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Preface to the English Edition

"In the beginning was the symmetry" Hidden harmony is stronger

W. Heisenberg then the explicit one

Heraclitus

The English version of our book is published on the initiative of Dr. Edward
M. Michael, Vice-President of the Allerton Press Incorporated. It is with great pleasure
that we thank him for his interest in our work.

The present edition of this book is an improved version of the Russian
edition, and is greatly extended in some aspects. The main additions occur in Chapter
4, where the new results concerning complete sets of symmetry operators of arbitrary
order for motion equations, symmetries in elasticity, super- and parasupersymmetry
are presented. Moreover, Appendix II includes the explicit description of generalized
Killing tensors of arbitrary rank and order: these play an important role in the study of
higher order symmetries.

The main object of this book is symmetry. In contrast to Ovsiannikov’s term
"group analysis" (of differential equations) [355] we use the term "symmetry analysis"
[123] in order to emphasize the fact that it is not, in general, possible to formulate
arbitrary symmetry in the group theoretical language. We also use the term "non-Lie
symmetry" when speaking about such symmetries which can not be found using the
classical Lie algorithm.

In order to deduce equations of motion we use the "non-Lagrangian"
approach based on representations of the Poincaré and Galilei algebras. That is, we use
for this purpose the principles of Galilei and Poincaré-Einstein relativity formulated in
algebraic terms. Sometimes we use the usual term "relativistic equations" when
speaking about Poincaré-invariant equations in spite of the fact that Galilei-invariant
subjects are "relativistic" also in the sense that they satisfy Galilei relativity principle.

Our book continues the series of monographs [127, 157, 171, 10*, 11*]
devoted to symmetries in mathematical physics. Moreover, we will edit "Journal of
Nonlinear Mathematical Physics" which also will related to these problems.

We hope that our book will be useful for mathematicians and physicists in the
English-speaking world, and that it will stimulate the development of new symmetry
approaches in mathematical and theoretical physics.

Only finishing the contemplated work one

understands how it was necessary to begin it

B. Pascal
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Preface

Over a period of more than a hundred years, starting from Fedorov’s works
on symmetry of crystals, there has been a continuous and accelerating growth in the
number of researchers using methods of discrete and continuous groups, algebras and
superalgebras in different branches of modern natural sciences. These methods have
a universal nature and can serve as a basis for a deep understanding of the relativity
principles of Galilei and Poincaré-Einstein, of Mendeleev’s periodic law, of principles
of classification of elementary particles and biological structures, of conservation laws
in classical and quantum mechanics etc.

The foundations of the theory of continuous groups were laid a century ago
by Sofus Lie, who proposed effective algorithms to calculate symmetry groups for
linear and nonlinear partial differential equations. Today the classical Lie methods
(completed by theory of representations of Lie groups and algebras) are widely used
in theoretical and mathematical physics.

Our book is devoted to the analysis of old (classical) and new (non-Lie)
symmetries of the basic equations of quantum mechanics and classical field theory,
classification and algebraic theoretical deduction of equations of motion of arbitrary
spin particles in both Poincaré and Galilei-invariant approaches. We present detailed
information about representations of the Galilei and Poincaré groups and their possible
generalizations, and expound a new approach to investigation of symmetries of partial
differential equations, which enables to find unknown before algebras and groups of
invariance of the Dirac, Maxwell and other equations. We give solutions of a number
of problems of motion of arbitrary spin particles in an external electromagnetic field.
Most of the results are published for the first time in a monographic literature.

The book is based mainly on the author’s original works. The list of references
does not have any pretensions to completeness and contains as a rule the papers
immediately used by us.

We take this opportunity to express our deep gratitude to academicians N.N.
Bogoliubov, Yu.A. Mitropolskii, our teacher O.S. Parasiuk, correspondent member of
Russian Academy of Sciences V.G. Kadyshevskii, professors A.A. Borgardt and M.K.
Polivanov for essential and constant support of our researches in developing the
algebraic-theoretical methods in theoretical and mathematical physics. We are indebted
to doctors L.F. Barannik, I.A. Egorchenko, N.I. Serov, Z.I. Simenoh, V.V. Tretynyk,
R.Z. Zhdanov and A.S. Zhukovski for their help in the preparation of the manuscript.
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Introduction

The symmetry principle plays an increasingly important role in modern
researches in mathematical and theoretical physics. This is connected with the fact that
the basis physical laws, mathematical models and equations of motion possess explicit
or unexplicit, geometric or non-geometric, local or non-local symmetries. All the basic
equations of mathematical physics, i.e. the equations of Newton, Laplace, d’Alembert,
Euler-Lagrange, Lame, Hamilton-Jacobi, Maxwell, Schrodinger etc., have a very high
symmetry. It is a high symmetry which is a property distinguishing these equations
from other ones considered by mathematicians.

To construct a mathematical approach making it possible to distinguish
various symmetries is one of the main problems of mathematical physics. There is a
problem which is in some sense inverse to the one mentioned above but is no less
important. We say about the problem of describing of mathematical models (equations)
which have the given symmetry. Two such problems are discussed in detail in this
book.

We believe that the symmetry principle has to play the role of a selection rule
distinguishing such mathematical models which have certain invariance properties.
This principle is used (in the explicit or implicit form) in a construction of modern
physical theories, but unfortunately is not much used in applied mathematics.

The requirement of invariance of an equation under a group enables us in
some cases to select this equation from a wide set of other admissible ones. Thus, for
example, there is the only system of Poincaré-invariant partial differential equations
of first order for two real vectors E and H, and this is the system which reduces to
Maxwell’s equations. It is possible to "deduce" the Dirac, Schrödinger and other
equations in an analogous way.

The main subject of the present book is the symmetry analysis of the basic
equations of quantum physics and deduction of equations for particles of arbitrary spin,
admitting different symmetry groups. Moreover we consider two-particle equations for
any spin particles and exactly solvable problems of such particles interaction with an
external field.

The local invariance groups of the basic equations of quantum mechanics
(equations of Schrodinger, of Dirac etc.) are well known, but the proofs that these
groups are maximal (in the sense of Lie) are present only in specific journals due to
their complexity. Our opinion is that these proofs have to be expounded in form easier
to understand for a wide circle of readers. These results are undoubtedly useful for a
deeper understanding of mathematical nature of the symmetry of the equations
mentioned. We consider local symmetries mainly in Chapter 1.

It is well known that the classical Lie symmetries do not exhaust the

xiii



invariance properties of an equation, so we find it is necessary to expound the main
results obtained in recent years in the study of non-Lie symmetries, super- and
parasupersymmetries. Moreover we present new constants of motion of the basic
equations of quantum physics, obtained by non-Lie methods. Of course it is interesting
to demonstrate various applications of symmetry methods to solving concrete physical
problems, so we present here a collection of examples of exactly solvable equations
describing interacting particles of arbitrary spins.

The existence of the corresponding exact solutions is caused by the high
symmetry of the models considered.

In accordance with the above, the main aims of the present book are:
1. To give a good description of symmetry properties of the basic equations

of quantum mechanics. This description includes the classical Lie symmetry (we give
simple proofs that the known invariance groups of the equations considered are
maximally extensive) as well as the additional (non-Lie) symmetry.

2. To describe wide classes of equations having the same symmetry as the
basic equations of quantum mechanics. In this way we find the Poincaré-invariant
equations which do not lead to known contradictions with causality violation by
describing of higher spin particles in an external field, and the Galilei-invariant wave
equations for particles of any spin which give a correct description of these particle
interactions with the electromagnetic field. The last equations describe the spin-orbit
coupling which is usually interpreted as a purely relativistic effect.

3. To represent hidden (non-Lie) symmetries (including super- and
parasupersymmetries) of the main equations of quantum and classical physics and to
demonstrate existence of new constants of motion which can not be found using the
classical Lie method.

4. To demonstrate the effectiveness of the symmetry methods in solving the
problems of interaction of arbitrary spin particles with an external field and in solving
of nonlinear equations.

Besides that we expound in details the theory of irreducible representations
(IR) of the Lie algebras of the main groups of motion of four-dimensional space-time
(i.e. groups of Poincaré and Galilei) and of generalized Poincaré groups P(1,n). We
find different realizations of these representations in the basises available to physical
applications. We consider representations of the discrete symmetry operators P, C and
T, and find nonequivalent realizations of them in the spaces of representations of the
Poincaré group.

The detailed list of contents gives a rather complete information about subject
of the book so we restrict ourselves by the preliminary notes given above.

The main part of the book is based on the original papers of the authors.
Moreover we elucidate (as much as we are able) contributions of other investigators in
the branch considered.

We hope our book can serve as a kind of group-theoretical introduction to
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quantum mechanics and will be interesting for mathematicians and physicists which
use the group-theoretical approach and other symmetry methods in analysis and
solution of partial differential equations.
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1 . L O C A L S Y M M E T R I E S O F T H E
FUNDAMENTAL EQUATIONS
OF RELATIVISTIC QUANTUM THEORY

In this chapter we study symmetries of the Klein-Gordon-Fock (KGF), Dirac
and Maxwell equations. The maximal invariance algebras (IAs) of these equations in
the class of first order differential operators are found, the representations of the
corresponding symmetry groups and exact transformation laws for dependent and
independent variables are given. Moreover we present with the aid of relatively simple
examples, the main ideas of the algebraic-theoretical approach to partial differential
equations and also, give a precise description of the symmetry properties of the
fundamental equations of quantum physics.

1. LOCAL SYMMETRY OF THE KLEIN-GORDON-FOCK
EQUATION

1.1. Introduction

One of the basic equations of relativistic quantum physics is the KGF equation
which we write in the form

where pµ are differential operators: p0=p0=i∂/∂x0, pa=-pa=-i∂/∂xa, m2 is a positive

(1.1)Lψ≡(p µ pµ m 2)ψ 0

number. Here and in the following the covariant summation over repeated Greek
indices is implied and Heaviside units are used in which =c=1.

The equation (1.1) is a relativistic analog of the Schrödinger equation. In
physics it is usually called the Klein-Gordon equation in spite of the fact that it was
considered by Schrödinger [380] and then by Fock [102], Klein [253] and some other
authors (see [9]). We shall use the term "KGF equation" or "wave equation".

In this section we study the symmetry of (1.1). The analysis of symmetry
properties of the KGF equation enables us to proceed naturally to such important
modern physical concepts as relativistic and conformal invariance and describe
relativistic equations of motion for particles of arbitrary spin. We shall demonstrate
also that the Poincaré (and when m=0 conformal) invariance represents in some sense
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Symmetries of Equations of Quantum Mechanics

the maximal symmetry of (1.1).
Let us formulate the problem of investigation of the symmetry of the KGF

equation. The main concept used while considering the invariance of this equation
(and other equations of quantum physics) is the concept of symmetry operator (SO).
In general a SO is any operator (linear, nonlinear, differential, integral etc.) Q
transforming solutions of (1.1) into solutions, i.e., satisfying the condition

for any ψ satisfying (1.1). In order to find the concrete symmetries this intuitive

(1.2)L(Qψ) 0

definition needs to be made precise by defining the classes of solutions and of operators
considered. Here we shall investigate the SOs which belong to the class of first-order
linear differential operators and so can be interpreted as Lie derivatives or generators
of continuous group transformations.

Let us go to definitions. We shall consider only solutions which are defined
on an open set D of the four-dimensional manifold R consisting of points with
coordinates (x0,x1,x2,x3) and are analytic in the real variables x0, x1, x2, x3 . The set of
such solutions forms a complex vector space which will be denoted by F0. If ψ1,ψ2∈F 0

and α1, α2∈ then evidently α1ψ1+α2ψ2∈ F0. Fixing D (e.g. supposing that D coincides
with R4 ) we shall call F the space of solutions of the KGF equation.

Let us denote by F the vector space of all complex-valued functions which are
defined on D and are real-analytic, and by L we denote the linear differential operator
defined on F:

Then Lψ∈ F if ψ∈ F. Moreover F0 is the subspace of the vector space F which

(1.3)L p µ pµ m 2.

coincides with the zero-space (kernel) of the operator L (1.3).
Let M1 be the set (class) of first order differential operators defined on F. The

concept of SO in the class M1 can be formulated as follows.
DEFINITION 1.1. A linear differential operator of the first order

is a SO of the KGF equation in the class M1 if

(1.4)Q A µ pµ B, A µ, B∈ F

where [Q, L] = QL−LQ is a commutator of the operators Q and L.

(1.5)[Q,L] αQ L, αQ∈ F

The condition (1.5) is to be understood in the sense that the operator in the
r.h.s. and l.h.s. give the same result when acting on an arbitrary function ψ∈F.

It can be seen easily that an operator Q satisfying (1.5) also satisfies the
condition (1.2) for any ψ∈ F0. Indeed, according to (1.5)

LQψ (Q αQ)Lψ 0, ψ∈ F0.

2



Chapter 1. Symmetries of the Fundamental Equations ...

The converse statement is also true: if the operator (1.4) satisfies (1.2) for an arbitrary
ψ∈ F0 then the condition (1.5) is satisfied for some αQ∈F.

Using the given definitions we will calculate all the SOs of the KGF equation.
It happens that any SO of (1.4) can be represented as a linear combination of some
basis elements. This fact follows from the following assertion

THEOREM 1.1. The set S of the SOs of the KGF equation in the class M1

forms a complex Lie algebra, i.e., if Q1,Q2∈ S then
1) a1Q1 + a2Q2∈ S for any a1,a2∈ ,
2) [Q1,Q2]∈ S.
PROOF. By definition the operators Qi (i=1,2) satisfy the condition (1.5). By

direct calculation we obtain that the operators Q3=α1Q1+α2Q2 and Q4=[Q1,Q2] belong
to M1 and satisfy (1.5) with

So studying the symmetry of the KGF equation (or of other linear differential

αQ3

α1αQ1

α2αQ2

, αQ4

[Q1, αQ2

] [Q2, αQ1

], αQ3

, αQ4

∈ F.

equations) in the class M1 we always deal with a Lie algebra which can be finite
dimensional (this is true for equation (1.1)) as well as infinite-dimensional. This is why
speaking about such a symmetry we will use the term "invariance algebra" (IA).

DEFINITION 1.2. Let {QA} (A=1,2,...) be a set of linear differential
operators (1.4) forming a basis of a finite-dimensional Lie algebra G. We say G is an
IA of the KGF equation if any QA∈ {QA} satisfies the condition (1.5).

According to Theorem 1.1 the problem of finding all the possible SOs of the
KGF equation is equivalent to finding a basis of maximally extensive IA in the class
M1. As will be shown in the following (see Chapter 4) many of the equations of
quantum mechanics possess IAs in the classes of second-, third- ... order differential
operators in spite of the fact that higher-order differential operators in general do not
form a finite-dimensional Lie algebra.

1.2. The IA of the KGF Equation

In this section we find the IA of the KGF equation in the class M1, i.e., in the
class of first order differential operators. In this way it is possible with rather simple
calculations to prove the Poincaré (and for m=0 - conformal) invariance of the equation
(1.1) and to demonstrate that this symmetry is maximal in some sense.

Let us prove the following assertion.
THEOREM 1.2. The KGF equation is invariant under the 10-dimensional Lie

algebra whose basis elements are

3



Symmetries of Equations of Quantum Mechanics

The Lie algebra generated by the operators (1.6) is the maximally extensive IA of the

(1.6)
P0 p0 i

∂
∂x0

, Pa pa i
∂

∂xa

, a 1,2,3,

Jµν xµ pν xν pµ, µ ,ν 0,1,2,3.

KGF equation in the class M1.
PROOF. It is convenient to write an unknown SO (1.4) in the following

equivalent form

where [Kµ,pµ]+≡Kµpµ+pµK
µ, C=B+1/2[Kµ,pµ]. Substituting (1.7) into (1.5) we come to

(1.7)Q
1
2

[K µ,pµ] C

the equation

We represent the r.h.s. of (1.5) in an equivalent form including anticommutators.

(1.8)1
2

[[(∂νK µ),pµ] ,pν] [(∂νC),pν]
1
4

[[αQ,p µ] ,pµ]
i
2

[(∂µαQ),pµ] m 2αQ.

The equation (1.8) is to be understood in the sense that the operators in the
l.h.s. and r.h.s. give the same result by action on an arbitrary function belonging to F.
In other words, the necessary and sufficient condition of satisfying (1.8) is the equality
of the coefficients of the same anticommutators:

For nonzero m we obtain from (1.9) αQ=0 and

(1.9)∂νK µ ∂µK ν 1
2

g µναQ, ∂µC ∂µαQ, m 2αQ 0,

(1.10)g 00 g 11 g 22 g 33 1, g µν 0, µ≠ν.

The equations (1.11) are easily integrated. Indeed the first of them is the Killing

(1.11)∂µK ν ∂νK µ 0, ∂µ C 0.

equation [249] (see Appendix 1), the general solution of which is

where c[µσ] =-c[σµ] and bµ are arbitrary numbers. According to (1.11) C does not depend

(1.12)K µ c [µσ]xσ b µ

on x.
Substituting (1.12) into (1.7) we obtain the general expression for a SO:

which is a linear combination of the operators (1.6) and trivial unit operator.

(1.13)Q c [µσ]xµ pσ b µ pµ C,

It is not easy to verify that the operators (1.6) form a basis of the Lie algebra,
satisfying the relations

4



Chapter 1. Symmetries of the Fundamental Equations ...

According to the above, the Lie algebra with the basis elements (1.6) is the

(1.14)
[Pµ ,Pν] 0, [Pµ,Jνλ] i(gµνPλ gµλPν),

[Jµν,Jλσ] i(gµσJνλ gνλJµσ gµλJνσ gνσJµλ).

maximally extended IA of the KGF equation.
The conditions (1.14) determine the Lie algebra of the Poincaré group, which

is the group of motions of relativistic quantum mechanics. Below we will call this
algebra "the Poincaré algebra" and denote it by AP(1,3).

The symmetry under the Poincaré algebra has very deep physical
consequences and contains (in implicit form) the information about the fundamental
laws of relativistic kinematics (Lorentz transformations, the relativistic law of
summation of velocities etc.). These questions are discussed further in Subsections 1.4
and 1.5. The following subsection is devoted to description of the KGF equation
symmetry in the special case m=0.

1.3. Symmetry of the d’Alembert Equation

Earlier, we assumed the parameter m in (1.1) is nonzero.But in the case m=0
this equation also has a precise physical meaning and describes a massless scalar field.
The symmetry of the massless KGF equation (i.e., d’Alembert equation) turns out to
be more extensive than in the case of nonzero mass.

THEOREM 1.3. The maximal invariance algebra of the d’Alembert equation

is a fifteen-dimensional Lie algebra. The basis elements of this algebra are given by

(1.15)pµ p µ ψ 0

formulae (1.6) and (1.16):

PROOF. Repeating the reasoning from the proof of Theorem 1.2 we come

(1.16)D x µ pµ 2i, K̂µ 2xµ D xσx σpµ.

to the conclusion that the general form of the SO Q∈M 1 for the equation (1.15) is given
by in (1.7) where Kµ, C are functions satisfying (1.9) with m≡0. We rewrite this
equation in the following equivalent form

Formula (1.17) defines the equation for the conformal Killing vector (see

(1.17)∂νK µ ∂µK ν 1
2

g µν∂λK λ 0,

λQ

1
2

∂νK ν.

Appendix 1). The general solution of this equation is

5



Symmetries of Equations of Quantum Mechanics

where fµ, c[µσ], d and eµ are arbitrary constants. Substituting (1.18) into (1.17) we obtain

(1.18)K µ 2x µ xν f ν f µ xνx
ν c [µσ]xσ dx µ e µ

a linear combination of the operators (1.6), (1.16). These operators form a basis of a
15-dimensional Lie algebra, satisfying relations (1.14), (1.19):

Relations (1.14), (1.19) characterize the Lie algebra of the conformal group

(1.19)[Jµσ, K̂λ] i(gσλK̂µ gµλ K̂σ), [Pµ, K̂σ] 2i(gµσD Jµσ),

[K̂µ, K̂σ] 0, [D,Pµ] iPµ, [D, K̂µ] ˆiKµ, [D,Jµσ] 0.

C(1,3).
Thus we have made sure the massless KGF equation (1.15) is invariant under

the 15-dimensional Lie algebra of the conformal group (called "conformal algebra" in
the following). The conformal symmetry plays an important role in modern physics.

1.4. Lorentz Transformations

Thus we have found the maximal IA of the KGF equation in the class M1. The
following natural questions arise: why do we need to know this IA, and what
information follows from this symmetry about properties of the equation and its
solutions?

This information turns out to be extremely essential. First, knowledge of IA
of a differential equation as a rule gives a possibility of finding the corresponding
constants of motion without solving this equation. Secondly, it is possible with the IA
to describe the coordinate systems in which the solutions in separated variables exist
[305]. In addition, any IA in the class M1 can be supplemented by the local symmetry
group which can be used in order to construct new solutions starting from the known
ones.

The main part of the problems connected with studying and using the
symmetry of differential equations can be successively solved in terms of IAs without
using the concept of the transformation group. For instance it will be the IA of the KGF
equation which will be used as the main instrument in studying the relativistic
equations of motion for arbitrary spin particles (see Chapter 2). But the knowledge of
the symmetry group undoubtedly leads to a deeper understanding of the nature of the
equation invariance properties.

Here we shall construct in explicit form the invariance group of the KGF
equation corresponding to the IA found above. For this purpose we shall use one of the
classical results of the group theory, established by Sophus Lie as long ago as the 19th

century. The essence of this result may be formulated as follows: if an equation
possesses an IA in the class M1 then it is locally invariant under the continuous
transformation group acting on dependent and independent variables (a rigorous

6



Chapter 1. Symmetries of the Fundamental Equations ...

formulation of this statement is given in many handbooks, see, e.g., [20, 379]).
The algorithm of reconstruction of the symmetry group corresponding to the

given IA is that any basis element of the IA corresponds to a one parameter
transformation group

where θ is a (generally speaking, complex) transformation parameter (it will be shown

(1.20)
x→x gθ(x),

ψ(x)→ψ (x ) Tgθ
(ψ(x)) D̂(θ,x)ψ(x)

in the following that for the KGF equation such parameters are real), gθ and D̂ are
analytic functions of θ and x, are linear operators defined on F. The exactTgθ

expressions for gθ and D̂ can be obtained by integration of the Lie equations

Here Kµ and B are the functions from the definition (1.4) of a SO.

(1.21)dx µ

dθ
K µ (x ), x µ

θ 0 x µ,

(1.22)dψ
dθ

iB(x )ψ ,ψ θ 0 ψ.

Each of the formulae (1.21), (1.22) gives a system of partial differential
equations with the given initial condition, i.e., the Cauchy problem which has a unique
solution. For the SOs (1.6) these equations are easily integrated. Comparing (1.4) and
(1.6) we conclude that for any operator Pµ or Jµσ B≡0 and the solutions of (1.22) have
the form

Solving equations (1.21) it is not difficult to find the transformation law for

(1.23)ψ (x ) ψ(x), ψ (x) ψ(g 1
θ (x)).

the independent variables xµ. We obtain from (1.4), (1.6) that

where gµ
σ is the metric tensor (1.10). Denoting θ=bµ for Q=Pµ and substituting (1.24)

(1.24)K µ 1, if Q Pµ,

(1.25)A µ xσg µ
λ xλ g µ

σ , if Q Jµσ

into (1.22) one comes to the equation

(no sum over µ), from which it follows that

dx µ

db µ
1, x µ

bµ 0 x µ

In a similar way using (1.25) one finds the transformations generated by Jµσ

(1.26)x µ x µ b µ.

7
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where θab, θ0a are transformation parameters and there is no sum over a, b.

(1.27)
x a x acosθab x bsinθab,

x b x bcosθab x asinθab;

x µ x µ, µ≠a,b, a,b≠0,

(1.28)

x a x acoshθ0a x 0sinhθ0a,

x 0 x 0coshθ0a x asinhθ0a,

x µ x µ, µ≠0,a

So the KGF equation is invariant under the transformations (1.23), (1.26)-
(1.28). The transformations (1.26)-(1.28) (which were first called Lorentz
transformations by H. Poincaré) satisfy the group multiplication law and conserve the
four-dimensional interval

where S(x)=x0
2-x1

2-x2
2-x3

2, and x(1), x(2) are two arbitrary points of the space-time

(1.29)S(x (1) x (2)) S(x (1) x (2))

continuum.
The set of transformations satisfying (1.29) forms a group which is called the

Poincaré group (the term suggested by Wigner).
The transformations (1.26)-(1.28) have a clear physical interpretation.

Relations (1.26) and (1.27) define the displacement of the reference frame along the
m-th coordinate and the rotation in the plane a-b. As to (1.28) it can be interpreted as
a transition to a new reference frame moving with velocity v relative to the original
frame:

(no sum over a) where the parameter va is expressed through θ0a by the relation θ0a=

(1.30)
x a (xa va x0)β, x0 (x0 va xa)β,

x µ xµ, µ≠0, a; β 1 v 2
a /c 2

1/2

artanh(va/c), c is the velocity of light*.
From (1.30) it is not difficult to obtain the relativistic law of summation of

velocities

We see that the IA of the simplest equation of motion of relativistic quantum

(1.31)V a dx a/dx0 (Va va)(1 vaVa/c 2) 1.

physics (i.e., the KGF equation) possesses in an implicit form the information about the
main laws of relativistic kinematics.

* For clarity we give up the convention c=1 in (1.30), (1.31)

8
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1.5. The Poincaré Group

Let us consider in more detail the procedure of reconstruction of the Lie group
by the given Lie algebra presented in the above.

First we shall establish exactly the isomorphism of the algebra (1.6) and the
Lie algebra of the Poincaré group.

The Poincaré group is formed by inhomogeneous linear transformations of
coordinates xµ conserving the interval (1.29), i.e., by transformations of the following
type

where aµσ, bµ are real parameters satisfying the condition

(1.32)xµ→x µ aµσx σ bµ

It follows from (1.33) that

(1.33)aµσa λµ gσ
λ.

or

(det aµσ )2 1, a 2
00≥1

The group of linear transformations (1.32) satisfying (1.33) will be called the

(1.34)det aµσ ±1, a00 ≥1.

complete Poincaré group and denoted by Pc(1,3). It is possible to select in the group
Pc(1,3) the subgroup P(1,3) for which

The set of transformations (1.32) satisfying (1.33) and (1.35) is called the

(1.35)det aµσ 1, a00≥1.

proper orthochronous Poincaré group (or the proper Poincaré group). The group P(1,3)
is a Lie group but the group Pc(1,3) is not, because for the latter, the determinant of the
transformation matrix aµσ is not a continuous function and can change suddenly from
-1 to 1.

It is convenient to write the transformations of the group P(1,3) in the matrix
form

where

(1.36)x̂→x̂ Ax̂

(1.37)x̂ column(x0,x1,x2,x3,1), x̂ column(x0 ,x1 ,x2 ,x3 ,1),

9
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the symbols a and b denote the 4×4 matrix aµσ and the vector column with

(1.38)A A(a,b)

























a00 a01 a02 a03 b0

a10 a11 a12 a13 b1

a20 a21 a22 a23 b2

a30 a31 a32 a33 b3

0 0 0 0 1

,

components bµ. The last coordinate 1 is introduced for convenience and is invariant
under the transformations.

Inasmuch as any transformation (1.30) can be represented in the form (1.36)-
(1.38) the group P(1,3) is isomorphic to the group of matrices (1.38) (denoted in the
following by Pm(1,3)) The group multiplication in the group Pm(1,3) is represented by
the matrix multiplication moreover

The unit element of this group is the unit 5×5 matrix, the inverse element to A(a,b) has

A(a1,b1)A(a2,b2) A(a1a2,b1 a1b2).

the form

The general solution of (1.33), (1.35) can be represented in the following form

[A(a,b)] 1 A(a 1, a 1b).

where θa and λa (a=1,2,3) are arbitrary real parameters, δab is the Kronecker symbol.

(1.39)

a00 coszcos2ϕ coshysin2ϕ λ2

R 2
(cosz coshy),

a0b

1
R

[sinzcoshy(λbcosϕ θbsinϕ) coszsinhy(λbsinϕ

θbcosϕ)] 1

R 2
εbcdλcθd(cosz coshy),

ab0 a0b

2

R 2
εbcdλcθd(cosz coshy),

abc

1
R

εabcθa(sinzcoshycosϕ coszsinhysinϕ)

(λbλc θbθc θ2δbc)(cosz coshy) δbc(coszcos2ϕ coshysin2ϕ),

θ (θ2
1 θ2

2 θ2
3)

1/2, λ (λ2
1 λ2

2 λ2
3)

1/2, ϕ arctan
λaθa

θ2 λ2
,

z Rcosϕ, y Rsinϕ, R [(θ2 λ2)2 4(λaθa)
2]1/4

10
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It follows from (1.37) that any matrix (1.38) depends continuously on ten real
parameters bµ, θa and λa. In other words, the group Pm(1,3) is a ten-parametric Lie
group.

Let us determine the Lie algebra of the group Pm(1,3). Basis elements of this
algebra by definition (see e.g. [20]) can be chosen in the form

Differentiating the matrices (1.38) with respect to the corresponding

(1.40)

P̂µ i
∂A(a,b)

∂bµ
bµ θa λa 0, Ĵmn i mnc

∂A(a,b)
∂θc

bµ θa λa 0 ,

Ĵ0c Ĵc0

∂A(a,b)
∂λc

bµ θa λa 0

.

parameters, we obtain from (1.40)

where 0̂, 0̃ and 0̃† are the 4×4, 1×4 and 4×1 zero matrices,

(1.41)
P̂µ













0̂ Kµ

0̃ 0
, Ĵµσ













Sµσ 0̃
†

0̃ 0

It is not difficult to verify that the matrices (1.41) satisfy the conditions (1.14).

(1.42)

S12



















0 0 0 0

0 0 i 0

0 i 0 0

0 0 0 0

, S23



















0 0 0 0

0 0 0 0

0 0 0 i

0 0 i 0

, S31



















0 0 0 0

0 0 0 i

0 0 0 0

i 0 0 0

,

S01



















0 i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

, S02



















0 0 i 0

0 0 0 0

i 0 0 0

0 0 0 0

, S03



















0 0 0 i

0 0 0 0

0 0 0 0

i 0 0 0

,

K0 column(i000) ,K1 column(0i00),
K2 column(00i0),K3 column(000i).

These conditions are satisfied also by the basis elements of the IA of the KGF equation,
so this IA is isomorphic to the matrix algebra generated by the basis (1.41). Any matrix
from the group Pm(1,3) can be constructed from the basis elements (1.41) by the
exponential mapping

where

(1.43)A(a,b) exp( i
2

θµσĴ
µσ

)exp( ˆiPµb
µ)

11
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(B is any 5×5 matrix, I is the unit matrix), θab= abcθc/2, θ0a=λa; θc, bµ, λa are parameters

(1.44)expB
∞

n 0

1
n!

B n, B 0 I

present in (1.38), (1.35).
The IA of the KGF equation realizes a representation of this Lie algebra of the

matrix group Pm(1,3) in the vector space F. This representation can be extended to local
representation of the group Pm(1,3) given by the relations (1.23), (1.26)-(1.28). In
analogy with (1.43) these relations can be represented as an exponential mapping of the
IA basis elements

where the only parameter θµσ or bµ does not vanish. The exponentials in (1.45) are

(1.45)ψ→ψ (x) T(a,b)ψ(x) exp( i
2

Jµσθ
µσ)exp(iPµb

µ)ψ(x) ψ(A 1(a,b)x̂)

defined according to

where Q is an arbitrary basis element of the IA, θ is the corresponding parameter.

(1.46)exp(θQ)ψ
∞

n 0

θn

n!
Q nψ, ψ∈ F

The transformations (1.45) are defined also for the case of arbitrary
parameters bµ, θµσ . Moreover for T(a,b) the following conditions hold

If Q belongs to the IA of the KGF equation in the class M1 then Qn transforms

T(a,b)T(a ,b ) T(aa ,b ab ).

solutions into solutions for any n=1,2,3,... . The operator exp(θQ) also has this property
according to (1.46). One concludes from the above that if ψ(x) is an analytical solution
of (1.1) then ψ′(x) (1.45) is also an analytical solution on F. That is why we call the
group of transformations (1.45) the symmetry group of the KGF equation.

Thus starting from the IA of the KGF equation we have constructed the
symmetry group of this equation which is called the Poincaré group. This group
includes the transformations (1.23), (1.32), (1.33), (1.35), i.e., such transformations
which do not change wave function but include rotations and translations of the
reference frame for independent variables. The requirement of invariance under the
Poincaré group is the main postulate of relativistic quantum theory.

1.6. The Conformal Transformations

Let us find the explicit form of transformations from the symmetry group of
the massless KGF equation. The IA of this equation is formed by the SO (1.6) and
(1.16).

12
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It is clearly sufficient to restrict ourselves to the construction of the
transformations generated by the operators (1.16) inasmuch as the remaining
transformations have already been considered in Subsections 1.4 and 1.5.

In order to find the one-parameter subgroups generated by Kµ and D we will
solve the corresponding Lie equations. Comparing (1.4) and (1.16) we conclude that
for the operator D Aµ = xµ, B = 1, so the equations (1.21), (1.22) take the form

The solutions of (1.47) have the form

(1.47)

dx µ

dθ
x µ, x µ

θ 0 x µ,

dψ
dθ

ψ , ψ θ 0 ψ.

The transformations (1.48) are called dilatation transformations and reduce

(1.48)ψ exp( θ)ψ, x exp(θ)x.

to a change of scale (any independent variable is multiplied by the same number).
For the operators Kµ the Lie equations are

where bσ are the transformations parameters. It is not difficult to verify that solutions

(1.49)

dx µ

db σ
2x µxσ xλ x λg µ

σ, x µ
bσ 0 x µ,

dψ
db σ

2xσ ψ, ψ bσ 0 ψ

of the Cauchy problems formulated in (1.49) are given by the formulae

(no sum over σ).

(1.50)x µ x µ g µ
σb σxλ x λ

1 2x σxσ bσb σxλx
λ
,

ψ (1 2xσb σ bσb σxλx
λ)ψ

Formulae (1.50) give a family of transformations depending on a parameter
bσ (with a fixed value of σ). Using these transformations successively for different σ
we come to the general transformation generated by Kσ, which also has the form (1.50)
where the summation over σ is assumed.

The transformations (1.50) are called conformal transformations and can be
represented as a composition of the following transformations: the inversion

the displacement

xµ→x µ x µ

xλx
λ
,

x µ→x µ x µ b µ,

13



Symmetries of Equations of Quantum Mechanics

and the second inversion

We see that the massless KGF equation is invariant under the scale and

x µ→x µ x µ

xλ x λ
.

conformal transformations besides the symmetry with respect to Lorentz
transformations. The set of transformations (1.30), (1.45), (1.48), (1.50) for xµ forms
a 15-parameter Lie group called the conformal group. As is demonstrated in Section
3 conformal invariance occurs for any relativistic wave equation describing a massless
field.

It is necessary to note that the transformations found above can be considered
only as a local representation of the group C(1,3) since in addition to the problem of
defining the domain of the transformed function it is necessary to take into account that
the expression (1.50) for xµ becomes nonsense if 1-2bµx

µ+bσbσxµx
µ=0.

1.7. The Discrete Symmetry Transformations

Although the IA of the KGF equation found above is in some sense maximally
extensive, the invariance under this algebra and the corresponding Lie group does not
exhaust symmetries of this equation. Moreover the KGF equation is invariant under the
following discrete transformations

where ra=±1. The invariance under the transformations (1.51) (space inversion), (1.52)

(1.51)
x0→x0 x0, xa→xa xa,

ψ(x)→Pψ(x) r1ψ(x ),

(1.52)
x0→x0 x0, xa→xa xa,

ψ(x)→Tψ(x) r2ψ(x ),

(1.53)x→x, ψ(x)→Cψ(x) r3ψ (x)

(time reflection) and (1.53) (charge conjugation) can be easily verified by direct
calculations.

The determinants of the matrices of the coordinate transformations of (1.51)
and (1.52) are equal to -1. So these transformations do not belong to the group P(1,3)
but are contained in the complete Poincaré group Pc(1,3). As to the transformation of
charge conjugation, it has nothing to do with the Poincaré group and represents the
symmetry of the KGF equation under the complex conjugation.

The operators P, C, T satisfy the following commutation and anticommutation

14
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relations together with the Poincaré generators

Conditions (1.54) can serve as a abstract definition of the operators P, C and

(1.54)

[P,P0] [P,Pa] [P, Jab] [P, J0a] 0,

[T,P0] [T,Pa] [T,Jab] [T,J0a] 0,

[C,Pµ] [C,Jµσ] 0,

P 2 T 2 C 2 1, [P,T] [C,T] [C,P] 0.

T.
So the IA of the KGF equation found in Section 1.3 can be fulfilled to the set

of the symmetry operators {Pµ,Jµσ,C,P,T}. These operators satisfy the invariance
condition (1.5) and algebra (1.14), (1.54) (which, of course, is not a Lie algebra).

We note that the discrete symmetry transformations can be used to construct
a group of hidden symmetry of the KGF equation. Actually, the KGF equation is
transparently invariant under the transformation

Combining this transformation with (1.53), we can select the set of symmetries

(1.55)x→x, ψ→Rψ(x) iψ(x),i 1 .

{C,R,CR} which satisfy the following commutation relations

since C2=-R2=1 and CR=-RC.

(1.56)[C,R] 2CR, [CR,C] 2R, [CR,R] 2C,

In accordance with (1.56) the SOs C, R and CR form a Lie algebra which is
isomorphic to the algebra AO(1,2), i.e., the Lie algebra of the Lorentz group in (1+2)-
dimensional Minkowski space. This circumstance enables us to find exactly the
corresponding symmetry group which is generated by the following one-parameter
transformations

where θ1, θ2 and θ3 are real parameters.

(1.57)
ψ→cosθ1ψ isinθ1ψ,

ψ→coshθ2ψ sinhθ2ψ ,

ψ→coshθ3ψ isinhθ3ψ

It is possible to point out the other sets of symmetries forming a representation
of the algebra AO(1,2), i.e.,

{T,R,TR}, {PT,R,PTR}, {CP,R,CPR},

or to select more extended IAs including more then three basis elements (for instance,
the sets {C,R,CR,PC,PR,PCR} and {C,R,CR,PC,PR,PCR,PCT,PCTR,PTR,TC,TR,

15
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TCR} form representations of the algebras AO(2,2) and AO(2,2)⊕AO(2,2)). We will
not analyze these algebraic structures but formulate a general statement valid for a wide
class of linear differential equations.

LEMMA 1.1. Let a linear partial differential equation is invariant under an
antilinear transformation Q, satisfying the condition Q2=1. Than this equation is
invariant under the algebra AO(1,2).

The proof is almost evident from the above, since any linear equation is
invariant under the transformation R of (1.55). Then such an equation admits the IA
with the basis elements {Q,R,QR} which realize a representation of the algebra
AO(1,2).

We will see in the following that Lemma 1.1 enables to find hidden
symmetries for great many of equations of quantum mechanics. The corresponding
symmetry groups reduce to matrix transformation involving a wave function and a
complex conjugated wave function.

Other hidden symmetries of the KGF equation are considered in Section 16.

2. LOCAL SYMMETRY OF THE DIRAC EQUATION

2.1. The Dirac Equation

In 1928 Dirac found the relativistic equation for an electron, which can be
written in the form

where ψ is a four-component wave function

(2.1)Lψ≡(γµ pµ m)ψ 0

γµ are 4×4 matrices satisfying the Clifford algebra

(2.2)ψ column(ψ1,ψ2,ψ3,ψ4),

For most of our needs the explicit form of the matrices γµ is not essential

(2.3)γµγν γνγµ 2gµν.

inasmuch as the conditions (2.3) determine them up to unitary equivalence. We will
use, for the sake of concreteness, the following representation

where 0 and I are the zero and unit 2×2 matrices, σa are the Pauli matrices

(2.4)γ0











0 I

I 0
, γa











0 σa

σa 0

16
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The equation (2.1) is the simplest quantum mechanical equation describing

(2.5)σ1











0 1

1 0
, σ2











0 i

i 0
, σ3











1 0

0 1
.

a noninteracting particle with spin. The study of this equation symmetry does not differ
in principle from the analysis of the KGF equation given above. Nevertheless taking
into account the outstanding role of the Dirac equation in physics and special features
connected with the fact that the function ψ has four components we will consider the
symmetries of the Dirac equation in detail.

Let us note that any component of the function ψ satisfies the KGF equation.
Indeed, multiplying (2.1) on the left by γµpµ+m and using (2.3) we obtain

We see that the KGF equation is a consequence of the Dirac equation. The

(2.6)(pµ p µ m 2)ψ 0.

inverse statement is not true of course inasmuch as there is an infinite number of first
order partial differential equations whose solutions satisfy (2.6) componentwise. The
Dirac equation is the simplest example of such a system.

2.2. Various Formulations of the Dirac Equation

Let us consider other (different from (2.1)) representations of the Dirac
equation to be found in the literature. All these representations are equivalent but give
a possibility of obtaining different generalizations of (2.1) to the case of a field with
arbitrary spin.

Starting from (2.1) it is not difficult to obtain the equation for a complex
conjugated function ψ*. Denoting

and making complex conjugation of (2.1) we obtain, using (2.3)

(2.7)ψ† (ψ1ψ2ψ3ψ4), ψ ψ†γ0,

where it is implied that pµ act on ψ. Using the representation (2.4) it is possible to write

(2.8)ψ(γµ p µ m) 0

(2.8) in the following equivalent form

Indeed, the equation (2.8) and (2.9) coincide when written componentwise.

(2.9)(γµ p µ m)ψC 0, ψC iγ2ψ .

The Dirac equation in the form (2.9) is widely used in quantum field theory.
Multiplying (2.1) from the left by γ0 and using (2.3) we obtain the equation in

the Schrödinger form

17
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where the Hamiltonian H has the form

(2.10)i
∂
∂t

ψ Hψ, t x0

It was in the form (2.10), (2.11) that the equation considered was found by

(2.11)H γ0γa pa γ0 m.

Dirac [77] for the first time. And it is the formulation (2.10), (2.11) which will serve
as a base for generalization of the Dirac equation for the case of arbitrary spin, see
Chapter 2.

The other (so called covariant) formulation of the Dirac equation can be
obtained by multiplication (2.1) from the left by an arbitrary matrix γµ

In the equation (2.12) as in (2.1) all the variables play equal roles in contrast

(2.12)pµψ P̂µψ≡( 1
2

[γµ,γν]p
ν γµm)ψ.

to (2.10) where the time variable is picked out. The equations in the form (2.12) also
admit very interesting generalizations [11, 135]. In particular the infinite-component
Dirac equation for positive energy particles [81] has this form.

In conclusion let us note, following Majorana [292] that the matrices γµ can
be chosen in such a form that all the coefficients of the equation (2.1) are real. Namely
setting

where γµ are the matrices (2.4), we can write the Dirac equation in the form

(2.13)γ0 γ0γ2, γ1 γ1γ2, γ3 γ3γ2, γ2 γ2

where γ′µ and ψ′ are connected with γµ and ψ by the equivalence transformation

(2.14)(γ µ pµ m)ψ 0,

Using (2.4) it is not difficult to verify that the equation (2.14) includes real

(2.15)ψ Uψ, γµ UγµU
1, U U 1 (1 γ2)γ0/ 2 .

coefficients only and so can be reduced to two noncoupled systems of equations for the
real and imaginary parts of the function ψ′.

Using other (distinct from U) nondegenerated matrices for the transformation
(2.15) we can obtain infinitely many other realizations of the Dirac equation, which are
equivalent to (2.1).

18



Chapter 1. Symmetries of the Fundamental Equations ...

2.3. Algebra of the Dirac Matrices

As was noted in the above these are relations (2.3) (but not an explicit
realization of the γ-matrices) which are used by solving concrete problems with the
help of the Dirac equation. Here we present some useful relations following from (2.3).

First let us note that there exists just one more matrix satisfying (2.3). This
matrix has the form

In the representation (2.4) we have

(2.16)γ4 γ0γ1γ2γ3.

Furthermore it is not difficult to obtain from (2.3) the following relations

(2.17)γ4 i










I 0̂

0̂ I
.

Finally it is possible to show that all the nonequivalent products of the Dirac matrices

(2.18a)
γµγν gµν 2iSµν, Sµν i[γµ,γν]/4, γµγ

µ 4,

Sµνγ4

1
2 µν σS σ, Sµνγλ i(gµσSνλ gµλγν µνλσγ4γ

σ)/2,

(2.18b)[Sµν,Sλσ] i(gµσSνλ gνλSµσ gµλSνσ gνσSµλ).

form a basis in the space of 4×4 matrices. All such products are exhausted by the
following 16 combinations

where Î is the unit matrix.

(2.19)Î, γ0, iγ1, iγ2, iγ3, iγ4, γ4γ0, iγ4γ1, iγ4γ2,
iγ4γ3, γ0γ1, γ0γ2, γ0γ3, iγ1γ2, iγ2γ3, iγ3γ1

Using (2.3) it is not difficult to show the matrices (2.19) are linearly
independent and hence any 4×4 matrix can be represented as a linear combination of
the basis elements (2.19).

2.4. SOs and IAs

The main property of the Dirac equation is the relativistic invariance, i.e.,
symmetry under the Poincaré group transformations. Here we will prove the existence
of this symmetry and demonstrate that it is the most extensive one, i.e., that there is no
wider symmetry group leaving the Dirac equation invariant.

As in the case of the KGF equation we will describe symmetries of the Dirac
equation using the language of Lie algebras, which first gives a possibility of clarity
and rigor interpretation using relatively simple computations and, secondly, is suitable
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for the description of hidden (non-geometrical) symmetries not connected with space-
time transformations (see Chapter 4).

The problem of investigation of the Dirac equation symmetry in the class M1

can be formulated in complete analogy with the corresponding problem for the KGF
equation. However it is necessary to generalize the corresponding definitions for the
case of a system of partial differential equations.

Let us denote by F4 the vector space of complex valued functions (2.2) which
are defined on some open and connected set D of the real four-dimensional space R and
are real-analytic. In other words ψ∈F 4 if any component ψk∈ F (see Subsection 1.1).
Then the linear differential operator L of (2.1) defined on D has the following property:
Lψ∈ F4 if ψ∈ F4. Finally the symbol G4 will denote the space of 4×4 matrices whose
matrix elements belong to F.

The following definition is a natural generalization of Definition 1.1 (see
Subsection 1.1):

DEFINITION 2.1. A linear first order differential operator

is a SO of the Dirac equation if

(2.20)Q F µ pµ D, F µ∈ F, D∈ G 4

The equation (2.21) is to be understood in the sense that the operators on the

(2.21)[Q,L] βQ L, βQ∈ G 4.

l.h.s. and r.h.s. give the same result acting on an arbitrary function ψ∈ F4.
As in the case of the KGF equation a SO transforms solutions of (2.1) into

solutions and the complete set of SOs forms a Lie algebra. So, while speaking about
the Dirac equation SOs we will use the term "invariance algebra" (IA).

2.5. The IA of the Dirac Equation in the Class M1

Let us formulate and prove the main assertion about symmetries of the Dirac
equation. As it will be shown further on this statement includes all the information
about the kinematics of a particle described by the evolution equation (2.1).

THEOREM 2.1. The Dirac equation is invariant under the ten-dimensional
Lie algebra which is isomorphic to the Lie algebra of the Poincaré group. The basis
elements of this IA can be chosen in the following form

where

(2.22)Pµ pµ≡i
∂

∂x µ
, Jµν xµ pν xν pµ Sµν

(2.23)Sµν
i
4

(γµγν γνγµ).
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The Lie algebra defined by the basis elements (2.22) is the maximal IA of the Dirac
equation in the class M1.

PROOF. The first statement of the theorem can be easily verified by the
direct calculation of commutators of Pµ and Jµσ with L of (2.1), which are equal to zero.
The operators (2.22) satisfy relations (1.14) and hence form a basis of the Lie algebra
isomorphic to AP(1,3).

A little more effort is needed to prove the algebra (2.22) is the maximally
extensive IA of (2.1).

Let us represent an arbitrary operator Q and the matrix ßQ from (2.21) as a
linear combination of the basis elements (2.19)

where the Latin letters denote unknown functions belonging to F. The problem is to

(2.24)
Q I(K µ pµ a 0) iγ4a

1 γµ b µ Sµν f [µν] γ4γµd
µ,

βQ Ie 0 iγ4e
1 γµq

µ γ4γµ h µ Sµν k [µν]

find the general form of these functions using the conditions (2.21).
Calculating the commutator of the operators Q (2.24) and L (2.1) we obtain

with (2.18):

where the bottom indices denote derivatives with respect to the corresponding

(2.25)
[Q,L] iγλK µ

λ pµ iγλa 0
λ 2iγ4γ

λa 1pλ γ4γ
λa 1

λ ib λ
λ 4iSµ

λ b µ pλ 2Sµ
λ b µ

λ

γ4(2d λ pλ id λ
λ ) λ

µνσS νσd µ
λ 2iγµ f [µλ]pλ γµ f [µν]

ν
σλ

µν f [µν]
λ γ4γσ

variables: Bµ=∂B/∂xµ. On the other hand it is not difficult to calculate that

Substituting (2.25) and (2.26) into (2.21) and equating the coefficients of

(2.26)
βQL e 0γµpµ I( e 0m q µpµ) mγµq

µ 2iSµ
λq µpλ iγ4me 1 iγ4γ

µe 1pµ

mγ4γµh
µ γ4h

µpµ i µλσ
νS λσh µpν γ4k

[µν]pν σµνλγ4γ
σk [µν]p λ.

linearly independent matrices and differential operators we obtain the following system

where gµσ is the metric tensor (1.10).

(2.27)K µ
ν 2gλσ f [σµ] ig µ

λ e 0,

(2.28)a 0
λ igλσ f [σν]

ν 0,

(2.29)a 1
λ i µνλ

σf [µν]
σ 0,

(2.30)e 1 2a 1, me 1 0, me 0 0,

(2.31)f µ b µ h µ k [µν] d µ 0

The system (2.27)-(2.31) is easily integrated. The equations (2.27) can be
rewritten in the form
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The equivalence of (2.27) and (2.32), (2.33) follows from the symmetry of gµσ and

(2.32)K ν
µ K µ

ν g µ
ν K n

n 0,

(2.33)f σµ 1
2

g σλK µ
λ , e 0 iK ν

ν .

antisymmetry of f [µσ] under the permutation of indices.
The equation (2.32) coincides with the conformal Killing equation (1.17), its

solutions are given in (1.18). Substituting (1.18) into (2.33) and bearing in mind that
in accordance with (2.30) for a nonzero m e0=e1=a1=0 we obtain

It follows from the above that the general expression (2.24) for Q and ßQ is

(2.34)K µ c [µν]xν ϕ µu, f [µν] 1
2

c [µν], d 0.

reduced to the form

where c [µσ], ϕ µ, a0 are arbitrary complex numbers. The operator (2.35) is a linear

(2.35)Q I(a0 c [µν]xµ pν ϕ µ pµ)
1
2

c [µν]Sµν, βQ 0

combination of the operators (2.22) and trivial identity operator, so the operators (2.22)
form a basis of the maximally extensive IA of the Dirac equation in the class M1.

We see the IA of the Dirac equation is isomorphic to the IA of the KGF
equation considered in Section 1. The essentially new point is the presence of the
matrix terms in the SOs (2.22). These terms correspond to an additional (spin) degree
of freedom possessed by the field described by the Dirac equation. We shall see in the
following that due to the existence of the spin degree of freedom the Dirac equation has
additional symmetries in the classes of higher order differential operators.

2.6. The Operators of Mass and Spin

It is well known that the Dirac equation describes a relativistic particle of mass
m and spin s. Such an interpretation of this equation admits a clear formulation in the
language of the Lie algebras representation theory.

The Dirac equation IA determined by the basis elements (2.22) has two main
invariant (Casimir) operators (see Section 4)

where Wµ is the Lubanski-Pauli vector

(2.36)C1 Pµ P µ, C2 WµW
µ
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Let us recall that a Casimir operator is an operator belonging to the enveloping

(2.37)Wµ

1
2 µν σJ ν P σ.

algebra of the Lie algebra, which commutes with any element of this algebra.
One of the main results of Lie algebra representation theory says that in the

space of an irreducible representation (IR) the Casimir operators are multiples of the
unit operator. Moreover eigenvalues of invariant operators can be used for labelling of
IRs inasmuch as different eigenvalues correspond to nonequivalent representations.

Thus, to label the representation of the Poincaré algebra, which is realized on
the set of solutions of the Dirac equation, it is necessary to find eigenvalues of the
operators (2.36). Substituting (2.22) into (2.36) and using (2.3), (2.6), (2.18) we obtain

In relativistic quantum theory the space of states of a particle with mass m and

(2.38)
C1ψ≡Pµ P µ ψ≡pµ p µ ψ m 2 ψ,

C2ψ≡WµW
µ ψ≡ 1

2
pµ p µSab Sabψ m 2s(s 1)ψ, s

1
2

.

spin s is set in correspondence with the space of the representation of the Poincaré
algebra corresponding to the eigenvalues m2 and -m2s(s+1) of the Casimir operators C1

and C2. So it follows from (2.37) that the Dirac equation can be interpreted as an
equation of motion for a particle of spin 1/2 and mass m.

2.7. Manifestly Hermitian Form of Poincaré Group Generators

Before we considered only such solutions of the Dirac equation which belong
to the space F4. But the operator L (2.1) and the SOs (2.22) can be defined also on the
set of finite functions (C0

∞)4 everywhere dense in the Hilbert space L2 of the square
integrable functions with the scalar product

where according to the definitions (2.2), (2.7)

(2.39)(ψ(1),ψ(2)) ⌡
⌠d 3xψ(1)†ψ(2)

It is not difficult to verify that the operators (2.22) are Hermitian in respect to

ψ(1)†ψ(2) ψ(1)
1 ψ(2)

1 ψ(1)
2 ψ(2)

2 ψ(1)
3 ψ(2)

3 ψ(1)
4 ψ(2)

4 .

the scalar product (2.39) where ψα satisfy the Dirac equation. To show that, it is
sufficient to represent these operators in the following form

(2.40)
P0 H γ0γa pa γ0 m, pa pa i

∂
∂xa

,

Jab xa pb xb pa Sab, J0a x0 pa

1
2

[xa, H] .
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Throughout on the set of solutions of the Dirac equation the operators (2.22) and (2.40)
coincide inasmuch as [xa,H]+≡2(xaH-S0a).

The operators (2.40) satisfy the commutation relations (1.14) and (in contrast
to (2.22)) are written in a transparently Hermitian form. So the operators (2.22) also are
Hermitian with respect to the scalar product (2.39). It follows from the above that the
Poincaré group transformations generated by the operators (2.22) (see Subsection 2.9)
are unitary, i.e., do not change the value of the scalar product (2.39).

2.8. Symmetries of the Massless Dirac Equation

The equation (2.1) has clear physical meaning also in the case m=0, describing
a massless field with helicity ±½. The symmetry of the Dirac equation with m=0 is
wider than in the case of nonzero mass.

THEOREM 2.2. The maximal IA in the class M1 of the equation

is a 16-dimensional Lie algebra whose basis elements are given by formulae (2.22) and

(2.41)γµ pµψ 0

(2.42)

where K=3/2.

(2.42)
D x µ pµ iK, Σ iγ4,

Kµ 2xµ D x νxν pµ 2Sµνx
ν

The proof can be carried out in complete analogy to that of Theorem 2.1 (see
Subsection 2.5). The general form of a SO is given in (2.24), the equations determining
the corresponding operators coefficients are given by relations (2.27)-(2.31) with m=0.
So it is not difficult to find the general solution for a SO in the form

The operator (2.43) is a linear combination of the generators (2.22), (2.42) and

(2.43)
Q I(2f νxνx

µ pµ f µ xν x νpµ ) c [µν]xµ pν dx µ pµ

ϕµ pµ 3if λ xλ a 0 iγ4 a 1 Sµν(
1
2

c [µν] 2f µ x ν).

the unit operator which give the basis of IA of the equation (2.41) the class M1.
The operators (2.22), (2.42) satisfy the commutation relations (1.14), (1.19)

which determine the Lie algebra of the conformal group. As to the operator Σ, it
commutes with any basis element of the IA. In other words the IA of the equation
(2.42) consists of the 15-dimensional Lie algebra which isomorphic to the IA of the
massless KGF equation, and an additional matrix operator Σ which is the center of the
IA of the massless Dirac equation.

Let us notice that the massless Dirac equation with the matrices (2.4) reduces
to two noncoupled equations:
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where σa are the Pauli matrices, ϕ±=(1 iγ4ψ)/2.

(2.44)p0ϕ± σa paϕ±

Relations (2.44) are called the Weyl equations. The SOs of the massless Dirac
equation can be decomposed into the direct sum of operators defined on ϕ±.

The explicit form of the basis elements of the conformal algebra on the set of
the Weyl equation solutions can be obtained from (2.22), (2.42) by the change
Sab→i[σa,σb]/4, S0a→±iσa/2. As to the operator Σ it is equal to the unit matrix on the
subspaces ϕ±.

2.9. Lorentz and Conformal Transformations of Solutions of the Dirac Equation

As was mentioned in Section 1 the main consequence of a symmetry of a
differential equation under an IA in the class M1 is that this equation turns out to be
invariant under the Lie group whose generators form the basis of this IA. In other
words proving the invariance of the Dirac equation under the algebra AP(1,3) and (for
m=0) conformal algebra we have actually established its invariance under Lorentz and
conformal transformations.

Here we shall find an explicit form of the group transformations of solutions
of the Dirac equation with zero and nonzero masses.

The general transformation of the symmetry group of (2.1) can be written in
the following form (compare with (1.45))

where Jµσ and Pµ are the operators (2.22), θµσ and bµ are real parameters. Using the

ψ(x)→ψ (x) exp( i
2

Jµσθ
µσ)exp(iP µbµ)ψ(x)

commutativity of Sµσ with xµ pσ-xσ pµ we can represent this transformation in the form

where

(2.45)ψ(x)→ψ (x) exp( i
2

Sµνθ
µν)ψ (x)

and J′µν are the operators (1.3).

(2.46)ψ (x) exp(iJµνθµν)exp(ipµb
µ)ψ(x),

Now, the transformations (2.46) have already been found in Section 1.5. In
fact the operator in the r.h.s. of (2.46) is a multiple of the unit matrix (i.e., has the same
action on any component of the wave function), hence, in accordance with (1.45)

(2.47)ψ (x) ψ(x)
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where x′′ is connected with x by the Lorentz transformation inverse to (1.32).
Substituting (2.46), (2.47) into (2.45) we obtain finally

or

(2.48)ψ(x)→ψ (x) exp( i
2

Sµσθ
µσ)ψ(x ),

Formula (2.49) (together with the relations (1.32), (1.39) determining

(2.49)ψ(x)→ψ (x ) exp( i
2

Sµσθ
µσ)ψ(x).

transformations of independent variables) gives the general form of Lorentz
transformations of solutions of the Dirac equation. In contrast to the transformation law
(1.45) of a scalar field formula (2.49) contains the matrix multiple exp(iSµσθµσ/2)
mixing the components of the wave function (2.2).

For the sake of convenience, in using formula (2.49) it is desirable to represent
exp(iSµσθµσ/2) as a polynomial in Sµσθµσ. Staring from (1.44) and using (2.3), (2.18) we
can prove the identity

where

(2.50)exp 







i
2

Sµσθ
µσ Λ











cosθ i

2θ
γµγσθµσsinθ Λ











cosθ i

2θ
γµγσθ

µσsinθ

So we have obtained a transformation law for solutions of the Dirac equation.

Λ±

1
2

(1± iγ4), θ± 2[(θ±
1)

2 (θ±
2)

2 (θ±
3)

2 ]1/2, θ±
a

1
2 abcθbc± iθ0a.

Taking particular values of the parameters θµσ, bµ it is not difficult to obtain the
corresponding Lorentz transformation for the wave function. If e.g. the only nonzero
parameter is θ12 we obtain from (2.50)

For nonzero θ01, θab= θ02= θ03=0 we have

(2.51)exp 







i
2

Sµσθ
µσ cos 








1
2

θ12 γ1γ2 sin 







1
2

θ12 .

The transformations (2.49), (2.51) and (2.49), (2.52) correspond to rotations of the

(2.52)exp 







i
2

Sµσθ
µσ cosh 








1
2

θ01 γ0γ1sinh







1
2

θ01 .

reference frame in the plane 1-2 and to Lorentz transformation (1.28) for a=1.
Let us adduce the explicit form of the dilatation and conformal

transformations of solutions of the massless Dirac equation:

(2.53)ψ(x)→ψ (x ) exp 







3
2

θ ψ(x),
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where x′ are given by relations (1.48).

(2.54)ψ(x)→ψ (x ) (1 2bµ x µ bµb
µxν x ν)(1 γλγσb λx σ)ψ(x)

Formulae (2.53) (and (2.54)) can be obtained by solving the Lie equations
corresponding to the generators D and Kµ (2.45). Later in Subsections 3.5, 3.9, we
present solutions of these equations and the explicit form of the conformal
transformations for fields with arbitrary spin.

2.10. P-, T- and C-Transformations

Let us study the symmetry of the Dirac equation under the space inversion and
time reflection. In analogy with (2.48) we will seek these transformations operators
in the form

where r1 and r2 are some numerical matrices.

(2.55)ψ(x0,x)→Pψ(x0,x) r1ψ(x0, x),
ψ(x0,x)→Tψ(x0,x) r2ψ( x0,x)

The operators defined in this way satisfy the following evident relations

hence the invariance condition (2.21) for the transformations (2.55) can be written in

Pp0 p0P, Ppa pa p, Tp0 p0T, Tpa paT,

the form

where L(p0,p)≡L is the Dirac operator (2.1). The relations (2.56) reduce to the following

(2.56)r1L(p0,p) L(p0, p)r1 α1L(p0,p),
r2L(p0,p) L( p0,p)r2 α2L(p0,p)

equations for r1, r2, α1, α2:

The general solution of (2.57) is

(2.57)[r1,γ0] [r1,γa] [r2,γ0] [r2,γa] 0, α1 α2 0.

where τ1 and τ2 are complex parameters. The requirement of unitarity of the

(2.58)r1 τ1γ0, r2 τ2γ0γ4

transformations (2.55) reduces these parameters to phase multipliers

So the Dirac equation is invariant under the discrete transformations (2.55),

(2.59)τ1 exp(iϕ1), τ2 exp(iϕ2), ϕ1,ϕ2∈ .

(2.57) (2.58) which complete the representation of the proper orthochronous Poincaré
group to a representation of the complete Poincaré group. One more symmetry
transformation of the Dirac equation can be given by the antiunitary operator C:
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where r3 is a matrix satisfying the conditions (compare with (2.56))

(2.60)ψ(x0,x)→Cψ(x0,x) r3ψ (x0,x),

where the asterisk denotes that all terms in the corresponding operator should to be

(2.61)r3L(p0,p) L (p0,p)r3 α3L(p0,p),

changed to complex conjugated ones.
Using (2.1), (2.4), (2.61) it is not difficult to find that

Moreover without loss of generality we can set τ3=1.

(2.62)a3≡0, r3 iτ3γ2, τ3 exp(iϕ3 ).

The transformation (2.60) is called a charge conjugation. The sense of this
name can be understood by considering the Dirac equation for a particle interacting
with an external electromagnetic field, where the transformation (2.60) is accompanied
by a change of the electric charge of a particle.

Let us require that the charge-conjugated function (2.60) have the same
behavior under the transformations P and T as non-conjugated wave function. This
requirement imposes the following conditions on τ1, τ2: Reτ1=Imτ2=0, so we have from
(2.58), (2.59)

Thus the Dirac equation is invariant under the P-, T- and C-transformations

(2.63)r1 ±γ0, r2 ±iγ0γ4, r3 1.

just as the KGF equation. The transformations (2.55), (2.60), (2.63) together with the
Poincaré group transformations found in Subsection 2.9 form a symmetry group of
(2.1), which we denote by Pc(1,3). The projective representations of the group Pc(1,3)
are considered in Section 4.

3. MAXWELL’S EQUATIONS

3.1. Introduction

Maxwell’s equations are one of the main foundations of modern physics.
Describing a very extensive branch of physical phenomena, these equations are
distinguished by their extremely simple and elegant form. But the source of this
simplicity and elegance lies in the remarkably rich symmetry of Maxwell’s equations.

The investigation of the symmetry of Maxwell’s equations has a long and
glorious history. In 1893, having written these equations in the vector notations,
Heaviside [219] pointed out that they are invariant under the change

E→H, H→ E,

28



Chapter 1. Symmetries of the Fundamental Equations ...

where E and H are the vectors of the electric and magnetic field strengths. Larmor
[272] and Rainich [368] found that this symmetry can be generalized to the family of
one-parameter transformations (we will call them Heaviside-Rainich transformations)

Lorentz [288], Poincaré [361, 362] and Einstein [90] obtained the most

(3.1)E→Ecosθ Hsinθ,
H→Hcosθ Esinθ.

fundamental result connected with the symmetry of Maxwell’s equations, which paid
a revolutionary role in physics. It was Lorentz who first found all possible linear
transformations of space and time variables (and the corresponding transformations for
E and H) leaving Maxwell’s equations invariant.

Augmenting and generalizing Lorentz’s results, Poincaré showed that in the
presence of charges and currents Maxwell’s equations are invariant under Lorentz
transformations. Poincaré first established and studied the main property of these
transformations, i.e., their group structure, and he showed that "the Lorentz
transformations represent a rotation in a space of four dimensions whose points have
coordinates (x, y, z,√− 1 t)" [361]. Thus, Poincaré combined space and time into a single
four-dimensional space-time at least three years before Minkowski [306].

In Einstein’s famous work [90] which played an outstanding role in the history
of modern science it was also established that Maxwell’s equations with currents and
charges are invariant under Lorentz transformations. On the basis of their study of the
symmetries of Maxwell’s equations, Lorentz, Poincaré and Einstein created the
foundations of new relativity theory. Moreover new relativity principle (differing from
the Galilei relativity principle) was created in physics.

The next important step in studying the symmetry of Maxwell’s equations was
made by Bateman [22,23] and Cuningham [70] who proved that these equations are
invariant under the inversion transformation

(suplemented by the corresponding transformation of the dependent variables) from

xµ→
xµ

xνx
ν
,

which follows invariance under the conformal transformations (1.50). In fact Bateman
proved that the conformal group invariance determines the maximal symmetry of
Maxwell’s equations with currents and charges [22].

Not long ago the group-theoretical analysis of Maxwell’s equations was done
using the classical Lie approach [71, 226]. Incidentally it was proved rigorously that
the maximal local invariance group of Maxwell’s equations for the electromagnetic
field in vacuum is the 16-parameter group C(1,3)⊗H where H is the one-parameter
group of Heaviside-Larmor-Rainich transformation (3.1).

But the transformations mentioned above do not exhaust all the symmetries
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of Maxwell’s equations. These equations possess hidden (nongeometric) symmetries
which are not connected with transformations of independent variables [120, 144]. The
main property of this "new" symmetry is that the basis elements of the corresponding
IA do not belong to the class M1 (in contrast to the classical Lie approach) but are
integro-differential operators (see Chapter 4).

The classical (Lie) symmetry of Maxwell’s equations is discussed in the
present section.

3.2. Various Formulations of Maxwell’s Equations

Maxwell’s equations for the electromagnetic field in vacuum are usually
written in the following form

where E and H are the vectors of the electric and magnetic field strengths.

(3.2a)p×E i
∂H
∂t

, p×H i
∂E
∂t

,

(3.2b)p E 0, p H 0

In the presence of currents and charges Maxwell’s equations take the form

where j=(j,j0) is the four-vector of the electric current and the constant of

(3.3a)i
∂E
∂t

p×H ij, p E ij0,

(3.3b)i
∂H
∂t

p×E, p H 0

electromagnetic interaction has been taken equal to one.
The vector formulation of Maxwell’s equations given above was proposed by

Hertz and Heaviside. Besides (3.2), (3.3) we shall consider other representations of
these equations suitable for the investigation of symmetries.

Let us denote by Φ the following vector-function

where Ea and Ha are the components of the electric and magnetic field strengths. The

(3.4)Φ








E
H column(E1,E2,E3,H1,H2,H3)

equation (3.2) may be represented in the form

where

(3.5)
L̂1Φ 0, L̂1 i

∂
∂t

H≡i
∂
∂t

σ2S p,

L̂
a

2 Φ 0, L̂
a

2 (Z ab i abcSc )pb

30



Chapter 1. Symmetries of the Fundamental Equations ...

and σ2 is the 6×6 Pauli matrix commuting with Sa (i.e., the matrix obtained from (2.5)

(3.6)

Z ab 2δab SaSb SbSa,

Sa













Ŝa 0

0 Ŝa

, Ŝ1















0 0 0

0 0 i

0 i 0

, Ŝ2















o 0 i

0 0 0

i 0 0

, Ŝ3















0 i 0

i 0 0

0 0 0

,

by change 1 and 0 by the 3×3 unit and zero matrices).
It is not difficult to make sure the equations (3.2) and (3.5) coincide

componentwise for any a=1,2,3.
The formulation (3.4)-(3.6) is mainly used in the following by the analysis of

hidden symmetries of Maxwell’s equations.
Maxwell’s equations can be written in the form of a first-order covariant

equation also

where ßµ are irreducible 10×10 matrices of Kemmer-Duffin-Petiau (KDP) in the

(3.7)(βµ p µ β2
4κ)ψ̃ 0

representation (6.22),

Substituting (3.8), (6.22), (6.24) into (3.7) we obtain the system

(3.8)ψ̂ column(E1,E2,E3,H1,H2,H3,A1,A2,A3,A0).

from which the equations (3.2) follow immediately.

∂Ab

∂x0

∂A0

∂xb

κEb , κH ip×A,

i∂E
∂t

p×H, p E 0,

Maxwell’s equations in the form (3.7) were discussed by Fedorov [95] and
Bludman [38].

Maxwell’s equations with currents and charges can also be written in the
covariant form. Denoting

it is possible to represent (3.3) as the following system [154, 157]

(3.9)ψ column(E1,E2,E3,H1,H2,H3,J1,J2,J3,J0)

where ßµ are the matrices (6.22). The other possibility is to use the 16×16 KDP

(3.10)
L1ψ 0, L1 (1 β2

4)(βµ pµ 1),

L2ψ 0, L2 βµ pµβ4,

matrices which make it possible to write Maxwell’s equations with currents and
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charges in the form of a single covariant equation [154].

3.3. The Equation for the Vector-Potential

Let us consider one more formulation of Maxwell’s equations which makes
use of a four-component function (vector-potential) A=(A0,A1,A2,A3) connected with E
and H by the relations

Substituting these expressions into (3.3) we obtain the following equations for Aµ

(3.11)H ip×A, E ∂A
∂t

ipA0.

So instead of eight equations for E, H one may solve the system (3.12) for Aµ

(3.12)pν p νAµ pµ pν A ν jµ.

and then find the vectors of the magnetic and electric field strengths using formulae
(3.11). Moreover the system (3.12) can be simplified using the freedom in the choice
of Aµ. Actually the relations (3.11) are invariant with respect to the substitution

where Φ is an arbitrary function. This is why the additional constraint (Lorentz gauge)

(3.13)Aµ→Aµ ipµΦ

is imposed usually on Aµ:

which reduces (3.11) to the system of noncoupled equations

(3.14)pµ A µ 0

As before, the equations (3.14), (3.15) determine the vector-potential up to the

(3.15)pν p νAµ jµ.

transformation (3.13) where Φ is a function satisfying the equation pµ pµΦ=0. Using
such transformations (called a gauge transformations of the second kind) it is possible
to arrange that

The conditions (3.16) (which in contrast to (3.14) are not relativistically invariant and

(3.16)A0 0, p A 0.

can be imposed in a fixed reference frame only) are called the Coulomb gauge.
To conclude this subsection we notice that by using the connection of the

vectors E an H with the four-vector Aµ given by formulae (3.11) Maxwell’s equations
can be written in the tensor form

where

(3.17)pνF
νµ ij µ, pνF̃

νµ
0
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F µν i(p µA ν p νA µ), F̃
µν 1

2
µν σF σ.

3.4. The IA of Maxwell’s Equations in the Class M1

To investigate the local symmetries of Maxwell’s equations, we shall use the
covariant formulation of these equations given in (3.10).

The problem of finding the IA of the equations (3.10) in the class M1 can be
formulated in analogy with the corresponding problem for the Dirac equation
considered in Section 2. The only distinction is that Maxwell’s equations (3.10) are
represented as a result of action of two linear operators on a vector ψ while the Dirac
equation is determined by the only operator L of (2.1).

In analogy with Section 2 let us formulate a definition of a SO Q∈M 1 for
Maxwell’s equations.

DEFINITION 3.1. A linear differential operator

is a SO of Maxwell’s equations (3.10) in the class M1 if

(3.18)Q A µ pµ B, A µ∈ F, B∈ G 10

where L1, L2 are the operators (3.10) and the symbol G10 denotes the linear space of

(3.19)[Q,L1] β1
Q L1 β2

Q L2, βα
Q∈ G 10;

[Q,L2] λ1
Q L1 λ2

Q L2, λα
Q∈ G 10,

10×10 matrices whose matrix elements belong to F (see Subsection 1.1).
As in the case of the Dirac equation, SOs transform solutions into solutions

and the set of SOs forms a Lie algebra.
The main assertion concerning the symmetry of Maxwell’s equations can be

formulated as follows
THEOREM 3.1. Maxwell’s equations (3.10) are invariant under the 15-

dimensional Lie algebra which is isomorphic to the algebra AC(1.3). The basis
elements of this IA can be taken in the form of (2.22), (2.42) where

The Lie algebra spanned on the basis (2.22), (2.42), (3.20) is the maximal IA of

(3.20)Sµν i(βµβν βνβν), K 3 β2
4.

Maxwell’s equations in the class M1.
PROOF. Using the relations

(which follows from (6.20), (6.23)) one verifies that the operators (3.10), (2.22), (2.42),

(3.21)β3
4 β4, (1 β2

4)βµ βµβ
2
4, βµβ

µ 3 β2
4, [βµ,Sνλ] i(gµλβν gµνβλ)

(3.20) satisfy the invariance conditions
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which coincide with (3.19) for

(3.22)[Pµ,Lα] [Jµν,Lα] [D,Lµ] [Kµ,Lα] 0

βα
Q λα

Q 0.
Using relations (3.21) it is not difficult to verify that the operators (2.22),

(2.42), (3.20) satisfy the commutation relations (1.14), (1.19) which characterize the
algebra AC(1.3).

We see that the operators (2.22), (2.42), (3.20) actually form the IA of
Maxwell’s equations. The proof that this IA is maximal in the class M1 will be given
in Section 20 as a part of the solution of a more complicated problem.

COROLLARY 1. Each of the equations (3.10) is invariant under the algebra
AC(1,3).

This statement follows from the commutativity of each of the operators L1 and
L2 with the basis elements of the algebra AC(1,3).

COROLLARY 2. Maxwell’s equations for the electromagnetic field in
vacuum are invariant under the 16-dimensional Lie algebra whose basis elements are
given in (2.22), (2.42) (where Sµσ, K are the matrices (3.20)) and in (3.23):

Indeed, Maxwell’s equations without currents and charges can be represented

(3.23)F β4.

in the form of the system (3.10) with the additional constraint

The matrix 1-(ß4)
2 commutes with any element of the algebra AC(1,3) and, moreover,

(3.24)L3ψ≡(1 β2
4)ψ 0.

the relations

are satisfied. So the generators of the conformal group and the operator F are the SOs

[L1,F] iL2, [L2,F] L1 L3 FL2, [L3,F] 0

of the system (3.10), (3.24).
Thus the symmetry of Maxwell’s equations for the electromagnetic field in

vacuum turns out to be broader than in presence of currents and charges. It is connected
with the fact that the equations (3.3) includes the current in a nonsymmetric way (due
to the absence of the magnetic charge). As a result Maxwell’s equations with currents
and charges are not invariant under the Heaviside-Larmor-Rainich transformations
(which are generated by the operator F, as will be shown in the following).

3.5. Lorentz and Conformal Transformations

A direct consequence of symmetry of Maxwell’s equations under the IA found
above is the invariance under the group of conformal transformations. Here we will
show the explicit form of these transformations and then generalize these
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transformations to the case of arbitrary spin (see Subsection (3.9)).
The deduction of Lorentz and conformal transformations for the

electromagnetic field is analogous to the one given in Subsection 2.9 where the
corresponding transformations for the Dirac equation solutions are found. Therefore
we will omit the details and mention only the essential points.

As in Section 2, it is not difficult to show that the transformations of
independent variables generated by the operators (2.22), (2.42), (3.20) have the form

where

(3.25)x→x x a, x0→x0 x0 a0,

(3.26)x→x xcosθ θ×x
θ

sinθ θ(θ x)

θ2
(1 cosθ), x0→x0 x0,

(3.27)
x→x x

λx0

λ
sinhλ λ(λ x)

λ2
(coshλ 1),

x0→x0 x0coshλ x λ
λ

sinhλ,

)xµ→x IV
µ exp( λ0)xµ,

(3.29)xµ→x V
µ

xµ bµxνx
ν

1 2bνx
ν bνb

νxλx
λ

θa, bµ, λa and aµ are real parameters.

θ (θ2
1 θ2

2 θ2
3)

1/2, λ (λ2
1 λ2

2 λ2
3)

1/2,

Formulae (3.25)-(3.29) give the displacements of the time and space variables,
rotation by an angle θ around the axis θ/θ, proper Lorentz transformation (3.27), scale
transformations (3.28) and conformal transformations (3.29). Moreover (3.25)-(3.27)
are particular cases of the general Lorentz transformation (1.36), (1.38), (1.39).

In order for Maxwell’s equations to be invariant under transformations (3.25)-
(3.29) it is necessary to transform simultaneously the vector-function (3.9) in
accordance with the following law [154, 157]

(3.30)ψ(x)→ψ (x ) ψ(x),

(3.31)ψ(x)→ψ (x ) exp 







i
2 abc Sabθc ψ(x),

(3.32)ψ(x)→ψ (x ) exp(iS0aλa)ψ(x),

(3.33)ψ(x)→ψIV(x IV) exp( iKλ0)ψ(x),
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where Sµσ and K are the matrices (3.20),

(3.34)ψ(x)→ψV(x V ) [ϕ(x,b)]K exp










2iSµν b µ x ν

a
arctan a

bµ x µ 1
ψ(x)

Formulae (3.30)-(3.32) are distinct from the corresponding formulae giving

(3.35)ϕ (x,b) 1 2bµ x µ bν b νxλ x λ, a [bµ b µ xν x ν (bµ x µ )2]1/2.

the transformations of solutions of the Dirac equation only by the realization of the
matrices Sµσ (compare with (2.47), (2.49)). It is not difficult to make sure also that the
dilatation and conformal transformations for the Dirac spinors given in (2.53), (2.54)
also can be represented in the form (3.33), (3.34) where K=3/2, Sµν=[γµ,γν]/4, γµ are the
Dirac matrices.

Using relations (3.30)-(3.34) it is not difficult to obtain the transformation law
for the vectors H, E and four-vector of current j. Indeed bearing in mind the identity
(which follows from (3.20), (6.20))

where dµσ are arbitrary parameters, one can represent each of the exponentials from

(Sµνd
µν)3 (dλσd λσ dλσd σλ)Sµνd

µν

(3.31), (3.32) as a sum in powers of the matrices Sµσ

As to the operator [ϕ(x, b)]K (where K=3−(ß5)
2 is a Hermitian matrix) it can be

(3.36)

exp 







i
2 abc Sabθc 1 i

S θ
θ

sinθ 







S θ
θ

2

(cosθ 1),

S (S1,S2,S3 ), Sa

1
2 abc Sbc;

exp(iS0aλa ) 1 i
S0aλa

λ
sinhλ











S0a λa

λ

2

(coshλ 1),

exp










2i
Sµν b µ x ν

a
arctan a

bµ x µ 1

ϕ(x,b) 1[ϕ(x,b) 2iSµν x µb ν(bλ x λ 1) 2(Sµν x µb ν)2 ].

represented in the form

where σ are eigenvalues of the matrix K (equal to 2 or 3) and Λσ are the projection

(3.37)[ϕ(x,b)]K [ϕ(x,b)]σΛσ,

operators corresponding to these eigenvalues

Then, using the explicit expressions of Sµσ and ßµ given in (3.20), (6.22), (6.24), we

(3.38)Λ3 β2
5, Λ2 1 β2

5.
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obtain

where Ŝa are the 3×3 matrices (3.6), Sµσ are the 4×4 matrices (1.42), I is the 3x3 unit

(3.39)

Sa i abcβbβc























Ŝa

Ŝa

Ŝa

, S0a i[β0,βa]























Ŝa

Ŝa

ηa

η†
a

,

K 3 β2
5



















3I

3I

2I

2

, β2
5



















I

I

matrix, the dots denote zero matrices of an appropriate dimension.
Substituting (3.9), (3.36)-(3.39) into (3.30)-(3.34) we obtain the following

transformation laws

(3.40a)

E→E E, H→H H, j→j j,

j0→j0 j0, (E,H, j)→(E ,H , j )

(E,H,J)cosθ θ×(E,H, j) sinθ
θ

θ (θ (E,H, j)) 1 cosθ
θ2

,

E→E Ecoshλ λ×H sinhλ
λ

λ(λ E) 1 coshλ
λ

,

H→H Hcoshλ λ×E sinhλ
λ

λ(λ H) 1 coshλ
λ

,

j0→j0 j0coshλ λ j sinhλ
λ

, j→j j λj0

sinhλ
λ

λ(λ j) 1 coshλ
λ

,

((E,H)→(E IV,H IV) exp( 2λ0)(E,H), j→j IV exp( 3λ0)j,

(3.40b)

E→E V ϕ[(b µx V
µ 1)2E 2(b µx V

µ 1)b0x
V×H x V

0 b×H bx V E x Vb E)

b×x V(x V
0 b H b0x

V H b×x V E) (bx V
0 x Vb0)(b x V×H x V

0 b E b0x
V E)],

H→H V ϕ[(b µx V
µ 1)2H 2(b µx V

µ 1)(x V
0 b×E b0x

V×E bx V H x Vb H)

b×x V(b×x V H b0x
V E x V

0 b E) (bx V
0 x Vb0)(b0x

V H x V
0 b H b×x V E)],

jλ→j V
λ ϕ2 ϕjλ 2[bλ(1 2x V

λ b λ) x V
λ b µb µ]x V

µ j µ 2(x V
λ bλx

V
ν x Vν)bµj

µ .
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Formulae (3.40) give the explicit form of the transformations of the conformal
group for the vectors of the electric and magnetic field strengths and the current four-
vector. The corresponding transformations for t and x are given in (3.25)-(3.29). These
formulae are quite complicated but simplify considerably if only one of the parameters
aµ, bµ, θa, λa is nonzero. For instance setting b1=b2=b3=0, b0=b in the transformation law
(3.40) for EV we obtain

Analogous transformations for H can be obtained from (3.41) by the change E → H,

(3.41)E V (1 2bx0 b 2xµ x µ)[(1 bx0)
2E b 2x(x E) 2b(1 bx0)x×H].

H → −E.
Formulae (3.40), (3.41) may be useful for various applications - e.g. for the

construction of nonlinear generalizations of Maxwell’s equations, being invariant under
the conformal group.

3.6. Symmetry Under the P-, T- and C-Transformations

Invariance under the transformations considered above does not exhaust all
symmetry properties of Maxwell’s equations. We will see later that these equations are
invariant also with respect to nonlocal transformations not connected with geometrical
space-time symmetries.

But there exist discrete symmetry transformations of dependent and
independent variables which we not considered in the previous subsection. There are
the transformations of time reflection and space inversion. In fact it is not difficult to
verify that Maxwell’s equations do not change their form under the transformation

There is one more symmetry which is trivial for Maxwell’s equations

(3.42)x0→x0, x→ x, E→ E, H→H, j→ j, j0→j0,
x0→ x0, x→x, E→E, H→ H, j→ j, j0→j0.

describing real field, but is not admitted by some other equations for massless fields.
This is the charge conjugation transformation

Using the vector-function (3.9) it is possible to represent the transformations

(3.43)E→E , H→H , j→j .

(3.42), (3.43) in the form (2.55), (2.60), where r1=1-2ß0
2, r2=(1-2ß0

2)(1-2ß5
2), r3=1. The

invariance of (3.10) under these transformations follows from the relations

where L1 and L2 are the operators (3.10). The operators P, T and C satisfy the relations

[P,L1] [P,L2] [T,L1] [T,L2] [C,L1] [C,L2] 0

(1.54) just as in the cases of the KGF and Dirac equations.
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3.7. Representations of the Conformal Algebra Corresponding to a Field with
Arbitrary Discrete Spin

We have shown in the above that the IA of Maxwell’s equations in the class
M1 is the 15-dimensional algebra AC(1,3). This algebra and their representations play
a fundamental role in modern theoretical physics.

In this section we continue discussing the conformal symmetry of Maxwell’s
equations and other relativistic wave equations for massless fields. It will be shown that
the conformal group generators Kµ and D are expressed via the Poincaré group
generators Pµ and Jµσ on the set of solutions of such equations

DEFINITION 3.2. We say that an equation

where L is some linear differential (or integro-differential) operator, is Poincaré-

(3.44)Lψ 0

invariant and describes a massless field with discrete spin if on the set of its solutions
a representation of the Poincaré algebra is realized corresponding to zero eigenvalues
of the Casimir operators (2.36):

In other words if an IA of some equation is given by the operators Pµ, Jµσ

(3.45)P µPµψ 0, W µWµψ 0

satisfying (1.14), (3.45) than we call it an equation for a massless field with discrete
spin. It appears that any such equation is also invariant under the more extensive
(conformal) algebra as it is stated in the following theorem.

THEOREM 3.2 [143]. Any Poincaré invariant equation for a massless field
with discrete spin is invariant under the conformal algebra whose basis elements are
given by the operators Pµ, Jµσ, forming the algebra AP(1,3), and the operators D, Kµ

expressed via Pµ, Jµσ by the relations

where

(3.46)D
1
2











P0Pa

P 2
,J0a , K0

1
2











P0

P 2
,J0aJ0a Λ2 1

2
, Ka i[K0,J0a ],

PROOF. Since Pµ and Jµσ by definition form an IA of equation (3.44), the

Λ J P
P

, P P 2
1 P 2

2 P 2
3 .

operators (3.46) expressed via Pµ, Jµσ are also included in the IA of this equation.
Further, by assumption, Pµ and Jµσ satisfy the commutation relations (1.14) , and the
proof of the theorem reduces to verifying the validity of the relations (1.19) for the
operators (3.46). Verification of these relations requires straightforward but
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cumbersome calculations which can be done using the relations

Thus, formulae (3.46) give explicit expressions for basis elements of the

(3.47)
P 2

0 P 2, Wµ

P0

P
Λ Pµ, [Λ,Jµν ] [Λ,Pµ ] 0,

[ 1

P 2
,Jab] 0, [ 1

P 2
,J0a] 2i

P0 Pa

P 4
.

algebra AC(1,3) in terms of the operators Pµ, Jµσ contained in its subalgebra AP(1,3).
Theorem (3.2) has constructive character since it enables to find the explicit

form of the generators D and Kµ starting from given basis elements of the Poincaré
algebra. Thus, proceeding from the generators Pµ, Jµσ in the Lomont-Moses
representation (see (4.50) for n1=n2=0) we obtain, by formulae (3.46), the generators
of the conformal group in the Bose-Parker representation [50]. Other representations
are considered in Section 4 and the next subsection.

In conclusion we notice that the algebra AC(1,3) is isomorphic to the Lie
algebra of the group O(2,4) (the group of pseudoorthogonal matrices conserving the
vector length in the (2+4) Minkowski space. This isomorphism can be established by
the following relations

where Pµ, Jµσ, Kµ, D are the basis elements of the algebra AC(1,3) satisfying the

(3.48)Jµν←→Sµν, pµ←→S5µ S4µ, Kµ←→S5µ S4µ, D←→S45

commutation relations (1.14), (1.19), and Smn are the generators of the group O(2,4)
satisfying the relations

The existence of this isomorphism means that the problem of the description of the

(3.49)
[Skl,Smn] i(gknSlm glmSkn gkmSln glnSkm),

g00 g11 g22 g33 g44 g55 0, gmn 0, m≠n.

representations of the algebra AC(1,3) reduces to the description of the representations
of the algebra AO(2,4).

3.8. Covariant Representations of the Algebras AP(1,3) and AC(1,3)

Of particular interest is the use of the algorithm given in Theorem 3.2 in the
case when the Poincaré group generators have the covariant form (2.22) inasmuch as
such representations are used for description of actual physical fields.

Here we will consider such representations, restricting ourselves to the case
when the matrices Sµσ realize the finite dimensional IR D(j τ) of the algebra AO(1,3)
(see Section 4). To simplify the discussion we will use the realization of (2.22) in the
momentum representation where pµ are independent variables, xµ=i∂/∂pµ.

Let ψ be an arbitrary solution of (3.44) describing a field with zero mass and
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discrete spin, and the corresponding Poincaré generators have the form (2.22). Then
by definition ψ satisfies conditions (3.45) which take the following form

It is convenient to rewrite (3.51) in the form (see (3.49))

(3.50)(p 2
0 p 2)ψ 0

(3.51)WµW
µ ψ SµνS

νλ pλ p µ ψ 0

where Λ is the helicity operator (3.46). When µ=0, the equation (3.52) turns into

(3.52)Wµψ≡ 1
2 µνρσ p νS ρσψ

p0

p
Λ pµψ,

identity according to (3.50), but when µ=a, a≠0, this equation takes the form

Using relations (4.59), (7.19) given below for S → j and S → τ one concludes that the

(3.53)(p0 Sbc pbS0c pcS0b)ψ abc pa

p0

p
Λψ,

equation (3.53) is equivalent to the following system

where j and τ are integers or half integers enumerating the IR of the algebra AO(1,3).

(3.54)
S0a pa ψ i(j τ)p0ψ,

1
2 abcSab pcψ (j τ)p0ψ,

So if ψ is a covariant massless field with discrete spin than it satisfies the
equations (3.50), (3.54). In the case j=0, τ=1/2 (or j=1/2, τ=0) the equations (3.54)
coincide and reduce to the Weyl equation, and for j=1, τ=0 these equations are
equivalent to Maxwell’s equations.

Let as find the operators D and Kµ (3.46) corresponding to the generators
(2.22). According to the reasons given below it is sufficient to restrict ourselves to the
case when the matrices Sµσ realize the representation D(s 0) or D(0 s).

Substituting (2.22) into (3.46) we obtain after a simple calculation

where A, B, Cµ, Eµ are some functions of pµ, xµ the exact form of which is not essential

(3.55a)D
1
2











P0Pa

P 2
,J0a ≡x0 pa xa p0 i(s 1) A(p 2

0 p 2) B(S0a pa isp0 ), s j τ,

(3.55b)
K0

1
2











P0

P2

,J0a J0a Λ2 1
2

≡2x0D xµ x µp0 2S0a xa C0(p
2

0 p 2) E0(S0apa isp0),

Ka i[K0,J0a] 2xaD x µ xµ pa 2Saµ x µ Ca(p 2
0 p 2 ) Ea(S0apa isp0),

because the corresponding terms are equal to zero on the set of solutions of (3.50),
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(3.54). Moreover

where k=1+s according to (3.50), (3.54), (3.55).

(3.56)Dψ (x0 p0 xa pa ik)ψ, Kµψ (2xµ D xν x ν pµ 2Sµν x ν )ψ,

In the case when Sµσ belong to an arbitrary finite dimensional representation
of the algebra AO(1,3), formulae (2.22), (3.56) give an explicit form of the conformal
group generators in the Mack-Salam [289] representation. For instance, the basis
elements of the algebra AC(1,3) have this form on the set of solutions of the massless
Dirac, Weyl and Maxwell equations (compare with (2.22), (2.42)).

Let us sum up. According to Theorem 2.3 any Poincaré-invariant equation for
a massless field with discrete spin turns out to be invariant under the conformal algebra
which, however, is generally realized in the class of nonlocal (integro-differential)
operators.

In this section we have verified that if one starts from a covariant
representation of the algebra AP(1,3) then the algorithm given in Theorem 2.3 leads to
the conformal algebra representation in the covariant form of Mack and Salam [289].
Thus it has been established that the operators D and Kµ in the covariant realization
(3.56) can be expressed via the Poincaré group generators according to (3.46). Of
course this statement is valid only for the representations satisfying Definition 3.2, i.e.,
corresponding to zero mass and discrete spin. In particular it is valid for representations
realized on the sets of solutions of the massless Dirac and Maxwell equations, i.e., the
corresponding generators of dilatation D and conformal transformations Kµ can be
expressed via the Poincaré group generators Pµ, Jµσ according to relations (3.46). This
seems to be an explanation of the known fact that the conformal symmetry of
Maxwell’s equations does not lead to new conservation laws in comparison with the
Poincaré invariance, see [32, 358].

Let us explain why we restrict ourselves to considering such representations
of the matrices Sµσ of (2.22) which have the type D(0 τ) or D(j 0). As was established
by Bracken [52] the operators (2.22), (3.56) form an IA of the d’Alembert equation
(3.50) only in the case when jτ=0 where j and τ are indices labelling the representation
of the group O(1,3) realized by Sµσ. So only for such types representations it is possible
to obtain a covariant realization of the generators D and Kµ using Theorem 2.3 (another
representations do not correspond to a field with zero mass [52]). If j and τ are nonzero
then formulae (2.22), (3.46) also define a representation of the algebra AC(1,3) but the
corresponding D and Kµ do not belong to the class M1 (for realizations in the coordinate
representation).
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3.9. Conformal Transformations for Any Spin

In conclusion we should note that the conformal group transformations
generated by the operators (2.22), (3.56), where Sµσ are arbitrary matrices satisfying the
algebra AO(1,3), can be represented in the form (3.30)-(3.34). It is not difficult to make
sure that the transformations (3.30)-(3.34) satisfy the Lie equations (1.47) for any
matrices Sµσ forming the algebra AO(1,3), and so give the explicit form of the
conformal group transformations for any representation of the Mack-Salam type. The
other (but equivalent to (3.34)) realization of the conformal transformation matrix for
arbitrary spin was given in [371].

For every particular representation D(j τ) of the algebra AO(1,3) the
exponential of the matrices Sµσ∈ D(j τ) reduces to a finite sum of powers of these
matrices, since ∏(Sµσ-λ)=0 where λ are the eigenvalues of Sµσ, - j-τ ≤λ≤ j+τ. Thus an
explicit form of the transformations (3.30)-(3.34) is easily calculated for any
Sµσ∈ D(j τ).

We notice that the transformations (3.30)-(3.34) can be considered as a local
representation of the conformal group only, since we encounter not only the problem
of defining the domain of the functions ψ′(x′), ψ′′(x′′), ... but also the fact that the
expressions (3.29), (3.34) become meaningless for 1-2bµx

µ+bµb
µxσxσ=0.
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2. REPRESENTATIONS OF THE POINCARÉ
ALGEBRA AND WAVE EQUATIONS
FOR ARBITRARY SPIN

The two opening sections of this chapter contain a description of IRs of the
algebra AP(1,3) and operators P, T, and C. Incidentally the basis is used in which the
Poincaré group generators have a common form for all the classes of IRs. The main
elements of a theory of Poincaré-invariant equations for arbitrary spin particles are
expounded in Sections 6-10.

4. IRREDUCIBLE REPRESENTATIONS OF THE
POINCARÉ ALGEBRA

4.1. Introduction

Representations of the Lie algebras of the main groups of relativistic and
nonrelativistic physics, i.e., the Poincaré and Galilei groups, are one of the most
important instruments of a symmetry analysis of equations of quantum mechanics.
These representations are used for a classification and physical interpretation of known
equations as well as for deduction of new motion equations satisfying relativity
principles of Galilei or Lorentz, Poincaré and Einstein.

IRs of the Poincaré group were described mainly by Wigner as long ago as
1939 [413]. Then Wigner’s results were supplemented by Shirokov [386] who for the
first time finds an explicit form of basis elements of the algebra AP(1,3) for all the
classes of IRs. In many publications appearing later, representations of the Poincaré
algebra in various basis were obtained. (See the survey [29] and the references cited
there.) Each of the realizations found of the algebra AP(1,3) has its merits and
drawbacks, each being more convenient for a particular class of physical problems.

The realization of IRs of the Poincaré algebra given below is remarkable for
a simple and symmetric form of basis elements which is common for all the classes of
IRs. In the following sections we will give the classification of IRs of the algebra
AP(1,3), find an explicit form of the Poincaré group generators, and then establish the
connection of the representations found here with the canonical Shirokov-Foldy [386,
106] realization.
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4.2. Casimir Operators

The commutation relations (1.14) can be used as an abstract definition of the
algebra AP(1,3). Our task is to describe constructively all the nonequivalent realizations
of these relations in terms of Hermitian operators (for definitions, see Appendix 1).
According to Schur’s lemma classification of IRs of a Lie algebra L reduces to finding
of a complete set of Casimir operators and calculating eigenvalues of these operators.
Let C be a Casimir operator for the algebra L then only such vectors which correspond
to the same eigenvalues of L can be included into the space of IRs. On the other hand
if we find all the independent Casimir operators C1, C2, ... for an algebra L and define
representation of L in the space of eigenvectors of operators C1, C2, ... belonging to one
of eigenvalues of each of them, then such a representation will be irreducible. In this
case all the operators commuting with any element of a representation of the algebra
L are proportional to the unit operators. In other words only one IR corresponds to a
set of eigenvalues of all the Casimir operators.

To find the Casimir operators of the algebra AP(1,3) we will use the method
which admits a direct generalization to the case of the algebras AP(1,n), i.e., the Lie
algebra of the generalized Poincaré group in (1+n)-dimensional Minkowski space.

The Casimir operators of the algebra AP(1,3) have to commute with Pµ as well
as with Jµσ. Quantities commuting with Jµσ are called scalars. Evidently there is not any
scalar among basis elements of the algebra AP(1,3), that’s why we will look for
Casimir operators in the enveloping algebra of the algebra AP(1,3), i.e., in the set of
operators of a kind QA, QAQB, QAQBQC, ..., QA ∈ {Pµ, Jµσ}. We will search for all
possible scalars starting from vector and tensor quantities which can be defined as
follows.

We say a set of operators (A0, A1, A2, A3) is a vector if for any Aµ (µ= 0,1,2,3)
the following condition is satisfied

where Jµσ are basis elements of the algebra AP(1,3). A set of operators Aαλ which

[Jµν,Aλ] i(gνλAµ gµλAν),

commute with Jµσ as a product of vector components AµAσ will be called a tensor of
second rank. An arbitrary rank tensors are defined in analogous manner. The operators
Pµ and Jµσ are examples of a vector and second rank tensor.

It is well known that scalars can be obtained from tensors by the operation of
index convolution. The example of scalar is the operator JµσJµσ. Our task is to find all
independent scalars starting from Pµ and Jµσ. It is convenient to use for this purpose the
vectors Wµ and Γµ defined by the relations

(4.2)Wµ

1
2 µνρσJ νρP σ, Γλ JλµP

µ.
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These operators satisfy the following relations

(4.3)

WµP
µ 0, ΓµP

µ 0,

[Pµ,Wν] 0, [Wµ,Wν] i µνρσP ρW σ,

[Wµ,Γσ] iPµWσ, [ΓµPν] i(δµνPλP
λ PµPν),

[Γµ,Γν] iJµνPλP
λ.

Using (4.3), (4.4) it is not difficult to show that all the independent scalars

(4.4)
P λJλµJ

µ
σ Pσ(6 1

2
J 2) 1

2 σµνρJ
µνW ρ 2iΓσ, J 2 JλρJ λρ,

JµλJ
λσJσν

1
2

(igµν Jµν)J
2 1

2 µνρσJ ρσB 3iJµλJ
λ

ν , B
1
8 αβλγJ

αβJ λγ.

being constructed from Pµ and Jµσ are exhausted by the set

All other scalars (i.e., all the possible convolutions of the vectors Pµ and tensors Jµσ)

(4.5)J 2, B, PµP
µ, WµW

µ, ΓλΓ
λ, WλΓ

λ.

can be expressed via the operators (4.5) according to (4.3), (4.4).
Using (1.14) and (4.4), it is not difficult to show that only two of operators

(4.5) commute with Pµ as well as with Jµσ. They are the operators

which are the main Casimir operators of the algebra AP(1,3).

(4.6)C1 PµP
µ and C2 WµW

µ,

We note that for some classes of representations there are additional operators
commuting with any element of the algebra AP(1,3). For example, for PµP

µ≥0 this
property is possessed by the energy sign operator C3=P0/ P0 . To describe IRs of the
Poincaré algebra it is necessary to use also these additional Casimir operators which
will be enumerated in the following section.

4.2. Basis of an IR

In order to determine a representation of the algebra (1.14) effectively, it is
necessary to set ourselves to some orthogonal basis in the representation space. As this
basis eigenfunctions of a complete set of commuting selfadjoint operators can be
chosen. All the Casimir operators are necessarily included in such a set and some
elements of the algebra and enveloping algebra should be added to make this set
complete.

We will choose the complete set of commuting operators in the following
form
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where W0 is a zero component of the Lubanski-Pauli vector (4.2) and the dots denote

(4.7)P0, P1, P2, P3, W0; C1, C2,...,

additional Casimir operators whose existence was mentioned above. We will denote
the orthonormal set of eigenfunctions of the operators (4.3) by c,p̃,λ> where
c=(c1,c2,...) are eigenvalues of Casimir operators, p̃ =(p0,p1,p2,p3) are eigenvalues of the
operators Pµ, and λ is an eigenvalue of W0, so that

Incidentally the eigenvalues of the operators Pµ (which are the basis elements of the

(4.8)

Cα c,p̃,λ> cα c,p̃,λ>,

Pµ c,p̃,λ> pµ c,p̃,λ>,

W0 c,p̃,λ> λp c,p̃,λ>, p (p 2
1 p 2

2 p 2
3 )1/2.

Abelian algebra) and C1 lie in the interval

the spectra of the other operators (4.7) will be determined further on.

(4.9)∞<pµ<∞, ∞<c1<∞,

The numbers c1 and c2 (the eigenvalues of the Casimir operators) assume fixed
values in spaces of IRs. Following Wigner [413], we distinguish five qualitatively
different classes of IRs corresponding to the following values of c1, c2, pµ:

The main interest (from the physical point of view) is aroused by IRs of

(4.10)

I. c1>0.

II. c1 0, c2 0, pµ 0,

III. c1 0, c2≠0,

IV. c1<0,

V. pµ≡0.

Classes I and II inasmuch as the space of such representations is compared to the state
space of a non-interacting relativistic particle with mass m>0 and zero mass. But IRs
of Classes III and IV also find some applications - for instance, for describing
hypothetical particles with infinite number of spin states [310], nonstable particles and
tachyons [239, 240, 390]. As to representations of Class V, they are an integral part of
any physical theory satisfying the principle of relativistic invariance.

Below we describe all the nonequivalent IRs of the algebra AP(1,3) belonging
to the first four classes. IRs of Class V reduces to the representations of the Lie algebra
of the homogeneous Lorentz group. The theory of such representations is expounded
with exhaustive completeness in monographs [20, 197]. The necessary facts about
finite dimensional representations of the algebra AO(1,3) are given in Subsection 4.8.
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Let us enumerate the additional Casimir operators existing in any class of IRs
and show the corresponding eigenvalues c1 and c2 :

where l are arbitrary integers or half-integers.

(4.11)

c1≥0, C3

P0

P0

,

c1 c2 0, C4 W1/P1 W2 /P2 W3 /P3 W4 /P4,

c1<0, c2 c1l(l 1), C5 W0 / W0 ,

For IRs of Class V there are two specific Casimir operators

There is just one more universal Casimir operator for any class of IRs

(4.12)C6 JµνJ
µν, C7

1
8 µνρσJ νρJ µσ.

whose eigenvalues are equal to ±1. The top sign corresponds to simple representations

(4.13)C8 exp(2iπJ12) exp(2iπJ13) exp(2iπJ23)

of the Poincaré group, the lower one corresponds to two-valued ones.

4.4. The Explicit Form of the Lubanski-Pauli Vector

Let us obtain an explicit form of the vector Wµ in the basis c,p̃,λ> for any
class of IRs of the algebra AP(1,3) enumerated above. Using (4.4),(4.8) it is not
difficult to obtain the commutation relations for the components Wµ in the basis
c,p̃,λ>

For any fixed value of p̃ = (p0,p1,p2,p3) the conditions (4.14) determine some

(4.14)[Wa,Wb] i abc(p0Wc W0 pc), [W0,Wa] i abc pbWc.

Lie algebra Ap̃. Incidentally nonequivalent algebras correspond to different values of
p̃.

Our task is a constructive description of all the nonequivalent representations
of the algebra (4.14). To simplify the relations (4.14) we use an invertible linear
transformation

As a rule, this transformation is taken in a form which leads to the maximal

(4.15)Wµ→Wµ R̂µνW
ν, pµ→pµ R̂µν p ν.

simplification of the relations (4.14) for any specific class of the vectors pµ. For
example, for pµp

µ>0 a transformation is made to reduce pµ to the form where pa=0, if
pµ pµ=0 then p′0=p′3, p′1=p′2=0, etc. (see, e.g., [386]). As a result we obtain such
realizations of IRs of the algebra AP(1,3) which have essentially different form for
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different values of c1. Besides in the case pµ pµ≥0, one of the vector pµ components, for
for example, p3, is always distinguished, although all pµ are included into the
commutation relations (1.14) at an equal footing.

We choose the operator of transformation (4.15) in such a form so that it will
maximally simplify the commutation relations (4.14) immediatelly for any type of the
four-vector pµ. Namely we set

where Rab are the matrix elements of the operator of transition to such a reference frame

(4.16)R̂0a R̂a0 0, R̂00 1, R̂ab Rab,

in which p′a=na p, n=(n1,n2,n3) is an arbitrary unit vector, and

As a result of the transformation (4.15)-(4.17), the commutation relations (4.14) take

(4.17)
Rab p̂ nδab abcθc θaθb(1 p̂ n) 1,

θa abc p̂b nc, pa pa /p.

the form

Finally, by setting

(4.18)[Wa ,Wb ] i abc(p0Wc nc pW0 ), [W0 ,Wa ] ip abc nbWc .

we obtain from (4.18) the commutation relations for the operators λ0, λa:

(4.19)W0 pλ0, Wa na λ0 p0 λa

where c1=pµpµ.

(4.20)
[λ0,λa] i abc nb λc,

[λa,λb] ic1 abc ncλ0,

In a space of IRs of the algebra AP(1,3) c1 takes a fixed value (coinciding with
the eigenvalue of the Casimir operator C1) and the commutation relations (4.20)
determine some Lie algebra A(c1,n) whose structure constants are dependent on c1 and
n. The vector Wµ can be taken into correspondence with any representation of these
algebra. Indeed we can obtain by the transformation inverse to (4.15)-(4.17), bearing
in mind the relations (4.19), the following:

Thus, we have obtained an analytical expression of the Lubanski-Pauli vector

(4.21)W0 W0 pλ0, Wa R 1
ab Wb λa p̂a λ0 p0

( p̂a na)λb p̂b

1 n p̂
.

via the components of the four-vector pµ and operators λµ realizing a representation of
the algebra (4.20). A description of representations of the vector Wµ reduces to
describing nonequivalent representations of the algebra A(c1,n).
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4.5. IRs of the Algebra A(c1,n)

Let us study the structure of the algebra (4.20) and establish its connection
with other well known Lie algebras.

It is not difficult to make sure the operators

commute with λµ, i.e., they are the Casimir operators of the algebra (4.20). So, these

(4.22)I1 λ2
0c1 λ2

1 λ2
2 λ2

3, I2 exp(2iπλ0)

operators are multiples of the unit operator in a space of an IR and their eigenvalues
can be used to numerate IRs. It is not difficult to show that it is necessary to set n λ=0
inasmuch as, according to (4.4), p0W′0-naW′ap=0. It follows from this that the algebra
(4.20) has three linearly independent elements only. Moreower its structure can be
described as follows [157].

THEOREM 4.1. The algebra A(c1,n) of (4.20) is isomorphic to the algebra
AO(3) if c1>0, to the algebra AE(2) if c1=0, and to the algebra AO(1,2) if c1<0*.

PROOF. The commutation relations (4.20) are invariant under the
transformations λa→λ′ a=rabλb, na→n′a=rabnb, where rab are elements of an orthogonal
matrix. Choosing rab so that n′=(0,0,1), we come to the following equivalent algebra:

By setting

(4.23)
[λ0,λ1] iλ2, [λ0,λ2] iλ1,

[λ1,λ2] ic1λ0, λ3≡0.

we obtain from (4.23) the commutation relations for Sa, Tα, Sαβ:

(4.24)

λ0 S3, λ1 mS1, λ2 mS2, c 2
1 m 2>0,

λ0 T0, λ1 T1, λ2 T2, c1 0 ,

λ0 S12, λ1 ηS01, λ2 ηS02, c1 η2<0,

characterizing the algebras AO(3), AE(2) and AO(1,2) accordingly.

(4.25)[Sa,Sb] i abc Sc,

(4.26)[T0,T1] iT2, [T0,T2] iT1, [T1,T2] 0,

(4.27)[S01,S02] iS12, [S01,S12] iS02, [S02,S12] iS01,

* The symbols AO(3), AE(2), and AO(1,2) denote the Lie algebras of the group
of orthogonal 3×3 matrices, the Euclidean group in two-dimensional space, and a
group of pseudo-orthogonal matrices in (1+2)-dimensional Minkowski space.
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So the isomorphism formulated in the theorem can be given by the relations

where λµ are connected with the basis elements of the algebras AO(3), AE(2), AO(1,2)

(4.28)λ0 λ0, λa R 1
ab λb

according to (4.24), R-1
ab are matrix elements of the rotation operator connecting

n′=(0,0,1) with n=(n1,n2,n3). The explicit expression for R-1
ab can be obtained from

(4.17) by the substitution pa → pn′a.
The theorem proved makes it possible to reduce the problem of description

of the algebra A(c1,n) representations to describing representations of the Lie algebras
determined by the commutation relations (4.25)-(4.27). Representations of these
algebras are well known (see, e.g., [386]). A short survey of the main results
connecting these representations is given in the following.

a) The algebra AO(3). IRs of it are labelled by positive integers or half
integers and are realized by square matrices of dimension (2s+1)× (2s+1). This algebra
has two Casimir operators

Let s,s3> be an eigenfunction of a complete set of the commuting matrices

(4.29)I1 S 2
1 S 2

2 S 2
3 , I2 exp(2iπS3).

I1 and S3, then

The explicit form of the matrices Sa in the basis s,s3> is defined by the relations

(4.30)I1 s,s3> s(s 1) s,s3>, I2 s,,s3> ( 1)2s s,,s3>.

b) The algebra AE(2) is characterized by the commutation relations (4.26) and

(4.31)
S3 s,s3> s3 s,s3>, s3 s, s 1,...,s,

(S1±iS2) s,s3> s(s 1) s3(s3±1) s,s3±1>.

has the two Casimir operators

There are two distinguished classes of IRs of the algebra AE(2) corresponding to I1=0

(4.32)I1 T 2
1 T 2

2 , I2 exp(2iπT0).

and I1=r2>0. If I1=0 then

where λ̃ are integers or half integers. If I1=r2>0 then IRs of the algebra AE(2) are

(4.33)T1 T2 0, T0 λ̃, I2 ( 1)2λ̃

realized by infinite matrices of the kind

where r,n> are eigenfunctions of the commuting matrices I1 and T0. Besides

(4.34)T0 r,n> n r,n>, (T1±iT2) r,n> r r,n±1>

(4.35)I1 r,n> r 2 r,n>, I2 r,n> ( 1)2n r,n>, 0<r<∞,
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and n runs over either all integer or half integer values.
c) The algebra AO(1,2) (4.27) has two main Casimir operators

Let us denote by α,n,ϕ> an eigenfunction of the commuting operators I1, I2 and S12

(4.36)I1 S 2
12 S 2

01 S 2
02, I2 exp(2iπS12).

so that

All the possible combinations of values of α, ϕ and n, corresponding to unitary

(4.37)

I1 α,n,ϕ> α α,n,ϕ>,

I2 α,n,ϕ> exp(2iπϕ) α,n,ϕ>,

S12 α,n,ϕ> (n ϕ) α,n,ϕ>.

representations of the group O(1,2), are given by the formulae

Therefore, it is possible to distinguish six classes of IRs of the algebra AO(1,2)

(4.38)

a) ϕ 0, ∞<α<0, n 0,±1,±2,...;

b) ϕ 0, α l(l 1), l 0,1,2,..., n l 1,l 2,...;

c) ϕ 0, α l(l 1), l 0,1,2,..., n l 1, l 2,...;

d) ϕ 1/2, ∞<α< 1/4, n 0,±1,±2,...;

e) ϕ 1/2, α l(l 1), l 1/2,1/2,3/2,..., n l 1/2,l 3/2,...;

f) ϕ 1/2, α l(l 1), l 1/2,1/2,3/2,..., n l 1/2, l 3/2,... .

corresponding to the variants of sets of the Casimir operators eigenvalues given in
(4.38). The representations of types b), c) and e), f) correspond to the same sets of
eigenvalues of operators (4.36) but are distinguished by values of an additional
invariant, i.e., the sign of S12. The explicit form of S12 for any representation is given
by the last formula (4.37), of S0α - by the following relations:

Using the results given above and taking into account the isomorphism of the

(4.39)(S01±iS02) α,n,ϕ> i α (n ϕ)(n ϕ±1) α,n±1,ϕ>.

algebras (4.25)- (4.27) and (4.20) established in Theorem 4.1 it is not difficult to
describe IRs of the algebra A(c1,n). As a basis of any such a representation we choose
a complete set of eigenfunctions of the commuting operators I1 and λ0 . Then the
explicit form of the Casimir operators and nonequivalent matrices λµ realizing a
Hermitian IRs of the algebra A(c1,n) can be given by the formula

(4.40a)
I1 c1,c2,λ> c2 c1,c2,λ>,

I2 c1,c2,λ> ( 1)2λ c1,c2,λ>,
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In an IR the parameters c1 and c2 take fixed values from the intervals given

(4.40b)

λ0 c1,c2,λ> λ c1,c2,λ>,

(λ1±iλ2) c1,c2,λ> 1
2

(n3 1) c2 c1λ(λ±1) c1,c2,λ±1>

(n2 in1)
2

2(n3 1)
c2 c1λ(λ 1) c1,c2,λ 1>,

n3λ3 c1,c2,λ> (n1λ1 n2λ2) c1,c2,λ>.

below, where the value intervals of λ are specified also:

where s>0 and λ̃ are arbitrary integers or half integers, l are positive integers or half

(4.41)c1 m 2>0, c2 c1s(s 1), λ s, s 1,...,s,

)c1 0, c2 0, λ λ̃,

(4.43)c1 0, c2 r 2>0, λ 0,±1,±2,... or λ ±1/2,±3/2,...,

(4.44)

c1 η2<0, c2 η2α, λ 0,±1,±2,... or λ ±1/2,±3/2,..., ∞<α< 1/4,

c1 η2<0, 0< c2<
1
4

η2, λ 0,±1,±2,...,

c1 η2<0, c2 η2l(l 1), λ l 1,l 2,...,

c1 η2<0, c2 η2l(l 1), λ l 1, l 2,...,

integers satisfying -1/2≤l<∞. The values of these numbers in IRs are fixed.
Formulae (4.40)-(4.44) give the explicit forms of all the possible (up to unitary

equivalence) Hermitian IRs of the commutation relations (4.20). Together with (4.21),
these formulae determine all the nonequivalent realizations of the Lubanski-Pauli
vector.

4.6. Explicit Realizations of the Poincaré Algebra

Thus we have obtained all the nonequivalent representations of the vector Wµ.
To describe all possible (up to equivalence) IRs of the algebra AP(1,3) it is sufficient
to show the explicit form of the operators Pµ and Jµσ corresponding to the
representations of the Lubanski-Pauli vector found above. It is not difficult to verify
such operators can be chosen in the form

(4.45a)P0 p0, Pa pa, J x×p λ0

n p̂
1 n p̂

,
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where components of the vectors J and N are connected with Jµσ as follows:

(4.45b)N 1
2

[p0,x] λ×p

p 2

p̂×n(λ0 p0 λ p̂)

p n p
,

Ja=1/2 abcJbc, Na=J0a; p0 and pa are real variables connected by the relation

c1 is an arbitrary real number, and xa=i∂/∂pa.

(4.46)p0 p 2 c1 , ±1,

For IRs of Classes I-III (corresponding to c1≥0) assumes a fixed value, but
for c1<0 the energy sign is not fixed.

It is not difficult to verify that the operators (4.45) satisfy the commutation
relations (4.15) and correspond to the Lubanski-Pauli vector in the form (4.21).
Inasmuch as the formula (4.21) gives a general form (up to equivalence) of this vector
for Classes I-IV of IRs, the operators (4.45), (4.46) form a basis for any of these
representations. Representations of the algebra AP(1,3) being realized by the operators
(4.45), (4.46) are irreducible inasmuch as the corresponding Casimir operators (4.11),
(4.12) are multiples of the unit operator.

The operators (4.45) are Hermitian in respect to the scalar product

where Φα belong to the space of functions decreasing sufficiently fast along the

(4.47)(Φ1,Φ2)
λ ⌡

⌠d 3pΦ†
1(p,λ)Φ2(p,λ),

direction p=-np and λ takes all the possible values coinciding with the matrix λ0

eigenvalues.
The results given above are formulated in the following form.
THEOREM 4.2. IRs of the algebra AP(1,3) are labelled by the sets of

eigenvalues c1, c2, ... of the Casimir operators C1, C2 (4.6) and of C3 (if c1 ≥0), C4 (if
c1=c2=0 ), C5 (if c1<0, c2<0), and C8 (4.11), (4.19). All the admissible combinations of
the eigenvalues c1, c2 and c4=λ are given in formulae (4.41)-(4.44), but eigenvalues of
the operators C3, C5 and C8 are equal to ±1. The explicit expression of the
corresponding basis elements of the algebra AP(1,3) can be chosen in the form (4.45)
(up to unitary equivalence) where λµ are the matrices (4.40)-(4.44).

So we have calculated the explicit expressions of the basis elements of IRs of
the algebra AP(1,3). Operators (4.45) have a relatively simple form which is common
for all classes of IRs. It differs favourably our realization from the others known
already.
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4.7. Connections With the Canonical Realizations
of Shirokov-Foldy-Lomont-Moses

Let consider each class of IRs more precisely.
1. Representations of Class I corresponding to PµP

µ>0 have the additional
Casimir operator, i.e., the energy sign operator with eigenvalues ±1. The corresponding
representation space is split into two subspaces, each of them corresponding to the
fixed sign of p0.

So IRs of Class I are labelled by three numbers: m2, s, and , refer to (4.41),
and are realized in the space of square integrable functions Φ(p,λ) having dimension
2(s+1) with respect to the index λ. Besides, the Casimir operator (4.13) takes the value
+1 for integer and -1 for half integer s. We denote such IRs by D (ms).

With the help of the unitary transformation

where

(4.48)(Pµ, J, N )→(Pµ , J , N ) U(Pµ, J, N )U †

the operators (4.45) realizing an IR of Class I can be transformed to the canonical form

(4.49)
U exp( iλ p×nθ1)exp(iλ0π)exp(iλ×n n θ2),

θ1 arccos p̂ n, θ2 arccosn3, n (0,0,1),

of Shirokov-Foldy [386, 106]:

Here S are generators of the IR D(s) of the group O(3) given in (4.31).

(4.50)
P0 E p 2 m 2, Pa pa,

J x×p S, N
2

[x,E] p×S
E m

.

2. Let us consider the case c1=c2=0. There exist two additional Casimir
operators for the corresponding representations, i.e., the energy sign operator C3 and
helicity operator C4 of (4.11). We obtain from (4.11), (4.21) C4= λ0, and conclude
from (4.42) that eigenvalues of the helicity operator are equal to λ̃ where λ̃ is an
arbitrary integer or half integer.

So IRs of Class II are labelled by two numbers, and λ̃ and are one
-dimensional in respect with the index λ. The Casimir operator (4.12) has the
eigenvalue +1 for integer λ̃ and -1 if λ̃ are half integers. Besides, the basis elements of
the Poincaré algebra (4.40), (4.42), (4.45) take the form

(4.51a)P0 p, Pa pa,
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The operators (4.51) have a symmetric and compact form which differs them

(4.51b)
J x×p λ̃ p̂ n

1 p n
,

N 1
2

[p, x] λ̂ p̂×n
1 p̂ n

.

favourably from other realizations known. Choosing different unit vectors n, we obtain
from (4.51) different (but equivalent) realizations of IRs of the algebra AP(1,3). Taking
n=(0,0,1), we come to a representation in the Lomont-Moses [287] form, but if
n=(1,1,1)/√3 the above formulae give the realization proposed in [154,157]*.

The transition from a representation characterized by a vector n to an a
equivalent representation corresponding to a vector n′, n′≠-n, can be carried out by the
unitary transformation (4.48) where

If n′=-n then

(4.52)U exp










2iλ0 arctan p n×n

1 n p̂ n p̂ n n
.

where n′′≠±n is an arbitrary unit vector.

(4.53)U exp










2iλ0 arctan p̂ n×n

p̂ n (p̂ n)(n n )

We note that for representations of Class II the following relations are valid:

which take the following form for IRs:

(4.54)Wµ

P0

P
J P
P

Pµ, P (P 2
1 P 2

2 P 2
3 )1/2,

The condition (4.55) is necessary and sufficient for the corresponding representation

(4.55)Wµ λPµ.

to belong to Class II.
As was noted in Section 3.7, representations of the Poincaré algebra belonging

to Class II can be extended to the representations of the algebra AC(1,3). Substituting
(4.51) into (3.48), we obtain the corresponding generators Kµ and D in the form

Formulae (4.51), (4.56) set basis elements of the representation of the

(4.56)D
1
2

(p x x p), K0 2
[p, x 2] 2λ n J

1 n p̂
, Ka i[K0, Na].

*The operators N considered in [154] include the term px instead of [p,x]+ which
is caused by differently choosing a scalar product.
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conformal algebra, which reduces to the IR of the Poincaré algebra by the reduction
with respect to the subalgebra AP(1,3). When n=(0,0,1) these formulae determine an
IR of the algebra AC(1,3) in the Bose-Parker [50] realization.

3. Representations of Class III have four Casimir operators, i.e., C1, C2, C3 and
C8 given by formulae (4.6), (4.11), (4.13). Besides, the eigenvalues of C1 are equal to
zero and IRs are labelled by triplets of eigenvalues of the operators C2, C3 and C8:

An explicit form of operators forming a basis of an IR of the algebra AP(1,3) can be

c2 r 2>0, c3 ±1, c8 ±1.

obtained from (4.45) by the substitution p0= p using the corresponding expressions
(4.40), (4.42) for the matrices λµ. Besides, IRs with integer n correspond to c8=1, and
with half integer n to c8=-1. The corresponding functions Φ(p,λ) forming the
representation space are infinite dimensional with respect to the index λ which takes
denumerable values. When n=(0,0,1) formulae (4.45), (4.46) give the basis elements
of the algebra AP(1,3) in the Lomont-Moses form [287] (besides, λ0→T0, λ1→T1,
λ2→T2, λ3→0, T0, T1 and T2 being the matrices (4.34).

4. Representations of Class IV are labelled by a set of eigenvalues of three
main Casimir operators C1, C2 and C8. The eigenvalues of C8 are equal to ± 1 where the
top (lower) sign corresponds to integer (half integer) λ. Possible values of C1, C2 and
λ are given in (4.44). In the case C1>0 there exist the additional Casimir operator
C5=W0/ W0 =signλ0 so the space of the corresponding representation is split into two
invariant subspaces, each of them having all λ (the matrix λ0 eigenvalues) with the
same sign.

All the Hermitian IRs of Class IV are infinite dimensional in respect with the
index λ taking denumerable values. With the help of the unitary transformation (4.48)
where

(where U′ is the operator of (4.52) for n′=(0,0,1), Sαβ are matrices (4.24)), (4.39), the

(4.57)U exp










i
S0α pα

p
arctan

p0 p

(p3 η)(p 2
0 η2)

U , p (p 2
1 p 2

2 )1/2, α 1,2,

operators (4.45) realizing an IR of Class IV can be reduced to the canonical form of
Shirokov [386].

So we established the connection of IRs in the form (4.45) with the
well-known "canonical" realizations of IRs of the algebra AP(1,3). Other realizations
of IRs of the Poincaré algebra are discussed in survey [29].
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4.8. Covariant Representations.

In the set of all the possible realizations of representations of the algebra
AP(1,3), an outstanding role is played by so-called covariant representations which are
characterized by the form of basis elements given in (2.22) where Sµσ are numeric
matrices. The necessary and sufficient condition for the operators (2.22) to realize a
representation of the Poincaré algebra (i.e., satisfy commutation relations (1.14)) is that
the matrices Sµσ should satisfy the relations (2.18b).

Formulae (2.22) determine a general form of basis elements of the algebra
AP(1,3) belonging to the class M1. Particular examples of such realizations of the
algebra AP(1,3) are the IA of the KGF, Dirac and Maxwell equations considered in
Chapter 1. The operators (2.22) with arbitrary matrices Sµσ generate local
transformations of the kind given in (2.49). It follows from the fact that the "spin" part
of Jµσ (i.e., the matrices Sµσ) commutes with the "orbital" part xµ pσ−xσ pµ (refer to
Section 2.9).

We note that the operators (2.22) (in contrast with (4.45)) realize a reducible
representation of the algebra AP(1,3) which is not generally speaking Hermitian for
the case of finite dimensional matrices Sµσ.

If we are not interested in refinements connected with different choosing of
functional spaces of representations, then, to describe all the covariant representations
of the algebra AP(1,3), it suffices to present all the nonequivalent realizations of the
matrices Sµσ satisfying relations (2.18b). We restrict ourselves to the case of finite
dimensional matrices.

The algebra (2.18b) has the two Casimir operators (4.12) whose eigenvalues
label IRs. To describe a domain of these eigenvalues we consider the following
operators

which satisfy the following commutation relations:

(4.58)ja

1
2









1
2 abc Sbc iS0a , τa

1
2









1
2 abc Sbc iS0a

We note that the algebra AO(1,3) is split into two commuting subalgebras

[ja, jb] i abc jc, [τa, τb] i abcτc, [ja, τb] 0.

formed by the matrices ja and τa. The commutation relations between ja (and between
τa) coincide with the commutation relations (4.25) determining the algebra AO(3). We
concludes from this that finite dimensional IRs of the algebra AO(1,3) are labelled by
positive integers or half integers j and τ. The basis of a space of an IRs is formed by
(2j+1)×(2τ+1) eigenfunctions of the complete set of the commuting operators j2, τ2, j3

and τ3. Using for these eigenfunctions the notation j,m;τ,n>, we can represent the
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action of the operators ja and τa in the following form (compare with (4.31)):

where j,m (τ,n) are simultaneously integers or half integers, and -j≤m≤j, -τ≤n≤τ.

(4.59)

j 2 j,m;τ,n> j(j 1) j,m;τ,n>,

j3 j,m;τ,n> m j,m;τ,n>,

(j1±ij2) j,m;τ,n> j(j 1) m(m±1) j,m;τ,n>,

(4.60)

τ2 j,m;τ,n> τ(τ 1) j,m;τ,n>,

τ3 j,m;τ,n> n j,m;τ,n>,

(τ1±iτ2) j,m;τ,n> τ(τ 1) n(n±1) j,m;,τ,n>,

So, finite dimensional IRs of the algebra AP(1,3) are realized by square
matrices of dimension (2j+1)(2τ+1)×(2j+1)(2τ+1), whose elements are given in
(4.58)-(4.60). We denote these representations by D(j τ).

Sometimes it is more convenient to use the O(3)-basis l1,l2;l,m> in which the
matrix S2=(1/2)SabSab is diagonal. The numbers l1 and l0 are connected with j and τ by
the relation

and set the eigenvalues of the Casimir operators according to the relations

(4.61)j (l0 l1 )/2, τ (l1 l0 )/2, sign(j τ)

The numbers l and m determine eigenvalues of S2 and S12 in the following way:

(4.62)

1
2

SµνS
µν l0,l1;l,m> (l 2

0 l 2
1 1) l0,l1;l,m>,

1
4 µνρσS µνS ρσ l0,l1;l,m> 2il0l1 l0,l1;l,m>.

where l=l0,l0+1,..., l1 -1 and m=-l,-l+1,...,l. The explicit expressions of the matrices

(4.63)
S 2 l0,l1;l,m> l(l 1) l0,l1;,l,m>,

S12 l0,l1;l,m> m l0,l1;,l,m>

realizing an IR are given by the formulae

and the matrix elements (Sa
l)mm′ and (Ka

l)mm′ are defined by the following relations:

(4.64)

Sab l0,l1;l,m> abc(S
l

c )mm l0,l1;l,m >,

S0a l0,l1;l,m> [δl 1l Cl(K
l

a )mm δll Al(S
l

a )mm δl 1l Cl 1(K
l 1

a )†
mm ] l0,l1;l ,m >,

Al

il0l1

l(l 1)
, Cl

i
l

(l 2 l 2
0 )(l 2 l 2

1 )

4l 2 1
,
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Nonequivalent representations of the finite group formed by these operators and their
products are encountered, and the explicit form of these operators in the space of the
"universal" representation (4.45) of the algebra AP(1,3) is found.

We will start with the discrete symmetry operators defined on the set of the
KGF equation solutions (refer to (1.51)-(1.53)). These operators and their products
form the group G8 including the following eight elements:

where I denotes the identity transformation. The group multiplication law for the group

(5.1)G8∈ I, P, T, C, PT, PC, TC, CPT

G8 can be obtained from (1.51)-(1.53). It is presented in the following table:

Table 5.1

I P T C PT CT CP CPT

I I P T C PT CT CP CPT

P P I PT PC T CPT C CT

T T PT I CT P C CPT CP

C C CP CT I CPT T P PT

PT PT T P CPT I CP CT C

CT CT CPT C T CP I PT P

CP CP C CPT P CT PT I T

CPT CPT CT CP PT C P T I

The problem of description of nonequivalent operators P, T, and C, defined in a
representation space of the algebra AP(1,3), includes a description of representations
of the group G8. Besides these operators must satisfy the commutation and
anticommutation relations (1.54). It follows from the above the operators P, C, T, and
the Casimir operators (4.11), (4.19) satisfy the relations

(5.2)PC1 C1P, PC2 C2P, PC3 C3P, PC4 C4P,
PC5 C5P, PC6 C6P, PC7 C7P, PC8 C8P;

(5.3)TC1 C1T, TC2 C2T, TC3 C3T, TC4 C4T,
TC5 C5T, TC6 C6T, TC7 C7T, TC8 C8T;
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According to (5.2)-(5.4), the operators P, C, T can be defined in a space of

(5.4)CC1 C1C, CC2 C2C, CC3 C3C, CC4 C4C,
CC5 C5C, CC6 C6C, CC7 C7C, CC8 C8C.

reducible representation only (inasmuch as they change the signs of eigenvalues of the
Casimir operators).

The description of nonequivalent realizations of the discrete symmetry
operators reduces in our approach to finding all the representations of the group G8. In
addition, the operators P, C, T must satisfy the relations (1.54) where Pµ and Jµσ are
basis elements of a direct sum of IRs of the algebra AP(1,3).

5.2. Nonequivalent Multiplicators of the Group G8

As is well known the state vector of a physical system is represented in
quantum mechanics as a ray of a Hilbert space. In other words this vector is defined up
to a phase factor exp(iα) where α is a c-number. This situation predetermines the
fundamental role of a ray (projective) representations of symmetry groups, i.e., such
representations for which the group law is valid up to a phase factor only.

Ray representations of the proper Poincaré group always can be reduced to
exact representations, so no new possibilities exist here. But in the case of the complete
Poincaré group including space-time reflections there exist ray representation which
cannot be reduced to exact ones.

Here we consider ray representations of the group G8. Specifically we consider
projective unitary and antiunitary representations (PUA- representations) of this group
which are defined as follows.

We denote by the symbol the field of complex numbers, by U( ) - the
multiplicative group of complex numbers with the unit module, and by the field of
real numbers.

A mapping T: G → UA(H) of a group G into multiplicative group UA(H) of
all unitary and antiunitary operators Tg, g∈G of space H is called PUA-representation
of a group G in a Hilbert space H, if Tg satisfy the conditions

where g1, g2 ∈ G, λ(g1,g2) ∈ U( ), and, besides,

(5.5)Tg1

Tg2

λ(g1,g2)Tg1g2

,

where λ̃(g2,g3)=λ(g2,g3) if is a unitary operator and λ̃(g2,g3)=-λ(g2,g3) if is an

(5.6)λ(g1g2,g3)λ(g1,g2g3) λ(g1,g2g3)λ̃(g2,g3),

Tg1

Tg1

antiunitary one.
A system of elements λ(g1,g2) is called a multiplicator of a representation T.

In the case of usual (exact) representations λ(g1,g2)≡1 for any g1,g2∈ G.
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PUA-representation differs from the regular exact representations by two
features:

a) They include antiunitary operators besides unitary ones. Antiunitary
operator by definition transforms all quantities into complex conjugated ones (for two
examples of antiunitary operator of charge conjugation, refer to (1.53), (2.60)).

b) The group multiplication law for elements of PUA-representation is defined
up to a phase factor λ(g1,g2) which do not change the norm of a vector from a Hilbert
space H.

The definitions given above (which go back to Wigner) lead to a new concept
of representations equivalence. Namely PUA-representations T and T′ is said to be
equivalent if there exists such a unitary or antiunitary operator V and such a function
α(g)∈ U( ) that

for any g∈ G. If α(g)≡1 then an equivalence is called regular, otherwise it is called

(5.7)Tg α(g)VTgV
1

projective. Below we will omit the term "regular" when speaking about a regular
equivalence.

In the case, when an operator V in (5.7) is unitary, the multiplicators λ and λ′
of representations T and T′ are connected by the relation

where α̃(g2)=α(g2) if is unitary, and α̃(g2)=α*(g2) if is antiunitary operator.

(5.8)λ (g1,g2)
α(g1)α̃(g2)

α(g1g2)
λ(g1,g2),

Tg1

Tg1

If the operator V in (5.7) is antiunitary then the condition (5.8) is satisfied by
multiplicators λ′ and λ*.

The relations (5.6), (5.8) can be used to describe all the possible nonequivalent
multiplicators characterizing representations of a group. For the group G8 such a
description is given by the following assertion.

THEOREM 5.1. All the nonequivalent multiplicators of the group G8 are
present in Table 5.2 (see the following page) where µab=µaµb, µabc=µaµbµc, µ1234=µ1µ2µ3µ4

and µa (a=1,2,3,4) accept the values ±1 independently.
We do not present a proof (see [12]).
According to Theorem 5.1, the group G8 has 16 nonequivalent multiplicators
corresponding to the possible combinations of values of µa. Theseλµ1µ2µ3µ4

multiplicators determine all the possible (up to equivalence) commutation and
anticommutation relations for representations of the operators P, C, and T.

Let P̂, T̂ and Ĉ be basis elements of a PUA-representation of the group G8 with
the multiplicator . Then we obtain from (5.5) and Table 5.2 thatλµ1µ2µ3µ4
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Table 5.2

(5.9)
P̂

2
I, T̂

2
I, Ĉ

2
µ4I,

ĈP̂ µ2P̂Ĉ, ĈT̂ µ1T̂Ĉ, P̂T̂ µ3T̂P̂.

I P T C PT CT CP CPT

I 1 1 1 1 1 1 1 1

P 1 1 1 µ2 1 µ2 µ2 µ2

T 1 µ3 1 µ1 µ3 µ1 µ13 µ13

C 1 1 1 µ4 1 µ4 µ4 µ4

PT 1 µ3 1 µ12 µ3 µ12 µ123 µ123

CT 1 µ3 1 µ14 µ3 µ14 µ134 µ134

CP 1 1 1 µ24 1 µ24 µ24 µ24

CPT 1 µ3 1 µ124 µ3 µ124 µ1234 µ1234

We see that up to equivalence the operators P̂, T̂ and Ĉ must commute or
anticommute with each other. Squared operators of space and time inversions and of
charge conjugation are equal to the unit operator I or to ±I.

It is not difficult to make sure that the conditions (5.9) can be considered as
a definition of a multiplicator. In other words, starting from (5.9) and using (5.5) it is
not difficult to find all the possible multiplicators given in Table 5.2.

A set of the operators P̂, T̂ and Ĉ and their possible products form a finite
multiplicative group G(µ1,µ2,µ3,µ4) of dimension 8 if µ1=µ2=µ3=µ4=1, and 16 in other
cases. There are 16 such groups corresponding to different sets of the parameters µa.
A description of PUA-representations of the group G8 reduces to the description of
regular representations of the group G(µ1,µ2,µ3,µ4).

5.3. The General Form of the Discrete Symmetry Operators

In addition to relations (5.9), the operators P̂, T̂ and Ĉ must satisfy the
following conditions (refer to (1.54)):

where P0, P, J and N are the basis elements of the Poincaré algebra.

(5.10a)P̂J JP̂, P̂P0 P0P̂, P̂P PP̂, P̂N NP̂,
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We will start with the universal realizations of the algebra AP(1,3) given in

(5.10b)
T̂P0 P0T̂, T̂P PT̂, T̂J JT̂, T̂N NT̂,

ĈP0 P0Ĉ, ĈP PĈ, ĈJ JĈ, ĈN NĈ,

(4.45). According to (5.2)-(5.4), it is sufficient to restrict ourselves to considering the
representations corresponding to fixed eigenvalues to the Casimir operators C1 and C2,
while the operators C3, C4, C5 and C7 not being chosen to be multiples of the unit
operator. Restricting ourselves for the time being by considering the representations of
Classes I-III we conclude that Pµ, J, and N can be chosen in the form

where ˆ is the energy sign operator having the eigenvalues ±1 and λµ are the matrices

(5.11)

P0 ˆE, P p, J x×p λ0

n p̂
1 n p̂

, p̂ p
p

,

N 1
2

ˆ[E, x] λ×p

p 2

p̂×n( ˆλ0 E λ p̂)

p n p
,

realizing a reducible representation of the algebra (4.20) (corresponding to fixed values
c1 and c2 in (4.41)-(4.45). Moreover

and the operator ˆ can be chosen in the form of a diagonal matrix, and λµ - in the form

(5.12)[ ˆ ,λµ] 0, ˆ 2 1,

of a direct sum of irreducible matrices (4.40).
Let Ψ(p) be a vector from the space of representation of the algebra AP(1,3)

belonging to one of three first classes (PµP
µ≥0). The transformations P̂, T̂, and Ĉ

without loss of generality can be represented in the form

where U1, U2, U3 are operators satisfying (according to (4.10)) the following conditions

(5.13)P̂Ψ(p) U1Ψ( p), T̂ Ψ(p) U2Ψ(p), Ĉ Ψ(p) U3Ψ ( p),

Here J′ and N′ are the operators obtained from J and N by the change p → -p, x → -x.

(5.14)
Ua p pUa, a 1,2,3,

U1P0 P0U1, U2 P0 P0U2, U3 P0 P0U3,

(5.15)
U1 J J U1, U2 J JU2, U3 J J U3,

U1N N U1, U2 N NU2, U3 N N U3,

One concludes from (5.14) that Ua do not include operators of differentiation
with respect to p and so can be considered as matrices depending on p. Then we obtain
from (5.9) that

So the general form of the operators P̂, T̂, and Ĉ defined in the spaces of the

65



Symmetries of Equations of Quantum Mechanics

algebra AP(1,3) representations of Classes I-III is given by formulae (5.13) where Ua

(5.16)

U1(p)U2( p) µ3U2(p)U1( p),

U1(p)U3( p) µ2U3(p)U1 ( p),

U2(p)U3(p) µ1U3(p)U2 ( p),

U1(p)U1( p) U 2
2 (p) 1, U3(p)U3 ( p) µ4.

are matrices satisfying (5.16). The problem of finding of all nonequivalent operators
P̂, T̂, and Ĉ reduces to finding the irreducible sets of matrices Ua.

For representations of Class IV the energy sign operator is not a Casimir
operator so operators P̂, T̂, and Ĉ have to be defined in another way. A vector from this
representation space is an infinite component column with components Ψλ(p, ) with
λ running over the values given in (4.44). Denoting this column by Ψ(p, ) we can
represent the corresponding operators P̂, T̂, and Ĉ in the form

as a result we come to the relations

(5.17)

P̂Ψ(p, ) U1(p, )Ψ( p, ),

T̂ Ψ(p, ) U2(p, )Ψ(p, ),

ĈΨ(p, ) U3(p, )Ψ ( p, ),

So for representations of Class IV the general form of the operators P, C and

(5.18)

U1(p, )U2( p, ) µ3U2(p, )U1( p, ),

U1(p, )U3( p, ) µ2U3(p, )U1 ( p, ),

U2(p, )U3(p, ) µ1U3(p, )U2 ( p, ),

U1(p, )U1( p, ) U2(p, )U2(p, ) 1,

U3(p, )U3 ( p, ) µ4.

T is given by relations (5.17) where Ua(p, ) are infinite dimensional matrices
satisfying (5.18).

We note for completeness that the discrete symmetry operators can be defined
for the representations of the algebra AP(1,3) belonging to Class V (where pµ≡0) also.
Besides, the operators J and N reduce to finite or infinite dimensional matrices: Ja →
1/2 abcSbc, Na → S0a and the corresponding operators of discrete transformations can
be represented as follows:

where A is the operator of the complex conjugation, ξ1, ξ2 and ξ3 are numerical

(5.19)P̂ ξ1, T̂ ξ2, Ĉ ξ3A,

matrices of appropriate dimension satisfying the relations
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In the following sections we find the explicit form of the matrices Ua (and ξa)

(5.20)
ξ1Sab Sabξ1, ξ2Sab Sabξ2, ξ3Sab Sabξ3,

ξ1S0a S0aξ1, ξ2S0a S0aξ2, ξ3S0a S0aξ3,

(5.21)ξ1ξ2 ξ2ξ1µ3, ξ1ξ3 ξ3ξ1µ2, ξ2ξ3 ξ3ξ2µ1, ξ2
1 ξ2

2 1, ξ3ξ3 µ4.

determining the discrete symmetry transformations for every class of representations
of the the algebra AP(1,3).

5.4. The Operators P̂, T̂ and Ĉ for Representations of Class I

Representations of the Poincaré algebra belonging to Class I are labelled by
the eigenvalues c1=m2>0, c2=-m2s(s+1), and c3= =±1 of the Casimir operators (4.6),
(4.11). According to previous section, we can restrict ourselves to the representations
for which c1 and c2 are fixed but can take two possible values. We choose the basis
elements of such representation in the form given in (5.11) where λµ are finite
dimensional matrices realizing the direct sum of equivalent IRs of the algebra (4.20)
corresponding to c1=m2>0, c2=-m2s(s+1) (refer to (4.40)-(4.43)).

We represent Ua of (5.14) in the form

where

(5.22)U1 ξ1U, U2 ξ2V, U3 ξ3U∆,

and ∆ is a numerical matrix satisfying the relations

(5.23)U exp










iλ n×p

m p 2 (n p)2

π , V exp(iλ0 ˆπ),

ξa being the operators to be determined. Choosing Ua in the form (5.22) we do not lose

(5.24)∆λµ λµ∆, ∆2 1,

generality inasmuch as the operators U, V and ∆ are invertible.
Using the relations

(J′ and N′ are determined in (5.15)) we conclude from (5.15), (5.11) that ξa must satisfy

(5.25)UJ J U, UN N U, Vλ λV,

the following relations

But the operators {Pa, ˆP0,Ja, ˆNa} realize the direct sum of the IRs D (m,s) of the

(5.26)ξ1 ˆ ˆξ1, ξ2 ˆ ˆξ2, ξ3 ˆ ˆξ3,
[ξa,Pb] [ξa, ˆP0] [ξa,Jb] [ξa, ˆNb] 0.

algebra AP(1,3) from which it follows according to Schur’s lemma that ξa must be
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numerical matrices.
We conclude from (5.15), (5.16) that the matrices ξa must commute with λµ,

and to satisfy the equations (5.21) which (together with (5.12), (5.26)) determine these

(5.27)[ξa,λµ] 0,

matrices up to unitary equivalence.
So the problem of finding all the admissible operators P̂, T̂ and Ĉ reduces to

finding all the nonequivalent matrices λµ, ˆ and ξa. The irreducible sets of these
matrices are given in the following assertion.

THEOREM 5.2. All possible (up to equivalence) irreducible sets of matrices
satisfying the commutation and anticommutation relations (4.20), (5.20), (5.21), (5.26),
(5.27) can be labelled by five numbers s, µ1, µ2, µ3, and µ4, where s=0, 1/2, 1, ..., and
µk=±1. Dimension of these matrices is 2(2s+1)×2(2s+1) if µ1µ4=µ2µ3=1 and
4(2s+1)×4(2s+1) otherwise. The explicit form of the corresponding matrices is given
by the following formulae.

µ1µ4=µ2µ3=1:

µ1µ4=-1 or µ2µ3=-1:

(5.28)ξ1 δµ3

, ξ2 σ2, ξ3 αµ1

, ˆ σ3, λµ λ(2)
µ ;

where the following 2(2s+1)×2(2s+1) matrices are included

(5.29)

ξ1













δµ3

0

0 µ2µ3δµ3

, ξ2











σ2 0

0 µ1σ2

, ξ3











0 σ1

µ4σ1 0
,

ˆ










σ3 0

0 σ3

, λµ













λ(2)
µ 0

0 λ(2)
µ

λµ are 2(2s+1)×2(2s+1)-dimensional matrices realizing the IR D(s) of the algebra

(5.30)
σ1











0 I

I 0
, σ2 i











0 I

I 0
, σ3











I 0

0 I
, σ0











I 0

0 I
,

δµi











I 0

0 µiI
, αµi

i
µi 1

2











0 I

µiI 0
, λ(2)

µ











λµ 0

0 λµ

,

A(c1=m2, n) (4.20) (which is isomorphic to the algebra AO(3)), I is the unit matrix, 0
is the zero matrix of appropriate dimension.

PROOF reduces to going through possible sets of values of µa and finding
nonequivalent irreducible sets of the matrices ξ, ˆ and λµ for any combinations of
values µa. We do not represent the corresponding calculations here (see [12]), but note
that the matrices (5.28), (5.29) are determined up to projective equivalence
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transformations (compare with (5.7)):

where V is an arbitrary nondegenerated matrix commuting with λµ,

(5.31)ξa→αξa

VξaṼ
1
, a 1,2,3, →V V 1

If we require (i.e., restrict ourselves to regular equivalence) then the

Ṽ
1

V 1 a 1,2; Ṽ
1

(V 1) , a 3.

αξ1

αξ2

αξ3

1
matrices ξa which are multiples of the unit matrix will be determined up to a sign.

So the operators P̂, T̂, and Ĉ can be defined in the space of the algebra AP(1,3)
representation of Class I by sixteen nonequivalent ways corresponding to various
multiplicators of the group G8 (or, which is the same, to various commutation and
anticommutation relations (5.9)). Incidentally, in four cases the representation space
D of the algebra AP(1,3) is reduced to the direct sum of two invariant subspaces
D=D+(m,s)⊕ D-(m,s) (if µ2µ3=µ1µ4=1) and in the remaining twelve cases the operators
Pµ, J and N of (5.11) realize the direct sum of four IRs

The explicit form of the operators P̂, T̂, and Ĉ for the representation (5.11) is given by

D D (m,s)⊕ D (m,s)⊕D (m,s)⊕ D (m,s).

formulae (5.13), (5.22), where ξa are the matrices given in (5.29), (5.30). For other
realizations of the algebra AP(1,3) being equivalent to (5.11) these operators can be
obtained from (5.13), (5.22) by the change Ψ→V(p)Ψ, U1→U1′=V(p)U1V

-1(-p), U2→
U2′=V(p)U2V

-1(p), U3→U3′=V(p)U3[V
-1(-p)]*, where V(p) is an operator of equivalence

transformation. In particular for the Foldy-Shirokov representation (4.50) we obtain

We represent also the explicit form of the matrix ∆ determined by relations (5.24). If

(5.32)U1 ξ1, U2 ξ2, U3 ξ3∆.

µ1µ4=µ2µ3 then

where ∆′ is the matrix of dimension 2(2s+1)×2(2s+1) given by the formula

(5.33)∆ ∆2











∆ 0

0 ∆

If µ1µ4=-1 or µ2µ3=-1 then ∆ is a direct sum of two matrices ∆2.

(5.34)∆ (i)2sexp[i(λ2 n2λ0)π].
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5.5. Representations of Class II

The representations of the algebra AP(1,3) corresponding to the zero
eigenvalues of C1 and C2 have the two additional Casimir operators C3 and C4 (4.12).
The operators P̂, T̂ and Ĉ have to satisfy (5.2)-(5.4) together with C3 and C4. So these
operators transform spaces of IRs of the AP(1,3) algebra according to the following
diagram

One concludes from (5.35) the operators P̂, T̂ and Ĉ can be defined in a space

(5.35)

Ĉ

D (λ) → D (λ)

P̂↑ P̂↓

D ( λ) ← D ( λ)

Ĉ

of a reducible representation of the algebra AP(1,3) belonging to Class II which can be
reduced to a direct sum of the least four IRs D (λ), D- (λ), D- (-λ), and D (-λ). We
will choose the elements of such a representation in the form (4.51) where λ0 and ˆ are
diagonal matrices having the eigenvalues ±s and ±1, s being a fixed integer or half
integer.

We represent the operators U1, U2, and U3 from (5.13) in the following form

where U is the operator (4.53), ξa are the operators to be found. Bearing in mind that

(5.36)U1 ξ1U, U2 ξ2, U3 ξ3U

the operator U changes the sign of the vector n in the operators (4.51), it is not difficult
to show that the conditions (5.14), (5.15) reduce to the following equations for ξa:

Thus the problem of description of nonequivalent operators P̂, Ĉ and T̂ for the

(5.37)ξ1λ0 λ0ξ1, ξ2λ0 λ0ξ2, ξ3λ0 λ0ξ3,

(5.38)ξ1 ˆ ˆξ1, ξ2 ˆ ˆξ2, ξ3 ˆ ˆ ξ3, [ξa,pb] [ξa,xb] 0.

representations of Class II reduces to solving the system of equations (5.21), (5.37),
(5.38) for the matrices λ0, ˆ , and ξa. The irreducible sets of the matrices satisfying
these equations are exhausted by the following combinations [12].

When µ1µ4=1, dimension of matrices is 4×4 and their explicit form is given
by the formulae
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where σ0, σ1, σ3, and are the matrices (5.30) of dimension 2×2.

(5.39)

ˆ










σ3 0

0 σ3

, λ0 s










σ0 0

0 σ0

,

ξ1











0 σ0

σ0 0
, ξ2











σ1 0

0 µ3σ1

, ξ3













δµ1

0

0 µ2δµ1

δµ1

If µ1µ4=-1 then dimension of the corresponding matrices is 8×8. Moreover

Here

(5.40)

ˆ i










γ1γ2 0

0 γ1γ2

, λ0 is










γ4 0

0 γ4

,

ξ1











γ0 0

0 γ0

, ξ2













Γµ3

0

0 Γµ3

, ξ3













0 Γµ1µ2

Γµ1µ2

0
.

and γµ are the Dirac matrices (2.4).

Γµ3











σ3 0

0 µ3σ3

, Γµ1µ2













δµ1

0

0 µ2δµ1

,

Thus there exist 16 nonequivalent possibilities of definition of the operators
P̂, T̂, and Ĉ in the space of a representations of Class II. The space D of such a
representation is reduced to the direct sum of the subspaces D+(s)⊕ D-(s)⊕ D+(-s)⊕
D-(-s) for µ1µ4=1 or D+(s)⊕ D+(s)⊕ D-(s)⊕ D-(s)⊕ D+(-s)⊕D +(-s)⊕D −(-s)⊕ D-(-s) for
µ1µ4=-1. The corresponding operators P̂, T̂ and Ĉ are given by formulae (5.20), (5.36)
where ξa are the matrices (5.39) or (5.40).

5.6. Representation of Classes III-IV

Thus we have determined all the possible (up to projective equivalence)
operators of space inversion, charge conjugation and time reflection which can be
defined in the spaces of representations of the algebra AP(1,3) belonging to the most
important for physical applications Classes I and II. In an analogous way we can find
these operators for other representation classes. Here we consider briefly the
corresponding possibilities.

The representations of the algebra AP(1,3) belonging to Class III (PµP
µ=0,

-WµW
µ=r2>0) have the only additional Casimir operator C3=P0/ P0 , so the description

of the corresponding operators P̂, T̂ and Ĉ does not differ in principle from the case of
representations of Class I. Let us set in (5.13)
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where U and V are the operators (4.53) and (5.23) (with an appropriate matrix λ0), λ

(5.41)U1 ξ1UΛ, U2 ξ2V, U3 ξ3Λ∆

and ∆ are unitary matrices satisfying the conditions (5.24) and

As a result, by using the following properties of the operators UΛ and V:

(5.42)Λλ0 λ0Λ, Λλ










λ 2(n×n )(n×n λ)

1 (n n )2
Λ.

(where J′ and N′ are the operators obtained from J and N by the change p → - p), we

(5.43)UΛ ˆ ˆUΛ, UΛ(J, N) (J N )UΛ, UΛ(P0, P) (P0, P)UΛ, Vλ λV,

come once again to the equations (5.21) for the matrices ξa whose general solution is
given by (5.28), (5.29) (where I is the unit operator in the space of IRs of the algebra
AE(2)). The corresponding representation of the algebra AP(1,3) is expanded in the
direct sum either of two IRs D (r)⊕D - (r) if µ1µ4=µ2µ3=1 or of four IRs D (r)⊕
D- (r)⊕D (r)⊕D - (r) otherwise. The explicit expressions for the matrices Λ and ∆
in the basis (4.40) are given by the formulae

[λ] is the entire part of λ.

(5.44)

Λ Λ1cosφ Λ2sinφ, ∆ Λ1,

φ arctg
n1 (1 n3) n1(n3 n n )

n2 (1 n3) n2(n3 n n )
,

Λ1 0,r,λ> ( 1)[λ] 0,r, λ>, Λ2 0,r,λ> i( 1)[λ]signλ 0,r, λ>,

Formulae (5.13), (5.41), (5.28), (5.29), (5.44) give the explicit form of all the
nonequivalent operators P̂, T̂ and Ĉ defined in the space of representations of the
algebra AP(1,3) of Class III.

A more complicated situation arises for the representations of Class IV
corresponding to zero eigenvalues of the Casimir operator C1. Such representations can
be subdivided into two subclasses. The first one, subclass IVA for which the
eigenvalues of the operator WµW

µ are equal to η2l(l+1) (refer to (4.44)) has the
additional Casimir operator C5=W0/ W0 . The representations belonging to this class
are denoted by D(η,l,µ) where µ=±1 denotes the eigenvalue of the operator W0/ W0 .
Other subclass (denoted by IVB) corresponds to negative eigenvalues of WµW

µ and has
no additional Casimir operators. The IRs belonging to subclass IVB are denoted by
D(η,α), the meaning of η and α being clear from (4.44).

The operators P̂, T̂ and Ĉ can be defined in the space of the reducible
representation D=D(η,l,µ)⊕ D(η,l,-µ) if µ1µ4=µ2µ3=1 and D=D(η,l,µ)⊕D(η ,l,µ)⊕
D(η,l,-µ)⊕D( η,l,-µ) otherwise. The explicit form of these operators is up to
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equivalence given by formulae (5.17), (5.36) where ξa are the matrices represented in
(5.28), (5.29). The symbol I in (5.28), (5.29) defines the unit operator in the space of
the IRs D(η,l, µ), =±1.

For the subclass IVB the operators P̂, T̂ and Ĉ can be defined in the space of
the IRs D(η,α) or in the space of the direct sum of two IRs D(η,α)⊕D(η ,α) or of four
IRs D(η,α)⊕D( η,α)⊕D( η,α)⊕D( ηα). The general form of these operators is defined
in (5.17), (5.41), (5.44) where ξa are matrices satisfying (5.21), (5.27). The explicit
form of all the nonequivalent and indecomposable matrices ξa is given by the following
formulae

and for other values of µa - by formulae (5.28), (5.29) where I is the unit operator in the

(5.45)

µ1 µ2 µ3 µ4 1, ξ1 ξ2 ξ3 I,

µ3 1, µ2 1, or µ1µ4 1, ξ1 δµ2

, ξ2 δµ1

, ξ3 αµ4

µ3 1, µ2 µ1 µ4 1, ξ1 σ3, ξ2 σ2, ξ3 δ µ1

space of the IRs D(η,α).

5.7. Representations of Class V

Let us consider also the finite dimensional representations of Class V
corresponding to pµ≡0. The description of all nonequivalent operators P̂, T̂ and Ĉ
defined in the space of such representations is of great interest because they are the
operators which can be defined on the sets of solutions of relativistic wave equations.

The representations belonging to Class V have the two Casimir operators
(4.12). According to (5.2)-(5.4) the operators P̂, T̂ and Ĉ have to anticommute with C7.
We conclude from this fact that these operators transform a vector from the space of
the IR D(l0,l1) into the vector belonging to the space of the IR D(-l0,l1). Hence the
operators P̂, T̂ and Ĉ can be defined in a space of at least two IRs D(l0,l1)⊕ D(-l0,l1)
(except the case l0=0 when it is possible in principle to restrict ourselves to using a
single IR).

Let Sµν be matrices which realize the direct sum D(l0,l1)⊕D(-l 0.l1) of IRs with
fixed l0 and l1, l0≠0, each of IRs being included with some multiplicity. The
corresponding operators P̂, T̂ and Ĉ can be defined by formulae (5.19) where ξa are the
matrices satisfying relations (5.20), (5.21). All the nonequivalent indecomposable
matrices ξa are given by the formulae

the matrices from the r.h.s. of this formula are represented in Table 5.3, see the

(5.46)ξ1 ξ1p̂, ξ2 ξ2p̂, ξ3 ξ3p̂,

following page. Moreover are the matrices (5.30) with I being the unitαµi

, δµi
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Table 5.3

Values of µk µ1µ2µ3=1, µ4=1 µ1µ2µ3=-1, µ4=1 µ1µ2µ3=-1, µ4=-1 µ1µ2µ3=1, µ4=-1

representation
realized by Sµσ

D(l0,l1)⊕
D(-l0,l1)

D(l0,l1)⊕
D(-l0,l1)⊕
D(l0,l1)⊕
D(-l0,l1)

D(l0,l1)⊕
D(-l0,l1)⊕
D(l0,l1)⊕
D(-l0,l1)

D(l0,l1)⊕
D(-l0,l1)⊕
D(l0,l1)⊕
D(-l0,l1)

explicit form of
ξ′ 1

σ1 









σ1 0

0 σ1











σ1 0

0 σ1











σ1 0

0 σ1

explicit form of
ξ′ 2

αµ3












0 δµ3

δµ3

0













0 δµ3

δµ3

0













αµ3

0

0 αµ3

explicit form of
ξ′ 3

δµ2












δµ2

0

0 δµ2













0 α µ2

µ1α µ2

0













0 δµ2

δµ2

0

explicit form of
p̂ p(2)











p 0

0 p











p(2) 0

0 p(2)











p(2) 0

0 p(2)











p(2) 0

0 p(2)

matrices in the space of the IRs D(l0,l1), and p are the space inversion matrices for
theIRs D(l0,l1), as determined by the relation

Formulae (5.46) are valid only for the representations of the algebra AO(1,3)

(5.47)p l0,l1;l,m> ( 1)[l] l0,l1;l,m>.

in the basis (4.66)-(4.68). For the representations of the type D(0,l1) the operators P̂,
T̂ and Ĉ are also given by formulae (5.46) where ξ′ a are the matrices (5.28), (5.29).

So we have described all the nonequivalent representations of the discrete
symmetry operators which can be defined in a space of a representation of the
homogeneous Lorentz group. As in the case of representations of Classes I-IV there are
16 nonequivalent possibilities in defining of such operators corresponding to possible
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multiplicators of the group G8.

5.8. Concluding Remarks

We have described all the possible nonequivalent realizations of the discrete
symmetry transformations in a space of a representation of the algebra AP(1,3).
Actually, we have also determined all the projective-nonequivalent local
representations of the extended Poincaré group P(1,3) including the transformations P,
C and T in addition to proper inhomogeneous Lorentz transformations.

We note that in the case of the two-digit representations of the group P(1,3)
it is possible to determine the operators P, C and T in such a way that their squares be
equal to ±1, inasmuch as a double reflection can be represented either as an identity
transformation or as a rotation by the angle 2π(which reduces to the multiplication by
-1 in two-digit representations). At this, all the possible products of the operators P, C
and T also form a finite group and the number of different groups is equal to 64. But
IRs of these groups reduces to IRs of the group G8 up to projective equivalence.

It follows from the above that the operators of P-, C- and T-transformations
defined on the sets of solutions of the KGF, Dirac, and Maxwell equations, realize only
some of possible representations of these transformations. In other words, only some
of possible groups G8 are realized here. There arises the natural question if there exist
relativistic wave equations for scalar, spinor and vector fields fields which correspond
to another representations of the operators P, T and C. This intriguing problem is
discussed partly in Sections 6-9.

6. POINCARÉ-INVARIANT EQUATIONS OF FIRST ORDER

6.1. Introduction

In this and the following sections we present some elements of the theory of
Poincaré-invariant equations for particles of arbitrary spin.

Let {ψ(x)} be a set of solutions of a motion equation of a relativistic particle
with fixed mass and spin. In relativistic quantum theory the space of states of a free
(noninteracting) particle is identified with the space of the IR of the Poincaré group. So
{ψ(x)} by definition has to be a representation space of the algebra AP(1,3) and any
ψ∈ {ψ(x)} has to satisfy the following conditions

where m and s are parameters determining the mass and spin of a particle.

(6.1)PµP
µψ m 2ψ, WµW

µψ m 2s(s 1)ψ
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The conditions (6.1) mean that the Casimir operators PµP
µ and WµW

µ have
fixed eigenvalues on the set of solutions of a particle equation. If we choose a concrete
realization of the algebra AP(1,3) then the conditions (6.1) by themselves can be
considered as a system of linear equations describing a particle of spin s and mass m.

As a matter of fact, all the known Poincaré-invariant equations for particles
of fixed mass and spin are nothing but the conditions (6.1) written in other forms. Thus,
the relations (6.1) represent a system of partial differential equations of second order
in all cases when Pµ and Jµν realize a covariant representation of the algebra AP(1,3).
In the case when s=1 and Sµν belong to the representation D(1/2 1/2) these relations
reduce to the Procá equation [404]. The Dirac equation is a formulation of the
conditions (6.1) in the form of an equivalent system of first order partial differential
equations, etc.

Here we present some elements of the theory of Poincaré-invariant equations
of the form

where βµ, β4 are numerical matrices and ψ is a vector-function (a column matrix). The

(6.2)(βµp
µ β4m)ψ 0

importance of the analysis of such equations is that equations including the derivatives
of higher order can always be reduced to a system of partial differential equations of
first order by introducing new dependent variables. For example, the KGF equation
(1.1) reduces to the form (6.2) by the substitution pµΦ=mΦµ, Φ=ψ4, where
ψ=column(ψ4 ψ0 ψ1 ψ2 ψ3), β4=1 and βµ are the Kemmer-Duffin matrices of dimension
5×5 (see (6.17) below).

Poincaré-invariance of the system (6.2) means that this system admits 10
independent SOs forming the algebra AP(1,3). Restricting ourselves to the case when
such SOs belong to the class M1 (i.e., has the covariant form (2.22) with appropriate
matrices Sµν) we come naturally to the following definition.

DEFINITION 6.1. We say the equation (6.2) is Poincaré-invariant and
describes a particle of mass m and spin s if a covariant representation of the algebra
AP(1,3) is realized on the set of its solutions and the Casimir operators of this algebra
satisfy the conditions (6.1).

Relativistic wave equations of the kind (6.2) where β4 is an invertible matrix
are well studied. In the works of Bhabha [35], Harish-Chandra [216], Wild [416],
Umedzawa [404] the general form of the matrices βµ was found for Poincaré-invariant
equation (6.2). Besides the additional conditions for βµ had been formulated which
follows from the requirements (6.1). In the Russia studying of such equations started
with the works of Tamm and Ginzburg [202, 203], the important results in this
direction were obtained by Fedorov [97], Schelepin [384], and especially by Gelfand
and Yaglom [200] who described finite and infinite dimensional first order wave
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equations for any spin particles in the frame of the united approach. Nevertheless the
theory of Poincaré-invariant equations of the kind (6.1) is still far from complete. In
particular the equations with a singular matrix β4 and the equations corresponding to
indecomposable representations of the Lorentz group are not completely studied yet.

6.2. The Poincaré-Invariance Condition

We restrict ourselves to the case when the representation of the algebra
AP(1,3) over the set of the equation (6.1) solutions is completely reducible. Then, the
basis elements of this algebra are given by formulae (2.2) where Sµν are matrices
realizing a direct sum of IRs of the algebra AO(1,3).

Let the number of equations in the system (6.2) be equal to the number of
unknowns. In analogy with (2.21), the condition of invariance of such a system under
the algebra AP(1,3) can be written in the form

where QA is any operator from the set (2.2), is a matrix of dimension n×n

(6.3)[QA,βµpµ β4m] βQA

(x)(βµpµ β4m)

βQA

(x)
depending on x. Substituting (2.2) into (6.3) and equating coefficients of the same
differential operators we can make sure that for QA∈ {Pµ} the condition (6.3) is satisfied
identically, but for QA∈ {Jµν} we obtain the following conditions for the matrices βµ, β4,
βQa

βµν

or

[Sµν,βλ] i(gνλβµ gµλβν) βµνβλ, [Sµν,β4] βµνβ4

Using the commutation relations (3.49) for Sµν, it is not difficult to deduce the

(6.4)
S̃µνβλ βλSµν i(gνλβµ gµλβν),

S̃µνβ4 β4Sµν 0, S̃µν Sµν βµν.

following conditions from (6.4):

A sufficient condition of validity of (6.5) is the requirement that the matrices S̃µν realize

(6.5)[S̃µν,S̃λσ]βk i(gµσS̃νλ gνλS̃µσ gνσS̃µλ gµλS̃νσ)βk.

a representation of the algebra AP(1,3) (which in general can differ from the
representation realized by Sµν). If the conditions (6.4) are fulfilled with Sµν, S̃µν being
matrices satisfying the algebra AP(1,3), then we say the equation (6.2) is invariant
under the algebra AP(1,3) in the strong sense, or S-invariant.

So we come to the following definition.
DEFINITION 6.2. The equation (6.2) is S-invariant under the Poincaré

algebra if there exist such matrices Sµν, S̃µν realizing representations of the algebra
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AO(1,3) then the conditions (6.5) are satisfied for βµ and β4.
We emphasize that Definition 6.2 gives only the sufficient conditions of the

Poincaré- invariance of the equation (6.2) inasmuch as in general the algebra AP(1,3)
can be realized by operators which do not belong to the class M1, and, besides, it is not
necessary for Sµσ to satisfy the algebra AP(1,3) (the requirement (6.5) is less strong).

We note that Definition 6.2 is also valid for the case when the number n of
components of the function ψ does not coincide with the number m of equations. In this
case βµ and β4 are matrices of dimension m×n, m≠n, Sµν and S̃µν are square matrices of
dimension m×m and n×n.

Further on, we restrict ourselves to considering of Poincaré-invariant
equations (6.2) with square matrices βµ, β4 where β4 is nonsingular. The theory of
relativistic wave equations with a singular matrix β4 is still not completed (see,
however [1, 95, 221]).

If β4 is nonsingular then, without loss of generality, we can set β4=I where I
is the unit matrix. Incidentally the system (6.2) reduces to the form

According to (6.4), Sµν=S̃µν if βµ=I, and the conditions (6.5) reduce to the following

(6.6)(βµ p µ m)ψ 0.

form

The problem of describing of Poincaré-invariant equations (6.6) reduces to

(6.7)[Sµν,βλ] i(gνλβµ gµλβν).

finding the general solution of the equations (3.49), (6.7). In the following subsection
we represent this solution for the case when the matrices Sµν are completely reducible.

6.3. The Explicit Form of the Matrices βµ

Solving the equations (6.7) includes generally speaking the following steps:
a) finding the matrices Sµν satisfying the algebra (3.49), i.e., describing that

representations of this algebra;
b) selection of such representations for which the equations (6.7) have

nontrivial solutions;
c) and, finally, determining explicit form of the matrices βµ satisfying (6.7).
We restrict ourselves to the case when Sµσ realize a finite dimensional

reducible representation of the algebra AO(1,3). Such a representation without loss of
generality can be taken in the form of a direct sum of IRs given in Subsection 4.8.

Let us denote by (j τ; lm)λ> a vector belonging to the space of the IR
D(j τ) and being an eigenfunction of the operators (4.12), (4.63) (the index λ is
introduced in order to label the spaces of equivalent representations) and by
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<(j τ; lm)λ βµ (j′ τ′ ; l′m ′)λ′> - the matrix elements of the matrices βµ from the invariant
equation (6.6). Then the main assertion concerning the general form of matrices βµ

satisfying (6.7) can be formulated as follows [58].
THEOREM 6.3. Let Sµν be matrices realizing a direct sum of the IRs D(j τ)

of the algebra AP(1,3) and βµ be matrices satisfying (6.7). Then elements of the matrix
βµ differ from zero only in those cases when j-j′ =1/2 and τ-τ′ =1/2, with the
following relations being valid:

where j>τ, j-τ ≤l≤j+τ, [l] is the entire part of l,

(jτ;lm)λ β0 (j 1/2 τ 1/2; l m )λ Cλλ δmm δll [(j l 1)(τ j l 1)]1/2,

(6.8)
(jτ;lm)λ β0 (j 1/2 τ 1/2; l ,m )λ ( 1)j τ lCλλ δll δmm [(j τ l)(j τ l 1)]1/2,

(jj 1/2; lm)λ β0 (j 1/2 j; l ,m )λ ( 1)[l] 1Cλλ (l 1/2)δll δmm

Here Cλλ′ are arbitrary complex numbers. The matrix elements of β1, β2 and β3 can be

(6.9)

<(jτ; lm)λ β0 (j τ ; l m )λ > ( 1)2j 2<j τ ; l m )λ β0 (jτ; lm)λ >,

<(jτ; lm)λ β0 (j τ ; l m )λ > <τj; lm)λ β0 (τ j ; lm)λ >, j≠τ, j ≠τ ,

(j 1/2 j 1/2; lm)λ β0 jj; l ,m λ ( 1)2j l 1Cλλ [(s(s 1)]1/2δll δmm .

obtained from (6.8), (6.9) by using relations (6.7).
Thus, the matrices βµ are determined by the conditions (6.7) up to arbitrary

complex coefficients Cλλ′ . The number of these coefficients decreases if we require the
P-, T- and C-invariance of the equations (6.6). Let λ, λ′ and µ, µ′ numerate two pairs
of nonequivalent representations which are transformed one into another by the space
inversion. Then for P-invariance of (6.6) it is necessary to require Cλλ′=-Cµµ′. Other
restrictions for Cλλ′ are considered in the following subsection.

6.4. Additional Restrictions for the Matrices βµ

If we restrict ourselves to completely reducible representations of the algebra
AO(1,3) then formulae (6.8), (6.9) give all the possible matrices βµ such that the
equation (6.2) is S-invariant under the Poincaré algebra. But a solution for this equation
does not satisfy in general the conditions (6.1), and so cannot a priori be interpreted as
a motion equation for a particle with fixed mass and spin.

The equations (6.1) impose additional restrictions on the form of the matrices
βµ. As was shown in [416] the necessary and sufficient condition of validity of the first
of relations (6.1) is
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where s is the maximal spin value appearing by the reduction of the representation of

(6.10)β2s 1
0 β2s 1

0

the algebra of matrices Sµν by the algebra AO(3). According to (6.11), the
corresponding eigenvalues of the matrix β0

2 can be equal to 0 or 1 only.
So the first of the conditions (6.1) admits the simple formulation (6.10). As

to the second equation (6.1), it reduces to the following relations for β0 [58]:

where Sab are the matrices Sµν with µ, ν ≠ 0, and P=β0
2s-1+[s] is the projector on the

(6.11)S 2P≡ 1
2

SabSabβ
2s 1 [s]
0 s(s 1)β2s 1 [s]

0

subspace corresponding to nonzero eigenvalues of the matrices β0.

One more restriction on the matrices βµ can be obtained from the requirement
that the equation (6.6) admits the Lagrangian formulation, i.e., can be deduced from the
corresponding Lagrangian using the minimal action principle. This requirement means
that a nonsingular Hermitizing matrix η exists satisfying the conditions

The necessary and sufficient condition of the matrix η existence is that any IR D(j τ)

(6.12)ηSµν S †
µνη,

(6.13)ηβµ β†
µη.

included into the representation realized by Sµν be supplemented by the conjugated
representation D(τ j) if j≠τ. At this, the conditions (6.12) determine the matrix η up to
a factor if any IRs D(j τ) has the unit multiple [58]. The explicit form of η is given by
the formulae:

where I and 0 are the zero and unit matrices of dimension (2j+1)×(2j+1);

(6.14)
a) D D(0j)⊕ D(j0), η











0 I

I 0
,

where Pjτ are the (2j+1)(2τ+1)×(2j+1)(2τ+1) matrices given in (5.47), (4.61) (they are

(6.15)b) D D(jτ)⊕ D(τj), j≠τ, η










0 Pjτ

Pτj 0

denoted there by p);

As a representation D realized by Sµν is a direct sum of the representations a),

(6.16)c) D D(jj), η Pjj.

b), and c), then as a matter of fact formulae (6.14)-(6.16) set up the general form of η
for the case when this sum is nondegenerated. For the general form of η in the case
when Sµν realize a degenerated direct sum of IRs refer, for example, to [197].

Thus, the general form of the matrices βµ determining the Poincaré-invariant
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equation (6.6) for a particle of spin s is given by formulae (6.8), (6.9) with the
coefficients Cll′ having to satisfy additional conditions stemming from (6.10), (6.11),
(6.13)-(6.16). In the following we consider examples of these equations for s≤3/2.

6.5. The Kemmer-Duffin-Petiau (KDP) Equation

The simplest example of a Poincaré-invariant equation of the kind (6.6) is the
Dirac equation considered in Section 2. This equation can be obtained with formulae
(6.8), (6.9) starting with the representation D=D(0 1/2)⊕D(1/2 0) for the matrices Sµν.

Let us consider more complicated examples. By choosing the representation
D in the form D=D(0 0)⊕D(1/2 1/2), we obtain from (4.58)-(4.60), (6.8), (6.9),
(6.10)-(6.12), (6.16) the following expressions for the matrices βµ in the basis

where 0̂ and 0̃ are the zero matrices of dimensions 4×4 and 1×3, λa are the row matrices

ψ column







00;00>, 1
2

1
2

;00 , 1
2

1
2

;11 , 1
2

1
2

;10 1
2

1
2

;1 1 :

(6.17)β0















0 i 0̃

i

0̃
†

0̂
, βQ

















0 0 λa

0

λ†
a

0̂

Without loss of generality, we set an arbitrary constant C10 in (6.8) be equal to 1.

(6.18)λ1 (i 0 0), λ2 (0 i 0), λ3 (0 0 i).

The equation (6.6) with the matrices (6.17) describes a particle of mass m and
spin s=0. Furthermore, β0 satisfies the criteria (6.10), (6.11), (6.13) where s=0 and

Formulae (6.6), (6.17) define the KDP equation for a scalar particle. The

(6.19)Sµν i[βµ,βν], η (1 2β2
1)(1 2β2

2)(1 2β2
3).

matrices (6.17) satisfy the algebra

These relations define βµ up to unitary equivalence.

(6.20)βµβνβλ βλβνβµ gµνβλ gνλβµ.

The KDP equation is invariant under the P-, T- and C-transformations (2.55),
(2.60) where

Consider the KDP equation for a vector particles which may be taken in the

(6.21)r1 (1 2β2
0), r2 1, r3 η.

form (6.6) with βµ being 10 ×10 irreducible matrices satisfying the algebra (6.20). The
explicit realization of these matrices (which is defined by the relations (6.20) up to
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unitary equivalence) can be chosen in the following form:

Here 0̂ and 0̃ are the zero matrices of dimension 3×3 and 1×3, I is the 3×3 unit matrix,

(6.22)β0 i





















0̃ 0̃ I 0̃

0̃ 0̃ 0̃ 0̃

I 0̃ 0̃ 0̃

0̃
†

0̃
†

0̃
†

0

, βa























0̂ 0̂ 0̂ λ†
a

0̂ 0̂ Sa 0̃

0̂ Sa 0̂ 0̃

λa 0̃
†

0̃
†

0

.

Sa and λa are the 3×3 and 1×3 matrices (3.6), (6.18).
The matrices (6.22) satisfy relations (6.20), from which it follows that they

satisfy also the conditions (6.7), (6.11). The matrices Sµν of (6.19), (6.22) realize the
representation D=D(1 0)⊕D(0 1) ⊕D(1/2 1/2) of the algebra AO(1,3). Therefore, the
equation (6.6), (6.22) is S-invariant under the Poincaré algebra. This equation describes
a particle of mass m and spin s=1 since the matrices βµ satisfy (6.10), (6.11) for s=1.

The KDP equation for a vector particle is P-, T- and C-invariant and admits
the Lagrangian formulation. The corresponding SOs and the Hermitizing matrix η are
given in (2.55), (2.60), (6.21), (6.19) where βµ are the 10×10 KDP matrices.

We note that besides βµ there exists just one more matrix satisfying (6.20).
This matrix is determined according to the following relation

In the realization (6.22)

(6.23)β4

1
4! µνρσβ

µβνβρβσ.

(6.24)β4 i





















0̂ I 0̂ 0̃

I 0̂ 0̂ 0̃

0̂ 0̂ 0̂ 0̃

0̃
†

0̃
†

0̃
†

0

.

6.6. The Dirac-Fierz-Pauli Equation for a Particle of Spin 3/2

As a last example, we consider the equation describing a particle with spin
s=3/2.

We will start with the following representation of the algebra AO(1,3):
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It is possible to show that formula (6.25) provides the simplest (i.e., realized

(6.25)D D 







1 1
2

⊕D 







0 1
2

⊕ D 







1
2

0 ⊕D 







1
2

1 .

by the matrices of the minimal dimension) representation of the matrices Sµν for which
the equations (6.7), (6.11)-(6.13) has nontrivial solutions corresponding to s=3/2.

The vectors from the space of the representation (6.25) can be chosen as a
column with 16 rows. We use the following notation for such vectors

where are the (2s+1)-component eigenfunctions of the Casimir operators (4.12),

(6.26)ψ Φ1,1/2
3/2 ,Φ1,1/2

1/2 ,Φ0,1/2
1/2 ,Φ1/2,0

1/2 ,Φ1/2,1
1/2 ,Φ1/2,1

3/2 ,

Φj,τ
s

and the operator S2=SabSab/2:

From (6.8), (6.9) we obtain the following expression for the matrix β0:

(6.27)Φj,τ
s ∈ D(jτ), S 2Φj,τ

s s(s 1)Φj,τ
s .

where C1, ... ,C4 are arbitrary complex parameters. The values of these parameters can

(6.28)β0

































0

0 0 2C2

3 C1 C2 0

C3 3 C4 0

0 3 C4 C3

0 C2 3 C1

2C2 0 0

0

,

be determined up to a nonessential common multiple using the conditions (6.11):

It is not difficult to make sure that thus defined matrix β0 satisfies the condition (6.10)

(6.29)C2 C3 1/2, C1 C4 i/2 3 .

which guarantees the eigenvalue of the mass operator to be fixed. Using the relations
(4.64)-(4.66), (6.7) we find the explicit form of βa:

where Sa and Σa are the spin matrices for the spins s=3/2 and s=1/2 (see (4.31)), and Ka

(6.30)βa













0̂ Ba

B †
a 0̂

, Ba

1
3

















iK †
a K †

a 2Sa

iΣa 2Σa Ka

3Σa iΣa iKa

,

are the matrices of dimension 2×4:
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0̂ being zero matrices of dimension 8×8.

(6.31)
K1

1

2











0 3 0 5

3 0 5 0
, K2

i

2











0 3 0 5

3 0 5 0
, K3













2 0 0 0

0 2 0 0
,

The equation (6.6) with the matrices (6.29)-(6.31) is invariant under the
complete Poincaré group and describes a relativistic particle of mass m and spin s=3/2.
This equation admits the Lagrangian formulation with the Hermitizing matrix η having
the following form:

where I is the unit matrix of dimension 2×2, and Pjτ are the corresponding matrices p

(6.32)η



















P1/2 3/2

I

I

P3/2 1 2

from (5.47), (4.61).
In [75, 369] there was proposed another formulation of the Dirac-Fierz-Pauli

equation being suitable for a direct generalization to the case of arbitrary spin particles.
In that formulation a vector-spinor wave function ϕλ

µ is used (λ being a vector index,
µ spinor index) which is included in the space of the representation D(1/2 1/2)⊗
[D(1/2 0)⊕D(0 1/2)] of the Lorentz group. According to the Clebsh-Gordon theorem
(see, e.g., [3]) such a representation is decomposed into the direct sum of the IRs given
by formula (6.25).

The equation for a particle of spin 3/2 in the Rarita-Schwinger formulation has
the form

where γµ are the Dirac matrices acting on the spinor index λ of the function

(6.33)







(γν p ν m)gµν
1
3

(γµ pλ γλ pµ ) 1
3

γµ(γν p ν m)γλ ϕ λ 0,

. Multiplying the l.h.s. of (6.33) by pµ and γµ and making summationϕ column(ϕµ
1,ϕ

µ
2,ϕ

µ
3,ϕ

µ
4)

over µ we reduce this equation to the form

The equations (6.33) is equivalent to the Dirac-Fierz-Pauli equation. In fact,

(6.34)(γν p ν m)ϕλ 0, γµϕ
µ 0.

multiplying it by gσµ−γσµ and making summation over µ (this operation is invertible) we
come to the equation in the form (6.6) which differs from the Dirac-Fierz-Pauli
equation only in the realization of the matrices βµ.
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6.7. Transition to the Schrödinger Form

Solutions of the considered equations include more components that it is
necessary for a description of the internal degrees of freedom of a particle (and
antiparticle) with spin s>1/2 (i.e., more then 2(2s+1)). The only exception is the
four-component Dirac equation for a particle of spin 1/2. Besides, by elimination of
redundant components we can reduce these equations to the Schrödinger form (2.10)
with ψ being a 2(2s+1)-component wave function, and H being a Hamiltonian which
can be either differential or integro-differential operator.

For the Dirac equation the transition to the Schrödinger formulation is trivial
(see Subsection 2.2), so we consider the KDP and Dirac-Fierz-Pauli equations only.

Using algebraic properties of the β-matrices we consider the KDP equations
for s=0 and s=1 simultaneously.

Let the matrices βµ in (6.6) satisfy the KDP algebra. Multiplying (6.6) by β0
2

and 1- β0
2 and taking into account that β0

3=β0, (1- β0
2)βa=βaβ0

2, we obtain after simple
calculations the following system:

The system (6.35) is completely equivalent to (6.6) and includes the equation in the

(6.35a)i
∂

∂x0

ψ H Kψ, H K [β0,βa]pa β0m,

(6.35b)







1 β2
0

1
m

βa paβ
2
0 ψ 0.

Schrödinger form (6.35a) and the additional condition (6.35b) which expresses the
"nonphysical" components (1-β0

2)ψ via 2(2s+1) essential components β0
2ψ.

Let us transform the system (6.35) to a representation with the nonphysical
components being equal to zero. Using for this purpose the operator

we obtain

(6.36)V 1 1
m

βa paβ
2
0, V 1 1 1

m
βa paβ

2
0,

According to (6.36), the transformed function ψ′=Vψ satisfies the condition

(6.37)

V 







1 β2
0

1
m

βa paβ
2
0 V 1≡1 β2

0,

V([β0,βa]pa β0m)V 1 β0











βa pa m
(βa pa)

2

m
.

from which it follows that β0βa paψ≡0, and (6.35a) reduces to the form

(6.38)(1 β2
0)ψ 0
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Choosing for βµ the representation (6.17) or (6.22), we conclude from (6.38)

(6.39)i
∂

∂x0

ψ Hψ ≡










β0 m β0

(βa pa)
2

m
ψ .

that (s+3) components of ψ′ are identically equal to zero and that the Hamiltonian H
can be written in the form

Here σ1 and σ2 are the 2(2s+1)-row Pauli matrices (see (5.30)), S are generators of the

(6.40)
H σ2











m
p 2

2m
i

2m
σ1[2(S p)2 p 2].

direct sum D(s)⊕ D(s) of the group O(3), i.e., the matrices (3.6) for s=1 and zero
matrices for s=0. By the additional transformation H → UHU†, U=(1-iσ3)/ 2, we can
change σ2 → σ1, σ1 → -σ2 and obtain the standart form of Hamiltonian discussed in the
follofing subsection.

We see that the KDP equations reduces to the Schrödinger form by
elimination of nonphysical components. The corresponding Hamiltonians are second
order differential operators with matrix coefficients. The equation (2.10), (6.39) was
proposed for the first time by Tamm [401], Sakata and Taketani [377].

Consider the Dirac-Fierz-Pauli equation for a particle of spin 3/2. Multiplying
(6.6) from the left by the invertible matrix C,

where I and 1 are the 4×4 and 2×2 unit matrices, and denoting the components of the

C










Ĉ 0

0 Ĉ
, Ĉ















I 0 0

0 i1 1

0 i1 1

,

wave function (6.26) according to the formulae

we come to the following system

Φ1,1/2
3/2 Φ1, Φ1,1/2

1/2
i
2

(Φ3 Φ2), Φ0,1/2
1/2

1
2

(Φ3 Φ2),

Φ1/2,0
1/2

1
2

(Φ4 Φ5), Φ1/2,1
1/2

i
2

(Φ4 Φ5), Φ1/2,1
3/2 Φ6,

(6.41a)p0Φ1

1
3

K pΦ4

2
3

S pΦ1 mΦ6 0,

(6.41b)4
3

iΣ pΦ5

2
3

iK† pΦ1 mΦ2 0,

86



Chapter 2. Representations of the Poincaré algebra...

Acting on ψ (6.26) by the projector Ps=β0
2 (see Subsection 6.4), we see that

(6.41c)2
3

iK† pΦ6

4
3

Σ pΦ2 imΦ5 0,

(6.41d)p0Φ5

2
3

Σ p(2Φ4 Φ5) imΦ3 0,

(6.41e)p0Φ2

2
3

Σ p(2Φ3 Φ2) imΦ4 0,

(6.41f)p0Φ6

2
3

S pΦ6

i
3

K pΦ3 mΦ1 0,

the physical components of the wave function are Φ1 and Φ6. Unlike the case of the
KDP equation, the redundant components Φ2, Φ3, Φ4 and Φ5 cannot be expressed via
Φ1 and Φ6 and their first derivatives. But the corresponding expressions may be
obtained with the help of nonlocal (integral) operators.

Considering (6.41) in the momentum representation, using the identity
(Σ p)2=p2/4 and relations (12.26), we express nonphysical components via Φ1 and
Φ6:

Substituting (6.41) into (6.41a), (6.41f), we come to the equation in the Schrödinger

(6.42)

Φ2 iF 







K† pΦ1

4
3m

Σ pK† pΦ6 , F
2m

3 







m 2 9
4

p 2

,

Φ3 iF 







K† pΦ1

4
3m

Σ pK† pΦ6 ,

Φ4 F 







K† pΦ6

4
3m

Σ pK† pΦ1 ,

Φ5 F 







K† pΦ6

4
3m

Σ pK† pΦ1 .

form (2.10) for the eight-component wave function ψ=column(Φ1,Φ6), where,
according to [308],

Here σ1 and σ3 are the 8×8 Pauli matrices commuting with S, S being generators of

(6.43)H σ3Ŝ p







1 3F
2m

[p 2 (Ŝ p)2] σ1m








3F
4m

[p 2 (Ŝ p)2] , Ŝ (2/3)S.

the direct sum D(3/2)⊕D(3/2) of IRs of the group O(3) (compare with (7.6)).
The Hamiltonian (6.43) had been obtained in [308] starting from another
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realization of the Dirac-Fierz-Pauli equation.
The Hamiltonian (6.43) can be defined as a nonlocal (integral) operator in

the x-representation. This signifies that the Dirac-Fierz-Pauli equation corresponds
to the integral evolution equation for physical components of a wave function. In
other words, it is essentially a nonlocal equation. This is the main reason for
paradoxes with the causality violation which take place when using this equation to
describe a particle of spin 3/2 in the external electromagnetic field.

We note that the nonlocal character of the Hamiltonian (6.43) is caused by
nilpotency of the corresponding matrix β0 in (6.6). As far as this matrix is nilpotent
for any Poincaré- and P-, T-, and C-invariant equations (6.6) describing a particle
with a fixed value of spin s>1, then such an equation corresponds to an integral
Hamiltonian and is nonlocal in this sense.

7. POINCARÉ-INVARIANT EQUATIONS
WITHOUT SUPERFLUOUS COMPONENTS

7.1. Preliminary Discussion

As was noted in the Introduction, the covariant first order wave equations
for particles with higher spins can be used neither for a description of particle
interaction with an external field, nor for the constructing of a second quantized
theory. The only relativistic equation which does not lead to contradictions when
solving real physical problems is the Dirac equation.

What is the reason to distinguish the Dirac equation from other covariant
equations? There are several reasons for this. The Dirac equation possessing the
unique set of properties given below.

(1) The transparent relativistic invariance. The covariant representation of
the Poincaré algebra can be realized on the set of solutions of the Dirac equation.

(2) The existence of the Schrödinger formulation (2.10) with H being a
local (differential) operator.

(3) The wave function satisfying the Dirac equation has 4=2(2s+1)
components which exactly corresponds to the number of the spin degrees of freedom
for a particle and antiparticle of spin 1/2.

(4) The Poincaré group generators defined on the set of solutions of the
Dirac equation are Hermitian under the usual scalar product (2.39).

Covariant equations of first order considered in the preceding section
possess (for s>1/2) the property (1) and, as an exception, the property (2). As to the
properties (3), (4), the only equation (6.6) possessing those is the Dirac equation. It
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is the existence of superfluous components (i.e., those whose number is more than
2(2s+1)) of a wave function ψ, which is the source of difficulties for the theory of
higher spinequations.

In connection with the above arises the natural desire to find such equations
for particles of arbitrary spin which have no superfluous components and possess the
other properties mentioned in (1)-(4). It happens that such equations do exist, but the
price to be paid for the absence of nonphysical components is the loss of a
transparent relativistic invariance (i.e., evident symmetry between spatial and time
variables).

In this section we deduce such equations for particles of any spin.

7.2. Formulation of the Problem

We will search for Poincaré-invariant equations for a particle of arbitrary
spin in the Schrödinger form

where ψ=ψ(x0,x) is a 2(2s+1)-component wave function,

(7.1)i
∂

∂x0

ψ Hsψ,

and Hs=Hs(p) is an unknown linear differential operator to be determined from the

(7.2)ψ column(ψ1,ψ2,...,ψ2(2s 1)),

condition of (7.1) being Poincaré-invariant.
DEFINITION 7.1. We say the equation (7.1) is Poincaré-invariant and

describes a particle of mass m and spin s if it is invariant under the algebra AP(1,3),
and, besides, the Casimir operators C1=PµP

µ and C2=WµW
µ satisfy the conditions

(6.1).
According to the definition, the Hamiltonian Hs=P0 has to satisfy the

following conditions:

where Pa, Ja and Na are the basis elements of the algebra AP(1,3) satisfying the

(7.3a)[Hs, Pa] 0,

(7.3b)[Hs, Ja] 0,

(7.3c)[Hs, Na] iPa

relations
(7.4a)[Pa,Pb] 0, [Pa,Jb] i abcPc,

(7.4b)[Ja,Jb] i abcJc, [Ja,Nb] i abcNc,
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It is not difficult to see that formulae (7.3), (7.4) represent nothing but a

(7.4c)[Pa,Nb] iδabHs,

(7.4d)[Na,Nb] i abcJc.

new form of the commutation relations (1.14) characterizing the Poincaré algebra.
Thus, to describe Poincaré-invariant equations in the Schrödinger form (7.1)

it is sufficient to choose a representation of the generators Pa, Ja and Na as satisfying
the commutation relations (7.4), and then to find all the possible operators Hs

satisfying (7.3).
As is well known (see Subsection 4), the conditions (6.1) define the

operators Pa, Ja and Na up to unitary equivalence. It is natural in choosing a specific
realization of Pa, Ja and Na to require that the representation of these operators to be
defined for arbitrary spin s will make it possible to obtain the Dirac equation for
s=1/2. In other words, it is desirable to generalize the representation of the algebra
AP(1,3), realized on the set of solutions of the Dirac equation, for the case of
arbitrary spin s. We consider three of such generalizations corresponding to three
different approaches to description of Poincaré-invariant equations without
superfluous components [147, 331].

We will start with the following realization of the Poincaré group
generators:

where S are matrices realizing a direct sum of two IRs D(s) of the algebra AO(3)

(7.5)
P0 Hs, P p, J x×p S,

N x0p
1
2

[x,Hs] λs,

x and p are canonically conjugated variables defined by the relations

(7.6)
S











s 0

0 s
, s∈ D(s);

Hs and λs are yet unknown operators whose form will be obtained by applying the

(7.7)[xa,pb] iδab;

requirement for the operators (7.5) to satisfy the commutation relations (7.3), (7.4).
Formulae (7.5) represent the general form of basis elements of the algebra

AP(1,3), which generate local transformations corresponding to translations and
spatial rotations of a frame of reference.

On the set of solutions of the Dirac equation the Poincaré group generators
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have the form (7.5) where λs≡0. Thus we assume that for the first approach *

The distinguishing feature of the representation (7.5), (7.8) is that all the

(7.8)λI
s 0.

Poincaré group generators are Hermitian in respect to the scalar product (2.39),
where ψ1, ψ2 are 2(2s+1)-component wave functions satisfying (7.1).

In the second approach we choose λs in the form

Here sa are (2s+1)×(2s+1) matrices belonging to the IR D(s) of the algebra AO(3),

(7.9)(λII
s )a

1
2

[H II
s , xa] S0a, S0a iσ3 Sa i











sa 0

0 sa

.

0 are the zero matrices and σ3 is the 2(2s+1)-row Pauli matrices (5.30).
The merit of the representations (7.5), (7.9) is that they correspond to the

local transformations of the wave function ψ by the transition to a new frame of
references. Actually, on the set of the equation (7.1) solutions the generators (7.5),
(7.9) can be represented in the covariant form (2.22) where Sµν are matrices realizing
the representation D(0 s)⊕D(s 0) of the algebra AO(1,3). However, these generators
are not Hermitian in respect to the scalar product (2.39). The only exception is the
case s=1/2 when the operators (7.8) and (7.9) coincides.

We define the operators of space inversion P, time reflection T, and charge
conjugation C according to formulae (2.55), (2.60) where ψ is a 2(2s+1)-component
wave function, r1, r2, and r3 are Hermitian matrices which can be determined from
the condition that the operators P, T, and C satisfy relations (1.54) together with the
Poincaré group generators. It can be shown that up to unitary equivalence it is
sufficient to restrict ourselves to considering the matrices of the following form:

where ∆′ is a (2s+1)×(2s+1) matrix determined up to a sign by the relations (refer

(7.10a)
r I

1 σ1 or r I
1 σ0, r II

1 σ1,

r I
2 σ2, r II

2 σ2,

(7.10b)r I
3 σ2∆, r II

3 σ2∆ or r II
3 σ1∆, ∆











∆ 0

0 ∆
,

to (5.24), (5.34))

We require the equation (7.1) be invariant under the transformations

(7.11)∆ s s ∆ , ∆ 2 1.

* We will use the indices I, II, and III to distinguish the operators considered in
the first, second, and third approaches, respectively.
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(2.55),(2.60) from which it follows that Hs has to satisfy the following relations

The approaches I and II make it possible to describe a wide class of

(7.12)[P, Hs] [T, Hs] [C, Hs ] 0.

Poincaré-invariant equations without superfluous components which, however, does
not include the Tamm-Sakata-Taketani equation considered in Subsection (6.5). The
class of equations including the Dirac and Tamm-Sakata-Taketani equation can be
obtained in the third approach for which the problem is formulated as follows: to
find all the possible differential equations (7.1) invariant under the Poincaré algebra
generated by the operators (7.5). Besides, we assume that the corresponding
Hamiltonians belong to the class of second order differential operators. At the same
time we do not impose any restrictions on the form of λs

III and do not require P-, T-
and C-invariance of the equation (7.1). We will see that such a formulation makes
it possible to determine Hamiltonian of an arbitrary spin particle up to equivalence
transformations.

7.3. The Explicit Form of Hamiltonians Hs
I and Hs

II

Following [133], let us find all the possible (up to equivalence)
Hamiltonians Hs

I. It is not difficult to make sure that the equations (7.4) reduces to
identities if the equations (7.3), (7.4d) are satisfied. Substituting (7.5), (7.8) into this
equations we obtain

Relations (7.13) are the necessary and sufficient conditions for equations

(7.13a)(H I
s )2 p 2 m 2,

(7.13b)[Hs, J] [Hs, p] 0,

(7.13c)[Hs, x]×[Hs, x] 4iS.

(7.3), (7.4) to be satisfied.
We represent Hs as an expansion in the complete set of orthoprojectors

where

(7.14)H I
s

s

ν s

hν Λν,

hν are matrices commuting with S which can be decomposed by the complete set of

(7.15)Λν
ν ≠ν

Sp ν

ν ν
, Sp

S p
p

,

the Pauli matrices (5.30)
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and aν
µ are unknown functions of p.

(7.16)hν a µ
ν σµ,

It is not difficult to make sure the operators (7.15) are the projectors into
eigenstates of the operator S p/p and satisfy the following relations

The operators Λν commute with x as follows [133]:

(7.17)ΛνΛν δνν Λν,
s

ν s

Λν 1,
s

ν s

νΛν Sp.

Using (7.18), we can prove the following assertion: the vectors p×SΛν, SΛν, pΛν are

(7.18)[x, Λν]
p×S

2p 2
(Λν 1 Λν 1 2Λν)

i
2p









S p
p

Sp (Λν 1 Λν 1).

linearly independent if ν≠±s. If ν=±s then

Relations (7.14)-(7.19) enable us to reduce equations (7.13) to the system

(7.19)p×S
p

Λ±s









S s
p
p

Λ±s.

of algebraic equations for the coefficients aν
µ. As a matter of fact, we obtain from

(7.13a), (7.14), (7.17)

and then from (7.13c), (7.18) we obtain

(7.20)h 2
ν m 2 p 2,

Relations (7.20), (7.21) are necessary and sufficient conditions for the Hamiltonian

(7.21)1
2

[hν,hν 1] m 2 p 2.

Hs
I to satisfy equations (7.13). The general solution of these relations and relations

(7.12) is given by the formula

where the possible values of ϕν are determined by the recurrence relations

(7.22)hν σ1Ecosϕν σ3Esinϕν,

If the space inversion matrix r1
I is equal to σ1 then we have for any s

(7.33)ϕν 1 ϕν±2θI, θI arctan p
m

.

but for r1
I=σ0 solutions of the equations (7.20), (7.21) compatible with (2.55), (2.60),

(7.24)ϕ0 0, ϕ1/2 θI, ϕν ϕ ν,

(7.12) exist for integer s only. Moreover,
(7.25)ϕ0 ϕ(p/m), ϕν ϕ ν
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where ϕ is an arbitrary function of p/m.
According to (7.23) the number of possible Hamiltonians Hs

I increases with
increasing of s because by calculating ϕν+1 we can choose any of possible signs on
each step. It is not difficult to calculate that for r1=σ1 the total number of different
Hs

I is equal to 2[s] where [s] is the entire part of s.
We represent the simplest solutions of the recurrence relations (7.23)

compatible with (7.24), (7.25):

By substituting (7.22), (7.26) into (7.15) we obtain

(7.26)(ϕν)1 ( 1)[ν]θI, (ϕν)2 2νθI.

The operators (7.27) and (7.28) coincide in the case of s=1/2 and reduce to the Dirac

(7.27)(H I
s )1 σ1m σ3p

ν
( 1)[ν]λν,

(7.28)(H I
s )2 E

ν
σ1cos(2νθI ) σ3 sin(2νθI ) Λν.

Hamiltonian (2.11) where γ0 =σ1 and γa =-2iσ2Sa.
We represent also the explicit expressions for the Hamiltonians (7.27),

(7.28) in the terms of the helicity operators Sp for s≤3/2. According to (7.15) we
obtain

As it can be seen from (7.19), the Hamiltonians Hs
I for s≠1/2 are nonlocal

(7.29a)

(H I
0)1 σ1E, (H I

0)2 σ1m σ3p,

(H I
1/2)1 (H I

1/2)2 σ1m 2σ3S p,

(H I
1)1 σ1m σ3p(1 2S 2

p ),

(H I
1)2 σ1[E

2 2(S p)2] 2σ3mS p E 1,

(H I
3/2)1 σ1m

1
3

σ3pSp(7 4S 2
p ),

(7.29b)(H I
3/2)2 σ1[2E 2 p 2 2(S p)2]m σ3 (2E 2 p 2/12)S p 4/3(S p)3 E 2.

(integro-differential) operators in x-representation. Let us recall that first order
covariant wave equations (6.6) also lead to nonlocal Hamiltonians in general.

The problem of finding the exact form of the Hamiltonians Hs
II can be

solved in complete analogy with the above. The Poincaré-invariance conditions (7.3),
(7.4) for the representation (7.8), (7.9) reduce to relations (7.3b), (7.3c), the last of
them being of the form

The general solution of the equations (7.3b), (7.3c) compatible with (7.12)

(7.30)[H II
s ,x]H II

s iS[H II
s ,σ3] i[H II

s ,S]σ3 ip.
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is given by the formulae [297, 410]

where

(7.31)(H II
s )1 E

ν
[σ1sech(2νθII) σ3tanh(2νθII)]Λν, r3 σ1∆,

(7.32)(H II
s )2 E

ν
[iσ1cosech(2νθII) σ3coth(2νθII)]Λν, r3 σ2∆,

The Hamiltonians (7.31) are defined for arbitrary values of s, but (7.32) are valid for

(7.33)θII arctanh
p
E

.

half integer spins only because (Hs
II)2 does not satisfy (7.13a) for integer s [147,

331].
For s=1/2 the operator (7.31) reduces to the Dirac Hamiltonian.
Let us present the explicit expressions for Hs

II, s≤3/2 in the terms of helicity
operators:

The operators (7.34) correspond to r3
II=σ1∆. In the cases s=1/2 and s=3/2

(7.34)

H II
0 σ1E,

(H II
1 )1 σ1E 2ES p[σ1S p σ3E](E 2 p 2) 1,

(H II
3/2)1 σ1[(2E 2 7p 2)/2 2(S p)3]m





σ3









S p(20p 2 6E 2)/3 8
3

(S p)3 (E 2 3p 2) 1.

there exist two more Hamiltonians, one for each value s=1/2, 3/2:

These operators correspond to the choice r3
II=σ2∆.

(H II
1/2)2 2ES p(iσ1m σ3E)p 2,

(H II
3/2)2





iσ1

mE

3p 2
[(20E 2 7p 2)S p 4(p 2 2E 2)(S p)3p 2]






σ3

E 2

3p 2
[(20E 2 6p 2)S p 8E 2(S p)3p 2] (p 2 3E 2) 1.

We see the operators Hs
II as well as Hs

I are nonlocal in x-representation.
Besides, the boost generators NII are non-Hermitian in the metric (2.39). The
invariant bilinear form for the group transformations generated by NII is as follows
[298, 410]:

where

(7.35)(ψ1,ψ2) ⌡
⌠d 3xψ†

1Mψ2,
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M σ3

E
m ν

cosech(2νθII)Λν, r II
3 σ2∆,

M
E
m ν

sech(2νθII)Λν, r II
3 σ1∆.

7.4. Differential Equations of Motion for Spinning Particles

The equations without superfluous components considered above include
integro-differential operators Hs if s≠1/2. Of course, this fact complicates the using
of these equations for solution of specific physics problems. In this subsection we
consider the third approach which leads to differential equations of motion.

We represent a Hamiltonian Hs
III, which has to be found, as an expansion

in terms of spin matrices and 2(2s+1)-row Pauli matrices (5.30)

where

(7.36)H III
s h s

0 m h s
1

1
m

h s
2 ,

The operators (7.36) satisfy relations (7.3b) for any values of constant

h s
0 a s

µ σµ , h s
1 b s

µ σµ S p, h s
2 c s

µ σµ (S p)2 d s
µ σµ p 2.

coefficients . The remaining Poincaré-invariant conditions (7.3a),a s
µ ,b s

µ ,c s
µ ,d s

µ .
(7.3c), (7.4) define these coefficients up to an arbitrary parameter. We give the
explicit form of all nonequivalent Hamiltonians Hs

III (for the proof see [147, 331]):

(7.37a)H III
s σ1m σ32k1S p 1

2m
(σ1 iσ2)[p

2 4k1(S p)2], s 0, 1
2

,1,...,

(7.37b)H III
1 σ1m (σ1 iσ2)

p 2

2m
[iσ2k2 σ3 k2(k2 1) ] (S p)2

m
,

(7.37c)H III
1 σ1m σ3k3S p (σ1 iσ2)

p 2

2m
[k 2

3 σ1 i(k 2
3 2)σ2]

(S p)2

m
,

where k1, k2, ... , k5 are arbitrary complex parameters.

(7.37d)
H III

3/2 σ1











m
p 2

2m

ik4

2m
σ2









(S p)2 5
4

p 2
σ3

2m
k 2

4 1p 2,

(7.37e)
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Formulae (7.37) give all the nonequivalent Hamiltonians Hs
III defined up to

equivalence transformations generated by numerical matrices. Besides the
Hamiltonian (7.37a) defined for any s, there exist two pairs of additional
Hamiltonians for particles of spins 1 and 3/2. Each of the operators (7.37) depends
on arbitrary complex number kl, l=1, 2, ..., 5.

It is not difficult to make sure the Hamiltonians (7.37) are non-Hermitian
in respect to the scalar product (2.39). But it is possible to choose proper values of
the coefficients kl for these operators to be Hermitian in the indefinite metric

Namely, the operators Hs
III are Hermitian in respect to this metric iff

(7.38)(ψ1,ψ2) ⌡
⌠d3xψ†

1σ1ψ2.

It is not difficult to show that any equation (7.1), (7.37) is invariant under

(7.39)
k1 k1, k3 k3, k5 k5,

k2 k2, 0<k 2
2 <1, k4 k4, 0<k4<1.

the product of the transformations TC, but in general is not invariant under the P-,
T- and C-transformations. By requiring the symmetry under any of these
transformations we reduce the class of the operators Hs

III to the following
representatives

The operators (7.40b) and (7.40a), (7.40c) coincide with the Dirac and TST

(7.40a)
H III

s σ1











m
p 2

2m
iσ2

p 2

m
,

(7.40b)H III
1/2 σ1m 2σ3S p,

(7.40c)
H III

1 σ1











m
p 2

2m
i

2m
σ2[2(S p)2 p 2],

(7.40d)

Hamiltonians.
The Hamiltonian (7.40a) for s≠0 is not of great interest inasmuch as it does

not depend on spin matrices and so do not possesses any information about a particle
spin. We see that there exist only four Poincaré- and P-, T-, C-invariant equations
(7.1) where Hs is a second-order differential operator depending on spin matrices.
There are the Dirac, TST equations and the equation (7.1), (7.40d) for a particle of
spin 3/2. The corresponding C-, P-, and T-transformations are given by formulae
(2.55), (2.60) where

(7.41)r III
1 1, r III

2 σ3, r III
1 σ3∆,
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So for particles of spin s>3/2 there exist no Poincaré and P-, T-, C-invariant
Hamiltonians others then the trivial operators (7.40a). Moreover, it is possible to
show that such Hamiltonians also do not exist in the class of differential operators
of arbitrary finite order. Thus, when describing a particle of spin s>3/2, it is
necessary to choose between nonlocal (integro-differential) equations (7.1)
considered in the preceding sections and the equations being non-invariant under the
space inversion.

7.5. Connection with the Shirokov-Foldy Representation

It is easy to note that the problem of finding of Poincaré-invariant motion
equations for the approaches I-III reduces to the description of some special
realizations of the representations of the algebra AP(1,3) belonging to the class I.
The natural question arises about the relation of these realizations to the IRs of the
algebra AP(1,3) considered in Section 4.

Here we establish such a connection and demonstrate that all the
representations considered in the present section are equivalent to the direct sum
D+(s)⊕ D-(s) of the IRs.

To simplify calculations we start from the Shirokov-Foldy realization where
the basis elements of the mentioned direct sum of IRs have the form (compare with
(4.50))

The operators (7.42) and (7.5), (7.8), (7.9) are connected by the relation

(7.42)
P0 σ1E, Pa pa, J x×p S,

N x0p
1
2

σ1[x,E] σ1

p×S
E m

.

where V α are invertible operators of the following form:

(7.43)P α
µ Pµ, J α

µ J, N α V αN(V α) 1, α I,II,III,

(7.44)

V I exp 







i
2

σ2
ν

ϕν Λν ,

(V II)1

m
E









cosh 







S p
p

θII iσ2 sinh 







S p
p

θII ,

V III (E σ1H
III

s ) 







2E 







E
1
2

[σ1,H
III

s ]
1/2

,
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where ϕν, θII are the parameters given by the relations (7.23)-(7.25), (7.33), and (VII)1

corresponds to the Hamiltonians (HII)1 (7.31).
The transformation (7.43) with α=III can be used to determine the explicit

form of λs
III in (7.5) which turn out to be integro-differential operators. The

representation (7.5) with differential operator λs
III also can be reduced to the

canonical form (7.42) but the corresponding transformation operators have a very
complicated form. For example, for the Hamiltonians (7.37a) we can choose for k1=1
the following

which corresponds to the representation (7.5) with λs
III=0.

(7.45)
V III 1

2m
exp 








σ1

S p
p

arctan p
m

EP P (m 2σ1S p) P σ1ES p ,

P±

1
2

(1±σ3),

Formulae (7.44) give the explicit form of the operators which transform the
Poincaré algebra realizations used in approaches I-III into the Shirokov-Foldy
realization (7.42). For the Hamiltonians (7.27) and (7.28) the transformation operator
V I can be choosen in the following form

and

(7.46)V I (E σ1H
I

s )[2E(E m)] 1/2,

For s=1/2 these operators coincide and reduce to the Foldy-Wouthuysen (FW) [108]

(7.47)V I exp 







iσ2

S p
p

arctan p
m

.

operators diagonalizing the Dirac equation.
Formulae (7.46), (7.47) present very natural generalizations of the FW

operator to a case of an arbitrary spin.
Using the connection (7.43) it is possible to define the mean position and

spin operators for a particle of arbitrary spin. In the canonical representation (7.42)
such operators have the form [108]

In the representations (7.5), (7.8), (7.12) these operators have the following explicit

X k
a xa, S k

ab Sab.

forms

We present the explicit form of these operators corresponding to the Hamiltonians

X α
a V αxa[V

α] 1, S α
ab V αSab[V

α] 1, α I,II,III.

(7.27), (7.28):
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where Sa= abcSbc/2.

(7.48a)

(X I
a)1 xa

1

p 2E
Sab pb[E σ1(H

I
s )1] ipa[σ1(H

I
s )1 m] ,

(S I
ab)1 Sab

1

p 2E
abc Scd pd[E σ1(H

I
s )1],

(7.48b)
(X I

a)2 xa

1
E

σ2 Sa

1

E 2(E m)
(ESab pb iσ2 paS p),

(S I
ab)2 Sab

1
E

σ2 abc Scd pd

1
E(E m)

(pc S p Sc p 2) abc.

Formulae (7.48) generalize the mean position and spin operators of the
Dirac electron [108] to the case of arbitrary spin particles.

In conclusion we note that the equations found above can be generalized in
such a way that they will describe "particles" with several spin and mass states.
Equations for particles with variable spin and mass were considered in [140, 315].

8. EQUATIONS IN DIRAC’S FORM FOR ARBITRARY SPIN
PARTICLES

8.1. Covariant Equations with Coefficients Forming the Clifford Algebra

All the relativistic motion equations described above can be considered as
generalizations of the Dirac equation. Here we consider the most natural
generalization of this equation in which reducible representations of the Clifford
algebra (2.3) are used.

As in Section 6, we shall search for the motion equation of relativistic
particle of arbitrary spin in the form

where Γµ are square numeric matrices, and ψ is a multicomponent wave function.

(8.1)(Γµ p µ m)ψ 0,

According to (6.1), the function ψ has to satisfy the KGF equation
componentwise. The simplest way to assure for (6.1) to be satisfied is to require the
matrices Γµ satisfy the relations

Multiplying (8.1) by Γµpµ+m and using (8.2), we come to the condition (6.1) which

(8.2)ΓµΓν ΓνΓµ 2gµν.

is a differential consequence of (8.1), (8.2). An IR of the algebra (8.2) is realized by
the 4×4 Dirac matrices. The corresponding equation (8.1) reduces to the Dirac
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equation.
In this section we consider equations (8.1) with reducible matrices Γµ. We

show that such equations can be interpreted as equations of motion of a relativistic
particle with arbitrary spin s. Then we find the additional conditions needed to select
the subspace of solutions of the equation (8.1) corresponding to a fixed value of s.

It is not difficult to make sure that the equations (8.1) are invariant under
the Poincaré algebra. Taking the basis elements of this algebra in the covariant from
(2.22) and representing the matrices Sµν in the form

we find that the operators (2.22), (8.4) satisfy the invariance condition of the

(8.3)Sµν jµν τµν, jµν
i
4

[Γµ,Γν],

equation (8.1) (i.e., the relations (6.7), where βµ → Γµ) if the matrices τµν satisfy
the following relations:

i.e., if the matrices τµν commute with Γλ and realize a finite-dimensional

(8.4)
[τµν,τλσ] i(gµντµλ gνλτµσ gµλτνσ gνστµλ),

[τµν,Γλ] [τµν,jλσ] 0,

representation of the algebra AO(1,3).
Thus, we can set a correspondence between the Poincaré-invariant equations

(8.1), (8.2) and any finite-dimensional representation of the algebra AO(1,3). On the
set of solutions of such equations generators of the Poincaré group have the form
(2.22) with Sµν being a sum of commuting matrices jµν and τµν being given by (8.3),
(8.4).

8.2. Equations with the Minimal Number of Components

Poincaré-invariant equations in the Dirac form admit various interpretations
as far as it is not possible to determine in an unique fashion the corresponding
representation of the Poincaré algebra. The only exception is the case of the
irreducible Γ-matrices of dimension 4×4 corresponding to the Dirac equation, but
this equation has also an alternative interpretation as an equation for a zero-mass
particle (refer to the following subsection).

To interpret the equation (8.1) it is necessary to choose a possible
representations of the matrices τµν of (8.3). The corresponding representation of the
Poincaré algebra (2.22) turns out to be reducible so it is necessary to impose on ψ
a supplementary condition of the type of (6.1) in order to select the subspace
corresponding to the fixed value of spin.

Consider the case when τµν produce the representation D(τ 0) of the algebra
AO(1,3). This means that (see Subsection 4.8)
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Substituting (8.5) into (8.3), we obtain

(8.5)τab abcτc, τ0a iτa, [τa,τb] i abcτc, τaτa τ(τ 1).

where the matrices τa commute with Γµ by definition.

(8.6)Sab

i
4

[Γa,Γb] abcτc, S0a

i
4

[Γ0,Γa] iτa,

According to Schur’s lemma we conclude that the minimal dimension of
the matrices (8.5) is [4(2τ+1)]2. Thus, we can set

where the symbol ⊗ denotes the direct (Kronecker) product, γµ are the 4×4 Dirac

(8.7)Γµ γµ⊗ I, τa 1⊗ τ̂ a,

matrices, τ̂a are matrices of dimension (2τ+1)×(2τ+1) realizing the representation
D(τ) of the algebra AO(3), I and 1 are the unit matrices of dimension (2τ+1)×(2τ+1)
and 4×4, correspondingly.

To find the spin value of a particle described by the equation (8.1) it is
necessary to calculate the eigenvalues of the corresponding Casimir operator WµW

µ.
Using (2.22), (2.28), (6.1) we find, in the frame of reference where p̃=(m,0,0,0), that

and, therefore, these eigenvalues can be found by reduction of the matrices (8.6) by

(8.8)WµW
µ m 2S 2, Sa abcSbc,

the algebra AO(3). Inasmuch as the matrices jµν (8.3), (8.6) realize the representation
D(0 1/2)⊕D(1/2 0) of the algebra AO(1,3) then the matrices Sµν (8.6) generate the
representation

By the reduction AO(1,3) → AO(3) we obtain from (8.9) the following direct sum

(8.9)







D 







1
2

0 ⊕D 







0
1
2

⊗D( τ 0) D 







τ 1
2

0 ⊕ D 







τ 1
2

0 ⊕D 







τ 1
2

.

of IRs of the algebra AO(3): D(τ+1/2)⊕D(τ-1/2)⊕ D(τ+1/2)⊕D(τ-1/2) which
corresponds to the following spin values:

At this, dimension of the matrices Γµ is equal to 8s×8s.

(8.10)s1 s τ 1/2, s2 s 1 τ 1/2.

It can be shown that if the matrices τµν realise either IRs D(τ1 τ2) with
τ1≠0, τ2≠0, or reducible representations, then dimension of the matrices Γµ is larger
than 8s×8s (s is the largest value of spin appearing by the reduction AO(1,3) →
AO(3)).

Thus, the equation (8.1) is Poincaré-invariant. It describes a particle of spin
s and has the minimal number of components if matrices Γµ have dimension 8s×8s
and the corresponding matrices Sµν realize the representation (8.9) of the algebra
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AO(1,3).
Let us require the solutions of (8.1) satisfy the second condition of (6.1).

Using the definitions (2.22), (2.28), (8.6) and the equation (8.1), we reduce this
condition to the following form [331]:

where

(8.11)L2ψ≡[(Γµ p µ m)Ŝ 16ms]ψ 0,

Thus, in contrast to the first order wave equations considered in Section 6

Ŝ (1 iΓ4 )[Sµν S µν 4s(s 1)], Γ4 Γ0 Γ1Γ2 Γ3

the second condition (6.1) is not a consequence of equation (8.1) but has to be
considered as a supplementary requirement which can be written in the form (8.11).

Let us formulate the obtained results.
THEOREM 8.1 [331]. The system of equations (8.1), (8.11) is Poincaré-

invariant and describes a particle of spin s and mass m.
The equations (8.1), (8.11) have certain advantages in comparison with the

other Poincaré-invariant equation considered above. These are a relatively simple
form which does not become more complicated by increasing of spin value, and
exience of the reasonable limit at m → 0 (which is not the case for the equations
considered in Section 6). Finally, the equations (8.1), (8.11) admit a non-
contradictive generalization to the case of particles interacting with an external
electromagnetic field.

Dirac-like wave equations for any spin particles were considered by Lomont
and Moses [286]. But as proposed in [286] subsidiary condition, selecting the
solutions corresponding to fixed s, differs from (8.11) and is incompatible with (8.1)
after introduction of minimal interaction with an external electromagnetic field.

8.3. Connection with Equations without Superfluous Components

The equations in the Dirac form are closely connected with differential
motion equations without superfluous components considered in Section 7. Namely,
equations (8.1), (8.11) reduce to the form (7.1) where H is present in (7.37a).

Let us write (8.1), (8.11) in the form

where

(8.12)i
∂

∂x0

ψ Hψ, P̂sψ ψ,
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The first of the equations (8.12) is obtained from (8.1) by the multiplication by γ0,

(8.13)
H Γ0 Γa Pa Γ0 m,

P̂s Ps

1
2m

(1 Γ4)[Γ
µ pµ , Ps], Ps

1
2s

[S 2 s(s 1)].

the second is equivalent to (8.1) according to the relation

It is not difficult to make sure the operators (8.13) satisfy the conditions

8s(1 iΓ4)Ps (1 iΓ4)[Sµν S µν 4s(s 1)].

The operator P̂s is a projector into subspace corresponding to spin s. By

(8.14)P 2
s Ps, P̂

2

s P̂s.

means of the transformation

where

(8.15)ψ→Φ Vψ, H→H VHV 1, P̂s→VP̂sV
1 Ps,

we reduce the equations (8.12) to the following equivalent form:

V 1 (1 iΓ4)(Γ p k1Γ0S p), V 1 V( p),

Choosing Γ0, Γ4, S in the form of

(8.16)i
∂

∂x0

Φ H Φ≡[Γ0m 2k1Γ4S p 1
2m

Γ0(1 iΓ4)[p
2 4k 2(S p)2]Φ,

P̂sΦ≡PsΦ 0, or S 2Φ s(s 1)Φ.

where σ1, σ3, S are the matrices of (5.30), (7.6), σ̃1, σ̃3, S̃ are analogous matrices for

(8.17)Γ0











σ1 0

0 σ̃1

, Γ4











σ3 0

0 σ̃3

, S










S 0

0 S̃
,

spin s′=s-1, and 0 are zero matrices of an appropriate dimension, we come to the
equations in the form (6.1), (7.37a) for a 2(2s+1)-component function Φs=PsΦ. The
equations (6.1), (7.37a) are differential consequences of the equations (8.1), (8.11).

8.4. Lagrangian Formulation

Let us demonstrate that the equations in the Dirac form can be deduced in
frames of the minimal action principle starting from an appropriate Lagrangian.

We write the system (8.1), (8.11) as a single equation
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where χ is an arbitrary parameter which can be chosen to be equal to 1 without loss

(8.18)[Bs(Γµ p µ m) χm(1 Bs)]ψ 0,

of generality, and Bs is the projector

Actually, multiplying (8.18) by Bs and 1-Bs and using the identities

(8.19)Bs

1
16ms

(Γµ p µ m)(1 iΓ4)[Sµν S µν 4s(s 1)].

we come to the system (8.1), (8.11).

(8.20)Bs Bs Bs, (1 iΓ4)Bs(Γµ p µ m)Bs≡2(Γµ 629p µ m)Bs,

Using the formulation (8.18) it is not difficult to find the Lagrangian
corresponding to the Dirac-like equations for particles of arbitrary spin. Choosing the
Lagrangian density in the form

where ψ′ and ψ′ are 16s-component wave functions,

(8.21)L(x) i










mψ i
∂ψ
∂xµ

Γ̂µ F Γ̂λ
∂ψ
∂xλ

i
∂ψ
∂xλ

Γ̂λF










mψ iΓ̂µ

∂ψ
∂xµ

16m 2s ψ ψ

ψ, χ being 8s-component functions, and Γ̂µ, F being the matrices of dimension

(8.22)ψ column(ψ,χ), ψ ψ iΓ̂0Γ̂5Γ̂4,

16s×16s:

it is not difficult to make sure that the equation (8.18) is an Euler-Lagrange equation

(8.23)

F (1 iΓ4)(Ŝµν Ŝ
µν

4s(s 1)),

Γ̂µ











Γµ 0

0 Γµ

, Γ̂4











Γ4 0

0 Γ4

, Γ̂5 i










0 Γ4

Γ4 0
, Ŝµν











Sµν 0

0 Sµν

,

of the type

where L is given in (8.21). From (8.24) the equation for a function χ follows also,

(8.24)∂L
∂ψ

∂
∂xλ

∂L
∂ ∂ψ/∂xλ

0

which can be reduced to (8.18) by the substitution χ → ψ, Γ4 → -Γ4.
Thus, the equations in the Dirac form admit a Lagrangian formulation

which however needs doubling the number of components of the wave function ψ.
We note that the equations (8.24) for ψ and χ are invariant under the

transformations P, T and C in contrast to the equations (8.1), (8.11).
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8.5. Dirac-Like Wave Equations as a Universal Model of a Particle with
Arbitrary Spin

As a concluding remark for this section, we show that the Dirac-like
formulation is applicable to a wide class of wave equations used in modern physics.

Let us consider, for example, the equations for particles of spin 0 and 1 in
the formulations of KDP (see Subsection 6.5), of Stueckelberg [398] and Hurley
[224,225]. We may show that any of them can be represented in the form of the
equation (8.1) with a subsidiary condition

with Γµ being Dirac matrices of dimension 16×16 and P being some numerical

(8.25)Pψ 0,

matrix.
We will start with the following representation of the algebra AO(1,3)

Basis elements of this representation can be chosen in the form

(8.26)D [D (1/2 0) ⊕D (0 1/2)] [D (1/2 0) ⊕D(0 1/2)]

D (1 0)⊕D (0 0)⊕ D (1/2 1/2) ⊕D (1/2 1/2) ⊕D (0 0)⊕D (0 1).

where Γµ and Γ′ µ are commuting sets of 16×16 Dirac matrices.

(8.27)Ŝµν Sµν Sµν, Sµν
i
4

[Γµ,Γν], Sµν
1
4

[Γµ,Γν],

The equation (8.1) is transparently invariant under the Poincaré algebra in
the covariant realization (2.22), (8.27). The subsidiary condition (8.25) is
Poincaré-invariant if the matrix P commutes with Ŝµσ of (8.27).

Let us demonstrate that the system of equations (8.1), (8.25) with

is equivalent to the KDP equation for a particle of spin 1. Being specific, we choose

(8.28)
P 1 P1≡

1
16

(1 ΓkΓk)2, k 0,1,2,3,4,

Γ4 iΓ0Γ1Γ2Γ3, Γ4 iΓ0Γ1Γ2Γ3,

the following realization of the matrices Γµ and Γ′ µ:

where g=2j τ-1/2, S4a=ja-τa, Sa=ja+τa, I and 0 are unit and zero matrices of

Γ0



















0 0 0 g

0 0 I 0

0 I 0 0

g 0 0 0

, Γa





















0 0 Sa gS4a

0 0 S4a Sa

Sa S4a 0 0

gS4a Sa 0 0

,

dimension 4×4, and ja , τa are 4×4 matrices satisfying the relations
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The explicit form of ja and τa is given in the following, see (9.20).

(8.29)Γ0



















0 0 0 I

0 0 g 0

0 g 0 0

I 0 0 0

, Γa





















0 0 Sa S4a

0 0 gS4a Sa

Sa gS4a 0 0

S4a Sa 0 0

,

(8.30)
[ja,τb] 0, j 2

a τ2
a 1/4 (no sum over a),

[ja,jb] i abc jc, [τa,τb] i abcτc.

The matrix (8.28) is diagonal in the realization chosen:

From (8.31) it follows that the condition (8.25), (8.28) sets to zero six out

(8.31)
P0





















P

P

0̂

I

, P
1
2

(1 g)



















1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

.

of sixteen components of ψ.
The system (8.1), (8.25), (8.28) can be written in the form of a single

equation

where

(8.32)[P(Γµpµ m)P m(1 P)]ψ≡(βµpµ m)ψ 0,

The equivalence of the equations (8.32) and (8.1), (8.25), (8.28) follows from the

(8.33)βµ PΓµP, P 1 P1.

commutativity of the projector P with Γµpµ on the set of solutions of the equation
(8.32).

Formula (8.32) presents the KDP equation (6.6), (6.22) for a particle of spin
1. In fact, the equation (8.32) coincides with (6.6), (6.22) componentwise (the extra
components of ψ in (8.32) and of matrices βµ in (8.33) are equal to zero).

In an analogous way we make sure that the system of equations (8.1),
(8.25) where P=1-P0, P0 being the projector (8.28), is equivalent to the KDP
equation for a spinless particle. The corresponding matrices βµ are given in (6.17).

We see the KDP equation admits the Dirac-like formulation (8.1) and
(8.25). It is curious that the KDP matrices satisfying the algebra (6.20) can be
obtained from the 16×16 Dirac matrices with the help of the projection (8.33)
nullifying some rows and columns.
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The eleven component equation of Stueckelberg [398] describing a
"particle" with two spin states (corresponding to s=1 and s=0) can also be formulated
in the form of the Dirac equation (8.1) with the subsidiary condition (8.25) where

In the representation (8.29) the projector (8.34) reduces to the diagonal matrix with

(8.34)P
1

64
(1 Γ4 Γ4 Γ4Γ4)(ΓµΓ

µ)2.

four nonzero elements (placed on four last rows). The explicit form of the
corresponding matrices βµ for the Stueckelberg equation can be obtained from Γµ of
(8.29) by deleting four last columns and rows (and the first columns and rows which
are zero).

Finally, setting in (8.25)

we obtain from (8.1), (8.25) a wave equation for a particle of spin 1 in the

(8.35)P
1

64
(1 Γ4 Γ4 Γ4Γ4)(ΓµΓ

µ)2,

Lomont-Moses [286] form. Rewriting this equation in the equivalent formulation
(8.32) we obtain the seven-component wave equation considered in detail by Hagen
and Hurley [215].

We note that the Hurley equations for particles of arbitrary spin [224] are
nothing but the Lomont-Moses equations written in the form (8.32).

Let us summarize. We make sure that the multicomponent Dirac equation
with a covariant additional condition is a very effective construction for describing
pasticles of arbitrary spin. In this way it is possible to obtain new equations
considered in Subsections 7.4-7.8 and well known equations of KDP, Stueckelberg,
and Hurley, as well. The Rarita-Schwinger equation also can be represented in the
form (8.1), (8.25) (refer to (6.34)). Finally, in the following section it will be shown
that equations for massless fields also admit convenient formulations in the
Dirac-like form.

9. EQUATIONS FOR MASSLESS PARTICLES

9.1. Basic Definitions

In this section we consider Poincaré-invariant equations for massless fields.
The description of such equations is a specific problem since they cannot be
obtained, in general, from field equations for non-zero mass particles by passing to
the limit m → 0 [38]. The equations considered further on should also be of interest
since fields with zero mass are real physical objects.

The definition of a Poincaré-invariant equation for a massless field is given
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in Subsection 3.7. According to the Theorem 1.7, such equations are also invariant
under the conformal algebra AC(1,3).

We assume hereafter that the representation of the algebra AC(1,3) realized
on the set of solutions of the considered equations has the covariant form (2.22),
(3.56):

where Sµν are matrices realizing a representation of the algebra AO(1,3) and K is a

(9.1)
Pµ pµ i

∂
∂x µ

, Jµν xµ pν xν pµ Sµν,

D xµ p µ iK, Kµ 2xµD pµ xν x ν 2Sµν x ν,

matrix commuting with Sµν.
The representation space of the algebra (9.1) will be identified with a space

of states of a covariant massless field. According to (3.45), (9.1), any solution of a
Poincaré -invariant equation for a covariant massless field has to satisfy the
d′Alembert equation

Hence, we state the problem of finding all the nonequivalent linear

(9.2)pµ p µ ψ 0.

equations which are invariant under the Lie algebra generated by the operators (9.1).
Moreover, we assume that solutions of these equations satisfy (9.2) componentwise.

9.2. A Group Theoretic Derivation of Maxwell’s Equations

Before considering wave equations for arbitrary spin fields we make a look
at Maxwell’s equations and demonstrate that it is possible to derive them starting
from the requirement of relativistic (or conformal) invariance and some other
suppositions.

First, we demonstrate that Maxwell’s equations can be deduced by using the
postulate of the conformal invariance. We will look for an equation for a vector field
described by a three-component wave function. The corresponding matrices in (9.1)
will have the following form:

where Sa are matrices (3.6), I is the 3×3 unit matrix, and k is an arbitrary number.

(9.3)Sab abcSc, S0a ±iSa, K kI,

THEOREM 9.1. Let ψ be a covariant massless vector field. Then ψ must
satisfy Maxwell’s equations.

PROOF. By definition ψ satisfies the d’Alembert equation (9.2). This
equation has to be invariant under the conformal algebra whose basis elements are
given by (9.1), (9.3).

The operators Pµ, Jµν, and D are evident SOs of the equation (9.2) since
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they commute with L=pµpµ. As to the operators Kµ, the corresponding invariance
condition reduces to the form

It is possible to show the system (9.4) is compatible for k=2 only, and, furthermore,

(9.4)[Kµ, pν p ν]ψ≡[i(k 1)pµ Sµν p ν]ψ 0.

it coincides with Maxwell’s equations if we set ψ=E iH. To verify this statement
it is sufficient to write the system (9.4) componentwise for µ = 0, 1, 2, 3 and to
compare it with (3.2).

We see that Maxwell’s equations are determined uniquely by the conformal
invariance postulate and the vector nature of the electromagnetic field.

Consider now Maxwell’s equations (3.3) with currents and charges. These
equations could not be deduced in the way presented above inasmuch as a current
does not satisfy the condition (9.2). But it is possible to point to such minimal
subsystems of the equations (3.3) which lead to the complete system of Maxwell’s
equations, if we impose the requirement of Poincaré invariance.

We present (without proof) two assertions illustrating the possibilities of
group-theoretic deduction of Maxwell’s equations with currents and charges.

THEOREM 9.2. Suppose L(E,H,j0,j) is a system of partial differential
equations including the subsystem

Then, for L(E,H,j0,j) to be Poincaré invariant it is necessary for this system to

(9.5)p E ij0, p H 0.

include the following equations:

Proof is given in [154, 157].

(9.6)i
∂E
∂t

p×H ij, ∂H
∂t

p×E.

Hence, Maxwell’s equations are a consequence of the system (9.3) and the
relativistic invariance postulate.

The inverse theorem is also true: the necessary and sufficient condition for
the system (9.6) to be Poincaré-invariant is the requirement for E and H to satisfy
the additional conditions (9.5) [154, 157].

9.3. Conformal Invariant Equations for Fields of Arbitrary Spin

In analogy with Theorem 9.1 it is possible to deduce an equation for a
massless field with arbitrary helicity. In fact, supposing that such a field satisfies the
conformal invariance condition, we come to the system of equations (9.4) with Sµν

being matrices belonging to a representation of the algebra AO(1,3), and ψ being a
wave function of corresponding dimension.
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Thus, a covariant massless field satisfies necessarily the equations (9.4) with
the appropriate matrices Sµν and K. We restrict ourselves to the case when Sµν form
a completely reducible representation of the algebra AO(1,3). Then the equations
(9.4) reduce to a set of noncoupled subsystems. In any such subsystem the matrices
Sµν are the basis elements of the IR D(j τ) of the algebra AO(1,3), and K is a
multiple of the unit matrix.

But the equations (9.4) have to be invariant under the algebra AC(1,3), so
we come to the following conditions for the operators Lµ:

where Q is any of the generators (9.1). By direct calculation we obtain

(9.7)[Lµ,Q]ψ 0,

from which it follows that Pµ, D, and Jµν satisfy the invariance condition of the

[Lν,Pµ] 0, [Lν,D] iLν, [Lµ,Jνλ] i(gµνLλ gµλLν),

equation (9.4). As to the operators Kµ, we obtain from (9.7) (with Q to be changed
for Kµ) the following system of equations [52]:

which has a nontrivial solution for jτ≠0 only. Moreover,

(9.8)
[S α

λ Sαµ iSλµ k(1 k)gλµ]ψ 0,

[k(1 k) j(j 1) τ(τ 1)]ψ 0,

(j τ 1 k)(j τ k)(j τ k)(k j τ 1)pλψ 0,

Substituting (9.9) into (9.4), we come to the following system of conform

(9.9)k j τ 1 s 1.

invariant equations:

where Sµν are matrices belonging to the representation D(s 0) (or D(0 s)) of the

(9.10)(ispµ Sµν p ν)ψ 0,

algebra AO(1,3), and ψ is a 2(s+1)-component wave function.
It is not difficult to show that such equations describe a massless field with

helicity ± s. Multiplying (9.10) by pµ and summing up over µ, we come to the
equation (9.2). On the other hand, representing (9.10) in the form

where Wµ are components of Lubanski-Pauli vector, ′=1 for Sµν⊂D(0 s), and ′=-1

(9.11)Wµψ sPµψ λpµψ, λ s,

for Sµν⊂D(s 0), and comparing (9.11) with (4.55), we conclude that the direct sum
D+( ′s)⊕ D-(- ′s) of the Poincaré group representations is realized on the set of
solutions of the equation (9.10).

Thus, we obtain the system of equations (9.10) describing a massless
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covariant field of arbitrary spin. In the case s=1/2 this system is equivalent to Weyl’s
equation, and for s=1 it reduces to Maxwell’s equations. Equations of the (9.10) type
for an arbitrary spin were considered in [135].

We note that the equation (9.10) follows from the supposition of conformal
invariance of a field ψ in a unique fashion. In other words, if ψ is a covariant
massless field then it has to satisfy to (9.10) with necessity.

9.4. Equations of Weyl’s Type

The equations (9.10) represent a set of four systems of partial differential
equations that should be simultaneously satisfied by a wave function ψ. But in the
case s=1/2 we have actually only one system of equations, i.e., the Weyl system
(2.44). Essentially, any of the equations (9.10) with s=1/2 reduces to the form of
(2.44) by multiplication by the Pauli matrices σµ.

Poincaré-invariant equations of Weyl’s type exist for a massless field of
arbitrary spin. Instead of four equations (9.10) it is possible to consider a single
system from which (9.10) follow as a mere consequence.

It is well known that the Weyl equation is equivalent to the massless Dirac
equation with the additional condition (1-iγ4)ψ=0. Equations for any spin may be
obtained in analogous way, starting with the Dirac-like wave equations (see Section
8).

A system of Poincaré-invariant equations for an arbitrary spin particle (8.1),
(8.11) may be written for the case of m=0 as follows:

Imposing on ψ the Poincaré-invariant additional condition

(9.12)

i
∂

∂x0

ψ Γ0Γa paψ,

(i ∂
∂t

Γ0Γa pa)(1 iΓ4)SµνS
µνψ 0.

and choosing Γµ in the form

(9.13)(1 iΓ4)ψ 0,

where I and 0 are the 4s-row unit and zero matrices, and σµ are the Pauli matrices

(9.14)Γ0











0 I

I 0
, Γ4











I 0

0 I
, Γa











0 σa

σa 0
,

of dimension 4s×4s, we obtain
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with ϕ(x) being a 4s-component wave function connected with ψ by the relation

(9.15)











i
∂

∂x0

σ p ϕ(x)≡σµ p µϕ(x) 0,

σµ p µŜνλŜ
νλϕ(x) 0,

According to (8.6), (9.16), the matrices Ŝµν belong to the representation

(9.16)ϕ 1
2

(1 iΓ4)ψ.

D(1/2 0)⊕D(s-1/2 0) of the algebra AO(1,3), i.e., they have the following structure:

Moreover,

(9.17)Ŝ0a i(ja

1
2

σa), Ŝab i abcS0c.

The equations (9.15) are transparently Poincaré- and conform invariant. It

(9.18)[ja,σb] 0, [ja, jb] i abc jc, ja ja s(s 1).

is not difficult to make sure that these equations describe a massless field with
helicity ±s. In fact, multiplying the first of them by i∂/∂x0+σ p, we come to (9.2)
from which it follows that the mass of the described field is equal to zero. Denoting
ŜµνŜ

µν=-4(g2-s2) and taking into account the identities

we obtain from (9.15) that

[g,σ p] 2S p, g 2 s 2, [g,S p] 0, Sa

1
2 abcSbc,

or

S pϕ gσ pϕ,

Comparing (9.19) with (4.55), we conclude that the helicity of the field ϕ

(9.19)S pϕ gσ pϕ.

coincides with eigenvalues of the matrix g, i.e., with ±s. It is possible to demonstrate
that the systems of equations (9.10) follow from (9.15).

So, in order to describe massless particles of arbitrary helicity, it is possible
to use the generalized Weyl equations (9.15). Consider the examples of such
equations for s≤2.

a) s=1/2. In this case the matrices σµ are of dimension 2×2, ja are zero
matrices, ŜµνŜ

µν=σaσa=3, and the equations (9.15) reduce to the usul Weyl equation
(2.43).

b) s=1. Without loss of generality, we may choose the matrices σa and ja
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in the form

Then, for ϕ=column(ψ1,ψ2,ψ3,ψ4), we obtain from (9.15), (9.17) the following

(9.20)

σ1



















0 0 0 i

0 0 i 0

0 i 0 0

i 0 0 0

, σ2



















0 0 i 0

0 0 0 i

i 0 0 0

0 i 0 0

, σ3



















0 i 0 0

i 0 0 0

0 0 0 i

0 0 i 0

,

j1

1
2



















0 0 0 i

0 0 i 0

0 i 0 0

i 0 0 0

, j2

1
2



















0 0 i 0

0 0 0 i

i 0 0 0

0 i 0 0

, j3

1
2



















0 i 0 0

i 0 0 0

0 0 0 i

0 0 i 0

.

equations:

where the constant ψ4 can be taken to be zero without loss of generality.

(9.21)∂ψ
∂x0

p×ψ, p ψ 0, ψ4 const,

The equations (9.21) reduce to Maxwell’s equations if we denote ψ=H-iE,
H and E being real vectors.

c) s=3/2. Choosing σa and ja in the form

where Sa and σa are the matrices (3.6), (2.5), I2 and I3 are the unit matrices of

(9.22)σ a I3⊗σ a, ja Sa⊗ I2,

dimension 2×2 and 3×3, and representing the wave function ϕ in the form

we obtain the following system of equations:

ϕ










ϕ1

ϕ2

, ϕα column(ψ1
α,ψ2

α,ψ3
α), α 1,2

We see that the massless field of helicity λ =3/2 satisfies Maxwell’s

(9.23)
∂ψα

∂x0

p×ψα, (σµ)αα p µψα 0.

equations in respect with the vector index a, and does the Weyl equation in respect
with the spinor index α.

d) s=2. Let us choose σa and ja in the form

where σa are the Pauli matrices from (2.5), and

(9.24)ja ĵ a⊗ I2, σ a I4⊗σ a,

In our case the function ϕ has eight components ϕα
k, α=1,2, k=1,2,3,4, the matrices
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ja and σa acting on the indices k and α respectively. Then we obtain from (9.15),

ĵ1

1
2























0 3 0 0

3 0 2 0

0 2 0 3

0 0 3 0

, ĵ2

1
2i























0 3 0 0

3 0 2 0

0 2 0 3

0 0 3 0

, ĵ3

1
2



















3 0 0 0

0 1 0 0

0 0 1 0

0 0 0 3

.

(9.17), and (9.24) the following system:

These equations describe a massless field of spin 2.

(9.25)(σµ)αα p µϕk
α 0, i

∂ϕk
α

∂x0

2
3

(ja)kk paϕ
k
α .

9.5. Equations of Other Types for a Massless Field

Essentially, the systems (9.10), (9.15) exhaust all the nonequivalent
formulations of conformal invariant equations for a massless field of arbitrary spin,
if we assume that the corresponding generators of the conformal group have the
covariant form (9.1). This does not mean that there no other equations exist, which
are invariant under the algebra AC(1,3), for a massless field, because the basis
elements of this algebra can be, in principle, chosen in a noncovariant realization.
As the examples of equations for massless fields, which are not equivalent either to
(9.10), or to (9.15), may serve the equations obtained from (7.1), (7.27) by passing
to the limit m→0.

All nonequivalent equations for relativistic massless fields can be
enumerated as follows. Any representation of the Poincaré algebra belonging to class
II corresponds to the class of equivalent equations, and, thus, it is sufficient to
choose one representative from each of these classes. Supposing that the
corresponding representatives may be reduced to a nondegenerated direct sum of the
IRs , 1, 2=±1, we obtain the following combinations for fixed λ:D 1( 2λ)
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Representations described by (9.26d) are realized on sets of solutions for

(9.26a)D 1( 2λ),

(9.26b)D 1(λ)⊕ D 1( λ),

(9.26c)D ( 2λ)⊕ D ( 2λ),

(9.26d)D ( 2λ)⊕ D ( 2λ),

(9.26e)D 1( 2λ)⊕D 1( 2λ)⊕ D 1( 2λ),

(9.26f)D 1( 2λ)⊕D 1( 2λ)⊕ D 1( 2λ)⊕ D 1( 2λ).

the equations (9.10), (9.15). Equations corresponding to other representations of
(9.26) may be obtained by the method proposed in [132, 139]. Namely, starting with
an equation corresponding to the representations of (9.26f), we can find all the
nonequivalent Poincaré-invariant additional conditions to be imposed on a set of
solutions for this equation in order to determine subspaces of the representations
(9.26). In this manner, it is possible to describe all the nonequivalent equations for
a massless vector field including the Maxwell’s equations as a particular case. We
will not consider this possibilities in detail as they are elucidated in [154].

10. RELATIVISTIC PARTICLES OF ARBITRARY SPIN IN AN
EXTERNAL ELECTROMAGNETIC FIELD

10.1. The Principle of Minimal Interaction

Solutions of Poincaré invariant wave equations considered above determine
wave functions of arbitrary spin particles which can be used for solving different
problems of quantum mechanics. But the main value of these equations lies in the
fact that they can be used to describe an interaction of a particle with an external
field.

In the case of electromagnetic interaction the corresponding motion equation
can be obtained from an equation for a free particle by the following substitution:

where Aµ is a vector potential of the electromagnetic field, and e is a charge of a

(10.1)pµ→πµ pµ eAµ

particle.
The rule for introduction of interaction given in (10.1) has to be considered
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as a postulate which is called the minimal interaction principle. We will not discuss
the bounds of validity of this principle, but note that the prescription of introduction
of interaction given in (10.1) is not the only possible one. A more general approach
is to take into account the so-called anomalous interaction, examples of which will
be considered in the following.

Equations of motion, obtained from Poincaré-invariant wave equations for
a free particle by means of the substitution (10.1), preserve the Poincaré-invariance
if a wave function transforms in accordance with the local covariance law (2.49).
But, as it happens, an introduction of the minimal coupling into relativistic equations
for particles of spin s≥1 leads to difficulties of the principal manner which, briefly
speaking, may be stated as follows.

1. A system of partial differential equations describing a spinning particle
becomes inconsistent as a result of the substitution (10.1) being made. Such a
situation takes place, for example, for the Procá equation [412] written in the form
of second-order equation with a subsidiary condition.

2. Inclusion of the minimal interaction into the equation for a free particle
can lead to such an equation which cannot be interpreted as a motion equation for
a particle of spin s since the corresponding wave function has superfluous (with
respect to 2(2s+1)) components. Such a result is true for Dirac-like equations for
arbitrary spin particles proposed in [286].

3. Equations for a particle of spin s>1 are relativistically invariant but
describe a faster-then-light wave propagation. Thus, e.g., the Rarita-Schwinger
equation (see Subsection 6.6) becomes nonhyperbolic (i.e., having no wave
solutions) as a result of the substitution (10.1) corresponding to large field strength.
For small E and H this equation remains hyperbolic but describes a faster-than-light
wave propagation [405].

4. Eguations with minimal interaction are inconsistent while solving
concrete physical problems, e.g. the Kepler problem. This situation takes place for
the KDP equation [401].

As was shown in [194, 405], this situation is typical for the majority of
relativistic wave equations for particles of spin s>1/2. The difficulties mentioned in
pars. 1 and 2 can be surmounted if the motion equations are of Euler-Lagrange type
[100]. The contradictions related to causality violations are of principal matter and
follow from the fact that the relativistic wave equations usually include superfluous
components if s>1/2, and, in fact, they are nonlocal (refer to Subsection 6.7).

In connection with the above the natural question arises of the possibility
of using Poincaré-invariant equations without superfluous components and Dirac-like
equations (considered in Sections 7, 8) in order to describe a charged particle of spin
s in an external electromagnetic field. The positive answer to this question is given
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below.

10.2. Introduction of Minimal Interaction into First-Order Wave Equations

As a result of the substitution (10.1), the equations (6.6) take the following
form:

If the starting system (6.6) is Poincaré-invariant and, at the same time, a

(10.2)(βµ πµ m)ψ 0.

transformation law for ψ has the form of (2.49) (with the corresponding matrices
Sµν) then the system (10.2) has the similar property of invariance inasmuch as
Lorentz transformations for πµ and pµ are the same. But, in accordance with the
reasons given above, equations of the (10.2) type for arbitrary spin particles are in
general inconsistent.

Here we consider the equations (10.2) for particles with spin s=0, 1/2, 1.
We will define the corresponding Hamiltonians and discuss briefly the problems
arising while using these equations to solve particular physical problems.

The simplest example for a first-order wave equation is the Dirac equation
for an electron. Substituting βµ=γµ into (10.2), and multiplying it at the left by γ0, we
come to the equation

where

(10.3)i
∂

∂x0

ψ H(A0,π)ψ,

The Hamiltonian (10.4) corresponds for a charged particle with spin 1/2

(10.4)H(A0,π) γ0γaπa γ0 m eA0.

interacting with the electromagnetic field. This is a first-order differential operator
which is formally Hermitian with respect to the scalar product (2.39). The equation
(10.3) satisfies the causality principle (refer to Subsection 10.7) and serves as an
adequate mathematical model for a wide set of physical problems for which the
concept of an external field makes sense.

The KDP equations for scalar and vector particles interacting with an
external electromagnetic field can also be represented in the form of (10.2) with βµ

being the KDP matrices of dimensions 5×5 and 10×10. These equations also reduce
to the Schrödinger form (10.3) using the same procedure as described in the
Subsection 6.7. In addition, ψ is a 2(2s+1)-component wave function, and the
corresponding Hamiltonians H(A0,π) have the form

(10.5)s 0, H σ2m (σ2 iσ1)
π2

2m
eA0,
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Here H=ip×A is the vector of the magnetic field strength, σ1, σ2, and S are the

(10.6)s 1, H σ2m (σ2 iσ1)
π2 eS H

2m
iσ1

(S π)2

2m
eA0.

matrices (5.30), (7.6), and (3.6).
The operators (10.5), (10.6) are Hermitian with respect to the scalar product

(7.35) where M=σ2, and in the case of e→0 they reduce to the free particle
Hamiltonians (7.40a), (7.40c) (up to equivalence transformation σ1 → σ2, σ2 → -σ1.
The corresponding equations of motion satisfy the causality principle, such as the
Dirac equation (refer to Subsection 10.7).

The Rarita-Schwinger equation loses the properties of a causal equation and
is not considered hereafter.

So, starting from first-order wave equations, we obtain the equations in the
Schrödinger form for particles with spin 0, 1/2, 1. The corresponding equations for
arbitrary spin particles are considered in the following subsection.

10.3. Introduction of Interaction into Equations in Dirac’s Form

We can obtain equations for a charged particle with an arbitrary spin in an
external field by starting with Dirac-like equations for a free particle (see Section 8).

One may make sure (by a direct verification) that the substitution of (10.1)
into the equations (8.1) and (8.11) leads to a system which is consistent only for the
zero tensor Fµσ of the electromagnetic field. To overcome this difficulty, it is
sufficient to introduce the minimal interaction into the Lagrangian (8.21), or into the
equations (8.18). As a result, we come to the system

where

(10.7)[Bs(π)(Γµπ
µ m) χ(1 Bs(π))]ψ 0,

Multiplying (10.7) by Bs(π) and (1-Bs(π)), and taking into account the identities

(10.8)Bs(π) 1
16ms

(Γµπ
µ m)(1 iΓ4)[SµνS

µν 4s(s 1)].

we come to the following system:

(10.9)
Bs(π)Bs(π) Bs(π), Bs(π)(Γµπ

µ m)Bs(π)









Γµπ
µ m

e
4m

(1 iΓ4)








1
s

Sµν iΓµΓν F µν Bs(π),

(10.10a)







Γµπ
µ m

e
4m

(1 iΓ4 ) 







1
s

Sµν iΓµΓν F µν ψ 0,
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Thus, the Dirac-like equations for a particle with an arbitrary spin in an

(10.10b)[(Γµπ
µ m)(1 iΓ4)[SµνS

µν 4s(s 1)]ψ 16msψ.

external electromagnetic field have the form of (10.10). We see that introduction of
minimal interaction into the Lagrangian (8.21) results in the appearing of terms to
be proportional to the tensor of an electromagnetic field strength Fµσ in the equation
of motion.

Let us demonstrate that (10.10) reduce to equations of the Schrödinger type
for a 2(2s+1)-component wave function. Multiplying any of the equations (10.10)
by Γ0, we come, after simple calculations, to the system of the form (8.12) where

and Ps is the matrix (8.13). The identities necessary to reduce (10.10) to the form

(10.11a)H Γ0Γaπa Γ0 m
e

4m
Γ0(1 iΓ4)









1
s

Sµν iΓµΓν F µν,

(10.11b)P̂s Ps

1
2m

(1 iΓ4)[Γµπ
µ,Ps],

of (8.12) are found in (8.14) and (10.10a).
The operators (10.11b) satisfy the condition P̂s

2=P̂s and are orthoprojectors
into a subspace corresponding to the spin s. As in the case of free particle equations,
these projectors reduce to the numerical matrices Ps by the transformations (8.15)
where V is the operator obtained from (8.15) by the change p → π. At the same
time, the Hamiltonian (10.10a) is transformed into the form

or, choosing the representation (8.15),

(10.12)
H→H VHV 1 Γ0 m 2k1Γ4 S π 1

2m
Γ0(1 iΓ4 )×

×







π2 4k 2
1 (S π)2 1

s
S [H i(1 2k1s)E] eA0 ,

Formula (10.13) generalizes the free particle Hamiltonian (7.37a) to the case

(10.13)H σ1m σ32k1S π 1
2m

(σ1 iσ2)








π2 4k 2
1 (S π)2 1

s
S [H i(1 2k1s)E] eA0.

of a charged particle in an external field. Thus, starting with the first-order wave
equations (10.10), we have obtained the formula for introduction of interaction into
non-manifestly covariant equations without superfluous components.

We note that the Hamiltonians (10.13) corresponding to different values of
the parameter k1 are equivalent. Let H(k′1) be the Hamiltonian (10.13) with k1=k′1,
and H(k′′ 1) be the operator corresponding to k1=k′′ 1. Then H(k′1)=VH(k′′ 1)V

-1 where
The second note is related to the fact that there exists one-to-one

correspondence between solutions of the equations (10.10) and those of (8.12),
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(10.13), as it is evident from the above.

V exp










(σ1 iσ2)
k1 k1

m
S π .

10.4. A Four-Component Equation for Spinless Particles

Let us demonstrate that a spinless particle can also be described by a
Dirac-like equation.

As it was noted in [118], the Dirac equation for a free electron can be in
principle interpreted as an equation for a massless particle since it is possible to
define (noncovariant) representation of the Poincaré algebra corresponding to the
zero spin on a set of Dirac equation solutions. It turns out that such an interpretation
is also possible in the case of charged particles interacting with an external field if
the coupling is taken into account in the specific manner [147].

Consider the equation

where γµ, γν are the Dirac matrices, and k is an arbitrary parameter.

(10.14)







γµπ
µ m

iek
4m

(1 iγ4)γµγνF
µν ψ 0,

The equation (10.14) is explicitly covariant and coincides (in the case of
k=0) with the Dirac equation for a minimally interacting particle with spin 1/2. The
term iek(1-iγ4)γµγνF

µν/4m can be interpreted as a contribution due to the anomalous
interaction of the Pauli type.

Let us now demonstrate that in the case of k=1 the equation (10.14)
describes a motion of a spinless charged particle. We multiply (10.14) by γ0 to
obtain the equation in the form of (10.3) where

Then, applying the transformation H → H′=VHV-1-iV-1∂V/∂x0 with V being equal to

H γ0γaπa γ0m eA0

ie
4m

γ0(1 iγ4)γµγνF
µν.

we obtain the following:

V exp










(1 iγ4)
γaπ

a

m
≡1 1

2m
(1 iγ4)γaπa,

Choosing the representation (2.4) for the gamma-matrices, we can rewrite

H γ0m
1

2m
γ0(1 iγ4)π

2 eA0.

H′ in the form of (10.5) where σ1 → σ2, σ2 → -σ1, σ1 and σ2 are the 4×4 Pauli
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matrices (5.30). In other words, this Hamiltonian reduces to the direct sum of two
operators (10.5) corresponding to a spinless particle in an external electromagnetic
field.

10.5. Equations for Systems with Variable Spin

Consider equations (10.10) again, and show that they can be generalized to
describe a "particle" with a variable spin.The equation (10.10a) has a clear physical
sense even in absence of the additional condition (10.10b). In fact, it can be reduced
to a direct sum of the equations (7.1), (10.13) for particles with spin s and s′=s-1.

The equation (10.10a) admits a reasonable interpretation for the case of
matrices Sµν belonging to a more general representation then given in (8.9). Here we
consider the following representation of Sµν:

Transforming the corresponding Hamiltonian (10.10a) in accordance with (10.12),

(10.16)
D 








D 







0
1
2

⊕ D







1
2

0 ⊗ D







s
2

s 1
2

D 







s 1
2

s 1
2

⊕ D 







s 1
2

s 1
2

⊕ D 







s
2

s
2

⊕ D 







s
2

s 2
2

.

we obtain for k1=0 that

The following identity is valid:

(10.17)H Γ0m
1

2m
Γ0(1 iΓ4 )






π2 1
s

SµνF
µν eA0.

where Sµν belong to the representation

(1 iΓ4)Sµν≡(1 iΓ4)Ŝµν,

Choosing Γ0 and Γ4 in the form of (8.17), where σa and σ′a are the Pauli matrices

D D 







s
2

s
2

⊕D 







s
2

s 2
2

⊕D 







s
2

s 2
2

⊕ D 







s
2

s
2

.

of dimension 2(s+1)2×2(s+1)2 and 2(s2-1)×2(s2-1), and Ŝµν as a direct sum of the
matrices

we obtain the Hamiltonian H′ in the form of a direct sum of the operators H1 and

S (1)
µν ⊂ D 








s
2

s
2

, S (2)
µν ⊂ D 








s
2

s 2
2

,

H2 where
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The corresponding Schrödinger equation reduces to the pair of noncoupled

(10.18)

H1 σ1m (σ1 iσ2)
1

2m








π2 1
s

S (1)
µν F µν eA0,

H2 σ̃1m (σ̃1 iσ̃2)
1

2m








π2 1
s

S (2)
µν F µν eA0.

equations with the Hamiltonians H1 and H2. Let us write the first of them:

The equation (10.19) differs from (7.1), (10.13) only in the representation

(10.19)i
∂

∂x0

ψ 







σ1m (σ1 iσ2)
1

2m








π2 1
s

S (1)
µν F µν eA0 ψ.

realized by the matrices Sµν. The representation D(s/2 s/2) reduces to the following
direct sum of IRs of the algebra AO(3):

and we can interpret (10.19) as an equation for a quasiparticle which can be in

D(s/2 s/2)→D(s)⊕ D(s 1)⊕... ⊕ D(0),

different spin states corresponding to the spin values s, s-1, ... ,0.
The equation (10.19) is invariant under the P-, C-, and T-transformations

which can be chosen in the form of (2.55), (2.60) where

with η′ and δ ′ being matrices defined up to a sign by the following relations:

(10.21)r1 σ1η, r2 σ2ηδ, r3 σ2δ, η










η 0

0 η
, δ











δ 0

0 δ
,

The explicit expressions for η′ and δ′ (which will not be used further on)

η Sab Sabη , η S0a S0aη , (η)2 1, δ Sµν Sµνδ , (δ )2 ( 1)2s.

can be easily obtained using the results of Subsection 5.6.

10.6. Introduction of Minimal Interaction into Equations Without Superfluous
Components

Inasmuch as the main difficulties in description of particles in an external
electromagnetic field are connected with superfluous components of relativistic wave
equations, it is natural to try to introduce an interaction into wave equations with
the correct number of components considered in Section 7. Such equations do not
possess an explicit covariant form, and, generally speaking, the minimal interaction
principle has to be used with an appropriate carefulness since the substitution (10.1)
can violate the Poincaré invariance of the equations considered.

One way to introduce an interaction into motion equations without
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superfluous components is to make the substitution (10.1) in the corresponding
first-order wave equation which reduces to the given equation in the Schrödinger
form by delating superfluous components. This way has been used to obtain the
Hamiltonians (10.5)-(10.7), (10.13), and (10.18). It seems that there exist other
possibilities to include an interaction into equations without superfluous components
(refer, for example, to [211]).

Here we consider a description of arbitrary spin particles in an external
electromagnetic field which is based on the nonlocal equations (7.1), (7.28), (7.23),
and (7.31). We restrict ourselves to the class of problems corresponding to particle
momentum being small in comparison with a particle rest mass, and represent the
corresponding Hamiltonians as a series in powers of 1/m:

where

(10.22)H α
s σ1









m
1

2m
dab pa pb σ3











2Sa pa

1

m 2
h α o











1

m 3
,

Of course, the equations (7.1), (10.22) are not Poincaré-invariant, and can

(10.23)d ab δab 2(SaSb SbSa), h I 2h II 2
3

Sadbc pa pb pc, α I,II.

be considered only as approximate quasirelativistic models.
Changing pµ → πµ we come to the following systems:

It will be shown further on that the equations (10.24) describe satisfactorily an

(10.24)
H α(π)ψ i

∂
∂x0

ψ,

H α(π) σ1[m π2/2m 2(S π)2/m eS H/m] σ3[2S π h α(π)/m 2] eA0 o(1/m 3).

arbitrary spin particle in the electromagnetic field, taking into account such the well-
known physical effects as the dipole, spin-orbital, and Darwin couplings.

10.7. Reduction in Power Series in 1/m

As is well known, relativistic wave equations admit a consistent
interpretation only in terms of the second quantized theory which enables to
overcome the difficulties in interpreting negative energies. But these equations can
serve as satisfactory models for a wide class of problems where a particle
momentum is small in comparison with its mass, since in this case it is possible to
separate the positive energy solutions.

To select the positive energy states we transform our equations to a
representation for which the energy sign operator H/ H is diagonal. In contrast to
the free particle case, it can be done only approximately, by supposing that πµ

2 m2.
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Hereafter we make such diagonalization. We represent Hamiltonians for
arbitrary spin particle as a power series in 1/m which is convenient for calculations
within the frames of the perturbation theory.

Let us consider the Hamiltonians (10.13), (10.24) defined for arbitrary
values of spin s. After the series of successive transformations

where

(10.25)H α→W αH α(W α) 1 i
∂W α

1

∂x0

(W α) 1 (H α) , α I, II, III, W α V α
3 V α

2 V α
1 ,

we obtain (ignoring the terms of order of 1/m2) the following*

V II
1 V I

1 exp 







iσ2

S π
m

, V I
2 V II

2 exp










iσ3

eS E

2m 2
,

V µ
3 exp













i

2m 3
σ2











h µ(π) 4
3

(S π)2 1
2

∂
∂x0

S E 1
2

S π, π2 2S H ,

V III
1 exp 








iσ2

S π
2sm

exp 















k1

1
2s

(σ1 iσ2)
S π
m

,

V III
2 exp













σ3

4m 2











π2 







S π
s

2 1
s

S H i
s

S E ,

V III
3 exp







iσ2

8m 3

















S π
s

, π2 S H
s

1
3









S π
s

2























π2 







S π
s

2 1
s

S H i
s

S E, π0 , µ I, II,

Here Qab is a quadruple interaction tensor defined by the following formula

(10.26)

(H α) 0

π2

2m
eA0

eB
2m

S H eD 2

2m 2





1
2

S (π×E E×π)






1
6

Qab

∂Ea
∂xb

1
3

s(s 1)divE eC

m 2











S (π×H H×π) 2
3

Qab

∂Ha

∂xb

o










1

m 3
.

*Detailed calculations related to the transformation (10.25) are presented in [147,
315, 331].
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Formula (10.26) generalizes the Pauli Hamiltonian to the case of arbitrary

(10.27a)Qab 3[Sa, Sb] 2δabs(s 1),

(10.27b)
B µα/2, D 2 (µα)2/4, C δαIII(2s 1)/8s 2,

µI µII 2, µIII 1
s

, 0 m.

spin. Actually this operator commutes with σ1, so we can consider solutions Φ+

satisfying the relations σ1Φ+=Φ+. The Hamiltonian (10.26) includes the terms
corresponding to a dipole (∼ S H), quadruple (∼ Qab∂Ea/∂xb), spin-orbit (∼ S (E×p
-p×E)), and Darwin (∼ divE) interaction.

For the case α=III there exist two additional terms (equal to zero if s=1/2).
They have no clear physical interpretation and correspond to a quadruple magnetic
and spin-orbit interactions in case of a magnetic monopole field.

Thus, starting with the equations without superfluous components, we have
obtained the quasirelativistic Hamiltonians (10.26). In the approximation 1/m2 the
Hamiltonians (HI)′′′ and (HII)′′′ coincide. In the case s=1/2 all the three Hamiltonians
reduce to the Foldy-Wouthuysen Hamiltonian [108].

We see the approximate Hamiltonians of an arbitrary spin particle include
the terms corresponding to the Foldy-Wouthuysen Hamiltonian and additional terms
corresponding to the quadruple coupling. We note that the dipole momentum (i.e.,
the coefficient of the term eS H), predicted by the Dirac-like equations, is equal to
1/s and hence is in accordance with Belifante’s conjecture [30].

Consider now equations for a particle with a variable spin which were
deduced in Subsection 10.5. By analogy with the above, the Hamiltonian H1 (10.18)
reduces to the approximate form

where

(10.28)
H σ1











m
π2

2m
e

2sm
S H eA0

e

16m 2s 2
S (E×π π×E)

e

24m 2s 2











1
2

Qab

∂Ea

∂xb

N 2divE ie(2s 1)

8m 2s 2
N (π×H H×π) e

24m 2s 2
Qab

∂Ha
∂xb

,

Sµν being matrices realizing the direct sum of two IRs D(s/2 s/2) of the algebra

Qab 3[Na,Nb] 2δabN
2, Na S (1)

0a ,

Qab
3
2

i([Na,Sb] [Nb,Sa] ) 2iS Nδab, Sa

1
2 abcS

(1)
bc ,

AO(1,3).
All the terms in the r.h.s. of (10.28) are P-, T-, and C-invariant. Neglecting
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the terms of order 1/m2, we obtain from (10.28) the direct sum of the Pauli
Hamiltonians for particles of spins s, s-1, s-2, ... , 0. This fact confirms our
interpretation of (10.19) as an equation for a particle with a variable spin.

Consider the quasirelativistic approximation of the KDP equation. Applying
to the Hamiltonians (10.5), (10.6) the procedure similar to (10.25), we obtain [37]

where S is either the direct sum of two spin matrices (for s=1), or S=0 (for s=0).

(10.29)
H σ1











m
π2

2m
e

2m
S H eA0

σ1

2m 3





π2

2
(S π)4 1

2
[π2,(S π)2]





e
4

[S H,π2] e
2

[S H, (S π)2] e 2(S H)2

We see that the approximate Hamiltonians obtained from the KDP equations
do not include terms of order 1/m2. This means that the KDP equations do not
describe the spin-orbit and Darwin couplings in the frames of the minimal interaction
principle.

10.8. Causality Principle and Wave Equations for Particles with Arbitrary Spin

Let us demonstrate that the covariant wave equations considered here do not
lead to paradoxes with the causality violation.

The causal character of the Dirac-like equations can be established by
transferring to the equivalent system of second-order equations. Actually, multiplying
any of the equations (10.10) by λ+=(1+Γ4)/2 and λ-=(1-Γ4)/2, and expressing ψ-=λ-ψ
via ψ+=λ+ψ we obtain

with the following identity being used:

(10.30a)







πµ πµ m 2 e
2s

SµνF
µν ψ 0,

(10.30b)[Sµν S µν 4s(s 1)]ψ 0,

(10.30c)ψ 1
m

Γµ πµ ψ ,

Thus, the equations (10.10) can be reduced to the equations (10.30a,b) for

(Γµ πµ)2≡πµ πµ ie
2

ΓµΓνF
µν.

the 4s-component function ψ+, the remaining 4s components of ψ (i.e., ψ-) being
expressed via ψ+ in accordance with (10.30c).

The equation (10.30b) means that 2s-1 components of the function ψ+ are

127



Symmetries of Equations of Quantum Mechanics

equal to zero, and 2s+1 remaining components of ψ+ form a spinor within the space
of the representation D(s 0) of the algebra AO(1,3). We denote nonzero components
of ψ+ by Φs and rewrite the equation (10.30a) in the form

where S are matrices of dimension (2s+1)×(2s+1) realizing the IRs D(s) of the

(10.31)







πµ πµ m 2 e
s

S (H iE) ψs 0,

algebra AO(3).
To prove the system (10.31) is causal it is sufficient to replace operators of

differentations in respect with xµ by the component of the characteristic four-vector
nµ and then equate to zero the determinant of the obtained system of algebraic
equations for nµ, taking into account the highest order terms only. The analysed
system of partial differential equations is causal if the corresponding characteristic
equation for nµ has light-like solutions only [412].

The characteristic equation for the system (10.31) has the form

thus all the characteristic vectors are light-like. It means this system is causal. Since

(n µnµ)
2s 1 0,

any solution of the equation (10.10) can be expressed via solutions of the system
(10.31) in accordance with (10.30), we conclude that the system (10.10) is causal.

In the case s=1/2 formula (10.31) defines the Zaitsev-Feynman-Gell-Mann
equation for an electron [98, 420], and for an arbitrary s it represents the simplest
generalization of this equation. So, formulae (10.10) define a system of first-order
equations corresponding to the generalized Zaitsev-Feynman-Gell-Mann equation.

In a similar way we can prove the causal character of the equations (10.19).

10.9. The Causal Equation for Spin-One Particles with Positive Energies

In conclusion, we consider in more detail the most popular equation for
spin-1 particles, i.e., the KDP equation.

It is well known that the KDP equation also is not completely satisfactory
if we use it to describe interacting particles. In the case of minimal coupling this
equation has not good solutions if the external field reduces to the Coulomb
potential, as it was pointed by Tamm [401] and Corben and Schwinger [40*]. The
reason is that this equation does not take into account the spin-orbit coupling, see
Subsection 10.7. On the other hand the KDP equation with anomalous interaction
predicts complex energies for a particle interacting with the constant and
homogeneous magnetic field [403]. Moreover taking into account an anomalous
interaction we come in general to a non-causal equation [28*].

Here we demonstrate that it is possible to introduce such the anomalous
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interaction into the KDP equation that the causality principle will be satisfied and
complex energies will not arise while solving the problem of interaction of spin-one
particle with the constant magnetic field. To achieve this goal it is sufficient to take
into account interactions which are bilinear with respect to external field strengths.

We will start with the following equation

where Sµσ=i[βµ,βσ], βµ are the 10×10 KDP matrices, e, k1 and k2 are coupling

(10.32)










βµ πµ m
1

2m
1 β2

4











k1e

2
S µσFµσ

k2e
2

4m 2
F µσFµσ ψ 0

constants which we choose be equal to 1 for simplicity.
The equation (10.32) is Poincaré- and P-, T-, C-invariant and includes the

terms describing the anomalous interaction of a particle with an external field. The
term proportional to Fµσ represents the general form of anomalous interaction which
does not violate the causality principle [40*]. The term proportional to FµσFµσ is
introduced in order to overcome difficulties with complex energies*.

Let us demonstrate that the equation (10.32) is causal. To do it we will
delete superfluous components of the wave function ψ and analyze the corresponding
equation including the physical components of ψ only.

We find it is convenient to use the concrete realization (6.22), (6.24) of the
β-matrices. Expressing nonphysical components (1-β0

2)ψ via physical components
Ψ=β0

2ψ we come to the following generalized TST equation

where

(10.33)π0Ψ Ĥ Ψ

M=m+FµσFµσ/8, S and σa are the spin-one and Pauli matrices (7.6) and (3.6), the

(10.34)
Ĥ

1
2

(iσ1 σ2)










M
(S π)

m
S H
m

(E,E)

Mm 2

i
2Mm

(1 σ3)(E,π)

i
2m

(1 σ3)(π, 1
M

E) 1
2

(σ2 iσ1)








m (π, 1
µ

π) ,

symbol (A,B) denotes the 6×6 matrix:

*This term is absent in paper [40*] where nonlinear in Fµσ interactions where
analyzed.
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Multiplying the l.h.s. and r.h.s. of (10.33) by π0 and using the identities

(A,B)

















A1B1 A1B2 A1B3

A2B1 A2B2 A2B3

A3B1 A3B2 A3B3

.

(where the dots denote the terms which does include second-order differential

(S π)2 







π, 1
M

p S H







π, 1
M

π ... i
M

(π×H) ... ,









π, 1
M

π 1
M

π2 (S π)2 ... ,

(E,E) 







π, 1
M

π (E,π) 1
M

(E,π) ... , (E,π)(S π)2 ... ,

(π, 1
M

π)(S π)2 







π, 1
M

π S H ... i
M

(π,π×H) ... ,









π, 1
M

π 1
M

(E,E) 







π, 1
M

E 







π, 1
M

E ... ,









π, 1
M

π 1
M

(E,π) 







π, 1
M

E 







π, 1
M

π ... ,

operators) we come to the second-order equation

which corresponds to the follofing characteristic equation

(10.35)










πµπ
µ 1

2
(σ1 iσ2)











π, Ṁ

M 2
π ... Ψ 0

In accordance with (10.37) the characteristic four-vector nµ for the equation

(10.37)(n µnµ)
6 0.

(10.32) is light-like, and so this equation is causal.
In the case of the constant and homogeneous magnetic field directed along

the third coordinate axis, (10.32) reduces to the following exact equation

Using relations (30.7) it is not difficult to make sure that all the eigenvalues

π2
0 Ψ











m 2 π2 2S3H
1
4

H 2

m 2
Ψ.

of the operator p0
2 are positive defined, and so all the corresponding energy values

are real.
Thus the equation (10.32) with k1=k2=1 is causal and does not lead to

complex energies in the case of constant and homogeneous magnetic field. The same
is true for the case of an arbitrary k1 if k2 is sufficiently large.
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3. REPRESENTATIONS OF THE GALILEI
ALGEBRA AND GALILEI-INVARIANT
WAVE EQUATIONS

One of the main requirements imposed on equations of nonrelativistic
physics is the invariance under the Galilei transformations. This circumstance
predetermines a fundamental role performed by representations of the Galilei group.

The present chapter is devoted to description of representations of the Lie
algebra of the Galilei group and of Galilei-invariant equations for particles of
arbitrary spins. We will see that the concept of spin arises naturally in frames of
nonrelativistic quantum mechanics and most spin related effects (i.e., dipole,
spin-orbital, and other interactions) can be successfully described by equations
satisfying the Galilei relativity principle.

Section 11 is devoted to studying symmetries of the basic equation of
nonrelativistic quantum mechanics, i.e., the Schrödinger equation.

11. SYMMETRIES OF THE SCHRÖDINGER EQUATION

11.1. The Schrödinger Equation

In quantum mechanics, the states of a system with n degrees of freedom,
as described by a set of coordinates x=(x1,x2,...,xn), are determined by the wave
function ψ(t, x) being a vector in a Hilbert space. Moreover the evolution of a
system is described by the Schrödinger equation

where H is the Hamiltonian operator or Hamiltonian of a system.

(11.1)i
∂
∂t

ψ(t,x) Hψ(t,x)

The simplest quantum mechanical system is a free spinless particle. The
wave function of such a particle depends on three spatial variables x=(x1,x2,x3), and
the corresponding Hamiltonian has the form

where m is a parameter determining the mass of a particle, p2=p1
2+p2

2+p3
2, pa=-

(11.2)H
p 2

2m

i∂/∂xa, a=1,2,3. Substituting (11.2) into (11.1) we receive the Schrödinger equation
for a free particle
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which is going to be the object of our study.

(11.3)
Lψ(t,x)≡











i
∂
∂t

p 2

2m
ψ(t,x) 0,

One of the main postulates of quantum mechanics is the Galilei relativity
principle which can be formulated as a requirement of invariance of the Schrödinger
equation under the Galilei transformations. Of course, this requirement is satisfied
by the simplest evolution equation (11.3). Moreover, as it was stated relatively
recently, the equation (11.3) possesses a more extensive symmetry, as being
invariant under scale and conformal transformations.

Below we will study the symmetries of the Schrödinger equation in detail.
It will allow to explain, using a relatively simple example, the meaning of the Galilei
invariance concept for quantum mechanics equations. Moreover, we will demonstrate
that the invariance group of the equations (11.3) determines the maximal symmetry
of this equation in some sense.

The problem of investigation of symmetries of Schrödinger equation can be
formulated in complete analogy with the corresponding problem for the KGF
equation (refer to Section 1). As before, it is sufficient to restrict ourselves to
considering only such solutions of the equations (11.3) which are defined on some
open set D of the four-dimensional manifold R4 and belong to the vector space F of
complex-valued functions being analytical on D. Then, the set F0 of solutions of
(11.3) can be defined as a zero-space of the differential operator

defined on F: ψ∈ F0 if ψ∈ F4 and Lψ=0. The definitions of a SO and IA for the

(11.4)L p0

p 2

2m
, p0 i

∂
∂t

Schrödinger equation coincide with Definitions 1.1 and 1.2, p.p. 2, 3, if the symbol
L denotes the differential operator (11.4).

11.2. Invariance Algebra of the Schrödinger equation

The starting point of our studies of Schrödinger equation symmetries lies
in determining of the IA for this equation in the class M1, i.e., the class of first-order
differential operators.

THEOREM 11.1. The maximal IA of the Schrödinger equation in class M1

is the 13-dimension Lie algebra with the following basis elements

(11.5a)P0 p0 i
∂
∂t

, Pa pa i
∂

∂xa

, M Im,
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where xa=-xa, I is the identity operator, and the summation from 1 to 3 is imposed

(11.5b)
Ja abcxb pc, Ga tpa mxa,

D 2tp0 x a pa

3
2

i, A t 2p0 tD
1
2

mxa x a,

over the repeating indices.
PROOF. It is not difficult to verify that the operators (11.5) form an IA of

the Schrödinger equation. We can make sure that any of the operators (11.5) satisfies
the invariance condition (1.5) where L is the operator (11.4),

It is also easy to verify that the operators (11.5) form a basis of the Lie

αM αP0

αPa

αJa

αGa

0, αD 2i, αA 2it.

algebra, satisfying the following commutation relations:

In analogy with the Theorem 1.2 proof it is possible to demonstrate that

(11.6a)[Pa,Pb] [Pa,P0] [M,Pa] [M,P0] [M,Ja] [M,Ga] [P0,Ja] 0,

(11.6b)[Pa,Jb] i abcPc, [P0,Ga] iPa,

(11.6c)[Pa,Gb] iδabM, [Ja,Jb] i abc Jc,

(11.6d)[Ga,Jb] i abcGc, [Ga,Gb] 0,

(11.7)

[D,Ja] [D,M] [A,Ga] [A,M] [A,Ja] 0,

[D,Pa] iPa, [D,Ga] iGa, [D,P0] 2iP0 ,

[A,Pa] iGa, [A,P0] iD, [A,D] 2iA ,

relations (11.5) define a basis of the maximal IA of the Schrödinger equation in the
class M1. We do not provide a detailed proof but it should be noted that by
substituting (1.4) and (11.4) into the invariance condition (1.5), we come to the
following system of determining equations (compare with (1.9)):

where the dots denote derivatives in respect with the time variable t,

(11.8)

A a
a A b

b , A b
a A a

b 0, b≠a,

A 0
a 0, Ȧ

0
2A a

a , α 2iA a
a ,

iȦ
a 1

2m
∆A a i

m
Ba 0, iḂ

1
2m

∆B 0,

∆=∂2/∂x1
2+∂2/∂x2

2+∂2/∂x3
2, Aa

b=∂Aa/∂xb, Ba=∂B/∂xa, and there are no summing over
repeated indices.

The system (11.8) is easily integrated (compare with (1.8)) and leads to the

133



Symmetries of Equations of Quantum Mechanics

following expressions for Aµ and B:

where cab=-cba, h, j, c, g, na and ma are arbitrary constants. Substituting (11.9) into

(11.9)

A 0 ht 2 2jt c, α 2i(ht j),
A a c abxb htx a jx a tn a m a,

B m







h
2

xbx
b n axa g

3
2

i(ht j),

(1.4) we come to a linear combination of the SO (11.5).

11.3. The Galilei and Generalized Galilei Algebras

Thus, we have found the IA of the Schrödinger equation in the class M1

which includes 13 linearly independent SO of (10.5). These operators generate a Lie
algebra which we call the generalized Galilei algebra and denoted as AG2(1,3). An
abstract definition of this algebra is given by relations (11.6) and (11.7).

To understand the structure of the algebra AG2(1,3), we represent it as a
chain of maximal ideals (let us recall that an ideal of a Lie algebra G is a subalgebra
A such that [a,b]∈A for any b∈G, a∈A, and an ideal A is called maximal if there
do not exist ideals A′⊄A). Starting with (11.6), (11.7), it is not difficult to make sure
that the maximal ideal A1 of the algebra A2G(1,3) includes 11 elements, i.e., P0, Pa,
Ja, Ga, and M. This fact can be written in the following symbolic form:

AG2(1,3)=A1+⊃ℜ , A1⊃ P0,Pa,Ga,M, ℜ⊃D, A. (11.10)

The subalgebra A1 contains, in its turn, the maximal ideal A2 ⊃ {M,P0,Pa,Ga}, and the
subalgebra A2 does the maximal ideal T5⊃ {M,P0,Pa}. This may be reflected by the
following symbolic relation:

AG2(1,3)=[(T5+⊃ T3)+⊃ AO(3)]+⊃ℜ (11.11)

where T3⊃ {Ga}, AO(3)⊃ {Ja}, and ℜ⊃{D,A}.
Formula (11.11) describes a structure of the generalized Galilei algebra by

providing its main subalgebras. The subalgebras T5 and T3 are commutative
(Abelian) algebras of dimensions 5 and 3, AO(3) is the three-dimensional algebra
which is isomorphic to the Lie algebra of the rotation group. Let us point also one
more important subalgebra with the basis elements

The operators (11.12) satisfy the commutation relations (4.27) characterising the

(11.12)S01

1
2

(A P0), S02

1
2

(A P0), S12

1
2

D.
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algebra AO(1,2).
The most interesting (from the physical point of view) subalgebra of the

algebra AG2(1,3) is its maximal ideal which will be called the Galilei algebra and
denoted by AG(1,3). The meaning of the name will be explained in the following
subsection.

The algebra AG(1,3) is a linear span of the basis elements (10.5) satisfying
relations (11.6). It will be shown further on that it is the invariance under the algebra
AG(1,3) that serves as a mathematical expression of the Galilei relativity principle.
As for the operators D and A, which complete the Galilei algebra to the algebra
AG2(1,3), they reduced to the combinations of Pa, Ga and M on a set of the equation
(11.3) solutions. Indeed, it is not difficult to make sure that

In other words the symmetry of the Schrödinger equation under the operators D and

(11.13)Dψ (2M) 1(PaGa GaPa)ψ, Aψ (2M) 1(GaGa)ψ.

A is nothing but a direct consequence of the invariance under the Galilei algebra.
The Galilei algebra has three main Casimir operators

In quantum mechanics, the eigenvalues of the operators (11.14) are

(11.14)C1 M, C2 2MP0 PaPa, C3 (MJa abcPbGc)(MJa adePdGe).

associated with a mass, internal energy and spin of a particle. Substituting (11.5) into
(11.14), it is not difficult to make sure that eigenvalues of C1, C2 and C3 on a set of
Schrödinger equation solutions are c1=m, c2=c3=0. So, we can conclude that the
Schrödinger equation describes a particle of mass m and of zero spin and internal
energy.

In conclusion we note that the connection between the basis elements of the
Galilei and generalized Galilei algebras given by relations (11.13) takes place for
arbitrary representations of these algebras. More precisely, the following assertion
is true [333]:

LEMMA 11.1. Let {P0,Pa,Ga,Ja,M} be a set of operators satisfying the
Galilei algebra (11.6), and, besides, M is an invertible operator. Then the operators
{D,A,P′0,Pa,Ga,Ja,M}, where P′0=P0-(2M)-1C2 and D, A are the operators (11.13),form
a representation of the generalized Galilei algebra, i.e., they satisfy conditions of
(11.6) and (11.7).

Proof can be carried out by direct verification.
According to Lemma 11.1 any representation of the Galilei algebra

(corresponding to c1≠0) can be extended to a representation of the generalized Galilei
algebra (in the same way as any representation of the Poincaré algebra of Class II
can be extended to a representation of the conformal algebra, refer to Section 3). It
means that any equation being invariant under the Galilei algebra and describing a

135



Symmetries of Equations of Quantum Mechanics

particle of a non-zero mass is also invariant under the generalized Galilei algebra
(but the corresponding operators D and A do not, in general, belong to the class M1).

11.4. The Schrödinger Equation Group

The symmetry of the Schrödinger equation under the algebra AG2(1,3) is
a fundamental fact which can be used as a base for Galilean kinematics. In this
subsection we consider one of the main consequence of such invariance and clarify
its physical meaning.

In physical terms, this consequence can be formulated as follows: the
Schrödinger equation satisfies the Galilei relativity principle.

As in Section 1, we use the fact that an IA in the class M1 generates a local
representation of a Lie group. To find the explicit form of the corresponding
one-parametrical subgroups, we use the Lie equations (1.21) and (1.22) which are
easily integrable for the SO of (11.5). Comparing (11.4) with (11.5), we conclude
that B≡0 for the operators Pµ and Ja and, therefore, solutions of the corresponding
equations (1.22) will have the following form:

The corresponding equations of (1.22) will have the following solutions:

(11.15)ψ (x ) ψ(x), x (x0,x1,x2,x3), x0 t.

for Q=Pµ and

(11.16)xµ xµ bµ

for Q=Ja. Here bµ, θa are real parameters, and (a,b,c) is the cycle (1,2,3).

(11.17)

x0 x0, xa xa,

xb xbcosθa xcsinθa,

xc xccosθa xbsinθa

Integrating the equations (1.21), (1.22) we obtain the corresponding
transformations generated by the remaining basis elements of the generalized Galilei
algebra:

if Q=Ga;

(11.18)ψ (x ) exp










imv0xa i
mvava

2
ψ(x),

x0 x0, xa xa vat, xb xb, b≠a,

if Q=M;

(11.19)ψ (x ) exp(imc)ψ(x), x x,
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if Q=D;

(11.20)
ψ (x ) exp 








3
2

λ ψ(x),

x0 exp(2λ)x0, xa exp(λ)xa,

if Q=A.

(11.21)
ψ (x ) (1 ξx0)

3/2exp










imx 2ξ
2(1 ξx0)

ψ(x),

x0

x0

1 ξ x0

, xa

xa

1 ξ x0

,

Here Ga, M, A, D are the operators from (11.5), and va, c, λ, ξ are real
parameters of the corresponding transformations.

Formulae (11.16)-(11.21) define a family of one-parameter transformations
forming the 13-parameter Lie group called the Schrödinger equation group. The
transformations (11.16) are translations of time and spatial variables, formulae
(11.17) define a rotation of a reference frame, and relations (11.18) can be
interpreted as a transition to a new frame of reference moving with the velocity va

along the axis a. Finally, the transformations (11.20) and (11.21) describe the
symmetry of the Schrödinger equation in respect to the scaling and specific nonlinear
change of variables xµ → xµ/(1+ξx0).

Using (11.6), (11.7), (11.16)-(11.21) it is simple to obtain the general
transformation from the Schrödinger equation group in the following form:

where

(11.22)ψ(x)→ψ (x ) exp[if(x)]ψ(x),

Rab is the operator of spatial rotations,

(11.23)

f(x) 3
2

ln(1 ξx0)
imxaxaξ
2(1 ξx0)

mvaxa

1
2

mvx0

3
2

iλ mc,

xa

exp(λ)Rabxb

1 exp(2λ)ξx0

vax0 ba, x0

x0

ξx0 exp(2λ)
b0,

with θa, va, b0, ba, ξ, λ, and c being arbitrary real numbers.

(11.24)Rab δabcosθ abcθc

θ
sinθ

θaθb

θ2
(1 cosθ), θ (θ2

1 θ2
2 θ2

3)
1/2,

It is possible to accertain by direct verification that the Schrödinger equation
(11.3) is invariant under the transformation (11.22) since ψ′(x′) satisfies the equation
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We see that the transformed function ψ′(x′) of (11.22) differs from the

(11.25)










i
∂

∂x0

p 2

2m
ψ (x ) 0, pµ i

∂
∂x µ

.

initial function ψ(x) by the phase multiplier exp[if(x)]. However, it may be shown
that the transformations (11.22)-(11.24) do not change the norm of a wave function

Let us note that the use of formulae (11.22)-(11.24) needs an appropriate

(11.26)ψ 2 (ψ,ψ) ⌡
⌠d 3xψ†ψ (ψ ,ψ )≡⌡

⌠d 3x ψ †ψ .

caution since it may occur that x′0 and x′a do not belong to D, though x0, xa ∈ D. For
fixed x0, xa ∈ D, x′0 and x′a belong to the domain of a function ψ∈F 0 if the
transformation (11.23) belongs to an infinitesimal neighbourhood of the identity
transformation. Because of this (and bearing also in mind that the expressions
(11.23) become meaningless if ξ=-x0

-1exp(-2λ)), we say that the relations
(11.22)-(11.24) define only a local representation of the Schrödinger equation group.

11.5. The Galilei Group

Consider in greater detail the main subgroup of the Schrödinger equation
group which corresponds to ξ=λ=0. The corresponding transformations
(11.22)-(11.24) take the form

where

(11.27)ψ(x)→ψ (x ) exp[iϕ(x)]ψ(x),

The transformations of space and time variables given in (11.29) are called

(11.28)ϕ(x) mvaxa

1
2

mvavax0 mc,

(11.29)xa Rab xb va x0 ba, x0 x0 b0.

the Galilei transformations.
Let us demonstrate that the transformations (11.27)-(11.29) form a group.

Let (R,v,b,b0,c) be a transformation (11.27)-(11.29) with R=R(θ) denoting the matrix
of spatial rotation (11.24). Then, the group composition law is defined as follows

The unit element of the group is represented by the identity transformation

(11.30)

R (2),v(2),b(2),b (2)
0 ,c (2))(R (1),v(1),b(1),b (1)

0 ,c (1)

R (2) R (1),v(1) R (1)v(2),b(1) R (1)b(2) v(1)b (2)
0 ,





b (1)
0 b (2)

0 ,c (1) c (2) v (1)
a R (1)

ab b (2)
b

1
2

b (2)
0 (v(1))2 .
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and the element inverse to (R,v,b,b0,c) has the form

(11.31)E (I,0,0,0,0),

This group of transformations (11.27)-(11.29) is called the extended Galilei

(11.32)(R,v,b,b0,c) 1 







R 1, R 1v, R 1(b vb0), b0, c b v 1
2

b0v
2 .

group.
We see that the extended Galilei group is an 11-parameter Lie group while

formulae (11.29) representing the transformations of the space-time continuum
include 10 parameters only. The set of the transformations (11.29) also forms the so-
called Galilei group. The group law for the transformations (11.29) has the form

The transformations (11.27) comprise a representation of the Galilei group

(11.33)g R (2),v(2),b(2),b (2)
0 ,c (2) g R (1),v(1),b(1),b (1)

0 ,c (1)

g R (2)R (1),v(1) R (1)v(2),b(1) R (1)b(2) v(1)b (2)
0 ,b (1)

0 b (2)
0 .

if we set c=0 in (11.28). It is not difficult to make sure that such a representation
is not exact (but is only a projective one) because of

where exp(iω12) is a phase multiplier:

(11.34)
R (2),v(2),b(2),b (2)

0 ,0 R (1),v(1),b(1),b (1)
0 ,0

exp(iω12) R (2)R (1),v(1) R (1)v(2),b(1) R (1)b(2) b (2)
0 v(1),b (1)

0 b (2)
0 ,0 ,

We see that the transformations (11.27) with c=0 satisfy the group

(11.35)ω12 v (1)
a Rabb

(2)
b

1
2

b (2)
0 (v(1))2.

composition law (11.33) up to the phase multiplier exp(iω12) only, the latter not
changing the norm (11.26).

Thus, we can consider either the exact representation of the extended Galilei
group or the projective representation of the Galilei group. We note that the
transformations (11.27)-(11.29) can be considered as a global representation of the
Galilei group if the domain of ψ coincides with the four-dimensional manifold R4.

11.6. The Transformations P and T

The symmetry group of the Schrödinger equation considered above
describes invariance properties of this equation with respect to continuous
transformations of dependent and independent variables. Now we briefly discuss the
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symmetry of the Schrödinger equations under the discrete transformations

We can make sure that these transformations do not belong to the class

(11.36a)x→ x, t→t,

(11.36b)x→x, t→ t.

defined by relations (11.29) or (11.23). They are linear transformations whose
matrices have negative determinants in contrast to the linear homogeneous part of
the transformations (11.23). Nevertheless the Schrödinger equation is invariant under
these transformations if a wave function is simultaneously transformed according to

where the asterisk denotes the complex conjugation, η1 and η2 are complex numbers

(11.37)ψ(t,x)→Pψ(t,x) η1ψ(t, x),

ψ(t,x)→Tψ(t,x) η2ψ ( t,x)

such that η1=η2
*=η2η2

*=1. Without loss of generality we may choose

The set of transformations P, T, PT and the identity transformation form a

(11.39)η1 ±1, η2 ±1.

symmetry group of the Schrödinger equation. This discrete group can be added to
the Schrödinger group to obtain the so-called complete Schrödinger group. Unitary
ray representations of the complete Schrödinger group are considered in [59].

This ends the brief discussion of classical symmetries of the basic equation
of quantum mechanics. The results represented in this section will be repeatedly used
further on at the deducing of motion equations for arbitrary spin particles.

12. REPRESENTATIONS OF THE LIE ALGEBRA OF THE
GALILEI GROUP

12.1. Galilei Relativity Principle and Equations of Quantum Mechanics

As was shown above, the Schrödinger equation is invariant under the
coordinate transformations corresponding to a transition to a new inertial frame of
reference.

The relativity principle establishing equal rights of all the inertial frames of
reference was formulated by Galileo Galilei more than 350 years ago. Of course,
Galilei did not show the explicit form of transformations of space and time
coordinates (the concept of coordinates was introduced much later). Nevertheless,
these transformations bear the name of Galilei with a good reason, and the set of
such transformations is properly called the Galilei group.
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It looks surprising that the structure of the Galilei group and its
representations has begun to be studied relatively recently, and much later than the
corresponding problems of the Poincaré group. In 1952 Inönü and Wigner [229]
described exact representations of this group. Bargman [16] was the first to point to
a fundamental role of ray representations of the group G(1,3) in quantum mechanics.

After the fundamental works [16, 229], it was Levi-Leblond who made an
essential contribution into understanding of problems of Galilean relativity in
quantum mechanics. He deduced nonrelativistic analog of the Dirac equation which
is invariant under the Galilei group [276]. Like the Dirac equation, the Levi-Leblond
equation describes the Pauli interaction and predicts the correct value of the
gyromagnetic ratio.

The Levi-Leblond equation and its possible generalizations are considered
in detail in the subsequent sections. Here we only note that there exist
Galilei-invariant wave equations which describe correctly such a fine effect as the
spin-orbit coupling. This makes it possible to use these equations to solve practical
physical problems, and sometimes they are more suitable then complicated
relativistic wave equations.

To describe Galilei-invariant wave equations it is necessary to know
representations of the Galilei group. The basic information about these
representations is given in this and subsequent sections.

12.2. Classification of IRs

Let us consider representations of the Lie algebra of the Galilei group as
defined by the commutation relations (11.6). In this section we consider completely
reducible representations only, so it is sufficient to restrict ourselves to IRs.
Following [151], we will find such a realization of all the nonequivalent IRs of this
algebra that is distinguished by a common and simple form of the Galilei group
generators for all the classes of IRs. Besides, the approach used is closely related
with that presented in Chapter 2. This enables us to avoid superfluous details.

The basic Casimir operators of the algebra AG(1,3) are given by (11.14).
We will show further on that representations of this algebra differ qualitatively for
zero and nonzero eigenvalues c1, c2 of the operators C1, C2. Namely, it is possible
to select five classes of representations corresponding to the set of values c1 and c2

as shown in (4.10). Thus, the classification of IRs of the Galilei group is very
similar to the corresponding classification for the Poincaré algebra (do not take the
Casimir operators of the Galilei group for those of the Poincaré group though we use
the same notation for operators and corresponding eigenvalues).

The first three classes I-III of IRs can be realized by Hermitian operators.
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Representations of Class IV are non-Hermitian but they also find an appropriate
usage in physics.

When Pµ≡0 we come to the representations of the homogeneous Galilei
group which is isomorphic to the group E(3). Finite dimensional and irreducible
representations of such a type are considered in Subsection 13.6.

As a basis of an IR we choose a set of eigenfunctions c,p̃,λ> of the
commuting operators C1, C2, C3 (11.14), P0, P1, P2, P3, W0=J P, and of additional
Casimir operators C4, C5, ... , which will be different for different classes of IRs.
The relations (4.8) can serve as a formal definition of the vectors c,p̃,λ>
(remember that the symbols Ca, Pµ, and W0 denote now another operators belonging
to the algebra AG(1,3)).

Description of representations of the algebra AG(1,3) in the basis c,p̃,λ>
reduces to finding of an explicit form of nonequivalent operators Ja and Ga satisfying
the commutation relations (11.6) together with given operators Pµ and M. In the
same way as was done in studying of IRs of the algebra AP(1,3) (refer to Section
4), it is convenient to pass from the vectors J and G to the following four-vectors

If the operator m2+P2 is invertible then J and G can be expressed via the operators

(12.1)W0 P J, W MJ P×G,
Γ0 P G, Γ MG P×J.

(12.1):

and our problem reduces to finding all the nonequivalent Γ, Γ0 and W, W0.

(12.2)J (M 2 P 2) 1(P×Γ MW PW0),

G (M 2 P 2) 1(P×W MΓ PΓ0),

12.3. The Explicit Form of Basis Elements of the Algebra AG(1,3)

According to (4.8), (11.6), the operators (12.1) satisfy the following
relations:

Here c1 and pµ are eigenvalues of the commuting operators C1 and Pµ.

(12.3)MW0 P W 0, [Wµ,Pσ] 0,

(12.4)[W a,W b] ic1 abcW c, [W0,W a] i abcPbW c,

We do not provide commutation relations for Γµ as they turn out to be
unnecessary for determining the explicit form of basis elements of the Galilei
algebra.

It will be shown further on that to describe nonequivalent IRs of the algebra
AG(1,3) it is sufficient to find all the possible (up to equivalence) realizations of the
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vector Wµ, the latter being the nonrelativistic analog of the Lubanski-Pauli vector,
and then to find the corresponding operators J and G. Thus, our task is to describe
representations of the algebra (12.4).

In the frame of reference for which p=pn, n=(n1,n2,n3) being a constant
vector satisfying the condition n2=1, the commutation relations (12.4) reduces to the
following form:

The relations (12.5) define a Lie algebra whose structural constants depend on p̂.

(12.5)[Wa ,Wb ] ic1 abcWc , [W0 ,Wa ] ip abcnbWc .

Making a transfer to the new basis {λ0,λa} in accordance with (12.6):

we obtain the following commutation relations for the operators λ0 and λa:

(12.6)W0 pλ0, W a c1λ0na λa,

The Lie algebra defined by the commutation relations (12.7) and its

(12.7)[λ0,λa] i abcnbλc, [λa,λb] ic1 abcncλ0.

representations have already been considered above in Subsection 4.5. Any IR of this
algebra corresponds to the vector W′µ from (12.6) in the reference frame for which
pa=pna. An explicit form of Wµ in an arbitrary frame of reference can be obtained
by the following transformation:

where Rab is the operator of rotation of a reference frame given in (4.17) and

(12.8)W0→W0 pλ0, W a→W a R 1
ab W b

c1paλ0

p
λa

(p̂ a na)λ p

1 n p̂
,

p̂a=pa/p. It is not difficult to note that the analytical expressions for the
vectors of (4.21) and that of (12.8) are almost identical. Namely, substituting p0 →
c1 in (4.21) we come the conclusion that the explicit expressions for Ja and Ga can
be obtained from (4.45) with the help of the following correspondence rule: p0 →
c1, Jab → abcJc, J0a → Ga-ipa∂/∂p0. As a result we come to the representation of the
Galilei algebra in the following form:

Here m is a fixed number and the variables p0, pa are connected by the relation

(12.9)

P0 p0, Pa pa, M c1 m,

J x×p λ0

p̂ n
1 n p̂

,

G ip ∂
∂p0

mx λ×p

p 2

p̂× n(λ0m λ p̂)

p n p
.

So, each IR of the algebra (12.7) corresponds to a class of IRs of the

(12.10)2mp0 p 2 c3.
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Galilei algebra with the fixed values of c1=m and c3=2mp0-p
2. This result can be

formulated as the following assertion.
THEOREM 12.1. IRs of the algebra AG(1,3) are labelled by sets of

numbers c1, c2, ... (eigenvalues of the Casimir operators) with the following possible
values:

An explicit form of the corresponding basis elements of the algebra AG(1.3) is given

(12.11)

I. c 2
1 m 2>0, c2 m 2s(s 1), ∞<c3<∞, s 0,1/2,1,...,

II. c1 0, c2 0, c3 k 2<0, c4 0,1/2,1,...,

III. c1 0, c2 r 2>0, c3 k 2<0.

by formulae (12.9) where m=c1 is a fixed real number, λµ are the matrices
(4.40)-(4.43), and p0, pa are related by (12.10).

PROOF. The validity of the theorem follows directly from the reasoning
given above. Note that it is possible to verify that the operators (11.9) satisfy the
commutation relations (11.6). We can also make sure that the Casimir operators
(11.14) for the representation (12.9) have the form

The operator C2 coincides with the Casimir operator from (4.22) whose eigenvalues

(12.12)C1 m, C2 m 2λ2
0 λ2

1 λ2
2 λ2

3, C3 2mp0 p 2.

are given by formulae (4.40)-(4.43). It follows from the above that eigenvalues of
the operators Ca used for numbering IRs do satisfy relations (12.11). In the case
c1=c2=0 there exists the additional Casimir operator C=W0/p=λ0 eigenvalues of which
are integers or half integers (refer to (4.42)).

We see that the basis elements of IRs of the Galilei algebra can be chosen
in the form (12.9) where λ0 and λa are matrices realizing an IR of the algebra (12.7).
IRs of the algebra (12.7) are defined by the relations (4.40)-(4.44).

The realization of an IR of the algebra AG(1,3) given by relations (12.9) is
distinguished by a relative simple form for basis operators, which is common for
any class of IRs. In the subsection that follows we discuss briefly different classes
of IRs of the algebra AG(1,3) and show what connections exist between the
realization (12.9) and other known representations.

12.4. Connections with Other Realizations

Let us consider sequentially each of the classes of IRs enumerated in (4.10).
1. IRs of Class I (c1=m2>0) are characterized by three numbers m, 0=c3

and s, m and 0 being arbitrary real numbers, and s≥0 being an integer or half
integer. Such representations are realized in a space of square integrable functions
Φ(p,λ) where λ=-s,-s+1,... ,s, i.e., dimension of Φ(p,λ) in respect with the index λ
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is equal to 2s+1. The corresponding scalar product and additional requirements for
Φ(p,λ) are presented in Subsection 4.6 (refer to (4.47)).

The space of an IR of the algebra AG(1,3) belonging to the Class I is
associated with the state space of a free nonrelativistic particle of mass m, spin s,
and internal energy 0/2m. The corresponding basis elements of the Galilei algebra
can be chosen in the form (12.9) where λ0, λa are matrices of dimension
(2s+1)×(2s+1), connected with generators S1, S2 and S3 of the orthogonal group
according to the following relations (refer to (4.24)):

The explicit form of the matrices λ0, λa in the Gelfand-Zetlin basis is given in

(12.13)
λ0 S3, λa R 1

ab λb, λ1 mS1, λ2 mS2, λ3 0,

R 1
ab n n δab nanb nbna (n×n )a(n×n )b(1 n n ) 1, n (0,0,1).

formulae (4.40), (4.41).
With the help of the transformation

with U being the operator (4.49), the generators (12.9) reduce to the usual form used

(12.14)Pµ→UPµU
1, Ja→UJaU

1, Ga→UGaU
1

in the literature on physics

2. IRs of Class II (c1=c2=0) are labelled by a pair of numbers c3<0 and

(12.15)
P0 0

p 2

2m
, Pa pa, M m,

Ja i abc pb

∂
∂pc

Sa, Ga mxa x0pa.

c4=0,1/2,1,.... These representations are one-dimensional and defined in the space of
square integrable functions ϕ(p0,p). The corresponding form of the Galilei group
generators simplifies considerably. Indeed, setting m=0 and λa=0 in (12.9) (refer to
(4.24), (4.33)), we obtain

The remaining basis elements of the algebra AG(1,3) (i.e., Pµ and J) have the form

(12.16)G ip ∂
∂p0

.

(12.9) where λ0=c4 is an integer or half integer, and p2=-k2=const.
By means of the transformation (12.14) where U is the operator (4.52) or

(4.53) and n′=(0,0,1), the generators Pµ, J of (11.9) and G of (12.16) can be
transformed to the form found in [375]. We do not give here the explicit expressions
of the corresponding basis elements of the algebra AG(1,3) because of their
complicated and nonsymmetric form as contrasted to (12.16), (12.9).
Representations of the Galilei algebra of Class II are realized on solutions of
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equations describing nonrelativistic fields with zero rest mass, e.g., Galilei-invariant
electromagnetic field [273, 276].

3. Let us now consider IRs of Class III (c1=0, c2<0) which are labelled by
pairs of positive numbers r2 and k2 (see (12.11)). Such representations are realized
in the space of square integrable functions ϕ(p0,p,λ) where λ takes the infinite
number of values given by one of formulae (4.43). The explicit expressions of basis
elements of the IRs are given in (12.9) where m=0, p2=k2 and λ0, λa are
infinite-dimension matrices connected with the generators Tα of the group E(2) by
the following relations (refer also to (4.24)):

Here Rab
-1 are the matrix elements given in (12.13). The explicit form of the matrices

(12.17)λ0 T0, λa R 1
ab λb, λ1 T1, λ2 T2, λ3 0.

λ0, λa can be chosen, for example, according to (4.40), (4.43).
As far as we know, representations of the Galilei algebra of Class III have

not found yet direct usage in physics. If (in analogy with representations of Classes
I, II) we take a space state of a quantum mechanical particle in correspondence with
a space of a representation of Class III, then such a particle would have an infinite
number of spin states.

4. The classes of IRs considered above exhaust all the nonequivalent
Hermitian representations of the algebra AG(1,3). We note that formulae (12.9)
define the explicit form of basis elements of the Galilei algebra for the case of c1

2<0
also. The corresponding matrices λµ realize a representation of the algebra AO(1,2)
(refer to (4.24), (4.27), (4.36)-(4.39)).

IRs of the algebra AG(1,3) corresponding to c1
2<0 cannnot be realized by

Hermitian operators since the generator M=C1 has purely imaginary eigenvalues.
This circumstance restricts the usage of such representations in quantum mechanics.
But representations of this type naturally arise in various problems of classical
physics. In particular, representations of the Galilei algebra corresponding to c1

2<0
are realized on a set of solutions of the linear heat equation.

5. IRs of Class V reduce to representations of the Lie algebra of the
Euclidean group E(3). IRs and a class of finite dimension representations of this
algebra are considered in Subsection 12.6.

12.5. Covariant Representations

IRs of the Galilei algebra considered above can be defined in Gilbert
spaces of square integrable functions depending on pµ. But for many applications
(e.g., for describing differential equations being invariant under the Galilei group)
it is more convenient to deal with representations defined in a space of functions
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ψ(t,x) where the generators P0, Pa are represented by differential operators. We will
call such representations covariant if the corresponding basis elements belong to the
class M1 (i.e., they are differential operators of the first order).

It is not difficult to show that a basis of a covariant representation is formed
by the following operators:

where Sa, ηa, and m are numeric matrices satisfying the commutation relations

(12.18)

P0 i
∂
∂t

, Pa pa i
∂

∂xa

,

Ja i abcxb

∂
∂xc

Sa, M m,

Ga tpa mxa ηa,

Formulae (12.18) determine the general form of operators Pµ, Ja, Ga, and M

(12.19)[m,Sa] [m,ηa] 0,

(12.20a)[Sa,Sb] i abcSc,

(12.20c)[Sa,ηb] i abcηc, [ηa,ηb] 0.

satisfying the commutation relations (10.6) and belonging to the class M1.
Integrating the corresponding Lie equations (refer to (1.20)-(1.22)), we

obtain finite transformations generated by the operators (12.18) in the form

where t′, x′ and ϕ(x) are given by relations (11.28), (11.29) while D(v,θ) is the

(12.21)ψ(t,x)→ψ (t ,x ) D(v,θ)exp[iϕ(x)]ψ(t,x)

matrix depending on parameters of the transformation (11.29),

In the case of η=S=0 we come to formula (11.27) which determines the

(12.22)D(v,θ) exp(iη v)exp(iS θ).

transformation law for solutions of the Schrödinger equation.
According to (12.21), a transformed function ψ′(t′,x′) is expressed via ψ(t,x)

multiplied by the phase multiplier exp[iϕ(x)] and a numeric matrix D(v,θ). In other
words, a value of ψ′(t′,x′) is completely determined by the value of a
non-transformed function in the point (t,x) and by transformation parameters. The
transformations of this type are called locally covariant (or simply covariant) in
contrast to nonlocal transformations for which ψ′(t′,x′) depends on values of ψ(t,x)
within some domain. Formulae (12.18)-(12.20) determine the general form of
generators of a covariant representation of the Galilei group.

Thus, a description of covariant representations of the algebra AG(1,3)
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reduces to finding the nonequivalent matrices Sa, ηa and m to satisfy the
commutation relations (12.19), (12.20). Representations of the algebra (12.19),
(12.20) are considered in the following subsection.

Besides representations of the proper Galilei group determined by the
continuous transformations (11.29), a certain interest was exhibited in representations
of the complete group G(1,3) which includes transformations P, T, and C. An
analysis of such representations is beyond the scope of this book.

Representations of the group including the transformations P and T and
(11.28) are described in [59], while representations of the complete Galilei group are
considered in [151].

12.6. Representations of the Lie Algebra of the Homogeneous Galilei Group

The Lie algebra of the homogeneous Galilei group is formed by six
generators Sa, ηa satisfying the commutation relations (12.20). This algebra is
isomorphic to the Lie algebra of Euclidian group E(3) and is denoted as AE(3).

It will be shown further on that the problem of description of nonequivalent
indecomposable representations of the algebra AE(3) reduces to the algebraic
problem which cannot be solved by known methods. So we restrict ourselves to
description of some class of finite dimension representations. This class is wide
enough to deduce consistent motion equations of arbitrary spin particles.

We consider also IRs of the algebra AE(3). The problem of description of
such representations can be solved in a closed form.

The algebra AE(3), as presented by (12.20), includes the subalgebra AO(3)
formed by the matrices Sa. Since IRs of the algebra AO(3) are well known, it is
convenient to use the O(3)-basis λ;l,m> formed by eigenvectors of the commuting
matrices S2 and S3. Explicit expressions for S2 and S3 in this basis are given by
formulae (4.63), (4.64), where (l0,l1) → λ. In our case λ is an additional index
labelling eigenvectors of the matrix S2 corresponding to degenerated values of l.

The general expression for matrices ηa commuting with Sa in accordance
with the rule (11.20b) is given in our basis by the following formula:

where al
λλ′ , bl

λλ′ , cl
λλ′ are arbitrary complex numbers, (Sa

l)mm′ and (Ka
l)mm′ are the

(12.23)
ηa λ;l,m>

l ,m ,λ

δll a l
λλ (S l

a )mm δl 1,l b l
λλ (K l

a )†

mm

δl 1,l C l 1
λλ (K l 1

a )mm λ ;l ,m >

matrix elements given by relations (4.65), (4.66). The possible values of l
corresponding to indecomposable matrices Sa and ηa are [197] as follows

(12.24)l l0, l0 1, ..., l1,
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l0 and l1 being positive integers or half integers. By definition

We have marked in (12.23) the matrix elements (Sa
l)mm′ and (Ka

l)mm′ of the

(12.25)a l0 1 a l1 1 0, b l0 c l0 0, b l1 1 c l1 1 0.

matrices Sa
l and Ka

l which satisfy the following relations [223]:

The conditions (12.26a), together with (4.63), can serve as a definition of

(12.26a)

K l
a S l

b S l 1
b K l

a i abcK
l

c ,

S l
aS

l
b K l†

a K l
b il abcS

l
c l 2δab,

S l
a S l

b S l
b S l

a i abcS
l

c ;

(12.26b)

K l
a K l†

b S l 1
a S l 1

a l 2δab il abcS
l 1

c ,

K l†
a K l

b K l†
b K l

a i(2l 1) abcS
l

c ,

K l
a S l

b K l
b S l

a i(l 1) abcK
l

c ,

S l 1
a K l

b S l 1
b K l

a i(1 l) abcK
l

c ,

K l
a K l†

b K l
b K l†

a i(2l 1) abcS
l 1

c .

the matrices Sa
l and Ka

l, while relations (12.26b) follow from (12.26a). They are the
conditions (12.26a) which are used in the following to describe representations of
the algebra AE(3).

The algebra AE(3) has the two Casimir operators

which reduce to the following form in the basis λ;l,m>:

(12.27)C1 Saηa, C2 ηaηa

There is also the additional Casimir operator

(12.28a)C1 λ;l,m> a l
λλ λ;l,m>,

(12.28b)C2 λ;l,m> (l 1)(2l 3)c l 1
λµ b l 1

µλ l(l 1)a l
λµa

l
µλ l(2l 1)b l

λµc
l

µλ λ ;l,m>.

with eigenvalues equal to ±1 (refer to (4.13)).

(12.29)C3 exp(2πiS1) exp(2πiS2) exp(2πiS3)

The Casimir operators do not play an essential role in description of
indecomposable representations, but they are very useful in searching of IRs.

Let us show that the condition of commutativity of matrices ηa reduces to
the system of quadratic equations for matrices al= al

λλ′ , bl= bl
λλ′ and cl= cl

λλ′ .
Essentially, using the representation (12.23), it is not difficult to calculate the
commutator
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the above expression suggesting a summation over the repeated indices ν, λ′ , l′ and

(12.30)

[ηa,ηb] λ;l,m>

c l 1
λν a l 1

νλ (K l 1
a S l 1

b K l 1
b S l 1

a )mm a l
λνc

l 1
νλ (S l

aK
l 1

b S l
bK

l 1
a )mm δl l 1

c l 1
λν b l 1

νλ (K l 1
a K l 1†

b K l 1
b K l 1

a
†
)mm a l

λνa
l

νλ (S l
aS

l
b S l

bS
l

a)mm

b l
λνc

l
νλ (K l

a
†
K l

b K l
b

†
K l

a)mm δll a l
λνb

l
νλ (S l

aK
l

b
†

S l
bK

l
a

†
)mm

b l
λνa

l 1
νλ (K l

a
†
S l 1

b K l
b

†
S l 1

a )mm δl 1l λ ;l ,m >,

m′.
Equating (12.30) to zero and taking into account relations (12.26), we come

to the following system of equations for the matrices al, bl and cl:

Formulae (12.31) present necessary and sufficient conditions of

(12.31a)(l 1)c la l (l 1)a l 1c l; (l 1)a lb l (l 1)b la l 1,

(12.31b)(2l 3)c l 1b l 1 (2l 1)b lc l (a l)2.

commutativity of the matrices ηa from (12.23).
Thus the problem of description of representations of the algebra AE(3)

reduces to the finding of nonequivalent solutions of the system of quadratic
equations (12.31), (12.25).

First we consider Hermitian IRs of the algebra AE(3). A description of such
representation is a relatively simple problem. Indeed, the Hermiticity condition leads
to the following relation:

Then, according to Schur’s Lemma, the corresponding Casimir operators (12.28)

(12.32)c l 1 b l 1†.

have to be multiples of the unit matrix so that

Here c1 and c2 are eigenvalues of the Casimir operators (12.27), al is a real number,

(12.33a)a l
λλ δλλ a l, λ, λ 1,2,...nl,

(13.33b)a l(l 1) c1,

(12.33c)(l 1)(2l 3)b2
l 1 l(2l 1)b2

l [c2 l(l 1)(a l)2]Inl

.

is the unit matrix of dimension nl×nl, andInl

The equations (12.31a) are satisfied identically according to (12.33b), and the

(12.34)b 2
l b lb l†, b2

l 1 b l 1†b l 1.
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equation (12.31b) takes the form

So, a description of IRs of the algebra AE(3) reduces to the finding of a

(12.35)(2l 3)b2
l 1 (2l 1)b 2

l a 2
l Inl

.

general solution of the equations (12.33)-(12.35).
It is not difficult to demonstrate that without loss of generality we can set

nl=1 (otherwise we obtain a reducible representation with degenerated eigenvalues
of the Casimir operators). Thus al, bl, and bl+1 reduce to numbers which can be easily
calculated.

The system (12.33)-(12.35) is not consistent for any fixed l1, and therefore
it is necessary to solve an infinite numerable system corresponding to an infinite
dimension representation of the algebra AE(3). The corresponding solutions are:

So IRs of the algebra AE(3) are labelled by two numbers, an arbitrary real

(12.36)c1 rl0, c2 r 2, l0 0,1/2,1,..., c3 ( 1)l0,

(12.37)al

rl0

l(l 1)
, bl

r
l

l 2 l 2
0

4l 2 1
, l l0,l0 1, ... .

number r and non-negative integer or half integer l0. These numbers define possible
values of the Casimir operators (12.36). All the Hermitian IRs are infinite
dimensional, the explicit form of basis elements being as follows:

where al and bl are the coefficients from (12.37), (Sa
l)mm′ and (Ka

l)mm′ are the matrix

(12.38)

Sa r,l0;l,m>
m

(S l
a )mm r,l0;l,m>;

ηa r,l0 ,l,m>
c ,m

[a lδll (S l
a )mm b lδl 1l (K l

a )†
mm

b l 1δl 1l (K l 1
a )mm ] r,l0;l ,m >

coefficients (4.65), (4.66).
Consider now the problem of description of finite dimension

indecomposable representations of the algebra AE(3). This problem is more
complicated then in the case of IRs. Moreover it is unsolvable in the sense that it
is impossible to enumerate effectively all the nonequivalent representations.

Thus we will try to solve the system (12.31) for the case when the numbers
l0 and l1 determining possible values of l are positive integers or half integers. It
means that the chain of equations (12.31) can include an arbitrary (but finite)
number of links corresponding to the given l0 and l1. Dimensions of matrices al, bl

and cl are equal to nl×nl, nl×nl-1 and nl-1×nl respectively, where nl and nl-1 are
multiples of the eigenvalues l(l+1) and l(l-1) of the operator S2. In contrast to the
case of IRs we have no additional equations like (12.33) inasmuch as we consider
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indecomposable representations and the corresponding eigenvalues of the Casimir
operators cannot be fixed.

Unfortunately, it is not possible to describe effectively all the nonequivalent
solutions of the equations (12.31). Indeed, in the particular case of (a2)2=0 these
equations reduce to the problem of a description of all the nonequivalent pairs of
commuting matrices B and C defined in accordance with the following relations:

Such a problem is "wild" and cannot be solved by the known methods [199].

B λ;l,m> b l λ;l 1,m>, C λ;l,m> c l λ;l 1,m>.

Imposing some additional restrictions on al, it is possible to describe
appropriate classes of solutions of equations (12.31). One such restriction which
enables us to describe completely the corresponding class of solutions is a
requirement for matrices al to be indecomposable. Here we consider a more
restricted class of solutions of equations (12.31) corresponding to the case when the
possible values of l being equal to

To denote this class of solutions and the corresponding representations of the algebra

(12.39)l s,s 1.

AE(3), we use the symbol D2.
Indecomposable representations of the class D2 may be described as follows.
PROPOSITION 12.1 [151]. Nonequivalent solutions of equations (12.31),

al being indecomposable matrices and possible values of l being given by (12.39),
are labelled by triplets of integers (k,α,n) where

The corresponding matrices as, as-1, bs, and cs are of dimensions k×k, n×n, k×n and

(12.40)k≤4, n≤4, k n ≤2, kn<9; α 1, k n 2, α 1,2, k n ≠2.

n×k, and their elements are equal (for α=1) to

(12.41a)

a s
λλ

ã s
λλ

s(s 1)
, a s 1

νν

ãs 1
νν

s(s 1)
, b s

λν

b̃
s

λν

2s 1
, c s

λν

c̃ s
λν

2s 1
,

ã s
λλ δλ 1λ , ãs 1

νν δν 1ν , λ,λ ≤k, ν,ν ≤n,

b̃
s

λν













i ks δλ 2ν, k>n,

i ks δλν, k≤n, kn≠4,

µδλν 1, k n 2,
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where ks=(2s+1)/s2(s+1)2 and µ is an arbitrary complex number. If α=2 then the

(12.41b)c̃ s
λν









i ks δνλ, k>n,

i ks δνλ 2, k≤n

corresponding matrix elements can be obtained from (12.41) by the substitution as
λλ′

→ as
λ′λ , bs

λν → cs
νλ, cs

νλ → bs
λν.

For the proof see [319]. We only note that in the case considered it follows
from (12.31) that (as)4=(as-1)4=0 and the maximal dimension of matrices al is 4×4.
Choosing these matrices in the Jordan form we obtain the compatibility condition
for the system (12.31) in the form of (12.39) by direct calculations. The
corresponding solutions can be chosen in the form (12.41) with up to equivalence.

It is not difficult to calculate that there are 18 nonequivalent solutions for
any s≠0,1/2, two of them being dependent on an arbitrary complex number µ.

Any solution of equations (12.31) can be set in one-to-one correspondence
with a representation of the algebra AE(3). So, from Proposition 12.1 follows

PROPOSITION 12.2. Indecomposable representations of the algebra
AE(3), belonging to the class D2 are labelled with triplets of integers (k,α,n)
satisfying the conditions (12.40). The explicit form of the corresponding basis
elements Sa and ηa in the basis λ;l,m> is given by the formulae (4.64)-(4.66),
(12.23) and (12.41).

So we have described the class D2 of indecomposable representations of the
Lie algebra of the homogeneous Galilei group. These representations will be used
in the next section to deduce wave equations which are invariant under the Galilei
group.

We should like to note that the integers k and n used (together with α) to
label indecomposable representations of the class D2 define the nilpotency indices
of the Casimir operators (12.26). Indeed, according to (12.27) and (12.33)

It can be easily seen that N≤4 for the representations of the class D2.

C N
1 C N/2

2 0, N max(k,n).
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13. GALILEI-INVARIANT WAVE EQUATIONS

13.1. Introduction

From Bargman’s work [16] it is known that the concept of spin arises in
nonrelativistic quantum mechanics as naturally as in frames of relativistic theory.
One of the Casimir operators of the Galilei group is nothing but the operator of
squared spin. Thus, it is surprising that the number of papers devoted to Galilei-
invariant wave equations is extremely small. This circumstance seems to be
particularly strange in view of the fact that Poincaré invariant wave equations attract
attention of a great many of investigators.

An important contribution into the theory of Galilei invariant wave
equations was made by Levi-Leblond [276, 277] who obtained for the first time such
an equation for a particle of spin 1/2. The Levi-Leblond equation takes into account
the Pauli interaction and predicts the correct value of the gyromagnetic ratio such
as the relativistic Dirac equation. Unfortunately this equation (and its generalizations
proposed by Hagen and Hurley [215, 223]) does not describe such an important
physical effect as a spin-orbit coupling.

In this section we describe a class of Galilei-invariant equations of the first
order corresponding to the indecomposable representations of the homogeneous
Galilei group described above. This class includes as the Levi-Leblond and Hagen-
Hurley (LHH) equations as the new equations describing spin-orbit and quadruple
couplings of an arbitrary spin particle with an external field.

The Galilei-invariant wave equations in many cases are good alternatives
to Poincaré-invariant equations for particles of higher spin inasmuch as the latter
lead to contradictions by a description of a particle interaction with an external field,
see Section 10.

13.2. Galilei-Invariance Conditions

To describe first-order equations invariant under Galilei transformations is
to answer the question: what kind of matrices ßµ, ß4 guarantees the invariance of the
system (6.2) with respect to the Galilei algebra?

For convenience we rewrite (6.2) in the form

The invariance under the Galilei algebra means that the equation (13.1)

(13.1)Lψ 0, L βµ pµ β4m.

admits 11 SOs satisfying relations (11.6). We restrict ourselves to the case when
these SOs realize a covariant representation of the Galilei algebra and so have the
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form of (12.18). We assume also that the mass operator M is a multiple of the unit
operator and has a positive eigenvalue m>0.

By definition the operators (12.18) are SOs of the equation (13.1) if they
satisfy relations (6.3). Substituting QA=Pa, Ja, Ga into (6.3) we come to the following
relations (compare with (6.4), (6.5))

Here Sa and ηa are matrices realizing a representation

(13.2)

S̃aβ0 β0Sa 0, S̃aβ4 β4Sa 0,

η̃aβ4 β4ηa iβa, η̃aβb βbηa iδabβ0,

η̃aβ0 β0ηa 0, a 1,2,3.

S̃a Sa β̃Ja

, η̃a ηa β̃Ga

,
of the algebra AE(3) (11.20), are unknown numeric matrices.β̃Ja

, β̃Ga

Using relations (12.20) it is not difficult to obtain from (13.2) the following
conditions

A sufficient condition of validity of relations (13.3) is the requirement that the

(13.3)
[S̃a,S̃b]βk i abcS̃cβk, k 0,1,2,3,4,

[η̃a,S̃b]βk i abcη̃cβk, [η̃a,η̃b]βk 0.

matrices S̃a, η̃a realize a representation of the algebra AE(3).
Thus we come to the following definition.
DEFINITION 13.1. The equation (13.1) is S-invariant under the Galilei

algebra if there exist matrices Sa,ηa and S̃a,η̃a realizing (generally speaking
nonequivalent) representations of the algebra AE(3) and satisfying relations (13.3).

As in the case of Poincaré-invariant equations we will use the sufficient
conditions of the Galilei-invariance given in Definition 13.1. These conditions are
not necessary since there exist equations being invariant under noncovariant
realizations of the Galilei algebra [162, 163]. Moreover it is possible in principle
to renounce the requirement the matrices S̃a, η̃a realize a representation of the
algebra AE(3) since the conditions (13.3) are more week.

We note that Definition 13.1 determines the invariance conditions for the
case of square matrices ßµ, ß4 as for equations with rectangular ß-matrices of
dimension mxn, m≠n. In the latter case the matrices S̃a, η̃a and Sa, ηa have
dimensions m×m and n×n.

13.3. Additional Restrictions for Matrices ßk

Let us define the conditions imposed on ßk by some additional physical
requirements.

First we restrict ourselves to considering only such equations which admit
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the Lagrangian formulation. As in the case of relativistic wave equations it means
that we assume that a nonsingular Hermitizing matrix η exists which satisfies the
conditions

It appears that without loss of generality we can impose a stronger requirement

(13.4)ηβµ β†
µη, ηβ4 β†

4η.

as it follows from the following assertion.

(13.5)β†
µ βµ, β†

4 β4

LEMMA 13.2. Let {S̃a, η̃a, Sa, ηa} be a set of matrices satisfying (13.2),
(11.20), and η be an arbitrary nondegenerated matrix. Then the matrices

also satisfy these relations.

(13.6)βk ηβk, η̃a ηñaη
1, S̃a ηS̃aη

1, Sa Sa, ηa ηa,

PROOF is almost evident. Multiplying any of relations (13.2) from the left
by η and putting the matrix η-1η≡I between S̃a, η̃a and ßµ, ß4 we come to relations
(13.2) for the matrices (13.6).

So besides the equation (13.1) there exist a class of the Galilei-invariant
equations with primed matrices (13.6). Thus if a Hermitizing matrix exists then we
always can consider an equivalent Galilei-invariant equation with Hermitian matrices
ßk. In other words we can suppose these matrices satisfy (13.5).

The Lagrangian corresponding to the equation (13.1) without loss of
generality can be chosen in the form

It is not difficult to make sure the requirement of the Galilei-invariance of this

(13.7)L0

i
2

(ψ βµ

∂ψ
∂xµ

∂ψ
∂xµ

βµψ) mψ β4ψ.

Lagrangian reduces to the conditions (13.2) where

Thus, the problem of description of Galilei-invariant equations (13.1)

(13.8)
S̃a S †

a Sa, η̃a η†
a.

admitting a Lagrangian formulation reduces to finding Hermitian matrices ßµ, ß4

satisfying the relations

The last relation (13.2) (supplemented by (13.5) (13.8)) turns into identity if relations

(13.9a)[Sa,β0] 0, [Sa,β4] 0,

(13.9b)η†
aβ4 β4ηa iβa,

(13.9c)η†
aβb βbηa iδabβ0.
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(13.9) are satisfied.
We require also the representation of the Galilei algebra, realized on the set

of solutions of the equation (13.1), be irreducible and belong to Class I. It means
that the wave function has to satisfy the conditions (which have to be consequences
of (13.1))

where ε0 and s are fixed parameters.

(13.10)(p0

p 2

2m
)ψ 0ψ, (S 1

m
p×η)2ψ s(s 1)ψ

If the conditions (13.10) are satisfied, the corresponding Casimir operators
of the Galilei algebra have fixed eigenvalues. This enables us to interpret (13.1) as
a quantum mechanical equation of motion of a particle of spin s, mass m and
internal energy 0. In the following, we analyze the restrictions imposed on matrices
ßk by the conditions (13.10).

13.4. General Form of Matrices ßk in the Basis λ;l,m>

Summarizing given in the above we note that the problem of description of
Galilei-invariant wave equations can be subdivided into the following stages:

(1) to describe finite-dimension representations of the algebra AE(3), i.e.,
to find all the nonequivalent matrices Sa and ηa included into the equations (13.9);

(2) to select the representations for which nontrivial solutions of (13.9)
exist;

(3) to find an explicit form of the corresponding ß-matrices;
(4) to select the matrices ßk satisfying the conditions (13.10).
We search for the matrices ßk in the basis λ;l,m>. The matrices ß0 and ß4

commute with S so according to Schur’s lemma

where are unknown coefficients. We will denote matrices with matrix

(13.11)β4 λ;l,m> (2l 1)x l
λλ λ ;l,m>, β0 λ;l,m> Aλλ λ ;l,m>

x l
λλ , A l

λλ

elements and by xl and Al.x l
λλ A l

λλ

Using (13.9b), (12.23) we obtain the general form of the matrices ßa

(a=1,2,3):

where and are the matrix elements of the matrices Bl and Dl,

(13.12)
βa λ;l,m> iB l†

λλ (K l†
a )mm λ ;l 1,m >

iD l
λλ (S l

a )mm λ ;l,m > iB l 1
λλ (K l 1

a )mm λ ;l 1,m >

B l
λλ D l

λλ

(13.13)Dl

2l 1
l(l 1)

(ã †
l xl xl ãl), Bl c̃ †

l xl 1 xl b̃l .
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Let us require the matrices ßa satisfy (13.9c). Using relations (12.23),
(12.31) we come to the following equations for xl and Al:

where

(13.14)

2l 2(2l 1)c̃ †
l xl 1c̃l l 2(2l 1)(xlb̃lc̃l c̃ †

l b̃
†

l xl) (4l 2 1)(ã x)l l 2(2l 1)Al,

2l 2(2l 1)b̃
†

l xlb̃l l 2(2l 1)(b̃
†

l c̃ †
l xl xlc̃lb̃l) (4l 2 1)(ã x)l 1 l 2(2l 1)Al 1,

b̃
†

l [l ã †
l xl (l 1)xl ãl] [(l 1)ã †

l 1xl 1 lxl 1ãl 1]c̃l

Formulae (13.14) present the necessary and sufficient conditions that the

(ã x)l ã †
l (ã †

l xl xl ãl) (ã †
l xl xl ãl) ãl .

matrices (12.13), (13.11) satisfy relations (13.9). Thus the problem of description of
Galilei-invariant wave equations reduces to solving the system of linear algebraic
equations (13.14) for the matrices xl and Al where al, bl and cl are matrices satisfying
the system of coupled quadratic equation of (12.31).

Let us consider the restrictions imposed on xl and Al by the conditions
(13.10). Making the transformation

and using relations (13.9) and the Campbell-Hausdorf formula

(13.15a)ψ→Vψ Φ, L→L V †LV 1,

(13.15b)V exp( i
m

η p)

we obtain from (13.1) the following equivalent equation

(13.16)
exp(A †)Bexp( A)

∞

n 0

1
n

A,B n,

A,B n A † A,B n 1 A,B n 1A, A,B 0 B,

The equation (13.17) is more convenient for analysis then (13.1) since it

(13.17)L Φ 0, L β0( p0

p 2

2m
) β4m.

includes only two matrices. Inasmuch as the operator V satisfies the conditions

then it follows from (13.10) that Φ has to satisfy the following relations

[V,p0

p 2

2m
] 0, V(S 1

m
p×η)V 1 S.

Relations (13.18) follow from (13.17) iff

(13.18)(p0

p 2

2m
)Φ 0Φ, SΦ s(s 1)Φ.
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where α and ß are arbitrary functions, cl and ki are constants (at least one of ki is

(13.19)
det(αXl βAl )









cl, l≠s,

nl

i 0

ki(α ε0)
i, l s

nonzero), nl is the number of rows of the matrices xl, Al.
Indeed, if (13.19) is satisfied then all the solutions of the equation (13.17)

are eigenfunctions of the operator S2, corresponding to the eigenvalue s(s+1).
Besides these solutions satisfy the first of the equations (13.18).

13.5. Equations of Minimal Dimension

The above results are valid for arbitrary representation of the homogeneous
Galilei group realized on a set of solutions of (13.1). Now we consider the simplest
case of the system (13.14) when the index l can take only two values l=l0, l0+1. This
corresponds to Galilei-invariant equations with the minimal number of components.

The corresponding indecomposable representations of the algebra AE(3)
belong to the class D2 and are described in Subsection (12.6). For the case
considered the system (13.14) reduces to the following form (refer to (12.25))

As to the matrices Al and Al-1 they are expressed via xl and xl-1:

(13.20)

c̃ †
l xl 1 c̃l kl ã

†
l xl ãl l kl (ã x)l ,

b̃
†

l xl b̃l kl 1 ã †
l 1 xl 1ã l 1 lkl 1(ã x)l 1 ,

b̃
†

l [l ã †
l xl (l 1)xl ãl ] [(l 1) ã †

l 1 xl 1 lxl 1 ãl 1 ]c̃l ,

kl

2l 1

l 2(l 1)2
.

All the possible (up to equivalence) nontrivial solutions of (13.20) (and the

Al

2l 1

(l 1)2
(ã x)l , Al 1

2l 1

(l 1)2
(ã x)l 1.

corresponding expressions for the matrices al, bl, cl, Al, Dl and Bl) are present in
Table 13.1 where æ, æ1 and æ2 are arbitrary parameters.
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Table 13.1

series
of so-
lutions

R1 R2 R3 R4

ãl











0 0

1 0
0















0 0 0

1 0 0

0 1 0











0 0

1 0

ãl-1 0










0 0

1 0











0 0

1 0















0 0 0

1 0 0

0 1 0

b̃l











0

0

kl(1 0)

i kl















0 0

0 0

1 0

kl 1











1 0 0

0 1 0

c̃l

i kl(1 0) 









0

0
i kl











1 0 0

0 1 0 kl 1















0 0

0 0

1 0

xl











0 æ

æ 1
1

















0 æ1 æ2

æ1 æ2 1

æ2 1 0











æ2 l 1

l 1 0
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xl-1 2l-1










0 æ

æ 1











æ2 l 1

l 1 0

















0 æ1 æ2

æ1 æ2 1

æ2 1 0

Al 2ql











1 0

0 0
0

ql















0 1 0

1 0 0

0 0 0











0 0

0 0

Al-1 0 2q1











1 0

0 0











0 0

0 0 ql 1















0 1 0

1 0 0

0 0 0

Dl gl











0 1

1 0
0

gl















0 0 1

0 0 0

1 0 0











0 0

0 0

Dl-1 0 gl 1











0 1

1 0











0 0

0 0 gl 1















0 0 1

0 0 0

1 0 0

Bl

i(2l 1)×

× kl











1

0

(2l 1)×

× kl 1 1 0
i kl















0 1 l

l 0

0 0

kl 1 ×

×










0 l 0

l 1 0 0

Here ql
±=(2l±1)/(l±1)2, gl=(2l+1)/l(l+1), kl is given in (13.20).
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We see that only four of eighteen classes of representations of the algebra
AE(3) enumerated in Subsection 12.6 correspond to nontrivial Galilei-invariant wave
equations. These classes are Dl(3,1,2), Dl(2,1,1), Dl(2,1,3) and Dl(1,1,2).

The results given above are summarized in the following assertion.
THEOREM 3.3. Let the equation (13.1) is S-invariant under the Galilei

algebra, admits a Lagrangian formulation and describes a particle of spin s and mass
m, and let the representation of the inhomogeneous Galilei group realized on the set
of solutions of this equation belong to the class D2. Then the explicit form of these
matrices up to equivalence coincides with the given in (13.11), (13.12) and Table
13.1.

So we obtain four classes of Galilei-invariant wave equations corresponding
to the matrices enumerated in Table 13.1. Consider these classes successively.

Equations of class R1 have 6l+1 components and describe a particle of spin
s=l, mass m and internal energy æ. These equations are equivalent to the Hagen-
Hurley [215, 223] equations, and in the case s=1/2 reduce to the Levi-Leblond [276]
equation.

Equations of class R2 have 6l-1 components and describe a Galilean particle
of spin s=l-1, mass m and internal energy æ2s2m/2. We will see further on these
equations predict the value of the constant of the dipole coupling which differs from
the value prophesied by the LHH equations.

Equations of classes R3 and R4 are the most interesting. They can be
interpreted as quantum mechanical equations of a nonrelativistic particle of spin s=l
(and s=l-1), mass m and internal energy (s+1)2(æ2

2-2æ1)m/2 (and s2(æ2
2-2æ1)m/2). It

will be shown below these equations can serve as a starting point in the Galilei-
invariant description of the spin-orbit coupling.

We present the simplest of the found equations writing them
componentwise.

Class R2, s=l-1=0,

Class R1, s=l=1/2,

(13.21)
ψ column(ψ0,ψ1,ψ2,ψ3)

p0ψ0 p ψ 0,
2mψ pψ0 0;

Class R3, s=l=1,

(13.22)

ψ column(ϕ1,ϕ2,χ1,χ2),

2p0ϕ
3
2

(iσ p 3
2

æm)χ 0,

( 3
2

æm iσ p)ϕ 3
2

mχ 0;
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where σ=(σ1,σ2,σ3) are the Pauli matrices.

(13.23)

ψ column(ϕ,χ,Φ,Φ0),

1
2

p0 χ p×Φ 2æ1mχ 2æ2mφ 0,

1
2

p0ϕ pφ0 2æ1mϕ 2æ2mχ 2mφ 0,

i 3 p χ 2æ2mφ0 0,

p×φ 2æ2mϕ 2mχ 0,

13.6. Equations for Representations with Arbitrary Nilpotency Indices

To conclude this section, we discuss an interesting connection between
Galilei-invariant wave equations and equations invariant under the generalized
Poincaré group P(1,4) (refer to Chapter 8).

Consider the generalized Bhabha equation [340]

where µk=S5k are matrices realizing a representation of the algebra AO(1,5) together

(13.24)(βkpk æ)ψ(x) 0, k 0,1,2,3,4

with S54 and Skl=i[S5k,S5l].
It is possible to show that the equation (13.24) is invariant under the Galilei

group as well as under the group P(1,4), refer to Subsection 26. To make Galilei
invariance of (13.24) obvious, we use the change of variables

so that

(13.25)x0

1
2

(2x̃0 x̃4), x4

1
2

(2x̃0 x̃4),

As a result we come to the equation

(13.26)∂
∂x0

1
2

∂
∂x̃0

∂
∂x̃4

, ∂
∂x4

1
2

∂
∂x̃0

∂
∂x̃4

.

where

(13.27)Lψ≡(β̃0 p̃0 β̃4 p̃4 β̃a p̃a æ)ψ(x̃0, x̃4,x) 0

(13.28a)p̃0 i
∂

∂x̃0

, p̃4 i
∂

∂x̃4

, pa i
∂

∂xa

,

(13.28b)β̃0

1
2

(S50 S54), β̃4 S50 S54, β̃a S5a.
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Galilei invariance of (13.27) can be proved by direct verification using the
following realization of the algebra AG(1,3)

where

(13.29)
P0 p̃0, Pa p̃a, M p̃4,

Ja abc(xb pc

1
2

Sbc), Ga x̃0 pa xa M ηa

Indeed, these generators commute with the operator L of (13.27).

ηa

1
2

(S0a S4a).

Imposing the Galilei-invariant additional condition on ψ,

we reduce (13.27) to a Galilei-invariant equation of the kind (13.1) where

(13.30)p̃4ψ(x̃0, x̃4,x) λ æψ(x̃0, x̃4,x),

I is the unit matrix. The corresponding generators of the Galilei group have the

(13.31)β0 β̃0, β4 β̃4 λ 1I, m λæ,

covariant form (12.18) where

Finite-dimension IRs of the algebra AO(1,5) (which is isomorphic to the

(13.32)
M æλ, ηa

1
2

(S4a S0a), Sa

1
2 abcSbc.

algebra AO(6)) are labelled by triplets (n1,n2,n3) where na are integers or half integers
[197]. If matrices Skl form the representation D(1/2,1/2,1/2) then the equations (13.1),
(13.28b) are equivalent to the Levi-Leblond equation [276] for a particle of spin 1/2.
The representation D(1,1,1) corresponds to the equations (13.23) for a particle of
spin 1 (besides æ1=-æλ, æ2=æ). The corresponding matrices in (13.1) are expressed
via the 10×10 KDP matrices (marked by "^" in the following formula)

In general the considered equations describe a multiplet of particles of spins

(13.33)
β0

1
2

(β̂0 β̂4), β4 β̂0 β̂4 λ 1I, βa β̂a.

s1, s2,... where the numbers si characterize the IR of the algebra AO(3) consisted in
the given representation of the algebra AO(1,5) realized by the matrices Skl.

It is possible to demonstrate the matrices (13.32) satisfy the conditions

Thus the equations considered here correspond to such representations of the algebra

(ηaSa)
2s≠0, (ηaSa)

2s 1 0, s max(si).

AE(3) which are characterized by the nilpotency index n=2s+1 of the Casimir
operator C1 of (12.27).
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We note that the equations (13.1), (13.31), (13.28b) are defined also for the
case when the corresponding matrices Skl realize an infinite dimension Hermitian
representation of the algebra AO(1,5). So we come naturally to infinite component
wave equations which are invariant under the Galilei group [151]. Poincaré-invariant
infinite component equations are well studied in contrast to the Galilei-invariant ones
(see, however, [222]).

We will return to the discussion about connections between Galilei- and
P(1,4)-invariant wave equations in Chapter 5.

14. GALILEI-INVARIANT EQUATIONS OF THE
HAMILTONIAN TYPE

14.1. Uniqueness of the Schrödinger Equation

Consider an alternative possibility in Galilei-invariant description of
arbitrary spin particles which expects to use equations of the Hamiltonian type.
These equations can be more convenient then first order systems of the kind (13.1)
since they include explicitly the evolution operator (Hamiltonian). Besides the
distinguishing of the time variable is in a good accordance with Galilei
transformations (10.39) in contrast to the case of Poincaré-invariant equations.

First let us "deduce" the Schrödinger equation (11.1) and demonstrate that
this is the only Galilei invariant evolution equation for a scalar wave function.

Let us search for linear partial differential equations for a complex valued
function ψ(t,x)

Lψ(t,x)=0

where L is an unknown differential operator. We assume L=p0−H where H includes
space derivatives only.

The Galilei-invariance condition means that L commutes with any basis
element of the Galilei algebra. Without loss of generality these basis elements Pµ,
J, G can be chosen in the form (11.5) (this is the general form of covariant
representation of the algebra AG(1,3), realized in the space of scalar functions, refer
to Section 12). Calculating commutators of L with the corresponding generators of
(11.5) we find immediately that

H=p2/2m+ε0, ε0=const,
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i.e., we come to the equation which coinsides with the Schrödinger equation up to
nonessential constant term ε0 in the Hamiltonian.

Thus the Schrödinger equation is unique, i.e., this is the only evolution
equation which involves scalar wave function and satisfies the requirement of Galilei
invariance.

We now consider the problem of deducing of Schrödinger-like equations
for Galilean particles of arbitrary spin. We will search for a motion equation of a
particle of spin s in the form (11.1) where ψ is a 2(2s+1)-component wave function,
H is a differential operator (particle Hamiltonian) we need to find. We will
demonstrated that this number of components of wave function is minimal for a
profound equation of motion if s is nonzero.

By definition the equation (11.1) is invariant under the Galilei algebra if it
admits 11 SOs satisfying relations (11.6). We restrict ourselves to the case when
these operators have the covariant form (12.18) corresponding to local
transformations of a wave function by passing to a new reference frame.

It is not difficult to make sure the invariance condition (1.5) reduces to the
following equations for H

where Pa, Ja and Ga are the operators (12.18).

(14.1)[H,Pa] [H,Ja] 0, [H,Ga] iPa

We require the eigenvalues of the Casimir operators (11.14) on a set of
solutions of the equation (11.1) be equal to

where s is an integer or half integer, m and 0 are arbitrary fixed numbers. This

(14.2)c1 m, c2 0, c3 m 2s(s 1),

makes it possible to interpret (11.1) as a motion equation of a particle of spin s. The
corresponding matrices Sa, ηa and M of (12.18) without loss of generality can be
chosen in the form:

where sa matrices of dimension (2s+1)×(2s+1) realizing the IR D(s) of the algebra

(14.3)Sa











sa 0

0 sa

, ηa k(σ1 iσ2)Sa , M σ0 m

AO(3), σµ are 2(2s+1)-row Pauli matrices (5.30), k is an arbitrary complex number.
If k is not equal to zero then the matrices (14.3) can be transformed to the

equivalent representation with k=1. We find it is more convenient to admit arbitrary
values of k, see footnote after Theorem 14.1, Subsection 14.2.

We impose the additional requirement the equation (11.1) be invariant under
the transformation of simultaneous reflection of time and space variables. In analogy
with (11.37) we represent this transformation in the form

(14.4)ψ(t,x)→Θψ(t,x) rψ ( t, x)
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where r is a matrix needed to determine. This transformation has to satisfy the
following relations together with generators of the Galilei group:

which reduce to the following equations for r

(14.5)PµΘ ΘPµ, JaΘ ΘJa, GaΘ ΘGa

It follows from (14.3), (14.6) that the parameter k can be either real or

(14.6)rSa Sa r, rηa ηar.

imaginary according to the cases the matrix r commute or anticommute with σ1+iσ2.
The corresponding matrix r without loss of generality can be chosen in the form

where ∆ is the matrix (7.10), ϕ is a real number.

(14.7)
r exp(iϕ)∆, if k k

r exp(iϕ)σ3∆, if k k

The condition of invariance of the equation (11.1) under the transformation
of complete reflection can be written in the form

where Θ is the operator (14.4), (14.7).

(14.8)[H,Θ] 0

So we state the problem of finding all nonequivalent Hamiltonians H
satisfying the commutation relations (14.1), (14.8). Such Hamiltonians correspond
to Galilei-invariant Schrödinger equations for particles of arbitrary spins.

14.2. The Explicit Form of Hamiltonians of Arbitrary Spin Particles

Here we present the general solution of the problem formulated above.
THEOREM 3.4. All the possible (up to equivalence) Hamiltonians H

satisfying relations (14.1), (14.8) (together with the Galilei group generators and the
operator (14.4)) are given by the following formulae

where

(14.9a)H H (1) σ1am σ32iakSa pa

1
2m

Cab pa pb,

(14.9b)H H (2) σ3bm (σ1 iσ2)2bkSa pa

p 2

2m

a, b, k are parameters satisfying the conditions

(14.10)Cab δab 2ak 2(σ1 iσ2)(SaSb SbSa),
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PROOF. It is convenient to solve the equations (14.1) in the representation

(14.11)b b, k ±k, (ak) ak.

which is connected with (12.18) by the transformation

where

(14.12)Pµ→Pµ UPµU
1, J→J UJU 1, G→G UGU 1

It is not difficult to make sure that

(14.13)U exp







i
m

ηapa 1 i
m

ηapa.

i.e., G′a has a very simple form. Requiring the operators (14.14) satisfy (14.1) we

(14.14)Pa Pa, P0 Hs , Ja Ja, Ga tpa mxa,

come to the following equations

whose general solutions have the form

(14.15)[H ,xa]
i
m

pa, [H ,pa] [H ,Sa] 0

where aµ are arbitrary complex numbers, moreover without loss of generality we can

(14.16)H
p 2

2m
Bm, B σµa

µ,

set a0=0.
Using the transformation B → WBW-1 where W is an invertible numeric

matrix satisfying the condition*

we can reduce B to one of the following forms

(14.17)W 1ηaW λη a, λ∈ , λ≠0

(14.18a)B σ1a, B σ3a, a a 2
1 a 2

2 a 2
3 ,

*The condition (14.17) can be deduced requiring the corresponding Galilei group
generators in starting (imprimed) representation be connected by the equivalence
transformation H→WHW-1=H′′ , Pa→WPaW

-1=Pa, Ja→WJaW
-1=Ja, Ga→WGaW

-1=Ga′′
where Ga′′ differs from Ga only by the value of the parameter k (refer to (12.18),
(14.3)). Fixing k in (14.3) (e.g., setting k=1) we lose the possibility to simplify H’
with the help of a matrix transformation, so it is convenient to consider the
representations of the Galilei algebra given by (12.18), (14.3) where k is an arbitrary
parameter.
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The matrices (14.18) are nonequivalent in the sense that there is not any

(14.18b)B σ1±iσ2.

matrix W satisfying (14.17) and and transforming them one into another. Besides the
solutions (14.18b) have to be neglected since they correspond to non-Hermitian
representations of the Galilei algebra with a nilpotent Casimir operator C3=2mP0-P

2.
So the general form of H′ is given in (14.16) where B is one of the matrices

of (14.18a). With the help of the transformation inverse to (14.12) we find all the
nonequivalent imprimed Hamiltonians in the form (14.9) and obtain the conditions
(14.11) from relations (14.4)-(14.6).

Thus we obtain Galilei-invariant equations for particles of arbitrary spin in
the form (11.1), (14.9). Galilei invariance of these equations is evident from the
deduction. Nevertheless we can easily verify it directly. Using the identity

we find that the operators (14.9) satisfy the relations

(14.19)exp(iη v) 1 iη v

where H(p′) are the operators obtained from (14.9) by the change p → p′=-i∂/∂x′,

(14.20)exp[iϕ(x)]D(θ,v) 







i
∂
∂t

H(p) D 1(θ,v)exp[ iϕ(x)] i
∂

∂t
H(p ),

x0′ x′, ϕ(x) and D(θ,v) are given in (11.28), (11.29), (12.22).
It follows from (14.20) the transformed function ψ′(x′) of (12.21) satisfies

the same equation as ψ(x):

In other words the equation (11.1) with any of the Hamiltonians (14.9) is invariant

(14.21)i
∂

∂x0

ψ (x ) H(p )ψ (x ).

under Galilei transformations (11.29) if ψ(x) is transformed according to (12.21).
We can make sure that the Casimir operators (11.14) corresponding to the

Hamiltonians (14.9) have the eigenvalues (14.2) where 0=±am. So we conclude that
equations (11.1), (14.9) can be interpreted as motion equations of a free particle of
mass m, spin s and internal energy ±am.

In the case s=1/2, a=ik=1 the equations (11.1), (14.9a) reduce to the
following form

This equation has the form of the usual Dirac equation including the additional term

(γµ p µ m)ψ (1 γ0 γ4)p
2/2mψ.

(p2/2m)ψ in the l.h.s. . This term violates Poincaré-invariance of the Dirac equation
but generates invariance under the Galilei group.

We note that the simplest Poincaré-invariant equation, i.e., the KGF
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equation (1.1) also can be "modified" in such a way. Adding to the l.h.s. of (1.1) the
term -(p0p

2/2m+p4/4m2)ψ we obtain an equation which is not Poincaré-invariant but
is invariant under Galilei transformations.

14.3. Lagrangian Formulation

So we have find Galilei-invariant equations in the Schrödinger form for a
particle of arbitrary spin. As like as the Dirac Hamiltonian the evolution operators
(14.9) depend on the spin matrices but include differential operators of higher
(second) order.

The nonrelativistic Hamiltonians (14.9) depend on two parameters a and k
which cannnot be fixed by the requirement of Galilei and PT-invariance. These
operators are Hermitian with respect to the scalar product (7.35) where M is a
positive defined metric operator

Besides the operators (14.9a), (12.18) (with Sa, ηa given in (14.3)) are Hermitian in

M̂ U †U 1 1
m

[i(k k)σ1 (k k)σ2]Sa pa

2k k
m

(1 σ3)(Sa pa)
2.

the following indefinite metric

where

(14.22)(ψ1,ψ2) ⌡
⌠d 3xψ†

1ξψ2,

ξ is a Hermitizing matrix for the Hamiltonian (14.9a) and the generators (12.18). As

(14.23)
ξ







σ1, if a a, k k

σ2, if a a, k k.

to the Hamiltonian (14.9b) the corresponding Hermitizing matrix does not exist.
The equations (11.1), (14.9a) can be deduced using the variational principle

if we start from the Lagrangian

where ψ=ψ*ξ. It is not difficult to make sure that the Euler-Lagrange equations

(14.24)

L0(x) i
2









ψ ∂ψ
∂t

∂ψ
∂t

ψ amψσ1ψ

1
2m

∂ψ
∂xa

Cab

∂ψ
∂xb

ak










ψσ3Sa

∂ψ
∂xa

∂ψ
∂xa

σ3Saψ

(8.24), (14.24) reduce to (11.1), (14.9a). Changing in (8.24) ψ → ψ we obtain the
equation for ψ which is equivalent to (11.1), (14.9a).

Thus equations (11.1), (14.9a) admit the Lagrangian formulation. This
circumstance makes it possible to use the canonical Lagrangian formalism to
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construct the operators of the main physical values (momenta, energy, angular
momenta etc.) and to generalize these equations to the case of a particle interacting
with an external fields using the minimal coupling principle.

We note that the equations (11.1) with the Hamiltonian (14.9b) cannnot be
represented as Euler-Lagrange equations, because the Hamiltonian (14.9b) is non-
Hermitian and the corresponding Hermitizing matrix does not exist. Therefore we
will not consider this Hamiltonian restricting ourselves to the equations (11.1),
(14.9a).

Let us summarize. We have obtained the motion equations for a particle of
arbitrary spin s in the Hamiltonian form (11.1) where H is the second order
differential operator (14.9a). These equations are invariant under the Galilei and total
reflection transformations and admit a Lagrangian formulation.

We present here also Galilei invariant equations for a particle with variable
spin. Such equations can be written in the form (11.1) where

Here S4a are matrices belonging to the representation D(1/2 1/2) of the algebra

(14.25a)H σ1am σ32iakS4a pa

1
2m

C̃ab pa pb,

(14.25b)C̃ab δab 2ak 2(σ1 iσ2)(S4aS4b S4bS4a).

AO(4), σa are the Pauli matrices of dimension 2(s+1)2×2(s+1)2, commuting with S4a.
The operator (14.25) is a Galilei-invariant analog of the relativistic

Hamiltonian H1 of (10.18). The corresponding equation (11.1) is invariant under the
P-, T- and C-transformations and describes particles with variable spin whose values
are s, s-1, ..., 0.

In papers [162,163] other types of Galilei-invariant equations where
considered. They are second order equations with a singular matrix by p0 and
Schrödinger-type equations corresponding to non-covariant representations of the
algebra AG(1,3). We do not analyze these equations here but note that they can be
successfully used to describe a particle of arbitrary spin in an external field.

15. GALILEAN PARTICLE OF ARBITRARY SPIN
IN AN EXTERNAL ELECTROMAGNETIC FIELD

15.1. Introduction of Minimal Interaction into First-Order Equations

A motion equation of a free particle is of interest for physics only as a first
step in describing interacting particles. Moreover, the critical point is a possibility
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to use such an equation to describe an interaction of a charged particle with the
electromagnetic field.

We show further on that Galilei-invariant equations can be successfully used
to solve the mentioned problem inasmuch as they take into account all the physical
effects predicted by the relativistic Dirac equation in the approximation 1/m2. Using
the generalized Foldy-Wouthuysen reduction we calculate the constants of the dipole,
quadruple and spin-orbit couplings predicted by these equations. The constant of the
dipole interaction generated by first-order Galilei-invariant equations is equal to 1/s
in accordance with the Belifante conjecture [30].

We start with the Galilei-invariant equations of first order derived in Section
13. Since these equations admit the Lagrangian formulation, this is naturally to
introduce an interaction with the electromagnetic field in frames of the minimal
interaction principle, i.e., to make the change ∂/∂xµ → ∂/∂xµ-ieAµ in the
corresponding Lagrangian. As a result we come to the equations

To substantiate the minimal interaction principle in application to Galilei-

(15.1)L(π)ψ≡(βµ πµ β4m)ψ 0, πµ pµ eAµ.

invariant wave equations we will show that the change pµ → πµ does not violate the
Galilei and gauge symmetry of the starting equations and leads to reasonable results
by solving the concrete physical problems. Moreover we will not use a concrete
realization of β-matrices (at least until a certain moment) so our results will be valid
for arbitrary wave equations invariant under the Galilei group.

The equation (15.1) is manifestly invariant under the gauge transformations

where ϕ is an arbitrary differentiable function. To establish invariance of this

(15.2)ψ(x)→exp[ieϕ(x)]ψ(x), Aµ→Aµ

∂ϕ(x)

∂x µ

equation under the Galilei transformations we assume that the vector-potential is
transformed simultaneously according to Galilean law [273]

Using relations (13.9) and applying the Campbell-Hausdorf formula (13.16) we make

(15.3)A0→A0 A0 v A , Aa→Aa Rab Ab.

sure the operator L(π) satisfies the condition

where L(π′) is the operator obtained from L(π) of (15.1) by the change πµ →

(15.4)exp[iϕ(x)]D̃(θ,v)L(π)D 1(θ,v)exp[ iϕ(x)] L(π )

πµ′=i∂/∂x′µ-eA′µ, D̃(θ,v)=[D-1(θ,v)]†; xµ′, ϕ(x), D(θ,v), Aµ′ are defined in (11.28),
(11.29), (12.22), (15.3).

It follows from (15.4) the transformed wave function ψ′(x′) of (12.21)
satisfies the same equation as ψ(x):

172



Chapter 3. Representations of the Galilei Algebra ...

so the equation (15.1) is invariant under Galilei transformations.

(15.5)L(π )ψ (x ) 0,

15.2. Magnetic Moment of Galilei Particle of Arbitrary Spin

Let us show the Galilei-invariant equations (15.1) are good models of
charged particles interacting with the electromagnetic field and describe the dipole,
quadruple and spin-orbit interactions. To analyze these equations it is convenient to
pass to the representation where the operator L(π) reduces to a series in powers 1/m.
For this purpose we make the transformation

where

(15.6)ψ→ψ V 1ψ, L(π)→L (π) V †L(π)V

is the operator obtained from (13.15b) by the change p → π. Using the Campbell-

(15.7)

Hausdorf formula (13.16) and the commutation relations (13.9) for βµ and ηa and
restricting ourselves to the case when the nilpotency index of the matrices ηa is less
then 4 we come to the following equation

where

(15.8)L (π)ψ (x) 0

If the nilpotency index nη of ηa is larger then 3 the corresponding operators

(15.9)L (π) β0











π0

π2

2m
β4m

e
m









β0η E 1
2

β×η H e

2m 2
β0η (π×H H×π).

L′(π) includes the additional terms

where Bk depend linearly on the electromagnetic field strengths and their derivatives.

e

2m 2
β0ηaηb

∂Ea

∂xb

n

k 3

1

m k
Bk

These terms can be neglected proceeding from reasonable suppositions about the
intensity of an external field.

Thus formula (15.9) being exact for nη≤3 can be treated as an approximate
one for nη>3.

The operator (15.9) includes the terms corresponding to interaction of a
point charged particle with an external electromagnetic field (∼ π 0-π2/2m) and the
additional terms proportional to the vectors of the electromagnetic field strengths.
Here we consider in detail the term eβ×η H corresponding to the interaction of a
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particle spin with the magnetic field (i.e., the Pauli interaction).
Using the representation (12.23), (13.12) for β and η and bearing in mind

relations (12.26) we obtain the following expression for the matrix β×η in the basis
λ;l,m>

where

(15.10)
β×η λ;l,m> E l

λλ S l
mm λ ;m l> F l

λλ K l
mm λ ;l 1,m >

(F l 1)†
λλ K l 1

mm λ ;l 1,m >

al, bl, cl, (a x)l and Al are matrices satisfying the relations (12.31), (13.14).

(15.11)E l
λλ A l

λλ

(2l 1)[(a x)l]λλ

l(l 1)
, F l

λλ
1
l

(a l 1†x l 1c l b l†x la l), l≠0,

Consider the equation (15.8) for the case E=0. Using the representation
(13.11), (15.10) for β0, β4 and β×η we can write the system (15.8) as a chain of
equations for the functions ψl (eigenfunctions of the matrix S2)

We used the identities

(15.12)











A l1











π0 π2 e
2l1m

S l1 H (2l1 1)x l1m ψl1

l
2ml1

F l1†K l1 Hψl1 1 0,

l
2ml1

F l1†(K l1 H)†ψl1





A l1 1











π0

π2

2m





E l1 1 e
2m

S l1 1 H (2l1 1)x l1 1m ψl1 1

l
2l1 1

F l1 1K l1 1 Hψl1 2 0,

...

eF l0 1†

2m(l0 1)
(K l0 1 H)†ψl0 1











A l0











π0

π2

2m
l

2m(l0 1)
S l0 H (2l0 1)x l0 m ψl0

0.

which follows from (15.11), (13.14a), (13.14b). Here E l and Fl are the matrices

E l1
1
l1

A l1, E l0
1

l0 1
A l0

whose elements are defined in (15.11).
Until now we have not made any supposition about a concrete realization

of β-matrices and use only relations (13.9) following from the requirement of Galilei
invariance. Further we assume the equation (15.1) describes a particle of a fixed spin
s i. e. the conditions (13.19) are fulfilled. Besides we assume that s=l1 and call the
corresponding equation (15.1) "equation for the highest spin".
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If the conditions (13.19) are satisfied and s=l1 then the operator in square
brackets in the last line of (15.12) is invertible. So we can express viaψl0

ψl0 1

Since the determinant of the matrix V does not depend on H then det(V-1)

ψl0

V 1 eF l0 1†

2m(l0 1)
(K l0 1 H)ψl0 1; V A l 0











π0

π2

2m
e

2m(l0 1)
(2l0 1)x l0m.

also has this property. Roughly speaking it means that ψl0

∼ eHψl0 1.
In analogous way supposing the magnetic field strength is small enough in

order to neglect terms quadratic in respect with eH we can express via ,ψl0 1 ψl0 2

via etc. As a result we come to the following representation for the firstψl0 2 ψl0 3

of the equations (15.12):

where s=l1, S=Ss, F(H) is a term of order (eH)2 which can be neglected.

(15.13)










A s











π0

π2

2m
e

2sm
S H (2s 1)mx s F(H 2) ψs 0

Since As and xs by definition satisfy the condition (13.19) it follows from
(15.13) that

Thus introducing the minimal interaction into first-order Galilei-invariant

(15.14)










π0

π2

2m
e

2sm
S H 0 ψs 0

wave equations we come to the Schrödinger-Pauli equation (15.14) for a (2s+1)-
component wave function. This equation includes the term describing the Pauli
interaction of spin with the magnetic field. The coefficient of eS H/2m is called the
gyromagnetic ratio, in our case it is equal to g=1/s.

The Belifante conjecture [30] g=1/s has been supported repeatedly using
relativistic wave equations [196, 224]. We see that Galilei-invariant wave equations
for a particle of highest spin also predict the correct value of the gyromagnetic ratio
moreover this result does not depend on a choice of the concrete equation but has
a universal nature.

15.3. Interaction with the Electric Field

We see that the Pauli interaction can be successfully interpreted in frames
of Galilei-invariant theory since any equation of the kind (15.1) can serve as a base
for its description. But an interaction of a spin with the electric field (e.g., the spin-
orbit coupling) is a finer effect which can be described only by special classes of
Galilei-invariant equations.

Starting with the equations of the form (15.9) it is possible to find the
general restrictions imposed on the matrices ηa by requiring these equations be a
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suitable model of a real physical situation. A simple analysis shows that if the
nilpotency index of these matrices is less than 3 then the operator L′(π) does not
include any term depending on the electric field strength. Indeed, in this case ηaηb=0
and so according to (13.9) β0ηa = 0. The corresponding operator (15.9) reduces to
the form

It can be seen easily that the equations (15.8), (15.5) cannnot describe an

(15.15)
L (π) β0











π0

π2

2m
β4m

e
2m

β×η H.

interaction of a spin with the electric field. In the case H=0, E≠0 the operator
(15.15) does not depend on E and S, being commutative with Sa.

We formulate this result in the form of the following assertion.
PROPOSITION 15.1. The necessary condition a Galilei-invariant equation

of the form (15.1) describes interaction of a particle spin with the electric field is

where S and η are generators of the homogeneous Galilei group realized on a set of

(15.16)C 2
1 ≡(S η)2≠0

solutions of this equation, C1 is the Casimir operator (12.27).
As will be shown in the following the condition (15.16) is also sufficient.

Thus to answer the question whether the given Galilei-invariant wave equation
describes an interaction of a spin with the electric field, it is sufficient to calculate
the square of the corresponding Casimir operator C1 and apply the criterium (15.16).

The representations of the algebra AE(3) realized on sets of solutions of the
LHH equations do not satisfy the condition (15.16) and so these equations do not
describe a spin-orbit coupling of a particle with an external field. In the following
subsection we consider in detail the Galilei-invariant equations of the class D2 and
select such equations which describe the mentioned coupling.

15.4. Equations for a (2s+1)-Component Wave Function

Let us analyze the equations (15.1) with the minimal number of
components. The explicit form of the corresponding β-matrices is represented in
Subsection 13.5.

We show these equations reduce to the equations of the Schrödinger type
for a (2s+1)-component wave function Φs and additional conditions expressing
superfluous components of ψ via Φs.

First we consider the LHH equations. The corresponding matrices βk and
ηk are given in (12.23), (13.11), (13.12) and the column R1 of Table 13.1. It is
convenient to analyze these equations in the equivalent representation (15.8).
Denoting
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where Φs, Φs′ are (2s+1)-component, χ is a (2s-1)-component wave function, we

(15.17)ψ column(Φs,Φs ,χ)

come to the equation (15.14) for Φs, where 0=mæ2(s+1)2. As to Φs′ and χ then
according to (15.8) χ=0, Φs′=æΦs.

So the LHH equations reduce to the Pauli equation (15.14) for the (2s+1)-
component wave function Φs and predict the correct value 1/s for the gyromagnetic
ratio. Unfortunately these equations do not take into account as important effect as
a spin-orbit coupling.

In an analogous way, we make sure that the equations corresponding to the
column R2 of Table 13.1 reduce to the Pauli equation (15.14) for a (2s′+1)-
component wave function of a particle of spin s′=s-1 besides g=1/(s′+1). Thus such
equations also do not describe a spin-orbit coupling.

The equations (15.1) are more interesting in the case when the
corresponding β-matrices are given in column R3 of Table 13.1 since in this case the
criterium (15.16) is satisfied. Denoting

and substituting (15.18) and the explicit form of the corresponding matrices into

(15.18)ψ column(φs
1,φ

s
2,φ

s
3,χ

s 1
1 ,χs 1

2 )

(15.8), (15.9) we come to the following equations

So the considered equations reduce to the Hamiltonian equation (15.19) for the

(15.19)
i

∂
∂x0

φs
1 Hφs

1≡










0

π2

2m
eA0

e
2ms

S H e
s(s 1)æ2m

S F φs
1,

ε0









æ1

1
2

æ 2
2 m(s 1)2, F E 1

2m
(π×H H×π),

(15.20)

φs
2 æ2φ

s
1, φs

3
1
2











æ 2
2

eS F
s(s 1)æ2m

φs
1,

χs 1
1 ≡0, χs 1

2

i ks eK H

(s 1)(2s 1)m
φs

1, s≠1, χ0
2≡0.

(2s+1)-component wave function φ1
s, the remaining components of ψ′ are expressed

via this function according to (15.20).
To inquire into the physical sense of solutions of this equation, we

transform (15.19) into a form where the Hamiltonian does not include the term ∼
S E corresponding to the nonphysical electric dipole coupling. Using for this
purpose the transformation

(15.21)
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and using the identities

(15.22)U exp










iS π
s(s 1)æ2m

φs
1

where F is an arbitrary vector depending on x, Qab is the tensor of the quadruple

(15.23)
i[S F,S π] 1

6
Qab

∂Fa

∂xb

1
3

s(s 1)ip F 1
2

S (F×p p×F),

i[S π,π0] S E, i[S π,π2] eS (π×H H×π),

interaction (10.27), we come to the Hamiltonian (10.26) where

We see that the considered Galilei-invariant wave equations generate the

(15.24)B
1
s

, D
1

æ 2
2 s(s 1)

, C
1
2

BD, 0 m0









æ1

1
2

æ 2
2 (s 1)m.

approximate Hamiltonian of a particle of a spin s, which has the same structure as
the Hamiltonian of a relativistic particle. This means that our equations describe
dipole, quadruple, spin-orbit and Darwin interactions as relativistic equations,
furthermore, the accuracy of the Galilei-invariant description in the approximation
1/m2 is not less than in the case of using of Poincaré-invariant equations.

The principal distinguishing from the relativistic case is that the coefficient
of the term corresponding to the spin-orbit coupling is not fixed but is determined
up to an arbitrary constant æ2.

Thus the spin-orbit coupling which is usually interpreted as a purely
relativistic effect can be successfully described in frames of the Galilei-invariant
approach.

In a complete analogy with the above we can demonstrate that the equation
(15.1) with the β-matrices corresponding to column R4 of Table 13.1 reduces to the
following equation for a (2s′+1)-component function χs′

The latter with the help of the transformation

i
∂

∂x0

χs Hχs ≡










m̃0

π2

2m
eA0

e

2m(s 1)
S H e

s (s 1)æ2m
S F χs ,

m̃0









æ1

1
2

æ 2
2 s 2m, S ∈ D(s 1).

reduces to the form

χs →χs exp










i
S π

s (s 1)æ2m
χs
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The explicit form of the Hamiltonian H′ can be obtained from (10.26) by the change

i
∂

∂x0

χs H χs .

S→S′, B→1/(s′+1), C→BD/2, D→1/[æ2s′(s′+1)], ε→m̃0.

15.5. Introduction of Minimal Interaction into Schrödinger-Type Equations

The Galilei-invariant equations in Hamiltonian form considered in Section
14 also can serve as a basis for description of spinning particles in the
electromagnetic field. Here we discuss briefly the special features arising by using
these equations.

Making in (11.1), (14.9a) the change pµ→πµ we come to the following
equation

where

(15.25)L(π)ψ(x) 0, L(π) i
∂

∂x0

H(π,A0),

Equations (15.25) are Euler-Lagrange equations and can be deduced starting

(15.26)H(π,A0) σ1am
π2

2m
eA0 2iakσ3S π (σ1 iσ2)

2iak 2

m








(S π)2 e
2

S H .

from the Lagrangian obtained from (14.24) by the change ∂/∂xµ → ∂/∂xµ-ieAµ. These
equations are manifestly invariant under the gauge transformations (15.2). It is not
difficult to make sure that the operator L(π) satisfies the Galilei-invariance condition
(15.4) also,besides D̃(θ,v)=D(θ,v) is the matrix (12.22), (14.3) (compare with
(14.20)).

Let us demonstrate that the motion equation of charged particle in the
electromagnetic field, given in (15.25), (15.26) presents a good model of the
considered physical situation and describes spin-orbit and Darwin couplings.

To give a physical interpretation of the equation considered it is convenient
to pass to such a representation where the operator L(π) has a quasidiagonal form
(i.e., commutes with the matrix σ1 standing by the mass term). As like as in the case
of the relativistic Dirac equation we can make an approximate diagonalization only,
using 1/m as a small parameter. It turns out the approximate Hamiltonian obtained
from (15.26) also has the form (10.26) where

In other words Galilei-invariant equations of the Schrödinger type can serve as a

(15.27)ε0 σ1am, B σ1ak 2, D k, C
1
2

BD.
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good mathematical model of a charged particle of arbitrary spin. The corresponding
Hamiltonian (10.26), (15.27) includes all the terms present in the quasirelativistic
Foldy-Wouthuysen Hamiltonian except the relativistic correction to kinetic energy
p4/8m3. So the equations (15.25) describe dipole, quadruple and spin-orbit couplings
of arbitrary spin particles with an external field.

The essentially new point in comparison with Poincaré-invariant equations
and first-order Galilei-invariant equations is that the coefficient of the term eS H/2
(denoted by B in (15.27)) is not fixed but expressed via arbitrary parameters a and
k. The values of these parameters can be chosen in accordance with experimental
data. Setting, e.g., a=1, k=1/s, s=1/2 we come to the Hamiltonian whose first six
terms coincide with the corresponding terms of the Foldy-Wouthuysen Hamiltonian
(see (10.26) for α=III, s=1/2) obtained from the Dirac equation.

In conclusion we note that the explicit form of the corresponding
transformations diagonalizing the Hamiltonian (15.26) is given by formulae (10.25)
(where the index α has to be omitted) besides

V1 exp(σ2kS π/m),

V2 exp(B)≡exp[σ2k(keS H 2k(S π)2 eS E /a)/2m 2],

V3 exp










σ2

k 2

m 3









2
3

k (S π)3 ke
2

[S π,S H] σ1











1
2m

[B,π0]
ik

2m 3
[S π,π2] .

15.6. Anomalous Interaction

The minimal change pµ→πµ in motion equations is not the only possibility
in description of particles interaction with an external field. A more general approach
(proposed by Pauli) is to take into account so called anomalous coupling described
by the terms linearly dependent on E and H.

A classical example of an equation describing the anomalous interaction is
the Pauli generalization of the Dirac equation

The term proportional to the tensor of the electromagnetic field strength Fµν makes









γµπ
µ m

iqe
4m

[γµ,γν]F
µν ψ 0.

it possible to take into account a deviation of the dipole momentum from the value
g=1/s.

Here we discuss possibilities of introducing of anomalous interactions into
Galilei-invariant wave equations. Namely we consider generalized equations (15.1),
(15.25) of the kind
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and

(15.28)Lψ≡










i
∂

∂x0

Ĥ(π,A0) ψ, Ĥ(π,A0) H(π,A0)
e
m

ΣµλF
µλ

where H(π,A0) is the operator (15.26), Σµλ and Σ′µλ are some matrices which have to

(15.29)L̂ψ≡







βµπ
µ β4 m

e
m

ΣµλF
µλ ψ 0

be of that kind that the equations (15.28), (15.29) are Galilei-invariant.
Our task is to find the exact form of these matrices satisfying the Galilei-

invariance condition and to analyze the contribution of the additional terms
introduced into equations of motion.

The following statement is valid for the equation (15.28).
PROPOSITION 15.2. The equation (15.28) is Galilei-invariant iff

where Sa and ηa are the matrices (14.3), k1 and k2 are arbitrary numbers.

(15.30)Σ0a

k1

2
ηa, Σab

1
2 abc(k1Sc k2ηc)

For the proof see [320].
If we require the equation (15.28) be invariant under the complete reflection

transformation (14.4) then the parameters k1 and k2 have to be real.
Now we consider the first-order equations (15.29). Restricting ourselves to

the case of the LHH equations (i.e., where β-matrices have the form (13.11), (13.12),
R1 in Table 13.1) we obtain [320, 321] the following general form of Σµσ:

where k3 and k4 are arbitrary numbers.

(15.31)Σ0a

k3

2 abcβ0βbβc,

(15.32)Σab
i
2

k3(1 2β0) abcβc

k4

2
β0βbβc

So we have defined the general form of the terms representing anomalous
interaction, which can be included into motion equation without loss of their Galilei-
invariance. To analyze the physical consequences of such an inclusion, we transform
the operator L of (15.28) to the quasidiagonal form and reduce (15.29) to the
equation for a (2s+1)-component wave function in analogy with the procedure made
in Subsections 15.4, 15.5. As a result, we obtain the equation [320, 321]

where H′′′ is given in (10.26) besides

(15.33)










i
∂
∂t

H
2kk2

3m 2
Qab

∂Ha

∂xb

ψ 0
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and

(15.34)
0 σ1am, B k1 σ1(k2 4ak 2), D 2kk2 1, C

1
2

BD,

where H′′′ is the operator (10.26) again but

(15.35)










i
∂
∂t

H
e 2k 2

3

4m 2
H2 φs 0,

We see that introduction of anomalous interaction into Schrödinger-like

(15.35)
0 mæ 2(s 1)2, B

1
s

(1 k4), D
K3

2s
, C

1
2

BD.

equations does not change the structure of the approximate Hamiltonian but makes
it possible to correct in a Galilei-invariant way the values of coefficients of the terms
representing dipole, spin-orbit, etc. interactions. As to the LHH equations the
anomalous interaction leads to principal changes of the corresponding approximate
Hamiltonian which now includes the terms corresponding to spin-orbit coupling
while the minimal interaction leads to the Pauli Hamiltonian (15.14).

Summarizing, we can say that Galilei-invariant wave equations give a wide
possibilities in description of arbitrary spin particles in an external field. In particular
such equations give a correct description of Pauli and spin-orbit couplings and
predict the correct value g=1/s of the gyromagnetic ratio. In Chapters 6 and 7 we use
Galilei-invariant equations to solve concrete physical problems of one- and two-
particle interactions.
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We show the symmetry of the basic equations of quantum physics is wider
than the classical symmetry described in Chapter 1. Using the approach proposed in
[113, 116, 122] we find IAs of the Dirac, Maxwell, KGF, Schrödinger and other
equations in the classes of higher order differential and integro-differential operators.
The corresponding SOs form wide Lie algebras and superalgebras including the
Poincaré or Galilei algebra as a subalgebra.

16. HIGHER ORDER SOs OF THE KGF AND SCHRÖDINGER
EQUATIONS

16.1. The Generalized Approach to Studying Symmetries of Partial Differential
Equations

In Chapter 1 and Section 11 we studied symmetries of the basic equations of
quantum physics in respect to continuous groups of transformations. This symmetry
can be defined as an invariance under a finite dimension Lie algebra whose basis
elements belong to the class M1 (i.e., the class of first order differential operators). It
is evident these symmetries do not exhaust all the invariance properties of the equations
considered since a priori we do not take into account IAs including differential
operators of higher orders.

Here we study symmetries of the fundamental equations of quantum theory
in frames of a more general approach than the classical Lie method. The basic idea of
this approach (called non-Lie in the following) is that the class of SOs can be
essentially extended by including differential operators of the second, third, .. etc.
orders and even integro-differential operators. We call them higher-order SOs.

A well-known example of a symmetry under such an extended class of
operators is the invariance of the Schrödinger equation for the hydrogen atom under the
algebra AO(4) established by Fock [103, 104]. Other examples can be found in [6, 39,
228], a good treatment of higher symmetries is present in Olver’s book [350].

Higher order SOs give an information about hidden symmetries of equations
including Lie-Bäclund symmetries [422] and supersymmetry [159, 327]. These
operators can be used to construct new conservation laws which cannot be found in the
classical Lie approach. A very interesting application of these operators is a description
of coordinate systems in which solutions in separated variables exist [305].

An effective algorithm for finding higher order SOs and the corresponding
IAs is suggested in [116,122]. Here we discuss this algorithm briefly and give basic
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definitions.
Consider an arbitrary linear system of partial differential equations

where L is a linear differential operator, ψ is a multicomponent function. As in

(16.1)Lψ(x) 0

Subsection 1.2 we say an operator Q is a SO of the system (16.1) if it transforms
solutions into solutions. In other words a SO satisfies by definition the condition

where ψ is an arbitrary solution of the equation (16.1).

(16.2)[Q, L]ψ 0

In Chapter 1 we suppose that SOs belong to the class M1 and thus describe Lie
symmetries. Here we decline this supposition and search for SOs of arbitrary order.
Besides we impose two types of restrictions on the SOs considered.

(1) We require the SOs form a finite-dimensional Lie algebra*, i.e., satisfy the
relations

where fABC are structure constants. It will be shown further on this way makes it

(16.3)[QA,QB] fABC QC

possible to find new wide IAs of equations of quantum physics.
The condition (16.3) is a very substantial restriction selecting subsets having

the structure of a Lie algebra from a set of SOs which is infinite in general.
(2) We consider SOs belonging to the class of differential operators of order

n (class Mn) where n is fixed. Generally speaking such SOs do not form a finite-
dimensional Lie algebra, but sometimes they have another interesting algebraic
structures, e.g., they can form a basis of a superalgebra.

To investigate non-Lie symmetries we use various combinations of the
restrictions (1), (2) (i.e., impose one of them or both them). In some cases we decline
these restrictions and search for a complete set of SOs of arbitrary order.

The principal question arising while investigating symmetries in frames of
non-Lie approach is the following: how are SOs of the equation considered to be
constructively calculated? By generalizing results of calculations of IAs of equations
of quantum mechanics it is possible to formulate the following algorithm:

(1) by means of a nondegenerated transformation the system of partial
differential equations is reduced to diagonal or quasidiagonal form, i.e., the maximal
splitting of this system into independent subsystems is carried out; (2) the IA of the

* According to Theorem 1.1 SOs belonging to the class M1 always form a Lie
algebra which can be either finite or infinite dimensional. But even second order SO
do not satisfy (16.3) in general
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transformed equation is found and the kind of a representation of the corresponding Lie
algebra is determined; (3) by means of the inverse transformation the explicit form of
the basis elements of the IA of the original equation is found.

The algorithm is based on one of the most fruitful and effective ideas in the
theory of differential equations, i.e., using of transformations of independent and
dependent variables.

While realizing the algorithm an important role is played by the concept of the
symbol of an operator L which can be defined by means of the Fourier transform

where ψ∈ C0
∞(R4), ψ̃(x0, p)=Fψ(x) is a Fourier transform ofψ(x), F is the unitary Fourier

(16.4)L̂ψ(x) (2π) 3/2

⌡
⌠

D(p)

d 3pLexp(ip x)ψ̃(x0, p)

operator mapping a vector of the Hilbert space H into H̃, ψ̃(x0, p)∈ H̃, D(p) is a domain
of integration. A formal connection between the operator L and its symbol L̃ can be
given by the following relation

Relations (16.4), (16.5) can be used to realize the first step of the algorithm.

(16.5)L̂ F 1LF, L FL̂F 1.

Indeed if the symbol of the operator L is a matrix with variable coefficients (and this
occurs for the majority of equations of mathematical physics) the system (16.4) can be
reduced in principle to a system of noncoupled integral equations by transforming L to
diagonal or Jordan form.

It should be noted that a realization of the algorithm present above for
concrete equations of physics or mechanics, as a rule, is not a simple problem.
Sometimes it is easier to use other ways considered in the following.

We saw in Chapter 1 that a description of first order SOs is based on using the
explicit form of the Killing vectors corresponding to the space of independent
variables. To describe higher order SOs it is necessary to calculate more complicated
structures which we call generalized Killing tensors of order s. In the following we
present a definition of these tensors as complete sets of solutions of some over-
determined system of partial differential equations of order s. The explicit form of the
generalized Killing tensors used in this book is given in Appendix 2.

16.2. SOs of the KGF Equation

Like in Chapter 1 we start with the KGF equation, the simplest equation of
relativistic quantum theory. Using notations and definitions of Section 1 we formulate
the problem of description of higher order SOs for this equation.

Let Mn be the class of differential operators of order n defined on F. Then any
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operator Qn∈ Mn can be represented in the form

In a complete analogy with Definition 1.1 we formulate the following

(16.6)Qn

n

j 0

Qj, Qj h a1a2...aj
∂j

∂xa1

∂xa2

...∂xaj

, h a1a2...aj∈ F, ai 0,1,2,3.

DEFINITION 16.1. A linear differential operator (16.6) is a SO of the KGF
equation in the class Mn (or a SO of order n) if

where L is the operator (1.3).

(16.7)[Qn, L] αQL, αQ∈ Mn 1

In the case n=1 such defined SOs reduce to the generators of the Lie group
considered in Section 1. The SOs of order n>1 describe generalised (non-Lie)
symmetries of the KGF equation. The problem of description of the complete set of
SOs of order n reduces to finding the general solution of the operator equation (16.7).

It is convenient to represent all the operators (16.7) as sums of j-multiple
anticommutators [328,342]

where

(16.8)
Qn

n

j 0

Qj , αQ

n 1

j 0

αQj

,

αq L
1
4

αQ, ∂µ , ∂µ 1
2

∂µ αQ, ∂µ

1
4

(∂µ ∂µαQ )

K and α are unknown symmetric tensors of rank j. Transferring differential

(16.9a)
Qj









... K a1a1...aj, ∂a1

, ∂a2

,...∂aj

,

(16.9b)α j









... αa1a2...aj, ∂a1

, ∂a2

,..., ∂aj

,

operators to the right we can reduce Qn of (16.8) to the equivalent form (16.6).
Substituting (16.8) into (16.7) and equating the coefficients of the same

differential operators we come to the following equation for æ≠0:

where symmetrization is imposed over the indices in parenthesis:

(16.10)∂(aj 1K a1a2...aj) 0, j 1,2,...,n,

(16.11)αa1a2...aj 0

So the problem of describing SOs of order n for the KGF equation reduces to

∂(aj 1K a1a2...aj) ∂aj 1K a1a2...aj ∂a1K aj 1a2...aj ∂a2K a1aj 1a3...aj ... ∂ajK a1a2...aj 1aj 1.

solving the noncoupled system of partial differential equations (16.10). In the case n=1
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this system reduces to the Killing equations (1.9).
We will see further on that formula (16.10) gives the principal equation

appearing while investigating higher order SOs of the basic equations of quantum
theory. The equations of the type (16.10) were considered in [408]. We call a
symmetric tensor K satisfying (16.10) a Killing tensor of valence j and order 1,
the sense of the last term will be clear in the following.

The general solution of (16.10) is given in Appendix 2. The number N j of
independent solutions is

where C b
a is a number of combinations from b elements by a ones.

(16.12)N j 1
4

C 3
j 3C

3
j 4

To present the explicit form of F it is convenient to define a special kind
of tensors (which we call basic tensors) having the followingλa1...ac[ac 1b1]...[ajbj l]

properties:
(1) symmetry and zero traces in respect with the indices a1, a2, ..., ac;
(2) symmetry in respect with a permutation of pairs of indices [al+i bi] and

[al+j bj], i,j=1,2,...,n-c;
(3) skew-symmetry in respect with the indices [ac+i bi];
(4) a convolution in respect with any triplet of indices with absolutely skew-

symmetric tensor µλσρ is equal to zero.
Basic tensors are reducible since in general they have nonzero traces over

pairs of indices al, am if l>c and (or) m>c.
LEMMA 16.1. The general solution of (16.10) can be represented in the form

where is the general solution of (16.10) for j→j-2, λ are arbitrary basic

(16.13)K a1a2...aj g (aj 1ajK a1a2...aj 2)
j

l 0

λa1a2...al[al 1b1]...[ajbj l]xb1

xb2

...xbj l

K a1a2...aj 2

tensors independent on x.
PROOF reduces to direct verification the fact that the tensor (16.13) satisfies

(16.10) and to calculation the number of independent components of λ which is
equal to N j-N j-2 [328,342].

The first term in the r.h.s. of (16.13) corresponds to a SO of order j which
reduces to a SO of order j-2 on the set of solutions of (1.1) and so can be neglected.
Then substituting (16.13) into (16.9) we obtain

where Pa, Jab are the Poincaré group generators (1.6).

(16.14)Q j
j

l 0

λa1a2...al[al 1b1]...[ajbj l]Pa1

Pa2

...Pal

Jac 1b1

Jal 2b2

...Jajbj l

Thus we have obtained a complete set of SOs of order n for the KGF equation
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in the form (16.14) where j≤n. All such operators belong to the enveloping algebra of
the algebra AP(1,3). The number N j of linearly independent operators Qj is

and the total number of SOs of order j≤n is

(16.15)Nj N̂j N̂j 2

1
4!

(j 1)(j 2)(2j 3)(j 2 3j 4),

In conclusion we note that the SO (16.14) can be represented in such a form

N(n)

n

j 0

Nj

2
3!4!

(n 1)(n 2)2(n 3)(n 2 4n 6).

which includes irreducible arbitrary parameters only. Indeed, expanding inλa1...

irreducible tensors (i.e., tensors having the properties (1)-(4) and besides being
traceless over any pair of indices) we obtain

where

Qj λa1a2...aµ[aµ 1 b1][aµ 2 b2]...[aj bj µ]Pa1

Pa2

...Paµ1

×

×Iaµ1 1 aµ1 2

Iaµ1 3 am1 4

...Iaµ 2 aµ 1

(Jaµb
P b) µ2(Jac J ac) µ2/2 ×Jaµ 1 b1

Jaµ 2 b2

...Jaj bj µ

{A} is the entire part of A, and the summation is imposed over all the values of µa

Iab Jan J n
b , µ µ1 µ2

2µ3, j j µ2, µ2

1
2

[1 ( 1)µ2],

satisfying the condition

0≤µ3≤ j/2 ; 0≤µ2≤2 (j 2µ3)/2 ; 0≤µ1≤j 2µ3 µ2.

16.3. Hidden Symmetries of the KGF Equation

Let us demonstrate the higher order SOs of the KGF equation possesses
nontrivial algebraic structures. Restricting ourselves to the SOs of the second order we
see that there are 49 such operators having the form

where the Latin indices run from 0 to 3.

(16.17.a)Pa, Jab, Pab pa pb

1
4

gab m 2, Fa Jab P b,

(16.17b)
J Jµν J µν, Kac Jab J b

c JcbJ
b

a

1
2

gac J 2,

K [ab][cd] [Jab,Jcd]
1
4

gbc Kad

1
16

gbc gad J 2.

In contrast with the first order SOs of (1.6) the operators (16.17) do not form
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a Lie algebra. But the subset (16.17a) includes bases of some Lie algebras, satisfying
the following commutation relations

Using (16.18) and (1.14) we can indicate two finite-dimensional Lie algebras

(16.18)

[Pa, Pab] 0, [Pab, Pcd] 0,

[Pab, Jcd] i(gac Pbd gbd Pac gad Pbc gbc Pad),

[Fa, Fb] im 2Jab, [Fa, Jbc] i(gabFc gacFb],

[Fa, Pb] i(Pab

3
4

m 2gab),

[Fa, Pbc] 2iPa Pb Pc im 2gab Pc im 2gac Pb.

and the infinite dimension Lie algebra

A10 Jµν, Fµ , A19 Pµ, Pµν, Jµν

The algebra A10 is isomorphic to AO(2,3).

A∞ Fµ, Jµν, Pµ, Pµ Pν, Pµ Pν Pλ, Pµ Pν Pλ Pσ, ... .

Let us consider still hidden symmetry of the KGF equation. Denoting

we can rewrite it in the form

(16.19)p0ψ mχ, ϕ column(ψ,χ)

Now we can investigate symmetries of (16.20). Any symmetry transformation for

(16.20)p0ϕ [σ1m (σ1 iσ2)
p 2

2m
]ϕ.

(16.20) can be considered as a hidden symmetry of the KGF equation [121] inasmuch
as any solution of (16.20) satisfies (1.1).

LEMMA 16.2. The equation (16.20) is invariant under the algebra AP(1,3)
whose basis elements are

Proof reduces to a direct verification.

Pµ pµ, Jab xa pb xb pa, J0a x0 pa xa p0 (σ1 iσ2)
pa

m
.

The operators (16.21) generate the following finite group transformations
[170]

where x′ is given in (1.32), (1.39). These transformations represent the group of a

ϕ (x ) 1
2









(1 σ3)coshλ 1 σ3 (σ1 iσ2)sinhλ λ p
mλ

ϕ(x)

hidden symmetry of the KGF equation, mixing wave function and its derivations, see
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(16.19).
We remind that the KGF equation admits also the algebras and groups of

hidden symmetries connected with antilinear transformations, refer to Subsecrion 1.7.

16.4. Higher Order SOs of the d’Alembert Equation

Consider the KGF equation in the special case m=0. The problem of
description of higher order SOs of this equation can be solved in a complete analogy
with Subsection 16.2. Substituting (16.8) into (16.7) and setting m=0 in L of (1.3) we
come to the following determining equations (instead of (16.10)) [328]

where and are symmetric traceless tensors, the first is called a conformal

(16.21)∂(aj 1K a1a2...aj) 1
j 1

∂bK b(a1a2...aj 1g ajaj 1) 0,

(16.22)αa1a2...aj 1
1

j 1
∂bK ba1a2...aj 1

K a1... αa1...

Killing tensor of valence j and order 1.
The general solution of (16.21) is given in Appendix 2. The number N′ j of

linearly independent solutions is equal to

each solution corresponds to the SO of the d’Alembert equation. Substituting (A.2.10),

(16.23)N j
1

12
(j 1)2(j 2)2(2j 3),

(A.2.14) into (16.9) we obtain linearly independent SOs in the form

where are arbitrary basic tensors, Pa, Ka, Jab, D (a,b=1,2,3) are the generators of

(16.24)
Qj

c1,c2,c3

λa1a2...ac1 c2
[ac1 c2 1b1]...[aj c3

bj c1 c2 c3
]
×

×Pa1

Pa2

...Pac1

Kac1 1

Kac1 2

...Kac1 c2

(D)c3Jac1 c2 1b1

Jac1 c2 2b2

...Jaj c3
bj c1 c2 c3

,

λa1...

the conformal group given in (1.6), (1.16), 0≤c1+c2≤j-c3, c3=0,1.
So we have found a complete set of SOs of order n for the d’Alembert

equation in the form (16.24). All these operators belong to the enveloping algebra of
the algebra AC(1,3).

We note that higher order SOs of a system of partial differential equations do
not belong in general to the enveloping algebra of the Lie algebra of this system
symmetry group (see Section 17).

In conclusion we consider briefly the problem of description of higher order
SOs for the generalized KGF equation in the pseudo-Euclidean space of dimension
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p+q=M:

where

(16.25)(pµ pν g µν m 2)ψ 0, µ ,ν 1,2,...p q,

The problem of description of SOs of the equation (16.25) is formulated in

g µν









0, µ≠ν,

1, µ ν≤p,

1, p<µ ν≤p q.

complete analogy with the above. The generalization the above results to the case of
an arbitrary number of variables is almost trivial so we restrict ourselves to presenting
the number of linearly independent SOs of order j for the equation (16.25) in M-
dimensional space [328, 342]

The total number of SOs of order j, 0≤j≤M is

(16.26)N M
j

1
M

C M 1
j M 1C

M 1
j M .

In particular for M=2,3

(16.27)N(n,M) 2n 2 2nM M(M 1)
M(M 1)

C M 2
n M 2C

M 2
n M 1.

Formulae (16.28a) and (16.28b) give the numbers of SOs for the Helmholtz

(16.28a)N 2
j 2j 1, N(n,2) (n 1)2,

(16.28b)N 3
j

1
3

(j 1)(2j 2 4j 3), N(n,3) 1
6

(n 1)(n 2)(n 2 3n 3).

and inhomogeneous Laplace equation. For the homogeneous Laplace equation we have

(16.29)Ñ
3

j

1
3

(j 1)(2j 1)(2j 3), Ñ(n,3) 1
6

(n 1)(n 2)(2n 2 6n 3).

16.5. SOs of the Schrödinger Equation

Here we find a complete set of SOs of order n for the Schrödinger equation.
Without loss of generality we represent such an operator in the form (16.9a) where
indices values run from 1 to 3.

The SOs considered do not include p0 because it can be expressed via p2/2m
on the set of solutions of the equation (11.3).

Substituting L (11.3) and Q (16.8) into (16.7) we come to the following
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system of coupled equations [330]

where the dots denote the time derivatives.

(16.30a)∂(aj 1K a1a2...aj) 2m(j 1)K̇
a1a2...aj 1, j 0,1,...n 1,

(16.30b)∂(an 1K a1a2...an) 0, K̇ 0, j 0

So to find all the SOs of order n for the Schrödinger equation it is necessary
to obtain the general solution of (16.30). The system (16.30) is over-determined and
can be solved by transition to the set of noncoupled differential consequences. We
make it as follows.

Consider (16.30a) for j=n-1:

Using (16.30b) we can obtain the following differential consequence of (16.31):

(16.31)∂anK a1a2...an 1 2mnK̇
a1a2...an.

Then differentiating (16.32) in respect with t and considering (16.30a) for j=n-2 we

(16.32)∂(an 1∂anK a1a2...an 1) 0.

obtain

and for j=n-s+1

∂(an 1∂an∂an 1K a1a2...an 2) 0,

It follows from (16.30), (16.33) that

(16.33)∂(aj 1∂aj 2...∂aj sK a1a2...aj) 0, s n 1 j.

So starting with (16.10) we come to the system of noncoupled equations

(16.34)∂ j 1

(∂t) j 1
K a1a2...aj 0.

(16.33), (16.34).
The equations (16.33) are direct generalizations of the first-order equations

(16.10) determining the Killing tensor. We call solutions of (16.33) generalized Killing
tensors of valence j and order s [328, 342]. The general solution of (16.33), (16.34) is

where is a Killing tensor of valence j and order s. Substituting (16.35) into

(16.35)K a1a2...aj

j

α 0

K
a1a2...aj

sα t α, s n 1 j

K
a1a2...aj

sα

(16.30) we come to the equation

Let we know the general solution of (16.35) for a fixed value of j=j0-1 then

(16.36)αK
a1a2...aj

sα 2mj∂(ajK
a1a2...aj 1)

s 1α 1 , α≠0, s n j.

the relations (16.35), (16.36) define an explicit form of the general solution for j=j0 up
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to an arbitrary generalized Killing tensor of order s=n-j0+1. So the numberK
a1a2...aj

s0

Nn of linearly independent solutions of the system (16.30) coincides with the total
number of independent components of generalized Killing tensor of valence j and order
s=n-j+1, 0≤j≤n. According to (A.2.4)

Thus the Schrödinger equation admits Nn linearly independent SOs of orders

(16.37)Nn

n

j 0

N 3
sj

1
3!4!

(n 1)(n 2)2(n 3)2(n 4).

j≤n. Subtracting from (16.37) the number of SOs of orders j′≤n-1 we obtain the number
of SOs of order n

The corresponding SOs can be represented in the form

(16.38)Ñn Nn Nn 1

1
4!

(n 1)(n 2)3(n 3).

where Pa, Ga and Ja are generators of the Galilei group of (11.5), are arbitrary

(16.39)Qn

n

c 0

n c

k 0

λa1a2...acb1b2...bn cPa1

Pa2

...Pak

Gak 1

Gak 2

...Gac

Jb1

Jb2

...Jbn c

λa1...

tensors symmetric in respect to permutations ai←→aj and bk←→bl, besides

Summing up the numbers of independent components of we make sure that the

(16.40)λa1a2...acb1b2...bn c δa1b1

0.

λa1...

number of linearly independent SOs of (16.39) coincides with (16.38).

16.6. Hidden Symmetries of the Schrödinger equation

So we have calculated all the linearly independent SOs of arbitrary order for
the Schrödinger equation. All such operators belong to the enveloping algebra of the
Galilei algebra.

Here we demonstrate this enveloping algebra has a very interesting structure
and includes wide Lie algebras. But before this we consider the other hidden
symmetries generated by antilinear transformations.

In Subsection 11.6 we were discussing symmetries of the Schrödinger
equation in respect with the antilinear transformation T of (11.37). Then in accordance
with Lemma 1.1 (refer to Subsection 1.7) this equation is invariant under the algebra
AO(1,2) whose basis elements are {T,R,TR} where R is the evident symmetry
transformation (1.55). Moreover this symmetry can be extended by including the
combined transformations consisting of the space reflection P of (11.37). As a result
we come to the following IA of the Schrödinger equation

T,R,TR,PT,PR,PTR .
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These operators satisfy the following commutation relations

and thus form the Lie algebra isomorphic to AO(2,2).

[T,R] 2TR, [T,TR] 2R, [T,PT] 0, [T,PR] 2TPR, [T,PTR] 2PR,

[R,TR] 2T, [R,PT] 2PTR, [R,PR] 0, [R,PTR] 2PT,

[TR,PT] 2PR, [TR,PR] 2PT, [TR,PTR] 2P,

[PT,PR] 2TR, [PT,PTR] 2R, [PR,PTR] 2T,

Taking into account that the squares of the considered SOs are proportional
to the unit operator (up to a sign) it is not difficult to find the corresponding symmetry
group of the Schrödinger equation. We restrict ourselves by presenting one parameter
transformations generated by these symmetries and belonging to the group O(2,2):

where θa are real parameters.

ψ(t, x)→cosθ1ψ(t, x) isinθ1ψ(t, x),

ψ(t, x)→cosθ2ψ(t, x) isinθ2ψ(t, x),

ψ(t, x)→coshθ3ψ(t, x) sinhθ3ψ(t, x),

ψ(t, x)→coshθ4ψ(t, x) isinhθ4ψ( t, x),

ψ(t, x)→coshθ5ψ(t, x) coshθ5ψ( t, x),

ψ(t, x)→coshθ6ψ(t, x) isinhθ6ψ( t, x)

But let us return to linear SOs considered in the previous subsection.
Restricting ourselves to the second order SOs we obtain from (16.39) the following
complete set of them

including 40 elements (compare with (16.38)). In contrast with Gab, Qab and Fab the

(16.41a)Pab PaPb, Gab GaGb, Qab

1
2

(PaGb GaPb),

(16.41b)Fab Ja Jb Jb Ja, Fa abc Pb Jc, Ga abcGb Jc,

(16.41c)Lab Pa Jb Pb Ja, Nab Ga Jb Gb Ja, (a,b,c) (1,2,3),

tensors Lab and Nab are traceless.
The SOs (16.41) do not form a closed Lie algebra. But some subsets of these

operators are closed in respect with commutation and so form the bases of Lie algebras.
One of such subsets is given by the operators P2, G2 and P G forming a basis of the
algebra AO(1,2), see (11.12), (11.13). The more extended Lie algebra is formed by the
operators (16.41a) together with Pa, Ga and Ja inasmuch as they satisfy the following
commutation relations
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The relations (11.6b)-(11.6d), (16.42) define the 27-dimensional Lie algebra

(16.42)

[Pab, Pcd] [Gab, Gcd] 0,

[Pab, Gcd] im(δac Qbd δad Qbc δbc Qad δbd Qac),

[Pab, Qcd] im(δac Pbd δad Pbc δbc Pad δbd Pac),

[Gab, Qdc] im(δac Qbd δad Qbc δbc Gad δbd Gac),

[Qab, Qcd] im(δac Qbd δbdQac δad Qbc δbc Qad),

[Pa, Pbd] 0, [Pa, Qbd] im(δab Pd δad Pb),

[Pa, Gbd] im(δab Gd δad Gb),

[Ja, Rbd] i( abk Rkd adk Rkb), Rab (Qab,Gab,Pab).

A27 . This algebra includes very interesting subalgebras listed in the following table.
Table 16.1

Main subalgebras of
the algebra A27

Basis elements

AG2(1,3) P0=P2/2m, Pa, Ja, Ga, P G, G2

AO(1,2) P2, G2, P G

AIGL(3) Pa, Ja, Qab

AP(1,2) Pa, Q12, Q13, J1

Thus, the Schrödinger equation has very extensive hidden symmetries
including the Lie algebras of the groups of general inhomogeneous linear
transformations IGL(3) and of the generalized Poincaré group in three-dimensional
space. These algebras are realized in the class of second-order differential operators
and can be used for various purposes including separation of variables and construction
of exact solutions of linear and non-linear problems based on the Schrödinger equation.

Considering SOs of order n>2 we can find more extensive IAs of the
Schrödinger equation. Here we represent two of them

where Qab is the operator (16.41a), n is an arbitrary integer.

(16.43)
L1⊃ Pa, Ja, Ga, Qab, Ga1a2...ai

Ga1

Ga2

...Gai

, i≤n,

L2⊃ Pa, Ja, Ga, Qab, Pa1a2...ai

Pa1

Pa2

...Pai

It is not difficult to verify the operators (16.43) form finite-dimensional Lie
algebras for any fixed n.
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Symmetries of the Schrödinger equation under integral transformations are
considered in [165, 338], where so exotic IAs are found as AO(1,4) and AC(1,3).

16.7. Symmetries of the Quasi-Relativistic Evolution Equation

Let us consider briefly symmetries of a four-order partial differential equation
which can be interpreted as a quasi-relativistic generalization of the Schrödinger
equation. Namely we consider the equation

where a0, a4, and m are real constants.

(16.44)i
∂

∂x0

ψ Hψ, H a0 m
p 2

2m
a4

p 4

8m 3
,

If a0=a4=0 then (16.44) coincides with the Schrödinger equation for a free
particle. For a0=a4=1 the Hamiltonian H includes three the first terms of the Taylor
series of the relativistic Hamiltonian H′=(m2+p2)1/2.

The maximal IA of the equation (16.44) in the class M1 is the eight-dimension
Lie algebra A8 including the basis elements P0, Pa, Ja and M of (11.5). Thus this
equation is invariant under neither Galilei nor Lorentz transformations. This does not
mean however that symmetries of (16.44) are exhausted by the algebra A8. This
equation is invariant under the 20-dimensional Lie algebra including P0, Pa, Ja and M
of (11.5) and the following higher order SOs [145]

Using the identities [H,Va]=[P0,xa]=0 it is not difficult to make sure that the operators

(16.45)

Va i[H, xa]
1
m

(1 a4

p 2

2m 2
)pa,

Ga (x0Va xa)m, Rab

a4

m
(pa pb

1
2

δab p 2).

(16.45) satisfy the invariance conditions (1.5) (together with L=i∂/∂x0-H) and the
following commutation relations

the commutation relations between P0, Pa, Ja, M and Ga are given in (11.6).

[P0, Ga] imVa, [Va, Gb] im(Rab δab

1

m 2
M),

[Ja, Rbc] i( abn Rcn acn Rbn), [P0, Rbc] 0,

[Ja, Vb] i abcVc, [Pa,Vb] [Pa, Rbc] 0,

[Ga, Rbc]
ia4

m
(δab Pc δbc Pa δac Pb),

We see the quasirelativistic evolution equation (16.44) is really invariant
under the 20-dimensional Lie algebra generated by the SOs P0, Pa, Ja, M of (11.5) and
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Va, Ga, Rab of (16.45). Besides the SOs (16.45) are third-order differential operators and
so they do not generate local transformations of the type (11.15). But it is possible to
demonstrate (see [387]) that Ga generate nonlocal transformations of the following kind

where va are transformation parameters and x′ are connected with x by the Galilei

(16.46)ψ (x ) exp[im(xava

1
2

x0v
2 1

2

a4

m 3
x0va pa p 2)]ψ(x)

transformations (11.18). For a4=0 formula (16.46) presents usual Galilei
transformations of (11.27).

Let us demonstrate that if we interpret (16.44) as a motion equation for a
particle of rest mass m then the complete mass M′ depends on the velocity. Indeed, the
corresponding quantum mechanical operator of velocity is the operator Va of (16.45),
and the classical analogues of the operators Pa and Va are the momentum pa and
velocity va. In accordance with (16.45) the velocity depends on momentum in the
following manner

But on the other hand we have according to the classical definition of velocity that

(16.47)va

pa

m
1
2

a4

m 3
pa p 2.

Substituting (16.48) into (16.47) we come to the cubic equation

(16.48)va

pa

M
.

Solutions of this equation have the form

(16.49)M
m

1
2

a4v
2











M
m

3

1 0.

It follows from (16.49) that the mechanics based on the equation (16.44) leads

(16.49)M
3m
W

sin










1
3

arctan W

1 W 2

, W 







3m
2

3

a4 v .

to the limiting velocity like relativistic mechanics. Besides if v→vlim



















3m
2

3

a4

1/2

vlim then M′→(3/2)m.
In conclusion we note that analogous analysis can be carried out for the

equation (16.44) with a more general Hamiltonian H
N

n 0

a2n p 2n.

Approximate symmetries and solutions of wave equations are discussed in
[389].
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17. NONGEOMETRIC SYMMETRIES OF THE DIRAC EQUATION

17.1. The IA of the Dirac Equation in the Class M1

The hidden symmetries of the Dirac equation are more interesting and
complicated than considered above owing to the matrix structure of the corresponding
SOs.

In Section 2 we found the maximal IA of the Dirac equation in the class M1,
it was isomorphic to the Lie algebra of the Poincaré group. It turns out this IA can be
extended by including the SOs belonging to the class of first order differential operators
with matrix coefficients. We denote this class by M1.

For convenience let us rewrite the Dirac equation in the form

Using the definitions (16.2) and the algebraic properties of the Dirac matrices (refer to

(17.1)Lψ 0, L γµ pµ m.

(2.3)) it is not difficult to show that a linear differential operator

to be a SO of the Dirac equation in the class M1 if

(17.2)QA A µ pµ B, A µ, B∈ G 4

where fA
µ, QA are 4×4 matrices in general depending on x. We make the same

(17.3)[QA, L] (f µ
A pµ qA)L,

suppositions about the wave function and matrices fA
µ, qA: ψ∈F 4, fA

µ, qA∈G 4.
Let us formulate and prove the following assertion.
THEOREM 17.1 [142]. The Dirac equation is invariant under the eight-

dimensional Lie algebra A8 defined over the field of real numbers. Basis elements of
this algebra can be chosen in the form

where I is the unit matrix. For nonzero m this algebra is isomorphic to the Lie algebra

(17.4)
Σ̂µν

m
4

[γµ,γν]
1
2

(1 iγ4)(γm pν γν pµ),

Σ̂0 I, Σ̂1 mγ4 i(1 iγ4)γµ p µ,

of the group GL(2,C), for m=0 the operators (17.4) form a commutative (Abelian)
algebra.

PROOF can be carried out by direct verification. Using (2.3) it is not difficult
to obtain the following relations

which have the form (17.3). If m=0 these operators commute. For nonzero m we denote

(17.5)[Σ̂µν,L] 1
2

(γµ pν γν pµ)L, [Σ̂0,L] 0, [Σ̂1,L] 2γ4γ
νpν L
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Chapter 4. Nongeometric Symmetries

and obtain the following commutation relations

(17.6)Σµν
1
m

Σ̂µν, Σ0 Σ̂0, Σ1

1
m

Σ̂1

Thus the operators (17.4) form an IA of the Dirac equation. For m=0 this IA

(17.7)
[Σµν,Σλσ] gµλΣνσ gνσΣµλ gµσΣνλ gνλΣµσ,

[Σ1,Σ0] [Σ1,Σµν] [Σ0,Σµν] 0.

is commutative, for nonzero m it is isomorphic to the algebra AGL(2.C). This
isomorphism can be established by the following relations

where λab and λ̃ab are the basis elements of the algebra AGL(2,C) satisfying the

(17.8)

λ11 Σ0 Σ12, λ22 Σ0 Σ12, λ12 Σ23 Σ02,

λ21 Σ23 Σ02, λ̃11 Σ1 Σ03, λ̃22 Σ1 Σ03,

λ̃12 Σ01 Σ31, λ̃21 Σ31 Σ01

commutation relations

We give the other more constructive proof of Theorem 17.1 in order to explain

(17.9)
[λab,λcd] [λ̃ab, λ̃cd] δacλbd δbcλad δadλbc δbdλac,

[λab, λ̃cd] δacλ̃bd δbcλ̃ad δadλ̃bc δbdλ̃ac.

the nature of the additional symmetry of the Dirac equation. It is well known that the
system of four first-order equations (17.1) is equivalent to the system of two second-
order equations. Multiplying (17.1) from the left by (1±iγ4)/2, denoting

and expressing ψ- via ψ+ we come to the equations

(17.10)ψ±

1
2

(1±iγ4)ψ

But the equations (17.10), (17.11a) have the evident symmetry under arbitrary

(17.11a)(pµ p µ m 2)ψ 0,

(17.11b)ψ 1
m

γµ p µ ψ .

matrix transformations commuting with γ4. They are the transformations generating the
hidden symmetry described in Theorem 17.1.

To describe effectively all nonequivalent transformations of this kind, we use
the fact that the transition from (17.1) to (17.11) can be represented in the form
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Symmetries of Equations of Quantum Mechanics

where

(17.12)ψ→ψ Vψ, L→L WLV 1

Indeed, the equation

(17.13a)V exp[ 1
2m

(1 iγ4)γ
µ pµ ]≡1 1

2m
(1 iγ4)γ

µ pµ,

(17.13b)W exp[ 1
2m

(1 iγ4)γ
µ pµ ]≡1 1

2m
(1 iγ4 )γµ pµ,

(17.13c)L
1
2

(1 iγ4)m
1

2m
(1 iγ4)(pµ p µ m 2).

reduces to (17.11) moreover .

(17.14)L ψ 0, ψ Vψ

ψ ψ
The equation (17.14) is manifestly invariant under arbitrary matrix

transformations commuting with γ4. The corresponding transformation operator can be
represented as a linear combination of the matrices

satisfying the relations (17.7) and so forming a basis of the eight-dimension Lie

(17.15)Σµν
1
4

[γµ,γν], Σ0 I, Σ1 γ4

algebra. It is not difficult to make sure these matrices are linearly independent over the
field of real numbers while

where ψ′ is a solution of (17.1).

(Σab i abcΣ0c)ψ (Σ1 iΣ0)ψ 0

Using the operator (17.13a) we obtain from (17.15) the explicit form of basis
elements of the IA of the Dirac equation: Σa=V -1Σ′aV, Σµσ=V -1Σ′µσV where Σµσ and Σa

are the operators (17.4), (17.6).
It follows from the proof that the additional symmetry of the Dirac equation

described in Theorem 17.1 is maximal in the sense it includes all the possible matrix
transformations in the representation (17.14).

So besides the well-known Poincaré-invariance the Dirac equation is
additionally invariant under the algebra A8. Basis elements of this algebra do not belong
to the class M1 and thus cannot be considered as a Lie derivatives. In spite of this fact,
they form a Lie algebra and satisfy the relations

Σ2
0a Σ2

ab Σ2
0 Σ2

1 1
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Chapter 4. Nongeometric Symmetries

and so generate the eight-parameter group of transformations

(no sum over repeated indices),

(17.16)

ψ→ψ (cosθab γaγbsinθab)ψ
i
m

sinθab(1 iγ4)(γa

∂ψ
∂xb

γb

∂ψ
∂xa

),

ψ→ψ (coshθ0a γ0γasinhθ0a)ψ
i
m

sinhθ0a(1 iγ4)(γ0

∂ψ
∂xa

γa

∂ψ
∂x0

)

where θab, θ0a, θ0 and θ1 are real parameters. Any of formulae (17.16), (17.17) defines

(17.17)
ψ→ψ (cosθ1 γ4sinθ1)ψ

1
m

sinθ1(1 iγ4)γµ

∂ψ
∂xm

,

ψ→ψIV expθ0ψ

a one-parameter transformation group and can be represented in the form
ψ→exp(2ΣAθA)ψ, where A=0,1,01,02,... .

The principal distinguishing feature of the transformations (17.16) with
respect to Lorentz transformations (2.59) is that the transformed functions depend on
derivatives of the wave function. Furthermore, in accordance with (17.16) independent
variables are not transformed in contrast to Lorentz transformations. In other words the
additional invariance of the Dirac equation has nothing to do with transformations of
the space-time continuum, that is why we call this symmetry nongeometric.

The question arises of whether it is possible to combine the symmetry group
of the Dirac equation given by the transformations (17.16), (17.17) and the Poincaré
group. It turns out that such a unification is possible since the generators of these
transformations and the Poincaré group generators form an 18-dimensional Lie algebra.

THEOREM 17.2. The Dirac equation is invariant under the 18-dimensional
Lie algebra whose basis elements are given by formulae (2.22), (17.4), (17.6) and
satisfy the commutation relations (1.14), (17.7) and (17.18):

The proof of the theorem reduces to direct verifying the validity of relations

(17.18)
[Pµ,Σλν] [Pµ,Σ0] [Pµ,Σ1] 0.

[Jµν,Σλσ] i(gµσΣνλ gνλΣµσ gµλΣνσ gνσΣµλ).

(17.18).
We conclude from the above that the Dirac equation is invariant under the 18-

parametrical Lie group including Lorentz transformations (2.49) and the nongeometric
transformations (17.16), (17.17). A general form of this group transformation is

where x′µ are connected with xµ by Lorentz transformations, A and Bµ are numerical

(17.19)ψ→Aψ(x ) B µ ∂ψ(x )
∂xµ
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Symmetries of Equations of Quantum Mechanics

matrices depending on 18 parameters [153].

17.2. Symmetries of the Dirac Equation in the Class of Integro-Differential
Operators

Let us denote by M∞ the set of nonlocal (integral) operators Q of the kind

where ψ̃(x0, p) is a Fourier transform of ψ(x):

(17.20)Qψ(x) (2π) 3/2

⌡
⌠exp(ip x)Qψ̃(p,x0)d

3p,

Q is a 4×4 matrix depending on p.

(17.21)ψ̃(p,x0) (2π) 3/2

⌡
⌠exp( ip x)ψ(x,x0)d

3p,

We show the Dirac equation has an additional invariance under the
transformations belonging to the class M∞. Moreover, the corresponding IA is more
extensive than established above.

THEOREM 17.3 [142]. The Dirac equation is invariant under the algebra A8

defined over the field of complex numbers. The symbols of basis elements of this
algebra are given by the formulae

where

(17.22)Σ̃µν
1
4

[γµ,γν]
1

2m
(γµ pν γν pµ)









1 iγ4

H
E

, Σ̃0 I, Σ̃1

H
E

H γ0γa γ0m, E p 2 m 2.
Instead of the proof we present the explicit form of the operator V

diagonalizing the symbol of the operator L of (17.1)

It is easy to ascertain that

V P P
H
E

, V 1 1
m

(HP P E), P± (1±γ0 )/2.

Symmetry operators Σ̃′A∈M ∞ in the representation (17.23) are matrices

(17.23)Vγ0 LV 1 L i
∂

∂x0

γ0 E.

commuting with γ0. Any such a matrix is a linear combination of the following basis
matrices

which are linearly independent over the field of complex numbers and satisfy the

Σ̃ab [γa,γb]/2, Σ̃0a [γ4,γa]/4, Σ̃0 γ0, Σ̃1 I

commutation relations (17.7). Using the transformation Σ̃A′→ΣA=V-1Σ̃A′V we obtain
the SOs (17.22) in the starting representation.

So the Dirac equation possesses an additional invariance under the nonlocal
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Chapter 4. Nongeometric Symmetries

(integral) operators belonging to the class M∞. We note that the basis elements of the
corresponding IA are similar to (17.4), (17.6) and possess the only nonlocal element,
i.e., the energy sign operator ˆ=H/E. But in contrast to (17.4), (17.6) the operators
(17.22) are linearly independent over the field of complex numbers.

It is not difficult to make sure the operators (17.22) form a Lie algebra
together with the Poincaré group generators (2.40) and satisfy the commutation
relations (17.18). Thus the symmetry of the Dirac equation in the class M∞ is
represented by the 18-dimensional Lie algebra A18 including the subalgebra AP(1,3).
It can be shown the algebra A18 is isomorphic to AP(1,3)⊕AGL(2,C) .

In conclusion we note that it follows from Theorem 17.3 the Dirac equation
is invariant under the 16-parametric group of transformations ψ̃→ψ̃′=exp(Σ̃AθA)ψ̃
where θA are complex parameters. The explicit form of these transformations is given
by the following formulae

Here

ψ→(cosθab γaγbsinθab)ψ
i
m

sinθab (1 i γ4)(γa

∂ψ
∂xb

γb

∂ψ
∂xa

),

ψ→(coshθ0b γ0γbsinhθ0b)ψ
i
m

sinhθ0b (γ0

∂ψ
∂xb

γb

∂ψ
∂x0

),

ψ→ (coshθ1 sinh θ1)ψ , ψ→exp(iθ)ψ.

ψ 1
2

(1 H
E

)ψ̃, ψ̃ ψ ψ , ±.

17.3. Symmetries of the Eight-Component Dirac Equation

Until now, we consider only linear symmetry transformations of the Dirac
equation. Here we extend class of symmetries by considering antilinear transformations
which are also admissible in quantum mechanics.

Consider the eight-component Dirac equation

where Γµ are 8×8 matrices satisfying the Clifford algebra (8.2) together with Γ4, Γ5, Γ6.

(17.24)L̂ψ̂ 0, L̂ Γµ p µ m,

Choosing Γµ and the wave function in the form

(17.25)Γµ











γµ 0

0 γµ

, ψ̃










ψ

iγ2ψ
,
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where γµ are the 4×4 Dirac matrices in the realization (2.4), ψ is a four-component
wave function, we obtain from (17.24) a system of equations including the Dirac
equation and the adjoint equation (2.8).

The condition (17.25) can be represented in the form independent on
realization of the Γ-matrices:

where C is the charge conjugation operator. In the representation (17.25) we can

(17.26)(1 iΓ5Γ6C)ψ̂ 0

choose

Thus the Dirac equation and the adjoint equation (2.8) can be represented in

(17.27)
Γ4











0 γ4

γ4 0
, Γ5 i











0 γ4

γ4 0
, Γ5











γ4 0

0 γ4

,

Cψ̂ iΓ2ψ̂ .

the form (17.24) with the additional condition (17.26). Besides linear transformations
of solutions of (17.24), (17.27) correspond to linear or antilinear transformations of
solutions of the four-component Dirac equation. Moreover such a correspondence is
an isomorphism. So the problem of description of linear and antilinear SOs of the Dirac
equation is equivalent to finding the IA of the equations (17.24), (17.26) in the class
of linear operators.

We note that the equation (17.24) admits different interpretations including
that of the equation of motion of particles with spin 1 (see Section 8) and 3/2 [233].
This makes the problem of investigation of symmetries of this equation even more
interesting. Here we consider symmetries of (17.24) without additional conditions and
then symmetries of the system (17.24), (17.26).

Thanks to the increase of the number of components of the wave function the
equation (17.24) has more extended symmetry than the four-component Dirac equation.
In addition to manifest invariance under the Poincaré group (whose generators are
given by formulae (2.22) where Sµσ=i[Γµ,Γσ]) this equation admits matrix
transformations commuting with Γµ. Furthermore, the eight-component Dirac equation
has a hidden (nongeometric) symmetry including SOs in the classes M1 and M∞.

In analogy with Theorem 17.3 it is possible to prove the following assertion.
THEOREM 17.4. The eight-component Dirac equation is invariant under the

32-dimensional Lie algebra defined over the field of complex numbers. The basis
elements of this algebra belong to the class M1 and are given by the formulae

(17.28)Qµνλ ΣµνDλ, Qαλ ΣαDλ
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Chapter 4. Nongeometric Symmetries

where

I is the unit matrix, =1 or =-1.

(17.29)

Σµν
1
2

[Γµ,Γν]
1
m

(Γµ pν Γν pµ)(1 Γ4Γ5Γ6 ),

Σ0 D0 I, Σ1 iΓ4Γ5Γ6

i
m

Γµ p µ(1 Γ4Γ5Γ6 ),

µ,ν,λ 0,1,2,3, α 1,2,
(17.30)D1 iΓ4Γ5, D2 iΓ5Γ6, D3 iΓ4Γ6, D4 I,

The proof is similar to the proof of Theorem 17.3. The Lie algebra spanned
on the basis (17.28) is isomorphic to AGL(4,C) [154].

The operators (17.28) form a closed algebra together with the Poincaré group
generators (2.22) (where Sµσ = i[Γµ,Γσ]) inasmuch as

It is possible to show the symmetry formulated in Theorem 17.4 defines the maximal

[Pµ,Qλσρ] [Pµ,Qαλ] [Jµν,Qαλ] 0,

[Jµν,Qλσρ] i(gµσQνλρ gνλQµσρ gµλQνσρ gνσQµλρ).

IA of the eight-component Dirac equation in the class M1.
In complete analogy with the results presented in the preceding section we can

show that the nongeometric symmetry of the eight-component Dirac equation in the
class M∞ is more extensive and is determined by the 32-dimensional Lie algebra
defined over the field of complex numbers. Basis elements of this algebra are defined
by formulae (17.28)-(17.30) where =Σ1=H/E, H=Γ0Γa pa+Γ0 m.

Before we restrict ourselves to searching sets of SO of the Dirac equation,
forming bases of Lie algebras. Now we will demonstrate the existence of a more
complicated algebraic structure generated by these SO.

THEOREM 17.5. The eight-component Dirac equation admits an IA
isomorphic to the Poincaré superalgebra. Basis elements of this IA have the form

where

Pµ pµ i
∂

∂x µ
, Jµσ xµ pσ xσ pµ Σµσ,

Q1 2 Γ5









Γ1 iΓ2

1
m

(1 iΓ4)(p1 ip2) /2 ,

Q2 2 Γ5









Γ3 Γ0

1
m

(1 iΓ4)(p0 p3) /2 ,

Q1 2 Γ5[(p0 p3)(Γ1 iΓ2) (p1 ip2)(Γ3 Γ0)]/2,

Q2 2 Γ5[Γ3 p0 Γ0 p3 i(Γ1 p2 Γ2 p1) imΓ4]/2
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and Γk are the 8×8 Dirac matrices which can be chosen in the form (17.25), (17.27).

Σab

i
8

ΓaΓb ΓbΓa 2 abcΓ0 Γc (1 iΓ4)(Γa pb Γb pa) , Σ0a

i
2 abcΣbc,

PROOF reduces to direct verification that the mentioned SOs do satisfies the
invariance condition (17.3) and the commutation and anticommutation relations (1.14)
and

which characterize the Poincaré superalgebra [411], refer also to Appendix 1 for

[QA,QB] [QA,QB] 0, [QA,QB] 2(σµ )ABP µ,

[Jµσ,QA] 1
2i

(σµσσ)AB QB, [Jµσ,QA] 1
2i

(σµσσ)AB QB,

[Pµ,QA] [Pµ,QA] 0, A, B 1,2

definitions.
A specific feature of our realization of the Poincaré superalgebra is that the

generators Jµσ are the first-order differential operators with matrix coefficients.

17.4. Symmetry Under Linear and Antilinear Transformations

Let us investigate symmetries of the eight-component Dirac equation with the
additional condition (17.26). As was noted in the above linear symmetries of this
system correspond to linear and antilinear symmetries of the eight component Dirac
equation. To denote the classes of SOs including linear and antilinear transformations
we use the symbols M1

*, M1
* ... where M1

* is the class of linear and antilinear
differential operators of first order etc.

The SOs of the eight-component Dirac equation are not SOs of the additional
condition (17.26) in general. We will see that the symmetry of the system (17.24),
(17.26) is more restricted than the symmetry of the eight-component Dirac equation but
is more extended than the symmetry of the four-component Dirac equation.

THEOREM 17.6. The system of equations (17.24), (17.26) is invariant under
a 14-dimensional Lie algebra isomorphic to AP(1,3)⊕AO(1,2) ⊕T 1. Basis elements of
this algebra can be chosen in the form (2.22), (17.30) where Sµσ=i[Γµ,Γσ], Γk

(k=0,1,...,6) are 8×8 Dirac matrices satisfying the relations CΓ6=Γ6C, CΓn=-ΓnC,
n=0,1,...,5. The real Lie algebra spanned on the basis (2.22), (17.30) is the maximal IA
of the system (17.24), (17.26) in the class M1.

PROOF. It is easily verified the operators (2.22), (17.30) commute with
L1=Γµ pµ-m and L2 =1- iΓ5Γ6C and so are the SOs of the eight-component Dirac
equation with the additional condition (17.26). To prove these operators form the
maximal IA of the system (17.24), (17.26) it is sufficient to show that any Q∈M 1
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satisfying the conditions [Q,L1]=ßQ
1L1+αQ

1L2, [Q,L2]=ßQ
2L1+αQ

2L2, where αQ
σ, ßQ

σ are
matrices depending on x, is a linear combination of the basis elements (2.22), (17.30).
We do not represent here the corresponding calculations but show a complete set of
matrices which can be used to expand all unknown quantities:

Here QA (A=1,2,3,4) are the matrices (17.30), µ, ν, λ=1,2,3,4, µ≠λ, µ≠ν, λ≠ν.

QA, ΓµQA, ΓµΓνQA, ΓµΓνΓλQA, ΓµΓνΓλΓ6QA .

The operators Pµ, Jµσ commute with Qa which satisfy the commutation
relations characterizing the Lie algebra of the group O(1,2).

We see that besides the obvious symmetry under the Poincaré algebra the
system (17.24), (17.26) is invariant in respect with the three-dimension matrix algebra
AO(1,2) (the trivial identity symmetry operator is not discussed here). So this system
is invariant under the three-parameter group of matrix transformations

where θA are real numbers. Using the representation (17.25),(17.27) we find the

(17.31)ψ̂→(expθAQA)ψ̂

corresponding transformations of solutions of the four-component Dirac equation

The invariance of the Dirac equation under the transformations (17.32) was

(17.32)

ψ→exp( i
2

θ1)ψ,

ψ→cosh
θ2

2
ψ iγ2sinh

θ2

2
ψ ,

ψ→cosh
θ3

2
ψ γ2sinh

θ3

2
ψ .

apparently established for the first time by Plebanski (see [72, 227, 364]). We note that
the existence of this symmetry follows from Lemma 1.1, refer to Subsection 1.7.

The symmetry of the Dirac equation in the class M1
* is more extended.

THEOREM 17.7. The eight-component Dirac equation with the additional
condition (17.26) is invariant under the 16-dimensional Lie algebra defined over the
field of real numbers. Basis elements of this algebra belong to the class M1

* and are
given by the formulae

The proof is similar to the proof of Theorem 17.1. We note that by definition

(17.33)Σmn

1
2

[Γm,Γn]
1
m

(1 iΓ6)(Γm pn Γn pm), Σ0 I, m,n 0,1,...,5.

p3+aψ̃(x)≡-i∂/∂x3+aψ̃(x)=0, hence the operator Σ54=-Σ45 reduces to the numerical matrix.
The generators (17.33) satisfy the commutation relations (17.7) where

gmn=diag(1,-1,-1,-1,-1,-1) and form the Lie algebra isomorphic to AO(1,5)⊕T 1, T1⊃∑ 0.
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The operators (17.33) form a closed algebra together with the Poincaré group
generators, satisfying the following relations

where m′,n ′>3, µ,ν ,ρ,λ≤3. Hence it follows the system (17.24), (17.26) is invariant

(17.34)
[Pµ,Σmn] [Jµν,Σ54] 0, [Jµν,Σm λ] i(gµλΣm ν gνλΣm ν),

[Jµν,Σρλ] i(gµρΣνλ gνλΣµρ gµλΣνρ gνρΣµλ )

under the 26-parameter group including the Poincaré group and the group of
transformations ψ̂→exp(ΣAθA)ψ̂ where θA are arbitrary real parameters. The latter
transformations have the following explicit form

We can collate a linear or antilinear transformation of solutions of the four-

(17.35a)

ψ̂→(cosθkl ΓkΓ l sinθkl )ψ̂
i
m

(1 iΓ6)sinθkl











Γk

∂ψ̂
∂xl

Γ l

∂ψ̂
∂xk

, k, l≠0, k≠l,

ψ̂→(coshθ0k Γ0Γk sinhθ0k)ψ̂
i
m

(1 iΓ6)










Γ0

∂ψ̂
∂xk

Γk

∂ψ̂
∂x0

sinθ0k,

ψ̂→exp(θ0)ψ̂.

component Dirac equation to any transformation of the kind (17.35). Substituting
(17.25), (17.27) into (17.35) we obtain for k,l≤3 the transformations (17.16). If k>0
then the corresponding transformations have the form

Formulae (17.16), (17.36) define the sixteen one-parameter transformations

(17.36)

ψ→(cosθ4aψ iγ4γaγ2sinθ4aψ ) i
m

(γ4γ2 iγ2)
∂ψ
∂xa

sinθ4a,

ψ→(cosθ5aψ γ4γaγ2sinθ5aψ ) i
m

(γ4γ2 iγ2)
∂ψ
∂xa

sinθ5a,

ψ→exp(iθ54)ψ,

ψ→coshθ04ψ iγ1γ3sinh04ψ
1
m

(i γ4)γ2

∂ψ
∂x0

sinhθ04,

ψ→coshθ05 γ1γ3sinhθ05ψ
1
m

(1 iγ4)γ2

∂ψ
∂x0

sinhθ05.

which do not change the form of the Dirac equation. We see the symmetry group of
this equation in the class M1

* is more extensive than in the class M1 and includes the
latter as a subgroup.

208
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17.5. Hidden Symmetries of the Massless Dirac Equation

We saw in Chapter 1 that IAs of motion equations for massless fields are more
extended than the corresponding symmetries of equations describing particles of
nonzero masses.

Here we investigate nongeometric symmetries of the massless Dirac equation
which also turn out to be more wide than in the case of nonzero mass.

It was noted in Subsection 2.8 that the massless Dirac equation is invariant
under the 16-dimensional Lie algebra whose basis is formed by the generators of the
conformal group and the operator F=-γ4. Besides this equation is invariant under the
eight-dimensional commutative (Abelian) algebra belonging to the class M1. Basis
elements of this IA are given in (17.4) where m=0.

The SOs (17.4) form a 18-dimensional Lie algebra together with the
generators of the Poincaré group. This algebra cannot be extended by including the
conformal group generators (2.42) inasmuch as the corresponding set of SOs is not
closed in respect with the Lie brackets.

The IA of the massless Dirac equation given in Theorem 1.3 can be extended
with the help of SOs belonging to the class M1

*. Let us write this equation in the form
(17.24), (17.26) where m=0. Then any SO of this system in the class M1 corresponds
to the SO of the four-component Dirac equation in the class M1

*, since linear and
antilinear transformations can be represented as linear transformations for the real and
imaginary components of the wave function.

In analogy with Theorem 17.6 we can formulate and prove the following
assertion.

THEOREM 17.8. The maximal IA of the system (17.24), (17.26) (with m=0)
in the class M1 is a linear span of the basis elements {Pµ,Jσµ,D,Kµ,Dk,D4+k} where

and Pµ, Jµσ, Kµ, D, Dµ are the operators (2.22), (2.25), (17.30) (where Sµσ=i[Γµ,Γσ]).

Q4 k Γ4Γ5Γ6Qk, k 1,2,3,4,

The proof is similar to the proof of Theorem 17.6 and so is not given here. The
operators Dk, D4+k commute with Pµ, Jµσ, Kµ, D and form an eight-dimensional
subalgebra. The commutation relations between Dk and D4+k can be represented in the
form (17.7) if we denote

We conclude from the above that the massless Dirac equation admits a 23-dimensional

D2 Σ1, D8 Σ0, D1 Σ23, D6 Σ31, D7 Σ12, D3 Σ01, D4 Σ02, D5 Σ03.

Lie algebra isomorphic to AC(1,3)⊕AGL(2,C).
It follows from Theorem 17.6 that the massless Dirac equation is invariant

under the 23-dimensional Lie group locally isomorphic to the group C(1,3)⊗GL(2,C) .
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The corresponding transformations from the conformal group are given in Subsection
2.9. The transformations from the subgroup GL(2,C) can easily be found with the
formula (17.31). These transformations for A≤3 are given in (17.31), for a=4 we have
a trivial multiplication of wave function by an arbitrary number. For A>4 we obtain
using (17.25), (17.27)

The group of transformations (17.32), (17.37) includes the subgroup of Pauli-

(17.37)

ψ→(cosh
θ5

2
γ4sinh

θ5

2
)ψ,

ψ→cos
θ6

2
ψ iγ4γ2sin

θ6

2
ψ ,

ψ→cos
θ7

2
ψ γ4γ2sin

θ7

2
ψ ,

ψ→(cos
θ8

2
iγ4sin

θ8

2
)ψ.

Gürsey transformations [213] generated by D1, D6, D7 and D8. The remaining
transformations (17.32), (17.37) are hyperbolic rotations which are not unitary in the
metric (2.39). The invariance of the massless Dirac equation under the transformations
(17.32), (17.37) was established by Danilov [72] and Ibragimov [226].

We note that the considered symmetry is a mere consequence of Lemma 1.1
and the obvious symmetry of the massless Dirac equation under the transformations
ψ→iγ4ψ.

If we restrict ourselves to linear transformations then Lie symmetries of the
massless Dirac equation reduce to invariance under the algebra AC(1,3)⊕AT 1 whose
basis elements are given in (2.22), (2.42). But symmetry of this equation in the class
M∞ is described by a very extended algebra isomorphic to AC(1,3)⊕AGL(2C). A proof
of this statement is given in [148].

Let us summarize. Symmetries of the Dirac equation are very reach and
cannot be described if we restrict ourselves to the classical Lie approach. Besides
Poincaré invariance this equation admits hidden symmetries in classes of higher order
SOs and integro-differential SOs, which form Lie algebras but present non-Lie
symmetries. In the following we will demonstrate these SOs include subsets generating
hidden supersymmetry of the Dirac equation.

The maximal IAs of this equation in various classes of SOs are presented in
following table.
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value
of m

Classes of SOs

M1 M1 M1
* M∞

m≠0 AP(1,3) AP(1,3)⊕
AGL(2,C)

AP(1,3)⊕
AO(1,3)⊕
T1

AP(1,3)⊕
AGL(2,c)⊕
AGL(2,C)

m=0 AG(1,3)⊕T 1 AC(1,3)⊕ T10 AC(1,3)⊕
AGL(2,C)

AC(1,3)⊕
AGL(2,C)⊕
AGL(2,C)

18. THE COMPLETE SET OF SOs OF THE DIRAC EQUATION

18.1. Introduction and Definitions

Until now we consider only such SOs of the Dirac equation which form a
finite-dimension Lie algebra, i.e., satisfy relations (16.3). This restriction is completely
justified since in this way it is possible to find not only algebras but also groups of
nongeometric symmetry. However for great many of applications (e.g., for constructing
of constants of motion, for describing coordinate systems admitting separation of
variables etc.) it is not essential that SOs belong to a finite-dimensional Lie algebra. In
principle such operators can belong to infinite-dimensional Lie algebras or possess
other algebraic structures. Therefore it is of interest to investigate symmetries of the
Dirac equation in a more general approach without requiring that SOs satisfy (16.3).

Here we present the results of such an investigation. More precisely we
present a complete set of SOs of any finite order n for the Dirac equation. We will see
such SOs have very interesting algebraic structures forming bases of Lie superalgebras.

We recall a Lie superalgebra SA is a graded vector space closed under a binary
operation (xσ,yσ′) → [xσ,yσ′]′ f(σσ′) which generalize the Lie brackets. The simplest
gradation is so-called Z2-gradation when SA consists in elements of two kinds: even (E)
and odd (O). Besides SA is closed under the commutation and anticommutation
relations corresponding to the scheme

For more details see Appendix 1.

(18.1)[E,E]∼ E, [E,O]∼ O, [O,O] ∼ E.

Let us return to SOs. A formal definition of SOs of order n for the Dirac
equation can be written in the form of (16.6), (16.7) where L is the Dirac operator
(17.1), . In other words a SO of order n is a differential operator of orderh a1a2...aj∈ G4
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n with matrix coefficients, besides this operator transforms solutions of the Dirac
equation into solutions. To denote the class of such operators we use the symbol Mn.

In [382, 243] a complete set of the Dirac equation SOs belonging to the
classes M1 and M2 was obtained. The problem of finding of such operators reduces to
solving of a very complicated system of determining equations.

Following [329] we present a simple proof that all the SOs of the Dirac
equation of any order n belong to the enveloping algebra of the Poincaré algebra, and
find explicitly all linearly independent SOs. The main idea of this proof is to use the
fact that solutions of the Dirac equation have to satisfy the KGF equation and thus a SO
of the Dirac equation have to be a SO of the equation (1.1).

18.2. The General Form of SOs of Order n

Instead of the Dirac equation we consider the equivalent system (17.14).
Choosing the realization (2.4), (2.17) for the γ-matrices we conclude that the function
ψ′ has two non-zero components only which satisfy the KGF equation (17.11a).

Our chief idea is to describe SOs of order n of the system (17.14) and then to
find the corresponding SOs of the Dirac equation. Indeed, we can establish the one-to
one correspondence between SOs Q′ of the system (17.14) and SOs of the Dirac
equation with the following relation

Q=V -1Q′V, Q′=VQV -1 (18.2)

where V is the operator (17.13a).
An operator Q′ defined on the set of two-component functions ψ′=ψ+ can be

expanded in the complete set of four matrices

where Sbc are the spin matrices (2.23). An operator Q′ is a SO of the system (17.14) iff

(18.3)Q σµQµ , σa abcSbc, σ0

1
3

σaσa

Qµ′are the SOs of the KGF equation.
Let Qµ′ in (18.3) be SOs of order n of the KGF equation. Then, according to

(16.14) they are polynomials on the generators (1.6) or (which is the same) on the
operators Pµ, Jµσ-Sµσ, where Pµ, Jµσ are the generators (2.22), Sµσ are the matrices (2.23).
But it is not difficult to make sure the matrices Sµσ also can be expressed via Pµ and Jµσ

on the set of solutions of the equation (17.14):

where Wµ is the Lubanski-Pauli vector (2.37). The equation (17.14) is Poincaré-

(18.4)2Sµσψ
1

m 2
(PµWσ PσWµ i µσρνW

ρP ν)ψ
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invariant, moreover, the corresponding generators of the Poincaré group have the form
(2.22). Substituting (2.22) into the l.h.s. of (18.4) and using the equation (17.14) we
make sure that relation (18.4) is really satisfied.

It follows from the above the SOs Qµ′as well as Q′ of (18.3) are polynomials
on Pµ, Jµσ (2.22). Inasmuch as the operator V of (17.13a) commutes with Pµ and Jµσ it
follows from (18.2) that Q′=Q, and thus all the SOs of any finite order for the Dirac
equation are polynomials of the generators of the Poincaré group.

Thus, we have proved that any finite order SO of the Dirac equation belongs
to the enveloping algebra generated by the algebra AP(1,3). This means the problem
of description of a complete set of SOs reduces to going over all the independent linear
combinations of products of the generators (2.22).

18.3. Algebraic Properties of the First-Order SOs

By describing SOs of arbitrary order n the key role is played by the case n=1.
According to the above the corresponding complete set of SOs can be obtained by
going over polynomials on Pµ, Jµσ besides as it will be shown in the following it is
sufficient to restrict ourselves to considering polynomials of order n≤3. As a result we
obtain known [382] 26 linearly independent SOs including the Poincaré generators
(2.22), the identity operator I and the following fifteen operators

where D is the dilatation generator (2.42).

(18.5)

W4µ≡Wµ

i
2

γ4(pµ mγµ),

Wµν
i
2

γ4(γµ pν γν pµ),

B iγ4(D mγµ x µ),

Aµ

i
2

γ4 µνρσJ νργσ 1
2

γµ

Higher order SOs can be expressed via products of the operators (2.22), (18.5)
so it is extremely useful to investigate the algebraic properties of this set. These
properties turn out to be very engaging so such an investigation is very interesting by
itself.

By direct verification we obtain the following commutation relations
(18.6a)[Pµ,W4ν] [Pµ,Wλσ] [Jµν,B] 0
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where m,n,k,s,r=0,1,...,4 and P4=m.

(18.6b)

[Gλ,Jµν] i(gλµGν gλνGµ), Gλ Aλ or W4λ,

[Jµν,Wλσ] i(gµσWνλ gνλWµσ gµλWνσ gνσWµλ),

[Pµ,B] 2iWµ, [Pµ, Aν] i µνρσW ρσ,

(18.7)

[W4µ,B] i
2

Pµ imAµ, [Wµν,B] i
2

([Pµ, Aν] [Pν, Aµ] ),

[W4µ, Aν] i(gµνB [Jµλ,W
λ
ν] ),

[Wλσ, Aµ] i( µσλρ P ρ 1
2

[(gµλ Pσ gµσPλ),B] [W4µ,Jλσ] ),

[Wkl,Wmn]
i
4

( klmsr Pn mnlsr Pk klnsr Pm mnksr Pl )W
sr,

[Aµ,B] i µνρσJ νρA σ, [Aµ, Aν] i[ µνρσ(J ρσB W ρσ) Jµν]

Other relations for Pµ, Jµσ and Wµ are given in (1.14), (4.3).
According to (18.7) the complete set of the first order SOs of the Dirac

equation does not form a basis of a Lie algebra in contrast to the SOs (2.22). But we
recognized that this set includes a subset forming a basis of the 18-dimensional Lie
algebra, see (17.4). Here we note that the operators (17.4) can be expressed via Wµσ on
the set of solutions of the Dirac equation:

The essentially new point is that the operators (2.22), (18.5) include subsets

(18.8)Σµν
1
m

(Wµν
i
2 µνρσW ρσ).

which have a structure of a superalgebra. To select these subsets we calculate the
anticommutation relations

(18.9a)[Wkl,Wmn]
1
2

(gkn Plm glm Pkn gkm Pln gln Pkm )

(18.9b)
[W4µ,B] 1

2
[Jµν,P

ν] , [Wµν,B] mJµν
1
2 µνρσW ρσ,

[Aσ,Wµν]
1
2

( σµλρ Pν σνλρ Pµ)J
λρ gνσW4µ gµσW4ν,

[Wµ, Aν ] m
2 µνρσJ ρσ Wµν,

(18.9c)(18.9c)(18.9c)(18.9c)
[Aµ, Aν]

1
2

















Jνρ J νρ 1
2

gµν [Jµλ,J
λ
ν] , [Aµ,B] 0, B 2 3

4
1
2

JµνJ
µν
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where gkn=diag(1,-1,-1,-1,1), Pkn=pk pn, p4=m.
Using (18.6), (18.7), (18.9) it is possible to select various sets of SOs forming

superalgebras. The set including the algebra AP(1,3) and the maximal number of the
first order SOs is [160]

Here the odd operators stand to the left of semicolon, the remaining operators are even.

(18.10)S1 Wkl; Pµ, Jµν, Pµν pµ pν, I .

It follows from (1.14), (4.3), (18.6), (18.9) the commutation and anticommutation
relations for the set (18.10) correspond to the scheme (18.1), so these operators form
a basis of a 30-dimensional superalgebra which we denote by SA(30).

The superalgebra SA(30) has a very interesting subalgebraic structure. First it
includes the Lie algebra of the Poincaré group generated by Pµ and Jµσ, secondly it
contains two Clifford algebras whose elements are

In accordance with (18.9a) these operators satisfy the relations (compare with (2.3))

C ±
a

1
m

( abcW
bc ±2iW0a), a 1,2,3.

where ψ is a solution of the Dirac equation, for any of two possible (fixed) values of

[C ±
a ,C ±

b ] ψ 2δabψ

the superscript.
But the most interesting algebraic structure included in the SA(30) is formed

by the following linear combinations [1*]

For any fixed sign these operators satisfy the relations

Q ±
a 2W4a ± abcW

bc, Hss Pnn m 2I.

and so realize a representation of a superalgebra characterizing supersymmetric

[Q ±
a ,Q ±

b ] 2δabHss, [Q ±
a , Hss] 0

quantum mechanics with three supercharges [417]. Following [417] we denote this
superalgebra by sqm(3).

Thus the extended first order symmetries of the Dirac equation have a reach
algebraic structure. In particular they include the subsets realizing representations of
the superalgebra sqm(3) and in this sense the Witten supersymmetry is generated by the
SOs of the Dirac equation.

The commutation and anticommutation relations (18.7), (18.9) are used in the
following to calculate a complete set of SOs of arbitrary order n for the Dirac equation.
Besides we present some additional useful relations which are satisfied on the set of
solutions of the Dirac equation:
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(18.11a)

Wµν
1
m

(PµWν PνWµ), W4µ Wµ,

B
1
4 µνρσJ µνJ ρσ,

Aµ

1
m µνρσJ νρW σ 1

2m
Pµ;

(18.11b)

Pµ P µ m 2, PµW
µ 0, Pµ A µ m, PµW

µν mW ν,

[Jµν,W
ν] 1

2
[B,Pµ] , [Jµν,W

µν] mB,

µνρσJ µνW ρσ 3
2

m, µνρσW νρP σ 0, [Jµν, A ν] 0,

[Jµν,Wρσ] [Jρσ,Wµν]
1
4

( νρσλ Pµ ρµνλ Pσ µρσλ Pν σµνλ Pρ, A λ] .

18.4. The Complete Set of SOs of Arbitrary Order

According to Subsection 18.2 describing of all the nonequivalent SOs of order
n for the Dirac equation reduces to going through the linearly independent
combinations of the kind

where Pa, Jab are the generators (2.22), η are arbitrary numbers. The index k can

(18.12)Q ck ηa1a2...ac[ac 1b1]...[akbk c]Pa1

Pa2

...Pac

Jac 1b1

...Jakbk c

take any integer value from the interval [0, n]. Moreover, a priori we cannot exclude
the possibilities k>n. It will be demonstrated in the following that it is sufficient to set

According to (1.14), (2.37), (18.11a) the tensors η have to satisfy the

(18.13)0≤k≤n 2, 0≤c≤k.

conditions (1)-(3) formulated before Lemma 16.1 (see page 184) but do not have the
property (4). In other words these tensors are not basic; the reason of this is that the
corresponding Lubanski-Pauli vector (2.37), (2.22) is nonzero in contrast to the case
of the KGF equation.

To describe effectively linearly independent SOs of (18.12), it is convenient
to expand η in basic tensors. We present the first terms arising by this expansion

ηa1a2...ac[ac 1b1]...[akbk c] λa1a2...ac[ac 1b1]...[akbk c] ak 1bk 1 cakbk cλa1a2...ac[ac 1b1]...[ak 2bk 2 c]

d1

b1ac 1a1λa2a3...ac 1[acd1][ac 2b2][ac 3b3]...[akbk c]
d1

b1ac 1a1λd1a2a3...ac[ac 2b2]...[akbk c]
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Here λ are basic tensors, the dots in the last line denote products of three and

(18.14)

d1

b1ac 1a1λd1a2a3...ac[ac 2b2]...[akbk c]
d1

b1ac 1a1

d2

d1ac 2b2λd2a2...ac[ac 3b3]...[akbk c]

ac 1b1ac 2b2 ac 3b3ac 4b4λa1a2...ac[ac 5b5]...[akbk c]

ac 1b1ac 2b2

d1

b3ac 3a1λd1a2...ac[ac 4b4]...[akbk c]

ac 1b1ac 2b2

d1

b3ac 3a1λa2a3...ac 1[d1ac][ac 4b4]...[akbk c]

d1

b1ac 1a1

d2

d1ac 2b2

d3

d2ac 3b3λd3a2a3...ac[ac 4b4]...[akbk c] ... .

more then three completely antisymmetric tensors µνρσ and symmetrization is imposed
over the indices a1, a2,...,ac and over the pairs of indices [ac+i bi] (i=1,2,...,k-c).
Calculating various convolutions η with µσλρ we can convert formula (18.14),
i.e., express λ via η .

Let us substitute (18.14) into (18.12) and go through all the values of k with
increasing order.

The first term in the r.h.s. of (18.14) corresponds to the SO of the kind

where Pa and Jab are the Poincaré group generators of (2.22). The order of this operator

(18.15)Q k
1

k

c 0

λa1a2...ac[ac 1b1]...[akbk c]

1 Pa1

Pa2

...Pac

Jac 1b1

...Jakbk c

is equal to k, the general form of Q1 coincides with (16.14) up to the change from Jab

(1.6) to the corresponding generators of (2.22). The number of such operators of order
n is equal to the number of SOs of the KGF equation and can be obtained from (16.15)
by setting j=n:

Using relations (2.37), (18.11) we obtain the following representation for the

(18.16)N (n)
1

1
4!

(n 1)(n 2)(2n 3)(n 2 3n 4).

SOs corresponding to the second, third, fourth and fifth-seventh terms in the r.h.s. of
(18.14)

where Q1
k-i are the operators (18.14), B, Wµ, Wµσ and Aµ are the operators (18.15). It is

(18.17)Q k
2 ∼ BQ k 2

1 , Q k
3 ∼ WµQ

k 2
1 , Q k

4 ∼ WµνQ
k 3

1 , Q k
5 ∼ AµQ

k 3
1

easy to see the order of Q2 and Q3
k is equal to k-1, the order of Q4

k and Q5
k is k-2. Thus

to obtain SOs of order n we have to set k=n+1 for Q2
k, Q3

k and k=n+2 for Q4
k, Q5

k, and
k=n+2 is the maximal needed value of k. This circumstance has already been noted in
the above.

The terms denoted by dots in (18.14) can be neglected without loss of
generality. The corresponding SOs include products of the operators (18.5) and so
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reduce to the form (18.15), (18.17) with a smaller value of k in accordance with
relations (18.7), (18.9).

We see that any finite order SO of the Dirac equation can be represented as
a product of a SO of (18.15) (where Pµ and Jµσ are the Poincaré group generators
(2.22) corresponding to the Dirac equation) with one of the operators (18.5).

Using relations (18.11b) we represent the SOs of (18.17) in a more precise
form. For Q2

k we obtain easily, setting k=n+1 and omitting the top index

where λ2 are arbitrary basic tensors. The number of the linearly independent

(18.18)Q2 B
n 1

c 0

λa1a2...ac[ac 1b1]...[an 1bn 1 c]

2 Pa1

...Pac

Jac 1b1

...Jan 1bn c 1

operators of (18.17) is given by formula (16.15) for j=n-1, i.e.,

Using (18.11b) we obtain for Q3
k, k=n+1:

(18.19)N (n)
2

1
4!

n(n 1)(2n 1)(n 2 n 2).

where λ are basic tensors satisfying the conditions

(18.20)Q3

n 1

c 1

λa1a2...ac[ac 1b1]...[an 1bn 1 c]

3 Wa1

Pa2

...Pac

Jac 1b1

...Jan 1bn 1 c

Calculating the number of independent components of λ3 we find the

λa1a2...ac[ac 1b1]...[an 1bn 1 c]

3 gb1b2

gac 1ac 2

0;

λa1a2...ac[ac 1b1]...[an 1bn 1 c]

3 ga1aac 1

ga2ac 2

0;

λa1[a2b1][a3b2]...[af 1bf]

3 ga1b1

0.

number of linearly independent operators (18.20):

For Q4 we have

(18.21)N (n)
3

1
6

n(n 1)(5n 2 3n 13) n.

where λ4 are basic tensors satisfying the conditions

(18.22)Q4

n 2

c 0

λa1a2...ac[ac 1b1]...[an 1bn 1 c]

4 Pa1

Pa2

...Pac

Wac 1b1

Jac 2b2

...Jan 1bn 1 c

The number of linearly independent operators is

λa1a2...ac[ac 1b1]...[afbf c]

4 ga1b1

ga2b2

...gaf cbf c

0, c≥ f
2

;

λa1a2...ac[ac 1b1]...[afbf c]

4 gac 1ac 2

...gaf 1af

gb1b2

...gbf c 1bf c

0.
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Eventually we obtain for the operator Q5

(18.23)N (n)
4 N (n)

1
n
6

(2n 2 9n 13) εn, εn

1
2

[1 ( 1)n].

Here λ6 , λ7 are arbitrary irreducible tensors, λ5 and λ8 are basic

(18.24)

Q5

n 1

c 1

λa1a2...ac[ac 1b1]...[an 1bn c 1]

5 Aa1

Pa2

...Pac

Jac 1b1

...Jan 1bn c 1

(n 1)/2

i 0

n 3 2i

c 0

λa1a2...ac[ac 1b1]...[an 2 2ibn 2 2i c]

6 Pa1

...Pac

Aac 1

Pb1

Jac 2b2

...Jan 2 2ibn 2 2i c

(JµνJ
µν)i

n/2 1

i 0

λ[a1b1][a2b2]...[an 3 2ibn 3 2i]Aa1

Jb1c
P cJa2b2

Ja3b3

...Jan 3 2ibn 3 2i

(JµσJ µσ)i

n 2

c 1

λa1a2...ac[ac 1b1]...[an 2bn 2 c]

8 a1µνσJ µνA σPa2

Pa3

...Pac

Jac 1b1

Jac 2b2

...Jan 2bn 2 c

.

tensors satisfying the conditions

and the corresponding number of linearly independent operators Q5 is

λa1a2...ac[ac 1b1]...[afbf c]

α ga1b1

ga2b2

...gacbc

0, c≤f/2, α 5,8,

The general expression of a SO of order n for the Dirac equation is

(18.25)N (n)
5

1
6

n(n 1)(n 3)(n 2 n 1).

where Qi are the operators given in (18.25), (18.18), (18.20), (18.22), (18.24). The

(18.26)
Q n Q1 Q2 Q3 Q4 Q5

complete number of SOs of order n can be obtained by summing up of (18.16), (18.19),
(18.21), (18.23), (18.25):

In particular

(18.27)N (n)
5

i 1

N (n)
i 5N (1)

n
1
6

(2n 1)(13n 2 19n 18) εn.

Let us formulate the obtained results in the form of the following assertion.

(18.28)N (0) 1, N (1) 25, N (2) 154, N (3) 601.

THEOREM 18.1 [329]. The Dirac equation admits N(n) linearly independent
SOs of order n, moreover, N(n) and the explicit form of the corresponding SOs is given
in (18.27), (18.26).
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18.5. Examples and Discussion

We have calculated the number and explicit form of all the linearly
independent SOs of arbitrary order n for the Dirac equation. These SOs are defined up
to arbitrary basic and irreducible tensors satisfying some additional restrictions.
Expanding basic tensors in irreducible ones we can obtain realizations of SOs
depending on indecomposable sets of parameters, compare with (16.14), (16.16).

We present linearly independent SOs of the second and third orders (SOs of
zero order reduce to the unit matrix, the first order SOs are given in (2.22), (18.15),
(18.5)).

Here Pa, Jab, Wa, Wab, B, Ab are the operators (2.22), (18.5), the values of the Latin

(18.29)

n 2: λab
1 PaPb, λ̃ab

1 JacJ
c

b, λa[bc]
1 PaJbc, λa

1JabP
b,

λ[ab][cd]
1 JabJcd, λ1JabJ

ab, λa
2PaB, λ[ab]

2 BJab,

λab
3 PaWb, λa[bc]

3 WaJbc, λa[bc]
4 PaWbc, λab

4 WacJ
c

b,

λ[ab][cd]
4 WabJcd, λab

5 PaAb, λa[bc]
5 AaJbc, λa

5 abcdA
bJ cd, λ[ab]

6 PaAb;

(18.30)

n 3: λabc
1 PaPbPc, λab[cd]

1 PaPbJcd, λa[bc][de]
1 PaJbcJde,

λ[ab][cd][ef]
1 JabJcdJef, λab

1 PaJbcP
c, λa[bc]

1 JadP
dJbc,

λa
1PaJbcJ

bc, λab
1 JabJcdJ

cd, λ̃abc

1 PaJbkJ
k

c, BQ (2),

λabc
3 WaPbPc, λab[cd]

3 WaPbJcd, λa[bc][de]
3 WaJbcJde, λab

3 WaJbcP
c,

λ̃abc

3 WaJbkJ
k

c, λab[cd]
4 PaPbWcd, λa[bc][de]

4 PaJbcWde

λ[ab][cd][ef]
4 WabJcdJef, λa[bc]

4 JadP
dWbc, λabc

4 PaJbkW
k

c,

λ[ab]
4 WabJcdJ

cd, λ̃ab[cd]

4 (WcdJak JcdWak)J
k

b, λabc
5 PaPbAc,

λab[cd]
5 PaAbJcd, λab

5 AaJbcP
c, λ[ab][cd]

6 PaAbJcd,

λa[bc][de]
5 AaJbcJde, λabc

5 AaJbkJ
k

c, λa
5AaJbcJ

bc,

λ[ab]
7 AaJbcP

c, λa[bc]
8 aklnJbcJ

klA n, λab
8 aklnPbJ

klA n.

indices run from 0 to 3, λ . are arbitrary irreducible tensors, {Q(2)} is the set of the
second-order operators (18.29). It is not difficult to calculate the numbers of the
linearly independent operators (18.29) and (18.30) which coincide with given in
(18.28).

We note that the set of second-order SOs of (18.29) differs from found in
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[243] where a part of SOs is linearly dependent on the set of solutions of the Dirac
equation.

18.6. SOs of the Massless Dirac Equation

Here we present a complete sets of the first and second-order SOs of the
massless Dirac equation.

THEOREM 18.2. The massless Dirac equation has 52 linearly independent
SOs in the class M1. A basis in the space of such SOs can be chosen in the form

where Pµ, Jµσ, Kµ and D are the conformal group generators of (2.22), (2.42).

(18.31)
Pµ, Jµν, Kµ, D, F iγ4, P̃µ iγ4Pµ, I,

J̃µν iγ4 Jµν, K̃µ iγ4 Kµ, D̃ iγ4 D;

(18.32)
Aµ (D i)γµ γσx σpµ, ωµν γµ pν γν pµ,

Ãµ iγ4 Aµ, Qµν i([Kµ, Aν] [Kν, Aµ])

The proof is given in [156].
We see the SOs Q∈ M1 of the massless Dirac equation include the conformal

group generators, products of these generators (and the identity operator I) with F=iγ4

and 20 additional operators (18.32). We emphasize the SOs (18.32) cannot be
expressed via generators of the group C(1,3) and the matrix iγ4 and are essentially new
in this sense. Thus the massless Dirac equation admits SOs which do not belong to the
enveloping algebra of the algebra AC(1,3) in contrast to the case of nonzero mass.

It is not difficult to make sure the operators (18.31), (18.32) do not form a Lie
algebra. However we can select such subsets of the first order SOs which have a
structure of a Lie algebra. The evident example of such a set is given by the conformal
group generators, a more extended set is formed by the operators (18.31) which define
a basis of the 32-dimensional Lie algebra. The structure constants of this algebra are
easily calculated using the commutativity iγ4 with Pµ, Jµσ, Kµ, D and the relation γ4

2=-1.
We present the set of SOs forming a superalgebra. This set includes the

following basis elements

Indeed, ωµσ satisfies the anticommutation relations (18.9a) and commutation relations

(18.33)ωµν, F iγ4, FPµ; Pµ, Jµν, D, Pµν pµ pν .

(18.6) with Pµ, Jµσ. Besides that

The algebra (18.33) includes 36 elements nine of which, i.e., Pµσ belong to a

(18.34)[FPµ,F] 2Pµ, [FPµ,FPσ] 2Pµσ, [ωµν,F] [ωµν,FPλ] 0.
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more wide class than M1 (we recall that Pµσ gµσ=m2I).
We present the subset of SOs forming a basis of a 42-dimensional Lie algebra.

This subset includes the operators (18.31) and the following ten operators

(only three of the operators Q̂µν are linearly independent, the same is true for ω̂µν ). The

(18.35)
Fµ Ãµ Aµ, Q̂µν Qµν

i
2 µνρσQ ρσ, ω̂µν ωµν

i
2 µνρσω

ρσ

operators (18.35) form a commutative ideal of this algebra.
In analogy with Section 16 it is possible to find complete sets of SOs of

arbitrary order n for the massless Dirac equation. We will not do it here restricting
ourselves to a remark that these sets are completely defined by two conformal Killing
tensors of valence n and by the generalized Killing tensor of valence R1+2R2 where
R1=n-1, R2=1 (see Appendix 2 for definitions). The number N n of linearly independent
SOs of order n is

besides N̂ n of these operators do not belong to the enveloping algebra of the algebra

(18.36)N n 1
3

(n 1)(n 2)(2n 3)(n 2 3n 1),

A[C(1,3) H], where

Formulae (18.36), (18.37) do not include the number of independent SOs whose order

(18.37)N̂
n 1

6
n(n 1)(n 2)(n 3)(2n 3).

is less then n.
In conclusion we discuss briefly SOs of the Weyl equation. In fact we have

already described such SOs in the class M1. Indeed, using the Majorana representation
(2.13) for γ-matrices we conclude that the corresponding SOs (18.31), (18.32)
transform real solutions into real ones. On the other hand setting in the Weyl equation
(2.44)

where ψ1 and ψ2 are real functions we come to the Dirac equation with γ-matrices

(18.38)ϕ ψ1 iψ2

realizing the Majorana representation, moreover, the corresponding wave function has
the form

The SOs (18.31), (18.32) are valid for arbitrary representation of γ-matrices

(18.39)ψ










ψ1

ψ2

1
2













ϕ ϕ

i(ϕ ϕ )
.

and thus they are SOs for the Majorana equation (17.1), (2.13). These operators
generate linear transformations of ψ or, which is the same, linear and antilinear

222



Chapter 4. Nongeometric Symmetries

transformations of ϕ+ being a solution of the Weyl equation.
So the Weyl equation has exactly 52 linearly independent SOs in the class

M1
*. These operators can be chosen in the form (18.31), (18.32), (2.13), their action on

solutions of the Weyl equation is easily calculated using (18.38), (18.39).
The SOs of the Weyl equation in the class M2 are found in [326]. Here we

present the principal assertion of paper [326] only.
THEOREM 18.3. The Weyl equation has 84 SOs belonging to the class M2.

These SOs have the form

(18.40)
λµνPµPν, λµ[ρσ]PµJρσ, λµJµσP σ, λ[µν][ρσ]JµνJρσ, λ̂µρ

JµσJ σ
ρ,

λJµσJ µσ, ηµσKµKσ, ηµ[ρσ]KµJρσ, ηµJµσK σ, ζµσJµσD

where the Greek indices denote arbitrary irreducible tensors, Pµ, Jµσ, Kµ, D are
generators of the conformal group.

We see that all the SOs of the class M2 for the Weyl equation belong to the
enveloping algebra of the algebra AC(1,3) in contrast to the massless Dirac equation.

19. SYMMETRIES OF EQUATIONS FOR ARBITRARY SPIN
PARTICLES

19.1. Symmetries of the KDP Equation

In this section we investigate symmetry properties of relativistic wave
equations for particles of higher spins, i.e., the equations of KDP, TCT, the Dirac-like
equations etc. It turns out that besides the Poincaré invariance these equations have
additional (hidden) symmetries which are more extensive then in the cases of the Dirac
or KGF equations.

We write the KDP equation for a particle of spin 1 in the form

where ψ is a ten-component wave function, ßµ are 10×10 KDP matrices satisfying the

(19.1)Lψ≡(βµ pµ m)ψ 0

algebra (6.20).
As it was noted in Section 6 the KDP equation is invariant under the 10-

dimensional Lie algebra of the Poincaré group. Basis elements of this algebra can be
chosen in the covariant form (2.22) where Sµσ=[ßµ,ßσ]. It is possible to show the
Poincaré algebra is the maximal IA of the KDP equation in the class M1.

Here we demonstrate the KDP equation has a wide nongeometric symmetry.
The nature of this symmetry lies in special properties of ß-matrices and is not
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connected with transformations of independent variables.
Let us show the equation (19.1), like the Dirac equation, is invariant under the

algebra A8, defined over the field of real numbers. Basis elements of this IA belong to
the class M1 and are given by the formulae [142, 154]

where

(19.2)Σµν iSµν
i
m

(aµ pν aν pµ), Σ0 I, Σ1 β4

i
m

a µ pµ,

Indeed, using the fact that ßµ satisfy the algebra (6.20) and Smn belong to the algebra

(19.3)aµ S5µ iS4µ, Skl i[βk, βl ], S5k iβk; k, l 0,1,2,3,4.

AO(2,4) we obtain easily the following relations

The l.h.s. of (19.4) includes differential operators of order 2 meanwhile the

(19.4)[Σµν, L] fµνL, fµν
1

2m 2
(L 2m)(βµ pν βν pµ ),

(19.5)[Σα, L] 0, α 0,1.

r.h.s. looks like a third order differential operator. But there is no contradiction
inasmuch as according to (6.20)

It follows from (19.4), (19.5) the operators (19.2) do are SOs of the KDP

βµ pµ(βλ pσ βσ pλ )βρpρ≡0.

equation. These operators satisfy the commutation relations (17.7) characterizing the
algebra A8. The last statement can be easily verified by making the transformation

where V=exp(iaµ pµ/m).

(19.6)Σµν→V ΣµνV
1 [βµ,βν], Σ0→V Σ0V

1 I, Σ1→V Σ1V
1 β4

Thus the KDP equation possesses the same nongeometric symmetry in the
class M1 as the Dirac equation, compare with Theorem 17.1. It is possible to show the
Lie algebra spanned on the basis (19.2) is the maximally extended IA of the KDP
equation in this class. But in contrast to the Dirac equation the KDP equation has a
wide symmetry in the class M2 as it follows from the following assertion.

THEOREM 19.1. The KDP equation is invariant under the 18-dimensional
Lie algebra defined over the field of complex numbers. Basis elements of this algebra
belong to the class M2 and are given by the following formulae

where

(19.7)λab CaCb, λ̃ab

1
2

(DaCb CaDb), λ1 1, λ0

1
2

DaCa
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PROOF. The fact that the operators (19.7) are SOs of the KDP equation

Ca

1
2 abcΣbc, Da Σ0a, a,b 1,2,3.

follows immediately from (19.4), (19.5). Besides that, these operators satisfy the
following commutation relations

where f a
k
b
l
mn are the structure constants of the algebra ASU(3) in the Okubo basis (see,

(19.8)
[λab,λcd] [λ̂ab, λ̂cd] if kl

abcdλkl, [λab, λ̂cd] if kl
abcd λ̂kl,

[λ1,λ2] [λα,λcd] [λα, λ̂cd] 0, α 0,1,

e.g., [374]). The validity of relations (19.8) is easily verified using the representation
(19.6).

Thus besides the symmetry under the Poincaré algebra the KDP equation is
invariant in respect with the 18-dimensional Lie algebra spanned on the basis (19.7).
The algebra (19.7) includes A8 as a subalgebra besides basis elements of A8 are linear
combinations of the operators (19.7). For instance, Σab=i(λba-λab).

Is it possible to unite the Poincaré algebra and the algebra (19.7)? Such an
unification is very natural because the commutators of the operators (19.7) with the
generators of the Poincaré group are expressed via linear combinations of these
operators:

where Ja= abcJbc/2.

(19.9)

[Ja,λbc] [J0a, λ̂bc] i( abd λdc acdλbd),

[Ja, λ̂bc] [J0a,λbc] i( abd λ̂dc acd λ̂bd ),

[Pµ,λab] [Pµ, λ̂ab] [Pµ,λα] [Jµν,λα] 0

The relation (1.14), (19.8), (19.9) define a 28-dimensional Lie algebra being
the IA of the KDP equation. Starting with this algebra it is not difficult to reconstruct
the corresponding symmetry group. The transformations generated by Pµ, Jµσ have
already been considered in the above ( see (3.30)-(3.32)). As to the transformations
generated by the operators (19.7) they can be found explicitly using the formula

where θf are real parameters. The corresponding exponentials are easily calculated:

(19.10)ψ→ψ (Qfθf)ψ, Qf⊂ λab,λ̃ab,λα ,

Using the identities aµaλaα≡0 we can show that the general transformation

exp(Qf θf ) 1 Qf θf, Qf ⊂ λab, λ̃ab, a≠b ,

exp(λbbθb) 1 λbb(expθb 1); exp(λ0θ0) expθ0,

exp(QAθA) 1 Q 2
A (coshθ 1) QAsinhθA, QA λbb, λ1.
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including (19.10) and Lorentz transformations has the form

where x′ are related to x by Lorentz transformation, A, Bµ and Dµσ are numeric matrices

ψ(x)→Aψ(x) Bµ

∂ψ(x )
∂xµ

Dµν
∂2ψ(x )
∂xµ∂xν

depending on transformation parameters.
Let us discuss briefly nongeometric symmetries of the Tamm-Sakata-Taketani

(TST) equation (7.1), (7.40c), which also describes a particle of spin 1 but has not
superfluous components. Inasmuch as solutions of the KDP and TST equations are
connected by the transformation (6.37) there is one-to-one correspondence between
symmetries of these equations. We give the explicit formulation of a symmetry
interesting from the physical point of view.

THEOREM 19.2. The TST equation is invariant under the algebra ASU(3)
whose basis elements have the form

where

(19.11)λab ŜaŜb

Sa are matrices realizing the direct sum of two IRs D(1) of the algebra AO(3).

Ŝa Sa











1 p 2

2m 2

pa Sb pb

2m
i
m

σ1 abc pb Sc,

We do not present a proof but note that the operators (19.11) satisfy (19.8) and
commute with the TST Hamiltonian (7.40c), i.e., form an IA of the TST equation.

We note that the KDP and TST equations admit nongeometric IAs in the class
M∞ also. For the explicit form of the corresponding SOs see [345].

19.2. Arbitrary Order SOs of the KDP equation

Here we present a principle description of SOs for the KGF equation in
classes of differential operators of arbitrary order n (n<∞) with matrix coefficients. A
formal definition of such operators can be written in the form (16.6), (16.7) where L
is the operator (19.1), αQ is a differential operator of order m (besides in general m≠n),
h are matrices of dimension 10×10 depending on x.

THEOREM 19.3. Any SO of arbitrary order n of the KDP equation belongs
to the enveloping algebra of the algebra AP(1,3).

PROOF. As in the case of the Dirac equation (see Subsection 18.2) we
transform the KDP equation into such ane equivalent representation that the
transformed wave function has 2s+1 components only. Using the transformation
(17.12) where ψ is a ten-component function, L is the operator (19.1),
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we come from (19.1) to the equivalent equation of the form

(19.12)

W 1 m 1β42β
µ pµ m 2(βµ pµ)

2iβ4, W 1 1 m 1β2
4 βµ pµ m 2(βµ pµ)

2iβ4,

V 1 m 1 βµ pµ β2
4 2m 2(β2

4 iβ4)[2(βµ pµ) p λ pλ],

V 1 1 m 1βµ pµ β2
4 2m 2[2(βµ pµ)

2 p λpλ(1 m 1βµ pµ)](iβ4 β2
4),

where

(19.13)L ψ ≡ 







1
m

P1(p µ pµ m 2) P2 m ψ 0

The transformations (17.12), (19.12) enable us to establish one-to-one

(19.14)P1

1
2

(iβ4 β2
4), P2 1 1

2
(iβ4 β2

4).

correspondence between SOs of the KDP equation and the equation (19.13) (refer to
(18.2)). The last is much more adapted for investigating of symmetries than (19.1)
inasmuch as it includes only two (besides that commuting) matrices.

It is convenient to expand SOs of (19.13) in a complete set of numeric
matrices. Inasmuch as ß4

3=-ß4 the matrices (19.14) are orthoprojectors. Choosing ß4 in
the diagonal form

we conclude that ψ′ of (19.13) has only three nonzero components and so there are

ß4 diag(1,1,1, 1, 1, 1,0,0,0,0)

exactly eight linearly independent matrices defined on {ψ′}. We choose the set of such
matrices in the form

and represent SOs of (19.13) in the form

(19.15)Sab i[βa,βb], Zab [Sac,Scb]

The operator Q′ is a SO of the equation (19.13) iff Q̃ ab and Q̂ ab are SOs of the

(19.16)Q SabQ̃
ab

ZabQ̂
ab

.

KGF equation. Thus it is easy to show that Q′ belongs to the enveloping algebra
generated by the generators of the Poincaré group of (2.22), (6.19). Indeed, according
to results present in Subsection 16.2 Q̃ ab and Q̂ ab are polynomials on Pµ and (Jµσ -Sµσ).
But Sµσ (and therefore the matrices (19.15)) are expressed via Pµ and Jµσ according to
(18.4), and so Q′ is a polynomial on Pµ and Jµσ.

The operator V of (19.12) commutes with Pµ and Jµσ so it follows from (18.2)
that Q′=Q. Thus any SO of the KDP equation is a polynomial on Pµ and Jµσ.

So to calculate SOs of order n for the KDP equation it is sufficient to go
through linearly independent combinations of the kind (18.12). Let us present a
complete set of the first order SOs.
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For n=1 we obtain a set including the Poincaré group generators of (2.22),
(6.19) and the following 15 operators (compare with (18.5))

where D=xµpµ+2i, S4µ=i[ß4,ßµ].

(19.17)

W4µ Wµ iβ4 pµ mS4µ, Wµν S4µ pν S4ν pµ,

B iβ4D S4µ x µ,

Aµ µνρσJ νρS4
σ 2β2

4 βµ

2
m

(1 β2
4)pµ

As was done for the Dirac equation (refer to Section 17) it is possible to show
that a SO of any order n>1 can be expressed via products of the SOs of the KGF
equation (18.15) and one or two operators from (19.17).

In contrast with the SOs of the Dirac equation the operators (19.17) cannot be
included into a superalgebra like (18.10). Indeed, anticommutators of the operators
(19.17) cannot be expressed via Pµ in contrast with (18.9a). However, these operators
satisfy the following relations

where Pkl=pk pl, p4=m, gkl=diag(1,-1,-1,-1,1).

(19.18a)[Wkl,Wmn]
i
2

( lnsf4 Pkm kmsf4 Pln knsf4 Plm lmsf4 Pkn )W sf,

(19.18b)WmnWklWsf WsfWklWmn m 2[(Pmk gnl Pnl gmk Pml gnk

Pnk gml)Wsf (Pks glf Plf gks Pkf gls Pls gkf )Wmn,

(19.18c)[Wkl,Pµ] 0, [Wkl,Jµν] i(gkνWlµ glµWkν gkµWlν glνWkµ )

Relations (19.18b) enable us to include Wkl, Pkl and the generators Pµ, Jµσ into
the 30-dimensional parasuperalgebra {W4µ,Wµσ; Pµ,Jµσ} which we denote by PSA(30),
besides the odd terms stand to the left of semicolon. The remaining operators are even
(for definitions see Appendix 1). Indeed, relations (19.18b), (12.18c) are in accordance
with the scheme (A.1.3) defining a parasuperalgebra.

We note that the basis elements (18.5) of the superalgebra SA(30) satisfy
relations (19.18b) also, thus

and the parasuperalgebra PSA(30) includes the superalgebra SA(30) realizing on the set of

SA(30)⇒ PSA(30),

solutions of the Dirac equation; the converse is not true.
The parasuperalgebra PSA(30) includes very interesting subalgebras. Among

them are the Lie algebra of the Poincaré group AP(1,3)⊃P µ,Jµσ, the KDP algebras
generated by Qa of (19.2) and the parasuperalgebras which we denote by psqm±(3). The
last includes the following elements:
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satisfying the relations

Q ±
a W4a ± 1

2 abcWbc, HPSS pa pa m 2

These relations characterize the IA of parasupersymmetric quantum mechanics [372]

(19.18’)
Q ±

a [Q ±
b ,Q ±

c ] Q ±
b [Q ±

a ,Q ±
c ] Q ±

c [Q ±
a ,Q ±

b ] (δabQ
±

c δacQ
±

b δbcQ
±

a )HPSS,

[HPSS,Q
±

a ] 0.

including three parasupercharges. Thus SOs of the KGF equation include the subset
realizing a representation of this IA. In this sense parasupersymmetry is generated by
symmetries of the KGF equation.

19.3. Symmetries of Dirac-Like Equations for Arbitrary Spin Particles

Here we consider nongeometric symmetries of equations of Dirac type for any
spin particles discussed in Section 8.

The equations (8.1), (8.11) have a symmetric form which does not become
more complicated by increasing of spin value. This circumstance makes it possible to
generalize the main results of Section 17 to the case of arbitrary spin.

The equations (8.1), (8.11) are manifestly invariant under the algebra AP(1,3).
It turns out they are invariant under the algebra A8 also.

THEOREM 19.4. The system (8.1), (8.11) is invariant under the algebra A8

defined over the field of real numbers. Basis elements of this algebra belong to the
class M1 and have the form

The proof can be carried out in a complete analogy with the proof of Theorem

(19.19)
Σµν

i
4

[Γm,Γν]
1

2m
(Γµ pν Γν pµ)(1 iΓ4),

Σ0 I, Σ1 Γ4

1
m

(i Γ4)Γ
µ pµ.

17.3. The commutators of the operators (19.19) with L2 of (8.11) and L1 of (8.1) are
equal to zero or given by relations (17.5) where γµ → Γµ. The operators (19.19) satisfy
(17.7) and thus form the algebra A8.

We see the Dirac-like equations for particles of arbitrary spin turn out to be
invariant under the algebra A8 realized in the class M1. So this symmetry is not a
specific property of the Dirac and KDP equations but is admissible by equations for
arbitrary spin particles.

As in the case of the four-component Dirac equation (see Theorem 17.4) the
operators (19.19) form a closed algebra together with the Poincaré group generators.
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More precisely they satisfy the commutation relations (17.18). It means the system
(18.1), (18.11) is invariant under a 18-dimensional Lie algebra including the
subalgebras AP(1,3) and A8.

It is easily seen that for s>1/2 the symmetry of (8.1), (8.11) in the class M1 is
more extensive than described in Theorem 19.4. Indeed, products of the operators
(18.19) are SOs of the considered system and belong to the class M1 also.

THEOREM 19.5. The system (8.1), (8.11) is invariant under the
[10+2(2s+1)2]-dimensional Lie algebra isomorphic to A[P(1,3) GL(2s+1,C)]. Basis
elements of this algebra belong to the class M1 and are given by formulae (2.22) (where
Sµσ are the matrices (8.6)) and (19.20):

where Σµσ, Σ1 are the operators (19.19),

(19.20)

λn kn

1
2

akn[(Σ23 Σ02)
kPs n 1(1 iΣ1) Ps n 1(Σ23 Σ02)

k(1 iΣ1)],

λnn k

1
2

akn[(Σ23 Σ02)
kPs n 1(1 iΣ1) Ps n 1(Σ23 Σ02)

k(1 iΣ1)],

λ̃mn Σ1λmn

akn are coefficients defined by the following recurrence relations

(19.21)Ps n 1
n ≠n

Σ12 s 1 n

n n
, n 1,2,...,2s 1; k 0,1,...,2s 1 n,

PROOF. The operators (19.20) evidently are SOs of the system (8.1), (8.11)

(19.22)a0n 1, a1n [n(2s 1 n)]1/2, aλn aλ 1naλ 1n λ 1, λ 2,3,...,2s n.

inasmuch as they are products of the SOs present in (19.19).
To prove these operators form a basis of the algebra AGL(2s+1,C) it is

sufficient to make sure that they are linearly independent and satisfy relations (17.9)
for a,b,c,d=1,2,...,2s+1. The simplest way to verify these statements is to transform
(19.20) into such a representation where they reduce to numeric matrices. Using the
transformation

where V is the operator obtained from (17.13a) by the change γk → Γk, Sµσ are the

(19.23)Σµν→V ΣµνV
1 Sµν, Σ1→V Σ1V

1 Γ4

matrices (8.6), we come to a matrix realization of the basis elements (19.20).
Simultaneously the equations (8.1), (8.11) reduce to the form

where ψ′=Vψ, L1′ has the form (17.13c) where γ4 → Γ4 and

(19.24)L1 ψ 0, L2 ψ 0

L2 W(L2 FL1)V
1 1

s
[SµνS

µν 4s(s 1)],
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W is the operator obtained from (17.13b) by the change γk → Γk, F is the operator given
in (8.23).

An equivalent form of the equations (19.24) is

According to (19.26) the function ψ′ has exactly 2s+1 independent

(19.25)(pµ p µ m 2)ψ 0, (1 iΓ4)ψ 0,

(19.26)[SµνS
µν 4s(s 1)]ψ 0.

components. The equations (19.25), (19.26) are manifestly invariant in respect with
arbitrary matrix transformations commuting with Γ4 and SµσSµσ.

There are exactly (2s+1)×(2s+1) linearly independent complex matrices or
twice more real matrices commuting with Γ4 and SµσSµσ. To find a complete set of these
matrices we use the fact that Sµσ reduce to the basis elements of the IR D(s 0) of the
algebra AO(1,3) on the set {ψ′}. All the possible products of them includes
2(2s+1)(2s+1) matrices linearly independent over the field of real numbers. These
independent matrices can be chosen in the form of the set {λa′b, λ̃a′b} where the primed
matrices are obtained from (19.20) by the change (19.23). Indeed, using for Sµσ⊂
D(s 0) the realization (4.63) we make sure that nonzero matrix elements of λa′b and λ̃a′b

are given by the following formulae

These matrices are linearly independent over the field of real numbers and satisfy the

(λab)mn δamδbn, (λ̃ab)mn iδamδbn, a,b 1,2,...,2s 1.

commutation relations (17.9).
To complete the proof it is sufficient to calculate commutation relations of the

operators (19.20) with generators of the Poincaré group. It can be easily shown that Pµ,
Jµσ of (2.22), (8.6) satisfy relations (17.18) with the operators Σµσ, Σα of (19.19). Thus
the linear combinations

satisfy the Poincaré algebra and commute with Σµσ, Σα (and therefore with the matrices

(19.27)P̂µ iPµ, Ĵµσ iJµσ Σµσ

(19.20)). Because Σµσ are linear combinations of λ̃mn and λmn:

(the remaining Σµσ are expressed via commutators of the operators (19.20)) it follows

(19.28)Σ12
n

(s 1 n)λnn, Σ23

1
2a1n

(λnn 1 λn 1n), Σ02

1
2a1n

(λ̃nn 1 λ̃n 1n)

from the above that the SOs {Pµ, Jµν, λa′b, λ̃a′b} form a Lie algebra isomorphic to
A[P(1,3) GL(2s+1,C)].

Thus, the Dirac-like equations for a particle of arbitrary spin s have a wide
symmetry in the class M1 which increases if the spin value increases. The
corresponding basis of the IA is given in (2.22), (8.6), (19.20).
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Inasmuch as the operators (19.20) satisfy the conditions

(no sum over n) it follows from Theorem 19.5 the equations (8.1), (8.11) are invariant

λ2
mnψ δmnλnnψ λ̃2

mnψ

under a [10+2(2s+1)2]-parametric Lie group including inhomogeneous Lorentz
transformations and the following transformations

(no sum over repeated indices). It is easily verified that the general transformation

ψ→exp(λmnθmn)ψ







(1 λmnθmn)ψ, m≠n,

[1 λnn(expθnn 1)]ψ, m n,

ψ→exp(λ̃mnθ̃mn)ψ







(1 λ̃mnθmn)ψ, m≠n,

[λ̃mmsinθ̃mm 1 λmm(cosθ̃mm 1)]ψ, m n

belonging to this group can be represented in the form (17.19) where A, Bµ are matrices
of dimension 8s×8s depending on transformation parameters.

19.4. Hidden Symmetries Admitted by Any Poincaré-Invariant Wave Equation

Nongeometric symmetry described in the above is inherent in any Poincaré-
invariant equation for a particle of arbitrary spin s>0. To prove this assertion is the
main goal of this subsection.

Let {ψ} be a set of solutions of a Poincaré-invariant equation for a particle of
spin s and mass m≠0. We write such an equation in the symbolic form (16.1) and do
not impose any restriction on the explicit form of a linear operator L - it can be either
a differential operator of arbitrary finite order or integro-differential operator. The only
requirement imposed is that the corresponding equation (16.1) be invariant under the
algebra AP(1,3), moreover, the representation of this algebra realized on {ι} has to
belong to the class I (Pµ Pµ>0) and be irreducible in respect with spin and mass (refer
to Subsection 6.1). It means the equation (16.1) admits ten SOs Pµ, Jµσ satisfying the
commutation relations (1.14) besides eigenvalues of the corresponding Casimir
operators PµP µ and WµσWµσ are fixed and given by formulae (6.1)*.

Let us show the Poincaré-invariance of (16.1) implies an additional
(nongeometric) symmetry of this equation.

* It will be shown in the following that the condition the eigenvalue of Pµ Pµ to
be fixed is not essential and can be replaced by the weaker requirement Pµ Pµ ψ=m2ψ,

≤m2<∞, >0.
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THEOREM 19.6 [156]. Any Poincaré-invariant equation for a particle of spin
s and mass m>0 is additionally invariant under the algebra AGL(2s+1,C).

PROOF. A Poincaré-invariant equation by definition admits ten SOs
satisfying the algebra (1.14). Then the tensors

where Wµ is the Lubanski-Pauli vector (2.37), are the SOs of (16.1) also.

(19.29)Σ±
µν

1

m 2
[i µνρσW ρP σ±(PνWµ PµWν)]

Using relations (4.3) we sure that the operators (19.29) satisfy the conditions

According to (19.30), (6.1) the operators Σµ
±

σ satisfy relations (17.7)

(19.30)

[Σ±
µν, Σ±

λσ] (gµλΣνσ gνσΣµλ gµσΣνλ gνλΣµσ) 1

m 2
PρP

ρ,

C6

1
2

Σ±
µλΣ±µλ 1

m 4
WλW

λPµ P µ,

C7

1
4 µνρσΣ±µνΣ±ρσ 2i

m 4
WλW

λPµ P µ.

characterizing the algebra AO(1,3) besides the eigenvalues of the corresponding
Casimir operators C6 and C7 are

It follows from the above the operators Σµ
+

σ (Σµ
−

σ) realize the representation

C6ψ ± i
2

C7ψ s(s 1)ψ.

D(s 0) (D(0 s)) of the algebra AO(1,3).
But linearly independent products of the operators (19.29) form a basis of a

more wide Lie algebra than AO(1,3). Indeed, choosing such a basis in the form (19.20)
where Σ1=C7/2s(s+1) we come to (2s+1)2 SOs satisfying the commutation relations
(17.9), i.e., realizing a representation of the algebra AGL(2s+1,C). The verification of
validity of these relations can be made by using a matrix realization of the operators
Σµ

±
σ.

Thus any Poincaré-invariant equation for a particle of spin s>0 and mass m>0
is invariant under the algebra AGL(2s+1,C) whose basis elements belong to the
enveloping algebra of the algebra AP(1,3) and are given in (19.29), (19.20).

The operators (19.29) satisfy relations (17.18) with the generators of the
Poincaré group. Hence it follows that the set {Pµ,Jµσ,λmn,λ̃mn} forms a Lie algebra
isomorphic to A[P(1,3) GL(2s+1,C)], see the end of the proof of Theorem 19.5.

In the above we did not make any supposition about the class of SOs of the
equation (16.1). If we assume the generators of the Poincaré group have the covariant
form of (2.22) (with the corresponding matrices Sµσ) then the SOs of (19.29) belong to
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the class M2 and have the form

where Fa=i abcSbc/2±S0a. The corresponding SOs of (19.20) are in general differential

Σ±
ab iSab

1

m 2
[ abc(p 2Fc pc p F)± ip0(Fa pb Fb pa )],

Σ±
0a iS0a

1

m 2
[p0 abc Fb pc ± ipa p F p 2Fa)]

operators of order 4s with matrix coefficients.
We note that the operators (19.29) where found and analyzed by Beckers [25]

(without connections with the algebra AGL(2s+1,C) and hidden symmetries).

19.5. Symmetries of the Levi-Leblond Equation

Here we discuss hidden symmetries of the Levi-Leblond equation, the
simplest Galilei-invariant equation for a particle of nonzero spin (refer to Section 13).
We rewrite this equation in the form (13.1) where

γa, γ4 are the Dirac matrices.

(19.31)β0

1
2

(1 iγ4), β4 1 iγ4, βa γa,

The Levi-Leblond equation is invariant under the algebra AG(1,3). The basis
elements of this algebra belong to the class M1 and are given in (12.18) where

The problem of description of SOs of higher orders for the Levi-Leblond

(19.32)M m, S i
4

γ×γ, η 1
2

(1 iγ4)γ.

equation is formulated in complete analogy with the corresponding problem for the
Dirac equation, thus we use all the definitions and notations of Section 18.

To find a complete set of SOs of arbitrary order n we consider other equation
equivalent to (13.1), (19.31). Namely making the transformation ψ → Vψ=Φ where V
is the operator (13.15) we come to the equation (13.17). As in the case of the Dirac
equation there is one-to-one correspondence between the SOs Q′ of the equation
(13.17) and the SOs of the Levi-Leblond equation. This correspondence is given by
relations (18.2) where V is the operator (13.15). That is why we will investigate
symmetries of the more simple equation (13.17) instead of the Levi-Leblond one.

The function Φ satisfying (13.17) has two nonzero components only so it is
convenient to search for SOs of (13.17) in the form

where Sa= abcγbγc/4 together with the unit matrix I form a complete set of linearly

(19.33)Q SaQa IQ0
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independent matrices defined on Φ, Qa and Q0 are unknown operators commuting with
γµ. The operator (19.33) is a SO of the equation (13.17) iff Qa and Q0 are SOs of the
Schrödinger equation.

It was shown in Subsection 16.5 that all the finite order SOs of the
Schrödinger equation are polynomials of the generators of the Galilei group, see
(16.39). The same is true for the equation (13.17) since the corresponding generators
of the Galilei group have the form

where Pµ, J and G are the operators (11.5). On the other hand

(19.34)Pµ Pµ, J x×p S, G G

where Φ is an arbitrary solution of (13.17). So representing Qa and Q0 in the form of

(19.35)SΦ 1
m

(mJ P ×G )Φ

(16.39) and expressing Pµ, J, G, S via Pµ′, J′, G′ in accordance with (19.34), (19.35) we
come to the conclusion the operators (19.33) are polynomials on the Galilei group
generators (19.34). Therefore according to (18.2) all the finite order SOs of the Levi-
Leblond equation are polynomials of the generators (12.18), (19.32) inasmuch as

where P̂µ, Ĵ and Ĝ are the Galilei group generators of (12.18) realized on the set of

V 1Pµ V P̂µ, V 1J V Ĵ, V 1G V Ĝ

solutions of the Levi-Leblond equation.
It follows from the above that all the SOs of finite order n for the Levi-Leblond

equation belong to the enveloping algebra generated by the Galilei group generators.
Thus a description of a complete set of SOs of order n for this equation reduces to
going through linearly independent polynomials on the operators (12.18).

Let us present a complete set of the first order SOs. Besides the generators
(12.18), (19.32) this set includes the following 23 operators [423]

(19.36a)

D 2tp0 x p i
2

(3 β4), A t 2 p0 tD
1
2

mx 2 1
2

x η i
4

tβ4,

W0 p S, W S 1
m

p×η,

U p×S i
2

β4 p 2η p0, V iγ4 p0 S 1
2

(1 iγ4)γ0 p,

F0 tW0 mS x η J, F tU mx×S x η p (x p i)η,

N0 x U 1
2

m( 3
2

β4), N 2tV m(x×U xW0) η×U ηW0,
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The operators (12.18), (19.36) do not form a Lie algebra but include subsets

(19.36b)R 2xF0 x 2W t 2V 2tS tx×U 4x×η 3tβ /2

forming basises of Lie algebras and superalgebras. We present some of them.
(1) The algebra AO(1,2) is formed by P0, A and D, refer to (11.12).
(2) The algebra AO(3) is formed by W=(W1,W2,W3). This algebra can be united

with AG2(1,3) to obtain the 15-dimensional IA including the following operators

(3) The superalgebra SA22 is formed by the following set

A15⊃ Pµ, J, G, D, A,W .

Besides that the Levi-Leblond equation has a wide symmetry in the class M2.

SA22⊃ W, W0, U; Pµ, J, G, A, D .

The matter is that all the symmetries of the Schrödinger equation (refer to Section 16)
are valid for (13.1), (19.31). Moreover these symmetries can be extended. Indeed, the
operators (16.41a) and the generators Pµ, Ja, Ga of (12.18), (19.32)) form a 27-
dimensional Lie algebra being an IA of the Levi-Leblond equation. This IA can be
extended to a 30-dimensional Lie algebra by including the SOs W of (19.36).

We see the simplest Galilei-invariant wave equation for a particle of spin 1/2
has extensive hidden symmetries in spite of the fact that all the finite-order SOs belong
to the enveloping algebra of the algebra AG(1,3).

19.6. Symmetries of Galilei-Invariant Equations for Arbitrary Spin Particles

Investigating of symmetries of Galilei-invariant equations for arbitrary spin
particles (refer to Sections 13, 14) can be carried out in analogy with the above. We do
not present the corresponding cumbersome calculations here but formulate and discuss
the main results of this investigating.

1. A principal description of SOs of the first-order Galilei-invariant wave
equations for particles of arbitrary spin is analogous to the description of SOs of the
Levi-Leblond equation. Namely all the finite order SOs of the equations considered in
Section 13 belong to the enveloping algebra of the Lie algebra of the Galilei group. To
prove this assertion it is sufficient to transform from the equations given in (13.1),
(13.11), (13.12) and Table 13.1 to the equivalent representation (13.17) where the
transformed wave function Φ′ has 2s+1 independent components only, and to expand
a SO in the complete set of the matrices λmn of (19.20) where

Sa are the spin matrices expressed via the Galilei group generators according to (19.35).

(19.37)Σ0a iSa, Σab abcSc,

In fact the almost evident hidden symmetry of the equations considered is
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formulated in the previous subsection, see assertions (1) and (2) there. Moreover this
symmetry is more extensive if s>1/2.

ASSERTION. Described in Section 13 Galilei-invariant wave equations for
particles of spin s are invariant under the [27+(2s+1)2]-dimensional Lie algebra whose
basis elements are

where Pµ, Ga, Ja, A, D are the generators of the Schrödinger group, λmn are the operators

(19.38)Pµ, Ga, Ja, A, D, GaGb, PaGb PbGa, λmn

of (19.20), (19.37), (19.35).
The proof reduces to calculation of commutation relations of the operators

(19.38) (which evidently are the SOs of the equations considered) in order to make sure
they form a basis of a Lie algebra.

2. SOs of Galilei-invariant equations in the Hamiltonian form (refer to Section
14) do not belong to the enveloping algebra of the algebra AG(1,3) in general. More
precisely such SOs can be represented in the form

Q=Q1+q1Q2

where Q1 and Q2 are polynomials of the Galilei group generators, q1 is the operator not
belonging to the enveloping algebra of the algebra AG(1,3):

This assertion can be proved by transforming the Hamiltonian (14.9a) and the

(19.39)
q1 [σ2

2
m

kσ3S p 2k 2

m 2
(iσ1 σ2)(S p)2]cos(amt)

[σ3

2i
m

(σ1 iσ2)kS p]sin(amt).

corresponding generators (12.18), (14.3) into the equivalent representation (14.14),
(14.16) where B=σ1am.

It is not difficult to verify the equations (11.1), (14.9a) for a particle of spin
s are invariant under the [27+(2s+1)2+3]-dimensional Lie algebra whose basis elements
are present in (19.38), (19.39) and (19.40):

The operators qa form the subalgebra of the IA, isomorphic to AO(3).

(19.40)

q2 σ1

2i
m

σ3kS p 2

m 2
(σ1 σ2)(kS p)2,

q3 (σ3

2
m

σ3kS p)cos(amt) [σ2

2
m

σ3kS p 2

m 2
(iσ1 σ2)(kS p)2]sin(amt).

A more extensive IA of the equations considered is formed by the following
sets of SOs: {QA,qaQA} where QA are the operators (19.38), qa is any of the operators
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(19.39), (19.40). Dimension of these algebras is 2[27+(2s+1)2] so for s=1/2 we have
62-dimensional Lie algebras.

Just now we finish our brief discussion of hidden symmetries of Galilei-
invariant wave equations. Some of these symmetries are admitted by equations for
interacting particles, which sometimes have even more extended symmetries than free
particle equations, refer to Subsections 21-23.

20. NONGEOMETRIC SYMMETRIES OF MAXWELL’S
EQUATIONS

20.1. Invariance Under the Algebra AGL(2,C)

It was shown in Chapter 1 that the maximal symmetry of Maxwell’s equations
in the class M1 is exhausted by the invariance under the Lie algebra of the conformal
group. The problem of interest is to investigate nongeometric symmetries of these
equations also because the electromagnetic field is a real and measurable physical
object whose hidden symmetries can to have consequences which can be verified.

In this subsection we consider the problem of finding of an IA of Maxwell’s
equations in the class M∞. These symmetries are rather nontrivial, and it is evident they
cannot be found in the classical Lie approach.

We proceed from the formulation of Maxwell’s equations given in (3.4), (3.5).
Following the first step of the algorithm outlined in Subsection 16.1 we go to the
equations in the momentum representation. Writing E(x0,x) and H(x0,x) in the form

we obtain the following system

(20.1)
E(x0,x) (2π) 3/2

⌡
⌠d 3pẼ(x0,p)exp(ip x),

H(x0,x) (2π) 3/2

⌡
⌠d 3pH̃(x0,p)exp(ip x),

where

(20.2)
L1ϕ(x0,p) 0

L a
2 ϕ(x0,p) 0,

L1 and L2
a are symbols of the operators (3.5):

(20.3)ϕ(x0,p) column(Ẽ1, Ẽ2, Ẽ3, H̃1, H̃2, H̃3),

It is necessary to take into account the condition of reality of the vectors

(20.4)L1 i
∂

∂x0

σ2S p≡i
∂

∂x0

Ĥ, L a
2 (Zab i abc Sc )pb.
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(20.1), which can be written in the form

SOs of Maxwell’s equations belonging to the class M∞ are 6×6 matrices

(20.5)ϕ (x0,p) ϕ(x0, p).

depending on p. To find a complete set of these matrices we transform the equations
(20.2) to the representation where the Hamiltonian H has a diagonal form. Using for
this purpose the following transformation operator

where

(20.6)W U3U2U1

n is an arbitrary constant vector, we obtain by consequent calculations that

U1 P P QS p̂, P
1
2

(1±σ2),

U2 exp












i
S1 p2 S2 p1

p 2
1 p 2

2

arctan
p 2

1 p 2
2

p3

,

(20.7)
U3

1

2
[S 2

3 i(S1S2 S2S1)] 1 S 2
3 ,

Q 1 2(S p̂×n)2[1 (p n)2] 1, n 2 1,

Here Γ0 is the diagonal matrix,

(20.8)

U1L1U
†

1 L1 i
∂

∂x0

S p, U2 L1U
†

2 L1 i
∂

∂x0

S3 p,

U3 L1 U †
3 L1 i

∂
∂x0

Γ0 p.

According to (20.2), (20.9) the transformed function ϕ′=Wϕ satisfies the

(20.9)Γ0 i(S1S2 S2S1)S3 diag(1, 1,0,1, 1,0).

following system of equations

since WpaL2
aW-1≡(1-Γ0

2)p2.

(20.10a)L1 ϕ ≡










i
∂

∂x0

Γ0p ϕ 0,

(20.10b)L3 ϕ ≡(1 Γ2
0)p

2ϕ 0,

In the representation (20.10) a SO QA∈ M∞ reduces to matrix depending on p
and satisfying the relations
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where αA, ßA are matrices depending on p. Using the explicit expression for Γ0 given

(20.11)
[QA,L1 ] [Γ0,QA]p αAL2 ,

[QA,L2 ] [QA,1 Γ2
0]p

2 βAL2

in (20.9) we obtain the general expression of QA in the following form

where F is an arbitrary 6×6 matrix which can be chosen zero without loss of generality

(20.12)Q A



























a o o b o o

0 c 0 0 d o

0 0 0 0 0 0

e 0 0 f 0 0

0 g 0 0 h 0

0 0 0 0 0 0

FL3 ,

(refer to (20.10b)), a, b, ..., h are arbitrary functions of p.
So there are exactly eight linearly independent matrices satisfying (20.11). We

choose these matrices in the form

The matrices (20.13) satisfy the commutation relations (17.7) characterizing the algebra

(20.13)Σab i abcσc, Σ0a
1
2 abcΓ0 Σbc, Σ0 I, Σ1 iΓ0.

A8. Using the transformation

(where W is the operator of (20.6)) we obtain the corresponding linearly independent

Σµν→Σµν W 1ΣµνW, Σα→Σα W 1ΣαW

SOs for the equation (20.2):

where Q is the matrix (20.7).

(20.14a)
Q1 Σ23 σ3S p̂Q, Q2 Σ31 iσ2,

Q3 Σ12 σ1S p̂Q, Q4 Σ01 σ1Q,

(20.14b)
Q5 Σ02 S p̂, Q6 Σ03 σ3Q,

Q7 Σ0 I, Q8 Σ1 iσ2S p̂

The fact that the operators (20.14) are SOs of the equation ((20.2) can be
easily verified by direct calculation also, bearing in mind the relations

Thus we have obtained a basis of the IA of Maxwell’s equations in the class

(20.15)[Q,S p] [Q,σa] 0, Q 2 1, L2Q L2.

M∞. Let us formulate this result in the form of the following assertion [153,157].
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THEOREM 20.1. Maxwell’s equations are invariant under the eight-
dimensional algebra A8 isomorphic to AGL(2,C). Basis elements of this algebra in the
momentum representation can be chosen in the form (20.14).

We see that besides the conformal invariance, Maxwell’s equations have the
hidden symmetry described by Theorem 20.1. The SOs (20.14) are defined on the set
of functions ϕ(x0, p) which are the Fourier transforms of solutions of Maxwell’s
equations in the realization (3.4), (3.5).

To each matrix QA of (20.9) it is possible to assign the integral operator Q̂A

defined in the space of the functions ϕ(x0, x) of (3.4):

The integral operators (20.16), (20.14) form an IA of Maxwell’s equations.

(20.16)Q̂Aϕ(x0,x) (2π) 3

⌡
⌠d 3pd 3yQAϕ(x0,y)exp[ip (x y)].

20.2. The Group of Nongeometric Symmetry of Maxwell’s Equations

The SOs (20.14) form a Lie algebra and satisfy the conditions

where ϕ(x0,p) is an arbitrary solution of (20.2). Considering exponential mapping of

Q 2
Aϕ(x0,p) ϕ(x0,p), A≤3,A 8,

Q 2
Aϕ(x0,p) ϕ(x0,p), 4≤A≤7

these SOs we come to the conclusion that Maxwell’s equations are invariant under the
eight-parameter group of transformations which are defined by the following relations

where θa are real parameters.

(20.17)

ϕ(x0,p)→ϕ (x0,p) exp QAθA ϕ(x0,p)







(cosθA QAsinθA)ϕ(x0,p), A≤3, A 8,

(coshθA QAsinhθA)ϕ(x0,p), 4≤A≤7

Substituting (20.3), (20.14) into (20.17) we obtain the transformation law for
the Fourier transforms of the vectors of the electric and magnetic field strengths in the
following explicit form

(20.18a)






Ẽ→Ẽcosθ1 i[p̂×Ẽ 2p̂×n(n Ẽ)λ]sinθ1

H̃→H̃cosθ1 i[p̂×H̃ 2p̂×n(n H̃)λ]sinθ1;

(20.18b)






Ẽ→Ẽcosθ2 H̃sinθ2,

H̃→H̃cosθ2 Ẽsinθ2;
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where λ=[1-(p̂ n)2]-1, p̂=p/p, n is an arbitrary unit vector.

(20.19a)






Ẽ→Ẽcosθ3 i[p̂×H̃ 2p̂×n(n H̃)λ]sinθ3,

H→H̃cosθ3 i[p̂×Ẽ 2p̂×n(n Ẽ)λ]sinθ3;

(20.19b)







Ẽ→Ẽcoshθ4 H̃ 2[p̂(p̂ n) n](n H̃)λ sinhθ4,

H̃→H̃coshθ4 Ẽ 2[p̂(p̂ n) n](n Ẽ)λ sinhθ4;







Ẽ→Ẽcoshθ5 ip̂×Ẽsinhθ5,

H̃→H̃coshθ5 ip̂×H̃sinhθ5;







Ẽ→Ẽcoshθ6 Ẽ 2[p̂(n p̂) n](n Ẽ)λ sinhθ6,

H̃→H̃coshθ6 Ẽ 2[p̂(n p̂) n](n H̃)λ sinhθ6;

Ẽ→Ẽexpθ7, H̃→H̃expθ7;







Ẽ→Ẽcosθ8 ip̂×H̃sinθ8,

H̃→H̃cosθ8 ip̂×Ẽsinθ8,

Formulae (20.18b) present the Heaviside-Larmor-Rainich transformations
(3.2). The remaining relations (20.19), (20.18a) define a set of one-parametric
transformations extending (3.2) to eight-parameter group. To any of these
transformations it is possible to assign the integral transformation of the vectors E(x0,x)
and H(x0,x) of (20.1).

Thus the Heaviside-Larmor transformations are nothing but a subgroup of the
eight-parameter group of hidden symmetry of Maxwell’s equations.

It is possible to make sure the SOs of (20.14) do not form a Lie algebra
together with the conformal group generators of (2.22), (3.56). It is possible to unite
the algebra (20.14) and the conformal algebra iff the basis elements of the latter are
realized in the class of integro-differential operators. The explicit form of the
corresponding basis elements of the algebra AC(1,3) is given in [148, 154].

Let us demonstrate that Maxwell’s equations are invariant under the specific
combinations of transformations including space-time reflections and realizing an IR
of the algebra AO(2,2). The existence of this symmetry is caused by the fact that
Maxwell’s equations can be represented as equations for the complex wave function
Ψ=E-iH, admitting antilinear SOs satisfying conditions of Lemma 1.1, refer to
Subsection 1.7. We will not analyse this representation (see, e.g., the equation (9.1))
but present the explicit form of the corresponding symmetries.
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PROPOSITION 20.1. Maxwell’s equations (3.4), (3.5) are invariant under
the algebra AO(2,2) realized by the following operators

where P and T are space and time reflection operators:

Q1 T, Q2 iσ2, O3 iσ2T, Q3 a PQa,

PROOF reduces to direct verification which can be made easily using

Pϕ(t,x) σ3ϕ(t, x); Tϕ(t,x) σ3ϕ( t,x).

properties of σ-matrices.
It follows from the above that Maxwell’s equations are invariant under the six-

parameter group of transformations, isomorphic to O(2,2) and including the Heaviside-
Larmor-Rainich transformations as a subgroup. Calculating exponential mappings of
the SOs mentioned in Proposition 20.1 it is not difficult to find these group
transformations explicitly. We present here as an example the transformation generated
by Q4

E(t,x)→E(t,x)cosθ4 iH(t, x)sinθ4,
H(t,x)→H(t,x)cosθ4 iE(t, x)sinθ4.

20.3. Symmetries of Maxwell’s Equations in the Class M2

We made sure ourselves that the symmetry of Maxwell’s equations is more
extensive than the familiar symmetry in respect to the conformal group. Indeed, if we
search for symmetries in the class M∞ then it is possible to find a hidden symmetry of
these equations under the algebra A8. Moreover this symmetry is maximal in the class
considered.

A natural question arises: do Maxwell’s equations admit local (differential)
SOs which cannot be found in the classical Lie approach? To answer this question we
find complete sets of the first and second order SOs of these equations.

As before we use the formulation (3.4), (3.5) of Maxwell’s equations. The
corresponding SO of arbitrary finite order n can be represented in the form

where A, B, C and D are differential operators of order n (with real matrix coefficients)

(20.20)
Q E O,

E σ0C iσ2D, O σ1A σ3B

commuting with σµ.
We pick out the even (E) and odd (O) parts of SOs which are independent on

the set of solutions of Maxwell’s equations. Such a terminology is in accordance with
the fact that products EE and OO are even but EO is odd.

Without loss of generality we assume that Q includes operators of
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differentiating in respect with spatial variables only since ∂/∂x0 can be expressed via
∂/∂xa according to (3.5).

A linear differential operator Q of order n is a SO of Maxwell’s equations iff

where αQ
a and βQ

ab are differential operators of order n. Without loss of generality these

(20.21)[Q, L̂1] αa
QL̂

a

2 , [Q, L̂
a

2 ] βab
Q L̂

b

2

operators can be represented in the following form

where αµ
a and βµ

ab are differential operators of order n commuting with σµ and Sa.

(20.22)

αa
Q αa

E αa
Q,

αa
O σ1α

a
1 σ3a

a
3 , αa

E σ0α
a
0 iσ2α

a
2;

βab
Q βab

E βab
O ,

βab
O σ1β

ab
1 σ3β

ab
3 , βab

E σab
0 iσ2β

ab
2

Substituting (20.22) into (20.21) and bearing in mind linear independence of
the Pauli matrices we obtain the two noncoupled systems of equations

and

(20.23)[E, L̂1] αa
EL̂

a

2 , [E, L̂
a

2 ] βab
E L̂

b

2

According to (20.23), (20.24) the problem of description of SOs of Maxwell’s

(20.24)[O, L̂1] αa
OL̂

a

2 , [O, L̂
a

2 ] βab
O L̂

b

2 .

equations reduces to the two separate problems related to the even and odd SOs.
First we consider the first order SOs. It is possible to show the corresponding

system (20.24) has trivial solutions only so Maxwell’s equations do not admit odd SOs
in the class M1. The even SOs are described in the following assertion.

THEOREM 20.2. The complete set of SOs of Maxwell’s equations in the
class M1 is represented by the operators

where Pµ, Jµν, Kµ and D are the conformal group generators of (2.22), (2.42) including

(20.25)Pµ, Jµν, Kµ, D, F iσ2, FPµ, FJµν, FKµ, FD, I

the following spin matrices

where Sa are the matrices (3.6).

(20.26)Sab abcSc, S0a iσ2Sa,

For the proof see [360]. The operators (20.25) form a 32-dimensional Lie
algebra whose structure constants are easily calculated.

The following assertion gives a description of all the linearly independent odd
SOs in the class M2. Such SOs are essentially non-Lie inasmuch as they do not belong
to the enveloping algebra of the algebra A[C(1,3) H] (H is the group of Heaviside-
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Larmor-Rainich transformations).
THEOREM 20.3. Maxwell’s equations admit 70 linearly independent odd

SOs in the class M2. These operators have the form

where Ka, Ja= abcJbc/2 are the generators (2.22), (2.42), (20.26).

(20.27)

Q ab
(0) σ1 [(S×p)a, (S×p)b] pa pb δab[p

2 2(S p)2] ,

Q a
(1) [Q ab

(0) ,xb] , Q(2)

1
2

[Q a
(1),xa] ,

Q ab
(1)

1
2

[ ancQ
bc

(0) bncQ
ac

(0) ,xn] 2x0Q̃
ab

(0)

i
2

[(p×S)a,S b] [(p×S)b,S a] σ1,

Q a
(2)

1
2 abc[Q

b
(1),xc] x0Q̃

a

(1)

1
2

σ1




1
2

S a[pb,xb]

[pa,S
bxb] i[(S×p)a,S bxb] i[S a,S bJb 1] ,

Q ab
(2) [xµ x µ,Q ab

(0) ] 1
2

[xa,Q
b

(1)] [x b,Q a
(1)] 2x0Q̃

ab

(1)




7
2

[δabxµx
µ x ax b,p 2 (S p)2] 1

4
[S a,S b]

[S ap b S b p a,S x] i
2

[S ax b S bx a,S p] σ1,

Q a
(3) i[Q ad

(2) ,Kd], Q ab
(j) [Q a

(j 1),K
b] [Q b

(j 1),K
a], j 3,4

The proof needs cumbersome calculations so we present its outline only. To
find all the linearly independent odd operators belonging to the class M2 it is necessary
and sufficient to find a complete set of solutions of the equations (20.24). Let us denote

where the indices H and A denote the Hermitian and anti-Hermitian parts of the

(20.28)O O H O A, αa
O (αa

O)H (αa
O)A

corresponding operators. Equating the Hermitian and anti-Hermitian terms in the first
of the equations (20.24) we come to the following system

It is convenient to expand all the operators (20.29) in the complete set of the

(20.29)2[O H, L̃1] [(αa
O)H, L̂

a

2 ] [(αa
O)A, L̂

a

2 ] ,

2[O A, L̂1] [(αa
O)H, L̂

a

2 ] [(αa
O)A, L̂

a

2 ].

matrices (3.6):
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where are unknown functions of x0 and x,

(20.30)

L̂1 i
∂

∂x0

Sa pa, L̂
a

2 εabcpbSc iZab pb,

O H σα









Zab









D ab,cd
α ,pc ,pd D ab

α Sa B ac
α ,pc ,

O H iσα









Sa









B a,cd
α ,pc ,pd K a

α Zab F ab,c
α ,pc ,

(αa
O)H σα









G a,bc
α ,pb ,pc H a

α , (αa
O)A iσα N ab

α ,pb

D ab,cd
α , B ca

α , D ab
α , B a,cd

α , F ab,c
α , K c

α , G a,bc
α , H a

α

summation is imposed over the repeated indices α, α=1,3.
Substituting (20.30) into (20.29) and using the relations

and equating the coefficients of linearly independent matrices and differential operators

(20.31)

[Sa,Sb] i abcSc, [Sa,Sb] 2δab Zab,

[Zab,Sc] i( cakZbk cbkZak),

[Zab,Sc] 2δabSc δacSb δbcSa

we come to the following relations for coefficients of a SO of Maxwell’s equations

where the dots denote derivatives in respect with t=x0, Kν
µ
σ
ρ is a generalized Killing

(20.32)

D ab,cd
1 K ab

cd , D ab,cd
3

1
2 ak(cK

0b
d)k, B a,cd

α G a,cd
α 0, K a

1
3

10
∂ n

dcaK̇
0d

nc ,

K a
3

3
5

∂ nK̇
00

an , B ab
1

7
10 abc∂

nK̇
00

cn , B ab
3

7
10

∂ nK̇
0a

bn ,

D ab
1

1
10

∂ n(∂ aK bn
00 ∂ bK an

00
1
3

δab ∂ mK mn
00 ),

tensor, i.e., an irreducible tensor which is antisymmetric in respect with permutations
µ ν or ρ σ and symmetric under permutations of the pairs [µ,ν] [ρ,σ]. Moreover,
this tensor satisfies the equations

where symmetrization is imposed over the indices in brackets.

(20.33)∂(λK µρ)
νσ

1
5

(∂ ng (λ
νK

ρµ)
σn ∂n g (λµK ρ)n

(νσ)) 0

According to (20.32) all the coefficients of the SOs can be expressed via
solutions of the equation (20.33). These solutions depend on 70 parameters and are
given in (A.2.20)-(A.2.23). Substituting these solutions into (20.30) we obtain a linear
combination of the SOs of (20.27), which satisfy the second condition (20.24).

Thus we have found a complete set of the odd SOs of Maxwell’s equations
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in the class M2. It is evident these SOs do not belong to the enveloping algebra of the
algebra A[C(1,3) H] since this enveloping algebra includes even operators only.

Finally we present the even SOs of Maxwell’s equations in the class M2. A
complete set of these operators can be calculated in analogy with the above and
includes 170 terms present below:

where QA are the operators (18.40) (where Pµ, Kµ, D, Jµσ are operators given in (2.22),

(20.34)QA, iσ2QA, iσ2, I

(2.42), (20.26)). All the operators (20.34) belong to the enveloping algebra of the
algebra A[C(1,3) H].

In an analogous way we can consider SOs of Maxwell’s equations, belonging
to the classes of third-, fourth-, ... etc. differential operators. Moreover it is not too
difficult to find a complete set of SOs of arbitrary fixed order n. We will not do it here
restricting ourselves to formulating of the following assertions.

1. The SOs of order n>2 for Maxwell’s equations are polynomials of the group
C(1,3) H generators (refer to (2.22), (2.42), (3.20), (3.23)) and the second order SOs
(20.27).

The number of linearly independent SOs of order n is equal to

Nn=(2n+3)[2n(n-1)(n+3)(n+4)+(n+1)2(n+2)2]/12, n>2,

besides there are N E even and N O odd operators among them where

NE=(n+1)2(n+2)2(2n+3)/12,

NO=n(n-1)(n+3)(n+4)(2n+3)/6.

To calculate these numbers we use formula (A.2.16) and take into account that the odd
SOs of order n are completely determined by the generalized Killing tensor of order 1
and valence R1+2R2, R1=n-2, R2=2, and the even SOs are determined by two
generalized Killing tensors of order s=1 and valence R1+2R2, R1=n, R2=0. These facts
can be proved in analogy with (20.28)-(20.32).

20.4. Superalgebras of SOs of Maxwell’s Equations

Here we discuss algebraic properties of the most interesting SOs of Maxwell’s
equations, i.e., the odd SOs which do not belong to the enveloping algebra of
A[C(1,3) H].

The operators (20.27) do not form a Lie algebra. But there exist such subsets
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of these operators which can be extended to superalgebras. A superalgebra including
the maximal numbers of the operators (20.27) is formed by the following set

where Q (
a
0
b
) and Q̃ (

a
0
b
) are the SOs of (20.27), Pµ, Jµσ, D are generators of the conformal

(20.35)Q ab
(0) , Q̃

ab

(0) ; Pµ, Jµσ, D, ηµνρσ [pµ pν pρ pσ]TL

group and the symbol [...]TL denotes the traceless part of the corresponding tensor.
Indeed, it is not difficult to make sure the operators Q (

a
0
b
) and Q̃ (

a
0
b
) commute with Pµ,

ηµνρσ and satisfy the following relations (we denote Q ab
(0) Q ab

1 , Q̃
ab

(0) Q ab
2 )

where

(20.36)

[Q ab
α ,D] 2iQ ab

α , α 1,2,

[Q ab
α ,J0c] i( 1)α( cakQ

kb
α cbkQ

ka
α ), α ≠α,

[Q ab
α ,Jcd] i(δadQ

bc
α δbcQ

ad
α δacQ

bd
α δbdQ

ac
α ),

[Q ab
α ,Q cd

α ] 2f abcd
klnm ηklnm, [Q ab

1 ,Q cd
2 ] f abcd

kln η0kln

The commutation relations for ηµνρσ with Pµ, D and Jµσ are evident. We

f abcd
klnm (δacδkl δakδcl)(δbdδnm δdnδbm) (δabδkl δakδbm)(δdcδnm δcnδdm)

(δbcδkl δbkδal)(δad δnm δamδnd),

f abcd
kln ack(δbl δdn δbd δln) adk(δbl δcn δbcδln)

bck(δal δdn δad δln) bdk(δal δcn δacδln).

emphasize that anticommutation relations (20.36) are satisfied on the set of solutions
of Maxwell’s equations.

We see the commutation and anticommutation relations for the operators
(20.35) are in accordance with the scheme (18.1) characterizing a superalgebra. Thus
the set (20.35) forms a basis of the 36-dimensional superalgebra which is an IA of
Maxwell’s equations and includes the subalgebra AP(1,3). This superalgebra has
infinitely many extensions in the classes of higher order SOs. For example, we can add
to (20.35) the odd operators iσ2, iσ2Pµ, iσ2PµPσ and the even operators PµPσ, PµPσPα.
In this way we come to the 81-dimensional invariance superalgebra in the class M4.

We see the SOs of Maxwell’s equations in the class M2 include nontrivial
algebraic structures. It is possible to show the set of the odd SOs (20.27) is closed
under the commutation with the conformal group generators. Moreover all these SOs
can be represented as successive commutators of Q(0) with the generators (22.22),
(22.42), (20.26).
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20.5. Symmetries of Equations for the Vector-Potential

To conclude this section we discuss briefly symmetries of the equations for
the vector-potential of the electromagnetic field, given in (3.14), (3.15).

We note that the equations (3.14), (3.15) are not invariant under the conformal
algebra, i.e., symmetry of these equations is less extensive than symmetry of Maxwell’s
equations [101]. At first glance, the situation seems to be rather strange since each of
equations (3.14), (3.15) is conformal invariant. The thing is that different
representations of the algebra AC(1,3) are realized on the set of solutions of these
equations. In both cases, the basis elements of this algebra have the form (2.22), (2.42)
where S0a=i(ja-σa/2), Sab= abc(jc+σc/2), ja and σa are the matrices of (20.19). But the
corresponding values of K in (2.42) are different: K=2 for (3.14) and K=3 for (3.15).

There are two ways to overcome possible difficulties connecting with the
conformal noninvariance of the equations for the vector-potential in the Lorentz gauge:
to use another gauge (linear but including higher derivatives [25,101] or even nonlinear
[101]) or to consider realizations of the algebra AC(1,3) in a more extended class of
SOs [154, 157]. We do not discuss these possibilities here but consider symmetries of
the equation (3.15) with the Coulomb gauge (3.14), (3.16). For convenience we present
these equations again setting jµ=0:

where Ŝc and Zab are matrices (3.6), A=column(A1,A2,A3).

(20.37a)L1A≡p µ pµA 0,

(20.37b)L a
2 A≡(Zab i abcŜc)pbA 0

The Lie symmetry of the system (20.37) is very restricted and reduces to the
following 7-dimensional IA:

To "extend" this symmetry we can investigate invariance properties of (20.37a)

(20.38)
P̂0

∂
∂x0

, P̂a ipa

∂
∂xa

,

Ĵ ix×p iŜ, D ixµ p µ.

considering (20.37b) as an additional condition which in general is not invariant under
the symmetry transformations of the main equation (20.37a). Such an approach is
natural enough since it is the equation (20.37a) which describes evolution of A in time
and so the SOs of this equation corresponds to constants of motion. As to (20.37b) it
can be considered as an additional condition extending the symmetry of the evolution
equation (20.37a).

Such a method of investigation of symmetries of the equation (20.37a) is an
example of using of the concept of the conditional symmetry [124] in analysis of partial
differential equations. This concept enables to find a wide classes of exact solutions of
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nonlinear equations of mathematical physics, refer to Chapter 6.
First we consider symmetries of the equation (20.37a) without an additional

condition. In a complete analogy with Subsection 1.3 it is possible to prove the
following assertion.

THEOREM 20.4. The maximal IA of the equation (20.37a) in the class M1

is the 24-dimensional Lie algebra whose basis elements are

where Pµ, Jµσ, Kµ and D are the generators of the conformal group of (1.6), (1.16).

(20.39)iPµ, iJµν, iD, iKµ, ˆiSa, Zab

The concept of the conditional invariance in application to the system (20.37)
reduces to searching symmetries of the first equation on the subset of solutions
satisfying the condition (20.37b). In this way we prove the following assertion.

THEOREM 20.5. The equation (20.37) is conditionally invariant under the
27-dimensional Lie algebra whose basis elements are given in ((20.39), (20.40):

This algebra is the maximal conditional IA in the class M1.

(20.40)ηa (Zab i abcŜc )xb.

The proof is analogous to the proof given in Subsection 20.3.
We see the conditional symmetry of the equation (20.37a) is more extensive

than its ordinary symmetry and essentially more extensive than the symmetry of the
system (20.37). Moreover we should like to emphasize that the conditional symmetry
has a clear physical sense since this is the symmetry which corresponds to constants
of motion. Indeed, we can assign the following conserved quantity to any of the
operators Q of (20.39), (20.40):

where

(20.41)I ⌡
⌠d 3x(Ȧ

T
QA A TQȦ), İ 0

We see the concept of conditional invariance arises naturally by studying the

Ȧ
∂A
∂x0

, A T (A1,A2,A3).

conservation laws for systems of partial differential equations. This is the conditional
symmetry (but not the ordinary symmetry of (20.37a) or of the system (20.37)) which
generates conservation laws for the vector-potential. The general problems connected
with conservation laws are considered in Section 23.

In conclusion we note that the symmetries of Maxwell’s equations considered
in the above in fact are conditional also. It happens the conditional and ordinary
symmetries of the equations (3.4), (3.5) coincide.

250



Chapter 4. Nongeometric Symmetries

21. SYMMETRIES OF THE SCHRODINGER EQUATION
WITH A POTENTIAL

21.1. Symmetries of the One-Dimension Schrödinger Equation

Let us consider the one-dimension Schrödinger equation with an arbitrary
potential V(x)

An investigation of symmetries of this equation includes the problems which

(21.1)Lψ≡ 







p0

1
2

(p 2 V(x)) ψ 0, p i
∂
∂x

.

can be subdivided into two types:
1) the potential is given, symmetries are searched;
2) to find potentials admitting the given (or any) symmetry.
We consider both types of problems.
Let us search for SOs of (21.1), having the following structure

if first order operators only are considered or

(21.2)Q1 (h0 p)0 (h1 p)1

if the second order is required. We use the notation

(21.3)Q2 (h0 p)0 (h1 p)1 (h2 p)2

where hn (n=0,1,2,...) are arbitrary functions of x and t.

(21.4)(hn p)n≡[(hn p)n 1,p] , (h0 p)0 h0

Substituting (21.1), (21.2) into the invariance condition (16.7) ( where αQ=0
without loss of generality) and equating coefficients of linearly independent differential
operators we come to the following system of determining equations

where the dot and prime denote derivatives in respect with t and x respectively.

(21.5)h1 0, 2ḣ1 h0 0, ḣ0 V h1 0

The equations (21.5) can be used to find all the nontrivial symmetries
corresponding to the given V. But it happens that it is possible to find the general form
of V admitting any symmetry and to calculate these symmetries explicitly. Using the
condition h1≠0 we come to the following differential consequences of (21.5):

from which we obtain

(21.6)h0 0, V 0,
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V0, V1 and V2 are arbitrary constants.

(21.7)V V0 V1x V2 x 2,

We see the requirement that the equation (21.1) admits a first-order SO is very
restrictive and leads to the potentials (21.7) only. Substituting (21.7) into (21.5) it is not
difficult to find the corresponding SOs explicitly.

Now let us assume the equation (21.1) admits the second-order SO of (21.3)
(we note that such an operator reduces to the first order one if we take into account the
equation (21.1)). In analogy with the above it is not difficult to recover the old results
[7,51] and find the most general potential

Let us extend these developments to arbitrary n-th-order symmetries with

(21.8)V(x)
V 2

(c0 c1x)2
V0 V1x V2 x 2.

and search for the corresponding classes of potentials admitting such n-th-order SOs.

(21.9)Qn

n

k 0

(hk p)k

For any order k, we note the following operator identity containing k
anticommutators

where ∂x=∂/∂x. This relation will be very useful in the following in order to obtain the

(21.10)(hk p)k ( i)k
k

l 0

k!2k l

(k l)!l!
(∂l

xhk)∂
k l
x

determining equations for the coefficients of Qn.
For each k-term in the operators (21.9) we can evolute the following

commutators

and

(21.11)[i∂t, (hk p)k] i(ḣk p)k

Using these relations we immediately get for the free case (V=0) the set of

(21.12)[ 1
2

p 2, (hk p)k]
i
2

(hk p)k 1.

commutators

where

(21.13)[L0, (hk p)k] i(ḣk p)k

i
2

(hk p)k 1

(21.14)L0 i∂t

1
2

p 2 i∂t

1
2

∂2
x.
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For considering Qn-problem with arbitrary potential we need the additional
commutators [V,(hk p)k], k=0,1,...,n. Consider separately even and odd k’s. By using
(21.10) we obtain for k≥1

and for k≥0

(21.15)[V, (h2k p)2k] i
k 1

m 0

( 1)m k 2(2k)!
(2k 2m 1)!(2m 1)!

(h2k∂
2k 2m 1
x V p)2m 1,

By superposing the results (21.9)-(21.16) it is easy to evolve the invariance

(21.16)[V, (h2k 1 p)2k 1] i
k

m o

( 1)m k 1 2(2k 1)!
(2k 2m 1)!(2m)!

(h2k 1∂
2k 2m 1
x V p)2m.

condition (16.7) (where αQ=0 without loss of generality) and equate the coefficients of
linearly independent differential operators. As a result, we come to the following
system of determining equations

where m=0,1,...,{n/2}, l=0,1,...,{(n-1)/2}, h-1≡0.

(21.17)

hn 0,

2ḣ2m h2m 1

(n 1)/2

k m

( 1)m k 1 2(2k 1)!
(2k 2m 1)!(2m)!

h2k 1∂
2k 2m 1
x V 0,

2ḣ2l 1 h2l

n/2

k l 1

( 1)k l 2(2k)!
(2k 2l 1)!(2l 1)!

h2k∂
2k 2l 1
x V 0.

21.2. The Potentials Admissing Third-Order Symmetries

The equations (21.17) define all the possible potentials V admitting nontrivial
symmetries of arbitrary order n. Let us consider in more detail the first new nontrivial
context, i.e., the third-order SO. We are asking for symmetries of the Schrödinger
equation (21.1) of the form

The corresponding determining equations (21.17) are

(21.18)Q3

3

k 0

(hk p)k (h0 p)0 (h1 p)1 (h2 p)2 (h3 p)3.

It is not difficult to find the general solution of the system (21.19a), which has

(21.19a)h3 0; 2ḣ3 h2 0, 2ḣ2 h1 6h3V 0,

(21.19b)2ḣ1 h0 4h2V 0, ḣ0 h1V h3V 0.

the following form
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where a, b and c are arbitrary functions of t. Excluding h0 from (21.19b) and using

(21.20)h3 a, h2 b 2ȧx, h1 g1 6aV, g1 2äx 2 2ḃx c

(21.20) we come to the following nonlinear ordinary differential equation for V

Integrating this equation twice in respect with x and denoting V=U′ we obtain

(21.20′)F(a,b,c;V,x)≡aV (2äx 2 6aV c 2ḃx)V

6(2äx aV ḃ)V 12äV 2(2(∂4
t a)x 2 2(∂3

t b)x c̈) 0.

where g1 is given in (21.20), d and e are arbitrary functions of t.

(21.21)a(U 3(U )2) (g1U) 1
3

(∂4
t a)x 4 2

3
(∂3

t b)x 3 c̈x 2 dx e

The function U depends on x only while a, b, c, d, e are functions of t. This
circumstance enables us to separate variables in (21.21). Dividing the l.h.s and the r.h.s.
of (21.21) by a and differentiating them in respect with t we conclude that there exist
the two possibilities.

1. This equation reduces to one of the following forms

where ω0, ..., ω5 are arbitrary constants.

(21.22a)V 3V 2 2ω0V ω5,

(21.22b)V 3V 2 ω4x,

(21.22c)(V 3V 2) 2ω2(xV 2V) 0,

(21.22d)U 3(U )2 2ω1(x
2U) 1

3
ω2

1x
4 ω5

Formulae (21.22) define classes of equivalent equations connected by
transformations V→V+C1, U→U+C2+C3x, x→x+C4, Ck are arbitrary constants.
Moreover the functions a, b, ..., e included in (21.21) have to satisfy the following
conditions

besides that all the ωk absent in (21.22) (say, ω1 , ω2, ω3, ω4 for the equation (21.22a))

(21.23)ä ω1a, ḃ ω2a, c ω3a, k ω4a, e ω5a

are equal to zero.
2. The second possibility is that the solution of (21.21) has the form

and the conditions (21.23) are not necessary valid. This possibility is not too interesting

(21.24)ϕ C1x
3 C2x

2 C3x C4

inasmuch as the function (21.24) is a linear combination of particular solutions of the
equations (21.22).
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Let us consider consequently any of the equations (21.22) and describe the
corresponding classes of potentials.

Formula (21.22a) defines the Weierstrasse equation whose solutions are
expressed via elliptic integrals. Multiplying both parts of (21.22a) by V’ and integrating
we obtain the first integral of this equation

where C is the integration constant. Then changing the roles of dependent and

(21.25)1
2

(V )2 V 3 ω0V
2 ω5V C

independent variables it is possible to integrate (21.25) and to find V as implicit
functions of x. Here we present a particular solution of (21.25) only:

The relation (21.22b) defines the first Painlevé transcendent. Its solutions are

(21.26)V 2ν2tanh2(νx) 1.

meromorphyc on all the complex plane but can not be expressed via elementary or
special functions.

The equation (21.22c) also can be reduced to the Painlevé form using the
Miura [24*] ansatz. Indeed, as a result of the substitution

this equation takes the following form

(21.27)V

3
4ω2

2

3
F

ω0

6
, x

3
1

6ω2

y

(where F′=∂F/∂x), and the ansatz [24*]

(21.28)F FF
1
3

xF
2
3

F 0

reduces (21.28) to the following form

(21.29)F W
1
6

W 2

Equating the expression in the second brackets to zero and integrating it we

(∂y

1
3

W)(W 1
6

W 2W
1
3

yW
1
3

W) 0.

come to the second Painlevé transcendent:

where K is an arbitrary constant.

(21.30)W
1

18
W 3 1

3
yW K

Thus any solution of the second Painlevé transcendent corresponds to the
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potential V (21.27), (21.29) moreover the related Schrödinger equation admits a third-
order SO. Of course the ansatz (21.29) does not make it possible to find all the
solutions of (21.28), in particular the solutions (21.24) are missed.

The last of the equations considered, i.e. the equation (21.22d), with the help
of the change U=2f-ω1/3 reduces to the form

where

F 2fF 4f F 2ω5 1/2

Choosing ω5=-1/4 we conclude that any solution of the Riccati equation

F f f 2 x 2/4.

corresponds to the solution of the equation (21.22d).

(21.31)f f 2 x 2/4

The equation (21.31) is much simpler than (21.22d) nevertheless it cannot be
integrated in radicals. Particular solutions of the equation (21.22d) have the following
form

We note that with the help of twice differentiation and the consequent change

U
2
x

, U
ω1

3
x 3.

of variables

the equation (21.22d) reduces to the form

U

3
2ω2

1

3
G

1
9

ω1x
2, x

y
3

4ω1

The last equation had being met in literature and is nothing but the reduced Boussinesq

(21.32)∂4G G G G G
1
3

8G x 2G 7xG 0.

equation, see, e.g., [157, 25*] (refer to Subsection 31.7 also). The procedure outlined
above admits to reduce it to the Riccati equation.

Thus the third-order SO are admitted by a very extended class of potentials
described above. It is necessary to emphasize that all these potentials (excepting
(21.24), (21.26)) correspond to the Schrödinger equation which does not possess any
non-trivial (distinct from time displacements) Lie symmetry.
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21.3. Time-Dependent Potentials

In this subsection we exploit the following observation: all the equations
(21.22) are equivalent to reduced versions of the Boussinesq equation

Indeed, the equations (21.22a) and (21.32) (the last is equivalent to (21.22d) appear

(21.33)V̈ V V VV V 0

from similarity reducing of the equation (21.33) [26*], and the equations (21.22b),
(21.28) (the last is equivalent to (21.22c)) appear as a result of the reduction of (21.33)
using its conditional symmetry, refer to Subsection 31.7.

Thus there exists a deep connection between solutions of the Boussinesq
equation and the Schrödinger equation admitting third-order symmetries. This
connection became more straightforward in the case of time-dependent potentials
V=V(x,t). Indeed, the determining equations (21.19) are valid in this case also, but the
compatibility condition for the system (21.19), in contrast with (21.20), takes the form

where F(a,b,c;x,V) is the expression defined in (21.20′).

(21.34)F(a,b,c;x,V) 12aV̈ 4(b 2ȧx)V̇ 0

The equation (21.34) is more complicated then (21.20’) due to time
dependence of V, which makes it impossible to separate variables. That is why we
restrict ourselves to analysing of sufficient conditions of its integrability.

Let a=const, b=0 then (21.34) reduces to the form

With the help of the change V→V/6, t→t/(2√3) the equation (21.35) reduces to the

(21.35)12V̈ 6(VV V V ) V 2cV 0.

Boussinesq equation.
Thus if the potential satisfies the Boussinesq equation then the corresponding

Schrödinger equation admits a non-trivial SO of third order. For more on the
Boussinesq equation see Subsection 31.7.

21.4. Algebraic Properties of SOs

Thus we have described a class of potentials admitting SOs of third order. A
natural question arises about possible applications of these hidden symmetries.

In the following we will demonstrate that SOs of third order possess a very
important information about the energy spectrum of a system described by the equation
(21.1) and can be used to generate solutions of this equation and even of the nonlinear
Schrödinger and wave equations.

Let us investigate algebraic properties of SOs which do not depend on the
exact form of the potential. Moreover these properties are completely defined by the
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type of equation satisfied by the potential.
Let the potential satisfies the equation (21.22a). It means that in (21.23)

ω1=ω2=ω3=ω4=0. Then we conclude from (21.18), (21.20) that the corresponding third
order SO reduces to a linear combination of the Hamiltonian (21.1) and the following
operator

i.e., in fact we have the only non-obvious SO (21.36). This SO commutes with the

(21.36)Q p 3 1
4

[3V,p] ≡2pH
1
2

Vp
i
4

V ,

Hamiltonian,

i.e. Q is a constant of motion. In Subsection 31.8 we will use the property (21.37) to

(21.37)[Q,H] 0,

integrate the equations of motion.
If the potential satisfies the equation (21.22b) then ω1=ω2=3=ω5=0, k=k0+at,

and the corresponding SO has the form

Just two more SOs are represented by the Hamiltonian and the unit operator I,

(21.38)Q p 3 3
4

[V,p] t.

moreover, they form the Heisenberg algebra together with Q, satisfying the following
relations:

It is well-known that up to unitary equivalence all irreducible sets of self-

(21.39)[Q,H] iI, [Q, I] [H, I] 0.

adjoint operators satisfying (21.39) are exhausted by p, -i∂/∂p and 1, from which it
follows that for any potential satisfying the first Painleve transcendent (21.22b) the
spectrum of the corresponding Hamiltonian is continuous.

In the case when the potential satisfies (21.22c) the corresponding SO of third
order has the form

and generated the following algebra together with the Hamiltonian H

(21.40)Q p 3 3
4

[V,p]
ω2

2
tH

It follows from (21.41) the spectrum of the Hamiltonian H is continuous.

(21.41)[Q,H] i
ω2

2
H.

Indeed, let H ΨE=E ΨE, then the function Ψ′=exp(iλQ)ΨE (where λ is a real parameter)
also is an eigenvector of the Hamiltonian with the eigenvalue λE. In other words if H
has at least one non-zero eigenvalue then using the third-order SO it is possible to
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construct eigenfunctions corresponding to any real eigenvalue.
In the case when the potential is defined by the equation (3.2d) there exist two

SOs of third order, Q+ and Q-,

which satisfy the following relations

(21.42)

Q±

1

2
[p 3 i

4
ω[[x,p] ,p] [ω2x 2 3ϕ ,p]

i
2

ω(ϕ 2xϕ ω2

3
x 4 1

2
)]exp(± iωt), ω ω1 .

If ω1<0 then Q± play a role of increasing and decreasing operators for the

(21.43)[H,Q± ] ωQ± , [Q ,Q ] ωH 2.

Hamiltonian eigenvalues, i.e if HΨλ=λΨλ then H(Q±Ψλ)=(λ±ω)Ψλ, and so H has a
discrete spectrum.

We see that the third-order SOs enable to make very general predictions about
the Hamiltonian spectra for a very wide class of potentials. Of course these predictions
have a formal level inasmuch we ignore considering of domains of the operators
discussed.

For application of the third-order SOs to construction of exact solutions and
generation of solutions of the linear and non-linear Schrödinger equation refer to
Subsection 31.8.

21.5. Complete Sets of SOs for One- and Three-Dimensional Schrödinger equation

Consider some problems of the type 1) (see Subsection 21.1) where the
potential is treated as a known function. We restrict ourselves to analysis of the
following cases:

V=V1, (21.44a)

V=V2 x, (21.44b)

V=V3 x2 (21.44c)

where Va are arbitrary constants, and find all the nonequivalent SOs of arbitrary order
n for the corresponding Schrödinger equations.

For the case (21.44a) the problem reduces to description of SOs of the free
Schrödinger equation. The equations (21.17) take the form
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By the consequent differentiation of (21.44) we obtain the relations

(21.45)ḣ0 0, hn 0, 2ḣk 2hk 1 0, 0<k<n.

from which it follows that

(21.46)∂k 1
t hk 0, ∂n k 1

x hk 0

where C k
p,l are constant coefficients whose number is equal to (k+1)(n-k+1). From

(21.47)hk

n k

p 0

k

l 0

C p, l
k x pt l

(21.24) we obtain the only restriction for these constants

therefore the total number of independent parameters in (21.45) is

(21.48)2l(l 1)C p, l 1
k (p 1)C p 1, l

k 1 0, k 1,2, ...,n;

The corresponding SOs of order n (whose number is evidently equal to Nn) are defined

(21.49)N n
n

k 0

(k 1)(n k 1)
n

k 1

k(n k 1) 1
2

(n 1)(n 2).

by relations (21.9), (21.47), (21.48) (the latter can be interpreted as a recurrence
formulae). It is not difficult to see that all these SOs are nothing but polynomials of
order n in the first order SOs P=p and G=tp-mx.

For the potentials (21.44b) and (21.44c) the equations (21.17) reduces to the
following forms

and

(21.50)hn 0, ḣ0 2V2h1 0, 2ḣn ḣn 1 0,

2ḣk hk 1 2(k 1)V2hk 1 0, 0<k<n;

The equations (21.50) can be solved in complete analogy with (21.45). We

(21.51)hn 0, 2ḣn hn 1 0, ḣ0 2V3xh1 0,

2ḣk hk 1 4(k 1)V3xhk 1 0, 0<k<n.

again come to the differential consequences (21.46) and the representation (21.47) but
instead of (21.48) we obtain the following relations

Thus the equation (21.1), (21.44b) admits N n SOs of order n. The explicit

(21.52)2m(l 1)C p, l 1
k (p 1)C p 1, l

k 1 4(k 1)V2C
p, l

k 0, k 1, ...,n.

form of these operators is given by formulae (21.9), (21.47), (21.52), N n is given in
(21.49). All these SOs are polynomials in the first order SOs P=p+Vt and G=tP-mx.

For the equations (21.51) we have only the latter of the consequences (21.46)
which allows to represent hk in the form
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where ak,l are arbitrary functions of t. Substituting (21.53) into (21.51) and equating

(21.53)hk

n k

l 0

ak, l x l

coefficients of the same powers of x we obtain N n ordinary differential equations for
N n unknowns ak,l. The general solution of such a system depends on N n arbitrary
parameters and the corresponding SOs can be represented in the following form [2*]

where ω=(V3)
1/2, Ck,α are arbitrary parameters whose number is equal to N n of (21.47).

(21.54)Q n
n

k 0

k

α 0

Ck,α(p iωx)α(p iωx)k αexp[i(2a k)ωt]

We see that all the SOs of the Schrödinger equation with the potential of
harmonic oscillator reduce to polynomials on the first order SOs P±=(p±iωx)exp( iω).
In the case n=2 this conclusion reduces to the well-known results [7,51].

Searching of higher symmetries of the three-dimension Schrödinger equation,

can be carried out in analogy with the scheme used above. The essential complication

(21.55)Lψ≡ 







i
∂
∂t

1
2

p 2 V(x) ψ 0,

of the problem, connected with the necessity to consider partial derivatives in respect
with spatial variables is overcame by using the generalized Killing tensors.

As in Subsection 16.5 we search for SOs of arbitrary order n in the form
(16.8), (16.9a) where indices values run from 1 to 3, K··· are unknown functions of x
and t. Substituting these expressions and L of (21.55) into the invariance condition
(16.7) and equating coefficients of linearly independent differential operators we come
to the following system of determining equations (compare with (21.17))

where

(21.56)

∂(an 1K a1a2...an) 0,

2K̇
a1a2...22m 1

2m
∂(a2mK a1a2...a2m 1)

(n 1)/2

k m

( 1)m k 1 2(2k 1)!
(2k 2m 1)!(2m)!

U
a1a2...a2m

k ,

2K̇
a1a2...a2l 1 1

2l 1
∂(a2l 1K a1a2...a2l)

n/2

k l 1

( 1)k l 2(2k)!
(2k 2l 1)!(2l 1)!

W
a1a2...a2l 1

k

and symmetrization is imposed over the indices in brackets.

m 0,1, , n/2 , l 0,1, ..., (n 1)/2 ,

U
a1a2...a2m

k K a1a2...a2mb1b2...b2k 2m 1∂b1∂b2...∂b2k 2m 1V,

W
a1a2...a2l 1

k K a1a2...a2l 1b1b2...b2k 2l 1∂b1∂b2...∂b2k 2l 1V,
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The equations (21.56) define potentials V admitting nontrivial symmetries of
order n and the coefficients K··· of the corresponding SOs. In Subsection 16.5 we obtain
the general solution of these equations for the case V=0. It is not difficult to solve these
equations for the case of the harmonic oscillator potential [2*]. Searching of potentials
admitting nontrivial symmetries also can be carried out using the equations (21.56).

21.6. SOs of the Supersymmetric Oscillator

The equation for the supersymmetric oscillator has the form [417]

where ψ is a two-component function, σ3 is the Pauli matrix, ω is a real parameter.

(21.57)Lψ≡ 







i
∂
∂t

1
2

(p 2 ω2 σ3ω) ψ 0

The equation (21.57) has a specific symmetry in the class M1 which is defined
by the superalgebra sqm(2) [417]. This algebra is formed by the operators

which satisfy the following commutation and anticommutation relations

(21.58)Q1

1

2
(σ1 p σ2ωx), Q2

1

2
(σ2 p σ1ωx), Q3

1
2

(p 2 ω2x 2 σ3ω)

Invariance under the algebra (21.59) is the main property of equations of

(21.59)[Q1,Q2] 0, Q 2
1 Q 2

2 Q3, [Q1,Q3] [Q2,Q3] 0.

supersymmetric quantum mechanics [417].
Investigating of all the nonequivalent SOs of arbitrary order for the equation

(21.57) reduces to investigation of symmetries of the Schrödinger equation (21.1).
Making the transformation

we come to the equation L′ψ′=0, where L′=i∂/∂t-(p2+ω2)/2 is nothing but a direct sum

(21.83)ψ→ψ exp( iωtσ3/2), L→L exp( iωtσ3/2)Lexp(iωtσ3/2)

of two operators (21.1), (21.22c). The corresponding SOs can be represented in the
form Q′n=σµQ µ

n where Q µ
n are the SOs of the equation (21.1), (21.22c) present in

(21.54) (where Ck,α→C k
µ
α). Returning with the help of the inverse transformation to the

starting equation (21.57) we obtain a complete set of SOs of this equation in the form

where

Q n σ̂µQ n
µ ,

The number of linearly independent SOs of order n is equal to 4N n, N n is given in

σ̂0 σ0, σ̂3 σ3, σ̂1 σ1cos ωt
2

σ2sin ωt
2

, σ̂2 σ2cos ωt
2

σ1sin ωt
2

.
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(21.49).
In a complete analogy with the above we can investigate symmetries of three-

dimensional Schrödinger equation with potential of supersymmetric oscillator

The number of linearly independent SOs of order n is equal to 4Nn where Nn is the

V(x) ω2x 2 ωσ3.

number given in (16.37).
The approach used above can be extended in order to investigate symmetries

of super- and parasupersymmetric Schrödinger equation with arbitrary potential, refer
to [3*,4*,5*]. It can be used to search for infinite order symmetries, in this case the
determining equations also are given by relations (21.8) or (21.54) where the first lines
have to be omitted and summing up is changed by infinite series (i.e., the top
summation limit tends to infinity).

22. NONGEOMETRIC SYMMETRIES OF EQUATIONS
FOR INTERACTING FIELDS

22.1. The Dirac Equation for a Particle in an External Field

The symmetry of an equation describing a charged particle in an external field
as a rule is less extended than the symmetry of the corresponding equation describing
a free particle. For instance if the external field is the electric field directed along the
fixed axis then the corresponding equation admits the cylindrical symmetry but not the
spherical one etc. However for some classes of external fields the above described
nongeometric symmetry is preserved and even extended.

Here we consider some examples of external fields corresponding to nontrivial
symmetries of the Dirac equation. The assertions present in the following can be
verified by direct calculations (for details see [146, 154, 157]).

a) Consider the Dirac equation for a particle in the constant and homogeneous
electromagnetic field:

where

(22.1)L̂ψ≡(γµ πµ m)ψ 0, πµ pµ eAµ

Here Fµν are constants determining the tensor of the electromagnetic field strengths.

(22.2)Aµ

1
2

Fµνx
ν.

The equation (22.1), (22.2) has not the symmetry in respect with the algebra

263



Symmetries of Equations of Quantum Mechanics

A8 described by Theorem 17.1. But there exist two constants of motion closely
connected with this symmetry:

where Σ̂µσ are the operators obtained from (17.6) by the change pµ → πµ:

(22.3)F1

1
2

Σ̂µσF µσ, F2

1
4

εµνρσΣ̂
µν

F ρσ

The operators (22.3) commute and satisfy the relations

(22.4)Σ̂µσ
1
4

[γµ,γσ] i
2m

(1 iγ4)(γµπσ γσπµ).

so they are SOs of the equation (22.1), (22.2).

[F1, L̂] 1
2m

(γµπσ γσπµ)F
µσL̂,

[F2, L̂] 1
2m µνρσ(γµπν γνπµ)F ρσL̂,

b) In the case of the selfdual external electromagnetic field the nongeometric
symmetry of the equation (22.1) is just more extensive. Indeed, using the selfduality
condition for the vectors of the electric and magnetic field strengths

it is not difficult to make sure the operators (22.4) are the SOs of the corresponding

H iE 0

equation (22.1). These operators satisfy the invariance condition

and the commutation relations (17.7) characterizing the algebra AO(1,3).

(22.5)[Σ̂µν, L̂] 1
2m

(γµπν γνπµ)L̂

c) Now we consider the Dirac equation with the Pauli-type interaction

where F µν=-i[πµ,πν], Aµ is an arbitrary vector-potential.

(22.6)Lψ≡ 







γµπ
µ m

i
2m

(1 iγ4)γµγνF
µν ψ 0

The equation (22.6) is manifestly invariant under the Poincaré group such as
the Dirac equation for a free particle. It turns out the nongeometric symmetry of (22.6)
in the class M1 coincides with the corresponding symmetry of the free Dirac equation.
Indeed, the operators (22.4) (and Σ0, Σ1 of (17.6) where pµ → πµ) are the SOs of the
equation (22.6), satisfying the invariance condition (22.5).

d) The following example is the Dirac equation for a particle in the constant
magnetic field depending on two spatial variables. We choose the corresponding
vector-potential in the form

(22.7)A0 A3 0, A1 A1(x1,x2), A2 A2(x1,x2)
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which corresponds to the magnetic field directed along the third coordinate axis.
The equation (22.1), (22.7) is invariant under the following operators

(where Ĥ=γ0γaπa+γ0m) which form a superalgebra together with (Σµσ)2 and iĤ(Σµσ)2 ,

Σ23 iγ4(γ3m p3), Σ31 iγ3γ0γαπα,

Σ12 iΣ23Σ31, Σ0a

i
2

Ĥ abcΣbc, α 1,2

satisfying the following commutation and anticommutation relations

The considered equation is invariant under the algebra A8 also, besides this

[Σµν,Σλσ] 2(gµλgνσ gµσgνλΣ
2
µν i µνλσĤ[Σ2

µν(1 δµ0) Σ2
λσ(1 δµ0)(1 δνσ)],

[Σµν,Σ
2
λσ] [Σµν, iĤΣ2

ab] [Σ2
µν,Σ

2
λσ] [Σ2

µν, iĤΣ2
ab] 0.

algebra is realized in the class of integro-differential operators [146,157]. The
analogous symmetry is admitted by the Dirac equation for a particle in the electric field
depending on x0 and x3 [146].

e) In conclusion, we discuss symmetries of the Dirac equation for a charged
particle interacting with the Coulomb field. The corresponding potential has the form

It was Dirac who showed the SOs of the equation (22.1), (22.8) for the first

(22.8)Aa 0, A0

e 2

x
, x x 2

1 x 2
2 x 2

3 .

time [81]. In addition to the evident symmetry under the spatial rotations group whose
generators are

this equation admits the following SO

(22.9)J x×p S, (S i
4

γ×γ),

which is called the Dirac constant of motion. This SO plays an important role while

(22.10)Q1 (2S J 1
2

)γ0

solving the equation (22.1), (22.8) [81]. It can be easily shown the operator (22.10)
coincides with A0 of (18.5).

In addition to (22.9), (22.10) there exists one more SO of the Dirac equation
with the Coulomb potential. This SO belongs to the class M2 and has the form [237]

The operators (22.9)-(22.11) together with the following operators

(22.11)Q2

2S x
x

i

me 2
Q1









2S p iγ4

e
x

.
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form a basis of a seven-dimensional superalgebra, satisfying the following relations

Q 2
1 J 2 1

4
, Q 2

2 1
Q 2

1

m 2e 4











p 2 e 2

x 2
γ0

me 2

x

Using the identity

(22.12)

[Ja,Jb] i abcJc, [Ja,Qα] [Ja,Q
2

α ] 0,

[Qα,Qα ] 2δαα Q 2
α , α 1,2,

[H,Qα] [H,Ja] 0, H γ0γaπa γ0m
e
x

.

it is not difficult to show that in the space of square integrable functions the spectrum

2S J J 2 L 2 S 2, L x×p

of the operator (22.10) is discrete and can be defined by the following formula [81]

The existence of the SOs satisfying (22.12) is the cause of the degeneracy of

(22.13)Q1ψ æψ≡ε(j 1/2)ψ, ε 1, j 1/2,3/2, ... .

the energy spectrum of an electron in the Coulomb field. Indeed, an energy level E can
be expressed via the eigenvalues æ of the operator Q1 commuting with the Dirac
Hamiltonian, so E(æ)=E(-æ) in accordance with anticommutativity Q1 with Q2, and
there is a degeneracy in respect with the change æ → -æ.

It is not difficult to verify that the operator Q1 satisfies the relations

from which it follows that the operator Q1 is a constant of motion of the Dirac equation

[Q1,S p] [Q1,S x] [Q1,γ x] [Q1,γ0] 0

in the case of a more complicated potentials also. In particular the following assertion
is valid [161]:

THEOREM 22.1. The general form of a spherically symmetric potential
V=V(x), such that the equation

admits the SO Q1 of (22.10), is given by the following formula

(22.14a)










i
∂

∂x0

γ0γa pa γ0m V ψ 0

where Vk are arbitrary functions of x.

(22.14b)V V1 V2γ0 V3γ x V4γ0γ x

In the case V1=qe2/x, V3=e2qµ/x3, V2=V4=0 relation (22.14b) defines the
potential of the anomalous Pauli interaction with the field of a point charge and for
V1=V2, V3=V4=0 this relation defines the general form of the confinement potential used
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in the quark models based on the one-particle Dirac equation [392].
We see the Dirac constant of motion serves as a SO for a wide class of

equations presented in (22.14).
There are other types of external fields generating nontrivial symmetries of

the corresponding Dirac equation. Some exotic examples of such fields are collected
in [9] where exact solutions of the corresponding equations are present.

22.2. The SO of Dirac Type for Vector Particles

Let us demonstrate that the additional SO exists for vector particles interacting
with the field of a point charge [334].

Consider the KDP equation with anomalous interaction for a particle of spin
1 in the Coulomb field:

where

(22.15)Lψ≡(βµ πµ m ekS µνFµν)ψ 0

ßµ are the 10×10 KDP matrices satisfying the algebra (6.20), Aµ is the vector-potential

πµ pµ eAµ, Fµν i[πµ,πν], Sµν i[βµ,βν],

of (22.8).
The equation (22.15) can be represented in the Hamiltonian form (6.35) where

The evident SOs of the equation (6.35), (22.16) are the generators of the

(22.16)
H [β0,βa]pa β0m

e 2

x
ie 2

m
(k 1 β2

0)
βa xa

x 3

ike 2

m 2











βa xa

x 3
,βb pb ,

P 1 β2
0

1
m

βa pa β2
0

ike 2

m 2
βaβ0

xa

x 3
.

rotation group, i.e., the components of the vector J=x×p commuting with the
Hamiltonian H of (22.16). But it is not all. Using the relations (6.20) it is not difficult
to verify that the following operator [334]

is a SO of the equations (22.15) and (6.35), (22.16). Indeed, this operator commutes

(22.17)Q (1 2β2
0)[2(S J)2 2S J J2]

with L of (22.15) as well as with H and P of (22.16). This assertion is valid for k=0
also, i.e., if anomalous interaction is absent.

Like the Dirac SO, the operator (22.17) has a discrete spectrum

inasmuch as Q 2≡(J2)2.

(22.18)Qψ εj(j 1)ψ, ε 1, j 0,1,2, ...
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An additional SO exists for the Stueckelberg equation [398] also. In presence
of the anomalous interaction with the Coulomb field this equation can be written in the
form (22.15) where ßµ are the 11×11 matrices given in Subsection 8.5, Sµσ are matrices
realising the representation D(1/2 1/2) D(1 0) D(0 1) D(0 0) of the algebra AO(1,3).
The corresponding SO is given by formula (22.17) where Sa= abcSbc/2, Sbc and ß0 are
the corresponding matrices of dimension 11×11.

In paper [318] nongeometric symmetries of the KDP equation with anomalous
Pauli-type interaction (22.15) were described for constant electric and magnetic fields.
The corresponding IA is the algebra A[SU(2) SU(2) A4] where A4 is a four-
dimensional commutative subalgebra. We do not present the explicit form of
cumbersome basis elements of this IA here.

22.3. The Dirac-Type SOs for Particles of Any Spin

The results given above can be generalized to the case of Poincaré- and
Galilei-invariant equations for particles of arbitrary spin [334].

Consider an arbitrary Poincaré-invariant equation of the form (22.15) where
Sµσ are generators of a direct sum

of IRs of the Lorentz group, Aµ is the vector-potential (22.8), ßµ are matrices satisfying

(22.19)D D(j τ)

(6.7). We assume the equation in question be invariant under the transformation of
space inversion of (2.55) where the matrix r1 by definition satisfies the following
relations

In analogy with (22.10), (22.17) we search for SOs of the considered equation

(22.20)
r1β0 β0r1, r1βa βar1,

r1Sab Sabr1, r1S0a S0ar1.

in the form

Requiring Q commutes with L (22.15) and using relations (6.7), (22.20) we obtain the

(22.21)Q r1d, d d(x,p,Sµν).

following conditions for d

It follows from (22.22a) that d depends on Sab, a,b≠0, and L=x×p. The explicit

(22.22a)[x,d] [β0,d] 0,

(22.22b)[S0a xa,d] [S0a pa,d ] 0.

form of d=d(Sab,L) can be obtained solving the equations (22.22b), moreover it is
sufficient to solve these equations for S0a belonging to an IR D(j τ)⊂D.
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To find a solution of (22.21b) it is convenient to use the spherical spinor basis
in which the operators S0a xa/x and xS0a pa reduce to the numeric matrices (refer to
Appendix 3). A transition into this basis is one of realisations of the algorithm
described in Subsection 16.1. In accordance with this algorithm we reduce a problem
of description of SOs to a purely matrix problem.

Omitting cumbersome calculations (for details see [334]) we present the
explicit form of d satisfying(22.22) for an arbitrary IR D(j τ).

j+τ is integer:

j+τ is half integer:

(22.23)d cF
j τ

s j τ

s

λ 0

( 1)λB s
λ , λ 0,1,2, ... .

where c is an arbitrary constant,

(22.24)d cF
j τ

s j τ

s

ν 1/2

( 1)s 1/2 νA s
ν

Bλ
s, Aλ

s are operators satisfying the relations

F











2(j τ) 1

α 1

(4J2 1 α2), j τ≠ 1
2

,

1, j τ 1
2

,

Here Ps is the projector

(22.25)
s

µ ν0

B s
ν 1, ν ν0, νo 1, ν0 2, ..., ν0

1
2

[1 ( 1)2s],

(22.26)B s
ν B s

ν B s
ν , B s

ν A s
ν δνν A s

ν ,

A s
ν A s

ν δνν (4J2 1)B s
ν , A s

0 ≡0,

(22.27)
s

ν ν0

(νA s
ν ν2B s

ν ) Ps(2S J S2)≡Gs.

S is a vector whose components are Sa= abcSbc/2, Sbc⊂D(j τ).

Ps
s ≠s

S2 s (s 1)

s(s 1) s (s 1)
, m n ≤s,s ≤m n,

For any given value of s the operators Bν
s and Aν

s can be expressed via Gs. For
this purpose it is sufficient to raise the l.h.s. and r.h.s. of (22.27) in powers n=1,2,...,2s
and then to solve obtained system of 2s+1 linear algebraic equations for 2s+1
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unknowns Bν
s and Aν

s. Moreover according to (22.26) the equations whose number is
n=2k and n=2k+1 have the form

where C b
a is the number of combinations from b elements by a. The equation with the

(22.28)

G 2k
s

s

ν ν0











k

m 0

C2k2m

ν2(k m)(4J2 1)k mB s
ν

k 1

n 0

C 2n 1
2k ν2(n k) 1(4J2 1)k n 1A s

ν , k≤s,

G 2k 1
s

s

ν ν0











k

m 0

C 2m
2k 1ν2(k m) 1(4J2 1)k mA s

ν

k 1

n 0

C 2n 1
2k 1 ν2(n k)(4J2 1)k nB s

ν , k<s.

number n=2s+1 is given in (22.25).
Let s=(m+n)max be the maximal value of the quantum number s appearing by

reduction of the representation (22.19) by the group O(3). We present solutions of the
equations (22.23)-(22.25), (22.28) for d=ds, s≤2:

Formulae (22.21), (22.29) give SOs for any Poincaré- and P-invariant

(22.29)

d1/2 2S J 1
2

,

d1 2(S J)2 2S J J2,

d3/2

4
3

[g 3 g 2 (7J2 S2)g (4S2 6)J2] 3, g 2S J 3
2

;

d2

2
3

[(S J)2 2S J 4J2](S J 1)(S J 3) J2(J2 2)

1
3

(S2 2)[(4 3J2)(S J)2 (7J2 4)S J 4J2 3
8

S2(4J2 1)].

equation describing a particle of spin s≤2. Among them are the Rarita-Schwinger and
Dirac-Fierz-Pauli equations for a particle of spin 3/2 (refer to Section 6), and the
Bhabha equations [35]. Moreover these formulae define SOs for the LHG equations
being invariant under the Galilei group, see Sections 13, 15. The corresponding
matrices r1 have the form r1=ß0-2.

In conclusion we note that the spectrum of the operators (22.29) is given by
formulae (22.13), (22.18) (where Q1 → d1/2 and Q → d1) and (22.30):

(22.30)
d3/2ψ ε(2j 1)(2j 1)(2j 3)ψ, ε ±1, j 1/2,3/2, ...,

d2ψ ε(j 1)j(j 1)(j 2)ψ, j 0,1, ... .
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22.4. Other Symmetries of Equations for Arbitrary Spin Particles

Here we consider other examples of external fields preserving nongeometric
symmetries of equations for particles of arbitrary spin.

We start from the Dirac-type equations (10.10) corresponding to the vector-
potential (22.2). In the case Fµσ=0 these equations are invariant under the algebra
AGL(2s+1,C) realized in the class M1. In the case Fµσ≠0 the symmetry of these
equations is less extensive and reduces to the invariance under a 2(2s+1)-dimensional
commutative algebra defined over the field of real numbers. Basis elements of this
algebra have the form

where Σ̂µν are operators obtained from (19.19) by the change pµ→πµ. Since the

(22.31)Qn (Σ̂µνF
µν)n, Q2s 1 n Qn 1 µνρσF µνΣ̂ρσ

, n 1,2, ...,2s

following conditions are satisfied

where L1 and L2 are the operators of (10.10), the operators (22.31) are SOs of the

[Σ̂µνF
µν,L1]

i
m

(Γµπν Γνπµ)F
µνL1, [Σ̂µνF

µν,L2] 0

system (10.10), (22.2).
Using the deep analogy of (10.10) with the Dirac equation it is possible to

reformulate all the results a)-d) of the previous subsection to the case of arbitrary spin.
Such a reformulation is almost trivial and reduces to the change γµ → Γµ in the
corresponding formulae. Moreover the symmetry of the system (10.10) is more
extensive because the squares of the corresponding SOs do not reduce to the unit
matrix in contrast to the case of the Dirac equation. For example in the case of the self-
dual electromagnetic field we find a 2(2s+1)2-dimensional invariance algebra of the
system (10.10) formed by the SOs of (19.20) where Σµσ are again the SOs obtained
from (19.19) by the substitution pµ → πµ.

Let us consider also the Poincaré-invariant equations without superfluous
components for a particle of arbitrary spin in an external field described by the specific
potential

where Hs
I is the Hamiltonian of a free particle of arbitrary spin given in (7.27),

(22.32)(H I
s V)ψ i

∂
∂x0

ψ

In the case s=1/2 formula (22.32) presents a well-known equation used for

(22.33)V (1 σ1)ϕ(x).

description of quarks in the field with an effective potential being the sum of the scalar
and vector components [392]. We will not work out details of the explicit form of ϕ(x)
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which is not essential for our aims.
The equation (22.32) has a wide nongeometric symmetry described in the

following assertion.
THEOREM 22.2. The equation (22.32) is invariant under the algebra

AGL(2s+1,R) whose basis elements λmn are given by formulae (19.20) where

PROOF. The equation (22.32) and the operators (22.34) can be reduced to the

(22.34a)Σab i abcΣ0c i abcŜc, Σ1 i,

(22.34b)Ŝa σ1Sa (1 σ1)paS pp 2.

form for which the statements of the theorem become obvious. Using the
transformation operator

where Λν are the projectors (7.15), we obtain

U U 1 1
2

1 σ1 (1 σ1)
ν

( 1)νΛν ,

Matrices (22.36) commute with the Hamiltonian (22.35) and satisfy the

(22.35)U(H I
s V)U † σ1m σ3p

1
2

(1 σ1)ϕ(x),

(22.36)UŜaU
† Sa.

relations (4.25), (4.30), (4.31). So we can construct a basis of the algebra AGL(2s+1,R)
by formulae (19.20).

We note that the analogous symmetries are admitted by the equations

where V is the potential (22.33), Hs
III is one of the Hamiltonians (7.40). A basis of the

(H III
s V)ψ i

∂
∂x0

ψ

corresponding IA is given by formulae (19.20), (22.34). Thus the TST equation with
the specific potential (22.33), describing a particle of spin 1, is invariant under the
algebra AGL(3,R).

22.5. Symmetries of Galilei Particle of Arbitrary Spin in the Constant
Electromagnetic Field

Here we study symmetries of Galilei-invariant wave equations describing a
particle in the field corresponding to the vector-potential (22.2). Namely we consider
the LHG equations, refer to (15.1), (13.11), (13.12), Column R1 in the Table 13.1.

THEOREM 22.3. The LHG equation for a particle of spin s interacting with
the constant electromagnetic field is invariant under the algebra AGL(2s+1,R) whose
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basis elements are given in (19.20), (22.34a) where

S and η are the corresponding generators of the homogeneous Galilei group.

(22.37)
Ŝ 








S η×p
m

cos 







eH
2m

x0









S×H (η×p)×H
m

sin 







eH
2m

x0 ,

H (H 2
1 H 2

2 H 2
3 )1/2,

The proof reduces to direct verification of validity of the following assertions:
a) the operators (22.37) satisfy the condition LŜ=Ŝ†L where L is the operator

of (15.1);
b) the operators (22.37) satisfy the commutation relations (12.20a) moreover

Ŝ2ψ=s(s+1)ψ for any ψ satisfying (15.1).
These assertions are easily verified using relations (13.9), (13.10).
We see nongeometric symmetries of the LHG equations are very extensive.

All the SOs (19.20), (22.37) belong to the class M1 since the matrices ηa corresponding
to the LHG equations satisfy the relation ηaηb=0.

Another Galilei-invariant equations considered in Chapter 3 do not admit the
symmetry formulated in Theorem 21.3. But for the constant and homogeneous
magnetic field we can find a class of equations being invariant under the algebra
AGL(2s+1,R). There are the equations (15.26), (15.28) for k1=1. The corresponding
SOs are given in (19.20), (22.34) where

This symmetry makes it possible to obtain the exact solutions of the corresponding

Ŝa VSaV
1, V exp 








i
m

teS H exp










it










H(π,A0)
π2

2m
e
m

S H .

equations (see Chapter 6).

22.6. Symmetries of Maxwell’s Equations with Currents and Charges

Here we show that Maxwell’s equations with currents and charges also have
an additional symmetry extending well-known Poincaré and conformal invariance.
Using the covariant formulation (3.9), (3.10) of these equations we formulate and prove
the following assertion.

THEOREM 22.4. There exist twenty SOs of Maxwell’s equations with
currents and charges in the class of second order differential operators with matrix
coefficients. These SOs do not belong to the enveloping algebra of the algebra AC(1,3)
and have the following form

where

(22.38)Q [µν][ρσ] (1 2β2
4)[Z

µρp νp σ Z νσp µ p ρ Z µσp νp ρ Z νρp µ p σ]
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Proof reduces to direct verification (using relations (6.20)) the fact that Q[µν][ρσ]

(22.39)Z µν g µν βνβµ βµβν.

commutes with L1 and L2 of (3.10).
The operator (22.38) is antisymmetric under permutations of indices inside of

square brackets and symmetric under the permutation of the pairs of indices included
in the first and second square brackets. In other words, it is a basic tensor having 20
independent components (refer to Subsection 16.2 for definitions).

We note that Maxwell’s equations with currents and charges have a wide
additional symmetry. The operators (22.38) do not belong to the enveloping algebra of
the algebra AC(1,3) and thus are essentially new in comparison with the SOs which can
be obtained in the classical Lie approach.

Calculating commutators of the operators (22.38) with the generators of the
conformal group given in (2.22), (2.42), (3.20) it is possible to find a more wide class
of the second-order SOs which in general depend on xµ. An example of such a SO is
the operator (22.17) which is admitted by Maxwell’s equations with currents and
charges.

It is not difficult to make sure the SOs (22.38) do not form a basis of a Lie
algebra. But they include a subset of operators which can be extended to a
superalgebra. Denoting

we select ten SOs satisfying the following anticommutation relations [327]

(22.40)

Q νσ Q [µν][ρσ]gµρ
1
2

g νσQ [µλ][ρα]gµρgλα≡

≡(1 2β2
4) Z νσpλ p λ Z νρpρ p σ Z σρpρ p ν

2(1 β2
4)p

νp σ g νσ[2(1 β2
4)pλ p λ Z λαpλ pα]

where

(22.41)[Q νσ,Q ν σ ] f νσν σ
αβλρ ηαβλρ g νσν σ

αλ ηαλ

and symmetrization is imposed over the top indices in the r.h.s. of (22.42).

(22.42)

ηαβλρ p λp βp λp ρ, ηαλ p αp λ[pµ p µ (βµ p µ)2],

f νσν σ
αβλρ

1
12

(g (νν gαβ gα
νgβ

ν )(g σσ gλρ g σ
λ g σ )

ρ)

1
24

(g (νσgαβ g ν
α g σ

β)(g
ν σ gλρ g ν

λg
σ )

ρ);

g νσν σ
αλ

1
12

(g (νν g σ
α g σ

λ g ν σ g ν
α g σ)

λ)
1

24
(g (νσg ν σ g νσ g ν σ))gαλ,

In accordance with (22.42) the following set of SOs of Maxwell’s equations
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(where Pµ, Jµσ are generators of the Poincaré group given in (2.20), (3.20)) form a basis

Qµσ; Pσ, ηµσαρ

of a superalgebra. Moreover Qµσ are the odd and the remaining operators are even
elements of this superalgebra.

Using the explicit expressions (6.22), (6.23) for the ß-matrices it is not
difficult to find the action of the SOs (22.38) to components of the wave function (3.9),
i.e., to find the corresponding symmetry transformations of the strengths E, H and
current j. In this way, it is possible to verify directly the validity of Theorem 21.4.

In conclusion of this subsection we consider Maxwell’s equations in a
conducting medium:

where σ is the coefficient of conductivity. We will show that, just as equations for the

(22.43)

i
∂E
∂x0

ip×H iσE, p E 0;

i
∂H
∂x0

p×E, p H 0

electromagnetic field in vacuum, the equations (22.43) are invariant under the algebra
AGL(2,C).

Using the notations (3.6), (20.1), (20.3) we write (22.43) in the momentum
representation

The equations (22.44) are invariant under an eight-dimension Lie algebra

(22.44a)L1ϕ(x0,p) 0, L1 i
∂

∂x0

σ2S p i
2

(1 σ3)σ,

(22.44b)L a
2 ϕ(x0,p) 0, L a

2 pa S pSa.

isomorphic to AGL(2,C). The basis elements of this IA have the form

where Q is the matrix given in (20.7),

Σ23

i
2

h h 1S p̂, Σ31

i
2

h h 1σ3Q,

Σ12

1
2

σ3S p̂Q, Σ01

1
2

S p̂, Σ02

1
2

σ3Q,

Σ03

i
2

h h 1σ3S p̂Q, Σ1 ih h 1, Σ0 I

h σ2S p iσ3σ/2, p̂ p/p,
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For the proof see [154].

h 1 







p 2 1
4

σ2
1/2

(S p̂)2 2i
σ

[1 (S p̂)2].

22.7. Super- and Parasupersymmetries

Here we search for relativistic wave equations for charged particles in external
fields, which admit exact super- or parasupersymmetries.

An attractive feature of Witten’s supersymmetric quantum mechanics is that
it is supported by a realistic physical model. We say about the problem of interaction
of spin 1/2 particle with magnetic field. Indeed, as the Pauli as the Dirac equation
predict supersymmetric energy spectra for such a particle interacting with the magnetic
field depending on two space variables only [417,7*]. Moreover there exist the
corresponding symmetries (supercharges) causing the specific degeneration of this
spectra.

We demonstrate here that parasupersymmetric quantum mechanics [372] also
is supported by a wide class of wave equations for particles interacting with external
fields. In contrast with the sypersymmetric case these equations have to include
anomalous (Pauli) interactions.

First we return to the Dirac equation (22.1) including the external magnetic
field described by the vector-potential (22.7). Setting for simplicity p3=0 we
immediately find that the following operators

are SOs of the equation considered. Besides that these SOs satisfy relations (18.10′) for

(22.45)
Q1 iγ4(γ1π2 γ2π1), Q2 i(γ2γ3π1 γ3γ1π2),

HSS π2
1 π2

2 ieγ1γ2H (H i[π1,π2])

a,b=1,2 and so realize a representation of the superalgebra sgm(2).
Inasmuch as the operator HSS coincides with (p0)

2-m2 on the set of solutions
of the Dirac equation, it generates the spectrum of squared energies of a spin 1/2
particle in the field considered. The specific degeneration of this spectra (any line
except the one corresponding to the ground state is twice degenerated) is caused by the
symmetries (22.45).

It is necessary to emphasize that the above symmetry exists for p3≠0 also. The
corresponding supercharges have the form

Consider the KDP equation with anomalous interaction

Q̂1 γ0Q1 γ0(1 iγ4)(p3Q2 HSS)/m, Q̂2 Q2 (1 iγ4)p3Q1/m.

(22.46)







βµ πµ m k1 β2
4k2

e
2m

SµνF
µν ψ 0
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where βµ are 10×10 KDP matrices, k1 and k2 are arbitrary real parameters.
The last term in the l.h.s. of (22.46) represents the most general form of

anomalous (Pauli) interaction preserving Poincaré and P, C, T invariance of the
equation considered.

We restrict ourselves to the case of the constant and homogeneous magnetic
field directed along the third coordinate axis and again set p3=0. The corresponding
strengths and potentials have the form F0a=F31=F23=0, F12=H, A0=A3=A2=0, A1=-iHx2.

PROPOSITION. Let ψ satisfies the equation (22.46) with the above
potentials, where

Then

(22.47)k1 k2 1.

PROOF. Using the representation (6.22) of the β-matrices and expressing

(22.48)p 2
0 ψ m 2 π2

1 π2
2 2S3eH ψ, S3 i β1,β2 .

"nonphysical" components (1-β0
2)ψ via β0

2ψ we come to the generalized TST equation

The Hamiltonian Ĥ satisfies the relation

(22.49)

i
∂

∂x0

ψ Ĥψ ,

Ĥ σ2









m
eH
m

S3 iσ1

(S π)2

m
σ1 σ2

π2

2m
.

from which it follows that (22.48) does is valid.

(22.48)Ĥ
2≡m 2 π2 2eS3H≡m 2 ĤPSS

We see the squared energy operator generated by the considered equation has
a typical parasupersymmetric structure discovered in [372]. Let us demonstrated that
this structure is caused by existence of the SOs of the equation considered which form
a parasuperalgebra.

To find the corresponding parasupercharges it is convenient to transform
(22.49) to an equivalent representation including the minimal number of matrices.
Using the transformation operator

we obtain

(22.49)
W V1V2, V2 1 S 2

3 iσ2S3, V 1
2 1 S 2

3 iσ2S3,

V1 1 iσ2

S π
m

(1 σ3)
(S π)

2m 2
, V 1

1 V1( π)

where

(22.50)p0ψ Ĥ ψ , ψ Wψ,
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(22.51)Ĥ WĤW 1 σ2m (σ2 iσ1)(π
2 2eS3H)/2m.

In contrast with (22.49) the Hamiltonian (22.51) includes the only spin matrix
S3. This circumstance simplifies finding the corresponding SOs which are
parasupercharges. Choosing

it is not difficult to make sure that these operators are the SOs of the equation (22.50)

(22.52)Q1 S1π1 S2π2, Q2 S1π2 S2π1

and satisfy the relations (19.18′) together with HPSS of (22.49).
Thus we found a symmetry parasuperalgebra of the equation (22.49). Using

the transformation inverse to (22.51) it is not difficult to find the corresponding
parasupercharges for the starting TCT equation (22.49) and than to reconstruct these
symmetries for the KDP equation (22.46). We do not present the corresponding
cumbersome formulae here.

We note that the choice (22.47) of the coupling constants correspond to the
causal KDP equation with an anomalous interaction, while for k1≠k2 we come to a non-
causal equation [27*]. Thus, only the casual equation for spin-one particles generates
parasupersymmetries.

It is well-known that a parasupersimmetric Hamiltonian has as positive, as
negative eigenvalues [372]. In our case this "Hamiltonian" coinsides with P 0

2, thus the
equation (22.46), (22.47) generates complex energy values. To overcome this
difficulties it is sufficient to take into account the anomalous interaction bilinear in
respect with Fµσ, refer to Subsection 10.9.

It is possible to show that analogous parasupersymmetries exist for any spin-
one equation considered in Sections 2, 3, if anomalous Pauli-type interaction is taken
into account [28*].

22.8. Symmetries in Elasticity

Let us study symmetries of the main equation of elasticity [271]

Here U=(U1,U2,U3) is the displacement vector, λ>o, µ+λ>0 and ρ0>0 are the Lame

(22.53)∂2U

∂t 2

λ
ρ0

p 2U λ µ
ρ0

p(p U).

coefficients.
The equation (22.53) is not Poincaré-invariant but its differential

consequences have this invariance [271]. Inasmuch as symmetries of this equation can
have important and physically measurable consequences we decided to investigate
them besides symmetries of the basic equations of quantum mechanics.
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Let us rewrite (22.53) in the matrix form

where U is a column with components U1, U2, U3, Zab are the matrices (3.6).

(22.54)LU≡Zab[(p
2

0
λ
ρ0

p 2 )δab λ µ
ρ0

pa pb]U 0

The maximal IA of (22.54) in the classical Lie approach was found in [66].
The basis elements of this algebra have the form

where Sa are the matrices (3.6).

(22.55)
P0

∂
∂t

, Pa

∂
∂xa

,

Ja εabc xb pc iSa, D tP0 xa pa

It is natural to investigate symmetries of the equation (22.54) in the class M2,
i.e., in the class which includes the operator L. The corresponding SOs can be useful
for description of systems of coordinates in which solutions in separated variables exist
[365], and for finding new conservation laws in elasticity.

We will search for SOs for the equation (22.54) using a complete set of the
matrices Z ab and S a:

where b ab and C a are differential operators of the second order with real coefficients

(22.56)Q Zabb
ab iSac

a

depending on x. By definition the operator (22.56) is a SO of (22.54) if it satisfies the
condition (16.7) where L is the operator of (22.54), αQ is an operator which belongs to
the class M2 and so can be represented in the form given in the r.h.s. of (22.56).

Substituting L of (22.54) and Q of (22.56) into (16.7) and calculating the
necessary commutators and anticommutators with the help of relations (20.31) we
obtain a system of determining equations for coefficients of the operator (22.56). We
will not rewrite this cumbersome system, but instead present a consequence of its
solution (see [158] for the detail).

THEOREM 22.5. The basic equation of elasticity (22.54) admits 61 linearly
independent SOs in the class M2. Among them are the operators (22.55), products of
these operators and the following 9 operators which do not belong to the enveloping
algebra generated by the algebra (22.55):
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where

(22.57)

Q0 2S J(S J 1) J 2,

Qa [ abcSb pc,S J 1
2

] 1
2 abc[Jb,Pc] ,

Qad Q̂ad

1
3

δad Q̂nn

So the equation (22.54) has 9 essentially non-Lie SOs in the class M2. We note

(22.58)Q̂ad Zad p 2 pa pd pa Zdc p c pd Zac p c δad(Zcd p c p d p 2 ).

that Q0 of (22.57) is nothing but a Dirac-type SO, compare with (22.17).
The operators (22.57) do not form a Lie algebra. But the set of the SOs

where

Q̂ab, J P S P; P0, Pa, Ja, D, ηab, ηabcd

and the other operators given in (22.55), (22.58), form a basis of the superalgebra.

ηab Pa Pb [P 2 (S P)2], ηabcd Pa Pb Pc Pd

Moreover S P anticommutes with Q̂ab, the anticommutation relations for Q̂ab have the
form (22.41) where ν→a, σ→b, gµν→-δab.

In conclusion we consider conditional symmetries in elasticity. Imposing on
U the condition of transversality divU=0 we come from (22.53) to the following system

With the help of the change t=t′(λ/ρ)1/2 this system reduces to the form (20.37). Thus

(22.59)∂2

∂t 2
U λ

ρ0

p 2U 0; p U 0.

all the results connecting with the conditional symmetry of the equations (20.37) (refer
to Theorems 20.4, 20.5) are valid for the equations (22.49) describing the transverse
elastic waves.

Consider also symmetries of the equation (22.53) supplemented by the
subsidiary condition p×U=0, or

In this case we come from (22.53) to the following equation (describing longitudinal

(22.60)S pU≡L2U 0.

waves)

Investigations of symmetries of the system (22.60), (22.61) can be carried out

(22.61)L1U 0, L1

∂2

∂t 2

µ
ρ0

p 2.

in a complete analogy with Subsection 20.5, that is why we restrict ourselves to
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formulating the final results.
ASSERTION 1. The maximal IA of the system (22.60), (22.61) in the class

M1 is the eight-dimensional Lie algebra whose basis elements are given in (22.55)
where t→t′=t(ρ0/µ)1/2.

ASSERTION 2. The maximal IA of the equation (22.61) without subsidiary
condition (22.60) is the 24-dimensional Lie algebra whose basis elements are given in
(20.39) where t→t′=t(ρ0/µ)1/2.

ASSERTION 3. If relation (22.60) is satisfied then the equation (22.61) is
invariant under the 25-dimensional Lie algebra whose basis elements are given in
(21.50), (22.62):

We see the conditional symmetry of the Lame equation is rather extensive. In

(22.62)η Saxa.

any case it is considerably more extensive than the usual Lie symmetry, compare with
(22.55). We recall this is the conditional symmetry which generates conservation laws
and thus has a clear physical sense.

The conserved quantities corresponding to non-Lie and conditional
symmetries of the equation (22.53) are discussed in the following section, refer to
Subsection 23.8.

The non-Lie symmetries of (22.53) were found in [122]. The explicit form of
the integro-differential SOs of this equation is given in [138]. Symmetries of the
stationary equations of elasticity in the class M1 were studied in details by Olver, refer
to [351].

23. CONSERVATION LAWS AND CONSTANTS OF MOTION

23.1 Introduction

In connection with the above the following questions arise: what are physical
consequences of nongeometric symmetries and is it possible to use these symmetries
while solving concrete physical problems?

The very existence a nongeometric symmetry of a motion equation is a
fundamental fact which reflects that there is an internal degree of freedom of the object
described or can give other nontrivial information. Some consequences of that
symmetry can be used for different purposes: to find constants of motion, to construct
the density matrix, to expand solutions in a complete set of eigenfunctions of a SO and
so on. In Subsection 31.8 we use nongeometric symmetries in order to construct exact
solutions and generate new solutions starting from known ones. A discussion of some
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applications of nongeometric symmetries presents the main contents of this section.
One of the most important consequences of symmetries of equations of

motion is existence of constants of motion, i.e., some combinations (as a rule bilinear)
of solutions which are conserved in time. The well-known examples of constants of
motion are energy, momentum and angular momentum.

But what type of constants of motion corresponds to the nongeometric
symmetries described above? In the traditional approach to searching constants of
motion, we investigate symmetries of the Lagrangian of the described system and then
find the corresponding conservation laws using the Noether theorem (see, e.g.,
[41,42]). The advantage of this approach is that so defined conservation laws as a rule
have meaningful physical interpretations. But this approach has evident limitations
since not every equation of mathematical physics admits the Lagrangian formulation
and moreover Noether’s theorem does not allow all the constants of motion even for
those equations which can be obtained using the variational principle.

According to the above, in describing the conservation laws corresponding to
nongeometrical symmetries, it is preferable to use another more universal approach
whose essence is the direct calculation of bilinear combinations of solutions for the
motion equation, which are conserved in time by virtue of symmetries of these
equations. Moreover in this way it is possible to find conserved quantities which do not
correspond to any SO. Examples of such quantities are given in Subsections 22.7, 22.8.

Let us consider an arbitrary evolution equation of the form

where H(p) is a differential operator with matrix coefficients, ψ=ψ(x0≡t,x) is a real (or

(23.1)i
∂

∂x0

ψ≡i
∂
∂t

ψ H(p)ψ

complex) multicomponent function belonging to the space L2(R4).
Let Q be a linear operator defined on a set everywhere dense in the space of

vector-functions ψ⊂ L2(R4). To each solution of (23.1) we assign a bilinear combination
of the form

where ψ† is a transposed and conjugated function.

(23.2)IQ ⌡
⌠d 3xψ†Qψ

Differentiating (23.2) in respect with x0 and using (23.1) we obtain the
following sufficient condition of conserving IQ in time

If the operator H(p) is Hermitian then (23.3) reduces to the form

(23.3)




















i
∂

∂x0

H †(p) Q Q










i
∂

∂x0

H(p) ψ 0.

But the condition (23.4) is nothing but a definition of a SO of the equation
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(23.1), compare with (1.5). In other words if the evolution operator (Hamiltonian) is

(23.4)










i
∂

∂x0

H,Q ψ 0.

Hermitian then we can assign the conserved quantity to any SO of the equation (23.1).
We emphasize the relation (23.3) is not a necessary condition of conservation

of (23.2) in the case when ψ satisfies some additional conditions besides (23.1).
Maxwell’s equations are a good example of a system of equations including the
subsystem of the sort (23.1). But besides that Maxwell’s equations include additional
conditions not containing time derivatives, and this is why these equations generate
such constants of motion of the form (23.2) that the equations (23.3), (23.4) are not
satisfied.

Conserved quantities can be calculated also using a more traditional approach
based on the concept of currents satisfying the continuity equation. Let us formulate
the corresponding definitions valid for an arbitrary system of partial differential
equation of the form

Here x=(x0,x1,...,xn) are independent variables, U=(U1,U2,...,Um) is a vector-function

(23.5)F A(x,U,U , ...) 0, A 1,2, ...,N.

depending on x, U′ denotes derivatives in respect with x, i.e., the set of the following
quantities

the dots denote derivatives of higher order which can be included into the system

U k
j

∂U k

∂xj

, j 0,1, ...,n; k 1,2, ...,m,

(23.5).
Following [228] we say that there exists a conservation law for the system

(23.5) if it is possible to assign (n+1)-dimensional vector jµ(x,U,U′,...,) (µ=0,1,...,n) for
any solution of (23.5) moreover

According to the Ostrogradskii-Gauss theorem, it follows from (23.6) that the

(23.6)p µjµ 0.

quantity

does not depend on x0. Here Rn is a domain of integration, which we assume to coincide

<j0> ⌡
⌠
Rn

d nxj0(x,U,U , ...)

with the n-dimensional manifold {x}.
Until now there is no a constructive algorithm of describing of all the possible

conservation laws admitted by an arbitrary system of partial differential equations. Our

283



Symmetries of Equations of Quantum Mechanics

approach is to find all the conserved bilinear quantities of the kind (23.2) being
conserved in time. Then starting from the found j0 we can calculate the remaining
components of the conserved current using the symmetry group of the equation of
interest. Such an approach enables us to formulate the natural definition of currents
equivalence: we say two currents jµ and jµ′ are equivalent if

a current is called trivial if <j0>=0.

(23.7)⌡
⌠
Rn

d nxj0 ⌡
⌠
Rn

d nxj0 ,

23.2. Conservation Laws for the Dirac Field

Let Q be a SO of the Dirac equation. We define the corresponding conserved
current as follows

where ψ=ψ† and ψ belong to the set of solutions of the Dirac equation. Inasmuch as by

(23.8)j Q
µ

1
2

(ψγµQψ Qψγµψ)

definition Q satisfies (16.2), (17.1) then jµ
Q (23.8) satisfies the continuity equation

(23.6).
We note that the correspondence "SO - conservation law" given above is

isomorphism in the sense that to any SO of the Dirac equation we can assign the
conserved quantity (23.8). On the other hand any bilinear conserved quantity
corresponds to a SO; to find a complete set of such quantities is to find the general
solution of the equation (23.4) defining SOs of the Dirac equation. So there is one-to-
one correspondence between SOs and zero components of conserved currents, the other
components are easily found using Lorentz transformations.

We present the explicit form of the currents corresponding to the SOs of the
class M1. Starting from generators of the Poincaré group we obtain from (2.22), (23.8)
the well-known expressions for the tensors of energy-momentum and angular
momentum

which satisfy the continuity equation in respect with the index σ.

(23.9)
Tµσ

i
2











ψγσ
∂ψ
∂xµ

∂ψ
∂xµ

γσψ ,

Mµλσ xµTλσ xλTµσ
1
2

ψ[γσ,Sµλ] ψ

The trivial identity SO generates the current of probability density

(23.10)jµ ψγµψ.
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For the remaining SOs of (18.5) we obtain the following expressions:
a) the operators Wµ and Wµσ corresponds to the tensors of valences 2 and 3

(23.11)

ωµλ
1
4











ψγ4γλ
∂ψ
∂x µ

∂ψ
∂x µ

γλγ4ψ mψγ4Sµλψ,

ωµλρ
i
4











∂ψ
∂x ρ

Sλµψ ψSλρ
∂ψ
∂x µ

ψSλµ

∂ψ
∂x ρ

∂ψ
∂xµ

Sλρψ
1
2

mψ[Sµλ,γρ] ψ;

b) the operators B and Aµ correspond to the vector Jλ and tensor Zµλ

We can make sure that all the quantities (23.11), (23.12) satisfy the continuity

(23.12)Jλ 2x µωλµ, Zµλ 2x σωµσλ.

equation in respect to the index λ. Using the Ostrogradskii-Gauss theorem it is possible
to find the related constants of motion in the following form

So we present the explicit form of the conserved currents and constants of

(23.13)<Pµ> ⌡
⌠d 3xT0µ, <Jµσ> ⌡

⌠d 3xMµσ0, <j0> ⌡
⌠d 3xψ†ψ,

(23.14)<Wµ> ⌡
⌠d 3xωµ0, <Wµσ> ⌡

⌠d 3xωµσ0, <B> ⌡
⌠d 3xJ0, <Aµ> ⌡

⌠d 3xZµ0.

motion corresponding to the SOs of the Dirac equation in the class M1. Besides the
well-known constants of motion (23.13) we show the "new" conserved quantities
(23.14) corresponding to the SOs (18.5).

Formulae (23.13), (23.14) give a complete set of the conserved quantities
depending bilinearly on ψ and ∂ψ/∂xµ.

23.3. Conservation Laws for the Massless Spinor Field

Here we present conservation laws corresponding to symmetries of the
massless Dirac equation.

The SOs from the class M1 admitted by the Dirac equation with m=0 are given
by formulae (18.31), (18.32). They correspond to the conserved currents (23.8).

As in the case of nonzero mass we obtain the tensors of energy-momentum
and angular momentum (23.9) and the probability density current (23.10) which
correspond to the SOs Pµ, Jµσ and I.

For the operators D and Kµ we obtain from (2.42), (23.8)
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where Tσµ and Mσλµ are the tensors (23.9). Bearing in mind that for the case m=0 the

(23.15)J D
µ x σTσµ, J

Kσ

µ x λMσλµ xσJ D
µ

tensor Tσµ is traceless, it is not difficult to make sure the currents (23.15) satisfy the
continuity equation.

In analogous way we find the currents corresponding to the SOs of (18.31),
(18.32):

Here ω̃µνλ and Z̃µν are the tensors (23.11), (23.12) with m=0.

(23.16)

J
P̃ν

µ
1
2











ψγµγ4

∂ψ
∂xν

∂ψ
∂xν

∂ψ
∂xν

γ4γµψ ,

J
J̃µν

λ xµJ
P̃ν

λ xνJ
P̃µ

λ
1
4 µνρσψ[γλ,S

ρσ] ψ,

J
iγ4

λ iψγ4γλψ, J D̃
µ x νJ

P̃ν

µ ,

J
K̃µ

ν x λJ J̃
µλ

ν xµJ
D̃

ν ,

(23.17)
J

Wµν

λ ω̃µνλ, J
Aµ

ν Z̃µν, J
Ãλ

µ
1
2 µνρσx νω̃ρσ

λ,

J
Qµν

λ xµZ̃νλ xνZ̃µλ
1
2

xσx σω̃µνλ.

So we obtain the conserved currents corresponding to symmetries of the
massless Dirac equation in the class M1. The currents (23.17) are essentially new (in
comparison with obtained by the classical methods) inasmuch as they correspond to the
SOs which do not belong to the enveloping algebra of the algebra A[C(1,3) H].

Formulae (23.9), (23.10), (23.15)-(23.17) give a complete set of conserved
currents depending bilinearly on ψ and ∂ψ/∂xµ for the massless Dirac equation.

23.4. The Problem of Definition of Constants of Motion for the Electromagnetic
Field

Studying constants of motion of Maxwell’s equations is of particular interest
since these constants are expressed via the physically measurable quantities, i.e.,
strengths of the electric and magnetic fields.

The description of constants of motion for Maxwell’s equations can be
considered as a separate problem inasmuch as there exist such conserved quantities
which do not correspond to any symmetry. On the other hand there exist conserved
currents which correspond to trivial (zero) constants of motion. That is why our
strategy is to give the complete description of some class of constants of motion and
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then reconstruct the corresponding conserved currents. More precisely we find all the
conserved quantities of the form

(23.18)I ⌡
⌠d 3xF











E,H, ∂E
∂xa

, ∂H
∂xa

,x0,x

where F denotes a bilinear combination of the vectors E, H and their derivatives
besides in general F depends on x and x0. Without loss of generality we can represent
F in the form

where ϕ is the vector-function (3.4), Q is a second-order differential operator with

(23.19)F ϕ†Qϕ

matrix coefficients moreover all the matrices are of dimension 6×6. Without loss of
generality we suppose Q is Hermitian (symmetric) operator inasmuch as skew-
symmetric operators correspond to zero quantities of (23.18), (23.19).

The problem of describing the conserved quantities defined above is closely
related to the problem of describing the second-order SOs of Maxwell’s equations,
refer to Section 20, but has a lot of distinguishing features. Indeed, substituting (20.19)
into (20.18) and differentiating the latter in respect with x0 we obtain using (3.5)

Equating this quantity to zero, using (3.5) and taking into account Hermiticity of the

(23.20)İ ⌡
⌠d 3xψ†(Q̇ i[Q,σ2S p])ψ.

operator in paratheses we obtain the following equation for Q

where L̂2
a is the operator (3.5), aµ

a are unknown second-order differential operators

(23.21)Q̇ i[Q,σ2S p] iσ µ[αa
µL̂

a

2 (αa
µL̂

a

2 )†]

(commuting with σ′µ) which have to be determined, σ′µ=σµ, µ≠2; σ′2=iσ2.
Further on we follow the proof of Theorem 20.3. Representing Q in the form

(20.20) we come again to the noncoupled equations for the even and odd parts of the
operator Q=E+O

Here E, O, α E
a, α O

a are unknown second order differential operators of the form (20.20)

(23.22a)[E, L̂1] αa
E L̂

a

2 (αa
E L̂

a

2 )†,

(23.22b)[O, L̂1] αa
O L̂

a

2 (αa
O L̂

a

2 )†.

(20.22), L̂2
a and L̂1 are the operators (20.26).

Thus the problem of describing the conserved quantities of the form (23.18)
reduces to solving the operator equations (23.22) There are two essentially new points
in comparison with the equations (20.23), (20.24) for a SO:

1) there are no commutation relations of SOs with the operator L̂2
a in (23.22),
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i.e., the second equations of (20.23), (20.24) are absent;
2) the anti-Hermitian terms of (20.23),(20.24) are absent in (23.22).
In other words the conditions imposed on the operator Q of the conserved

bilinear form (23.18), (23.19) are weaker than the corresponding equations (20.23),
(20.24) for the SOs of Maxwell’s equations. That is why the number of conservation
laws is larger than the number of SOs in the class considered.

23.5. Classical Conservation Laws for the Electromagnetic Field

First we restrict ourselves to considering such bilinear conserved quantities
which depend on strengths of the electric and magnetic fields but do not include
derivatives of these strengths. We will call them conserved quantities of zero order.

THEOREM 23.1 [159]. There exist exactly 15 linearly independent constants
of motion of the form

where F(E,H,x0,x) is a bilinear combination of the vectors E, H satisfying Maxwell’s

(23.23)I ⌡
⌠d 3xF(E,H,x0,x)

equations. The general form of F corresponding to İ=0 is given by the formula

where K=(K0,K) is a conformal Killing vector, i.e., an arbitrary solution of the

(23.24)F(E,H,x0,X) 1
2

K 0(E 2 H 2) K E×H

equations (1.17).
PROOF. Let us represent a bilinear combination of E and H in the form

(23.19) where ϕ is the vector-function (3.4), Q is a symmetric real matrix of dimension
6×6 (skew-symmetric matrices make zero contribution into the integral (23.18) since
ϕ is a real function). Substituting (23.19) into (23.18) and differentiating the latter in
respect with x0 we come to the equation (23.21) where aa

µ are unknown functions of x0,
x have to be determined. Expanding Q in the complete set of matrices (3.6), (5.30) in
accordance with (20.20) where

aab, bab, cab and fa are unknown functions of x0, x, and equating coefficients of linearly

(23.25)A Zaba
ab, B Zabb

ab, C Zabc
ab, D iSaK

a,

independent matrices and differential operators we come to the relations

moreover, K0 has to satisfy the equations (1.17) together with Ka from (23.25).

a ab b ab 0, c ab δabK 0,

The corresponding matrix Q has the form
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Substituting (23.26), (3.4), (3.6) into (23.21) we come to formula (23.24).

(23.26)Q σ0K
0 σ2SaK

a.

The general solution of (1.17) depends on 15 arbitrary parameters and is given
by formula (1.18) To obtain the corresponding constants of motion we substitute (1.18)
into (23.20) and choose consequently only one of parameters be nonzero. As a result
we come to the formulae

Relations (23.27) give the well-known classical constants of motion of the

(23.27)

E
1
2 ⌡

⌠d 3x(E 2 H 2)≡⌡
⌠d 3xP̂0, P ⌡

⌠d 3xE×H≡⌡
⌠d 3xP̂,

L ⌡
⌠d 3xx×(E×H), N ⌡

⌠d 3x[x0E×H x(E 2 H 2)],

D ⌡
⌠d 3xxµ P̂

µ
, Kµ ⌡

⌠d 3x(2xµ x ν P̂ν x λ xλ P̂µ ).

electromagnetic field in vacuum, i.e., the energy E, momentum P, angular momentum
L etc. These constants of motion can be obtained using the Lagrangian formalism and
Noether’s theorem [32].

According to Theorem 23.1 there are no other constants of motion bilinearly
depending on E and H for Maxwell’s equations.

It is not difficult to establish the correspondence between the constants of
motion described in the theorem and the conserved currents. These currents have the
form

where Kν is a Killing vector, Tµν is the energy-momentum tensor:

(23.28)jµ TµνK
ν

Using the well-known properties of Tµν

(23.29)
T00

1
2

(E 2 H 2), T0a Ta0 abc Eb Hc,

Tab EaEb HaHb

1
2

δab(E
2 H 2).

it is not difficult to make sure that the four-vector jµ satisfies the continuity equation iff

(23.30)∂µTµν 0, Tµνg
µν 0

Kµ is a Killing vector satisfying (1.17). This is the zero component of the current
(23.28) which is given in (23.24).

According to Theorem 23.1 all the nonequivalent conserved currents
depending bilinearly on E and H have the form (23.28) and so are completely
determined by the Killing vector.
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23.6. The First Order Constants of Motion for the Electromagnetic Field

We now consider constants of motion of the more general form (23.18) which
depend on the electromagnetic field strength and its derivatives.

The obvious set of conserved quantities of this kind can be obtained by
choosing Q in the form of products of the conformal group generators and the matrices
(23.26). Conservation of such quantities in time is caused by relativistic and conformal
invariance of Maxwell’s equations. Conservation laws of such a kind were found by
Lipkin [282] for the first time (see [248, 109, 303] also).

The SOs found in Subsection 20.4 do not belong to the enveloping algebra of
the algebra A[C(1,3) H] and so are not caused by conformal invariance of Maxwell’s
equations. Substituting these SOs into (23.18), (23.19) instead of Q we obtain the
motion constants which are new in principle and have nothing to do with the relativistic
and conformal invariance of Maxwell’s equations.

However there exist more exotic conserved quantities for the electromagnetic
field which cannot be assigned by any SO. Examples of such constants of motion are
considered in the following.

First we consider the conserved quantities which are bilinear combinations of
the form (Fµσ,∂λFρα) where Fµλ is the tensor of the electromagnetic field. More precisely
we search for conserved in time bilinear forms

where ϕ is the vector-function (3.4), Q is a first-order differential operator with matrix

(23.31)I ⌡
⌠d 3xϕ†Qϕ ⌡

⌠d 3xj0

coefficients. We will call such conserved quantities first order constants of motion. In
particular this class of conserved quantities includes Lipkin’s "zilch" but is only a
subclass of more general constants of motion of the type (23.18).

THEOREM 23.2. There exist exactly 84 first order constants of motion for
Maxwell’s equations. The corresponding function j0 of (23.31) is the zero component
of the four-vector

where Tρ
σ is the energy-momentum tensor (23.29), Kσν is a conformal Killing tensor

(23.32)jµ K σνZσν,µ 2 µνλσ(∂λK ρν)Tρ
σ

of valence 2, satisfying the equations

Zσν,µ is Lipkin’s zilch tensor:

∂(µK σν) 1
3

∂λK λ(µg σν),

K σν K νσ, K µσgµσ 0,

The proof reduces to finding the general solution of the equations (23.22) for
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first-order differential operators E, O, αa
E, αa

O of the form (20.20), (20.22). We do not

(23.34)

Z00,λ Ea ∂λHa Ha ∂λEa;

Z0a,λ Za0,λ abc(E
b ∂λH

c Hb ∂λE
c),

Zab,λ δab(Ec∂λHc Hc∂λEc) H (a∂λE
b) E (a∂λH

b).

present the corresponding calculations (which are analogous to the ones given in
Subsection 20.3) but note that the odd part of Q (i.e., the operator O) reduces to zero
and the even part (E) has the following general form

where Sa, Zab are the matrices (3.6), Kµσ is a function satisfying the equations (23.33)

(23.35)Q E σ2F
0µpµ SaF

aµpµ abc(σ2∂
cK 0aSb

1
2

∂bK adZcd)

and depending on 84 arbitrary parameters, see Appendix 2, formulae (A.2.9), (A.2.17).
Substituting (3.4), (23.35) into (23.31) we obtain j0 coinciding with the zero component
of the vector (23.32).

Using the identities

and the relations (23.33) it is not difficult to make sure that the four-vector (23.32)

Zµν,λg
νλ 0, Zµν,λg

µν 0, ∂µZλσ,µ 0,

Zνλ,
µ Zµλ,

ν ∂ρ( ρνλσT σµ
ρµλσT σν)

satisfies the continuity equation. Substituting the general expression for Kµσ (refer to
(A.2.24)) into (23.32) we come to a linear combination of the conserved currents
exhausting all the nonequivalent currents of the first order. Some of them are well-
known including Lipkin’s zilch and its generalizations (see [282,248,109]). Formula
(23.32) includes the "new" currents also which are polynomials of xµ of orders 3 and
4 and correspond to the conformal Killing tensors represented by G3

ab, G4
ab in (A.2.24),

(A.2.25). Theorem 23.2 gives a complete list of the first order conserved currents.
We note that the operator (23.35) is nothing but the Hermitian part of the

product of the matrix iσ2Q (where Q is the matrix (23.26)) and a linear combination of
the generators of the conformal group. Thus we say the first order constants of motion
for Maxwell’s equations correspond to products of the usual conformal symmetries.

23.7. The Second Order Constants of Motion for the Electromagnetic Field

We now consider constants of motion being bilinear combinations of the first
derivatives of the electric and magnetic field strengths. In other words we study the
quantities of the sort (23.18) which are conserved in time. The corresponding functions
F can be represented in the form (23.19) where Q is a second-order differential
operator with matrix coefficients.We call such conserved quantities the second order
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constants of motion.
The problem of description of second-order constants of motion reduces to

solving the equations (23.22) for a second-order differential operator of the form
(20.20), (20.22). It is possible to show that even operators Q=E satisfying (23.22a)
reduces to polynomials of the conformal group generators and the matrix (23.26) and
thus are not of great interest. We will not represent the corresponding calculations but
note that a complete set of such operators is determined by a conformal Killing tensor
of valence 3. The number of these operators (and the corresponding constants of
motion) is equal to 300.

Here we consider odd operators only which do not belong to the enveloping
algebra of the algebra A[C(1,3) H]. In other words we investigate conserved quantities
of the following form

where O is an odd operator belonging to the class M2, ϕ is the function (3.4). The

(23.36)I ⌡
⌠d 3xϕ†Oϕ ⌡

⌠d 3xF

general expression for O is given in (20.28), (20.30) where without loss of generality
OA≡0 inasmuch as anti-Hermitian operators make zero contribution into the integral
(23.36). Substituting (20.32a), (20.32c) into (23.22b) and calculating the necessary
commutators and anticommutators using (20.31), we can equate the coefficients of
linearly independent matrices and differential operators. Then we come to the follo-
wing system of equations for coefficients of the operator of conserved bilinear form:

where Kν
µ
σ
ρλ is a generalized Killing tensor, i.e., an irreducible tensor which is

(23.37a)

D ab,cd
1 K 0(cd)

(ab)
2
3

δc
(aK

0d0
b) ;

D ab,cd
3 K n0(a

0(d
b)

c)n

8
3

δab
mn(cK

00m
d)n

2
3 mn

(bδa)
(cK

00m
d)n ;

B ab
1

4
27

∂kK m(ab)
n0

kn
m; B ab

3
8

27
∂kK abk

00 ,

(23.27b)
D ab

1
3
5

δab ∂m∂nK 000
mn

8
5

∂n∂(aK b)00
0n

2
7

∂nK̇
(abn)

00 ;

D ab
3

3
10

δab ∂c∂d
mncK

0mn
d0

2
5

∂c(∂a
mn(cK

0mn
b)0 ∂b

mn(cK
0mn

a)0 ) 1
7

∂kK̇
m(ab

n0
k)n

m

antisymmetric under the permutations µ ν or ρ σ and symmetric under the
permutations (µ,ν) (ρσ). Besides this tensor satisfies the equations

We recall that symmetrization is imposed over the indices in the paratheses.

(23.38)∂(αK µρλ)
νσ

1
6

∂β 







K (µρλ
β(σ g α)

ν)

1
2

g (αλK µρ)β
νσ K β(µρ

(νσ) g αλ ) 0
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We see that the odd constants of motion of the second order for Maxwell’s
equations are completely determined by a generalized Killing tensor in accordance with
(23.36), (20.32a), (22.37). The general expression for this tensor is given in Appendix
2, see (A.2.24). In other words formulae (23.36), (20.32a), (23.37) (A.2.24) define a
complete set of odd constants of motion of the second order for Maxwell’s equations.
The number of these constants of motion is large enough and is equal to the number of
independent components of the corresponding generalized Killing tensor, i.e., 378.

We see that there exist significantly more constants of motion in the class
considered than the corresponding SOs, compare with Theorem 20.3. More precisely
any generalized conformal Killing tensor Kν

µ
σ
ρλ with λ≠0 generates a constant of motion

which does not correspond to any SO in the class M2.
Let us represent some of the found constants of motion in the explicit form.

Restricting ourselves to those which are polynomials on xµ of order 0,1 and 2, we
obtain the following set of independent operators F for (23.36):

Here

(23.39a)

F 0ab
10 Ė

(a
Ḣ

b)
(∂kE

(a))∂kH
b),

F 0ab
30 Ė

a
Ė

b
(∂kE

a)∂kE
b Ḣ

a
Ḣ

b
(∂kH

a)∂kH
b,

F abc
10 Ḣ

(a∂bH c) Ė
(a∂bE c),

F abc
30 Ė

(a∂bH c) Ḣ
(a∂bE c),

F µbc
α1

1
2

ε0nf(bF µc)f
α0 xn 2i α 1x0F

µbc
α 0 ,

(23.39b)

F µb
α1 F µbν

α0 xν i α 1(1 gµ0)Ċ
µb

(α),

F̃
abc

α1 F 0(bc
α0 x a) i α 1x0F

abc
α 0 ,

F µ
α2 F µb

α1 xb g µ0C nn
(α) ,

and the dots denote time derivatives.

C ab
(1) E aE b H aH b, C ab

(3) E (aH b), α 1,3, α 1,3, α ≠α, k 1,2,3,

The traces of the tensors (23.39a) make zero contributions into the integrals
(23.36). Time independence of the integrals (23.36), (23.39) can be verified directly
using Maxwell’s equations.

Formulae (23.36), (23.39) present the complete set of odd constants of motion
of second order, depending on xµ as polynomials of orders 0, 1 and 2. Using relations
(23.36), (20.32a) (23.37), (A.2.24) it is not difficult to rewrite the explicit form of other
odd constants of motion which in general are polynomials on x of order 6. We do not
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present the corresponding cumbersome formulae here.

(23.39c)

F 0a
α2 F 0ab

α1 xb i α 1x0F
0a

α 1,

F ab
α2

1
2

x µxµF
0ab

α0
1
3

i α 1x0(F
ab

α 1 F 0ab
α 1 ),

F̃
ab

α2

1
2

F abc
α1 xc

1
3

i α 1(F ab
α 1 2F 0ab

α 1 )x0 4C ab
(α) ,

F 0ab
α2 xµx

µF 0ab
α0

1
2

F 0(a
α1 x b) i α 1x0F

0ab
α 1 ,

F abc
α2 3F 0(ab

α1 x c) i α 1x0 δ(abF c)
α 1 F abc

α 1 F̃
abc

α 1 ,

F̃
abc

α2 3xµx
µF abc

α0 3F̃
(ab

α1 x c) 3Ċ
(ab

(α) x c) 6δ(abĊ
c)k

α) xk

i α 1x0









2f (a
α 1δbc) 2

3
(F abc

α 1 F̃
abc

α 1 ) .

We emphasize that the constants of motion found in this subsection have
nothing to do with the conformal or Lorentz invariance of Maxwell’s equations in
contrast to the classical and first-order constants of motion. The constants of motion
given in (23.36), (23.39) either are generated by the odd SOs not belonging to the
enveloping algebra of the algebra A[C(1,3) H] or do not correspond to any SO in the
class considered.

We note that the constants of motion found above admit a covariant
formulation. Let us denote as usual by Fµσ the tensor of the electromagnetic field,

Then the following tensors

F̃
µσ 1

2
µσρλFρλ, F µσ

λ
∂

∂xλ

F µσ.

satisfy the continuity equation in respect with the indices α and λ [248].

(23.40)G [µν][ρσ]
λα F µν

λ F̃
ρσ

α F ρσ
α F̃

µν
λ F µν

α F̃
ρσ

λ F ρσ
λ F̃

µν
α gλα(F µν

µ F̃
ρσ

γ F ρσ
γ F̃

µν
β )g βγ

It is not difficult to verify that formulae (23.39a) define the complete set of
independent components of G0

[
λ
µν][ρσ] if we exclude terms making zero contributions into

the integral

As to the other quantities present in (23.39b)-(23.39d) they are expressed via

I ⌡
⌠d 3xG [µν][ρσ]

0λ .

convolutions of G0
[
λ
µν][ρσ] with xµ and the tensors .C ab

(α) , Ċ
ab

(α)

In conclusion we note that it is not too difficult to formulate and solve the
problem of description of constants of motion of arbitrary finite order n for Maxwell’s
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equations. We will not do it here but note that the even constants of motion are
determined by the conformal Killing tensor of valence n, the corresponding number of
independent motion constants is given in (A.2.9), where m=4, s=1, j=n+1. The odd
constants of motion are defined by the generalized conformal Killing tensor of valence
R1+2R2, where R1=n-1, R2=2. The number of these constants is defined by formula
(A.2.16).

22.8. Constants of Motion for the Vector-Potential

The constants of motion discussed above can be represented in terms of the
vector-potential Aµ. However, there exist additional conserved quantities depending
bilinearly on Aµ which extend the sets of constants of motion described in Subsections
22.4-22.7. That is why we discuss the constants of motion for the vector-potential as
a separate problem.

Consider the vector-potential Aµ in the Coulomb gauge, then by definition Aµ

satisfies the equations (20.35). We search for the constants of motion in the form

where A=column(A1,A2,A3), Q is a differential operator whose coefficients are 3×3

(23.41)I ⌡
⌠A TQA

matrices, see (22.56).
An evident set of constant of motion of (23.41) can be obtained choosing Q

be a SO of the equations (20.35). Such SOs (including operators satisfying the
requirement of conditional invariance) are discussed in Subsection 20.5.

It happens the class of constants of motion of the type (22.41) is more
extensive inasmuch as the corresponding operators Q are not in general SOs of the
equations for the vector-potential. Restricting ourselves to the case when Q∈ M1 and
denoting the corresponding class of constants of motion by M1 we can prove the
following assertion.

THEOREM 23.3. There exist 53 constants of motion in the class M1 for the
equation (20.32), including 50 conserved quantities of the sort (23.41) where Q∈ M1 are
the operators of conditional symmetry of the system (20.35), and the three additional
constants:

The proof is analogous to the proofs of Theorems 23.1, 23.2. Time

(23.42)Ia ⌡
⌠d 3xȦcxcxb( akl

∂Ab

∂xl

xk abkAk).

independence of Ia can be verified directly using the equations (3.14)-(3.16) for j=0.
Considering the vector-potential in the Lorentz gauge (see (3.14), (3.15) for
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jµ=0) we find the following six constants of motion:

We emphasize that the constants of motion (23.42) cannot be represented in

(23.43)Iµν ⌡
⌠d 3xȦλx

λ










xσ











∂Aσ

∂xµ

xν

∂Aσ

∂xν

xµ xµAν xνAµ .

the form (22.41) where Q is an operator of the conditional symmetry of the equation
(20.37). In other words it is not possible to assign to these constants any symmetry of
the equation (20.37), either usual or conditional. The same is true for (23.43).

The constants of motion (23.42), (23.43) extend the class of conserved
quantities of the electromagnetic field, described in Subsections 23.4-23.7. We note
these "new" constants of motion cannot be expressed via the electric and magnetic field
strengths so their physical interpretation seems to be problematic.

A natural question arises if there exist such constants of motion for the vector-
potential which do not correspond to any SO but can be expressed via the vectors of
the electric and magnetic fields strengths. This question admits a positive answer
because such constants of motion are included in the set described in Subsection 23.7.
We rewrite three of them

Formula (23.44) defines the second order constant of motion for E, H which

(23.44)Ia ⌡
⌠d 3x











Ėcxcxb











akl

∂Eb

∂xl

xk abkEk Ḣcxcxb











akl

∂Hb

∂xl

xk abkHk .

is a third order constant of motion for the vector-potential. It is possible to show that
one cannot represent (23.44) either in the form (23.31) (where Q is a second-order SO)
or in the form (21.41) where Q is a SO for the vector-potential.

In conclusion we note that the Lame equation (22.53) also admits constants
of motion which do not correspond to any SO. Thus Theorem 23.3 can be reformulated
for the Lame equation if we impose the transversity condition divU=0. Indeed, in this
case the Lame equation reduces to the form (22.59) which coincides with (20.37) up
to the change t=t′(λ /ρ)1/2. As to the equations (22.60), (22.61) describing longitudinal
waves they admit the following constants of motion

which is not generated by any SO. Besides the Lame equation admits a number of

Ia ⌡
⌠d 3xU̇c(δcbx

2 xbxc)










akl

∂Ub

∂xl
abkUk

conserved quantities generated by SOs:

where UT=column(U1,U2,U3), Q is a product of SOs (22.55) and (22.57) [158].

IQ ⌡
⌠d 3x(U̇

T
QU U TQU̇)
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5. GENERALIZED POINCARÉ GROUPS

In this chapter we present the basic information about the generalized Poincaré
groups P(1,n) which are determined as sets of transformations preserving the value of
interval in (1+n) -dimensional Minkowsky space. We describe IRs of the Lie algebras
corresponding to such groups and make the reduction of IRs of these algebras by the
Poincaré and Galilei algebras. We also consider the connection of P(1,n)-invariant
equations with Poincaré- and Galilei-invariant equations for a particle of variable mass
and spin.

24. THE GROUP P(1,4)

24.1. Introduction

As was shown in Chapter 1 the maximal (in the Lie sense) invariance group
of the Dirac and KGF equations is the ten parameter Poincaré group P(1,3). Here we
consider a natural generalization of this group to the case of a space with more
dimensions. The generalized Poincaré group P(1,n) can be defined as a semidirect
product of the groups SO(1,n) and T where T is the additive group of (n+1)-
dimensional vectors p0, p1, ..., pn and SO(1,n) is a connected component of unity in the
group of all linear transformations of T into T preserving the quadratic form p0

2-p1
2-...-pn

2.
The groups P(1,n), n>3 can be used to describe physical systems with variable

masses and spins, e.g., the systems of two coupling relativistic particles. Thus in
Chapter 7 we use P(1,6)-invariant wave equations to describe coupled states of two
particles of arbitrary spin. Besides the generalized Poincaré groups have direct
connection to the problem of the extension of S-matrix over the mass shell [82, 240]
and to description of particles with internal structure [61, 136]. These groups are also
closely connected with the modern multidimensional models appearing in the string
theory.

The group P(1,n), n>3 includes important (from the physical viewpoint)
subgroups, such as the Poincaré group P(1,3) and Galilei group G(1,3). Inasmuch as
IRs of the group P(1,n) are reducible in respect to P(1,3) and G(1,3) it is natural to
consider the problem of reduction of these representations by IRs of the Poincaré and
Galilei group. Such a reduction makes it possible to answer the question what kind of
relativistic (and nonrelativistic) particles is described by the equation invariant under
the group P(1,n) and to find the energy spectrum and the spin states of such particles.
These and related questions are considered in Sections 25-27. The present section is
devoted to the description of IRs of the group P(1,4).
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24.2. The Algebra AP(1,n)

The Lie algebra of the group P(1,n) is defined by the following commutation
relations

where m, n, m′, n ′= 0,1,..., n, gkl is a metric tensor for (1+n)-dimensional Minkowsky

(24.1)
[Pm, Pn] 0, [Pm, Jnk] i(gmn Pk gmk Pn),

Jmn, Jm n i(gmn Jnm gnm Jmn gmm Jnn gnn Jmm ),

space: gkl=diag(1,-1,-1,...,-1).
The problem of construction of local representations of the group P(1,n)

reduces to the description of nonequivalent representations of the Lie algebra (24.1)
in terms of selfadjoint operators. We restrict ourselves to investigation of IRs of this
algebra. To classify IRs it is necessary to find independent Casimir operators of the
algebra (24.1) and to determine their spectra.

Finding the Casimir operators of the algebra AP(1,n) cannot be considered as
a trivial generalization of the corresponding procedure for the algebra AP(1,3). In
particular for n≠3 there is not an (n+1)-dimensional analog of the Lubanski-Pauli
vector instead of which we have to consider tensors of an appropriate rank.

In this section we find all the independent Casimir operators of the algebra
AP(1,4).

We define the fundamental antisymmetric tensor of rank 3

It is a tensor V λ ρ σ which is a natural generalization of the Lubanski-Pauli

(24.2)Vλρσ Pλ Jρσ PσJλρ PρJσλ.

vector to the case of the generalized Poincaré groups. In the case when Jµν, Pµ belong
to the algebra AP(1,3) we can assign to (24.2) the vector Wµ= µνρσV νρσ/6 (compare with
(4.2)). For the algebra AP(1,4) the tensor (24.2) is equivalent to the tensor of rank 2:

Here µνρσλ is the unit antisymmetrical tensor, 01234 = 1.

(24.3)Wµν
1
6 µνρσλV

ρσλ ≡ 1
2 µνρσλP

ρJ σλ.

Besides Wµν we consider the vector Γσ = Jσµ P µ. It follows from(24.1)-(24.3)
that the operator Wµν satisfies the relations

As to the vector Γσ it satisfies the relations (4.4) with an appropriate possible values of

(24.4)

PµW
µν 0, [Pµ,Wνλ] 0,

[Wµν, Jλσ] i(gµσ Jνλ gνλ Jµσ gµλ Jνσ gνσ Jµλ),

[Wµα,Wνβ] i (gµν αβρσλ gαβ µνρσλ gµβ ανρσλ gαν µβρσλ)W
ρσP λ.

subindices.
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It follows from the above that the scalar operators

commute with any basis element of the algebra AP(1,4). Moreover using (24.4) and

(24.5a)C1 Pµ P µ,

(24.5b)C2

1
2

WµνW
µν 1

2
Pµ P µ JνλJ

νλ P µ Pν Jµσ J νσ,

(24.5c)C3

1
4

JµνW
µν 1

8 µνρσλJ
µνJ ρσP λ

relations analogous to (4.4) it is not difficult to show that formulae (24.5) give all the
independent Casimir operators belonging to the enveloping algebra of the algebra
AP(1,4). The operators C1 and C2 are nothing but generalization of the corresponding
Casimir operators (4.2) and (4.6) of the Poincaré algebra, but the operator C3 has not
any analog in the algebra AP(1,3).

We note that besides the operators (24.5) there exist additional Casimir
operators for different classes of IRs. These Casimir operators do not belong to the
enveloping algebra of the algebra AP(1,4), as in the case of the representations of the
algebra AP(1,3).

24.3. Nonequivalent Realizations of the Tensor Wµν

As was done by the description of IRs of the Poincaré algebra (see Section 4)
we find all the possible (up to equivalence) realizations of the tensor Wµν and then
determine the explicit form of the corresponding operators Pµ and Jµσ.

We will seek for representations of the tensor Wµν in the basis of
eigenfunctions p̃,λ〉 of the commuting operators Pµ:

where the symbol λ denotes eigenvalues of commuting operators forming a complete

(24.6)Pµ p̃,λ pµ p̃,λ , p̃ (p0,p1,p2,p3,p4 ),

set together with Pµ. In the basis p̃,λ〉 the commutation relations for Wµν take the form

where pσ are arbitrary real numbers.

(24.7)[Wµα,Wνβ] i(gµν βαρλσ gαβ νµρλσ gµβ ναρλσ gνα βµρλσ)W ρσp σ,

(24.8)[Wµν,pσ] 0, Wµν p ν 0,

Relations (24.7) define a Lie algebra Ap̃ whose structure constants depend on
p̃. Besides it will be demonstrated that for all pµ satisfying one of the following
conditions

(24.9)pµ p µ>0,
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the algebras Ap̃ turn out to be isomorphic.

(24.10)pµ p µ 0,

(24.11)pµ p µ<0,

To describe constructively the representations of the algebra Ap̃ we transform
the commutation relations (24.7) to such a form that the structure constants will depend
on the single parameter c1=pµ pµ. For this purpose we will use the linear transformation

where

(24.12)pµ→pµ Rµν p ν, Wµν→Wµν RµλRνσW λσ

This transformation is invertible, moreover

(24.13)

R00 1, R0k Rk0 0, k 1,2,3,4,

Rkc δkc

θkc

2p

θknθnc

2p(2p p1 p2 p3 p4 )
,

θkc pk pc , p (p 2
1 p 2

2 p 2
3 p 2

4 )1/2.

and it is nothing but the rotation of a reference frame, corresponding to the transition

(24.14)R 1
µν Rµν( θkc)

to the basis in which

Using (24.7), (24.12) and (24.15) it is not difficult to find the commutation

(24.15)p0 p0, p1 p2 p3 p4 p/2.

relations for W′µν. These relations can be simplified essentially by passing to the new
variables W′µν →(ηa, λa). Using the fact that only six out of ten components of W′µν are
linearly independent (see (24.8)), it is convenient to set

where

(24.16)

W0a p







1
2

η ηa , W04
1
2

pη,

Wab abc [ξc

1
4

p0(ηa ηb)], ξc

1
2

(λ λc),

W4a
1
2

[ abc(λb λc) p0(η ηa)],

Substituting (24.12), (24.15) and (24.16) into (24.7) we come to the following

(24.17)η η1 η2 η3, λ λ1 λ2 λ3, a, b 1,2,3.

algebra of the operators ηa and λa:
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The relations (24.16) define the isomorphism of the Lie algebra formed by the

(24.18)[ηa,ηb] i abcηc, [ηa,λb] i abcλc, [λa,λb] ic1 abcηc.

components of W ′µν to the algebra of the operators λa, ηa which are characterized by the
commutation relations (24.18). The structure constants of the algebra (24.18) depend
on a single parameter c1 (i.e., on the eigenvalue of the Casimir operator C1). In the
space of an IR of the algebra AP(1,4) this eigenvalue is fixed and relations (24.18)
determine the Lie algebra.

If we choose a representation of the operators ηa and λa then formulae (24.16)
and (24.12) determine the corresponding representation of the tensor W′µν in the frame
of reference where components pµ have the form (24.15). To obtain this tensor in an
arbitrary frame of reference we use the transformation

where U is the unitary operator

(24.19)Wµν→Wµν UR 1
µµ R 1

νν Wµ ν U †

and R µ
−

ν
1 are given in (24.13) and (24.14). We obtain

(24.20)
U exp











iηk pk

p̂
arctan p̂

p1 p2 p3 p4

, k 1,2,3,4, η4 η,

p̂ [(p p2)
2 (p3 p)2 (p2 p3)

2 (p4 p)2 (p4 p2)
2 (p4 p3)

2]1/2,

where

(24.21)W0k Σkl pl, Wkl p0 Σkl

1

p 2
[p0(pkW0 l plW0 k) pkλ ln pn pl λkn pn],

Formulae (24.21) and (24.22) give a representation of the tensor Wµν in terms

(24.22)Σab abcηc, Σ4a ηa, λab abcλc, λ4a λa.

of the operators λa and ηa satisfying the algebra (24.18). To find nonequivalent
realizations of Wµν it is sufficient to describe nonequivalent representations of this
algebra which turn out to be equivalent to the well-known Lie algebras of the group of
orthogonal 4×4 matrices O(4), Lorentz group O(1,3) and Euclidean group E(3),
depending on the value of the parameter c1.

THEOREM 24.1. The Lie algebra (24.18) is isomorphic to the algebra AO(4)
if c1>0, AE(3) if c1=0 and AO(1,3) if c1<0.

PROOF. The formulated isomorphism can be established explicitly by the
relations

(24.23a)ηa Σa, λa mΣa, if c1 m 2 >0;
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where {Σa, Σa′}, {Σa, Ta} and {Σa, ξa } are basis elements of the algebras AO(4), AE(3)

(24.23b)ηa Σa, λa Ta , if c1 0;

ηa Σa, λa kξa, if c1 k 2 <0,

and AO(1,3), which satisfy the commutation relations

It is not difficult to make sure that the relations (24.24) follow from (24.18), (24.23),

(24.24)

Σa,Σb i abcΣc,

Σa,Σb i abcΣ c, Σa,Σb i abcΣc,

Σa,Tb i abcTc, [Ta,Tb] 0,

Σa,ξb i abcξc, ξa,ξb i abcΣc.

and vice versa (24.18) is a consequence of (24.23) and (24.24).
We restrict ourselves by IRs of the algebras AO(4), AE(3) and AO(1,3) which

have been well studied and described (see, e.g., [20], [197]). The necessary information
about these IRs is given in Sections 4 and 12.

24.4. The Basis of an IR.

To describe constructively the nonequivalent tensors Wµν and the
corresponding basis elements of the algebra AP(1,3) it is necessary to define a basis in
a space of the IR. It is convenient to choose such a basis in a form of eigenfunctions
of a complete set of commuting operators.

We choose the following set of commuting operators

where

(24.25)P0, P1, P2, P3, P4, S̃3, S̃ aS̃ a, C,

and C denotes all the Casimir operators existing in the representation considered, i.e.,

(24.26)S̃ a abcPbW0c P4W0a PaW04,

C1, C2, C3 (24.5) and additional invariant operators for the different classes of IRs.
It follows from (24.21) that the operators (24.26) are expressed via Σa and p:

We will denote the common eigenfunctions of the commuting operators

(24.27)S̃ a p 2 Σa.

(24.25) by the symbol c,p̃,l,m〉 where c=(c1,c2,c3,...) are eigenvalues of the Casimir
operators, p̃=( p0,p1,p2,p3,p4) are eigenvalues of the operators Pµ, l and m characterize
eigenvalues of the operators S̃3 and S̃aS̃a so that
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were l are positive integers or half integers, m=-l,-l+1,...,l.

(24.28)

Ca c,p̃,l,m ca c,p̃,l,m , a 1,2,...,

Pµ c,p̃,l,m pµ c,p̃,l,m ,

S̃ aS̃ a c,p̃,l,m p 4l(l 1) c,p̃,l,m ,

S3 c,p̃,l,m m c,p̃,l,m

In a space of an IR of the algebra AP(1,4) ca are fixed and possible values of
pµ are restricted by the relation pµ pµ=c1.

We impose here the following normalization conditions for c1≠0

where . If c1<0 then it is convenient to require

(24.29)c,p̃,l,m c,p̃ ,l ,m 2p̂0δ(p4 p4 )δ(p p )δl l δmm ,

p̂0 p 2 c1

where

(24.30)c,p̃,l,m c,p̃ ,l ,m 2p̂4δ(p0 p0 )δ(p p )δl l δmm ,

p̂4 p 2
0 p2 c1 .

The orthonormalized basis defined by the relations (24.28) -(24.30) will be
used below to determine an explicit form of the basis elements of the algebra AP(1,4).

24.5. The Explicit Form of the Basis Elements of the Algebra AP(1,4)

Let us determine a general form of the operators Pµ, Jµν corresponding to the
tensors Wµν described above. It is not difficult to make sure that without loss of
generality we can set

where pµ are independent variables satisfying the relation pµ pµ=c1, xµ=−i∂/∂pµ, λkl and

(24.31)
Pµ pµ , Jkl xk pl xl pk Σkl,

J0k x0 pk xk p0

1

p 2
(λkl pl p0 Σkl pl),

Σkl are the matrices realizing an IR of the algebra (24.18), (24.22). The operators
(24.31) satisfy the commutation relations (24.1) and therefore form a representation of
the algebra AP(1,4). On the other hand we obtain the representation (24.21) for the
tensor Wµν after the substitution (24.31) into (24.3). Finally substituting (24.21) and
(24.31) into (24.5) we come to the following expressions for the Casimir operators

According to (24.23) these operators reduce to one of the following forms:

(24.32)C1 pµ p µ c1, C2 (cηaηa λaλa ), C3 ηaλa.

(24.33a)C1 m 2 >0, C2 m 2 (Σ2 Σ 2), C3 mΣ Σ ,

(24.33b)C1 0, C2 T 2, C3 T Σ,
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We can see that the basic Casimir operators of the algebra AP(1,4) in the

(24.33c)C1 k 2<0, C2 k 2(Σ2 ξ2), C3 kΣ ξ.

realization (24.31) reduce to the invariant operators of the groups O(4), E(3) and O(1,3)
which are the little groups of the group P(1,4) [135]. Thus any possible set of the
eigenvalues of the operators C1, C2 and C3 can be assigned to the representation of the
algebra AP(1,4) given by the operators (24.31).

The basis elements of the algebra AP(1,4) for any class of IRs can be
represented in the form (24.31). The matrices λkl and Σkl (included into (24.31)) satisfy
the algebra (24.18), (24.22) which is isomorphic to the algebras AO(4), AE(3) or
AO(1,3) for timelike, lightlike and spacelike vectors pµ.

The realization (24.31) is distinguished by the simple form which is common
for all the classes of the IRs. So this realization differs favorable from another known
realizations of the algebra AP(1,4).

24.6. Connection with Other Realizations

Let us consider IRs of the generalized Poincaré algebras in more detail and
discuss connections of the realization (24.31) with other representations of this algebra.

a) Pµ Pµ=c1=m2>0. In this case the algebra of the matrices Σkl and λkl is
isomorphic to the algebra AO(4). The IRs of the last are finite dimensional and can be
realized by the square matrices of dimension (2j+1)(2τ+1)×(2j+1)(2τ+1), where j and
τ are positive integers or half of integers, which are connected with the eigenvalues of
the Casimir operators C2 and C3 as follows:

The explicit form of the matrices Σkl, λkl in the basis c,p̃,l,m〉 is given by the relations

(24.34)
c2 m 2(l 2

0 l 2
1 1) 2m 2[ j( j 1)) τ(τ 1)],

c3 2ml0l1 2m[ j( j 1)) τ(τ 1)].

where Sµν are the matrices realizing the representation D(l0,l1) of the algebra AO(1,3)

(24.35)
Σab c,p̃,s,µ abcΣ4c c,p̃,s,µ Sab c,p̃,s,µ ,

λab c,p̃,s,µ abcλ4c c,p̃,s,µ i abcS0c c,p̃,s,µ ,

and acting on the vector c,p̃,l,m〉 according to (4.64).
The considered representations have the additional (energy sign) Casimir

operator:

In the space of an IR C4= =±1 and p0= E.

(24.36)C4

P0

P0

p0

p̂0

, p̂0 E p 2 m 2 .

Using (24.23), (24.36) one can represent the operators (24.31) in the following
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form:

where λkl, Σkl are the matrices (24.35), (4.64).

(24.37)
P0 E, Pk pk , Jkl xk pl xl pk Σkl,

J0k x0 pk xk E
1

p 2
(mλkl pl E Σkl pl),

The operators (24.37) are Hermitian with respect to the scalar product

where l=l0,l0+1,..., l1 -1, m=-l,-l+1,...,l.

(24.38)(Ψ1,Ψ2)
l,m

⌡
⌠ d 4p

2E
Ψ1(p,p4,l ,m)Ψ2(p,p4, l,m),

Using the unitary transformation Pµ → Pµ
K=UPµU

†, Jµν → Jµν
K=UJµνU

†, where

the generators (24.37) reduce to the form found in [135,136]:

(24.39)U exp










i
4

p abc(Σab λab)pc arctan
2 p p4

p 2
4 p2

,

where Sab=Σab and S4a=λ4a are basis elements of the algebra AO(4). The representation

(24.40)
P C

0 E, P C
l p C

l , J C
kl xk pl xl pk Skl ,

J C
0k x0 pk Exk

Skl pl

E m

(24.40) is a natural generalization of the canonical Shirokov-Foldy representation
(4.50) and we will call it therefore canonical for the sake of brevity.

b) PµP
µ=c1=0. Such representations also have the additional Casimir operator

(24.36) (with m≡0). Thus an explicit realization of Pµ, Jµν can be chosen in the form
(see (24.23), (24.25), (24.28)):

where Σab= abcΣc, Σ4a=Σa, Tab= abcTc, T4a=Ta, Σa and Ta are the matrices satisfying the

(24.41)P0 E, Pa pa, Jkl xk pl xl pk Σkl,

J0k x0 pk Exk (Tkl pl pΣkl pl)/p
2,

algebra (24.24).
The algebra (24.24) for Σa, Ta is isomorphic to the Lie algebra of Euclidean

group E(3) and has two Casimir operators given in (24.33b). The eigenvalues of these
operators that corresponding to unitary representations of the group E(3) are equal to

Representations of the algebra AE(3) qualitatively differ for the cases r2=0 and

(24.42)c2 r 2≥0, c3 l0r, l0 0, 1
2

,1, 3
2

,... .

r2>0. If r2=0 then Ta=0, Tkl =0 and the algebra AE(3) reduces to AO(3). The last algebra
generates the additional Casimir operator
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whose eigenvalues equal s(s+1), s are positive integers or half integers. The

(24.43)C5 ΣaΣa

corresponding representations are of finite dimensions and realized by the
(2s+1)×(2s+1) matrices given in (4.31) (where Sa=Σa). Besides this the basis elements
of the algebra AP(1,4) have the form (24.41) where Tkl ≡0 [135,136]. These operators
are Hermitian with respect to the scalar product

where µ=-s,-s+1,...,s are the eigenvalues of the matrix Σ3, s is an integer or a half

(24.44)(Ψ1,Ψ2)
µ

⌡
⌠ d 4p

2p
Ψ1( p,p4,µ)Ψ2( p,p4,µ),

integer which determines an eigenvalue of the Casimir operator (24.43).
If -c2=r2>0 then unitary representations of the group E(3) are of infinite

dimensions. The IRs are characterized by the numbers r, l0 satisfying the conditions
(24.42) and are denoted below by D(l0 , r). The corresponding matrices Σa and Ta have
the following form:

where Sa and ηa are given in (12.38).

(24.45)Σa Sa, Ta ηa,

Thus the basis elements of the IRs of the algebra AP(1,4) which corresponds
to c1=0, c2≠0 can be chosen in the form (24.41) where Ta and Σa are the operators
(24.45). In contrast with the case c2=0 such representations are infinite dimensional in
respect with the index l since the unitary IRs of the group E(3) are infinite dimensional.

c) Pµ P µ=c1=-k2<0. In this case the matrices λkl and Σkl from (24.31) form a
Lie algebra isomorphic to AO(1,3). The Hermitian IRs of this algebra are infinite
dimensional.

Using the isomorphism (24.23) we obtain from (24.31) the following explicit
expressions of the basis elements of the algebra AP(1,4):

where ξab= abcS0c, ξ4a=S0a, Σab=Sab, Σ4a= abcSbc /2, Sab and S0a are the basis elements of

(24.46)
Pµ pµ, Jkl xk pl xl pk Σkl,

J0k x0 pk xk p0 (kξkl pl p0 Σkl pl)/p
2,

the algebra AO(1,3), satisfying relations (2.18b). The explicit form of the matrices Sab

and S0a which belonging to the IR D(l0,l1) is given by formulae (4.64)-(4.66). Besides
that for the Hermitian infinite-dimensional representations the parameter l1 in (4.63)
which defines the Casimir operators eigenvalues (4.61) is purely imaginary.
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25. REPRESENTATIONS OF THE ALGEBRA AP(1,4)
IN THE POINCARÉ-BASIS

25.1. Subgroup Structure of the Group P(1,4)

Investigation of a subgroup structure of the basic symmetry groups is one of
the main problems of a group-theoretic analysis of equations of quantum mechanics.
This problem is of great interest both for the group theory and for many applications,
e.g., for finding the exact solutions of linear and nonlinear equations.

The subgroup structure of the basic groups E(1,3), P(1,3), O(1,3) has been
described in papers [415,396]. The subgroups of the group P(1,4) were studied in
[92,93]. It turns out that this group includes more than 400 connected subgroups, the
main ones of which are:

a) the Euclidean group E(4) in the four-dimensional space;
b) the Poincaré group P(1,3);
c) the Galilei group G(1,3).
In other words it is the group P(1,4) which unites naturally the groups of

motions of the relativistic and nonrelativistic quantum mechanics and the symmetry
group of the Euclidean field theory.

Generally speaking IRs of the group P(1,4) are reducible with respect to its
subgroups. So the problem of reduction of a representation of the generalized Poincaré
group by its subgroups evokes a great interest.

We mean that the reduction of the group P(1,4) by its subgroups is a
transformation of the group generators (basis elements of the algebra AP(1,4)) to such
a basis where the Casimir operators of the corresponding subgroups (subalgebras) are
diagonal. Transition to such a basis allows to answer the questions what sort of
representations of a subalgebra are included into given IR of the algebra AP(1,4) and
what is the multiplicity of these representations and also allows to find an explicit form
of the basis elements of the algebra AP(1,4) in such a realization where the Casimir
operators of the considered subalgebras are diagonal.

25.2. Poincaré-Basis

The operators Pµ, Jµν (µ,ν=0,1,2,3) form a subalgebra of the algebra AP(1,4).
This subalgebra is isomorphic to the Lie algebra of the Poincaré group, i.e., to the
algebra AP(1,3). If Pµ and Jµν belong to an IR of the algebra AP(1,4) then the
representation of the subalgebra AP(1,3) is reducible because the Casimir operators
(4.6)

307



Symmetries of Equations of Quantum Mechanics

are not multiples of the unit operator. Here Wµ is the Lubanski-Pauli vector (4.2);

(25.1)C1 P 2
0 P 2 ≡c1 P 2

4 , C2 WµW
µ ≡W4µW

4µ

according to (24.3) Wµ=W4µ.
Since the subalgebra AP(1,3) evokes the greatest interest in the algebra

AP(1,4) it is desirable to find such realizations of this algebra that representations of
the subalgebra AP(1,3) reduce to direct sums of the IRs. The basis of the IRs having
the above-mentioned property will be called the Poincaré-basis (or P(1,3)-basis).

Let us give the more exact definitions.
DEFINITION 25.1. We say that an IR of the algebra AP(1,4) is defined in

the Poincaré-basis if
1) the Casimir operators of the subalgebra AP(1,4) are diagonal;
2) the space of an IR of the algebra AP(1,4) is decomposed into a direct sum

of Hilbert spaces invariant under IRs of the algebra AP(1,3).
In the following subsections we define constructively the Poincaré-basis and

find the explicit form of the corresponding operators Pµ, Jµν for all the classes of IRs.

25.3. Reduction P(1,4) → P(1,3) of IRs of Class I

Consider IRs of the algebra AP(1,4) corresponding to positive values of the
Casimir operator C1: PµP µ=κ2>0. We start from the canonical realizations of such
representations given by formulae (24.40).

The operators (24.40) are defined in the basis κ,l0,l1, ; p,p4,s,λ> formed by
the eigenvectors of the Casimir operators (24.33a), (24.36) and the commuting
operators P1, P2, P3, P4, Σ2 and Σ3. We refer to that basis as the canonical one.

Evidently there exist many other bases for IRs of the algebra AP(1,4). Among
them is the Poincaré basis which is very useful for physical applications. It can be
defined as a set of eigenfunctions of the operators P1, P2, P3, Casimir operators (25.1)
and the operator S3,

To denote these eigenfunctions we use the symbol κ,l0,l1, ;p,m,s,s3> where four first

(25.2)S3

W43

M

P3W4a Pa

M(E M)
, M κ2 P 2

4 , a 1,2,3.

numbers define eigenvalues of the Casimir operators (10.5), (10.36); the others
characterize the eigenvalues of Pa, C′1, C′2 of (25.1) and S3 of (25.2).

We normalize the basis vectors according to

This corresponds to the following scalar product

κ,l0,l1, ; p,m,s,s3 κ,l0,l1, ; p ,m ,s ,s3 2Eδ(m m )δ3( p p )δss δs3s3
.
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where ϕ1( p,m,s,s3 ), ϕ2( p,m,s,s3 ) are vectors from a space of an IR of the algebra

(25.3)(ϕ1,ϕ2 )
s

⌡
⌠
∞

κ2

dm 2

2m ⌡
⌠ d 3p

2E
ϕ†

1( p,m,s,s3 )ϕ2( p,m,s,s3 ),

AP(1,4) defined in the Poincaré basis. It is not difficult to see that the bilinear form
(25.3) is nothing but a sum over the discrete variable s and the integral with respect to
m of the scalar products defined in orthogonal subspaces of the IRs of the algebra
AP(1,3) corresponding to the eigenvalues m2 and -m2s(s+1) of the Casimir operators
(4.6).

Our task is to determine the possible eigenvalues of the operators (25.1), to
find an explicit form of the operators Pn , Jmn in the Poincaré-basis and to find the
unitary operator connecting the basises κ,l0,l1, ; p,p4,s,λ> and κ,l0,l1, ; p,m,s,s3>.

We will see further on that the operators Pµ, Jµν of (24.40) with µ,ν≠4 (these
operators form the subalgebra AP(1,3)) can be transformed to the canonical form
(4.50), where m=(κ2+p4

2)1/2 and Sab are matrices belonging to the IR D(l0,l1) of the
algebra AO(4). By the reduction of the representation D(l0,l1) by the algebra AO(3) we
obtain a direct sum of the representations D(s), l0≤s≤ l1 -1. It follows from the above
that a Hilbert space H of the IR D (κ,l0 ,l1) of the algebra AP(1,4) is decomposed to the
IRs D (m,s) of the algebra AP(1,3), moreover

We will search for an operator V connecting the canonical and Poincaré bases

(25.4)κ2≤m 2<∞, l0≤s≤ l1 1.

in the form

where R and θ are unknown functions of p and p4, S4a are matrices belonging to a

(25.5)
V Rexp











i
S4a pa

p
θ ,

representation of the algebra AO(4) (they are included into the generators (24.40)).
The operators (25.5) can be used to define a class of IRs equivalent to (24.40):

By definition the operator (25.5) has to diagonalize the Casimir operators

(25.6)Pn VPnV
1, Jmn VJmnV

1.

(25.1). We impose the stronger conditions on V, requiring that P′µ, J′µν (µ,ν≠4) reduce
to the canonical Shirokov-Foldy form (4.50). Substituting (24.40), (4.50) into (25.6)
we come to the following equations for V

(25.7a)VP0V
1 p 2 m 2 , VPaV

1 pa

VJabV
1 Jab ≡ xa pb xb pa Sab ,
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The conditions (25.7a) for the operator (25.5) are obviously satisfied. As to

(25.7b)
VJ0aV

1 ≡V










tpa Exa

Sab pb Sa4 p4

E κ
V 1 tpa Exa

Sab pb

E m
,

m κ2 p 2
4 , p p p 2

1 p 2
2 p 2

3 .

the equation (25.7b), we use the Campbell-Hausdorf formula (13.16) and obtain for
the operators in the l.h.s. of it:

Substituting (25.8) into (25.7b) and equating coefficients of the linearly independent

(25.8)

VxaV
1 xa i

∂R
∂pa

R 1
pa S4b pb

p 2









∂θ
∂p

sinθ
p

Sab pb

p 2
(1 cosθ) 1

p
S4a sinθ,

VS4aV
1 S4acosθ

paS4b pb

p 2
(1 cosθ)

Sab pb

p
sinθ,

VSab pbV
1 Sab pb cosθ 








1
p

paS4b pb pS4a sinθ.

matrices we come to the following equations for θ and R:

The general solutions of these equations are

∂R
∂pa

0, E(E κ)sinθ pp4cosθ p 2sinθ 0,

E(E κ)(1 cosθ) pp4sinθ p 2cosθ p 2(E κ)
E m

,

E(E κ)






∂θ
∂p

sinθ
p

p4(1 cosθ) psinθ 0.

Setting R=(m/p4)
1/2 (which corresponds to the scalar product (25.3)) we obtain

(25.9)R R(p4), θ 2arctan
pp4

(E m)(m κ)
.

The operator (25.10) transforms Pµ, Jµν (µ,ν≠4) to the canonical

(25.10)V
m
p4

exp










2i
S4a pa

p
arctan

pp4

(E m)(m κ)
.

Shirokov-Foldy form (4.50). The explicit form of the remaining generators (i.e., J′04

and J′4a) can be easily found using (25.6), (25.8), (25.9) and the relation

with the subsequent change p4 → ′(m2-κ2), ′=p4 / p4 =±1.

(25.11)Vx4V
1 x4

iκ2

2m 2p4

S4b pb(κE p 2
4 )

Em 2(E κ)
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The results given above allow to formulate the following assertion [336]:
THEOREM 25.1. The space H of the IR D (κ,l0,l1) of the algebra AP(1,4)

with PkP
k>0 reduces to the direct sum of the subspaces corresponding to the IRs

D (m,s) of the algebra AP(1,3) with the eigenvalues of the Casimir operators Pµ P µ and
WµW

µ given in (25.4). The operator connecting the canonical and Poincaré bases is
given in (25.10), the basis elements of the algebra AP(1,4) in the Poincaré-basis are

The operators (25.12) are Hermitian with respect to the scalar product (25.3).

(25.12a)

P0 p2 m 2 , P4 m 2 κ2, Pa pa,

Jab xa pb xb pa Sab , J0a x0 pa iP0
∂

∂pa

Sab pb

E m
,

J04 x0 P4 iP0













1 κ2

m 2
, ∂

∂m
κ

m 2
S4a pa,

(25.12b)
J4a

i
2

pa













1 κ2

m 2
, ∂

∂m
iP4

∂
∂pa

κ paS4b pb

m 2(E m)
P4

Sab pb

m(E m)
κ
m

S4a.

They realize a representation of the algebra AP(1,4) which corresponds to diagonal
Casimir operators of the subalgebra AP(1,3).

25.4. Reduction P(1,4) → P(1,2)

In some physical problems (where the Poincaré-invariance is broken but the
symmetry under the subgroup P(1,2) is preserved) it is more convenient to use the
P(1,2)-basis in which the Casimir operators of the algebra AP(1,2) are diagonal. So it
is interesting to continue the reduction of the algebra AP(1,4) up to the subalgebra
AP(1,2). That reduction can be made by the transition to a basis where the operators
P0, J12, Pa, J01, J02 have the following (canonical) form:

Here S12 is a matrix belonging to the IR D(l0,l1) of the algebra AO(4). To find an

(25.13a)

P0 E p 2
1 p 2

2 m 2
1 , m 2

1 m 2 p 2
3 ,

Pα pα, α 1,2, J12 i










p2

∂
∂p1

p1

∂
∂p2

S12,

(25.13b)J01 x0 p iP0

∂
∂p1

S12 p2

E m1

, J02 x0 p2 iP0

∂
∂p2

S12 p1

E m1

.

explicit form of the remaining basis elements of the algebra AP(1,4) it is sufficient to
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find an operator Ṽ satisfying the conditions

where P′0, P′α, J′12, J′α are the generators (25.12). Representing Ṽ in the form

(25.14)
ṼP0 Ṽ

1
E, ṼPα Ṽ

1
pα, ṼJ12Ṽ

1
J12,

ṼJ0αṼ
1

x0 pα i E
∂

∂pα

Sαβ pβ

E m
,

where R̃ and θ̃ are functions of p3, p 3, m, and making the calculations analogous to

(25.15)Ṽ R̃exp










i
S3α pα

p 3

θ̃ , p 3 p 2
1 p 2

2 ,

ones in (25.8)-(25.10) we obtain

This choice leads to the following scalar product

(25.16)θ̃ 2arctan
p3 p 3

(E m)(m m1)
, R̃ m1/p3 .

Using the transformation operator (25.15), (25.16) and changing the variables

(25.17)(ϕ1,ϕ2) ⌡
⌠
∞

κ2

dm 2

2m ⌡
⌠
∞

m 2

dm 2
1

2m1
⌡
⌠ d 2p

2E
ϕ†

1ϕ2.

p3 → ′′ (m1
2-m2)1/2, we can find the explicit form of the generators J03 and J43 in the

P(1,2)-basis:

where

(25.18)
J03 x0 m1λmm1

i
2

E










λmm1

, ∂
∂m1

mS3a pa

m 2
1

,

J43

im
2









λκ mλmm1

, ∂
∂m

κ m1

m 2
S43,

The remaining generators of the group P(1,4) can be obtained from (25.13), (25.18)

λκm 1 κ2/m 2 , λmm1

1 m 2/m 2
1 , , ±1.

using the commutation relations (25.1).

25.5. Reduction of IRs for the Case c1=0

In this subsection we transform the IRs of the Classes II and III
(corresponding to Pµ P µ=0) of the algebra AP(1,4) into the Poincaré basis, starting from
the realization (24.41).

First let us consider IRs corresponding to zero eigenvalues of the Casimir
operator C2 of (24.33), i.e., the IRs of the Class II. The corresponding operators Pn , Jmn
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have the following form according to (24.41) (with Ta≡0):

where Σkl form the IR D(s 0) of the algebra AO(4).

(25.19)
P0 E, Pk pk, E p p 2

1 p 2
2 p 2

3 p 2
4 ,

Jkl xk pl xl pk Σkl, J0 k x0 pk pxk

Σkl pl

p
,

It is not difficult to make sure that the Casimir operators of the subalgebra
AP(1,3) (this subalgebra is formed by the generators Pµ, Jµν (µ,ν≠4)) are diagonal in the
representation (25.19):

where Σa=Σ4a= abcΣbc /2. Since that to obtain an IR in the Poincaré basis it is sufficient

PµP
µ p 2

4 m 2, WµW
µ m 2ΣaΣa m 2s(s 1),

to make the substitution p4 → ′m, ′=±1 in (25.19). As a result we can obtain the
following realization

For any fixed value of m the operators (25.20) form a basis of the IR D (m,s)

(25.20)

P0 E, Pa pa, P4 m, E p2 m 2 ,

Jab xa pb xb pa Σab,

J0a x0 pa Exa

Σab pb Σa4 m

E
,

(25.21)J4a











pa

∂
∂m

m
∂

∂pa

Σ4a, J04









x0m p
∂

∂m

Σ4a pa

E
.

of the algebra AP(1,3) in the realization (25.20) which had been considered in [136].
Using the transformation (25.5) where

we can reduce (25.20), (25.21) to the form (25.12) where κ≡0 but Skl are matrices

(25.22)
V V exp











iΣa pa

p
arctan p

m
,

belonging to the IR D(s 0) of the algebra AO(4). We conclude from this fact that the
result, formulated in the Theorem 24.1 is valid for the IRs of Class II also (besides, for
the last κ=0, l0=s, l1=s+1).

Just now we consider IRs of the Class III corresponding to PnP
n=0,

WmnW
mn/2=-r2<0. Basis elements of such a representation can be chosen in the form

(24.41). With the help of the unitary transformation (25.5), where
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V′ is the operator (25.22) with the corresponding infinite-component matrices Σa, and

V exp










i
T p
p p4

V ,

the change p4 → ′m we come to the following realization

The operators (25.23) are defined in the Poincaré basis r,λ, ; p,m,l,l3>

(25.23)

P0 E, Pa pa, P4 m, E p2 m 2 ,

Jab xa pb xb pa Σab,

J0a x0 pa Exa

Σab pb

E m
,

J4a











ipa

∂
∂m

im
∂

∂pa

Σab pb

E m
E

m 2
Ta

(2E m)paT p

m 3(E m)
,

J04








x0 m i E
∂

∂m
T p

m 2
.

which is formed by the eigenvectors of the complete set of the commuting operators
C1, C2, C3 (24.5), C4 (24.36) and P1, P2, P3, Pµ P µ=P4

2, W µW µ=-m2ΣabΣab, Σ12. Moreover,
the eigenvalues of the Casimir operators of the subalgebra AP(1,3) take the form (see
(12.36)-(12.38))

where

(25.24)Pµ P µ r,λ, ; p,m,s,s3 m 2 r,λ, ; p,m,s,s3 ,

WµW
µ r,λ, ; p,m,s,s3 m 2s(s 1) r,λ, ; p,m,s,s3

The operators (25.23) are Hermitian with respect to the scalar product (25.3), where

(25.25)0≤m 2<∞, s l0, l0 1, ... .

κ=0 and s takes the values given in (25.25).
Let us summarize the results presented [336]:
THEOREM 25.2. The space of the IR D (r,λ) of Class III of the algebra

AP(1,4) is decomposed into the direct integral of subspaces corresponding to the IRs
D (m,s) of the algebra AP(1,3); moreover, the possible eigenvalues of the Casimir
operators Pµ P µ and WµW

µ are given in (25.24). The generators Pn and Jmn are given in
the Poincaré basis by formulae (25.23) where Ta and Σa are the infinite dimension
matrices (24.45),(12.38).
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25.6. Reduction of Representations of Class IV

Consider IRs of Class IV of the algebra AP(1,4). These representations
correspond to negative eigenvalues of the Casimir operator C1=Pn P n: C1=-k2<0.

A specific feature of transformation of such IRs to the Poincaré basis is the
following: by reducing them by the subalgebra AP(1,3) we come to representations
belonging to the different classes depending on the eigenvalues of the operator
M 2=P4

2- k2.
We consider the case when the domain of eigenvalues p4 is restricted by the

condition p4
2>k2.

We start from the realization (24.46) of IRs of Class IV. It is not difficult to
make sure that the corresponding Casimir operators of the subalgebra AP(1,3) are not
diagonal. But using the transformation (25.5), where

where

V exp










i
S0a Pa

p
tanh 1 k p

p0 p4

exp










i
Sa pa

p
arctan p

p4

iπ
2

(1 ) ,

and changing p0→ E, p4→ ′(m2+k2)1/2, we reduce (24.46) to the following form

E p2 m 2 , m 2 p 2
4 k 2, S0a ξa, Sa Σa

1
2 abcSbc,

The operators Pµ, Jµν of (25.26) have the canonical Wigner-Shirokov form,

(25.26)

P0 p 2 m 2 , Pa pa, P4 m 2 k 2 ,

Jab xa pb xb pa Sab, J0a x0 pa Exa

Sab pb

E m
,

J04 i E













1 k 2

m 2
, ∂

∂m
x0 P4

kS0a pa

m 2
,

Ja4

i
2

pa













1 k 2

m 2
, ∂

∂m
xaP4

k
m

S0a













1 k 2

m 2

kE

m 2

Sab pb

E m
.

however, the matrices Sab belong to the IR D(l0 ,l1) of the algebra AO(1,3). Hence we
conclude IRs of the Class IV of the algebra AP(1,4) are decomposed into the direct
sums of IRs D (s,m) by the reduction P(1,4) → P(1,3). Moreover,

In analogous way it is possible to consider the cases p4 =k and p4 ≤k

m 2 p 2
4 k 2>0, s l0,l0 1,l0 2,..., l1 1.
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[336]. We will not write out the corresponding cumbersome formulae here.

25.7. Reduction P(1,n) → P(1,3)

The results presented above can be generalized directly to the cases of the
groups P(1,n) defined in (n+1)-dimensional Minkowsky spaces. Here we consider IRs
of the algebra AP(1,n) corresponding to the positive values of the main Casimir
operator P 2=P0

2-P1
2-P2

2-...-Pn
2 and find a realization of such IRs in the Poincaré basis.

First we will show that the IRs of the algebra AP(1,n) can be defined in the
P(1,n-1)-basis. The canonical realization of an IR corresponding to P 2=κ 2>0 is defined
by the following relations [136]:

Here Skl are matrices which form the IR D(m1,m2,...m[n/2]) of the algebra AO(n), m1, m2,

(25.27)

P0 E pk pk κ2 , Pk pk, k 1,2,3...,n,

Jab xa pb xb pa Sab, a,b 1,2,3,...,n 1,

J0a x0 pa Exa

Sab pb San pn

E κ
,

(25.28)J0n x0 pn Exn

Sna pa

E κ
, Jan xa pn xn pa San.

... are the Gelfand-Zetlin numbers. The operators (25.27), (25.28) are Hermitian with
respect to the following scalar product

The subalgebra P(1,n-1) is a linear span of the basis elements (25.27). In the

(25.29)(Ψ1,Ψ2) ⌡
⌠ d np

2E
Ψ†

1Ψ2.

P(1,n-1)-basis these elements by definition have to have a form of a direct sum of the
generators of the IRs of the group P(1,n-1). If Skl are defined in the Gelfand-Zetlin basis
O(n)⊃ O(n-1)⊃O(n-2) ... then we can choose the transformed operators (25.27) in the
form

The problem of finding of a realization of the generators Pn , Jmn in the

(25.30)
P0 E pa pa m 2

n , m 2
n κ2 p 2

n , Pa pa,

Jab Jab xa pb xb pa Sab, J0a x0 pa Exa

Sab pb

E mn

.

P(1,n-1)-basis reduces to the construction of an isometric operator which connects the
realizations (25.27) and (25.30). In analogy with (25.5)-(25.11) it is possible to show
that this operator has the form
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where

(25.31)Vn

mn

pn

exp










i
Sna pa

p n

θn ,

Using the following identities (which are easily verified with the Cambell-Hausdorf

(25.32)θn 2arctan
pn p n

(E mn)(mn κ)
, p n p 2

1 p 2
2 ... p 2

n 1 .

formula (13.16))

we obtain

(25.33)
xa Vn xaV

1
n xa

pa pn Snb pb

Emn(E mn)(E κ)

Sab pb(mn κ)

mn(E mn)(E κ)

pn Sna pa

mn(E κ)
,

Vn pkV
1

n pk,

where P′µ, J′µν are the operators (25.30). Analogously using the substitution pn →

VnPµV
1

n Pµ , VnJµνV
1

n Jµν

n(mn
2- κ 2)1/2, n=±1 one can find the remaining basis elements of the algebra AP(1,n)

in the following form:

So we have found the explicit expressions for the generators of the group

(25.34)

Pn n m 2
n κ2,

J0n x0 Pn
i
2

E










Pn

mn

, ∂
∂mn

κ Sna pa

m 2
n

,

Jna

ipa

2











Pn

mn

, ∂
∂mn

Pn xa

κ pa Snb pb

m 2
n (E mn)

Pn Sab pb

mn(E mn)
κ
mn

Sna.

P(1,n) in the basis P(1,n-1). These generators are Hermitian with respect to the
following scalar product

Here η is a set of numbers characterizing the IRs of the algebra AO(n-1)

(25.35)(φ1,φ2)
η ⌡

⌠
∞

κ

dmn⌡
⌠ d n 1p

2E
φ†

1(η,m)φ2(η,m).

appearing by the reduction AO(n) → AO(n-1).
Let us now define a representation of the algebra AP(1,n) in the

P(1,n-2)-basis. Using the above results we conclude that the operator
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transforms (25.30) to the following form

Vn 1

mn 1

pn 1

exp










i
2Sn 1a pa

p n 1

arctan
pn 1 p n 1

(E mn)(mn mn 1)
,

mn 1 κ2 p 2
n p 2

n 1 , p n 1 p 2
1 p 2

2 ... p 2
n 2 , a 1,2,...,n 2,

To define the basis elements of the algebra AP(1,n) in the P(1,n-2)-basis it is

(25.36)

P0 E p 2
n 1 m 2

n 1 , Pa pa, a 1,2,...,n 2,

Pn 1 n 1 m 2
n 1 m 2

n , Pn n m 2
n κ2,

Jab xa pb xb pa Sab,

J0a x0 pa Exa

Sab pb

(E mn 1)
,

J0n 1 x0 Pn 1

i
2

E










Pn 1

mn 1

, ∂
∂mn 1

mn Sn 1a pa

m 2
n 1

.

sufficient to find the explicit form of just one more operator, i.e., Jnn-1, since the
remaining generators can be obtained using the commutation relations (24.1). Using
the identities

and the last of the relations (25.33) with n → n-1, κ → mn we obtain

Vn 1xnV
1

n 1 xn

pn pn 1Sn 1a pa

mnm
2

n 1E

ipn

2m 2
n 1

,

Vn 1Snn 1V
1

n 1

Snn 1(m
2
n 1 Emn)

mn 1(E mn)

Sna pa Pn 1

mn 1(E mn )

The operators (25.36), (25.37) are Hermitian with respect to the scalar product

(25.37)Jnn 1

i
2











Pn Pn 1

mn

, ∂
∂mn 1

κ mn 1

m 2
n

Snn 1.

where α denotes the sets of numbers that numerating IRs of the algebra AO(n-2)

(φ1,φ2) ⌡
⌠
∞

κ

dmn⌡
⌠
∞

mn

dmn 1
α ⌡

⌠ d n 2p
E

φ†
1(mn 1,α)φ2(mn 1,α),

appearing by the reduction AO(n) → AO(n-1) → AO(n-2).
A representation of the algebra AP(1,n) in the P(1,n-k)-bases can be

determined in an analogous way. Starting from (25.36), (25.37) and making the
consequent transformations Pµ → Vn-lPµ(Vn-l)

-1, Jmk → Vn-lJmkVn-l
-1, where
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and using the above results we obtain

Vn l

mn l

pn l

exp










2iSn la pa

p n l

arctan
pn l p n l

(E mn l)(mn l mn l 1)
,

p n l p 2
1 p 2

2 ... p 2
n l 1 , l 2,3,...,k,

mn l κ2 p 2
n p 2

n 1 ... p 2
n l , a 1,2,...,n l 1

The generators (25.38) are Hermitian with respect to the following scalar product

(25.38)

P0 E p 2
n k 1 m 2

n k 1 , Pa pa,

Pn α n α m 2
n α m 2

n α 1 , Jab xa pb xb pa Sab,

J0a x0 pa Exa

Sab pb

E mn k 1

, α≤k, a,b≤n k,

J0 n α x0 Pn α
i
2











Pn α

mn α

, ∂
∂mn α

mn α 1Sn α a pa

m 2
n α

,

Jn α n α 1

i
2











Pn α Pn α 1

mn α

, ∂
∂mn

κ mn α 1

m 2
n α

Sn α n α 1.

They form a representation of the algebra AP(1,n) in the basis P(1,n)⊃P(1,n-1)⊃

(φ1,φ2) ⌡
⌠
∞

κ

dmn⌡
⌠
∞

mn

dmn 1... ⌡
⌠
∞

mn k 1

dmn k
λ ⌡

⌠ d n kp
2E

φ†
1(mn k,λ)φ2(mn k,λ).

...⊃ P(1,n-k). In the case n-k=3 formulae (25.38) defines an IR of the algebra AP(1,n)
in the Poincaré-basis.

26. REPRESENTATIONS OF THE ALGEBRA AP(1,4)
IN THE G(1,3)- AND E(4)-BASISES

26.1. The G(1,3)-Basis

As was noted in Subsection 24.1 the algebra AP(1,4) includes the subalgebras
AP(1,3), AG(1,3) and AE(4), i.e., the Lie algebras of the main groups of quantum
physics.

In the previous section we have found the generators of the generalized
Poincaré group in the Poincaré basis. However it is very interesting for physical
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applications to describe representations of the algebra AP(1,4) in the Galilei basis
characterized by a diagonal form of the Casimir operators of Galilean subalgebra.

Here* we obtain an explicit form of basis elements of the algebra AP(1,4) in
the G(1,3)-basis for any class of IRs. The unitary operator is found also which makes
the reduction of IRs of the Poincaré group by the Galilei group in (1+2)- dimensional
space (i.e., the reduction P(1,3) → G(1,2)). Such a reduction plays the central role in
the null-plane formalism (see, e.g., [275]).

In Subsection 25.5 we find IRs of the algebra AP(1,4) in the E(4)-basis in
which the Casimir operators of the four-dimensional Euclidean group are diagonal.

To select the Galilei subalgebra from the algebra AP(1,4) we should come to
the basis

where as usually a=1,2,3.

(26.1)
P̂0

1
2

(P0 P4), M P0 P4, P̂ a Pa,

Ja

1
2 abcJbc, G ±

a J0a±J4a, K J04,

It follows from (24.1) that the operators (26.1) satisfy the following
commutation relations

The relations (26.2) characterize the Lie algebra of the Galilei group G(1,3)

(26.2)

P̂0, P̂ a P̂0,M P̂ a,M P̂ a, P̂ b 0,

P̂0,Ja M,Ja Ga ,Gb M,Ga 0,

P̂ a,Jb i abc P̂ c, Ga , P̂ b iδabM,

Ja,Jb i abc Jc, P̂0,Gb i P̂ b ,

(26.3)

P̂0,Ga Ga ,Gb 0, Ga ,M 2iP̂ a,

Ga ,Jb i abc Gc , Ga , P̂ b 2iδab P̂0,

Ga ,Gb 2i( abc Jc δabK), P̂ a,K Ja,K 0,

P̂0,K iP̂0, M,K iM, G ±
a ,K ± iG ±

a .

(compare with (11.6)). This algebra has three main Casimir operators presented in
(11.14). Using (26.1) we represent these operators in the form

*For more details see [150]
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where C1 is the Casimir operator of the algebra AP(1,4) of (24.5a), W4a, W0a are the

(26.4)
Ĉ1 2MP̂0 P̂ aP̂ a≡C1, Ĉ3 M≡P0 P4,

Ĉ2 (MJ P̂×G )2≡(W4a W0a)(W4a W0a),

components of the tensor Wµν of (24.3).
Our task is to transform the realizations of the algebra AP(1,4) described in

Section 24 to such a basis where the operators (26.4) are diagonal. This basis can be
formed by a complete set of eigenfunctions of the commuting operators P1, P2, P3, Ĉ1,
Ĉ2, Ĉ3 and Σ3=W43+W03 with eigenvalues p1, p2, p3, 2mm0, m2s(s+1), m and ms3. To
denote such eigenfunctions we use the notation p,m0,s,m,s3;c>, where c is a set of the
eigenvalues of the Casimir operators of the algebra AP(1,4) characterizing the IR.

We normalize the basis vectors according to

This normalization leads to the following definition of the scalar product in the Hilbert

(26.5)p,m0,s,m,s3;c p ,m0 ,s ,m ,s3 ;c 2mδ(m m )δ3(p p )δss δs3s3
.

space spanned on the basis p,m0,s,m,s3;c>:

The domains of m and s are different for the different classes of the IRs and

(26.6)(Φ1,Φ2)
s

⌡
⌠
λ2

λ1

dm
2m ⌡

⌠d 3pΦ†
1(m,p,s,s3)Φ2(m,p,s,s3).

will be defined further on.

26.2. Representations with Pn Pn>0

We start from the realizations (24.40) of these representations. Our aim is to
find the explicit form of the generators Pn, Jmn in the Galilei basis and define the unitary
operator connecting this basis with the canonical one.

Substituting (24.40) into (26.2)-(26.4) we obtain

(26.7a)

P̂0

1
2

( E p4), M E p4, E p 2 p 2
4 κ2,

Ja abc









xb pc

1
2

Sbc ,

Ga (x4 x0)pa Mxa

Sab pb S4a(E κ p4 )

E κ
,

Ĉ1 κ2, Ĉ3 M,
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where

(26.7b)

Ĉ2 S2[M(E κ) p2]2 [ p 2N 2 (p N)2 ](E κ p4)
2

(p S)2[2 M(E κ) p2] (E κ) 2,

K x0 p4 Ex4

S4a pa

E κ
,

Ga (x0 x4)pa 2P̂0 xa

Sab pb S4a(E κ p4 )

E κ
,

The Casimir operators Ĉ1, Ĉ3 are diagonal in the canonical basis

Sa

1
2 abc Sbc, Na S4a, xk i

∂
∂p k

.

p,m0,s,m,s3;κ,l0,l1, >, but Ĉ2 is a matrix depending on p and p4. To diagonalize this
matrix we use an operator

where θ is an unknown so far function of p and p4.

(26.8)
U exp











i
S4a pa

p
θ ,

Using the unitary operator (26.8) we can define a series of the representations
equivalent to (26.7):

where x′a, x′4, S′ab, S′4a are given by formulae (25.8) (with R=1). Moreover (Ga
+)′ has

(26.9)

P̂µ U1P̂µU
†

1 P̂µ, Ja U1JaU
†

1 Ja, M U1MU †
1 M,

(Ga ) U1Ga U †
1 (x0 x4)pa xa M

Sab pb S4a(E κ p4 )

E κ
,

(Ga ) U1Ga U †
1 , K U1KU †

1 ,

an extremely simple form if we choose

Indeed, we have in this case

(26.10)θ 2arctan p
E κ p4

1
2

(1 )π,

Substituting (26.9) and (26.11) into (26.4) we make sure that the corresponding

(26.11)(Ga ) (x0 x4)pa Mxa.

Casimir operator Ĉ′2 is diagonal:
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where S2 is a diagonal matrix with eigenvalues s(s+1) (l0≤s≤ l1 -1).

Ĉ2 M 2 S2 ≡ M 2 (S 2
12 S 2

31 S 2
23)

To find the explicit form of the generators of the group P(1,4) in the Galilei
basis p,m0,s,m,s3;κ,l0,l1, > it is sufficient to substitute (25.8), (25.10),(26.8) into
(26.11) and to make the change of variables (p1,p2,p3,p4) → (p1,p2,p3,m) where
m=E+ p4. Besides that

and the operators (26.9) take the following form:

∂
∂p4

→ m
E

∂
∂m

, ∂
∂pa

→ ∂
∂pa

pa

E
∂

∂m
,

where

(26.12)

P̂0 m0

p2

2m
, P̂ a pa, M m,

Ja abc xb pc Sa, (Ga ) x0 pa i m
∂

∂pa

,

K im
∂

∂m
x0









m
2

P̂0 ,

(Ga ) x0 pa 2i










pa

∂
∂m

P̂0

∂
∂pa

2(Sa4κ Sab pb)

m
,

(26.13)Ĉ1 κ2, Ĉ2 m 2s(s 1), Ĉ3 m,

So we come to the realization (26.12) of the IR D (κ,l0,l1) of the algebra

κ≤m<∞, m0

κ2

2m
, l0≤s≤ l1 1.

AP(1,4). The distinguishing feature of this realization is that the operators P̂′µ, J′a, (Ga
+)′

and M′ form an IR of the Galilei algebra in the canonical realization (12.15) for any
fixed values of m and s. The operators (26.12) are Hermitian with respect to the scalar
product (26.6) where λ1=κ1, λ2 → ∞, l0≤s≤ l1 -1.

Let us formulate the above results in the form of the following assertion [150]:
THEOREM 26.1. The Hilbert space of the IR D (κ,l0,l1) of the algebra

AP(1,4) is decomposed into the direct integral of subspaces corresponding to the IRs
of the algebra AG(1,3) labelled by the eigenvalues (26.13) of the Casimir operators.
The explicit form of the generators of the group P(1,4) in the Galilei basis and of the
transition operator connecting the canonical and G(1,3)-bases are given in formulae
(26.12), (26.8), (26.10).
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26.3. The Representations of Classes II-IV

Let us show that these representations can be transformed into the Galilei
basis also and find the corresponding realizations of basis elements of the algebra
AP(1,4) in the explicit form.

First we consider the IRs corresponding to Pn P n=0 and belonging to Classes
II or III. The corresponding basis elements can be chosen in the form (24.41). So we
have in the basis (26.1)

To transform (26.14) to the Galilei basis we use the operator

(26.14)

P̂0

1
2

( p p4), M p p4, P̂ a pa, Ja abc xb pc Σa,

Ga (x4 x0)pa Mxa

1

p 2
( abc pb(Tc pΣc) Σa( p 2 pp4 )),

K x0 p4 px4

1

p 2
(Ta pa pΣa pa),

Ga (x0 x4)pa 2P̂0 xa

1

p 2
( abc pb(Tc pΣc ) Σa( pp4 p 2)).

As a result of the transformation (26.9), (26.15) and change of variables (p1,p2,p3,p4)→

(26.15)V exp










i
T p

p(p p4)
i

Σ p
p











arctan p
p4

1
2

(1 )π .

(p1,p2,p3,m), m=p+ p4 we obtain

The realization (26.16) is defined in the Galilei basis p,m0,s,m,s3;r,λ> in

(26.16)

P̂0

p2

2m
, M m, P̂ a pa,

Ja abc(xb pc Σa), Ga x0 pa Mxa i m
∂

∂pa

,

K x0









m
2

P̂0 im
∂

∂m
(m 2 p2)T p

p 2(m 2 p2)
.

which the Casimir operators of the subalgebra AG(1,3) are diagonal. Indeed according
to (26.4), (26.16) we have

and thus the eigenvalues of these operators are

Ĉ1≡0, Ĉ2 m 2ΣaΣa, Ĉ3 m,

324



Chapter 5. Generalized Poincaré Groups

If a representation of the algebra AP(1,4) is characterized by the zero eigenvalue of C2

(26.17)
c1 m0 0, c2 m 2s(s 1), c3 m,

0≤m<∞, s λ,λ 1,..., r 2≠0.

(i.e., belonging to Class II) then r 2=0, Ta≡0, and the form of the generators (26.16) is
simplified essentially.

The operators (26.16) are Hermitian with respect to the scalar product (26.6)
where λ1=0, λ2 → ∞. Thus either the sum with respect to s reduces to the single term
(for c2≡0) or s runs over all the values given in (26.17).

We see that the IRs of Classes II and III can be defined in the Galilei basis
also. In comparison with the representation of Class I there are two specific features:
the possibility of zero eigenvalues of the mass operator and the infinite number of spin
states appearing by the reduction P(1,4) → G(1,3).

In conclusion we present the explicit form of the basis elements of an IR of
the algebra AP(1,4), which belong to Class IV, in the Galilei basis. This form is given
in (26.12) and (26.18):

where Sµν are generators of an IR of the Lorentz group, m0=-k2/(2 m), -η2<m<0,

(26.18)

K x0









m
2

P̂0 im
∂

∂m
,

(Ga ) 2










i










pa

∂
∂m

P̂0

∂
∂pa

Sab pb kS0a

m

0<m<∞.

26.4. Covariant Representations

One of the most interesting problems appearing with the reduction P(1,4) →
G(1,3) is the transformation to the Galilean basis of the covariant representations,
which are characterized by the following form of the basis elements

where Smn are matrices realizing a representation of the algebra AO(1,4); xm and pn are

(26.19)Pn pn, Jmn xm pn xn pm Smn,

the canonically conjugated variables satisfying the relations [ pm , xn]=iqmn. We will not
concretize the realization of pm and xn so the further results are available both for the
x- and for p-representations.

The operators (26.19) belong to the class M1, and therefore generate the local
finite transformations of the group P(1,4). The covariant representations of the algebra
AP(1,4) are used for the description of P(1,4)-invariant wave equations, see Section 27.

We restrict ourselves to the case when the spectrum of the Casimir operator
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C1=Pn P n is positive. Such a situation is typical for the cases for which the space of the
representation (26.19) is defined as a completion of a set of the solutions of the
P(1,4)-invariant wave equation. If we go over to the basis (26.1) then we obtain
according to (26.19)

where

(26.20a)
P̂0

1
2

(p0 p4), M p0 p4, P̂ a pa,

Ja abc xb pc Sa, Ga x̃0 pa xa M λa,

(26.20b)K x̃4 M x̃0 P̂0 S04, Ga 2 x̃4 pa 2xaP̂0 λa,

It is not difficult to make sure that the Casimir operators of the Galilei

(25.20c)Sa

1
2 abcSbc, λ± S0a±S4a, x̃0 x0 x4, x̃4

1
2

(x0 x4).

subalgebra (formed by the operators (26.20a)) are not diagonal. To transform the
representation (26.19) to the Galilean basis we use the operator

After the transformation (26.9) (where U1→V, V is the operator (26.21)) we come to

(26.21)
V exp











i
λa pa

M
.

the realization

Besides that, the corresponding Casimir operators (26.4) take the form

(26.22)

P̂0

1
2

(p0 p4), M p0 p4, P̂ a pa,

Ja abc xb pc Sa, (Ga ) x̃0 pa xa M,

K x̃4 M x̃0 P̂0 S04,

(Ga ) 2x̃4 pa 2xa P̂0 2λa
2
M

(Sab pb S40 pa) 4λa

P̂0

M
2λa

p2

M 2
.

According to (26.23) the eigenvalues of Ĉ1 coincide with the eigenvalues of

(26.23)Ĉ1 pµ p µ 2MP̂0 p2, Ĉ2 M 2SaSa, Ĉ3 M.

the operator C1=Pn P n (which are positive by definition), the eigenvalues of Ĉ2 coincide
with the ones of the matrix S2 multiplied by M 2 and the eigenvalues of Ĉ3 lie in the
interval (c1)

1/2≤c3<∞.
We see that a covariant representation of the algebra AP(1,4) can be

transformed to the form (26.22) for which the Casimir operators of the subalgebra
AG(1,3) turn out to be diagonal. The operator (26.21) can be used for a diagonalization
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of the wave equations being invariant under the group P(1,4), see Subsection 26.2.

26.5. The E(4)-Basis

Besides the subalgebras AP(1,3) and AG(1,3), the Lie algebra of Euclidean
group in the four-dimensional space is very interesting from the point of view of
physics. This group (denoted by E(4)) plays an important role in the quantum field
theory and quantum statistics.

In this section we consider the reduction of an IR of the algebra AP(1,4) by
the algebra AE(4). We will see such a reduction can be made in a relatively simple way
without using any transformations of the kind (26.9).

The subalgebra AE(4) is formed by ten generators Pk and Jkl (k,l=1,2,3,4)
which satisfy the following commutation relations according to (24.1):

This algebra has the two Casimir operators

(26.24)
[Pk, Pl] 0, [Pk, Jnl] i(δkl Pn δkn Pl),

Jkl, Jk l i(δkk Jll δll Jkk δkl Jlk δlk Jkl ).

where Wk= klnm Pl Jmn. Substituting (24.31) into (26.25) we obtain

(26.25)Ĉ1 P 2
1 P 2

2 P 2
3 P 2

4 , Ĉ2 W 2
1 W 2

2 W 2
3 W 2

4 ,

where Σa are matrices which realize a representation of the algebra AO(3) (24.24). We

(26.26)Ĉ1 p 2
1 p 2

2 p 2
3 p 2

4 p 2, Ĉ2 p 2ΣaΣa,

can see the realization (24.31) of the algebra AP(1,4) corresponds to the diagonal
Casimir operators of the subalgebra AE(4) since the matrix ΣaΣa can be chosen diagonal
without loss of generality.

Let us denote eigenvectors of the complete set of the commuting operators P1,
P2, P3, P4, Ĉ1, Ĉ2, Σ3 and the Casimir operators of the algebra AP(1,4) by p̃,s,s3;c〉.
Thus

where s3=-s,-s+1,...,s; s are positive integers or half-integers, cα are eigenvalues of the

(26.27)

Ĉ1 p̃,s,s3;c p 2 p̃,s,s3;c , Ĉ2 p̃,s,s3;c p 2s(s 1) p̃,s,s3;c ,

Σ3 p̃,s,s3;c s3 p̃,s,s3;c , Pk p̃,s,s3;c pk p̃,s,s3;c ,

Cα p̃,s,s3;c cα p̃,s,s3;c ,

Casimir operators of the algebra AP(1,4), p̃=(p1,p2,p3,p4), c=(c1,c2...).
We impose on p̃,s,s3;c> the normalization condition

where Mc=2P0, if c1≥0 and Mc=2P4, if c1<0. The vectors p̃,s,s3;c> form the

p̃,s,s3;c p̃ ,s ,s3 ;c Mcδ
4(p̃ p̃ )δss δs3s3

,
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orthonormalized basis called below E(4)-basis.
The explicit form of the generators of the group P(1,4) in the E(4)-basis is

given by formulae (24.37), (24.41) and (24.46) for c1>0, c1=0 and c1<0 respectively.
Besides eigenvalues of the Casimir operators of the subalgebra AE(4) are infinitely
degenerated and given by formulae (26.27) where 0≤p2<∞ and the values of s coincide
with the numbers labelling IRs of the group O(3) which arise by the reduction O(4) →
O(3), E(3) → O(3) and O(1,3) → O(3) for c1>0, c1=0 and c1<0 correspondingly.

26.6 Representations of the Poincaré Algebra in the G(1,2)-Basis

Let us now consider the IRs of the Poincaré algebra and solve the problem of
a transformation of these representations to such a basis where the Casimir operators
of the subalgebra AG(1,2) (i.e., the Lie algebra of the Galilei group in the space of two
spatial dimensions) are diagonal. Such a basis turns out to be very important for
different applications. It is this basis which is used implicitly in the null-plane
formalism [275].

A transformation of an IR of Class I (PµP
µ=κ2>0) to the G(1,2)-basis can be

made in a complete analogy with the transformation of one for the algebra AP(1,4)
considered in Subsection 25.2. We will start from the canonical realization (4.50) of
this IR. The basis elements of the subalgebra AG(1,2) can be expressed via Pµ, Jµν with
the help of the following relations

We choose the remaining basis elements of the algebra AP(1,3) in the form

(26.28)
P̂0

1
2

(P0 P3), M P0 P3, P̂α pα,

Ĵ3 J12, Gα J0α J3α, α 1,2.

The operators (26.28), (26.29), (4.50) realize an IR of the Poincaré algebra in

(26.29)Gα J0α J3α, K J03.

the canonical Shirokov-Foldy basis. To come to the G(1,2)-basis we use the
transformation (26.9) where

and make the change of the variables (p1,p2,p3)→(p1,p2,m), m= p3+(p1
2+p2

2+κ2). As a

U exp










2iS3α pα

p 2











arctan
p 2

p0 p3 κ
(1 )π

4
,

result we obtain the realization of the algebra AP(1,4) in a basis where the Casimir
operators of the subalgebra AG(1,2) are diagonal, since
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We do not present exact calculations which are analogous to (26.7)-(26.13).

(26.30)

P̂0 2m
(κ2 p 2

2 ), P̂α pα, p 2 (p 2
1 p 2

2 )1/2,

J3 i










p2

∂
∂p11

p1

∂
∂p2

S12, M m,

(Gα ) x0 pα i m
∂

∂pα

, κ≤ m<∞,

(26.31)

K x0









m
2

P̂0 im
∂

∂m
,

(Gα ) 2










i










pα
∂

∂m
P̂0

∂
∂pα

Sαβ pβ S3ακ
m

,

(26.32)Ĉ1 ≡2M(P̂0 P̂1

2
P̂2

2
) κ2, Ĉ3 ≡M m,

Ĉ2≡(J12 M P̂1 (G2 ) P̂2 (G1 ) )2 m 2S 2
12.

The operators (26.30) coincide with the generators of the kinematical group
used in the null-plane formalism (see, e.g., [257]). So we have found the explicit
connection of these generators with the Poincaré group generators in the Shirokov-
Foldy representation.

Using the results given in Subsections 26.3, 26.4 it is not difficult to transform
the IRs of Classes II-IV to the G(1,2)-basis. We do not present the correspondent
calculations here but consider the class of covariant representations which is the most
interesting from the point of view of physical applications.

Thus we start from the realization (2.22) of the algebra AP(1,3) where Sµν are
matrices realizing an arbitrary representation of the algebra AO(1,3). The
transformation operator for the case Pµ Pµ >0 has the form (compare with (26.21))

As a result of the transformation (26.9), (26.33) the operators (26.28), (26.29), (2.22)

(26.33)
V exp











i
(S0α S3α)pα

M
, M p0 p3.

reduce to the form

(26.34)

P̂0

1
2

(p0 p3), M p0 p3, P̂α pα,

J3 i










p2

∂
∂p1

p1

∂
∂p2

S12, Gα x̃0 pα xα M λα ,
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where λα
±=S0α ± S3α,

(26.35)

K x̃3 M x̃0 P̂0 S03,

Gα 2










x̃3 pα xα P̂0

1
2

λα

Sαβ pβ S30 pα

M
λα

2P̂0

M
λα

p 2
1 p 2

2

M 2
,

It is not difficult to make sure the Casimir operators of the subalgebra AG(1,2)
being a linear span of the operators (26.34) are diagonal.

The operator (26.33) can be used by solving of different problems in the
null-plane formalism. Namely using this operator we can diagonalize the systems of
the Poincaré-invariant motion equations for the particles of arbitrary spins interacting
with the same types of external fields (e.g., the field of a plane wave, the homogeneous
magnetic field and others). More precisely the corresponding transformation operator
can be obtained from (26.33) by the change pµ → pµ -eAµ where Aµ is a vector-potential
of an external field. Examples of the equations admitting such a diagonalization are
present in Section 28.

27. WAVE EQUATIONS INVARIANT UNDER GENERALIZED
POINCARÉ GROUPS

27.1. Preliminary Notes

In this section we discuss the wave equations having the symmetry under the
generalized Poincaré group (mainly under the group AP(1,4)). Such equations are of
great interest for physics inasmuch as they are invariant under both the Poincaré and
the Galilei groups and can be interpreted as motion equations of a relativistic (or
Galilean) particle with variable mass [136,333].

Until now the theory of P(1,4)-invariant equations is far from the complete.
Strictly speaking, only certain classes of such equations were completely described
(see, e.g., [136,115]). So we restrict ourselves by considering of the simplest (and the
most important!) equations of the Dirac, Kemmer-Duffin type and some others.

Let us consider a system of first order partial differential equations:

where x=(x0, x1, ..., xn), pm=i∂/∂xm, Γm are numeric matrices. The equation (27.1) by

(27.1)LΨ(x)≡(Γm P m κ)Ψ(x) 0

definition is invariant under the algebra AP(1,n) if the operator L satisfies the relations
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where Pm , Jmk are the generators of the group P(1,4) in the covariant realization (26.19).

(27.2)[L,Pm] [L,Jmk] 0

Substituting (26.19), (27.1) into (27.2) we come to the following equations for
Γm:

Here Smn are matrices which realize a representation of the algebra AO(1,n), gmn=

(27.3)[Γm,Sln] i(gmlΓn gmnΓ l).

diag(1,-1,-1, ...).
Thus the problem of the description of the P(1,n)-invariant equations of the

kind (27.1) reduces to the solution of the equations (27.3). We will not search for a
general solution of these relations restricting ourselves by considering of some
particular (but important) examples.

27.2. The Generalized Dirac Equation

In the case n=4 the simplest (i.e., realized by matrices of minimal dimension)
solution of (27.3) has the form

where γm are the Dirac matrices of dimension 4×4, satisfying the Clifford algebra (2.3).

(27.4)Γm γm, Sln

i
4

[γl , γn],

Substituting (27.4) into (27.1) we come to the generalized Dirac equation in the
(1+4)-dimensional Minkowsky space:

This equation has a manifest symmetry under the algebra AP(1,4). But in

(27.5)(γm p m κ)Ψ(x) 0, m 0,1,2,3,4.

contrast to the corresponding equation (2.1) the generalized Dirac equation turns out
not to be invariant under the transformation xa → -xa, a=1,2,3 [135]. An equation being
invariant under the complete (i,e. including all possible reflections of independent
variables) group P̃(1,4) can be obtained from (27.5) by doubling a number of the
components of the wave function and by making the change [136]

Let us discuss symmetries of the equation (27.5) and its possible

(27.6)γm→Γm











γm 0

0 γm

.

interpretations.
In a complete analogy with Section 2 it is possible to show the algebra AP(1,4)

is the maximal IA of the equation (27.5) in the class M1. To answer the question what
kind of representations of this algebra is realized on the set of solutions of (27.5) we
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use the fact that the corresponding generators (26.19) can be represented in the form

where Ψ is a solution of (27.5), k,l=1,2,3,4. The Casimir operators (24.5), (24.36)

(27.7)

P0Ψ H Ψ, H γ0γk pk γ0 m, PkΨ pkΨ,

JklΨ (xk pl xl pk Skl )Ψ,

J0kΨ








x0 pk

1
2

[xk, H] Ψ,

reduce to the following form in accordance with (27.7):

The eigenvalues of C4 are equal to ±1. In order to determine the eigenvalues

(27.8)

C1 Pµ P µ κ2,

C2

1
2

WmnW
mn 1

2
κ2Skl Skl,

C3

1
4

JmnW
mn 1

4
κ klk l Skl Sk l ,

C4 H/E, E p 2
1 p 2

2 p 2
3 p 2

4 κ2 .

of C2 and C3 we choose the realization of γ-matrices given by the relations (2.4), (2.17).
Then Skl Skl =γ0 klmnSklSmn /4=3, and C2Ψ=-2κC3Ψ=3κ2Ψ, from which it follows that the
operators (27.7) realize the representation D+

κ(1/2 0)⊕ D-
κ(0 1/2) of the algebra

AP(1,4).
Since the algebra AP(1,4) includes the subalgebras AP(1,3) and AG(1,3) the

generalized Dirac equation (27.5) turns out to be invariant under the Poincaré and
Galilei groups. Let us demonstrate the connection of this equation with the Dirac
equation for a particle with a variable mass. Representing Ψ(x) in the form

we obtain from (27.5) the following equation

(27.9)Ψ(x) ⌡
⌠exp(ip4 x4)Ψp4

(x0, x)dp4,

Multiplying this equation by (κ-γ4p4)m
-1 where m= (κ2+p4

2)1/2 we obtain

[γ0 p0 γ p (κ γ4 p4)]Ψp4

0.

where γµ′ are matrices satisfying the Clifford algebra (2.3) moreover γµ′=(κ-γ4 p4)m
-1γµ.

(γµ p µ m)Ψp4

0,

We see that for any fixed value of p4 the equation (27.5) is equivalent to the
Dirac equation for a particle of mass m=(κ 2 + p4

2)1/2. Therefore it is possible to interpret
(27.5) as a motion equation for a relativistic particle with a variable mass.

The other possibility of an interpretation of the equation (27.5) is connected
with its symmetry under the Galilei group. Using the new variables (26.20c) we can
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rewrite this equation in the form

where

(27.10)










β̃0 i
∂

∂x̃0

β̃a pa 2iβ̃5

∂
∂x̃4

κ Ψ(x̃0, x, x̃4) 0

The equation (27.10) is invariant under the Galilei transformations of the

(27.11)β̃0 γ0 γ4, β̃5 γ0 γ4, β̃a γa.

variables (x̃0, x) (see Subsection 11.4). If we impose on Ψ the following Galilei-
invariant additional condition

then for any fixed value of m the equation (27.10) reduces to the form

(27.12)i
∂

∂x̃0

Ψ(x̃0, x, x̃4) mΨ(x̃0, x, x̃4),

In the case κ=0 formulae (27.11), (27.13) define the Levi-Leblond [275]

(27.13)LΨ≡










β̃0 i
∂

∂x̃0

β̃a pa 2β̃5m κ Ψ 0.

equation for a Galilean particle of spin 1/2.
We note that using the operator (26.21), we can transform (27.13) to the

canonical diagonal form because

According to (27.14) the function Φ+=(1/2)(1+γ0γ4)V Ψ satisfies the Schrödinger

(27.14)VLV 1 β̃0











i
∂

∂x̃0

p2

2m
2β̃5m κ.

equation

and the function Φ-=(1/2)(1-γ0γ4)V Ψ is expressed via Φ+: Φ-=γ0(κ/2m)Φ+.











i
∂

∂x̃0

p2

2m
κ2

2m
Φ 0

We see the generalized Dirac equation (27.5) can serve as a base of a
description of a relativistic particle with a variable mass or of a Galilean particle. Such
an interpretation is admissible also for the generalized Dirac equation which includes
potentials of an external field. For example replacing pk by pk-eAk in the equation
(27.5), where Ak=Ak(nl x

l) (n0=n4=1, n1=n2=n3=0) is a plane wave potential, we come to
the equation preserving the symmetry under Galilei transformations. To solve such an
equation it is convenient to use the variables (26.20c) and to decompose the wave
function by the complete set of the functions satisfying (27.12). However if Ak=Ak(x4)
then the corresponding equation can be used as a model of relativistic particles which
possess the mass spectrum.

The Dirac equation in (1+4)-dimensional space is considered in more detail
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in [115,136].
In conclusion we have discussed briefly the Dirac-type equations being

invariant under the groups P(1,n). By this are meant the equations of the form (27.5)
where the summation over m is extended to the case when 0≤m≤n, and γm are matrices
realizing a representation of the Clifford algebra of dimension n+1.

The P(1,n)-invariant equations (27.5) exist for any n>0. Minimal dimension
of the matrices γm is equal to 2[(n+1)/2]×2[(n+1)/2] for any given n where [a] is the entire part
of a. In the case of half integer n the corresponding equations are invariant under the
complete group P̃(1,n) including all the possible reflections of coordinates. However
if n is integer then it is necessary to double the number of the components of the wave
function in order to satisfy the requirement of P-invariance [115,136].

The Dirac equations being invariant under the groups P(1,n), n=5,6,... can also
serve as a mathematical models of the particles with a variable mass. Furthermore,
these equations can be used to describe many-particle systems (see [136] and
Subsection 32.5 of the present book).

26.3. The Generalized Kemmer-Duffin-Petiau Equation

The KDP equation also admits a direct generalization to the case of
(1+4)-dimensional Minkowsky space since the equations (27.4) are obviously satisfied
by the matrices

Here βµ, β4 are the 10×10 KDP matrices which can be chosen, e.g., in the form (6.22),

(27.15)Γµ βµ, Γ4 β4, Smn i[βm, βn].

(6.24).
The equation (27.3), (27.15) is invariant under the algebra AP(1,4) and thus

under the Poincaré and Galilei algebras. Like the five-dimensional analog of the Dirac
equation (27.5), this equation is non-invariant under the complete group P̃(1,4)
including space-time reflections.

The generalized KDP equation can be interpreted as an equation of motion of
a relativistic particle with a variable mass and spin s=1. To make such an interpretation
more clear we represent solutions of this equation in the form (27.9). In this way we
come to the following equation

For any fixed value of p4 the matrix κ+β4p4 is invertible; moreover

(27.16)[β0 p0 βa pa κ β4 p4]Ψp4

0.

where m=(κ 2+p2)1/2. Multiplying (27.16) by M we come to the equivalent equation

M m(κ β4 p4)
1 m

κ
p 2

4

κm
β2

4

p4

m
β4,
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where β′µ=Mβµ are new matrices satisfying the KDP algebra (6.20). The equation

(27.17)(βµ p µ m)Ψp4

0,

(27.17) is the KDP equation for a spin-one particle and the mass m=(κ 2+p4
2)1/2.

The KDP equation in (1+4)-dimensional Minkowsky space can be interpreted
as a motion equation of a Galilean particle of the spin 1 and a variable mass. To make
such an interpretation it is convenient to come to the new variables (26.20c) and to
impose the Galilei-invariant additional condition (27.12) on Ψ. As a result we come to
the equation (27.13) where

For any fixed value of m the equation (27.13), (27.18) coincides with the

(27.18)β̃0 β0 β4, β̃5 β0 β4, β̃a βa.

Galilei-invariant equation for a particle of spin 1, see Subsection 13.3.
Thus the generalized KDP equation can be used for the description of

relativistic and Galilean particles with variable masses. Besides, the corresponding
Galilei-invariant model of a spin-one particle takes into account the spin-orbit coupling
in the frames of the minimal interaction principle, see Subsection 13.4.

We note that the KDP equation admits a generalization to the case of the
Minkowsky space of arbitrary dimension 1+n. The corresponding representations of
the β-matrices were described in [265].

The almost evident generalizations to the case of an (1+n)-dimensional
Minkowsky space is admitted by the Bhabha equation also, i.e., by the equations of the
form (6.2) where β5=1, and βµ=S5µ are matrices realizing a representation of the algebra
AO(1,5) together with Sµν=i[βµ,βν]. The corresponding equation being invariant under
the group P(1,4) has the form

This formula defines generalized Bhabha equations in the (1+4)-dimensional space, in

(27.19)(S5µ p µ S54 p4 κ)Ψ 0.

particular these equations include the Dirac and KDP ones. In the case when Smn realize
an arbitrary representation of the algebra AO(1,5) the equations (27.19) can be
interpreted as mathematical models of relativistic or Galilean particles with variable
masses like the generalized Dirac and KDP equations.

27.4. Covariant Systems of Equations

One of possible formulations of wave equations invariant under the group
P(1,4) presupposes using the covariant systems of the form [11, 395]

where Ln and Lmn =-Lnm are numerical matrices.

(27.20)pnΨ(x) PnΨ(x), Pn Lnm p m κ Ln,
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We have already seen in Subsection 2.2 that the Dirac equation also can be
reduced to the form (27.20), refer to (2.12). In contrast to the standard formulation (2.1)
none of the equations (2.12) is invariant under Lorentz transformations but is
transformed into a linear combination of these equations with the different values of
n.

Covariant systems of equations in (1+4)-dimensional Minkowsky space are
discussed in papers [11,395]. Here we consider a class of such equations corresponding
to the choice Lmn =Smn/id, Ln=S5n/id where Smn are matrices belonging to the algebra
AO(1,5). In other words we consider the following systems of the covariant equations

These equations have a manifestly covariant form since the operators Ln evidently

(27.21)LnΨ(x) 0, Ln pn

1
id

(Snm p m κ Sn5).

satisfy the relations

where Jmn, Pm are the operators of (26.19).

[Pm, Ln] 0, [Jmn, Ll] i(gnl Lm gml Ln),

Let us require that Ψ(x) should satisfy the KGF equation componentwise.
Multiplying (27.21) by pm and summing up over m we obtain the following additional
condition for Ψ(x):

It is possible to show [11] that this equation is a necessary condition of a consistency

(27.22)( 1
id

Sn5 p n κ)Ψ(x) 0.

of the system (27.21) if the matrices Smn are finite-dimensional.
Thus let Smn be finite-dimensional matrices realizing an IR of the algebra

AO(1,4) and (27.21) be the system of the covariant equations corresponding to this IR.
It turns out that this system is consistent only in the following exceptional cases [352]:

where γn are 4×4 Dirac matrices, βn are KDP matrices of dimension 10×10 (case b)) or

(27.23)
a) Sµν

i
4

[γµ,γν], S5µ γµ, µ,ν 0,1,2,3,4,

b), c) Sµν i[βµ,βν], S5µ βµ,

6×6 (case c)).
In case a) it is necessary to set d=1/2 (otherwise the system (27.21) is

inconsistent). This leads to the system which is equivalent to the generalized Dirac
equation (see Subsection 27.2). In cases b) and c) the system (27.21) possesses
nontrivial solutions when d=1 only. In case b) the corresponding system turns out to
be equivalent to the generalized KDP equation for particles of spin 1 (see Subsection
26.3). In the case c) we have the covariant system of equations describing particles of
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spin 0.
However if the matrices Smn realize an IR of the algebra AO(1,5) which is not

equivalent to the representations enumerated in (27.23) then the corresponding
equations (27.22) are inconsistent. The proof of this statement is given in [352]. We
see the class of covariant finite dimensional systems of the form (27.21) is exhausted
by the representatives corresponding to the matrices (27.23). The analogous result is
correct in respect to the covariant systems of equations in the frames of the Poincaré
group [352].

Covariant systems of equations are with better prospects in the case when the
corresponding matrices Smn realize an infinite dimensional Hermitian representations
of the algebra AO(1,4). A well-known example of such an equation in the (1+3)-
dimensional Minkowsky space is the Dirac equation with positive energies [82]*.

The other types of the wave equations invariant under the generalized
Poincaré groups have been investigated in papers [115,136,181]. There are the
equations of the Bargman-Wigner type, equations with a proper time, equations
invariant under the representations of the Classes II-IV etc. An analysis of such
equations is beyond the scope of the present book.

*In papers [352] the covariant infinite-component Dirac equation is generalized
to the case of particles of arbitrary spin.
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6. EXACT SOLUTIONS OF LINEAR
AND NONLINEAR EQUATIONS OF MOTION

We obtain exact solutions of Poincaré- and Galilei-invariant equations of
motion of a particle of arbitrary spin s interacting with some particular classes of
external fields. Besides we present solutions of a number of nonlinear equations of
modern theoretical physics. The key to finding these solutions is using symmetries of
the equation considered.

28. EXACT SOLUTIONS OF RELATIVISTIC WAVE
EQUATIONS FOR PARTICLES OF ARBITRARY SPIN

28.1. Introduction

The main purpose of this and the following sections is the construction of
solutions of motion equations of arbitrary spin particles in the external electromagnetic
field.

The number of known exact solutions of relativistic wave equations is very
small even for the cases s=0 and s=1/2. The most interesting of them (from the physical
point of view) are the following problems: a particle in the Coulomb field [73, 77], a
particle in the plane-wave field [407], a particle in the constant magnetic field [365]
and a particle in the Redmond field [370] (the last is a combination of the constant
magnetic and plane-wave fields). Finally we mention the problem of interaction of a
charged particle with the magnetic monopole field which also admits exact solutions
for s=0, 1/2 [217, 402] and for arbitrary spin [164].

The construction of exact solutions for particles of spin s>1/2 is complicated
in accordance with increasing of number of components of the corresponding wave
function. Besides there appear additional difficulties, i.e., causality violation [405], the
absence of stable solutions in the Coulomb problem [401] and many others. In spite of
that a number of exact solutions for the vector particles have been obtained in the
papers [46, 47, 266, 267, 270].

The problems enumerated in the above have physically reasonable solutions
for arbitrary spin particles if we start from the motion equations (10.10). The most
important of these solutions are considered in the following.
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28.2. Free Motion of Particles

The knowledge of the explicit form of wave functions of non-interacting
particles is necessary for many problems of theoretical physics [41,42]. That is why we
present the explicit solutions of (10.10) for the case of absence of an external field (i.e.,
for Aµ=Fµσ=0).

Instead of the equations (10.10) it is more convenient to consider the
equivalent system (10.30) which takes the following form

We will use the representation (9.14) for the matrices Γµ and choose Sµν in the

(28.1a)(pµ p µ m 2)ψ( ) 0,

(28.1b)Psψ
( ) ψ( ), Ps

1
4s

SabSab 2s(s 1) ,

(28.1c)ψ( ) 1
m

Γµ p µ ψ , ψ(±) 1
2

(1±iΓ4)ψ.

following form

where {S̃ab,S′0a} and {S̃ab,S′0′a} are matrices realizing the representations D(s 0)⊕

(28.2)Sab













S̃ab 0

0 S̃ab

, S0a













S0a 0

0 S0a

D(s-1 0) and D(s-1/2 1/2) of the algebra AO(1,3). These matrices can be written in the
form (compare with (4.64))

where Sa and S′a are generators of the IRs D(s) and D(s-1) of the group O(3), Ka=Ka
s

(28.3)S̃ab abc Ŝ c











Sc 0

0 Sc

, S0a iŜ a, S0a i













(s 1)Sa K †
a

Ka (s 1)Sa

are matrices of dimension (2s-1)×(2s+1) given in (4.66). Then we obtain the following
realization for the matrices σa of (9.14)

Let us find the general solution of the system (28.1) in the representation

(28.4)σa

1
2 abc S̃bc iS0a

1
s













Sa K †
a

Ka Sa

.

(9.14), (28.2)-(28.4). It is convenient to represent this solution in the form of the
Fourier integral

(28.5)ψ(x0,x) ⌡
⌠ ∂3p

2E
ψ̃ exp i (p x Ex0) ψ̃ exp i (p x Ex0) ,
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where E=(p2+m2)1/2 and the Fourier transforms ψ̃± satisfy according (28.1) the
following conditions

In the representation (9.14), (28.2)-(28.4) ψ̃(±) are columns of the following form

(28.6)
( Γ0 E Γ p)ψ̃( ) mψ̃( ), ψ̃(±) 1

2
(1±iΓ4)ψ̃ ,

Psψ̃
( ) ψ̃( ), ±1.

where Φ̃±
( ) are 4s-component spinors, 0 are zero columns having 4s rows. From

(28.7)ψ̃( )










Φ̃( )

0
, ψ̃( )











0

Φ̃( )

(28.6), (9.14), (28.2)-(28.4) we conclude that

Here ϕ s is an arbitrary (2s+1)-component spinor, 0 is the zero column having 4s rows.

(28.8)Φ̃( )










ϕs

0
, Φ̃( ) 1

m
( E σ p)Φ̃( ) 1

m

























E
1
s

S p ϕs

1
s

K pϕs

.

Thus the general solution of the system (10.10) in the case Aµ=Fλσ=0 can be
represented in the form (28.5) where

and ψ̃(±) are the spinors given in (28.7), (28.8). This solution is defined up to arbitrary

(28.9)ψ̃ ψ̃( ) ψ̃( )

functions ϕ s each having 2s+1 components. These functions can be represented in the
form

where ην
s are normalized eigenvectors of the matrix S3:

(28.10)
ϕs

s

ν s

bν (p) m

2E







E
ν
s

p3

ηs
ν

is a normalizing multiplier, bν(p) are arbitrary square integrable

(28.11)ηs
s



















1

0

0

, ηs
s 1



















0

1

0

, ..., ηs
s



















0

0

1

,

m

2E(E ν
s

p3)
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functions.
Substituting (28.10) into (28.5), (28.7), (28.8) and using the explicit form

(4.65), (4.66) of the matrices S and K, we obtained the corresponding general solutions
in the form

where

(28.12)ψ
ν,

⌡
⌠ d 3p

2E
bν (p)ψ̃νexp[i(p x x0E)]

0̃ is a column containing 2s-1 zeros.

(28.13)

ψ̃ν m

2E(E ν
s

p3)























ηs
ν

0̂

χs
ν

χ̃s
ν

,

χs
ν ( E

ν
s

p3)η
s
ν

1
2s

s(s 1) ν(ν 1) (p1 ip2)η
s
ν 1

1
2s

s(s 1) ν(ν 1) (p1 ip2)η
s
ν 1,

χ̃s
ν

1
s

s 2 ν2 p3η
s 1
ν

1
2s

s(s 1) ν(ν 1) 2νs (p1

ip2)η
s 1
ν 1

1
2s

s(s 1) ν(ν 1) 2νs (p1 ip2)η
s 1
ν 1,

The spinors ψ̃(±) satisfy the normalization condition

and form a basis of solutions of the Dirac-type equations for a particle of arbitrary spin.

ψ̃( )†

ν ψ( )
ν δ δνν

28.3. Relativistic Particle of Arbitrary Spin in the Homogeneous Magnetic Field

Consider the movement of a charged particle in the constant and homogeneous
magnetic field. Without loss of generality, we choose the vector of the magnetic field
strength be parallel to the third projection of the particle momentum, i.e.,

where Fµσ is the tensor of the electromagnetic field. The corresponding four-vector π

(28.14)F 0α F 23 F 31 0, F 12 H3 H

can be chosen in the form
(28.15)π0 p0, π1 p1 eHx2, π2 p2 π3 p3.
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As in the case of a free particle we will solve the equivalent system (10.30)
instead of the equations (10.10). Using the representation (9.14), (28.2)-(28.4) we
conclude that the general form of solutions corresponding to the energy is given by
the following formula

where 0̃ is a column including 2s-1 zeros, Φs is a (2s+1)-component spinor satisfying

(28.16)ψ



























Φs

0̂

1
m









1
s

S π Φs

1
ms

K πΦs

the equation

It is convenient to expand Φs in a complete set of eigenvectors of the matrix

(28.17)







p 2 e 2H 2x 2
2 eH 








1
s

S3 2x2 p1 Φs ( 2 m 2)Φs.

S3:

where ηs
ν are the spinors of (28.11), ϕs

ν are unknown functions which must satisfy the

(28.18)Φs
ν

ϕs
νη

s
ν

following equations according to (28.13):

We search for solutions of (28.19) in the form

(28.19)







p 2 e 2H 2x 2
2 eH 








ν
s

2x2 p1 ϕs
ν ( 2 m 2)ϕs

ν.

where p1 and p3 are constants. As a result we obtain the following equation for f‘‘s
ν(x2):

(28.20)ϕs
ν exp[i(p1x1 p3x3)]f

s
ν (x2)

With the help of the change of variables

(28.21)










d 2

dx 2
2

(eHx2 p1)
2 e

ν
s

H f s
ν (x2) ( 2 m 2 p 2

3 )f s
ν (x2).

we reduce (28.21) to the equation for the harmonic oscillator

x2

1
eH

(p1 eH y), 2 m 2 p 2
3 e

ν
s

H eξH
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Requiring, that fν
s(y) tends to zero for y → ±∞, we obtain the well-known

(28.22)










d 2

dy 2
y 2 f s

ν (y) ξ f s
ν (y).

expression for ξ [3]

from which it follows that

(27.23)ξ 2n 1, n 0,1,...,

The relation (28.24) generalizes the well-known formula [3,31] for energy

(28.24)2 m 2 p 2
3 eH(2n 1 ν/s).

levels of an electron in the constant and homogeneous magnetic field to the case of a
particle of arbitrary spin.

To clarify the physical meaning of the expression (28.24) for particle energies,
we consider the non-relativistic approximation

where Ω=eH/m is the cyclotronic frequency.

(28.25)m 2 p 2
3 eH(2n 1 ν/s) ≅ m

p 2
3

2m
Ω








n
s ν
2s

,

We see includes the kinetic energy of the particle movement along the
magnetic field, and the quantized part of energy depending on two discrete parameters,
i.e., n and ν. When n=1/2, ν can take two values: ν=±1/2. The corresponding quantized
part of energy determines the Landau levels and turns out to be proportional to an
integer. Besides any level (excepting the ground one) is twice generated.

For the case s=0 the Landau levels are nondegenerated and proportional to
half integers. For s=1 these levels are proportional to either integers or half integers
besides all the integer levels are twice degenerated (the ground level and half integer
ones are nondegenerated). For s>1 the energy spectrum is more complicated but also
includes generated levels corresponding to ν=±s. These levels are proportional to
integers.

Let find the explicit form of the wave function satisfying the equation (10.10).
The solutions of (28.22), (28.23) are given by the formula [3]

where Cs
ν is a normalizing multiplier, Un(y) is the Hermit function

(28.26)f s
ν C s

ν Un(y),

Hn(y) is the Hermit polynomial which can be written in the form

(28.27)Un(y) (eH)4

(2nn!π1/2)1/2
e y 2/2Hn(y),
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Using formulae (4.65), (4.66) defining the matrix elements of S and K, bearing

(28.28)Hn(y) ( 1)ne y 2 







∂
∂y

n

e y 2

, n 0,1,... .

in mind the recurrence relations

and the following identity

(28.29)







∂
∂y

±y Un ±(2n 1 1)1/2Un 1

(A=S or A=K), we obtain

A pΦs
µ ≡











A3 p3

eH
2









(A1 iA2)








y
∂
∂y

(A1 A2)








y
∂
∂y

Φs
µ

where 0̃ is a (2s−1)-component zero column, L1 and L3 are normalization constants,

(28.30)
ψνn

exp[i(p1x1 p3x3)]

2L1L2









ν
s

p3





















mUn(y)ηs
ν

0̂

ϕνn

χνn

Here Un is the Hermit function (28.27), ηs
ν are the spinors (28.11), y=(eH)1/2(x2−p1/eH).

ϕνn









ν
s

p3 Un(y)ηs
ν

1
2s

[s(s 1) ν(ν 1)]2eH(n 1)Un 1(y)ηs
ν 1

1
2s

[s(s 1) ν(ν 1)]2enH Un 1(y)ηs
ν 1,

χνn

1
s

s 2 ν2 p3Un(y)ηs 1
ν

1
2s

[s(s 1) ν(ν 1) 2νs]2eH(n 1) Un 1(y)ηs 1
ν 1

1
2s

[s(s 1) ν(ν 1) 2νs]2eHn Un 1(y)ηs 1
ν 1.

The wave functions (28.30) are normalized in accordance with the following
relation

where L1 and L2 are arbitrary numbers included into the normalization constant in

⌡
⌠
L1

o

dx1⌡
⌠
L3

0

dx3⌡
⌠
∞

∞

ψ†
νnψνndx2 1

(28.30).
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So using the equations of the Dirac type (10.10), we have obtained exact
solution of the problem of interaction of charged spinning particle with the constant and
homogeneous magnetic field for any value of spin.

The equations (10.10) admit exact solutions also for the cases of the constant
homogeneous electric field, the combination of the electric and magnetic fields
mentioned above [400] and the field of the magnetic monopole [164]. We do not
represent here the corresponding cumbersome formulae but consider the problem of
motion of any spin particle in the constant electric field in Section 30.

28.4. A Particle of Arbitrary Spin in the Field of the Plane Electromagnetic Wave

The equation (10.10) admits exact solutions in the important case of the
external field reducing to the plane wave [322].

The plane wave field characterized by the wave vector kµ (kµk
µ=0) is

determined by the following vector-potential

satisfying the Lorentz gauge condition

(28.31)Aµ Aµ(ϕ), ϕ kµx
µ

where the prime denote the derivative with respect to ϕ.

(28.32)pµA
µ ikµ A µ 0,

As in previous subsection we can represent solutions of the corresponding
equations (10.10) in the form (28.16) where Φs is a (2s+1)-component spinor satisfying
the second order equation (10.30a). In our case this equation takes the form

where

(28.33)







pµ p µ 2eAµ p µ e 2Aµ A µ m 2 e
s

S F Φs 0

Like in [407], we look for the solution of (28.33) in the form

F k×A i(k0 A kA0 ).

where p̃µ is a constant four-vector besides without loss of generality p̃µp̃µ=m2. Then

(28.34)Φs exp( ˜ipµ x µ)ψ(ϕ),

using the relations

we obtain from (28.33) the following equation for ψ( ):

pµψ(ϕ) ikµψ (ϕ), pµ p µ ψ(ϕ) kµ k µψ (ϕ)

2ikµ p̃µψ








2ep̃µ A µ e 2Aµ A µ e
s

S F ψ 0.
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This equation is easily integrated

where Up is an arbitrary constant spinor.

(28.35)
ψ exp













i ⌡
⌠

kµk
µ

0











e

kµ p̃ µ
p̃µ A µ e 2

2kµ p̃ µ
AσA σ dϕ ieS F

2skµ p̃ µ
Up

The matrices S F of (28.35) satisfy the relations

besides the first formula is available for half integer s and the second formula is valid

(28.36)λ
(S F)2 λ2F 0, λ 1/2,3/2,...,s

S F
λ

(S F)2 ν2F 0, ν 1,2,...,s.

for integer s. Inasmuch as F2=kµkµA′νA′ν and kµkµ=0 the conditions (28.36) reduce to the
form (S F)2s+1=0, and we have from (28.34),(28.35)

where S is the classical action of the particle moving in the plane wave field [271]

(28.37)Φs exp(iS)Up

2s

n 0

1
n!











ie
S F

2skµ p̃µ

n

,

We can choose an arbitrary spinor Up of (28.36) in accordance with the

S p̃ν x ν
⌡
⌠

kµ p̃ µ

0











e

kµ p̃ µ
p̃ν A ν e 2

2kµ p̃ µ
Aν A ν dϕ.

requirement that the corresponding wave function (28.16) reduces to the plane wave
solution for a free particle if Aµ → 0. As a result, we obtain the following solutions

where ψ̃ν are the spinors (28.13).

ψ̃ν
2s

n 0

1
n!











ie
S F

2skµ p̃µ

n

exp(iS)ψ̃ν

We see that in contrast to the Volkov solution for an electron in the field of
the plane electromagnetic wave [407] the solutions of relativistic equations for particles
of arbitrary spin depend on the fields strength non-linearly (as a polynomial of order
2s).

We note that the equations (10.10) can be solved exactly also for the case of
the Redmond field which is a combination of the constant magnetic field and the field
of the plane wave [400].
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29. RELATIVISTIC PARTICLE OF ARBITRARY SPIN
IN THE COULOMB FIELD

29.1. Separation of Variables in a Central Field

The problem of description of a spin particle in a central field is one of the
basic problems of quantum mechanics. In the case of an electron in the Coulomb field
it is the problem of the hydrogen atom.

The problem of description of the hydrogen-type system in which the spin of
orbital particle is more than 1/2 is not of theoretical interest only, since such relatively
stable particles as W−-boson, Ω−-hyperon in principle can play a role of orbital particles
in exotic atoms.

Following [322] we present exact solutions of the equations (10.10) for a
charged particle of arbitrary spin in the Coulomb field. It will be shown these equations
do not lead to the difficulties connected with a possibility of particle falling to the
center (such a situation is non-admissible from quantum mechanics point of view;
nevertheless it is predicted e.q. by the KDP equation [401]).

Consider equations (10.30) for the case of the Coulomb field where the
vector-potential reduces to the form (22.8). Such equations admit solutions in separated
variables besides the general scheme of obtaining these solutions is valid for any
central potential A0=A0(x), x= x .

We use the representation (10.31) for the equation (10.30a). Solutions
corresponding to a state with energy are represented in the form

where Φs(x) is a (2s+1)-component spinor satisfying the equation

(29.1)Φs exp( i t)Φs(x),

This equation admits solutions in separated variables. Indeed, bearing in mind

(29.2)






















ze 2

x

2

p 2 m 2 ize 2

s
S x

x 3
Φs(x) 0.

the symmetry of (29.2) in respect with the group O(3) we represent Φs(x) as a linear
combination of spherical spinors

where is a complete set of eigenfunctions of the commuting

(29.3)Φ s(x)
λ

ϕλ(x)Ωs
jj λm,

Ωs
j j λ m Ωs

j j λ m(x/x)
operators J 2, L2, J3 and S2 (J=x×p+S, L=x×p), so that
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Here j are arbitrary positive integers or half integers,

(29.4)

J2Ωs
j j λ m j(j 1)Ωs

j j λ m,

L2Ωs
j j λ m (j λ)(j λ 1)Ωs

j j λ m,

S2Ωs
j j λ m s(s 1)Ωs

j j λ m,

J3Ω
s
j j λ m mΩs

j j λ m.

We find it is more convenient to use the quantum number λ=j-l instead of the

(29.5)
m j, j 1,...,j, λ s, s 1,..., s 2msj , msj min(s, j)







s, s≤j

j, s>j
.

usual orbital quantum number l. The explicit expressions for the Ωs
j j−λ m are given in

Appendix 3.
The representation (29.3) makes it possible to reduce (29.2) to the system of

ordinary differential equations for the function ϕλ. To find this system, it is necessary
to know the action of the operator S x on spherical spinors. It is not difficult to make
sure that

where dλ
s
′
j
λ are numeric coefficients, x̂=x/x, besides the summation is imposed over the

(29.6)S x̂Ωs
j j λ m d sj

λ λΩ
s
j j λ m

repeated indices λ′. Indeed, S x/x commutes with J and hence with J2 and J3. This is
why in the l.h.s. and r.h.s. of (29.6) we have an eigenfunction of J2 and J3

corresponding to the same eigenvalues. Expressing such an eigenfunction via the
complete set of the spherical spinor we come to the relation (29.6).

The exact values of the coefficients d λ
s

′
j
λ are calculated in Appendix 3 and can

be represented in the form

where

(29.7)d sj
λ λ

1
2

δλ 1 λ a sj
s λ δλ 1 λ a sj

s λ 1 ,

besides the possible values of λ, λ′+1, λ′-1 are given in (29.5).

(29.8)a sj
µ









µ(2j 1 µ)(2s 1 µ)(2j 2s 2 µ)
(2s 2j 1 2µ)(2s 2j 3 2µ)

1/2

Substituting (29.3) into (29.2) and using (29.6) and the following identity

we come to the following equations for radial functions

(29.9)p 2 1

x 2

∂
∂x









x 2 ∂
∂x

L2

x 2
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where

(29.10)Dϕλ x 2b sj
λ λϕλ ,

Thus a problem of description of a charged particle of arbitrary spin in the

(29.11)
D 








α
x

2

m 2 ∂2

∂x 2

2
x

∂
∂x

j(j 1)

x 2
,

b sj
λλ [λ2 λ(2j 1)]δλλ i

α
s

d sj
λλ , α ze 2.

Coulomb field reduces to solving the system of ordinary differential equation (29.10).

29.2. Solution of Equations for Radial Functions

The matrix of (29.10) commutes with the operator D and is normal,b sj
λλ

i.e.,

It means this matrix can be diagonalized and so the system (29.10) can be reduced to

b sj
λλ b sj

λλ b sj
λ λ b sj

λ λ .

the following chain of noncoupled equations

where D is the operator (29.11), bλ
sj are eigenvalues of the matrix . Any of the

(29.12)Dϕ̃ x 2b sj
λ ϕ̃

b sj
λλ

equations (29.12) in its turn reduces to the well-known equation [105]

where

(29.13)z
d 2y

dz 2

dy
dz











β z
4

k 2
λ

4z
y 0

The equations (29.13) arise in the problem of the hydrogen atom (besides in

(29.14)
y











z

m 2 2

1/2

ϕ̃, z 2(m 2 2)1/2x,

β α
(m 2 α2)1/2

, k 2
λ (2j 1)2 4(b sj

λ )2 4α2.

this case s=1/2, bλ
sj=1/4±(2j+1−4α2)1/2). In the case of an arbitrary spin particle we have

the only new feature that the parameter kλ can take another values depending on s.
We represent the solutions of (29.13) corresponding to coupled states (m2> 2)

in the form

and obtain the following equation for F

(29.15)y z kλ/2exp( z/2)F
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Formula (29.16) defines the equation for a degenerated hypergeometric

(29.16)z
d 2F

dz 2
(kλ 1 z) dF

dz











β
kλ 1

2
F 0.

function, thus the corresponding solutions have the form

where C is an arbitrary constant, is a degenerated hypergeometric function. The

(29.17)
F C











kλ 1

2
β, kλ 1, z

analytical expression for (a.b,z) is given by the following formula

where Γ(a) is the Γ-function of Euler.

(a,b,z) Γ(b)
Γ(a)

∞

n 0

Γ(a n)z n

Γ(b n)n!
,

It follows from the boundary condition for the solutions (29.15) at infinity [31]
that the argument a=(kλ+1)/2−β has to be a negative integer or zero, i.e.,

So we have obtained the solutions of the equations (29.12) in the form

(29.18)β (kλ 1)/2 n , n 0,1, ... .

where the index λ labels the solutions corresponding to possible values of kλ. A

(29.19)
ϕ̃λ C(m 2 2)

kλ 1

4 x
kλ 1

2 e (m 2 2)1/2x n , kλ 1, 2(m 2 2)1/2x

solution of (29.2) can be written in the form

where Uλλ′ are the matrix elements of the unitary matrix diagonalizing of

(29.20)Φs Uλλ ϕ̃λ Ωs
j j λ m

b sj
λλ

(29.11) so that

The corresponding solutions of (10.10) in the representation (9.14), (28.2)-(28.4) have
λ

Uλλ Uλ λ b sj
λ b sj

λλ .

the form

where 0̂ is the zero column including 2s-1 rows, σ are the 4s×4s matrices of (28.4), σ0

ψ










ψ1

ψ2

, ψ1











Φ s

0̂
, ψ2

1
m

(σ0 σ p)ψ1,

is the unite matrix of dimension 4s×4s.
Substituting the matrix (σ x)(σ x)/x2≡σ0 between σ p and ψ1 we obtain

σ pψ1≡








iσ x̂ 







∂
∂x

2
x

i
2x

(σ x×p)σ x̂ ψ1.
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The action of σ x/x and σ x×p on spherical spinors is described in Appendix 3
(see (A.3.10)) thus we obtain finally

where d λ
s

′
j
λ, b λ

s
′
j λ, f s j(λ) and g s j(λ) are the coefficients given in (29.7), (A 3.4).

(29.22)

ψ2 Uλλ ϕ̃λ Ωs
j j λ m











i
s

d sj
λ λ









d
dx

2
x

i

2s 2x
d sj

λ λ f s j (λ) ib s 1j
λ λ g sj(λ) ϕ̃λ Ωs

j j λ m

















1
s

d s 1 j
λ λ









∂
∂x

2
x

1

2s 2x
d sj

λ λ g sj(λ) ib s 1 j
λ λ f s 1 j(λ) ϕ̃λ Ωs 1

j j λ m .

Formulae (29.19)-(29.22) define solutions of the Dirac-type equations for a
particle of arbitrary spin in the Coulomb field. For any value of spin s we can
determine the exact value of an arbitrary constant C starting from a normalization
condition for the corresponding solution.

29.3. Energy Levels of a Relativistic Particle of Arbitrary Spin in the Coulomb
Field

Starting from the condition (29.18) it is not difficult to find possible values of
the parameters defining the energy of the particle described. Indeed, according to
(29.18) we have

Formula (29.23) defines the energy levels of arbitrary spin particle in the

(29.23)m












1 α2

n 1/2 ( j 1/2)2 α2 b sj
λ

1/2
2

1/2

.

Coulomb field and so can be considered as a generalization of the Zommerfeld
formula for an electron. The parameters bλ

sj of (29.23) take the values coinciding with
the roots of the characteristic equation for the matrix of (29.11)b sj

λλ

where d λ
s

′
j
λ are the coefficients (29.7).

(29.24)det λ2 λ(2j 1) b sj
λ δλλ

iα
s

d sj
λλ 0

Thus we have found energy spectrum of a particle of spin s in the field of a
point charge. However the practical using of (29.23) is restricted by the fact that to find
all the possible values of d λ

s
′
j
λ it is necessary to solve the algebraic equation (29.4) of

order 2s+1 (for j≥s) or of order 2j+1 (for s≥j). This equation can be solved in radicals
in the cases s≤3/2 or j≤3/2 only.
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To analyze the spectrum (29.23) for arbitrary s and j it is sufficient to
consider approximate solutions of (29.24) defined up to the terms of order α2. Such an
approximation is reasonable for the cases when the charge z of a particle generating the
Coulomb field satisfies the condition z 137.

Representing bλ
sj in the form

where b̃λ
sj are unknown coefficients we obtain from (29.24)

(29.25)b sj
λ λ2 (2j 1)λ b̃

sj

λα2 o(α4)

Here aσ
s j (σ=λ+s or σ=λ+s+1) are the coefficients (29.8).

(29.26)b̃
sj

λ
1

8s 2











a sj
λ s

2

j λ 1

a sj
λ s 1

2

j λ
.

Using (29.25) and representing the r.h.s. of (29.23) as series in respect with
α2 we obtain with accuracy to α4:

where

(29.27)m










1 α2

2n 2

2α4 b̃
s j

λ 1

n 3(2l 1)

3
8

α 4

n 4
,

The relations (29.27), (29.28) define the fine structure of energy spectrum of

(29.28)n n j λ 1 1,2,...; l j λ 0,1,...,n 1.

arbitrary spin particle in the Coulomb field. The corresponding values of b̃λ
sj are easily

calculated using (29.26), (29.8).
In addition to the nonessential constant term m formula (29.27) includes

Balmer’s term -mα2/2n2, and the additional terms which are proportional to α4 and
represent the contribution of the spin-orbit coupling of a particle with an external field.
The energy levels are labelled by three quantum numbers n, l and λ (the number j is
expressed via l and λ: j=λ+l). The possible values of n and l are given in (29.28), and
admissible values of λ for fixed l are

We see that any energy level corresponding to the quantum number n is split

(29.29)λ s, s 1,...,s 2msl msl min(s,l).

to sublevels of the fine structure corresponding to possible values of l and λ. It is not
difficult to calculate the number Nn of such sublevels which equals to

where [(s+1/2)2] is the entire part of (s+1/2)2.

(29.30)Nn (2s 1)n [(s 1/2)2], n≥s 1; Nn n 2, n≤s,

We note that the energy levels corresponding to different sets of l and λ can
to coincide in general. For instance for s=1/2 we have b̃λ

sj =2λ/(2j+1) , and the energy
corresponding to the same l but different λ are equal one to another. The corresponding
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number of the fine structure sublevels is equal to n2 besides any sublevel with j≠n−1/2
is twice degenerated.

Let consider more precisely the cases s=0, 1/2, 3/2. The corresponding values
of b̃λ

sj (calculated in accordance with (29.26), (29.8)) are

We conclude from (29.31) that for the case s=0 formula (29.27) gives the

(29.31)

b̃
0 j

λ 0, λ 0; b̃
1/2 j

λ
2λ
dj

, λ ± 1
2

, dj 2l 1;

b̃
1j

λ λ
dj λ

2dj(dj λ)
2(1 λ2)

1 d 2
j

, λ







1,0, 1, j≠0,

1 j 0;

b̃
3/2 j

±3/2 ±
(dj ±1)(5±1)

18(dj 1)(dj 2)
b̃

3/2 j

±1/2

2(d 2
j 4)

9dj (d
2

j 1)
, j≠1/2;

b̃
3/2 1/2

3/2 b̃
3/2 12

1/2

1
54

.

known energy spectrum of a scalar particle (described by the KGF equation) in the
Coulomb field, but when s=1/2, the relation (29.27) reduces to the Zommerfeld formula
for the spectrum of the hydrogen atom [31].

Formulae (29.27), (29.31) define the fine structure of the energy spectrum for
particles of spins s=1 and 3/2 also. In contrast to the case s=1/2 the spectrum is
nondegenerated and the number of sublevels of the fine structure is defined in (29.30).

The energy levels corresponding to the ground state n=1 are nondegenerated.
But if n=2 then we have two sublevels for s=0 (and s=1/2) and four sublevels for s=1
(and s=3/2). It is not difficult to calculate that the energy splitting ∆E (i.e., divergence
between the highest and lowest sublevels) for n=2 is equal to the data given in the table

s 0 1/2 1 3/2

∆E mα4/12 mα4/32 mα4/24 5mα4/72

Let us return to exact formula (29.23). For the cases s≤3/2 or j≤3/2 it is
possible to solve (29.24) in radicals and find the exact values of bλ

sj for (29.23). We
present the corresponding solutions for s≤1 and j≤1:

(29.32)b 0 j
λ 0, b 1/2j

λ 1/4 λ d 2
j 4α2 , λ ±1/2;

(29.33)b 1j
λ

c
3

2 c cos 







1
3









γ λ π
2

, λ 0,±1, j≠0; b 10
λ 0;
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where

(29.34)
b s0

λ 0, b s1/2
λ

1
4

(d 2
s 3)± 1

2
d 2

s








α
s

2

, s≠0, ds 2s 1,

b s1
λ s(s 1) 2 d

3
2 d cos 








1
3









ξ λ π
2

,

Substituting (29.32) into (29.23) we come to the exact Zommerfeld formula

cosγ b

c 3

, b
2
3

α2 1
3

d 2
j

1
27

, c α2 b
4

27
,

cosξ f

d 3

, f
2
3









α
s

2 1
3

d 2 1
27

, d 







α
s

2

f
4

27
.

for the hydrogen atom. The relations (29.23), (29.33) generalize this formula to the
cases of a particle of spin 1 and for particles of any spin (but for j≤1 only). Exact
formulae (29.23), (29.33) can be useful for the case of large z, i.e., for ze2∼ 1.

Equation (29.24) can be solved in radicals for the cases s=3/2 (j is arbitrary)
and j=3/2 (s is arbitrary). We do not present the corresponding cumbersome formulae
here, see [322].

Summarizing we note that the Dirac-type equations (10.10) enable to solve
the problem of motion of a spinning particle in the Coulomb field immediately for any
value of a spin.

The movement of a spin-one particle in the Coulomb field was studied by
Tamm [401] for the first time. Interesting contributions in solving the Coulomb
problem for s>1/2 were made in papers [47,195,274]. In the above, we follow papers
[322,164].
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30. EXACT SOLUTIONS OF GALILEI-INVARIANT
WAVE EQUATIONS

30.1. Preliminary notes

In this section we use Galilei-invariant wave equations to solve the problems
of motion of charged particles of any spin in external fields.

In accordance with the result of Section 3 it is possible to describe a charged
particle of arbitrary spin using different Galilei-invariant equations which are
equivalent in the physically reasonable approximation 1/m2. This is why we will use
the most convenient way in solving of any concrete problem.

We consider all the types of external fields studied in two previous sections.
It makes it possible to compare the results obtained in the Poincaré- and
Galilei-invariant approaches and to estimate the adequateness of Galilei-invariant
models of spinning particles. Besides we solve the problem of motion of a particle of
arbitrary spin in the combined field including the constant electric and magnetic
components.

30.2. Nonrelativistic Particle in the Constant and Homogeneous Magnetic Field

To solve this problem we use equations in the Hamiltonian form (15.26),
(15.28). We choose the vector of the magnetic field strength be parallel to p3 and so πµ

and Fµν are of the form given in (28.14),(28.15). As a result choosing for convenience
k1=−1 we come to the equation (15.28) where

Here k0=ak2-k2 is an arbitrary parameter and A0≡0.

(30.1)Ĥ(π,A0) σ1am
π2

2m
eS H

m
2iakS π 1

m
(σ1 iσ2)[2ak 2(S π)2 ek0 S H].

We restrict ourselves to the case when the field strength is sufficiently small
and satisfy the condition

Such a restriction is physically reasonable inasmuch as for a very large H Galilei

(30.2)H< am 2

2ek0s
.

invariant approach is not available a priori.
Let us transform Ĥ(π,A0) to the representation in which it includes commuting

terms only. It enables us to find eigenvalues of this operator without solving the motion
equations. We will make the transformation in two steps.

Using the operator
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where η are matrices of (14.3), and taking into account the identity

(30.3)V1 exp 







i
m

η π ≡1 i
m

η π, V 1
1 1 i

m
η π

we obtain

π2 2eS H, η π 0

The following transformation will be made using the operator

(30.4)H V1ĤV 1
1 σ1am

π2

2m
eS H

m

ek0

mk
η H.

which leads to the resulting Hamiltonian

(30.5)

V2

1
2











1 σ3

h

h 2

, V 1
2

1
2











1 h

h 2

σ3 ,

h σ1am
ek0

mk
η H, h 2

1 s

ν s

(a 2m 2 2eak0νH) 1Λν, Λν
ν ≠ν

S3 ν

ν ν
,

All the terms of the last Hamiltonian commute and thus have a common

(30.6)H V2H V 1
2

π2

2m
e
m

S3 H σ3(a
2m 2 2eak0 S3 H)1/2.

system of eigenfunctions. The corresponding eigenvalues are (see Subsection 28.3)

Using (30.7) it is not difficult to find the eigenvalues of the Hamiltonian (30.6)

(30.7)
π2

2m
Φ 1

2m
(2n 1)eH p 2

3 Φ, n 0,1,2,...,

S3Φ νΦ, ν s, s 1,...,s; σ3Φ Φ, ±1.

Formula (30.8) gives the energy spectrum of an arbitrary spin particle moving

(30.8)Enν p3

(2n 1 2ν) eH
2m

p 2
3

2m
(a 2m 2 2eak0νH)1/2.

in the constant magnetic field directed along the third coordinate axis. This spectrum
lies on the real axis and includes as the continuous ingredient (p3)

2/2m as the discrete
terms labelled by the numbers n, ν and .

It is interesting to compare (30.8) with the spectrum of energies of a
relativistic particle found in Subsection 28.3. Representing the last term of (30.8) as a
series in powers of 1/m and restricting ourselves to the terms of order 1/m2 we obtain

where ω=eH/m is the cyclotronic frequency, f(k0)=(2s+1+ k0)/2s is the parameter

(30.9)E nνp3

m
p 2

3

2m
ω








n
s ν
2s

νf(k0) ,
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defining the deviation of the dipole moment of a particle (i.e., of the coefficient by the
term eS H/2m in the approximate Hamiltonian (10.26), (15.33)) from the value q=1/s.

Comparing (30.9) with (28.25) we come to the conclusion that in the case
f(k0)=0 the energy spectrum of a particle of arbitrary spin interacting with the constant
and homogeneous magnetic field, predicted by the Galilei-invariant wave equations,
coincides with the corresponding relativistic spectrum in the approximation 1/m2. If,
however f(k0)≠0 the relation (30.9) can be interpreted as energy spectrum of a particle
with anomalous (distinct from 1/s) magnetic moment.

Let us present the explicit form of the eigenfunction of the Hamiltonian (30.6).
In analogy with (28.17)-(28.27) we set

Here Un(y) is the Hermit function (28.27), y=(eH)1/2(x2-p1/eH), ηs
ν are the spinors of

Φnν1p3

exp[i(p1x1 p3x3)]










Cν Un(y)ηs
ν

0
,

Φnν 1p3

exp[i(p1x1 p3x3)]










0

Cν Un(y)ηs
ν

.

(28.11), 0 is a (2s+1)-component zero column, Cν
± are normalization constants. The set

of eigenfunctions of the starting Hamiltonian (30.1) can be obtained by the
transformation

where V1 and V2 are the operators (30.3),(30.5).

Φnν p3

→ψnν p3

V 1
2 V 1

1 Φnν p3

30.3 Nonrelativistic Particle of Arbitrary Spin in Crossed Electric and Magnetic
Fields

Let us consider a more complicated problem when the constant and
homogeneous magnetic field is supplemented by the constant and homogeneous
electric field being perpendicular to the magnetic one. We again start from the
equations (15.26), (15.28) where k1=−1. The corresponding vector-potential Aµ can be
chosen in the form

then

(30.10)A0 x2E, A1 x2H, A2 A3 0,

The equations (15.26), (15.28) with the chosen potentials can be solved

(30.10′)E (0,E,0), H (0,0,H).

exactly. With the help of the transformation (30.4), (30.6) the corresponding

357



Symmetries of Equations of Quantum Mechanics

Hamiltonian (15.26) is reduced to the following form

or

(30.11)H
π2

2m
eA0

e
m

S H σ3(a
2m 2 2aek0S H)1/2

where Λν are the projectors of (30.5).

(30.12)H
π2

2m
eEx2

s

ν s









e
m

νH σ3(a
2m 2 2aνek0 H)1/2 Λν

The Hamiltonian H′′ commutes with the matrices S3, σ3 and the operators P1,
P3. This is why it is convenient to look for the corresponding eigenfunctions in the form

where χλν=χλν(x2) is an eigenvector of the commuting matrices σ3 and S3

(30.13)ψλν exp[i(p1x1 p3x3)]χλν

(corresponding to the eigenvalues λ=±1 and ν=-s,-s+1,...,s), p1 and p3 are eigenvalues
of the operators P1 and P3.

Substituting (30.12), (30.13) into the Schrödinger equation for stationary
states we come to the following system

which reduces to the following sequence of the noncoupled equations for χλν :

H ψλν Ẽψλν

Using the change of variables

(30.14)∂2/∂x 2
2 (p1 eHx2)

2 p 2
3 2eνH

2mλ(a 2m 2 2eak0νH)1/2 2m(Ẽ eEx2) χλν 0.

(30.14) reduces to the equations for the harmonic oscillator (compare with (28.22))

(30.15)y e H x2 (mE p1 H)/(eH 2)

besides Kλν are connected with the eigenvalues Ẽ of the Hamiltonian H′′ as follows

(30.16)d 2/dy 2 y 2 χλν Kλνχλν,

Solutions of (30.16) are proportional to the Hermit functions (28.27) and the

(30.17)eHKλν (Hp1 mE)2H 2 2mẼ p 2
3 2eνH 2mλ(a 2m 2 2eνak0H)1/2.

corresponding eigenvalues Kλν are equal to 2n+1, n=0,1,... . Hence it follows the
possible values of energy are

In the case E=0 formula (30.18) reduces to (30.8).

(30.18)Ẽ (2m) 1 (2n 1 2ν)eH p 2
3 (p1 E)/(2H) m/2 E/H

2 λ(a 2m 2 2eνak0 H)1/2.

In the approximation 1/m2 Ẽ reduces to the form
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where f (k0)=(2s+1+λk0)/2s. In the case k0=0, s=1/2 the energy levels (30.19) coincide

(30.19)Ẽ λam p 2
3 ω








n
s ν
2s

νf (k0)
p1e

2H
m
2









E
H

2

with the levels predicted by the Dirac equation for the case of fields of the considered
configuration.

We note that the equations (15.26), (15.28) can be solved exactly also for the
case of parallel electric and magnetic fields not depending on xµ. Then we can obtain
solutions for arbitrary directed fields using Lorentz transformation.

30.4. Nonrelativistic Particle of Arbitrary Spin in the Coulomb Field

This problem also can be treated successively using Galilei-invariant wave
equations.

We start with the first-order equations (15.1) with β-matrices corresponding
to column R3 of the Table 13.1 (pp.160-161). Choosing the vector-potential in the form
A=0, A0=ze/x and going with the help of the transformation (15.6), (15.7) to the
representation (15.19), (15.20) we obtain the following system

We see that our problem reduces to solving the Schrödinger-type equation

(30.20)










p0

α
x

p 2

2m 0

α
s(s 1)κ2m

S x

x 3
Φs 0,

(30.21)Φs
2 Φs, Φs

3











κ2

2
αS x

x 32ms(s 1)κ2

Φs,

χs 1
1 χs 1

2 0, Φs Φs
1, α ze 2.

(25.20) for (2s+1)-component wave function Φs. The remaining components of the
vector-function (15.18) are expressed via Φs according to (30.21). Further on, we set

0=m without loss of generality.
Solutions of (30.20) can be found in accordance with the relativistic Coulomb

problem. Representing Φs in the form of (29.1) where → Ẽ we come to the stationary
Schrödinger equation

where

(30.22)










Ê
α
x

m
p 2

2m
αg
2sm

S x

x 3
Φs(x) 0,

The equation (30.22) is invariant under the group O(3) and so admits solutions

(30.23)g
2

(s 1)κ2

.
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in separated variables. Expanding Φs in the spherical spinors according to (29.3) and
using the representation (29.9) for p2, we come to the following system of ordinary
differential equations for radial functions

where

(30.24)D ϕλ x 2bλλ ϕ λ ,

and dλ
s
′
j
λ are the matrix elements of the operator S x/x in the basis of spherical spinors,

(30.25)

D ≡2m( ˜ α/x) d 2

dx 2

2
x

d
dx

j(j 1)

x 2
2m 2,

bλλ [λ2 λ(2j 1)]δλλ
gα
s

d sj
λλ ,

λ, λ s, s 1,..., s 2nsj, nsj min(s, j)

see (29.7).
The matrix bλλ′ is diagonalizable so the equations (30.24) reduces to the

chain of the following noncoupled equations

where D′ is the operator (30.25), bsj are eigenvalues of the matrix bλλ′ .

D ϕ x 2b sjϕ

Until now we have repeated reasoning from Section 29, where the analogous
but relativistic problem was considered. Further on, bearing in mind differences
between the operators D′ (30.25) and D (29.11), we use a new (in comparison with
(29.14)) change of variables

and again come to the equations (29.13) for y.

(30.26)
y z ϕ, z 2 2m(Ẽ m) x, β m

2(Ẽ m)
α, k 2 (2j 1)2 4b sj,

We see that the Galilei-invariant equations for a particle of an arbitrary spin
in the Coulomb field generate the equation for eigenvalues β which is the same as in
the case of relativistic Coulomb problem. But the energy spectrum of a Galilei particle
differs from the relativistic one in accordance with another dependence of Ẽ on β,
compare (30.26) and (29.14). We obtain from (29.18), (30.26) the following energy
eigenvalues:

Formula (30.27) defines energy levels of a nonrelativistic particle of arbitrary

(30.27)
Ẽ m

mα2





















j
1
2

2

2b sj n
1
2

2
, n 0,1,... .
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spin s in the Coulomb field. Here j takes integer (for integer s) or half integer (for half
integer s) values defining the total angular momentum of a particle, besides the possible
values of bsj coincide with the roots of the characteristic equation (29.24) for the matrix
bλλ′ of (30.25).

To analyze the spectrum (30.27) and to compare it with the spectrum predicted
by relativistic motion equations we consider approximate solutions of the characteristic
equation (29.24), (30.25). Representing the r.h.s. of (30.27) as series in powers of α2

we obtain

Formula (30.28) defines a fine structure of the energy spectrum of an arbitrary

(30.28)Ẽ m
mα2

2n 2

mg 2α4b sj
λ

2n 3(l 1/2)
o (α6 ),

n n l 1 1,2, ... ; l j λ 0,1, ... ,n 1.

spin particle in the Coulomb field. The values of the corresponding parameters bλ
sj are

easily calculated by formulae (29.8), (29.26).
Besides the constant term m the energy of a particle is defined by the Balmer

term - mα2/2n2 and by the correcting term of order α4 connected with the spin. Further
on it will be shown that this correcting term is caused by the spin-orbit, Darwin and
quadruple couplings.

According to (30.28) any energy level corresponding to the given main
quantum number n is splited into Nn sublevels of the fine structure corresponding to the
admissible values of l and λ given in (30.28). The number Nn is given in (29.30). In
the case s=1/2 formula (30.28) reduces to the form

In contrast with the energy spectrum predicted by the Dirac equation (see (29.27),

(30.29)Ẽ m
mα2

2n 2

λmg 2α4

2n 3(l 1/2)(l λ 1/2)
, λ ±1/2.

(29.31) for s=1/2) the energy levels (30.29) are nondegenerated.
Comparing formula (30.28) with (29.27) obtained by the solution of the

relativistic Coulomb problem we come to the conclusion that for g2=-1

where is energy of a relativistic particle given in (29.27).

(30.30)Ẽ ∆ , ∆ 







3
4

n
l 1/2

mα4

2n 4

We see the energy levels of a particle of arbitrary spin in the Coulomb field,
obtained from the Galilei invariant wave equations, are shifted by the value ∆ in
comparison with the levels predicted by relativistic equations. This result is quite
natural inasmuch as ∆ coincides with the mean value of the relativistic correction to
kinetic energy [18]: ∆ =〈p4/8m3> where averaging is made by Schrödinger’s wave
functions.
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So Galilei invariant wave equations take into account all the effects predicted
by the Poincaré-invariant equations (i.e., the spin-orbit, Darwin and quadruple
couplings) except relativistic correction to the kinetic energy. This conclusion is in a
good accordance with the result of the analysis of the corresponding approximate
Hamiltonians of (10.26).

We repeat that the spin-orbit, Darwin and quadruple couplings can be
described in frames of a Galilei-invariant approach, and therefore it is not necessary to
interpret these couplings as purely relativistic effects.

In conclusion, we note that the Galilei invariant wave equations can be solved
exactly also for some other types of external fields, e.q., for the field of the magnetic
monopole. The last problem is formulated and solved in analogy with [164].

31. NONLINEAR EQUATIONS INVARIANT UNDER
THE POINCARÉ AND GALILEI GROUPS

31.1. Introduction

In this section we present a brief survey of the main results of papers
[128-131, 166-180, 183-192, 6*, 10*, 11*, 14*-25*] where nonlinear equations are
investigated which have the same symmetries as the linear equations of D’Alembert,
Dirac, Schrödinger and Maxwell.

The superposition principle is not valid for nonlinear differential equations
so it is important to select equations being invariant under wide groups from the class,
e.g., first and second order partial differential equations. The symmetry properties of
such equations enable us to construct wide classes of solutions starting from a known
particular solution.

Later, we will consider symmetry properties and exact solutions of a number
of nonlinear equations of modern theoretical and mathematical physics. We hope it will
be a useful demonstration of power of symmetry methods in application to practically
interesting problems.

31.2. Symmetry Analysis and Exact Solution of Scalar Nonlinear Wave Equations

Consider the nonlinear d’Alembert equation

where F(U) is a smooth function, U=U(x0,x1,...xn) is a real scalar function.

(31.1)pµ p µU F(U) 0,

Let us denote by P̃(1,n) the extended generalized Poincaré group, i.e., the
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group P(1,n) completed by the one-parametric group of the scale transformations
(1.48).

THEOREM 31.1 [175]. The equation (31.1) is invariant under the group
P̃(1,n) in the two following cases only

where λ1, λ2, r are arbitrary numbers. The corresponding generators of the group P(1,n)

(31.2)F(U) F1(U) λ1U
r, r≠1,

(31.3)F(U) F2(U) λ2exp(U),

have the form (1.6) (where µ, σ = 0, 1, ... , n), and the dilatation generator is given by
the following formulae

Corollary 1. The equation (31.1) with the nonlinearity (31.3) in the

(31.4)D D1 xµ p µ 2iU
1 r

∂
∂U

,

(31.5)D D2 xµ p µ 2i
∂

∂U
.

two-dimensional space R(1,1) is invariant under the infinite-dimensional Lie algebra
including the subalgebra AP̃(1,n). Such symmetry makes it possible to construct the
Liouville solution [175]

where f1 and f2 are arbitrary smooth functions, and the dots denote the derivations in

(31.6)U(x0,x1) ln










8ḟ1(x0 x1)ḟ2(x0 x1)

λ2[f1(x0 x1) f2(x0 x1)]
2

respect with the corresponding arguments.
Corollary 2. The solutions (31.6) have singularity in the point λ2=0, so it is

impossible to apply the standard method of a small parameter to the equation (31.1),
(31.3). Singular solutions of the two-dimensional Liouville equations are investigated
in paper [363].

Corollary 3. If r=(n+3)/(n-1) then the equation (31.1) with the nonlinearity
(31.2) is invariant under the conformal algebra AC(1,n) whose basis element have the
form (1.6), (31.4), and Kµ of (1.16).

To construct exact solutions of the equation (31.1) we use the ansatz

proposed in [124] and realized effectively for a number of nonlinear equations of

(31.7)U(x) f(x)ϕ(ω) g(x)

mathematical physics [125, 166-168, 173-176]. Here ϕ(ω) is a function has to be
determined which depends on invariant variables ω=(ω1,ω2,...ωn). The explicit form of
f(x) and g(x) is determined from the condition of "separation of variables", i.e., from
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the requirement the variables x=(x0,x1,...xn) have not to be present explicitly in the
equation for ϕ(ω) obtained from (31.1), (31.7). The invariant variables ω(x) are the
first integrals of the corresponding Euler-Lagrange equation [124,171,186].

Let us represent one of possible ansätze (31.7) for the equation (31.1), which
reduces it to the equation with three independent variables:

where a=(a0,a1,a2,a3), b=(b0,b1,b2,b3), c=(c0,c1,c2,c3), d=(d0,d1,d2,d3) are parameters

(31.8)
U(x) [(c x)2 (d x)2]2/(l r)ϕ(ω1,ω2,ω3), r≠1,

ω1

a x
b x

, ω2 [(c x)2 (d x)2](a xb x) 1, ω3 ln[(c x)2 (d x)2] 2θarctan c x
d x

,

satisfying the conditions

θ is an arbitrary parameter.

a 2 b 2 c 2 d 2 1, a x≠0, b x≠0, c x≠0,

a b a c a d b d b c c d 0, a 2 a a, a b a0b0 a1b1 a2b2 a3b3,

The ansatz (31.8) reduces the equations (31.1) (31.2) to the linear equation
with variable coefficients:

To find exact solutions of (31.9) is not an easy thing so it is convenient to

(31.9)

(1 ω2
1 ) ∂2ϕ

∂ω2
1

4(1 θ2) ∂2ϕ
∂ω2

3

ω3
3

∂2ϕ
∂ω2∂ω3

ω2
2[ω2(ω1 ω 1

1 ) 4] ∂2ϕ
∂ω2

2

2ω2
2(1 ω2

1)
∂2ϕ

∂ω1∂ω2

2ω1ω2

∂ϕ
∂ω2

4k
∂ϕ
∂ω3

k 2ϕ λ1ϕ
r 0, k

2
r 1

.

reduce this equation to the equation with two independent variables, the last can be
reduced to an ordinary differential equation (ODE). In some cases the obtained ODE
can be solved analytically.

We represent two multiparametric families of solutions obtained in accordance
with the above scheme

where Φ is an arbitrary smooth function,

(31.10)

U [(a x)2 b xc x ]1/(1 r),

a b a c b 2 c 2 0, 2a 2 b c
λ(r 1)2

r 3
, r≠3;

U [Φ(a x) b x]2/(1 r),

Formula (31.10) gives solutions of (31.1) expressed via an arbitrary function.

a a a b 0, b b
1
2

λ1(1 r 2)(1 r) 1, r≠ 1.

Such a solution is available for the corresponding initial or boundary values problems.
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More general classes of exact solutions of (31.1) are constructed in [171,175].
Nonlinear equations for a complex scalar field U(x) are considered in [131,35*].

Let us consider also the following generalization of the d’Alembert equation

In the case e=0 we come to the usual linear d’Alembert equation, but for

(31.11)∂µ∂
µU e(∂µ A µ A µ∂µ)U 2eA µ∂µU e 2Aµ A µU 0.

nonzero e we have nothing but the equation with minimal interaction

Treating (31.11) as a nonlinear equation for U and Aµ it is possible to prove

πµ πµU 0.

the following assertions*

THEOREM 31.2. The maximal IA of the equation (31.11) is generated by
the following operators

where a(x) is an arbitrary differentiable function, λ and k are arbitrary parameters

Pµ pµ i∂µ, Jµσ xµ pσ xσ pµ Sµσ,

D xµ p µ iAµ∂Aµ

ikU∂U, Kµ 2xµ D xσx σpµ 2Sµσx σ λ pAµ

,

Q a(x)U∂U (∂µa(x))∂Aµ

, I U∂U ,

satisfying the condition 2k+λ=2-n, n is the number of independent variables xµ.
THEOREM 31.3. The equation (31.11) admits the most extended IA in the

class of equations

where B, C, D are arbitrary constants.

∂µ∂
µU B(∂σA σ)U CA µ(∂µU) DAµA

µU 0

We see that the principle of minimal coupling leads to the most symmetric
equation in the class considered. The corresponding IA is very extended because its
basis elements depend on an arbitrary function a(x).

31.3. Symmetries and Exact Solutions of the Nonlinear Dirac Equation

The following equation is a natural generalization of the linear Dirac equation:

where F(ψ,ψ) is an arbitrary 4×4 matrix whose elements are smooth functions of the

(31.12)[γµ pµ F(ψ,ψ)]ψ 0,

field variables.
A description of all the matrices F for which the equation (31.12) be invariant

*These results where obtained by Dr. Zhdanov
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under the groups P(1,3), P̃(1,n) or C(1,3) is given in the following assertion.
THEOREM 31.4 [172]. The equation (31.12) is invariant under one of the

following groups: a) the Poincaré group, b) extended Poincaré group, c) conformal
group iff

where F1, F2, F3, F4 are arbitrary scalar functions of ψψ, ψγ4ψ;

(31.13)a) F(ψ,ψ) F1 F2γ4 F3γ
µ ψγ4γµψ F4S

νµ ψγ4Sνµψ,

b) F has form (31.13) where

Gi, Gj are arbitrary functions of ψψ/ψγ4ψ, k is an arbitrary constant;

(31.14)Fi (ψψ)1/2k Gi , i 1,2; Fj (ψψ)(1 2k) /2k Gj , j 3,4,

c) F has the form (31.13) where

The simplest conform-invariant equations of the class (31.12), (31.13), (31.15)

(31.15)Fi (ψψ) 1/3 Gi, i 1,2; Fj (ψψ) 2/3Gj , j 3,4.

have the form

The equation (31.16) was obtained by Gürsey [212] for the first time.

(31.16)[γµ p µ λ(ψψ)1/3]ψ 0,

(31.17)[γµ p µ λγµ ψγµψ(ψγνψψγνψ) 1/3]ψ 0,

Corollary. There exist first order equations for the spinor field, which have
a more extended symmetry than the Dirac equation (31.12). An example of such an
equation is the following system [125,126]

which is invariant under the infinite-dimensional algebra.

ψγµ ψpµψ 0

Consider the P̃(1,n)-invariant nonlinear equation

where λ and k≠0 are arbitrary constants. We search for solutions of (31.18) in the form

(31.18)γµ p µ λ(ψψ)1/(2k) ψ 0,

[124,125]

where A(x) is a 4×4 matrix, ϕ(ω) is a four-component function depending on three new

(31.19)ψ A(x)ϕ(ω)

variables ω={ω1(x),ω2(x),ω3(x)}.
The ansatz (31.19) leads to the equation for ϕ(ω), which depends on ω only

if A(x) and ωi satisfy the equations [186-192]
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where ξµ(x), η(x) are coefficients of infinitesimal operators of the group P̃(1,n).











ξµ(x) ∂
∂x µ

η(x) A(x) 0, ξµ(x)
∂ωi

∂x µ
0, i 1,2,3,

Without going into details we present two solutions [186]:

If a=0 then

(31.20)
A(x) (x0 x2)

kexp







1
2a

γ1(γ2 γ0)ln(x0 x2) ,

ω1 (x 2
0 x 2

1 x 2
2 )x 2

3 , ω2 (x0 x2)x
1

3 , ω3 ax1(x0 x2)
1 ln(x0 x2), a≠0.

Here β and b are arbitrary parameters.

(31.21)

A(x) (2x0 2x1 β) k/2 exp










1
4

γ0γ1ln(2x0 2x1 β) 1
2

γ2γ3 arctan
x2

x3

, β≠0,

ω1 (2x0 2x1 β)exp[2(x1 x0)β
1], ω2 (2x0 2x1 β)(x 2

2 x 2
3 ) 1,

ω3 bln(x 2
2 x 2

3 ) 2arctan
x2

x3

.

Let us represent the explicit form of solutions of (31.18) for three values of
the parameter k [186].

The case k=1/2:

where zµ=xµ+θµ, θ=(θµθµ)1/2, aµ, bµ, θµ are arbitrary parameters satisfying the conditions

(31.22)
ψ [(a z)2 (b z)2] 1/4exp 








1
2

γ aγ barctan a z
b z

exp




iλ χ̃χ

2(1 θ2)
(γ b





θγ a) 







ln((a z)2 (b z)2) 2θarctan a z
b z

χ

a a ≡aµa
µ= −1, b b=−1, a b= 0, χ is a constant spinor.
The case k≠1/2:

The case k=1/3:

(31.23)
ψ [(a z)2 (b z)2] 1/4exp 








1
2

γ aγ barctan a z
b z

×

×exp 







2ikλ
2k 1

γ b(χ̃χ)1/(2k)[(a z)2 (b z)2)](1 2k)/(4k) χ.

The relations (31.20)-(31.24) define the multiparameter families of exact

(31.24)ψ γ x(x x) 2exp[iλ kγ ββ x(x x) 1]χ, β β>0, x x≠0.

solutions of the equation (31.18).
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If k=1/3 then the equation (31.18) is conform-invariant. It means that if we
know a particular solution of (31.18) then it is possible to generate other solution using
conformal transformations.

Using the given ansätze, families of exact solutions of the equations of
classical electrodynamics

and many other nonlinear equations have been obtained in [168,188].

(γµ pµ eγµ A µ m)ψ 0,

pν p νAµ pµ pν A ν eψγµψ

A new conformal invariant equation for the spinor field

(where C2 is the invariant of the electromagnetic field (31.34)) was proposed in [30*].

γµ p µ λ1W
1/4

1 λ2(ψψ)1/3 ψ 0

We do not consider two-dimension nonlinear integrable equations which were
investigated by great many of authors (see [350] and the references cited there in).

NOTE. In this book we consider only linear representations of algebras
AP(1,3) and AC(1,3). But there exist nonlinear equations invariant under nonlinear
realizations
of the conformal algebra. Thus on the solutions of the eikonal equation

the following nonlinear representation of the algebra AC(1,4) is realized [36*]

∂U
∂xµ

∂U

∂x µ
1

Nonlinear representations of the algebras AP(1,1), AP(1,2), AP(2,2), AC(2,2)

Pµ pµ i
∂

∂x µ
, Jµσ xµ pσ xσ pµ, PU≡pU i

∂
∂U

,

J04 x0 pU Up0 , J4µ Upµ xµ pU,

D xµ p µ UpU, Kµ 2xµ D xµ x µ U 2 pµ.

are found in [37*-39*]. Moreover, the nonlinear representation of the algebras AP(2,2)
and AC(2,2) is realized by the operators Pµ, Jµσ, Kµ, D, which have the form (2.22),
(2.42) where the Greek indices run over the values 1, 2, 3, 4,

and the covariant summation over the repeating indices is imposed using the metric

Sab abcΣc , S4a Σa , ±1; K 0,

Σ1 isinU∂U , Σ2 icosU∂U, Σ3 i∂U,

tensor gµσ=1, µ=σ=1,2; gµσ=−1, µ=σ=3,4; gµσ=0, µ≠σ.
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31.4. Equations of Schrödinger Type Invariant Under the Galilei Group

Here we consider the following nonlinear generalization of the Schrödinger
equation

where F is an arbitrary differentiable function.

(31.25)










p0

p 2

2m
U F(x,U,U ) 0

The maximal IA of (31.25) for F=0 is the algebra AG2(1,3) whose basis
elements are given in (11.5). We denote by AG1(1,3) the subalgebra including the basis
elements P0, Pa, Ja, Ga, D of (11.5).

Of course symmetry of the equation (31.25) depends on the structure of F.
THEOREM 31.5 [124,176]. The equation (31.25) is invariant under the

following algebras:
AG(1,3), iff F=Φ( U )U, Φ is an arbitrary smooth function;
AG1(1,3), iff F=λ U kU, λ and k≠0 are arbitrary parameters besides the

corresponding generator of scale transformations has the form D=2x0 p0-x p+2i/k;
AG2(1,3), iff F=λ U 3/4U.
More general (than (31.25)) equations of Schrödinger type are investigated in

[129]. One such equation has the form

This equation is invariant under the algebra AG1(1,3). A wide classes of exact solutions

(31.26)










p0

p 2

2m
U λU

∂(UU )
∂xa

∂(UU )
∂xa

(UU ) 2 0.

of (31.26) have been constructed in [14] using continuous subgroups of the Galilei
group [127].

In conclusion, we represent three ansätze and families of solutions of the
equation [176]

We search for solutions of (31.27) in the form (31.7) where ϕ is a function of

(31.27)










p0

p 2

2m
U λ U 4/3U 0.

invariant variables ω=(ω1,ω2,ω3). The explicit form of f(x) and ωwhich enables us to
reduce (31.27) to the equation with three independent variables is given by the
following formulae
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where a, b, c are constant vectors satisfying the conditions a a=b b=c c=1,

(31.28)

f(x) (1 x 2
0 ) 3/4exp











imx0x
2

2(1 x 2
0 )

,

ω1 a x(1 x 2
0 ) 1/2, ω2 x 2(1 x 2

0 ) 1, ω3 arctanx0 arctan b x
c x

,

x 2 x x, b x b1x1 b2x2 b3x3,

(31.29)
f (x) x 3/2

0 exp










imx 2

2x0

,

ω1 a xx 1
0 , ω2 x 2 x 2

0 , ω3 x 1
0 arctan b x

c x
,

f(x) x 3/4
0 , ω1 a xx 1/2

0 , ω2 b xx 1/2
0 , ω3 c xx 1/2

0

a b=a c=b c= 0.
Exact solutions of (31.27) are constructed using the ansätze (31.28)-(31.30).

The simplest solutions are

The function ϕ(ω1) is determined by the elliptic integral

U (1 x 2
0 )3/4 exp











imx 2

2(1 x0)
, λ 3

2
i ,

U x 3/2
0 exp 








im
2

(x 2 r x)x 1
0 , r 2 8λ

m
,

U x 3/2
0 ϕ(ω1)exp











imx 2

2x0

, ω1

a x
x0

.

k1 and k2 are arbitrary constants.

⌡
⌠
ϕ

0

∂τ
(k1 τ10/3)1/2









6
5

λm
1/2

(ω1 k2),

Formulae (31.30) present multiparametrical families of exact solutions of the
nonlinear equation (31.26).

Let U=U(x0,x) is a solution of (31.26). To obtain other solutions we can use
the following formulae

U1 U(x0, x vx0 )exp










im










v 2x0

2
v x ,
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where a, v are arbitrary constants. These formulae reflect the fact that the equation

U2 U










x0

1 ax0

, x
1 ax0

(1 ax0)
3/2 exp











iamx 2

2(1 ax0)

(31.26) is invariant under the Galilei group. For more details see [171, 176].
Symmetry properties and component reduction of the equation (31.25) with

the logarithmic nonlinearity

was investigated in papers [32*, 33*]. Besides the generators of the Galilei group this

F(x,U,U ) (λ1 iλ2)U ln(U U), λ2 ≠0

equation admits the additional SO

This SO generates similarity transformations of coordinates x0→x0
′ =x0, xa→xa

′ , and

Q exp(2iλ2 x0 )













U
∂

∂U
U

∂
∂U

iλ1

λ2











U
∂

∂U
U

∂
∂U

.

nontrivial one-parametrical transformation for U:

Lie symmetry and reduction of multidimensional systems of the Schrödinger

U→U exp










θ










1 i
λ1

λ2

exp 2λ2 x0 U.

type was investigated in papers [129, 14*] where, in particular, one-dimension Galilei-
invariant equations (31.25) with nonlinearity

(where h is an arbitrary smooth function) was considered.

F U U 4h U x U 3

31.5. Symmetries of Nonlinear Equations of Electrodynamics

The electromagnetic field in a medium is described by Maxwell’s equations

where D and B are vectors of induction, E and H are vectors of strengths. The

(31.31)i
∂D
∂x0

p×H, i
∂B
∂x0

p×E, p D 0, p B 0.

underdetermined system (31.31) has to be completed by constitutive equations
(equations connecting D, B, E and H) which reflect the properties of the medium.

Following [182] we present here some results connecting symmetries of
equations (31.31) supplemented by constitutive equations.

First we note that the system (31.31) without additional conditions is invariant
under an infinite-dimensional Lie algebra including the subalgebra AIGL(4,R) [157].

Let us represent constitutive equations in the form of the following functional
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relations

where Φ and F are arbitrary smooth functions of D and H.

(31.32)E Φ(D,H), B F(D,H),

THEOREM 31.6. The system of equations (31.31), (31.32) is invariant under
the group P(1,3) iff

D=ME+NB, H=MB−NE (31.33)

where M=M(C1,C2), N=N(C1,C2) are arbitrary functions of the invariants of the
electromagnetic field,

C1=E2−B2, C2=B E. (31.34)

Proof is given in [182].
In the case M=L−1, N=B EL−1, L=(1−B2−E2−(B E))1/2 the system (31.31),

(31.33) coincides with the Born-Infeld equations [48].
If we set in (31.33) M= , N=−µB E, , µ are constants, then the constitutive

equations reduce to the form

A popular form of constitutive equations is

D










1 µ2(E H)2

( µE 2)2
E µE H

( µE 2)
H, B 1 H µ E H

( µE 2)
E.

B=µ(E,H)H, D= (E,H)E.

It follows from Theorem 31.6 that the condition of Poincaré-invariance generates the
following restrictions for µ and :

µ=1.

If B=Φ(H), D=F(E,H) then in accordance with Theorem 31.6

D=µE, B=µ−1H (µ=const).

The restrictions imposed by the requirement of the conformal invariance are
formulated in the following assertion.

THEOREM 31.7. The system of equations (31.31), (31.33) is invariant under
the conformal group if
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M=M(C1/C2), N=N(C1/C2).

For the proof see [182].
An example of the conformal-invariant constitutive equations is given by the

following formulae

Corollary 1. The nonlinear Born-Infeld equations are not invariant under the

D µH 2

µE 2 E H
E, B µE 2 E H

µH 2
H.

group C(1,3).
Corollary 2. A class of nonlinear equations for the electromagnetic field was

proposed in [124], which we write in the form

where Aa, Aσαβ are arbitrary functions of invariants of the electromagnetic field and of

D µFµν jν, D (αF µν) 0,

jν Aναβ F αβ, D µ A1

∂
∂xµ

A2F
µν ∂

∂x ν
A3

∂F µν

∂x ν
,

(∂Cα/∂xµ)(∂Cα/∂xµ), α=1,2.
Let us show one more nonlinear generalization of Maxwell’s equations [29*]:

where v=v(H 2, E 2, E H) is modula of the velocity of propagation of the

(31.35)
i
∂E
∂t

vp×H, i
∂H
∂t

vp×E,

p E 0, p H 0,

electromagnetic field. The density ρ and velocity v can be defined as follows [29*]

where a is a smooth function of the invariants of the electromagnetic field. The last

(31.36)
∂ρ
∂t

∂(ρvl)

∂xl

0, ρ ρ(E H, E 2, H 2 ),

ρvl a(E 2 H 2, E H) lknEkHn, k, l,n 1,2,3,

relation coinsides with the Pointing formula, if ρ=(E2+H2)/2. In this case (31.36)
coinsides with the continuity equation.

The essential difference of the system (31.35)-(31.37) from the classical
Maxwell equations is that this system is nonlinear.

By studying symmetries of the nonlinear equations for the vector-potential

pσ p σAµ pµ(p σAσ) 0,

(pµ ieAµ)A
µ 0
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a new vector representation of the algebra AC(1,3) was found [10*]. The corresponding
basis elements are Pµ, Jµσ, D of (2.22), (2.42) where

but the remaining generators Kµ are singular in respect with the coupling constant e:

Sµσ i










Aµ

∂
∂A σ

Aσ
∂

∂A µ
, K iAµ

∂
∂Aµ

,

In [29*] nonlinear generalizations of different wave equations (d’Alembert,

Kµ 2xµ D x σxσPµ 2x σSµσ 2 i
e

∂
∂Aµ

.

KGF, Dirac) was proposed. In particular, the equation

was considered. Moreover, the velocity of propagation of the electromagnetic field is

∂2E

∂t 2
v 2p2E 0, ∂2H

∂t 2
v 2p2H 0

defined by the equation

where λ1, λ2 are some parameters.

λ1vα

∂vµ

∂x α
λ2∂ν∂

νvµ 0

It follows from the above that the nonlinear description of the dynamics of the
classical electromagnetic field can be developed in different ways. Until now we have
not canonical equations for nonlinear electrodynamical processes [30*].

31.6. Galilei Relativity Principle and Nonlinear Heat Equations

It is generally accepted to think that nonlinear heat processes are described by
the equation

where U=U(x0,x1,x2,x3) and C(U) are real functions.

(31.37)∂
∂x0

∂
∂xa











C(U) ∂U
∂xa

0

Group properties of the corresponding one-dimensional equation (a=1,
C(U)=const) where investigated by Sofus Lie. The group analysis of one-dimensional
equation with arbitrary C was carried out by Ovsiannikov [355], group properties of
the three-dimensional equation (31.37) are described in [85].

It was pointed out in [6*] that any of the equations (31.37) is not invariant
under Galilei transformations. Thus if the Galilei relativity principle is valid for heat
processes, then it is necessary either to search for other equations or to look for such
subsets of solutions of (31.37) which are invariant under Galilei transformations. The
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first ability was discussed in [6*]. Here we consider the second possibility and
demonstrate that it is possible to add such additional conditions to (31.37) that the
corresponding system of equations be Galilei invariant.

Let us consider a nonlinear equation of the second order

DEFINITION 31.1 (S.Lie). The equation (31.38) is invariant under the

(31.38)

L(x,U,U1,U2,...,Un) 0, x∈ R(1,n),

U1











∂U
∂x0

, ∂U
∂x1

, ... , ∂U
∂xn

, U2











∂2U

∂x 2
0

, ∂2U
∂x0∂x1

, ... , ∂2

∂x 2
n

, ...

operators

if

X ξµ(x,U) ∂
∂x µ

η(x,U) ∂
∂U

, µ 0,1,...,n,

where X̃ is the corresponding prolongation of the operator X, λ is an arbitrary smooth

X̃L L 0 0, or X̃L λ(x,U,U1,...,Un)L

function (for definition of prolongation of operators see [355]).
Let an operator Q does not belong to the IA of the equation (31.38) and its

prolongation is given by the formulae

besides the following equation is satisfied

(31.39)Q̃L λ0L λ1L1,

Q̃L1 λ2L λ3L1,

DEFINITION 31.2 [167, 6*]. We say the equation (31.38) is conditionally

(31.40)L1 ≡L1(x,U,U1,U2) 0.

invariant if it is invariant under the operator Q together with the additional condition
(31.40), i.e., if the relations (31.39) hold.

The additional condition (31.40) selects such subsets of solutions of the
equation (31.38), which have a more extended symmetry than the complete set of
solutions. Of course we suppose that the system (31.38), (31.40) is compatible.

The main point of the approach connected with conditional symmetry is to
find a way to select such additional conditions which extend the symmetry of the
starting equation.

DEFINITION 31.3 [183]. We say the equation (31.36) is Q-invariant if

Let us formulate the assertion about the conditional symmetry of the equation

(31.41)Q̃L λ0L λ1(QU).

(31.37).
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THEOREM 31.8 [180]. The equation (31.37) is conditionally invariant under
the generators of the Galilei group

if (31.40) has the form

(31.42)Ga x0

∂
∂xa

M(U)xa

∂
∂U

THEOREM 31.9 [180]. The equation (31.37) is Q-invariant under the

(31.43)L1≡
∂U
∂x0

1
2

M 1(U) ∂U

∂x a

∂U

∂x a
0, M(U) 1

2
UC 1(U).

operators (31.42) if

where n is the number of space variables, m≠0, r≠−2n−1 are arbitrary constants.

C(U) 1
2m

U r, M(U) 2mr n 2U 1 r

Corollary. The Galilei relativity principle is valid for the overdetermined
system including (31.37) and the following equation:

where M is a function defined in (31.43).

(31.44)∂U
∂x0

1
2

M 1(U) ∂U

∂x a

∂U

∂x a
0

We note that the system (31.37), (31.44) reduces to the system of the Laplace
and Hamilton-Jacobi equations

THEOREM 31.10. The maximal (in Lie sense) IA of the equations (31.45)

(31.45)∆W 0, ∂W
∂x0

1
2m

(∇ W)2 0, W 2m⌡
⌠C(U)U 1dU.

is AG1(1,3). The two bases of this IA are (with i=1 or i=2):

The proof reduces to using of the standard Lie algorithm.

P (i)
0

∂
∂x0

, P (i)
a

∂
∂xa

, J (i)
ab xa pb xb pa,

D (1) 2x0 P0 xa Pa, D (2) 2WPn 1 xaPa,

G (1)
a x0 Pa mxa Pn 1, G (2)

a WPa mxa P0 , a,b 1,2,...,n.

We note that the operators Ga
(1) generate usual Galilei transformations. As to

Ga
(2), they generate the following finite transformations [180]

x0
m
2

τ2U mxaτa x0, xa τaU xa, U (x ) U(x),
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where τ2=τaτa, τa are group parameters. We see that independent variables are
transformed in nonusual manner.

Conditionally invariant systems of equation of the Schrödinger type were
investigated in [171].

Now it is established that all the main equations of mathematical and
theoretical physics (Maxwell, d’Alembert, Dirac, Schrödinger, KdV, Born-Infeld,
Navier-Stokes, etc.) have non-trivial conditional symmetries [34*].

31.7. Conditional Symmetry and Exact Solutions of the Boussinesq Equation

It is known that the maximal IA of the Boussinesq equation

(where U0 0=∂2U/∂x0
2) is the Lie algebra of the extended Euclid group with the

(31.47)U00

1
2

∆U 2 ∆2U 0, U U(x), x∈ R1 n

following basis elements

All the nonequivalent ansätze reducing the two-dimensional (n=1) equation

(31.48)
P0

∂
∂x0

, Pa

∂
∂xa

,

Jab xa Pb xb Pa, D 2x0 P0 xa Pa 2U∂U .

(31.47) to an ODE, which are generated by this IA, have the form

Using the ansatz

(31.49)
U ϕ(ω), ω a0x0 a1x1, a0,a1 const;

U x 1
0 ϕ(ω), ω x1x

1/2
0 .

Olver and Rosenau [351] reduced the two-dimensional equation (31.47) to the ODE

(31.50)U ϕ(ω) 4µ2x 2
0 , ω x1 µx 2

0 , µ const

The operator corresponding to this ansatz has the form

(31.51)ϕ ϕϕ 2µϕ 8µ2ω C.

and does not belong to the IA (31.48).

Q P0 2λx0P1 8λ2x0∂U, λ 2µ

It is natural to call the ansatz (31.50) non-Lie since it does not follow from the
group properties of the equation (31.47).

Following [127] and using the concept of conditional invariance we will
describe non-Lie ansätze reducing (31.48) to ODE.

Using the direct substitution method Clarkson and Kruskal [68] had described
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ansätze of the form (31.50) reducing the two-dimensional Boussinesq equation to ODE.
The distinguishing feature of our approach from the approach used in [68] is that the
conditional invariance idea makes to be clear the reason of appearing of such ansätze
and gives the regular procedure to find non-Lie ansätze. Moreover, the conditional
invariance makes it possible to construct such ansätze which cannot be obtained in the
way proposed in [68].

First we consider the two-dimensional equation (31.47)

THEOREM 31.11. The equation (31.51) is Q-invariant under the operator

(31.52)U00 UU11 U 2
1 U1111 0.

if the functions A(x), B(x), α(x), β(x) satisfy the following equations.

(31.53)Q A(x)∂0 B(x)∂1 [α(x)U β(x)]∂U

Case 1. A is non-zero (without loss of generaliry we set A=1).

Case 2. A=0, B=1

(31.54)

α 2B1, α1 B11 β 2B(B0 2BB1),

β1

1
2

B00 (αB)0 B1(B0 BB1 4αB),

β11 (∂0 4B1)(α0 α2), β0 2B0 β1 4B1(β0 Bβ1 αβ) 2α0 β 0;

The proof is carried out using formulae (5.7.8) from [171].

(31.55)

α 0, α11 5αα 1 2α3 0,

β11 3αβ1 4α2β 5α1β 5α11(α
2 α1) 5αα 1(α1 2α2 ) 0,

β1111 4α111β 6α11(β1 αβ) 4α1[(α
2 α1)β (β1 αβ)1 β00 3ββ1 2αβ2 ] 0.

In Case 1 there exist the general solution of (31.54) which leads to the
following operator (31.53)

where a=a(x0) and b=b(x0) are solutions of the differential equations

Q ∂0 (ax1 b)∂1 2[aU a(a 2a 2)x 2
1 (a b ab 4a 2b)x1 b(b 2ab)]∂U

In accordance with the explicit form of a and b we have several operators

a 2aa 4a 3 0, b 2ab 4a 2b 0.

(31.56a)

Q1 ∂0 x0 ∂1 2x0 ∂U (a 0, b x0);

Q2 x0 ∂0 (x1 6x 5
0 )∂1 2[U 3(x 2

1 x 2
0 24x 8

0 2x1x
3

0 ]∂U











a
1
x0

, b 6x 5
0 ;
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where a=W ′/ 2W, b=aΩ, Ω=∫W(W ′)−2dx0, W=W(x0) is the Weierstrasse function

(31.56b)

Q3 2x0 ∂0 (x1 3x 2
0 )∂1 2(U 3x1 9x 2

) )∂U









a (2x0)
1, b

3
2

x0 ;

Q4 2W∂0 W [x1 ∂1 (2U Wx 2
1 )∂U]











a
W

2W
, b 0 ;

Q5 2W∂0 W (x1 Ω)∂1 [2W U WW (x1 Ω)2 x1 Ω]∂U ,

satisfying the equation W ′′=W 2.
In Case 2 we obtain only a few particular solutions of (31.54) corresponding

to the operators

where Λ=Λ(x0) is the Lame functions satisfying the equation Λ′′ =WΛ.

(31.57)

Q6 x 2
0 ∂1 (x 5

0 2x1)∂U (α 0, β x 3
0 2x1 x 2

0 );

Q7 ∂1 (Λ 1
3

Wx1 )∂U









α 0, β Λ 1
3

Wx1 ;

Q8 x1 ∂1 2U∂U











α 2
x1

, β 0 ;

Q9 x 3
1 ∂1 2(x 2

1 U 24)∂U (α 2x 1
1 , β 48x 3

1 )

Using the operators (31.55), (31.56) we find the ansätze:

(31.58)

1. U ϕ(ω) 4x 2
0 , ω x1 x 2

0 ;

2. U x 2
0 ϕ(ω)











x0

x1

6x 4
0

2

, ω x0(x1 x 5
0 );

3. U x 1
0 ϕ(ω) 2(x1 x 2

0 ), ω x 1/2
0 (x1 x 2

0 );

4. U W 1ϕ(ω) 1
6

Wx 2
1 , ω W 1/2x1;

5. U W 1ϕ(ω) 1
4

W 2(W )2(x1 Ω)2, ω W 1/2x1

1
2 ⌡

⌠W Ωdx0;

6. U ϕ(ω) x 2
0 x 2

1 x 3
0 x1, ω x0;

7. U ϕ(ω) 1
6

x 2
1 W Λx1, ω x0;

8. U ϕ(ω)x 2
1 , ω x0;

9. U ϕ(ω)x 2
1 12x 2

1 , ω x0.
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Substituting them into (31.51) we come the following reduced equations:
1. Equation (31.51) with µ=1,
2. Equation (31.51) with µ=15,
3. The following equation with λ=6,

Solving (31.59) we obtain from (31.58) solutions of the equation (31.52). We

(31.59)4. ϕ IV ϕϕ (ϕ )2 λ
6

(ω2ϕ 7ωϕ 8ϕ) 0,

5. ϕ IV ϕϕ (ϕ )2 λ
2

(ωϕ 2ϕ λω2) 0,

6. ϕ 2ω 2ϕ ω6 0,

7. ϕ 1
3

Wϕ Λ2 0,

8,9. ϕ 6ϕ2 0.

present some of them:

Let us consider also the multidimensional Boussinesq equation.

U
1
6

x 2
1 W, U 12x 2

1 , U
1
6

x 2
1 W 12x 2

1 ,

U 2(x1 x 2
0 ), U 2(x1 x 2

0 ) 12(x1 x 2
0 ) 2.

THEOREM 31.12. The equation (31.52) with n=6 is invariant under the
conformal algebra AC(1,6) whose basis elements have the form

if U satisfies the additional condition ∆U+U2/2=0.

Pa

∂
∂xa

, Jab xa Pb xb Pa, D xa Pa 4U∂U ,

Ka 2xa D x 2 Pa (a, b 1,2,...,6)

One of ansätze obtained using the operator Ka has the form

where ba are constant numbers. The corresponding reduced equations is

U (x 2 ) 2ϕ (ω1,ω2 ), ω1 x0 , ω2

b x b 2x 2

x 4
,

A particular solution of the equations (31.60) is ϕ=−4b2(ω2)
−1. The

(31.60)ϕ11 0, 2ω2ϕ22 5ϕ2

1

4b 2
ϕ 2.

corresponding solution of (31.53) has the form

For more details about conditional symmetry of Boussinesq equation and

U 4 x 2 (α x)2 1
(α const; α2 1).
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other nonlinear equations of mathematical physics, see [171].

31.8. Exact Solutions of the Linear and Nonlinear Schrödinger Equation

In this subsection we apply higher order SOs admitted by the Schrödinger
equation to construct exact solutions of it. In this way it is possible to find solutions as
of the linear Schrödinger equation with a wide class of potentials as of the nonlinear
Schrödinger equation. In particular we find soliton solutions and propose a new method
of their generation using higher order SO.

The higher order SOs of the Schrödinger equation were described in Section
21. We restrict ourselves to the potentials satisfying the equation (21.22a). The
corresponding SO (21.36) commute with the Hamiltonian so it is convenient to search
for solutions of the Schrödinger equation in the form

where Ψ(x) are eigenfunctions of the commuting operators H and Q:

(31.61)Ψ(t,x) exp( iE t)Ψ(x)

If relation (31.62a) is satisfied than (31.62b) reduces to the first order equation

(31.62a)HΨ(x) EΨ(x),

(31.62b)QΨ(x) λΨ(x).

which is easily integrated:

(31.63)










E
U
2

ω0

2
Ψ 








1
4

U iλ Ψ

where A is an arbitrary constant. On the other hand, substituting the expression for Ψ′

(31.64)Ψ A U 2E ω0 exp










2iλ⌡
⌠ dx

U 2E ω0

from (31.63) into (31.62a) we obtain the compatibility condition for the system (31.62)
in the form of the following algebraic relation for E and λ

C is an arbitrary constant (the first integral of the Weierstrasse equation, see (21.25)).

(31.65)λ2 E 3 cE 2 1
4

(c 2 b)E 1
4

(bc C),

Thus using the third order SO it is possible to find solutions of the
Schrödinger equation solving the first-order ordinary differential equation (31.63) and
the algebraic equation (31.65). This remarkable simple procedure is admissible thanks
to hidden symmetry of the equation considered.

Moreover, it happens that the third-order SO of the linear Schrödinger
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equation enables us to find exact solutions of the corresponding nonlinear equation

In accordance with (31.61), (31.64)

(31.66)i∂tΨ
1
2

p 2 Ψ 1

2A 2
(Ψ Ψ)Ψ.

from which it follows that the functions

(31.67)Ψ Ψ A 2(U 2E ω0 ) or U
1

A 2
Ψ Ψ 2E ω0 ,

(where Ψ(x) are functions defined in (31.64)) are exact solutions of the nonlinear

(31.68)Ψ exp 







i
2

ct Ψ(x)

Schrödinger equation (31.66).
The equation (31.66) is invariant under the Galilei transformations which

enables us to generate a more extended family of solutions starting from (31.68):

Here U is a Weierstrasse function i.e. an arbitrary solution of the equation (21.25), v,

(31.69)Ψ A U(x vt) 2E ω5 exp










i










(ω0 v 2 ) t
2

vx 2λ ⌡
⌠

x vt

0

dy
U(y) 2E ω5

.

ω0, ω5, λ and E>0 are arbitrary parameters satisfying the condition (31.65).
Thus using third order SOs of the linear Schrödinger equation we obtain a

wide class of exact solutions of the nonlinear Schrödinger equation (31.66). In
particuliar we find soliton solutions corresponding to the potential given in (21.26).
Indeed, this potential satisfies (21.25) with the following values of arbitrary
parameters: ω0=−ν2, ω5=−ν4, C=ν6, thus relation (31.65) reduces to the form

The corresponding integral included in (31.69) is easily calculated, which

(31.70)λ2 E 2(E ν2 )≡E 2ε.

enables us to represent solutions in the following form

Formula (31.71) presents a quickly decreasing one-soliton solution [31*]. In

(31.71)
Ψ Aν

cosh[ν(x vt)]
exp













i




















ν2 v 2

2
t vx ϕ 0 , E 0;

(31.72)Ψ A ν tanh[ν(x vt)]± i ε exp










i










ν2 v 2

2
t (v ε )x ϕ 0 , E≠0, ε≥0.

the case v=± ε the solution (31.72) describes solitons with a finite density [31*].
In general the linear Schrödinger equation with a potential satisfying (21.22a)

does not possesses any non-trivial (different from time displacements) Lie symmetry.
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Nevertheless its solutions admit group generating in frames of the concept of
conditional symmetry. Indeed, these solutions satisfy (31.67), and the equation (21.1)
with the additional condition (31.67) is invariant under the Galilei transformations. This
conditional symmetry enables us to generate new solutions:

The functions (31.73) satisfy the Schrödinger equation with a potential

(31.73)
Ψ A U(x vt) 2E ω5 exp













i










( E v 2 ) t
2

vx 2λ ⌡
⌠

x vt

0

dy
U(y) 2E ω5

.

U(x−vt) where U(x) is a solution of the equation (21.22a).
The next generation of new solutions can be made using the third order SO.

Indeed, if U(x) satisfies (21.22a) then U(x−vt) satisfies the Boussinesq equation
(21.33), so the corresponding SO does exist. Moreover, this SO can be represented in
the form

Acting by the operator (31.74) on Ψof (31.73) we obtain a family of solutions

(31.74)Q p 2 1
4

[3U ω0 6v 2, p] 3
2

vU≡2pH
1
2

(U ω0 6v 2)p
3
2

vU
i
4

U .

where a=λ+2Ev+ω0v/2−4v3 is a constant multiplier, Ψ is given in (31.73),

(31.75)Ψ QΨ aΨ iv 2Ψ1

The first term in the r.h.s. of (31.75) is an evident solution of the Schrödinger

(31.76)Ψ1

U 4iλ
2(2E U c)

Ψ.

equation (inasmuch as Ψ is a solution), but (31.76) is the essentially new solution
obtained using the third order SO.

It is interesting to note that if Ψ is the soliton solution

then the generated solution (31.76) has the form

(31.77)
Ψ νA

cosh[ν[x vt)]
exp













i










v 2

2
t vx ϕ0 ,

i.e., is a soliton solution also.

(31.78)
Ψ1

ν2A

cosh2[ν[x vt)]
cosh2[ν(x vt)] 1 exp













i










v 2

2
t vx ϕ0 ,

Consequently using the SO (31.74) we can generate new and new solutions.
We see higher order SOs are effective instruments for solving equations of

motion and generating new solutions starting from known ones.
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Here we consider equations describing systems of two interacting particles
and being invariant under the Galilei or Poincaré group. We investigate non-Lie
symmetries of such equations and find exact solutions of some of them.

32. TWO-PARTICLE EQUQTIONS INVARIANT UNDER THE
GALILEI GROUP

32.1. Preliminary notes

Equations describing a particle motion in the given external fields
correspond to the idealized physical situation when we can neglect the particle
influence to the field. But in many cases such an influence is very essential, e.g., it
is the case for the Kepler problem if the mass of a particle generating the central
field is comparable with the mass of an orbital or scattered particle. The last case
is a typical example of a two-particle problem in which it is necessary to take into
account motions of two interacting objects simultaneously.

A formulation of a two-particle problem in frames of relativistic quantum
theory clashes with great difficulties of mathematical and logical nature. We can say
with some provisos there is no satisfactory relativistic theory of two-particle systems
until now. Meanwhile the need in developing of such a theory is very large since a
wide class of really existing particles (mesons) is usually interpreted as a coupled
states of two "more elementary" objects, i.e., quarks.

To describe a two-particle system it is usually to use the covariant
Bethe-Solpeter equation [33] or quasi-relativistic equations of the type of Breit [54]
or Kraichick-Foldy [260]. The alternative possibilities are to use the quasipotential
approach of Logunov, Tavchelidze, Todorov and Kadyshevsky [238, 283] or the
theory of the direct interaction which was proposed in the classical Dirac work [80]
(about the current situation in this theory see, e.g., [69, 394]). We have had not a
possibility to analyze special features of any of the mentioned approaches. Here we
note only the solutions of the Bethe-Solpeter equation depend on the additional
parameter ("proper time"of the system) whose physical meaning is unclear, and the
theory of the direct interaction a priory is not available in the cases when it is
necessary to take into account the finiteness of velocity of signal propagation. As to
the Breit equation, it is invariant neither under Lorentz nor Galilei transformations.
So this equation does not satisfy any relativity principle accepted in modern physics.
Nevertheless this equation is a good mathematical model of quasirelativistic
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two-particle systems and is used widely by describing as hydrogen type systems with
electromagnetic interaction as strongly coupled systems of the quark-antiquark type
[220, 65] (in the last case the Breit potential has to be modified of course).

In this section we consider two-particle equations for particles of arbitrary
spins which satisfy the Galilei relativity principle [155]. It will be shown such
equations can be used successively by describing two-particle coupled systems, and
take into account various fine effects caused by the spin. In particular we present a
Galilei-invariant analog of the Breit equation, which leads to a correct hyperfine
structure of spectrum of hydrogen-type systems.

32.2. Equations for Spinless Particles

Consider the simplest version of a two-particle system when the particle
spins are equal to zero and an interaction between particles is absent. In quantum
mechanics such a system is described by the following equation

where ψ(x0,x(1),x(2)) is the wave function of a system, depending on the coordinates

(32.1)∂
∂x0

ψ(x0,x(1),x(2))










p2
(1)

2m1

p2
(2)

2m2

ψ(x0,x(1),x(2))

of the first (x(1)) and second (x(2)) particles, m1 and m2 are masses of the first and
second particles, p(α)=-i∂/∂x(α). In the following we use the indices (1) and (2) to
denote all the quantities connected with the particles with numbers 1 and 2.

The equation (32.1) is invariant under the Galilei algebra* whose basis
elements are

The representation of the algebra AG(1,3), spanned on the basis (32.2), is

(32.2)

P0 H
p2

(1)

2m1

p2
(2)

2m2

, P p(1) p(2),

J J1 J2 x(1)×p(1) x(2)×p(2) ,

G G1 G2 x0 (p(1) p(2) ) m1x(1) m2 x(2) .

reducible. To reduce this representation it is convenient to come to the new (center
of mass or c.m.) variables

*In reality the symmetry of (30.1) is more extensive. The maximal IA of this
equation in the class M1 for m1≠m2 is defined by the relation A=[AG′(1,3)⊕AG′ (1,3)]
⊂+{P0,D} where AG′(1,3) is the nine-dimensional Lie algebra including all the basis
elements of the Galilei algebra except P0, {P0,D} is the two-dimensional subalgera
including P0=i∂/∂x0 and D=2x0p0-x(1)p(1)-x(2)p(2). If however m1=m2 then A coincides
with the Lie algebra of the Schrödinger group in the space of dimension (1+6).
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or

x x(1) x(2) , X
m1x(1) m2 x(2)

m1 m2

For the momentum operators we obtain

(32.3)x(1) X
m2 x

m1 m2

, x(2) X
m1x

m1 m2

.

where

(32.4)p(1) p
m1P

m1 m2

, p(2) p
m2 P

m1 m2

,

Substituting (32.4) into (32.2) we come to the following realization

p i
∂
∂x

, P i
∂

∂X
.

where

(32.5)P̂0 H
P 2

2M
E, P̂ P, Ĵ X×P P, Ĝ x0 P M X ,

The operators (32.5) have the same form as one-particle generators,

(32.6)M m1 m2, E
p 2

2µ
, µ

m1 m2

m1 m2

, S x×p .

compare with (12.15). Besides the role of coordinate and momentum is played by
c.m. coordinate and total momentum, instead of spin and internal energy we have
internal angular momentum x×p and p2/2µ.

It is not difficult to make sure the Casimir operators (11.14) have the
following form for the representation (32.5)

and are characterized by the following eigenvalues

C3

p2

2µ
, C1 M, C2 M 2(x×p)2,

So in non-relativistic quantum mechanics, the system of two noninteracting

0≤c3<∞, c1 M, c3 M 2l(l 1), l 0,1, ... .

spinless particles corresponds to the IR of the algebra A[G(1,3)⊗G(1,3)] which
reduces to the direct integral in respect with c3 and direct sum in respect with c2 of
IRs of the algebra AG(1,3). In other words the system under consideration can be
interpreted as a quasiparticle whose mass is equal to the sum of masses of
constituent particles, spin can take arbitrary integer values and internal energy can
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take arbitrary positive value.
An equation for interacting particles can be obtained from (32.1) by adding

an interaction potential to the Hamiltonian. As a result we have

Requiring the symmetry of (32.7) under the Galilei algebra we obtain the following

(32.7)i
∂

∂x0

ψ(x0,x,X )










P 2

2M
p 2

2µ
V ψ(x0,x,X).

conditions for V:

where P, X, S are given in (32.3)-(32.6).

(32.8)[V,P] [V,X] [V,S] 0.

It follows from (32.8) a potential is a scalar function of the internal
variables x and p:

Formulae (32.7), (32.9) define the general form of two-particle Schrödinger equation

(32.9)V V(x 2, p 2, x p).

satisfying the Galilei relativity principle. The corresponding Galilei group generators
are given by formulae (32.5) where H=P 2/2M+p2/2µ+V.

The equations (32.7), (32.9) have high symmetry, being invariant under the
13-dimensional Lie algebra isomorphic to A[G(1,3)⊗O(3)]. Besides the Galilei
generators (32.5), this IA includes the generators S of (32.6).

The symmetry under the Galilei algebra makes it possible to separate the
motion of the center of mass of the system. Representing the wave function in the
form ψ=χ(X)ϕ(x) we come to the one-particle Schrödinger equation with reduced
mass:

moreover, χ(X) satisfies the free Schrödinger equation in c.m. variables:

(32.10)










p 2

2µ
V ϕ (x) Eϕ (x);

E is a constant of separation of variables.

i∂
∂x0

χ










P 2

2M
E χ ,

The equation (32.10) is invariant under the algebra AO(3) whose basis
elements coincide with S of (32.6). This invariance enables to separate angular
variables and so to reduce (32.10) to the system of ordinary differential equations
for radial wave functions.

Thus a Galilei-invariant Schrödinger equation for a pair of interacting
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spinless particles can be reduced always to ordinary differential equation for radial
wave functions in the c.m. frame. This conclusion does not depend on an explicit
form of the interaction potential but follows from the analysis of symmetries of the
two-particle Schrödinger equation (32.7).

We note that the equation (32.1), like (32.7), can be represented as a system
of first-order partial differential equations:

where we denote p0=i∂/∂x0, p(1)=(p1,p2,p3), p(2)=(p4,p5,p6), ψ is a seven-component

(32.11)(βλ p λ β7 M)ψ 0, λ 0,1,...,6,

wave function, βλ, β7 are the 7×7 matrices of the following form

0̂ and Î are the zero and unit matrices of dimension 3×3, 0̃ is the zero row matrix

(32.12)β0

















1 0̃ 0̃

0̃
†

0̂ 0̂

0̃
†

0̂ 0̂

, βa

















0 λa 0̃

λ†
a 0̂ 0̂

0̃
†

0̂ 0̂

, β3 a

















0 0̃ λa

0̃
†

0̂ 0̂

λ†
a 0̂ 0̂

, β7























0 0̃ 0̃

0̃
† m1

M
Î 0̂

0̃
†

0̂
m2

M
Î

,

of dimension 1×3, λa are the matrices (6.18). Multiplying (32.11) by β0 and (1-β0)
and expressing the functions ψ2=(1-β0)ψ via ψ1=β0ψ we come to the Schrödinger
equation (32.1) for ψ1. The remaining components of ψ (i.e., ψ2) are expressed via
ψ1: ψ2=-β7(βapa/m1+β3+apa/m2)ψ1.

The equations (32.11) are Galilei-invariant besides the corresponding basis
elements of the algebra AG(1,3) have the form

where

(32.13)
P0 i

∂
∂x0

, Pa i
∂

∂xa

,

J X×P x×p S , G x0 P MX η

It is possible to show formulae (32.11), (32.12) define the simplest (i.e.,

Sa i abc(1 β0 )(βbβc β3 bβ3 c ),
ηa (1 β0 )(βa β3 a ), a 1,2,3.

including the minimal number of equations) Galilei-invariant system of first-order
equations which reduces to the two-particle Schrödinger equation for scalar particles.

32.3. Equations for Systems of Particles of Arbitrary Spin

In analogy with the two-particle equations for scalar particles we will
construct motion equations for particles of arbitrary spins. In this subsection we
consider equations in the Schrödinger form and then the systems of equations of the
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kind (32.11).
We start with the one-particle Schrödinger equations (11.1), (14.9a) for a

particle of arbitrary spin. In analogy with (32.1) we write the equation for two
noncoupled particles in the form

where ψ(x0,x(1),x(2)) is a 4(2s1+1)(2s2+1)-component wave function, and are

(32.14)i
∂

∂x0

ψ(x0,x(1),x(2)) (Hs1

Hs2

)ψ(x0,x(1),x(2) )

Hs1

Hs2

Hamiltonians of the first and second particles, i.e., the operators (14.9a) where we
set k=a=1 for simplicity.

The equation (32.14) is evidently Galilei-invariant. The corresponding
Galilei group generators have the form of a sum of the one-particle generators
(12.18), (14.3), i.e.,

The operators (32.15) realize a reducible representation of the algebra

(32.15)

P0 Hs1

Hs2

, P p(1) p(2),

J x(1)×p(1) x(2)×p(2) S(1) S(2),

G x0P m1x(1) m2 x(2) η(1) η(2).

AG(1,3). It is not difficult to make sure the transition to the c.m. variables does not
reduce these operators to a direct sum of generators of IRs in contrast to the case
of zero mass particles. The corresponding Casimir operator C3 (11.14) is not
diagonalized in this way, i.e. we have to transform (32.15) to the representation
where the internal energy operator

does not depend on the total momentum [155]. Using the following transformation

C3 E Hs1

Hs2

P 2

2(m1 m2)

operator (compare with (14.13))

we obtain from (32.14) the following equivalent equation

U 







1 i
M

η(1) P 







1 i
M

η(2) P exp 







i
M

η P , η η(1) η(2), M m1 m2,

where Ê is the transformed operator of internal energy

(32.16)i
∂

∂x0

Φ ĤΦ, Φ Uψ, Ĥ UHU 1 P2

2M
Ê,

(32.17)
Ê σ(1)

1 m1 σ(2)
2 m2 2σ(1)

3 S(1) p 2σ(2)
3 S(2) p

p2

2











1
µ

σ(1)
1 iσ(1)

2
1

m1

σ(2)
1 iσ(2)

2
1

m2

,
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p and µ are the relative momentum and reduced mass. Simultaneously the generators
(32.15) are transformed to the form (32.5) where

and Ê is defined in (32.17).

(32.18)S x×p S(1) S(2),

Thus we have obtained the Galilei-invariant equations for a system of two
particles of arbitrary spins in the form (32.16). It follows from (32.18) that such a
system can be considered as a quasiparticle with variable spin defined as a result of
adding of three angular momenta: L=x×p, S(1) and S(2).

The equation (32.16) and the above interpretation can be used as a base of
constructing of equations for a pair of coupling particles of arbitrary spins. We
search for such equations in the following form

where Ĥ is the Hamiltonian of noninteracting particles (32.16), V is an interaction

(32.19)i
∂

∂x0

Φ (Ĥ V)Φ,

potential. The condition of Galilei-invariance of (32.19) reduces to the requirement
of commutativity of V with the generators (32.5), (32.18). This requirement can be
written in the form (32.8), (32.18).

It follows from the above that potential V has to be a scalar function of
variables x and p; moreover, there is no restriction on the exact form of this function
imposed by the condition of Galilei invariance.

We see the condition of Galilei invariance admits a very wide class of
interaction potentials for arbitrary spin particles. The examples of physically
interesting potentials are considered in Subsection 32.5.

32.4 Two-Particle Equations of First Order

It is known that partial differential equations of order N>1 can be reduced
to equivalent equations including first order derivatives only. So it is interesting to
consider Galilei-invariant equations describing pairs of arbitrary spin particles and
having the form (32.11).

The problem of describing of equations of the form (32.11) being invariant
under the Galilei group can be formulated in analogy with the corresponding
one-particle problem considered in Section 13. The general form of the Galilei group
generators defined on the set of solutions of these equations is given by formulae
(32.13) where

S(1) and S(2) are the spin matrices of the first and second particle, besides,

(32.20)S S(1) S(2),
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η are numerical matrices satisfying relations (12.20) together with S′.

S a
(1),S

b
(2) 0,

Requiring the equations (32.11) admit the Lagrangian formulation and be
invariant under the algebra (32.13), (32.20), we come to the following equations for
matrices βλ, β7 (compare with (13.9))

We do not present detailed calculations which are analogous to given in Subsections

(32.21a)

Sa ,β0 0, Sa ,β7 0,

η†
aβ7 β7ηa i











m1

M
βa

m2

M
β3 a ,

(32.21b)
η†

aβb βbηa iδabβ0, Sa ,βb i abcβc,

η†
aβ3 b β3 bηa iδabβ0, Sa ,β3 b i abcβ3 c.

13.2, 13.3.
Thus the problem of describing of Galilei-invariant and two-particle

equations of the form (32.11) reduces to the purely algebraic problem of finding of
all the non-equivalent matrices S′a, ηa, β7, βλ satisfying (12.20), (32.21). In
comparison with the corresponding one-particle problem we have the additional
matrices β3+a which have to satisfy (32.32b). Besides we require the wave function
ψ of (32.11) satisfies the two-particle Schrödinger equation (32.1) componentwise
(the last has to be a consequence of (32.11)).

Even the simplest (i.e., realized by matrices of the minimal dimension)
solutions of (32.21) for arbitrary values of spins s1 and s2 are very cumbersome. This
is why we restrict ourselves to considering the cases s1=s2=1/2 and s1=0, s2=1/2.

For s1=s2=1/2 we obtain the solutions of (32.21) in the form

where Γ0, Γa, Γ3+a (a=1,2,3) are matrices of dimension 8×8 satisfying the Clifford

(32.22)
β0

1
2

(1 Γ0 ), β7 (1 Γ0 ), βa

M
m1

Γ0 Γa , β3 a

M
m2

Γ0 Γ3 a ,

S(1) a

i
4 abcΓb Γc , S(2) a

i
4 abcΓ3 bΓ3 c , ηa

i
2M

(1 Γ0) m1 Γa m2 Γ3 a

algebra (8.2). The explicit realization of these matrices can be chosen say in the
form (17.25), (17.27).

The equation (32.11) with the matrices (32.22) is Galilei-invariant and
describes a pair of noninteracting particles of masses m1, m2 and spins s1=s2=1/2.
Indeed, expressing ψ2=(1/2)(1-β0)ψ via ψ1= β0ψ we come to the two-particle
Schrödinger equation in the c.m. variables. Besides the corresponding operator of the
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system spin is given by formulae (32.18), (32.22).
For s1=0, s2=1/2 we obtain the simplest solution of (32.21) in the form of

the following 6×6 matrices

where σµ are the Pauli matrices, 0 are the zero matrices of dimension 2×2. The

(32.23)

β0















σ0 0 0

0 0 0

0 0 0

, βa

M
m1















0 σa 0

σa 0 0

0 0 0

, β3 a

M
m2















0 0 σa

0 0 0

σa 0 0

,

β7 2(1 β0), ηa

i

2 M



















0 0 0

m1 σa 0 0

m2 σa 0 0

, Sa

1
2

















σa 0 0

0 σa 0

0 0 σa

corresponding equation (32.11) is Galilei-invariant and can be interpreted as a
motion equation of a system of two noninteracting particles of spins 0,1 and masses
m1, m2.

The equations present above admit an obvious generalization to the case of
interacting particles by the change p0 → p0+V where V is an interaction potential
being a scalar function of internal variables. These equations make it possible to take
into account interaction of a system with an external field using the standard change

where (A0,A) is the vector-potential of the electromagnetic field. It is necessary to

(32.24)p0→p0 e1A0(x(1),x0) e2A0(x(2),x0), p(α)→p(α) eαA(xα, x0),

emphasize the change (32.24) preserves the Galilei-invariance of the corresponding
equation (32.11) if we postulate Galilean transformation law (15.3) for the
electromagnetic field.

Examples of two particle interaction potentials and external fields being
interesting from the physical point of view are considered in the following
subsection.

32.5. Equations for Interacting Particles of Arbitrary Spin

Let us analyze the possibilities arising by using the equations considered
above for description of pairs of interacting particles. We assume the interaction
potential depends on the interparticle distance only, i.e., V=V(x).

The first-order equations considered in 31.4 reduces to the two-particle
Schrödinger equation if we make the change p0 → p0-V in (32.11) and then delete
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redundant components of the wave function. Such equations do not take into account
any spin effects and so are not of a great interest.

Equations in the form (32.19) are more interesting. In the c.m. frame these
equations take the form

where Ê is the operator (32.17).

(32.25)Hψ (Ê V)ψ p0ψ,

It is convenient to analyze (32.25) in a representation where the
Hamiltonian H has a quasidiagonal form (i.e., commutes with the matrices σ1

(1) and
σ1

(2) standing near the mass terms). Using the standard Barker-Glover-Chraplivy
procedure [18, 67] (see Subsection 32.3) we obtain according to (33.7) (in our case
γ0

(1)=σ1
(1), γ0

(2)=σ1
(2) (E,E) are the terms commuting with σ1

(1) and σ1
(2) etc.)

To snake off the non-Hermitian terms in the second row of (32.26) we make an

(32.26)H σ(1)
1 m1 σ(2)

2 m2

p2

2µ
V i











σ(1)
1

1
m1

S(1) x

x
σ(2)

1
1

m2

S(2) x

x
∂V
∂x

.

additional transformation

and obtain the following Hamiltonian, neglecting terms of order 1/mimjmj:

(32.27)H →H VH V 1, V exp










σ(1)
1

S(1) p

m1

σ(2)
1

S(2) p

m2

Thus starting from the Hamiltonian of (32.19) with a central potential

(32.28)

H p 2/2µ V
σ(1)

1 σ(2)
1

3m1m2











S(1) S(2) 3S(1) x̂S(2) x̂










∂2V

∂x 2

1
x

∂V
∂x

S(1) S(2)∆V

i 1,2













σ(i)
1 mi

∂V
∂x

S(i) x×p

2mix
1
2











S(i) x̂

2mix

2 









∂2V

∂x 2

1
x

∂V
∂x

si(si 1)

2m 2
i x

∂V
∂x

.

V=V(x) we come to the approximate quasidiagonal Hamiltonian H′′ including the
terms representing the spin-orbit and quadruple couplings (compare (32.28) with
(10.26)).

If however the interaction potential depends on spins, then the
Galilei-invariant equations (32.19) can describe more fine effects also, e.g., effects
connected with the retardation of the electromagnetic waves. As an example,
consider the equation (32.19) for particles of spins s1=s2=1/2 where V=VB is the Breit
potential (33.3) (we use the temporary notation iγ4

(i)=σ3
(i), i=1,2).

The equation (32.19) with the Breit potential is manifestly invariant under
the Galilei group inasmuch as VB of (33.3) satisfies the relations (32.8). Let us
demonstrate this equation is a good model of a pair of interacting particles of
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spinss1=s2=1/2. Considering this equation in the rest frame we come to the relation
(32.25) where Ê is the operator (32.17), VB is the Breit potential (33.3).
Transforming H to the form (33.7) and then using the additional transformation
(32.27) we obtain

All the terms of the Hamiltonian (32.29) have a clear physical interpretation

(32.29)

H σ(1)
1 m1 σ(2)

2 m2

p2

2µ
e 2

x

e 2σ(1)
1 σ(2)

1

2µM











p 1
x

p p x 1

x 3
x p

e 2

x 3













σ(1)
1 σ(2)

1

2m1m2

(S(1) S(2))
1

2m 2
1

S(1)

1

2m 2
2

S(2) x×p
e 2σ(1)

1 σ(2)
1

m1m2






1

x 3
S(1) S(2)






3(S(1) x)(S(2) x)

x 5











8π
3

S(1) S(2)

π
2

m 2
2 m 2

1

m1m2

δ(x) o(e 4) .

and describe the well-known physical effects appearing in systems of two interacting
particles. We postpone the discussion of this Hamiltonian to Subsection 33.4 but
note that on the set of functions corresponding to the positive eigenvalues of σ1

(1)

and σ1
(2) (i.e., on the subspace corresponding the positive rest energy of any of

particles) this Hamiltonian can be represented in the following form

where H′B is the approximate Breit Hamiltonian (33.8).

(32.30)H HB











1

8m 2
1

1

8m 2
2

p 4,

We see the approximate Hamiltonian (32.29), obtained by diagonalization
of the Galilei-invariant two-particle equation with the Breit potential, includes all
the terms of the approximate Breit Hamiltonian excepting the relativistic correction
to the kinetic energy. This means that this equation takes into account all the
physical effects predicted by the Breit equation, i.e., spin-orbit coupling, retardation
of the electromagnetic field etc. The correction to the kinetic energy only (∼ p4),
which has essentially relativistic nature, is absent. This correction can be taken into
account by adding an additional term (depending on x) to the Breit potential. An
example of such a generalized Breit potential is given in [155].

Galilei-invariant equations of first order also can be used successively for
description of pairs of interacting particles but the corresponding potential has to be
more complicated. Thus, for example, starting from the equations (32.11), (32.22)
and changing p0 → p0-V, where [324]
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where

(32.31)

V e1e2







1
x

1
2m1m2











ap 1
x

p bp x 1

x 3
x p







i
2











S(1)

m1

S(2)

m2

x

x 3

1
m1m2











S L
x3









1
2

S2 3
4

δ(x) ,

we come to the Galilei-invariant equations which reduce to the two-particle

L x×p, a 1 1
4

δ, b 1 3
2

δ, δ
m 3

1 m 3
2

m1m2(m1 m2)
,

Schrödinger equation whose Hamiltonian is equivalent to the Breit Hamiltonian in
the approximation 1/mimj.

Let us summarize. Two-particle equations being invariant under the Galilei
group can serve as good mathematical models of quantum mechanical systems
consisting in two interacting particles of arbitrary spins. These equations give a
correct description (not only qualitative but also quantitative) of these systems and
take into account such fine effects as a spin-orbit coupling and even the retardation
of the electromagnetic potentials.

The advantages of the Galilei-invariant approach in comparison with
quasirelativistic ones are not only of methodological nature (because the
corresponding theory satisfies (Galilean) relativity principle) but are connected with
the relative simplicity of the corresponding mathematical means which make it
possible to obtain solutions of many problems for any values of spins immediately.
One such problem is considered in Section 34.

33. QUASI-RELATIVISTIC AND POINCARÉ-INVARIANT
TWO-PARTICLE EQUATIONS

33.1 Preliminary notes

We demonstrated in the above the system of two interacting particles can
be described with a good accuracy by Galilei-invariant wave equations. Since such
equations do not have a universal reputation yet, we present alternative approaches
to two-particle problems here. Besides familirizing readers with these approaches,
we will try to attain clear formulation of bounds of application of Galilei-invariant
two-particle equations by solving concrete physical problems.
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We will consider only such two-particle equations which do not include an
additional parameter (i.e., the proper time). For the equations with two time variables
(equations of the Bethe-Salpeter type), see, e.g., [33].

In this section we present the main information about the Dirac-Breit
equation [54] and its generalizations [266-269] and propose our formulations of
quasi-relativistic models of two-particle interaction. We deduce equations for the
radial wave function of parapositronium and give a formulation of two-particle
problem in frames of our constructive model of direct interaction.

32.2. The Breit Equation

A two-particle quasirelativistic equation for spin 1/2 particles was proposed
by Breit [54] in 1929 for the first time. This equation has the form

where ψ=ψ(x0,x(1),x(2)) is a 16-component wave function,

(33.1)i
∂

∂x0

ψ (H (1) H (2) VB)ψ,

{γµ
(1)} and {γµ

(2)} are two commuting sets of the Dirac matrices, Aµ is the

(33.2)
H (i) γ(i)

0 γ(i)
a π(i)

a γ(i)
0 mi e (i)A0(x(i),x0),

π(i)
a i

∂
∂x (i)

a

e (i)Aa(x(i),x0), i 1,2,

vector-potential of an external field. The symbol VB denotes in (33.1) the interaction
(Breit) potential

The physical reasons used by Breit to deduce the equation (33.1) was the

(33.3)
VB

e (1)e (2)

x
1 2γ(1)

4 γ(2)
4 (S(1) S(2) S(1) x̂S(2) x̂) ,

x x(1) x(2), x̂ x
x

, S (i)
a

i
4 abcγ

(i)
b γ(i)

c .

following. As it was shown by Darwin in 1920 (see [54]) the classical approximate
Hamiltonian of a system of two charged particles in the external electromagnetic
field has the form

where H(1) and H(2) are the Hamiltonians of the first and second particles, p(i) are

(33.4)H H(1) H(2)

e (1)e (2)

x
e (1)e (2)

2m1m2











p(1) p(2)

x

p(1) x p(2) x

x 3
,

classical momenta. The last two terms of (33.4) arise by taking into account the
retardation of the potentials of the electromagnetic field. Changing H(1) and H(2) by
the Dirac Hamiltonians and the velocities v(i)=p(i)/mi by the operators V(i)=[H(i),x(i)] we
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come to the equation (33.4)*.
There were proposed other ways of deduction of the Breit equation using

quantum electrodynamics approach. We will not discuss these ways (see, e.g., [33])
but note that the main argument of validity of the equation (33.1) is the
correspondence of the physical effects predicted by this equation to experimental
data (of course, up to accuracy which can be expected from an approximate
equation). But the principal defect of the Breit equation is the absence of symmetry
under either the Poincaré or Galilei group.

In the following we discuss the Breit equation and its quasirelativistic limit
and deduce the system of equations for radial functions by separating the angular
variables.

33.3 Transformation to the Quasidiagonal Form

To simplify applying of the perturbation theory and to clarify the physical
sense of the terms included in the Hamiltonian it is convenient to transform the Breit
equation to the representation where the Hamiltonian commutes with the matrices
γ0

(1) and γ0
(2), i.e., has a quasidiagonal form. As in the case of one-particle equations

(see Section 10) such a diagonalization can be carried out approximately only, using
series of consequent transformations.

In papers [18, 67] there was proposed a general method of diagonalization
of two-particle Hamiltonians of the kind

where (EE) are terms commuting with γ0
(1) and γ0

(2), (OO) are terms anticommuting

(33.5)H γ(1)
0 m1 γ(2)

0 m2 (EE) (OE) (EO) (OO),

with γ0
(1) and γ0

(2), (EO) are the terms commuting with γ0
(1) and anticommuting with

γ0
(2), and (OE) are terms anticommuting with γ0

(1) and commuting with γ0
(2), besides

it is supposed that all these terms are "small" in comparison with m1 and m2. In the
case of the Breit Hamiltonian

It is shown in [18] the Hamiltonian (33.5) can be transformed to the

(33.6)
(EE) e (1)A0(x(1),x0) e (2)A0(x(2),x0)

e (1)e (2)

x
, (OE) γ(1)

0 γ(1)
a (p (1)

a e (1)Aa(x(1),x0)),

(EO) γ(2)
0 γ(2)

a (p (2)
a e (2)Aa(x(2),x0)), (AA) VB.

following form being quasidiagonal up to the terms of order 1/mimj:

*It was Dirac who informed Breit about the correspondence p(i) →
m[H(i),x]=imγ0

(i)γ(i) [54]
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It is not difficult to make sure that the first three lines of (33.7) give a sum

(33.7)

H γ(1)
0 m1 γ(2)

0 m2 (EE) 1
2m1

γ(1)
0 (OE)2 1

2m2

γ(2)
0 (EO)2 1

8m 3
1

γ(1)
0 (EO)4

1

8m 3
2

γ(2)
0 (EO)4 1

8m 2
1

[[(OE),(EE)],OE] 1

8m 2
2

[[(EO),(EE)],EO]

1
4m1m2

γ(1)
0 γ(2)

0 [[(OE),(OO)] ,(EO)] 1

2(m 2
1 m 2

2 )
(γ(1)

0 m1 γ(2)
0 m2)(OO)2 ... .

of an approximate Hamiltonian of Foldy and Wouthuysen, compare with (10.26) for
s=1/2. The remaining terms represent the contribution of the Breit potential.

Substituting (33.6) into (33.7) and choosing

(i.e., considering the Hamiltonian in the rest frame and on the subset of eigenvectors

Aµ 0, P p(1) p(2) 0, p(1) p(2) p, γ(1)
0 →1, γ(2)

0 →1

of the commuting matrices γ0
(1) and γ0

(2), besides the corresponding eigenvalues are
equal to +1) we obtain

Any term in (33.8) has exact physical sense. The terms in the first line

(33.8)

H m1

p 2

2m1

p 4

8m 3
1

m2

p 2

2m2

p 4

8m 3
2

e (1)e (2)

x

πe (1)e (2)δ(x)
2











1

m 2
(1)

1

m 2
(2)

e (1)e (2)

2x 3











S(1)

m 2
(1)

S(2)

m 2
(2)

x×p

e (1)e (2)

m(1)m(2)







1
2











p 1
x

p (p x) 1

x 3
x p 1

x 3
S(1) S(2) x×p







S(1) S(2)

x 3

3(S(1) x)(S(2) x)

x 5

8π
3

S(1) S(2)δ(x) O(e 2
1 e 2

2 ).

define the kinetic energy of a two-particle system, the terms from the second line
correspond to interaction of any of particles with the Coulomb field generated by
another particle (i.e., interactions of point charged particles plus spin orbit and
Darwin interactions). The remaining terms of (33.8) represent essentially two-particle
interactions and correspond to the classical relativistic correction to the Coulomb
interaction, caused by the retardation of the electromagnetic field and spin-orbit
coupling of the total spin of the system with the field generated by this system. The
last three terms of (33.8) correspond to an interaction between the spin dipole
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moments of the particles.
In conclusion we note that to describe real two-particle systems, the

modified Breit equation is usually used which takes into account anomalous
magnetic moments of particles. For two-quark systems, the Breit potentials has to
be changed by another one guaranteeing the confinement of constituent parts of a
system [65, 220]. We consider some examples of such generalized equations in
Subsections 33.4 and 33.5.

33.4. The Breit Equation for Particles of Equal Masses

Consider the equation (33.1) for the case when an external field is absent
and the particle masses are equal, m1=m2=m. The total momentum operator
P=p(1)+p(2) is a constant of motion for such an equation, so without loss of generality
we can restrict ourselves to considering the rest frame of references where
p(1)+p(2)=0, p(1)=-p(2)=p.

Let us analyze the generalized Breit equation [266]

where V and V ′ are arbitrary functions of x, x̂=x/x.

(33.9)
i

∂
∂x0

ψ γ(1)
0 γ(1)

a pa γ(1)
0 m γ(2)

0 γ(2)
a pa γ(2)

0 m

V 2γ(1)
4 γ(2)

4 S(1) S(2) (S(1) x̂)(S(2) x̂) V ψ,

When V=V ′=e (1)e(2)/x, formula (33.9) defines the Breit equation in the above
representation. Since the explicit form of V and V ′ is not essential for further
reasoning, we do not concretize it for the time being.

Let us demonstrate that the equation (33.9) decomposes into two
noncoupled subsystems corresponding to the values s=0 and s=1 of the total spin of
a system described. This means the states corresponding to s=1 (i.e., orthostates) and
s=0 (i.e., parastates) are independent and transitions between these states are
forbidden.

Multiplying the operator in the brackets from the left and the right by γ0
(1)

we come to the following equivalent equation for ψ′=γ(1)ψ

Any of matrices in (33.10) can be expressed via the 16×16 KDP matrices

(33.10)
i

∂
∂x0

ψ γ(1)
0 γ(1)

a γ(2)
0 γ(2)

a pa γ(1)
0 γ(2)

0 m V

2γ(1)
4 γ(2)

4 S(1) S(2) (S(1) x̂)(S(2) x̂) V ψ 0.

which are connected with γ-matrices by the following relations:
The matrices βµ satisfy the KDP algebra (6.20) and realize a reducible representation
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of this algebra, reducing into three IRs realized by 10×10, 5×5 and 1×1 matrices (the

(33.11)βµ

1
2

γ(1)
µ γ(2)

µ , µ 0,1,2,3,4.

last is the trivial zero representation).
Let us denote

then

(33.12)S0a i[β0,βa],

and (33.10) takes the form

2γ(1)
4 γ(2)

4 S (1) S (2)≡ 1
2

γ(1)
0 γ(1)

a γ(2)
0 γ(2)

a
3
2

S0a S0a,

2γ(1)
4 γ(2)

4 (S (1) x̂)(S (2) x̂)≡ 1
2

γ(1)
0 γ(1)

a x̂ aγ
(2)
0 γ(2)

b x̂ b

1
2

S0a x̂ a
2

Choosing βµ in the form of a direct sum of irreducible matrices of

(33.13)i
∂

∂x0

ψ ( 2iS0a pa 2β0 m W )ψ 0,

(33.14)W V [2 S0a S0a (S0a x̂ a)
2]V .

dimensions 10×10, 5×5 and 1×1 we obtain from (33.13) two noncoupled systems of
ten and five equations and one-component equation corresponding to the zero
matrices S0a and βµ. So (33.13) is decomposed into three independent subsystems
which can be solved separately.

We note that the equation (33.13) reduces to the form

where x′0=2x0, H K is the KDP Hamiltonian (6.35a). In other words, the Breit

i
∂

∂x0

ψ 







H k 1
2

W ψ ,

equation for equal mass particles in the rest frame is equivalent to the KDP equation
in the Schrödinger form with the special potential W/2, where W is given in (33.14).

Consider the equation (33.11) for the case of 5×5 matrices βµ. Choosing
these matrices in the form (6.17) and representing the wave function in the form
ψ=column(ϕ1,ϕ2,χ) we come to the following system of equations for stationary
states
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The system (33.15) reduces to the following equation for ϕ2

(33.15)

(E V 2V )ϕ1 2mϕ2 0,

(E V 2V )ϕ2 2mϕ1 2 p χ 0,

2pϕ2 (E V V)χ V x̂(x̂ χ) 0.

where L2=(x×p)2. As to ϕ1 and χ, they are expressed via ϕ2 according to the

(33.16)












p 2

∂V
∂x

E V
∂
∂x

(E V )(E V 2V )
4

m 2 (E V )

E V 2V

V

E V V

L2

x 2
ϕ2 0,

following relations

We see the Breit equation for parastates reduces to the equation (33.16) for

χ










2V

(E V )(E V V )
[x̂ (x̂ p) p] 2

E V
p ϕ2, ϕ1

E V 2V
2m

ϕ2

p χ
m

.

the scalar function ϕ2. This equation admits solutions in separated variables. Indeed,
expanding ϕ2 by the spherical functions

and using the representation (29.9) for p2 it is possible to reduce (33.16) to the

ϕ2 ϕlm(x)Ylm(x̂)

ordinary differential equations for radial functions

So the problem reduces to solving equation (33.17) for any possible integer

(33.17)







∂2

∂x 2

2
x

∂
∂x

∂V
∂x

E V
∂
∂x

(E V)(E V 2V )
4

m 2(E V)

E V 2V






E V

E V V

l(l 1)

x 2
ϕlm 0.

l. When V and V ′ coincide with the Coulomb potential, the equation (33.17) can be
solved exactly [266].

The equation (33.17) was obtained in [266] but we present a more simple
way of its deduction.

Starting from (33.13) and using the representation (6.22) for the βµ-matrices
it is not difficult to find the radial equations for orthostates. All the necessary
formulae are given in Appendix 3. Using formulae (A.3.2) we can obtain radial
equations corresponding to nonequal masses m1≠m2 and to generalized Breit potential
which is an arbitrary O(3)-invariant function of x. Such equations were considered
in [65, 220, 267-269].
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33.5. Two-Particle Equations Invariant Under the Group P(1,6)

The number of the space-time variables needed to describe a two-particle
system is equal to 7 (this variables are particle coordinates and time). Thus a natural
candidate for the role of the symmetry group of a two-particle system is the
generalized Poincaré group P(1,6), i.e., the group of motions of the (1+6)-
dimensional Minkowski space (see Chapter 5).

An analog of the KGF equation invariant under the group P(1,6) has the
form

If we denote P=(p1,p2,p3), p=(p4,p5,p6), κ=2m then the expression in the brackets is

(33.18)(p 2
0 p 2

1 p 2
2 p 2

3 p 2
4 p 2

5 p 2
6 κ2)ψ 0.

nothing but the correct relation between energy p0, total momentum P and internal
momentum p of a two-particle system with equal masses m1=m2=m of particles
[290]. If m1≠m2 then it is convenient to choose k=(p4,p5,p6) where k is a vector
parallel to p, defined by the following relation [238]

The equation (33.18) is manifestly invariant under the algebra AP(1,6) and

(33.19)k2 m1m2

m1m2

(m1 m2)
2

m 2
1 p2 m 2

2 p2
2

.

its subalgebra AP(1,3). But in order to interpret (33.18) as a two-particle equation
it is necessary to make sure that the following product of the Poincaré group
representations

is realized on the set of solutions of this equation. It is the case when ψ of (33.18)

(32.20)D D(m1 s1)⊗ D(m2 s2)

has (2s1+1)(2s2+1) components, moreover the corresponding generators of the
Poincaré group can be chosen in the form

where

(33.21)
P̂0 E≡ P 2 M 2 , P̂ a pa,

J X×P ĵ, N x0P
1
2

X,P0

P× ĵ
E M

,

Here S(1) and S(2) are the commuting matrices of spin of the first and second

(33.22)ĵ x×p Ŝ, Ŝ S (1) S (2), M 2 p2 κ2, κ m1 m2.

particles, X and x are coordinates canonically conjugated with P and p so that

The operators (33.21) commute with the operator in the brackets of (33.18)

[Pa, Xb] [pa, xb] iδab, [Pa, xb] [pa, Xb] [Pa, pb] [Xa, xb] 0.
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and so form an IA of this equation. To make this assertion evident we rewrite
(33.18) in the following form

In relativistic quantum theory we assign the space of the representation

(33.23)(P 2
0 P 2 M 2)ψ 0.

(33.23) to the space of states of a system of noninteracting particles with spins s1

and s2. Thus it is possible to interpret (33.18) (where ψ is a (2s1+1)(2s2+1) -
component wave function) as a motion equation for such a system.

The operator M2 commutes with P0
2 and P2 thus it is possible to consider

the equations for eigenvectors of M2:

where ψm are solutions of the following equation

(33.24)(p 2
0 P 2 m 2)ψm 0,

Formula (33.24) gives the KFG equation in the variables x0, X, but relation

(33.25)M 2ψm≡(p2 κ2)ψm m 2ψm.

(33.25) defines the eigenvalue problem besides κ2≤m2<∞. The equations (33.24),
(33.25) are invariant under the algebra AP(1,3) whose basis elements have the form
(33.21), and describe a system of two noninteracting particles with spins s1 and s2.

Thus starting with the simplest partial differential equation of the second
order, which is invariant under the generalized Poincaré group P(1,6), we come to
the system (33.24), (33.25) which can be interpreted as motion equations for a pair
of noninteracting relativistic particles. Of course the adequacy of such equations is
comparative only inasmuch as the main interest is attracted by mathematical models
of interacting particles. In the following section, we will consider a generalization
of (33.24), (33.25) to the case of interacting particles.

In [119] the P(1,6)-invariant equation of the Dirac type was proposed,
which has the form

where Γ0, Γk are matrices of dimension 8×8, satisfying the Clifford algebra. This

(Γ0 p0 Γk pk κ)ψ 0, k 1,2...,6,

equation can be used for describing of two relativistic particles of spin 1/2. An
analysis of this equation (and its possible generalizations in the case of arbitrary
spin) lies out of frames of the present book.

33.6. Additional Constants of Motion for Two- and Three-Particle Equations

We show in Subsection 22.3 that there exist a SO of the Dirac type for any
relativistic wave equation describing a particle with spin s>0 in a central field. Here
it is demonstrated that such a SO exists for a number of relativistic and
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quasirelativistic two- and three-particle equations.
Consider the Breit equation (33.1). The obvious SO of this equation are

where

(33.26)P0 p0 , Pa p (1)
a p (2)

a , Ja abc(Xa Pc xb pc) Sa

It is shown in [341] that the operators (33.26) form a basis of the maximal

(33.27)Sa S (1)
a S (2)

a , S (α)
a

i
4

γ(α)
b γ(α)

c abc.

IA of the Breit equation in the class M1 (i.e., are the generators of the maximal Lie
group admitted by this equation) if m1≠m2.

To find an additional SO we consider the Breit equation in the c.m. frame,
setting in (33.1) p(1)=-p(2)=p. It is not difficult to verify that the operator [341, 161]

where Ŝ and ĵ are defined in (33.22), is a SO of this equation.

(33.28)Q̂ γ(1)
0 γ(2)

0 2 Ŝ ĵ
2

2Ŝ ĵ ĵ
2

The operator (33.28) satisfies the condition

and so its spectrum is given in (22.18). We emphasize that this operator does not

Q̂
2≡ ĵ

2

belong to the enveloping algebra generated by the generators (33.26) and so is
essentially non-Lie.

Like the Dirac SO for the Dirac equation (see (22.10)) the operator (33.28)
can be used by solving the Breit equation in separable variables. We note that the
SO (33.28) is admitted also by the generalized Breit equation with arbitrary O(3)-
and P-invariant potential.

Apparently it is possible to continue the list of the equations for which the
operator (33.28) is a motion constant. For instance this is the case for the relativistic
Barut-Komi equation [19].

Following [161], we present new constants of motion for the equation
describing two interacting particles with spins 1/2 and 1 [269] and for the
three-particle equation of Krolikowsky [267]. These constants have the form

where d3/2 is the operator given in (22.29). Moreover for the two-particle equation

(33.29)Q Γd3/2

proposed in [269] Γ=γ0(1-2β0), Sa=i abc(γbγc+βbβc), γµ and βµ are commuting sets of
the Dirac and KDP matrices.

For the three-particle equation [267]

(33.30)Γ γ(1)
0 γ(2)

0 γ(3)
0 , Sa

i
4 abc γ(1)

b γ(1)
c γ(2)

b γ(2)
c γ(3)

b γ(3)
c ,
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where γµ
(1), γµ

(2) and γµ
(3) are commuting sets of the Dirac matrices.

The spectrum of the operators (33.29), (33.30) coincides with the spectrum
of the operator d3/2 of (21.30).

34. EXACTLY SOLVABLE MODELS
OF TWO-PARTICLE SYSTEMS

34.1. Nonrelativistic Model

Consider the two-particle Schrödinger equation of the kind

where ψ is a (2s1+1)(2s2+1)-component wave function, V̂ is the interaction potential

(34.1)
i

∂
∂t

ψ Hψ≡










P2

2M
p2

2µ
V̂ ψ,

of the following form

α, k(1) and k(2) are dimensionless constants.

(34.2)V̂
α
x











1 i
k(1)S(1) x

m1x
2

i
k(2)S(2) x

m2x
2

,

The equation (34.1) is manifestly invariant under Galilean transformations
inasmuch as the potential (34.2) satisfies the conditions (32.8), (32.18). The
corresponding generators of the group G(1,3) are given by formulae (32.5), (32.18).

The considered equation is a particular case of two-particle equations in the
Schrödinger form discussed in Subsection 31.1. The Hamiltonian H of (34.1) in the
c.m. frame can be obtained from (32.26) by a special choosing of V, e1 and e2 and
restricting ourselves to the subset of eigenfunctions of the matrices σ1

(1) and σ1
(2),

corresponding to the eigenvalue +1.
In accordance with the results of Subsection 32.5 the considered model is

realistic enough and takes into account such fine effects as spin-orbit, Darwin and
quadruple couplings. Other important merit of this model is that it is exactly solvable
for any values of spins of constitutive particles.

In the following we find the corresponding exact solutions which can be
obtained also for the more complicated (relativistic) model considered in the next
subsection.
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34.2. Relativistic Two-Particle Model

To describe a relativistic two-particle system we use the Bakamjian-Tomas
model [10] whose essence is expand in the following.

Let (Pµ, J, N) be Poincaré group generators describing the kinematics of a
system of two non-interacting particles. Then a system of interacting particles
corresponds to the generators (P′µ, J′, N′) obtained from (Pµ, J, N) by the change

where M is the mass operator determined as a Casimir operator:

(34.3)M→M V

and V is a potential of "instantaneous" interaction satisfying the conditions

M 2 P 2
0 P 2,

Using the representation (33.21) it is not difficult to show that V has to be

(34.34)[V,Pµ] [V,J] [V,N] 0.

a scalar function of internal variables only:

Here we consider a constructive model of a potential of instantaneous

(34.5)V V(x,p), [V,x×p S (1) S (2)] 0.

interaction. On one hand this model is based on equations invariant under the group
P(1,6) (see Subsection 33.6); on the other hand, it includes manifestly covariant
equations in c.m. variables.

Let us define the interaction potential of (34.3) by the following relation

where x are variables canonically conjugated with k, k is a vector related to the

(34.6)







M̂
α
x

2

k2 µ2 i
α
x 3

(k(1)S(1) x k(2)S(2) x),

internal momenta by the condition (33.19), so that

Formulae (34.5)-(34.7) define a potential V as an implicit function of x, k,

(34.7)k2 µ2 M̃
2
, M̃

2 µ
κ

M, κ m(1) m(2).

S(1) and S(2). It is not difficult to make sure that such defined potential satisfies the
conditions (34.4).

The considered potential can be introduced into the P(1,6)-invariant
equations (33.24), (33.25), moreover, the last takes the form

and can be considered as eigenvalue equation for the operator M̂.

(34.8)


















M̃
α
x

2

k2 µ2 i
α
x 3

(k(1)S(1) x k(2)S(2) x) ψm̃ 0,
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So starting with the P(1,6)-invariant equations (33.24), (33.25) describing
a system of two noninteracting particles we go over to the equations (33.25), (34.8)
which can be interpreted as a mathematical model of interacting particles of arbitrary
spins. The choice of an interaction potential is caused by an additional requirement
that the motion equations have to admit a manifestly covariant formulation and
describe the electromagnetic interaction of particles. Such a formulation is discussed
further on.

Let us demonstrate that in spite of lack of manifestly covariance the
equation (34.8) can be rewritten in the covariant notations. For this purpose we
consider the following system of equations for a (2s1+1)(2s2+1)-component wave
function:

where πµ=kµ-Aµ(x0,x), Aµ and Fµν are the vector-potential and tensor of the

(34.9)(πµπ
µ µ2 eΣµν F µν)ψ 0,

electromagnetic field. The symbol Σµν denotes a matrix tensor of valence 2 defined
in the space of the IR D(s1 s2) of the Lorentz group.

Formula (34.9) defines the general form of the equation obtained from the
KGF equation by the "minimal" change kµ → πµ and by taking into account the
"anomalous" interaction linear in respect with strengths of an external field. When
s1=0 or s2=0, (34.9) reduces to the form (10.31) (besides the corresponding Σµν are
proportional to the Lorentz group generators Sµν. For arbitrary s1 and s2 we can set
without loss of generality

where k(1) and k(2) are arbitrary coefficients, Sµν
(1) and Sµν

(2) are commuting sets of

(34.10)Σµν k(1)S
(1)

µν k(2)S
(2)

µν ,

matrices being generators of the IR D(s1 0) and D(0 s2) of the Lorentz group.
The equations (34.9), (34.10) can be interpreted as motion equations of a

charged quasiparticle with variable spin s, s1+s2≤s≤ s1-s2 . When the
vector-potential Aµ reduces to the Coulomb potential, these equations reduce to the
form (34.8) if we write them for stationary states. So these equations can be
interpreted as a two-particle equation for particles of spins s1 and s2.

Thus we come to a constructive model of the direct interaction for
two-particles systems. This model is based on the manifestly covariant equation
(34.9), (34.10) which is the simplest relativistic-invariant equation for a
(2s1+1)(2s2+1) -component wave function ψ, taking into account the minimal
electromagnetic interaction and the anomalous interaction of the Pauli type. One of
the merits of this model is that it is exactly solvable for the cases of the Coulomb
and magnetic monopole potentials.
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34.3. Solutions of Two-Particle Equations

The operator in square brackets of (34.8) commutes with the total angular
momentum operator j of (33.22) so this equation admits solutions in separable
variables. Such solutions can be found by the scheme used in Subsection 29.1 for
one-particle equations.

To separate angular variables we represent ψm̃ as a linear combination of
the spherical spinors

where Ωs
... are eigenfunctions of the operators j2, S2, (x×p)2 and j3 (33.22), see

(34.11)ψm̃
s,λs

ϕλs

s Ωs
i j λs m

,

(29.4). In contrast with the corresponding formula (29.3) where s was fixed we
suppose summing over s by the values s1-s2 ≤s≤s1+s2, the domain of λµ for any
fixed s coincides with the possible values of λ of (29.5).

Substituting (34.11) into (34.8) and separating angular variables we come
to the following system of ordinary differential equations for the radial functions

where D is the operator (29.11), are the following coefficients

(34.12)Dϕλs

s x 2b ss

λsλs

ϕ
λ

s

s ,

b ss

λsλs

and are the coefficients given in (A.3.7).

(34.13)b ss

λsλs

[λ2
s λs(2j 1)]δss δλsλs

iαk(1)B
jsλs

(1)s λ
s

iαk(2)B
jsλs

(2)s λ
s

B
sjλs

(i)s λ
s

The system (34.12) is easily integrated. is a diagonalizable (normal)b ss

λsλs

matrix so (34.12) reduces to the series of noncoupled equations of the kind

where D is the operator (29.11), b... are eigenvalues of the matrix .

(34.14)Dϕm̃ x 2b js1s2ϕm̃,

b ss

λs λ
s

Equations of the form (34.14) had already been considered in Subsection
29.2. Repeating reasoning present after formula (29.12) (but changing bλ

sj→b s1s2j

, m→µ) we come to the conclusion that the following values of =m̃ correspond
to coupled states (compare with (29.23)):

and the explicit form of the corresponding eigenfunctions is given by the following

(34.15)
µ

















1 α2













n 1/2


















j
1
2

2

α2 b js1s2

1/2
2

1/2

, n 0,1,2,...,

formula
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Here is a degenerated hypergeometric function, C is an arbitrary constant,

ϕ C(µ2 2)(k 1)/4 x (k 1)/2 exp (µ2 2)1/2x ( n ,k 1,2(µ2 2)1/2x ).

So we have described solutions of (34.8) and find the corresponding

k 2 (2j 1)2 4(b js1s2)2 4α2.

eigenvalues of the operator (34.6). The analysis of the spectrum (34.15) is present
in Subsection 34.4.

Solutions of the Galilei-invariant equations (34.1), (34.2) can be found in
analogy with the corresponding one-particle problem considered in Subsection 30.4.
Considering these equations for stationary states in the rest frame, we come to the
following system

Representing solutions in the form (34.11) we come to the equations (34.12) for

(34.16)










Ẽ
α
x

p2

2µ
iα
x 3











k̃(1)

m1

S(1) x
k̃(2)

m2

S(2) x ψẼ (x) 0.

radial functions where

are the coefficients (A.3.7). Diagonalizing the matrix we reduce

(34.17)D 2µ 







Ẽ
α
x

∂2

∂x 2

2
x

∂
∂x

j( j 1)

x 2
,

(34.18)b ss

λsλs

[λ2
s λs(2j 1)]δss δλsλs

ik̃(1)µα
m1

B
jsλs

(1)s λ
s

ik̃(2)µα
m2

B
jsλs

(2)s λ
s

B
jsλs

(i)s λ
s

b ss

λsλs

these equations to the form (34.14) where D is the operator (34.17), b js1s2→b̃
js1s2 ,

the last are the eigenvalues of this matrix.
Repeating the arguments present in Subsection 30.4 after formula (30.25)

we obtain the possible values of energy of a pair of interacting particles of arbitrary
spins in the form

The discussion of (34.19) is given in the following subsection. Here we

(34.19)Ẽ
µα 2

(j 1/2)2 b̃
j s1 s2 n 1/2

2
, n 0,1,...; j 1/2,3/2... or j 0,1,... .

present the explicit form of solutions of (34.14), (34.17), (34.18):

where is a degenerated hypergeometric function, C is an arbitrary number,

ϕs
λs

2µ Ẽ x

(k 1)/2

exp 2µ Ẽ x ( n ,k 1,2 2µ Ẽ x),

k 2 (2j 1)2 4b js1s2.
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33.4. Discussing the Spectra of the Two-Particle Models

We have obtained formulae (34.15), (34.19) giving the possible energy
values of the considered two-particle models. The analysis of these formulae is
complicated by the circumstance that the parameters b... are defined as roots of
algebraic equations of order (2s1+1)(2s2+1) if j≥ s1+s2. Thus it is convenient to
consider approximate solutions which can be represented in the form

where are numeric parameters whose values for given s1, s2 and j can be

(34.20)b
js1s2

λs
λ2

s (2j 1)λs b sj
λs

α2 o(α4), b̃
js1s2j

λs

λ2
s (2j 1)λs b̃

sj

λs

α2 o(α4),

b sj
λs

, b̃
sj

λs

found by equating coefficients near α2 in the characteristic equations.
Substituting (34.20) into (34.15), (34.19) and representing the obtained

expressions as series in powers α2 we come to the following formulae for energy
levels, valid up to α4:

where

(34.21)
µ













1 α2

2n 2

α4 b
sλs l

λs
1

n 3(2l 1)

3
8

α4

n 4
,

(34.22)Ẽ µ










α2

2n 2

α4b̃
sλs l

λs

n 3(2l 1)
,

Formulae (34.21), (34.22) differ from (29.27), (30.28) by the change m → µ besides

(34.23)
n 1, 2,..., s s(1) s(2), s(1) s(2) 1,..., s(1) s(2) ,

λs s, s 1,... s 2min(s,j), l j λs 0, 1,..., n 1.

the parameters are defined as coefficients of approximate solutionsb sj
λs

, b̃
sj

λs

(34.20) of the characteristic equations for the matrices whose elements are given in
(34.13), (34.18).

According to (34.21), (34.22) the spectra of energies of the considered
two-particle models are defined by Balmer’s term -µα2/2n2 and by the additional
terms of order α4 besides the last describe the fine splitting of the energy levels. The
analysis of possible values of the quantum numbers n, l, s and λs given in (34.23)
makes it possible to calculate the number of sublevels of the fine structure:

where Nn
s are the numbers given in (29.30). We note that the energy levels

N
s1s2

n

s s2

s s1 s2

N s
n ,

corresponding to different l, s and λs can coincide in general and be degenerated.
Let us consider in more detail the cases when the particle spins are: A.
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s1=0, s2 is arbitrary; B. s1=s2=1/2.
A. If s1=0 then the matrices reduce to the form obtainedb ss

λsλs

, b̃ ss

λsλs

from of (29.11) by the changes 1/s→k(2) and 1/s→k(2)µ/m2. Theb sj
λλ

corresponding parameters included into (34.21), (34.22) take the form

where b̃λ
sj are the parameters given in (29.26). Substituting (34.24) into (34.21),

(34.24)b sj
λs

s 2k 2
(2)b̃

sj

λ , b̃
sj

λs

µ2s 2k̃
2

(2)

m 2
2

b̃
sj

λ , s s2,

(34.22) we obtain

where µ and Ẽµ are the energy values obtained from (29.27) and (30.28) by the

(34.25)
µ

µα4b̃
s2λ l

λ

n 3(2l 1)
k 2

(2)s
2

2 1 ,

(34.26)Ẽ Ẽµ µ
µα4b̃

sλ l

λ

n 3(2l 1)













s 2k 2
(2)µ

2

m 2
2

1 ,

change m→µ.
We see in the case s1=0 the formulae for energy levels of the considered

models include the terms µ and Ẽµ obtained by multiplying of the corresponding
one-particle levels (29.27) and (30.28) by m1/(m1+m2). Besides these formulae
include additional terms of order α4 which are nullified if k(2)=k̃(2)µ/m2=±1/s. In other
words for the last values of arbitrary parameters formulae (34.25), (33.26) reduce to
the formulae for energy levels of a particle of arbitrary spin in the Coulomb field,
multiplied by the coefficient m1/(m1+m2) in order to take into account finiteness of
the mass of a particle generating the field. Besides that formula (34.26) includes
nonessential constant term -µ. The relation between relativistic and nonrelativistic
formulae is the same as in the corresponding one-particle problems (see Subsection
29.6), i.e., for k(2)=k̃(2)µ/m2 the levels (34.25) and (33.26) differ by the value ∆
(30.31) giving the relativistic correction to the kinetic energy.

For other values of the parameters k(2) and k̃(2) formulae (34.25), (34.26) take
into account the anomalous (Pauli) interaction of the orbital particle with the
electromagnetic field.

B. For s1=s2=1/2 the characteristic equation for the matrix (34.13) takes the
form

where

(34.27)b j
λs

4
2 b j

λs

3
[4j(j 1) α2(c 2 d 2)] b j

λs

2
2α2d 2 b j

λs
α2c 2d 2 0,
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Representing solutions of (34.27) in the form (34.20) and equating the coefficients

(34.28)b j
λs

b
1
2

1
2

j

λs
, c

1
2

(k(1) k(2)), d
1
2

(k(1) k(2)), j≠0,

for the lowest orders of α2 we obtain the following values of the parameters :b sj
λs

In the exceptional case j=0 the index λs can take two values λ1=-1 and λ0=0 (see

(34.29)
b 0l

0
d 2

4l(l 1)













1 1 4l(l 1) c 2

d 2
, b 1l

0
d 2

4l(l 1)













1 1 4l(l 1) c 2

d 2
,

b 1l 1
1

(l 1)c 2 (l 2)d 2

2(l 1)(2l 3)
, b 1l 1

1
c 2l d 2(l 1)

2l(2l 1)
.

(34.23)) and the corresponding characteristic equation has the form

from which we obtain the coefficients of (34.20)

b
s1s20

λs

2

2b
s1s20

λs
α2c 2 0,

Formulae (34.25), (34.29), (34.30) define possible values of energies of the

(34.30)b 00
0 b 10

1 c 2/2.

considered model of two interacting particles of spins 1/2. Due to existing of two
arbitrary parameters c and d there are wide possibilities of modelling of spectra of
hydrogen type systems. We consider in detail two cases: the system of a particle and
antiparticle and the system including one heavy and one light particle.

In the case of the system of "particle +antiparticle" it is natural to set k(1)=-
k(2)=d. Then c=0 and formulae (34.29) take the form

Substituting (34.31) into (34.25) we obtain the corresponding energy levels:

(34.31)b 0l
0 0, b 1l

0
d 2

2l(l 1)
, b 1l 1 d 2(l 2)

2l(l 1)(2l 3)
, b 1l 1

1 d 2 (l 1)
2l(2l 1)

.

where W(s,j,l) are the corrections of order α4, defining the fine structure of the

(34.32)µ










1 α2

2n 2
W(s,j,l), j l λs,

spectrum:

In the case d2=1 formulae (34.33), (34.34) are in excellent accord with the

(34.33)
W(0,l,l) µα4











3

8n 4

1

n 3(2l 1)
,

W(1,l,l) W(0,l,l) µα4d 2

2n 3l(l 1)(2l 1)
, l≠0,
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corresponding corrections for the positronium energy levels calculated in frames of

(34.34)

W(1,l,l 1) W(0,l,l) µα4(l 2)d 2

2n 3(l 1)(2l 1)(2l 3)
,

W(1,l,l 1) W(0,l,l) µα4(l 1)d 2

2n 3l(2l 1)(2l 1)
.

quantum electrodynamics [33]. Namely (34.33) differ from the corresponding
corrections for positronium by the value ∆W not depending on l and s (l≠0)

Formulae (34.34) are less similar with the known results. But if we choose

(34.35)∆W
µα4

32n 4
≈0,03 µα4

n 4
.

arbitrary parameters c and d in (34.26) in the form c2=2d2=2 then relations (34.21),
(34.29) give the correct dependence of W on l,s and j up to the common
displacement (34.35) (compare with the corresponding results for energy levels of
positronium given in [3, 33]).

Thus the mathematical model of a pair of interacting particles, based on the
equation (34.9), is consistent enough and makes it possible to obtain a correct
dependence of a fine structure of the positronium spectrum on the quantum numbers
l, s and j. The displacement (34.35) is not large and is of the same value for any
sublevel corresponding to a fixed value of the main quantum number (if l≠0). For
l=0 the divergence of (34.32)-(34.34) with the known results reaches 17% of the
value of fine splitting. Such a divergence is clear inasmuch as the considered model
does not take into account the interchange interaction.

We note that in the case c=d=1 formulae (34.29) take the form

and the relation (34.25) reduces to the form obtained from (29.27) by changing m

b 0l
0 b 1l 1

1
1

2(l 1)
, b 1l

0 b 1l 1
1

d 2

l

to the reduced mass µ. In other words in the case k(2)→0 we obtain the known
formula of the fine structure of the spectrum of a hydrogen type system besides, it
takes into account the finiteness of the mass of a central particle. So the relation
(34.25) includes the case corresponding to a system of a heavy and light particle.

It follows from the above the considered model of two-particle interaction
is realistic enough to be used successively for a description of two-particle systems
with arbitrary spins.

The analysis of the spectrum (34.22) can be made in a complete analogy
with the above. For the energy levels of (34.22) differ fromk̃(i)µ k(i)mi

the levels (34.21) by the value ∆ -µ where ∆ is given in (30.30) and corresponds
to the relativistic correction for the kinetic energy.
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APPENDIX 1

LIE ALGEBRAS, SUPERALGEBRAS
AND PARASUPERALGEBRAS

Here we recall the basic definitions related to Lie algebras, super- and
parasuperalgebras (for more details, see [20, 26, 411]).

We denote by A a finite-dimensional vector space over the field K of real
(complex) numbers. The vector space A is called a Lie algebra over K if it is closed
with respect to the binary operation (x,y)→[x,y] which satisfies the following axioms

for all x,y,z ∈ A.

(A.1.1)
[αx βy,z] α[x,z] β[y,z],

[x,y] [y,x],

[x, [y,z]] [y, [z,x]] [z, [x,y]] 0

The operation [ , ] is called the Lie multiplication (Lie brackets), and the
last of the relations (A.1.1) is called the Jacobi identity. A Lie algebra is called
commutative or Abelian if [x,y]=0 for any x,y∈ A. A subspace N of the algebra A is
called a subalgebra if [N,N]⊂N and an ideal if [A,N]⊂N .

Let A and B be two arbitrary Lie algebras and Φ be a mapping of A into
B. This mapping is called a homomorphism if

A one-to-one homomorphism of one algebra onto another is called

φ(αx βy) αφ(x) βφ(y), x,y∈ A, α,β∈ K

φ([x,y]) [φ(x),φ(y)], x,y∈ A.

isomorphism, and it is said, that the corresponding algebras A and B are isomorphic.
A representation of a Lie algebra is a homomorphism x→T(x) of this

algebra into a set of linear operators T defined on some linear space H:

The last condition guarantees validity of the Jacobi identity for the algebras of

αx βy→αT(x) βT(y),

[x,y]→[T(x),T(y)] T(x)T(y) T(y)T(x).

operators T. If the representation space H is infinite-dimensional then it is assumed
additionally that for all x∈ A the operators T(x) have a common invariant domain D
dense in H.

A representation is called irreducible if H does not have a subspace
invariant under the operator T(x) for all x∈A. If H has invariant subspaces the
corresponding representation is called reducible (and if all such subspaces are
mutually orthogonal it is called completely reducible).

A superalgebra SA is a vector space over the field K of complex (or real)
numbers. Besides, this space is graded and closed with respect to the following
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binary operation

whose explicit form depends on values of grading indices σ and σ′. This binary

(A.1.2)(xσ,yσ )→[xσ,yσ ] [xσ,yσ ]fσσ

operation has to satisfy the axioms

where α,ß∈ K, xσ,yσ′,zσ′′ ∈ SA.

[αxσ βyσ ,zσ ] α[xσ,zσ ] β[yσ ,zσ ] ,

[xσ,yσ ] ( 1)fσσ 1[yσ ,xσ] ,

[xσ,[yσ ,zσ ] ] [yσ ,[zσ ,xσ] ] [zσ ,[xσ,yσ ] ] 0

We consider the simplest version of gradation, i.e., the so-called Z2-
gradation when any element of a SA is labelled by one of two possible values 0, 1
of the index σ besides fσσ′=σσ′. Then the binary operation (A.1.2) reduces to
commutator for σσ′=0 and anticommutator for σσ′=1.

In other words a superalgebra is a vector space consisting in elements of
two kinds: even (E) corresponding to σ=0 and odd (O) corresponding to σ=1. This
space is closed under the binary operation (A.1.2) which is nothing but a
commutator for even-even and odd-odd elements and anticommutator for odd-odd
elements. Furthermore, commutators of even-even and anticommutators of odd-odd
elements are even and commutators of even-odd elements are odd. Such
"multiplication rules" are formulated in (18.1).

We will not enter into details and discuss the main properties of so defined
algebraic objects but note that the principal results of the theory of Lie algebras are
extended to the case of superalgebras.

A parasuperalgebra PSA is a graduated vector space in which bi- and
trilinear generalized Lie brackets are defined [26, 88, 372]. Thus in Rubakov-
Spiridonov [372] formulation of the parasupersymmetric quantum mechanics the
following relations for even and odd elements are postulated

where

(A.1.3)[E,E]∼ E, [E,O]∼ O, O,O,O ∼ EO

An alternative definition of parasuperalgebra (which is not equivalent to

A,B,C A[B,C] B[A,C] C[A,B] .

(A.1.3)) was proposed by Beckers and Debergh [26]. It is characterized by the
double commutation relations instead of the double anticommutators.

Generalized Lie structures called PSA arises in parasupersymmetric quantum
mechanics [26, 372]. We notice such structures are weaker then SA in the sense that
a SA can be always considered as a PSA (e.g., relations (A.1.3) follow from (18.1))
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but the converse is not true.
A simple example of PSA is the set of the KDP matrices satisfying (6.20),

and matrices Sµσ=i[ßµ, ßσ], besides ßµ are odd and Sµσ are even elements.

APPENDIX 2

GENERALIZED KILLING TENSORS

1. Let us consider the following system of overdetermined partial
differential equations:

where K... is a symmetric tensor of valence j, depending on m variables x1,x2,...,xm,

(A.2.1)∂ (aj 1∂aj 2...∂aj sK a1a2...aj ) 0

∂a=∂/∂xa, and symmetrization is imposed over the indices in paratheses.
The equation (A.2.1) arises naturally in problems of description of higher-

order SO of partial differential equations, see, e.g., (16.33).
In the cases s=1, j is arbitrary and s=1, j=1 relation (A.2.1) reduces to the

equation for Killing tensor [408] and Killing vector [249] correspondingly. We shall
call a symmetric tensor K... satisfying (A.2.1) with arbitrary s a generalized Killing
tensor of valence j and order s [328, 342].

Here we present the explicit form of solutions of (A.2.1) for m≤4.
Consider the case s=1, when (A.2.1) reduces to the form (1.11). This system

is overdetermined and includes C j
j
+
+

m
1 equations for C j

j
+m-1 unknowns. The

corresponding solutions have the form [328]

where λ̂ ... are arbitrary tensors symmetric under the permutations aj←→ak

(A.2.2)K a1a2...aj

j

l 0

λ̂a1a2...al[al 1b1]...[ajbj l]xb1

xb2

...xbj l

(i,k =1,2,...,j), antisymmetric under the permutations al+i with bi (1≤i≤j-l). Besides,
any cyclic permutation of three indices nullifies this tensor. The number of linearly
independent solutions Nj

m is equal to

Expanding λ̂ ... in basic tensors (see definitions in Section 16) we come to

(A.2.3)N m
j

1
m

C m 1
j m 1C

m 1
j m .

the representation (16.13). Expanding λ̂ ... in irreducible tensors having zero traces
over any pair of indices it is possible to represent in a form includingK a1a2...aj

irreducible parameters only [342].
Killing tensors of arbitrary valence j and order s are polynomials on xµ of
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order s+j-1, depending on Nsj
m arbitrary parameters besides

The explicit expressions of these tensors can be obtained from the recurrence

(A.2.4)N m
sj

s
m

C m 1
j m 1C

m 1
j s m 1.

relations

where and are the Killing tensors of order s-1 and valences j and

(A.2.5)K
a1a2...aj

s K
a1a2...aj

s 1 K
a1a2...aj 1

s 1 xaj 1

K
a1a2...aj

s 1 K
a1a2...aj 1

s 1

j+1 correspondingly.
2. Consider one more class of overdetermined equations

where is a symmetric traceless tensor of valence j, depending on m

(A.2.6)[∂(aj 1∂aj 2...∂aj sK̃
a1a2...aj )]TL 0

K̃
a1a2...aj

variables, and the symbol [...]TL denotes the traceless part of the tensor in the square
brackets (in our case this tensor is symmetric and has the valence R=j+s):

where

(A.2.7)
[T a1a2...aR]TL T a1a2...aR

R/2

α 1

( 1)αKα

α

i 1

g (a2i 1a2iT a2α 1a2α 2...aR)b1b2...b2α 1b2αgb1b2

gb3b4

...gb2α 1b2α

In the case s=1 (A.2.6) reduces to the equation for the conformal Killing

(A.2.8)Kα
1

2α(R 2α)!

α

i 1

1
i![2(R i) m 2]

.

tensor [408]. We call a symmetric traceless tensor satisfying (A.2.6) aK̃
a1a2...aj

generalized conformal Killing tensor of valence j and order s.
The equations (A.2.6) were analyzed and solved in [328]. The numbers Ñ s

m
j

of linearly independent solutions are given in (A.2.9):

If m=2, then there exist an infinite number of solutions of the system (A.2.6).

(A.2.9)
m 3, Ñ

3

s j s(2j 1)(2j 2s 1)(2j s 1)/6,

m 4, Ñ
4

s j s( j 1)2( j s 1)2(2j 2 s)/12.

First we represent solutions of (A.2.6) for the case s=1, m>2:

where l+1≤j, λ ... are arbitrary basic tensors. Solutions of (A.2.6) corresponding to

(A.2.10)K̃
a1a2...aj






j

l,k 0

l l k

j o

( 1)iC i
j l kλ

b1b2...bj l k i(a1a2...al i[al i 1d1]...[al i kdk] ×

×x al k i 1x al k i 2...x aj)xd1

xd2

...xdk

xb1

xb2

...xbj l k i

(x 2 ) i TL
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arbitrary s can be expressed via (A.2.10):

Here are conformal Killing tensors of valence j and order s=1 (see

(A.2.11)
K̃

a1a2...aj

(s)

s

i 0











K̃
a1a2...aj

i (x 2)i 1
s i

α 0

f
a1a2...aj

i 1α (x 2)α .

K̃
a1a2...aj

i

(A.2.10)), the index i labels independent solutions with different powers of x2,
are the tensors described in the following.f

a1a2...aj

i 1

For m=3 independent tensors are labeled by integers c, 0≤c≤2j,f
a1a2...aj

i 1α

besides

where

(A.2.12)f
a1a2...aj

iα
c

εc f̂
a1a2...aj

iαc (1 εc ) f̂
b(a1a2...aj 1

iαc
aj)bkxk

TL
,

are arbitrary symmetric and traceless tensors.

(A.2.13)
f̂

a1a2...aj

iαc

c/2

n 0

( 2)nC c/2 n
n λ̂b1b2...bα n(a1a2...aj n×

×x α j n 1x α j n 2...x ajxb1

xb2

...xbαn

x 2( c/2 n), εc

1
2

[1 ( 1)c],

λ̂b1...

In the case m=4 the tensors are labelled by pairs of integersf
a1a2...aj

iα

c=(c1,c2), satisfying the conditions -j≤c1≤j, 0≤c2≤[(j- c1 )/2]. The corresponding
explicit expressions of aref

a1a2...aj

iα

where n=-c1, c1<0 and n=0 for c1≥0.

(A.2.14)
f

a1a2...aj

iα






n 2c2

α 0

( 1)2C α
n 2c2

(x 2 )αλb1b2...bn 2c2 i α(a1a2...a c1 n i[a c1 n i 1d1]...[aj i ndj c2
]
×

×x aj n i 1x aj n i 2...x aj) xb1

xb2

...xbn 2c2 α i

xd1

xd2

...xdj c1

TL

.

Let is an irreducible tensor of valence R1+R2, symmetricK
a1a2...aR2

aR2 1...aR2 R1

b1b2...bR2

under the permutations and antisym-aR2 i←→aR2 i , i,i ≤R1, (aµ,bµ)←→(aµ ,bµ )
metric under the permutations aµ←→bµ′, µ,µ′≤R2. We say is aK

a1a2...aR1 R2

b1b2...bR2

generalized conformal Killing tensor of valence R1+2R2 and order s if it satisfies the
following overdetermined system of PDE

where j=R1+R2. In the case s=1, R2=1 and R2=0, s is any integer, (A.2.15) reduces

(A.2.15)∂ (aj 1∂ aj 2...∂ aj sK
a1a2...aR2

aR2 1...aj )

b1b2...bR2

TL

0

to the equation for the conformal Killing tensor [418] and to the equation (A.2.6).
In this book, we use only generalized Killing tensors of order s=1. The

number of linearly independent solutions of the equation (A.2.15) for s=1, m=4 is
Let us present the explicit form of some of the above defined tensors.
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Denoting arbitrary irreducible tensors by Greek letters we obtain from (A.2.14) the

(A.2.16)NR1R2

1
6

(R1 1)(R1 1 2R2)(R1 2)(R1 2 2R2)(2R1 2R2 3).

conformal Killing tensor for four-dimension Minkowski space (m=4, s=1, j=2):

where

(A.2.17)F̃
ab

4

α 0

(G ab
α G ba

α
1
2

g abG dc
α gdc)

We present also the explicit form of the generalized conformal Killing

(A.2.18)

G ab
0 λab

0 , G ab
1 λa[bc]xc λax b,

G ab
2 λab

2 x 2 2x aλbc
2 xc λx ax b λ[ab][cd]xcxd x aλ[bd]xd,

G ab
3 λa[bc]

3 xcx
2 2x aλd[ac]

3 xdxc x aνbx 2 2x ax bνcxc,

G ab
4 νabx 4 4x ax bνcdxcxd 4νacx bxcx

2.

tensors for m=4, s=1, R1=0,1, R2=1,2.
R1=0, R2=1:

R1=0, R2=0:

(A.2.19)K µ
ν λ[µν] x µλν x νλµ µνρσxρξσ (x µη[νσ] x νη[µσ])xσ

1
2

η[µν]x 2.

where

(A.2.20)K µρ
νσ K̂

µρ0

νσ ,

(A.2.21)
K̂

µρλ
νρ 2G µρλ

νσ G νµλ
ρσ G ρνλ

µσ
1
2

(g µρg νσ g µσg νρ)G nnλ
mm

3
2

(g µρG nnλ
νσ g νσG nnλ

µρ g µσG nnλ
νρ g νρG nnλ

µσ ),

R1=1, R2=2:

(A.2.22)G µρ0
νσ G µρ

νσ G ρµ
σν ,

(A.2.23)

G µρ
νσ λ[µν][ρσ] x µλν[ρσ] x νλµ[ρσ] (x µλνn x νλµn) ρσmnxm

x µx ρηνσ x νx ρηµσ ρσmn[(x µη[νk]m x νη[µk]m)xkxm

1
2

η[µν]mxnx
2] (x µx ρλ[νn][σm] x νx ρλ[µn][σm])xmxn

2(x µλ[νm][ρσ] x νλ[µm][ρσ])xmx 2 1
4

λ[µν][ρσ]x 4.
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is defined in (A.2.21) where

(A.2.24)K µρλ
νσ 2K̂

µρλ
νσ K̂

νρµ

λσ K̂
λρν

µσ K̂
σµρ

λν K̂
λµσ

ρν

g µλK̂
ρnn

σν g νλK̂
ρnn

σµ g λρK̂
µnn

νσ g λσK̂
µnn

νρ ,

K̂
µρσ

νσ

(A.2.25)

G µρλ
νσ g µνρσ

λ g νµρσ
λ g µνσρ

λ g νµσρ
λ g ρσµν

λ g ρσνµ
λ g σρµν

λ g σρνµ
λ ,

g µνρσ
λ λλ[µν][ρσ] x µλλν[ρσ] x µλ[νρ][σλ] λ[µν][ρσ][λn]xn

x µλνλmx n ρσ
mn x µx ρηνσλ x µην[ρσ][λm] x λx µλν[ρσ]

x λx µλνm ρσ
mnx

n x λx µx ρησν x µx ρηνσ[λn]xn

ρσ
mn(x

µξλn[νk]xkx
m ξλn[µν]x mx 2) (x µξνnλx 2

2x λx µξνnkxk)
ρσ

mnx x µx ρξνσλx 2 2x λx ρx µξνσnxn

ρσ
mn(x

µξm[νk][λf]xkxfx
n ξm[µν][λf]x nxfx

2)

x λ ρσ
mn(x

µξ[νk]mx nxk η[µν]mx nx 2)

ρσ
mn[x

µζλm[νk]xkx
nx 2 ζλm[µν]x nx 4 2x λ(x µζkm[νf]xf

ηkm[µν]x 2xkx
n] x µ(x ρη[νn][σm][λk]xm η[νn][ρσ][λk]x 2)xnxk

1
4

η[µν][ρσ][λk]xkx
4 x λ[x µx ρη[νn][σm]xmxn x µλ[νm][ρσ]x 2

mx

1
4

η[µν][ρσ]x 4 1
4

ζλ[µν][ρσ]x 6 x µ(x ρζλ[νn][σm]xnxmx 2

x µζλ[νm][ρσ]xmx 4) 2x λ[x µ(x ρζk[νn][σm]xm

ζk[νm][ρσ]x 20xnxk

1
4

ζk[µν][ρσ]xkx
4.

APPENDIX 3

MATRIX ELEMENTS OF SCALAR OPERATORS IN THE
BASIS OF SPHERICAL SPINORS

Spherical spinors satisfying the relations (29.4) can be represented as
columns whose m-th component is given by the relation

where Ylm are the spherical functions

(A.3.1)

420



Appendices

ϕ and θ are the polar and azimuthal angles of the vectors x̂=x/x, are theC jm
jm1sµ

Wigner coefficients

Such defined spherical spinors satisfy the normalization condition

C jm
lm1sµ δm1 µ m











(2j 1)!(l s j)!(l m1)!(s µ)!(j m)!(j m)!

(l s j 1)!(l s j)!(j s l)!(l m1)!(s µ)!

1/2

×
j m

n 0

( 1)l m1 n (l m1 n)!(s j m1 n)!

n!(l m1 n)!(j m n)!(s j m1 n)!
.

Let us present the action of some scalar operators on the spherical spinors.
⌡
⌠Ωs

jj λmΩs
j j λ m dω δjj δλλ δmm .

Following [323] we write

where Sa are generators of the IR D(s) of the group O(3), Ka are the matrices defined

(A.3.3)

S x̂Ωs
j j λ m

λ

d sj
λλ Ωs

j j λ m,

S pΩs
j j λ m

2i
x λ









d s j
λλ









1 1
s

h sj
λ

1
s

b sj
λλ q sj

λ Ωs
j j λ m,

S x×pΩs
j j λm h sj

λ Ωj j λ m,

K x̂Ωs
j j λ m

λ

b sj
λλ Ωs 1

j j λ m,

K x̂Ωs 1
j j λ m

λ

b sj
λ λΩ

s
j j λ m,

K pΩs
j j λ m

2i
x λ









1
s

d sj
λλ qλ b sj

λλ (1 1
s

h s 1 j
λ ) Ωs

j j λ m,

K pΩs 1
j j λ m

2i
x λ









1
s

d sj
λ λq

sj
λ b sj

λ λ








1 1
s

h s 1j
λ Ωs

j j λ m,

K x×pΩs
j j λ m q sj

λ Ωs 1
j j λ m,

K x×pΩs 1
j j λ m q sj

λ Ωs
j j λ m

by relations (12.26) and given in the explicit form in (4.65),
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and the coefficients dλ
s
′
j
λ are given in (29.7), (29.8).

(A.3.4)

h sj
λ

1
2

(λdj λ2 s(s 1)), dj 2j 1,

q sj
λ

1
2

[(s 2 λ2)(dj s λ)(dj s λ)]1/2

b sj
λλ

1
2

(δλλ 1g
sj

λ δλλ 1f
sj

λ ),

g sj
λ

(2j s λ 1)(s λ 1)(s λ)(2j s λ)
(2j 2λ 1)(2j 2λ 1)

,

f sj
λ

(2j s λ 1)(2j s λ 2)(s λ 1)(s λ)
(2j 2λ 1)(2j 2λ 3)

Relations (A.3.2) are present, e.g., in [409] where another notations are
used. Relations (A.3.3) complete (A.3.2) and make it possible to find the result of
action of an arbitrary scalar operator η∏F (where η is a vector matrix satisfying
(12.20b), F is one of the operators p, x or x×p) on the spherical spinor. Using the
representation (12.23) we can write

where as
ii′, bs+1

ii′ and cs-1
ii′ are parameters defining the matrix η, the index i labels

(A.3.5)η FΩs i
j j λm (a s

i i S(s) F b s 1
i i K(s 1) F c s 1

i i K(s)† F)Ωs i
j j λ m

eigenvectors of S2 corresponding to degenerated eigenvalues s(s+1). Using (A.3.2)-
(A.3.4) we obtain the explicit expression of the r.h.s. of (A.3.5).

Consider two commuting spin matrices Sa
(1) and Sa

(2) satisfying the relations

Without loss of generality we can choose

(A.3.6)[S (α)
a ,S (β)

b ] iδαβ abcS
(α)

c ,
α

S (α)
a S (α)

a sa(sa 1), α 1,2.

where Sµσ are generators of the finite-dimensional IR D(l0,l1)=D( s1-s2

S (1)
a

1
2









1
2 abc Sbc iS0a , S (2)

a
1
2









1
2 abc Sbc iS0a

(s1+s2+1)sign(s1-s2)) of the group O(1,3), which are given in (4.65). Then according
to (4.63), (A.3.2)-(A.3.5) we obtain

where dλ
s
′
j
λ, bλ

s
′
j
λ are the coefficients (28.7), (A.3.4),

(A.3.7)
S (α) x̂Ωs

j j λ m

s ,λ
s

B
jsλs

(α)s λ
s

Ωs
j j λ m≡

λ

B (α)
ss d sj

λλ Ωs
j j λ m

iB (α)
ss 1bλ λΩ

s 1
j j λ m iB (α)

s 1s b s 1 j
λλ Ωs 1

j j λ m ,

For the operator S(α) x×p we obtain
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all the coefficients included in (A.3.9) are given in (A.3.4), (A.3.8).

(A.3.8)

B (α)
ss

1
2s

( 1)α
[(s1 s2 1)(s1 s2)]

1/2

2s(s 1)1/2
, α 1,2,

B (α)
s 1s ( 1)α 1

[(s1 s2 1)2 s 2]1/2[s 2 (s1 s2)
2]1/2

2s(4s 2 1)1/2
,

B (α)
ss 1 B (α)

s 1s , s s1 s2,s1 s2 1,..., s1 s2 , s s 1.

(A.3.9)S (α) x×pΩs
j j λ m B (α)

ss h sj
λ Ωs

j j λ m iB (α)
ss 1 q s j

λ Ωs 1
j j λ m iB (α)

s 1sq
s 1 j

λ Ωs 1
j j λ m,

Let s=1/2, Sa
(2)=σa/2 where σa are the 4s×4s Pauli matrices (27.4). Then

according to (A.3.7), (A.3.8)

Relations (A.3.2)-(A.3.5) can be used for separation of variables for a wide

(A.3.10)

σ x̂Ωs
j j λ m

1
s λ

(d s j
λλ Ωs

j j λ m ib s 1 j
λλ Ωs 1

j j λ m),

σ x×pΩs
j j λ m

1
s

(h s j
λ Ωs

j j λ m iq s j
λ Ωs 1

j j λ m),

σ x×pΩs 1
j j λ m

1
s

(h s 1 j
λ Ωs 1

j j λ m iq sj
λ Ωs

j j λ m).

class of O(3)-invariant systems of partial differential equations. We use them (as
well as (A.3.7)-(A.3.10)) in Subsections 29.2, 30.4, 34.3.
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