
Preface

One of the most significant developments in physics in recent years con-
cerns mesoscopic systems, a subfield of condensed matter physics which has
achieved proper identity. The main objective of mesoscopic physics is to un-
derstand the physical properties of systems that are not as small as single
atoms, but small enough that properties can differ significantly from those of
a large piece of material. This field is not only of fundamental interest in its
own right, but it also offers the possibility of implementing new generations
of high-performance nano-scale electronic and mechanical devices. In fact,
interest in this field has been initiated at the request of modern electronics
which demands the development of more and more reduced structures. Un-
derstanding the unusual properties these structures possess requires collabo-
ration between disparate disciplines. The future development of this promis-
ing field depends on finding solutions to a series of fundamental problems
where, due to the inherent complexity of the devices, statistical mechanics
may play a very significant role. In fact, many of the techniques utilized in
the analysis and characterization of these systems have been borrowed from
that discipline.
Motivated by these features, we have compiled this new edition of the Sit-

ges Conference. We have given a general overview of the field including top-
ics such as quantum chaos, random systems and localization, quantum dots,
noise and fluctuations, mesoscopic optics, quantum computation, quantum
transport in nanostructures, time-dependent phenomena, and driven tunnel-
ing, among others.
The Conference was the first of a series of two Euroconferences focusing

on the topic Nonlinear Phenomena in Classical and Quantum Systems. It
was sponsored by CEE (Euroconference) and by institutions who generously
provided financial support: DGCYT of the Spanish Government, CIRIT of
the Generalitat of Catalunya, the European Physical Society, Universitat de
Barcelona and Universidad Carlos III de Madrid. It was distinguished by the
European Physical Society as a Europhysics Conference. The city of Sitges
allowed us, as usual, to use the Palau Maricel as the lecture hall.



VI Preface

Finally, we are also very grateful to all those who collaborated in the
organization of the event, Profs. F. Guinea and F. Sols, Drs. A. Pérez-Madrid
and O. Bulashenko, as well as M. González, T. Alarcón and I. Santamaŕıa-
Holek.

Barcelona, February 2000 The Editors
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Thermopower in Quantum Dots

K.A. Matveev

Department of Physics, Duke University, Durham, NC 27708-0305, USA

Abstract. At relatively high temperatures the electron transport in single elec-
tron transistors in the Coulomb blockade regime is dominated by the processes
of sequential tunneling. However, as the temperature is lowered the cotunneling
of electrons becomes the most important mechanism of transport. This does not
affect significantly the general behavior of the conductance as a function of the
gate voltage, which always shows a periodic sequence of sharp peaks. However, the
shape of the Coulomb blockade oscillations of the thermopower changes qualitati-
vely. Although the thermopower at any fixed gate voltage vanishes in the limit of
zero temperature, the amplitude of the oscillations remains of the order of 1/e.

1 Introduction

1.1 Coulomb Blockade

The phenomenon of Coulomb blockade is usually observed in devices where
the electrons tunnel in and out of a small conducting grain. A simplest ex-
ample of such a system is shown in Fig. 1. The small grain here is connected
to a large metal electrode—the lead—by a layer of insulator, which is so thin
that the electrons can tunnel through it.

When this happens, the grain acquires the charge of the electron −e. As
a result, the grain is now surrounded by an electric field, and there is clearly
some energy accumulated in this field. The energy can be found from classical
electrostatics as EC = e2/2C, where C is the appropriate capacitance of the
grain. Since the capacitance of small objects is small, the charging energy
can be quite significant. In a typical experiment EC/kB is on the order of
1 Kelvin. A typical temperature in this kind of experiment is T ∼ .1 K,
i.e., T � EC . Since it is impossible for an electron to tunnel into the grain
without charging it, the electron must have the energy E ≥ EC before it
tunnels. At low temperatures T � EC the number of such electrons in the
lead is negligible, and no tunneling is possible. This phenomenon is called the
Coulomb blockade of tunneling.

How can one observe the absence of tunneling? To do this, one needs
to add another metal electrode to the system—the gate, see Fig. 1. It is far
enough from the grain, so that no tunneling between these two pieces of metal
is possible. However by applying the voltage Vg to the gate one can change
the charging energy and control the Coulomb blockade. Indeed, if we apply
positive voltage to the gate, the positive charge in it will attract electron to
the grain and decrease the charging gap. Mathematically, this is expressed

D. Reguera et al. (Eds.): Proceedings 1999, LNP 547, pp. 3−15, 1999.
 Springer-Verlag Berlin Heidelberg 1999
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Fig. 1. A small metallic grain is coupled to the lead electrode via a tunnel junction.
The electrostatic energy of the system is tuned by applying voltage Vg to the gate
electrode. Cl and Cg are the capacitances between the grain and the lead and gate
electrodes.

as the following dependence of the electrostatic energy on the number n of
extra electrons in the grain and the gate voltage:

E(n, Vg) = EC

(
n− CgVg

e

)2

. (1)

To discuss the effect of the gate voltage on electron tunneling in this system,
it is helpful to plot the energy (1) as a function of Vg for various values of n,
see Fig. 2(a).

Clearly the energy (1) depends on Vg quadratically, so for each value of n
we get a parabola centered at CgVg/e = n. If the number of electrons in the
grain can change due to the possibility of tunneling through the insulating
layer, the ground state of the system is given by the parabola with n being
the integer nearest to CgVg/e. Thus the number of the extra electrons in
the grain behaves according to Fig. 2(b). The steps of the grain charge as a
function of the gate voltage were observed by Lafarge et al. (1993).

Although the measurements of the charge of a small grain are possible, it
is far easier to measure transport properties of the systems with small metallic
conductors. The most common device studied experimentally is single elec-
tron transistor shown in Fig. 3. Unlike the device in Fig. 1, there are two leads
coupled to the grain by tunneling junctions. By applying bias voltage between
the two leads one can study the transport of electrons through the grain. In-
stead of making the device based on true metallic grains and leads one can
achieve the same basic setup by confining two-dimensional electrons in se-
miconductor heterostructures by additional gates, see, e.g., (Kastner 1993).
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Fig. 2. (a) Electrostatic energy (1) of the system in Fig. 1 as a function of the
charging energy for various values of the number of extra electrons n in the dot;
(b) the number of electrons in the dot as a function of the gate voltage found by
minimization of the electrostatic energy; (c) the conductance of a single electron
transistor shows peaks at the points where the charge has steps.

In this case the role of the grain is played by a small isolated “puddle” of
electrons—a quantum dot. Although there are significant differences between
these experimental techniques, they will not be important for the following
discussion.

An interesting behavior is observed when a small bias voltage is applied,
eV � T , and the conductance G of the single electron transistor is measured
as a function of the gate voltage. The experiment shows periodic peaks in
the conductance as a function of Vg, see, e.g., (Kastner 1993).

The origin of the peaks is quite clear from Fig. 2(a). At the points where
CgVg/e = m + 1/2, the electrostatic energy of the states with m and m + 1
extra electrons in the grain are equal. At these values of the gate voltage an
electron can tunnel between the grain and the leads without changing the
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Left lead Right lead

Gate

Vg

Grain
(dot)

V

Fig. 3. Single electron transistor. The central electrode can be either a metal grain
or a semiconductor quantum dot. The bias voltage V is applied between the two
leads.

electrostatic energy of the system. As a result the Coulomb blockade is lifted,
and the transport is greatly enhanced. Thus the conductance has periodic
peaks, as shown in Fig. 2(c).

1.2 Mechanisms of Transport

Apart from the positions of the peaks in conductance of a single electron tran-
sistor, it is interesting to discuss their shapes. This requires a more detailed
understanding of the mechanisms of charge transfer through the grain. The
relative importance of different mechanisms is determined primarily by the
temperature. We will concentrate on the regime of temperatures much smal-
ler than EC , where the conductance does show the sharp peaks of Fig. 2(c).
In this case the two most important mechanisms are sequential tunneling and
cotunneling.

Sequential tunneling. This mechanism is the foundation of the so-called
orthodox model of Coulomb blockade (Averin and Likharev 1991). In order
for the current to flow from the left lead to the right one, one electron tunnels
from the left lead to the dot, and another electron tunnels from the dot to
the right lead. The two processes are assumed to be real transitions, so that
the energy of the system is conserved at every step. The resulting peak shape
was found by Glazman and Shekhter (1989):
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Gsq =
GlGr

2(Gl +Gr)
u/T

sinh(u/T )
. (2)

Here Gl and Gr are the conductances of the two tunnel barriers. The energy
u is the Coulomb blockade gap, which is proportional to the distance from a
peak, u = (eCg/C)(V

(n)
g − Vg), with V

(n)
g = e

Cg
(n − 1

2 ) being the center of
the n-th peak, Fig. 2(c). The important features of the sequential tunneling
result (2) are:

– The peak height is

Gsq
0 =

GlGr

2(Gl +Gr)
. (3)

This result can be interpreted as the sum of the resistances of the two
tunneling barriers. The additional factor of 1/2 results from the fact that
near any given peak only two charge states n and n+ 1 are allowed, and
all the tunneling events which would give rise to states with charged n−1
and n+ 2 are forbidden.

– Away from the center of the peak the conductance falls off exponentially,
Gsq ∝ e−u/T . The reason for this behavior is that the electron tunneling
from a lead has to charge the grain, which requires for it to have the
energy u above the Fermi level, see Fig. 4(a). At low temperature T � u,
the probability of finding such an electron in the lead is exponentially
small.

E
F

u

(a) (b)

Fig. 4. Energy states of electrons in a single electron transistor. Quantum dot is
shown as a small region between the barriers separating it from the left and right
leads. Solid and dashed lines represent states below and above the Fermi level,
respectively. Arrows illustrate the elementary tunneling processes leading to (a)
sequential tunneling and (b) inelastic cotunneling.

Inelastic cotunneling. At low temperatures T � EC , the conductance
Gsq in the valleys between peaks is exponentially small. As a result, another
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transport mechanism—the inelastic cotunneling—becomes important. This
mechanism is illustrated in Fig. 4(b). At the first stage, an electron tunnels
from a state near the Fermi level in the left lead to the dot. The energy of
the system increases by an amount close to u, assuming that we are not too
close to the center of the peak, i.e., u � T . Since the energy is not conserved,
the process does not stop here, and the state of the higher energy is only
a virtual state. At the second stage, another electron tunnels from the dot
to the right lead. This brings the energy back to its original value, and the
tunneling process is complete.

In the linear regime, when the bias is small, eV � T , the contribution of
inelastic cotunneling to the conductance was found by Averin and Nazarov
(1990):

Gco =
πh̄

3e2
GlGr

T 2

u2 . (4)

To compare this result with the sequential contribution, we need to estimate
Gco at the center of the peak and in the valleys:

– At the center of a peak u = 0, and (4) formally diverges. This is because
the calculation was performed under the assumption u � T , and the
quasiparticle energies ξ ∼ T were neglected compared to u in the calcu-
lation of the energy of the virtual state. Thus the correct way to fix the
singularity in (4) is by substituting u ∼ T . Thus the peak value of Gco is

Gco
0 ∼ h̄

e2
GlGr. (5)

– In the valleys, at u � T , the conductance is inversely proportional to
the square of the distance from the peak u. This result is easy to un-
derstand, because the amplitude of the second-order process is inversely
proportional to the energy of the virtual state Ev � u, and the tunne-
ling probability is square of the amplitude. The temperature dependence
is T 2, because the original electron of energy ξ ∼ T decays into three
quasiparticles, resulting in a phase space volume W ∝ ξ2 ∼ T 2. This
argument is quite analogous to the one used to evaluate the lifetime of a
quasiparticle in a Fermi liquid, see, e.g, (Abrikosov 1988).

Comparison of the two mechanisms. At the center of the conductance
peaks one needs to compare the results (3) and (5). We are interested in
the case of weak tunneling between the quantum dot and the leads, i.e.,
Gl + Gr � e2/h̄. Then obviously the sequential tunneling mechanism gives
the dominant contribution. On the other hand, the cotunneling conductance
(5) decays much slower than the sequential one, (3), when the gate voltage
is tuned away from the center of the peak. As a result, at u > uc, where

uc ∼ T ln
e2

h̄(Gl +Gr)
, (6)
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the cotunneling mechanism dominates the conduction. Note that this only
happens if uc is less than the distance to the center of the valleys u = EC .
Thus the cotunneling becomes an important mechanism of transport at low
enough temperatures T <∼ EC/ ln[e2/h̄(Gl +Gr)].

It is worth mentioning that this crossover occurs far from the center of
the peak, i.e., uc � T , where the conductance is already very small. Thus
the presence of two transport mechanisms is not immediately obvious from
looking at the data for the conductance as a function of the gate voltage.

2 Thermopower

In a number of recent experiments a different transport property of single
electron transistors, the thermopower, was studied (Staring et al. 1993, Dzu-
rak et al. 1997). We will see below that the thermopower S is very sensitive
to the transport mechanism, and the crossover from sequential tunneling to
cotunneling changes the behavior of S(Vg) qualitatively.

2.1 Definition

To measure the thermopower, one first needs to ensure that the temperatures
of the two leads Tl and Tr, are slightly different, ∆T = |Tl −Tr| � Tl. Then,
one must be able to measure the voltage V generated on the device under
the condition that there is no electric current I through it. The thermopower
is defined as

S ≡ − lim
∆T→0

V

∆T

∣∣∣∣
I=0

. (7)

It is helpful to think about the thermopower from the point of view of
the linear response theory. Most generally the current in a device is a linear
function of the voltage V and temperature difference ∆T , i.e.,

I = GT∆T +GV. (8)

Here G is the usual conductance of the system, and the kinetic coefficient
GT describes the current response to the temperature difference. Since the
definition of S calls for zero current I through he device, we can express the
thermopower (7) as

S =
GT

G
. (9)

Thus, one can find the thermopower S by calculating the kinetic coefficients
GT and G.
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2.2 Physical Meaning of the Thermopower

Before we proceed with the discussion of the thermopower of single electron
transistors, let us try to get a better idea of the physical meaning of this
quantity.

The electric current in a rather arbitrary electronic device can be presen-
ted as

I = −e
∫
[nl(ε) − nr(ε)]w(ε)dε, (10)

where ε is the energy of an electron measured from the Fermi level, nl(ε) and
nr(ε) are the Fermi distribution functions corresponding to the temperatures
and chemical potentials of the left and right leads, respectively. The quantity
w(ε) represents the remaining relevant physical properties of the system, such
as tunneling densities of states in the leads, transmission coefficients of the
tunneling barriers, etc.

Expression (10) is quite generic: it applies not only to simple tunne-
ling junctions, where w has the meaning of transmission coefficient, but also
to many other devices, including single electron transistors. If both the el-
ectrochemical potentials and temperatures in the two leads coincide, i.e.,
µl − µr = −eV = 0 and ∆T = 0, we have nl = nr and the current (10)
vanishes, as expected. One can then apply a small ∆T or V and discuss the
kinetic coefficients GT and G,

GT =
∂I

∂Tl
= −e

∫
ε

T

(
−∂n

∂ε

)
w(ε)dε, (11)

G =
∂I

∂V
= −e

∫
(−e)

(
−∂n

∂ε

)
w(ε)dε. (12)

Note that we have differentiated only the Fermi function nl with respect to the
temperature and chemical potential of the left lead. Although the transmis-
sion probability w may also depend on Tl and µl, in the linear approximation
this should be neglected.

Using the results (11) and (12), we can present the thermopower (9) as

S = −〈ε〉
eT

. (13)

Here 〈ε〉 has the meaning or the average energy of the electrons carrying the
current through the system. It is defined as

〈ε〉 =
∫
ε
(−∂n

∂ε

)
w(ε)dε∫ (−∂n

∂ε

)
w(ε)dε

(14)

We see from (13) that the thermopower S of a single electron transistor
measures the average energy of electrons tunneling between the left and right
leads.

It is worth mentioning that Π = −〈ε〉/e is the Peltier coefficient of the de-
vice, and that the relation S = Π/T equivalent to (13) follows from Onsager
relations, see, e.g. (Abrikosov 1988).
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2.3 Thermopower in the Sequential Tunneling Regime

The first experiments on the thermopower of a single electron transistor (Sta-
ring 1993) were performed at relatively high temperature, and the trans-
port in the device was dominated by the sequential tunneling processes. The
theory of thermopower in this regime was developed by Beenakker and Sta-
ring (1992). At T � EC their results can be easily understood from Fig. 5.

E
F

E
F

S

Vg

E
C

E
C

u

Fig. 5. The thermopower of a single electron transistor as a function of the gate
voltage shows sawtooth behavior. This result was obtained within the framework
of the sequential tunneling theory by Beenakker and Staring (1992). The dashed
peaks correspond to the linear conductance G(Vg).

We will interpret the result in terms of the average energy of tunneling
electrons (13). In the centers of the valleys separating the conductance pe-
aks the system possesses a certain symmetry: the change of the electrostatic
energy when one electron is either added to or removed from the dot is the
same, u = EC . As a result, the two processes shown in the left insert in Fig. 5
contribute equally to the transport, and the average energy of tunneling elec-
trons is zero. However, when the gate voltage is tuned slightly away from the
centers of the valleys, one of the processes gives much greater contribution to
the transport, resulting in 〈ε〉 = ±EC . Thus the thermopower shows sharp
steps in the middles of the valleys of conductance. When the gate voltage
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is tuned away from the centers of the valleys, the change in the charging
energy u varies linearly with the gate voltage. One then expects 〈ε〉 = u, and
S = −u/eT . In fact, the theory (Beenakker and Staring 1992) predicts

Ssq = − u

2eT
. (15)

The additional factor of 1
2 is due to the fact that in the sequential tunneling

mechanism the energy ε of the tunneling electron can be less than u, if there
are holes in the dot at energy ε − u. The density of electrons with energy ε
in the lead is proportional to e−ε/T , and the density of holes at energy ε− u
is e−(u−ε)/T . The product of these two exponentially small factors is simply
e−u/T , meaning that the tunneling probability is the same for all electrons
with energies ε between 0 and u. The average energy of such electrons is then
〈ε〉 = u/2, in agreement with (15).

An important feature of the result (15) is that in the limit of low tempe-
rature, T → 0, the amplitude of the thermopower oscillations Ssq

0 = EC/2eT
diverges. This unusual behavior is specific to the sequential tunneling mecha-
nism. Unlike most other cases, the transport is due to electrons which are far
from the Fermi level, i.e., at energies ε ∼ EC � T . Thus, according to (13)
the thermopower diverges as 1/T at T → 0.

The sawtooth behavior of the thermopower, Fig. 5, was observed experi-
mentally by Staring et al. (1993). The finite temperature of the experiment
gives rise to rounding of the “teeth” of the sawtooth dependence; the re-
lative positions of the peaks of conductance G(Vg) to the sawtooth S(Vg)
correspond to Fig. 5.

2.4 Cotunneling Thermopower

The problem of thermopower in single electron transistors has been recently
revisited in the experiment by Dzurak et al. (1997). Although the observed
behavior of S(Vg) is somewhat similar to Fig. 5, there were a number of
important differences:

– The jumps aligned with the peaks of conductance, instead of the valleys.
– The behavior of S(Vg) between the jumps was not linear.
– The direction of the “teeth” was opposite to the one shown in Fig. 5.
– The amplitude of the oscillations of S(Vg) was estimated to be on the

order of S0 ∼ 1/e, i.e., much smaller than S0 = EC/2eT .

In order to understand the deviations from the theory (Beenakker and Staring
1992), one needs to take into account the fact that the temperature in this
experiment was significantly lower than in (Staring et al. 1993). Indeed the
ratio T/EC in (Dzurak et al. 1997) was estimated to be on the order of
0.012, i.e., much less than 0.13 in (Staring et al. 1993). It is then natural to
conjecture that the new behavior observed by Dzurak et al. (1997) is caused
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by cotunneling mechanism of transport, which is expected to dominate at
low temperatures, Sect. 1.2. Here we review the theory of the thermopower
in the regime of inelastic cotunneling (Turek and Matveev 1999).

Contrary to the case of sequential tunneling, the transport in the co-
tunneling regime is always due to the electrons which are within a strip of
width ∼ T around the Fermi level. Since the cotunneling occurs in the second
order of the perturbation theory, the cotunneling probability w is inversely
proportional to the square of the difference of energies of virtual and initial
states:

w(ε) ∝ 1
(u+ ε′ − ε)2

. (16)

Here ε is the energy of the electron in the left lead, and ε′ is its energy after
it tunnels into the dot. It is clear from (16) that at positive u the electrons
above the Fermi level tunnel more effectively than those below the Fermi
level. Thus one expects to find non-zero average energy (14).

One can easily estimate 〈ε〉 as follows. Since the typical ε is of order T ,
one can expand (16) in small ε/u,

w(ε) ∝ 1
u2

(
1 +

2ε
u

)
. (17)

Thus although the electrons with positive ε do tunnel more effectively than
the ones with negative ε, this effect is small as ε/u, or, for typical electrons,
∼ T/u. Since typical electrons have energies ε ∼ T , the average energy is
〈ε〉 ∼ T 2/u. We can now use (13) to estimate the cotunneling thermopower
as S ∼ −T/eu. A careful calculation supports this estimate and gives the
numerical prefactor:

Sco = −4π2

5
T

e

(
1
u
+

1
u− 2EC

)
. (18)

The second term in (18) accounts for the processes when first an electron
tunnels from the dot to the right lead, and then another electron tunnels
from the left lead to the dot.

The cotunneling thermopower given by (18) diverges at u = 0. The origin
of this behavior is the same as that of divergence in cotunneling conduc-
tance result (4), namely the calculation at T � u neglects contributions of
quasiparticle energies to the energy of the virtual state. Taking this effect
into account, one can study the behavior of the thermopower at any u. This
leads to the smearing of the singularities at u → 0. In order to understand
the correct behavior of S(Vg), one should also remember that at small u the
transport is dominated by sequential tunneling, Sect. 1.2. Thus both contri-
butions have to be taken into account in calculating G and GT in (9). The
resulting thermopower (Turek and Matveev 1999) is shown schematically in
Fig. 6. It is described by (18) in the valleys between the peaks of G(Vg) and
coincides with sawtooth (15) in the peak regions.
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S

Vg

Fig. 6. Schematic view of the thermopower of a single electron transistor at low
temperatures. For comparison, the conductance peaks are shown by dashed line,
and the sawtooth behavior (15) is indicated by dash-dotted lines.

Note that the apparent slope of the new sawtooth is opposite to that of
the original one. It is also clear that the sharpest regions are now aligned with
the peaks of the conductance G(Vg). To estimate the amplitude of the ther-
mopower oscillations, one can simply notice that the maxima are at u = uc,
where the crossover from sequential tunneling to cotunneling occurs. Substi-
tuting (6) into the sequential tunneling result, one arrives at the estimate of
the amplitude of the oscillations

S0 ∼ 1
e
ln

e2

h̄(Gl +Gr)
. (19)

It is interesting that although at T → 0 and fixed gate voltage the thermo-
power vanishes in accordance with (18), the amplitude (19) is independent
of the temperature.

The behavior of Fig. 6 is in qualitative agreement with the experiment
(Dzurak et al. 1997). The exact amplitude of the thermopower oscillations
could not be measured in the experiment due to the uncertainty in measu-
rements of the temperatures of the leads. However, the order of magnitude
estimate of the amplitude of thermopower oscillations observed in that expe-
riment is in reasonable agreement with (19).

3 Conclusions

We discussed the thermopower of single electron transistors in the regime of
low temperatures, when sequential tunneling is no longer the main mecha-
nism of electron transport. We found that as the temperature is lowered and
inelastic cotunneling starts to dominate the conduction between the peaks of
Coulomb blockade, the dependence of the thermopower on the gate voltage
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undergoes a qualitative change. This can be easily seen by comparing figures
5 and 6. The fact that the mechanism of transport can be clearly identified by
the general shape of S(Vg) is new compared to the case of linear conductance
G(Vg), which shows periodic peaks for either mechanism.

The results reviewed in this paper were obtained under the assumption
that the quantum dot is coupled weakly to the leads, i.e., the conductances of
the tunneling barriers are small compared to e2/h̄. In a recent experiment by
Möller et al. (1998) a different regime, in which one of the contacts is strongly
coupled to the lead, Gr ∼ e2/h̄, was investigated. The above theory is not
applicable to this case, however one can still explore the limit of almost perfect
transmission between the dot and one of the leads, when the conductance
Gr approaches e2/πh̄. The results will be published elsewhere (Andreev and
Matveev 1999).

Another limitation of this work is that we have limited it to the regime of
relatively large dots or, equivalently, not too low temperatures. It is known
that in the limit T → 0 the transport will be dominated by elastic cotunneling
(Averin and Nazarov 1990). This happens at temperatures below

√
EC∆,

where ∆ is the quantum level spacing in the dot. Therefore, in small dots
one should expect that as the temperature is lowered the thermopower will
cross over from the sawtooth behavior of Fig. 5 to the inelastic cotunneling
dependence of Fig. 6, and then to a new regime of elastic cotunneling, which
needs to be studied in the future.

The author is grateful to A.V. Andreev, L.I. Glazman, and M. Turek for
useful discussions. This work was supported by A.P. Sloan Foundation and
by NSF Grant DMR-9974435.
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Möller S., Buhmann H., Godijn S.F., Molenkamp L.W., (1998): Phys. Rev. Lett.

81, 5197
Staring A.A.M., Molenkamp L.W., Alphenhaar B.W., van Houten H., Buyk O.J.A.,
Mabesoone M.A.A., Beenakker C.W.J., Foxon C.T. (1993): Europhys. Lett.
22, 57

Turek M., Matveev K.A. (1999): in preparation.



Kondo Effect in Quantum Dots

L.I. Glazman1, F.W.J. Hekking2, and A.I. Larkin1,3

1 Theoretical Physics Institute, University of Minnesota, Minneapolis, MN 55455,
USA

2 Theoretische Physik III, Ruhr-Universität Bochum, 44780 Bochum, Germany
3 L.D. Landau Institute for Theoretical Physics, 117940 Moscow, Russia

Abstract. Kondo effect in a quantum dot is discussed. In the standard Coulomb
blockade setting, tunneling between the dot and leads is weak, the number of elec-
trons in the dot is well-defined and discrete; Kondo effect may be considered in
the framework of the conventional one-level Anderson impurity model. It turns out
however, that the Kondo temperature TK in the case of weak tunneling is extremely
low. In the opposite case of almost reflectionless single-mode junctions connecting
the dot to the leads, the average charge of the dot is not discrete. Surprisingly, its
spin may remain quantized: s = 1/2 or s = 0, depending (periodically) on the gate
voltage. Such a “spin-charge separation” occurs because, unlike Anderson impurity,
quantum dot carries a broad-band, dense spectrum of discrete levels. In the doublet
state, Kondo effect with a significantly enhanced TK develops.

1 Introduction

The Kondo effect is one of the most studied and best understood problems
of many-body physics. Initially, the theory was developed to explain the in-
crease of resistivity of a bulk metal with magnetic impurities at low temper-
atures (Kondo 1964). Soon it was realized that Kondo’s mechanism works
not only for electron scattering, but also for tunneling through barriers with
magnetic impurities (Appelbaum 1966, Anderson 1966, Rowell 1969). A non-
perturbative theory of the Kondo effect has predicted that the cross-section
of scattering off a magnetic impurity in the bulk reaches the unitary limit
at zero temperature (Nozières 1974). Similarly, the tunneling cross-section
should approach the unitary limit at low temperature and bias (Ng and Lee
1988, Glazman and Raikh 1988) in the Kondo regime.

The Kondo problem can be discussed in the framework of Anderson’s
impurity model (Anderson 1961). The three parameters defining this model
are: the on-site electron repulsion energy U , the one-electron on-site energy
ε0, and the level width Γ formed by hybridization of the discrete level with
the states in the bulk. The non-trivial behavior of the conductance occurs
if the level is singly occupied and the temperature T is below the Kondo
temperature TK � (UΓ )1/2 exp{πε0(ε0+U)/2ΓU}, where ε0 < 0 is measured
from the Fermi level (Haldane 1979).

It is hard to vary these parameters for a magnetic impurity embedded in
a host material. One has much more control over a quantum dot attached to

D. Reguera et al. (Eds.): Proceedings 1999, LNP 547, pp. 16−26, 1999.
 Springer-Verlag Berlin Heidelberg 1999
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leads by two adjustable junctions. Here, the role of the on-site repulsion U
is played by the charging energy EC = e2/C, where C is the capacitance of
the dot. The energy ε0 can be tuned by varying the voltage on a gate which
is capacitively coupled to the dot. In the interval

|N − (2n+ 1)| < 1
2

(1)

of the dimensionless gate voltage N , the energy ε0 = EC [(2n+1)−N −1/2] <
0, and the number of electrons 2n+1 on the dot is an odd integer. The level
width is proportional to the sum of conductances G = GL+GR of the left (L)
and right (R) dot-lead junctions, and can be estimated as Γ = (hG/8π2e2)∆,
where ∆ is the discrete energy level spacing in the dot.

The experimental search for a tunable Kondo effect brought positive re-
sults (Goldhaber-Gordon et al. 1998) only recently. In retrospect it is clear,
why such experiments were hard to perform. In the conventional Kondo
regime, the number of electrons on the dot must be an odd integer. How-
ever, the number of electrons is quantized only if the conductance is small,
G � e2/h, and the gate voltage N is away from half-integer values (see, e.g.,
Glazman and Matveev 1990, Matveev 1991). Thus, in the case of a quantum
dot, the magnitude of the negative exponent in the above formula for TK

can be estimated as |πε0(ε0 + U)/2ΓU | ∼ (EC/∆)(e2/hG). Unlike an atom,
a quantum dot has a non-degenerate, dense set of discrete levels, ∆ � EC .
Therefore, the negative exponent contains a product of two large parameters,
EC/∆ and e2/hG.

Further complication becomes evident if one compares the ∝ lnT correc-
tion GK , which is the textbook manifestation of the Kondo effect at T 
 TK ,
with the background temperature-independent conductance Gel provided by
the elastic co-tunneling mechanism,

GK ∼ Gel
h̄G

e2

(
∆

EC

)2

ln
(
EC

T

)
. (2)

As one can see from Eq. (2), the Kondo correction remains small compared to
the background conductance everywhere in the temperature region T >∼ TK .
The Kondo contribution GK becomes of the order of e2/h and therefore
dominates the conductance only in the low-temperature region T <∼ TK . [The
ensemble-averaged value of Gel at GL, GR � e2/h̄ can be estimated (Averin
and Nazarov 1990) as 〈Gel〉 � (h̄GLGR/e2)(∆/EC).]

To bring TK within the reach of a modern low-temperature experiment,
one may try smaller quantum dots in order to decrease EC/∆; this route
obviously has technological limitations. Another, complementary option is
to increase the junction conductances, so that G1,2 come close to 2e2/h,
which is the maximal conductance of a single-mode quantum point contact.
Junctions in the experiment (Goldhaber-Gordon et al. 1998, Cronenwett et al.
1998, Schmid 1998) were tuned to G � (0.3−0.5)e2/πh̄. A clear evidence for
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the Kondo effect was found at the gate voltages away from the very bottom
of the odd-number valley, where |ε0| is relatively small. Only in this domain
of gate voltages the anomalous increase of conductance G(T ) with lowering
the temperature T was clearly observed. (The unitary limit and saturation
of G signalling that T � TK , were not reached even there.) The anomalous
temperature dependence of the conductance, though, was hardly seen at N =
2n+1, where |ε0| reaches maximum. To increase the Kondo temperature and
to observe the anomaly of G(T ) function in these unfavorable conditions, one
may try to make the junction conductances larger. However, ifG1,2 come close
to e2/πh̄, the discreteness of the number of electrons on the dot is almost
completely washed out (Matveev 1995). Exercising this option, therefore,
raises a question about the nature of the Kondo effect in the absence of
charge quantization. It is the main question we address in this work.

2 Main Results

We show that the spin of a quantum dot may remain quantized even if charge
quantization is destroyed and the average charge 〈N〉e is not integer. Spin-
charge separation is possible because charge and spin excitations of the dot
are controlled by two very different energies: EC and ∆, respectively. The
charge varies linearly with the gate voltage, 〈N〉 � N , if at least one of the
junctions is almost in the reflectionless regime, |rL,R| � 1, and its conduc-
tance GL,R ≡ (2e2/h)(1 − |rL,R|2) is close to the conductance quantum. We
will show that the spin quantization is preserved if the reflection amplitudes
rL,R of the junctions satisfy the condition |rL|2|rR|2>

∼∆/EC . These two con-
straints on rL,R needed for spin-charge separation are clearly compatible at
∆/EC � 1.

Under the condition of spin-charge separation, the spin state of the dot
remains singlet or doublet, depending on eN . If cosπN < 0, the spin state
is doublet, and the Kondo effect develops at low temperatures T<

∼TK . The
Kondo temperature we find is

TK � ∆

√
∆

T0(N )
exp

{
−T0(N )

∆

}
; (3)

T0(N ) = αEC |rL|2|rR|2 cos2 πN . (4)

In the derivation presented below, we entirely disregard the mesoscopic fluc-
tuations. In this case, α > 0 is some fixed numerical factor. Fluctuations
would result in a statistical distribution of α, with variance 〈(δα)2〉 ∼ 〈α〉2.
Eps. (3) and (4) demonstrate that in the case of weak backscattering in the
junctions, the large parameter EC/∆ in the Kondo temperature exponent
may be compensated by a small factor ∝ |rL|2|rR|2. This compensation, re-
sulting from quantum charge fluctuations in a dot with a dense spectrum
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of discrete states, leads to an enhancement of the Kondo temperature com-
pared with the prediction for TK of a single-level Anderson impurity model,
discussed in the Introduction. Despite the modification of the Kondo temper-
ature, strong tunneling does not alter the universality class of the problem.
The temperature dependence of the conductance at T<

∼TK is described by a
known Costi et al. 1994 universal function F (T/TK),

GK(T/TK ,N ) � e2

h

∣∣∣∣rR

rL

∣∣∣∣
2

(cosπN )2F (T/TK), (5)

with F(0)=1. Unlike the case of weak tunneling Ng and Lee 1988, Glazman
and Raikh 1988, the conductance (5) explicitly depends on the gate voltage.
Eqs. (3) – (5) were derived for an asymmetric set-up, |rR|2 � |rL|2. In the
special case |rL| → 1, we can determine the energy T0, Eq. (4), exactly;

T0(N ) = (4eC/π)EC |rR|2 cos2 πN , |rL| → 1, (6)

where C = 0.5772... is the Euler constant. The above results, apart from the
detailed dependence of TK and GK on N , remain qualitatively correct at
|rL|2 � |rR|2 � 1. The universality of the Kondo regime is preserved as long
as TK � ∆.

3 Bosonization for a Finite-Size Open Dot

We proceed by outlining the derivation of Eqs. (3)–(5). To see how the dense
spectum of discrete levels of the dot affects the renormalization of TK , we
first consider the special case |rL| → 1 and |rR| � 1.

In the conventional constant-interaction model, the full Hamiltonian of
the system, Ĥ = ĤF + ĤC , consists of the free-electron part,

ĤF =
∫

dr
[
1
2m

∇ψ†∇ψ + (−µ+ U(r))ψ†ψ
]
, (7)

and of the charging energy

ĤC =
EC

2

(
Q̂

e
− N

)2

,
Q̂

e
=

∫
dot

drψ†ψ. (8)

Here the potential U(r) describes the confinement of electrons to the dot and
channels that form contacts to the bulk, µ is the electron chemical potential,
and operator Q̂ is the total charge of the dot. To derive Eq. (3) for the Kondo
temperature, we start with a single-junction system. Following Matveev 1995,
we reduce the Hamiltonian (7) – (8) to the one-dimensional (1D) form, and
then use the boson representation for the electron degrees of freedom. In this
representation, the free-electron term is ĤF = Ĥ0 + ĤR,
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Ĥ0 =
vF

2

∫ ∞
−L

dx
∑

γ=ρ,s

[
1
2
(∇φγ)2 + 2(∇θγ)2

]
, (9)

ĤR = − 2
π

|rR|D cos[2
√
πθρ(0)] cos[2

√
πθs(0)], (10)

where vF is the Fermi velocity of the electrons in the single-mode channel
connecting the dot with the bulk, and D is the energy bandwidth for 1D
fermions, which are related to the boson variables by the transformation
(Haldane 1981):

ψ†σ(x) = η̂σ

√
D

2πvF
exp

{
i

√
π

2
[φρ(x) + σφs(x)]

}

×
∑
l=±1

exp
{
ilkFx+ il

√
π

2
[θρ(x) + σθs(x)]

}
. (11)

We introduced Majorana fermions η±1 here to satisfy the commutation rela-
tions for the fermions with opposite spins, {η+1, η−1} = 0. Anti-commutation
of the electrons of the same spin (σ = 1or − 1), is ensured by the following
commutation relations between the canonically conjugated Bose fields:

[∇φγ(x′), θγ(x)] = [∇θγ(x′), φγ(x)]
= −iδ(x − x′), γ = ρ, s. (12)

The interaction term (charging energy) becomes also quadratic in the boson
representation: ĤC = (EC/2) [2θρ(0)/

√
π − N ]2. The operators

(2e/
√
π)∇θρ(x) and (2/

√
π)∇θs(x) are the smooth parts of the electron

charge (ρ) and spin (s) densities, respectively. The continuum of those elec-
tron states outside the dot, which are capable to pass through the junction, is
mapped (Matveev 1995) onto the Bose fields defined on the half-axis [0;∞).
Similarly, states within a finite-size dot are mapped onto the fields defined
on the interval [−L; 0] with the boundary condition θρ,s(−L) = 0, which
corresponds to |rL| = 1. The length in this effective 1D problem is related
(Matveev 1995) to the average density of states νd ≡ 1/∆ in the dot by
L � πvF νd, and scales proportionally to the area A of the dot formed in a
two-dimensional electron gas.

To the leading order in the reflection amplitude |rR| � 1 and in the
level spacing ∆/EC � 1, the average charge of the dot can be found by
minimization of the energy ĤC . The charge is not quantized, and, to this
order, it varies linearly with the gate voltage, (2e/

√
π)〈θρ(0)〉 = eN . Within

the same approximation, the factor cos[2
√
πθρ(0)] in (10) at low energies E �

EC may be replaced by its average value. This procedure yields (Matveev
1995) the effective Hamiltonian Ĥs = Ĥs

0 + Ĥs
R for the spin mode,

Ĥs
0 =

vF

2

∫ ∞
−L

dx

[
1
2
(∇φs)2 + 2(∇θs)2

]
, (13)
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Ĥs
R = −

[
4eC

π3 ECD

]1/2

|rR| cos(πN ) cos[2
√
πθs(0)]. (14)

This is a Hamiltonian of a one-mode, g = 1/2 Luttinger liquid with a barrier
at x = 0. At L → ∞ (i.e., at E 
 ∆) the backscattering at the barrier,
described by the Hamiltonian Ĥs

R, is known to be a relevant perturbation
(Kane and Fisher 1992): even if |rR| is small, at low energy E → 0 the
amplitudes of transitions between the minima of the potential of (14) scale
to zero. These minima are θs(0) =

√
πn if cosπN > 0, or θs(0) =

√
π(n+1/2),

if cosπN < 0. The crossover from weak backscattering |rR(E)| � 1 to weak
tunneling |tR(E)| � 1 occurs at E ∼ T0(N ), Eq. (6). To describe the low-
energy [E<

∼T0(N )] dynamics of the spin mode, it is convenient to project out
all the states of the Luttinger liquid that are not pinned to the minima of the
potential (14). Transitions between various pinned states then are described
by the tunnel Hamiltonian Ĥs

0 + Ĥxy + Ĥz, where

Ĥxy = − D2

2πT0(N )
cos

{√
π[φs(+0)− φs(−0)]

}
;

Ĥz =
v2

F

2T0(N )
∇θs(−0)∇θs(+0). (15)

Here a discontinuity of the variable φs(x) at x = 0 is allowed, and the point
x = 0 is excluded from the region of integration in Eq. (13). The term Ĥxy,
which is a sum of two operators of finite shifts for the field θs(0), represents
hops θs(0) → θs(0) ± √

π between pinned states. This term is familiar from
the theory of DC transport in a Luttinger liquid (Kane and Fisher 1992).
However, the usual scaling argument (Kane and Fisher 1992) is insufficient
for deriving the term Ĥz and for establishing the exact coefficients in Ĥxy and
Ĥz. We have accomplished these tasks by matching the current-current corre-
lation function 〈[Îs(t), Îs(0)]〉 calculated from (15) with the proper asymptote
of the exact result which we obtained starting with Eqs. (13), (14) and pro-
ceeding along the lines of Furusaki and Matveev 1995.

At L → ∞ the ground state of the spin mode is infinitely degenerate,
different states may be labeled by the discrete boundary values θs(0). At finite
L, however, this degeneracy is lifted due to the energy of spatial quantization,
coming from the Hamiltonian (13). If cosπN > 0, the spatial quantization
entirely removes the degeneracy, and the lowest energy corresponds to θs(0) =
0 (spin state of the dot is s = 0). If cosπN < 0, the spatial quantization
by itself, in the absence of tunneling, would leave the ground state doubly
degenerate, θs(0) = ±√

π/2 (spin state of the dot is s = 1/2). Hamiltonian
(15) hybridizes the spin of the dot with the continuum of spin excitations in
the lead. The Kondo effect consists essentially of this hybridization, which
ultimately leads to the formation of a spin singlet in the entire system. The
energy scale at which the hybridization occurs, is the Kondo temperature of
the problem at hand.
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4 The Effective Exchange Hamiltonian

At energies E � T0(N ), the spin field θs(0) is pinned at the point contact.
Recalling that θs(−L) = 0, we see that the spin of the dot indeed takes
discrete values only, as was mentioned above. We can analyze the low-energy
spin dynamics staying in the bosonized representation of a finite-size fermion
system, but it is more instructive to return, following Haldane 1981, to the
fermion variables. After the two parts of the Hamiltonian (15) are found,
one can explicitly see that the initial SU(2) symmetry of the problem is
preserved. Therefore, the effective Hamiltonian which replaces (15) at low
energies, corresponds to the isotropic exchange interaction,

Ĥex = JRR(D̃)ŜRŜd. (16)

Here ŜR = ψ̂†σ1
(RR)sσ1σ2 ψ̂σ2(RR) and Ŝd = χ̂†σ1

(RR)sσ1σ2 χ̂σ2(RR) are the
operators of spin density in the dot (x < 0) and in the lead (x > 0) re-
spectively, at the point RR of their contact; ρd ≡ νd/A and ρR are the
corresponding average densities of states. The electron creation-annihilation
operators ψ† and ψ, and the Hamiltonian (16) are defined within a band of
some width D̃ � T0(N ).

If the dot is in the spin-doublet state, the exchange constant gets renor-
malized at low energies. Unlike the “ordinary” Kondo model with only one
localized orbital state involved, here the renormalization occurs due to vir-
tual transitions in both the continuum spectrum of the lead and the discrete
spectrum of the dot:

JRR(E, D̃) = JRR(D̃) + J2
RR(D̃)

∫ D̃

|E|
νRdξR

∑
|ξ(n)

d
|<D̃

1

|ξR|+ |ξ(n)
d |

, (17)

where the integral is taken over the continuum energy spectrum in the leads.
The sum over the discretized energy levels of electrons in the dot includes the
term corresponding to a spin-flip within the same orbital level, ξ(0)

d = 0. It is
this term that is responsible for the logarithmic singularity in the “ordinary”
Kondo effect. The rest of the terms in the sum corresponds to the virtual
transitions onto (from) the partially occupied level from (to) doubly-occupied
(empty) electron levels. At energies E 
 ∆ the discreteness of the spectrum
is not important, and the sum in Eq. (17) can be replaced by an integral,

J(E, D̃) = J(D̃) + J2(D̃)
∫ D̃

|E|
νRdξR

∫ D̃

−D̃

νddξd

|ξR|+ |ξd| , E 
 ∆. (18)

Here, the limit |E| → 0 is not singular; the relative correction to JRR(D̃) is
of the order D̃/T0(N ) and small. The low-energy observable quantities (such
as scattering amplitudes) should not depend on D̃. It means that J(E, D̃)
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in the domain D̃ 
 E 
 ∆ should be just equal to the exchange constant
found from Eq. (15) upon returning to the fermion variables,

JRR(E, D̃) = JRR ≡ [νdνRT0(N )]−1
, D̃ 
 E 
 ∆. (19)

Combining Eqs. (17)–(19), we find the following representation of JRR(E, D̃),
convenient at E � ∆:

JRR(E, D̃) = JRR + J2
RRνR

(
ln ∆

E + Λ
)
, (20)

Λ = limD̃→∞ limE→0


− ln

∆

E
+

∫ D̃

|E|
νRdξR


 ∑
|ξ(n)

d
|<D̃

1

|ξR|+ |ξ(n)
d |

−
∫ D̃

−D̃

νddξd

|ξR|+ |ξd|




 . (21)

The constant Λ is of the order of unity. Equation (20) demonstrates that in
the strong tunneling regime the bandwidth for the effective Kondo problem
at hand is ∆ rather than EC . Once Eq. (20) is established, one can obtain
the results (3) and (4) following the lines of Haldane 1979.

The Kondo effect in a single-junction system results in a specific behavior
of the spin polarization. If the dot is in a singlet state, the gap for its spin
polarization is ∼ ∆. In the doublet state, the contribution of the dot to the
susceptibility at low temperature and fields, T, µBH � ∆, is identical to that
of a Kondo impurity (Nozières 1974) with TK given by Eq. (3), (4); here µB

is the Bohr magneton for the electrons of the dot. The manifestation of the
most interesting effect, the enhanced low-temperatue conductance, requires
a two-junction dot geometry.

5 A Dot with Two Junctions

To consider the low-temperature conductance through a dot, we derive a
Hamiltonian that generalizes Eq. (16) to the case of two junctions and acts
within the energy band |E| ≤ ∆:

Ĥex =
[
JLLψ̂

†
σ1
(RL)χ̂†σ3

(RL)χ̂σ4(RL)ψ̂σ2(RL)

+JRRψ̂†σ1
(RR)χ̂†σ3

(RR)χ̂σ4(RR)ψ̂σ2(RR)

+JLRψ̂†σ1
(RL)χ̂†σ3

(RL)χ̂σ4(RR)ψ̂σ2(RR)
]
sσ1σ2sσ3σ4 . (22)

The derivation of the low-energy theory goes through stages similar to
Eqs. (13), (14) and (15). We will explain first how to derive the relevant
exchange constants in the least involved case of a strongly asymmetric set-
up: GL � e2/h and |rR| � 1. In this case the largest constant JRR ∝ G0

L
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exists even in the limit GL = 0, and is defined by Eq. (16); the small-
est constant, JLL ∝ G2

L, is unimportant in the calculation of the conduc-
tance; the intermediate constant JLR is proportional to GL. To find the
proportionality coefficient, we calculate the conductance through the dot in
the lowest-order perturbation theory in the Hamiltonian (22), and obtain
G(T ) = (π4e2/3h)J2

LRρLρRρ2
dT

2. When deriving this formula, we set also
T 
 ∆, which allows us now to compare G(T ) with the exact at ∆ = 0
result (Furusaki and Matveev 1995) for the conductance of the same system.
The comparison yields:

J2
LR = 4(h/e2)GL

[
πeCECT0(N )ρLρRρ2

d

]−1
. (23)

At T<
∼∆, only the lowest discrete level in the dot remains important. If the

gate voltage is close to an odd integer, cosπN < 0, then the level is spin-
degenerate. This way, the initial problem of the dot, which has a dense spec-
tum of discrete levels, and is strongly coupled to the leads, is reduced to the
problem of a single-level Kondo impurity in a tunnel junction (Ng and Lee
1988, Glazman and Raikh 1988). Using the found values of the exchange con-
stants, and the result of Glazman and Raikh 1988 for a strongly asymmetric
junction (JLL � JLR � JRR), we obtain the conductance in the problem
under consideration:

GK(T/TK ,N ) = (e2/h)(JLR/JRR)2F (T/TK)
� (64/π2)GL|rR|2(cosπN )2F (T/TK). (24)

Note that Kondo conductance (24) in the strongly asymmetric set-up is sig-
nificantly smaller than the conductance quantum e2/h even at T = 0. The
maximal value of GK is substantially increased, if the asymmetry between
the junctions is reduced, and the condition GL � e2/h is lifted. To show
this, we further generalize the above results to include the experimentally
important case |rR| � |rL| � 1. Like in the case of a single strong junction
considered above, the backscattering in the junctions becomes increasingly
effective at low electron energies. Initially, at energies below EC , the reflec-
tion amplitudes grow independently of each other (Furusaki and Matveev
1995) as |rL,R(E)| ∼ |rL,R|(EC/E)1/4. Upon reducing the energy scale, the
weaker junction reaches the crossover region first: at E ∼ T1 ≡ EC |rL|4 the
backscattering in this junction becomes significant, |rL(E)| ∼ 1.

To consider conductance at temperatures T � T1, we can formulate now
an effective Hamiltonian, which acts within the narrow energy band T1, and
describes weak reflection in the right junction, |rR(T1)| ∼ |rR/rL|, and strong
reflection in the left junction, |rL(T1)| ∼ 1. Both junctions eventually cross
over into the weak tunneling regime at sufficiently low temperatures. Re-
placing EC by the bandwidth T1 and |rR| by |rR/rL| in Eq. (6), we find
Eq. (4) for the new crossover temperature. Below it, the exchange Hamil-
tonian (22) is applicable. The largest exchange constant JRR is indepen-
dent of |rL| in the leading approximation; it is still defined by Eq. (16) with
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T0(N ) from Eq. (4). To find the new value of JLR, we replace EC → T1,
GL → (e2/h)(1 − |rL(T1)|2) ∼ e2/h, and use Eq. (4) for T0(N ) in Eq. (23);
the result is J2

LR ∼ [E2
C |rL|6|rR|2ρLρRρ2

d]
−1. Substituting the exchange con-

stants JRR and JLR in Eq. (24), we arrive at Eq. (5).

6 Overall Temperature Dependence
of the Conductance

We finally discuss the overall temperature dependence of the conductance,
see Fig. 1. In this discussion, we use the above results for the Kondo regime,
and the results of Furusaki and Matveev 1995, Aleiner and Glazman 1998
for co-tunneling, generalized properly onto the case |rR| � |rL| � 1. The
conductance decreases slowly (Furusaki and Matveev 1995), as the temper-
ature is reduced from EC to T1. At lower tempertures, the leading mech-
anism of transport is inelastic co-tunneling, which yields G ∼ T/T1 and
G ∼ T 2/T1T0(N ) at T above and below T0(N ), respectively. At yet lower
temperatures, the main contribution to the conductance G(T ) is provided
by elastic co-tunneling, Gel ∼ (∆/T1) ln(T1/∆). The crossover between the
two co-tunneling mechanisms occurs at T ∗ ∼ √

T0(N )∆ ln(T1/∆). It is in-
structive to compare Gel with the zero-temperature Kondo conductance (5).
Taking into account the definition of T1, we see that the Kondo mechanism
dominates, if T0(N )/∆>

∼ ln(EC |rL|4/∆). This condition simultaneously en-
sures the smallness of the Kondo temperature compared to the level spacing,
so that the Kondo singlet state remains distinct.

Fig. 1. The overall temperature dependence of conductance. The estimates of
the crossover temperatures and the two characteristic values of the conductance,
GK ≡ GK(0, N ) and Gel, are given in the text.

Upon the increase of the conductance GL towards the value 2e2/h, the
spin quantization of the dot eventually is destroyed. We expect that, at the
same time, the oscillations in the conductance G(N ) with period δN = 2
give way to mesoscopic fluctuations, which do not distinguish between the
“even” and “odd” intervals of N .
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7 Conclusions

We developed a theory of the Kondo effect in a quantum dot which has a
dense spectum of discrete one-particle states. It turns out that the spin of
the quantum dot may remain quantized, even if the quantization of charge is
destroyed by strong dot-lead tunneling. In the spin-doublet state, the Kondo
effect develops at low temperature, yielding a non-monotonous temperature
dependence of the conductance. We found that the Kondo temperature is
significantly enhanced by charge fluctuations, compared to the standard case
of weak dot-lead tunneling.
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of Quantum Dots in the Kondo Regime
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Abstract. We present an interpolative method for describing coherent transport
through an interacting quantum dot. The idea of the method is to construct an
approximate electron self-energy which becomes exact both in the limits of weak
and strong coupling to the leads. The validity of the approximation is first checked
for the case of a single (spin-degenerate) dot level. A generalization to the multilevel
case is then discussed. We present results both for the density of states and the
temperature dependent linear conductance showing the transition from the Kondo
to the Coulomb blockade regime.

1 Introduction

The Kondo effect constitutes a prototypical correlation effect in condensed
matter physics. Although originally studied in connection to magnetic impu-
rities in metals, there is now a renewed interest in this many-body problem
fostered by the recent observation of Kondo effect in semiconducting quan-
tum dots [1,2]. Quantum dots provide an almost ideal laboratory where the
relevant parameters can be controlled, which allow to test the predictions of
theoretical models.

From the theoretical side, Kondo physics in quantum dots has been mainly
analyzed in the light of the so called single level Anderson model. There were
predictions for the Kondo effect in quantum dots based on this model since
the early 90’s [3,4]. The theory predicts an enhancement of the linear conduc-
tance due to Kondo effect at very low temperatures, which is in qualitative
agreement with recent experiments.

However, in most realistic situations, the single level Anderson model con-
stitutes a crude approximation for a quantum dot. Actual semiconducting
quantum dots contain a large number (∼ 100) of electrons and the single-
particle level separation between dot levels may be not so large compared
to the level broadening, which restricts the validity of the single-level ap-
proximation. The actual situation would be more appropriately described by
a multilevel model, including several instead of a single dot level. Unfortu-
nately, there are no simple theoretical approaches to extract the electronic
and transport properties from such a microscopic model.

In this paper we present results on the Kondo effect in quantum dots
based on the interpolative method. The basic idea of this method is to con-

D. Reguera et al. (Eds.): Proceedings 1999, LNP 547, pp. 27−34, 1999.
 Springer-Verlag Berlin Heidelberg 1999
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struct an interpolative electron self-energy which becomes exact both in the
limits of weak and strong coupling to the leads. These ideas were first in-
troduced in Ref. [5] in connection to the single-level Anderson model and
have, since then, been adapted by several authors to different problems in-
volving strongly correlated electrons. In this way, the method has been used
to study the Hubbard model [6], the non-equilibrium Anderson model [4],
the metal-insulator transition in infinite dimensions [7], to incorporate cor-
relation effects into band-structure calculations [8], the ac-Kondo effect in
quantum dots [9] and finally extended by the present authors to analyze the
multilevel Anderson model [10].

The paper will be organized as follows: In section 2 we present the inter-
polative method. We first discuss the single level case, showing the accuracy
of the method with the help of a simple exactly solvable model. We then con-
sider the multilevel situation. In section 3 we present results which illustrate
the behavior of the conductance with temperature in a multilevel situation.

2 The interpolative method

For describing a multilevel quantum dot (QD) we consider a model Hamilto-
nian H = Hdot +Hleads +HT where Hdot =

∑
m εmd̂

†
md̂m +U

∑
l>m n̂mn̂l

corresponds to the uncoupled QD (n̂m = d̂†md̂m); Hleads =
∑

k∈L,R εk ĉ
†
k ĉk

to the uncoupled leads, and HT =
∑

m,k∈L,R tm,kd̂
†
mĉk + h.c. describes the

coupling between the dot and the leads. The labels m and l in H denote the
different dot levels including spin quantum numbers. The number of dot lev-
els will be denoted byM (i.e. 1 ≤ m, l ≤M). We adopt the usual simplifying
assumption of having the same electron-electron interaction U between any
pair of dot states.

The main objective of our method is to determine the dot retarded Green
functions Gm(τ) = −iθ(τ) < [d̂m(τ), d̂†m(0)]+ > from which the different level
charges and the dot linear conductance can be obtained. In the frequency
representation we can write Gm as:

Gm(ω) =
1

ω − εHF
m −Σm(ω) − Γm,L(ω) − Γm,R(ω)

, (1)

where εHF
m = εm+U

∑
l �=m nl is the Hartree-Fock level (we adopt the notation

nl for the mean charge on level l) and Γm,L, Γm,R are tunneling rates coupling
the dot to the leads, given by Γm,L(R)(ω) =

∑
k∈L(R) t

2
m,k/(ω − εk + i0+).

We shall neglect indirect coupling between dot levels through the leads (non-
diagonal elements Γm,m′,L(R)) and adopt the usual approximation of consid-
ering Γm,L(R) as a pure imaginary constant independent of the energy.

The self-energy Σm(ω) takes into account electron correlation effects be-
yond the Hartree approximation. The idea of the present approximation is to
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determine an interpolative self-energy which yields the correct exact results
both in the Γ/U → 0 limit (atomic limit) and in the opposite U/Γ → 0 limit.

2.1 The single-level case

Let us first discuss how to proceed for the simple single-level case. In this case
m = 1, 2, the two indexes corresponding to up and down spin orientations.
These will be denoted by σ and σ̄. In the atomic limit Gσ can be obtained
using the equation of motion technique [11] as

G(at)
σ (ω) =

1 − nσ̄

ω − ε+ i0+ +
nσ̄

ω − ε− U + i0+ (2)

This expression can be formally written in the usual Fermi liquid form, i.e.
G

(at)
σ (ω) = [ω−ε−Unσ̄−Σ(at)

σ (ω)]−1 by introducing the “atomic” self-energy

Σ(at)
σ (ω) =

U2nσ̄(1 − nσ̄)
ω − ε− U(1 − nσ̄) + i0+

In the opposite limit, U/Γ → 0, the electron self-energy can be calculated
by second-order perturbation theory in U , which yields

Σ(2)
σ (ω) = U2

∫ ∞
−∞

dε1

∫ ∞
−∞

dε2

∫ ∞
−∞

dε3
ρ̃σ(ε1)ρ̃σ̄(ε2)ρ̃σ̄(ε3)
ω + ε2 − ε1 − ε3 + i0+ ×

[f(ε1)f(ε3) (1 − f(ε2)) + (1 − f(ε1)) (1 − f(ε3)) f(ε2)] , (3)

where f(ω) is the Fermi distribution function and ρ̃σ(ω) = Γ/π((ω−ε̃σ)2+Γ 2)
is the local density of states for an effective level ε̃σ̄, which will be determined
in order to fulfill exact Fermi liquid properties at zero temperature.

It is important to stress the following simple property of Σ(2):

lim
Γ→0

Σ(2)
σ (ω) = U2 ñσ̄(1 − ñσ̄)

ω − ε̃σ + i0+

Thus, when extrapolated to the atomic limit Σ(2) has the same functional
form as Σ(at). This property suggests that one can smoothly interpolate
between the two limits. The ansazt proposed in Ref. [5] for the interpolative
self-energy is:

Σσ(ω) =
Σ

(2)
σ (ω)

1 − α Σ(2)
σ (ω)

(4)

where α = (ε− ε̃σ −U(1− nσ̄))/(U2nσ̄(1− nσ̄)). This ansazt has the desired
property Σ → Σ(2) when U → 0 and Σ → Σ(at) when Γ → 0.

The final step is to impose the proper self-consistent condition for deter-
mining the effective level ε̃. At zero temperature, from the Luttinger-Ward
relations [13] one can derive the Friedel sum rule for the Anderson model [14]
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nσ = − 1
π
Im lnGr

σ(EF )

which imposes an exact relation between the dot-level charge and the phase
shift at the Fermi energy. The effective level can thus be determined in order
to fulfill the Friedel sum rule. This condition is, however, not valid at finite
temperature. In Ref. [4] we show that the condition nσ = ñσ, i.e. imposing
the same charge in the effective system as in the interacting system, is ap-
proximately equivalent to the Friedel sum rule at zero temperature but can
be also used at finite temperature.

In order to check the accuracy of the interpolative method we have con-
sidered a simple two-sites problem that can be diagonalized exactly. One of
the sites would describe the metallic leads and the other site corresponds to
the dot. In order to analyze the more general situation we impose a finite
splitting ∆ = εσ − εσ̄ between the two spin orientations on the dot. Within
this toy model the second order self-energy can be evaluated analytically.

In figure 1 we show the charge on the two dot levels as a function of gate
voltage (the gate voltage is the distance between the lower dot level and the
leads level). As can be observed, in the exact solution there is a blocking of
the upper level charge until the gate voltage becomes larger than ∆ + U .
The exact behavior is accurately reproduced by the interpolative method. It
is instructive to consider another simple approximation widely used in the
literature, which consist in just broadening the poles in the atomic Green
function (2) by the non-interacting tunneling rates. This approximation cor-
responds to the so-called Hubbard I [12]. As can be observed in the lower
panel of Fig. 1, this approximation fails to give the blocking of the upper
level found in the exact solution.

Fig. 1. Level charges as a function of gate voltage for the two sites model with
∆ = 0.25 and t = 0.1 (in units of the charging energy U). Left pannel corresponds
to the interpolative approach and the right pannel to the Hubbard I approach. The
exact solution is shown as a dashed line.
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2.2 Multilevel case

The multilevel version of the interpolative method is somewhat more complex
[10]. In the first place, the atomic limit Green functions do not contain just
two poles but several poles corresponding to the various different charge states
of the dot. The corresponding expression can be obtained using the equation
of motion technique and is given by

G(at)
m (ω) =

<
∏

l �=m(1 − n̂l) >
ω − εm + i0+ +

∑
l �=m

< n̂l

∏
(s �=l) �=m(1 − n̂s) >

ω − εm − U + i0+ + ...

+
<
∏

l �=m n̂l >

ω − εm − (M − 1)U + i0+ , (5)

The evaluation of this expression requires the knowledge of up to M − 1-
body correlations functions < n̂1n̂2 >, < n̂1n̂2n̂3 >, ..., etc. However, for
sufficiently large U fluctuactions in the dot charge by more of one electron
with respect to the mean charge N are strongly inhibited. One can thus
approximate Eq. (5) as follows

G(at)
m (ω) � Am

N−1

ω − εm − U(N − 1) + i0+ +
Am

N

ω − εm − UN + i0+

+
Am

N+1

ω − εm − U(N + 1) + i0+ , (6)

where N = Int[N ]. In order to yield the exact first three momenta of the
exact spectral density the weight factors Am

N should satisfy the following sum
rules

Am
N−1 +A

m
N +Am

N+1 = 1

(N − 1)Am
N−1 +NA

m
N + (N + 1)Am

N+1 =
∑
l �=m

nl

(N − 1)2Am
N−1 +N

2Am
N + (N + 1)2Am

N+1 =
∑
l �=m

nl+ < n̂n̂ >m, (7)

where < n̂n̂ >m=
∑

(l �=k) �=m < n̂ln̂k >. For the special case N = 0 (N =
M −1) one has Am

N−1 = 0 (Am
N+1 = 0) and only the first two Eqs. in (7) have

to be considered.
This approximated expression for G(at)

m (ω) is now fully determined by
the average charges nl and the two-body correlation functions < n̂ln̂k >.
As in the single-level case one can define an atomic self-energy, Σ(at)

m =

ω−εHF
m −

[
G

(at)
m (ω)

]−1
, which can be written as the ratio of two polynomials

in ω
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Σ(at)
m =

amU
2(ω − εm + i0+) + bmU3

(ω − εm + i0+)2 + cmU(ω − εm + i0+) + dmU2 , (8)

where am = (N−nm) [1 − (N − nm)]+ < n̂n̂ >m; cm = N−nm−3N ; dm =<
n̂n̂ >m +3N2 − 1− (3N − 1)(N − nm) and bm = N2(1−N)− (N − nm)dm.

On the other hand, in the U/Γ → 0 limit the self-energy is accurately
given by second order perturbation theory as in the single level case. The
second order self-energy Σ(2)

m now takes into account the interaction of an
electron on the dot level m with electron-hole pairs on each one of the other
channels.

For the interpolation one notices that both Σ(2) and Σ(at) have the same
functional form when extrapolated to the corresponding opposite limit. The
natural generalization of the ansazt in the single level case now has the form
of a continued fraction

Σm(ω) =
αmΣ

(2)
m (ω)

1 − βmΣ
(2)
m (ω) −Rm(ω)

, Rm(ω) =
γm(Σ(2)

m (ω))2

1 − δmΣ(2)
m (ω)

with coefficients αm = U2am/∆m, βm = (εm − ε̃m + (bm/am − cm)U)/∆m,
γm = ((cm−bm/am)bm/am−dm)U2/∆2

m and δm = (εm−ε̃m+Ubm/am)/∆m,
where ∆m = U2∑

l �=m ñl(1 − ñl).
As in the single-level case the final step is to determine the effective levels

self-consistently. In the multilevel case one has, in addition to self-consistently
determine the two-body correlations < n̂n̂ >m that appear in the atomic self-
energy. This can be done by means of the relation

∑
l �=m

< n̂ln̂m >= − 1
πU

∫ ∞
−∞

f(ω)Im [(ω − εm − Γm)Gm(ω)] dω, (9)

connecting the two-body correlations and the Green functions that can be
derived from the equation of motion for Gm(ω). This step turns out to be
essential in order to obtain the correct values of the charges in the large U
limit.

Finally, the temperature dependent dot linear conductance can be ob-
tained using the expression [15]

G =
e2

h

∑
m

|Γm,LΓm,R|
(|Γm,L| + |Γm,R|)

∫ ∞
−∞

(
∂f

∂ω

)
ImGr

m(ω)dω

3 Results

The multilevel formalism allows to study the importance of the multilevel
structure in the QD transport properties. For this purpose we have analyzed
the M = 4 case which corresponds to two consecutive dot levels plus spin
degeneracy. We have studied this case as a function of the level separation
∆.
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Figure 2 shows the dot conductance as a function of Fermi energy and
temperature for the cases ∆ = 0, 0.1 and 0.5 (in units of U).

Fig. 2. Dot conductance as a function of Fermi energy for increasing temperatures
with ΓL = ΓR = 0.075 and ∆ = 0 (a), 0.1 (b) and 0.5 (c). The temperature values
are 0.0005, 0.0025, 0.005 and 0.03 in units of U

This figure illustrates the transition from a two-fold degenerate situation
(∆ = 0), where the conductance reaches a maximum value 4e2/h for the half-
filled case at zero temperature, to the case of well separated dot levels, where
the maximum conductance 2e2/h is reached for the quarter and three quarter
filling case. The increase of conductance with decreasing temperature is due
to the Kondo effect. While in the case of well separated levels one observes
only the Kondo effect due to the spin-degeneracy of the individual levels,
when ∆ is small compared to Γ one can observe Kondo features involving
the two nearby dot levels. When the temperature is raised above the Kondo
temperature (which is around 0.005 for the parameters used in this figure)
one recovers the sequence of dot resonances at the charge degeneracy points
characteristic of the Coulomb blockade regime.

The Kondo effect should manifest also as a zero-bias anomaly in the dot
non-linear conductance. This anomaly is directly related to the appearance of
a narrow peak around the Fermi energy in the dot spectral density. In cases
where the splitting between dot levels is of the order of Γ we expect to have a
zero-bias anomaly not only between dot resonances corresponding to the same
dot level but also in between resonances corresponding to different levels. This
feature is illustrated in Fig. 3 where we plot the density of states around EF

for the same three cases of Fig. 2 with EF = 1.5. The appearance of a zero-
bias anomaly in between resonances corresponding to different levels is a clear
manifestation of the multilevel structure of the QD which has already been
observed in recent experiments on semiconducting quantum dots [16].
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Fig. 3. Density of states around the Fermi energy for increasing temperatures values
(0.01, 0.02 and 0.03) for the same three cases in Fig. 2 and EF = 1.5

This work has been funded by the Spanish CICyT under contracts PB97-
0028 and PB97-0044.

References

[1] D. Goldhaber-Gordon et al., Nature 391, 156 (1998) and D. Goldhaber-Gordon
et al. Phys. Rev. Lett. 81, 5225 (1998).

[2] S.M. Cronenwett et al, Science 281, 540 (1998).
[3] T.K. Ng and P.A. Lee, Phys. Rev. Lett. 61, 1768 (1988); L.I. Glazman and M.E.

Raikh, JETP Lett. 47, 452 (1988); S. Hershfield, J.H. Davis and J.W. Wilkins,
Phys. Rev. Lett. 67, 3720 (1991); Y. Meir, N.S. Wingreen and P.A. Lee, Phys.
Rev. Lett. 70, 2601 (1993).

[4] A. Levy Yeyati, A. Mart́ın-Rodero and F. Flores, Phys. Rev. Lett. 71, 2991
(1993).

[5] A. Mart́ın-Rodero et al., Solid State Commun. 44, 911 (1982).
[6] A. Mart́ın-Rodero et al., Phys. Rev. B 33, 1814 (1986).
[7] H. Kajueter and G. Kotliar, Phys. Rev. Lett. 77, 131 (1996); M. Potthoff, T.

Wegner and V. Nolting, Phys. Rev. B 55, 16132 (1997).
[8] A.I. Lichtenstein and M.I. Katsnelson, Phys. Rev. B 57, 6884 (1998).
[9] R. Lopez et al. Phys. Rev. Lett. 81, 4688 (1998).
[10] A. Levy Yeyati, F. Flores and A. Mart́ın-Rodero, Phys. Rev. Lett. 83, 600

(1999).
[11] B. Bell and A. Madhukar, Phys. rev. B 14, 4281 (1976).
[12] J. Hubbard, Proc. Roy. Soc. A 276, 238 (1963).
[13] J.M. Luttinger and J.C. Ward, Phys. Rev. 118, 1417 (1960).
[14] D.C. Langreth, Phys. Rev. 150, 516 (1966).
[15] Y. Meir and N.S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).
[16] J. Schmid, J. Weis, K. Ederl and K. v. Klitzing, Physica B 256-258, 182

(1998).



A New Tool for Studying Phase Coherent
Phenomena in Quantum Dots

R.H. Blick1, A.W. Holleitner1, H. Qin1, F. Simmel1, A.V. Ustinov2,
K. Eberl3, and J.P. Kotthaus1

1 Center for NanoScience and Sektion Physik, Ludwig-Maximilians-Universität,
Geschwister-Scholl-Platz 1, 80539 München, Germany.

2 Physikalisches Institut III, Universität Erlangen-Nürnberg, Erwin-Rommel-Str.
1, 91058 Erlangen, Germany.

3 Max–Planck–Institut für Festkörperforschung, Heisenbergstr. 1, 70569 Stuttgart,
Germany.

Abstract. Microwave transport spectroscopy on quantum dots with near-field mi-
crowave sources is presented. As microwave sources we employ two different Joseph-
son oscillators, being integrated with the AlGaAs/GaAs-heterostructure in which
the dots are formed. We observe photon assisted tunneling induced by the Joseph-
son oscillators and compare the results with those using an externally operated
microwave source.

1 Introduction

Microwave spectroscopy on quantum dots promises to probe the dynamics of
these few electron systems. Most of the experimental work conducted to date
has been focused on rather simple spectroscopic tools: a microwave signal is
coupled via an antenna or a stripline to the mesoscopic system under test.
The photon-induced current through the dots is measured and allows to probe
the discrete states of the quantum system directly (1), (2), (3). These results
can be described by the Tien-Gordon theory (4) originally developed for a
superconductor tunnel junction and more recent theoretical models (5), (6),
(7). In order to reveal the dynamics of electrons confined in tunnel coupled
dot systems, more intricate spectroscopic tools are required. In the work by
Nakamura et al. (8) it was shown how to monitor a single tunneling Cooper
pair in a superconducting tunnel junction transistor in the time domain. This
spurs the interest in tracing electrons in coupled quantum dots, since in this
case a similar tunnel splitting of the discrete states was found (9), (10).

Here we present a near-field microwave oscillator integrated in a single
low-temperature setup with a coupled quantum dot structure. Integrating
on-chip microwave sources has the advantage of combining advanced spec-
trometers easily with mesoscopic devices. Furthermore, the influence of black-
body radiation is minimized, since all the electrical connections to the outside
world are essentially dc-lines and can thus be heavily filtered (11), (12). As
a microwave source we employ a long Josephson tunnel junction (JTJ) with

D. Reguera et al. (Eds.): Proceedings 1999, LNP 547, pp. 35−44, 1999.
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well-defined emission characteristics. These junctions radiate commonly in
the range from few GHz up to 600 GHz (13). Their typical radiation linewidth
can be as small as 10−6 relative to the emission frequency (14). Recently, this
triggered rapid progress in using these devices in integrated sub-millimeter
wave superconducting receivers (15). The quantum dots are defined in a two-
dimensional electron gas (2DEG) by electron beam written lateral Schottky
gates. The versatility of these devices is the possibility to tune the tunnel
contacts in a wide range. This allows the straight forward realization of tun-
nel coupled quantum dots (’covalent artificial molecule’) or decoupled dots
(’ionic artificial molecule’) (10).

In contrast to the excitation spectrum of real atoms or molecules, the
spectrum of single or even coupled quantum dots reveals a striking difference
in the discrete level structure. For quantum dots it has been shown in a whole
variety of experiments that Kohn’s theorem (16) prevails (17), (18). The the-
orem states that only the center-of-mass (cm) degree of freedom couples to a
spatially homogenous electromagnetic field. In previous studies of excitations
in quantum dots by coupling radiation via antennas only cm excitations were
found. Here we ’move’ the radiation source close to the quantum dots, in an
attempt to observe additional near-field excited modes.

2 Experimental Setup and Sample Characterization

The setup we used is shown in Fig. 1: the Si-chip with the Nb/Al-AlOx/Nb
Josephson junction is glued on top of the quantum dot AlGaAs/GaAs-chip
with photo resist. In the inset of Fig. 1 the quantum dot gate structure used
in this work is depicted: application of an appropiate negative gate voltage
defines two quantum dots in the 2DEG of the AlGaAs/GaAs heterostruc-
ture with an electron density of 1.7 × 1015 m−2 at 35 mK (marked by the
upper white circle in Fig. 1). By variation of the voltages VgA and VgB ap-
plied to the plunger gates denoted in the inset of Fig. 1 the electron con-
figuration of the double dot can be changed. Plotting the current through
the system as a function of VgA and VgB results in the charging diagram of
Fig. 2. Subsequently, we obtain charging energies of the individual dots of
EA

C = e2/2CΣ = 220 µeV and EB
C = 205 µeV, respectively. Thus the ’elec-

tronic’ radii are rA = 400 nm and rB = 430 nm. For the absolute number
of electrons in each dot we find: nA = 850 and nB = 980. Hence, the dots
are rather classical systems in which the resolution of discrete single parti-
cle energies due to the confinement potential is not expected. In the current
measurements the interdot coupling is chosen to be weak (CA−B = 2 aF), i.e.
we see a hexagonal array of points for the charging diagram (19) which cor-
responds to the ’ionic’ coupling limit. All results were obtained in the linear
regime (drain/source bias Vds = 19 µV).

The JTJ we use in this experiment is an overlap Nb/Al-AlOx/Nb long
Josephson junction with dimensions 20 × 400 µm2 (width× length). In the
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Fig. 1. Top view of the circuit: The quantum dots are located in the center of the
Hall-bar (marked by the upper white circle). An AFM micrograph of the gates
forming the double dots is seen in the inset on the upper right side (gA, gB denote
the plunger gates operated in the measurements). The Josephson oscillator is placed
on top of the quantum dot chip and glued to it with photo resist. The lower white
circle indicates the position of the junction itself, while the white arrow represents
the radiation coupling through the GaAs substrate to the quantum dots (see text
for details).
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measurements presented, tuning of the frequency was possible by varying
the JTJ critical current with the applied magnetic field and selecting the
appropriate bias point at a resonant state. When operated in the flux-flow
regime, the JTJ radiation frequencies f = 2eV/h are on the order of 100 –
500 GHz. This is above the Coulomb energy for this particular quantum dot.
We employ a finite magnetic field to operate the junction at a Fiske step of the
current/voltage characteristic, a self-resonant state. The fundamental cavity
resonance frequency of the junction is f = c̄/(2), where c̄ is the Swihart
velocity and  is the junction length.

CB diamond

cut

Fig. 2. Charging diagram of the double quantum dot as a grayscale plot without
microwave radiation (white: I < 0 pA, black: I > 0.5 pA). A small forward bias of
Vds = 19 µV is applied to monitor the current. The two dots are weakly coupled
by the tunnel barrier and produce a periodic lattice with EA

C and EB
C denoting the

charging energies, as marked by the diamond. The two gate voltages VgA and VgB

span the charging diagram. Inset gives a line plot of the direct-current through the
double dot.
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3 Microwave Transport Spectroscopy

In order to characterize the microwave response of the coupled quantum dots
we first studied them with a conventional microwave source. The radiation
was transduced by an antenna upon the gate structure of the quantum dots.
The charging diagram of the double dot with microwave excitation is shown
as a grayscale plot in Fig. 3. The radiation of the far-field source is fixed
at 10 GHz. The sidebands are found on only one side, depending on the
tuning of the barrier transmission coefficients. In measurements on a similar
two-dot device we obtained symmetrically as well as asymmetrically induced
sidebands in the charging diagram (20). However, since we are interested in
the alteration of the microwave coupling by the JTJ it was important to
maintain the tuning with only one sideband. This finally ensures that we can
directly compare the far- and near-field measurements. The inset shows one
of the typical traces from the grayscale plot with the sidebands induced by
the frequency dependent absorption. The induced sidebands are marked by
arrows – the peak height modulation is due to the specific trace taken out
of the charging diagram (marked by the dashed line). A cut along one of the
two periodic resonance lines would yield peaks of similar amplitude. The net
pumping of electrons leads to a reduction of the absolute current value down
to only some 100 fA. Also the noise floor is slightly enhanced by coupling the
radiation.

4 Integrated Sources

When the near-field Josephson oscillator is operated as a source with a typical
emission frequency of f ∼= 10 GHz, we observe charging diagrams as the one
shown in Fig. 4. The JTJ emission frequency was determined by taking the
IV -characteristics. Biasing the JTJ with a current of I = 1 µA we are able
to detect sidebands which resemble the ones induced by the far-field source
(compare insets of Fig. 3 and 4). The power emitted is then on the order
of Pdc ∼ 20 µV× 1µA ≈ 20 pW, where 20 µV is the voltage drop over the
JTJ at 10 GHz. Moreover, the peak broadening is almost identical to the one
determined before.

As seen, the resonances of the current (marked by lines in the plot) and the
induced sidebands (marked by arrows) possess a long term stability. Since the
observed resonances for the near-field as well as the far-field source are almost
identical, we conclude that the photon absorption process only depends on
the shape of the local electrostatic potential. Varying the frequency of the
radiation for such a tunnel coupled dot system results in the well-known
linear relation between the position of the sideband relative to the ground
state and the frequency for the case of weak coupling (10), (20).

In another setup we focused on defining a weak link as a Josephson oscilla-
tor with a modified atomic force microscope tip directly into the Al-contacts
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with radiation

Fig. 3. Charging diagram with an identical scan range as in Fig. 2, but under
microwave radiation by a far-field source at 10 GHz. The sidebands are found on
only one side, depending on the tuning of the tunnel barriers. Inset: Photo current
with the sidebands induced by the frequency dependent absorption. Pumping of
the electrons leads to a reduction of the absolute current value.

forming the Schottky gates (21), (22). This is of great advantage for prob-
ing the microwave response of quantum dots in the absolute near-field limit,
since the photon source is located only 100 nm apart from the tunnel barriers.
Recent examples of the gate structures fabricated are depicted in Fig. 5: As
seen we have chosen two different polarizations of how the radiation emitted
from the junction is impinging on the quantum dots. In the first case (upper
left) the junction is aligned with the direction of transport through the dots,
while it is oriented perpendicular in the second case (upper right). These mi-
crographs were taken with an atomic force microscope prior to the definition
of the weak links. In the lower center part of Fig. 5 one of the junctions is
depicted after scratching the Al layer.

The heterostructure applied in these first measurements is identical to the
one characterized above. In one of the devices similar to the one in the upper
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with JTJ oscillator

Fig. 4. Charging diagram: Josephson oscillator is operated as a microwave source
at f ∼= 10 GHz. The inset exemplifies a single trace from the gray scale plot with
photon-induced sidebands. The peak heights and positions are identical to the plots
obtained with the far-field source (compare Fig. 3).

right part of Fig. 5, an impurity dot below a single gate was formed with a
typical conductance resonance. However, with the source turned on we find a
clear response to the microwave signal. The single resonance trace is changed
into broadened double peak, which is the signature of adiabatic response of
the quantum dot. This is exemplified by the fit to the experimental data
in inset (b) of Fig. 6. Due to the increase in background conductance the
peak heights are not reproduced exactly. In the inset (a) of Fig. 6 a fit to
the conductance resonance by the derivative of the Fermi/Dirac function is
given. This result clearly demonstrates that the weak link is functioning as
a Josephson oscillator. However, within the current resolution we have to
assume that not only a single mode is excited, but a number of emission
frequencies. This would explain the adiabatic response of the junction.
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Fig. 5. Top view of the two types of junctions prior to the weak link definition,
allowing different microwave polarizations to couple to the quantum dots. Shown
below is a scratched Al weak link.

5 Summary

In summary, we find photon assisted tunneling in a weakly coupled double
quantum dot, induced by a near-field source. This source is realized as a long
Josephson junction placed on top of the chip carrying the double dot. We find
nearly identical coupling of the radiation with the near-field source and with
that of a far-field source. We conclude from this comparison that the photon
absorption process depends only on the local electrostatic environment of
the quantum dots. Furthermore, this result confirms that Kohn’s theorem is
valid in the near-field regime, as long as a spatially homogenous radiation field
across the excited electronic system is provided. This we expect to change
when the microwave radiation couples predominantely to one of the barriers,
which can be achieved by a Josephson junction embedded in the dot’s gate
structure as shown.

We like to thank T. Klapwijk, S.J. Allen, and D. Grundler for extended
discussions and Nano-Tools GmbH (http://www.nano-tools.com) for tech-
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Fig. 6. Conductance resonance versus gate voltage of a single dot formed in the
gate structure of Fig. 5. The resonance is modified to a broadened double peak
by the microwave radiation being emitted from the weak link. The two insets give
theoretical fits to the conductance resonance with (a) and without (b) radiation.
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Quantum Chaos and Spectral Transitions
in the Kicked Harper Model
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Abstract. In contrast to bounded systems, quantum chaos in extended systems
may be associated with fractal spectra, metal-insulator transitions due to avoided
band crossings, and spreading wave packets. In this lecture we point out the role of
avoided band crossings for spectral transitions in the example of the kicked Harper
model. We explain the coexistence of localized and extended eigenfunctions off the
critical line as well as changes of the fractal dimension on the critical line. Avoided
band crossings thus provide a common cause for various phenomena observed nu-
merically in the spectrum of the kicked Harper model.

1 Introduction

In the realm of quantum chaos [1,2] the kicked Harper model [3–14] has be-
come a paradigm, because its spectrum may be of any type, i.e., pure point,
absolutely continuous or singular continuous, and because it is easily treated
numerically. In particular, it exhibits phenomena that can only occur in ex-
tended systems like (multi-)fractal spectra, transitions between pure point
and absolutely continuous spectra, and spreading wave packets. As for many
kicked system, the time evolution of wave packets [15] and the spectrum [14]
can be calculated very efficiently by using the Fast Fourier Transform al-
gorithm. Furthermore, as a generalization of the Harper model, the kicked
Harper model possesses a well-studied basis to start from. Here we will study
its spectrum under the aspect of avoided band crossings. In this case, avoided
band crossings are a signature of a non-integrable classical limit analogous to
avoided level crossings in bounded quantum systems which have a discrete
spectrum. As we will see, they provide a unifying explanation for a whole set
of numerical observations made on the kicked Harper model in the past.

Before introducing the kicked Harper model formally, let us recall some
facts about the Harper model. It was first derived to describe electrons mov-
ing in a two-dimensional periodic potential, so-called Bloch electrons, in a
magnetic field directed perpendicularly to the potential plane [16,17]. Its
Hamiltonian is discrete and reads

H =
∑

n

{
V cos (2πσn+ ν) a†nan + a†n+1an + a†n−1an

}
, (1)

where V is the potential strength, σ a measure of the magnetic flux, ν a
phase, and a†n, an are the creation and annihilation operators at site n. In the

D. Reguera et al. (Eds.): Proceedings 1999, LNP 547, pp. 47−61, 1999.
 Springer-Verlag Berlin Heidelberg 1999
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course of the time the Harper model has attracted a lot of attention in the
mathematical community, too, because of its interesting spectral structure.
This structure was first explored in a numerical study by Hofstadter [18] and
because of the form of the gaps the graph in the (σ,E)-plane for V = 2
is now called Hofstadter’s butterfly. The spectrum strongly depends on the
parameter σ: If σ is rational, the potential is periodic and the spectrum
consists of Bloch bands. If σ is irrational, the spectrum is independent of ν,
but one has to distinguish three different regimes depending on the parameter
V : If V < 2 the spectrum is absolutely continuous [19] (loosely speaking it
consists of intervals), for V > 2 it is singular [20,21] (discrete), and for V = 2
singular continuous (fractal) [22–27]. The last property is strongly linked
to the so-called Aubry duality of the Harper model [28]. It roughly states
that the Fourier transform of an eigenfunction of (1) with eigenvalue E is a
solution of the eigenvalue equation of (1) for the eigenvalue 2E/V where V
has to be replaced by 4/V . Note that V = 2 is a self dual point.

One can associate a classical Hamiltonian to the system:

H = 2 cos p+ V cosx, (2)

that is clearly integrable, because it has one degree of freedom. Among other
reasons, the kicked Harper model (KHM) was introduced in order to study the
influence of a classical chaotic limit on a quantum system with a fractal spec-
trum [6]. Its Hamiltonian differs from (2) essentially by a time-dependence
of the potential:

H = K cos p+ L cosx
∞∑

n=−∞
δ(t− n). (3)

As can be seen in Fig. 1 it indeed generates chaotic dynamics. Its quantized
version is most easily described by the one-step time evolution operator

U = exp
{

−iK
h̄

cos p
}
exp

{
−iL
h̄
cosx

}
, (4)

that in contrast to the Hamiltonian (3) is independent of time. Since U is
unitary, the elements of its spectrum may be written in the form exp(−iω),
where ω is called a quasienergy.

In order to establish the link with the Harper model, we rewrite the time
evolution operator (4) using the Baker Campbell Hausdorff-formula:

U = exp
{

−i K
2h̄

[
2 cos p+

2L
K

cosx
]
+O

(
KL

h̄2

)}
. (5)

One thus finds that when K,L → 0 with K/L = const. for each ω in the
quasienergy spectrum of the KHM there is a value E in the spectrum of the
Harper model with V = 2L/K and σ = h̄/2π such that ω = K

2h̄E, see Fig. 2.
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Fig. 1. A cell of the phase space of the classical kicked Harper model for (a) K =
L = 0.1, (b) K = L = 1, (c) K = L = 2, and (d) K = L = 5. For increasing K and
L the stochastic layer grows around the former separatrix until finally the whole
phase space is chaotic. For K = L = 0.1 the stochastic layer is too small to be seen.

Consequently, in this limit the spectral properties of the KHM are the same
as for the Harper model. For larger values of K the following observations
have been made numerically: i) For K = L the spectrum remains fractal,
but its dimension changes [7]. ii) For some K �= L continuous and discrete
spectral regions, i.e., extended and localized eigenfunctions coexist [5,8,13].
iii) For some K �= L even a singular continuous component was inferred [13].
All these observations find a common explanation in the presence of avoided
band crossings in the quasienergy spectrum of the KHM. What avoided band
crossings are and how they change the spectral structure will be explained in
the next section.

a)

0 0.1 0.2κ

-0.05

0.0

0.05

ω

b)

-0.05

0.0

0.05

2h
0.2E

Fig. 2. a) Quasienergy spectrum of the KHM with K = L = κ and h̄ = 2π 34
55 .

b) Energy spectrum of the Harper model with V = 2 and σ = 34
55 . In the given

resolution the eigenvalues e−iω of the KHM and the eigenvalues E of the Harper
model are linked by the relation ω = K

2h̄
E.



50 Karsten Kruse, Roland Ketzmerick, and Theo Geisel

2 Avoided Band Crossings

One prominent feature of quantum systems with a chaotic classical limit and
a discrete spectrum are avoided level crossings [2]. That is, when changing
an external parameter two approaching levels will repel each other. While a
single avoided level crossing is not very interesting, they are in their totality
responsible for the universal statistical properties of such spectra for small
level spacings [2]. If a spectrum contains other spectral components then
one has to consider avoided band crossings, i.e., avoided crossings of entire
spectral regions. Contrary to avoided level crossings even a single avoided
band crossing may have interesting consequences [29], as we will see in the
following.

In the case of a periodic system the spectrum consists of Bloch bands,
each of which may be parameterized by a Bloch phase k. An isolated avoided
crossing of Bloch bands is most easily modeled by the Hamiltonian

H =
(
E′(k) − λ ε

ε E′′(k) + λ

)
, (6)

where the crossing bands are given by E′ and E′′, the external parame-
ter λ linearly shifts the individual Bloch bands and the coupling between
them is given by the constant ε. Note, for simplicity we have neglected a
k-dependence of ε. In Fig. 3 we present the spectrum of (6), where the dis-
persion relations have been chosen to be (a) E′(k) = E′′(k) = − cos k and (b)
E′(k) = −E′′(k) = − cos k. These two cases represent the ‘extreme’ cases of
an overall same dependence of E′ andE′′ on k, i.e., dE′

dk
dE′′
dk ≥ 0 for k ∈ [−π, π]

and an overall opposite dependence of E′ and E′′ on k, i.e., dE′
dk

dE′′
dk ≤ 0 for

k ∈ [−π, π]. The spectrum in Fig. 3a simply resembles that of an avoided
level crossing, but in Fig. 3b a new feature appears: There the two bands are
twisted, i.e., for each band the derivative of energy with respect to the Bloch
phase changes its sign in course of the avoided crossing.

Two subsequent avoided crossings of Bloch bands may be described by

H =


E

+(k) +A− λ ε 0
ε E0(k) + λ ε
0 ε E−(k) −A− λ


 . (7)

Here the rising band E0 tends to cross subsequently the bands E+ and E−,
that are separated by an offset 2A. The spectrum of (7) is shown in Fig. 4
for E0 = − cos(k), E±(k) = cos(k), and four different values of the coupling
parameter ε. For ε < 1 the two avoided crossings are well seperated (a). If the
coupling is increased (b,c) the two twists of the intermediate band approach
each other, such that its width diminishes. Increasing the coupling further
the twists eventually merge and annihilate (d).

The previous model of two subsequent avoided crossings of Bloch bands
describes a periodic system. Thus, the energies can still be described as de-
pending on a Bloch phase and the spectrum remains absolutely continuous.
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where a†n and an are creation and annihilation operators, V ±,0
n are the po-

tential strengths at site n, and t±,0 are the hopping amplitudes which are
assumed to be constant along the chain. The Harper model introduced above
is one example of a one-band Hamiltonian. Other examples are provided by
the Anderson model for disordered systems [30] or the Fibonacci chain model
for quasicrystals [31,32]. In the first case the potential terms are uniformly
distributed random variables, while in the second they are determined by
the Fibonacci sequence ABAAB . . . to be +V or −V . Note that when set-
ting V ±,0

n ≡ 0 operator (8) equals operator (7) with E±,0 = 2t±,0 cos k. In
particular, twists are generated by choosing t± = −t0.

In Fig. 5a the spectrum is shown for the case where H0 is given by the
Harper model and H± describe free particles, i.e., V 0

n = V 0 cos(2πσn) with
σ = (

√
5−1)/2 and V ±n ≡ 0. We have chosen V 0/t0 = 1.5 such that the spec-

tra of the uncoupled Hamiltonians are absolutely continuous and the corre-
sponding ‘eigenfunctions’ are extended; typical examples of eigenfunctions are
presented. Surprisingly, around λ = 0 the eigenfunctions of the middle band
are localized, indicating a pure point spectrum. That is, a metal-insulator
transition has occurred due to the avoided band crossing! For the spectrum
presented in Fig. 5b we have chosen the Anderson model for H0, where the
V 0

n are uniformly disributed random variables in the interval [−V 0, V 0]. It
can be clearly read off from the figure, that avoided band crossings with free
particle bands lead in this case to a decrease in the localization lengths of the
eigenfunctions. Figure 6 demonstrates that the same effect can be found if we
choose for H± the Harper or the Anderson model, too. Indeed, this situation
is more realistic, because the anti-crossing bands are now of the same kind.

Until now the hopping terms were chosen such that t± = −t0 in order
to generate avoided band crossings with twist. What happens in the case
t± = t0? Two examples are shown in Fig. 7, where it can be seen that
avoided band crossings may also lead to a delocalization of eigenfunctions,
i.e., a change from a pure point to an absolutely continuous spectrum, or to
an increase of the localization lengths of the eigenfunctions. The same effects
exist if we choose the Harper or the Anderson model for H±. Furthermore,
the fractal dimensions of a spectrum may change due to an avoided band
crossing, see Fig. 8b.

An intuitive explanation of the localization of eigenfunctions due to avoi-
ded band crossings is provided by reconsidering avoided crossings of Bloch
bands as described by the Hamiltonian (8) with
H±,0 =

∑
n t
±,0
(
a†n+1an + a†n−1an

)
and t± = −t0. Then, around λ = 0,

the intermediate Bloch band has narrowed and is thus described by H0 with
a smaller hopping parameter t̄0. In the general case, around λ = 0 the middle
band is also approximately described by H0 – again, by analogy to the case
considered before, with reduced hopping terms. This leads to an increase of
the ratio V 0

n /t
0 and, if large enough, explains the metal-insulator transition

found for the Harper band and the decrease of the localization lengths of the
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Fig. 5. The spectrum of operator (8) and typical eigenfunctions corresponding
to the spectral regions indicated by the arrows. a) H0: the Harper model with
V 0/t0 = 1.5, H±: free particle with t± = −t0, ε = 1.5, A = 3. b) H0: the Anderson
model with V 0/t0 = 2.5, H±: free particle with t± = −t0, ε = 1.5, A = 3.
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Fig. 6. As Fig. 5. a) H0: the Harper model with V 0/t0 = 1.5, H±: the Harper
model with V 0/t0 = 1.2 and t± = −t0, ε = 1.5, A = 3. b) H0: the Anderson
model with V 0/t0 = 2.5, H±: the Anderson model with V 0/t0 = 2.5 and t± = −t0,
ε = 1.5, A = 3.



54 Karsten Kruse, Roland Ketzmerick, and Theo Geisel

  
 

 E

λ

a)

-2 2

  

 
 
 

|ψ|2
10-2

10-7

10-12

n   

 
 
 

n   

 
 
 

n

  
 

 E

λ

b)

-2 2

  

 
 
 

|ψ|2
10-2

10-7

10-12

n   

 
 
 

n   

 
 
 

n

Fig. 7. As Fig. 5. a) H0: the Harper model with V 0/t0 = 2.5, H±: free particle
with t± = t0, ε = 1.5, A = 3. b) H0: the Anderson model with V 0/t0 = 2.5, H±:
free particle with t± = t0, ε = 1.5, A = 3.

eigenfunctions in the Anderson band, see Fig. 5. In the case of avoided band
crossings without twist the hopping terms should not alter [see Fig. 3] and
thus the observed changes cannot be understood within this simple picture.
For this reason we will now calculate the effective Hamiltonian describing the
middle band for λ = 0 by a perturbation calculation.

To this end we choose the basis such that the operator (8) takes the form

H ′ =




. . . . . .

. . . Wn−1 T
T Wn T

T Wn+1
. . .

. . . . . .




(10)

where

Wn =


V

+
n +A 0 0
0 V 0

n 0
0 0 V −n −A


+ ε


0 1 0

1 0 1
0 1 0


 (11)

and

T =


 t

+ 0 0
0 t0 0
0 0 t−


 . (12)
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Fig. 8. a) Average inverse participation ratio ξ =
∑

n
|φn|4 of the eigenfunctions φ

of the intermediate band of operator (8) at λ = 0 for A = 10 as a function of ε. H0

was chosen to be the Anderson model with V 0 = 5 and t0 = 1 while H± represents
a free particle with t± = −1 (squares) and t± = 1 (diamonds), respectively. Solid
and dashed lines are the results for an isolated Anderson model with the respective
parameters obtained from Eqs. (15) and (18a). b) Same as (a) but for the fractal
(box-counting) dimension of the intermediate band, where H0 was chosen to be the
on-site Fibonacci chain model [31,32] (V 0 = 1.5, t0 = 1, A = 100).

By the similarity transformation S−1
n WnSn with

Sn =




1 − ε2

2A2
ε
A − ε2

2A2

− ε
A 1 − ε2

A2
ε
A

ε2

2A2 − ε
A 1 − ε2

2A2


 (13)

we obtain in second order in ε/A

S−1
n WnSn =


 V̄

+
n 0 0
0 V̄ 0

n 0
0 0 V̄ −n


+O

(( ε
A

)4
)

(14)

where

V̄ 0
n = V 0

n

(
1 − 2ε2

A2

)
+
(
V +

n + V −n
) ε2
A2 . (15)
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The explicit expressions for V̄ ±n will not be used and are therefore not given
here. In order to calculate S−1HS with

S =




. . . . . .

. . . Sn−1 0
0 Sn 0

0 Sn+1
. . .

. . . . . .




(16)

we now have to evaluate S−1
n±1TSn. We obtain

T̄ =


 t̄

+ t+1 t2
t+1 t̄0 t−1
t2 t
−
1 t̄
−


 (17)

with

t̄0 = t0
(
1 − 2

ε2

A2

)
+
(
t+ + t−

) ε2
A2 +O

(( ε
A

)4
)
, (18a)

t±1 =
(
t± − t0) ε

A
+O

(( ε
A

)3
)
, (18b)

t2 =
[
t0 +

1
2
(
t+ − t−)

]
ε2

A2 +O
(( ε
A

)4
)
. (18c)

The non-diagonal terms t2 give a correction of the order of ε4/A4 to the
potential terms coupled by them, because the eigenvalues of(

V̄ +
n t2
t2 V̄ −n±1

)
(19)

are

V̄ +
n +

[
t0 + 1

2 (t
+ − t−)]2

V +
n − V −n±1

ε4

A4 , (20a)

V̄ −n±1 −
[
t0 + 1

2 (t
+ − t−)]2

V +
n − V −n±1

ε4

A4 . (20b)

The effects of the terms t±1 are determined by considering the coupling of V̄ 0
n

and V̄ +
n−1 +A. In lowest non-vanishing order of ε2/A2 the correction is given

by (
t+ − t−)2 ε2(

V̄ +
n−1 + V̄ 0

n +A
)
A2
. (21)

Being of the order of ε2/A2 it cannot be neglected, a priori. However, the
prefactor is of the order of 1/A. Since A had to be chosen not too small as
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to seperate well the two falling bands, this term can thus also be neglected.
Figure 8 shows that the results of the perturbation calculation are in good
agreement with numerical results.

The effects found in the three-band model can also be found in single
avoided band crossings. In that case a change from absolutely continuous to
pure point or vice versa will perhaps occur only in a part of a band, but in
principle all of the other effects described above may show up. How can this
be described? In fact, avoided crossings of two bands fit in the three-band
model by choosing a small value for the offset parameter A. Then, however,
the perturbation approach is no longer useful. It should also be noted, that
isolated avoided band crossings are rather the exception than the rule and
further studies are needed to investigate the case of non-isolated crossings.

3 The Spectrum of the Kicked Harper Model

Now we come back to the spectrum of the kicked Harper model. Let us first
note that its time evolution operator U (4) is periodic in x. Therefore, the
eigenfunctions are of the form φ(x) = eiθxxuθx(x) with uθx(x+ 2π) = uθx(x)
and U can be represented as an infinite matrix depending on the Bloch phase
θx. This phase corresponds to the phase ν in the Harper Hamiltonian (1) and
will be fixed to be zero in the following. We have stated already in section
1 that for K,L → 0 with K/L = const. the spectrum of the KHM is given
by the Harper spectrum. Concerning the properties (i)-(iii) it is already clear
from the analysis in the preceding section that they could all be due to avoided
band crossings. But why should they appear in the quasienergy spectrum of
the KHM? For small values of K and L the quasienergies are proportional
to the parameter K. Quasienergies are defined modulo 2π only, such that
some bands will necessarily approach each other when K is increased (and
K/L kept fixed). Since the classical limit of the KHM is non-integrable, the
expected crossings of bands will be avoided. In Fig. 9 it can be clearly seen
that there are indeed avoided band crossings – with and without twist.

3.1 The case K = L

In Ref. [6] the metamorphosis of Hofstadter’s butterfly due to classical chaos,
i.e., whenK = L is increased, was investigated. It was found that the big gaps
are closing and that the hierarchical band structure of the spectrum vanishes
on large scales. It remains fractal on small scales presumably because of a
duality property analogous to the Aubry duality in the Harper model. Its
fractal dimension D0, however, changes. In Ref. [7] an increase of D0 with
K = L has indeed been reported. In the light of avoided band crossings the
reason is obvious: due to avoided band crossings the fractal dimension will
locally change as it was the case for the three-band model for a ‘Fibonacci-
band’, see Fig. 8. In some regions it will increase, in others it will decrease.
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Fig. 9. Detail of the quasienergy spectrum of the KHM for K/L = 1
3 and h̄ = 2π 34

55 .
Several avoided band crossings can be seen – most of them have twists.

Since the spectrum as a whole has a fractal dimension equal to the largest
‘local’ D0, its value will increase.

3.2 The case K �= L

For a given value of the potential strength the eigenfunctions of the Harper
model are either all localized (V > 2) or all extended (V < 2). Therefore the
same holds for the eigenfunctions of the KHM in the cases L > K and L < K,
resp., as long as the values of K and L are small. By investigating the dynam-
ics of wave packets the coexistence of localized and extended eigenfunctions
for larger K �= L was revealed [5,8]. Later this was confirmed by Borgonovi
and Shepelyansky [13] who studied the scaling of the inverse participation
ratio of the eigenfunctions with system size when approaching an irrational
value of h̄/2π by rationals. Again this effect is due to the now familiar avoided
band crossings, see Fig. 10. The bands of the quasienergy spectrum under-
going avoided crossings are approximately given by the Harper model [33].
Some of these crossings change the effective potential strength such that
metal-insulator transitions are induced.

The data of Ref. [13] also convincingly led to the conclusion of the exis-
tence of critical eigenfunctions and therefore of a singular continuous spectral
component. However, by using the Lanczos algorithm, that permits to treat
much larger systems sizes than those considered in Ref. [13], it was concluded
later that spectral regions are either pure point or absolutely continuous [14].
How can one reconcile these results? When increasing or decreasing the poten-
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Fig. 10. Metal-insulator transitions in the kicked Harper model upon increasing
the parameter K with K/L = 7/4 and h̄/2π = 8/61, a rational approximant of
1/(7+σG), where σG = (

√
5− 1)/2 is the Golden Mean. For small K the spectrum

is, up to a scaling, given by the Harper model and all eigenfunctions are extended
as expected, for larger K extended and localized eigenfunctions coexist. Typical
examples are shown. As can be seen on top, the classical phase space shows chaotic
dynamics, which leads to the avoided band crossings.

tial strength to approach V = 2 in the Harper model, its spectrum, although
it is known to be either pure point or absolutely continuous, looks fractal
on some scales. The closer one is to the transition point, the deeper one has
to dwell into the spectrum in order to determine its type. The same holds
for the eigenfunctions: the closer they are to the transition point the larger
the system size has got to be to reveal their localization properties. For the
KHM the same is true. Due to avoided band crossings there are many tran-
sition points where eigenfunctions change from localized to extended or vice
versa. Close to them eigenfunctions seem to be critical on many scales and
the spectrum, too, has a hierarchical structure on many scales, see Fig. 11.
However, unlike in the Harper model, transitions occur for many different
values of K (K/L = const.) and for one specific value of K and L the transi-
tion points are expected to form a set of measure zero, because a transition
line parallel to the energy axis is very unlikely. Nevertheless note, that even
for the resolution obtained by using the approximant of Fig. 11 some regions
show a hierarchical structure on all scales. But for a still larger approximant
they should lose this feature. Therefore, we expect that the spectrum has no
singular continuous component for K �= L.
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Fig. 11. Quasienergies ω of the KHM for K = 4, L = 7 and h̄ = 2π6765/51536
vs. the Bloch phase θy. The latter appears, because we have used a rational ap-
proximant of h̄/2π, resulting in a periodic system. Several successive zooms show
at first a self-similar structure, that vanishes later. The isolated points are ‘ghosts’
produced by the Lanczos algorithm.
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In conclusion, we have analyzed the kicked Harper model as a paradigm
for extended classically chaotic quantum systems. In particaluar, we have
shown that avoided band crossings provide a unified explanation of various
phenomena that had been observed numerically in the past.
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Quantum Chaos Effects
in Mechanical Wave Systems

Stephen W. Teitsworth
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Abstract. Quantum chaos effects, such as wavefunction scarring and Wigner-
Dyson level-spacings distributions, have been observed in a number of analogue
experimental systems, including microwave cavities, water surface waves, acoustic
cavities, and mechanical elastic wave systems. We describe experiments on two
such mechanical wave systems, 1) elastic membranes - i.e., drumheads - which obey
an underlying Helmholtz equation, and 2) thin metal plates undergoing transverse
vibrations which are described by a biharmonic wave equation. For the elastic mem-
brane system we have extensively studied the spectral statistics of both circular and
stadium-shaped geometries with clamped boundary conditions; limited information
about the spatial structure of high order eigenmodes has also been obtained. In plate
experiments, a thin stadium-shaped plate is vibrated mechanically subject to fully
clamped boundaries. High order eigenmodes are imaged using time-averaged holo-
graphic interferometry and show clear evidence of scarring. Adopting an eikonal
form of the solution along classical trajectories of the stadium billiard and treat-
ing the problem exactly at the boundaries, we have obtained and experimentally
verified novel quantization conditions for the observed modes.

1 Introduction

Qauntum chaos effects, which are manifested in spatial properties of wave-
functions and the statistics of energy spectra, have been reported over the last
ten years for a number of experiments on classical wave systems that obey
wave equations with identical or similar form to the Schrödinger equation
that describes a point particle moving in two or three dimensions. These are
called analogue experiments and most often they model quantum properties
of chaotic billiards, i.e., point particles moving in two- or three-dimensional
boxes that have appropriately irregular shape to guarantee that the classical
motion is chaotic. Two examples are the Bunimovich stadium and the Sinai
billiard in two dimensions (see, e.g., Berry 1987). The basis for this analogy
is the Helmholtz equation which, with correct boundary conditions, serves
as the time-independent wave equation for many classical wave problems,
and also serves as the time-independent Schrödinger equation for a particle
in a box. Numerical studies of the Helmholtz equation have confirmed the
validity of random matrix theory - i.e., the Gaussian Orthogonal Ensemble
(GOE) - in describing the statistics of the energy spectra (Berry 1987), as
well as the presence of amplitude build-up in high order eigenfunctions along
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the unstable periodic orbits of the corresponding classical billiard (i.e., scars)
(Heller 1984). Several analogue experiments that are exactly modelled by
the Helmholtz equation have reported quantum chaotic spectral and spatial
properties including the electromagnetic field modes of quasi-two-dimensional
microwave cavities (Stöckmann and Stein 1990; Sridhar 1991; Gräf et al. 1992;
Stein and Stöckmann 1992), stationary capillary waves on water (Blümel et
al. 1992), and three-dimensional acoustic resonances in water-filled cavities
(Chinnery and Humphrey 1996).

More recently, researchers have explored possible extension of quantum
chaos methods to the high frequency limit of wave problems with modes
that are not exactly described by the Helmholtz equation. The statistical
properties of spectra as predicted by random matrix theory have since been
confirmed in experiments on elastic waves in three-dimensional metal blocks
(Delande et al. 1994; Ellegard et al. 1995), and in the electromagnetic modes
of three-dimensional microwave cavities (Deus et al. 1995; Alt et al. 1996). In
both of these cases, the vectorial nature of the classical fields implies that the
eigenmodes cannot generally be described with a scalar Helmholtz problem.
Very recently, scar-like phenomena have been reported for the electromag-
netic modes of three-dimensional microwave cavities; however, the role of
underlying classical periodic orbits on the observed amplitude build-up is
not fully understood (Dörr et al. 1998).

In this paper, I describe the methods and results of analogue experiments
on two types of mechanical wave system - drumheads and plates - that I have
carried out with my students at Duke University over the past several years.

2 Drumhead Experiments

The small-amplitude transverse vibrational modes of an ideal elastic mem-
brane are described by the following equation:

(∆+
ω2

v2 )u(x, y) = 0, (1)

where u(x, y) denotes the transverse displacement and ω is the frequency.
The quantity v denotes the wave velocity and is defined by v =

√
T/ρ, where

T is the membrane tension and ρ is the mass per unit area. This wave velocity
appears in the dispersion relation for waves on the membrane, ω = vk where
k denotes wavevector. Note that because the dispersion relation is linear, one
must square the frequencies to make a comparison with energy spectra of an
equivalent quantum system. Furthermore, we assume that u(x, y) is zero on
the boundary.

The membrane experiment was constructed as follows. We started with a
commercially available circular drumhead (made for a bass drum) of diame-
ter 72.4 cm, and made of mylar sheet with thickness 0.023 cm and areal mass
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density 0.0316 gm/cm2. The drumhead assembly included a circular bound-
ary attachment for mounting and tensioning. The approximate tension in
the membrane used in our experiments was 94.1 N/cm. This assembly was
then stretched over a metal frame molded into the shape under study. These
frames were made of Al plates (typically 0.3 cm thickness) that were thin
enough to bend into the desired shape, and thick enough to retain their
rigidity as the membrane was stretched over them. We studied two frames
- one in the shape of quarter circle with radius 35 cm, and the other in the
shape of a quarter stadium with radius 27 cm and straight section length
10 cm (Thurstone 1992). These dimensions were selected so that the areas
of the two shapes were identical which implies similar asymptotic density of
modes per unit frequency. The drumhead was driven with a speaker modi-
fied so that the voicecoil was attached to hollow steel rod that was pressed
against the membrane itself. A small piece of felt was used at the rod tip
to prevent scratching the membrane surface. The speaker was driven by a
variable frequency sine-wave that was amplified. Signals were detected using
a phonograph cartridge (inductive pickup) which was sensitive to velocity.
The output of the cartridge was amplified and filtered before being fed to
an HP3561 signal analyzer which performed a fast-Fourier transform of the
response. Using this method, resonances were measured in the range 50 to
1800 Hz.

Due to rather low quality factors inherent in this experiment - mostly
due to air resistance, we were able to measure approximately 50 resonant
frequencies for each shape. These frequencies were then squared to get a
set of effective energies - the spectrum of our drumhead. From this set we
computed level-spacings histograms, spectral rigidity, and Fourier transform
of the spectrum (Berry 1987; Stöckmann and Stein 1990) for both quarter
circle and quarter stadium. For the quarter stadium we found that the level-
spacings distribution could be fit to a Wigner-Dyson distribution - which
follows from the GOE - with a chi-square statistic of 0.8, while attempting
to fit to the Poisson distribution (expected for an integrable system) gave a
chi-square of 1.4. The measured spectral rigidity was also quite close to GOE
prediction which grows logarithmically with energy spacing.

For the quarter circle, the level-spacings histogram was fit to the Wigner-
Dyson distribution with a chi-square of 0.8, and to the Poisson distribution
with a chi-square of 0.4. Spectral rigidity results were more ambiguous in
this case: for small energy spacing they were quite close to the linear depen-
dence expected for integrable systems, but as the energy spacing increased
there were significant deviations towards sublinear behavior. This reflects the
experimental difficulty of making a system that is exactly integrable in the
classical limit. For example, a small bump or other imperfection in the cir-
cle boundary could be expected to yield a billiard with classically chaotic
behavior.
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We also studied the Fourier transform of the spectra for both drumhead
shapes. In the case of the quarter stadium, strong peaks were identified cor-
responding to bouncing ball, rectangular, bow-tie, and hexagonal orbits from
the underlying classical billiard. In the case of the quarter circle, the spec-
trum did not show isolated strong peaks, presumably reflecting the absence
of isolated periodic orbits.

The vibrational modes were imaged using two methods. The first method
was inspired by the technique attributed to Chladni in his early study of plate
vibrations: finely chopped pine needles were sprinkled over the drumhead sur-
face as it vibrated and these moved quickly to the nodal lines. (Pine needles
were used because they are relatively insensitive to the build-up of static
electricity on the insulating membrane.) This technique gave clear nodal line
images only for low-order modes. The results showed a clear tendency for
nodal lines of the quarter stadium to follow apparently random patterns and
to repel one another. The second imaging method involved manually scan-
ning the phonograph needle detector in a raster pattern across the entire
membrane and recording the resonant response at each point. This technique
provided a clear contour plot of the amplitude response. A particular mode
imaged with this technique at 746 Hz showed strong amplitude build-up along
the outer edges of quarter stadium, as one would expect for a “whispering
gallery” mode (Thurstone 1992). For collecting many images in a short time,
optical imaging is much better than the rastering scheme above. Unfortu-
nately, optical imaging based on interference of light waves (i.e., holography)
is not feasible for real drumheads because the vibrations have much too large
an amplitude. However, in metal plates and blocks, the transverse vibrational
amplitudes are often on the order of optical wavelengths.

3 Plate Experiments

The transverse vibrational waves of a thin metal plate provide an important
example of a wave system for which the stationary modes are not exactly
described by a scalar Helmholtz equation: the plate equation contains fourth-
order spatial derivatives. In a recent numerical study, the computed asymp-
totic spectrum for a fully clamped thin plate was shown to possess statistical
properties predicted by random matrix theory; furthermore, strong evidence
was found for scarring in some of the high frequency modes (Legrand et al.
1992). More recently, a general theory of scarring and spectral properties has
been developed by Bogomolny and Hughes (1998) for plate vibrations.

The equation governing the driven plate system that we study experimen-
tally can be written in the form (Starobin and Teitsworth 1999):

ρ
∂2ψ

∂t2
= −D

h
∆2ψ − ρ

τ

∂ψ

∂t
+ fωδ(r − rs) cos(ωt), (2)
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where ψ is the vibrational amplitude, ρ is the mass density of the plate, h
is the plate thickness, rs is the position where the driving force (described
below) is applied, fω is the amplitude of the driving term, and D denotes the
flexural rigidity. The effects of damping are described by lumping all losses

into a velocity-dependent damping term of the form −ρ

τ

∂ψ

∂t
, where τ (τ � T )

is the characteristic damping time, T is the oscillation period. In the limit of
very short wavelengths and neglecting the damping we obtain the dispersion
relation for plate waves (Landau and Lifshitz 1970):

f =
1
2π

√
Eh2

12ρ(1 − σ2)
k2 =

D

2πρh
k2 ≡ Ck2, (3)

where E is the Young’s modulus and σ is Poisson’s ratio.
Also, in the limit of short wavelengths we expect that an eikonal ap-

proach will provide a good description of solutions. On this basis, we have
derived a simple and useful quantization condition for the eigenmodes of a
fully clamped plate that can be associated with periodic orbits of the under-
lying classical system (Starobin and Teitsworth 1999). In particular, for orbit
Γ with N boundary reflections we have:

k‖L− 2
N∑

i=1

arccos



√

1 + sin2 αi

2


 = 2πn, (4)

where k‖ is a wavevector component along the periodic trajectory, L is the
total orbit length, α is the reflection angle measured relative to the bound-
ary normal vector, and n is an integer “quantum” number. It is interesting
to note that (4) contains angle-dependent phase shifts associated with each
boundary reflection. The specific form of the phase shift depends on details
of the boundary conditions. This expression for the phase shift is obtained
by matching incoming and outgoing plane wave solutions (Bogomolny and
Hughes 1998).

For our experiment, we have studied a stainless steel plate of thickness
h = 0.305 mm. Using (3) we obtain the value of C = 767 cm2sec−1. The
plate is in the shape of a full stadium and consists of a square central section
of side 8.00 cm and two semi-disks on each side of radius R = 4.00 cm. Con-
tour plots of vibrational amplitude for individual modes are obtained using
the technique of time-averaged holographic interferometry (Vest 1979; Moyar
1994). To achieve a fully clamped boundary condition (i.e., both amplitude
and its normal derivative tend to zero at the boundary), the plate edges were
carefully epoxied to a massive aluminum support. To drive the plate vibra-
tions harmonically, we use a modified audio speaker (frequency range from
50 Hz to 12 kHz) which is coupled to the plate via a thin steel rod which
acts as the driving needle. We have modelled this driving force as harmonic
in time and δ-like in space in (2) above. A scannable phonograph needle is
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used to monitor the amplitude response of the plate at various positions.
Measurements are carried out in the frequency range 100 Hz to 12 kHz. The
fundamental frequency of the plate is approximately 200 Hz.

Within the frequency range 7− 8 kHz, five vibrational resonances are de-
tected at 7272 Hz, 7443 Hz, 7552 Hz, 7622 Hz, and 7874 Hz. Two of these
modes - at 7443 Hz and 7622 Hz - reveal prominent scarring in their holo-
graphic interferograms (Starobin and Teitsworth, 1999). The 7443 Hz mode
shows prominent scarring by a “bouncing ball” trajectory across the width
of the stadium plate; inspection of the image shows that there are 7 antinode
pairs as one traverses the complete periodic trajectory. The 7443 Hz mode
also shows some scarring by a V shaped orbit that has its vertex at the center
of the top straight section of the plate boundary and which passes through
both semi-disk centers. A total of 17 anti-node pairs are crossed as the com-
plete V shaped orbit is traced. The 7622 Hz mode shows prominent scarring
effects due to a rectangular orbit that follows along the edges of the plate
rather closely. In this case, we find 16 antinode pairs along the orbit. The
7622 Hz also appears to be scarred by the same V shaped orbit that appears
in the 7443 Hz mode. For this reason, we have tentatively associated the V
orbit with the 7552 Hz mode (Starobin and Teitsworth 1999).

We can use (4) to estimate the frequency of the scarred modes. The quan-
tum number n is associated with the number of antinode pairs as determined
above. For the bouncing ball trajectory with n = 7 and appropriate α values
(i.e., there are two bounces such that α1 = α2 = 0), we obtain k‖ = 295 m−1.
Then, we use (3)to estimate a frequency f = 6675 Hz, somewhat less than
the measured value of 7443 Hz. This discrepancy results from the fact that in
using (3) we have neglected the contribution of the wavevector perpendicular
to the orbit, and this is non-negligble for the relatively low-order modes we
are studying. Including this “lateral confinement” contribution gives a much
better agreement between the predicted and measured frequencies (Starobin
and Teitsworth 1999). For the V shaped orbit we have n = 17 and α values are
given by α1 = α3 = π/4 and α2 = α4 = 0. Following the same procedure as
before we estimate a frequency of f = 6463 Hz, again somewhat less than the
measured value. Finally, for the rectangular orbit, there are four bounces each
with αi = π/4. Using a quantum number of n = 16, we estimate a frequency
of f = 5644 Hz, considerably less than the measured frequency of 7662 Hz.
For the rectangular orbit, the lateral confinement effects are expected to be
strongest, because the eigenfunction is confined to a rather narrow strip that
hugs the plate perimeter (Starobin and Teitsworth 1999).

We have observed scarring effects in both aluminum and steel plates
that have non-stadium boundary shapes, but which are still predicted to
be chaotic, e.g., one-quarter of a “bow-tie” shape. In contrast, we studied the
spatial properties of vibrational modes in clamped plates with a boundary in
the shape of a quarter circle expected to correspond to an integrable billiard;
in this case no significant scarring of isolated periodic orbits was found (Chen
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1996). We measured spectral statistics for all of the plates, but the present
experimental set-up makes it difficult to obtain complete and accurate results
due to missed modes and non-negligible effects of the driver position on the
measured spectrum.
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Stöckmann H. J., Stein J. (1990): Phys. Rev. Lett. 64, 2215
Thurstone C. (1992): Undergraduate thesis, Duke University
Vest C. M. (1979): Holographic interferometry (Wiley, New York)



Magnetoconductance
in Chaotic Quantum Billiards

E. Louis1 and J.A.Vergés2

1 Departamento de F́ısica Aplicada, Universidad de Alicante, Apartado 99, E-03080
Alicante, Spain

2 Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones
Cient́ıficas, Cantoblanco, E-28049 Madrid, Spain

Abstract. Magnetotransport through quantum chaotic billiards is investigated by
means of new model which incorporates chaoticity by introducing Anderson disorder
on a number of sites (either at the surface or within the bulk) proportional to
the linear size of the system L. In particular weak localization effects and the
selfsimilarity of magnetoconductance fluctuations are studied. The results indicate
that the controlling parameter in both phenomena is W/L, where W is the leads
width.

1 Introduction

Transport properties of mesoscopic systems is a subject of much current in-
terest (Datta (1995)). One of the issues that attracts a great deal of attention
is the identification of signatures of chaos in systems whose classical counter-
parts show chaotic behavior (Guhr et al. (1998)). Present technology permits
the fabrication microcavities with reproducible shapes, thus allowing to ob-
tain either regular or chaotic quantum dots. Some outstanding differences
between regular and chaotic cavities have already been found, the most re-
markable of which is the shape of the weak localization peak observed at
magnetic fluxes below one flux quanta (Chang et al. (1994)). In this work we
discuss several aspects of transport through quantum cavities by means of a
new model which incorporates chaoticity by introducing Anderson impurities
at a number of sites proportional to the linear size of the system. The latter
condition guarantees the ballistic character of the system no matter how big
it is.

2 Theoretical Methods

2.1 Lattice Model Hamiltonian

The quantum dot is described by means of a tight-binding Hamiltonian with
a single atomic level per lattice site on L × L clusters of the square lattice:

D. Reguera et al. (Eds.): Proceedings 1999, LNP 547, pp. 69−78, 1999.
 Springer-Verlag Berlin Heidelberg 1999
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Ĥ =
∑

m,n ∈ IS

εm,n|m,n >< m,n|

−
∑

<m,n;m′,n′>

tm,n;m′,n′ |m,n >< m′, n′|, (1)

where |m,n > represents an atomic orbital on site (m,n). Indexes run from
1 to L, and the symbol <> denotes that the sum is restricted to nearest-
neighbors. Using Landau’s gauge the hopping integral is given by,

tm,n;m′,n′ = t exp
(
2πi

m

(L − 1)2
Φ

Φ0

)
, m = m′

= t, otherwise (2)

where (L − 1)2 is the area of the cluster and Φ0 = h/e the quantum of
magnetic flux. The hopping integral t will be used as the unit of energy,
whereas lengths will be measured in terms of the lattice constant a (t=1 and
a=1). The energy εm,n of atomic levels at impurity sites (IS) is randomly
chosen between −∆/2 and ∆/2, whereas at other sites εm,n = 0. Impurities
were taken on a number of sites proportional to L. They were distributed
either at the surface as in Cuevas et al. (1996) or within the bulk (either
randomly or forming a cross). It should be noted that the ballistic character
of the cavity and its chaoticity are not affected by the spatial distribution
of the impurities as long as their amount remains proportional to L (Vergés
et al. (1999)). Some differences between surface and bulk impurities may,
however, appear in the magnetoconductance at medium/high magnetic fields
(see Section 4).

2.2 Kubo Formula for the Conductance

The conductance (measured in units of the quantum of conductance G0 =
e2/h) was computed by using an efficient implementation of Kubo formula. A
detailed description of the method can be found in (Vergés (1999)), whereas
applications to mesoscopic systems are described in (Vergés et al. (1998)). For
a current propagating in the x–direction, the static electrical conductance is
given by:

G = −2
(
e2

h

)
Tr
[
(h̄v̂x)Im Ĝ(E)(h̄v̂x)Im Ĝ(E)

]
, (3)

where Im Ĝ(E) is obtained from the advanced and retarded Green functions:

Im Ĝ(E) =
1
2i

[
ĜR(E) − ĜA(E)

]
, (4)

and the velocity (current) operator v̂x is related to the position operator x̂
through the equation of motion.
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Fig. 1. Magnetoconductance as a function of energy in 137 × 137 chaotic cavities
with leads of width 17 connected at opposite corners (broken lines) or contiguous
corners (continuous lines) of the dot. Chaoticity was induced by introducing dis-
order (∆ = 6, see text) at all surface sites but those at the leads entrance sites.
a) Magnetoconductance at zero magnetic field, and b) Increment in the magneto-
conductance at magnetic fluxes Φ = 0.2Φ0 (thin lines) and Φ = 0.6Φ0 (thick lines).
The results were averaged by convolving with the derivative of the Fermi function.

Numerical calculations were carried out connecting quantum dots to semi-
infinite leads of width W in the range 1–L. The hopping integral inside the
leads and between leads and dot at the contact sites is taken equal to that in
the quantum dot. Assuming the validity of both the one-electron approxima-
tion and linear response, the exact form of the electric field does not change
the value of G. An abrupt potential drop at one of the two junctions provides
the simplest numerical implementation of the Kubo formula Vergés (1999)
since, in this case, the velocity operator has finite matrix elements on only
two adjacent layers and, consequently, Green functions are just needed for
this restricted subset of sites. In particular, the velocity operator is given by:

ih̄vx = −
W∑

j=1

(|lc, j >< 1, j| − |1, j >< lc, j|) (5)
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Fig. 2. Constant b in Eq. (6) as a function of L/W , where L is the linear size of the
cavity and W the leads width, for chaotic cavities with ∆ = 6 and leads connected
at contiguous corners of the dot. The results correspond to L in the range 27–137,
and W=9, 17 and 23 (the size of the symbols is proportional to W ). The fitted
straight line is: b = −1 + 1.67L/W . The inset shows a vs. b in Eq. (6) for all
combinations of L and W . The straight line is a = −0.05 + 0.18b. The results were
obtained from fittings of the magnetoconductance averaged over the whole band.

where (|lc, j > are the atomic orbitals at the left contact sites nearest neigh-
bors to the dot. Green functions are calculated using standard methods.

3 Weak Localization Effects

Several experimental studies of magnetoconductance in quantum dots indi-
cate that, at low magnetic fields (typically below one flux quantum), the con-
ductance increases monotonically with the field (Marcus et al. (1992), Chang
et al. (1994), Taylor et al. (1997), Sachrajda et al. (1998)). The effect has
been investigated theoretically (Chang et al. (1994), Guhr et al. (1998)) and
related to a similar behavior observed in disordered metallic conductors in
the diffusive regime that is commonly referred to as weak localization (Datta
(1995), Efetov (1997)). In chaotic cavities the increment in the magnetocon-
ductance as a function of magnetic flux Φ is given by,
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Fig. 3. Magnetoconductance versus magnetic flux in 97 × 97 regular dots with
leads of width 9 (lower curve), 25 (middle curve) and 57 (upper curve) connected
at opposite corners of the dot. The results correspond to the energy E = −π/3.

δG = G(Φ) − G(0) =
aΦ2

1 + bΦ2 (6)

where the conductance and the magnetic flux are given in units of their re-
spective quanta, G0 = e2/h and Φ0 = h/e. The constant b gives the critical
flux at which the time–reversal symmetry is effectively destroyed, Φc = 1/

√
b.

The supersymmetric σ–model predicts that constants a and b should be in-
versely proportional to the number of channels Nch that contribute to the
current (Efetov (1997)),

b ∝ D0

Nch
∝ L

Nch
(7)

where L is the linear size of the cavity. The size dependence arises from the
expression for the diffusion coefficient D0 = vF l/2, where vF is the Fermi
velocity and l the elastic mean free path, and from the fact that in a two–
dimensional ballistic system, l ∝ L (Louis et al. (1997)). The two constants
a and b are proportional to each other. In particular random matrix theory
gives,
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a

b
=

Nch

4Nch + 2
(8)

Random matrix theory cannot reproduce, however, the size dependence pre-
dicted by the supersymmetric σ–model.

Results for the magnetoconductance increment (referred to its value at
zero field) at Φ= 0.2 and 0.6 as a function of energy are shown in Fig. 1. In
order to smooth out fluctuations, the results were convoluted with the deriva-
tive of the Fermi energy to simulate finite temperature, with kT = 200δE,
δE being the average level spacing (8/L2). The upper panel of the Figure
shows the conductance at zero field averaged in the same way. The results
clearly indicate the presence of the weak localization effect for all energies.
On the other hand, no monotonic relationship between the magnetoconduc-
tance increment and the conductance at zero field (or the number of open
channels) can be noted. This suggest that the number of channels may not
be a relevant parameter as far as the weak localization effect is concerned.
Similar results were obtained for leads connected either at contiguous or at
opposite corners of the dot.

The Lorentzian shape of the weak localization peak in chaotic quantum
dots has been investigated in more detail. Calculations were carried out for
linear sizes of the cavity in the range L=27– 137, and leads of width W=9,
13 and 17, connected at contiguous corners of the dot. The results for the
constants a and b of Eq. (6) are shown in Fig. 2. As no monotonic dependence
on the Fermi energy was found, the fittings were done on averages of G over
the whole energy band and in the flux range where G follows a Lorentzian
(approximately from 0 to 1 flux quanta). Although the numerical results show
an appreciable dispersion, they indicate that both constants are proportional
to L/W . While the dependence on L agrees with Efetov (1997), the leads
width W replaces the number of channels in Eq. (7). This indicates that
what matters as far as the shape of the weak localization peak is concerned
is the geometrical ratio W/L rather than the actual conductance (number of
open channels) of the system. On the other hand a is proportional to b with
a slope ≈ 0.2, not far from the random matrix result (in the range 1/6–1/4).

4 Selfsimilar Magnetoconductance Fluctuations

Conductance fluctuations in quantum dots is the subject of much current in-
terest (See, for example, Marcus et al. (1992), Taylor et al. (1997), Sachrajda
et al. (1998), Ketzmerick (1996), Guhr et al. (1998)). Experimental evidence
indicates that the graph of conductance — versus the applied magnetic field
have a selfsimilar character (Taylor et al. (1997), Sachrajda et al. (1998)).
More recently, it has been observed that magnetoconductance fluctuations
have a fractal character with a fractal dimension which decreases with the
gate voltage applied to the cavity (Sachrajda et al. (1998)). The effect of the
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latter is to decrease the potential well experienced by the carriers (soft–wall
potential).

0.0 0.2 0.4 0.6 0.8 1.0
W/L

 1.0

 1.2

 1.4

 1.6

 1.8

 2.0

D

Fig. 4. Fractal dimension of magnetoconductance fluctuations, versus the ratio
W/L, where W is the width of the leads, and L the linear dimension of the system.
The size of the circles is proportional to the system size. The results correspond reg-
ular (filled circles) and chaotic (empty circles) cavities of linear sizes L = 47, 97, 197.
For chaotic cavities ∆=6 was used and the impurities were distributed on a cross
centered in the cavity.

These experimental findings seem in agreement with theoretical studies
which predict a selfsimilar character of conductance fluctuations in mixed
phase space systems (Ketzmerick (1996)). In mixed systems the distribu-
tion of enclosed areas larger than A follows a power law P (A) ∝ A−γ .
A semiclassical argument (Ketzmerick (1996)) allows to conclude that the
change in the conductance due to a small change in the magnetic field
∆G = G(E,B +∆B) −G(E,B) is a random variable with zero mean and a
variance given by:

〈(∆G)2〉 = (∆B)γ (9)
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Random processes having such a variance and zero mean are known as frac-
tional Brownian motion its fractal dimension being D = 2 − γ/2. We have
investigated how D varies with the degree of opening of the system which
we have tuned by changing the leads width W . The results indicate that D
decreases as the opening increases (increasing W ) in line with Sachrajda et
al. (1998) measurements.

The effect of the leads width W on magnetoconductance fluctuations is
illustrated in Fig. 3. As W decreases the graph becomes more noisy mainly
due to the reduction of the momentum constraint. This applies to cavities
with or without disorder and independently of other parameters of the model
(energy, leads configuration, ...). For large W and above a given flux, the con-
ductance coincides with that obtained forW = L (a case without interference
effects). In the latter case G decreases stepwise, each step (of one conductance
quantum) being a consequence of transversal modes successively crossing the
Fermi energy.

In Fig. 4 we plot the fractal dimension for three cluster sizes versus the
ratio W/L. The collapse of the numerical results indicate that the relevant
parameter is in fact the ratio W/L. D monotonically decreases from 2 to 1
as W/L increases from 1/L to 1. In the latter case we do not obtain D = 1
for regular cavities due to numerical inaccuracies. Our results clearly show
that results for D greater than 3/2 are possible, in open contradiction with
the remarks made in Sachrajda et al. (1998), and with the fractal dimension
derived from Eq. (9), namely, D = 2 − γ/2, if the bounds for γ suggested
by those authors, 1 < γ < 2, do in fact hold. Introducing disorder increases
noise and thus D, although no qualitative change in the behavior of D is
observed. We have checked that the spatial distribution of the impurities
does not qualitatively change these results, although actual values of D may
of course be affected. This indicates that the nature of the closed cavity at
B = 0 is not a determining factor as far as the selfsimilarity of fluctuations
is concerned. For very closed cavities (small leads width, low wall softening,
etc..) the fractal dimension is near 2 (no fractal character) no matter the type
of the cavity, and D decreases down to ≈ 1 with the degree of opening, also
for all cavities, although the limit D = 1 is probably never reached in chaotic
cavities. It is also interesting to note that the fact that D does not depend
on the cavity size indicates that it is neither affected by the strength of the
magnetic field. In fact the cyclotron radius varies in a factor of 4 from the
smallest to the largest cavity investigated in this work, without a significant
change in D.

An interesting feature of the results reported by Sachrajda et al. (1998) is
that for sufficiently soft walls the magnetoconductance increases monotoni-
cally in approximately 8G0 over 50Φ0, with a low degree of noise. In Fig. 5 we
plot G versus Φ for a cavity with leads of approximate width 0.6L. Results for
a regular cavity and chaotic cavities with ∆ = 6 and two types of disorder,
surface or bulk, are shown (no effects due to the spatial distribution of bulk
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Fig. 5. Magnetoconductance versus magnetic flux in 97 × 97 dots with leads of
width 57 connected at opposite corners of the dot. The results correspond to dots
with no disorder (broken line), and chaotic cavities with ∆=6 and impurities either
on all surface sites but those directly connected with the leads (continuous line) or
2L bulk impurities distributed on a cross centered at the cavity (chain line).

impurities were observed). The results indicate that the cavity having surface
disorder is the only one that reproduces the experimental results, in line with
the fact that the latter is the adequate Cuevas et al. (1996) to simulate cavi-
ties in which chaotic behavior is induced by the boundaries (as in Sachrajda
et al. (1998)). Note that at large fields the result for the cavity with surface
disorder coincides with that for the regular cavity. The difference between
bulk and surface disorder is a consequence of the fact that surface disorder
cannot scatter carriers between opposite sides of the cavity. Semiclassically
one can view carriers motion as short orbits bouncing off the same boundary.
The associated quantum states have chirality and are thus commonly refer
to as chiral states.
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5 Concluding Remarks

We have investigated magnetotransport through chaotic quantum dots by
means of a model which accounts for chaoticity by introducing disorder on a
number of sites proportional to the linear size of the system. Our numerical
results indicate that the critical magnetic flux which characterizes the weak
localization peak is proportional to

√
W/L. While this size dependence is in

agreement with results obtained by means of the supersymmetric σ–model,
the leads width replaces the number of channels in the result of the latter
theory. Preliminar results indicate that a correlation between the shape of the
weak localization peak and the number of open modes may exist in almost
closed systems (small leads width) with homogeneous disorder (bulk, instead
of surface, disorder). A detailed analysis of the selfsimilarity of magnetocon-
ductance fluctuations indicates that the fractal dimension of the conductance
vs. flux curve is also controlled by the geometric parameter W/L. Increasing
W/L or, alternatively, the degree of opening of the system, decreases the
fractal dimension, in agreement with experimental observations.
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Shot Noise Induced Charge
and Potential Fluctuations
of Edge States in Proximity of a Gate

Markus Büttiker

Département de Physique Théorique, Université de Genève,
CH-1211 Genève 4, Switzerland

Abstract. We evaluate the RC-time of edge states capacitively coupled to a gate
located away from a QPC which allows for partial transmission of an edge channel.
At long times or low frequencies the RC-time governs the relaxation of charge and
current and governs the fluctuations of the equilibrium electrostatic potential. The
RC-time in mesoscopic structures is determined by an electrochemical capacitance
which depends on the density of states of the edge states and a charge relaxation
resistance. In the non-equilibrium case, in the presence of transport, the shot noise
leads to charge fluctuations in proximity of the gate which are again determined by
the equilibrium electrochemical capacitance but with a novel resistance. The case
of multiple edge states is discussed and the effect of a dephasing voltage probe on
these resistances is investigated. The potential fluctuations characterized by these
capacitances and resistances are of interest since they determine the dephasing rate
in Coulomb coupled mesoscopic conductors.

1 Introduction

Dynamic fluctuations in mesoscopic conductors have attracted considerable
attention. Most of the work has focused on the low frequency white noise
limit of the current fluctuations that can be measured at the terminals of
a conductor [1]. Much less is known, if we ask about fluctuations at higher
frequencies. To be sure, there are a number of questions which can be asked
in a frequency range for which the scattering matrix of the conductor can
still be taken energy independent. All that matters in this regime is the
frequency dependence of Fermi functions which govern the occupation of the
states incident form a reservoir. Much more interesting problems arise if we
ask questions which directly probe the energy dependence of the scattering
matrix.

In this work we are concerned with charge and potential fluctuations in
Coulomb coupled systems. Such systems are of increasing interest because
one of the systems can serve as a measurement probe of the other system
[2, 3]. Coulomb coupled mesoscopic systems are also of interest in the in-
vestigation of dephasing: through the long range Coulomb interactions the
proximity of a mesoscopic conductor affects the dephasing rate in the other
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conductor [4, 5]. The dephasing rate is essentially determined by the fluc-
tuations of the electrostatic potential which leads directly to the fluctuation
of the phase of a carrier. Thus a theoretical description and experimental
characterization of potential fluctuations is essential for an understanding of
such problems. Perhaps the simplest Coulomb coupled system consists of a
mesoscopic capacitor: two small plates, separated by a barrier which is too
high to permit carrier exchange, are each separately coupled to a reservoir.
Such a system permits no dc-transport, but exhibits an ac-conductance and
exhibits frequency dependent charge, potential and current fluctuations [6, 7].
¿From the point of view of the scattering theory of electrical transport, it is
a simple example, in which the energy dependence of the scattering matrix is
crucial. We are not merely testing the transmission probability of a conduc-
tor, nor the frequency dependence of the Fermi functions, but are now asking
a question that is sensitive to the charge distribution and its dynamics. The
questions we whish to address and illustrate with a simple example in this
article are of this nature.

The dynamic behavior of a capacitor is determined by its RC-time. At long
times, the relaxation of charge and current and the electrostatic potential is
determined by this time. Thus it is intersting to ask: What is the RC-time of
a phase-coherent conductor? Ref. [6, 7] considered two small conductors each
of which is connected only via a single lead to an electron reservoir. The two
conductors interact only via the long range Coulomb force. Assuming that
the main effect of the Coulomb interaction is the energy cost to charge the
system, Ref. [6] presents an answer in terms of the geometrical capacitance
and the energy derivatives of the scattering matrix. The resulting capaci-
tance is called an electrochemical capacitance Cµ, and the resistance of the
structure is called a charge relaxation resistance Rq, to distinguish them from
their geometrical and classical counterparts. Note that such a system has an
infinite dc-resistance and thus the expression for the resistance Rq which gov-

3

1 2
Ω

Fig. 1. Hall bar with a quantum point contact and a gate overlapping the edge of
the conductor.
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erns the relaxation of charge looks very different from the scattering matrix
expressions for dc-resistances of conductors with non-vanishing transmission
probability.

The RC-time plays a central role also for mutually Coulomb coupled mul-
tiprobe conductors. In multiterminal structures, especially if they are ballis-
tic, additional inductive-like time-scales appear [8, 10]. However, as soon as
we consider such a conductor not in isolation, but coupled to another gate or
conductor, the RC-time remains a fundamental quantity: if we keep all ex-
ternal potentials of the conductor at the same value, we are again faced with
a purely capacitive question: To what extend can we charge this conductor
against the other nearby conductor or gate?

A closely related phenomenon occurs if we drive the conductor out of
equilibrium by applying a dc voltage to it. Now at zero temperature the con-
ductor exhibits shot noise [9, 1] which in addition to the usually investigated
current fluctuations at the contacts of the conductor, generates charge fluctu-
ations. These charge fluctuations depend again crucially on the capacitance
of the mesoscopic conductor vis-a-vis other nearby conductors or gates. For
small driving voltages, we find in fact that the capacitance is Cµ as in the
equilibrium system. But a novel resistance appears [11], which we call Rv to
indicate that it is connected to a non-equilibrium state obtained by applying
a voltage V to one of the conductors.

The example which we treat in this work is shown in Fig. 1. A conduc-
tor subject to a high magnetic field with a quantum point contact (QPC) is
capacitively coupled to a gate. The contacts of the conductor are labeled 1
and 2 and the gate contact is labeled 3. We assume that the magnetic field
is in a range at which the only states at the Fermi energy which connect
contacts 1 and 2 are edge states [12]. A similar geometry without the QPC
was investigated by Chen et al. [13]. In this work it was shown that an os-
cillating voltage applied to the gate (contact 3) generates a current only at
contact 2 but if the magnetic field polarity is reversed the induced current is
found only at contact 1. Since coupling between the gate and the mesoscopic
sample is purely capacitive, this experiment verifies a prediction [14] that ca-
pacitance coefficients are in general not even functions of magnetic field. The
geometry with the QPC is inspired by a recent experiment of Sprinzak et
al. [5] which investigates the dephasing of a double quantum dot due to the
charge fluctuations generated by a current through the QPC. Here we will
consider the geometry with the gate, instead of the double quantum dot. The
conductor of Fig. 1 permits an investigation of the electrochemical capaci-
tance Cµ and the resistances Rq and Rv of this structure. The relationship of
these transport coefficients to the dephasing time is the subject of Ref. [15].
We will not review this part of Ref. [15] but only mention that related work
[16] addresses this question invoking only the fluctuations of non-interacting
electrons. Here we treat the fluctuations within a charge and current con-
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serving self-consistent random-phase approximation (RPA) which represents
a dynamical extension [7, 11, 15] of Ref. [17].

2 The Scattering Matrix

To be specific we consider the conductor shown in Fig. 1. Of interest is the
current dIα(ω) at contact α of this conductor if an oscillating voltage dVβ(ω)
is applied at contact β. Here α and β label the contacts of the conduc-
tor and the gate and take the values 1, 2, 3. Furthermore, we are interested
in the current noise spectrum SIαIβ

(ω) defined as 2πSIαIβ
(ω)δ(ω + ω′) =

1/2〈Îα(ω)Îβ(ω′) + Îβ(ω′)Îα(ω)〉 and the fluctuation spectrum of the electro-
static potential. We assume that the charge dynamics is relevant only in the
region underneath the gate. Everywhere else we assume the charge to be
screened completely. This is a strong assumption: In reality the QPC is made
with the help of gates (capacitors) and also exhibits its own capacitance [8].
Edge states might generate long range fields, etc. Thus the results presented
below can only be expected to capture the main effects but can certainly
be refined. We assume that the gate is a macroscopic conductor and screens
perfectly.

The scattering matrix of the QPC alone can be described by r ≡ s11 =
s22 = −iR1/2 and t ≡ s21 = s12 = T 1/2 where T = 1 −R is the transmission
probability through the QPC. Here the indices 1 and 2 label the reservoirs
(see Fig. 1). A carrier traversing the region underneath the gate acquires a
phase φ(U) which depends on the electrostatic potential U in this region.
Since we consider only the charge pile up in this region all additional phases
in the scattering problem are here without relevance. The total scattering
matrix of the QPC and the traversal of the region Ω is then simply

s =
(

r t
teiφ reiφ

)
. (1)

If the polarity of the magnetic field is reversed the scattering matrix is given
by sαβ(B) = sβα(−B), i. e. in the reversed magnetic field it is only the
second column of the scattering matrix which contains the phase φ(U). In
what follows, the dependence of the scattering matrix on the phase φ is
crucial. We emphasize that the approach presented here can be generalized
by considering all the phases of the problem and by considering these phases
and the amplitudes to depend on the entire electrostatic potential landscape
[7].

3 Density of States Matrix Elements

To describe the charge distribution due to carriers in an energy interval dE
in our conductor, we consider the Fermi-field [1]
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Ψ̂(r, t) =
∑
αm

∫
dEψαm(r, E)âαm(E)exp(−iEt/h̄) (2)

which annihilates an electron at point r and time t. The Fermi operator Eq.
(2) is built up from all scattering states ψαm(r, E) which have unit incident
amplitude in contact α in channel m. The operator âαm(E) annihilates an
incident carrier in reservoir α in channel m. The local carrier density at
at point r and time t is determined by n̂(r, t) = Ψ̂ †(r, t)Ψ̂(r, t). We will
investigate the density operator in the frequency domain, n̂(r, ω). It is now
very convienient and instructive to consider an expression for the density
operator not in terms of wave functions but more directly in terms of the
scattering matrix. It can be shown [7], that the density operator n̂(r, ω), in
the zero frequency limit, can be written in the form

n̂(r) =
∑
αγδ

∫
dEâ†γm(E)nγmδn(α, r)âδn(E) (3)

where the elements nγmδn form a matrix of dimensions Mγ ∗ Mδ. Here Mγ

is the number of channels at the Fermi energy in contact γ. This matrix is
given by [7]

nβγ(α, r) = −(1/4πi)[s†αβ(∂sαγ/∂eU(r)) − (∂s†αβ/∂eU(r))sαγ ]. (4)

The low frequency charge dynamics can be found if these density of states
matrix elements are known. Eq. (4) tells us that in order to find the carrier
distribution and its fluctuations, we should introduce a small potential per-
turbation into the sample and find the scattering matrix which belongs to
this perturbation. Clearly, such a detailed information requires a considerable
effort and even more so, if we subsequently should solve the Poisson equation
to find the electrostatic potential landscape which belongs to this density
distribution. To proceed we introduce the simplifying assumption that it is
only the charge pile-up near the gate which counts and moreover that the
potential in this region Ω can be described with a single potential parameter
U . All we need then is the density elements integrated over the region Ω.
Instead of Eq. (3) we want to find

N̂(r) =
∑
αγδ

∫
Ω

d3r
∫
dEâ†γm(E)nγmδn(α, r)âδn(E)

≡
∑
αγδ

∫
dEâ†γm(E)Nγmδn(α)âδn(E) (5)

with
Nβγ(α) = −(1/4πi)[s†αβ(dsαγ/edU) − (ds†αβ/edU)sαγ ]. (6)

Thus it is sufficient to find the variation in the scattering matrix for a poten-
tial that is uniform over the region of interest. In our example it is only the
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phase φ in Eq. (1) which depends on U . Thus we can evaluate the density of
states elements if we know dφ/edU . But in the WKB-limit, which is sufficient
for our purpose, dφ/edU = −dφ/dE. However, dφ/dE = 2πN where N is
just the density of states of the edge state underneath the gate.

We are now ready to evaluate the density of states elements Eq. (4). For
the specific example given by Eq. (1) we find that all elements with α = 1
vanish: N11(1) = N21(1) = N12(1) = N22(1) = 0. There are no carriers
incident from contact 1 or 2 which pass through region Ω and leave the
conductor through contact 1. The situation is different if we demand that
the current leaves the sample through contact 2. Now we find

Nβγ(2) =
( T N t∗rN
r∗tN RN

)
, (7)

where, as already mentioned, N is the density of states of carriers in the
edge state underneath the gate. For the reverse magnetic field polarity all
components of the matrix vanish except the elements N22(1) = T N and
N22(2) = RN .

For the charge and its fluctuations underneath the gate it is not relevant
through which contact carriers leave. The charge pile up and its fluctuations
are thus governed by a matrix

Nβγ =
∑
α

Nβγ(α) (8)

which is obtained by summing over the contact index α from the elements
given by Eq. (4). For our example the density matrix elements for the charge
are thus evidently given by Nβγ = Nβγ(2) whereas for the reversed magnetic
field polarity we have N11 = T N , N22 = RN and N21 = N21 = 0.

Furthermore, we will make use of the injectivity of a contact into the
region Ω and will make use of the emissivity of the region Ω into a contact.
The injectivity of contact α is the charge injected into a region in response
to a voltage variation at this contact, independently through which contact
the carriers leave the sample [14]. The injectivities of contact 1 and 2 are

N1 = N11(1) + N11(2) = T N (9)

N2 = N22(1) + N22(2) = RN (10)

Note that the sum of the injectivities of both contacts is just the density of
states N underneath the gate. The emissivity of region Ω is the portion of
the density of states of carriers which leave the conductor through contact
α irrespectively from which contact they entered the conductor [14]. We find
emissivities

N (1) = N11(1) + N22(1) = 0, (11)

N (2) = N11(2) + N22(2) = N. (12)
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Any charge accumulation or depletion is only felt in contact 2. The injec-
tivities and emissivities in the magnetic field B are related by reciprocity
to the emissivities and injectivities in the reversed magnetic field, Nα(B) =
N (α)(−B) and N (α)(B) = Nα(−B). In contrast, the density of states N is
an even function of magnetic field.

4 The Poisson Equation: The Effective Interaction

Thus far we have only considered bare charges. The true charge, however,
is determined by the long range Coulomb interaction. First we consider the
screening of the average charges and in a second step we consider the screen-
ing of charge fluctuations. We describe the long range Coulomb interaction
between the charge on the edge state and on the gate with the help of a
geometrical capacitance C. The charge on the edge state beneath the gate
is determined by the voltage difference between the edge state and the gate
dQ = C(dU − dVg), where dU and dVg are deviations from an equilibrium
reference state. On the other hand the charge beneath the gate can also be
expressed in terms of the injected charges e2N1dV1 in response to a voltage
variation at contact 1 and e2N2dV2 in response to a voltage variation at con-
tact 2. Furthermore, the injected charge leads to a response in the internal
potential dU which in turn generates a screening charge −e2NdU propor-
tional to the density of states. Thus the Poisson equation for the charge
underneath the gate is

dQ = C(dU − dVg) = e2N1dV1 + e2N2dV2 − e2NdU (13)

and the charge on the gate is given by −dQ = C(dVg −dU). Solving Eq. (13)
for dU gives

dU = Geff (CdVg + e2N1dV1 + e2N2dV2), (14)

where Geff = (C + e2N)−1 is an effective (RPA) interaction which gives the
potential underneath the gate in response to an increment in the charge.

5 Admittance

Consider now the low-frequency conductance: To leading order in the fre-
quency ω we write

Gαβ(ω) = Gαβ(0) − iωEαβ + ω2Kαβ + O(ω3). (15)

Here Gαβ(0) is the dc-conductance matrix, Eαβ is the emittance matrix, and
Kαβ is a second order dissipative contribution to the frequency dependent
admittance. The zero-frequency dc-conductance matrix has only four non-
vanishing elements which are given by G ≡ G11 = G22 = −G12 = −G21 =
(e2/h)T . Ref. [14] showed that the emittance matrix E is given by
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Eαβ = e2Nββ(α) − e2N (α)GeffNβ (16)

As it is written, Eq. (16) applies only to the elements where α and β take
the values 1 or 2. The remaining elements can be obtained from current
conservation (which demands that the elements of each row and column of
this matrix add up to zero) or can be obtained directly by using a more
general formula [8]. For our example we find an emittance matrix,

E = Cµ


 0 0 0

T R −1
−T −R 1


 , (17)

with an electrochemical capacitance of the conductor vis-a-vis the gate given
by Cµ = Ce2N/(C + e2N). Eq. (17) determines the displacement currents
in response to an oscillating voltage at one of the contacts. There is no dis-
placement current at contact 1 (the elements of the first row vanish) which
is consequence of our assumption that charge pile up occurs only underneath
the gate. The emittance matrix in the magnetic field B and in the magnetic
field −B are related by reciprocity, Eαβ(B) = Eβα(−B). For the reverse po-
larity, a voltage oscillation at contact 1 generates no displacement currents
(the elements of the first column vanish).

The emittance matrix element E21 is positive and thus has the sign not of
a capacitive but of an inductive response. The elements of row 3 and column 3
are a consequence of purely capacitive coupling and have the sign associated
with the elements of a capacitance matrix. Thus these elements represent the
capacitance matrix elements which can be measured in an ac-experiment.
Note that the capacitances E31 ≡ C31 and E32 ≡ C32 depend not only on
the density of states and geometrical capacitances but also on transmission
and reflection probabilities. Measurement of these capacitances provides thus
a direct confirmation of the concept of partial density of states [14, 8]. Fur-
thermore, we see that for instance C31(B) ≡ E31 = T Cµ but C31(−B) = 0.
A similarly striking variation of the capacitance coefficients was observed in
the experiment of Chen et al. [13] in the integer quantum Hall effect and in
Refs. [19] in the fractional quantum Hall effect.

6 Bare Charge Fluctuations

Let us now turn to the charge fluctuations. With the help of the charge
density matrix the low frequency limit of the bare charge fluctuations can be
obtained [6, 11, 15]. It is given by

SNN (ω) = h
∑
δγ

∫
dE Fγδ(E,ω)Tr[Nγδ(E,E + h̄ω)N†γδ(E,E + h̄ω)] (18)

where the elements of Nγδ are in the zero-frequency limit of interest here
given by Eq. (8) and Fγδ = fγ(E)(1 − fδ(E + h̄ω)) + fδ(E + h̄ω)(1 − fγ(E))
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is a combination of Fermi functions. Using only the zero-frequency limit of
the elements of the charge operator determined above gives,

SNN (ω) = hN2 [ T 2
∫
dE F11(E,ω) + T R

∫
dE F12(E,ω)

+ T R
∫
dE F21(E,ω) + R2

∫
dE F22(E,ω)]. (19)

At equilibrium all the Fermi functions are identical and we obtain SNN (ω) =
hN2

∫
dE F (E,ω) which in the zero-frequency limit is

SNN (ω) = hN2kT (20)

and at zero-temperature to leading order in frequency is,

SNN (ω) = hN2h̄ω. (21)

In the zero-temperature, zero-frequency limit, in the presence of a current
through the sample, we find for the charge fluctuations associated with shot
noise

SNN (ω) = hN2T Re|V |. (22)

However, the bare charge fluctuations are not by themselves physically rele-
vant.

7 Fluctuations of the True Charge

To find the fluctuations of the true charge we now write the Poisson equation
for the fluctuating charges. All contact potentials are at their equilibrium
value, dV1 = dV2 = dVg = 0. The fluctuations of the bare charge now generate
fluctuations in the electrostatic potential. Thus the electrostatic potential
has also to be represented by an operator Û . Furthermore, the potential
fluctuations are also screened. As in the case of the average charges we take
the screening to be proportional to the density of states N but replace the
c-number U by its operator expression Û . The equation for the fluctuations
of the true charge is thus

dQ̂ = CdÛ = eN̂ − e2NÛ (23)

whereas the fluctuation of the charge on the gate is simply −dQ̂ = −CdÛ .
Thus dQ̂ is the charge operator which determines the dipole which forms

between the charge on the edge state and the charge on the gate. Solving Eq.
(23) for the potential operator Û and using this result to find the fluctuations
of the charge dQ̂ gives

SQQ(ω) = e2C2G2
effSNN (ω) = 2C2

µ(1/2e2)(SNN (ω)/N2). (24)

We now discuss three limits of this result.



90 Markus Büttiker

8 Equilibrium and Non-Equilibrium Charge Relaxation
Resistance

At equilibrium, in the zero-frequency limit, the charge fluctuation spectrum
can be written with the help of the equilibrium charge relaxation resistance
[6, 7, 11] Rq,

SQQ(ω) = 2C2
µRqkT. (25)

For our specific example[15], we find using Eqs. (20) and (24),

Rq = h/2e2. (26)

The charge relaxation resistance is universal and equal to half a resistance
quantum as expected for a single edge state [8]. At equilibrium the fluctuation
spectrum is via the fluctuation dissipation theorem directly related to the
dissipative part of the admittance. We could also have directly evaluated
the element K33 of Eq. (15) to find K33 = C2

µRq. Second at equilibrium,
but for frequencies which are large compared to the thermal energy, but
small compared to any intrinsic excitation frequencies, we find that zero-
point fluctuations give rise to a noise power spectral density

SQQ(ω) = 2C2
µRqh̄ω (27)

which is determined by the charge relaxation resistance Eq. (26). Third, in
the presence of transport, we find in the zero-frequency, zero-temperature
limit, a charge fluctuation spectrum [11],

SQQ(ω) = 2C2
µRve|V |, (28)

where |V | is the voltage applied between the two contacts of the sample and
a non-equilibrium charge relaxation resistance which for our example is given
by [15]

Rv = (h/e2)T R. (29)

It is maximal for a semi-transparent QPC, T = R = 1/2.
The current at the gate due to the charge fluctuations is dIg = −iωdQ(ω)

and thus its fluctuation spectrum is given by SIgIg
(ω) = ω2SQQ. The poten-

tial fluctuations are related to the charge fluctuations by dÛ = dQ̂/C and
thus the spectral density of the potential fluctuations is SUU (ω) = C−2SQQ.
Thus the charge relaxation resistance determines, together with the elec-
trochemical and geometrical capacitance, the fluctuations of the charge, the
potential and the current induced into the gate. Since dephasing rates can
be linked to the low frequency limit of the potential fluctuations [18] the re-
sistances Rq and Rv also determine the dephasing rate in Coulomb coupled
mesoscopic conductors [15].
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9 Several Edge States

Let us next consider the case, where there are several edge states. A QPC in
a high magnetic field permits perfect transmission of the outer edge states
(belonging to the lower Landau levels) and it is only the innermost edge state
which is partially transmitted or reflected at the QPC. Let us just consider
two edge states: the outer edge state labeled 1 is perfectly transmitted T1 = 1,
whereas the inner edge state labeled 2 has a transmission probability T2 ≡ T
which might take any value between zero and one. The outer edge state,
with transmission probability 1 is entirely noiseless as far as the shot noise in
the total current is concerned [1]. One might thus be tempted to think that
such a perfectly transmitted edge state plays no role at all. That however is
not the case. Our result involves screening in an essential manner and the
charge fluctuations in one of the edge states can now be screened by charge
accumulation or depletion in the other edge state. The screening properties
depend on the electrostatic interaction between the two edge states. Thus the
answer we obtain depends on the detailed electrostatic assumptions which we
invoke to treat this problem. Here, to provide a simple discussion, we assume
that the two edge states are so close, that they can be described with a
common electrostatic potential U . If we denote the density of states of the
edge states 1 and 2 in the region Ω of interest by N1 and N2 a detailed
consideration, repeating the procedure given above for one edge state only,
leads to an equilibrium charge relaxation resistance [15]

Rq =
h

2e2
N2

1 + N2
2

(N1 + N2)2
(30)

Note that in contrast to the single edge state, now Rq depends explicitly on
the densities of states. We can expect that the density of states N2 of the
inner edge state 2 is typically larger than the density of states of the outer
edge state since the potential for the inner edge state is much shallower. In
this case N2 >> N1 and Rq for the two edge states will in fact be the same
as for one edge state only. In contrast, for samples with a sharp edge, we can
expect that both density of states are comparable, and thus Rq for two edge
states will be nearly a factor 2 smaller than the Rq of a single edge state only.

Similarly, if we investigate Rv for two edge states, we find [15]

Rv =
h

2e2
N2

2

(N1 + N2)2
TR. (31)

Again the density of states of the two edge states appear now explicitly. The
density of states of the outer edge state appears only in the denominator
since it plays a role only in screening but it is not a primary source of charge
fluctuations. In the limit N2 >> N1 of a shallow edge the outermost edge
state is unimportant, whereas for a steep edge if both density of states are
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comparable, Rv is reduced by a factor 4 compared to the case of a single edge
state only.

Form the above results it is obvious how the formulas must be written if
there is one edge state which is partially reflected or transmitted and many
edge states which are perfectly transmitted.

10 Phase Randomization

Is the result given above sensitive to phase? Experimentally this question
is investigated by Sprinzak et al. [5]. Our result for one channel, Eq. (29),
contains only transmission probabilities. To investigate this question, we con-
sider, like the experiment, an additional contact between the QPC and the
region Ω as shown in Fig. 2. The contact will be considered as a voltage
probe. An ideal voltage probe exhibits infinite impedance at all frequencies.
Consequently, the net current at the voltage probe vanishes at every instant
of time. Thus the voltage of the probe becomes a fluctuating quantity. Despite
the fact that the total current vanishes, carriers leave the sample through this
contact, and are replaced by carriers which enter from the reservoir. Carri-
ers leaving into the reservoir and carriers rentering the conductor from the
reservoir have no phase relationship and consequently a voltage probe acts
as a dephasor [12].

The voltage probe changes the conductor: if we include the gate we now
deal with a four probe conductor. We keep for the gate the label 3 and
designate the voltage probe as contact 4. Since the potential is a function of
time, we must also know the dynamic conductance of the system. To begin
we consider the general relation between currents and voltages of our four-

34

1 2Ω

Fig. 2. Hall bar with a quantum point contact and a gate overlapping the edge of
the conductor. A voltage contact between the QPC and the gate serves to destroy
quantum coherent electron motion along the edge states.
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terminal conductor. This relation takes the form of a Langevin equation which
includes the fluctuating currents at the terminals as noise sources [1]

dIα(ω) =
∑

β

Gαβ(ω)dVβ(ω) + δIα(ω). (32)

Here Gαβ(ω) is the self-consistent dynamic conductance and δIα(ω) are the
(self-consistent) frequency-dependent current fluctuations at the contacts of
the conductor. Since the current spectrum at the gate is second order in
frequency, it is sufficient to calculate the current amplitudes to first order in
frequency. We thus need Gαβ(ω) only to first order in frequency and write
Gαβ(ω) = Gαβ(0) − iωEαβ + O(ω2). Here Gαβ(0) is the dc-conductance
which for ν − 1 perfectly transmitted channels and one partially transmitted
channel at the QPC is given by G11 = −G12 = −G41 = (e2/h)(ν − 1 + T ),
G22 = G44 = −G24 = −(e2/h)ν and G42 = −(e2/h)R. All other elements
vanish. Repeating the calculation which led to Eq. (16) for the conductor of
Fig. (2), we find E23 = −E24 = E33 = −E34 = −iωCµ with Cµ as given
in Eq. (16). Inserting these results into Eq. (32) and holding all potentials,
except dV4 at their equilibrium value gives for I3 and I4,

I3 = −iωCµdV4

I4 =
e2

h
νdV4 + δI4 (33)

The noise spectrum at the voltage probe at low frequencies is just the spec-
trum of the noise of a QPC S0

I4I4
(ω) = 2 e2

h TRe|V | where we have added an
upper index 0 to indicate that it is the spectrum for zero external impedance.
Note that there is no noise source to order ω in the total current for I3. (The
lowest order in frequency which is dissipative is proportional to ω2). For an
ideal (infinite impedance) voltage probe we have I4 = 0 and consequently

dV4(ω) = − h

e2ν
δI4(ω) (34)

Inserting this result in the equation for I3 we find SI3I3(ω) = ω2C2
µS

0
I4I4

(ω)/ν2.
Using the shot noise power spectrum for S0

I4I4
(ω) gives for the spectrum at

the gate SI3I3(ω) = 2ω2C2
µRve|V | with [15]

Rv =
h

e2
1
ν2TR (35)

Eq. (35) makes now an interesting prediction. For one edge state only, the
dephasing voltage probe has no effect. The fluctuations observed at the gate
remain unchanged. If there are several edge states, the voltage probe does
have an effect since the voltage probe re-injects an equal current into all
edge states. The difference between Eq. (35) and Eq.(30) is, however quite
subtle. Rv as given above is simply inversely proportional to the square of
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the number of edge states. Without the voltage probe we have seen that Rv

varies between 1
e2TR for a steep edge and 1

4e2TR for a shallow edge. Thus for
a steep edge introducing a voltage probe has a considerable effect, whereas
for a shallow edge introducing a voltage probe has no effect at all.

Apparently, in the experiment [5] the voltage probe is not ideal. Instead
of an infinite impedance it might, at the relevant frequency, exhibit a finite
impedance Zext(ω). We assume that the external impedance arises from a
macroscopic circuit and its noise is voltage independent. In the presence
of a finite impedance the current Eq. (33) can also be expressed as I4 =
−Z−1

ext(ω)δV4. Consequently, instead of Eq. (34) we find

δV4 = − Zext

1 + G0Zext
δI4 (36)

where we have introduced the abbreviation G0 = νe2/h. Repeating the con-
siderations given above, we find for the resistance Rv

Rv =
e2

h

|Zext|2
|1 + G0Zext|2TR (37)

This consideration shows that a finite external impedance reduces the
current fluctuations induced into the gate. Clearly this is simply a conse-
quence of the fact that for a finite external impedance part of the current is
”lost” at the voltage probe. This effect becomes significant when Zext(ω) at
the frequency of interest becomes smaller than G−1

0 .

11 Discussion

In this work, we have illustrated the calculation of charge and potential fluc-
tuations for a simple problem: A Hall conductor with a QPC has on its side
a gate which couples capacitively to the edge states. We have asked: What
is the current induced into this gate due to the shot noise generated a the
QPC. The simplifying assumption we have made is that the conductor re-
mains charge neutral everywhere except near the gate where a charge pile-up
limited by the Coulomb interaction between gate and edge is permitted. This
allows a solution in terms of one fluctuating potential only.

Independent of the detailed discussion it is clear that the non-equilibrium
resistance Rv reflects the shot noise. The theoretical question concerns only
the factor of proportionality. If we measure Rv in units of R0 = h/2e2T R,
we find that for one edge state Rv/R0 is universal, wheras in the presence of
a number of edge states it is not-universal, except if an ideal voltage probe
completely equilibrates different channels, in which case we find Rv/R0 =
1/ν2, where ν is the number of edge states. In Ref. [5] it is argued that
the dephasing rate (which is proportional to Rv) should be periodic in a
phase with period π even for a single edge state. In contrast, in our our
result [15], Eq. (29), such a periodic factor does not appear. We conclude
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by mentioning that the approach out-lined here can be generalized to hybrid
normal-superconducting systems [20].
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8. T. Christen and M. Büttiker, Phys. Rev. Lett. 77, 143 (1996): M. Büttiker and
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(1998).
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Shot-Noise in Non-Degenerate Semiconductors
with Energy-Dependent Elastic Scattering
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Abstract. We investigate current fluctuations in non-degenerate semiconductors,
on length scales intermediate between the elastic and inelastic mean free paths.
The shot-noise power P is suppressed below the Poisson value PPoisson = 2eĪ (at
mean current Ī) by the Coulomb repulsion of the carriers. We consider a power-law
dependence of the elastic scattering time τ ∝ εα on kinetic energy ε and present
an exact solution of the non-linear kinetic equations in the regime of space-charge
limited conduction. The ratio P/PPoisson decreases from 0.38 to 0 in the range
− 1

2 < α < 1.

1 Introduction

The noise power P of current fluctuations in an electron gas in thermal
equilibrium (at temperature T ) is related by the Johnson-Nyquist formula
P = 4kTG (with k Boltzmann’s constant) to the linear-response conductance
G = limV→0 dĪ/dV (with Ī the mean current in response to an applied
voltage V ). This formula can be generalized to a large applied voltage, P =
4kT (V/Ī)(dĪ/dV )2, provided the electron gas remains in local equilibrium
with the lattice. Local equilibrium requires inelastic scattering. When the
conductor is shorter than the inelastic mean free path lin and the potential
drop V is large enough, the Johnson-Nyquist formula no longer applies and
a measurement of current noise (then also called shot noise) reveals more
detailed information about the transport of charge carriers—in particular
about their correlations. The maximal noise level PPoisson = 2eĪ is attained
in absence of all correlations (both in the injection process as well as in the
subsequent transport). Examples are vacuum diodes at large bias in absence
of space-charge effects and tunneling diodes with low transmissivity.

Here we consider the transport through a disordered semiconductor of
length L terminated by two metal contacts, under the conditions of elastic
scattering (l � L � lin, with l the elastic mean free path). In a degenerate
conductor correlations are induced by the Pauli exclusion principle (for a
review of the theory of shot noise in this situation see Ref. [1]) and the shot
noise has the universal value P = 1

3PPoisson [2], [3].
At low carrier concentration the electron gas is non-degenerate, and the

Pauli principle is ineffective. Because carriers can now accumulate, giving

D. Reguera et al. (Eds.): Proceedings 1999, LNP 547, pp. 96−104, 1999.
 Springer-Verlag Berlin Heidelberg 1999
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rise to space-charge effects, they become correlated through Coulomb re-
pulsion. This is the situation which we want to study presently. In a re-
cent Monte-Carlo simulation [4] a shot-noise suppression factor of about
P/PPoisson = 1/3 was found in the regime of space-charge limited transport;
an energy-independent elastic scattering rate was assumed. The coincidence
with the noise level obtained in the degenerate situation attracted a lot of
attention [5]. The degree of universality is less pronounced here since the
number actually depends on the geometry and dimensionality—as well as
the scattering mechanism [6], [7], [8].

In Ref. [6] the problem was investigated for an energy-independent elastic
scattering time τ , using the kinetic theory of non-equilibrium fluctuations
(reviewed in Ref. [9]). The non-linear kinetic equations were solved in a cer-
tain approximation (the drift approximation), with the result P/PPoisson =
0.3410. In Ref. [7] we obtained an exact solution, giving P/PPoisson = 0.3097,
and also considered a power-law dependence τ ∼ εα on the kinetic energy
ε. For α = − 1

2 (corresponding to short-range impurity scattering or quasi-
elastic acoustic phonon scattering [10]) we found the exact result P/PPoisson =
0.3777. For other values of α we only presented results within the drift approx-
imation. In this work we derive the exact solution in the range − 1

2 < α < 1.
As we will discuss, α should be in this range for space-charge limited con-
duction to be realized.

2 The Drift-Diffusion Equation

We consider a three-dimensional conductor of length L and cross-sectional
area A terminated by two contacts. The equilibrium density ρeq of charge
carriers (charge e, effective mass m) in the decoupled conductor is assumed
to be much lower than the density ρc of those carriers that are energetically
allowed (at a given voltage V ) to enter the conductor from the contacts.
(A possible realization would be an intrinsic or barely doped semiconductor
between two metal contacts or two heavily doped semiconducting regions.)
The dielectric constant of the conductor is κ. The temperature T is assumed
to be so high that the electron gas is degenerate, and a large voltage drop
V � kT/e is maintained between the contacts. Transport is assumed to be
diffusive and elastic, l < L < lin. We assume a power-law energy dependence

τ(ε) = τ0ε
α (1)

of the elastic scattering time on the kinetic energy ε. We want to calculate
the zero-frequency component

P = 2
∫ ∞
−∞

dt′ δI(t)δI(t+ t′) (2)

of the noise power of the fluctuations δI(t) of the electric current I(t) =
Ī + δI(t) around its mean Ī.
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We use Cartesian coordinates x, y, z with x parallel to the conductor (the
current source is at x = 0, the drain at x = L). To linear order in the
fluctuations, the transverse coordinates can be ignored. In the zero-frequency
limit the current is independent on x because of the continuity equation and
is given by the drift-diffusion equation [6], [7]

I(t) = − ∂

∂x

∫
dεD(ε)ρ(x, ε, t)+E(x, t)

∫
dεF(x, ε, t)

dσ(ε)
dε

+ δJ(x, t). (3)

The electric field E(x, t) is related to the laterally integrated charge density
ρ(x, t) by the Poisson equation

κ
∂

∂x
E(x, t) =

1
A
ρ(x, t), (4)

where we omitted the low background charge density −ρeq. The fluctuating
source δJ(x, ε, t) accounts for the stochasticity of individual scattering events
and has the correlator

δJ(x, t)δJ(x′, t′) = 2Aδ(t − t′)δ(x − x′)
∫

dε σ(ε)F̄(x, ε). (5)

Here and in Eq. (3), F(x, ε, t) = ρ(x, ε, t)/eν(ε) with the density of states
ν(ε) = 4πm(2mε)1/2 = ν0ε

1/2 (we set Planck’s constant h ≡ 1). The conduc-
tivity σ(ε) = e2ν(ε)D(ε) = σ0ε

α+3/2 is the product of the density of states
and the diffusion constant D(ε) = v2τ/3 = D0ε

α+1.

3 Space-Charge Limited Conduction

For a large voltage drop V between the two metal contacts and a high carrier
density ρc in the contacts, the charge injected into the semiconductor is much
higher than the equilibrium charge ρeq, which can then be neglected. For
sufficiently high V and ρc the system enters the regime of space-charge limited
conduction [11], defined by the boundary condition

E(x, t) = 0 at x = 0. (6)

Eq. (6) states that the space charge Q =
∫ L

0 ρ(x) dx in the semiconductor is
precisely balanced by the surface charge at the current drain. At the drain
we have the absorbing boundary condition

ρ(x, t) = 0 at x = L. (7)

With this boundary condition we again neglect ρeq.
To determine the electric field inside the semiconductor we proceed as

follows. Since scattering is elastic, the total energy u = ε − eφ(x, t) of each
carrier is preserved. The potential gain −eφ(x, t) (with E = −∂φ/∂x) domi-
nates over the initial thermal excitation energy of order kT almost throughout
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the whole semiconductor; only close to the current source (in a thin boundary
layer) this is not the case. We can therefore approximate the kinetic energy
ε ≈ −eφ and introduce this into D(ε) and dσ/dε. Substituting into Eq. (3)
one obtains

F(x, t) ≈ e

∫ L

x

dx′
I(t) − δJ(x, t)

σ0[−eφ(x′, t)]α+3/2 , (8)

ρ(x, t) ≈ [−eφ(x, t)]1/2

D0

∫ L

x

dx′
I(t) − δJ(x, t)

[−eφ(x′, t)]α+3/2 ,

(9)

where the absorbing boundary conditions have been used. From the Poisson
equation (4) we find the third-order, non-linear, inhomogeneous differential
equation

2(−φ)αφ′φ′′ + 4(−φ)α+1φ′′′ = BĪ[1 + δi(x, t)], (10)

δi(x, t) =
I(t) − δJ(x, t)

Ī
, (11)

for the potential profile φ(x, t). Primes denote differentiation with respect to
x, and B = 6/eαµ0κA with µ0 = eτ0/m.

Since the potential difference V between source and drain does not fluctu-
ate, we have the two boundary conditions φ(0, t) = 0, φ(L, t) = −V . Eqs. (6)
and (7) imply two additional boundary conditions, φ′(0, t) = 0, φ′′(L, t) = 0.

The differential equation (10) and the accompanying boundary condi-
tions possess two remarkable scaling properties: The product BĪ of material
parameters and mean current Ī and the length L can be eliminated by intro-
duction of the scaled potential

χ(x, t) = − (L3BĪ
)−1/(α+2)

φ(xL, t). (12)

The rescaled differential equation reads

2χαχ′χ′′ − 4χα+1χ′′′ = 1 + δi, (13)

which has to be solved with the boundary conditions χ(0, t) = 0, χ(1, t) =(
L3BĪ

)−1/(α+2)
V , χ′(0, t) = 0, χ′′(1, t) = 0. The scaling properties entail

that the shot-noise suppression factor depends only on the exponent α, but
no longer on the parameters L, A, V , τ0, and κ.

We will solve this boundary value problem for χ = χ̄ + δχ, first for the
mean (Section 4) and then for the fluctuations (Section 5), in both cases
neglecting terms quadratic in δχ.
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4 Average Profiles
and the Current-Voltage Characteristic

The averaged equation (13) for the rescaled mean potential χ̄(x) reads

2χ̄αχ̄′χ̄′′ − 4χ̄α+1χ̄′′′ = 1. (14)

We seek a solution which fulfills the three boundary conditions χ̄(0) = 0,
χ̄′(0) = 0, χ̄′′(1) = 0. The value of χ̄ at the current drain determines the
current-voltage characteristic

Ī(V ) =
1

L3B

(
V

χ̄(1)

)α+2

. (15)

We now construct χ̄(x). The function χ̄0(x) = a0x
β with β = 3/(2 + α) and

a0 = [2β(β − 1)(4 − β)]−β/3 solves the differential equation and satisfies the
boundary conditions at x = 0, but χ̄′′0(x) �= 0 for any finite x. We substitute
into Eq. (14) the ansatz χ̄(x) =

∑∞
l=0 alx

γl+β , consisting of χ̄0(x) times a
power series in xγ , with γ a positive power to be determined. This ansatz
proves fruitful since both terms on the left-hand side of Eq. (14) give the
same powers of x, starting with order x0 in coincidence with the right-hand
side. By power matching one obtains in first order the value for a0 given
above. The second order leaves a1 as a free coefficient, but fixes the power
γ = (8 − 5β +

√
−32 + 40β + β2)/4 . The coefficients al for l ≥ 2 are then

given recursively as a function of a1, which is finally determined from the
condition χ̄′′(1) = 0.

In Fig. 1 the profiles of the potential φ̄ ∝ χ̄, the electric field Ē ∝ χ̄′, and
the charge density ρ̄ ∝ χ̄′′ are plotted for various values of α. The coefficient
χ̄(1) appearing in the current-voltage characteristic (15) can be read off from
this plot. The behavior at the current source changes qualitatively at α = − 1

2
(see Section 7).

5 Fluctuations

The rescaled fluctuations δχ(x, t) = ψ(x, t) fulfill the linear differential equa-
tion

L[ψ] = −4χ̄α+1ψ′′′ + 2χ̄αχ̄′ψ′′ + 2χ̄αχ̄′′ψ′

+
[
2αχ̄α−1χ̄′χ̄′′ − 4(α+ 1)χ̄αχ̄′′′

]
ψ = δi(t). (16)

The solution of the inhomogeneous equation is found with help of the three
independent solutions of the homogeneous equation L[ψ] = 0, ψ1(x) = χ̄′(x),
ψ2(x) = χ̄(x) − (x/β)χ̄′(x), and

ψ3(x) = ψ1(x)
∫ 1

x

dx′
χ̄1/2(x′)ψ2(x′)

W2(x′)
− ψ2(x)

∫ 1

x

dx′
χ̄1/2(x′)ψ1(x′)

W2(x′)
, (17)
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Fig. 1. Profile of the mean electrical potential φ̄ [in units of (L3BĪ)1/(α+2), with
B = 6m/eα+1τ0κA], the electric field Ē [in units of (L3BĪ)1/(α+2)/L], and the
charge density ρ̄ [in units of κ(L3BĪ)1/(α+2)/L2], following from Eq. (14) for dif-
ferent values of α.
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where we have defined W(x) = ψ1(x)ψ′2(x)−ψ′1(x)ψ2(x) . The special solution
which fulfills ψ(0, t) = ψ′(0, t) = ψ(1, t) = 0 is

ψ(x, t) =
∫ 1

0
dx′

χ̄1/2(x′)
W2(x′)

[
Θ(x − x′)ψ1(x)ψ2(x′) +Θ(x′ − x)ψ1(x′)ψ2(x)

− ψ1(1)
ψ2(1)

ψ2(x)ψ2(x′)
] ∫ x′

0
dx′′

δI(t) − δJ(x′′, t)
4Ī

W(x′′)
χ̄α+3/2(x′′)

. (18)

The condition ψ′′(1, t) = 0 relates the fluctuating current δI to the
Langevin current δJ . The resulting expression is of the form

δI(t) = C−1
∫ L

0
dx δJ(x, t)G(x), (19)

with the definitions C =
∫ 1
0 dxG(x),

G(x) = W(x)
χ̄α+3/2(x)

(
1 +

(1 − 1/β)χ̄′2(1)
4χ̄α+1/2(1)ψ2(1)

∫ 1

x

dx′
χ̄1/2(x′)ψ2(x′)

W2(x′)

)
. (20)

The shot-noise power is found by substituting Eq. (19) into Eq. (2) and
invoking the correlator (5) for the Langevin current. This results in

P = 2
∫ L

0
dx
(G(x)

C
)2

H(x) (21)

with H(x) = 2A
∫
dε σ(ε)F̄(x, ε) ≈ 2σ0[−eφ̄(x)]α+3/2F̄(x). Eq. (8) gives

H(x) = 2eĪχ̄α+3/2(x)
∫ 1

x

dx′
1

χ̄α+3/2(x′)
= 4PPoissonχ̄

α+1(x)χ̄′′(x), (22)

where we integrated with help of Eq. (14) and used χ̄′′(1) = 0.
In Fig. 2 we plot the ratio P/PPoisson as a function of the parameter

α (solid curve). The shot-noise suppression factor P/PPoisson = 0.3777 for
α = − 1

2 and goes to zero as α → 1.

6 Drift Approximation

A simple formula for the shot-noise suppression factor can be found when one
neglects the diffusion term in Eq. (3) and considers instead of Eq. (13) the
corresponding differential equation (4α+6)χαχ′χ′′ = 1+ δi . The is the drift
approximation of Ref. [6]. The order of the differential equation is reduced
by one, so that we also have to drop one of the boundary conditions. The
absorbing boundary condition χ′′(1, t) = 0 is the most reasonable candidate,
because even for the resulting mean profile χ̄(x) = b0x

β with β = 3(2+α)−1

and b0 = [β2(β − 1)]−β/3 most carriers remain concentrated close to the
current source. The differential equation for the fluctuations αψ/χ̄+ψ′/χ̄′+
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Fig. 2. Shot-noise power P as a function of α. The exact result (solid curve) is
compared with the approximate result (24) (dashed curve).

ψ′′/χ̄′′ = δi can be solved with help of the homogeneous solutions ψ1(x) =
xβ−1 and ψ2(x) = x3−2β . The inhomogeneous solution that fulfills ψ(0, t) = 0,
ψ′(0, t) = 0 is

ψ(x, t) = b0
β(β − 1)
4 − 3β

∫ x

0
dx′

[
x3−2βx′3β−4 − xβ−1] δi(x′, t). (23)

We demand that the voltage does not fluctuate, ψ(1, t) = 0, and obtain
Eq. (19) with now G(x) = 1 − x3β−4. The shot noise power is finally found
from Eq. (21) with H(x) = PPoissonx

3−β/2
∫ 1

x
dx′ x′β/2−3,

P/PPoisson =
6(α − 1)(α+ 2)(16α2 + 36α − 157)

5(2α − 5)(8α − 17)(13 + 8α)
. (24)

This is the dashed curve in Fig. 2.

7 Discussion

The shot-noise suppression factor P/PPoisson varies from 0.38 to 0 in the
range − 1

2 < α < 1, which includes the case of an energy-independent elastic
scattering rate (α = 0, P/PPoisson = 0.3097) and the case of short-range scat-
tering by uncharged impurities or quasi-elastic scattering by acoustic phonons
(α = − 1

2 , P/PPoisson = 0.3777). The results in the drift approximation (24)
are about 10% larger. Our values are somewhat smaller than those following
from the numerical simulations of González et al., who found P/PPoisson = 1

3
for α = 0 [4] and P/PPoisson = 0.42 − 0.44 for α = − 1

2 [12].
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Our considerations require the exponent α to be in the range − 1
2 < α < 1.

For α < − 1
2 the mean free path l ∝ εα+1/2 diverges at small kinetic energies.

The carriers at the current source therefore enter the conductor ballistically
and accumulate only at a finite distance from the injection point. Fig. 1
indicates that the charge density at the current source must be zero if one
insists that the electric field vanishes. Nagaev [8] has shown that full shot
noise, P = PPoisson, follows for α = − 3

2 . Presumably, P/PPoisson will decrease
monotonically from 1 for α = − 3

2 to 0.38 for α = − 1
2 , but we have no theory

for this range of α’s. For α > 1 the resistance R becomes infinitely large,
because the coefficient χ̄(1) in the current-voltage characteristic (15) diverges.
An intuitive understanding can be obtained by equating the potential gain
φ ∼ (Dt)3/(2α+4) (acquired by diffusing close to the current source for a time
t) with the increase in kinetic energy ε: For α > 1 this time t ∝ ε(1−α)/3 is
seen to diverge for small ε. We found that the shot-noise power vanishes as
α → 1. Presumably, a non-zero answer for P would follow for α > 1 if the
non-zero thermal energy and finite charge density at the current source is
accounted for. This remains an open problem.

Discussions with O. M. Bulashenko, T. González, J. M. J. van Leeuwen,
and W. van Saarloos are gratefully acknowledged. This work was supported
by the European Community (Program for the Training and Mobility of
Researchers) and by the Dutch Science Foundation NWO/FOM.
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Transport and Noise of Entangled Electrons
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Abstract. We consider a scattering set-up with an entangler and beam splitter
where the current noise exhibits bunching behavior for electronic singlet states and
antibunching behavior for triplet states. We show that the entanglement of two elec-
trons in the double-dot can be detected in mesoscopic transport measurements. In
the cotunneling regime the singlet and triplet states lead to phase-coherent current
contributions of opposite signs and to Aharonov-Bohm and Berry phase oscillations
in response to magnetic fields. We analyze the Fermi liquid effects in the transport
of entangled electrons.

1 Introduction

The availability of pairwise entangled qubits – Einstein-Podolsky-Rosen
(EPR) pairs [1] – is a necessary prerequisite in quantum communication [2].
The prime example of an EPR pair considered here is the singlet/triplet state
formed by two electron spins [3], [4]. Its main feature is its non-locality: If we
separate the two electrons from each other in real space, their total spin state
can still remain entangled. Such non-locality gives rise to striking phenom-
ena such as violations of Bell inequalities and quantum teleportation and has
been investigated for photons [5], [6], but not yet for massive particles such
as electrons, let alone in a solid state environment. In this work we discuss
specific properties of transport and noise of entangled electrons as a result of
two-particle coherence and nonlocality.

In Sect. (2) we propose and analyze an experimental set-up (see Fig. 1a)
by which the entanglement of mobile electrons can be detected in noise mea-
surements with a beam splitter [7]. The entangler is assumed to be a device by
which we can generate entangled electron states, a specific realization being
the double-dot system [3]. The presence of a beam splitter ensures that the
electrons leaving the entangler have a finite amplitude to be interchanged.
Thus we can expect that the current-current correlations (noise) measured in
leads 3 and/or 4 are sensitive to the symmetry of the orbital part of the wave
function [8]. Since the spin singlet of two electrons is uniquely associated with
a symmetric orbital wave-function, and the triplet with an antisymmetric one
we have a means to distinguish singlets from triplets through a bunching or
antibunching signature. It is well-known [10] that bosons (fermions) show
bunching (antibunching) behavior [11]. Antibunching is so far considered for
electrons in the normal state both in theory [12], [13] and in experiments

D. Reguera et al. (Eds.): Proceedings 1999, LNP 547, pp. 105−113, 1999.
 Springer-Verlag Berlin Heidelberg 1999
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Fig. 1. a) The setup for measuring noise correlations of entangled states. Uncorre-
lated electrons are fed into the entangler through the Fermi leads 1′ and 2′. The
entangler is a device that produces pairs of entangled electrons and injects one of
the electrons into lead 1 and the other into lead 2. The entanglement can then be
detected by performing an interference experiment using a beam splitter. b) Dou-
ble-dot (DD) system containing two electrons and being weakly coupled to metallic
leads 1,...,4, each of which being at the chemical potential µ1,...,µ4. The tunneling
amplitudes between dots and leads are denoted by Γ , Γ̃ . The tunneling (t) be-
tween the dots results in a singlet (triplet) ground state. The closed tunneling path
between dots and leads 1 and 2 encloses the area A.

[14]. However, this classical effect is independent of phase coherence [15] and
should be carefully distinguished from the two-particle phase-coherent effect
which we propose here.

The scheme we propose in Sect. (3) [16] consists of two coupled quantum
dots (DD) which themselves are weakly coupled in parallel to two leads 1
and 2 (see Fig. 1b). This results in a closed loop, and applying a magnetic
field, an Aharonov-Bohm (AB) phase ϕ will be accumulated by an electron
traversing the DD. In the Coulomb blockade (CB) regime we find that due
to cotunneling [17] the current depends on the state of the DD: the AB
oscillations for singlet and triplets have opposite sign. The amplitude of the
AB oscillations provides a measure of the phase coherence of the entangled
state, while the period – via the enclosed area A – provides a measure of
the non-locality of the EPR pairs. The triplets themselves can be further
distinguished by applying a directionally inhomogeneous magnetic field which
adds a Berry phase [18] leading to beating.
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Finally, in Sect. (4) we would like to address the following question [9]: Is
it possible to use mobile electrons, prepared in a entangled spin state, for the
purpose of quantum communication? Without spin-dependent interaction we
know that the total spin must be conserved even if the two electrons strongly
interact with the other electrons in the mesoscopic environment (and among
themselves) via Coulomb interaction. It is thus not unreasonable to expect
that we still find some spin correlations between initial and final states. But
how much is it? And why and how do we loose some of the correlations?

2 Noise of Entangled Electrons: Beam Splitter Set-up

Below, we extend the standard scattering matrix approach [12] to a situation
with entanglement. We start by writing the operator for the current carried
by electrons with spin σ in lead α of a multiterminal conductor as

Iασ(t) =
e

hν

∑
ε,ε′

∑
βγ

a†βσ(ε)aγσ(ε′)Aα
βγ exp [i(ε− ε′)t/h̄] , (1)

Aα
βγ = δαβδαγ − s∗αβsαγ . (2)

where a†ασ(ε) creates an incoming electron in lead α with spin σ and en-
ergy ε, and we assume that the scattering matrix sαβ is spin- and energy-
independent. Note that since we are dealing with discrete energy states here,
we normalize the operators aα(ε) such that [aασ(ε), aβσ′(ε′)†] = δσσ′δαβδε,ε′/ν,
where the Kronecker symbol δε,ε′ equals 1 if ε = ε′ and 0 otherwise. Therefore
we also have included the factor 1/ν in the definition of the current, where
ν stands for the density of states in the leads. We will also assume that each
lead consists of only a single quantum channel; the generalization to leads
with several channels is straightforward but is not needed here.

We restrict ourselves here to unpolarized currents, Iα =
∑

σ Iασ. The
spectral density current fluctuations (noise) δIα = Iα − 〈Iα〉 between the
leads α and β are defined as

Sαβ(ω) = lim
T→∞

hν

T

∫ T

0
dt exp (iωt) 〈Ψ |δIα(t)δIβ(0)|Ψ〉 , (3)

where |Ψ〉 is the quantum state of the system to be specified next1. We will
now investigate the noise for scattering with the entangled incident state

|±〉 = 1√
2

(
a†2↓(ε2)a

†
1↑(ε1) ± a†2↑(ε2)a†1↓(ε1)

)
|0〉 . (4)

The state |−〉 is the spin singlet, |S〉, while |+〉 denotes the Sz = 0 triplet
|T0〉2. Substituting |±〉 defined in (4) for |Ψ〉 and using the fact that the
1 Note that since |Ψ〉 in general does not describe a Fermi liquid state, it is not
possible to apply Wick’s theorem.

2 All three triplets, |T0〉, |↑↑〉, |↓↓〉, give the same result.
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unpolarized currents are invariant when all spins are reversed, the expectation
value 〈±|δIαδIβ |±〉 can be expressed as the sum of a direct and an exchange
term,

〈±|δIαδIβ |±〉 = 〈↑↓ |δIαδIβ | ↑↓〉 ± 〈↑↓ |δIαδIβ | ↓↑〉 , (5)

where the upper (lower) sign of the exchange term refers to triplet (singlet).
Direct calculation of (5) gives the following result for the zero-frequency (ω =
0) correlations,

Sαβ =
e2

hν


∑

γδ

′
Aα

γδA
β
δγ ∓ δε1,ε2

(
Aα

12A
β
21 +A

α
21A

β
12)
) , (6)

where
∑′

γδ denotes the sum over γ = 1, 2 and all δ 
= γ.
We apply formula (6) now to the set-up shown in Fig. 1a involving four

leads, described by the single-particle scattering matrix elements, s31 = s42 =
r, and s41 = s32 = t, where r and t denote the reflection and transmission
amplitudes at the beam splitter, respectively. We assume that there is no
backscattering, s12 = s34 = sαα = 0. The unitarity of the s-matrix implies
|r|2 + |t|2 = 1, and Re[r∗t] = 0. Using (2) and (6), we obtain the final result
for the noise correlations for the incident states |±〉,

S33 = S44 = −S34 = eF |〈I〉| ,
F = 2eT (1 − T ) (1 ∓ δε1,ε2) , (7)

where |〈I〉| = e/hν is the average current in all leads, T = |t|2 is the probabil-
ity for transmission through the beam splitter, and F is the Fano factor. Note
that the total current δI3 + δI4 does note fluctuate, i.e. S33 +S44 +2S34 = 0,
since we have excluded backscattering.

Above results (7) imply that if two electrons with the same energies,
ε1 = ε2, in the singlet state |S〉 = |−〉 are injected into the leads 1 and 2,
then the zero frequency noise is enhanced by a factor of two, F = 4eT (1−T ),
compared to the shot noise of uncorrelated particles, F = 2eT (1 − T ). This
enhancement of noise is due to bunching of electrons in the outgoing leads,
caused by the symmetric orbital wavefunction of the spin singlet |S〉. On
the other hand, all three triplets |+〉 exhibit an antibunching effect, leading
to a complete suppression of the zero-frequency noise, Sαα = 0. The noise
enhancement for the singlet |S〉 is a unique signature for entanglement (there
exists no unentangled state with the same symmetry), therefore entanglement
can be observed by measuring the noise power of a mesoscopic conductor as
shown in Fig. 1a.3

3 These results remain valid in the presence of a Fermi sea.
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3 Probing Entanglement of Electrons in a Double-Dot

The DD system (see Fig. 1b) contains 4 metallic leads which are in equi-
librium with associated reservoirs kept at the chemical potentials µi, i =
1, . . . , 4. The leads are weakly coupled to the dots with tunneling amplitudes
Γ and Γ̃ , and the leads 1, 2 are coupled to both dots and play the role of
probes where the currents Ii are measured. The leads 3 and 4 are feeding
electrodes to manipulate the electron filling in the dots. The quantum dots
contain one (excess) electron each, and are coupled to each other by the tun-
neling amplitude t, which leads to a level splitting [3], [4] J = Et−Es ∼ 4t2/U
in the DD, with U being the single-dot Coulomb repulsion energy, and Es/t
are the singlet/triplet energies. We recall that for two electrons in the DD
(and for weak magnetic fields) the ground state is given by a spin singlet. For
convenience we count the chemical potentials µi from Es. The coupling Γ̃ to
the feeding leads can be switched off while probing the DD with a current.
Here we assume that Γ̃ = 0.

Using a standard tunneling Hamiltonian approach [19], we write H =
H0 + V , where the first term in H0 = HD +H1 +H2 describes the DD and
H1,2 the leads (assumed to be Fermi liquids). The tunneling between leads
and dots is described by the perturbation V = V1 + V2, where

Vn = Γ
∑

s

[
D†n,scn,s + c†n,sDn,s

]
, Dn,s = e±iϕ/4d1,s + e∓iϕ/4d2,s , (8)

and where the operators cn,s and dn,s, n = 1, 2, annihilate electrons with spin
s in the nth lead and in the nth dot, resp. The Peierls phase ϕ in the hopping
amplitude accounts for an AB or Berry phase (see below) in the presence of
a magnetic field. The upper sign belongs to lead 1 and the lower to lead 2.
Finally, we assume that spin is conserved in the tunneling process. For the
outgoing currents we have In = ieΓ

∑
s

[
D†n,scn,s − c†n,sDn,s

]
. The observable

of interest is the average current through the DD system, I = 〈I2〉.
From now on we concentrate on the CB regime where we can neglect

double (or higher) occupancy in each dot for all transitions including virtual
ones, i.e. we require µ1,2 < U . Further we assume that µ1,2 > J, kBT to
avoid resonances which might change the DD state. The lead-dot coupling
Γ is assumed to be weak so that the state of the DD is not perturbed; this
will allow us to retain only the first non-vanishing contribution in Γ to I.
Formally, we require J > 2πνtΓ 2, where νt is the tunneling density of states
of the leads. In analogy to the single-dot case [17] we refer to above CB regime
as cotunneling regime.

Continuing with our derivation of I, we note that the average 〈. . .〉 ≡
Trρ {. . .} is taken with respect to the equilibrium state of the entire system
set up in the distant past before V is switched on [19]. Then, in the interaction
picture, the current is given by

I = 〈U†I2(t)U〉, U = T exp
[
−i
∫ t

−∞
dt′V (t′)

]
. (9)
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The leading contribution in Γ to the cotunneling current involves the tun-
neling of one electron from the DD to, say, lead 2 and of a second electron
from lead 1 to the DD (see Fig. 1b). This contribution is of order V2V

2
1 , and

thus I ∝ Γ 4, as is typical for cotunneling [17]. Taking the trace over Fermi
leads, we arrive then at the following compact expression for the cotunneling
current

I =
1
2
eπν2

t Γ
4
∑

i,f,s,s′
ρi |〈i|D†2,s′D1,s|f〉|2∆i,fθ(∆i,f )

µ1µ2
,

∆i,f = µ1 − µ2 + Ei − Ef . (10)

This equation shows that in the cotunneling regime the initial state |i〉 (with
weight ρi) of the DD is changed into a final state |f〉 by the traversing electron.
However, due to the weak coupling Γ , the DD will have returned to its
equilibrium state before the next electron passes through it.

For small bias, |µ1 − µ2| < J , only elastic cotunneling is allowed, i.e.
Ei = Ef . However, this regime is not of interest here since singlet and triplet
contributions turn out to be identical and thus indistinguishable. We thus
focus on the opposite regime, |µ1 − µ2| > J , where inelastic cotunneling4

occurs with singlet and triplet contributions being different. In this regime
we can neglect the dynamics generated by J compared to the one generated
by the bias (“slow spins”), and drop the energies Ei and Ef in (10). Finally,
using 1 =

∑
f |f〉〈f | we obtain

I = eπν2
t Γ

4C(ϕ)
µ1 − µ2

µ1µ2
, (11)

C(ϕ) =
∑
s,s′

[
〈d†1s′d1sd

†
1sd1s′〉 + cosϕ〈d†1s′d1sd

†
2sd2s′〉

]
. (12)

For the purpose of our analysis we assume that the DD is in its ground state.
Equation (12) shows that the cotunneling current depends on the properties
of the ground state of the DD through the coherence factor C(ϕ) given in
(12). The first term in C is the contribution from the topologically trivial
tunneling path which runs from lead 1 through, say, dot 1 to lead 2 and back.
The second term (phase-coherent part) in C is the ground state amplitude of
the exchange of electron 1 with electron 2 via the leads 1 and 2 such that a
closed loop is formed enclosing an area A (see Fig. 1b). Thus, in the presence
of a magnetic field B, an AB phase factor ϕ = ABe/h is acquired.

Next, we evaluate C(ϕ) explicitly in the singlet-triplet basis. Note that
only the singlet |S〉 and the triplet |T0〉 (see (4)) are entangled EPR pairs
while the remaining triplets |T+〉 = | ↑↑〉, and |T−〉 = | ↓↓〉 are not (they

4 Note that the AB effect is not suppressed by this inelastic cotunneling, since
the entire cotunneling process involving also leads is elastic: the initial and final
states of the entire system have the same energy.
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factorize). Assuming that the DD is in one of these states we obtain the
important result

C(ϕ) =
{
2 − cosϕ , for singlet
2 + cosϕ , for all triplets . (13)

Thus, we see that the singlet and the triplets contribute with opposite sign to
the phase-coherent part of the current. One has to distinguish, however, care-
fully the entangled from the non-entangled states. The phase-coherent part
of the entangled states is a genuine two-particle effect, while the one of the
product states cannot be distinguished from a phase-coherent single-particle
effect. Indeed, this follows from the observation that the phase-coherent part
in C factorizes for the product states T± while it does not so for S, T0. Also,
for states such as | ↑↓〉 the coherent part of C vanishes, showing that two
different (and fixed) spin states cannot lead to a phase-coherent contribution
since we know which electron goes which part of the loop. Finally we note
that due to the AB phase the role of the singlet and triplets can be inter-
changed which is to say that we can continually transmutate the statistics
of the entangled pairs S, T0 from fermionic to bosonic (like in anyons): the
symmetric orbital wave function of the singlet S goes into an antisymmetric
one at half a flux quantum, and vice versa for the triplet T0.

We would like to stress that the amplitude of the AB oscillations is a direct
measure of the phase coherence of the entanglement, while the period via the
enclosed area A = h/eB0 gives a direct measure of the non-locality of the EPR
pairs, with B0 being the field at which ϕ = 1. The triplets themselves can
be further distinguished by applying a directionally inhomogeneous magnetic
field (around the loop) producing a Berry phase ΦB [18], which is positive
(negative) for the triplet m = 1(−1), while it vanishes for the EPR pairs
S, T0. Thus, we will eventually see beating in the AB oscillations due to the
positive (negative) shift of the AB phase Φ by the Berry phase, ϕ = Φ±ΦB.

4 Transport of Entangled Electrons

We consider the general scenario of the transport of entangled electrons in a
mesoscopic system [9]. In a first step we inject entangled electrons into the
leads and create the state |12〉 ≡ |±〉 (see (4)) on the top of the Fermi sea
(as discussed e.g. in Sect. (2), see Fig. 1a). In a second step, we perform a
quantum measurement of the state. As a measure of correlations we consider
transition amplitudes between an initial and a final state. We begin with the
simplest case given by the wave function overlap of |12〉 with |34〉,

〈12|34〉 = δ13δ24 ∓ δ14δ23 , (14)

where the upper (lower) sign refers to triplet (singlet). If the quantum num-
bers coincide, 1 = 3, and 2 = 4, the overlap assumes its maximum value 1,
reflecting maximum correlation between the two states.
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Next we generalize this concept to leads which contain many interacting
electrons besides the two entangled electrons. We use a similar overlap as
a measure of how much weight remains in the final state |34, t〉 when we
start from some given initial state |12〉. The overlap (14) now becomes a
triplet-triplet or singlet-singlet correlation function

Gt/s(12,34; t) = −G(1, t)G(2, t) [δ13δ24 ∓ δ14δ23] , (15)

where we have assumed that there is no interactions between lead 1 and
2. Thus the problem is reduced to the evaluation of (time-ordered) single-
particle Green’s functions G(1, t), G(2, t) pertaining to lead 1 and 2, resp.
(these leads are still interacting many-body systems though).

For the special case t = 0, and no interactions, we have G = −i, and thus
Gt/s reduces to the rhs of (14). For the general case, we evaluate G close to
the Fermi surface and get the standard result [20]

G(ε, t) ≈ −izεΘ(ε− εF )e−iεt−Γεt , (16)

where ε is the quasiparticle energy, εF is the Fermi energy, and 1/Γε is the
quasiparticle lifetime. In a 2DEG, Γε ∝ (ε − εF)2 log(ε − εF) [21] within
the random phase approximation (RPA). Thus, the lifetime becomes infinite
when the energy of the added electron approaches εF.

Now, we come to the most important quantity in the present context, the
quasiparticle weight, zF = zεF , evaluated at the Fermi surface; it is defined
by

zF =
[
1 − ∂

∂ω
ReΣ(εF, ω = 0)

]−1

, (17)

where Σ(ε, ω) is the irreducible self-energy occurring in the Dyson equation.
The quasiparticle weight, 0 ≤ zε ≤ 1, describes the weight of the bare electron
in the quasiparticle state ε, i.e. when we add an electron with energy ε ≥ εF
to the system, some weight (given by 1 − zε) of the original state ε will be
distributed among all the electrons due to the Coulomb interaction.

Restricting ourselves now to energies close to the Fermi surface we have

Gt/s(12,34; t) = z2F [δ13δ24 ∓ δ14δ23] , (18)

for all times satisfying 0 < t <∼ 1/Γε. Thus we see that it is the quasiparticle
weight squared, z2F, which is the measure of our spin correlation function Gt/s

we were looking for. It is thus interesting to evaluate zF explicitly. This is
indeed possible, again within RPA, and we find after careful calculation [22]

zF = 1 − rs(12 +
1
π
) , (19)

in leading order of the interaction parameter rs = 1/qFaB, where aB =
ε0h̄

2/me2 is the Bohr radius. In particular, in a GaAs 2DEG we have aB =
10.3 nm, and rs = 0.614, and thus we obtain from (19) the value zF = 0.665.
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We note that a more accurate numerical evaluation of the exact RPA self-
energy yields5 zF = 0.691 [22]. Thus, we see that the spin correlation is
reduced by a factor of about two as soon as we inject the two electrons into
separate leads consisting of interacting Fermi liquids in their ground state.

5 Acknowledgements

This work has been supported by the Swiss National Science Foundation.

References

[1] A. Einstein, B. Podolsky, N. Rosen Phys. Rev. 47, 777 (1935).
[2] C. H. Bennett and G. Brassard, in Proceedings of the IEEE International Con-

ference on Computers, Systems and Signal Processing, Bangalore, India (IEEE,
New York, 1984), p. 175.

[3] D. Loss, D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
[4] G. Burkard, D. Loss, D. P. DiVincenzo, Phys. Rev. B 59 2070 (1999).
[5] A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804 (1982).
[6] A. Zeilinger, in Physics World, March 1998.
[7] G. Burkard, D. Loss and E. V. Sukhorukov, preprint (cond-mat/9906071).
[8] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman lectures on physics,

Vol. 3 (Addison-Wesley, 1965).
[9] D. P. DiVincenzo, D. Loss, preprint (cond-mat/9901137).
[10] R. Loudon, in Coherence and Quantum Optics VI, eds. J. H. Eberly et al.

(Plenum, New York, 1990).
[11] R. Hanbury Brown and R. Q. Twiss, Nature (London) 177, 27 (1956).
[12] M. Büttiker, Phys. Rev. Lett. 65, 2901 (1990); Phys. Rev. B46, 12485 (1992).
[13] T. Martin, R. Landauer, Phys. Rev. B45, 1742 (1992).
[14] R. C. Liu et al., Nature 391, 263 (1998); M. Henny et al., Science 284, 296

(1999); W. D. Oliver et al., Science 284, 299 (1999).
[15] E. V. Sukhorukov and D. Loss, Phys. Rev. B59, 13054 (1999).
[16] D. Loss and E. V. Sukhorukov, preprint (cond-mat/9907129).
[17] D. V. Averin, Yu. V. Nazarov, in Single Charge Tunneling, eds. H. Grabert

and M.H. Devoret, NATO ASI Series B: Physics Vol. 294, Plenum Press, New
York, 1992; J. Knig, H. Schoeller, and G. Schn, Phys. Rev. Lett. 78, 4482 (1997).

[18] D. Loss, P. Goldbart, Phys. Rev. B 45, 13544 (1992).
[19] G. D. Mahan, Many Particle Physics, 2nd Ed. (Plenum, New York, 1993).
[20] A.L. Fetter and J.D. Walecka, Quantum Theory of Many-Particle Systems

(New York, McGraw-Hill, 1971).
[21] G. F. Guiliani and J. J. Quinn, Phys. Rev. B 26, 4421 (1982).
[22] D. Loss, G. Burkard, and E. Sukhorukov, Quantum communication with elec-

trons, unpublished.

5 For 3D metallic leads with, say, rs = 2 (e.g. rCu
s = 2.67) the loss of correlation

is somewhat less strong, since then the quasiparticle weight becomes zF = 0.77
[19].



Shot Noise Suppression in Metallic Quantum
Point Contacts
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den, The Netherlands

Abstract. Transport properties on atom-size metallic contacts are studied by com-
bining measurements on conductance and shot noise. Results are presented on few-
atom contacts of the monovalent metal gold and the trivalent metal aluminum, as
well as on larger gold contacts. The experiments are explained in terms of quantum
conductance modes. For a single atom gold contact, shot noise tends to be fully
suppressed, indicating that only one mode with transmission of nearly unity con-
tributes to the current. In contrast, the trivalent metal aluminum does not show
this property. In larger gold contacts the number of partially transmitted modes
continuously grows with the contact size.

1 Introduction

Shot noise is a non-equilibrium type of noise, directly resulting from the dis-
creteness of electric charge: the passage of individual electrons causes the
current to be a sum of random pulses. These intrinsic current fluctuations
were already predicted in 1918 by Schottky, as an artifact of vacuum diodes
(Schottky 1918). Shot noise turns out to be present in all kinds of devices,
including microscopic conductors. In the last decade, it has become clear that
it can be used to obtain information on the electron transport mechanism,
e.g. different mesoscopic lengthscales can be distinguished (Steinbach et al.
1996), and the charge in the fractional quantum Hall regime can be deter-
mined (Saminadayar et al. 1997, de Picciotto et al. 1997). Recently, from shot
noise measurements the quantum nature of the conductance in atom-size gold
contacts has been revealed (van den Brom & van Ruitenbeek 1999a). In this
paper we present an extension of these measurements to aluminum and to
larger gold contacts.

If the passage of each individual electron is completely uncorrelated, the
number, N , of such events per unit time obeys Poisson statistics, stating
that the fluctuation in this number is given by ∆N2 ≡ (N −N)2 = N . The
spectral density of current fluctuations for such uncorrelated events equals
2eI (see, e.g., van der Ziel 1986). This so-called full shot noise can be measured
in vacuum diodes or tunneling devices.

Since electrons are fermions, that can be either reflected or transmitted,
the occupation number, n, of a given state can be either zero or one, while the
average of this number, n, can be considered as the transmission probability

D. Reguera et al. (Eds.): Proceedings 1999, LNP 547, pp. 114−122, 1999.
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Tn. Therefore, using n2 = n, for the fluctuations we find ∆n2 = Tn(1 − Tn).
Hence, in a ballistic quantum point contact (QPC) with perfect transmission
of electrons (i.e., Tn =1 or 0) there are no fluctuations in the occupation
numbers of left and right moving electrons, suppressing all shot noise.

For a general multichannel contact at zero temperature, the shot noise
spectral density can be expressed in terms of the transmission probabilities
Tn of all conducting channels (Lesovik 1989, Büttiker 1990),

SI = 2eV
2e2

h

∑
n

Tn(1 − Tn) . (1)

For a contact with linear current-voltage characteristics, we see that the
shot noise power is still linear in bias current. In a ballistic QPC in a two-
dimensional electron gas (2DEG), the conductance, G, as a function of con-
tact diameter shows a step-wise increase by integer multiples of the conduc-
tance quantum, G0 ≡ 2e2/h (van Wees et al. 1988, Wharam et al. 1988), and
shot noise was indeed shown to be strongly suppressed at quantized conduc-
tance values, where the contributing conductance modes are fully transmitted
(Reznikov et al. 1995, Kumar et al. 1996).

From the Landauer formula for conductance, G = G0
∑

n Tn, we only
know the sum of the transmission coefficients. However, from Eq. 1 we also
know the sum of the transmission coefficients squared. Hence, the combina-
tion of conductance and shot noise measurements can provide us with new
knowledge on electron transport properties of the smallest metallic contacts.

2 Experimental techniques

In order to obtain a stable atomic scale contact, we use the mechanically
controllable break-junction technique (MCB) (Muller et al. 1992). A notched
metal wire of high purity is glued on top of a phosphor bronze substrate,
which is insulated with kapton foil. This is mounted into a vacuum can and
cooled down to 4.2K. By bending the substrate, the wire is broken, after
which the contact between the fracture surfaces is controlled using a piezo-
electric element. An advantage of this technique is its high degree of stability,
which is even further improved by careful shielding from external electromag-
netic, mechanical and acoustic vibrations. The cryo-pumping action of the
low-temperature vacuum can ensures us that two fracture surfaces remain
atomically clean for days.

The effect of measuring at low temperature is that the thermal noise is
reduced. However, the noise level of the preamplifiers is exceeding the shot
noise we are interested in. Using two sets of preamplifiers in parallel and mea-
suring the cross-correlation, this undesired noise is reduced. By subtracting
the zero bias thermal noise from the current biased noise measurements, the
preamplifier noise, present in both, is further eliminated. For each contact,
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the electronic transfer characteristics of our wiring is calibrated and corrected
for. The result is a white noise spectrum in the frequency interval from a few
kHz up to 100 kHz. For currents up to 0.9µA the shot noise level has the ex-
pected linear dependence on current. For further details on the measurement
technique, we refer to van den Brom & van Ruitenbeek (1999a).

3 Results

3.1 Atom-size gold contacts

First we investigate the monovalent metal gold, for which a single atom
contact is expected to transmit a single conductance mode (Scheer et al.
1998, Cuevas et al. 1998). In Fig. 1 the experimental results for a number of
conductance values are shown. All data are strongly suppressed compared to
the full shot noise value, with minima close to 1 and 2 times the conductance
quantum. In fact, we are considering the shot noise relative to its full value,

SI

2eI
=
∑

n Tn(1 − Tn)∑
n Tn

. (2)

We compare our data to a model that assumes a certain evolution of the
values Tn as a function of the total conductance. In the simplest case, the
conductance is due to only fully transmitted modes (Tn = 1) plus a single
partially transmitted mode (full curve). The model gives a measure for the
deviation from this ideal case in terms of the contribution x of other partially
open channels; the corresponding behavior of the shot noise as a function of
conductance is shown as the dashed curves in Fig. 1. This model has no
physical basis but merely serves to illustrate the extent to which additional,
partially open channels are required to describe the measured shot noise. For
a more physical model fitting the data of Fig. 1 see Bürki & Stafford (1999).

We see that for G < G0 the data are very close to the x = 0% curve, while
for G0 < G < 2G0 the data are closer to the x = 10% curve. For G > 2G0
the contribution of other partially open channels continues to grow.

The results described above, especially the almost full suppression of shot
noise for contacts with conductance close toG = G0, are obtained in gold con-
tacts. We performed similar experiments on aluminum, which showed much
weaker suppression of shot noise, as will be discussed in the next section.

3.2 Atom-size aluminum contacts

When the experiment is repeated for aluminum contacts, we observe a differ-
ent behavior of the shot noise power as a function of conductance compared
to gold. For contacts between 0.8G0 and 2.5G0 the obtained shot noise val-
ues vary from 0.3 to 0.6 (2eI), which is much higher than for gold (see Fig. 1).
A systematic dependence of the shot noise power on the conductance seems
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Fig. 1.Measured shot noise values for gold (full circles) and aluminum (open circles)
contacts at 4.2K with a bias current of 0.9µA. For gold, comparison is made with
calculations described in the text and in the inset (full and dashed black curves).
For aluminum, comparison is made with the maximum shot noise that can be
produced by N modes (gray curves), as explained in the text. The minimum shot
noise is given by the full black curve. The aluminum data measured on the last
conductance plateau (see text) are indicated by somewhat smaller circles. Note
that in the limit of zero conductance, the theoretical curves all converge to full shot
noise. Inset: Model for visualizing the effect of contributions of different modes to
the conductance and shot noise. The model gives a measure for the deviation from
the ideal case of channels opening one by one, by means of a fixed contribution
(1 − Tn−1) + Tn+1 = x of the two neighboring modes. As an illustration we show
the case of x = 10% contribution from neighboring modes.
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to be absent. The fact that we do see a lowest value at a conductance of 1G0
is somewhat misleading, since we have much more data-points in this region.
The relevant observation is that this lowest shot noise value is still higher
than all shot noise values measured for gold, and it cannot be described by
a single conductance channel.

A more detailed study of the quantum suppression can be done by follow-
ing the evolution of the shot noise while stretching a contact, such that the
conductance changes only gradually around 1G0 (i.e. without stepwise be-
havior due to atomic rearrangements). This is possible for aluminum because
of the anomalous slope of the last conductance plateau before jumping to
tunneling, showing a conductance increasing with contact elongation (Krans
et al. 1993). In contrast, for gold the last plateau has a nearly constant con-
ductance of about 1G0. Due to this anomalous behavior of aluminum, we
are able to start the experiment at a conductance of 0.76G0, and continue
measuring without an abrupt change in the conductance, until the contact
breaks, at G =1.29G0. Simultaneously the shot noise is measured, showing
a value changing gradually from 0.50 to 0.36 (2eI), with no response to the
crossing of the unit of conductance (van den Brom & van Ruitenbeek 1999b).

From the two measured parameters, the conductance, G, and the shot
noise, SI , one can not determine the full set of transmission probabilities.
However, the shot noise values found for aluminum, especially the ones at
conductance values close to G0, can be fit to Eq. 1 only if we assume that
more than one mode is transmitted. The maximum shot noise generated by
two, three or four modes respectively as a function of conductance is plotted
as the gray curves in Fig. 1; the minimum shot noise in all cases is given by the
full black curve. Hence, for a contact with shot noise higher than indicated
by the gray N -mode maximum shot noise curve, at least N + 1 modes are
contributing to the conductance. From this simple analysis we can see that
for a considerable number of contacts with a conductance close to 1G0, the
number of contributing modes is at least three.

3.3 Larger gold contacts

The measurements on gold contacts, discussed in section 3.1, are performed
on the smallest contacts only. We already noted that the contribution of
partially open channels grows with increasing conductance. This raises the
question, what happens at higher conductance values. For long conductors a
crossover is expected to the diffusive regime, where the shot noise suppression
is 1/3, or to the interacting hot-electron regime, where the shot noise grows to√
3/4 (2eI) (Steinbach et al. 1996). In the limit of a macroscopic conductor,

shot noise is commonly believed to be absent (Horowitz & Hill 1989) because
of inelastic scattering (Beenakker & Büttiker 1992). For larger ballistic point
contacts, with resistance values of approximately 1Ω, it is reported (Aki-
menko et al. 1982) that the measured noise contains spectroscopic features
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Fig. 2. Measured shot noise values for larger gold contacts at 4.2K. The gold data
from Fig. 1, with conductance below 3G0, are also shown. Note that above this
value, nearly all data are in the range from 0.10 – 0.20 (2eI), without an apparent
systematic dependence on the conductance.

showing the influence of phonons on the fluctuations. However, this noise was
attributed to the same mechanism that is responsible for 1/f -noise.

We repeated the experiments for larger contacts, up to a conductance of
G =30G0. Since determining the contact conductance is done by DC current
bias, the measured signal, i.e. the voltage across the contact, decreases with
increasing contact size. Therefore, for contacts of conductance G >∼ 10G0, it
turned out to be more convenient to raise the bias current. Down to G ≈ 4G0
this higher bias did to influence the results, as would have been the case when
local heating raises the thermal noise.

As can be seen in Fig. 2, nearly all shot noise data for contacts above
G =3G0 are in the range from 0.10 – 0.20 (2eI), without a systematic depen-
dence on the conductance. This means that the number of partially transmit-
ted modes continues to grow with contact size. This can be seen by realizing
that according to Eq. 2 the single mode contribution to the shot noise de-
creases with increasing conductance.

4 Discussion

Let us first focus on the results for the monovalent metal gold, which has been
studied most intensively. Starting with a tunneling contact, we found that for
increasing contact size, the transmission of the first mode entering the contact
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goes to unity, before the second channel opens, after which the second channel
tends to go fully open, before the third one opens, and so on. This property
was also inferred from measurements of conductance fluctuations (Ludoph
et al. 1999) and thermopower (Ludoph & van Ruitenbeek 1999), and was
referred to as ‘saturation of channel transmission’. From Fig. 1 we can even
quantify the accuracy to which this rule is obeyed; deviations increase to
around 20% admixture of the next channels already at G = 3G0. Where the
interpretation of Ludoph et al. depends on ensemble averaged properties, the
present results show that saturation of channel transmission is observed for
individual contacts, and is independent of any adjustable parameters.

For atom-size contacts of superconductors Scheer et al. (1997, 1998) per-
formed experiments on current-voltage characteristics in the superconducting
state. This was used to demonstrate that the number of conducting channels
in a single atom contact is determined by the number of valence orbitals
(Scheer et al. 1998, Cuevas et al. 1998). However, reservations were made
about the results on gold, since the proximity effect was used to induce su-
perconductivity in a gold QPC, causing a modified quasiparticle density of
states. Our results for G < G0 show unambiguously that in the monova-
lent metal gold, the current through a single atom contact is indeed almost
exclusively carried by one single conductance channel.

Using an independent-electron model of a disordered nanocontact in a
2DEG, Bürki and Stafford (1999) quantitatively reproduce our experimental
shot noise data for the smallest gold contacts. They justify the use of their
model by comparing the histogram it produces with experimental histograms.

In model simulations for gold, Brandbyge et al. (1997) find nearly full
transmission of the channels for G near 1 and 3G0. However, they report
two half opened channels around G=2G0, which is at variance with the
experimental results of section 3.1. For larger contacts, up to G =12G0,
they find an increasing number of partially transmitted modes, in agreement
with the results described here in section 3.3.

In the semiclassical limit, shot noise in a ballistic point contact is pre-
dicted to be suppressed below its full value by a factor proportional to the
contact diameter, and inversely proportional to the electron mean free path
(Kulik & Omel’yanchuk 1984). The physical interpretation of this predic-
tion is, that for larger contacts, the amount of backscattering from defects in
the banks increases with increasing contact size, enlarging the current fluc-
tuations. However, quantum mechanically, apart from an increasing number
of partially transmitted modes, also the number of fully open conductance
channels could be increasing. The way these two effects are canceling each
other in Eq. 2 is very sensitive to the exact transmission values. From our
experiments we see that for contacts between 3 and 30G0, the contribution
of partially transmitted modes continues to grow. A transition to the diffu-
sive regime is not observed. This is to be expected, for the electron mean free
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path is estimated to be around 5 nm (Ludoph et al. 1999), while the contact
diameter is on the same order of magnitude or smaller.

Our results for a single atom contact of aluminum show that several modes
are transmitted, confirming the results of Scheer et al. (1997), who found three
conducting channels. These results are fully consistent with recent tight bind-
ing calculations for single atom junctions, in which the conductance modes
were attributed to the atomic valence orbitals (Cuevas et al. 1998). Gold has
a single s-like orbital, giving rise to a single conductance channel. Aluminum
has one s and three p orbitals, resulting in only three partially open conduc-
tance channels, for the anti-symmetric s-pz hybridized orbital does not give
any significant transmission.

From conductance versus interelectrode distance curves, the quantum con-
ductance properties cannot be identified as unambiguously in metals as they
are in 2DEG contacts (van Wees et al. 1988, Wharam et al. 1988). His-
tograms built up from many of these conductance curves display the statis-
tical preference of certain conductance values, which may be influenced by
both quantization effects (including symmetry effects, Krans et al. 1995) and
preferred atomic configurations. This can be best illustrated by the conduc-
tance histogram of aluminum (Yanson & van Ruitenbeek 1997), which shows
pronounced peaks near the first four integer multiples of G0. Neglecting the
effect of preferred atomic configurations, one would be tempted to attribute
these peaks to conductance quantization. However, using the knowledge that
a single atom contact of conductance G ≈ 1G0 carries several conductance
modes, for which we find strong evidence in our shot noise data, a natural
interpretation for the first peak in the histogram would be, that it arises from
a reproducible last contact configuration of a single atom. In analogy, also
the other peaks in the histogram are expected to have their origin in a certain
preferred atomic configuration.
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Abstract. Chaotic tunneling in a driven double-well system is investigated in ab-
sence as well as in the presence of dissipation. As the constitutive mechanism of
chaos-assisted tunneling, we focus on the dynamics in the vicinity of three-level
crossings in the quasienergy spectrum. They are formed when a tunnel doublet,
located on a pair of symmetry-related tori in the classical phase space, approaches
a chaotic singlet in energy. The coherent quantum dynamics near the crossing, in
particular the enhanced tunneling that involves the chaotic singlet state as a “step
stone”, is described satisfactorily by a three-state model. It fails, however, for the
corresponding dissipative dynamics, because incoherent transitions due to the in-
teraction with the environment indirectly couple the three states in the crossing
to the remaining quasienergy states. We model dissipation by coupling the double
well, the driving included, to a heat bath. The time dependence of the central sys-
tem, with a quasienergy spectrum containing exponentially small tunnel splittings,
requires special considerations when applying the Born-Markov and rotating-wave
approximations to derive a master equation for the density operator. We discuss
the effect of decoherence on the now transient chaos-assisted tunneling: While deco-
herence is accelerated practically independent of temperature near the center of the
crossing, it can be stabilzed with increasing temperature at a chaotic-state induced
exact crossing of the ground-state quasienergies. Moreover the asymptotic amount
of coherence left within the vicinity of the crossing is enhanced if the tempera-
ture is below the splitting of the avoided crossing; but becomes diminished when
temperature raises above the splitting (chaos-induced coherence or incoherence,
respectively). The asymptotic state of the driven dissipative quantum dynamics
partially resembles the, possibly strange, attractor of the corresponding damped
driven classical dynamics, but also exhibits characteristic quantum effects.

1 Introduction

The interplay of classical chaos and dissipation in a quantum system bears
interesting effects at the border between classical and quantum mechanics
like, e.g., the suppression of classical chaos by quantum interference [1] or
its restauration by dissipation [2]. While the mutual influence of quantum
coherence and classical chaos is under investigation since many years, the
additional effects caused by coupling the chaotic system to an environment,
namely dissipation and decoherence, have been studied only rarely. One rea-
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son is that by including dissipation, the computational effort grows drasti-
cally, since one has to deal with density matrices instead of wave functions.

In classical Hamiltonian systems, the transition from regular motion to
chaos is most clearly visible in the change of the phase-space structure: With
increasing nonlinearity, regular tori successively dissolve in adjacent chaotic
layers which grow in size and merge until the whole phase space is uniformly
covered by a chaotic sea where the dynamics is locally hyperbolic and globally
diffusive [3]. Research in quantum chaos has initially been concentrated on
this limiting case of “hard chaos”, because the absence of structure in phase
space facilitates the description.

Closer to the generic situation, however, is the intermediate regime with
an extremely intricate interweaving of regular and chaotic areas, as described
by the Kolmogorov-Arnol’d-Moser (KAM) theorem, with self-similar hierar-
chies of regular islands. It is in this regime that we expect the most interesting,
but at the same time least tractable, phenomena of chaos-coherence interplay
to occur. A prominent example is chaotic tunneling, the coherent exchange
of probability between symmetry-related regular regions that are separated
dynamically by a chaotic layer, instead of a static potential barrier [4–20].
Chaotic tunneling comes about by the simultaneous action of classical non-
linear dynamics and quantum coherence. Tunneling is extremely sensitive to
any disruption of coherence as it occurs due to the unavoidable coupling to
the environment: In presence of dissipation, coherent tunneling becomes a
transient that fades out on the way to an asymptotic state [21, 22]. This is
just one instance of the general rule that decoherence tends to restore clas-
sical behaviour, other examples being the partial lifting, by dissipation, of
the quantum suppression of chaos, and the appearance of quantum station-
ary states that show a close resemblance to corresponding classical strange
attractors [2]. However, particularly for weak dissipation, more complicated
cross effects occur, such as the strong modification of the decoherence time
by chaotic tunneling.

In this contribution, we investigate the mutual influence of chaotic tunnel-
ing and dissipation for a specific, but nevertheless generic case: a periodically
forced bistable system. The quartic double well with a harmonic driving will
serve as our working model. In Section 2 we introduce its Hamiltonian and
the underlying symmetries. To provide the necessary background, we also
briefly review other important features of this system, in particular driven
tunneling and its coherent suppression and modification in the presence of
classical chaos without damping.

Dealing with a driven system, its quantum dynamics is adequately an-
alyzed in terms of the Floquet or quasienergy spectrum, also introduced in
Section 2. The quasispectrum associated with chaotic tunneling exhibits a
characteristic feature: Quasienergies of chaotic singlets frequently intersect
tunnel doublets which are supported by regular tori. As the basic mechanism
of chaotic tunneling we study, in Sections 3 and 4, the coherent and dissi-
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pative quantum dynamics in the vicinity of such singlet-doublet crossings.
While in the coherent case the dynamics is well described in a three-state
approximation, the coupling to the environment indirectly couples the three
states to all other states. On the basis of numerical results for the full driven
double well with dissipation, we reveal the limitations of the three-level ap-
proximation and identify additional features of the full dynamics not covered
by it. In particular, we consider the long-time asymptotics and the phase-
space structure associated with it.

Also on the classical level, the presence of friction has profound conse-
quences for the phase-space structure: Due to the net contraction of phase-
space volume, stationary states are restricted to manifolds of lower dimen-
sionality than the underlying phase space. Depending on friction strength
and details of the system, this attractor may be consist of fixed points, of
limit cycles, or, if the classical dynamics is chaotic, of a strange attractor with
self-similar, fractal geometry. On a quantum level, the structures associated
with classical attractors are smeared out on a scale h̄, yet leave clear traces in
the asymptotic state of the corresponding dissipative quantum dynamics [23].
We study the classical-quantum correspondence of the asymptotic state in
Section 5.

2 The model

We consider the quartic double well with a spatially homogeneous driving
force, harmonic in time. It is defined by the Hamiltonian

H(t) = HDW +HF (t), (1)

HDW =
p2

2m
− 1

4
mω20x

2 +
m2ω40
64EB

x4, (2)

HF (t) = Sx cos(Ωt). (3)

The potential term of the static bistable Hamiltonian HDW possesses two
minima at x = ±x0, x0 = (8EB/mω

2
0)1/2, separated by a barrier of height

EB (cf. Fig. 1). The parameter ω0 denotes the (angular) frequency of small
oscillations near the bottom of each well. Apart from mere scaling, the clas-
sical phase space of HDW only depends on the presence or absence, and the
signs, of the x2 and the x4 term. Besides that, it has no free parameter. This
is obvious from the scaled form of the classical equations of motion,

˙̄x = p̄, (4)

˙̄p =
1
2
x̄− 1

2
x̄3 − F cos(Ω̄t̄), (5)

where the dimensionless quantities x̄, p̄ and t̄ are given by x/x0, p/mω0x0
and ω0t, respectively. The influence of the driving on the classical phase-space
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�x0

Fig. 1. Sketch of the driven dou-
ble well potential described by the
time-dependent Hamiltonian (1) at
two different phases.

structure is fully characterized by the rescaled amplitude and frequency of
the driving,

F =
S√

8mω20EB
, Ω̄ =

Ω

ω0
. (6)

This implies that the classical dynamics is independent of the barrier height
EB.

In the quantum-mechanical case, this is no longer true: The finite size of
Planck’s constant results in a finite number

D =
EB

h̄ω0
(7)

of doublets with energy below the barrier top. The classical limit amounts to
D → ∞. This is evident from the classical scales for position, x0, and momen-
tum, mω0x0, introduced above: The corresponding action scale is mω0x20 and
therefore, the position-momentum uncertainty relation in the scaled phase
space (x̄, p̄) reads

∆x̄∆p̄ ≥ h̄eff
2
, (8)

where

h̄eff =
h̄

mω0x20
=

1
8D

(9)

denotes the effective quantum of action.
In the following, we restrict the driving amplitude to moderate values,

such that the difference between the potential minima remains much smaller
than the barrier height. This implies that the bistable character of the po-
tential is never lost.
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2.1 Symmetries

Time periodicity. The Hamiltonian (1) is P -periodic, with P = 2π/Ω. As
a consequence of this discrete time-translational invariance of H(x, p; t), the
relevant generator of the quantum dynamics is the Floquet operator [24–28]

U = T exp

(
− i
h̄

∫ P

0
dtH(t)

)
, (10)

where T denotes time ordering. According to the Floquet theorem, the adi-
abatic states of the system are the eigenstates of U . They can be written in
the form

|ψα(t)〉 = e−iεαt/h̄|φα(t)〉, (11)

with

|φα(t+ P )〉 = |φα(t)〉.
Expanded in these Floquet states, the propagator of the driven system reads

U(t′, t) =
∑
α

e−iεα(t′−t)/h̄|φα(t′)〉〈φα(t)|. (12)

The associated eigenphases εα, referred to as quasienergies, come in classes,
εα,n = εα +nh̄Ω, n = 0,±1,±2, . . .. This is suggested by a Fourier expansion
of the |φα(t)〉,

|φα(t)〉 =
∑

n

|cα,n〉 e−inΩt,

|cα,n〉 =
1
P

∫ P

0
dt |φα(t)〉 einΩt. (13)

The index n counts the number of quanta in the driving field. Otherwise, the
members of a class α are physically equivalent. Therefore, the quasienergy
spectrum can be reduced to a single “Brillouin zone”, −h̄Ω/2 ≤ ε < h̄Ω/2.

Since the quasienergies have the character of phases, they can be ordered
only locally, not globally. A quantity that is defined on the full real axis and
therefore does allow for a complete ordering, is the mean energy [22,27,28]

Eα =
1
P

∫ P

0
dt 〈ψα(t)|H(t) |ψα(t)〉 ≡ 〈〈φα(t)|H(t) |φα(t)〉〉. (14)

It is related to the corresponding quasienergy by

Eα = εα + 〈〈φα(t)| ih̄
∂

∂t
|φα(t)〉〉, (15)

where the outer angle brackets denote the time average over one period of
the driving, as indicated by Eq. (14). The second term on the right-hand
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side plays the rôle of a geometric phase accumulated over this period [22,29].
Without the driving, Eα = εα, as it should be. By inserting the Fourier
expansion (13), the mean energy takes the form

Eα =
∑

n

(εα + nh̄Ω) 〈cα,n|cα,n〉. (16)

It shows that the nth Floquet channel gives a contribution εα + nh̄Ω to the
mean energy, weighted by the Fourier coefficient 〈cα,n|cα,n〉 [28].

Quasienergies and Floquet states are obtained numerically by solving the
matrix eigenvalue equation [24,27,28]

∑
n′

∑
k′

Hn,k;n′,k′cn′,k′ = εcn,k, (17)

equivalent to the time-dependent Schrödinger equation. It is derived by in-
serting the eigenstates (11) into the Schrödinger equation, Fourier expanding,
and using the representation in the eigenbasis of the unperturbed Hamilto-
nian, H0|Ψk〉 = Ek|Ψk〉. We introduced the abbreviations

Hn,k;n′,k′ = (Ek − nh̄Ω)δn−n′δk−k′ +
1
2
S xk,k′ (δn−1−n′ + δn+1−n′), (18)

cn,k = 〈Ψk|cn〉, (19)
xk,k′ = 〈Ψk|x |Ψk′〉. (20)

Time-reversal symmetry. The energy eigenfunctions of an autonomous
Hamiltonian with time-reversal symmetry,

T : x → x, p → −p, t → −t (21)

can be chosen as real [30, 31]. Time-reversal invariance is generally broken
by a magnetic field or by an explicit time-dependence of the Hamiltonian.
However, for the sinusoidal shape of the driving together with the initial
phase chosen above, T invariance is retained and the Schrödinger operator
H(t) = H(t) − ih̄∂t obeys H(t) = H∗(−t). If now φ(x, t) is a Floquet state in
position representation with quasienergy ε, then φ∗(x,−t) also is a Floquet
state with the same quasienergy. This means that we can always find a linear
combination of these Floquet states such that φ(x, t) = φ∗(x,−t), or in the
frequency domain, φ(x,Ω) = φ∗(x,Ω), i.e., the Fourier coefficients of the
Floquet states can be chosen real.

Generalized parity. The invariance of HDW under parity P: x → −x,
p → −p, t → t is destroyed by any spatially constant driving force. With
the above choice of HF (t), however, a more general, dynamical symmetry
remains [32–34]. It is defined by the operation

PP : x → −x, p → −p, t → t+ P/2 (22)
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and represents a generalized parity acting in the extended phase space span-
ned by x, p, and phase, i.e., time tmodP . While such a discrete symmetry
is of minor importance in classical physics, its influence on the quantum
mechanical quasispectrum {εα(F )} is profound: It devides the Hilbert space
in an even and an odd sector, thus allowing for a classification of the Floquet
states as even or odd. Quasienergies from different symmetry classes may
intersect, while quasienergies with the same symmetry typically form avoided
crossings [31]. The fact that PP acts in the phase space extended by time
tmodP , results in a particularity: If, e.g., |φ(t)〉 is an even Floquet state,
then exp(iΩt)|φ(t)〉 is odd, and vive versa. Thus, two equivalent Floquet
states from neighboring Brillouin zones have opposite generalized parity. This
means that a classification of the corresponding solutions of the Schrödinger
equation, |ψ(t)〉 = exp(−iεt/h̄)|φ(t)〉, as even or odd is meaningful only with
respect to a given Brillouin zone.

The invariance of the system under PP is also of considerable help in
the numerical treatment of the Floquet matrix (18) [11, 12]. To obtain a
complete set of Floquet states, it is sufficient to compute all eigenvectors of
the Floquet Hamiltonian in the even subspace whose eigenvalues lie in the
first two Brillouin zones. The even Floquet states are given by the eigenvectors
of He from the first Brillouin zone; the odd Floquet states are obtained by
shifting the (even) ones from the second to the first Brillouin zone, which
changes their generalized parity. Thus, in the even subspace, we have to
diagonalize the matrix

He =




. . .
...

...
...

...
...

· · · Ee + 2h̄Ω Xeo 0 0 0 · · ·
· · · Xeo Eo + h̄Ω Xoe 0 0 · · ·
· · · 0 Xoe Ee Xeo 0 · · ·
· · · 0 0 Xeo Eo − h̄Ω Xoe · · ·
· · · 0 0 0 Xoe Ee − 2h̄Ω · · ·

...
...

...
...

...
. . .



. (23)

For the same number of Floquet channels, it has only half the dimension of
the original Floquet matrix (18). The entries in He are themselves blocks of
infinite dimension, in principle. They read explicitly

Ee =



E0 0 0 · · ·
0 E2 0 · · ·
0 0 E4 · · ·
...

...
...

. . .


 , Eo =



E1 0 0 · · ·
0 E3 0 · · ·
0 0 E5 · · ·
...

...
...

. . .


 , (24)
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Xeo =
S

2



x0,1 x0,3 x0,5 · · ·
x2,1 x2,3 x2,5 · · ·
x4,1 x4,3 x4,5 · · ·

...
...

...
. . .


 , Xoe =

S

2



x1,0 x1,2 x1,4 · · ·
x3,0 x3,2 x3,4 · · ·
x5,0 x5,2 x5,4 · · ·

...
...

...
. . .


 . (25)

Here, Ee, Eo, represent the undriven Hamiltonian, and Xeo, Xoe the driving
field H1 = Sx/2, decomposed in the even and odd eigenstates |Ψk〉 of HDW,
with Ek denoting an eigenvalue of HDW, and xk,k′ a matrix element of the
position operator, see Eq. (20).

2.2 Tunneling, driving, and dissipation

With the driving HF (t) switched off, the classical phase space generated by
HDW exhibits the constituent features of a bistable Hamiltonian system. A
separatrix at E = 0 forms the border between two sets of trajectories: One
set, with E < 0, comes in symmetry-related pairs, each partner of which
oscillates in either one of the two potential minima. The other set consists of
unpaired, spatially symmetric trajectories, with E > 0, which encircle both
wells.

Torus quantization of the integrable undriven double well, Eq. (2), implies
a simple qualitative picture of its eigenstates: The unpaired tori correspond to
singlets with positive energy, whereas the symmetry-related pairs below the
top of the barrier correspond to degenerate pairs of eigenstates. Due to the
almost harmonic shape of the potential near its minima, neighboring pairs
are separated in energy approximately by h̄ω0. Exact quantization, however,
predicts that the partners of these pairs have small but finite overlap. There-
fore, the true eigenstates come in doublets, each of which consists of an even
and an odd state, |Φ+n 〉 and |Φ−n 〉, respectively. The energies of the nth dou-
blet are separated by a finite tunnel splitting ∆n. We can always choose the
global relative phase such that the superpositions

|ΦR,L
n 〉 =

1√
2

(|Φ+n 〉 ± |Φ−n 〉) (26)

are localized in the right and the left well, respectively. As time evolves, the
states |Φ+n 〉, |Φ−n 〉 acquire a relative phase exp(−i∆nt/h̄) and |ΦRn 〉, |ΦLn〉 are
transformed into one another after a time πh̄/∆n. Thus, the particle tunnels
forth and back between the wells with a frequency ∆n/h̄. This introduces an
additional, purely quantum-mechanical frequency scale, the tunnel rate ∆0/h̄
of a particle residing in the ground-state doublet. Typically, tunnel rates are
extremely small compared to the frequencies of the classical dynamics, all
the more in the semiclassical regime we are interested in.

A driving of the form (3), even if its influence on the classical phase space
is minor, can entail significant consequences for tunneling: It may enlarge the
tunnel rate by orders of magnitude or even suppress tunneling altogether.
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For adiabatically slow driving, Ω � ∆0/h̄, tunneling is governed by the
instantaneous tunnel splitting, which is always larger than its unperturbed
value ∆0 and results in an enhancement of the tunneling rate [33]. If the
driving is faster, ∆0/h̄ <∼ Ω � ω0, cf. Fig. 2, the opposite holds true: The
relevant time scale is now given by the inverse of the quasienergy splitting of
the ground-state doublet h̄/|ε1 − ε0|. It has been found [33, 35] that in this
case, for finite driving amplitude, |ε1 − ε0| < ∆0. Thus tunneling is always
decelerated. Where the quasienergies of the ground-state doublet (which are
of different generalized parity) intersect as a function of F , the splitting
vanishes and tunneling is brought to a complete standstill by the purely
coherent influence of the driving [32].

The small energy scales associated with tunneling make it extremely sen-
sitive to any loss of coherence. As a consequence, the symmetry underlying
the formation of tunnel doublets is generally broken, and an additional energy
scale is introduced, the effective finite width attained by each discrete level.
Tunneling and related coherence phenomena thus fade out on a time scale
tdecoh. In general, this time scale gets shorter for higher temperatures, reflect-
ing the growth of the transition rates (53) [36]. However, there exist coun-
terintuitive effects: For driven tunneling in the vicinity of an exact crossing
of the ground-state doublet, the coherent suppression of tunneling [22,32,33]
can be stabilized with higher temperatures [37–39] until levels outside the
doublet start to play a rôle.

So far, we have considered only driving frequencies much smaller than
the frequency scale ω0 of the relevant classical resonances, i.e., a parameter
regime where classical motion is predominantly regular. In this regime, co-
herent tunneling is well described within a two-state approximation [33, 35].
In the dissipative case, however, a two-state approximation must fail for tem-
peratures kBT >∼ h̄ω0, where thermal activation to higher doublets becomes
relevant.

2.3 The onset of chaos

Driving with a frequency Ω ≈ ω0 affects also the dynamics of the classical
bistable system, as small oscillations near the bottom of the wells become
resonant with the driving and classical chaos comes into play (cf. Fig. 2). In
a quantum description, this amounts to resonant multiple excitation of inter-
doublet transitions until levels near the top of the barrier are significantly
populated.

In this frequency regime, switching on the driving has two principal con-
sequences for the classical dynamics: The separatrix is destroyed as a closed
curve and replaced by a homoclinic tangle [40] of stable and unstable man-
ifolds. A chaotic layer forms in the vicinity and with the topology of the
former separatrix (cf. Fig. 6, below). This opens the way for diffusive trans-
port between the two potential wells. Due to the nonlinearity of the potential,
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of the incoherent dynamics, we shall now discuss them in terms of a simple
three-state model, devised much in the spirit of Ref. [7].

Far to the left of the crossing, we expect the following situation: There is
a doublet of Floquet states

|ψ+r (t)〉 = e−iε
+
r t/h̄|φ+r (t)〉, (27)

|ψ−r (t)〉 = e−i(ε
+
r +∆)t/h̄|φ−r (t)〉, (28)

with even (superscript +) and odd (−) generalized parity, respectively, re-
siding on a pair of quantizing tori in one of the regular (subscript r) regions.
We have assumed the quasienergy splitting ∆ = ε−r − ε+r (as opposed to the
unperturbed splitting) to be positive. The global relative phase is chosen such
that the superpositions

|φR,L(t)〉 =
1√
2

(|φ+r (t)〉 ± |φ−r (t)〉) (29)

are localized in the right and the left well, respectively, and tunnel back and
forth with a frequency ∆/h̄.

As the third player, we introduce a Floquet state

|ψ−c (t)〉 = e−i(ε
+
r +∆+∆c)t/h̄|φ−c (t)〉, (30)

located mainly in the chaotic (subscript c) layer, so that its time-periodic part
|φ−c (t)〉 contains a large number of harmonics. Without loss of generality,
its parity is fixed to be odd. For the quasienergy, we assume that ε−c =
ε+r + ∆ + ∆c = ε−r + ∆c, where |∆c| can be regarded as a measure of the
distance from the crossing.

The structure of the classical phase space then implies that the mean
energy of the chaotic state should be close to the top of the barrier and
far above that of the doublet. We assume, like for the quasienergies, a small
splitting of the mean energies pertaining to the regular doublet, |E−r −E+

r | �
E−c − E±r .

In order to model an avoided crossing between |φ−r 〉 and |φ−c 〉, we suppose
that there is a non-vanishing fixed matrix element

b = 〈〈φ−r |HDW|φ−c 〉〉 > 0. (31)

For the singlet-doublet crossings under study, we typically find that ∆ �
b � h̄Ω. Neglecting the coupling with all other states, we model the system
by the three-state (subscript 3s) Floquet Hamiltonian

H3s = ε+r +


0 0 0

0 ∆ b
0 b ∆+∆c


 (32)

in the three-dimensional Hilbert space spanned by {|φ+r (t)〉, |φ−r (t)〉, |φ−c (t)〉}.
Its Floquet states are



Driven Tunneling: Chaos and Decoherence 137

|φ+0 (t)〉 = |φ+r (t)〉,
|φ−1 (t)〉 =

(|φ−r (t)〉 cosβ − |φ−c (t)〉 sinβ
)
, (33)

|φ−2 (t)〉 =
(|φ−r (t)〉 sinβ + |φ−c (t)〉 cosβ

)
.

with quasienergies

ε+0 = ε+r , ε−1,2 = ε+r +∆+
1
2
∆c ∓ 1

2

√
∆2
c + 4b2, (34)

and mean energies, neglecting contributions of the matrix element b,

E+
0 = E+

r ,

E−1 = E−r cos2 β + E−c sin2 β, (35)
E−2 = E−r sin2 β + E−c cos2 β.

The angle β describes the mixing between the Floquet states |φ−r 〉 and
|φ−c 〉 and is an alternative measure of the distance to the avoided crossing.
By diagonalizing the Hamiltonian (32), we obtain

2β = arctan
(

2b
∆c

)
, 0 < β <

π

2
. (36)

For β → π/2, corresponding to −∆c � b, we retain the situation far left of
the crossing, as outlined above, with |φ−1 〉 ≈ |φ−c 〉, |φ−2 〉 ≈ |φ−r 〉. To the far
right of the crossing, i.e., for β → 0 or ∆c � b, the exact eigenstates |φ−1 〉
and |φ−2 〉 have interchanged their phase-space structure [13–15]. Here, we have
|φ−1 〉 ≈ |φ−r 〉 and |φ−2 〉 ≈ |φ−c 〉. The mean energy is essentially determined by
this phase-space structure, so that there is also an exchange of E−1 and E−2
in an exact crossing, cf. Eq. (35), while E+

0 remains unaffected (Fig. 4b). The
quasienergies ε+0 and ε−1 must intersect close to the avoided crossing of ε−1
and ε−2 (Fig. 4a). Their crossing is exact, since they pertain to states with
opposite parity (cf. Fig. 3a,b).

In order to illustrate the above three-state model and to demonstrate its
adequacy, we have numerically studied a singlet-doublet crossing that occurs
for the double-well potential, Eq. (1), with D = 4, at a driving frequency
Ω = 0.982ω0 and amplitude F = 0.015029 (Fig. 5). The phase-space struc-
ture of the participating Floquet states (Figs. 6, 7) meets the assumptions of
our three-state theory. A comparison of the appropriately scaled three-state
theory (Fig. 4) with this real singlet-doublet crossing (Fig. 5) shows satisfac-
tory agreement. Note that in the real crossing, the quasienergy of the chaotic
singlet decreases as a function of F , so that the exact crossing occurs to the
left of the avoided one. This numerical example also shows a deficiency of
the idealized three-state model. Following the global tendency of widening of
the splittings with increasing driving amplitude [11, 44, 45], it may happen
that even far away from a crossing, the doublet splitting does not return to
its value on the opposite side (see Fig. 8). It is even possible that an exact
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-10 -5 0 5 10

-4b

-2b

0

2b

4b

�c=b

-10 -5 0 5 10

-D

0

�c=b

Fig. 4. A singlet-doublet crossing, according to the three-state model (32), in terms
of the quasienergies (a) and the mean energies (b) as functions of the coupling pa-
rameter ∆c/b. Energies for a corresponding exact crossing (i.e., with the crossing
states uncoupled) are marked by dotted lines, the energies in the presence of cou-
pling by full and dashed lines for even and odd states, respectively.
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-0.001

0.0

0.001

(
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-3

-2

-1
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Fig. 5. Singlet-doublet crossing found numerically for the driven double well, Eq.
(1), at D = 4 and Ω = 0.982ω0, in terms of the dependence of the quasienergies
(a) and the mean energies (b) on the driving amplitude F . Values of the driving
amplitude used in Fig. 9 are marked by dotted vertical lines. Full and dashed lines
indicate energies of even and odd states, respectively. Bold lines give the mean
energies of the chaotic singlet and the ground-state doublet depicted in panel (a).
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Fig. 6. Classical stroboscopic phase space portrait, at t = 2πn/Ω, of the
harmonically driven quartic double well, Eq. (1). The driving parameters F = 0.015,
Ω = 0.982ω0, are at the center of the singlet-doublet crossing shown in Fig. 5.
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Fig. 7. Contour plots of the Husimi functions for the Floquet states |φ−
1 〉 ≈ |φ−

r 〉
(a) and |φ−

2 〉 ≈ |φ−
c 〉 (b) of the harmonically driven quartic double well, Eq. (1), at

stroboscopic times t = nP . The driving parameters F = 0.014, Ω = 0.982ω0, are
in sufficient distance to the singlet-doublet crossing such that the admixture from
the chaotic singlet state is negligible. The rectangle in the lower left corner has the
size of the effective quantum of action h̄eff .

crossing of ε+0 and ε−1 never takes place in the vicinity of the crossing. In
that case, the relation of the quasienergies in the doublet gets reversed via
the crossing (Fig. 3c,d). Nevertheless, the three-state scenario captures the
essential features.

To study the dynamics of the tunneling process, we focus on the state

|ψ(t)〉 =
1√
2

(
e−iε

+
0 t/h̄|φ+0 (t)〉 + e−iε

−
1 t/h̄|φ−1 (t)〉 cosβ + e−iε

−
2 t/h̄|φ−2 (t)〉 sinβ

)
.

(37)
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Fig. 8. Splitting of the low-
est doublets for D = 4 and
Ω = 0.982ω0. The arrows indi-
cate the locations of the exact
and the avoided crossing within
a three-level crossing of the type
sketched in Fig. 3a.

It is constructed such that at t = 0, it corresponds to the decomposition
of |φR〉 in the basis (33) at finite distance from the crossing. Therefore, it
is initially localized in the regular region in the right well and follows the
time evolution under the Hamiltonian (32). From Eqs. (29), (33), we find the
probabilities for its evolving into |φR〉, |φL〉, or |φc〉, respectively, to be

PR,L(t) = |〈φR,L(t)|ψ(t)〉|2

=
1
2

(
1 ±

[
cos

(ε−1 − ε+0 )t
h̄

cos2 β + cos
(ε−2 − ε+0 )t

h̄
sin2 β

]

+
[
cos

(ε−1 − ε−2 )t
h̄

− 1
]

cos2 β sin2 β

)
, (38)

Pc(t) = |〈φc(t)|ψ(t)〉|2 =
[
1 − cos

(ε−1 − ε−2 )t
h̄

]
cos2 β sin2 β.

We discuss the coherent dynamics of the three-state model for different dis-
tances to the crossing and illustrate it by numerical results for the real cross-
ing introduced above.

At sufficient distance from the crossing, there is only little mixing between
the regular and the chaotic states, i.e., sinβ � 1 or cosβ � 1. The tunneling
process then follows the familiar two-state dynamics involving only |φ+r 〉 and
|φ−r 〉, with tunnel frequency ∆/h̄ (Fig. 9a). Close to the avoided crossing,
cosβ and sinβ are of the same order of magnitude, and |φ−1 〉, |φ−2 〉 become
very similar to one another. Both now have support in the chaotic layer as
well as in the symmetry-related regular regions, they are of a hybrid nature.
Here, the tunneling involves all the three states and must be described at
least by a three-level system. The exchange of probability between the two
regular regions proceeds via a “stop-over” in the chaotic region [7, 8, 13–15].

The three quasienergy differences that determine the time scales of this
process are in general all different, leading to complicated beats (Fig. 9b).
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Fig. 9. Stroboscopic time evolution
of a state initially localized in the
right well, in the vicinity of the
singlet-doublet crossing shown in
Fig. 5, in terms of the probabili-
ties to be in the right well (which
here is identical to the return prob-
ability, marked by full lines), in
the reflected state in the left well
(dashed), or in the chaotic state
|ψc〉 (dotted). Parameter values are
as in Fig. 5, and F = 0.0145 (a),
0.0149 (b), 0.015029 (c).

However, for ∆c = −2∆, the two quasienergies ε−1 − ε+0 and ε+0 − ε−2 are
degenerate. At this point, the center of the crossing, the number of different
frequencies in the three-level dynamics reduces to two again. This restores the
familiar coherent tunneling in the sense that there is again a simple periodic
exchange of probability between the regular regions [13–15]. However, the
rate is much larger if compared to the situation far off the crossing, and the
chaotic region is now temporarily populated during each probability transfer,
twice per tunneling cycle (Fig. 9c).

4 Incoherent quantum dynamics

4.1 Master equation

System-bath model. To achieve a microscopic model of dissipation, we
couple the system (1) bilinearly to a bath of non-interacting harmonic os-
cillators [48, 49]. The total Hamiltonian of system and bath is then given
by

H(t) = HDW(t) +
∞∑

ν=1

(
p2ν

2mν
+
mν

2
ω2ν

(
xν − gν

mνω2ν
x

)2
)
. (39)
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The position x of the system is coupled, with coupling strength gν , to an
ensemble of oscillators with masses mν , frequencies ων , momenta pν , and
coordinates xν . The bath is fully characterized by the spectral density of the
coupling energy,

J(ω) = π

∞∑
ν=1

g2ν
2mνων

δ(ω − ων). (40)

For the time evolution we choose an initial condition of the Feynman-
Vernon type: at t = t0, the bath is in thermal equilibrium and uncorrelated
to the system, i.e.,

ρ(t0) = ρS(t0) ⊗ ρB,eq, (41)

where ρB,eq = exp(−βHB)/trB exp(−βHB) is the canonical ensemble of the
bath and 1/β = kBT .

Due to the bilinearity of the system–bath coupling, one can always elim-
inate the bath variables to get an exact, closed integro-differential equation
for the reduced density matrix ρS(t) = trBρ(t). It describes the dynamics of
the central system, subject to dissipation [50].

Born-Markov approximation. In most cases, however, the integro-diffe-
rential equation for ρS(t) can be solved only approximately. In particular, in
the limit of weak coupling,

γ � kBT/h̄, (42)
γ � |εα − εα′ |/h̄, (43)

it is possible to truncate the time-dependent perturbation expansion in the
system–bath interaction after the second-order term. The quantity γ, to be
defined below, denotes the effective damping of the dissipative system, and
|εα−εα′ |/h̄ are the transition frequencies of the central system. In the present
case, the central system is understood to include the driving [51–54], so that
the transition frequencies are given by quasienergy differences. The autocor-
relations of the bath decay on a time scale h̄/kBT and thus in the present
limit, instantaneously on the time scale 1/γ of the system correlations. With
the initial preparation (41), the equation of motion for the reduced density
matrix in this approximation is given by [54]

ρ̇S(t) = − i
h̄

[HS(t), ρS(t)] +
1
πh̄

∫ ∞
−∞

dω J(ω)nth(h̄ω)

×
∫ ∞
0

dτ
(
eiωτ [x̃(t− τ, t)ρS(t), x] + H.c.

)
, (44)

where x̃(t′, t) denotes the position operator in the interaction picture defined
by

x̃(t′, t) = U†(t′, t)xU(t′, t), (45)
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with U(t′, t), the propagator of the conservative driven double well, given in
Eq. (12). ‘H.c.’ means ‘Hermitian conjugate’, and

nth(ε) =
1

eε/kBT − 1
= −nth(−ε) − 1 (46)

is the thermal occupation of the bath oscillator with energy ε. To achieve
a more compact notation, we require J(−ω) = −J(ω). In the following, we
shall restrict ourselves to an Ohmic bath, J(ω) = mγω. This defines the
effective damping constant γ.

We use the time-periodic components |φα(t)〉 of the Floquet states as a
basis to expand the density operator, Eq. (44). Expressing the matrix ele-
ments

Xαβ(t) = 〈φα(t)|x|φβ(t)〉 (47)

of the position operator by their Fourier coefficients

Xαβ,n = 〈〈φα(t)|x e−inΩt|φβ(t)〉〉 = X∗βα,−n , (48)

Xαβ(t) =
∑

n

einΩtXαβ,n , (49)

yields the equation of motion for the elements ραβ of the reduced density
matrix ρS [37, 39,52,54],

ρ̇αβ(t) =
d
dt

〈φα(t)|ρS(t)|φβ(t)〉

= − i
h̄

(εα − εβ)ραβ(t)

+
∑

α′β′nn′

(
Nαα′,nXαα′,nρα′β′Xβ′β,n′

−Nα′β′,nXαα′,n′Xαα′,nρβ′β
)
ei(n+n′)ωt + H.c. . (50)

The coefficients of this differential equation are periodic in time with the
period of the driving. The Nαβ,n are given by

Nαβ,n = N(εα − εβ + nh̄Ω), N(ε) =
mγε

h̄2
nth(ε). (51)

For ε � kBT , N(ε) approaches zero.
Since the position operator x is odd under PP (cf. Eq. (22)), the master

equations (44) and (50) are invariant under PP . Therefore, both the con-
servative and the dissipative dynamics preserve the parity of the operator
|φα〉〈φβ |. If |φα〉 and |φβ〉 belong to the same parity class, it is even, and odd
otherwise. In particular, the projectors |φα〉〈φα| and thus all density matrices
diagonal in the Floquet basis are even under PP .
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Rotating-wave approximation. Assuming that dissipative effects are rel-
evant only on a time scale much larger than the period P of the driving,
we average the coefficients of the master equation (50) over P to obtain the
equation of motion

ρ̇αβ(t) = − i
h̄

(εα − εβ)ραβ(t) +
∑
α′β′

Lαβ,α′β′ρα′β′ , (52)

with the time-independent dissipative part

Lαβ,α′β′ =
∑

n

(Nαα′,n +Nββ′,n)Xαα′,nXβ′β,−n

−δββ′
∑
β′′,n

Nβ′′α′,nXαβ′′,−nXβ′′α′,n

−δαα′
∑
α′′n

Nα′′β′,nXβ′α′′,−nXα′′β,n. (53)

This step amounts to a rotating-wave approximation which is, however, less
restrictive than the one introduced in [51, 52] where dissipative effects are
averaged over the generally longer time scale maxα,β,n(2πh̄/(εα −εβ +nh̄Ω)).

4.2 Chaos-assisted dissipative tunneling

The crucial effect of dissipation on a quantum system is the disruption of co-
herence: a coherent superposition evolves into an incoherent mixture. Thus,
phenomena based on coherence, such as tunneling, are rendered transients
that fade out on a finite time scale tdecoh. In general, for driven tunneling
in the weakly damped regime, this time scale gets shorter for higher tem-
peratures, as transition rates grow [36]. However, in the vicinity of an exact
crossing of the ground-state quasienergies, the coherent suppression of tun-
neling [22, 32, 33] can be stabilized with higher temperatures [37–39] and
increasing friction [55,56] until levels outside the doublet start to play a rôle.
We have studied dissipative chaos-assisted tunneling, at the particular real
singlet-doublet crossing introduced in Sec. 3.1 (see Fig. 5). The time evolu-
tion has been computed numerically by iterating the dissipative quantum
map for the improved master equation in moderate rotating-wave approxi-
mation, Eq. (52). As initial condition, we have chosen the density operator
ρ(0) = |φR〉〈φR|, a pure state located in the right well.

In the vicinity of a singlet-doublet crossing, the tunnel splitting increases
significantly—the essence of chaos-assisted tunneling. During the tunneling,
the chaotic singlet |φc〉 becomes populated periodically with frequency |ε−2 −
ε−1 |/h̄, cf. Eq. (38) and Fig. 9. The high mean energy of this singlet results in
an enhanced decay of coherence at times when it is well populated (Fig. 10).
For the relaxation towards the asymptotic state, also the slower transitions
within doublets are relevant. Therefore, the corresponding time scale trelax
can be much larger than tdecoh (Fig. 11).
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Fig. 10. Occupation probabilities as in Fig. 9a,c, but in the presence of dissipation.
The dash-dotted line shows the time evolution of tr ρ2. The parameter values are
D = 4, Ω = 0.982ω0, γ = 10−6ω0, kBT = 10−4h̄ω0, and F = 0.0145 (a), 0.015029
(b). The inset in (a) is a blow up of the rectangle in the upper left corner of that
panel.
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Fig. 11. Time evolution of the return
probability PR (full line) and the co-
herence function tr ρ2 (dash-dotted)
during loss and regain of coher-
ence. The parameter values are as in
Fig. 10b.

To obtain quantitative estimates for the dissipative time scales, we approx-
imate tdecoh by the decay rate of tr ρ2, as a measure of coherence, averaged
over a time tp,

1
tdecoh

= − 1
tp

∫ tp

0
dt′

d
dt′

tr ρ2(t′) (54)

=
1
tp

(
tr ρ2(0) − tr ρ2(tp)

)
. (55)

Because of the stepwise loss of coherence (Fig. 10), we have chosen the prop-
agation time tp as an nfold multiple of the duration 2πh̄/|ε−2 − ε−1 | of the
chaotic beats. For this procedure to be meaningful, n should be so large that
the coherence decays substantially during the time tp (in our numerical stud-
ies to a value of approximately 0.9). The time scale trelax of the approach to
the asymptotic state is given by the reciprocal of the smallest real part of the
eigenvalues of the dissipative kernel.
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Fig. 12. Time scales of the decay of the coherence measure tr ρ2 (a) and of the re-
laxation towards the asymptotic solution (b) near the singlet-doublet crossing. Near
the exact crossing (F ≈ 0.013, full vertical line) coherence is stabilized, whereas at
the center of the avoided crossing (F ≈ 0.015, dashed vertical line) the decay of co-
herence is accelerated. The parameter values are D = 4, Ω = 0.982ω0, γ = 10−6ω0,
temperature as given in the legend.

Outside the singlet-doublet crossing we find that the decay of coherence
and the relaxation take place on roughly the same time scale (Fig. 12). At
F ≈ 0.013, the chaotic singlet induces an exact crossing of the ground-state
quasienergies (see Fig. 8), resulting in a stabilization of coherence with in-
creasing temperature. At the center of the avoided crossing, the decay of
coherence becomes much faster and is essentially independent of tempera-
ture. This indicates that transitions from states with mean energy far above
the ground state play a crucial rôle.

4.3 Asymptotic state

As the dynamics described by the master equation (52) is dissipative, it con-
verges in the long-time limit to an asymptotic state ρ∞(t). In general, this
attractor remains time dependent but shares the symmetries of the central
system, i.e. here, periodicity and generalized parity. However, the coefficients
(53) of the master equation for the matrix elements ραβ , valid within a mod-
erate rotating-wave approximation, are time independent and so the asymp-
totic solution also is. The explicit time dependence of the attractor has been
effectively eliminated by representing it in the Floquet basis and introducing
a mild rotating-wave approximation.

To gain some qualitative insight into the asymptotic solution, we focus
on the diagonal elements

Lαα,α′α′ = 2
∑

n

Nαα′,n|Xαα′,n|2, α �= α′, (56)

of the dissipative kernel. They give the rates of direct transitions from |φα′〉
to |φα〉. Within a full rotating-wave approximation [51, 52], these were the
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only non-vanishing contributions to the master equation to affect the diagonal
elements ραα of the density matrix.

In the case of zero driving amplitude, the Floquet states |φα〉 reduce to
the eigenstates of the undriven Hamiltonian HDW. The only non-vanishing
Fourier component is then |cα,0〉, and the quasienergies εα reduce to the
corresponding eigenenergies Eα. Thus Lαα,α′α′ only consists of a single term
proportional to N(εα − εα′). It describes two kinds of thermal transitions:
decay to states with lower energy and, if the energy difference is less than
kBT , thermal activation to states with higher energy. The ratio of the direct
transitions forth and back then reads

Lαα,α′α′

Lα′α′,αα
= exp

(
−εα − εα′

kBT

)
. (57)

We have detailed balance and therefore the steady-state solution is

ραα′(∞) ∼ e−εα/kBT δαα′ . (58)

In particular, the occupation probability decays monotonically with the en-
ergy of the eigenstates. In the limit kBT → 0, the system tends to occupy
the ground state only.

For a strong driving, each Floquet state |φα〉 contains a large number of
Fourier components and Lαα,α′α′ is given by a sum over contributions with
quasienergies εα −εα′ +nh̄Ω. Thus decay to states with “higher” quasienergy
(recall that quasienergies do not allow for a global ordering) becomes possible
due to terms with n < 0. Physically, it amounts to an incoherent transition
under absorption of driving-field quanta. Correspondingly, the system tends
to occupy Floquet states comprising many Fourier components with low index
n. According to Eq. (16), these states have a low mean energy.

The effects under study are found for a driving with a frequency of the
order of unity. Thus for a quasienergy doublet, not close to a crossing, we
have |εα−εα′ | � h̄Ω, and Lα′α′,αα is dominated by contributions with n < 0,
where the splitting has no significant influence. However, up to the tunnel
splitting, the two partners in the quasienergy doublet are almost identical.
Therefore, with respect to dissipation, both should behave similarly. In par-
ticular, one expects an equal population of the doublets even in the limit of
zero temperature (Fig. 13a), in contrast to the time-independent case.

In the vicinity of a singlet-doublet crossing the situation is more subtle.
Here, the odd partner, say, of the doublet mixes with a chaotic singlet, cf.
Eq. (33), and thus acquires components with higher energy. Due to the high
mean energy E−c of the chaotic singlet, close to the top of the barrier, the
decay back to the ground state can also proceed indirectly via other states
with mean energy below E−c . Thus |φ−1 〉 and |φ−2 〉 are depleted and mainly
|φ+0 〉 will be populated. However, if the temperature is significantly above
the splitting 2b at the avoided crossing, thermal activation from |φ+0 〉 to
|φ−1,2〉, accompanied by depletion via the states below E−c , becomes possible.
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Fig. 13. Occupation probability ραα of the Floquet states |φα〉 in the long-time
limit. The parameter values are D = 4, Ω = 0.982ω0, γ = 10−6ω0, and F = 0.013
(a), 0.015029 (b), temperature as given in the legend.
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Fig. 14. Coherence (a) and Shannon entropy (b) of the asymptotic state in the
vicinity of a singlet-doublet crossing for different temperatures as given in the leg-
end. The other parameter values are D = 4, Ω = 0.982ω0, and γ = 10−6ω0.

Thus asymptotically, all these states become populated in a steady closed
flow (Fig. 13b). The long-time limit of the corresponding classical dynamics
converges to one of two limit cycles, each of which is located close to one of
the potential minima. In a stroboscopic map they correspond to two isolated
fixed points. This behavior is qualitatively different from the asymptotic limit
of the dissipative quantum dynamics near the center of the crossing and shows
that the occupation of levels outside the singlet and the doublet for t → ∞
is a pure quantum effect.

Important global characteristics of the asymptotic state, measuring its de-
gree of spreading over phase space, are the Shannon entropy
S = −tr (ρ∞ ln ρ∞) or, alternatively, tr ρ2∞. The latter gives approximately
the inverse number of incoherently occupied states and can be considered
an “incoherent inverse participation ratio” [57]. It equals unity only if the
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x=x0

Fig. 16. Stroboscopic classical phase
space portrait at t = nP , of the
dissipative harmonically driven quar-
tic double well, Eqs. (59), (60), for
the driving amplitude F = 0.09 and
frequency Ω = 0.9ω0. The friction
strength is γ = 0.3ω0 (a), 0.2ω0 (b),
0.03ω0 (c). In panels (a) and (b) the
stroboscopic portrait is marked by a
full dot and the broken lines show the
corresponding limit cycles.

phase space [62]. Moreover, the phase-space representation of the asymptotic
state of a dissipative quantum map exhibits the structures of the correspond-
ing classical attractor [23]. However, these analogies find their limit in the
Heisenberg uncertainty principle. It does not allow for arbitrarily fine phase-
space structures and results in smearing on action scales below h.

5.1 Classical attractor

To describe the classical dissipative dynamics of the driven double well, we
add an Ohmic friction force Fγ = −γp to the conservative equations (4), (5),

ẋ =
1
m
p, (59)

ṗ = −γp− ∂V (x, t)
∂x

. (60)

Friction destroys the time-reversal symmetry (21) of the conservative sys-
tem. Accordingly, dissipation breaks the reflection symmetry of the phase-
space portrait with respect to the x-axis, found at zero phase of the driving
(cf. Fig. 6).

A constituent feature of dissipative flows is the net exponential contraction
of phase-space volume. Therefore, the dynamics is asymptotically confined to
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Fig. 17. Hausdorff dimension of the
classical attractor of the dissipative
harmonically driven quartic double
well, Eqs. (59), (60), for F = 0.09,
Ω = 0.9ω0.

an attractor, a measure-zero manifold in phase space to which all trajecto-
ries starting from within the surrounding basin of attraction converge. For
periodically driven dissipative systems, the attractor is in general also time-
dependent with the period of the driving and is adequately described by a
stroboscopic map [63–65].

Depending on the parameters that control the dissipative flow, an attrac-
tor can consist of fixed points, limit cycles, or manifolds of fractal dimension,
less than that of phase space. An adequate concept to characterize the ge-
ometry of an attractor is the Hausdorff dimension dH defined, for example,
in Ref. [3]. It typically increases with decreasing contraction rate, so that
strange attractors are expected to occur in the regime of weak dissipation of
a system that in absence of friction, is chaotic.

The Hausdorff dimension of the classical attractor for the driven double
well with dissipation, Eqs. (59), (60), at the parameter values F = 0.09 and
Ω = 0.9ω0, is shown in Fig. 17 for various values of the friction γ. Although
the attractor itself is periodically time dependent with the period of the
driving, its Hausdorff dimension dH remains nearly constant [63]. Near γ ≈
0.06ω0, with decreasing γ, the classical dynamics undergoes a transition from
regular motion to chaos, manifest in a corresponding transition from limit
cycles (Fig. 16a,b) to a strange attractor (Fig. 16c) and a concomitant jump
in dH. At the same values of F and Ω, the regular islands near the potential
minima of the corresponding undamped dynamics have already completely
dissolved in the chaotic sea.

5.2 Quantum attractor

The “quantum attractors”, i.e., the asymptotic states of the dissipative quan-
tum dynamics, for example in a Husimi representation, resemble the corre-
sponding classical attractors up to coarse graining (Fig. 18). Correspondingly,
the qualitative transformation from limit cycles to a strange attractor is vis-
ible in the asymptotic quantum distribution, but proceeds continuously. Al-
though the asymptotic state for γ = 0.2ω0 (Fig. 18b,e), is still concentrated
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x=x0

Fig. 18. Contour plot of the Husimi function of the quantum attractor (full lines)
at t = nP , n → ∞, superposed on the corresponding classical phase-space portrait,
Fig. 16. The parameter values F = 0.09, Ω = 0.9ω0, γ = 0.3ω0 (a,d), 0.2ω0 (b,e),
0.03ω0 (c,f) are as in Fig. 16. The effective action is D = 6 (a–c) and D = 12 (d–f).
The rectangle in the lower left corner has the size of the effective quantum of action
h̄eff = 1/8D.
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Fig. 19. Wehrl entropy of the
asymptotic state of the dissipative
quantum map for different values
of the effective quantum of action
h̄eff = 1/8D. Other parameters as
in Fig. 17.

near the fixed points of the classical stroboscopic map, it covers a broader
phase-space area that already anticipates the shape of the strange attractor.
Reducing the effective quantum of action h̄eff = 1/8D allows for a sharper
resolution of the underlying classical structures in the Husimi functions, as
expected.

Like the attractors of the dissipative classical dynamics (Fig. 16), their
quantum-mechanical counterparts have lost the reflection symmetry with re-
spect to the x-axis, in contrast to the Husimi representations of the Floquet
states in absence of dissipation (cf. Fig. 7). This symmetry breaking is caused
by finite off-diagonal elements of the asymptotic density matrix in Floquet
representation, since diagonal representations share the symmetries of the ba-
sis. Thus, off-diagonal matrix elements play a significant rôle for the asymp-
totic state. This demonstrates that a description within a full rotating-wave
approximation is insufficient, since it would result in an asymptotic state
diagonal in the Floquet representation [51–53].

Because the quantum attractor, in contrast to the classical one, has sup-
port all over phase space (or a region of finite measure), we cannot character-
ize it by a Hausdorff dimension. A more suitable measure for the extension
of the quantum attractor is a phase-space version of the Shannon entropy,
the Wehrl entropy [62,66,67]

SQ = −
∫

dxdp
2πh̄

Q(x, p) ln[Q(x, p)] (61)

of its Husimi representation

Q(x, p) = 〈x, p|ρS|x, p〉, (62)

where |x, p〉 denotes a coherent state centered at (x, p) in phase space. Its
exponential, exp(SQ), gives approximately the number of coherent states
covered by the Husimi function. Thus, the occupied phase-space area is
2πh̄ exp(SQ). The Wehrl entropy of the asymptotic state for our numeri-
cal example is depicted in Fig. 19 for various values of h̄eff = 1/8D. It grows
with decreasing friction γ, reflecting the increasing dispersion of the Husimi
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functions. In the semiclassical regime, i.e., for a sufficiently large value of
the effective action D, we observe a kink-like behavior of the entropy near
γ ≈ 0.06ω0, where the classical attractor undergoes the transition mentioned
above, from a set of isolated fixed points to a strange attractor.

Note that for γ >∼ 0.1ω0, the Markov approximation becomes inaccurate,
since γ is then of the order of the mean level spacing and the condition
(43) is violated for at least part of the transitions between Floquet states.
Nevertheless, we obtain the qualitative behavior which we expected from
classical considerations.

6 Conclusion

For the generic situation of the dissipative quantum dynamics of a particle
in a driven double-well potential, classical chaos plays a significant rôle for
the coherent dynamics. Even for arbitrarily small driving amplitude, the sep-
aratrix is replaced by a chaotic layer, while the motion near the bottom of
the wells remains regular. Nevertheless, the influence of states located in the
chaotic region alters the splittings of the regular doublets and thus the tun-
nel rates, which is the essence of chaotic tunneling. We have studied chaotic
tunneling in the vicinity of crossings of chaotic singlets with tunnel doublets
under the influence of an environment. As a simple intuitive model to compare
against, we have constructed a three-state system which in the case of vanish-
ing dissipation, provides a faithful description of an isolated singlet-doublet
crossing. Dissipation introduces new time scales to the system: one for the
loss of coherence and a second one for the relaxation to an asymptotic state.
Well outside the crossing, both time-scales are of the same order, reflecting
an effective two-state behavior. The center of the crossing is characterized by
a strong mixing of the chaotic state with one state of the tunnel doublet. The
high mean energy of the chaotic state introduces additional decay channels
to states outside the three-state system. Thus, decoherence becomes far more
effective and, accordingly, tunneling fades out much faster.

The study of the asymptotic state, the quantum attractor, demonstrates
clearly that a three-state model of the singlet-doublet crossing is insufficient
once dissipation is effective. This is so because the coupling to the heat bath
enables processes of decay and thermal activation that connect the states
in the crossing with other, “external” states of the central system. In the
presence of driving, the asymptotic state is no longer literally a state of
equilibrium. Rather, incoherent processes create a steady flow of probabil-
ity involving states within as well as outside the crossing. As a result, the
composition of the asymptotic state, expressed for example by its coherence
tr ρ2∞, is markedly different at the center of the crossing as compared to the
asymptotic state far away from the crossing, even if that is barely visible in
the corresponding classical phase-space structure.
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With increasing driving amplitude, in absence of dissipation, even the
dynamics near the bottom of the wells becomes fully chaotic. This has strik-
ing consequences for the corresponding dissipative classical dynamics: For
sufficiently weak dissipation, it remains chaotic, but for strong friction it be-
comes regular. Accordingly, the geometry of the classical attractor is fractal
or regular, respectively. We have observed the signatures of this qualitative
difference in the asymptotic state of the corresponding quantum dynamics.
However, in contrast to the sudden change of the classical behavior, the quan-
tum attractor undergoes a smooth transition: The structure of the strange
attractor is already felt by the Husimi function for parameter values where
the classical attractor consists only of two isolated fixed points. For the obser-
vation of these semiclassical structures, off-diagonal matrix elements of the
asymptotic state in Floquet basis proved crucial. This clearly indicates that
a full rotating-wave approximation must fail.

Many more phenomena at the overlap of chaos, tunneling, and dissipa-
tion await being unraveled. They include four-state crossings formed when
two doublets intersect, chaotic Bloch tunneling along extended potentials
with a large number of unit cells instead of just two, and the influence of de-
coherence on a multi-step mechanism of chaotic tunneling. These phenomena
are typically observed in the far semiclassical regime, which requires to take
very many levels into account. A semiclassical description of the dissipative
quantum system may circumvent this problem.
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[52] R. Blümel et al., Phys. Rev. A 44, 4521 (1991).
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Abstract. The use of a band offset between the two leads of an electron pump
driven by a locally applied oscillating gate voltage is shown to increase the pump
current dramatically. A spectral analysis reveals that the bulk of the pump current
flows deep within the Fermi sea and not at the Fermi surface, especially in higher
spatial dimensions, thereby rendering this effect insensitive to temperature.

The physics of mesoscopic systems has taught us that the spatial coher-
ence of electronic wave functions has a profound impact on the transport
characteristics. Equally, recent studies of ac driven nanostructured systems
show clear evidence that the spatio-temporal coherence of the wave function
brings about a wealth of new effects, such as the experimental realization
[1] of the adiabatic Thouless pump [2, 3, 4, 5, 6], which is the mesoscopic
analog of Archimedes’ water pump, or the prediction of Rabi oscillations in
driven quantum-dot pumps [7, 8]. Frequency-locked turnstiles [9, 10] clock-
ing electrons through the system one by one are now promising candidates
for future current standards, and in ratchets [11, 12, 13] the combination of
asymmetry, nonlinearity, and noise, also results in current rectification. It
is not necessary, though, to employ very sophisticated operational schemes:
Standing-wave resonances above a single driven asymmetric barrier have also
been predicted to yield a pump action [14]. In all these cases, to observe a
pump current at zero applied bias it is instrumental that the inversion sym-
metry be broken, either in real or in k space — a fact which has long been
known in the theory of photogalvanic and photovoltaic effects in ferroelectrics
[15].

In this contribution we want to put forward a new idea on how to achieve
pumping in a driven system which, at the same time, also illustrates a perhaps
more general mechanism that underlies some of the other pumps mentioned
above. The point we wish to make is that under fairly general conditions
the pump current is a genuine Fermi-sea effect, with the bulk of the current
being carried deep within the Fermi sea in spatial dimensions D > 1, thus
rendering it resilient against temperature. This is in stark contrast to what
is found in dc transport, where only the states within a few kT of the Fermi
surface contribute to the current.

We consider a very simple model system as depicted in Fig. 1. In this
model, a quantum well is driven harmonically by an external ac potential

D. Reguera et al. (Eds.): Proceedings 1999, LNP 547, pp. 158−167, 1999.
 Springer-Verlag Berlin Heidelberg 1999
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Vac Vqw
∆V

µ

}Ñω
0

-1
-20

E2 E1

Vb

dqw

db

Fig. 1. Schematic potential profile for a Fermi-sea pump. The chemical potential µ
is the same in the left and right contacts.

Vac cosωt provided by some gates, for instance. Adjacent to the well is a
static barrier, and the overall potential profile features a band offset ∆V
between the left and right leads. The spatial asymmetry of the model, and in
particular the band offset∆V , is vital for a large pump current to exist. In the
following, we will discuss this model in 1, 2 and 3 spatial dimensions, assuming
separability of the Hamiltonian H(t) = −(h̄2/2m)∆+ V0(z) + Vac(z, t).

The central point to realise is that the driving force leads to inelastic
transport channels opening up, as schematically shown in Fig. 1, which in the
following we will call “pipelines”. In particular, we are interested in pipelines
close to the band edge, where the energy of the electron is comparable to the
photon energy h̄ω of the driving. Consider, for instance, an electron incident
from the left with longitudinal energy Ez = E2 less than h̄ω. Upon reflection
at the barrier, it can emit or absorb one or more photon quanta. In the case
of emission, its longitudinal energy Ez will be below the band edge of the left
side, resulting in a reflection at the left wall of the quantum well and, with
a good probability, a subsequent “capturing” of the electron in the quantum
well. Once captured, it can tunnel to the right through the barrier at an
energy E1, which is one or more photon quanta less than the energy E2 it had
initially. In this way, a range of pipelines, or inelastic transmission channels,
are set up which have one common entry point to the left at energy E2, and
a range of lower exit points to the right at energies E1 = E2 - h̄ω, E2 - 2h̄ω,
. . . . Obviously, each pipeline can be traversed in both directions and, due to
time-reversal symmetry, Vac(z, t) = Vac(z,−t), microreversibility holds: The
probability for an electron to go from E2 to E1 can be proved to be the same
as for the reverse direction, i.e., T→(E1, E2) ≡ T←(E2, E1). It is therefore
convenient to study the net total transmission probability Tnet(Ez), which is
defined as the difference between the total right- and leftward transmission
probabilities at a given longitudinal energy Ez of the incident electron. Tnet
can, for instance, be calculated using a transfer-matrix formalism [16, 17].
In Fig. 2 we provide a contour plot of Tnet as a function of driving Vac and
longitudinal energy Ez. The parameters used were h̄ω = 0.1meV ≈ 24GHz,
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Fig. 2. Contour plot of the net transmission probability Tnet as function of driving
Vac and longitudinal energy Ez of the incident electron. Ez = 0 is the band edge
on the left-hand side of Fig. 1. Parameters: h̄ω = 0.1meV ≈ 24 GHz, Vb = 10, Vqw

= −4, ∆V = −1 (meV), db = 10, dqw = 12.5 (nm).

Vb = 10, Vqw = −4, ∆V = −1 (all measured in meV with respect to the
band edge in the left lead), db = 10nm, dqw = 12.5 nm, and an effective
mass of 0.067m0. Clearly, the energy range most important for transport is
located within a few h̄ω of the band edge (≡ Ez = 0) in the left-hand lead,
as Tnet tends to zero for Ez � h̄ω. For 0 < Ez < h̄ω pronounced maxima are
seen at Vac ≈ 0.7, 1.5 and 2.3meV, with corresponding minima for Ez < 0 at
roughly the same driving strengths. These maxima and minima are generated
by dominant pipelines. For instance, the maximum at Ez ≈ 0.04meV and
Vac ≈ 0.7meV is the “entrance” (E2 in Fig. 1) of a pipeline on the left of
the structure, whilst the series of minima at energies −0.06, −0.16meV, etc.
correspond to the “exits” at the right (E1 in Fig. 1).

The next step is to calculate the dc current response to the ac driving.
For this we take advantage of the fact that in the absence of an external dc
bias the chemical potential µ characterizing the electrons incident from the
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(thermal) reservoirs at the far left and right is the same on either side of
the structure. Hence, a Tsu-Esaki type of current formula valid for coherent
transport can be employed,

I =
∫ ∞

∆V

dEf(E − µ)J(E) , (1)

where E = Ez + E⊥ is the total energy of the incident electron consisting
of its longitudinal and transversal energies (with respect to the direction of
transport), f(E−µ) is the Fermi function describing electrons incident from
reservoirs assumed in thermal equilibrium, and J(E) is the spectral current
density defined as [18, 19]

J(E) =
2e
h

∫ E

∆V

dEzD⊥(E − Ez)Tnet(Ez) . (2)

In Eq. (2) D⊥ is the density of states relating to the spatial dimensions per-
pendicular to the current transport. In the absence of any ac driving, Tnet
vanishes on account of the principle of detailed balance, but for Vac �= 0 the
spatial asymmetry of the model system induces a substantial net transmission
probability, as seen in Fig. 2.

Figure 3 shows the results for the dc pump current at a low temperature of
100mK (i.e. < h̄ω) as a function of the driving potential Vac and the chemical
potential µ, for spatial dimensions 1, 2, and 3. In all three cases we find a
strong increase of the pump current with Vac, typical values being of the order
of a few nA in one, and a few 100 nA/µm2 in three dimensions. Except for
the 3D case, the current exhibits a pronounced maximum as a function of the
chemical potential µ. In 1D this is somewhere between 0 and h̄ω, whereas in
2D it is shifted to slightly larger chemical potentials. Note that the current
is negative, i.e., it is an “uphill” particle current from right to left in Fig. 1.
In Fig. 4 we present the same data, but now for a much higher temperature
of 4.2K, which is larger than h̄ω. Naively, at such elevated temperatures,
one would expect the pump current to be diminished, as now electrons with
kinetic energies larger than h̄ω should contribute to the current — and this is
indeed what is observed in the 1D case. However, in 2D, and in particular in
3D the current is still rather strong. In fact, the only difference in the 3D case
is a smaller slope ∂I/∂µ for small µ and large Vac, but the limiting current for
large µ is virtually the same as in Fig. 3. This is, at first, a rather surprising
result: The pump current is only little, if anything, affected by temperature
in the 3D geometry.

In order to understand the essence of the relevant physics involved, we
analyse a simplified model, which allows for analytical results at finite tem-
peratures. Let us consider a single pipeline connecting two energies E2 and
E1 on the left and right, respectively. In this model we can write

Tnet(Ez) = Tp [δ(Ez − E2)− δ(Ez − E1)] , (3)
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Fig. 3. Net pump current for 1, 2, and 3D at T = 100mK as a function of the
driving amplitude Vac and chemical potential µ. Parameters as in Fig. 2.

where Tp is the strength of the pipeline. With Eqs. (1) and (2) the pump
current then becomes

I =
2e
h
Tp

∫ ∞
0

dE⊥D⊥(E⊥)

× [f(E⊥ + E2 − µ)− f(E⊥ + E1 − µ)] (4)

and has a straight-forward physical interpretation: As the chemical potential
µ raises, the lower end of the pipeline at E1 will get submerged first, resulting
in a particle current being pumped from right to left in Fig. 1. Once the left-
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Fig. 4. Net pump current for 1, 2, and 3D at T = 4.2K as a function of the driving
amplitude Vac and chemical potential µ. Parameters as in Fig. 2.

hand side of the pipeline is also submerged below µ, current will be pumped
in the opposite direction as well, and whether or not these two currents cancel
depends, as we will see in the following, on D⊥, i.e., the dimensionality in
transversal direction.

For a 1D pump where D⊥(E⊥) = δ(E⊥), Eq. (4) yields

I1D =
2e
h
Tp [f(E2 − µ)− f(E1 − µ)] , (5)

which has a peak at µ = (E1+E2)/2, and an exponential decay for µ � kT :
I1D = −(2e/h)Tpe−βµβ(E2 − E1). In 2D we have D⊥(E⊥) =

√
2m/E⊥/h,
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and Eq. (4) gives

I2D ≈ 2e
h2Tp

√
2πmβ

[
Li− 1

2
(−eβµ)(E2 − E1)

−β

2
Li− 3

2
(−eβµ)(E2

2 − E2
1)
]
, (6)

where Li is the polylogarithm function [20]. We see that in 2D the current
decays only algebraically for µ � kT , I2D = −(2e/h2)Tp

√
2m/µ(E2 − E1),

independent of temperature, and has a maximum at µ ≈ E2 + kT . Finally,
in 3D we have D⊥ = 2πm/h2 independent of energy, and

I3D ≈ 4πme
h3 Tp

[
f(−µ)(E1 − E2) +

f ′(−µ)
2

(E2
1 − E2

2)
]
. (7)

For µ � kT one has f(−µ) ≈ 1 and f ′(−µ) ≈ 0, i.e., the current becomes
independent of µ in this limit, I3D = −(4πme/h3)Tp(E2 − E1). This result
can be interpreted as I = D⊥ × strength × lift of the pump. The maxima
and asymptotic behaviour for large µ predicted by Eqs. (6) and (7) for the
2D and 3D cases agree within 5% with the numerical results of Figs. 3 and 4.
However, to get quantitative agreement with the asymptotic behaviour in 1D,
or to describe the dependence on Vac in any spatial dimension, a distribution
of pipelines is required.

The 3D result can also be understood in the following way: Consider a
single pipeline in 3D as in Fig. 1 and electrons incident from both sides at
total energy E = Ez + E⊥ > max(E1, E2). For electrons from the left only
those with Ez = E2 will be able to use the pipeline, whereas on the right
Ez = E1 must hold. Since D⊥ does not depend on energy in 3D, it follows
that the number of electrons fulfilling these conditions is the same on either
side and, with microreversibility, T→(E1, E2) = T←(E2, E1), the net current
carried by states in the energy shell (E,E + dE) of the incident electrons
is zero regardless of temperature. Any pump current, therefore, must stem
from states with total energy E between E1 and E2. We stress that it is
the total energy E of the states we are referring to here, and not merely
their longitudinal energy Ez! This distinction is important when asking the
question where, in the Fermi sea, does the pump current flow.

To make this point more quantitative, we have plotted in Fig. 5 the spec-
tral net current density J(E), as defined in Eq. (2), as a function of the total
energy E of the incident electron. For clarity, we have offset the curves for
2D and 3D by 1 and 2meV, respectively. In all three dimensions, J(E) shows
a pronounced structure at E ≈ 0, and quickly decays to zero for E > h̄ω.
This confirms that for µ � h̄ω the pump current is indeed carried by states
deeply submerged in the Fermi sea. In 1D and 2D J(E) changes sign, leading
to a strong cancellation once µ exceeds h̄ω, which partially negates this ef-
fect. However, for 3D pumps, J(E) has a single, pronounced peak at E < h̄ω
that carries the bulk of the pump current. The fact that the current-carrying
states are far away from the Fermi surface also explains why in Fig. 4 (where
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kT � h̄ω) the current, in particular for 3D and to some extend for 2D, is so
insensitive to temperature, which is a “melting” of the Fermi surface.

We have made extensive studies on the dependence of the pump current
on the structural parameters ∆V , Vqw, Vb, and dqw, and have found the
pumping action to be very robust against changes. In particular, we found
that ∆V needs to exceed h̄ω only by a few times to achieve an increase of the
pump current by typically three orders of magnitude, which is in agreement
with the fact that the most dominant pipelines are within a few h̄ω of the
band edge.

Finally, as a hint at the more general nature and robustness of the effect,
we present in Fig. 6 the dc current through our Fermi pump when operated
in a two-terminal mode (at 100mK), where we have assumed the driving
potential to extend throughout the left lead such that V lead

ac = 2V qw
ac , in a

crude attempt to model screening. Again, a substantial pump current was
found.

Before concluding, it is instructive to compare these results with very
recent work of the group of Büttiker, where a statement has been made in
Ref. [21] to the effect that there is no dc pump current at all, if the chemical
potential is the same in the left and right leads. At first, this seems like a
complete contradiction to our findings, but on closer inspection one finds that
their conclusion is essentially based on the assumption that all the current-
carrying electrons have a kinetic energy much larger than the photon energy,
in which case one can neglect the differences in the phase velocities of the
different sidebands [see their comment after Eq. (13)]. This result is very
interesting, as it strongly supports our findings that it is exactly the low-
energetic electrons in the pipelines of Fig. 1, where the phase velocities do
depend strongly on energy, which dominate the dc current transport in the
Fermi pump presented in this work.



166 Mathias Wagner and Fernando Sols

0

0.4

0.8

1.2

1.6

0

2

4

0

50

100

0

0.4

0.8

1.6

0

2

4

-2

0

2

4

6

1.2

0

0.4

0.8

1.2

1.6

0

2

4

-0.2

0

0.2

0.4

-
I
@n
A

D
-
I
@n
A

�
m
m

D

-
I
@n
A

�
m
m
2
D

m
[m
eV

]

V
ac [meV]

lead

lead

lead

m
[m
eV

]

V
ac [meV]

m
[m
eV

]

V
ac [meV]

1D

2D

3D

Fig. 6. Net pump current for 1, 2, and 3D at T = 100mK as a function of the
chemical potential µ and the driving amplitude V lead

ac in the left lead of Fig. 1 (for
two-terminal operation). Parameters as in Fig. 2.



A Fermi Pump 167

In summary, we have described a simple and efficient electron pump where
the current-carrying states are deeply submerged in the Fermi sea. The result-
ing “subsea” electron current is resilient against temperature — especially in
3D, but also to some extent in 2D. In 3D the current is independent of the
chemical potential µ provided µ � kT , while in 2D the pump current decays
as µ−1/2. The effect relies mostly on the existence of a band offset between
the leads and thus is very stable against imperfections of the model param-
eter. The pump current predicted is large and should be easily measurable
with today’s technologies. Due to its fundamental character, the mechanism
of inelastic transmission deep below the Fermi surface should be applica-
ble in a wide range of structures. The authors appreciate helpful discussions
with S. Kohler. This work has been supported by the EU via TMR contract
FMRX-CT98-0180, and by DGICyT (PB96-0080-C02).
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Abstract. Semiconductor superlattices are interesting for two distinct reasons:
the possibility to design their structure (band-width(s), doping, etc.) gives access
to a large parameter space where different physical phenomena can be explored.
Secondly, many important device applications have been proposed, and then sub-
sequently successfully fabricated. A number of theoretical approaches has been
used to describe their current-voltage characteristics, such as miniband conduc-
tion, Wannier-Stark hopping, and sequential tunneling. The choice of a transport
model has often been dictated by pragmatic considerations without paying much
attention to the strict domains of validity of the chosen model. In the first part
of this paper we review recent efforts to map out these boundaries, using a first-
principles quantum transport theory, which encompasses the standard models as
special cases. In the second part, focusing in the mini-band regime, we analyze a su-
perlattice device as an element in an electric circuit, and show that its performance
as a THz-photon detector allows significant optimization, with respect to geometric
and parasitic effects, and detection frequency. The key physical mechanism enhanc-
ing the responsivity is the excitation of hybrid Bloch-plasma oscillations.

1 Introduction

Ever since the pioneering work of Esaki and Tsu [1], which drew attention to
the rich physics and potential device applications of semiconductor superlat-
tices, these man-made structures have remained a topic of intense research.
Semiconductor superlattices have proven to be a fruitful platform for study-
ing a wide range of transport phenomena, such as their intrinsic negative
differential conductivity [2], the formation of electric field domains [3], Bloch
oscillations [4], as well as dynamical localization [5] and absolute negative
conductance [6] under external irradiation, just to mention a few.

These phenomena depend crucially on the relations of the energy scales
involved, namely the zero-field miniband width (which is four times the inter-
well coupling T1), the scattering rate Γ/h̄, and the potential drop per period

D. Reguera et al. (Eds.): Proceedings 1999, LNP 547, pp. 171−192, 1999.
 Springer-Verlag Berlin Heidelberg 1999
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(≡ eFd, where F is the applied static field and d is the superlattice period).
Three distinct approaches have been used to describe transport in the pa-
rameter space spanned by (T1, eFd, Γ ): miniband conduction (MBC)[1], [7],
Wannier-Stark hopping (WSH)[8], and sequential tunneling (ST)[9], [10]. Un-
til recently, however, the precise range of validity of these various approaches
had not been addressed quantitatively. To achieve this, one much use a first-
principles approach, which reduces to the standard theories in the appropriate
limits. After a brief review of the standard approaches in Sect. II, we intro-
duce in Sect. III a nonequilibrium Green function formalism, which we have
used to delineate the boundaries of the different domains of validity [12], [13].
We also present comparisons with Monte Carlo simulations. As we shall see,
under favorable conditions it is quite possible to obtain a very accurate de-
scription with the standard methods, which is a great advantage because the
first-principle Green function calculations are quite complicated and have so
far successfully implemented only for rather simple scattering mechanisms
(the scattering matrix elements are assumed to be independent of momen-
tum transfer). Thus, in Sect. IV we adopt one of the standard approaches,
i.e., the miniband approach, to model a superlattice THz-photon detector,
taking into account the effects due to the external circuitry. We conclude
that by detailed modeling substantial device performance optimization can
be achieved, e.g. the detector sensivity may be improved by almost 50 % by
a judicious choice of its parameters.

2 Standard transport models

Here we review the standard models used to describe transport in semi-
conductor superlattices. For simplicity, the results quoted in the next three
subsections are written in a relaxation time approximation, but a general-
ization to more realistic scattering processes is possible. As an underlying
Hamiltonian we use a tight-binding model:

ĤSL
n,m = (δn,m−1 + δn,m+1) T1 + δn,m(Ek − neFd) . (1)

Here T1 is the overlap matrix element, Ek = h̄2k2/(2m) is the kinetic energy
perpendicular to the growth direction, and the electric field is taken into
account by a shift in the site energies.

2.1 Miniband conduction (MBC)

For zero electric field Eq. (1) is diagonalized by a set of Bloch functions
ϕq(z) =

∑
n einqdΨn(z) (here the wave function Ψn(z) is localized in quantum

well n, e.g., a Wannier function) and the dispersion relation is given by the
miniband E(q) = 2T1 cos(qd). The stationary Boltzmann equation for the
distribution function f(q,k) is then



Transport in semiconductor superlattices 173

eF

h̄

∂f(q,k)
∂q

=
nF (E(q) + Ek) − f(q,k)

τ(E(q) + Ek)
(2)

where the relaxation-time is allowed to depend on energy, see, e.g., Ref.[12]
for a suitable model. Once the solution to Eq. (2) is found, the current is
calculated from

J(F ) =
e

4π3h̄

∫
d2k

∫ π/d

−π/d

dqf(q,k)
dE(q)

dq
. (3)

The electron density per period is given by

N2D =
d

4π3

∫
d2k

∫ π/d

−π/d

dqf(q,k) (4)

and is used to determine the chemical potential for a given electron den-
sity. This approach can be extended beyond the relaxation time approxima-
tion[14], [15], but the generic features remain unchanged.

2.2 Wannier-Stark hopping (WSH)

In the presence of an electric field, the eigenstates of the Hamiltonian become
the localized Wannier-Stark states,

φν(z) =
∑

n

Jn−ν

(
2T1

eFd

)
Ψn(z) (5)

with energy Eν = −νeFd, and Jn(z) is the Bessel function of the first kind.
Scattering causes hopping between the different states. Within Fermi’s golden
rule, the current is given by

J(F ) =
∑
l>0

l
e

τ0

∑
n

[
Jn

(
2T1

eFd

)
Jn−l

(
2T1

eFd

)]2

× 1
2π2

∫
d2k [nF (Ek) − nF (Ek + leFd)] . (6)

Here the term
∑

[JnJn−l]2 arises due to the spatial overlap of the Wannier-
Stark functions. The electron density per period is given by:

N2D = ρ0kBTe log
[
1 + exp

(
µ

kBTe

)]
(7)

which relates µ to N2D. Again, it is possible to generalize this approach to
more realistic scattering mechanisms [16], [17].
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does not properly include field-induced localization because of its inherent
assumption of extended states, WSH treats scattering in lowest order pertur-
bation theory (in particular, there is no broadening of the states), and ST is
explicitly lowest order in the interwell coupling. The basic features of these
models are summarized in Figure 1.

2.5 Nonequilibrium Green functions (NGF)

The basic building blocks are the correlation and retarded Green functions:

G<
m,n(t, t′,k) = i〈a†n(t′,k)am(t,k)〉 (10)

Gret
m,n(t, t′,k) = −iΘ(t − t′)〈{am(t,k), a†n(t′,k)}〉, (11)

where and a†n(t,k) and an(t,k) are the creation and annihilation operators
for the state Ψn(z)ei(k·r)/A in well n. These functions obey the Dyson and
Keldysh equations, respectively, given below for the superlattice case. Ref.[21]
may be consulted for a text-book discussion. The observables, such as the
momentum distribution, current, and electron density are computed from
G<

m,n(t, t′,k):

fQM(q,k) =
∫

dE
2πi

∑
n

e−ihqdG<
n,0(E ,k) (12)

J(F ) =
e

2π2

∫
dE
2π

∫
d2k

2
h̄

Re
{
T1G

<
n+1,n(E ,k)

}
(13)

N2D =
1

2π2

∫
dE
2πi

∫
d2k G<

n,n(E ,k) (14)

These expressions exploit the fact that in the stationary state the Green
functions only depend on the time difference τ = t − t′, and one can define a
Fourier transformation via [21]:

Gm,n(E ,k) =
∫

dτei(E−eFd n+m
2 ) τ

h̄ Gm,n(t, t − τ,k) . (15)

Without scattering between the k-states and at T1 = 0 the Green-functions
are diagonal in the well index: Gret

m,n(E ,k) = δm,ngret
n (E ,k) with the free

particle Green-function gret
n (E ,k) = 1/(E−Ek +i0+). The full Green function

is then determined by the Dyson equation:

Gret
m,n ( E ,k) = gret

m (E ,k) + gret
m

(
E + eFd

m − n

2
,k
)

×
∑

l

Σret
m,l

(
E + eFd

l − n

2
,k
)

Gret
l,n

(
E + eFd

l − m

2
,k
)

. (16)

The self-energy will be written as
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Σret
m,n(E ,k) = δm,nΣ̃ret

n (E ,k) + T1δm+1,n + T1δm−1,n (17)

where Σ̃ contains contributions both from impurity and phonon scattering.
The relevant expressions are

Σ̃
ret/<
n,imp(E) =

Nd

A

∑
k′

V 2
impG

ret/<
n,n (E ,k′) (18)

for impurities, while for optical phonon scattering we take (see, e.g., Ch. 4.3
of Ref. [21] for the derivation):

Σ̃<
n,o(E) =

|Mo|2
A

∑
k′

{
NoG

<
n,n(E − h̄ωo,k′)

+(No + 1)G<
n,n(E + h̄ωo,k′)

}
(19)

Σ̃ret
n,o ( E) =

|Mo|2
A

∑
k′

{
(No + 1)Gret

n,n(E − h̄ωo,k′) + NoG
ret
n,n(E + h̄ωo,k′)

+i

∫
dE ′
2π

G<
n,n(E − E ′,k′)

[
1

E ′ − h̄ωo + i0+ − 1
E ′ + h̄ωo + i0+

]}
.(20)

It is possible to simulate acoustic phonons with a similar expression, using
a small fictitious discrete energy h̄ωac [13]. In the above, we also gave the
self-energy expressions needed in the Keldysh equation:

G<
m,n(E ,k) =

∑
m1

Gret
m,m1

(
E + eFd

m1 − n

2
,k
)

Gadv
m1,n

(
E + eFd

m1 − m

2
,k
)

×Σ̃<
m1

(
E + eFd

(
m1 − m + n

2

)
,k
)

. (21)

The numerical evaluation of these equations has been discussed in two re-
cent publications [12], [13], and here we just summarize our basic strategy,
and give a few representative results. The first step in the analysis consists
of evaluating the current-voltage characteristics for the different models, and
an example of such a calculation is given in Fig. 2. We note that the Boltz-
mann equation gives an excellent agreement with the full quantum result, in
particular for low electric fields. The additional structure in the quantum me-
chanical curve is a phonon-replica: the Boltzmann equation cannot capture
features like this because the electric field does not enter as an energy-scale
in the collision integral. It is also of interest to note that the use of a realistic
electron-phonon scattering model, instead of a simple relaxation time, leads
to a current-voltage characteristic which deviates significantly from the sim-
ple Esaki-Tsu shape, vdrift ∝ F/(F 2+F 2

crit). By performing a large number of
calculations like the one depicted in Figure 2 it is possible to develop visual
criteria as to the validity of the various simplified approaches discussed in
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Fig. 3. Ranges of validity for different transport models

the negative differential conductance (NDC) regime (not shown in Fig. 4.).
The situation changes dramatically when the field energy is larger than the
mini-band width, edF ≥ ∆, Fig. 4(d). As the electrons can perform several
Bloch oscillations in the semiclassical picture, the distribution function is al-
most flat withing the Brillouin zone of the miniband. The latter holds for the
NGF result as well. However, the absolute values of the distribution functions
differ significantly. The reason is the modification in scattering processes due
to the presence of the electric field, leading to significant deviations in the
distribution function. We noticed this phenomenon already in our discussion
of the current-voltage characteristics of Fig. 2. The strong changes in the
quantum momentum distribution are further illustrated in Fig. 5.

We can summarize the results given in the first part of this paper as
follows. In wide-band superlattices the Boltzmann equation gives reliable
results concerning linear response at low fields, electron heating at moderate
fields, and the onset of negative differential conductivity. In contrast, for high
electric fields or weakly coupled SLs significant differences appear. In this case
the quantum nature of transport is important and a semiclassical calculation
may be seriously in error.
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Fig. 4. Electron distribution versus quasimomentum in the Brillouin zone of the
miniband for different values of k (from Ref.[12]). The parameters as Fig. 2. Full
line: NGF calculation. Dashed line: MC-simulation of BTE. The dotted line shows
the thermal distribution ∝ exp[−E(q,k)/kBTe] with Te = T in (a) and Te = 140
K in (b) for comparison.
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Fig. 5. Electron distribution versus quasimomentum k (from Ref.[12]). (a,b,c):
Comparison between NGF calculation (full line) and BTE (dashed line); (d): Re-
sults from NGF for different fields. The BTE result (not shown) resembles the result
from (c) for all three fields.
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3 Superlattice as a THz-photon detector

3.1 Introduction

It has recently been estimated [22] that the room temperature current re-
sponsivity of a superlattice detector ideally coupled to the THz-photons can
nearly reach the quantum efficiency e/h̄ω in the limit of high frequencies
ω � ν (here ω is the incident radiation frequency and ν is a characteristic
scattering frequency). This value of the responsivity is being normally con-
sidered as a quantum limit for detectors based on superconducting tunnel
junctions operating at low temperatures [23]. For high frequencies the mech-
anism of the THz-photons detection in superlattices was described [22] as a
bulk superlattice effect caused by dynamical localisation of electrons.

Here we describe a recent theory of the superlattice current responsiv-
ity [24]. We focus on relative broad-band superlattices (∆  20 meV), and
field strengths smaller than the onset of negative differential conductivity.
Thus, according to the analysis given above, a Boltzmann equation based
description should suffice. One should note, however, that here we investi-
gate a time-dependent situation, and that a microscopic analysis in the spirit
of the first part of this paper has not, to our knowledge, been carried out.
We use an equivalent circuit for the superlattice coupled to a broadband an-
tenna (see Fig. 6), which is similar to the equivalent circuit used in resonant
tunneling [25] and Schottky diode [26] simulations. The suggested equivalent
circuit of the device allows one to treat microscopically the high-frequency
response of the miniband electrons and, simultaneously, take into account a
finite matching efficiency between the detector antenna and the superlattice
in the presence of parasitic losses. Our analytic results lead to the identi-
fication of an important physical concept: the excitation of hybrid plasma-
Bloch [27] oscillations in the region of positive differential conductance of the
superlattice. Numerical computations [24], performed for room temperature
behavior of currently available superlattice diodes, show that both the mag-
nitudes and the roll-off frequencies of the responsivity are strongly influenced
by this effect. The excitation of the plasma-Bloch oscillations gives rise to a
resonant-like dependence of the responsivity on the incident radiation fre-
quency, improving essentially the coupling of the superlattice to the detector
antenna. We will also show that peak current densities in the device and its
geometrical dimensions should be properly optimized in order to get maxi-
mum responsivity for each frequency of the incident photons. Finally, we will
present numerical estimates of the responsivity for the 1-4 THz frequency
band and compare its value with the quantum efficiency e/h̄ω of an ideal
detector.

3.2 Theoretical formalism

The exact solution of the time-dependent Boltzmann equation in the relax-
ation time approximation for an arbitrary time-dependent electric field can
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Fig. 6. (a) THz-radiation coupled to a N -period semiconductor superlattice by
a co-planar broad band bow- tie antenna, Pi and Pr are the incident and re-
flected powers respectively. (b) Equivalent circuit for a THz-photon detector with
a dc voltage bias source: B–miniband electrons capable to perform Bloch oscilla-
tions, C–superlattice capacitance, RS–parasitic series resistance, ZA–bow-tie an-
tenna impedance, Vdc–dc bias voltage.

be presented in the form of a path integral [28]:

f(q,k, t) =
∫ t

−∞
νdt1 exp [−ν(t − t1)] f0(q −

∫ t

t1

e/h̄F (t2)dt2,k) . (22)

Using Eqs.(3) and (22) we find the time-dependent current I(t) describing
ac transport in a superlattice, with electron performing ballistic motion in
a mini-band according to the acceleration theorem and suffering scattering
[29], [30]:
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I(t) = 2Ip

∫ t

−∞
νdt1 exp [−ν(t − t1)] sin

[
e

Nh̄

∫ t

t1

V (t2)dt2

]
; , (23)

where V (t) = LF (t) is the voltage across the superlattice perpendicular to
the layers, L = Nd is the superlattice length, N is the number of periods in
the superlattice sample, Ip = Sjp, S = πa2 is the area of the superlattice, a
is the superlattice mesa radius, and

jp = e
v0

2

∫
2dkdq
(2πh̄)3

cos (qd) f0(q,k) (24)

is the characteristic current density. The integration over q in Eq.(24) must
be carried out over the Brillouin zone −π/d ≤ q ≤ π/d.

The peak current density jP and the scattering frequency ν can be con-
sidered as the main parameters of the employed model. They can readily be
estimated from experimentally measured or numerically simulated values of
IP and VP . For both degenerate and non-degenerate electron gas one gets
[29], [30]

jP = en
v0

2
(25)

if ∆ � kT, εF , where kT is the equilibrium thermal excitation energy, εF =
h̄2(3π2N2D)2/3/(2meff) is the Fermi energy of degenerate electrons, meff =
m

1/3
zz m2/3 is the density of states effective mass near the miniband bottom,

and mzz = 2h̄2/∆d2 is the effective mass of electrons along the superlattice
axis. In the particular case of the Boltzmann equilibrium distribution function
Eq.(24) yields [30] jP = (env0/2)[I1(∆/2kT )/I0(∆/2kT )], where I0,1 are the
modified Bessel functions.

We now suppose that in addition to the dc voltage VSL, an alternating
sinusoidal voltage with a complex amplitude Vω is applied to the superlattice:

V (t) = VSL +
1
2

[Vω exp(iωt) + V ∗ω exp(−iωt)] . (26)

Generally, VSL, Vω can be found from an analysis of the equivalent circuit
given in Fig. 6. We write the ac voltage amplitude as Vω = |Vω|eiψ; both |Vω|
and ψ can be obtained self-consistently taking account of reflection of the
THz photons from the superlattice and their absorption in the series resistor
RS .

Making use Eq.(23) we obtain [30]:

I(t) = 2IP

∫ ∞
0

νdt1 exp(−νt1) sin
[
eVSL

Nh̄
t1 + Φ(t, t1)

]
; , (27)

where

Φ(t, t1) =
e

Nh̄ω
× 1

2
{iVω exp(iωt)[exp(−iωt1) − 1] + c.c.} . (28)
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According to Eq.(27), electrons in a superlattice miniband perform damped
Bloch oscillations with the frequency ΩB = eVSL/Nh̄ = eESLd/h̄, and the
phase Φ(t, t1) modulated by the external ac voltage.

Equation (27) contains, as special cases the following results: (i) a har-
monic voltage V (t) (VSL = 0) leads to dynamical localisation, and cur-
rent harmonics generation with oscillating power dependence [30]; (ii) a dc
current- voltage characteristics of the irradiated superlattice IDC(VSL, Vω) =
(ω/2π)

∫
I(t)dt shows resonance features (‘Shapiro steps’) leading to abso-

lute negative conductance [30], [31], [32], [33]; (iii) and to generation of dc
voltages (per one superlattice period) that are multiples of h̄ω/e[34].

3.3 Current responsivity

We define the current responsivity[23] of the superlattice detector as the
current change ∆I induced in the external dc circuit per incoming ac signal
power Pi:

Ri(ω, VSL) =
∆I

Pi
. (29)

This definition takes into account both the parasitic losses in the detector
and the finite efficiency for impedance-matching of the incoming signal into
the superlattice diode.

It can be shown [24], that in the small-signal approximation both the
dc current change ∆ISL

DC and the power PSL
abs absorbed in the superlattice

are proportional to the square modulus of the complex voltage |Vω|2. This
circumstance permits us to calculate |Vω|2 self-consistently for given values
of the incoming power, making use a linear ac equivalent circuit analysis and,
then, find the current responsivity Ri(ω, VSL).

The results of the calculation of the superlattice current responsivity
Ri(ω, VSL) are presented in the following form:

Ri(ω, VSL) =
R

(0)
i (ω, VSL)A(ω, VSL)

1 + RS(dISL
DC(VSL)/dVSL)

, (30)

where

R
(0)
i (ω, VSL) = − e

Nh̄ν

(VSL/VP )[3 + (ωτ)2 − (VSL/VP )2]
[1 + (VSL/VP )2][1 + (ωτ)2 − (VSL/VP )2]

(31)

is the superlattice current responsivity under conditions of a perfect matching
and neglecting parasitic losses, RS → 0. [22]

The factor A(ω, VSL) in Eq. (30) describes the effect of the electrody-
namical mismatch between the antenna and the superlattice and the signal
absorption in the series resistance

A(ω, VSL) =

[
1 −

∣∣∣∣ZA − (ZSL
AC(ω, VSL) + RS)

ZA + (ZSL
AC(ω, VSL) + RS)

∣∣∣∣
2
]

× ReZSL
AC(ω, VSL)

ReZSL
AC(ω, VSL) + RS

.

(32)
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The first factor in Eq. (32) describes the reflection of the THz-photons due
to mismatch of the antenna impedance ZA and the total impedance of the
device ZSL

AC(ω, VSL) + RS , with the second one being responsible for sharing
of the absorbed power between the active part of the device described by the
impedance ZSL

AC(ω, VSL) and the series resistance RS .
The superlattice impedance is defined as

ZSL
AC(ω, VSL) = 1/

[
GSL

AC(ω, VSL) + iωC
]

, (33)

where GSL
AC(ω, VSL) is the superlattice conductance, C = ε0S/4πL is the ca-

pacitance of the superlattice, and ε0 is the average dielectric lattice constant.
Finally, the last factor in the denominator of Eq. (30) describes the redis-

tribution of the external bias voltage VDC between the dc differential resis-
tance of the superlattice (dISL

DC(VSL)/dVSL)−1 and the series resistance RS ,
with the dc voltage drop on the superlattice VSL being determined by the
solution of the well-known load equation [23]

VDC = VSL + ISL
DC(VSL)RS . (34)

3.4 Superlattice dielectric function. Hybridisation of Bloch and
plasma oscillations

We next analyze the condition of optimized matching of the superlattice
to the incident radiation. Assuming the limit of negligible series resistance
RS → 0 this condition can be obtained from the solution of the equation

ZSL
AC(ω, VSL) = ZA (35)

for the complex frequency ω(VSL) . This solution determines the resonant
line position and the line width at which the absorption in the superlattice
tends to its maximum value.

One can transform Eq. (35) to the following form:

ε(ω,ESL) =
ε0

iωCZA
, (36)

where
ε(ω,ESL) = ε0 +

4πσ0

iω
F1(ω,ESL) (37)

is the dielectric function of the superlattice, with the dc field ESL being
applied to the device [26], and F1(ω,ESL) is defined by

F1(ω, VSL) =
1 + iωτ − (VSL/VP )2

[1 + (VSL/VP )2] [(1 + iωτ)2 + (VSL/VP )2]
. (38)

In the high-frequency limit ε0/CZAω → 0 the solution of Eq. (35) coincides
with the solution of the equation
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Fig. 7. The calculated hybrid plasma-Bloch oscillation frequency fH as a function
of the normalized superlattice voltage drop VSL/VP for different values of the peak
current densities jP = 10, 50, 100, 300, 500, and 1000 kA/cm2 (from Ref.[24]).
Typical values of the superlattice parameters ( d = 50Å, EP=10 kV/cm, ε0 =13)
were used for the calculations.

ε(ω,ESL) = 0 (39)

describing the eigenfrequencies ωH
± of the hybrid plasma-Bloch oscillations in

a superlattice, [26]

ωH
± (ESL) = ±ωP

[
1

1 + (ESL/EP )2
+
(

ν

ωP

)2

(ESL/EP )2
]1/2

+ iν (40)

where ωP is the plasma frequency of electrons in a superlattice. The plasma
frequency ωP can be given in terms of the small-field dc conductivity σ0 or,
equivalently, in terms of the peak current density jP

ωP =
(

4πσ0ν

ε0

)1/2

=
(

8πjP ed

ε0h̄

)1/2

/; . (41)

Equation (41) reduces in the particular case of wide-miniband superlattices
(∆ � kT, εF ) to the standard formula ωP = (4πe2n/ε0mzz)1/2.
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In the limiting case of small applied dc electric fields ESL/EP → 0 one
finds from Eq. (40) the plasma frequency ωH

± → ±ωP , while in the opposite
case ESL/EP → ∞, the Bloch frequency ωH

± → ±ΩB = ±eESLd/h̄ is recov-
ered. The scattering frequency ν in Eq. (40) is responsible for the line width
of the plasma-Bloch resonance.

We have calculated the hybrid plasma-Bloch oscillation frequency fH =
ωH

+ /2π, using Eqs. (40) and (41), for the typical values of the superlattice
parameters ε0  13, d  50 Å, EP  10 kV/cm, fν = ν/2π = 1.2 THz for
different values of the current densities jp (see Fig. 7). For small values of
the current densities jP  10 kA/cm2 the frequency of the hybrid oscillation
increases with applied voltage in all range of the parameter VSL/VP . On
the other hand, for higher values of the current densities jP  (50 − 1000)
kA/cm2 the hybrid oscillation’s frequency starts to decrease with increasing
bias voltage in the sub-threshold voltage range VSL ≤ VP . Then, at super-
threshold voltages VSL ≥ VP , ωH starts to increase again tending to the
Bloch frequency. It is important to note that at high values of the dc current
densities jP the hybrid plasma-Bloch oscillations become well defined eigen-
modes of the system (fH ≥ fν). Therefore, an essential improvement of the
matching efficiency between antenna and the superlattice can be expected in
the high- frequency range due to a resonant excitation of this eigenmode in
the device.

3.5 High-frequency limit

Let us compare the high-frequency limit of the responsivity of the superlattice
with the quantum efficiency Rmax = e/h̄ω which is believed to be a funda-
mental restriction for the responsivity of superconductor tunnel junctions[23].
This quantum efficiency (or quantum limit) corresponds to the tunnelling of
one electron across the junction for each signal photon absorbed[23], with a
positive sign of the responsivity.

In our case the mechanism of the photon detection is different (see Fig.
8). Electrons move against the applied dc electric force due to absorption
of photons. At VSL = VP the responsivity is negative, indicating that one
electron is subtracted from the dc current flowing through the superlattice
when the energy 2eVP is absorbed from the external ac field. One half of this
energy is needed for the electron to overcome the potential barrier which is
formed by the dc force, with another half being delivered to the lattice due to
energy dissipation. If the applied dc voltage is strong enough, i.e. VSL � VP ,
dissipation plays no essential role in the superlattice responsivity. In this case
the energy eVSL should be absorbed from the ac field in order to subtract
one electron from the dc current simply due to the energy conservation law.
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Fig. 8. Real space energy diagram illustrating THz- photon (f � ν/2π) detection
in the superlattice: DC electric field ESL is applied to the N -period semiconductor
superlattice with the miniband width ∆ . Under the action of the dc field electrons
perform Bloch oscillations with the spatial amplitude ∆/eESL . At critical dc elec-
tric voltage (field) VSL = VP = Nh̄ν/e (eESLd = h̄ν) electrons move against the dc
electric force due to absorption of photons climbing up the Wannier- Stark ladder.
The energy 2eVP should be absorbed from external ac field in order to subtract
one electron from the external circuit. One half of this energy is needed for the
electron to overcome the potential barrier which is formed by the dc force, with the
other half being delivered to the lattice due to energy dissipation. A quasi-classical
description of the process is valid if f � ∆/h̄ when allowed transitions between
different Wannier-Stark state exist.

3.6 Excitation of the plasma-Bloch oscillations

For demonstration of the frequency dependence of the superlattice current re-
sponsivity in the THz-frequency band we will focus on the GaAs/Ga0.5Al0.5As
superlattices specially designed to operate as millimeter wave oscillators at
room temperature. In Ref. [35] wide-miniband superlattice samples with
d = 50 Å, ∆  113 meV, n  1017 cm−3, were investigated experimen-
tally. They demonstrated a well-pronounced Esaki- Tsu negative differential
conductance for ESL ≥ EP  4 kV/cm with the high peak current of the or-
der of jP  130 kA/cm2. The measured value of the peak current is in a good
agreement with the estimate jP  (80 − 160) kA/cm2 for n  (1 − 2) × 1017,
T = 300 K based on Eq. (24), if one assumes an equilibrium Boltzmann
distribution for the charge carriers. From the peak electric field and current
we find the scattering and plasma frequencies fν  0.5 THz, fP = 2 THz,
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Fig. 9. The frequency dependence of the normalised current responsivity
|RiN | = |Ri/(e/h̄ω)| of the superlattice THz-photon detector (a = 2µm,
L = 0.5µm, RS = 10Ω, VSL = 0.95VP ) for three values of the peak current den-
sity (jP = 13, 30, and 300 kA / cm2 ) and for three values of the peak electric
field (EP = 4, 9, and 13 kV/cm ) (from Ref.[24]). The relevant positions of the
hybrid plasma-Bloch frequencies fH are indicated for each curve by arrows showing
characteristic resonance (high peak current densities) and roll-off (low peak current
densities) behavior.

respectively, assuming ε0 = 13 for the average dielectric lattice constant.
The maximum frequency for the semiclassical approach to be valid for these
samples is f∆  27 THz.

Figure 9 shows the frequency dependence of the normalised current re-
sponsivity calculated for three values of the peak current density in the su-
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perlattice, i.e. jP = 13, 130, and 300 kA/cm2 and for three values of the peak
electric field, EP = 4, 9, and 13 kV/cm. We also use the typical values for
the superlattice length L = 0.5µm (superlattice consists of 100 periods), and
assume a = 2µm for the superlattice mesa radius [35], [36], [37]. We choose
RS = 10Ω for the series resistance of the device in the THz- frequency band,
i.e. the same value as for resonant tunnelling diodes having the same radius of
mesas [25]. The calculations are performed in the region of the positive differ-
ential conductance for dc bias voltage close to the peak voltage (VSL = 0.95
VP )

For EP = 4 kV/cm (fν  0.5 THz) Fig. 9 demonstrates well-pronounced
resonant behavior of the normalised responsivity as a function of frequency.
The resonance frequency and the maximum value of the responsivity rise
if the peak current density increases. For jp = 300 kA/cm2 the normalised
responsivity reaches its maximum value −RiN  0.02 (−Ri  2 A/W) at
frequency f  2.5 THz. For higher values of the peak electric fields EP = 9
kV/cm (fν  1.08 THz) and EP = 13 kV/cm (fν  1.57 THz) the resonance
line-widths are broadened due to implicit increase of the scattering frequen-
cies. In particular, for EP = 13 kV/cm, jP = 300 kA/cm2 the normalised
responsivity has an almost constant value −RiN  0.006 (−Ri  0.6 A/W)
up to f  2.5 THz and, then, rapidly decreases. The frequency behavior of
the normalised responsivity originates from excitation of the plasma- Bloch
oscillations in the superlattice. We indicate in Fig. 9 the positions of the
hybrid frequencies fH = |ωH

± |/2π with arrows. For small peak electric fields
(low values of the scattering frequencies) the hybrid frequency corresponds
to the maximum of the normalised responsivity. For higher values of the peak
field (higher values of the scattering frequencies) it corresponds to the roll-off
frequency at which the responsivity starts to decline.

3.7 Optimized superlattice length

The enhancement of the normalised responsivity requires an optimum match-
ing efficiency of the superlattice to the broad-band antenna and minimization
of the parasitic losses in the series resistor. These requirements impose an op-
timum length of the superlattice for each chosen frequency of the incoming
THz-photons and series resistance.

We show in Fig. 10 the dependence of the normalised responsivity on the
number of the superlattice periods for f = 2.5 THz.We used for calculation
a = 2µm, jP = 130 kA/cm2, VSL = 0.95 VP , and three values of the series
resistance RS = 10, 30 and 50 Ω. For all three values of the series resistance
the responsivity displays a well pronounced maximum for the optimum num-
ber of the superlattice periods N = Nmax. The value of Nmax increases with
increasing of the series resistance (Nmax  40 for RS = 10 Ω, Nmax  60 for
RS = 30 Ω and for Nmax  90 for RS = 50 Ω). This result can be readily
understood by recalling that a larger volume of the superlattice minimizes
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Fig. 10. The dependence of the normalised
current responsivity |RiN | = |Ri/(e/h̄ω)| of the superlattice THz-photon detec-
tor (a = 2µm, EP = 4kV/cm, jP = 130 kA/cm2) at f = 2.5 THz for three values
of the series resistance (RS=10, 30, and 50 Ω) as a function of number of the
superlattice periods N (from Ref.[24]).

parasitic losses for higher values of the series resistance because of reduction
of the sample’s capacitance.

In addition to the examples discussed here, Ref. [24] reports several other
aspects of the superlattice responsivity, such as bias voltage dependence,
optimized peak current density etc.

3.8 Conclusions

We have illustrated here the steps required to perform a superlattice device
optimization. These include: (i) Consideration of the frequency dependence
of the superlattice. Here a truly microscopic analysis is not yet available, but
a Boltzmann equation based theory should be applicable, with due caution.
(ii) The impedance matching between the antenna and the superlattice must
be optimized. (iii) The effect of parasitic losses must be included in the anal-
ysis. One of the main results emerging from our analysis is the importance
of collective excitations: the hybridized plasma-Bloch oscillations both en-
hance the responsivity and increase the roll-off frequency. It is found that
an optimized superlattice can have a responsivity which approaches 10 % of
an ideal superconducting tunnel junction. The great advantage, of course, is
that superlattice based detectors work even at room temperature, and this
property should offer a wide range of applications.



Transport in semiconductor superlattices 191

References

1. L. Esaki and R. Tsu, IBM J. Res. Develop. 14, 61 (1970).
2. A. Sibille, J. F. Palmier, H. Wang, and F. Mollot, Phys. Rev. Lett. 64, 52 (1990).
3. H. T. Grahn, R. J. Haug, W. Müller, and K. Ploog, Phys. Rev. Lett. 67, 1618

(1991).
4. C. Waschke et al., Phys. Rev. Lett. 70, 3319 (1993).
5. M. Holthaus, Phys. Rev. Lett. 69, 351 (1992).
6. B. J. Keay et al., Phys. Rev. Lett. 75, 4102 (1995).
7. P. A. Lebwohl and R. Tsu, J. Appl. Phys. 41, 2664 (1970).
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Spintronic Spin Accumulation
and Thermodynamics

A.H. MacDonald

Department of Physics, Indiana University, Bloomington, IN 47405

Abstract. The spin degree of freedom can play an essential role in determining
the electrical transport properties of spin-polarized electron systems in metals or
semiconductors. In this article, I address the dependence of spin-subsystem chemical
potentials on accumulated spin-densities. I discuss both approaches which can be
used to measure this fundamental thermodynamic quantity and the microscopic
physics which determines its value in several different systems.

1 Introduction

The role of the electronic spin degree of freedom in theories of the elec-
trical transport properties of paramagnetic metals is passive; usually it as
appears only as an afterthought—a factor of two to account for spin de-
generacy. All this changes profoundly in electronic systems with substantial
spin-polarization, either spontaneous or induced, particularly so if the sys-
tem is either electrically or magnetically inhomogeneous. Recently, interest
in the role of the electronic spin has increased, in part because of the possi-
bility of fabricating technologically useful magnetoresistive sensors and other
devices based on spin-dependent transport effects, particularly giant magne-
toresistance [1] and tunnel magnetoresistance [2]. Spintronics [3], the study of
spin-dependent electronic transport effects in systems containing metallic fer-
romagnets, is now a large and active area of basic and applied physics. In this
article, I discuss the possibility of using transport experiments not to make
devices, but instead to measure a fundamental thermodynamic property of
a spin-polarized electron system, the dependence of spin subsystem chemical
potentials on accumulated spin-densities. This quantity can be important in
modeling some spin-dependent transport effects. I will discuss several exam-
ples where it also provides a new and useful test of our understanding of the
microscopic physics of a spin-polarized itinerant electron system.

In Section 2, I derive a formally exact expression for the dependence
of chemical potentials on subsystem densities by defining a spin-dependent
thermodynamic-density-of-states matrix. For bulk three-dimensional charged
particle systems, the total density is fixed by electroneutrality requirements.
In this case only the dependence of up and down spin chemical potentials on
the difference between up and down spin densities is of interest. I show that
these two quantities can be expressed in terms of the differential magnetic

D. Reguera et al. (Eds.): Proceedings 1999, LNP 547, pp. 211−225, 1999.
 Springer-Verlag Berlin Heidelberg 1999
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susceptibility, and a less familiar quantity, the derivative of chemical potential
with respect to external field. The focus of the article is this latter quantity,
which I will refer to as the inverse magnetic compressibility . In Section 3,
I discuss two spintronics experiments which can be exploited to measure its
value in particular systems. In Section 4, I discuss the microscopic physics
which determines its value in three distinct spin-polarized electron systems.
Section 5 contains a brief summary.

2 Thermodynamic Density-of-States Matrix

Non-equilibrium spin accumulation [4, 5] due to electronic transport occurs
generically in inhomogeneous spin-polarized electron systems and is a ubiqui-
tous feature of spintronics. Any theory of spin accumulation requires, explic-
itly or implicitly, a model for the relationship between the up and down spin
densities and their chemical potentials. Linearizing around the equilibrium
state, we can write

dµ↑ = (D−1
↑ + F↑,↑) dn↑ + F↑,↓ dn↓

dµ↓ = F↓,↑ dn↑ + (D−1
↓ + F↓,↓) dn↓. (1)

where µσ is the spin-σ chemical potential and nσ is the density of spin-σ
electrons. In these equations, I treat n↑ and n↓ as separate thermodynamic
variables, something which is useful in discussing spin-accumulation since the
processes which establish equilibrium between spin-↑ and spin-↓ subsystems
are often slow. The spin-quantization axis has been chosen to lie along the
direction of net spin-polarization [6].

It is normally convenient to measure the local chemical potential of a
charged particle system from the local electrostatic potential and this com-
mon convention is implicit throughout these notes. Accordingly

µσ ≡ 1
V

∂F (T, n↑, n↓)
∂nσ

(2)

with the free-energy per volume, F/V , calculated excluding any electrostatic
contributions. The matrix of coefficients in Eq. (1) is accordingly given by the
matrix of second derivatives of F/V with respect to nσ, with the electrostatic
term (which would diverge because of the long-range of the electron-electron
interaction) neglected. (Note that F↑,↓ = F↓,↑.) To make contact with fa-
miliar descriptions of spin accumulation, I have introduced the band-theory
spin-dependent density-of-states per volume, Dσ. If contributions due to cor-
relation effects were neglected, the relationship between chemical potentials
and densities would be diagonal in spin indices and only the density-of-states
terms would appear on the right-hand-side of Eq. (1). The density-of-states
contribution to the spin-σ chemical potential change is simply the result of
changing the filling of the spin-σ energy band. I will refer to the additional
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correlation terms in Eq. (1), Fσ,σ′ , as local-field corrections. The fact that the
local-field corrections are in general off-diagonal in the spin indices can have
a qualitative importance. Eq. (1) is formally exact, however, the values for
the local field corrections, are not known in general, and their computation
is a challenge to theory. In the following Section, I discuss two experiments
which measure a particular combination of these coefficients.

Eq. (1) can be inverted to express spin-dependent density changes in terms
of spin-dependent chemical potential changes

dnσ =
∑
σ′

Dσ,σ′dµσ′ (3)

where

Dσ,σ =
Dσ(1 + Dσ̄Fσ̄,σ̄)

1 + DσFσ,σ + Dσ̄Fσ̄,σ̄ − DσDσ̄F 2
σ,σ̄

Dσ,σ̄ = − DσDσ̄Fσ̄,σ

1 + DσFσ,σ + Dσ̄Fσ̄,σ̄ − DσDσ̄F 2
σ,σ̄

, (4)

where σ̄ =↓ if σ =↑ and vice-versa. D ≡ ∑
σ,σ′ Dσ,σ′ , the rate of change of

total density with chemical potential when the spin-subsystems are in equi-
librium, is the total thermodynamic density-of-states of an electron system.
If interactions are neglected D = D↑ + D↓. In spintronics it is useful to gen-
eralize this concept by defining a thermodynamic density-of-states matrix as
in Eq. (4).

To evaluate the inverse magnetic compressibility, I add to the Hamilto-
nian a Zeeman coupling [7] term which contributes −g∗µBH(n↑ − n↓)/2 to
the free energy per unit volume. Here g∗ is the system’s g-factor, µB is the
electron Bohr magneton, and H is the field strength. It is convenient to use
a notation where µσ is defined as the chemical potential without its Zeeman
contribution, whereas µ is the full field-dependent chemical potential. Then
the condition for equilibrium between up and down spins is

µ = µ↑ − g∗µBH/2 = µ↓ + g∗µBH/2, (5)

or differentiating with respect to field strength:

∂µ

∂g∗µBH
=

∂µ↑
∂g∗µBH

− 1
2

=
∂µ↓

∂g∗µBH
+

1
2

(6)

At fixed total electron density (dn↑ + dn↓ = 0), differentiating Eq. (3) with
respect to g∗µBH gives

∂µ↑/∂H
∂µ↓/∂H

= −D↑,↓ + D↓,↓
D↑,↑ + D↓,↑ = −D−1

↑ + F↑,↑ − F↑,↓
D−1
↓ + F↓,↓ − F↑,↓

. (7)

Combining Eq. (7) and Eq. (6), I obtain that for fixed total density
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∂µ

∂g∗µBH
=

D−1
↑ − D−1

↓ + F↑,↑ − F↓,↓
2[D−1

↑ + D−1
↓ + F↑,↑ + F↓,↓ − 2F↑,↓]

. (8)

Similar considerations lead to the following expression for the differential
magnetic susceptibility,

χS =
g∗µB

2
∂(n↑ − n↓)

∂H
=

(g∗µB)2

D−1
↑ + D−1

↓ + F↑,↑ + F↓,↓ − 2F↑,↓
. (9)

Both of these expressions are formally exact. I show in the following para-
graph that the dependence of the chemical potentials on spin accumulation
is specified by the inverse magnetic compressibility and χS .

Theories of spin accumulation contain in general three elements: i) a the-
ory of the spin and space dependent transport coefficients which lead to
non-equilibrium spin-densities, ii) a theory for the disequilibration (µ↑ − µ↓)
produced by these spin densities, and iii) a theory of the relaxation process
which attempts to establish equilibrium between the spin subsystems. The
thermodynamic property we are discussing is related to the second element.
Assuming electroneutrality (dn↓ = −dn↑ ) it follows from Eq. (1) that

dµ↑
d(n↑ − n↓)

=
D−1
↑ + F↑,↑ − F↑,↓

2

dµ↓
d(n↑ − n↓)

= −D−1
↓ + F↓,↓ − F↑,↓

2
. (10)

Note that d(µ↑−µ↓)/d(n↑−n↓) = (g∗µB)2/2χS . This relationship should not
be a surprise since an external magnetic field maintains a chemical potential
difference µ↑ − µ↓ = g∗µBH and induces a magnetization per volume m =
χSH = g∗µB(n↑−n↓)/2. The linear relationship between µ↑−µ↓ and the non-
equilibrium spin accumulations is thus completely characterized by χS . It is
only if we want to know the chemical potential shifts of up-spin and down-spin
subsystems individually that the inverse magnetic compressibility is required.
The individual chemical potential shifts driven by a non-equilibrium spin
accumulation are:

4χS

(g∗µB)2
dµ↑

d(n↑−n↓) = 1 + 2
dµ

d(g∗µBH)
=

D−1
↑ + F↑,↑ − F↑,↓

D−1
↑ + D−1

↓ + F↑,↑ + F↓,↓ − 2F↑,↓

4χS

(g∗µB)2
dµ↓

d(n↑−n↓) = −1 + 2
dµ

d(g∗µBH)
=

− D−1
↓ + F↓,↓ − F↑,↓

D−1
↑ + D−1

↓ + F↑,↑ + F↓,↓ − 2F↑,↓
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3 Spintronic Thermodynamic Measurements

3.1 Field-dependent Coulomb Blockade Peaks

The first type of experiment I discuss was pioneered by Ono and co-workers
[8] and takes advantage of the equally spaced conductance peaks which occur
in Coulomb blockade devices. The experimental geometry is that of a single-
electron-transistor (SET) in which current flow from source to drain through
a small metallic particle is influenced by a gate voltage. In general source
lead, drain lead, and metallic particle can be either paramagnetic or ferro-
magnetic. For definiteness, I assume that the only the small metallic particle
is ferromagnetic and address a situation which is simpler than what has been
encountered in experiments by also assuming a single domain. The following
paragraph provides a simplified explanation the operation of a SET which is
sufficient for present purposes.

The dependence of the ground-state energy of an isolated metallic grain
on its net charge is dominated by an electrostatic contribution and has the
form

E0(N) =
e2(N − N0)2

2C
+ V ε0(N/V ) (11)

where e(N −N0) is the net charge on the grain and the effective capacitance
of the grain C ∼ R where R is the grain diameter. Here ε0(n) is the energy
per unit volume V calculated for a macroscopic grain which is electrically
neutral. The conductance for current flow through the grain between lead
electrodes is sharply peaked when the addition energy of the island is equal
to the chemical potential in the lead electrodes µL, i.e. when

µ(N) ≡ E0(N + 1) − E0(N) = µL. (12)

In a SET the chemical potential for electrons on the metallic grain is manip-
ulated by a gate voltage U :

E0(N) → e2(N − N0)2

2C
+ V ε0(N/V ) − NeU. (13)

As U is varied, the equilibrium number of particles on the grain changes. The
number of particles in the grain’s ground state changes between N and N +1
when Eq.( 12) is satisfied:

eU∗N = e2(N + 1/2)/C + µ(N/V ) − µL. (14)

A peak occurs in the source-drain conductance at this value of the gate
voltage. In this equation µ(n) is the bulk chemical potential of an electrically
neutral system, the quantity examined in Section 2.

As discussed in Section 2, µ(n) is field-dependent in general. It follows
from Eq. (14) that provided the field-dependence of the lead chemical poten-
tials can be ignored
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dµ(n)
d(g∗µBH)

=
d(eU∗N )

d(g∗µBH)
; (15)

the quantity of interest can simply be read off the gate voltage dependence of
the Coulomb blockade conductance peak. More realistic models are compli-
cated by geometry dependent cross capacitances between different circuit ele-
ments which invalidate the simple relationship between the chemical potential
on the ferromagnetic grain and the gate voltage assumed here. However these
two quantities are still proportional and the proportionality constant can be
sorted out experimentally by measuring the spacing between Coulomb block-
ade conductance peaks at fixed voltage. Estimates of d(µ0(n)/d(g∗µBH) have
already been obtained [8] using this approach for one ferromagnetic transition
metal.

3.2 Field-dependent double-layer compressibility measurements

The second potential experiment I discuss is a variant on one which has
been used in the past [9, 10, 11, 12] to measure the compressibility of two-
dimensional electron gas layers. It exploits techniques which have been devel-
oped [13] to make separate contact to nearby two-dimensional electron layers.
The experimental set up can be thought of as a parallel plate capacitor, where
one plate is a metal or heavily doped semiconductor and the second plate con-
sists of two separately contacted two-dimensional electron layers, one on top
of the other and closer to the metallic gate. A change in the charge density
on the surface of the metal induces an opposing charge density distributed
between the two two-dimensional electron layers. The equilibrium condition
which determines the distribution of charge is:

µT (nT ) = µB(nB) + 4πe2d(n − nT − n0/2). (16)

Here nT is the areal density in the top two-dimensional layer, nB is the
density in the bottom two-dimensional layer, d is the separation between the
two layers, and n = nT +nB is the total density in the two-layers. The second
term on the right hand side of Eq. (16) is the electrostatic potential drop due
to the electric field which exists between top and bottom two-dimensional
layers. Note that the electric field between the gate and the top layer has
magnitude 4πe(n − n0/2), i.e. en equals the surface charge density on the
metallic gate up to a constant. If the top two-dimensional layer is held at
ground, the gate voltage VG is therefore proportional to n. The magnitude of
the electric field below the bottom two-dimensional layer, 4πen0/2, does not
change during the experiment.

To determine the compressibility [9], it is necessary only to measure
the current which flows to the bottom layer when the gate voltage VG (or
equivalently n) is changed. Differentiating Eq. (16) with respect to n with
nB + nT = n leads to [9] a relationship between a fundamental thermody-
namic quantities and a conveniently measurable dimensionless experimental
quantity exploited in previous experimental work:
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dnB

dn
=

dµT /dnT

4πe2d + dµT /dnT + dµB/dnB
(17)

Since the first term in the denominator of Eq. (17) is normally dominant
the experiment provides a direct measurement of the dependence of chemical
potential on density, inversely proportional to the compressibility, for the top
layer.

I propose using the same experimental setup to measure the dependence
of the charge in the bottom layer on magnetic field at fixed gate voltage.
Such a measurement can be related to the inverse magnetic compressibility;
differentiating Eq. (16) with respect to field at fixed n I find that

dnB

d(g∗µBH)
=

dµT /d(g∗µBH) − dµB/d(g∗µBH)
4πe2d + dµT /dnT + dµB/dnB

. (18)

Since the denominator is dominated by the first term, the experiment provides
a direct measurement of the difference between the rate of change chemical
potential with field in top and bottom 2D layers.

4 Microscopic Theory of the Thermodynamic
Density-of-States Matrix

4.1 Band Ferromagnets

In order to contextualize the issues raised by these relatively new measure-
ment possibilities, I first discuss the estimate for dµ/d(g∗µBH) which fol-
lows from the simplest possible mean-field theory of a ferromagnetic metal,
Stoner-Wohlfarth [14] theory. In modern work this approach is wrapped in
the cloak of spin-density-functional theory [15]. In the Stoner-Wohlfarth the-
ory, quasiparticle spin-up and spin-down energies for each band and for each
wavevector in the crystal’s Brillouin-zone are split by an amount

∆ = 2µBHeff = 2(Im + µBH). (19)

The effective magnetic field includes an exchange contribution which is pro-
portional to the magnetic moment per Bohr magneton per volume of the
system,

m =
M

V µB
= n↑ − n↓. (20)

where M = µB(N↑−N↓) is the total magnetic moment. The exchange integral
I is a phenomenological material property which is characteristic of a given
system. In a given field, m and the chemical potential µ are determined
by self-consistently occupying spin-split bands. At T = 0 the self-consistent
mean-field equations are
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m =
∫ µ+∆/2

µ−∆/2
dε D(ε)

n = 2
∫ µ−∆/2

−∞
dεD(ε) +

∫ µ+∆/2

µ−∆/2
dεD(ε) (21)

where D(ε) is the density-of-states per volume per spin at ∆ = 0. Let ∆0
and I denote the self-consistent exchange splitting of the band and the self-
consistent value of m in the absence of an external field respectively. Expand-
ing µ and ∆ to first order in H, I find that

dµ

d(g∗µBH)
=

D−1
↓ − D−1

↑
2[D−1

↓ + D−1
↑ − 4I]

. (22)

Here D↑ = D(µ0 + ∆0/2) and D↓ = D(µ0 − ∆0/2) are the majority and
minority spin densities of states in the absence of a field.

This expression can be recognized as a special case of the general re-
sult derived in Section 2 which is obtained by holding the bands rigid and
taking F↑,↓ = −F↑,↑ = −F↓,↓ = I. In the formally exact theory, the three
local-field-factors are independent. Density-functional theory [15] is a practi-
cal approach to many-particle physics which has been applied successfully to
evaluate the thermodynamic properties of metals and underpins the modern
theory [16] of ferromagnetic transition metals. In density-functional theory,
the local field factors arise from an interplay between band-structure details
and exchange-correlation single-particle potentials. Expectations based on
the electron gas case, discussed for two-dimensions below, suggest that the
diagonal local-field-factors should be negative and larger in magnitude than
the positive off-diagonal local-field-factor. It is not at all obvious that these
expectations apply to transition metals, especially because the majority spins
at the Fermi energy tend to have predominantly itinerant s-electron charac-
ter while the minority spins tend to have predominantly localized d-electron
character. Comparison of theoretical and experimental values for both the dif-
ferential magnetic susceptibility, and the magnetic compressibility, presents a
serious and interesting challenge to the density-functional theory of metallic
magnetism.

4.2 Zero Field Two-Dimensional Electron Gas

The ground state of the two-dimensional electron gas is not ferromagnetic
except at extremely low densities [18, 19]. Spin-polarization can, however, be
induced by application of an external magnetic field [20]. I now discuss a sim-
ple theory for the value of dµ/d(g∗µBH) in a spin-polarized two-dimensional
electron gas which is based on the Hartree-Fock approximation [21] for its
energy: two-dimensional electron system:
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Here f(ε) = (exp(ε/kBT ) + 1)−1 is a Fermi factor [25], εK is the energy
of a Skyrmion quasiparticle, (2π�2)−1 is the density of a full Landau level,
and we have chosen the zero of energy so that quasielectron and quasihole
skyrmion states have the same energy[26]. When the spin subsystems are in
equilibrium, we can use Eqs. (25) to calculate the chemical potential, given
the Landau level filling factor. The Landau level filling factor is increased by
quasielectron excitations and decreased by quasihole excitations:

ν = 1 +
∑
K

(nKe − nKh). (26)

Eq.( 25) follows from the property that formation of the K−th quasielectron
Skyrmion requires the addition of K+1 spin-down electrons and the removal
of K spin-up electrons from the ν = 1 ground state, while formation of the
K − th quasihole Skyrmion requires the addition of K spin-down electrons
and the removal of K+1 spin-up electrons. For non-interacting electrons only
the K = 0 quasiparticles occur; for typical 2DES’s, on the other hand, the
lowest energy quasiparticles have K = 3; these quasiparticles dominate the
low-temperature properties of the system for ν close to 1. From Eqs.( 25) I
obtain the following thermodynamic density-of-states matrix:,

D↑,↑ = (2π�2)−1
∑
K

[
(K + 1)2∆(εK + µ) + K2∆(εK − µ)

]
(27)

D↑,↓ = −(2π�2)−1
∑
K

K(K + 1) [∆(εK + µ) + εK − µ)] (28)

where ∆(x) = sech2(x/2)/4kBT .
These expressions have been used previously to analyze [28] spin bottle-

necks which have been observed [29] in the quantum Hall regime. Here I evalu-
ate the dependence of the equilibrium chemical potential on Zeeman coupling
strength. The possibility of measuring this quantity in two-dimensional elec-
tron systems was discussed in the previous section. Zeeman coupling adds
[22, 26] to the Skyrmion quasiparticle energies, εK → εK +g∗µBH(K + 1/2).
In order for the filling factor to be held fixed as the Zeeman coupling strength
varies, the chemical potential must change:

∂µ

∂(g∗µBH)
= −∂n/∂(g∗µBH)|µ

∂n/∂µ|H =
∑

K(K + 1/2)[∆(εK − µ) − ∆(εK + µ)]∑
K [∆(εK − µ) + ∆(εK + µ)]

(29)
We see in Fig. (4) that for an ideal disorder-free two-dimensional electron
system, dµ/d(g∗µBH) is typically larger than one and changes sign when
the filling factor crosses ν = 1. These results were calculated using Skrymion
state energies evaluated by Palacios et. al. [27]. The value of this quantity
gives information about the Skyrmion system complementary to that avail-
able from other experiments[23]. Its value depends both on the average K
value of the Skrymions present in the system, the quantity revealed by Knight
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Abstract. The statistical properties of the energy spectra of the Anderson Hamil-
tonian for random systems are numerically investigated near the disorder-induced
metal-insulator transition. The level spacing distribution, the level density corre-
lation function and the spectral form-factor are shown to be size-invariant at the
critical point. They exhibit a crossover from the critical orthogonal to the critical
unitary ensembles, which is controlled by the magnetic flux. One-parameter finite
size scaling of the level statistics is used to detect with high precision the critical
parameters: the critical exponent and the disorder dependence of the correlation
length.

1 Introduction

The problem of localization of quantum states in disordered systems has been
formulated more than three decades ago (Anderson 1958). The key result has
been that depending on the randomness of the potential energy quantum ob-
jects can show a characteristic transition from extended to localized behavior
corresponding to metallic and insulating behavior at zero temperature. This
disorder-induced metal-insulator transition (MIT), conventionally called the
Anderson transition, has been the subject of considerable experimental and
theoretical work (Lee and Ramakrishnan 1985). During the past years, efforts
have been concentrating on statistical and scaling properties in disordered
mesoscopic electron systems (Efetov 1997), (Janssen 1998).

It is now commonly believed that the critical behavior at the MIT, de-
scribed by a critical exponent ν of the localization length, is entirely deter-
mined by the spatial dimensionality d and by the fundamental symmetry.
According to the single-parameter scaling theory developed by (Abrahams
et al. 1979) an Anderson transition can occur only for d > 2. For d ≤ 2, all
quantum states are localized independent of energy and disorder. As for the
symmetry, all systems are classified into three classes

1. the orthogonal class (time reversal and spin rotation symmetry),
2. the unitary class (broken time-reversal symmetry), and
3. the symplectic class (broken spin-rotational symmetry).

In random matrix theory (RMT) they correspond to the Gaussian orthog-
onal (GOE), unitary (GUE) and symplectic (GSE) ensembles, respectively

D. Reguera et al. (Eds.): Proceedings 1999, LNP 547, pp. 237−251, 1999.
 Springer-Verlag Berlin Heidelberg 1999
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(Mehta 1991). Using the finite-size scaling hypothesis, considerable compu-
tational efforts have been performed in order to find numerical values for the
critical exponents. The most recent estimates are known in three dimensions
(3D) with and without magnetic field (Slevin and Ohtsuki 1997) and in two
dimensions (2D) with a magnetic field (Weymer and Janssen 1998) and in-
cluding spin-orbit coupling (Schweitzer and Zharekeshev 1997). Their results
are consistent with the one-parameter scaling hypothesis.

Recently, it has been established that the statistical properties of energy
levels in single-electron disordered systems are closely related to the localiza-
tion properties (Altshuler and Shklovskii 1986), (Shklovskii et al. 1993). In
the metallic region, they are described by the random-matrix theory (RMT)
developed by (Wigner 1951) and (Dyson 1962). In the insulating regime they
obey the Poissonian statistics of uncorrelated random variables. Close to the
transition, the level statistics exhibit behaviors very similar to that of trans-
port quantities, as the conductance obtained by the transfer-matrix method
(Kramer and MacKinnon 1993). This implies that the knowledge of the spec-
tral fluctuations is sufficient to extract the required critical parameters. Pre-
cisely at the transition, a novel universal statistics in 3D have been pre-
dicted (Shklovskii et al. 1993) and extensively studied (Kravtsov and Lerner
1995), (Hofstetter and Schreiber 1994), (Aronov et al. 1994), (Evangelou
1994), (Zharekeshev and Kramer 1995). The key feature of the statistics is
size invariance at the transition. However their forms depend crucially on the
presence or absence of time-reversal (Batsch et al. 1996) and spin-rotational
symmetry (Kawarabayashi et al. 1996).

In 2D orthogonal case the level statistics always scale towards the Pois-
son distribution exhibiting no critical behavior (Zharekeshev et al. 1996).
When applying the magnetic field or strong spin-orbit interactions, the cor-
responding critical statistics appear at non-vanishing disorder (Feingold et al.
1995), (Schweitzer and Zharekeshev 1995), in full agreement with the scaling
theory. By using the finite–size scaling argument for the spacing distribution a
new criterion for locating the metal–insulator transition has been established.
This argument was cross–checked by numerically determining level statistics,
and investigating the scaling properties of spectral correlations not only in
2D and 3D, but also in higher dimensions (Zharekeshev and Kramer 1998).
One advantage of this method is that one needs only the energy spectrum
without direct calculating eigenfunctions or the conductivity.

In this paper, we provide an overview of the numerical work during the
past years. The spectral fluctuations in 3D one-electron disordered systems
with and without time-reversal symmetry are examined. Several statistical
quantities, as the level spacing distribution P (s), the two-level correlation
function R(s) and the spectral structure factor S(t) are considered in the
vicinity of the Anderson transition. Using the finite-size scaling method we
determine numerically the shape of critical statistics. We focus also on the
critical behavior of the level statistics near the disorder–induced MIT and
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determine precisely the critical value of the disorder Wc and the correlation
length exponent ν. We provide an independent determination of the corre-
lation length as a function of the disorder, ξ(W ). Our results demonstrate
unambiguously and strikingly, that the level spacing distribution plays not
only the role of a scaling variable at the Anderson transition, but can also
be used to define qualitatively and accurately the critical properties. The
influence of the boundary conditions (BC) on the level statistics is briefly
discussed.

2 The Anderson model

We consider the spectrum of disordered electrons using the Anderson model
on a simple cubic lattice. The Hamiltonian is given by

H =
∑

n

εnc
†
ncn +

∑
〈nm〉

tφ(c†ncm + cnc
†
m) , (1)

where 〈nm〉 implies that n and m are nearest neighbors and c†n creates an
electron on the nth site of a lattice. The random potential is described by the
random site energies εn. They are uniformly and independently distributed
in the interval from −W/2 to W/2. Thus, W parameterizes the strength of
disorder. An Aharonov-Bohm flux φ is applied in all three directions, so that
the transfer integral tφ = t exp(−2πiφa/L), contains a phase factor which is
given by the flux in units of the flux quantum φ0 = h/e. We assume t and the
lattice spacing a to be the units of energy and spatial distance, respectively.
The critical disorder at the band center of this model corresponds toW = 16.5
for φ = 0.

The Hamiltonian Eq. (1) is numerically diagonalized for 3D lattices of
different linear sizes L. The computational procedure based on the Lanczos
algorithm is especially designed for solving eigenvalue problem of very large
sparse matrices (Zharekeshev and Kramer 1999). Non-zero values of φ require
diagonalization of Hermitian matrices. Discrete eigenenergies are calculated
in an energy interval near the band center ε = 0 which contains up to 50% of
the levels in the whole spectrum. On the one hand, due to the peculiarity of
the trajectory of the mobility edge for the box distribution, the energy levels
covered by this interval are statistically equivalent (Zharekeshev and Kramer
1997). On the other hand, such a wide interval is necessary for computing
long-range spectral correlations. In order to take the energy dependence of
the density of states ρ(ε) :=

∑
n δ(ε−εn) properly into account, the spectrum

has been unfolded by using parabolic splines.
We have computed sets of energy levels for fixed pairs of parameters L

and W and many realizations of the randomness. The number of realizations
depended on the size of the system. The total number of eigenvalues in the
ensemble has been as large as 107 for the smallest size L = 5 and 105 for the
largest size L = 24.
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3 The level spacing distribution

The level spacing distributions for the GOE and GUE of random matrices
are well approximated by

P o
W(s) =

π

2
s exp

(
−π

4
s2
)
, Pu

W(s) =
32
π
s2 exp

(
− 4
π
s2
)

, (2)

respectively (Wigner 1951). The level spacings s are measured in units of
the mean separation ∆ of adjacent levels s ≡ (εi+1 − εi)/∆. The Wigner
surmises, Eq. (2), deviate from the exact distributions PGOE(s) and PGUE(s)
of the RMT, by less than 5% in the interval 0 < s < 2. For example, the
small-s behavior and the asymptotic form of the exact result for GOE are as
follows

PGOE(s) =

{
π2

6 s+ O(s2), s � 1
exp [−π2

16 s
2 − π

4 s+ O(ln s) ], s 	 1
(3)

Indeed, our numerical results of P (s) in the metallic regime for orthogonal
symmetry are markedly different from the Wigner surmise Eq. (2), particu-
larly in the tail. For 0 ≤ s ≤ 2 it gets closer to the exact RMT-result from
(Mehta 1991), so that the relative deviation from PGOE(s) is much smaller
than that of the Wigner surmise P o

W(s). To achieve this precision one needs
so many spacings that the error bar is less than 0.3-0.5%.

We have applied two different types of boundary conditions: periodic and
the Dirichlet (“hardwall”) BC. Figure 1 shows good coincidence of the numer-
ical P (s) for W = 5 (metallic regime) with the exact GOE result, unless the
spacings s exceed the Thouless parameter ET/∆. The energy ET = hD/L2

defines the border of the diffusive regime, where D is the diffusion constant
(Thouless 1974). Deviations from PGOE(s) occur for energies s ≥ ET, where
in this case ET ≈ 2 or 2.5 depending on the type of the BC. Similar deviations
from Pu

W(s) are found for the unitary case. The importance of the energy scale
ET in level statistics has first been understood by (Altshuler and Shklovskii
1986), who have calculated perturbative contributions beyond the validity of
the RMT, using impurity diagram techniques. Non-perturbative corrections
to the Wigner-Dyson statistics in the metallic regime have been analytically
investigated (Kravtsov and Mirlin 1994) by using the combination of the
nonlinear σ-models with the renorm-group transformation. Influence of the
different types of the BC on the level statistics at the mobility edge has been
numerically studied (Braun et al. 1998).

While explicit analytical results are known only in the asymptotic regimes
s → 0 and s → ∞, the numerical results for P (s) that are obtained for the
random tight-binding Hamiltonian of condensed matter theory can be consid-
ered as standard data, since they are more accurate than those of non-linear
dynamics. Usually, P (s) for the ergodic regime is calculated directly for an en-
semble of finite random matrices, whose all entries are randomly distributed
with the same variance. It turned out that P (s) obtained numerically from
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Fig. 1. Spacing distribution P (s) of system size L = 8 and disorder W = 5 for
periodic and Dirichlet boundary conditions (orthogonal case). Solid line: GOE data,
which have been taken from (Mehta 1991). Dashed line: Wigner surmise P (s)oW from
Eq. (2). Inset: relative deviation of P (s) from the GOE result. Number of spacings
is about 107.

Eq. (1) for sufficiently large systems can be more precise than that from the
table-given data in (Mehta 1991). For the GUE this can also be obtained
from the zeros of the Riemann-function. In principle, one can now produce
extremely precise data due to present day’s immense computer power. Since
the level statistics possess a generic universality, the knowledge of P (s) pro-
vides a very useful and important information for purposes of metrology and
standardization.

It has been shown earlier (Efetov 1983), (Altshuler et al. 1988) that the
level statistics of disordered systems is governed by the Wigner-Dyson theory
in the metallic regime, while it approaches the Poissonian distribution

PP(s) = e−s (4)

in the insulator. The reason is that the wavefunctions for small disorder
W � Wc overlap strongly, while for large disorder, W 	 Wc, they decay ex-
ponentially and their mutual overlap vanishes. Deep in the insulating region,
the energy eigenvalues are completely uncorrelated variables. As an example
we have calculated the level statistics of a sample with time-reversal symme-
try (φ = 0) for L = 6 for different disorders. Fig. 2 demonstrates how the
distribution P (s) changes from the GOE-result to the Poissonian, Eq. (4),
when the disorder W increases.
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Fig. 2. Level spacing distribution P (s) for an orthogonal system of linear size L = 6
for various disorder strengths W . Solid line: GOE data, which have been taken
from (Mehta 1991). Dashed line: Wigner surmise, Eq. (2). Dotted line: Poisson
distribution PP(s). Inset: P (s) near s ≈ 2, the crossing point of the Poisson and
the Wigner distributions. Total number of spacings is about 107.

Of particular interest is the region of spacings around s
 = 2.002, where
the Wigner surmise P o

W(s) and the Poisson distribution PP(s) intersect. It has
been suggested (Shklovskii et al. 1993) that independently of the disorder W ,
all P (s) should also intersect at the same point s
, which would then play the
role of a universal energy. We have performed detailed calculations with large
number of realizations. Careful analysis of our data did not show any common
crossing point (inset of Fig. 2). For instance, the data of P (s) for W = 16.5
intersect with PGOE(s) at s = 2.04± 0.02 and with PP(s) at s = 2.00± 0.02,
while P (s) for W = 100 does with PGOE(s) at s = 1.99±0.02 and with PP(s)
at s = 2.72 ± 0.06, which is definitely far from s
. They cross each other at
s = 1.96 ± 0.02.

We consider now broken time reversal symmetry. This can be achieved
by applying Aharonov-Bohm (AB) fluxes along all three perpendicular direc-
tions in a 3D lattice. Performing diagonalization for different magnitudes of
the flux ranging from φ = 0 to φ = 1/4, we found the critical statistics to be
sensitive to the flux (Batsch et al. 1996). As a function of φ, the distribution
P (s) at the transition changes smoothly from the critical orthogonal P o

c (s) to
the critical unitary form Pu

c (s) at φ = 1/4 (see Fig. 3). This flux-controlled
crossover of the critical level statistics repeats periodically, resuming the or-
thogonal form at φ = 0.5, since a half of the flux quantum corresponds to the
real Hamiltonian defined in Eq. (1) with the antiperiodic BC. For fixed flux,
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Fig. 3. The level spacing distribution P (s) for the unitary case at the critical dis-
order W = 16.5. Left: at different values of the Aharonov-Bohm flux φ for linear
size L = 5. Right: at the fixed flux φ = 0.2 for different sizes L = 5 (+); 10 (✷); 20
(•). Solid and dashed lines are the critical P (s) for two limiting phases φ = 0.25
and φ = 0, respectively. Number of spacings ∼ 106 for each φ.

all P (s) atWc proved to be insensitive to varying the size of the system L = 5,
10 and 20, as shown on the right hand side in Fig. 3 for φ = 0.2. The same
L-invariant behavior has been observed for various φ. We have checked that
the critical disorder within our accuracy does not change with φ and equals
Wc ≈ 16.5. In other words, the mobility edge is basically flux-independent,
in contrast to the behavior of the critical P (s). It has recently been argued
(Montambaux 1998) that the crossover between critical orthogonal and crit-
ical unitary shapes is governed by the product ngφ2, where n is the number
of applied fluxes and g is the dimensionless conductance.

4 Two-level correlation function

One of the important statistical measures which characterizes the spectral
correlations is the level density correlation function

R(s) =
〈ρ(ε+ s∆)ρ(ε)〉

ρ2
0

, ρ0 =
1

∆Ld
, (5)

where 〈...〉 denotes averaging over various realizations of the random potential
and ρ0 is the averaged density of states. The expressions for R(s) for the three
symmetry classes of the RMT are well known (Mehta 1991). As expected
from the above, they can be applied for describing the spectral correlations
in a disordered metal. For example, the asymptotic behavior for large s is
R(s) − 1 ∝ s−2. In the insulating regime, no level correlations exist and
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R(s) = 1, irrespective of energy. Similarly to the level spacing distribution,
it is interesting to study R(s) at the Anderson transition.

We have computed energy spectra for 3D systems with sizes ranging from
L = 6 to 20 with large number of realizations at W = 16.5. Numerically, it
is easier to calculate R(s) by using

R(s) =
∞∑

n=0

p(n, s), p(0, s) ≡ P (s) , (6)

where p(n, s) is the distribution function of the separation s between the
levels εi+n+1 and εi. Figure 4 shows our results for orthogonal symmetry,
where the upper limit nmax ≈ 100 in Eq. (6) is assumed. As expected, R(s)
at the transition is different from both, the GOE and the Poissonian limits.

It has been suggested (Kravtsov et al. 1994) that the correlation function
at the metal-insulator transition depends only on d and the symmetry class,
and in the asymptotic region s 	 1 has the form

R(s) − 1 ∝ 1
sα

, with α ≡ 1 +
1
νd

. (7)

In 3D from the available scaling result ν ≈ 1.5 one obtains α ≈ 1.2. While pre-
vious numerical calculations (Braun and Montambaux 1995) were in agree-
ment with the proposed power law yielding α = 1.17, our present high-
precision results do not confirm the above analytical expression Eq. (7).

Despite that the system size L = 12 and number of realizations are larger
than in previous calculations, thus giving a better accuracy, our results for
the tail of R(s) have not been found to be reliably consistent with the power
law (inset of Fig. 4). The data fluctuate very strongly when s becomes large
(s ≥ 10), so that no definite conclusion about the asymptotic behavior could
be drawn. We note here in passing that the statistical uncertainties of our
data are controlled by the central limit theorem. This means that the accuracy
of the calculated R(s) for large s is restricted by the total number N of the
computed eigenvalues: δR(s)/R(s) ∝ 1/

√
N . There is a certain maximal

value of smax up to which a fitting procedure for the asymptotic form is
meaningful. A simple estimate yields smax ≈ 10 ÷ 12 for the number of
eigenvalues N ∼ 107. Any interpolation beyond this value does not make
any sense. Even though one can interpolate the decay of 1 − R(s) only in
the region s < 10 by the power law, the fitted value of α ≈ 2.3 deviates
strongly from the expected theoretical estimate α = 1+ 1/(3ν). In this view
the agreement between analytical expression Eq. (7) and previous numerical
results seem to be a bit optimistic. Therefore, the exact asymptotic behavior
of the correlation function at the Anderson transition has to be considered
as an open problem.
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5 Spectral form-factor

By definition, the spectral two-level form factor is the Fourier transform of
R(s),

S(t) ≡
∫ ∞
−∞

R(s) exp(2iπst)ds , (8)

The exact expressions of the form-factor in RMT are known for all three
universality classes (Mehta 1991). For instance, for the GUE

SGUE(t) =
{
1 − |t|, |t| ≤ 1
0, |t| ≥ 1 (9)

The point t = 1 corresponds to the Heisenberg time τH = h/∆, where the
form factor has a singularity (the divergence starts from the second deriva-
tive).

Here we focus the attention only on the unitary symmetry. In practice, it
is more accurate to determine S(t) directly from the computed eigenvalues
εi, rather than using the Eq. (8),

S(t) = 2
∑
i>j

cos(πtsij), with sij :=
εi − εj

∆
. (10)
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Figure 5 shows the results of numerical calculations of the form-factor S(t)
for the linear size L = 20 at fixed three-component AB-flux φ = 0.25. One
observes that the “knee” of S(t) at the Heisenberg time t = 1 is washed out
at finite disorder. The whole function changes monotonically from the GOE
limit Eq. (9) to the Poissonian S(t) = 0. For weak disorder W , the Thouless
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Fig. 5. The form-factor S(t) of the unitary case, φ = 0.25, for system size L = 20
and different disorders. The GUE-result shown by the solid line corresponds to
Eq. (9), the Poissonian case to S(t) = 0. Inset: level spacing distribution P (s) for
different disorders. Solid line: exact PGUE(s); dashed line: Poissonian distribution.
Number of spacings ∼ 105 for each W .

time τT = L2/D separates the ergodic and the diffusive regimes, withD being
the diffusion constant. For small times, t � τT/τH, we observe for metallic
systems (W ≤ 14) a pronounced decrease of S(t) in the diffusive regime. For
t ≥ τT/τH, one finds negligible weak localization corrections to SGOE(t). The
fact that the character of the deviation of the form-factor from the ergodic
limit in the mesoscopic conductor is governed only by the large, but finite
conductance g = G/(e2/h) 	 1 has been established earlier (Andreev and
Altshuler 1995), (Agam et al. 1995).

When approaching the critical region (ξ(W ) ≥ L), both the RMT and
the perturbative approximations are no longer valid, because the Thouless
and the Heisenberg times become of the same order, τT ∼ τH, i. e. g � 1.
Precisely at W = Wc where ξ diverges, the data for S(t) do not depend on L.
Obviously, this corresponds to the the critical form-factor and establishes the
third universal level statistics in the thermodynamic limit. For comparison,



Numerical-Scaling Study of Level Statistics . . . 247

the level spacing distribution P (s) for the same values of disorder is shown
in the inset of Fig. 5. The crossover of P (s) from PGUE(s) to PP(s) Eq.( 4)
is similar as for the orthogonal symmetry (cp. Fig. 2).

6 The correlation length exponent

Since P (s) scales differently with L for various regions of s, it is more con-
venient to consider the integrated probability function I(s) =

∫∞
s

P (s′) ds′,
which equals a fraction of those spacings which are larger than s. Because all
spacings are positive, I(0) = 1. In addition, due to normalization to the total
number of spacings

∫∞
o

I(s) ds = 1. For the two limiting regimes of metal
and insulator Eqs. (2) and (4) yield

Io
W(s) = exp(−πs2/4), IP(s) = exp(−s), (11)

respectively. For numerical purposes we introduce the function

A(s) :=
I(s) − Io

W(s)
IP(s) − Io

W(s)
. (12)

It describes the relative deviation of I(s) from Io
W(s). In order to extract the

dependence only on W and L and to minimize numerical errors we define a
certain value of the spacing s0 for A(s). The choice of the average spacing,
s0 = 1, is not favorable because A(∆) exhibits a very small size effect. One
can see in Fig. 2 that P o

W(s) and PP(s) cross at two points s1 = 0.473 and
s
 = 2.002. Here we studied α(W,L) ≡ A(s1) representative for the small-s
part of P (s), where Io

W(s) and IP(s) are significantly different. This variable
reflects the “strength” of the repulsion of two consecutive levels when the
separation between them is less than s1. For L → ∞ the value of α is equal
to zero for W < Wc and to unity for W > Wc.

We have computed many data of the function A(s) for system sizes L = 6,
8, 12, 16, 20, 24, 28 and various strength of disorder ranging from W = 12 to
20. Figure 6 shows the disorder dependence of α. The curves for different sizes
cross at one point, Wc, which corresponds to the disorder–induced MIT. Near
the critical point, as long as |W −Wc| < 2, the data of α(W ) depend stronger
on W for larger cubes. In the thermodynamic limit, α should eventually
experience a discontinuous jump from zero to unity exactly at Wc. A different
variable,

∫∞
s� I(s) ds+s
 −1, was studied in (Hofstetter and Schreiber 1994),

which corresponds to using P (s) in the range of large spacings. In fact, the
critical disorder Wc and the scaling properties of the integrated level spacing
distribution do not depend on the choice of so. We have checked this so–
independence by repeating the calculations for so = 0.05 and 4. However, the
results for s1 yields the highest accuracy. Using the data for α(W,L) one can
determine very accurately the critical value of the disorder, Wc = 16.4± 0.1.
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Fig. 6. Scaling variable α(W ) near Wc for various system sizes L. Number of level
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In what follows we discuss the critical behavior of α. It characterizes the
slope of the linearly growing part of P (s). Assuming the validity of the one–
parameter scaling α(W,L) = f(L/ξ(W )), one can replot the data of Fig. 6 by
rescaling L. We numerically chose values of ξ(W ) by shifting the logarithm
of the length L separately for each W . An overlap between data for adjacent
values of W allows to fit most of the points onto a common curve with two
branches, growing one (W > Wc) and decaying one (W < Wc) (Fig. 7).

Thus, we find a function ξ(W ) up to an arbitrary factor ξo. This arbitrari-
ness can be avoided. The points for the maximum disorder W = 20 in Fig. 7
except of the sizes L = 6 and 8 correspond to the localized regime ξ < L.
Supposing that the statistics of the levels of localized states is not sensitive to
the dimensionality of system, one can match ξ for the above disorder to the
relevant values of the localization length calculated by the transfer-matrix
method in the quasi–1D case (Kramer and MacKinnon 1993). The function
ξ(W ), as found by this procedure, is plotted in the inset of Fig. 7. Our values
of ξ coincide with those found by the transfer-matrix method. The agreement
is slightly better for the insulating than for the metallic side.

The next step is to extract the critical exponent of the localization length.
Using the singularity of the correlation length near Wc

ξ(W ) = l

∣∣∣∣W − Wc

Wc

∣∣∣∣
−ν

, (13)

where the scale l is of order of the lattice constant, one can expand the scaling
function α(L/ξ) into a power series
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Fig. 7. Scaling variable α as a function of L/ξ(W ), showing one–parameter scaling.
W = 12(✸), 14(+), 15(✷), 16(×), 16.5(�), 17(�), 18(◦), and 20(•). Inset: correla-
tion length ξ as function of the disorder W . Present method (•), Transfer-matrix
method (✸) (Kramer and MacKinnon 1993); (+) (Schreiber and Ottomeier 1992).
Continuous curve: plot of (13) with Wc = 16.4, ν = 1.45, and l ≈ 1.1.

α(W,L) = αc(L) +A(W − Wc)L1/ν . (14)

By applying a standard χ2–criterion for the verification of the linearized
scaling hypothesis with several parameters to fit the data, we found ν =
1.45 ± 0.08. It is well consistent with the critical exponent ν � 1.5 obtained
recently by the transfer-matrix method (Slevin and Ohtsuki 1997). A slightly
smaller value of ν � 1.34 for the large-s region of P (s) has been computed
in (Hofstetter and Schreiber 1994) by using the level–statistics method sim-
ilar to ours. The dependence ξ(W ) from Eq. (13) with ν = 1.45 is shown in
the inset of Fig. 7 for comparison. We note that the critical exponent could
be also estimated by fitting the data for ξ−1(W ) to the power–law function
without linearizing of α(W ) near Wc. However the relative numerical er-
rors become markedly larger similar as in the earlier approach (Kramer and
MacKinnon 1993). Certainly the accuracy of ν can then be improved by con-
sidering a narrower interval δW near the critical point Wc or by computing
larger systems.
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7 Conclusions

We have numerically studied statistical properties of fluctuations in electron
spectra of 3D disordered systems. The nearest-neighbor level spacing dis-
tribution, the two-point correlation function and the form-factor have been
shown with high precision to exhibit size-independence at the critical point
of the Anderson transition. With increasing of the size of the system they
scale towards the corresponding results of the RMT below the critical dis-
order (W < Wc), and to the Poissonian distribution above it (W > Wc).
As a result, in the thermodynamic limit only three universal statistics ex-
ist, including the critical statistics precisely at the transition. In the metallic
phase, the range of validity of the Wigner-Dyson statistics extends to the
infinite energy, because the Thouless conductance g ∝ ET/∆ diverges for
L → ∞. In the insulating phase, the Poissonian limit is expected to apply
since the statistics is a consequence of the superposition of the contributions
from many independent localization volumes Vξ = ξd(W ).

In the presence of time-reversal symmetry we have compared P (s) in
the metallic regime for periodic and Dirichlet boundary conditions. We have
found that it is important to distinct between the Wigner surmises and the
results of the RMT, in order to extract the weak-localization corrections. It
is consistent with our results to assume that the level spacing distribution
depends on the boundary conditions, not only in the metallic regime, but also
at the critical point, since at W = Wc the localization length ξ(W ) diverges.
We have also studied the influence of the broken time-reversal symmetry
on the critical level statistics. In the Aharonov-Bohm geometry we found a
family of scale-invariant level statistics, which are controlled by the AB-flux.
By increasing the flux, the level spacing distribution shows a crossover from
the critical orthogonal to the critical unitary form.

Near the critical point the finite–size scaling properties of the integrated
probability A(s) of neighboring spacings were examined. For the small–s
part of P (s) this probability exhibits the transition between the Wigner and
the Poisson distributions which corresponds to the delocalization–localization
transition. The value of the critical disorder was found, Wc = 16.4, for the
‘box distribution’ of the site energies. Finally, we determined the disorder
dependence of the correlation length ξ(W ) and the critical exponent ν =
1.45±0.08 which are in good agreement with previous results obtained by the
transfer–matrix method. In general, numerical calculations confirm the one–
parameter scaling hypothesis. However analytically, in spite of considerable
progress, the problem of the eigenvalue statistics at the Anderson transition
remains still unsolved.

The authors are indebted to A. D. Mirlin and L. Schweitzer for discussions. This
work was supported by the Deutscheforschungsgemeinschaft via Sonderforschungs-
bereich 508 “Quantenmaterialien” of the University of Hamburg.



Numerical-Scaling Study of Level Statistics . . . 251

References

E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys.
Rev. Lett. 42, 673 (1979).

O. Agam, B. L. Altshuler, and A. V. Andreev, Phys. Rev. Lett. 75, 4389 (1995).
B. L. Altshuler and B. I. Shklovskii, Zh. Eksp. Teor. Fiz. 91, 220 (1986).
B. L. Altshuler, I. Kh. Zharekeshev, S. A. Kotochigova, and B. I. Shklovskii, Zh.

Eksp. Teor. Fiz. 94, 343 (1988).
A. V. Andreev and B. L. Altshuler, Phys. Rev. Lett. 75, 902 (1995).
P. W. Anderson, Phys. Rev. 109, 1492 (1958).
A. G. Aronov, V. E. Kravstov, and I. V. Lerner, Phys. Rev. Lett. 74, 1174 (1995).
M. Batsch, L. Schweitzer, I. Kh. Zharekeshev, and B. Kramer, Phys. Rev. Lett. 77,

1552 (1996).
D. Braun and G. Montambaux, Phys. Rev. B 52, 13903 (1995).
D. Braun, G. Montambaux, and M. Pascaud, Phys. Rev. Lett. 81, 1062 (1998).
F. J. Dyson, J. Math. Phys. 3, 140 (1962); 3, 1199 (1962).
K. B. Efetov, Adv. Phys. 32, 53 (1983).
K. B. Efetov, Sypersimmetry in disorder and chaos, (Cambridge University Press,

1997).
S. N. Evangelou, Phys. Rev. B 49, 16805 (1994).
M. Feingold, Y. Avishai and R. Berkovitz, Phys. Rev. B 52, 8400 (1995).
T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller, Phys. Rep. 299, 189 (1998).
E. Hofstetter and M. Schreiber, Phys. Rev. B 49, 14726 (1994).
M. Janssen, Phys. Rep. 295, 1 (1998).
T. Kawarabayashi, T. Ohtsuki, K. Slevin, Y. Ono, Phys. Rev. Lett. 77, 3593 (1996).
B. Kramer and A. MacKinnon, Rep. Prog. Phys. 56, 1496 (1993).
V. E. Kravtsov and I. V. Lerner, Phys. Rev. Lett. 74, 2563 (1995).
V. E. Kravtsov, I. V. Lerner, B. L. Altshuler, and A. G. Aronov, Phys. Rev. Lett.

72, 888 (1994).
V. E. Kravtsov and A. D. Mirlin, Pis’ma Zh. Eksp. Teor. Fiz. 60, 645 (1994).
P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).
M. L. Mehta, Random Matrices (Academic Press, Boston, 1991).
G. Montambaux, Phys. Lett. A 233, 430 (1998).
M. Schreiber and M. Ottomeier, J. Phys.: Condens. Matter 4, 1959 (1992).
L. Schweitzer and I. Kh. Zharekeshev, J. Phys.: Condens. Matter 7, L377 (1995).
L. Schweitzer and I. Kh. Zharekeshev, J. Phys.: Condens. Matter 9, L441 (1997).
B. I. Shklovskii, B. Shapiro, B. R. Sears, P. Lambrianides, and H. B. Shore, Phys.

Rev. B 47, 11487 (1993).
K. Slevin and T. Ohtsuki, Phys. Rev. Lett. 78, 4085 (1997).
D. J. Thouless, Phys. Rep. 13 C, 93 (1974).
A. Weymer and M. Janssen, Ann. Physik (Leipzig), 7, 159 (1998).
E. P. Wigner, Proc. Cambridge Philos. Soc. 47, 790 (1951).
I. Kh. Zharekeshev, M. Batsch, and B. Kramer, Europhys. Lett. 34, 587 (1996).
I. Kh. Zharekeshev and B. Kramer, Phys. Rev. B 51, 17239 (1995).
I. Kh. Zharekeshev and B. Kramer, Jpn. J. Appl. Phys. 34, 4361 (1995).
I. Kh. Zharekeshev and B. Kramer, Phys. Rev. Lett. 79, 717 (1997).
I. Kh. Zharekeshev and B. Kramer, Ann. Phys. (Leipzig) 7, 442 (1998).
I. Kh. Zharekeshev and B. Kramer, Computer Phys. Commun. 121/122, 502

(1999).



Multiple Light Scattering
in Nematic Liquid Crystals

D.S. Wiersma, A. Muzzi, M. Colocci, and R. Righini

European Laboratory for Non-linear Spectroscopy, and Istituto Nazionale per la
Fisica della Materia, Largo E. Fermi 2, 50125 Florence, Italy,
e-mail: wiersma@lens.unifi.it.

Abstract. We have studied the propagation of light waves in large liquid crystal
samples in a monodomain nematic phase. The strong scattering combined with the
partial ordering of the nematic phase leads to an anisotropic diffusion process. Or
better, the light waves perform an anisotropic random walk in these systems. We
have studied the anisotropy in the diffusion constant for light in nematics, by means
of time-resolved transmission experiments.

1 Introduction

In recent years various interesting interference effects have been recognized in
light which is multiply scattered from complex media such as colloidal suspen-
sions, semiconductor powders, or even common white paint[1]. For instance,
it was found that the interference between counterpropagating waves in dis-
ordered structures gives rise to enhanced backscattering. The phenomenon is
known as coherent backscattering or weak localization[2]. Later, more in-
terference effects were found like the spatial correlations in the intensity
transmitted through random media[3]. Inspired by solid state physics, many
parallels were found between the multiple scattering of electrons and multi-
ple scattering of light waves, for instance the photonic Hall effect and opti-
cal magneto resistance[4], Anderson localization of electromagnetic waves[5],
and universal conductance fluctuations[6]. Important applications of multiple
light scattering include medical imaging[7] and diffusing-wave spectroscopy
(DWS)[8].

2 Liquid Crystals

Liquid crystals in the nematic phase are strongly scattering materials that
also give rise to coherent backscattering effects[9], but they differ fundamen-
tally from common isotropic random media. The nematic phase of a liquid
crystal is characterized by a global aligment of the molecules in a direction
called the nematic director n(r), and an otherwise translational disorder. (See
Fig. 1.)

D. Reguera et al. (Eds.): Proceedings 1999, LNP 547, pp. 252−262, 1999.
 Springer-Verlag Berlin Heidelberg 1999
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Fig. 1. Schematic representation of a liquid crystal sample in the nematic phase.
The molecules have a global alignment in a direction called the nematic director,
denoted by n. The sample depicted here has a slab geometry with the nematic
director aligned along the slab, also referred to as planar alignment. A magnetic
field is present along the slab to assure a homogenous monodomain phase. The
nematic director is subject to local fluctuations which, for thick (several mm) slabs,
give rise to multiple light scattering.

Fig. 2. The three modes of distortion of the nematic director, respectively splay
(a), twist (b), and bend (c). The line pattern indicates the direction of the director.

The strong opacity of the nematic phase comes about from local fluctu-
ations in the nematic director that elastically scatter light[10]. One can dis-
tiguish three modes of distortion of the nematic director called splay, twist,
and bend distortions. (See Fig. 2.) These three distortion modes give rise to a
complicated scattering function that depends on the direction of propagation
of the incoming and outgoing wave with respect to the nematic director, and
on the polarization of these waves. The scattering cross section for elastic
scattering from the fluctuations of the nematic director is given by[11, 10]:
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σ = V (
∆εk2

4π
)2
∑

α=x,y

kbT (iαfz + izfα)2

Kαq2⊥ +K3q2// +K1ξ−2 . (1)

Here q = kf − ki is the scattering wavevector with ki the initial and kf the
final wavevector of the scattered light wave, K1, K2 and K3 are the Franck
elastic constants for the splay, twist and bend deformations respectively, i and
f are unit vectors representing the initial and final polarization direction, V
is the scattering volume, kb the Boltzman constant, T is the temperature,
and ∆ε = ε// − ε⊥, with ε// and ε⊥ the dielectric constants for an elec-
tromagnetic field parallel respectively perpendicular to the nematic director.
The projections q⊥ and q// are the components of q respectively perpendic-
ular and parallel to the nematic director. The length ξ is called the magnetic
coherence length and expresses the distance over which the fluctutions are
correlated. The magnetic coherence length is given by:

ξ =
√
K1/χaB2, (2)

where χa is the diamagnetic susceptibility and B the strength of an external
magnetic field. This external magnetic field is used in practise to obtain
a monodomain nematic phase. In the experiments described in this paper,
rather large (several mm thickness) samples are used which without some
external force would be very difficult to obtain in a monodomain phase.

From Eq. 1, we see that the scattered intensity is zero for conserving
polarization channels, which means that the scattered light will be of opposite
polarization compared to the incoming light. This interesting property of light
scattering from nematics is expected to be averaged out however in the limit
of diffusive transport.

Furthermore we see from Eq. 1 that the cross section diverges for q = 0
at zero magnetic field. For isotropic systems, the scattering mean free path
�sc is usualy defined as the average distance between two scattering events,
and is inversely proportional to the scattering cross section. In a nematic,
the scattering mean free path �s will depend on the direction of propagation
and will have a component parallel and perpendicular to n denoted by �s //

and �s⊥ respectively. However, due to the above described divergence fo the
scattering cross section, the scattering mean free path looses its meaning at
zero magnetic field.

A more useful length is the transport mean free path � which in isotropic
systems is defined as the average distance over which the propagating light
wave looses its memory of the original propagation direction. In isotropic
systems where the single scattering function is strongly peaked in a cer-
tain direction (like in the case of a random collection of Mie scatterers), the
transport mean free path can differ appreciably from the scattering mean
free path. Only in the case of a completely isotropic scattering function (like
in the Rayleigh limit), the transport mean free path is equal to the scat-
tering mean free path. In many cases, the propagation of light in random
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systems can be mapped on a random walker with average step length given
by the transport mean free path. For multiple light scattering in nematics,
the transport mean free path is particularly usefull as it does not diverge at
zero magnetic field[12, 13].

Due to the anisotropy of the scattering cross section, also the transport
mean free path will depend on the direction in which the random walker is
moving. This anisotropy is a manifestation of the partial order of the nematic
phase. A light wave propagating through a large and monodomain nematic
phase will perform an anisotropic random walk, of which both average step
length (the transport mean free path �) and velocity of propagation will be
anisotropic. The transport mean free path � will have the values �⊥ and �‖,
respectively perpendicular and parallel to the nematic director. Likewise the
transport velocity v will have the perpendicular and parallel components v⊥
and v‖. Anisotropic multiple light scattering was just recently observed by
Kao el al. in an elegant experimental study on multiple scattering of light in
nematic liquid crystals[14, 15]. Quite some inspiring theoretical work on light
transport in these systems has been done as well[12, 13, 14, 15, 16, 17, 18,
19, 20, 21].

3 Time-resolved experiments

The observation of anisotropic light diffusion by Kao et al. was achieved
in a static experiment. The difference between static and dynamic (time-
resolved) experiments on multiple light scattering is fundamental as different
properties of the system are probed in the two cases. In a static experiment
one principally measures the average step length of the random walk that
the light waves perform. In a time-resolved experiment one can measure the
time evolution of the diffusion process as described by the diffusion constant
D. The transport mean free path can be related to the diffusion constant
via a velocity, called the transport velocity. This transport velocity for light
waves in disordered systems behaves in a complicated but interesting way,
and only recently was well understood[22]. In liquid crystals the difference
between time-resolved and static experiments is even more important, as,
apart from the diffusion constant and the mean free path, also the transport
velocity is anisotropic. In this paper we describe the, to our knowledge, first
time-resolved experiments on anisotropic multiple scattering of light, that
allowed us to observe the anisotropy in the diffusion constant for light waves.

For isotropic media one can make the diffusion approximation, which
means that one describes the transport of the energy density of the light
by a common diffusion equation with diffusion coefficient D. The diffusion
constant can be related to the transport mean free path and transport velocity
via: D = 1/3v�. The only parameter which discribes the dynamics of the
diffusion process is the diffusion constant, in contrast to the random walker
where we have two relevant parameters: the mean free path and the transport
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velocity. In a diffusion picture, the relevance of the mean free path is only
apparent in the boundary conditions via z0 (see section 4). In the anisotropic
case the simplification from random walker to diffusion process is even more
drastic as both the mean free path and the transport velocity have different
values for different directions of propagation with respect to the nematic
director, which will depend on polarization as well.

For an anisotropic medium the diffusion equation reads:

∂W (r, t)
∂t

= ∇ · D∇W (r, t) + S(r, t), (3)

with W (r, t) the energy density and S(r, t) a source function. Choosing the
nematic director along one of the coordinate axis, the distinct elements of
the diffusion tensor will be D⊥ and D‖, which now can be related to the
transport mean free path and transport velocity as:

D‖ =
1
3
v‖�‖, D⊥ =

1
3
v⊥�⊥. (4)

We have measured the diffusion constant by recording the time-evolution
of the diffuse transmission of short laser pulses through a sample with a slab
geometry[23]. The slab was oriented in the x-y plane and the laser pulse
incident along z. The laser beam was narrow (1mm) and the transmitted
diffuse light through the slab was recorded around x = y = 0. The incident
laser beam could be translated in x and y. We followed two strategies to
observe the anisotropy. For zero translation of the incident beam, the time-
evolution of the transmitted light only depends on the zz component of D.
One can therefore measure D⊥ and D‖ by orienting the nematic director
either parallel (planar alignment) or perpendicular (homeotropic alignment)
to the plane of the slab. If the incident beam is translated over ∆x or ∆y, the
transmitted intensity will also depend (weakly) on the xx or yy components
of D, which allows to measure D⊥ and D‖ in principle in one measurement.

The time evolution of the diffusely scattered light in transmission was
recorded with an optical gating technique as often used in time-resolved flu-
orescence spectroscopy. (See Fig. 3.) The probe pulse is an ultrashort (<1ps)
light pulse at 405 nm that is incident from the front interface of a sample
with slab geometry. A small part of the transmitted diffuse light is mixed in
a non-linear crystal (BBO) to generate the sumfrequency of the probe light
with a gate pulse at a different wavelength (810 nm). The sumfrequency light
(at 270 nm) is separated from the probe and gate light and detected with
a photo multiplier tube (PMT). Due to the limited acceptance angle of the
phase matching process in the BBO and the diafragm (’D’ in Fig. 3), only
the small fraction of diffuse light which exits the sample around the direction
of the slab normal and at position x = y = 0 is monitored.

The sample was contained in a glass cell of 25 mm diameter and thick-
nesses of 6.3 mm and 7.9 mm. The glass cell was temperature controlled with
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Fig. 3. Principle of the setup used to perform time-resolved measurements. A short
probe pulse is incident from below. Part of the diffuse transmission is selected by
a diafragm (diameter 1 mm), and mixed with a short gate pulse in a non-linear
crystal (BBO), to generate a sum frequency signal that is then monitored by a photo
multiplier tube (PMT). By changing the time delay between probe and gate, the
temporal profile of the diffuse transmission is recorded. Time resolution of the setup
≈ 1 ps. HS: harmonic seperator, BBO: non-linear optical crystal (Beta-Barium
Borate), D: diafragm, P: prism, BP: 270nm band pass filter, PMT: photo-multiplier
tube.

an accuracy of better than 1 K, and placed in a magnetic field of 0.5 T, gener-
ated by an electromagnet with 10 cm diameter poleshoes to assure homogene-
ity of the field. We used the liquid crystal p-penthyl-p’-cyanobiphenyl (5CB),
which is nematic at room temperature and which has its nematic-isotropic
phase transition at 308 K. For every experiment, the sample was heated to 318
K and let cool down overnight in the magnetic field to obtain monodomain
samples. We found that for achieving a homogeneous homeotropic alignment
cooling slowly was important while the monodomain planar aligment could
be achieved also within tens of minutes.

The results of the time resolved measurements for planar and homeotropic
alignment of the director, keeping the incoming beam fixed at x = y = 0,
are shown in Fig. 4. The scattering is stronger for the planar alignment (up-
per dataset) than for the homeotropic alignment (lower dataset). Therefore,
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Fig. 4. Time evolution of the transmission of a short probe pulse through liquid
crystal 5CB in the nematic phase, in a planar alignment (upper) and a homeotropic
alignment (lower). Incident polarization vertical, observed polarization horizontal.
(T = 300 K, B = 0.5 T.) The background signal (few percent of maximum) was
detected at negative delay time (before presence of probe) and substracted. The
solid lines are the theoretical curves as calculated from Eq. (6), taking into account
internal reflection via Eq. (5) (refractive index contrast 1.15, R = 0.211[24]). From
the planar alignment we find: Dzz = D⊥ = 3.62·104 m2/s and from the homeotropic
alignment: Dzz = D‖ = 4.56·104 m2/s, which leads to an anisotropy in the diffusion
constant of: D‖/D⊥ = 1.26.

in order to have about the same optical thickness in both cases, we chose
the physical thickness of the planar aligned sample L = 6.3 mm and of the
homeotropic aligned sample L = 7.9 mm. We have performed all experi-
ments with both vertical and horizontal incoming polarization and found no
polarization dependence in the diffuse transmission.
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4 Interpretation

If we assume that the diffusion approximation is valid for the dynamic be-
haviour of light transport in nematics, we can use the solution of Eq. (3)
to describe our time-resolved transmission data. The solid line in Fig. 4, is
the theoretical curve as obtained by solving Eq. (3), using the boundary
conditions of a slab geometry: W (r, t) = 0 at z = −z0 and z = L + z0,
with L the physical thickness of the slab, and using the source function
S(r, t) = δ(x)δ(y)δ(z− �z)δ(t). The distance z0 is called the extrapolation
length and depends on the refractive index mismatch between sample and
surrounding medium. For isotropic media z0 is known[24], and is of the order
of the transport mean free path. We conjecture that we can use the same
expression for z0 as given in Ref. [24], substituting � by �z, the value of � in
the direction perpendicular to the slab. This yields:

z0 = 2/3 �z (1 +R)/(1−R), (5)

with R the average reflectivity at the sample interface and �z the transport
mean free path in z. We assume that the incident pulse is fully scattered at
a depth �z and, for symmetry reasons, that the last scattering event takes
place at z = L− �z. The time evolution of the transmitted intensity is given
by Fick’s law (Itr = −Dzz∇W (r, t) |z=L−
z ) and reads after solving Eq. (3):

Itr =
I0 exp (−∆x2/4Dxxt) exp (−∆y2/4Dyyt)

π3/2(4t)5/2
√
DxxDyyDzz

×
+∞∑

n=−∞
A exp (−A2/4Dzzt)−B exp (−B2/4Dzzt), (6)

with A = (1−2n)(L+2z0)−2(z0+�z) and B = (2n+1)(L+2z0), and where
∆x and ∆y denote the shift of the incoming beam in x and y respectively.
Note that in the limit of long t, the transmitted intensity falls off as an
exponential with time constant τ = (L+ 2z0)2/Dzzπ

2.
From Fig. 4 we see that there is excellent agreement between data and

theory. From a fit of Eq. 6 to the data we find for the planar alignment:
Dzz = D⊥ = 3.62 (±0.15) · 104 m2/s, and for the homeotropic alignment:
Dzz = D‖ = 4.56 (±0.18) ·104 m2/s. The anisotropy in the diffusion constant
is therefore: D‖/D⊥ = 1.26 ± 0.07. These results are in agreement with the
theoretical predictions as e.g. in Ref. [13]. The value that we find in our time-
resolved experiments differs as expected from the anisotropy as found by Kao
et al. in static experiments[14].

To check the consistency of our results, we have performed time resolved
transmission measurements with a translated input beam (x, y �= 0), in which
case the transmitted intensity depends on both Dzz and either Dxx or Dyy.
By choosing a suitable orientation of the director with respect to the direction
of the translation, one, in principle, could measure this way both D⊥ and
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Fig. 5. Time evolution of the transmission of a short probe pulse through nematic
5CB in a planar alignment (with n in x); input beam translated 6 mm in x. (T = 300
K, B = 0.5 T, L = 6.3 mm.) Translating the input beam allows to observe con-
tributions to the signal from both Dzz and Dxx. Solid line: theoretical curve from
Eq. (6). The best fit to the data yields: Dzz = D‖ = 4.40 (±0.50) · 104 m2/s, which
is consistent with the measurements presented in Fig. 2.

D‖ at the same time. The dependence on Dxx and Dyy is weak however.
Both Dxx and Dyy will influency mainly the rising slope of the signal, while
the decay at long times is almost completely determined by Dzz. In Fig. 5
we have plotted the results for the director oriented along x and the input
beam translated to x = 6 mm. The solid line is again the theoretical curve
from Eq. (6). To check the consistency of our data we used the previously
determined value of D⊥ = 3.62 ·104 m2/s. In that case we find for the parallel
component of D: D‖ = 4.40 (±0.50) · 104 m2/s, which is consistent with the
data measured in the homeotropic geometry.

5 Conclusions

We have measured the anisotropy in the diffusion constant for light trans-
port in large monodomain nematic liquid crystals. The anisotropy was ob-
served in direct time-resolved transmission experiments and it was found to
be D‖/D⊥ = 1.26 ± 0.07. The temporal behaviour of the transmission data
is well described by diffusion theory. It would be interesting however, to find
deviations from diffusion theory in future studies especially in the comparison
with static data because an anisotropic random walker with an anisotropic
step length and anisotropic velocity is a more complete description of light
propagation in nematics than an anisotropic diffusion approach with just an
anisotropic diffusion constant.
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Two Interacting Particles
in a Two-Dimensional Random Potential
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Abstract. The localization properties of two interacting particles in a two di-
mensional random potential are calculated by three different numerical procedures.
These procedures focus on the nearest level spacing distribution, the inverse partic-
ipation ratio of the states, and the two-particle decay length in long bars, respec-
tively, and incorporate scaling techniques for the extrapolation of the data. Both
short-range and long-range Coulomb interactions are considered. We always find a
localized to extended states transition independently of the particle statistics and
of the type of interaction. For low disorders, the interaction strongly mixes most
unperturbed states, even those corresponding to electrons far apart.

1 Introduction

The combined effects of disorder and interactions in electronic systems have
attracted a lot of attention during the last two decades (Lee and Ramakr-
ishnan (1985)). Recent experiments in two-dimensional (2D) systems show
clear indications that strong electron-electron interactions partially suppress
the quantum interference effects responsible for localization (Kravchenko
et al. (1996), Popović et al. (1997)). At the same time, the scaling theory
of localization including the effects of interactions predicts that a 2D sys-
tem may remain metallic even in the limit of zero temperature (Finkelstein
(1983), Castellani et al. (1998)). The solution of the full problem is extremely
difficult and so we focus on the simplest related problem, that of just two
interacting particles in a random potential.

The statistical properties of the energy spectra of disordered systems
are closely related to their localization properties (Altshuler and Shklovskii
(1986), Shklovskii et al. (1993)). In the localized regime, the normalized inter-
level spacings s are distributed according to the Poisson law PP(s) = exp(−s),
while in the metallic regime the spacings follow Wigner-Dyson statistics

PW(s) =
π

2
s exp

(
−π

4
s2
)

. (1)

The study of the energy spectrum has already provided important results
about the metal-insulator transition in different systems (Shklovskii et al.
(1993), Schweitzer and Zharekeshev (1995)).

In this paper we use three different approaches to study the localization
properties of two interacting particles in a random environment: i) the study
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of the spectral statistics, ii) the analysis of the inverse participation ratio
and iii) the calculation of the two-particle decay length in long bars. The
second section introduces the model used and the following three sections are
dedicated to the three different numerical procedures employed. Finally, in
section 6 we draw some conclusions.

2 Model

We consider both bosons and spinless fermions on a sample of size L × M
described by the standard Hamiltonian

H = t
∑
i,j

(a†i,j+1ai,j +a†i+1,jai,j +h.c.)+
∑
i,j

εi,ja
†
i,jai,j +H1 ≡ H0+H1 , (2)

where the operator a†i,j (ai,j) creates (destroys) an electron at site (i, j) of
a square lattice and εi,j is the energy of this site chosen randomly between
(−W/2, W/2) with uniform probability. The hopping matrix element t is
taken equal to −1 and the lattice constant equal to 1. We consider a long-
range (LR) Coulomb interaction and a short-range (SR) interaction. For the
LR case, the interaction Hamiltonian H1 is given by

H1 = U
∑

i,j>k,l

a†i,jai,ja
†
k,lak,l

|ri,j − rk,l| , (3)

while for the SR case we choose a nearest-neighbor (on-site) interaction
Hamiltonian for spinless fermions (bosons).

3 Level statistics

In the first two procedures, we use square samples of size L × L and periodic
boundary conditions. We restrict our investigation to the two-electron Hilbert
subspace spanned by the basis of N = L2(L2 − 1)/2 antisymmetric products
of one-electron states |ψi,j;k,l〉 = 1√

2
(a†i,ja

†
k,l − a†k,la

†
i,j)|0〉, where |0〉 is the

vacuum state. The Hamiltonian matrix is numerically diagonalized using a
Lanczos tridiagonalization method (Cullum and Willoughby (1985)). The
strength U of the interactions varies between 0−10 and the disorder strength
ranges the interval (0.2, 16). The system sizes considered go from L = 6 to
20, and the number of random realizations is such that for a given triad of
{U, L, W} the number of studied eigenvalues in the range (−1, 1) was kept
around 2.5 × 104.

We use the following scaling variable (Cuevas (1999))

η(L, W ) =
var(s) − 0.273
1 − 0.273

, (4)
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where var(s) = 〈s2〉 − 〈s〉2, and 0.273 and 1 are the variances of Wigner-
Dyson and Poisson distributions, respectively. In this way, η ranges from 0
for Wigner-Dyson to 1 for Poisson distributions.

6 8 10 12 14 16
W

−0.4

0.0

0.4

0.8

η(
L

,W
)

0.0
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0.8

1.2

SR

LR

Fig. 1. Scaling variable η as a function of W for a LR and a SR interaction with
U = 1. System sizes: L = 6 (◦), 9 (�), 16 (�) and 20 (�).

Figure 1 shows the disorder dependence of η for both a LR (lower curves,
right axis) and a SR interaction (upper curves, left axis) with U = 1 for
different system sizes: L = 6 (◦), 9 (�), 16 (
) and 20 (�). The curves for
different sizes cross at a common point, which corresponds to the interaction-
driven delocalization transition. We determine the critical disorder Wc and
the critical exponent ν by minimizing the χ2 statistic of the fitting function

η(L, W ) = ηc +
∑

n

An(W − Wc)nLn/ν , (5)

where we have truncated the series at n = 4 and have assumed that the
correlation length near Wc diverges as ξ(W ) = ξ0|W − Wc|−ν , where ξ0
is a constant. The critical disorder found with this procedure for spinless
fermions is Wc = 11.8 ± 0.2 for a LR interaction and Wc = 10.4 ± 0.2 for
a SR interaction, and the corresponding critical exponent are ν = 1.2 ± 0.2
and ν = 1.3 ± 0.2. Note the strong similarity in the behavior of LR and SR
systems.

We found that Wc increases monotonously with U starting from very
small values for both LR and SR interactions. In the non-interacting limit we
did not find any critical behavior and all states are localized, as expected.
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4 Inverse participation ratio

The results in the previous section indicate that for small disorders a large
fraction of the two-particle state energies must be perturbed by the interac-
tion. In principle, this contradicts the standard believe that in the thermo-
dynamic limit only a small fraction of the states can be appreciably affected
by the interaction, specially in the SR case in which we focus on this section.
In order to clarify this question we study the inverse participation ratio for
the SR interaction.

We have obtained the eigenvectors φ around the center of the band of the
Hamiltonian (2) and have calculated their inverse participation ratio in the
non-interacting basis, defined as

R =
∑
α

∣∣〈φ|φ0
α〉∣∣4 , (6)

where φ0
α denotes a two-electron state in this basis. For an infinite system

R = 0 in the extended regime and increases with disorder up to 1 in the
localized regime. Delocalization in real space is related to the inverse par-
ticipation ratio with respect to the site basis, instead of the non-interacting
basis. We have first checked the existence of interaction induced delocaliza-
tion through the inverse participation ratio in the site basis. However, for
quantitative purposes, it is better to use the non-interacting basis, as in Eq.
(6), to study the transition since one separates in this way the enhancement
in the wavefucntions due to the interaction from this due to the decrease of
the disorder (Cuevas and Ortuño (1999)).

In Figure 2 we show the average value of R as a function of size and
disorder for a SR interaction with U = 1 in both 1D (solid symbols) and 2D
(empty symbols) systems. For a given disorder strength and length, averaging
is done over 10 disorder realizations in a small energy window containing
around 10 eigenvectors. For 1D we see a systematic increase of 〈R〉 with
system size for all values of the disorder, as one expects in the absence of
critical behavior. On the contrary, in the 2D case the curves for different
sizes cross, indicating the presence of a transition. There is a systematic shift
of the apparent critical disorder to lower values as the sizes increase. This is a
typical feature of finite size effects, which in our case is relatively pronounced
due to the finite slope of the asymptotic behavior near the crossing point.

5 Two-particle decay length

In this section we calculate the decay length of two particles moving together
along the longitudinal direction of long bars of size L×M (Ortuño and Cuevas
(1999)). In this case we use lateral periodic boundary conditions. We focus
on the two-particle GF of the Hamiltonian (2)
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Fig. 2. Average inverse participation ratio 〈R〉 as a function of W for a SR inter-
action with U = 1 for 1D: L = 50 (•), 100 (×), 150 (∗) and 2D: L = 6 (◦), 8 (�),
10 (�) and 16 (�).

G = (E − H0 − H1)−1 , (7)

which satisfies Dyson’s equation G = G0 + G0H1G, where G0 is the two-
particle GF in the absence of interactions. The eigenvectors and eigenvalues
of the one-particle problem are enough to construct G0. von Oppen et al.
(1996) noted that for a local interaction we can obtain G very efficiently by
projecting onto the subspace of doubly occupied sites. We will refer with a
tilde to the matrices restricted to this subspace. Solving Dyson equation for
G̃, and taking into account that H̃1 = UĨ, we obtain

G̃ = (Ĩ − UG̃0)−1G̃0 . (8)

This expression can be evaluated exactly by inverting matrices of range equal
to the system size, L × M .

Let us call G̃(m1, n1;m2, n2) to the matrix element of the GF between
an initial (doubly occupied) site of coordinates (m1, n1), and a final (doubly
occupied) site of coordinates (m2, n2). For a given strip of size L × M we
calculate the following trace

lnTr |G̃(l)|2 ≡ 〈ln
∑
i,j

|G̃(1, i; l, j)|2〉 , (9)

with l ≤ L, and where 〈 〉 denotes an average over the disorder realizations.
We ensure that L is large enough to get a linear exponential decay of the
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trace as a function of l, for any disorder W and width M considered. Once
we reach the exponential regime, we fit the data in this regime to a straight
line, whose slope α is related to the two-particle decay length ξM through
ξM = −2/α.

Finite-size scaling analysis (MacKinnon and Kramer (1983)) states that
the renormalized decay length ξM/M is a function of a single parameter ξ/M ,

ξM/M = f(M/ξ) . (10)

The scaling parameter ξ is the two-particle localization length in the localized
regime, and the two-particle correlation length in the extended regime.
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Fig. 3. Log-log plot of ξM/M as a function of ξ/M . Inset: disorder dependence of
the scaling parameter ξ.

In Figure 3 we show the renormalized decay length ξM/M as a function
of ξ/M on a double logarithmic scale. We have overlapped all points on one
curve within the accuracy of the data, by shifting the raw data horizontally
by a disorder dependent amount, which is determined by a least-square fit
procedure (MacKinnon and Kramer (1983)). The on-site energy is U = 1 and
the disorder energies range between W = 6 and 15. All data were obtained by
averaging over a number of disorder realizations ranging between 300, for the
largest M , and 1000, for M = 2. We consider the center of the band (E = 0),
and a length L = 62. Fitting the data set for W = 15 and M between 4
and 10 to the form ξM = ξ + A/M we obtain the localization length for this
disorder ξ(15) = 2.1± 0.1, which enables us to establish the absolute scale of
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ξ(W ). The existence of two branches is a clear indication of a transition. In
the inset of Figure 3 we plot the disorder dependence of log ξ for U = 1 at
the center of the band (E = 0).

To obtain the critical disorder Wc and the critical exponent ν, we per-
formed an statistical analysis for ξM/M similar to the one used in section 3 for
η. The critical disorder found for bosons with this method is Wc = 9.3± 0.2,
and the corresponding critical exponent is equal to ν = 2.4 ± 0.5.

6 Conclusions

Since we first saw a transition for two-particle states in two-dimensional dis-
ordered systems, many authors have confirmed our results by different meth-
ods (Römer et al. (1999), Shepelyansky (1999)). As most unperturbed states
correspond to electrons far apart, which should experience a very small inter-
action, one could expect negligible changes in the overall properties of these
systems in the thermodynamic limit. To avoid the paradox between this and
the numerical results, some authors have claimed that the behavior for LR
and SR interactions are qualitatively different. However, our results clearly
indicate very similar features for both type of interactions, which rules out
any explanation of the transition based on the long-range character of the
interaction.

In fact, Song and von Oppen (1999) already noticed that a SR interaction
in 1D appreciably affects the two-particle states when the particle distance
amply exceeds the one-particle localization length. In two-dimensions this
effect is far more dramatic. For the largest systems that we can handle, we
have checked that in situations where many unperturbed states do not appre-
ciably feel the interaction, we still find practically all states delocalized over
the whole sample. For low disorders, the eigenstates of the Hamiltonian are
a superposition of many non-interacting states, and so there is no mapping
between them. It does not make sense to say that states with electrons far
apart will be slightly affected by the interaction. We believe that orthogonal-
ity between states is an important delocalizing mechanism. Orthogonality to
states with electrons close together, which are likely to become delocalized,
creates an effective potential acting on the other states.

We would like to stress that our results are not directly applicable to real
interacting systems with a finite density of electrons. We only consider highly
excited states in the center of band, and cannot construct in a self-consistent
way some kind of Fermi sea out of the type of states considered.
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in Mesoscopic Superconductors
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Abstract. We calculate the saddle points or energy barriers that prevent the vor-
tex escape and entrance in superconducting mesoscopic disks. As a result of the
metastability of the vorticity, the system can exhibit paramagnetic response. From
the height of the barriers we conclude that the transition points between vortex con-
figurations with different vorticity observed in the experiments cannot be explained
either on the basis of energetic instabilities or thermal activation.

1 Introduction

The interest in understanding the creation and annihilation mechanisms and,
in general, the stability of vortices in superfluids has been recently boosted
by a series of technological advances in both mesoscopic superconductors
(Moshchalkov et al. 1995, Geim et al. 1997, Geim et al. 1998, Bolle et al.
1999) and atomic condensates (Butts et al. 1999). Most of the proposals for
the creation of vortices in atomic condensates face, at the present time, se-
vere technological difficulties. On the contrary, mesoscopic superconductors
in magnetic fields are already proving to be an ideal scenario where the de-
tection and even manipulation of vortices at the individual level is becoming
more and more feasible (Moshchalkov et al. 1995, Geim et al. 1997, Geim et al.
1998, Bolle et al. 1999). A good example, although not the only one, of single-
vortex sensitivity can be found in the Hall magnetometry measurements per-
formed on mesoscopic Al disks by Geim et al. (1997,1998). Both field-cooled
(FC) and constant temperature (CT) magnetization measurements provide
evidence of the quantization of the vorticity of the order parameter. When the
system is kept out of equilibrium, it can show paramagnetic response both
in the CT and FC cases, whereas, as expected, equilibrium measurements
always exhibit diamagnetism.

The magnetic response of a mesoscopic type-II superconducting disk is de-
termined, to a large extent, by vortex escape and entrance barriers. Whether
the system exhibits a conventional diamagnetic response or a not-so-conven-
tional paramagnetic response depends on the history of the measurement pro-
cess and relies on the existence of these barriers. These barriers are, however,
poorly understood. The only models known to make quantitative predictions
are based on the London theory (Bean et al. 1964) which neglects the core
of the vortex and only considers the magnetic interaction and the interaction
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 Springer-Verlag Berlin Heidelberg 1999



274 J.J. Palacios

due to the currents with the surface. This model is valid close to the lower
critical field Hc1, but, in general, the core of the vortex plays a dominant role,
particularly close Hc2 where surface superconductivity, which pushes away
normal cores, develops.

In this work we present the basics of a method to calculate vortex escape
and entrance barriers close to Hc2 that fully takes into account vortex cores.
These barriers correspond to saddle points of the Ginzburg-Landau energy
functional that separate local minima with different vorticity or topological
charge Q. We calculate the magnetization associated with the local minima
and, comparing with the magnetization measurements in Geim’s experiment,
we conclude that the energetic instabilities do not suffice to explain the ob-
served transition points between states with different Q. Thermal activation
and, most likely, quantum tunneling mechanisms determine the transition
points.

2 The projected Ginzburg-Landau functional

We start from the Ginzburg-Landau functional for the Gibbs free energy
difference between the normal and superconducting states in an external
magnetic field H:

G =
∫
dr

[
α|Ψ(r)|2 + β

2
|Ψ(r)|4 + 1

2m∗

∣∣∣∣
(

−ih̄∇ − e∗

c
A(r)

)
Ψ(r)

∣∣∣∣
2

+

[h(r) −H]2

8π

]
, (1)

where Ψ(r) is the order parameter or Cooper pair wave function, h(r) =
∇ × A(r), and α and β are the condensation and interaction energy pa-
rameters, respectively. Numerical minimization procedures have been used
in the past (Schweigert et al. 1998) to find global and even local minima
of the Ginzburg-Landau functional applied to mesoscopic superconducting
disks. However, saddle points or energy barriers, which are essential for the
analysis of the stability of the local minima, cannot be obtained from these
methods. Before going into the details of how to overcome this problem, a few
comments are in order. Thin Al disks behave like Type-II superconductors
in a perpendicular magnetic field and, for sufficiently high intensities, one
can consider a uniform magnetic induction B. Moreover, the order parame-
ter is expected to lie almost entirely in the ”lowest Landau level” subspace
(Palacios 1998):

Ψ(r) =
∞∑

L=0

CLΨL(r). (2)

This subspace is spanned by normalized eigenfunctions of the linearized dif-
ferential Ginzburg-Landau equations that are characterized by an angular
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momentum L, are nodeless in the radial direction, and are subject to the
boundary condition of zero current through the surface. CL ≡ |CL|eiφL are
complex coefficients and we are considering the thickness of the disk to be
smaller than the coherence length so that the system becomes effectively two-
dimensional. The projected Ginzburg-Landau functional for the Gibbs free
energy difference between the normal and superconducting states is

G =
∞∑

L=0

(α+ εL)|CL|2 + β

2

∞∑
L1,L2,L3,L4=0

C∗L1
C∗L2

CL3CL4

∫
dr Ψ∗L1

Ψ∗L2
ΨL3ΨL4

+(B −H)2/8π (3)

where εL is the kinetic energy of the L component, and the second term
represents the “interaction” between Cooper pairs. It is convenient for our
purposes to express the projected functional in the following way:

G = (B −H)2 +
N∑

i=1

α[1 −BεLi(B)]|CLi |2

+ πα2κ2BR2 ×

 N∑

i=1

ILi(B)|CLi |4 +
N∑

j>i=1

4ILiLj (B)|CLi |2|CLj |2+

N∑
k>j>i=1

4δLi+Lk,2Lj cos(φLi + φLk
− 2φLj )

ILiLjLk
(B)|CLi

||CLj
|2|CLk

| +
N∑

l>k>j>i=1

8δLi+Ll,Lj+Lk
cos(φLi + φLl

− φLj − φLk
)

ILiLjLkLl
(B)|CLi ||CLj ||CLk

||CLl
|] , (4)

where the energy is expressed in units of H2
c2V/8π (V being the volume of

the disk), εL(B) is now the energy of the quantum state L expressed in units
of h̄ωc/2 (ωc = e∗B/m∗c), R is the radius of the disk expressed in units of
the coherence length ξ(T ) and B and H are given in units of Hc2(T ). The
interactions appear in IL(B) ≡ ∫

dr Ψ4
L, which can be interpreted as the

interaction between Cooper pairs occupying the same quantum state L, in
ILiLj (B) ≡ ∫ drΨ2

Li
Ψ2

Lj
, accounting for the interaction between Cooper pairs

occupying different quantum states and in ILiLjLk
(B) ≡ ∫ drΨLiΨ

2
Lj
ΨLk

and
ILiLjLkLl

(B) ≡ ∫
dr ΨLi

ΨLj
ΨLk

ΨLl
, accounting for correlations. This form

exhibits in a clear way all the terms that are relevant when a finite number
N of components are considered.
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3 Results and discussion

We restrict our discussion to a disk of radius R = 5ξ(0) and an effective
κ = 1. These parameters approximately correspond to those of the largest
disk in Geim’s experiment (Geim et al. 1998). Stationary solutions, either
local minima or saddle points, of the projected Ginzburg-Landau functional
are characterized by a given set of N components {L1, L2, . . . , LN} (Palacios
1998). For the disk considered here, N ≤ 3 for all the stationary solutions.
Figure 1 shows the magnetization associated with the local minima. These
local minima are characterized by a vorticity or topological charge Q which
coincides with LN . Different curves correspond to different values of Q. Along
these curves the topological charge distributes itself in a variety of ways. For
large Q (Q ≥ 12), the local minimum is always a giant vortex with L = Q
whereas, for smaller Q, a multiple-vortex structure (Palacios 1998, Schweigert
et al. 1998) appears at low enough fields.
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Fig. 1. Field dependence of the magnetization associated with different local min-
ima (characterized by the topological charge Q) for a disk of radius R = 5ξ and
κ = 1. The equilibrium magnetization, i.e., the magnetization of the global mini-
mum is represented by the thick solid line.
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For illustration purposes we discuss Q = 9 in what follows. The energy
of local minima (solid lines) and that of vortex entrance and exit barriers
(dashed lines) are shown in Fig. 2. The local minimum on the high-field side
corresponds to a giant vortex with L = 9. This is separated from neighboring
local minima L = 10 and L = 8 by saddle points which are the energetically
unstable stationary solutions {9, 10} and {8, 9}, respectively. At the high-field
end of the curve the energy of the local minimum merges with the energy
of the saddle point {9, 10}. In the presence of dissipation this will drive the
system toward the neighboring local minimum L = 10. Towards lower values
of H, we cross the critical field where the multiple vortex solution in the form
of a ring, {0, 9}, becomes energetically favorable (Palacios 1998, Schweigert
et al. 1998). There is no barrier separating both solutions and a weak second
order phase transition takes place. There are saddle point solutions, {0, 8, 9}
and {0, 9, 10}, separating the local minimum {0, 9} from the local minima
{0, 8} and {0, 10} on neighboring curves in Fig. 1, respectively. There is also
a barrier, {0, 1, 9}, separating the local minimum {0, 9} from the local mini-
mum {1, 9} which becomes energetically favorable as we move towards lower
fields (see Fig. 2). These structural barriers are typically one or two orders
of magnitude smaller than those separating states with different Q and the
{0, 9} solution could jump to the solution {1, 9} in the presence of fluctua-
tions (we have chosen this possibility for Fig. 1). At the low-field end of the
curve, the saddle point separating the local minimum {1, 9} from the local
minimum {1, 8} (i.e., the {1, 8, 9} stationary solution) merges with the local
minimum {1, 9} and this becomes energetically unstable in favor of {1, 8}
(the same applies to the solution {0, 9}).

The height of the barriers, either for vortex entrance (high-field side) or
vortex escape (low-field side), is several orders of magnitude the experimental
temperature, becoming comparable only at both extremes of each curve for
any Q. The experimental magnetization curves (Geim et al. 1998) are similar
to the theoretical ones, but there are important discrepancies. The derivative
of the magnetization with respect to the field changes sign close to the low-
and high-field ends of the curves. Furthermore, neighboring curves even get
to cross each other (see Fig. 1). This is never seen in the experiment (Geim
et al. 1998) which seems to indicate that a vortex can escape or enter the
disk before the barrier disappears and even before the thermal activation is
effective. The macroscopic quantum tunneling of a single vortex could explain
this discrepancy (Blatter et al. 1991).

Whatever mechanism may be responsible for the vorticity change at the
low-field end of the curves, it does not seem to preempt the appearance
of the paramagnetic response in the CT measurements. The origin of this
paramagnetic response lies simply on the fact that the total supercurrent
always ends up reversing the direction in which it flows on decreasing the field
before the change in the topological charge takes place. This sign change in
the response occurs approximately when the dominant eigenfunction in the
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Fig. 2. Energy of the local minimum Q = 9 (solid line) compared to the energy
of the saddle point (dashed line) that separates it from the closest neighboring
local minimum Q = 10 (high field side) and Q = 8 (low-field side). Notice the two
possible local minima at low fields described in the text and their corresponding
escape barriers.

expansion of the order parameter, LN = Q, crosses the minimum of the band
structure εL(B) and reverses its group velocity (Palacios 1998). Notice that
detector effects need not be invoked (Schweigert et al. 1998) to account for
this paramagnetic response.

Even if the energetic instability on the diamagnetic side is preempted
by some relaxation process as discussed above, the magnetization associated
with the global minimum (thick line in Fig. 1) is not likely to be observed
for increasing field without intentional relaxation. It has been suggested in
the literature that surface roughness is responsible for the destruction of the
saddle points associated to the surface barrier. The saddle points preventing
the escape or entrance of vortices have the same origin and surface roughness
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should affect them similarly. Thus, in our view, there are no reasons for
the system to follow the ground state and it is expected to continue along
the metastability curve until the vortex entrance rate increases to typical
measurement times.
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Fig. 3. (a) FC magnetization for a disk of radius R = 5ξ(0) and κ = 1 at different
values of the external magnetic field. Each curve corresponds to the topological
charge Qn of the giant vortex that nucleates at the highest critical temperature.
(b) The same as in (a), but for a topological charge Qn + 1.

Finally, we would like to comment on the FC measurements. The current
understanding of the FC results is summarized in a work by Moshchalkov et
al. (1997) which attributes the FC paramagnetic response to a flux-compres-
sion phenomenon. Figure 1 shows the magnetization as a function of temper-
ature for different values of the magnetic field. The usual phenomenological
temperature scaling of the parameters in the Ginzburg-Landau functional
(1) has been considered (Moshchalkov et al. 1997). Each curve in Fig. 1(a)
corresponds to the topological charge Qn of the giant vortex that nucleates
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at the highest possible critical temperature for each chosen field. Qn is main-
tained along the different curves down to T = 0 due to presence of the energy
barriers discussed above which prevent the change of vorticity. The response
is always diamagnetic in clear contrast with the FC data. Figure 3(b) shows
magnetization curves for a topological charge Qn + 1. Alternating param-
agnetic and diamagnetic behaviors are obtained as a function of H and a
low-temperature saturation of the paramagnetic response occurs due to ex-
plosion of the giant vortex as suggested by Moshchalkov et al. 1997). This
behavior is in remarkable agreement with the FC data (Geim et al. 1998)
which seems to suggest that either thermal fluctuations close to the critical
temperature or surface roughness favor the nucleation of giant vortices with
a higher topological charge than that expected from plain Ginzburg-Landau
theory. Notice that, in our approach, the magnetic field is uniform in space
which suggests that flux compression (Moshchalkov et al. 1997, Geim et al.
1998) is not essential as far as the existence of paramagnetism is concerned.
Still, the origin of the paramagnetic response in the FC measurements re-
mains an open issue.

This work has been funded by MEC of Spain under contract No. PB96-
0085.
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Abstract. We have designed a carbon-based quantum dot and a quantum barrier
by introducing pentagon-heptagon defects in a carbon nanotube, in a way that is
equivalent to combine two carbon-nanotube metal-semiconductor junctions. The
quantum dot system has completely confined electronic states, so it behaves as an
ideal 0-dimensional (0D) device, presenting well-separated discrete levels. By vary-
ing the distance between pentagon-heptagon pairs, the number and characteristics
of the discrete levels can be modified. The inclusion of topological defects in a nan-
otube can also produce a quantum barrier. The study of the properties of such
structure throws light onto the complex nature of topological barriers.

1 Introduction

Carbon nanotubes or, more precisely, tubular fullerenes, were imagined by
Saito et al. (1992) as structures derived from spherical fullerenes C60 and
C70, by equatorially adding rings of carbon atoms (for a review, see Ebbe-
sen, 1996). At the end of 1991 a theoretical work by Mintmire, Dunlap,
& White (1992) predicted that rolling up a graphene sheet in a cilyndrical
shape of nanometric diameter could yield for certain geometries a quasi-one-
dimensional system with a carrier density similar to that of metals, and much
higher than that of graphite. At the same time, Iijima (1991) found tubu-
lar fullerenes analyzing by electron microscopy the deposit on the graphite
electrodes employed in the synthesis of C60. These tubes consisted of multi-
ple shells, where carbon atoms were arranged with respect to the tube axis
with various degrees of helicity within the same nanotube. Band structure
calculations by Hamada, Sawada, & Oshiyama (1992) predicted that an ideal
single-wall nanotube (SWNT) would exhibit variations in electronic transport
from metallic to semiconducting, depending on the diameter and chirality of
the nanotube. Such theoretical predictions could not be verified until 1996,
when Thess et al. (1996) achieved the production of SWNTs at high yield
and structural uniformity. Recently, experimental measurements by Wildöer
et al. (1998) and Odom et al. (1998) with scanning tunnelling microscopy and
spectroscopy on individual SWNTs related directly electronic structure with
differences in chirality, confirming the earlier theoretical predictions.

D. Reguera et al. (Eds.): Proceedings 1999, LNP 547, pp. 281−289, 1999.
 Springer-Verlag Berlin Heidelberg 1999
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Since a variation of the chirality of the nanotubes may change their elec-
tronic character from metallic to semiconducting, the next theoretical step
was to consider changes in the helicity within a single tube, thus making a het-
erostructure on a single molecule. Such a change in chirality can be achieved
by the introduction of topological defects as pentagon-heptagon pairs, al-
lowing the formation of a heterojunction between two semiconductors, two
metals or between a semiconductor and a metallic tube (Chico et al. 1996;
Saito, Dresselhaus, & Dresselhaus 1996; Lambin et al. 1995). A year after
these theoretical proposals, Collins et al. (1997) experimentally found a car-
bon nanotube which presented a near-perfect rectifying behavior consistent
with the existence of localized on-tube devices, as theoretically predicted.
Furthermore, Tans et al. (1998) reported a field-effect transistor with only
one SWNT as the active element, demonstrating that devices based on single
molecules are possible. These kind of devices based on single nanotubes could
be the first step towards the molecular electronics based on carbon.

We propose carbon-nanotube-based 0D devices achieved by introducing
pentagon-heptagon (5-7) defects on the hexagonal bond network of an oth-
erwise perfect nanotube, in a fashion that can be viewed as the combination
of two carbon-nanotube metal-semiconductor junctions. One of the possibil-
ities would be to sandwich a slice of a metallic tube between two semiinfinite
semiconducting nanotubes. Such a system behaves as a quantum dot (Chico,
López Sancho, & Muñoz 1998). The other case would be to join a semicon-
ducting nanotube slab to a pair of metallic tubes, building a quantum barrier.
Both systems have 0-dimensional features, and their properties are intimately
related to the intringuing characteristics of the topological barriers.

In fact, transport measurements performed by Bockrath et al. (1997) in
SWNT ropes show evidence of resonant tunnelling through quantized levels,
and quantum-dot (QD) behavior has also been observed in SWNTs (Tans
et al. 1997). In these experiments energy quantization is due to the presence
of the metallic contacts needed to perform the measurements; so the origin
of such quantized levels is different to that of the quantized states induced
by the presence of topological defects, which are proposed here.

2 Model and method

As mentioned above, the 0-dimensional structures are constructed by combin-
ing two carbon-nanotube metal-semiconductor junctions. As a model system,
we have chosen for the building blocks of the 0D-structures a (6,4) and a (5,5)
tubes. The (6,4) tube is a semiconductor with a 1.2 eV gap, whereas the (5,5)
tube is metallic. They have large enough radii so that curvature-induced hy-
bridization effects are not important. A (6,4) tube can be joined to a (5,5)
tube forming a pentagon-heptagon pair defect at the interface between them.
So joining a slab of a (5,5) metallic tube to two semiconducting (6,4) tubes
at its ends amounts to place two antiparallel pentagon-heptagon defects at
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the ends of the (5,5) metallic slab, as shown in Fig. 1. This system behaves
as a quantum dot, as we will show later. We denote the QD structures con-
structed in this way as (6, 4)/m(5, 5)/(6, 4) , where m denotes the number of
(5,5) unit cells placed between the semiinfinite (6,4) nanotubes.

Fig. 1. Atomic structure of a (6,4)/6(5,5)/(6,4) carbon-nanotube quantum dot.
Light-grey atoms form part of the pentagon-heptagon defects.

There are 20 C atoms in the unit cell of the (5,5) metallic tubule, while
the number increases to 152 for the (6,4) semiconductor tube. All C atoms
contained in the structures have 3-fold coordination, but the lattice connec-
tivity changes at the (5,5)/(6,4) interfaces. The choice of the constituent tubes
were made in order to prevent the occurrence of interface-induced states in
the semiconductor gap. Interface states, originated by topological defects,
have been predicted in various nanotube junctions (Chico et al. 1996).

The (6, 4) and (5, 5) tubules are described by a π-band TB approxima-
tion. Only nearest-neighbor interactions are considered, taking the hopping
parameter Vppπ = −2.66 eV (Blase et al. 1994). For the energy range of in-
terest, around the (6, 4) semiconductor gap, this model describes adequately
the electronic structure of the nanotubes. The QD electronic properties are
determined using a Green function (GF) matching approach (Garćıa-Moliner
et al. 1992) along with a transfer matrix technique (López Sancho et al. 1984).
These methods allow us to calculate the exact GF of any complex finite or
infinite system formed by joining different media, avoiding size or supercell
effects which appear in slab calculations. The GF of the complete structure
is obtained from the bulk GFs of the constituent tubes and the interface
hamiltonians. Localized and extended states are directly obtained from the
GF.

3 Confined QD electronic states

Fig. 2 shows the dispersion relations of the (5, 5) and (6, 4) infinite nanotubes
around the Fermi level, EF , which is at 0 eV. The energy bands display the
electron-hole symmetry characteristic of perfect nanotubes within the π-band
approximation. In the (5, 5) tube the two bands crossing at EF are responsible
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of its metallic character, while in the (6, 4) tubule a gap of 1.2 eV develops
at this energy range.

Fig. 2. Band structures of the (5,5) and (6,4) carbon nanotubes around the Fermi
energy.

First, we will analize the (6, 4)/m(5, 5)/(6, 4) system. In Figs. 3 and 4
we represent the averaged local density of states (LDOS) at the unit cells
forming the (6, 4)/(5, 5) left interface for the m = 6 and m = 7 quantum dots
respectively. Because of the arrangement of the 5-7 pair defects, the averaged
LDOSs are symmetric with respect to the center of the m(5,5) slab, so it
suffices to show the LDOS at one interface.

Both m = 6 and m = 7 QD structures present four sharp peaks in the
energy range of the (6,4) semiconductor gap. Due to the fact that topological
defects break the electron-hole symmetry, their energy positions are not sym-
metric with respect to the Fermi level (EF = 0 eV) (Tamura et al. 1994). All
the discrete states found in both structures show larger averaged LDOS at
the interface unit cell corresponding to the (5,5) nanotube. Since the LDOS
represents the squared amplitude of the wavefunction, Figs. 3 and 4 also
illustrate the spatial localization of the discrete levels, which are mostly con-
fined within the (5,5) tube, although their wavefunction amplitude spreads
out to the (6,4) cells forming the junctions, as shown in the figures. The
discrete nature and spatial localization of the (5,5) tube-derived states un-
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Fig. 3. LDOS at an interface of the (6,4)/6(5,5)/(6,4) QD averaged to the respective
unit cells.

ambigously demonstrates that they are produced by quantum confinement.
Therefore, both the (6, 4)/6(5, 5)/(6, 4) and (6, 4)/7(5, 5)/(6, 4) structures be-
have as quantum dots. But, at variance with ordinary QDs made of compo-
sitionally different materials, in a carbon-based QD, quantum confinement is
due to changes in the network topology.

As shown in Figs. 3 and 4, the number of discrete states appearing in the
(6, 4) semiconductor gap is the same for both m = 6 and m = 7 structures.
However, the energy levels and the energy spacing between levels depend on
m. Due to the complex nature of the confining barriers, it is essential to take
into account the complete structure to find out the energy distribution of
discrete states, given that the type and arrangement of the defects causing
the barriers may influence the relative energy of the discrete QD levels. In
our approach, we calculate the GF of the infinite system, which allows us to
consider not only the energy dependence on m, but also the precise nature
of the confining barriers. Nevertheless, in order to understand the origin of
the QD states, one could in principle model the quantum dot as an m(5,5)
slab surrounded by infinite barriers. In such a case, the allowed states would
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Fig. 4. LDOS at an interface of the (6,4)/7(5,5)/(6,4) QD averaged to the respective
unit cells.

correspond to those bulk levels of the perfect (5,5) tube which result from
sampling the bands at m evenly-spaced k-points. For a single band this size-
quantization condition gives rise to two series of quantum well-like discrete
states consecutively ordered and starting each series from a band edge. In
the energy range of interest, i.e. around the Fermi energy, the perfect (5,5)
nanotube presents two π-bands which cross at kF = 2

3
π
a . Therefore, the QD

discrete levels shown in Figs. 3 and 4 arise from quantization of these two
π-bands.

We have investigated the size dependence of the QD energy spectrum, up
to m = 25. As can be expected, when m increases, the number of discrete
levels increases. However, there is not a simple relationship between the num-
ber of QD states appearing in the (6, 4) semiconductor energy gap and the
value of m, since the series of quantum states stemming from two π-bands
are intermingled. Electrons and holes have an analogous size dependence, al-
though their confinement is different. In fact, the energies of electron-derived
states are closer to the Fermi level -see Fig. 3- than those of the correspond-
ing hole states. This indicates that the energy barriers caused by the 5-7 pair
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defects are higher for electrons. Furthermore, due to the singular electronic
properties of carbon nanotubes, the QD energy spectra of all the structures
investigated belong to one of two different categories, either the QD levels
appear in doublets with almost degenerate energies, or the energy spacing
between discrete levels is almost constant. The first type occurs for m multi-
ple of 3 and is due to the fact that the QD states arise from k-points almost
equidistant from kF = 2

3
π
a where the two π-bands cross in the perfect (5,5)

nanotube. The second case has its origin in the linear dispersion relation of
the two π-bands, which results in almost constant energy differences between
contiguous states. In the range of m values investigated, the energy spacing
between discrete levels is ≈ 150 meV, much larger than the thermal broad-
ening at room temperature. Moreover, the wavefunction of discrete states
remains localized in the (5,5) slab for large values of m. Thus, in the QD
structures proposed in this work, electrons are 3-dimensionally confined in
strongly localized discrete bound states, which open enormous possibilities
for the technological applications of carbon-nanotube-based quantum dots.

4 Carbon-nanotube barriers

Now we consider a carbon-nanotube structure in which a slice of a semicon-
ducting tube is placed between two metallic semiinfinite tubes. Choosing the
same building blocks employed for the QD studied above, we denote such a
structure as (5,5)/m(6,4)/(5,5), where m indicates the number of unit cells
of the (6,4) tube forming the barrier. This can be achieved in a similar way
to that employed for the QD system, i.e., by joining the unit cells of the two
kinds of tubes, so two antiparallel 5-7 pair defects are formed at the interfaces
between the semiconducting slice and the metallic tubes.

The (6,4) tube unit cell length along the tube axis is 18.6 Å, so a bar-
rier composed of only one (6,4) unit cell has a considerable size, given that
the gap of this tube is 1.2 eV. We have calculated the conductance of a
(5,5)/1(6,4)/(5,5) system using the Landauer approach. Within this scheme,
the conductance of a multichannel system is given by

Γ =
2e2

h
Tr(t†t)

where t is the transmission matrix from either the left or the right, as defined
by Fisher and Lee (1981). For a perfect (5,5) metallic nanotube, the conduc-
tance given by this expression is 22e2

h , since this tube has two channels at the
Fermi energy. In Fig. 5 we show the conductance of the (5,5)/1(6,4)/(5,5)
structure as a function of the energy.

It is remarkable that the presence of a barrier of almost 20 Å length
and 0.5 eV height for electrons at the Fermi level does not suppress the
conductance completely. This is due to the complex nature of the topological
barriers formed by the 5-7 defects. In a normal heterostructure formed by
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Fig. 5. Conductance of a (5,5)/1(6,4)/(5,5) ) barrier.

the combination of compositionally different materials, the change from one
medium to other is local, whereas in these carbon-nanotube structures, made
with only one element, the change from one type of nanotube to other is
noticed when comparing the position of second-nearest neighbors, given that
the three-fold coordination of the first nearest neighbors is preserved in the
5-7 defects. In this sense, the topological barriers have a complex, non-local
nature, which manifests in the transport properties of these systems.

5 Outlook

The singular electronic properties of carbon-based 0D systems may be impor-
tant in future nanoelectronics: a carbon nanotube QD with metallic contacts
can behave as a one-electron transistor, where Coulomb blockade effects due
to occupation of these strongly localized discrete levels are expected. Fur-
thermore, the atomic-like character of their DOS should result in a great
enhancement of the energy selectivity and resonance effects in optical tran-
sitions, while the almost constant separation of energy levels can lead to
nonlinear optical properties. The properties of the topological barriers have
to be explored; their non-local nature might be of use for building coupled
quantum dots based on carbon nanotubes, which could be of interest not
only for optical applications, but for the design of quantum computers.
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Abstract. The electronic transport properties of a metallic conductor of atomic
dimensions differ from those of other mesoscopic systems: the wave functions of
the electrons not only maintain phase coherence over the whole system but are also
very sensitive to the local atomic arrangement. As a result electronic and mechanical
properties are strongly coupled in these systems. The chemical nature of the atoms
of the system is also of fundamental importance in determining the properties of
the system.

1 Introduction

A metallic system of atomic dimensions differ from other mesoscopic conduc-
tors because not only the dimensions of the contact L is smaller than the
elastic and inelastic mean free paths of the electrons, le and li, but also L is
of the order of electron wavelength, which in metals is typically of the order
of an atomic diameter. At this scale a full quantum description of transport
becomes necessary.

Interest in these systems has been triggered by the experimental posibili-
ties opened by scanning tunneling microscopy (STM) and related techniques
like mechanically controlled break-junctions (MCBJ)(for recent review see
van Ruitenbeek 1997). It has been shown that atomic contacts, or more pre-
cisely, atomic constrictions, and even atomic chains of up to seven atoms in
length can be formed (Yanson et al 1998, Onishi et al 1998). For these small
systems electronic transport properties cannot be considered independently
of mechanical properties since these play an essential role in the formation of
the contacts.

We will review some of the fundamental theoretical and experimental
aspects of metallic constrictions.

2 The conductance of a constriction

Depending on the size of the constriction L with respect to the electronic
mean free path �, three different regimes are possible.

If the constriction is much larger than �, the electrons move through the
constriction diffusively and the conductance depends on the resistivity of the

D. Reguera et al. (Eds.): Proceedings 1999, LNP 547, pp. 290−301, 1999.
 Springer-Verlag Berlin Heidelberg 1999
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material ρ. This is Maxwell’s regime. In the limiting case of a contact the
conductance is GM = 2a/ρ, where a is the contact radius.

If the constriction is smaller than �, the electrons will traverse it ballisti-
cally and the conductance, which can be computed semiclassically, is inde-
pendent of � and ρ. This is Sharvin’s regime. For a contact, GS = 3πa2/4ρ� =
(2e2/h)(πa/λF )2, where λF is the Fermi wavelength (Sharvin 1965).

If the constrictions is of atomic dimensions, in the case of a metal λF ∼ a,
we are in the quantum regime and the conductance must be computed using
Schrödinger equation. The simplest way is to use a free-electron model. In this
model the geometry of the constriction is modelled as a hard-wall potential
and the conductance is computed in terms the scattering transmission of each
eigenmode of the constriction. The conductance is computed through Lan-
dauer formula (Landauer 1970) in terms of the transmission of the quantum
channels of the contact

G =
2e2

h

∑
n

Tn, (1)

where Tn is the transmission of the n channel.

Fig. 1. The conductance of a 3d axisymmetric hyperbolic constriction for different
aperture angles.

The results for 3d constrictions (Torres et al 1994) are shown in Fig. 1.
For relatively long constrictions the conductance varies in a stepwise manner
as the contact size is varied continuously. The plateaus are at integer num-
bers of the quantum of conductance G0 = 2e2/h. For shorter contacts this
structure is almost entirely washed out: the conductance presents very small
oscillations rather than well defined steps. This situation is similar to that
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of 2DEG (Tekman and Ciraci 1991). For larger contacts the semiclassical
Sharvin formula is recovered.

The free electron model has some limitations that become clear for contacts
of atomic dimensions. In these cases the constriction is rough in the scale of
the wavelength of the electrons and its dimensions cannot be varied con-
tinuously. A tight-binding method, which makes possible to define atomic
structures and can be combined with non-equilibrium Green’s functions me-
thods to calculate transport properties, is more adequate. The electronic
structure (that is the band structure or chemistry) of the different materials
can also be taken into account easily (Cuevas et al 1998).

3 Experimental technique

approach first contact indentation

elongation monoatomic contact rupture

Fig. 2. Formation of an atomic-size contact.

Metallic constrictions of atomic size can be fabricated using scanning tun-
neling microscopy (STM), or mechanically controlled break junctions (MCBJ)
(for a recent review see van Ruitenbeek 1997). In the second method a thin
wire with a notch is stretched in a controlled manner (picometer precision).
The wire deforms plastically at its weaker spot (the notch), and eventually
breaks. If the pulling is performed in a clean enviroment (UHV) the junction
will stay clean and the contact could be reconstituted by reapproaching the
freshly exposed surfaces. The STM experiment is similar, but since at the
start the tip and sample are separeted, the process starts by first making a
large contact. This contact is then pulled as in the MCBJ case (see Fig.2).
The main advantages of STM with respect to MCBJ are its versatility, the
posibility of changing the position of the contact to a different spot on the
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sample, and the possibility of having heterogeneous contacts by making tip
and sample of different materials. The weakest points of STM are the possible
contamination of the contacting surfaces before contact, and the mechanical
stability of the junction. For certain materials (Au, Al, Pb) making and brea-
king repeatedly the contact solves this problem: the freshly exposed surfaces
are clean, as in the MCBJ. The problem of mechanical stability can be over-
come with special design for the STM.

Most of the experiments in atomic constrictions are performed at low
temperatures (liquid helium). At these temperatures contacts can be very
stable since there is no thermal drift, and electronic properties are sharply
defined.

Since the constrictions are formed by plastic deformation, the mechani-
cal properties of the constriction cannot be completely separated from the
transport properties. Besides the constriction can be in a state of high stress
and this affects transport (see below). Mechanical properties, like the force
to form a contact or its elastic constant can be measured by mounting either
the tip or the sample on some kind of force sensor, whose compliance must
be much smaller than that of the constriction in order not to affect the mea-
surements (Agräıt et al 1995, Rubio et al 1996). A rigid cantilever (far more
rigid than those use in conventional AFM) is necessary (Fig. 3).

a b c

Fig. 3. Different STM setups: (a) Conventional STM; (b) STM with STM as a
force sensor; (c) STM with AFM as a force sensor.

4 Large constrictions

Understanding the experimental results for relatively large constrictions (of
the order of 100 quantum units or about a hundred atoms in cross-section) is
essential for understanding the experimental results on smaller contacts. At
this scale the mechanical properties show some differences with macroscopic
properties while the electronic properties can be described semiclassically.
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In Fig. 4 we can see the conductance and force vs displacement for a
constriction of relatively large size. As the constriction is pulled the conduc-
tance decreases stepwise as the cross-section becomes narrower (Agräıt et al
1995). The cause of these steps is readily seen in the force vs displacement
curves: the plateaus in conductance correspond to linear elastic changes in
force, while the jumps in conductance are related to irreversible mechanical
relaxations, as demonstrated in molecular dynamics simulations (Landman
et al 1990). At any given instant in the evolution of the constriction, the
conductance gives the minimal cross-section and the slope of the elastic sta-
ges gives the elastic constant of the constriction. For any given constriction
the elastic constant of the constriction depend on the elastic properties of
the material (Young’s modulus) and the geometry of the constriction (see
Fig. 5). The local crystalline orientation is also important since the elastic
properties are quite anisotropic.
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Fig. 4. Force and conductance as the constriction is stretched, for a relatively large
Au constrictions.
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Fig. 5. Simple model for contact deformation: deformation about the equilibrium
configurations, A, B, C, and D, is elastic, with a different elastic constant for each
configuration.

A given configuration of the constriction deforms elastically up to a certain
maximal force. Beyond this force, which can be related to a yielding strength,
the constriction changes to a new configuration, that is, it deforms plastically.
The yielding strength of a microscopic constriction is found to be many times
larger (about 20 times for Au and Pb) than that of a macroscopic constriction.
These values are of the order of magnitude expected for the ideal strength of
a solid in the absence of dislocations (Agräıt et al 1994, Agräıt et al 1996).
This mechanical properties of contacts and metallic structures of very small
dimensions are of great interest, both applied and fundamental, since many
important phenomena like adhesion, friction, involve macroscopic bodies in
contact which involve regions of microscopic dimensions.

From the electronic point of view, even relatively large contacts cannot
be completely understood in terms of the free-electron model: one would ex-
pect the slope of a conductance plateau to be zero (simplest model) or rather
slightly negative (downwards as constriction is stretched) since materials ty-
pically contract as they are stretched (this is given by Poisson modulus).
However in Fig. 6, the slope is clearly material dependent (upwards for Al,
downwards for Au). This is due to the different electronic nature of the mate-
rials Sánchez-Portal et al 1997. Note that this deviation from the free-electron
model is important even simple metals like Au and Al.
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Fig. 6. The conductance vs displacement curves are characteristic of each material.
In Al the slope of the plateaus is positive, while in Au it is negative.

5 Shape of the constriction

The shape of the constrictions formed experimentally can be deduced from
the conductance measurements, using the fact that the conductance is related
to the narrowest cross section of the constriction and that this magnitude is
measured as a function of the relative tip-sample displacement. A simple
model that assumes that only this narrowest part, which is the weakest, will
deform plastically and that volume is conserved (see Fig. 7), gives a reliable
shape for the constriction (Untiedt et al 1997).

6 Atomic-size contacts

Fig. 8 shows the conductance and force vs displacement for a contact of
atomic size. The contact is pulled up to the rupture point, which is signaled
by a sudden decrease of both conductance and force. The smallest constriction
before rupture consists, typically, of a single atom. After breaking the junction
is in the tunneling regime.

The correlation between plateaus and elastic deformation, and sudden
conductance changes and force relaxations is very clear, as in the case of
larger contacts. The steps observed in the current should not be confused
with steps due to conductance quantization, as argued by some authors (for
references, see van Ruitenbeek 1997). They have a mechanical origin: they
result from plastic deformation of the constriction.
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Fig. 7. Evolution of the conductance of constrictions of Au of different shapes.

A situation of special interest is the one-atom contact. In this case, the
atomic structure of the constriction is specially simple and amenable to detai-
led calculation. In Fig. 9 the conductance of several one-atom contacts of Au,
Al, and Pb is shown. For Au the conductance is 2e2/h and does not change
with strain. However for Al and Pb the conductance changes elastically with
strain. This is similar to the case of larger contacts discussed above.

In order to understand this behavior, it is necessary to go beyond the
free-electron model. A tight-binding model in which it is possible to take into
account the difference in electronic structure of the different materials is more
adequate. As shown by Cuevas et al 1998, these variations in the conductance
reflect the existence of more than one channnel in the constriction, and the
variation of their transmission with strain. The number of quantum channels
in a one-atom constriction depends on the chemical nature of the atom: for
Au there is only one channel; for Al there are 3; and for Pb there are 3 or 4.
This number of possible channels is related to the chemical valence (Scheer
et al 1998).

7 Atomic chains

In experiments on gold occasionally during the contact breaking process the
atoms in the contact form a stable chain of single atoms, up to 7 atoms long,
freely suspended between two electrodes (Yanson et al 1998). The maximum
value of the conductance of this chain is 2e2/h showing that it has one single
quantum mode (see Fig. 10). Fluctuations to lower values correspond to a
reduced transmission probability for this mode as a result of backscattering.
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The probability of formation of such chains is low, but once formed they
have been held stable for longer than one hour, and can sustain enormous
current densities (up to 8 × 1014 A/m2) since most of the power is dissipa-
ted in the electrodes far away from the contact. This makes them suitable
candidates for future applications in atomic electronic circuits. Mechanical
manipulations of such chains is also possible and may bring new insight into
the rapidly developing field of nano-tribology.

Such chains, which constitute the ultimate metallic wires, are true one-
dimensional conductors for which theory predicts many unusual properties.
The electronic properties are expected to be those of a perfect one-dimensional
conductor, where the interaction with the lattice may lead to a Peierls tran-
sition, and due to the interaction between electrons the Fermi liquid descrip-
tion should break down. Experiments in course of realization, aim at studying
one-dimensional excitations in the chain, such as phonons.

8 Point-contact spectroscopy in atomic-size contacts

At low temperatures the conductance of atomic-size contacts is voltage-
dependent due to inelastic backscattering of electrons with phonons. Since at
these temperatures there are almost no phonons present, the main process
is backscattering by phonon emmission. This is a local probe for phonons,
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because only scattering events taking place in the immediate vicinity of the
contact have an effect in the conductance. The inset of Fig. 11 shows the de-
rivative of the conductance which is related to the phonon density of states
Jansen et al 1980. The volume probed by the electrons is of atomic dimen-
sions.

Atomic-size contacts typically show also oscillations in conductance Lu-
dolph et al 1999, as those observed in Fig. 11, due to quantum interference
with impurities even in samples with low impurity concentrations. Trans-
mission through these small contacts depends not only on the local atomic
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structure at the contact but also on the distribution of impurities or defects
within a coherence length of the contact.
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Observation of Shell Structure
in Sodium Nanowires
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Abstract. The fact that the rare gas atoms at the end of each row in the periodic
table of the elements are exceptionally stable is explained by the closed-shell confi-
guration of their electronic structure. In general, the quantum states of a system of
particles in a finite spacial domain form a set of discrete energy eigenvalues, which
are usually grouped into bunches of degenerate or close-lying levels, called shells
[1]. For fermions this gives rise to a local minimum in the total energy of the sy-
stem when all states of a given shell are occupied. Shell effects have previously been
observed for protons and neutrons in nuclei and for clusters of metal atoms [2,3,4].
Here, we report the first observation of a shell effect in an open system, a metal
nanowire. When recording the statistical distribution of conductance values obser-
ved while pulling off the contact between two bulk sodium metal electrodes, the
histogram shows oscillations up to contacts larger than 100 atoms in cross section.
The period follows the law expected for the electronic shell-closing effect similar to
that determining the “magic numbers” in metal clusters [3,4].
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Abstract. Path-integral Monte Carlo simulations have been employed to study
strong electron tunneling in the single-electron box (a small metallic island coupled
to an electrode by a tunnel junction). Results will be presented for the free energy
of this system, as well as for the average charge on the island, as a function of
the tunneling strength, the temperature, and an external bias voltage. In much of
the parameter range an extrapolation to the ground state (T = 0) is possible. Our
results for the effective charging energy for strong tunneling will be compared with
earlier theoretical predictions and Monte Carlo simulations.
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Double Quantum Dots as Detectors
of High-Frequency Quantum Noise
in Mesoscopic Conductors
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Abstract. In this work we propose a measurement set-up for detecting quantum
noise over a wide frequency range using inelastic transitions in a tunable two-level
system as a detector. Recently, two device structures were realized that can be
used as tunable two-level systems. In a superconducting single-electron transistor
a Cooper-pair [1] and in a double quantum dot an electron [2] can make inelastic
transitions between two discrete energy states. The transition rate for levels sepa-
rated by an energy ε, is a measure of the spectral density of the fluctuations in the
enviroment at a frequency f = ε/h. In our set-up the frequency-resolving detector
consists of a double quantum dot which is capacitively coupled to the leads of a ne-
arby mesoscopic conductor. The inelastic current through the double quantum dot
is calculated in response to equilibrium and non-equilibrium current fluctuations in
the nearby conductor, including vacuum fluctuations at very low temperatures. As
a specific example, the fluctuations across a quantum point contact are discussed.
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1 Large Wigner Molecules and Quantum
Dots
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Abstract. The low-lying eigenstates of a system of two electrons confined within
a two-dimensional quantum dot with a hard polygonal boundary are obtained by
means of exact diagonalisation. The transition from a weakly correlated charge
distribution for small dots to a strongly correlated ‘Wigner molecule’ for large dots
is studied, and the behaviour at the crossover is determined. The quasi-crystalline
structure found in large dots suggests that the low energy states of the system may
be mapped to an effective charge-spin lattice model, as was recently proposed in
Ref.1, and the effectiveness of this procedure is investigated by comparison with
the results from exact diagonalisation. It is found that the effective model predicts
the correct ordering of energy levels, and gives a reasonable first approximation
to the size of the energy spacings. The model can be further refined to account
for the detailed behaviour of the low energy levels by including spin-flip processes
previously neglected in the derivation of the effective model. We conclude that this
approach is a useful method to obtain the low energy spectrum of few-electron
quantum dots.
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1 Fundamental Problems
for Universal Quantum Computers

T.D. Kieu and M. Danos
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Abstract. Several fundamental problems and restrictions for universal quantum
computers are pointed out. Firstly, it is shown that the halting of universal quan-
tum computers is incompatible with the constraint of unitarity of the quantum
dynamics. Secondly, the consequences of the second law of thermodynamics and
the existence of time constants associated with the generation of initial states of
quantum systems are shown to impose severe limits on the capabilities of quantum
computers.
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Abstract. The competition between electron-electron interaction and quantum
mechanical hybridization between the delocalized electrons in a non-magnetic me-
tal and the unpaired electrons of a magnetic impurity leads to the Kondo effect
[1]. It has been predicted [2,3] and recently observed experimentally [4,5] that the
transport at low temperatures through a quantum dot (QD) coupled by tunneling
barriers to two leads containing Fermi liquids is governed by a Kondo-like singula-
rity existing in the quasiparticle density of states (DOS) at the Fermi level εF of
the leads. The physics behind such a behavior is well described by the low energy
excitations of the Anderson Hamiltonian. When one electron at εF , becomes scat-
tered by the dot its wave function suffers a phase shift which is proportional to
the exact QD displaced charge (DC). As a consequence of this Friedel-Langreth
(FL) theorem [7] the conductance takes the value G = 2e2/h sin2(π〈δ(nσ)〉) where
〈δ(nσ)〉 is the DC [2,3].

In this work we have generalized the Friedel-Langreth sum rule [8] to the case
with AC potentials at finite temperature. We study the photoassisted transport
through QD taking especial care in the fulfillment of this generalized rule. New
features are found in the transport properties due to the AC potentials. We study
the behaviour of the density of states in presence of AC potentials at temperature
below and above of the Kondo temperature. The effect of the AC potential on both
the quantum dot density of states and the linear conductance shows the importance
of using a theory which describes intradot finite interaction and nonperturbative
effects at finite temperature. In conclusion, our model considers, for the first time,
finite U as well as charge conservation through the extension of the FL sum rule at
finite temperature.
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Abstract. We analyze the shot noise in a voltage biased superconducting quantum
point-contact. Results are presented for the single channel case with arbitrary trans-
mission. In the limit of very low transmission it is found that the effective charge,
defined from the noise-current ratio, exhibits a step-like behavior as a function of
voltage with well defined plateaus at integer values of the electronic charge. This
multiple charge corresponds to the transmitted charge in a Multiple Andreev Re-
flection (MAR) process. This effect gradually disappears for increasing transmission
due to interference between different MAR processes.
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Abstract. The two-dimensional (2D) electron gas in the quantum Hall regime
offers unique possibilities to study the impact of many-body correlations under
well-controlled conditions. One of the fields to which quantum Hall effect studies
are bringing new microscopic insight is ferromagnetism. At filling factor ν = 1,
for instance, the exchange interaction leads to an isotropic ferromagnetic ground
state even in the limit of vanishing Zeeman energy[1]. Systems with two nearby
2D electron layers can develop at ν = 1 ground states with spontaneous inter-layer
coherence[2]. In these systems a pseudospin index can be associated to the layer
and phase transitions between states with different pseudospin polarizations can
be driven changing the level alignment of the two layers, e. g. by applying a bias
potential or an in-plane magnetic field. This configuration led to the observation of
soft collective excitations associated to a continuous (second order) quantum phase
transition by resonant inelastic light scattering[3].

While continuous quantum phase transitions were recently observed and ex-
tensively studied[1,4], till now no clear evidence of first-order transitions between
Ising-ferromagnetic and paramagnetic ground states was reported. We shall pre-
sent experimental evidence of such kind of phase transition in the two-dimensional
electron gas formed in a wide GaAs/AlGaAs quantum well in the quantum-Hall
regime at ν = 2 and 4. Theoretical calculations based on local-density and Hartree-
Fock approximations will also be presented providing quantitative agreement with
experimental results.

Experimental evidence of a first-order phase transition was found in the lon-
gitudinal resistivity as a function of external magnetic and electric fields. Striking
features associated to an anomalous evolution of integer quantum Hall minima de-
veloped at temperatures below 1 K when two Landau levels with opposite pseudo-
spin (that originate from two different subbands) were brought close to resonance.
Remarkably, at even values of n and low temperatures we observed a complete sup-
pression of the quantum-Hall-state excitation gap correlating with the emergence
of hysteretical behavior of the diagonal resistivity in up and down sweeps of the
magnetic field. At these particular values of n, the two Landau levels with opposite
pseudospin have also different spins. These observations demonstrate that crossing
of these levels lead to the formation of easy-axis ferromagnetic states associated to
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a first-order phase transition. Detailed many-body calculations provide an unambi-
guous identification of the nature of the transition and allowed the determination of
the exact properties of the electron ground states involved in the transition. We also
investigated the temperature dependence of the observed hysteresis. These measu-
rements displayed evidence of an additional finite-temperature transition at critical
temperatures close to TC = 900 mK. These additional results suggest that large
domains of particular pseudospin orientation lead to the hysteretic behavior and
indicate that the finite-temperature properties of the spin-polarized 2D electron gas
are similar to those of a classical Ising ferromagnet.
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Abstract. It is possible to fabricate nanoscopic metallic structures moving the
atoms one by one with a scanning tunneling microscope. This technique can be
combined with atomic force microscopy, allowing for a combined study of the el-
ectronic transport and the mechanical behaviour during the fabrication of these
nanoscopic structures. Our experiments show that there is a close relationship bet-
ween conductance and applied force during the formation of one-atom quantum
point contacts. It is shown taht the mechanical process of stretching an atomic-
sized metallic contact proceeds in a discrete sequence of structural transformations
involving elastic and yielding stages.

We have also found that it is possible to obtain a chain of several single gold
atoms from a one-atom contact of gold [2]. This new structure is a truly one-
dimensional conductor and the conductance is independent of its length and has
the same value as a single one-atom contact of gold [3]: one conductance quantum
(2e2/h).

References

1. G.Rubio, N.Agrait and S.Vieira, Phys. Rev. Lett. 76, 2302-5 (1996)
2. A.I. Yanson, G. Rubio Bollinger,H.E. van den Brom, N. Agräıt, J.M. van Rui-
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Abstract. Nanowires of lead between macroscopic electrodes can be produced
experimentally by means of an STM. Magnetic fields higher than the critical field
of the bulk may destroy the superconductivity in the electrodes, while the wire
remains in the superconducting state[1]. The I-V characteristics can be described
in terms of an effective gap and a pair breaking parameter, which depends on the
field. The evolution of the order parameter, the density of states and the transport
properties, as function of the applied field are experimentally and theoretically
analyzed.
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Abstract. The destructive effect of the electron-electron interaction on weak lo-
calization phenomena in disordered metals is studied. We associate this effect with
a cutoff in the particle-particle diffusion propagator (Cooperon) in the presence
of the interaction. This cutoff, also called dephasing rate, is evaluated diagram-
matically in the lowest order of the perturbation theory in the screened Coulomb
interaction and in the disorder strength. Unlike in previous studies, we explicitly
take into account the interaction processes with energy exchange between the upper
and the lower electron lines entering the Cooperon propagator and directly solve
the integral equation obtained. Besides, special care is taken to treat the virtual
processes with energy transfer larger than temperature (quantum fluctuations). We
accurately keep all the contributions coming from them, not appealing to the known
semi-classical procedure which reduces the effect of the interaction to that of a fluc-
tuating external field. It is demonstrated that the quantum fluctuations only lead
to a rescaling of the momentum and frequency dependences of the Cooper pole but
do not affect its cutoff. Thus, we do not confirm the idea that “zero-point fluctuati-
ons” can dephase electrons. In contrast, the processes with energy transfer smaller
than temperature do that. The temperature dependence of the dephasing rate due
to such processes for quasi-1D and -2D conductors is analyzed.
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Abstract. Arrays of quantum dots have received an increasing amount of inte-
rest with the advance of fabrication technologies. At present mostly arrays of 2
coherently coupled dots (double dot) have been studied theoretically and experi-
mentally. In this contribution we present new theoretical results on the resonant
transport through a triple quantum dot connected to leads. We assume that the
resonant states of each dot are ground states differing by the addition of an ex-
tra electron and that a large bias is applied to the leads. In such small structures
Coulomb repulsion between electrons in different dots is important. Whereas in a
double dot only one charging energy is of importance, in a triple dot we expect
that the competition between nearest neighbor and next-nearest neighbor charging
energies to affect transport through the structure. The addition energy spectrum
of the three dots with interdot charging energies gives rise to many different regi-
mes for resonant tunneling depending on the positioning of the chemical potentials
in the leads. For the most interesting regimes we have calculated the stationary
resonant current as a function of the tunnel rates to and from the leads and the
parameters characterizing the coherent electronic state in the array. In the “free”
electron regime interdot charging energies hardly affect transport properties (int-
radot charging is incorporated) and as many as 3 extra electrons can populate the
array. In the Coulomb blockade regime all charging energies large enough to allow at
most 1 extra electron in the array. In intermediate regimes a large difference in the
finite interdot charging energies can suppress the current through many-electron
states with 2 extra electrons by negatively affecting their coherence. This effect is
not possible in a double dot.

We employ the density matrix approach[1],[2] to obtain analytical results in
all parameters of our model. These include the coupling to the leads (which has a
pronounced influence on the condition for a resonant peak and which is not present
in a double dot), the interplay between this coupling and the interdot charging
and a possible asymmetry of the array (which affects the coherent couplings and
addition energies).
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Abstract. We study the charged excitations of a double layer at filling factor 2
in the ferromagnetic regime. In a wide range of Zeeman and tunneling splittings
we find that the low energy charged excitations are spin-isospin textures with the
charge mostly located in one of the layers. As the tunneling between the layers
increases, the parent spin texture in one layer increases and it induces, in the other
layer, a shadow spin texture antiferromagnetically coupled to the parent texture.
The increase of the quasiparticle spin can be observed experimentally.
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Abstract. The Hall and magnetoresistance of a two-dimensional electron gas
(2DEG) placed a small distance from a random distribution of identical perpendicu-
lar magnetized ferromagnetic clusters is studied. The magnetic clusters are modeled
both by magnetic dipoles, and by thin magnetic disks. The electrons in the 2DEG
are scattered by the magnetic field profiles as created by the magnetic clusters.

Although the average magnetic field is zero, we find a nonzero Hall resistance
(Rxy), which increases with kF , for small Fermi energies (EF = �

2k2
F /2m), but

which tends to zero for higher energies. For magnetic disks we find resonances in
both the Hall and the magnetoresistance (Rxx) as function of the Fermi wave vector.

The physical reason is that quasi bound electron states are formed in the non-
homogeneous magnetic field profiles, and so electrons are trapped underneath the
magnetic disk. Such resonances enhance Rxx, but reduce Rxy.
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Abstract. We study the properties of superconducting bridges of Pb of nanoscopic
dimensions fabricated by an STM under magnetic fields. The bridges behave as
weak links of variable dimensions whose form and smallest contact radius can be
varied in-situ. We find that these structures have upper critical fields several times
the bulk critical field of Pb, forming at large fields an N − s − junction − s − N
system whose superconducting part s is of mesoscopic dimensions. We could find
no evidence for the nucleation of vortices in these structures, in agreement with
the estimation for the geometry which we can get from R-z curves and the model
of Ref... Therefore, their phenomenology cannot be explained by the usual type II
superconducting behavior. The physical properties of the system are then expected
to be dominated by the pair breaking effect of the magnetic field. For instance, in the
case of a bridge whose smallest contact radius is of the order of a single atom, we can
follow the subharmonic gap structure as a function of the pair breaking parameter.
By contrast, in bridges formed by two long cone like structures with a smallest
contact of the order of 20Åor larger a new phenomenology appears. We observe
two well defined conduction regimes as a function of the field and under strong
current flow. In an intermediate field regime, strong peaks appear in the dV/dI
curves which disappear at large fields, and at the highest fields, an new anomaly
in dV/dI appears. This behavior can be understood in terms of nonequilibrium
superconductivity by considering the magnetic field dependence of the quasiparticle
charge imbalance length ΛQ∗ through the pair breaking effect. At intermediate
fields, our curves can be interpreted as an indication for the nucleation of phase
slip centers within the bridge (of dimensions orders of magnitude smaller than
usual phase slip wires), and at high magnetic fields the observed anomaly should
be related to the contact resistance of the N −s interface formed by the destruction
of superconductivity in the bulk. The different magnetic field dependence of ΛQ∗
and of the length of the superconducting part Ls makes the appearence of two
regimes possible.
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Abstract. We investigate how the measurement influences the decay of a quan-
tum unstable system. The latter is represented by an electron tunneling from a
quantum dot to a reservoir of empty states. The dot is coupled to a ballistic point-
contact acting as a detector. The entire setup can be realized in actual mesoscopic
experiments. Using a microscopic description of the whole system, we derived a
new type of rate equations and calculated the energy distribution of the tunneling
electron. We show that the continuous measurement of the unstable system does
not influence its decay rate, while the energy distribution of the tunneling electron
is strongly affected. This is in contradiction with rapidly repeated measurements,
which are expected to slow down the decay rate (Quantum Zeno effect).
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Abstract. Numerical calculations of the statistical distributions of the transmited
and reflected intensities from surface disordered waveguides are presented. An oscil-
lating behavior of the enhanced backscattering and localization length as a function
of the wavelength is predicted.

Although the transport is strongly non isotropic, the analysis of the probability
distributions of the transmitted waves confirms in this configuration distributions
predicted by Random Matrix Theory for volume disorder.

We use RMT to analytically deduce the probability densities of reflected wa-
ves in the localization regime. Numerical calculations of the coupling to backward
modes are also put forward for comparison. Interestingly, the speckle distributions
are found to be independent of the transport regime. The predicted probability
densities reproduce accurately the numerical results.
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Abstract. Anderson localization refers to a break-down of the wave propagation
in disordered scattering systems due to interference. As localization is essentially a
wave phenomenon it should hold for all kind of waves i.e. electrons, electromagnetic
and acoustic waves. For isotropic scatterers localization is established if kls ≤ 1,
where k is the wavevector in the medium and ls is the scattering mean free path.
To approach the localization transition, ls can be reduced by using scatterers with
a high refractive index, n, and a size such that the scattering cross section is ma-
ximal. An interesting class of materials are semiconductors that have very large
refractive indexes and almost not absorption for wavelengths well below the energy
of the band gap. Recently localization of light has been observed in GaAs powders
[1], opening the possibility to new studies in this field. We investigate the infrared
transmission through samples of randomly packed silicon powders. In the wave-
length range 1.4µm to 2.5µm we analyze in detail the scattering properties and the
effects of residual absorption. In this range we observe a nearly constant value of kls
around 3.5. We attribute the non-variation of kls with the wavelength to the high
polydispersity in the size of the Si particles. Due to the similar refractive indexes of
GaAs and Si, it is surprising that we do not observe Anderson localization in the Si
samples. An explanation could be a difference in the connectivity of the particles.
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Abstract. A random laser is a disordered medium that both scatters and amplifies
light. Important parameters in this system are the transport mean free path l, the
size of the amplifying volume and the amplification length lamp. Properties of light
that is propagating through such a medium are modified by the presence of gain,
giving rise to a range of surprising phenomena. One of these is the occurrence of
a lasing threshold in the output power, pulse duration and spectral width of the
emission [1]. These experiments have raised a large number of questions regarding
the mechanism that gives rise to these phenomena. One of the most intriguing is
how to connect the multiple scattering picture with the laser picture.

Recently, we have performed measurements and simulations investigating the
dependence of the laser threshold on the size of the gain volume [3]. It was found
that for a small amplifying volume the threshold is at a much higher pump intensity
than for a large volume. This effect was reproduced very accurately in a simulation
of diffusion in a two- component (amplifying/passive) medium.

Enhanced backscattering is affected by amplification in the multiple scattering
medium [3]. As the amount of gain in the medium increases, the backscattercone
gets narrower. This is due to the fact that longer light paths, the ones that make up
the top of the cone, are amplified more strongly than shorter paths, contributing
to the wings. In ref. 2, however, the laser threshold of the medium could not be
reached. We present backscattering experiments in a material which allows us to
cross the laser threshold. In this way we want to shed more light on how propagation
in a multiply scattering medium is affected by gain.
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Abstract. Following the idea that the great amount of information extracted from
”realistic” Monte Carlo (MC) simulations helps to understand and improve the
performance of eletron devices, we present a new proposal for the MC simulation of
electronic transport in mesoscopic devices where quantum mechanical (QM) effects
are important. In particular, we have developed a one-dimensional self-consistent
quantum MC simulator to show the viability of our proposal by applying it to
analyze static and dynamic properties of resonant tunneling diodes (RTD).

Our proposal can be explained (understood) from simple and intuitive physical
ideas. We use Bohm trajectories to describe the quantum dynamics of electrons in
the active region of the device. Among the various causal formulations of QM, the
most widely known is the one due to Bohm [1,2] that assures that the measurable
results of standard quantum mechanics are perfectly reproduced by averaging the
Bohm trajectories with adequate relative weights. Our simulator [3] defines a QM
window (QW) which includes the double-barrier of the RTD, and restricts the
QM treatment (i.e. each electron associated to a Bohm trajectory) to this window.
Outside the QW, where the potential changes smoothly in the scale of the de
Broglie wavelength of the carriers, the classical MC technique is used to simulate
the electron transport.

On the other hand, we will also explain that in spite of the simplicity (from
a physical point of view) of our proposal, it can be demonstrated that our model
provides a particular solution of the Liouville equation. In this regard, we will
present a deconstruction of our proposal in terms of the density matrix [4]. So,
we can conclude that our proposal is a simple and intuitive way for solving the
Liouville equation, at the same level, as the classical MC method provides a simple
and intuitive solution of the Boltzman equation. We will also show some results for a
typical RTD. The obtained results qualitatively resemble those obtained with other
approaches when no scattering is considered. In particular, within our proposal
we can define a new phase-space distribution (positive defined everywhere) that is
quite similar to the Wigner distribution function. In conclusion, we will present a
RTD simulation based on causal trajectories and we will show several examples to
discuss the profit of the information (static and dynamic) extracted from it and the
viability of our proposal.
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Abstract. A standard drift-diffusion model of space charge wave propagation in
semiconductors has been studied numerically and analytically under dc voltage bias.
For sufficiently long samples and appropriate voltage bias - such that the sample is
biased in a regime of negative differential resistance - we find period doubling and
chaos in the propagation of nonlinear fronts (charge monopoles of alternating sign)
of electric field. The chaos is always low-dimensional, but it still has a complex
spatial structure, lack of spatial coherence; this behavior can be interpreted using
a finite dimensional asymptotic model (which is exactly derivable from the full
model in the limit of infinitely long samples) in which the front (charge monopole)
positions and the electrical current are the only dynamical variables.
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Abstract. Because of its high switching speed, low power consumption and redu-
ced complexity to implement a given function, resonant tunneling diodes (RTD’s)
have been recently recognized as excellent candidates for digital circuit applications
[1]. Device modeling and simulation is thus important, not only to understand me-
soscopic transport properties, but also to provide guidance in optimal device design
and fabrication.

Several approaches have been used to this end. Among kinetic models, those
based on the non-equilibrium Green function formalism [2] have gained increasing
interest due to their ability to incorporate coherent and incoherent interactions in
a unified formulation. The Wigner distribution function approach has been also
extensively used to study quantum transport in RTD’s [3-6]. The main limitations
of this formulation are the semiclassical treatment of carrier-phonon interactions
by means of the relaxation time approximation and the huge computational burden
associated to the self-consistent solution of Liouville and Poisson equations. This
has imposed severe limitations on spatial domains, these being too small to succeed
in the development of reliable simulation tools.

Based on the Wigner function approach, we have developed a simulation tool
that allows to extend the simulation domains up to hundreds of nanometers with-
out a significant increase in computer time [7]. This tool is based on the coupling
between the Wigner distribution function (quantum Liouville equation) and the
Boltzmann transport equation. The former is applied to the active region of the
device including the double barrier, where quantum effects are present (quantum
window, QW). The latter is solved by means of a Monte Carlo algorithm and ap-
plied to the outer regions of the device, where quantum effects are not expected to
occur.

Since the classical Monte Carlo algorithm is much less time consuming than the
discretized version of the Wigner transport equation, we can considerably increase
the simulation domains without paying a penalty in efficiency.

We have modeled this coupling by using the Monte Carlo distribution of carriers
in k-space in the cells adjacent to the QW as boundary conditions for the step-by-
step solution of the Liouville equation, while the Wigner distribution function at
the edges of the QW dictates carrier injection to the classical regions.

By introducing in our tool a Poisson solver, necessary for self-consistency, we
have simulated the I-V characteristic of RTD’s with typical physical parameters.
Realistic simulation boxes of 300nm have been considered. These are much higher
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than those of previous works, while the times required to achieve convergence are
similar. The main qualitative features of actual devices are reproduced by means
of our tool, i.e., oscillatory behavior and current plateau in the negative differential
resistance region.

By analyzing the potential profile and electron density distribution at various
applied bias it is seen that charge accumulation in the well is maximum at resonance
and no spurious or discontinuities have been found at the boundaries of the QW,
which reveals that the coupling model is well-behaved.

We are currently comparing the simulation results to experimental data pro-
vided by other authors. Our preliminary results seem to indicate that allowing
physical parameters to slightly vary from nominal values (parameter dispersion is
unavoidable at the length scales we are dealing with), a reasonable fit between
simulated and experimental results is possible.

The main conclusion of the work is that within the framework of the Wigner
distribution function, we have developed a tool that provides improvement over
previous simulators since realistic device dimensions can be considered without
efficiency degradation. This allows to obtain more accurate simulated results and
make the tool a potential candidate to aid in RTD device design and fabrication.

This work has been supported by the Dirección General de Enseñanza Superior
under contract PB97-0182.
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Abstract. We report [1] the first experimental evidence that spatial correlations
inhibit localization of states in disordered low-dimensional systems, as previous
theoretical calculations suggested [2,3] in contrast to the earlier belief that all ei-
genstates are localized. This has been done studying the dc vertical transport and
photoluminescence (PL) in GaAs-AlGaAs superlattices (SL’s) with intentional cor-
related disorder. The spectra are compared to those obtained in ordered and uncor-
related disordered superlattices. To verify this theoretical prevision we grew several
n-i-n heterostructures (being i the undoped SL”s) by molecular beam epitaxy. All
SL’s have 200 period and Al0.3Ga0.7As barriers 3.2 nm thick. In the Ordered-SL all
the 200 wells are identical with thickness 3.2 nm (hereafter referred to as A wells).
In the Random-SL, 58 A wells are replaced by wells of thickness 2.6 nm (hereafter
referred to as B wells) and this replacement is done randomly. The so-called Ran-
dom dimer-SL is identical to the Random-SL with the additional constraint that
the B wells appear only in pairs. X-ray diffraction experiments confirm that the di-
mer constraint intentionally introduced during sample growth is the only difference
between the Random and Random Dimer-SL.

We measured [1] the vertical dc resistance of our sample at dark as a function of
temperatures. The resistance of the Random Dimer-SL is very similar to the resi-
stance of the Ordered-SL for temperatures below 50 K, and the small differences are
due to the different miniband-width between the two. On the other hand, Random-
SL shows a much higher resistance in this range of temperature. This is due to the
presence of extended states in the Random Dimer-SL showing transport properties
very similar to a Ordered-SL. According to theoretical studies [3], these extended
states in Random Dimer-SL’s are not Bloch-like, as occurs in Ordered-SL’s. PL
experiment confirm this interpretation. The PL peak of the Ordered-SL is at the
lower energy among the three SL’s. The PL peak of the Random-SL shifts towards
higher energies compared with the other two samples. In this SL the intentional
disorder introduced by the random distribution of thinner wells B (2.6 nm) localizes
the electronic states [3]. The PL peak of the Random Dimer-SL is red-shifted with
respect to the PL peak for the Random-SL. This red-shift of the PL peak is due
to the formation of a miniband with tunnel process for carriers between the GaAs
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wells. The position of the electronic levels were calculated with the Kronig-Penney
model and calculation show that the Ordered-SL and the Random Dimer-SL exhi-
bit extended electronic states [3]. The experimental PL positions of the three SL’s
are in very good agreement with the calculated ones. This is completely consistent
with the above interpretation of the transport experiments.
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Abstract. In the last few years, vertical transport in n-doped weakly coupled
semiconductor superlattices has been shown to exhibit non-linear phenomena such
as domain formation, multistability, self-sustained current oscillations, and driven
and undriven chaos [1]. The most succesful theoretical models combine discrete rate
equations for the carrier density and the electric field in the different wells, and use
reasonable boundary conditions which mimic the experimental setup [2]. Although
these models explain rather well the observed phemomena, the boundary conditions
turn out to have a strong effect on the dynamics of electric-field domains.

We study self-sustained current oscillations in weakly-doped superlattices by
means of a self-consistent microscopic model of vertical sequential tunneling which
includes boundary conditions in a natural way [3]. For highly doped injecting
contacts, self-oscillations arise due to recycling and motion of domain walls which
are charge monopoles. As the contact doping decreases, a new oscillatory mode
due to recycling and motion of charge dipole waves appears. This mode has not
been observed so far because the contact doping density is too high in the usual
experimental setups. We predict that dipole-mediated oscillations dominate at low
doping for which monopole-mediated oscillations disappear. There is an interme-
diate doping range where both oscillation modes coexist as stable solutions, and
hysteresis between them is possible [4].

In addition, our model reproduce experimentally observed current spikes. They
are due to the well-to-well hopping of domain walls and appear as a high-frequency
oscillation superimposed to the natural current oscillation due to monopole dyna-
mics. Our model makes a distinction between the average potential drops at barriers
and wells which (together with the backward tunneling current present only at low
electric fields) causes spikes. Thus spikes should also be present at high bias, as
experimentally observed. Several preceding models needed to introduced disorder
in the doping to obtain current spikes, in a less natural way than ours. [4].
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Abstract. We have analyzed the electronic current density and the charge stored
in the well in a resonant tunneling double barrier heterostructure in the presence of
an external electromagnetic field. We studied the processes of charging and dischar-
ging of the well in the boundaries of the bistability region, and we calculated the
transient times as a function of the field parameters. We found that the width of the
bistability region is reduced by the external field. Moreover, dynamical instabilities
in the charge stored in the well may be triggered by the oscillating field.
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Abstract. As a characteristic feature of the spectrum of a driven bistable po-
tential, there exist crossings of chaotic quasienergy singlets with regular tunnel
doublets. As the two partners of the tunnel doublet are have opposite symmetry,
the crossing with one of them is avoided, the other is exact. Close to the avoided
crossing, the tunnel splittings are drastically increased, resulting in a correspon-
dingly higher tunnel rate (chaos-assisted tunneling) [1].

In the presence of dissipation, the tunneling becomes a transient phenomenon
within the relaxation towards a quantum-mechanical attractor. The transient dyna-
mics near a singlet-doublet crossing involves at least all three states in the crossing.
Depending on temperature and parameters of the crossing, it can be qualitatively
different from the familiar fading out of two-state tunneling [2].

As a model for dissipation, we couple the driven system to an ensemble of har-
monic oscillators (Caldeira-Leggett model) and introduce a Markov approximation
to the driven system, integrated within the Floquet formalism. This results in a ma-
ster equation which describes the dissipative dynamics in the basis of the Floquet
states of the conservative system.

We discuss both the coherent and the incoherent dynamics near singlet-doublet
crossings in terms of a simple three-state model [1]. By comparison with exact nu-
merical results, we identify its limitations. In particular, we investigate the duration
of the coherent tunneling and the type of quantum-mechanical attractor, depending
on temperatur and distance to the avoided crossing.
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Abstract. Charge transport in mesoscopic semiconductor systems must be analy-
zed in terms of a quantum theory since nowadays typical dimensions of the physical
structures are comparable with the electron coherence length. Theoretical approa-
ches based on fully quantum mechanical grounds have been developed in the last
decade with the purpose of analyzing the quantum electron-phonon interaction in
electron transport. The Wigner function (WF) formalism is particularly suitable
for the analysis of mesoscopic structures owing to its phase-space formulation that
allows a natural treatment of space dependent problems with given boundary con-
ditions. The Hamiltonian describing the system is [1]

H = − �
2

2m
∇2 +

∑
q

b†
qbq�ωq +

∑
q

i�F (q)
(
bqeiqr − b†

qe−iqr
)
+ V (r) + eE · r ,

where the terms in the RHS describe, respectively: free electron evolution, free
evolution of the phonon system, electron-phonon interaction, structure potential,
constant uniform accelerating field. Due to the linearity of the Liouville equation,
these various contributions can be independently developed in the equation of mo-
tion for the generalized WF including phonon variables [2], leading to an equation
of the form:

fW

(
r,p, {nq}, {n′

q}, t
)
= F̃(t0)fW +

∫ t

t0

dt′
[
Ṽ(t′) + P̃(t′)

]
fW , (1)

where F̃ is the operator describing the ballistic free evolution of the WF, while
Ṽ(t′) and P̃(t′) are the operators accounting respectively for potential and phonon
scattering at time t′. Eq. (1) is formally analogue to the Chambers transport equa-
tion for the Boltzmann distribution, so even the numerical solution technique and
the physical interpretation may be quite similar to a semiclassical approach. This
equation is in fact iteratively solved by Monte Carlo sampling, and the concept of
Wigner paths is introduced [1,3]; they are formed by ballistic flights during which
the constant field E acts, interrupted by scattering events due to other fields or
phonons, in analogy to the semiclassical case. The WF is supposed to be known
inside the simulated device at a given initial time, and at device boundary at every
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time. The value of the WF at a given phase-space point at a time t can be construc-
ted as the sum of the contributions due to a very large number of Wigner paths
that terminate at that point and start at points (and times) in which the WF is
known. These contributions are weighted by the proper quantum phase and by a
factor due to the scattering mechanisms acting along each path.

A Monte Carlo algorithm has been developed for the case of homogeneous trans-
port in bulk systems, and the effect of optical phonon scattering on macroscopic
phenomenological parameters such as electron mobility is obtained. This can be
done generating, during the simulation, only phonon scatterings, taking Ṽ = 0 in
eq. (1). In this way it is possible to obtain the WF (and consequently the current
as a function of the applied field E) at any desired time: this means to have the
possibility to study non equilibrium conditions and transient phenomena.

A slightly different approach, based on the same formalism, allowed to obtain
an I-V characteristic for a RTD device in presence of phonon scattering [3]. At
present an algorithm including an arbitrary potential profile, that allows to simulate
semiconductor heterostructures, is under study.
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Abstract. Kubo formula is used to get the time dependent current that flows
through a quantum dot after switching on a small voltage bias. Technically, the
calculation involves the evaluation of the linear response function for all frequencies
and is, therefore, sensibly more expensive from the computational point of view
than the evaluation of the d.c. conductance. Previous estimations of the transient
current were done by Prigodin et al. in Phys. Rev. Lett. 72, 546 (1994) for chaotic
mesoscopic systems. Our numerical results are completely different from the purely
inductive results given in the mentioned paper. Both the regular and the chaotic
system show initially a linear increase of the conductance that grows well beyond its
static value. Afterwards, it decreases in an oscillating fashion towards its stationary
value. While oscillations quickly attenuate in the chaotic model, a power law decay
is obtained for the ideal system. Apart for the rapid oscillations, the result can be
modelled by a classic circuit having resistive, inductive and also capacitive elements.
In principle, our result opens a straightforward experimental way allowing a clear
distinction between chaotic and regular systems.
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Fig. 1. Conductance (current over voltage) after switching on a small voltage bias
calculated for a 32 × 32 dot with a small number of vacancies (billiard, thick line)
compared with the result obtained for a regular system (thin line). Conductance is
given in quantum conductance units and time is measured in � over hopping energy
units.
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Abstract. In this work we present a theoretical description of the transient res-
ponse of the Fermi Edge Singularity (FES). We study the linear and the nonlinear
response of an n-doped QW to laser pulses in the Coherent Control (CC) and Four
Wave Mixing (FWM) Configurations. We calculate the FWM signal emitted by the
sample when it is excited by pulses spectrally peaked around the FES by means
of a bosonization formalism and show that the long time behavior of the nonlinear
signal, for zero and nonzero temperature, is very similar to the linear case.
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Abstract. Shot-noise measurements become a fundamental tool to probe carrier
interactions in mesoscopic systems [1]. A matter of particular interest is the sig-
nificance of Coulomb interaction which may keep nearby electrons more regularly
spaced rather than strictly at random and lead to the noise reduction. That ef-
fect occurs in different physical situations. Among them are charge-limited ballistic
transport, resonant tunneling, single-electron tunneling, etc.

In this communication we address the problem of Coulomb correlations in balli-
stic conductors under the space-charge-limited transport conditions, and present for
the first time a semiclassical self-consistent theory of shot noise in these conductors
by solving analytically the kinetic equation coupled self-consistently with a Poisson
equation. Basing upon this theory, exact results for current noise in a two-terminal
ballistic conductor under the action of long-range Coulomb correlations has been
derived. The noise reduction factor (in respect to the uncorrelated value) is obtai-
ned in a closed analytical form for a full range of biases ranging from thermal to
shot-noise limits which describe perfectly the results of the Monte Carlo simulations
for a nondegenerate electron gas [2]. The magnitude of the noise reduction exceeds
0.01, which is of interest from the point of view of possible applications.

Using these analytical results one may estimate a relative contribution to the
noise from different groups of carriers (in energy space and/or real space) and
to investigate in great detail the correlations between different groups of carriers.
This leads us to suggest an electron energy spectroscopy experiment to probe the
Coulomb correlations in ballistic conductors. Indeed, while the injected carriers
are uncorrelated, those in the volume of the conductor are strongly correlated, as
follows from the derived formulas for the fluctuation of the distribution function.
Those correlations may be observed experimentally by making use of a combination
of two already realized techniques: a hot-electron spectrometer [3,4] which allows
one to analyze different energy groups of electrons collected at the contact and shot-
noise measurements [5,6]. Such “shot noise reduction spectroscopy” allows one to
measure the novel phenomena. In particular, we predict the (anti)correlation of the
“tangent” electrons having the energy close to the potential barrier height, to all
other electron energy groups collected at the receiving contact.
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Abstract. A transfer matrix technique is formulated to treat the scattering of an
particle incident on a piecewise constant potential and interacting with an oscil-
latory field. An appropriate choice of parameters gives evidence of the inhibition
of transmission at a resonance energy of the intermediate. The transmissivity as a
function of a bias potential in a double-barrier structure is calculated.
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2 E.T.S.I. Aeronáuticos, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain

Abstract. Current self-oscillations in semiconductors with a region of negative
differential resistivity in their current-field characteristic are known since J. B.
Gunn’s early experiments on n-GaAs samples in 1963. Most studied are Gunn self-
oscillations in one-dimensional spatial configurations which appear when planar
contacts are placed in bulk semiconductor samples: during each period of the current
oscillation, a charge dipole wave is triggered at the injecting contact, moves and
is annihilated at the receiving contact. Dynamics of planar dipole waves can be
surprisingly rich for systems with one-dimensional geometry: besides periodic self-
oscillations, under dc voltage bias there may appear period doubling, frequency
blocking and intermittency routes to (low-dimensional) chaos.

We study by numerical and asymptotic methods the solutions of a widely used
drift-diffusion model of the Gunn effect in a circular geometry (Corbino disks: a
circular disk with one contact on its circumference and a point contact at its cen-
ter). The result is that axisymmetric pulses of the electric field are periodically
shed by an inner circular cathode for a dc voltage bias above a certain onset. These
waves decay during their journey to the outer anode, which they may not reach.
Meanwhile the current continuously increases and then abruptly decreases when a
new wave is shed, in agreement with existing experimental results of Willing and
Maan [1]. Depending on the bias, more complex patterns with multiple shedding
of pulses at the cathode are possible [2].
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Abstract. The current oscillations in semiconductor superlattices under domain
formation, which are due to a recycling of the domain boundary, contain additio-
nal spikes of much higher frequency than the fundamental oscillations. While the
recycling of the domain boundary covers a larger number of periods of the super-
lattice, these spikes are due to a relocation of the domain boundary, which is a
charge monopole, by one period. The number of spikes within one period of the
fundamental oscillation can therefore serve as a measure for the number of peri-
ods, which are involved in the recycling motion. The theoretical model used in the
simulations of the dynamics of the domain boundary has been outlined in Ref.[2].
In addition we have included a time delay in the drift term (proportional to the
tunneling probability through a given barrier) so that the drift term is evaluated
at a previous time, (t− τtun) [1]. This accounts for the nonzero tunneling time τtun

that is estimated as the scattering time due to the interaction between electrons
and Coulombic impurities, interface defects and optical and acoustical phonons [3].
Delay effects occur when the average time that the monopole spends crossing a SL
period (roughly, the oscillation period divided by number of wells) is comparable
to the tunneling time. Our simulations show that the time delay results in high-
frequency spikes similar to those experimentally observed [1]. In the following figure
we show the time evolution of the current, (a), and the Electric-field profiles at the
times depicted in the inset, (b).
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Abstract. We study the phase transition of a mean-field spin-glass model in a
transverse field in which the interaction matrix is taken from a random ortho-
gonal ensamble (ROM). This model behaves in a similar way to the Sherrinton-
Kirkpatrick (SK) model in the classical regime: at low temperatures a first-order
replica symmetry breaking phase transition appears induced by the collapse of the
configurational entropy and the dominance of a very large number of metastable
states which compensate the paramagnetic free energy (E. Marinari, G. Parisi and
F. Ritort, J. Phys A 27, 7647 1994) . The depletion of the transition in the presence
of a transverse field has already been studied in presence of quantum fluctuations
in the context of the static approximation. We go a little bit further and study
these properties beyond the static approximation, using the method introduced by
Miller and Huse to study the SK model (J. Miller and D. Huse, Phys. Rev. Lett.
70, 3147, 1993). Our calculations suggest that the static approximation correctly
predicts the order of the zero-temperature phase transition although fails in giving
a precise estimate of the value of the critical field.
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Abstract. Quite generally, a system in a metastable well is rendered unstable by
thermal and quantum fluctuactions. At high temperature, the former dominate the
decay rate, whereas the latter do so at low temperatures. There is a narrow region
of temperature where the system shows a crossover between the thermal and the
quantum regimes. This crossover resembles a phase transition. It can be first-order
(with an abrupt change of regime) or second-order (when the escape rate changes
smoothly). More complicated behaviour is possible as well.

Spin systems provide a highly nontrivial example of the general theory. For these
systems, the type of crossover can be tuned by an external field. Our predictions
can be tested experimentally in molecular nanomagnets, such as Mn12Ac and Fe8,
and in single domain particles.
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J. Gòmez-Rivas rivas@wins.uva.nl
Universiteit van Amsterdam, The Netherlands,

G. Gomila gomila@axpmat.unile.it
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