
Preface

The development of a consistent picture of the processes of decoherence and
quantum measurement is among the most interesting fundamental problems
with far-reaching consequences for our understanding of the physical world.
A satisfactory solution of this problem requires a treatment which is com-
patible with the theory of relativity, and many diverse approaches to solve or
circumvent the arising difficulties have been suggested. This volume collects
the contributions of a workshop on Relativistic Quantum Measurement and
Decoherence held at the Istituto Italiano per gli Studi Filosofici in Naples,
April 9-10, 1999. The workshop was intended to continue a previous meeting
entitled Open Systems and Measurement in Relativistic Quantum Theory, the
talks of which are also published in the Lecture Notes in Physics Series (Vol.
526).

The different attitudes and concepts used to approach the decoherence
and quantum measurement problem led to lively discussions during the work-
shop and are reflected in the diversity of the contributions. In the first article
the measurement problem is introduced and the various levels of compatibility
with special relativity are critically reviewed. In other contributions the rôles
of non-locality and entanglement in quantum measurement and state vector
preparation are discussed from a pragmatic quantum-optical and quantum-
information perspective. In a further article the viewpoint of the consistent
histories approach is presented and a new criterion is proposed which refines
the notion of consistency. Also, the phenomenon of decoherence is examined
from an open system’s point of view and on the basis of superselection rules
employing group theoretic and algebraic methods. The notions of hard and
soft superselection rules are addressed, as well as the distinction between real
and apparent loss of quantum coherence. Furthermore, the emergence of real
decoherence in quantum electrodynamics is studied through an investigation
of the reduced dynamics of the matter variables and is traced back to the
emission of bremsstrahlung.

It is a pleasure to thank Avv. Gerardo Marotta, the President of the Is-
tituto Italiano per gli Studi Filosofici, for suggesting and making possible
an interesting workshop in the fascinating environment of Palazzo Serra di
Cassano. Furthermore, we would like to express our gratidude to Prof. An-
tonio Gargano, the General Secretaty of the Istituto Italiano per gli Studi
Filosofici, for his friendly and efficient local organization. We would also like
to thank the participants of the workshop.
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Special Relativity as an Open Question

David Z. Albert

Department of Philosophy, Columbia University, New York, USA

Abstract. There seems to me to be a way of reading some of the trouble we have
lately been having with the quantum-mechanical measurement problem (not the
standard way, mind you, and certainly not the only way; but a way that nonethe-
less be worth exploring) that suggests that there are fairly prosaic physical circum-
stances under which it might not be entirely beside the point to look around for
observable violations of the special theory of relativity. The suggestion I have in mind
is connected with attempts over the past several years to write down a relativistic
field-theoretic version of the dynamical reduction theory of Ghirardi, Rimini, and
Weber [Physical Review D34, 470-491 (1986)], or rather it is connected with the
persistent failure of those attempts, it is connected with the most obvious strategy
for giving those attempts up. And that (in the end) is what this paper is going to
be about.

1 The Measurement Problem

Let me start out (however) by reminding you of precisely what the quantum-
mechanical problem of measurement is, and then talk a bit about where
things stand at present vis-a-vis the general question of the compatibility of
quantum mechanics with the special theory of relativity, and then I want to
present the simple, standard, well-understood non-relativistic version of the
Ghirardi, Rimini, and Weber (GRW) theory [1], and then (at last) I will get
into the business I referred to above.

First the measurement problem. Suppose that every system in the world
invariably evolves in accordance with the linear deterministic quantum-mecha-
nical equations of motion and suppose that M is a good measuring instrument
for a certain observable A of a certain physical system S. What it means for
M to be a “good” measuring instrument for A is just that for all eigenvalues
ai of A:

|ready〉M |A = ai〉S −→ |indicates that A = ai〉M |A = ai〉S , (1)

where |ready〉M is that state of the measuring instrument M in which M
is prepared to carry out a measurement of A, “−→” denotes the evolution
of the state of M + S during the measurement-interaction between those
two systems, and |indicates that A = ai〉M is that state of the measuring
instrument in which, say, its pointer is pointing to the the ai-position on its
dial. That is: what it means for M to be a “good” measuring instrument
for A is just that M invariably indicates the correct value for A in all those
states of S in which A has any definite value.

H.-P. Breuer and F. Petruccione (Eds.): Proceedings 1999, LNP 559, pp. 1–13, 2000.
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2 David Z Albert

The problem is that (1), together with the linearity of the equations of
motion entails that:∑

i

|ready〉M |A = ai〉S −→
∑
i

|indicates that A = ai〉M |A = ai〉S . (2)

And that appears not to be what actually happens in the world. The right-
hand side of Eq. (2) is (after all) a superposition of various different outcomes
of the A-measurement - and decidedly not any particular one of them. But
what actually happens when we measure A on a system S in a state like
the one on the left-hand-side of (2) is of course that one or another of those
particular outcomes, and nothing else, emerges.

And there are two big ideas about what to do about that problem that
seem to me to have any chance at all of being on the right track.

One is to deny that the standard way of thinking about what it means to
be in a superposition is (as a matter of fact) the right way of thinking about
it; to deny, for example, that there fails to be any determinate matter of fact,
when a quantum state like the one here obtains, about where the pointer is
pointing.

The idea (to come at it from a slightly different angle) is to construe
quantum-mechanical wave-functions as less than complete descriptions of the
world. The idea that something extra needs to be added to the wave-function
description, something that can broadly be thought of as choosing between
the two conditions superposed here, something that can be thought of as
somehow marking one of those two conditions as the unique, actual, outcome
of the measurement that leads up to it.

Bohm’s theory is a version of this idea, and so are the various modal
interpretations of quantum mechanics, and so (more or less) are many-minds
interpretations of quantum mechanics.1

The other idea is to stick with the standard way of thinking about what
it means to be in a superposition, and to stick with the idea that a quantum-
mechanical wave-function amounts, all by itself, to a complete description of
a physical system, and to account for the emergence of determinate outcomes
of experiments like the one we were talking about before by means of explicit
violations of the linear deterministic equations of motion, and to try to de-
velop some precise idea of the circumstance s under which those violations
occur.

And there is an enormously long and mostly pointless history of specula-
tions in the physical literature (speculations which have notoriously hinged on
distinctions between the “microscopic” and the “macroscopic”, or between

1 Many-minds interpretations are a bit of a special case, however. The outcomes
of experiments on those interpretations (although they are perfectly actual) are
not unique. The more important point, though, is that those interpretations (like
the others I have just mentioned) solve the measurement problem by construing
wave-functions as incomplete descriptions of the world.
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the “reversible” and the “irreversible”, or between the “animate” and the
“inanimate”, or between “subject” and “object”, or between what does and
what doesn’t genuinely amount to a “measurement”) about precisely what
sorts of violations of those equations - what sorts of collapses - are called for
here; but there has been to date only one fully-worked-out, traditionally sci-
entific sort of proposal along these lines, which is the one I mentioned at the
beginning of this paper, the one which was originally discovered by Ghirardi
and Rimini and Weber, and which has been developed somewhat further by
Philip Pearle and John Bell.

There are (of course) other traditions of thinking about the measurement
problem too. There is the so-called Copenhagen interpretation of quantum
mechanics, which I shall simply leave aside here, as it does not even pretend
to amount to a realistic description of the world. And there is the tradition
that comes from the work of the late Hugh Everett, the so called “many
worlds” tradition, which is (at first) a thrilling attempt to have one’s cake
and eat it too, and which (more particularly) is committed both to the propo-
sition that quantum-mechanical wave-functions are complete descriptions of
physical systems and to the proposition that those wave-functions invariably
evolve in accord with the standard linear quantum- mechanical equations of
motion, and which (alas, for a whole bunch of reasons) seems to me not to
be a particular candidate either.2

And that’s about it.

2 Degrees of Compatibility with Special Relativity

Now, the story of the compatibility of these attempts at solving the mea-
surement problem with the special theory of relativity turns out to be unex-
pectedly rich. It turns out (more particularly) that compatibility with special
relativity is the sort of thing that admits of degrees. We will need (as a matter
of fact) to think about five of them - not (mind you) because only five are
logically imaginable, but because one or another of those five corresponds
to every one of the fundamental physical theories that anybody has thus far
taken seriously.

Let’s start at the top.
What it is for a theory to be metaphysically compatible with special rel-

ativity (which is to say: what it is for a theory to be compatible with special
relativity in the highest degree) is for it to depict the world as unfolding in
a four-dimensional Minkowskian space-time. And what it means to speak of
the world as unfolding within a four-dimensional Minkovskian space-time is
(i) that everything there is to say about the world can straightforwardly be

2 Foremost among these reasons is that the many-worlds interpretations seems to
me not to be able to account for the facts about chance. But that’s a long story,
and one that’s been told often enough elsewhere.
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read off of a catalogue of the local physical properties at every one of the con-
tinuous infinity of positions in a space-time like that, and (ii) that whatever
lawlike relations there may be between the values of those local properties can
be written down entirely in the language of a space-time that - that whatever
lawlike relations there may be between the values of those local properties
are invariant under Lorentz-transformations. And what it is to pick out some
particular inertial frame of reference in the context of the sort of theory we’re
talking about here - what it is (that is) to adopt the conventions of measure-
ment that are indigenous to any particular frame of reference in the context
of the sort of theory we’re talking about here - is just to pick out some par-
ticular way of organising everything there is to say about the world into a
story, into a narrative, into a temporal sequen ce of instantaneous global phys-
ical situations. And every possible world on such a theory will invariably be
organizable into an infinity of such stories - and those stories will invariably
be related to one another by Lorentz-transformations. And note that if even
a single one of those stories is in accord with the laws, then (since the laws
are invariant under Lorentz-transformations) all of them must be.

The Lorentz-invariant theories of classical physics (the electrodynamics
of Maxwell, for example) are metaphysically compatible with special relativ-
ity; and so (more surprisingly) are a number of radically non-local theories
(completely hypothetical ones, mind you - ones which in so far as we know
at present have no application whatever to the actual world) which have
recently appeared in the literature.3

But it happens that not a single one of the existing proposals for making
sense of quantum mechanics is metaphysically compatible with special rela-
tivity, and (moreover) it isn’t easy to imagine there ever being one that is. The
reason is simple: What is absolutely of the essence of the quantum-mechanical
picture of the world (in so far as we understand it at present), what none
of the attempts to straighten quantum mechanics out have yet dreamed of
dispensing with, are wave-functions. And wave-functions just don’t live in
four-dimensional space-times; wave-functions (that is) are just not the sort
of objects which can always be uniquely picked out by means of any cata-
logue of the local properties of the positions of a space-time like that. As
a general matter, they need bigger ones, which is to say higher-dimensional
ones, which is to say configurational ones. And that (alas!) is that.

The next level down (let’s call this one the level of dynamical compati-
bility with special relativity) is inhabited by pictures on which the physics
of the world is exhaustively described by something along the lines of a (so-
called) relativistic quantum field theory - a pure one (mind you) in which

3 Tim Maudlin and Frank Artzenius have both been particularly ingenious in con-
cocting theories like these, which (notwithstanding their non-locality) are entirely
formulable in four-dimensional Minkowski space-time. Maudlin’s book Quantum
Non-Locality and Relativity (Blackwell, 1994) contains extremely elegant discus-
sions of several such theories.
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there are no additional variables, and in which the quantum states of the
world invariably evolve in accord with local, deterministic, Lorentz-invariant
quantum mechanical equations of motion. These pictures (once again) must
depict the world as unfolding not in a Minkowskian space-time but in a con-
figuration one - and the dimensionalities of the configuration space-times in
question here are (of course) going to be infinite. Other than that, however,
everything remains more or less as it was above. The configuration space-time
in question here is built directly out of the Minkowskian one (remember) by
treating each of the points in Minkowskian space-time (just as one does in
the classical theory of fields) as an instantaneous bundle of physical degrees
of freedom. And so what it is to pick out some particular inertial frame of
reference in the context of this sort of picture is still just to pick out some
particular way of organizing everything there is to say about the world into
a temporal sequence of instantaneous global physical situations. And every
possible world on this sort of a theory will still be organizable into an infinity
of such stories. And those stories will still be related to one another by means
of the appropriate generalizations of the Lorentz point-transformations. And
it will still be the case that if even a single one of those stories is in accord with
the laws, then (since the laws are invariant under Lorentz-transformations)
all of them must be.

The trouble is that there may well not be any such pictures that turn
out to be worth taking seriously. All we have along these lines at present
(remember) are the many-worlds pictures (which I fear will turn out not to
be coherent) and the many-minds pictures (which I fear will turn out not to
be plausible).

And further down things start to get ugly.
We have known for more than thirty years now that any proposal for

making sense of quantum mechanics on which measurements invariably have
unique and particular and determinate outcomes (which covers all of the
proposals I know about, or at any rate the ones I know about that are also
worth thinking about, other than many worlds and many minds) is going to
have no choice whatever but to turn out to be non-local.

Now, non-locality is certainly not an obstacle in and of itself even to meta-
physical compatibility with special relativity. There are now (as I mentioned
before) a number of explicit examples in the literature of hypothetical dy-
namical laws which are radically non-local and which are nonetheless cleverly
cooked up in such a way as to be formulable entirely within Minkowski-space.
The thing is that none of them can even remotely mimic the empirical pre-
dictions of quantum mechanics; and that nobody I talk to thinks that we
have even the slightest reason to hope for one that will.

What we do have (on the other hand) is a very straightforward trick by
means of which a wide variety of theories which are radically non-local and
(moreover) are flatly incompatible with the proposition that the stage on
which physical history unfolds is Minkowki-space can nonetheless be made
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fully and trivially Lorentz-invariant ; a trick (that is) by means of which a wide
variety of such theories can be made what you might call formally compatible
with special relativity.

The trick [2] is just to let go of the requirement that the physical history
of the world can be represented in its entirety as a temporal sequence of
situations. The trick (more particularly) is to let go of the requirement that
the situation associated with two intersecting space-like hypersurfaces in the
Minkowski-space must agree with one another about the expectations values
of local observables at points where the two surfaces coincide.

Consider (for example) an old-fashioned non-relativistic projection-postu-
late, which stipulates that the quantum states of physical systems invariably
evolve in accord with the linear deterministic equations of motion except when
the system in question is being “measured”; and that the quantum state of a
system instantaneously jumps, at the instant the system is measured, into the
eigenstate of the measured observable corresponding to the outcome of the
measurement. This is the sort of theory that (as I mentioned above) nobody
takes seriously anymore, but never mind that; it will serve us well enough, for
the moment, as an illustration. Here’s how to make this sort of a projection-
postulate Lorentz-invariant: First, take the linear collapse-free dynamics of
the measured system - the dynamics which we are generally in the habit of
writing down as a deterministic connection between the wave-functions on
two arbitrary equal-time-hyperplanes - and re-write it as a deterministic con-
nection between the wave-functions on two arbitrary space-like-hypersurfaces,
as in Fig. 1. Then stipulate that the jumps referred to above occur not (as it
were) when the equal-time-hyperplane sweeps across the measurement-event,
but whenever an arbitrary space-like hypersurface undulates across it.

Suppose (say) that the momentum of a free particle is measured along
the hypersurface marked t = 0 in Fig. 2, and that later on a measurement
locates the particle at P . Then our new projection-postulate will stipulate
among other things) that the wave-function of the particle along hypersurface
a is an eigenstate of momentum, and that the wave-function of the particle
along hypersurface b is (very nearly) an eigenstate of position. And none of
that (and nothing else that this new postulate will have to say) refers in any
way shape or form to any particular Lorentz frame. And this is pretty.

But think for a minute about what’s been paid for it. As things stand
now we have let go not only of Minkowski-space as a realistic description of
the stage on which the story of the world is enacted, but (in so far as I can
see) of any conception of that stage whatever. As things stand now (that
is) we have let go of the idea of the world’s having anything along the lines
of a narratable story at all ! And all this just so as to guarantee that the
fundamental laws remain exactly invariant under a certain hollowed-out set
of mathematical transformations, a set which is now of no particular deep
conceptual interest, a set which is now utterly disconnected from any idea of
an arena in which the world occurs.
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Fig. 1. Two arbitrary spacelike hypersurfaces.
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Fig. 2. A measurement locates a free particle in P (see text).
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Never mind. Suppose we had somehow managed to resign ourselves to
that. There would still be trouble. It happens (you see) that notwithstanding
the enormous energy and technical ingenuity has been expended over the past
several years in attempting to concoct a version of a more believable theory
of collapses - a version (say) of GRW theory - on which a trick like this might
work, even that (paltry as it is) is as yet beyond our grasp.

And all that (it seems to me) ought to give us pause.
The next level down (let’s call this one the level of discreet incompatibility

with special relativity) is inhabited by theories (Bohm’s theory, say, or modal
theories) on which the special theory of relativity, whatever it means, is unam-
biguously false; theories (that is) which explicitly violate Lorentz-invariance,
but which nonetheless manage to refrain from violating it in any of their pre-
dictions about the outcomes of experiments. These theories (to put it slightly
differently) all require that there be some legally privileged Lorentz-frame,
but they all also entail that (as a matter of fundamental principle) no per-
formable experiment can identify what frame that is.

And then (at last) there are theories that explicitly violate Lorentz-
invariance (but presumably only a bit, or only in places we haven’t looked
yet) even in their observable predictions. It’s that sort of a theory (the sort
of a theory we’ll refer to as manifestly incompatible with special relativity)
that I’m going to want to draw your attention to here.

3 The Theory I Have in Mind

But one more thing needs doing before we get to that, which is to say some-
thing about where the theory I have in mind comes from. And where it
comes from (as I mentioned at the outset) is the non-relativistic spontaneous
localization theory of Ghirardi, Rimini, Weber, and Pearle.

GRWP’s idea was that the wave function of an N -particle system

ψ(r1, r2, . . . , rN , t) (3)

usually evolves in the familiar way - in accordance with the Schrödinger equa-
tion - but that every now and then (once in something like 1015/N seconds),
at random, but with fixed probability per unit time, the wave function is
suddenly multiplied by a normalized Gaussian (and the product of those two
separately normalized functions is multiplied, at that same instant, by an
overall renormalizing constant). The form of the multiplying Gaussian is:

K exp
[−(r − rk)2/2σ2

]
(4)

where rk is chosen at random from the arguments rn, and the width σ of
the Gaussian is of the order of 10−5 cm. The probability of this Gaussian
being centered at any particular point r is stipulated to be proportional to
the absolute square of the inner product of (3) (evaluated at the instant just
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prior to this “jump”) with (4). Then, until the next such “jump”, everything
proceeds as before, in accordance with the Schrödinger equation. The proba-
bility of such jumps per particle per second (which is taken to be something
like 10−15, as I mentioned above), and the width of the multiplying Gaussians
(which is taken to be something like 10−5 cm) are new constants of nature.

That’s the whole theory. No attempt is made to explain the occurrence
of these “jumps”; that such jumps occur, and occur in precisely the way
stipulated above, can be thought of as a new fundamental law; a beautiful and
absolutely explicit law of collapse, wherein there is no talk at a fundamental
level of “measurements” or “recordings” or “macroscopicness” or anything
like that.

Note that for isolated microscopic systems (i.e. systems consisting of small
numbers of particles) “jumps” will be rare as to be completely unobservable
in practice; and the width of the multiplying Gaussian has been chosen large
enough so that the violations of conservation of energy which those jumps
will necessarily produce will be very small (over reasonable time-intervals),
even for macroscopic systems.

Moreover, if it’s the case that every measuring instrument worthy of the
name has got to include some kind of a pointer, which indicates the outcome
of the measurement, and if that pointer has got to be a macroscopic physical
object, and if that pointer has got to assume macroscopically different spatial
positions in order to indicate different such outcomes (and all of this seems
plausible enough, at least at first), then the GRW theory can apparently
guarantee that all measurements have outcomes. Here’s how: Suppose that
the GRW theory is true. Then, for measuring instruments (M) such as were
just described, superpositions like

|A〉|M indicates that A〉 + |B〉|M indicates that B〉 (5)

(which will invariably be superpositions of macroscopically different localized
states of some macroscopic physical object) are just the sorts of superposi-
tions that don’t last long. In a very short time, in only as long as it takes
for the pointer’s wave-function to get multiplied by one of the GRW Gaus-
sian (which will be something of the order of 1015/N seconds, where N is
the number of elementary particles in the pointer) one of the terms in (5)
will disappear, and only the other will propagate. Moreover, the probability
that one term rather than another survives is (just as standard Quantum
Mechanics dictates) proportional to the fraction of the norm which it carries.

And maybe it’s worth mentioning here that there are two reasons why this
particular way of making experiments have outcomes strikes me at present
as conspicuously more interesting than others I know about.

The first has to do with questions of ontological parsimony: We have no
way whatever of making experiments have outcomes (after all) that does
without wave-functions. And only many-worlds theories and collapse theo-
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ries manage to do without anything other than wave-functions4. And many-
worlds theories don’t appear to work.

The second (which strikes me as more important) is that the GRW theory
affords a means of reducing the probabilities of Statistical Mechanics entirely
to the probabilities of Quantum Mechanics. It affords a means (that is) of re-
arranging the foundations of the entirety of physics so as to contain exactly
one species of chance. And no other way we presently have of making mea-
surements have outcomes - not Bohm’s theory and not modal theories and
not many-minds theories and not many-worlds theories and not the Copen-
hagen interpretation and not quantum logic and not even the other collapse
theories presently on the market - can do anything like that.5 But let me go
back to my story.

4 Approximate Compatibility with Special Relativity

The trouble (as we’ve seen) is that there can probably not be a version of a
theory like this which has any sorts of compatibility with special relativity
that seem worth wanting.

And the question is what to do about that.
And one of the things it seems to me one might do is to begin to wonder

exactly what the all the fuss has been about. One of the things it seems to me
one might do - given that the theory of relativity is already off the table here
as a realistic description of the structure of the world - is to begin to wonder
exactly what the point is of entertaining only those fundamental theories
which are strictly invariant under Lorentz transformations, or even only those
fundamental theories whose empirical predictions are strictly invariant under
Lorentz transformations.

Why not theories which are are only approximately so? Why not theories
which violate Lorentz invariance in ways which we would be unlikely to have
noticed yet? Theories like that, and (more particularly) GRW-like theories
like that, turn out to be snap to cook up.

Let’s (finally) think one through. Take (say) standard, Lorentz-invariant,
relativistic quantum electrodynamics - without a collapse. And add to it some
non-Lorentz-invariant second-quantized generalization of a collapse-process
which is designed to reduce - under appropriate circumstances, and in some
particular preferred frame of reference - to a standard non-relativistic GRW
Gaussian collapse of the effective wave-function of electrons. And suppose

4 All other pictures (Bohm, Modal Interpretations, Many-Minds, etc) supplement
the wave-function with something else; something which we know there to be a
way of doing without; something which (when you think about it this way) looks
as if it must somehow be superfluous.

5 This is one of the main topics of a book I have just finished writing, called Time
and Chance, which is to be published in the fall of 2000 by Harvar d University
Press.
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that the frame associated with our laboratory is some frame other than the
preferred one. And consider what measurements carried out in that labora-
tory will show.

This needs to be done with some care. What happens in the lab frame
is certainly not (for example) that the wave-function gets multiplied by any-
thing along the lines of a “Lorentz-transformation” of the non-relativistic
GRW Gaussian I mentioned a minute ago, for the simple reason that Gaus-
sians are not the sort of things that are susceptible of having a Lorentz trans-
formation carried out on them in the first place.6 And it is (as a more general
matter) not to be expected that a theory like this one is going to yield any
straightforward universal geometrical technique whatever - such as we have
always had at our disposal, in one form or another, throughout the entire
modern history of physics - whereby the way the world looks to one observer
can be read off of the way it looks to some other one, who is in constant
rectilinear motion relative to the first. The theory we have in front of us at
the moment is simply not like that. We are (it seems fair to say) in infinitely
messier waters here. The only absolutely reliable way to proceed on theo-
ries like this one (unless and until we can argue otherwise) is to deduce how
things may look to this or that observer by explicitly treating those observers
and all of their measuring instruments as ordinary physical objects, whose
states change only and exactly in whatever way it is that they are required
to change by the microscopic laws of nature, and whose evolutions will pre-
sumably need to be calculated from the point of view of the unique frame of
reference in which those laws take on their simplest form.

That having been said, remember that the violations of Lorentz-invariance
in this theory arise exclusively in connection with collapses, and that the
collapses in this theory have been specifically designed so as to have no
effects whatever, or no effects to speak of, on any of the familiar properties
or behaviours of everyday localized solid macroscopic objects. And so, in so
far as we are concerned with things like (say) the length of medium-sized
wooden dowels, or the rates at which cheap spring-driven wristwatches tick,
everything is going to proceed, to a very good approximation, as if no such
violations were occurring at all.

Let see how far we can run with just that.
Two very schematic ideas for experiments more or less jump right out at

you - one of them zeros in on what this theory still has left of the special-
relativistic length-contraction, and the other on what it still has left of the
special-relativistic time-dilation.

The first would go like this: Suppose that the wave-function of a sub-
atomic particle which is more or less at rest in our lab frame is divided in
half - suppose, for example, that the wave-function of a neutron whose z-spin

6 The sort of thing you need to start out with, if you want to do a Lorentz trans-
formation, is not a function of three-space (which is what a Gaussian is) but a
function of three-space and time.
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is initially “up” is divided, by means of a Stern-Gerlach magnet, into equal
y-spin “up” and y-spin “down” components. And suppose that one of those
halves is placed in box A and that the other half is placed in box B. And
suppose that those two boxes are fastened on to opposite ends of a little
wooden dowel. And suppose that they are left in that condition for a certain
interval - an interval which is to be measured (by the way) in the lab frame,
and by means of a co-moving cheap mechanical wristwatch. And suppose
that at the end of that interval the two boxes are brought back together
and opened, and that we have a look - in the usual way - for the usual
sort of interference effects. Note (and this is the crucial point here) that the
length of this dowel, as measured in the preferred frame, will depend radically
(if the velocity of the lab frame relative to the preferred one is sufficiently
large) on the dowel’s orientation. If, for example, the dowel is perpendicular
to the velocity of the lab relative to the preferred frame, it’s length will
be the same in the preferred frame as in the lab, but if the the dowel is
parallel to that relative velocity, then it’s length - and hence also the spatial
separation between A and B - as measured in the preferred frame, will be
much shorter. And of course the degree to which the GRW collapses wash out
the interference effects will vary (inversely) with the distance between those
boxes as measured in the preferred frame.7 And so it is among the predictions
of the sort of theory we are entertaining here that if the lab frame is indeed
moving rapidly with respect to the preferred one, the observed interference
effects in these sorts of contraptions ought to observably vary as the spatial
orientation of that device is altered. It is among the consequences of the
failure of Lorentz-invariance in this theory that (to put it slightly differently)
in frames other than the preferred one, invariance under spatial rotations
fails as well.

The second experiment involves exactly the same contraption, but in this
case what you do with it is to boost it - particle, dowel, boxes, wristwatch
and all - in various directions, and to various degrees, but always (so as to
keep whatever this theory still has in it of the Lorentzian length-contractions
entirely out of the picture for the moment) perpendicular to the length of the
dowel. As viewed in the preferred frame, this will yield interference experi-
ments of different temporal durations, in which different numbers of GRW
collapses will typically occur, and in which the observed interference effects
will (in consequence) be washed out to different degrees.

The sizes of these effects are of course going to depend on things like the
velocity of the earth relative to the preferred frame (which there can be no

7 More particularly: If, in the preferred frame, the separation between the two
boxes is so small as to be of the order of the width of the GRW Gaussian, the
washing-out will more or less vanish altogether.
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way of guessing)8, and the degree to which we are able to boost contraptions
of the sort I have been describing, and the accuracies with which we are able
to observe interferences, and so on.

The size of the effect in the time-dilation experiment is always going to
vary linearly in

√
1 − v2/c2, where v is the magnitude of whatever boosts we

find we are able to artificially produce. In the length-contraction experiment,
on the other hand, the effect will tend to pop in and out a good deal more
dramatically. If (in that second experiment) the velocity of the contraption
relative to the preferred frame can somehow be gotten up to the point at
which

√
1 − v2/c2 is of the order of the width of the GRW Gaussian divided

by the length of the dowel - either in virtue of the motion of the earth itself,
or by means of whatever boosts we find we are able to artificially produce,
or by means of some combination of the two - whatever washing-out there is
of the interference effects when the length of the dowel is perpendicular to
its velocity relative to the preferred frame will more or less discontinuously
vanish when we rotate it.

Anyway, it seems to me that it might well be worth the trouble to do
some of the arithmetic I have been alluding to, and to inquire into some of
our present technical capacities, and to see if any of this might actually be
worth going out and trying.9
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Abstract. We study the creation of polarisation entanglement by means of optical
entanglement swapping (Zukowski et al., [Phys. Rev. Lett. 71, 4287 (1993)]). We
show that this protocol does not allow the creation of maximal ‘event-ready’ en-
tanglement. Furthermore, we calculate the outgoing state of the swapping protocol
and stress the fundamental physical difference between states in a Hilbert space and
in a Fock space. Methods suggested to enhance the entanglement in the outgoing
state as given by Braunstein and Kimble [Nature 394, 840 (1998)] generally fail.

1 Introduction

Ever since the seminal paper of Einstein, Podolsky and Rosen [1], the concept
of entanglement has captured the imagination of physicists. The EPR para-
dox, of which entanglement is the core constituent, points out the non-local
behaviour of quantum mechanics. This non-locality was quantified by Bell in
terms of the so-called Bell inequalities [2] and cannot be explained classically.

Now, at the advent of the quantum information era, entanglement is no
longer a mere curiosity of a theory which is highly successful in describing
the natural phenomena. It has become an indispensable resource in quantum
information protocols such as dense coding, quantum error correction and
quantum teleportation [3–6].

Two quantum systems, parametrised by x1 and x2 respectively, are called
entangled when the state Ψ(x1, x2) describing the total system cannot be
factorised into states ψ1(x1) and ψ2(x2) of the separate systems:

Ψ(x1, x2) �= ψ1(x1)ψ2(x2) . (1)

All the states Ψ(x1, x2) accessible to two quantum systems form a set S. These
states are generally entangled. Only in extreme cases Ψ(x1, x2) is separable,
i.e., it can be written as a product of states describing the separate systems.
The set of separable states form a subset of S with measure zero.

We arrive at another extremum when the states Ψ(x1, x2) are maximally
entangled. The set of maximally entangled states also forms a subset of S
with measure zero. In order to elaborate on maximal entanglement, we will
limit our discussion to quantum optics.

Two photons can be linearly polarised along two orthogonal directions
x and y of a given coordinate system. Every possible state of those two
photons shared between a pair of modes can be written on the basis of four
orthonormal states |x, x〉, |x, y〉, |y, x〉 and |y, y〉. These basis states generate a
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four-dimensional Hilbert space. Another possible basis for this space is given
by the so-called polarisation Bell states:

|Ψ±〉 = (|x, y〉 ± |y, x〉)/
√

2 ,
|Φ±〉 = (|x, x〉 ± |y, y〉)/

√
2 . (2)

These states are also orthonormal. They are examples of maximally entangled
states. The Bell states are not the only maximally entangled states, but they
are the ones most commonly discussed. For the remainder of this paper we will
restrict our discussion to the antisymmetric Bell state |Ψ−〉 (in the appendix
we will explain in more detail why we can do this without loss of generality).

Suppose we want to conduct an experiment which makes use of polarisa-
tion entanglement, in particular |Ψ−〉. Ideally, we would like to have a source
which produces these states at the push of a button. In practice, this might
be a bit much to ask. A second option is to have a source which only produces
|Ψ−〉 randomly, but flashes a red light when it happens. Such a source would
create so-called event-ready entanglement: it produces |Ψ−〉 only part of the
time, but when it does, it tells you so.

More formally, the outgoing state |ψout|red light flashes〉 conditioned on the
red light flashing is said to exhibit event-ready entanglement if it can be
written as

|ψout|red light flashes〉 	 |Ψ−〉 + O(ξ) , (3)

where ξ 
 1. In the remainder of this paper we will omit the subscript
‘|red light flashes’ since it is clear that we can only speak of event-ready
entanglement conditioned on the red light’s flashing.

Currently, event-ready entanglement has never been produced experimen-
tally. However, non-maximal entanglement has been created by means of, for
instance, parametric down-conversion [7]. Rather than a (near) maximally
entangled state, as in Eq. (3), this process produces states with a large vac-
uum contribution. Only a minor part consists of an entangled photon state.
Every time parametric down-conversion is employed, there is only a small
probability of creating an entangled photon-pair. For the purposes of this
paper we will call this randomly produced entanglement.

Parametric down-conversion has been used in several experiments, and
for some applications randomly produced entanglement therefore seems suf-
ficient. However, on a theoretical level, maximally entangled states appear as
primitive notions in many quantum protocols. It is therefore not at all clear
whether randomly produced entanglement is suitable for all these cases. This
is one of the main motives in our search for event-ready entanglement, where
we can ensure that the physical state is maximally entangled.

In this paper we investigate one particular possibility to create event-ready
entanglement. It was suggested by Zukowski, Zeilinger, Horne and Ekert [8]
and Pavičić [9] that entanglement swapping is a suitable candidate. We will
therefore study this protocol in some detail using quantum optics.
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Entanglement swapping is essentially the teleportation of one part of an
entangled pair [3,8,10]. Suppose we have a system of two independent (max-
imally) entangled photon-pairs in modes a, b and c, d. If we restrict ourselves
to the Bell states, we have for instance

|Ψ〉abcd = |Ψ−〉ab ⊗ |Ψ−〉cd . (4)

However, this state can be written on a different basis:

|Ψ〉abcd =
1
2
|Ψ−〉ad ⊗ |Ψ−〉bc +

1
2
|Ψ+〉ad ⊗ |Ψ+〉bc

+
1
2
|Φ−〉ad ⊗ |Φ−〉bc +

1
2
|Φ+〉ad ⊗ |Φ+〉bc . (5)

If we make a Bell measurement on modes b and c, we can see from Eq. (5)
that the undetected remaining modes a and d become entangled. For instance,
when we find modes b and c in a |Φ+〉 Bell state, the remaining modes a and
d must be in the |Φ+〉 state as well.

Although maximally entangled states have never been produced experi-
mentally, entanglement swapping might offer us a solution [9]. An entangled
state with a large vacuum contribution (as produced by parametric down-
conversion) can only give us randomly produced entanglement. However, if we
use two such states and perform entanglement swapping, the Bell detection
will act as a tell-tale that there were photons in the system. The question is
whether this Bell detection is enough to ensure that an event-ready entangled
state appears as a freely propagating wave-function.

Entanglement swapping has been demonstrated experimentally by Pan et
al. [10], using parametric down-conversion as the entanglement source. In the
next section we briefly review the down-conversion mechanism and its role
in the experiment of Pan et al. Subsequently, in section 3 we study whether
entanglement swapping can give us event-ready entanglement.

2 Parametric Down-Conversion and Entanglement
Swapping

In this section we review the mechanism of parametric down-conversion and
the experimental realisation of entanglement swapping. In parametric down-
conversion a crystal is pumped by a high-intensity laser, which we will treat
classically (the parametric approximation). The crystal is special in the sense
that it has different refractive indices for horizontally and vertically polarised
light. In the crystal, a photon from the pump is split into two photons with
half the energy of the pump photon. Furthermore, the two photons have
orthogonal polarisations. The outgoing modes of the crystal constitute two
intersecting cones with orthogonal polarisations as depicted in Fig. 1.

Due to the conservation of momentum, the two produced photons are
always in opposite modes with respect to the central axis (determined by
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Fig. 1. A schematic representation of type II parametric down-conversion. A high-
intensity laser pumps a non-linear crystal. With some probability a photon in the
pump beam will be split into two photons with orthogonal polarisation | �〉 and | ↔〉
along the surface of the two respective cones. Depending on the optical axis of the
crystal, the two cones are slightly tilted from each other. Selecting the spatial modes
at the intersection of the two cones yields the outgoing state |0〉 + ξ|Ψ−〉 +O(ξ2).

the direction of the pump). In the two spatial modes where the different
polarisation cones intersect we can no longer infer the polarisation of the
photons, and as a consequence the two photons become entangled in their
polarisation.

However, parametric down-converters do not produce Bell states [8,11,12].
They form a class of devices yielding Gaussian evolutions:

|Ψ〉 = U(t)|0〉 = exp[−itHI/�]|0〉 , (6)

with
HI =

1
2

∑
ij

â†iΛij â
†
j + H.c. , (7)

where HI is the interaction Hamiltonian, â†i a creation operator and Λij the
components of a (complex) symmetric matrix. Here, H.c. stands for the Her-
mitian conjugate. If Λ is diagonal the evolution U corresponds to a collection
of single-mode squeezers [13]. In the case of degenerate type II parametric
down-conversion used to produce a photon-pair exhibiting polarisation en-
tanglement, the interaction Hamiltonian in the rotating-wave approximation
is

HI = κ(â†xb̂
†
y − â†y b̂

†
x) + H.c. , (8)

with κ a parameter which is determined by the strength of the pump and the
coupling of the electro-magnetic field to the crystal.

The outgoing state of the down-converter is then

|Ψ〉ab =
(
1 − ξ2

) |0, 0〉ab + ξ
(
|x, y〉ab − |y, x〉ab

)
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Fig. 2. A schematic representation of the experimental setup for entanglement
swapping as performed by Pan et al. The pump beam is reverted by a mirror in
order to create two entangled photon-pairs in different directions (modes a, b, c and
d). Modes b and c are sent into a beam-splitter (bs). A coincidence in the detectors
Du and Dv at the outgoing modes of the beam-splitter identify a |Ψ−〉 Bell state.
The undetected modes a and d are now in the |Ψ−〉 Bell state as well.

+ξ2
(
|x2, y2〉ab − |xy, xy〉ab + |y2, x2〉ab

)
+ O(ξ3) , (9)

with ξ 
 1, which is a function of κ. Here, |x2〉 denotes an x-polarised mode in
a 2-photon Fock state (the case of two y-polarised or an x- and a y-polarised
photon are treated similarly).

For the experimental demonstration of entanglement swapping we need
two independent Bell states. A Bell measurement on one half of either Bell
state will then entangle the two remaining modes. The photons in these modes
do not originate from a common source, i.e., they have never interacted. Yet
they are now entangled.

In the experiment conducted by Pan et al., instead of having two para-
metric down-converters, one crystal was pumped twice in opposite directions
(see Fig. 2). This way, a state which is equivalent to a state originating from
two independent down-converters was obtained. In order to simplify our dis-
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Fig. 3. A schematic representation of the entanglement swapping setup. Two para-
metric down-converters (pdc) create states which exhibit polarisation entangle-
ment. One branch of each source is sent into a beam splitter (bs), after which the
polarisation beam splitters (pbs) select particular polarisation settings. A coinci-
dence in detectors Du and Dv ideally identify the |Ψ−〉 Bell state. However, since
there is a possibility that one down-converter produces two photon-pairs while
the other produces nothing, the detectors Du and Dv no longer constitute a Bell-
detection, and the freely propagating physical state is no longer a pure Bell
state.

cussion, we will treat the experimental setup as if it consists of two separate
down-converters (see Fig. 3).

One spatial mode of either down-conversion state is sent into a beam-
splitter, the output of which is detected. This constitutes the Bell measure-
ment. In the case where both down-converters create a polarisation entangled
photon-pair, a coincidence in the photo-detectors Du and Dv identify the an-
tisymmetric Bell state |Ψ−〉 [14]. The outgoing state should then be the |Ψ−〉
Bell state as well, thus creating event-ready entanglement.
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However, there are two problems. First, this is not a complete Bell mea-
surement [15,16], i.e., it is not possible to identify all the four Bell states
simultaneously. The consequence is that entanglement swapping occurs a
quarter of the time (only |Ψ−〉 is identified).

A second, and more serious, problem is that when we study coincidences
between two down-converters, we need to take higher-order photon-pair pro-
duction into account [see Eq. (9)]. For instance, one down-converter creates
a photon-pair with probability |ξ|2. Two down-converters therefore create
two photon-pairs with probability |ξ|4. However, this is roughly equal to the
probability where one down-converter produces nothing (i.e., the vacuum
|0〉), while the other produces two photon-pairs. In the next section we will
show that for this reason a coincidence in the detectors Du and Dv no longer
uniquely identifies a |Ψ−〉 Bell state.

3 Event-Ready Entanglement

In this section we first investigate the effect of double-pair production on
the Bell measurement in the experimental setup depicted in Fig. 3. Subse-
quently, we study the possibility of event-ready entanglement in the context
of entanglement swapping.

There is a possibility that a single down-converter produces a double
photon-pair. This means that the two photons in the outgoing modes of
the beam-splitter in Fig. 3 do not necessarily originate from different down-
converters. We can therefore no longer interpret a detector-coincidence at the
outgoing modes of the beam-splitter as a projection onto the |Ψ−〉 Bell state.

Another way of looking at this is as follows: consider a two-photon polar-
isation state. It is a vector in a Hilbert space generated by (for instance) the
basis vectors |x, x〉, |x, y〉, |y, x〉 and |y, y〉. The |Ψ−〉 Bell state is a super-
position of these basis vectors. The key observation is that the two photons
described in this Hilbert space occupy different spatial modes. When a two-
photon state entering a 50:50 beam-splitter gives a two-fold coincidence, this
state is projected onto the |Ψ−〉 Bell state.

This Hilbert space should be clearly distinguished from a (truncated) Fock
space. In the Fock space two photons can occupy the same spatial mode (see
for example the state in Eq. (9)). As a consequence, the two input modes of
a beam-splitter can be the vacuum |0〉 and a two-photon state (for instance
|x2〉) respectively. In this scenario a detector coincidence at the output of the
beam-splitter is still possible, but it can not be interpreted as the projection
of the incoming state |0, x2〉 on the |Ψ−〉 Bell state (see Fig. 4).

In the case of the entanglement swapping experiment, two photon-pairs
are created either by one down-converter alone or both down-converters. This
means that, conditioned on a detector coincidence, the state entering the
beam-splitter is a superposition of two single-photon states plus the vacuum
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bs

jxi jyi jx2ij0i

bs

a) identi�es j	�i b) no identi�cation

Fig. 4. A schematic representation of the Bell measurement in the entanglement
swapping experiment. In Fig. 4a both incoming modes are occupied by a single
photon. A coincidence in the detectors will then identify a projection onto the
|Ψ−〉 Bell state. In Fig. 4b, however, one input mode is the vacuum, whereas the
other is populated by two photons. In this case a detector coincidence cannot be
interpreted as a projection onto the |Ψ−〉 Bell state. Both instances a) and b) occur
in the entanglement swapping experiment.

and a two-photon state. In this setup a detector coincidence therefore does
not identify the |Ψ−〉 Bell state.

In Fig. 3 we have added two polarisation beam-splitters in the outgoing
modes of the beam-splitter. This allows us to condition the outgoing state in
modes a and d on the different polarisation settings. It should be noted that
for a Bell detection depicted in Fig. 4a we do not need a polarisation sensitive
measurement. However, since the detector coincidence is no longer a Bell
measurement it will be convenient to distinguish between the four different
polarisation settings at the output modes of the beam-splitter [(x, x), (x, y),
(y, x) and (y, y)].

It turns out that the four outgoing states conditioned on the four different
polarisation settings have a remarkably simple form:

|φ(x,x)〉ad =
(|0, y2〉 − |y2, 0〉)/√2,

|φ(x,y)〉ad =
(|0, xy〉 − |y, x〉 + |x, y〉 − |xy, 0〉)/2,

|φ(y,x)〉ad =
(|0, xy〉 + |y, x〉 − |x, y〉 − |xy, 0〉)/2,

|φ(y,y)〉ad =
(|0, x2〉 − |x2, 0〉)/√2 . (10)

These states can also be obtained by sending |y, y〉, |y, x〉, |x, y〉 and |x, x〉 into
a 50:50 beam-splitter respectively (see Fig. 5). When no distinction between
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jxi

jyi jxi

jxi

bs

bs

jyijxi

bs

bs

jyi jyi

j0; x2i � jx2; 0i

j0; y2i � jy2; 0i

j0; xyi + jy; xi � jx; yi � jxy; 0i

j0; xyi � jy; xi+ jx; yi � jxy; 0i

Fig. 5. The four (unnormalised) outgoing states from a 50:50 beam-splitter condi-
tioned on the four input states |x, x〉, |x, y〉, |y, x〉 and |y, y〉. The outgoing states
correspond to the four possible outgoing states of entanglement swapping.

the four possible polarisation settings in the two-fold detector-coincidence is
made [10,8], the state of the two remaining (undetected) modes (the physical
state) will be a mixture ρ of the four states in Eqs. (10).

Using a technical mathematical criterion based on the partial transpose
of the outgoing state ρ [17,18], it can be shown that ρ is entangled (ρ satisfies
this entanglement criterion). However, it can not be used for event-ready
detections of polarisation entanglement since the states in Eqs. (10) are not
of the form of Eq. (3). More specifically, these states are nowhere near the
maximally entangled states we wanted to create.

We now ask the question whether entanglement swapping can still be used
to create event-ready entanglement. Observe that the experiment conducted
by Pan et al. closely resembles the experimental realisation of quantum tele-
portation by Bouwmeester et al. [4]. There, one of the states produced by
parametric down-conversion was used to prepare a single-photon state which
was then teleported. However, due to the double pair-production, the tele-
ported state was a mixture of the teleported photon and the vacuum.

In Ref. [11], Braunstein and Kimble presented three possible ways to im-
prove the experimental setup of quantum teleportation in order to minimise
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the unwanted double pairs created in a single down-converter. Since the ex-
perimental setup considered here closely resembles the setup of the telepor-
tation experiment, one might expect that the remedy given by Braunstein
and Kimble will be effective here as well.

However, this is not the case. The first approach was to make sure that in
one of the outgoing modes (the state-preparation mode) there was only one
photon present. In order to achieve this, a detector cascade was suggested
which, upon a two-fold detector coincidence, would reveal a two-photon state.
Since in the entanglement swapping experiment there is no conditional mea-
surement of the outgoing modes (apart from the Bell measurement), this
approach doesn’t work here.

The second approach is to differentiate between the coupling of the two
down-converters by lowering the intensity of the pump of one of them. How-
ever, since the setup of the entanglement swapping experiment is symmetric,
it can be easily seen that the (unnormalised) outgoing states become

|φ(x,x)〉 ∝ ξ22 |0, y2〉 − ξ21 |y2, 0〉 + O(ξ3),

|φ(x,y)〉 ∝ ξ22 |0, xy〉 − ξ1ξ2 (|y, x〉 − |x, y〉) − ξ21 |xy, 0〉 + O(ξ3),

|φ(y,x)〉 ∝ ξ22 |0, xy〉 + ξ1ξ2 (|y, x〉 − |x, y〉) − ξ21 |xy, 0〉 + O(ξ3),

|φ(y,y)〉 ∝ ξ22 |0, x2〉 − ξ21 |x2, 0〉 + O(ξ3) . (11)

Varying ξ1 and ξ2 will not allow us to create any of the states which have the
form of Eq. (3).

The third approach presented by Braunstein and Kimble involved the
use of quantum non-demolition (qnd) measurements. In the case of entan-
glement swapping, we should be able to identify whether there are photons
in the outgoing modes with such qnd detectors. If we can tell that both
outgoing modes are populated by a photon without destroying the non-local
correlations (i.e., without gaining information about the polarisations of the
photons), we can create event-ready entanglement. However, such qnd de-
tectors correspond to technology not yet available for optical photons (for
qnd detections of microwave photons see Ref. [19]).

Can we turn any of the states in Eq. (10) into the form of Eq. (3) by
other means? Additional photon sources would take us beyond the entangle-
ment swapping protocol and we will not consider them here. Alternatively,
we might be able to use a linear interferometer to obtain event-ready entan-
glement. First, observe that instead of taking Eqs. (10) as the input of the
interferometer, we can use |x, x〉, |x, y〉, |y, x〉 or |y, y〉, since these states are
obtained from Eqs. (10) by means of a (unitary) beam-splitter operation. If
the linear interferometer described above does not exist for these separable
states, neither will it for the outgoing states of the entanglement swapping
protocol, since these states only differ by a unitary transformation.
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Next, suppose we have a linear interferometer described by the unitary
matrix U [20], which transforms the creation operators of the electro-magnetic
field according to

âi →
∑
j

uij b̂j ,

â†i →
∑
j

u∗ij b̂
†
j , (12)

where the uij are the components of U and i, j enumerate both the modes
and polarisations. There is no mixing between the creation and annihilation
operators, because photons do not interact with each other.

In order to create event-ready entanglement, the creation operators which
give rise to the states obtained by the entanglement swapping protocol (for
instance |x, y〉 = a†xb

†
y|0〉) should be transformed according to

â†xb̂
†
y → (ĉ†xd̂

†
y − ĉ†yd̂

†
x)/

√
2 . (13)

Relabel the modes ax, ay, bx and by as a1 to a4, respectively. Without loss of
generality (and leaving the normalisation aside for the moment) we can then
write

â†1â
†
2 → b̂†1b̂

†
2 − b̂†3b̂

†
4 . (14)

Substituting Eq. (12) into Eq. (14) generates ten equations for eight variables
u∗ij :

u∗11u
∗
21 = u∗12u

∗
22 = u∗13u

∗
23 = u∗14u

∗
24 = 0,

(u∗11u
∗
23 + u∗13u

∗
21) = (u∗11u

∗
24 + u∗14u

∗
21) = 0,

(u∗12u
∗
23 + u∗13u

∗
22) = (u∗12u

∗
24 + u∗14u

∗
22) = 0,

(u∗11u
∗
22 + u∗12u

∗
21) = 1,

(u∗13u
∗
24 + u∗14u

∗
23) = −1 . (15)

It can be easily verified that there are no solutions for the u∗ij which satisfy
these ten equations simultaneously. This means that there is no passive inter-
ferometer which transforms the states resulting from entanglement swapping
into event-ready entangled states.

4 Conclusions

We speak of event-ready entanglement when upon the production of a max-
imally polarisation entangled state the source flashes a red light (or gives
a similar macroscopic indication). We have studied the possibility of event-
ready entanglement preparation by means of entanglement swapping as per-
formed by Pan et al. [10]. This was suggested by Zukowski, Zeilinger, Horne
and Ekert [8] and Pavičić [9].
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In entanglement swapping, we perform a Bell measurement on two parts
of two (maximally) entangled states, leaving the two undetected parts en-
tangled. In general, these parts have never interacted. In the experiment of
Pan et al., the entangled states are produced by means of parametric down-
conversion. Due to higher order corrections in the down-converters, the phys-
ical state leaving the entanglement swapping apparatus is a random mixture
of four states. These states correspond to the four possible polarisation set-
tings in the Bell measurement. They are equivalent to the outgoing state of a
50:50 beam-splitter conditioned on the four possible input states |x, x〉, |x, y〉,
|y, x〉 and |y, y〉. However, these states are not the ones we were looking for.

With respect to a related experiment involving quantum teleportation [4],
it has been described [11] how to enhance the fidelity of the outgoing state.
However, these methods fail here, as well as the application of a linear inter-
ferometer with passive elements. We need at least a quantum non-demolition
measurement or a quantum computer of some kind to turn the outgoing states
of the entanglement swapping experiment into event-ready entanglement.

Appendix: Transformation of Maximally Entangled
States

In this appendix we will show that each maximally entangled two-system
state can be transformed into any other by a local unitary transformation
on one subsystem alone. For example, every two-photon polarisation Bell
state can be transformed into any other maximally polarisation entangled
two-photon state by a linear optical transformation on one mode.

We will treat this in a formal way by considering an arbitrary maximally
entangled state of two N -level systems in the Schmidt decomposition:

|ψ〉 =
1√
N

N∑
j=1

eiφj |nj ,mj〉 , (16)

i.e., a state with equal amplitudes on all possible branches. Here {|ni〉} and
{|mi〉} form two orthonormal bases of the subsystems. We can obtain any
maximally entangled state by applying the (bi-local) unitary transformation
U1⊗U2. This means that each maximally entangled state can be transformed
into any other by a pair of local unitary transformations on each of the
subsystems. We will now show that any two maximally entangled states |ψ〉
and |ψ′〉 are connected by a local unitary transformation on one subsystem
alone:

|ψ〉 = U ⊗ 1l |ψ′〉 . (17)
First, we show that any transformation U1⊗U2 on a particular maximally

entangled state |φ〉 can be written as V ⊗ 1l|φ〉, where V = U1U
T
2 . Take

|φ〉 =
1√
N

N∑
j=1

|nj ,mj〉 . (18)
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For any U we have
U ⊗ U∗|φ〉 = |φ〉 . (19)

Proof. Using the completeness relation

N∑
k=1

|nk〉〈nk| = 1l (20)

on both subsystems we have

U ⊗ U∗|φ〉 =
N∑

k,l=1

|nk,ml〉〈nk,ml| (U ⊗ 1l) (1l ⊗ U∗) |φ〉 . (21)

By writing out |φ〉 explicitly according to Eq. (18) we obtain

U ⊗ U∗|φ〉 =
1√
N

N∑
j,k,l=1

UkjU
∗
lj |nk,ml〉

=
1√
N

N∑
k,l=1

(UU†)kl|nk,ml〉

=
1√
N

N∑
k,l=1

δkl|nk,ml〉 , (22)

which is equal to |φ〉. ��
Next, using the relation (19) we will show that every transformation U1⊗

U2 acting on |φ〉 is equivalent to a transformation V ⊗ 1l acting on |φ〉, where
V = U1U

T
2 .

Proof. From Eq. (19) we obtain the equation(
1l ⊗ UT

)
(U ⊗ U∗) |φ〉 = (U ⊗ 1l) |φ〉 , (23)

which immediately gives us

U ⊗ 1l|φ〉 = 1l ⊗ UT |φ〉 and

UT ⊗ 1l|φ〉 = 1l ⊗ U |φ〉 . (24)

From Eq. (24) we obtain

U1 ⊗ U2|φ〉 = (U1 ⊗ 1l) (1l ⊗ U2) |φ〉
= (U1 ⊗ 1l)

(
UT
2 ⊗ 1l

) |φ〉
= U1U

T
2 ⊗ 1l|φ〉 . (25)
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Similarly,
U1 ⊗ U2|φ〉 = 1l ⊗ UT

1 U2|φ〉 . (26)

We therefore obtain that U1 ⊗ U2|φ〉 is equal to V ⊗ 1l|φ〉 with V = U1U
T
2 ,

and similarly that it is equal to 1l ⊗ V ′|φ〉 with V ′ = UT
1 U2. ��

Since every maximally entangled stated can be obtained by applying U1⊗
U2 to |φ〉, two maximally entangled states |ψ〉 and |ψ′〉 can be transformed
into any other by choosing

|ψ〉 = U ⊗ 1l |φ〉
|ψ′〉 = V ⊗ 1l |φ〉 , (27)

which gives
|ψ〉 = UV † ⊗ 1l |ψ′〉 . (28)

Thus each maximally entangled two-system state can be obtained from any
other by means of a local unitary transformation on one subsystem alone.

Returning to a pair of maximally polarisation entangled photons, we know
that any unitary transformation on a single optical mode consisting of sin-
gle photons can be viewed as a combination of a polarisation rotation and
a polarisation dependent phase shift of that mode. We can easily perform
such operations with linear optical elements. If we can create one maximally
entangled state, we can create any maximally entangled state. It is therefore
sufficient to restrict our discussion to, for example, the |Ψ−〉 Bell state.
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Abstract. The processes of radiation damping and decoherence in Quantum Elec-
trodynamics are studied from an open system’s point of view. Employing functional
techniques of field theory, the degrees of freedom of the radiation field are eliminated
to obtain the influence phase functional which describes the reduced dynamics of
the matter variables. The general theory is applied to the dynamics of a single
electron in the radiation field. From a study of the wave packet dynamics a quanti-
tative measure for the degree of decoherence, the decoherence function, is deduced.
The latter is shown to describe the emergence of decoherence through the emission
of bremsstrahlung caused by the relative motion of interfering wave packets. It is
argued that this mechanism is the most fundamental process in Quantum Elec-
trodynamics leading to the destruction of coherence, since it dominates for short
times and because it is at work even in the electromagnetic field vacuum at zero
temperature. It turns out that decoherence trough bremsstrahlung is very small for
single electrons but extremely large for superpositions of many-particle states.

1 Introduction

Decoherence may be defined as the (partial) destruction of quantum coher-
ence through the interaction of a quantum mechanical system with its sur-
roundings. In the theoretical analysis decoherence can be studied with the
help of simple microscopic models which describe, for example, the interaction
of a quantum mechanical system with a collection of an infinite number of
harmonic oscillators, representing the environmental degrees of freedom [1,2].
In an open system’s approach to decoherence one derives dynamic equations
for the reduced density matrix [3] which yields the state of the system of
interest as it is obtained from an average over the degrees of freedom of the
environment and the resulting loss of information on the entangled state of
the combined total system. The strong suppression of coherence can then be
explained by showing that the reduced density matrix equation leads to an
extremely rapid transitions of a coherent superposition to an incoherent sta-
tistical mixture [4,5]. For certain superpositions the associated decoherence
time scale is often found to be smaller than the corresponding relaxation or
damping time by many orders of magnitude. This is a signature for the fun-
damental distinction between the notions of decoherence and of dissipation.
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A series of interesting experimental investigations of decoherence have been
performed as, for example, experiments on Schrödinger cat states of a cavity
field mode [6] and on single trapped ions in a controllable environment [7].

If one considers the coherence of charged matter, it is the electromagnetic
field which plays the rôle of the environment. It is the purpose of this paper to
study the emergence of decoherence processes in Quantum Electrodynamics
(QED) from an open system’s point of view, that is by an elimination of
the degrees of freedom of the radiation field. An appropriate technique to
achieve this goal is the use of functional methods from field theory. In section
2 we combine these methods with a super-operator approach to derive an
exact, relativistic representation for the reduced density matrix of the matter
degrees of freedom. This representation involves an influence phase functional
that completely describes the influence of the electromagnetic radiation field
on the matter dynamics. The influence phase functional may be viewed as
a super-operator representation of the Feynman-Vernon influence phase [1]
which is usually obtained with the help of path integral techniques.

In section 3 we treat the problem of a single electron in the radiation
field within the non-relativistic approximation. Starting from the influence
phase functional, we formulate the reduced electron motion in terms of a
path integral which involves an effective action functional. The corresponding
classical equations of motion are demonstrated to yield the Abraham-Lorentz
equation describing the radiation damping of the electron motion. In addition,
the influence phase is shown to lead to a decoherence function which provides
a measure for the degree of decoherence.

The general theory will be illustrated with the help of two examples,
namely a free electron (section 4) and an electron moving in a harmonic po-
tential (section 5). For both cases an analytical expression for the decoherence
function is found, which describes how the radiation field affects the electron
coherence.

We shall use the obtained expressions to investigate in detail the time-
evolution of Gaussian wave packets. We study the influence of the radia-
tion field on the interference pattern which results from the collision of two
moving wave packets of a coherent superposition. It turns out that the ba-
sic mechanism leading to the decoherence of matter waves is the emission
of bremsstrahlung through the moving wave packets. The resultant picture
of decoherence is shown to yield expressions for the decoherence time and
length scales which differ substantially from the conventional estimates de-
rived from the prominent Caldeira-Leggett master equation. In particular, it
will be shown that a superposition of two wave packets with zero velocity
does not decohere and, thus, the usual picture of decoherence as a decay of
the off-diagonal peaks in the corresponding density matrix does not apply to
decoherence through bremsstrahlung.

We investigate in section 6 the possibility of the destruction of coherence
of the superposition of many-particle states. It will be argued that, while the
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decoherence effect is small for single electrons at non-relativistic speed, it is
drastically amplified for certain superpositions of many-particle states.

Finally, we draw our conclusions in section 7.

2 Reduced Density Matrix of the Matter Degrees of
Freedom

Our aim is to eliminate the variables of the electromagnetic radiation field
to obtain an exact representation for the reduced density matrix ρm of the
matter degrees of freedom. The starting point will be the following formal
equation which relates the density matrix ρm(tf ) of the matter at some final
time tf to the density matrix ρ(ti) of the combined matter-field system at
some initial time ti,

ρm(tf ) = trf

{
T← exp

[∫ tf

ti

d4xL(x)
]
ρ(ti)
}
. (1)

The Liouville super-operator L(x) is defined as

L(x)ρ ≡ −i[H(x), ρ], (2)

where H(x) denotes the Hamiltonian density. Space-time coordinates are
written as xµ = (x0,x) = (t,x), where the speed of light c is set equal
to 1. All fields are taken to be in the interaction picture and T← indicates
the chronological time-ordering of the interaction picture fields, while trf de-
notes the trace over the variables of the radiation field. Setting � = c = 1 we
shall use here Heaviside-Lorentz units such that the fine structure constant
is given by

α =
e2

4π�c
≈ 1

137
. (3)

To be specific we choose the Coulomb gauge in the following which means
that the Hamiltonian density takes the form [8–10]

H(x) = HC(x) + Htr(x). (4)

Here,
Htr(x) = jµ(x)Aµ(x) (5)

represents the density of the interaction of the matter current density jµ(x)
with the transversal radiation field,

Aµ(x) = (0,A(x)), ∇ ·A(x) = 0, (6)

and

HC(x) =
1
2
j0(x)A0(x) =

1
2

∫
d3y

j0(x0,x)j0(x0,y)
4π|x− y| (7)
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is the Coulomb energy density such that

HC(x0) =
1
2

∫
d3x
∫

d3y
j0(x0,x)j0(x0,y)

4π|x− y| (8)

is the instantaneous Coulomb energy. Note that we use here the convention
that the electron charge e is included in the current density jµ(x) of the
matter.

Our first step is a decomposition of chronological time-ordering operator
T← into a time-ordering operator T j

← for the matter current and a time-
ordering operator TA

← for the electromagnetic field,

T← = T j
←T

A
←. (9)

This enables one to write Eq. (1) as

ρm(tf ) = T j
←

(
trf

{
TA
← exp

[∫ tf

ti

d4x (LC(x) + Ltr(x))
]
ρ(ti)
})

, (10)

where we have introduced the Liouville super-operators for the densities of
the Coulomb field and of the transversal field,

LC(x)ρ ≡ −i[HC(x), ρ], Ltr(x)ρ ≡ −i[jµ(x)Aµ(x), ρ]. (11)

The currents jµ commute under the time-ordering T j
←. We may therefore

treat them formally as commuting c-number fields under the time-ordering
symbol. Since the super-operator LC(x) only contains matter variables, the
corresponding contribution can be pulled out of the trace. Hence, we have

ρm(tf ) = T j
←

(
exp
[∫ tf

ti

d4xLC(x)
]

trf

{
TA
← exp

[∫ tf

ti

d4xLtr(x)
]
ρ(ti)
})

.

(12)
We now proceed by eliminating the time-ordering of the A-fields. With

the help of the Wick-theorem we get

TA
← exp

[∫ tf

ti

d4xLtr(x)
]

= (13)

exp
[

1
2

∫ tf

ti

d4x
∫ tf

ti

d4x′[Ltr(x),Ltr(x′)]θ(t− t′)
]

exp
[∫ tf

ti

d4xLtr(x)
]
.

In order to determine the commutator of the Liouville super-operators we
invoke the Jacobi identity which yields for an arbitrary test density ρ,

[Ltr(x),Ltr(x′)]ρ = Ltr(x)Ltr(x′)ρ− Ltr(x′)Ltr(x)ρ
= −[Htr(x), [Htr(x′), ρ]] + [Htr(x′), [Htr(x), ρ]]
= −[[Htr(x),Htr(x′)], ρ]. (14)
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The commutator of the transversal energy densities may be simplified to read

[Htr(x),Htr(x′)] = jµ(x)jν(x′)[Aµ(x), Aν(x′)], (15)

since the contribution involving the commutator of the currents vanishes by
virtue of the time-ordering operator T j

←. Thus, it follows from Eqs. (14) and
(15) that the commutator of the Liouville super-operators may be written as

[Ltr(x),Ltr(x′)]ρ = −[Aµ(x), Aν(x′)][jµ(x)jν(x′), ρ]. (16)

It is useful to introduce current super-operators J+(x) and J−(x) by means
of

Jµ
+(x)ρ ≡ jµ(x)ρ, Jµ

−(x)ρ ≡ ρjµ(x). (17)

Thus, J+(x) is defined to be the current density acting from the left, while
J−(x) acts from the right on an arbitrary density. With the help of these
definitions we may write the commutator of the Liouville super-operators as

[Ltr(x),Ltr(x′)] = − [Aµ(x), Aν(x′)]Jµ
+(x)Jν

+(x′)
+ [Aµ(x), Aν(x′)]Jµ

−(x)Jν
−(x′).

Inserting this result into Eq. (13), we can write Eq. (12) as

ρm(tf ) = T j
←

(
exp
[∫ tf

ti

d4xLC(x)

−1
2

∫ tf

ti

d4x
∫ tf

ti

d4x′θ(t− t′)[Aµ(x), Aν(x′)]Jµ
+(x)Jν

+(x′)

+
1
2

∫ tf

ti

d4x
∫ tf

ti

d4x′θ(t− t′)[Aµ(x), Aν(x′)]Jµ
−(x)Jν

−(x′)
]

·trf
{

exp
[∫ tf

ti

d4xLtr(x)
]
ρ(ti)
})

. (18)

This is an exact formal representation for the reduced density matrix of the
matter variables. Note that the time-ordering of the radiation degrees of
freedom has been removed and that they enter Eq. (18) only through the
functional

W [J+, J−] ≡ trf

{
exp
[∫ tf

ti

d4xLtr(x)ρ(ti)
]}

, (19)

since the commutator of the A-fields is a c-number function.

3 The Influence Phase Functional of QED

The functional (19) involves an average over the field variables with respect
to the initial state ρ(ti) of the combined matter-field system. It therefore
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contains all correlations in the initial state of the total system. Here, we
are interested in the destruction of coherence. Our central goal is thus to
investigate how correlations are built up through the interaction between
matter and radiation field. We therefore consider now an initial state of low
entropy which is given by a product state of the form

ρ(ti) = ρm(ti) ⊗ ρf , (20)

where ρm(ti) is the density matrix of the matter at the initial time and
the density matrix of the radiation field describes an equilibrium state at
temperature T ,

ρf =
1
Zf

exp(−βHf ). (21)

Here, Hf denotes the Hamiltonian of the free radiation field and the quantity
Zf = trf [exp(−βHf )] is the partition function with β = 1/kBT . In the
following we shall denote by

〈O〉f ≡ trf {Oρf} (22)

the average of some quantity O with respect to the thermal equilibrium state
(21).

The influence of the special choice (20) for the initial condition can be
eliminated by pushing ti → −∞ and by switching on the interaction adiabat-
ically. This is the usual procedure used in Quantum Field Theory in order to
define asymptotic states and the S-matrix. The matter and the field variables
are then described as in-fields, obeying free field equations with renormalized
mass. These fields generate physical one-particle states from the interacting
ground state.

For an arbitrary initial condition ρ(ti) the functional W [J+, J−] can be
determined, for example, by means of a cumulant expansion. Since the initial
state (20) is Gaussian with respect to the field variables and since the Liouville
super-operator Ltr(x) is linear in the radiation field, the cumulant expansion
terminates after the second order term. In addition, a linear term does not
appear in the expansion because of 〈Aµ(x)〉f = 0. Thus we immediately
obtain

W [J+, J−] = exp
[

1
2

∫ tf

ti

d4x
∫ tf

ti

d4x′〈Ltr(x)Ltr(x′)〉f
]
ρm(ti). (23)

Inserting the definition for the Liouville super-operator Ltr(x) into the expo-
nent of this expression one finds after some algebra,

1
2

∫ tf

ti

d4x
∫ tf

ti

d4x′〈Ltr(x)Ltr(x′)〉fρm

≡ −1
2

∫ tf

ti

d4x
∫ tf

ti

d4x′trf {[Htr(x), [Htr(x′), ρm ⊗ ρf ]]}
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= −1
2

∫ tf

ti

d4x
∫ tf

ti

d4x′
[〈Aν(x′)Aµ(x)〉fJµ

+(x)Jν
+(x′)

+〈Aµ(x)Aν(x′)〉fJµ
−(x)Jν

−(x′)
−〈Aν(x′)Aµ(x)〉fJµ

+(x)Jν
−(x′)

−〈Aµ(x)Aν(x′)〉fJµ
−(x)Jν

−(x′)
]
ρm.

On using this result together with Eq. (23), Eq. (18) can be cast into the
form,

ρm(tf ) = T j
←
(

exp
[ ∫ tf

ti

d4xLC(x) (24)

+
1
2

∫ tf

ti

d4x
∫ tf

ti

d4x′
{− (θ(t− t′)[Aµ(x), Aν(x′)]

+〈Aν(x′)Aµ(x)〉f
)
Jµ
+(x)Jν

+(x′)

+
(
θ(t− t′)[Aµ(x), Aν(x′)]

−〈Aµ(x)Aν(x′)〉f
)
Jµ
−(x)Jν

−(x′)
+〈Aν(x′)Aµ(x)〉fJµ

+(x)Jν
−(x′)

+〈Aµ(x)Aν(x′)〉fJµ
−(x)Jν

+(x′)
}])

ρm(ti).

At this stage it is useful to introduce a new notation for the correlation
functions of the electromagnetic field, namely the Feynman propagator and
its complex conjugated (T→ denotes the anti-chronological time-ordering),

iDF (x− x′)µν ≡ 〈T←(Aµ(x)Aν(x′))〉f
= θ(t− t′)[Aµ(x), Aν(x′)] + 〈Aν(x′)Aµ(x)〉f ,

iD∗F (x− x′)µν ≡ −〈T→(Aµ(x)Aν(x′))〉f
= θ(t− t′)[Aµ(x), Aν(x′)] − 〈Aµ(x)Aν(x′)〉f , (25)

as well as the two-point correlation functions

D+(x− x′)µν ≡ 〈Aµ(x)Aν(x′)〉f ,
D−(x− x′)µν ≡ 〈Aν(x′)Aµ(x)〉f . (26)

As is easily verified these functions are related through

−iDF (x− x′)µν + iD∗F (x− x′)µν +D+(x− x′)µν +D−(x− x′)µν = 0. (27)

With the help of this notation the density matrix of the matter can now be
written as follows,

ρm(tf ) = T j
←

(
exp
[∫ tf

ti

d4xLc(x) (28)
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+
1
2

∫ tf

ti

d4x
∫ tf

ti

d4x′
{−iDF (x− x′)µνJ

µ
+(x)Jν

+(x′)

+iD∗F (x− x′)µνJ
µ
−(x)Jν

−(x′)
+D−(x− x′)µνJ

µ
+(x)Jν

−(x′)
+D+(x− x′)µνJ

µ
−(x)Jν

+(x′)
}])

ρm(ti).

This equation provides an exact representation for the matter density matrix
which takes on the desired form: It involves the electromagnetic field variables
only through the various two-point correlation functions introduced above.
One observes that the dynamics of the matter variables is given by a time-
ordered exponential function whose exponent is a bilinear functional of the
current super-operators J±(x). Formally we may write Eq. (28) as

ρm(tf ) = T j
← exp (iΦ[J+, J−]) ρm(ti), (29)

where we have introduced an influence phase functional

iΦ[J+, J−] =
∫ tf

ti

d4xLC(x) +
1
2

∫ tf

ti

d4x
∫ tf

ti

d4x′ (30)

×{−iDF (x− x′)µνJ
µ
+(x)Jν

+(x′) + iD∗F (x− x′)µνJ
µ
−(x)Jν

−(x′)

+D−(x− x′)µνJ
µ
+(x)Jν

−(x′) + D+(x− x′)µνJ
µ
−(x)Jν

+(x′)
}
.

It should be remarked that the influence phase Φ[J+, J−] is both a functional
of the quantities J±(x) and a super-operator which acts in the space of den-
sity matrices of the matter degrees of freedom. There are several alternative
methods which could be used to arrive at an expression of the form (30)
as, for example, path integral techniques [1] or Schwinger’s closed time-path
method [11]. The expression (30) for the influence phase functional has been
given in Ref. [12] without the Coulomb term and for the special case of zero
temperature. In our derivation we have combined super-operator techniques
with methods from field theory, which seems to be the most direct way to
obtain a representation of the reduced density matrix.

For the study of decoherence phenomena another equivalent formula for
the influence phase functional will be useful. To this end we define the com-
mutator function

D(x− x′)µν ≡ i[Aµ(x), Aν(x′)]
= i (D+(x− x′)µν −D−(x− x′)µν) (31)

and the anti-commutator function

D1(x− x′)µν ≡ 〈{Aµ(x), Aν(x′)}〉f
= D+(x− x′)µν + D−(x− x′)µν . (32)
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Of course, the previously introduced correlation functions may be expressed
in terms of D(x− x′)µν and D1(x− x′)µν ,

D+(x− x′)µν =
1
2
D1(x− x′)µν − i

2
D(x− x′)µν , (33)

D−(x− x′)µν =
1
2
D1(x− x′)µν +

i
2
D(x− x′)µν , (34)

iDF (x− x′)µν =
1
2
D1(x− x′)µν − i

2
sign(t− t′)D(x− x′)µν , (35)

−iD∗F (x− x′)µν =
1
2
D1(x− x′)µν +

i
2

sign(t− t′)D(x− x′)µν . (36)

Correspondingly, we define a commutator super-operator Jc(x) and an anti-
commutator super-operator Ja(x) by means of

Jµ
c (x)ρ ≡ [jµ(x), ρ], Jµ

a (x)ρ ≡ {jµ(x), ρ}, (37)

which are related to the previously introduced super-operators Jµ
±(x) by

Jµ
c (x) = Jµ

+(x) − Jµ
−(x), Jµ

a (x) = Jµ
+(x) + Jµ

−(x). (38)

In terms of these quantities the influence phase functional may now be written
as

iΦ[Jc, Ja] =
∫ tf

ti

d4xLC(x) (39)

+
∫ tf

ti

d4x
∫ t

ti

d4x′
{

i
2
D(x− x′)µνJµ

c (x)Jν
a (x′)

− 1
2
D1(x− x′)µνJµ

c (x)Jν
c (x′)

}
.

This form of the influence phase functional will be particularly useful later
on. It represents the influence of the radiation field on the matter dynamics
in terms of the two fundamental 2-point correlation functions D(x− x′) and
D1(x − x′). Note that the double space-time integral in Eq. (39) is already
a time-ordered integral since the integration over t′ = x′0 extends over the
time interval from ti to t = x0.

For a physical discussion of these results it may be instructive to compare
Eq. (28) with the structure of a Markovian quantum master equation in
Lindblad form [3],

dρm
dt

= −i[Hm, ρm] +
∑
i

(
AiρmA

†
i −

1
2
A†iAiρm − 1

2
ρmA

†
iAi

)
, (40)

where Hm generates the coherent evolution and the Ai denote a set of opera-
tors, the Lindblad operators, labeled by some index i. One observes that the
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terms of the influence phase functional involving the current super-operators
in the combinations J+J− and J−J+ correspond to the gain terms in the
Lindblad equation having the form AiρmA

†
i . These terms may be interpreted

as describing the back action on the reduced system of the matter degrees
of freedom induced by “real” processes in which photons are absorbed or
emitted. The presence of these terms leads to a transformation of pure states
into statistical mixtures. Namely, if we disregard the terms containing the
combinations J+J− and J−J+ the remaining expression takes the form

ρm(tf ) ≈ U(tf , ti)ρm(ti)U†(tf , ti), (41)

where

U(tf , ti) = T j
← exp

[
−i
∫ tf

ti

d4xHC(x) (42)

− i
2

∫ tf

ti

d4x
∫ tf

ti

d4x′DF (x− x′)µνjµ(x)jν(x′)
]
.

Eq. (41) shows that the contributions involving the Feynman propagators
and the combinations J+J+ and J−J− of super-operators preserve the purity
of states [12]. Recall that all correlations functions have been defined in terms
of the transversal radiation field. We may turn to the covariant form of the
correlation functions if we replace at the same time the current density by
its transversal component jµtr. The expression (42) is then seen to contain the
vacuum-to-vacuum amplitude A[j] of the electromagnetic field in the presence
of a classical, transversal current density jµtr(x) [13],

A[j] = exp
[
− i

2

∫
d4x
∫

d4x′DF (x− x′)µνj
µ
tr(x)jνtr(x

′)
]
. (43)

With the help of the decomposition (35) of the Feynman propagator into a
real and an imaginary part we find

A[j] = exp
[
i
(
S(1) + iS(2)

)]
. (44)

The vacuum-to-vacuum amplitude is thus represented in terms of a complex
action functional with the real part

S(1) =
1
4

∫
d4x
∫

d4x′sign(t− t′)D(x− x′)µνj
µ
tr(x)jνtr(x

′), (45)

and with the imaginary part

S(2) =
1
4

∫
d4x
∫

d4x′D1(x− x′)µνj
µ
tr(x)jνtr(x

′). (46)

The imaginary part S(2) yields the probability that no photon is emitted by
the current jµtr,

|A[j]|2 = exp
(
−2S(2)

)
. (47)
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In covariant form we have

D(x− x′)µν = − 1
2π

sign(t− t′)δ[(x− x′)2]gµν , (48)

and, hence,

S(1) = − 1
8π

∫
d4x
∫

d4x′δ[(x− x′)2]jtrµ (x)jµtr(x
′). (49)

This is the classical Feynman-Wheeler action. It describes the classical mo-
tion of a system of charged particles by means of a non-local action which
arises after the elimination of the degrees of freedom of the electromagnetic
radiation field. In the following sections we will demonstrate that it is just
the imaginary part S(2) which leads to the destruction of coherence of the
matter degrees of freedom.

4 The Interaction of a Single Electron with the
Radiation Field

In this section we shall apply the foregoing general theory to the case of a
single electron interacting with the radiation field where we confine ourselves
to the non-relativistic approximation. It will be seen that this simple case
already contains the basic physical mechanism leading to decoherence.

4.1 Representation of the Electron Density Matrix in the
Non-Relativistic Approximation

The starting point will be the representation (29) for the reduced matter
density with expression (39) for the influence phase functional Φ. It must be
remembered that the correlation functions D(x−x′)µν and D1(x−x′)µν have
been defined in terms of the transversal radiation field using Coulomb gauge
and that they thus involve projections onto the transversal component. In
fact, we have the replacements,

D(x− x′)µν −→ D(x− x′)ij = −
(
δij − ∂i∂j

∆

)
D(x− x′)

for the commutator functions, and

D1(x− x′)µν −→ D1(x− x′)ij = +
(
δij − ∂i∂j

∆

)
D1(x− x′)

for the anti-commutator function, where

D(x− x′) = −i
∫

d3k
2(2π)3ω

[exp (−ik(x− x′)) − exp (ik(x− x′))] ,
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and

D1(x− x′) =
∫

d3k
2(2π)3ω

[exp (−ik(x− x′)) + exp (ik(x− x′))] coth (βω/2) ,

with the notation kµ = (ω,k) = (|k|,k) for the components of the wave
vector. It should be noted that the commutator function is independent of the
temperature, while the anti-commutator function does depend on T through
the factor coth(βω/2) = 1 + 2N(ω), where N(ω) is the average number of
photons in a mode with frequency ω. Hence, invoking the non-relativistic
(dipole) approximation we may replace

D(x−x′)ij −→ D(t−t′)ij = δijD(t−t′) = δij

∫ ∞
0

dωJ(ω) sinω(t−t′), (50)

and

D1(x− x′)ij −→ D1(t− t′)ij = δijD1(t− t′) (51)

= δij

∫ ∞
0

dωJ(ω) coth (βω/2) cosω(t− t′),

where we have introduced the spectral density

J(ω) =
e2

3π2
ωΘ(Ω − ω), (52)

with some ultraviolet cutoff Ω (see below). It is important to stress here that
the spectral density increases with the first power of the frequency ω. Had
we used dipole coupling −ex · E of the electron coordinate x to the electric
field strength E, the corresponding spectral density would be proportional
to the third power of the frequency. This means that the coupling to the
radiation field in the dipole approximation may be described as a special
case of the famous Caldeira-Leggett model [2] and that in the language of
the theory of quantum Brownian motion [14] the radiation field constitutes a
super-Ohmic environment [15,16]. Note also that we now include the factor
e2 into the definition of the correlation function. Within the non-relativistic
approximation we may thus replace the current density by

j(t,x) −→ p(t)
2m

δ(x− x(t)) + δ(x− x(t))
p(t)
2m

, (53)

where p(t) and x(t) denote the momentum and position operator of the
electron in the interaction picture with respect to the Hamiltonian

Hm =
p2

2m
+ V (x) (54)

for the electron, V (x) being some external potential.
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We are thus led to the following non-relativistic approximation of Eq. (29),

ρm(tf ) = T←

(
exp
[∫ tf

ti

dt
∫ t

ti

dt′
{

i
2
D(t− t′)

pc(t)
m

pa(t′)
m

(55)

−1
2
D1(t− t′)

pc(t)
m

pc(t′)
m

}])
ρm(ti).

This equation represents the density matrix (neglecting the spin degree of
freedom) for a single electron interacting with the radiation field at tempera-
ture T . In accordance with the definitions (37) and (38) pc is a commutator
super-operator and pa an anti-commutator super-operator. In the theory of
quantum Brownian motion the function D(t − t′) is called the dissipation
kernel, whereas D1(t− t′) is referred to as noise kernel.

4.2 The Path Integral Representation

The reduced density matrix given in Eq. (55) admits an equivalent path
integral representation [14] which may be written as follows,

ρm(xf ,x
′
f , tf ) =

∫
d3xi

∫
d3x′iJ(xf ,x

′
f , tf ; xi,x

′
i, ti)ρm(xi,x

′
i, ti), (56)

with the propagator function

J(xf ,x
′
f , tf ; xi,x

′
i, ti) =

∫
DxDx′ exp {i (Sm[x] − Sm[x′]) + iΦ[x,x′]} .

(57)
This is a double path integral which is to be extended over all paths x(t) and
x′(t) with the boundary conditions

x′(ti) = x′i, x′(tf ) = x′f , x(ti) = xi, x(tf ) = xf . (58)

Sm[x] denotes the action functional for the electron,

Sm[x] =
∫ tf

ti

dt
(

1
2
mẋ2 − V (x)

)
, (59)

while the influence phase functional becomes,

iΦ[x,x′] =
∫ tf

ti

dt
∫ t

ti

dt′
{

i
2
D(t− t′)

(
ẋ(t) − ẋ′(t)

) (
ẋ(t′) + ẋ′(t′)

)
−1

2
D1(t− t′)

(
ẋ(t) − ẋ′(t)

) (
ẋ(t′) − ẋ′(t′)

)}
.(60)

We define the new variables

q = x− x′, r =
1
2

(x + x′), (61)
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and set, for simplicity, the initial time equal to zero, ti = 0. We may then
write Eq. (56) as

ρm(rf , qf , tf ) =
∫

d3ri
∫

d3qiJ(rf , qf , tf ; ri, qi)ρm(ri, qi, 0). (62)

The propagator function

J(rf , qf , tf ; ri, qi) =
∫

Dr

∫
Dq exp{iA[r, q]} (63)

is a double path integral over all path r(t), q(t) satisfying the boundary
conditions,

r(0) = ri, r(tf ) = rf , q(0) = qi, q(tf ) = qf . (64)

The weight factor for the paths r(t), q(t) is defined in terms of an effective
action A functional,

A[r, q] =
∫ tf

0
dt
(
mṙq̇ − V (r +

1
2
q) + V (r − 1

2
q)
)

+
∫ tf

0
dt
∫ tf

0
dt′θ(t− t′)D(t− t′)q̇(t)ṙ(t′)

+
i
4

∫ tf

0
dt
∫ tf

0
dt′D1(t− t′)q̇(t)q̇(t′). (65)

The first variation of A is found to be

δA = −
∫ tf

0
dt
{
δq(t)

[
mr̈(t) +

1
2
∇r(V (r +

1
2
q) + V (r − 1

2
q))

+
d
dt

∫ t

0
dt′D(t− t′)ṙ(t′) +

i
2

d
dt

∫ tf

0
dt′D1(t− t′)q̇(t′)

]

+δr(t)
[
mq̈(t) + 2∇q(V (r +

1
2
q) + V (r − 1

2
q))

+
d
dt

∫ tf

t

dt′D(t′ − t)q̇(t′)
]}

, (66)

which leads to the classical equations of motion,

mr̈(t) +
1
2
∇r(V (r +

1
2
q) + V (r − 1

2
q)) +

d
dt

∫ t

0
dt′D(t− t′)ṙ(t′)

= − i
2

d
dt

∫ tf

0
dt′D1(t− t′)q̇(t′), (67)

and

mq̈(t) + 2∇q(V (r +
1
2
q) + V (r − 1

2
q)) +

d
dt

∫ tf

t

dt′D(t′ − t)q̇(t′) = 0. (68)
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4.3 The Abraham-Lorentz Equation

The real part of the equation of motion (67), which is obtained by setting the
right-hand side equal to zero, yields the famous Abraham-Lorentz equation
for the electron [17]. It describes the radiation damping through the damping
kernel D(t− t′) [15]. To see this we write the real part of Eq. (67) as

mr̈(t) +
d
dt

∫ t

0
dt′D(t− t′)ṙ(t′) = F ext(t), (69)

where F ext(t) denotes an external force derived from the potential V . The
damping kernel can be written (see Eqs. (50) and (52))

D(t− t′) =
∫ Ω

0
dω

e2

3π2
ω sinω(t− t′) =

e2

3π2
d

dt′

∫ Ω

0
dω cosω(t− t′)

=
e2

3π2
d

dt′
sinΩ(t− t′)

t− t′
≡ e2

3π2
d

dt′
f(t− t′),

where we have introduced the function

f(t) ≡ sinΩt
t

. (70)

To be specific the UV-cutoff Ω is taken to be

�Ω = mc2, (71)

which implies that

Ω =
mc2

�
=

c

λ̄C
, (72)

where
λ̄C =

�

mc
(73)

is the Compton wavelength. For an electron we have

λ̄C ≈ 3.8 × 10−13m and Ω ≈ 0.78 × 1021s−1. (74)

The term of the equation of motion (69) involving the damping kernel
can be written as follows,

d
dt

∫ t

0
dt′D(t− t′)ṙ(t′) =

e2

3π2
d
dt

∫ t

0
dt′
[

d
dt′

f(t− t′)
]

ṙ(t′) (75)

=
e2

3π2
d
dt

[
−
∫ t

0
dt′f(t− t′)r̈(t′) + f(0)ṙ(t) − f(t)ṙ(0).

]

For times t such that Ωt� 1, i.e. t� 10−21s, we may replace

f(t) −→ πδ(t), (76)
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and approximate f(t) ≈ 0, while Eq. (70) yields f(0) = Ω. Thus we obtain,

d
dt

∫ t

0
dt′D(t− t′)ṙ(t′) =

e2

3π2
d
dt

[
−π

2
r̈(t) + Ωṙ(t)

]
, (77)

which finally leads to the equation of motion,(
m +

e2Ω

3π2

)
v̇(t) − e2

6π
v̈(t) = F ext(t), (78)

where v = ṙ is the velocity. This is the famous Abraham-Lorentz equation
[17]. The term proportional to the third derivative of r(t) describes the damp-
ing of the electron motion through the emitted radiation. This term does not
depend on the cutoff frequency, while the cutoff-dependent term yields a
renormalization of the electron mass,

mR = m + ∆m = m +
e2Ω

3π2
. (79)

It is important to note that the electro-magnetic mass ∆m diverges linearly
with the cutoff. The equation of motion (78) can be obtained heuristically by
means of the Larmor formula for the power radiated by an accelerated charge.
More rigorously, it has been derived by Abraham and by Lorentz from the
conservation law for the field momentum, assuming a spherically symmet-
ric charge distribution and that the momentum is of purely electromagnetic
origin [17].

For the cutoff Ω chosen above we get

∆m =
me2

3π2
=

4
3π

αm, (80)

and, hence,
∆m

m
=

4
3π

α ≈ 0.0031.

The decomposition (79) of the mass is, however, unphysical, since the electron
is never observed without its self-field and the associated field momentum. In
other words, we have to identify the renormalized mass mR with the observed
physical mass which enables us to write Eq. (78) as

mR [v̇(t) − τ0v̈(t)] = F ext(t). (81)

Here, the radiation damping term has been written in terms of a characteristic
radiation time scale τ0 given by

τ0 ≡ e2

6πmR
=

2
3
re ≈ 0.6 × 10−23s, (82)

where re denotes the classical electron radius,

re =
e2

4πmR
= αλ̄C ≈ 2.8 × 10−15m. (83)
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It is well-known that Eq. (81), being a classical equation of motion for the
electron, leads to the problem of exponentially increasing runaway solutions.
Namely, for F ext = 0 we have

v̇ − τ0v̈ = 0. (84)

In addition to the trivial solution of a constant velocity, v = const, one also
finds the solution

v̇(t) = v̇(0) exp(t/τ0),

describing an exponential growth of the acceleration for v̇(0) �= 0. In order
to exclude these solutions one imposes the boundary condition

v̇(t) −→ 0 for t −→∞,

if F ext also vanishes in this limit. This boundary condition can be imple-
mented by rewriting Eq. (81) as an integro-differential equation

mRr̈(t) =
∫ ∞
0

ds exp(−s)F ext(t + τ0s). (85)

On differentiating Eq. (85) with respect to time, it is easily verified that one
is led back to Eq. (81). However, for F ext = 0 it follows immediately from
Eq. (85) that v = const, such that runaway solutions are excluded.

On the other hand, Eq. (85) shows that the acceleration depends upon
the future value of the force. Hence, the electron reacts to signals lying a time
of order τ0 in the future, which is the phenomenon of pre-acceleration. This
phenomenon should, however, not be taken too seriously, since the description
is only classical. The time scale τ0 corresponds to a length scale re which
is smaller than the Compton wavelength λ̄C by a factor of α, such that a
quantum mechanical treatment of the problem is required.

4.4 Construction of the Decoherence Function

In this subsection we derive the explicit form of the propagator function (63)
for the reduced electron density matrix in the case of quadratic potentials,

V (x) =
1
2
mRω

2
0x

2. (86)

Our aim is to introduce and to determine the decoherence function which
provides a quantitative measure for the degree of decoherence. On using

V (r + q/2) + V (r − q/2) = mRω
2
0r

2 + mRω
2
0q

2/4 (87)
−V (r + q/2) + V (r − q/2) = −mRω

2
0r · q,
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the classical equations of motion take the form

mR

[
r̈(t) + ω2

0

∫ ∞
0

ds exp(−s)r(t + τ0s)
]

=− i
2

d
dt

∫ tf

0
dt′D1(t− t′)q̇(t′)(88)

mR

[
q̈(t) + ω2

0

∫ ∞
0

ds exp(−s)q(t− τ0s)
]

= 0. (89)

Note, that Eq. (89) is the backward equation of the real part of Eq. (88). More
precisely, if q(t) solves Eq. (89), then r(t) ≡ q(tf − t) is a solution of (88)
with the right-hand side set equal to zero.

The above equations of motion lead to the following renormalized action
functional

A[r, q] =
∫ tf

0
dtmR

[
ṙ(t)q̇(t) − ω2

0q(t)
∫ ∞
0

ds exp(−s)r(t + τ0s)
]

+
i
4

∫ tf

0
dt
∫ tf

0
dt′D1(t− t′)q̇(t)q̇(t′). (90)

In the following we shall use this renormalised action functional instead of
the action given in Eq. (65). By variation with respect to q(t) we immediately
obtain Eq. (88), whereas the variation with respect to r(t) yields:

−
∫ tf

0
dt mR

[
q̈(t)δr(t) + ω2

0

∫ ∞
0

ds exp(−s)q(t)δr(t + τ0s)
]

= 0,

which implies∫ tf

0
dtq̈(t)δr(t) + ω2

0

∫ ∞
0

ds
∫ tf

0
dt exp(−s)q(t)δr(t + τ0s)

=
∫ tf

0
dtq̈(t)δr(t) + ω2

0

∫ ∞
0

ds
∫ tf+τ0s

τ0s

dt exp(−s)q(t− τ0s)δr(t)

= 0. (91)

In the last time integral we may extend the integration over the time interval
from 0 to tf . This is legitimate since τ0 is the radiation time scale: By setting
this variation of the action equal to zero we thus neglect times of the order
of the pre-acceleration time, which directly leads to the equation of motion
(89).

Since the action functional is quadratic the propagator function can be
determined exactly by evaluating the action along the classical solution and
by taking into account Gaussian fluctuations around the classical paths. We
therefore assume that r(t) and q(t) are solutions of the classical equations
of motion (88) and (89) with boundary conditions (64). The effective action
along these solutions may be written as

Acl[r, q] = mR[ṙfqf − ṙiqi]
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−
∫ tf

0
dtmRq(t)

[
r̈(t) + ω2

0

∫ ∞
0

ds exp(−s)r(t + τ0s)
]

+
i
4

∫ tf

0
dt
∫ tf

0
dt′D1(t− t′)q̇(t)q̇(t′), (92)

or, equivalently,

Acl[r, q] = mR[ṙfqf − ṙiqi] +
i
2

∫ tf

0
dt q(t)

d
dt

∫ tf

0
dt′D1(t− t′)q̇(t′)

+
i
4

∫ tf

0
dt
∫ tf

0
dt′D1(t− t′)q̇(t)q̇(t′). (93)

Eq. (88) shows that the solution r(t) is, in general, complex due to the cou-
pling to q(t) via the noise kernel D1(t − t′). Consider the decomposition of
r(t) into real and imaginary part,

r(t) = r(1)(t) + ir(2)(t), (94)

where r(1) is a solution of the real part of Eq. (88), while r(2) solves its
imaginary part,

mR

[
r̈(2)(t) + ω2

0

∫ ∞
0

ds exp(−s)r(2)(t + τ0s)
]

= −1
2

d
dt

∫ tf

0
dt′D1(t−t′)q̇(t′).

(95)
We now demonstrate that, in order to determine the action along the

classical paths, it suffices to find the homogeneous solution r(1) and to insert
it in the action functional [14]. In other words we have

Acl[r(1), q] = Acl[r, q], (96)

where

Acl[r(1), q] = mR[ṙ(1)f qf − ṙ
(1)
i qi]

+
i
4

∫ tf

0
dt
∫ tf

0
dt′D1(t− t′)q̇(t)q̇(t′). (97)

To proof this statement we first deduce from Eq. (95) that

i
2

∫ tf

0
dt q(t)

d
dt

∫ tf

0
dt′D1(t− t′)q̇(t′)

= −imR

∫ tf

0
dt q(t)

[
r̈(2)(t) + ω2

0

∫ ∞
0

ds exp(−s)r(2)(t + τ0s)
]

= −imR[ṙ(2)f qf − ṙ
(2)
i qi]

−imR

∫ tf

0
dt
[
r(2)(t)q̈(t) + ω2

0

∫ ∞
0

ds exp(−s)r(2)(t + τ0s)q(t)
]
. (98)
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The term within the square brackets is seen to vanish if one employs Eq. (89)
and the same arguments that were used to derive the equation of motion
from the variation (91) of the action functional. Furthermore, we made use
of r(2)(0) = r(2)(tf ) = 0 which means that the real part r(1)(t) of the solution
satisfies the given boundary conditions. Hence we find

i
2

∫ tf

0
dt q(t)

d
dt

∫ tf

0
dt′D1(t− t′)q̇(t′) = −imR[ṙ(2)f qf − ṙ

(2)
i qi], (99)

from which we finally obtain with the help of (93),

Acl[r, q] = mR[ṙfqf − ṙiqi] − imR[ṙ(2)f qf − ṙ
(2)
i qi]

+
i
4

∫ tf

0
dt
∫ tf

0
dt′D1(t− t′)q̇(t)q̇(t′)

= Acl[r(1), q]. (100)

This completes the proof of the above statement.
Summarizing, the procedure to determine the propagator function for the

electron can now be given as follows. One first solves the equations of motion

r̈(t) + ω2
0

∫ ∞
0

ds exp(−s)r(t + τ0s) = 0, (101)

q̈(t) + ω2
0

∫ ∞
0

ds exp(−s)q(t− τ0s) = 0, (102)

together with the boundary conditions (64). With the help of these solutions
one then evaluates the classical action,

Acl[r, q] = mR[ṙfqf − ṙiqi] +
i
4

∫ tf

0
dt
∫ tf

0
dt′D1(t− t′)q̇(t)q̇(t′), (103)

which immediately yields the propagator function

J(rf , qf , tf ; ri, qi) = N exp {iAcl[r, q]}
= N exp {imR(ṙfqf − ṙiqi) + Γ (qf , qi, tf )} . (104)

Here, N is a normalization factor which is determined from the normalization
condition ∫

d3rfJ(rf , qf = 0, tf ; ri, qi) = δ(qi). (105)

The function Γ (qf , qi, tf ) introduced in Eq. (104) will be referred to as the
decoherence function. It is given in terms of the noise kernel D1(t− t′) as

Γ (qf , qi, tf ) = −1
4

∫ tf

0
dt
∫ tf

0
dt′D1(t− t′)q̇(t)q̇(t′). (106)
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Explicitly we find with the help of Eq. (51),

Γ = −1
4

∫ tf

0
dt
∫ tf

0
dt′
∫ ∞
0

dωJ(ω) coth(βω/2) cosω(t− t′)q̇(t)q̇(t′). (107)

The double time-integral can be written as

Re
∫ tf

0
dt
∫ tf

0
dt′ exp[iω(t− t′)]q̇(t)q̇(t′) =

∣∣∣∣
∫ tf

0
dt exp(iωt)q̇(t)

∣∣∣∣
2

. (108)

Hence, the decoherence function takes the form

Γ (qf , qi, tf ) = −1
4

∫ ∞
0

dωJ(ω) coth(βω/2) |Q(ω)|2 , (109)

where we have introduced

Q(ω) ≡
∫ tf

0
dt exp(iωt)q̇(t). (110)

It can be seen from the above expressions that Γ is a non-positive func-
tion. The decoherence function will be demonstrated below to describe the
reduction of electron coherence through the influence of the radiation field.

5 Decoherence Through the Emission of
Bremsstrahlung

As an example we shall investigate in this section the most simple case,
namely that of a free electron coupled to the radiation field. This case is
of particular interest since it allows an exact analytical determination of
the decoherence function and already yields a clear physical picture for the
decoherence mechanism. Having determined the decoherence function, we
proceed with an investigation of its influence on the propagation of electronic
wave packets.

5.1 Determination of the Decoherence Function

We set ω0 = 0 to describe the free electron. The equations of motion (101)
and (102) with the boundary conditions (64) can easily be solved to yield

r(t) = ri +
rf − ri

tf
t, q(t) = qi +

qf − qi

tf
t. (111)

Making use of Eq. (104) and determining the normalization factor from
Eq. (105) we thus get the propagator function,

J(rf , qf , tf ; ri, qi) =(
mR

2πtf

)3
exp
{

i
mR

tf
(rf − ri)(qf − qi) + Γ (qf , qi, tf )

}
. (112)
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As must have been expected J is invariant under space translations since it
depends only on the difference rf − ri. Furthermore, one easily recognizes
that the contribution

G(rf − ri, qf − qi, tf ) ≡
(
mR

2πtf

)3
exp
{

i
mR

tf
(rf − ri)(qf − qi)

}
(113)

is simply the propagator function for the density matrix of a free electron
with mass mR for a vanishing coupling to the radiation field. We can thus
write the electron density matrix as follows,

ρm(rf , qf , tf ) =
∫

d3ri
∫

d3qiG(rf − ri, qf − qi, tf )

× exp {Γ (qf , qi, tf )} ρm(ri, qi, 0), (114)

which exhibits that the decoherence function Γ describes the influence of the
radiation field on the electron motion.

We proceed with an explicit calculation of the decoherence function. It
follows from Eqs. (110) and (111) that

Q(ω) =
∫ tf

0
dt exp(iωt)

qf − qi

tf
=

exp(iωtf ) − 1
iω

w, (115)

where
w ≡ 1

tf
(qf − qi). (116)

Therefore, the decoherence function is found to be

Γ = −e2w2

6π2

∫ Ω

0
dω

1 − cosωtf
ω

coth(βω/2), (117)

where we have used expression (52) for the spectral density J(ω). The deco-
herence function may be decomposed into a vacuum contribution Γvac and a
thermal contribution Γth,

Γ = Γvac + Γth, (118)

where

Γvac = −e2w2

6π2

∫ Ω

0
dω

1 − cosωtf
ω

(119)

and

Γth = −e2w2

6π2

∫ Ω

0
dω

1 − cosωtf
ω

[coth(βω/2) − 1] . (120)

The frequency integral appearing in the vacuum contribution can be eval-
uated in the following way. Substituting x = ωtf we get
∫ Ω

0
dω

1 − cosωtf
ω

=
∫ Ωtf

0
dx

1 − cosx
x

= lnΩtf + C + O

(
1

Ωtf

)
, (121)
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where C ≈ 0.577 is Euler’s constant [18]. For Ωtf � 1 we obtain asymptoti-
cally

Γvac ≈ −e2w2

6π2
lnΩtf = − e2

6π2
lnΩtf

(qf − qi)2

t2f
. (122)

To determine the thermal contribution Γth we first write Eq. (120) as
follows,

Γth = −e2w2

6π2

∫ tf

0
dt
∫ Ω

0
dω [coth(βω/2) − 1] sinωt ≡ −e2w2

6π2
I. (123)

Introducing the integration variable x = βω we can cast the double integral
I into the form

I =
1
β

∫ tf

0
dt
∫ βΩ

0
dx [coth(x/2) − 1] sin (tx/β) .

Here, we have βΩ = �Ω/kBT and, using the cutoff �Ω = mc2, we get

βΩ =
mc2

kBT
.

For temperatures T obeying

kBT 
 mc2 (124)

the upper limit of the x-integral may be shifted from βΩ to ∞. Condition
(124) states that

�
2

mkBT
� �

2

m2c2
,

which means that the thermal wavelength λ̄th = �/
√

2mkBT is much larger
than the Compton wavelength,

λ̄th � λ̄C . (125)

Thermal and Compton wavelength are of equal size at a temperature of
about 109 Kelvin. Condition (124) therefore means that T 
 109 K. Under
this condition we now obtain

I ≈ 1
β

∫ tf

0
dt
∫ ∞
0

dx [coth(x/2) − 1] sin (tx/β)

=
1
β

∫ tf

0
dt
[
π coth

(
πt

β

)
− β

t

]

= ln
(

sinh (πtf/β)
πtf/β

)
, (126)



54 Heinz–Peter Breuer and Francesco Petruccione

where we have employed the formula∫ ∞
0

dx [coth(x/2) − 1] sin τx = π coth(πτ) − 1
τ
. (127)

The quantity

τB ≡ β

π
=

�

πkBT
≈ 2.4 · 10−12 s/T[K] (128)

represents the correlation time of the thermal radiation field. Putting these
results together we get the following expression for the thermal contribution
to the decoherence function,

Γth ≈ − e2

6π2
ln
(

sinh(tf/τB)
tf/τB

)
(qf − qi)2

t2f
. (129)

Adding this expression to the vacuum contribution (122) and introducing
α = e2/4π�c and further factors of c, we can finally write the expression for
the decoherence function as

Γ (qf , qi, tf ) ≈ −2α
3π

[
lnΩtf + ln

(
sinh(tf/τB)

tf/τB

)]
(qf − qi)2

(ctf )2
. (130)

Alternatively, we may write

Γ (qf , qi, tf ) = − (qf − qi)2

2L(tf )2
, (131)

where the quantity L(tf ) defined by

L(tf )2 ≡ 3π
4α

[
lnΩtf + ln

(
sinh(tf/τB)

tf/τB

)]−1
· (ctf )2 (132)

may be interpreted as a time-dependent coherence length.
The vacuum contribution Γvac to the decoherence function (130) appar-

ently diverges with the logarithm of the cutoff Ω. This is, however, an artificial
divergence which can be seen as follows. The decoherence function is defined
in terms of the Fourier transform Q(ω) of q̇(t), see Eqs. (109) and (110).
Evaluating Q(ω) as in Eq. (115) we assume that the velocity is zero prior to
the initial time t = 0, that it suddenly jumps to the value given by Eq. (116),
and that it again jumps to zero at time tf . This implies a force having the
shape of two δ-function pulses around t = 0 and t = tf . Such a force acts
over two infinitely small time intervals and leads to sharp edges in the clas-
sical path. More realistically one has to consider a finite time scale τp for the
action of the force which must be still large compared to the radiation time
scale τ0. We may interpret the time scale τp as a preparation time since it
represents the time required to prepare the initial state of a moving electron.
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A natural, physical cutoff frequency of the order Ω ∼ 1/τp is thus introduced
by the preparation time scale τp and we may set

Ωtf =
tf
τp

(133)

in the following. It should be noted that the weak logarithmic dependence
on Ω shows that the precise value of the preparation time scale τp is rather
irrelevant. The important point is that the preparation time introduces a
new time scale which removes the dependence on the cutoff. The vacuum
decoherence function can thus be written,

Γvac ≈ −2α
3π

ln
(
tf
τp

)
(qf − qi)2

(ctf )2
, (134)

showing that it vanishes for large times essentially as t−2f .
The thermal contribution Γth is determined by the thermal correlation

time τB . For T −→ 0 we have τB −→∞, and this contribution vanishes. For
large times tf � τB the thermal decoherence function may be approximated
by

Γth ≈ −2α
3π

tf
τB

(qf − qi)2

(ctf )2
, (135)

which shows that Γth vanishes as t−1f . Thus, for short times the vacuum
contribution dominates, whereas the thermal contribution is dominant for
large times. Both contributions Γvac and Γth are plotted separately in Fig. 1
which clearly shows the crossover between the two regions of time.

Eq. (132) implies that the vacuum coherence length is roughly of the order

L(tf )vac ∼ c · tf . (136)

To see this let us assume a typical preparation time scale of the order τp ∼
10−21s. If we take tf to be of the order of 1s we find that ln(tf/τp) ∼ 48.
In the rather extreme case tf ∼ 1017, which is of the order of the age of the
universe, we get ln(tf/τp) ∼ 87. On using 3π/4α ≈ 322 and Eq. (132) for
T = 0 one is led to the estimate (136).

5.2 Wave Packet Propagation

Having obtained an expression for the decoherence function Γ we now proceed
with a detailed discussion of its physical significance. For this purpose it will
be helpful to investigate first how Γ affects the time-evolution of an electronic
wave packet. We consider the initial wave function at time t = 0,

ψ0(x) =
(

1
2πσ20

)3/4
exp
[
− (x− a)2

4σ20
− ik0(x− a)

]
, (137)
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Fig. 1. The vacuum contribution Γvac and the thermal contribution Γth of the de-
coherence function Γ (Eq. (130)). For a fixed value |qf − qi| = 0.1 · cτB , the two
contributions are plotted against the time tf which is measured in units of the ther-
mal correlation time τB . The temperature was chosen to be T = 1K. One observes
the decrease of both contributions for increasing time, demonstrating the vanishing
of decoherence effects for long times. The thermal contribution Γth vanishes as t−1

f ,
while the vacuum contribution Γvac decays essentially as t−2

f , leading to a crossover
between two regimes dominated by the vacuum and by the thermal contribution,
respectively.

describing a Gaussian wave packet centered at x = a with width σ0. With
the help of Eqs. (113), (114) and (131) we get the position space probability
density at the final time tf ,

ρm(rf , tf ) ≡ ρm(rf , qf = 0, tf ) (138)

=
∫

d3ri
∫

d3qi

(
mR

2πtf

)3
exp
[
− imR

tf
(rf − ri)qi − q2i

2L(tf )2

]

×ψ0(ri +
1
2
qi)ψ∗0(ri − 1

2
qi).

The Gaussian integrals may easily be evaluated with the result,

ρm(rf , tf ) =
(

1
2πσ(tf )2

)3/2
exp
[
− (rf − b)2

2σ(tf )2

]
, (139)
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where
b ≡ a− k0tf

mR
(140)

and

σ(tf )2 ≡ σ20 +
t2f

4m2
Rσ

2
0

+
t2f

m2
RL

2 . (141)

This shows that the wave packet propagates very much like that of a free
Schrödinger particle with physical mass mR. The centre b of the proba-
bility density moves with velocity −k0/mR, while its spreading, given by
Eq. (141), is similar to the spreading σ(tf )2free which is obtained from the
free Schrödinger equation,

σ(tf )2free = σ20 +
t2f

4m2
Rσ

2
0
. (142)

If we write

σ(tf )2 = σ20 +
t2f

4m2
Rσ

2
0

(
1 +

4σ20
L(tf )2

)
(143)

we observe that the decoherence function affects the probability density only
though the width σ(tf ) and leads to an increase of the spreading. In view
of the estimate (136) the correction term in Eq. (143) is, however, small for
times satisfying

L(tf ) ∼ c · tf � σ0. (144)

This means that the influence of the radiation field can safely be neglected
for times which are large compared to the time it takes a light signal to travel
the width of the wave packet.

2a

v -v

Fig. 2. Sketch of the interference experiment used to determine the decoherence
factor. Two Gaussian wave packets with initial separation 2a approach each other
with opposite velocities of equal magnitude v = k0/mR.

Let us now study the evolution of a superposition of two Gaussian wave
packets separated by a distance 2a. This case has been studied already by
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Barone and Caldeira [15] who find, however, a different result. We assume
that the packets have equal widths σ0 and that they are centered initially at
x = ±a = ±(a, 0, 0). The packets are supposed to approach each other with
the speed v = k0/mR > 0 (see Fig. 2). For simplicity the motion is assumed
to occur along the x-axis. Thus we have the initial state

ψ0(x) = A1

(
1

2πσ20

)3/4
exp
[
− (x− a)2

4σ20
− ik0(x− a)

]

+ A2

(
1

2πσ20

)3/4
exp
[
− (x + a)2

4σ20
+ ik0(x + a)

]
, (145)

where k0 = (k0, 0, 0) and A1, A2 are complex amplitudes. Our aim is to
determine the interference pattern that arises in the moment of collision of
the two packets at x = 0. Using again Eqs. (113), (114) and (131) and doing
the Gaussian integrals we find

ρm(rf , tf ) =
(

1
2πσ(tf )2

)3/2
exp

[
− r2f

2σ(tf )2

]

×{|A1|2 + |A2|2 + 2ReA1A
∗
2 exp[ϕ(rf )]

}
. (146)

We recognize a Gaussian envelope centered at rf = 0 with width σ(tf ), an
incoherent sum |A1|2+ |A2|2, and an interference term proportional to A1A

∗
2.

The interference term involves a complex phase given by

ϕ(rf ) = −2ik0rf (1 − ε) − 2a2

L(tf )2
(1 − ε). (147)

The term −2ik0rf describes the usual interference pattern as it occurs for a
free Schrödinger particle, while the contribution 2ik0rfε leads to a modifica-
tion of the period of the pattern. The final time tf = amR/k0 is the collision
time and

v =
a

tf
=

k0
mR

(148)

is the speed of the wave packets. The factor ε is given by

ε ≡ t2f
m2

RL(tf )2σ(tf )2
=

(
1 +

L(tf )2

4σ20
+
m2

Rσ
2
0L(tf )2

t2f

)−1
. (149)

Obviously we always have 0 < ε < 1. Furthermore, for the situation consid-
ered in Eq. (144) we have ε
 1. Thus, we get

ϕ(rf ) = −2ik0rf − 2a2

L(tf )2
. (150)
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The last expression clearly reveals that the real part of the phase ϕ(rf )
describes decoherence, namely a reduction of the interference contrast de-
scribed by the factor

D = exp
[
− (2a)2

2L(tf )2

]
= exp

[
− distance2

2(coherence length)2

]
, (151)

which multiplies the interference term. As was to be expected from the general
formula for Γ , the decoherence factor D is determined by the ratio of the
distance of the two wave packets to the coherence length.

Alternatively, we can write the decoherence factor in terms of the velocity
(148) of the wave packets. In the vacuum case we then get

Dvac = exp
[
−8α

3π
ln
(
tf
τp

)(v
c

)2]
. (152)

This clearly demonstrates that it is the motion of the wave packets which
is responsible for the reduction of of the interference contrast: If one sets
into relative motion the two components of the superposition in order to
check locally their capability to interfere, a decoherence effect is caused by
the creation of a radiation field. As can be seen from Eq. (117) the spectrum
of the radiation field emitted through the moving charge is proportional to
1/ω which is a typical signature for the emission of bremsstrahlung. Thus
we observe that the physical origin for the loss of coherence described by the
decoherence function is the creation of bremsstrahlung.

It is important to recognize that the frequency integral of Eq. (117) con-
verges for ω → 0, see Eq. (121). The decoherence function Γ is thus infrared
convergent which is obviously due to the fact that we consider here a pro-
cess on a finite time scale tf . This means that we have a natural infrared
cutoff of the order of Ωmin ∼ 1/tf , in addition to the natural ultraviolet
cutoff Ω ∼ 1/τp introduced earlier. The important conclusion is that the
decoherence function is therefore infrared as well as ultraviolet convergent.

It might be instructive, finally, to compare our results with the corre-
sponding expressions which are derived from the famous Caldeira-Leggett
master equation in the high-temperature limit (see, e.g. [3]). From the latter
one finds the following expression for the coherence length

L(tf )2CL =
λ̄2th

2γtf
, (153)

where γ is the relaxation rate. This is to be compared with the expressions
(132) for the coherence length. For large temperatures we have the following
dominant time and temperature dependence,

L(tf )2 ∼ tf
T

and L(tf )2CL ∼ 1
Ttf

. (154)
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Hence, while both expressions for the coherence length are proportional to
the inverse temperature, the time dependence is completely different. Namely,
for tf −→∞ we have

L(tf )2 −→∞ and L(tf )2CL −→ 0, (155)

and, therefore, complete coherence in the case of bremsstrahlung and total
destruction of coherence in the Caldeira-Leggett case.

6 The Harmonically Bound Electron in the Radiation
Field

As a further illustration let us investigate briefly the case of an electron in the
radiation field moving in a harmonic external potential. Another approach
to this problem may be found in [19], where the authors arrive, however, at
the conclusion that there is no decoherence effect in the vacuum case.

We take ω0 > 0 and solve the equation of motion (101) with the help of
the ansatz

r(t) = r0 exp(zt), (156)

where, for simplicity, we consider the motion to be one-dimensional. Substi-
tuting this ansatz into (101) one is led to a cubic equation for z,

z2 − τ0z
3 + ω2

0 = 0. (157)

For vanishing coupling to the radiation field (τ0 = 0) the solutions are lo-
cated at z± = ±iω0, describing the free motion of a harmonic oscillator with
frequency ω0.

For τ0 > 0 the cubic equation has three roots, one is real and the other
two are complex conjugated to each other. The real root corresponds to the
runaway solution and must be discarded. Let us assume that the period of
the oscillator is large compared to the radiation time,

τ0 
 1
ω0

. (158)

Because of τ0 ∼ 10−24s this assumption is well satisfied even in the regime
of optical frequencies. We may thus determine the complex roots to lowest
order in ω0τ0,

z± = ±iω0 − 1
2
τ0ω

2
0 . (159)

The purely imaginary roots ±iω0 of the undisturbed harmonic oscillator are
thus shifted into the negative half plane under the influence of the radiation
field. The negative real part describes the radiative damping. In fact, we see
that r(t) decays as exp(−γt/2), where

γ = τ0ω
2
0 =

2
3
α

�ω2
0

mRc2
(160)
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is the damping constant for radiation damping [17]. In the following we con-
sider times tf of the order of magnitude of one period ω0tf ∼ 1. Because of
γtf = (ω0τ0)(ω0tf ) we then have γtf ∼ τ0ω0 
 1. In this case the damping
can be neglected and we may use the free solution in order to determine the
decoherence function.

Let us consider again the case of a superposition of two Gaussian wave
packets in the harmonic potential. The packets are initially separated by a
distance 2a and approach each other with opposite velocities of equal mag-
nitude such that they collide after a quarter of a period, tf = π/2ω0. The
corresponding free solution q(t) is therefore given by

q(t) = qi cosω0t + qf sinω0t. (161)

To describe the situation we have in mind we take qi = 2a (initial separation
of the wave packets) and qf = 0 (to get the probability density). Hence, we
have

q̇(t) = −2aω0 sinω0t, (162)

and we evaluate the Fourier transform,

Q(ω) =
∫ tf

0
dt exp(iωt)q̇(t)

= aω0

[
exp(i[ω + ω0]tf ) − 1

ω + ω0
− exp(i[ω − ω0]tf ) − 1

ω − ω0

]
.

This yields the decoherence function

Γ ≡ Γ (qf = 0, qi, tf ) (163)

= −e2(aω0)2

6π2

∫ Ω

0
dωω

[
1 − cos(ω + ω0)tf

(ω + ω0)2
+

1 − cos(ω − ω0)tf
(ω − ω0)2

]
coth

(
βω

2

)
.

We discuss the case of zero temperature. The frequency integral in Eq.
(163) then approaches asymptotically the value 2 lnΩtf which leads to the
following expression for the decoherence factor,

Dvac = expΓvac = exp
[
−8α

3π
ln
(
tf
τp

)〈(v
c

)2〉]
. (164)

The interesting point to note here is that this equation is the same as Eq. (152)
for the free electron, with the only difference that the square (v/c)2 of the
velocity, which was constant in the previous case, must now be replaced with
its time averaged value 〈(v/c)2〉.

7 Destruction of Coherence of Many-Particle States

For a single electron the vacuum decoherence factor (152) turns out to be very
close to 1, as can be illustrated by means of the following numerical example.
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We take τp to be of the order of 10−21s and tf of the order of 1s. Using a
velocity v which is already as large as 1/10 of the speed of light, one finds
that Γvac ∼ 10−2, corresponding to a reduction of the interference contrast of
about 1%. This demonstrates that the electromagnetic field vacuum is quite
ineffective in destroying the coherence of single electrons.

For a superposition of many-particle states the above picture can lead,
however, to a dramatic increase of the decoherence effect. Consider the su-
perposition

|ψ〉 = |ψ1〉 + |ψ2〉 (165)

of two well-localized, spatially separated N -particle states |ψ1〉 and |ψ2〉. We
have seen that decoherence results from the imaginary part of the influence
phase functional Φ[Jc, Ja], that is from the last term on the right-hand side
of Eq. (39) involving the anti-commutator function D1(x− x′)µν of the elec-
tromagnetic field. Thus, it is the functional

Γ [Jc] = −1
4

∫ tf

ti

d4x
∫ tf

ti

d4x′D1(x− x′)µνJµ
c (x)Jν

c (x′), (166)

which is responsible for decoherence. This shows that the decoherence func-
tion for N -electron states scales with the square N2 of the particle number.
Thus we conclude that for the case of the superposition (165) the decoherence
function must be multiplied by a factor of N2, that is the decoherence factor
for N -particle states takes the form,

DN
vac ∼ exp

[
−8α

3π
ln
(
tf
τp

)(v
c

)2
N2
]
. (167)

This scaling with the particle number obviously leads to a dramatic increase
of decoherence for the superposition of N -particle states. To give an example
we take N = 6·1023, corresponding to 1 mol, and ask for the maximal velocity
v leading to a 1% suppression of interference. With the help of (167) we find
that v ∼ 10−16m/s. This means that, in order to perform an interference
experiment with 1 mol electrons with only 1% decoherence, a velocity of at
most 10−16m/s may be used. For a distance of 1m this implies, for example,
that the experiment would take 3 × 108 years!

8 Conclusions

In this paper the equations governing a basic decoherence mechanism oc-
curring in QED have been developed, namely the suppression of coherence
through the emission of bremsstrahlung. The latter is created whenever two
spatially separated wave packets of a coherent superposition are moved to one
place, which is indispensable if one intends to check locally their capability to
interfere. We have seen that the decoherence effect through the electromag-
netic radiation field is extremely small for single, non-relativistic electrons.
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The decoherence mechanism is thus very ineffective on the Compton length
scale. An important conclusion is that decoherence does not lead to a local-
ization of the particle on arbitrarily small length scales and that no problems
with associated UV-divergences arise here.

The decoherence mechanism through bremsstrahlung exhibits a highly
non-Markovian character. As a result the usual picture of decoherence as a
decay of the off-diagonals in the reduced density matrix does not apply. In
fact, consider a superposition of two wave packets with zero velocity. The
expression (131) for the decoherence function together with the estimate
L(tf )vac ∼ c · tf for the vacuum coherence length L(tf )vac show that de-
coherence effects are negligible for times tf which are large in comparison to
the time it takes light to travel the distance between the wave packets. The
off-diagonal terms of the reduced density matrix for the electron do therefore
not decay at all, which shows the profound difference between the decoher-
ence mechanism through bremsstrahlung and other decoherence mechanisms
(see, e. g. [20]).

A result of particular interest from a fundamental point of view is that
coherence can already be destroyed by the presence of the electromagnetic
field vacuum if superpositions of many-particle states are considered. An im-
portant conclusion which can be drawn from this picture of decoherence in
QED refers to various alternative approaches to decoherence and the closely
related measurement problem of quantum mechanics: In recent years sev-
eral attempts have been made to modify the Schrödinger equation by the
addition of stochastic terms with the aim to explain the non-existence of
macroscopic superpositions through some kind of macrorealism. Namely, the
random terms in the Schrödinger equation lead to a spontaneous destruc-
tion of superpositions in such a way that macroscopic objects are practically
always in definite localized states. Such approaches obviously require the in-
troduction of previously unknown physical constants. In the stochastic theory
of Ghirardi, Pearle and Rimini [21], for example, a single particle microscopic
jump rate of about 10−16s−1 has to be introduced such that decoherence is
extremely weak for single particles but acts sufficiently strong for many par-
ticle assemblies. It is interesting to observe that the decoherence effect caused
by the presence of the quantum field vacuum yields a similar time scale in a
completely natural way without the introduction of new physical parameters.
Thus, QED indeed provides a consistent picture of decoherence and it seems
unnecessary to propose new ad hoc theories for this purpose.

It must be emphasized that the above picture of decoherence in QED
has been derived from the well-established basic postulates of quantum me-
chanics and quantum field theory. It therefore does not, of course, constitute
a logical disprove of alternative approaches. However, it does represent an
example for a basic decoherence mechanism in a microscopic quantum field
theory. In particular, it provides a unified explanation of decoherence which
does not suffer from problems with renormalization (as they occur, e.g. in
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alternative theories [22]) and which does not exclude a priori the existence of
macroscopic quantum coherence. Only under certain well-defined conditions
regarding time scales, relative velocities and the structure of the state vector,
it is true that decoherence becomes important. Thus, decoherence is traced
back to a dynamical effect and not to a modification of the basic principles
of quantum mechanics.

In this paper we have discussed in detail only the non-relativistic approxi-
mation of the reduced electron dynamics. For a treatment of the full relativis-
tic theory, including a Lorentz invariant characterization of the decoherence
induced by the vacuum field, one can start from the formal development given
in section 2. An investigation along these lines could also be of great interest
for the study of measurement processes in the relativistic domain [23].
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12. Diósi L. (1990): Landau’s Density Matrix in Quantum Electrodynamics. Found.
Phys. 20, 63-70.

13. Feynman R. P., Hibbs A. R. (1965): Quantum Mechanics and Path Integrals.
McGraw-Hill, New York.

14. Grabert H., Schramm P., Ingold G.-L. (1988): Quantum Brownian Motion: The
Functional Integral Approach. Phys. Rep. 168, 115-207.

15. Barone P. M. V. B., Caldeira A. O. (1991): Quantum mechanics of radiation
damping. Phys. Rev. A43, 57-63.

16. Anglin J. R., Paz J. P., Zurek W. H. (1997): Deconstructing Decoherence. Phys.
Rev. A55, 4041-4053.



Radiation Damping and Decoherence in Quantum Electrodynamics 65

17. Jackson J. D. (1999): Classical Electrodynamics. Third Edition, John Wiley,
New York.

18. Gradshteyn I. S., Ryzhik I. M. (1980): Table of Integral, Series, and Products.
Academic Press, New York.

19. Dürr D., Spohn H. (2000): Decoherence Trough Coupling to the Radiation
Field. In: Blanchard Ph., Giulini D., Joos E., Kiefer C., Stamatescu I.-O. (Eds.)
Decoherence: Theoretical, Experimental, and Conceptual Problems. Springer-
Verlag, Berlin, 77-86.

20. Joos E., Zeh H. D. (1985): The Emergence of Classical Properties Through
Interaction with the Environment. Z. Phys. B59, 223-243.

21. Ghirardi G. C., Pearle P., Rimini A. (1990) Markov processes in Hilbert space
and continuous spontaneous localization of systems of identical particles. Phys.
Rev. A42, 78-89.

22. Ghirardi G. C., Grassi R., Pearle P. (1990): Relativistic Dynamical Reduction
Models: General Framework and Examples. Found. Phys. 20, 1271-1316.

23. Breuer H. P., Petruccione F. (1999): Stochastic Unravelings of Relativistic
Quantum Measurements. In: Breuer H. P., Petruccione F. (Eds.) (1999): Open
Systems and Measurement in Relativistic Quantum Theory. Springer-Verlag,
Berlin, 81-116.



Decoherence: A Dynamical Approach to
Superselection Rules?
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Abstract. It is well known that the dynamical mechanism of decoherence may
cause apparent superselection rules, like that of molecular chirality. These ‘environ-
ment-induced’ or ‘soft’ superselection rules may be contrasted with ‘hard’ super-
selection rules, like that of electric charge, whose existence is usually rigorously
demonstrated by means of certain symmetry principles. We address the question of
whether this distinction between ‘hard’ and ‘soft’ is well founded and argue that,
despite first appearance, it might not be. For this we first review in detail some of
the basic structural properties of the spaces of states and observables in order to
establish a fairly precise notion of superselection rules. We then discuss two exam-
ples: 1.) the Bargmann superselection rule for overall mass in ordinary quantum
mechanics, and 2.) the superselection rule for charge in quantum electrodynamics.

1 Introduction

To explain the (apparent) absence of interferences between macroscopically
interpretable states – like states describing spatially localized objects – is the
central task for any attempt to resolve the measurement problem. First at-
tempts in this direction just imposed additional rules, like that of the Copen-
hagen school, who defined a measurement device as a system whose state-
space is classical, in the sense that the superposition principle is fully broken:
superpositions between any two states simply do not exist. In a more modern
language this may be expressed by saying that any two states of such a sys-
tem are disjoint, i.e., separated by a superselection rule (see below). Proper
quantum mechanical systems, which in isolation do obey the superposition
principle, can then inherit superselection rules when coupled to such classical
measurement devices.

Whereas there can be no doubt that the notion of classicality, as we
understand it here, is mathematically appropriately encoded in the notions of
disjointness and superselection rules, there still remains the physical question
how these structures come to be imposed. In particular, if one believes that
fundamentally all matter is described by some quantum theory, there is no
room for an independent classical world. Classicality should be a feature that
is emerging in accordance with, and not in violation of, the basic rules of
quantum mechanics. This is the initial credo of those who believe in the
program of decoherence [16], which aims to explain classicality by means of
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taking into account dynamical interactions with ambient systems, like the
ubiquitous natural environment of the situation in question. (Note: It is not
claimed to resolve the full measurement problem.) This leads to the notion
of ‘environment-induced superselection rules’ [40].

Fundamental to the concept of dynamical decoherence is the notion of
‘delocalization’ [24]. The intuitive idea behind this is that through some dy-
namical process certain state characteristics (‘phase relations’), which were
locally accessible at one time, cease to be locally accessible in the course
of the dynamical evolution. Hence locally certain superpositions cannot be
verified anymore and an apparent obstruction to the superposition principle
results. Such mechanisms are considered responsible for the above mentioned
environment-induced superselection rule, of which a famous physical exam-
ple is that of molecular chirality (see e.g. [38] and references therein). It has
been established in many calculations of realistic situations that such dy-
namical processes of delocalization can be extremely effective over short time
scales. But it is also intuitively clear that, mathematically speaking, it will
never be strict in any finite time. Hence one will have to deal with notions of
approximate- respectively asymptotic (for t → ∞) superselection rules and
disjointness of states [31,26], which needs some mathematical care.

Since for finite times such dynamical superselection rules are only approx-
imately valid, they are sometimes called ‘soft’. In contrast, ‘hard’ superse-
lection rules are those which are rigorously established mathematical results
within the kinematical framework of the theory, usually based on symmetry
principles (see section 3 below), or on first principles of local QFT, like in the
proof for the superselection rule for electric charge [33]. Such presentations
seem to suggest that there is no room left for a dynamical origin of ‘hard’
superselection rules, and that hence these two notions of superselection rules
are really distinct. However, we wish to argue that at least some of the ex-
isting proofs for ‘hard’ superselection rules give a false impression, and that
quite to the contrary they actually need some dynamical input in order to be
physically convincing. We will look at the case of Bargmann’s superselection
rule for total mass in ordinary quantum mechanics (which is clearly more of
an academic example) and that of charge in QED. The discussion of the latter
will be heuristic insofar as we will pretend that QED is nothing but quan-
tum mechanics (in the Schrödinger representation) of the infinite-dimensional
(constrained) Hamiltonian system given by classical electrodynamics. For a
brief but general orientation on the subject of superselection rules and the
relevant references we refer to Wightman’s survey [39].

Let us stress again that crucial to the ideas presented here is of course
that ‘delocalized’ does not at all mean ‘destroyed’, and that hence the loss
of quantum coherence is only an apparent one. This distinction might be
considered irrelevant FAPP (for all practical purposes) but it is important
in attempts to understand apparent losses of quantum coherence within the
standard dynamical framework of quantum mechanics.
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As used here, the term ‘local’ usually refers to locality in the (classical)
configuration space Q of the system, where we think of quantum states in the
Schrödinger representation, i.e., as L2-functions on Q. Every parametrization
of Q then defines a partition into ‘degrees of freedom’. Locality in Q is a more
general concept than locality in ordinary physical space, although the latter
forms a particular and physically important special case. Moreover, on a
slightly more abstract level, one realizes that the most general description of
why decoherence appears to occur is that only a restricted set of so-called
physical observables are at ones disposal, and that with respect to those the
relevant ‘phase relations’ apparently fade out of existence. It is sometimes
convenient to express this by saying that decoherence occurs only with respect
(or relative) to a ‘choice’ of observables [27]. Clearly this ‘choice’ is not meant
to be completely free, since it has to be compatible with the dynamical laws
and the physically realizable couplings (compare [24]). (In this respect the
situation bears certain similarities to that of ‘relevant’ and ‘irrelevant’ degrees
of freedom in statistical mechanics.) But to fully control those is a formidable
task – to put it mildly. In any case it will be necessary to assume some a priori
characterizations of what mathematical objects correspond to observables,
and to do this in such a general fashion that one can effectively include
superselection rules. This will be done in the next section.

2 Elementary Concepts

In this section we wish to convey a feeling for some of the concepts underlying
the notion of superselection rules. We will take some care and time to do
this, since many misconceptions can (and do!) arise from careless uses of
these concepts. To gain intuition it is sometimes useful to dispense with some
technicalities associated with infinite dimensions and continuous spectra and
just look at finite dimensional situations; we will follow this strategy where
indicated. We use the following, generally valid notations: H denotes a Hilbert
space, B(H) the algebra of bounded operators on H. The antilinear operation
of taking the hermitean conjugate is denoted by ∗ (rather than †), which
makes B(H) a ∗-algebra. Given a set {Aλ} where λ ∈ Λ (= some index set),
then by {Aλ}′ we denote the ‘commutant’ of {Aλ} in B(H), defined by

{Aλ}′ := {B ∈ B(H) |BAλ = AλB, ∀λ ∈ Λ}. (1)

Note that if the set {Aλ} is left invariant under the ∗-map (in this case we
call the set ‘self-adjoint’), then {Aλ}′ is a ∗-subalgebra of B(H). Also, the
definition (1) immediately implies that

A ⊆ B ⇒ B′ ⊆ A′. (2)

2.1 Superselection Rules

There are many different ways to give a structural definition of superselection
rules. Some stress the notion of state others the notion of observable. Often
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this dichotomy seems to result in very different attitudes towards the fun-
damental significance of superselection rules. This really seems artificial in a
quantum mechanical context. In quantum field theory, i.e., if the underlying
classical system has infinitely many degrees of freedom, the situation seems
more asymmetric. This is partly due to the mathematical difficulties to de-
fine the full analog of the Schrödinger representation, i.e., to just construct
the Hilbert space of states as L2 space over the classical configuration space.
In this paper we will partly ignore this mathematical difficulty and proceed
heuristically by assuming that such a Schrödinger representation (of QED)
exists to some level of rigour.

In traditional quantum mechanics, which stresses the notion of state, a
system is fundamentally characterized by a Hilbert space, H, the vectors
of which represent (pure) states. We say ‘represent’ because this labeling
by states through vectors is redundant: non-zero vectors which differ by an
overall complex number label the same state, so that states can also be labeled
by rays. We will use PH to denote the space of rays in H. In many cases of
interest this Hilbert space is of course just identified with the space of L2-
functions over the classical configuration space. Now, following the original
definition given by W 3 [35], we say that a superselection rule operates on
H, if not all rays represent pure states, but only those which lie entirely in
certain mutually orthogonal subspaces Hi ⊂ H, where

H =
⊕
i

Hi. (3)

The only rays which correspond to pure states are those in the disjoint union⋃
i

PHi . (4)

Since no vector which lies skew to the partition (3) can, by assumption, rep-
resent a pure state, the superposition principle must be restricted to the Hi.
Moreover, since observables map pure states to pure states, they must leave
the Hi invariant and hence all matrix-elements of observables between vectors
from different sectors vanish. The Hi are called coherent sectors if the observ-
ables act irreducibly on them, i.e., if no further decomposition is possible; this
is usually implied if a decomposition (3) is written down. States which lie in
different coherent sectors are called disjoint. Note that disjointness of states
is essentially also a statement about observables, since it means orthogonal-
ity of the original states and the respective states created from those with
all observables. The existence of disjoint states is the characteristic feature
of superselection rules.

From this we see that a partition (3) into coherent sectors implies that the
set of physical observables is strictly smaller than the set of all self-adjoint
(w.l.o.g. bounded) operators on H. It can be characterized by saying that
observables are those self adjoint operators on H which commute with the
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orthogonal projectors Pi : H → Hi. So the Pi are themselves observables and
generate the center (see below) of the algebra of observables.

This suggests a ‘dual’, more algebraic way to look at superselection rules,
which starts with the algebra of observables O. Then superselection rules are
said to occur if the algebra of observables, O, – which we think of as being
given by bounded operators on some Hilbert space H1 – has a non-trivial
center Oc. Recall that

Oc := {A ∈ O |AB = BA, ∀B ∈ O}. (5)

Suppose Oc is generated by self-adjoint elements {Cµ, µ = 1, 2, ..} which have
simultaneous eigenspaces Hi, then the Hi’s are just the coherent sectors.
Indeed, as already remarked, matrix elements of operators from O between
states from different coherent sectors (i.e. differing in the eigenvalue of at
least one Cµ) necessarily vanish. Thus if φ1 and φ2 are two non-zero vectors
from Hi and Hj with i �= j, their superposition φ := φi + φ2 defines a state
whose density matrix ρ := Pφ (=orthogonal projector onto the ray generated
by φ) satisfies

tr(ρA) = tr((λ1ρ1 + λ2ρ2)A), ∀A ∈ O, (6)

where λ1,2 = ‖φ1,2‖2/‖φ‖2 and ρ1,2 = Pφ1,2 . This means that ρ is a non-pure
state of O, since it can be written as a non-trivial convex combination of other
density matrices. Hence we come back to the statements expressed by (3) and
(4). Also note the following: in quantum mechanics the decomposition of a
non-pure density matrix as a convex combination of pure density matrices –
the so-called extremal decomposition – is generically not unique, thus pre-
venting the (ignorance-) interpretation as statistical “mixtures”.2 However,
for the special density matrices of the form ρ = |φ〉〈φ|, where |φ〉 ∈ H, the
1 In Algebraic Quantum Mechanics one associates to each quantum system an
abstract C∗-algebra, C, which is thought of as being the mathematical object that
fully characterizes the system in isolation, i.e. its intrinsic or ‘ontic’ properties.
But this is not yet what we call the algebra of observables. This latter algebra
is not uniquely determined by the former. It is obtained by studying faithful
representations of C in some Hilbert space H, such that C can be identified with
some subalgebra of B(H) (the bounded operators on H). This is usually done
by choosing a reference state (positive linear functional) on C and performing
the GNS construction. Then C inherits a norm which is used to close C (as
topological space) in B(H). It is this resulting algebra which corresponds to our
O. Technically speaking it is a von Neumann algebra which properly contains an
embedded copy of C. The added observables (those in O − C) do not describe
intrinsic but contextual properties. For example, it may happen that O has non-
trivial center whereas C doesn’t. In this case the superselection rules described
by O are contextual. See [31] for a more extended discussion of this point.

2 Hence the term ‘mixture’ for a non-pure state is misleading since we cannot tell
the components and hence have no ensemble interpretation. For this reason we
will say ‘non-pure state’ rather than ‘mixture’.
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extremal decomposition is unique and given by φ =
∑

i λiPφi , where φi is
the orthogonal projection of φ into Hi, Pφi the orthogonal projector onto
φi’s ray, and λi = ‖φi‖2/‖φ‖2. This is the relevance of superselection rules
for the measurement problem: to produce unique extremal decompositions
– and hence statistical ‘mixtures’ in the proper sense of the word – into an
ensemble of pure states. There is a long list of papers dealing with the mathe-
matical problem of how superselection sectors can arise dynamically; see e.g.
[19,30,2,26] and the more general discussions in [27,31].

2.2 Dirac’s Requirement

Dirac was the first who spelled out certain rules concerning the spaces of
states and observables [6]. He defined the notion of compatible (i.e., simul-
taneously performable) observations, which mathematically are represented
by a set of commuting observables, and the notion of a complete set of such
observables, which is meant to say that there is precisely one state for each
set of simultaneous “eigenvalues”. Starting from the hypothesis that states
are faithfully represented by rays, Dirac deduced that a complete set of such
mutually compatible observables existed. But this only makes sense if all the
observables in question have purely discrete spectra.

In the general case one has to proceed differently: We heuristically define
Dirac’s requirement as the statement, that there exists at least one complete
set of mutually compatible observables and show how it can be rephrased
mathematically so that it applies to all cases. In doing this we essentially
follow Jauch’s exposition [22]. To develop a feeling for what is involved, we
will first describe some of the consequences of Dirac’s requirement in the most
simplest case: a finite dimensional Hilbert space. We will use this insight to
rephrase it in such a way to stay generally valid in infinite dimensions.

Gaining intuition in finite dimensions. So let H be an n-dimensional
complex Hilbert-space, then B(H) is the algebra of complex n× n matrices.
Physical observables are represented by hermitean matrices in B(H), but
we will explicitly not assume the converse, namely that all hermitean matri-
ces correspond to physical observables. Rather we assume that the physical
observables are somehow given to us by some set S of hermitean matrices.
This set does not form an algebra, since taking products and complex linear
combinations does not preserve hermiticity. But for mathematical reasons it
would be convenient to have such an algebraic structure, and just work with
the algebra O generated by this set, called the algebra of observables. [Note
the usual abuse of language, since only the hermitean elements in O are ob-
servables.] But for this replacement of S by O to be allowed S must have been
a set of hermitean matrices which is uniquely determined by O, for otherwise
we can not reconstruct the set S from O. To grant us this mathematical con-
venience we assume that S was already maximal, i.e. that S already contains
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all the hermitean matrices that it generates. But we stress that there seems
to be no obvious reason why in a particular practical situation the set of
physically realizable observables should be maximal in this sense.

We may choose a set {O1, . . . Om} of hermitean generators of O. Then O
may be thought of as the set of all complex polynomials in these (generally
non-commuting) matrices. But note that we need not consider higher powers
than (n − 1) of each Oi, since each complex n × n matrix O is a zero of its
own characteristic polynomial pO, i.e. satisfies pO(O) = 0, by the theorem of
Cayley-Hamilton. Since this polynomial is of order n, On can be re-expressed
by a polynomial in O of order at most (n − 1). For example, the ∗-algebra
generated by a single hermitean matrix O can be identified with the set of
all polynomials of degree at most (n− 1) and whose multiplication law is as
usual, followed by the procedure of reducing all powers n and higher of O via
pO(O) = 0.

Now let {A1, · · · , Am} =: {Ai} be a complete set of mutually commuting
observables. It is not difficult to show that there exists an observable A and
polynomials pi, i = 1, · · · ,m such that Ai = pi(A) (see [20] for a simple
proof). This actually means that the algebra generated by {Ai} is just the n-
dimensional algebra of polynomials of degree at most n−1 in A (see below for
justification), which we call A. This algebra is abelian, which is equivalently
expressed by saying that A is contained in its commutant (compare (1)):

A ⊆ A′ ‘A is abelian’ (7)

Now comes the requirement of completeness. In terms of A it is easy to
see that it is equivalent to the condition that A has a simple spectrum (i.e.
the eigenvalues are pairwise distinct). This has the following consequence:
Let B be an observable that commutes with A, then B is also a function
of A, i.e., pB(B) = A for some polynomial pB . The proof is simple: We
simultaneously diagonalize A and B with eigenvalues αa and βa, a = 1, · · · , n.
We wish to find a polynomial of degree n−1 such that pB(αa) = βa. Writing
pB(x) = an−1xn−1 + · · · + a0, this leads to a system of n linear equations
(αb

a := bth power of αa)

n−1∑
b=0

αb
aab = βa, for a = 1, . . . , n, (8)

for the n unknowns (a0, · · · , an−1). Its determinant is of course just the Van-
dermonde determinant for the n tuple (α1, · · · , αn):

det{αb
a} =

∏
a<b

(αa − αb), (9)

which is non-zero if and only if (=iff) A’s spectrum is simple. This implies
that every observable that commutes with A is already contained in A. (It
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follows from this that the algebra generated by {Ai} is equal to, and not
just a subalgebra of, the algebra generated by {A}, as stated above.) Since a
∗-algebra is generated by its self-adjoint elements (observables), A cannot be
properly enlarged as abelian ∗-algebra by adding more commuting generators.
In other words, A is maximal. Since A′ is a ∗-algebra, this can be equivalently
expressed by

A′ ⊆ A ‘A is maximal’ (10)

Equations (7) and (10) together are equivalent to Dirac’s condition, which
can now be stated in the following form, first given by Jauch [22]: the algebra
of observables O contains a maximal abelian ∗-subalgebra A ⊆ O, i.e.,

Dirac’s requirement, 1st version: ∃ A ⊆ O satisfying A = A′ (11)

This may seem as if Dirac’s requirement could be expressed in purely
algebraic terms. But this is deceptive, since the very notion of ‘commutant’
(compare (1)) makes reference to the Hilbert space H through B(H). Without
further qualification the term ‘maximal’ always means maximal in B(H).3

This reference to H can be further clarified by yet another equivalent
statement of Dirac’s requirement. Since A consists of polynomials in the
observable A, which has a simple spectrum, the following is true: there exists
a vector |g〉 ∈ H, such that for any vector φ ∈ H there exists a polynomial
pφ such that

pφ(A)|g〉 = |φ〉. (12)

Such a vector |g〉 is called a generating or cyclic vector for A in H. The
proof is again very simple: let {φ1, · · · , φn} be the pairwise distinct, non-zero
eigenvectors of A (with any normalization); then choose

|g〉 =
n∑

i=1

|φi〉. (13)

Equation (12) now defines again a system of n linear equations for the n
coefficients an−1, · · · , a0 of the polynomial pφ, whose determinant is again
the Vandermonde determinant (9) for the n eigenvalues α1, · · · , αn of A.
Conversely, if A had an eigenvalue, say α1, with eigenspace H1 of two or
higher dimensions, then such a cyclic |g〉 cannot exist. To see this, suppose it
did, and let |φ⊥1 〉 ∈ H1 be orthogonal to the projection of |g〉 into H1. Then
〈φ⊥1 |p(A)g〉 = 0 for all polynomials p. Thus |φ⊥1 〉 is unreachable, contradicting
our initial assumption. Hence a simple spectrum of A is equivalent to the
existence of a cyclic vector.

3 The condition for an abelian A ⊆ O to be maximal in O would be A = A′ ∩ O.
Such abelian subalgebras always exist, in contrast to those A ⊆ O which satisfy
the stronger condition to be maximal in the ambient algebra B(H).
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The general case. In infinite dimensions we have to care a little more
about the topology on the space of observables, since here there are many
inequivalent ways to generalize the finite dimensional case. The natural choice
is the so-called ‘weak topology’, which is characterized by declaring that a
sequence {Ai} of observables converges to the observable A if the sequence
〈φ|Ai|ψ〉 of complex numbers converges to 〈φ|A|ψ〉 for all |φ〉, |ψ〉 ∈ H. Hence
one also requires that the algebra of observables is weakly closed (i.e., closed
in the weak topology). Such a weakly closed ∗-subalgebra of B(H) is called
a W ∗- or von-Neumann-algebra (we shall use the first name for brevity).

A crucial and extremely convenient point is, that the weak topology is
fully encoded in the operation of taking the commutant (see (1)), in the
following sense: Let {Aλ} be any subset of B(H), then {Aλ}′ is automatically
weakly closed (see [22] p 716 for a simple proof) and hence a W ∗-algebra.
Moreover, the weak closure of a ∗-algebra A ⊆ B(H) is just given by A′′
(the commutant of the commutant). Hence we can characterize a W ∗-algebra
purely in terms of commutants: A is W ∗ iff A = A′′.

This allows to easily generalize the notion of ‘algebra generated by observ-
ables’: Let {Oλ} be a set of self-adjoint elements in B(H), then O := {Oλ}′′
is called the (W ∗-) algebra generated by this set. This definition is natural
since {Oλ}′′ is easily seen to be the smallest W ∗-algebra containing {Oλ}, for
if {Oλ} ⊆ B ⊆ O for some W ∗-algebra B, then taking the commutant twice
yields B = O.4

Now we see that Dirac’s requirement in the form (11) directly translates to
the general case if all algebras involved (i.e. A and O) are understood as W ∗-
algebras. Now we also know what a ‘complete set of (bounded) commuting
observables’ is, namely a set {Aλ} ⊆ B(H) whose generated W ∗-algebra
A := {Aλ}′′ is maximal abelian: A = A′. This latter condition is again
equivalent to the existence of a cyclic vector |g〉 ∈ H for A, where in infinite
dimensions the definition of cyclic is that {A|g〉} is dense in (rather than
equal to) H. It is also still true that there is an observable A such that all
Aλ are functions (in an appropriate sense, not just polynomials of course)
of A [34]. But since A’s spectrum may be (partially) continuous, there is no
direct interpretation of a ‘simple’ spectrum as in finite dimensions. Rather,
one now defines simplicity of the spectrum of A by the existence of a cyclic
vector for A = {A}′′.

Now we come to our final reformulation of Dirac’s condition. Namely,
looking at (11), we may ask whether we could not reformulate the existence
of such a maximal abelian A purely in terms of the algebra of observables O
alone. This is indeed possible. We have A ⊆ O ⇒ O′ ⊆ A′ = A ⊆ O, hence
O′ ⊆ O. Since O = O′′ the last condition is equivalent to saying that O′ is
abelian (O′ ⊆ O′′), or to saying that O′ is the center Oc of O, since by (1) and

4 Note: for any M ⊆ B(H) definition (1) immediately yields M ⊆ M ′′ and hence
M ′ ⊇ M ′′′ (by (2)). But also M ′ ⊆ M ′′′ (by replacing M → M ′); therefore
M ′ = M ′′′ for any M ⊆ B(H).
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(5) the center can be written as Oc = O∩O′. Now, conversely, it was shown
in [23] that an abelian O′ implies the existence of a maximal abelian A ⊆ O.
Hence we have the following alternative formulation of Dirac’s requirement,
first spelled out, independently of (11), by Wightman [37], who called it the
‘hypothesis of commutative superselection rules’:

Dirac’s requirement, 2nd version: O′ is abelian (14)

There are several interesting ways to interpret this condition. From its
derivation we know that it is equivalent to the existence of a maximal abelian
A ⊆ O. But we can in fact make an apparently stronger statement, which also
relates to the earlier footnote 3, namely: (14) is equivalent to the condition,
that any abelian A ⊆ O that is maximal in O, i.e. satisfies A = A′ ∩ O, is
also maximal in B(H).5

2.3 Dirac’s Condition and Gauge Symmetries

Another way to understand (14) is via its limitations on gauge-symmetries.
To see this, we mention that any W ∗-algebra is generated by its unitary
elements. Hence O′ is generated by a set {Uλ} of unitary operators. Each
Uλ commutes with all observables and therefore generates a one-parameter
group of gauge-transformations. Condition (14) is then equivalent to saying
that the total gauge group, which is generated by all Uλ, is abelian. Note also
that an abelian O′ implies that the gauge-algebra, {Uλ}′′ = O′, is contained
in the observables, O′ ⊆ O′′ = O, so that O′ = Oc. From this one can infer
the following central statement:

Dirac’s requirement implies that gauge- and
sectorial structures are fully determined by the
center Oc of the algebra of observables O.

(15)

To see in what sense this is true we remark that for W ∗-algebras we can
simultaneously diagonalize all observables in Oc. That means that we can
write H in an essentially unique way as direct integral over the real line of
Hilbert spaces H(λ) using some (Lebesgue-Stieltjes-) measure σ:

H =
∫ ⊕
R

dσ(λ)H(λ). (16)

Operators in O respect this decomposition in the sense that each O ∈ O acts
on H componentwise via some bounded operator O(λ) on H(λ). If O ∈ Oc

5 Proof: We need to show that (O′ abelian) ⇔ (A = A′ ∩ O ⇒ A = A′). ‘⇒’: O′

abelian implies O′ ⊆ O′′ = O and A ⊆ O implies O′ ⊆ A′, so that O′ ⊆ A′ ∩ O.
Hence A = A′ ∩ O implies O′ ⊆ A, which implies A′ ⊆ O′′ = O, and hence
A = A′. ‘⇐’: (A = A′ ∩ O ⇒ A = A′) is equivalent to A′ ⊆ O, which implies
O′ ⊆ A′′ = A and hence that O′ is abelian.
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then each O(λ) is a multiple φ(λ) ∈ C of the unit operator. Moreover, the
set of all {O(λ)} induced from O for each fixed λ acts irreducibly on H(λ).6

Hence, provided that Dirac’s requirement is satisfied, (16) is the generally
valid version of (3). The notion of disjointness now acquires an intuitive
meaning: two states |Ψ1〉 and |Ψ2〉 are separated by a superselection rule (are
disjoint), iff their component-state-functions λ → |ψ1(λ)〉 and λ → |ψ2(λ)〉
have disjoint support on R (up to measure-zero sets). Note that by spec-
tral decomposition the superselection observables can be decomposed into
the projectors in Oc, which for (16) are all given by multiplications with
characteristic functions χ(λ) for σ-measurable sets in R.

Non-abelian gauge groups We have seen that the fulfillment of Dirac’s
requirement allows to give a full structural characterisation for the spaces of
(pure) states and observables. How general is this result? Does it exclude cases
of physical interest? At first glance this seems indeed to be the case: just con-
sider a situations with non-abelian gauge groups; for example, the quantum
mechanical system of n > 2 identical spinless particles with n-particle Hilbert
space H = L2(R3n) on which the permutation group G = Sn of n objects acts
in the obvious way by unitary operators U(g). That these particles are iden-
tical means that observables must commute with each U(g). Without further
restrictions on observables one would thus define O := {U(g), g ∈ G}′. Hence
O′ is the W ∗-algebra generated by all U(g), which is clearly non-abelian, thus
violating (14). But does this generally imply that general particle statistics
cannot be described in a quantum-mechanical setting which fulfills Dirac’s
requirement? The answer to this question is ‘no’. Let us explain why.

If we decompose H according to the unitary, irreducible representations
of G we obtain ([10,14])

H =
p(n)⊕
i=1

Hi , (17)

where i labels the p(n) inequivalent, unitary, irreducible representations Di

of G of dimension di. Each Hi has the structure Hi
∼= C

di ⊗H̃i, where G acts
irreducibly via Di on C

di and trivially on H̃i whereas O acts irreducibly via
some ∗-representation πi on H̃i and trivially on C

di . πi and πj are inequivalent
if i �= j. Hence we see that Hi furnishes an irreducible representation for O, iff
di = 1, i.e., for the Bose and Fermi sectors only. Pure states from these sectors
are just the rays in the corresponding Hi. In contrast, for di > 1, given a
non-zero vector |φ〉 ∈ H̃i, all non-zero vectors in the di-dimensional subspace
C
di ⊗ |φ〉 ⊂ Hi define the same pure state, i.e., the same expectation-value-

functional on O. Furthermore, a vector in Hi
∼= C

di ⊗H̃i which is not a pure
6 It is this irreducibility statement which depends crucially on the fulfillment of
Dirac’s requirement. In general, the O(λ)’s will act irreducibly on H(λ) for each
λ, iff Oc is maximal abelian in O′, i.e., iff Oc = (Oc)′ ∩ O′. But we already saw
that (14) also implies Oc = O′ so that this is fulfilled.
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tensor product defines a non-pure state, since the restriction of O ∈ O to
Hi is of the form 1 ⊗ Õ, which means that a vector in Hi defines a state
given by the reduced density matrix obtained by tracing over the left (i.e.
C
di) state space. From elementary quantum mechanics we know that the

resulting state is pure, iff the vector in Hi was a pure tensor product (i.e.
of rank one). Hence in those Hi where di > 1 not all vectors correspond to
pure states, and those which do represent pure states in a redundant fashion
by higher dimensional subspaces, sometimes called ‘generalized rays’ in the
older literature on parastatistics [28].

However, the factors C
di are completely redundant as far as physical

information is concerned, which is already fully encoded in the irreducible
representations πi of O on H̃i; no further physical information is contained
in di-fold repetitions of πi. Hence we can define a new, truncated Hilbert
space

H̃ :=
p(n)⊕
i=1

H̃i . (18)

This procedure has also been called ‘elimination of the generalized ray’ in
the older literature on parastatistics [18] – see also [14] for a more recent
discussion of this point. Since every pure state in H is also contained in H̃, just
without repetition, these two sets are called ‘phenomenological equivalent’ in
the literature on QFT (e.g. in chapter 6.1.C of [4]). The point is that pure
states are now faithfully labelled by rays in the H̃i and that O′ – where the
commutant is now taken in B(H̃) rather than B(H) – is generated by 1 and
the p(n) (commuting!) projectors into the H̃i’s. Hence Dirac’s requirement is
satisfied. But clearly the original gauge group has no action on H̃ anymore,
but there is also no physical reason why one should keep it.7 It served to
define O, but then only its irreducible representations πi are of interest.
Only a residual action of the center of G still exists, but the gauge group
generated by the projectors into the H̃i consists in fact of the continuous
group of p(n) copies of U(1), one global phase change for each sector. Its
meaning is simply to induce the separation into the different sectors (H̃i, πi),
and that in accordance with Dirac’s requirement.

To sum up, we have seen that even if a theory is initially formulated via
non-abelian gauge groups, we can give it a physically equivalent formula-
tion that has at most a residual abelian gauge group left and hence obeys
Dirac’s requirement. Hence the ‘obvious’ counterexamples to Dirac’s require-
ment turn out to be harmless. This is generally true in quantum mechanics,

7 In [10] Dirac’s requirement together with the requirement that the physical
Hilbert space must carry an action of the gauge group has been used to “prove”
the absence of parastatistics. In our opinion there seems to be no physical reason
to accept the second requirement and hence the “proof”; compare [18] and [14].
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but in quantum field theory there are genuine possibilities to violate Dirac’s
condition which we will ignore here.8

3 Superselection Rules via Symmetry Requirements

The requirement that a certain group must act on the set of all physical
states is often the (kinematical) source of superselection rules. Here I wish to
explain the structure of this argument.

Note first that in quantum mechanics we identify the states of a closed
system with rays and not with vectors which represent them (in a redundant
fashion). It is therefore not necessary to require that a symmetry group G
acts on the Hilbert space H, but rather it is sufficient that it acts on PH,
the space of rays, via so-called ray-representations. Mathematically this is a
non-trivial relaxation since not every ray-representation of a symmetry group
G (i.e. preserving the ray products) lifts to a unitary action of G on H. What
may go wrong is not that for a given g ∈ G we cannot find a unitary (or
anti-unitary) operator Ug on H; that is assured by Wigner’s theorem (see
[3] for a proof). Rather, what may fail to be possible is that we can choose
the Ug’s in such a way that we have an action, i.e., that Ug1Ug2 = Ug1g2 .
As is well known, this is precisely what happens for the implementation of
the Galilei group in ordinary quantum mechanics. Without the admission
of ray representations we would not be able to say that ordinary quantum
mechanics is Galilei invariant.

To be more precise, to have a ray-representation means that for each
g ∈ G there is a unitary9 transformation Ug which, instead of the usual
representation property, are only required to satisfy the weaker condition

Ug1Ug2 = exp(iξ(g1, g2)) Ug1g2 (19)

for some function ξ : G×G→ R, called multiplier exponent, satisfying10

ξ(1, g) = ξ(g, 1) = 0, (20)
ξ(g1, g2) − ξ(g1, g2g3) + ξ(g1g2, g3) − ξ(g2, g3) = 0. (21)

The second of these conditions is a direct consequence of associativity:

Ug1(Ug2Ug3) = (Ug1Ug2)Ug3 .

8 An abelian O′ implies that O is a von Neumann algebra of type I (see [7], chap-
ter 8) whereas truly infinite systems in QFT are often described by type III
algebras.

9 For simplicity we ignore anti-unitary transformations. They cannot arise if, for
example, G is connected.

10 The following conditions might seem a little too strong, since it would be sufficient
to require the equalities in (20) and (21) only mod 2π; this also applies to (22).
But for our application in section 4 it is more convenient to work with strict
equalities, which in fact implies no loss of generality; compare [32].
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Obviously these maps project to an action of G on PH. Any other lift of this
action on PH onto H is given by a redefinition Ug → U′g := exp(iγ(g))Ug,
for some function γ : G → R with γ(1) = 0, resulting in new multiplier
exponents

ξ′(g1, g2) = ξ(g1, g2) + γ(g1) − γ(g1g2) + γ(g2), (22)

which again satisfy (20) and (21). The ray representations U and U′ are then
said to be equivalent, since the projected actions on PH are the same. We
shall also say that two multiplier exponents ξ, ξ′ are equivalent if they satisfy
(22) for some γ.

We shall now see how the existence of inequivalent multiplier exponents,
together with the requirement that the group should act on the space of
physical states, may clash with the superposition principle and thus give rise
to superselection rules. For this we start from two Hilbert spaces H′ and H′′
and actions of a symmetry group G on PH′ and PH′′, i.e., ray representations
U′ and U′′ on H′ and H′′ up to equivalences (22). We consider H = H′ ⊕H′′
and ask under what conditions does there exist an action of G on PH which
restricts to the given actions on the subsets PH′ and PH′′. Equivalently:
when is U = U′ ⊕ U′′ a ray representation of G on H for some choice of
ray-representations U′ and U′′ within their equivalence class? To answer this
question, we consider

Ug1Ug2 = (U′g1
⊕ U′′g1

)(U′g2
⊕ U′′g2

)

= exp(iξ′(g1, g2))U′g1g2
⊕ exp(ξ′′(g1, g2))U′′g1g2

(23)

and note that this can be written in the form (19), for some choice of ξ′, ξ′′

within their equivalence class, iff the phase factors can be made to coin-
cide, that is, iff ξ′ and ξ′′ are equivalent. This shows that there exists a
ray-representation on H which restricts to the given equivalence classes of
given ray representations on H′ and H′, iff the multiplier exponents of the
latter are equivalent. Hence, if the multiplier exponents ξ′ and ξ′′ are not
equivalent, the action of G cannot be extended beyond the disjoint union
PH′ ∪ PH′′. Conversely, if we require that the space of physical states must
support an action of G, then non-trivial superpositions of states in H′ and
H′′ must be excluded from the space of (pure) physical states.

This argument shows that if we insist of implementing G as symmetry
group, superselection rules are sometimes unavoidable. A formal trick to avoid
them would be not to require G, but a slightly larger group, Ḡ, to act on the
space of physical states. Ḡ is chosen to be the group whose elements we label
by (θ, g), where θ ∈ R, and the multiplication law is

ḡ1ḡ2 = (θ1, g1)(θ2, g2) = (θ1 + θ2 + ξ(g1, g2), g1g2). (24)

It is easy to check that the elements of the form (θ, 1) lie in the center of Ḡ
and form a normal subgroup ∼= R which we call Z. Hence Ḡ/Z = G but G
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need not be a subgroup of Ḡ. Ḡ is a central R extension11 of G (see e.g.
[32]). Now a ray-representation U of G on H defines a proper representation
U of Ḡ on H by setting

U(θ,g) := exp(iθ)Ug. (25)

Then Ḡ is properly represented on H′ and H′′ and hence also on H = H′⊕H′′.
The above phenomenon is mirrored here by the fact that Z acts trivially on
PH′ and PH′′ but non-trivially on PH, and the superselection structure
comes about by requiring physical states to be fixed points of Z’s action.

4 Bargmann’s Superselection Rule

An often mentioned textbook example where a particular implementation
of a symmetry group allegedly clashes with the superposition principle, such
that a superselection rule results, is Galilei invariant quantum mechanics (e.g.
[9]; see also Wightman’s review [39]). We will discuss this example in detail
for the general multi-particle case. (Textbook discussions usually restrict to
one particle, which, due to Galilei invariance, must necessarily be free.) It will
serve as a test case to illustrate the argument of the previous chapter and also
to formulate our critique. Its physical significance is limited by the fact that
the particular feature of the Galilei group that is responsible for the existence
of the mass superselection rule ceases to exist if we replace the Galilei group
by the Poincaré group (i.e. it is unstable under ‘deformations’). But this is not
important for our argument.12 Let now G be the Galilei group, an element
of which is parameterized by (R,v,a, b), with R a rotation matrix in SO(3),
v the boost velocity, a the spatial translation, and b the time translation. Its
laws of multiplication and inversion are respectively given by

g1g2 = (R1,v1,a1, b1)(R2,v2,a2, b2)
= (R1R2 , v1 + R1 · v2 , a1 + R1 · a2 + v1b2 , b1 + b2), (26)

g−1 = (R,v,a, b)−1 = (R−1, −R−1 · v , −R−1 · (a− vb) , −b). (27)

We consider the Schrödinger equation for a system of n particles of positions
xi, masses mi, mutual distances rij := ‖xi−xj‖ which interact via a Galilei-
invariant potential V ({rij}), so that the Hamilton operator becomes H =
−�

2∑
i

∆i

2mi
+ V . The Hilbert space is H = L2(R3n,d3x1 · · ·d3xn).

G acts on the space {configurations}×{times} ∼= R
3n+1 as follows: Let g =

(R,v,a, b), then g({xi}, t) := ({R·xi+vt+a} , t+b). Hence G has the obvious

11 Had we defined the multiplier exponents mod 2π (compare footnote 10) then we
would have obtained a U(1) extension, which would suffice so far. But in the
next section we will definitively need the R extension as symmetry group of the
extended classical model discussed there.

12 In General Relativity, where the total mass can be expressed as a surface integral
at ‘infinity’, the issue of mass superselection comes up again; see e.g. [15] and [8].
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left action on complex-valued functions on R
3n+1: (g, ψ) → ψ◦g−1. However,

these transformations do not map solutions of the Schrödinger equations into
solutions. But, as is well known, this can be achieved by introducing an
R
3n+1-dependent phase factor (see e.g. [13] for a general derivation). We set

M =
∑

imi for the total mass and rc = 1
M

∑
imixi for the center-of-mass.

Then the modified transformation, Tg, which maps solutions (i.e. curves in
H) to solutions, is given by

Tgψ({xi}, t) := exp
( i

�
M [v · (rc − a) − 1

2v2(t− b)]
)
ψ(g−1({xi}, t)). (28)

However, due to the modification, these transformations have lost the prop-
erty to define an action of G, that is, we do not have Tg1 ◦ Tg2 = Tg1g2 .
Rather, a straightforward calculation using (26) and (27) leads to

Tg1 ◦ Tg2 = exp(iξ(g1, g2)) Tg1g2 , (29)

with non-trivial multiplier exponent

ξ(g1, g2) = M
�

(v1 ·R1 · a2 + 1
2v2

1b2). (30)

Although each Tg is a mapping of curves in H, it also defines a unitary
transformation on H itself. This is so because the equations of motion define
a bijection between solution curves and initial conditions at, say, t = 0, which
allows to translate the map Tg into a unitary map on H, which we call Ug.
It is given by

Ugψ({xi}) = exp
( i

�
M [v · (rc − a) + 1

2v2b]
)

exp( i
�
Hb)ψ({R−1(xi−a+vb)}),

(31)
and furnishes a ray-representation whose multiplier exponents are given by
(30). It is easy to see that the multiplier exponents are non-trivial, i.e., not
removable by a redefinition (22). The quickest way to see this is as follows:
suppose to the contrary that they were trivial and that hence (22) holds
with ξ′ ≡ 0. Trivially, this equation will continue to hold after restriction to
any subgroup G0 ⊂ G. We choose for G0 the abelian subgroup generated by
boosts and space translations, so that the combination γ(g1)−γ(g1g2)+γ(g2)
becomes symmetric in g1, g2 ∈ G0. But the exponent (30) stays obviously
asymmetric after restriction to G0. Hence no cancellation can take place,
which contradicts our initial assumption.

The same trick immediately shows that the multiplier exponents are in-
equivalent for different total masses M . Hence, by the general argument given
in the previous chapter, if H′ and H′′ correspond to Hilbert spaces of states
with different overall masses M ′ and M ′′, then the requirement that the
Galilei group should act on the set of physical states excludes superpositions
of states of different overall mass. This is Bargmann’s superselection rule.

I criticize these arguments for the following reason: The dynamical frame-
work that we consider here treats ‘mass’ as parameter(s) which serves to
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specify the system. States for different overall masses are states of differ-
ent dynamical systems, to which the superposition principle does not even
potentially apply. In order to investigate a possible violation of the super-
position principle, we must find a dynamical framework in which states of
different overall mass are states of the same system; in other words, where
mass is a dynamical variable. But if we enlarge our system to one where mass
is dynamical, it is not at all obvious that the Galilei group will survive as
symmetry group. We will now see that in fact it does not, at least for the
simple dynamical extension which we now discuss.

The most simple extension of the classical model is to maintain the Hamil-
tonian, but now regarded as function on an extended, 6n+ 2n - dimensional
phase space with extra ‘momenta’ mi and conjugate generalized ‘positions’
λi. Since the λi’s do not appear in the Hamiltonian, the mi’s are constants
of motion. Hence the equations of motion for the xi’s and their conjugate
momenta pi are unchanged (upon inserting the integration constants mi) and
those of the new positions λi are

λ̇i(t) =
∂V

∂mi
− p2

i

2m2
i

, (32)

which, upon inserting the solutions {xi(t),pi(t)}, are solved by quadrature.
Now, the point is that the new Hamiltonian equations of motion do not

allow the Galilei group as symmetries anymore. But they do allow the R-
extension Ḡ as symmetries [13]. Its multiplication law is given by (24), with ξ
as in (30). The action of Ḡ on the extended space of {configurations}×{times}
is now given by

ḡ({xi}, {λi}, t) = (θ,R,v,a, b)({xi}, {λi}, t)
= ({Rxi + vt + a} , {λi − ( �

M θ + v ·R · xi + 1
2v2t)} , t + b). (33)

With (24) and (30) it is easy to verify that this defines indeed an action.
Hence it also defines an action on curves in the new Hilbert space H̄ :=
L2(R4n,d3nx dnλ), given by

T̄ḡψ := ψ ◦ ḡ−1 , (34)

which already maps solutions of the new Schrödinger equation to solutions,
without invoking non-trivial phase factors. This is seen as follows: Let

Ψ({xi}, {λi}, t) ∈ H̄
and Φ({xi}, {mi}, t) its Fourier transform in the (λi,mi) arguments:

Φ({xi}, {λi}, t) = (2π�)−n/2
∫
R

n
dnm exp

[
i
�

n∑
i=1

miλi

]
Φ({xi}, {mi}, t).

(35)
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For each set of masses {mi} the function Φ{mi}({xi}, t) := Φ({xi}, {mi}, t)
satisfies the original Schrödinger equation. Since (34) does not mix different
sets of {mi} it induces a map T̄{mi}

ḡ for each such set:

T̄{mi}
ḡ Φ{mi}({xi}, t) : = exp

[
iθ + i

�
M
(
v · (rc − a) − 1

2v2(t− b)
)]

× Φ{mi}(g
−1({xi}, t)) (36)

Via the Fourier transform (35) we represent H̄ as direct integral of H{mi}’s,
each of which isomorphic to our old H = L2(R3n, d3x1 · · ·d3xn), and on each
of which (36) defines a unitary representation U of Ḡ the form (25) with Ug

the ray-representation (31). This shows how the much simpler transformation
law (34) contains the more complicated one (28) upon writing H̄ as a direct
integral of vector spaces H{mi}.

In the new framework the overall mass, M , is a dynamical variable, and
it would make sense to state a superselection rule with respect to it. But now
Ḡ rather than G is the dynamical symmetry group, which acts by a proper
unitary representation on H̄, so that the requirement that the dynamical
symmetry group should act on the space of physical states will now not lead
to any superselection rule. Rather, the new and more physical interpretation
of a possible superselection rule for M would be that we cannot localize
the system in the coordinate conjugate to overall mass, which we call Λ,
i.e., that only the relative new positions λi − λj are observable.13 (This is
so because M generates translations of equal amount in all λi.) But this
would now be a contingent physical property rather than a mathematical
necessity. Note also that in our dynamical setup it is inconsistent to just state
that M generates gauge symmetries, i.e. that Λ corresponds to a physically
non existent degree of freedom. For example, a motion in real time along
Λ requires a non-vanishing action (for non-vanishing M), due to the term∫

dtMΛ̇ in the expression for the action.
If decoherence were to explain the (ficticious) mass superselection rule, it

would be due to a dynamical instability (as explained in [24]) of those states
which are more or less localized in Λ. Mathematically this effect would be
modelled by effectively removing the projectors onto Λ-subintervalls from the
algebra of observables, thereby putting M (i.e. its projectors) into the center
of O. Such a non-trivial center should therefore be thought of as resulting
from an approximation-dependent idealisation.

13 A system {(λ̃i, m̃i}) of canonical coordinates including M =
∑

i mi is e.g. λ̃1 :=
λ1, m̃1 = M and λ̃i = λi − λ1, m̃i = mi for i = 2...n. Then Λ = λ̃1.
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5 Charge Superselection Rule

In the previous case I said that superselection rules should be stated within a
dynamical framework including as dynamical degree of freedom the direction
generated by the superselected quantity. What is this degree of freedom in
the case of a superselected electric charge and how does it naturally appear
within the dynamical setup? What is its relation to the Coulomb field whose
rôle in charge-decoherence has been suggested in [15]? In the following discus-
sion I wish to investigate into these questions by looking at the Hamiltonian
formulation of Maxwell’s equation and the associated canonical quantization.

In Minkowski space, with preferred coordinates {xµ = (t, x, y, z)} (labo-
ratory rest frame), we consider the spatially finite region Z = {(t, x, y, z) :
x2 + y2 + z2 ≤ R2}. Σ denotes the intersection of Z with a slice t = const.
and ∂Σ =: SR its boundary (the laboratory walls). Suppose we wish to solve
Maxwell’s equations within Z, allowing for charged solutions. It is well known
that in order for charged configurations to be stationary points of the action,
the standard action functional has to be supplemented by certain surface
terms (see e.g. [11]) which involve new fields on the boundary, which we call
λ and f , and which represent a pair of canonically conjugate variables in
the Hamiltonian sense. On the laboratory walls, ∂Σ, we put the boundary
conditions that the normal component of the current and the tangential com-
ponents of the magnetic field vanish. Then the appropriate boundary term
for the action reads ∫

Z

dt dω(λ̇ + φ)f, (37)

where φ is the scalar potential and dω the measure on the spatial boundary 2-
sphere rescaled to unit radius. Adding this to the standard action functional
and expressing all fields on the spatial boundary by their multipole moments
(so that integrals

∫
∂Σ

dωR2, dω = measure on unit sphere, become
∑

lm),
one arrives at a Hamiltonian function

H =
∫
Σ

[ 1
2 (E2 + (∇ ×A)2) + φ(ρ−∇ ·E) −A · j]+

∑
lm

φlm(Elm − flm).

(38)
Here the pairs of canonically conjugate variables are (A(x),−E(x)) and
(λlm, flm), and Elm are the multipole components of n ·E,

Elm :=
∫
∂Σ

dωR2 Ylmn ·E, (39)

where n is the normal to ∂Σ. The scalar potential φ has to be considered as
Lagrange multiplier. With the given boundary conditions the Hamiltonian is
differentiable with respect to all the canonical variables14 and leads to the
14 This would not be true without the additional surface term (37). Without it

one does not simply obtain the wrong Hamiltonian equations of motions, but
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following equations of motion

Ȧ =
δH

δ(−E)
= −E −∇φ , (40)

−Ė = −δH

δA
= j −∇ × (∇ ×A) , (41)

λ̇lm =
∂H

∂flm
= −φlm , (42)

ḟlm = − ∂H

∂λlm
= 0 . (43)

These are supplemented by the equations which one obtains by varying with
respect to the scalar potential φ, which, as already said, is considered as
Lagrange multiplier. Varying first with respect to φ(x) (i.e. within Σ) and
then with respect to φlm (i.e. on the boundary ∂Σ), one obtains

G(x) : = ∇ ·E(x) − ρ(x) = 0, (44)
Glm : = Elm − flm = 0. (45)

These equations are constraints (containing no time derivatives) which, once
imposed on initial conditions, continue to hold due to the equations of motion.
15

This ends our discussion of the classical theory. The point was to show that
it leaves no ambiguity as to what its dynamical degrees of freedom are, and
that we had to include the variables λlm along with their conjugate momenta
flm in order to gain consistency with the existence of charged configurations.
The physical interpretation of the λlm’s is not obvious. Equation (42) merely
relates their time derivative to the scalar potential’s multipole moments on
the boundary, which are clearly highly non-local quantities. The interpreta-
tion of the flm’s follow from (45) and the definition of Elm, i.e. they are the
multipole moments of the electric flux distribution ϕ(n) := R2n · E(R2n).
In particular, for l = 0 = m we have

f00 = (4π)−
1
2 Q, (46)

none at all! Concerning the Langrangean formalism one should be aware that the
Euler-Lagrange equations may formally admit solutions (e.g. with long-ranged
(charged) fields) which are outside the class of functions which one used in the
variational principle of the action (e.g. rapid fall-off). Such solutions are not
stationary points of the action and their admittance is in conflict with the vari-
ational principle unless the expression for the action is modified by appropriate
boundary terms.

15 Equation (41) together with charge conservation, ρ̇+∇ · j = 0, shows that (44)
is preserved in time, and (43) together with the boundary condition that n · j
and n × (∇ × A) vanish on ∂Σ show that (45) is preserved in time.
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where Q is the total charge of the system. Hence we see that the total charge
generates motions in λ00. But this means that the degree of freedom labelled
by λ00 truly exists (in the sense of the theory). For example, a motion along
λ00 will cost a non-vanishing amount of action ∝ Q(λfinal00 − λinitial00 ). A dec-
laration that λ00 really labels only a gauge degree of freedom is incompatible
with the inclusion of charged states. Similar considerations apply of course to
the other values of l,m. But note that this conclusion is independent of the
radius R of the spatial boundary 2-sphere ∂Σ. In particular, it continues to
hold in the limit R →∞. We will not consistently get rid of physical degrees
of freedom that way, even if we agree that realistic physical measurements
will only detect field values in bounded regions of space-time. See [12] for
more discussion on this point and the distinction between proper symmetries
and gauge symmetries.

It should be obvious how these last remarks apply to the statement of
a charge superselection rule. Without entering the technical issues (see e.g.
[33]), its basic ingredient is Gauss’ law (for operator-valued quantities), lo-
cality of the electric field and causality. That Q commutes with all (quasi-)
local observables then follows simply from writing Q as surface integral of
the local flux operator R2n · Ê, and the observation that the surface may
be taken to lie in the causal complement of any bounded space-time region.
Causality then implies commutativity with any local observable.

In a heuristic Schrödinger picture formulation of QED one represents
states Ψ by functions of the configuration variables A(x) and λlm. The mo-
mentum operators are obtained as usual:

−E(x) −→ −i
δ

δA(x)
, (47)

flm −→ −i
∂

∂λlm
. (48)

In particular, the constraint (45) implies the statement that on physical states
Ψ we have16

Q̂Ψ = −i
√

4π
∂

∂λ00
Ψ . (49)

This shows that a charge superselection rule is equivalent to the statement
that we cannot localize the system in its λ00 degree of freedom. Removing by
hand the multiplication operator λ00 (i.e. the projectors onto λ00-intervals)
from our observables clearly makes Q a central element in the remaining
algebra of observables. But what is the physical justification for this removal?
Certainly, it is valid FAPP if one restricts to local observations in space-time.
To state that this is a fundamental restriction, and not only an approximate
16 Clearly all sorts of points are simply sketched over here. For example, charge

quantization presumably means that λ00 should be taken with a compact range,
which in turn will modify (48) and (49). But this is irrelevant to the point stressed
here.
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one, is equivalent to saying that for some fundamental reason we cannot
have access to some of the existing degrees of freedom, which seems at odds
with the dynamical setup. Rather, there should be a dynamical reason for
why localizations in λ00 seem FAPP out of reach. The idea of decoherence
would be that localizations in λ00 are highly unstable against dynamical
decoherence.

We have mainly focussed on the charge superselection operator f00, al-
though the foregoing considerations make it clear that by the same argument
any two different asymptotic flux distributions also define different supers-
election sectors of the theory. Do we expect these additional superselection
rules to be physically real? First note that for l > 0 the flm are not directly
related to the multipole moments of the charge distributions, as the latter
fall-off faster than 1

r2 and are hence not detectable on the sphere at infin-
ity. Conversely, the higher multipole moments flm are not measurable (in
terms of electromagnetic fields) within any finite region of space-time, unlike
the charge, which is tight to massive particles; any finite sphere enclosing all
sources has the same total flux. But the flm can be related to the kinematical
state of a particle through the retarded Coulomb field. In fact, given a par-
ticle with constant momentum p, charge e and mass m, one obtains for the
electric flux distribution at time t on a sphere centered at the instantaneous
(i.e. at time t) particle position:17

ϕp(n) =
em2

4π
[p2 + m2]

1
2

[(p · n)2 + m2]
3
2
. (51)

Hence different incoming momenta would induce different flux distributions
and therefore lie in different sectors. Given that these sectors exist this means
17 Formula (51) requires a little more explanation: for a particle with general tra-

jectory z(t) let t′ be the retarded time for the space-time point (x, t), i.e.,
t′ = t − ‖x − z(t′)‖ (c = 1 in our units). Now we can use the well known
formula for the retarded electric field (e.g. (14.14) in [21]) and compute the flux
distribution on a sphere which lies in the space of constant time t, where it is
centered at the retarded position z(t′) of the particle. This flux distribution can
be expressed as function of the retarded momentum p′ := p(t′) and the retarded
direction n′ := [x − z(t′)]/‖x − z(t′)‖ as follows (E′ :=

√
p′2 +m2):

ϕ′
p′(n′) =

em2

4π
1

[E′ − p′ · n′]2
. (50)

If the particle moves with constant velocity v := ż, the expression for the retarded
Coulomb field can be rewritten in terms of the instantaneous position z(t) by
using z(t) = z(t′) + v‖x − z(t′)‖. With respect to this center it is purely radial.
Then one calculates the flux distribution on a sphere which again lies in the space
of constant time t, but now centered at z(t) rather than z(t′). This function can
be expressed in terms of the instantaneous direction n := [x − z(t)]/‖x − z(t)‖
and the instantaneous momentum p := p(t). One obtains (51).
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that different incoming momenta cannot be coherently superposed and no
incoming localized states be formed, unless one also adds the appropriate
incoming infrared photons to just cancel the difference of the asymptotic flux
distributions. This is achieved by imposing the ‘infrared coherence condition
of Zwanziger [41]18 the effect of which is to ‘dress’ the charged particles with
infrared photons which just subtract their retarded Coulomb fields at large
spatial distances. Hence coherent superpositions of particles with different
momenta can only be formed if they are dressed by the right amount of
incoming infrared photons.

As a technical aside we remark that this can be done without violating the
Gupta-Bleuler transversality condition kµaµ(k)|in〉 = 0 in the zero-frequency
limit, precisely because of the surface term (37)[11]. This resolved an old is-
sue concerning the compatibility of the infrared coherence condition on one
hand, and the Gupta-Bleuler transversality condition on the other [17,42].
From what we said earlier concerning the consistency of the variational prin-
ciple in the presence of charged states, such an apparent clash of these two
conditions had to be expected: without the surface variables one cannot main-
tain gauge invariance at spatial infinity (i.e. in the infrared limit) and at the
same time include charged states. In the charged sectors the longitudinal
infrared photons correspond to real physical degrees of freedom and it will
naturally lead to inconsistencies if one tries to eliminate them by imposing
the Gupta-Bleuler transversality condition also in the infrared limit. How-
ever, a gauge symmetry in the infrared limit can be maintained if one adds
the asymptotic degrees of freedom in the form of surface terms.

These remarks illustrate how the rich superselection structure associ-
ated with different asymptotic flux distributions flm renders the problem
of characterizing state spaces in QED for charged sectors fairly complicated.
This problem has been studied within various formalisms including algebraic
QFT [5] and lattice approximations, where the algebra of observables can be
explicitly presented [25]. However, all this takes for granted the existence of
the superselection rules, whereas we would like to see whether they really
arise from some physical impossibility to localize the system in the degrees
of freedom labelled by λlm. What physics should prevent us from forming
incoming localized wave packets of charged undressed (in the sense above)
particles, which would produce coherent superpositions of asymptotic flux
distributions from the sectors with l ≥ 1? This cries out for a decoherence
mechanism to provide a satisfying physical explanation. The case of charge
superselection is, however, more elusive, since localizations in λ00 do not have
an obvious physical interpretation. Compare the controversy between [1,29]
on one side and [36] on the other.

18 Basically it says that the incoming scattering states should be eigenstates to the
photon annihilation operators ain

µ (k) in the zero-frequency limit.
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Abstract. Classical mechanics and standard Copenhagen quantum mechanics re-
spect subspace implications. For example, if a particle is confined in a particular
region R of space, then in these theories we can deduce that it is confined in regions
containing R. However, subspace implications are generally violated by versions of
quantum theory that assign probabilities to histories, such as the consistent his-
tories approach. I define here a new criterion, ordered consistency, which refines
the criterion of consistency and has the property that inferences made by ordered
consistent sets do not violate subspace relations. This raises the question: do the op-
erators defining our observations form an ordered consistent history? If so, ordered
consistency defines a version of quantum theory with greater predictive power than
the consistent histories formalism. If not, and our observations are defined by a non-
ordered consistent quantum history, then subspace implications are not generally
valid.

1 Introduction

We take it for granted that we can infer quantitatively less precise statements
from our observations. For example, if we know that an atom is confined in
some region R of space, we believe we are free to assume for calculational
purposes only that it lies in some larger region containing R. Our under-
standing of the world and our interpretation of everyday experience tacitly
rely on subspace implications of this general type: if a physical quantity is
known to lie within a range R1, then it lies in all ranges R2 ⊃ R1.

In classical mechanics, subspace inferences follow from the correspondence
between physical states and points in phase space: if the state of a system
lies in a subset S1 of phase space, it lies in all subsets S2 ⊃ S1. Similarly,
in Copenhagen quantum theory, they hold since if the state of a quantum
system lies in a subspace H1 of Hilbert space, it lies in all subspaces H2 ⊃ H1.

However, neither classical mechanics nor (presumably) Copenhagen quan-
tum theory is fundamentally correct. If the basic principles of quantum theory
apply to the universe as a whole, then a post-Copenhagen interpretation of
quantum theory seems to be needed, and any justification of the subspace im-
plications must ultimately be given in terms of that interpretation. Though it
may seem hard to imagine how to make sense of nature without allowing sub-
space inferences, there are versions of quantum theory in which they do not
hold. In particular, this is true of recent attempts to develop history-based
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formulations of quantum theory [1–5], which rely on the notion of consistent
or decoherent sets of histories.

This paper suggests a way in which quantum theory can plausibly be
interpreted via statements about histories, without violating subspace impli-
cations — the motivation being that both history-based interpretations and
subspace implications seem natural. The interpretation which results, a re-
finement of the consistent histories approach based on ordered consistent sets
of histories, is certainly not the ultimate answer to the problems of quantum
theory. It does not solve the measurement problem, for example. But perhaps
it is a step in the right direction, or at least in an interesting direction. It
also helps to make precise the question as to what it would mean if subspace
implications actually were violated in nature, which the last part of the paper
examines.

The language of quantum histories may not necessarily be the right way to
interpret the quantum theory of closed systems. Bohm theory [6] and dynam-
ical collapse theories [7] are particularly interesting alternatives, for example.
Quantum histories still play a rôle in these theories as usually interpreted,
but it is certainly possible to interpret them so as to ascribe no ontologi-
cal status to the evolving quantum state, in which case quantum histories
have no ontological status either, and the orderings amongst them become
physically irrelevant.

In this paper, which focusses on the relation between quantum histories
and orderings, I take it for granted — as an interesting hypothesis, not a
dogma — that quantum histories have some ontological status. I will focus
on the consistent histories approach. This is not to suggest that there are no
other interesting quantum histories approaches. Other ideas are outlined in
Ref. [8], Section VII of Ref. [9], and Ref. [10], for example. But the discussion
of this paper is best carried out within some specific formulation of quantum
theory, and consistent histories is the most widely studied example. As an
approach to closed system quantum histories, it has many interesting fea-
tures. Its main drawback is that it does not solve the measurement problem,
which in the language of consistent histories takes the form of a set selec-
tion problem. The search for ways to refine the definition of consistency in
order to solve, or at least reduce, the set selection problem is an independent
motivation for the definition of ordered consistency proposed below.

2 Partial Ordering of Quantum Histories

We consider versions of quantum theory that assign probabilities to histories
— i.e., to collections of events. There are several reasonably standard ways
of representing an event in quantum theory. The simplest is as a projection
operator, labelled by a particular time, corresponding to a statement about
an observable in non-relativistic quantum mechanics. Thus, the statement
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that a particle was in the interval I at time t is represented by the projection

PI =
∫
x∈I

|x〉〈x|d3x . (1)

The representation of events as projections can be generalised to quantum ef-
fects [10–12], defined by operators A such that A and I−A are both positive.1

Events can also be defined, at least formally, in the path integral version of
quantum theory by dividing the set of paths into exclusive subsets. For exam-
ple, by considering the appropriate integrals one can attach probabilities to
the events that a particle did, or did not, enter a particular region of space-
time [13]. Further generalisations have been discussed by Isham, Linden and
collaborators [5,14,15].

Each of these representations has a natural partial ordering. For projec-
tions, we take A ≥ B if the range of B is a subspace of that of A. This
corresponds to the logical implication of Copenhagen quantum theory al-
ready mentioned: if the state of a quantum system lies in the range of B,
then it necessarily lies in the range of A. For quantum effects, we take A ≥ B
if and only if (A − B) is positive. For events defined by the position space
path integral, we take the statement that a particle entered R1 to imply the
statement that it entered R2 if R1 ⊆ R2.

We define a quantum history as a collection of quantum events and ex-
tend the partial ordering to histories in the natural way. For example, if
we take quantum histories in non-relativistic quantum mechanics to be de-
fined by sequences of projections at different fixed times, we compare two
quantum histories H = {A1, t1; . . . ;An; tn} and H ′ = {A′1, t′1; . . . ;A

′
n′ , t

′
n′}

as follows. First add to each history the identity operator at every time
at which it contains no proposition and the other does, so obtaining rela-
belled representations of the histories as H = {A1, T1; . . . ;AN ;TN} and H ′ =
{A′1, T1; . . . ;A′N , TN}. Then define the partial ordering by taking H ≥ H ′ if
and only if Ai ≥ A′i for all i and H > H ′ if H ≥ H ′ and H �= H ′. This
ordering was first considered in the consistent histories literature by Isham
and Linden [14], whose work, and its relation to the ideas of this paper, are
discussed in the Appendix.

3 Consistent Histories

The consistent sets of histories for a closed quantum system are defined in
terms of the space of states H, the initial density matrix ρ, and the hamil-
tonian H. In the simplest version of the consistent histories formulation of
non-relativistic quantum mechanics, sets of histories correspond to sets of pro-
jective decompositions. In order to be able to give a physical interpretation
of any of the consistent sets, we need also to assume that standard observ-
ables, such as position, momentum and spin, are given. Individual quantum
1 Different definitions can be found: this, the simplest, is adequate for our purposes.
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events are defined by members of projective decompositions of the identity
into orthogonal hermitian projections σ = {P i}, with∑

i

P i = 1 and P iP j = δijP
i . (2)

Each such decomposition defines a complete and exclusive list of events at
some fixed time, and a time label is thus generally attached to the decompo-
sitions and the projections: the labels are omitted here, since the properties
of interest here depend only on the time ordering of events.

Suppose now we have a set of decompositions S = {σ1, . . . , σn}. Then the
histories given by choosing one projection from each of the decompositions
σj in all possible ways define an exhaustive and exclusive set of alternatives.
We follow Gell-Mann and Hartle’s definitions, and say that S is a consistent
(or medium decoherent) set of histories if

Tr(P in
n . . . P i1

1 ρP j1
1 . . . P jn

n ) = δi1j1 . . . δinjnp(i1 . . . in) . (3)

When S is consistent, p(i1 . . . in) is the probability of the history H =
{P i1

1 , . . . , P in
n }. We will want later to discuss the properties of individual

histories without reference to any fixed consistent set, and we define a con-
sistent history to be a history which belongs to some consistent set S. Finally,
we say the set

S ′ = {σ1, . . . , σk, τ, σk+1, . . . , σn} (4)

is a consistent extension of a consistent set of histories S = {σ1, . . . , σn} by
the set of projections τ = {Qi : i = 1, . . . ,m} if τ is a projective decomposi-
tion and S ′ is consistent.

Suppose now that we have a collection of data defined by the history

H = {P i1
1 , . . . , P in

n } (5)

which has non-zero probability and belongs to the consistent set S. This his-
tory might, for example, describe the results of a series of experiments or
the observations made by an observer. Given a choice of consistent extension
S ′ of S, we can make probabilistic inferences conditioned on the history H.
For example, if S ′ has the above form, the histories extending H in S ′ are
Hi = {P i1

1 , . . . , P ik
k , Qi, P

ik+1
k+1 , . . . , P

in
n } and the proposition Qi has condi-

tional probability
p(Qi|H) = p(Hi)/p(H) . (6)

These probabilities and conditional probabilities are the same in every con-
sistent set which includes Hi and (hence) H. However, when we want to em-
phasize that the calculation can be carried out in some particular set S, we
will attach a suffix. For example, we might write pS′(Qi|H) = pS′(Hi)/pS(H)
for the above equation.

The formalism itself gives no way of choosing any particular consistent
extension. In the view of the original developers of the consistent histories
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approach, the different S ′ are to be thought of as ways of producing possible
pictures of the past and future physics of the system which, though generally
incompatible, are all equally valid. More formally, they can be seen as incom-
patible logical structures which allow different classes of inferences from the
data [16,17].

It is this freedom in the choice of consistent extension which, it has been
argued elsewhere [9,18–23,10] gives rise to the most serious problems in the
consistent histories approach. Standard probabilistic predictions and deter-
ministic retrodictions can be reproduced in the consistent histories formalism
by making an ad hoc choice of consistent set, but cannot be derived from the
formalism itself. In fact, it is almost never possible to make any unambigu-
ous predictions or retrodictions: there are almost always an infinite number
of incompatible consistent extensions of the set containing a given history
dataset [9,20].

The problem is not simply that the formalism supplies descriptions of
physics which are complementary in the standard sense, although that in itself
is sufficient to ensure that the formalism is only very weakly predictive. Even
on the assumption that we will continue to observe quasiclassical physics,
no known interpretation of the formalism allows us to derive the predictions
of classical mechanics and Copenhagen quantum theory [18]. Hence the set
selection problem: probabilistic predictions can only be made conditional on
a choice of a consistent set, yet the consistent histories formalism gives no
way of singling out any particular set or sets as physically interesting.

One possible solution to the set selection problem would be an axiom
which identifies a unique physically interesting set, or perhaps a class of
such sets, from the initial state and the dynamics. Another would be the
identification of a physically natural measure on the space of consistent sets,
according to which the physically relevant consistent set is randomly chosen.
Possible set selection criteria have been investigated [24,25], but no generally
workable criterion has emerged. 2

4 Consistent Sets and Contrary Inferences: A Brief
Review

A further reason for believing that the consistent histories formalism is at
best incomplete comes from considering the logical relations among events in
different consistent sets. We say that two projection operators P and Q are
complementary if they do not commute: PQ �= QP . We say that they are
contradictory if they sum to the identity, so that P = 1−Q and PQ = QP =

2 With different motivations, Gell-Mann and Hartle have explored a “strong deco-
herence” criterion which is intended to reduce the number of consistent sets [26].
However, under their present definition, every consistent set is strongly decoher-
ent [10].
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0, and that they are contrary if they are orthogonal and not contradictory,
so that PQ = QP = 0 and P < 1 −Q.

Contradictory inferences are never possible in the consistent histories for-
malism, but it is easy to find examples of contrary inferences from the same
data [19]. For instance, consider a quantum system whose hamiltonian is zero
and whose Hilbert space H has dimension greater than two, prepared in the
state |a〉. Suppose that the system is left undisturbed from time 0 until time
t, when it is observed in the state |c〉, where 0 < |〈 a | c 〉| ≤ 1/3, i.e. a single
quantum measurement is made, and the outcome probability is less than 1/9.
In consistent histories language, we have the initial density matrix ρ = |a〉〈a|
and the single datum corresponding to the history H = {Pc} from the con-
sistent set S = {{Pc, 1 − Pc}}, where the projection Pc = |c〉〈c| is taken at
time t.

Now consider consistent extensions of S of the form Sb = {{Pb, 1 −
Pb}, {Pc, 1 − Pc}}, where Pb = |b〉〈b| for some normalised vector |b〉 with
the property that

〈 c | b 〉 〈 b | a 〉 = 〈 c | a 〉 . (7)

It is easy to verify that Sb is consistent and that the conditional probability
of Pb given H is 1. It is also easy to see that there are at least two mu-
tually orthogonal vectors |b〉 satisfying (7) . For example, let |v1〉, |v2〉, |v3〉
be orthonormal vectors and take |a〉 = |v1〉 and |c〉 = λ|v1〉 + µ|v2〉, where
|λ|2 + |µ|2 = 1. Then the vectors

|b±〉 = (|λ|2 +
|µ|2
x

)−1/2(λ|v1〉 +
µ

x
|v2〉 ± (x− 1)1/2µ

x
|v3〉) (8)

both satisfy (7) and are orthogonal if x is real and x2|λ|2 = (x− 2)(1− |λ|2),
which has solutions for |λ| ≤ 1/3. Thus the consistent sets Sb± give contrary
probability on retrodictions.

Some brief historical remarks are in order. The existence of contrary infer-
ences in the consistent histories formalism, though easy to show, was noticed
only quite recently. In particular, it was not known to the formalism’s orig-
inal developers.3 It was first explicitly pointed out, and its implications for
the consistent histories formalism were first examined, in Ref. [19]. Further
discussion can be found in Refs. [27,28]. However, a noteworthy earlier consis-
tent histories analysis of an example in which contrary inferences arise can be
found in a critique by Cohen [29] of Aharonov and Vaidman’s interpretation
[30] of one of their intriguing examples of pre- and post-selection.4 As noted
in Ref. [19], Cohen’s analysis miscontrues the consistency criterion: however,
this error does not affect its derivation of contrary inferences.

3 I am grateful to Bob Griffiths, Jim Hartle, and Roland Omnès for helpful corre-
spondence on this point.

4 I am grateful to Oliver Cohen and Lucien Hardy for drawing this reference to my
attention.
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Now, the existence of contrary inferences in the consistent histories for-
malism needs to be interpreted with care. It is not true that, in any given
consistent set, two different contrary propositions can be inferred with prob-
ability one. The inferences made within any given consistent set lead to
no contradiction. The picture of physics given by any given consistent set
may or may not be considered natural or plausible — depending on one’s
intuition and the criteria one uses for naturality — but it is not logically
self-contradictory. It is however true, as a mathematical statement about the
properties of the consistent histories formalism, that the propositions inferred
in the two different sets correspond to contrary projections. The formalism
makes no physical distinction among different consistent sets, and so requires
us to conclude that two equally valid pictures of physics can be given, in
which contrary events take place.

To put it more formally, the consistent histories approach can be inter-
preted as setting out rules of reasoning according to which, although physics
can be described by any of infinitely many equally valid pictures, only one of
those pictures may be considered in any given argument. Such an interpre-
tation ensures — tautologically — that no logical contradiction arises, even
when the pictures contain contrary inferences.

The consistent histories formalism, in other words, gives a set of rules
for producing possible pictures of physics within quantum theory, and these
rules themselves lead to no logical inconsistency. However, consistent histo-
rians claim much more, arguing that the formalism defines a natural and
scientifically unproblematic interpretation of quantum theory. Indeed, the
consistent histories literature tends to suggest that the descriptions of physics
given by consistent historians are simply and evidently the correct descrip-
tions which emerge from quantum theory, so that, in querying them, one
necessarily queries quantum theory itself.5

This seems patently false. The most basic premise of consistent historians
— that quantum theory is correctly interpreted by some sort of many-picture
scheme — leads to such trouble in explaining which particular picture we see,
and why, that cautious scepticism seems only appropriate. Even if the premise
were accepted, it would be essential to ask, of any particular many-picture
scheme, whether its assumptions are natural and whether the descriptions of
nature it produces are physically plausible or scientifically useful. The partic-
ular equations used to define consistent sets are, after all, simply interesting
guesses: there is no compelling theoretical justification for them, and indeed,
several different definitions of consistency have been proposed [1,4,32].

My own view is that there are a number of compelling reasons for regard-
ing the consistent histories interpretation, as it is presently understood, as
scientifically unsatisfactory. However, as these questions have been explored

5 For example, the consistent histories interpretation of quantum mechanics has
been referred to as “the interpretation of quantum mechanics”[16] and even as
simply “quantum mechanics”[31].
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in some detail elsewhere [9,10,18–23,27,28], I here comment only on two spe-
cific problems raised by contrary inferences.

First, the fact that we are to take as equally valid and correct pictures of
physics which include contrary inferences goes against many well developed
intuitions. No argument based on intuition alone can be conclusive, but I
think it must be granted that this one has some force. What use, it may
reasonably be asked, is there in saying that in one picture of reality a particle
genuinely went, with probability one, through slit A, and that in another
picture the particle went, also with probability one, through the disjoint slit
B? Why should we take either picture seriously, given the other?

On this point, it is worth noting that one of the advertised merits of the
consistent histories formalism [1,16,17] is that it, unlike the Copenhagen in-
terpretation, accommodates some (arguably) plausible intuitions about the
behaviour of microsystems in between observations. For example, the formal-
ism allows us to say — albeit only as one of an infinite number of incompatible
descriptions — that a particle observed at a particular detector was travelling
towards that detector before the observation, and that a particle measured
to have spin component σx = sx had that spin before the measurement took
place. As Griffiths and Omnès note [1,16], informal discussions of experiments
are often framed in terms which, if taken literally, suggest that we can make
this sort of statement about microsystems before a measurement is carried
out. (“Was the beam correctly aligned going into the second interferometer?”,
or “Do you think something crazy in the electronics might have triggered [de-
tector] number 3 just before the particle got there?”[1], for example.) Their
intuition is that a good interpretation of quantum theory ought to give a
way of allowing us to take such statements literally — a criterion which, they
suggest, the consistent histories approach satisfies.

The intuition is, of course, controversial. A counter-intuition, which most
interpretations of quantum theory support, is that any description of a mi-
crosystem before a measurement is carried out should be independent of the
result of that measurement.

In any case, to the extent that any intuition is offered as a justification
of the formalism, it seems reasonable to consider the fact that the formalism
violates other strongly held intuitions. Few experimenters, after all, can ever
have intuitively concluded that the entire flux of their beam can sensibly be
thought of as having followed any of several macroscopically distinct paths
through the apparatus. Yet this is what the above example, translated into
an interference experiment, implies.

The second, and probably deeper, problem is that it seems very hard to
justify the distinction, which consistent historians are forced to draw, be-
tween contradictory inferences, which are regarded as a priori unacceptable,
and contrary inferences, which are regarded as unproblematic. Some justifi-
cation seems called for, since the distinction is not an accidental feature: it
is not that the formalism, for unrelated reasons, simply happens to exclude
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one type of inference and include the other. The definition of consistency is
motivated precisely by the notion that, when two different sets allow a calcu-
lation of the probability of the same event (belonging, in the simplest case,
to a single history in one set and a combination of two histories in the other),
the calculations should agree. This requires in particular that contradictory
propositions P and (1−P ) can never be inferred, since if the probability of P
is one in any set, it must be one in all sets, and so the probability of (1−P )
must be zero in all sets.

Now this last requirement is not absolutely essential, sensible though it
may seem. No logical contradiction arises in an interpretation of quantum
theory which follows the basic interpretational ideas of the consistent histo-
ries formalism but which accepts all complete sets of disjoint quantum his-
tories, whether consistent or not, as defining valid pictures of physics [9,10].
In this “inconsistent histories” interpretation, contradictory inferences can
generally be made by using different pictures. This possibility is excluded by
a deliberate theoretical choice.

It seems natural, then, having made this choice, to look for ways in which
contrary inferences can similarly be excluded. This is the line of thought pur-
sued below. Note, however, that the problem of contrary inferences is not the
only motivation for the ideas introduced below. Whatever one’s view of the
consistent histories formalism, it is interesting that an alternative formalism
can be defined relatively simply. It seems fruitful to ask which, if either, is to
be preferred, and why. And, as we will see, ordered consistent sets raise in-
dependently interesting questions about the quasiclassical world we actually
observe.

5 Relation of Contrary Inferences and Subspace
Implications

A contrary inference arises when there exist two consistent sets, S1 and S2,
both containing a history H, with the property that there are orthogonal
propositions P1 and P2 which are implied by H in the respective sets, so that
— temporarily adding set suffices for clarity — we have

pS1(P1|H) = pS2(P2|H) = 1 . (9)

Now pS2((1 − P2)|H) = 0, and since the probabilities are set-independent
and pS1(P1|H) is nonzero, we cannot have P1 = 1 − P2. Hence, since P1
and P2 are orthogonal, we have that P1 < 1 − P2. Since p(P1|H) = 1 and
p((1 − P2)|H) = 0, this pair of projections violates the subspace implication
P1 ⇒ 1−P2. That is, a contrary inference implies the existence of consistent
histories H and H ′, belonging to different consistent sets and agreeing on
all but one projector, such that H has non-zero probability, H ′ has zero
probability, and H < H ′: in the example of the last section, for instance, we
have H = {Pb+ , Pc} and H ′ = {(1 − Pb−), Pc}.
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Clearly, according to the consistent histories formalism, an observation
of the datum Pb+ cannot be taken to imply an observation of the strictly
larger projector (1 − Pb−). To make that inference would lead directly to a
contradiction, in the form of the realisation of a probability zero history, if
Pc were subsequently observed.

Now it is easy to produce real world examples of contrary inferences, so
long as those inferences are of unobserved quantities. As we have seen, it
requires only a three-dimensional quantum system, prepared in one state,
isolated, and then observed in another state — hardly a taxing experiment.

It is not obvious, though, that we can produce examples where subspace
implications fail in a realistic consistent histories description of observations
of laboratory experiments, or more generally of macroscopic quasiclassical
physics. That general consistent histories violate subspace implications need
not necessarily imply that the particular consistent histories used to recover
standard descriptions of real world physics do so. Both in order to address
this question, and for its own sake, it is interesting to ask whether there
might be any alternative treatment of quantum theory within the consistent
histories framework which respects subspace implications, at least when they
relate two consistent histories. The next section suggests such a treatment.

6 Ordered Consistent Sets of Histories

We have already seen that there is a natural partial ordering for each of the
standard representations of quantum histories in the consistent histories ap-
proach. The probability weight defines a second partial ordering: H ≺ H ′ if
p(H) < p(H ′). The violation of subspace implications reflects the disagree-
ment between these two partial orderings in the consistent histories formal-
ism: we can have both H < H ′ and H 0 H ′. The aim of this section is to
develop a history-based interpretation which restricts attention to collections
of quantum histories on which the two orderings do not disagree.

We begin at the level of individual quantum histories, defining an ordered
consistent history, H, to be a consistent history with the properties that:

(i) for all consistent histories H ′ with H ′ ≥ H we have that p(H ′) ≥ p(H);
(ii) for all consistent histories H ′ with H ′ ≤ H we have that p(H ′) ≤ p(H).

Recall that a consistent history is any quantum history which belongs to some
consistent set of histories. Properties (i) and (ii) hold trivially for histories H
and H ′ which belong to the same consistent set: it is the comparison across
different sets which makes them useful constraints.

We now define an ordered consistent set of histories to be a complete set
of exclusive alternative histories, each of which is ordered consistent. We can
then define an ordered consistent histories approach to quantum theory in
precise analogy to the consistent histories approach, using the same definition
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of probability weight and the same interpretation, simply declaring by fiat
that only ordered consistent sets of histories are to be considered.6

The following lemmas show that, within the projection operator formula-
tion, ordered consistent sets of histories do indeed exist.7

Lemma 1: Any consistent history H = {P1, . . . , Pn} defined by a
series of projections which include a minimal projection Pj , so that Pi ≥ Pj

for all i, is an ordered consistent history.

Proof: Suppose H ′ = {P ′1, . . . , P ′n} is a larger history than H, and
write P ′i = Pj + Qi. We have that

p(H ′) = Tr(P ′n . . . P
′
1ρP

′
1 . . . P

′
n)

= Tr((Pj + Qn) . . . (Pj + Q1)ρ(Pj + Q1) . . . (Pj + Qn))
= Tr(Pjρ) + Tr(Qn . . . Q1ρQ1 . . . Qn)
≥ Tr(Pjρ)
= p(H) . (10)

Now suppose that H ′ is smaller than H. Then in particular P ′j ≤ Pj and we
have that

p(H ′) ≤ Tr(P ′jρ)
≤ Tr(Pjρ)
= p(H) . (11)

Lemma 2: Let S = {σ1, . . . , σn} be a consistent set of histories defined
by a series of projective decompositions, of which one, σj , has the property
that for each projection P in σj , and for every i, we have that there is precisely
one projection Q in σi with the property that Q ≥ P (so that all of the other
projections in σi are contrary to P ). Then S is an ordered consistent set of
histories.

Proof: Each of the histories of non-zero probability in S satisfies the
conditions of Lemma 1 and so is ordered consistent. Each of the histories of
zero probability in S is of the form H = {. . . , P, . . . , Q, . . .}, where P and Q
are contrary projections. Now any consistent history smaller than H therefore
also contains a pair of contrary projections P ′ ≤ P and Q′ ≤ Q. By the

6 Note that there are other collections of quantum histories on which the orderings
do not disagree. For example, if all the consistent histories H that violate (i)
are eliminated, the remainder form a collection on which the orderings do not
disagree and which is not obviously identical to the ordered consistent histories,
and similarly for (ii). It might be interesting to explore such alternatives, but we
restrict attention to the ordered consistent histories here.

7 I am grateful to Bob Griffiths for suggesting a slight extension of Lemma 1.
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consistency axioms, its probability is less than or equal to Tr(Q′P ′ρP ′Q′) =
0, and thus must also be zero. Hence H is ordered consistent, since any
consistent history larger than H has probability greater than or equal to
zero.

7 Ordered Consistent Sets and Quasiclassicality

A formalism based on ordered consistent sets of histories obviously defines
a more strongly predictive version of quantum theory than that defined by
the existing consistent histories framework, since it allows strictly fewer sets
as possible descriptions of physics. But can it describe our empirical obser-
vations?

The question subdivides. Are quasiclassical domains generally ordered
consistent sets of histories? Is our own quasiclassical domain one? If not, are
its histories generally ordered when compared to histories belonging to other
consistent sets defined by projections onto ranges of the same quasiclassical
variables? For example, can we show that consistent histories defined by
projections onto ranges of densities for chemical species in small volumes are
generally ordered with respect to one another? If so, then the type of subspace
implication which is generally used in analyses of observations could still be
justified. Finally, if either of the previous two properties fail to hold, it would
be useful to quantify the extent to which they fail.

Answering any of these questions definitively may require — and, it might
be hoped, help to develop — a deeper understanding of quasiclassicality than
is available to us at present. I at any rate do not know the answers, and
can only offer the questions as interesting ones whose resolution would have
significant implications. At least ordered consistency does not seem to fall at
the first hurdle: ordered consistent sets are shown below to be adequate to
describe quasiclassicality in simple models.

As a simple example, consider the following model of a series of successive
measurements of the spin of a spin-1/2 particle about various axes. We use a
vector notation for the particle states, so that if u is a unit vector in R3 the
eigenstates of σ · u are represented by | ± u〉. With the analogy of a pointer
state in mind, we use the basis {| ↑〉k, | ↓〉k} to represent the kth environment
particle state, together with the linear combinations |±〉k = (| ↑〉k±| ↓〉k)/

√
2.

We compactify the notation by writing environment states as single kets, so
that for example | ↑〉1 ⊗ · · · ⊗ | ↑〉n is written as | ↑ . . . ↑〉, and we take the
initial state |ψ(0)〉 to be |v〉 ⊗ | ↑ . . . ↑〉.

The interaction between the system and the kth environment particle is
chosen so that it corresponds to a measurement of the system spin along the
uk direction, so that the states evolve as follows:

|uk〉 ⊗ | ↑〉k → |uk〉 ⊗ | ↑〉k ,
|−uk〉 ⊗ | ↑〉k → |−uk〉 ⊗ | ↓〉k . (12)
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A simple unitary operator that generates this evolution is

Uk(t) = P (uk) ⊗ Ik + P (−uk) ⊗ exp(−iθk(t)Fk) , (13)

where P (x) = |x〉〈x| and Fk = i| ↓〉k〈↑ |k− i| ↑〉k〈↓ |k. Here θk(t) is a function
defined for each particle k, which varies from 0 to π/2 and represents how
far the interaction has progressed. We define Pk(±) = |±〉k〈±|k, so that
Fk = Pk(+) − Pk(−).

The Hamiltonian for this interaction is thus

Hk(t) = iU̇k(t)U†k(t) = θ̇k(t)P (−uk) ⊗ Fk , (14)

in both the Schrödinger and Heisenberg pictures. We write the extension of
Uk to the total Hilbert space as

Vk = P (uk) ⊗ I1 ⊗ · · · ⊗ In (15)
+P (−uk) ⊗ I1 ⊗ · · · ⊗ Ik−1 ⊗ exp(−iθk(t)Fk) ⊗ Ik+1 ⊗ · · · ⊗ In .

We take the system particle to interact initially with particle 1 and then
with consecutively numbered ones, and there is no interaction between en-
vironment particles, so that the evolution operator for the complete system
is

U(t) = Vn(t) . . . V1(t) , (16)

with each factor affecting only the Hilbert spaces of the system and one of
the environment spins.

We suppose, finally, that the interactions take place in disjoint time in-
tervals and that the first interaction begins at t = 0, so that the total Hamil-
tonian is simply

H(t) =
n∑

k=1

Hk(t) , (17)

and we have that θ1(t) > 0 for t > 0 and that, if 0 < θk(t) < π/2, then
θi(t) = π/2 for all i < k and θi(t) = 0 for all i > k.

This model has been used elsewhere [25,33] in order to explore algorithms
which might select a single physically natural consistent set when the physics
is determined by the simplest type of system-environment interaction. It is
particularly well suited to such an analysis, since the dynamics are chosen so
as to allow a simple and quite elegant classification [33] of all the consistent
sets built from projections onto subspaces defined by the Schmidt decom-
position. Apart from this, though, the model is unexceptional — one of the
simpler variants among the many models used in the literature to investigate
the decoherence of system states by measurement-type interactions with an
environment.

To give a physical interpretation of the model, we take it that the en-
vironment “pointer” variables assume definite values after their respective
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interactions with the system. That is, after the kth interaction, the kth en-
vironment particle is in one of the states | ↑〉k and | ↓〉k: the probabilities of
each of these outcomes depend on the outcome of the previous measurement
(or, in the case of the first measurement, on the initial state) via the standard
quantum mechanical expressions.

This description can be recovered from the consistent histories formalism
by choosing the consistent set S1, defined by the decompositions

{ I ⊗ |ε1〉1〈ε1|1 ⊗ I ⊗ · · · ⊗ I : ε1 = ↑ or ↓} at time t1 , (18)
{ I ⊗ |ε1〉1〈ε1|1 ⊗ |ε2〉2〈ε2|2 ⊗ · · · ⊗ I : ε1, ε2 = ↑ or ↓} at time t2 ,
. . .

{ I ⊗ |ε1〉1〈ε1|1 ⊗ |ε2〉2〈ε2|2 ⊗ · · · ⊗ |εn〉n〈εn|n : ε1, ε2, . . . , εn = ↑ or ↓}
at time tn .

Clearly, the histories of non-zero probability in S1 take the form

Hε1,...,εn = {I ⊗ I ⊗ I ⊗ · · · ⊗ I,

I ⊗ |ε1〉1〈ε1|1 ⊗ I ⊗ · · · ⊗ I,

I ⊗ |ε1〉1〈ε1|1 ⊗ |ε2〉2〈ε2|2 ⊗ I ⊗ · · · ⊗ I,

. . . ,

I ⊗ |ε1〉1〈ε1|1 ⊗ |ε2〉2〈ε2|2 ⊗ · · · ⊗ |εn〉n〈εn|n} , (19)

for sequences {ε1, . . . , εn}, each element of which takes the value ↑ or ↓.
Their probabilities, defined by the decoherence functional, are precisely those
which would be obtained from standard quantum theory by treating each
interaction as a measurement:

p(Hε1,...,εn
) = (

1 + a1v.u1
2

)(
1 + a2u1.u2

2
) . . . (

1 + anun−1.un
2

) , (20)

where, letting ε0 =↑, we define ai = 1 if εi and εi−1 take the same value, and
ai = −1 otherwise.

Now S1 is defined by a nested sequence of increasingly refined projec-
tive decompositions, all of whose projections commute — a relation which
is unaltered by moving to the Heisenberg picture. It therefore satisfies the
conditions of Lemma 2 above, and so is ordered consistent.

This argument clearly generalizes: in any situation in which Hilbert space
factorizes into system and environment degrees of freedom, where the self-
interactions of the latter are negligible, any consistent set defined by nested
commuting projections onto the environment variables is ordered consistent.
The model considered above is a particularly crude example: more sophis-
ticated, and phenomenologically somewhat more plausible, examples of this
type are analysed in, for example, Refs. [26,32].

No sweeping conclusion can be drawn from this, since it is generally agreed
that familiar quasiclassical physics is not well described in general — at least
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in any obvious way — by models of this type. (Again, a detailed discussion of
the limitations of such models can be found in Refs. [26,32].) In other words,
while it would be hard to defend the hypothesis that familiar quasiclassical
sets are generally ordered consistent if sets of the type S1 were not, the fact
that they are is certainly not sufficient evidence. It would be good to find
sharper tests of the hypothesis, perhaps for example by developing further
the phenomenological investigations of quasiclassicality pursued in Ref. [26].
Meanwhile, the questions raised earlier in this section remain unresolved.

On the other hand, it would be difficult to make a watertight case that or-
dered consistent sets are definitely inadequate to describe real-world physics,
for the following reason. First, it seems hard to exclude the possibility that
the initial state is pure, so let us temporarily suppose that it is: ρ = |ψ〉〈ψ|.
As Gell-Mann and Hartle point out [32], we can then associate to every con-
sistent set of histories, S, a nested set of commuting projections defining what
they term generalized records. The consistent set defines a resolution of the
initial state into history vectors,

|ψ〉 =
∑

i1,...,in

P in
n . . . P i1

1 |ψ〉 , (21)

which are guaranteed to be orthogonal by the consistency condition 3. We can
thus find at least one set of orthogonal projection operators {RI}, indexed
by sets of the form I = {i1 . . . in}, which project onto the history vectors and
sum to the identity:

Ri1...in |ψ〉 = P in
n . . . P i1

1 |ψ〉 ,∑
I

RI = I , (22)

RIRJ = δIJRJ .

We can thus [32] construct a set S ′, with the same history vectors and the
same probabilities as S, built from a nested sequence of commuting projec-
tions defined by sums of the RI . And, as we have seen, sets of this type are
ordered consistent.

There is no reason to expect the projections defining the set S ′ to be
closely related to those defining S. In particular, the fact that S is a quasi-
classical domain certainly does not imply that S ′ is likely to be: its projections
are not generally likely to be interpretable in terms of familiar variables. But,
as we have already noted, we have no theoretical criterion which identifies a
particular consistent set, or a particular type of variable, as fundamentally
correct for representing the events we observe. The set S ′ correctly identifies
the history vectors and predicts their probabilities, and we thus could not
say for certain (given that we presently have no theory of set selection) that
its description of physics is fundamentally incorrect, while that given by S is
fundamentally correct.
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To make this observation is merely to point out a logical possibility. In
fact, it would be extremely puzzling if the more complicated and apparently
derivative set S ′ were in some sense more fundamental than the associated
quasiclassical domain S. And even if this were somehow understood to be
true in principle, we would still need to understand the relationship between
between ordered consistency and quasiclassicality in order to say whether or
not standardly used subspace inferences are in fact justifiable.

8 Ordering and Ordering Violations: Interpretation

However, one of the main points of this paper — and the main reason for
taking a particular interest in the properties of ordered consistent sets — is
that either answer leads to an interesting conclusion.

If our empirical observations can be accounted for by the predictions of an
ordered consistent set, then the ordered consistent sets formalism supersedes
the current versions of the consistent histories formalism as a predictive the-
ory. Alternatively, if the predictions of ordered consistent histories quantum
theory are false, then either the consistent histories framework uses entirely
the wrong language to describe histories of events in quantum theory, or we
cannot generally rely on subspace implications in analysing our observations.

Either of these last two possibilities would have far-reaching implications
for our understanding of nature. It is true that other ways of representing
quantum histories are known than those used in the consistent histories for-
malism, but they arise either in non-standard versions of quantum theory,
such as de Broglie–Bohm theory, or in alternative theories. It is also true
that there is no way of logically excluding the possibility that subspace im-
plications generally fail to hold. Any clear violation would, however, lead to
radical changes in our representation of the world, and in particular to our
understanding of the relation between theory and empirical observation.

I would suggest, however, that any version of closed system quantum the-
ory in which the two orderings disagree leads to radical new interpretational
problems. The fundamental problem is that, supposing that the world we
experience is described by one particular realised quantum history, we never
know — no matter how precise we try to make our observations — exactly
what form that history takes. This is not only because we can never com-
pletely eliminate imprecision from our experimental observations. A deeper
problem is that we have no theoretical understanding of how, precisely, an
observation should be represented within quantum theory. We do not know
precisely when and where any given observation takes place. Nor do we know
whether is fundamentally correct to represent quantum events by projection
operators, by quantum effects, by statements associated to space-time regions
in path integral quantum theory, or in some other way — let alone precisely
which operator, effect, or statement correctly represents any given event. As a
result, we are always forced into guesswork and approximation. We are forced
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to assume, at least as a working hypothesis, that we can find sensible bounds
on our observations. Roughly speaking, we assume that we can say, at least,
that a photon hit our photographic plate within a certain region, that the
observed flux from a distant star was in a certain range, and so forth.8 We
assume also that the probability of the actual observations — whose precise
form we do not know — is bounded by the probability of the observations as
we approximately represent them. These assumptions ultimately rely on the
agreement of two orderings just mentioned: when those orderings disagree,
we therefore run into new problems.

It is easy to see, in particular, that this sort of problem arises in any
careful consistent histories treatment of quantum cosmology. Suppose, for
example, that we have a sequence of cosmological events which we wish to
represent theoretically, in order to calculate their probability, given some
theory of the boundary conditions. Assuming that the basic principles of the
consistent histories formalism are correct, we know that these events should
be represented by some history H belonging to some consistent set S. We do
not, however, know the precise form of H or of S: the events are given to us
as empirical observations rather than as mathematical constructs.

The best we can then do, following the general principles of the consistent
histories formalism, is to choose some plausible consistent set S ′ containing
histories Hmin and Hmax which we guess to have the property Hmin < H <
Hmax: in particular, thus, we choose Hmin < Hmax. Since Hmin and Hmax
belong to the same set, we have that p(Hmin) < p(Hmax). It might naively be
hoped that we can derive that p(Hmin) < p(H) < p(Hmax), but since H in
general will belong to a different consistent set from Hmin and Hmax, this does
not generally follow. There is no way to bound p(H), except (in principle)
by performing the enormous task of explicitly calculating the probabilities
of all consistent histories bounded by Hmin and Hmax, and there is no way
to justify the type of subspace implication — relating observations and true
data — that we generally take for granted.

This is not to say that the disagreement of the two orderings necessarily
leads to logical contradiction. Versions of quantum theory in which the or-
derings disagree need not be inconsistent, or even impossible to test precisely.
They do, though, generally seem to require us to identify precisely the correct
representation of our observations in quantum theory. This is generally a far
from trivial problem: how are we to tell, a priori, exactly which projection
operators represent the results of a series of quantum measurements? It is
not impossible to imagine that theoretical criteria could be found which solve
the problem, but we certainly do not have such criteria at present.

8 In fact such statements are generally made within statistical confidence limits.
To consider statistical statements would complicate the discussion a little, but
does not alter the underlying point.
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9 Conclusions

Though the criterion of ordering seems mathematically natural, both in the
consistent histories approach to quantum theory and in other possible treat-
ments of quantum histories, it raises very unconventional questions. It seems,
though, that these questions cannot be avoided in any precise formulation of
the quantum theory of a closed system which involves a standard represen-
tation of quantum events and which gives a historical account.

There seem to be three possibilities, each of which is interesting. The first
is that the representations of quantum histories discussed here, though stan-
dard, are not those chosen by nature. Clearly this is a possibility: there are,
for example, well known non-standard versions of quantum theory [6], and
related theories [7], in which histories are defined by trajectories or other aux-
iliary variables, and in which subspace implications follow just as in classical
physics.

The second possibility is that our quasiclassical domain can be shown
to be an ordered consistent set. If so, then the ordered consistent histories
approach is both predictively stronger than the standard consistent histories
approach — since there are fewer ordered consistent sets — and compatible
with empirical observation, and hence superior as a predictive theory. If it is
compatible with our observations, the ordered consistent histories approach
would seem at least as natural as the consistent histories approach.

Even if so, I would not suggest that the ordered consistent histories formal-
ism is the “right” interpretation of quantum theory, and the consistent his-
tories approach the “wrong” one. The ordered consistent histories approach
seems almost certain to suffer from many of the same defects as the consis-
tent histories approach, since there are still far too many ordered consistent
sets. The aim here is thus not to propose the ordered consistent histories
approach as a plausible fundamental interpretation of quantum theory, but
to suggest that the range of natural and useful mathematical definitions of
types of quantum history is wider than previously understood. This range
includes, at least, Goldstein and Page’s criterion of linear positivity [34], the
various consistency criteria [1,26,32] in the literature, and the criterion of
ordered consistency introduced here. It seems to me hard to justify taking
any of these criteria as defining the fundamentally correct interpretation of
quantum theory. On the one hand, physically interesting quantum histories
might possibly satisfy any one, or none, of them; on the other hand, most
quantum histories satisfying any given criterion seem unlikely to be physically
interesting — and precisely which criteria are useful in which circumstances
largely remains to be understood.

The third possibility is that our quasiclassical domain is not an ordered
consistent set. This would have intriguing theoretical implications. We would
have, at least in principle, to abandon subspace inferences, and we would
ultimately need to understand precisely how to characterise the quantum
events which constitute the history we observe. This would raise profound and
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not easily answerable questions about how we can tell what, precisely, are our
empirical observations. It might also, depending on the way in which ordered
consistency was violated, and the extent of any violation, raise significant
practical problems in the analysis of those observations.

No compelling argument in favour of any one of these possibilities has
been given here: it has been shown only that, if quasiclassical sets generally
fail to be ordered consistent, they do so in a way too subtle to be displayed
in the simplest models.

Another caveat is that the above discussion applied the criterion of or-
dered consistency only to the simplest representation of quantum histories,
in which individual events are represented by projections at a single time.
Other representations need to be considered case by case, and our conclu-
sions might not necessarily generalize. For example, the fact that a consistent
history built from single time projections is ordered when compared to con-
sistent histories of the same type does not necessarily imply that it is ordered
when compared to consistent histories defined by composite events.

Still, the criterion of ordered consistency defines a new version of the
consistent histories formulation of quantum theory, which avoids the problems
caused by contrary inferences. Its other properties and implications largely
remain to be understood.
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Appendix: Ordering and Decoherence Functionals

This Appendix describes a noteworthy earlier discussion of quantum history
orderings, given by Isham and Linden in Sec. IV of Ref. [14], and its relation
to the ideas discussed here.

Isham and Linden abstract the basic ideas of the consistent histories for-
malism in the following way. First, the space UP of history propositions is
taken to be a mathematical structure — an orthoalgebra — with a series of
operations and relations obeying certain axioms. In particular, they propose
that a partial ordering ≤ and an orthogonality relation ⊥ should be defined
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on UP and should obey natural rules, and that UP should include an identity
history 1.

They then introduce a space D of decoherence functionals, defined to be
maps from UP ×UP to the complex numbers satisfying certain axioms, and
go on to consider whether the axioms defining decoherence functionals should
include axioms relating to the ordering in UP.

In the language of standard quantum mechanics, UP corresponds to the
space of all the quantum histories (not only the consistent histories) for a
given system, whose Hilbert space and hamiltonian are fixed. Any of several
representations of quantum histories could be considered: the relevant part of
Isham and Linden’s discussion uses the simplest representation of quantum
histories, as sequences of projection operators.

The standard quantum mechanical decoherence functional (as appears
on the left hand side of (3)) is a member of the space D in the minimal
axiom system Isham and Linden eventually choose. As they remark, though,
it would not be a member of D if the extra ordering axioms they discuss were
imposed. Isham and Linden nonetheless consider imposing these ordering
axioms, since their aim in the relevant discussion is to investigate generalised
algebraic and logical schemes rather than to propose a formalism applicable
to standard quantum theory. (They suggest, at the end of section IV, that
standard quantum theory might perhaps emerge from some such generalised
scheme in an appropriate limit.)

Isham and Linden were, as far as I am aware, the first to investigate pos-
sible uses of orderings in developing the consistent histories formalism. It is
worth stressing, though, to avoid any possible confusion, that their sugges-
tions pursue the exploration of orderings in a direction orthogonal to the one
considered in the present paper. In this paper we restrict attention to stan-
dard quantum theory, and propose an alternative histories formalism within
that theory, using the standard quantum theoretic decoherence functional
throughout. We note also that the subspace implications which underlie our
basic scientific worldviews depend for their justification on the assumption
that the quasiclassical set describing the physics we observe is an ordered con-
sistent set. Isham and Linden’s proposed ordering axioms, on the other hand,
exclude standard quantum theory and the standard decoherence functional:
they are possible postulates which might be imposed on non-standard gen-
eralised decoherence functionals in non-standard generalisations of quantum
theory.

Isham and Linden give a minimal set of postulated properties for gener-
alised decoherence functionals:

d(0, α) = 0 for all α ∈ UP ;
d(α, β) = d(β, α)∗ for all α, β ∈ UP ;
d(α, α) ≥ 0 for all α ∈ UP ;
if α ⊥ β then, for all γ, d(α⊕ β, γ) = d(α, γ) + d(β, γ) ;
d(1, 1) = 1 . (23)
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They then consider imposing new postulates on decoherence functionals.
The first of these — their posited inequality 1 — is that:

for all d ∈ D and for all α, β with α ≤ β we have d(α, α) ≤ d(β, β) . (24)

As Isham and Linden go on to point out, there are familiar examples
in standard quantum theory in which (24) is violated for a pair of histories
α ≤ β in which one of the histories (in their case α) is inconsistent.9

Two further postulates on generalised decoherence functionals are also
posited:

α ⊥ β implies d(α, α) + d(β, β) ≤ 1 for all d ∈ D ; (25)

and
for all d ∈ D and all γ ∈ UP we have d(γ, γ) ≤ 1 . (26)

Isham and Linden give examples to show that, in standard quantum the-
ory, with the standard decoherence functional, inconsistent histories do not
necessarily respect these inequalities either.

Again, the difference from the examples considered in the present paper
is worth emphasizing. All of the examples Isham and Linden consider involve
inconsistent histories — these are all they require in order to investigate possi-
ble properties of decoherence functionals applied to arbitrary, not necessarily
consistent, quantum histories. These examples are not problematic for the
consistent histories approach to quantum theory, according to which the in-
consistent histories have no physical significance, and they do not give rise
to new interpretational questions in any conventional quantum histories ap-
proach, for essentially the same reason. The discussion in the present paper,
on the other hand, looks at the properties of consistent histories in stan-
dard quantum theory: we have argued that their failure to respect ordering
relations is problematic and explained that it does raise new questions.

Suppose now that we set aside Isham and Linden’s motivations, and alter
their ordering postulates so that they apply, not to generalised decoherence
functionals applied to all quantum histories in an abstract generalisation
of quantum theory, but to the standard decoherence functional applied to
ordered consistent histories in standard quantum theory. We then obtain the
following:

for all α, β with α ≤ β we have d(α, α) ≤ d(β, β) ; (27)

α ⊥ β implies d(α, α) + d(β, β) ≤ 1 ; (28)

and
for all γ we have d(γ, γ) ≤ 1 . (29)

9 The suggestion that inequality 1 is true when applied to sequences of projectors
onto subsets of configuration space in a path-integral quantum theory is thus
misleading: it is easy to find configuration space analogues of these examples. I
am grateful to Chris Isham and Noah Linden for discussions of this point.
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Here d is the standard decoherence functional, α, β and γ are now taken to
be ordered consistent histories, and α ⊥ β means that α and β are disjoint —
i.e., there is at least one time at which their respective events are represented
by contrary projections.

The first of these equations holds by the definition of an ordered consistent
history, but it might perhaps be hoped that the others could restrict the class
of histories further. However, the second equation also holds for all ordered
consistent histories. To see this, note that α ⊥ β implies that β ≤ (1 − α),
and that if α is a consistent history then (1 − α) is too. The fact that β is
ordered consistent thus implies that

p(β) ≤ p(1 − α) = 1 − p(α) . (30)

The third equation, moreover, holds for all consistent histories, ordered or
otherwise. It seems, then, that ordered consistency may be the strongest
natural criterion that can be defined using the basic ingredients of consistency
and ordering.
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Abstract. We discuss the role of non-locality in the problem of determining the
state of a quantum system, one of the most basic problems in quantum mechanics.

1 Introduction

In 1964 J. Bell [1] introduced the idea of non-local correlations. He consid-
ered the situation in which measurements are performed on pairs of particles
which were prepared in entangled states and the two members of the pair
are separated in space, and he showed that the results of the measurement
are correlated in a way which cannot be explained by any local models. Since
then, non-locality has been recognized as one of the most important aspects
of quantum mechanics.

Following Bell, most studies of non-locality focused on situations when
two or more particles are separated in space and are prepared in entangled
states. Entanglement appeared to be a sine-qua-non requirement for non-
locality. Indeed, all entangled states were shown to be non-local [2] while all
direct product states lead to purely local correlations.

Surprisingly enough, however, it turns out that non-locality plays an es-
sential role in problems in which there is no entanglement whatsoever and
apparently everything is local. One such problem - probably one of the most
basic problems in quantum mechanics - is that of determining by measure-
ments the state of a quantum system. That is, given a quantum system in
some state Ψ unknown to us, how can we determine what Ψ is? As is well-
known, because quantum measurements yield probabilistic outcomes, and
due to the fact that measuring an observable we disturb all the other non-
commuting observables, we cannot determine with certainty the unknown
state Ψ out of measurements on a single particle. If we have a large number
of identically prepared particles - a so called “quantum ensemble” - by per-
forming measurements on the different particles we can accumulate enough
results so that from their statistics we could determine Ψ . But anything less
than an infinite number of particles limits our ability to determine the state
with certainty.

Now, although when we have only a finite ensemble of identically pre-
pared particles we cannot determine their state with absolute precision, the
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question remains of how well can we determine the state and which is the
the measurement we should perform. It is in this context that, unexpectedly,
non-locality creeps in.

The story of interest here begins in 1991 when Peres and Wootters [3]
considered the following particular question of quantum state estimation.
Suppose that we have a quantum ensemble which consists of only two iden-
tically prepared spin 1/2 particles. In other words, we are given two spin 1/2
particles, and we are told that the spins are parallel, but we are not told
the polarization direction. What is the best way to find the direction? One
possibility would involve measurements carried out on each spin separately,
and trying to infer the polarization direction based on the results of the two
measurements. Another possibility would be again to measure the two spins
separately, but to measure first one spin and then choose some appropriate
measurement on the second spin depending on the result of the measurement
on the first spin. Finally, they conjectured, an even better way might be to
measure the two spins together, not separately. That is, to perform a mea-
surement of an operator whose eigenstates are entangled states of the two
spins. The Peres-Wootters conjecture was subsequently proven by Massar
and Popescu [4].

What we see here is a surprising manifestation of non-locality. Indeed,
suppose that the two spins are separate in space. They are prepared in direct-
product states (they are each polarized along the same direction). Neverthe-
less, by simply performing local measurements one cannot extract all infor-
mation from the spins. The optimal measurement must introduce non-locality
by projecting them onto entangled states.

The above effect has opened a new direction of research, and its implica-
tions are just starting to be uncovered. In this paper we will discuss a new
surprising effect [5] whose existence is made possible by the fact that optimal
measurements imply non-locality.

2 Measurements on 2-Particle Systems
with Parallel or Anti-Parallel Spins

The problem we consider here is the following. Suppose Alice wants to com-
municate Bob a space direction n. She may do that in two ways. In the first
case, Alice sends Bob two spin 1/2 particles polarized along n, i.e. |n,n〉.
When Bob receives the spins, he performs some measurement on them and
then guesses a direction ng which has to be as close as possible to the true
direction n. The second method is almost identical to the first, with the dif-
ference that Alice sends |n,−n〉, i.e. the first spin is polarized along n but
the second one is polarized in the opposite direction. The question is whether
these two methods are equally good or, if not, which is better1.
1 It might be the case that there is some other method which is better for trans-
mitting directions than the two ones mentioned above. However, we are not
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For a better perspective, consider first a simpler problem. Suppose Alice
wants to communicate Bob a space direction n and she may do that by one
of the following two strategies. In the first case, Alice sends Bob a single spin
1/2 particle polarized along n, i.e. |n〉. The second strategy is identical to
the first, with the difference that when Alice wants to communicate Bob the
direction n she sends him a single spin 1/2 particle polarized in the opposite
direction, i.e. | − n〉. Which of these two strategies is better?

Obviously, if the particles would be classical spins then, both methods
would be equally good, as an arrow defines equally well both the direction
in which it points and the opposite direction. Is the quantum situation the
same?

First, we should note that in general, by sending a single spin 1/2 particle,
Alice cannot communicate to Bob the direction n with absolute precision.
Nevertheless, it is still obviously true that the two strategies are equally good.
Indeed, all Bob has to do in the second case is to perform exactly the same
measurements as he would do in the first case, only that when his results are
such that in the first case he would guess ng, in the second case he guesses
−ng.

One is thus tempted to think that, similar to the classical case, for the
purpose of defining a direction n, a quantum mechanical spin polarized along
n is as good as a spin polarized in the opposite direction: in particular, the
two two-spin states |n,n〉 and |n,−n〉 should be equally good. Surprisingly
however this is not true.

That there could be any difference between communicating a direction by
two parallel spins or two anti-parallel spins seems, at first sight, extremely
surprising. After all, by simply flipping one of the spins we could change
one case into the other. For example, if Bob knows that Alice indicates the
direction by two anti-parallel spins he only has to flip the second spin and
then apply all the measurements as in the case in which Alice sends from the
beginning parallel spins. Thus, apparently, the two methods are bound to be
equally good.

The problem is that one cannot flip a spin of unknown polarization. In-
deed, the flip operator V defined as

V |n〉 = | − n〉 (1)

is not unitary but anti-unitary. To see this we note that in Heisenberg rep-
resentation flipping the spin means changing the sign of all spin operators,
σ → −σ. But this transformation does not preserve the commutation rela-
tions, i.e.

[σx, σy] = iσz → [σx, σy] = −iσz, (2)

interested here in finding an optimal method for communicating directions; we
are only interested in comparing the parallel and anti-parallel spins methods.
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while all unitary transformations leave the commutation relations unchanged.
Thus there is no physical operation which could implement such a transfor-
mation.

A couple of questions arise. First, why is it still the case that a single spin
polarized along n defines the direction as well as a single spin polarized in
the opposite direction? The reason is that although Bob cannot implement
an active transformation, i.e. cannot flip the spin, he can implement a passive
transformation: he can flip his measuring devices. Indeed, there is no problem
for Bob in flipping all his Stern-Gerlach apparatuses, or, even simpler than
that, to merely rename the outputs of each Stern-Gerlach “up”→ “down”
and “down”→“up”.

At this point it is natural to ask why can’t Bob solve the problem of
two spins in the same way, namely by performing a passive transformation
on the apparatuses used to measure the second spin? The problem is the
entanglement. Indeed, if the optimal strategy for finding the polarization
direction would involve separate measurements on the two spins then two
parallel spins would be equivalent to two anti-parallel spins. (This would be
true even if which measurement is to be performed on the second spin depends
on the result of the measurement on the first spin.) But, as explained in
the Introduction, the optimal measurement is not a measurement performed
separately on the two spins but a measurement which acts on both spins
simultaneously, that is, the measurement of an operator whose eigenstates
are entangled states of the two spins. For such a measurement there is no
way of associating different parts of the measuring device with the different
spins, and thus there is no way to make a passive flip associated to the second
spin. Consequently there is no way, neither active nor passive to implement
an equivalence between the parallel and anti-parallel spin cases.

After understanding that there is indeed room for the two direction com-
munication methods to be different, let us now investigate them in detail.

To start with, we have to define some figure of merit which will tell us
how successful a communication protocol is. For concreteness, let us define
Bob’s measure of success as the fidelity

F =
∫

dn
∑
g

P (g|n)
1 + nng

2
(3)

where nng is the scalar product in between the true and the guessed direc-
tions, the integral is over the different directions n and dn represents the
a priori probability that a state associated to the direction n, i.e. |n,n〉 or
|n,−n〉 respectively, is emitted by the source; P (g|n) is the probability of
guessing ng when the true direction is n. In other words, for each trial Bob
gets a score which is a (linear) function of the scalar product between the true
and the guessed direction, and the final score is the average of the individual
scores.
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When the different directions n are randomly and uniformly distributed
over the unit sphere, an optimal measurement for pairs of parallel spins ψ =
|n,n〉 has been found by Massar and Popescu [4]. Bob has to measure an
operator A whose eigenvectors φj , j = 1, . . . , 4, are

|φj〉 =
√

3
2
|nj ,nj〉 +

1
2
|ψ−〉 (4)

where |ψ−〉 denotes the singlet state and the Bloch vectors nj point to the 4
vertices of the tetrahedron:

n1 = (0, 0, 1), n2 = (
√

8
3
, 0,−1

3
),

n3 = (
−√2

3
,

√
2
3
,−1

3
), n4 = (

−√2
3

,−
√

2
3
,−1

3
). (5)

The phases used in the definition of |nj〉 are such that the 4 states φj are
mutually orthogonal. The exact values of the eigenvalues corresponding to
the above eigenvectors are irrelevant; all that is important is that they are
different from each other, so that each eigenvector can be unambiguously
associated to a different outcome of the measurement. If the measurement
results corresponds to φj , then the guessed direction is nj . The corresponding
optimal fidelity is 3/4 [4].

A related case is when the directions n are a priori on the vertices of
the tetrahedron, with equal probability 1/4. Then the above measurement
provides a fidelity of 5/6≈ 0.833, conjectured to be optimal.

Let us now consider pairs of anti-parallel spins, |ψ >= |n,−n〉, and the
measurement whose eigenstates are

θj = α|nj ,−nj〉 − β
∑
k �=j

|nk,−nk〉 (6)

with α = 13
6
√
6−2√2 ≈ 1.095 and β = 5−2√3

6
√
6−2√2 ≈ 0.129. The corresponding

fidelity for uniformly distributed n is F = 5
√
3+33

3(3
√
3−1)2 ≈ 0.789; and for n lying

on the tetrahedron F = 2
√
3+47

3(3
√
3−1)2 ≈ 0.955. In both cases the fidelity obtained

for pairs of anti-parallel spins is larger than for pairs of parallel spins!
It is useful now to investigate in more detail what is going on. We have

claimed above that when we perform a measurement of an operator whose
eigenstates are entangled states of the two spins, there is no way of making a
passive flip associated with the second spin. We would like to comment more
about this point.

It is clear that in the case of a measuring device corresponding to an
operator whose eigenstates are entangled states of the two spins, we cannot
identify one part of the apparatus as acting solely on one spin and another
part of the apparatus as acting on the second spin. Thus we cannot simply
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isolate a part of the measuring device and rename its outcomes. But perhaps
one could make such a passive transformation at a mathematical level, that
is, in the mathematical description of the operator associated to the mea-
surement and then physically construct an apparatus which corresponds to
the new operator.

In the case of two parallel spins the optimal measurement is described
by a nondegenerate operator whose eigenstates |φj〉 are given by (4) and
(5). It is convenient to consider the projectors P j = |φj〉〈φj | associated with
the eigenstates. As is well-known, any unit-trace hermitian operator, and in
particular any projector, can be written as

P j =
1
4

(I + αjσ(1) + βjσ(2) + Rj
k,lσ

(1)
k σ

(2)
l ). (7)

with some appropriate coefficients αj , βj and Rj
k,l. (The upper indexes on

the spin operators mean “particle 1” or “2” and I denotes the identity).
Why then couldn’t we simply make the passive spin flip by considering a
measurement described by the projectors

P̃ j =
1
4

(I + αjσ(1) − βjσ(2) −Rj
k,lσ

(1)
k σ

(2)
l ). (8)

obtained by the flip of the operators associated second spin, σ(2) → −σ(2)?
The reason is that the transformed operators P̃ j are no longer projectors!
Indeed, each projection operator P j could also be viewed as a density matrix
ρj = P j = |φj〉〈φj |. The passive spin flip which leads from Eq. (7) to Eq. (8)
is nothing more than the partial transpose of the density matrices ρj with re-
spect to the second spin. But each density matrix ρj is non-separable (because
it describes the entangled state |φj〉). However, according to the well-known
result of the Horodeckis [6,7] the partial transpose of a non-separable density
matrix of two spin 1/2 particles has a negative eigenvalue and thus it cannot
represent a projector anymore. On the other hand, if the optimal measure-
ment would have consisted of independent measurements on the two spins,
each projector would have been a direct product density matrix and the spin
flip would have transformed them into new projectors, and thus led to a valid
new measurement.

The above analysis of encoding directions by parallel or anti-parallel spins
shows a most important aspect of the problem of state estimation. Consider
the two sets of states, that of parallel spins and that of anti-parallel spins.
The distance in between any two states in the first set is equal to the distance
in between the corresponding pair of states in the second set. That is,

|〈n,n|m,m〉|2 = |〈n,−n|m,−m〉|2. (9)

Nevertheless, as a whole, the anti-parallel spin states are further apart than
the parallel ones! Indeed, the anti-parallel spin states span the entire 4-
dimensional Hilbert space of the two spin 1/2, while the parallel spin states
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span only the 3-dimensional subspace of symmetric states. This is similar to
a 3-spin example discovered by R. Jozsa and J. Schlienz [8].

Furthermore, suppose we consider a simpler problem in which Alice has
to communicate Bob one out of only two possible directions, n and m. Then,
since |〈n,n|m,m〉|2 = |〈n,−n|m,−m〉|2 the parallel and anti-parallel spins
methods would be equally good. The two methods are also equally good in the
case when Alice has to communicate to Bob an arbitrary direction in a plane.
Indeed, suppose that the directions Alice has to communicate are restricted to
the x−y plane. Then a rotation of the second spin by 180 degrees around the z
axis can transform any state of parallel spins into a state of anti-parallel ones
and vice-versa. It is only when Alice has to communicate directions which
do not lie in the same plane, that the two methods become different. This
shows that the problem of state estimation depends on the global structure
of the set of states under investigation and cannot be reduced to the problem
of pairwise distinguishibility.2

3 Conclusions

To conclude, we have shown that non-locality plays a fundamental role in
what is probably the most basic quantum mechanical problem - determining
the state of a quantum system. The link between non-locality and measure-
ment theory is completely unexpected, and without any doubt, it will lead to
new insights into the very nature of quantum mechanics. Furthermore, it is
already leading to possible practical applications in quantum communication
[9].
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Abstract. The loss of coherence of a quantum system coupled to a heat bath as
expressed by the reduced density matrix is shown to lead to the mis-characterization
of some systems as being incoherent when they are not. The spin boson problem and
the harmonic oscillator with massive scalar field heat baths are given as examples
of reduced incoherent density matrices which nevertheless still represent perfectly
coherent systems.

1 Massive Field Heat Bath and a Two Level System

How does an environment affect the quantum nature of a system? The stan-
dard technique is to look at the reduced density matrix, in which one has
traced out the environment variables. If this changes from a pure state to a
mixed state (entropy −Trρ ln ρ not equal to zero) one argues that the system
has lost quantum coherence, and quantum interference effects are suppressed.
However this criterion is too strong. There are couplings to the environment
which are such that this reduced density matrix has a high entropy, while the
system alone retains virtually all of its original quantum coherence in certain
experiments.

The key idea is that the external environment can be different for different
states of the system. There is a strong correlation between the system and the
environment. As usual, such correlations lead to decoherence in the reduced
density matrix. However, the environment in these cases is actually tied to the
system, and is adiabatically dragged along by the system. Thus although the
state of the environment is different for the two states, one can manipulate
the system alone so as to cause these apparently incoherent states to interfere
with each other. One simply causes a sufficiently slow change in the system
so as to drag the environment variables into common states so the quantum
interference of the system can again manifest itself.

An example is if one looks at an electron with its attached electromagnetic
field. Consider the electron at two different positions. The static Coulomb
field of the two charges differ, and thus the states of the electromagnetic field
differ with the electron in the two positions. These differences can be sufficient
to cause the reduced electron wave function loose coherence for a state which
is a coherent sum of states located at these two positions. However, if one
causes the system to evolve so as to cause the electron in those two positions
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to come together (e.g., by having a force field such that the electron in both
positions to be brought together at some central point for example), those
two apparently incoherent states will interfere, demonstrating that the loss
of coherence was not real.

Another example is light propagating through a slab of glass. If one simply
looks at the electromagnetic field, and traces out over the states of the atoms
in the glass, the light beams traveling through two separate regions of the
glass will clearly decohere– the reduced density matrix for the electromagnetic
field will lose coherence in position space– but those two beams of light will
also clearly interfere when they exit the glass or even when they are within
the glass.

The above is not to be taken as proof, but as a motivation for the further
investigation of the problem. The primary example I will take will be of a
spin- 12 particle (or other two-level system). I will also examine a harmonic
oscillator as the system of interest. In both cases, the heat bath will be a
massive one dimensional scalar field. This heat bath is of the general Caldeira-
Leggett type [1] (and in fact is entirely equivalent to that model in general).
The mass of the scalar field will be taken to be larger than the inverse time
scale of the dynamical behaviour of the system. This is not to be taken as
an attempt to model some real heat bath, but to display the phenomenon in
its clearest form. Realistic heat baths will in general also have low frequency
excitations which will introduce other phenomena like damping and genuine
loss of coherence into the problem.

2 Spin-12 System

Let us take as our first example that of a spin-12 system coupled to an external
environment. We will take this external environment to be a one-dimensional
massive scalar field. The coupling to the spin system will be via purely the
3-component of the spin. I will use the velocity coupling which I have used
elsewhere as a simple example of an environment (which for a massless field
is completely equivalent to the Caldeira-Leggett model). The Lagrangian is

L =
∫

1
2

[
(φ̇(x))2 − φ′(x)2 −m2φ(x)2 + 2εφ̇(x)h(x)σ3

]
dx, (1)

which gives the Hamiltonian

H =
∫

1
2
[
(π(x) − εh(x)σ3)2 + φ′(x)2 + m2φ(x)2

]
dx. (2)

h(x) is the interaction range function, and its Fourier transform is related to
the spectral response function of Leggett and Caldeira.

This system is easily solvable. I will look at this system in the following
way. Start initially with the field in its free (ε = 0) vacuum state, and the
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system is in the +1 eigenstate of σ1. I will start with the coupling ε initially
zero and gradually increase it to some large value. I will look at the reduced
density matrix for the system, and show that it reduces to one which is almost
the identity matrix (the maximally incoherent density matrix) for strong
coupling. Now I let ε slowly drop to zero again. At the end of the procedure,
the state of the system will again be found to be in the original eigenstate
of σ1. The intermediate maximally incoherent density matrix would seem
to imply that the system no longer has any quantum coherence. However,
this lack of coherence is illusionary. Slowly decoupling the system from the
environment should in the usual course simply maintain the incoherence of
the system. Yet here, as if by magic, an almost completely incoherent density
matrix magically becomes coherent when the system is decoupled from the
environment.

In analyzing the system, I will look at the states of the field corresponding
to the two possible σ3 eigenstates of the system. These two states of the field
are almost orthogonal for strong coupling. However they correspond to fields
tightly bound to the spin system. As the coupling is reduced, the two states
of the field adiabatically come closer and closer together until finally they
coincide when ε is again zero. The two states of the environment are now the
same, there is no correlation between the environment and the system, and
the system regains its coherence.

The density matrix for the spin system can always be written as

ρ(t) =
1
2

(1 + ρ(t) · σ) (3)

where
ρ(t) = Tr(σρ(t)). (4)

We have

ρ(t) = Tr
(

σT
[
e−i

∫ t
0 Hdt

] 1
2

(1 + ρ(0) · σ)R0T
[
e−i

∫
Hdt
]†)

, (5)

where R0 is the initial density matrix for the field (assumed to be the vac-
uum), and T is the time-ordering operator. Because ε and thus H is time-
dependent, the H’s at different times do not commute. This leads to the re-
quirement for the time-ordering in the expression. As usual, the time-ordered
integral is the way of writing the time ordered product

∏
n e−iH(tn)dt =

e−iH(t)dte−iH(t−dt)dt....e−iH(0)dt.
Let us first calculate ρ3(t). We have

ρ3(t) = Tr
(
σ3T
[
e−i

∫ t
0 Hdt

] 1
2

(1 + ρ(0) · σ)R0T
[
e−i

∫
Hdt
]†)

= Tr
(
T [e−i

∫ t
0 Hdt]σ3

1
2

(1 + ρ(0) · σ)R0T [e−i
∫
Hdt]†

)
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= Tr
(
σ3

1
2

(1 + ρ(0) · σ)R0

)
= ρ3(0) (6)

because σ3 commutes with H(t) for all t. We now define

σ+ =
1
2

(σ1 + iσ2) = |+〉〈−|, σ− = σ†+. (7)

Using σ+σ3 = −σ+ and σ3σ+ = σ+ we have

Tr
(
σ+T

[
e−i

∫ t
0 Hdt

] 1
2

(1 + ρ(0) · σ)R0T
[
e−i

∫
Hdt
]†)

= Trφ

(
T
[
e−i

∫
(H0−ε(t)

∫
π(x)h(x)dx)dt

]†
(8)

T
[
e−i

∫
(H0+ε(t)

∫
π(x)h(x)dx)dt

])
〈−|1

2
(1 + ρ(0) · σ)|+〉

= (ρ1(0) + iρ2(0))J(t),

where H0 is the Hamiltonian with ε = 0, i.e., the free Hamiltonian for the
scalar field and

J(t) = (9)

Trφ

(
T
[
e−i

∫
(H0−ε(t)

∫
π(x)h(x)dx)dt

]†
T
[
e−i

∫
(H0+ε(t)

∫
π(x)h(x)dx)dt

]
R0

)

Breaking up the time ordered product in the standard way into a large num-
ber of small time steps, using the fact that exp[−iε(t)

∫
h(x)φ(x)dx] is the

displacement operator for the field momentum through a distance of ε(t)h(x),
and commuting the free field Hamiltonian terms through, this can be written
as

J(t) = Trφ


e−iε(0)Φ(0)

t/dt∏
n=1

[
e−i(ε(tn)−ε(tn−1)Φ(tn)

]

eiε(t)Φ(t)eiε(t)Φ(t)
t/dt∏
n=1

[
eiε(tn−ε(tn−1))Φ(tn)

]
eiε(0)Φ(0)R0


 , (10)

where tn = ndt and dt is a very small value, Φ(t) =
∫
h(x)φ(t, x)dx and

φ0(t, x) is the free field Heisenberg field operator. Using the Campbell-Baker-
Hausdorff formula, realizing that the commutators of the Φs are c-numbers,
and noticing that these c-numbers cancel between the two products, we finally
get

J(t) = Trφ
(

e2i(ε(t)Φ(t)−ε(0)Φ(0)+
∫ t
0 ε̇(t′)Φ(t′)dt′)R0

)
(11)
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from which we get

ln(J(t)) = −2Trφ

(
R0

(
ε(t)Φ(t) − ε(0)Φ(0) +

∫ t

0
ε̇(t′)Φ(t′)dt′

)2)
. (12)

I will assume that ε(0) = 0, and that ε̇(t) is very small, and that it can be
neglected. (The neglected terms are of the form∫ ∫

ε̇2〈Φ(t′)Φ(t′′)〉dt′dt′′ ≈ ε̇2tτ〈Φ(0)2〉

which for a massive scalar field has the coherence time scale τ ≈ 1/m. Thus,
as we let ε̇ go to zero these terms go to zero.)

We finally have

ln(J(t)) = −2ε(t)2 < Φ(t)2 >

= −2ε(t)2
∫

|ĥ(k)|2 1√
k2 + m2

dk. (13)

Choosing ĥ(k) = e−Γ |k|/2, we finally get

ln(J(t)) = −4
∫ ∞
0

ε(t)2
e−Γ |k|dk√
(k2 + m2)

. (14)

This goes roughly as ln(Γm) for small Γm, (which I will assume is true). For
Γ sufficiently small, this makes J very small, and the density matrix reduces
to essentially diagonal form (ρz(t) ≈ ρy(t) ≈ 0, ρz(t) = ρz(0).)

However it is clear that if ε(t) is now lowered slowly to zero, the decoher-
ence factor J goes back to unity, since it depends only on ε(t). The density
matrix now has exactly its initial form again. The loss of coherence at the
intermediate times was illusionary. By decoupling the system from the envi-
ronment after the coherence had been lost, the coherence is restored. This is
in contrast with the naive expectation in which the loss of coherence comes
about because of the correlations between the system and the environment.
Decoupling the system from the environment should not in itself destroy that
correlation, and should not reestablish the coherence.

The above approach, while giving the correct results, is not very trans-
parent in explaining what is happening. Let us therefore take a different ap-
proach. Let us solve the Heisenberg equations of motion for the field φ(t, x).
The equations are (after eliminating π)

∂2t φ(t, x) − ∂2xφ(t, x) + m2φ(t, x) = −ε̇(t)σ3h(x), (15)
π(t, x) = φ̇(t, x) + ε(t)h(x)σ3. (16)

If ε is slowly varying in time, we can solve this approximately by

φ(t, x) = φ0(t, x) + ε̇(t)
∫

1
2m

e−m|x−x
′|h(x′)dx′σ3 + ψ(t, x)ε(0)σ3, (17)

π(t, x) = φ̇0(t, x) + ε(t)h(x)σ3 + ψ̇(t, x)ε(0)σ3, (18)
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where φ0(t, x) and π0(t, x) are free field solution to the equations of motion
in absence of the coupling, with the same initial conditions

φ̇0(0, x) = π(0, x), (19)
φ0(0, x) = φ(0, x), (20)

while ψ is also a solution of the free field equations but with initial conditions

ψ(0, x) = 0, (21)
ψ̇(0, x) = −h(x). (22)

If we examine this for the two possible eigenstates of σ3, we find the two
solutions

φ±(t, x) ≈ φ0(t, x) ±
(
ε̇(t)
∫

1
2m

e−m|x−x
′|h(x′)dx′ + ψ(t, x)

)
, (23)

π±(t, x) ≈ φ̇0(t, x) + O(ε̇) ± (ε(t)h(x) + ε(0)ψ̇(t, x)). (24)

These solutions neglect terms of higher derivatives in ε. The state of the field
is the vacuum state of φ0, π0. φ± and π± are equal to this initial field plus
c-number fields. Thus in terms of the φ± and π±, the state is a coherent state
with non-trivial displacement from the vacuum. Writing the fields in terms
of their creation and annihilation operators,

φ±(t, x) =
∫

Ak±(t)eikx + A†k±e−ikx
dk√
2πωk

, (25)

π±(t, x) = i
∫

Ak±(t)eikx −A†k±e−ikx
√
k2 + m2

2π
dk, (26)

we find that we can write Ak± in terms of the initial operators Ak0 as

Ak±(t) ≈ Ak0e−iωkt ± 1
2

i(ε(t) − ε(0)e−iωkt)(h(k)/
√
ωk + O(ε̇(t))), (27)

where ωk =
√
k2 + m2. Again I will neglect the terms of order ε̇ in comparison

with the ε terms. Since the state is the vacuum state with respect to the initial
operators Ak0, it will be a coherent state with respect to the operators Ak±,
the annihilation operators for the field at time t. We thus have two possible
coherent states for the field, depending on whether the spin is in the upper
or lower eigenstate of σ3. But these two coherent states will have a small
overlap. If A|α〉 = α|α〉 then we have

|α〉 = eαA
†−|α|2/2|0〉. (28)

Furthermore, if we have two coherent states |α〉 and |α′〉, then the overlap is
given by

〈α|α′〉 = 〈0|eα∗A−|α|2/2eβA
†−|β|2/2|0〉 = eα

∗β−(|α|2+|β|2)/2. (29)
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In our case, taking the two states |±φ〉, these correspond to coherent states
with

α = −α′ =
1
2

i(ε(t) − ε(0)e−iωkt) =
1
2

iε(t)h(k)/
√
ωk. (30)

Thus we have

< +φ, t|−φ, t >=
∏
k

e−ε(t)
2|h(k)|2/(k2+m2) = e−ε(t)

2 ∫ |h(k)|2
ωk

dk = J(t). (31)

Let us assume that we began with the state of the spin as 1√
2
(|+〉 + |−〉).

The state of the system at time t in the Schrödinger representation is

1√
2

(|+〉| +φ (t)〉 + |−〉|−φ〉)

and the reduced density matrix is

ρ =
1
2

(|+〉〈+| + |−〉〈−| + J∗(t)|+〉〈−| + J(t)|−〉〈+|). (32)

The off diagonal terms of the density matrix are suppressed by the function
J(t). J(t) however depends only on ε(t) and thus , as long as we keep ε̇ small,
the loss of coherence represented by J can be reversed simply by decoupling
the system from the environment slowly.

The apparent decoherence comes about precisely because the system in
either the two eigenstates of σ3 drives the field into two different coherent
states. For large ε, these two states have small overlap. However, this distor-
tion of the state of the field is tied to the system. π changes only locally, and
the changes in the field caused by the system do not radiate away. As ε slowly
changes, this bound state of the field also slowly changes in concert. However
if one examines only the system, one sees a loss of coherence because the field
states have only a small overlap with each other.

The behaviour is very different if the system or the interaction changes
rapidly. In that case the decoherence can become real. As an example, con-
sider the above case in which ε(t) suddenly is reduced to zero. In that case,
the field is left as a free field, but a free field whose state ( the coherent state)
depends on the state of the system. In this case the field radiates away as real
(not bound) excitations of the scalar field. The correlations with the system
are carried away, and even if the coupling were again turned on, the loss of
coherence would be permanent.

3 Oscillator

For the harmonic oscillator coupled to a heat bath, the Hamiltonian can be
taken as

H =
1
2

∫
[(π(x)− ε(t)q(t)h̃(x))2 + (∂xφ(x))2 +m2φ(t, x)2]dx+

1
2

(p2 +Ω2q2).

(33)
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Let us assume that m is much larger than Ω or the inverse timescale of change
of ε. The solution for the field is given by

φ(t, x) ≈ φ0(t, x) + ψ(t, x)ε(0)q(0) − ˙
ε(t)q(t)

∫
e−m|x−x

′|

2m
h(x′)dx′, (34)

π(t, x) ≈ φ̇0(t, x) + ψ̇(t, x)ε(0)q(0)

− ¨
ε(t)q(t)

∫
e−m|x−x

′|

2m
h(x′)dx′ + ε(t)q(t)h(x), (35)

where again φ0 is the free field operator, ψ is a free field solution with ψ(0) =
0, ψ̇(0) = −h(x). Retaining terms only of the lowest order in ε,

φ(t, x) ≈ φ0(t, x), (36)
π(t, x) ≈ φ̇0(t, x) + ε(t)q(t)h(x). (37)

The equation of motion for q is

q̇(t) = p(t), (38)
ṗ(t) = −Ω2q + ε(t)Φ̇(t), (39)

where Φ(t) =
∫
h(x)φ(t, x)dx. Substitution in the expression for φ, we get

q̈(t) +Ω2q(t) ≈ ε(t)Φ̇0(t)− ε(t) ¨
ε(t)q(t)

∫ ∫
h(x)h(x′)

e−m|x−x
′|

2m
dxdx′. (40)

Neglecting the derivatives of ε (i.e., assuming that ε changes slowly even on
the time scale of 1/Ω), this becomes(

1 + ε(t)2
∫ ∫

h(x)h(x′)
e−m|x−x

′|

2m
dxdx′

)
q̈ + Ω2q = ∂t(ε(t)Φ(t)). (41)

The interaction with the field thus renormalizes the mass of the oscillator to

M = 1 + ε(t)2
∫ ∫

h(x)h(x′)
e−m|x−x

′|

2m
dxdx′.

The solution for q is thus

q(t) ≈ q(0) cos
(∫ t

0
Ω̃(t)dt

)
+

1
Ω̃

sin
(∫ t

0
Ω̃(t)dt

)
p(0)

+
1
Ω̃

∫ t

0
sin
(∫ t

t′
Ω̃(t)dt

)
∂t(ε(t′)

˙
ε(t)Φ0(t′)dt′, (42)

where Ω̃(t) ≈ Ω/
√
M(t).

The important point is that the forcing term dependent on Φ0 is a rapidly
oscillating term of frequency at least m. Thus if we look for example at 〈q2〉,
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the deviation from the free evolution of the oscillator (with the renormalized
mass) is of the order of∫

sin(Ω̃t− t′) sin(ω(t− t”)〈Φ̇0(t′)Φ̇0(t”)〉dt′dt”.

But 〈Φ̇0(t′)Φ̇0(t”)〉 is a rapidly oscillating function of frequency at least m,
while the rest of the integrand is a slowly varying function with frequency
much less than m. Thus this integral will be very small (at least Ω̃/m but
typically much smaller than this depending on the time dependence of ε).
Thus the deviation of q(t) from the free motion will in general be very very
small, and I will neglect it.

Let us now look at the field. The field is put into a coherent state which
depends on the value of q, because π(t, x) ≈ φ̇0(t, x) + ε(t)q(t)h(x). Thus,

Ak(t) ≈ a0ke−iωkt + i
1
2
ĥ(k)ε(t)q(t)/ωk. (43)

The overlap integral for these coherent states with various values of q is

∏
k

〈i 1
2
ĥ(k)ε(t)q/ωk|i 12 ĥ(k)ε(t)q′/ωk〉 = e−

1
8

∫ |ĥ(k)|2dk(q−q′)2 . (44)

The density matrix for the Harmonic oscillator is thus

ρ(q, q′) = ρ0(t, q, q′)e−
1
8

∫ |ĥ(k)|2dk(q−q′)2 , (45)

where ρ0 is the density matrix for a free harmonic oscillator (with the renor-
malized mass).

We see a strong loss of coherence of the off diagonal terms of the density
matrix. However this loss of coherence is false. If we take the initial state for
example with two packets widely separated in space, these two packets will
loose their coherence. However, as time proceeds, the natural evolution of the
Harmonic oscillator will bring those two packets together (q− q′ small across
the wave packet). For the free evolution they would then interfere. They still
do. The loss of coherence which was apparent when the two packets were
widely separated disappears, and the two packets interfere just as if there
were no coupling to the environment. The effect of the particular environment
used is thus to renormalise the mass, and to make the density matrix appear
to loose coherence.

4 Spin Boson Problem

Let us now complicate the spin problem in the first section by introducing
into the system a free Hamiltonian for the spin as well as the coupling to
the environment. Following the example of the spin boson problem, let me
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introduce a free Hamiltonian for the spin of the form 1
2Ωσ1, whose effect is

to rotate the σ3 states (or to rotate the vector ρ in the 2 − 3 plane) with
frequency Ω.

The Hamiltonian now is

H =
1
2

(∫
[(π(t, x) − ε(t)h(x)σ3)2 + (∂xφ(x))2 + m2φ(t, x)2]dx + Ωσ1

)
,

(46)
where again ε(t) is a slowly varying function of time. We will solve this in the
manner of the second part of section 2.

If we let Ω be zero, then the eigenstates of σz are eigenstates of the
Hamiltonian. The field Hamiltonian (for constant ε) is given by

H± =
1
2

∫
[(π − (±ε(t)h(x)))2 + (∂xφ)2]dx. (47)

Defining π̃ = π − (±h(x)), π̃ has the same commutation relations with π
and φ as does π. Thus in terms of π̃ we just have the Hamiltonian for the
free scalar field. The instantaneous minimum energy state is therefore the
ground state energy for the free scalar field for both H±. Thus the two states
are degenerate in energy. In terms of the operators π and φ, these ground
states are coherent states with respect to the vacuum state of the original
uncoupled (ε = 0) free field, with the displacement of each mode given by

ak|±〉 = ±iε(t)
h(k)√
ωk

|±〉, (48)

or
|±〉 =

∏
k

| ± αk〉|±〉σ3 , (49)

where the |αk〉 are coherent states for the kth modes with coherence param-
eter αk = iε(t) h(k)√

ωk
, and the states |±〉σ3 are the two eigenstates of σ3. (In

the following I will eliminate the
∏

k symbol.) The energy to the next excited
state in each case is just m, the mass of the free field.

We now introduce the Ωσx as a perturbation parameter. The two lowest
states (and in fact the excited states) are two-fold degenerate. Using degen-
erate perturbation theory to find the new lowest energy eigenstates, we must
calculate the overlap integral of the perturbation between the original degen-
erate states and must then diagonalise the resultant matrix to lowest order
in Ω. The perturbation is 1

2Ωσ1 . All terms between the same states are
zero, because of the 〈±|σ3σ1|±〉σ3 = 0. Thus the only terms that survive for
determining the lowest order correction to the lowest energy eigenvalues are

1
2
〈+|Ωσ1|−〉 =

1
2
〈−|Ωσ1|+〉∗ (50)

=
1
2
Ω
∏
k

〈αk| − αk〉 =
1
2
Ω
∏
k

e−2|αk|2 (51)
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=
1
2
Ωe−2

∫
ε(t)2|h(k)|2/ωkdk =

1
2
ΩJ(t). (52)

The eigenstates of energy thus have energy of E(t)± = E0± 1
2ΩJ(t), and the

eigenstates are
√

1
2 (|+〉 ± |−〉). If ε varies slowly enough, the instantaneous

energy eigenstates will be the actual adiabatic eigenstates at all times, and
the time evolution of the system will just be in terms of these instantaneous
energy eigenstates. Thus the system will evolve as

|ψ(t)〉 =
√

1
2e−iE0t

(
(c+ + c−)e−i

∫ 1
2ΩtJ(t)dt(|+〉 + |−〉)

+ (c− − c+)e+i
∫ 1

2ΩtJ(t)dt(|+〉 − |−〉)
)
, (53)

where the c+ and c− are the initial amplitudes for the |+〉σ3 and |−〉σ3 states.
The reduced density matrix for the spin system in the σ3 basis can now be
written as

ρ(t) = (J(t)ρ01(t), J(t)ρ02(t), ρ03(t)) , (54)

where ρ0(t) is the density matrix that one would obtain for a free spin half
particle moving under the Hamiltonian J(t)Ωσ1,

ρ01(t) = ρ1(0),

ρ02(t) = ρ2(0) cos
(
Ω

∫
J(t′)dt′

)
+ ρ3(0) sin

(
Ω

∫
J(t′)dt′

)
, (55)

ρ03(t) = ρ3(0) cos
(
Ω

∫
J(t′)dt′

)
− ρ2(0) sin

(
Ω

∫
J(t′)dt

)
.

Thus, if J(t) is very small (i.e., ε large), we have a renormalized frequency
for the spin system, and the the off diagonal terms (in the σ3 representation)
of the density matrix are strongly suppressed by a factor of J(t). Thus if we
begin in an eigenstate of σ3 the density matrix will begin with the vector ρ
as a unit vector pointing in the 3 direction. As time goes on the 3 component
gradually decreases to zero, but the 2 component increases only to the small
value of J(t). The system looks almost like a completely incoherent state,
with almost the maximal entropy that the spin system could have. However,
as we wait longer, the 3 component of the density vector reappears and grows
back to its full unit value in the opposite direction, and the entropy drop to
zero again. This cycle repeats itself endlessly with the entropy oscillating
between its minimum and maximum value forever.

The decoherence of the density matrix (the small off diagonal terms) ob-
viously represent a false loss of coherence. It represents a strong correlation
between the system and the environment. However the environment is bound
to the system, and essentially forms a part of the system itself, at least as
long as the system moves slowly. However the reduced density matrix makes
no distinction between whether or not the correlations between the system
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and the environment are in some sense bound to the system, or are correla-
tions between the system and a freely propagating modes of the medium in
which case the correlations can be extremely difficult to recover, and certainly
cannot be recovered purely by manipulations of the system alone.

5 Instantaneous Change

In the above I have assumed throughout that the system moves slowly with
respect to the excitations of the heat bath. Let us now look at what happens
in the spin system if we rapidly change the spin of the system. In particular
I will assume that the system is as in section 1, a spin coupled only to the
massive heat bath via the component σ3 of the spin. Then at a time t0, I
instantly rotate the spin through some angle θ about the 1 axis. In this case
we will find that the environment cannot adjust rapidly enough, and at least
a part of the loss of coherence becomes real, becomes unrecoverable purely
through manipulations of the spin alone.

The Hamiltonian is

H =
1
2

∫
[(π(t, x) − ε(t)h(x)σ3)2 + (∂xφ(t, x))2 + m2φ(t, x)]dx

+θ/2δ(t− t0)σ1. (56)

Until the time t0 σ3 is a constant of the motion, and similarly afterward.
Before the time t0, the energy eigenstates state of the system are as in the
last section given by

|±, t〉 = {|+〉σ3 |αk(t)〉 or {|−〉σ3 | − αk(t)〉}. (57)

An arbitrary state for the spin–environment system is given by

|ψ〉 = c+|+〉 + c−|−〉. (58)

Now, at time t0, the rotation carries this to

|φ(t0)〉 = c+(cos(θ/2)|+〉σ3 + i sin(θ/2)|−〉σ3)|αk(t)〉
+ c−(cos(θ/2)|−〉σ3 + i sin(θ/2)|+〉σ3)| − αk(t)〉

= cos(θ/2) (c+|+〉 + c−|−〉) (59)
+ i sin(θ/2)(c+|−〉σ3 |αk(t)〉 − c−|+〉σ3 | − αk(t)〉.

The first term is still a simple sum of eigenvectors of the Hamiltonian after
the interaction. The second term, however, is not. We thus need to follow
the evolution of the two states |−〉σ3 |αk(t0)〉 and |+〉σ3 | − αk(t0)〉. Since σ3
is a constant of the motion after the interaction again, the evolution takes
place completely in the field sector. Let us look at the first state first. (The
evolution of the second can be derived easily from that for the first because
of the symmetry of the problem.)
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I will again work in the Heisenberg representation. The field obeys

φ̇−(t, x) = π−(t, x) + ε(t)h(x), (60)
π̇−(t, x) = ∂2xφ−(t, x) −m2φ−(t, x). (61)

At the time t0 the field is in the coherent state |αk〉. This can be represented
by taking the field operator to be of the form

φ−(t0, x) = φ0(t0, x), (62)
π−(t0, x) = φ̇0(t0, x) + ε(t0)h(x), (63)

where the state |αk〉 is the vacuum state for the free field φ0. We can now
solve the equations of motion for φ− and obtain (again assuming that ε(t) is
slowly varying)

φ−(t, x) = φ0(t, x) + 2ψ(t, x)ε(t0), (64)
π−(t, x) = φ̇0(t, x) + 2ψ(t, x)ε(t0) − ε(t)h(x), (65)

where ψ(t0, x) = 0 and ψ̇(t0, x) = h(x). Thus again, the field is in a coherent
state set by both 2ε(t0)ψ and ε(t)h(x). The field ψ propagates away from the
interaction region determined by h(x), and I will assume that I am interested
in times t a long time after the time t0. At these times I will assume that∫
h(x)ψ(t, x)dx = 0. (This overlap dies out as 1/

√
mt. The calculations can

be carried out for times nearer t0 as well— the expressions are just messier
and not particularly informative.)

Let me define the new coherent state as | −αk(t) + βk(t)〉, where αk is as
before and

βk(t) = 2ε(t0)ωkψ̃(t, k) = 2iε(t0)eiωkth̃(k)/ωk. (66)

(The assumption regarding the overlap of h(x) and ψ(t) corresponds to the
assumption that

∫
α∗k(t)βk(t)dk = 0). Thus the state |−〉σ3 |αk〉 evolves to

the state |−〉σ3 | − αk + βk(t)〉. Similarly, the state |+〉σ3 | − αk〉 evolves to
|+〉σ3 |αk − βk(t)〉.)

We now calculate the overlaps of the various states of interest.

〈αk|αk ± βk〉 = 〈−αk| − αk ± βk〉 = e−
∫ |βk|2dk = J(t0), (67)

〈−αk|αk ± βk〉 = 〈αk| − αk ± βk〉 = J(t)J(t0), (68)
〈−αk + βk|αk − βk〉 = 〈−αk − βk|αk + βk〉 = J(t)J(t0)4. (69)

The density matrix becomes

ρ3 = cos(θ)ρ03 + sin(θ)J(t0)ρ02, (70)
ρ1 = J(t)

(
cos(θ) + J4(t0) sin(θ)

)
ρ01, (71)

ρ2(t) = J(t)
(− sin(θ)ρ03 + (cos(θ/2) − J4(t0) sin(θ))ρ02

)
, (72)
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where

ρ03 =
1
2

(|c+|2 − |c−|2), (73)

ρ01 = Re(c+c∗−), (74)
ρ02 = Im(c+c∗−). (75)

If we now let ε(t) go slowly to zero again ( to find the ‘real’ loss of coherence),
we find that unless ρ01 = ρ02 = 0 the system has really lost coherence during
the sudden transition. The maximum real loss of coherence occurs if the
rotation is a spin flip (θ = π) and ρ03 was zero. In that case the density
vector dropped to J(t0)4 of its original value. If the density matrix was in an
eigenstate of σ3 on the other hand, the density matrix remained a coherent
density matrix, but the environment was still excited by the spin.

We can use the models of a fast or a slow spin flip interaction to discuss the
problem of the tunneling time. As Leggett et al. argue [3], the spin system is
a good model for the consideration of the behaviour of a particle in two wells,
with a tunneling barrier between the two wells. One view of the transition
from one well to the other is that the particle sits in one well for a long
time. Then at some random time it suddenly jumps through the barrier to
the other side. An alternative view would be to see the particle as if it were
a fluid, with a narrow pipe connecting it to the other well- the fluid slowly
sloshing between the two wells. The former is supported by the fact that if
one periodically observes which of the two wells the particle is in, one sees
it staying in one well for a long time, and then between two observations,
suddenly finding it in the other well. This would, if one regarded it as a
classical particle imply that the whole tunneling must have occurred between
the two observations. It is as if the system were in an eigenstate and at some
random time an interaction flipped the particle from one well to the other.
However, this is not a good picture. The environment is continually observing
the system. It is really moved rapidly from one to the other, the environment
would see the rapid change, and would radiate. Instead, left on its own, the
environment in this problem ( with a mass much greater than the frequency
of transition of the system) simply adjust continually to the changes in the
system. The tunneling thus seems to take place continually and slowly.

6 Discussion

The high frequency modes of the environment lead to a loss of coherence
(decay of the off-diagonal terms in the density matrix) of the system, but as
long as the changes in the system are slow enough this decoherence is false–
it does not prevent the quantum interference of the system. The reason is
that the changes in the environment caused by these modes are essentially
tied to the system, they are adiabatic changes to the environment which can
easily be adiabatically reversed. Loosely one can say that coherence is lost by
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the transfer of information (coherence) from the system to the environment.
However in order for this information to be truly lost, it must be carried
away by the environment, separated from the system by some mechanism
or another so that it cannot come back into the system. In the environment
above, this occurs when the information travels off to infinity. Thus the loss
of coherence as represented by the reduced density matrix is in some sense
the maximum loss of coherence of the system. Rapid changes to the system,
or rapid decoupling of the system from the environment, will make this a
true decoherence. However, gradual changes in the system or in the coupling
to the external world can cause the environment to adiabatically track the
system and restore the coherence apparently lost.

This is of special importance to understanding the effects of the envi-
ronmental cutoff in many environments [3]. For “ohmic” or “superohmic”
environments (where h does not fall off for large arguments), one has to in-
troduce a cutoff into the calculation for the reduced density matrix. This
cutoff has always been a bit mysterious, especially as the loss of coherence
depends sensitively on the value of this cutoff. If one imagines the environ-
ment to include say the electromagnetic field, what is the right value for this
cutoff? Choosing the Plank scale seems silly, but what is the proper value?
The arguments of this paper suggest that in fact the cutoff is unnecessary
except in renormalising the dynamics of the system. The behaviour of the
environment at frequencies much higher than the inverse time scale of the
system leads to a false loss of coherence, a loss of coherence which does not
affect the actual coherence (ability to interfere with itself) of the system.
Thus the true coherence is independent of cutoff.

As far as the system itself is concerned, one should regard it as “dressed”
with a polarization of the high frequency components of the environment. One
should regard not the system itself as important for the quantum coherence,
but a combination of variables of the system plus the environment.What is
difficult is the question as to which degrees of freedom of the environment are
simply dressing and which degrees of freedom can lead to loss of coherence.
This question depends crucially on the motion and the interactions of the
system itself. They are history dependent, not simply state dependent. This
makes it very difficult to simply find some transformation which will express
the system plus environment in terms of variables which are genuinely inde-
pendent, in the sense that if the new variable loose coherence, then that loss
is real.

These observations emphasise the importance of not making too rapid
conclusions from the decoherence of the system. This is especially true in
cosmology, where high frequency modes of the cosmological system are used
to decohere low frequency quantum modes of the universe. Those high fre-
quency modes are likely to behave adiabatically with respect to the low fre-
quency behaviour of the universe. Thus, although they will lead to a reduced
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density matrix for the low frequency modes which is apparently incoherent,
that incoherence is likely to be a false loss of coherence.
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