f3 + (1) f3
  = 4f3 - 4f4

Normalization of this SALC-AO yields:

φ1b3u = 
1

2
(f3 - f4)  .

Again since there are only two SALC-AOs and both are of different symmetry types these
SALC-AOs are MOs and the 2x2 Hamiltonian matrix reduces to 2 1x1 matrices.

H1ag,1ag = 
⌡
⌠ 1

2
(f3 +  f 4)H

1

2
(f3 +  f 4)dτ 

     = 
1
2



⌡⌠f3Hf3dτ +  2 ⌡⌠f3Hf4dτ +  ⌡⌠f4Hf4dτ   

     = 
1
2 α

sp2 +  2 β
sp2-sp2 +  α

sp2   

     = α
sp2  + β

sp2-sp2 
     = -14.7 + (-5.0) = -19.7

H1b1u,1b1u = 
⌡
⌠ 1

2
(f3 -  f 4)H

1

2
(f3 -  f 4)dτ 

        = 
1
2



⌡⌠f3Hf3dτ -  2 ⌡⌠f3Hf4dτ +  ⌡⌠f4Hf4dτ   



        = 
1
2 α

sp2 -  2 β
sp2-sp2 +  α

sp2   

        = α
sp2  - β

sp2-sp2 
        = -14.7 - (-5.0) = -9.7

3. c. The C sp2 orbitals and the H s orbitals forming the C-H bonds generate the
following reducible representation:

D2h      E  C2(z)  C2(y)  C2(x)  i  σ(xy)  σ(xz)  σ(yz)

Γsp2-s   8     0       0       0    0    0        0        8
This reducible representation reduces to 2Ag, 2B3g, 2B1u and 2B2u
irreducible representations.
Projectors are used to find the SALC-AOs for these irreducible representations.

PAg f6 = (1)E f6 + (1)C2(z) f6 + (1)C2(y) f6 + (1)C2(x) f6 +

    (1)i f6 + (1)σ(xy) f6 + (1)σ(xz) f6 + (1)σ(yz) f6
 = (1) f6 + (1) f5 + (1) f7 + (1) f8 +
    (1) f8 + (1) f7 + (1) f5 + (1) f6
 = 2f5 + 2f6 + 2f7 + 2f8

Normalization yields: φ2ag = 
1
2(f5 + f6 + f7 + f8)  .

PAg f10 = (1)E f10 + (1)C2(z) f10 + (1)C2(y) f10 + (1)C2(x) f10 +

      (1)i f10 + (1)σ(xy) f10 + (1)σ(xz) f10 + (1)σ(yz) f10
   = (1) f10 + (1) f9 + (1) f11 + (1) f12 +
      (1) f12 + (1) f11 + (1) f9 + (1) f10
   = 2f9 + 2f10 + 2f11 + 2f12

Normalization yields: φ3ag = 
1
2(f9 + f10 + f11 + f12)  .

PB3g f6 = (1) f6 + (-1) f5 + (-1) f7 + (1) f8 +
    (1) f8 + (-1) f7 + (-1) f5 + (1) f6
 = -2f5 + 2f6 - 2f7 + 2f8

Normalization yields: φ1b3g = 
1
2(-f5 + f6 - f7 + f8)  .

PB3g f10 = (1) f10 + (-1) f9 + (-1) f11 + (1) f12 +
      (1) f12 + (-1) f11 + (-1) f9 + (1) f10
   = -2f9 + 2f10 - 2f11 + 2f12

Normalization yields: φ2b3g = 
1
2(-f9 + f10 - f11 + f12)  .

PB1u f6 = (1) f6 + (1) f5 + (-1) f7 + (-1) f8 +
    (-1) f8 + (-1) f7 + (1) f5 + (1) f6
 = 2f5 + 2f6 - 2f7 - 2f8

Normalization yields: φ2b1u = 
1
2(f5 + f6 - f7 - f8)  .

PB1u f10 = (1) f10 + (1) f9 + (-1) f11 + (-1) f12 +
      (-1) f12 + (-1) f11 + (1) f9 + (1) f10
   = 2f9 + 2f10 - 2f11 - 2f12

Normalization yields: φ3b1u = 
1
2(f9 + f10 - f11 - f12)  .

PB2u f6 = (1) f6 + (-1) f5 + (1) f7 + (-1) f8 +
    (-1) f8 + (1) f7 + (-1) f5 + (1) f6



 = -2f5 + 2f6 + 2f7 - 2f8

Normalization yields: φ1b2u = 
1
2(-f5 + f6 + f7 - f8)  .

PB2u f10 = (1) f10 + (-1) f9 + (1) f11 + (-1) f12 +
      (-1) f12 + (1) f11 + (-1) f9 + (1) f10
   = -2f9 + 2f10 + 2f11 - 2f12

Normalization yields: φ2b2u = 
1
2(-f9 + f10 + f11 - f12)  .

Each of these four 2x2 symmetry blocks generate identical Hamiltonian matrices.  This will
be demonstrated for the B3g symmetry, the others proceed analogously:

H1b3g,1b3g = ⌡
⌠1

2(-f5 +  f 6 -  f 7 +  f 8)H
1
2(-f5 +  f 6 -  f 7 +  f 8)dτ 

= 
1
4 {⌡⌠f5Hf5dτ  - ⌡⌠f5Hf6dτ  + ⌡⌠f5Hf7dτ  - ⌡⌠f5Hf8dτ  -

⌡⌠f6Hf5dτ  + ⌡⌠f6Hf6dτ  - ⌡⌠f6Hf7dτ  + ⌡⌠f6Hf8dτ  +

⌡⌠f7Hf5dτ  - ⌡⌠f7Hf6dτ  + ⌡⌠f7Hf7dτ  - ⌡⌠f7Hf8dτ  -

⌡⌠f8Hf5dτ  + ⌡⌠f8Hf6dτ  - ⌡⌠f8Hf7dτ  + ⌡⌠f8Hf8dτ }
= 

1
4 {α

sp2  - 0 + 0 - 0 -

0 + α
sp2  - 0 + 0 +

0 - 0 + α
sp2  - 0 -

0+ 0 - 0 + α
sp2 } = α

sp2 

H1b3g,2b3g = ⌡
⌠1

2(-f5 +  f 6 -  f 7 +  f 8)H
1
2(-f9 +  f 10 -  f 11 +  f 12)dτ 

= 
1
4 {⌡⌠f5Hf9dτ  - ⌡⌠f5Hf10dτ  + ⌡⌠f5Hf11dτ  - ⌡⌠f5Hf12dτ  -

⌡⌠f6Hf9dτ  + ⌡⌠f6Hf10dτ  - ⌡⌠f6Hf11dτ  + ⌡⌠f6Hf12dτ  +

⌡⌠f7Hf9dτ  - ⌡⌠f7Hf10dτ  + ⌡⌠f7Hf11dτ  - ⌡⌠f7Hf12dτ  -

⌡⌠f8Hf9dτ  + ⌡⌠f8Hf10dτ  - ⌡⌠f8Hf11dτ  + ⌡⌠f8Hf12dτ }
= 

1
4 {β

sp2-s
  - 0 + 0 - 0 -

0 + β
sp2-s

  - 0 + 0 +

0 - 0 + β
sp2-s

  - 0 -

0+ 0 - 0 + β
sp2-s

 } = β
sp2-s

 

H2b3g,2b3g = ⌡
⌠1

2(-f9 +  f 10 -  f 11 +  f 12)H
1
2(-f9 +  f 10 -  f 11 +  f 12)dτ 



= 
1
4 {⌡⌠f9Hf9dτ  - ⌡⌠f9Hf10dτ  + ⌡⌠f9Hf11dτ  - ⌡⌠f9Hf12dτ  -

⌡⌠f10Hf9dτ  + ⌡⌠f10Hf10dτ  - ⌡⌠f10Hf11dτ  + ⌡⌠f10Hf12dτ  +

⌡⌠f11Hf9dτ  - ⌡⌠f11Hf10dτ  + ⌡⌠f11Hf11dτ  - ⌡⌠f11Hf12dτ  -

⌡⌠f12Hf9dτ  + ⌡⌠f12Hf10dτ  - ⌡⌠f12Hf11dτ  + ⌡⌠f12Hf12dτ }
= 

1
4 {α

s
  - 0 + 0 - 0 -

0 + α
s
  - 0 + 0 +

0 - 0 + α
s
  - 0 -

0+ 0 - 0 + α
s
 } = α

s
 

This matrix eigenvalue problem then becomes:







α
sp2 -  ε β

sp2-s

β
sp2-s

α
s
 -  ε

  = 0







-14.7 -  ε -4.0

-4.0 -13.6 -  ε
  = 0

Solving this yields eigenvalues of:
| |-18.19 -10.11  

and corresponding eigenvectors:







-0.7537 -0.6572

-0.6572  0.7537
 

This results in an orbital energy diagram:



C-C (antibonding)

C-C (bonding)

-9.70

-19.70

-12.60

-10.20 π∗

π

C-H (antibonding)-10.11

-18.19 C-H (bonding)

For the ground state of ethylene you would fill the bottom 3 levels (the C-C, C-H, and π
bonding orbitals), with 12 electrons.

4.
y

x

z
B H

H

H

2pz

1

2

3 4

5

6

7

Using the hybrid atomic orbitals as labeled above (functions f1-f7) and the D3h point group
symmetry it is easiest to construct three sets of reducible representations:

 i. the B 2pz orbital (labeled function 1)

 ii. the 3 B sp2 hybrids (labeled functions 2 - 4)
 iii. the 3 H 1s orbitals (labeled functions 5 - 7).

i. The B 2pz orbital generates the following irreducible representation:

D3h      E  2C3  3C2   σh  2S3  3σv

Γ2pz     1    1    -1    -1   -1    1
This irreducible representation is A2'' and is its own SALC-AO.



ii. The B sp2 orbitals generate the following reducible representation:
D3h      E  2C3  3C2   σh  2S3  3σv

Γsp2     3    0     1     3     0     1
This reducible representation reduces to 1A1' and 1E'
irreducible representations.
Projectors are used to find the SALC-AOs for these irreducible representations.
Define:C3 = 120 degree rotation, C3' = 240 degree rotation,

C2 = rotation around f4, C2' = rotation around f2, and
C2 = rotation around f3.  S3 and S3' are defined analogous
to C3 and C3' with accompanying horizontal reflection.

σv = a reflection plane through f4, σv' = a reflection plane

through f2, and σv'' = a reflection plane through f3
PA1' f2 = (1)E f2 + (1)C3 f2 + (1)C3' f2 +

(1)C2 f2 + (1)C2' f2 + (1)C2' '  f2 +

(1)σh f2 + (1)S3 f2 + (1)S3' f2

(1)σv f2 + (1)σv' f2 + (1)σv' '  f2
= (1)f2 + (1)f3 + (1)f4 +

(1)f3 + (1)f2 + (1)f4 +
(1)f2 + (1)f3 + (1)f4 +

(1)f3 + (1)f2 + (1)σf4
= 4f2 + 4f3 + 4f4

Normalization yields: φ1a1' = 
1

3
(f2 + f3 + f4)  .

PE' f2 = (2)E f2 + (-1)C3 f2 + (-1)C3' f2 +
(0)C2 f2 + (0)C2' f2 + (0)C2' '  f2 +

(2)σh f2 + (-1)S3 f2 + (-1)S3' f2

(0)σv f2 + (0)σv' f2 + (0)σv' '  f2
= (2)f2 + (-1)f3 + (-1)f4 +

(2)f2 + (-1)f3 + (-1)f4 +
= 4f2 - 2f3 - 2f4

Normalization yields: φ1e' = 
1

6
(2f2 - f3 - f4)  .

To find the second e' (orthogonal to the first), projection on f3 yields (2f3 - f2 - f4) and
projection on f4 yields (2f4 - f2 - f3).  Neither of these functions are orthogonal to the first,
but a combination of the two (2f3 - f2 - f4) - (2f4 - f2 - f3) yields a function which is
orthogonal to the first.

Normalization yields: φ2e' = 
1

2
(f3 - f4)  .

iii. The H 1s orbitals generate the following reducible representation:
D3h      E  2C3  3C2   σh  2S3  3σv

Γsp2     3    0     1     3     0     1
This reducible representation reduces to 1A1' and 1E'
irreducible representations.exactly like part ii. and in addition the projectors used to find the
SALC-AOs for these irreducible representations.is exactly analogous to part ii.



φ2a1' = 
1

3
(f5 + f6 + f7)  

φ3e' = 
1

6
(2f5 - f6 - f7)  .

φ4e' = 
1

2
(f6 - f7)  .

So, there are 1A2' ', 2A1' and 2E' orbitals.  Solving the Hamiltonian matrix for each
symmetry block yields:

A2'' Block:

H1a2',1a2' = ⌡⌠f1Hf1dτ 

= α
2pπ = -8.5

A1' Block:

H1a1',1a1' = 
⌡
⌠ 1

3
(f2 +  f 3 +  f 4)H

1

3
(f2 +  f 3 +  f 4)dτ 

= 
1
3 {⌡⌠f2Hf2dτ  + ⌡⌠f2Hf3dτ  + ⌡⌠f2Hf4dτ  +

⌡⌠f3Hf2dτ  + ⌡⌠f3Hf3dτ  + ⌡⌠f3Hf4dτ  +

⌡⌠f4Hf2dτ  + ⌡⌠f4Hf3dτ  + ⌡⌠f4Hf4dτ }
= 

1
3 {α

sp2  + 0 + 0 +

0 + α
sp2  + 0 +

0 + 0 + α
sp2 } = α

sp2 

H1a1',2a1' = 
⌡
⌠ 1

3
(f2 +  f 3 +  f 4)H

1

3
(f5 +  f 6 +  f 7)dτ 

= 
1
3 {⌡⌠f2Hf5dτ  + ⌡⌠f2Hf6dτ  + ⌡⌠f2Hf7dτ  +

⌡⌠f3Hf5dτ  + ⌡⌠f3Hf6dτ  + ⌡⌠f3Hf7dτ  +

⌡⌠f4Hf5dτ  + ⌡⌠f4Hf6dτ  + ⌡⌠f4Hf7dτ }
= 

1
3 {β

sp2-s
  + 0 + 0 +

0 + β
sp2-s

  + 0 +

0 + 0 + β
sp2-s

 } = β
sp2-s

 

H2a1',2a1' = 
⌡
⌠ 1

3
(f5 +  f 6 +  f 7)H

1

3
(f5 +  f 6 +  f 7)dτ 

= 
1
3 {⌡⌠f5Hf5dτ  + ⌡⌠f5Hf6dτ  + ⌡⌠f5Hf7dτ  +

⌡⌠f6Hf5dτ  + ⌡⌠f6Hf6dτ  + ⌡⌠f6Hf7dτ  +



⌡⌠f7Hf5dτ  + ⌡⌠f7Hf6dτ  + ⌡⌠f7Hf7dτ }
= 

1
3 {α

s
  + 0 + 0 +

0 + α
s
  + 0 +

0 + 0 + α
s
 } = α

s
 

This matrix eigenvalue problem then becomes:







α
sp2 -  ε β

sp2-s

β
sp2-s

α
s
 -  ε

  = 0







-10.7 -  ε -3.5

-3.5 -13.6 -  ε
  = 0

Solving this yields eigenvalues of:
| |-15.94 -8.36  

and corresponding eigenvectors:







-0.5555 -0.8315

-0.8315  0.5555
 

E' Block:
This 4x4 symmetry block factors to two 2x2 blocks: where one 2x2 block includes the
SALC-AOs

φe' = 
1

6
(2f2 - f3 - f4) 

φe' = 
1

6
(2f5 - f6 - f7) ,

and the other includes the SALC-AOs

φe' = 
1

2
(f3 - f4) 

φe' = 
1

2
(f6 - f7) .

Both of these 2x2 matrices are identical to the A1' 2x2 array and therefore yield identical
energies and MO coefficients.
This results in an orbital energy diagram:



a2''-8.5

-15.94

-8.36 a1',e'

a1',e'

For the ground state of BH3 you would fill the bottom level (B-H bonding), a1' and e'
orbitals, with 6 electrons.

5.
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5. a. The two F p orbitals (top and bottom) generate the following reducible
representation:

D3h      E  2C3  3C2   σh  2S3  3σv

Γp        2    2     0     0     0     2
This reducible representation reduces to 1A1' and 1A2' '
irreducible representations.
Projectors may be used to find the SALC-AOs for these irreducible representations.

φa1' = 
1

2
(f1 - f2)  

φa2'' = 
1

2
(f1 + f2)  

5. b. The three trigonal F p orbitals generate the following reducible representation:
D3h      E  2C3  3C2   σh  2S3  3σv

Γp        3    0     1     3     0     1
This reducible representation reduces to 1A1' and 1E'
irreducible representations.



Projectors may be used to find the SALC-AOs for these irreducible representations (but
they are exactly analogous to the previous few problems):

φa1' = 
1

3
(f3 + f4 + f5)  

φe' = 
1

6
(2f3 - f4 - f5) 

φe' = 
1

2
(f4 - f5) .

5. c. The 3 P sp2 orbitals generate the following reducible representation:
D3h      E  2C3  3C2   σh  2S3  3σv

Γsp2     3    0     1     3     0     1
This reducible representation reduces to 1A1' and 1E'
irreducible representations.  Again, projectors may be used to find the SALC-AOs for these
irreducible representations.(but again they are exactly analogous to the previous few
problems):

φa1' = 
1

3
(f6 + f7 + f8)  

φe' = 
1

6
(2f6 - f7 - f8) 

φe' = 
1

2
(f7 - f8) .

The leftover P pz orbital generate the following irreducible representation:

D3h      E  2C3  3C2   σh  2S3  3σv

Γpz
      1    1    -1    -1    -1     1

This irreducible representation is an A2' '

φa2'' = f9.
Drawing an energy level diagram using these SALC-AOs would result in the following:

| |

| || |

| |

| |

a'1

e'*

e'

a ' '2

a' '2
*

a'1
*

a'1



Section 3 Exercises, Problems, and Solutions

    Review Exercises

1. For the given orbital occupations (configurations) of the following systems, determine
all possible states (all possible allowed combinations of spin and space states).  There is no
need to form the determinental wavefunctions simply label each state with its proper    term
   symbol   .  One method commonly used is Harry Grays "box method" found in     Electrons
   and Chemical Bonding    .

a.) CH2 1a122a121b223a111b11

b.) B2 1σg21σu22σg22σu21πu12πu1

c.) O2 1σg21σu22σg22σu21πu43σg21πg2

d.) Ti 1s22s22p63s23p64s23d14d1

e.) Ti 1s22s22p63s23p64s23d2

    Exercises   

1. Show that the configuration (determinant) corresponding to the Li+ 1s(α)1s(α) state
vanishes.
2. Construct the 3 triplet and 1 singlet wavefunctions for the Li+ 1s12s1 configuration.
Show that each state is a proper eigenfunction of S2 and Sz (use raising and lowering

operators for S2)
3. Construct wavefunctions for each of the following states of CH2:

a.) 1B1 (1a122a121b223a111b11)

b.) 3B1(1a122a121b223a111b11)

c.) 1A1 (1a122a121b223a12)

4. Construct wavefunctions for each state of the 1σ22σ23σ21π2 configuration of NH.

5. Construct wavefunctions for each state of the 1s12s13s1 configuration of Li.
6. Determine all term symbols that arise from the 1s22s22p23d1 configuration of the excited
N atom.
7. Calculate the energy (using Slater Condon rules) associated with the 2p valence electrons
for the following states of the C atom.

  i. 3P(ML=1,MS=1),

 ii. 3P(ML=0,MS=0),

iii. 1S(ML=0,MS=0), and

iv. 1D(ML=0,MS=0).

8. Calculate the energy (using Slater Condon rules) associated with the π valence electrons
for the following states of the NH molecule.

  i. 1∆ (ML=2, MS=0),

 ii. 1Σ (ML=0, MS=0), and

iii. 3Σ (ML=0, MS=0).

    Problems



1. Let us investigate the reactions:
 i. CH2(1A1)  →  H2 + C , and

ii. CH2(3B1)  →  H2 + C ,
under an assumed C2v reaction pathway utilizing the following information:

C atom: 3P →
29.2 kcal/mole

  1D →
32.7 kcal/mole

  1S
C(3P) + H2  →  CH2(3B1)   ∆E = -78.8 kcal/mole

C(1D) + H2  →  CH2(1A1)   ∆E = -97.0 kcal/mole

IP (H2) > IP (2s carbon).
a. Write down (first in terms of 2p1,0,-1 orbitals and then in terms of 2px,y,z

orbitals) the:
  i. three Slater determinant (SD) wavefunctions belonging      to

the 3P state all of which have MS = 1,

 ii. five 1D SD wavefunctions, and
iii. one 1S SD wavefunction.

b. Using the coordinate system shown below, label the hydrogen orbitals σg, σu

and the carbon 2s, 2px, 2py, 2pz, orbitals as a1, b1(x), b2(y), or a2.  Do the same for the σ,

σ, σ*, σ*, n, and pπ orbitals of CH2.

C

H

H

z

y

x

c. Draw an orbital correlation diagram for the CH2  →  H2 + C reactions.  Try to
represent the relative energy orderings of the orbitals correctly.

d. Draw (on graph paper) a configuration correlation diagram for CH2(3B1)  →  H2

+ C showing    all    configurations which arise from the C(3P) + H2 products.  You can
assume that doubly excited configurations lie much (~100 kcal/mole) above their parent
configurations.

e. Repeat step d. for CH2(1A1)  →  H2 + C again showing    all    configurations which

arise from the C(1D) + H2 products.

f. Do you expect the reaction C(3P) + H2  →  CH2 to have a large activation
barrier?  About how large?  What state of CH2 is produced in this reaction?  Would
distortions away from C2v symmetry be expected to raise of lower the activation barrier?
Show how one could estimate where along the reaction path the barrier top occurs.

g. Would C(1D) + H2  →  CH2 be expected to have a larger or smaller barrier than

you found for the 3P C reaction?
2. The decomposition of the ground-state singlet carbene,. .

  ,



to produce acetylene and 1D carbon is known to occur with an activation energy equal to
the reaction endothermicity.  However, when triplet carbene decomposes to acetylene and
ground-state (triplet) carbon, the activation energy exceeds this reaction's endothermicity.
Construct orbital, configuration, and state correlation diagrams which permit you to explain
the above observations.  Indicate whether single configuration or configuration interaction
wavefunctions would be required to describe the above singlet and triplet decomposition
processes.
3. We want to carry out a configuration interaction calculation on H2 at R=1.40 au.  A

minimal basis consisting of normalized 1s Slater orbitals with ζ=1.0 gives rise to the
following overlap (S), one-electron (h), and two-electron atomic integrals:

< >1sA|1sB   = 0.753 ≡ S,

< >1sA|h|1sA   = -1.110,   < >1sB|h|1sA   = -0.968,

< >1sA1sA|h|1sA1sA   = 0.625 ≡ < >AA|AA  

< >AA|BB   = 0.323, < >AB|AB   = 0.504, and

< >AA|AB   = 0.426.
a. The normalized and orthogonal molecular orbitals we will use for this minimal

basis will be determined purely by symmetry:

σg = ( )2+2S
-1
2
( )1sA +  1sB  , and

σu = ( )2+2S
-1
2
( )1sA -  1sB  .

Show that these orbitals are indeed orthogonal.
b. Evaluate (using the one- and two- electron atomic integrals given above) the

unique one- and two- electron integrals over this molecular orbital basis (this is called a
transformation from the ao to the mo basis).  For example, evaluate < >u|h|u  , < >uu|uu  ,

< >gu|gu  , etc.

c. Using the two 1Σg
+  configurations σg2, and σu2, show that the elements of the

2x2 configuration interaction Hamiltonian matrix are -1.805, 0.140, and -0.568.
d. Using    this    configuration interaction matrix, find the configuration interaction

(CI) approximation to the ground and excited state energies and wavefunctions.
e. Evaluate and make a rough sketch of the polarized orbitals which result from the

above ground state σg2 and σu2 CI wavefunction.

Solutions
    Review Exercises

1. a. For non-degenerate point groups one can simply multiply the representations
(since only one representation will be obtained):

 a1 ⊗ b1 = b1
Constructing a "box" in this case is unnecessary since it would only contain a single row.
Two unpaired electrons will result in a singlet (S=0, MS=0), and three triplets (S=1,

MS=1; S=1, MS=0; S=1, MS=-1).  The states will be: 3B1(MS=1), 3B1(MS=0), 3B1(MS=-

1), and 1B1(MS=0).



1. b. Remember that when coupling non-equivalent linear molecule angular momenta,
one simple adds the individual Lz values and vector couples the electron spin.  So, in this

case (1πu12πu1), we have ML values of 1+1, 1-1, -1+1, and -1-1 (2, 0, 0, and -2).  The

term symbol ∆ is used to denote the spatially doubly degenerate level (ML=±2) and there

are two distinct spatially non-degenerate levels denoted by the term symbol Σ (ML=0)
Again, two unpaired electrons will result in a singlet (S=0, MS=0), and three triplets (S=1,
MS=1;S=1, MS=0;S=1, MS=-1).  The states generated are then:

1∆ (ML=2); one state (MS=0),
1∆ (ML=-2); one state (MS=0),
3∆ (ML=2); three states (MS=1,0, and -1),
3∆ (ML=-2); three states (MS=1,0, and -1),
1Σ (ML=0); one state (MS=0),
1Σ (ML=0); one state (MS=0),
3Σ (ML=0); three states (MS=1,0, and -1), and
3Σ (ML=0); three states (MS=1,0, and -1).

1. c. Constructing the "box" for two equivalent π electrons one obtains:

                 ML
MS

2 1 0

1 |π1απ-1α|

0 |π1απ1β| |π1απ-1β|,

|π-1απ1β|

From this "box" one obtains six states:
1∆ (ML=2); one state (MS=0),
1∆ (ML=-2); one state (MS=0),
1Σ (ML=0); one state (MS=0),
3Σ (ML=0); three states (MS=1,0, and -1).

1. d. It is not necessary to construct a "box" when coupling non-equivalent angular
momenta since the vector coupling results in a range from the sum of the two individual
angular momenta to the absolute value of their difference.  In this case, 3d14d1, L=4, 3, 2,
1, 0, and S=1,0.  The term symbols are: 3G, 1G, 3F, 1F, 3D, 1D, 3P, 1P, 3S, and 1S.  The
L and S angular momenta can be vector coupled to produce further splitting into levels:

J = L + S ... |L - S|.
Denoting J as a term symbol subscript one can identify all the levels and subsequent (2J +
1) states:

3G5 (11 states),
3G4 (9 states),
3G3 (7 states),



1G4 (9 states),
3F4 (9 states),
3F3 (7 states),
3F2 (5 states),
1F3 (7 states),
3D3 (7 states),
3D2 (5 states),
3D1 (3 states),
1D2 (5 states),
3P2 (5 states),
3P1 (3 states),
3P0 (1 state),
1P1 (3 states),
3S1 (3 states), and
1S0 (1 state).

1. e. Construction of a "box" for the two equivalent d electrons generates (note the
"box" has been turned side ways for convenience):

                         MS
ML

1 0

4 |d2αd2β|

3 |d2αd1α| |d2αd1β|, |d2βd1α|

2 |d2αd0α| |d2αd0β|, |d2βd0α|,

|d1αd1β|

1 |d1αd0α|, |d2αd-1α| |d1αd0β|, |d1βd0α|,

|d2αd-1β|, |d2βd-1α|

0 |d2αd-2α|, |d1αd-1α| |d2αd-2β|, |d2βd-2α|,

|d1αd-1β|, |d1βd-1α|,

|d0αd0β|

The term symbols are: 1G, 3F, 1D, 3P, and 1S.  The L and S angular momenta can be
vector coupled to produce further splitting into levels:

1G4 (9 states),
3F4 (9 states),
3F3 (7 states),



3F2 (5 states),
1D2 (5 states),
3P2 (5 states),
3P1 (3 states),
3P0 (1 state), and
1S0 (1 state).

    Exercises

1. Constructing the Slater determinant corresponding to the "state" 1s(α)1s(α) with the
rows labeling the orbitals and the columns labeling the electron gives:

|1sα1sα| = 
1

2!







1sα(1) 1sα(2)

1sα(1) 1sα(2)
 

     = 
1

2
 ( )1sα(1)1sα(2) - 1sα(1)1sα(2)  

     = 0
2. Starting with the MS=1 3S state (which in a "box" for this ML=0, MS=1 case would

contain only one product function; |1sα2sα|) and applying S- gives:

S- 3S(S=1,MS=1) = 1(1 + 1) - 1(1 - 1) h∼ 3S(S=1,MS=0)

= h∼ 2  3S(S=1,MS=0)

= ( )S-(1) + S-(2)   |1sα2sα|

= S-(1)|1sα2sα| + S-(2)|1sα2sα|

= h∼ 
1
2



1

2 +  1  -  
1
2



1

2 -  1   |1sβ2sα|

 + h∼ 
1
2



1

2 +  1  -  
1
2



1

2 -  1   |1sα2sβ|

= h∼ ( )|1sβ2sα|  + |1sα2sβ|  

So, h∼ 2  3S(S=1,MS=0) = h∼ ( )|1sβ2sα|  + |1sα2sβ|  

       3S(S=1,MS=0) = 
1

2
 ( )|1sβ2sα|  + |1sα2sβ|  

The three triplet states are then:
3S(S=1,MS=1)= |1sα2sα|,

3S(S=1,MS=0) = 
1

2
 ( )|1sβ2sα|  + |1sα2sβ|  , and

3S(S=1,MS=-1) = |1sβ2sβ|.



The singlet state which must be constructed orthogonal to the three singlet states (and in
particular to the 3S(S=1,MS=0) state) can be seen to be:

1S(S=0,MS=0) = 
1

2
 ( )|1sβ2sα| - |1sα2sβ|  .

Applying S2 and Sz to each of these states gives:

Sz |1sα2sα| = ( )Sz(1) + Sz(2)   |1sα2sα|

= Sz(1)|1sα2sα| + Sz(2))|1sα2sα|

= h∼ 




1

2   |1sα2sα| + h∼ 




1

2   |1sα2sα|

= h∼  |1sα2sα|

S2 |1sα2sα| = (S-S+ + Sz2 + h∼ Sz) |1sα2sα|

= S-S+|1sα2sα| + Sz2|1sα2sα| + h∼ Sz|1sα2sα|

= 0 + h∼ 2 |1sα2sα| + h∼ 2|1sα2sα|

= 2h∼ 2 |1sα2sα|

Sz 
1

2
 ( )|1sβ2sα|  + |1sα2sβ|   = ( )Sz(1) + Sz(2)  

1

2
 ( )|1sβ2sα|  + |1sα2sβ|  

= 
1

2
 ( )Sz(1) + Sz(2)   |1sβ2sα|

+ 
1

2
 ( )Sz(1) + Sz(2)   |1sα2sβ|

= 
1

2
 




h∼ 





-

1
2  +  h∼ 





1

2   |1sβ2sα|

+ 
1

2
 




h∼ 





1

2  +  h∼ 




-

1
2   |1sα2sβ|

= 0h∼ 
1

2
 ( )|1sβ2sα|  + |1sα2sβ|  

S2 
1

2
 ( )|1sβ2sα|  + |1sα2sβ|   = (S-S+ + Sz2 + h∼ Sz)

1

2
 ( )|1sβ2sα|  + |1sα2sβ|  

= S-S+ 
1

2
 ( )|1sβ2sα|  + |1sα2sβ|  

= 
1

2
( )S-(S+(1) + S+(2))|1sβ2sα|  +  S -(S+(1) + S+(2))|1sα2sβ|  

= 
1

2
 S-  h∼ |1sα2sα|  +  S -  h∼ |1sα2sα|  

= 2 h∼ 
1

2
( )(S-(1) + S-(2))|1sα2sα|  

= 2 h∼ 
1

2
 h∼|1sβ2sα|  +  h∼|1sα2sβ|  

= 2 h∼ 2 
1

2
( )|1sβ2sα|  + |1sα2sβ|  

Sz |1sβ2sβ| = ( )Sz(1) + Sz(2)   |1sβ2sβ|



= Sz(1)|1sβ2sβ| + Sz(2))|1sβ2sβ|

= h∼ 




-

1
2   |1sβ2sβ| + h∼ 





-

1
2   |1sβ2sβ|

= -h∼  |1sβ2sβ|

S2 |1sβ2sβ| = (S+S- + Sz2 - h∼ Sz) |1sβ2sβ|

= S+S-|1sβ2sβ| + Sz2|1sβ2sβ| - h∼ Sz|1sβ2sβ|

= 0 + h∼ 2 |1sβ2sβ| + h∼ 2|1sβ2sβ|

= 2h∼ 2 |1sβ2sβ|

Sz 
1

2
 ( )|1sβ2sα| - |1sα2sβ|   = ( )Sz(1) + Sz(2)  

1

2
 ( )|1sβ2sα| - |1sα2sβ|  

= 
1

2
 ( )Sz(1) + Sz(2)   |1sβ2sα|

- 
1

2
 ( )Sz(1) + Sz(2)   |1sα2sβ|

= 
1

2
 




h∼ 





-

1
2  +  h∼ 





1

2   |1sβ2sα|

- 
1

2
 




h∼ 





1

2  +  h∼ 




-

1
2   |1sα2sβ|

= 0h∼ 
1

2
 ( )|1sβ2sα| - |1sα2sβ|  

S2 
1

2
 ( )|1sβ2sα| - |1sα2sβ|   = (S-S+ + Sz2 + h∼ Sz)

1

2
 ( )|1sβ2sα| - |1sα2sβ|  

= S-S+ 
1

2
 ( )|1sβ2sα| - |1sα2sβ|  

= 
1

2
( )S-(S+(1) + S+(2))|1sβ2sα|  -  S -(S+(1) + S+(2))|1sα2sβ|  

= 
1

2
 S-  h∼ |1sα2sα|  -  S -  h∼ |1sα2sα|  

= 0 h∼ 
1

2
( )(S-(1) + S-(2))|1sα2sα|  

= 0 h∼ 
1

2
 h∼|1sβ2sα|  -  h∼|1sα2sβ|  

= 0 h∼ 2 
1

2
( )|1sβ2sα| - |1sα2sβ|  

3. a. Once the spatial symmetry has been determined by multiplication of the
irreducible representations, the spin coupling is identical to exercise 2 and gives the result:

1

2
( )|3a1α1b1β| - |3a1β1b1α|  

3. b. There are three states here (again analogous to exercise 2):
1.) |3a1α1b1α|,

2.) 
1

2
( )|3a1α1b1β| + |3a1β1b1α|  , and



3.) |3a1β1b1β|

3. c. |3a1α3a1β|

4. As shown in review exercise 1c, for two equivalent π electrons one obtains six states:
1∆ (ML=2); one state (MS=0),
1∆ (ML=-2); one state (MS=0),
1Σ (ML=0); one state (MS=0), and
3Σ (ML=0); three states (MS=1,0, and -1).

By inspecting the "box" in review exercise 1c, it should be fairly straightforward to write
down the wavefunctions for each of these:

1∆ (ML=2); |π1απ1β|
1∆ (ML=-2); |π-1απ-1β|

1Σ (ML=0); 
1

2
( )|π1βπ-1α|  -  |π1απ-1β|  

3Σ (ML=0, MS=1); |π1απ-1α|

3Σ (ML=0, MS=0); 
1

2
( )|π1βπ-1α|  + |π1απ-1β|  

3Σ (ML=0, MS=-1); |π1βπ-1β|

5. We can conveniently couple another s electron to the states generated from the 1s12s1

configuration in exercise 2:
3S(L=0, S=1) with 3s1(L=0, S=

1
2 ) giving:

L=0, S=
3
2  , 

1
2  ; 4S (4 states) and 2S (2 states).

1S(L=0, S=0) with 3s1(L=0, S=
1
2 ) giving:

L=0, S=
1
2  ; 2S (2 states).

Constructing a "box" for this case would yield:

                                              ML
MS

0

3
2 |1sα2sα3sα|

1
2 |1sα2sα3sβ|, |1sα2sβ3sα|, |1sβ2sα3sα|

One can immediately identify the wavefunctions for two of the quartets (they are single
entries):

4S(S=
3
2 ,MS=

3
2 ): |1sα2sα3sα|



4S(S=
3
2 ,MS=-

3
2 ): |1sβ2sβ3sβ|

Applying S- to 4S(S=
3
2 ,MS=

3
2 ) yields:

S-4S(S=
3
2 ,MS=

3
2 ) = h∼ 

3
2(

3
2 +  1 )  -  

3
2(

3
2 - 1)  4S(S=

3
2 ,MS=

1
2 )

      = h∼ 3  4S(S=
3
2 ,MS=

1
2 )

S-|1sα2sα3sα| = h∼ ( )|1sβ2sα3sα|  + |1sα2sβ3sα|  + |1sα2sα3sβ|  

So, 4S(S=
3
2 ,MS=

1
2 ) = 

1

3
 ( )|1sβ2sα3sα|  + |1sα2sβ3sα|  + |1sα2sα3sβ|  

Applying S+ to 4S(S=
3
2 ,MS=-

3
2 ) yields:

S+4S(S=
3
2 ,MS=-

3
2 ) = h∼ 

3
2(

3
2 +  1)  -  -

3
2(-

3
2 + 1)  4S(S=

3
2 ,MS=-

1
2 )

      = h∼ 3  4S(S=
3
2 ,MS=-

1
2 )

S+|1sβ2sβ3sβ| = h∼ ( )|1sα2sβ3sβ|  + |1sβ2sα3sβ|  + |1sβ2sβ3sα|  

So, 4S(S=
3
2 ,MS=-

1
2 ) = 

1

3
 ( )|1sα2sβ3sβ|  + |1sβ2sα3sβ|  + |1sβ2sβ3sα|  

It only remains to construct the doublet states which are orthogonal to these quartet states.
Recall that the orthogonal combinations for systems having three equal components (for
example when symmetry adapting the 3 sp2 hybrids in C2v or D3h symmetry) give results
of + + +, +2 - -, and 0 + -.  Notice that the quartets are the + + + combinations and
therefore the doublets can be recognized as:
2S(S=

1
2 ,MS=

1
2 ) = 

1

6
 ( )|1sβ2sα3sα|  + |1sα2sβ3sα| - 2|1sα2sα3sβ|  

2S(S=
1
2 ,MS=

1
2 ) = 

1

2
 ( )|1sβ2sα3sα| - |1sα2sβ3sα| + 0|1sα2sα3sβ|  

2S(S=
1
2 ,MS=-

1
2 ) = 

1

6
 ( )|1sα2sβ3sβ|  + |1sβ2sα3sβ| - 2|1sβ2sβ3sα|  

2S(S=
1
2 ,MS=-

1
2 ) = 

1

3
 ( )|1sα2sβ3sβ| - |1sβ2sα3sβ| + 0|1sβ2sβ3sα|  

6. As illustrated in this chapter a p2 configuration (two equivalent p electrons) gives rise to
the term symbols: 3P, 1D, and 1S.  Coupling an additional electron (3d1) to this p2

configuration will give the desired 1s22s22p23d1 term symbols:
3P(L=1,S=1) with 2D(L=2,S=

1
2 ) generates;

L=3,2,1, and S=
3
2 , 

1
2  with term symbols 4F, 2F,4D, 2D,4P, and 2P,

1D(L=2,S=0) with 2D(L=2,S=
1
2 ) generates;

L=4,3,2,1,0, and S=
1
2  with term symbols 2G, 2F, 2D, 2P, and 2S,

1S(L=0,S=0) with 2D(L=2,S=
1
2 ) generates;



L=2 and S=
1
2  with term symbol 2D.

7. The notation used for the Slater Condon rules will be the same as used in the text:
(a.) zero (spin orbital) difference;

< >|F + G|   = ∑
i
 < >φi|f|φi   + ∑

i>j
  < >φiφj|g|φiφj  -  < >φiφj|g|φjφi  

        = ∑
i

fii  + ∑
i>j

 ( )gijij -  g ijji  

(b.) one (spin orbital) difference (φp ≠ φp');

< >|F + G|   = < >φp|f|φp'   + ∑
j≠p;p'

  < >φpφj|g|φp'φj  -  < >φpφj|g|φjφp'  

        = fpp' + ∑
j≠p;p'

 ( )gpjp'j -  g pjjp'  

(c.) two (spin orbital) differences (φp ≠ φp' and φq ≠ φq');

< >|F + G|   = < >φpφq|g|φp'φq'   - < >φpφq|g|φq'φp'  

        = gpqp'q' - gpqq'p'
(d.) three or more (spin orbital) differences;

< >|F + G|   = 0

7. i. 3P(ML=1,MS=1) = |p1αp0α|

< >|p1αp0α|H|p1αp0α|   =

Error!.  Using the Slater Condon rule (a.) above (SCa):
< >|10|H|10|   = f11 + f00 + g1010 - g1001

7. ii. 3P(ML=0,MS=0) = 
1

2
( )|p1αp-1β|  + |p1βp-1α|  

< >3P(ML=0,MS=0)|H|3P(ML=0,MS=0)  

 = 
1
2(< >|p1αp-1β|H|p1αp-1β|  + < >|p1αp-1β|H|p1βp-1α|  

     + < >|p1βp-1α|H|p1αp-1β|   + < >|p1βp-1α|H|p1βp-1α|  )
Evaluating each matrix element gives:

< >|p1αp-1β|H|p1αp-1β|   = f1α1α + f-1β-1β + g1α-1β1α-1β - g1α-1β-1β1α (SCa)

= f11 + f-1-1 + g1-11-1 - 0

< >|p1αp-1β|H|p1βp-1α|   = g1α-1β1β-1α - g1α-1β-1α1β (SCc)

= 0 - g1-1-11

< >|p1βp-1α|H|p1αp-1β|   = g1β-1α1α-1β - g1β-1α-1β1α (SCc)

= 0 - g1-1-11

< >|p1βp-1α|H|p1βp-1α|   = f1β1β + f-1α-1α + g1β-1α1β-1α - g1β-1α-1α1β (SCa)

= f11 + f-1-1 + g1-11-1 - 0
Substitution of these expressions give:



< >3P(ML=0,MS=0)|H|3P(ML=0,MS=0)  

 = 
1
2 (f11 + f-1-1 + g1-11-1 - g1-1-11 - g1-1-11 

 + f11 + f-1-1 + g1-11-1)
 = f11 + f-1-1 + g1-11-1 - g1-1-11

7. iii. 1S(ML=0,MS=0); 
1

3
(|p0αp0β| - |p1αp-1β| - |p-1αp1β|) 

< >1S(ML=0,MS=0)|H|1S(ML=0,MS=0)  

 = 
1
3(< >|p0αp0β|H|p0αp0β|  - < >|p0αp0β|H|p1αp-1β|  

     - < >|p0αp0β|H|p-1αp1β|   - < >|p1αp-1β|H|p0αp0β|  

     + < >|p1αp-1β|H|p1αp-1β|   + < >|p1αp-1β|H|p-1αp1β|  

     - < >|p-1αp1β|H|p0αp0β|   + < >|p-1αp1β|H|p1αp-1β|  

     + < >|p-1αp1β|H|p-1αp1β|  )
Evaluating each matrix element gives:

< >|p0αp0β|H|p0αp0β|   = f0α0α + f0β0β + g0α0β0α0β - g0α0β0β0α (SCa)

= f00 + f00 + g0000 - 0

< >|p0αp0β|H|p1αp-1β|   = < >|p1αp-1β|H|p0αp0β|  

= g0α0β1α-1β - g0α0β-1β1α (SCc)
= g001-1 - 0

< >|p0αp0β|H|p-1αp1β|   = < >|p-1αp1β|H|p0αp0β|  

= g0α0β−1α1β - g0α0β1β−1α (SCc)
= g00-11 - 0

< >|p1αp-1β|H|p1αp-1β|   = f1α1α + f-1β-1β + g1α-1β1α-1β - g1α-1β-1β1α (SCa)

= f11 + f-1-1 + g1-11-1 - 0

< >|p1αp-1β|H|p-1αp1β|   = < >|p-1αp1β|H|p1αp-1β|  

= g1α-1β-1α1β - g1α-1β1β-1α (SCc)
= g1-1-11 - 0

< >|p-1αp1β|H|p-1αp1β|   = f-1α−1α + f1β1β + g-1α1β−1α1β - g-1α1β1β−1α (SCa)

= f-1-1 + f11 + g-11-11 - 0
Substitution of these expressions give:

< >1S(ML=0,MS=0)|H|1S(ML=0,MS=0)  

 = 
1
3(f00 + f00 + g0000 - g001-1 - g00-11 - g001-1 + f11 + f-1-1 

 + g1-11-1 + g1-1-11 - g00-11 + g1-1-11 + f-1-1 + f11 + g-11-11)
 = 

1
3(2f00 + 2f11 + 2f-1-1 + g0000 - 4g001-1 + 2g1-11-1 + 2g1-1-11) 



7. iv. 1D(ML=0,MS=0) = 
1

6
( )2|p0αp0β|  + |p1αp-1β|  + |p-1αp1β|  

Evaluating < >1D(ML=0,MS=0)|H|1D(ML=0,MS=0)   we note that all the Slater Condon matrix

elements generated are the same as those evaluated in part iii. (the signs for the
wavefunction components and the multiplicative factor of two for one of the components,
however, are different).

< >1D(ML=0,MS=0)|H|1D(ML=0,MS=0)  

 = 
1
6(4f00 + 4f00 + 4g0000 + 2g001-1 + 2g00-11 + 2g001-1 + f11 

 + f-1-1 + g1-11-1 + g1-1-11 + 2g00-11 + g1-1-11 + f-1-1 + f11

 + g-11-11)
 = 

1
6(8f00 + 2f11 + 2f-1-1 + 4g0000 + 8g001-1 + 2g1-11-1 + 2g1-1-11) 

8. i. 1∆(ML=2,MS=0) = |π1απ1β|

< >1∆(ML=2,MS=0)|H|1∆(ML=2,MS=0)  

 = < >|π1απ1β|H|π1απ1β|  

 = f1α1α + f1β1β + g1α1β1α1β - g1α1β1β1α (SCa)
 = f11 + f11 + g1111 - 0
 = 2f11 + g1111

8. ii. 1Σ(ML=0,MS=0) = 
1

2
( )|π1απ-1β|  -  |π1βπ-1α|  

< >3Σ(ML=0,MS=0)|H|3Σ(ML=0,MS=0)  

 = 
1
2(< >|π1απ-1β|H|π1απ-1β|  - < >|π1απ-1β|H|π1βπ-1α|  

     - < >|π1βπ-1α|H|π1απ-1β|   + < >|π1βπ-1α|H|π1βπ-1α|  )
Evaluating each matrix element gives:

< >|π1απ-1β|H|π1απ-1β|   = f1α1α + f-1β-1β + g1α-1β1α-1β - g1α-1β-1β1α (SCa)

= f11 + f-1-1 + g1-11-1 - 0

< >|π1απ-1β|H|π1βπ-1α|   = g1α-1β1β-1α - g1α-1β-1α1β (SCc)

= 0 - g1-1-11

< >|π1βπ-1α|H|π1απ-1β|   = g1β-1α1α-1β - g1β-1α-1β1α (SCc)

= 0 - g1-1-11

< >|π1βπ-1α|H|π1βπ-1α|   = f1β1β + f-1α-1α + g1β-1α1β-1α - g1β-1α-1α1β (SCa)

= f11 + f-1-1 + g1-11-1 - 0
Substitution of these expressions give:

< >3Σ(ML=0,MS=0)|H|3Σ(ML=0,MS=0)  

 = 
1
2 (f11 + f-1-1 + g1-11-1+ g1-1-11+ g1-1-11 + f11 + f-1-1 + g1-11-1) 

 = f11 + f-1-1 + g1-11-1+ g1-1-11



8. iii. 3Σ(ML=0,MS=0) = 
1

2
( )|π1απ-1β|  + |π1βπ-1α|  

< >3Σ(ML=0,MS=0)|H|3Σ(ML=0,MS=0)  

 = 
1
2(< >|π1απ-1β|H|π1απ-1β|  + < >|π1απ-1β|H|π1βπ-1α|  

     + < >|π1βπ-1α|H|π1απ-1β|   + < >|π1βπ-1α|H|π1βπ-1α|  )
Evaluating each matrix element gives:

< >|π1απ-1β|H|π1απ-1β|   = f1α1α + f-1β-1β + g1α-1β1α-1β - g1α-1β-1β1α (SCa)

= f11 + f-1-1 + g1-11-1 - 0

< >|π1απ-1β|H|π1βπ-1α|   = g1α-1β1β-1α - g1α-1β-1α1β (SCc)

= 0 - g1-1-11

< >|π1βπ-1α|H|π1απ-1β|   = g1β-1α1α-1β - g1β-1α-1β1α (SCc)

= 0 - g1-1-11

< >|π1βπ-1α|H|π1βπ-1α|   = f1β1β + f-1α-1α + g1β-1α1β-1α - g1β-1α-1α1β (SCa)

= f11 + f-1-1 + g1-11-1 - 0
Substitution of these expressions give:

< >3Σ(ML=0,MS=0)|H|3Σ(ML=0,MS=0)  

 = 
1
2 (f11 + f-1-1 + g1-11-1- g1-1-11- g1-1-11 + f11 + f-1-1 + g1-11-1) 

 = f11 + f-1-1 + g1-11-1- g1-1-11

    Problems   

1. a. All the Slater determinants have in common the |1sα1sβ2sα2sβ| "core" and
hence this component will not be written out explicitly for each case.
3P(ML=1,MS=1) = |p1αp0α|

= |
1

2
(px + ipy) α(pz)α|

= 
1

2
( )|pxαpzα| + i|pyαpzα|  

3P(ML=0,MS=1) = |p1αp-1α|

= |
1

2
(px + ipy) α 1

2
(px - ipy) α|

= 
1
2( )|pxαpxα| - i|pxαpyα| + i|pyαpxα|  + |pyαpyα|  

= 
1
2( )0 - i|pxαpyα| - i|pxαpyα|  +  0  

= 
1
2( )-2i|pxαpyα|  

= -i|pxαpyα|
3P(ML=-1,MS=1) = |p-1αp0α|



= |
1

2
(px - ipy) α(pz)α|

= 
1

2
( )|pxαpzα| - i|pyαpzα|  

As you can see, the symmetries of each of these states cannot be labeled with a single
irreducible representation of the C2v point group.  For example, |pxαpzα| is xz (B1) and

|pyαpzα| is yz (B2) and hence the 3P(ML=1,MS=1) state is a combination of B1 and B2

symmetries.  But, the three 3P(ML,MS=1) functions are degenerate for the C atom and any
combination of these three functions would also be degenerate.  Therefore we can choose
new combinations which can be labeled with "pure" C2v point group labels.
3P(xz,MS=1) = |pxαpzα|

 = 
1

2
( )3P(ML=1,MS=1) + 3P(ML=-1,MS=1)   = 3B1

3P(yx,MS=1) = |pyαpxα|

  = 
1
i ( )3P(ML=0,MS=1)   = 3A2

3P(yz,MS=1) = |pyαpzα|

  = 
1

i 2
( )3P(ML=1,MS=1) - 3P(ML=-1,MS=1)   = 3B2

Now we can do likewise for the five degenerate 1D states:
1D(ML=2,MS=0) = |p1αp1β|

= |
1

2
(px + ipy) α 1

2
(px + ipy) β|

= 
1
2( )|pxαpxβ| + i|pxαpyβ| + i|pyαpxβ|  - |pyαpyβ|  

1D(ML=-2,MS=0) = |p-1αp-1β|

= |
1

2
(px - ipy) α 1

2
(px - ipy) β|

= 
1
2( )|pxαpxβ| - i|pxαpyβ| - i|pyαpxβ|  - |pyαpyβ|  

1D(ML=1,MS=0) = 
1

2
( )|p0αp1β|  - |p0βp1α|  

= 
1

2



|(pz)α

1

2
(px + ipy)β| - |(pz)β

1

2
(px + ipy)α|  

= 
1
2( )|pzαpxβ| + i|pzαpyβ|  - |pzβpxα| - i|pzβpyα|  

1D(ML=-1,MS=0) = 
1

2
( )|p0αp-1β|  - |p0βp-1α|  

= 
1

2



|(pz)α

1

2
(px -  ipy)β| - |(pz)β

1

2
(px -  ipy)α|  

= 
1
2( )|pzαpxβ| - i|pzαpyβ|  - |pzβpxα| + i|pzβpyα|  

1D(ML=0,MS=0) = 
1

6
( )2|p0αp0β|  + |p1αp-1β|  + |p-1αp1β|  



= 
1

6
(2|pzαpzβ| + |

1

2
(px + ipy)α 1

2
(px - ipy)β| 

 + |
1

2
(px - ipy) α 1

2
(px + ipy) β|)

= 
1

6
(2|pzαpzβ| 

 + 
1
2( )|pxαpxβ| - i|pxαpyβ| + i|pyαpxβ|  + |pyαpyβ|  

 + 
1
2( )|pxαpxβ| + i|pxαpyβ| - i|pyαpxβ|  + |pyαpyβ|  )

= 
1

6
( )2|pzαpzβ|  + |pxαpxβ|  + |pyαpyβ|  )

Analogous to the three 3P states we can also choose combinations of the five degenerate 1D
states which can be labeled with "pure" C2v point group labels:
1D(xx-yy,MS=0) = |pxαpxβ| - |pyαpyβ|

 = ( )1D(ML=2,MS=0) + 1D(ML=-2,MS=0)   = 1A1
1D(yx,MS=0) = |pxαpyβ| + |pyαpxβ|

 = 
1
i ( )1D(ML=2,MS=0) - 1D(ML=-2,MS=0)   = 1A2

1D(zx,MS=0) = |pzαpxβ| - |pzβpxα|

  = ( )1D(ML=1,MS=0) + 1D(ML=-1,MS=0)   = 1B1
1D(zy,MS=0) = |pzαpyβ| - |pzβpyα|

  = 
1
i ( )1D(ML=1,MS=0) - 1D(ML=-1,MS=0)   = 1B2

1D(2zz+xx+yy,MS=0) = 
1

6
( )2|pzαpzβ|  + |pxαpxβ|  + |pyαpyβ|  )

  = 1D(ML=0,MS=0) = 1A1

The only state left is the 1S:
1S(ML=0,MS=0) = 

1

3
( )|p0αp0β|  - |p1αp-1β|  - |p-1αp1β|  

= 
1

3
(|pzαpzβ| - |

1

2
(px + ipy)α 1

2
(px - ipy)β| 

 - |
1

2
(px - ipy) α 1

2
(px + ipy) β|)

= 
1

3
(|pzαpzβ| 

 - 
1
2( )|pxαpxβ| - i|pxαpyβ| + i|pyαpxβ|  + |pyαpyβ|  

 - 
1
2( )|pxαpxβ| + i|pxαpyβ| - i|pyαpxβ|  + |pyαpyβ|  )

= 
1

3
( )|pzαpzβ|  - |pxαpxβ|  - |pyαpyβ|  )

Each of the components of this state are A1 and hence this state has
A1 symmetry.



1. b. Forming SALC-AOs from the C and H atomic orbitals would generate the
following:

H

H

C

H

H

C

H

H

C

H

H

C

H

H

C

H

H

C

H1s + H1s = σg = a1 H1s - H1s = σu = b2

C2s = a1 C2p = a1 C2p = b2 C2p = b1
z xy

The bonding, nonbonding, and antibonding orbitals of CH2 can be illustrated in the
following manner:

H

H

C

H

H

C

H

H

C

H

H

C

H

H

C

H

H

C

σ = a1 σ = b2 n = a1 pπ = b1

σ* = a1 σ* = b2

1. c.



Orbital-correlation diagram for the reaction C + H2  -----> CH2 (bent)

a1(bonding)

b2(antibonding)
a1(antibonding)

b1(2pπ)

a1(non-bonding)

b2(bonding)

CH2 (bent)C + H2

σg(a1)

2s(a1)

σu(b2)

2px(b1)     2py(b2)     2pz(a1)

1. d. - e. It is necessary to determine how the wavefunctions found in part a. correlate
with states of the CH2 molecule:

3P(xz,MS=1); 3B1 = σg2s2pxpz → σ2n2pπσ*
3P(yx,MS=1); 3A2 = σg2s2pxpy → σ2n2pπσ
3P(yz,MS=1); 3B2 = σg2s2pypz → σ2n2σσ*
1D(xx-yy,MS=0); 1A1 → σ2n2pπ2 - σ2n2σ2

1D(yx,MS=0); 1A2 → σ2n2σpπ
1D(zx,MS=0); 1B1 → σ2n2σ*pπ
1D(zy,MS=0); 1B2 → σ2n2σ*σ
1D(2zz+xx+yy,MS=0); 1A1 → 2σ2n2σ*2 + σ2n2pπ2 + σ2n2σ2

Note, the C + H2 state to which the lowest 1A1 (σ2n2σ2) CH2 state decomposes would be

σg2s2py2.  This state (σg2s2py2) cannot be obtained by a simple combination of the 1D

states.  In order to obtain pure σg2s2py2 it is necessary to combine 1S with 1D.  For
example,

σg2s2py2 = 
1
6( )6  1D(0,0) - 2 3  1S(0,0)   - 

1
2( )1D(2,0) + 1D(-2,0)  .

This indicates that a CCD must be drawn with a barrier near the 1D asymptote to represent
the fact that 1A1 CH2 correlates with a mixture of 1D and 1S carbon plus hydrogen.  The C

+ H2 state to which the lowest 3B1 (σ2nσ2pπ) CH2 state decomposes would be σg2spy2px.



(3B1
3B2

3A2)

(1B2
1A1

1A1
1A2

1B1)

C(1D) + H2

   29.2 Kcal/mole

1A1(σ
2
σ

2
n2)

3B1(σ2σ2npπ)

3A2(σ
2
σn2pπ)

3B2(σ
2
σn2σ∗)

3B1(σ
2
n2σ∗pπ)

3B1

C(3P) + H2

σg
2
spy

2px

3B1
3B1

3B2

3A2

1A1

78.8 Kcal/mole

97.0 Kcal/mole

1. f. If you follow the 3B1 component of the C(3P) + H2 (since it leads to the ground-

state products) to 3B1 CH2 you must go over an approximately 20 Kcal/mole barrier.  Of

course this path produces 3B1 CH2 product.  Distortions away from C2v symmetry, for
example to Cs symmetry, would make the a1 and b2 orbitals identical in symmetry (a').

The b1 orbitals would maintain their identity going to a'' symmetry.  Thus 3B1 and 3A2

(both 3A'' in Cs symmetry and     odd     under reflection through the molecular plane) can mix.

The system could thus follow the 3A2 component of the C(3P) + H2 surface to the place



(marked with a circle on the CCD) where it crosses the 3B1 surface upon which it then
moves and continues to products.  As a result, the barrier would be lowered.

You can estimate when the barrier occurs (late or early) using thermodynamic
information for the reaction (i.e. slopes and asymptotic energies).  For example, an early
barrier would be obtained for a reaction with the characteristics:

Progress of Reaction

Energy

and a late barrier would be obtained for a reaction with the characteristics:

Progress of Reaction

Energy

This relation between reaction endothermicity or exothermicity is known as the Hammond
postulate.  Note that the C(3P1) + H2 --> CH2 reaction of interest here (see the CCD) has
an early barrier.
1. g. The reaction C(1D) + H2 ---> CH2 (1A1) should have no symmetry barrier (this

can be recognized by following the 1A1 (C(1D) + H2) reactants down to the 1A1 (CH2)
products on the CCD).
2. This problem in many respects is analogous to problem 1.
The 3B1 surface certainly requires a two configuration CI wavefunction; the σ2σ2npx

(π2py2spx) and the σ2n2pxσ* (π2s2pxpz).  The 1A1 surface could use the σ2σ2n2 (π2s2py2)

only but once again there is no combination of 1D determinants which gives purely this
configuration (π2s2py2).  Thus mixing of both 1D and 1S determinants are necessary to



yield the required π2s2py2 configuration.  Hence even the 1A1 surface would require a
multiconfigurational wavefunction for adequate description.

C:

H

H

H

C

C

H

x

z

y
+      C

n

σ∗CC

σCC

σ∗CC

σCC

2px(b1)     2py(b2)     2pz(a1)

π*(b2)

2s(a1)

π(a1)

C2H2 + C C3H2 

b2(bonding)

a1(non-bonding)

b1(2pπ)

a1(antibonding)
b2(antibonding)

a1(bonding)

Orbital-correlation diagram for the reaction C2H2 + C -----> C3H2

Configuration correlation diagram for the reaction C2H2 + C ---> C3H2.



Ea 
3B1

∆E 3B1

Ea > ∆E  (for 3B1)

Ea = ∆E  (for 1A1)

π
2
s2pypz

3B2

π
2
s2pxpy

3A2

π
2
s2pxpz

3B1

π
2
s2py

2  1A1

C(1D) + C2H2

1A1(σ
2
σ

2
n2)

3B1(σ2σ2npπ)

3A2(σ
2
σn2pπ)

3B2(σ
2
σn2σ∗)

3B1(σ
2
n2σ∗pπ)

3B1

C(3P) + C2H2

π
2
spy

2px

3. a.

< >σg|σg   = < ( )2+2S
-1
2
( )1sA +  1sB  |( )2+2S

-1
2
( )1sA +  1sB >  

 = ( )2+2S  -1 (< >1sA|1sA   + < >1sA|1sB   + < >1sB|1sA   + < >1sB|1sB  )

 = (0.285)((1.000) + (0.753) + (0.753) + (1.000))
 = 0.999 ≈ 1

< >σg|σu   = < ( )2+2S
-1
2
( )1sA +  1sB  |( )2-2S

-1
2
( )1sA -  1sB >  

 = ( )2+2S
-1
2( )2-2S

-1
2(< >1sA|1sA  + < >1sA|1sB  

 + < >1sB|1sA   + < >1sB|1sB  )

 = (1.423)(0.534)((1.000) - (0.753) + (0.753) - (1.000))
 = 0

< >σu|σu   = < ( )2-2S
-1
2
( )1sA -  1sB  |( )2-2S

-1
2
( )1sA -  1sB >  

 = ( )2-2S  -1(< >1sA|1sA   - < >1sA|1sB   - < >1sB|1sA   + < >1sB|1sB  )

 = (2.024)((1.000) - (0.753) - (0.753) + (1.000))
 = 1.000



3. b.

< >σg|h|σg   = < ( )2+2S
-1
2
( )1sA +  1sB  |h|( )2+2S

-1
2
( )1sA +  1sB >  

 = ( )2+2S  -1 (< >1sA|h|1sA   + < >1sA|h|1sB  

 + < >1sB|h|1sA   + < >1sB|h|1sB  )

 = (0.285)((-1.110) + (-0.968) + (-0.968) + (-1.110))
 = -1.184

< >σu|h|σu   = < ( )2-2S
-1
2
( )1sA -  1sB  |h|( )2-2S

-1
2
( )1sA -  1sB >  

 = ( )2-2S  -1 (< >1sA|h|1sA   - < >1sA|h|1sB  

 - < >1sB|h|1sA   + < >1sB|h|1sB  )

 = (2.024)((-1.110) + (0.968) + (0.968) + (-1.110))
 = -0.575

< >σgσg|h|σgσg   ≡ < >gg|gg   = ( )2+2S  -1( )2+2S  -1 .

< >( )1sA +  1sB ( )1sA +  1sB |( )1sA +  1sB ( )1sA +  1sB  

 = ( )2+2S  -2. (< >AA|AA   + < >AA|AB   + < >AA|BA   + < >AA|BB   +

  < >AB|AA   + < >AB|AB   + < >AB|BA   + < >AB|BB   +

  < >BA|AA   + < >BA|AB   + < >BA|BA   + < >BA|BB   +

  < >BB|AA   + < >BB|AB   + < >BB|BA   + < >BB|BB  )
 = (0.081) ( (0.625) + (0.426) + (0.426) + (0.323) +

(0.426) + (0.504) + (0.323) + (0.426) +
(0.426) + (0.323) + (0.504) + (0.426) +
(0.323) + (0.426) + (0.426) + (0.625) )

 = 0.564

< >uu|uu   = ( )2-2S  -1( )2-2S  -1 .

< >( )1sA -  1sB ( )1sA -  1sB |( )1sA -  1sB ( )1sA -  1sB  

 = ( )2-2S  -2. (< >AA|AA   - < >AA|AB   - < >AA|BA   + < >AA|BB   -

  < >AB|AA   + < >AB|AB   + < >AB|BA   - < >AB|BB   -

  < >BA|AA   + < >BA|AB   + < >BA|BA   - < >BA|BB   +

  < >BB|AA   - < >BB|AB   - < >BB|BA   + < >BB|BB  )
 = (4.100) ( (0.625) - (0.426) - (0.426) + (0.323) -

(0.426) + (0.504) + (0.323) - (0.426) -
(0.426) + (0.323) + (0.504) - (0.426) +
(0.323) - (0.426) - (0.426) + (0.625) )

 = 0.582

< >gg|uu   = ( )2+2S  -1( )2-2S  -1 .

< >( )1sA +  1sB ( )1sA +  1sB |( )1sA -  1sB ( )1sA -  1sB  



 = ( )2+2S  -1( )2-2S  -1 .
(< >AA|AA   - < >AA|AB   - < >AA|BA   + < >AA|BB   +

< >AB|AA   - < >AB|AB   - < >AB|BA   + < >AB|BB   +

< >BA|AA   - < >BA|AB   - < >BA|BA   + < >BA|BB   +

< >BB|AA   - < >BB|AB   - < >BB|BA   + < >BB|BB  )
 = (0.285)(2.024) ((0.625) - (0.426) - (0.426) + (0.323) +

 (0.426) - (0.504) - (0.323) + (0.426) +
 (0.426) - (0.323) - (0.504) + (0.426) +
 (0.323) - (0.426) - (0.426) + (0.625))

 = 0.140

< >gu|gu   = ( )2+2S  -1( )2-2S  -1 .

< >( )1sA +  1sB ( )1sA -  1sB |( )1sA +  1sB ( )1sA -  1sB  

 = ( )2+2S  -1( )2-2S  -1 .
(< >AA|AA   - < >AA|AB   + < >AA|BA   - < >AA|BB   -

< >AB|AA   + < >AB|AB   - < >AB|BA   + < >AB|BB   +

< >BA|AA   - < >BA|AB   + < >BA|BA   - < >BA|BB   -

< >BB|AA   + < >BB|AB   - < >BB|BA   + < >BB|BB  )
 = (0.285)(2.024) ((0.625) - (0.426) + (0.426) - (0.323) -

 (0.426) + (0.504) - (0.323) + (0.426) +
 (0.426) - (0.323) + (0.504) - (0.426) -
 (0.323) + (0.426) - (0.426) + (0.625))

 = 0.557
Note, that < >gg|gu   = < >uu|ug   = 0 from symmetry considerations, but this can be easily
verified.  For example,

< >gg|gu   = ( )2+2S
-1
2( )2-2S

-3
2  .

< >( )1sA +  1sB ( )1sA +  1sB |( )1sA +  1sB ( )1sA -  1sB  

 = ( )2+2S
-1
2( )2-2S

-3
2  .

(< >AA|AA   - < >AA|AB   + < >AA|BA   - < >AA|BB   +

< >AB|AA   - < >AB|AB   + < >AB|BA   - < >AB|BB   +

< >BA|AA   - < >BA|AB   + < >BA|BA   - < >BA|BB   +

< >BB|AA   - < >BB|AB   + < >BB|BA   - < >BB|BB  )
 = (0.534)(2.880) ((0.625) - (0.426) + (0.426) - (0.323) +

 (0.426) - (0.504) + (0.323) - (0.426) +
 (0.426) - (0.323) + (0.504) - (0.426) +
 (0.323) - (0.426) + (0.426) - (0.625))

 = 0.000
3. c. We can now set up the configuration interaction Hamiltonian matrix.  The
elements are evaluated by using the Slater-Condon rules as shown in the text.

H11 = < >σgασgβ|H|σgασgβ  



      = 2fσgσg
 + gσgσgσgσg

      = 2(-1.184) + 0.564 = -1.804

H21 = H12 = < >σgασgβ|H|σuασuβ  

      = gσgσgσuσu
      = 0.140

H22 = < >σuασuβ|H|σuασuβ  

      = 2fσuσu
 + gσuσuσuσu

      = 2(-0.575) + 0.582 = -0.568
3. d. Solving this eigenvalue problem:









-1.804 - ε 0.140

0.140 -0.568 - ε
  = 0

(-1.804 - ε)(-0.568 - ε) - (0.140)2 = 0

1.025 + 1.804ε + 0.568ε + ε2 - 0.0196 = 0

ε2 + 2.372ε + 1.005 = 0

ε = 
-2.372 ± (2.372)2 - 4(1)(1.005)

(2)(1)  

  = -1.186 ± 0.634
  = -1.820, and -0.552.

Solving for the coefficients:









-1.804 - ε 0.140

0.140 -0.568 - ε
 






C1

C2
  = 







0

0
 

For the first eigenvalue this becomes:







-1.804 + 1.820 0.140

0.140 -0.568 + 1.820
 






C1

C2
  = 







0

0
 







0.016 0.140

0.140 1.252
 






C1

C2
  = 







0

0
 

(0.140)(C1) + (1.252)(C2) = 0
C1 = -8.943 C2

C12 + C22 = 1 (from normalization)

(-8.943 C2)2 + C22 = 1

80.975 C22 = 1
C2 = 0.111, C1 = -0.994

For the second eigenvalue this becomes:







-1.804 + 0.552 0.140

0.140 -0.568 + 0.552
 






C1

C2
  = 







0

0
 







-1.252 0.140

0.140 -0.016
 






C1

C2
  = 







0

0
 

(-1.252)(C1) + (0.140)(C2) = 0



C1 = 0.112 C2

C12 + C22 = 1 (from normalization)

(0.112 C2)2 + C22 = 1

1.0125 C22 = 1
C2 = 0.994, C1 = 0.111

3. e. The polarized orbitals, R± , are given by:

R± = σg ± 
C2
C1

  σu

R± = σg ± 
0.111
0.994  σu

R± = σg ± 0.334 σu

R+ = σg + 0.334 σu (left polarized)

R- = σg − 0.334 σu (right polarized)



Section 4 Exercises, Problems, and Solutions

    Exercises:

1. Consider the molecules CCl4, CHCl3, and CH2Cl2.
a. What kind of rotor are they (symmetric top, etc; do not bother with oblate, or

near-prolate, etc.)
b. Will they show pure rotational spectra?
c. Assume that ammonia shows a pure rotational spectrum.  If the rotational

constants are 9.44 and 6.20 cm-1, use the energy expression:
E = (A - B) K2 + B J(J + 1),

to calculate the energies (in cm-1) of the first three lines (i.e., those with lowest K, J
quantum number for the absorbing level) in the absorption spectrum (ignoring higher order
terms in the energy expression).

2. The molecule 11B 16O has a vibrational frequency ωe = 1885 cm-1, a rotational constant

Be = 1.78 cm-1, and a bond energy from the bottom of the potential well of D0
e  = 8.28 eV.

Use integral atomic masses in the following:
a. In the approximation that the molecule can be represented as a Morse oscillator,

calculate the bond length, Re in angstroms, the centrifugal distortion constant, De in cm-1,

the anharmonicity constant, ωexe in cm-1, the zero-point corrected bond energy, D0
0  in eV,

the vibration rotation interaction constant, αe in cm-1, and the vibrational state specific

rotation constants, B0 and B1 in cm-1.  Use the vibration-rotation energy expression for a
Morse oscillator:

E = h
_
 ωe(v + 1/2) - h

_
 ωexe(v + 1/2)2 + BvJ(J + 1) - DeJ2(J + 1)2, where

Bv = Be - αe(v + 1/2), αe = 
-6Be2

h
_ωe

  + 
6 Be3h

_ωexe

h
_ωe

 , and De = 
4Be3

h
_ωe2

 .

b. Will this molecule show a pure rotation spectrum?  A vibration-rotation
spectrum?  Assume that it does, what are the energies (in cm-1) of the first three lines in the
P branch (∆v = +1, ∆J = -1) of the fundamental absorption?

3. Consider trans-C2H2Cl2.  The vibrational normal modes of this molecule are shown
below.  What is the symmetry of the molecule?  Label each of the modes with the
appropriate irreducible representation.



    Problems:   

1. Suppose you are given two molecules (one is CH2 and the other is  CH2
- but you don't

know which is which).  Both molecules have C2v symmetry.  The CH bond length of
molecule I is 1.121 Å and for  molecule II it is 1.076 Å.  The bond angle of molecule I is
104° and for molecule II it is 136°.

R

θ HH

y

z

C

a. Using a coordinate system centered on the C nucleus as shown above (the
molecule is in the YZ plane), compute the moment of inertia tensors of both species (I and
II).  The definitions of the components of the tensor are, for example:

Ixx = ∑
j

mj(yj2 +  z j2)  - M(Y2 + Z2)

Ixy = -∑
j

mjxjyj  - MXY



Here, mj is the mass of the nucleus j, M is the mass of the entire molecule, and X, Y, Z are
the coordinates of the center of mass of the molecule.  Use Å for distances and amu's for
masses.

b. Find the principal moments of inertia Ia < Ib < Ic for both compounds ( in amu

Å2 units) and convert these values into rotational constants A, B, and C in cm-1 using, for
example,

A = h(8π2cIa)-1.
c. Both compounds are "nearly prolate tops" whose energy levels can be well

approximated using the prolate top formula:
E = (A - B) K2 + B J(J + 1),

   if    one uses for the B constant the average of the B and C valued determined earlier.  Thus,
take B and C values (for each compound) and average them to produce an effective B
constant to use in the above energy formula.  Write down (in cm-1 units) the energy
formula for both species.  What values are J and K allowed to assume?  What is the
degeneracy of the level labeled by a given J and K?

d. Draw a picture of both compounds and show the directions of the three principle
axes (a,b,c).  On these pictures show the kind of rotational motion associated with the
quantum number K.

e. Given that the electronic    transition     moment vector µ→  connecting species I and II
is directed along the Y axis, what are the selection rules J and K?

f. Suppose you are given the photoelectron spectrum of CH2
-.  In this spectrum Jj

= Ji + 1 transitions are called R-branch absorptions and those obeying Jj = Ji - 1 are called
P-branch transitions.  The spacing between lines can increase or decrease as functions of Ji
depending on the changes in the moment of inertia for the transition.  If spacings grow
closer and closer, we say that the spectrum exhibits a so-called band head formation.  In the
photoelectron spectrum that you are given, a rotational analysis of the vibrational lines in
this spectrum is carried out and it is found that the R-branches show band head formation
but the P-branches do not.  Based on this information, determine which compound I or II

is the CH2
- anion.  Explain you reasoning.

g. At what J value (of the absorbing species) does the band head occur and at what
rotational energy difference?

2. Let us consider the vibrational motions of benzene.  To consider all of the vibrational
modes of benzene we should attach a set of displacement vectors in the x, y, and z
directions to each atom in the molecule (giving 36 vectors in all), and evaluate how these
transform under the symmetry operations of D6h.  For this problem, however, let's only
inquire about the C-H stretching vibrations.

a. Represent the C-H stretching motion on each C-H bond by an outward-directed
vector on each H atom, designated ri:



H

H

H

H

H

H

r2

r3

r4

r5

r6

r1

These vectors form the basis for a reducible representation.  Evaluate the characters for this
reducible representation under the symmetry operations of the D6h group.

b. Decompose the reducible representation you obtained in part a. into its
irreducible components.  These are the symmetries of the various C-H stretching
vibrational modes in benzene.

c. The vibrational state with zero quanta in each of the vibrational modes (the
ground vibrational state) of any molecule always belongs to the totally symmetric
representation.  For benzene the ground vibrational state is therefore of A1g symmetry.  An
excited state which has one quantum of vibrational excitation in a mode which is of a given
symmetry species has the same symmetry species as the mode which is excited (because
the vibrational wave functions are given as Hermite polynomials in the stretching
coordinate).  Thus, for example, excitation (by one quantum) of a vibrational mode of A2u
symmetry gives a wavefunction of A2u symmetry.  To resolve the question of what
vibrational modes may be excited by the absorption of infrared radiation we must examine
the x, y, and z components of the transition dipole integral for initial and final state wave
functions ψi and ψf, respectively:

|< ψf | x | ψi >| , |< ψf | y | ψi >| , and |< ψf | z | ψi >| .
Using the information provided above, which of the C-H vibrational modes of benzene will
be infrared-active, and how will the transitions be polarized?  How many C-H vibrations
will you observe in the infrared spectrum of benzene?

d. A vibrational mode will be active in Raman spectroscopy only if one of the
following integrals is nonzero:

|< ψf | xy | ψi >| , |< ψf | xz | ψi >| , |< ψf | yz | ψi >| ,

|< ψf | x2 | ψi >| , |< ψf | y2 | ψi >| , and |< ψf | z2 | ψi >| .
Using the fact that the quadratic operators transform according to the irreducible
representations:

(x2 + y2, z2) ⇒ A1g

(xz, yz) ⇒ E1g

(x2 - y2, xy) ⇒ E2g
Determine which of the C-H vibrational modes will be Raman-active.



e. Are there any of the C-H stretching vibrational motions of benzene which cannot
be observed in either infrared of Raman spectroscopy?  Give the irreducible representation
label for these unobservable modes.
3. In treating the vibrational and rotational motion of a diatomic molecule having reduced
mass µ, equilibrium bond length re and harmonic force constant k, we are faced with the
following radial Schrödinger equation:

-h2

2µr2
 
d
dr 



r2  dR

dr   + 
J(J + 1)h-2

2µr2
  R + 

1
2  k(r - re)2 R = E R

a. Show that the substitution R = r-1F leads to:

-h2

2µ
  F'' + 

J(J + 1)h-2

2µr2
  F + 

1
2  k(r - re)2 F = E F

b. Taking r = re + ∆r and expanding (1 + x)-2 = 1 - 2x + 3x2 + ...,

show that the so-called vibration-rotation coupling term 
J(J + 1)h-2

2µr2
  can be approximated

(for small ∆r) by 
J(J + 1)h-2

2µre2
 








1  -  
2∆r
re

 +  
3∆r2

re2
 .  Keep terms only through order ∆r2.

c. Show that, through terms of order ∆r2, the above equation for F can be
rearranged to yield a new equation of the form:

-h-2

2µ
  F'' + 

1
2 k- (r - re- ) 2 F = 









E -  
J(J + 1)h-2

2µre2
 +  ∆   F

Give explicit expressions for how the modified force constant k-  , bond length re-  , and

energy shift ∆ depend on J, k, re, and µ.
d. Given the above modified vibrational problem, we can now conclude that the

modified energy levels are:

E = h- k-

µ
 




v  +  

1
2   + 

J(J + 1)h-2

2µre2
  - ∆.

Explain how the conclusion is "obvious", how for J = 0, k = k-  , and ∆ = 0, we obtain the
usual harmonic oscillator energy levels.  Describe how the energy levels would be expected
to vary as J increases from zero and explain how these changes arise from changes in k and
re.  Explain in terms of physical forces involved in the rotating-vibrating molecule why re
and k are changed by rotation.

Solutions
    Exercises:   

1. a. CCl4 is tetrahedral and therefore is a spherical top.  CHCl3 has C3v symmetry
and therefore is a symmetric top.  CH2Cl2 has C2v symmetry and therefore is an
asymmetric top.

b. CCl4 has such high symmetry that it will not exhibit pure rotational spectra.
CHCl3 and CH2Cl2 will both exhibit pure rotation spectra.

c. NH3 is a symmetric top (oblate).  Use the given energy expression,



E = (A - B) K2 + B J(J + 1),

A = 6.20 cm-1, B = 9.44 cm-1, selection rules ∆J = ±1, and the fact that µ0
→  lies along the

figure axis such that ∆K = 0, to give:

∆E = 2B (J + 1) = 2B, 4B, and 6B (J = 0, 1, and 2).

So, lines are at 18.88 cm-1, 37.76 cm-1, and 56.64 cm-1.

2. To convert between cm-1 and energy, multiply by hc = (6.62618x10-34J
sec)(2.997925x1010cm sec-1) = 1.9865x1023 J cm.
Let all quantities in cm-1 be designated with a bar,

e.g. Be


  = 1.78 cm-1.

a. hcBe


  = 
h
_2

2µRe2
  

Re = 
h
_

2µhcBe


  , 

µ = 
mBmO

mB +  m O
  = 

(11)(16)
(11 + 16)  x 1.66056x10 -27 kg

   = 1.0824x10-26 kg.

hcBe


  = hc(1.78 cm-1) = 3.5359x10-23 J

Re = 
1.05459x10 -34 J sec

(2)1.0824x10-26 kg.3.5359x10-23 J
  

Re = 1.205x10-10 m = 1.205 Å

De = 
4Be3

h
_ωe2

  , De


  = 
4Be

3

ωe
2

   = 
(4)(1.78 cm-1)3

(1885 cm-1)2
  = 6.35x10-6 cm-1

ωexe = 
h
_ωe2

4D0
e

  , ωexe


  = 
ωe
2

4D0
e

   = 
(1885 cm-1)2

(4)(66782.2 cm-1)
  = 13.30 cm-1.

D0
0  = D0

e  - 
h
_ωe
2   + 

h
_ωexe

4   , D0
0


  = D0

e


  - 
ωe


2   + 
ωexe



4  

   = 66782.2 - 
1885

2   + 
13.3

4  

   = 65843.0 cm-1 = 8.16 eV.

αe = 
-6Be2

h
_ωe

  + 
6 Be3h

_ωexe

h
_ωe

 

αe


  = 
-6Be

2

ωe
   + 

6 Be
3ωexe



ωe
  



αe


  = 
(-6)(1.78)2

(1885)   + 
6 (1.78)3(13.3)

(1885)   = 0.0175 cm-1.

B0 = Be - αe(1/2) , B0


  = Be


  - αe


(1/2)  = 1.78 - 0.0175/2

  = 1.77 cm-1

B1 = Be - αe(3/2) , B1


  = Be


  - αe


(3/2)  = 1.78 - 0.0175(1.5)

  = 1.75 cm-1

b. The molecule has a dipole moment and so it should have a pure rotational
spectrum.  In addition, the dipole moment should change with R and so it should have a
vibration rotation spectrum.
The first three lines correspond to J = 1 → 0, J = 2 → 1, J = 3 → 2

E = h
_
 ωe(v + 1/2) - h

_
 ωexe(v + 1/2)2 + BvJ(J + 1) - DeJ2(J + 1)2

∆E = h
_
 ωe - 2h

_
 ωexe - B0J(J + 1) + B1J(J - 1) - 4DeJ3

∆E


  = ωe


  - 2ωexe


  - B0


 J(J + 1) + B1


 J(J - 1) - 4De


 J3

∆E


  = 1885 - 2(13.3) - 1.77J(J + 1) + 1.75J(J - 1) - 4(6.35x10-6)J3

     = 1858.4 - 1.77J(J + 1) + 1.75J(J - 1) - 2.54x10-5J3

∆E


(J = 1)   = 1854.9 cm-1

∆E


(J = 2)   = 1851.3 cm-1

∆E


(J = 3)   = 1847.7 cm-1

3. The C2H2Cl2 molecule has a σh plane of symmetry (plane of molecule), a C2 axis (⊥ to
plane), and inversion symmetry, this results in C2h symmetry.  Using C2h symmetry labels

the modes can be labeled as follows: ν1, ν2, ν3, ν4, and ν5 are ag, ν6 and ν7 are au, ν8 is

bg, and ν9, ν10, ν11, and ν12 are bu.

    Problems:   

1.

R

θ HH

y

z

C

Molecule I Molecule II
RCH = 1.121 Å RCH = 1.076 Å

∠HCH = 104° ∠HCH = 136°
yH = R Sin (θ/2) = ±0.8834 yH = ±0.9976

zH = R Cos (θ/2) = -0.6902 zH = -0.4031
Center of Mass(COM):



clearly, X = Y = 0,

Z = 
12(0) - 2RCos(θ/2)

14   = -0.0986 Z = -0.0576

a. Ixx = ∑
j

mj(yj2 +  z j2)  - M(Y2 + Z2)

Ixy = -∑
j

mjxjyj  - MXY

Ixx = 2(1.121)2 - 14(-0.0986)2 Ixx = 2(1.076)2 - 14(-0.0576)2

      = 2.377       = 2.269
Iyy = 2(0.6902)2 - 14(-0.0986)2 Iyy = 2(0.4031)2 - 14(-0.0576)2

      = 0.8167       = 0.2786
Izz = 2(0.8834)2 Izz = 2(0.9976)2

     = 1.561      = 1.990
Ixz = Iyz = Ixy = 0

b. Since the moment of inertia tensor is already diagonal, the principal moments of
inertia have already been determined to be
(Ia < Ib < Ic):
Iyy < Izz < Ixx Iyy < Izz < Ixx
0.8167 < 1.561 < 2.377 0.2786 < 1.990 < 2.269

Using the formula: A = 
h

8π2cIa
  = 

6.626x10 -27

8π2(3x1010)Ia
  X 

6.02x1023

(1x10-8)2
 

   A = 
16.84

Ia
  cm-1

similarly, B = 
16.84

Ib
  cm-1, and C = 

16.84
Ic

  cm-1.

So,
Molecule I Molecule II
y ⇒ A = 20.62 y ⇒ A = 60.45

z ⇒ B = 10.79 z ⇒ B = 8.46

x ⇒ C = 7.08 x ⇒ C = 7.42
c. Averaging B + C:

B = (B + C)/2 = 8.94 B = (B + C)/2 = 7.94
A - B = 11.68 A - B = 52.51
Using the prolate top formula:

E = (A - B) K2 + B J(J + 1),
Molecule I Molecule II
E = 11.68K2 + 8.94J(J + 1) E = 52.51K2 + 7.94J(J + 1)
Levels: J = 0,1,2,... and K = 0,1, ... J
For a given level defined by J and K, there are MJ degeneracies given by: (2J + 1) x









2 for  K ≠ 0

1 for  K = 0
 

d.
Molecule I Molecule II



HH

C

z => Ib

y => Ia

HH

y => Ia

z => Ib

C

e. Since µ→  is along Y, ∆K = 0 since K describes rotation about the y axis.

Therefore ∆J = ±1

f.     Assume    molecule I is CH2
- and molecule II is CH2.  Then,

∆E = EJj
(CH2) - EJi

(CH2
-), where:

E(CH2) = 52.51K2 + 7.94J(J + 1), and E(CH2
-) = 11.68K2 + 8.94J(J + 1)

For R-branches: Jj = Ji + 1, ∆K = 0:

∆ER = EJj
(CH2) - EJi

(CH2
-)

= 7.94(Ji + 1)(Ji + 1 + 1) - 8.94Ji(Ji + 1)
= (Ji + 1){7.94(Ji + 1 + 1) - 8.94Ji}
= (Ji + 1){(7.94- 8.94)Ji + 2(7.94)}
= (Ji + 1){-Ji + 15.88}

For P-branches: Jj = Ji - 1, ∆K = 0:

∆EP = EJj
(CH2) - EJi

(CH2
-)

= 7.94(Ji - 1)(Ji - 1 + 1) - 8.94Ji(Ji + 1)
= Ji{7.94(Ji - 1) - 8.94(Ji + 1)}
= Ji{(7.94- 8.94)Ji - 7.94 - 8.94}
= Ji{-Ji - 16.88}

This indicates that the R branch lines occur at energies which grow closer and closer
together as J increases (since the 15.88 - Ji term will cancel).  The P branch lines occur at
energies which lie more and more negative (i.e. to the left of the origin).  So, you can

predict that if molecule I is CH2
- and molecule II is CH2 then the R-branch has a band head

and the P-branch does not.  This is observed therefore our assumption was correct:

molecule I is CH2
- and molecule II is CH2.

g. The band head occurs when 
d(∆ER)

dJ   = 0.

d(∆ER)
dJ   = 

d
dJ [(Ji + 1){-Ji + 15.88}] = 0

  = 
d
dJ(-Ji2 - Ji + 15.88Ji + 15.88)  = 0

  = -2Ji + 14.88 = 0

∴ Ji = 7.44,  so J = 7 or 8.
At J = 7.44:

∆ER = (J + 1){-J + 15.88}



∆ER = (7.44 + 1){-7.44 + 15.88} = (8.44)(8.44) = 71.2 cm-1 above 
the origin.

2. a.

D6h  E 2C6 2C3 C2 3C2' 3C2"  i 2S3 2S6 σh 3σd 3σv

A1g  1  1  1  1  1  1  1  1  1  1  1  1 x2+y2,z2

A2g  1  1  1  1 -1 -1  1  1  1  1 -1 -1 Rz
B1g  1 -1  1 -1  1 -1  1 -1  1 -1  1 -1
B2g  1 -1  1 -1 -1  1  1 -1  1 -1 -1  1
E1g  2  1 -1 -2  0  0  2  1 -1 -2  0  0 (Rx,Ry) (xz,yz)
E2g  2 -1 -1  2  0  0  2 -1 -1  2  0  0 (x2-y2,xy)
A1u  1  1  1  1  1  1 -1 -1 -1 -1 -1 -1
A2u  1  1  1  1 -1 -1 -1 -1 -1 -1  1  1 z
B1u  1 -1  1 -1  1 -1 -1  1 -1  1 -1  1
B2u  1 -1  1 -1 -1  1 -1  1 -1  1  1 -1
E1u  2  1 -1 -2  0  0 -2 -1  1  2  0  0 (x,y)
E2u  2 -1 -1  2  0  0 -2  1  1 -2  0  0
ΓC-H 6 0 0 0 0 2 0 0 0 6 2 0

b. The number of irreducible representations may be found by using the following
formula:

nirrep = 
1
g∑

R

χred(R)χirrep(R) ,

where g = the order of the point group (24 for D6h).

nA1g = 
1
24∑

R

ΓC-H(R).A1g(R) 

= 
1
24 {(1)(6)(1)+(2)(0)(1)+(2)(0)(1)+(1)(0)(1)

       +(3)(0)(1)+(3)(2)(1)+(1)(0)(1)+(2)(0)(1)
       +(2)(0)(1)+(1)(6)(1)+(3)(2)(1)+(3)(0)(1)}
= 1

nA2g = 
1
24 {(1)(6)(1)+(2)(0)(1)+(2)(0)(1)+(1)(0)(1)

      +(3)(0)(-1)+(3)(2)(-1)+(1)(0)(1)+(2)(0)(1)
      +(2)(0)(1)+(1)(6)(1)+(3)(2)(-1)+(3)(0)(-1)}
= 0

nB1g = 
1
24 {(1)(6)(1)+(2)(0)(-1)+(2)(0)(1)+(1)(0)(-1)

      +(3)(0)(1)+(3)(2)(-1)+(1)(0)(1)+(2)(0)(-1)
      +(2)(0)(1)+(1)(6)(-1)+(3)(2)(1)+(3)(0)(-1)}
= 0



nB2g = 
1
24 {(1)(6)(1)+(2)(0)(-1)+(2)(0)(1)+(1)(0)(-1)

      +(3)(0)(-1)+(3)(2)(1)+(1)(0)(1)+(2)(0)(-1)
      +(2)(0)(1)+(1)(6)(-1)+(3)(2)(-1)+(3)(0)(1)}
= 0

nE1g = 
1
24 {(1)(6)(2)+(2)(0)(1)+(2)(0)(-1)+(1)(0)(-2)

      +(3)(0)(0)+(3)(2)(0)+(1)(0)(2)+(2)(0)(1)
      +(2)(0)(-1)+(1)(6)(-2)+(3)(2)(0)+(3)(0)(0)}
= 0

nE2g = 
1
24 {(1)(6)(2)+(2)(0)(-1)+(2)(0)(-1)+(1)(0)(2)

      +(3)(0)(0)+(3)(2)(0)+(1)(0)(2)+(2)(0)(-1)
      +(2)(0)(-1)+(1)(6)(2)+(3)(2)(0)+(3)(0)(0)}
= 1

nA1u = 
1
24 {(1)(6)(1)+(2)(0)(1)+(2)(0)(1)+(1)(0)(1)

      +(3)(0)(1)+(3)(2)(1)+(1)(0)(-1)+(2)(0)(-1)
      +(2)(0)(-1)+(1)(6)(-1)+(3)(2)(-1)+(3)(0)(-1)}
= 0

nA2u = 
1
24 {(1)(6)(1)+(2)(0)(1)+(2)(0)(1)+(1)(0)(1)

      +(3)(0)(-1)+(3)(2)(-1)+(1)(0)(-1)+(2)(0)(-1)
      +(2)(0)(-1)+(1)(6)(-1)+(3)(2)(1)+(3)(0)(1)}
= 0

nB1u = 
1
24 {(1)(6)(1)+(2)(0)(-1)+(2)(0)(1)+(1)(0)(-1)

      +(3)(0)(1)+(3)(2)(-1)+(1)(0)(-1)+(2)(0)(1)
      +(2)(0)(-1)+(1)(6)(1)+(3)(2)(-1)+(3)(0)(1)}
= 0

nB2u = 
1
24 {(1)(6)(1)+(2)(0)(-1)+(2)(0)(1)+(1)(0)(-1)

      +(3)(0)(-1)+(3)(2)(1)+(1)(0)(-1)+(2)(0)(1)
      +(2)(0)(-1)+(1)(6)(1)+(3)(2)(1)+(3)(0)(-1)}
= 1

nE1u = 
1
24 {(1)(6)(2)+(2)(0)(1)+(2)(0)(-1)+(1)(0)(-2)

      +(3)(0)(0)+(3)(2)(0)+(1)(0)(-2)+(2)(0)(-1)
      +(2)(0)(1)+(1)(6)(2)+(3)(2)(0)+(3)(0)(0)}
= 1

nE2u = 
1
24 {(1)(6)(2)+(2)(0)(-1)+(2)(0)(-1)+(1)(0)(2)

      +(3)(0)(0)+(3)(2)(0)+(1)(0)(-2)+(2)(0)(1)
      +(2)(0)(1)+(1)(6)(-2)+(3)(2)(0)+(3)(0)(0)}
= 0

We see that ΓC-H = A1g⊕E2g⊕B2u⊕E1u

c. x and y ⇒ E1u , z ⇒ A2u , so, the ground state A1g level can be excited to the
degenerate E1u level by coupling through the x or y transition dipoles.  Therefore E1u is

infrared active and ⊥ polarized.

d. (x2 + y2, z2) ⇒ A1g, (xz, yz) ⇒ E1g, (x2 - y2, xy) ⇒ E2g ,so, the ground state

A1g level can be excited to the degenerate E2g level by coupling through the x2 - y2 or xy



transitions or be excited to the degenerate A1g level by coupling through the xz or yz
transitions.  Therefore A1g and E2g are Raman active..

e. The B2u mode is not IR or Raman active.

3. a.
d
dr (F r-1)  = F' r-1 - r-2 F

r2 d
dr (F r-1)  = r F' - F

d
dr 



r2  d

dr (F  r -1)   = F' - F' + r F''

So,

-h-2

2µr2
 
d
dr 



r2  d

dr (Fr-1)   = 
-h-2

2µ
 
F ' '
r   .

Rewriting the radial Schrödinger equation with the substitution: R = r-1F gives:

-h2

2µr2
 
d
dr 



r2  d(Fr-1)

dr   + 
J(J + 1)h-2

2µr2
 (Fr-1)  + 

1
2  k(r - re)2 (Fr-1) = E (Fr-1)

Using the above derived identity gives:

-h-2

2µ
 
F ' '
r   + 

J(J + 1)h-2

2µr2
 (Fr-1)  + 

1
2  k(r - re)2 (Fr-1) = E (Fr-1)

Cancelling out an r-1:

-h-2

2µ
  F'' + 

J(J + 1)h-2

2µr2
  F + 

1
2  k(r - re)2 F = E F

b. 
1

r2
  = 

1

(re +  ∆r)2
  = 

1

re2








1  +  
∆r
re

2
  ≈ 

1

re2
 








1  -  
2∆r
re

 +  
3∆r2

re2
 

So,

J(J + 1)h-2

2µr2
  ≈ 

J(J + 1)h-2

2µre2
 








1  -  
2∆r
re

 +  
3∆r2

re2
 

c. Using this substitution we now have:

-h-2

2µ
  F'' + 

J(J + 1)h-2

2µre2
 








1  -  
2∆r
re

 +  
3∆r2

re2
  F + 

1
2  k(r - re)2 F = E F

Now, regroup the terms which are linear and quadratic in ∆r = r - re:

1
2  k∆r2 + 

J(J + 1)h-2

2µre2
 
3

re2
  ∆r2 - 

J(J + 1)h-2

2µre2
 
2
re

  ∆r

= 






1

2 k  +  
J(J + 1)h-2

2µre2
 

3

re2
  ∆r2 - 







J(J + 1)h-2

2µre2
 

2
re

  ∆r

Now, we must complete the square:

a∆r2 - b∆r = a




∆r  -  

b
2a

2
  - 

b2

4a  .

So,









1

2 k  +  
J(J + 1)h-2

2µre2
 

3

re2
 





∆r  -  

J(J + 1)h-2

2µre2
 

1
re

1
2 k  +  

J(J + 1)h-2

2µre2
 

3

re2

2

  -







J(J + 1)h-2

2µre2
 

1
re

2

1
2 k  +  

J(J + 1)h-2

2µre2
 

3

re2

 

Now, redefine the first term as 
1
2 k-  , second term as (r - r- e)2, and the third term as -∆

giving:
1
2k-   r  -  r-e

2
  - ∆

From:

-h-2

2µ
  F'' + 

J(J + 1)h-2

2µre2
 








1  -  
2∆r
re

 +  
3∆r2

re2
  F + 

1
2  k(r - re)2 F = E F,

-h-2

2µ
  F'' + 

J(J + 1)h-2

2µre2
  F + 







J(J + 1)h-2

2µre2
 








-  
2∆r
re

 +  
3∆r2

re2
 +  

1
2 k∆r2   F = E F,

and making the above substitution results in:

-h-2

2µ
  F'' + 

J(J + 1)h-2

2µre2
  F + 



1

2k-   r  -  r-e
2
 -  ∆   F = E F,

or,

-h-2

2µ
  F'' + 

1
2 k- (r - r-e) 2 F = 









E -  
J(J + 1)h-2

2µre2
 +  ∆   F.

d. Since the above is nothing but a harmonic oscillator differential equation in x

with force constant k-   and equilibrium bond length r- e, we know that:

-h-2

2µ
  F'' + 

1
2 k- (r - r-e) 2 F = ε F, has energy levels:

ε = h- k-

µ
 




v  +  

1
2   , v = 0, 1, 2, ...

So,

E + ∆.- 
J(J + 1)h-2

2µre2
  = ε

tells us that:

E = h- k-

µ
 




v  +  

1
2   + 

J(J + 1)h-2

2µre2
  - ∆.

As J increases, r- e increases because of the centrifugal force pushing the two atoms apart.

On the other hand k-   increases which indicates that the molecule finds it more difficult to



stretch against both the centrifugal and Hooke's law (spring) Harmonic force field.  The

total energy level (labeled by J and v) will equal a rigid rotor component 
J(J + 1)h-2

2µre2
  plus a

Harmonic oscillator part h- k-

µ
 




v  +  

1
2  (which has a force constant k-  which increases with J) .



Section 5 Exercises, Problems, and Solutions

    Exercises:

1. Time dependent perturbation theory provides an expression for the radiative lifetime of
an excited electronic state, given by τR:

τR = 
3h-4c3

4(Ei -  E f)3|µfi|2
  ,

where i refers to the excited state, f refers to the lower state, and µfi is the transition dipole.
a. Evaluate the z-component of the transition dipole for the

2pz → 1s transition in a hydrogenic atom of nuclear charge Z, given:

ψ1s = 
1

π
 




Z

a0

3
2  e 

-Zr
a0   , and ψ2pz = 

1

4 2π
 




Z

a0

5
2  r Cosθ e 

-Zr
2a0  .

Express your answer in units of ea0.

b. Use symmetry to demonstrate that the x- and y-components of µfi are zero, i.e.
<2pz| e x |1s> = <2pz| e y |1s> = 0.

c. Calculate the radiative lifetime τR of a hydrogenlike atom in its 2pz state. Use the

relation e2 = 
h-2

mea0
  to simplify your results.

2. Consider a case in which the complete set of states {φk} for a Hamiltonian is known.
a. If the system is initially in the state m at time t=0 when a constant perturbation V

is suddenly turned on, find the probability amplitudes Ck(2)(t) and Cm(2)(t), to second order
in V, that describe the system being in a different state k or the same state m at time t.

b. If the perturbation is turned on adiabatically, what are Ck(2)(t) and Cm(2)(t)?

Here, consider that the initial time is t0 → -∞, and the potential is V eηt, where the positive

parameter η is allowed to approach zero η→ 0 in order to describe the adiabatically (i.e.,
slowly) turned on perturbation.

c. Compare the results of parts a. and b. and explain any differences.
d. Ignore first order contributions (assume they vanish) and evaluate the transition

rates 
d
dt |Ck(2)(t)|2 for the results of part b. by taking the limit η → 0+, to obtain the

adiabatic results.

3. If a system is initially in a state m, conservation of probability requires that the total
probability of transitions out of state m be obtainable from the decrease in the probability of
being in state m.  Prove this to the lowest order by using the results of exercise 2, i.e.

show that: |Cm|2 = 1 - ∑
k≠m

|Ck|2 .

    Problems:   



1. Consider an interaction or perturbation which is carried out suddenly (instantaneously,
e.g., within an interval of time ∆t which is small compared to the natural period ωnm-1

corresponding to the transition from state m to state n), and after that is turned off
adiabatically (i.e., extremely slowly as V eηt).  The transition probability in this case is
given as:

Tnm ≈ 
|<n|V|m>|2

h-2ωnm2
 

where V corresponds to the maximum value of the interaction when it is turned on.  This
formula allows one to calculate the transition probabilities under the action of sudden
perturbations which are small in absolute value whenever perturbation theory is applicable.
Let's use this "sudden approximation" to calculate the probability of excitation of an
electron under a sudden change of the charge of the nucleus.  Consider the reaction:

1
3 H → 

2
3 He+ + e-,

and assume the tritium atom has its electron initially in a 1s orbital.  a. Calculate the
transition probability for the transition 1s → 2s for this reaction using the above formula
for the transition probability.

b. Suppose that at time t = 0 the system is in a state which corresponds to the
wavefunction ϕm, which is an eigenfunction of the operator H0.  At t = 0, the sudden
change of the Hamiltonian occurs (now denoted as H and remains unchanged).  Calculate
the same 1s → 2s transition probability as in part a., only this time as the square of the
magnitude of the coefficient, A1s,2s using the expansion:

Ψ(r,0) = ϕm(r) = ∑
n

Anmψn(r) , where Anm = ⌡⌠ϕm(r)ψn(r)d3r 

Note, that the eigenfunctions of H are ψn with eigenvalues En.  Compare this "exact" value
with that obtained by perturbation theory in part a.

2. The methyl iodide molecule is studied using microwave (pure rotational) spectroscopy.
The following integral governs the rotational selection rules for transitions labeled J, M, K
→ J', M', K':

I = <D
M'K'
J '     | ε→ . µ→ |D

MK
J    >.

The dipole moment µ→  lies along the molecule's C3 symmetry axis.  Let the electric field of

the light ε→  define the lab-fixed Z-direction.

a. Using the fact that Cosβ = D
00
1*  , show that

I = 8π2µε(-1)(M+K) M 0 M
J'  1 J   K 0 K

J'  1 J   δM'MδK'K

b. What restrictions does this result place on ∆J = J' - J? Explain physically why
the K quantum number can not change.

3. Consider the molecule BO.
a. What are the total number of possible electronic states which can be formed by

combination of ground state B and O atoms?



b. What electron configurations of the molecule are likely to be low in energy?
Consider all reasonable orderings of the molecular orbitals.  What are the states
corresponding to these configurations?

c. What are the bond orders in each of these states?
d. The true ground state of BO is 2Σ.  Specify the +/- and u/g symmetries for this

state.
e. Which of the excited states you derived above will radiate to the 2Σ ground state?

Consider electric dipole, magnetic dipole, and electric quadrupole radiation.
f. Does ionization of the molecule to form a cation lead to a stronger, weaker, or

equivalent bond strength?
g. Assuming that the energies of the molecular orbitals do not change upon

ionization, what are the ground state, the first excited state, and the second excited state of
the positive ion?

h. Considering only these states, predict the structure of the photoelectron spectrum
you would obtain for ionization of BO.

4.

-1600 cm                       800 cm                          1300 cm               1500 cm         3200 cm       3600 cm-1 -1 -1 -1 -1

2ν    (HCN)  2

ν     (HCN)3

3317 cm-1

ν   (HCN)
2

712 cm -1

The above figure shows part of the infrared absorption spectrum of HCN gas.  The
molecule has a CH stretching vibration, a bending vibration, and a CN stretching vibration.

a. Are any of the vibrations of linear HCN degenerate?
b. To which vibration does the group of peaks between 600

cm-1 and 800 cm-1 belong?
c. To which vibration does the group of peaks between 3200 cm-1 and 3400 cm-1

belong?
d. What are the symmetries (σ, π, δ) of the CH stretch, CN stretch, and bending

vibrational motions?
e. Starting with HCN in its 0,0,0 vibrational level, which fundamental transitions

would be infrared active under parallel polarized light (i.e., z-axis polarization):



  i. 000 → 001?

 ii. 000 → 100?

iii. 000 → 010?
f. Which transitions would be active when perpendicular polarized light is used?
g. Why does the 712 cm-1 transition have a Q-branch, whereas that near 3317 cm-1

has only P- and R-branches?

Solutions
    Exercises:   

1. a. Evaluate the z-component of µfi:

µfi = <2pz|e r Cosθ |1s>, where ψ1s = 
1

π
 




Z

a0

3
2  e 

-Zr
a0   , and ψ2pz = 

1

4 2π
 




Z

a0

5
2  r

Cosθ e 

-Zr
2a0  .

µfi = 
1

4 2π
 




Z

a0

5
2 

1

π
 




Z

a0

3
2 <r Cosθ e 

-Zr
2a0 |e r Cosθ |e 

-Zr
a0  >

    = 
1

4π 2
 




Z

a0

4
  <r Cosθ e 

-Zr
2a0 |e r Cosθ |e 

-Zr
a0  >

    = 
e

4π 2
 




Z

a0

4
 ⌡⌠
0

∞

r2dr⌡⌠
0

π

Sinθdθ⌡⌠
0

2π

dϕ





r2 e  

-Zr
2a0 e  

-Zr
a0   Cos2θ

    = 
e

4π 2
  2π 





Z

a0

4
 ⌡
⌠

0

∞







r4 e  

-3Zr
2a0 dr ⌡⌠

0

π

SinθCos2θdθ 

Using integral equation 4 to integrate over r and equation 17 to integrate over θ we obtain:

    = 
e

4π 2
  2π 





Z

a0

4
 

4!





3Z

2a0

5 




-1

3   Cos3θ



π

0
 

    = 
e

4π 2
  2π 





Z

a0

4
 
25a054!

35Z5
 




-1

3  ( )(-1)3 -  (1)3  

    = 
e

2
 
28a0

35Z
  = 

ea0
Z  

28

235
   = 0.7449 

ea0
Z  



b. Examine the symmetry of the integrands for <2pz| e x |1s> and <2pz| e y |1s>.
Consider reflection in the xy plane:

Function Symmetry
2pz -1
x +1
1s +1
y +1

Under this operation the integrand of <2pz| e x |1s> is (-1)(1)(1) = -1 (it is antisymmetric)
and hence <2pz| e x |1s> = 0.
Similarly, under this operation the integrand of <2pz| e y |1s> is
(-1)(1)(1) = -1 (it is also antisymmetric) and hence <2pz| e y |1s> = 0.

c. τR = 
3h-4c3

4(Ei -  E f)3|µfi|2
  ,

Ei = E2pz = -
1
4  Z2 



e2

2a0
 

Ef = E1s = -Z2 



e2

2a0
 

Ei - Ef = 
3
8 



e2

a0
  Z2

Making the substitutions for Ei - Ef and |µfi| in the expression for τR we obtain:

τR = 
3h-4c3

4



3

8 



e2

a0
 Z2

3
 












ea0

Z  
28

235

2
  ,

    = 
3h-4c3

4  
33

83
 






e6

a03
 Z6 







e2a02

Z2
 

216

(2)310
 

 ,

    = 
h-4c3  38  a0

 e8 Z4 2 8
 ,

Inserting e2 = 
h-2

mea0
  we obtain:

τR = 
h-4c3  38  a0 me4a04

 h-8 Z4 2 8
  = 

38

28
 
c3  a05  me4

 h-4 Z4
  

    = 25.6289 
c3  a05  me4

 h-4 Z4
  



     = 25,6289 




1

Z4
  x

(2.998x1010 cm sec-1)3(0.529177x10-8 cm)5(9.109x10-28 g)4

(1.0546x10-27 g cm2 sec-1)4
 

      = 1.595x10-9 sec x 




1

Z4
 

So, for example:

Atom τR
H 1.595 ns

He+ 99.7 ps

Li+2 19.7 ps

Be+3 6.23 ps

Ne+9 159 fs

2. a. H = H0 + λH'(t), H'(t) = Vθ(t), H0ϕk = Ekϕk, ωk = Ek/h-  

ih-
∂ψ
∂t

  = Hψ

let ψ(r,t) = ih-∑
j

cj(t)ϕje
-iω jt  and insert into the above expression:

ih-∑
j

  c⋅ j -  iωjcj   e-iω jtϕj = ih-∑
j

cj(t)e
-iω jt(H0 + λH'(t)) ϕj

∑
j

  ih-c⋅ j +  E jcj -  c jEj -  c jλH'   e-iω jtϕj = 0

∑
j

  ih-c⋅ j<m|j> -  c jλ<m|H'|j>   e-iω jt = 0

ih-c⋅  m e-iωmt = ∑
j

cjλH'mj  e
-iω jt

So,

c⋅  m
 = 

1

ih-
∑
j

cjλH'mj  e
-i(ω jm)t

Going back a few equations and multiplying from the left by ϕk instead of ϕm we obtain:

∑
j

  ih-c⋅ j<k|j> -  c jλ<k|H'|j>   e-iω jt = 0

ih-c⋅  k e-iωkt = ∑
j

cjλH'kj  e
-iω jt

So,



c⋅  k
 = 

1

ih-
∑
j

cjλH'kj  e
-i(ω jk)t

Now, let:
cm = cm(0) + cm(1)λ + cm(2)λ2 + ...

ck = ck(0) + ck(1)λ + ck(2)λ2 + ...
and substituting into above we obtain:

c⋅  m(0) + c⋅  m(1)λ + c⋅  m(2)λ2 + ... = 
1

ih-
∑
j

[cj(0) +  c j(1)λ +  c j(2)λ2 + . . . ]  

λH'mj e
-i(ω jm)t

first order:

c⋅  m(0) = 0 ⇒ cm(0) = 1
second order:

c⋅  m(1) = 
1

ih-
∑

j

cj(0) H ' mj e
-i(ω jm)t 

(n+1)st order:

c⋅  m(n) = 
1

ih-
∑

j

cj(n-1) H ' mj e
-i(ω jm)t 

Similarly:
first order:

c⋅  k(0) = 0 ⇒ ck≠m(0) = 0
second order:

c⋅  k(1) = 
1

ih-
∑

j

cj(0) H ' kj e
-i(ω jk)t 

(n+1)st order:

c⋅  k(n) = 
1

ih-
∑

j

cj(n-1) H ' kj e
-i(ω jk)t 

So,

c⋅  m(1) = 
1

ih-
  cm(0) H'mm e-i(ωmm)t = 

1

ih-
  H'mm

cm(1)(t) = 
1

ih-
 ⌡⌠
0

t

dt' Vmm  = 
Vmmt

ih-
 

and similarly,

c⋅  k(1) = 
1

ih-
  cm(0) H'km e-i(ωmk)t = 

1

ih-
  H'km e-i(ωmk)t

ck(1)(t) = 
1

ih-
  Vkm ⌡⌠

0

t

dt' e-i(ωmk)t'  = 
Vkm

h-ωmk

[ ]e-i(ωmk)t -  1  



c⋅  m(2) = 
1

ih-
∑

j

cj(1) H ' mj e
-i(ω jm)t 

c⋅  m(2) = ∑
j≠m

 1

ih-
 
Vjm

h-ωmj

[ ]e-i(ωmj)t -  1  H'mj e
-i(ω jm)t + 

1

ih-
 
Vmmt

ih-
  H'mm

cm(2) = ∑
j≠m

 1

ih-
 
VjmVmj

h-ωmj

 ⌡⌠
0

t

dt' e-i(ω jm)t' [ ]e-i(ωmj)t' -  1   - 
VmmVmm

h-2
 ⌡⌠
0

t

t'dt' 

= ∑
j≠m

 
VjmVmj

ih-2ωmj

 ⌡⌠
0

t

dt'[ ]1 -  e -i(ω jm)t'   - 
|Vmm|2

h-2
 
t2
2 

= ∑
j≠m

 
VjmVmj

ih-2ωmj

 








t  -  
e-i(ω jm)t -  1

-iωjm
  - 

|Vmm|2

h-2
 
t2
2 

= ∑
j≠m

'
VjmVmj

h-2ωmj2
 ( )e-i(ω jm)t -  1   + ∑

j≠m

'  
VjmVmj

ih-2ωmj

  t - 
|Vmm|2  t2

2h-2
 

Similarly,

c⋅  k(2) = 
1

ih-
∑

j

cj(1) H ' kj e
-i(ω jk)t 

= ∑
j≠m

 1

ih-
 
Vjm

h-ωmj

[ ]e-i(ωmj)t -  1  H'kj e
-i(ω jk)t +

 
1

ih-
 
Vmmt

ih-
  H'km e

-i(ωmk)t

ck(2)(t) = ∑
j≠m

'  
VjmVkj

ih-2ωmj

 ⌡⌠
0

t

dt' e-i(ω jk)t' [ ]e-i(ωmj)t' -  1  

 - 
VmmVkm

h-2
 ⌡⌠
0

t

t'dt' e-i(ωmk)t'

= ∑
j≠m

'
VjmVkj

ih-2ωmj

 






e-i(ωmj+ωjm)t -  1

-iωmk
 -  

e-i(ω jk)t -  1

-iωjk
  

- 
VmmVkm

h-2
 




e-i(ωmk)t'





t'

-iωmk
 -  

1

-(iωmk)2

t

0
 

= ∑
j≠m

'
VjmVkj

h-2ωmj

 






e-i(ωmk)t -  1

ωmk
 -  

e-i(ω jk)t -  1

ωjk
  



+ 
VmmVkm

h-2ωmk

 




e-i(ωmk)t'





t'

i  -  
1

ωmk

t

0
 

= ∑
j≠m

'
VjmVkj
Em -  E j

 






e-i(ωmk)t -  1

Em -  E k
 -  

e-i(ω jk)t -  1
Ej -  E k

  

+ 
VmmVkm

h- (Em -  E k)
 




e-i(ωmk)t





t

i -  
1

ωmk
 +  

1

ωmk
 

So, the overall amplitudes cm, and ck, to second order are:

cm(t) = 1 + 
Vmmt

ih-
  + ∑

j≠m

'  
VjmVmj

ih- (Em -  E j)
  t +

 ∑
j≠m

'
VjmVmj

h-2(Em -  E j)2
 ( )e-i(ω jm)t -  1   - 

|Vmm|2  t2

2h-2
 

ck(t) = 
Vkm

(Em -  E k)
[ ]e-i(ωmk)t -  1   +

 
VmmVkm

(Em -  E k)2
 [ ]1 -  e -i(ωmk)t   + 

VmmVkm
(Em -  E k) 

t

h- i
  e-i(ωmk)t +

 ∑
j≠m

'
VjmVkj
Em -  E j

 






e-i(ωmk)t -  1

Em -  E k
 -  

e-i(ω jk)t -  1
Ej -  E k

  

b. The perturbation equations still hold:

c⋅  m(n) = 
1

ih-
∑

j

cj(n-1) H ' mj e
-i(ω jm)t  ; c⋅  k(n) = 

1

ih-
∑

j

cj(n-1) H ' kj e
-i(ω jk)t 

So, cm(0) = 1 and ck(0) = 0

c⋅  m(1) = 
1

ih-
  H'mm

cm(1) = 
1

ih-
  Vmm ⌡⌠

-∞

t

dt' eηt  = 
Vmmeηt

ih-η
 

c⋅  k(1) = 
1

ih-
  H'km e-i(ωmk)t

ck(1) = 
1

ih-
  Vkm ⌡⌠

-∞

t

dt' e-i(ωmk+η)t'  = 
Vkm

ih- (-iωmk+η)
[ ]e-i(ωmk+η)t  

= 
Vkm

Em -  E k + ih-η
[ ]e-i(ωmk+η)t  

c⋅  m(2) = ∑
j≠m

' 1

ih-
 

Vjm

Em -  E j + ih-η
 e-i(ωmj+η)t Vmj eηt e-i(ω jm)t +



1

ih-
 
Vmm eηt 

ih-η
  Vmm eηt

cm(2) = ∑
j≠m

' 1

ih-
 

VjmVmj

Em -  E j + ih-η
 ⌡⌠

-∞

t

e2ηt'dt'   - 
|Vmm|2 

h-2η
 ⌡⌠

-∞

t

e2ηt'dt'  

 = ∑
j≠m

'
VjmVmj

ih-2η(Em -  E j + ih-η)
  e2ηt - 

|Vmm|2 

2h-2η2
  e2ηt

c⋅  k(2) = ∑
j≠m

' 1

ih-
 

Vjm

Em -  E j + ih-η
  e-i(ωmj+η)t H'kj e

-i(ω jk)t +

 
1

ih-
 
Vmm eηt

ih-η
  H'km e

-i(ωmk)t

ck(2) = ∑
j≠m

' 1

ih-
 

VjmVkj

Em -  E j + ih-η
 ⌡⌠

-∞

t

e-i(ωmk+2η)t'dt'  -

VmmVkm

h-2η
 ⌡⌠

-∞

t

e-i(ωmk+2η)t'dt' 

= ∑
j≠m

'
VjmVkj e

-i(ωmk+2η)t

(Em -  E j + ih-η)(Em -  E k + 2ih-η)
  - 

VmmVkm e
-i(ωmk+2η)t

ih-η(Em -  E k + 2ih-η)
 

Therefore, to second order:

cm(t) = 1 + 
Vmmeηt

ih-η
  +  ∑

j

 
VjmVmj

ih-2η(Em -  E j + ih-η)
  e2ηt

ck(t) = 
Vkm

ih- (-iωmk+η)
[ ]e-i(ωmk+η)t  

 +  ∑
j

 
VjmVkj e

-i(ωmk+2η)t

(Em -  E j + ih-η)(Em -  E k + 2ih-η)
 

c. In part a. the c(2)(t) grow linearly with time (for Vmm = 0) while in part b. they

remain finite for η > 0.  The result in part a. is due to the sudden turning on of the field.

d. |ck(t)|2 = 











∑
j

 
VjmVkj e

-i(ωmk+2η)t

(Em -  E j + ih-η)(Em -  E k + 2ih-η)

2
 

 = ∑
jj'

 
VkjVkj'VjmVj'm e -i(ωmk+2η)tei(ωmk+2η)t

(Em-Ej+ih-η)(Em-Ej'-ih-η)(Em-Ek+2ih-η)(Em-Ek-2ih-η)
 



 = ∑
jj'

 
VkjVkj'VjmVj'm e4ηt

[(Em-Ej)(Em-Ej')+ih-η(Ej-Ej')+h-2η2]((Em-Ek)2+4h-2η2)
 

d
dt |ck(t)|2 =  ∑

jj'

 
4η VkjVkj'VjmVj'm

[(Em-Ej)(Em-Ej')+ih-η(Ej-Ej')+h-2η2]((Em-Ek)2+4h-2η2)
 

Now, look at the limit as η → 0+:
d
dt |ck(t)|2 ≠ 0 when Em = Ek

lim
η→0+ 

4η

((Em-Ek)2+4h-2η2)
  α δ(Em-Ek)

So, the final result is the 2nd  order golden rule expression:

d
dt |ck(t)|2 

2π

h-
 δ(Em-Ek) lim

η→0+ 







∑

j

 
VjmVkj

(Ej -  E m -  ih-η)

2
 

3. For the sudden perturbation case:

|cm(t)|2 = 1 + ∑
j

'  
VjmVmj

(Em -  E j)2
 [ ]e-i(ω jm)t -  1  +  e i(ω jm)t -  1   + O(V3)

|cm(t)|2 = 1 + ∑
j

'  
VjmVmj

(Em -  E j)2
 [ ]e-i(ω jm)t +  e i(ω jm)t -  2   + O(V3)

|ck(t)|2 = 
VkmVmk

(Em -  E k)2
[ ]-e-i(ωmk)t -  e i(ωmk)t +  2   + O(V3)

1 - ∑
k≠m

'  |ck(t)|2 = 1 - ∑
k

'
VkmVmk

(Em -  E k)2
[ ]-e-i(ωmk)t -  e i(ωmk)t +  2   + O(V3)

 = 1 + ∑
k

'
VkmVmk

(Em -  E k)2
[ ]e-i(ωmk)t +  e i(ωmk)t -  2   + O(V3)

∴ to order V2, |cm(t)|2 = 1 - ∑
k

'  |ck(t)|2, with no assumptions made regarding Vmm.

For the adiabatic perturbation case:

|cm(t)|2 = 1 + ∑
j≠m

'






VjmVmje2ηt

ih-2η(Em -  E j + ih-η)
 +  

VjmVmje2ηt

-ih-2η(Em -  E j -  ih-η)
  + O(V3)

= 1 + ∑
j≠m

' 1

ih-2η





1

(Em-Ej+ih-η)
 -  

1

(Em-Ej-ih-η)
 VjmVmje2ηt + O(V3)

= 1 + ∑
j≠m

' 1

ih-2η





-2ih-η

(Em-Ej)2+h-2η2
 VjmVmje2ηt + O(V3)



= 1 - ∑
j≠m

'






VjmVmje2ηt

(Em-Ej)2+h-2η2
  + O(V3)

|ck(t)|2 = 
VkmVmk

(Em-Ek)2+h-2η2
  e2ηt + O(V3)

∴ to order V2, |cm(t)|2 = 1 - ∑
k

'  |ck(t)|2, with no assumptions made regarding Vmm for this

case as well.

    Problems:   

1. a. Tnm ≈ 
|<n|V|m>|2

h-2ωnm2
 

evaluating <1s|V|2s> (using only the radial portions of the 1s and 2s wavefunctions since
the spherical harmonics will integrate to unity) where V = (e2,r):

<1s|V|2s> = ⌡
⌠2





Z

a0

3
2  e 

-Zr
a0  

1
r 

1

2
 




Z

a0

3
2 





1  -  

Zr
2a0

  e 

-Zr
2a0  r2dr

<1s|V|2s> = 
2

2
 




Z

a0

3
 








⌡⌠  r e  

-3Zr
2a0  d r  -  ⌡⌠ Zr2

2a0
 e  

-3Zr
2a0  dr  

Using integral equation 4 for the two integrations we obtain:

<1s|V|2s> = 
2

2
 




Z

a0

3
 









1





3Z

2a0

2 -  




Z

2a0
 

2





3Z

2a0

3  

<1s|V|2s> = 
2

2
 




Z

a0

3
 






22a02

32Z2
 -  

23a02

33Z2
 

<1s|V|2s> = 
2

2
 




Z

a0

3
 






(3)22a02  - 23a02

33Z2
  = 

8Z

227a0
 

Now,

En = -
Z2e2

n22a0
  , E1s = -

Z2e2

2a0
  , E2s = -

Z2e2

8a0
  , E2s - E1s = 

3Z2e2

8a0
  

So,

Tnm = 




8Z

227a0

2





3Z2

8a0

2
  = 

26Z226a02

(2)38a02Z4
  = 

211

38Z2
  = 0.312 (for Z = 1)

b. ϕm(r) = ϕ1s = 2




Z

a0

3
2  e 

-Zr
a0   Y00

The orthogonality of the spherical harmonics results in only s-states having non-zero values
for Anm.  We can then drop the Y00 (integrating this term will only result in unity) in
determining the value of A1s,2s.



ψn(r) = ψ2s = 
1

2
 




Z

a0

3
2 





1  -  

Zr
2a0

  e 

-Zr
2a0  

Remember for ϕ1s Z = 1 and for ψ2s Z = 2

Anm = ⌡
⌠2





Z

a0

3
2  e 

-Zr
a0 1

2
 




Z+1

a0

3
2 





1  -  

(Z+1)r
2a0

  e 

-(Z+1)r
2a0   r2dr

Anm = 
2

2



Z

a0

3
2




Z+1

a0

3
2⌡⌠  e 

-(3Z+1)r
2a0  





1  -  

(Z+1)r
2a0

  r2dr

Anm = 
2

2



Z

a0

3
2




Z+1

a0

3
2








⌡⌠ r2  e  

-(3Z+1)r
2a0  d r  -  ⌡

⌠(Z+1)r3

2a0
 e  

-(3Z+1)r
2a0  dr  

Evaluating these integrals using integral equation 4 we obtain:

Anm = 
2

2



Z

a0

3
2




Z+1

a0

3
2 









2





3Z+1

2a0

3 -  




Z+1

2a0
 

(3)(2)





3Z+1

2a0

4  

Anm = 
2

2



Z

a0

3
2




Z+1

a0

3
2 







24a03

(3Z+1)3
 -  (Z+1) 

(3)24a03

(3Z+1)4
 

Anm = 
2

2



Z

a0

3
2




Z+1

a0

3
2 







-25a03

(3Z+1)4
 

Anm = -2 
[ ]23Z(Z+1)

3
2

(3Z+1)4
 

The transition probability is the square of this amplitude:

Tnm = 










-2 
[ ]23Z(Z+1)

3
2

(3Z+1)4

2

  = 
211Z3(Z+1)3

(3Z+1)8
  = 0.25 (for Z = 1).

The difference in these two results (parts a. and b.) will become negligible at large values
of Z when the perturbation becomes less significant as in the case of Z = 1.

2. ε→  is along Z (lab fixed), and µ→  is along z (the C-I molecule fixed bond).  The angle

between Z and z is β:

ε→ . µ→  = εµCosβ = εµD
00
1* (αβγ) 

So,

I = <D
M'K'
J '     | ε→ . µ→ |D

MK
J    > = ⌡

⌠
D

M'K'
J '    ε→. µ→D

MK
J    Sinβdβdγdα

       = εµ⌡⌠D
M'K'
J '    D

00
1* D

MK
J    Sinβdβdγdα.

Now use:



D
M'n'
J'*  D

00
1*   = ∑

jmn

<J'M'10|jm>*D
mn
j* <jn|J'K'10> *,

to obtain:

I = εµ ∑
jmn

<J'M'10|jm>*<jn|J'K'10> *⌡⌠D
mn
j *   D

MK
J    Sinβdβdγdα.

Now use:

⌡⌠D
mn
j *   D

MK
J    Sinβdβdγdα = 

8π2

2J+1  δJjδMmδΚn,

to obtain:

I = εµ
8π2

2J+1 ∑
jmn

<J'M'10|jm>*<jn|J'K'10> *δJjδMmδΚn

  = εµ
8π2

2J+1 <J'M'10|JM><JK|J'K'10>.

We use:

<JK|J'K'10> = 2J+1(-i)(J'-1+K)  K' 0 K
J'  1 J  

and,

<J'M'10|JM> = 2J+1(-i)(J'-1+M) M' 0 M
J'  1 J  

to give:

I = εµ
8π2

2J+1 2J+1(-i)(J'-1+M) M' 0 M
J'  1 J  2J+1(-i)(J'-1+K)  K' 0 K

J'  1 J  

  = εµ8π2(-i)(J'-1+M+J'-1+K) M' 0 M
J'  1 J   K' 0 K

J'  1 J  

  = εµ8π2(-i)(M+K) M' 0 M
J'  1 J   K' 0 K

J'  1 J  

The 3-J symbols vanish unless: K' + 0 = K and M' + 0 = M.
So,

I = εµ8π2(-i)(M+K) M 0 M
J'  1 J   K 0 K

J'  1 J  δM'MδK'K.

b.  M 0 M
J'  1 J   and  K 0 K

J'  1 J   vanish unless J' = J + 1, J, J - 1

∴ ∆J = ±1, 0
The K quantum number can not change because the dipole moment lies along the
molecule's C3 axis and the light's electric field thus can exert no torque that twists the
molecule about this axis. As a result, the light can not induce transitions that excite the
molecule's spinning motion about this axis.

3. a. B atom: 1s22s22p1, 2P ground state L = 1, S = 
1
2 , gives a degeneracy

((2L+1)(2S+1)) of 6.
O atom: 1s22s22p4, 3P ground state L = 1, S = 1, gives a degeneracy

((2L+1)(2S+1)) of 9.
The total number of states formed is then (6)(9) = 54.

b. We need only consider the p orbitals to find the low lying molecular states:



2π

1π

6σ

5σ

 2p2p

Which, in reality look like this:

5σ

6σ

1π

2π

This is the correct ordering to give a 2Σ+ ground state.  The only low-lying electron

configurations are 1π35σ2 or 1π45σ1.  These lead to 2Π and 2Σ+ states, respectively.

c. The bond orders in both states are 2
1
2 .

d. The 2Σ is + and g/u cannot be specified since this is a heteronuclear molecule.

e. Only one excited state, the 2Π, is spin-allowed to radiate to the 2Σ+.  Consider
symmetries of transition moment operators that arise in the E1, E2 and M1 contributions to
the transition rate
Electric dipole allowed: z → Σ+, x,y → Π, ∴ the 2Π → 2Σ+ is electric dipole allowed via a
perpendicular band.
Magnetic dipole allowed: Rz → Σ-, Rx,y → Π, ∴ the 2Π → 2Σ+ is magnetic dipole
allowed.
Electric quadrupole allowed: x2+y2, z2 → Σ+, xy,yz → Π, x2-y2, xy → ∆ ∴ the 2Π →
2Σ+ is electric quadrupole allowed as well.

f. Since ionization will remove a bonding electron, the BO+ bond is weaker than the
BO bond.

g. The ground state BO+ is 1Σ+ corresponding to a 1π4 electron configuration.  An

electron configuration of 1π3 5σ1 leads to a 3Π and a 1Π state.  The 3Π will be lower in

energy.  A 1π2 5σ2 configuration will lead to higher lying states of 3Σ-, 1∆, and 1Σ+.

h. There should be 3 bands corresponding to formation of BO+ in the 1Σ+, 3Π, and
1Π states.  Since each of these involves removing a bonding electron, the Franck-Conden
integrals will be appreciable for several vibrational levels, and thus a vibrational
progression should be observed.



4. a. The bending (π) vibration is degenerate.

b. H---C≡N

        ⇑
bending fundamental

c. H---C≡N

        ⇑
stretching fundamental

d. CH stretch (ν3 in figure) is σ, CN stretch is σ, and HCN (ν2 in figure) bend is

π.

e. Under z (σ) light the CN stretch and the CH stretch can be excited, since ψ0 = σ,

ψ1 = σ and z = σ provides coupling.

f. Under x,y (π) light the HCN bend can be excited, since ψ0 = σ, ψ1 = π and x,y

= π provides coupling.

g. The bending vibration is active under (x,y) perpendicular polarized light.  ∆J =

0, ±1 are the selection rules for ⊥ transitions.  The CH stretching vibration is active under

(z) || polarized light.  ∆J = ±1 are the selection rules for || transitions.



Section 6 Exercises, Problems, and Solutions

    Review Exercises:

1. Contrast Slater type orbitals (STOs) with Gaussian type orbitals (GTOs).

    Exercises:

1. By expanding the molecular orbitals {φk} as linear combinations of atomic orbitals

{χµ},

φk = ∑
µ

cµkχµ 

show how the canonical Hartree-Fock (HF) equations:
F φi = εi φj

reduce to the matrix eigenvalue-type equation of the form given in the text:

∑
ν

FµνCνi  = εi∑
ν

SµνCνi 

where:

Fµν = < >χµ| |h χν   + ∑
δ κ

 






γ

δκ< >χµχδ| |g χνχκ  -  γ
δκ

ex< >χµχδ| |g χκχν  ,

Sµν = < >χµ|χν  , γδκ = ∑
i=occ

CδiCκi ,

and γδκ
ex = ∑

i= occ and
same spin

CδiCκi .

Note that the sum over i in γδκ and γδκ
ex is a sum over spin orbitals.  In addition, show

that this Fock matrix can be further reduced for the closed shell case to:

Fµν = < >χµ| |h χν   + ∑
δ κ

  Pδκ





< >χµχδ| |g χνχκ  -  1

2
 < >χµχδ| |g χκχν   ,

where the charge bond order matrix, P, is defined to be:
Pδκ = ∑

i=occ

2CδiCκi  ,

where the sum over i here is a sum over orbitals not spin orbitals.

2. Show that the HF total energy for a closed-shell system may be written in terms of
integrals over the orthonormal HF orbitals as:



E(SCF) = 2 ∑
k

occ
 < >φk| |h φk   + ∑

kl

occ
  [ ]2< >kl| |gkl  -  < >kl| |glk   +

 ∑
µ>ν

 
ZµZν
Rµν

 .

3. Show that the HF total energy may alternatively be expressed as:

E(SCF) = ∑
k

occ
  εk +  < >φk| |h φk   + ∑

µ>ν

 
ZµZν
Rµν

 ,

where the εk refer to the HF orbital energies.

    Problems:

1. This problem will be concerned with carrying out an SCF calculation for the HeH+

molecule in the 1Σg+(1σ2) ground state.  The one- and two-electron integrals (in atomic
units) needed to carry out this SCF calculation at R = 1.4 a.u. using Slater type orbitals
with orbital exponents of 1.6875 and 1.0 for the He and H, respectively are:

S11 = 1.0, S22 = 1.0, S12 = 0.5784,
h11 = -2.6442,h22 = -1.7201,h12 = -1.5113,
g1111 = 1.0547, g1121 = 0.4744, g1212 = 0.5664,
g2211 = 0.2469, g2221 = 0.3504, g2222 = 0.6250,

where 1 refers to 1sHe and 2 to 1sH.  Note that the two-electron integrals are given in Dirac
notation.  Parts a. - d.  should be done by hand.  Any subsequent parts can make use of the
QMIC software provided.

a. Using φ1 ≈ 1sHe for the initial guess of the occupied molecular orbital, form a
2x2 Fock matrix.  Use the equation derived above in question 1 for Fµν.

b. Solve the Fock matrix eigenvalue equations given above to obtain the orbital

energies and an improved occupied molecular orbital.  In so doing, note that < >φ1|φ1   = 1 =

C1TSC1 gives the needed normalization condition for the expansion coefficients of the φ1 in
the atomic orbital basis.

c. Determine the total SCF energy using the result of exercise 3 above at this step of
the iterative procedure.  When will this energy agree with that obtained by using the
alternative expression for E(SCF) given in exercise 2?

d. Obtain the new molecular orbital, φ1, from the solution of the matrix eigenvalue
problem (part b).

e. A new Fock matrix and related total energy can be obtained with this improved
choice of molecular orbital, φ1.  This process can be continued until a convergence criterion
has been satisfied.  Typical convergence criteria include: no significant change in the
molecular orbitals or the total energy (or both) from one iteration to the next.  Perform this
iterative procedure for the HeH+ system until the difference in total energy between two
successive iterations is less than 10-5 a.u.

f. Show, by comparing the difference between the SCF total energy at one iteration
and the converged SCF total energy, that the convergence of the above SCF approach is
primarily linear (or first order).



g. Is the SCF total energy calculated at each iteration of the above SCF procedure
(via exercise 3) an upper bound to the exact ground-state total energy?

h. Using the converged self-consistent set of molecular orbitals, φ1 and φ2,
calculate the one- and two-electron integrals in the molecular orbital basis.  Using the
equations for E(SCF) in exercises 2 and 3 calculate the converged values of the orbital
energies making use of these integrals in the mo basis.

i. Does this SCF wavefunction give rise (at R→∞) to proper dissociation products?

2. This problem will continue to address the same HeH+ molecular system as above,
extending the analysis to include "correlation effects."  We will use the one- and two-
electron integrals (same geometry) in the    converged     (to 10-5 au) SCF molecular orbital
basis which we would have obtained after 7 iterations above.  The    converged     mos you
would have obtained in problem 1 are:

φ1 = 






-0.89997792

-0.15843012
 φ2 = 







-0.83233180

1.21558030
 

a. Carry out a two configuration CI calculation using the 1σ2 and 2σ2

configurations first by obtaining an expression for the CI matrix elements Hij (i,j = 1σ2,

2σ2) in terms of one- and two-electron integrals, and secondly by showing that the
resultant CI matrix is (ignoring the nuclear repulsion term):







-4.2720 0.1261

0.1261 -2.0149
 

b. Obtain the two CI energies and eigenvectors for the matrix found in part a.
c. Show that the lowest energy CI wavefunction is equivalent to the following two-

determinant (single configuration) wavefunction:

1
2 

















a
1
2φ1 +  b

1
2φ2 α





a
1
2φ1 -  b

1
2φ2 β  +  











a
1
2φ1 -  b

1
2φ2 α





a
1
2φ1 +  b

1
2φ2 β  

involving the polarized orbitals:  a
1
2 φ1 ± b

1
2 φ2 , where a = 0.9984 and b = 0.0556.

d. Expand the CI list to 3 configurations by adding the 1σ2σ to the original 1σ2 and

2σ2 configurations of part a above.  First, express the proper singlet spin-coupled 1σ2σ
configuration as a combination of Slater determinants and then compute all elements of this
3x3 matrix.

e. Obtain all eigenenergies and corresponding normalized eigenvectors for this CI
problem.

f. Determine the excitation energies and transition moments for HeH+ using the full
CI result of part e above.  The nonvanishing matrix elements of the dipole operator r(x,y,z)
in the atomic basis are:

< >1sH| |z1sHe   = 0.2854 and < >1sH| |z1sH   = 1.4.

First determine the matrix elements of r in the SCF orbital basis then determine the
excitation energies and transition moments from the ground state to the two excited singlet
states of HeH+.

g. Now turning to perturbation theory, carry out a RSPT calculation of the first-

order wavefunction |1σ2>(1) for the case in which the zeroth-order wavefunction is taken

to be the 1σ2 Slater determinant.  Show that the first-order wavefunction is given by:



|1σ2>(1) = -0.0442|2σ2>.

h. Why does the |1σ2σ> configuration not enter into the first-order wavefunction?
i. Normalize the resultant wavefunction that contains zeroth- plus first-order parts

and compare it to the wavefunction obtained in the two-configuration CI study of part b.

j. Show that the second-order RSPT correlation energy, E(2), of HeH+ is -0.0056
a.u.  How does this compare with the correlation energy obtained from the two-
configuration CI study of part b?

3. Using the QMIC programs, calculate the SCF energy of HeH+ using the same geometry
as in problem 1 and the STO3G basis set provided in the QMIC basis set library.  How
does this energy compare to that found in problem 1?  Run the calculation again with the 3-
21G basis basis provided.  How does this energy compare to the STO3G and the energy
found using STOs in problem 1?

4. Generate SCF potential energy surfaces for HeH+ and H2 using the QMIC software
provided.  Use the 3-21G basis set and generate points for geometries of R = 1.0, 1.2,
1.4, 1.6, 1.8, 2.0, 2.5, and 10.0.  Plot the energies vs. geometry for each system.  Which
system dissociates properly?

5. Generate CI potential energy surfaces for the 4 states of H2 resulting from a CAS

calculation with 2 electrons in the lowest 2 SCF orbitals (1σg and 1σu).  Use the same
geometries and basis set as in problem 4.  Plot the energies vs. geometry for each system.
Properly label and characterize each of the states (e.g., repulsive, dissociate properly, etc.).

Solutions
    Review Exercises:

1. Slater type orbitals (STOs) are "hydrogen-like" in that they have a normalized form of:







2ζ

ao

n+1
2 





1

(2n)!

1
2  rn-1 e



-ζr

ao   Yl,m(θ,φ),

whereas gaussian type orbitals GTOs have the form:

N rl e
( )-αr2

  Yl,m(θ,φ),
although in most quantum chemistry computer programs they are specified in so-called
"cartesian" form as:

N' xaybzc e
( )-αr2

 ,
where a, b, and c are quantum numbers each ranging from zero upward in unit steps.
So, STOs give "better" overall energies and properties that depend on the shape of the
wavefunction near the nuclei (e.g., Fermi contact ESR hyperfine constants) but they are
more difficult to use (two-electron integrals are more difficult to evaluate; especially the 4-
center variety which have to be integrated numerically).  GTOs on the other hand are easier
to use (more easily integrable) but improperly describe the wavefunction near the nuclear
centers because of the so-called cusp condition (they have zero slope at R = 0, whereas 1s
STOs have non-zero slopes there).

    Exercises:



1. F φi = εi φj = h φi + ∑
j

 [ ]Jj -  K j   φi

Let the closed shell Fock potential be written as:

Vij = ∑
k

 ( )2< >ik|jk  -  < >ik|kj   , and the 1e- component as:

hij = <  φi| - 
1
2
 ∇2 - ∑

A

 
ZA

|r  - RA|  |φj >  , and the delta as:

δij = < >i|j   , so that: hij + Vij = δijεi.

using: φi = ∑
µ

Cµiχµ  , φj = ∑
ν

Cνjχν  , and φk = ∑
γ

Cγ kχγ   , and transforming from the mo to ao

basis we obtain:

Vij = ∑
kµγνκ

  CµiCγ kCνjCκk 2< >µγ|νκ  -  < >µγ|κν  

      = ∑
kµγνκ

 (Cγ kCκk)(CµiCνj) 2< >µγ|νκ  -  < >µγ|κν  

      = ∑
µν

 (CµiCνj) Vµν where,

Vµν = ∑
γκ

  Pγκ 2< >µγ|νκ  -  < >µγ|κν  , and Pγκ  = ∑
k

 (Cγ kCκk) ,

hij = ∑
µν

 (CµiCνj) hµν , where

hµν = <  χµ| - 1
2
 ∇2 - ∑

A

 
ZA

|r  - RA|  |
χν >  , and

δij = < >i|j   = ∑
µν

 (CµiSµνCνj) .

So, hij + Vij = δijεj becomes:

∑
µν

 (CµiCνj) hµν + ∑
µν

 (CµiCνj) Vµν = ∑
µν

 (CµiSµνCνj) εj ,

∑
µν

 (CµiSµνCνj) εj - ∑
µν

 (CµiCνj) hµν - ∑
µν

 (CµiCνj) Vµν = 0 for all i,j

∑
µν

  Cµi εjSµν -  h µν -  Vµν  Cνj = 0 for all i,j

Therefore,



∑
ν

  hµν +  V µν -  εjSµν -   Cνj = 0

This is FC = SCE.

2. The Slater Condon rule for zero (spin orbital) difference with N electrons in N spin
orbitals is:

E = < >|H + G|   = ∑
i

N
 < >φi|h|φi   + ∑

i>j

N
  < >φiφj|g|φiφj  -  < >φiφj|g|φjφi  

        = ∑
i

hii  + ∑
i>j

 ( )gijij -  g ijji  

        = ∑
i

hii  + 
1
2∑

ij
 ( )gijij -  g ijji  

If all orbitals are doubly occupied and we carry out the spin integration we obtain:

E = 2 ∑
i

occ
hii  + ∑

ij

occ
 ( )2gijij -  g ijji  ,

where i and j now refer to orbitals (not spin-orbitals).

3. If the occupied orbitals obey Fφk = εkφk ,  then the expression for E in problem 2 above
can be rewritten as.

E = ∑
i

occ

  








hii +  ∑
j

occ
 ( )2gijij -  g ijji   + ∑

i

occ
hii 

We recognize the closed shell Fock operator expression and rewrite this as:

E = ∑
i

occ
Fii  + ∑

i

occ
hii  = ∑

i

occ
( )εi +  h ii  

    Problems:

1. We will use the QMIC software to do this problem.  Lets just start from the beginning.
Get the starting "guess" mo coefficients on disk.  Using the program MOCOEFS it asks us
for the first and second mo vectors.  We input 1, 0 for the first mo (this means that the first
mo is 1.0 times the He 1s orbital plus 0.0 times the H 1s orbital; this bonding mo is more
likely to be heavily weighted on the atom having the higher nuclear charge) and 0, 1 for the

second.  Our beginning mo-ao array looks like:  






1.0 0.0

0.0 1.0
  and is placed on disk in a file we

choose to call "mocoefs.dat".  We also put the ao integrals on disk using the program
RW_INTS.  It asks for the unique one- and two- electron integrals and places a canonical
list of these on disk in a file we choose to call "ao_integrals.dat".  At this point it is useful
for us to step back and look at the set of equations which we wish to solve: FC = SCE.
The QMIC software does not provide us with a so-called generalized eigenvalue solver
(one that contains an overlap matrix; or metric), so in order to use the diagonalization
program that is provided we must transform this equation (FC = SCE) to one that looks
like (F'C' = C'E).  We do that in the following manner:



Since S is symmetric and positive definite we can find an S
-1
2  such that S

-1
2 S

+1
2  = 1, S

-1
2 S

= S
+1

2 , etc.
rewrite FC = SCE by inserting unity between FC and multiplying the whole equation on

the left by S
-1
2 .  This gives:

S
-1
2 FS

-1
2 S

+1
2 C = S

-1
2 SCE = S

+1
2 CE.

Letting: F' = S
-1
2 FS

-1
2 

C' = S
+1

2 C, and inserting these expressions above give:
F'C' = C'E

Note, that to get the next iterations mo coefficients we must calculate C from C':

C' = S
+1

2 C, so, multiplying through on the left by S
-1
2  gives:

S
-1
2 C' = S

-1
2 S

+1
2 C = C

This will be the method we will use to solve our fock equations.

Find S
-1
2  by using the program FUNCT_MAT (this program generates a function of a

matrix).  This program will ask for the elements of the S array and write to disk a file

(name of your choice ... a good name might be "shalf") containing the S
-1
2  array.  Now we

are ready to begin the iterative Fock procedure.
a. Calculate the Fock matrix, F, using program FOCK which reads in the mo

coefficients from "mocoefs.dat" and the integrals from "ao_integrals.dat" and writes the
resulting Fock matrix to a user specified file (a good filename to use might be something
like "fock1").

b. Calculate F' = S
-1
2 FS

-1
2  using the program UTMATU which reads in F and S

-1
2  

from files on the disk and writes F' to a user specified file (a good filename to use might be
something like "fock1p").  Diagonalize F' using the program DIAG.  This program reads
in the matrix to be diagonalized from a user specified filename and writes the resulting
eigenvectors to disk using a user specified filename (a good filename to use might be
something like "coef1p").  You may wish to choose the option to write the eigenvalues
(Fock orbital energies) to disk in order to use them at a later time in program FENERGY.

Calculate C by back transforming e.g. C = S
-1
2 C'.  This is accomplished by using the

program MATXMAT which reads in two matrices to be multiplied from user specified files
and writes the product to disk using a user specified filename (a good filename to use might
be something like "mocoefs.dat").

c. The QMIC program FENERGY calculates the total energy, using the result of
exercises 2 and 3;

∑
kl

  2<k|h|k> + 2<kl|kl> - <kl|lk> + ∑
µ>ν

 
ZµZν
Rµν

 , and



∑
k

  εk + <k|h|k> + ∑
µ>ν

 
ZµZν
Rµν

 .

This is the conclusion of one iteration of the Fock procedure ... you may continue by going
back to part a. and proceeding onward.

d. and e. Results for the successful convergence of this system using the supplied
QMIC software is as follows (this is alot of bloody detail but will give the user assurance
that they are on the right track; alternatively one could switch to the QMIC program SCF
and allow that program to iteratively converge the Fock equations):

The one-electron AO integrals: 






-2.644200 -1.511300

-1.511300 -1.720100
 

The two-electron AO integrals:

   1  1  1  1    1.054700
   2  1  1  1    0.4744000
   2  1  2  1    0.5664000
   2  2  1  1    0.2469000
   2  2  2  1    0.3504000
   2  2  2  2    0.6250000

The "initial" MO-AO coefficients: 






1.000000 0.000000

0.000000 1.000000
 

AO overlap matrix (S):






1.000000 0.578400

0.578400 1.000000
 

S 
-
1
2  







1.168032 -0.3720709

-0.3720709 1.168031
 

**************
ITERATION 1
**************

The charge bond order matrix: 






1.000000 0.0000000

0.0000000 0.0000000
 

The Fock matrix (F): 






-1.589500 -1.036900 

-1.036900 -0.8342001
 

S 
-
1
2  F S 

-
1
2  







-1.382781 -0.5048679

-0.5048678 -0.4568883
 

The eigenvalues of this matrix (Fock orbital energies) are:



[ ]-1.604825 -0.2348450  

Their corresponding eigenvectors (C' = S 
+

1
2  * C) are:







-0.9153809 -0.4025888

-0.4025888  0.9153810
 

The "new" MO-AO coefficients (C = S 
-
1
2  * C'):







-0.9194022 -0.8108231

-0.1296498  1.218985
 

The one-electron MO integrals:







-2.624352 -0.1644336

-0.1644336 -1.306845 
 

The two-electron MO integrals:

   1  1  1  1    0.9779331
   2  1  1  1    0.1924623
   2  1  2  1    0.5972075
   2  2  1  1    0.1170838
   2  2  2  1   -0.0007945194
   2  2  2  2    0.6157323

The closed shell Fock energy from formula:

∑
kl

  2<k|h|k> + 2<kl|kl> - <kl|lk> + ∑
µ>ν

 
ZµZν
Rµν

   = -2.84219933

from formula:

∑
k

  εk + <k|h|k> + ∑
µ>ν

 
ZµZν
Rµν

   = -2.80060530

the difference is: -0.04159403

**************
ITERATION 2
**************

The charge bond order matrix: 






0.8453005  0.1192003

0.1192003 0.01680906
 



The Fock matrix: 






-1.624673 -1.083623 

-1.083623 -0.8772071
 

S 
-
1
2  F S 

-
1
2  







-1.396111 -0.5411037

-0.5411037 -0.4798213
 

The eigenvalues of this matrix (Fock orbital energies) are:

[ ]-1.646972 -0.2289599  

Their corresponding eigenvectors (C' = S 
+

1
2  * C) are:







-0.9072427 -0.4206074

-0.4206074  0.9072427
 

The "new" MO-AO coefficients (C = S 
-
1
2  * C'):







-0.9031923 -0.8288413

-0.1537240  1.216184 
 

The one-electron MO integrals:







-2.617336 -0.1903475

-0.1903475 -1.313861 
 

The two-electron MO integrals:

   1  1  1  1    0.9626070
   2  1  1  1    0.1949828
   2  1  2  1    0.6048143
   2  2  1  1    0.1246907
   2  2  2  1    0.003694540
   2  2  2  2    0.6158437

The closed shell Fock energy from formula:

∑
kl

  2<k|h|k> + 2<kl|kl> - <kl|lk> + ∑
µ>ν

 
ZµZν
Rµν

   = -2.84349298

from formula:

∑
k

  εk + <k|h|k> + ∑
µ>ν

 
ZµZν
Rµν

   = -2.83573675



the difference is: -0.00775623

**************
ITERATION 3
**************

The charge bond order matrix: 






0.8157563 0.1388423 

0.1388423 0.02363107
 

The Fock matrix: 






-1.631153 -1.091825 

-1.091825 -0.8853514
 

S 
-
1
2  F S 

-
1
2  







-1.398951 -0.5470731

-0.5470730 -0.4847007
 

The eigenvalues of this matrix (Fock orbital energies) are:

[ ]-1.654745 -0.2289078  

Their corresponding eigenvectors (C' = S 
+

1
2  * C) are:







-0.9058709 -0.4235546

-0.4235545  0.9058706
 

The "new" MO-AO coefficients (C = S 
-
1
2  * C'):







-0.9004935 -0.8317733

-0.1576767  1.215678 
 

The one-electron MO integrals:







-2.616086 -0.1945811

-0.1945811 -1.315112 
 

The two-electron MO integrals:

   1  1  1  1    0.9600707
   2  1  1  1    0.1953255
   2  1  2  1    0.6060572
   2  2  1  1    0.1259332
   2  2  2  1    0.004475587
   2  2  2  2    0.6158972

The closed shell Fock energy from formula:



∑
kl

  2<k|h|k> + 2<kl|kl> - <kl|lk> + ∑
µ>ν

 
ZµZν
Rµν

   = -2.84353018

from formula:

∑
k

  εk + <k|h|k> + ∑
µ>ν

 
ZµZν
Rµν

   = -2.84225941

the difference is: -0.00127077

**************
ITERATION 4
**************

The charge bond order matrix: 






0.8108885 0.1419869 

0.1419869 0.02486194
 

The Fock matrix: 






-1.632213 -1.093155 

-1.093155 -0.8866909
 

S 
-
1
2  F S 

-
1
2  







-1.399426 -0.5480287

-0.5480287 -0.4855191
 

The eigenvalues of this matrix (Fock orbital energies) are:

[ ]-1.656015 -0.2289308  

Their corresponding eigenvectors (C' = S 
+

1
2  * C) are:







-0.9056494 -0.4240271

-0.4240271  0.9056495
 

The "new" MO-AO coefficients (C = S 
-
1
2  * C'):







-0.9000589 -0.8322428

-0.1583111  1.215595 
 

The one-electron MO integrals:







-2.615881 -0.1952594

-0.1952594 -1.315315 
 



The two-electron MO integrals:

   1  1  1  1    0.9596615
   2  1  1  1    0.1953781
   2  1  2  1    0.6062557
   2  2  1  1    0.1261321
   2  2  2  1    0.004601604
   2  2  2  2    0.6159065

The closed shell Fock energy from formula:

∑
kl

  2<k|h|k> + 2<kl|kl> - <kl|lk> + ∑
µ>ν

 
ZµZν
Rµν

   = -2.84352922

from formula:

∑
k

  εk + <k|h|k> + ∑
µ>ν

 
ZµZν
Rµν

   = -2.84332418

the difference is: -0.00020504

**************
ITERATION 5
**************

The charge bond order matrix: 






0.8101060 0.1424893 

0.1424893 0.02506241
 

The Fock matrix: 






-1.632385 -1.093368 

-1.093368 -0.8869066
 

S 
-
1
2  F S 

-
1
2  







-1.399504 -0.5481812

-0.5481813 -0.4856516
 

The eigenvalues of this matrix (Fock orbital energies) are:

[ ]-1.656219 -0.2289360  

Their corresponding eigenvectors (C' = S 
+

1
2  * C) are:







-0.9056138 -0.4241026

-0.4241028  0.9056141
 

The "new" MO-AO coefficients (C = S 
-
1
2  * C'):









-0.8999892 -0.8323179

-0.1584127  1.215582 
 

The one-electron MO integrals:







-2.615847 -0.1953674

-0.1953674 -1.315348 
 

The two-electron MO integrals:

   1  1  1  1    0.9595956
   2  1  1  1    0.1953862
   2  1  2  1    0.6062872
   2  2  1  1    0.1261639
   2  2  2  1    0.004621811
   2  2  2  2    0.6159078

The closed shell Fock energy from formula:

∑
kl

  2<k|h|k> + 2<kl|kl> - <kl|lk> + ∑
µ>ν

 
ZµZν
Rµν

   = -2.84352779

from formula:

∑
k

  εk + <k|h|k> + ∑
µ>ν

 
ZµZν
Rµν

   = -2.84349489

the difference is: -0.00003290

**************
ITERATION 6
**************

The charge bond order matrix: 






0.8099805 0.1425698 

0.1425698 0.02509460
 

The Fock matrix: 






-1.632412 -1.093402 

-1.093402 -0.8869413
 

S 
-
1
2  F S 

-
1
2  







-1.399517 -0.5482056

-0.5482056 -0.4856730
 

The eigenvalues of this matrix (Fock orbital energies) are:

[ ]-1.656253 -0.2289375  



Their corresponding eigenvectors (C' = S 
+

1
2  * C) are:







-0.9056085 -0.4241144

-0.4241144  0.9056086
 

The "new" MO-AO coefficients (C = S 
-
1
2  * C'):







-0.8999786 -0.8323296

-0.1584283  1.215580 
 

The one-electron MO integrals:







-2.615843 -0.1953846

-0.1953846 -1.315353 
 

The two-electron MO integrals:

   1  1  1  1    0.9595859
   2  1  1  1    0.1953878
   2  1  2  1    0.6062925
   2  2  1  1    0.1261690
   2  2  2  1    0.004625196
   2  2  2  2    0.6159083

The closed shell Fock energy from formula:

∑
kl

  2<k|h|k> + 2<kl|kl> - <kl|lk> + ∑
µ>ν

 
ZµZν
Rµν

   = -2.84352827

from formula:

∑
k

  εk + <k|h|k> + ∑
µ>ν

 
ZµZν
Rµν

   = -2.84352398

the difference is: -0.00000429

**************
ITERATION 7
**************

The charge bond order matrix: 






0.8099616 0.1425821 

0.1425821 0.02509952
 



The Fock matrix: 






-1.632416 -1.093407 

-1.093407 -0.8869464
 

S 
-
1
2  F S 

-
1
2  







-1.399519 -0.5482093

-0.5482092 -0.4856761
 

The eigenvalues of this matrix (Fock orbital energies) are:

[ ]-1.656257 -0.2289374  

Their corresponding eigenvectors (C' = S 
+

1
2  * C) are:







-0.9056076 -0.4241164

-0.4241164  0.9056077
 

The "new" MO-AO coefficients (C = S 
-
1
2  * C'):







-0.8999770 -0.8323317

-0.1584310  1.215580 
 

The one-electron MO integrals:







-2.615843 -0.1953876

-0.1953876 -1.315354 
 

The two-electron MO integrals:

   1  1  1  1    0.9595849
   2  1  1  1    0.1953881
   2  1  2  1    0.6062936
   2  2  1  1    0.1261697
   2  2  2  1    0.004625696
   2  2  2  2    0.6159083

The closed shell Fock energy from formula:

∑
kl

  2<k|h|k> + 2<kl|kl> - <kl|lk> + ∑
µ>ν

 
ZµZν
Rµν

   = -2.84352922

from formula:

∑
k

  εk + <k|h|k> + ∑
µ>ν

 
ZµZν
Rµν

   = -2.84352827



the difference is: -0.00000095

**************
ITERATION 8
**************

The charge bond order matrix: 






0.8099585 0.1425842 

0.1425842 0.02510037
 

The Fock matrix: 






-1.632416 -1.093408 

-1.093408 -0.8869470
 

S 
-
1
2  F S 

-
1
2  







-1.399518 -0.5482103

-0.5482102 -0.4856761
 

The eigenvalues of this matrix (Fock orbital energies) are:

[ ]-1.656258 -0.2289368  

Their corresponding eigenvectors (C' = S 
+

1
2  * C) are:







-0.9056074 -0.4241168

-0.4241168  0.9056075
 

The "new" MO-AO coefficients (C = S 
-
1
2  * C'):







-0.8999765 -0.8323320

-0.1584315  1.215579 
 

The one-electron MO integrals:







-2.615842 -0.1953882

-0.1953882 -1.315354 
 

The two-electron MO integrals:

   1  1  1  1    0.9595841
   2  1  1  1    0.1953881
   2  1  2  1    0.6062934
   2  2  1  1    0.1261700
   2  2  2  1    0.004625901
   2  2  2  2    0.6159081

The closed shell Fock energy from formula:



∑
kl

  2<k|h|k> + 2<kl|kl> - <kl|lk> + ∑
µ>ν

 
ZµZν
Rµν

   = -2.84352827

from formula:

∑
k

  εk + <k|h|k> + ∑
µ>ν

 
ZµZν
Rµν

   = -2.84352827

the difference is: 0.00000000
f. In looking at the energy convergence we see the following:

Iter Formula 1 Formula 2
1 -2.84219933 -2.80060530
2 -2.84349298 -2.83573675
3 -2.84353018 -2.84225941
4 -2.84352922 -2.84332418
5 -2.84352779 -2.84349489
6 -2.84352827 -2.84352398
7 -2.84352922 -2.84352827
8 -2.84352827 -2.84352827

f. If you look at the energy differences (SCF at iteration n - SCF converged) and
plot this data versus iteration number, and do a 5th order polynomial fit, we see the
following:

0 2 4 6 8 10

0.00

0.01

0.02

0.03

0.04

0.05

Iteration

S
C

F(
it

er
) 

- 
S
C

F(
co

n
v)

y = 0.144 - 0.153x + 0.063x^2 - 0.013x^3 + 0.001x^4   R = 1.00

In looking at the polynomial fit we see that the convergence is primarily linear since the
coefficient of the linear term is much larger than those of the cubic and higher terms.

g. The converged SCF total energy calculated using the result of exercise 3 is an
upper bound to the ground state energy, but, during the iterative procedure it is not.  At



convergence, the expectation value of the Hamiltonian for the Hartree Fock determinant is
given by the equation in exercise 3.

h. The one- and two- electron integrals in the MO basis are given above (see part e
iteration 8).  The orbital energies are found using the result of exercise 2 and 3 to be:

E(SCF) = ∑
k

  εk + <k|h|k> + ∑
µ>ν

 
ZµZν
Rµν

 

E(SCF) = ∑
kl

  2<k|h|k> + 2<kl|kl> - <kl|lk> + ∑
µ>ν

 
ZµZν
Rµν

 

so, εk = <k|h|k> + ∑
l

occ
(2<kl|kl> - <kl|lk>) 

ε1 = h11 + 2<11|11> - <11|11>
    = -2.615842 + 0.9595841
    = -1.656258
ε2 = h22 + 2<21|21> - <21|12>
    = -1.315354 + 2*0.6062934 - 0.1261700
    = -0.2289372
i. Yes, the 1σ2 configuration does dissociate properly because at at R→∞the lowest

energy state is He + H+, which also has a 1σ2 orbital occupancy (i.e., 1s2 on He and 1s0

on H+).
2. At convergence the mo coefficients are:

φ1 = 






-0.8999765

-0.1584315
 φ2 = 







-0.8323320

 1.215579 
 

and the integrals in this MO basis are:
h11 = -2.615842 h21 = -0.1953882 h22 = -1.315354
g1111 = 0.9595841 g2111 = 0.1953881 g2121 = 0.6062934
g2211 = 0.1261700 g2221 = 004625901 g2222 = 0.6159081

a. H = 








<1σ2|H|1σ2> <1σ2|H|2σ2>

<2σ2|H|1σ2> <2σ2|H|2σ2>
  = 







2h11 +  g 1111 g1122

g1122 2h22 +  g 2222
 

 = 






2*-2.615842 + 0.9595841 0.1261700

0.1261700 2*-1.315354 + 0.6159081
 

 = 






-4.272100 0.126170

0.126170 -2.014800
 

b. The eigenvalues are E1 = -4.279131 and E2 = -2.007770.  The corresponding
eigenvectors are:

C1 = 






-.99845123

0.05563439
 , C2 = 







0.05563438

0.99845140
 

c.
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
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a
1
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1
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


a
1
2φ1 -  b

1
2φ2 





a
1
2φ1 +  b

1
2φ2  (αβ - βα) 

 = 
1

2
( )aφ1φ1 -  b φ2φ2  (αβ - βα) 

 = a| |φ1αφ1β   - b| |φ2αφ2β  .
(note from part b. a = 0.9984 and b = 0.0556)

d. The third configuration |1σ2σ| = 
1

2
[ ]|1α2β|  - |1β2α|  ,

Adding this configuration to the previous 2x2 CI results in the following 3x3 'full' CI:

H = 









<1σ2|H|1σ2> <1σ2|H|2σ2> <1σ2|H|1σ2σ>

<2σ2|H|1σ2> <2σ2|H|2σ2> <2σ2|H|1σ2σ>

<1σ2σ|H|1σ2> <2σ2|H|1σ2σ> <1σ2σ|H|1σ2σ>

 

 = 









2h11 +  g 1111 g1122
1

2
[ ]2h12 +  2g2111

g1122 2h22 +  g 2222
1

2
[ ]2h12 +  2g2221

1

2
[ ]2h12 +  2g2111

1

2
[ ]2h12 +  2g2221 h11 +  h 22 +  g 2121 +  g 2211

 

Evaluating the new matrix elements:

H13 = H31 = 2 *(-0.1953882 + 0.1953881) = 0.0

H23 = H32 = 2 *(-0.1953882 + 0.004626) = -0.269778
H33 = -2.615842 - 1.315354 + 0.606293 + 0.126170
      = -3.198733

 = 







-4.272100 0.126170 0.0

0.126170 -2.014800 -0.269778

0.0 -0.269778 -3.198733

 

e. The eigenvalues are E1 = -4.279345, E2 = -3.256612 and E3 = -1.949678.  The
corresponding eigenvectors are:

C1 = 







-0.99825280

0.05732290

0.01431085

 , C2 = 







-0.02605343

-0.20969283

-0.97742000

 , C3 = 







-0.05302767

-0.97608540

0.21082004

 

f. We need the non-vanishing matrix elements of the dipole operator in the mo
basis.  These can be obtained by calculating them by hand.  They are more easily obtained
by using the TRANS program.  Put the 1e- ao integrals on disk by running the program
RW_INTS.  In this case you are inserting z11 = 0.0, z21 = 0.2854, and z22 = 1.4 (insert

0.0 for all the 2e- integrals) ... call the output file "ao_dipole.ints" for example.  The
converged MO-AO coefficients should be in a file ("mocoefs.dat" is fine).  The



transformed integrals can be written to a file (name of your choice) for example
"mo_dipole.ints".  These matrix elements are:

z11 = 0.11652690, z21 = -0.54420990, z22 = 1.49117320
The excitation energies are E2 - E1 = -3.256612 - -4.279345 = 1.022733, and E3 - E1 = -
1.949678.- -4.279345 = 2.329667.
Using the Slater-Conden rules to obtain the matrix elements between configurations we get:

Hz = 









<1σ2|z|1σ2> <1σ2|z|2σ2> <1σ2|z|1σ2σ>

<2σ2|z|1σ2> <2σ2|z|2σ2> <2σ2|z|1σ2σ>

<1σ2σ|z|1σ2> <2σ2|z|1σ2σ> <1σ2σ|z|1σ2σ>

 

    = 









2z11 0 1

2
[ ]2z12

0 2z22
1

2
[ ]2z12

1

2
[ ]2z12

1

2
[ ]2z12 z11 +  z 22

 

    = 







0.233054 0 -0.769629

0 2.982346 -0.769629

-0.769629 -0.769629 1.607700

 

Now, <Ψ1|z|Ψ2> = C1THzC2, (this can be accomplished with the program UTMATU)

 = 







-0.99825280

0.05732290

0.01431085

 

T

 







0.233054 0 -0.769629

0 2.982346 -0.769629

-0.769629 -0.769629 1.607700

 







-0.02605343

-0.20969283

-0.97742000

 

 = -.757494
and, <Ψ1|z|Ψ3> = C1THzC3

 = 







-0.99825280

0.05732290

0.01431085

 

T

 







0.233054 0 -0.769629

0 2.982346 -0.769629

-0.769629 -0.769629 1.607700

 







-0.05302767

-0.97608540

0.21082004

 

 = 0.014322
g. Using the converged coefficients the orbital energies obtained from solving the

Fock equations are ε1 = -1.656258 and ε2 = -0.228938.  The resulting expression for the
RSPT first-order wavefunction becomes:

|1σ2>(1) = - 
g2211

2(ε2 -  ε1)
  |2σ2>

|1σ2>(1) = - 
0.126170

2(-0.228938 + 1.656258)  |2σ2>
|1σ2>(1) = -0.0441982|2σ2>



h. As you can see from part c., the matrix element <1σ2|H|1σ2σ> = 0 (this is also a
result of the Brillouin theorem) and hence this configuration does not enter into the first-
order wavefunction.

i. |0> = |1σ2> - 0.0441982|2σ2>.  To normalize we divide by:

[ ]1 + (0.0441982)2   = 1.0009762

|0> = 0.999025|1σ2> - 0.044155|2σ2>
In the 2x2 CI we obtained:

|0> = 0.99845123|1σ2> - 0.05563439|2σ2>
j. The expression for the 2nd order RSPT is:

E(2) = - 
|g2211|2

2(ε2 -  ε1)
  = - 

0.1261702

2(-0.228938 + 1.656258) 

= -0.005576 au
Comparing the 2x2 CI energy obtained to the SCF result we have:
-4.279131 - (-4.272102) = -0.007029 au

3. STO total energy: -2.8435283
STO3G total energy -2.8340561
3-21G total energy -2.8864405

The STO3G orbitals were generated as a best fit of 3 primitive gaussians (giving 1 CGTO)
to the STO.  So, STO3G can at best reproduce the STO result.  The 3-21G orbitals are
more flexible since there are 2 CGTOs per atom.  This gives 4 orbitals (more parameters to
optimize) and a lower total energy.
4.

R HeH+ Energy H2 Energy

1.0 -2.812787056 -1.071953297
1.2 -2.870357513 -1.113775015
1.4 -2.886440516 -1.122933507
1.6 -2.886063576 -1.115567684
1.8 -2.880080938 -1.099872589
2.0 -2.872805595 -1.080269098
2.5 -2.856760263 -1.026927710
10.0 -2.835679293 -0.7361705303

Plotting total energy vs. geometry for HeH+:
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Plotting total energy vs. geometry for H2:
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For HeH+ at R = 10.0 au, the eigenvalues of the converged Fock matrix and the
corresponding converged MO-AO coefficients are:

-.1003571E+01 -.4961988E+00  .5864846E+00  .1981702E+01
 .4579189E+00 -.8245406E-05  .1532163E-04  .1157140E+01
 .6572777E+00 -.4580946E-05 -.6822942E-05 -.1056716E+01
-.1415438E-05  .3734069E+00  .1255539E+01 -.1669342E-04
 .1112778E-04  .7173244E+00 -.1096019E+01  .2031348E-04



Notice that this indicates that orbital 1 is a combination of the s functions on He only
(dissociating properly to He + H+).

For H2 at R = 10.0 au, the eigenvalues of the converged Fock matrix and the
corresponding converged MO-AO coefficients are:

-.2458041E+00 -.1456223E+00  .1137235E+01  .1137825E+01
 .1977649E+00 -.1978204E+00  .1006458E+01 -.7903225E+00
 .5632566E+00 -.5628273E+00 -.8179120E+00  .6424941E+00
 .1976312E+00  .1979216E+00  .7902887E+00  .1006491E+01
 .5629326E+00  .5631776E+00 -.6421731E+00 -.8181460E+00

Notice that this indicates that orbital 1 is a combination of the s functions on both H atoms
(dissociating improperly; equal probabilities of H2 dissociating to two neutral atoms or to a
proton plus hydride ion).

5. The H2 CI result:

R 1Σg+ 3Σu+ 1Σu+ 1Σg+

  1.0 -1.074970 -0.5323429 -0.3997412  0.3841676
  1.2 -1.118442 -0.6450778 -0.4898805  0.1763018
  1.4 -1.129904 -0.7221781 -0.5440346  0.0151913
  1.6 -1.125582 -0.7787328 -0.5784428 -0.1140074
  1.8 -1.113702 -0.8221166 -0.6013855 -0.2190144
  2.0 -1.098676 -0.8562555 -0.6172761 -0.3044956
  2.5 -1.060052 -0.9141968 -0.6384557 -0.4530645
  5.0 -0.9835886 -0.9790545 -0.5879662 -0.5802447
  7.5 -0.9806238 -0.9805795 -0.5247415 -0.5246646
10.0 -0.980598 -0.9805982 -0.4914058 -0.4913532
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For H2 at R = 1.4 au, the eigenvalues of the Hamiltonian matrix and the corresponding
determinant amplitudes are:

determinant -1.129904 -0.722178 -0.544035 0.015191

|1σgα1σgβ|  0.99695  0.00000  0.00000  0.07802



|1σgβ1σuα|  0.00000  0.70711  0.70711  0.00000



|1σgα1σuβ|  0.00000  0.70711 -0.70711  0.00000

|1σuα1σuβ| -0.07802  0.00000  0.00000  0.99695

This shows, as expected, the mixing of the first 1Σg+ (1σg2) and the 2nd 1Σg+ (1σu2)
determinants, the

3Σu+ = ( 1

2
( )|1σgβ1σuα|  + |1σgα1σuβ|  ),

and the 1Σu+=  ( 1

2
( )|1σgβ1σuα|  - |1σgα1σuβ|  ).

Also notice that the first 1Σg+ state is the bonding (0.99695 - 0.07802) combination (note

specifically the + - combination) and the second 1Σg+ state is the antibonding combination
(note specifically the + + combination).  The + + combination always gives a higher energy
than the + - combination.  Also notice that the 1st and 2nd states (1Σg+ and 3Σu+) are

dissociating to two neutral atoms and the 3rd and 4th states (1Σg+ and 3Σu+) are
dissociating to proton/anion combinations.  The difference in these energies is the
ionization potential of H minus the electron affinity of H.


