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Preface

Although there are many textbooks that deal with the formal apparatus of
quantum mechanics and its application to standard problems, before the first
edition of this book (Prentice-Hall, 1990) none took into account the devel-
opments in the foundations of the subject which have taken place in the last
few decades. There are specialized treatises on various aspects of the founda-
tions of quantum mechanics, but they do not integrate those topics into the
standard pedagogical material. I hope to remove that unfortunate dichotomy,
which has divorced the practical aspects of the subject from the interpreta-
tion and broader implications of the theory. This book is intended primarily
as a graduate level textbook, but it will also be of interest to physicists and
philosophers who study the foundations of quantum mechanics. Parts of the
book could be used by senior undergraduates.

The first edition introduced several major topics that had previously been
found in few, if any, textbooks. They included:

— A review of probability theory and its relation to the quantum theory.

— Discussions about state preparation and state determination.

—  The Aharonov—Bohm effect.

—  Some firmly established results in the theory of measurement, which are
useful in clarifying the interpretation of quantum mechanics.

— A more complete account of the classical limit.

— Introduction of rigged Hilbert space as a generalization of the more familiar
Hilbert space. It allows vectors of infinite norm to be accommodated
within the formalism, and eliminates the vagueness that often surrounds
the question whether the operators that represent observables possess a
complete set of eigenvectors.

—  The space—time symmetries of displacement, rotation, and Galilei transfor-
mations are exploited to derive the fundamental operators for momentum,
angular momentum, and the Hamiltonian.

— A charged particle in a magnetic field (Landau levels).
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—  Basic concepts of quantum optics.

—  Discussion of modern experiments that test or illustrate the fundamental
aspects of quantum mechanics, such as: the direct measurement of the
momentum distribution in the hydrogen atom; experiments using the sin-
gle crystal neutron interferometer; quantum beats; photon bunching and
antibunching.

—  Bell’s theorem and its implications.

This edition contains a considerable amount of new material. Some of the
newly added topics are:

—  An introduction describing the range of phenomena that quantum theory
seeks to explain.

—  Feynman’s path integrals.

—  The adiabatic approximation and Berry’s phase.

— Expanded treatment of state preparation and determination, including the
no-cloning theorem and entangled states.

— A new treatment of the energy—time uncertainty relations.

— A discussion about the influence of a measurement apparatus on the envi-
ronment, and vice versa.

— A section on the quantum mechanics of rigid bodies.

— A revised and expanded chapter on the classical limit.

—  The phase space formulation of quantum mechanics.

— Expanded treatment of the many new interference experiments that are
being performed.

— Optical homodyne tomography as a method of measuring the quantum
state of a field mode.

—  Bell’s theorem without inequalities and probability.

The material in this book is suitable for a two-semester course. Chapter 1
consists of mathematical topics (vector spaces, operators, and probability),
which may be skimmed by mathematically sophisticated readers. These topics
have been placed at the beginning, rather than in an appendix, because one
needs not only the results but also a coherent overview of their theory, since
they form the mathematical language in which quantum theory is expressed.
The amount of time that a student or a class spends on this chapter may vary
widely, depending upon the degree of mathematical preparation. A mathe-
matically sophisticated reader could proceed directly from the Introduction to
Chapter 2, although such a strategy is not recommended.
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The space—time symmetries of displacement, rotation, and Galilei trans-
formations are exploited in Chapter 3 in order to derive the fundamental
operators for momentum, angular momentum, and the Hamiltonian. This
approach replaces the heuristic but inconclusive arguments based upon
analogy and wave—particle duality, which so frustrate the serious student. It
also introduces symmetry concepts and techniques at an early stage, so that
they are immediately available for practical applications. This is done without
requiring any prior knowledge of group theory. Indeed, a hypothetical reader
who does not know the technical meaning of the word “group”, and who
interprets the references to “groups” of transformations and operators as
meaning sets of related transformations and operators, will lose none of the
essential meaning.

A purely pedagogical change in this edition is the dissolution of the old
chapter on approximation methods. Instead, stationary state perturbation
theory and the variational method are included in Chapter 10 (“Formation of
Bound States”), while time-dependent perturbation theory and its applications
are part of Chapter 12 (“Time-Dependent Phenomena”). I have found this to
be a more natural order in my teaching. Finally, this new edition contains
some additional problems, and an updated bibliography.

Solutions to some problems are given in Appendix D. The solved problems
are those that are particularly novel, and those for which the answer or the
method of solution is important for its own sake (rather than merely being
an exercise).

At various places throughout the book I have segregated in double
brackets, [[---]], comments of a historical comparative, or critical nature.
Those remarks would not be needed by a hypothetical reader with no
previous exposure to quantum mechanics. They are used to relate my
approach, by way of comparison or contrast, to that of earlier writers, and
sometimes to show, by means of criticism, the reason for my departure from
the older approaches.

Acknowledgements
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which are acknowledged at various places throughout the text. However, I
would like to give special mention to the work of Thomas F. Jordan, which
forms the basis of Chapter 3. Many of the chapters and problems have been
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in the derivation of the orbital angular momentum eigenvalues in Sec. 8.3, and
W. G. Unruh for point out interesting features of the third example in Sec. 9.6.

Leslie E. Ballentine
Simon Fraser University



Introduction

The Phenomena of
Quantum Mechanics

Quantum mechanics is a general theory. It is presumed to apply to every-
thing, from subatomic particles to galaxies. But interest is naturally focussed
on those phenomena that are most distinctive of quantum mechanics, some
of which led to its discovery. Rather than retelling the historical develop-
ment of quantum theory, which can be found in many books,* I shall illustrate
quantum phenomena under three headings: discreteness, diffraction, and
coherence. It is interesting to contrast the original experiments, which led
to the new discoveries, with the accomplishments of modern technology.

It was the phenomenon of discreteness that gave rise to the name “quan-
tum mechanics”. Certain dynamical variables were found to take on only a

Fig. 0.1 Current through a tube of Hg vapor versus applied voltage, from the data of
Franck and Hertz (1914). [Figure reprinted from Quantum Physics of Atoms, Molecules,
Solids, Nuclei and Particles, R. Eisberg and R. Resnick (Wiley, 1985).]

*See, for example, Eisberg and Resnick (1985) for an elementary treatment, or Jammer
(1966) for an advanced study.
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discrete, or quantized, set of values, contrary to the predictions of classical
mechanics. The first direct evidence for discrete atomic energy levels was
provided by Franck and Hertz (1914). In their experiment, electrons emitted
from a hot cathode were accelerated through a gas of Hg vapor by means of an
adjustable potential applied between the anode and the cathode. The current
as a function of voltage, shown in Fig. 0.1, does not increase monotonically,
but rather displays a series of peaks at multiples of 4.9 volts. Now 4.9 eV is
the energy required to excite a Hg atom to its first excited state. When the
voltage is sufficient for an electron to achieve a kinetic energy of 4.9 eV, it is
able to excite an atom, losing kinetic energy in the process. If the voltage is
more than twice 4.9 V, the electron is able to regain 4.9 eV of kinetic energy
and cause a second excitation event before reaching the anode. This explains
the sequence of peaks.

The peaks in Fig. 0.1 are very broad, and provide no evidence for the
sharpness of the discrete atomic energy levels. Indeed, if there were no better
evidence, a skeptic would be justified in doubting the discreteness of atomic
energy levels. But today it is possible, by a combination of laser excitation
and electric field filtering, to produce beams of atoms that are all in the same
quantum state. Figure 0.2 shows results of Koch et al. (1988), in which

Fig. 0.2 Individual excited states of atomic hydrogen are resolved in this data [reprinted
from Koch et al., Physica Scripta T26, 51 (1988)].
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the atomic states of hydrogen with principal quantum numbers from n = 63
to nm = 72 are clearly resolved. Each n value contains many substates that
would be degenerate in the absence of an electric field, and for n = 67 even
the substates are resolved. By adjusting the laser frequency and the various
filtering fields, it is possible to resolve different atomic states, and so to produce
a beam of hydrogen atoms that are all in the same chosen quantum state. The
discreteness of atomic energy levels is now very well established.

54V.

Fig. 0.3 Polar plot of scattering intensity versus angle, showing evidence of electron diffrac-
tion, from the data of Davisson and Germer (1927).

The phenomenon of diffraction is characteristic of any wave motion, and is
especially familiar for light. It occurs because the total wave amplitude is the
sum of partial amplitudes that arrive by different paths. If the partial ampli-
tudes arrive in phase, they add constructively to produce a maximum in the
total intensity; if they arrive out of phase, they add destructively to produce
a minimum in the total intensity. Davisson and Germer (1927), following a
theoretical conjecture by L. de Broglie, demonstrated the occurrence of diffrac-
tion in the reflection of electrons from the surface of a crystal of nickel. Some
of their data is shown in Fig. 0.3, the peak at a scattering angle of 50° being
the evidence for electron diffraction. This experiment led to the award of a
Noble prize to Davisson in 1937. Today, with improved technology, even an
undergraduate can easily produce electron diffraction patterns that are vastly
superior to the Nobel prize-winning data of 1927. Figure 0.4 shows an electron
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Fig. 0.4 Diffraction of 10 kV electrons through a graphite foil; data from an undergrad-
uate laboratory experiment. Some of the spots are blurred because the foil contains many
crystallites, but the hexagonal symmetry is clear.

diffraction pattern from a crystal of graphite, produced in a routine under-
graduate laboratory experiment at Simon Fraser University. The hexagonal
array of spots corresponds to diffraction scattering from the various crystal
planes.

The phenomenon of diffraction scattering is not peculiar to electrons, or
even to elementary particles. It occurs also for atoms and molecules, and is a
universal phenomenon (see Ch. 5 for further discussion). When first discovered,
particle diffraction was a source of great puzzlement. Are “particles” really
“waves”? In the early experiments, the diffraction patterns were detected
holistically by means of a photographic plate, which could not detect individual
particles. As a result, the notion grew that particle and wave properties were
mutually incompatible, or complementary, in the sense that different measure-
ment apparatuses would be required to observe them. That idea, however, was
only an unfortunate generalization from a technological limitation. Today it is
possible to detect the arrival of individual electrons, and to see the diffraction
pattern emerge as a statistical pattern made up of many small spots (Tonomura
et al., 1989). Evidently, quantum particles are indeed particles, but particles
whose behavior is very different from what classical physics would have led us
to expect.

In classical optics, coherence refers to the condition of phase stability that
is necessary for interference to be observable. In quantum theory the concept
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of coherence also refers to phase stability, but it is generalized beyond any
analogy with wave motion. In general, a coherent superposition of quantum
states may have properties than are qualitatively different from a mixture of
the properties of the component states. For example, the state of a neutron
with its spin polarized in the +z direction is expressible (in a notation that will
be developed in detail in later chapters) as a coherent sum of states that are
polarized in the +z and —z directions, | +z) = (| 4+ 2) +| — 2))/v/2. Likewise,
the state with the spin polarized in the 4z direction is expressible in terms of
the 4z and —z polarizations as | + 2) = (| +z) + | — z))/V2.

An experimental realization of these formal relations is illustrated in
Fig. 0.5. In part (a) of the figure, a beam of neutrons with spin polarized
in the 4z direction is incident on a device that transmits 4z polarization and
reflects —z polarization. This can be achieved by applying a strong magnetic
field in the z direction. The potential energy of the magnetic moment in the
field, —B - u, acts as a potential well for one direction of the neutron spin,
but as an impenetrable potential barrier for the other direction. The effective-
ness of the device in separating 4+2z and —z polarizations can be confirmed by
detectors that measure the z component of the neutron spin.

Fig. 0.5 (a) Splitting of a +x spin-polarized beam of neutrons into +z and —z components;
(b) coherent recombination of the two components; (c) splitting of the +z polarized beam
into +x and —x components.

In part (b) the spin-up and spin-down beams are recombined into a single
beam that passes through a device to separate +x and —x spin polarizations.
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If the recombination is coherent, and does not introduce any phase shift
between the two beams, then the state | + x) will be reconstructed, and only
the +z polarization will be detected at the end of the apparatus. In part (c)
the | — z) beam is blocked, so that only the | + z) beam passes through the
apparatus. Since | + z) = (| +2) + | — x))/V/2, this beam will be split into
| + ) and | — ) components.

Although the experiment depicted in Fig. 0.5 is idealized, all of its
components are realizable, and closely related experiments have actually been
performed.

In this Introduction, we have briefly surveyed some of the diverse phenom-
ena that occur within the quantum domain. Discreteness, being essentially
discontinuous, is quite different from classical mechanics. Diffraction scatter-
ing of particles bears a strong analogy to classical wave theory, but the element
of discreteness is present, in that the observed diffraction patterns are really
statistical patterns of the individual particles. The possibility of combining
quantum states in coherent superpositions that are qualitatively different from
their components is perhaps the most distinctive feature of quantum mechan-
ics, and it introduces a new nonclassical element of continuity. It is the task
of quantum theory to provide a framework within which all of these diverse
phenomena can be explained.



Chapter 1

Mathematical Prerequisites

Certain mathematical topics are essential for quantum mechanics, not only
as computational tools, but because they form the most effective language in
terms of which the theory can be formulated. These topics include the theory
of linear vector spaces and linear operators, and the theory of probability.
The connection between quantum mechanics and linear algebra originated as
an apparent by-product of the linear nature of Schrédinger’s wave equation.
But the theory was soon generalized beyond its simple beginnings, to include
abstract “wave functions” in the 3N-dimensional configuration space of N
paricles, and then to include discrete internal degrees of freedom such as spin,
which have nothing to do with wave motion. The structure common to all
of those diverse cases is that of linear operators on a vector space. A unified
theory based on that mathematical structure was first formulated by P. A. M.
Dirac, and the formulation used in this book is really a modernized version of
Dirac’s formalism.

That quantum mechanics does not predict a deterministic course of events,
but rather the probabilities of various alternative possible events, was recog-
nized at an early stage, especially by Max Born. Modern applications seem
more and more to involve correlation functions and nontrivial statistical dis-
tributions (especially in quantum optics), and therefore the relations between
quantum theory and probability theory need to be expounded.

The physical development of quantum mechanics begins in Ch. 2, and the
mathematically sophisticated reader may turn there at once. But since not
only the results, but also the concepts and logical framework of Ch. 1 are
freely used in developing the physical theory, the reader is advised to at least
skim this first chapter before proceeding to Ch. 2.

1.1 Linear Vector Space

A linear vector space is a set of elements, called vectors, which is closed
under addition and multiplication by scalars. That is to say, if ¢ and ¢ are
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vectors then so is a¢ + by, where a and b are arbitrary scalars. If the scalars
belong to the field of complex (real) numbers, we speak of a complex (real)
linear vector space. Henceforth the scalars will be complex numbers unless
otherwise stated.

Among the very many examples of linear vector spaces, there are two classes
that are of common interest:

(i) Discrete vectors, which may be represented as columns of complex

numbers,
a
a2

(ii) Spaces of functions of some type, for example the space of all differen-
tiable functions.

One can readily verify that these examples satisfy the definition of a linear
vector space.

A set of vectors {¢,, } is said to be linearly independent if no nontrivial linear
combination of them sums to zero; that is to say, if the equation ) c ¢, =0
can hold only when ¢, = 0 for all n. If this condition does not hold, the set of
vectors is said to be linearly dependent, in which case it is possible to express
a member of the set as a linear combination of the others.

The maximum number of linearly independent vectors in a space is called
the dimension of the space. A maximal set of linearly independent vectors is
called a basis for the space. Any vector in the space can be expressed as a
linear combination of the basis vectors.

An inner product (or scalar product) for a linear vector space associates a
scalar (¢, @) with every ordered pair of vectors. It must satisfy the following
properties:

a
b
c

d

¥, ¢) = a complex number,
,

(
(0, ¢) = (¥, )",

(¢; c1th1 + cata) = c1 (B, ¢1) + c2(, 2),

(¢, @) > 0, with equality holding if and only if ¢ = 0.

_

—

From (b) and (c) it follows that

(c1h1 + cath2, @) = i (1, @) + c3(v2, 8) -
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Therefore we say that the inner product is linear in its second argument, and
antilinear in its first argument.

We have, corresponding to our previous examples of vector spaces, the
following inner products:

(i) If ¢ is the column vector with elements a1, as, ... and ¢ is the column
vector with elements by, bo, ..., then

(1, ¢) = ajbi +azby +--- .

(ii) If ¥ and ¢ are functions of z, then

(4, ) = / ¥ (@) d(a)w(z)de

where w(zx) is some nonnegative weight function.

The inner product generalizes the notions of length and angle to arbitrary
spaces. If the inner product of two vectors is zero, the vectors are said to be
orthogonal.

The norm (or length) of a vector is defined as ||@|| = (¢, $#)'/2. The inner
product and the norm satisfy two important theorems:

Schwarz’s inequality,

[, ) < (¥,9)(8,9).- (1.1)

The triangle inequality,

(¢ + ) < [l + 19l - (1.2)

In both cases equality holds only if one vector is a scalar multiple of the other,
ie. ¥ = co. For (1.2) to become an equality, the scalar ¢ must be real and
positive.

A set of vectors {¢;} is said to be orthonormal if the vectors are pair-
wise orthogonal and of unit norm; that is to say, their inner products satisfy
(i, &) = Gij-

Corresponding to any linear vector space V there exists the dual space of
linear functionals on V. A linear functional F' assigns a scalar F(¢) to each
vector ¢, such that

F(ag +by) = aF(¢) + bF (¢) (1.3)
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for any vectors ¢ and v, and any scalars a and b. The set of linear functionals
may itself be regarded as forming a linear space V' if we define the sum of two
functionals as

(F1 + I2)(9) = Fi(9) + F2(9) - (1.4)

Riesz theorem. There is a one-to-one correspondence between linear
functionals F in V' and vectors f in V, such that all linear functionals have
the form

F(6) = (£,9), (1.5)

f being a fixed vector, and ¢ being an arbitrary vector. Thus the spaces V' and
V' are essentially isomorphic. For the present we shall only prove this theorem
in a manner that ignores the convergence questions that arise when dealing
with infinite-dimensional spaces. (These questions are dealt with in Sec. 1.4.)

Proof. 1t is obvious that any given vector f in V defines a linear functional,
using Eq. (1.5) as the definition. So we need only prove that for an arbitrary
linear functional F' we can construct a unique vector f that satisfies (1.5). Let
{¢n} be a system of orthonormal basis vectors in V', satisfying (¢n, ¢m) = In,m.
Let ¢ = )", Zn¢n be an arbitrary vector in V. From (1.3) we have

F() =Y @aF(¢n).
Now construct the following vector:
F= [F(6u)]"¢n-
Its inner product with the arbitrary vector v is
(F,9) =) _ F(¢n)2n
n

=F(y),
and hence the theorem is proved.

Dirac’s bra and ket notation

In Dirac’s notation, which is very popular in quantum mechanics, the
vectors in V' are called ket vectors, and are denoted as |¢). The linear
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functionals in the dual space V' are called bra vectors, and are denoted as
(F'|. The numerical value of the functional is denoted as

F(¢) = (Flg) - (1.6)

According to the Riesz theorem, there is a one-to-one correspondence between
bras and kets. Therefore we can use the same alphabetic character for the
functional (a member of V') and the vector (in V') to which it corresponds,
relying on the bra, (F|, or ket, |F), notation to determine which space is
referred to. Equation (1.5) would then be written as

(Flg) = (F,¢), (1.7)

|F') being the vector previously denoted as f. Note, however, that the Riesz
theorem establishes, by construction, an antilinear correspondence between
bras and kets. If (F'| <+ |F'), then

G(F|+ c(F| < c1|F) + c2|F) . (1.8)

Because of the relation (1.7), it is possible to regard the “braket” (F|¢) as
merely another notation for the inner product. But the reader is advised that
there are situations in which it is important to remember that the primary
definition of the bra vector is as a linear functional on the space of ket vectors.

[[ In his original presentation, Dirac assumed a one-to-one correspondence
between bras and kets, and it was not entirely clear whether this was a
mathematical or a physical assumption. The Riesz theorem shows that
there is no need, and indeed no room, for any such assumption. Moreover,
we shall eventually need to consideer more general spaces (rigged-Hilbert-
space triplets) for which the one-to-one correspondence between bras and
kets does not hold. |]

1.2 Linear Operators

An operator on a vector space maps vectors onto vectors; that is to say, if A
is an opetator and 1 is a vector, then ¢ = A is another vector. An operator
is fully defined by specifying its action on every vector in the space (or in its
domain, which is the name given to the subspace on which the operator can
meaningfully act, should that be smaller than the whole space).

A linear operator satisfies

A(erpr + cap2) = c1(APr) + c2(Aypa) . (1.9)
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It is sufficient to define a linear operator on a set of basis vectors, since everly
vector can be expressed as a linear combination of the basis vectors. We shall
be treating only linear operators, and so shall henceforth refer to them simply
as operators.

To assert the equality of two operators, A = B, means that Ay = By for
all vectors (more precisely, for all vectors in the common domain of A and B,
this qualification will usually be omitted for brevity). Thus we can define the
sum and product of operators,

(A4 B)y = Ay + By,
ABy = A(BY),
both equations holding for all ¢. It follows from this definition that operator

mulitplication is necessarily associative, A(BC) = (AB)C. But it need not be
commutative, AB being unequal to BA in general.

Example (i). In a space of discrete vectors represented as columns, a
linear operator is a square matrix. In fact, any operator equation in a space
of N dimensions can be transformed into a matrix equation. Consider, for
example, the equation

Mly) = 19) . (1.10)

Choose some orthonormal basis {|u;),7 = 1...N} in which to expand the

W) = ajlu;), |¢) =) bilux).
J k
Operating on (1.10) with (u,| yields

D wi| Mlug)a; = (us|ug) by
i p
= biv

vectors,

which has the form of a matrix equation,

ZMija]‘ :bi, (111)
J

with M;; = (u;|M|u;) being known as a matriz element of the operator M.
In this way any problem in an N-dimensional linear vector space, no matter
how it arises, can be transformed into a matrix problem.
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The same thing can be done formally for an infinite-dimensional vector
space if it has a denumerable orthonormal basis, but one must then deal with
the problem of convergence of the infinite sums, which we postpone to a later
section.

Example (ii). Operators in function spaces frequently take the form of
differential or integral operators. An operator equation such as

3ac—l—l—:z:3
ox” ox

may appear strange if one forgets that operators are only defined by their
action on vectors. Thus the above example means that

0 B o(x)
2 o v = vt + 22

So far we have only defined operators as acting to the right on ket vectors.
We may define their action to the left on bra vectors as

(lA)[P) = (BI(Al4)) (1.12)

for all ¢ and . This appears trivial in Dirac’s notation, and indeed this

for all ¥(x).

triviality contributes to the practival utility of his notation. However, it is
worthwhile to examine the mathematical content of (1.12) in more detail.

A bra vector is in fact a linear functional on the space of ket vectors, and
in a more detailed notation the bra (¢| is the functional

Fy() = (8,), (1.13)

where ¢ is the vector that corresponds to Fy via the Riesz theorem, and the
dot indicates the place for the vector argument. We may define the operation
of A on the bra space of functionals as

AFy(¢) = Fy(Ay) forall . (1.14)

The right hand side of (1.14) satisfies the definition of a linear functional of
the vector 9 (not merely of the vector Av), and hence it does indeed define a
new functional, called AFy. According to the Riesz theorem there must exist
a ket vector x such that

AFy(4) = (x. %)
= F(¥). (1.15)
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Since x is uniquely determined by ¢ (given A), there must exist an operator
AT such that x = AT¢. Thus (1.15) can be written as

AFy = Fuiy. (1.16)
From (1.14) and (1.15) we have (¢, A¢¥) = (x, %), and therefore

(AT, ) = (¢, Ap) for all ¢ and 4. (1.17)

This is the usual definition of the adjoint, Af, of the operator A. All of this
nontrivial mathematics is implicit in Dirac’s simple equation (1.12)!

The adjoint operator can be formally defined within the Dirac notation by
demanding that if (¢| and |¢) are corresponding bras and kets, then (¢|AT =
(w] and A|¢) = |w) should also be corresponding bras and kets. From the fact
that (w|Y)* = (Y|w), it follows that

($|AT|Y)* = (¥|Alg) forall ¢ and 1, (1.18)

this relation being equivalent to (1.17). Although simpler than the previous
introduction of A via the Riesz theorem, this formal method fails to prove the
existence of the operator AT.

Several useful properties of the adjoint operator that follow directly from
(1.17) are

(cA)t = c*AT, where ¢ is a complex number,
(A+B)I = A"+ BT,
(AB)T = BTAT.
In addition to the inner product of a bra and a ket, ($|¢)), which is a scalar,

we may define an outer product, |¢)(¢|. This object is an operator because,
assuming associative multiplication, we have

(1) (@DIA) = [$)((IN)) - (1.19)

Since an operator is defined by specifying its action on an arbitrary vector to
produce another vector, this equation fully defines |¢)(¢| as an operator. From
(1.18) it follows that

(o))" =l (vl (1.20)

In view of this relation, it is tempting to write (|1/)) = (1|. Although no real
harm comes from such a notation, it should not be encouraged because it uses
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the “adjoint” symbol, T, for something that is not an operator, and so cannot
satisfy the fundamental definition (1.16).
A useful characteristic of an operator A is its trace, defined as

Tr A= Z<UJ|A|UJ> y

J

where {|u;)} may be any orthonormal basis. It can be shown [see Prob-
lem (1.3)] that the value of Tr A is independent of the particular orthonormal
basis that is chosen for its evaluation. The trace of a matrix is just the sum
of its diagonal elements. For an operator in an infinite-dimensional space, the
trace exists only if the infinite sum is convergent.

1.3 Self-Adjoint Operators

An operator A that is equal to its adjoint A" is called self-adjoint. This
means that it satisfies

(BlA[Y) = (] Ald) (1.21)

and that the domain of A (i.e. the set of vectors ¢ on which A¢ is well defined)
coincides with the domain of AT. An operator that only satisfies (1.21) is called
Hermitian, in analogy with a Hermitian matrix, for which M;; = Mj;*.

[[ The distinction between Hermitian and self-adjoint operators is rele-
vant only for operators in infinite-dimensional vector spaces, and we shall
make such a distinction only when it is essential to do so. The operators
that we call “Hermitian” are often called “symmetric” in the mathematical
literature. That terminology is objectionable because it conflicts with the
corresponding properties of matrices. ]]

The following theorem is useful in identifying Hermitian operators on a
vector space with complex scalars.

Theorem 1. If (¢|Aly) = (P|AJy)* for all |[¢p), then it follows that
(¢1]A]d2) = (pa] Algp1)* for all |¢1) and |¢), and hence that A = AT,

Proof. Let |[¢) = a|p1) + b|d2) for arbitrary a, b, |¢1), and |¢2).
Then

(V| Al) = |a]*(¢1|Ald1) + [b* (P2 Alp2)
+ ab{¢1|Alp2) + b*a(d2| Alé1)
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must be real. The first and second terms are obviously real by hypothesis, so
we need only consider the third and fourth. Choosing the arbitrary parameters
a and b to be a = b =1 yields the condition

(P1|A|p2) + (P2| Ald1) = (P1]A|p2)™ + (P2]| Alp1)™ .

Choosing instead a = 1, b =i yields
i(1]|Alp2) — i(p2|A|p1) = —i(P1|A|g2)" + (2| Alp1)" .

Canceling the factor of 7 from the last equation and adding the two equations
yields the desired result, (¢1]|A|p2) = (Pa| A|d1)*.

This theorem is noteworthy because the premise is obviously a special case
of the conclusion, and it is unusual for the general case to be a consequence of
a special case. Notice that the complex values of the scalars were essential in
the proof, and no analog of this theorem can exist for real vector spaces.

If an operator acting on a certain vector produces a scalar multiple of that
same vector,

Alg) = alg), (1.22)

we call the vector |¢) an eigenvector and the scalar a an eigenvalue of the
operator A. The antilinear correspondence (1.8) between bras and kets, and
the definition of the adjoint operator Af, imply that the left-handed eigenvalue
equation

(#lAT = a* (¢l (1.23)
holds if the right-handed eigenvalue equation (1.22) holds.

Theorem 2. If A is a Hermitian operator then all of its eigenvalues
are real.

Proof. Let A|¢) = a|¢). Since A is Hermitian, we must have (¢|A|¢) =
(p|Alp)*. Substitution of the eigenvalue equation yields
(glalg) = (¢lald)”,
a{gl¢) = a*(¢l9),

which implies that a = a*, since only nonzero vectors are regarded as nontrivial
solutions of the eigenvector equation.

The result of this theorem, combined with (1.23), shows that for a self-
adjoint operator, A = AT, the conjugate bra (¢| to the ket eigenvector |¢) is
also an eigenvector with the same eigenvalue a: (¢|A = a(¢|.
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Theorem 3. Eigenvectors corresponding to distinct eigenvalues of a Her-
mitian operator must be orthogonal.

Proof. Let A|p1) = a1]|¢1) and Alps) = az|d2). Since A is Hermitian, we
deduce from (1.21) that

0= (p1|A|p2) — (p2|Alo1)”
= a1(d2|¢1) — az(d1]¢2)”
= (a1 — az)(p2|¢1) .

Therefore (¢p2|¢1) = 0 if a1 # as.

If a1 = a2 (= a, say) then any linear combination of the degenerate
eigenvectors |¢1) and |¢p2) is also an eigenvector with the same eigenvalue
a. It is always possible to replace a nonorthogonal but linearly independent
set of degenerate eigenvectors by linear combinations of themselves that are
orthogonal. Unless the contrary is explicitly stated, we shall assume that
such an orthogonalization has been performed, and when we speak of the set
of independent eigenvectors of a Hermitian operator we shall mean an
orthogonal set.

Provided the vectors have finite norms, we may rescale them to have unit
norms. Then we can always choose to work with an orthonormal set of eigen-
vectors,

(¢is d5) = dij - (1.24)

Many textbooks state (confidently or hopefully) that the orthonormal set
of eigenvectors of a Hermitian operators is complete; that is to say, it forms a
basis that spans the vector space. Before examining the mathematical status
of that statement, let us see what useful consequences would follow if it were
true.

Properties of complete orthonormal sets

If the set of vectors {¢;} is complete, then we can expand an arbitrary
vector |v) in terms of it: |v) = ) . v;|¢;). From the orthonormality condition
(1.24), the expansion coefficients are easily found to be v; = (¢;|v). Thus we
can write
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v) = Z|¢i>(<¢ilv>)

= (Z |¢i><¢i|> [v) (1.25)

for an arbitrary vector |v). The parentheses in (1.25) are unnecessary, and are
used only to emphasize two ways of interpreting the equation. The first line
in (1.25) suggests that |v) is equal to a sum of basis vectors each multiplied
by a scalar coefficient. The second line suggests that a certain operator (in
parentheses) acts on a vector to produce the same vector. Since the equation
holds for all vectors |v), the operator must be the identity operator,

Dol =1 (1.26)

If Al¢;) = a;|¢:) and the eigenvectors form a complete orthonormal set —
that is to say, (1.24) and (1.26) hold — then the operator can be reconstructed
in a useful diagonal form in terms of its eigenvalues and eigenvectors:

A= Zai|¢i><¢i|~ (1.27)

This result is easily proven by opeating on an arbitrary vector and verifying
that the left and right sides of (1.27) yield the same result. One can use the
diagonal representation to define a function of an operator,

f(4) = Zf(ai)|¢i><¢i|' (1.28)

The usefulness of these results is the reason why many authors assume, in
the absence of proof, that the Hermitian operators encountered in quantum
mechanics will have complete sets of eigenvectors. But is it true?

Any operator in a finite N-dimensional vector space can be expressed as
an N x N matrix [see the discussion following Eq. (1.10)]. The condition for
a nontrivial solution of the matrix eigenvalue equation

Mo = Ao, (1.29)
where M is square matrix and ¢ is a column vector, is

det [M — 1| =0. (1.30)
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The expansion of this determinant yields a polynomial in A of degree IV, which
must have N roots. Each root is an eigenvalue to which there must corre-
spond an eigenvector. If all N eigenvalues are distinct, then so must be the
eigenvectors, which will necessarily span the N-dimensional space. A more
careful argument is necessary in order to handle multiple roots (degenerate
eigenvalues), but the proof is not difficult. [See, for example, Jordan (1969),
Theorem 13.1].

This argument does not carry over to infinite-dimensional spaces. Indeed,
if one lets N become infinite, then (1.30) becomes an infinite power series
in A, which need not possess any roots, even if it converges. (In fact the
determinant of an infinite-dimensional matrix is undefinable except in special
cases.) A simple counter-example shows that the theorem is not generally true
for an infinite-dimensional space.

Consider the operator D = —id/dz, defined on the space of differentiable
functions of z for a <z <b. (The limits a and b may be finite or infinite.) Its
adjoint, DT, is identified by using (1.21), which now takes the form

b b *
/ 6 (2) D1 () = { / ¢*(m)D¢(m)dm}

b
~ [ ¢ @Du()iz + ilv@e @] (13)

The last line is obtained by integrating by parts. If boundary conditions are
imposed so that the last term vanishes, then D will apparently be a Hermitian
operator.

The eigenvalue equation

d

—id(z) = Ag() (1.32)

is a differential equation whose solution is ¢(z) = ce™?®
regarding it as an eigenvalue equation for the operator D, we are interested only
in eigenfunctions within a certain vector space. Several different vector spaces
may be defined, depending upon the boundary conditions that are imposed:

,c = constant. But in

V1. No boundary conditions

All complex A are eigenvalues. Since D is not Hermitian this case is of no
further interest.
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V2. a = —o0, b = 400, |¢(z)| bounded as |x|—o0

All real values of A are eigenvalues. The eigenfunctions ¢(z) are not nor-
malizable, but they do form a complete set in the sense that an arbitrary
function can be represented as a Fourier integral, which may be regarded as a
continuous linear combination of the eigenfunctions.

V3. a = —-L/2,b = +L/2, periodic boundary conditions ¢(—L/2)
= ¢(L/2)

The eigenvalues form a discrete set, A = A\, = 27n/L, with n being an
integer of either sign. The eigenfunctions form a complete orthonormal set
(with a suitable choice for ¢), the completeness being proven in the theory of
Fourier series.

V4. a = —o0, b = 400, ¢(x)—0 as x—Foo
Although the operator D is Hermitian, it has no eigenfunctions within this
space.

These examples suffice to show that a Hermitian operator in an infinite-
dimensional vector space may or may not possess a complete set of eigenvec-
tors, depending upon the precise nature of the operator and the vector space.
Fortunately, the desirable results like (1.26), (1.27) and (1.28) can be reformu-
lated in a way that does not require the existence of well-defined eigenvectors.

The spectral theorem

The outer product |¢;)(¢;| formed from a vector of unit norm is an example
of a projection operator. In general, a self-adjoint operator p that satisfies
p? = p is a projection operator. Its actionis to project out the component
of a vector that lies within a certain subspace (the one-dimensional space of
|¢;) in the above example), and to annihilate all components orthogonal to
that subspace. If the operator A in (1.27) has a degenerate spectrum, we may
form the projection operator onto the subspace spanned by the degenerate

eigenvectors corresponding to a; = a,
P(a) = [¢1)(¢il0a.a, (1.33)
i
and (1.27) can be rewritten as
A=Y "aP(a). (1.34)

The sum on a goes over the eigenvalue spectrum. [But since P(a) = 0 if a is
not an eigenvalue, it is harmless to extend the sum beyond the spectrum.]
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The examples following (1.32) suggest (correctly, it turns out) that the
troubles are associated with a continuous spectrum, so it is desirable to rewrite
(1.34) in a form that holds for both discrete and continuous spectra. This
can most conveniently be done with the help of the Stieltjes integral, whose
definition is

b n
[ s@yiote) = tim 3 gniotm) - otm),  (13)

n— oo k:1
the limit being taken such that every interval (zp — xp_1) goes to zero as

n — co. The nondecreasing function o(z) is called the measure. If o(z) = =z,
then (1.35) reduces to the more familiar Riemann integral. If do/dz exists,

then we have
do
[ sein@ = [ g (5.
(Stieltjes) (Riemann) €L

The generalization becomes nontrivial only when we allow o(z) to be discon-
tinuous. Suppose that
o(x) = hl(z —¢), (1.36)

where 0(z) = 0 for x < 0, 6(z) = 1 for x > 0. The only term in (1.35) that
will contribute to the integral is the term for which xx_1 < ¢ and xx > ¢. The
value of the integral is hg(c).

Fig. 1.1 A discontinuous measure function [Eq. (1.36)].

We can now state the spectral theorem.

Theorem 4. [For a proof, see Riesz and Sz.-Nagy (1955), Sec. 120.] To
each self-adjoint operator A there corresponds a unique family of projection
operators, E()), for real A, with the properties:
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(1) If )\1 < )\2 then E()\I)E()\Q) = E()\Q)E()\l) = E()q)
[speaking informally, this means that E()) projects onto the subspace
corresponding to eigenvalues < \J;
(i) If e > 0, then E(\ +¢)|¢p) — E(N)[¢) as € — 0;
(iii) E(N)|Yp) — 0 as X = —oo;
(iv) EOhe) — [) as A — +o0o;
(v) ffooo ME(XN) = A. (1.37)

In (ii), (iii) and (iv) |¢) is an arbitrary vector. The integral in (v) with respect
to an operator-valued measure E()) is formally defined by (1.35), just as for
a real valued measure.

Equation (1.37) is the generalization of (1.27) to an arbitrary self-adjoint
operator that may have discrete or continuous spectra, or a mixture of the two.
The corresponding generalization of (1.28) is

sy = [ sonaEo). (138)

Example (discrete case)

When (1.37) is applied to an operator with a purely discrete spectrum,
the only contributions to the integral occur at the discontinuities of

E(\) = Z |9} (B3| O(X — ai) - (1.39)

These occur at the eigenvalies, the discontinuity at A = a being just
P(a) of Eq. (1.33). Thus (1.37) reduces to (1.34) or (1.27) in this case.

Example (continuous case)

As an example of an operator with a continuous spectrum, consider
the operator @, defined as Qv(z) = x¢(z) for all functions ¥ (z). It is
trivial to verify that Q = Qf. Now the eigenvalue equation Q¢(z) =
Aé(z) has the formal solutions ¢(z) = d(z — A), where A is any real
number and d(z — A) is Dirac’s “delta function”. But in fact é(x — )
is not a well-defined function® at all, so strictly speaking there are no
eigenfunctions ¢(z).

2Tt can be given meaning as a “distribution”, or “generalized function”. See Gel’fand and
Shilov (1964) for a systematic treatment.
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However, the spectral theorem still applies. The projection operators for
Q are defined as

EO\¢(x) = 0(A — a)(a), (1.40)

which is equal to ¥(x) for z < A, and is 0 for z > A\. We can easily verify
(1.37) by operating on a general functionh (x):

/ T MEO))(@) = / T MO~ ()]

=zY(z) = Qy(z).

(In evaluating the above integral one must remember that A is the integration
variable and z is constant.)

Following Dirac’s pioneering formulation, it has become customary in
quantum mechanics to write a formal eigenvalue equation for an operator such
as () that has a continuous spectrum,

Qlg) = dlg) - (1.41)

The orthonormality condition for the continuous case takes the form
(d'lq") = d(d —¢"). (1.42)

Evidently the norm of these formal eigenvectors is infinite, since (1.42) implies
that (¢|g) = oo. Instead of the spectral theorem (1.37) for @, Dirac would
write

Q= /jo qlq){(qldq, (1.43)

which is the continuous analog of (1.27).

Dirac’s formulation does not fit into the mathematical theory of Hilbert
space, which admits only vectors of finite norm. The projection operator (1.40),
formally given by

A
E(X) = [ lg)(aldq , (1.44)

is well defined in Hilbert space, but its derivative, dE(q)/dg = |¢){(g|, does not
exist within the Hilbert space framework.

Most attempts to express quantum mechanics within a mathematically
rigorous framework have restricted or revised the formalism to make it fit
within Hilbert space. An attractive alternative is to extend the Hilbert space
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framework so that vectors of infinite norm can be treated consistently. This
will be considered in the next section.

Commuting sets of operators

So far we have discussed only the properties of single operators. The next
two theorems deal with two or more operators together.

Theorem 5. If A and B are self-adjoint operators, each of which possesses
a complete set of eigenvectors, and if AB = BA, then there exists a complete
set of vectors which are eigenvectors of both A and B.

Proof. Let {|an)} and {|b.,)} be the complete sets of eigenvectors of A
and B, respectively: Alan) = ap|an), Blbm) = bm|bm). We may expand any
eigenvector of A in terms of the set of eigenvectors of B:

lan) = Zcm|bm> s

where the coefficients ¢,, depend on the particular vector |a,). The eigenvalues
b need not be distinct, so it is desirable to combine all terms with b,, = b
into a single vector,

[(@n)b) = cmlbm)dbp,, -

We may then write
jan) = > I(@n)b) , (1.45)
where the sum is over distinct eigenvaliues of B. Now
(A —ap)lan) =0
= (A~ ay)|(an)b). (1.46)
b

By operating on a single term of (1.46) with B, and using BA = AB,
B(A = an)|(an)b) = (A = an)B|(an)b)
= b(A — ay)|(an)b),

we deduce that the vector (A—ay,)|(a,)b) is an eigenvector of B with eigenvalue
b. Therefore the terms in the sum (1.46) must be orthogonal, and so are linearly
independent. The vanishing of the sum is possible only if each term vanishes
separately:

(A~ an)l(an)b) = 0.
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Thus |(a,)b) is an eigenvector of both A and B, corresponding to the eigenval-
ues a,, and b, respectively. Since the set {|a,)} is complete, the set {|(a,)b)}
in terms of which it is expanded must also be complete. Therefore there exists
a complete set of common eigenvectors of the commuting operators A and B.

The theorem can easily be extended to any number of mutually commu-
tative operators. For example, if we have three such opeators, A, B and C,
we may expand an eigenvector of C' in terms of the set of eigenvectors of A
and B, and proceed as in the above proof to deduce a complete set of common
eigenvectors for A, B and C.

The converse of the theorem, that if A and B possess a complete set of
common eigenvectors then AB = BA, is trivial to prove using the diagonal
representation (1.27).

Let (A, B,...) be a set of mutually commutative operators that possess a
complete set of common eigenvectors. Corresponding to a particular eigenvalue
for each operator, there may be more than one eigenvector. If, however, there
is no more than one eigenvector (apart from the arbitrary phase and normal-
ization) for each set of eigenvalues (an, bm, - ..), then the operators (4, B, ...)
are said to be a complete commuting set of operators.

Theorem 6. Any operator that commutes with all members of a complete
commuting set must be a function of the operators in that set.

Proof. Let (A, B,...) be a complete set of commuting operators, whose
common eigenvectors may be uniquely specified (apart from phase and nor-
malization) by the eigenvalues of the operators. Denote a typical eigenvector
as |Gn,bm,...). Let F' be an operator that commutes with each member of
the set (A, B,...). To say that F' is a function of this set of operators is to
say, in generalization of (1.28), that F' has the same eigenvectors as this set
of operators, and that the eigenvalues of F' are a function of the eigenvalues
of this set of operators. Now since F' commutes with (A4, B,...), it follows
from Theorem 5 that there exists a complete set of common eigenvectors of
(A,B,...,F). But since the vectors |a,,bm,...) are the unique set of eigen-
vectors of the complete commuting set (4, B, ...), it follows that they must
also be the eigenvectors of the augmented set (A, B, ..., F'). Thus

Flan,bmy...) = fam - |@n,bm, .. .) .

Since the eigenvector is uniquely determined (apart from phase and nor-
malization) by the eigenvalues (ay,bm,...), it follows that the mapping
(@n,bmy-..) = fam ... exists, and hence the eigenvalues of F' maybe regarded
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as a function of the eigenvalues of (A4, B,...). That is to say, fam:--- =
f(an,bm,...). This completes the proof that the operator F' is a function
of the operators in the complete commuting set, F' = f(4, B,...).

For many purposes a complete commuting set of operators may be regarded
as equivalent to a single operator with a non-degenerate eigenvalue spectrum.
Indeed such a single operator is, by itself, a complete commuting set.

1.4 Hilbert Space and Rigged Hilbert Space

A linear vector space was defined in Sec. 1.1 as a set of elements that
is closed under addition and multiplication by scalars. All finite-dimensional
spaces of the same dimension are isomorphic, but some distinctions are neces-
sary among infinite-dimensional spaces. Consider an infinite orthonormal set
of basis vectors, {¢, : n = 1,2,...}. From it we can construct a linear vec-
tor space V by forming all possible finite linear combinations of basis vectors.
Thus V' consists of all vectors of the form ¢ = ) ¢,$p, where the sum may
contain any finite number of terms.

The space V may be enlarged by adding to it the limit points of convergent
infinite sequences of vectors, such as the sums of convergent infinite series. But
first we must define what we mean by convergence in a space of vectors. The
most useful definition is in terms of the norm. We say that the sequence {v;}
approaches the limit vector x as ¢ — oo if and only if lim; , ||¢; 