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Abstract

This report provides a pedagogical introduction to the description of the general PoincareH supergrav-
ity/matter/Yang}Mills couplings using methods of KaK hler superspace geometry. At a more advanced level
this approach is generalized to include tensor "eld and Chern}Simons couplings in supersymmetry and
supergravity, relevant in the context of weakly and strongly coupled string theories. � 2001 Elsevier
Science B.V. All rights reserved.
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�Other possibilities, such as the new minimal supergravity multiplet [3,145] and the non-minimal supergravity multiplet
[23,144] are less popular [124}126] in this context.

1. Introduction

Since its appearance in string theory [117,118,132,43,140], in elementary particle physics
[94,149] and in quantum "eld theory [154}156,102], supersymmetry has become a central issue in
the quest for uni"cation of the fundamental forces of Nature.
Mathematically, supersymmetry transformations fall in the category of graded Lie groups, with

commuting and anticommuting parameters [12,37]. In addition to the generators of Lorentz
transformations and translations in a D-dimensional space}time, the supersymmetry algebra
contains one or more spinor supercharges (`simplea or `N-extendeda supersymmetry). As a conse-
quence of the particular algebraic structure, Wigner's analysis of unitary representations [161] can
be generalized to the supersymmetric case [136,116,76,66], giving rise to the notion of supermultip-
lets which combine bosons and fermions.
Although theoretically very appealing, no explicit sign of such a Bose}Fermi symmetry has been

observed experimentally. This does not prevent experimental physicists to put supersymmetric
versions of the standard model [119,103] to the test [127,128]. So far they turn out to be
compatible with data.
On a more fundamental level, in the context of recent developments in string/brane theory

[139,141,95,129], supergravity in 11 dimensions [116,40] seems to play an important role. Such
a string, or membrane theory is expected to manifest itself in a four-dimensional point particle limit
as some locally supersymmetric e!ective theory.
The basic structure of a generic D"4, N"1 e!ective theory is provided by supergravity

[50,75] coupled to various lower spin multiplets. The o!-shell supergravity multiplet is usually
taken to be the one with minimal auxiliary "eld content [147,67], the so-calledminimal supergravity
multiplet.�
Chiral multiplets are expected to appear in the form of some non-linear sigma model. Supersym-

metry requires a KaK hler structure [164]: the complex scalar "elds of the chiral multiplets are
coordinates of a KaK hler manifold [74,9,4,8]. At the same time they may be subject to Yang}Mills
gauge transformations, requiring the coupling to supersymmetric Yang}Mills multiplets [70,135].
The general theory, combining minimal supergravity, chiral matter and supersymmetric

Yang}Mills theory has been worked out in [38}40,42]. In this construction, generalized rescalings,
compatible with supersymmetry, had to be carried out to establish the canonical normalization of
the Einstein term. In its "nal form, this theory exhibits chiral KaK hler phase transformations.
Alternatively, using conformal tensor calculus and particular gauge conditions [110,109], the
cumbersome Weyl rescalings could be avoided.
But string/membrane theory requires more "elds and more structures } linear multiplets [71,143]

and 3-form multiplets [82], together with Chern}Simons terms of the gauge and gravitational
types should be included. They are relevant for string corrections to gauge couplings
[52,5,28,112,142,47}49,27], in particular non-holomorphic gauge coupling functions, and for
e!ective descriptions of gaugino condensation [162], as well as for a supersymmetric implementa-
tion of the consequences of the Green}Schwarz mechanism [96] in an e!ective theory [32,69].
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It is clear that a systematic approach should be employed to cope with such complex structures.
This report provides a presentation of the geometric superspace approach.
The notion of superspace is based on the concept of super"elds [134,71,138]: space}time is

promoted to superspace in adding anticommuting parameters and super"elds are functions of
space}time coordinates and the anticommuting coordinates. Supersymmetry transformations are
realized as di!erential operations involving spinor derivatives.
Implementing the machinery of di!erential geometry, like di!erential forms, exterior derivatives,

interior product, etc., on superspace gives rise to superspace geometry. In this framework super-
symmetry and general coordinate transformations are described in a uni"ed way as certain
di!eomorphisms. Both the graviton and its superpartner, the gravitino, are identi"ed in the frame
di!erential form of superspace.
The superspace formulation of supergravity [100,157}159,101,163] and supersymmetric gauge

theory [150,151] is by now standard textbook knowledge [80,153]. A characteristic feature of this
formulation is that the structure group in superspace is represented by the vector and spinor
representations of the Lorentz group.
This superspace geometry may be modi"ed by adding a chiral ;(1) to the structure group

transformations, accompanied by the corresponding gauge potential di!erential form. Associated
with this Abelian gauge group is an unconstrained pre-potential super"eld. By itself, this structure
is called ;(1) superspace [105], it allows to obtain the known supergravity multiplets mentioned
above: minimal, new minimal and non-minimal, upon applying suitable restrictions [115].
The superspace description of the supergravity}matter coupling is obtained from ;(1) super-

space as well: in this case the chiral ;(1) is replaced by super"eld KaK hler transformations. At the
same time the unconstrained pre-potential is identi"ed with the super"eld KaK hler potential
[21,18,98,99]. In this formulation, called Ka( hler superspace geometry, or ;

�
(1) superspace ge-

ometry, the KaK hler phase transformations are implemented ab initio at a geometric level, the
KaK hler weights of all the super- and component "elds are given intrinsically and no rescalings are
needed in the construction of the supersymmetric action. The KaK hler superspace formulation is
related to the KaK hler}Weyl formalism [152] in a straightforward way [18].
The construction of the general supergravity/matter/Yang}Mills system using the KaK hler

superspace formulation is the central issue of this report.
In Section 2 we review rigid superspace geometry in some detail, including supersymmetric

gauge theory. Notational details are presented in Appendix A. Section 3 contains a detailed
account of the KaK hler superspace construction. A collection of elements of ;(1) superspace can be
found in Appendix B. A more general setting which includes KaK hler gauged isometries is treated in
Appendix C. Derivation of the super"eld equations of motion is reviewed in Appendix D.
In Section 4 we de"ne component "elds, their supersymmetry transformations and construct the

complete component "eld action. The KaK hler superspace formulation is particularly convenient
when the supergravity/matter/Yang}Mills system is to be extended to contain linear multiplets,
Chern}Simons forms and 3-form multiplets, as explained in detail in Sections 5 and 6. Appendices
E and F contain complements to these sections.
This report is not intended to provide a review of supersymmetry and its applications. It is rather

focused on a quite special issue, the description of D"4, N"1 supergravity couplings in
geometric terms, more precisely in terms of superspace geometry. We have made an e!ort to
furnish a self-contained and exhaustive presentation of this highly technical subject.
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Even when restricted to D"4, N"1, there are many topics we have not mentioned, among
them supersymmetry breaking, quantization, anomalies and their cohomological BRS construc-
tion, conformal supergravity or gravitational Chern}Simons forms.
Similar remarks apply to the bibliography. The references cited are rather restricted to those

directly related to the technical aspects of di!erential geometry in superspace applied to supergrav-
ity couplings. Even though we cannot claim to have a complete bibliographical list and apologize
in advance for any undue omissions.

2. Rigid superspace geometry

We gather, here, some of the basic features of superspace geometry which will be useful later on.
In Section 2.1 we begin with a list of the known o!-shell multiplets in D"4, N"1 supersym-
metry, recall the properties of rigid superspace endowed with constant torsion, and de"ne
supersymmetry transformations in this geometric framework. Next, supersymmetric Abelian gauge
theory is reviewed in detail in Section 2.2 as an illustration of the methods of superspace geometry
and also in view of its important role in the context of supergravity/matter coupling. Although very
similar in structure, the non-Abelian case is presented separately in Section 2.3. In Section 2.4 we
emphasize the similarity of KaK hler transformations with the Abelian gauge structure, in particular
the interpretation of the kinetic matter action as a composite D-term.

2.1. Prolegomena

2.1.1. D"4,N"1 supermultiplet catalogue
Since the supersymmetry algebra is an extension of the PoincareH algebra, Wigner's analysis

[161] can be generalized to classify unitary representations [136,116,76,66] in terms of physical
states. On the other hand, "eld theories are usually described in terms of local "elds. As on-shell
representations of supersymmetry combine di!erent spins (resp. helicities), supermultiplets of local
"elds will contain components in di!erent representations of the Lorentz group. A multiplet of
a given helicity content can have several incarnations in terms of local "elds. In the simplest case,
the massless helicity (1/2, 0) multiplet may be realized in three di!erent ways, the chiral multiplet,
sometimes also called scalar multiplet [156], the linear multiplet [71,143] or the 3-form multiplet
[82], which will be displayed below. At helicity (1, 1/2) only one realization is known: the usual
gauge multiplet [155]. The (3/2, 1) multiplet has a number of avatars as well [122,123,81,87,83].
Finally, the (2, 3/2) multiplet, which contains the graviton, is known in three versions: the minimal
multiplet [147,67], the new minimal multiplet [3,145] and the non-minimal multiplet [23,144].
This exhausts the list of massless multiplets in D"4, N"1 supersymmetry in the sense of
irreducible multiplets. The massive multiplet of spin content (1, 1/2, 1/2, 0) which will be presented
below may be understood as a combination of a gauge and a chiral multiplet. We just display the
content of some of the o!-shell supermultiplets that we shall use in the sequel, indicating the
number of bosonic (b) and fermionic (f ) degrees of freedom (the vertical bar separates auxiliary
"elds from physical ones).
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� The chiral/scalar multiplet:

�&(A, �� �F) �
A, 2b, complex scalar ,

�� , 4f, Weyl spinor ,

F, 2b, complex scalar .

The conjugate multiplet �M &(AM , �� �� �FM ), consists of the complex conjugate component "elds. It
has the same number of degree of freedom.

� The generic vector multiplet:

<&�C,
��
�� ��
,H,<

�
,
��
�M ��
,D� �

C, 1b, real scalar ,

�� ,�� �
� , 4f, Majorana spinor ,

H, 2b, complex scalar ,

<
�
, 4b, real vector ,

�� ,�M �
� , 4f, Majorana spinor ,

D, 1b, real scalar .

This vector multiplet can occur in two ways in physical models: as a massive vector "eld and its
supersymmetric partners or as a gauge multiplet. In the massive vector case all dynamical "elds
have the same mass, the Majorana spinors, �� , �� �� and �� , �M �� combine into a Dirac spinor; the
auxiliary sector contains one real and one complex scalar:

<
�������

&(C,<
�
,� �H,D) �

C, 1b, real scalar ,

�, 8f, Dirac spinor ,

<
�
, 4b, real vector ,

H, 2b, complex scalar ,

D, 1b, real scalar .

The gauge multiplet contains less dynamical degrees of freedom due to gauge transformations
which have the structure of scalar multiplets. One is left with a massless vector, a Majorana
spinor (the gaugino) and an auxiliary scalar:

<
	�
	�

&�<� ,
��
�M ��

�D��
<
�
, 3b, gauge vector ,

�� , �M �
� , 4f, Majorana spinor ,

D, 1b, real scalar .

� The 2-form (or linear) multiplet:

¸
�����

&�¸,
��
�M ��

, b
����

¸, 1b, real scalar ,

�� ,�M �
� , 4f, Majorana spinor ,

b
��
, 3b, antisym. tensor .
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The number of physical degrees of freedom of b
��

is 3"6!4#1. This multiplet contains no
auxiliary "eld.

� The 3-form (or constrained chiral) multiplet:

C
���

&�>,
��
�� ��
,C

���
�H��

>, 2b, complex scalar ,

�� , �� �
� , 4f, Majorana spinor ,

C
���

1b, antisym. tensor ,

H, 1b, real scalar .

The number of physical degrees of freedom of C
���

is 1"4!6#4!1.

Although this section is devoted to rigid superspace, to be complete, we include here the list of
multiplets appearing in supergravity:

� The minimal multiplet (12#12):

�e��,
�

�
�

�M
���

� b
�
,M��

e
�
�, 6b, graviton ,

�
�
�,�M

��� , 12f, gravitino ,

b
�
, 4b, real vector ,

M, 2b, complex scalar .

� The new minimal multiplet (12#12):

�e��,
�

�
�

�M
���

�<
�
, b

����
e
�
�, 6b, graviton ,

�
�
�,�M

��� , 12f, gravitino ,

<
�
, 3b, gauge vector ,

b
��
, 3b, antisym. tensor .

� The non-minimal multiplet (20#20):

�e��,
�

�
�

�M
���

� b
�
, c

�
,
��
�� ��
,
T�
¹M ��
, S��

e
�
�, 6b, graviton ,

�
�
�,�M

��� , 12f, gravitino ,

b
�
, 4b, real vector ,

c
�
, 4b, real vector ,

�� , �� �
� , 4f, Majorana ,

¹� ,¹M �
� 4f, Majorana ,

S, 2b, complex scalar .

In this report we will only be concerned with the minimal supergravity multiplet.
We conclude the list of knownN"1 supermuliplets with the (3/2, 1) multiplet [122,46,68,72]. It

describes physical states of helicities 3/2 and 1, its o!-shell realization contains 20 bosonic and
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20 fermionic component "elds.

� The (3/2, 1) multiplet (20#20):

�B�

�
�
�

�M
��� �

��
�� ��
,P, J,>

�
,¹

��
,
��
�M �� ��

B
�
, 3b, gauge vector ,

�
�
�,�M

��� , 12f, Rarita}Schwinger ,

�� , �� �
� , 4f, Majorana ,

P, 1b, real scalar ,

J, 2b, complex scalar ,

>
�
, 4b, complex vector ,

¹
��
, 6b, antisym. tensor ,

��,�M �� , 4f, Majorana .

The component "eld content displayed here corresponds to the de Wit}van Holten multiplet [46].
It is related to the Ogievetsky}Sokatchev multiplet [122] by a duality relation [111,84], similar to
that between chiral and linear multiplet. Superspace descriptions are discussed in [87,83,84].

2.1.2. Superxelds and multiplets
The anticommutation relation

	Q� ,QM �
� 
"2(���)��

�P
�
, (2.1.1)

which relates the generators Q� and QM �� of supersymmetry transformations to translations P
�
in

space}time is at the heart of the supersymmetry algebra. Superspace geometry, on the other hand,
is based on the notion of super"elds which are functions depending on space}time coordinates
x� as well as on spinor, anticommuting variables � and M �� . Due to the anticommutativity,
super"elds are polynomials of "nite degree in the spinor variables. Coe$cients of the monomials in
�, M �� are called component xelds.
Supersymmetry transformations of super"elds are generated by the di!erential operators

Q�"
R
R�

!iM �� (�� ��)�� �
R
Rx�

, (2.1.2)

QM �� "
R
RM ��

!i�(���)��
� R
Rx�

(2.1.3)

which, of course, together with P
�
"!iR/Rx� satisfy (2.1.1) as well. A general super"eld, however,

does not necessarily provide an irreducible representation of supersymmetry.
The di!erential operators

D�"
R
R�

#iM �� (�� ��)�� �
R
Rx�

, (2.1.4)

D�� "
R
RM ��

#i�(���)��
� R
Rx�

, (2.1.5)
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	With the usual notations D�"D�D� and DM �"D�� D�� , which will be used throughout this paper.

anticommute with the supersymmetry generators, i.e. they are covariant with respect to supersym-
metry transformations and satisfy, by de"nition, the anticommutation relations

	D� ,D�� 
"2i(���)��
� R
Rx�

, (2.1.6)

	D� ,D�
"0, 	D�� ,D�Q 
"0 . (2.1.7)

These spinor covariant derivatives can be employed to de"ne constrained superxelds which may be
used to de"ne irreducible "eld representations of the supersymmetry algebra.
The most important ones are

� The chiral super"elds �,�M are complex super"elds, subject to the constraints

D�� �"0, D��M "0 . (2.1.8)

They are usually employed to describe supersymmetric matter multiplets.
� The super"elds=�,=�� , subject to the constraints

D�=�� "0, D��=�"0 , (2.1.9)

D�=�"D��=�� (2.1.10)

are related to the "eld strength tensor and play a key role in the description of supersymmetric
gauge theories.

� The linear super"eld ¸, subject to the linearity constraints	

D�¸"0, DM �¸"0 . (2.1.11)

As explained above, it describes the supermultiplet of an antisymmetric tensor or 2-form gauge
potential, as such it plays a key role in describing moduli "elds in superstring e!ective theories.

� The 3-form super"elds >,>M , are chiral super"elds (D�� >"0,D�>M "0) with a further constraint

D�>!DM �>M "
8i
3

������
����

, (2.1.12)

with �
����

, the "eld strength of the 3-form. These super"elds are relevant in the context of
gaugino condensation and of Chern}Simons forms couplings.

The super"elds ¸ and=�,=�� are invariant under the respective gauge transformations, they can
be viewed as some kind of invariant "eld strengths. As is well known, geometric formulations of 1-,
2- and 3-form gauge theories in superspace exist such that indeed=�,=�� , ¸ and>, >M are properly
identi"ed as "eld strength super"elds with (2.1.9)}(2.1.12) constituting the corresponding Bianchi
identities.
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2.1.3. Geometry and supersymmetry
In order to prepare the ground for a geometric superspace formulation of such theories one

introduces a local frame for rigid superspace. It is suggestive to re-express (2.1.4)}(2.1.7) in terms of
supervielbein (a generalization of Cartan's local frame) and torsion in a superspace of coordinates
z	&(x�, �, M �� ), derivatives R	&(R/Rx�,R/R�, R/RM �� ) and di!erentials dz	&(dx�, d�, dM �� ). The
latter may be viewed as the tangent and cotangent frames of superspace, respectively. The
supervielbein 1-form of rigid superspace is

E
"dz	E
	


 , (2.1.13)

with

E
	


"�
�
�
� 0 0

!i(M �� ��)� ��� 0

!i(���)�� 0 ��� �� � . (2.1.14)

The inverse vielbein E


	, de"ned by the relations

E
	


(z)E


�(z)"�

	
�, E



	(z)E

	
� (z)"�



� ,

reads

E


	"�

�
�
� 0 0

i(M �� ��)� ��� 0

i(���)�� 0 ��� �� � . (2.1.15)

The torsion 2-form in rigid superspace is de"ned as the exterior derivative of the vielbein 1-form:

dE
"¹
"�
�
E�E¹

�

 . (2.1.16)

Now, for the di!erential operators D



"(R/Rx�,D� ,D�� ) we have

D



"E


	R

	
, (2.1.17)

(D

,D

�
)"!¹

�

D



, (2.1.18)

with the graded commutator de"ned as (D

,D

�
)"D


D

�
!(!)��D

�
D


with b"0 for a vector

and b"1 for a spinor index. The fact that the same torsion coe$cient appears in (2.1.18) and in
(2.1.18) re#ects the fact that dd"0 in superspace. To be more precise consider the action of dd on
some generic 0-form super"eld �. Application of d to the expression d�"E�D

�
�, in combination

with the rules of superspace exterior calculus, i.e. dd�"dE�D
�
�"E�ED


D

�
�#(dE
)D



�, and

the de"nitions introduced so far gives immediately

dd�"�
�
E�E((D


,D

�
)�#¹

�

D



�) , (2.1.19)

establishing the assertion. A glance at the di!erential algebra of theD


's, in particular (2.1.6), shows

then that the only non-vanishing torsion component is

¹��
Q �"!2i(���)��

Q . (2.1.20)
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Given the relation between supersymmetry transformations and the `square roota of space}time
translations (2.1.1), we would like to interpret them as di!eomorphisms in superspace. The action
of di!eomorphisms on geometric objects such as vector and tensor "elds or di!erential forms is
encoded in the Lie derivative, which can be de"ned in terms of basic operations of a di!erential
algebra (suitably extended to superspace), i.e. the exterior derivative, d, and the interior product, n� ,
such that

¸�"n�d#dn� . (2.1.21)

The interior product, for instance, of a vector "eld � with the vielbein 1-form is

n�E
"�	E
	


"�
 . (2.1.22)

The de"nition of di!erential forms in superspace (or superforms) and the conventions for the
di!erential calculus are those of Wess and Bagger [153] } cf. Appendix A.1 below for a summary.
Then, on superforms d acts as an antiderivation of degree #1, the exterior derivative of a p-form is
a (p#1)-form. Likewise, n� acts as an antiderivation of degree !1 so that the Lie derivative ¸� ,
de"ned by (2.1.21), does not change the degree of di!erential forms. This geometric formulation will
prove to be very e$cient to construct more general supersymmetric or supergravity theories
involving p-form "elds.
For the vielbein itself, combination of (2.1.16) and (2.1.22) yields

¸�E
"d�
#n�¹
 . (2.1.23)

On a 0-form super"eld, �, the Lie derivative acts according to

¸��"n�d�"�
D


�"�	R

	
� . (2.1.24)

The Lie derivative ¸� with respect to the particular vector "eld

�	"(i�(���)��
� �M �� #iM �� (�� ��)�� ���, ��, �M �� ) , (2.1.25)

leaves the vielbein 1-form (2.1.13), (2.1.14) invariant, i.e.

¸�E
"0 . (2.1.26)

This is most easily seen in terms of �
"n�E
, which is explicitly given as

�
"(2i(���M )#2i(M �� ��), ��, �M �� ) . (2.1.27)

Recall that ¸�E
"d�
#n�¹
. This shows immediately that for the spinor components the
equation is satis"ed, because ��� is constant and ¹�� vanishes. As to the vector part one keeps in mind
that in d��"E�D

�
�� only the derivatives with respect to , M contribute and compare the result

d��"2iE�(���)��
� �M �� #2iE�� (�� ��)�

�

���

to the expression for the interior product acting on ¹�"2iE�Q E�(���)��
Q , i.e.

n�¹�"2iE�(���)��
� �M �� #2iE�� (�� ��)�

�

��� .
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The Lie derivative of a generic super"eld � in terms of the particular vector "eld �
 de"ned in
(2.1.27) is given as

¸��"�
D


�"(��Q�#�M �� QM �

� )� , (2.1.28)

reproducing the in"nitesimal supersymmetry transformation with Q� and QM �� as de"ned in (2.1.2)
and (2.1.3):

� Supersymmetry transformations can be identixed as diweomorphisms of parameters ��, �M �� which
leave E
 invariant.

Combining such a supersymmetry transformation with a translation of parameter ��, we obtain

¸��#¸��"��R
�
�#�
D



�"(��#��)R

�
�#��D��#�M �� D�� � . (2.1.29)

The transformations with the particular choice ��"!�� of a � dependent space}time translation,
will be called supertranslations. They are given as

��"(��D�#�M �� D�� )� . (2.1.30)

These special transformations will be used in the formulation of supersymmetric theories (and in
particular in supergravity [163]). Let us stress that for "M "0, supersymmetry transformations
and supertranslations coincide. The components of a super"eld are traditionally de"ned as
coe$cients in an expansion with respect to  and M . In the geometric approach presented here,
component "elds are de"ned as lowest components of super"elds. Higher components are obtained
by successive applications of covariant derivatives and subsequent projection to "M "0. Com-
ponent "elds de"ned this way are naturally related by supertranslations. The basic operational
structure is the algebra of covariant derivatives.

2.2. Abelian gauge structure

2.2.1. Abelian gauge potential
In analogy to usual gauge theory, gauge potentials in supersymmetric gauge theories are de"ned

as 1-forms in superspace

A"E
A



"E�A
�
#E�A�#E�� A�� . (2.2.1)

The coe$cients A
�
,A� ,A�� are, by themselves, super"elds. Since we consider here an Abelian gauge

theory, A transforms under gauge transformations as

ACA!g
�dg . (2.2.2)

The gauge transformation parameters g are 0-form super"elds and the invariant "eld strength is
a 2-form,

F"dA"�
�
E
E�F

�

. (2.2.3)
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� If �
�
is a p-form, we de"ne it as D�

�
"d�

�
#(!)�w(�

�
)A�

�
.

Observe that, following (2.1.16) a torsion term appears in its explicit expression:

F
�


"D
�
A



!(!)��D



A

�
#¹

�

A


. (2.2.4)

By de"nition, (2.2.3), the "eld strength satis"es the Bianchi identity

dF"0 . (2.2.5)

Consider next a covariant (0-form) super"eld � of weight w(�) under Abelian super"eld gauge
transformations, i.e.

� �C g����� . (2.2.6)

Its covariant (exterior) derivative,

D�"E
D


� , (2.2.7)

is de"ned as�

D�"d�#w(�)A� . (2.2.8)

Covariant di!erentiation of (2.2.7) yields in turn (w(D�)"w(�))

DD�"w(�)F� , (2.2.9)

leading to the graded commutator

(D
�
,D



)�"w(�)F

�

�!¹

�

D


� . (2.2.10)

Supertranslations in superspace and in"nitesimal super"eld gauge transformations, g+1#�, with
� a real super"eld, change A and � into A�"A#�A and ��"�#�� such that

�A"n�F!d(�!n�A) (2.2.11)

and

��"n�D�#w(�)(�!n�A)� . (2.2.12)

The combination of a supertranslation and of a compensating gauge transformation of super"eld
parameter �"n�A gives rise to remarkably simple transformation laws. This parametrization is
particularly useful for the de"nition of component "elds and their supersymmetry transformations.
We shall call these special transformations: Wess}Zumino transformations, they are given as

�
�

�"n�D�, �
�

A"n�F . (2.2.13)

Let us stress that the formalism developed here is well adapted to describe supersymmetry
transformations of di!erential forms.
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� �
��
�

stands for the graded cyclic permutation on the super-indices CBA, explicitly de"ned as
�
��
�

CBA"CBA#(!)������ACB#(!)������BAC.

So far, � was considered as some generic super"eld. Matter "elds are described in terms of chiral
super"elds. In the context of a gauge structure the chirality conditions are most conveniently
de"ned in terms of covariant derivatives. A super"eld � is called covariantly chiral and a super"eld
�M is called covariantly antichiral, if they satisfy the conditions

D�� �"0, D��M "0 . (2.2.14)

Observe that usually they are supposed to have opposite weights w(�M )"!w(�). Consistency
of the covariant chirality constraints (2.2.14) with the graded commutation relations (2.2.10)
implies then

F�Q �� "0, F��"0 . (2.2.15)

Moreover, due to the (constant) torsion term in (2.2.4), i.e.

F��
�
"D�A�� #D��A�!2i(���)��

�A
�
, (2.2.16)

the condition

F��
�
"0 (2.2.17)

amounts to a mere covariant rede"nition of the vector super"eld gauge potential A
�
. Given

constraints (2.2.15) on F�� and F�Q �� , the properties of the remaining components F�� , F�Q
�
and F

��
of

the super"eld strength F
�


are easily derived from the Bianchi identities (2.2.5) which read�

�
��
�

(D

F

�

#¹

�
�F

�

)"0 . (2.2.18)

It turns out that the whole geometric structure which describes supersymmetric gauge theories can
be formulated only in terms of the super"elds=� and=�� such that

F��"#i�
���Q=�Q , (2.2.19)

F�Q
�
"!i�� �Q �

�
=� , (2.2.20)

F
��

"�
�
(��

��
)�Q �� D��=�Q !�

�
(�

��
)��D�=� . (2.2.21)

Furthermore, the Bianchi identities imply restrictions (2.1.9) and (2.1.10). In this sense these
equations have an interpretation as Bianchi identities, providing a condensed version of (2.2.18).

2.2.2. Solution of constraints and pre-potentials
Eq. (2.2.18) is the supersymmetric analogue of the geometric part of Maxwell's equations

R
�
F
��

#R
�
F

��
#R

�
F
��

"0 , (2.2.22)
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which are solved in terms of a vector potential, A
�
, such that F

��
"R

�
A

�
!R

�
A

�
. In the supersym-

metric case a similar mechanism takes place, via the explicit solution of constraints (2.1.9) and
(2.1.10). To be more precise these solutions can be written in terms of super"elds ¹ and ; as

A�"!¹
�D�¹"!D� log¹ , (2.2.23)

A�� "!;
�D��;"!D�� log; . (2.2.24)

Indeed one obtains from (2.2.19) and (2.2.20)

=�"#�
�
DM �D� log(¹;
�), =�� "#�

�
D�D�� log(¹;
�) , (2.2.25)

which is easily seen to satisfy (2.1.9) and (2.1.10). The super"elds ¹ and ; are called pre-potentials;
they are subject to gauge transformations which have to be consistent with the gauge transforma-
tions (2.2.2) of the potentials. However due to the special form of solutions (2.2.23) and (2.2.24), we
have the freedom to make extra chiral (resp. antichiral) transformations, explicitly

¹CP� ¹g , (2.2.26)

;CQ;g . (2.2.27)

The new super"elds P� and Q parametrize so-called pre-gauge transformations which do not show
up in the transformation laws of the potentials themselves due to their chirality properties

D�P� "0, D��Q"0 . (2.2.28)

The terminology originates from the fact that, due to the covariant constraints, the gauge
potentials can be expressed in terms of more fundamental unconstrained quantities, the pre-
potentials, which in turn give rise to new gauge structures, the pre-gauge transformations.
The pre-potentials serve to mediate between quantities subject to di!erent types of gauge

(pre-gauge) transformations g (P� andQ) and we can build combinations of these which are sensitive
to all these transformations. For instance, the composite "eld ¹�;� transforms under gauge and
pre-gauge transformations as follows:

(¹�;�)C (¹�;�)P� �Q�g���. (2.2.29)

Now if we consider a generic super"eld � of weight w(�) as in (2.2.6) and de"ne

�(a, b)"(¹�;�)
����� , (2.2.30)

this new super"eld �(a, b) is inert under g super"eld gauge transformations if a#b"1, but still
transforms under chiral and antichiral super"eld gauge transformations Q and P� as

�(a, b)C [g����
��P� �Q�]
�����(a, b) . (2.2.31)

�(a, b) will be said to be in the (a, b)-basis with respect to P� andQ super"eld pre-gauge transforma-
tions. It is convenient to introduce the corresponding de"nitions for the gauge potential as well

A(a, b)"A#(¹�;�)
�d(¹�;�)

"A#a d log¹#b d log; . (2.2.32)
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It should be clear that F(a, b),dA(a, b)"F"dA, in any basis and thus that the super"elds
=�,=�� are basis independent. It is interesting to note that we can write

A�(a, b)"(a!�
�
)D� log¹#(b!�

�
)D� log;!�

�
D� log= ,

A�� (a, b)"(a!�
�
)D�� log¹#(b!�

�
)D�� log;#�

�
D�� log= , (2.2.33)

where the super"eld="(¹;
�) is inert under g gauge transformations (2.2.29), basis indepen-
dent and transforms as

=CP� =Q
� . (2.2.34)

Therefore, we can gauge away the ¹ and; terms in the expressions for A� (a,b) andA�� (a, b), but not
the= one. The covariant derivative in the (a,b)-basis is then de"ned as

D�(a, b)"d�(a, b)#w(�)A(a, b)�(a, b) (2.2.35)

and transforms in accordance with (2.2.30):

D�(a, b)"(¹�;�)
����D� . (2.2.36)

AgainD�(a,b) is inert under g gauge transformations if a#b"1, so hereafter we will stick to this
case and omit the label b, unless speci"ed. Observe now that

(a, b)"(�
�
, �
�
)NA�(��)"!�

�
D� log=, A�� (�

�
)"#�

�
D�� log= ,

(a, b)"(1, 0)NA�(1)"0, A�� (1)"#D�� log= ,

(a, b)"(0, 1)NA�(0)"!D� log=, A�� (0)"0 . (2.2.37)

The three particular bases presented in (2.2.37) are useful in di!erent situations. Later on, in the
discussion of KaK hler transformations and in the construction of supergravity/matter couplings, we
shall identify spinor components of the KaK hler ;(1) connection with spinor derivatives of the
KaK hler potential, namely

A�"�
�
D�K, A�� "!�

�
D��K . (2.2.38)

Such an identi"cation is easily made in the (�
�
, �
�
) base, called the vector basis: setting

=,exp(!K/2) , (2.2.39)

we obtain (2.2.38). Moreover, if we parametrize P� "exp(!FM /2) and Q"exp(F/2) (we take FM
and F since K is real) we obtain, given (2.2.34),

KCK#F#FM , (2.2.40)

the usual form of KaK hler transformations. A generic super"eld �, in this base, transforms as

�(�
�
)C e
����������� ��(�

�
) . (2.2.41)
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In addition for the connection we obtain

A(�
�
)CA(�

�
)#

i
2
d ImF , (2.2.42)

where the vector component is, using (2.2.17),

A(�
�
)
�
"

i
16

�� �� �
�
[D� ,D�� ]K . (2.2.43)

In other contexts (anomalies and Chern}Simons forms study) the (0, 1) and (1, 0) bases are
relevant; we name them respectively chiral and antichiral bases. Indeed, let us consider the
covariant chiral super"eld �, with w(�)"#w, in the (0, 1)-basis the super"eld �(0)";
��
transforms under Q-transformations only,

�(0)CQ
��(0) , (2.2.44)

whereas the gauge potential has the property A�� (0)"0. Then, in this basis, the covariant chirality
constraint for �, (2.2.14), takes a very simple form for �(0): D�� �(0)"0. Analogous arguments hold
for �M , with weight w(�M )"!w, in the (0, 1)-basis, i.e. D��M (1)"0. So it is �(0) and �M (1) which are
actually the `traditionala chiral super"elds, our � and �M are di!erent objects, they are covariant
(anti)chiral super"elds. We emphasize this point because to build the matter action coupled to
gauge "elds we shall simply use the density

�M �"�M (1)=��(0)"�M (1)e����(0) , (2.2.45)

where we have de"ned

=,e�� . (2.2.46)

We thus recover the standard formulation of the textbooks in terms of non-covariantly chiral
super"elds �(0),�M (1), with < the usual vector super"eld; this is illustrated in Section 2.2.4. The
chiral and the antichiral bases are related among themselves by means of the super"eld
=, �(0)"=��(1).
Similarly, A(1) and A(0) are related by a gauge-like transformation

A(0)"A(1)!=
�d= . (2.2.47)

Finally, the basis independent super"elds=� and=�� are easily obtained as

=�"�
�
DM �D�<, =�� "�

�
D�D��< , (2.2.48)

which is nothing but the solution to the reduced Bianchi identities (2.1.9) and (2.1.10).

2.2.3. Components and Wess}Zumino transformations
Component "elds are systematically de"ned as lowest components of super"elds, expansion in

terms of anticommuting parameters is replaced by successive application of covariant derivatives.
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In this approach the component "elds of a chiral multiplet � of weight w are de"ned as

��"A(x), D���"�2�� (x), D�D���"!4F(x) , (2.2.49)

whereas those of the gauge supermultiplet are identi"ed as

A
�
�"ia

�
, =�Q �"i�M �Q , =� �"!i�� , D�=� �"!2D . (2.2.50)

Their Wess}Zumino transformations are obtained from (2.2.13) in identifying � successively with
�, D�� and D�D��. We obtain

�
�

A"�2�� , (2.2.51)

�
�

��"#i�2(�M �� ��)�D�
A#�2��F , (2.2.52)

�
�

F"i�2(�M �� �)�D
�
��#2iw(�M �M )A . (2.2.53)

The covariant derivatives arise in a very natural way due to our geometric construction; they are
given as

D
�
A"(R

�
#iwa

�
)A, D

�
��"(R

�
#iwa

�
)�� , (2.2.54)

D
�
AM "(R

�
!iwa

�
)AM , D

�
�� �� "(R

�
!iwa

�
)�� �� . (2.2.55)

As to the gauge supermultiplet, the supersymmetry transformation of the component "eld gauge
potential A

�
is obtained from the Wess}Zumino transformation of the 1-form A in (2.2.13),

projected to the lowest vector component, with the result

�
�

a
�

"i(��
�
�M )#i(�M ��

�
�) . (2.2.56)

The corresponding equations of the gaugino component "elds are obtained replacing � with
=� and =��

�
�

��"!(����)�f
��

#i��D , (2.2.57)

�
�

�M �� "!(�M �� ��)�� f��
!i�M �� D , (2.2.58)

where f
��

"R
�
a
�
!R

�
a
�

"!iF
��

� and we used the Abelian versions of (B.5.20) and (B.5.21).
Finally, for the auxiliary component we have

�
�

D"!���R
�
�M #�M �� �R

�
� . (2.2.59)

Observe that these are the supersymmetry transformations which would have been obtained in the
Wess}Zumino gauge of the traditional approach. This is due to the de"nition of Wess}Zumino
transformation in terms of particular compensating gauge transformation. In this way the
Wess}Zumino gauge is realized in a geometric manner.
We should like to comment brie#y on the implementation of R-transformations [137], [59}61],

related to a phase freedom on the superspace anticommuting coordinates, in the language
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employed here. As the role of , M is now taken by the covariant spinor derivatives, we assign to the
latters R-parity charges of opposite sign to those of the corresponding 's. This way it is easy to
recover the usual arguments in the discussion of properties and consequences ofR-transformations
in supersymmetric theories.

2.2.4. Component xeld actions
We have seen how component "elds and their Wess}Zumino transformations are obtained from

the algebra of covariant superspace derivatives and projections to lowest super"eld components.
This kind of mechanism is applied to the construction of supersymmetric component "eld actions
as well.
Let us explain this with the example of the kinetic action of the chiral matter multiplet. The key

idea is to consider the D-term of the gauge invariant super"eld ��M , given as the lowest component
of the super"eld D�DM ��M �. To be exact, this de"nition di!ers from the earlier one by a total
space}time derivative, irrelevant in the construction of invariant actions. The explicit component
"eld action is obtained expanding the product of spinor derivatives and using the Leibniz rule.
When acting on � or �M individually the ordinary covariant derivatives, D



, transmute into gauge

covariant derivatives, D


, giving rise to the expansion

D�DM �(�M �)"�D�DM ��M #2(D��)D�DM ��M #(D��)DM ��M . (2.2.60)

At this point the algebra of covariant derivatives intervenes. The relations

D�DM ��M "!4i����� D�
D�� �M !8w=��M , (2.2.61)

D�DM ��M "16D�D
�
�M !16w=�� DM �

� �M !8w�M D�=� , (2.2.62)

illustrate how gauge covariant derivatives will appear in the component "eld formalism in
a completely natural way by construction. This should be contrasted with the method using explicit
expansions in the anticommuting coordinates of superspace. In the approach pursued here, the
component "eld action is simply obtained from combining (2.2.61) and (2.2.62) with (2.2.60) and
projecting to lowest components, with the result

1
16

D�DM �(�M �)�"!D�AD
�
AM !

i
2
(���D

�
�� #�� �� �D

�
�)

#FFM #wDAAM #iw�2(AM ��!A�M �� ) . (2.2.63)

In this approach D�DM � plays the role of the volume element of superspace. Again, as in the
derivation of the Wess}Zumino transformations (2.2.52) and (2.2.53), the covariant space}time
derivatives appear in a very natural way as a consequence of use of covariant di!erential calculus,
without recourse to the introduction of the vector super"eld <. The relation between the present
formulation and the traditional one is established in Section 2.2.2.
The kinetic terms of the gauge multiplet are derived from the super"eld=�=� and its complex

conjugate =��=�� . As =�=� is chiral, and =��=�� antichiral, this will be achieved by a F-term
construction. The relevant super"elds we have to consider are therefore D�(=�=� ) and DM �(=��=�� ).
In the explicit evaluation we will make use of certain super"eld building blocks, which are the
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�The gauge coupling g may be restored explicitly: rescaling the components of the gauge multiplet by g and the pure
gauge action by g
�.

Abelian #at superspace versions of (B.5.20), (B.5.21) and (B.5.28), (B.5.29). Simple spinor derivatives
of the gaugino super"elds are given as

D�=�"!(����)��F��
!���D , (2.2.64)

D�Q=�� "!(��� ��)�Q �� F��
#��Q �� D (2.2.65)

with

D"!�
�
D�=�

the D-term super"eld. Double spinor derivatives arising in the construction are

D�=�"4i����� R�=�� , DM �=�� "4i�� ��� �R
�
=� . (2.2.66)

It is then straightforward to derive

D�(=�=� )"!2F��F
��

#8i=������ R�=M �� !4D�!i�����F
��
F

��
, (2.2.67)

DM �(=��=�� )"!2F��F
��

#8i=�� �� ��
� �R

�
=�!4D�#i�����F

��
F

��
. (2.2.68)

Projection to lowest components identi"es the component "eld kinetic terms of the gauge
multiplet in�

!

1
16
(D�=�=�#DM �=��=�� )�"!

1
4
f �� f

��
!

i
2
��� R

�
�M !

i
2
�M �� � R

�
�#

1
2
D� , (2.2.69)

whereas the orthogonal combination yields a total space}time derivative.
So far, we have illustrated the construction of the component "eld Lagrangian for a chiral matter

multiplet with an Abelian gauge multiplet. The discussion of the F-term construction of mass term
and self-interactions of the matter multiplet, arising from the chiral superpotential and its complex
conjugate will be postponed to more interesting situations.
As is clear from its supersymmetry transformation law, the component "eld D may be added to

the supersymmetric action } this is the genuine Fayet}Iliopoulos D-term. In the terminology
employed here, it arises from projection to the lowest component of the D-term super"eld

D"!�
�
D�DM �D�< . (2.2.70)

From this point of view, gauge invariance

<C<#i(�!�M ) (2.2.71)

is ensured due to the fact that chiral and antichiral super"elds are annihilated by the superspace
volume element D�DM �D�"DM �� D�DM �� .
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As we have noted above, the kinetic term of the chiral matter multiplet may be viewed as
a D-term as well, identifying< with ��M . In this case the gauge invariance (2.2.71) indicates that the
addition of holomorphic or anti-holomorphic super"eld functions F(�) or FM (�M ) will not change the
Lagrangian.
We have described here the simplest case of a supersymmetric gauge theory, a single chiral

multiplet interacting with an Abelian gauge multiplet.
Mass terms and self-interactions of the chiral multiplet, on the other hand, would arise from

a F-term construction applied to �� and �� and their complex conjugates, for power-counting
renormalizable theories, or to holomorphic and antiholomorphic functions =(�) and =M (�M ) in
more general situations. In the simplest case of a single chiral super"eld with non-vanishing
Abelian charge, as discussed here, this kind of superpotential terms are incompatible with gauge
invariance. The construction of a non-trivial invariant superpotential requires several chiral
super"elds with suitably adjusted weights under gauge transformations.
For the sake of pedagogical simplicity, we will now describe the superpotential term for a single

chiral super"eld, restricting ourselves to the case of a self-interacting scalar multiplet in the absence
of gauge couplings.
The F-term construction amounts to evaluate D�= and project to lowest super"eld compo-

nents, resulting in

!

1
4
D�=(�)�"!

1
2
R�=
RA�

(��)#
R=
RA F (2.2.72)

for= and

!

1
4
DM �=M (�M )�"!

1
2
R�=M
RAM � (�� �� )#

R=M
RAM FM . (2.2.73)

In the component "eld expressions, the holomorphic function= is to be considered as a function
of the complex scalar A and correspondingly=M as a function of AM . Combining the superpotential
terms with the kinetic terms (2.2.63), for w"0, and eliminating the auxiliary "elds, F,FM , through
their algebraic equations of motion, F"!R=M /RAM , we obtain the on-shell Lagrangian

!R�AR
�
AM !

i
2
(���R

�
�� #�� �� �R

�
�)!

1
2
R�=
RA�

(��)!
1
2
R�=M
RAM � (�� �� )!�

R=
RA �

�
(2.2.74)

for a single self-interacting scalar multiplet, the last term being just the usual scalar potential
contribution.

2.3. Supersymmetric Yang}Mills theories

The interplay between chiral, antichiral and real gauge transformation formulations, as encoun-
tered in the Abelian case, persists in the case of supersymmetric Yang}Mills theory. These
properties are not only of academic interest, but quite useful, if not indispensable in contexts like
Chern}Simons couplings or supersymmetric chiral anomalies.
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The 1-form Yang}Mills gauge potential is now Lie algebra valued,

A"E
A



"E
A���


T

���
, (2.3.1)

the generators T
���

ful"ll the commutation relations

[T
���
,T

���
]"ic

������
���T

���
. (2.3.2)

Under a gauge transformation, parametrized by a matrix super"eld u, the gauge potential
A transforms as

AC u
�Au!u
�du . (2.3.3)

Observe that this corresponds to a gauge transformation in the real basis, i.e. the parameters of the
gauge transformations are real unconstrained super"elds. The covariant "eld strength is de"ned by

F"dA#AA (2.3.4)

and transforms covariantly

FC u
�Fu . (2.3.5)

Its components are given by

F
�


"D
�
A



!(!)��D



A

�
!(A

�
,A



)#¹

�

A


, (2.3.6)

exhibiting now, in addition to the derivative terms and the torsion term, the graded commutator
(A

�
,A



).

Due to its de"nition, the "eld strength, F, satis"es Bianchi identities

DF"dF!AF#FA"0 . (2.3.7)

Consider next generic super"elds � and �M of gauge transformation

�M C�M u, �C u
�� , (2.3.8)

so that �M � is invariant. Covariant exterior derivatives D�"E
D


� are de"ned as

D�M "d�M #�M A, D�"d�!A� . (2.3.9)

Double exterior covariant derivatives

DD�M "#�M F, DD�"!F�

give rise to

(D
�
,D



)�"!F

�

�!¹

�

D


� , (2.3.10)

(D
�
,D



)�M "#�M F

�

!¹

�

D


�M . (2.3.11)
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In this framework, matter "elds are described by covariantly chiral super"elds, i.e. we specialize
the generic super"elds � and �M to matter super"elds � and �M , which still transform under (2.3.8),
but are required to be covariantly chiral and antichiral, respectively, i.e.

D�� �"0, D��M "0 . (2.3.12)

Compatibility of these conditions with the graded commutation relations (2.3.10) and (2.3.11)
above suggest to impose the constraints

F�Q �� "0, F��"0 , (2.3.13)

called representation preserving constraints. Furthermore, in view of the explicit expression

F��
�
"D�A�� #D��A�!	A� ,A�� 
!2i(���)��

�A
�
, (2.3.14)

the constraint

F��
�
"0 (2.3.15)

just corresponds to a linear covariant rede"nition of the vector component,A
�
, of the connection

super"eld. For this reason it is called a conventional constraint.
As in the Abelian case, the constraints are solved in terms of pre-potentials. The representation

preserving constraints (2.3.13) suggest to express the spinor components of A as

A�"!T
�D�T, A�� "!U
�D��U , (2.3.16)

in terms of pre-potential super"elds U and T. Their gauge transformations should be adjusted
such that they reproduce those of the gauge potentials themselves, that is

TCPM Tu, UCQUu . (2.3.17)

Here, PM and Q denote the pre-gauge transformations and are, respectively, antichiral and chiral
super"elds.
Recall that A is the gauge potential in the real basis of gauge transformations; by construction,

it is inert under the chiral and antichiral pre-gauge transformations. On the other hand, pre-
potential-dependent rede"nitions of A, which have the form of gauge transformations,

A(1)"TAT
�!TdT
� , (2.3.18)

A(0)"UAU
�!UdU
� , (2.3.19)

give rise to new gauge potentials which are inert under the original u gauge transformations and
transform under chiral (resp. antichiral) gauge transformations, i.e.

A(1)CPM A(1)PM 
�!PM dPM 
� , (2.3.20)

A(0)CQA(0)Q
�!QdQ
� . (2.3.21)
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The connections A(1)"E
A


(1) and A(0)"E
A



(0) take a particularly simple form

A�� (1)"!WD��W
�, A� (1)"0, A��� (1)"
i
2
D�A�� (1) , (2.3.22)

A�(0)"!W
�D�W, A�� (0)"0, A��� (0)"
i
2
D�� A�(0) , (2.3.23)

expressed in terms of the combination

W"TU
� (2.3.24)

with gauge transformations

WCPM WQ
� . (2.3.25)

The corresponding change of basis on the covariant chiral and antichiral super"elds � and �M is
achieved via the rede"nitions which have the form of gauge transformations as well, such that

�(1)"T�, �M (1)"�M T
� , (2.3.26)

�(0)"U�, �M (0)"�M U
� . (2.3.27)

In this case, we also obtain particularly simple chirality conditions for �(0) and �M (1). The invariant
combination �M � behaves under this change of bases as

�M �"�M (1)W�(0) . (2.3.28)

The right-hand side of this equation corresponds to the traditional formulation in terms of simply
chiral (resp. antichiral) "elds, explicitly

D�� �(0)"0, D��M (1)"0 . (2.3.29)

The super"eldW provides the bridge between the chiral and antichiral bases. SettingW"exp 2<,
we recover the usual description of supersymmetric Yang}Mills theories.
As before, the components of the "eld strength F�� , F�Q

�
and F

��
can be expressed in terms of

two super"elds W� , W�� and their spinor derivatives, namely

F��"#i�
���Q W�Q , (2.3.30)

F�Q
�
"!i�� �Q �

�
W� , (2.3.31)

F
��

"�
�
(��

��
)��D�W�#�

�
(��

��
�)�Q ��D�� W�Q . (2.3.32)

The gaugino super"elds W� and W�� ful"ll

D�W�� "0, D��W�"0 , (2.3.33)

D�W�"D�� W�� , (2.3.34)

as a result of Bianchi identities.
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�For the sake of clarity, we consider, here, only matter multiplets without gauge couplings. Couplings to Yang}Mills
theory will be constructed later on, in the context of the complete supergravity/matter/Yang}Mills system in Section 4,
and gauged isometries described in Appendix C.

The super"elds W� and W�� are the building blocks of the kinetic terms for the supersymmetric
Yang}Mills action. Recall the "eld content of the Yang}Mills gauge multiplet: it consists of the
gauge potentials a

�
(x), the gauginos �(x), �M (x), which are Majorana spinors, and the auxiliary

scalars D(x). All these component "elds are Lie-algebra valued, they are identi"ed in the gaugino
super"elds W� and W�� , subject to the constraint conditions (2.3.33) and (2.3.34).
The component "elds are de"ned as lowest components of super"elds; for the gauge potential

we have

A
�
�"ia

�
, (2.3.35)

whereas the gaugino component "elds are de"ned as the lowest components of the gaugino
super"elds themselves,

W� �"!i�� , W�� �"i�M �� . (2.3.36)

The Yang}Mills "eld strength f
��

"R
�

a
�
!R

�
a
�

!i[a
�
, a

�
] and the auxiliary "eldD(x) appear at

the linear level in the super"eld expansion

D�W� �"!i(����)�� f
��

!��� D(x) ,

D�Q W�� �"!i(��� ��)�Q �� f
��

#��Q �� D(x) , (2.3.37)

this means that the auxiliary "eld is identi"ed as

D�W� �"D�� W�� �"!2D(x) . (2.3.38)

The Lagrangian for pure Yang}Mills gauge theory is then given by (we often use the shorthand
notation W�"W�W� and WM �"W�� W�� )

L"! �
��
D� tr(W�)! �

��
DM � tr(WM �) . (2.3.39)

As in the Abelian case, the gauge invariant product �M � provides both the kinetic terms for matter
super"elds and their minimal supersymmetric coupling to Yang}Mills "elds.

2.4. Supersymmetry and KaK hler manifolds

As explained by Zumino, supersymmetric non-linear sigma models have necessarily a KaK hler
structure [164]. The complex scalars of the chiral matter multiplets have an interpretation as
complex coordinates of a KaK hler manifold and the supersymmetric component "eld Lagrangian is
given as�

L
��( ���

"!g
��M
���R

�
A�R

�
AM �M

!

i
2
g
��M
(����D

�
�� �M)#

i
2
g
��M
(D

�
������ �M )

#

1
4
R

�n���M
(����)(�� n� �� �M)#g

��M
F�FM �M . (2.4.1)

280 P. Bine& truy et al. / Physics Reports 343 (2001) 255}462

Plrep=1020=EM=VVC



As a function of the scalar "elds A� and AM �M , the KaK hler metric g
��M
derives from a KaK hler potential.

The covariant derivatives

D
�
���"R����#��

��
R
�
A���� , D

�
�� �M�� "R

�
�� �M�� #�n�

�M �M
R
�
A�M �� �M�� , (2.4.2)

contain the Levi}Civita symbols (g
� n� ��

denotes the derivative of g
�n�
with respect to A�)

��
��

"g� n�g
� n� ��
, �n�

�M �M
"g� n�g

��M ��M
, (2.4.3)

whereas the quartic spinor terms exhibit the curvature tensor of the KaK hler manifold,

R
� n���M

"g
� n� � ��M

!g
��M

��
��
��M n� �M . (2.4.4)

The auxiliary "elds, here, correspond to those of the diagonalized version in [164]; more details will
be given below. The supersymmetry transformations of the chiral multiplet, which leave the action
invariant are given as

�A�"�2��� , (2.4.5)

����"#i�2(�M �� ��)�R�A�#�2��F� , (2.4.6)

�F�"i�2(�M �� �)�D
�
��� . (2.4.7)

As pointed out by Zumino in the same paper, the structure of the supersymmetric non-linear
sigma model is most conveniently understood in the language of super"elds. As he explained, the
lowest component of the super"eld

L
��( ���

" �
��
D�DM �D�K(�,�M ) ,

reproduces exactly the component "eld Lagrangian given above. In other words, the kinetic
Lagrangian may be understood as a Fayet}Iliopoulos D-term. The KaK hler metric, de"ned as the
lowest super"eld component of (using the same symbols for the component and the super"eld)

g
��M

"

R�K
R��R�M �M , (2.4.8)

the Levi}Civita symbol and the KaK hler curvature appear in the process of successive application of
spinor derivatives and subsequent projection to lowest components. Chirality of the matter
super"elds and the fact that the di!erential operator D�DM �D�"D�� D�D�� annihilates chiral super-
"elds, imply invariance under the super"eld KaK hler transformations

K(�,�M )CK(�,�M )#F(�)#FM (�M ) . (2.4.9)

This shows that, in fact, the KaK hler manifold is spanned by the chiral (resp. antichiral) matter
super"elds �� and �M �M , i.e. a mapping from superspace into the KaK hler manifold. Complex structure
on the one hand, in KaK hler geometry and chirality conditions on the other hand, in supersymmetry,
give rise to intriguing analogies [98].
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�� It should however be noted that, in distinction to Section 2.2.2, there are no phase transformations on the matter
"elds corresponding to KaK hler transformations. In the language of Section 2.2.2, all the matter "elds have weight zero.
Non-trivial KaK hler phase transformations will only appear later on in the coupling of matter to supergravity.

��Normalizations are chosen for later convenience in the supergravity/matter system.

In the following, we will elaborate somewhat more on these geometric superspace aspects,
which will be of essential importance later on in the context of supergravity/matter coupling. The
properties of the pre-potential < in the (�

�
, �
�
) basis of Abelian gauge theory } cf. Section 2.2.2

} suggest to interpret K(�,�M ) as a particular, super"eld dependent, pre-potential.��
Replacing the unconstrained pre-potential < by the KaK hler potential K(�,�M ) we de"ne��

A�"#�
�
D�K"#�

�
K

�
D��� , (2.4.10)

A�� "!�
�
D��K"!�

�
K

�M
D�� �M �M . (2.4.11)

Here K
�
(resp. K

�M
) denote derivatives of the KaK hler potential with respect to the super"eld

coordinates �� and �M �M . Following the construction in Abelian gauge theory we de"ne furthermore

A��� "
i
2
(D�A�� #D�� A�) . (2.4.12)

This corresponds to a conventional constraint. Substituting for A� and A�� yields

A
�
"

1
4
(K

�
R
�
��!K�M R��M

�M )#
i
8
�� �� �
�
g
� �MD���D�� �M

�M . (2.4.13)

The expressions for A� ,A�� and A
�
can be subsumed compactly in superform language,

A"

1
4
(K

�
d��!K�M d�M �M)#

i
8
E��� �� �

�
g
��M
D���D�� �M

�M . (2.4.14)

Let us note that this potential, A, transforms as it should (i.e. as a connection) under KaK hler
transformations,

ACA#

i
2
d ImF . (2.4.15)

We can now apply the machinery of Abelian gauge structure in superspace to determine the
component "eld action as the corresponding D-term. First, applying the exterior derivative to
A gives the composite "eld strength 2-form

F"dA"

1
2
g
��M
d��d�M �M

#

i
8
d(E��� �� �

�
g
��M
D���D�� �M

�M) . (2.4.16)
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As in the generic Abelian case, the coe$cients of F are expressed in terms of a single Weyl spinor
and its complex conjugate, in particular

F��"#

i
2
�
���Q XM �

Q , F�Q
�
"!

i
2
�� �Q �
�
X� . (2.4.17)

On the one hand, X� and XM �� are given in terms of the KaK hler potential

X�"!�
�
DM �D�K, XM �� "!�

�
D�D��K , (2.4.18)

on the other hand, identifying (2.4.17) in (2.4.16), we obtain

X�"!

i
2
g
��M
����� R���D�� �M �M

#

1
2
g
��M
D���FM �M , (2.4.19)

XM �� "!

i
2
g
��M

�� ��� �R
�
�M �MD���#

1
2
g
��M
D�� �M �MF� . (2.4.20)

Here we used the de"nitions

F�"!�
�
D�D���, FM �M

"!�
�
D�� D�� �M �M (2.4.21)

with second covariant derivatives de"ned as

D
�
D���"D

�
D���#��

��
D

�
��D��� , (2.4.22)

D
�
D�� �M �M

"D
�
D�� �M �M

#��M

�M �M
D

�
�M �MD�� �M �M , (2.4.23)

assuring covariance with respect to KaK hler transformations and (ungauged) isometries of the
KaK hler manifold. Observe that, in terms of these de"nitions, the component "eld Lagrangian will
come out to be diagonal in the auxiliary "elds [164]. Due to their de"nition, the super"eldsX� ,XM �

�

have the following properties:

D��X�"0, D�XM �
�
"0, (2.4.24)

D�X�"D�� XM �
� . (2.4.25)

It is then easy to obtain the super"eld expression of the KaK hler D-term

!

1
2
D�X�"!���g

��M
R
�
��R

�
�M �M

!

i
4
g
��M
����� D���D

�
D�� �M �M

!

i
4
g
��M
����� D�� �M �MD

�
D���#g

��M
F�FM �M

#

1
16

R
�n���M
D���D���D�� �M

n�D�� �M �M (2.4.26)
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with covariant derivatives de"ned above in (2.4.22), (2.4.23) and the curvature tensor given in
(2.4.4). Projection of this last equation to lowest super"eld components results in the component
"eld Lagrangian (2.4.1). The construction presented here will be generalized later on and applied to
the full supergravity/matter/Yang}Mills system.

3. Matter in curved superspace

The formulation of supersymmetry as a local symmetry naturally leads to supergravity, where the
graviton, of helicity 2, has a fermionic partner, the gravitino, of helicity 3/2. The corresponding local
"elds are the vierbein e

�
�(x) and the Rarita}Schwinger "eld �

�
�(x), �M

��� (x). As mentioned in Section
2.1.1, the di!erent D"4,N"1 supergravity multiplets (minimal, new minimal and non-minimal) all
contain the graviton and the gravitino, but di!er by their systems of auxiliary "elds.
In the geometric formulation of supergravity, the vierbein e

�
� (x) is generalized to the frame

super"eld E
	


 in superspace, describing the graviton and the gravitino in a uni"ed way. The three
di!erent supergravity multiplets, as well as the coupling of minimal supergravity to matter, which
will be presented here, are then derived from a superspace geometry in suitably choosing the
structure group and torsion constraints.
The choice of a structure group, which we take to be the product of Lorentz and chiral ;(1)

transformations, already determines the properties of superspace geometry to a large extent.
Further speci"cation derives from requiring appropriate covariant constraints on the torsion

and curvature tensors, which, given the extension of the notion of space}time to superspace,
acquire a plethora of new components. One distinguishes between geometric and dynamical
constraints. Geometric constraints help to restrict the properties of superspace geometry without
leading to any dynamics, i.e. to any equation of motion. Dynamical constraints may then be
imposed as further restrictions which imply equations of motion.
Geometric constraints come in two categories: "rst, the so-called conventional constraints which

are used to absorb part of the torsion in covariant rede"nitions of the Lorentz and;(1) connection
and of the frame of superspace; second, the so-called representation preserving constraints, which
arise from consistency conditions for covariant chiral super"elds (essential for the description of
supergravity/matter couplings) with their commutation relations.
Di!erent supergravity multiplets (minimal, new minimal or non-minimal) are obtained from

di!erent kinds of geometric constraints.
As emphasized in the introduction, we will only consider the minimal multiplet of supergravity,

whose superspace description is brie#y recalled in Section 3.1.
We will then show in some detail how supergravity/matter/Yang}Mills couplings are ob-

tained from a uni"ed geometric setting by including super"eld KaK hler transformations in the
structure group.
In Section 3.2 we show explicitly how this formulation can be obtained from the conventional

one, [38}40,42], by means of "eld-dependent super"eld rescalings. This leads in a natural way to
the identi"cation of the supergravity/matter system as a special case of ;(1) superspace geometry
whose structure is reviewed in Section 3.3. In Section 3.4, we identify KaK hler superspace as a special
case of ;(1) superspace geometry, de"ne supergravity transformations and present invariant
actions and equations of motion at the super"eld level.
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3.1. Minimal supergravity

In supergravity, the dynamical degrees of freedom are the graviton and the gravitino. They are
identi"ed as the local frame of space}time or vierbein, e

�
� (x), and the Rarita}Schwinger [133] "eld

�
�
� (x), �M

��� (x). The supergravity action [50,75] is then de"ned as a certain combination of the
Einstein and Rarita}Schwinger actions, invariant under space}time-dependent supersymmetry
transformations relating the graviton and the gravitino. The commutators of these transformations
only close on-shell, i.e. modulo equations of motion. In minimal supergravity [147,67], a complex
scalar M, MM and a real vector b

�
are added as auxiliary "elds to avoid the appearance of the

equations of motion at the geometric level and to de"ne an o!-shell theory.
The formulation of supergravity in superspace [2,157] provides a uni"ed description of the

vierbein and the Rarita}Schwinger "elds. They are identi"ed in a common geometric object, the
local frame of superspace,

E
"dz	E
	


(z) , (3.1.1)

de"ned as a 1-form over superspace, with coe$cient super"elds E
	


(z), generalizing the usual
frame, e�"dx�e

�
� (x), which is a space}time di!erential form. Vierbein and Rarita}Schwinger

"elds are identi"ed as lowest super"eld components, such that

e
�
� (x)"E

�
� �, �

�
�
�
�(x)"E

�
� �, �

�
�M

��� (x)"E
��� � . (3.1.2)

Correspondingly, as in ordinary gravity, one introduces supercoordinate transformations, thus
unifying the usual general coordinate transformations and the local supersymmetry transforma-
tions as their vector and spinor parts, respectively. Local Lorentz transformations act through their
vector and spinor representations on E� and E�,E�� .
Covariant derivatives with respect to local Lorentz transformations are constructed by means of

the spin connection, which is a 1-form in superspace as well,

�
�

"dz	�

	�

 (z) . (3.1.3)

It takes values in the Lie algebra of the Lorentz group such that its spinor components are given in
terms of the vector ones as

���"!�
�
(���)�����

, ��Q �� "!�
�
(�� ��)�Q �� ���

. (3.1.4)

These are the basic geometric objects in the superspace description of supergravity. The covariant
exterior derivative of the frame in superspace,

¹
"dE
#E��
�

 , (3.1.5)

de"nes torsion in superspace as a 2-form

¹
"�
�
E�E¹

�

 . (3.1.6)

Likewise, the covariant expression

R
�

"d�

�

#�

�
�



 (3.1.7)
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de"nes the curvature 2-form in superspace

R
�

"�

�
EE�R

��

 . (3.1.8)

It is a special feature of supergravity that the curvature tensor is completely expressed in terms of
the torsion and its derivatives [53]. We do not intend here to give a complete and detailed review of
this geometric structure; for a detailed exposition we refer to [153].
Recall that superspace torsion is subject to covariant constraints [88,160] which imply that all

the coe$cients of torsion are given in terms of the covariant supergravity super"elds

R, R�, G
�
, =����

, =�� �Q ���
(3.1.9)

and their covariant derivatives. To be more explicit, the non-vanishing components of superspace
torsion are

¹��
Q �"!2i(���)��

Q , (3.1.10)

¹���� "!i�
���� R�, ¹��

�
�"!i�� �� �

�
R , (3.1.11)

¹���"
i
2
G�(�

�
��
�
)��#

3i
2

���G�
, ¹��

��� "!

i
2
G�(��

�
�
�
)�� �� !

3i
2

��� �� G�
. (3.1.12)

As for ¹
��

� and ¹
���� , they will be interpreted later on as the covariant Rarita}Schwinger "eld

strength super"elds. They involve the super"elds=����
and=�� �Q ���

called Weyl tensor super"elds,
because they occur in the decomposition of these Rarita}Schwinger super"elds in very much the
same way as the usual Weyl tensor occurs in the decomposition of the covariant curvature tensor.
The auxiliary component "elds mentioned above appear as lowest components in the basic

super"elds R, R� and G
�
such that

M(x)"!6R�, MM (x)"!6R��, b
�
"!3G

�
� . (3.1.13)

Consistency of the superspace Bianchi identities with the special form of the torsion components
displayed so far implies the chirality conditions

D�R�"0, D�� R"0 , (3.1.14)

D�=�� �Q ���
"0, D��=����

"0 , (3.1.15)

as well as the relations

D�R"D��G��� , D��R�"!D�G��� . (3.1.16)

Moreover,

D�R#DM �R�"!�
�
R#4G�G

�
#32R�R , (3.1.17)
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where R,R
��
�� is the curvature scalar super"eld. This relation is at the heart of the construction

of the supersymmetric component "eld action. On the other hand, the orthogonal combination

D�R!DM �R�"4iD
�
G� (3.1.18)

is a consequence of (3.1.16), it has an intriguing resemblance with the 3-form constraint in
superspace } cf. (6.1.2).
The component "eld Lagrangian is obtained from the superspace integral [158]

L
�
��	�����

"�E , (3.1.19)

where �E stands for �d�d�M E, andE denotes the superdeterminant of E
	


. Integration over d�d�M
yields the usual curvature scalar term, !�

�
eR, together with all the other terms necessary for the

supersymmetric completion, with the usual canonical normalization.

3.2. Superxeld rescaling

In the conventional super"eld approach [152] to the coupling of matter "elds to supergravity,
the superspace action for the kinetic terms is taken to be

L
���

"!3�Ee
�������(� (M � . (3.2.1)

Given (3.1.19) we may hope that, by a suitable modi"cation of the superspace geometry, the factor
exp(!K(�,�M )/3) can be absorbed into E; however this will be possible only if there are symmetries
which allow such a modi"cation, so let us analyze the situation in that respect. Supersymmetry
transformations as well as general coordinate transformations are encoded in the di!eomorphisms
of superspace; precisely the action (3.2.1) is invariant under superdi!eomorphisms and thereby
under supersymmetry and general coordinate transformations. The superspace geometry relevant
to (3.2.1) is that of the so-called minimal supergravity multiplet. The structure group in superspace
in this case is the Lorentz group. By construction, (3.2.1) is Lorentz invariant.
In addition to superdi!eomorphisms and Lorentz transformations, which are symmetries of the

kinetic action (3.2.1), superspace geometry allows also for a generalization of dilatation transforma-
tions to the supersymmetric case, which are known as super-Weyl or Howe}Tucker transforma-
tions [106]. These are de"ned as transformations of the frame in superspace and of the Lorentz
super"eld connection which respect the torsion constraints and reduce to ordinary dilatations
when supersymmetry is switched o!.
As a result, for the minimal supergravity multiplet, they change the frame of superspace in such

a way that

E
	

�CE
	

�e���M (3.2.2)

E
	

�C e��M 
��E	
�#

i
2
E

	
� (��

�
)��� D�� �M � , (3.2.3)

E
	�� C e��
�M �E	�� #

i
2
E

	
�(���

�
)�� �D��� . (3.2.4)
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The chirality conditions

D��M "0, D�� �"0 , (3.2.5)

of the super"eld parameters �M and � are a characteristic feature of the superspace geometry of
minimal supergravity, i.e. of the torsion constraints which model it.
As a consequence of (3.2.2)}(3.2.4), the superdeterminant of the frame in superspace is subject to

the following super-Weyl transformations:

ECEe�����M � . (3.2.6)

Since the KaK hler potentialK(�,�M ) is inert under super-Weyl transformations, (3.2.6) indicates that
the kinetic action (3.2.1) is not invariant.
However, K(�,�M ) is subject to KaK hler transformations

K(�,�M )CK(�,�M )#F(�)#FM (�M ) , (3.2.7)

which by themselves are not an invariance of (3.2.1) either. Then, it is easy to see that the kinetic
super"eld action is KaK hler invariant, if together with (3.2.7), a compensating super-Weyl trans-
formation [152] of parameters

�"�
�
F(�), �M "�

�
FM (�M ) (3.2.8)

is performed.
In this way, a KaK hler invariant action in superspace is obtained which contains the kinetic terms

for supergravity and matter super"elds and leads to the correct result in the #at superspace limit.
On the other hand, the component "eld action which derives from (3.2.1) in the conventional

approach, yields the correctly normalized Einstein action only after a "eld-dependent rescaling of
the component "elds [153]. The correct KaK hler transformations of the various component "elds
are then identi"ed on the rescaled "elds.
These complications can be avoided, however, if one starts right away fromKaK hler superspace as

explained below. In particular, KaK hler transformations are then consistently introduced at the
superxeld level. Another way to understand this is to perform the rescalings directly in terms of
super"elds: this will give the explicit relation between the conventional super"eld approach
described just above and our KaK hler superspace construction.
The aim is therefore to absorb the exponential of the KaK hler potential in (3.2.1) by means of

a super"eld rescaling of the frame in superspace. The "rst attempt might have been to employ
a super-Weyl transformation. However, this does not work because the combination, �#�M , of
chiral and antichiral super"eld in (3.2.6) is not su$cient to absorb the more general real super"eld
K(�,�M ) in (3.2.1). On the other hand, the chirality (resp. anti-chirality) conditions on � (resp. �M ) are
consequences of the invariance of the torsion constraints under transformations (3.2.2)}(3.2.4). If
one is willing to give up this requirement, more general rescalings are possible, at the price of
changing the torsion constraints and thus the superspace structure. We are therefore led to study
more general transformations of the frame (and of the Lorentz connection) together with their
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��Eqs. (3.2.2)}(3.2.4) can be obtained from (3.2.12)}(3.2.14) by restrictingX andXM to be given asX"exp(2�M !�) and
XM "exp(2�!�M ).

consequences for the corresponding coe$cients of the torsion 2-form. To be more precise, note that
the arbitrary transformations of the vielbein E

	

 and of the Lorentz connection �

	�



E�
	


"E
	


� X
M

 , (3.2.9)

��
	�


"�
	�


#�
	�


 , (3.2.10)

change the torsion coe$cients as

¹�
�


"(!)�� ����M �X
�

M X
�

�
�M (¹

�

� X
M


#D
M
X

�M

!(!) ��D

�M
X

M

)

#X
�

M �M �


!(!)��X
�
�
�M ��M 


 . (3.2.11)

For our present purpose it is su$cient to consider the super"eld rescalings

X
�

"�

�
�
�XXM X

�
� X

���
0 ���X 0

0 0 ��Q �� XM � . (3.2.12)

The super"eld X and its complex conjugate XM are arbitrary, furthermore

X
�
�"

i
2
(��

�
)��� XM 
�D�� (XXM ) , (3.2.13)

X
��� "

i
2
(���

�
)�� �X
�D� (XXM ) . (3.2.14)

Observe that (3.2.12)}(3.2.14) di!er from (3.2.2)}(3.2.4) only by the fact that X and XM are, contrary
to � and �M , not subjected to any restrictions.�� What are the e!ects of the super"eld rescalings
(3.2.12)}(3.2.14) on the various torsion coe$cients? First of all, note that these transformations
leave the torsion constraints

¹���"0, ¹�� �Q �"0 , (3.2.15)

¹���� "0, ¹�� �Q �"0 (3.2.16)

and

¹��
Q �"!2i(���)��

Q (3.2.17)

unchanged. It is well known that the torsion constraints

¹���"0, ¹��
�
�"0 (3.2.18)

and

¹
��
�"0 , (3.2.19)
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��Solutions to the Bianchi identities in terms of R, R� and G
�
are presented in Section 3.3 and Appendix B.

allow to determine the Lorentz connection in superspace completely in terms of E
	

 . Likewise, the

requirement that (3.2.18) and (3.2.19) are left invariant under (3.2.12)}(3.2.14) determines �
�

� in
terms of X and XM ,

����"2(�
��
)�	(XXM )
�D	 (XXM ) , (3.2.20)

���
��

"2(��
��
)�� 	� (XXM )
�D	� (XXM ) , (3.2.21)

�
���

"�
��
(XXM )
�D

�
(XXM )!�

��
(XXM )
�D

�
(XXM )

#�
�
�
����

(XXM )
�D	 (XXM )(���)		� (XXM )
�D	� (XXM ) . (3.2.22)

This means that X
�

 and �

�

 are now completely "xed in terms of the unconstrained super"elds

X and XM .
However, the remaining torsion constraints,

¹���"0, ¹�� ��"0 (3.2.23)

and

¹ �Q� �� "0, ¹�� �Q �� "0 (3.2.24)

are no longer conserved by the super"eld rescalings (3.2.12)}(3.2.14) and (3.2.20)}(3.2.22). The new
torsion coe$cients take the form

¹����"!� �� A��!� �� A�� , (3.2.25)

¹ ���
Q

�� "��Q �� A�� (3.2.26)

with A�� de"ned as

A��"!X
�(2X
�D�X#XM 
�D�XM ) . (3.2.27)

The complex conjugate equations are

¹��� �Q �� "��Q �� A��� #��� �� A��Q , (3.2.28)

¹��� ��"!���A��� , (3.2.29)

A��� "XM 
�(2XM 
�D��XM #X
�D��X) . (3.2.30)

Next, we examine the consequences of the super"eld rescalings for the remaining torsion coe$-
cients by solving the Bianchi identities in the presence of the new constraints or, equivalently, by
explicit calculation from (3.2.11).�� In either case the tensor decompositions of ¹����� and ¹���

�
�

do not change, i.e.

¹����� "!i�
���� R�� , (3.2.31)

¹���
�
� "!i�� �� �

�
R� . (3.2.32)
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The rescaled super"elds R�� and R� are related to the old ones by

R��"X
�	R�!�
�
[(XXM )
�D�D� (XXM )#>�>�]
 , (3.2.33)

R�"XM 
�	R!�
�
[(XXM )
�D�� D�� (XXM )#>M �� >M �

� ]
 (3.2.34)

with the de"nitions

>�"(XXM )
�D� (XXM ), >M �� "(XXM )
�D�� (XXM ) . (3.2.35)

The torsion coe$cients ¹��� and ¹��
��� , however, pick up additional terms under the super"eld

rescalings,

¹� ��� "i(�
��
) �� G��#i� �� G�

�
!

i
4
� �� �� �Q �

�
	(X
�D�#A��)A��Q #(XM 
�D�Q !A��Q )A��
 , (3.2.36)

¹���
��� "i(�

��
)�� �� G��!i��� �� G�

�
#

i
4
��� �� �� �

Q �
�

	(X
�D�#A��)A��Q #(XM 
�D�Q !A��Q )A��
 . (3.2.37)

The rescaled super"eld G���Q "����Q G�
�
is de"ned as

G���Q "(XXM )
�	G��Q !�
�
[D� ,D�Q ] log(XXM )#>�>M �Q 
 . (3.2.38)

The purpose of this detailed presentation of super"eld rescalings and their consequences for the
superspace torsion is twofold. First of all, in the case A��"0, A��� "0 the usual super-Weyl or
Howe}Tucker transformations, which leave the torsion constraints invariant, are reproduced.
Second, if X and XM are kept arbitrary, the supervolume E of the moving frame in superspace
changes as

E�"E(XXM )� . (3.2.39)

This shows that for the particular "eld-dependent rescalings of parameters

X"XM "e
��������(� (M � , (3.2.40)

the kinetic action (3.2.1) takes the form

L
���

"!3�E� . (3.2.41)

That is, the kinetic Lagrangian action is the integral over a new superspace de"ned with the
supervolume E�. In addition, in this case, from (3.2.40) and (3.2.27), (3.2.30) one obtains

A��"#�
�
D��K(�,�M ) , (3.2.42)

A��� "!�
�
D���K(�,�M ) . (3.2.43)
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The primed spinor derivatives are, of course, given as

D��"X
�D� , D��� "XM 
�D�� . (3.2.44)

At this stage it is very suggestive to interpret the additional terms in (3.2.25), (3.2.26) and (3.2.28),
(3.2.29) not as unfortunate contributions to the torsion but rather as super"eld gauge potentials
associated to the structure group of a modi"ed superspace geometry which realizes KaK hler
transformations as "eld-dependent chiral rotations. To see this more clearly observe that the new
frame is related to the old one by

E� �
	

"e
�������(� (M �E
	

� , (3.2.45)

E� �
	

"e
��������(� (M ��E �
	

!

i
12

E �
	
(��

�
)� �� D��K(�,�M )� , (3.2.46)

E�
	�� "e
��������(� (M ��E	�� !

i
12

E �
	
(���

�
) ��� D�K(�,�M )� . (3.2.47)

It is then easy to see that under the combination of KaK hler transformations and compensating
super-Weyl transformations these new variables transform homogeneously

E� �
	
CE� �

	
, (3.2.48)

E� �
	
C e
������� �E� �

	
, (3.2.49)

E�
	�� C e�������� �E�

	�� . (3.2.50)

Indeed, these transformations represent chiral rotations of parameter !i/2 ImF and chiral
weights w(E �

	
)"0, w(E �

	
)"1, w(E

	�� )"!1. Likewise, by the same mechanism, the super"elds
R�, R�� and G�

�
undergo chiral rotations of weights w(R�)"2, w(R��)"!2 and w(G�

�
)"0.

The corresponding gauge potential 1-form in superspace is then identi"ed to be

A�"E��A�
�
#E��A��#E��� A��� (3.2.51)

with "eld strength F�"dA�. The spinor coe$cientsA�� and A��� are given by (3.2.42) and (3.2.43) and
give rise to

F���"0, F��Q �� "0 . (3.2.52)

The equation for the "eld strength F� ��� allows to determine the vector component

A���� "
i
2
(D��#A�� )A��� #

i
2
(D��� !A��� )A��!

i
2
F���� . (3.2.53)
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Comparing (3.2.53) to (3.2.36), (3.2.37) and substituting appropriately yields

¹� ��� "i(�
��
) �� G��#i� �� (G�

�
#�

�
F�

�
)#� �� A�

�
, (3.2.54)

¹���
��� "i(��

��
)�� �� G��!i��� �� (G�

�
#�

�
F�

�
)!��� �� A�

�
. (3.2.55)

Note that in this construction, A�
�
and F�

�
always appear in the combination A�

�
#i/2F�

�
.

As a consequence of their de"nition, the coe$cients of the connection 1-form A� change under
transformations (3.2.7) and (3.2.8) as

A��C e�������� ��A��#
i
2
D��ImF� , (3.2.56)

A��� C e
������� ��A��� #
i
2
D��� ImF� , (3.2.57)

A�
�
C�A�

�
#

i
2
D�

�
ImF� . (3.2.58)

Taking into account the properties of the rescaled frame, the transformation law for the 1-form A�
in superspace becomes simply

A�CA�#
i
2
d ImF . (3.2.59)

To summarize, the matter "eld-dependent super"eld rescalings of frame and Lorentz connection,
which might have appeared embarrassing in the "rst place, because they changed the geometric
structure, actually led to a very elegant and powerful description of matter "elds in the presence of
supergravity. The most remarkable feature is that, in the supersymmetric case, matter and
gravitation lend themselves concisely to a uni"ed geometric description. Due to the close analogy
between the KaK hler potential and the pre-potential of supersymmetric gauge theory it is possible to
include KaK hler transformations in the structure group of superspace geometry. They are realized
by chiral rotations as explained in detail above and the KaK hler potential takes the place of the
corresponding pre-potential. The superspace potentials can then be used to construct KaK hler
covariant spinor and vector derivatives, KaK hler transformations are thus de"ned from the begin-
ning at the full super"eld level and imbedded in the geometry of superspace.
Furthermore, we have seen in (3.2.41), that the kinetic action for both supergravity and matter
"elds is given by minus three times the volume of superspace. Its expansion in terms of component
"elds gives immediately the correctly normalized kinetic terms for all the component "elds without
any need for rescalings or complicated integrations by parts at the component "eld level.

3.3. ;(1) superspace geometry

The result of the construction in the preceding section has a natural explanation in the
framework of ;(1) superspace geometry, which will be reviewed in this section. In this approach,
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the conventional superspace geometry is enlarged to include a chiral ;(1) factor in the structure
group. As a consequence, the basic super"elds of the new geometry are the supervielbein E 


	
(z)

and the Lorentz gauge connection � 

	�

(z) together with a gauge potential A
	
(z) for chiral ;(1)

transformations. These super"elds de"ne coe$cients of 1-forms in superspace such that

E
"dz	E 

	

(z) , (3.3.1)

� 

�

"dz	� 

	�

(z) , (3.3.2)

A"dz	A
	
(z) . (3.3.3)

Torsion and "eld strengths are then de"ned with the help of the exterior derivative d in superspace

¹
"dE
#E�� 

�

#w(E
)E
A , (3.3.4)

R 

�

"d� 

�

#� 
�

� 



, (3.3.5)

F"dA . (3.3.6)

The chiral ;(1) weights w(E
) are de"ned as

w(E�)"0, w(E�)"1, w(E�� )"!1 . (3.3.7)

The non-vanishing parts � �
�
, � �� , ��Q �� of � 


�
(the Lorentz connection) are related among each

other as usual,

� �� "!�
�
(���) �� �

��
, ��Q �� "!�

�
(�� ��)�Q �� ���

. (3.3.8)

As is well known [53], for this choice of structure group, the Lorentz curvature and ;(1) "eld
strength,

R 

�

"�
�
EE�R 


��
, (3.3.9)

F"�
�
EE�F

�
(3.3.10)

are completely de"ned in terms of the coe$cients of the torsion 2-form,

¹
"�
�
E�E¹ 


�
(3.3.11)

and covariant derivatives thereof as a consequence of the superspace Bianchi identities,

D¹
!E�R 

�

!w(E
)E
F"0 . (3.3.12)

In the present case, covariant derivatives are understood to be covariant with respect to both
Lorentz and ;(1) transformations. The covariant derivative of a generic super"eld �



of chiral

weight w(�


) is de"ned as

D
�
�



"E 	
�
R
	

�



!� 
�


�

#w(�



)A

�
�



(3.3.13)
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with (graded) commutator

(D

,D

�
)�



"!¹ �

�
D

�
�



!R �
�


�
�
#w(�



)F

�
�


. (3.3.14)

The chiral weights of the various objects are related to that of the vielbein, E
, in a simple
way, e.g.

w(D


)"!w(E
) ,

w(¹ 

�

)"w(E
)!w(E�)!w(E) ,

w(R �
�


)"!w(E�)!w(E) . (3.3.15)

Finally, the vielbein E
, the covariant derivative D


and the ;(1) gauge potential A



change

under chiral ;(1) structure group transformations g as

E
CE
g���
� , (3.3.16)

D


C g
���
�D



, (3.3.17)

A


C g
���
�(A



!g
�E 	



R
	
g) . (3.3.18)

As said in the introduction, the choice of structure group largely determines the ;(1) superspace
geometry, which is further speci"ed by appropriate covariant torsion constraints. For instance,
combination of the covariant chirality conditions with the commutation relation (3.3.14) suggests

¹ ��� "0, ¹�� �Q �"0 . (3.3.19)

For a more complete presentation, we refer to [92], and references therein. Here, we content
ourselves to sketch out the essential features of the resulting structure in superspace.
First of all, we note that all the coe$cients of torsion and of Lorentz and ;(1) "eld strengths

are given in terms of the covariant super"elds R,R� (resp. chiral and antichiral) and G
�
(real)

of canonical dimension 1 and of the Weyl spinor super"elds =����
and =�� �Q ���

of canonical
dimension 3/2.
Moreover, the only non-vanishing component at dimension zero is the constant torsion already

present in rigid superspace,

¹ �Q �� "!2i(���) �Q� . (3.3.20)

We then proceed in the order of increasing canonical dimension. At dimension 1/2, all the torsion
coe$cients vanish whereas at dimension 1 the above-mentioned super"elds R,R� and G

�
are

identi"ed as

¹���� "!i�
���� R�, ¹ ��� "

i
2
(�

�
��
�
) �� G� , (3.3.21)

¹�� �
�

"!i�� �� �
�
R, ¹��

��� "!

i
2
(��

�
�
�
)�� �� G� . (3.3.22)
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The purely vector torsion is taken to vanish

¹ �
��

"0 . (3.3.23)

At dimension 3/2, the super-covariant Rarita}Schwinger (super)"eld strengths ¹
��

� and ¹
���� are

most conveniently displayed in spinor notation

¹ 
��� ��Q "����� ����Q ¹ 

��

. (3.3.24)

Together with G��� "����� G�
we obtain

¹��� ��Q �"#2��� �Q=����
#�

�
��� �Q (���S�#���S�)!2���¹�� �Q ��

, (3.3.25)

¹�� �Q ��
"!�

�
(D�� G��Q #D�Q G��� ) , (3.3.26)

S�"!D�R#�
�
D��G��� (3.3.27)

and

¹��� ��Q �� "!2���=�� �Q ���
!�

�
��� (��� �Q S�� #��� �� S�Q )#2��� �Q ¹�����

, (3.3.28)

¹�����
"#�

�
(D�G��� #D�G��� ) , (3.3.29)

S�� "#D�� R�!�
�
D�G��� . (3.3.30)

The ;(1) weights of the basic super"elds appearing in (3.3.21), (3.3.22) and (3.3.27), (3.3.30) are

w(R)"2, w(R�)"!2 ,

w(G
�
)"0 , (3.3.31)

w(=����
)"1, w(=�� �Q ���

)"!1 .

As already mentioned above, the coe$cients of Lorentz curvatures and ;(1) "eld strengths are
expressed in terms of these few super"elds. At dimension one we obtain

R
� ��"8(�
��

�)
�R� , (3.3.32)

R
Q ��
��

"8(��
��

�)
Q ��R , (3.3.33)

R ��
 ��
"!2iG�(���) ��
 �

����
, (3.3.34)

for the Lorentz curvatures whereas the chiral ;(1) "eld strengths are given by

F��"0, F�Q �� "0 , (3.3.35)

F ��� "3(���) ��� G
�
. (3.3.36)
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At dimension 3/2, we "nd

R
���"i�
�

Q ¹ 
Q

��
#i�

�

Q ¹ 
Q
��

#i�
�

Q ¹ 
Q

��
, (3.3.37)

R
Q
� ��

"i�� 
Q 

�

¹
��
#i�� 
Q 


�
¹

��
#i�� 
Q 

�

¹
��
 (3.3.38)

and

F
�"
3i
2
D
G�

#

i
2
�
�

Q XM 


Q , F
Q
�
"

3i
2
D
Q G

�
!

i
2
�� 
Q 

�
X
 (3.3.39)

with the de"nitions

X
"D
R!D
Q G

Q , XM 
Q "D
Q R�#D
G

Q . (3.3.40)

Finally, having expressed torsions, curvatures and ;(1) "eld strengths in terms of few covariant
super"elds, the Bianchi identities themselves are now represented by a small set of rather simple
conditions, such as

D�=M �� �Q ���
"0, D��=����

"0 (3.3.41)

or
D�¹��

�#D�� ¹
���� "0 (3.3.42)

for these super"elds. A detailed account of these relations is given in Appendix B.2.
Let us stress, that the complex super"eld R, subject to chirality conditions

D�R�"0, D��R"0 , (3.3.43)

plays a particularly important role, it contains the curvature scalar in its super"eld expansion. As in
our language super"eld expansions are replaced by successive applications of spinor derivatives,
the relevant relation is

D�R#DM �R�"!�
�
R ��

��
!�

�
D�X�#4G�G

�
#32RR� . (3.3.44)

Interestingly enough the curvature scalar is necessarily accompanied by the D-term super"eld
D�X�"!2D of the ;(1) gauge sector, described in terms of the gaugino super"elds X� and
XM �� subject to the usual chirality and reality conditions

D�XM �
�
"0, D��X�"0 , (3.3.45)

D�X�!D�� XM �
�
"0 . (3.3.46)

This shows very clearly that generic ;(1) superspace provides the natural framework for
the description of gauged R-transformations [73,10,146,35,30]. Relation (3.3.44) shows that
supersymmetric completion of the (canonically normalized) curvature scalar action induces
a Fayet}Iliopoulos term for gauged R-transformations.
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At this point we wish to make a digression to indicate how the superspace geometry described above
can be related to that of [115] and restricted to the superspace geometry relevant to the minimal
supergravity multiplet. To this end, call A

�
the ;(1) gauge potential of the superspace geometry

described here and A
�
the ;(1) gauge potential of [115]. The two (equivalent) descriptions are related

through

A
�
"A

�
!

3i
2
E�G

�
. (3.3.47)

On the other hand, the superspace geometry of [153] is recovered by

A
�
"0, X�"0, XM �� "0 , (3.3.48)

giving rise (among other things) to

¹��� ��� "#

3i
2

� �� G
�
#

i
2
G�(�

�
��
�
)�� , (3.3.49)

¹�����
��� "!

3i
2

��� �� G�
!

i
2
G�(��

�
��
�
)�� �� (3.3.50)

and

D�R"D��G��� , D��R�"!D�G��� . (3.3.51)

In this sense ;(1) superspace is the underlying framework for both minimal supergravity and its
coupling to matter. Note, en passant, that in [115] the other two supergravity multiplets,
non-minimal and new minimal, have been derived from generic ;(1) superspace as well.

3.4. Formulation in KaK hler superspace

As pointed out earlier, the description of supersymmetric non-linear sigma models [164] as well
as the construction of supergravity/matter couplings [41,42,38,39,6,7,21,20] is based on an intri-
guing analogy betweenKaK hler geometry and supersymmetric gauge theory, which are both de"ned
by means of di!erential constraints. In KaK hler geometry the fundamental 2-form of complex
geometry is required to be closed whereas supersymmetric gauge theory is characterized by
covariant constraints as explained in Section 2.3. The constraints imply that the KaK hler metric is
expressed in terms of derivatives of the KaK hler potential whereas, on the other hand, the superspace
gauge potential is expressed in terms of a pre-potential. Pre-potential transformations, which are
chiral super"elds should then be compared to KaK hler transformations which are holomorphic
functions of the complex coordinates.
Matter super"elds, on the other hand, are given by chiral super"elds. It remains to promote the

complex coordinates of the KaK hler manifold to chiral super"elds: holomorphic functions of chiral
super"elds are still chiral super"elds. Correspondingly, the KaK hler potential becomes a function of
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the chiral and antichiral super"eld coordinates. The geometry of the supersymmetry coupling is
then obtained by replacing the gauge potential in ;(1) superspace by the super"eld KaK hler
potential [21,20,98].
In Section 3.4.1 we present the basic features of this geometric structure in a self-contained

manner. In Section 3.4.2 we include Yang}Mills interactions (cf. Appendix B for their formulation
in ;(1) superspace). Gauged super"eld isometries of the KaK hler metric are treated in Appendix C.
We also study carefully the supergravity transformations of the whole system. Finally in
Section 3.4.3 invariant super"eld actions and the corresponding super"eld equations of motion will
be discussed.

3.4.1. Dexnition and properties of KaK hler superspace
KaK hler superspace geometry is de"ned as ;(1) superspace geometry, presented in Section 3.3,

with suitable identi"cation of the ;(1) pre-potential and pre-gauge transformations with the
KaK hler potential and KaK hler transformations. The relevant version of;(1) superspace geometry is
the one where the ;(1) structure group transformations are realized in terms of chiral and
antichiral super"elds as described in (2.2.2) for the (�

�
, �
�
) basis, where most of the work has already

been done. As a matter of fact, the structures developed there in the framework of rigid superspace
are very easily generalized to the present case of curved ;(1) superspace geometry. To begin with,
the solution of (3.3.35) is given as

A�"!¹
�E 	� R	¹ , (3.4.1)

A�� "!;
�E�� 	R
	
; (3.4.2)

with E 	



now the full (inverse) frame of ;(1) superspace geometry. As anticipated in Section 2.2.2
the geometric structure relevant to the superspace formulation of supergravity/matter coupling is
the basis (a, b)"(�

�
, �
�
). In this basis one has

A�(��)"!�
�
=
�E 	� (�

�
)R

	
= , (3.4.3)

A�� (�
�
)"#�

�
=
�E�� 	(�

�
)R

	
= , (3.4.4)

where="¹;
� transforms as given in (2.2.34). For the vielbein we have

E
(�
�
)C [P� Q]
��
���E
(�

�
) (3.4.5)

and

A�(��)C (P� Q)���[A� (��)#�
�
E 	� (�

�
)R

	
logQ] , (3.4.6)

A�� (�
�
)C (P� Q)
���[A�� (�

�
)#�

�
E�� 	(�

�
)R

	
logP� ] . (3.4.7)
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In order to make contact with the superspace structures obtained in Section 2.2, we relate= to
the KaK hler potential K(�,�M ) and P� and Q to the KaK hler transformations F(�) and F(�M ). It is very
easy to convince oneself that the identi"cations

="exp (!K(�,�M )/2) , (3.4.8)

P� "exp (!FM (�M )/2) , (3.4.9)

Q"exp (#F(�)/2) (3.4.10)

reproduce exactly the geometric structures obtained at the end of Section 3.2 after super"eld
rescalings. The primed quantities de"ned there are identical with the ;(1) superspace geometry in
the (�

�
, �
�
) basis after identi"cations (3.4.8)}(3.4.10), i.e.

E�
"E
(�
�
) , (3.4.11)

A�"A(�
�
) . (3.4.12)

In particular, from (2.2.34) we recover the KaK hler transformations

K(�,�M )CK(�,�M )#F(�)#FM (�M ) . (3.4.13)

Moreover, (3.4.3) and (3.4.4) reproduce (3.2.42), (3.2.43), and (3.4.6), (3.4.7) correspond exactly to
(3.2.56) and (3.2.57).
We have thus constructed the superspace geometry relevant for the description of supergravity/matter

couplings and at the same time established the equivalence with the more traditional formulation.
In this new kind of superspace geometry, called Ka( hler superspace geometry, or;

�
(1) superspace

geometry, the complete action for the kinetic terms of both supergravity and matter "elds is given
by the superdeterminant of the frame in superspace. Expression of this super"eld action in terms of
component "elds leads to the correctly normalized component "eld actions without any need for
rescalings. Invariance under super"eld KaK hler transformations is achieved ab initio without any
need for compensating transformations.
The local frame E
 is subject to both Lorentz and KaK hler transformations in a well-de"ned way.

Covariance of the torsion 2-form is achieved with the help of gauge potentials � 

�

and A for
Lorentz and KaK hler transformations, respectively:

¹
"dE
#E�� 

�

#w(E
)E
A . (3.4.14)

The complete expression is the same as in ;(1) superspace geometry, except that the chiral gauge
potential is no longer an independent "eld but rather expressed in terms of the KaK hler potential
K(�,�M ). Hence, this superspace torsion contains at the same time supergravity and matter "elds!
The KaK hler transformations of A are induced from those of the KaK hler potential, i.e.

K(�,�M )CK(�,�M )#F(�)#FM (�M ) (3.4.15)
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to be

ACA#

i
2
d ImF . (3.4.16)

At the same time the frame is required to undergo the chiral rotation

E
CE
e
�����w(E
)ImF , (3.4.17)

ensuring a covariant transformation law of the superspace torsion,

¹
C¹
e
�����w(E
)ImF . (3.4.18)

Its coe$cients are subject to the same constraints as those of ;(1) superspace and therefore the
tensor decompositions as obtained from the analysis of superspace Bianchi identities remain valid.
For details we refer to Appendix B.
We shall, however, present in detail the structure of the ;(1) gauge sector, in particular the

special properties which arise from the parametrization of A in terms of the KaK hler potential
K(�,�M ), namely

A�"�
�
E 	� R	K(�,�M ), A�� "!�

�
E�� 	R

	
K(�,�M ) , (3.4.19)

A��� !
3i
2
G��� "

i
2
(D�A�� #D�� A� ) . (3.4.20)

It follows that its "eld strength 2-form, F"dA, has the spinor coe$cients

F��"0, F�Q �� "0, F ��� "3(���) ��� G
�
. (3.4.21)

Of course, this reproduces the structure of the constraints already encountered in ;(1) superspace
which implies also

F��!
3i
2
D�G�

"#

i
2
�
���Q XM �

Q , (3.4.22)

F�Q
�
!

3i
2
D�Q G

�
"!

i
2
�� �Q �
�
X� (3.4.23)

with

X�"D�R!D��G��� , (3.4.24)

XM �� "D��R�#D�G��� . (3.4.25)

In the absence of matter, the super"elds X� ,XM �
� vanish and we are left with standard superspace

supergravity. In the presence of matter they are given in terms of the KaK hler potential as

X�"!�
�
(DM �!8R)D�K(�,�M ) , (3.4.26)

XM �� "!�
�
(D�!8R�)D��K(�,�M ) . (3.4.27)

These expressions are simply a consequence of the explicit de"nitions given so far.
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��Note that the term containing G
�
originates from our particular choice of constraint (3.3.36), i.e. F ��� "3(���) ��� G

�
.

In an alternative, slightly more illuminating way, we may write A as��

A"

1
4
(K

�
d��!K

�M
d�M �M )#

i
8
E�(12G

�
#�� �� �

�
g
��M
D���D�� �M �

M ) , (3.4.28)

where K
�
and K

�M
stand for the derivatives of the KaK hler potential with respect to �� and �M �M , this

way of writing A is more in line with KaK hler geometry. The exterior derivative of A,

F"dA"

1
2
g
��M
d��d�M �M #

i
8
d[E�(12G

�
#�� �� �

�
g
��M
D���D�� �M �

M )] , (3.4.29)

yields the superspace analogue of the fundamental form in ordinary KaK hler geometry, with
complex coordinates replaced by chiral super"elds (the additional term is not essential and could
have been absorbed in a rede"nition of the vector component of A).
This form of F is also very convenient to derive directly the explicit expression ofX� and ofXM �

� in
terms of the matter super"elds, avoiding explicit evaluation of the spinor derivatives in (3.4.27) and
(3.4.28). A straightforward identi"cation in F�� (resp. F�Q

�
) shows that

X�"!

i
2
g
��M

����� D�
��D�� �M �M #

1
2
g
��M
D���FM �M , (3.4.30)

XM �� "!

i
2
g
��M

�� ��� �D
�
�M �M D���#

1
2
g
��M
D�� �M �M F� . (3.4.31)

Here we have used the de"nitions

F�"!�
�
D���, FM �M "!�

�
DM ��M �M . (3.4.32)

The covariant derivatives are de"ned as

D���"E 	� R	��, D�� �M �M "E�� 	R
	

�M �M , (3.4.33)

D
�
D���"E 	

�
R
	
D���!� 	

�� D	��!A
�
D���#��

��
D

�
��D��� , (3.4.34)

D
�
D�� �M �M "E 	

�
R
	
D�� �M �M !� ��

� 	� D	� �M �M #A
�
D�� �M �M #��M n� �MD�

�M n�D�� �M �M , (3.4.35)

assuring covariance with respect to Lorentz and KaK hler transformations and (ungauged) isometries
of the KaK hler metric. The Levi}Civita symbols

��
��

"g��Mg
��M ��
, ��M n� �M "g��M g

� n� � �M (3.4.36)

302 P. Bine& truy et al. / Physics Reports 343 (2001) 255}462

Plrep=1020=EM=VVC



are now, of course, functions of the matter super"elds. Do not forget that, due to their geometric
origin, the super"elds X� ,XM �

� have the properties

D��X�"0, D�XM �
�
"0 , (3.4.37)

D�X�"D�� XM �
� . (3.4.38)

As we shall see later on, the lowest components of the super"eldsX� ,XM �
� , as well as that ofD�X� ,

appear in the construction of the component "eld action. In order to prepare the ground for this
construction we display here the super"eld expression of the KaK hler D-term. It is

!

1
2
D�X�"!g

��M
���D

�
��D

�
�M �M !

i
4
g
��M

����� D���D
�
D�� �M �M

!

i
4
g
��M

����� D�� �M �M D
�
D���#g

��M
F�FM �M #

1
16

R
��M ��M

D���D���D�� �M �
MD�� �M �M (3.4.39)

with covariant derivatives as de"ned above in (3.4.34) and (3.4.35). The Riemann tensor is given as

R
��M ��M

"g
��M ���M

!g��Mg
��M ��

g
��M � �M . (3.4.40)

The terminology employed here concerning the notion of a D-term may appear unusual but it is
perfectly adapted to the construction in curved superspace, where explicit super"eld expansions are
replaced by successively taking covariant spinor derivatives and projecting to lowest super"eld
components. In this sense the lowest component of the super"eld D�X� indeed provides the
complete and invariant geometric de"nition of the component "eld D-term.
In our geometric formulation, this KaK hler D-term appears very naturally in the super"eld

expansions of the super"elds R,R� of the supergravity sector. To see this in more detail, recall "rst
of all the chirality properties,

D�R�"0, D��R"0 (3.4.41)

with R,R� having chiral weights w(R)"2 and w(R�)"!2, respectively. For the spinor deriva-
tives of the opposite chirality the Bianchi identities imply

D�R"!�
�
X�!�

�
(����)�	¹ 	

��
, (3.4.42)

D��R�"!�
�
XM �� !�

�
(�� ���)�� 	� ¹

��	� . (3.4.43)

Applying once more suitable spinor derivatives and making use of the Bianchi identities yields

D�R#DM �R�"!�
�
R ��

��
!�

�
D�X�#4G�G

�
#32RR� . (3.4.44)

This relation will turn out to be crucial for the construction of the component "eld action.

3.4.2. The supergravity/matter/Yang}Mills system
Having established KaK hler superspace geometry as a general framework for the coupling of

supergravity to matter, it is quite natural to include couplings to supersymmetric Yang}Mills
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�	More generally, the complex manifold of chiral matter super"elds, in the sense of KaK hler geometry, could be
endowedwith gauged isometries, compatible with supersymmetry.We have deferred the description of the corresponding
geometric structure in superspace to Appendix C, see also [18].

theory as well. In terms of superspace the basic geometric objects for this construction are

� E
"dz	E 

	

, the frame of superspace,
� ��,�M �M , the chiral matter super"elds,
� A���"dz	A���

	
, the Yang}Mills potential.

As we have already pointed out in Section 2.3, Yang}Mills couplings of supersymmetric matter are
described in terms of covariantly chiral super"elds. It remains to couple the matter/Yang}Mills
system as described in Section 2.3 to supergravity, in combination with the structure of KaK hler
superspace. This is very easy. All we have to do is to write all the equations of Section 2.3 in the
background of KaK hler superspace. This will de"ne the underlying geometric structure of the
supergravity/matter/Yang}Mills system.�	
As to the geometry of the supergravity/matter sector, the KaK hler potential is now understood to

be given in terms of covariantly chiral super"elds. As a consequence, the composite ;(1) KaK hler
connection A, given before in (3.4.28), becomes now

A"

1
4
K

�
D��!

1
4
K

�M
D�M �M #

i
8
E�(12G

�
#�� �� �

�
g
��M
D���D�� �M �

M ) , (3.4.45)

simply as a consequence of covariant chirality conditions, expressions (3.4.19) and (3.4.20) for the
components A



being still valid. The covariant exterior derivatives

D��"d��!A���(T
���

�)�, D�M �M "d�M �M #A���(�M T
���
)�M , (3.4.46)

appearing here are now de"ned in the background of KaK hler superspace. The super"elds X� , XM �
� ,

previously given in (3.4.30) and (3.4.31), are still identi"ed as the "eld strength components
F�� (resp. F�Q

�
). They take now the form

X�"!

i
2
g
��M
D

�
������� D�� �M �M #

1
2
g
��M
FM �M D���!

1
2
W���� K���

, (3.4.47)

XM �� "!

i
2
g
��M
D

�
�M �M �� ��� �D���#

1
2
g
��M
F�D�� �M �M !

1
2
W�����K

���
. (3.4.48)

The derivatives are covariant with respect to the Yang}Mills gauge structure and we have de"ned

K
���

"K
�
(T

���
�)�#K

�M
(�M T

���
)�M . (3.4.49)
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Likewise, the KaK hler D-term super"eld } cf. (3.4.39),

!

1
2
D�X�"!g

��M
���D

�
��D

�
�M �M !

i
4
g
��M

����� D���D
�
D�� �M �M

!

i
4
g
��M

����� D�� �M �MD
�
D���#g

��M
F�FM �M #

1
16

R
��M ��M

D���D���D�� �M �
M D�� �M �M

! g
��M
(�M T

���
)�M W���� D���#g

��M
(T

���
�)�W����� D�� �M �M

#

1
4
D�W���� [K�

(T
���

�)�#K
�M
(�M T

���
)�M ] , (3.4.50)

receives additional terms due to the Yang}Mills couplings. Observe that covariant derivatives refer
to all symmetries, de"nitions (3.4.34) and (3.4.35) are replaced by

D
�
D���"E 	

�
R
	
D���!� 	

�� D	��!A���
�
(T

���
D��)�!A

�
D���#��

��
D

�
��D���, (3.4.51)

D
�
D�� �M �M "E 	

�
R
	
D�� �M �M !� ��

� 	� D	� �M �M #A���
�
(D�� �M T

���
)�M #A

�
D�� �M �M #��M n� �M D�

�M n�D�� �M �M (3.4.52)

with A
�
identi"ed in (3.4.45). In terms of these covariant derivatives the super"elds F� and FM �M are

still de"ned as in (3.4.32).
Based on this geometric formulation, we can now proceed to derive supersymmetry transforma-

tions in terms of super"elds, as in Appendix C.3, and in component "elds, as in Section 4.3.
Invariant actions in superspace and super"eld equations of motion are discussed below, Section
3.4.3, and in Appendix D, whereas component "eld actions, derived from superspace, are given in
Sections 4.4 and 4.5.

3.4.3. Superxeld actions and equations of motion
Invariant actions in superspace supergravity are obtained upon integrating superspace densities

over the commuting and anticommuting directions of superspace. Densities, in this case, are
constructed with the help of E, the superdeterminant of E 


	
. As we have already alluded to above,

the supergravity action in standard superspace geometry is just the volume of superspace. In our
present situation where both supergravity and matter occur together in a generalized superspace
geometry, the volume element corresponding to this superspace geometry yields the complete
kinetic actions for the supergravity/matter system. To be more precise, the kinetic terms for the
supergravity/matter system in our geometry are obtained from

A
�
��	�����������

"!3�
H

E , (3.4.53)

where the asterisk denotes integration over space}time and superspace. The action of the kinetic
terms of the Yang}Mills multiplet, coupled to supergravity and matter, is given as

A
���	}�����

"

1
8�

H

E
R
f
������

(�)W����W���� #

1
8�

H

E
R�

fM
������

(�M )W����� W����� , (3.4.54)
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whereas the superpotential coupled to supergravity is obtained from

A
�
�����������

"

1
2�

H

E
R
e���=(�)#

1
2�

H

E
R�

e���=M (�M ) . (3.4.55)

Clearly, these actions are invariant under superspace coordinate transformations, what about
invariance under KaK hler transformations?
First of all, the super"elds R and R� have chiral weights w(R)"2 and w(R�)"!2, respectively,

so their KaK hler transformations are

RCRe
�� �� �, R�CR� e��� �� � . (3.4.56)

The Yang}Mills action is invariant provided the symmetric functions f
������

(�)"f
������

(�) and
fM
������

(�M )"fM
������

(�M ) are inert under KaK hler transformations. The superpotential terms are invariant,
provided the superpotential transforms as

=(�)C e
�=(�), =M (�M )C e
�M=M (�M ) . (3.4.57)

In this case, although neither the KaK hler potential nor the superpotential are tensors with respect
to KaK hler transformations, the combinations

e���=, e���=M (3.4.58)

have perfectly well-de"ned chiral weights, namely

w(e���=)"2, w(e���=M )"!2 . (3.4.59)

As to Yang}Mills symmetries, the kinetic term of the supergravity/matter system is obviously
invariant, so is the superpotential term, by construction. The Yang}Mills term itself is invariant
provided

i(T
���

�)�
R
R��

f
������

(�)"c ���
������

f
������

(�)#c ���
������

f
������

(�) , (3.4.60)

!i(�M T
���
)�M
R
R�M �M fM ������(�M )"c ���

������
fM
������

(�M )#c ���
������

fM
������

(�M ) , (3.4.61)

that is, provided f
������

(�) and fM
������

(�M ) transform as the symmetric product of two adjoint representa-
tions of the Yang}Mills structure group.
We still have to justify that the super"eld actions presented above indeed correctly describe

the dynamics of the supergravity/matter system. One way to do so is to simply work out the
corresponding component "eld actions } this will be done in the next chapter. Another possibility is
to derive the super"eld equations of motion } this will be done here. To begin with, the variation of
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the action A"�d�xL(x) for the supergravity/matter kinetic terms can be written as

�A
�
��	�����������

"!3�
H

EH 



(!)� , (3.4.62)

where we have de"ned

H 

�

"E 	
�

�E 

	

. (3.4.63)

This is not the end of the story, however. The vielbein variations by themselves are not suitable,
because of the presence of the torsion constraints. Solving the variational equations of the torsion
constraints allows to express the vielbein variations in terms of unconstrained super"elds and to
derive the correct super"eld equations of motion [158]. In our case the matter "elds must be taken
into account as well. Again, their variations themselves are not good } we have to solve "rst the
variational equations for the chirality constraints to identify the unconstrained variations. Similar
remarks hold for the Yang}Mills sector. In Appendix D a detailed derivation of the equations of
motion is presented; here we content ourselves to state the results:
The complete action is given as

A"A
�
��	�����������

#A
���	}�����

#A
�
�����������

. (3.4.64)

The super"eld equations of motion are then

� Supergravity sector:

R!�
�
e���=(�)"0 , (3.4.65)

R�!�
�
e���=M (�M )"0 , (3.4.66)

G
�
#�

�
�� �� �
�
g
��M
D���D�� �M �

M
!�

�
�� �� �
�
( f#fM )

������
W���� W����� "0 . (3.4.67)

� Yang}Mills sector:

1
2
f
������

(�)D�W���� !

1
2
Rf

������
R��

D���W����#
1
2
[K

�
(T

���
�)�#K

�M
(�M T

���
)�M ]#h.c."0 . (3.4.68)

� Matter sector:

g
��M
FM �M #

1
4
Rf

������
R��

W����W���� #e���=
R
R��

log(e�=)"0 , (3.4.69)

g
��M
F�#

1
4
RfM

������
R�M �M W����� W����� #e���=M

R
R�M �M log(e�=M )"0 . (3.4.70)
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The lowest components in the super"eld expansion provide the algebraic equations for the
auxiliary "elds. The equations of motion of all the other component "elds of the supergrav-
ity/matter system are contained at higher orders in the super"eld expansion. They are most easily
obtained by suitably applying spinor derivatives and projecting afterwards to lowest super"eld
components.

4. Component 5eld formalism

The superspace approach presented in the previous section provides a concise and coherent
framework for the component "eld construction of the general supergravity/matter/Yang}Mills
system. Supersymmetry and KaK hler transformations of the component "elds derive directly from
the geometric structure, the corresponding invariant component "eld action has a canonically
normalized curvature scalar term, without any need of component "eld Weyl rescalings. This
should be contrasted with the original component "eld approach [41,42,38,39], where normaliz-
ation of the action and invariance under KaK hler phase transformations appeared only after a Weyl
rescaling of the component "elds or, equivalently, a conformal gauge "xing [109,110].
Anticipating on our results, we will see that the supergravity/matter Lagrangian (3.4.53), when

projected to component "elds, exhibits the kinetic Lagrangian density of the matter sector as
a Fayet}Iliopoulos D-term, i.e. it has the decomposition

L
�
��	�����������

"L
�
��	�����

#eD
�����

. (4.1)

Here e denotes the usual vierbein determinant e"det(e �
�
) and D

�����
is the D-term pertaining to

the Abelian KaK hler gauge structure of the previous section. More precisely, the component "eld
D-term derived from KaK hler superspace has the form

D
�����

"!

1
2
D�X� �#

i
2
� �

�
����� XM �

� �#
i
2
�M

��� �� ��� �X� � , (4.2)

where the vertical bars denote projections to lowest super"eld components of the super"elds given,
respectively, in (3.4.50), (3.4.47) and (3.4.48). Recall that a D-term in global supersymmetry may be
understood as the lowest component of the super"eld D�X� with

X�"!�
�
DM �D�K(�,�M ) . (4.3)

In this sense the KaK hler superspace construction is the natural generalization of Zumino's
construction [164] of supersymmetric sigma models.
In Section 4.1 we identify component "elds and provide a method to derive super-covariant

component "eld strength and space}time derivatives. In Section 4.2 we discuss some more of the
basic building blocks useful for the component "eld formulation, in particular for the geometric
derivation of supersymmetry transformations of all the component "elds, which are given explicitly
in Section 4.3, and the component "eld actions, constructed in Sections 4.4 and 4.5.
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4.1. Dexnition of component xelds

As explained already in Section 2, component "elds are obtained as projections to lowest
components of super"elds. A supermultiplet is de"ned through successive application of covariant
spinor derivatives and subsequent projection to lowest components, as for instance for the chiral
multiplet in Section 2.2.3. De"ned in this manner the component "elds are related in a natural way
by Wess}Zumino transformations. The structure of a supersymmetric theory, in particular
the construction of invariant actions, as in Section 2.2.4, is then completely determined by the
algebra of covariant derivatives. This approach avoids cumbersome expansions in the anticom-
muting variables and provides a geometric realization of the Wess}Zumino gauge. It is of
particular importance in the case of the component "eld formalism for supergravity, as will be
pointed out here.
In a "rst step we are going to identify the vierbein and the Rarita}Schwinger "elds. They appear

as the dx� coe$cients of the di!erential form E
"dz	E 

	
. It is therefore convenient to de"ne

systematically an operation which projects at the same time on the dx� coe$cients and on lowest
super"eld components, called the double-bar projection [11]. To be more precise, we de"ne

E���"e�"dx�e �
�
(x) , (4.1.1)

E���"e�"�
�
dx�� �

�
(x), E�� ��"e�� "�

�
dx��M

��� (x) . (4.1.2)

This identi"es the vierbein "eld e �
�
(x) and thereby the usual metric tensor

g
��

"e �
�
e �
�

�
��
, (4.1.3)

as well as the gravitino "eld � �
�
, �M

��� , which is at the same time a vector and a Majorana spinor.
The factors 1/2 are included for later convenience in the construction of the Rarita}Schwinger
action.
The de"nition of component "elds as lowest super"eld components de"nes unambiguously their

chiral ;
�
(1) weights due to the geometric construction of the previous section. As a consequence,

the vierbein has vanishing weight whereas the Rarita}Schwinger "eld is assigned chiral weights

w(� �
�
)"#1, w(�M

��� )"!1 . (4.1.4)

The remaining component "elds are de"ned as

R�"!�
�
M, R��"!�

�
MM , G

�
�"!�

�
b
�

(4.1.5)

with chiral ;
�
(1) weights

w(M)"#2, w(MM )"!2, w(b
�
)"0 . (4.1.6)

The vierbein and Rarita}Schwinger "elds together withM,MM and b
�
are the components of the

supergravity sector, M, MM and b
�
will turn out to describe non-propagating, or auxiliary "elds.

Supergravity in terms of component "elds is quite complex. However, when derived from
superspace geometry a number of elementary building blocks arise in a natural way, allowing to
gather complicated expressions involving the basic component "elds and their derivatives in
a compact and concise way.
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As a "rst example we consider the spin connection. In ordinary gravity with vanishing torsion,
the spin connection is given in terms of the vierbein and its derivatives. In the supergravity case it
acquires additional contributions, as we explain now. To begin with, consider the torsion com-
ponent ¹�"dE�#E�� �

�
, which is a superspace 2-form. The component "eld spin connection is

identi"ed upon applying the double-bar projection to � �
�
,

� �
�

��"� �
�

"dx�� �
��

(x) . (4.1.7)

De"ning

� �� ��"� �� "dx�� �
�� (x), ��Q �� ��"��Q �� "dx�� �Q

� �� (x) (4.1.8)

for the spinor components, (3.1.4) gives rise to the usual relations

� �
�� "!�

�
(���) �� �

���
, � �Q

� �� "!�
�
(�� ��)�Q �� ����

. (4.1.9)

Then, applying the double-bar projection to the full torsion yields

¹���"�
�
dx�dx�¹ �

��
�"de�#e�� �

�
"De� . (4.1.10)

In this expression the exterior derivative is purely space}time. Using moreover

¹ �
��

�"D
�
e �
�

!D
�
e �
�

, (4.1.11)

the component "eld covariant derivative of the vierbein is identi"ed as

D
�
e �
�

"R
�
e �
�

#e �
�

� �
��

. (4.1.12)

Seemingly this is the same expression as in ordinary gravity, so how does supersymmetrymodify it?
To this end, we note that the double-bar projection can be employed in an alternative way, in terms
of the covariant component "eld di!erentials e
 de"ned above. Taking into account the torsion
constraints, in particular ¹ �

��
"0, this reads simply

¹���"e�Q e�¹ �Q �� � , (4.1.13)

where only the constant torsion coe$cient ¹ �Q �� "!2i(���) �Q� survives. Combining the two
alternative expressions for ¹��� gives rise to

D
�
e �
�

!D
�
e �
�

"

i
2
(�

�
���M

�
!�

�
���M

�
) . (4.1.14)

In view of the explicit form of the covariant derivatives, it is a matter of straightforward algebraic
manipulations to arrive at (�

�
"e �

�
�
�
)

�
���

"e
��
e �
�

� �
��

"�
�
(e �

�
R
�
e
��

!e �
�
R
�
e
��

!e �
�
R
�
e
��
)!�

�
(e �

�
R
�
e
��

!e �
�
R
�
e
��

!e �
�
R
�
e
��
)

#

i
4
(�

�
�
�
�M
�
!�

�
�
�
�M
�
!�

�
�
�
�M

�
)!

i
4
(�

�
�
�
�M

�
!�

�
�
�
�M

�
!�

�
�
�
�M

�
) . (4.1.15)

This shows how� �
��

is expressed in terms of the vierbein, its derivatives and, in the supersymmetric
case, with additional terms quadratic in the gravitino (Rarita}Schwinger) "eld.
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The Rarita}Schwinger component "eld strength is given terms of the covariant derivative of the
gravitino "eld. As a consequence of the non-vanishing chiral ;

�
(1) weights (4.1.4), contributions

from the matter sector arise due to the presence of the component

A��"dx�A
�
(x) , (4.1.16)

of the ;
�
(1) gauge potential. In order to work out the explicit form of A

�
(x), the double-bar

projection must be applied to the superspace 1-form

A"

1
4
K

�
D��!

1
4
K

�M
D�M �M #

i
8
E�(12G

�
#�� �� �

�
g
��M
D���D�� �M �

M ) (4.1.17)

as given in (3.4.45). This in turn means that we need to de"ne "rst matter and Yang}Mills
component "elds and their covariant derivatives. Recall that the exterior Yang}Mills covariant
derivatives are de"ned as

D��"d��!A���(T
���

�)�, D�M �M "d�M �M #A���(�M T
���
)�M . (4.1.18)

This shows that, for the de"nition of the component "eld KaK hler connection A
�
, we need at the

same time the component "elds for the matter and Yang}Mills sectors. The components of chiral,
resp. antichiral super"elds �� (resp. �M �M ) are de"ned as

���"A�, D����"�2��� , D�D����"!4F� , (4.1.19)

�M �M �"AM �M , D�� �M �
M �"�2�� �M�� , D�� D�� �M �M �"!4FM �M (4.1.20)

with indices k, kM referring to the KaK hler manifold (not to be confused with space}time indices). As to
the Yang}Mills potential we de"ne

A��"ia"idx�a
�
, (4.1.21)

whereas the remaining covariant components of the Yang}Mills multiplet are de"ned as

W�Q �"i�M �Q , W� �"!i�� , D�W� �"!2D . (4.1.22)

Recall that all the components of this multiplet are Lie algebra valued, corresponding to their
identi"cation in A"A���T

���
and F"F���T

���
. We can now apply the double-bar projection to

A and identify A��"dx�A
�
(x), where, for reasons of notational economy, the same symbol A

�
for

the super"eld and its lowest component, i.e. A
�
(x)"A

�
�, is used. We obtain the explicit compon-

ent "eld form by the double-bar projection of the covariant exterior derivatives of the matter
super"elds, i.e.

D����"dx�(R
�
A�!ia���

�
(T

���
A)�), D�M �M ��"dx�(R

�
AM �M #ia���

�
(AM T

���
)�M ) ,
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suggesting the de"nitions

D
�
A�"R

�
A�!ia���

�
(T

���
A)�, D

�
AM �M "R

�
AM �M #ia���

�
(AM T

���
)�M . (4.1.23)

It is then straightforward to read o! the explicit component "eld expression

A
�

#

i
2
e �
�
b
�
"

1
4
K

�
D

�
A�!

1
4
K

�M
D

�
A�M #

i
4
g
��M

���
�
�� �M , (4.1.24)

this "eld-dependent KaK hler connection will show up in any covariant derivative acting on
components with non-vanishing ;

�
(1) weights. The spinor components of the KaK hler connection

are "eld dependent as well, they are given as } cf. (3.4.20)

A� �"
1

2�2
K

�
��� , A�� �"!

1

2�2
K

�M
�� �M�� . (4.1.25)

These terms will appear explicitly in various places of component "eld expressions later on as well.
We can now turn to the construction of the supercovariant component "eld strength¹ ��

��
� for the

gravitino. The relevant superspace 2-forms are ¹�"dE�#E�� �� #E�A and its conjugate¹�� . The
double-bar projection of the "eld strength itself is then (�

�
"�, �� )

¹�� ��"�
�
dx�dx�¹ ��

��
� , (4.1.26)

where

¹ ��
��

�"�
�
(D

�
� ��
�

!D
�
� ��

�
) (4.1.27)

contains the covariant derivatives

D
�
� �
�

"R
�
� �
�

#� �
�

� �
�� #� �

�
A

�
, (4.1.28)

D
�
�M
��� "R��M ��� #�M

��Q � �Q
� �� !�M

��� A�
. (4.1.29)

On the other hand, we employ the double-bar projection in terms of the covariant di!erentials,

¹���"�
�
e�e�¹ �

��
�#e�e�¹ ��� �#e�e�� ¹�� �

�
� , (4.1.30)

and similarly for ¹�� . Using the explicit form of the torsion coe$cients appearing here, and
comparing the two alternative forms of ¹�� �� gives rise to the component "eld expressions

¹ �
��

�"
1
2
e �
�

e �
�
(D

�
� �

�
!D

�
� �

�
)#

i
12
(e �

�
�

�
�
�
��
�
!e �

�
�

�
�
�
��
�
)�b�

!

i
12
(e �

�
�M

�
��
�
!e �

�
�M

�
��
�
)�M (4.1.31)

and

¹
���� �"

1
2
e �
�
e �
�
(D

�
�M

��� !D
�
�M

��� )!
i
12
(e �

�
�M

�
��
�
�
�
!e �

�
�M
�
��
�
�
�
)�� b�

!

i
12
(e �

�
�

�
�
�
!e �

�
�
�
�
�
)�� MM (4.1.32)
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for the supercovariant gravitino "eld strength. The contributions of the matter and Yang}Mills
sector are hidden in the covariant derivatives through the de"nitions given above.
Yet another important object in the component "eld formulation is the supercovariant version of

the curvature scalar, identi"ed as R ��
��

�. We use the same method as before for its evaluation; the
relevant superspace quantity is the curvature 2-form

R �
�

"d� �
�

#� �
�
� �

�
. (4.1.33)

The double-bar projection yields

R �
�
��"�

�
dx�dx�R �

���
� , (4.1.34)

whereR �
���

� is given in terms of � �
��

. Note that, in distinction to ordinary gravity, the explicit form
of � �

��
, given above in (4.1.15) contains quadratic gravitino terms, which will give rise to

complicated additional contributions in R �
���

�. Fortunately enough, in the present formulation, the
projection technique takes care of these complications automatically in a concise way. As to the
curvature scalar, we use the notation

R(x)"e �
�
e �
�
R ��

��
� . (4.1.35)

The relation between R ��
��

� and R(x) is once more obtained after employing the double-bar
projection in terms of covariant di!erentials, i.e.

R �
�
��"�

�
e�e�R �

���
�#e�e
MR �
M ��

�#�
�
e�� e
M R �
� �� �

� , (4.1.36)

Although our formalism is quite compact it requires still some algebra (the values of the curvature
tensor components present on the right-hand side can be found in Appendix B.3) to arrive at the
result

R ��
��

�"R#2ie �
�
(�

�
�
�
�)	� ¹��	� �#2ie �

�
(�

�
�M

�
)	¹��	�

!

1
3
MM �

�
����

�
!

1
3
M�M

�
�� ���M

�
!

i
3
�����b

�
�
�
�
�
�M

�
. (4.1.37)

Observe that this simple looking expression hides quite a number of complicated terms, in
particular Rarita}Schwinger "elds up to fourth order as well as contributions from the matter and
Yang}Mills sectors.
Fully covariant derivatives for the components of the chiral super"elds (to make things clear we

write the spin term, the ;
�
(1) term, the Yang}Mills term and the one with KaK hler Levi}Civita

symbol } in this order) are de"ned as

D
�
���"R����!� 	

�� ��	!A
�
���!ia���

�
(T

���
��)�#�����

��
D

�
A� , (4.1.38)

D
�
�� �� �M "R
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In the Yang}Mills sector we apply the double-bar projection to the "eld strength

F"dA#AA"�
�
E
E�F

�

. (4.1.40)

Taking into account coe$cients

F�� �"!(�
�
�M )� , F�Q

�
�"!(��

�
�)�Q , (4.1.41)

given in terms of the gaugino "eld, we establish the expression
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�) (4.1.42)

for the supercovariant "eld strength. The covariant derivatives of the gaugino "eld read

D
�
��"R���!� 	

�� �	#i[a
�
, ��]#A

�
�� , (4.1.43)
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�
, �M �� ]!A

�
�M �� . (4.1.44)

4.2. Some basic building blocks

We indicated above that one of the necessary tasks to obtain the Lagrangian is to derive the
components of the chiral super"eldsX� ,XM �

� . Their super"eld explicit form was already derived } cf.
(3.4.47) and (3.4.48) } but for the sake of simplicity, we give them here again,
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One infers } cf. (3.4.50)
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where

R
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. (4.2.2)
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We see that the main e!ort is to obtain the component "eld expressions of supercovariant
derivatives. Special attention should be paid to the supercovariant derivatives with respect to
Lorentz indices. As an example, we detail the computation of D

�
���. The starting point is the

superspace exterior derivative D��, whose double-bar projection reads

D����"dx�D
�
A�(x) . (4.2.3)

On the other hand, in terms of covariant di!erentials and due to the chirality of ��, we have

D����"e�D
�
���#�2e��� . (4.2.4)

Combination of these two equations gives immediately

D
�
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1

�2
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���� . (4.2.5)

Similarly,

D
�
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�M��� . (4.2.6)

The lowest components of the super"elds X� ,XM �
� are then obtained as
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As to !�
�
D�X� �, we infer that the "rst term in (4.2.1) reads
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We see that this term provides the kinetic term for the scalar components of the (anti)chiral
matter supermultiplets (as promised, D

�����
contains all the derivative interactions of such "elds).

Likewise,
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Hence the second term in (4.2.1) yields
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We stress the presence of the kinetic term for the fermionic component of the matter super-
multiplet.
Altogether we obtain from (4.2.1)
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It is straightforward to obtain the other terms in D
�����

, the "nal result reads
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In this expression, the covariant derivatives D
�
A�,D

�
AM �M are de"ned in (4.1.23). The derivatives

�
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��� ,��

�� �M�� di!er from D
�
��� ,D�

�� �M�� already introduced in (4.1.38) and (4.1.39) by the contribution
of (i/2)e �

�
b
�
to A

�
} cf. (4.1.24). This allows to keep track of the complete dependence in the

auxiliary "eld b
�
in order to solve its equation of motion later. Explicitly,
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Finally, using the set of equations
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D�Q W�� !D�� W�Q "!��Q �� D	� W	� , (4.2.18)
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we obtain, along the same lines as before, the lowest components of the supercovariant derivative
of the Yang}Mills super"elds (F

��
� has been given in (4.1.42)),
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where
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and the covariant derivatives D
�
��,D

�
�M �� are de"ned in (4.1.43) and (4.1.44).

4.3. Supersymmetry transformations

In the superspace formalism, supersymmetry transformations are identi"ed as special cases of
superspace di!eomorphisms. The general form of these di!eomorphisms is given in Appendix C.3
and we will use the results obtained there.
Before writing these transformations at the component "eld level, we would like to stress a point

of some importance in the process of generalizing supergravity transformations to the KaK hler
superspace. For this we need the transformation law of the vielbein and of a generic (spinless)
super"eld � under di!eomorphisms (�), Lorentz (� 


�
) and KaK hler (�) transformations
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Supergravity transformations are de"ned [153] by compensating the term �� 

�

with a "eld-
dependent Lorentz transformation

� 

�

"�� 

�

. (4.3.3)

The point is that the same procedure cannot be followed for the KaK hler transformation since � is
"xed to be of the form

�"!

F(�)!FM (�M )
4

(4.3.4)

and generic terms proportional to the KaK hler connection appear in the supergravity transforma-
tions, weighted by the KaK hler weight of the "eld considered.
Supergravity transformations, denoted by the symbol �

�
, are discussed in detail in Appendix C.

As in the remainder of this section we will be exclusively concerned with supergravity transforma-
tions, we will drop from now on the subscript in �

�
, supergravity variations will be denoted �.

� Supergravity sector: The transformations of vierbein and gravitino are derived from (C.3.32),
which reads
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318 P. Bine& truy et al. / Physics Reports 343 (2001) 255}462

Plrep=1020=EM=VVC



Projecting to lowest components and using (4.1.1), (4.1.2) and (4.1.5), together with the torsions
summarized in Appendix B, and

���"0, ���"��, ��� �"��� (4.3.6)

gives rise to
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and A
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given in (4.1.24). For future use, note that the determinant of the vielbein transforms as
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The supersymmetry transformations of the components M,MM and b
�
are derived from the

supergravity transformations (C.3.35)
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of the generic super"eld � after suitable speci"cation. In a "rst step, projection to lowest
components yields
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Substituting R,R� and G
�
for � and using the information given in Appendix B, in particular

(B.4.3)}(B.4.6), it is straightforward to arrive at the transformation laws
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� Matter sector: Let us "rst discuss the chiral super"eld ��. The supersymmetry transformation of
the component "eld A� is derived from (C.3.33)

���"�
D


�� , (4.3.20)

upon straightforward projection to lowest components. As to the components ��� and F� the
situation is slightly more involved. They are identi"ed in the lowest components of the
super"eldsD��� andD�D��� of respective chiral weights!1 and !2. They are particular cases
of a generic super"eld of the type U�, with some chiral weight. The relevant equations
in Appendix C are (C.3.27)}(C.3.31) and (C.3.36). We have to consider a super"eld U�
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(which is actually a mixture of the super"elds � and U� of Appendix C) with supergravity
transformation
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This provides the supergravity transformations for ��� and F�, once U� is replaced by D��� and
D�D���, and the result projected to lowest components. Intermediate steps in the computation
involve the covariant derivative relations
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As a "nal result we obtain the component "eld transformations
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)F�# (�M �� ����M
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)�D�

A�!
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#
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MM ���#
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(�M �� ���)b

�
!2i�M �M ���(T
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A)�

# �2��
��
(���)F�!

1

�2
R�

���M
(����)(�M �� �M )#

1

�2
F�(K

�
���!K

�M
�M �� �M ) , (4.3.27)

where the relevant covariant derivatives are given in (4.1.23) and (4.2.15). The supersymmetry
transformations for a general chiral super"eld of non-zero weight w will be given in the next
subsection } cf. (4.4.10)}(4.4.12).
Similarly, for an antichiral super"eld �M �M of supergravity transformation

���M
n�
"�
D



�M n� , (4.3.28)
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��All the "elds below belong to the adjoint representation of the Yang}Mills group, (a
�
, �,�M ,D)"(a���

�
, ����, �M ���,D���) )T

���
.

we use the relations

D�Q D��M
�M
"2i(���) �Q� D

�
�M �M , (4.3.29)

D�Q D�� D�� �M �M
"8RD�Q �M �M , (4.3.30)

D�D�� D�� �M �M
"!4i����Q D�

D�Q �M �M
!4����Q G�

D�Q �M �M

#R�M
n��M �
D���D�� �M �

MD�� �M n�#8W���� (�M T���
) �M , (4.3.31)

to arrive at the component "eld transformations

�AM �M
"�2�M �� �M , (4.3.32)

��� �� �M"i�2(����)�� �D�
AM �M

!

1

�2
�M

�
�� �M�#�2�M ��FM �M

#

1

�2
�M �� �n� �M�M (��

�M�� �M )!
1

2�2
�� �� �M(K

�
���!K

�M
�M �� �M ) , (4.3.33)

�FM �M
"i�2(����

�
�� �M)!i(����M

�
)FM �M

#(����� ��
�
)�D�

AM �M
!

1

�2
�M

�
�� �M�

#

�2
3

M�M �� �M
#

�2
3
(����� �M)b

�
#2i�����(AM T

���
) �M

# �2��M
n� �M
(�M �� n�)FM �M !

1

�2
R�M
n��M �
(�� n� �� �M )(���)!

1

�2
FM �M(K

�
���!K

�M
�M �� �M ) , (4.3.34)

after suitable projection to lowest components.
� Yang}Mills sector:�� As to the supergravity transformation of the gauge potential a

�
"!iA

�
�,

we project (C.3.23)

�A
	

"E �
	

�F 

�

(4.3.35)

to lowest components and use (4.1.42) to obtain

�a
�

"i(��
�
�M )#i(�M ��

�
�) . (4.3.36)

Concerning the fermionic components ��, �M �� de"ned in (4.1.22), the supersymmetry transforma-
tions are obtained after identi"cation of � in (4.3.15) with W� (resp. WM �� ) and subsequent
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projection to lowest components. Using (4.2.17), (4.2.18) and the explicit form ofF
��

� in (4.1.42),
we obtain

���"(����)�(!f
��

#i�
�
�
�
�M #i�M

�
��
�
�)#i��D!

1

2�2
��(K

�
���!K

�M
�M �� �M ) , (4.3.37)

��M �� "(�M �� ��)�� (!f
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#i�
�
�
�
�M #i�M

�
��
�
�)!i�M �� D#

1

2�2
�M �� (K�

���!K
�M
�M �� �M ) (4.3.38)

with f
��

de"ned in (4.2.20). Finally, the transformation

�D"!���D
�
�M #�M �� �D

�
�#

i
2
(�M

�
�� ��#�

�
���M )D

# �
�
(�M

�
�� ���� ��!�

�
������M )( f

��
!i�

�
�
�
�M !i�M

�
��
�
�) , (4.3.39)

of the auxiliary "eld is obtained along the same lines.

4.4. Generic component xeld action

Although super"eld actions, as discussed in Section 3.4, are quite compact, and invariance under
supersymmetry transformations is rather transparent, their component "eld expansions are notori-
ously complicated. In Section 3.4 we have seen that the chiral volume element provides the
generalization of the F-term construction to the case of local supersymmetry. The super"eld
actions for the supergravity/matter system, the Yang}Mills kinetic terms and the superpotential
in(3.4.53)}(3.4.55) are all of the generic form

A(r, r� )"�
H

E
R
r#h.c . (4.4.1)

with r a chiral super"eld of ;(1) weight w(r)"2. The various super"eld actions are then obtained
from identifying r, respectively, with

r
�
��	�����������

"!3R , (4.4.2)

r
���	}�����

"�
�
f
������

(�)W����W���� (4.4.3)

and

r
�
�����������

"e���=(�) . (4.4.4)

We will proceed, in a "rst step, with the construction of a locally supersymmetric component "eld
action a generic chiral super"eld r, starting from the de"nition

A(r, r� )�"�
H

E
R
r�#h.c."�d�xL(r, r� ) . (4.4.5)

P. Bine& truy et al. / Physics Reports 343 (2001) 255}462 323

Plrep=1020=EM=VVC



In the following, we will determine L(r, r� ) as a suitably modi"ed F-term for the super"eld r.
De"ning the components of r as usual,

r"r�, s�"
1

�2
D�r�, f"!

1
4
D�D�r� , (4.4.6)

it should be clear that the F-term space}time density, i.e. the component "eld ef alone is not
invariant under supergravity transformations. Calling

l
�
"ef , (4.4.7)

we allow for additional terms

l
�
"��

�
s� , (4.4.8)

l
�
"�

�
r (4.4.9)

with "eld-dependent coe$cients ��
�
, �

�
of respective;(1) weights !1,!2. The strategy is then to

use the supersymmetry transformations of the gravity sector, which are already known, and those
of the generic multiplet to determine l

�
and l

�
, i.e. ��

�
and �

�
, such that l

�
#l

�
#l

�
is invariant

under supersymmetry, up to a total space}time derivative. The reader not interested in the details
of the computation can go directly to (4.4.21), (4.4.22) which summarize the results.
The supersymmetry transformation laws for the components of a super"eld r of KaK hler weight

w,w(r) are obtained from the general procedure exposed in Section 4.3, they read

�r"�2�s!
w

2�2
(K

�
���!K

�M
�M �� �M )r , (4.4.10)

�s�"�2��f#i�2(���M )��D�
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iw
2
e �
�
b
�
r�!

w!1

2�2
(K

�
���!K

�M
�M �� �M )s� , (4.4.11)
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(3w!2)(�M �� �s)b
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#wr�M �� XM �

�
!

w!2

2�2
(K

�
���!K

�M
�M �� �M )f . (4.4.12)

Thus, specifying to the case w"2 and using (4.3.12) and (4.4.12), gives rise to

1
e
�l

�
"i(����M

�
)f!

2�2
3

(�M �� �s)b
�
#i�2(�M �� �D

�
s)

# (�M �� ����M
�
)�D�

r!
1

�2
�

�
s#ie �

�
b
�
r�#

�2
3

MM �s#2r�M �� XM �
� . (4.4.13)
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A glance at the transformation law (4.4.11) shows that the "rst term can be cancelled in choosing

l
�
"

ie

�2
(�M

�
�� �)�s� . (4.4.14)

In the next step we work out the supersymmetry transformation of the sum l
�
#l

�
. Using (4.3.9)

and (4.3.14) we obtain

1
e
�(l

�
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�
)"�2�sMM #2r�M �� XM �
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�
#�M �� ��

�
) . (4.4.15)

Again, requiring cancellation of the "rst term suggests to choose

l
�
"!eMM r . (4.4.16)

Taking into account the supergravity transformation law (4.3.18), we now obtain

1
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�
) . (4.4.17)

Here, the "rst term can be cancelled with the help of another term of the type l
�
. Indeed, the

transformation law (4.3.9) suggests to take

l�
�
"!er�M

�
�� ���M

�
. (4.4.18)

Using (4.3.9) and (4.3.13), (4.3.14), we "nd

1
e
�l�

�
"!4(D
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) . (4.4.19)
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Using the relation

ee �
�
D

�
v�"R
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(ev�e �
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(���) �Q� v�(e �

�
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!e �
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)� �

�
�M
��Q (4.4.20)

for integration by parts at the component "eld level and after some algebra together with (A.2.58),
we "nally obtain

�(l
�
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�
#l

�
#l�

�
)"R

�
[i�2e(�M �� �s)!4e(�M �� ���M
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)r] . (4.4.21)

This shows that the Lagrangian density

L(r, r� )"e(f#fM )#
ie

�2
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��s� #�M
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�� �s)!er� (M#�

�
����
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)!er(MM #�M

�
�� ���M

�
) , (4.4.22)

constructed with components (4.4.6) of a generic chiral super"eld of chiral weight w"2 provides
a supersymmetric action.

4.5. Invariant actions

The generic construction can now be applied to derive the component "eld versions of the
super"eld actions discussed in Section 4.4.3, namely A

�
��	�����������
, A

�
�����������
and

A
���	}�����

given respectively in Eqs. (3.4.53)}(3.4.55).

4.5.1. Supergravity and matter
Identifying the generic super"eld such that

r
�
��	�����������

"!3R , (4.5.1)

determines component "elds correspondingly. The lowest component is given as

r"
M
2

. (4.5.2)

As a consequence of (3.4.42) the spinor component takes the form

s�"
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�2
X� �#�2(����)�	¹ 	

��
� . (4.5.3)

In the construction of the component "eld Lagrangian this appears in the combination
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M , (4.5.4)
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where we have used (A.2.46) and (4.1.31) as well as other formulas given in Appendix A. Finally,
from (3.4.44) and (4.1.37), we infer
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�
b
�
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1
6
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�
�� ���M

�
#h.c . (4.5.5)

with the curvature scalar R de"ned in (4.1.35).
Recapitulating, the Lagrangian (4.4.22) becomes

e
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The cancellation of the �
�
b
�
�M

�
terms with those coming from (4.1.24) is manifest in terms of the

new covariant derivatives
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� �
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A�!K
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A�M #ig

��M
���

�
�� �M ) , (4.5.8)

which are fully Lorentz, KaK hler and gauge covariant derivatives. Finally, the expression of D
�����

,
de"ned in (4.2), in terms of the component "elds has been given explicitly in (4.2.15).
We now see explicitly what was stressed in the introduction to this section: the explicit

dependence in the matter "elds appears only through the D-term induced by the KaK hler structure
eD

�����
; the rest of the Lagrangian has the form of the standard supergravity Lagrangian. It should

be kept in mind, however, that all the covariant derivatives inL
�
��	�����������

are now covariant
also with respect to the KaK hler and Yang}Mills transformations.

4.5.2. Superpotential
We now turn to the potential term in the Lagrangian and consider

r
�
�����������

"e���= . (4.5.9)

In order to identify the corresponding component "elds we have to apply covariant spinor
derivatives. Since neitherK nor= are tensors with respect to the KaK hler phase transformations we
make use of D�r"E 	� R	r#2A�r, before applying the product rule. Recall that in (C.4.8), the
explicit form of A� is given as

A�"�
�
K

�
D��� , (4.5.10)
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in terms of the usual Yang}Mills covariant derivative. Using furthermore the requirement that
= as well as K are Yang}Mills invariant, we obtain

E 	� R	="=
�
D���, E 	� R	K"K

�
D��� . (4.5.11)

Adding these three contributions yields

D�r"e���(K
�
=#=

�
)D��� . (4.5.12)

Let us note that the combination (K
�
=#=

�
) behaves as = under KaK hler transformations, i.e.

=C e
�= then (K
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�
)C e
�(K
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) . (4.5.13)

This suggests to denote

(K
�
=#=

�
)"D

�
= (4.5.14)

and we obtain

s�"e������D�
= . (4.5.15)

The evaluation of D�D�r�
����������� proceeds along the same lines. Taking carefully into account
the KaK hler structure leads to
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Observe that the expression inside brackets is just equal to (R
�
#K

�
)D

�
=!��

��
D

�
= and trans-

forms as= and D
�
= under KaK hler (the presence of the Levi}Civita symbol ensures the covariance

of the derivatives with respect to KaK hler manifold indices). Again, this suggests the de"nition

D
�
D

�
="(R

�
#K

�
)D

�
=!��

��
D

�
= , (4.5.17)

giving rise to the compact expression

f"e���[F�D
�
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�
D

�
=] (4.5.18)

for the F-term component "eld. Substituting in the generic formula (4.4.22), yields the Lagrangian
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4.5.3. Yang}Mills
Finally, to obtain the Yang}Mills Lagrangian, we start from the super"eld

r
���	}�����

"�
�
f
������

W����W���� (4.5.20)

with lowest component
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�
f
������

(��������) . (4.5.21)

Applying a covariant spinor derivative to r
���	}�����

and using the transformation properties of
f
������

and fM
������

as given in (3.4.60) and (3.4.61), together with (4.2.17) yields
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It remains to project to the lowest super"eld components } cf. (4.1.22), (4.1.42), (4.4.6), giving rise to
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with f ���
��

de"ned in (4.2.20). Similarly, using (4.2.17) and (B.5.28), we obtain
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One recognizes in the last line the covariant derivative of f
������

with respect to KaK hler manifold
indices. The corresponding component "eld expression is
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where the covariant derivative D
�
�M ��� is de"ned in (4.1.44). Making heavy use of relations

(A.2.42)}(A.2.51), we "nally obtain
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The Yang}Mills "eld strength f ���
��

is de"ned in (4.2.20). The covariant derivatives

�
�
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�
����� !� 	
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#
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di!er from the covariant derivatives D
�
����� and D

�
�M ����� introduced in (4.1.43) and (4.1.44) by the

covariant b
�
dependent term appearing in the de"nition of A

�
, in analogy with previous de"nitions

} cf. (4.2.15), (4.2.16) and (4.5.7), (4.5.8).

4.5.4. Recapitulation
The complete Lagrangian describing the interaction of Yang}Mills and chiral supermultiplets

with supergravity is given by the sum of (4.5.6), (4.5.19), and (4.5.26), with the matterD-term given in
(4.2.15). In taking the sum, we diagonalize in the auxiliary "eld sector, with the result
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The diagonalized auxiliary "elds, de"ned as

M"M#3e���= , (4.5.30)

MM "MM #3e���=M , (4.5.31)
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have trivial equations of motion which coincide with the lowest components of those found in
(3.4.65)}(3.4.70) in super"eld language.
We would like to end this section with one comment: it was "rst realized in [41,42,38,39] that the

Lagrangian depends only on the combination

G"K#ln�=�� (4.5.36)

and not independently on the KaK hler potentialK and the superpotential=. This can be made clear
in a straightforward manner in the KaK hler superspace formalism. Indeed, performing a KaK hler
transformation } cf. (3.2.7) } with F"ln= yields

e
�L
�
�����������

"

1
2�

E
R
eG��#h.c . (4.5.37)

This "eld-dependent rede"nition, which has the form of a KaK hler transformation, must of course be
performed in the whole geometric structure, leading to a new superspace geometry which is
completely inert under KaK hler transformations. The component "eld expressions in this new basis,
with KaK hler inert components, have the same form as the previous ones, withK replaced by G in all
the implicit dependence on the KaK hler potential and= and=M set to one. It was actually given in
this basis in [21].

5. Linear multiplet and supergravity

The antisymmetric tensor gauge potential, b
��

" !b
��
, "rst discussed in [121], appears

naturally in the context of string theory [108]. At the dynamical level it is related to a real massless
scalar "eld through a duality transformation.
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In supersymmetry, the antisymmetric tensor is part of the linear multiplet [71,143], together with
a real scalar and a Majorana spinor. The duality with a massless scalar multiplet is most easily
established in super"eld language [111].
Postponing the discussion of the relevance of the linear multiplet and its couplings in low-energy

e!ective superstring theory to the closing Section 7, we concentrate here on the general description
of linear multiplets in superspace and couplings to the full supergravity/matter/Yang}Mills system,
including Chern}Simons forms.
The basic idea of the linear superxeld formalism is to describe a 2-form gauge potential in the

background of;
�
(1) superspace and to promote the KaK hler potential to a more general super"eld

function, which not only depends on the chiral matter super"elds but also on linear super"elds.
In order to prepare the ground, Section 5.1 provides an elementary and quite detailed introduc-

tion to the antisymmetric tensor gauge potential and to linear super"elds without supergravity.
Whereas the superspace geometry of the 2-form in ;

�
(1) superspace is presented in Section 5.2,

component "elds are identi"ed in Section 5.3. In Section 5.4 we explain the coupling of the linear
super"eld to the supergravity/matter/Yang}Mills system. Duality transformations in this general
context, including Chern}Simons forms are discussed in Section 5.5, relating the linear superxeld
formalism to the chiral superxeld formalism. In Section 5.6 we show that the linear super"eld
formalism provides a natural explanation of non-holomorphic gauge coupling constants. Finally,
in Section 5.7 we extend our analysis to the case of several linear multiplets.

5.1. The linear multiplet in rigid superspace

5.1.1. The antisymmetric tensor gauge xeld
Consider "rst the simple case of the antisymmetric tensor gauge potential b

��
in four dimensions

with gauge transformations parametrized by a four vector �
�
such that

b
��
C b

��
#R

�
�
�
!R

�
�
�

(5.1.1)

and with invariant "eld strength given as

h
����

"R
�
b
��

#R
�
b
��

#R
�
b
��

. (5.1.2)

The subscript 0 denotes here the absence of Chern}Simons forms. As a consequence of its de"nition
the "eld strength satis"es the Bianchi identity

�����R
�
h
����

"0 . (5.1.3)

The invariant kinetic action is given as

L"�
�
Hh�H

�
h
��

(5.1.4)

with Hh�
�
"�

�r
�����h

����
denoting the Hodge dual of the "eld strength tensor.
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Consider next the case where a Chern}Simons term for a Yang}Mills potential a
�
, such as

Q
���

"!tr�a��
R
�

a
��

!

2i
3

a
��
a
�

a
��� (5.1.5)

with [lmn]"lmn#mnl#nlm!mln!lnm!nml, is added to the "eld strength,

h
���

"h
� ���

#kQ
���

. (5.1.6)

Here k is a constant which helps keeping track of the terms induced by the inclusion of the
Chern}Simons combination. The Chern}Simons term is introduced to compensate the Yang}Mills
gauge transformations to the antisymmetric tensor, thus rendering the modi"ed "eld strength
invariant. The Bianchi identity is modi"ed as well; it now reads

�����R
�
h
���

"!�
�
k����� tr( f

��
f
��
). (5.1.7)

A dynamical theory may then be obtained from the invariant action

L"�
�
Hh�Hh

�
!�

�
tr( f �� f

��
) (5.1.8)

with Hh� the dual of h
���

. This action describes the dynamics of Yang}Mills potentials a
�
(x) and an

antisymmetric tensor gauge potential b
��

with e!ective k-dependent couplings induced through the
Chern}Simons form.
This theory is dual to another one where the antisymmetric tensor is replaced by a real

pseudoscalar a(x) in the following sense: one starts from a "rst order action describing a vector
X�(x), a scalar a(x) and the Yang}Mills gauge potential a

�
(x),

L"(X�!kHQ�)R
�
a#�

�
X�X

�
!�

�
tr( f ��f

��
) , (5.1.9)

where the gauge Chern}Simons form is included as

HQ�"
1
3!

�����Q
���

"!����� tr�a�
R
�

a
�
!

2i
3

a
�
a
�

a
�� . (5.1.10)

Variation of the "rst-order action with respect to the "eld a gives rise to an equation of motion
which is solved in terms of an antisymmetric tensor

R
�
(X�!kHQ�)"0, NX�!kHQ�"�

�
�����R

�
b
��

. (5.1.11)

Substituting back shows that the "rst term in (5.1.9) becomes a total derivative and we end up with
the previous action (5.1.8) where Hh�"X�, describing an antisymmetric tensor gauge "eld coupled
to a gauge Chern}Simons form.
On the other hand, varying the "rst order action with respect to X� yields

X
�

"!R
�
a . (5.1.12)
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In this case, substitution of the equation of motion, together with the divergence equation for the
Chern}Simons form, i.e.

RH
�
Q�"!�

�
�����tr ( f

��
f
��
) (5.1.13)

gives rise to a theory describing a real scalar "eld with an axion coupling term

L"!

1
2
R�a(x)R

�
a(x)!

1
4
tr( f ��f

��
)!

k
4
a(x)����� tr( f

��
f
��
) . (5.1.14)

It is in this sense that the two actions (5.1.8) and (5.1.14) derived here from the "rst-order one (5.1.9)
are dual to each other. They describe alternatively the dynamics of an antisymmetric tensor gauge
"eld or of a real pseudoscalar, respectively, with special types of Yang}Mills couplings. Indeed, the
pseudoscalar "eld is often referred to as an axion because of its couplings (5.1.14) to Yang}Mills
"elds (although it is not necessarily the QCD axion). Note that the kinetic term of the Yang}Mills
sector is not modi"ed in this procedure.

5.1.2. The linear superxeld
As already mentioned, the linear supermultiplet consists of an antisymmetric tensor, a real scalar

and a Majorana spinor. In string theories, the real scalar is the dilaton found among the massless
modes of the gravity supermultiplet. As b

��
is the coe$cient of a 2-form, we can describe its

supersymmetric version by a 2-form in superspace with appropriate constrains and build the
corresponding supermultiplet by solving the Bianchi identities. We shall proceed this way in
Section 5.2. In super"eld language it is described by a super"eld ¸

�
, subject to the constraints

D�¸
�
"0, DM �¸

�
"0 . (5.1.15)

Again, the subscript 0 means that we do not include, for the moment, the coupling to
Chern}Simons forms. The linear super"eld ¸

�
contains the antisymmetric tensor only through its

"eld strength h
����

. Indeed, the super"eld ¸
�
is the supersymmetric analogue of h

����
(it describes

the multiplet of "eld strengths) and the constraints (5.1.15) are the supersymmetric version of the
Bianchi identities. The particular form of these constraints implies that terms quadratic in  and
M are not independent component "elds; it is for this reason that ¸

�
has been called a linear

superxeld [71].
As before, component "elds are identi"ed as projections to lowest super"eld components. To

begin with, we identify the real scalar ¸
�
(x) of the linear multiplet as the lowest component

¸
�
�"¸

�
(x) . (5.1.16)

The spinor derivatives of super"elds are again super"elds and we de"ne the Weyl components
(��(x),�M �

� (x)) of the Majorana spinor of the linear multiplet as

D�¸�
�"�� (x), D�� ¸

�
�"�M �� (x) . (5.1.17)
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The antisymmetric tensor appears in ¸
�
via its "eld strength identi"ed as

[D� ,D�� ]¸�
�"!�

�
�
���� �����h

����
"!2�

���� *h�� , (5.1.18)

thus completing the identi"cation of the independent component "elds contained in ¸
�
.

The canonical supersymmetric kinetic action for the linear multiplet is then given by the square
of the linear super"eld integrated over superspace, i.e. in the language of projections to lowest
super"eld components,

L"! �
��
(D�DM �#DM �D�)(¸

�
)��"

1
2

Hh�H
�
h
��

!

1
2
R�¸

�
R
�

¸
�
!

i
2
����� (��R

�
�M �� #�M �� R

�
��) ,

(5.1.19)

generalizing the purely bosonic action (5.1.4) given above and showing that there is no auxiliary
"eld in the linear multiplet.
In order to construct the supersymmetric version of (5.1.8), we come now to the supersymmetric

description of the corresponding Chern}Simons forms. They are described in terms of the
Chern}Simons super"eld �, which has the properties

tr(W�W�)"�
�
DM ��, tr(W�� W�� )"�

�
D�� . (5.1.20)

The appearance of the di!erential operators D� and DM � is due to the chirality constraint (2.3.33) on
the gaugino super"eldsW�,W�� , whereas the additional constraint (2.3.34) is responsible for the fact
that one and the same real super"eld � appears in both equations. The component "eld
Chern}Simons form (5.1.5) is then identi"ed in the lowest super"eld component

[D� ,D�� ]� �"!2�H
���� Q�!4 tr(���M �� ) (5.1.21)

with HQ� given in (5.1.10).
Since the terms on the left-hand side in (5.1.20) are gauge invariant, it is clear that a gauge

transformation adds a linear super"eld to�. The explicit construction given in Appendix F.2, in the
full supergravity context, shows that, up to a linear super"eld, we may identify

¸"¸
�
#k� , (5.1.22)

such that ¸ is gauge invariant. However, this super"eld ¸ satis"es now the modi"ed linearity
conditions

DM �¸"2k tr(W�W� ) , (5.1.23)

D�¸"2k tr(W�� W�� ) . (5.1.24)
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Again, these equations together with

[D� ,D�� ]¸"!�
�
�
���� �����H���

!4k tr(W�W�� ) (5.1.25)

have an interpretation as Bianchi identities in superspace geometry. The last one shows how the
usual "eld strength of the antisymmetric tensor together with the Chern}Simons component "eld
appears in the super"eld expansion of ¸,

[D� ,D�� ]¸ �"!�
���� ������R�b��

#

k
3
Q

����!4k tr(���M �� ) . (5.1.26)

The invariant action for this supersymmetric system is given as the lowest component of the
super"eld

L"! �
��
(D�DM �#DM �D�)¸�! �

��
D� trW�! �

��
DM � trWM � . (5.1.27)

This action describes the supersymmetric version of the purely bosonic action (5.1.8). Its explicit
component "eld gestalt will be displayed and commented on in a short while.
The notion of duality can be extended to supersymmetric theories as well [111]; this is most

conveniently done in the language of super"elds. The supersymmetric version of the "rst-order
action (5.1.9) is given as

L"! �
��
(D�DM �#DM �D�)(X�#�2(X!k�)(S#SM ))! �

��
D� trW�! �

��
DM � trWM � . (5.1.28)

Here, X is a real but otherwise unconstrained super"eld, whereas S and SM are chiral,

D�SM "0, DM ��S"0 . (5.1.29)

Of course, the chiral multiplets are going to play the part of the scalar "eld a(x) in the previous
non-supersymmetric discussion.
Varying the "rst-order action with respect to the super"eld S or, more correctly, with respect to

its unconstrained pre-potential �, de"ned as S"DM ��, the solution of the chirality constraint,
shows immediately (upon integration by parts using spinor derivatives) that the super"eld X must
satisfy the modi"ed linearity condition. It is therefore identi"ed with ¸ and we recover the action
(5.1.27) above.
On the other hand, varying the "rst-order action (5.1.28) with respect to X yields the super"eld

equation of motion

X"!

1

�2
(S#SM ) . (5.1.30)

Substituting for X in (5.1.28) and observing that the terms S� and SM � yield total derivatives which
are trivial upon superspace integration, we arrive at

L" �
��
(D�DM �#DM �D�)(SM S#k�2�(S#SM ))! �

��
D� trW�! �

��
DM � trWM � . (5.1.31)
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One recognizes the usual super"eld kinetic term for the chiral multiplet and the Yang}Mills kinetic
terms. It remains to have a closer look at the terms containing the Chern}Simons super"eld.
Taking into account the chirality properties for S and SM and the derivative relations (5.1.20) for the
Chern}Simons super"elds we obtain, up to a total derivative,

L" �
��
(D�DM �#DM �D�)SM S! �

��
D� trW�! �

��
DM � trWM �

#

k�2
8

D�(S trW�)#
k�2
8

DM �(SM trWM �) . (5.1.32)

This action is the supersymmetric version of the action (5.1.14).
The component "eld expressions for the two dual versions (5.1.27) and (5.1.32) of the supersym-

metric construction are then easily derived. In the antisymmetric tensor version, the complete
invariant component "eld action deriving from (5.1.27) is given as

L"

1
2

Hh�Hh
�

!

1
2
R�¸ R

�
¸!

i
2
����� (��R

�
�M �� #�M �� R

�
��)

#(1#2k¸) tr�!
1
4

f ��f
��

!

i
2
����� (��D

�
�M �� #�M ��D

�
��)#

1
2
D< D< �

!kHh� tr(��
�
�M )!k���� tr(�f

��
)!k�M �� �� tr(�M f

��
)

!

k�
4
(1#2k¸)
�[�� tr ��#�M � tr �M �!2����M tr(��

�
�M )]

!

k�
2
[tr �� tr �M �!tr(����M )tr(��

�
�M )] . (5.1.33)

This is the supersymmetric version of (5.1.8). The rede"ned auxiliary "eld

D< "D#ik(1#2k¸)
�(��!�M �M ) (5.1.34)

has trivial equation of motion.
On the other hand, in order to display the component "eld Lagrangian in the chiral super"eld

version, we recall the de"nition of the component "eld content of the chiral super"elds

S �"S(x), D�S �"�2��(x), D�S �"!4F(x) (5.1.35)

and

SM �"SM (x), D�� SM �"�2�� �� (x), DM �SM �"!4FM (x) . (5.1.36)

P. Bine& truy et al. / Physics Reports 343 (2001) 255}462 339

Plrep=1020=EM=VVC



The component "eld action in the dual formulation, derived from the super"eld action (5.1.32)
takes then the form

L"!R�SM R
�
S!

i
2
����� (��R

�
�� �� #�� �� R

�
��)#FK FMK

#(1!k�2(S#SM )) tr�!
1
4

f ��f
��

!

i
2
����� (��D

�
�M �� #�M ��D

�
��)#

1
2
D< D< �

!

k

4i�2
(S!SM )[����� tr( f

��
f
��
)#4R

�
tr(����M )]

# k���� tr(� f
��
)#k�� �� �� tr(�M f

��
)!

k�
8
tr �� tr �M �

!

k�
4
(1!k�2(S#SM ))
�[�� tr ��#�� � tr �M �!2(����� )tr(��

�
�M )] . (5.1.37)

This is the supersymmetric version of (5.1.14). Again, we have introduced the diagonalized
combinations for the auxiliary "elds

FK "F#

k�2
4

tr �M �, FMK "FM #
k�2
4

tr �� (5.1.38)

and

D< "D!ik[1!k�2(S#SM )]
�(��!�� �M ) . (5.1.39)

The two supersymmetric actions (5.1.33) and (5.1.37) are dual to each other, in the precise sense
of the construction performed above. In both cases the presence of the Chern}Simons form induces
k-dependent e!ective couplings, in particular quadri-linear spinor couplings. Also, we easily
recognize in the second version the axion term already encountered in the purely bosonic case
discussed before.
A striking di!erence with the non-supersymmetric case, however, is the appearance of a

k-dependent gauge coupling function, multiplying the Yang}Mills kinetic terms. This shows that
supersymmetrization of (5.1.8) and (5.1.14) results not only in supplementary fermionic terms, but
induces also genuinely new purely bosonic terms.
In this line of construction, one can imagine an extension of Zumino's construction of the

non-linear sigma model [164,74,4], where we replace the KaK hler potential K(�,�M ) by a more
general function K(�,�M ,¸) which not only depends on complex chiral and antichiral super"elds,
but also on a number of real linear super"elds.

5.2. The geometry of the 2-form

The linear multiplet has a geometric interpretation as a 2-form gauge potential in superspace
geometry. Since we wish to construct theories where the linear multiplet is coupled to the
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supergravity/matter system, we will formulate this 2-form geometry in the background of ;
�
(1)

superspace. The basic object is the 2-form gauge potential de"ned as

B"�
�
dz	dz�B

�	
(5.2.1)

subject to gauge transformations of parameters �"dz	�
	

which are themselves 1-forms in
superspace

BCB#d� , (5.2.2)

i.e.,

B
�	
CB

�	
#R

�
�
	

!(!)��R
	

�
�
. (5.2.3)

The invariant "eld strength is a 3-form,

H"dB"

1
3!
E
E�EH

�

(5.2.4)

with E
 the frame of ;
�
(1) superspace. As a consequence of dd"0 one obtains the Bianchi

identity, dH"0, which fully developed reads

1
4!
E
E�EE�(4D

�
H

�

#6¹ �

�
H

��

)"0 . (5.2.5)

The linear super"eld is recovered from this general structure in imposing covariant constraints on
the "eld strength coe$cients H

�

such that (�

�
"�, �� )

H���� "0, H���"0, H�� �Q �"0 . (5.2.6)

As consequences of these constraints we "nd (by explicitly solving them in terms of unconstrained
pre-potentials or else working through the covariant Bianchi identities) that all the "eld strength
components of the 2-form are expressed in terms of one real super"eld. In the absence of
Chern}Simons forms } cf. also Section 5.1.2, it will be denoted by ¸

�
. It is identi"ed in

H �Q� �
"!2i(�

�
�) �Q� ¸

�
. (5.2.7)

Explicitly we obtain

H���"2(�
��
) 	� D	¸

�
, H��

��
"2(��

��
)�� 	� D	� ¸

�
(5.2.8)

and

!�
�
�
���� �����H���

"([D� ,D�� ]!4����� G�
)¸

�
. (5.2.9)

This equation identi"es the supercovariant "eld strength H
���

in the super"eld expansion of ¸
�
.

Compatibility of the constraints imposed above with the structure of the Bianchi identities then
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implies the linearity conditions

(DM �!8R)¸
�
"0, (D�!8R�)¸

�
"0 (5.2.10)

for a linear super"eld in interaction with the supergravity/matter system.
In general, when the linear multiplet is coupled to the supergravity/matter/Yang}Mills system,

we will have to allow for Chern}Simons couplings as well. As gravitational Chern}Simons forms
are beyond the scope of this report, we will restrict ourselves to the Yang}Mills case. Recall that the
Chern}Simons 3-form of a Yang}Mills potential A in superspace is de"ned as [90]

QYM
"tr(AdA#�

�
AAA) . (5.2.11)

Its exterior derivative yields a "eld strength squared term

dQYM
"tr(FF) . (5.2.12)

The coupling to the antisymmetric tensor multiplet is obtained by incorporating this
Chern}Simons form into the "eld strength of the 2-form gauge potential

HYM
"dB#kQYM . (5.2.13)

The superscript YM indicates the presence of the Yang}Mills Chern}Simons form in the de"nition
of the "eld strength. Note that if a

�
, the Yang}Mills potential and b

��
, the antisymmetric tensor

gauge potential have the conventional dimension of a mass (the corresponding kinetic actions are
then dimensionless) the constant k has dimension of an inverse mass.
Since QYM changes under gauge transformations of the Yang}Mills connection A with the

exterior derivative of a 2-form 	(A, u),

QYMC uQYM
"QYM

#d	(A, u) , (5.2.14)

covariance of HYM can be achieved in assigning an inhomogeneous compensating gauge trans-
formation

BC uB"B!k	(A,u) , (5.2.15)

to the 2-form gauge potential. Finally, the addition of the Chern}Simons forms gives rise to the
modi"ed Bianchi identities

dHYM
"k tr(FF) . (5.2.16)

A question of compatibility arises when the two superspace structures are combined in the way
we propose here, since the linear multiplet corresponds to a 2-form geometry with constraints on
the 3-form "eld strength and the Yang}Mills "eld strengthF is constrained as well. As it turns out
[97,90], assuming the usual constraints forF, the modi"ed "eld strengthHYM may be constrained
in the same way as H, without any contradiction. The most immediate way to see this is to
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investigate explicitly the structure of the modi"ed Bianchi identities

1
4!
E
E�EE�(4D

�
H

�

#6¹ �

�
H

��

!6k tr(F

�
F

�

))"0 . (5.2.17)

Assuming for HYM the same constraints as for H } cf. (5.2.6) and (5.2.7) } and replacing ¸
�
by

¸
YM on the one hand and taking into account the special properties of theFF terms arising from

the Yang}Mills constraints on the other hand, one can show that the linearity conditions (5.2.17)
are replaced by the modixed linearity conditions

(D�!8R�)¸YM
"2k tr (W�� W�� ) , (5.2.18)

(DM �!8R)¸YM
"2k tr(W�W�) . (5.2.19)

Likewise, (5.2.9) acquires an additional term,

([D� ,D�� ]!4����� G�
)¸YM

"!�
�
�
���� �����H

YM

���
!4k tr(W�W�� ) . (5.2.20)

The special properties of W��
allow to express the quadratic gaugino contributions in (5.2.18) and

(5.2.19) in terms of a single Chern}Simons superxeld �YM,

tr(W�� W�� )"�
�
(D�!8R�)�YM, tr(W�W� )"�

�
(DM �!8R)�YM . (5.2.21)

The existence of �YM and its explicit construction } cf. Appendix F } rely on the similarity of
Chern}Simons forms with a generic 3-form gauge potential C. The Chern}Simons form (5.2.11)
plays the role of a 3-form gauge potential (5.2.14) and tr(FF) corresponds to its "eld strength
(5.2.12). Given the identi"cation

�"

1
4!
E
E�EE��

��

"

1
4!
E
E�EE�6 tr(F

�
F

�

) (5.2.22)

and the constraints on F it is immediate to deduce that indeed

�
M �� �� 

"0 , (5.2.23)

which are just the constraints of the 4-form "eld strength in the generic case. Anticipating part of
the discussion of the next section, we observe that, as a consequence of the constraints, all the
components of the generic 4-form "eld strength are expressible in terms of chiral super"elds > and
>M (D�>M "0,D��>"0) identi"ed in

�
���"�
�
(�

��
�)
�>M , �
Q ��

��
"�

�
(��

��
�)
Q ��> . (5.2.24)

For the remaining coe$cients, i.e. �
M ���
and �

����
, respectively, we obtain then

�
���"! �
��

��

Q �����D
Q>M , �
Q
���

"# �
��

�� �
Q 
�
����

D
> (5.2.25)
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and

�
����

"

i
16

�
����

[(D�!24R�)>!(DM �!24R)>M ] . (5.2.26)

This last equation should be understood as a further constraint between the chiral super"elds
> and >M , thus describing the supermultiplet of a 3-form gauge potential in ;

�
(1) superspace.

From the explicit solution of the constraints, one "nds that > and >M are given as the chiral
projections of ;

�
(1) superspace geometry acting on one and the same pre-potential �,

>"!4(DM �!8R)�, >M "!4(D�!8R�)� . (5.2.27)

Due to the same constraint structure of � and tr(F), this analysis applies to the case of
Chern}Simons forms as well. We identify

>YM
"!8 tr(W�W� ), >M

YM
"!8 tr(W�� W�� ) . (5.2.28)

Correspondingly, � the generic pre-potential, is identi"ed as �YM, the Chern}Simons super"eld,
expressed in terms of the unconstrained Yang}Mills pre-potential. A detailed account of this
analysis is given in Appendix F.
It is instructive to investigate the relation between the super"elds ¸

YM and ¸
�
in this context. As

we have seen,¸
�
and ¸

YM
!k�YM satisfy the same linearity conditions. As a consequence, they can

be identi"ed up to some linear super"eld, i.e.

¸
YM

"¸
�
#k�YM

#k�YM . (5.2.29)

Here �YM is a pre-potential-dependent linear super"eld whose explicit form, irrelevant for the
present discussion, may be read o! from the equations in Appendix F. Note that �YM changes
under Yang}Mills gauge transformations by a linear super"eld (hence (5.2.21) are unchanged),
whereas the combination �YM

#�YM is gauge invariant, in accordance with the gauge invariance
of ¸

�
and ¸

YM.
We have tried to make clear in this section that the superspace geometry of the 3-form gauge

potential provides a generic framework for the discussion of Chern}Simons forms in superspace.
Established in full detail for the Yang}Mills case, this property can be advantageously exploited
[91] in the much more involved gravitational case, relevant in the Green}Schwarz mechanism in
superstrings.
As we will consider the Yang}Mills case only, we drop the YM superscript from now on,

a super"eld ¸ being supposed to satisfy the modi"ed linearity conditions.

5.3. Component xelds

When coupled to the supergravity/matter/Yang}Mills system, the components

b
��
(x), ¸(x), �� (x), �M �� (x) (5.3.1)
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of the linear multiplet are still de"ned as lowest super"eld components, but now in the framework
of ;

�
(1) superspace geometry. For the covariant components ¸(x), �� (x), �M �� (x), we de"ne

¸ �"¸(x), D�¸ �"�� (x), D�� ¸ �"�M �� (x) , (5.3.2)

whereas the antisymmetric tensor gauge "eld is identi"ed as

B�"b"�
�
dx�dx�b

��
(x) . (5.3.3)

The double-bar projection, as de"ned in Section 4, is particularly useful for the determination of the
lowest component of H

���
, the supercovariant "eld strength of the antisymmetric tensor. Recall

that the component "eld expression of the Chern}Simons form, in terms of A
��
"idx�a

�
(x), is

given as

Q�"

1
3!
dx�dx�dx�Q

���
"!

1
3!
dx�dx�dx� tr�a�

R
�

a
�
!

2i
3

a
�
a
�

a
�� . (5.3.4)

The double-bar projection is then applied in two ways. On the one hand, we have

H�"

1
3!
dx�dx�dx�h

���
(5.3.5)

with h
���

"R
�
b
��

#R
�
b
��

#R
�
b
��

#kQ
���

. The supercovariant "eld strength H
����

, on the other
hand, is identi"ed in employing the double bar projection in terms of the covariant component "eld
di!erentials e
, de"ned in (4.1.1), (4.1.2), and taking into account the constraints on H

�

. As

a result, we "nd

H�"

1
3!
e�e�e�H

���
�#

1
2
e�e�e�H��� �#

1
2
e�e�e�� H��

��
�#e�e�Q e�H �Q� ��

. (5.3.6)

Inserting the explicit expressions for H��� , H��
��
and H �Q� �

yields then in a straightforward way

1
3!

�����H
���

�"
1
3!
e �
�

�����(h
���

#3i¸�
�
�
�
�M

�
)#ie�

�
(�

�
����!�M

�
�� ���M ) . (5.3.7)

Note that the supercovariant "eld strength H
���

�, one of the basic building blocks in the construc-
tion of component "eld actions, exhibits terms linear and quadratic in the Rarita}Schwinger "eld.
Details on the geometric derivation of supersymmetry transformation laws and the construction of
invariant component "eld actions are presented in Appendix E.

5.4. Linear multiplet coupling

For the coupling of the linear multiplet to the general supergravity/matter/Yang}Mills system
we may imagine to follow the same steps as before, but with the Ka( hler potential replaced by an
¸-dependent super"eld K(�,�M ,¸) [20,19,1], which we shall call the kinetic potential. Let us note
that ¸ being real, the interpretation of K as a potential of KaK hler geometry is partly lost.
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As we now explain, such a construction does not yield a canonically normalized Einstein term.
To begin with, we note that the curvature scalar still appears in the combination

D�R#DM �R�"!�
�
R ��

��
!�

�
(D�X�#D�� XM �

� )#4G�G
�
#32RR� , (5.4.1)

where the combinationD�X�#D�� XM �
� should now be evaluated using K"K(�,�M ,¸) as a starting

point. This generates extra D�R#DM �R� terms. Indeed, recall the ;
�
(1) relations (B.4.7), (B.4.8)

!3D�R"X�#4S� , !3D��R�"X�� !4S�� (5.4.2)

and the de"nitions

X�"!�
�
(DM �!8R)D�K(�,�M ,¸) , (5.4.3)

XM �� "!�
�
(D�!8R�)D��K(�,�M ,¸) . (5.4.4)

In the ¸-independent case these relations serve to identify D�R and D��R� as super"elds, roughly
speaking, depending throughX� ,XM �

� on the matter sector and through S� , SM �
� on the gravity sector.

In the ¸-dependent case, due to the presence of R, R� in the linearity conditions, successive spinor
derivatives generate extraD�R (resp.D��R�) terms in the expressions ofX� (resp.XM �

� ). We can make
explicit such contributions and write (K

�
,RK/R¸)

X�"!¸K
�
D�R#>� , XM �� "!¸K

�
D��R�#>M �� , (5.4.5)

where >� and >M �� contain all remaining contributions including those stemming from the
Chern}Simons forms. Hence, in this case D�R and D��R� are still identi"ed as dependent super-
"elds, but relations (5.4.2) take a modi"ed form

(¸K
�
!3)D�R">�#4S� , (5.4.6)

(¸K
�
!3)D��R�">M �� #4S�� . (5.4.7)

This, in turn, implies that the basic geometric relation (5.4.1) takes a modi"ed form as well

(1!�
�
¸K

�
)(D�R#DM �R�)"!�

�
R ��

��
#4G�G

�
#32RR�

!�
�
(D�>�#D�� >M �

� )#�
�
D�(¸K

�
)D�R#�

�
D�� (¸K�

)D��R� . (5.4.8)

Evaluating the component "eld action, following the procedure of Section 4.5, we obtain an
Einstein term with a "eld-dependent normalization (1!�

�
¸K

�
)
�. In other terms, in the linear

super"eld formalism, a super"eld action which is just the integral over the superdeterminant of the
frame, leads to a non-canonical normalization of the Einstein term.
In order to have more #exibility for the normalization function we consider from now on

a general super"eld action

L"!3�EF(�,�M ,¸) , (5.4.9)
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where the subsidiary function F depends in a yet unspeci"ed manner on the chiral and linear
super"elds. Observe that the kinetic potential K(�,�M ,¸) is implicit in E through the ;

�
(1)

construction. The component "eld version of this generalized super"eld action is evaluated using
the chiral super"eld,

r"!�
�
(DM �!8R)F(�,�M ,¸) (5.4.10)

and its complex conjugate in the generic construction of Section 4.5. A straightforward calculation
shows that in this case the Einstein term is multiplied by the normalization function

N(�,�M ,¸)"
F!¸F

�
1!�

�
¸K

�

. (5.4.11)

Requiring N"1, or

F!¸F
�
"1!�

�
¸K

�
, (5.4.12)

ensures that we get a canonically normalized Einstein term.
Note that in the case of ¸-independent functions F and K, this equation implies simply F"1.

In the general case, the solution of (5.4.12) reads

F(�,�M ,¸)"1#¸<(�,�M )#
¸

3�
d�
�
K�(�,�M , �) . (5.4.13)

We see that the only term in F(�,�M ,¸) which is not "xed by the choice of the KaK hler potential is the
term¸<(�,�M ), the `integration constanta of the di!erential equation (5.4.12). Indeed, one can check
that, in the Lagrangian (5.4.9), only a term linear in ¸, viz.,

L
���

"!3�E¸<(�,�M ) (5.4.14)

cannot be set to 1 by a super"eld rescaling since the Weyl weights of E and ¸ sum up to zero
(�(E)"!2,�(¸)"2).
As we discuss now, the real function <(�,�M ) plays an important role in the discussion of certain

anomaly cancellation mechanisms. From now on we refer to it as linear potential. To be more
de"nite, consider the ewective transformation

<(�,�M )C<(�,�M )#H(�)#HM (�M ) (5.4.15)

withH a chiral super"eld which is a holomorphic function of the chiral matter "elds. How does the
LagrangianL

���
change under such a transformation? To see this more explicitly, use integration

by parts and apply the modi"ed linearity conditions,

�E¸H"!

1
8�

E
R
H(DM �!8R)¸"�

E
R
H tr(W�W�) . (5.4.16)
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Note the appearance of the chiral volume element in superspace. Therefore, (5.4.15) gives rise to the
e!ective transformation

L
���
CL

���
#

3k
4 �

E
R
H(�) tr(W�W� )#

3k
4 �

E
R�

HM (�M ) tr(W�� W�� ) . (5.4.17)

This shows that in the absence of Chern}Simons forms, k"0, transformation (5.4.15) is a sym-
metry of the theory. In the presence of Chern}Simons forms it creates an Abelian anomaly term,
multiplied by H!HM and gives rise, at the same time, to a Yang}Mills kinetic term multiplied by
H#HM . We will come back to this issue later on.

5.5. Duality transformations

As is well known and has been stressed in Section 5.1, the antisymmetric tensor/real scalar
duality extends to the supersymmetric case, where it becomes a linear/chiral multiplet duality. This
duality should now be explored for the case of a linear multiplet coupled to the general supergrav-
ity/matter/Yang}Mills system, the so-called linear superxeld formalism, in relation to the chiral
superxeld formalism, where only chiral multiplets occur.
It is not surprising that the subsidiary function F(�,�M ,¸), introduced in the previous subsection,

be of some importance. As a matter of fact, the normalization condition (5.4.12), justi"ed previously
at the component "eld level will reappear in an intriguing way in the super"eld duality transforma-
tion mechanism in curved superspace. Let us consider the xrst-order formalism Lagrangian

L
���

"!3�E[F(�,�M ,X)#X(S#SM )] , (5.5.1)

where S is a chiral super"eld,D�� S"0, andX is an unconstrained super"eld. The kinetic potential
K(�,�M ,X) and the normalization function F(�,�M ,X) are supposed to be given in terms of this
unconstrained super"eld.
Variation of (5.5.1) with respect to X gives rise to

(S#SM )(1!�
�
XK

!
)"�

�
FK

!
!F

!
, (5.5.2)

where we have used

�
!
E"!�

�
EK

!
�X (5.5.3)

as derived from (D.3.3) and (D.2.89). For given F and K functions, (5.5.2) should allow to express
X as a function of �,�M and of S#SM , such that the resulting Lagrangian in the chiral superxeld
formalism is given as

L
���

"!3�E[F(�,�M ,X(�,�M , S#SM ))#(S#SM )X(�,�M ,S#SM )] . (5.5.4)

Clearly, this Lagrangian will not necessarily yield the canonical normalization of the curvature
scalar term. On the other hand, we have shown in Section 3.2 that the Lagrangian, built with
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��Due to the variation law �
!
�"�

�
�K

!
�X, the terms proportional to the Chern}Simons form cancel out in this

equation, as expected from gauge invariance considerations.

(anti)chiral super"elds, which gives a correct Einstein term is simply

L"!3�E . (5.5.5)

This form of (5.5.4) can be obtained in requiring

F(�,�M ,X)#X(S#SM )"1 , (5.5.6)

where X is the solution of (5.5.2). Formally, these two equations combine into

F!XF
!

"1!�
�
XK

!
. (5.5.7)

This means that for a theory with canonical Einstein term, F andK cannot be chosen independent-
ly, they should satisfy (5.5.7), which has the same form as (5.4.12), but with ¸ replaced by
X(�,�M , S#SM ). Likewise, F(�,�M ,X(�,�M , S#SM )) should have the same functional dependence on
X as it had before on ¸. These relations are of fundamental importance if we want to make
meaningful comparisons between di!erent theories (or compare, for example, the tree-level and
one-loop e!ective actions).
Alternatively, we can vary (5.5.1) with respect to S or SM . Due to chirality, they can be written as

S"(DM �!8R)�, SM "(D�!8R�)�M , (5.5.8)

where �, �M are unconstrained super"elds.
Variation of (5.5.1) with respect to �, �M yields after integration by parts:

(DM �!8R)X"0, (D�!8R�)X"0 . (5.5.9)

We conclude thatX is a linear super"eld, which we identify with ¸
�
. An integration by parts (linear

� chiral integrates to zero) then shows that (5.5.1) reproduces (5.4.9) and we are back with the
linear superxeld formalism discussed in the previous subsection.
There, however, the linear multiplet was coupled to Chern}Simons forms. How does this

coupling a!ect the duality structure? It is clear that in the linear super"eld formalism we should
reproduce the modi"ed linearity conditions. Therefore, the xrst-order formalism should include the
Chern}Simons super"eld �, such that

L
���

"!3�E[F(�,�M ,X)#(X!k�)(S#SM )] . (5.5.10)

Varying with respect to �, �M establishes then the modi"ed linearity conditions. On the other hand,
varying�� (5.5.10) with respect to X gives rise to the same equation (5.5.2) as before. Imposing
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moreover a canonical Einstein term, using (5.5.6), the Lagrangian in the chiral superxeld formalism
then reads

L
���

"!3�E[1!k�(S#SM )] . (5.5.11)

To put the new terms, arising from the Chern}Simons couplings, in a more familiar form, we write
them as

L
���

"!3�E!

3
8�

E
R
S(DM �!8R)�!

3
8�

E
R�

SM (D�!8R�)� , (5.5.12)

where the derivative terms vanish upon integration by parts (S and R are chiral super"elds), and
use (5.2.21) to obtain

L
���

"!3�E!

3
4
k�

E
R
S tr(W�W�)!

3
4
k�

E
R�

SM tr(W�� W�� ) . (5.5.13)

We therefore recover the standard formulation of matter coupled to supergravity with a holomor-
phic gauge coupling function

f (S)"!6kS . (5.5.14)

Comparing this to (5.4.17) suggests that the e!ective transformations (5.4.15) should be realized in
the chiral super"eld formalism as "eld-dependent shifts of the chiral super"eld S, i.e. SCS!H(�)
and SM CSM !HM (�M ).
Let us stress that the duality between the linear super"eld formulation and the chiral super"eld

formulation, discussed here for the case of one single linear super"eld, extends quite obviously to
the case of several linear super"elds and suitable Chern}Simons couplings. We will come back to
this after the next subsection.
We close this subsection on an example [21,18] which plays an important role in superstring

models. We take for the KaK hler potential:

K"K
�
(�,�M )#� log¸ , (5.5.15)

where it was already stressed that ¸ plays the ro( le of the string coupling. The corresponding
solution of (5.4.9) is

F"1!�/3#¸<(�,�M ) . (5.5.16)

The solution of (5.5.6) reads

�
3¸

"S#SM #<(�,�M ) (5.5.17)
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and

K(�,�M ,S#SM )"K
�
(�,�M )#� log

�
3

!� log(S#SM #<(�,�M )) . (5.5.18)

It is interesting to discuss Eq. (5.5.17) in the context of the one-loop renormalization of the gauge
coupling performed by Dixon et al. [52]: S#SM is interpreted as the tree-level gauge coupling and
<(�,�M ) is a generic (non-holomorphic) threshold correction. We thus see that, up to a normaliz-
ation factor, it is ¸
� which must be interpreted as the renormalized gauge coupling. Thus, the
natural framework to perform the renormalization of the gauge coupling functions is the linear multiplet
formulation.
We note also that the KaK hler potential in (5.5.18) is invariant under the e!ective transformations

(5.4.15) together with SCS!H(�) and SM C SM !HM (�M ).
Adding terms of order ¸� (n52) in (5.5.15) would include higher-order corrections, if any, but we

can note here the special status played by one-loop corrections. The explicit computation of
Ref. [52] indicates that, in this context, <(�,�M ) contains a piece which is nothing else butK

�
(�,�M ).

This fact has been stressed by Derendinger et al. [48] and is in agreement with the KaK hler
properties of <(�,�M ) } cf. (5.4.15).

5.6. Non-holomorphic gauge couplings

In general, as explained in Section 3.4.3, supersymmetric Yang}Mills theory allows for arbitrary
holomorphic gauge coupling functions in terms of the complex matter scalar "elds. The corre-
sponding invariant supergravity action (3.4.54) is given as a F-term in ;

�
(1) superspace.

Superstring theory, in its e!ective low-energy limit, seems to suggest non-holomorphic gauge
coupling functions [142,112] as well. From the formal point of view, such non-canonical structures
arise naturally in the linear super"eld formalism [19,48].
Independently of the relation to string theory, it is instructive in itself to elucidate the origin of

non-holomorphic gauge couplings in the linear super"eld formalism. The crucial ingredient is the
coupling of Chern}Simons forms to linear multiplets, as described in Sections 5.2 and 5.4. In this
context, the modi"ed linearity conditions (5.2.18) and (5.2.19) are of utmost importance. In the
following, we will point out schematically how non-holomorphic gauge couplings appear in the
component "eld theory, starting from the geometric superspace description.
Recall that the basic object for the construction of the component "eld action are the chiral

super"elds r and r� given as

r"!�
�
(DM �!8R)F(�,�M ,¸), r� "!�

�
(D�!8R�)F(�,�M ,¸) . (5.6.1)

Working through the generic construction of Section 4.4 allows to determine unambiguously the
complete component "eld action. As we are interested only in the gauge coupling function, it is not
necessary to go through all these steps in full detail.
For the sake of a schematical discussion recall "rst of all that the gauge kinetic terms arise from

the lowest component of the super"eld

D� trW�#DM � trWM � . (5.6.2)
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On the other hand, the complete set of kinetic terms of all the component "elds is identi"ed in

D�r#DM �r� . (5.6.3)

The procedure consists in evaluating the spinor derivatives in (5.6.3) and in isolating terms
proportional to (5.6.2). In a "rst step we identify relevant terms in

D�r#DM �r� ��" F(D�R#DM �R�)!�
�
(D�DM �#DM �D�)F . (5.6.4)

The symbol ��" indicates that we only retain the terms relevant for our discussion, making the
arguments more transparent. The "rst term on the right contains the contribution originating from
the ¸ dependence of K. Using (5.4.1), we obtain

D�r#DM �r� ��" !�
�
F(D�X�#D�� XM �

� )!�
�
F

�
(D�DM �#DM �D�)¸ . (5.6.5)

Next, we insert the explicit expression for X� in terms of K(�,�M ,¸), i.e.

D�X�#D�� XM �
� ��" !�

�
K

�
(D�DM �#DM �D�)¸ , (5.6.6)

to arrive at the intermediate result

D�r#DM �r� ��" !�
�
(F

�
!�

�
FK

�
)(D�DM �#DM �D�)¸ . (5.6.7)

In the next step we are going to exploit the modi"ed linearity conditions

DM �¸"8R¸#2k trW�, D�¸"8R�¸#2k trWM � . (5.6.8)

As a consequence we "nd

(D�DM �#DM �D�)¸ ��" 8¸(D�R#DM �R�)#2k(D� trW�#DM � trWM �) . (5.6.9)

Using once more (5.6.6), i.e.

D�R#DM �R� ��" �
��
K

�
(D�DM �#DM �D�)¸ (5.6.10)

yields

(D�DM �#DM �D�)¸ ��"

2k
1!�

�
¸K

�

(D� trW�#DM � trWM �) . (5.6.11)
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The "nal result is then

D�r#DM �r� ��" !

k
4
F

�
!�

�
FK

�
1!�

�
¸K

�

(D� trW�#DM � trWM �) , (5.6.12)

which allows to identify the gauge coupling function

�(�,�M ,¸)"
F

�
!�

�
FK

�
1!�

�
¸K

�

. (5.6.13)

Recall that in the standard case the gauge coupling is the sum of a holomorphic and an
antiholomorphic function. In the more general formulation given here, non-holomorphic coupling
functions are allowed.
At this point it is important to note that so far we did not make any reference to possible

normalizations of the Einstein term, appearing in the same action. In Section 5.4 we have identi"ed
the normalization function

N(�,�M ,¸)"
F!¸F

�
1!�

�
¸K

�

. (5.6.14)

A glance at the explicit form of � and N shows that they are related to F through the simple
relation

¸�#N"F . (5.6.15)

Finally, the same Lagrangian contains also a kinetic term for ¸,

1
4¸

[3N
�
#K

�
(¸N

�
!N)]g��R

�
¸R

�
¸ , (5.6.16)

whose normalization function is expressed in terms of previously de"ned quantities. Note that, in
view of the normalization of the curvature scalar, i.e.

!

N
2
R , (5.6.17)

it should be clear that the conformally trivial combination is obtained from the choice N"¸;
remember that ¸ has Weyl weight �(¸)"!2.
Let us now turn to a discussion of the duality transformation in this general case, i.e. in the

presence of non-trivial normalization functionN, gauge coupling �, and subsidiary function F. The
relevant "rst-order action is still (5.5.10). The linear super"eld formalism discussed above is
obtained in the usual way, varying with respect to the unconstrained pre-potentials of the chiral
super"eld S. The chiral super"eld formalism, on the other hand, is obtained from variation with
respect to X. As before, the corresponding equation of motion (5.5.2) should be understood as an
expression which determines X in terms of �,�M and S#SM . The chiral super"eld formalism is then
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obtained from (5.5.10), but withX now a functionX(�,�M , S#SM ). As to the gauge coupling function
we are back to the holomorphic case.
From what we have learned before, it should be clear that the super"elds underlying the

component "eld construction of the action are now

r"!

1
8
(DM �!8R)F#

k
4
trW�, r� "!

1
8
(D�!8R�)F#

k
4
trWM � . (5.6.18)

It is instructive to identify the normalization function of the curvature scalar and the gauge
coupling function, using a similar reasoning as before in the linear super"eld formalism. Working
through the successive application of spinor derivatives in D�r#DM �r� and keeping track only of
terms relevant for our purpose we "nd

D�r#DM �r� ��" !

2
3
(F#X(S#SM ))R ��

��
#

k
4
(S#SM )(D� trW�#DM � trWM �) . (5.6.19)

The gauge coupling function is simply proportional to S#SM , in accordance with (5.5.2) and
de"nition (5.6.13). As to the normalization function of the Einstein term we observe that, using
formally (5.5.2) together with (5.6.15), means simply that

F#X(S#SM )"N (5.6.20)

with the X-dependent function N written in terms of X(�,�M , S#SM ). The determination of the
normalization of the kinetic terms of S, SM is left as an exercise.

5.7. Several linear multiplets

The linear super"eld formalism can be easily generalized to accommodate several linear
multiplets. Noting ¸�, with I"0, 1,2, n, the n#1 copies of linear super"elds we will have a set of
n#1 modi"ed linearity conditions

(D�!8R�)¸�"2k�G trW�G , (5.7.1)

(DM �!8R)¸�"2k�G trWM �G . (5.7.2)

Here the subscript G indicates that di!erent linear combinations of Chern}Simons forms
(Yang}Mills potentials for di!erent gauge groups) may couple to di!erent antisymmetric tensors.
In this general scenario the kinetic potentialK and the subsidiary function F will be functions of

the n#1 super"elds ¸�. The super"eld action

L"!3�EF(�,�M ,¸�) , (5.7.3)

depends implicitly on K(�,�M ,¸�) through E due to the geometric construction.
The presence of several linear super"elds implies that di!erent gauge sectors may have di!erent

gauge coupling functions. The determination of the explicit form of the gauge coupling and
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normalization functions follows exactly the same steps as in the case of a single linear super"eld,
taking now the chiral super"elds r and r� to be

r"!�
�
(DM �!8R)F(�,�M ,¸�), r� "!�

�
(D�!8R�)F(�,�M ,¸�) . (5.7.4)

As a result, the normalization function takes the form

N(�,�M ,¸�)"
F!¸ )F

�
1!�

�
¸ )K

�

, (5.7.5)

whereas the gauge coupling functions are given as

�G (�,�M ,¸�)"�F�
!

N
3
K

��k�G . (5.7.6)

We use here the notation ¸ )F
�
"¸�F

�
, with F

�
denoting the derivative of F with respect to ¸�, and

the same for K. The gauge coupling and normalization functions satisfy the sum rule

¸��
���

#N"F (5.7.7)

with �
���
identi"ed as �G"�

���
k�G . The brackets indicate that the enclosed subscript does not refer

to a derivative. It is also interesting to note that the kinetic term g��R
�

¸�R
�
¸� is multiplied by

a function

G
����

"F
��

!�
�
(NK

��
#N

�
K

�
#N

�
K

�
) . (5.7.8)

The e!ective transformations in the case of a single linear multiplet generalize as well. To this end
we observe "rst of all that a replacement

F(�,�M ,¸�)CF(�,�M ,¸�)#¸�<
���
(�,�M ) (5.7.9)

leaves the normalization function (5.7.5) as well as the sum rule (5.7.7) invariant, whereas the gauge
coupling function changes as

�
���
(�,�M ,¸�)C�

���
(�,�M ,¸�)#<

���
(�,�M ) . (5.7.10)

The counterpart of the e!ective action (5.4.14) in the presence of several multiplets becomes

L
���

"!3�E¸�<
���
(�,�M ) (5.7.11)

with e!ective transformations

<
���
(�,�M )C<

���
(�,�M )#H

���
(�)#HM

���
(�M ) (5.7.12)
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giving rise to

L
���
CL

���
#

3k
4 �

E
R
H

���
(�)k�G trW�G#

3k
4 �

E
R�

HM
���
(�M )k�G trWM �G . (5.7.13)

This shows that the case of several linear multiplets is more #exible in view of possible applications
to anomaly cancellation mechanisms.
As to the duality transformations between the linear and the chiral super"eld formalism we will

make use of n#1 unconstrained real super"elds X� together with the real combination S
�
#SM

�
of

chiral super"elds. The "rst-order action (5.5.10) generalizes then to

L
���

"!3�E[F(�,�M ,X�)#(X�!k�G�G )(S�
#SM

�
)] (5.7.14)

with �G the Chern}Simons super"eld pertaining to the gauge sector speci"ed by the subscript
G . Variation with respect to S

�
(resp. SM

�
) gives back the theory in the linear super"eld formalism,

whereas variation with respect to X� gives rise to the equation

(S
�
#SM

�
)�1!

1
3
X )K

!�"
F
3
K

�
!F

�
. (5.7.15)

Again, this should be understood as an equation which expresses, for given kinetic potentialK and
subsidiary function F, the previously unconstrained real super"eldsX� in terms of �, �M and S

�
#SM

�
.

Coming back to the linear super"eld formalism, we note that the particular form (5.7.5) of the
normalization functionN suggests to introduce projective variables for the set of linear super"elds.
Choosing a particular linear super"eld of reference, say ¸�, we de"ne

¸
�
"¸, ��"

¸�

¸�
(5.7.16)

with I ranging from 1 to nwhenever attached to a projective variable �. The kinetic potentialK and
the subsidiary function F are now supposed to be given in terms of ¸ and ��. In this parametrization
the normalization function N takes the form

N(�,�M ,¸, ��)"
F!¸F

�
1!�

�
¸K

�

. (5.7.17)

Here only derivatives with respect to the particular super"eld ¸ occur. This closely resembles
(5.4.11), except for the additional dependence on the projective variables ��. Likewise, in the
e!ective Lagrangian density one may parametrize

¸�<
���
(�,�M )"¸V(�,�M , ��) (5.7.18)

with (identifying <
���

"<)

V(�,�M , ��)"<(�,�M )#��<
���
(�,�M ) . (5.7.19)
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Observe that we could have chosen, instead of ¸�, another super"eld of reference, without
changing the reasoning. Di!erent choices are related in terms of reparametrizations in an obvious
way.
As a last remark consider the linear super"eld formalism for the case of a trivial coupling

function N"1. From the previous discussion, it should be clear that we recover the same type of
di!erential equation (5.4.12) as in the case of a single linear multiplet

F!¸F
�
"1!�

�
¸K

�
, (5.7.20)

which is solved in the same way, i.e.

F"1#¸V(�,�M , ��)#
¸

3�
d�
�
K�(�,�M , �, ��) . (5.7.21)

In conclusion, the linear super"eld formalism for the case of several linear multiplets exhibits
a quite intriguing structure which clearly should be further investigated. It would be interesting
to pursue this approach in the context of duality transformations and the construction of the
respective component "eld actions.

6. Three-form coupling to supergravity

6.1. General remarks

The 3-form supermultiplet is, besides the chiral and linear multiplet, yet another supermultiplet
describing helicity (0, 1/2). It consists of a three-index antisymmetric gauge potential C

���
(x),

a complex scalar >(x), a Majorana spinor with Weyl components �� (x), ��� (x) and a real scalar
auxiliary "eld H(x).
In super"eld language [82,22] it is described by a chiral super"eld

D��>"0, D�>M "0 , (6.1.1)

which is subject to the additional constraint

D�>M !DM �>"

8i
3

������
����

(6.1.2)

with the "eld strength of the 3-form gauge potential de"ned as

�
����

"R
�
C

���
!R

�
C

���
#R

�
C

���
!R

�
C

���
. (6.1.3)

It is invariant under the transformation

C
���
CC

���
#R

�
�

��
#R

�
�

��
#R

�
�

��
, (6.1.4)

where the gauge parameters �
��

"!�
��

have an interpretation as a 2-form coe$cients.
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The component "elds of the 3-form multiplet are propagating: supersymmetry couples the
rank-3 antisymmetric tensor gauge potential with dynamical degrees of freedom. This should be
compared to the non-supersymmetric case, discussed in the context of the cosmological constant
problem [104,36,58,54], where the 3-form does not imply dynamical degrees of freedom.
In Section 6.2 the superspace formulation of [82] will be adapted to the background of ;

�
(1)

superspace, providing the geometric structure underlying the coupling of the 3-form multiplet to
the general supergravity/matter/Yang}Mills system (and to linear multiplets, if desired). We discuss
in particular the 3-form Bianchi identities in the presence of appropriate constraints and de"ne
supergravity transformations on the super"eld and component "eld levels.
As constraint chiral super"elds, subject to the additional constraint (6.1.2), > and >M derive from

one and the same real pre-potential � super"eld such that

>"!4DM ��, >M "!4D�� . (6.1.5)

In Appendix F we present a detailed derivation of the explicit solution of the 3-form constraints in
the background of ;(1) superspace and identify the unconstrained pre-potential � in this general
geometric context.
The 3-form super"elds> and>M di!er from usual chiral super"elds, employed for the description

of matter multiplets in yet another respect: they have non-vanishing chiral weights. This property
modi"es considerably the possible supergravity couplings, compared to the case of vanishing chiral
weights. In Section 6.3 we give a very detailed account of the couplings of the 3-form multiplet to
supergravity and matter.
Although the study of the 3-form multiplet is interesting in its own right, it has an interesting

application in the description of gaugino condensation. There, as a consequence of the chirality of
the gaugino super"elds, the composite super"elds tr(W�) and tr(WM �) obey chirality conditions

D�� tr(W�)"0, D� tr(WM �)"0 (6.1.6)

as well. On the other hand, the gaugino super"elds are subject to the additional constraint (6.1.2),
which translates into an additional equation for the composites, corresponding to (6.1.2). At the
component "eld level this implies the identi"cation

D� tr(W�)�!DM � tr(WM �)�"i����� tr( f
��

f
��
) , (6.1.7)

where the topological density

����� tr( f
��

f
��
)"!�

�
�����R

�
Q

���
, (6.1.8)

plays now the role of the "eld-strength and the Chern}Simons form (which, under Yang}Mills
transformations changes indeed by the derivative of a 2-form) the role of the 3-form gauge
potential. The analogy between the Chern}Simons forms in superspace and the 3-form geometry is
discussed in detail in Appendices F.2, F.3, and has already been exploited in Section 5.2.

6.2. The 3-form multiplet geometry

The superspace geometry of the 3-form multiplet has been known for some time [82]. Its
coupling to the general supergravity/matter/Yang}Mills system is most conveniently described in
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the framework of ;
�
(1) superspace } cf. Section 3.4. This approach is particularly useful in view of

the non-trivial KaK hler transformations of the 3-form super"eld >. Moreover, it provides a concise
way to derive supergravity transformations of the component "elds.

6.2.1. Constraints and Bianchi identities
The basic geometric object is the 3-form gauge potential

C"

1
3!
dz�dz	dz�C

�	�
, (6.2.1)

subject to 2-form gauge transformations of parameter �"�
�
dz	dz��

�	
such that

CCC#d� . (6.2.2)

The invariant "eld strength

�"dC"

1
4!
E
E�EE��

��

(6.2.3)

is a 4-form in superspace with coe$cients

1
4!
E
E�EE��

��

"

1
4!
E
E�EE�(4D

�
C

�

#6¹ �

�
C

��

) . (6.2.4)

Here, the full ;
�
(1) superspace covariant derivatives and torsions appear. Likewise, the Bianchi

identity, d�"0, is a 5-form with coe$cients

1
5!
E
E�EE�E�(5D

�
�
��


#10¹ �
��

�
��


)"0 . (6.2.5)

In these formulas we have kept the covariant di!erentials in order to keep track of the graded
tensor structure of the coe$cients.
The multiplet containing the 3-form gauge potential is obtained after imposing constraints on

the covariant "eld-strength coe$cients. Following [82] we require

�
M �� �M 

"0 , (6.2.6)

where �
�
&�, �� and A&a, �, �� . The consequences of these constraints can be studied by analyzing

consecutively the Bianchi identities, from lower-to-higher canonical dimensions. The tensor struc-
tures of the coe$cients of � at higher canonical dimensions are then subject to restrictions due to
the constraints. In addition, covariant super"eld conditions involving spinor derivatives will
emerge. The constraints serve to reduce the number of independent component "elds to those of
the 3-form multiplet, but do not imply any dynamical equations.
As a result of this analysis (alternatively, Appendix F.1 provides the explicit solution of the

constraints in terms of an unconstrained pre-potential), all the coe$cients of the 4-form "eld
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strength � can be expressed in terms of the two super"elds >M and >, which are identi"ed in the
tensor decompositions

�
���"�
�
(�

��
�)
�>M , �
Q ��

��
"�

�
(��

��
�)
Q ��> . (6.2.7)

As a consequence, the ;
�
(1) weights of > and >M are

w(>)"#2, w(>M )"!2 . (6.2.8)

This implies that the covariant exterior derivatives

D>"d>#2A>, D>M "d>M !2A>M (6.2.9)

containA"E	A
	
, the;

�
(1) gauge potential. On the other hand, theWeylweights are determined

to be

�(>)"�(>M )"#3 . (6.2.10)

By a special choice of conventional constraints, i.e. a covariant rede"nition of C
���
, it is possible to

impose

� ��
 ��
"0 . (6.2.11)

The one spinor-three vector components of � are given as

�
���"! �
��

��

Q �����D
Q>M , �
Q
���

"# �
��

�� �
Q 
�
����

D
> . (6.2.12)

At the same time, the super"elds >M and > are subject to the chirality conditions

D�>M "0, D��>"0 (6.2.13)

and are further constrained by the relation

8i
3

������
����

"(D�!24R�)>!(DM �!24R)>M , (6.2.14)

indicating that the imaginary part of the F-term of the 3-form super"eld is given as the curl of the
3-form gauge potential, with a number of additional nonlinear terms due to the coupling to
supergravity.
In conclusion, we have seen that all the coe$cients of the superspace 4-form �, subject to the

constraints, are given in terms of the super"elds>M and> and their spinor derivatives. It is a matter
of straightforward computation to show that all the remaining Bianchi identities do not contain
any new information.

6.2.2. Component xelds and supergravity transformations
As usual, we de"ne component "elds as lowest components of super"elds. First of all, the 3-form

gauge potential is identi"ed as

C
���

�"C
���

(x) . (6.2.15)

As to the components of > and >M we de"ne

> �">(x), D�> �"�2�� (x) (6.2.16)
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��The special kinetic potential

K(�,�M ,>,>M )"log[X(�,�M )#Z(�,�M )>M >] ,

where X and Z are functions of the matter "elds, is a non-trivial example which satis"es this condition.

and

>M �">M (x), DM ��>M �"�2�� �� (x) . (6.2.17)

At the level of two covariant spinor derivatives we de"ne the component H(x) as

D�> �#DM �>M �"!8H(x) . (6.2.18)

The orthogonal combination however is not an independent component "eld. Projection to lowest
components of (6.2.14) shows that it is given as

D�> �!DM �>M �"!

32i
3

�����R
�
C

���
#2�2i(�M

�
�� �)���!2�2i(�

�
��)�� �� �

�

!4(MM #�M
�
�� ���M

�
)>#4(M#�

�
����

�
)>M . (6.2.19)

This expression provides the supercovariant component "eld strength of the 3-form gauge
potential, displaying the modi"cations which arise from the coupling to supergravity: here the
appearance of the Rarita}Schwinger "eld and the supergravity auxiliary "eld, in the particular
combination M>M !MM >.
The component "elds in the supergravity, matter and Yang}Mills sectors are de"ned as usual
} cf. Section 6.1. Some new aspects arise in the treatment of the "eld-dependent;

�
(1) pre-potential

due to the presence of the "elds> and>M , carrying non-vanishing;
�
(1) weights. It is for this reason

that we refrain from callingK a KaK hler potential, we rather shall refer to the "eld-dependent;
�
(1)

pre-potential as kinetic potential.
Before turning to the derivation of the supergravity transformations we shortly digress on the

properties of the composite ;
�
(1) connection arising from the kinetic pre-potential

K(�,>,�M ,>M ) ,

subject to KaK hler transformations

K(�,>,�M ,>M )CK(�,>,�M ,>M )#F(�)#FM (�M ) .

Requiring invariance of the kinetic potential under;
�
(1) transformations of the super"elds > and

>M , implies the relation

>K
"
">M K

"M
, (6.2.20)

which we shall use systematically.��The composite;
�
(1) connection derives from the commutator

term [D� ,D�� ]K, which, in the presence of the 3-form super"elds is given as

[D� ,D�� ]K"2iK
�
D��� ��!2iK

�M
D��� �M �

M
#2iK

"
D��� >!2iK

"M
D��� >M

#2KAAM D��
AD�� �M

AM
#6(>K

"
#>M K

"M
)G��� , (6.2.21)

P. Bine& truy et al. / Physics Reports 343 (2001) 255}462 361

Plrep=1020=EM=VVC



where we use the shorthand notation �A
"(��,>), and �M AM

"(�M �M ,>M ), with obvious meaning for
KAAM . The important point is that on the right hand the ;

�
(1) connection, A, appears in the

covariant derivatives of > and >M due to their non-vanishing ;
�
(1) weights. Explicitly one has

D��� >M �"����� �R�>M !2A
�
>M !

1

�2
�M
�	� �� 	

� � ,

D��� >�"����� �R�>#2A
�
>!

1

�2
�M 	
�

�	� .

Substituting in the de"ning equation for A
�
(3.4.20) and factorizing gives then rise to

A
�
(x)#

i
2
e �
�
b
�
"

1
4

1
1!>K

"

(K
�
D

�
A�!K

�M
D

�
AM �M

#K
"
R
�
>!K

"M
R
�
>M #i�� �� �

�
KAAM �A

� �M AM

�� ) . (6.2.22)

As above, we use the shorthand notation�A

� "(��� , ��) and �M AM

�� "(�� �M�� , �� �� ). As is easily veri"ed by an
explicit calculation, A

�
de"ned this way transforms as it should under the ;

�
(1) transformations

given above, i.e.

A
�
CA

�
#

i
2
R
�
ImF.

Observe that the factor (1!>K
"
)
� accounts for the non-trivial ;

�
(1) phase transformations

>C>e
� �� �, >M C>M e�� �� �,

of the 3-form super"elds.
We turn now to the derivation of supergravity transformations. In Section 3.4.2 they were

de"ned as combinations of superspace di!eomorphisms and "eld-dependent gauge transforma-
tions. In the case of the 3-form one has

�C"(n�d#dn�)C#d�"n��#d(�#n�C) , (6.2.23)

the corresponding supergravity transformation is de"ned as a di!eomorphism of parameter
�
"n�E
 together with a compensating in"nitesimal 2-form gauge transformation of parameter
�"!n�C, giving rise to

�
�

C"n��"

1
3!
E
E�E���

��

. (6.2.24)

The supergravity transformation of the component 3-form gauge "eld C
���

is then simply obtained
from the double-bar projection [11] (simultaneously to lowest super"eld components and to
space}time di!erential forms) as

�
�

C�"

1
3!
dx�dx�dx��

�
C

���
"

1
3!
e
e�e�
M �
M �


� . (6.2.25)
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Taking into account the de"nition e
"E
� (4.1.1), (4.1.2) and the particular form of the coe$-
cients of � we obtain

�
�

C
���

"

�2
16

(�M �� ��!����� )�
����

#

1
2�

���

[(�
�
�
��
�)>M #(�M

�
��
��
�M )>] . (6.2.26)

Let us turn now to the transformations of the remaining components. To start, note that at the
super"eld level, one has

�
�
>"n�d>"n�D>!2n�A> , (6.2.27)

�
�
>M "n�d>M "n�D>M #2n�A>M . (6.2.28)

Taking into account the explicit form of the "eld-dependent factor n�A�"���A��
� } compare to

(4.1.25) } one "nds

�
�
>"�2����1!

1
2
>K

"���!
1
2
>K

�
���	#

1

�2
�M �� >	K

"M
�� �� #K

�M
�� �� �M 
 ,

�
�
>M "�2�M �� ��1!

1
2
>M K

"M � �� �� !
1
2
>M K

�M
�� �� �M 	#

1
�
2��>M 	K

"
��#K

�
���
 . (6.2.29)

It is more convenient to use a notation where one keeps the combination


"���A��
�"

1

2�2
��(K

�
���#K

"
�� )!

1

2�2
�M �� (K�M

�� �� �M #K
"M
�� �� ) , (6.2.30)

giving rise to a compact form of the supersymmetry transformations

�
�
>"�2����!2
>, �

�
>M "�2�M �� �� �

�
#2
>M . (6.2.31)

The transformation law for the 3-`forminosa comes out as

�
�

��"�2��H#

4i�2
3

�������R
�
C

���
#i�2(�M �� ��)���

>!
��

!

i
2
�� (�M ��� ��!�

�
���� )!i(�M �� ��)�� 	

�
�	

#

1

�2
��	(MM #�M

�
�� ���M

�
)>!(M#�

�
����

�
)>M 
 (6.2.32)
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and

�
�

�� �� "�2�M ��H#i�2(����)�� �
�
>M !

4i�2
3

�M �� ����� R
�
C

���
#
�� ��

#

i
2
�M �� (�M

�
�� ��!�

�
���� )!i(�M �� ��)��M �	� �� 	

�

!

1

�2
�M �� 	(MM #�M

�
�� ���M

�
)>!(M#�

�
����

�
)>M 
 . (6.2.33)

Finally, the supergravity transformation of H is given as

�
�

H"

1

�2
(�M �� �)��

�
��#

1
2
(�M �� ����M

�
)���
>!

1

�2
� 	
�

�	�

#

1

�2
(���)�� ��

�� �� #
1
2
(� ���� ��

�
)���
>M !

1

�2
�M

�	� �� 	
� �

#

1

3�2
MM ����#

1

3�2
M�M �� �� �

�
#

1

3�2
(�M �� ��#����� )b

�

#>�M �� XM �
� �#>M ��X� �!

i

�2
(�M �� ��

�
#����M

�
)H

#

2
3
(�M �� ��

�
!����M

�
)�����R

�
C

���
!

1

4�2
(�M �� ��

�
!����M

�
)(�M

�
�� ��!�

�
�� �� )

!

i
4
(�M �� ��

�
!����M

�
)	(MM #�M

�
�� ���M

�
)>!(M#�

�
����

�
)>M 
 . (6.2.34)

Note that in the above equations we changed D-derivatives into �-derivatives as in Section 4.2
} cf. (4.2.15), (4.2.16) } using a rede"ned;

�
(1) connection v

�
(x)"A

�
(x)#(i/2)e �

�
b
�
. This allows to

keep track of the auxiliary "eld b
�
, otherwise concealed in the numerous covariant derivatives

occurring in the Lagrangian. We still have to work out the component "eld expressions forX� � and
XM �� � from the super"elds

X�"!�
�
(DM �!8R)D�K, XM �� "!�

�
(D�!8R�)DM ��K , (6.2.35)

given in terms of the matter and 3-form super"eld-dependent kinetic potential K. This can be
achieved in successively applying the spinor derivatives to K. Alternatively, one may use the
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��We make use, in the Yang}Mills sector, of the suggestive notations

K
�M
(�M �� )AM )�M "�M �����K

�M
(T

���
AM )�M , K

�
(�� )A)�"����� K�

(T
���
A)�.

expression

A"

1
4
KAD�A

!

1
4
KAM D�M AM

#

i
8
E��� �� �

�
KAAM D��

AD�� �M
AM

#

3i
2
E�G

��1!

1
2
(>K

"
#>M K

"M
)� (6.2.36)

for the composite;
�
(1) connection, take the exterior derivative dA"F and identifyXM �� andX� in

the 2-form coe$cients

F��"#

i
2
�
���Q XM �

Q
#

3i
2
D�G�

, F�Q
�
"!

i
2
�� ��Q
�
X�#

3i
2
D�Q G

�
. (6.2.37)

A straightforward calculation then yields the component "eld expression��

XM �� (1!>M K
"M
)�"!

i

�2
KAAM �A

� �� ��� ����
�M AM

!

1

�2
�M

�	� �M 	
� AM �

!

�2
8

D����K
�AM �M �� AM

#

1

�2
HK

"AM �M �� AM
#

4i

3�2
�����R

�
C

���
�M �� AM KAM "

!

1

2�2
KAM BC��C�B

� �M �� AM
!iK

�M
(�M �� )AM )�M !

i
4
�M �� AM KAM "

(�M
�
�� ��!�

�
���� )

#

1

2�2
�M �� AM KAM "

	(MM #�M
�
�� ���M

�
)>!(M#�

�
����

�
)>M 
 (6.2.38)

and

X� (1!>K
"
)�"!

i

�2
KAAM ��� A�� ���� ���

�A
!

1

�2
� 	

�
�A

	 �
!

�2
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DM ��M �M �KA�M
�A

� #
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�2
HKA"M

�A

� !

4i

3�2
�����R

�
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���
�A

� KA"M

!
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2�2
KABM CM �M CM�� �M �

� BM �A

� #iK
�
(�� )A)�#

i
4
�A

� KA"M
(�M

�
�� ��!�
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���� )

!

1

2�2
�A

� KA"M
	(MM #�M

�
�� ���M

�
)>!(M#�

�
����

�
)>M 
 . (6.2.39)

These are the component "eld expressions which are to be used in the transformation law of
H (6.2.34). The same expressions will be needed later on in the construction of the invariant action.
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6.3. General action terms

In Section 4.5 we have explained in detail the construction of supersymmetric and ;
�
(1)

invariant component "eld Lagrangians starting from a generic chiral super"eld r of ;
�
(1) weight

w(r)"#2 and its complex conjugate r� of weight w(r� )"!2. We will apply this construction to
the case of 3-form super"elds coupled to the supergravity/matter/Yang}Mills system. The generic
Lagrangian } cf. (4.4.22) } is given as

L(r, r� )"e(f#fM )#
ie

�2
(�

�
��s� #�M

�
�� �s)

!er� (M#�
�
����

�
)!er(MM #�M

�
�� ���M

�
) . (6.3.1)

Particular component "eld actions are then obtained by choosing r and r� appropriately. The
complete action we are going to consider here will consist of three separately supersymmetric
pieces,

L"L
�
��	�����������

#L
�
�����������

#L
���	}�����

. (6.3.2)

In the following, we shall discuss one by one the three individual contributions to the total
Lagrangian.

6.3.1. Supergravity and matter
The starting point is the same as in Section 4.5.1, we replace the generic super"eld r with

r
�
��	�����������

"!3R . (6.3.3)

The di!erence with Section 4.5.1 is that now the component "eld Lagrangian must be evaluated in
the presence of the 3-form gauge "eld. As in Section 4.5.1 we decompose the supergravity/matter
action such that

L
�
��	�����������

"L
�
��	�����

#eD
�����

, (6.3.4)

where the pure supergravity part is given by the usual expression, i.e.

L
�
��	�����

"!

e
2
R#

e
2
�����(�M

�
��
�
D

�
�
�
!�

�
�
�
D

�
�M
�
)!

e
3
MM M#

e
3
b�b

�
,

except that the ;
�
(1) covariant derivatives of the Rarita}Schwinger "eld contain now the new

composite ;
�
(1) connection as de"ned above. For the matter part, the D-term matter component

"eld D
�����

is de"ned in (4.0.2) in terms of the ;
�
(1) gaugino super"eld X� . We therefore have to

evaluate the super"eldD�X� in the presence of the 3-form multiplet, i.e. apply the spinor derivative
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to the super"eld expression

2iX�(1!>K
"
)"KAAM D�� �M AM ���� �

A
!

i
4
KAAM D��

ADM ��M AM

!

i
4
KABM CM D�� �M

CM DM �� �M BM D��
A

!2iK
�
(W� ) �)� . (6.3.5)

Remember here, that we are using the space}time covariant derivative ���� , which by de"nition
does not depend on the super"eld G��� . In full detail

D��� >M "���� >M !3iG��� >M , D��� >"���� >#3iG��� > , (6.3.6)

D��� D�Q >M "���� D�Q >M !
3i
2
G��� D�Q >M , D��� D�>"���� D�>#

3i
2
G��� D�> . (6.3.7)

In deriving the explicit expression for D�X� , we make systematic use of this derivative, which
somewhat simpli"es the calculations and is useful when passing to the component "eld expression
later on. In applying the spinor derivative to (6.3.5) it is convenient to make use of the following
relations:

D�D�� >M "!2i ���� >M , (6.3.8)

D�DM �>M "!4i ���� D��>M #2G��� D��>M !8X�>M , (6.3.9)

D�DM ��M �
M
"!4i ���� D�� �M �M #2G��� D�� �M �M #8(W� ) �M )�M . (6.3.10)

In order to obtain a compact form for D�X� , we introduce KAM A as the inverse of KAAM and we
de"ne

!4FA
"D��A

#�A
BCD��BD��

C , (6.3.11)

!4FM AM
"DM ��M AM

#�M AM
BM CM DM �� �M

BM DM �� �M CM (6.3.12)

with

�A
BC"KAM AKAM BC , �M AM

BM CM "KAM AKABM CM . (6.3.13)

Moreover, we de"ne the new covariant derivatives

�K ��� D��A
"���� D��A

#�A
BC���� �

BD��C , (6.3.14)

�K ��� D�� �M AM
"���� D�� �M AM

#�M AM
BM CM ���� �M

BM D�� �M CM . (6.3.15)
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Then, the super"eld expression of D�X� becomes simply

2iD�X�(1!>M K
"M
)"4i>M KA"M

X�D��
A

#4i>K
"AM XM �� D�� �M AM

!2iKAAM ���� �M AM ���� �
A

!4iKAAM F
AFM AM

!KAAM D�� �M AM �K ��� D��A
!KAAM D��A�K ��� D�� �M AM

!

i
4
RABAM BM D��AD��

BD�� �M
AM D�� �M BM !3iKAAM D��ADM �� �M AM G��� #2iK

�M
(D�W� ) �M )�M

!4iK
�AM D�� �M

AM (W�� ) �)�!4iKA�M
D��A(W� ) �M )�M . (6.3.16)

This looks indeed very similar to the usual case (4.2.13). One of the di!erences however is that the
F-terms and their complex conjugates for the super"elds> and>M have special forms. So we obtain
for the matter part

(1!>K
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)D
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�AM �M AM

�� (�M �
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with the terms in the "rst line given as
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�M AM
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"BM
KAAM �M BM�� �M �

� AM FA
!>M KB"M

KAAM ��B�A

� FM
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!i�2>M KA"M
��AK

�
(�� )A)�#i�2>K

"AM �M AM

�� K�M
(�M �� )AM )�M � . (6.3.18)
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6.3.2. Superpotential
In the usual case where we consider only;

�
(1) inert super"elds like �� and �M �M , the Lagrangian is

obtained from identifying the generic super"eld r with

r
�
�����������

"e���= , (6.3.19)

as in (4.5.9) of Section 4.5.2. In the present case the super"eld= is allowed to depend on the 3-form
super"eld as well. As we wish to maintain the transformation =(�)C e
�=(�) for the more
general superpotential =(�,>), we must proceed with care due to the non-zero weight of >. In
order to distinguish this more general situation from the usual case, we use the symbol P for the
chiral super"eld of weight w(P)"2, de"ned as

P"e���=(�,>)"�e�����=
�
(�)>� , (6.3.20)

where we have allowed for a parameter �
�
. What happens under a KaK hler transformation?

Assigning a holomorphic transformation law=
�
C e
���=

�
to the coe$cient super"elds, we "nd

PC e
� �� �P

e�����=
�
(�)>�C e��� �� �
���
�� �� ��e�����=

�
(�)>� . (6.3.21)

Consistency with the transformations of = and > then requires �
�
"�

�
"1!n, hence

P"e����=
�
(�)[e
���>]� . (6.3.22)

This suggest to de"ne the super"elds

y"e
���>, y� "e
���>M (6.3.23)

as the basic variables in the construction of the superpotential term, i.e.

P"e���=(�,y), PM "e���=M (�M , y� ) . (6.3.24)

Note that, by construction, y transforms as a holomorphic section. We can now proceed with the
construction of L

�
�����������
, taking P as starting point in the canonical procedure.

We parametrize the covariant spinor derivatives of P such that

D�P"�AD��
A (6.3.25)

and

D�P"!4�AF
A

#�ABD��AD��
B . (6.3.26)

The various components of the coe$cients �A and �AB are given as

�
�
"e���(=

�
#K

�
=)!>=

#
K

�
, (6.3.27)

�
"
"e���=K

"
#=

#
(1!>K

"
) (6.3.28)
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and
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, (6.3.29)
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, (6.3.30)

�
""

"(e���=!>=
#
)(K

""
#K

"
K

"
)#e
���=

##
(1!>K

"
)�!�A�A

""
. (6.3.31)

Complex conjugate expressions are obtained from

PM "e���=M (�M , y� ) (6.3.32)

with y� "e
���>M . Making use of the superpotential super"eld and the corresponding de"nitions
given above one derives easily the component "eld expression

1
e
L

�
�����������
"�AF

A
!

1
2
�AB��A�B

� #

i

�2
�A(�M ��� ��A)

! e���=(MM #�M
�
�� ���M

�
)#h.c. (6.3.33)

6.3.3. Yang}Mills
Finally, the Yang}Mills action is obtained in replacing the generic super"eld r with

r
���	}�����

"�
�
f
������

W����W���� (6.3.34)

in the same way as in (4.5.20) of Section 4.5.3. Assuming the gauge coupling functions to be
independent of the 3-form super"elds, the resulting component "eld expression has the same form
as in (6.2.20), which we display here in the form

1
e
L

���	}�����
"!

1
4
f
������

[f �����f ���
��

#2i�������
�
�M ���#2i�M ����� ��

�
����

!2D���D���#
i
2
����� f ���

��
f ���
��

!2(�������M ���)b
�
]

!

1
4
Rf

������
RA�

[�2(���������) f ���
��

!�2(������)D���#(��������)F�]

!

1
4
RfM

������
RAM n� [�2(�� n��� ���M ���) f ���

��
!�2(�� n� �M ���)D���#(�M ����M ���)FM n�]
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������
RA�RA�

!
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������
RA�
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���(����)(��������)

#

1
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R�fM

������
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������
RAM n� �M n�

�M �M �(�� �M �� �M )(�M ����M ���)
plus �

�
, �M

�
dependent terms . (6.3.35)

In the covariant derivatives of the gauginos

�
�
����� "R

�
����� !� 	

�� ����� #v
�
����� !a���

�
����� c ���

������
, (6.3.36)

�
�
�M ����� "R

�
�M ����� !� ��

� 	� �M ���	
�
!v

�
�M ����� !a���

�
�M ����� c ���

������
, (6.3.37)

de"ned as in (4.2.15) and (4.2.16) the composite KaK hler connection is now given in terms of (6.2.22),
displaying the dependence on the 3-form multiplet. The Yang}Mills "eld strength tensor is given
as usual

f ���
��

"R
�

a���
�

!R
�
a���
�

#a���
�

a���
�
c ���
������

. (6.3.38)

6.3.4. Solving for the auxiliary xelds
Although this is standard stu!, we detail the calculations to make clear some subtleties related

to the inclusion of the 3-form. In the di!erent pieces of the whole Lagrangian, we isolate the
contributions containing auxiliary "elds and proceed sector by sector as much as possible.
Diagonalization in b

�
makes use of the terms

�
�
"�

�
b�b

�
!�

�
MAAM (�A���AM )b

�
#�

�
f
������

(�������M ���)b
�

(6.3.39)

with

MAAM "
1

1!>K
"

KAAM , (6.3.40)

whereas the relevant terms for the Yang}Mills auxiliary sector are

�D"

1
2
f
������

D���D���#
1

1!>K
"

D���K
�M
(AM T

���
)�M

#

�2
4

D����
Rf

������
RA�

(������)#
RfM

������
RAM �M (�� �

M �M ���)� . (6.3.41)

The F-terms of chiral matter and the 3-form appear in the general form

�
���M

"FAMAAM FM AM
#FAPA#PM AM FM AM (6.3.42)
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with the de"nitions

P
�
"�

�
!

1
4
Rf

������
RA�

(��������)!>M
"BM

M
�AM �M BM�� �M �

� AM , (6.3.43)

P
"
"�

"
!>M

"BM
M

"AM �M BM�� �M �
� AM . (6.3.44)

We write this expression as

�
���M

"F�M
��M
FM �M !PM AM M

AM APA#F"
1

M"M "
FM "M , (6.3.45)

where MAM A is the inverse of MAAM and in particular

1
M"M "

"M
""M

!M
"�M

M�M �M
�"M

(6.3.46)

with M�M � the inverse of the submatrix M
��M
, related to the usual KaK hler metric. Moreover,

F�"F�#(PM
�M
#F"M

"�M
)M�M � , (6.3.47)

FM �M "FM �M #M�M �(P
�
#M

�"M
FM "M ) (6.3.48)

and

F""F"#PM AM M
AM ", FM "M "FM "M #M"M APA . (6.3.49)

We use now the particular structure of the 3-form multiplet to further specify these F-terms. Using
(6.2.18), (6.2.19), (6.3.11) and (6.3.12) we parametrize

F""H#i�	#

MM >!M>M
2i �#f " , (6.3.50)

FM "M "H!i�	#

MM >!M>M
2i �#fM "M (6.3.51)

with

f ""!�
�
�"BC D��BD��

C
#PM AM M

AM " , (6.3.52)

fM "M "!�
�
�M "M BM CM D�� �M

BM D�� �M CM #M"M APA , (6.3.53)

as well as
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)>!(�
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)>M ] . (6.3.54)
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In terms of these notations the last term in (6.3.45) takes then the form

F"
1

M"M "
FM "M "

1
M"M "�H#

f "#fM "M

2 �
�
#

1
M"M "�	#

MM >!M>M
2i

#

f "!fM "M

2i �
�
. (6.3.55)

In this equation the last term makes a contribution to the sectorM,MM and the 3-form we consider
next. Except for this term, the sum of �

�
,�D ,����M

will give rise to the diagonalized expression

1
e
L(F�,FM �M , b

�
,D���,H)"

1
3
bK
�
bK �#

1
2
DK ���f

������
DK ���#F�M

��M
FM �M

#

1
M"M "�H#

f "#fM "M

2 �
�
!

3
16

B
�
B�!

1
2
D

���
( f
�)������D

���
!PM AM M

AM APA , (6.3.56)

where bK
�
"b

�
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�
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�M AM )#f

������
(�����
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�M ���) (6.3.57)

and DK ���"D���#( f
�)������D
���
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(������)#
RfM

������
RAM �M (�� �

M �M ���)� . (6.3.58)

Use of the equations of motion simply sets to zero the "rst four terms, leaving for the Lagrangian

1
e
L"!

3
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!PM
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""M
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M
""M

P
"� , (6.3.59)

where we have block diagonalized MAM A.
As to theM,MM dependent terms of the full action we observe that they are intricately entangled

with the "eld strength tensor of the 3-form, a novel structure compared to the usual supergrav-
ity}matter couplings. The relevant terms for this sector are identi"ed to be

�
	�	M "3e��=��!�

�
�M#3e���=��#

1
M"M "�	!

1
2i
(M>M !MM >)#

1
2i
( f "!fM "M )�

�
. (6.3.60)

One recognizes in the "rst two terms the usual superpotential contributions whereas the last term is
new. This expression contains all the terms of the full action which depend onM,MM or the 3-form
C

���
. The question we have to answer is how far the M, MM sector and the 3-form sector can be

disentangled, if at all. Clearly, the dynamical consequences of this structure deserve careful
investigation.
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The 3-form contribution is not algebraic, so we cannot use the solution of its equation of motion
in the Lagrangian [54]. One way out is to derive the equations of motion and look for an
equivalent Lagrangian giving rise to the same equations of motion. Explicitly, we obtain for the
3-form

R
��

1
M"M "�	!

1
2i
(M>M !MM >)#

1
2i
( f "!fM "M )�	"0 , (6.3.61)

solved by setting

1
M"M "�	!

1
2i
(M>M !MM >)#

1
2i
( f "!fM "M )�"c , (6.3.62)

where c is a real constant. Then the e.o.m.'s for M and MM read

M#3e���="!3ic>, MM #3e���=M "3ic>M . (6.3.63)

At last, we consider the e.o.m. for e.g. >M , in which we denote by L(>M ) the many contributions of
>M to the Lagrangian, except for �

	�	M ,

R
�

�L(>M )
�R

�
>M

!

�L(>M )
�>M

!

��
	�	M

�>M
"0 . (6.3.64)

Using (3.42) and (3.43) the last term takes the form

��
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�
���� )	 . (6.3.65)

This suggests that the equations of motion can be derived from an equivalent Lagrangian obtained
by dropping the 3-form contribution and shifting the superpotential= to =#icy. This can be
seen more clearly by restricting our attention to the scalar degrees of freedom as in the next section.

6.3.5. The scalar potential
The analysis presented above allows to obtain the scalar potential of the theory as

<"��M �M !(�M
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� M�M ����
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�"M
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K
�M
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AM )�M ( f
�)������

1
1!>K

"

K
�
(T

���
A)� . (6.3.66)

We note that the shift=C=#icy induces �
�
C�

�
and �

"
C�

"
#ic, which are precisely the

combinations which appear in (6.3.66).
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In fact (6.3.66) is nothing but the scalar potential of some matter "elds �� of KaK hler weight 0 plus
a "eld >"ye��� of KaK hler weight 2 with a superpotential =#icy in the usual formulation of
supergravity. In order to show this, let us consider y and y� as our new "eld variables and de"ne

K(>,�,>M ,�M )"K(y,�, y� ,�M ) , (6.3.67)

Taking as an example the KaK hler potential in footnote 18 with Z"1, we "nd

y">(X#>>M )
���, y� ">M (X#>>M )
��� (6.3.68)

and therefore

K(y, y� )"logX(�,�M )!log(1!yy� ) . (6.3.69)

which is a typical KaK hler potential with S;(1, 1) non-compact symmetry.
We can express the matrix MAAM and its inverse MAM A in terms of the derivatives of K, namely

KAAM and of its inverse KAM A (A denotes k, y as well as k,> depending on the context). Then it
appears that the expression of the scalar potential becomes very simple as we use the relevant
relations. Indeed, using the following de"nitions

=K "=#icy, DA=K "=K A#KA=K , (6.3.70)

we obtain

<"eK(DAM =K KAM ADA=K !3�=K ��)#�
�
K

�M
(T

���
AM )�M ( f
�)������K

�
(T

���
A)� , (6.3.71)

which is the familiar expression of the scalar potential of the scalar "elds �� and y in the standard
formulation of supergravity.

7. Conclusion

Since the upsurge of supersymmetry, a number of formalisms have been developed in order to
cope with the notorious complexity of this Fermi}Bose symmetry, in particular in the context of
supergravity, for a sample of review articles see for instance [45,130,131,63,62,64,65,107,31,44].
Among these formalisms are tensor calculus, the superconformal compensator method and the
groupmanifold approach. It would be an interesting undertaking to establish explicitly the relation
among these di!erent approaches and to superspace geometry, which is however certainly beyond
the scope of this report.
Methods of superspace geometry are convenient in the discussion of the conceptual aspects of

supersymmetric theories and useful in the derivation of component "eld expressions and have
a wide range of applications.
In this report we have focused on the KaK hler superspace approach to the construction of the

general couplings of matter and Yang}Mills theory to supergravity. As a solid understanding
of this subject is central for further applications and developments, we have made an e!ort to
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��Such a duality transformation may be related to a string duality in the case of some moduli "elds.

present the conceptual foundations and the technical rami"cations in full detail. In order to
demonstrate the way the geometrical formulation works, we included a detailed description of the
couplings of linear and 3-form multiplets to supergravity.
There are other topics, which have been discussed in this geometric context, but which are not

included in this report. Among them are the algebraic description of anomalies in supersymmetric
theories [93] and the construction of the geometric BRS transformations [11].
We also refrained from a discussion of conformal supergravity and the construction of curva-

ture-squared terms and supersymmetric topological invariants. Gravitational Chern}Simons
forms, which are closely related to the 3-form geometry presented here, and their coupling to linear
multiplets have a rather transparent formulation in the geometric context.
Let us also mention the systematic description of the alternative incarnations of supergravity,

new minimal and non-minimal, in the framework of superspace geometry in relation with the
identi"cation of the reducible multiplet.
Finally, we have restricted ourselves to N"1, D"4 supersymmetry. Superspace geometry has

been widely employed in the investigations of extended and higher and lower dimensional
supersymmetry.
The methods discussed in this report have a potential interest for discussing e!ective superstring
"eld theories and have been extensively used in this respect. We discuss in what follows some of
these potential applications.
As stressed in Section 5.1, the linear multiplet plays a central role in the "eld theory limit of

superstring theories. Its bosonic component consists of a scalar "eld associated with dilatation
symmetry, the dilaton, and of a pseudoscalar "eld which has many properties in common with an
axion "eld. Its fermionic component, sometimes called the dilatino, may be a component of the
goldstino "eld whose presence in a supersymmetric theory is the sign of the spontaneous break-
down of supersymmetry.
The close connections of dilatation symmetry with the vanishing of the cosmological constant, of

axionic couplings with the cancellation of chiral anomalies and of the goldstino with the super-
Higgs mechanism certainly make the dilaton}axion}dilatino set of "elds a system worthy of
detailed studies. Supergravity theories provide the natural setting for such studies, given the
intimate connections noted above with gravity and supersymmetry (the dilaton as a Brans}Dicke
scalar, the dilatino associated with the possible breaking of local supersymmetry).
In the e!ective four-dimensional supergravity theory of weakly coupled 10-D string theories, the

axion "eld does not appear as such in the spectrum. Indeed, the massless string modes include
a dilaton and an antisymmetric tensor which, together with a dilatino spinor "eld, form a linear
multiplet which plays an important role in the e!ective "eld theory. As we have seen in Section 5.1,
a supersymmetric duality transformation relates this linear supermultiplet to a chiral supermultip-
let [111] whose content includes the original scalar "eld as well as the pseudoscalar (with axion-like
couplings) dual to the antisymmetric tensor.�� However, such a transformation only establishes
a relationship on shell and some relevant properties or some transparence might be lost or hidden
in the chiral supermultiplet formulation.Moreover, in the context of superstring theories it appears
that it is the linear multiplet, ¸, which plays the role of string loop expansion parameter. Therefore,
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stringy corrections (perturbative and non-perturbative) are naturally parametrized by ¸, which
then allows to disentangle purely stringy e!ects from "eld theoretical ones. This is very clear in
the study of gauge coupling renormalization and gaugino condensation in superstring e!ective
theories (see below).
A classical example is the way modular invariance is realized at the quantum level in these

theories. This invariance involves transformations of the moduli "elds, which are described by
chiral super"elds in the case of a weakly coupled string theory. The corresponding invariance is
realized through some KaK hler transformation. The simplest example is the case of a single
super"eld ¹ with KaK hler potentialK(¹,¹M )"!3 ln(¹#¹M ). The modular transformation is then
simply a S¸(2,Z) symmetry:

¹C a¹!ib
ic¹#d

, ab!cd"1, a, b, c, d3Z , (7.1)

which amounts to the KaK hler transformation

KCK#F#FM , with F"3 ln(ic¹#d) . (7.2)

This invariance is violated by radiative corrections generated by quantum loops of massless
particles [112,29,48]. These anomalies are cancelled by two types of counterterms. The "rst one is
model independent and is a four-dimensional version [29,48] of the Green}Schwarz [96] anomaly
cancellation mechanism. As is well known, this mechanism makes use of the presence of the
antisymmetric tensor and thus, in four dimensions, it involves the linear multiplet ¸. The other part
[52] which is model-dependent involves string threshold corrections depending on the moduli
"elds.
These terms play an important role when one discusses issues such as supersymmetry breaking.

For example, in the classical scenario of gaugino condensation, it proves to be very useful, in order
to take into account these important one-loop e!ects, to make a supersymmetric description of the
dynamics in terms of the dilaton linear multiplet. It turns out [24,14] that, in the e!ective theories
below the scale of condensation, a single vector super"eld< incorporates the degrees of freedom of
the original linear multiplet ¸ as well as the gaugino and gauge "eld condensates. The one-loop
terms discussed above, i.e. Green}Schwarz counterterm and moduli-dependent string threshold
corrections, play an important dynamical role [15}17] in this mechanism.
As we see, one-loop terms play a crucial role in all these applications. Since supergravity is not

a renormalizable theory, great care must be used in the regularization procedure. In a major e!ort,
Gaillard and collaborators [79,113,114,77,78] have used Pauli}Villars regulators (carefully chosen
not to break supersymmetry nor the symmetries of the theory) to compute the full one-loop
corrections to the supergravity e!ective superstring theories theory in the KaK hler superspace
formalism.
Similar to the duality between a rank-2 antisymmetric tensor and a pseudoscalar, a rank-3

antisymmetric tensor is dual to a constant scalar "eld. Indeed, such a relation was considered some
time ago in connection with the cosmological constant problem [104,36,58,54]. As we have seen in
Section 6, the role of supersymmetry is striking when one considers the rank-3 antisymmetric
tensor. Whereas in the non-supersymmetric case such a "eld does not correspond to any physical
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degree of freedom (through its equation of motion, its "eld strength is a constant 4-form),
supersymmetry couples it with propagating "elds. Indeed, the 3-form supermultiplet [82] can be
described by a chiral super"eld > and an antichiral "eld >M subject to a further constraint (6.2.14)

8i
3

������
����

"(D�!24R�)>!(DM �!24R)>M , (7.3)

where � is the gauge-invariant "eld strength of the rank-3 gauge potential super"eld, C
���

, i.e.
�"dC. Its superpartners, identi"ed as component "elds of the (anti)chiral super"eld> and >M , are
propagating. Supersymmetry couples the rank-3 antisymmetric tensor with dynamical degrees of
freedom, while respecting the gauge invariance associated with the 3-form. Let us emphasize (see
Appendix F) that > is not a general chiral super"eld since it must obey the constraint above (7.3),
which is possible only if > derives from a pre-potential � which is real:

>M "!4(D�!8R�)�, >"!4(DM �!8R)� . (7.4)

Rank-3 antisymmetric tensors might play an important role in several problems of interest,
connected with string theories. One of them is the breaking of supersymmetry through gaugino
condensation. Indeed, as we have noted above, the composite degrees of freedom are described, in
the e!ective theory below the scale of condensation, by a vector super"eld < which incorporates
also the components of the fundamental linear multiplet ¸. The chiral super"eld

;"!(DM �!8R)< , (7.5)

has the same quantum numbers (in particular the same KaK hler weight) as the super"eld=�=� . Its
scalar component, for instance, is interpreted as the gaugino condensate.
Alternatively, the vector super"eld is interpreted as a `fossila Chern}Simons "eld [14,13] which

includes the fundamental degrees of freedom of the dilaton supermultiplet. It can be considered as
a pre-potential for the chiral super"eld ; as in (7.4).
Another interesting appearance of the 3-form supermultiplet occurs in the context of strong-

weak coupling duality.More precisely, the dual formulation of 10-D supergravity [34,85,86,120,89]
appears as an e!ective "eld theory of some dual formulation of string models, such as 5-branes
[55,148,56,57,26,25,51]. The Yang}Mills "eld strength which is a 7-form in 10 dimensions may
precisely yield in 4 dimensions a 4-form "eld strength.
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Appendix A. Technicalities

We collect here some de"nitions, conventions and identities involving quantities which are
frequently used in superspace calculations. We do not aim at any rigorous presentation but try to
provide a compendium of formulae and relations which appear useful when performing explicit
computations. We use essentially the same conventions as [153], except for �

����
and �� de"ned

with opposite signs.

A.1. Superforms toolkit

Coordinates of curved superspace are denoted z	" (x�, �, M �� ) and di!erential elements
dz	" (dx�, d�, dM �� ), with their wedge product (� is understood)

dz	dz�"!(!)��dz�dz	 , (A.1.1)

m, n are the gradings of the indices M,N: 0 for the vector ones, 1 for the spinors. We de"ne
p-superforms with the following ordering convention

�
�
"

1
p!
dz	�

2dz	��
	�2	�

. (A.1.2)

The coe$cients �
	�2	�

are super"elds and graded antisymmetric tensors in their indices, i.e.

�
	�2	� 2	�2	�

"!(!)���� (!)������ ����
��2��� ��
	�2	�2	�2	�

. (A.1.3)

In agreement with (A.1.2), we de"ne the wedge product of two (super)forms as follows:

�
�
�

�
"

1
p!q!

dz	�
2dz	��

	�2	�
dz��

2dz���
��2��

"

1
p!q!

dz	�
2dz	�dz��

2dz���
��2��

�
	�2	�

. (A.1.4)

The exterior derivative, d"dz	R
	

such that d�"0, transforms a p-superform into a (p#1)-
superform

d�
�
"

1
p!
dz	�

2dz	�dz�R
�
�

	�2	�
(A.1.5)

and obeys the Leibniz rule

d(�
�
�

�
)"�

�
d�

�
#(!)�d�

�
�

�
. (A.1.6)
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The interior product, denoted n� , transforms a p-superform into a (p!1)-superform, it depends on
a vector "eld, e.g. �, with which one operates the contraction

n�dz	"�	Nn���
"

1
(p!1)!

dz	�
2dz	�
��	��

	�2	�
. (A.1.7)

Using the analogue of Cartan's local frame we can de"ne quantities in the local #at tangent
superspace (#at indices are traditionally A,B,2,H; A"a, �, �� )

E
"dz	E 

	

(z), dz	"E
E 	



(z) . (A.1.8)

E 

	

(z) is called the (super)vielbein and E 	



(z) its inverse, they ful"ll

E 

	

(z)E �


(z)"� �

	
, E 	



(z)E �

	
(z)"� �



. (A.1.9)

The E
's are the basis 1-forms in the tangent superspace. As we de"ned superforms on the dz	
basis, we can equally well de"ne them on the E
 basis

�
�
"

1
p!
E
�

2E
��

�2
�

(A.1.10)

and d"E
D


. As above

n�E
"�
Nn���
"

1
(p!1)!

E
�
2E
�
��
��


�2
�
. (A.1.11)

Relating the coe$cients in one basis to the ones in the other implies the occurrence of many
vielbeins or their inverses, e.g. for a 2-form

B"�
�
dz	dz�B

�	
"�

�
E
E 	



E�E �

�
B

�	
"(!)�������

�
E
E�E 	



E �

�
B
�	

, (A.1.12)

so that

B
�


"(!)������E 	



E �
�
B
�	

,

B
�	

"(!)������E 

	

E �
�
B
�


. (A.1.13)

A.2. Basic quantities in SO(1,3) and S¸(2,C)

In our notations, the metric tensor �
��
with a, b"0, 1, 2, 3 is de"ned as

[�
��
]"diag(!1,#1,#1,#1) (A.2.1)

with inverse

�
��

���"� �
�
. (A.2.2)
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The totally antisymmetric symbol �
����

is normalized such that

�
����

"#1, �����"!1 . (A.2.3)

The product of two �-symbols is given as

������
$%�&

"!�����
$%�&

, (A.2.4)

where the multi-index Kronecker delta is de"ned as

�����
$%�&

,det[��
�
] (A.2.5)

with i"a, b, c, d and j"e, f, g, h. In somewhat more explicit notation this can be written as

�����
$%�&

"��
$
����
%�&

!��
%
����
�&$

#��
�
����
&$%

!��
&
����
$%�

, (A.2.6)

����
%�&

"��
%
���
�&

#��
�
���
&%

#��
&
���
%�

, (A.2.7)

���
�&

"��
�
��
&
!��

&
��
�
. (A.2.8)

Accordingly, the respective contractions of indices yield

������
$%��

"!����
$%�

, (A.2.9)

������
$%��

"!2���
$%

, (A.2.10)

������
$���

"!6��
$
, (A.2.11)

������
����

"!24 . (A.2.12)

In curved space we use the totally antisymmetric tensor �
����

, de"ned by

�
����

"e �
�
e �
�
e �
�
e �
�

�
����

(A.2.13)

with e �
�
the moving frame. S¸(2,C) spinors carry undotted and dotted indices, �"1, 2 and �� "1� , 2� .

For the case of undotted indices, the symbol ���"!��� is de"ned by

�
��

"���"#1 . (A.2.14)

As a consequence one has

�����
"!�����
#��
��� , (A.2.15)

�����
"��
 (A.2.16)

together with the cyclic identity (indices �, �, �)

�����
#��
���#����
�"0 . (A.2.17)

Exactly the same de"nitions and identities hold if undotted indices are replaced by dotted ones, i.e.
for the symbol ��� �Q "!��Q �� .
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The �-symbols serve to lower and raise spinor indices. For a two-component spinor �� , we de"ne

��"����� , ��"����� . (A.2.18)

The cyclic identity implies

�����#�����#�����"0 . (A.2.19)

Again, exactly the same relations hold for dotted indices. The standard convention for summation
over spinor indices is

��"��"���� , �M �� "�� �M "�M �� �� �
� . (A.2.20)

The antisymmetric combination of a product of two Weyl spinors is given in terms of the
�-symbols as

����!����"#����	�	 , (A.2.21)

�M �� �� �Q !�M �Q �� �� "!��� �Q �M 	� �� 	
� . (A.2.22)

Tensors <��� with a pair of undotted and dotted spinor indices are equivalent to vectors <
�
. The

explicit relation is de"ned in terms of the �-matrices, which carry the index structure ����� , i.e.

<��� "����� <� . (A.2.23)

They are de"ned as

��"�
1 0

0 1�, ��"�
0 1

1 0�, ��"�
0 !i

i 0 �, ��"�
1 0

0 !1� . (A.2.24)

We frequently use also the �� -matrices,

�� ��� �"��� �Q �������Q "!(����)��� (A.2.25)

with numerical entries such that

�� �"��, �� �����"!������ . (A.2.26)

As a consequence of (A.2.25) we have also

(���) ��� "(�� ��)�� � , (���)� �� "(��� �) ��� . (A.2.27)

These matrices form a Cli!ord algebra, i.e.

(���� �#���� �) �� "!2���� �� , (A.2.28)

(�� ���#�� ���)�� �Q "!2������ �Q . (A.2.29)
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The products of two �-matrices can be written as

���� �"!���#2��� , (A.2.30)

�� ���"!���#2�� �� . (A.2.31)

The traceless antisymmetric combinations appearing here are de"ned as

(���) �� "�
�
(���� �!���� �) �� , (A.2.32)

(�� ��)�� �Q "�
�
(�� ���!�� ���)�� �Q . (A.2.33)

They are self-dual (resp. antiself-dual), i.e.

�
����

���"!2i�
��
, �

����
�� ��"#2i��

��
(A.2.34)

and satisfy (as a consequence of vanishing trace)

(�����)��"!(���) �� , (��� ���) ���Q "!(�� ��)�� �Q , (A.2.35)

(����)��"(����)��, (��� ��)�� �Q "(��� ��)�Q �� . (A.2.36)

Other useful identities involving two �-matrices are

tr(���� �)"!2��� , (A.2.37)

����� �� �
Q �
�

"!2�����Q�� , (A.2.38)

����� ����Q "!2������ �Q , (A.2.39)

�� ��� ��� �Q �
�

"!2������ �Q , (A.2.40)

which may be viewed as special cases of the `Fierza reshu%ing

����� ����Q "!�
�
������ �Q ���#��� �Q (����)��#���(��� ��)�� �Q

#(��
%
�)�� (��� �%)�� �Q #(��

%
�)�� (��� �%)�� �Q . (A.2.41)

As to the products of three �-matrices, useful identities are

(�����)��� "�
�
(������!������#i�����)�

���� , (A.2.42)

(���� ��)��� "�
�
(������!������#i�����)�

���� , (A.2.43)

(�� ���� �)�� �"�
�
(������!������!i�����)�� �� �

�
, (A.2.44)

(�� ����)�� �"�
�
(������!������!i�����)�� �� �

�
(A.2.45)
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and

(���� ���)��� "(!������#������!������#i�����)�
���� , (A.2.46)

(�� ����� �)�� �"(!������#������!������!i�����)�� �� �
�
. (A.2.47)

In explicit computations we also made repeated use of the relations

�
���Q (���) 	� "!�	�����Q #�

�
�	�����Q , (A.2.48)

�
���Q (�� ��)	

�

�� "#�	��Q ����� !�
�
�	��� ����Q , (A.2.49)

�� �Q �
�
(�� ��)�� 	� "!��Q	� �� ��

� �#�
�
���	� �� ��

Q � , (A.2.50)

�� �Q �
�
(���) �	 "#��	�� ��Q �!�

�
��	�� ��Q � , (A.2.51)

tr(������)"!�
�
(������!������#i�����) , (A.2.52)

tr(�� ���� ��)"!�
�
(������!������!i�����) , (A.2.53)

[���,���]"������!������!������#������ , (A.2.54)

	���,���
 �� "tr(������)��� , (A.2.55)

(����)��(�
��

�)�
"!�����
!��
��� , (A.2.56)

!

i
4!

�
����

(���� ����� �) �� "��� ,
i
4!

�
����

(�� ����� ���)�� �Q "����Q . (A.2.57)

Finally, let us note that

�
���
��� �Q �� ����� (��� ��)�Q �� "0 (A.2.58)

with cyclic permutations on vector and spinor indices.
In the Weyl basis the Dirac matrices are given by

��"�
0 ��

�� � 0 � . (A.2.59)

AMajorana spinor� is made of aWeyl spinor �� with two components, �"1, 2 and of its complex
conjugate �� �� , �� "1� , 2� :

�
	

"�
��
�� �� � , (A.2.60)

�M
	

"(��, �� �� ) . (A.2.61)
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A Dirac spinor is made of two di!erent Weyl spinors, �� ,�� �
� ,

�
�

"�
��
�� �� �, �M

�
"(��, �� �� ) . (A.2.62)

In the Lagrangian calculations we need to know conjugation rules

(�
�
���M

�
)�"!(�M

�
�� ��

�
)"#(�

�
���M

�
) ,

(�
�
����

�
)�"#(�M

�
�� ���M

�
)"!(�M

�
�� ���M

�
) (A.2.63)

and some Fierz relations

(�
�
�

�
)(�

�
�
�
)"!�

�
(�

�
�
�
)(�

�
�
�
) ,

(�
�
�

�
)(��

�
��
�
)"!�

�
(�

�
����

�
)(�

�
�
�
��
�
) ,

���� �Q "!�
�
����Q (��

�
�� ) . (A.2.64)

A.3. Spinor notations for tensors

We can convert vector indices into spinor indices and vice versa using � and �� matrices:

<��� "����� <� , (A.3.1)

<
�
"!�

�
�� �� �
�
<��� . (A.3.2)

So the scalar product of two vectors writes

¹
�
<�"!�

�
¹��� <��� . (A.3.3)

Tensors ¹�� , ¹M �� �Q with two spinor indices have the standard decompositions

¹��"#���¹#¹��� , (A.3.4)

¹M �� �Q "!��� �Q ¹M #¹M �� �Q�
(A.3.5)

with

¹"�
�
¹�� , ¹M "�

�
¹M ���� (A.3.6)

and

¹��� "�
�
(¹��#¹�� ) , (A.3.7)

¹M �� �Q�
"�

�
(¹M �� �Q #¹M �Q �� ) . (A.3.8)

P. Bine& truy et al. / Physics Reports 343 (2001) 255}462 385

Plrep=1020=EM=VVC



For an antisymmetric tensor with two indices, like F
��

"!F
��
, in spinor notations we have

F��Q ��� "����� ����Q F��
"[(����)����Q �� #(��� ��)�Q �� ���]F��

. (A.3.9)

Using the standard decomposition

F��Q ��� ,!2���F�Q ���
#2��Q �� F��� , (A.3.10)

we obtain

F��� "#�
�
(����)��F��

, (A.3.11)

F�Q ���
"!�

�
(��� ��)�Q �� F��

(A.3.12)

and vice versa

F
��

"(��
��

�)�Q ��F�� �Q�
!(��

��
)��F��� . (A.3.13)

As a consequence, the kinetic term reads

F��F
��

"2F��� F��� #2F�Q ���
F�Q ��� . (A.3.14)

One often uses the dual tensor de"ned as

HF��"�
�
�����F

��
, (A.3.15)

whose spinor components are

HF

Q ��� "2i�
Q ��F
��#2i�
�F
Q ��� . (A.3.16)

The topological combination HF��F
��
takes the form

HF��F
��

"2iF�Q ���
F�Q ��� !2iF���F��� . (A.3.17)

Along the same lines, for a symmetric tensor with two indices, S
��

"S
��
, one has the decomposition

S��Q ��� ,�����Q �� S#S��� �Q ���
"!�

�
�����Q �� S�

�
#2(��

%
�)�� (��� �%)�Q �� S��

. (A.3.18)

Finally, for a three-index, antisymmetric tensor, say H
���
, the spinor structure is most easily

analyzed using its dual tensor, HH�, de"ned as

HH�"
1
3!

�����H
���
, H

���
"�

����
*H� . (A.3.19)
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Then owing to the spinor expression for the �-symbol

�

Q ��� ��Q ��� "4i(�
�����
Q �Q ��� �� !�
Q �� ��Q �� �
����) , (A.3.20)

one obtains

H��� ��Q ��� "2i(��� �Q ���*H��� !������ �� *H��Q ) . (A.3.21)

Appendix B. Elements of U(1) superspace

As we have seen in the main text, ;(1) superspace provides the underlying structure for the
geometric description of the supergravity/matterYang}Mills system.Matter "elds are incorporated
through well-de"ned speci"cations in the ;(1) gauge sector, leading to KaK hler superspace ge-
ometry. Very often, however, explicit calculations are done to a large extend without taking into
account the special features of KaK hler superspace. For this reason we found it useful to provide
a compact account of the properties of ;(1) superspace.

B.1. General dexnitions

The basic super"elds are the supervielbein E 

	

(z), the Lorentz connection� 

	�

(z) and the gauge
potential A

	
(z) for chiral ;(1) transformations. These super"elds are coe$cients of 1-forms in

superspace,

E
"dz	E 

	

(z) , (B.1.1)

�

�
"dz	� 


	�
(z) , (B.1.2)

A"dz	A
	
(z) . (B.1.3)

Torsion curvatures and ;(1) "eld strengths are then de"ned as

¹
"dE
#E�� 

�

#w(E
)E
A , (B.1.4)

R 

�

"d� 

�

#� 
�

� 



, (B.1.5)

F"dA . (B.1.6)

The chiral ;(1) weights w(E
) are given as

w(E�)"0, w(E�)"1, w(E�� )"!1 . (B.1.7)

Torsion, Lorentz curvature and ;(1) "eld strength are 2-forms in superspace,

¹
"�
�
E�E¹ 


�
, (B.1.8)

R

�
"�

�
EE�R 


��
, (B.1.9)

F"�
�
EE�F

�
. (B.1.10)
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They satisfy Bianchi identities

D¹
!E�R 

�

!w(E
)E
F"0 . (B.1.11)

A more explicit form of the Bianchi identities is

�
����

(D
�

¹ 

�

#¹ �
�

¹ 

��

!R 

��

!w(E
)F
�

�

�
)"0 (B.1.12)

with the graded cyclic combination of superindices D, C, B de"ned as

�
����

DCB"DCB#(!)������BDC#(!)������CBD . (B.1.13)

Covariant derivatives are always understood to be maximally covariant, unless explicitly otherwise
stated. In our present case this means covariance with respect to both, Lorentz and ;(1)
transformations. As an example, take the generic 0-form super"eld �



of chiral weight w(�



). Its

covariant derivative is de"ned as

D
�
�



"E 	
�
R
	

�



!� 
�


�

#w(�



)A

�
�



(B.1.14)

with graded commutator

(D

,D

�
)�



"!¹ �

�
D

�
�



!R �
�


�
�
#w(�



)F

�
�


. (B.1.15)

The chiral weights of the various quantities are given as

w(D


)"!w(E
), w(¹ 


�
)"w(E
)!w(E�)!w(E) , (B.1.16)

w(R �
�


)"!w(E�)!w(E) . (B.1.17)

B.2. Torsion tensor components

For a discussion of the ;(1) superspace torsion constraints we refer to the main text and to the
original literature. Here we content ourselves to note that all the coe$cients of torsion, curvature
and ;(1) "eld strength are given in terms of the few super"elds

R, R�, G
�
, =����

, =�� �Q ���
(B.2.1)

and their superspace derivatives. The chiral weights of these super"elds are determined according
to their appearance in the torsion coe$cients (see below), i.e.

w(R)"#2, w(R�)"!2, w(G
�
)"0 , (B.2.2)

w(=����
)"#1, w(=�� �Q ���

)"!1 . (B.2.3)
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We present the torsion tensor components in order of increasing canonical dimension (remember
that [x]"!1 and []"!�

�
). We try to be as exhaustive as possible. In particular, in many

places we give the results in vector as well as in spinor notation, with �
�
&(�, �� ) de"ned as usual.

� Dimension 0:

¹ ��� "0, ¹�� �Q �"0 , (B.2.4)

¹ �Q �� "!2i(���) �Q� . (B.2.5)

� Dimension �
�
:

¹ ���� ,"0, ¹ ��� �
"0 . (B.2.6)

� Dimension 1: At this level appear the super"elds R,R� and G
�
, i.e.

¹ ��� " �
�
(��

�
�
�
) �� G�� ¹� ��Q �"i���G��Q , (B.2.7)

¹��
��� "! �

�
(��

�
�
�
)�� �� G� � ¹�� ��Q �� "i��Q �� G��� , (B.2.8)

¹���� "!i�
���� R�� ¹� ��Q �� "!2i�����Q �� R� , (B.2.9)

¹��
�
�"!i�� �� �

�
R� ¹�� ��Q �"!2i��� �Q ���R , (B.2.10)

¹ �
��

"0� ¹��� ��Q ��� "0 . (B.2.11)

� Dimension �
�
: Here, the basic objects are ¹ ��

��
, expressed in terms of the Weyl spinor super"elds

=����
, =�� �Q ���

and of spinor derivatives of the super"elds R, R� and G
�
. These properties are most

clearly exhibited using spinor notation, i.e.

¹ ��
��

� ¹ ����� ��Q "2��� �Q ¹ ����� !2���¹ ���� �Q�
(B.2.12)

with further tensor decompositions

¹����
"=����

#�
�
(���S�#���S� ) , (B.2.13)

¹�� �Q �R�
"=�� �Q ���

#�
�
(��� �� S�Q #��� �Q S�� ) . (B.2.14)

The various tensors appearing here are de"ned as

S�"¹ ���� "#�
�
D�Q G��Q !D�R"�

�
(¹

��
����)� , (B.2.15)

S�Q "¹ ���� �Q�
"!�

�
D�G��Q #D�Q R�"�

�
(¹

��
�� ��)�Q (B.2.16)

and
¹�� �Q ��

"!�
�
(D�� G��Q #D�Q G��� ) , (B.2.17)

¹���'
�

"#�
�
(D�G��� #D�G��� ) . (B.2.18)
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B.3. Curvature and ;(1) xeld strength components

The curvature 2-form takes its values in the Lie algebra of the Lorentz group. Vector and spinor
components are therefore related by means of the canonical decomposition

R �
� �

�R
���Q ��� "2��Q �� R����!2���R��Q ���

, (B.3.1)

as de"ned in Appendix A. Indices D and C are superspace 2-form indices. As a general feature of
superspace geometry, the components of curvature and ;(1) "eld strengths are completely
determined from the torsion components and their covariant derivatives. We proceed again in
order of increasing canonical dimension.

� Dimension 1: Here, the 2-form indices D and C are spinor indices:

R
� ��"8(�
��

�)
�R� , (B.3.2)

R
Q ��
��

"8(��
��

�)
Q ��R . (B.3.3)

R ��
 ��
"2iG�(���) ��
 �

����
. (B.3.4)

In spinor notation these components become, respectively,

R
���� "4(�
����#�
���� )R� , (B.3.5)

R
��Q ���
"0 , (B.3.6)

R
Q �� ��� "0 , (B.3.7)

R
Q �� �Q ���
"4(�
Q �Q ��� �� #�
Q �� ��� �Q )R , (B.3.8)

R
�� ��� "!�
�G��� !�
�G��� , (B.3.9)

R
�� �Q ���
"!��� �Q G
�� !��� �� G
�Q , (B.3.10)

The ;(1) "eld strengths are

F
�"0, F
Q �� "0, F ��
 "3(���) ��
 G�
. (B.3.11)

� Dimension �
�
: Bianchi identities tell us directly that the relevant curvatures are given in terms of

torsion as

R
���"i�
�

Q ¹ 
Q

��
!i�

�

Q ¹ 
Q
��

!i�
�

Q ¹ 
Q

��
, (B.3.12)

R 
Q
� ��

"i�� 
Q 

�

¹
��
!i�� 
Q 


�
¹

��
!i�� 
Q 

�

¹
��
 . (B.3.13)
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In spinor notation one obtains, respectively,

R
 ��� ��� "#i�
��
(�
�¹�����

#�
�¹�����
!�
����S�� ) , (B.3.14)

R
 ��� �Q ���
"#4i�
�=�� �Q ���

#i�
�Q ��

��� �Q �¹
����

#

1
3
�
�S�� � , (B.3.15)

R
Q ��� ��� "!4i�
Q ��=����
!i�

��
����¹
Q �� ��

#

1
3
�
Q �� S�� , (B.3.16)

R
Q ��� �Q ���
"!i�

�Q ��
(�
Q �� ¹�� �Q ��

#�
Q �� ¹�Q �� ��
!�
Q �Q ��� �� S� ) . (B.3.17)

Using the explicit form of the torsion coe$cients as de"ned in the previous subsection, these
curvatures may also be written as

R
 ��� ��� "i�
�� �

1
2
�
�D�G��� #

1
2
�
�D�G��� !�
����D�� R�� , (B.3.18)

R
 ��� �Q ��
�

"4i�
�=�� �Q ���
#i�

�Q ��
��� �� �

1
3
�
�XM �Q #

1
2
D
G��Q � , (B.3.19)

R
Q ��� ��� "!4i�
Q ��=����
#i�

��
����

1
3
�
Q �� X�#

1
2
D
Q G��� � , (B.3.20)

R
Q ��� �Q ���
"i�

�Q �� �
1
2
�
Q �� D�Q G��� #

1
2
�
Q �Q D�� G��� !�
Q �Q ��� �� D�R� . (B.3.21)

Here symmetric sums over indices �,� (resp. �� , �Q ) are understood in an obvious way and we have
used the de"nitions

X�"D�R!D�Q G��Q , (B.3.22)

XM �Q "D�Q R�!D�G��Q . (B.3.23)

These super"elds are naturally identi"ed in the ;(1) "eld strengths

F
�"
3i
2
D
G�

#

i
2
�
�

Q XM 


Q , (B.3.24)

F
Q
�
"

3i
2
D
Q G

�
!

i
2
�� 
Q 

�
X
 , (B.3.25)
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which, in spinor notation, read

F
 ��� "
3i
2
D
G��� #i�
�XM �� , (B.3.26)

F
Q ��� "
3i
2
D
Q G��� #i�
Q �� X� . (B.3.27)

� Dimension 2: The curvature tensor R �
���

has the property

R
�� ��

"R
�� ��

. (B.3.28)

Its decomposition in spinor notations is given as

R

Q ��� ��Q ��� "#4�
Q �� (��Q �� �
� ��� �
!����
� �( �'

� �
)#4�
�(����
Q ��� �Q ���

!��Q �� �
Q ��� ��� ) , (B.3.29)

where

�
�� ��� "�
����
"#(�
����#�
����)� , (B.3.30)

�
( �'� �( �'�
"�
Q �� �Q ���

#(�
Q �Q ��� �� #�
Q �� ��� �Q )� (B.3.31)

and

�" �
��
R ��

��
. (B.3.32)

The tensors appearing in the spinor decomposition of the curvature are, respectively,

¹ �
��
, ¹

���� the Rarita}Schwinger field strength ,

R �
���

the Lorentz curvature ,

X� , XM �
� the ;(1) superfield .

Here � 
����
and �
Q �� �Q ���

describe the Weyl tensor in spinor notation, whereas �
Q ��� ��� and � corres-
pond, respectively, to the Ricci R

��
"R �

���
tensor and to the curvature scalar R"R ��

��
. These

super"elds are related to the basic super"elds obtained in the preceding section in the following
way:

�
����
"�

�
(D
=����

#D�=��
�
#D�=�
��

#D�=
���
) , (B.3.33)

�
Q �� �Q ���
"�

�
(D
Q=�� �Q ���

#D��=�Q �� 
Q�
#D�Q=�� 
Q ���

#D��=
Q �� �Q�
) , (B.3.34)

�
�� �Q ���
"

1
8
�

�

�
�Q ��
(G
�Q G��� !�

�
[D
 ,D�Q ]G��� ) (B.3.35)
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and

�"! �
��
(D�D�R#D�� D��R�)# �

��
[D�,D�� ]G��� !�

�
G���G��� #2RR�. (B.3.36)

The ;(1) "eld strength F
��
with canonical spinor decomposition

F

Q ��� "2�
Q �� F
�� !2�
�F
Q ���

(B.3.37)

can be expressed as

F
�� "#

1
8
�

�
(D
D
QG�
Q #3iD 
Q
 G�
Q ) , (B.3.38)

F
Q ���
"!

1
8
�

Q ��
(D
Q D
G
�� #3iD

Q G
�� ) . (B.3.39)

B.4. Derivative relations

Superspace constraints, via the Bianchi identities, imply covariant restrictions on the basic
super"elds encountered in the previous subsections. Most important are the chirality conditions

D�R�"0, D��R"0 (B.4.1)

and

D�=�� �Q ���
"0 , D��=����

"0 . (B.4.2)

Super"eld expansions are de"ned in terms of covariant derivatives.We have seen that the geometry
of ;(1) superspace can be expressed in terms of some basic super"elds and their covariant
derivatives. Conversely, this means that tensors like ¹ �

��
, ¹

���� , R �
���

, X� , XM �
� are located in the

super"eld expansions of these basic super"elds. At dimension �
�
the relevant equations are

D�R"!�
�
X�!�

�
(¹

��
����)� , (B.4.3)

D�Q R�"!�
�
XM �Q !�

�
(¹

��
�� ���)�Q (B.4.4)

and

D�G�
"!�

�
(¹

��
��
�
����)�#�

�
(¹

��
�� ����

�
�)�!�

�
(XM ��

�
�)� , (B.4.5)

D�Q G
�
"#�

�
(¹

��
�
�
�� ���)�Q !�

�
(¹

��
����

�
�)�Q #�

�
(X�

�
�)�Q . (B.4.6)

Note that, in order to compactify the notation, we have suppressed a number of spinor indices.
They are easily (and without ambiguity) restored with reference to the index structures of
�-matrices explicitly de"ned in Appendix A. In spinor notation, these relations may equivalently be
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written as

D�R"!�
�
X�!�

�
S� , (B.4.7)

D�Q R�"!�
�
X�Q #�

�
S�Q (B.4.8)

and

D�G��� "#2¹��� �� #�
�
���S�� !�

�
���XM �� , (B.4.9)

D�Q G��� "!2¹�Q �� ��

!�
�
��Q �� S�!�

�
��Q �� X� . (B.4.10)

In the ;(1) gauge sector, at dimension 2, one has

D�XM �� "0, D�� X�"0 (B.4.11)

and

D�X�"D�� XM �
� . (B.4.12)

Substituting for X� , XM �
� yields the equivalent equations

D	D	G�
"4iD

�
R�, D	� D	� G

�
"!4iD

�
R (B.4.13)

and

D�D�R!D�� D��R�"4iD
�
G� . (B.4.14)

The orthogonal combination is given as

D�R#DM �R�"!�
�
R ��

��
!�

�
D�X�#4G�G

�
#32RR� . (B.4.15)

As a consequence of the chirality conditions, the mixed second spinor derivatives on R, R� are

D�� D�R"!2iD��� R!6G��� R , (B.4.16)

D�D�� R�"!2iD��� R�#6G��� R� . (B.4.17)

The relation

[D� ,D�Q ]G��� "!4���� �Q ���
#2G��Q G��� #4(���F�Q ���

#��Q �� F��� )

#2i���D	�Q G	�� !2i��Q �� D 	�� G�	� #�����Q �� (8RR�#2G�G
�
!�

�
D	X	!4�) , (B.4.18)

may be equivalently written as

[D� ,D�� ]G�
"!(�

�
)��� (4RR�#G�G

�
#�

�
R)#(��)��� (R��

#2G
�
G

�
#�

����
D�G�) . (B.4.19)
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As to the Weyl spinor super"elds, their non-trivial spinor derivatives are determined to be

D
=����
"�
����

#�
�
�
�D	=	���

#�
�
�
�D	=	���

#�
�
�
�D	=	���

, (B.4.20)

D
Q=�� �Q ���
"�
Q �� �Q ���

#�
�
�
Q �� D	�=	� �Q ���

#�
�
�
Q �Q D	�=	� �� ���

#�
�
�
Q �� D	�=	� �� �Q�

(B.4.21)

with

D	=	���
"!

1
6
�
��

(D�D	� G�	� #3iD 	�� G�	� )"!

4
3
F��� , (B.4.22)

D	�=	� �Q ���
"#

1
6
�
�Q ��

(D�Q D	G	�� #3iD	�Q G	�� )"!

4
3
F�Q ���

. (B.4.23)

Observe that these relations may also be identi"ed in the more compact identity

D�¹
�� �#D�� ¹ ��

��
"0 . (B.4.24)

B.5. Yang}Mills in ;(1) superspace

As in Section 2.3, the Yang}Mills connection and its curvature are Lie algebra valued forms in
;(1) superspace,

A"E
A���


T

���
"A���T

���
, (B.5.1)

F"�
�
E
E�F���

�

T

���
"F���T

���
(B.5.2)

with F"dA#AA, or

F���"dA���#
i
2
A���A���c ���

������
. (B.5.3)

The Bianchi identities are

DF"dF!AF#FA"0 , (B.5.4)

i.e.

DF���"dF���!iA���F���c ���
������

"0 . (B.5.5)

More explicitly, decomposing on the covariant superspace basis this 3-form, we obtain

�
��
�

(D

F

�

#¹ �

�
F

�

)"0 . (B.5.6)
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��The explicit solution of the constraints, as explained in Section 2.3, in particular the construction of the chiral and
antichiral basis, carries straightforwardly over to ;(1) superspace.

In the discussion of the Yang}Mills Bianchi identities the complete structure of;(1) superspace as
presented in this appendix must be taken into account, derivatives are now covariant with respect
Lorentz, chiral ;(1) and Yang}Mills gauge transformations. The covariant constraints��

F�� �Q "0, F��"0, F ��� "0 , (B.5.7)

together with the Bianchi identities restrict the form of the remaining components of the
Yang}Mills "eld strength such that

F��"#i(�
�
)��Q W�Q , (B.5.8)

F�Q
�
"!i(��

�
)�Q �W� , (B.5.9)

F
��

"�
�
(��

��
)��D�W�#�

�
(��

��
�)�Q ��D�� W�Q . (B.5.10)

The Yang}Mills super"elds

W�"W���� T
���
, W�� "W�����T

���
(B.5.11)

with respective chiral weights, #1 and !1, are subject to the reduced set of Bianchi identities

D�W�� "0, D��W�"0 , (B.5.12)

D�W�"D�� W�� . (B.5.13)

We also de"ne the D-term super"eld D��� as

D���"!�
�
D�W���� (B.5.14)

with vanishing chiral weight, w(D���)"0. In spinor notation the components of the "eld strength
are given as

F�Q ��� "2i��Q �� W� , (B.5.15)

F� ��� "2i���W�� (B.5.16)

and

F��Q ��� "2��Q �� F��� !2���F�Q ���
(B.5.17)

with

F��� "!�
�
(D�W�#D�W�) , (B.5.18)

F�Q ���
"#�

�
(D�Q W�� #D�� W�Q ) . (B.5.19)
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Conversely, the non-trivial spinor derivatives of the Yang}Mills super"elds are given as

D�W���� "!(����)��F���
��

!���D��� , (B.5.20)

D�Q W����� "!(��� ��)�Q �� F���
��

#��Q �� D��� (B.5.21)

and those of the D-term super"eld are

D�D���"i����� D�
W����� , (B.5.22)

D��D���"i�� ��� �D
�
W���� . (B.5.23)

The covariant derivative appearing here is de"ned as

D


D���"E 	



R
	
D���!iA���



D���c ���

������
. (B.5.24)

Recall that the graded commutator of two covariant derivatives is

(D
�
,D



)D���"!¹ �

�

D

�
D���!iF���

�

D���c ���

������
. (B.5.25)

In the case of the Yang}Mills super"elds additional terms appear due to their non-trivial Lorentz
and ;(1) structures:

(D

,D

�
)W���� "!¹ �

�
D

�
W���� !iF���

�
W���� c ���

������
!R 	

�� W���	 #F
�
W���� , (B.5.26)

(D

,D

�
)W����� "!¹ �

�
D

�
W����� !iF���

�
W����� c ���

������
!R

�
�� 	� W���	� !F

�
W����� . (B.5.27)

In the evaluation of (B.5.22) and (B.5.23) these relations are used in combination with (B.5.12) and
(B.5.13). Further useful relations are

D�W���� "4i����� D�
W����� #12R�W���� , (B.5.28)

D�W����� "4i�� ��� �D
�
W���� #12RW����� . (B.5.29)

Appendix C. Gauged isometries

In the general supergravity/matter/Yang}Mills system the chiral matter super"elds parametrize
a KaK hler manifold. These structures are quite well understood in the geometric framework of
KaK hler superspace. In general, from the point of view of di!erential geometry, KaK hler manifolds
admit non-linear isometry transformations, which can be gauged using suitable Yang}Mills
potentials.
This appendix provides a description of gauged isometries compatible with superspace. Of

course, the relevant language makes use of super"elds. In a "rst subsection we develop the general
formalism on a manifold parametrized by complex super"elds, not yet necessarily subject to
chirality conditions. The second subsection shows how KaK hler superspace can be modi"ed to take
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care of gauged isometries. The resulting geometric structure is called isometric Ka( hler superspace. In
the third subsection we derive the supergravity transformations in this context and in the fourth
and last subsection we establish the relation with Yang}Mills transformations of the matter
super"elds, which correspond to linear isometry transformations.

C.1. Isometries and superxelds

As a starting point we consider a complex manifold spanned by complex super"elds �� and their
complex conjugates �M �M . Following [6,7] we de"ne in"nitesimal variations

���"!����<
���

��, ��M �M "!����<M
���

�M �M , (C.1.1)

of generators <
���

and <M
���

which depend holomorphically (resp. anti-holomorphically) on the
super"eld coordinates

<
���

"< �
���

(�)
R
R��

, <M
���

"<M �M
���

(�M )
R
R�M �M (C.1.2)

and which satisfy commutation relations

[<
���
,<

���
]"c ���

������
<
���
, (C.1.3)

[<M
���
,<M

���
]"c ���

������
<M
���
, (C.1.4)

[<
���
,<M

���
]"0 . (C.1.5)

In addition to holomorphy properties, solution of the Killing equations of the hermitean metric
implies the appearance of Killing potentials, G

���
(�,�M ), such that

g
��M
<M �M

���
"#i

RG
���
R��

, g
��M
< �

���
"!i

RG
���
R�M �M . (C.1.6)

In the case of KaK hler geometry, i.e.

g
��M

"

R�K(�,�M )
R��R�M �M , (C.1.7)

these equations in turn are solved in terms of holomorphic (resp. anti-holomorphic) functions
F
���
(�) (resp. FM

���
(�M )) } which one might call Killing pre-potentials } such that

G
���

"

i
2
(<

���
!<M

���
)K!

i
2
(F

���
!FM

���
) (C.1.8)

and

(<
���

#<M
���
)K"F

���
#FM

���
. (C.1.9)
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As a consequence of the commutation relations for <
���
,<M

���
, the pre-potentials F

���
and FM

���
satisfy

consistency conditions

<
���
F
���

!<
���
F
���

"c ���
������

F
���

#iC
������

, (C.1.10)

<M
���
FM
���

!<M
���
FM
���

"c ���
������

FM
���

!iC
������

(C.1.11)

with antisymmetric separation constants

C
������

"!C
������

. (C.1.12)

Moreover, multiplying Eqs. (C.1.6), which de"ne the Killing potential G
���
, appropriately with

< �
���

(resp. <M �M
���
) one obtains

<
���
G

���
#<M

���
G

���
"0 . (C.1.13)

Other useful relations in this context are

<
���
G

���
!<

���
G

���
"c ���

������
G

���
#C

������
, (C.1.14)

<M
���
G

���
!<M

���
G

���
"c ���

������
G

���
#C

������
, (C.1.15)

(<
���

#<M
���
)G

���
"c ���

������
G

���
#C

������
. (C.1.16)

In the following, we shall restrict ourselves to cases where it is possible to take

C
������

"0 (C.1.17)

and discuss gauged isometries, i.e. variations of �� and �M �M where the parameters ���� are uncon-
strained real super"elds. Covariant derivatives are then constructed with the help of super"eld
gauge potentials which are 1-forms in superspace

A���"E
A���



(C.1.18)

subject to gauge variations

�A���"����A���c ���
������

!id���� . (C.1.19)

The covariant exterior derivatives of the matter super"elds are de"ned as

D��"(d#iA���<
���
)�� , (C.1.20)

D�M �M "(d#iA���<M
���
)�M �M . (C.1.21)

By construction, they change covariantly under gauged isometries, i.e.

�D��"!����
R< �

���
R��

D�� , (C.1.22)

�D�M �M "!����
R<M �M

���
R�M �M D�M �M . (C.1.23)
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Of course, the covariant exterior derivative is no longer nilpotent, its square being related to the
"eld strength

F���"dA���#
i
2
A���A���c ���

������
, (C.1.24)

such that

DD��"iF���<
���

�� , (C.1.25)

DD�M �M "iF���<M
���

�M �M . (C.1.26)

In a somewhat more explicit notation, i.e.

D��"E
D


��, D�M �M "E
D



�M �M (C.1.27)

and

F���"�
�
E
E�F���

�

, (C.1.28)

this yields the graded commutation relations

(D
�
,D



)��"!¹ 

�

D


��#iF���

�

<
���

�� , (C.1.29)

(D
�
,D



)�M �M "!¹ 

�

D


�M �M #iF���

�

<M
���

�M �M . (C.1.30)

C.2. Isometric KaK hler superspace

The composite KaK hler gauge potential was de"ned in terms of chiral matter super"elds as
a 1-form in superspace such that

A"

1
4
(K

�
d��!K

�M
d�M �M )#

i
8
E�(12G

�
#�� �� �

�
g
��M
D���D�� �M �

M ) . (C.2.1)

Consider now the spinor derivatives to be covariant with respect to gauged isometries, as de"ned
above, rendering the last term invariant. However, the term

	"K
�
d��!K

�M
d�M �M (C.2.2)

changes under gauged isometry transformations as

�	"!2id Im(����F
���
)#2i(d����)G

���
. (C.2.3)

This can be veri"ed using the relations presented so far. Interestingly enough, the "rst term has the
form of a gauge transformation, it closely resembles a KaK hler transformation. As to the second
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term, it is easy to see that it corresponds to

�(A���G
���
)"!i(d����)G

���
. (C.2.4)

Therefore, the combination

	I "	#2A���G
���

(C.2.5)

transforms as a gauge "eld, both under gauged isometries and under KaK hler transformations, i.e.

�	I "2i d[Im(F!����F
���
)] . (C.2.6)

This is completely in line with our understanding of supergravity/matter couplings, i.e. gauged
isometries can be reconciled with the structure of KaK hler superspace provided we replace 	 by
	I and require that the frame of superspace changes under a gauged isometry as well such that

�E
"!

i
2
w(E
)E
 Im(!����F

���
) . (C.2.7)

This leads us to the de"nition of isometric Ka( hler superspace, with a modi"ed composite gauge
potential

A"�
�
K

�
d��!�

�
K

�M
d�M �M #�

�
A���G

���
#

i
8
E�(12G

�
#�� �� �

�
g
��M
D���D�� �M �

M ) (C.2.8)

in the ;(1) sector, giving rise to the torsion 2-form

T
"dE
#E�� 

�

#w(E
)E
A , (C.2.9)

invariant under KaK hler transformations and gauged isometries. Gauged isometries appear in the
structure group of superspace via (C.2.7) in close analogy with KaK hler transformations. Covariance
with respect to these transformations is obtained with the help of the modi"ed gauge potential
de"ned in (C.2.8) and the usual rules of KaK hler superspace. Furthermore, following de"nitions
(C.1.20) and (C.1.21), the matter super"elds are de"ned to be covariantly chiral, i.e.

D��M �
M
"(E 	� R	#iA���� <M ��� )�M �

M
"0 , (C.2.10)

D�� ��"(E�� 	R
	

#iA�����<
���
)��"0 . (C.2.11)

Likewise, in the de"nition of A } cf. (C.2.8), one has

D���"(E 	� R	#iA���� <��� )�� , (C.2.12)

D�� �M �M "(E�� 	R
	

#iA�����<M
���
)�M �M . (C.2.13)

The superspace geometry we have established here describes supergravity and matter and accounts
consistently for KaK hler transformations and for gauged isometries of the KaK hler metric (of which
Yang}Mills symmetries are a particular case).
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The "eld strength super"elds X� ,XM �
� , already discussed in the ungauged case, receive now

additional contributions (hereafter we shall denote them X� and XM �� ), involving the Yang}Mills "eld
strength,F���, and the Killing potential,G

���
. To see this, apply the exterior derivative to 	I to obtain

d	I "2g
��M
D��D�M �M #2F���G

���
. (C.2.14)

Due to

A"

1
4
	I #

i
8
E�(12G

�
#�� �� �

�
g
��M
D���D�� �M �

M ) , (C.2.15)

the relation between d	I and F"dA is obvious. As before, the super"elds X� and XM �� are identi"ed
in the "eld strengths F�Q

�
and F�� as

X�"!

i
2
g
��M

����� D�
��D�� �M �M #

1
2
g
��M
D���FM �M #W���� G

���
, (C.2.16)

XM �� "!

i
2
g
��M

�� ��� �D
�
�M �MD���#

1
2
g
��M
D�� �M �M F�#W�����G

���
. (C.2.17)

In distinction to the ungauged case all derivatives are now fully covariant with respect to gauged
isometries. F� and FM �M are still de"ned as

F�"!�
�
D�D���, FM �M "!�

�
D�� D�� �M �M , (C.2.18)

but the covariant derivatives ofD��� andD�� �M �M appearing in this de"nition contain now new terms
which take into account the gauged isometries, explicitly

D
�
D���"E 	

�
R
	
D���!� 	

�� D	��#iA���
�

R< �
���
R��

D���!A
�
D���#��

��
D

�
��D��� ,

(C.2.19)

D
�
D�� �M �M "E 	

�
R
	
D�� �M �M !� ��

� 	� D	� �M �M #iA���
�

R<M �M
���
R�M �M D�� �M �M#A

�
D�� �M �M #��M nN �ND�

�M �MD�� �M �M .

(C.2.20)

The Yang}Mills super"elds appearing in (C.2.16) and (C.2.17) are identi"ed in the "eld strength
F���, i.e.

F�����"i�
���Q W����Q , F����Q

�
"i�� �Q �

�
W���� (C.2.21)

and satisfy relations (B.5.12) and (B.5.13). Since the Yang}Mills gauge potentials are now de"ned in
the framework of KaK hler superspace geometry, all the chiral weights and therefore the transforma-
tion laws under KaK hler transformations and gauged isometries are determined and should be taken
into account in the de"nition of covariant derivatives.
The relevant quantity in the construction of the component "eld action is the KaK hler D-term,

de"ned as the lowest component of the super"eld D�X� . The geometric construction presented
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so far has the great advantage that full invariance is automatically ensured. The explicit form of the
D-term super"eld is

!�
�
D�X�"!g

��M
���D

�
��D

�
�M �M !

i
4
g
��M

����� (D���D
�
D�� �M �M #D�� �M �M D

�
D���)

#g
��M
F�FM �M # �

��
R

��M ��M
D���D���D�� �M �

M D�� �M �M
!ig

��M
<M �M
���

W���� D���

!ig
��M
< �
���

W����� D�� �M �M !�
�
(D�W���� )G���

. (C.2.22)

The discussion of this section shows that gauged isometries allow for a very suggestive description
in the framework of KaK hler superspace geometry. The results presented here in super"eld form are
particularly useful to extract component "eld expressions in a constructive and concise way as
illustrated in Section 4, where we fully develop Lagrangians in component "elds.
So far we have mainly dealt with matter super"elds, which play the role of coordinates of the

KaK hler manifold, and with their covariant di!erentials. It will be useful to consider the more
general case of a generic super"eld, U�, of transformation law

�U�"!����
�< �

���
���

U� . (C.2.23)

For simplicity, we assumeU� to be a super"eld (0-form) of vanishing chiral weight and scalar with
respect to Lorentz transformations. The exterior covariant derivative is then de"ned as

DU�"dU�#iA���
R< �

���
R��

U�#��
��
D��U� (C.2.24)

with

DU�"E
D


U� . (C.2.25)

Note that, as a consequence of the chirality of the matter super"elds, the Levi}Civita term is absent
in D��U�.
The graded commutator of two such covariant derivatives is obtained in taking the covariant

exterior derivative of the 1-form DU�, i.e.

DDU�"iF����
R< �

���
R��

U�#< �
���

� �
��

U��!g��MR
��M ��M

D�M �MD��U� . (C.2.26)

Decomposing the left-hand term according to

DDU�"E
E�(D
�
D



U�#�

�
¹ 

�

D


U�) , (C.2.27)
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allows to read o! the graded commutator of two covariant derivatives of U� to be

(D
�
,D



)U�"!¹ 

�

D


U�#iF ���

�
 �
R< �

���
R��

U�#< �
���

��
��
U��

#g��MR
��M ��M

U�(D
�
�M �MD



��!(!)��D



�M �MD

�
��) . (C.2.28)

We have consideredU� as a super"eld inert under Lorentz and KaK hler transformations. The spinor
derivative D��� of a chiral super"eld �� will transform in the same manner as U� under gauged
isometries but will pick up additional contributions from Lorentz and KaK hler transformations.

C.3. Supergravity transformations

We have constructed a superspace geometry in terms of the basic geometric objects

� E
"dz	E 

	

frame of superspace,
� ��, �M �M chiral matter super"elds,
� A���"dz	A���

	
Yang}Mills potential.

The chiral matter super"elds take their values in a KaK hler manifold and we have seen that
superspace geometry and KaK hler geometry are intimately related. In order to describe gauged
isometries of the super"eld KaK hler metric we have introduced the corresponding Yang}Mills
potential. In"nitesimal variations of parameters

� �
	

superspace di!eomorphisms,
� � 


�
Lorentz transformations,

� ���� Yang}Mills transformations,

change the basic geometric objects such that

E
CE
#�E
 , (C.3.1)

��C��#��� , (C.3.2)

�M �M C�M �M #��M �M , (C.3.3)

A���CA���#�A��� (C.3.4)

with

�E
"¸�E
#E�� 

�

!

i
2
w(E
)E
 Im(F(�)!����F

���
(�)) , (C.3.5)

���"¸���!����< �
���

(�) , (C.3.6)

��M �M "¸��M �
M
!����<M �M

���
(�M ) , (C.3.7)

�A���"¸�A���!id����#����A���c ���
������

. (C.3.8)
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Here, the Lie derivative in superspace is de"ned as

¸�"n�d#dn� . (C.3.9)

Remarkably enough, KaK hler transformations and gauged isometries appear in a well-de"ned way
in the structure group of superspace. In the next step we wish to express these transformation laws
as much as possible in terms of covariant objects } torsion, "eld strength and covariant derivatives
} which were de"ned earlier as

T
"DE
"dE
#E�� 

�

#w(E
)E
A , (C.3.10)

D��"d��#iA���< �
���
(�) , (C.3.11)

D�M �M "d�M �M #iA���<M �M
���
(�M ) , (C.3.12)

F���"dA���#
i
2
A���A���c ���

������
. (C.3.13)

Straightforward substitution yields

�E
"D�
#n�T
#E�(� 

�

!n�� 

�
)!w(E
)E
�n�A#

i
2
Im(F!����F

���
)� , (C.3.14)

���"n�D��!(����#in�A���)< �
���
(�) , (C.3.15)

��M �M "n�D�M �M !(����#in�A���)<M �M
���
(�M ) , (C.3.16)

�A���"n�F���#(����#in�A���)A���c ���
������

!id(����#in�A���) . (C.3.17)

Supergravity transformations �
�

are then de"ned as certain combinations of superspace dif-
feomorphisms and "eld-dependent compensating Lorentz and gauged isometry transformations,
namely

� 

�

"n�� 

�

, (C.3.18)

����"!in�A��� . (C.3.19)

Taking into account the explicit form of A, } cf. (C.2.8), we obtain

�
�

E
"D�
#n�T
!

1
4
w(E
)E
(K

�
n�D��!K

�M
n�D�M �M )

!

i
8
w(E
)E
��(12G

�
#�� �� �

�
g
��M
D���D�� �M �

M ) , (C.3.20)

�
�

��"n�D�� , (C.3.21)

�
�

�M �M "n�D�M �M , (C.3.22)

�
�

A���"n�F���. (C.3.23)
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Recall that the last term in the transformation law of E
 is spurious in that it could be absorbed
in covariant rede"nitions of the "rst two terms. The interior product of �	 with torsion and
Yang}Mills "eld strength is de"ned as

n�T
"E��T 

�

, (C.3.24)

n�F���"E
��F���
�


. (C.3.25)

For later convenience we consider also generic super"elds � and U� of transformation laws

��"¸�d�!

i
2
w(�)� Im(F(�)!����F

���
(�)) , (C.3.26)

�U�"¸�U�!����
R< �

���
R��

U� (C.3.27)

and covariant derivatives

D�"d�#w(�)�A , (C.3.28)

DU�"dU�#iA���
R< �

���
R��

U�#��
��
D��U� . (C.3.29)

Straightforward substitution allows to derive the supergravity transformations

�
�

�"n�D�!�
�
w(�)�(K
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n�D��!K

�M
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M ) , (C.3.30)

�
�

U�"n�DU�#��
��
n�D��U� . (C.3.31)

The supergravity transformations presented so far at the full super"eld level will provide the basic
building blocks for the derivation of supersymmetry transformations of the component "elds. We
will also use these supergravity transformations in the more explicit form
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#E �
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�
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)E 
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M ) , (C.3.32)
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�� , (C.3.33)
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�M �M , (C.3.34)
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M ) , (C.3.35)
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U�#��
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D



��U� . (C.3.36)
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Observe the presence of the terms

K
�
n�D��!K

�M
n�D�M �M "�
(K

�
D



��!K

�M
D



�M �M ) . (C.3.37)

The corresponding gauge transformations are "eld-dependent KaK hler transformations and isomet-
ries, there is no free parameter which could compensate these terms unlike the case of Lorentz and
Yang}Mills transformations.

C.4. The Yang}Mills case

Let us consider the situation where the gauged isometries reduce to the standard Yang}Mills
transformations. This corresponds to the case where the isometries act linearly on the "elds
such that

< �
���

"<
���

��"#i(T
���

�)� , (C.4.1)

<M �M
���

"<M
���

�M �M "!i(�M T
���
)�M , (C.4.2)

where the T
���
, are in a suitable matrix representation of the generators of the gauge group

considered, with commutation relations

[T
���
,T

���
]"ic ���

������
T

���
, (C.4.3)

implied by those of the <
���
's. Using the notation A"A���T

���
, the covariant derivatives of the

matter super"elds take the form

D��"(d�!A�)�, D�M �M "(d�M #�M A)�M . (C.4.4)

Next, we can determine the Killing potential using (C.1.8) and (C.1.9). Since the KaK hler potential is
invariant under gauge transformations, (C.1.9) tells us
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�)�!K

�M
(�M T
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)�M "0"F

���
(�)#FM

���
(�M ) , (C.4.5)

implying that F
���
(�) and FM

���
(�M ) are just constants, which can safely be set to zero. The real Killing

potential G
���

then becomes
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�M
(�M T

���
)�M ] . (C.4.6)

Using this information, together with the vanishing of the Killing pre-potentials, in the combina-
tion 	I "	#2A���G

���
, we obtain

	#2A���G
���

"K
�
(d��#iA���< �

���
)!K

�M
(d�M �M #iA���<M �M

���
)

"K
�
D��!K

�M
D�M �M . (C.4.7)
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As a consequence, we recover the KaK hler connection A"A of Section 3.4.2, given as

A"

1
4
K

�
D��!

1
4
K

�M
D�M �M #

i
8
E�(12G

�
#�� �� �

�
g
��M
D���D�� �M �

M ) (C.4.8)

with Yang}Mills covariant derivatives everywhere.
Finally, the supergravity transformations are directly read o! from the previous discussions,

Eqs. (C.3.14)}(C.3.17) and (C.3.32)}(C.3.36).

Appendix D. Super5eld equations of motion

Given the geometric formulation of supersymmetric theories it is desirable to have a super"eld
action principle, in the sense that the variation of suitable superspace densities gives rise to
super"eld equations of motion.
On the other hand, the geometric descriptions of supersymmetric theories are characterized

by covariant constraints (torsion constraints for supergravity, "eld strength constraints for
Yang}Mills, 2- and 3-form gauge theories and chirality constraints for matter super"elds). As
a consequence, the basic building blocks initially used in the geometric construction (frame of
superspace, Lorentz, Yang}Mills, 2- and 3-form gauge potentials, and chiral super"elds) are no
longer the fundamental objects } they are given in terms of unconstrained pre-potentials which
arise from the explicit solution of the superspace constraint equations.
A possible way to formulate a super"eld action principle is therefore to write super"eld densities

in terms of the unconstrained pre-potentials and to vary them accordingly [80]. This approach is
particularly useful in the context of supergraph perturbation theory.
Another possibility [158], more closely related to superspace geometry, and which will be

pursued here, is to solve directly the variational version of the constraint equations. In this way,
one determines directly the variations of the basic geometric objects in terms of unconstrained
entities. In this (equivalent) formulation, superspace densities are written in the usual way and the
relation to component "eld formalism is quite transparent.
In this appendix we derive, as an example, the super"eld equations of motion for the complete

supergravity/matter/Yang}Mills system in the presence of gauged isometries. In the "rst two
subsections, we work in generic ;(1) superspace, de"ning and solving the variational constraint
equations in the "rst subsection and discussing superspace densities and integration by parts
in the second one. The variational equations pertaining to isometric superspace are treated in
Section D.4. In Section D.5 we derive the super"eld equations of motion for the complete
supergravity/matter/Yang}Mills system.

D.1. Integration by parts in ;(1) superspace

The super"eld action principle for supergravity proposed by Wess and Zumino [158,163] is
a generalization of usual gravity. In general relativity, especially when coupled to spinor "elds,
densities are constructed by means of the determinant of the vierbein, or frame. The corresponding
basic superspace object is E, the superdeterminant of the frame E 


	
in superspace. In general,
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a supersymmetric action will be given as the product of E with some suitable covariant super"eld,
integrated over superspace, i.e. over space}time and the anticommuting spinor coordinates. In the
derivation of super"eld equations of motion, integration by parts in superspace will be used
systematically. This means that expressions like

�
H

ED�v�, �
H

ED�� v�� , �
H

ED
�
v� (D.1.1)

with v
 some generic, covariant super"eld of chiral weight w(v
), should be related to pure
superspace surface terms. The asterisk indicates that integration is understood over full superspace,
i.e. anticommuting coordinates and space}time.
In order to explain the mechanism of integration by parts in some more detail let us recall "rst

some de"nitions. The exterior covariant derivative Dv
"dz	D
	
v
 being given as

Dv
"dv
#v�� 

�

#w(v
)v
A , (D.1.2)

we identify the 1-form coe$cients

D
	
v
"R

	
v
#(!)��v�� 


	�
#w(v
)A

	
v
 . (D.1.3)

Another crucial ingredient is the torsion 2-form ¹
"�
�
dz	dz�¹ 


�	
de"ned as

¹
"DE
"dE
#E�� 

�

#w(E
)E
A . (D.1.4)

Its components

¹ 

�	

"D
�
E 


	
!(!)��D

	
E 

�

(D.1.5)

are given in terms of the covariant derivatives

D
�
E 


	
"R

�
E 


	
#(!)������E �

	
� 

��

#w(E
)A
�
E 


	
. (D.1.6)

It is a matter of straightforward calculation to establish the superspace identity [163]

R
	
(Ev
E 	



)(!)�"E[R

	
v
#v�(R

�
E 


	
!(!)�� R

	
E 

�
)]E 	



(!)�

Covariantizing the derivatives, this identity takes the form

R
	
(Ev
E 	



)(!)�"ED



v
(!)�#Ev�¹ 


�

(!)�#E(w(E
)!w(v
))v
A



. (D.1.7)

This is the central point in the discussion of integration by parts in superspace. Observe that so far
we did not make any use of torsion constraints. Taking into account the explicit form of the torsion
coe$cients in;(1) superspace, one shows that the only non-vanishing contributions to the torsion
term are

¹ �
�� "#iG

�
, ¹ ��

� �� "!iG
�
, (D.1.8)
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which add to zero in the supertrace. The torsion term is therefore absent. If, in addition, we require

w(v
)"w(E
) , (D.1.9)

we obtain

R
	
(Ev
E 	



)(!)�"ED



v
(!)� . (D.1.10)

This establishes the relation alluded to above, identifying expressions like (D.1.1) as pure super-
space surface terms. This relation will be frequently used in the derivation of super"eld equations of
motion.

D.2. Variational equations in ;(1) superspace

We "rst introduce as basic variables the variations of the vielbein, Lorentz and;(1) connections
modulo the e!ects of superspace di!eomorphisms and structure group transformations. Sub-
sequently, we present a concise and systematic analysis of the consequences of the constraints of
;(1) superspace for these variables.

� Basic dexnitions: Consider the in"nitesimal variations

�E
"H
 , (D.2.1)

�� 

�

"� 

�

, (D.2.2)

�A"� (D.2.3)

of the frame, Lorentz and;(1) gauge potential. These superspace 1-forms are parametrized in such
a way that

H
"E�H 

�
, H 


�
"E 	

�
�E 


	
, (D.2.4)

� 

�

"E� 

�

, � 

�

"E 	


�� 

	�

, (D.2.5)

�"E
�


, �



"E 	



�A

	
. (D.2.6)

As a consequence of these de"nitions the variations of torsion, curvature and ;(1) "eld strength
become

�¹
"DH
#E�� 

�

#w(E
)E
� , (D.2.7)

�R 

�

"D� 

�

, (D.2.8)

�F"d� . (D.2.9)

Here,D denotes the covariant exterior derivative in ;(1) superspace. It is straightforward to work
out the explicit expressions for the coe$cients of these 2-forms in superspace. The torsion
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variational equations

�¹ 

�

"D

H 


�
!(!)��D

�
H 



#¹ �

�
H 


�
!H �


¹ 


��
#(!)��H �

�
¹ 


�

#� 

�

!(!)��� 

�

#w(E
)(�

�
�


!(!)���



�

�
) (D.2.10)

are of particular importance. The vielbein and gauge potential variations must leave the torsion
constraints invariant. This determines the unconstrained variational super"elds. The correspond-
ing variations of curvature and ;(1) "eld strength are

�R 

��

"D
�
� 


�
!(!)��D


� 


��
#¹ �

�
� 


��
!H �

�
R 


��
#(!)��H �


R 


���
,

(D.2.11)

�F
�

"D
�
�


!(!)��D


�

�
#¹ �

�
�

�
!H �

�
F

�
#(!)��H �


F
��

. (D.2.12)

Observe that the variational super"elds are determined modulo di!eomorphisms and structure
group transformations, i.e. upto rede"nitions of the form

�
�
H
"L�E
#E�� 


�
#w(E
)E
� , (D.2.13)

�
�
� 


�
"!D� 


�
#n�R 


�
, (D.2.14)

�
�
�"!d�#n�F . (D.2.15)

As a consequence, the variational equations change as

�
�
�¹
"L�¹
#¹�� 


�
#w(¹
)¹
� , (D.2.16)

�
�
�R 


�
"L�R 


�
#R 

�
� 



!� 
�
R 



, (D.2.17)

�
�
�F"L�F . (D.2.18)

The covariant Lie derivative appearing here is given as

L�"n�D#Dn� . (D.2.19)

Using n�E
"�
, the variation of H 

�

reads

�
�
H 


�
"�¹ 


�
#D

�
�
#� 


�
#w(E
)�


�
� . (D.2.20)

Similarly,

�
�
� 


�
"!D


� 

�

#��R 

��

, (D.2.21)

�
�
�



"!D



�#��F

�

. (D.2.22)

Clearly, the variational equations of the torsion constraints are invariant under these rede"nitions.

� Torsion constraints I: In a "rst step we consider the variational equations of the torsions

¹ ��� "0, ¹�� �Q �"0 , (D.2.23)

¹ �Q �� "!2i(���) �Q� , (D.2.24)

¹���� "0, ¹�� �Q �"0 . (D.2.25)
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From (D.2.10) we read o! the explicit equations

�¹ ��� "�
��

(D�H �� !H�	� ¹ 	� �� ) , (D.2.26)

�¹���� "�
��

(D�H��� !H %� ¹
%��� ) . (D.2.27)

The pure gauge solution of (D.2.26) and (D.2.27) is

H �� "D�
M �#
M 	� ¹ 	� �� , (D.2.28)

H��� "D�
M �� #
M %¹
%��� . (D.2.29)

Likewise, the complex conjugate equations are solved by

H�Q �"D�Q 
�#
	¹ �Q �	 , (D.2.30)

H�Q �"D�Q 
�#
%¹ �Q �
%

. (D.2.31)

Finally, making use of the invariance of the variational equations under rede"nitions of the form
(D.2.20) we arrive at

H �� "D�V�, H�Q �"!D�Q V� , (D.2.32)

H��� "!V�¹���� "iR�V��� , H�Q �"V�¹�Q �
�

"!iRV��Q . (D.2.33)

It remains to discuss the variation of (D.2.24),

�¹ �Q �� "D�H�Q �#D�Q H �� #¹ �Q %� H �
%

!H 	� ¹ �Q �	 !H�Q 	� ¹ 	� �� . (D.2.34)

We eliminate the traceless parts of H �� , H�Q �� by suitably choosing � �� , ��Q �� in (D.2.20) to arrive at

H �� "�
�
� �� H , (D.2.35)

H�Q �� "�
�
��Q �� HM . (D.2.36)

As a consequence, (D.2.34) becomes

¹ �Q %� H �
%

!�
�
(H#HM )¹ �Q �� ![D� ,D�Q ]V�"0 , (D.2.37)

showing that H �
�
is completely determined as a function of the unconstrained super"elds H#HM

and V�. In spinor notation this equation reads

H��Q ��� "!�����Q �� (H#HM )!
i
2
[D� ,D�Q ]V��� . (D.2.38)
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The supertrace of H 

�

is now given as

H 



(!)�"H#HM #

i
4
[D�,D�� ]V��� . (D.2.39)

Observe that we did not make use of the rede"nitions which correspond to the chiral ;(1)
in (D.2.20).

� Torsion constraints II: The variations of the torsions

¹ ��� "0, ¹ �Q� �� "0, ¹ ��� "0 (D.2.40)

give rise to the equations

D�H �
�

!D
�
H �� #� ��� #¹ ��� H �

�
!H 	�� ¹ �	� �

#H
�	� ¹	� �� "0, (D.2.41)

D�H�Q �� #D�Q H��� #¹ �Q %� H
%�� !H %� ¹ �Q

% �� !H�Q %¹
%��� #� �Q� �� !��Q �� ��"0 , (D.2.42)

�
��

(D�H �� !H %� ¹ �
%� #� ��� #�����)"0 . (D.2.43)

These relations serve to express the variations� ��� ,H
��� and �� in terms of the so far unconstrained

super"elds H,HM and V�. In this context it is convenient to de"ne

� �
�

"H �
�

!D
�
V�, (D.2.44)

�
��� "H

��� !V�¹
���� (D.2.45)

� �� "H �� #V�¹ ��� , (D.2.46)

��Q �� "H�Q �� #V�¹�Q
��� , (D.2.47)

� ��� "� ��� #V�R ���� , (D.2.48)

��"��#V�F�� (D.2.49)

and to write (D.2.41)}(D.2.43) in the form

� ��� #D�� �
�

#�
�	� ¹ 	� �� !2¹��	� D	� V�"0 , (D.2.50)

� �Q� �� !��Q �� ��#¹ �Q �� �
��� #D���Q �� !2(D�Q V�)¹���� "0 , (D.2.51)

� ��� #� ��� #� �� ��#� �� ��#D�� �� #D�� �� "0 (D.2.52)
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The "rst of these equations allows to determine both� ��� and �
��� . This is most easily seen in spinor

notation, where (D.2.50) takes the form

2��Q �� ����� !2������Q �R�
!4i������Q �� #D����Q ��� #4i���R�D�Q V��� "0 . (D.2.53)

Taking into account

���Q ��� "!�����Q �� (H#HM )!iD�D�Q V��� !iG��Q V��� #iG��� V��Q , (D.2.54)

we obtain

���Q ���
"!

i
4
D��

�Q ��
(D	D�Q V	�� !G	�Q V	�� ) , (D.2.55)

����� "

i
4
D��

��
G 	�� V�	� !�

��
���D��

1
2
(H#HM )#

i
4
D	D	� V		� � , (D.2.56)

as well as

8i���Q �� "!4��Q �� D�(H#HM )#2iD�D	D�� V	�Q !8iR�D�Q V��� . (D.2.57)

This exhausts the information contained in (D.2.50). Substituting these results reduces (D.2.51)
simply to

��"!D��H#

1
2
HM #

i
4
D	D	� V		� !

i
2
V�G

�� (D.2.58)

and (D.2.52) is then identically satis"ed.

� Torsion constraints III: As to the complex conjugate torsions,

¹�� �
�

"0, ¹�� �� "0, ¹�� �Q �� "0 , (D.2.59)

the variational equations read

D��H �
�

!D
�
H�� �#��� �

�
#¹��

�
�
� H �	�

#H 	
�

¹ �� �	 "0 , (D.2.60)

D��H �� #D�H�� �#¹ �� %� H �
%

!H�� %¹ �
%� !H %� ¹ �� �

%
#��� �� #������ "0 , (D.2.61)

�
�� �Q

(D��H�Q �� !H�� %¹ �Q
% �� #��� �Q �� !��Q �� ��� )"0 . (D.2.62)

In this sector it is convenient to de"ne

HM �
�

"H �
�

#D
�
V� , (D.2.63)

HM �
�

"H �
�

#V�¹ �
��

, (D.2.64)

HM �� "H �� !V�¹ ��� , (D.2.65)
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HM �Q �� "H�Q �� !V�¹ �Q
��� , (D.2.66)

�M �� �
�

"��� �
�

!V�R�� �
��

, (D.2.67)

�M �� "��� !V�F��
�
. (D.2.68)

With these notations and after some manipulations involving superspace Bianchi identities,
(D.2.60)}(D.2.62) can be written as

�M �� �
�

#D��HM �
�

#HM 	
�

¹ �� �	 #2¹�� 	
�
D	V�"0 , (D.2.69)

�M �� �� #����M �
�
#¹ �� �� HM �

�
#D��HM �� #2(D�V�)¹�� �

�
"0 , (D.2.70)

�M �� �Q �� #�M �Q �� �� !��Q �� �M �
�
!��� �� �M �

Q
#D��HM �Q �� #D�Q HM �� �� "0 . (D.2.71)

As before we employ spinor notation. Eq. (D.2.69) becomes

2��Q �� �M �� ��� !2����M �� �Q ���
#4i��� �Q HM ��Q �#D�� HM ��Q ��� #4i��� �Q RD�V��� "0 (D.2.72)

with

HM ��Q ��� "!�����Q �� (H#HM )#iD�Q D�V��� #iG��Q V��� !iG��� V��Q . (D.2.73)

From (D.2.72) we obtain

�M �� ��� "!

i
4
D�� �

��
(D	� D�V�	� #G 	�� V�	� ) , (D.2.74)

�M �� �Q ���
"!

i
4
D�� �

�Q ��
G	�Q V	�� #�

�Q ��
��� �Q D�� �

1
2
(H#HM )!

i
4
D	� D	V		� � , (D.2.75)

as well as

8iHM ��Q �"4���D�Q (H#HM )#2iD�Q D	� D�V�	� #8iRD�V��Q . (D.2.76)

Eq. (D.2.70) then yields

�M �� "D�� �HM #
1
2
H!

i
4
D	� D	V		� !

i
2
V�G

�� (D.2.77)

and (D.2.71) is identically satis"ed.
This concludes our discussion of torsion constraints at dimension"0 and �

�
in ;(1) superspace.

We have found that the vielbein and connection variations are described in terms of the independent
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unconstrained super"eldsH,HM andV�. The torsion coe$cients at dimension"1 can then be used
to determine the variations of the covariant super"elds R,R� and G

�
. For our present purpose it is

su$cient to work out �R and �R� (which are most conveniently obtained in using the correspond-
ing curvature equations)

�R"!(V�D
�
#HM !iV�G

�
)R!�

�
D�� D�� �H#HM !

i
2
D	� D	V		� � , (D.2.78)

�R�"#(V�D
�
!H#iV�G

�
)R�!�

�
D�D��H#HM #

i
2
D	D	� V		� � . (D.2.79)

� Chiral ;(1) gauge sector: The solutions of the constraints

F��"0, F�Q �� "0 , (D.2.80)

in the (�
�
, �
�
)-basis are parametrized in terms of a pre-potential K (which, later on will be

specialized to the KaK hler potential) such that

A�"#�
�
E 	� R	K , (D.2.81)

A�� "!�
�
E�� 	R

	
K . (D.2.82)

Using �A"�, the variation of these equations gives

��!H �� (A�
!�

�
D

�
K)!�

�
D��K"0 , (D.2.83)

��� !H�� �(A
�
#�

�
D

�
K)!�

�
D�� �K"0 . (D.2.84)

Taking into account our solution for H �



leads to

��"#D� (���K#V�A
�
!�

�
V�D

�
K) , (D.2.85)

�M �� "!D�� (�
�
�K#V�A

�
#�

�
V�D

�
K) . (D.2.86)

Finally, comparing with (D.2.58) and (D.2.77), we arrive at the chirality conditions

D��H#

1
2
HM #

1
4
�K#

i
4
D	D	� V		� #V��A�

!

i
2
G

��!
1
4
V�D

�
K�"0 , (D.2.87)

D���HM #
1
2
H#

1
4
�K!

i
4
D	� D	V		� #V��A�

!

i
2
G

��#
1
4
V�D

�
K�"0 . (D.2.88)
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These chirality constraints in turn are solved with the help of chiral projection operators acting on
unconstrained super"elds ;,;M and we obtain

H#HM "!

1
3
�K!

i
6
[D�,D�� ]V��� !

4
3
V��A�

!

i
2
G

��
!�

�
(D�D�!8R�);M !�

�
(D�� D�� !8R);, (D.2.89)

H!HM "2D�V
�
#V�D

�
K!2(D�D�!8R�);M #2(D�� D�� !8R); . (D.2.90)

In conclusion, the combinations H!HM and H#HM #�
�
�K of variational super"elds are given in

terms of unconstrained super"elds ;,;M and V
�
.

� Yang}Mills sector: We parametrize the variation of the Yang}Mills gauge potential in ;(1)
superspace such that

�A���"����"E
� ���



. (D.2.91)

The Yang}Mills "eld strength, F���"�
�
E
E�F ���

�

, de"ned as

F���"dA���#
i
2
A���A���f ���

������
, (D.2.92)

changes under these variations as

�F���"d����#i����A���f ���
������

"D���� . (D.2.93)

The variational equations of its coe$cients are

�F ���
�


"D
�
� ���



!(!)��D


� ���

�
#¹ �

�

� ���

�
!H �

�
F ���

�

#(!)��H �



F ���

��
. (D.2.94)

As in the gravitational case, we are only interested in in"nitesimal variations modulo ordinary
gauge variations ����, given as

�
M
����"d����#i����A���f ���

������
"D���� , (D.2.95)

�
M
�F���"i����F���f ���

������
. (D.2.96)

The solution of the variational equations of the constraints

�F ����� "0 , �F�Q �� ���"0 (D.2.97)

is expressed in terms of an unconstrained super"eld ���� such that

� ���� "#D�����#V%F ���
%� , (D.2.98)

��� ���"!D�� ����!V%F �� ���
%

. (D.2.99)

P. Bine& truy et al. / Physics Reports 343 (2001) 255}462 417

Plrep=1020=EM=VVC



The constraint

�F �� ���� "0 (D.2.100)

serves to express the vector component � ���
�

in terms of ���� as well. It is convenient to de"ne

� ���
�

"� ���
�

!V�F ���
��

!D
�
���� , (D.2.101)

�M ���
�

"� ���
�

#V�F ���
��

#D
�
���� . (D.2.102)

Accordingly, the solution of (D.2.100) can be written in two ways:

� ������ "iD�� ����� #i(D�� V�)F ���
�� , (D.2.103)

�M ������ "iD�� � ���� !i(D�V�)F ���
��� . (D.2.104)

The variations of the covariant Yang}Mills super"elds W ���� , W�� ��� are obtained from �F�Q ���
�
,

�F ����� to be

�W ���� "!V�D
�
W ���� !(HM #�

�
H)W ���� #i����W ���� f ���

������

#

i
2
(D	� D�V		� )W	���!

i
2
V�	� G		� W ���	 !�

�
(D	� D	� !8R)� ���� , (D.2.105)

�W ����� "#V�D
�
W ����� !(H#�

�
HM )W ����� !i����W ����� f ���

������

!

i
2
(D	D�� V		� )W	� ���!

i
2
V	�� G		� W ���	� #�

�
(D	D	!8R�)� ����� . (D.2.106)

D.3. Superspace densities

As a "rst application of the previous discussion, we consider the super"eld action

�
H

E . (D.3.1)

Recalling that the asterisk denotes integration over space}time and anticommuting coordinates,
this superspace integral might be called the volume of superspace. It serves to generalize theD-term
construction of invariant actions to local supersymmetry. Taking into account (D.2.39), the
variation of the superdeterminant

�E"EH 



(!)� (D.3.2)

gives rise to

��
H

E"�
H

E(H#HM ) (D.3.3)
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with superspace surface terms neglected after integration by parts. Observe that in generic ;(1)
superspace, the super"eld H#HM , as given in (D.2.89), contains �K, the variation of the ;(1)
pre-potential as an independent unconstrained variable. As a consequence, the super"eld equations
of motion would imply the volume of superspace to vanish. Therefore, the action (D.3.1) is not very
useful in;(1) superspace. However, when speci"ed to pure Wess}Zumino superspace (resp. KaK hler
superspace), �K will be subject to constraints and the same action will provide the pure supergrav-
ity (resp. supergravity/matter) action.
Another useful concept in constructing super"eld actions is the chiral density. It serves to

generalize the F-term construction of invariant actions to the case of local supersymmetry. As
a starting point consider the superspace action

�
H

E
R

S (D.3.4)

with S some generic chiral super"eld of weight w(S)"2 to ensure invariance under ;(1)
transformations. Using the relation

S"(D�� D�� !8R)�(S) , (D.3.5)

expressing the chiral super"eld in terms of the unconstrained super"eld �(S), together with
integration by parts yields

�
H

E
R
S"!8�

H

E�(S) . (D.3.6)

This shows that integrating the chiral super"eld S using the chiral density is the same as
integrating its pre-potential �(S) using the complete volume density. Note that adding a linear
super"eld to �(S) does not changeS. This is coherent with relation (D.3.6), because the superspace
integral of a linear super"eld vanishes (this, in turn, is due to the fact that a linear super"eld can be
expressed in terms of spinor derivatives of unconstrained pre-potentials).
In spite of the equivalence established in (D.3.6), it is very often quite useful to work with the

chiral density expression (D.3.4), and its complex conjugate

�
H

E
R�

SM (D.3.7)

with chiral weight w(SM )"!2 assigned toSM . Taking into account (D.2.39), as well as (D.2.78) and
(D.2.79) we "nd

��
H

E
R
S"�

H

E
R
((�S#V�D

�
S)#(H#2HM !iV�G

�
)S) , (D.3.8)

��
H

E
R�

SM "�
H

E
R�

((�M S!V�D
�
SM )#(HM #2H!iV�G

�
)SM ) (D.3.9)

with H and HM determined in (D.2.89) and (D.2.90).
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D.4. Variational equations in KaK hler superspace

So far, in this appendix, we worked in the framework of ;(1) superspace. Supergravity/matter
coupling is obtained in suitably specializing the ;(1) sector. We will present here the general case,
where chiral super"elds parametrize a KaK hler manifold with gauged isometries. The relevant
geometric framework is isometric KaK hler superspace as de"ned in Appendix C.2.
After a discussion of the variational equations for chiral super"elds and a summary of the

properties of covariant isometric superspace derivatives, we will solve the variational equations
pertaining to isometric superspace, thus identifying the fundamental variables relevant for the
derivation of super"eld equations of motions for the complete supergravity/matter/Yang}Mills
system.

� Chirality conditions: The variational equations corresponding to the chirality conditions can be
treated along the same lines as the constraint equations discussed earlier. We will "rst describe in
some detail the procedure for the super"eld �� and give the results for �M �M afterwards.
In (C.1.20), the covariant derivative D��"E
D



�� has been de"ned as

D��"(d#iA���<
���
)�� . (D.4.1)

Its variation in terms of ��� and �A���"���� is given as

�D��"D���#i����< �
���
(�) (D.4.2)

with the de"nition

D���"d���#iA���
R< �

���
R��

��� . (D.4.3)

Using

�D��"E
�D


��#E
H �



D

�
�� , (D.4.4)

the variational equation for D


�� becomes

�D


��"D



���#i����



< �

���
(�)!H �



D

�
�� . (D.4.5)

We are now in a position to study the consequences of the chirality condition D�� ��"0, i.e. to
determine the variations ��� of chirally constrained matter super"elds in terms of unconstrained
variational super"elds. This is achieved in taking the �� component of the previous equation

�D�� ��"0"D�� ���#i��� ���< �
���
(�)!H�� �D

�
�� (D.4.6)

and making use of (D.2.99), i.e.

��� ���"!D�� ����!V�F �� ���
�

, (D.4.7)
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in the second term. Taking into account (D.2.32) and (D.2.33) allows to write the third term in the
form

!H�� �D
�
��"!D�� (V�D

�
��)#V�[D�� ,D

�
]��#V�¹�� 	

�
D	�� . (D.4.8)

Finally, substituting (C.1.29) for the commutator, gives rise to the chirality condition

D�� ��"0 (D.4.9)

with

��"���#V�D
�
��!i����< �

���
. (D.4.10)

The corresponding expressions for ��M �M are obtained in complete analogy. There, the chirality
condition

D��� �
M
"0 (D.4.11)

is obtained for the combination

�� �M "��M �M !V�D
�
�M �M #i����<M �M

���
. (D.4.12)

The chirality conditions are solved in terms of unconstrained super"elds �� �M and ��, i.e.

�� �M "(D�D�!8R�)�� �M , (D.4.13)

��"(D�� D�� !8R)�� . (D.4.14)

� Covariant superspace derivatives and gauged isometries: Let U� be some generic p-form in
superspace, undergoing non-linear transformations

�U�"!����
R< �

���
R��

U� . (D.4.15)

For simplicity, we suppose that U� is inert under Lorentz and KaK hler transformations. The
exterior covariant derivative of this p-form is

DU�"dU�#(!)�iA���
R< �

���
R��

U�#(!)���
��
D��U� (D.4.16)

with ��
��

de"ned as in (2.4.3). In verifying the covariant transformation law of (D.4.16) it is
convenient to use identities such as

(<
���

#<M
���
)g

��M
#

R< �
���
R��

g
��M

#

R<M �M
���
R�M �M g��M "0 , (D.4.17)

(<
���

#<M
���
)g��M#

R< �
���
R��

g��M!
R<M �M

���
R�M �M g��

M
"0 (D.4.18)
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and

(<
���

#<M
���
)��

��
"

R< �
���
R��

��
��

!

R< �
���
R��

��
��

!

R< �
���
R��

��
��

!

R�< �
���

R��R��
. (D.4.19)

In the case p"0, U� is a super"eld and its covariant derivative is given as

DU�"E
D


U� . (D.4.20)

The graded commutator of two such covariant derivatives is obtained by taking the covariant
exterior derivative of (D.4.20), using (D.4.16) for p"1. The result is

DDU�"iF����
R< �

���
R��

U�#< �
���

��
��
U��!g��MR

��M ��M
D�M �M D��U� . (D.4.21)

Decomposing

DDU�"E
E�(D
�
D



U�#�

�
¹ 

�

D


U�) , (D.4.22)

we "nd

(D
�
,D



)U�"!¹ 

�

D


U�#iF���

�
�
R< �

���
R��

U�#< �
���

��
��
U��

#g��MR
��M ��M

U�(D
�
�M �M D



��!(!)��D



�M �MD

�
��) . (D.4.23)

The spinor derivativeD��� of a chiral super"eld �� transforms in the same manner as U� under
gauged isometries but picks up additional contributions from Lorentz and KaK hler transforma-
tions. Taking into account these modi"cations, we have

F�"!�
�
D�D��� (D.4.24)

and

D�F�"!2R�D��� . (D.4.25)

� Variations in isometric Ka( hler superspace: As we have shown in Appendix C.2, gauged isometries
can be included in the geometric description in replacing the generic ;(1) connection by the
composite connection

A"�
�
	I #

i
8
E�(12G

�
#�� �� �

�
g
��M
D���D�� �M �

M ) (D.4.26)

with

	I "K
�
d��!K

�M
d�M �M #2A���G

���
. (D.4.27)

The resulting geometric structure in superspace is called isometric KaK hler superspace. As
a consequence of the particular form of the composite connection, the variational equations in
the ;(1) sector will furnish additional information.
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Recall that the "eld strength F"dA satis"es the same constraints as that of the generic ;(1)
connection. For this reason the generic ;(1) pre-potential K will be replaced by a "eld-
dependent quantity. In standard KaK hler superspace, this is just the super"eld KaK hler potential.
In the presence of gauged isometries, the dependence on the matter sector and the Yang}Mills
sector involved in the gauging of isometries will be quite intricate.
Fortunately enough, in the investigation of the variational equations, the knowledge of the

explicit form of the composite pre-potential can be circumvented in considering directly the
variations in terms of A.
The relevant object in this analysis is the variation of 	I , which may be written as

�	I "d(K
�
���!K

�M
��M �M )#2 g

��M
D����M �M !2 g

��M
D�M �M ���#2����G

���
. (D.4.28)

We parametrize

�	I "E
B



(D.4.29)

and consider the spinor coe$cient

B�"E 	� R	(K�
���!K

�M
��M �M )#2 g

��M
D�����M �M #2����� G

���
. (D.4.30)

Taking into account the explicit expression for ����� } cf. (D.2.98), we obtain

B�"E 	� R	(K�
���!K

�M
��M �M #2����G

���
)

#2g
��M
D����� �M #2V�(F���

��G���
#g

��M
D

�
�M �MD���) . (D.4.31)

Remember that our aim is to determine �A"�, cf. (D.2.3), with the de"nition
��"��!V�F

�� , cf. (D.2.49). To this end we have to add the variation of the second term in
(D.4.26) to arrive at

��"�
�
E 	� R	�K�

���!K
�M
��M �M #2����G

���
#6iV�G

�
#

i
2
V��� �� �

�
g
��M
D���D�� �M �

M �
#�

�
g
��M
D����� �M . (D.4.32)

An explicit calculation shows that the last term in this equation can be written as a total spinor
derivative as well, namely

�
�
g
��M
D����� �M "E 	� R	(2�� �

M g
��M
F�!g

��M
D	��D	�� �M ) . (D.4.33)

This leads then to

��"�
�
E 	� R	�K�

���!K
�M
��M �M #2����G

���
#6iV�G

�
#

i
2
V��� �� �

�
g
��M
D���D�� �M �

M

#8�� �M g
��M
F�!g

��M
D	��D	�� �M � . (D.4.34)
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This relation summarizes the consequences of the variational equations in the;(1) sector which
arise from the fact that A is a composite connection, dependent on the KaK hler and Yang}Mills
sector. On the other hand, in the analysis of the consequences of the torsion constraints, } cf.
(D.2.58), the super"eld �� had been given in terms of the, up to this point, unconstrained
super"elds H and HM , i.e.

��"!E 	� R	�H#

1
2
HM #

i
4
D	D	� V		� !

i
2
V�G

�� . (D.4.35)

Comparing the expressions in (D.4.35) and (D.4.34) leads to a chirality condition which is solved
in terms of an unconstrained variational super"eld Z such that

H#�
�
HM "!

i
4
D	D	� V		� !

1
4
(K

�
���!K

�M
��M �M #2����G

���
)

!iV�G
�
!

i
8
V��� �� �

�
g
��M
D���D�� �M �

M

!2�� �M g
��M
F�#g

��M
D	��D	�� �M #(D	D	!8R�)Z . (D.4.36)

Performing the corresponding analysis for the complex conjugate sector leads to

HM #�
�
H"#

i
4
D	� D	V		� #

1
4
(K

�
���!K

�M
��M �M !2����G

���
)

!iV�G
�
!

i
8
V��� �� �

�
g
��M
D���D�� �M �

M

#2��g
��M
FM �M !g

��M
D	� �M �

M D	� ��#(D	� D	� !8R)Z� . (D.4.37)

This completes our discussion of the variational equations of superspace constraints. The basic
variational super"elds areV

�
andZ, Z� for supergravity,�� and �� �M for chiral matter super"elds

and ���� for the Yang}Mills sector. Recall that the variations ���, ��M �M are expressed in terms of
V

�
, �� and �� �M according to (D.4.10) and (D.4.12)}(D.4.14). Observe that in the standard

Yang}Mills case, i.e. no gauged isometries, the results (D.4.36) and (D.4.37) should reproduce
those derived from (D.2.89) and (D.2.90) with �K evaluated directly as a function of chiral
super"elds.

D.5. Variation of the action functionals

We are now in a position to derive the superspace equations of motion for the complete
supergravity/matter/Yang}Mills system. The full action

A"A
�
��	�����������

#A
���	}�����

#A
�
�����������

(D.5.1)
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consists of three separately supersymmetric and KaK hler invariant pieces. It remains to perform the
super"eld variations and write down the equations of motion.

� Variation of A
�
��	�����������

: The kinetic action for the supergravity#matter system is
given as

A
�
��	�����������

"!3�
H

E . (D.5.2)

This is the form of the prototype action (D.3.1) discussed earlier. In its variation, cf. (D.3.3),

�A
�
��	�����������

"!3�
H

E(H#HM ) , (D.5.3)

H#HM is given as the sum of (D.4.36) and (D.4.37), i.e.

�
�
(H#HM )"

i
4
[D	� ,D	]V		� !����G

���
!2iV�G

�
!

i
4

�� �� �
�
g
��M
D���D�� �M �

M

!2�� �M g
��M
F�#g

��M
D	��D	�� �M #2��g

��M
FM �M !g

��M
D	� �M �

M D	� ��

#(D	D	!8R�)Z#(D	� D	� !8R)Z� . (D.5.4)

Substituting, integrating by parts and neglecting superspace surface terms gives rise to

�A
�
��	�����������

"4i�
H

EV��G�
#

1
8

�� �� �
�
g
��M
D���D�� �M �

M�#16�
H

EZR�

#16�
H

EZ�R#4 �
H

EF�g
��M

�� �M !4�
H

E��g
��M
FM �M #2�

H

E����G
���

. (D.5.5)

� Variation of A
���	}�����

: The Yang}Mills action of (3.4.54) is obtained from the prototype action
(D.3.4) in identifying S with

S
���	}�����

"�
�
f
������

(�)W����W���� (D.5.6)

and accordingly forSM . The function f
������

(�) of the chiral matter super"elds is required to satisfy

<
���

f
������

(�)"f ���
������

f
������

(�)#f ���
������

f
������

(�) , (D.5.7)

assuring that S
���	}�����

is indeed a chiral super"eld of weight w(S
���	}�����

)"2. Then, taking
into account the variations of W���� and �� as determined in this appendix, working out
�S

���	}�����
, substituting in the general variation given in (D.3.8) and neglecting superspace
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surface terms yields, as an intermediate result

��
H

E
R
S

���	}�����
"

1
8 �

H

E
R

��
Rf

������
R��

W����W���� #

1
2 �

H

E f
������

W��������� . (D.5.8)

Using, furthermore, the explicit form of �� and ����� gives rise to

��
H

E
R
S

���	}�����
"!

1
2 �

H

E�����f������D�W���� #

Rf
������
R��

D���W�����
!

i
2 �

H

EV
�
W��������� W����� f

������
(�)!�

H

E��
Rf

������
R��

W����W���� . (D.5.9)

Observe that in the variation of the full Yang}Mills action

A
���	}�����

"Re�
H

E
R
S

���	}�����
, (D.5.10)

we have to take into account the complex conjugate term as well.

� Variation of A
�
�����������

: The action for the superpotential } cf. (3.4.55), is a special case of
prototype action as well, in this case we identify S with

S
�
�����������

"�
�
e��(�(M ���=(�) . (D.5.11)

In the presence of gauged isometries the condition

<
���
=#F

���
="0 (D.5.12)

ensures thatS
�
�����������

is indeed a chiral super"eld of weight w(S
�
�����������

)"2. An explicit
calculation shows that the variation of the superpotential term is given as

��
1
2 �

H

E
R
e���=�"!8�

H

EZ� e���=!4�
H

E�� e���(=
�
#K

�
=) . (D.5.13)

For the complete superpotential action

A
�
�����������

"Re�
H

E
R
S

�
�����������
, (D.5.14)

we have to take into account the complex conjugate term as well.

� The superxeld equations of motion: In order to "nd the super"eld equations of motion of the
complete action

A"A
�
��	�����������

#A
���	}�����

#A
�
�����������

, (D.5.15)
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we simply identify the factors of the various variational super"elds. From the coe$cient of
Z� we obtain

R!�
�
e���="0 . (D.5.16)

The super"eld equation corresponding to V� reads

G
�
#�

�
�� �� �
�
g
��M
D���D�� �M �

M
!�

�
�� �� �
�
( f#fM )

������
W���� W����� "0 . (D.5.17)

Matter and Yang}Mills variations, respectively, give rise to the equations of motion

4g
��M
FM �M #

Rf
������
R��

W����W���� #4 e���(=
�
#K

�
=)"0 (D.5.18)

and

1
2
f
������

D�W���� !

1
2
Rf

������
R��

D���W����!G
���

#h.c."0 . (D.5.19)

Appendix E. Linear multiplet component 5eld formalism

The discussion of the linear super"eld formalism in Section 5 was mainly in terms of super"elds.
As component "eld expressions are notoriously heavy in notations and size we have deferred their
presentation to the present appendix. We display here the complete component "eld action for the
particular kinetic potential K"K

�
(�,�M )#� log¸ of (5.5.15) and discuss shortly the e!ective

anomaly cancellation mechanism in terms of component "elds. This appendix is designed as
a complement to Section 5.

E.1. List of component xelds

Component "elds have been de"ned in various places in the main text. For the sake of clarity we
give here a complete list of the component "elds which will appear in the Lagrangian below:

� In the supergravity sector we have

e �
�
, � �

�
, �M

��� , M, MM , b
�
,

the vierbein and the Rarita}Schwinger "elds as dynamical variables and a complex scalar and
a real vector as auxiliary "elds.

� The matter sector is described in terms of

A�, AM �M , ��� , �� �M �� , F�, FM �M ,

a set of complex scalars and of Majorana spinors as physical "elds, together with another set of
complex scalars as auxiliary "elds, indices k and kM referring to the KaK hler variety.
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� The Yang}Mills sector contains

a
�
, ��, �M �� , D ,

the gauge potential, the gauginoMajorana spinor and a real scalar auxiliary "eld, all Lie algebra
valued with matricial generators T

���
in a suitable representation.

� The linear multiplet consists of

b
��
, ¸, �� , �M �� ,

an antisymmetric tensor gauge "eld, a real scalar and a Majorana spinor; it does not contain
auxiliary "elds. We should stress that in the actual component "eld Lagrangian given below the
Majorana spinor always appears in the combination ��"¸
��� and �� �� "¸
��M �� .

When derived from superspace, the component "eld Lagrangian contains a number of compact
building blocks, which arise in a natural manner and gather complicated component "eld
expressions in a concise way. The same structures appear in the derivation of supergravity
transformations. Examples of this mechanism are the spin connection, as de"ned in (4.1.15) and
(4.1.9), supercovariant "eld strength or curvature tensors like the curvature scalar in (4.1.35), the
projection R ��

��
� in (4.1.37), or the "eld strength ¹ �

��
, ¹

���� in (4.1.31) and (4.1.32). Other important
building blocks which arise naturally are the supercovariant component "eld derivatives and the
composite KaK hler connection. This has already been described in Section 4, for the general
supergravity/matter/Yang}Mills system, but is even more dramatic in the presence of linear
multiplets. For the sake of illustration we will discuss two examples of supercovariant component
"eld derivatives and the construction of the explicit form of the composite of the KaK hler connection
in the presence of a linear multiplet (coupled to Chern}Simons forms).

E.2. Construction of supercovariant derivatives

It might be instructive and useful to review shortly how the supercovariant component "eld
derivatives are derived from superspace. To be de"nite we shall discuss here as representative
examples the supercovariant derivatives of A� and ��� .
Let us begin with A�. The starting point is the superspace covariant exterior derivative

D��"d��!A���(T ����)� . (E.2.1)

Using the double-bar projection as introduced in Section 4 one "nds

D����"dx�(R
�
A�!ia���

�
(T

���
�)�) , (E.2.2)

suggesting the de"nition

D
�
A�"R

�
A�!ia���

�
(T

���
�)� (E.2.3)
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for the component "eld covariant space}time derivative. On the other hand, double-bar projection
in terms of covariant di!erentials gives

D����"dx��e �
�
D

�
���#

1

�2
� �

�
���#

1

�2
�M
��� �� ��

� � . (E.2.4)

The object D
�
��� is called the supercovariant space}time derivative of A�, explicitly given as

e �
�
D

�
���"D

�
A�!

1

�2
� �

�
���!

1

�2
�M
��� �� ��

� . (E.2.5)

The analogous construction for ��� is slightly more involved. Here the starting point is the
exterior covariant derivative

DD���"dD���!� �� D���!AD���!A���(T
���
D��)�#��

��
D��D��� , (E.2.6)

which upon double-bar projection gives rise to

DD�����"�2dx�(R
�
���!�

������!A
�
���!ia���

�
(T

���
�� )�#��

��
D

�
A����)

with D
�
A� de"ned above. This suggests to de"ne

D
�
���"R����!� �

�� ���!A
�
���!ia���

�
(T

���
�� )�#��

��
D

�
A���� . (E.2.7)

The double-bar projection on covariant di!erentials yields now

DD�����"dx�(e �
�
D

�
D����#�

�
� �

�
D�D����#�

�
�M

��Q D�Q D����) . (E.2.8)

Here, the quantityD
�
D���� is called the supercovariant component "eld derivative of ��� . However,

the two remaining terms still need some workout. Whereas the second term involves the auxiliary
"eld F�, the third term gives rise to the supercovariant component "eld derivative D

�
���, just

derived above. As a result one recovers the same form as in (4.3.11), i.e.

D
�
D����"e �

� ��2D
�
���!� �

�
F�#i(�M

�
�� �)��D�

A�!
1

�2
� 	
�

��	�� . (E.2.9)

Observe, however, that this expression is di!erent from (4.2.10), because now the composite KaK hler
connection A

�
contains additional terms due to the linear super"eld dependence of the kinetic

potential.

E.3. The composite ;
�
(1) connection

Let us "rst recall the identi"cation of the spinor and vector components of the ;
�
(1) gauge

potential in terms of the kinetic potentialK, adapted to the present situation, whereK depends on
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a linear super"eld as well. The relevant equations are generalizations of (3.4.20), which read now

A�"�
�
E 	� R	K(�,�M ,¸), A�� "!�

�
E�� 	R

	
K(�,�M ,¸) , (E.3.1)

A��� !
3i
2
G��� "

i
2
(D�A�� #D�� A� ) . (E.3.2)

The important point to notice here is that the entities which are known a priori are the covariant
components A� , A�� and A

�
. As a consequence, the space}time component A

�
identi"ed in (4.1.16),

i.e. A�"dx�A
�
(x), must be evaluated from the expression

A
�
(x)"e �

�
A

�
�#�

�
� �
�
A� �#�

�
�M
��� A�� � . (E.3.3)

Taking into account the linear multiplet couplings, Section 5, we obtain

A
�
�#

i
2
e �
�
b
�
"

1
4
K

�
D

�
A�!

1
4
K

�M
D

�
AM �M #

i
4
g
��M

���
�
�� �M

#

i�
6
e �
�
b
�
#

i�
4
k
¸

Hh
�

!

i�
4
k
¸

tr(��
�
�M )!

i�
8

��
�
��

!

�
8
(�

�
�
�
�� ��!�M

�
��
�
���� )!

�
8
�
����

�����M � . (E.3.4)

Compared to the pure KaK hler superspace construction, (4.1.24), i.e. without linear multiplets,
a number of new terms appear. In particular, the dual "eld strength of the antisymmetric tensor
gauge "eld,

Hh�"
1
3!

�����h
���

(E.3.5)

with h
���

identi"ed in (5.3.5), is given as

Hh�"
1
3!

������3R�b��
#k�a�

R
�

a
�
!

2i
3

a
�
a
�

a
��� . (E.3.6)

Instead of keeping all these terms encoded in the component "eld de"nitions of the covariant
derivatives, we only retain the combination

v
�

"

1
4
K

�
D

�
A�!

1
4
K

�M
D

�
AM �M #

i
4
g
��M

���
�
�� �M (E.3.7)

in these de"nitions. This renders the component "eld actionmore complicated, but shows explicitly
the various couplings related to the linear multiplet. The corresponding covariant derivatives will
be denoted �

�
, they coincide with those de"ned in Section 4.
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E.4. Genesis of the factor ¸K
�
!3

The chiral supergravity super"eldR and its spinor derivatives are essential building blocks in the
construction of supersymmetric actions and the derivation of supersymmetry transformations.
A detailed knowledge of D�R and D�D�R is crucial for the construction of supersymmetric
component "eld actions. In Section 5.4 we have pointed out modi"cations to the normalization of
the Einstein term in the linear super"eld formalism.
We will explain here in some detail the superspace mechanism which underlies these modi"ca-

tions. To be de"nite we shall consider the super"eld R. Its spinor derivative is given as

!3D�R"X�#4S� , (E.4.8)

as a consequence of the Bianchi identities, see (B.4.7). The super"eld S� , as de"ned in (B.2.16), is
related to the torsion ¹ �

��
, while X� is given in (5.4.3),

X�"!�
�
(DM �!8R)D�K(�,�M ,¸) . (E.4.9)

Although straightforward, it will be instructive to illustrate in detail the appearance of the term
¸K

�
D�R in X� , in successively applying the spinor derivatives. In a "rst step, we write

!8X�"DM �(K
�
D���)#DM �(K

�
D�¸) .

It is clear that the linearity condition will arise from the second term, evaluation of the spinor
derivatives yields

DM �(K
�
D�¸)"D�� (D��K

�
D�¸)#(D�� K�

)D��D�¸#K
�
[DM �,D�]¸#K

�
D�DM �¸ .

At this point the modi"ed linearity condition (5.2.18)

(DM �!8R)¸"2k tr(W	W	) ,

must be used to arrive at

K
�
D�DM �¸"8¸K

�
D�R#8RK

�
D�¸#2kD� tr(W	W	 ) .

In this way, we recover (5.4.5) in the form

X�"!¸K
�
D�R#>� (E.4.10)

with >� determined from the string of equations above. Combining this with (E.4.8) gives rise to

(¸K
�
!3)D�R">�#4S� , (E.4.11)

identifyingD�R in terms of other, already known, super"elds. When projected to lowest super"eld
components, S� � will contain the supercovariant "eld strength of the gravitino. As to >� �, one has to
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go through the various terms and identify properly the component "eld expressions. This is
straightforward, but rather lengthy, and will not be done here.

E.5. Supersymmetry transformations

One of the advantages of superspace geometry is that supersymmetry transformations are
de"ned geometrically. We have outlined in detail how this mechanism works in the case of
supergravity/matter coupled to Yang}Mills in Section 4.3, based on the general formalism
developed in Appendix C.3. Deriving supersymmetry transformations for component "elds
amounts to a bookkeeping activity in the sense that one has to apply a set of well-de"ned rules to
extract component "eld properties from superspace.
The emphasis will be rather on the method of derivation of the component "eld transformations

than their explicit gestalt (which is often quite lengthy and not very illuminating).
Here we will discuss supersymmetry transformations for component "elds in the linear super"eld

formalism, based on the general notion of supergravity transformations extended to 2-form
geometry. This will allow to derive the component "eld transformations for the linear multiplet,
coupled to the supergravity/matter/Yang}Mills system.
At the same time, the presence of the linear super"eld ¸ in the kinetic potentialK(�,�M ,¸), which

replaces the KaK hler potential, will modify the supersymmetry transformations in the supergravity,
matter and Yang}Mills sectors.
We will discuss here, sector by sector, how these modi"cations are induced from superspace

geometry, before turning to the derivation of the supersymmetry transformations of the linear
multiplet component "elds.

� Matter and Yang}Mills multiplets: The supersymmetry transformations of component "elds in the
case of the general supergravity/matter/Yang}Mills system have been derived in Section 4. The
transformations of A�, ��� , F� are given in (4.3.25)}(4.3.27), those of AM �, �� ��� , FM � in (4.3.32)}(4.3.34),
whereas those of the Yang}Mills multiplet a

�
, ��, �M �� , D are given in (4.3.36)}(4.3.39).

In the linear super"eld formalism, the general structure of these transformation laws remains
unchanged. The modi"cations caused by the linear "eld dependence of the kinetic potential
K(�,�M ,¸) occur in two ways. First of all, whenever a covariant space}time derivative acts on
a component of non-vanishing chiral weight, it should be written in terms of the new composite
;(1) connection (E.3.4) instead of (4.1.24).
The second source of modi"cations is the term n�A"�
A



, see (4.3.2), in the generic case of

a component with non-vanishing chiral weight. As A� and A�� are now given in terms of the
kinetic potential rather than the KaK hler potential, new terms appear. This amounts in replacing
everywhere the combination K

�
���!K

�M
�M �� �M by

K
�
���!K

�M
�M �� �M #

�

�2
K

�
(��!�M �� ) . (E.5.1)

In this way, the supergravity transformations of matter and Yang}Mills "elds are adapted to the
linear super"eld formalism.
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� Supergravity multiplet: The mechanism just pointed out will occur for the gravitino supergravity
transformations and the scalar auxiliary "elds as well. Geometrically, the starting point for
deriving supersymmetry transformations of the vierbein e �

�
and the gravitino � �

�
, �M

��� is the
general superspace equation (4.3.1)

�E 

	

"D
	

�
#E �
	

�¹ 

�

!w(E
)E 

	

�A

, (E.5.2)

derived in Section 4.3. This relation is still valid in the linear super"eld formalism. What kind of
modi"cations arise for the component "elds? Consider "rst the case of the vierbein e �

�
. Choosing

M"m andA"a in (E.5.2) and projecting to lowest components reproduces the supersymmetry
transformation (4.3.7). No dependence on the linear multiplet appears, the supersymmetry
transformation for e �

�
remains unchanged.

What happens in the case of the gravitino? Taking M"m and A"� gives rise to

�
�
�� �

�
"D

�
��#e �

�
��¹ ��� �#e �

�
��� ¹�� �

�
�!� �

�
(��A� �#�M �� A�� �) . (E.5.3)

Clearly, the torsion terms are expressed in terms of the supergravity auxiliary "elds as before, no
modi"cation. However, in the covariant derivative of �� } cf. (4.3.10) } the composite KaK hler
connection A

�
� is now given by (E.3.4) instead of (4.1.24). Moreover, in the last term, the linear

super"eld dependence must be taken into account, giving rise to the second type of modi"cation
pointed out before. It is then an easy exercise to write down explicitly all the terms in the
supersymmetry transformation of the gravitino in the linear super"eld formalism, the result
should be compared to (4.3.8) and (4.3.9).
Let us next turn to the auxiliary "eldsM,MM and b

�
. As we point out now, the situation is more

intricate in this case. To be de"nite we concentrate on M"!6R �. Its generic supersymmetry
transformation } cf. (4.3.16) } reads

�M"!6��D�R �!
1

�2
M�K�

���!K
�M
�M �� �M #

�

�2
K

�
(��!�M �� )� . (E.5.4)

As to the lowest component of D�R we should take into account the discussion in the previous
subsection, in particular (E.4.11). As a result, we "nd

�M"

1
(�!3)

(2��(����)�	¹ 	
��

�#��>� � )

!

1

�2
M�K�

���!K
�M
�M �� �M #

�

�2
K

�
(��!�M �)� . (E.5.5)

This is a very compact form of a quite complicated expression. First of all the supercovariant
"eld strength ¹ 	

��
� of the gravitino is given in (4.1.31). Here, the covariant derivative (4.1.28) must

now be written in terms of the composite KaK hler connection constructed in (E.3.4). As to >� �, its
super"eld form is to be determined from the string of equations of the preceding subsection
and then projected to lowest components with carefully paying attention to ;(1) covariant
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space}time derivatives. The procedure is straightforward, but a bit lengthy and so is the result,
which will not be presented here. Note, however, that the same quantity >� � appears in the
variation of b

�
as well.

� Linear multiplet: The linear multiplet and its couplings to the supergravity/matter/Yang}Mills
system, including Chern}Simons forms, is described in the framework of 2-form geometry in
superspace. In order to extract the supergravity transformations of the antisymmetric tensor we
have to extend the notion of supergravity transformations to this geometric structure as well.
Recall that invariance of the 3-form "eld strength H"dB#kQ under Yang}Mills gauge

transformations of the Chern}Simons form Q"tr(AF!1/3AAA) is achieved in assigning
a compensating Yang}Mills transformation to the 2-form gauge potential, in addition to
superspace di!eomorphisms and 1-form gauge transformations �"dz	�

	
, such that

�B"¸�B#d�#ik tr(�dA) (E.5.6)

with �"����T
���
. In the "rst term, we explicit the Lie-derivative, and use n�dB"n�H!n�Q with

n�Q"tr(An�F)#tr((n�A)dA) , (E.5.7)

to arrive at

�B"n�H!k tr (An�F)#d(�#n�B)#ik tr((�#n�A)dA) . (E.5.8)

Supergravity transformations, along the same lines of reasoning as in Appendix C.3 are then
de"ned as

�
)*

B"n�H!k tr(A n�F) , (E.5.9)

i.e. a combination of superspace di!eomorphisms and "eld-dependent compensating
Yang}Mills and 1-form gauge transformations of parameters

�"!n�A, �"!n�B . (E.5.10)

The supergravity transformation of the antisymmetric tensor gauge "eld b
��
(x) is then obtained

from (E.5.9) in applying systematically the double-bar projection, which yields

dx�dx� �
�
�
�

b
��

"dx�dx�[��
��

�#�M ��
��

�M !i¸�
�
�
�
�M !i¸�M

�
��
�
�

#ik tr(a
�
(��

�
�M #�M ��

�
�))]. (E.5.11)

Supergravity transformations of ¸(x) and �� , �M �
� are obtained in the usual way, applying spinor

derivatives to the super"elds ¸ and D�¸, D�� ¸. As to ¸(x) it is immediate to "nd �¸"��#�M �M .
The case of �� is slightly more interesting, let us outline the general procedure to obtain
its supergravity transformation. The starting point is the super"eld equation, �D�¸"

��D�D�¸#��Q D�Q D�¸ written in the form

�D�¸"!�
�
��D�¸#�

�
��Q 	D� ,D�Q 
¸!�

�
��Q [D� ,D�Q ]¸ . (E.5.12)
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Using the modi"ed linearity condition (5.2.18) and substituting for the commutator (5.2.20) gives
rise to

�D�¸"i�M �� (�� ��) ��� D�
¸!�

�
�M �� (�� ��) ��� �����H

���
!4��R�¸#2�M �� (�� ��) ��� G�

¸

!k�� tr(W�� W�� )#2k�M �� tr(W�W�� ) . (E.5.13)

The supergravity transformation of �� is then obtained after projecting to lowest super"eld
components with special care to the supercovariant component derivative D

�
¸ � and "eld

strength H
���

�.

E.6. Component xeld Lagrangian } I

We display here the complete component "eld Lagrangian for the example of Section 5, i.e.
a special kinetic function of the form

K(�,�M ,¸)"K
�
(�,�M )#� log¸ . (E.6.1)

Requiring a canonical normalization function N"1 gives rise to a subsidiary function

F(�,�M ,¸)"1!

�
3

#¸<(�,�M ) (E.6.2)

with arbitrary linear potential<(�,�M ). The component "eld action is then derived from the generic
procedure of Section 4.4, for the chiral super"eld (5.6.1) in Section 5.6, i.e.

r"!�
�
(DM �!8R)F(�,�M ,¸), r� "!�

�
(DM �!8R�)F(�,�M ,¸) (E.6.3)

with F given by (E.6.2). Working through all the necessary steps leads then to the Lagrangian
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Recall that the "rst term in this expression, the curvature scalar R, is de"ned in (4.1.35). As
mentioned above, the covariant derivatives �

�
coincide with those de"ned in Section 4. For

the sake of completeness, we recall here the explicit expressions. The nabla derivatives of the
Rarita}Schwinger "eld are given in (4.1.28) and (4.1.29),
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whereas (4.1.23) and (4.1.23) de"ne those of the matter complex scalars:
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The derivatives for the spinors in the matter sector are, (4.2.15) and (4.2.16),

�
�
���"R

�
���!� 	

�� ��	!ia���
�
(T

���
�� )�!v

�
���#�����

��
�
�
A� , (E.6.8)

�
�
�� �� �M"R

�
�� �� �M!� ��

� 	� �� 	
� �M
#ia���

�
(�� ��T

���
) �M

#v
�
�� �� �M#�� �� n���M

n��M
�

�
AM �M , (E.6.9)

whereas those of the Majorana spinor of the linear multiplet are given as
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Finally, the gaugino covariant derivatives, (4.5.27) and (4.5.28), are
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As to the "eld strength tensors, Hh�"�
�r
�����h

���
is given above in (E.3.6). The Yang}Mills "eld

strength, de"ned in (4.2.20), reads
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with dual 2Hf �����"�����f ���
��

.
As to the manifold of the matter scalar "elds, the basic objects are the kinetic potentialK and the

linear potential <. Subscripts attached to these objects denote derivatives with respect to the
complex scalars. In particular, the KaK hler metric g

��M
"K

��M
is de"ned in (2.4.8), and its inverse

shows up in the Levi}Civita symbols
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The curvature tensor is given as (2.4.4)
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As to the derivatives of the linear potential we have introduced the covariant objects
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Before turning to a discussion of the auxiliary "eld sector we shortly discuss the e!ective
transformations <C<#H#HM . Observe that any term containing either < itself or derivatives
<
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, <

�M
or <
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, <
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changes under such transformations. Of particular interest is the term
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which transforms into
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,

after integration by parts. On the other hand, the Yang}Mills kinetic term gives rise to
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.
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Finally, we have to comment on the structure of the auxiliary "eld sector. Collecting inL
�
�

all
the terms containing auxiliary "elds, that is componentsM, MM , b

�
, F�, FM �M and D

���
, we diagonalize

in terms of new, hatted auxiliary "elds which have trivial equations of motion. As a result, the
auxiliary sector of the Lagrangian takes the form
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Clearly, the role of e!ective transformations after elimination of the auxiliary "elds deserves
further study.

E.7. Component xeld Lagrangian } II

We can merge these new contributions into the Lagrangian and eliminate trivially the auxiliary
"elds; this will yield a huge expression which we simplify somehow by making the following
changes:

� Change the KaK hler metric in the Lagrangian. Consider the KaK hler potential

KK (�,�M ,¸)"K(�,�M ,¸)!3¸<(�,�M )"K
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we promote KK
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to a metric denoted G
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and de"ne symbols and tensors in this

new scheme. For instance,
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, (E.7.2)
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so that we can de"ne new Christo!el symbols
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and a curvature tensor
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We can then de"ne the corresponding `hata covariant derivatives like VK
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,VK
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, etc.

Finally, let us note that
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and that Yang}Mills invariance of KK tells us
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which again simpli"es the expression of the Lagrangian. With the new metric in the KaK hler
connection we de"ne new covariant derivatives
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Putting everything together this gives rise to the new Lagrangian
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Appendix F. Three-form gauge potential and Chern}Simons forms

The analogy between Chern}Simons forms and 3-form gauge potentials will be employed to
determine the Chern}Simons super"eld (5.2.21). To this end, we present "rst the explicit solution of
the 4-form constraints in terms of an unconstrained super"eld. Already important by itself,
in the description of constrained chiral multiplets } cf. Section 6 } this analysis underlies the
explicit construction of the Chern}Simons super"eld. After some general remarks and de"nitions

P. Bine& truy et al. / Physics Reports 343 (2001) 255}462 445

Plrep=1020=EM=VVC



concerning Chern}Simons forms in superspace, the Chern}Simons super"eld is determined as the
counterpart of the pre-potential of the 3-form.

F.1. Explicit solution of the constraints

As shown in the main text, the constraints

�
M �� �M 

"0 , (F.1.1)

allow to express all the coe$cients of the 4-form "eld strength in terms of the constrained chiral
"elds >,>M . The Bianchi identities in the presence of the constraints are summarized in the chirality
conditions together with the additional constraint (6.1.2). Alternatively, as we will explain now, the
explicit solution of the superspace constraints allows us to determine the unconstrained pre-
potential of the constrained super"eld. An important ingredient in this procedure will be the use of
the gauge freedom of the 3-form potential, C, parametrized by a 2-form �,

�C
�


"C
�


#�
�


(D

�

�

#¹ �

�
�

�

) . (F.1.2)

As usual �
�


denotes the graded sum CBA#(!)������BAC#(!)������ACB. In a "rst step
consider

�
��
"0 , (F.1.3)

which we satisfy with

C��
"D


;��#��� (D�;�
#¹ �


� ;�� ) (F.1.4)

and the complex conjugate

�
Q �� �Q



"0 , (F.1.5)

by

C�� �Q



"D


<�� �Q #�

�� �Q
(D��< �Q



#¹ �� �



< �Q
�
) . (F.1.6)

Since the pre-potentials ;�
 and < �Q



should reproduce the gauge transformations of the gauge
potentials C��
 and C�� �Q



we assign

;�
C
�;�
";�
#��
 (F.1.7)

and

<�Q


C �<�Q



"<�Q



#��Q



, (F.1.8)
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as gauge transformation laws for the pre-potentials. On the other hand, the so-called pre-gauge
transformations are de"ned as the zero modes of the gauge potentials themselves, that is trans-
formations which leave C��
 and C�� �Q



invariant. They are given as

;�
C;�
#D��
!(!)�D


��#¹ ��
 �

�
(F.1.9)

and

<�Q


C<�Q



#D�Q �



!(!)�D



��Q #¹�Q �



�
�
. (F.1.10)

We parametrize the pre-potentials now as follows:

; ��� "= ��� #¹ �� %� K
%
, (F.1.11)

<�Q �"= �Q� !¹ �Q %� K
%

(F.1.12)

and

;��"=��!D�K�
, (F.1.13)

<�Q
�
"=�Q

�
#D�Q K

�
. (F.1.14)

Explicit substitution shows that the K
�
terms drop out in C��
 and C�� �Q



. Denoting furthermore

;��"=�� and <�Q �� "=�Q �� , (F.1.15)

we arrive at

C��
"D


=��#��� (D�=�
#¹ �


� =��) , (F.1.16)

C�� �Q



"D


=�� �Q #�

�� �Q
(D��=�Q



#¹ �� �



= �Q

�
) , (F.1.17)

i.e. a pure gauge form for the coe$cientsC��
 andC�� �Q


with the 2-form gauge parameter� replaced

by the pre-potential 2-form

="�
�
E
E�=

�

with =

��
"0 . (F.1.18)

We take advantage of this fact to perform a rede"nition of the 3-form gauge potentials, which has
the form of a gauge transformation,

CK :" 
)C"C!d= . (F.1.19)
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This leaves the "eld strength invariant and leads in particular to

CK ��
"0 and CK �� �Q



"0 , (F.1.20)

whereas the coe$cient C �Q� �
is replaced by

CK �Q� �
"C �Q� �

!D�=�Q
�
!D�Q=��!D

�
= �Q� . (F.1.21)

We de"ne the tensor decomposition

CK �Q� �
"¹ �Q %� (�

%�
�#=K

�%��
#�I

�%��
) , (F.1.22)

where=K
�%��

is antisymmetric and �I
�%��

symmetric and traceless, and perform another rede"nition
which has again the form of a gauge transformation, this time of parameter

=K "�
�
E�E�=K

����
, (F.1.23)

such that

�"
)K CK "CK !d=K . (F.1.24)

Note that this reparametrization leaves CK ��
 and CK �� �Q


untouched, they remain zero.

Let us summarize the preceding discussion: we started out with the 3-form gauge potential C.
The constraints on its "eld strength led us to introduce pre-potentials. By means of pre-potential-
dependent rede"nitions of C, which have the form of gauge transformations (and which, therefore,
leave the "eld strength invariant), we arrived at the representation of the 3-form gauge potential in
terms of �, with the particularly nice properties

���
"0, ��� �Q



"0 (F.1.25)

and

� �Q� �
"¹ �Q %� (�

%�
�#�I

�%��
) . (F.1.26)

Clearly, in this representation, calculations simplify considerably. We shall therefore, from now on,
pursue the solution of the constraints in terms of � and turn to the equation

� �Q ��
� "0"�
�Q ��


�
¹ �� %
 � �Q

% � , (F.1.27)

which tells us simply that �I
����

is zero. Hence,

� �Q� �
"¹ �Q� �

� . (F.1.28)

We turn next to the constraints

� �� �Q
� "0"�
�� �Q
(D�� � �Q
 �

#¹ �� %
 � �Q
% �

) (F.1.29)
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and

�
Q ���"0"��� (D��
Q ��#¹ 
Q %� �
%��) , (F.1.30)

which, after some straightforward spinor index gymnastics give rise to

����"2(�
��
) 	� D	� , (F.1.31)

���
��

"2(��
��
)�� 	� D	� � . (F.1.32)

This completes the discussion of the solution of the constraints, we discuss next the consequences
of this solution for the remaining components in �, i.e. �
M �� ��

, �
M ���
and �

����
. As a "rst step we

consider

�
���"�
� (D
����!¹
�	� � 	�� �
#¹
�	� � 	�� �

) , (F.1.33)

and

�
Q ��
��

"�

Q ��
(D
Q ���

��
!¹
Q 	

�
� ��	 �

#¹
Q 	
�

� ��	 �
) . (F.1.34)

Substituting for the 3-form gauge potentials as determined so far, and making appropriate use of
the supergravity Bianchi identities yields

�
���"!2(�
��

�)
�(D�!8R�)� (F.1.35)

and

�
Q ��
��

"!2(��
��

�)
Q �� (DM �!8R)� . (F.1.36)

The appearance of the chiral projection operators suggests to de"ne

>M "!4(D�!8R�)� , (F.1.37)

>"!4(DM �!8R)� . (F.1.38)

The gauge invariant super"elds > and >M have chirality properties

D�>M "0, D��>"0 (F.1.39)

and we obtain

�
���"�
�
(�

��
�)
�>M , (F.1.40)

�
Q ��
��

"�
�
(��

��
�)
Q ��> . (F.1.41)
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In the next step we observe that, due to the information extracted so far from the solution of the
constraints, the "eld strength

� ��
 ��
"¹ �� �
 �

���
(F.1.42)

is determined such that �
���

is totally antisymmetric in its three vector indices. As, in its explicit
de"nition a linear term appears (due to the constant torsion term), i.e.

� ��
 ��
"¹ �� �
 �

���
#derivative and other torsion terms , (F.1.43)

we can absorb �
���

in a modi"ed 3-form gauge potential

�
� ���

"�
���

!�
���

, (F.1.44)

such that the corresponding modi"ed "eld strength vanishes, i.e.

�
�

��
 ��
"0 . (F.1.45)

The outcome of this discussion is then the relation

([D� ,D�� ]!4G��� )�"!�
�
�
���� ������� ���

, (F.1.46)

which identi"es �
� ���

in the super"eld expansion of the unconstrained pre-potential �.
Working, from now on, in terms of the modi"ed quantities, the remaining coe$cients, at

canonical dimensions 3/2 and 2, i.e. �
� 
M ���

and �
� ����

, respectively, are quite straightforwardly
obtained in terms of spinor derivatives of the basic gauge invariant super"elds > and >M . To be
more precise, at dimension 3/2 one obtains

�
� 
 ���

"! �
��

��

Q �����D
Q>M , (F.1.47)

�
�

Q
���

"# �
��

�� �
Q 
�
����

D
> (F.1.48)

and the Bianchi identity at dimension 2 takes the simple form

(D�!24R�)>!(DM �!24R)>M "
8i
3

������
� ����

. (F.1.49)

As to the gauge structure of the 3-form gauge potential we note that in the transition from C to
�, the original 2-form gauge transformations have disappeared, � is invariant under those. In
exchange, however, as already mentioned earlier, � transforms under so-called pre-gauge trans-
formations which, in turn, leave C unchanged. As a result, the residual pre-gauge transformations
of the unconstrained pre-potential super"eld,

�C��"�#� (F.1.50)

are parametrized in terms of a linear super"eld � which satis"es

(D�!8R�)�"0, (DM �!8R)�"0 . (F.1.51)
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In turn, � can be expressed in terms of an unconstrained super"eld, as we know from the explicit
solution of the superspace constraints of the 2-form gauge potential, actually de"ning the linear
super"eld geometrically. In other words, the pre-gauge transformations should respect the particu-
lar form of the coe$cients of the 3-form �.

F.2. Chern}Simons forms in superspace

Under gauge transformations the Chern}Simons 3-forms change by the exterior derivative of
a 2-form, which depends on the gauge parameter and the gauge potential. Due to this property one
may understand the Chern}Simons form as a special case of a generic 3-form gauge potential } cf.
the preceding subsection. This point of view is particularly useful for the supersymmetric case. To
be as clear as possible we "rst recall some general properties of Chern}Simons forms in superspace.
To begin with we consider two gauge potentials A

�
andA

�
in superspace. Their "eld strength

squared invariants are related through

tr(F
�
F

�
)!tr(F

�
F

�
)"dQ(A

�
,A

�
) . (F.2.1)

This is the superspace version of the Chern}Simons formula, where

F
�
"dA

�
#A

�
A

�
, F

�
"dA

�
#A

�
A

�
. (F.2.2)

On the right appears the superspace Chern}Simons form

Q(A
�
,A

�
)"2�

�

�

dt tr	(A
�
!A

�
)F

�

 , (F.2.3)

where

F
�
"dA

�
#A

�
A

�
(F.2.4)

is the "eld strength for the interpolating gauge potential

A
�
"(1!t)A

�
#tA

�
. (F.2.5)

The Chern}Simons form is antisymmetric in its arguments, i.e.

Q(A
�
,A

�
)"!Q(A

�
,A

�
) . (F.2.6)

In the particular case A
�
"A, A

�
"0, one obtains

Q(A)"Q(A, 0)"tr(AF!�
�
AAA) . (F.2.7)

We shall also make use of the identity

Q(A
�
,A

�
)#Q(A

�
,A

�
)#Q(A

�
,A

�
)"d�(A

�
,A

�
,A

�
) (F.2.8)
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with

�(A
�
,A

�
,A

�
)"tr(A

�
A

�
#A

�
A

�
#A

�
A

�
) . (F.2.9)

This last relation (the so-called triangular equation) is particularly useful for the determination of
the gauge transformation of the Chern}Simons form. The argument goes as follows: "rst of all,
using the de"nition given above, one observes that

Q(uA, 0)"Q(A, duu
�) . (F.2.10)

Combining this with the triangular equation for the special choices

A
�
"0, A

�
"A, A

�
"duu
� , (F.2.11)

one obtains

Q(0,A)#Q(uA, 0)#Q(duu
�, 0)"d tr(Aduu
�) , (F.2.12)

or, using the antisymmetry property

Q(uA)!Q(A)"d tr(Aduu
�)!Q(duu
�) . (F.2.13)

The last term in this equation is an exact di!erential form in superspace as well, it can be written as

Q(duu
�)"d� , (F.2.14)

where the 2-form � is de"ned as

�"�
�

�

dt tr(R
�
u
�
u
�
�

du
�
u
�
�

du
�
u
�
�

) (F.2.15)

with the interpolating group element u
�
parametrized such that for t3[0,1]

u
�
"1, u

�
"u . (F.2.16)

This shows that the gauge transformation of the Chern}Simons form, which is a 3-form in
superspace, is given as the exterior derivative of a 2-form

Q(uA)!Q(A)"d	(u,A) (F.2.17)

with 	"�!�.
The discussion so far was quite general and valid for some generic gauge potential. It does not

only apply to the Yang}Mills case but to gravitational Chern}Simons forms as well.

F.3. The Chern}Simons superxeld

We specialize here to the Yang}Mills case, i.e. we shall now take into account the covariant
constraints on the "eld strength, which de"ne supersymmetric Yang}Mills theory. It is the purpose
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of the present subsection to elucidate the relation between the unconstrained pre-potential, which
arises in the constrained 3-form geometry, and the Chern}Simons super"eld. Moreover, based on
this observation and on the preceding subsections we present a geometric construction of the
explicit form of the Yang}Mills Chern}Simons super"eld in terms of the unconstrained pre-
potential of supersymmetric Yang}Mills theory.
In this construction of the Chern}Simons super"eld we will combine the knowledge acquired in

the discussion of the 3-form gauge potential with the special features of Yang}Mills theory in
superspace. Recall that the Chern}Simons super"eld �YM is identi"ed in the relations

tr(W�� W�� )"�
�
(D�!8R�)�YM , (F.3.1)

tr(W�W�)"�
�
(DM �!8R)�YM . (F.3.2)

The appearance of one and the same super"eld under the projectors re#ects the fact that the
gaugino super"elds W�� are not only subject to the chirality constraints (2.3.33) but satisfy the
additional condition (2.3.34). It is for this reason that the Chern}Simons form can be so neatly
embedded in the geometry of the 3-form. As explained in Section 5.2 the terms on the left-hand side
are located in the superspace 4-form

�YM
"tr(FF) . (F.3.3)

Of course, the constraints on the Yang}Mills "eld strength induce special properties on the 4-form
coe$cients, in particular

�YM


M �� �M 

"0 , (F.3.4)

which is just the same tensor structure as the constraints on the "eld strength of the 3-form gauge
potential. Therefore the Chern}Simons geometry can be regarded as a special case of that of the
3-form gauge potential. Keeping in mind this fact we obtain

�YM


���"�
�
(�

��
�)
�>M

YM , (F.3.5)

�YM
Q ��
��

"�
�
(��

��
�)
Q ��>YM (F.3.6)

with

>YM
"!8 tr(W�W� ) , (F.3.7)

>M YM
"!8 tr(W�� W�� ) . (F.3.8)

These facts imply the existence and provide a method for the explicit construction of the
Chern}Simons super"eld: comparison of these equations with those obtained earlier in the 3-form
geometry clearly suggests that the Chern}Simons super"eld �YM will be the analogue of the
unconstrained pre-potential super"eld� of the 3-form. In order to establish this correspondence in
full detail we translate the procedure developed in the case of the 3-form geometry to the Chern}
Simons form (in the following we shall omit theYM superscript). The starting point for the explicit
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construction of the Chern}Simons super"eld is the relation

tr(FF)"dQ(A) . (F.3.9)

In the 3-form geometry we know unambiguously the exact location of the pre-potential in
superspace geometry. Since we have identi"ed Chern}Simons as a special case of the 3-form, it is
now rather straightforward to identify the Chern}Simons super"eld following the same strategy.
To this end we recall that the pre-potential was identi"ed after certain "eld-dependent rede"nitions
which had the form of a gauge transformation, simplifying considerably the form of the potentials.
For instance, the new potentials had the property

���
"0, ��� �Q



"0 . (F.3.10)

Note, en passant, that these rede"nitions are not compulsory for the identi"cation of the uncon-
strained pre-potential. They make, however, the derivation a good deal more transparent. Can
these features be reproduced in the Chern}Simons framework? To answer this question we exploit
a particularity of Yang}Mills in superspace, namely the existence of di!erent types of gauge
potentials corresponding to the di!erent possible types of gauge transformations as described
in Section 2.2.2. These gauge potentials are superspace 1-forms denoted by A, A(0)"� and
A(1)"�� , with gauge transformations parametrized in terms of real, chiral and antichiral super-
"elds, respectively. Moreover, the chiral and antichiral bases are related by a rede"nition which has
the form of a gauge transformation involving the pre-potential super"eld W

�"W
��� W!W
�dW"
W�� . (F.3.11)

Writing the superspace Chern}Simons form in terms of � shows immediately that

Q�� �Q


(�)"0 , (F.3.12)

due to ��� "0, but

Q��
 (�)O0 . (F.3.13)

Of course, in the antichiral basis, things are just the other way round, there we have

Q��
 (�� )"0 . (F.3.14)

On the other hand, due to the relation between � and �� and the transformation law of the
Chern}Simons form (F.2.17) we have

Q(�)!Q(�� )"d	(W, �� ) , (F.3.15)

where now the group element, u, is replaced by the pre-potential super"eldW. In some more detail,
in 	"�!�, we have

�"�(0, �� ,B )"tr(��B) , (F.3.16)
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where

B"dWW
�"E
B



(F.3.17)

has zero-"eld strength

dB#BB"0 . (F.3.18)

The coe$cients of the 2-form, �, are given as

�
�


"tr(B
�

��



!(!)��B



��
�
) . (F.3.19)

For �, we de"ne the interpolating pre-potential W
�

B
�
"dW

�
W
�

�
, (F.3.20)

such that
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�
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dt tr(R
�
W
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� �
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)) . (F.3.21)

Consider now

Q��
 (�)"D


	��#��� (D�	�
!(!)�¹��
	

��) , (F.3.22)

following from (F.3.15), and (F.3.14) and perform a rede"nition

QK "Q(�)!d� , (F.3.23)

which leaves tr(FF) invariant. We then determine the 2-form � in terms of the coe$cients of the
2-form 	 such that

QK ��
"0 (F.3.24)

and maintain, at the same time,

QK �� �Q



"0 . (F.3.25)

This is achieved with the identi"cation

��
"	�
 , ��Q
�
"!

i
2
D�Q 	

�
, ��Q �� "0 . (F.3.26)

For later convenience, we put also

�
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"

i
2
(D

�
	

�
!D

�
	

�
) . (F.3.27)
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Here 	
�
is identi"ed using spinor notation such that

	 �Q� "!

i
2

¹ �Q �� 	
�
. (F.3.28)

We have, of course, to perform this rede"nition on all the other coe$cients, in particular

QK �Q� �
"Q �Q� �

(�)!D�Q 
�� . (F.3.29)

In the derivation of this equation one uses the anticommutation relation of spinor derivatives and
suitable supergravity Bianchi identities together with the de"nition


��"	��#
i
2
D�	�

. (F.3.30)

We parametrize

QK �Q� �
"¹ �Q� �

�YM
#¹ �Q �� QK YM

����
, (F.3.31)

where we can now identify the explicit form of the Chern}Simons super"eld

�YM
"Q(�)!

i
16

D�� 
���� . (F.3.32)

The "rst term is obtained from the spinor contraction of

Q �Q� �
(�)"tr(��F�Q

�
(�))"!i(��

�
�)�Q � tr(��W�(�)) , (F.3.33)

i.e.

Q(�)"
i
16

Q��� ��� (�)"!

1
4
tr(��W� (�)) . (F.3.34)

It remains to read o! the explicit form of the second term from the de"nitions above.
In closing we note that a more symmetrical form of the Chern}Simons super"eld may be

obtained in exploiting the relation

Q �Q� �
(�)!Q �Q� �
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with


�Q
�
"	�Q

�
#

i
2
D�Q 	

�
. (F.3.36)

Observe that di!erent appearances of the Chern}Simons super"elds should be equivalent
modulo linear super"elds. To establish the explicit relation of the Chern}Simons super"eld
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presented here and that given in [33] is left as an exercise. So far, we have dealt with the superspace
Chern}Simons form alone; when coupled to the linear multiplet the modi"ed "eld strength is

HYM
"H#kQYM (F.3.37)

with H"dB. In the preceding discussion we have split QYM

QYM
"QK YM

#d�YM , (F.3.38)

such that QK YM has the same vanishing components as H. De"ning HYM
"HYM

!QK YM and
BYM

"B#�YM leads to

HYM
"dBYM . (F.3.39)

Although HYM is no longer invariant under Yang}Mills gauge transformations, it has the same
constraints asH. Therefore, the solution of the modi"ed linearity conditions can be obtained by the
same procedure as employed in the case without Chern}Simons forms.
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