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Abstract

This report provides a pedagogical introduction to the description of the general Poincaré supergrav-
ity/matter/Yang-Mills couplings using methods of Kéhler superspace geometry. At a more advanced level
this approach is generalized to include tensor field and Chern-Simons couplings in supersymmetry and
supergravity, relevant in the context of weakly and strongly coupled string theories. © 2001 Elsevier

Science B.V. All rights reserved.
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1. Introduction

Since its appearance in string theory [117,118,132,43,140], in elementary particle physics
[94,149] and in quantum field theory [ 154-156,102], supersymmetry has become a central issue in
the quest for unification of the fundamental forces of Nature.

Mathematically, supersymmetry transformations fall in the category of graded Lie groups, with
commuting and anticommuting parameters [12,37]. In addition to the generators of Lorentz
transformations and translations in a D-dimensional space-time, the supersymmetry algebra
contains one or more spinor supercharges (“simple” or “N-extended” supersymmetry). As a conse-
quence of the particular algebraic structure, Wigner’s analysis of unitary representations [161] can
be generalized to the supersymmetric case [ 136,116,76,66], giving rise to the notion of supermultip-
lets which combine bosons and fermions.

Although theoretically very appealing, no explicit sign of such a Bose-Fermi symmetry has been
observed experimentally. This does not prevent experimental physicists to put supersymmetric
versions of the standard model [119,103] to the test [127,128]. So far they turn out to be
compatible with data.

On a more fundamental level, in the context of recent developments in string/brane theory
[139,141,95,129], supergravity in 11 dimensions [116,40] seems to play an important role. Such
a string, or membrane theory is expected to manifest itself in a four-dimensional point particle limit
as some locally supersymmetric effective theory.

The basic structure of a generic D =4, N =1 effective theory is provided by supergravity
[50,75] coupled to various lower spin multiplets. The off-shell supergravity multiplet is usually
taken to be the one with minimal auxiliary field content [ 147,67], the so-called minimal supergravity
multiplet.*

Chiral multiplets are expected to appear in the form of some non-linear sigma model. Supersym-
metry requires a Kéhler structure [164]: the complex scalar fields of the chiral multiplets are
coordinates of a Kdhler manifold [74,9,4,8]. At the same time they may be subject to Yang-Mills
gauge transformations, requiring the coupling to supersymmetric Yang-Mills multiplets [70,135].

The general theory, combining minimal supergravity, chiral matter and supersymmetric
Yang—Mills theory has been worked out in [38-40,42]. In this construction, generalized rescalings,
compatible with supersymmetry, had to be carried out to establish the canonical normalization of
the Finstein term. In its final form, this theory exhibits chiral Kdhler phase transformations.
Alternatively, using conformal tensor calculus and particular gauge conditions [110,109], the
cumbersome Weyl rescalings could be avoided.

But string/membrane theory requires more fields and more structures — linear multiplets [ 71,143]
and 3-form multiplets [82], together with Chern-Simons terms of the gauge and gravitational
types should be included. They are relevant for string corrections to gauge couplings
[52,5,28,112,142,47-49,27], in particular non-holomorphic gauge coupling functions, and for
effective descriptions of gaugino condensation [162], as well as for a supersymmetric implementa-
tion of the consequences of the Green—Schwarz mechanism [96] in an effective theory [32,69].

4 Other possibilities, such as the new minimal supergravity multiplet [3,145] and the non-minimal supergravity multiplet
[23,144] are less popular [124-126] in this context.
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It is clear that a systematic approach should be employed to cope with such complex structures.
This report provides a presentation of the geometric superspace approach.

The notion of superspace is based on the concept of superfields [134,71,138]: space-time is
promoted to superspace in adding anticommuting parameters and superfields are functions of
space-time coordinates and the anticommuting coordinates. Supersymmetry transformations are
realized as differential operations involving spinor derivatives.

Implementing the machinery of differential geometry, like differential forms, exterior derivatives,
interior product, etc., on superspace gives rise to superspace geometry. In this framework super-
symmetry and general coordinate transformations are described in a unified way as certain
diffeomorphisms. Both the graviton and its superpartner, the gravitino, are identified in the frame
differential form of superspace.

The superspace formulation of supergravity [100,157-159,101,163] and supersymmetric gauge
theory [150,151] is by now standard textbook knowledge [80,153]. A characteristic feature of this
formulation is that the structure group in superspace is represented by the vector and spinor
representations of the Lorentz group.

This superspace geometry may be modified by adding a chiral U(1) to the structure group
transformations, accompanied by the corresponding gauge potential differential form. Associated
with this Abelian gauge group is an unconstrained pre-potential superfield. By itself, this structure
is called U(1) superspace [105], it allows to obtain the known supergravity multiplets mentioned
above: minimal, new minimal and non-minimal, upon applying suitable restrictions [115].

The superspace description of the supergravity-matter coupling is obtained from U(1) super-
space as well: in this case the chiral U(1) is replaced by superfield Kdhler transformations. At the
same time the unconstrained pre-potential is identified with the superfield Kéahler potential
[21,18,98,99]. In this formulation, called Kdhler superspace geometry, or Ux(1) superspace ge-
ometry, the Kidhler phase transformations are implemented ab initio at a geometric level, the
Kahler weights of all the super- and component fields are given intrinsically and no rescalings are
needed in the construction of the supersymmetric action. The Kahler superspace formulation is
related to the Kahler—Weyl formalism [152] in a straightforward way [18].

The construction of the general supergravity/matter/Yang—Mills system using the Kéihler
superspace formulation is the central issue of this report.

In Section 2 we review rigid superspace geometry in some detail, including supersymmetric
gauge theory. Notational details are presented in Appendix A. Section 3 contains a detailed
account of the Kdhler superspace construction. A collection of elements of U(1) superspace can be
found in Appendix B. A more general setting which includes Kéhler gauged isometries is treated in
Appendix C. Derivation of the superfield equations of motion is reviewed in Appendix D.

In Section 4 we define component fields, their supersymmetry transformations and construct the
complete component field action. The Kéhler superspace formulation is particularly convenient
when the supergravity/matter/Yang-Mills system is to be extended to contain linear multiplets,
Chern-Simons forms and 3-form multiplets, as explained in detail in Sections 5 and 6. Appendices
E and F contain complements to these sections.

This report is not intended to provide a review of supersymmetry and its applications. It is rather
focused on a quite special issue, the description of D =4, N =1 supergravity couplings in
geometric terms, more precisely in terms of superspace geometry. We have made an effort to
furnish a self-contained and exhaustive presentation of this highly technical subject.
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Even when restricted to D =4, N = 1, there are many topics we have not mentioned, among
them supersymmetry breaking, quantization, anomalies and their cohomological BRS construc-
tion, conformal supergravity or gravitational Chern-Simons forms.

Similar remarks apply to the bibliography. The references cited are rather restricted to those
directly related to the technical aspects of differential geometry in superspace applied to supergrav-
ity couplings. Even though we cannot claim to have a complete bibliographical list and apologize
in advance for any undue omissions.

2. Rigid superspace geometry

We gather, here, some of the basic features of superspace geometry which will be useful later on.
In Section 2.1 we begin with a list of the known off-shell multiplets in D =4, N = 1 supersym-
metry, recall the properties of rigid superspace endowed with constant torsion, and define
supersymmetry transformations in this geometric framework. Next, supersymmetric Abelian gauge
theory is reviewed in detail in Section 2.2 as an illustration of the methods of superspace geometry
and also in view of its important role in the context of supergravity/matter coupling. Although very
similar in structure, the non-Abelian case is presented separately in Section 2.3. In Section 2.4 we
emphasize the similarity of Kdhler transformations with the Abelian gauge structure, in particular
the interpretation of the kinetic matter action as a composite D-term.

2.1. Prolegomena

2.1.1. D =4,N =1 supermultiplet catalogue

Since the supersymmetry algebra is an extension of the Poincaré algebra, Wigner’s analysis
[161] can be generalized to classify unitary representations [136,116,76,66] in terms of physical
states. On the other hand, field theories are usually described in terms of local fields. As on-shell
representations of supersymmetry combine different spins (resp. helicities), supermultiplets of local
fields will contain components in different representations of the Lorentz group. A multiplet of
a given helicity content can have several incarnations in terms of local fields. In the simplest case,
the massless helicity (1/2,0) multiplet may be realized in three different ways, the chiral multiplet,
sometimes also called scalar multiplet [156], the linear multiplet [ 71,143] or the 3-form multiplet
[82], which will be displayed below. At helicity (1, 1/2) only one realization is known: the usual
gauge multiplet [155]. The (3/2, 1) multiplet has a number of avatars as well [122,123,81,87,83].
Finally, the (2, 3/2) multiplet, which contains the graviton, is known in three versions: the minimal
multiplet [147,67], the new minimal multiplet [3,145] and the non-minimal multiplet [23,144].
This exhausts the list of massless multiplets in D =4, N = 1 supersymmetry in the sense of
irreducible multiplets. The massive multiplet of spin content (1, 1/2, 1/2,0) which will be presented
below may be understood as a combination of a gauge and a chiral multiplet. We just display the
content of some of the off-shell supermultiplets that we shall use in the sequel, indicating the
number of bosonic (b) and fermionic (f) degrees of freedom (the vertical bar separates auxiliary
fields from physical ones).
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The chiral/scalar multiplet:

A, 2b, complex scalar ,
¢~ (A1 | F){xer  4f, Weyl spinor ,
F, 2b, complex scalar .

The conjugate multiplet ¢ ~ (4, 7*| F), consists of the complex conjugate component fields. It
has the same number of degree of freedom.
The generic vector multiplet:

C, 1b, real scalar ,

®., %, 4f, Majorana spinor ,
H, 2b, complex scalar ,
Vs 4b, real vector ,
Jos?%, 4, Majorana spinor ,

D, 1b, real scalar .

This vector multiplet can occur in two ways in physical models: as a massive vector field and its
supersymmetric partners or as a gauge multiplet. In the massive vector case all dynamical fields
have the same mass, the Majorana spinors, ¢,, ¢* and 1,, 2* combine into a Dirac spinor; the
auxiliary sector contains one real and one complex scalar:

C, 1b, real scalar,

Y, 8f, Dirac spinor,
Vassive ~ (C, Vi, W | H,D){V,,, 4b, real vector,

H, 2b, complex scalar,

D, 1b, real scalar.

The gauge multiplet contains less dynamical degrees of freedom due to gauge transformations
which have the structure of scalar multiplets. One is left with a massless vector, a Majorana
spinor (the gaugino) and an auxiliary scalar:

/{ Vins 3b, gauge vector,
Veauge ~ <Vm’ZZ |D> Ay, A%, 4f,  Majorana spinor ,
D, 1b, real scalar .

® The 2-form (or linear) multiplet:

, 1b, real scalar,
Liincar ~ <L, —aabmn> A,, A% 4f, Majorana spinor ,

b 3b, antisym. tensor .
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The number of physical degrees of freedom of b, is 3 = 6 — 4 + 1. This multiplet contains no
auxiliary field.

® The 3-form (or constrained chiral) multiplet:

Y, 2b, complex scalar
Na N..7%, 4f, Majorana spinor ,
C(3) ~ <Y1 5 Clmn|H> .
n Cime 1b, antisym. tensor ,

H, 1b, real scalar .
The number of physical degrees of freedom of Cy,,, is 1 =4 — 6+ 4 — 1.

Although this section is devoted to rigid superspace, to be complete, we include here the list of
multiplets appearing in supergravity:

® The minimal multiplet (12 + 12):

e, 6b, graviton,
m s Wmas  12f, gravitino ,
AT LR s
Wi ba, 4b, real vector ,
M, 2b, complex scalar .

® The new minimal multiplet (12 + 12):

en’, 6b, graviton,
1/ Vs Wmas  12f,  gravitino ,
emaa .- | Vm’ bmn
17 Vs 3b, gauge vector,
b 3b, antisym. tensor .

® The non-minimal multiplet (20 + 20):

e’ 6b, graviton,

Yn'sWms, 12f,  gravitino ,
x by, 4b, real vector ,

a wm Xo: Toz
€m s — | ba) Cq, —a S Ca, 4b’ real vector ,
lpmo': b4 T _s )

Las L 4f, Majorana ,
T, T 4f, Majorana ,

S, 2b, complex scalar .

In this report we will only be concerned with the minimal supergravity multiplet.
We conclude the list of known N = 1 supermuliplets with the (3/2, 1) multiplet [ 122,46,68,72]. It
describes physical states of helicities 3/2 and 1, its off-shell realization contains 20 bosonic and
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20 fermionic component fields.
® The (3/2,1) multiplet (20 + 20):

B,,, 3b, gauge vector,
r,* 'y, 12f, Rarita-Schwinger ,
Pas PO 4f, Majorana ,

p* 2*\|P, 1b, real scalar ,
_daP»Ja Ya: Tba,z,—

(1.
B, _
Fma'z p

S\, 2b, complex scalar ,
Y., 4b, complex vector ,
Tha, 6b, antisym. tensor ,

x5, 4f, Majorana .

The component field content displayed here corresponds to the de Wit—van Holten multiplet [46].
It is related to the Ogievetsky—Sokatchev multiplet [122] by a duality relation [111,84], similar to
that between chiral and linear multiplet. Superspace descriptions are discussed in [87,83,84].

2.1.2. Superfields and multiplets
The anticommutation relation

{04, 0% = 2(a%),"P, , (2.1.1)

which relates the generators Q, and Q* of supersymmetry transformations to translations P, in
space-time is at the heart of the supersymmetry algebra. Superspace geometry, on the other hand,
is based on the notion of superfields which are functions depending on space-time coordinates
x™ as well as on spinor, anticommuting variables 0* and 0;. Due to the anticommutativity,
superfields are polynomials of finite degree in the spinor variables. Coefficients of the monomials in
0%, 0, are called component fields.

Supersymmetry transformations of superfields are generated by the differential operators

Qa = @ — 10&(0' 8) o @ , (212)
Qd‘—a i0*(c™e),* — (2.1.3)
o0, 7 o
which, of course, together with P, = — 10/0x“ satisfy (2.1.1) as well. A general superfield, however,
does not necessarily provide an irreducible representation of supersymmetry.
The differential operators
D, = o 1 il " (214)
a_aea ldo-ba@xm, A
. 0 ) ,
D* = — + 10%(a™e),” (2.1.5)

00, ox™”’
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anticommute with the supersymmetry generators, i.e. they are covariant with respect to supersym-
metry transformations and satisfy, by definition, the anticommutation relations

. G
{D,, D} = 2i(0™e)," 5= (2.1.6)
(D,,Dy} =0, {D:D!}=0. (2.1.7)

These spinor covariant derivatives can be employed to define constrained superfields which may be
used to define irreducible field representations of the supersymmetry algebra.
The most important ones are

e The chiral superfields ¢, ¢ are complex superfields, subject to the constraints
D*¢ =0, D,p=0. (2.1.8)

They are usually employed to describe supersymmetric matter multiplets.
e The superfields W2, W,, subject to the constraints

D,W, =0, D'W*=0, (2.1.9)
D*W, = D,W* (2.1.10)

are related to the field strength tensor and play a key role in the description of supersymmetric
gauge theories.
e The linear superfield L, subject to the linearity constraints®

D*L =0, D’L=0. (2.1.11)

As explained above, it describes the supermultiplet of an antisymmetric tensor or 2-form gauge
potential, as such it plays a key role in describing moduli fields in superstring effective theories.
e The 3-form superfields Y, Y, are chiral superfields (D, Y = 0,D,Y = 0) with a further constraint

DY — DY = %g“mnzklmn : (2.1.12)

with X, the field strength of the 3-form. These superfields are relevant in the context of
gaugino condensation and of Chern-Simons forms couplings.

The superfields L and W* W, are invariant under the respective gauge transformations, they can
be viewed as some kind of invariant field strengths. As is well known, geometric formulations of 1-,
2- and 3-form gauge theories in superspace exist such that indeed W* W,, L and Y, Y are properly
identified as field strength superfields with (2.1.9)-(2.1.12) constituting the corresponding Bianchi
identities.

> With the usual notations D?> = D*D, and D? = D,D% which will be used throughout this paper.
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2.1.3. Geometry and supersymmetry

In order to prepare the ground for a geometric superspace formulation of such theories one
introduces a local frame for rigid superspace. It is suggestive to re-express (2.1.4)—(2.1.7) in terms of
supervielbein (a generalization of Cartan’s local frame) and torsion in a superspace of coordinates
M~ (x™ 0%,0,), derivatives 0y ~ (0/0x™,0/00",8/30,) and differentials dz™ ~ (dx™, d6*,d0,). The
latter may be viewed as the tangent and cotangent frames of superspace, respectively. The
supervielbein 1-form of rigid superspace is

E4 = dzME\A*, (2.1.13)
with
" 0 0
Ey*=| —i@c%), ¢, 0 |. (2.1.14)

—i(0c%)* 0 o
The inverse vielbein E M, defined by the relations
Ex*(2)EL"(z) = 0n", EM(2)EN"(2) =04,
reads
o 0 O
EM=1i0c™), &, 0 |. (2.1.15)

The torsion 2-form in rigid superspace is defined as the exterior derivative of the vielbein 1-form:

dE* = T* = JEPECT 5" . (2.1.16)
Now, for the differential operators D, = (0/0x%, D,, D*) we have

D, =E /M0y, (2.1.17)

(D¢, Dg) = — TepDy (2.1.18)

with the graded commutator defined as (D¢, Dg) = DcDg — ( — )*DgD¢ with b = 0 for a vector
and b = 1 for a spinor index. The fact that the same torsion coefficient appears in (2.1.18) and in
(2.1.18) reflects the fact that dd = 0 in superspace. To be more precise consider the action of dd on
some generic 0-form superfield ®. Application of d to the expression d® = EZDy®, in combination
with the rules of superspace exterior calculus, i.e. dd® = dEEDy® = EBED:Dy® + (dE*)D ,®, and
the definitions introduced so far gives immediately

dd® = 3EPES(Dc, Dy)® + Tep'D®) , (2.1.19)

establishing the assertion. A glance at the differential algebra of the D 4’s, in particular (2.1.6), shows
then that the only non-vanishing torsion component is

T, = — 2i(a%),” . (2.1.20)
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Given the relation between supersymmetry transformations and the “square root” of space-time
translations (2.1.1), we would like to interpret them as diffeomorphisms in superspace. The action
of diffetomorphisms on geometric objects such as vector and tensor fields or differential forms is
encoded in the Lie derivative, which can be defined in terms of basic operations of a differential
algebra (suitably extended to superspace), i.e. the exterior derivative, d, and the interior product, 1,
such that

The interior product, for instance, of a vector field { with the vielbein 1-form is
pEA=MEy* = (. (2.1.22)

The definition of differential forms in superspace (or superforms) and the conventions for the
differential calculus are those of Wess and Bagger [153] - cf. Appendix A.1 below for a summary.
Then, on superforms d acts as an antiderivation of degree + 1, the exterior derivative of a p-form is
a (p + 1)-form. Likewise, 1, acts as an antiderivation of degree — 1 so that the Lie derivative L,
defined by (2.1.21), does not change the degree of differential forms. This geometric formulation will
prove to be very efficient to construct more general supersymmetric or supergravity theories
involving p-form fields.
For the vielbein itself, combination of (2.1.16) and (2.1.22) yields

LEY =di* + 1, T4 . (2.1.23)
On a O0-form superfield, @, the Lie derivative acts according to
The Lie derivative L with respect to the particular vector field

EM = (10%(0™e),*Ey + 10,(6™e)', £, 1, 8 (2.1.25)
leaves the vielbein 1-form (2.1.13), (2.1.14) invariant, i.e.

L:E*=0. (2.1.26)
This is most easily seen in terms of ¢4 = 1. E4, which is explicitly given as

&t = (2i(00¢) + 2i(05°¢), &, Z,) - (2.1.27)

Recall that L:E* = d¢* + 1. T*. This shows immediately that for the spinor components the
equation is satisfied, because &% is constant and T* vanishes. As to the vector part one keeps in mind
that in dé* = EBDg&” only the derivatives with respect to 0, 0 contribute and compare the result

d&* = 2iE*(0%),%E; + 21E4(5%)%, &
to the expression for the interior product acting on T¢ = 2iEﬂ-EV(G“8)y’;, ie.

1:T% = 21E"(0%),0 &, + 2iE;(3%)%,¢* .
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The Lie derivative of a generic superfield @ in terms of the particular vector field é* defined in
(2.1.27) is given as

L:®=¢'D, @ = (&0, +E,090, (2.1.28)

reproducing the infinitesimal supersymmetry transformation with Q, and Q* as defined in (2.1.2)
and (2.1.3):

® Supersymmetry transformations can be identified as diffeomorphisms of parameters &, E, which
leave E* invariant.

Combining such a supersymmetry transformation with a translation of parameter ¢, we obtain
L®+ L:®=¢0,P+ EDy® = (" + EY0,P + D, P + E,D°P . (2.1.29)

The transformations with the particular choice ¢* = — £ of a £ dependent space-time translation,
will be called supertranslations. They are given as

5 = (D, + DY . (2.1.30)

These special transformations will be used in the formulation of supersymmetric theories (and in
particular in supergravity [163]). Let us stress that for 0 = 0 = 0, supersymmetry transformations
and supertranslations coincide. The components of a superfield are traditionally defined as
coefficients in an expansion with respect to 0 and 0. In the geometric approach presented here,
component fields are defined as lowest components of superfields. Higher components are obtained
by successive applications of covariant derivatives and subsequent projection to 6 = 0 = 0. Com-
ponent fields defined this way are naturally related by supertranslations. The basic operational
structure is the algebra of covariant derivatives.

2.2. Abelian gauge structure

2.2.1. Abelian gauge potential
In analogy to usual gauge theory, gauge potentials in supersymmetric gauge theories are defined
as 1-forms in superspace

A=E*4, = E°A, + E*A, + E,A* . (2.2.1)

The coefficients 4,, A,, A* are, by themselves, superfields. Since we consider here an Abelian gauge
theory, A transforms under gauge transformations as

A—A—g g . (2.2.2)

The gauge transformation parameters g are O-form superfields and the invariant field strength is
a 2-form,
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Observe that, following (2.1.16) a torsion term appears in its explicit expression:

Fyi=DgAy — (=)D Ap + TpsCAc . (2.2.4)
By definition, (2.2.3), the field strength satisfies the Bianchi identity

dF =0. (2.2.5)

Consider next a covariant (0-form) superfield @ of weight w(®) under Abelian superfield gauge
transformations, i.e.

D1 PP | (2.2.6)

Its covariant (exterior) derivative,

9P =E* D, , (2.2.7)
is defined as®

P =dP + wWP)AD . (2.2.8)
Covariant differentiation of (2.2.7) yields in turn (W(Z®) = w(®P))

D9P = wD)FP (2.2.9)
leading to the graded commutator

(Z5,Z0)P = WD)F s ® — Tps DD . (2.2.10)

Supertranslations in superspace and infinitesimal superfield gauge transformations, g ~ 1 + o, with
o a real superfield, change 4 and @ into A" = 4 + 04 and @ = ® + 6P such that

0A =1:F —d(a —1:4) (2.2.11)
and
0P =129 + WD) —1:A)D . (2.2.12)

The combination of a supertranslation and of a compensating gauge transformation of superfield
parameter o = 1: A gives rise to remarkably simple transformation laws. This parametrization is
particularly useful for the definition of component fields and their supersymmetry transformations.
We shall call these special transformations: Wess—Zumino transformations, they are given as

Swz® = 1:9®D, SwyA=1.F. (2.2.13)

Let us stress that the formalism developed here is well adapted to describe supersymmetry
transformations of differential forms.

SIf @, is a p-form, we define it as 2@, = d®, + (— )Pw(P,)AP,.
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So far, @ was considered as some generic superfield. Matter fields are described in terms of chiral
superfields. In the context of a gauge structure the chirality conditions are most conveniently
defined in terms of covariant derivatives. A superfield ¢ is called covariantly chiral and a superfield
¢ is called covariantly antichiral, if they satisfy the conditions

G =0, D,$=0. (2.2.14)

Observe that usually they are supposed to have opposite weights w(¢) = — w(¢). Consistency
of the covariant chirality constraints (2.2.14) with the graded commutation relations (2.2.10)
implies then

Ff*=0, Fy=0. (2.2.15)
Moreover, due to the (constant) torsion term in (2.2.4), i.e.

Fg* = Dy A* + D*Ay — 2i(0%),* A, , (2.2.16)
the condition

F*=0 (2.2.17)

amounts to a mere covariant redefinition of the vector superfield gauge potential 4,. Given
constraints (2.2.15) on Fy, and F"*, the properties of the remaining components Fy,, F*, and F,, of
the superfield strength Fg, are easily derived from the Bianchi identities (2.2.5) which read’

§ (DcFpa + TcgPFpa) = 0. (2.2.18)
(CBA)

It turns out that the whole geometric structure which describes supersymmetric gauge theories can
be formulated only in terms of the superfields W, and W* such that

Fpo = + oW, (2.2.19)
F, = —icttw, , (2.2.20)
Fro = 365)" 5 D*Wy — Y04 ™D WP . (2.2.21)

Furthermore, the Bianchi identities imply restrictions (2.1.9) and (2.1.10). In this sense these
equations have an interpretation as Bianchi identities, providing a condensed version of (2.2.18).

2.2.2. Solution of constraints and pre-potentials
Eq. (2.2.18) is the supersymmetric analogue of the geometric part of Maxwell’s equations

ac}:btz + aaFcb + abF‘ac =0 5 (2222)

"§cpay stands for the graded cyclic permutation on the super-indices CBA, explicitly defined as
$icpayCBA = CBA + ( — )" MACB + (— )" **BAC.
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which are solved in terms of a vector potential, 4,, such that F,, = 0,4, — 0,A4;. In the supersym-
metric case a similar mechanism takes place, via the explicit solution of constraints (2.1.9) and
(2.1.10). To be more precise these solutions can be written in terms of superfields 7 and U as

A, = —T 'D,T= —D,logT, (2.2.23)

A*= —U~'D*U = — D*logU . (2.2.24)
Indeed one obtains from (2.2.19) and (2.2.20)

W, = + §D?D,log(TU™ "), W%*= + §D*D*log(TU 1), (2.2.25)

which is easily seen to satisfy (2.1.9) and (2.1.10). The superfields T and U are called pre-potentials;
they are subject to gauge transformations which have to be consistent with the gauge transforma-
tions (2.2.2) of the potentials. However due to the special form of solutions (2.2.23) and (2.2.24), we
have the freedom to make extra chiral (resp. antichiral) transformations, explicitly

T—PTyg, (2.2.26)
U—QUyg . (2.2.27)

The new superfields P and Q parametrize so-called pre-gauge transformations which do not show
up in the transformation laws of the potentials themselves due to their chirality properties

D,P=0, D'Q=0. (2.2.28)

The terminology originates from the fact that, due to the covariant constraints, the gauge
potentials can be expressed in terms of more fundamental unconstrained quantities, the pre-
potentials, which in turn give rise to new gauge structures, the pre-gauge transformations.

The pre-potentials serve to mediate between quantities subject to different types of gauge
(pre-gauge) transformations g (P and Q) and we can build combinations of these which are sensitive
to all these transformations. For instance, the composite field T*U? transforms under gauge and
pre-gauge transformations as follows:

(T*U) i (TUb)P*QPg* *P. (2.2.29)
Now if we consider a generic superfield @ of weight w(®) as in (2.2.6) and define
®(a,b) = (TU") """ , (2.2.30)

this new superfield @(a, b) is inert under g superfield gauge transformations if a + b = 1, but still
transforms under chiral and antichiral superfield gauge transformations Q and P as

D(a, b)— [g“ P~ VPQY] " P P(a, b) . (2.2.31)

®(a, b) will be said to be in the (a, b)-basis with respect to P and Q superfield pre-gauge transforma-
tions. It is convenient to introduce the corresponding definitions for the gauge potential as well

A(a,b) = A + (TU")~'d(T*U?)
=A+adlogT + bdlogU . (2.2.32)
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It should be clear that F(a,b) = dA(a,b) = F = dA, in any basis and thus that the superfields
W?e, W, are basis independent. It is interesting to note that we can write

A,(a,b) = (a — 3D, log T + (b — 3)D, logU — 3D, log W,
A¥a,b) = (a — 3)D*log T + (b — 3)D*log U + 3D*log W , (2.2.33)

where the superfield W = (TU ™) is inert under g gauge transformations (2.2.29), basis indepen-
dent and transforms as

WisPWQ L. (2.2.34)

Therefore, we can gauge away the T and U terms in the expressions for A4,(a, b) and A%a, b), but not
the W one. The covariant derivative in the (a, b)-basis is then defined as

9®(a,b) = d®(a,b) + w(P)A(a, b)®(a, b) (2.2.35)
and transforms in accordance with (2.2.30):
D®(a,b) = (T*UY) " PG . (2.2.36)

Again Z®(a,b) is inert under g gauge transformations if a + b = 1, so hereafter we will stick to this
case and omit the label b, unless specified. Observe now that

(a,b) = (3% =A4,3)= — D, logW, A*3)= + 3D*logW ,
(a,b) = (1,0)= A,(1) = 0, A1) = + D*logW ,
(a,b) = (0,1)= A,(0) = — D,logW, A%0)=0. (2.2.37)

The three particular bases presented in (2.2.37) are useful in different situations. Later on, in the
discussion of Kahler transformations and in the construction of supergravity/matter couplings, we
shall identify spinor components of the Kahler U(1) connection with spinor derivatives of the
Kaéhler potential, namely

A, =iD,K, A*= —1iD*K. (2.2.38)
Such an identification is easily made in the (3,3) base, called the vector basis: setting
W =exp(— K/2), (2.2.39)

we obtain (2.2.38). Moreover, if we parametrize P = exp( — F/2) and Q = exp(F/2) (we take F
and F since K is real) we obtain, given (2.2.34),

K—K+F+F, (2.2.40)
the usual form of Kéhler transformations. A generic superfield @, in this base, transforms as

(L) > e RW@MF gLy (2.2.41)
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In addition for the connection we obtain

AR~ AG) + %d ImF , (2.2.42)
where the vector component is, using (2.2.17),

ABG)a = %‘Z“[Da,Da]K : (2.2.43)

In other contexts (anomalies and Chern-Simons forms study) the (0,1) and (1,0) bases are
relevant; we name them respectively chiral and antichiral bases. Indeed, let us consider the
covariant chiral superfield ¢, with w(¢) = + w, in the (0, 1)-basis the superfield ¢(0) = U "¢
transforms under Q-transformations only,

d(0)— Q "h(0) , (2.2.44)

whereas the gauge potential has the property A%0) = 0. Then, in this basis, the covariant chirality
constraint for ¢, (2.2.14), takes a very simple form for ¢(0): D*¢(0) = 0. Analogous arguments hold
for ¢, with weight w(¢) = — w, in the (0, 1)-basis, i.e. D,¢(1) = 0. So it is ¢(0) and ¢(1) which are
actually the “traditional” chiral superfields, our ¢ and ¢ are different objects, they are covariant
(anti)chiral superfields. We emphasize this point because to build the matter action coupled to
gauge fields we shall simply use the density

dp = YWY P(0) = G(1)e**" $(0) (2.2.45)
where we have defined
W =e?. (2.2.46)

We thus recover the standard formulation of the textbooks in terms of non-covariantly chiral

superfields ¢(0), ¢(1), with V' the usual vector superfield; this is illustrated in Section 2.2.4. The
chiral and the antichiral bases are related among themselves by means of the superfield
W, $(0) = W ().

Similarly, A(1) and A(0) are related by a gauge-like transformation

A(0) = A1) — W~ tdw . (2.2.47)
Finally, the basis independent superfields W* and W, are easily obtained as

W, =iD*D,V, W¢%=LiD*D*V , (2.2.48)
which is nothing but the solution to the reduced Bianchi identities (2.1.9) and (2.1.10).
2.2.3. Components and Wess—Zumino transformations

Component fields are systematically defined as lowest components of superfields, expansion in
terms of anticommuting parameters is replaced by successive application of covariant derivatives.
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In this approach the component fields of a chiral multiplet ¢ of weight w are defined as

Ol = A, Dol = /2600, P*D,Pl = —4F(x), (22.49)
whereas those of the gauge supermultiplet are identified as

Ay = ia,, WP =i2l, Wy|= —ils, 2*W, = —2D. (2.2.50)

Their Wess—Zumino transformations are obtained from (2.2.13) in identifying @ successively with
¢, Z,¢ and 2°Y,¢. We obtain

dwzd = 21, (2.2.51)
Swzta = + iy/2E6"e), DA + J26,F (2.2.52)
dwzF = i/ 2" Dy + 2W(EDA . (2.2.53)

The covariant derivatives arise in a very natural way due to our geometric construction; they are
given as

DA =0, +iwa,)A, Duy. = On +1wa,)y, (2.2.54)
DA = 0y — iwan)A, Dni* = ©@n — iwa,)7* . (2.2.55)

As to the gauge supermultiplet, the supersymmetry transformation of the component field gauge
potential A,, is obtained from the Wess-Zumino transformation of the 1-form A4 in (2.2.13),
projected to the lowest vector component, with the result

Swzdy = (Eanl) + i(Eonl) . (2.2.56)

The corresponding equations of the gaugino component fields are obtained replacing @ with
W, and W*

owzA* = — (Ea™) o +1ED (2.2.57)
Owzhs = — (&™) fom —1&D , (2.2.58)
where f,,, = 0,,a, — 0,a,, = — iF,,,| and we used the Abelian versions of (B.5.20) and (B.5.21).

Finally, for the auxiliary component we have
5sz = — éO‘mamZ'i‘ é_&mami . (2259)

Observe that these are the supersymmetry transformations which would have been obtained in the
Wess-Zumino gauge of the traditional approach. This is due to the definition of Wess-Zumino
transformation in terms of particular compensating gauge transformation. In this way the
Wess—Zumino gauge is realized in a geometric manner.

We should like to comment briefly on the implementation of R-transformations [137], [59-61],
related to a phase freedom on the superspace anticommuting coordinates, in the language



274 P. Binétruy et al. | Physics Reports 343 (2001) 255-462

employed here. As the role of 0, 0 is now taken by the covariant spinor derivatives, we assign to the
latters R-parity charges of opposite sign to those of the corresponding 0’s. This way it is easy to
recover the usual arguments in the discussion of properties and consequences of R-transformations
in supersymmetric theories.

2.2.4. Component field actions

We have seen how component fields and their Wess—Zumino transformations are obtained from
the algebra of covariant superspace derivatives and projections to lowest superfield components.
This kind of mechanism is applied to the construction of supersymmetric component field actions
as well.

Let us explain this with the example of the kinetic action of the chiral matter multiplet. The key
idea is to consider the D-term of the gauge invariant superfield ¢ ¢, given as the lowest component
of the superfield D?>D?*¢¢. To be exact, this definition differs from the earlier one by a total
space—time derivative, irrelevant in the construction of invariant actions. The explicit component
field action is obtained expanding the product of spinor derivatives and using the Leibniz rule.
When acting on ¢ or ¢ individually the ordinary covariant derivatives, D 4, transmute into gauge
covariant derivatives, &4, giving rise to the expansion

D*D*(¢¢) = pD*T*¢ + A2 $)Z,T*¢ + (7)) T . (2.2.60)
At this point the algebra of covariant derivatives intervenes. The relations

9,9°¢ = — 406%,9,9°) — 8wWW ¢ , (2.2.61)

D*°G*p = 169°D,p — 16WwW , T*) — 8wpD* W, , (2.2.62)

illustrate how gauge covariant derivatives will appear in the component field formalism in
a completely natural way by construction. This should be contrasted with the method using explicit
expansions in the anticommuting coordinates of superspace. In the approach pursued here, the
component field action is simply obtained from combining (2.2.61) and (2.2.62) with (2.2.60) and
projecting to lowest components, with the result

. o
D DAF) = — T"ADp A~ (10" DT + 75" T )

+ FF + wDAA + iw/2(A)y — A7) . (2.2.63)

In this approach D?D? plays the role of the volume element of superspace. Again, as in the
derivation of the Wess-Zumino transformations (2.2.52) and (2.2.53), the covariant space-time
derivatives appear in a very natural way as a consequence of use of covariant differential calculus,
without recourse to the introduction of the vector superfield V. The relation between the present
formulation and the traditional one is established in Section 2.2.2.

The kinetic terms of the gauge multiplet are derived from the superfield W*W, and its complex
conjugate W,W% As W*W, is chiral, and W, W?* antichiral, this will be achieved by a F-term
construction. The relevant superfields we have to consider are therefore D*(W*W,) and D*(W, W*).
In the explicit evaluation we will make use of certain superfield building blocks, which are the
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Abelian flat superspace versions of (B.5.20), (B.5.21) and (B.5.28), (B.5.29). Simple spinor derivatives
of the gaugino superfields are given as

DyW, = — (6"¢)puFpa — £5,D , (2.2.64)

DyW, = — (66" Fpa + €35 D (2.2.65)
with

D = —iD*W,

the D-term superfield. Double spinor derivatives arising in the construction are
D*W, = 4ic0,, W% D*W* = 4ic"**,, W, . (2.2.66)
It is then straightforward to derive
D*(W*W,) = — 2F"F,, + 8iW*4%,0,W* — 4D?* — ie**F . F,, , (2.2.67)
D* (W, W% = — 2F"F,, + 8iW,G**0,W, — 4D? + ie"*F ;. F,, . (2.2.68)

Projection to lowest components identifies the component field kinetic terms of the gauge
multiplet in®

- 1—16(D2W°‘Wa + DPW, WY = — % L - %/10"" Oy — %I&m Oni + %DZ , (2.2.69)
whereas the orthogonal combination yields a total space-time derivative.

So far, we have illustrated the construction of the component field Lagrangian for a chiral matter
multiplet with an Abelian gauge multiplet. The discussion of the F-term construction of mass term
and self-interactions of the matter multiplet, arising from the chiral superpotential and its complex
conjugate will be postponed to more interesting situations.

As is clear from its supersymmetry transformation law, the component field D may be added to
the supersymmetric action - this is the genuine Fayet-Iliopoulos D-term. In the terminology
employed here, it arises from projection to the lowest component of the D-term superfield

D = —{D*D*D,V . (2.2.70)
From this point of view, gauge invariance
ViV +i(A — A) (2.2.71)

is ensured due to the fact that chiral and antichiral superfields are annihilated by the superspace
volume element D*D?D, = D,D?D*.

8 The gauge coupling g may be restored explicitly: rescaling the components of the gauge multiplet by g and the pure

gauge action by g~ 2.
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As we have noted above, the kinetic term of the chiral matter multiplet may be viewed as
a D-term as well, identifying V' with ¢ ¢. In this case the gauge invariance (2.2.71) indicates that the
addition of holomorphic or anti-holomorphic superfield functions F(¢) or F(¢) will not change the
Lagrangian.

We have described here the simplest case of a supersymmetric gauge theory, a single chiral
multiplet interacting with an Abelian gauge multiplet.

Mass terms and self-interactions of the chiral multiplet, on the other hand, would arise from
a F-term construction applied to ¢* and ¢* and their complex conjugates, for power-counting
renormalizable theories, or to holomorphic and antiholomorphic functions W(¢) and W(¢) in
more general situations. In the simplest case of a single chiral superfield with non-vanishing
Abelian charge, as discussed here, this kind of superpotential terms are incompatible with gauge
invariance. The construction of a non-trivial invariant superpotential requires several chiral
superfields with suitably adjusted weights under gauge transformations.

For the sake of pedagogical simplicity, we will now describe the superpotential term for a single
chiral superfield, restricting ourselves to the case of a self-interacting scalar multiplet in the absence
of gauge couplings.

The F-term construction amounts to evaluate D*W and project to lowest superfield compo-
nents, resulting in

1, 10°W ow
- ZD W)= — zw(){){) + aF (2.2.72)
for W and
1, 12W oW
- ZD W)l = — Ew(m) + ﬁF . (2.2.73)

In the component field expressions, the holomorphic function W is to be considered as a function
of the complex scalar A4 and correspondingly W as a function of 4. Combining the superpotential
terms with the kinetic terms (2.2.63), for w = 0, and eliminating the auxiliary fields, F, F, through
their algebraic equations of motion, F = — 0W/0A, we obtain the on-shell Lagrangian

2

102w 13*wW

__ ow
B W(XX)

—omA0, A — %(Xamamz + 7670, 7) —

for a single self-interacting scalar multiplet, the last term being just the usual scalar potential
contribution.

2.3. Supersymmetric Yang-Mills theories

The interplay between chiral, antichiral and real gauge transformation formulations, as encoun-
tered in the Abelian case, persists in the case of supersymmetric Yang—Mills theory. These
properties are not only of academic interest, but quite useful, if not indispensable in contexts like
Chern-Simons couplings or supersymmetric chiral anomalies.
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The 1-form Yang—Mills gauge potential is now Lie algebra valued,
of = E*'/, = EA/PT,,, , (2.3.1)
the generators T, fulfill the commutation relations
[Tey, Tn] = iceyo T - (2.3.2)

Under a gauge transformation, parametrized by a matrix superfield g, the gauge potential
o/ transforms as

Ar>g lodg—g ldg . (2.3.3)

Observe that this corresponds to a gauge transformation in the real basis, i.e. the parameters of the
gauge transformations are real unconstrained superfields. The covariant field strength is defined by

F =dod + oA (2.3.4)
and transforms covariantly
Fg 'Fyg. (2.3.5)
Its components are given by
Fpa=Dpd g — (= )"Dydp — (Ap, S 4) + Tps"A (2.3.6)
exhibiting now, in addition to the derivative terms and the torsion term, the graded commutator
(g, A 4).
Due to its definition, the field strength, &, satisfies Bianchi identities
9F =dF —AF +F .o =0. (2.3.7)
Consider next generic superfields @ and @ of gauge transformation
P> dg, Prog 'O, (2.3.8)
so that @@ is invariant. Covariant exterior derivatives ¢ = E4% , & are defined as
GO =dd + df, IO =dd — AP . (2.39)
Double exterior covariant derivatives
990 = + OF, 99b= —F
give rise to
(D5, D4)P = — T pa® — Tp Zc?, (2.3.10)
(D5, 2)P = +PFps — TpsDcP . (2.3.11)
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In this framework, matter fields are described by covariantly chiral superfields, i.e. we specialize
the generic superfields @ and @ to matter superfields ¢ and ¢, which still transform under (2.3.8),
but are required to be covariantly chiral and antichiral, respectively, i.e.

G =0, D,$=0. (2.3.12)

Compeatibility of these conditions with the graded commutation relations (2.3.10) and (2.3.11)
above suggest to impose the constraints

Fh =0, F4,=0, (2.3.13)
called representation preserving constraints. Furthermore, in view of the explicit expression

Fy* =Dyod* + D*of g — { Ay, A"} — 2i(c)" A , (2.3.14)
the constraint

T =0 (2.3.15)

just corresponds to a linear covariant redefinition of the vector component, .«Z,, of the connection
superfield. For this reason it is called a conventional constraint.

As in the Abelian case, the constraints are solved in terms of pre-potentials. The representation
preserving constraints (2.3.13) suggest to express the spinor components of .7 as

Ay = —T DT, oA*= —U DU, (2.3.16)

in terms of pre-potential superfields % and 7. Their gauge transformations should be adjusted
such that they reproduce those of the gauge potentials themselves, that is

T —PTg, U—2Ug . (2.3.17)

Here, 2 and 2 denote the pre-gauge transformations and are, respectively, antichiral and chiral
superfields.

Recall that o7 is the gauge potential in the real basis of gauge transformations; by construction,
it is inert under the chiral and antichiral pre-gauge transformations. On the other hand, pre-
potential-dependent redefinitions of .o, which have the form of gauge transformations,

AN =T AT\ — TdT 1, (2.3.18)
AO) = UAU™ " — UdU~ 1, (2.3.19)

give rise to new gauge potentials which are inert under the original g gauge transformations and
transform under chiral (resp. antichiral) gauge transformations, i.e.

A1) Pd()VP L — PP, (2.3.20)

A0)— 2/(0)2" ' — 24271 . (2.3.21)
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The connections .oZ(1) = E~.<7 4(1) and ./(0) = E~.«/ 4(0) take a particularly simple form

A1) = —WDW L, o, (1)=0, &/ma):%pa&zd(l), (2.3.22)
A 0) = — WD, A%0) =0, &/mw):%l)mw), (2.3.23)

expressed in terms of the combination

W =TU ! (2.3.24)
with gauge transformations

WisPWI™ L, (2.3.25)

The corresponding change of basis on the covariant chiral and antichiral superfields ¢ and ¢ is
achieved via the redefinitions which have the form of gauge transformations as well, such that

d()=7¢, Pl)=¢7 ", (2.3.26)
o) =up, PO)=du " . (2.3.27)

In this case, we also obtain particularly simple chirality conditions for ¢(0) and ¢(1). The invariant
combination ¢¢ behaves under this change of bases as

od = (1) $(0) . (2.3.28)

The right-hand side of this equation corresponds to the traditional formulation in terms of simply
chiral (resp. antichiral) fields, explicitly

D*p(0) =0, D,p(1)=0. (2.3.29)

The superfield # provides the bridge between the chiral and antichiral bases. Setting #~ = exp 2V,
we recover the usual description of supersymmetric Yang-Mills theories.

As before, the components of the field strength #;,, #*, and 7, can be expressed in terms of
two superfields #,, #* and their spinor derivatives, namely

Fpa = +ioayW?, (2.3.30)
Fh, = —idttwy , (2.3.31)
Trva = 3e00)* DNy + XGoatV* Dy Wy . (2.3.32)

The gaugino superfields %, and % fulfill
G W =0, 9°W,=0, (2.3.33)
DWW, =D, W*, (2.3.34)

as a result of Bianchi identities.
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The superfields ¥, and #* are the building blocks of the kinetic terms for the supersymmetric
Yang-Mills action. Recall the field content of the Yang—Mills gauge multiplet: it consists of the
gauge potentials a,,(x), the gauginos A(x), A(x), which are Majorana spinors, and the auxiliary
scalars D(x). All these component fields are Lie-algebra valued, they are identified in the gaugino
superfields #™* and ¥, subject to the constraint conditions (2.3.33) and (2.3.34).

The component fields are defined as lowest components of superfields; for the gauge potential

we have
A | = 1a,, , (2.3.35)

whereas the gaugino component fields are defined as the lowest components of the gaugino
superfields themselves,

Wy = —id WY =il. (2.3.36)

The Yang-Mills field strength f,,, = 0,,a, — 0,a,, — i[a,,,a,] and the auxiliary field D(x) appear at
the linear level in the superfield expansion

DWWyl = — 0™ E)pafun — &pa D(X) ,

DWWl = —Ue6™)ps fon + €4 D(X) , (2.3.37)
this means that the auxiliary field is identified as

DW,| =D, W% = —2D(x) . (2.3.38)

The Lagrangian for pure Yang-Mills gauge theory is then given by (we often use the shorthand
notation W2 = w*W, and W2 = W, W%
P = — D> tr(W?) — D> tr(W?) . (2.3.39)

As in the Abelian case, the gauge invariant product ¢¢ provides both the kinetic terms for matter
superfields and their minimal supersymmetric coupling to Yang-Mills fields.

2.4. Supersymmetry and Kahler manifolds

As explained by Zumino, supersymmetric non-linear sigma models have necessarily a Kahler
structure [164]. The complex scalars of the chiral matter multiplets have an interpretation as
complex coordinates of a Kdhler manifold and the supersymmetric component field Lagrangian is

: 9
given as

i . i R
PLxinler = — gi""0m A0, A — Egi;(x‘a'"@mx’) + Egi;(c@mxlamx’)
1 i,0\(5757) i
+ ZRiTjI(X L)X + giF'F (2.4.1)

° For the sake of clarity, we consider, here, only matter multiplets without gauge couplings. Couplings to Yang-Mills
theory will be constructed later on, in the context of the complete supergravity/matter/Yang-Mills system in Section 4,
and gauged isometries described in Appendix C.
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As a function of the scalar fields A" and 4/, the Kihler metric g;; derives from a Kihler potential.
The covariant derivatives

Dty = Ol + TaOnA %y D7 = 07" + I'er0n A" (2.4.2)
contain the Levi-Civita symbols (g;;, denotes the derivative of g; with respect to A4¥)

I'a=9"g0, Ta=9"9wr (2.4.3)
whereas the quartic spinor terms exhibit the curvature tensor of the Kahler manifold,

Risjy = gir,jy — gl 5157 - (2.4.4)

The auxiliary fields, here, correspond to those of the diagonalized version in [ 164]; more details will
be given below. The supersymmetry transformations of the chiral multiplet, which leave the action
invariant are given as

oAl = 2¢ (2.4.5)
Ork = +1/2F5"e),0m A" + /28, F (2.4.6)
OF = i\/2E"Y D1l - (2.4.7)

As pointed out by Zumino in the same paper, the structure of the supersymmetric non-linear
sigma model is most conveniently understood in the language of superfields. As he explained, the
lowest component of the superfield

gKéhler = %6D“D_2DaK(¢a (E) 5

reproduces exactly the component field Lagrangian given above. In other words, the kinetic
Lagrangian may be understood as a Fayet-Iliopoulos D-term. The K&hler metric, defined as the
lowest superfield component of (using the same symbols for the component and the superfield)

0’K
- a 2.4.8
Jkk 6(]’)"6(]5" s ( )
the Levi-Civita symbol and the Kdhler curvature appear in the process of successive application of
spinor derivatives and subsequent projection to lowest components. Chirality of the matter
superfields and the fact that the differential operator D*D?D, = D,D*D* annihilates chiral super-
fields, imply invariance under the superfield Kahler transformations

K(,§)—>K(¢, d) + F(¢) + F(¢) . (2.4.9)

This shows that, in fact, the Kdhler manifold is spanned by the chiral (resp. antichiral) matter
superfields ¢’ and ¢, i.e. a mapping from superspace into the Kihler manifold. Complex structure
on the one hand, in Kahler geometry and chirality conditions on the other hand, in supersymmetry,
give rise to intriguing analogies [98].
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In the following, we will elaborate somewhat more on these geometric superspace aspects,
which will be of essential importance later on in the context of supergravity/matter coupling. The
properties of the pre-potential V' in the (1,3) basis of Abelian gauge theory - cf. Section 2.2.2
- suggest to interpret K(¢, ¢) as a particular, superfield dependent, pre-potential.1®

Replacing the unconstrained pre-potential V by the Kihler potential K(¢, ¢) we define!!
A, = +iD,K = + iK\D,¢" , (2.4.10)
A% = —1ID*K = — IK;D*¢* . (2.4.11)

Here K (resp. K) denote derivatives of the Kiéhler potential with respect to the superfield
coordinates ¢* and ¢". Following the construction in Abelian gauge theory we define furthermore

Ay = %(DaAa + D,A,) . (2.4.12)

This corresponds to a conventional constraint. Substituting for 4, and A4, yields

Ay = HKdut — K 0uP) +

2 629D’ Ds . (2.4.13)

0|

The expressions for A4,, A* and A, can be subsumed compactly in superform language,
1 . i ‘ R
A = 3(Kid' — Kd§) + E5g;D,' D 414

Let us note that this potential, 4, transforms as it should (i.e. as a connection) under Kahler
transformations,

A A +%dImF. (2.4.15)

We can now apply the machinery of Abelian gauge structure in superspace to determine the
component field action as the corresponding D-term. First, applying the exterior derivative to
A gives the composite field strength 2-form

D S .
F = dA = 5g5d¢'dp + %d(Eaa—gagi,-DmDmf) . (2.4.16)

10Tt should however be noted that, in distinction to Section 2.2.2, there are no phase transformations on the matter
fields corresponding to Kéahler transformations. In the language of Section 2.2.2, all the matter fields have weight zero.
Non-trivial Kdhler phase transformations will only appear later on in the coupling of matter to supergravity.

11 Normalizations are chosen for later convenience in the supergravity/matter system.
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As in the generic Abelian case, the coeflicients of F are expressed in terms of a single Weyl spinor
and its complex conjugate, in particular

Fjo = +%Gaﬂﬁgﬂ, Fbo— _%—gﬂxﬂ , (2.4.17)

On the one hand, X, and X* are given in terms of the Kihler potential
X, = —4iD?*D,K, X*= —i{D?DK, (2.4.18)

on the other hand, identifying (2.4.17) in (2.4.16), we obtain
i R | -
X, = =305 00D + 395 DT (2.4.19)

. i U
X' = _%gkﬁ“““aa(b"l)a‘ﬁl+§gi7D“¢’F1- (2.4.20)

Here we used the definitions

Fi= —19"D,¢', F = —%;2,D*¢’ (2.4.21)
with second covariant derivatives defined as

DD, ¢" = DgD,¢' + I'yDpdp*D, ', (2.4.22)

Z5D*¢’ = DyD*P’ + DDy D*¢' (2.4.23)
assuring covariance with respect to Kahler transformations and (ungauged) isometries of the
Kahler manifold. Observe that, in terms of these definitions, the component field Lagrangian will
come out to be diagonal in the auxiliary fields [164]. Due to their definition, the superfields X ,, X*
have the following properties:

D*X, =0, D,X*=0, (2.4.24)

D*X, = D, X* . (2.4.25)

It is then easy to obtain the superfield expression of the Kahler D-term

1 R ) -
—5D"X, = — i 0y $'0up’ — 19705 D"$' 7. D¢’

1 . o
—R;;D*¢'D,¢p’D; ¢'D*p’ (2.4.26)

i a N L o i iy
- Zgifam'zD »'2,D*¢" + g F'F + 16
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with covariant derivatives defined above in (2.4.22), (2.4.23) and the curvature tensor given in
(2.4.4). Projection of this last equation to lowest superfield components results in the component
field Lagrangian (2.4.1). The construction presented here will be generalized later on and applied to
the full supergravity/matter/Yang—Mills system.

3. Matter in curved superspace

The formulation of supersymmetry as a local symmetry naturally leads to supergravity, where the
graviton, of helicity 2, has a fermionic partner, the gravitino, of helicity 3/2. The corresponding local
fields are the vierbein e,,*(x) and the Rarita-Schwinger field v,,%(x), ¥/ u;(x). As mentioned in Section
2.1.1, the different D = 4, N = 1 supergravity multiplets (minimal, new minimal and non-minimal) all
contain the graviton and the gravitino, but differ by their systems of auxiliary fields.

In the geometric formulation of supergravity, the vierbein e,*(x) is generalized to the frame
superfield Ey* in superspace, describing the graviton and the gravitino in a unified way. The three
different supergravity multiplets, as well as the coupling of minimal supergravity to matter, which
will be presented here, are then derived from a superspace geometry in suitably choosing the
structure group and torsion constraints.

The choice of a structure group, which we take to be the product of Lorentz and chiral U(1)
transformations, already determines the properties of superspace geometry to a large extent.

Further specification derives from requiring appropriate covariant constraints on the torsion
and curvature tensors, which, given the extension of the notion of space-time to superspace,
acquire a plethora of new components. One distinguishes between geometric and dynamical
constraints. Geometric constraints help to restrict the properties of superspace geometry without
leading to any dynamics, i.e. to any equation of motion. Dynamical constraints may then be
imposed as further restrictions which imply equations of motion.

Geometric constraints come in two categories: first, the so-called conventional constraints which
are used to absorb part of the torsion in covariant redefinitions of the Lorentz and U(1) connection
and of the frame of superspace; second, the so-called representation preserving constraints, which
arise from consistency conditions for covariant chiral superfields (essential for the description of
supergravity/matter couplings) with their commutation relations.

Different supergravity multiplets (minimal, new minimal or non-minimal) are obtained from
different kinds of geometric constraints.

As emphasized in the introduction, we will only consider the minimal multiplet of supergravity,
whose superspace description is briefly recalled in Section 3.1.

We will then show in some detail how supergravity/matter/Yang-Mills couplings are ob-
tained from a unified geometric setting by including superfield Kéhler transformations in the
structure group.

In Section 3.2 we show explicitly how this formulation can be obtained from the conventional
one, [38-40,42], by means of field-dependent superfield rescalings. This leads in a natural way to
the identification of the supergravity/matter system as a special case of U(1) superspace geometry
whose structure is reviewed in Section 3.3. In Section 3.4, we identify Kéhler superspace as a special
case of U(1) superspace geometry, define supergravity transformations and present invariant
actions and equations of motion at the superfield level.



P. Binétruy et al. | Physics Reports 343 (2001) 255-462 285
3.1. Minimal supergravity

In supergravity, the dynamical degrees of freedom are the graviton and the gravitino. They are
identified as the local frame of space—time or vierbein, ¢,,%(x), and the Rarita—Schwinger [133] field
Y (X), Wms(x). The supergravity action [50,75] is then defined as a certain combination of the
Einstein and Rarita-Schwinger actions, invariant under space-time-dependent supersymmetry
transformations relating the graviton and the gravitino. The commutators of these transformations
only close on-shell, i.e. modulo equations of motion. In minimal supergravity [147,67], a complex
scalar M, M and a real vector b, are added as auxiliary fields to avoid the appearance of the
equations of motion at the geometric level and to define an off-shell theory.

The formulation of supergravity in superspace [2,157] provides a unified description of the
vierbein and the Rarita-Schwinger fields. They are identified in a common geometric object, the
local frame of superspace,

E4 = d2MEA(2) (3.L.1)

defined as a 1-form over superspace, with coefficient superfields E,“(z), generalizing the usual
frame, e = dx™e,"(x), which is a space-time differential form. Vierbein and Rarita-Schwinger
fields are identified as lowest superfield components, such that

ema(x) = Ema|a %l//ma(x) = Em1|s %l;pma‘z(x) = Emo’:| . (312)

Correspondingly, as in ordinary gravity, one introduces supercoordinate transformations, thus
unifying the usual general coordinate transformations and the local supersymmetry transforma-
tions as their vector and spinor parts, respectively. Local Lorentz transformations act through their
vector and spinor representations on E¢ and E* E,.

Covariant derivatives with respect to local Lorentz transformations are constructed by means of
the spin connection, which is a 1-form in superspace as well,

¢t = dzM Py (2) . (3.1.3)

It takes values in the Lie algebra of the Lorentz group such that its spinor components are given in
terms of the vector ones as

¢/3“ = - %(Gba)ﬂaff’ba» ¢ﬁ& = — %(6ba)ﬁdc¢ba . (3.1.4)

These are the basic geometric objects in the superspace description of supergravity. The covariant
exterior derivative of the frame in superspace,

T4 = dE* + EBgpp* | (3.1.5)
defines torsion in superspace as a 2-form

T4 = IEBECT 5" . (3.1.6)
Likewise, the covariant expression

Ry = dop* + ¢S (3.1.7)
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defines the curvature 2-form in superspace
RBA = %ECEDRDCBA . (318)

It is a special feature of supergravity that the curvature tensor is completely expressed in terms of
the torsion and its derivatives [ 53]. We do not intend here to give a complete and detailed review of
this geometric structure; for a detailed exposition we refer to [153].

Recall that superspace torsion is subject to covariant constraints [88,160] which imply that all
the coefficients of torsion are given in terms of the covariant supergravity superfields
R, R, G. Wy, Wy (3.1.9)
and their covariant derivatives. To be more explicit, the non-vanishing components of superspace
torsion are

T/ = —2i(a%),’ , (3.1.10)

Ty = —ioy,,RY, T7*= —ig)’R, (3.1.11)
a 1 4 = a 31 a b 1 ¢~ b4 31 b

Tyb ZEG (Gcab)y +§5V Gbs T ba — _EG (UCO';,) & _35 &Gb . (3112)

As for T, * and Ty, they will be interpreted later on as the covariant Rarita—Schwinger field
strength superfields. They involve the superfields W,;, and W, called Weyl tensor superfields,
because they occur in the decomposition of these Rarita—Schwinger superfields in very much the
same way as the usual Weyl tensor occurs in the decomposition of the covariant curvature tensor.

The auxiliary component fields mentioned above appear as lowest components in the basic
superfields R, R" and G, such that

M(x) = —6R|, M(x)= —6R", b, = —3G,|. (3.1.13)

Consistency of the superspace Bianchi identities with the special form of the torsion components
displayed so far implies the chirality conditions

2,R"=0, 2,R=0, (3.1.14)

D Wips =0, ZiWoyy =0, (3.1.15)
as well as the relations

9,R =9°Gy, Z°R' = — 2,G** . (3.1.16)
Moreover,

2°R + Z*R' = — 32 + 4G°G, + 32R'R, (3.1.17)
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where # = R, is the curvature scalar superfield. This relation is at the heart of the construction
of the supersymmetric component field action. On the other hand, the orthogonal combination

PR — J°R' = 4i9,G* (3.1.18)

is a consequence of (3.1.16), it has an intriguing resemblance with the 3-form constraint in
superspace — cf. (6.1.2).
The component field Lagrangian is obtained from the superspace integral [158]

a?supergravity = JE P (3119)

where [E stands for [d*0d*0E, and E denotes the superdeterminant of E,*. Integration over d*0d*0
yields the usual curvature scalar term, — e, together with all the other terms necessary for the
supersymmetric completion, with the usual canonical normalization.

3.2. Superfield rescaling

In the conventional superfield approach [152] to the coupling of matter fields to supergravity,
the superspace action for the kinetic terms is taken to be

L = —3 JEe_“/”K(‘f”";) . (3.2.1)

Given (3.1.19) we may hope that, by a suitable modification of the superspace geometry, the factor
exp( — K(¢, ¢)/3) can be absorbed into E; however this will be possible only if there are symmetries
which allow such a modification, so let us analyze the situation in that respect. Supersymmetry
transformations as well as general coordinate transformations are encoded in the diffeomorphisms
of superspace; precisely the action (3.2.1) is invariant under superdiffeomorphisms and thereby
under supersymmetry and general coordinate transformations. The superspace geometry relevant
to (3.2.1) is that of the so-called minimal supergravity multiplet. The structure group in superspace
in this case is the Lorentz group. By construction, (3.2.1) is Lorentz invariant.

In addition to superdiffeomorphisms and Lorentz transformations, which are symmetries of the
kinetic action (3.2.1), superspace geometry allows also for a generalization of dilatation transforma-
tions to the supersymmetric case, which are known as super-Weyl or Howe-Tucker transforma-
tions [106]. These are defined as transformations of the frame in superspace and of the Lorentz
superfield connection which respect the torsion constraints and reduce to ordinary dilatations
when supersymmetry is switched off.

As a result, for the minimal supergravity multiplet, they change the frame of superspace in such
a way that

Ey®— Epfe*t® (3.2.2)

Esz '—)CZZZ<E‘MOC + %EM”(EO',,)“&@&Z_> 5 (323)

EMo'c I—>eZZ_Z<EMd + %EMb(g&b)da@aZ> . (324)
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The chirality conditions
2,5=0, 95 =0, (3.2.5)

of the superfield parameters ¥ and X are a characteristic feature of the superspace geometry of
minimal supergravity, i.e. of the torsion constraints which model it.

As a consequence of (3.2.2)—(3.2.4), the superdeterminant of the frame in superspace is subject to
the following super-Weyl transformations:

Es Ee2¢ ) (3.2.6)

Since the Kéhler potential K(¢, ¢) is inert under super-Weyl transformations, (3.2.6) indicates that
the kinetic action (3.2.1) is not invariant.
However, K(¢, @) is subject to Kéhler transformations

K(,§)—>K(¢, d) + F(¢) + F(§) (3.2.7)

which by themselves are not an invariance of (3.2.1) either. Then, it is easy to see that the kinetic
superfield action is Kihler invariant, if together with (3.2.7), a compensating super-Weyl trans-
formation [152] of parameters

I =iF(¢). X =4F() (3.2.8)

is performed.

In this way, a Kéhler invariant action in superspace is obtained which contains the kinetic terms
for supergravity and matter superfields and leads to the correct result in the flat superspace limit.

On the other hand, the component field action which derives from (3.2.1) in the conventional
approach, yields the correctly normalized Einstein action only after a field-dependent rescaling of
the component fields [153]. The correct Kdhler transformations of the various component fields
are then identified on the rescaled fields.

These complications can be avoided, however, if one starts right away from Kédhler superspace as
explained below. In particular, Kéhler transformations are then consistently introduced at the
superfield level. Another way to understand this is to perform the rescalings directly in terms of
superfields: this will give the explicit relation between the conventional superfield approach
described just above and our Kéhler superspace construction.

The aim is therefore to absorb the exponential of the Kédhler potential in (3.2.1) by means of
a superfield rescaling of the frame in superspace. The first attempt might have been to employ
a super-Weyl transformation. However, this does not work because the combination, ¥ + X, of
chiral and antichiral superfield in (3.2.6) is not sufficient to absorb the more general real superfield
K(¢, @) in (3.2.1). On the other hand, the chirality (resp. anti-chirality) conditions on X (resp. %) are
consequences of the invariance of the torsion constraints under transformations (3.2.2)-(3.2.4). If
one is willing to give up this requirement, more general rescalings are possible, at the price of
changing the torsion constraints and thus the superspace structure. We are therefore led to study
more general transformations of the frame (and of the Lorentz connection) together with their
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consequences for the corresponding coefficients of the torsion 2-form. To be more precise, note that

the arbitrary transformations of the vielbein E,* and of the Lorentz connection ¢ 5"
Ey* = Ex*X 4", (3.2.9)
s = dup® + 1up’ s (3.2.10)

change the torsion coefficients as
Tep® = (= )OO OXTIEX T (T X 4 + DX — (—)2DpX )
+ X 'eChes® — (= )X Byt (3.2.11)
For our present purpose it is sufficient to consider the superfield rescalings
XX X)* Xy,
Xt = 0 of’X 0 |. (3.2.12)
0 0 X
The superfield X and its complex conjugate X are arbitrary, furthermore
i

Xyt = 5(301;)“&)?_19&()()?) , (3.2.13)

Xps = 5(6)°X 71 7,(X %) (3.2.14)

Observe that (3.2.12)—(3.2.14) differ from (3.2.2)-(3.2.4) only by the fact that X and X are, contrary
to X and X, not subjected to any restrictions.'?> What are the effects of the superfield rescalings
(3.2.12)—(3.2.14) on the various torsion coefficients? First of all, note that these transformations
leave the torsion constraints

T, =0, Th =0, (3.2.15)

T, =0, T =0 (3.2.16)
and

T} = —2i(o%),} (3.2.17)
unchanged. It is well known that the torsion constraints

T, =0, T =0 (3.2.18)
and

Ty =0, (3.2.19)

12Egs. (3.2.2)~(3.2.4) can be obtained from (3.2.12)~(3.2.14) by restricting X and X to be given as X = exp(2X — X) and
X =exp(2Z —3).
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allow to determine the Lorentz connection in superspace completely in terms of E,*. Likewise, the
requirement that (3.2.18) and (3.2.19) are left invariant under (3.2.12)-(3.2.14) determines y,* in
terms of X and X,

Toba = 200a), (X X) "' 7, (X X)), (3.2.20)
X e = 200a) (X X) 127X X) , (3.2.21)
Yeba = Nea( X X) ™' Dp(X X) — 0p(X X) ™1 D (X X)

+ Lacra( X X) 1D, (X X )60 (X X) 17X X) . (3.2.22)

This means that X z* and ycz? are now completely fixed in terms of the unconstrained superfields
X and X.
However, the remaining torsion constraints,

T, =0, T'*=0 (3.2.23)
and
T,’, =0, T",=0 (3.2.24)

are no longer conserved by the superfield rescalings (3.2.12)—(3.2.14) and (3.2.20)-(3.2.22). The new
torsion coefficients take the form

T = —04%A, — 0,%4} , (3.2.25)

T/, =64, (3.2.26)
with A, defined as

A= —X'2X'2,X+ X '9,X). (3.2.27)
The complex conjugate equations are

T, =68, 47 + 67,4" , (3.2.28)

T = — 0447, (3.2.29)

A"=X"12X"'9'X + X"'9'X) . (3.2.30)

Next, we examine the consequences of the superfield rescalings for the remaining torsion coeffi-
cients by solving the Bianchi identities in the presence of the new constraints or, equivalently, by
explicit calculation from (3.2.11).!% In either case the tensor decompositions of T7,; and T'%*
do not change, i.e.

Ty = —icp:R'", (3.2.31)
T* = —iGl"R’ . (3.2.32)

13 Solutions to the Bianchi identities in terms of R, RT and G, are presented in Section 3.3 and Appendix B.
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The rescaled superfields R’'T and R’ are related to the old ones by
R"=X"3R"—i[XX)"'2°9,(XX) + Y*Y,]}, (3.2.33)
R =X"?*R —i{(XX)"'2,2%XX) + Y, Y*]} (3.2.34)
with the definitions
Y,=XX)"'2,XX), Y:=(XX)"'2%XX). (3.2.35)

The torsion coeficients T,,* and T7,,, however, pick up additional terms under the superfield
rescalings,

T = i(04),"G* + 10, G} ——5 G(X 1Dy + ADAy + (X719, — APA,) ., (3.2.36)

T, = i(04e)'5 G — 167, Gy + %5%55/}{()(—1@,; +ADAY + (X719 — ApA,) . (3.2.37)

The rescaled superfield Gy = a5 G}, is defined as
Gpp = (XX) " YGpp — 3[Zp. Zp110g(XX) + Y, Yy} . (3.2.38)

The purpose of this detailed presentation of superfield rescalings and their consequences for the
superspace torsion is twofold. First of all, in the case A, =0, 4, = 0 the usual super-Weyl or
Howe-Tucker transformations, which leave the torsion constraints invariant, are reproduced.
Second, if X and X are kept arbitrary, the supervolume E of the moving frame in superspace
changes as

= E(XX)*. (3.2.39)
This shows that for the particular field-dependent rescalings of parameters
X =X = W12K@. D) | (3.2.40)

the kinetic action (3.2.1) takes the form
PLrin = — SJE’ . (3.2.41)

That is, the kinetic Lagrangian action is the integral over a new superspace defined with the
supervolume E’. In addition, in this case, from (3.2.40) and (3.2.27), (3.2.30) one obtains

Ay = +317,K(¢. ), (3.2.42)

AT = —19"K(, §) . (3.2.43)
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The primed spinor derivatives are, of course, given as
I, =X"19, 9"=X"1'9". (3.2.44)

At this stage it is very suggestive to interpret the additional terms in (3.2.25), (3.2.26) and (3.2.28),
(3.2.29) not as unfortunate contributions to the torsion but rather as superfield gauge potentials
associated to the structure group of a modified superspace geometry which realizes Kahler
transformations as field-dependent chiral rotations. To see this more clearly observe that the new
frame is related to the old one by

Ej ¢ = e WOKG.HE a (3.2.45)
Ej," = e‘(l/“)K“"’d’)(EM“ _ éEMb(eab)“aQaK(¢, ¢3)> , (3.2.46)
Ejy = e-<1/12>K<¢’¢><EMd — SEw650) 7. K (9, q?)) : (3.2.47)

It is then easy to see that under the combination of Kéahler transformations and compensating
super-Weyl transformations these new variables transform homogeneously

Ey o ElC (3.2.48)
Efy %> G2mEE o (3.2.49)
Ejyy et 02mFE (3.2.50)

Indeed, these transformations represent chiral rotations of parameter —i/2ImF and chiral
weights w(Ey*) = 0, w(Ey*) = 1, w(Ey,) = — 1. Likewise, by the same mechanism, the superfields
R’, R'" and G}, undergo chiral rotations of weights w(R') = 2, w(R'") = — 2 and w(G}) = 0.

The corresponding gauge potential 1-form in superspace is then identified to be

A = E°A, + E°A, + E, A" (3.2.51)

with field strength F’ = dA'. The spinor coefficients 4, and A'* are given by (3.2.42) and (3.2.43) and
give rise to

Fp, =0, FP=0. (3.2.52)

The equation for the field strength F;* allows to determine the vector component

A, = %(@; + ANA, + %(@; A, — %F;d . (3.2.53)
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Comparing (3.2.53) to (3.2.36), (3.2.37) and substituting appropriately yields
T =i(04), "G +10,%(G}, + 3Fp) + 9,74} , (3.2.54)
T, = i(G5)'s G —107(Gy, + 3F3) — 675 Ay . (3.2.55)

Note that in this construction, 4, and F; always appear in the combination A4, + i/2F},.
As a consequence of their definition, the coefficients of the connection 1-form A’ change under
transformations (3.2.7) and (3.2.8) as

A, I—>e+(i/2)lmF<A; + %@;Im F> , (3.2.56)
At g 2 F<A~* +57"Im F> : (32.57)
A > (A;, + %@; Im F> . (3.2.58)

Taking into account the properties of the rescaled frame, the transformation law for the 1-form A’
in superspace becomes simply

A A+ %dImF . (3.2.59)

To summarize, the matter field-dependent superfield rescalings of frame and Lorentz connection,
which might have appeared embarrassing in the first place, because they changed the geometric
structure, actually led to a very elegant and powerful description of matter fields in the presence of
supergravity. The most remarkable feature is that, in the supersymmetric case, matter and
gravitation lend themselves concisely to a unified geometric description. Due to the close analogy
between the Kéhler potential and the pre-potential of supersymmetric gauge theory it is possible to
include Kéhler transformations in the structure group of superspace geometry. They are realized
by chiral rotations as explained in detail above and the Kahler potential takes the place of the
corresponding pre-potential. The superspace potentials can then be used to construct Kéhler
covariant spinor and vector derivatives, Kahler transformations are thus defined from the begin-
ning at the full superfield level and imbedded in the geometry of superspace.

Furthermore, we have seen in (3.2.41), that the kinetic action for both supergravity and matter
fields is given by minus three times the volume of superspace. Its expansion in terms of component
fields gives immediately the correctly normalized kinetic terms for all the component fields without
any need for rescalings or complicated integrations by parts at the component field level.

3.3. U(1) superspace geometry

The result of the construction in the preceding section has a natural explanation in the
framework of U(1) superspace geometry, which will be reviewed in this section. In this approach,
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the conventional superspace geometry is enlarged to include a chiral U(1) factor in the structure
group. As a consequence, the basic superfields of the new geometry are the supervielbein E,*(z)
and the Lorentz gauge connection ¢,5%(z) together with a gauge potential A, (z) for chiral U(1)
transformations. These superfields define coefficients of 1-forms in superspace such that

E* = dzMEp(2) (3.3.1)
dp? = dz™pup(2) (3.3.2)
A =dzMAy(2) . (3.3.3)

Torsion and field strengths are then defined with the help of the exterior derivative d in superspace

T4 = dE* + EBpp + w(EYE*A , (3.3.4)
Ry =ddp* + ¢ Ppc” . (3.3.5)
F=dA. (3.3.6)

The chiral U(1) weights w(E4) are defined as
WE) =0, WE)=1, wkE;)= —1. (3.3.7)

The non-vanishing parts ¢, “, ¢, $*, of ¢ (the Lorentz connection) are related among each
other as usual,

d)ﬁa = — %(Uba)ﬂaqbba, d)ﬁa = — %(5']”)/3&(751;:1 . (3.3.8)

As is well known [53], for this choice of structure group, the Lorentz curvature and U(1) field
strength,

Rp* = SE°EPRpcp” , (3.3.9)

F = JECEPF )¢ (3.3.10)
are completely defined in terms of the coefficients of the torsion 2-form,

T4 = EBECT 5 (3.3.11)
and covariant derivatives thereof as a consequence of the superspace Bianchi identities,

9T* — EBRg* — wEYEAF =0 . (3.3.12)

In the present case, covariant derivatives are understood to be covariant with respect to both
Lorentz and U(1) transformations. The covariant derivative of a generic superfield y, of chiral
weight w(y4) is defined as

Dpya = Es™Oumua — d5atc + Wira)Apxa (3.3.13)
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with (graded) commutator
(Ze,Z)ga = — Tes" Zrya — Rea "ty + W(xa)Fepia - (3.3.14)

The chiral weights of the various objects are related to that of the vielbein, E4, in a simple
way, €.g.

wWZ4) = —wEY),
w(Tcp?) = w(EY) — w(E®) — w(E°) ,
W(Repa ") = — w(EP) — w(ES) . (3.3.15)

Finally, the vielbein E“, the covariant derivative &, and the U(1) gauge potential 4, change
under chiral U(1) structure group transformations ¢ as

E*— EAgrE) (3.3.16)
Dar—g ", (3.3.17)
A g " ENA, — g EMyg) . (3.3.18)

As said in the introduction, the choice of structure group largely determines the U(1) superspace
geometry, which is further specified by appropriate covariant torsion constraints. For instance,
combination of the covariant chirality conditions with the commutation relation (3.3.14) suggests

T, =0, Th =0. (3.3.19)

For a more complete presentation, we refer to [92], and references therein. Here, we content
ourselves to sketch out the essential features of the resulting structure in superspace.

First of all, we note that all the coefficients of torsion and of Lorentz and U(1) field strengths
are given in terms of the covariant superfields R, R" (resp. chiral and antichiral) and G, (real)
of canonical dimension 1 and of the Weyl spinor superfields Wz, and W, of canonical
dimension 3/2. o o

Moreover, the only non-vanishing component at dimension zero is the constant torsion already
present in rigid superspace,

T,P = —2i(g%),” . (3.3.20)

We then proceed in the order of increasing canonical dimension. At dimension 1/2, all the torsion
coefficients vanish whereas at dimension 1 the above-mentioned superfields R,R" and G, are
identified as

Tybd = — iO'bydRT, Tyba = _(O'Ca'b)y “GC 5 (3321)

W= —iG)'R, "oy = —5(0:0,) 4G -9
T'*= —igl*R, T',, (Ge0)" 4 G (33.22)
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The purely vector torsion is taken to vanish
Tp'=0. (3.3.23)

At dimension 3/2, the super-covariant Rarita-Schwinger (super)field strengths T.,* and T, are
most conveniently displayed in spinor notation

Tyypp = 055 0pp Tan™ . (3.3.24)

Together with G, = ¢5,G, we obtain

TV’?ﬂﬁa = + 285’3 W/Iivat + %S?B(gaﬁsy + gozyS/i’) - 28y[3 Tﬂ}a 5 (3325)

Typo= — 42;Gop + Z4Gy) (3.3.26)

S, = —9,R+19'G,, (3.3.27)
and

Tyspps = — 265 Wi — 38,5(e1pS; + e355p) + 2859 Tp s (3.3.28)

Typs = +4Z,Gps + 24G) (3.3.29)

The U(1) weights of the basic superfields appearing in (3.3.21), (3.3.22) and (3.3.27), (3.3.30) are
wR) =2, wRh= -2,
w(G,) =0, (3.3.31)
WWss) =1, w(Wgs) = — 1.

As already mentioned above, the coefficients of Lorentz curvatures and U(1) field strengths are
expressed in terms of these few superfields. At dimension one we obtain

Réy ba = S(O—bag)éyRT 5 (3332)
R, = 8(Gp,6)"'R , (3.3.33)
Rs7pa = — 2iG(0°€)s "eacha » (3.3.34)

for the Lorentz curvatures whereas the chiral U(1) field strengths are given by
Fy, =0, FFo=0, (3.3.35)
Fyp* = 3(0%);"G, . (3.3.36)
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At dimension 3/2, we find

Richa = 1055 Tpa® + 10355 Tea® + 10ass T’ (3.3.37)
R%, 0 = 16%T s + 168 T ous + 162 Tpes (3.3.38)
and
Fo =006+ o X0 F. = igiG, _ lavix (33.39)
2 2 2 2

with the definitions
X; = ZsR — 9°Gys, X° = 9°RY + 2,G% . (3.3.40)

Finally, having expressed torsions, curvatures and U(1) field strengths in terms of few covariant
superfields, the Bianchi identities themselves are now represented by a small set of rather simple
conditions, such as

@aVT/yﬂa = O, Q&I/I/yﬂfx = 0 (3341)
or

Dy Tey* + DT =0 (3.3.42)

for these superfields. A detailed account of these relations is given in Appendix B.2.
Let us stress, that the complex superfield R, subject to chirality conditions

2,R' =0, Z*°R=0, (3.3.43)

plays a particularly important role, it contains the curvature scalar in its superfield expansion. As in
our language superfield expansions are replaced by successive applications of spinor derivatives,
the relevant relation is

9°R + 9*’R' = —3R,," — 39°X, + 4G°G, + 32RR" . (3.3.44)

Interestingly enough the curvature scalar is necessarily accompanied by the D-term superfield
9°X, = — 2D of the U(1) gauge sector, described in terms of the gaugino superfields X, and
X* subject to the usual chirality and reality conditions

9,X*=0, 9°X,=0, (3.3.45)
DX, — D,X* =0. (3.3.46)

This shows very clearly that generic U(1) superspace provides the natural framework for
the description of gauged R-transformations [73,10,146,35,30]. Relation (3.3.44) shows that
supersymmetric completion of the (canonically normalized) curvature scalar action induces
a Fayet-Iliopoulos term for gauged R-transformations.
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At this point we wish to make a digression to indicate how the superspace geometry described above
can be related to that of [115] and restricted to the superspace geometry relevant to the minimal
supergravity multiplet. To this end, call Ay the U(1) gauge potential of the superspace geometry
described here and A, the U(1) gauge potential of [ 115]. The two (equivalent) descriptions are related
through

A1 = AO — %EaGa . (3347)

On the other hand, the superspace geometry of [153] is recovered by
A =0, X,=0, X*=0, (3.3.48)

giving rise (among other things) to

3i i _
T°" " = + 35}1 Gy + EGC(UCO-b)ya ) (3.3.49)
. 3i, i
Ty = — 35/65Gb — EGC(UC%)V& (3.3.50)
and
2,R = 2°G,,, 2°R' = — 2,G** . (3.3.51)

In this sense U(1) superspace is the underlying framework for both minimal supergravity and its
coupling to matter. Note, en passant, that in [115] the other two supergravity multiplets,
non-minimal and new minimal, have been derived from generic U(1) superspace as well.

3.4. Formulation in Kahler superspace

As pointed out earlier, the description of supersymmetric non-linear sigma models [ 164] as well
as the construction of supergravity/matter couplings [41,42,38,39,6,7,21,20] is based on an intri-
guing analogy between Kéahler geometry and supersymmetric gauge theory, which are both defined
by means of differential constraints. In Kihler geometry the fundamental 2-form of complex
geometry is required to be closed whereas supersymmetric gauge theory is characterized by
covariant constraints as explained in Section 2.3. The constraints imply that the Kédhler metric is
expressed in terms of derivatives of the Kdhler potential whereas, on the other hand, the superspace
gauge potential is expressed in terms of a pre-potential. Pre-potential transformations, which are
chiral superfields should then be compared to Kihler transformations which are holomorphic
functions of the complex coordinates.

Matter superfields, on the other hand, are given by chiral superfields. It remains to promote the
complex coordinates of the Kédhler manifold to chiral superfields: holomorphic functions of chiral
superfields are still chiral superfields. Correspondingly, the Kdhler potential becomes a function of
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the chiral and antichiral superfield coordinates. The geometry of the supersymmetry coupling is
then obtained by replacing the gauge potential in U(1) superspace by the superfield Kahler
potential [21,20,98].

In Section 3.4.1 we present the basic features of this geometric structure in a self-contained
manner. In Section 3.4.2 we include Yang-Mills interactions (cf. Appendix B for their formulation
in U(1) superspace). Gauged superfield isometries of the Kéhler metric are treated in Appendix C.
We also study carefully the supergravity transformations of the whole system. Finally in
Section 3.4.3 invariant superfield actions and the corresponding superfield equations of motion will
be discussed.

3.4.1. Definition and properties of Kahler superspace

Kahler superspace geometry is defined as U(1) superspace geometry, presented in Section 3.3,
with suitable identification of the U(1) pre-potential and pre-gauge transformations with the
Kahler potential and Kahler transformations. The relevant version of U(1) superspace geometry is

the one where the U(1) structure group transformations are realized in terms of chiral and

antichiral superfields as described in (2.2.2) for the (3,1) basis, where most of the work has already

been done. As a matter of fact, the structures developed there in the framework of rigid superspace
are very easily generalized to the present case of curved U(1) superspace geometry. To begin with,
the solution of (3.3.35) is given as

A, = — T 'EM3y, T, (3.4.1)
A* = — U 'EMQ, U (3.4.2)

with E ™ now the full (inverse) frame of U(1) superspace geometry. As anticipated in Section 2.2.2
the geometric structure relevant to the superspace formulation of supergravity/matter coupling is
the basis (a,b) = (3,3). In this basis one has

A,(3) = =W TIEMGOM W, (3.4.3)

A% = +3W TTEM G0y W, (3:44)
where W = T U ! transforms as given in (2.2.34). For the vielbein we have

E4(3)— [PQ] "2EAG) (3.4.5)
and

A,3) (P Q) [A,(3) + 3E,"(3)0x log Q] , (3.4.6)

A= (PQ)™ 12[A*(3) + 2E™(3)0u1og P] . (3.4.7)
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In order to make contact with the superspace structures obtained in Section 2.2, we relate W to
the Kihler potential K(¢, ¢) and P and Q to the Kihler transformations F(¢p) and F(¢). It is very
easy to convince oneself that the identifications

W =exp(— K(¢, $)/2), (3.4.8)
P =exp(— F(¢)/2), (3.4.9)
Q =exp(+ F(¢)/2) (3.4.10)

reproduce exactly the geometric structures obtained at the end of Section 3.2 after superfield
rescalings. The primed quantities defined there are identical with the U(1) superspace geometry in
the (3,3) basis after identifications (3.4.8)—(3.4.10), i.e.

EA = EAQ) (3.4.11)
A = Ald). (3.4.12)

In particular, from (2.2.34) we recover the Kahler transformations

K(.$)—K(¢, d) + F(¢) + F(P) - (3.4.13)

Moreover, (3.4.3) and (3.4.4) reproduce (3.2.42), (3.2.43), and (3.4.6), (3.4.7) correspond exactly to
(3.2.56) and (3.2.57).

We have thus constructed the superspace geometry relevant for the description of supergravity/matter
couplings and at the same time established the equivalence with the more traditional formulation.

In this new kind of superspace geometry, called Kdhler superspace geometry, or Uk (1) superspace
geometry, the complete action for the kinetic terms of both supergravity and matter fields is given
by the superdeterminant of the frame in superspace. Expression of this superfield action in terms of
component fields leads to the correctly normalized component field actions without any need for
rescalings. Invariance under superfield Kihler transformations is achieved ab initio without any
need for compensating transformations.

The local frame E“ is subject to both Lorentz and Kéhler transformations in a well-defined way.
Covariance of the torsion 2-form is achieved with the help of gauge potentials ¢z* and A for
Lorentz and Kahler transformations, respectively:

T4 = dE* + EB¢pp? + w(EYEA . (3.4.14)

The complete expression is the same as in U(1) superspace geometry, except that the chiral gauge
potential is no longer an independent field but rather expressed in terms of the Kéahler potential

K(¢, ¢). Hence, this superspace torsion contains at the same time supergravity and matter fields!
The Kahler transformations of 4 are induced from those of the Kahler potential, i.e.

K(¢,§)— K($, ) + F(¢) + F() (3.4.15)
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to be
A A + %dImF : (3.4.16)

At the same time the frame is required to undergo the chiral rotation

E4— Ede” W2W(ENmMEF | (3.4.17)
ensuring a covariant transformation law of the superspace torsion,

T4 TAe~ W2DWEHmMEF (3.4.18)

Its coefficients are subject to the same constraints as those of U(1) superspace and therefore the
tensor decompositions as obtained from the analysis of superspace Bianchi identities remain valid.
For details we refer to Appendix B.

We shall, however, present in detail the structure of the U(1) gauge sector, in particular the
special properties which arise from the parametrization of 4 in terms of the Kéahler potential

K(¢, ¢), namely

Am = %E(IM aMK(d)a d_)): Ad = - %EaMaMK(d)» (5) 5 (3419)
A= 3Gy = 20,4, + 2,4 (3420

It follows that its field strength 2-form, F = dA, has the spinor coefficients
Fg, =0, FF*=0, Fg*=3(c%),*G, . (3.4.21)

Of course, this reproduces the structure of the constraints already encountered in U(1) superspace
which implies also

3 _—
Fpa =39G0 = + 50 X", (34.22)
3 :
Ffo_ ElgﬂGa - %—gﬁ X, (3.4.23)
with
X, = D,R — D*Gy (3.4.24)
X* = 7*RY + 9,6 . (3.4.25)

In the absence of matter, the superfields X,, X* vanish and we are left with standard superspace
supergravity. In the presence of matter they are given in terms of the Kéhler potential as

X, = — XF* — 8R)Z,K(¢,P), (3.4.26)
X* = — 42?2 — 8RNYZ*K(¢, P) . (3.4.27)

These expressions are simply a consequence of the explicit definitions given so far.
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In an alternative, slightly more illuminating way, we may write 4 as'*

1 i . B
A = (Kudg* — Kedd) + %E“(lzGa ¥ 59 D, 0 D, BY) (3.4.28)

where K; and Kj stand for the derivatives of the Kiihler potential with respect to ¢* and ¢*, this
way of writing A is more in line with Kéhler geometry. The exterior derivative of A4,

1 1 ) _
F = dA = Sgud¢*d§* + Zd[E(12G, + 59 7.9" 726", (3.4.29)

yields the superspace analogue of the fundamental form in ordinary Kéihler geometry, with
complex coordinates replaced by chiral superfields (the additional term is not essential and could
have been absorbed in a redefinition of the vector component of A).

This form of F is also very convenient to derive directly the explicit expression of X, and of X* in
terms of the matter superfields, avoiding explicit evaluation of the spinor derivatives in (3.4.27) and
(3.4.28). A straightforward identification in Fy, (resp. F #.) shows that

. oy B
X, = — %gklzo'ga@a(ﬁk@“(f)k + Egk;;@a¢ka ; (3.4.30)

) i ) - 1 R
X'= - %gkzﬁm@a(ﬁk@a(ﬁk + Eng@a(kak - (3.4.31)
Here we have used the definitions
F*= —1g2¢k, FF= —152gF . (3.4.32)

The covariant derivatives are defined as

D,¢* = E,MOy e, ZF = E™M0y ¢, (3.4.33)
@B@cx(bk = EBMaM@a¢k - ¢B<x (p@(p(pk - AB@a(bk + Fk ij@Bd)i@a(pj B (3434)
DD = EgMon PP — di* o °9F + A PP + I ;954" D*P7 (3.4.35)

assuring covariance with respect to Lorentz and Kéhler transformations and (ungauged) isometries
of the Kéhler metric. The Levi-Civita symbols

'y =g"g0;, I =g"%g; (3.4.36)

14 Note that the term containing G, originates from our particular choice of constraint (3.3.36), i.e. F3* = 3(6%),%G,.



P. Binétruy et al. | Physics Reports 343 (2001) 255-462 303

are now, of course, functions of the matter superfields. Do not forget that, due to their geometric
origin, the superfields X,, X* have the properties

X, =0, 7,X*=0, (3.4.37)
DX, = D,X°" . (3.4.38)

As we shall see later on, the lowest components of the superfields X, X% as well as that of 2°X,,,
appear in the construction of the component field action. In order to prepare the ground for this
construction we display here the superfield expression of the Kdhler D-term. It is

1 i o
- inga = — QkEﬂab@bd)k@ad)k - ZQkEGZau@ad)k@a@%k

. . o o
- %ngngz@ad)k@a@ad)k + gueFF* + 16 Ry 2" ¢* 2. ' 2 §* 7’ (3.4.39)

with covariant derivatives as defined above in (3.4.34) and (3.4.35). The Riemann tensor is given as

Rutii = Gy — 9" 9kt 91,7 - (3.4.40)

The terminology employed here concerning the notion of a D-term may appear unusual but it is
perfectly adapted to the construction in curved superspace, where explicit superfield expansions are
replaced by successively taking covariant spinor derivatives and projecting to lowest superfield
components. In this sense the lowest component of the superfield 2*X, indeed provides the
complete and invariant geometric definition of the component field D-term.

In our geometric formulation, this Kdhler D-term appears very naturally in the superfield
expansions of the superfields R, R of the supergravity sector. To see this in more detail, recall first
of all the chirality properties,

2,R" =0, 2°R=0 (3.4.41)
with R, R" having chiral weights w(R) = 2 and w(R") = — 2, respectively. For the spinor deriva-
tives of the opposite chirality the Bianchi identities imply

D.R= —3X, — 304, Ter” , (3.4.42)

Z*RY = — X% — 3(6Pe)*" T o, - (3.4.43)

Applying once more suitable spinor derivatives and making use of the Bianchi identities yields

2°R + Z°RT = —3R,," —39°X, + 4G°G, + 32RR" . (3.4.44)
This relation will turn out to be crucial for the construction of the component field action.
3.4.2. The supergravity/matter/Yang—Mills system

Having established Kahler superspace geometry as a general framework for the coupling of
supergravity to matter, it is quite natural to include couplings to supersymmetric Yang—Mills
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theory as well. In terms of superspace the basic geometric objects for this construction are

e E* =dzME\", the frame of superspace,
e ¢ ¢*, the chiral matter superfields,
o /" = dz™./§), the Yang-Mills potential.

As we have already pointed out in Section 2.3, Yang-Mills couplings of supersymmetric matter are
described in terms of covariantly chiral superfields. It remains to couple the matter/Yang-Mills
system as described in Section 2.3 to supergravity, in combination with the structure of Kahler
superspace. This is very easy. All we have to do is to write all the equations of Section 2.3 in the
background of Kahler superspace. This will define the underlying geometric structure of the
supergravity/matter/Yang-Mills system.'>

As to the geometry of the supergravity/matter sector, the Kdhler potential is now understood to
be given in terms of covariantly chiral superfields. As a consequence, the composite U(1) Kahler
connection A, given before in (3.4.28), becomes now

1 1 1 . o
A = KD — KD F + ZE(12G, + 597,40 5) (3.4.45)

simply as a consequence of covariant chirality conditions, expressions (3.4.19) and (3.4.20) for the
components A, being still valid. The covariant exterior derivatives

D = dp* — A ATy ), D =dg* + A NPT ), (3.4.46)
appearing here are now defined in the background of Kiahler superspace. The superfields X,, X%,

previously given in (3.4.30) and (3.4.31), are still identified as the field strength components
Fg, (resp. F # ). They take now the form

i 1 _ 1
X, = — Eng@a¢kGZd@a¢k + EngFk@aq% — E"W((f)%/(r) , (3.4.47)
_ i . 1 1 )
X = = ST T DY + S0 PTG — WA (3.4.48)

The derivatives are covariant with respect to the Yang-Mills gauge structure and we have defined

H iy = Ki(Tid) + Ke(dT(r)* . (3.4.49)

15 More generally, the complex manifold of chiral matter superfields, in the sense of Kihler geometry, could be
endowed with gauged isometries, compatible with supersymmetry. We have deferred the description of the corresponding
geometric structure in superspace to Appendix C, see also [18].
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Likewise, the Kahler D-term superfield — cf. (3.4.39),

1 i -
- EQ“Xa = — gkﬁﬂab9a¢k«@b¢k - ngﬁagaga(bk@a@%k

1 - - 1 o
- nglzo'ga@a(bk@a@ad’k + ngFka + 1_6 Rj,‘klzgaﬁbk@aébjgdﬁb D*p’
- ng@T(r))EWy)ga(ﬁk + gie(Tiy )WY 74+
1 _ _
ty DW DK (T d) + Ke(dTe) ] (3.4.50)

receives additional terms due to the Yang—Mills couplings. Observe that covariant derivatives refer
to all symmetries, definitions (3.4.34) and (3.4.35) are replaced by

@Bgmd)k = EBMaM@a¢k - d)ch(p@qod)k - %g)(T(,)@a(ﬁ)k - A39a¢k + Fkij@Bd)if@ozd)j: (3451)
DD P* = EgM Oy D7P* — ¢pp* ; D7P* + AGDAPT ) + A D P* + "> D Z*¢7 (3.4.52)

with Ay identified in (3.4.45). In terms of these covariant derivatives the superfields F* and F* are
still defined as in (3.4.32).

Based on this geometric formulation, we can now proceed to derive supersymmetry transforma-
tions in terms of superfields, as in Appendix C.3, and in component fields, as in Section 4.3.
Invariant actions in superspace and superfield equations of motion are discussed below, Section
3.4.3, and in Appendix D, whereas component field actions, derived from superspace, are given in
Sections 4.4 and 4.5.

3.4.3. Superfield actions and equations of motion

Invariant actions in superspace supergravity are obtained upon integrating superspace densities
over the commuting and anticommuting directions of superspace. Densities, in this case, are
constructed with the help of E, the superdeterminant of E,/. As we have already alluded to above,
the supergravity action in standard superspace geometry is just the volume of superspace. In our
present situation where both supergravity and matter occur together in a generalized superspace
geometry, the volume element corresponding to this superspace geometry yields the complete
kinetic actions for the supergravity/matter system. To be more precise, the kinetic terms for the
supergravity/matter system in our geometry are obtained from

JZ‘{supﬁ:rgravity-%—maller = - 3J\ E > (3453)
%k

where the asterisk denotes integration over space-time and superspace. The action of the kinetic
terms of the Yang-Mills multiplet, coupled to supergravity and matter, is given as

1 1

E E _ _ )
A Y ang-Mills = gj* Ef(,)(s)(d))“f/(')“"//y + gf* ﬁf(r)(s)(d’)Wg)W(s)a , (3.4.54)
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whereas the superpotential coupled to supergravity is obtained from

1| E 1{ E -
Msuperpolential = Ej\*ﬁeK/z W(¢) + EJv*FeK/Z W(¢) . (3455)

Clearly, these actions are invariant under superspace coordinate transformations, what about
invariance under Kéahler transformations?

First of all, the superfields R and R have chiral weights w(R) = 2 and w(R") = — 2, respectively,
so their Kéhler transformations are

Ri— Re™?!mF R, Rfg*2imF (3.4.56)
The Yang-Mills action is invariant provided the symmetric functions f,s(¢) = fs#(¢) and
Jirs) (@) = i (@) are inert under Kdhler transformations. The superpotential terms are invariant,
provided the superpotential transforms as

W(p)—e TW(p), W(p)—e TW(P). (3.4.57)

In this case, although neither the Kahler potential nor the superpotential are tensors with respect
to Kahler transformations, the combinations

ek2w, k2w (3.4.58)
have perfectly well-defined chiral weights, namely

wEekPw) =2, wekPw)= —2. (3.4.59)
As to Yang-Mills symmetries, the kinetic term of the supergravity/matter system is obviously

invariant, so is the superpotential term, by construction. The Yang-Mills term itself is invariant
provided

) 0

(T, ¢)k67)kf<r)(s>(¢) = o0 e (@) + e fom(@) » (3.4.60)
. -0 - _ _ _ _ _

- l(d)T(p))k@e 1D = o o (@) + oo™ fon(P) » (3.4.61)

that is, provided f{)(¢) and fi, s (P) transform as the symmetric product of two adjoint representa-
tions of the Yang—Mills structure group.

We still have to justify that the superfield actions presented above indeed correctly describe
the dynamics of the supergravity/matter system. One way to do so is to simply work out the
corresponding component field actions — this will be done in the next chapter. Another possibility is
to derive the superfield equations of motion — this will be done here. To begin with, the variation of
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the action ./ = [d*x#(x) for the supergravity/matter kinetic terms can be written as

5ﬂsupergravi1y+matter = - 3J EHAA( - )a ) (3462)

*

where we have defined
HBA == EBMéEMA . (3463)

This is not the end of the story, however. The vielbein variations by themselves are not suitable,
because of the presence of the torsion constraints. Solving the variational equations of the torsion
constraints allows to express the vielbein variations in terms of unconstrained superfields and to
derive the correct superfield equations of motion [ 158]. In our case the matter fields must be taken
into account as well. Again, their variations themselves are not good — we have to solve first the
variational equations for the chirality constraints to identify the unconstrained variations. Similar
remarks hold for the Yang-Mills sector. In Appendix D a detailed derivation of the equations of
motion is presented; here we content ourselves to state the results:
The complete action is given as

o = ﬂsupergravitermatter + rja7Yamg—Mills + Msuperpotemial . (3464)
The superfield equations of motion are then

o Supergravity sector:

R —1eX2wW($) =0, (3.4.65)
Rt — X2 W ($) =0, (3.4.66)
Gy + 3089k 2o * D" — §63(f + Ny W PW P =0 . (3.4.67)

e Yang-Mills sector:

1 1 0f s g9z 1 _ -
S ST WY =5 %%W/‘ ¥4 SIKUTd) + Ke@T)] +he. =0, (3468)
® Matter sector-
_- 10f, 0

k= S0 g (F)aag(s) K2yi/_ K _

gieF* + 4—64)" WD + e Wa¢k10g(e W)y=0, (3.4.69)
10f; . _ 0 _

_rk A0 (1) gy (5)a Ki2yy_~__ K —

gieF* + 4—6q§" WEWI* + e W@d) log(e®*W) =0 . (3.4.70)
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The lowest components in the superfield expansion provide the algebraic equations for the
auxiliary fields. The equations of motion of all the other component fields of the supergrav-
ity/matter system are contained at higher orders in the superfield expansion. They are most easily
obtained by suitably applying spinor derivatives and projecting afterwards to lowest superfield
components.

4. Component field formalism

The superspace approach presented in the previous section provides a concise and coherent
framework for the component field construction of the general supergravity/matter/Yang-Mills
system. Supersymmetry and Kahler transformations of the component fields derive directly from
the geometric structure, the corresponding invariant component field action has a canonically
normalized curvature scalar term, without any need of component field Weyl rescalings. This
should be contrasted with the original component field approach [41,42,38,39], where normaliz-
ation of the action and invariance under Kahler phase transformations appeared only after a Weyl
rescaling of the component fields or, equivalently, a conformal gauge fixing [109,110].

Anticipating on our results, we will see that the supergravity/matter Lagrangian (3.4.53), when
projected to component fields, exhibits the kinetic Lagrangian density of the matter sector as
a Fayet-Iliopoulos D-term, i.e. it has the decomposition

gsupergravity+matter = gsupergravity + eDmatter . (41)

Here e denotes the usual vierbein determinant e = det(e,,*) and D, 1S the D-term pertaining to
the Abelian Kahler gauge structure of the previous section. More precisely, the component field
D-term derived from Kahler superspace has the form

1 1 _ 1~ _
Dmatter = - zgaXaJ + EwmﬁUZEXﬂ + zwmdammXa| > (42)

where the vertical bars denote projections to lowest superfield components of the superfields given,
respectively, in (3.4.50), (3.4.47) and (3.4.48). Recall that a D-term in global supersymmetry may be
understood as the lowest component of the superfield D*X, with

X, = — %EzDaK(¢a d;) . (43)

In this sense the Kaéhler superspace construction is the natural generalization of Zumino’s
construction [164] of supersymmetric sigma models.

In Section 4.1 we identify component fields and provide a method to derive super-covariant
component field strength and space-time derivatives. In Section 4.2 we discuss some more of the
basic building blocks useful for the component field formulation, in particular for the geometric
derivation of supersymmetry transformations of all the component fields, which are given explicitly
in Section 4.3, and the component field actions, constructed in Sections 4.4 and 4.5.
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4.1. Definition of component fields

As explained already in Section 2, component fields are obtained as projections to lowest
components of superfields. A supermultiplet is defined through successive application of covariant
spinor derivatives and subsequent projection to lowest components, as for instance for the chiral
multiplet in Section 2.2.3. Defined in this manner the component fields are related in a natural way
by Wess-Zumino transformations. The structure of a supersymmetric theory, in particular
the construction of invariant actions, as in Section 2.2.4, is then completely determined by the
algebra of covariant derivatives. This approach avoids cumbersome expansions in the anticom-
muting variables and provides a geometric realization of the Wess—Zumino gauge. It is of
particular importance in the case of the component field formalism for supergravity, as will be
pointed out here.

In a first step we are going to identify the vierbein and the Rarita—Schwinger fields. They appear
as the dx™ coefficients of the differential form E4 = dz™E,”. 1t is therefore convenient to define
systematically an operation which projects at the same time on the dx™ coefficients and on lowest
superfield components, called the double-bar projection [11]. To be more precise, we define

E‘| = e = dx"e, (x) , (4.1.1)
Ef| = ¢ = 3dx™, (), Eall = e = 3dx"Fu(x) . (4.1.2)
This identifies the vierbein field e,“(x) and thereby the usual metric tensor

Jmn = €m"ey bnab > (4.1.3)

as well as the gravitino field ¥,,% ¥z, which is at the same time a vector and a Majorana spinor.
The factors 1/2 are included for later convenience in the construction of the Rarita-Schwinger
action.

The definition of component fields as lowest superfield components defines unambiguously their
chiral Ug(1) weights due to the geometric construction of the previous section. As a consequence,
the vierbein has vanishing weight whereas the Rarita-Schwinger field is assigned chiral weights

wiy,Y) = + 1, W) = — 1. 4.1.4)
The remaining component fields are defined as

Rj= —iM, Rl= —iM, GJ=—13b, (4.1.5)
with chiral Ug(1) weights

wM) = +2, wiM)= —2, wh,)=0. (4.1.6)

The vierbein and Rarita-Schwinger fields together with M, M and b, are the components of the
supergravity sector, M, M and b, will turn out to describe non-propagating, or auxiliary fields.

Supergravity in terms of component fields is quite complex. However, when derived from
superspace geometry a number of elementary building blocks arise in a natural way, allowing to
gather complicated expressions involving the basic component fields and their derivatives in
a compact and concise way.
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As a first example we consider the spin connection. In ordinary gravity with vanishing torsion,
the spin connection is given in terms of the vierbein and its derivatives. In the supergravity case it
acquires additional contributions, as we explain now. To begin with, consider the torsion com-
ponent T = dE* + E’¢,“, which is a superspace 2-form. The component field spin connection is
identified upon applying the double-bar projection to ¢;*,

G Il = 0p* = dX" D" (x) . (4.1.7)
Defining
bp%ll = 0" = dx"w,*(x),  Pall = 0f ;= dx",” 4(x) (4.1.8)

for the spinor components, (3.1.4) gives rise to the usual relations

Omp® = — 30" Oppas Ol s = — 1) 4 Orpa - (4.1.9)
Then, applying the double-bar projection to the full torsion yields

TY| = 3dx™dx"T,,“| = de® + e’w,* = De* . (4.1.10)
In this expression the exterior derivative is purely space-time. Using moreover

Tl =Znen’ — Dpe,” (4.1.11)
the component field covariant derivative of the vierbein is identified as

Dyl = Open’ + en’wn” . (4.1.12)

Seemingly this is the same expression as in ordinary gravity, so how does supersymmetry modify it?
To this end, we note that the double-bar projection can be employed in an alternative way, in terms
of the covariant component field differentials e# defined above. Taking into account the torsion
constraints, in particular T.,* = 0, this reads simply

T = eze’ T, P , (4.1.13)

where only the constant torsion coefficient T, pa— _ 21(0“8)?5 survives. Combining the two
alternative expressions for T°|| gives rise to

@nema - @mena = %(wnaalpm - lpmaalpn) . (4114)

In view of the explicit form of the covariant derivatives, it is a matter of straightforward algebraic
manipulations to arrive at (¢, = e,,°0,)

a)mnp = epaen bwmba = %(emaanepa - epa amena - ena apema) - %(ema apena - enaamepa - epa anema)
i ~ - _ i _ _ _
+ Z(lppamwn - wmanlpp - Ebno-pwm) - Z(wnamwp - lpmo-pwn - lppanlpm) . (4115)

This shows how w,,,;" is expressed in terms of the vierbein, its derivatives and, in the supersymmetric
case, with additional terms quadratic in the gravitino (Rarita—Schwinger) field.
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The Rarita—Schwinger component field strength is given terms of the covariant derivative of the
gravitino field. As a consequence of the non-vanishing chiral Ug(1) weights (4.1.4), contributions
from the matter sector arise due to the presence of the component

All = dx"A4,(x) , (4.1.16)

of the Ug(1) gauge potential. In order to work out the explicit form of A4,,(x), the double-bar
projection must be applied to the superspace 1-form

1 1 e _ .
A= ZKk@d)k = ZK,;@d)" + %E“(12Ga + 0G0k Dy P* Dy ) (4.1.17)

as given in (3.4.45). This in turn means that we need to define first matter and Yang—Mills
component fields and their covariant derivatives. Recall that the exterior Yang-Mills covariant
derivatives are defined as

GPF = dP* — AT d),  ZPF = dP* + A (PT, ) . (4.1.18)

This shows that, for the definition of the component field Kdhler connection 4,,, we need at the
same time the component fields for the matter and Yang—Mills sectors. The components of chiral,

resp. antichiral superfields ¢* (resp. ¢*) are defined as
¢ =AY DM =2k DD = —4F*, (4.1.19)
¢ = A 2,8 = /27 2,2°¢"| = — 4FF (4.120)

with indices k, k referring to the Kéhler manifold (not to be confused with space-time indices). As to
the Yang-Mills potential we define

|| =ia = idx"a,, , (4.1.21)
whereas the remaining covariant components of the Yang-Mills multiplet are defined as

W =il Wyl= —iky, DW= —2D. (4.1.22)
Recall that all the components of this multiplet are Lie algebra valued, corresponding to their
identification in .7 = o&/"'T,) and # = Z#"'T,,. We can now apply the double-bar projection to
A and identify A|| = dx™A,,(x), where, for reasons of notational economy, the same symbol 4,, for
the superfield and its lowest component, i.e. 4,,(x) = 4,,], is used. We obtain the explicit compon-

ent field form by the double-bar projection of the covariant exterior derivatives of the matter
superfields, i.e.

D¢H| = dx"(©, A" — iai)(T(y A)), DPH| = dx"(3, A* + iaf}(AT,)) ,
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suggesting the definitions

D A" =0,4" —1af(T, A, 2,A4* =0, A" + 1af(AT,) . (4.1.23)
It is then straightforward to read off the explicit component field expression
Ay +enth, = Lk a a5 — LKoo AF 4 Lo, 7 (4.1.24)
m 2em a_4km 4km 4gkaO-m\,: oL

this field-dependent Kihler connection will show up in any covariant derivative acting on
components with non-vanishing U (1) weights. The spinor components of the Kahler connection
are field dependent as well, they are given as — cf. (3.4.20)

1, 1

= Al = — —=K7k .
2\/§KkX<xa <x| 2\/§Kk/f<x

These terms will appear explicitly in various places of component field expressions later on as well.

We can now turn to the construction of the supercovariant component field strength T, %| for the
gravitino. The relevant superspace 2-forms are T* = dE* + E*¢»* + E*A and its conjugate T',. The
double-bar projection of the field strength itself is then (x = a, &)

4, (4.1.25)

T?|| = 3dx"dx"T " , (4.1.26)
where
wm | = 3D um®* — Dhn®) (4.1.27)
contains the covariant derivatives
D’ = 0uln” + Yl 0up™ + YAy (4.1.28)
DiWms = Oulmss + Wnp@ns — Wiz A - (4.1.29)
On the other hand, we employ the double-bar projection in terms of the covariant differentials,
To|| = sebe Ty + e’ T + ePe, TV 7, (4.1.30)

and similarly for T,. Using the explicit form of the torsion coefficients appearing here, and
comparing the two alternative forms of T%| gives rise to the component field expressions

o 1 o i — \al,a
ch | - 2 c nwm @mwn ) 12 ec l/jmo-ao-b — € lpmo-aac) b

- L2(ecml/7m6-b - ebm‘pma-c)aM (4131)
and

1 _ _ 1 — _—
cho'zl = Eebmecn(@n lpmo‘z - @ml//néc) - E(ecml/jmo-ao-b - ebml//mo-ao-c)a‘cba

i _
— 3" Ym0y — & Vw0 ): M (4.1.32)
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for the supercovariant gravitino field strength. The contributions of the matter and Yang-Mills
sector are hidden in the covariant derivatives through the definitions given above.

Yet another important object in the component field formulation is the supercovariant version of
the curvature scalar, identified as R,,"’|. We use the same method as before for its evaluation; the
relevant superspace quantity is the curvature 2-form

Ry = doy" + dp°d.” . (4.1.33)
The double-bar projection yields
Ry‘|| = 3dx™dX"Ryms’| , (4.1.34)

where R,,,,°| is given in terms of m,,;,". Note that, in distinction to ordinary gravity, the explicit form
of w,;", given above in (4.1.15) contains quadratic gravitino terms, which will give rise to
complicated additional contributions in R, |. Fortunately enough, in the present formulation, the
projection technique takes care of these complications automatically in a concise way. As to the
curvature scalar, we use the notation

A(x) = e"ey" Ry ™| - (4.1.35)

The relation between R,,*’| and Z(x) is once more obtained after employing the double-bar
projection in terms of covariant differentials, i.e.

Ry‘|| = 3e‘e’Ruey”| + e“€’Rs| + %eYeéRéyba| > (4.1.36)

Although our formalism is quite compact it requires still some algebra (the values of the curvature
tensor components present on the right-hand side can be found in Appendix B.3) to arrive at the
result

R = R + 2ie," (Ym0ae) T | + 2iey" (0 m)y T*|

1 _ 1 — 1 -
— 300"y — MU — 56 b (4.137)

W |

Observe that this simple looking expression hides quite a number of complicated terms, in
particular Rarita-Schwinger fields up to fourth order as well as contributions from the matter and
Yang-Mills sectors.

Fully covariant derivatives for the components of the chiral superfields (to make things clear we
write the spin term, the Ug(1) term, the Yang-Mills term and the one with Kéahler Levi-Civita
symbol - in this order) are defined as

gmxg = am%fc — Wiy (PXI(;) - Am;{l;z - ia(mr)(’r(r);{oz)k + X;.trkij@mAj 5 (4138)

D = 0ui™ — 0u’o 77 + AnZ* +1a3)@ T ) + 7T 5D A (4.1.39)
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In the Yang—Mills sector we apply the double-bar projection to the field strength
F =dod + oAA = SEEB Ty, . (4.1.40)

Taking into account coefficients

ol = — @Dy Fll= — @, (4.1.41)
given in terms of the gaugino field, we establish the expression
T val = 1€y"e," (Ontty — Omtty — L@y, an]) + 3" (047) — Se,"(Y0b )
+ 36" (Y,G,4) — 3e (Y,Gu ) (4.1.42)
for the supercovariant field strength. The covariant derivatives of the gaugino field read
Dy = Omhy — Oy Ay + 1@, Ay ] + Al » (4.1.43)
DA =0 — 0,5 A% + i[ay, 24 — A A* . (4.1.44)

4.2. Some basic building blocks

We indicated above that one of the necessary tasks to obtain the Lagrangian is to derive the
components of the chiral superfields X,, X* Their superfield explicit form was already derived - cf.
(3.4.47) and (3.4.48) - but for the sake of simplicity, we give them here again,

i AR, 1 _ _
X, = — 59i79a¢¢’@¢¢' + EF]gif’@ad)l — EWzgcr)[Kk(T(r) ) + Ke(@T)) 1,

_, 1 - A - 1 . - .
X'= - zgl;;@"’“qﬁ-’@q,qb’ + EFlngz‘ga‘ﬁ" - EW(”“[Kk(T(r)(ﬁ)k + Kie(¢T()) ]
One infers - cf. (3.4.50)

1 ] , -
— 39K, = — gD DB — 395 O TG D, TP

— 305 LT DT Y + gy F'F

+ ﬁijklz@a(ﬁk@a(ﬁj@a(ﬁE@d&]

— g5 (PT) W PD*P + gi(Tiy )W P DD

+ 47W OLKW(Ty d) + Ke(dT () T, (4.2.1)
where

Ry = 0;0i97 — nggiE,jgki,f = 0;0ig57 — r ij9m.a,; - (4.2.2)
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We see that the main effort is to obtain the component field expressions of supercovariant
derivatives. Special attention should be paid to the supercovariant derivatives with respect to
Lorentz indices. As an example, we detail the computation of Z,¢'|. The starting point is the

superspace exterior derivative Z¢', whose double-bar projection reads

¢ = dx"2,, A(X) .

(4.2.3)

On the other hand, in terms of covariant differentials and due to the chirality of ¢', we have

DY = ¢Dut’| + /26 -
Combination of these two equations gives immediately

1 o, i

@a¢i| = eam <@mAi -

Similarly,

~ — 1 - _.
@a¢‘| = eam (gmA/ - ﬁl/jmd}_c}a> .

The lowest components of the superfields X,, X* are then obtained as

i - 1
onl = — —F= ngnd”_ka<<@m‘4k - T = mﬂ k>
\/Egkk \/Elp xB
1 i _ _
+ ﬁngX’;Fk + EA&V)[Kk(T(r)A)k + KE(AT(r))k] )
_. i 1
Xi= - —

—maa, k Tk T kB
—=9kk 0 Lo @mA - mp ) >
\/5 kk b < \/Elﬁ sX
1 5 1o .
+ ﬁngXkaF - Eﬂ')“[Kk(TmA)k + Ke(AT,)T .
As to —39°X,|, we infer that the first term in (4.2.1) reads

N— — 1 R
- g@f’?ab@a¢l<@b¢"| = — giigmn@mAl@nAj + ﬁgljgmn«@mz‘ll%a%m

1 . S
+ ﬁg,;;g'""%fl’%“x‘a — 3959 V™1 W X

(4.2.4)

(4.2.5)

(4.2.6)

(4.2.7)

(4.2.8)

(4.2.9)
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We see that this term provides the kinetic term for the scalar components of the (anti)chiral
matter supermultiplets (as promised, D ..., contains all the derivative interactions of such fields).
Likewise,

@ @ |:\/>@mya} Wm&F_f (wm <<@ A/ \len¢2@>:| ’ (4210)
D' = &, [ﬁ@mx“i — Y F' + i 6" (Zn A" — \% n"’xi},)} : (4.2.11)

Hence the second term in (4.2.1) yields

i
_Zgi/ ga@a(ﬁ@ gagb | __gzz gzx@ad’/@ 91¢|

i i . | o
= — 21795 0% D" + Dy 9i " + —=(' "V m)giiF — —=(mo"7)giF'
2 % 2 % 2\/5 % 2\/5 Ly

1 n—m,,i _.f_i_.r¢l i_i [
_m(lpmg o X)gl/ <9nA \/ilpntp/{ > 2\/*(‘pm0- a" gl/ <@nA \/ilpn X<P> .

(4.2.12)

We stress the presence of the kinetic term for the fermionic component of the matter super-
multiplet.
Altogether we obtain from (4.2.1)

1 R T -
— 57Xl = = 959" DA Dy A — 31 G505 T

1 1
+ E(gml ) mgl/Xw + gl_F Fl +3 gl/ (lme )(‘P /{ )

+ 4Ry (LT — 1/ 2043 (AT ) + i/ 2 T")gis (T AY

— 3DYLK (T A + Ke(AT)) ]
1 _ )
( m0 gl ( mo-m)_f‘/)gifFl
2\/’ l// i/ 2\/5 lp i
_L(lp 5.no_m:]_2lp o7 nm) (@ Ai _Lw i>
2\/5 m /( mX g gl_/ n \/5 nX

2\/>(l/jmo- a" /( 2¢m/(l nm) f/(gngl__\%lpnz/j . (4213)
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It is straightforward to obtain the other terms in D, ..., the final result reads

R o
Dmaller = - gifgmn@mAl@nA/ - Eglj(%lo-mvmx}) + Eglf(vmx o X)

+ g F'F + iR (0 ) 77) — 39i (0“7 7)ba

1 - . 1 . .
— —=(no"c" g5 2, A" — —=W """ gi D, A
ﬁ(lﬁ X )g_, \/E(‘p 7)91

i S _ 1 -
- Egifgklmn(xlakX'/)(lﬂﬂmlﬁn) - Egi/’gm"(l//mll)(lﬁn%/)

— 120729 (AT ) + i/ 202G Try A)'

- %[D(” + %(lpma-m/lm - wm GmZ(r))] [Kk(T(r)A)k + KE(/IT(r))k] .
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(4.2.14)

In this expression, the covariant derivatives DA, DA are defined in (4.1.23). The derivatives
VooV’ differ from 2, %, 2,,7’* already introduced in (4.1.38) and (4.1.39) by the contribution
of (i/2)e,’b, to A,, — cf. (4.1.24). This allows to keep track of the complete dependence in the

auxiliary field b, in order to solve its equation of motion later. Explicitly,

megz = am}f(l;z — Wy (pX;z - ia%)(T(r)Xa)i - %(Kj@mAj - Kf«@m/?))(;z

i e -
— 29IV + 12 DA
Va2 = 01" — 0n’o 7" + 10007 ) + UK D A* — K2 A7
i i =R\ DJd | SaaTy Tk
+ 295k ond’) 77 + T %D A
Finally, using the set of equations
@ﬂ% + \@aWﬂ = — 2(Uba8)ﬂa<97ba ,
@ﬂ’% — \@aWﬂ = + Sﬁa@(pW(p ,
@ﬁ% + @aWﬁ = — 2(851’“)/;&91,“ R

(4.2.15)

(4.2.16)

(4.2.17)

(4.2.18)
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we obtain, along the same lines as before, the lowest components of the supercovariant derivative
of the Yang—Mills superfields (% ,,| has been given in (4.1.42)),

DW= e"[ = 1Dwd* = 3ifpq + V0,4 + PG AWmo™) — DY,

DWWl = "l + 1Dl + 3ifpg + V0,4 + Y pG AW G — 3DVs] (4.2.19)
where

Son = Opa, — 0,a,, —ilay,a,] (4.2.20)
and the covariant derivatives 2,,A%, %,,/; are defined in (4.1.43) and (4.1.44).

4.3. Supersymmetry transformations

In the superspace formalism, supersymmetry transformations are identified as special cases of
superspace diffeomorphisms. The general form of these diffetomorphisms is given in Appendix C.3
and we will use the results obtained there.

Before writing these transformations at the component field level, we would like to stress a point
of some importance in the process of generalizing supergravity transformations to the Kéahler
superspace. For this we need the transformation law of the vielbein and of a generic (spinless)
superfield @ under diffeomorphisms (¢€), Lorentz (A5*) and Kihler (A) transformations

OEn" = Dy &' + E\PET ™ + Ex(Ap™ — EDcp™) + WE)A — ECAC)EN" , (4.3.1)
0D =BG ® + W(P)A — ECAC)D . (4.3.2)

Supergravity transformations are defined [153] by compensating the term E ¢ with a field-
dependent Lorentz transformation

Apt =™ (4.3.3)

The point is that the same procedure cannot be followed for the Kéhler transformation since A is
fixed to be of the form

_F(¢)— F(P)

A:
4

(4.3.4)
and generic terms proportional to the Kdhler connection appear in the supergravity transforma-
tions, weighted by the Kéhler weight of the field considered.

Supergravity transformations, denoted by the symbol v, are discussed in detail in Appendix C.
As in the remainder of this section we will be exclusively concerned with supergravity transforma-
tions, we will drop from now on the subscript in dyw, supergravity variations will be denoted .

o Supergravity sector: The transformations of vierbein and gravitino are derived from (C.3.32),
which reads

OEm™ = Dyl + ENPE T cp™ — sWEYENEX K Zpd* — KeZpd")

— SWENEIE(12G, + 707,94 7.6 (4.3.5)
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Projecting to lowest components and using (4.1.1), (4.1.2) and (4.1.5), together with the torsions
summarized in Appendix B, and

¢l=0, &1=& &Gl=d (4.3.6)

gives rise to

—io", +iZ5Y,, | (43.7)
1 =

o, =29, — =(éa0,,)*b, Gpm)M — (K K , 4.3.8
W & —3(Co"0n)ba + (f m) 2\/»',0 &' — Ki&r) (4.3.8)

n Z i Z—a i Y - i _E5))
5l/jm& = 2'@m éa + g(éa am)dtba + g(éo-m)aM + inmd(KiE)C - KIE/C ) (439)

with

Dl =0 + L™ + Ay, (4.3.10)
@mé_& = amé_a + é_ﬁwmﬁa’c - EozAm (4311)

and A,, given in (4.1.24). For future use, note that the determinant of the vielbein transforms as
de = ee," = e(ia™,, +iEa™p,,) (4.3.12)
and the o¢,,, ™ matrices as
00 maz = 0(€n Cunz) = + 10,55(E" W + EG"V0) (4.3.13)
o™ = §(5"*e,") = — i6™(Ea™P, + EG™Mp,) (4.3.14)

The supersymmetry transformations of the components M, M and b, are derived from the
supergravity transformations (C.3.35)

00 = &9 4 & — i O)E KT ¢ — KD 4D
— UDE(2G, + 79D "D (43.15)

of the generic superfield @ after suitable specification. In a first step, projection to lowest
components yields

- 1 —r
0P| = &, P + &, P*P| — —=W(PNKily" — K7D - (4.3.16)

NG
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Substituting R, R" and G, for @ and using the information given in Appendix B, in particular
(B.4.3)-(B.4.6), it is straightforward to arrive at the transformation laws

_ . 1 . -
oM = — iﬁgi/—(fa’"z-’)<9mz‘1‘ — \%lﬁmX’) + \/Egif(le)F/

_ _ 1 . -
+ (EAD[Ki (T A + Ke(AT,)] — —=M(K &y’ — K;&y')

NG

+ 4(égnm9nwm) - i(égm6a lpm)ba - l(fdm’,pm)M > (4317)
— . Fom, i i _ i T o5 —Fi{(E7)
581 = — i3y @ T T )+ aaFE

= — - 1 _ ) _
— EANKi (T A + Ke(AT )] + —=M(K &y — K<)

NG
4G ) + EE )b — ()M (43.18)

5ba = %(56115-",” - 3éanmaa)‘@nlpm - %(E-aanm - 3E5nm5a)9nwm
— 3T + E5Ym)ba — 5e,"WFnOM + e, (N

i L ot

- |
ﬁgkk(fﬁaf_fmxk)(@m/lk — ﬁl//m)_{k> + ﬁng(io'a}_Ck)Fk

i : o+

o 7__a mzk @mAk_ mk 4+ 75—‘1ku1€
ﬁgkk( 0,0 ) )< \/E‘ﬁ X) ﬁgkk( 1)

— (&0 T — G JOKT i AY + Ke(ATi )T (4.3.19)
® Matter sector: Let us first discuss the chiral superfield ¢'. The supersymmetry transformation of
the component field A’ is derived from (C.3.33)

dp' =D 497, (4.3.20)

upon straightforward projection to lowest components. As to the components y. and F' the
situation is slightly more involved. They are identified in the lowest components of the
superfields , ¢ and 2°%,¢" of respective chiral weights — 1 and — 2. They are particular cases
of a generic superfield of the type U, with some chiral weight. The relevant equations
in Appendix C are (C.3.27)-(C.3.31) and (C.3.36). We have to consider a superfield U’
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(which is actually a mixture of the superfields @ and U’ of Appendix C) with supergravity
transformation

U = e, U + I3 E49 1 pTU* — Iw(UNUEA K, D 4 ¢* — KD 4 )
_ %W(U")U"éb(IZGb + 590D, D, ) . 4.3.21)

This provides the supergravity transformations for y, and F’, once U is replaced by Z,¢' and
2°9,¢", and the result projected to lowest components. Intermediate steps in the computation
involve the covariant derivative relations

DD = 2i(6%)," D', (4.3.22)
D3 DDy =3{D s, 9D, ¢" = 8R1 D', (4.3.23)
DG, p' = — 4i(6%)," 2.,2°¢" + 4(c%)," G, 2*¢'

+ Ry PP 2" D, 7 — 8 KT, ) . (4.3.24)

As a final result we obtain the component field transformations

oAl =28y, (4.3.25)
Sth = i/2(&"e), (%Ai -~ %mi) + /28, F

1 : : 1 . _
—E T () + —— 4 (K v — K& 4.3.26
+ﬁéa Jk(xx)+2ﬁxa( Er* — Ke&r (4.3.26)
. - . - . - _ . 1 .
OF! = i/2E6"V, 1) — i(E™p,)F' + (55'm0"l//m)<@n141 - ﬁ%%)

2 _ 2 — ;
+ %Mﬁxl + %(éo%ba — 28T, A)

. . 1 . S . ~
+ V2 () FE — ﬁlekE(Xij)(éZk) + ﬁFl(KkéXk — Kelyh) , (4.3.27)

where the relevant covariant derivatives are given in (4.1.23) and (4.2.15). The supersymmetry
transformations for a general chiral superfield of non-zero weight w will be given in the next
subsection - cf. (4.4.10)-(4.4.12).

Similarly, for an antichiral superfield ¢’ of supergravity transformation

0:0'=E1'2,49", (4.3.28)
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we use the relations
DD, d7 = 2i(6%)," D,
9*9,9°¢ = 8RZ* P,
Dy D3 DY’ = — 443D, D7 — 464G, TP
RaZs "2, 7" + 80 P(PT)

to arrive at the component field transformations
o7Y = 1\/(66 e)* <@ A — 71[ ’> + ﬁi_&ﬁ

1 - - 1 .- _
B = ok —— (K k - K k

+§M§7/ NE N Z(E6" )b, + AEX(AT,,)

1 _-
+ /207 1 (E)F ﬁ A (Y ﬁF'(Kkéxk — K&

after suitable projection to lowest components.

® Yang-Mills sector:'® As to the supergravity transformation of the gauge potential a,, =

we project (C.3.23)
5‘2{M = EMBéCgCBA
to lowest components and use (4.1.42) to obtain

=i(éouA) + i(EGuA) .

)

5F = i/2Eo™ V) — i) + <amm><@n@—%m

(4.3.29)

(4.3.30)

(4.3.31)

(4.3.32)

(4.3.33)

(4.3.34)

_i%mL

(4.3.35)

(4.3.36)

Concerning the fermionic components /% 1, defined in (4.1.22), the supersymmetry transforma-
tions are obtained after identification of @ in (4.3.15) with #™ (resp. #;) and subsequent

16 All the fields below belong to the adjoint representation of the Yang-Mills group, (@, 4, 4, D) =

(a%)z /1('), ;T(r)’ D(r)) . T(r)-
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projection to lowest components. Using (4.2.17), (4.2.18) and the explicit form of Z,,| in (4.1.42),
we obtain

. = . . 1 _
0L = (éamn)a( _fmn + llpmgni + llpmgni) + léaD - 2—\/§ia(Kk é%k - Kl?é)_( ) > (4337)
5I& = (Ea_mn)&( _fmn + ilpmgn)T + ilpma-nl) - lé_azD + Lza(KkéXk - KEE)_C_) (4338)

2\/5
with f,,, defined in (4.2.20). Finally, the transformation

OD = — E0" T+ T D + 5(Tn"E + Yo" DD

+ 36 6" — Yo" (fu — Wik — a1 7) (4.3.39)

of the auxiliary field is obtained along the same lines.

4.4. Generic component field action

Although superfield actions, as discussed in Section 3.4, are quite compact, and invariance under
supersymmetry transformations is rather transparent, their component field expansions are notori-
ously complicated. In Section 3.4 we have seen that the chiral volume element provides the
generalization of the F-term construction to the case of local supersymmetry. The superfield
actions for the supergravity/matter system, the Yang—Mills kinetic terms and the superpotential
in(3.4.53)-(3.4.55) are all of the generic form

A(1,F) = j gr +he. (4.4.1)

with r a chiral superfield of U(1) weight w(r) = 2. The various superfield actions are then obtained
from identifying r, respectively, with

Foupergravity +matter = — 3R, (4.4.2)

I'yang-Mills = %f(r)(s)(qﬁ)"/%(’”"//f) (4.4.3)
and

Fsuperpotential — e®/? W(¢) . (4.4.4)

We will proceed, in a first step, with the construction of a locally supersymmetric component field
action a generic chiral superfield r, starting from the definition

A (r,7)| = f gr| +he = Jd“xg(r, r. (4.4.5)

*
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In the following, we will determine #(r,r) as a suitably modified F-term for the superfield r.
Defining the components of r as usual,

1
Dol = — 27D, (4.4.6)

it should be clear that the F-term space-time density, i.e. the component field ef alone is not
invariant under supergravity transformations. Calling

[, =ef, 4.4.7)
we allow for additional terms

l, =758, , (4.4.8)

l3 = Z3r 4.4.9)

with field-dependent coefficients 13, A5 of respective U(1) weights — 1, — 2. The strategy is then to
use the supersymmetry transformations of the gravity sector, which are already known, and those
of the generic multiplet to determine [, and I3, i.e. A3 and /3, such that [; + [, + I3 is invariant
under supersymmetry, up to a total space-time derivative. The reader not interested in the details
of the computation can go directly to (4.4.21), (4.4.22) which summarize the results.

The supersymmetry transformation laws for the components of a superfield r of Kihler weight
w = w(r) are obtained from the general procedure exposed in Section 4.3, they read

or = /2¢s — 2—\%([(,{ &t — Ke&7r | (4.4.10)

5Sa = \/Eiaf + i\/E(O'mé—)a<@ml' - %wms + ijwemabar> - ‘/;—\_/il(Kkéxk - KEEZ )Sa > (4411)

o = i/ 2E5" D) — T )f + (Ea%%)(zﬁ,.r - ﬁwns ¥ %Wen“bar>

+ gﬂfs - %w — 2)(&“s)b, + wr&, X* — W—_;(kaxk — KGO (4.4.12)

NG

Thus, specifying to the case w = 2 and using (4.3.12) and (4.4.12), gives rise to

Lol = iz - %(Ea@ba +i/2AE" D)

+ (E&man$m)<@nr ~ \%%S + ie,,"bar> + 4]\‘4@ + 2, X* . (4.4.13)
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A glance at the transformation law (4.4.11) shows that the first term can be cancelled in choosing
I, = %(l/?m&m)dsa . (4.4.14)

In the next step we work out the supersymmetry transformation of the sum l; + [,. Using (4.3.9)
and (4.3.14) we obtain

15(11 + 1) = /28M + 208, X% + 1/ 2E5" D S) + in/2A L E5™S)

e
Z—_mn,], _ 1 s, a 1 T =n mJ, Z—m
+ 4(Co %)(%r —ﬂwns + iey, bar> + —ﬁ(kbma S)Ea™Yn + CG™Yn)

- %@ma’"sxéo—"lﬁn ). (44.15)

Again, requiring cancellation of the first term suggests to choose
I = —eMr. (4.4.16)

Taking into account the supergravity transformation law (4.3.18), we now obtain

SOl + I+ 1) = 4T, ) — (e bt — o) Ve

T %@m&"sxéam&n T ) — ﬁ@mamsxza% L EY,) . (4417)

Here, the first term can be cancelled with the help of another term of the type ;. Indeed, the
transformation law (4.3.9) suggests to take
= —er),, ™y, . (4.4.18)
Using (4.3.9) and (4.3.13), (4.3.14), we find
1 o ~ ~ o
S0l = — AZuco™ ) + (S0 0™ )bar + i(Co™Ym)Mr
— 208" )(ES) + 20K, )(Eo Tk + G5
— it ") E Y + E6MYn) (4.4.19)
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Using the relation
ee," D, 1" = O,(ev’e,™) + g(a”s)ﬁ Poi(eye,™ — ep"ed Wu " Wmp (4.4.20)

for integration by parts at the component field level and after some algebra together with (A.2.58),
we finally obtain

oly + 1, + 13 +15) =0, [iﬁe(i_&’"s) — de(Ea™ )] . (4.4.21)
This shows that the Lagrangian density

L,F) = ef + 1) + (0™ + Y5"S) — eE(M + Y™ ) — er(M + Fnd™F,) , (44.22)

2
constructed with components (4.4.6) of a generic chiral superfield of chiral weight w = 2 provides
a supersymmetric action.

4.5. Invariant actions
The generic construction can now be applied to derive the component field versions of the
superfield actions discussed in Section 4.4.3, namely .o upergravity+matters ¥ superpotential  and

A vang-mins glven respectively in Egs. (3.4.53)—(3.4.55).

4.5.1. Supergravity and matter
Identifying the generic superfield such that

l.supergravity+maller = - 3R s (451)
determines component fields correspondingly. The lowest component is given as
M
- 452

As a consequence of (3.4.42) the spinor component takes the form
1
= Nl 26"8)y T (45.3)
In the construction of the component field Lagrangian this appears in the combination

i - 1~ _ T =
ﬁ(wmams) = 5Vm0"X| + ief(VmTae), T
1 mnpq,f; = i mnpq,[, =
+ 58 l//mGn@plpq + 68 lpmgnl//qbp

+ é(%a’"tﬁm — Y™ P)b" + %lﬁmfr’”"%M , (4.5.4)
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where we have used (A.2.46) and (4.1.31) as well as other formulas given in Appendix A. Finally,
from (3.4.44) and (4.1.37), we infer

f+T= — 4% — ie,"(Fnu0)y T — 477X, | + 1%, + sMM

. —
+ ﬁsmwwmaanbp + My + he. (4.5.5)

with the curvature scalar # defined in (4.1.35).
Recapitulating, the Lagrangian (4.4.22) becomes

. S U i
e lgsupergravity+matter = - Z'% + 58 pqlpman<‘@Plpq + Ebplpq>

I B T i
_EMM+6b ba —Z@ Xal +§l//m6 Xl + h.c

= - %e@ + %Emnpq('vpma-nvaq - l/jmo-nvplpq) - %MM + %baba + Dmatter . (456)

The cancellation of the ¥, b,¥, terms with those coming from (4.1.24) is manifest in terms of the
new covariant derivatives

Vn lpma = anwma + l/]mﬁa)nﬂaC + iwma(Kk@nAk - KE@nAE + igklzxkan}_(k) 5 (457)
anpmdz = an‘pmo’t + lpml)’(fon ﬁ& - %lpmdz(KkgnAk - KEQnAE + ingXkam}_{E) > (458)

which are fully Lorentz, Kdhler and gauge covariant derivatives. Finally, the expression of D, cr»
defined in (4.2), in terms of the component fields has been given explicitly in (4.2.15).

We now see explicitly what was stressed in the introduction to this section: the explicit
dependence in the matter fields appears only through the D-term induced by the Kéhler structure
eDn.uer; the rest of the Lagrangian has the form of the standard supergravity Lagrangian. It should
be kept in mind, however, that all the covariant derivatives in Zpergravity + matter '€ NOW cOvariant
also with respect to the Kéhler and Yang-Mills transformations.

4.5.2. Superpotential
We now turn to the potential term in the Lagrangian and consider

K/2
rsuperpolenlial =€ / W . (459)

In order to identify the corresponding component fields we have to apply covariant spinor
derivatives. Since neither K nor W are tensors with respect to the Kahler phase transformations we
make use of Z,r = E, M0, r + 2A4,r, before applying the product rule. Recall that in (C.4.8), the
explicit form of A4, is given as

A, = 3K D" (4.5.10)
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in terms of the usual Yang-Mills covariant derivative. Using furthermore the requirement that
W as well as K are Yang-Mills invariant, we obtain

E, MOy W = W, 2,¢%, E,M0yK = K, Z,¢9" . (4.5.11)
Adding these three contributions yields

G v =XKW + WD, P . (4.5.12)
Let us note that the combination (K, W + W,) behaves as W under Kéhler transformations, i.c.

Wie fW then (KW + Wy)—e H(K W + W,). (4.5.13)
This suggests to denote

(KxW + Wy) =D W (4.5.14)
and we obtain

s, = eX2kD W . (4.5.15)

The evaluation of Z2*Z, I perpotential Proceeds along the same lines. Taking carefully into account
the Kéahler structure leads to

@“@al‘ - + eK/Z(KkW + Wk)gaga()bk + eK/Z[(Kij - Kkrkij + KlKJ)W
+ (Wi — WiIT*; + WK, + WiK;)12°0'D, ¢’ . (4.5.16)

Observe that the expression inside brackets is just equal to (0; + K;)D;W — I'*;; D, W and trans-
forms as W and D; W under Kihler (the presence of the Levi—Civita symbol ensures the covariance
of the derivatives with respect to Kahler manifold indices). Again, this suggests the definition

D;D;W = (©; + K;)D;W —I'*;D, W, (4.5.17)
giving rise to the compact expression

f = e"2[F*"DW — 3'¥'D;D;W] (4.5.18)
for the F-term component field. Substituting in the generic formula (4.4.22), yields the Lagrangian

e_1‘=gsuperpotential = eK/z[FkaW + F_ED}EW - MW — MW]

K/2

€ P - - —
—-[/7DiD;W + 77'D,D; W]

ck/2 B

+ ﬁ[i(nﬁm 5" DLW + (" TVDW — 2 mG"™F)W — </ 20Wma™ )W ] . (4.5.19)
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4.5.3. Yang-Mills
Finally, to obtain the Yang-Mills Lagrangian, we start from the superfield

Fyang-Mills = %f(r)(s) W(mW&S) (4.5.20)
with lowest component
r= —ifie(A"9) . (4.5.21)

Applying a covariant spinor derivative to Iy,nemins and using the transformation properties of
frs and fi as given in (3.4.60) and (3.4.61), together with (4.2.17) yields

1 1 b
@arYang—Mills = —aJmnes) for)@q’%g) + fﬁr)(s)(a aW(r))azgi(biz)

1 af(r)(;)
4 0¢'

Dug WY (4.5.22)

It remains to project to the lowest superfield components - cf. (4.1.22), (4.1.42), (4.4.6), giving rise to

—1

Joyo DS + (6™ 20, (if o + Ym0 2 + 5, 2]

af(l‘)(S) i

(r) ) (S)
— 1 a4 A7) (4.5.23)

with £ defined in (4.2.20). Similarly, using (4.2.17) and (B.5.28), we obtain

1
@a@ar — f(r)(s)( (@aw(r))(gﬁw(s)) a"(r)bag;(s) + EgdCbataig‘C)'g;nga)>

1 , .
5 S W AR + diat, 7,0

~ Yo
o’

1 af(r)(s)
4 0¢'

l(azf(n(s) & Yryis)

< gaqb W;r)g/}%(s) gad)L( ba) ﬁw(r)g; s)>

+ DG W YD

4\opop’ 7 o¢!

)@%@@W‘”M/ﬁ;) : (4.5.24)
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One recognizes in the last line the covariant derivative of f, with respect to Kahler manifold
indices. The corresponding component field expression is

1
f: — Zf(r)(s)[ f(r)mrf(S) + 8mnpq (r)f(s) + 21A‘”o""@ YIS

_ D(r)D(s) + ]\71/1(”1(3) _ (;L(r)gmlpm)D(s)

_ i(l/jm gPigm ) + lpm ghagm ) _ lpm oMaPd i(')) flgls])]
1 1 pq m7(r) T, Fpazm)(r) 1. Fm pq )(r) 7(s) T 7 )
+Zf(r)(S) Ewma "/ + Y, GT6" A —Ewma AN o AV + 64 4)

1 Ofirys)
4 A

[— f( mn;(r))f(s) + iﬁ(x%(”)D“’ _Fi(;b(r);h(s))
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+ é(azf(r)(S) l—~1 . .af(r)(S)

0A'0A v 24!

>(x‘ 220 (4.5.25)

where the covariant derivative 2,,A" is defined in (4.1.44). Making heavy use of relations
(A.2.42)-(A.2.51), we finally obtain

-1 1
e Y Yang-Mills = — Zf(r)(s)
1 1 - -
X |:§ f "””"f,ffn’ + 18'""” 4 f,f[,f fgfl) + 216"V, 2 — DD — (ﬂf“a“ﬂv(s))ba

_ if(r)mn(lpmo.n;j(s) =+ lpma-n;h(s)) + %gmnpq rslrg(lppgqﬂs) _ lppa'q},m)

+ 322N AP + " 0"y) + SEOZN A" + Y 0"GYr)

U = N W0, )|
10 . .
-7 ];(2)1(18) |:\/§(ylam”/u(r)) (s) '\/E(X%(r))])(s}+F1(;L(r)/1(8))

- f AR ") — iﬁwmonﬂ”)(xfom"ﬂéﬂ

1 82 r)(s a r)(s i,,J r)1(s
+ §<a Aan)(A)f —TI'; g ar >(x OI) + he (4.5.26)
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The Yang-Mills field strength £) is defined in (4.2.20). The covariant derivatives

Vmi&r) = amiy) — Wy (Pig) - afrtl)c(s)(t)(r)igf)

1 . _ P
+ (KD A = KT VY + 2960007V, (4.527)
V, 0% = 8, T0% — o, & 00 _ g0 )T
1 N T
— (KO A* — K0y AT - %g PO oY (4.5.28)

differ from the covariant derivatives Z,,Ay and 2,,A"* introduced in (4.1.43) and (4.1.44) by the
covariant b, dependent term appearing in the definition of 4,,, in analogy with previous definitions
- cf. (4.2.15), (4.2.16) and (4.5.7), (4.5.8).

4.5.4. Recapitulation
The complete Lagrangian describing the interaction of Yang—Mills and chiral supermultiplets
with supergravity is given by the sum of (4.5.6), (4.5.19), and (4.5.26), with the matter D-term given in
(4.2.15). In taking the sum, we diagonalize in the auxiliary field sector, with the result
e 'Y
= - %’@ + %Smnpq(lpma-nvaq - wmgnvplpq)
— 95 " A D A — %gir(xia’"Vme + 75" Vi)
- %Ref(r)(s)f(r)m'?frasn + %Imf(r)(s) gmnqu(r)mnf(s)pq

1 e "
) Lfrs 6"V, 2 + Jos) 206"V, /L(S)]

K/2

- — c .. _ -
+ 3eX|W|? — g"e*D;W D;W — — DD W (%) + DD W (777)]

+ %(Ri/_kl_ + %gi/_ Jx) (XiXk)(Z ]_}_fi) - %g,;,— Refiys) (Xifl(r))(}_{‘l_z(s))
— i/ 202 AT ) + i/ 20777 gi (T ) AY

1 af(r)(S) i r) aJT(r)(S) 1=
— = | 2R (L ymna(r AL 1 mn}?(r) (s)
2\/§|: aAz (XG 4 )+ aA, (XO- ) fmn
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+ é[(g;ft(ggj _ Tt . a]é(::;) >( i 1) + 2g1/eK/2D W g(;)l(ls) :|()h(r)/"h(s))
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The diagonalized auxiliary fields, defined as

M =M + 352w, (4.5.30)
M = M + 3e5°W (4.5.31)
b = b* — 3957 (1'%’ + IR S5y (AT (4.5.32)
F' = .P+em2*DvV+Z’JM”Wﬂﬂ@) (4.5.33)
/= F + WZ”DJV+4_”QZTMWMW, (4.5.34)
D = D — (Refino) " (KalTiy 4 - ﬁ oz gy (4.5.39)

have trivial equations of motion which coincide with the lowest components of those found in
(3.4.65)-(3.4.70) in superfield language.

We would like to end this section with one comment: it was first realized in [41,42,38,39] that the
Lagrangian depends only on the combination

G = K + In|W|? (4.5.36)

and not independently on the Kéhler potential K and the superpotential W. This can be made clear
in a straightforward manner in the Kahler superspace formalism. Indeed, performing a Kéhler
transformation — cf. (3.2.7) — with F = In W yields

) 1(E ,
€ 1Dgsuperpolemial = EJVEG /2 + h.C . (4537)

This field-dependent redefinition, which has the form of a Kéhler transformation, must of course be
performed in the whole geometric structure, leading to a new superspace geometry which is
completely inert under Kahler transformations. The component field expressions in this new basis,
with Kéhler inert components, have the same form as the previous ones, with K replaced by % in all
the implicit dependence on the Kihler potential and W and W set to one. It was actually given in
this basis in [21].

5. Linear multiplet and supergravity

The antisymmetric tensor gauge potential, b,, = — b,,, first discussed in [121], appears
naturally in the context of string theory [ 108]. At the dynamical level it is related to a real massless
scalar field through a duality transformation.
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In supersymmetry, the antisymmetric tensor is part of the linear multiplet [ 71,143], together with
a real scalar and a Majorana spinor. The duality with a massless scalar multiplet is most easily
established in superfield language [111].

Postponing the discussion of the relevance of the linear multiplet and its couplings in low-energy
effective superstring theory to the closing Section 7, we concentrate here on the general description
of linear multiplets in superspace and couplings to the full supergravity/matter/Yang—Mills system,
including Chern-Simons forms.

The basic idea of the linear superfield formalism is to describe a 2-form gauge potential in the
background of Ug(1) superspace and to promote the Kahler potential to a more general superfield
function, which not only depends on the chiral matter superfields but also on linear superfields.

In order to prepare the ground, Section 5.1 provides an elementary and quite detailed introduc-
tion to the antisymmetric tensor gauge potential and to linear superfields without supergravity.
Whereas the superspace geometry of the 2-form in Ug(1) superspace is presented in Section 5.2,
component fields are identified in Section 5.3. In Section 5.4 we explain the coupling of the linear
superfield to the supergravity/matter/Yang-Mills system. Duality transformations in this general
context, including Chern-Simons forms are discussed in Section 5.5, relating the linear superfield
Sformalism to the chiral superfield formalism. In Section 5.6 we show that the linear superfield
formalism provides a natural explanation of non-holomorphic gauge coupling constants. Finally,
in Section 5.7 we extend our analysis to the case of several linear multiplets.

5.1. The linear multiplet in rigid superspace

5.1.1. The antisymmetric tensor gauge field
Consider first the simple case of the antisymmetric tensor gauge potential b,,, in four dimensions
with gauge transformations parametrized by a four vector f,, such that

bmn '_)bmn + amﬁn - 6nﬁm (511)
and with invariant field strength given as
hOlmn = albmn + ambnl + anblm . (512)

The subscript 0 denotes here the absence of Chern—-Simons forms. As a consequence of its definition
the field strength satisfies the Bianchi identity

Sklmnakh()lmn =0. (513)
The invariant kinetic action is given as
L =Y hT*hop, (5.1.4)

with *hf = 4™ h,,.. denoting the Hodge dual of the field strength tensor.
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Consider next the case where a Chern-Simons term for a Yang—Mills potential a,,, such as

7
len = - tr(a[lﬁman] — gla[[aman]> (515)

with [Imn] = Imn + mnl + nlm — min — Inm — nml, is added to the field strength,

Rimn = Do tmn + lemn . (516)

Here k is a constant which helps keeping track of the terms induced by the inclusion of the
Chern-Simons combination. The Chern-Simons term is introduced to compensate the Yang-Mills
gauge transformations to the antisymmetric tensor, thus rendering the modified field strength
invariant. The Bianchi identity is modified as well; it now reads

Oy Py = — 3K T fig fom). (5.1.7)
A dynamical theory may then be obtained from the invariant action
L = 3" by — 20 (f™ frun) (5.1.8)

with *h* the dual of h,,,,. This action describes the dynamics of Yang-Mills potentials a,,(x) and an
antisymmetric tensor gauge potential b,,, with effective k-dependent couplings induced through the
Chern-Simons form.

This theory is dual to another one where the antisymmetric tensor is replaced by a real
pseudoscalar a(x) in the following sense: one starts from a first order action describing a vector
X"(x), a scalar a(x) and the Yang-Mills gauge potential a,,(x),

L = (X" — k*Q"0na + 3X" Xy — 31 (f ") , (5.1.9)

where the gauge Chern-Simons form is included as

1 2i
*Qk = ygklm"szn = — gkmn tr<a,6ma,, — glalama,,> ) (5.1.10)

Variation of the first-order action with respect to the field a gives rise to an equation of motion
which is solved in terms of an antisymmetric tensor

O(X™ — k*Q™) =0, = X*— k*QF = Ygkmyp (5.1.11)

Substituting back shows that the first term in (5.1.9) becomes a total derivative and we end up with
the previous action (5.1.8) where *h™ = X™, describing an antisymmetric tensor gauge field coupled
to a gauge Chern-Simons form.

On the other hand, varying the first order action with respect to X™ yields

X, = — 0Ona . (5.1.12)
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In this case, substitution of the equation of motion, together with the divergence equation for the
Chern-Simons form, i.e.

00" = — 26" (i foum) (5.1.13)

gives rise to a theory describing a real scalar field with an axion coupling term

P = SO0 — U o) — A i o) (5.1.14)

It is in this sense that the two actions (5.1.8) and (5.1.14) derived here from the first-order one (5.1.9)
are dual to each other. They describe alternatively the dynamics of an antisymmetric tensor gauge
field or of a real pseudoscalar, respectively, with special types of Yang-Mills couplings. Indeed, the
pseudoscalar field is often referred to as an axion because of its couplings (5.1.14) to Yang-Mills
fields (although it is not necessarily the QCD axion). Note that the kinetic term of the Yang-Mills
sector is not modified in this procedure.

5.1.2. The linear superfield

As already mentioned, the linear supermultiplet consists of an antisymmetric tensor, a real scalar
and a Majorana spinor. In string theories, the real scalar is the dilaton found among the massless
modes of the gravity supermultiplet. As b,,, is the coefficient of a 2-form, we can describe its
supersymmetric version by a 2-form in superspace with appropriate constrains and build the
corresponding supermultiplet by solving the Bianchi identities. We shall proceed this way in
Section 5.2. In superfield language it is described by a superfield Ly, subject to the constraints

DZLO = O, D_2L0 = O . (5115)

Again, the subscript 0 means that we do not include, for the moment, the coupling to
Chern-Simons forms. The linear superfield L, contains the antisymmetric tensor only through its
field strength hg;,,,,. Indeed, the superfield L, is the supersymmetric analogue of h,,,, (it describes
the multiplet of field strengths) and the constraints (5.1.15) are the supersymmetric version of the
Bianchi identities. The particular form of these constraints implies that terms quadratic in 0 and
0 are not independent component fields; it is for this reason that L, has been called a linear
superfield [71].

As before, component fields are identified as projections to lowest superfield components. To
begin with, we identify the real scalar Ly(x) of the linear multiplet as the lowest component

Lol = Lo(x) . (5.1.16)

The spinor derivatives of superfields are again superfields and we define the Weyl components
(A,(x), A%x)) of the Majorana spinor of the linear multiplet as

D,Lo| = A,(x), D*Lo| = A¥x) . (5.1.17)
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The antisymmetric tensor appears in L, via its field strength identified as
[DonDa]LO| = - %akua’cgklmnhOImn = - 26k1d*h16 5 (5118)

thus completing the identification of the independent component fields contained in L.

The canonical supersymmetric kinetic action for the linear multiplet is then given by the square
of the linear superfield integrated over superspace, i.e. in the language of projections to lowest
superfield components,

_ _ 1 1 i — o
¥ = — 35(D*D* + D*D?*)(Lo)?*| = E*hg”*ho,n — E@'”LoamLo — %o—;';(A“@m/l“ + A%0,4%) ,

(5.1.19)

generalizing the purely bosonic action (5.1.4) given above and showing that there is no auxiliary
field in the linear multiplet.

In order to construct the supersymmetric version of (5.1.8), we come now to the supersymmetric
description of the corresponding Chern-Simons forms. They are described in terms of the
Chern-Simons superfield Q, which has the properties

(W W) = iD2Q, (W, W) = 1D*Q . (5.1.20)

The appearance of the differential operators D* and D? is due to the chirality constraint (2.3.33) on
the gaugino superfields # % #,, whereas the additional constraint (2.3.34) is responsible for the fact
that one and the same real superfield © appears in both equations. The component field
Chern-Simons form (5.1.5) is then identified in the lowest superfield component

[D,,Dy1Q| = — 20,0 — 4tr(J,75) (5.1.21)
with *Q* given in (5.1.10).
Since the terms on the left-hand side in (5.1.20) are gauge invariant, it is clear that a gauge

transformation adds a linear superfield to Q. The explicit construction given in Appendix F.2, in the
full supergravity context, shows that, up to a linear superfield, we may identify

L=Lo+kQ, (5.1.22)

such that L is gauge invariant. However, this superfield L satisfies now the modified linearity
conditions

DL = 2k tr(W* W), (5.1.23)

DAL = 2k tr(W, W) . (5.1.24)



338 P. Binétruy et al. | Physics Reports 343 (2001) 255-462

Again, these equations together with
[DaaDd]L = - %O-dadgdCbchba - 4k tr(WaWa) (5125)

have an interpretation as Bianchi identities in superspace geometry. The last one shows how the
usual field strength of the antisymmetric tensor together with the Chern-Simons component field
appears in the superfield expansion of L,

[DaaDo'c]L| = = Gkaécgklmn<albmn + ngmn> - 4ktr(iazdc) . (5126)

The invariant action for this supersymmetric system is given as the lowest component of the
superfield

% = — HDD? + D2DY)L? — D> tr W2 — LD tr 2 . (5.1.27)

This action describes the supersymmetric version of the purely bosonic action (5.1.8). Its explicit
component field gestalt will be displayed and commented on in a short while.

The notion of duality can be extended to supersymmetric theories as well [111]; this is most
conveniently done in the language of superfields. The supersymmetric version of the first-order
action (5.1.9) is given as

P = — (DD + D?D*) (X2 + /2AX — kQ)(S + S) — 15> tr W — D> tr 7. (5.1.28)
Here, X is a real but otherwise unconstrained superfield, whereas S and S are chiral,
D,S=0, D*S=0. (5.1.29)

Of course, the chiral multiplets are going to play the part of the scalar field a(x) in the previous
non-supersymmetric discussion.

Varying the first-order action with respect to the superfield S or, more correctly, with respect to
its unconstrained pre-potential X, defined as S = D?X, the solution of the chirality constraint,
shows immediately (upon integration by parts using spinor derivatives) that the superfield X must
satisfy the modified linearity condition. It is therefore identified with L and we recover the action
(5.1.27) above.

On the other hand, varying the first-order action (5.1.28) with respect to X yields the superfield
equation of motion

_ LZ(S +5). (5.1.30)

7

Substituting for X in (5.1.28) and observing that the terms S? and S? yield total derivatives which
are trivial upon superspace integration, we arrive at

X:

4 = 37(D*D?* + D*D*)(SS + ky/29Q(S + §)) — {sD*tr #'2 — J6D* tr /2 . (5.1.31)
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One recognizes the usual superfield kinetic term for the chiral multiplet and the Yang—Mills kinetic
terms. It remains to have a closer look at the terms containing the Chern-Simons superfield.
Taking into account the chirality properties for S and S and the derivative relations (5.1.20) for the
Chern-Simons superfields we obtain, up to a total derivative,

L = $(D?D? + D2D)SS — (D> tr W' — {D tr 72
k2 k2
+ T\/DZ(S trw?) + T\/DZ(S tr 72 | (5.1.32)

This action is the supersymmetric version of the action (5.1.14).

The component field expressions for the two dual versions (5.1.27) and (5.1.32) of the supersym-
metric construction are then easily derived. In the antisymmetric tensor version, the complete
invariant component field action deriving from (5.1.27) is given as

1 1 1 — .
L =30y — 50"L O L — %Gﬁ(A“amA“ + A0, 4%)

1 1 an
+a —I—2kL)tr[—me"fmn - am(zfa@ T 4 TP i) + 5 D]

— Rt (Ao T) — KA tE (o) — kAG"™ t1(Xf o)

2
_ kz(l kL) A%tr 22 4 A2t T2 — 246" A tr(io, 2]

2
— %[tr 22tr 12 — tr(Aa" Dtr(on )] - (5.1.33)

This is the supersymmetric version of (5.1.8). The redefined auxiliary field
D =D + ik(1 + 2kL)™ (A4 — A7) (5.1.34)
has trivial equation of motion.

On the other hand, in order to display the component field Lagrangian in the chiral superfield
version, we recall the definition of the component field content of the chiral superfields

S| = S(x), D,S|=/2y.(x), DS|= — 4F(x) (5.1.35)
and

S| =S(x), D*S|=./27x), D?S|= —4F(x). (5.1.36)
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The component field action in the dual formulation, derived from the superfield action (5.1.32)
takes then the form

)

P = —om%0,S — %a;"d(x“amzd + 70w + F

+(1—kf(s+5)tr[——fm"fm,,— (DTt + TG, z“)% }

— S t(fua foun) + 40w tr(20™7)]

k
— S
4iﬁ(
_ k?
+ kyo™ tr(Afom) + kxo™ tr(Afomm) — T tr A% tr A2

kZ

- (1 — k/2(S + S) '[P tr 2% + 7 tr 1% — 2(ya" Ptr(Aom )] - (5.1.37)

This is the supersymmetric version of (5.1.14). Again, we have introduced the diagonalized
combinations for the auxiliary fields

. 2 . 2

F=F+¥triz, F=F+¥tr12 (5.1.38)
and

D =D —ik[1 — k/2(S + 8]~ (x4 — 77) - (5.1.39)

The two supersymmetric actions (5.1.33) and (5.1.37) are dual to each other, in the precise sense
of the construction performed above. In both cases the presence of the Chern-Simons form induces
k-dependent effective couplings, in particular quadri-linear spinor couplings. Also, we easily
recognize in the second version the axion term already encountered in the purely bosonic case
discussed before.

A striking difference with the non-supersymmetric case, however, is the appearance of a
k-dependent gauge coupling function, multiplying the Yang-Mills kinetic terms. This shows that
supersymmetrization of (5.1.8) and (5.1.14) results not only in supplementary fermionic terms, but
induces also genuinely new purely bosonic terms.

In this line of construction, one can imagine an extension of Zumino’s construction of the
non-linear sigma model [164,74,4], where we replace the Kéhler potential K(¢,$) by a more
general function K(¢, ¢, L) which not only depends on complex chiral and antichiral superfields,
but also on a number of real linear superfields.

5.2. The geometry of the 2-form

The linear multiplet has a geometric interpretation as a 2-form gauge potential in superspace
geometry. Since we wish to construct theories where the linear multiplet is coupled to the
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supergravity/matter system, we will formulate this 2-form geometry in the background of Ug(1)
superspace. The basic object is the 2-form gauge potential defined as

B = %dZMdZNBNM (521)

subject to gauge transformations of parameters § = dz™p,, which are themselves 1-forms in
superspace

B—B+df, (5.2.2)
1e.,
Byy = Byy + OnfByr — (— )"0 B - (5.2.3)

The invariant field strength is a 3-form,

1
H = dB = gEAEBECHCBA (524)

with E“ the frame of Ug(1) superspace. As a consequence of dd = 0 one obtains the Bianchi
identity, dH = 0, which fully developed reads

1

EEAEBECED(“'@DHCBA + 6TDCFHFBA) = 0 . (525)

The linear superfield is recovered from this general structure in imposing covariant constraints on
the field strength coefficients Hcp, such that (¢ = o, &)

Hvlicz =0, Hvﬁa =0, H*‘/ﬂa =0. (5.2.6)

As consequences of these constraints we find (by explicitly solving them in terms of unconstrained
pre-potentials or else working through the covariant Bianchi identities) that all the field strength
components of the 2-form are expressed in terms of one real superfield. In the absence of
Chern-Simons forms - cf. also Section 5.1.2, it will be denoted by L. It is identified in

H,’, = —2i(o,e),"L, . (5.2.7)
Explicitly we obtain

H,u = 2(044),°Z,Lo, H?,, = 2(Gpa)" 3 2"Lo (5.2.8)
and

— 3604556 Hepy = (D> Z5] — 406%,G,)Lg . (5.2.9)

This equation identifies the supercovariant field strength H,,, in the superfield expansion of L.
Compatibility of the constraints imposed above with the structure of the Bianchi identities then



342 P. Binétruy et al. | Physics Reports 343 (2001) 255-462

implies the linearity conditions
(2 —8R)Ly, =0, (2> —8R")L, =0 (5.2.10)

for a linear superfield in interaction with the supergravity/matter system.

In general, when the linear multiplet is coupled to the supergravity/matter/Yang—Mills system,
we will have to allow for Chern—-Simons couplings as well. As gravitational Chern-Simons forms
are beyond the scope of this report, we will restrict ourselves to the Yang—Mills case. Recall that the
Chern-Simons 3-form of a Yang-Mills potential .o/ in superspace is defined as [90]

2" = tr(Aded + 3d A ) . (5.2.11)
Its exterior derivative yields a field strength squared term
d2"" =t(F F) . (5.2.12)

The coupling to the antisymmetric tensor multiplet is obtained by incorporating this
Chern-Simons form into the field strength of the 2-form gauge potential

H”" =dB + k27" . (5.2.13)
The superscript “# indicates the presence of the Yang-Mills Chern-Simons form in the definition
of the field strength. Note that if a,,, the Yang—Mills potential and b,,,, the antisymmetric tensor
gauge potential have the conventional dimension of a mass (the corresponding kinetic actions are
then dimensionless) the constant k has dimension of an inverse mass.

Since 2” changes under gauge transformations of the Yang-Mills connection ./ with the
exterior derivative of a 2-form A(<, g),

27 997" = 97" + dA(<A,g) , (5.2.14)

covariance of H” can be achieved in assigning an inhomogeneous compensating gauge trans-
formation

B—'B =B — kA(,g), (5.2.15)

to the 2-form gauge potential. Finally, the addition of the Chern-Simons forms gives rise to the
modified Bianchi identities

dH"" = kt(F F) . (5.2.16)

A question of compatibility arises when the two superspace structures are combined in the way
we propose here, since the linear multiplet corresponds to a 2-form geometry with constraints on
the 3-form field strength and the Yang—Mills field strength # is constrained as well. As it turns out
[97,90], assuming the usual constraints for %, the modified field strength H”*“ may be constrained
in the same way as H, without any contradiction. The most immediate way to see this is to
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investigate explicitly the structure of the modified Bianchi identities
1
EEAEBECED(‘I'@DHCBA + 6TDCFHFBA - 6k tr(yDchA)) = 0 . (5217)

Assuming for H”” the same constraints as for H - cf. (5.2.6) and (5.2.7) - and replacing L, by
L”" on the one hand and taking into account the special properties of the #.% terms arising from
the Yang—Mills constraints on the other hand, one can show that the linearity conditions (5.2.17)
are replaced by the modified linearity conditions

(2% — 8RNL"" = 2kte (W, W'Y, (5.2.18)

(2% — 8R)L"" = 2k tr(W™W,) . (5.2.19)
Likewise, (5.2.9) acquires an additional term,

(D, Z5] — 406%,G)L"" = — 36,4,,e" " HGY — Ak te(W,W3) (5.2.20)

The special properties of %, allow to express the quadratic gaugino contributions in (5.2.18) and
(5.2.19) in terms of a single Chern-Simons superfield Q”*,

(W, W) = X2 — 8RNQY, te(W*W,) = (T — 8R)Q" . (5.2.21)

The existence of Q7 and its explicit construction - cf. Appendix F - rely on the similarity of
Chern-Simons forms with a generic 3-form gauge potential C. The Chern-Simons form (5.2.11)
plays the role of a 3-form gauge potential (5.2.14) and tr(%# %) corresponds to its field strength
(5.2.12). Given the identification

1 1
2= mEAEBECEDZDcBA = EEAEBECED6 tf(«%)cfm) (5222)

and the constraints on % it is immediate to deduce that indeed
ZéyocA = 0 5 (5223)

which are just the constraints of the 4-form field strength in the generic case. Anticipating part of
the discussion of the next section, we observe that, as a consequence of the constraints, all the
components of the generic 4-form field strength are expressible in terms of chiral superfields Y and
Y (2,Y = 0,2*Y = 0) identified in

Z&yba = %(O'bag)ay Y, o ba = %((_71;(13)5”/ . (5.2.24)
For the remaining coefficients, i.e. 25, and 244, respectively, we obtain then

Z‘tﬁcba = - %60-(;581161311@5 Ya Zé cha = + 17166-‘15681101711@5 Y (5225)



344 P. Binétruy et al. | Physics Reports 343 (2001) 255-462

and

5 ieba = %68‘,@ [(2? — 24RY)Y — (F% — 24R)Y] . (5.2.26)

This last equation should be understood as a further constraint between the chiral superfields
Y and Y, thus describing the supermultiplet of a 3-form gauge potential in Ug(1) superspace.

From the explicit solution of the constraints, one finds that Y and Y are given as the chiral
projections of Ug(1) superspace geometry acting on one and the same pre-potential £,

Y= —4%*—8R)Q, Y= —42*—8RNQ. (5.2.27)

Due to the same constraint structure of X~ and tr(&), this analysis applies to the case of
Chern-Simons forms as well. We identify

Y = = 8u(WW,), Y = — St (5.2.28)

Correspondingly, Q the generic pre-potential, is identified as Q“#, the Chern-Simons superfield,
expressed in terms of the unconstrained Yang-Mills pre-potential. A detailed account of this
analysis is given in Appendix F.

It is instructive to investigate the relation between the superfields L”“ and L, in this context. As
we have seen, Ly and L”* — kQ”” satisfy the same linearity conditions. As a consequence, they can
be identified up to some linear superfield, i.e.

Here B”“ is a pre-potential-dependent linear superfield whose explicit form, irrelevant for the
present discussion, may be read off from the equations in Appendix F. Note that Q”“ changes
under Yang-Mills gauge transformations by a linear superfield (hence (5.2.21) are unchanged),
whereas the combination Q““ + 7 is gauge invariant, in accordance with the gauge invariance
of Lo and L”“.

We have tried to make clear in this section that the superspace geometry of the 3-form gauge
potential provides a generic framework for the discussion of Chern-Simons forms in superspace.
Established in full detail for the Yang-Mills case, this property can be advantageously exploited
[91] in the much more involved gravitational case, relevant in the Green-Schwarz mechanism in
superstrings.

As we will consider the Yang-Mills case only, we drop the superscript from now on,
a superfield L being supposed to satisfy the modified linearity conditions.

Y M

5.3. Component fields

When coupled to the supergravity/matter/Yang-Mills system, the components

Bun(X),  L(x),  Ay(x),  Ay(x) (5.3.1)
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of the linear multiplet are still defined as lowest superfield components, but now in the framework
of Ug(1) superspace geometry. For the covariant components L(x), A,(x), A4(x), we define

Ll = L(x), Z,L|=A4,(x), 2°L|= A*x), (5.32)
whereas the antisymmetric tensor gauge field is identified as
B| = b = 3dx"dx"b,,,(x) . (5.3.3)

The double-bar projection, as defined in Section 4, is particularly useful for the determination of the
lowest component of H,, the supercovariant field strength of the antisymmetric tensor. Recall
that the component field expression of the Chern-Simons form, in terms of .7, = idx"a,,(x), is
given as

1

0l =3

1 21
dx"dx"dx'Qum = — adx"dx’"dxl tr<a,8ma,, — glalama,,> . (5.3.4)

The double-bar projection is then applied in two ways. On the one hand, we have
1 l
H| = §dx Ax"dx"h,m (5.3.5)

with h,,y = 0,byy + O0,uby, + Obyw + kQymy. The supercovariant field strength H,,, on the other
hand, is identified in employing the double bar projection in terms of the covariant component field
differentials e”, defined in (4.1.1), (4.1.2), and taking into account the constraints on H¢p,. As
a result, we find

1 1 1 4 .
H| = ge“ebe“chal + EeaebeyHybal + Ee“ebeyHZal + e‘epe’H, P, (5.3.6)
Inserting the explicit expressions for H,,, H 4, and H, #, yields then in a straightforward way

1 1 - - _
gadCbchbal = yendsnmlk(hmlk + 3iLlpmalwk) + lez(,vbm oA — wma-nm/l) . (537)

Note that the supercovariant field strength H,,|, one of the basic building blocks in the construc-
tion of component field actions, exhibits terms linear and quadratic in the Rarita—Schwinger field.
Details on the geometric derivation of supersymmetry transformation laws and the construction of
invariant component field actions are presented in Appendix E.

5.4. Linear multiplet coupling

For the coupling of the linear multiplet to the general supergravity/matter/Yang-Mills system
we may imagine to follow the same steps as before, but with the Kahler potential replaced by an
L-dependent superfield K(¢, ¢, L) [20,19,1], which we shall call the kinetic potential. Let us note
that L being real, the interpretation of K as a potential of Kéahler geometry is partly lost.
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As we now explain, such a construction does not yield a canonically normalized Einstein term.
To begin with, we note that the curvature scalar still appears in the combination

PR + F°R' = — 3R, — Y9°X, + 9,X% + 4G°G, + 32RR" , (5.4.1)

where the combination 2°X, + %, X* should now be evaluated using K = K(¢, ¢, L) as a starting
point. This generates extra 2R + Z*R" terms. Indeed, recall the Ug(1) relations (B.4.7), (B.4.8)

—39,R=X,+4S,, —32°R"=X*—4§* (54.2)
and the definitions

X, = —§(2* - 8R)Z,K(¢,¢,L) , (5.4.3)

X*= — §2* — 8RNZ*K(¢,p, L) . (5.4.4)

In the L-independent case these relations serve to identify Z,R and Z*R" as superfields, roughly
speaking, depending through X,, X* on the matter sector and through S,, S* on the gravity sector.
In the L-dependent case, due to the presence of R, R in the linearity conditions, successive spinor
derivatives generate extra &, R (resp. 2*R) terms in the expressions of X, (resp. X%). We can make
explicit such contributions and write (K; = 0K/0L)

X,= —LK,2,R+Y, X*= —LK,9°R" + Y*, (5.4.5)

where Y, and Y?* contain all remaining contributions including those stemming from the
Chern-Simons forms. Hence, in this case Z,R and Z*R" are still identified as dependent super-
fields, but relations (5.4.2) take a modified form

(LK, —3)2,R=Y, +4S,, (5.4.6)
(LK, — 3)2*R" = Y* + 45*. (5.4.7)
This, in turn, implies that the basic geometric relation (5.4.1) takes a modified form as well
(1 —ILK;)Z*R + 2°R") = — %R,' + 4G°G, + 32RR
—HD"Y, + 2, Y% + 39(LK[)Z,R + 3% (LK )Z°R" . (5.4.8)

Evaluating the component field action, following the procedure of Section 4.5, we obtain an
Finstein term with a field-dependent normalization (1 — 3LK;) . In other terms, in the linear
superfield formalism, a superfield action which is just the integral over the superdeterminant of the
frame, leads to a non-canonical normalization of the Einstein term.

In order to have more flexibility for the normalization function we consider from now on
a general superfield action

F= - 3JEF(¢, b, L), (5.4.9)



P. Binétruy et al. | Physics Reports 343 (2001) 255-462 347

where the subsidiary function F depends in a yet unspecified manner on the chiral and linear
superfields. Observe that the kinetic potential K(¢,, L) is implicit in E through the Ug(1)
construction. The component field version of this generalized superfield action is evaluated using
the chiral superfield,

r= — %% — 8R)F(¢,$,L) (5.4.10)

and its complex conjugate in the generic construction of Section 4.5. A straightforward calculation
shows that in this case the Einstein term is multiplied by the normalization function

- F—LFp

N Ly=——F7—+. 54.11
.6.L) =315 (54.11)
Requiring N = 1, or

F—LF, =1-3LK, , (5.4.12)

ensures that we get a canonically normalized Einstein term.
Note that in the case of L-independent functions F and K, this equation implies simply F = 1.
In the general case, the solution of (5.4.12) reads

F(¢,,L) =1+ LV(,9) + %J%Kz(qﬁ, b, 7). (5.4.13)

We see that the only term in F(¢, ¢, L) which is not fixed by the choice of the Kéhler potential is the

term LV(¢, ¢), the “integration constant” of the differential equation (5.4.12). Indeed, one can check
that, in the Lagrangian (5.4.9), only a term linear in L, viz.,

Llin = — 3JELV(¢, ®) (5.4.14)

cannot be set to 1 by a superfield rescaling since the Weyl weights of E and L sum up to zero
(6(E) = — 2,0(L) = 2).

As we discuss now, the real function V(¢, ¢) plays an important role in the discussion of certain
anomaly cancellation mechanisms. From now on we refer to it as linear potential. To be more
definite, consider the effective transformation

V(g d)— V($, d) + H(¢) + H() (5.4.15)

with H a chiral superfield which is a holomorphic function of the chiral matter fields. How does the
Lagrangian .%};, change under such a transformation? To see this more explicitly, use integration
by parts and apply the modified linearity conditions,

1(E. _, _(E )
JELH = - gJEH(@ — 8R)L = fthr(W W) . (5.4.16)



348 P. Binétruy et al. | Physics Reports 343 (2001) 255-462

Note the appearance of the chiral volume element in superspace. Therefore, (5.4.15) gives rise to the
effective transformation

3k (E 3k [E - .
PLrint— Liin + TJﬁH(@ te(WW,) + ZJEH(qb) tr(W W) . (5.4.17)
This shows that in the absence of Chern-Simons forms, k = 0, transformation (5.4.15) is a sym-
metry of the theory. In the presence of Chern-Simons forms it creates an Abelian anomaly term,
multiplied by H — H and gives rise, at the same time, to a Yang-Mills kinetic term multiplied by
H + H. We will come back to this issue later on.

5.5. Duality transformations

As is well known and has been stressed in Section 5.1, the antisymmetric tensor/real scalar
duality extends to the supersymmetric case, where it becomes a linear/chiral multiplet duality. This
duality should now be explored for the case of a linear multiplet coupled to the general supergrav-
ity/matter/Yang-Mills system, the so-called linear superfield formalism, in relation to the chiral
superfield formalism, where only chiral multiplets occur.

It is not surprising that the subsidiary function F(¢, ¢, L), introduced in the previous subsection,
be of some importance. As a matter of fact, the normalization condition (5.4.12), justified previously
at the component field level will reappear in an intriguing way in the superfield duality transforma-
tion mechanism in curved superspace. Let us consider the first-order formalism Lagrangian

Lror = — 3JE[F(¢, &, X)+ XS +9)], (5.5.1)

where S is a chiral superfield, 2*S = 0, and X is an unconstrained superfield. The kinetic potential
K(¢,$,X) and the normalization function F(¢, $, X) are supposed to be given in terms of this
unconstrained superfield.

Variation of (5.5.1) with respect to X gives rise to

(S + 81 —3XKx) = 3FKy — Fx , (5.5.2)
where we have used

as derived from (D.3.3) and (D.2.89). For given F and K functions, (5.5.2) should allow to express
X as a function of ¢, ¢ and of S + S, such that the resulting Lagrangian in the chiral superfield
formalism is given as

Leskr = — 3JE[F(¢, &, X(d,$,S +9) + (S + X(¢,0,S + )] . (5.5.4)

Clearly, this Lagrangian will not necessarily yield the canonical normalization of the curvature
scalar term. On the other hand, we have shown in Section 3.2 that the Lagrangian, built with
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(anti)chiral superfields, which gives a correct Einstein term is simply
Y= — 3JE . (5.5.5)

This form of (5.5.4) can be obtained in requiring
F($,0,X)+ XS+ 95 =1, (5.5.6)
where X is the solution of (5.5.2). Formally, these two equations combine into
F—XFy=1-3XKy . (5.5.7)

This means that for a theory with canonical Einstein term, F and K cannot be chosen independent-
ly, they should satisfy (5.5.7), which has the same form as (5.4.12), but with L replaced by
X(¢, P, S + S). Likewise, F(¢, p, X(h, ¢, S + S)) should have the same functional dependence on
X as it had before on L. These relations are of fundamental importance if we want to make
meaningful comparisons between different theories (or compare, for example, the tree-level and
one-loop effective actions).

Alternatively, we can vary (5.5.1) with respect to S or S. Due to chirality, they can be written as

S=(7?—8R)X, §=(2%—8RHT, (5.5.8)

where X, X are unconstrained superfields.
Variation of (5.5.1) with respect to X, 2 yields after integration by parts:

(7> —8R)X =0, (2> —8RHX =0. (5.5.9)

We conclude that X is a linear superfield, which we identify with L. An integration by parts (linear

x chiral integrates to zero) then shows that (5.5.1) reproduces (5.4.9) and we are back with the
linear superfield formalism discussed in the previous subsection.

There, however, the linear multiplet was coupled to Chern-Simons forms. How does this
coupling affect the duality structure? It is clear that in the linear superfield formalism we should
reproduce the modified linearity conditions. Therefore, the first-order formalism should include the
Chern-Simons superfield €, such that

PLror = — 3JE[F(¢, 6, X) + (X — kQ)S + 5)] . (5.5.10)

Varying with respect to 2, X establishes then the modified linearity conditions. On the other hand,
varying!'” (5.5.10) with respect to X gives rise to the same equation (5.5.2) as before. Imposing

17Due to the variation law 5xQ = QK 6X, the terms proportional to the Chern-Simons form cancel out in this
equation, as expected from gauge invariance considerations.
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moreover a canonical Finstein term, using (5.5.6), the Lagrangian in the chiral superfield formalism
then reads

Lose = — 3[15[1 — kQ(S + 3)] . (5.5.11)

To put the new terms, arising from the Chern-Simons couplings, in a more familiar form, we write
them as

3(E. _ 3(E -
Lesp = — 3[ -3 Jﬁst@z — 8R)Q — S fFS(@2 — 8RNHQ, (5.5.12)

where the derivative terms vanish upon integration by parts (S and R are chiral superfields), and
use (5.2.21) to obtain

3, (E \ 3 (E ¢ i
PLesy = — 3JE — ZkJEStr(W W) — ijﬁsu(mw ). (5.5.13)

We therefore recover the standard formulation of matter coupled to supergravity with a holomor-
phic gauge coupling function

f(S) = —6kS . (5.5.14)

Comparing this to (5.4.17) suggests that the effective transformations (5.4.15) should be realized in
the chiral superfield formalism as field-dependent shifts of the chiral superfield S, i.e. S+— S — H(¢)
and S— 8§ — H($).

Let us stress that the duality between the linear superfield formulation and the chiral superfield
formulation, discussed here for the case of one single linear superfield, extends quite obviously to
the case of several linear superfields and suitable Chern—-Simons couplings. We will come back to
this after the next subsection.

We close this subsection on an example [21,18] which plays an important role in superstring
models. We take for the Kihler potential:

K = Ky(¢,p) + alogL, (5.5.15)

where it was already stressed that L plays the rdle of the string coupling. The corresponding
solution of (5.4.9) is

F=1—0/3+LV(,). (5.5.16)

The solution of (5.5.6) reads

2 S+ 54V (5:5.17)
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and
o

3 — log(S + 5+ V(.9). (5.5.18)

K(¢7 (E’S + g) = KO(¢’ (E) + OCIOg

It is interesting to discuss Eq. (5.5.17) in the context of the one-loop renormalization of the gauge
coupling performed by Dixon et al. [52]: S + S is interpreted as the tree-level gauge coupling and
V(¢, P) is a generic (non-holomorphic) threshold correction. We thus see that, up to a normaliz-
ation factor, it is L~ which must be interpreted as the renormalized gauge coupling. Thus, the
natural framework to perform the renormalization of the gauge coupling functions is the linear multiplet
formulation.

We note also that the Kéhler potential in (5.5.18) is invariant under the effective transformations
(5.4.15) together with S+ S — H(¢) and S+ S — H(¢).

Adding terms of order L" (n > 2) in (5.5.15) would include higher-order corrections, if any, but we
can note here the special status played by one-loop corrections. The explicit computation of
Ref. [52] indicates that, in this context, V(¢, ¢) contains a piece which is nothing else but K(¢, ¢).
This fact has been stressed by Derendinger et al. [48] and is in agreement with the Kéhler
properties of V(¢, @) - cf. (5.4.15).

5.6. Non-holomorphic gauge couplings

In general, as explained in Section 3.4.3, supersymmetric Yang-Mills theory allows for arbitrary
holomorphic gauge coupling functions in terms of the complex matter scalar fields. The corre-
sponding invariant supergravity action (3.4.54) is given as a F-term in Ug(1) superspace.

Superstring theory, in its effective low-energy limit, seems to suggest non-holomorphic gauge
coupling functions [ 142,112] as well. From the formal point of view, such non-canonical structures
arise naturally in the linear superfield formalism [19,48].

Independently of the relation to string theory, it is instructive in itself to elucidate the origin of
non-holomorphic gauge couplings in the linear superfield formalism. The crucial ingredient is the
coupling of Chern-Simons forms to linear multiplets, as described in Sections 5.2 and 5.4. In this
context, the modified linearity conditions (5.2.18) and (5.2.19) are of utmost importance. In the
following, we will point out schematically how non-holomorphic gauge couplings appear in the
component field theory, starting from the geometric superspace description.

Recall that the basic object for the construction of the component field action are the chiral
superfields r and r given as

r= —§2° —8R)F(¢.p,L), T= —{2* —8RNF(¢,,L). (5.6.1)

Working through the generic construction of Section 4.4 allows to determine unambiguously the
complete component field action. As we are interested only in the gauge coupling function, it is not
necessary to go through all these steps in full detail.

For the sake of a schematical discussion recall first of all that the gauge kinetic terms arise from
the lowest component of the superfield

GPauWr+ GPueN? . (5.6.2)
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On the other hand, the complete set of kinetic terms of all the component fields is identified in

2% + 7°t .

(5.6.3)

The procedure consists in evaluating the spinor derivatives in (5.6.3) and in isolating terms

proportional to (5.6.2). In a first step we identify relevant terms in

9% + %8 F(9?R + G*RY) — §92T? + F2FF .

(5.6.4)

The symbol 2 indicates that we only retain the terms relevant for our discussion, making the
arguments more transparent. The first term on the right contains the contribution originating from

the L dependence of K. Using (5.4.1), we obtain
P + %8 —LF(9°X, + 9, X% — LF(2°T* + Z* )L .
Next, we insert the explicit expression for X* in terms of K(¢, ¢, L), i.e.
X, + 9, X8 — K, (2°F* + §*P?)L,
to arrive at the intermediate result
Pt + 8 — {F, — JFK.)\2*F* + §*F?)L .

In the next step we are going to exploit the modified linearity conditions
9*L =8RL + 2ktr w2, <Z*L =8R'L 4+ 2ktr#? .

As a consequence we find

(2%F* + Z*P*)LE 8L(Z°R + Z*RY) + 2k(Z>tr W2 + G2 tr W2 .

Using once more (5.6.6), i.e.
9°R + 2*R"8 LK, (2°F* + F*Z?)L
yields

@ + PILT

= ————(2°u W+ D*uN?).
(LK, e

(5.6.5)

(5.6.6)

(5.6.7)

(5.6.8)

(5.6.9)

(5.6.10)

(5.6.11)
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The final result is then

kF, —1FK,

g2 g _
P+ 11-1LK,

(@*auW?+ TP W?), (5.6.12)

which allows to identify the gauge coupling function

_ F, —3FK,

(¢, L) =~ K, (5.6.13)

Recall that in the standard case the gauge coupling is the sum of a holomorphic and an
antiholomorphic function. In the more general formulation given here, non-holomorphic coupling
functions are allowed.

At this point it is important to note that so far we did not make any reference to possible
normalizations of the Einstein term, appearing in the same action. In Section 5.4 we have identified
the normalization function

- F—LF

N(¢,¢,L) = 11K, (5.6.14)

A glance at the explicit form of I' and N shows that they are related to F through the simple
relation

LI +N=F. (5.6.15)

Finally, the same Lagrangian contains also a kinetic term for L,
1
EBNL + K (LN, — N)]¢g"™0,,Lo, L , (5.6.16)

whose normalization function is expressed in terms of previously defined quantities. Note that, in
view of the normalization of the curvature scalar, i.e.

_ gg? , (5.6.17)

it should be clear that the conformally trivial combination is obtained from the choice N = L;
remember that L. has Weyl weight o(L) = — 2.

Let us now turn to a discussion of the duality transformation in this general case, i.e. in the
presence of non-trivial normalization function N, gauge coupling I', and subsidiary function F. The
relevant first-order action is still (5.5.10). The linear superfield formalism discussed above is
obtained in the usual way, varying with respect to the unconstrained pre-potentials of the chiral
superfield S. The chiral superfield formalism, on the other hand, is obtained from variation with
respect to X. As before, the corresponding equation of motion (5.5.2) should be understood as an
expression which determines X in terms of ¢, ¢ and S + S. The chiral superfield formalism is then
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obtained from (5.5.10), but with X now a function X(¢, ¢, S + S). As to the gauge coupling function
we are back to the holomorphic case.

From what we have learned before, it should be clear that the superfields underlying the
component field construction of the action are now

_ k 1 ko
r= (@ —8RF + zu? F= (2> —8RVF + zu . (5.6.18)

O | —

It is instructive to identify the normalization function of the curvature scalar and the gauge
coupling function, using a similar reasoning as before in the linear superfield formalism. Working
through the successive application of spinor derivatives in 2*r + Z°r and keeping track only of
terms relevant for our purpose we find

_ 2 — k ~ _ _
7% + %8 — §(F + X(S + S)Ry." + Z(S +S\Z*te W+ TPt W) . (5.6.19)

The gauge coupling function is simply proportional to S + S, in accordance with (5.5.2) and
definition (5.6.13). As to the normalization function of the Einstein term we observe that, using
formally (5.5.2) together with (5.6.15), means simply that

F+X(S+8=N (5.6.20)
with the X-dependent function N written in terms of X(¢, ¢, S + S). The determination of the

normalization of the kinetic terms of S, S is left as an exercise.

5.7. Several linear multiplets

The linear superfield formalism can be easily generalized to accommodate several linear
multiplets. Noting L', with I = 0,1, ..., n, the n + 1 copies of linear superfields we will have a set of
n + 1 modified linearity conditions

(2% —8RYL = 2k, tr w2 | (5.7.1)
(7% — 8R)L' = 2k tr 72 . (5.7.2)

Here the subscript ¢ indicates that different linear combinations of Chern-Simons forms
(Yang-Mills potentials for different gauge groups) may couple to different antisymmetric tensors.

In this general scenario the kinetic potential K and the subsidiary function F will be functions of
the n + 1 superfields L". The superfield action

P = - 3JEF(¢, &, LY, (5.7.3)

depends implicitly on K(¢, ¢, L") through E due to the geometric construction.
The presence of several linear superfields implies that different gauge sectors may have different
gauge coupling functions. The determination of the explicit form of the gauge coupling and
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normalization functions follows exactly the same steps as in the case of a single linear superfield,
taking now the chiral superfields r and r to be

r= — %(92 - SR)F(¢a QE: Ll)a r= — %(@2 - 8RT)F(¢7 (5, LI) . (574)
As a result, the normalization function takes the form

B F—LF
N(p, ¢, L") = 1_%7LKLL : (5.7.5)

whereas the gauge coupling functions are given as

Ig($,d,LY) = (Fl — g&)k{g : (5.7.6)

We use here the notation L- F; = L'F;, with F; denoting the derivative of F with respect to L', and
the same for K. The gauge coupling and normalization functions satisfy the sum rule

LIF(]) + N - F (577)

with I'y, identified as I'¢ = I'g k- The brackets indicate that the enclosed subscript does not refer
to a derivative. It is also interesting to note that the kinetic term ¢™0,,L'0, L' is multiplied by
a function

Guy = Fiy — 3(NKyy + NiK; + N, K)) . (5.7.8)

The effective transformations in the case of a single linear multiplet generalize as well. To this end
we observe first of all that a replacement

F(¢9 (53 LI) = F(¢, (59 LI) + L V(I)(d): (]E) (579)

leaves the normalization function (5.7.5) as well as the sum rule (5.7.7) invariant, whereas the gauge
coupling function changes as

F([)((,b, 959 LI) — F(I)(d)’ 95’ LI) + V(I)(¢: d_)) . (5710)

The counterpart of the effective action (5.4.14) in the presence of several multiplets becomes

L= =3 JEL‘V(U@,@ (5.7.11)

with effective transformations

Vo, )= Vu(h, d) + Huy(p) + Hyy(P) (5.7.12)
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giving rise to

3k (E 3k _ _
Llint> Llin + 1 JRH(D(qb)kl trW'E + 4j H(I) (PG tr WE . (5.7.13)

This shows that the case of several linear multiplets is more flexible in view of possible applications
to anomaly cancellation mechanisms.

As to the duality transformations between the linear and the chiral superfield formalism we will
make use of n + 1 unconstrained real superfields X' together with the real combination S; + S; of
chiral superfields. The first-order action (5.5.10) generalizes then to

Lror = — 3JE[F(¢, ¢, X') + (X' — k6 Q6)(S1 + Si)] (5.7.14)

with Qg the Chern-Simons superfield pertaining to the gauge sector specified by the subscript
- Variation with respect to Sy (resp. S;) gives back the theory in the linear superfield formalism,
whereas variation with respect to X" gives rise to the equation

F

3K~ Fi . (5.7.15)

(S + .S_'I)<1 — %X'KX> =
Again, this should be understood as an equation which expresses, for given kinetic potential K and
subsidiary function F, the previously unconstrained real superfields X' in terms of ¢, ¢ and S; + S;.

Coming back to the linear superfield formalism, we note that the particular form (5.7.5) of the
normalization function N suggests to introduce projective variables for the set of linear superfields.
Choosing a particular linear superfield of reference, say L°, we define

Ly=L, == (5.7.16)

with I ranging from 1 to n whenever attached to a projective variable . The kinetic potential K and
the subsidiary function F are now supposed to be given in terms of L and &', In this parametrization
the normalization function N takes the form

F — LF,,

N(¢,¢,L,&" = 11K,

(5.7.17)

Here only derivatives with respect to the particular superfield L occur. This closely resembles
(5.4.11), except for the additional dependence on the projective variables &' Likewise, in the
effective Lagrangian density one may parametrize

LYV (., ¢) = LYV (. ¢, &) (5.7.18)
with (identifying V) = V)
V($, ¢, &) = V() + &V (b, ) - (5.7.19)
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Observe that we could have chosen, instead of L° another superfield of reference, without
changing the reasoning. Different choices are related in terms of reparametrizations in an obvious
way.

As a last remark consider the linear superfield formalism for the case of a trivial coupling
function N = 1. From the previous discussion, it should be clear that we recover the same type of
differential equation (5.4.12) as in the case of a single linear multiplet

F—LF,=1-1LK, , (5.7.20)

which is solved in the same way, i.e.

~ ). _
F=1+Lv(¢¢ &)+ %JTKA@, $,0, 8. (5.7.21)

In conclusion, the linear superfield formalism for the case of several linear multiplets exhibits
a quite intriguing structure which clearly should be further investigated. It would be interesting
to pursue this approach in the context of duality transformations and the construction of the
respective component field actions.

6. Three-form coupling to supergravity
6.1. General remarks

The 3-form supermultiplet is, besides the chiral and linear multiplet, yet another supermultiplet
describing helicity (0,1/2). It consists of a three-index antisymmetric gauge potential C,,,(x),
a complex scalar Y(x), a Majorana spinor with Weyl components 7,(x), n*(x) and a real scalar
auxiliary field H(x).

In superfield language [82,22] it is described by a chiral superfield

D*Y =0, D,Y=0, (6.1.1)

which is subject to the additional constraint

_ _ 81
DY — D*Y = glgklm"zklmn (6.1.2)

with the field strength of the 3-form gauge potential defined as

Zitmn = Ok Crn — 01Cnic + 0 Crtg — 0, Cigm - (6.1.3)
It is invariant under the transformation

Cinn = Cimn + 01 Ay + 0y Ay + 0, A4 (6.1.4)

where the gauge parameters A,,, = — A4,, have an interpretation as a 2-form coefficients.
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The component fields of the 3-form multiplet are propagating: supersymmetry couples the
rank-3 antisymmetric tensor gauge potential with dynamical degrees of freedom. This should be
compared to the non-supersymmetric case, discussed in the context of the cosmological constant
problem [104,36,58,54], where the 3-form does not imply dynamical degrees of freedom.

In Section 6.2 the superspace formulation of [82] will be adapted to the background of Ug(1)
superspace, providing the geometric structure underlying the coupling of the 3-form multiplet to
the general supergravity/matter/Yang-Mills system (and to linear multiplets, if desired). We discuss
in particular the 3-form Bianchi identities in the presence of appropriate constraints and define
supergravity transformations on the superfield and component field levels.

As constraint chiral superfields, subject to the additional constraint (6.1.2), Y and Y derive from
one and the same real pre-potential Q superfield such that

Y= —4D%Q, Y= —4D%Q. (6.1.5)

In Appendix F we present a detailed derivation of the explicit solution of the 3-form constraints in
the background of U(1) superspace and identify the unconstrained pre-potential 2 in this general
geometric context.

The 3-form superfields Y and Y differ from usual chiral superfields, employed for the description
of matter multiplets in yet another respect: they have non-vanishing chiral weights. This property
modifies considerably the possible supergravity couplings, compared to the case of vanishing chiral
weights. In Section 6.3 we give a very detailed account of the couplings of the 3-form multiplet to
supergravity and matter.

Although the study of the 3-form multiplet is interesting in its own right, it has an interesting
application in the description of gaugino condensation. There, as a consequence of the chirality of
the gaugino superfields, the composite superfields tr(¥2) and tr(#2) obey chirality conditions

D*te(#'?) =0, D, tr(#?) =0 (6.1.6)

as well. On the other hand, the gaugino superfields are subject to the additional constraint (6.1.2),
which translates into an additional equation for the composites, corresponding to (6.1.2). At the
component field level this implies the identification

D2 tr(W ) — D tr(W2) = 1™ tr(fia fonm) (6.1.7)
where the topological density

gkimn tr(_ﬁclfmn) - _ %3k1mnakQ1mn , (618)

plays now the role of the field-strength and the Chern-Simons form (which, under Yang-Mills
transformations changes indeed by the derivative of a 2-form) the role of the 3-form gauge
potential. The analogy between the Chern-Simons forms in superspace and the 3-form geometry is
discussed in detail in Appendices F.2, F.3, and has already been exploited in Section 5.2.

6.2. The 3-form multiplet geometry

The superspace geometry of the 3-form multiplet has been known for some time [82]. Its
coupling to the general supergravity/matter/Yang—Mills system is most conveniently described in
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the framework of Ug(1) superspace — cf. Section 3.4. This approach is particularly useful in view of
the non-trivial Kahler transformations of the 3-form superfield Y. Moreover, it provides a concise
way to derive supergravity transformations of the component fields.

6.2.1. Constraints and Bianchi identities
The basic geometric object is the 3-form gauge potential

1
C = deLdZMdZNCNML . (621)

subject to 2-form gauge transformations of parameter A = 1dz™dz" Ay, such that
CrsC+dA. (6.2.2)
The invariant field strength

1
Z = dC = EEAEBECEDZDCBA (623)

is a 4-form in superspace with coefficients

1 1

Here, the full Ug(1) superspace covariant derivatives and torsions appear. Likewise, the Bianchi
identity, dX = 0, is a 5-form with coefficients

1
§EAEBECEDEE(59E2DCBA + IOTEDFZFCBA) == O . (625)

In these formulas we have kept the covariant differentials in order to keep track of the graded
tensor structure of the coefficients.

The multiplet containing the 3-form gauge potential is obtained after imposing constraints on
the covariant field-strength coefficients. Following [82] we require

Zoypa =0, (6.2.6)

where o ~ o, & and 4 ~ a,a,d. The consequences of these constraints can be studied by analyzing
consecutively the Bianchi identities, from lower-to-higher canonical dimensions. The tensor struc-
tures of the coefficients of X at higher canonical dimensions are then subject to restrictions due to
the constraints. In addition, covariant superfield conditions involving spinor derivatives will
emerge. The constraints serve to reduce the number of independent component fields to those of
the 3-form multiplet, but do not imply any dynamical equations.

As a result of this analysis (alternatively, Appendix F.1 provides the explicit solution of the
constraints in terms of an unconstrained pre-potential), all the coefficients of the 4-form field
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strength X can be expressed in terms of the two superfields Y and Y, which are identified in the
tensor decompositions

Z&yba = %(O-bag)&y Ya Zé?ba = %(6ba8)6;/Y . (6.2.7)
As a consequence, the Ug(1) weights of Y and Y are

wY)= +2, w(Y)= —2. (6.2.8)
This implies that the covariant exterior derivatives

GY =dY +24Y, 9Y =dY —24Y (6.2.9)

contain A = EMA,,, the Ug(1) gauge potential. On the other hand, the Wey! weights are determined
to be

o(Y)=w(Y)= +3. (6.2.10)

By a special choice of conventional constraints, i.e. a covariant redefinition of C,,, it is possible to
impose

257, =0. (6.2.11)
The one spinor-three vector components of X are given as
Z‘zicba = - f?agﬁgdcbagé 77 Z‘6.cba = + %6d§68dcba@5 Y. (6212)

At the same time, the superfields Y and Y are subject to the chirality conditions

2,Y=0, 2Y =0 (6.2.13)
and are further constrained by the relation
%3"””“2d€ba = (2% — 24R")Y — (2% — 24R)Y , (6.2.14)

indicating that the imaginary part of the F-term of the 3-form superfield is given as the curl of the
3-form gauge potential, with a number of additional nonlinear terms due to the coupling to
supergravity.

In conclusion, we have seen that all the coefficients of the superspace 4-form X, subject to the
constraints, are given in terms of the superfields Y and Y and their spinor derivatives. It is a matter
of straightforward computation to show that all the remaining Bianchi identities do not contain
any new information.

6.2.2. Component fields and supergravity transformations
As usual, we define component fields as lowest components of superfields. First of all, the 3-form
gauge potential is identified as

Ciim| = Cram(x) - (6.2.15)

As to the components of Y and Y we define

YI=Y(x), 2,Y|=20x) (6.2.16)
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and

V=Y, Z°7|=.2F). (6.2.17)
At the level of two covariant spinor derivatives we define the component H(x) as

2%Y |+ 2°Y| = — 8H(x) . (6.2.18)

The orthogonal combination however is not an independent component field. Projection to lowest
components of (6.2.14) shows that it is given as

- 32i - : .
DY | = TPT | = = S0, Coy + 2/ 200"V — 2/ 2™

— &M + P& )Y + AM + o™, Y (6.2.19)

This expression provides the supercovariant component field strength of the 3-form gauge
potential, displaying the modifications which arise from the coupling to supergravity: here the
appearance of the Rarita-Schwinger field and the supergravity auxiliary field, in the particular
combination MY — MY.

The component fields in the supergravity, matter and Yang-Mills sectors are defined as usual
— cf. Section 6.1. Some new aspects arise in the treatment of the field-dependent U k(1) pre-potential
due to the presence of the fields Y and Y, carrying non-vanishing U(1) weights. It is for this reason
that we refrain from calling K a Kihler potential, we rather shall refer to the field-dependent U(1)
pre-potential as kinetic potential.

Before turning to the derivation of the supergravity transformations we shortly digress on the
properties of the composite Ug(1) connection arising from the kinetic pre-potential

K(¢7 Y) d_)a Y) )
subject to Kihler transformations
K(¢,Y, 9, Y)>K(¢, Y, $,Y) + F(¢d) + F() .

Requiring invariance of the kinetic potential under Ug(1) transformations of the superfields Y and
Y, implies the relation

YKy = YKy, (6.2.20)

which we shall use systematically.'® The composite U (1) connection derives from the commutator
term [Z,, 2, ]K, which, in the presence of the 3-form superfields is given as

[Z,,2;1K = 2K D s d* — 21K D s O + 21Ky D Y — 2iKy D, Y
+2K.,59,Y%2, %7 + 6(YKy + YKy)Gy , (6.2.21)

18 The special kinetic potential

K(¢, ¢, Y, Y) =log[X(¢,$) + Z(¢, )Y Y],

where X and Z are functions of the matter fields, is a non-trivial example which satisfies this condition.
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where we use the shorthand notation ¥ = (¢*,Y), and ¥ = (¢*,Y), with obvious meaning for
K, 7. The important point is that on the right hand the Ug(1) connection, A, appears in the
covariant derivatives of Y and Y due to their non-vanishing U k(1) weights. Explicitly one has

i Y| = o:;<am7 —24,Y - —knﬁmm‘?’) ,
1 _—

- (4

ﬁ‘”’" ”‘”)

Substituting in the defining equation for 4,, (3.4.20) and factorizing gives then rise to

‘@de| - 6:;<amY + 2AmY —

S B . o
Am(X) + Eem ba = Zm(Kk@mA — Kk@mA
+ Ky0, Y — Ky0,,Y + i6%K ,, V7 ¥PY) . (6.2.22)

As above, we use the shorthand notation ¥ = (3%, 5,) and ¥ = (%%, 7;). As is easily verified by an
explicit calculation, 4,, defined this way transforms as it should under the Ug(1) transformations
given above, i.e.

A > A, + %am ImF.

Observe that the factor (1 — YKy)™! accounts for the non-trivial Ug(1) phase transformations
Yl—’Ye_iImF, Y'_)Ye+iImF’

of the 3-form superfields.

We turn now to the derivation of supergravity transformations. In Section 3.4.2 they were
defined as combinations of superspace diffeomorphisms and field-dependent gauge transforma-
tions. In the case of the 3-form one has

6C = (1z:d + diz)C + dA = 1.5 + d(A + 1:C) , (6.2.23)

the corresponding supergravity transformation is defined as a diffeomorphism of parameter
¢t =1 E* together with a compensating infinitesimal 2-form gauge transformation of parameter
A = —1:C, giving rise to

1
5WZC = 152 = gEAEBECéDZDCBA . (6224)
The supergravity transformation of the component 3-form gauge field Cy;,, is then simply obtained

from the double-bar projection [11] (simultaneously to lowest superfield components and to
space-time differential forms) as

1 1
5W2C H = ydxkdxldxméwz lek = geAeBeC@ZQCBA . (6225)
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Taking into account the definition e4 = E4| (4.1.1), (4.1.2) and the particular form of the coeffi-
cients of 2~ we obtain

2 1 _ _
Owz Cox = 1—\/;(55"ﬂ — Co"Mepmuc + 5 [Wmouw)Y + (moud)Y] . (6.2.26)

2 mlk

Let us turn now to the transformations of the remaining components. To start, note that at the
superfield level, one has

Swa¥ = 1:dV = 1.9 + 21 AY . (6.2.28)

Taking into account the explicit form of the field-dependent factor 1:4| = £*4,| - compare to
(4.1.25) - one finds ’

1 1 . Car
owzY = \/@{( - —YK >77a - EYKsz} + ﬁfz Y{Kyit* + Kg7*} ,

et

It is more convenient to use a notation where one keeps the combination

_ . 1 _
YKk}_{“k} + 72 EY{Kyn, + Kiys} - (6.2.29)

N =

1 1 - ) .
E =84, = —=&(Ki )k + Kyn,) — —=&(Ke™ + Kyit?) (6.2.30)
- Zﬂ Zﬁ

giving rise to a compact form of the supersymmetry transformations

dwzY = /280, — 25Y, 0w, ¥ = /25,7 + 257 . (6.2.31)

The transformation law for the 3-“forminos” comes out as

Owzlly = ffaH + \/éagk’m"akc,m,, + 1f &™),V Y — En,
1 - _ e
- Efa(wmamn - 'ﬁmﬂmﬂ) - l(fUmS)a‘ﬁmw%

+ \ké (M + ™) Y — (M + ,0™,) Y} (6.2.32)
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and
: 7 . o A2 4
5W21_7a — \/Eé“H + lﬁ(é’amg)ava _ % agklmn ak Clmn + 517]“
oy 0 . o
+ Efa(lﬁmﬂ N — Yma™n) — (E ") Y mepn?

b

NG

Finally, the supergravity transformation of H is given as

EHM + Y™ ,)Y — (M + 0™ ,) Y} . (6.2.33)

1 1 — 1
— —m\a ~(E=m_n = ®
5WZH \/E( g ) er]ac + 2( G0 l//m)<VnY \/il/jm 17(17)

VAU oV, T - %zﬁmm@)

1 - 1 1 -
+ —=M&n, + —=MEi* + —=(E5% + Ea“I)b,
3ﬁ517 3ﬁin 3ﬁ(6nén)

i

+ YEXH + YEX,| — ﬁ(é_ " Y + E6™Mm)H

P _ 1 -
+ §(€6plpp - éaplpp)sklmnak Clmn - 4—\/5(6 5'"‘%: - fU"an)(lﬁm&m’? - 'ﬁmam 77])

- %(E W, — EG) (M + Ua™ )Y — (M + Y™\ Y} . (6.2.34)

Note that in the above equations we changed &-derivatives into V-derivatives as in Section 4.2
—cf. (4.2.15),(4.2.16) — using a redefined U(1) connection v,,(x) = A,.(x) + (i/2)e,,"b,. This allows to
keep track of the auxiliary field b,, otherwise concealed in the numerous covariant derivatives
occurring in the Lagrangian. We still have to work out the component field expressions for X, | and
X*| from the superfields

X, = — ¥Z* - 8RZ,K, X*= —L2*>—8RNTK , (6.2.35)

given in terms of the matter and 3-form superfield-dependent kinetic potential K. This can be
achieved in successively applying the spinor derivatives to K. Alternatively, one may use the
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expression
1 1 i . _
A=K, PV = K, 977 + %E“&Z‘“K&M@a Pl g, P
3i 1 _
+ 2E“G 1— E(YKY + YKy) (6.2.36)

for the composite Uk(1) connection, take the exterior derivative d4 = F and identify X* and X, in
the 2-form coefficients
3i

ST4Gas Fla= —S30X, +

3i

Fpo= + =05y X + 2152ﬂG (6.2.37)

2

A straightforward calculation then yields the component field expression®?

_ _ 1 . _ 1 -
X(1—=YKy)l= ——=Kyz ‘Fi‘/5'"““<vm P — =i Y"”"”)
NG NG
_ ﬁgz(blek;/lI_ja‘m?_}_LHKYchj&,J_l_igklmnakcl (I7d,<z7K7Y
8 o4 \/E K4 3\/5 mn -
1 C QA 1 0.0/ T, —m m>
= SR em PP K (P Af TP (" — Yo™)
1 . _ _ _ _
+ 'Pa‘g/K_yyy{(M + lpm6mnlpn)Y _ (M + lpmo.mnwn)y} (6238)
2\/5
and
1 1
(1 - YKY)| - - TKQ/:/‘II&Y/O-M<Vm Ty[ - —wm(pq/;j>
2 \/5
CN2G0K vt L HK vy — B g, WK
3 \/5 s o 3\/5 mn Lo X o
1

_ i - _ _
— —Ky/@F qj:l{] j'}]% + lKk(;Hx ) + qui/K&/Y(wmamn - lpmami//)

— —= VK {M + ,,0™,)Y — (M + Y a™ )Y (6.2.39)

These are the component field expressions which are to be used in the transformation law of
H (6.2.34). The same expressions will be needed later on in the construction of the invariant action.

19We make use, in the Yang-Mills sector, of the suggestive notations

KE(Z& ' /Z)E = )_V(”&KE(T(I')/‘T)Es Ky (4, - A)k = /ILY)Kk(T(r)A)k-
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6.3. General action terms

In Section 4.5 we have explained in detail the construction of supersymmetric and Ug(1)
invariant component field Lagrangians starting from a generic chiral superfield r of Ug(1) weight
w(r) = + 2 and its complex conjugate r of weight w(r) = — 2. We will apply this construction to
the case of 3-form superfields coupled to the supergravity/matter/Yang—Mills system. The generic
Lagrangian - cf. (4.4.22) - is given as

i€

ZLrr)=ef+1f)+ \/E(lﬁma"@ + U,,G™s)

- ef(M + l/fmamnlpn) - CI‘(M + l/7m6mnl/7n) . (631)
Particular component field actions are then obtained by choosing r and r appropriately. The
complete action we are going to consider here will consist of three separately supersymmetric
pieces,

f = gsupergravity+matler + gsuperpotential + gYang—Mills . (632)

In the following, we shall discuss one by one the three individual contributions to the total
Lagrangian.

6.3.1. Supergravity and matter
The starting point is the same as in Section 4.5.1, we replace the generic superfield r with

rsupergravity+mauer = —3R. (633)

The difference with Section 4.5.1 is that now the component field Lagrangian must be evaluated in
the presence of the 3-form gauge field. As in Section 4.5.1 we decompose the supergravity/matter
action such that

gsu ergravity +matter — gsu ergravit + eDmatter 5 (634)
perg y perg y

where the pure supergravity part is given by the usual expression, i.e.

€ € - _ — c — €
gsupergravily = - E‘% + igklmn(lpko-l@mlpn - lpkal<@mlpn) - §MM + gbabaa

except that the Ug(1) covariant derivatives of the Rarita-Schwinger field contain now the new
composite Ug(1) connection as defined above. For the matter part, the D-term matter component
field D,a¢, 18 defined in (4.0.2) in terms of the Ug(1) gaugino superfield X,. We therefore have to
evaluate the superfield 2*X, in the presence of the 3-form multiplet, i.e. apply the spinor derivative
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to the superfield expression
2iX,(1 — YKy) = K5 9" PV, P — %KW G, P4 GP

_ %Ky,m@& PTG, W — UK (W, D) . (6.3.5)
Remember here, that we are using the space—time covariant derivative V,;, which by definition
does not depend on the superfield G,,. In full detail

@“aY = Vao'zY - SiGa& Y, @aa{Y = Vao'cY + SiGadY 5 (636)
- - 3i . 3i
DDy ¥ =VuZy ¥ =36y ¥, DuDyY =VuZyY +356a,Y . (6.3.7)

In deriving the explicit expression for 2*X,, we make systematic use of this derivative, which
somewhat simplifies the calculations and is useful when passing to the component field expression
later on. In applying the spinor derivative to (6.3.5) it is convenient to make use of the following
relations:

9,9, Y = —2iV, Y, (6.3.8)
9,9°Y = —4i V,9°Y +2G,,9°Y —8X,Y , (6.3.9)
D, D*PF = — 4i Vo D°PF + 2G, D°P* + 8(W, - p)F . (6.3.10)

In order to obtain a compact form for 2°X,, we introduce K as the inverse of K, ; and we
define

— 4F7 = 9297 4+ I'" ), 9*V* 9, P° (6.3.11)

— 4F7 = G*P7 4 [7 5.5, PG4 P* (6.3.12)
with

I e = K”’K 76, T'73¢ = K?’K 57 . (6.3.13)

Moreover, we define the new covariant derivatives

A~

Vo TP =V, 9P + I N, PP (6.3.14)

Vo TPP7 =V, 9P + 7 3.V, PP 9P (6.3.15)
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Then, the superfield expression of 2*X, becomes simply
212°X,(1 — YKy) = 4iYK ,y X*D, P + 4iYKy 7 X, 2P
—2iK,, ; VPV W7 — 4K, ;F'F7 — K, 5907V ,9*P? — K, 39"V ,, 7*P7

_ i%ﬂ”m@w@“ P49, 07 P _ 3K, G GGy + AK(D W, - B

—4iK 5D, P (WH- P — 4K g DY (W - ) . (6.3.16)

This looks indeed very similar to the usual case (4.2.13). One of the differences however is that the
F-terms and their complex conjugates for the superfields Y and Y have special forms. So we obtain
for the matter part

(1 = YKy)Dyauer = — /2X¥7 YK sy — /2X|P*7 YKy 5
- gmnKy/y?Vm qj&/vn q]’{[ + K&/E/FW’F_J

— 3K o PV V! = SK Vol P
S/ IVETE aud 24 S S PR Sl S
1

— 3K 79" W P )W, V) — SDVLK(T A + Ke(AT ) ]
+ i/ 2K,y P (7% AV — i /2K g V™ (A - A
— 3P0 Ky (L - AY + (0™ Ke(2* - AF (6.3.17)

with the terms in the first line given as

— [2XNPI VK gy — 2K, P*" YKy

- byl m 1
= m[ +iYK,4vK., 7977 %m<vm ps ﬁlﬁqu'i/)

1 - Pl
ﬁlpmd’q] )

— YKy3K., 7 P79V F? — YK 9K ;7 V"V F7

+ 1 YKyg K(Q/(;/ q_jdc@qja&/o_:é! <Vm '}79? -

— 2V Ky 7Ky (y - A + i/2Y Ky P Ke(7- A)k} . (6.3.18)
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6.3.2. Superpotential )
In the usual case where we consider only Ug(1) inert superfields like ¢* and ¢*, the Lagrangian is
obtained from identifying the generic superfield r with

Fsuperpotential — eK/ZW > (6319)

asin (4.5.9) of Section 4.5.2. In the present case the superfield W is allowed to depend on the 3-form
superfield as well. As we wish to maintain the transformation W(¢)—e 'W(¢) for the more
general superpotential W(¢, Y), we must proceed with care due to the non-zero weight of Y. In
order to distinguish this more general situation from the usual case, we use the symbol £ for the
chiral superfield of weight w(£) = 2, defined as

P = KW (¢, Y) = Y e K2, ()", (6.3.20)

where we have allowed for a parameter «,. What happens under a Kéahler transformation?
Assigning a holomorphic transformation law W, — e~ #*W, to the coefficient superfields, we find

P lImEp

e K2PW, (p)Y" o e ReF= b E—inim Byen K27 (hyy™ (6.3.21)
Consistency with the transformations of W and Y then requires o, = f§, = 1 — n, hence

P =YW (p)le Y] . (6.3.22)
This suggest to define the superfields

y=¢e K2y, y=eK2Y (6.3.23)
as the basic variables in the construction of the superpotential term, i.e.

P =eX2W(p,y), 2 =e"*W(P,y). (6.3.24)

Note that, by construction, y transforms as a holomorphic section. We can now proceed with the
construction of % erpotential, taking # as starting point in the canonical procedure.
We parametrize the covariant spinor derivatives of 2 such that

D,P=2,9,9 (6.3.25)
and

D*P = — 43 ,F" + 2,,9"V7 D,V . (6.3.26)
The various components of the coefficients 2, and 2 ,,, are given as

X =eXP(W, + KkW) — YW, K, , (6.3.27)

Sy = eX2WKy + W,(1 — YKy) (6.3.28)
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and
Zy = Pw — YW,)Ky + KiK))

— Y(W,K; + Wi, Ky) + X2 (W + WK, + W, Ky)
+ e XPY K K\ W, — 2,17, (6.3.29)
iy = (PW — YW,)(Kiy + KiKy) + Wi, (1 — YKy) + "> W, Ky
— e XPYK,W,,(1 — YKy) — 2, Ty, (6.3.30)
Zyy = € PW — YW, Kyy + KyKy) + e ¥2W, (1 — YKy)* — 2,17 yy . (6.3.31)
Complex conjugate expressions are obtained from
P =ekPW(¢,y) (6.3.32)

with y = e %®/2Y. Making use of the superpotential superfield and the corresponding definitions
given above one derives easily the component field expression

1 1 L o
Egsuperpotemial = Z%FQ/ - zzylﬂ 'Pa&/l[jf + ﬁzid(wmamlp{/)
— KPW(M + ,,a™V,) + h.c. (6.3.33)

6.3.3. Yang-Mills
Finally, the Yang—Mills action is obtained in replacing the generic superfield r with

l.Yang—Mills = %ﬁr)(s) W(r)aWSLS) (6334)

in the same way as in (4.5.20) of Section 4.5.3. Assuming the gauge coupling functions to be
independent of the 3-form superfields, the resulting component field expression has the same form
as in (6.2.20), which we display here in the form

1 1 ) - R
Eg Yang-Mills = — Zf(r)(s) [fEOmne® 4 2i006™V,, A + 2i1196™V,, AT

—2DYD® + %s“m" FRFS) — 2006979, ]
1 af(r)(ls)
4704

1 s
4 0A'

V264030 f 5 — /220D + (049 F']

(V275" ) i — /277D + (I 7)F]
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1/0? 0 .
_< Jow Yoo pi

ko Iy () 9 (s)
g\o4k04! oA kl>(}i 1 NADAS)

1 < i S

")) 71 (kD7) 7(s)
8 agkagl agi r kl>()( X)(i /1 )

plus ¥,,, ¥,, dependent terms . (6.3.35)

In the covariant derivatives of the gauginos

Vil = 0,20 — 0y 220 + 0,20 — a2 0" (6.3.36)
Vo A% = 0, J0% — 9,8, A0 — y, T0& _ g0 Wi 0 (6.3.37)

defined as in (4.2.15) and (4.2.16) the composite Kéhler connection is now given in terms of (6.2.22),
displaying the dependence on the 3-form multiplet. The Yang-Mills field strength tensor is given
as usual

S =0,ay — 0,4 + aalc ™ . (6.3.38)

6.3.4. Solving for the auxiliary fields
Although this is standard stuff, we detail the calculations to make clear some subtleties related
to the inclusion of the 3-form. In the different pieces of the whole Lagrangian, we isolate the
contributions containing auxiliary fields and proceed sector by sector as much as possible.
Diagonalization in b, makes use of the terms

Ay = 36, — IM ., 7 (P70 W)y + Yy (A5 T)b,, (6.3.39)

with
M, 7 =—-+—K.,7, (6.3.40)

whereas the relevant terms for the Yang-Mills auxiliary sector are

1 1 o
Ap =3 JinyDD + - YK, DK (AT,
NG Fore) e m
(s) (r)(s) (K 9 (r) )(S) (=K 7(r)
+3°D <—aAk (27 + 37 (17 )>. (6.3.41)

The F-terms of chiral matter and the 3-form appear in the general form

Aps=F'M,;F” + F’P,, + P F” (6.3.42)
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with the definitions

19 o
P =5 —- fL“,?(}ﬁW) — YMy;M,, PIP (6.3.43)
4704
Py =Xy — YMyyMy ;P79 (6.3.44)

1 .
ViR (6.3.45)

where M is the inverse of M_,; and in particular

1

Viite Myy — MypOU*M, ¢ (6.3.46)

with 9 the inverse of the submatrix M, related to the usual Kéhler metric. Moreover,
F* = F* + (P + F*Myp)M™ (6.3.47)
F* = F* + P, + My FY) (6.3.48)
and

ng — FY + ng.y?Y’ F

F' + M¥P,, . (6.3.49)

We use now the particular structure of the 3-form multiplet to further specify these F-terms. Using
(6.2.18), (6.2.19), (6.3.11) and (6.3.12) we parametrize

. MY — MY
97Y=H+1<A +T>+fy, (6.3.50)
. MY — MY e

gﬂ,ZH—i(A +T>‘|‘fy (6.3.51)
with

ff=— iy . grprtg we 4 PJM‘;/Y , (6.3.52)

J?Y _ %fi.y/‘_%_f 7, P2 gt + MYQ/PM , (6.3.53)
as well as

klmn 1 T, =—m my 1 T, =mn7T’ mn s
4 =3¢ akClmn - Z—ﬁ(wmg n— lme' ’7) + Z[(l/jma %)Y - (lpmg l//n)Y:l . (6354)
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In terms of these notations the last term in (6.3.45) takes then the form

1 _, 1 fr4+M2 1 MY — MY ¥ —77"\?
aY aY __ _
F AT 77 MYY(H + 3 + il A+ % + % . (6.3.55)

In this equation the last term makes a contribution to the sector M, M and the 3-form we consider
next. Except for this term, the sum of A, Ap, Ap r Will give rise to the diagonalized expression

1 e | PN 1 _
Eg(Fk, Fk, ba,D(r), H) = gbaba E )f( )(s )D(b) + dka g‘jk
fY +fY 3 a r)(s D A o
+ MYY<H + > — 1_6B B D H(fHYYD, — P, M77P,, (6.3.56)
where b, = b, + B, with
B, = — M,5(P76,97) + fu9(AV5, %) (6.3.57)
and DAO) = D(r) + (f_ 1)(r)(s)D(S) Wlth
1 Ui s f(r)(s) s
Do) =~y KT Af + V2 < O (00) + ZAL ) ). (6.3.58)
Use of the equations of motion simply sets to zero the first four terms, leaving for the Lagrangian
1 3 1 _ 1
-¥% = ——=B,B*— =D, (f ")"D, — Py——P
eg 16 a 2 (r)(f ) (s) YMYY Y
MYk > kk( MkY >
P; — Py M P, — Py ), 6.3.59
< k YMYY k MYY Y ( )

where we have block diagonalized M.

As to the M, M dependent terms of the full action we observe that they are intricately entangled
with the field strength tensor of the 3-form, a novel structure compared to the usual supergrav-
ity—matter couplings. The relevant terms for this sector are identified to be

1 1 IRE
Ayt = 3K|W)? — YM + 3eK2W? + MYY[ (MY MY) + (/" fY)} . (6.3.60)

One recognizes in the first two terms the usual superpotential contributions whereas the last term is
new. This expression contains all the terms of the full action which depend on M, M or the 3-form
Cim- The question we have to answer is how far the M, M sector and the 3-form sector can be
disentangled, if at all. Clearly, the dynamical consequences of this structure deserve careful
investigation.
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The 3-form contribution is not algebraic, so we cannot use the solution of its equation of motion
in the Lagrangian [54]. One way out is to derive the equations of motion and look for an
equivalent Lagrangian giving rise to the same equations of motion. Explicitly, we obtain for the
3-form

1 | R Loy |l
@k{m[ﬂ —5(MY = MY) + (/7 —f )}} =0, (6.3.61)
solved by setting
A Loy —wavy v Lo o | = (63.62)
MYY 2i 2i =C, 2.

where c is a real constant. Then the e.o.m.’s for M and M read
M + 3eX2W = —3icY, M + 3eX?W =3icY . (6.3.63)

At last, we consider the e.o.m. for e.g. Y, in which we denote by #(Y) the many contributions of
Y to the Lagrangian, except for Ay,

3L(Y) L) My

_ == =0. .3.64
" 50, Y oY oY 0 (6.3.64)
Using (3.42) and (3.43) the last term takes the form
0. m 0

_ 9 K . 22 Yy _ ; Y _ rY
5T _57{36 W +icy|* — ¢*M ic(f" —f7)

— 1[G W)Y — Wm0 ,) Y] — \%(lﬁm?rmn — lﬁmﬁmﬁ)} . (6.3.65)

This suggests that the equations of motion can be derived from an equivalent Lagrangian obtained
by dropping the 3-form contribution and shifting the superpotential W to W + icy. This can be
seen more clearly by restricting our attention to the scalar degrees of freedom as in the next section.

6.3.5. The scalar potential
The analysis presented above allows to obtain the scalar potential of the theory as

Myy Myy
= . 1 . i
+ (2y —ic) (Zy +1ic) — 3eM|W +icyl?
Myy
i e AR YY— K, (T, A (6.3.66)
21— YKy 0 1= YK, & Ued 3.

We note that the shift Wi— W + icy induces 2 — 2, and Xy +— 2y + ic, which are precisely the
combinations which appear in (6.3.66).
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In fact (6.3.66) is nothing but the scalar potential of some matter fields ¢* of Kihler weight O plus
a field Y = yeX/? of Kihler weight 2 with a superpotential W + icy in the usual formulation of
supergravity. In order to show this, let us consider y and y as our new field variables and define

K(Y,$.Y,9) = A (y,0.5.9), (6.3.67)
Taking as an example the Kidhler potential in footnote 18 with Z = 1, we find

y=YX+ YY) 3=Y(X+ YY) (6.3.68)
and therefore

H (1, §) = logX(¢, §) — log(l — yy) . (6.3.69)

which is a typical Kdhler potential with SU(1, 1) non-compact symmetry.

We can express the matrix M, ; and its inverse M in terms of the derivatives of ", namely
A, 7 and of its inverse 4/ (=/ denotes k, y as well as k, Y depending on the context). Then it
appears that the expression of the scalar potential becomes very simple as we use the relevant
relations. Indeed, using the following definitions

W =W +icy, D,W =W, + A4 ,W, (6.3.70)
we obtain
V =e"(DyWAHT'D W = 3IWP) + 56Ty DS~ HOOA (T A (6.3.71)

which is the familiar expression of the scalar potential of the scalar fields ¢* and y in the standard
formulation of supergravity.

7. Conclusion

Since the upsurge of supersymmetry, a number of formalisms have been developed in order to
cope with the notorious complexity of this Fermi-Bose symmetry, in particular in the context of
supergravity, for a sample of review articles see for instance [45,130,131,63,62,64,65,107,31,44].
Among these formalisms are tensor calculus, the superconformal compensator method and the
group manifold approach. It would be an interesting undertaking to establish explicitly the relation
among these different approaches and to superspace geometry, which is however certainly beyond
the scope of this report.

Methods of superspace geometry are convenient in the discussion of the conceptual aspects of
supersymmetric theories and useful in the derivation of component field expressions and have
a wide range of applications.

In this report we have focused on the Kéahler superspace approach to the construction of the
general couplings of matter and Yang-Mills theory to supergravity. As a solid understanding
of this subject is central for further applications and developments, we have made an effort to
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present the conceptual foundations and the technical ramifications in full detail. In order to
demonstrate the way the geometrical formulation works, we included a detailed description of the
couplings of linear and 3-form multiplets to supergravity.

There are other topics, which have been discussed in this geometric context, but which are not
included in this report. Among them are the algebraic description of anomalies in supersymmetric
theories [93] and the construction of the geometric BRS transformations [11].

We also refrained from a discussion of conformal supergravity and the construction of curva-
ture-squared terms and supersymmetric topological invariants. Gravitational Chern-Simons
forms, which are closely related to the 3-form geometry presented here, and their coupling to linear
multiplets have a rather transparent formulation in the geometric context.

Let us also mention the systematic description of the alternative incarnations of supergravity,
new minimal and non-minimal, in the framework of superspace geometry in relation with the
identification of the reducible multiplet.

Finally, we have restricted ourselves to N = 1, D = 4 supersymmetry. Superspace geometry has
been widely employed in the investigations of extended and higher and lower dimensional
supersymmetry.

The methods discussed in this report have a potential interest for discussing effective superstring
field theories and have been extensively used in this respect. We discuss in what follows some of
these potential applications.

As stressed in Section 5.1, the linear multiplet plays a central role in the field theory limit of
superstring theories. Its bosonic component consists of a scalar field associated with dilatation
symmetry, the dilaton, and of a pseudoscalar field which has many properties in common with an
axion field. Its fermionic component, sometimes called the dilatino, may be a component of the
goldstino field whose presence in a supersymmetric theory is the sign of the spontaneous break-
down of supersymmetry.

The close connections of dilatation symmetry with the vanishing of the cosmological constant, of
axionic couplings with the cancellation of chiral anomalies and of the goldstino with the super-
Higgs mechanism certainly make the dilaton-axion-dilatino set of fields a system worthy of
detailed studies. Supergravity theories provide the natural setting for such studies, given the
intimate connections noted above with gravity and supersymmetry (the dilaton as a Brans-Dicke
scalar, the dilatino associated with the possible breaking of local supersymmetry).

In the effective four-dimensional supergravity theory of weakly coupled 10-D string theories, the
axion field does not appear as such in the spectrum. Indeed, the massless string modes include
a dilaton and an antisymmetric tensor which, together with a dilatino spinor field, form a linear
multiplet which plays an important role in the effective field theory. As we have seen in Section 5.1,
a supersymmetric duality transformation relates this linear supermultiplet to a chiral supermultip-
let [111] whose content includes the original scalar field as well as the pseudoscalar (with axion-like
couplings) dual to the antisymmetric tensor.>® However, such a transformation only establishes
a relationship on shell and some relevant properties or some transparence might be lost or hidden
in the chiral supermultiplet formulation. Moreover, in the context of superstring theories it appears
that it is the linear multiplet, L, which plays the role of string loop expansion parameter. Therefore,

20Such a duality transformation may be related to a string duality in the case of some moduli fields.
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stringy corrections (perturbative and non-perturbative) are naturally parametrized by L, which
then allows to disentangle purely stringy effects from field theoretical ones. This is very clear in
the study of gauge coupling renormalization and gaugino condensation in superstring effective
theories (see below).

A classical example is the way modular invariance is realized at the quantum level in these
theories. This invariance involves transformations of the moduli fields, which are described by
chiral superfields in the case of a weakly coupled string theory. The corresponding invariance is
realized through some Kahler transformation. The simplest example is the case of a single
superfield T with Kidhler potential K(T, T) = — 3In(T + T). The modular transformation is then
simply a SL(2, Z) symmetry:

aT —ib
— —cd=1 Z 1
HicT—l—d’ ab — cd , ab,c,de”Z (7.1)

which amounts to the Kahler transformation
K—K+ F+ F, with F =3In(icT +d). (7.2)

This invariance is violated by radiative corrections generated by quantum loops of massless
particles [112,29,487. These anomalies are cancelled by two types of counterterms. The first one is
model independent and is a four-dimensional version [29,48] of the Green—-Schwarz [96] anomaly
cancellation mechanism. As is well known, this mechanism makes use of the presence of the
antisymmetric tensor and thus, in four dimensions, it involves the linear multiplet L. The other part
[52] which is model-dependent involves string threshold corrections depending on the moduli
fields.

These terms play an important role when one discusses issues such as supersymmetry breaking.
For example, in the classical scenario of gaugino condensation, it proves to be very useful, in order
to take into account these important one-loop effects, to make a supersymmetric description of the
dynamics in terms of the dilaton linear multiplet. It turns out [24,14] that, in the effective theories
below the scale of condensation, a single vector superfield V incorporates the degrees of freedom of
the original linear multiplet L as well as the gaugino and gauge field condensates. The one-loop
terms discussed above, i.e. Green-Schwarz counterterm and moduli-dependent string threshold
corrections, play an important dynamical role [15-17] in this mechanism.

As we see, one-loop terms play a crucial role in all these applications. Since supergravity is not
a renormalizable theory, great care must be used in the regularization procedure. In a major effort,
Gaillard and collaborators [79,113,114,77,78] have used Pauli-Villars regulators (carefully chosen
not to break supersymmetry nor the symmetries of the theory) to compute the full one-loop
corrections to the supergravity effective superstring theories theory in the Kihler superspace
formalism.

Similar to the duality between a rank-2 antisymmetric tensor and a pseudoscalar, a rank-3
antisymmetric tensor is dual to a constant scalar field. Indeed, such a relation was considered some
time ago in connection with the cosmological constant problem [104,36,58,54]. As we have seen in
Section 6, the role of supersymmetry is striking when one considers the rank-3 antisymmetric
tensor. Whereas in the non-supersymmetric case such a field does not correspond to any physical
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degree of freedom (through its equation of motion, its field strength is a constant 4-form),
supersymmetry couples it with propagating fields. Indeed, the 3-form supermultiplet [82] can be
described by a chiral superfield Y and an antichiral field Y subject to a further constraint (6.2.14)

%gdd’azddm = (22 — 24R")Y — (F% — 24R)Y , (7.3)

where X is the gauge-invariant field strength of the rank-3 gauge potential superfield, Cy;,,, i.e.
Y = dC. Its superpartners, identified as component fields of the (anti)chiral superfield Y and Y, are
propagating. Supersymmetry couples the rank-3 antisymmetric tensor with dynamical degrees of
freedom, while respecting the gauge invariance associated with the 3-form. Let us emphasize (see
Appendix F) that Y is not a general chiral superfield since it must obey the constraint above (7.3),
which is possible only if Y derives from a pre-potential € which is real:

Y= —42%—-8RNQ, Y= —4F%>—-8RQ. (7.4)

Rank-3 antisymmetric tensors might play an important role in several problems of interest,
connected with string theories. One of them is the breaking of supersymmetry through gaugino
condensation. Indeed, as we have noted above, the composite degrees of freedom are described, in
the effective theory below the scale of condensation, by a vector superfield V' which incorporates
also the components of the fundamental linear multiplet L. The chiral superfield

U= —(J*—8R)V, (7.5)

has the same quantum numbers (in particular the same Kéahler weight) as the superfield W*W,,. Its
scalar component, for instance, is interpreted as the gaugino condensate.

Alternatively, the vector superfield is interpreted as a “fossil” Chern-Simons field [ 14,13] which
includes the fundamental degrees of freedom of the dilaton supermultiplet. It can be considered as
a pre-potential for the chiral superfield U as in (7.4).

Another interesting appearance of the 3-form supermultiplet occurs in the context of strong-
weak coupling duality. More precisely, the dual formulation of 10-D supergravity [34,85,86,120,89]
appears as an effective field theory of some dual formulation of string models, such as 5-branes
[55,148,56,57,26,25,51]. The Yang-Mills field strength which is a 7-form in 10 dimensions may
precisely yield in 4 dimensions a 4-form field strength.
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Appendix A. Technicalities
We collect here some definitions, conventions and identities involving quantities which are
frequently used in superspace calculations. We do not aim at any rigorous presentation but try to
provide a compendium of formulae and relations which appear useful when performing explicit

computations. We use essentially the same conventions as [153], except for £y1,3 and ¢° defined
with opposite signs.

A.l1. Superforms toolkit

Coordinates of curved superspace are denoted z™ = (x™,0%,0,) and differential elements
dzM = (dx™,d0",d0,), with their wedge product (A is understood)

dzMdzN = — (— y"dzNdzM | (A.1.1)

m,n are the gradings of the indices M, N: 0 for the vector ones, 1 for the spinors. We define
p-superforms with the following ordering convention

|
Q, = —dz™ A2 Qy (A.1.2)

p p'

The coefficients Q) ), are superfields and graded antisymmetric tensors in their indices, i.e.
Qv o, = — (= )" — Yot I M. M. M, (A.1.3)

In agreement with (A.1.2), we define the wedge product of two (super)forms as follows:

1
Q,Q, = MdzM‘ dz™ Qg dZN L dZNQy
1
= Mdle e dZMedzZN L dZNQy N Qu, - (A.1.4)

The exterior derivative, d = dz™d,, such that d? = 0, transforms a p-superform into a (p + 1)-
superform

1
aQ, = Edle o d2MdzZ0L Qo (A.1.5)

and obeys the Leibniz rule

dQ,Q,) = Q,dQ, + (— )dQ,Q, . (A.1.6)
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The interior product, denoted 1, transforms a p-superform into a (p — 1)-superform, it depends on
a vector field, e.g. £, with which one operates the contraction

lédZM = fM:>l§Qp = !dZMl dZM"ﬂfMp.(zjwp”‘}\41 . (A17)

1
r—1
Using the analogue of Cartan’s local frame we can define quantities in the local flat tangent
superspace (flat indices are traditionally 4,B,...,H; A = a,0,4)

E4 = dzME\*(2), dz™ = E‘E M(z). (A.1.8)
E\"(z) is called the (super)vielbein and E ,¥(z) its inverse, they fulfill

EvA(2)ELN(2) = 6u", EM2)EN(z) =05 . (A.1.9)
The E*’s are the basis 1-forms in the tangent superspace. As we defined superforms on the dz"

basis, we can equally well define them on the E# basis

p

1
Q :EEAI ...EA"QAp___Al (All())

and d = E4D,. As above

1
(p— 1

Relating the coefficients in one basis to the ones in the other implies the occurrence of many
vielbeins or their inverses, e.g. for a 2-form

EA = i =1.0, = EY EYENQ Ly,

1

(A.1.11)

B = %dZMdZNBNM = %EAEAMEBEBNBNM = ( - )h(era)%EAEBEAMEBNBNM 5 (A112)
so that
Bpy =(— )b(m+a)EAMEBNBNM 5

BNM = ( - )n(m+a)EMAENBBBA . (A113)

A.2. Basic quantities in SO(1,3) and SL(2, C)
In our notations, the metric tensor #,, with a,b = 0,1,2,3 is defined as
(] =diag(—1,+1,+ 1,4+ 1) (A.2.1)
with inverse

N = 04" . (A.2.2)
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The totally antisymmetric symbol &, is normalized such that

€o123 = + 1, 1= —1. (A.2.3)
The product of two e-symbols is given as

gibedy = §obed (A.2.4)
where the multi-index Kronecker delta is defined as

Sed = det[d1] (A2.5)

withi =a,b,c,d and j = e,f, g, h. In somewhat more explicit notation this can be written as

O = 00O — 0% 0gse + 950hey — 0ROy 5 (A.2.6)
Sled = oh.oct 4 obid + ohO% (A.2.7)
Sgh = dg0h — 039 . (A.2.8)

Accordingly, the respective contractions of indices yield

e g = — 035, (A.2.9)
e g = — 2087, (A.2.10)
g®dg 0= — 604, (A.2.11)
gibedg = 24 (A.2.12)

In curved space we use the totally antisymmetric tensor &,,,, defined by
Erimn = €€y bemcendgabcd (A213)

with e,* the moving frame. SL(2, C) spinors carry undotted and dotted indices, « = 1,2 and & = 1, 2.
For the case of undotted indices, the symbol ¢, = — &4, is defined by

&ry1 = 812 = +1. (A214)
As a consequence one has
e,

Eaﬂglm = 5% (A216)

5 = — 0308 4+ 9500, (A.2.15)

together with the cyclic identity (indices S, y, 0)
Szxﬂgyé =+ 80(585‘/ + Say85ﬁ = O . (A217)

Exactly the same definitions and identities hold if undotted indices are replaced by dotted ones, i.c.
for the symbol &;; = — ;.
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The e-symbols serve to lower and raise spinor indices. For a two-component spinor i, we define

W=, g = e (A.2.18)
The cyclic identity implies
Eaplly + Eallp + 8505 =0 (A.2.19)

Again, exactly the same relations hold for dotted indices. The standard convention for summation
over spinor indices is

V= =%, V=1 =y:1". (A.2.20)

The antisymmetric combination of a product of two Weyl spinors is given in terms of the
e-symbols as

l//aXﬁ - wﬁXa = + Saﬂw(pX(p 5 (A221)
Wadp — Wpla = — espPlo? - (A.2.22)

Tensors V,; with a pair of undotted and dotted spinor indices are equivalent to vectors V,. The
explicit relation is defined in terms of the g-matrices, which carry the index structure oy, i.e.

Vie = 05 Va - (A.2.23)

They are defined as

1 0 0 1 0 —i 1 0
g = , ol = , o=\ , 03= ) (A.2.24)
0 1 1 0 i 0 0 —1
We frequently use also the g-matrices,
G = ey = — (eae)™ (A.2.25)
with numerical entries such that
=0 o= —gh?3, (A.2.26)

As a consequence of (A.2.25) we have also

(0%)," = (3% 5 (e0”)s = (7°)" . (A.2.27)
These matrices form a Clifford algebra, i.c.

(66" + 6%6),* = — 2n™5,F , (A.2.28)

(60" + 6%y = — 2n*5%; . (A.2.29)
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The products of two g-matrices can be written as
0’6" = —n*® + 20, (A.2.30)
o's" = — " + 26 . (A.2.31)
The traceless antisymmetric combinations appearing here are defined as

(¢™),? = Xo%c® — ¢°5°), " , (A.2.32)

NS

(6" 4 = a%a" — GPa“)y . (A.2.33)
They are self-dual (resp. antiself-dual), i.e.

Cabea0 = — 2104, Eapead = + iy (A.2.34)
and satisfy (as a consequence of vanishing trace)

(), = —(a™),", (e6™e)y* = — (@) , (A.2.35)

(6a®?)F = (ea™®)?,  (66°")sp = (65°")ps - (A.2.36)

Other useful identities involving two o-matrices are

tr(c’c®) = — 25, (A.2.37)
04,60 = — 28658 (A.2.38)
TosOapp = — 28apCap » (A.2.39)
GUrGhl — _ Dgbeth (A.2.40)

which may be viewed as special cases of the “Fierz” reshuffling
000 = — Seapeap™ + E3p(0°E)up + €25(66™ )z
+ (6% €)p (65 )iy + (6 1€)np (65 )ip - (A.2.41)

As to the products of three o-matrices, useful identities are

(66 = H"n™ — 00" + {64 (A242)
(6°6™)s = H"n™ — 0 + 16" o4 (A243)
(6_ab6_c)a'cy — %(nacnbd . nbcnad . is"”“’)&ZV , (A244)

(5.a6bc)o'ty — %(nacnbd _ nabncd _ igabcd)6§y (A245)
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and

(O_aa_bo_c)w_/ — ( _ nabncd + ncanbd _ nbcnad + igabcd)o_da? , (A246)
((—)_ao_ba.c)a'zy — ( _ rlabncd + ncanbd _ nbcnad _ igade)gg)’ . (A247)

In explicit computations we also made repeated use of the relations

oppp(0™),? = — 0f0sy + 50505, , (A.2.48)
Topp(@)?5 = + Ofofhs — 20%afy (A.2.49)
aibaty, = — b5 + $6% G (A.2.50)
o) = + oha*t — 50567 (A.2.51)
tr(cc) = — A(nP? — n*nPc + ie®9) (A.2.52)
tr(c*°6*Y) = — (n*n®? — nipte — 179 | (A.2.53)
[0, 0] = n*ct — ¥t — e 4 pbigse (A.2.54)
{o“", 6} F = tr(a*c*%)oF | (A.2.55)
(20" Gue)s = — 0308 — 6300 . (A.256)
— isabcd(a"&bacﬁ“’)aﬁ = 6P, %sabcd(a'“abé'cad)dﬁ =05 . (A.2.57)

Finally, let us note that

3€ § oLa(65™), =0 (A.2.58)
Imn Japy

with cyclic permutations on vector and spinor indices.
In the Weyl basis the Dirac matrices are given by

0 o
= (_ > . (A.2.59)
o 0

A Majorana spinor ¥ is made of a Weyl spinor y, with two components, « = 1,2 and of its complex
conjugate 3% & = 1,2:

Yy = <X‘T‘> , (A.2.60)

Py = (1" 7) - (A.2.61)
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A Dirac spinor is made of two different Weyl spinors, y,, ®%

e = _
Yp = <g_0°">’ Yp = (0% ) - (A.2.62)

In the Lagrangian calculations we need to know conjugation rules

W1a™po)' = — (F16™pa) = + (ha0™y)

Wr0™po)" = + (f16™p2) = — (F26™"1) (A.2.63)
and some Fierz relations

W12)ar2) = — 3@ x)Warz)

W12)7172) = — 3W10"70)W20m72) »

Vulp = — 205p(bon7) - (A.2.64)
A.3. Spinor notations for tensors

We can convert vector indices into spinor indices and vice versa using ¢ and ¢ matrices:

Vaz = 023 Va (A.3.1)

Vo= —36Vs . (A3.2)
So the scalar product of two vectors writes

T,Vi = — 3T, V*. (A.3.3)

Tensors T,4, T,p with two spinor indices have the standard decompositions

Ty = 4T + Ty, (A.3.4)

Typ= —epT + Ty (A.3.5)
with

T =131, T=3iT,* (A.3.6)
and

Tocvﬂ =5T.p + Tp,) s (A.3.7)

Tip =2Top + Tpa) - (A.3.8)
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For an antisymmetric tensor with two indices, like F,, = — F,, in spinor notations we have
Fﬂﬁadc = UgaazﬁFba = [(O-bag)ﬁagﬁéc + (86-ba)ﬁd8ﬁoc]Fba . (A39)

Using the standard decomposition

Fﬂ[;’aa’z = — 28[31Fﬁa + ZSBaFﬁa ) (A310)
we obtain

Fpo, = + 5(0"€)puFa (A3.11)

Fp = — 366”33 Fpa (A.3.12)

and vice versa

Fou = (60a8)"*Fip — (6050} "Fop - (A.3.13)
As a consequence, the kinetic term reads

FYF,, = 2Fy, FPr 4 2Fy, FP (A.3.14)
One often uses the dual tensor defined as

kfde = Ledebap, (A.3.15)
whose spinor components are

* [0 = DigdT FOV 4 Digd FOT (A.3.16)
The topological combination *F*F,, takes the form

sphap, = 21F@ FPe 21F@F@ ) (A.3.17)
Along the same lines, for a symmetric tensor with two indices, S;, = S,;, one has the decomposition

Sppas = EpatpsS + Spupy = — YesupaSh + 2(0” 1€)a (66" )5 Sha - (A.3.18)

Finally, for a three-index, antisymmetric tensor, say H,,, the spinor structure is most easily
analyzed using its dual tensor, *HY, defined as

1
FHY = 3 H g, Hope = e "H (A.3.19)
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Then owing to the spinor expression for the e-symbol

€56 15 ppax = M(65,E4285p€55 — €59€p€opEpn) 5 (A.3.20)
one obtains

H o ppas = 218558, Hps — €555 Hop) - (A.3.21)

Appendix B. Elements of U(1) superspace

As we have seen in the main text, U(1) superspace provides the underlying structure for the
geometric description of the supergravity/matterYang-Mills system. Matter fields are incorporated
through well-defined specifications in the U(1) gauge sector, leading to Kahler superspace ge-
ometry. Very often, however, explicit calculations are done to a large extend without taking into
account the special features of Kdhler superspace. For this reason we found it useful to provide
a compact account of the properties of U(1) superspace.

B.1. General definitions

The basic superfields are the supervielbein E,;*(z), the Lorentz connection ¢,,5*(z) and the gauge
potential A, (z) for chiral U(1) transformations. These superfields are coefficients of 1-forms in
superspace,

EA = dzMEyA(z) , (B.1.1)
o8 = dzMPpyp(2) (B.1.2)
A =dz™Ay(z2) . (B.1.3)

Torsion curvatures and U(1) field strengths are then defined as

T4 = dE* + EBpp”* + w(EYE*A , (B.1.4)
R =dpp™ + ¢, (B.1.5)
F=dA. (B.1.6)

The chiral U(1) weights w(E*) are given as
WE) =0, WE)=1, weE;)= —1. (B.1.7)
Torsion, Lorentz curvature and U(1) field strength are 2-forms in superspace,
T4 =3EPE‘Tp* (B.1.8)
Rf = 3ECEPRpcp?, (B.1.9)
F =3E°E"Fp . (B.1.10)
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They satisfy Bianchi identities
DT — EBR,* — wEA)EAF =0 . (B.1.11)

A more explicit form of the Bianchi identities is
3€ (ZpTcp™ + Tpc"Trg® — Rpep™ — WE)Fpcdg) =0 (B.1.12)
(DCB)
with the graded cyclic combination of superindices D, C, B defined as
3€ DCB = DCB + (— )P“*9BDC + ( — )***9CBD . (B.1.13)
(DCB)

Covariant derivatives are always understood to be maximally covariant, unless explicitly otherwise
stated. In our present case this means covariance with respect to both, Lorentz and U(1)
transformations. As an example, take the generic O-form superfield y, of chiral weight w(y,). Its
covariant derivative is defined as

Dpta = Eg™Omya — ¢parc + Wa)Apa (B.1.14)
with graded commutator

(D, Dp)ia = — Tcs"Drta — Repa' tr + w(xa)Fesia - (B.1.15)
The chiral weights of the various quantities are given as

wZ,4) = —wWEY), W(Tcp?) = wE*) — w(E®) — w(ES), (B.1.16)

W(RepaT) = — w(EP) — w(ES) . (B.1.17)

B.2. Torsion tensor components

For a discussion of the U(1) superspace torsion constraints we refer to the main text and to the
original literature. Here we content ourselves to note that all the coefficients of torsion, curvature
and U(1) field strength are given in terms of the few superfields

R; RT, Gaa I/I/yﬁo/c 5 VI/yﬁo/z (B21)

and their superspace derivatives. The chiral weights of these superfields are determined according
to their appearance in the torsion coefficients (see below), i.e.

wR) = +2, wR)= —2, wG,) =0, (B.2.2)

WWips ) = + 1, wWyp )= — 1. (B.2.3)
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We present the torsion tensor components in order of increasing canonical dimension (remember
that [x] = — 1 and [0] = — ). We try to be as exhaustive as possible. In particular, in many
places we give the results in vector as well as in spinor notation, with o ~ («, &) defined as usual.

® Dimension 0:
T, =0, T =0, (B.2.4)
T, = —2i(a%),” . (B.2.5)
e Dimension :
Tﬁ‘z‘, =0, Ty'=0. (B.2.6)

e Dimension 1: At this level appear the superfields R, R" and G,, i.e.

T*/bm = %(6c6b)yaGCM Ty Bpa = igﬁa Gyﬁ 5 (B27)
T7y = —50.05) 4G~ T;pp5 = 163:Gyy (B.2.8)
Tybdz = — iGmeTM T? BB § = — 218y3831RT N (B29)
T = —i6)'R~»Typp, = — 2ig;pep, R, (B.2.10)
cha =0 Tv)') Bpas = 0. (lel)

e Dimension 3: Here, the basic objects are T % expressed in terms of the Weyl spinor superfields

W, s, » Wi, and of spinor derivatives of the superfields R, R" and G,. These properties are most

clearly exhibited using spinor notation, i.c.
with further tensor decompositions

Tyﬂa = VV;/M + %(SW/Sﬂ + EaﬂSy) , (B213)

Typs = Wips + 3(e23Sp + €1pS;) . (B.2.14)

The various tensors appearing here are defined as

Sy =T, = +19°Gy — D4R = YT o), , (B.2.15)

Sﬁ = TW‘}’ = — %QﬁGﬂ[; + @BRT = %(Tc,j"”),; (B.2.16)
and

Tipe = — 423Gy + 24Gyy) (B.2.17)

Ty = +52,Gpy + 24G) . (B.2.18)



390 P. Binétruy et al. | Physics Reports 343 (2001) 255-462
B.3. Curvature and U(1) field strength components

The curvature 2-form takes its values in the Lie algebra of the Lorentz group. Vector and spinor
components are therefore related by means of the canonical decomposition

Rpc baW’RDC/x/}m = 28/3&RD0@ - 28/xaRDc@ 5 (B.3.1)
as defined in Appendix A. Indices D and C are superspace 2-form indices. As a general feature of
superspace geometry, the components of curvature and U(1) field strengths are completely
determined from the torsion components and their covariant derivatives. We proceed again in

order of increasing canonical dimension.

o Dimension 1: Here, the 2-form indices D and C are spinor indices:

Réy ba = S(Jbag)éyRT 5 (B32)
R%,, = 8(65.8)""R . (B.3.3)
R = 21G(0¢)s €ucha - (B.3.4)

In spinor notation these components become, respectively,

Rsppa = Hespys + £s28,p)R" (B.3.5)
Ry =0, (B.3.6)
R =0, (B3.7)
Ry = Hespese + Esstip)R (B.3.8)
Rospa = — €55Gay — €5.Gpy (B.3.9)
Rsyps = — €3pGou — €3 Gop » (B.3.10)

The U(1) field strengths are
Fsy =0, F"=0, F,’=3(c%),G, . (B.3.11)

e Dimension 3: Bianchi identities tell us directly that the relevant curvatures are given in terms of
torsion as

Récba = io—céé 71bc1(i - iabéé Tacé - io-aéé ché 5 (B312)

R, 40 =16 Tpss — 169 T s — 162 Teps - (B.3.13)
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In spinor notation one obtains, respectively,

Riyipa = +1% eosTopy + 60y Tpay — €0p810S3) (B.3.14)
Rsyyps = +4i£5yW@ +i§ 8yﬁ<T@a +%e,;y8&>, (B.3.15)
Rsyypa = — 465y Wypa i;,gyﬂ(Ttijz—l'%géySa)a (B.3.16)
Rsyyps = — i% (€54 Tipy + €53 Tpay — €5p€55Sy) (B.3.17)

Using the explicit form of the torsion coefficients as defined in the previous subsection, these
curvatures may also be written as

R; 45 pa 1Z< 5,25 + ;85,;@ Gy — 85,;8W@?RT> , (B.3.18)
R = 4ies, W@ + i;‘ SW<%85VXB + %95 Gy,;> , (B.3.19)
Rsyyp = — 4ies; Wipa IZ ew< &5y Xp +%@5G,ﬁ>, (B.3.20)
R 33 4 1Z< 532G + ;85,;9 Gy — Sgl;SMQyR) . (B.3.21)

Here symmetric sums over indices o, § (resp. &, f) are understood in an obvious way and we have
used the definitions

Xy =Z4R — DGy , (B.3.22)
Xy =24R' — PGy . (B.3.23)

These superfields are naturally identified in the U(1) field strengths

3i i _
F(Sc = ElgéGc + %O-CééXé 5 (B324)
P, =2g56, ~ Lavx, | (B.3.25)

2 2
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which, in spinor notation, read

3i _

Fspp =525Gy +ie5 X, (B.3.26)
3i :
Fsy =3595Gyy + ey X, . (B.3.27)

e Dimension 2: The curvature tensor R .;,* has the property
Rdc ba = Rba de - (B328)

Its decomposition in spinor notations is given as

Rossyippas = + 485y(8/ia}(@@ - 8/}1%3 pi) + 485~/(85u)@ pa — Sﬁ'awéj Ba ), (B.3.29)
where

Koy pa = Loypa = + (€sp8ya + €oayp)) 5 (B.3.30)

Aoy pa = Asspa T (8spia T 5a83p)X (B.3.31)
and

% = 7aRp" . (B.3.32)

The tensors appearing in the spinor decomposition of the curvature are, respectively,

T, T.4s; the Rarita-Schwinger field strength ,
Ry the Lorentz curvature ,
X,, X* the U(1) superfield .

Here y 5,5, and ys;4; describe the Weyl tensor in spinor notation, whereas ; g, and y corres-
pond, respectively, to the Ricci %, = Ry," tensor and to the curvature scalar #Z = R,,”*. These
superfields are related to the basic superfields obtained in the preceding section in the following
way:

Yo = MDsWops + D, Wpas + DgWasy + D Wayy ), (B.3.33)

Lssws =HDsWaps + D3 Wpss + DyWasy + LWy ) (B.3.34)
1

Vo pr = g2 2 (GopGrs — 3%, 741Gs) (B.3.35)

Jy pa
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and

1= —12(2°2,R + 2,2°R") + 45[ 2% 21G,; — $G*G,; + 2RR". (B.3.36)
The U(1) field strength F,. with canonical spinor decomposition

Fosyy = 2e55F 5y — 285, Fs; (B.3.37)

can be expressed as

Fs = + Z(@(s@éG,s +312,°G ;) , (B.3.38)
& 85

Fg = — —Z (D5 DGy + 3i19°5Gy) . (B.3.39)
& 85

B.4. Derivative relations

Superspace constraints, via the Bianchi identities, imply covariant restrictions on the basic
superfields encountered in the previous subsections. Most important are the chirality conditions

2,R" =0, 9*°R =0 (B.4.1)
and
D Wipe =0, DWWy =0. (B.4.2)

Superfield expansions are defined in terms of covariant derivatives. We have seen that the geometry
of U(1) superspace can be expressed in terms of some basic superfields and their covariant
derivatives. Conversely, this means that tensors like T, Tcps» Raer® X,, X* are located in the
superfield expansions of these basic superfields. At dimension 3 the relevant equations are

TR = —1X; — HTopoe), (B4.3)

PPRY = —1XP — }(T.,5%) (B.4.4)
and

P3Gy = — HT5,0%%) + §(Tep5G,8)p — 3(XGa8)p (B.4.5)

DG, = + YT p0,6%) — YT wo0,6) + 1 Xa,6) . (B.4.6)

Note that, in order to compactify the notation, we have suppressed a number of spinor indices.
They are easily (and without ambiguity) restored with reference to the index structures of
cg-matrices explicitly defined in Appendix A. In spinor notation, these relations may equivalently be
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written as
4R = —3X5 —3S;, (B.4.7)
FPRT = — 1xP 4 4gP (B.4.8)
and
P3Gy = + 2Tﬁvm~! + 364285 — 362X s » (B.4.9)
P3Gy = — 2T psy — 363350 — 3643 X - (B.4.10)

In the U(1) gauge sector, at dimension 2, one has

2,X, =0, 2,X,=0 (B.4.11)
and
9°X, = D, X% . (B.4.12)

Substituting for X,, X* yields the equivalent equations

2°9,G, = 492,R', 2,9°G, = — 492,R (B.4.13)
and

9"9,R — 2,9°R" = 4i9,G* . (B.4.14)
The orthogonal combination is given as

2°R + Z*R' = — 3R, — 39°X, + 4G°G, + 32RR" . (B.4.15)
As a consequence of the chirality conditions, the mixed second spinor derivatives on R, R' are

2:9,R = —21%,4R — 6G,4R , (B.4.16)

2,9;R" = —219,,R" + 6G,,R" . (B.4.17)
The relation

(2. Zp1Gas = — 4o psc + 2GppGrs + HepaFps + e F s )

+ 2165, D% G oy — 21643 D3%Gop + epaeps(BRRY + 2G°G, — 397X, — 4y) , (B.4.18)

may be equivalently written as

[Z2:2:1G0 = — (0.)u(4RRY + GGy + ) + (0)as(Pha + 2G. Gy + Earea?°G?) . (B419)
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As to the Weyl spinor superfields, their non-trivial spinor derivatives are determined to be

95 W/ﬂzx = Aoy + %86y9(qu)ﬂa + %Séﬂgtprw + %géa@q)W(pyﬂ ’ (B420)
DsWips = Lo + 56,2 Wops + 5esp @™ Wosy + desa 2" Wosy (B.4.21)
with
(4 1 1) . @ 4
@ W(@ = — gﬂz (Qﬁg GWZJ + 31@/} GWP) = — EF&Z . (B422)
@ 1 0 . 4
D Wop = + 8; (D99%G s + 394 Gos) = — 3 Fps - (B.4.23)

Observe that these relations may also be identified in the more compact identity

D*Toys + DT =0 (B.4.24)

B.5. Yang-Mills in U(1) superspace

As in Section 2.3, the Yang—Mills connection and its curvature are Lie algebra valued forms in
U(1) superspace,

o = EAd T = AT, , (B.5.1)
F =3E‘EPF T, = 7T, (B.5.2)

with & =d.<of + o/ .o/, or
FO = dog 4 %&f(p)ﬂ(q)c(p)(q)(r) ) (B.5.3)

The Bianchi identities are

9F =dF —AF + F o =0, (B.5.4)
1e.

9FO =dF VY — i P F D, O =0. (B.5.5)

More explicitly, decomposing on the covariant superspace basis this 3-form, we obtain

3€ (ZcFpa+ Teg"Fra) =0. (B.5.6)
(CBA)
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In the discussion of the Yang-Mills Bianchi identities the complete structure of U(1) superspace as
presented in this appendix must be taken into account, derivatives are now covariant with respect
Lorentz, chiral U(1) and Yang-Mills gauge transformations. The covariant constraints>!

FH =0, Fy,=0, F4=0, (B.5.7)

together with the Bianchi identities restrict the form of the remaining components of the
Yang-Mills field strength such that

Fpa = + (o)W, (B.5.8)
Ft, = —i@.)r,, (B.5.9)
Tva = 2600 DN 5 + %(51)413)5&@&"///? . (B.5.10)

The Yang-Mills superfields
Wy =W T, W=WT, (B.5.11)
with respective chiral weights, + 1 and — 1, are subject to the reduced set of Bianchi identities
G W =0, 9°W,=0, (B.5.12)
DWWy =Dy W . (B.5.13)
We also define the D-term superfield D™ as
D" = —1g*y P (B.5.14)

with vanishing chiral weight, w(D®™) = 0. In spinor notation the components of the field strength
are given as

Fpar = 2ep Wy (B.5.15)

Ty oz = g, W (B.5.16)
and

Tppar = 26T pu — 260 Fps (B.5.17)
with

Ty = — WDV + DWy) (B.5.18)

T = +H{Dy Wy + D Wp) . (B.5.19)

21 The explicit solution of the constraints, as explained in Section 2.3, in particular the construction of the chiral and
antichiral basis, carries straightforwardly over to U(1) superspace.
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Conversely, the non-trivial spinor derivatives of the Yang—Mills superfields are given as

Dy W = — (0")pu T b — 5, D7, (B.5.20)
Dy W = —(66"paT by + £3 DV (B.5.21)

and those of the D-term superfield are

2,DY =ic%, 9, W% (B.5.22)

D" =ic"*g, W . (B.5.23)
The covariant derivative appearing here is defined as

2,4D" = E M3, D — i/ PDDc ()" . (B.5.24)
Recall that the graded commutator of two covariant derivatives is

(25, 2,4)D" = — Tp,F 2DV —iFEDDe )" - (B.5.25)

In the case of the Yang—Mills superfields additional terms appear due to their non-trivial Lorentz
and U(1) structures:

(D, D)W = — Teg" D WY —iF BN D™ — Rep “W + Feg W, (B.5.26)
(D D)Wt = — T DpW ™ —iF@W Dicy 0 ® — Reghy WO? — Feyw ™ . (B5.27)

In the evaluation of (B.5.22) and (B.5.23) these relations are used in combination with (B.5.12) and
(B.5.13). Further useful relations are

DW= 4igh, T WO 4 12RO (B.5.28)
G O% = digeeg W 4 12RWOx (B.5.29)

Appendix C. Gauged isometries

In the general supergravity/matter/Yang-Mills system the chiral matter superfields parametrize
a Kéahler manifold. These structures are quite well understood in the geometric framework of
Kéhler superspace. In general, from the point of view of differential geometry, Kédhler manifolds
admit non-linear isometry transformations, which can be gauged using suitable Yang-Mills
potentials.

This appendix provides a description of gauged isometries compatible with superspace. Of
course, the relevant language makes use of superfields. In a first subsection we develop the general
formalism on a manifold parametrized by complex superfields, not yet necessarily subject to
chirality conditions. The second subsection shows how Kahler superspace can be modified to take
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care of gauged isometries. The resulting geometric structure is called isometric Kéhler superspace. In
the third subsection we derive the supergravity transformations in this context and in the fourth
and last subsection we establish the relation with Yang-Mills transformations of the matter
superfields, which correspond to linear isometry transformations.

C.1. Isometries and superfields

As a starting point we consider a complex manifold spanned by complex superfields ¢* and their
complex conjugates ¢*. Following [6,7] we define infinitesimal variations

5¢k = - a(r)V(r)¢ka 5¢;E = - O((")170')(5’E > (C.l.l)

of generators V,,, and V,, which depend holomorphically (resp. anti-holomorphically) on the
superfield coordinates

Vo = Vo @iz o= Vo @3z C.12)
and which satisfy commutation relations

Vs Vol = oo Vo » (C.1.3)

[Veys Vol = oo Vo » (C.1.4)

[Vins Vo1 =0. (C.1.5)

In addition to holomorphy properties, solution of the Killing equations of the hermitean metric
implies the appearance of Killing potentials, G,(¢, ¢), such that

_ .0G,, . 0G,
gV = +1i aq;k)a gV = —1i ad—)(,;) . (C.1.6)

In the case of Kdhler geometry, i.e.

0*K(¢, P)
Ik = W ) (C.1.7)
these equations in turn are solved in terms of holomorphic (resp. anti-holomorphic) functions
F,)(¢) (resp. F,)(¢)) — which one might call Killing pre-potentials — such that
i _ i _
Ve = V)K= 5(Fpy — Fi) (C.L.9)

G(V) = 2

and

(I/(r) + Z,))K == E") + Er) . (C19)
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As a consequence of the commutation relations for V), V), the pre-potentials F,, and F,, satisfy
consistency conditions

VinFo — VioFey = s "Fop +1Cans) » (C.1.10)

VirFy = VioFy = ¢ "Foy — 1Cones (C.1.11)
with antisymmetric separation constants

Coe = = Com - (C.1.12)

Moreover, multiplying Eqgs. (C.1.6), which define the Killing potential G, appropriately with
V) (resp. V,)¥) one obtains

VirGo + Vig G = 0. (C.1.13)
Other useful relations in this context are

VirGe — Vio Gy = "Gy + Cones) (C.1.14)

VinGs) — Vio Gy = cnw"Guwy + Conesy » (C.1.15)

Vin + V)G = iy "Gy + Corys - (C.1.16)

In the following, we shall restrict ourselves to cases where it is possible to take
Conew =0 (C.1.17)

and discuss gauged isometries, i.e. variations of ¢* and ¢* where the parameters o are uncon-
strained real superfields. Covariant derivatives are then constructed with the help of superfield
gauge potentials which are 1-forms in superspace

A = EA/P (C.1.18)
subject to gauge variations
8.4 = oPcf D O — ida® . (C.1.19)

The covariant exterior derivatives of the matter superfields are defined as

DP* = (d + id DV, P* , (C.1.20)
D = (d +id"V,)) P . (C.1.21)
By construction, they change covariantly under gauged isometries, i.e.
k
OGPk = — o aV—('l)@qbl : (C.1.22)
09
- oV k
07 = — o D gt (C.1.23)

o
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Of course, the covariant exterior derivative is no longer nilpotent, its square being related to the
field strength

FO =dog" + %M(p)ﬂ(q)c(p)(q)(’) , (C.1.24)
such that

DDP* =iF OV, " , (C.1.25)

GG =iF OV, ¢" . (C.1.26)

In a somewhat more explicit notation, i.e.

D¢* = EAD 9%, DPF = EAD ,p* (C.1.27)
and

F© =IE‘EBF Q) (C.1.28)

this yields the graded commutation relations

(D8, D4)P* = — T D P* +1F GV, ", (C.1.29)
(P, Z4)P" = — Tps“DcP* +1F )y V(r)q;l; . (C.1.30)

C.2. Isometric Kahler superspace

The composite Kahler gauge potential was defined in terms of chiral matter superfields as
a l-form in superspace such that

1 - .
A= Z(deqbk — Kedd") + 8E“(12G + 6% Dy * D5, ") . (C2.0)

Consider now the spinor derivatives to be covariant with respect to gauged isometries, as defined
above, rendering the last term invariant. However, the term

A = K dp* — Krdd* (C.2.2)
changes under gauged isometry transformations as
04 = —2idIm(a"F,)) + 2i(da")G,, . (C.2.3)

This can be verified using the relations presented so far. Interestingly enough, the first term has the
form of a gauge transformation, it closely resembles a Kahler transformation. As to the second
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term, it is easy to see that it corresponds to

(A VGy) = — i(da")Gyy - (C.2.4)
Therefore, the combination

A=4+247G,, (C.2.5)
transforms as a gauge field, both under gauged isometries and under Kéhler transformations, i.e.

04 = 2id[Im(F — o™F,)] . (C.2.6)

This is completely in line with our understanding of supergravity/matter couplings, i.e. gauged
isometries can be reconciled with the structure of Kéhler superspace provided we replace 4 by
A and require that the frame of superspace changes under a gauged isometry as well such that

SEA = — %W(EA)EA Im( — o"F,,) . (C.2.7)

This leads us to the definition of isometric Kdhler superspace, with a modified composite gauge
potential

U = 1Kedgt — IKedd* + /Gy, + 126, + 50,7, €28)

in the U(1) sector, giving rise to the torsion 2-form
I = dE* + EBgpp? + w(EYEAQU , (C.2.9)

invariant under Kéahler transformations and gauged isometries. Gauged isometries appear in the
structure group of superspace via (C.2.7) in close analogy with Kéhler transformations. Covariance
with respect to these transformations is obtained with the help of the modified gauge potential
defined in (C.2.8) and the usual rules of Kéahler superspace. Furthermore, following definitions
(C.1.20) and (C.1.21), the matter superfields are defined to be covariantly chiral, i.e.

P,¢* = (EMOy +idPV)PF =0, (C.2.10)

DP* = (E*™Moy + il V)P =0 . (C.2.11)
Likewise, in the definition of 2 - cf. (C.2.8), one has

Dot = (E MOy + it DV (C2.12)

D** = (E*M3y + i/ V)P (C.2.13)

The superspace geometry we have established here describes supergravity and matter and accounts
consistently for Kahler transformations and for gauged isometries of the Kahler metric (of which
Yang-Mills symmetries are a particular case).
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The field strength superfields X,, X% already discussed in the ungauged case, receive now
additional contributions (hereafter we shall denote them X, and X*), involving the Yang-Mills field
strength, # ), and the Killing potential, G,,. To see this, apply the exterior derivative to 4 to obtain

dA =292 P* G P* + 2FVG,,, . (C.2.14)
Due to
A = %A + 8E“(12G + 6% 9D, O* D P¥) | (C.2.15)

the relation between dA and § = d9 is obvious. As before, the superfields X, and ¥* are identified
in the field strengths §*, and Epa aS

i 1
X, = — Egk,;am@ D + gkk—@ PFF+ WG, (C.2.16)

, 1
X = 2gkk0"m9 &7, + 2gkk9a¢k—Fk + WG, (C.2.17)

In distinction to the ungauged case all derivatives are now fully covariant with respect to gauged
isometries. F* and F* are still defined as
F*= —19°9,¢* F'= —19,9%¢", (C.2.18)

but the covariant derivatives of Z,¢* and Z*¢* appearing in this definition contain now new terms
which take into account the gauged isometries, explicitly

RG] . .
@B@a¢k = EBMaM@atd)k - ¢Ba¢‘@(p¢k + I%g)#@az(ﬁl - Q[B‘@oz(ﬁk + Fkij@B¢l@1¢J 5

0¢!
(C.2.19)
. . ov,, o N
DD = EQMOy THPF — i, DOGF + it P—2- 5 (;)l’ D+ W D PF + T D5 $'D*P .
(C.2.20)

The Yang-Mills superfields appearing in (C.2.16) and (C.2.17) are identified in the field strength
F ie.

Tl =iog W™, FO = ighwy (€221)

and satisfy relations (B.5.12) and (B.5.13). Since the Yang-Mills gauge potentials are now defined in
the framework of Kihler superspace geometry, all the chiral weights and therefore the transforma-
tion laws under Kahler transformations and gauged isometries are determined and should be taken
into account in the definition of covariant derivatives.

The relevant quantity in the construction of the component field action is the Kdhler D-term,
defined as the lowest component of the superfield 2*X,. The geometric construction presented
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so far has the great advantage that full invariance is automatically ensured. The explicit form of the
D-term superfield is

— 19X, = — Q"D F — 30w DD, D F + DD, 579"

+ ngFkFE + %GijkE@“(bk@m d’j@a (Eﬁgd(lgj — iguk I7(r)E&fV§zr)@m‘lsk
— g Vi * W LD — AP W )Gry - (C.2.22)
The discussion of this section shows that gauged isometries allow for a very suggestive description
in the framework of Kéhler superspace geometry. The results presented here in superfield form are
particularly useful to extract component field expressions in a constructive and concise way as
illustrated in Section 4, where we fully develop Lagrangians in component fields.
So far we have mainly dealt with matter superfields, which play the role of coordinates of the

Kéihler manifold, and with their covariant differentials. It will be useful to consider the more
general case of a generic superfield, U*, of transformation law

OV
UK = — )T;sl)Ul . (C.2.23)

For simplicity, we assume U* to be a superfield (0-form) of vanishing chiral weight and scalar with
respect to Lorentz transformations. The exterior covariant derivative is then defined as

. OV
gU* = dU* + 1%")T;5;U’ + % Z¢p™U (C.2.24)
with
9U* = E49 ,U* . (C.2.25)
Note that, as a consequence of the chirality of the matter superfields, the Levi-Civita term is absent
in 2°U*,

The graded commutator of two such covariant derivatives is obtained in taking the covariant
exterior derivative of the 1-form ZU¥, i.e.

OVt oo
270 =70V 4V TtV ) - Ry F 47 (€226

Decomposing the left-hand term according to

9GU* = EAE" DD ,U* + 4T 5,59 U") (C227)
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allows to read off the graded commutator of two covariant derivatives of U* to be

. V,.*
(75, Za)U* = = Tps DU +iF 5 <67<)3U’ + V<,>mr’sz’>

+ ngRmEl_/’Ul(gB G'DaP" — (=)D s D ™) .

(C.2.28)

We have considered U* as a superfield inert under Lorentz and Kihler transformations. The spinor
derivative Z,¢" of a chiral superfield ¢* will transform in the same manner as U* under gauged
isometries but will pick up additional contributions from Lorentz and Kéahler transformations.

C.3. Supergravity transformations

We have constructed a superspace geometry in terms of the basic geometric objects

e E4=dzMEy"  frame of superspace,
o ¢F P chiral matter superfields,
o /" =dz™/f) Yang-Mills potential.

The chiral matter superfields take their values in a Kéahler manifold and we have seen that
superspace geometry and Kahler geometry are intimately related. In order to describe gauged
isometries of the superfield Kahler metric we have introduced the corresponding Yang-Mills

potential. Infinitesimal variations of parameters

e &, superspace diffeomorphisms,
e /A" Lorentz transformations,
e «” Yang-Mills transformations,

change the basic geometric objects such that
E4— E* 4+ 0E*,
P @* + 59",
§Fo ¢ + 00°
IO gD 4 5O

with
SE" = LeEA + EP A — L w(ENE Im(F($) — 27 F, ($)) .

0" = Le¢* — oV (),
09 = L ¢* — oV, () ,
5. = Lé&y(r) —ido® + oc(p)ﬂ(q)c(p)(q)(') .

(C.3.1)
(C.3.2)
(C.3.3)
(C.3.4)

(C.3.5)

(C.3.6)
(C.3.7)
(C.3.8)
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Here, the Lie derivative in superspace is defined as
Lé = lgd + dlé . (C39)

Remarkably enough, Kéhler transformations and gauged isometries appear in a well-defined way
in the structure group of superspace. In the next step we wish to express these transformation laws
as much as possible in terms of covariant objects — torsion, field strength and covariant derivatives
— which were defined earlier as

T4 = GEA = dEA + EPgy + wEAEAY (C.3.10)
DY+ = d* + AV, K () | (C3.11)
GP* = dP* + id "V K P) , (C.3.12)
FO =4t + 2 DS Ve (C3.13)

Straightforward substitution yields

OEA = &4 + 1. T4 + EB(Ag" — 1:¢05") — w(EA)EA[%QI + % Im(F — oc"’Fm)} , (C.3.14)
3 = 1.T¢* — (@ + 1A V)V ) ($) . (C3.15)
0¢F = 1:2¢* — (@ + 1A )WV ) (C.3.16)
5&{(” = lég;(r) + (OC(p) + ilé&i(p))&/(q)C(p)(q)(r) — id((x(r) + llé&i(r)) . (C317)

Supergravity transformations dy; are then defined as certain combinations of superspace dif-
feomorphisms and field-dependent compensating Lorentz and gauged isometry transformations,
namely

At = 105", (C.3.18)
o = — i/ . (C.3.19)
Taking into account the explicit form of 2, - cf. (C.2.8), we obtain

1 _
Swz EA = DEA + 1,34 — — WENENK,1:2¢F — K1z 25
4 4 4

4

— S WENEAL(12G, + 759,975 (€3.20)

dwz ¢* = 1: 2", (C.3.21)
5WZ d;E = légqglg , (C322)

5WZ %(r) = lég;(r)‘ (C323)
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Recall that the last term in the transformation law of E4 is spurious in that it could be absorbed
in covariant redefinitions of the first two terms. The interior product of ¢ with torsion and
Yang-Mills field strength is defined as

lng = Echzch , (C324)
1T = EASBFY), (C.3.25)

For later convenience we consider also generic superfields @ and U* of transformation laws

5® = L.dd — % W(@)D Im(F(p) — aVF,(¢) , (C.3.26)
oV, .k
SU* = L, U* — o"—0 ! (C.3.27)
0
and covariant derivatives
DD =dd + w(P)PU , (C.3.28)
k k : (r)a V(")k 1 k Iy Tm
gU* = dU"* + 1./ Tqﬁ’U + I, 2¢U™. (C.3.29)

Straightforward substitution allows to derive the supergravity transformations

5WZ D = lf@¢ — %W(@)@(K}J{@(bk — K};légd;k)

— S WOOE(12G, + 594 7,4 F) (C.3.30)
5WZ Uk = lé@Uk + Fklml€@¢lUm . (C331)

The supergravity transformations presented so far at the full superfield level will provide the basic
building blocks for the derivation of supersymmetry transformations of the component fields. We
will also use these supergravity transformations in the more explicit form

Owz Exi' = D& + E\PETcp™ — EWENEN'EA(Ki D pd* — KeZpd¥)

— 5 WENEAE(126, + 5907, T, ") (€3.32)
dw ¢ = 19", (€333)
owz F = 17,4 (€334)

5WZ o= éA.@A¢ - %W(Qp)@éA(Kk@Ad)k - KEQAQ{;E)

— S MOB(12G, + 9w, 9" D26 (€3.35)

5WZ Uk = gA@AUk + FklméAgA d)lUm . (C336)
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Observe the presence of the terms
K 1: 9% — K1z 2¢F = ENK D 4" — KD 4P") . (C.3.37)

The corresponding gauge transformations are field-dependent Kédhler transformations and isomet-
ries, there is no free parameter which could compensate these terms unlike the case of Lorentz and
Yang-Mills transformations.

C.4. The Yang-Mills case

Let us consider the situation where the gauged isometries reduce to the standard Yang-Mills
transformations. This corresponds to the case where the isometries act linearly on the fields
such that

Vi = Vind* = +i(T,¢)*, (C.4.1)
Vi = Vind* = —i(@T)", (C4.2)

where the T, are in a suitable matrix representation of the generators of the gauge group
considered, with commutation relations

[Ty, Tyl = iceyn” Ty » (C4.3)

implied by those of the V,,’s. Using the notation &/ = .&/*'T,, the covariant derivatives of the
matter superfields take the form

P =(dp — AP, D = (dd + dA) (C44)

Next, we can determine the Killing potential using (C.1.8) and (C.1.9). Since the Kéhler potential is
invariant under gauge transformations, (C.1.9) tells us

Ki(Tiy ) — Ke(@T)* = 0 = Fi)(§) + Firy () , (C4.5)

implying that F,,(¢) and F,,(¢) are just constants, which can safely be set to zero. The real Killing
potential G, then becomes

_ 1 -
Gy = +2(Kkvm = KeVi) = = SLKu(Tiy ) + Ke(@ T T (C4.6)

Using this information, together with the vanishing of the Killing pre-potentials, in the combina-
tion 4 = 4 + 2/"G,, we obtain

A + 2Jf(r)G(r) = Kk(dd)k + LQ/(V) V(r)k) - KE(d(EE + L}%(r) V(,.)E)

= K 2¢* — Ky Z¢* . (C.4.7)
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As a consequence, we recover the Kahler connection A = U of Section 3.4.2, given as

1 1 i . _
A=K~ KeZ§ + %Ea(lzca + 69, D D ) (C.4.8)

with Yang-Mills covariant derivatives everywhere.
Finally, the supergravity transformations are directly read off from the previous discussions,
Egs. (C.3.14)-(C.3.17) and (C.3.32)—~(C.3.36).

Appendix D. Superfield equations of motion

Given the geometric formulation of supersymmetric theories it is desirable to have a superfield
action principle, in the sense that the variation of suitable superspace densities gives rise to
superfield equations of motion.

On the other hand, the geometric descriptions of supersymmetric theories are characterized
by covariant constraints (torsion constraints for supergravity, field strength constraints for
Yang-Mills, 2- and 3-form gauge theories and chirality constraints for matter superfields). As
a consequence, the basic building blocks initially used in the geometric construction (frame of
superspace, Lorentz, Yang—Mills, 2- and 3-form gauge potentials, and chiral superfields) are no
longer the fundamental objects — they are given in terms of unconstrained pre-potentials which
arise from the explicit solution of the superspace constraint equations.

A possible way to formulate a superfield action principle is therefore to write superfield densities
in terms of the unconstrained pre-potentials and to vary them accordingly [80]. This approach is
particularly useful in the context of supergraph perturbation theory.

Another possibility [158], more closely related to superspace geometry, and which will be
pursued here, is to solve directly the variational version of the constraint equations. In this way,
one determines directly the variations of the basic geometric objects in terms of unconstrained
entities. In this (equivalent) formulation, superspace densities are written in the usual way and the
relation to component field formalism is quite transparent.

In this appendix we derive, as an example, the superfield equations of motion for the complete
supergravity/matter/Yang—Mills system in the presence of gauged isometries. In the first two
subsections, we work in generic U(1) superspace, defining and solving the variational constraint
equations in the first subsection and discussing superspace densities and integration by parts
in the second one. The variational equations pertaining to isometric superspace are treated in
Section D.4. In Section D.5 we derive the superfield equations of motion for the complete
supergravity/matter/Yang—Mills system.

D.1. Integration by parts in U(1) superspace

The superfield action principle for supergravity proposed by Wess and Zumino [158,163] is
a generalization of usual gravity. In general relativity, especially when coupled to spinor fields,
densities are constructed by means of the determinant of the vierbein, or frame. The corresponding
basic superspace object is E, the superdeterminant of the frame E, in superspace. In general,
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a supersymmetric action will be given as the product of E with some suitable covariant superfield,
integrated over superspace, i.e. over space-time and the anticommuting spinor coordinates. In the
derivation of superfield equations of motion, integration by parts in superspace will be used
systematically. This means that expressions like

J E 2 ,% J E 9%, f EZ 1" (D.1.1)
* * *

with v* some generic, covariant superfield of chiral weight w(v?), should be related to pure
superspace surface terms. The asterisk indicates that integration is understood over full superspace,
i.e. anticommuting coordinates and space-time.

In order to explain the mechanism of integration by parts in some more detail let us recall first
some definitions. The exterior covariant derivative Zv* = dzM%,,v* being given as

v = dv* + v®pp? + w4, (D.1.2)
we identify the 1-form coefficients

Dyv? = 0y vt + (= V"B st + W) Ay o? (D.1.3)
Another crucial ingredient is the torsion 2-form T4 = $dzMdzNTy\* defined as

T4 = 9E* = dE* + EBpp* + w(EY)E*A . (D.1.4)
Its components

Tau™ = DNEy® — (= )" Dy Ex* (D.1.5)
are given in terms of the covariant derivatives

DNEy = OnEpt 4+ (=)™ Ey Bpypd + WEYANE,* . (D.1.6)
It is a matter of straightforward calculation to establish the superspace identity [163]

Oum(EvE M) — )" = E[0yv" + v"OnEn” — (=)™ 0uEx)IELM(—)"
Covariantizing the derivatives, this identity takes the form

Om(EVEM( — )" = EZ v —)* + Ev®T A —)* + EWE?) — wv))v?4, . (D.1.7)

This is the central point in the discussion of integration by parts in superspace. Observe that so far
we did not make any use of torsion constraints. Taking into account the explicit form of the torsion
coefficients in U(1) superspace, one shows that the only non-vanishing contributions to the torsion
term are

Ty = +iGy, Ty = —iG,, (D.L.8)
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which add to zero in the supertrace. The torsion term is therefore absent. If, in addition, we require

w(v?) = wEY) (D.1.9)
we obtain
Op(EVE MY —)" = EZ 0% — ). (D.1.10)

This establishes the relation alluded to above, identifying expressions like (D.1.1) as pure super-
space surface terms. This relation will be frequently used in the derivation of superfield equations of
motion.

D.2. Variational equations in U(1) superspace

We first introduce as basic variables the variations of the vielbein, Lorentz and U(1) connections
modulo the effects of superspace difftomorphisms and structure group transformations. Sub-
sequently, we present a concise and systematic analysis of the consequences of the constraints of
U(1) superspace for these variables.

® Basic definitions: Consider the infinitesimal variations

SEA — HA | (D.2.1)
Syt = Qpt (D.2.2)
SA = (D.2.3)

of the frame, Lorentz and U(1) gauge potential. These superspace 1-forms are parametrized in such
a way that

HA = EBHBA, HBA = EBMéEMA 5 (D24)
QBA = ECQCBAa QCBA = ECM5¢MBA P (D-2-5)
w = EA(,UA, Wy = EAMéAM . (D26)

As a consequence of these definitions the variations of torsion, curvature and U(1) field strength
become

0T = 9H* + E2Qz* + WEYE w , (D.2.7)
ORp = Q" , (D.2.8)
OF = dw . (D.2.9)

Here, & denotes the covariant exterior derivative in U(1) superspace. It is straightforward to work
out the explicit expressions for the coefficients of these 2-forms in superspace. The torsion
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variational equations
5TCBA = @CHBA - ( - )Cb@BHCA + TCBFHFA - HCFTFBA + ( - )CbHBFTFCA
+ Qcp — (—)"Qpc* + WE 05w — (—)P0¢wp) (D.2.10)

are of particular importance. The vielbein and gauge potential variations must leave the torsion
constraints invariant. This determines the unconstrained variational superfields. The correspond-
ing variations of curvature and U(1) field strength are

5RDCBA = ‘@DQCBA - ( - )dc‘@CQDBA —I_ TDCFQFBA - HDFRFCBA + ( - )dCHCFRFDBA )
(D.2.11)

0Fpc = Dpoc — (—)Dcwp + Tpctor — Hy' Fre + (— )Y“Hc Frp (D.2.12)

Observe that the variational superfields are determined modulo diffeomorphisms and structure
group transformations, i.e. upto redefinitions of the form

0H* = P :E* + E®yp* + wEYE"p , (D.2.13)

0 = — Dy + 1:Rp"* (D.2.14)

ow = —dp +1:F . (D.2.15)
As a consequence, the variational equations change as

00T = L. T* + TEy* + w(THTp , (D.2.16)

00Rp* = Z:Rp* + RpSye® — 73R, (D.2.17)

00F = L:F . (D.2.18)
The covariant Lie derivative appearing here is given as

Le=1:9 + D1e . (D.2.19)
Using 1:E* = &4, the variation of Hp” reads

OHp* = ET ep + D&t + y* + WENS5p . (D.2.20)
Similarly,

0Qcpt = — Dy + EPRpep™ (D.2.21)

dwy = —Dup + E8Fpy, . (D.2.22)

Clearly, the variational equations of the torsion constraints are invariant under these redefinitions.

® Torsion constraints I: In a first step we consider the variational equations of the torsions
T,"=0, Tt =0, (D.2.23)
T,P = —2i(g%),”, (D.2.24)
T,y =0, T"=0. (D.2.25)
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From (D.2.10) we read off the explicit equations

OTy" =Y (Z,Hf" — H,, Ty , (D.2.26)
vB

0T s =D, (P, Hpsy — H, ' Tyys) . (D.2.27)
vB

The pure gauge solution of (D.2.26) and (D.2.27) is

Hp" = 95 + 5, T, (D.2.28)

Hpy = 935, + 5/ T yp, . (D.2.29)
Likewise, the complex conjugate equations are solved by

HP* = gz 4 BoT fo (D.2.30)
H* = 9Pz + BIT P (D.2.31)

Finally, making use of the invariance of the variational equations under redefinitions of the form
(D.2.20) we arrive at

Hf=9,v°  HY= —gbye, (D.2.32)

Hpy = — V Ty =iR™" yy,  HP*=9°TE*= — iRy (D.2.33)
It remains to discuss the variation of (D.2.24),

ST, b*=9,0% + 9’0+ T ,//H,* — H,*T,/* — H’, T, . (D.2.34)
We eliminate the traceless parts of Hy? H’, by suitably choosing 16 7%, in (D.2.20) to arrive at

Hy* =305"H , (D.2.35)

H, =16/, H . (D.2.36)
As a consequence, (D.2.34) becomes

T,"H,*—YH+ AT, —[2,,9°1* =0, (D.2.37)

showing that H," is completely determined as a function of the unconstrained superfields H + H
and 77 In spinor notation this equation reads

Hyp = = epatpalH + ) =3[90, D41V s (D.2.38)
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The supertrace of Hgz* is now given as
HA (=) = H + A +3[9°.9°17, . (D.239)

Observe that we did not make use of the redefinitions which correspond to the chiral U(1)
in (D.2.20).

e Torsion constraints 11: The variations of the torsions
Tp'=0, T,%,=0, T,*=0 (D.2.40)

give rise to the equations

D,Hy" — DyH," + Q° + T"Hy" — H,°T " + Hyy T?,* =0, (D.2.41)
2,0, + 9’H,, + T,H;y, — H,' T, — H”T,, + Q,%, — %0, =0, (D.2.42)
Z (ngﬁa — vaTf/}a + Qyﬂa + 5%6{)y) = O . (D243)
vB

These relations serve to express the variations £, “, Hy; and w, in terms of the so far unconstrained
superfields H, H and 7 In this context it is convenient to define

w' = Hy' — 2,77, (D.2.44)
Yo = Hyy — V" Tepg (D.2.45)
apt=Hp* + 1 Tp”, (D.2.46)
oy =H + TP, (D.2.47)
I, = Q" + 7 'Rya” (D.2.48)
3, =, + 7, (D.2.49)

and to write (D.2.41)—~(D.2.43) in the form
Hyba + gyXba + Xb('p T? ba _ 2Tyb¢‘@¢n%a = O 5 (D250)
mt — 8%, + T," + D% — A" )T, =0, (D.2.51)

H”}a + Hﬁya =+ 5ﬁa2y + 6ya2ﬁ + @},Xﬂa + @ﬂ%,a = 0 (D252)
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The first of these equations allows to determine both IT,,“ and . This is most easily seen in spinor
notation, where (D.2.50) takes the form

28/;(117”1“ — 28,”17@c — Aie,tpps + Dytppas + ¥R Dy, =0 (D.2.53)

Taking into account

Appar = — epatpu(H + H) = 1Dy Dyt 0 — 1GopV gy +iGpa g (D.2.54)
we obtain

My = — %@%‘4 (DD s — GV ) 5 (D.2.55)

e = %@% Gy — ﬁZ eyﬁ%e(H + H) + %Q@WQ,@,) , (D.2.56)
as well as

Bixpps = — 46 Zp(H + H) + 293 9°D 1 oy — 8IRY Dy | (D.2.57)

This exhausts the information contained in (D.2.50). Substituting these results reduces (D.2.51)
simply to

L .
= — 9y<H + A+ %9@%@ - %wa,) (D.2.58)

and (D.2.52) is then identically satisfied.
e Torsion constraints 11I: As to the complex conjugate torsions,
T'*=0, T'#=0, T" =0, (D.2.59)

the variational equations read

9'Hy" — ZyH™ + Q"0 + T"*H, + H,T, " =0, (D.2.60)
@?Hﬁa + @ﬂH‘/a + Tﬂ?foa — Hi)foﬂa — H/;fo ba + Q?ﬁa =+ 5;COY = 0 , (D261)
S (2'H, — HYT,b, + @, — 6%,0") =0 . (D.2.62)
i

In this sector it is convenient to define
%ba == Hba + @bfV‘a 5 (D263)

Hy'=Hy"+ 7Ty, (D.2.64)
%ﬂa == Hﬂa - VCTI;C(Z 5 (D265)
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A =HP, — VTP, (D.2.66)
ﬁ?ba = vaa - y'dR?dba 5 (D267)
S = ol — yFY, | (D.2.68)

With these notations and after some manipulations involving superspace Bianchi identities,
(D.2.60)~(D.2.62) can be written as

my+ "%, + #,°T,"" +2T",°2,7* =0, (D.2.69)
I+ 6557 + Ty A" + DA™ + 227 )T =0, (D.2.70)
mr, + 1", — 68,57 — 6,50 + AP, + 9°H7, =0 (D.2.71)

As before we employ spinor notation. Eq. (D.2.69) becomes

28ﬂ.dﬁ“}ﬂuﬂ! — 28ﬂaﬁ}7ﬂ;& + 418y[}<‘y_fﬁﬂrx + gﬂ/f}?ﬂﬁmx + 418yﬂR@ﬂn/aa =0 (D272)

'}?ﬂﬁad = — gﬂcxgﬂ&(H + I'_I) =+ lgﬁ@ﬁVa“ + iGaﬁn/ﬁd — lGﬂan/o,ﬁ . (D273)
From (D.2.72) we obtain

_ i

My, = 4@%2 (D*DyV o + G p) (D.2.74)

— i 1 _ i

My = — %@y; G4V s + ;syﬁgz&(z(H + H) — %@wgzw(p(b) , (D.2.75)
as well as

BiA s = b6, Dy(H + H) + 2093 D°D,V 3, + 8IRDy Y o5 . (D.2.76)

Eq. (D.2.70) then yields

IV T i
5= @V<H +5H - %Q@WW - %wa,) (D.2.77)

and (D.2.71) is identically satisfied.
This concludes our discussion of torsion constraints at dimension = 0 and % in U(1) superspace.
We have found that the vielbein and connection variations are described in terms of the independent
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unconstrained superfields H, H and 7" The torsion coefficients at dimension = 1 can then be used
to determine the variations of the covariant superfields R, R and G,. For our present purpose it is

sufficient to work out R and dR' (which are most conveniently obtained in using the correspond-
ing curvature equations)

R= —(V"%, + H—1V"G,)R — é@d@&<H +H— %@@WW) , (D.2.78)

SRY = + (49, — H + i7"°G,)R" — é@“@a<H v H+ %gfp@WW) . (D.2.79)

e Chiral U(1) gauge sector: The solutions of the constraints
Fy, =0, FF=0, (D.2.80)

in the (3,3%)-basis are parametrized in terms of a pre-potential K (which, later on will be
specialized to the Kiahler potential) such that

A, = +iE,MouK , (D.2.81)

A* = — JE™oyK . (D.2.82)
Using 04 = w, the variation of these equations gives

w, — H%Ag — 193K) — 12,0K =0, (D.2.83)

o — H¥(Ag + §95K) — ;90K =0 . (D.2.84)

Taking into account our solution for H ,® leads to

X, = + 2,0K + 74, — tv*9,K) , (D.2.85)
3= — 9*GOK + VP Ay + 17D K) . (D.2.86)
Finally, comparing with (D.2.58) and (D.2.77), we arrive at the chirality conditions

1. 1 i i 1
@a<H +5H + 30K + %@@WM + "V“(Aa - %G) - szzm) =0, (D.2.87)

[ 11 i i 1
@“(H +3H + 70K — %C@@WW + W(Aa - %G) + Z"/“@,K) =0. (D.2.88)
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These chirality constraints in turn are solved with the help of chiral projection operators acting on
unconstrained superfields U, U and we obtain

_ 1 i 4 i
HtH= 30K — (7" =37 <Aa —2Ga>
— ¥2°9, — 8RNU — ¥2,9* — 8R)U, (D.2.89)
H—H =29, + ¥°%,K — A9"%, — 8RNU + 2Z,7* — 8R)U . (D.2.90)

In conclusion, the combinations H — H and H + H + 30K of variational superfields are given in
terms of unconstrained superfields U, U and 7.

e Yang-Mills sector: We parametrize the variation of the Yang-Mills gauge potential in U(1)
superspace such that

AW =" = EAL @ (D.2.91)

The Yang-Mills field strength, # = IEAEBZ 5, defined as
FO = J4 + %A(p)A(q)f(p)(q)(r) , (D.2.92)

changes under these variations as

OF W =dI'"™ +iIr'PA9f " =T . (D.2.93)
The variational equations of its coefficients are

0F pu" = D' 4 — (—)*D 4T + T, T — Hg" F ) + (= )"H F 7 ;5 . (D.2.94)

. vitati w ) .. . variati u .
As in the gravitational case, we are only interested in infinitesimal variations modulo ordinar
gauge variations £, given as

O™ =de + i@ ADf )0 = DV, (D.2.95)

36T = ie® T Of ()" . (D.2.96)
The solution of the variational equations of the constraints

0F 3, =0, 6FP =0 (D.2.97)
is expressed in terms of an unconstrained superfield X such that

r,=+9,3x9+vyv77,0, (D.2.98)

[ = — g#x® — I g 40 (D.2.99)
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The constraint
0F;* =0 (D.2.100)
serves to express the vector component I',"” in terms of X as well. It is convenient to define
A0 =r," — vtz O 5 50 (D.2.101)
A0 =r," +v*7, 0+ 5,50 (D.2.102)
Accordingly, the solution of (D.2.100) can be written in two ways:
Ay® =12, + 12,V DF,, ", (D.2.103)
Ay =12,T," — (2,7 F " . (D.2.104)

The variations of the covariant Yang-Mills superfields #,, #*" are obtained from 0.%%,",
074" to be

W, = —9G, W, " — (H + SH)YW," +iZ9%,0f "
N %(g(pga%(p{p)%(p(}‘) _ %H/Q(PGWWP(H - 3%2,9° -8RI,V , (D.2.105)
W, = + 9D, W, " — (H + SH)W;, " — 29, Of

— %(@@M@)WW) — %%;,,a GorW, " + Y29, — 8RN, . (D.2.106)

D.3. Superspace densities

As a first application of the previous discussion, we consider the superfield action

J E. (D.3.1)

Recalling that the asterisk denotes integration over space-time and anticommuting coordinates,
this superspace integral might be called the volume of superspace. It serves to generalize the D-term
construction of invariant actions to local supersymmetry. Taking into account (D.2.39), the
variation of the superdeterminant

SE = EH j4( — )° (D.3.2)

gives rise to

5f E= J EH + H) (D.3.3)
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with superspace surface terms neglected after integration by parts. Observe that in generic U(1)
superspace, the superfield H + H, as given in (D.2.89), contains JK, the variation of the U(1)
pre-potential as an independent unconstrained variable. As a consequence, the superfield equations
of motion would imply the volume of superspace to vanish. Therefore, the action (D.3.1) is not very
useful in U(1) superspace. However, when specified to pure Wess—-Zumino superspace (resp. Kahler
superspace), 0K will be subject to constraints and the same action will provide the pure supergrav-
ity (resp. supergravity/matter) action.

Another useful concept in constructing superfield actions is the chiral density. It serves to
generalize the F-term construction of invariant actions to the case of local supersymmetry. As
a starting point consider the superspace action

E
LE 7 (D.3.4)

with % some generic chiral superfield of weight w(%) =2 to ensure invariance under U(1)
transformations. Using the relation

S =(2,9* — 8R)Z(¥) , (D.3.5)

expressing the chiral superfield in terms of the unconstrained superfield X(%), together with
integration by parts yields

f gy = — 8f EX(Y). (D.3.6)

This shows that integrating the chiral superfield ¥ using the chiral density is the same as
integrating its pre-potential X(.%) using the complete volume density. Note that adding a linear
superfield to 2(%) does not change . This is coherent with relation (D.3.6), because the superspace
integral of a linear superfield vanishes (this, in turn, is due to the fact that a linear superfield can be
expressed in terms of spinor derivatives of unconstrained pre-potentials).

In spite of the equivalence established in (D.3.6), it is very often quite useful to work with the
chiral density expression (DD.3.4), and its complex conjugate

E _
LF 7 (D.3.7)

with chiral weight w(%) = — 2 assigned to .#. Taking into account (D.2.39), as well as (D.2.78) and
(D.2.79) we find

E E _
5[ —y = f Z(6F + V2, F) + (H + 2H — iv°G,)Y) (D.3.8)
E _ E . o , _
5[ w7 = J 7 (0S =12, 9) + (H + 2H —11G,)T) (D.3.9)
k £

with H and H determined in (D.2.89) and (D.2.90).
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D.4. Variational equations in Kahler superspace

So far, in this appendix, we worked in the framework of U(1) superspace. Supergravity/matter
coupling is obtained in suitably specializing the U(1) sector. We will present here the general case,
where chiral superfields parametrize a Kahler manifold with gauged isometries. The relevant
geometric framework is isometric Kahler superspace as defined in Appendix C.2.

After a discussion of the variational equations for chiral superfields and a summary of the
properties of covariant isometric superspace derivatives, we will solve the variational equations
pertaining to isometric superspace, thus identifying the fundamental variables relevant for the
derivation of superfield equations of motions for the complete supergravity/matter/Yang—Mills
system.

e Chirality conditions: The variational equations corresponding to the chirality conditions can be
treated along the same lines as the constraint equations discussed earlier. We will first describe in
some detail the procedure for the superfield ¢* and give the results for ¢* afterwards.

In (C.1.20), the covariant derivative 2¢* = E1% 4¢* has been defined as
G¢* =(d + idVV,,)) Pk . (D.4.1)
Its variation in terms of 6¢* and 5./ = I'™ is given as

STP* = DSG* + irOV .} () (D.4.2)

with the definition

DSPF = ddd* + i ,Qf(”ag q‘;} ot . (D.4.3)
Using
0D P* = EX0D 4" + EAH 2D 5" , (D.4.4)

the variational equation for & ,¢* becomes
049" = D464 + TPV M D) — HL Dyt . (D.4.5)
We are now in a position to study the consequences of the chirality condition 2%p* = 0, i.e. to
determine the variations d¢* of chirally constrained matter superfields in terms of unconstrained
variational superfields. This is achieved in taking the & component of the previous equation
0D P* =0 = 2°5¢* + iV .\ () — H*®* D d* (D.4.6)
and making use of (D.2.99), i.e

I"fiz(r) — 9&2(1‘) _ bebd(r) , (D47)
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in the second term. Taking into account (D.2.32) and (D.2.33) allows to write the third term in the
form

— H®Gpd* = — 1Dy %) + V[ D%, Dy 19" + 7T, P . (D.4.8)
Finally, substituting (C.1.29) for the commutator, gives rise to the chirality condition

D=0 (D.4.9)
with

0t =0¢* + 1 Gy — 1OV k. (D.4.10)

The corresponding expressions for 5@ are obtained in complete analogy. There, the chirality
condition

D=0 (D.4.11)
is obtained for the combination

i =0@F — VD, PF +iZOV F. (D.4.12)
The chirality conditions are solved in terms of unconstrained superfields @* and ¢, i.e.

i* =(2"9, — 8R)p", (D.4.13)

n* = (2,2* — 8R)p" . (D.4.14)

Covariant superspace derivatives and gauged isometries: Let U* be some generic p-form in
superspace, undergoing non-linear transformations

OV ik
Uk = — a(’)T;l)U’ . (D.4.15)

For simplicity, we suppose that U* is inert under Lorentz and Kihler transformations. The
exterior covariant derivative of this p-form is

NG/
Uk = dUF + (— )le)aT;; U + (= yT*,2¢™U! (D.4.16)

with I'*,, defined as in (2.4.3). In verifying the covariant transformation law of (D.4.16) it is
convenient to use identities such as

_ AV )" Gl
Vey + Ve)ohk + 52 G + —d-gir = 0, (D.4.17)

_ _ 0 . _
Vi + Vin)g" + g ——==9" =0 (D.4.18)
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and
_ oV ' AV F oV * 0%V,
Vi + VoVl = —2 %, —— pt, = O pt ©_ D.4.19
( r) + (r)) mn 6q5" mn a¢m kn a¢n mk a¢ma¢n ( )
In the case p = 0, U* is a superfield and its covariant derivative is given as
9U* = E19 ,U* . (D.4.20)

The graded commutator of two such covariant derivatives is obtained by taking the covariant
exterior derivative of (D.4.20), using (D.4.16) for p = 1. The result is

o3V o
99U* = 197(”<T;5’) U+ V(r)kalmUl> — ¢“Runk 2 ¢*2¢™U" . (D.4.21)
Decomposing
DGU* = EAEX D3P 4 U* + 3T, 9 UY) (D.4.22)
we find

i (V)
(P, Z)U* = — Ty,C 2cU* +i7), <—a (;5} U+ V)" T, U1>

+ ¢" R UNDpd* D 4™ — (— )" D 4P D ™) . (D.4.23)

The spinor derivative 2, ¢* of a chiral superfield ¢* transforms in the same manner as U* under
gauged isometries but picks up additional contributions from Lorentz and Kéahler transforma-
tions. Taking into account these modifications, we have

Fr= —19°9,¢* (D.4.24)
and
9,F* = —2R'9,¢* . (D.4.25)

® Variations in isometric Kdahler superspace: As we have shown in Appendix C.2, gauged isometries
can be included in the geometric description in replacing the generic U(1) connection by the
composite connection

i

N =14+ -E2G, + 679D, 0" D5 ¢") (D.4.26)

oo

with
A = Ky d¢* — Kedd* + 2.4G,,, . (D.4.27)

The resulting geometric structure in superspace is called isometric Kihler superspace. As
a consequence of the particular form of the composite connection, the variational equations in
the U(1) sector will furnish additional information.
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Recall that the field strength § = d? satisfies the same constraints as that of the generic U(1)
connection. For this reason the generic U(1) pre-potential K will be replaced by a field-
dependent quantity. In standard Kéhler superspace, this is just the superfield Kahler potential.
In the presence of gauged isometries, the dependence on the matter sector and the Yang-Mills
sector involved in the gauging of isometries will be quite intricate.

Fortunately enough, in the investigation of the variational equations, the knowledge of the
explicit form of the composite pre-potential can be circumvented in considering directly the
variations in terms of 2.

The relevant object in this analysis is the variation of A, which may be written as

04 = d(K 09" — Kdd") + 2 gix 2 9*6P* — 2 gue 2 *5¢* + 2 I'"G,,, . (D.4.28)
We parametrize

04 = E*B, (D.4.29)
and consider the spinor coefficient

B, = E, M0y (K. 00" — Kidd") + 2 g1 2, p*69* + 2 TGy, . (D.4.30)
Taking into account the explicit expression for I'{”? - cf. (D.2.98), we obtain

B, = EM0y (K 0% — Kedd* + 257G,

+ 2062, " + 29 NT Gy + 9k Do §* DY) . (D.4.31)

Remember that our aim is to determine oA =w, cf. (D.2.3), with the definition
X, =, — V", cf. (D.2.49). To this end we have to add the variation of the second term in
(D.4.26) to arrive at

Z, =1 EMoy <Kk5q>k — Ked @ + 220Gy, + 614Gy + 515 91 2,47 $E>

+ L 9 D M . (D.4.32)

An explicit calculation shows that the last term in this equation can be written as a total spinor
derivative as well, namely

3 9k .M = E, M0 (20" g F* — 915 2°0*2,5%) . (D.4.33)

This leads then to

z, = iE“MaM<Kk5¢k — Ked@* + 220Gy + 614Gy + 515 g 2,* 0, G

+ 8@* g F* — gkk@‘”qbk@q,(?)") . (D.4.34)
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This relation summarizes the consequences of the variational equations in the U(1) sector which
arise from the fact that 2l is a composite connection, dependent on the Kéhler and Yang-Mills
sector. On the other hand, in the analysis of the consequences of the torsion constraints, — cf.
(D.2.58), the superfield X, had been given in terms of the, up to this point, unconstrained
superfields H and H, i.e.

. | .
5= — EaMaM<H +5H + % DGy — % "/“Ga> . (D.4.35)

Comparing the expressions in (D.4.35) and (D.4.34) leads to a chirality condition which is solved
in terms of an unconstrained variational superfield & such that

_ i ) 1 .
H+iH= — % DODV gy — 5 (KidP* — KedfF +220G,)

- iVbi - % Vba'%a Ik @ad)k@&q;lz

— 20" g F* + 9 2°¢* 2, 0" + (2°2,, — 8RHNZ . (D.4.36)

Performing the corresponding analysis for the complex conjugate sector leads to

~ 1. 1 .
H + %H = + Z 9(09({%/@0@7 + Z(Kké(bk - Kgé(l’)k - ZZ(V)G(V))

- i"/bi - % P 5? gkl?@fxd)k@dq?z

+ 20" g1 F* — 91620, *00* + (2,9° — SR)ZT . (D.4.37)

This completes our discussion of the variational equations of superspace constraints. The basic
variational superfields are ¥, and 2, ' for supergravity, ¢* and ¢* for chiral matter superfields
and X for the Yang-Mills sector. Recall that the variations 5¢*, 5@ are expressed in terms of
v, @* and @F according to (D.4.10) and (D.4.12)~(D.4.14). Observe that in the standard
Yang-Mills case, i.e. no gauged isometries, the results (D.4.36) and (D.4.37) should reproduce
those derived from (D.2.89) and (D.2.90) with 6K evaluated directly as a function of chiral
superfields.

D.5. Variation of the action functionals

We are now in a position to derive the superspace equations of motion for the complete
supergravity/matter/Yang-Mills system. The full action

o = JZ{supergravityeratter + MYang—Mills + sz{superpotential (DSI)
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consists of three separately supersymmetric and Kéahler invariant pieces. It remains to perform the
superfield variations and write down the equations of motion.

® Variation of . gypergravity + maer: 1h€ Kinetic action for the supergravity + matter system is
given as

Ja{supergravity+matler = - 3J' E . (D52)

*

This is the form of the prototype action (D.3.1) discussed earlier. In its variation, cf. (D.3.3),
0. supergravity + matter = — SL EH + H), (D.5.3)
H + H is given as the sum of (D.4.36) and (D.4.37), i.e.
3H + H) = 4 (9%, 91y — Gy — 209Gy~ 50T, T

- 2¢EngFk + ng@¢¢k9¢¢E + 2§0kgk]§Fk— — gklgg(bq;ﬁ@(b@k
+(2°%, — SRNZ +(2,2° — SR)Z" . (D.5.4)

Substituting, integrating by parts and neglecting superspace surface terms gives rise to

. . 1_, —
5t52{supergravity+matter = 41J\ E n/b<Gb + § 6%1 Yk 90( ¢k9&¢k> + 16J E Q’RT
* *

—|—16J EQ’”TR+4J
*

*

E¢* g FF + 2J EX"G,, . (D.5.5)

*

EFkng(PE - 4j

*

o Variation of o/ yang-mins: The Yang—Mills action of (3.4.54) is obtained from the prototype action
(D.3.4) in identifying . with

S Yang-Mills =4 (r)(s)(¢)W(r)“W§zs) (D.5.6)
and accordingly for #. The function f(¢) of the chiral matter superfields is required to satisfy

Vir fino (@) = f oy’ fays (@) +f oy finar () » (D.5.7)

assuring that %y,n. mins 18 indeed a chiral superfield of weight W(#y,ne-mins) = 2. Then, taking
into account the variations of ¥ and ¢* as determined in this appendix, working out
0 yane-mills» Substituting in the general variation given in (D.3.8) and neglecting superspace
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surface terms yields, as an intermediate result

E 1 E af(")(s) r)o S 1 r)o S
5J; E rngang—Mills = g \[* R ;7 6(]5" W() W() 2 y Ef(r)(s)W() ng) . (D58)

Using, furthermore, the explicit form of n* and I'Y” gives rise to

E 1 r o S af" (s) S)a
5J‘* E yYang—Mills = - E J'* EZ( )<ﬁr)(s)9 Wgz) + a(f;k @a (ﬁkW( )
1 (r)a b (s)i k af(r)(s) (r)a (s)
—5 | EVa WG W fo (@) - E 2 WY (D59)
*
Observe that in the variation of the full Yang-Mills action
E
t/Q{Yang—Mills = ReJ' ﬁ yYang—Mills 5 (DSlO)
%

we have to take into account the complex conjugate term as well.

® Variation of o quperpotentiai: 1he action for the superpotential - cf. (3.4.55), is a special case of
prototype action as well, in this case we identify % with

<ysupf:rpotenllal -2 eK(¢ 92 W(d)) (DSl 1)
In the presence of gauged isometries the condition
VoW + FnyW =0 (D.5.12)

ensures that % gy perpotentiar 1 Indeed a chiral superfield of weight W(.%syperpotential) = 2. An explicit
calculation shows that the variation of the superpotential term is given as

1 E
5<§J 2 eK/2W> = — 8J EZtek2y — 4J E @*eX2(W, + K, W) . (D.5.13)
k k *

For the complete superpotential action

E
Ja{superpotential = ReJ\ ﬁ ysuperpotential ’ (D514)
*

we have to take into account the complex conjugate term as well.

® The superfield equations of motion: In order to find the superfield equations of motion of the
complete action

M = Ja{supergravitermatter + %Yang—Mills + JZ‘{superpotemial H (DSlS)
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we simply identify the factors of the various variational superfields. From the coefficient of
Z" we obtain

R—3ekPw =0. (D.5.16)
The superfield equation corresponding to ¥® reads
Gy + $ 05922 D" — 8 ([ + Ny W OWP =0 (D.5.17)

Matter and Yang—Mills variations, respectively, give rise to the equations of motion

_ 0
49, F* + é‘g,j’ WOy S L 4 KW, + K, W) =0 (D.5.18)
and
1 oy LSS o ko en
Eﬁr)(s)@ Wa 2 a(bk @ ¢ W G(r) + h.C. == 0 . (D519)

Appendix E. Linear multiplet component field formalism

The discussion of the linear superfield formalism in Section 5 was mainly in terms of superfields.
As component field expressions are notoriously heavy in notations and size we have deferred their
presentation to the present appendix. We display here the complete component field action for the
particular kinetic potential K = K (¢, §) + alog L of (5.5.15) and discuss shortly the effective
anomaly cancellation mechanism in terms of component fields. This appendix is designed as
a complement to Section 5.

E.1. List of component fields

Component fields have been defined in various places in the main text. For the sake of clarity we
give here a complete list of the component fields which will appear in the Lagrangian below:

e In the supergravity sector we have
emaa ’»bm“, ’ﬁmo’ca M, M, ba s

the vierbein and the Rarita-Schwinger fields as dynamical variables and a complex scalar and
a real vector as auxiliary fields.
e The matter sector is described in terms of

Aks lea Xfw }_/E Fk: F_E s

a set of complex scalars and of Majorana spinors as physical fields, together with another set of
complex scalars as auxiliary fields, indices k and k referring to the Kihler variety.
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e The Yang—Mills sector contains

Ay /1(19 )“a'za D b

the gauge potential, the gaugino Majorana spinor and a real scalar auxiliary field, all Lie algebra
valued with matricial generators T, in a suitable representation.
e The linear multiplet consists of

bmn7 L’ A(X’ /Td b

an antisymmetric tensor gauge field, a real scalar and a Majorana spinor; it does not contain
auxiliary fields. We should stress that in the actual component field Lagrangian given below the
Majorana spinor always appears in the combination ¢, = L™ !4, and ¢* = L™ 1A%

When derived from superspace, the component field Lagrangian contains a number of compact
building blocks, which arise in a natural manner and gather complicated component field
expressions in a concise way. The same structures appear in the derivation of supergravity
transformations. Examples of this mechanism are the spin connection, as defined in (4.1.15) and
(4.1.9), supercovariant field strength or curvature tensors like the curvature scalar in (4.1.35), the
projection R,,**| in (4.1.37), or the field strength T % T, in (4.1.31) and (4.1.32). Other important
building blocks which arise naturally are the supercovariant component field derivatives and the
composite Kahler connection. This has already been described in Section 4, for the general
supergravity/matter/Yang-Mills system, but is even more dramatic in the presence of linear
multiplets. For the sake of illustration we will discuss two examples of supercovariant component
field derivatives and the construction of the explicit form of the composite of the Kdhler connection
in the presence of a linear multiplet (coupled to Chern—-Simons forms).

E.2. Construction of supercovariant derivatives
It might be instructive and useful to review shortly how the supercovariant component field
derivatives are derived from superspace. To be definite we shall discuss here as representative
examples the supercovariant derivatives of A* and y%.
Let us begin with A*. The starting point is the superspace covariant exterior derivative
Do* = dep* — oA (T ) . (E.2.1)
Using the double-bar projection as introduced in Section 4 one finds
D¢H| = dx"(0, A* — iaZ)(Ty D)), (E2.2)

suggesting the definition

D A* = 0, AF — (T, p)F (E.2.3)
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for the component field covariant space-time derivative. On the other hand, double-bar projection
in terms of covariant differentials gives

1 1 _ .
D¢k|| = dxm<ema9a ¢k| + —lpma/g + —l//ma'c}_(’w) . (E24)
2 2

The object Z,¢"| is called the supercovariant space-time derivative of A%, explicitly given as
1 ok 1 T ko
—=Ym Ao — —=Vmal -

ﬁw X ﬁw

The analogous construction for y% is slightly more involved. Here the starting point is the
exterior covariant derivative

en'D Pt = D, A* — (E.2.5)

DZ,¢" =d7,¢" — $." D" — AD,¢* — AT D, $) + T";DP' D, 4", (E.2.6)
which upon double-bar projection gives rise to

DL, $H| = /20" On s — 07y — Anrh — 105 T2 + TP AL)
with 2,, A7 defined above. This suggests to define

Duils = 0mith — Ol 1 — Amrh — 10Ty 1) + T, D Ay (E.2.7)
The double-bar projection on covariant differentials yields now

D2, M| = dx"(en D2 0" + W' D3 2, | + Wy P Do) - (E.2.8)
Here, the quantity 2,9, ¢"| is called the supercovariant component field derivative of y%. However,
the two remaining terms still need some workout. Whereas the second term involves the auxiliary

field F*, the third term gives rise to the supercovariant component field derivative Z,¢"|, just
derived above. As a result one recovers the same form as in (4.3.11), i.e.

@a@dd)q = eam <\/§@mxai - l/jmmFi + l(lpma-nr‘(@nAl - %l//nq’}dp)) . (E29)

Observe, however, that this expression is different from (4.2.10), because now the composite Kéhler
connection A, contains additional terms due to the linear superfield dependence of the kinetic
potential.

E.3. The composite Ug(1) connection

Let us first recall the identification of the spinor and vector components of the Ug(1) gauge
potential in terms of the kinetic potential K, adapted to the present situation, where K depends on



430 P. Binétruy et al. | Physics Reports 343 (2001) 255-462

a linear superfield as well. The relevant equations are generalizations of (3.4.20), which read now

Ay = 3EMOuK(h,§, L), A" = — JE™MONK(, L), (E3.1)

N .
LGy = ~(DuAs + DA,

Ay — = .
oo 2 2 )

(E3.2)

The important point to notice here is that the entities which are known a priori are the covariant
components 4,, A* and A4,. As a consequence, the space-time component A4,, identified in (4.1.16),
ie. A| = dx™A,(x), must be evaluated from the expression

An(X) = e Au| + 3Wu'Au) + W A% . (E.3.3)

Taking into account the linear multiplet couplings, Section 5, we obtain

1 1 1 - 1 .
Am| + Eemaba = ZKkgmAk - ZKE@mAk + ngEXkaXk
100 1o k o k -~ la
—e, b ——*h, ———tr(lo, /) — — D
+ gln'ba + 7 I 4Lr(6m) g Pom®
 YnOmG" D — YnGmG"D) — —mmpg V"W E.3.4
- g(lpnama (e lpnamg (,0) _ggmnpqlub g lp . ( o )

Compared to the pure Kéahler superspace construction, (4.1.24), i.e. without linear multiplets,
a number of new terms appear. In particular, the dual field strength of the antisymmetric tensor
gauge field,

1
*hk = §8k1mnh1mn (E35)

with h,,,, identified in (5.3.5), is given as

*ph = %Sklmn<3anbml + k(”laman - %alaman>> . (E36)

Instead of keeping all these terms encoded in the component field definitions of the covariant
derivatives, we only retain the combination
1 1 i

U = Zch@mAk — ZK,;@,,,/TE +7

e omi* (E3.7)
in these definitions. This renders the component field action more complicated, but shows explicitly
the various couplings related to the linear multiplet. The corresponding covariant derivatives will
be denoted V,,, they coincide with those defined in Section 4.
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E.4. Genesis of the factor LK; — 3

The chiral supergravity superfield R and its spinor derivatives are essential building blocks in the
construction of supersymmetric actions and the derivation of supersymmetry transformations.
A detailed knowledge of Z,R and 2°%,R is crucial for the construction of supersymmetric
component field actions. In Section 5.4 we have pointed out modifications to the normalization of
the Einstein term in the linear superfield formalism.

We will explain here in some detail the superspace mechanism which underlies these modifica-
tions. To be definite we shall consider the superfield R. Its spinor derivative is given as

—39,R =X, +4S, , (E.4.8)

as a consequence of the Bianchi identities, see (B.4.7). The superfield S,, as defined in (B.2.16), is
related to the torsion T,,% while X, is given in (5.4.3),

X, = — 4P — 8R\Z,K(¢, P, L) . (E.4.9)

Although straightforward, it will be instructive to illustrate in detail the appearance of the term
LK;%,R in X,, in successively applying the spinor derivatives. In a first step, we write

—8X, = GK, Z,¢") + FXK.D,L) .

It is clear that the linearity condition will arise from the second term, evaluation of the spinor
derivatives yields

DA KL D,L) = D(P*K D, L) + (2,K)2°D,L + K. [Z* 2, L + K. 2,9°L .
At this point the modified linearity condition (5.2.18)
(2% — 8R)L = 2ktx(W W),
must be used to arrive at
K, 2,9°L = 8LK;2,R + 8RK [ D, L + 2kD, tx(W W) .
In this way, we recover (5.4.5) in the form
X,= —LK;,2,R+Y, (E.4.10)
with Y, determined from the string of equations above. Combining this with (E.4.8) gives rise to
(LK, —3)2,R=Y, +4S,, (E4.11)

identifying &, R in terms of other, already known, superfields. When projected to lowest superfield
components, S,| will contain the supercovariant field strength of the gravitino. As to Y, |, one has to
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go through the various terms and identify properly the component field expressions. This is
straightforward, but rather lengthy, and will not be done here.

E.5. Supersymmetry transformations

One of the advantages of superspace geometry is that supersymmetry transformations are
defined geometrically. We have outlined in detail how this mechanism works in the case of
supergravity/matter coupled to Yang-Mills in Section 4.3, based on the general formalism
developed in Appendix C.3. Deriving supersymmetry transformations for component fields
amounts to a bookkeeping activity in the sense that one has to apply a set of well-defined rules to
extract component field properties from superspace.

The emphasis will be rather on the method of derivation of the component field transformations
than their explicit gestalt (which is often quite lengthy and not very illuminating).

Here we will discuss supersymmetry transformations for component fields in the linear superfield
formalism, based on the general notion of supergravity transformations extended to 2-form
geometry. This will allow to derive the component field transformations for the linear multiplet,
coupled to the supergravity/matter/Yang—-Mills system.

At the same time, the presence of the linear superfield L in the kinetic potential K(¢, ¢, L), which
replaces the Kéhler potential, will modify the supersymmetry transformations in the supergravity,
matter and Yang-Mills sectors.

We will discuss here, sector by sector, how these modifications are induced from superspace
geometry, before turning to the derivation of the supersymmetry transformations of the linear
multiplet component fields.

e Matter and Yang—Mills multiplets: The supersymmetry transformations of component fields in the
case of the general supergravity/matter/Yang-Mills system have been derived in Section 4. The
transformations of 4*, y* F* are given in (4.3.25)(4.3.27), those of A%, ¥**, F* in (4.3.32)-(4.3.34),
whereas those of the Yang-Mills multiplet a,,, 2% Z;, D are given in (4.3.36)—(4.3.39).

In the linear superfield formalism, the general structure of these transformation laws remains
unchanged. The modifications caused by the linear field dependence of the kinetic potential
K(¢, ¢, L) occur in two ways. First of all, whenever a covariant space-time derivative acts on
a component of non-vanishing chiral weight, it should be written in terms of the new composite
U(1) connection (E.3.4) instead of (4.1.24).

The second source of modifications is the term 1:4 = E*A4 4, see (4.3.2), in the generic case of
a component with non-vanishing chiral weight. As 4, and A* are now given in terms of the
kinetic potential rather than the Kéhler potential, new terms appear. This amounts in replacing
everywhere the combination K;&y* — Ki&7* by

K&k — Ko + %KL(@) —5p). (E5.1)

In this way, the supergravity transformations of matter and Yang—Mills fields are adapted to the
linear superfield formalism.
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o Supergravity multiplet: The mechanism just pointed out will occur for the gravitino supergravity
transformations and the scalar auxiliary fields as well. Geometrically, the starting point for
deriving supersymmetry transformations of the vierbein e,* and the gravitino ,,% V. is the
general superspace equation (4.3.1)

5EMA = .@MéA =+ EMBéCTCBA — W(EA)EMAécAC , (E52)

derived in Section 4.3. This relation is still valid in the linear superfield formalism. What kind of
modifications arise for the component fields? Consider first the case of the vierbein ¢,,". Choosing
M = mand A = ain (E.5.2) and projecting to lowest components reproduces the supersymmetry
transformation (4.3.7). No dependence on the linear multiplet appears, the supersymmetry
transformation for ¢, “ remains unchanged.

What happens in the case of the gravitino? Taking M = m and A = « gives rise to

30" = Dnl" + en"ET | + e’ & TH| — (&4, + &47) . (E5.3)

Clearly, the torsion terms are expressed in terms of the supergravity auxiliary fields as before, no
modification. However, in the covariant derivative of £* — cf. (4.3.10) - the composite Kéhler
connection 4,,| is now given by (E.3.4) instead of (4.1.24). Moreover, in the last term, the linear
superfield dependence must be taken into account, giving rise to the second type of modification
pointed out before. It is then an easy exercise to write down explicitly all the terms in the
supersymmetry transformation of the gravitino in the linear superfield formalism, the result
should be compared to (4.3.8) and (4.3.9).

Let us next turn to the auxiliary fields M, M and b,. As we point out now, the situation is more
intricate in this case. To be definite we concentrate on M = — 6R|. Its generic supersymmetry
transformation - cf. (4.3.16) - reads

o

1 e _
oM = — 68"Z,R| — ﬁM<Kk£Xk — Kel7* + \/EKL(@ - 5@)) : (E.5.4)

As to the lowest component of &, R we should take into account the discussion in the previous
subsection, in particular (E.4.11). As a result, we find

1 af ¢ ® a
oM = m(zé (O- bg)a(p ch | + 5 Yaz|)
1 _ _
- ﬁM<Kkéx" — K& + %KL(&/) - é<p)> . (E.5.5)

This is a very compact form of a quite complicated expression. First of all the supercovariant
field strength T, ?| of the gravitino is given in (4.1.31). Here, the covariant derivative (4.1.28) must
now be written in terms of the composite Kdhler connection constructed in (E.3.4). As to Y,|, its
superfield form is to be determined from the string of equations of the preceding subsection
and then projected to lowest components with carefully paying attention to U(1) covariant
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space—time derivatives. The procedure is straightforward, but a bit lengthy and so is the result,
which will not be presented here. Note, however, that the same quantity Y,| appears in the
variation of b, as well.

e Linear multiplet: The linear multiplet and its couplings to the supergravity/matter/Yang-Mills
system, including Chern-Simons forms, is described in the framework of 2-form geometry in
superspace. In order to extract the supergravity transformations of the antisymmetric tensor we
have to extend the notion of supergravity transformations to this geometric structure as well.

Recall that invariance of the 3-form field strength H = dB + kQ under Yang-Mills gauge
transformations of the Chern-Simons form Q = tr(«/% — 1/3.9/.o/.</) is achieved in assigning
a compensating Yang-Mills transformation to the 2-form gauge potential, in addition to
superspace diffeomorphisms and 1-form gauge transformations 8 = dzp,,, such that

0B = L:B + df + ik tr(ad.</) (E.5.6)
with & = o'T,. In the first term, we explicit the Lie-derivative, and use 1:dB = 1:H — 1:Q with

1.0 = tr(L1:.7) + tr((1eA)d.A) (E.5.7)
to arrive at

0B =1:H — ktr(s/1:7) + d(p + 1:B) + ik tr((a + 1:.97)d.o7/) . (E.5.8)

Supergravity transformations, along the same lines of reasoning as in Appendix C.3 are then
defined as

5sz = léH — ktr(&{ lég) , (E59)

ie. a combination of superspace diffeomorphisms and field-dependent compensating
Yang-Mills and 1-form gauge transformations of parameters

a= —1:, f= —1:B. (E.5.10)

The supergravity transformation of the antisymmetric tensor gauge field b,,,(x) is then obtained
from (E.5.9) in applying systematically the double-bar projection, which yields

dxmdxn%éwzbnm = dxmdxnl:éo-nm/1 + i_a-nm/I - iLlpnO-mE_ lLlpna-mé
+ ik tr(@n(Eo, T + G l))]. (E.5.11)

Supergravity transformations of L(x) and A,, A* are obtained in the usual way, applying spinor
derivatives to the superfields L and Z,L, Z°L. As to L(x) it is immediate to find 6L = éA + EA.
The case of A, is slightly more interesting, let us outline the general procedure to obtain
its supergravity transformation. The starting point is the superfield equation, 0%,L =
&99,L + 5,;@’;@1L written in the form

0T, L = — 36, 9*L + 38419, 9P L — 3¢,4(2,, 2P 1L . (E.5.12)
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Using the modified linearity condition (5.2.18) and substituting for the commutator (5.2.20) gives
rise to

59114 = ii_d(&ug)zx&‘@aL - %Eéz(a-dg)adgdCbchba - 461RTL + 25&(6—[18)&&(;11[4
— KE (W W) + 2KE, te(W W) . (E.5.13)
The supergravity transformation of A, is then obtained after projecting to lowest superfield

components with special care to the supercovariant component derivative Z,L| and field
strength H,|.

E.6. Component field Lagrangian — 1

We display here the complete component field Lagrangian for the example of Section 5, i.e.
a special kinetic function of the form

K(¢7 d;a L) = KO(¢: q;) + OCIOgL . (E61)

Requiring a canonical normalization function N = 1 gives rise to a subsidiary function

F($, ¢, L) =1 — % + LV(¢, d) (E.6.2)

with arbitrary linear potential V(¢, ¢). The component field action is then derived from the generic
procedure of Section 4.4, for the chiral superfield (5.6.1) in Section 5.6, i.e.

r= —§7° —8R)F(¢,$,L), F= —§T* —8RHF(¢,¢,L) (E.6.3)

with F given by (E.6.2). Working through all the necessary steps leads then to the Lagrangian

| ) _
SL = = EG05Y UVl

— (Kue = 3LViV AV AF = =(Ki = SLViN 0™V " + 75"V

— 2 Lo, L — Z(po™V, & + §5"V,,0)

sy
+ m 4L 4

41>

+ §<% h 3V>f o f + %@ B 3V>('1("0'"me<r> + 206"V i)

3i c (o —4)

_ k_ 1. AR\ ,m % ®],m —
2(VkaA VkaA) h + 8L h (q)am(p)
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1 ok
+5( = HMM — 5 — 3)byb* + (Kug — 3LVig) FFF* — 5(% — 3V>D(”D(,)

o —

_ o _ o _
+ —(a — 3)|:(Kkk — 3LVie)(x*o“%") + 2(@a"p) + k(g — 3V>(ft‘”6“i<r>)}ba

AN —

1 _ _
- EE(Kk — 3LV (T A + (AT ) (Kg — 3LVg)
. " k ®
— 31/ 2k(Vir Ay — Vil 2y + i+ (%)‘P Ay @) |D
3L

k
+ B |:\/§ka(l’7 +,V1k/{X __V;C/L( )l(r):|

3L ko coe e
+ 7|:\/§Vkl€(pxk + V' — EVIM( );“(r):|Fk

o 3 _ ok | o0 —2 O
+ [4L( e — 3LVig) + 2ka:| *hm(/( Om k) + E|: I3 :| *h ()»( )O'm/t(r))

13L
= W 2Vapo" T+ Vi " LV A

13L . I =
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{ o o
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Recall that the first term in this expression, the curvature scalar £, is defined in (4.1.35). As
mentioned above, the covariant derivatives V,, coincide with those defined in Section 4. For

the sake of completeness, we recall here the explicit expressions. The nabla derivatives of the
Rarita-Schwinger field are given in (4.1.28) and (4.1.29),

Vo =0 + Vnlo.s + Yo, (E.6.5)

Vallms = 8ulms + Ump@is — YanaV » (E.6.6)
whereas (4.1.23) and (4.1.23) define those of the matter complex scalars:

VuA =0,4" —ial (T, A, V,A'=0,4" +iall(AT,)’ . (E.6.7)

The derivatives for the spinors in the matter sector are, (4.2.15) and (4.2.16),

Ve = Omts — 0w 2t — 15Ty 1) — Umite + 22T 4 Vi A", (E.6.8)
Vm}_(d;: am}_(dj_ wmddl}_f(b]—i_ ia(mr)()_(dT(r))j'i' Um}_foj—f_ }_(wF;iEVmZE s (E69)

whereas those of the Majorana spinor of the linear multiplet are given as

Vm 90; = am 90; — Wpy (p(pip — Unm (p;n Vm(z)df: am @dj— COmé! (2)@@ + Um (Z)Oﬁ . (E610)
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Finally, the gaugino covariant derivatives, (4.5.27) and (4.5.28), are

lelg) = am/lg) — (Um;p;ug) — ag,)/“bg[s)C(s)(t)(r) + Umig‘) . (E611)
Vo T = 3, T — o, TP — g% ) — o % (E6.12)

As to the field strength tensors, *h* = 4™ h,,. is given above in (E.3.6). The Yang-Mills field
strength, defined in (4.2.20), reads

[ =0,a) —0,ay) + a(mS)aftt)c(s)(t)(r) (E.6.13)

with dual 2#f Ok = glmng®)

As to the manifold of the matter scalar fields, the basic objects are the kinetic potential K and the
linear potential V. Subscripts attached to these objects denote derivatives with respect to the
complex scalars. In particular, the Kéhler metric g,z = Kz is defined in (2.4.8), and its inverse
shows up in the Levi-Civita symbols

Iy = 9", I =g"%u; . (E.6.14)
The curvature tensor is given as (2.4.4)

Ry = guk7 — 9"0wr 91k - (E.6.15)

As to the derivatives of the linear potential we have introduced the covariant objects

Vi=Vi—T Vo  V5=Ve—T5Ve, (E.6.16)

Viei = Vig — T Ve, Vg = Vag — I'*7Vix (E.6.17)
as well as

Vi = Vi + T T Vi — TV — T Vigs (E.6.18)

Before turning to a discussion of the auxiliary field sector we shortly discuss the effective
transformations V'V + H + H. Observe that any term containing either V itself or derivatives
Vi, Vi or Vi, Vig changes under such transformations. Of particular interest is the term

ViV A* — VeV, A
which transforms into
(H—H)f"%f
after integration by parts. On the other hand, the Yang-Mills kinetic term gives rise to

(H+ Hfmfw -
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Finally, we have to comment on the structure of the auxiliary field sector. Collecting in %, all
the terms containing auxiliary fields, that is components M, M, b,, F*, F* and D,,,, we diagonalize

in terms of new, hatted auxiliary fields which have trivial equations of motion. As a result, the
auxiliary sector of the Lagrangian takes the form

e_1'=g/paux = + é((x - 3)MM - %(OC - 3)Eal;a

P k o ~ ~
+ (Kue — 3LVige) FFF — —<— - 3V>D<')D(,)

2\L
9L2 1 o — 3 SN
— | =5 VK = 3LVie) " + —— (K = 3LVi(Kor = 3LVa) (100077
9k? -1 ® T 9L? 1 o
- TVk(KkIZ — 3LVig)” Vil /l(r))(/1 /At(s)) - TVIJ(KME — 3LVig) lez(QDXJ)(QDX'I)
9kL

+ TVE(KkIE — 3LVie) [ (17 + N/ 2Vig (7)1 )

9kL

+ =5 Vel = 3LVi0) ™ T 5aln) + </ 2Vie(020]0 )

9./2L2 Ay o
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ENACE

Clearly, the role of effective transformations after elimination of the auxiliary fields deserves
further study.

E.7. Component field Lagrangian — 11
We can merge these new contributions into the Lagrangian and eliminate trivially the auxiliary

fields; this will yield a huge expression which we simplify somehow by making the following
changes:

e Change the Kahler metric in the Lagrangian. Consider the Kahler potential

we promote K.r = Kir — 3LV, to a metric denoted G, and define symbols and tensors in this
new scheme. For instance,

K = gyl — 3L (E.7.2)



442

P. Binétruy et al. | Physics Reports 343 (2001) 255-462

so that we can define new Christoffel symbols

My =G"Kjp =Ty —3LG"V e (E.7.3)
Mg = G'Kye = I'ye — LG 3¢ (E.7.4)

and a curvature tensor

Rive = Kjir — Gl ju I = Ry — 3L jae — OL*Y 50.G™ e (E.7.5)

We can then define the corresponding “hat” covariant derivatives like 7 ,J,“/ ikj» €tc.
Finally, let us note that

o N
[ W=k (E.7.6)

and that Yang-Mills invariance of K tells us

K (T;r) ) (A’Er))kKk > (E77)

which again simplifies the expression of the Lagrangian. With the new metric in the Kéhler
connection we define new covariant derivatives

VA= 7, A" = 0,, A" — ial)(T, A),

vm%éz = am%i - wmaq)}dp - iag)(T(r)Xa)i + ngfj'k@mAk

R D Re D AV — GtV E79
Voui* = 07" — o o 7'% +1a8)(7 Ty)) + 1 Jhg, A*

+ %(KkaA" — Ke2,, A7 + %G,-,;( Y (E.7.9)
Vol = 0t + Yl s + P <1K 9, A" — iK,@nAf' + %Gi,xian)_(’j , (E.7.10)
Vallms = Onlms + mpubs lpm< R:2,A" — %12,—@,1/1-7 + %G,-,—Xiam;'(-’> : (E.7.11)

A~ 2 (s 1 A~ . A =N 1 (r i s = r
Vm/L(xr) = am/L()zr) - wma(p/lipr) - asrtl)c(s)(t)(r)/bgc) + Z(Kj@mAJ - Kf@mA/)/Lz(x) + ZGjE(XJO-ka)/lgx )9

~ . ) . . A N _ S S
Vm;_h(r)a = amz(r)“ — CO,,:X (b)T(r)(p — agl)c(s)(t)(r)/T(S)a — Z(KkamAk — KEamAk)Z(r)a — ZGJE(XJGm}_(k)Z(V)a .

(E.7.12)
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e Make a shift on *h,

*h > *h L= [s’"""q(lﬁ opWq) — 1G(x o m7")

i (2 _
— %(qwm@) + 1k<Z — KL>(/1‘”ami(r))} . (E.7.13)

Putting everything together this gives rise to the new Lagrangian
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Appendix F. Three-form gauge potential and Chern-Simons forms

The analogy between Chern-Simons forms and 3-form gauge potentials will be employed to
determine the Chern—-Simons superfield (5.2.21). To this end, we present first the explicit solution of
the 4-form constraints in terms of an unconstrained superfield. Already important by itself,
in the description of constrained chiral multiplets — cf. Section 6 - this analysis underlies the
explicit construction of the Chern-Simons superfield. After some general remarks and definitions
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concerning Chern-Simons forms in superspace, the Chern-Simons superfield is determined as the
counterpart of the pre-potential of the 3-form.

F.1. Explicit solution of the constraints

As shown in the main text, the constraints
25ppa =0, (F.1.1)

allow to express all the coefficients of the 4-form field strength in terms of the constrained chiral
fields Y,Y. The Bianchi identities in the presence of the constraints are summarized in the chirality
conditions together with the additional constraint (6.1.2). Alternatively, as we will explain now, the
explicit solution of the superspace constraints allows us to determine the unconstrained pre-
potential of the constrained superfield. An important ingredient in this procedure will be the use of
the gauge freedom of the 3-form potential, C, parametrized by a 2-form A,

"Ccpa = Ccepa + SE (ZcApa + Tep"Apa) - (F.1.2)

CBA

As usual §cp4 denotes the graded sum CBA + (— )**“BAC + (— )*®*9ACB. In a first step
consider

Z,;«,/}A = 0 N (F13)

which we satisfy with

(Z,Uga + Ta,"Urp) (F.1.4)
B

Copa =DaUy + ff;
Y

and the complex conjugate
2, =0, (F.1.5)

by
Ct =9,V + § (DVF+ T VP . (F.1.6)
Since the pre-potentials Uy, and V4 # should reproduce the gauge transformations of the gauge
potentials C,z4 and C?* , we assign
U/;A}—)AUBA = UﬁA ‘|‘A/;A (F17)
and

Vi s> W =V + AP, (F.1.8)
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as gauge transformation laws for the pre-potentials. On the other hand, the so-called pre-gauge
transformations are defined as the zero modes of the gauge potentials themselves, that is trans-
formations which leave C,;, and C?, invariant. They are given as

UﬁA'_)U,BA +9ﬂXA —(—)a@AXﬁ + T[;AFXF (F19)
and

VE Ve + P, — (=)D + TP Py . (F.1.10)

We parametrize the pre-potentials now as follows:

Ug=Wi+ THK,, (F.1.11)

v, =w}—TVK, (F.1.12)
and

Upa = Wpa — 94K, , (F.1.13)

v, =Wt + 2K, . (F.1.14)

Explicit substitution shows that the K, terms drop out in C,z4 and C" ,. Denoting furthermore
Up, = Wy, and VF =Wk, (F.1.15)

we arrive at

Copu = DWW,y +§ (D Wys + Taf W), (F.1.16)
B
. . yﬁ . .
chy=a,Wi +3€ (@W+ TLTWP), (F.1.17)

1.e. a pure gauge form for the coefficients C,;4 and C7 with the 2-form gauge parameter A replaced
by the pre-potential 2-form

W - %EAEBWBA Wlth Wba - 0 . (F118)

We take advantage of this fact to perform a redefinition of the 3-form gauge potentials, which has
the form of a gauge transformation,

C=""Cc=C—dw. (F.1.19)
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This leaves the field strength invariant and leads in particular to
Cya=0 and C", =0, (F.1.20)
whereas the coefficient Cyﬂa is replaced by
cl=ct,—awl —a*'w,, —a,w}. (F.1.21)
We define the tensor decomposition
Cla =T 7@ + Wya + Qisa) » (F.1.22)

where W,,,, is antisymmetric and O, ,,, symmetric and traceless, and perform another redefinition
which has again the form of a gauge transformation, this time of parameter

W =1EE"W,, , (F.1.23)
such that
Q= ""C=C—adw. (F.1.24)

Note that this reparametrization leaves C,;, and C*, untouched, they remain zero.

Let us summarize the preceding discussion: we started out with the 3-form gauge potential C.
The constraints on its field strength led us to introduce pre-potentials. By means of pre-potential-
dependent redefinitions of C, which have the form of gauge transformations (and which, therefore,
leave the field strength invariant), we arrived at the representation of the 3-form gauge potential in
terms of 2, with the particularly nice properties

Q4 =0, Q% =0 (F.1.25)
and
QL =T 112 + Qiray) - (F.1.26)

Clearly, in this representation, calculations simplify considerably. We shall therefore, from now on,
pursue the solution of the constraints in terms of € and turn to the equation

. pa ,
Zayﬁa = 0 = § Tﬁ nyf ﬁa 5 (F127)
o

Y

which tells us simply that @, is zero. Hence,
Qrf =T,%0Q. (F.1.28)

We turn next to the constraints

78
Z(;aj)ﬁ == 0 - § (@?Qaﬁa + T,; 7foﬁa) (F129)
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and
20 e =0 = §ﬂ (2,2, + T, Q) (F.1.30)
Y

which, after some straightforward spinor index gymnastics give rise to
Qpa = 2040),°2,Q , (F.1.31)
Q' =2G4,) ,27Q . (F.1.32)

This completes the discussion of the solution of the constraints, we discuss next the consequences
of this solution for the remaining components in X, i.e. Xs,pa, 2scpa and Zyp,. As a first step we
consider )

2 57ba =§ﬁ (2520 — Tovp 2% + Toap2,%) (F.1.33)
oy
and
%, =§ (2°Q",, — T%2Q,}, + T°.2Q,1,) . (F.1.34)

Substituting for the 3-form gauge potentials as determined so far, and making appropriate use of
the supergravity Bianchi identities yields
Zsipa = — 2A0pa)s, (2% — 8RNQ (F.1.35)
and
2 = — 2G4.8)"(Z* — 8R)Q . (F.1.36)
The appearance of the chiral projection operators suggests to define

— 42? - 8RHQ, (F.1.37)

Y
Y= —42*—-8R)Q. (F.1.38)
The gauge invariant superfields Y and Y have chirality properties

2,Y=0, 2°Y =0 (F.1.39)
and we obtain

Zsiba = 2(0a€)s, Y (F.1.40)

20 = 3G5a8)7Y (F.1.41)
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In the next step we observe that, due to the information extracted so far from the solution of the
constraints, the field strength

Z5'a = T5"Zepa (F.1.42)

is determined such that X, is totally antisymmetric in its three vector indices. As, in its explicit
definition a linear term appears (due to the constant torsion term), i.e.

2sha = T5Qua + derivative and other torsion terms , (F.1.43)
we can absorb X, in a modified 3-form gauge potential

cha = cha - Z‘cha 5 (F144)

such that the corresponding modified field strength vanishes, i.e.
é‘a?ba = 0 . (F145)
The outcome of this discussion is then the relation

([Z2r D3] — 4G)Q = — $040s""*Qepa » (F.1.46)

which identifies Q. in the superfield expansion of the unconstrained pre-potential Q.

Working, from now on, in terms of the modified quantities, the remaining coefficients, at
canonical dimensions 3/2 and 2, ie. Y55, and 24.,, respectively, are quite straightforwardly
obtained in terms of spinor derivatives of the basic gauge invariant superfields ¥ and Y. To be
more precise, at dimension 3/2 one obtains

gé cha — — %Ggﬁgdcbagév s (F147)
gécba = + 11766-d568dcba 96 Y (F148)

and the Bianchi identity at dimension 2 takes the simple form
_ _ &
(22 — 24RNY — (T — 24R)Y = glgdc’wgdcba . (F.1.49)

As to the gauge structure of the 3-form gauge potential we note that in the transition from C to
Q, the original 2-form gauge transformations have disappeared, © is invariant under those. In
exchange, however, as already mentioned earlier,  transforms under so-called pre-gauge trans-
formations which, in turn, leave C unchanged. As a result, the residual pre-gauge transformations
of the unconstrained pre-potential superfield,

Q—-Q =Q+ 1 (F.1.50)
are parametrized in terms of a linear superfield 4 which satisfies

(2> — 8RN, =0, (7> —8R)A=0. (F.1.51)
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In turn, 4 can be expressed in terms of an unconstrained superfield, as we know from the explicit
solution of the superspace constraints of the 2-form gauge potential, actually defining the linear
superfield geometrically. In other words, the pre-gauge transformations should respect the particu-
lar form of the coefficients of the 3-form (.

F.2. Chern—Simons forms in superspace

Under gauge transformations the Chern-Simons 3-forms change by the exterior derivative of
a 2-form, which depends on the gauge parameter and the gauge potential. Due to this property one
may understand the Chern-Simons form as a special case of a generic 3-form gauge potential — cf.
the preceding subsection. This point of view is particularly useful for the supersymmetric case. To
be as clear as possible we first recall some general properties of Chern—-Simons forms in superspace.

To begin with we consider two gauge potentials .7, and .27 in superspace. Their field strength
squared invariants are related through

tr(g:oeg;o)—tr(grlgjl):dg(&{o,ﬂl). (F21)
This is the superspace version of the Chern-Simons formula, where
y():dﬂo +<52{0ﬂ(), g1=d&{1 +z£2{1<52{1. (F22)

On the right appears the superspace Chern-Simons form

Ny, A1) = 2J1dt tr{(fo — A 1)F) (F.2.3)

0

where

F=dod + oA, A, (F.2.4)
is the field strength for the interpolating gauge potential

oA, =1 -1y +td, . (F.2.5)
The Chern-Simons form is antisymmetric in its arguments, i.c.

Ny, )= — AL, ) . (F.2.6)
In the particular case </, = .o/, .o/, = 0, one obtains

WUA) = XUA,0) = tre(AF — A oA) . (F.2.7)
We shall also make use of the identity

Ut o, 1) + Ul 1,9 5) + N 5, ) = dy(AL o, A 1, 3) (F.2.8)
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with
X(&io,&/l,&/z):tr(&ioﬂl +%1&/2 +ﬂ2%0) (F29)

This last relation (the so-called triangular equation) is particularly useful for the determination of
the gauge transformation of the Chern-Simons form. The argument goes as follows: first of all,
using the definition given above, one observes that

2(./,0) = 2of,dgg™ ") . (F.2.10)
Combining this with the triangular equation for the special choices

Ao=0, o =<, oF,=dgg" ", (F.2.11)
one obtains

20,.o7) + 2(°.#,0) + 2dgg~*,0) = dtr(=/dgg~ "), (F.2.12)
or, using the antisymmetry property

20.e/) — AA) = dtr(/dgg™") — 2dgg ") . (F.2.13)
The last term in this equation is an exact differential form in superspace as well, it can be written as

IUdgg™ ") =do , (F.2.14)

where the 2-form o is defined as

1
0= J‘ dttr(0,9.9, ldgtg; ldgtg; 1) (F.2.15)
0

with the interpolating group element g, parametrized such that for te[0,1]
go=1 g1=9. (F.2.16)

This shows that the gauge transformation of the Chern—-Simons form, which is a 3-form in
superspace, is given as the exterior derivative of a 2-form

20st) — AA) = dA(g, /) (F.2.17)

with 4 =y — 0.
The discussion so far was quite general and valid for some generic gauge potential. It does not
only apply to the Yang—Mills case but to gravitational Chern-Simons forms as well.

F.3. The Chern-Simons superfield

We specialize here to the Yang-Mills case, i.e. we shall now take into account the covariant
constraints on the field strength, which define supersymmetric Yang—Mills theory. It is the purpose
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of the present subsection to elucidate the relation between the unconstrained pre-potential, which
arises in the constrained 3-form geometry, and the Chern—-Simons superfield. Moreover, based on
this observation and on the preceding subsections we present a geometric construction of the
explicit form of the Yang-Mills Chern-Simons superfield in terms of the unconstrained pre-
potential of supersymmetric Yang-Mills theory.

In this construction of the Chern-Simons superfield we will combine the knowledge acquired in
the discussion of the 3-form gauge potential with the special features of Yang-Mills theory in
superspace. Recall that the Chern-Simons superfield Q““ is identified in the relations

(W, W% = §9? — 8RHQV (F.3.1)

te(WW,) = Y(Z* — 8R)Q”V . (F.3.2)
The appearance of one and the same superfield under the projectors reflects the fact that the
gaugino superfields ¥/, are not only subject to the chirality constraints (2.3.33) but satisfy the
additional condition (2.3.34). It is for this reason that the Chern-Simons form can be so neatly
embedded in the geometry of the 3-form. As explained in Section 5.2 the terms on the left-hand side
are located in the superspace 4-form

S AT F) . (F.3.3)

Of course, the constraints on the Yang-Mills field strength induce special properties on the 4-form
coefficients, in particular

Zz}/,//éy sa=0, (F.3.4)

which is just the same tensor structure as the constraints on the field strength of the 3-form gauge
potential. Therefore the Chern—Simons geometry can be regarded as a special case of that of the
3-form gauge potential. Keeping in mind this fact we obtain

quuﬂéyba — %(O-bag)éy Y?-“ , (F.3.5)

U, = Y(Gpae) YN (F.3.6)
with

YU’J/.// = —8 tr(”f/“%) , (F37)

These facts imply the existence and provide a method for the explicit construction of the
Chern-Simons superfield: comparison of these equations with those obtained earlier in the 3-form
geometry clearly suggests that the Chern-Simons superfield Q”“ will be the analogue of the
unconstrained pre-potential superfield © of the 3-form. In order to establish this correspondence in
full detail we translate the procedure developed in the case of the 3-form geometry to the Chern-
Simons form (in the following we shall omit the %.# superscript). The starting point for the explicit
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construction of the Chern-Simons superfield is the relation
t(FF) =dAA) . (F.3.9)

In the 3-form geometry we know unambiguously the exact location of the pre-potential in
superspace geometry. Since we have identified Chern-Simons as a special case of the 3-form, it is
now rather straightforward to identify the Chern-Simons superfield following the same strategy.
To this end we recall that the pre-potential was identified after certain field-dependent redefinitions
which had the form of a gauge transformation, simplifying considerably the form of the potentials.
For instance, the new potentials had the property

Qup4=0, Q% =0. (F.3.10)

Note, en passant, that these redefinitions are not compulsory for the identification of the uncon-
strained pre-potential. They make, however, the derivation a good deal more transparent. Can
these features be reproduced in the Chern-Simons framework? To answer this question we exploit
a particularity of Yang-Mills in superspace, namely the existence of different types of gauge
potentials corresponding to the different possible types of gauge transformations as described
in Section 2.2.2. These gauge potentials are superspace 1-forms denoted by o7, .</(0) = a and
/(1) = a, with gauge transformations parametrized in terms of real, chiral and antichiral super-
fields, respectively. Moreover, the chiral and antichiral bases are related by a redefinition which has
the form of a gauge transformation involving the pre-potential superfield #~

a=WW"law — Wy ="a. (F.3.11)
Writing the superspace Chern—Simons form in terms of a shows immediately that

27 (a)=0, (F.3.12)
due to a* = 0, but

D,pala) #0 . (F.3.13)
Of course, in the antichiral basis, things are just the other way round, there we have

2,p4(@)=0. (F.3.14)

On the other hand, due to the relation between a and a and the transformation law of the
Chern-Simons form (F.2.17) we have

2a) — 2a) = dA(W . a) (F.3.15)

where now the group element, g, is replaced by the pre-potential superfield #". In some more detail,
in 4 =y — o, we have

x=20,aY)=tr(al), (F.3.16)
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where
Y=dw W '=E'T,
has zero-field strength
dr + rYr=0.
The coeflicients of the 2-form, y, are given as
Ipa =tr(Ypay — (— )"V ap) .
For o, we define the interpolating pre-potential ¥/,
Y, =dw,w !,

such that

1
Oy = J detr© W W'y 1(YtBartA)) .

0

Consider now

2palQ) =D 44,5 + fﬁ (Z,454 — (=)' Tad5p)
VB

following from (F.3.15), and (F.3.14) and perform a redefinition

2 =9a)—dA,

455

(F.3.17)

(F.3.18)

(F.3.19)

(F.3.20)

(F.3.21)

(F.3.22)

(F.3.23)

which leaves tr(# %) invariant. We then determine the 2-form A in terms of the coeflicients of the

2-form A such that
2,44 =0

and maintain, at the same time,
2%, =0.

This is achieved with the identification
MA=AM,,M“=—%@MM Apy =0.

For later convenience, we put also

Apa = %(@bAa —Dully) .

(F.3.24)

(F.3.25)

(F.3.26)

(F.3.27)
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Here A4, is identified using spinor notation such that

vV

i
Af = —iTVﬁ“Aa. (F.3.28)

We have, of course, to perform this redefinition on all the other coefficients, in particular
2/, =20 (a) — 22,, . (F.3.29)

In the derivation of this equation one uses the anticommutation relation of spinor derivatives and
suitable supergravity Bianchi identities together with the definition

i

Ea=4,, + 2@,4, . (F.3.30)
We parametrize
2/, =T/, Q" + T, 2254 (F.3.31)

where we can now identify the explicit form of the Chern-Simons superfield

Q';%// — Q(a) _ %@&Eam . (F332)

The first term is obtained from the spinor contraction of
2.%,(a) = tr(a, 77 () = —i(G,¢)s tr(a, ¥ ¥(a)), (F.3.33)
ie.

i

o _ _1 a
= 1e 2 u(0) = — Jur@ (@) (F.3.34)

2a)

It remains to read off the explicit form of the second term from the definitions above.
In closing we note that a more symmetrical form of the Chern-Simons superfield may be
obtained in exploiting the relation

2 @) - 2),@) = 2,5, + 2'5,, + T,/ (Aba + %(%AQ — smu) (F.3.35)
with
T %@Mu . (F.3.36)

Observe that different appearances of the Chern-Simons superfields should be equivalent
modulo linear superfields. To establish the explicit relation of the Chern-Simons superfield
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presented here and that given in [33] is left as an exercise. So far, we have dealt with the superspace
Chern-Simons form alone; when coupled to the linear multiplet the modified field strength is

HY" = H + k9" (F.3.37)
with H = dB. In the preceding discussion we have split 27-*

a@%,xf/ — Q'Z%Z/ + dA?%// , (F338)

v YuM

such that 27 has the same vanishing components as H. Defining #”“ = H and

B" — B 1+ A" leads to
sy (F.3.39)

Although #”“ is no longer invariant under Yang-Mills gauge transformations, it has the same
constraints as H. Therefore, the solution of the modified linearity conditions can be obtained by the
same procedure as employed in the case without Chern-Simons forms.
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