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Chapter 1

Introduction

At this moment the physics of elementary particles is well described by the Stan-
dard Model. At the smallest scales we can experimentally probe (� 100 GeV), the
Standard Model predicts the outcomes of (scattering) experiments with incredi-
ble accuracy. The Standard Model accommodates the (observed) constituents of
matter, the quarks and leptons, and the vector particles responsible for the medi-
ation of the strong and electroweak forces. The only ingredient of the Standard
Model which still lacks experimental support is the Higgs boson particle, which is
thought to be responsible for the breaking of the electroweak gauge symmetry and
the masses of the different particles. One can therefore conclude that at this mo-
ment there is no direct experimental need to construct and investigate theoretical
models that go beyond the Standard Model1.

On the other hand there are many theoretical reasons to go beyond the Stan-
dard Model. The pillars of contemporary theoretical physics are quantum me-
chanics and general relativity. The Standard Model is a collection of quantum
(gauge) field theories which can be considered to be a merger of quantum me-
chanics and specialrelativity, describing physics at small scales and relativistic
energies. General relativity has proven its accuracy on large scales describing very
massive objects. When we keep increasing the energy scales and at the same time
keep decreasing our length scales, we expect new physics which is not described
by either general relativity or the Standard Model. General relativity breaks down
at short distances and in the Standard Model or in quantum field theory we should
incorporate the effects of (quantum) gravitational interactions. The typical energy

1We have to remark here that recent experiments have most probably excluded the possibility
that all neutrinos are massless, which requires a modification of the Standard Model. Still, in the
context of this thesis we would like to consider this a minor modification.
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Chapter 1. Introduction

scale at which this happens is called the Planck mass (� 1019 GeV). This scale is
way beyond the experimental energies currently accessible and one might wonder
whether it will ever be possible to attain these energies in a controlled experiment.

This does not mean, however, that this problem is of purely academic interest.
Immediately after the big bang (� 10�43 s), from which our observable universe
evolved, the energies were of the order of the Planck scale and the physics during
that (short) time determined the further development of the universe. It is therefore
of direct interest in cosmology to search for a theory that is able to unify or merge
quantum mechanics and general relativity.

Other arguments are of a more theoretical and/or aesthetic nature. The Stan-
dard Model contains a huge amount of parameters which have to be determined by
experiments, e.g. masses, coupling constants, angles and so on. One would expect
(or perhaps one likes to expect) that a fundamental theory of nature will not allow
too many adjustable parameters. In the best case scenario, we would like our the-
ory to be unique. Many people therefore like to think of the standard model as an
effective theory, only applicable at our current available energy scales [1]. This
point of view is backed up by considering the running of the coupling constants of
the different gauge theories that are part of the Standard Model. When plotting the
coupling constants as a function of the energy scale, one finds that at a particular
high energy scale, referred to as the Grand Unified Theory (GUT) energy scale
(� 1014 GeV), the three coupling constants all seem to meet in (approximately)
the same point. This suggests a possible unified description at and above the GUT
energy scale.

The GUT energy scale lies several orders of magnitude below the Planck scale,
so this unified theory would not involve quantum gravity. However, for the three
gauge theory coupling constants to meet at the same point, the theoretical concept
of supersymmetry improves on the approximate result without supersymmetry.
Supersymmetry is a symmetry that connects bosons and fermions: starting with a
bosonic particle one can perform a supersymmetry transformation and end up with
a fermionic particle. In our world supersymmetry, if it exists, must be a broken
symmetry, because we have not detected any supersymmetric partners of the Stan-
dard Model particles. Global supersymmetric quantum field theories have slightly
different properties than their non–supersymmetric counterparts. Most impor-
tantly, in the perturbative expansion cancellations take place between bosons and
fermions, generically making supersymmetric quantum theories better behaved.
Local supersymmetric theories automatically include supergravity, the supersym-
metric version of general relativity. So Grand Unified Theory, supersymmetry
and supergravity are intimately linked, which again suggests a possible unified
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description of gauge field theories and quantum gravity at the Planck scale.
From another point of view the basic fact that general relativity is a classical

field theory is unsatisfactory. At scales around the Planck length, quantum gravi-
tational effects are bound to become important and we will need a quantum theory
of gravity. However, so far general relativity has resisted all standard methods of
quantization and is said to be non–renormalizable (for an overview see [2]). One
may think this is just a technical problem, but there are fundamental interpreta-
tional problems as well when trying to quantize general relativity because we are
trying to quantize space and time. Many theoretical physicists agree that in order
to deal with the problem of quantization of space and time a radically new ap-
proach is called for. This is also emphasized by the confusing properties of black
holes in general relativity, which in a semiclassical approach are not black at all
and emit black body Hawking radiation. Studying these objects in general relativ-
ity, it turns out that one can formulate black hole laws that are strikingly similar
to the laws of thermodynamics. For example, one can assign a temperature and
an entropy to a black hole. At this moment one of the key questions in theoretical
physics is to try to understand what the fundamental degrees of freedom are that
make up the entropy of the black hole and how these thermodynamic degrees of
freedom arise from (quantum) general relativity.

At this moment, string theory is the only theoretical construction that can deal
with quantum gravity2 albeit in a perturbative, background dependent way. String
theory needs supersymmetry and extra spacetime dimensions to be set up consis-
tently (free of anomalies). In fact, there exist five different superstring theories
which are all living in ten spacetime dimensions and which are distinguished by
the number of supersymmetries and by the kind of strings (open and/or closed).
The construction of these five different anomaly free string theories is referred to
as the first string revolution (1984� 1985). Through the method of compactifi-
cation one can try to make contact with our observed universe, containing four
extended spacetime dimensions. String theory not only contains (quantum) grav-
ity, but gauge theories also appear naturally. All these ingredients, extra spacetime
dimensions, supersymmetry, quantum gravity and gauge theories, which are part
of any consistent string theory, make them interesting and promising candidates
for a unified theory [4].

One of the biggest problems of string theory is the fact that only a perturbative,
background dependent formulation exists. This makes it very hard to gain any
information about non–perturbative string theory. To make contact with our ob-

2As Weinberg said [3]: “String theory is the only game in town”.
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servable universe this is an important complication because it turns out that there
exist millions of ways to compactify to four dimensions. Perturbative string the-
ory will not predict which compactification is actually going to be preferred and it
is expected that non–perturbative information is needed in order to determine the
energetically favored compactification (vacuum). Another way of saying this is
that string theory, as it is formulated at this moment, is incapable of dynamically
generating its own vacuum.

An immediate drawback of string theory as a candidate of a unified theory is
the fact that there exist five of them. Ideally, one would like a single unique struc-
ture. The developments in string theory over the last ten years seem to indicate
that this is in fact true. The reason why this was not recognized before again has
its roots in the fact that string theories are only defined perturbatively. Only in the
last ten years was it discovered that all five string theories are related by duality
transformations. The concept of duality, a general term used to describe a rela-
tion between two physical theories or mathematical structures, has become very
important in string theory [5]. Through the concept of duality it has now been
recognized that all five string theory formulations describe different perturbative
corners of a single unique theoretical structure, which has been named M–theory3

[6]. M–theory is supposed to live in eleven spacetime dimensions and its low en-
ergy limit is described by eleven–dimensional supergravity, which is the maximal
spacetime dimension for a supergravity theory with Minkowski signature. The
theoretical tools used in establishing these duality relations were supersymmetry
and the use of D–brane string solitons, which enabled one to study string theory
beyond the perturbative regime.

One of the main topics of research following the second superstring revolution
(1994� 1996) was to find a formulation of M–theory. Following up on work
done on a regularized quantization of supermembranes, Matrix theory emerged as
a possible non–perturbative candidate capturing the dynamics of discrete light–
cone quantized M–theory. Although this formulation of M–theory certainly lacks
general covariance and is not background independent, it was the first time a non–
perturbative description of quantum gravity had been put forward. The surprising
thing about Matrix theory is that it is a 0+ 1–dimensional quantum mechanics
model of N particles. It can be obtained by considering a low energy limit of
string theory in the background of N D0–brane solitons. These non–trivial low
energy limits of string theory in the background of D–brane solitons were studied
further and have led to all kinds of interesting relations between gauge theories

3The M stands for anything you like, for example Mother, Membranes or Mystery.
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and string models containing gravity. This thesis discusses certain aspects of these
string theory limits and the duality relations between gauge theories and closed
superstring models containing gravity. One of the main goals of this thesis is to
show that particle limits of string theory can be setup very generally and lead to
interesting connections or correspondences between quantum field theories and
gravity. From that point of view string theory can be regarded as a very useful
tool to learn more about quantum particle theories.

The organization of this thesis is as follows. In chapter 2 we introduce the
basic ingredients of string theory. Chapter 3 discusses supersymmetry algebras
and the concept of BPS states. In the same chapter we also introduce the differ-
ent eleven– and ten–dimensional supergravity models, the BPS soliton solutions
of these models and present the concepts of string duality and M–theory. This
will provide the necessary background material to move on to chapters 4 and 5.
Chapter 4 introduces Matrix theory as a candidate description of M–theory and
discusses the construction of (part of) the BPS spectrum in Matrix theory. This
BPS spectrum is then compared to (part of) the BPS spectrum of M–theory. In
chapter 5 we discuss a general approach to consider non–trivial low energy limits
of string theory in the background of p–brane soliton solutions. The resulting du-
ality relations are discussed and some new examples are presented. Finally in the
concluding chapter 6 we summarize and discus our results and try to establish a
connection between Matrix theory and the dualities obtained in chapter 5.
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Chapter 2

String Theory

This chapter discusses the basics of string theory. We will start with a treatment of
the bosonic string and give an extended derivation of the closed string spectrum.
This will enable us to discuss the open bosonic and superstring spectra rather
succinctly. Bosonic string T–duality will then naturally lead to the introduction of
D–branes. In the following sections we will then introduce the different consistent
closed and open superstring theories and the appearance of D–branes in those
theories. For a traditional introduction to string theory we refer to [7]. Another
good introduction, with more emphasis on conformal field theory techniques, is
given in [8]. For an introduction into the concept of D–branes we refer to the
review paper [9] and for a modern introduction into string theory, including D–
branes, we refer to [10]. Throughout this thesis we will use units in whichh̄= c=
1 and we denote the Planck length and mass in D dimensions by l (D)

p and m(D)
p

respectively.

2.1 The bosonic string

In developing the theory of strings we will follow the same route as in a develop-
ment of point particle theory. We will start writing down an action describing the
motion of a classical bosonic string moving in a flat D–dimensional target space-
time and we will use mostly plus signature η µν

= diag(�1;1; : : : ;1). This string
will sweep out a two-dimensional worldsheet Σ in the target spacetime as opposed
to the one-dimensional worldline of a particle, see Figure 2.1. Generalizing the ac-
tion principle of a particle, we obtain the Nambu-Goto action of a classical string
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Figure 2.1: Swept out trajectories by particles, closed and open strings respectively.

which is proportional to the (relativistic) area of the worldsheet

SNG =�
1

2πα0

Z
Σ

d2σ
q
jdet(∂aXµ∂bXνηµν )j : (2.1)

In this equation σa denote worldsheet coordinates (a = 0;1) and Xµ
(σa

) denote
spacetime coordinates (µ = 0;1; : : : ;D�1) which are functions of the worldsheet
coordinates. Partial derivatives with respect to worldsheet coordinates are denoted
by ∂a. The minus sign in front of the action is there to make sure that kinetic
energy on the worldsheet has the proper positive sign.

The scale is set by the parameter α 0 which has dimensions [length]2 and can
be interpreted as the square of the size of the string (which is denoted by ls).
Historically this parameter was called the Regge slope parameter, referring to the
first introduction of string theory as a candidate for the strong interactions when α 0

was tuned to explain the linear relation between the squared mass and the angular
momentum of observed resonances. Nowadays, as a potential candidate for a
consistent description of quantum gravity α 0 should be of the order of the Planck
length. The quantity T =

1
2πα0 is the tension of the string.

The appearance of the square–root in this action (2.1) is problematic. It makes
the quantum analysis of this theory rather difficult. However, these problems can
be avoided by introducing a non–dynamical auxiliary field hab

(σc
), which should

be interpreted as the metric on the worldsheet Σ. This enables us to introduce
an equivalent action (at least classically) describing the embedding of a general
curved surface with metric hab into D–dimensional flat spacetime

SP =�
1

4πα0

Z
Σ

d2σ
p
jhjhab∂aXµ∂bXνηµν : (2.2)
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2.1. The bosonic string

In this action, usually called the Polyakov action, h is defined to be the determinant
of the worldsheet metric hab. Variation of this action with respect to hab defines
the two-dimensional energy momentum tensor Tab and we obtain

Tab� ∂aXµ∂bXµ � 1
2habh

cd∂cX
µ∂dXµ = 0 : (2.3)

Multiplication with hab shows that the trace of the energy momentum tensor Ta
a

vanishes identically as well. Taking determinants in (2.3) and taking a square–root
we obtain q

jdet(∂aXµ∂bXνηµν )j= 1
2

p
jhjhab∂aXµ∂bXν ηµν ; (2.4)

relating the Nambu-Goto (2.1) and the Polyakov action (2.2). The Polyakov action
only equals the Nambu-Goto action after using the (classical) equations of motion.
The Polyakov action will be our starting point for analyzing the classical and,
more importantly, the quantum behavior of the string.

Before we look at solutions to the string equations of motion derived from
(2.2) it is worth while discussing the symmetries of the Polyakov action. First of
all, by construction the Polyakov action is invariant under the following symmetry
transformations.

� Target spacetime Poincaré transformations

Xµ 0
= Λµ

νXν
+aµ

; (2.5)

which are induced by choosing the background to be flat Minkowski space-
time. We will discuss general covariant backgrounds later.

� Worldsheet reparametrisations

σa0
= f a

(σb
) ; (2.6)

where f a are arbitrary functions. How we choose to parametrise the string
should not have any physical consequences.

Finally there is a worldsheet symmetry which depends crucially on the fact that
we are dealing with one-dimensional objects.

� Weyl rescaling
hab0

= Λ(σc
)hab

; (2.7)
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Chapter 2. String Theory

meaning that the theory on the worldsheet is scale invariant. Only in two
dimensions is the combination

p
jhjhab invariant under conformal transfor-

mations (2.7). This symmetry will have important consequences for the
quantum analysis of the theory.

Using the local worldsheet symmetries we can choose the arbitrary worldsheet
metric hab to take on a useful form (compare with fixing a gauge in gauge theory).
We can always use worldsheet reparametrisations and scale invariance to make
the worldsheet metric equal to η ab

= diag(�1;1) locally (we will not discuss the
global aspects of such a gauge choice). So we can now write the Polyakov action
as

SP =�
1

4πα0

Z
Σ

d2σ ηab∂aXµ∂bXνηµν : (2.8)

Notice that we have not used up all worldsheet symmetries. In particular the above
action (2.8) is still invariant under special worldsheet coordinate transformations
σa

= f a
(σc

) that change the metric with a scale factor

η ab0
= ∂c f a∂d f bη cd

= Λ(σc
)η ab

: (2.9)

Coordinate transformations with this property are called conformal transforma-
tions (they preserve angles) and the theory on the worldsheet is called a confor-
mal field theory (CFT). The powerful techniques of conformal field theory in two
(worldsheet) dimensions can now be used to analyze this string theory [8]. How-
ever, in this thesis we will not discuss these techniques and we refer the reader to
[11] for a good review on conformal field theory and its applications.

Varying the action (2.8) with respect to Xµ and integrating by parts we obtain

δS=
1

2πα0

Z
Σ

d2σ δXµ∂ 2Xµ �
1

2πα0

Z
∂Σ

dσ δXµ∂nXµ : (2.10)

Demanding the variation of the action to be zero, the first part of (2.10) just gives
Laplace’s equation for the worldsheet scalars Xµ

∂ 2Xµ = 0 : (2.11)

The second part of the variation in (2.10) is a boundary term where ∂n denotes
the derivative normal to the boundary. To get rid of these boundary terms we now
have to make a distinction between closed and open strings.
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2.1. The bosonic string

� Closed strings can be parametrized in a spatial direction by σ 2 [0;2π] and
in a timelike direction by τ . They are defined by the “boundary condition”

Xµ
(τ ;0)� Xµ

(τ ;2π) : (2.12)

Closed strings have no spacelike boundary and therefore the boundary term
in (2.10) vanishes1.

� Open strings do have a boundary and therefore we have to get rid of the
boundary term in (2.10) by imposing boundary conditions on the open string
endpoints. Introducing a spatial coordinate σ 2 [0;π] this can be done in
two distinct ways.

– Neumann boundary conditions

∂nXµ jσ=0;π = 0 : (2.13)

This boundary condition is Poincaré invariant and therefore was con-
sidered to be the only physically acceptable one. It just means that
there is no momentum flow off the string.

– Dirichlet boundary conditions

δXν jσ=0;π = 0) Xν jσ=0;π = constant: (2.14)

This boundary condition was considered pathological in the past be-
cause of lack of Poincaré invariance. It made an impressive comeback
the last five years when it was discovered that these open strings de-
scribe solitonic state vacua (D–branes) of closed string theories. We
will discuss the arguments for that in the section on T–duality and
D–branes. Physically the Dirichlet boundary condition (2.14) tells us
that the endpoints of the open string are fixed on some hyperplane. If
all spacetime coordinates Xν are fixed, including the timelike coordi-
nate,then the string endpoints are stuck to a spacetime event, and we
speak of a D–instanton. We are free to impose Dirichlet boundary con-
ditions on some coordinates (say n) and Neumann on others (D�n) to
obtain a D–brane with p= (D�n�1) spatial dimensions.

1Remember that the variation δXµ vanishes at the timelike boundaries by definition.
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Chapter 2. String Theory

Of course we still have the equations of motion for the metric (2.3), which
after gauge fixing become the constraints

T10 = T01 =
1
2ẊµX0

µ = 0 ; T00 = T11 =
1
4

�
Ẋ2

+X02
�
= 0 ; (2.15)

which can also be written as �
Ẋ�X0�2

= 0 ; (2.16)

where we left out the spacetime indices. The dot represents a partial derivative
with respect to a timelike worldsheet coordinate τ and a prime represents a par-
tial derivative with respect to the spacelike worldsheet coordinate σ normal to τ .
These equations (2.15) go under the name of Virasoro constraints.

2.1.1 Closed string spectrum

We choose worldsheet coordinates τ and σ , where σ 2 [0;2π] denotes the spatial
direction of the string. The most general solution of the Laplace equation (2.11)
that also satisfies the periodicity condition for the closed string (2.12) can be split
into a left– (+) and right–moving (�) part

Xµ
(τ ;σ) = Xµ

+(τ +σ)+Xµ
�(τ �σ) ; (2.17)

where

Xµ
�(τ �σ) =

1
2xµ

+
1
2

p
α 0α µ

0 (τ �σ)+
1
2

p
α 0 i ∑

n6=0

1
n

α µ
n e�in(τ�σ)

;

Xµ
+(τ +σ) =

1
2xµ

+
1
2

p
α 0 α̃ µ

0 (τ +σ)+
1
2

p
α 0 i ∑

n6=0

1
n

α̃ µ
n e�in(τ+σ)

: (2.18)

The α µ
n and α̃ µ

n for n 6= 0 are arbitrary dimensionless Fourier modes, not to be
confused with the fundamental scale parameter α 0, and n runs over the integers.
From the periodicity condition (2.12) we conclude that

α̃ µ
0
�α µ

0
= 0 : (2.19)

This enables us to define
α µ

0 = α̃ µ
0 �

p
α 0 pµ

; (2.20)
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2.1. The bosonic string

for reasons that will become clear when we calculate the center of mass momen-
tum. Because Xµ

(τ ;σ) has to be real we conclude that xµ and pµ , which are
constants, have to be real and find the following reality conditions for the Fourier
modes

(α µ
n )

�
= α µ

�n and (α̃ µ
n )

�
= α̃ µ

�n ; (2.21)

where the � denotes complex conjugation. This allows us to write

∂�Xµ
� =

1
2

p
α 0 ∑

n
α µ

n e�in(τ�σ)
;

∂+Xµ
+ =

1
2

p
α 0 ∑

n
α̃ µ

n e�in(τ+σ)
; (2.22)

where the � and + denote differentiation with respect to τ �σ and τ +σ re-
spectively and n = 0 is now included in the sum. Calculating the center of mass
position of the closed string we obtain

xµ
CM

(τ ) =
1

2π

Z 2π

0
dσ Xµ

(τ ;σ) = xµ
+α 0 pµ τ ; (2.23)

because all the oscillator terms integrate to zero. So we see that the constant xµ

represents the center of motion position of the string at τ = 0. Calculating the
center of mass momentum we find

pµ
CM

= T
Z 2π

0
dσ Ẋµ

(τ ;σ) = T
Z 2π

0
dσ (∂�Xµ

� +∂+Xµ
+)

= T
Z 2π

0
dσ 1

2

p
α 0(α µ

0 + α̃ µ
0 ) = pµ

; (2.24)

where again all the oscillator contributions integrate to zero and we used defini-
tions (2.20). We also used that the tension T is defined as 1

2πα0 , canceling all π’s
and α 0’s in the above expression.

We conclude that the variables describing the classical motion of the string
are the center of mass position xµ and momentum pµ plus an infinite collection of
variables α µ

n and α̃ µ
n . This just reflects the fact that the string can move as a whole

but it can also be in an infinite number of internal vibration modes, represented by
the oscillator degrees of freedom.

We are now ready to quantize the closed bosonic string. As in particle theory
we can proceed in different ways. We could first solve the classical constraints
(2.15) and then quantize canonically (imposing commutation relations), losing
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Chapter 2. String Theory

manifest Lorentz covariance. The solution of the constraints is achieved most eas-
ily in the so–called light–cone gauge, so this way of quantizing is usually referred
to as light–cone quantization (LCQ). Another way would be to quantize covari-
antly and impose the Virasoro constraints as conditions on the states in Hilbert
space, called covariant canonical quantization (CCQ). A third possibility is to
use path integral quantization (PIQ) which has manifest Lorentz covariance, but
works in a bigger Hilbert space which contains ghost fields. We will first proceed
using CCQ, to introduce the Virasoro operators and the constraints on the physi-
cal states. A quick and physically insightful way to deduce the physical spectrum
of the string will however make use of LCQ. For a discussion on path integral
quantization we refer to [7, 8, 10].

As is usual in canonical quantization we will replace all fields by operators and
Poisson brackets by (equal time) commutators. The Virasoro constraints (2.15)
are then operator constraints which have to annihilate physical states. We im-
pose the usual commutation relation between position Xµ

(τ ;σ) and momentum
Pµ

(τ ;σ)� TẊµ

[Xµ
(τ ;σ);Pν

(τ ;σ 0
)] = iδ(σ�σ 0

)η µν
: (2.25)

Using the expressions (2.17) and (2.18) this commutation relation can be trans-
lated into commutation relations involving the center of mass position and mo-
mentum and commutation relations involving the Fourier modes.

[xµ
; pν

] = i η µν
;

[α µ
m;α ν

n ] = mδm+n;0 η µν
;

[α̃ µ
m; α̃ ν

n ] = mδm+n;0 η µν
: (2.26)

All the other commutators vanish. Looking at these commutators we conclude
that the first is just the usual one for a propagating particle, while the others are
commutators familiar from the creation and annihilation operators in the harmonic
oscillator for an infinite set of oscillators (except for a factor of m). We note that
the reality condition (2.21) just becomes a hermiticity condition on the oscillators.

Next we have to define a Hilbert space on which these operators act. Because
we just concluded that our string is nothing but an infinite set of oscillators this is
not very difficult. From (2.26) we conclude that the negative frequency modes α µ

m,
m> 0 are lowering operators and the positive frequency modes m< 0 are raising
operators. The ground state should now be defined as the state annihilated by all
lowering operators. The complete definition of a state also involves the center of
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mass operators xµ and pµ . If we choose to diagonalise the momentum operator,
every state is also characterized by momentum kν . The (infinitely degenerate)
ground state j0;kνi can then be defined as

α µ
m j0;kνi = 0 8m> 0 ;

pµ j0;kνi = kµ j0;kνi : (2.27)

Excited states can now be constructed by acting on the ground state with the neg-
ative frequency modes. Because of the Minkowski signature some of these states
have negative (or zero) norm which could cause problems. In fact not all these
states are physical because of the Virasoro constraints (2.15) and therefore we
should now take a closer look at these constraints.

In worldsheet light–cone coordinates the components of the worldsheet stress
energy tensor (2.3) are just

T++ =
1
2∂+Xµ∂+Xµ ; T�� =

1
2∂�Xµ∂�Xµ ; T+� = T�+ = 0 : (2.28)

Defining the Virasoro operators as the Fourier modes of the worldsheet stress
energy tensor we obtain

Lm�
1

πα0

Z 2π

0
dσ T��eim(τ�σ)

; L̃m�
1

πα0

Z 2π

0
dσ T++eim(τ+σ)

; (2.29)

and using (2.17) through (2.22) to express the Virasoro operators in terms of the
oscillators we obtain

Lm =
1
2 ∑

n
α µ

m�nαnµ ; L̃m =
1
2 ∑

n
α̃ µ

m�nα̃nµ : (2.30)

In the quantum theory we should normal order this expression. This means putting
positive frequency modes to the right of the negative frequency modes. As the
reader can check, only L0 and L̃0 are sensitive to normal ordering and can be
written as

L0 =
1
2α0

2
+

∞

∑
n=1

: α µ
�nαnµ : ; L̃0 =

1
2 α̃ 0

2
+

∞

∑
n=1

: α̃ µ
�nα̃nµ : ; (2.31)

where the : denote normal ordering. Because the commutator of two oscillators
is a constant and we do not know in advance what this constant should be, we
include normal ordering constants a and ã and replace the L0 and L̃0 constraints
by (L0�a) and (L̃0� ã). We can calculate the Virasoro algebra and find

[Lm;Ln] = (m�n)Lm+n+
c

12
m(m2�1)δm+n;0 ; (2.32)
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where c is the central charge, which is equal to the target spacetime dimension d
(or the number of scalars X on the worldsheet). A similar expression holds for
[L̃m; L̃n].

Using the Virasoro algebra it can be deduced that it is only consistent to im-
pose “weakly” vanishing constraints,

Lmjphysi= 0 ; L̃mjphysi= 0 8m> 0 ;

(L0�a) jphysi= 0 ; (L̃0� ã) jphysi= 0 : (2.33)

These constraints ensure that all expectation values of the Virasoro operators van-
ish

hphys0jLnjphysi= 0 ; hphys0jL̃njphysi= 0 ; (2.34)

explaining why they are called “weakly” vanishing constraints.
Analyzing the L0 and L̃0 condition in (2.33), using equations (2.31) and (2.20)

and the fact that M2
= �p2, we can conclude a = ã by working on the ground

state. For both constraints L0�a and L̃0�a to hold for all closed string physical
states we must also conclude that we need a level matching condition saying

N�
∞

∑
n=1

α µ
�nαnµ = Ñ�

∞

∑
n=1

α̃ µ
�nα̃nµ ; (2.35)

where we have defined level number operators N = Ñ. This enables us to write
down the mass–shell condition for the closed string states

M2
=

4
α 0 (N�a) : (2.36)

So the physical states in our theory are the states created from the ground state
(2.27) using creation operators which also satisfy (2.33). What we need to show
is that the spectrum obtained in this way only contains positive norm states. To
show this is a very non–trivial task and we will just mention the result. The famous
“no ghost” theorem states that if and only if the target spacetime dimension D is
26, will the physical spectrum be free of negative norm states (and the null states
decouple).

So far we have been discussing a fully Lorentz covariant method for quantizing
the string. In that setup it is not very obvious what the physical states are. To
get a better look at the physical spectrum it is insightful to discuss light–cone
quantization. The solution to the constraints before quantizing is achieved the
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2.1. The bosonic string

easiest when we break Lorentz–covariance by choosing target spacetime light–
cone coordinates X+ and X�

X+
=

1
2

p
2(X0

+X1
) ; X�

=
1
2

p
2(X0�X1

) : (2.37)

The result of this choice will be first of all that we can use the left–over world-
sheet conformal symmetries (2.9) to gauge away all oscillators in X+. Secondly,
when we solve the constraints (2.15), the oscillators in X� can be expressed using
the oscillators α i

n and α̃ i
n of the transverse coordinates Xi . This means the only

physical internal excitations are the transverse α i
n and α̃ i

n. There is a physical way
of understanding this. The string is described by a 2–dimensional surface embed-
ded in D–dimensional target spacetime. Excitations (vibrations) in the internal
directions (τ ;σ) can be transformed away by coordinate transformations on the
worldsheet. Therefore there should only exist D�2 physical (oscillator) degrees
of freedom on the string. To construct the physical spectrum we only use the
transverse oscillators α i

n and α̃ i
n with n< 0, keeping in mind the level matching

condition (2.35). After that we only have to insert the string mass shell condition
(2.36) involving L0 and L̃0, all other constraints are already solved for by using
only the transversal oscillators. In principle we should check Lorentz covariance
after performing the light–cone quantization. We will just quote the result that
only when D = 26 we keep Lorentz covariance, which is consistent with the re-
sult mentioned in the previous paragraph on the covariant quantization approach.
We will see that the investigation of the spectrum, together with enforced Lorentz
covariance, also fixes the normal ordering constant to be equal to a= 1.

The ground state for the closed string is j0;kµi for which we have the mass–
shell condition M2

=
�4a
α 0 . The first excited level is constructed through

α i
�1α̃ j

�1j0;k
µi ; (2.38)

for which we find the mass–shell condition

M2
=

4
α 0 (1�a) : (2.39)

The state (2.38) can be decomposed into irreducible representations of the trans-
verse rotation group SO(24). These are the symmetric traceless part, the antisym-
metric and the trace part of (2.38), which can be interpreted as a small excitation of
the metric tensor Gi j , an antisymmetric tensor field Bi j and a scalar Φ respectively.
Lorentz invariance requires physical states to be representations of the little group
of the Lorentz group SO(25;1). For massless states this is SO(24) and for massive
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states this is SO(25). We just saw that the first excited level states transform in
representations of SO(24) and therefore they should be massless. This fixes the
normal ordering constant to be equal to a = 1 (2.39). This also means that the
ground state has negative mass and is therefore tachyonic. This is not a good sign,
it signals an instability of the theory. It turns out that higher level excitations can
be uniquely combined into representations of SO(25), which is consistent with
Lorentz invariance for massive states. The higher level excitations have masses
proportional to M2 ∝ 4

α 0 . Assuming
p

α 0 � l (26)
p shows that these masses are very

large and can be neglected when taking a low–energy limit.
We want to end this section by summarizing the most important conclusions

from the analysis of the bosonic string. It is important to recognize that the anal-
ysis of the string becomes non–trivial because of the constraints. Enforcing target
spacetime Lorentz invariance fixes the target spacetime dimension D = 26 and
determines the normal ordering constant a= 1 when using the light–cone gauge.
When we couple the string to more general background fields we will learn that
the constraint on the spacetime dimension is directly related, before we fix any
gauge, to the conformal anomaly. The first excited states are massless and de-
scribe small excitations of an antisymmetric tensor field Bµν , a scalar Φ usually
called the dilaton and, very interestingly, the gravitational field Gµν . This last
observation raised hopes that string theory could describe quantum gravity. How-
ever the ground state is tachyonic which usually signals an instability of the vac-
uum. When discussing superstrings we will see a consistent way to get rid of the
tachyon.

2.1.2 Open string spectrum

In this section we will only discuss the open string with Neumann boundary con-
ditions in all target spacetime directions. The open string spectrum with Dirichlet
boundary conditions in some directions will be discussed in the section on D–
branes. Most of the previous discussion also applies for the open bosonic string
with Neumann boundary conditions. There is basically just one difference. Be-
cause of the Neumann boundary conditions the right– and left–moving Fourier
modes α µ

n and α̃ µ
n are no longer independent, i.e. only standing wave solutions

are allowed. Solving the boundary conditions (2.13) we find the classical solution

Xµ
(τ ;σ) = xµ

+2α 0pµ τ +
p

2α 0 i ∑
n6=0

α µ
n

n
e�inτ cosnσ ; (2.40)
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where σ now runs from 0 to π. Just as in the closed string the constants xµ and pµ

are constants describing the center of mass position and momentum of the open
string. In principle we can now just copy the results found for the closed bosonic
string. Demanding Lorentz invariance has the same consequences, D = 26 and
a= 1. Going through the same steps as for the closed string we obtain the mass–
shell condition for open string states

M2
=

1
α 0 (N�1) : (2.41)

Where we have defined a level number operator for the open bosonic string

N =

∞

∑
n=1

α µ
�nαnµ : (2.42)

So again we find a tachyonic ground state. The first excited level in the light–cone
gauge can now be constructed as

α i
�1j0;k

µi ; (2.43)

for which we again find that it is massless. We also immediately conclude that
this state should be an abelian foton because (2.43) is the vector representation of
SO(24). For higher level n excitations there always exists a state described by a
symmetric SO(25) massive tensor of rank n. This also implies that the maximal
spin at level n can be expressed in terms of the mass

Jmax
= α 0M2

+1 : (2.44)

Let me briefly mention a method to introduce non-abelian massless foton
states in the open string theory. For an oriented open string both endpoints are
distinct and we could associate labels i and j̄ to them, transforming in the funda-
mental (N) and anti–fundamental (N̄) representation of U(N)

2. These labels are
usually called Chan–Paton factors. Because these labels are not dynamical, the
only thing that changes in the spectrum is that the states are promoted to N�N
matrices, transforming in the N2 dimensional adjoint representation of U(N), as is
appropriate for a non-abelian foton. We will discuss this setup in somewhat more
detail when we discuss D–branes.

2This set up is based on the original motivation for string theory as a description of the strong
interactions. The open string resembles a gluon flux tube, with a quark and anti–quark at the
endpoints, on which for example the color group SU(3) acts.
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So we conclude that for the open string we also find a tachyonic ground state.
Interestingly we find a massless (abelian) foton at the first excited level. Indeed
when we discuss a low–energy limit, neglecting all massive excitations, at lowest
order we will just find Maxwell theory. As for the closed bosonic string this open
string theory lives in 26 dimensions. In the supersymmetric extension of the open
string, as in the closed string, we will be able to get rid of the unwanted tachyon
state.

2.1.3 String interactions

What we have done so far is to construct the physical quantum spectrum of the
closed and open free bosonic string. We have not said anything on how different
string states interact with each other. In order to construct an interacting string
theory we would like to construct a string field theory, or what is usually called
a second quantized theory. However up to the present nobody has been able to
construct a fully satisfactory string field theory. It is known how to set up a string
perturbation expansion in a small string coupling constant gs making use of a
stringy generalization of Feynman diagrams3.

To lowest order we should consider string tree diagrams. Consider a string
moving through target spacetime emitting another string. Again we could now
parametrise the worldsheet, find appropriate boundary conditions and quantize
the theory we obtain. Because of conformal invariance however there exists a
much easier method to describe these interacting strings, involving so–called ver-
tex operators. Using conformal transformations the string tree diagram can be
transformed into a worldsheet (for the closed string this will be a sphere, for the
open string this is a disc) with points inserted representing the outgoing string
states. At these points operators should be inserted to describe the emission of a
string state, these will be the vertex operators. For closed strings the perturbative
expansion and their conformally transformed surfaces with inserted vertex oper-
ators are shown in Figure 2.2. We will proceed by giving some insight in how to
construct these vertex operators.

To describe the basic elements of this construction we will just transform the
tree diagram worldsheet to one with one vertex operator inserted representing
a string emitting another string. In quantum mechanics we would calculate a

3In string theory we are in a situation where, if we compare with particle theory, we would
only know the bosonic free particle propagator, and not be aware of the Klein–Gordon equation
and its interacting extensions. Using the free particle propagator we could still setup the Feynman
expansion to introduce perturbative interactions.
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Figure 2.2: A closed string perturbative expansion before and after using conformal
transformations.

probability amplitude by taking the inner product of two states as

A= hΨinjΨouti : (2.45)

We are going to do the same thing for the string theory tree diagram. Let us denote
the incoming string state as jBi and the outgoing string state as jB0i. To deal with
the emitted state jCi we introduce the vertex operator VC(τ ;σ) which turns the
string state jB0i after emission into the string state before emission. So then the
string probability amplitude we have to calculate will be

A= hBjVC(τ ;σ)jB0i : (2.46)

One effect of a vertex operator should always be that it decreases the momentum
of the state before emission. Because

[pµ
;eikν Xν (τ ;σ)

] = kµeikν Xν (τ ;σ)
; (2.47)

where we used (2.26), it is clear that the normal ordered operator e�ikν Xν (τ ;σ)

working on a string state will decrease the momentum by kµ . We conclude that
any vertex operator should contain such a term. The tachyon vertex operator is in
fact completely determined by it. An (excited) string state is further determined
by its transformation properties under the Lorentz group, and any vertex operator
should contain that information. For example the foton state of an open string is
described by the normal ordered vertex operator

Vf oton=: η µ Ẋµ e�ikν Xν
: ; (2.48)

where η µ denotes the polarization of the foton. The conclusion will be that we
can construct these vertex operators for every string state.
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R

Figure 2.3: Closed strings with different winding numbers.

Inserting these vertex operators on two–dimensional Riemannian manifolds
we can calculate scattering amplitudes to any order, where the order is given by
the number of holes, the genus, of the two–dimensional Riemannian manifold.
Note that in Figure 2.2, as opposed to perturbative field theory, there is only one
diagram per given order. We also want to emphasize that the manifolds are per-
fectly smooth. Interactions do not involve singular points in the perturbative string
expansion. In that sense string theory spreads out the interactions and this is one
intuitive way of understanding why string perturbation theory is much better be-
haved than perturbative field theory.

Let us end this section by noting that the perturbative expansion of closed
string theory is consistent by itself. Open string perturbative expansions how-
ever are not consistent on their own. This is because two open strings can join
to form a closed string, and therefore open strings automatically should include
closed string states when considering interactions. This will be important when
we discuss T-duality and its consequences for the open string.

2.1.4 T-duality and the appearance of D–branes

So far we assumed that the target spacetime was infinitely extended flat Minkows-
ki space R 25;1. We would now like to discuss bosonic string theory in a flat back-
ground, but with one of the target spacetime coordinates periodically identified
with radius R. So we assume spacetime to be the direct product R 25�S1

(R). Let
us choose X25 to have a period 2πR. This can have two effects. First of all we
know from quantum mechanics that the momentum p25 of the string can now only
take on the values n=R with n an integer. Secondly the string can wind around the
compactified dimension X25 an integer w number of times, as shown in Figure 2.3.
This means that we have to give up condition (2.12) in the direction X25. Instead
we have

X25
(τ ;0)� X25

(τ ;2π)+2πwR: (2.49)
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This boundary condition tells us that in the special direction X25, using the expan-
sion (2.18), we no longer find (2.19) and (2.20) but instead

α̃ 25
0 �α 25

0 �
2p
α 0

wR;

α 25
0 + α̃ 25

0 � 2
p

α 0 p25
= 2

p
α 0 n

R
: (2.50)

From these equations we deduce the following expressions for α 25
0 and α̃ 25

0 sepa-
rately

α 25
0 =

�
n
R
�

wR
α 0

�p
α 0

;

α̃ 25
0 =

�
n
R
+

wR
α 0

�p
α 0

: (2.51)

Using the constraint Virasoro operators L0 and L̃0 and defining a 25–dimen-
sional mass operator M2

=�pµ pµ , with the index µ 2 [0;24], we find the follow-
ing mass–shell constraint for closed strings in this target spacetime

M2
=

4
α 0

�
1
4
(α 25

0 )
2
+(N�1)

�

=
4
α 0

�
1
4
(α̃ 25

0 )
2
+(Ñ�1)

�
: (2.52)

We note that the level number operators are defined as usual (2.35) with the space-
time indices running over the complete spacetime [0;25]. Instead of the level–
matching condition we found for the 26–dimensional closed string (2.35) we now
deduce the following condition from (2.52) and (2.51)

nw+ (Ñ�N)� 0 : (2.53)

This reduces to the level–matching condition when n= 0 or w= 0.
Decomposing the massless states in (2.52) with n = w = 0 into 25–dimen-

sional Lorentz group representations we find the same spectrum as in the 26–
dimensional case except for two extra massless U(1)R�U(1)L foton states and a
scalar, where one of the creation operators has its index in the compact direction.
These are the usual Kaluza–Klein modes coming from the decomposition of the
26–dimensional metric and antisymmetric tensor. As opposed to ordinary field
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theory where we only have a tower of momentum modes, we find a tower of mo-
mentum modes and a tower of winding modes. In field theory we are used to the
fact that when we take the limit R! 0, the momentum modes become infinitely
massive and therefore decouple, so the compactified dimension effectively disap-
pears. In closed string theory however we see that in this limit all winding modes
become massless, meaning the compactified dimension does not disappear but in
some sense reappears.

In fact the mass spectra of the string theories at radius R and radius α 0

R are
identical when at the same time the winding and the Kaluza–Klein modes are
interchanged n$ w. This transformation takes

α 25
0 !�α 25

0 ; α̃ 25
0 ! α̃ 25

0 (2.54)

and can be generalized using (2.17) to the one–sided parity transformation work-
ing only on the right–moving (�) degrees of freedom

X25
� !�X25

� ; X25
+ ! X25

+ ; (2.55)

or it can also be understood as an interchange of the worldsheet coordinates

τ $ σ : (2.56)

It can be proven that both closed string theories obtained in this way give us ex-
actly the same results. This is called T–duality. The statement is that closed string
theory compactified on a circle with radius Rcan not be distinguished from closed
string theory compactified on a radius α 0

R . This has the important consequence
that there exists a minimal length Rmin =

p
α 0. Closed string theories with radii

smaller than Rmin can be mapped, using T–duality, to closed string theories with
radii bigger than Rmin. Exactly at this minimal length we get symmetry enhance-
ment. Taking jnj= jwj= 1 we find 4 extra massless foton states because of (2.53).
These states, together with the two Kaluza–Klein foton states belong to an adjoint
representation of SU(2)L�SU(2)R. This is another way of obtaining non-abelian
fotons from string theory. T–duality and symmetry enhancement are considered
important signs that strings see spacetime geometry very differently from the way
we are used to.

Now we want to discuss open strings (with Neumann boundary conditions)
and T–duality. Open strings can not wind around the compactified dimension and
we only find a tower of Kaluza–Klein momentum modes. Therefore a T–duality
transformation, if it exists, can not map the open string theory to the same open
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string theory with radius α 0

R . The fact that interacting open strings can only be
defined by introducing closed strings as well, is convincing evidence that there
should exist a T–dual open string theory. Using (2.55) or equivalently (2.56) it
is in fact easy to see what happens in this case. Performing the one–sided par-
ity transformation, i.e. X̃ = X+�X�, and introducing an extra constant c, which
drops out if we sum left– and right–moving contributions, the open string expan-
sion (2.40) in the T–dual compact coordinate becomes

X̃25
(τ ;σ)� X25

+ �X25
� = c+2α 0p25 σ +

p
2α 0 i ∑

n6=0

α µ
n

n
e�inτ sinnσ ; (2.57)

Comparing with (2.40) we see that after the T–duality transformation the open
string does not carry any center of mass momentum in the compactified direction
and in the oscillator part cosines have been changed into sines. This has the im-
portant consequence that the string endpoints σ = 0 and σ = π are fixed. This is
in accordance with the fact that we could have also interpreted the T–duality trans-
formation as an interchange of σ and τ (2.56) changing the Neumann boundary
condition into a Dirichlet boundary condition

∂σX25
= 0�! ∂τ X̃25

= 0 : (2.58)

In fact all endpoints are now constrained to live on a 25–dimensional hyperplane,
called a D–brane. To see this we integrate the dual coordinate over the string
worldsheet coordinate σ and find

X̃25
(π)� X̃25

(0) =
Z π

0
dσ ∂σ X̃25

= 2πα0p25
= 2πnR̃; (2.59)

where R̃ is the T–dual radius R̃ =
α 0

R . So the endpoints are fixed on the 25–
dimensional D24–brane and the open strings wrap around the compact direction
n times. These strings are the analogues of the closed string winding modes.
In that sense T–duality again interchanges momentum and winding modes. The
statement of T–duality now is that open string theory on R

25�S1
(R) can not be

distinguished from a R
25 D–brane positioned on the T–dual circle S1

(R̃). Mo-
mentum modes of the Neumann open string map to D–brane open string winding
modes, as shown in Figure 2.4.

The arguments in this section can be generalized to include more compact
directions. In the case of open strings this just changes the dimensionality of the
T–dual D–brane. If Xc2 [X25

;X24
; : : : ;Xp+1

] are all compact coordinates then the
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Figure 2.4: The open string T–duality transformation mapping open string momentum
modes to D–brane winding modes.

T–dual theory will be described by a (p+ 1)–dimensional Dp–brane theory. In
this light the conventional open string theory we started with can be considered as
living on a spacetime filling D–brane (a D25-brane). An important generalization
involves adding U(N) Chan–Paton factors to the open string theory. Along the
compact direction we could introduce vacuum expectation values for the gauge
fields (usually called Wilson lines) that will break the gauge group to U(1)N.
We will just mention the result that the T–dual theory will involve N Dp–branes
positioned in the D� p�1 compact direction(s). These positions (the constant c
in (2.57)) can be varied and whenever any D–branes coincide we expect symmetry
enhancement, e.g. U(1)�U(1)!U(1)�SU(2). We finally would like to point
out that we can define D–branes in a decompactified spacetime by taking the limit
R! 0 which takes R̃!∞, formally decompactifying the T–dual target spacetime.

2.1.5 D–branes

D–branes should be understood as dynamical solitonic string objects which we
can describe by open strings ending on them. They are dynamical because two
D–branes can interact by exchanging closed strings, which are not confined to the
D–brane worldvolume. That also means the D–brane has mass (and charge in su-
perstring theory). From that point of view we can see the D–brane as a symmetry
breaking vacuum of closed string theory4. In the sections on the superstring and
in the next chapter we will see explicit examples of that. On the other hand we
saw that D–branes appear naturally when considering T–duality for open strings.

4Similar to a a magnetic monopole vacuum in gauge theories.
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2.1. The bosonic string

Consider a single Dp–brane positioned in a 26–dimensional spacetime (from
the T–dual perspective we consider the limit R! 0 or R̃! ∞). This will break
the Lorentz covariance of the theory into SO(1; p)�SO(26� p�1) and the string
states should fit in representations of this broken Lorentz group. The open strings
describing the Dp–brane have Neumann boundary conditions in the p+ 1 Dp–
brane worldvolume directions Xµ and Dirichlet boundary conditions in the 26�
p� 1 transversal directions Xi . Looking at (2.59) and noting that we describe a
limit where R̃! ∞ we should conclude that the transversal pi can only be zero
(n= 0) when considering just one Dp–brane. Therefore the Dirichlet contribution
to the mass–shell condition will vanish and we just find

M2
= (pi

)
2
+

1
α 0 (N�1) =

1
α 0 (N�1) : (2.60)

The massless states are thus defined by α M
�1 j0;k

νi where M 2 [0;25]. Decom-
posing these massless states into representations of the Dp–brane worldvolume
Lorentz group SO(1; p) we find one massless foton state

α µ
�1
j0;kνi ; µ 2 [0; p] (2.61)

and 26� p�1 scalars from the Dp-brane worldvolume perspective

α i
�1 j0;k

νi ; i 2 [p+1;25] ; (2.62)

forming a representation of the transversal SO(26� p� 1) rotation group and
therefore giving the position of the Dp–brane in target spacetime.

Now consider N Dp–branes. Open strings can stretch between the different
Dp–branes. The N = 2 case is shown in Figure 2.5. This has the effect that pi

no longer has to be equal to zero. Denoting the distance between the Dp–branes
by ∆i

ab� Xi
a(0)�Xi

b(π), where we introduced the indices a and b to label the N
different Dp-branes (∆aa = 0), we find for the mass shell condition (2.60)

M2
=

�
∆ab

2πα0

�2

+
1
α 0 (N�1) : (2.63)

For generic values of ∆2
ab this will just give N copies of the single Dp–brane spec-

trum plus extra massive scalar and vector states coming from the open strings
stretching between the Dp–branes. The masses of these states are proportional
to the distance between the branes, as should be expected. Bringing Dp–branes
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Figure 2.5: Two D–branes and some open strings ending on them.

together we find symmetry enhancement because of the extra massless states ap-
pearing in the theory. Giving every (massless) string state indices a and b labelling
on which Dp–brane the two different endpoints of the open string end j0;kµiab,
it must be clear that we find m2 massless fotons and scalars when m Dp–branes
coincide. The massless fotons and scalars form an adjoint representation of U(m).
That the scalars form a matrix seems very weird in the light of the interpretation
as giving the position of the different Dp–branes. Because in general matrices do
not commute this is an example of noncommutative geometry in string theory and
again signals that strings see spacetime very differently from the classical way we
are used to.

Let us next consider the interaction of D–branes with the closed strings. It
is possible to calculate the scattering amplitude for two open strings producing
a closed string or the amplitude for the exchange of closed strings between two
D–branes, which is shown in Figure 2.6. The latter diagram is at the heart of many
duality relations between closed and open strings because it can either be viewed
as a closed string being exchanged between two D–branes or as an open string
vacuum amplitude. Both points of view describe the same physics. From these
amplitudes we can deduce the mass of the D–brane. We will just give the
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Figure 2.6: Two D–branes exchanging a closed string or equivalently a stretched open
string vacuum amplitude.

important result that the mass of a D–brane is

MD ∝
1
gs

(2.64)

This is a very important property (it will also hold for D–branes in superstring
theories), as we will see later. An ordinary soliton in field theory would have a
mass proportional to 1=g2

s, so a D–brane is somewhere in between a soliton and a
perturbative state.

2.1.6 Strings in general background fields

So far we have been discussing bosonic strings moving in a flat Minkowski tar-
get spacetime. Analyzing the spectrum of closed strings we found three massless
states describing small excitations of the (more general) metric tensor Gµν , an-
tisymmetric tensor Bµν and a scalar Φ and we could construct vertex operators
for those states. A more general background should be interpreted as a coherent
background of these massless string states5. Taking the deviation from a flat back-

5Another way of saying this would be that the massless fields have non–trivial vacuum expec-
tation values.
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ground to be small, consistency tells us that we should find the appropriate vertex
operator we obtained from analyzing strings in a flat background. The generaliza-
tion of (2.2) for closed strings moving in a background determined by any of the
massless fields, respecting the consistency conditions from the vertex operators,
is then found to be

Sσ =�
1

4πα0

Z
Σ

d2σpg f [gabGµν (X)+ εabBµν (X) ]∂aXµ∂bXν

+ α 0R(2)Φ(X) g : (2.65)

In this expression εab is the antisymmetric unit tensor, or Levi–Cevita tensor, and
R(2) the Ricci curvature scalar of the worldsheet. It must be clear that this is
no longer a free worldsheet theory because of the dependence of the (spacetime)
fields on X. We now have to deal with an interacting two–dimensional quantum
field theory, which is usually called a non–linear σ–model. Let us first derive an
important consequence of the specific way the dilaton scalar appears in the action
(2.65).

In two dimensions the Ricci scalar only depends on the topology of the world-
sheet and does not influence local worldsheet dynamics. The topological Euler
number (for closed strings) equals

χ �
1

4π

Z
Σ

d2σpgR(2)
= 2�2h; (2.66)

where h is the number of handles on the worldsheet. Suppose Φ is a constant then,
in a path integral approach to calculating string scattering amplitudes, different
contributions in a loop expansion are weighted by e�Φχ . Adding a handle is the
same as emitting and reabsorbing a string and will lower the Euler number (2.66)
by 2 and therefore add a factor of e2Φ to the original amplitude. We therefore
conclude that emitting a closed string state is weighted by eΦ which can then be
interpreted as the closed string coupling constant gs = eΦ. Because one of the
closed string states describes fluctuations of the dilaton scalar Φ, we arrive at the
important conclusion that (closed) string theory dynamically generates its own
coupling constant. For open strings we are basically led to the same conclusion
that gs = eΦ. However in the open string the topological Euler number is receives
an extra contribution because the two–dimensional open string worldsheet has at
least one boundary. In that (topologically more general) case χ = 2� 2h� b,
where b denotes the number of boundaries. Because the first order non–trivial
interacting diagram (also called tree level) for the closed string has h = 0 and
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2.1. The bosonic string

b = 0 and for the open string has h = 0 and b = 1, this means that at tree level
the open string diagrams are weighted with e�Φ, while the closed string tree level
diagrams are weighted with e�2Φ.

From the way the antisymmetric tensor Bµν is introduced we can easily see
that the action (2.65) is invariant under

Bµν ! Bµν
0
= Bµν +∂µΛν �∂ν Λµ ; (2.67)

which is a (generalized) gauge transformation for a two–form potential and en-
ables us to define a three–form field strength

Hµνρ = ∂[µ Bνρ ] : (2.68)

This describes an obvious generalization of Maxwell theory. A one–form gauge
field couples naturally to a particle, a two–form gauge field couples naturally to a
string6.

From the discussion of the bosonic string so far, it is clear that conformal
invariance plays a very important role. We would like to keep quantum conformal
invariance when considering strings moving in a general background. On the other
hand we would also like to see that strings can not move in completely arbitrary
backgrounds. Because one of the string states is a graviton we expect that in an
expansion in the dimensionful parameter α 0, to first order the metric background
should satisfy Einstein’s equations.

Conformal invariance implies that the trace of the 2–dimensional worldsheet
energy momentum tensor vanishes, Ta

a = 0. Calculating the trace of Tab for the
non–linear σ–model (2.65) we find a conformal anomaly

Ta
ap
g
=

βΦ

48π3 R(2)
+

1
2π

�
βG

µν gab
+βB

µν εab
�

∂aXµ∂bXν
; (2.69)

where the β–functions can be obtained perturbatively in an expansion in α 0 on the
worldsheet. To leading non–trivial order this gives

βG
µν

α 0 = Rµν �
1
4

HµρσHν
ρσ

+2∇ µ ∇ ν Φ+O(α 0
) ;

βB
µν

α 0 = ∇ ρ �e�2ΦHµνρ
�
+O(α 0

) ; (2.70)

βΦ
= D�26 + 3α 0

�
4(∇Φ )

2�42Φ�R+
1

12
H2
�
+O(α 0

) :

6To construct a non–abelian generalization of this two–form gauge field theory is still an open
problem in string theory.
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In these expressions Rµν and R are the D–dimensional target spacetime Riemann
tensor and Ricci curvature respectively and we also introduced the covariant de-
rivative ∇ µ . We also used the curvature of the two–form gauge field, the totally
antisymmetric three–form H as introduced in (2.68). These β–functions should
vanish order by order if we want to cancel the anomaly and have quantum confor-
mal invariance on the worldsheet. Looking at βΦ this means D = 26, as we also
concluded from analyzing the spectrum of the bosonic string, but in the light–cone
gauge we viewed this as a consequence of demanding Lorentz–invariance. All
other equations are now first order in α 0 and look like Einstein’s field equations.
In fact the first order equations can be obtained from varying the 26–dimensional
target spacetime action

S=
1

α 024

Z
d26x

p
jGje�2Φ

�
R+4(∇Φ )

2�
1

12
H2
�
; (2.71)

which just describes Einstein’s General Relativity coupled to a massless scalar
and a three–form field strength. Therefore we find, as promised, that to first order
in α 0 quantum conformal invariance constrains the background to be a solution
of the Einstein equations. We could also have concluded this from an analysis of
the string tree amplitudes of the massless string states, expand these amplitudes
in α 0 and deduce the (classical) equations of motion reproducing these quantum
amplitudes, but that method is indirect and less transparent.

The same analysis can also be done for the open string and basically leads
to the same conclusions. As soon as we couple a string to a more general back-
ground we obtain two perturbative expansions. First of all, the background fields
are expanded in the two–dimensional worldsheet field theory coupling constant
α 0, which is basically an expansion in the string length influencing the background
fields. The limit α 0! 0 is a particle limit and higher derivative corrections to the
background fields appear because we want to account for the extendedness of the
string. Besides that we have a perturbative expansion of string spacetime interac-
tions involving the string coupling constant gs= eΦ and higher genus worldsheets.

2.2 The superstring

After this introduction of the bosonic string it is now time to get rid of the prob-
lems we encountered in the bosonic string theory. The bosonic string has two
features which exclude it from being a serious candidate for a theory of quantum
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gravity (and all other forces). First of all the appearance of a tachyon in the spec-
trum is a signal of an unstable Minkowski vacuum and we would like to get rid of
such a state. Secondly the bosonic string theory is not able to describe fermionic
states, which is clearly a drawback for a theory that we would like to describe the
real world where fermions are the basic constituents of matter.

The superstring in fact solves both of these problems. We will only briefly
discuss the open and closed superstring spectrum and mainly focus our attention
on how the superstring solves the bosonic string problems. Introducing spacetime
interactions is done in exactly the same way as for the bosonic string. We will not
discuss the non–linear σ–model extension of the superstring, because this does
not essentially differ from the bosonic string. Also we will discuss more general
background fields extensively in the next chapters. In general we refer to [7, 8, 10]
for more details on the superstring. We will end this superstring section with
a summary of the five consistent, tachyon free and target spacetime supersym-
metric, superstring theories and with a section on T-duality and (supersymmetric)
D–branes.

The supersymmetric generalization of the bosonic Polyakov action (2.2) has,
next to bosonic symmetries, local supersymmetries and super–Weyl invariance.
These symmetries can be used to gauge away the metric gab and a Rarita-Schwing-
er field χa (which is a kind of fermionic generalization of the worldsheet metric)
and impose constraints on the physical states. This gauge is called the super-
conformal gauge and, as in the bosonic case, there could be potential quantum
anomalies. In the bosonic case the absence of these anomalies restricted the di-
mension of spacetime to be equal to 26. The same analysis for the supersymmet-
ric string gives D = 10. From now on we will assume the target spacetime to be
10–dimensional and we will be analyzing the superstring in the superconformal
gauge. The superstring action then is

S=�
1

4πα0

Z
Σ

d2σ
�
∂aXµ∂ aXµ � i ψ̄µλ a∂aψµ

�
: (2.72)

In this action the λ a are worldsheet Dirac matrices satisfying the Clifford algebran
λ a

;λ b
o
=�2η ab

: (2.73)

The ψ’s are 2–dimensional worldsheet Majorana spinors with the bar operation
defined as usual

ψ̄ � ψ†λ 0
: (2.74)
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Notice that from the target spacetime point of view ψµ is a D–dimensional space-
time vector7. The superconformal gauge is preserved by residual gauge sym-
metries, the superconformal transformations and we refer to [11] to learn more
about the powerful techniques of superconformal field theory. This action (2.72)
is supersymmetric on the worldsheet. This means that it is invariant under the
following infinitesimal supersymmetry transformations

δXµ
= ε̄ψµ

; δψµ
=�i λ a∂aXµε ; (2.75)

where the spinor ε is the infinitesimal supersymmetry transformation parameter.
Let us forget about supersymmetry for a moment and just discuss the world-

sheet Majorana fermions. We choose the following representation of the Dirac
matrices

λ 0
=

�
0 �i
i 0

�
; λ 1

=

�
0 i
i 0

�
; (2.76)

which satisfy the Clifford algebra (2.73). Using this representation it is easy to
see that, as in the discussion of the worldsheet scalars, the fermions decompose
into left– (+) and right–moving (�) Majorana–Weyl components8. Because we
have fermions on the worldsheet we now have more possibilities for our boundary
conditions. Variation of the fermions in (2.72) gives the two–dimensional Dirac
equation plus a boundary term that can be written as

δSb =

Z
Σ

dτ
h
ψµ
+ δψ+µ � ψµ

�δψ�µ

iσ=l

σ=0
: (2.77)

At first sight there are two different ways to solve these boundary conditions.
Either we let the expression (2.77) vanish independently at the two sides σ = 0
and σ = l , or we let the expressions at both sides cancel each other. The first
choice has the physical interpretation of describing the open string, because in
that case both endpoints should be independent. This choice will relate ψ+ to ψ�
at the endpoints. The other choice is the one we need to describe the closed string,
where the two endpoints should be identified. Contributions from ψ+ and ψ� will
vanish independently from each other.

7The introduction of worldsheet spinors in the superstring is called the Neveu–Schwarz–
Ramond approach. The Green–Schwarz approach to the superstring introduces target spacetime
spinors on the worldsheet. After GSO–projection, to be discussed in the next section, both ap-
proaches can be shown to be equivalent.

8This is why technically speaking we have (1;1) supersymmetry on the worldsheet, one left–
moving and one right–moving supersymmetry.
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First consider the open superstring and use our convention to let σ run from 0
to π. Looking at (2.77) we conclude that we have to impose ψµ

+
δψ+µ =ψµ

�δψ�µ
which can be rewritten as

δ[(ψ+µ)
2
] = δ[(ψ�µ)

2
] : (2.78)

This means that at both ends we have ψµ
+
= �ψµ

�. The overall sign of the com-
ponents can be chosen at will, so we can define to use the + sign at the endpoint
σ = 0 and we are left with two options.

� Ramond boundary conditions (R)

ψµ
+(τ ;0) = ψµ

�(τ ;0) ; ψµ
+(τ ;π) = ψµ

�(τ ;π) : (2.79)

Using these boundary conditions the open string states are said to be in the
Ramond sector of the theory. The oscillator expansion consistent with the
Ramond boundary conditions is

ψµ
+ =

1p
2

∞

∑
n=�∞

dµ
n e�in(τ+σ)

; (2.80)

ψµ
� =

1p
2

∞

∑
n=�∞

dµ
n e�in(τ�σ)

: (2.81)

Remember that the dn are now anticommuting Fourier modes.

� Neveu–Schwarz boundary conditions (NS)

ψµ
+(τ ;0) = ψµ

�(τ ;0) ; ψµ
+(τ ;π) =�ψµ

�(τ ;π) : (2.82)

Using these boundary conditions the open string states are said to be in the
Neveu–Schwarz sector of the theory. The oscillator expansion consistent
with the Neveu-Schwarz boundary conditions needs half–integer moded os-
cillators only giving the expansion

ψµ
+ =

1p
2

∞

∑
r=�∞

bµ
r e�ir (τ+σ)

; (2.83)

ψµ
� =

1p
2

∞

∑
r=�∞

bµ
r e�ir (τ�σ)

: (2.84)

So r in this expansion only runs over the half–integers n+
1
2 (with n an

integer).
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Now let us move on to the closed string fermion boundary conditions. Left–
and right–moving fermions should be independent in this case. Basically we ob-
tain the same possibilities as for the open string, but now for both fermions inde-
pendently

δ[(ψ+µ)
2
](τ ;0) = δ[(ψ+µ)

2
](τ ;2π) ;

δ[(ψ�µ)
2
](τ ;0) = δ[(ψ�µ)

2
](τ ;2π) : (2.85)

Because we can now choose Ramond or Neveu–Schwarz boundary conditions for
the left– and right–moving modes independently, we obtain four different possi-
bilities.

� Ramond � Ramond boundary conditions (R�R).
The oscillator expansion is exactly as in (2.80), but of course the left– and
right–moving Fourier modes are now independent. The expansion is thus
characterized by fdµ

m; d̃
ν
ng with m;n2 Z .

� Ramond � Neveu–Schwarz boundary conditions (R�NS).
Ramond boundary conditions on the right–moving fermions and Neveu–
Schwarz boundary conditions on the left–moving fermions. The left–mo-
ving fermions can be expanded as in (2.83) and the right–moving as in
(2.80). The expansion can be characterized by fdµ

m; b̃
ν
sg with m;(s+ 1

2)2 Z .
So the left–moving fermion is described by a half–integer moded expansion.

� Neveu–Schwarz � Ramond boundary conditions (NS�R).
We just switched left– and right–moving fermions. The left–moving fer-
mions can be expanded as in (2.80) and the right–moving as in (2.83). The
expansion can be characterized by fbµ

r ; d̃
ν
ng with (r + 1

2);n2 Z .

� Neveu–Schwarz � Neveu–Schwarz boundary conditions (NS�NS).
The oscillator expansion is exactly as in (2.83), but of course the left– and
right–moving Fourier modes are now independent. Both expansions are
thus characterized by half–integer modes labelled by fbµ

r ; b̃
ν
sg with (r +

1
2);(n+

1
2) 2 Z .

We are now ready to quantize the superstring. Besides the bosonic creation
and annihilation operators we now have fermionic creation and annihilation op-
erators which can be in different sectors determined by the fermionic boundary
conditions. We will not explicitly carry out the quantization procedure again and
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2.2. The superstring

just quote the results. Let us first sketch what happens in the open superstring case
(the closed string can be considered a double copy of the open superstring). We
find different mass–shell constraints for the two different sectors (R and NS).

α 0M2
NS =

∞

∑
m=1

α µ
�mαmµ +

∞

∑
r=1

2

rbµ
�rbr µ � 1

2 ;

α 0M2
R =

∞

∑
m=1

α µ
�mαmµ +

∞

∑
n=0

ndµ
�nbnµ : (2.86)

Rather disappointingly we see that in the Neveu–Schwarz sector we still have a
tachyonic state (although the mass increased by 1

2). The first excited massless
state can be created with bµ

�1=2
and describes a massless vector Aµ . The other

mass levels are evenly spread with mass difference 1
2 .

In the Ramond sector we see that the normal ordering constant has disap-
peared. Therefore our Ramond–sector groundstate is already the massless state.
We also note that dµ

0
is included in the level number operator and this operator can

work on any state in the Ramond sector without changing its mass. Calculating
the anticommutator of two d0 operators (from imposing canonical anticommuta-
tors on ψµ) we find

fdµ
0 ;d

ν
0 g= η µν

: (2.87)

Up to a factor of two these operators satisfy the anticommutation relations of ten–
dimensional Γ–matrices. In ten dimensions these Γ–matrices are of size 32� 32
and we can use them as a representation for our operator d0. Using this repre-
sentation, states in the Ramond sector have to be 32–component objects, cq. be
spacetime fermions. In D = 10 we can take Majorana spinors. Because the mass-
less Dirac equation relates half of the Majorana spinor components to the other
half, we conclude that the massless groundstate in the Ramond sector has 16 real
physical degrees of freedom.

Clearly we did not solve all the problems we had in the bosonic string. Al-
though we did find fermions in the open superstring, we still have a tachyon in
our theory. Less urgent at this point is the absence of target spacetime supersym-
metry. This would mean that at every mass level the number of bosonic physical
degrees of freedom matches the number of fermionic physical degrees of free-
dom. This clearly does not work out because the NS sector has mass levels which
do not even occur in the R sector. Also at the massless level the number of de-
grees of freedom do not match, the bosonic vector in the NS sector has 8 physical
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degrees of freedom and the fermion in the R–sector has 16 physical degrees of
freedom. We will next discuss the Gliozzi–Scherk–Olive (GSO) projection [12]
on the spectrum which in fact projects out the tachyon and enforces target space-
time supersymmetry.

2.2.1 The GSO–projection

The GSO–projection was introduced as a projection on the spectrum which only
leaves spacetime supersymmetric string states [12]. These projected string states
setup an internally consistent (spacetime supersymmetric) interacting superstring
theory free of tachyonic instabilities. We will discuss the basic idea of the GSO–
projection for the open superstring. The generalization to closed superstrings fol-
lows immediately if we consider the closed superstring as a double copy of the
open superstring.

To enforce target spacetime supersymmetry we at least have to get rid of the
tachyon and the other half integer moded massive states in the NS sector. In the
R sector we basically would like to project out half of the massless fermionic
physical degrees of freedom to match with the massless bosonic degrees of free-
dom. For higher mass levels we then also need a reduction of fermionic degrees
of freedom. Let us introduce a fermion number operator (�1)F , where F counts
the number of fermionic creation operators used to construct the state the operator
acts upon. Using this operator we can construct projection operators

P� =
1
2

�
1� (�1)F�

: (2.88)

In the NS sector we want to get rid of all states constructed from the tachyonic
ground state with an even number of fermionic operators, including the tachyonic
ground state itself. In the NS sector we therefore work on the states with the
projection operator

PNS=
1
2

�
1� (�1)F

NS

�
; (2.89)

with the fermion number operator (�1)FNS given by

(�1)F
NS= (�1)∑∞

r=1=2 bµ
�rbr µ

: (2.90)

Clearly (2.89) projects out the tachyonic ground state and all higher level states
constructed from the ground state with an even number of fermionic operators
bµ

r . The new ground state is now the massless vector constructed by bµ
�1=2

on the,

projected out, tachyonic ground state.

44



2.2. The superstring

In the R sector, basically we want to reduce the number of fermionic physical
degrees of freedom. This can be done by introducing the chiral operator, project-
ing on a subspace of Weyl spinors having a definite chirality9. The chiral operator
Γ11 in D = 10 is defined as

Γ11 = Γ0Γ1
: : :Γ9

: (2.91)

This operator squares to one and anticommutes with the other Γ–matrices. We
can use it to define the GSO projection operator in the R–sector

PR =
1
2

�
1+Γ11(�1)F

R

�
; (2.92)

with the fermion number operator defined as

(�1)F
R = (�1)∑∞

n=1 dµ
�n

dnµ
: (2.93)

Notice that we do not include dµ
0

in the sum of course. Clearly this reduces the
number of massless fermionic degrees of freedom by half, we project on positive
helicity Weyl spinors which have 8 physical degrees of freedom. We will not show
that this operator (2.92) also correctly reduces the number of massive fermionic
degrees of freedom to match up with the massive bosonic degrees of freedom.

The resulting theory after GSO–projection is target spacetime supersymmetric
at every mass level, although we are not going to prove that here. The resulting
theory is also consistent when introducing perturbative spacetime string interac-
tions. In fact the GSO–projection is forced upon us when introducing string in-
teractions. After having discussed a consistent projection on the open superstring
spectrum, we are now ready to discuss all the different spacetime supersymmetric,
tachyonic free, superstring theories. We will mainly focus on the massless spec-
trum of these theories and we refer to [7, 8, 10] for a more thorough discussion.

2.2.2 Closed Type IIA and Type IIB superstrings

Basically we can now take two copies of the open superstring spectrum, one for
the left–movers and one for the right–movers. We should keep in mind that we
need a level–matching condition, so the total mass coming from the right–movers
equals that of the right–movers. There is one subtlety in this prescription which
has to do with the GSO–projection in the open superstring R–sector. In that case

9This can only be done consistently in D = 2 mod 8 target spacetime dimensions.
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we were free to choose a particular sign in the projection operator (2.92), we either
project onto positive helicity states, or on negative helicity states. In the closed
string we can now project onto different or the same helicity states in the left–
and right–moving sector of the theory. The overall sign does not matter, but the
relative sign does. We either get two massless spacetime fermions with the same
chirality called type IIB superstring theory, or we get two massless spacetime
fermions with opposite chirality called Type IIA superstring theory.

Let us discuss the four different sectors in both closed superstring theories.
Between brackets we mention the number of physical degrees of freedom of a
massless state.

� NS–NS sector.
Clearly these states have to be bosons. At the massless groundstate of IIA
and IIB closed superstrings we find a dilaton scalar Φ (1 d.o.f.), an antisym-
metric 2–form tensor Bµν (28 d.o.f.) and a symmetric 2–form tensor, the
graviton Gµν (35 d.o.f.). Basically these are the same states as found at the
massless level in the bosonic string.

� R – NS and NS –R sector
We can discuss both sectors at the same time, because they give the same
states. Because one of the sectors is Ramond, these states have to be space-
time fermions. Again we find the same states for type IIA and type IIB
superstrings. The massless groundstate consists of two spin 1=2 Majorana–
Weyl fermions (2� 8 = 16 d.o.f.) and two higher spin 3=2 fermions (2�
56 = 112 d.o.f.) called gravitinos.

� R – R sector.
In one R–sector acting with dµ

0
tells us the states have to be fermions. How-

ever when we act with dµ
0

and d̃µ
0

, both being Γ–matrix representations, the
states transform as bosons again. This is the sector where Type IIA and
Type IIB theory differ from each other. Working out the representation the-
ory is a little bit harder in this case, but let us just mention the results for the
massless ground state

– Type IIA
The massless ground state consists of a vector Aµ (8 d.o.f.) and an
antisymmetric 3–form tensor Aµνρ (56 d.o.f.).

– Type IIB
The massless ground state consists of a scalar λ (1 d.o.f.), an antisym-
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2.2. The superstring

metric 2–form tensor Aµν (28 d.o.f.) and an antisymmetric 4–form
tensor Aµνρδ (35 d.o.f.10).

So Type IIA contains so–called R–R gauge fields of odd rank and Type IIB
contains R–R fields of even rank.

Adding the numbers between brackets we see that every sector contains 64 physi-
cal degrees of freedom. We find a total of 128 bosonic and 128 fermionic degrees
of freedom, as we expect from supersymmetry. Because we obtain two spin 1=2
Majorana–Weyl and two spin 3=2 fermions we have N = 2 supersymmetry in this
case. In fact the left– and right–moving modes separately have N = 1 spacetime
supersymmetry, which enables us to introduce the closed Heterotic superstring.

2.2.3 The Heterotic superstring

Nothing prevents us from only introducing N= 1 target spacetime supersymmetry
by only including left–moving fermions on the superstring worldsheet. So the
proposal is to introduce the worldsheet action11

S=
1

4πα0

Z
Σ

d2σ
h
∂aXµ∂ aXµ �2i ψµ

+∂�ψ+µ

i
: (2.94)

The complete left–moving side of this theory is consistent in D = 10, while the
theory on the right–moving side can only be consistent when we have 26 bosons
X� instead of the 10 X� we have now. So we should add something to the right–
moving side of this theory to make it consistent.

We cannot add 16 ordinary bosonic fields X, because that would ruin the con-
sistency on the left–moving side. So we are going to add right–moving worldsheet
fermions, but now without a spacetime vector index, because that would take us
back to the standard superstring. Instead we will take target spacetime scalars with
an internal symmetry index A and it turns out we need 32 of them for a consistent
string theory. So we obtain

S=
1

4πα0

Z
Σ

d2σ
h
∂aXµ∂ aXµ �2i ψµ

+∂�ψ+µ �2i ρA
�∂+ρA

�

i
; (2.95)

with A= 0;1; : : : ;31.
10This gauge potential only has 35 degrees of freedom because its field strength in D = 10

satisfies a self–duality constraint. What this means will become clear in the next chapter.
11Having (1;0) worldsheet supersymmetry.
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Again we should determine what boundary conditions to take on the ρA
� fer-

mions. Consistency again plays an important role and it turns out there are only
two possibilities.

� We impose the same boundary conditions, either periodic or anti–periodic
on all of the right–moving ρ fields, giving us a theory with two sectors.
These ρ fields are invariant under 32–dimensional rotations and we obtain
a closed string theory with an internal SO(32) symmetry group, the SO(32)
Heterotic string.

� We can also divide the 32 ρ fields into two groups of 16, on which we
impose the same boundary conditions. So we now obtain 4 different sec-
tors in our theory. The actual internal symmetry group is E8�E8 and not
SO(16)�SO(16), as the reader might have expected. This is called the
E8�E8 Heterotic string.

Both Heterotic superstring theories have the D = 10 N = 1 supergraviton mul-
tiplet as massless states, that is a graviton Gµν , a dilaton scalar Φ and an anti-
symmetric two–form tensor Bµν . Besides that the internal symmetry groups of
these Heterotic string theories manifest themselves as massless SO(32) or E8�E8
gauge fields Aa

µ with a taking values in the gauge group. We now exhausted all
consistent closed superstring possibilities and should move on to discuss open
superstrings.

2.2.4 The Type I superstring

As we concluded from the section on the GSO–projection, the groundstate of this
open superstring theory is massless. In the NS–sector the massless state is a vector
and in the R–sector the massless state is a Majorana–Weyl spinor in D= 10. These
combine into a vector multiplet of N = 1 supersymmetry in ten target spacetime
dimensions. Inclusion of Chan–Paton factors will give a U(N) gauge theory, at
least as long as we are discussing oriented open strings (meaning that we can
distinguish between the two endpoints of the string).

In the section on bosonic strings we concluded that open strings are not consis-
tent by themselves. Through interactions they can form closed strings and there-
fore closed string states should be included. The same holds for the open Type I
superstring in D = 10. To include closed superstring states consistently and keep
N = 1 supersymmetry is not straightforward. It must be clear that we can not
add Type IIA closed superstring states, because the open superstring is chiral, the
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fermions have a definite sign of chirality. We conclude that we should add Type
IIB closed superstring states, but truncated to a N = 1 supersymmetric theory.
The consistent truncation consists of identifying left– and right–movers, making
the Type I superstring theory unoriented. Projecting Type IIB states onto states
that are symmetric under parity reversal on the worldsheet is called an orientifold
projection. Defining the parity reversal operation Ω : σ !π�σ we can construct
the orientifold projection operator

PO =
1
2 (1+Ω) : (2.96)

This breaks half of the supersymmetries as required by the open superstring. Let
us summarize the closed superstring states that survive this orientifold projection
(2.96).

� In the NS–NS sector only the graviton Gµν and the dilaton scalar Φ survive.

� In the NS–R and R–NS sector only one linear combination of the Majorana–
Weyl fermions and gravitinos survives.

� In the R–R sector only the antisymmetric 2–form Aµν survives the orien-
tifold projection.

These closed superstring states form a N = 1 supergravity multiplet and can be
added consistently to the open superstring.

However, the Type I theory constructed in this way has a gravitational ano-
maly, i.e. we have non–conservation of the target spacetime energy momentum
tensor in the quantum theory. We can cancel this anomaly by adding Chan–Paton
factors to the open superstring endpoints and choosing the gauge group to be
exactly SO(32)12. We refer to [7, 8, 10] for more details on this anomaly cancel-
lation.

2.2.5 Superstring T–duality and D–branes

Just as for the bosonic string we expect to find a a symmetry between theories
wrapped on a circle R and a dual circle α 0

R exchanging winding and momentum
modes. In the bosonic string we saw that the closed string is T–dual to itself.

12The reason why the gauge group is SO(32) instead of SU(32) is because of the fact that the
superstring theory should now be unoriented, therefore it is not possible to distinguish between
the two different endpoints of the string which constrains us to the orthogonal gauge groups.
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That this is not true for the closed Type II superstrings follows from the obser-
vation that T–duality is a one–sided parity operation (2.55), working only on the
right–moving modes. This will take the chirality operator, which we used in the
GSO–projection on the R–sector, to minus itself for the right–moving modes. The
conclusion therefore has to be that T–duality takes Type IIA to Type IIB super-
string theory. This can in fact be proven order by order in Type IIA and IIB string
perturbation theory. So the statement is that Type IIA superstring wrapped on a
circle of radius R is indistinguishable from Type IIB superstring theory wrapped
on a circle of radius α 0

R .
As long as we do not introduce Wilson lines breaking the gauge group, the

Heterotic closed superstrings are T–dual to themselves. If we do introduce Wilson
lines more possibilities arise. In fact, the E8�E8 Heterotic superstring is T–dual
to the SO(32) Heterotic superstring if we decide to break the gauge groups to
SO(16)�SO(16) using Wilson lines.

Working out T–duality for the open Type I superstring will again lead us to D–
branes, defined by Dirichlet boundary conditions in the T–dualized directions Xi

on the open superstring. Let us consider these D–branes in an infinitely extended
spacetime. The open superstring theory defined by the D–brane is clearly N = 1
supersymmetric. The open superstring can form closed superstrings that move off
the D–brane and we saw that the consistent closed Type II superstrings have N =

2 supersymmetry. This means the D–brane breaks half of the supersymmetries
and states with this property are usually called Bogomol’nyi–Prasad–Sommerfield
(BPS) states.

BPS–states must carry conserved charges besides their mass as for example
can be deduced from the supersymmetry algebra. The crucial observation by
Polchinski [9] was that these D–branes are charged with respect to the R–R an-
tisymmetric tensors in the Type II superstring theories. A Dp–brane naturally
couples to an antisymmetric p+1–form R–R potential A(p+1), which has a p+2–
form field strength F(p+2). Supergravity soliton solutions charged with respect
to these antisymmetric R–R potentials show masses proportional to 1=gs, which
is what we found for the D–branes (2.64) as well. This strongly suggests that
we should identify D–branes and the R–R solitonic vacua of closed superstring
theories.
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Superstring low energy limits and
dualities

In this chapter we will introduce the low energy effective supersymmetric models
of superstring theories and D–branes. We will start by discussing supersymmetry
algebras and introduce the eleven–dimensional supersymmetry algebra as an ex-
ample. We then explain the concept of Bogomol’nyi–Prasad–Sommerfield (BPS)
states and show how to identify these states using the supersymmetry algebra.
Using the eleven–dimensional supersymmetry algebra we will deduce all possi-
ble ten–dimensional supersymmetry algebras. After that we will introduce the
corresponding eleven– and ten–dimensional supergravities, the concept of string
dualities, and use the BPS states to test duality conjectures. We will introduce
M–theory as the the eleven–dimensional non–perturbative theory which appears
in the strong coupling limit of Type IIA superstring theory. There are many
good texts on supersymmetry, supergravity, BPS states, dualities and M–theory.
For introductory reviews covering most of the topics in this chapter we refer to
[13, 14, 15, 16, 17].

3.1 Supersymmetry algebras and BPS states

In the previous chapter we concluded that the superstring states, after the GSO
projection, belong to a supersymmetry multiplet. Supersymmetry, like any other
symmetry, leads to conserved supersymmetry charges through Noether’s theo-
rem. The supersymmetry charges transform as spinors under the Lorentz group
and are therefore anticommuting objects. This basically follows from the obser-
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vation that supersymmetry transformations are governed by a spinorial parameter
ε (2.75). By anticommuting the supersymmetry charges we obtain the supersym-
metry algebra. Together with the generators of the Poincaré group, the translation
generators PM and Lorentz rotation generators MMN which commute with the su-
percharges, they form the super–Poincaré algebra and supermultiplets of fields
should transform in irreducible representations of this algebra.

By studying the possible irreducible representations of the super–Poincaré al-
gebra it can be proven that eleven dimensions is the maximal dimension in which
one can have a supergravity theory, by which we mean a theory with spins two
(gravitons) and less. Higher dimensions introduce higher spin fields which can not
be coupled consistently to the lower spin fields1. From the supersymmetry point
of view eleven dimensions therefore seems to have a privileged role. We will use
the eleven–dimensional supersymmetry algebra as a specific example to discuss
the more general concepts of supersymmetry algebras and BPS states. Apart from
minor details, our discussion can be readily generalized to include lower space-
time dimensions. The example of eleven dimensions will turn out to be useful
for other reasons as well. First of all it will help us deduce the ten–dimensional
supersymmetry algebras (and the corresponding supergravities) in which we are
interested from the superstring point of view. Secondly, eleven dimensions turn
out to play a prominent role in strongly coupled superstring theory, as we will
argue when we discuss dualities and M–theory.

3.1.1 The D= 11 supersymmetry algebra

In eleven dimensions we introduce 32–component Majorana supercharges Qα and
generically these will satisfy (M 2 [0;10])

fQα ;Qβg= (ΓM C)αβ PM ; (3.1)

where ΓM
αβ are the Dirac matrices satisfying fΓM

;ΓNg = 2η MN where we sup-
pressed the spinor indices, Cαβ is the charge conjugation matrix and PM is the
momentum vector. Supersymmetry charges in any dimension always lead to
this term containing the momentum tensor. It tells us that two supersymmetry

1There are two (known) ways out of this problem. One is to introduce an infinite tower of
massless higher spin fields and the other is to introduce extra timelike dimensions avoiding the
problem of having to introduce higher spin fields. Both constructions have their own problems
and will not be discussed in this thesis.
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transformations combine to give a translation, explaining why local supersym-
metric theories automatically give rise to General Relativity. Looking at (3.1) we
note that the left–hand side is symmetric in its spinor indices and therefore has
1
2 � 32� 33 = 528 components. The right–hand side has only 11 components
and therefore we should expect that this supersymmetry algebra can be extended
to include, what are called, central extensions. The unique central extension of
the eleven–dimensional supersymmetry algebra having 528 components on the
right–hand side is

fQα ;Qβg= (ΓM C)αβ PM +
1
2!
(ΓMNC)αβ ZMN

+
1
5!
(ΓMNPQRC)αβYMNPQR: (3.2)

In this expression we used ΓMN:::P � Γ[M ΓN
: : :Γ P]. The tensorial antisymmetric

charges Z and Y are called central charges because they commute with the super-
symmetry charges Qα . Strictly speaking they are not central charges with respect
to the full Poincaré algebra because they do not commute with the Lorentz rotation
generators MMN.

To discuss the interpretation of these central charges we first have to introduce
some properties of Dirac matrices. In eleven dimensions there exist two represen-
tations of the Dirac matrices. They differ according to whether the product of all
of them is +1 or �1. Because the choice is arbitrary we will choose

Γ0Γ1
: : :Γ9Γjj

=+1 ; (3.3)

where we used the symbol jj to denote the 10th spatial direction , because we will
use Γ10 to mean the product Γ1Γ0. From (3.3) and because (Γjj

)
2
=+1 we deduce

that
Γjj

= Γ01:::9
: (3.4)

Perhaps the reader remembers that this is the definition of the chirality operator
Γ11 in D = 10 (2.91). We will use this when we reduce the eleven–dimensional
supersymmetry algebra to ten dimensions. Using the Majorana representation of
the Dirac matrices, Γ0 has all the properties of the charge conjugation matrix Cαβ
and we can set Cαβ � Γ0

αβ .
In a quantum theory that realizes the algebra (3.2) as an asymptotic symmetry,

the (supersymmetry preserving) vacuum state is annihilated by all the supersym-
metry charges. Irreducible representations of the supersymmetry algebra (without
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central charges) are characterized by their mass and spin, and can be constructed
using the supersymmetry charges as creation and annihilation operators, for more
details on this construction we refer to [13, 15]. Let us now consider a (vacuum)
state which preserves some amount, but not all, of the supersymmetries. Such
a state will be annihilated by some combination of supersymmetry charges and
the expectation value of fQ;Qg will therefore have a number of zero eigenvalues.
This means the determinant of that matrix will vanish. Let us first discuss what
happens when all the central charges vanish and the momentum is the only term
left in the supersymmetry algebra. Taking determinants we find

detfQα ;Qβg= det ΓM PM = (P2
)

16
: (3.5)

Because fQ;Qg is a positive operator it is guaranteed that P2 � 0. This is an
example of a Bogomol’nyi bound [18] and (3.5) only vanishes when P2

= m2
= 0.

So the only state which can preserve some amount of supersymmetry is massless,
it satisfies the Bogomol’nyi bound and is called a BPS state [19]. To determine
the fraction of supersymmetry which is preserved by such a BPS state we choose
a frame in which

PM =
1
2(�1;1;0; : : : ;0) : (3.6)

This defines a massless particle moving in the X1 direction. The algebra can then
be rewritten (using C = Γ0 and (Γ0

)
2
=�1)

fQα ;Qβg=
1
2(1�Γ01)αβ : (3.7)

Since Γ01 squares to one its eigenvalues are �1 and since it is also traceless half
of the eigenvalues are +1 and half are �1. Therefore the eigenspinors of fQ;Qg
which have 16 zero eigenvalues satisfy

Γ01 ε =�ε (3.8)

and we conclude that this BPS state breaks (and preserves) half of the number of
supersymmetries. When we discuss supergravities we will present the half super-
symmetry breaking classical background solution corresponding to this massless
BPS state.

Looking for more supersymmetry breaking vacua involves turning on some
central charges. As an example we will analyze the two–form central charge
Z. Let us assume that the vacuum describing such a state is massive, i.e. P2

=

m2, and by using Lorentz rotations we can go to a frame in which all spacelike
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momenta are zero, i.e. P0 =�m. Further assume that just one of the components
of the antisymmetric central charge ZMN is non–zero, let us choose the spacelike
components Z12 = q2. The algebra (3.2) then reduces to

fQα ;Qβg= (m�q2Γ012)αβ : (3.9)

Because Γ012 squares to one and is traceless, we again find that the eigenvalues
of an eigenspinor ε of Γ012 are 16 times +1 and 16 times �1. The positive-
ness of the left–hand side assures us that m� jq2j, which is the Bogomol’nyi
bound. When this bound is satisfied, m= jq2j, the determinant of (3.9) vanishes
and we constructed a BPS state preserving half of the supersymmetries. The cen-
tral charge Z12 suggests that such a state is extended in two spacelike directions
X1 and X2. The classical supergravity background solution corresponding to this
vacuum indeed describes a membrane, an object with two spacelike extended di-
rections called the M2–brane.

The same analysis can be performed for the five–form central charge Y and
leads to the construction of another 1

2 supersymmetry preserving BPS state. The
Bogomol’nyi bound m= jq5j is satisfied by an object having five spacelike ex-
tended directions called the M5–brane. Such a state can again be constructed as a
solution of the D = 11 supergravity equations of motion.

At this point we conclude that any central charge of rank p appearing in the
supersymmetry algebra corresponds to a BPS state with p spatial extended di-
rections, breaking and preserving half of the number of supersymmetries. Let us
now study what happens when we allow one of the spacetime indices of the central
charges to be timelike2. Because of (3.3) any multiplication of n Dirac matrices is
related to a multiplication of 11�n Dirac matrices

1
n!

ΓM1:::Mn

Mn+1:::M11ΓM1:::Mn = ΓMn+1:::M11 ; (3.10)

where n < 11. In the same way the antisymmetric central charges can be dual-
ized using the eleven–dimensional antisymmetric Levi–Civita tensor ε . In eleven
dimensions this relates a rank r < 11 antisymmetric tensor to a rank 11� r anti-
symmetric tensor in the following way

1
r!

εMr+1:::M11

M1:::Mr ZM1:::Mr
= Z̃Mr+1:::M11

: (3.11)

2Central charges with no Lorentz indices, representing pointlike massive BPS objects, are nec-
essarily excluded from this analysis.
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When we choose a non–zero component of the central charges to be labeled by
a timelike index, we can use the above relations to relate that component to a
Hodge dual central charge with only spacelike indices. Let us again use eleven
dimensions to illustrate this. The rank 2 central charge Z can be related to a rank
9 central charge Z̃. If we choose one of the indices on Z to be timelike, then
Z̃ will only have spacelike indices. The latter central charge will have the usual
interpretation as a BPS state with 9 extended spatial directions. The same holds
for the rank 5 central charge Y with one timelike index. The corresponding rank 6
central charge Ỹ will have only spacelike indices and gives rise to a BPS state with
6 extended spatial directions. The 6–brane can again be constructed as a soliton
solution in the corresponding supergravity theory. The 9–brane however, usually
referred to as the M9–brane, is special. Although progress has been made in
identifying and constructing this state in the supergravity model [20], its properties
are still not completely understood.

All these states break half of the supersymmetry. Putting several BPS states
together, letting them overlap or intersect, generically breaks all supersymmetries.
Only when the branes are oriented in special ways with respect to each other we
find BPS states preserving less than half of the supersymmetries [21, 22]. We will
study these intersecting (or overlapping) configurations appearing in the eleven–
dimensional supersymmetry algebra in the next chapter.

The massive irreducible representations belonging to these BPS states is shor-
ter than the generic massive multiplet3. This follows from the fact that half of
(combinations of) the supersymmetry charges annihilate the BPS state. Only the
other half can be used as creation operators to construct representations and thus
lead to fewer states. For a BPS multiplet to become a generic massive multi-
plet would require the sudden appearance of more states, which is impossible
if we smoothly alter the parameters of the theory. Exactly for this reason we
expect the number and type of BPS multiplets to be the same in the classical
and quantum theories, regardless of the coupling constant of the quantum theory.
This enables us to verify the existence of BPS states when the coupling is small
and then conclude that these BPS states will still be present at strong coupling.
Even better, in a sense these states are like massless particles (which are also de-
scribed by short multiplets). Once a particle is massless it will stay massless, or
put differently its mass will not be changed by quantum corrections. The same
“no–renormalisation” theorem holds for massive BPS states. This enables us to

3The massless BPS state we constructed just corresponds to the generic massless short (super-
graviton) multiplet.
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determine the mass (and charge) of the BPS objects at weak coupling and extrap-
olate these expressions to strong coupling. These properties of BPS states play
a very important role in checking duality conjectures relating strongly coupled
theories to weakly coupled theories.

3.1.2 Supersymmetry algebras in ten dimensions

Reducing the eleven–dimensional supersymmetry algebra to ten dimensions by
simply decomposing the SO(10;1) representations into SO(9;1) representations
we obtain

fQα ;Qβg= (Γµ C)αβ Pµ +(ΓjjC)αβ Pjj

+(ΓµΓjjC)αβ Zµ +
1
2!
(Γµν C)αβ Zµν (3.12)

+
1
4!
(ΓµνρσΓjjC)αβYµνρσ +

1
5!
(Γµνρσδ C)αβYµνρσδ :

The first line in this expression is the straightforward decomposition of M 2 (µ; jj)
of the momentum PM in eleven dimensions (jj represents the tenth spatial direc-
tion). The second and third line does the same for the rank 2 and 5 central charges
in D = 11. Because the definition of the D = 10 chirality operator equals Γjj, we
can replace Γjj with Γ11. One Majorana spinor in D = 11 should give rise to two
Majorana–Weyl spinors in D = 10. Because the reduction will not project the
spinors to one out of the two possible chiralities, we conclude that this supersym-
metry algebra describes non–chiral N= 2 supersymmetry4. Therefore this algebra
can only describe IIA superstrings, which is the only N = 2 spacetime supersym-
metric theory which is non–chiral. Consequently the corresponding supergravities
in D = 10 and D = 11 should also be related by dimensional reduction, which will
have important consequences as we will see.

Looking at (3.12) we see that this algebra contains a scalar central charge Pjj
related to the momentum in the internal 10th direction. These are the Kaluza–
Klein momentum modes already encountered in section 1.1.4, when we discussed
them in the context of T–duality in string theory, and we now see that they are BPS
states (these massive pointlike objects turn out to be the D0–branes of Type IIA
string theory). Besides the scalar central charge we find rank 1, rank 2, rank 4 and
rank 5 central charges. They would correspond, using the results of the previous

4Put differently, in D = 10 we can assemble two Majorana-Weyl supersymmetry charges of
opposite chirality into a single non–chiral Majorana supercharge.
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section, to BPS states having 1 and 95, 2 and 8, 4 and 6 and 5 extended spatial
directions. The appearance of more central charges in the IIA algebra is of course
due to the fact that, thinking in terms of the corresponding extended objects, one
or none of the spatial legs of the extended object can be wrapped around the
eleventh compact direction, giving rise to two distinct extended objects in D = 10.
When we discuss IIA supergravity we will identify the corresponding BPS soliton
solutions. For now let me just mention that all the even central charges in the Type
IIA supersymmetry algebra in fact correspond to the D–brane BPS string solitons
as discussed in section 1.2.5.

Let us continue and deduce the Type IIB supersymmetry algebra. To do this
we rewrite the IIA supersymmetry algebra into a form in which the D = 10 Ma-
jorana supercharge Q is decomposed into the sum of two Majorana–Weyl super-
charges Q� of opposite chirality

Q�
=P

�Q ; P
� � 1

2(1�Γ11) : (3.13)

Using this decomposition the IIA supersymmetry algebra becomes

fQ+
α ;Q

+
β g= (P

+Γµ C)αβ (P+Z)µ +
1
5!
(Γµνρσδ C)αβY+

µνρσδ

fQ�
α ;Q

�
β g= (P

�Γµ C)αβ (P�Z)µ +
1
5!
(Γµνρσδ C)αβY�

µνρσδ

fQ+
α ;Q

�
β g= (P

+C)αβ Pjj+
1
2!
(P

+Γµν C)αβ Zµν (3.14)

+
1
4!
(P

+Γµνρσ C)αβYµνρσ ;

where the rank 5 Y� describe irreducible Hodge self–dual and anti self–dual
charges6 which are defined using the ten–dimensional Levi–Civita tensor

Y�
µ0µ1:::µ4

��
1
5!

εµ0µ1:::µ4

µ5µ6:::µ9Y�
µ5µ6:::µ9

: (3.15)

This is just a special case of (3.11) where the tensors on both sides are of the same
rank and therefore can be identified. The Y+ and Y� can be used to construct two

5This would correspond to a spacetime filling brane which is special. It can be given a suitable
interpretation and we refer to [23] for more details.

6The property of the Dirac matrices (3.3), together with the projection operatorP� is respon-
sible for the fact that the rank 5 central charge Y decomposes into its self–dual and anti self–dual
parts in the supersymmetry algebra.
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independent charges by summing or subtracting them

Y =Y+
+Y�

; Ỹ =Y+�Y�
; (3.16)

where we suppressed the Lorentz indices. The charges Y and Ỹ are related by the
transformation (3.11), so symbolically we have Ỹ = ε(10)Y. These two charges
represent different BPS objects because they will appear with different projection
operators. This follows by using (3.10), giving the Hodge dual charge Ỹ an extra
factor of Γ11.

We can now obtain the ten–dimensional Type IIB supersymmetry algebra from
the Type IIA algebra (3.14) by considering a T–duality transformation. We can
interpret T–duality as a one–sided parity transformation changing the chirality in
one sector of the theory. This is accomplished in the supersymmetry algebra by
transforming Q� into Q̃+Γ9, where X9 is the compact direction. Because mul-
tiplication with Γ9 changes the chirality, the supersymmetry charge Q̃+ now has
the same chirality as Q+, so after this transformation the theory is indeed chiral.
Explicitly performing the T–duality in the algebra requires a transformation of the
IIA central charges as well, in order to be able to consider the ten–dimensional co-
variant limit R9 ! ∞. For more details on this T–duality transformation we refer
to [24].

The final D = 10 Type IIB algebra has two chiral supercharges which can be
combined into a SO(2) vector QI

= (Q+
;Q̃+

) and can be written in the form

fQI
α ;Q

J
βg = (CP+Γµ

)αβ
�
δIJPµ +σ IJ

3 Zµ +σ IJ
1 Z̃µ

�
+

1
3!

σ IJ
2 (CP+Γµνρ

)αβWµνρ +
1
5!

δIJ
(CP+Γµνρσλ

)αβ K+
µνρσλ

+
1
5!
(CP+Γµνρσλ

)αβ

�
σ IJ

3 V+
µνρσλ +σ IJ

1 Ṽ+
µνρσλ

�
; (3.17)

where the Pauli matrices σ set up the (standard) representation of the SO(2) al-
gebra. We note that all even rank central charges after T–duality become odd
rank central charges. The resulting odd rank charges correspond to D–branes in
IIB theory. This is in agreement with the results on T–duality in the open super-
string. There we concluded that T–duality turns a Dp–brane into a D(p� 1)– or
a D(p+1)–brane depending on the direction in which we perform the T–duality.
If IIA only contains even Dp–branes then the T–dual IIB theory will only contain
odd Dp–branes, including a D5 brane representing the extended object responsi-
ble for the self–dual rank 5 central charge Ṽ+. Similar observations can be made
for the other central charges.
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The IIB supersymmetry algebra (3.17) is invariant under the following two
involutions

QI ! σ IJ
3 QJ

Z̃ ! �Z̃

W ! �W (3.18)

Ṽ+ ! �Ṽ+

and

QI ! σ IJ
1 QJ

Z̃ ! �Z

W ! �W (3.19)

Ṽ+ ! �V+
:

Both symmetries can be used to truncate the IIB supersymmetry algebra (by mod-
ding out) to an N = 1 supersymmetry algebra. In fact we find that both supersym-
metry algebras are isomorphic to each other. One can be obtained from the other
by replacing Zµ by Z̃µ and the rank 5 Y+ by Ṽ+. The N = 1 algebra using the Z
and Y+ charges equals

fQ+
α ;Q

+
β g= (P

+Γµ C)αβ (P+Z)µ +
1

25!
(Γµνρσδ C)αβ (Y+Ỹ)µνρσδ ; (3.20)

We already mentioned that the charges Z̃ and Ṽ+ represent D–brane BPS solitons,
whereas the charges Z and Y+ represent a fundamental string winding mode (the
F1) and a true solitonic7 object (the NS5–brane). We note that this distinction
can not be made by just comparing the N = 1 supersymmetry algebras. Because
the Heterotic superstring theory does not contain D–branes, as opposed to Type I
theory, we conclude that the Heterotic supersymmetry algebra (corresponding to
either SO(32) or the E8�E8 Heterotic string theory) has to be the one with the Z
and Y+ charges, which means the other isomorphic algebra has to belong to Type
I theory. That the two N = 1 supersymmetry algebras are isomorphic is already
an indication that the Heterotic superstrings and the Type I superstring are not as
different as one might have thought.

Although much (kinetic) information is contained in the supersymmetry alge-
bra, any dynamical information can only be studied by constructing the relevant

7By this we mean that the mass (and charge) of this object scales as 1=g2
s, which is the expected

scaling of an ordinary soliton.
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local or global supersymmetric field theories. When considering low energy lim-
its of superstring theories (which contain gravitons), we need to construct a su-
pergravity field theory. In the case of D–branes we need to construct a globally
supersymmetric field theory. All the BPS states suggested by the supersymme-
try algebra should appear as soliton solutions in the corresponding supergravities.
The exact relation of these soliton solutions to the central charges appearing in the
supersymmetry algebra will justify the identifications we made between central
charges and BPS extended objects in this section. Of particular interest are the D–
brane soliton solutions because of their microscopic description in terms of open
superstrings.

3.2 Supergravities

From the analysis of the consistent superstring theories we deduce that there
should exist five different effective low energy supergravities in D = 10. Two of
those should have N = 2 (maximal) supersymmetry and three should have N = 1
supersymmetry. Spacetime supersymmetry, field content, chirality properties and
the gauge group in the N = 1 case, uniquely determine the corresponding super-
gravity model.

Let us first define what we exactly mean by a low energy limit in string theory.
At this point, before having discussed string dualities, this involves small string
coupling gs, because only in that regime is the interacting string theory well de-
fined. By definition it involves considering low energy processes determined by a
scale U , more precisely this means energies much smaller than the Planck mass.
The Regge slope parameter α 0 is considered to be of the order of the Planck length
squared, so in an equation the low energy condition reads

U2 α 0� 1 : (3.21)

As we saw in the previous chapter (2.86) the massive string states have masses
which are of the order M2α 0� 1. So this means we only have to consider massless
asymptotic states in a low energy limit. In the small coupling and low energy limit
we only need to consider string tree diagrams for these massless states which are
well approximated by a classical supergravity field theory. This is an example
of a correspondence principle. At small energies or at scales much larger than
the string scale ls�

p
α 0, the string–like structure should become invisible and a

particle theory should be adequate.
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Chapter 3. Superstring low energy limits and dualities

The above low energy limit is globally consistent when we scatter massless
string states on a flat Minkowski background. This is because the background is
exact (no stringy α 0 corrections) and because the string coupling gs = eΦ can be
chosen to be small everywhere. For other backgrounds generically this is not true.
First of all the background fields will receive stringy corrections (2.70) when the
variations of the fields, basically measured by the curvatures, become large. More
concretely, when the Ricci curvature Rα 0 � 1 the corrections become large and
take us away from the supergravity limit. Another feature of generic backgrounds
is that the string coupling gs = eΦ depends on where we are in the background
and usually becomes large somewhere. String loop corrections will then become
very important, again taking us away from the supergravity limit. This means that
we can only trust supergravity backgrounds when the curvatures and the string
coupling are small. Exactly in those regions we can use supergravity as a good
approximation to superstring theory.

Constructing supergravities was a very active research subject in the 70’s and
80’s. In those days the hope was that supergravities by themselves were finite
quantum gravity theories. Nowadays supergravity theories, although better be-
haved than ordinary General Relativity, are believed to be non–renormalizable as
well. Our approach to constructing the N= 1 and N= 2 D= 10 supergravities will
heavily rely on the information we obtained from the corresponding superstring
theories. Although at first sight not related to superstring theories, we will start
by constructing the eleven–dimensional supergravity and show that it appears in a
strongly coupled limit of IIA superstring theory. We will not write down complete
supergravity actions. We will only present the bosonic sector of the supergravi-
ties, keeping in mind that supersymmetry determines the fermionic sector. This
will be all the information we need for our purposes in this thesis.

3.2.1 Supergravity in eleven dimensions

We cannot use the states found in a superstring theory to predict the bosonic mass-
less states appearing in D = 11 supergravity. However (maximal) supersymmetry
uniquely determines the the supergravity action in D = 11. We will denote all
eleven–dimensional fields with hats, to distinguish them from ten–dimensional
fields. It consists of the following massless bosonic fields (with M;N;P2 [0;10])
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(ĜMN
;ĈMNP

) : (3.22)

Only a metric tensor ĜMN and a rank 3 antisymmetric tensor field Ĉ appear. The
bosonic part of the action reads [25]

SD=11 =
1

κ 2
11

Z
d11x

p
�Ĝ ( R̂+

1
12

F̂2
)

+
2

722

Z
F̂ ^ F̂ ^Ĉ: (3.23)

In this action F̂ = dĈ. The topological term in the action modifies the Bianchi
identity of the Hodge dual field strength ˆ̃F , which is a rank 7 tensor and which
can be constructed using the D = 11 Levi–Civita tensor (as in (3.11)).

In the supersymmetry algebra discussion we noted that the IIA supersymmetry
algebra is related to the eleven–dimensional supersymmetry algebra by a simple
reduction. In that sense we used the eleven–dimensional supersymmetry algebra
as a nice starting point from which all ten–dimensional supersymmetry algebras
could be deduced (using superstring T–duality as well). The same should hold
for the supergravity theories. However the precise relation between the fields in
D = 11 supergravity and the fields in D = 10 Type IIA supergravity, suggests a
much deeper connection.

Let us assume the existence of a compact spacelike direction giving rise to
a U(1) isometry with killing vector field k. This means that the Lie derivative
with respect to k acting on all eleven–dimensional fields vanishes, i.e. LkĜ = 0
and LkF̂ = 0. Splitting coordinates xM

= (xµ
;y) for which k = ∂=∂y we can

decompose the D = 11 bosonic fields as follows

ds2
= e�

2
3 Φ(x)dxµdxνGµν (x)+e

4
3 Φ(x)

(dy�dxµAµ(x))
2

Ĉ =
1
6

dxµ ^dxν ^dxρCµνρ(x)+
1
2dxµ ^dxν ^dyBµν (x) : (3.24)

The decomposition is done in such a way that the fields appearing all nicely trans-
form in irreducible representation of the SO(1;9) Poincaré algebra. This means
we can just read off the fields that will appear in D = 10 from this decomposition.
We find the dilaton Φ, the ten–dimensional metric Gµν and the vector Aµ all ap-
pearing in the decomposition of the metric, and rank 2 and rank 3 antisymmetric
tensors coming from the rank 3 antisymmetric tensor in D= 11. We recognize this
as the massless field content of Type IIA superstrings and using this decomposi-
tion to rewrite the D = 11 action we will obtain the D = 10 Type IIA supergravity
action, which we will write down explicitly in the next subsection.
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Chapter 3. Superstring low energy limits and dualities

Looking at the decomposition of the metric (3.24) it follows that the radius
of the compact direction y, let us call it R11, is measured by e

2
3 Φ. Because of

the relation between the string coupling constant gs and the dilaton we can make
the following important identification (putting in the eleven–dimensional Planck
length)

R11 = l (11)
p g2=3

s ; (3.25)

where gs is the IIA superstring coupling constant. So the IIA superstring coupling
constant measures the size of the eleventh dimension. To be more precise, this is
the radius as measured by an observer using eleven–dimensional Planck units. By
looking at (3.24) we see that the radius as measured by the ten–dimensional metric
Gµν , which is measured using string length units

p
α 0, actually is proportional to

gs

R11 =
p

α 0eΦ �
p

α 0gs: (3.26)

We note that this means that l (11)
p =

p
α 0g1=3

s . So when we increase the IIA cou-
pling constant we blow up the eleventh dimension. The reason why nobody de-
tected this hidden dimension in IIA superstring theory was because that theory
is only defined at weak coupling gs! 0, which means the eleventh dimension is
very small and therefore invisible in IIA superstring perturbation theory.

All this suggests the conjecture that eleven–dimensional supergravity is the
low energy effective supergravity of strongly coupled (gs ! ∞) IIA superstring
theory. In order for this to be possible some states in the IIA superstring theory
should become light at strong coupling, otherwise a low energy effective theory
would not make sense. These states indeed exist in IIA superstring theory and
we in fact already discussed them in the context of D–branes and in the context
of the IIA supersymmetry algebra. In the IIA supersymmetry algebra (3.12) we
found BPS particle states that from the eleven–dimensional point of view were
Kaluza-Klein momentum modes. From the IIA superstring point of view these
particle states are in fact D0–branes, point-like defects on which open strings can
end. D–branes masses are proportional to 1=gs, so clearly when we increase the
coupling the D0–branes become light. In the limit gs! ∞ these states become
massless and at the same time we also decompactified to D = 11. This resulted
in the conjecture that the effective low energy description of strongly coupled IIA
superstring theory is D = 11 supergravity [26, 27] and it also suggests that the
fundamental degrees of freedom in this eleven–dimensional theory are related to
D0–branes.

64



3.2. Supergravities

3.2.2 Supergravities in ten dimensions

Let us now work our way through all the low energy effective supergravity theo-
ries of the different superstring theories. One way to proceed would be to write
down the β–functions (2.70) of the corresponding superstring theories, but the
uniqueness of the different supergravity theories in D = 10 allows us to use more
direct field theoretical methods. For a more extensive discussion on the D = 10
supergravities and their original constructions we refer to [7] (part two) and the
references therein. We will begin with the Type IIA supergravity action which
is determined by the reduction of eleven–dimensional supergravity (3.24) as we
already saw.

The following massless bosonic fields appear in IIA supergravity

(Φ;Gµν
;Bµν ;Aµ

;Aµνρ
) : (3.27)

Where the first three fields are the Neveu–Schwarz fields combining to give the
bosonic part of an N = 1 supergraviton multiplet. This basic Neveu–Schwarz
supergravity multiplet will appear in all closed superstring low energy effective
supergravity theories. The other two fields are Ramond–Ramond tensor fields
giving rise to rank 2 and rank 4 field strengths (called F and G respectively) ap-
pearing in the supergravity action. We also find a topological term resulting in
a modification of the Bianchi identity for the Ramond–Ramond field strength G
giving G= dA+12B^F (where B is the rank 2 Neveu–Schwarz field). The Type
IIA supergravity action reads

SIIA =
1

κ 2
10

Z
d10x

p
�Gf e�2Φ

(R+4(∂Φ)
2�

1
3

H2
)

+F2
+

1
12

G2 g+
1

144

Z
G^G^B: (3.28)

In this action κ10 is the ten–dimensional gravitational constant which can be re-
lated to α 0 by just counting mass dimensions, κ10 ∝ α 02. Notice that all the fields
of the Neveu–Schwarz N = 1 supergravity multiplet are multiplied by the same
factor e�2Φ ∝ 1=g2

s. Extracting the powers of the string coupling constant gs and
redefining κ10 to include the powers of gs we conclude that

κ10 ∝ α 02 gs: (3.29)

The appearance of e�2Φ is a result of the fact that this action can be deduced
from tree level closed Type IIA superstring theory. The worldsheet at this level
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topologically is a sphere which has genus zero and Euler number χ = 2. Therefore
all diagrams are weighted with e�2Φ (see 1.1.6), explaining the dilaton factor. This
will be a common feature of all supergravity fields which are massless closed
string states in the Neveu–Schwarz sector. Ramond–Ramond fields are special
because they invalidate the conclusion that at tree level closed string states are
weighted with e�2Φ. One could start with Ramond–Ramond fields C0 weighted
as usual, but it can be shown that when the dilaton background is non–trivial the
Bianchi identity and the field equations pick up terms proportional to dΦ. This
means C0 is no longer of the form dA. Defining C� e�ΦC0 gets rid of the terms
proportional to dΦ and restores the usual Bianchi identity (and field equations).
This redefinition decouples the Ramond–Ramond fields from the dilaton and so
they appear in the action without a factor of eΦ. Again this will be a common
feature of all supergravities containing Ramond–Ramond fields.

We should mention that IIA supergravity can be extended to include a cosmo-
logical constant consistent with supersymmetry. This cosmological constant, by
using Hodge duality, can be related to a rank 10 field strength8 which is of the
Ramond–Ramond type which means that it does not couple to the dilaton. So the
extension called massive IIA supergravity involves the addition of a cosmological
constant in the Ramond–Ramond part of the action [28].

The action (3.28) is invariant under the dilation or global scale transformation

Φ ! Φ+4λ
Gµν ! e�2λ Gµν

Bµν ! e2λ Bµν (3.30)

Aµ ! e�3λ Aµ

Aµνρ ! e�λ Aµνρ ;

explaining the name of the dilaton scalar. The vacuum in which Φ takes on a
particular value is not invariant, so this symmetry is a spontaneously broken one
for which the dilaton is the Nambu–Goldstone boson.

We could also consider local scale transformations with a function eλ Φ(x) de-
pending on the dilaton scalar. Such a transformation is called a conformal trans-
formation and defines a new metric tensor Gµν

c

Gµν
c = e�λ ΦGµν

: (3.31)
8Such a field strength can be consistently added without breaking supersymmetry because it

does not describe local degrees of freedom. It only carries a global degree of freedom, consistent
with the fact that it should be related to a cosmological constant.
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This kind of transformation will transform the action (3.28) into

Sc
IIA =

1
κ 2

10

Z
d10x

p
�Gc ( e(�2+4λ )Φ�Rc+δ (∂Φ)

2� (3.32)

�
1
3

e(�2+2λ )Φ H2
+e3λ Φ F2

+
1

12
eλ Φ G2

) ;

with δ = 4�16λ 2
(D�1)=(D�2). Every value of λ picks out a specific metric

frame which determines the form of the supergravity action. Our starting point
action (3.28) is written using the so–called string frame metric Gµν

s . This is the
naturally preferred frame for strings probing a background solution, in the sense
that the string action (2.1) in this frame does not depend on the dilaton scalar (it
will depend on the dilaton scalar when performing a conformal transformation to
another metric frame). Another convenient (and standard) frame is the Einstein
frame, which is defined as the frame in which the Ricci curvature tensor is not
multiplied with a dilaton factor. From (3.32) we see that this happens when we
take λ =

1
2 , fixing the relation between the Einstein and string frame metric

Gµν
E = e�

1
2ΦGµν

s : (3.33)

The Einstein frame IIA supergravity action becomes

SE
IIA =

1
κ 2

10

Z
d10x

p
�GE (

�
RE�

1
2(∂Φ)

2� (3.34)

�
1
3

e�Φ H2
+e

3
2 Φ F2

+
1

12
e

1
2 Φ G2

:

Similar scaling properties exist for all the D� 10 supergravity actions which have
a dilaton scalar. Although the actual physics should be independent of the frame
we use, some properties of supergravity (or properties of solutions) are much eas-
ier detected using a specific frame. Different probes (appearing in the theory) have
naturally preferred frames in which the probe worldvolume actions do not depend
on the dilaton scalar.

Type IIB supergravity should be a chiral N = 2 supergravity which is uniquely
determined by supersymmetry. From IIB superstring theory we concluded that at
the massless level we find the following bosonic states

(Φ;Gµν
;Bµν ;λ ;Aµν

;Aµνρσ
+ ) : (3.35)

The first three states are Neveu–Schwarz fields, which in the action should all be
multiplied with a factor e�2Φ because they arise at tree level in closed superstring
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theory. The other fields are Ramond–Ramond fields and we concluded that those
should appear in the action without a factor of e�2Φ.

The rank 5 field strength C+
= dA+ constructed from the rank 4 Ramond–

Ramond gauge field should be self–dual, i.e. symbolically C+
= εC+. This fol-

lows from supersymmetry (otherwise the degrees of freedom do not match) but
complicates the construction of an action for Type IIB supergravity because the
self–duality condition does not follow from varying a (covariant) action. There
are ways around that, but we will use a simpler procedure. The action will be
constructed using a standard rank 5 field strength tensor and we will keep in mind
that we have to add the self–duality constraint to the equations of motion follow-
ing from the IIB action by hand (as an extra equation which does not follow from
varying the action). Keeping this in mind, and omitting fermions, the Type IIB
supergravity action is

SIIB =
1

κ 2
10

Z
d10x

p
�G f e�2Φ

(R+4(∂Φ)
2�

1
3

H2
)

�2(∂λ )
2�

1
3
(H 0�λ H)

2�
1

60
C+2 g

�
1
48

Z
A+^H ^H 0

: (3.36)

In this action H = dBwith B the rank 2 Neveu–Schwarz field and H0
= dAwith A

being the rank 2 Ramond–Ramond field. We also added a topological term which
is responsible for a modification of the Bianchi identity of C+ which adds Chern–
Simons terms in the self–dual field strength C+. We find that dC+

= H ^H 0. The
pseudo–scalar λ is usually called the axion. Notice that H, H 0 and the axion are
connected in the term H� λ H 0 appearing in the action (3.36). The form of this
term is determined by supersymmetry, and we will see that it is consistent with an
SL(2;R) symmetry of IIB supergravity.

It is also possible to deduce Type IIB supergravity from Type IIA supergravity
using T–duality. As we concluded in 1.1.4, T–duality interchanges winding and
Kaluza–Klein momentum modes and changes the chirality of one of the spacetime
spinors. Winding and Kaluza–Klein modes need a compact direction and couple
to abelian (massless) vectors in the lower dimensional (let us say 9–dimensional)
theory, so interchanging these states from the supergravity point of view just
means exchanging the winding and Kaluza–Klein vectors. This generalizes to
all the other fields appearing in the IIA and IIB theories after reduction to D = 9.
T–duality in this supergravity context then means that in the reduced D = 9 su-
pergravity a simple relabeling of fields should relate the IIA reduction to the IIB
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reduction, telling us that these two different supergravity theories in D = 10 are
equivalent in D = 9 [29].

Let us again write the supergravity theory using the Einstein frame metric as
defined in (3.33). This results in the following Einstein frame action

SE
IIB =

1
κ 2

10

Z
d10x

p
�G f R�2 [ (∂Φ)

2
+e2Φ

(∂λ )
2
] �

1
60

C+2

�
1
3
[e�ΦH2

+eΦ
(H 0�λ H)

2
] g

�
1
48

Z
A+^H ^H 0

: (3.37)

Defining a complex scalar field τ = λ + ie�Φ we can rewrite the kinetic scalar
terms as �2e2Φj∂τ j2. This kinetic term is invariant under fractional linear trans-
formations working on the complex scalar τ as

τ !
aτ +b
cτ +d

; (3.38)

where �
a b
c d

�
2 SL(2;R ) : (3.39)

In order for this SL(2;R ) matrix to have unit determinant the parameters a;b;c and
d have to satisfy ad�bc= 1. This symmetry extends to the full action (includ-
ing fermions) provided that the rank 2 Neveu–Schwarz field B and the Ramond–
Ramond field A transform as an SL(2;R ) doublet�

B
�A

�
!
�

a b
c d

� �
B
�A

�
: (3.40)

Although we did not discuss it, an SO(2) subgroup of this SL(2;R ) also appears
in the IIB supersymmetry algebra.

Let us concentrate on a special SL(2;R ) matrix having a = d = 0 and b =

�c= 1 and assume λ = 0. In this special case we conclude that IIB supergravity
is invariant under a discrete subgroup taking Φ ! �Φ if we at the same time
interchange the rank 2 Ramond–Ramond and Neveu–Schwarz fields. From the
superstring point of view this transforms strong string coupling to weak string
coupling. This is called an S–duality transformation. As opposed to strongly
coupled Type IIA superstring theory, which is described by D = 11 supergravity
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in a low energy limit, in Type IIB we find that S–duality maps strongly coupled
IIB theory to the sameweakly coupled IIB theory. Therefore IIB is called self–
dual and the full non–perturbative symmetry group of IIB superstring theory is
conjectured to be SL(2;Z)9 [26, 30, 31, 32].

Let us now move on to the N = 1 supergravity theories. In the Heterotic
superstring theory we found four bosonic states at the massless level, which are

(Φ;Gµν
;Bµν ;A µ

H ) ; (3.41)

corresponding to a dilaton scalar, the metric tensor, a Neveu–Schwarz rank 2
gauge field and a Yang–Mills vector taking values in the Lie algebra of SO(32) or
E8�E8. Constructing a N = 1 supergravity from these states again implies the ap-
pearance of the graviton supermultiplet, having one gravitino and one Majorana–
Weyl fermion being the superpartners of the graviton, the Neveu–Schwarz tensor
and the dilaton.

Besides that, N = 1 supergravity can be coupled to a Yang–Mills supermul-
tiplet consisting of a Yang–Mills vector and a Majorana–Weyl spinor. This cou-
pling is non–trivial and will give rise to a modification of the field strength H of the
rank 2 Neveu–Schwarz tensor B to include a so–called Yang–Mills Chern–Simons
term. Schematically, using differential form notation, in the abelian case this gives
H = dB+

1
2AH ^FH (whereFH = dAH), which means dH =

1
2FH ^FH which

is no longer the standard Bianchi identity. Canceling anomalies requires the gauge
groups to be either SO(32) or E8�E8. For simplicity we will consider the Het-
erotic supergravity action without the Chern–Simons terms (and we will do the
same for Type I supergravity).

The bosonic sector of the action of N = 1 Heterotic supergravity in the string
frame is

SHet =
1

κ 2
10

Z
d10x

p
�Ge�2Φ

�
R+4(∂Φ)

2�
1
3

H2�α 0TrF 2
H

�
: (3.42)

The symbol Tr means we trace over the gauge group indices which are either in
SO(32) or in E8�E8. We note that the Yang–Mills part of this action apparently
is higher order in the α 0 expansion and that all the fields are multiplied by a com-
mon factor of e�2Φ because this action can be deduced by considering (closed)

9The restriction to integers Z is because this symmetry interchanges charged objects (BPS
states) in the theory. These charges are quantized and lie on an integer charge lattice, which only
maps to itself if the symmetry group is restricted to SL(2;Z ).
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Heterotic string states at tree level. Performing a conformal transformation to the
Einstein frame action we find

SE
Het =

1
κ 2

10

Z
d10x

p
�GE (

�
RE�

1
2(∂Φ)

2� (3.43)

�
1
3

e�Φ H2�α 0e�
1
2 Φ TrF 2

H ) :

Although at this point there seems to be nothing especially interesting in writing
the action this way, when we compare with the (Einstein frame) Type I supergrav-
ity it will become clear why this frame is useful.

As in the Heterotic superstring, in the Type I superstring theory we found four
bosonic states at the massless level, which are

(Φ;Gµν
;Aµν ;A µ

I ) ; (3.44)

corresponding to a dilaton scalar, the metric tensor, a rank 2 Ramond–Ramond
gauge field and a Yang–Mills vector taking values in the Lie algebra of SO(32).
Essentially these are the same fields as in the case of the Heterotic superstring
and therefore the supergravity action should be similar, as we also saw in the
corresponding supersymmetry algebras. Differences will arise from the fact that in
Type I superstrings we are dealing with open and closed superstring states which
are weighted differently with eΦ ∝ gs at tree level. Also the rank 2 gauge field is
a Ramond–Ramond field as opposed to the rank 2 Neveu–Schwarz gauge field in
Heterotic supergravity.

The gauge fields arise from the open strings and therefore are weighted with
e�Φ whereas the metric and the dilaton are Neveu–Schwarz closed string states
weighted by e�2Φ. Putting all these things together we find the following bosonic
sector of the Type I supergravity action in the string frame

SI =
1

κ 2
10

Z
d10x

p
�G

�
e�2Φ �R+4(∂Φ)

2�� 1
3
C2�α 0e�Φ TrF 2

I

�
: (3.45)

In this action C= dAandFI = dAI are the rank 3 Ramond–Ramond field strength
and the rank 2 Yang–Mills field strength respectively.

We find the following Einstein frame action for Type I

SE
I =

1
κ 2

10

Z
d10x

p
�GE (

�
RE�

1
2(∂Φ)

2� (3.46)

�
1
3

e+ΦC2�α 0e+
1
2 Φ TrF 2

I ) :
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Except for the signs of the factors eΦ this is exactly the same action as in the case
of the Heterotic Einstein frame action (3.43). We can perform the following field
transformations to go from the Type I to the Heterotic SO(32) action

C ! B

FI ! FH (3.47)

eΦ ! e�Φ

Because eΦ ∝ gs this transformation takes strong coupling in Type I theory to
weak coupling in the Heterotic theory and vice versa. It suggests that strongly
coupled Type I superstrings can be described by weakly coupled Heterotic SO(32)
superstrings and vice versa [26, 31]. This sound peculiar because the Heterotic
SO(32) superstring theory is a theory of closed strings only, whereas the Type I
superstring consists of closed and open superstrings. However lots of evidence
has been gathered supporting this S–duality conjecture, most of them relying on
supersymmetry and BPS states [33, 34].

3.3 Dualities, M–theory and p–branes

In this section we want to make the final connection between central charges, p–
brane soliton solutions and superstring dualities. This will lead to the introduction
of M–theory, first defined as the eleven–dimensional strong coupling limit of Type
IIA superstring theory, but by now believed to reproduce all string theories as
different perturbative corners in its moduli space10. The most important argument
for believing in M–theory and the dualities following from it, is the existence
of (extended) BPS soliton objects appearing in the low energy effective theories
[35, 36, 37, 16].

3.3.1 BPS p–brane solutions

We want to construct solutions to the closed string low energy supergravity equa-
tions of motion preserving some amount of supersymmetry. The charge of such
a solution we want to relate to the central charge appearing in the corresponding
supersymmetry algebra. In general what we need to construct such a solution is
General Relativity coupled to a dilaton scalar and an antisymmetric field strength

10A moduli space is the space of all free parameters and/or collective coordinates in a theory.
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tensor. Because we want such a solution to preserve some amount of supersym-
metry, it is sufficient to use the bosonic fields. Preservation of some amount of
supersymmetry just means that a subset of supersymmetry transformations will
leave the bosonic solution invariant, i.e. will not introduce fermions. For a more
extensive review on BPS soliton solutions we refer to [16].

We will solve for BPS solutions to the equations of motion obtained from the
following general (Einstein frame) action

SD =

Z
dDx

p
G
h
R�

4
D�2

(∂Φ)
2�

1
2(p+2)!

eaΦF2
p+2

i
; (3.48)

For special values of a and p this is a (bosonic) truncation of a supergravity action
in D dimensions. This will cover all D = 11 and D = 10 supergravity examples
by choosing the parameters p and a (and D of course) appropriately. It also covers
(truncated) possible compactifications of the D = 11 and D = 10 supergravities,
either on tori or on more sophisticated compact manifolds like Calabi–Yau man-
ifolds. Any supersymmetry preserving p–brane solution will therefore also have
a natural place in any of the (compactified) superstring theories and/or M–theory.
The advantage of this general action is of course that it enables us to discuss many
different p–brane solutions in various dimensions at once.

A p–brane will naturally couple to a rank p+ 1 gauge potential which leads
to a rank p+ 2 field strength, explaining the interpretation of the parameter p
appearing in this action. Every field strength can be related to a rank D� p� 2
field strength through Hodge duality of which we already saw some examples in
the supersymmetry algebras, but in the presence of a dilaton scalar and a metric
the relation (3.11) needs to be modified to become

F̃µ1:::µD�p�2 =
(�1)D+p�1
p

G(p+2)!
eaΦεν1:::νp+2µ1:::µD�p�2 Fν1:::νp+2

: (3.49)

Such a pair possibly gives rise to a p–brane and a D� p� 4–brane. A special
case occurs when the rank of the field strength equals the rank of the Hodge dual
field strength. Then we can apply a self–duality condition identifying the two
field strengths, as we did in the Type IIB action for the rank 5 field strength. The
parameter a denotes the coupling of the dilaton to the field strength in the Einstein
frame.

We will need to introduce an ansatz for the different fields to solve the equa-
tions of motion. This ansatz will be based on the fact that we expect to find a
p–brane solution, which has p+1 isometries called worldvolume directions. For
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Chapter 3. Superstring low energy limits and dualities

one thing, this means the solution can only depend on coordinates transverse to
the worldvolume directions of the p–brane (this also means we will use a static
gauge, i.e. the p–brane is not moving). Let us assume the p–brane is extended
in the directions xµ

= 0;1; : : : p splitting up the D–dimensional coordinates into
xµ

= (xm
;yi

) with m2 [0;1; : : : ; p] and i 2 [p+1; : : :D� p�1], then we will use
the following two–block ansatz

ds2
E = H(y)α dx2

p+1 +H(y)β dy2
D�p�1 ;

eΦ
= H(y)γ

; (3.50)

F01:::pi = δ ∂iH(y)ε
;

where the function H(y) is harmonic on the transverse space meaning

∂i∂
iH(y) = 0 : (3.51)

This is a harmonic equation in D� p�1 dimensions which, when D� p�1 6= 2
excluding p= (D�3)–branes, is solved by

H(y) = c+
� r0

r

�D�p�3
; (3.52)

with c an arbitrary integration constant which for all practical purposes can be
set equal to one, and r is the radius in transverse space. Varying the action and
solving the equations of motion11 for the ansatz (3.50) we obtain the following
expressions for the parameters α , β , γ, δ and ε [38, 39]

α =
�4(D� p�3)

(D�2)∆
; β =

4(p+1)
(D�2)∆

γ =
(D�2)a

4∆
(3.53)

δ2
=

4
∆

; ε =�1 ;

where the special parameter ∆ is

∆ =
(D�2)a2

8
+2

(p+1)(D� p�3)
(D�2)

: (3.54)

11When the field strength tensor also satisfies a self–duality condition, the p–brane solution is
dyonic and the field strength solution F requires an extra factor 1

2

p
2. For the moment we also

assume that p< D�2. The cases with p= D�2 are called domain–walls and will be discussed
in chapter 5.
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3.3. Dualities, M–theory and p–branes

This parameter is special because it is invariant under toroidal dimensional reduc-
tion of a specific solution in the Einstein frame [38]. This makes it easy to identify
p–branes in different dimensions with their higher–dimensional “parent” p–brane
solutions. Another special feature of ∆ is that for supersymmetry preserving solu-
tions it should equal

∆susy=
4
n

with n2 Z
+
: (3.55)

This picks out the values of a, D and p for which the action (3.48) is a truncation of
a supergravity theory. In those cases the solutions can be shown to preserve some
amount of supersymmetry by solving what are called the Killing spinor equations.
Basically this means that for the p–brane solution there exist special supersym-
metry transformation parameters η (the Killing spinors) for which the variation
of the spin half fields appearing in the supergravity theory vanish δΨ = 0. The
(spinorial) dimension these Killing spinors span determines the number of super-
symmetries preserved. Compare with breaking Lorentz symmetry by introducing
an extended object in the theory. This will break some, but not all of the Lorentz
symmetry. The theory will still be invariant under Lorentz transformations in the
worldvolume directions of the extended object. In Table 3.1 we listed a variety
of half supersymmetry preserving p–brane solutions in various dimensions cov-
ered by the solution (3.53), most notably the D = 11 M–branes and the D = 10
Dp–branes are listed in there as well.

All these extremeBPS solutions are limits of more general black p–brane so-
lutions [36, 35] breaking all of the supersymmetry, but satisfying the Bogomol’nyi
bound inequality M > Q. These non–extreme p–brane solutions are called black
because they resemble black holes which have a true horizon, classically acting
as a one–way gate. Semi–classically the black p–brane will Hawking radiate and
lose energy until it reaches the extreme BPS p–brane ground state solution with
M = Q.

The shape of an extended object should be allowed to fluctuate, or equivalently
the p–brane is a dynamical object. It should be possible to describe the fluctua-
tions of a brane by a worldvolume (effective) action. This worldvolume theory
should be supersymmetric, precisely because the supergravity solution is BPS. A
first guess for the coupling to the spacetime string framemetric would be a further
generalization of the Nambu–Goto string action (2.1) to p–dimensional extended
objects

Sp = Tp

Z
dp+1ξ e�kΦ

q
det∂iX

µ∂ jX
ν gµν (3.56)

with Tp representing the tension of the p–brane. In theories with a 6= 0 we have
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Dimension a ∆ Name
11 0 4 M–branes
10 3�p

2 4 Dp–branes
–1 4 NS1–brane
1 4 NS5–brane

6 1� p 2 dp–branes
5 0 4/3 m–branes
4 2

p
3 4 black hole

2 2 ,,
2=
p

3 4/3 ,,
0 1 RN black hole

Table 3.1: The Table indicates the values of a and ∆ (in the Einstein frame) for a variety
of branes in diverse dimensions.

to allow for a factor e�kΦ where k is determined by adding Sp to the action (3.48)
rewritten in the string frame and demanding that the total action transforms homo-
geneously under global scale transformations of the spacetime fields (3.30) [37].
Notice that a suitably chosen conformal transformation (3.31) can make the dila-
ton dependence of the worldvolume action (3.56) disappear. For every p–brane
there exists a naturally preferred metric frame in which the worldvolume action
does not depend on the dilaton. The dilaton dependence in the string frame will
determine the scaling of the effective tension with e�kΦ ∝ g�k

s ,

τp = Tpg�k
s : (3.57)

Besides the coupling to the spacetime metric a p–brane couples to a p+ 1–
form potential. In the worldvolume theory this is described by a term

SWZ =

Z
Σ
(p+1)

AM1:::Mp+1
dXM1 ^ : : :^dXMp+1 : (3.58)

In this equation Σp+1 represents the p+ 1 dimensional p–brane surface and the

XM are target spacetime coordinates. This is called a Wess–Zumino term and
is a straightforward generalization of a point particle coupling to a gauge vector
potential. This term will give rise to a rank p+1 spacetime current

JM1:::Mp+1(X) =

Z
Σ
(p+1)

dXM1 ^ : : :^dXMp+1 δ(∆X) ; (3.59)
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where ∆X = X�X(σ) in the δ–function, X(σ) representing the position of the
p–brane. For the static configuration we want to discuss, this expression reduces
to a charge

Zi1:::i p
� J0 i1:::i p

= τp

Z
Σ
(p)

dXi1 ^ : : :^dXip
; (3.60)

where we integrated over worldvolume time and the δ–function and introduced a
charge density qp� τp. The i’s are spatial indices and by definition (3.59) this ten-
sor is completely antisymmetric. These are the central charges Zi1:::i p

appearing
in the supersymmetry algebra. Looking at (3.60) this expression is a topological
winding charge, proportional to the volume of the p–brane and vanishing for con-
figurations which are not topologically stable. So we now established a precise
connection between BPS soliton solutions and central charges in the supersym-
metry algebra [40].

Let us as an example concentrate on the solutions appearing in D = 11 su-
pergravity [35]. So we have to choose the appropriate parameters. Eleven–
dimensional supergravity (3.23) does not have a dilaton scalar. Although that
means (3.48) strictly speaking is no truncation of D = 11 supergravity, a solution
having Φ = 0 should also be solution of D = 11 supergravity. Taking a = 0 will
do exactly that. The rank 4 field strength can give rise to a 2–brane solution and a
D� p�4 = 5–brane solution. This gives ∆ = 4 or n= 1 in both cases. The solu-
tions are respectively called the M2– and M5–brane. For the M2–brane, extending
in the 012 direction we find the solution

ds2
M2 = HM2

� 2
3 dx2

3 +HM2
1
3 dy2

8

F012 i = ∂i HM2
�1

: (3.61)

For the M5–brane we find

ds2
M5 = HM5

� 1
3 dx2

6 +HM5
2
3 dy2

5
?F01:::5 i = ∂i HM5

�1
: (3.62)

Although we will not prove this here, these solutions interpolate between differ-
ent vacua of eleven–dimensional supergravity, one of them being flat Minkowski
space at infinity. This is in fact a generic feature of most p–brane solutions [41, 42]
and we will make this more precise in chapter 5. They only have one free phys-
ical parameter appearing in the harmonic function (3.52) which should represent
both the mass density m and the charge density q of the p–brane12. The rela-

12Because the p–branes are infinitely extended, their total mass and charge must be infinite.
Only the mass and charge density are finite.
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tions between these charge densities satisfies the Bogomol’nyi bound we deduced
from the eleven–dimensional supersymmetry algebra. For the M2– and M5–brane
central charges we have

Z12 = qM2

Z
dX1^dX2

Y1:::5 = qM5

Z
dX1^ : : :^dX5 : (3.63)

Let us be brief on the p–brane solutions in the D = 10 string low energy effec-
tive supergravities. Most of them can be found in Table 3.1. On plugging in the
appropriate parameters which can be read off from the Einstein frame supergravity
actions, it must be clear that 2 p–brane solutions exist for every field strength ap-
pearing in the supergravity action13. All solutions again have ∆ = 4. For the Het-
erotic supergravity (3.43) we find a Neveu–Schwarz string and a Neveu–Schwarz
five–brane (we will not consider non–abelian solitons). In Type I supergrav-
ity we find a Ramond–Ramond string and a Ramond–Ramond five–brane. The
Neveu–Schwarz string and five–brane also appear in Type IIA and Type IIB, the
Neveu–Schwarz string being the BPS winding mode of a closed Heterotic, IIA
or IIB superstring and the five–brane being the Hodge dual. In IIA we find all
the even Ramond–Ramond Dp–branes and in IIB we find all the odd Ramond–
Ramond Dp–branes. Masses and charges of Ramond–Ramond BPS solutions can
be shown to scale as 1=gs or k = 1 (3.57) (as they should if they are Dp–branes).
For the Neveu–Schwarz five–branes we find a 1=(gs)

2 or k= 2 (3.57) behavior for
the masses, which is what we expect for a true soliton solution. Because we al-
ready said that the Neveu–Schwarz strings correspond to the BPS winding modes
of fundamental superstrings, it should be no surprise that the masses and charges
of these object do not scale with gs or k= 0 in (3.57).

We still seem to be missing some BPS soliton solutions, for example we did
not find a massless BPS solution and in D = 11 we also did not find a p = 6–
brane. These solutions do exist but they do not couple to a gauge potential and
are described by purely gravitational solutions. Therefore they exist in any (su-
per)gravity theory. The massless solution is nothing but a gravitational Brinkman
wave. The other (massive and topologically stable) gravitational BPS solution is
called a Kaluza–Klein monopole and is described by an off–diagonal Taub–Nut
metric in only four spacelike dimensions (which we would consider transverse

13In the case of a non–vanishing dilaton coupling a the Hodge dual field strength will appear in
the action with a dilaton coupling �a because of (3.49).
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to the Kaluza–Klein brane) of which one needs to be a special compact isometry
direction14. For the wave we find the off–diagonal metric

ds2
W = (H(t +z;y)�2)dt2

+H(t +z;y)dz2

+2(H(t +z;y)�1)dtdz+dy2
D�2 (3.64)

and for the Kaluza–Klein monopole the off–diagonal metric is

ds2
KK = dx2

D�4 +H(y)�1
(dz+Aidyi)

2
+H(y)dy2

3 : (3.65)

The wave corresponds to momentum traveling in the z direction and when z is
a compact isometry direction it corresponds to a BPS Kaluza–Klein mode. The
Kaluza–Klein monopole corresponds to a p= D�5–brane, because it clearly has
p spatial isometry directions, the z isometry being special ensuring the topological
stability of the solution. In D = 11 the Kaluza–Klein monopole therefore repre-
sents the 6–brane found in the D = 11 supersymmetry algebra [43]. The world-
volume theory of a Kaluza–Klein monopole is described by so–called gauged
sigma–models, for more details we refer to [44].

3.3.2 Dualities and effective worldvolume theories

All the conjectured dualities between superstring theories [26, 5, 45, 46] can now
be tested by studying the BPS soliton spectrum, which should be the same for
two dual supersymmetric theories. Because we can trust the masses and charges
of these BPS objects at weak and at strong coupling, we can analyze which of
the states become light and can possibly be used as fundamental objects in a dual
description allowing for a low energy effective supergravity approximation.

Let us first come back to the low energy effective worldvolume theories that
should describe the small fluctuations of the p–brane solutions. Generically these
theories are effective by definition because they are deduced from a solution to
a low energy effective supergravity. We already mentioned that there is an ex-
ception. For N Dp–branes we do know the microscopic description in terms of
open superstring theory with Dirichlet boundary conditions. As we saw in section
1.2.5, the states on N Dp–branes, at the massless level, are non–abelian U(N) fo-
tons and scalars whose fluctuations deform the shape of N Dp–branes. This means
the low energy effective action can only be a supersymmetric U(N) Yang–Mills

14This means 4 Euclidean dimensions is the smallest dimension in which such a solution exists
and in that case it is called a Taub–Nut instanton.
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theory, which has 16 real supersymmetries. This holds for all the Dp–branes and
in fact all p+ 1–dimensional worldvolume theories are related to the D = 10 su-
persymmetric U(N) Yang–Mills theory by reduction. In D = 10 the bosonic part
is just

SSYM=
1

g2
YM

Z
d10xTrF2

: (3.66)

This theory would be describing the worldvolume theory of N D9–branes,
which has no scalars denoting its position in the D = 10 target spacetime because
the brane is spacetime filling. If we reduce this theory on a torus Tn we ob-
tain a theory with U(N) vectors and n adjoint scalars with a commutator scalar
potential, describing the degrees of freedom of N D(9�n)–branes moving in a
ten–dimensional target spacetime. When n = 9 we arrive at a supersymmetric
quantum mechanics model describing the dynamics of N D0–branes in Type IIA
superstring theory. We will say a lot more about that model in the next chapter.

Of course this is a lowest order in α 0 approximation. In fact we can do a lot
better and the full action is known to be described by what is called a Dirac–Born–
Infeld action [9]

SDp = TDp

Z
dp+1xe�Φ

q
det(Gµν �α 0Fµν ) : (3.67)

Expanding the squareroot of the determinant we will arrive at the supersymmetric
U(1) Yang–Mills action. This action is hard to generalize to include non–abelian
gauge groups. Proposals have been made, but so far it is unclear if those proposals
are correct. Whenever we will need Dp–brane worldvolume theories in this thesis
we will use the low energy effective supersymmetric Yang–Mills theory instead
of the Born–Infeld theory.

Using all this information on BPS states in general and Dp–branes in particular
we now want to re–analyze the conjectured dualities.

� Heterotic SO(32) – Type I SO(32) S–duality
At strong coupling in Type I the BPS D1 string becomes light and in fact
it can be shown to map perfectly to the fundamental closed superstring of
Heterotic superstring theory [33]. All the other states also map perfectly
giving strong evidence for this conjecture [34].

� Type IIB SL(2;R) self–duality
The same phenomenon occurs, the D1 string maps to the fundamental Type
IIB superstring at strong coupling and vice versa. The SL(2;R) symmetry
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leads us to consider (p;q) strings in the theory representing a bound state
of p Neveu–Schwarz strings and q Ramond-Ramond D1 strings [32]. The
same mapping is at work for all the other BPS branes.

� Type IIA and M–theory
At strong coupling of type IIA we concluded that an extra eleventh dimen-
sion is developed. All the BPS states of type IIA should have a counterpart
in M–theory, where M–theory is defined as the eleven–dimensional funda-
mental theory giving Type IIA superstrings in D = 10 if the eleventh di-
mension is very small. Using the relation between eleven– dimensional su-
pergravity and Type IIA supergravity we conclude that the M2–brane gives
rise to the NS string and the D2–brane. The M5–brane reduces to the D4–
and the NS5–brane. The D = 11 KK–monopole reduces to the D = 10 KK–
monopole and to the D6–brane if reduced over the special compact isometry
direction z in the D = 11 KK–monopole. Finally, but very importantly, the
Kaluza–Klein momentum modes (or the gravitational waves having their
momentum in the compact direction) reduce to the D0–branes15 [47].

One attempt to define M–theory made use of the fact that the theory con-
tains M2–branes [27]. The idea was to try to quantize the supermembrane
[48], just as we quantized the superstring. However, the standard quantized
supermembrane has a continuous spectrum and no natural dimensionless
coupling constant to set up a perturbative expansion, making a (standard)
elementary particle interpretation problematic [49]. We will say a little bit
more about this in the next chapter. The states becoming light at strong cou-
pling are the D0–branes and therefore an obvious idea is to use D0–branes
as the fundamental degrees of freedom describing M–theory. That theory is
named Matrix theory [50] and is the subject of the next chapter.

� M–theory dualities
Because Type IIB superstring theory can be obtained through Type IIA su-
perstring theory using T–duality we can also obtain Type IIB theory from
M–theory. T–duality requires another (besides the eleventh direction) com-
pact direction and therefore should be related to M–theory on a two–torus
T2. Shrinking one cycle of the T2 will give Type IIA superstring theory.
Using T–duality, shrinking both cycles of the T2 should give Type IIB su-
perstring theory in D = 10 [6].

15The gravitational waves in D = 10 are just the gravitational waves in D = 11 not having their
momentum in the compact direction.
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IIB

D=11 supergravity

IIA

Type I

Het SO(32)

Het E8 x E8 M-Theory

Figure 3.1: The moduli space of M–theory with its different perturbative corners.

We can also relate M–theory to the N = 1 superstring theories [51, 52].
This can be done by considering M–theory on an interval S1

=Z 2 [52], this
will break half of the supersymmetries giving a N = 1 theory in D = 10.
This theory is related to the strong coupling limit of Heterotic E8 �E8,
where the coupling constant gs is given by the length of the interval. Be-
cause Heterotic E8 �E8 is T–dual to Heterotic SO(32) (if we break the
gauge group to SO(16)�SO(16)), and Heterotic SO(32) is S–dual to Type
I superstring theory, we related all consistent superstring theories to M–
theory. A situation pictorially displayed in Figure 3.1. If we consider other
compact manifolds many more examples of these dualities can be found
[26, 53, 54, 14]. One example is the IIA superstring theory compactified
on a four–dimensional K3 Calabi–Yau manifold (breaking half of the su-
persymmetries), which is conjectured to be S–dual to Heterotic superstring
theory on a four–dimensional torus T4. Altogether this is significant ev-
idence for the existence of one non–perturbative structure underlying all
superstring theories called M–theory.
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Matrix theory

This chapter introduces Matrix theory as the candidate non–perturbative descrip-
tion of (eleven–dimensional) M–theory. After a discussion of the basic set up and
the microscopic Matrix theory degrees of freedom, we will show how extended
BPS objects can be constructed in Matrix theory. Using these extended BPS ob-
jects as our basic building blocks we will construct intersecting or overlapping
BPS states which generically break more supersymmetries. A basic requirement
for any theory claiming to describe M–theory would be that it can reproduce all
BPS states appearing in the eleven–dimensional supersymmetry algebra. As a
check of Matrix Theory we will therefore show how to identify Matrix theory
BPS states with BPS states appearing in the eleven–dimensional supersymmetry
algebra. This chapter reports on work published in [55]. The Matrix theory sub-
ject started with the paper by Banks, Fischler, Schenker and Susskind [50] and we
also refer to the following review papers [56, 57, 58, 59].

4.1 The Matrix model conjecture

In the previous chapter we introduced M–theory as the eleven–dimensional non–
perturbative theory underlying all consistent superstring theories. The low energy
limit of this theory should give eleven–dimensional supergravity and upon com-
pactification on a small circle M–theory should give the IIA superstring. Together
with the eleven–dimensional supersymmetry algebra and its BPS spectrum, basi-
cally this is all we know of M–theory. At this point there are two ways to proceed
in trying to define a microscopic description of M–theory (in a suitable limit). In
the end both attempts turn out to be connected and will lead to the same M–theory
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description, the Matrix model.
The first approach is to use the fact that M–theory contains supermembranes

[48], which can be shown to be related to the IIA superstring by a reduction over
the compact circle of the 3–dimensional supermembrane worldvolume theory. We
obtained the fundamental degrees of freedom of Type IIA theory by quantizing
the IIA superstring worldvolume theory. The relation between supermembranes,
M–theory and IIA superstrings suggests that we should try to quantize the super-
membrane to obtain the fundamental degrees of freedom of M–theory.

Quantization of the supermembrane is however problematic. In one exam-
ple of a supermembrane with the spatial topology of a sphere S2 in a light–cone
frame, a regularisation can be made based on the SU(2) rotational symmetry of
the S2. The SU(2) algebra can be used to associate coordinate functions on S2

with matrices generating the SU(2) algebra in the N–dimensional representation.
This means integrals are replaced by traces and it can be verified that in the large
N limit the matrix regularisation reproduces the continuum quantities. The matrix
regularized Hamiltonian can be considered as a classical supersymmetric particle
theory (all spatial integrals are replaced by traces over N�N matrices) with a fi-
nite number of degrees of freedom and the quantization of such a system is rather
straightforward (solving the quantum theory is another issue). For the details of
this construction we refer to [49]. This Hamiltonian turns out to be equivalent to
the Hamiltonian describing N Type IIA D0–branes in a light–cone frame. This
in fact is the other approach towards a description of M–theory, to which we will
now turn our attention.

4.1.1 D0–branes and DLCQ M–theory

In section 2.2.5 we already hinted at a possible formulation of the microscopic
M–theory degrees of freedom in terms of D0–branes. This was based on the fact
that these are the states that become light at strong Type IIA coupling. Let us
pursue this idea in a more precise manner. This discussion will mainly be based
on [60, 61, 62] and the review paper [58].

Let us consider M–theory in a light–cone frame by choosing coordinates x�
and x+ defined as

x� =
1p
2
(x11� t) ; x+ =

1p
2
(x11

+ t) : (4.1)

We choose the light–cone coordinate x+ to play the role of time and consider the
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coordinate x� to be compactified on a circle of radius R. So we identify

x� � x�+R (4.2)

This compactification restricts the momentum P+ to be quantized in units of N=R.
Quantization of a theory in this special frame is called Discrete Light–Cone Quan-
tization (DLCQ) and has some special features. Important for our purposes will be
that the allowed values for the momentum P+ will be strictly positive and that the
theory, for any N, will have Galilean invariance1 in the other transversal directions
Xi .

Consider on the other hand M–theory compactified on a spatial circle Rs,

x110 � x110
+Rs: (4.3)

This system can be related to the compactified light–cone coordinate x� by per-
forming a Lorentz boost

�
t 0

x110

�
=

0
@ 1p

1�β2

βp
1�β2

βp
1�β2

1p
1�β2

1
A� t

x11

�
; (4.4)

with

β =
1q

1+ 2R2
s

R2

(4.5)

and x and t are identified as follows�
�t
x11

�
�

 
�t + Rp

2

x11
+

q
R2

2 +R2
s

!
: (4.6)

In the limit Rs! 0, using the definition of the light–cone coordinates (4.1), we
obtain x+ and x�, with x� compactified on a circle of radius R. The conclusion is
that we can interpret DLCQ M–theory with light–like radius R as a limit Rs! 0
of Lorentz boosted M–theory compactified on a spacelike circle with radius Rs.

By definition we know that M–theory compactified on a spacelike circle is
Type IIA superstring theory. That theory has two parameters which are of im-
portance in this discussion, the string length ls�

p
α 0 and the string coupling gs.

Using (3.25) we can relate these quantities to l11 � l (11)
p and the radius Rs

gs =

�
Rs

l11

�3=2

; l2
s =

l3
11

Rs
: (4.7)

1These properties are general features of DLCQ theories. More details can be found in [60, 63].
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Clearly the limit Rs! 0 means that gs! 0, so higher genus corrections vanish
in this limit. The string length tends to ls ! ∞, which is a limit of vanishing
string tension and at first sight does not allow us to use a low energy effective
description. However, let us consider the energy of the states we are interested in
when taking the limit Rs! 0. Let us say we want to describe the behavior of a
state with light–cone energy P� and compact light–cone momentum P+ = N=R.
The momentum in the spacelike compactified theory is going to be P0

= N=Rs,
which means the total energy in the spacelike compactification is

E0
=

N
Rs

+∆E : (4.8)

The energy ∆E and P� can be related by performing the boost (4.4) and we find
(in the limit of small Rs)

∆E �
Rs

R
P� : (4.9)

This means that if we want to study states with finite light–cone energy P�, we
have to study states with vanishing ∆E in spacelike compactified M–theory in
the limit Rs! 0. In fact when we compute the ratio of ∆E and the string scale
ms� 1=ls we find

∆E ls =
P�
R

Rsls =
P�
R

q
Rsl3

11 : (4.10)

This ratio vanishes in the limit Rs! 0 and therefore the energy scales of interest
in the spacelike compactified M–theory are much smaller than the string mass
scale ms. In fact this equation is the square root of condition (3.21), telling us
that we can safely use a low energy effective description. To make this more
transparent it is useful to perform a change of units in the spacelike compactified
theory, introducing a new Planck length l̃11 defined by

∆E l̃11 = P�
Rsl2

11

Rl̃11

: (4.11)

This is just (4.9) but with the units, which we now assume to be different for the
DLCQ and spacelike compactified M–theory, explicitly inserted. All quantities of
the DLCQ M–theory are measured with respect to the “old” l11 and all quantities
of the spacelike compactified M–theory are measured with respect to the new l̃11.
We define the new Planck length l̃11 in such a way that ∆E is independent of Rs

and equal to P�. Looking at (4.11) this means

Rs

l̃2
11

=
R
l2
11

: (4.12)
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In the limit Rs! 0 we also take l̃11 ! 0 to keep the ratio in (4.12) fixed. All the
transverse coordinates scales as x̃i

=l̃11 = xi
=l11. The new Planck length also gives

a new string coupling g̃s and string length l̃s and we now find in the limit

g̃s =

�
Rs

l̃11

�3=2

! 0 ; l̃2
s =

l̃3
11

Rs
! 0 : (4.13)

Using the new unit we succeeded in keeping the energies of interest fixed and the
string theory parameters both tend to zero in the limit, enabling us to use a low
energy effective description. The surprising thing is that this low energy effective
theory can be used to describe DLCQ M–theory with finite parameters l11 and R.

The low energy effective theory was conjectured to be the one describing the
dynamics of N D0–branes in the limit of the boosted spacelike circle. All other
dynamics of the closed Type IIA superstring theory can be neglected for the fol-
lowing reason. The dynamics of the D0–branes is governed by the Yang–Mills
coupling constant g2

YM, which is related to the string theory parameters in the fol-
lowing way

g2
YM = cpg̃sl̃�3

s ; (4.14)

where cp is a fixed constant. We refer to chapter 5 on how to deduce this re-
lation. Using the expressions for l̃s and g̃s in (4.13) it is not very hard to show
that the Yang–Mills coupling constant is fixed in the limit (4.13), giving rise to
finite D0–brane dynamics. The other dynamics in Type IIA superstring theory is
governed by the gravitational constant (3.29), which in the limit (4.13) becomes
κ10 ∝ l̃4

s g̃s! 0 and therefore can be neglected. Such decoupling limits will be
discussed in more detail in the next chapter.

The Matrix theory conjecture then is that DLCQ M–theory defined by the finite
parameters N,R and l11 can be described by the low energy dynamics of N D0–
branes with finite coupling parameter gYM. Uncompactified M–theory can be
obtained by taking N and R to infinity keeping P+ = N=R fixed in DLCQ M–
theory (it has to be accompanied by taking N to infinity as well because on a
light–like circle the value of R can be changed by a boost). This clearly means
that P0

=N=Rs goes to infinity even before taking the limit Rs! 0, which is called
the Infinite Momentum Frame (IMF). Initially this was the conjecture put forward
by Banks, Fischler, Schenker and Susskind relating M–theory in the IMF to the
quantum mechanical system describing the dynamics of N! ∞ D0–branes [50].

The quantum mechanical model describing N D0–branes can be obtained by
reducing the D = 10 Super Yang–Mills multiplet to D = 0 + 1 dimensions, as
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explained in section 2.3.2 . The limit Rs! 0 ensures that we only need to con-
sider the non–relativistic theory of N D0–branes (relativistic corrections are of
order O(Rs=R) and therefore vanish in the limit Rs ! 0). The supersymmetric
Lagrangian is (using static gauge)

LIIA =
1

2 g̃s l̃s
Tr

�
ẊaẊa

+
1

2 l̃4
s

h
Xa

;Xb
i2

+
1

l̃2
s

θT
�

iθ̇�
1

l̃2
s

Γa [X
a
;θ]
��

: (4.15)

In this Lagrangian the Xa are N�N Hermitian matrices with a running over the
9 spatial dimensions, the Hermitian N�N matrix θ is a 16–component Majorana
spinor of SO(9) and Γa are spatial Dirac matrices satisfying

fΓa;Γbg= 2δab: (4.16)

The dot represents a worldline time derivative and we have fixed the gauge to
A0 = 0. The matrices X have dimensions [l ] and the spinors have dimensions [l ]3=2.
In order for the particle action S=

R
dτL to be dimensionless the worldtime

coordinate τ has dimension [l ]. Before the BFSS conjecture the Lagrangian (4.15)
was used to study N slowly moving D0–branes in Type IIA string theory [64, 65,
66].

We can replace all string theory parameters l̃s and g̃s by DLCQ M–theory
parameters R and l11, using (4.13) and (4.12). We also rescale the fields X and θ
with l̃11=l11 according to the appropriate length dimension. We will be left with a
quantum mechanics model with only finite M–theory parameters

LM =
1
2Tr

�
1
R

ẊaẊa
+

R
2 l6

11

h
Xa

;Xb
i2

+
1

l3
11

θT
�

iθ̇�
R
l3
11

Γa [X
a
;θ]
��

: (4.17)

It is also useful to construct the quantum mechanics Hamiltonian which is given
by

HM = RTr

�
1
2P2�

1
4 l6

11

h
Xa

;Xb
i2

+
1

2l6
11

θTΓa [X
a
;θ]
�
; (4.18)

where we extracted an overall factor R and introduced the (standard) canonical
momentum matrix

Pa�
dL

∂ Ẋa
=

Ẋa

R
: (4.19)

The Matrix model is invariant under the following supersymmetry transformations

δXa
= �2 ε̄ Γaθ ;

δθ =
1
2

n
ẊaΓa+

i
2l2

11

[Xa
;Xb

]Γab

o
ε + ε̃ ; (4.20)
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where ε and ε̃ are two independent 16–dimensional supersymmetry parameters
(SO(9) spinors). As mentioned in 2.3.2 this model preserves 16 supersymmetries,
which agrees with the number of preserved supersymmetries on the DLCQ M–
theory side, where half of the initial supersymmetries are broken by the light–
cone frame. The supersymmetry algebra can also be constructed and is given in
[49, 67].

The most important feature of this quantum mechanics model is that its fields
are N�N matrices which are invariant under U(N) transformations. It is known
as the Matrix model of M–theory. Looking at the potential in this model (4.17)
we notice that there exist flat directions when the matrices X commute, which
means the matrices only have diagonal entries. In that case the X can be given
the usual interpretation of denoting the classical position of every D0 particle and
there are no interactions. When two or more D0 particles approach each other,
open strings will stretch between them giving rise to interactions. In the quantum
mechanics model these interactions are represented by the quantum fluctuations
of off-diagonal entries in the matrices X. These are suppressed by the potential,
but when the D0 particles come very close together these fluctuations can become
very large. In that case the matrix X can no longer be interpreted as representing
the “classical geometric” position and we are in a non–commutative geometry
regime.

Although the basic constituents of this model are the N D0 particles, we could
consider block diagonal matrices. Every block has Nn�Nn entries and ∑Nn = N.
If the classical distance represented by the difference between the averages of the
Nn diagonal elements in every block is large, these blocks will move indepen-
dently of each other and in fact represent different (asymptotic) states. In this
precise sense the model can be interpreted as a second quantized theory (remem-
ber that perturbative string theory only described the dynamics of a single string).
It is conjectured that these block diagonal matrices represent supergravitons, each
carrying an integer Nn times the minimal light–cone momentum 1=R. That also
means that for every N there exists a threshold BPS bound state in the theory, in
order to match the number of excitations of such a state with that of a supergravi-
ton. The existence of such a state was proven for N = 2 in [68], and more general
evidence (including different gauge groups) for the existence of those states was
presented in [69]. The scattering of 2 and 3 D0 particles indeed reproduces D= 11
supergraviton results, giving evidence for the conjecture [70, 71, 72, 73].

If the Matrix model describes DLCQ M–theory, the Matrix model on a com-
pact space C should describe DLCQ M–theory on the same compact space C.
Compactifying Matrix theory is not as straightforward as in ordinary field theory,
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because of the open string degrees of freedom which should be treated carefully
on compact spaces [74]. In fact we already saw how to deal with toroidal com-
pactifications of such open string models when we considered D–brane T–duality.
Compactifying one of the transverse directions of a Dp–brane on a circle of ra-
dius Rc was equivalent to wrapping one leg of a D(p+ 1)–brane on a T–dual
circle of radius 1=Rc. In the limit Rc! 0 we are left with the (unwrapped) theory
of the D(p+1)–brane. Using this we conclude that the theory describing DLCQ
M–theory on a circle Rc, which by definition is DLCQ IIA superstring theory, is
the 2–dimensional U(N) Yang–Mills worldvolume theory of N D1–branes [75].
When we consider higher–dimensional tori Tp we will obtain higher dimensional
U(N) Yang–Mills theories describing DLCQ M–theory on Tp

2. Strangely enough
DLCQ M–theory on higher–dimensional tori (thus being a lower–dimensionalef-
fective theory) acquires more degrees of freedom (the dimension of the corre-
sponding Matrix theory increases).

4.2 BPS objects in Matrix theory

The Matrix model Lagrangian (4.17) is the same as the matrix regularized super-
membrane model. This can be considered additional evidence for the correctness
of the Matrix model. This connection also clarified the initial problems people
had in interpreting the supermembrane spectrum, which could be shown to be
continuous. The absence of a discrete spectrum was considered a serious draw-
back because the hope was that states in the supermembrane spectrum could be
put in a one–to–one correspondence with elementary particle states (like in super-
string theory), which clearly is impossible if the spectrum is continuous. We now
understand that the supermembrane theory, or the Matrix model, should be under-
stood as a second–quantized theory, describing multiple particle states explaining
the appearance of a continuous spectrum. The connection with the regularized
supermembrane model also suggests that a stable supermembrane should be con-
sidered a condensate of N ! ∞ D0–branes [47]. The same idea can be used to
construct higher–dimensional solitons as we will see.

2For p> 3 we are in trouble because the corresponding field theories are non–renormalizable,
meaning that new degrees of freedom appear at some scale. This means that the theories describing
DLCQ M–theory on Tp for p> 3 can not be described by the U(N) Yang–Mills field theory at all
scales and new ingredients are needed [61, 62].
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4.2.1 Basic Matrix theory extended objects

Extended objects in Matrix theory have to be condensates of D0–branes. These
objects, like the M2–brane and the M5–brane, can only be stable when they are
infinitely extended3. This means that we can only construct stable BPS extended
objects in Matrix theory in the N!∞ limit. This is also clear from the connection
with the supermembrane model, only in the limit N! ∞ can we replace the ma-
trices by smooth functions on a membrane surface of a particular topology. In fact
every spatial topology has its own matrix regularisation, basically governed by the
Poisson bracket of smooth functions which we replace by a matrix commutation
relation [49].

How it is possible to construct membranes out of D0–branes can be most easily
seen in the context of Type IIA superstring theory. In Type IIA theory this would
correspond to the construction of a IIA D2–brane out of the degrees of freedom
describing a system of N D0–branes. An important observation is that D0–branes
can be identified with the magnetic flux of the gauge field living on a set of N
D2–branes [76]. Consider N D2–branes wrapped on a 2–torus T2 with k units of
magnetic flux on its worldvolume

Z
T2

F = 2πk; (4.21)

which can be identified with k D0–branes living on the worldvolume of N D2–
branes. Performing a T–duality transformation in both directions of the torus T2

will give us a (worldvolume) theory of N D0–branes. The magnetic flux condi-
tion on the worldvolume of the D2–brane (4.21) is translated into a commutator
condition on the D0–brane matrices in the dual torus T̃2 directions

Tr[X1
;X2

] =
iAk
2π

: (4.22)

In this expression A denotes the two–dimensional area of the T–dual torus. Of
course the trace of a commutator of matrices can only be non–zero when the
matrices are infinite and because of the compactness of the torus and the details
of open string T–duality they are indeed infinite [74]. The parameter k should
now be interpreted as the number of D2–brane charges. This again follows from
T–duality, the k D0–brane charges on the worldvolume of N D2–branes under T–
duality are transformed into k D2–brane charges. This shows that it is possible to
create membrane charges in a theory of just D0–particles.

3Or they have to be wrapped onto a compact surface, in which case we should consider a
compactification of the Matrix model (4.17).
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So in the context of Matrix theory we should identify non–trivial commutators
of (N!∞) matrices with membrane charges in DLCQ M-theory. There are some
differences with the Type IIA situation described above. We would like to describe
infinitely extended membranes, so the membrane is not wrapping any compact
directions. The only way in which we can then make the matrices X infinite is by
taking N ! ∞. These subtleties aside, a single infinitely extended Matrix theory
M2–brane with one unit of charge density should correspond to the following
commutator

Tr [Xa
;Xb

] = iA2 ; (4.23)

where A2 is the surface area of the Matrix M2–brane, which should be infinite in
the limit N! ∞. We will assume the area of a single M2–brane to scale linearly
with the number N of D0–particles

A2 = Nε2 ; (4.24)

which defines a minimal area ε2. The commutator defines one unit of total mem-
brane (central) charge Zab with the standard dimensions of mass through

Zab
=�

1
l3
11

i Tr [Xa
;Xb

] : (4.25)

The unit charge density qM2 with the appropriate dimensions obviously is

qM2 =
1

l3
11

: (4.26)

Although the equation (4.23) can only be satisfied when N! ∞, a useful formal
solution exists by taking matrices X satisfying

[Xa
;Xb

]i j = i ε2 δi j ; (4.27)

where we inserted the matrix indices and used the minimal area defined through
(4.24). After taking the trace we will obtain a factor of N which nicely represents
the scaling of the total area of the single M2–brane.

Higher dimensional (infinitely extended) branes can be constructed by consid-
ering tensor products of the basic non–trivial commutator. In this sense higher
dimensional objects like M5–branes, Kaluza–Klein monopoles and hypothetical
M9–branes are build out of all the lower dimensional brane charges, which ulti-
mately can be related to the D0 particles. Every basic M2 commutator is accom-
panied by a scale factor 1=l3

11, which means that to relate the tensor products to
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total charges (which have dimension of mass) we need to multiply with another
length scale which has to be the radius Rof the DLCQ M–theory. This enables us
to define the following higher–dimensional unit charges in Matrix theory

Za1���a4
M5

�
A5

l6
11

=
�R
l6
11

TrX[a1Xa2Xa3Xa4] ;

Za1���a6
KK

�
A6

l7
11

=
iR2

l9
11

TrX[a1Xa2 � � �Xa6] ;

Za1���a8
M9

�
A7

l10
11

=
R3

l12
11

TrX[a1Xa2 � � �Xa8] : (4.28)

It is not entirely obvious how these charges can be related to the higher–dimen-
sional branes in M–theory. This is basically because the number of indices only
refer to the “transverse” dimensions (from the light–cone perspective). We can
however make the following identifications. The ZM5 is identified with the charge
of an M5–brane wrapped around the compactified light–cone dimension of DLCQ
M–theory. This also explains the appearance of the factor of R in the definition of
ZM5, the total charge (and tension) of this wrapped M5–brane has to be propor-
tional to the radius R of the wrapped light–cone dimension. The ZKK is identified
with a Kaluza–Klein monopole with its special Taub–Nut direction in the com-
pact light–cone direction. The Kaluza–Klein charge and tension have indeed been
found to scale with the squared radius of the Taub–Nut direction [43, 44], which
explains the factor of R2. The ZM9 will be identified with the M9–brane wrapped
around the compact light–cone direction. Although the M9–brane is not under-
stood very well, it is known that the tension and charge of such an object scale
with R3 [20, 77], in agreement with the definition of ZM9 in (4.28).

Matrix configurations giving rise to these higher–dimensional charges can be
constructed by considering tensor products of (4.27). For example, to construct a
non–vanishing wrapped M5–brane charge extended in the directions X1

: : :X4 we
can take

[X1
;X2

]i j = i ε2 δi j ;

[X3
;X4

]i j = i ε2 δi j : (4.29)

Besides M5–brane charge this configuration will carry M2–brane charges in the
directions X1

;X2 and X3
;X4 as well. The different charges in this configuration

are

Z12
=

Nε2

l3
11
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Z34
=

Nε2

l3
11

(4.30)

Z1234
M5 =

RA2
2

l6
11

We would like this configuration to carry one unit of wrapped M5–brane charge
and the area A4 = A2

2 of a single M5–brane should scale linearly with N. This
means the area of the M2–branes scales as A2 ∝

p
N, leaving us with a factor ofp

N in the membrane charges Z12 and Z34. We interpret this by saying we have
one unit of wrapped M5–brane charge which is build out of an infinite number
n=

p
N of stacked M2–branes in the X1

;X2 and X3
;X4 directions. Although the

number of M2–branes in a single stack is infinite, the charge density in a single
stack is equivalent to that of a single M2–brane and therefore finite (an intuitive
picture would be to consider a single M2–brane and fold it in such a way that it
can also be interpreted as a stack of different M2–branes, this will obviously not
affect the charge density). This is a natural continuation of our story so far. We
constructed an M2–brane out of an infinite number of Matrix theory quanta (or
D0–particles) and we now conclude that we can construct a (wrapped) M5–brane
out of infinite stacks of M2–branes.

Similarly we can construct matrix configurations giving rise to KK and M9–
brane charges. We just repeat the structure as given in (4.29). So for obtaining a
single non–zero KK–charge extended in the directions X1

: : :X6 we can take

[X1
;X2

]i j = i ε2 δi j ;

[X3
;X4

]i j = i ε2 δi j :

[X5
;X6

]i j = i ε2 δi j ; (4.31)

giving rise to the following charges

Zab
=

N2=3A2

l3
11

ab= 12;34;56

Zabcd
M5 =

RN1=3A4

l6
11

abcd= 1234;1256;3456 (4.32)

Z123456
KK =

R2 A6

l9
11

: (4.33)

The interpretation of this Matrix configuration should be clear. We have 3�n=

3N2=3 M2–brane charges, 3�m= 3N1=3 wrapped M5–brane charges and one
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KK–charge in this Matrix configuration. We can repeat this procedure in con-
structing one M9–brane charge, using four copies of (4.27) and scaling the ar-
eas appropriately. This gives 4�N3=4 M2–brane charges, 12�N1=2 M5–brane
charges, 8�N1=4 KK–charges and one M9–brane charge. There is a structure in
these constructions which can be summarized by the following expression

Z2n = P1�n
+

n

∏
i=1

Z2;i n= 1; : : : ;4 ; (4.34)

relating all higher–dimensional charges to the membrane charges appearing in
the configuration by multiplying with a power of the light–cone momentum P+ =

N=R. The parameter n denotes the number of indices on a particular Matrix charge
and it should be clear to what kind of Matrix brane this is related.

Looking at the Hamiltonian of the Matrix model (4.18) we find it straightfor-
ward to determine the energy of an extended object. Assuming vanishing momen-
tum and fermions we obtain the (light–cone) energy expression

P� =�
R

4l6
11

Tr[Xa
;Xb

]
2
: (4.35)

For all the Matrix configurations discussed so far (which all have membrane
charges), the light–cone energy reduces to

P�
(2n)

=
1

2P+
∑
n

Z2
2
; (4.36)

where the sum is over the membrane charges in the different stacks, so n = 1
denotes the energy of a single M2–brane, n= 2 denotes the energy of a wrapped
M5–brane and so on.

We did not yet show that these objects are in fact BPS states. To show that
these object indeed preserve half of the 32 maximal supersymmetries, we will
use the supersymmetry transformation rules (4.20). If the Matrix configurations
preserve some supersymmetry there should exist so–called Killing spinors which
make the fermion supersymmetry variation vanish. Then the solution without
fermions (θ = 0) will be invariant under those supersymmetry transformations.
So we are only interested in the fermionic variation and we also assume the mo-
mentum Pa vanishes. Then we obtain the following condition for the vanishing of
the supersymmetry transformation of θ

δi j ε̃ =�
i

4l2
11

[Xa
;Xb

]i j Γabε ; (4.37)
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where we inserted the matrix indices i; j . So we need to cancel the supersymmetry
transformation of ε̃ against the supersymmetry transformation of ε . This requires
that the commutators of Xa are multiples of the unit matrix

[Xa
;Xb

] = iF abδi j : (4.38)

In that case ε̃ is completely determined in terms of ε through (4.37) and no extra
breaking of supersymmetry occurs and so 16 supersymmetries are preserved. As
can be checked, all extended objects constructed so far satisfy this requirement
and therefore break and preserve half of the supersymmetries.

The extended object constructed so far are not the only BPS states carrying one
unit of charge density. For example, we expect a BPS state representing momen-
tum, corresponding to the M–theory BPS wave. From (4.37) we see that we can
consider the following BPS configuration, preserving half of the supersymmetries

(Ẋa
)i j = R paδi j ; (4.39)

representing Matrix theory momentum traveling in the transversal direction Xa.
The factor R is included because of (4.19).

It turns out to be possible to define “pure” M5–brane, KK–monopole and M9–
brane charges. By “pure” we mean configurations with just the charge correspond-
ing to the brane we want to be describing. So far we constructed higher brane
charges which consisted of lower brane charges as well, the exception being the
M2–brane. Consider the following configuration

[X1
;X2

]i j = i ε2 diag( l1;� l1)i j ;

[X3
;X4

]i j = i ε2 diag( l1;� l1)i j ; (4.40)

The opposite signs in the matrix diag( l1;� l1)i j will ensure that the trace of each
commutator separately vanishes, that means we do not have M2–brane charge.
However the tensor product of these commutators will give the ordinary unit
matrix, that means we still have M5–brane charge. We find the following two
equations that have to be satisfied if we want this configuration to preserve some
supersymmetry (4.37)

ε̃ = (ε2Γ12
+ ε2Γ34

)ε
ε̃ = �(ε2Γ12

+ ε2Γ34
)ε : (4.41)

Obviously this implies that ε̃ = 0 and

(Γ12
+Γ34

)ε = 0 : (4.42)
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Multiplying with Γ12 we obtain the projection equation

(1�Γ1234
)ε = 0 : (4.43)

Because Γ1234 squares to one and the its trace vanishes, its eigenvalues are 8�
(+1) and 8� (�1). Only 8 supersymmetries are therefore preserved by an eigen-
spinor ε in this configuration. This is 1=4 of the total number of supersymmetries,
as opposed to the wrapped M5–brane we constructed before, which preserved 1=2
of the supersymmetries. We will call this Matrix theory BPS state the P5–brane.

The same idea can be used to construct higher–dimensional pure branes. Con-
sider for example

[X1
;X2

]i j = i ε2 diag( l1; l1;� l1;� l1)i j ;

[X3
;X4

]i j = i ε2 diag( l1;� l1; l1;� l1)i j ; (4.44)

[X5
;X6

]i j = i ε2 diag( l1;� l1;� l1; l1)i j :

All M2–brane charges obviously vanish after taking the trace. In this configura-
tion the trace of all tensor products of two commutators vanishes, so M5–brane
charges are absent as well. The trace of the tensor product of all three commuta-
tors instead gives the N�N unit matrix, meaning we do find a KK–charge. In a
precise sense, looking at (4.44), this KK–charge can be thought of a being build
out of 4 KK–monopoles with different signs for the internal brane charges in the
different directions. “Summing” these 4 KK–monopoles all internal charges can-
cel except for the total KK–charge, which is normalized to one unit of charge
density. However the equations governing the number of supersymmetries pre-
served by this configuration become more complicated. We again find that ε̃ = 0,
which is a consequence of the fact that the sum of terms in any commutator is
zero, and we are left with four conditions on ε

(Γ12
+Γ34

+Γ56
)ε = 0

(Γ12�Γ34�Γ56
)ε = 0

(�Γ12
+Γ34�Γ56

)ε = 0 (4.45)

(�Γ12�Γ34
+Γ56

)ε = 0 :

This system of equations has no Killing spinor solution and we therefore conclude
that this configuration, which we call the P6, breaks all supersymmetries. The
same thing happens if we want to construct a pure M9–brane, the P9 configuration.
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By doubling the tensor structure in (4.44) all lower–dimensional charges will be
absent, but again the supersymmetry Killing equations have no solution.

Copying the matrix configuration in (4.40) in directions X5
: : :X8 we construct

an 9–brane charge which, although it is not entirely pure since the constituent P5–
charges do not vanish, has no M2 or KK–monopole charges. From the supersym-
metry Killing equations we find the following equation for ε (ε̃ = 0 of course)

(Γ12
+Γ34

+Γ56
+Γ78

)ε = 0 ; (4.46)

which can be rewritten as (1�P)ε = 0 with

P= (Γ1234
+Γ1256

+Γ1278
) : (4.47)

The Dirac matrices in P all commute with each other and they all square to one.
Also their trace, and the trace of their products, vanishes. These conditions de-
termine the eigenvalues of P. We want to count the number of +1 eigenvalues
of P. Necessarily the +1 eigenvalues of P are the sum of two +1 eigenvalues
and one �1 eigenvalue of the three different Dirac matrices in P, which because
they commute are separately diagonalizable. Because the traces of the products
also vanish, the eigenvalues of the Dirac matrices have to be divided over the (16)
available diagonal entries in the following way

Γ1234
= (+ + + + � � � �)

Γ1256
= (+ + � � � � + +)

Γ1278
= (+ � � + � + + �)

; (4.48)

where we only showed half of them for simplicity of presentation. Looking at this
expression we find that three of the 8 combinations consist of two +1 and one �1
eigenvalue giving rise to an eigenvalue +1 for the operator P. This means 3=8�
1=2 = 3=16 of the 32 supersymmetries are preserved by this configuration. This
strange number is a result of the the different P5 constituents. This configuration
we will call the P95. This ends our discussion on extended BPS objects in Matrix
theory carrying one unit of charge (density).

As already mentioned, all these Matrix configurations only make sense in
the limit N ! ∞, where they should describe the semiclassical branes of IMF
M–theory if the Matrix theory conjecture is correct. We will only use these in-
finitely extended BPS objects to study their kinematical properties. Extended ob-
jects with different topology and properties have been discussed in the literature
[78, 79, 80, 81] and also in a dynamical context in [82, 83, 84, 85, 86]. Although
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we introduced a wrapped (around the light–cone direction) M5–brane, we did not
find a transverse M5–brane charge. If Matrix theory describes DLCQ M–theory,
a priori one might think that such a state should exist. Although the absence of
the transversal M5–brane is still not completely understood, it is believed to be
the result of the special light–cone frame. In superstring theory in a light–cone
formalism, the strings must have Neumann boundary conditions in both the light–
cone directions X+ and X� which ensures that all Dp–branes have one leg in the
light–cone direction. The same thing happens for supermembranes and because
the M5–brane can be interpreted as a a topological defect on which open mem-
branes can end, this means it would only be possible to see light–cone wrapped
M5–branes [67]. More on transverse M5–branes can be found in [87, 88]. The
same argument can in fact be used to explain the absence of a transverse M9–
brane. We did not discuss light–cone wrapped M2–branes which gives rise to the
fundamental string BPS state in Type IIA theory. Such a state can be shown to
exist [67] and is sometimes called a matrix string, but we will not use it in this
thesis.

More Matrix configurations can be constructed representing overlapping or in-
tersecting branes breaking more, but not all, of the supersymmetries. We will con-
struct these states and match those with states appearing in the eleven–dimensional
supersymmetry algebra. In this way we will check if and how Matrix theory re-
produces (part of) the BPS spectrum of the eleven–dimensional supersymmetry
algebra, which can be considered a test of the Matrix theory conjecture.

4.2.2 Intersecting BPS objects in Matrix theory

In the preceding sections we always considered one unit of charge of the (highest–
dimensional) BPS object. It should be obvious how to extend the discussion to
include k charges. We just multiply the basic non–trivial commutator (4.27) with
an integer q and demand that for an object with 2n (transversal) indices which we
want to have k units of charge that k� ∏nqn. We will use the freedom to add
these factors in the following.

Using the basic objects in Matrix theory we are interested in considering inter-
secting or overlapping configurations. In eleven–dimensional supergravity much
research was done in constructing intersecting M–brane configurations [21, 22,
89]. The basic phenomenon is that when two (or more) M–branes are oriented
in a particular way with respect to each other, the system will preserve some su-
persymmetry [90] (which will be less than 1=2) and is therefore stable. When
considering intersections at threshold, we mean that these systems do not have
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any binding energy. The different constituents can be separated without a cost in
energy. Real bound states (also called non–threshold intersections) of different
branes also exist [91] and in fact most of the Matrix theory configurations consid-
ered so far correspond to non–threshold bound states in the D= 11 supersymmetry
algebra, as we will show when we compare with BPS states in the supersymmetry
algebra. For the moment we will be interested in constructing the basic pairwise
threshold intersecting configurations in Matrix theory.

In Matrix theory we can break more supersymmetries by taking configurations
with commutators which are not proportional to the unit matrix (4.38). This is
also the mechanism we will use to introduce intersecting brane configurations.
Let us discuss a specific example which is based on the expectation that two M2–
branes can intersect over a point [21, 22]. Let us consider the following matrix
configuration

[X1
;X2

]i j = i
N k1

N1
ε2 diag( l1N1

;0)i j ;

[X3
;X4

]i j = i
N k2

N2
ε2 diag(0; l1N2

)i j ; (4.49)

where the unit matrices are N1�N1 and N2�N2 dimensional and of course N1 +

N2 = N. We interpret this configuration as representing N k1=N1 M2–branes in the
X1

;X2–plane and N k2=N2 M2–branes in the X3
;X4–plane. The factors N=N1 and

N=N2 are included because we can only compare the number of charges if the total
charges, which requires a trace, scale in the same way with N. Obviously to obtain
a finite number of charges, the limit N ! ∞ is taken in such a way that the ratio
N1=N2 stays fixed. Notice also that this configuration does not carry M5–brane
charges. Preservation of supersymmetry (4.37) implies

ε̃ = �
N k1

N1
Γ12ε

ε̃ = �
N k2

N2
Γ34ε ; (4.50)

which reduces to the following equation for ε (ε̃ is determined by any of the above
equations (4.50))

(1�
N1 k2

N2 k1
Γ1234

)ε = 0 : (4.51)

To solve this equation we need N1 k2 = N2 k1. Because the ratio N1=N2 is arbitrary
(and finite), the number of charges are arbitrary as well. Because Γ1234 squares
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to one and is traceless, this Killing equation is then solved by an eigenspinor with
8 positive unit eigenvalues. The system therefore preserves 1=4 of the maximal
supersymmetry. The properties of this intersecting M2–brane system in Matrix
theory, 1=4 supersymmetry preservation and arbitrary charges, are in agreement
with results from the D = 11 supersymmetry algebra and from the supergravity
soliton solutions.

The idea should now be clear. We consider n separate independent extended
objects in Matrix theory through commutators equal to Nn unit matrices with
l1N1
� : : :� l1Nn

= l1N. Intersections can then be described by taking non–vanish-
ing commutators in different directions. Generically the supersymmetry Killing
equations will then fall in the following class

(k1 Γ12
+k2 Γ34

+k3 Γ56
+k4Γ78

)ε = 0 ; (4.52)

which we can rewrite as (1�P)ε = 0 with

P=
1
k1
(k2 Γ1234

+k3 Γ1256
+k4Γ1278

) : (4.53)

To look for solutions it is useful to calculate P2

P2
=

1
k2

1

(k2
2 +k2

3 +k2
4�2k2k3Γ3456�2k2k4Γ3478�2k3k4Γ5678

) : (4.54)

The Dirac matrices in P2 all commute, square to one and are traceless, meaning
they can be diagonalized simultaneously and their eigenvalues are 8� (+1) and
8� (�1). To solve the equation (1�P)ε = 0 we need at least one constraint
(to make P2

= 1) on the parameters kn and at most 3. More constraints means
more supersymmetry is preserved, to be precise 2n of the 32 supersymmetries
are preserved when we have n = 1;2;3 constraints. This means that in all the
cases where the supersymmetry equations look like (4.52) the possible fractions
of supersymmetry are 1=16;1=8 or 3=16. We already saw an example of this last
fraction in (4.46), where we took k1 = k2 = k3 = k4. As soon as we truncate
by taking some kn to be zero, the number of possible preserved supersymmetries
increases to either 1=4 or 1=2. These are then the only fractions we will encounter
in our analysis. Let us end this subsection by giving the results for the different
pairwise intersections.

� Pairwise Matrix theory configurations with a wave. Matrix momentum (a
gravitational wave) can only be added to the “non–pure” Matrix branes (M2,
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Matrix configuration SUSY

(1jW;M2) 1
4

(1jW;M5) 1
4

(1jW;M6) 1
8

(1jW;M9) 1
8 ;

1
16 ;

3
16

Table 4.1: Supersymmetric pair intersections involving W. The notation (pjA;B) indi-
cates that the objects A and B have p common spacelike worldvolume directions. The
second column gives the amount of residual supersymmetry that can be obtained.

Configuration SUSY Configuration SUSY

(0jM2;M2) 1
4 (4jM5;M5) 1

2 ;
1
4

(2jM2;M2) 1
2 (2jM5;M6) 1

8 ;
1

16 ;
3
16

(0jM2;M5) 1
8 (4jM5;M6) 1

4 ;
1
8

(2jM2;M5) 1
4 (4jM5;M9) 1

4 ;
1
8 ;

1
16 ;

3
16

(0jM2;M6) 1
8 ;

1
16 ;

3
16 (4jM6;M6) 1

4 ;
1
8 ;

1
16 ;

3
16

(2jM2;M6) 1
4 ;

1
8 (6jM6;M6) 1

2 ;
1
4 ;

1
8

(2jM2;M9) 1
8 :

1
16 ;

3
16 (6jM6;M9) 1

4 ;
1
8 ;

1
16 ;

3
16

(0jM5;M5) 1
8 ;

1
16 ;

3
16 (8jM9;M9) 1

2 ;
1
4 ;

1
8 ;

1
16 ;

3
16

(2jM5;M5) 1
4 ;

1
8

Table 4.2: Pair intersections of M2, M5, M6, M9. Only branes are considered which are
built up out of membranes in the 12, 34, 56 and 78 directions.

102



4.2. BPS objects in Matrix theory

M5, KK–monopole and the M9) if we want to preserve some supersym-
metry. The direction of the wave must necessarily be in a worldvolume
direction of the brane. We summarized the possibilities and fractions of
preserved supersymmetry in Table 4.1.

� Pairwise intersections of M2, M5, KK-monopole and M9. This is going to
be a rather extensive list. There exist many possibilities and many fractions
of supersymmetry can be preserved. We only considered Matrix branes
which are build out of non–vanishing commutators in the X1

;X2, X3
;X4,

X5
;X6 and X7

;X8 directions. We summarized the possibilities in Table 4.2.

4.2.3 Matrix BPS states and the M–theory algebra

Clearly we found a lot of BPS states in Matrix theory. We would now like to
check if the same states appear in the M–theory supersymmetry algebra (3.2). The
conjecture is that Matrix theory describes DLCQ M–theory, so we better compare
with the the DLCQ supersymmetry algebra. The easiest way to compare is to
note that the only thing the special (compactified) light–cone frame does from the
supersymmetry algebra point of view, is it places momentum P+ in the (compact)
x� direction. This can be interpreted as a BPS wave which has to added to any
state we would like to consider. Let us first see to what extent it is possible to relate
states by assuming this BPS wave to have momentum in a spatial direction X11

(instead of a light–like direction). As we will see this works fine in all situations.
The reason for this is that we know the relation between a (limit of a) spatial
compactification of M–theory and a light–like compactification, as was discussed
in section 3.1.1.

Keeping this in mind, let us look for the appropriate BPS states in the super-
symmetry algebra. First we are going to rewrite the supersymmetry algebra in the
following form

fQ;Qg= P0
( l1 + Γ̄) ; (4.55)

with the operator Γ̄ equal to

Γ̄ =
1
P0

�
Γ0mPm+

1
2

Γ0MN ZMN +
1
5!

Γ0M1:::M5 YM1:::M5

�
; (4.56)

where the small Roman index m only runs over the spatial directions m2 (11; i)
where i is of course an SO(9) index and the capital Roman index M runs over all
directions M 2 (0;11; i). Writing the algebra this way (4.55) makes it clear that in
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order to preserve some supersymmetry we need Γ̄2
= 1, meaning the eigenvalues

of Γ̄ are �1.
As a first example, let us consider the Matrix M5–brane, which besides M5–

brane charge carries M2–brane charges in the appropriate directions as well. We
also need to put one leg of the Matrix M5–brane in the X11 direction. We take the
following central charge configuration

Z12
= z1 ; Z34

= z2

Y�1234
= y (4.57)

and we need momentum p in the direction X11. Plugging these charges into (4.56)
and calculating its square we find

Γ̄2
=

1

P02

�
p2

+z2
1 +z2

2 +y2
+2(py�z1 z2)Γ

1234�
: (4.58)

If we want this configuration to break only half of the supersymmetries, as it does
in Matrix theory, the term with the Dirac matrix needs to vanish. This leads to a
constraint on the charges

p y= z1 z2 ; (4.59)

which is exactly the relation between the charges we found in Matrix theory (4.34)
if we replace p by P+. This replacement can be made by performing the change
of units to the DLCQ M–theory units, defined by (4.12). We can make Γ̄2

= 1 by
choosing P0 appropriately. From (4.58) and (4.59) we deduce that

P0
=

s
p2 +z2

1 +z2
2 +

z2
1 z2

2

p2 (4.60)

We note that this has to be a non–threshold bound state. The sum of the BPS
energies of all the separate constituents is larger than P0 in (4.60), so this system
must have non–zero binding energy. An extensive study of non–threshold bound
states in M–theory and their construction can be found in [91]. The momentum
p in this expression equals N=Rs. To relate the energy P0 to the DLCQ energy
P� we take the limit Rs! 0, as discussed in section 3.1.1. This means we can
safely neglect the last term in P0, which is of order 1=p2 and vanishes in the limit.
Extracting a factor of p and expanding the squareroot we find

P0 �
N
Rs

+∆E =
N
Rs

+
1
2

z2
1 +z2

2

p
: (4.61)
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Now using the relation (4.9) we see that the light–cone energy P� equals

P� =
1

2P+
(z2

1 +z2
2) ; (4.62)

which is equivalent to the (more general) expression (4.36). So the supersymmetry
algebra nicely reproduces the Matrix theory results.

Similar results can be obtained for the matrix KK–monopole and M9–brane.
Both matrix branes have all lower–dimensional charges activated which should be
incorporated in the supersymmetry analysis. Again we find that when we want to
preserve 1=2 of the supersymmetry we have to impose constraints on the charges.
These constraints exactly reproduce the relations (4.34) found in Matrix theory.
These are all non–threshold bound states and the light–cone energy as obtained
from the supersymmetry algebra nicely reproduces (4.36).

We can also consider the P5, which does not carry any membrane charges so
(4.58) reduces to

Γ̄2
=

1

P02

�
p2

+y2
+2pyΓ1234�

: (4.63)

Now we can not get rid of the Dirac matrix Γ1234. However we can set 16 of the
eigenvalues of Γ̄2 to one by choosing P0 appropriately. This means we have 8
eigenvalues equal to �1 and 1=4 of the supersymmetry is preserved. The energy
P0 equals

P0
= p+y; (4.64)

which therefore has to be a threshold bound state of a wave and a M5–brane, with
the wave and one leg of the M5–brane in the eleventh direction. The light–cone
energy P� is exactly equal to y in this case. This is also what we find in the Matrix
theory.

In Matrix theory we saw that pure P6 and P9 charges did not preserve any
supersymmetry. This can in fact not be deduced from the supersymmetry alge-
bra which suggests that the P6 is a non–threshold bound state of a KK–monopole
and a wave breaking 1=2 of the supersymmetry. The P9 is considered a threshold
bound state with a wave, from the algebra point of view. This can be deduced
using the same techniques as in the P5–brane case. The exact reason for this
discrepancy is not clear. However probably the fact that both branes require a
special compact direction that scales unusually with Rs (or R in the DLCQ frame)
(4.28) has something to do with it. Remember that the momentum wave has to
lie in this special direction. In Type IIA these configurations would correspond to
D6– and D8–branes with D0–branes on their worldvolume. It is known that these

105



Chapter 4. Matrix theory

bound states are special [92]. In [92] classically stable bound states of D0–branes
and D6– or D8–branes are constructed which do not preserve any supersymme-
try. These solutions are constructed out of four D6–branes and eight D8–branes,
which is in agreement with our Matrix theory constructions of these states.

As an example of a state preserving 3/16 of the supersymmetry we analyze
P95. There is one M9–brane charge, mixed with 6 M5–brane charges and mo-
mentum in the eleventh direction. The M9–brane charge corresponds to4 Z09 = q.
Including all charges we obtain

P0Γ̄ = Γ09 p+Γ01234jjy1 +Γ01256jjy2 +Γ01278jjy3

+Γ03456jjy4 +Γ03478jjy5 +Γ05678jjy6 +Γ9q; (4.65)

In (P0Γ̄)2 there are three independent commuting Γ-matrices so that in the generic
case this configuration will preserve 1/16 of the supersymmetry. This corresponds
to a threshold bound state of six M5–branes, an M9–brane and a wave. We
can also obtain configurations which preserve 1/8 and 3/16, by restricting the
coefficients. If we set y2 = y3 = y4 = y5 = y, leaving y1 and y6 arbitrary, we
find that (P0Γ̄)2 has the following eigenvalues: (p� q� (y1� y6))

2 with mul-
tiplicity 8 for each choice of sign, (p+ q+ y1 + y6)

2 with multiplicity 8, and
(p+q�y1�y6�4y)2 with multiplicity 4 for each sign. Therefore, by choosing
P0 appropriately, we preserve 1/8 supersymmetry, for each of the eigenvalues of
multiplicity 8. If we also set y1 = y6 = y, the eigenvalues simplify further. There
are then 12 eigenvalues equal to (p+ q+ 2y)2, leading to 3/16 of the maximal
supersymmetry, which is the case related to the Matrix theory P95–brane we con-
structed. This can also be interpreted as a threshold bound state of one M9–brane
with 2 M5–branes (suggested by the factor 2 in the energy expression) which in-
tersect at an angle. Indeed a system of two M5–branes at angles intersecting over
a string, which can be related to two D4–branes at angles in Type IIA superstring
theory, was shown in [93] to preserve 3=16 of the supersymmetry. A more general
discussion of M–branes at angles can be found in [94, 95].

Except for the P6 and P9 charges all basic Matrix theory charges correspond
to BPS states in the M–theory supersymmetry algebra. Intersections of these basic
branes can be considered in the supersymmetry algebra as well and are in agree-
ment with the obtained results in Matrix theory. We also hinted at an explanation
of why the P6– and P9–branes are special. Although we did not explicitly check
every Matrix theory state, we do believe that any Matrix theory BPS state has an

4Remember that the symbol jj indicates the eleventh direction and Γ9 = Γ012345678jj.
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analogue in the M–theory supersymmetry algebra. Obviously this is not true the
other way around. Not all BPS states in the M–theory supersymmetry algebra
can be found in the Matrix theory. This is mainly due to the special DLCQ frame
in which we should analyze the Matrix theory BPS states (except for the P6 and
P9). The exotic fraction 3=16 of supersymmetry preservation which can occur in
Matrix theory, has also been found in the analysis of intersecting branes at angles.
We expect that the Matrix theory states can in fact be identified with those states,
as we saw in one explicit example.

4.3 The status of Matrix theory

A great deal of evidence has been gathered in favor of the Matrix theory con-
jecture. In this chapter we showed that extended objects appear naturally in the
Matrix model and can be used to construct more involved intersecting BPS states,
which also occur in the M–theory supersymmetry algebra. This can be considered
(kinematical) evidence in favor of the conjecture. Besides that much dynamical
evidence in favor of the conjecture has been obtained as well [73, 70, 71, 72, 86,
85, 84, 82] and also evidence based on M–theory dualities [96, 97, 98, 99, 100].

Although the model seems very attractive as a description of M–theory be-
cause of its simplicity and its non–perturbative nature, there are problems with
the model as well. Most of them can be traced back to the broken covariance and
background dependence of the Matrix model. Different backgrounds all lead to
different Matrix models. Matrix theory on curved backgrounds is a subject on
which some progress has been made [101, 102], but in general this is not yet well
understood. There have also been attempts to look for covariant Matrix models
[103], but so far no real progress has been made in that direction. It seems that
although the Matrix model looks simple and nice, the (calculational) details of the
conjecture turn out to be rather unclear and difficult (mainly because of the matrix
structure and the large N limit). Also when compactifying Matrix theory on tori
the theory gets more and more involved when the dimension of the torus grows.
Matrix theory compactified on T4 and higher requires new degrees of freedom at
a particular scale. This also means that four–dimensional physics cannot be well
understood using the Matrix theory.

If correct, Matrix theory does teach us a lot about the nature of quantum–
gravity. It is very surprising, to say the least, that a 0+ 1–dimensional quantum
mechanics model can describe certain aspects of (eleven–dimensional) quantum
gravity (like graviton scattering). That this is possible can be traced back to the
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supersymmetry and the matrix nature of the quantum mechanics model. Without
supersymmetry bound states of the basic D0–particles would not have been pos-
sible and without the matrix structure the interactions could not possibly have
described gravity. Matrix theory in fact realizes some interesting ideas about
quantum gravity. First of all, spacetime is represented by matrices and therefore
noncommutative [104] and secondly Matrix theory realizes the so–called Holo-
graphic principle, which is an idea first discussed by ’t Hooft [105] and Susskind
[106]. The Holographic principle tells us that the entropy in a theory of quantum
gravity is not proportional to the volume of a part of spacetime (as it is in ordinary
quantum field theory), but to the area surrounding that part of spacetime with an
upper limit of one bit per Planck area. This idea is motivated by the Bekenstein–
Hawking entropy formula for black holes. All the information in a particular
volume of spacetime is stored, or can be mapped, holographically in the area sur-
rounding it, hence the name for the principle. In the original conjecture [50] it was
already suggested that Matrix theory is in correspondence with the Holographic
principle. We will see very explicit manifestations of the Holographic principle in
another, but related, context in the next chapter.

We conclude that, although many details of the Matrix theory conjecture are
still poorly understood, there exists much evidence in favor of the conjecture that
the Matrix model describes the DLCQ sector of M–theory. The model is a nice
tool to potentially learn more about the nature of quantum–gravity and string the-
ory. Matrix theory can be “deduced” as a certain limit (4.13) of Type IIA super-
string theory with D0–branes. We are going to consider this limit, and a general-
ization of it to higher–dimensional branes, in more detail in the next chapter.
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String solitons and the field theory
limit

In this chapter we will study the soliton solutions appearing in the supergravity
actions more carefully. Most importantly this will involve putting in the string
theory parameters and a study of the near–horizon region. We will introduce a
special metric frame, called the dual frame, in which the special properties of
the near–horizon geometry are most easily detected. After that we will study a
string theory limit which will leave us with the decoupled soliton worldvolume
field theory on the one side, and a (well behaved) near–horizon supergravity on
the other side, which are conjectured to be dual descriptions of the same system.
From the outset our analysis is valid in an arbitrary number of dimensions and for
very generic brane solutions. To obtain well behaved near–horizon supergravities
we will need a constraint on our parameters, leading us to consider mainly Dp–
branes and their intersections. We will end by presenting some examples. This
chapter is based on work done in [107], which generalizes work done in [108]
and [109]. Dualities between (conformal) field theories and (Anti–de Sitter) near–
horizon supergravities were first discussed in [110]. Many good review articles on
the subject have appeared and we refer to [111] for a nice pedagogical introduction
and to [112] for an extensive overview.

5.1 String soliton geometries

We want to take a closer look at the geometries of all kind of solitons appearing
as solutions to the low energy effective actions of string and M–theory. This in-
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terest is motivated by the fact that the physics of p–branes can be described in
two (different) ways. On the one hand, when the target spacetime supergravity
(also called the bulk supergravity) is decoupled, the p–brane fluctuations can be
described by a (effective) worldvolume field theory living on the worldvolume of
the p–brane. In another, semiclassical, regime we are also allowed to describe
the physics of the p–brane by probing the p–brane background with supergravity
fields. A priori one might think these two descriptions are valid in completely dif-
ferent string theory regimes. However, in the previous chapter we encountered an
example of a worldvolume field theory of N D0–branes which was able to describe
gravitational physics. This suggests that there exist string theory regimes where
both descriptions describe the same physics. This is also suggested by the string
interactions of Dp–branes, which from one point of view describe exchanges of
closedstrings leading to bulk supergravity physics, or from another point of view
describe vacuum diagrams of openstrings which lead to worldvolume (quantum)
field theory physics (see Figure 2.6).

We want to understand this phenomenon in more generality and detail. As a
first step towards that understanding we will need to analyze the p–brane geome-
tries again. We want to study a string theory limit in which the bulk supergravity
decouples and which leaves us with a non–trivial worldvolume field theory. As
we will see this limit takes us into the near–horizon region of the corresponding
p–brane solution. Let us therefore first discuss p–brane near–horizon geometries.

5.1.1 Near–horizon geometries of p–branes

Our starting point will be a slightly different action than the one given in (3.48).
We will replace the rank p+2 field strength in (3.48) by its rank D� p�2 Hodge
dual and look for p–brane solutions which are magnetically charged with respect
to the Hodge dual potential (so they are electrically charged with respect to the
rank p+1 gauge potential). This will turn out to be useful as we go along. Besides
that it will also be important to keep track of all factors of gs appearing in the
action. We refer to Appendix A for the details of how to obtain the appropriate
scalings with gs, but basically these can be read off from the exponential dilaton
factors in the string frame action. Our action then is

SD =

Z
dDx

p
g

1

(

p
α 0)D�2g2

s

h
R�

4
D�2

(∂Φ)
2�

g(4�2k)
s

2(d̃+1)!

�
eΦ

gs

��a

F2
d̃+1

i
;

(5.1)
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where we introduced a parameter d̃ and we will also introduce a parameter d,
which are defined by�

d = p+1 dimension of the worldvolume ;
d̃ = D�d�2 dimension of the dual brane worldvolume :

(5.2)

We note that d+ d̃ = D�2. Also notice the change in sign in the dilaton coupling
parameter a in (5.1), which is a result of performing the Hodge duality transfor-
mation (3.49). We also introduced a parameter k, which is related to a;d and D in
the following way (see appendix A)

k=
a
2
+

2d
D�2

(5.3)

and which determines the scaling with gs of the rank d̃+1 field strength. Notice
that when k = 1 the overall scaling with gs vanishes in front of the field strength.
This is the appropriate scaling for a Ramond–Ramond field strength. For k = 2
and k = 0 we find the appropriate scaling of Neveu–Schwarz field strengths and
their Hodge duals respectively.

We will consider the following class of “two–block” p–brane solutions of the
action (5.1)

ds2
E = H� 4d̃

(D�2)∆ dx2
d +H

4d
(D�2)∆ dx2

d̃+2 ;

eΦ
= gsH

(D�2)a
4∆ ; (5.4)

g(2�k)
s F =

r
4
∆

�
(dH ^dx1^�� �^dxd) ;

where � is the Hodge operator on D–dimensional spacetime. This is the magneti-
cally charged analog of (3.50) where we now took care of the appropriate scalings
with gs. The parameter ∆ is the same as in (3.54), which expressed in terms of d
and d̃ equals

∆ =
(D�2)a2

8
+

2dd̃
(D�2)

: (5.5)

The function H is harmonic on the d̃+ 2 transverse coordinates if d̃ 6= 0;�2 and
can be expressed using d̃ as

H(r) = 1+
� r0

r

�d̃
; (5.6)
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where rd̃
0 is related to the charge (and mass) of the p–brane. Looking at (5.4) it

follows that the charge should scale as g(2�k)
s

1. We note that codimension one
objects, which have d̃ = �1 and are usually called domain–walls, are included
in (5.4) as opposed to codimension 2 objects. The magnetically charged field
strength belonging to a domain–wall is a rank 0 object, a cosmological constant.
In fact, the solution involving linear harmonic functions presented in (5.4) is not
uniquely defined for domain–walls. It will be useful to discuss these objects sep-
arately in section 4.1.2.

The Dp–branes and NS–branes in D = 10 and M–branes in D = 11 are in-
cluded in (5.4), but also two–block p–branes in dimensions D < 10. These can
arise in string theory by considering string compactifications. We will mainly be
interested in two–block BPS p–branes which can be obtained from an intersection
of the basic BPS p–branes in D = 10 or D = 11. When the relative transverse di-
rections of such an intersection are all wrapped on a torus Tr with r the number of
relative transverse directions, the result will be a two–block p–brane in D= 10� r
(or D = 11� r). Supersymmetry preserving BPS p–brane solutions in any dimen-
sion are distinguished by having ∆ = 4=n with n an integer (3.55) denoting the
number of participating (higher–dimensional) branes [38].

To discuss the near–horizon geometry of these p–branes, we want to consider
a limit in which the constant part in the harmonic function (5.6) is negligible,
which means

r � r0 for d̃ =�1 ;

r � r0 all other cases : (5.7)

The p–branes are positioned at r = 0 so this limit brings us close to the brane when
d̃ > 0. When d̃ = �1, so for domain–walls, this limit actually takes us far away
from the brane. We will still refer to this limit as a near–horizon limit. Strictly
speaking, because we are considering extremal BPS p–branes, near–“horizon” is
not good terminology even in those cases where d̃ 6= �1. This is because the p–
brane Einstein frame metric in (5.4) is singular at r = 0, except for some special
cases where the dilaton is constant (e.g. the D3–brane in D = 10 Type IIB su-
pergravity). Therefore it would perhaps be more suitable to call this a near–core
limit. We will soon see however that this singularity in the metric at r = 0 can be
removed by a conformal transformation (3.31) to a special frame called the dual
frame, in which the hypersurface at r = 0 has become a non–singular horizon.

1To obtain natural units we still have to divide with the gravitational constant κD ∝ g2
s (3.29),

giving the expected scaling of the charges and tensions of the different p–branes ∝ g�k
s .
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This can be understood by noting that e�Φ is singular at r = 0 as well and there-
fore we can perform a conformal transformation “canceling” the singularity in the
metric. Of course we are still left with a singularity in e�Φ, but the limit (5.7) can
in this sense be referred to as a near–horizon limit.

In the limit (5.7) the Einstein metric and the dilaton can be written as

ds2
E =

�r0

r

�� 4d̃2
∆(D�2)

dx2
d +

�r0

r

� 4dd̃
∆(D�2)

dx2
d̃+2 ; eΦ

= gs

�r0

r

� (D�2)ad̃
4∆

: (5.8)

Let us now introduce the conformal transformation which will factor off the sin-
gularities in the above metric. The following conformal transformation will do
exactly that

gµν
D =

�
eΦ

gs

�a=d̃

gµν
E ; (5.9)

where we divided by gs to not introduce (extra) gs dependence in the metric. This
conformal transformation will have the following effect on the action (5.1)

SD =

Z
dDx

p
gD

1

(

p
α 0)D�2g2

s

�
eΦ

gs

�δ h
RD+γ(∂Φ)

2�
g(4�2k)

s

2(d̃+1)!
F2

d̃+1

i
; (5.10)

with

δ =�
(D�2)a

2d̃
; γ =

D�1
D�2

δ2�
4

D�2
: (5.11)

So the dual frame can be characterized by saying that all fields in the action are
multiplied with the same eΦ factor. We note that this would not have been true
if we had used electrically charged potentials. Another special feature of this
frame, which explains the name dualframe, is that Hodge dual (D� p�4)–branes
probing the p–brane background solution couple naturally to the dual frame metric
without a dilaton term.

The regular dual frame metric is given by

ds2
D =

�r0

r

�2(1� 2d̃
∆ )

dx2
d +

�r0

r

�2
dr2

+ r2
0dΩ2

d̃+1 : (5.12)

Notice that the size of the transverse sphere Sd̃+1 no longer depends on r , it has
become constant with radius r0. Because the charge can be calculated by inte-
grating the flux over the transverse sphere, we conclude that the (dualized) field
strength in (5.4) can no longer depend on r either. Therefore we will not consider
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the solution for the field strength and just consider the metric and the dilaton ex-
pression. The metric in (5.12) generically describes a d+1–dimensional Anti–de
Sitter spacetime times a d̃+ 1–dimensional sphere. Let us next consider coordi-
nate transformations to connect the metric (5.12) to more standard and familiar
parameterizations of Anti–de Sitter spacetimes.

Consider the following coordinate transformation redefining the radius r as�r0

r

�
= e�λ =r0 ; (5.13)

which transforms the metric and dilaton into

ds2
D = e�2(1� 2d̃

∆ )λ =r0dx2
d +dλ 2

+ r2
0dΩ2

d̃+1

Φ = ln(gs)�
(D�2)ad̃

4∆ r0
λ : (5.14)

As already mentioned the metric in (5.14) (generically) is a parameterization of
a d+1–dimensional Anti–de Sitter spacetime times a d̃+1–dimensional sphere,
in shorthand notation AdSd+1�Sd̃+1. The full p–brane geometry can therefore
be described as interpolating between an asymptotic flat Minkowski and a near–
horizon curved AdSd+1�Sd̃+1 geometry, connected by a throat as shown in Fig-
ure 5.1. This interpolating property of two–block p–branes (5.4) was first dis-
cussed in [41, 42] and generalized in [113, 114]. The only exception occurs when
1�2d̃=∆ = 0, because then the metric describes a d+1–dimensional Minkowski
spacetime times the same sphere. Another special case is when a = 0, giving
a constant dilaton background. A nice feature of the stereographic coordinates
(5.13), as they are called, is that the dilaton depends linearly on the radial coordi-
nate λ .

We can also use horospherical coordinates to parametrise the AdSd+1�Sd̃+1

spacetime, which are defined as

uβ =
rβ

rβ+1
0

; (5.15)

with the dimensionless parameter β given by

β =
2d̃
∆
�1 : (5.16)

These coordinates clearly do not make sense when β = 0. Comparing with (5.14)
we see that this is exactly when the near–horizon spacetime becomes Minkowski
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Anti-de Sitter

Minkowski

Figure 5.1: The p–brane solutions interpolating between Minkowski and Anti–de Sitter
geometries.

and that is why the horospherical coordinates can only be used to describe AdS
spacetimes.

We note that u carries dimensions of [l ]�1
= [m], which defines an energy

scale. This will have interesting consequences. Rewriting the dual frame solution
(5.12) using the horospherical coordinates we obtain

ds2
D = r2

0

"
(uβ)

2dx2
d +

�
1

uβ

�2

du2
+dΩ2

d̃+1

#

eΦ
= gsr

� (D�2)a
8

�
β+1

β

�
0

(uβ)
� (D�2)a

8

�
β+1

β

�
: (5.17)

We will prefer these coordinates when analyzing the string limit in which the
worldvolume field theory decouples. In the metric (5.17) the u= 0 hypersurface
is a non–singular horizon and u! ∞ corresponds to the boundary of AdS. We
will say more about some of the properties of AdSspacetimes in section 4.1.2.

Summarizing, we showed that in the dual frame, defined by (5.9), all p–branes
solutions in (5.4) generically have a AdSd+1�Sd̃+1 near–horizon geometry and a
non–trivial dilaton. Special cases arise when β = 0 or when a= 0. The constant
sphere allows for a reduction of the D–dimensional fields. All the indices of the
non–trivial field strength lie on the sphere, so this will give rise to a cosmological
constant in d+ 1 dimensions and so does the curvature of the sphere. Therefore
the reduced solution (throwing away the sphere part), generically consisting of an
AdSmetric and a non–trivial dilaton, solves the equations of motion of an action
with a cosmological constant. The reduced object indeed has p = (d+ 1)� 2
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spatial extended directions and this is what we called a domain–wall. Before
actually performing a (truncated) reduction [115], we would first like to discuss
domain–wall solutions in general.

5.1.2 Domain–walls and Anti–de Sitter spacetimes

Domain–wall spacetimes [116] solve the equations of motion obtained by vary-
ing a (super)gravity action with a cosmological constant Λ and a dilaton. They
correspond to p–branes with worldvolume dimension d = p+1 which is one less
than the dimension D of the target spacetime they live in (this also means that
d̃ = �1). Although domain–wall solutions do appear in (5.4), it turns out that
these are not the most general solutions one can write down. Because all p–brane
near–horizon solutions are described by a domain–wall in d+1 dimensions (when
reduced over the sphere), it will be useful to study domain–wall solutions more
carefully to make a connection with p–brane near–horizon solutions.

Again performing a Hodge dualization, which replaces the cosmological con-
stant Λ by a rank d+1 field strength Fd+1 in (5.1), we can naturally discuss objects
of codimension one coupling to a d-form potential, defining a domain–wall. In
terms of the field strength Fd+1 the action is now given by

SE
d+1 =

Z
dd+1x

p
g

1

(

p
α 0)d�1g2

s

h
R�

4
d�1

(∂Φ)
2�

g(4�2k̃)
s

2(d+1)!

�
eΦ

gs

�b

F2
d+1

i
:

(5.18)
We introduced a different dilaton coupling parameter b to stress the difference
with (5.1) and k̃ equals

k̃=
�b
2

+
�2

d�1
; (5.19)

which is just the appropriate modification of (5.3) to this domain–wall case using
an electrically charged potential. The equations of motion following from the
action (5.18) can be solved using the general p–brane Ansatz (3.50) involving
harmonic functions, but not uniquely. The solutions are

ds2
E = H

� 4ε
(d�1)∆DW dx2

d +H
�4εd

(d�1)∆DW
�2(ε+1)

dy2
;

eΦ
= gsH

�(d�1)bε
4∆DW ; (5.20)

g(2�k̃)
s F01:::d�1y =

s
4

∆DW
∂yH

ε
;
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where ε is now an arbitrary parameter as opposed to ε =�1 for ordinary p–branes
(when using electrically charged potentials). The parameter ∆DW is defined by

∆DW =
(d�1)b2

8
�

2d
d�1

; (5.21)

which is just (5.5) with d̃ =�1 and a! b.
The function H is harmonic on the 1-dimensional transverse space with coor-

dinate y and equals

H(y) = 1+Q+ y 8y> 0 ;

H(y) = 1+Q� y 8y< 0 ; (5.22)

with Q� constants and we fixed an arbitrary integration constant c to equal 1. The
equations of motion allow for a discontinuity and so Q+ and Q� do not have to
be equal2. It is understood that the domain–wall is positioned at the discontinuity
y= 0. The value of Q� on any side of the domain–wall can be expressed in terms
of a mass parameter m� in the following way

Q�ε = m� ; (5.23)

where m� is related to the cosmological constant through the equation

Λ� =
�2m2

�
∆DW

: (5.24)

So a domain–wall is an object which interpolates between two different cosmo-
logical constant vacua. The charge Q� should not be associated with the physical
charge or mass of the domain–wall because it cannot be measured, which follows
from the dependence on the arbitrary parameter ε . The physical mass and charge
of a domain–wall have to be proportional to the (discontinuous) change in the
cosmological constant. This is the only way to detect such an object.

We saw that use of the Ansatz (3.50) allows for an undetermined parameter ε
in the domain–wall solution. The origin of this parameter is the fact that there are
coordinate transformations, labeled by ε , that keep the solution within the same
Ansatz. The explicit form of these coordinate transformations is given in [20].
Another way of understanding this is that the Ansatz (3.50) is not a suitable one

2Strictly speaking this is only true when using the rank d+1 field strength formulation as we
did.
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in the domain–wall case because it does not uniquely specify the solution. This
also means that it should be possible to consider coordinate transformations that
get rid of the free parameter ε .

We will now focus on one side of the domain–wall, let us say y> 0 and define
Q�Q+ (from here on we will also drop the + subscript on all parameters related
to Q). Let us also assume that we are far away from the domain wall disconti-
nuity3. This is what we called a “near–horizon” limit in the previous section and
allows us to neglect the constant 1 in the harmonic function (5.22). We can get rid
of the free parameter ε by making the following y! λ coordinate transformation

Qy= e�Qλ
: (5.25)

The domain-wall solution in the new stereographic λ coordinate reads

ds2
E = e

mλ
�
(d�1)b2

4∆DW

��
e
�2mλ

� 2+∆DW
∆DW

�
dx2

d +dλ 2
�

Φ = ln(gs)+
(d�1)bm

4∆DW
λ : (5.26)

This is a solution of the action (5.18) with Λ given by (5.24). The overall term in
the metric can be removed by performing a conformal transformation to the dual
frame, which is now defined as

gµν
D =

�
eΦ

gs

��b

gµν
E ; (5.27)

which is just (5.9) with d̃=�1 and a! b. The solution in the dual frame becomes

ds2
D = e

�2mλ (
2+∆DW

∆DW
)
dx2

d +dλ 2

Φ = ln(gs)+
(d�1)bm

4∆DW
λ : (5.28)

This is just (5.14) with d̃=�1, m= 1=r0 and a! b and generically the dual frame
domain–wall metric describes an AdSd+1 spacetime [117]. When ∆DW = �2 the
metric becomes flat Minkowski spacetime, which is equivalent to taking β = 0,
d̃ =�1 and a! b in (5.14).

3We could also perform a shift coordinate transformation, but this would also shift the position
of the discontinuity changing the range of the transversal coordinate y.
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Near–horizon spacetimes of p–branes should fall in this category of domain–
wall solutions after the reduction over the sphere. To make this connection we
have to relate the original parameters of the p–brane solution a;d; d̃ and r0 to the
parameters of the d+1–dimensional domain–wall which are just b;d and m. Re-
ducing just the fields participating in the solution (5.4) in the dual frame will only
replace the field strength by a cosmological constant whose value is determined
by the Ricci curvature of the sphere and the charge of the original p–brane

SR
d+1 =

Z
dd+1x

p
g

1

(

p
α 0)d�1g2

s

�
eΦ

gs

�δ h
R+γ(∂Φ)

2
+g(4�2k)

s Λ
i
: (5.29)

This action should be a truncation of a gauged supergravity action which presum-
ably can be obtained by reducing the complete higher–dimensional supergravity
action on a sphere [115]. To compare with (5.18) we have to perform a conformal
transformation to the Einstein frame and rescale the dilaton Φ! Φ=c to obtain
the standard normalization of the dilaton kinetic term. The scale factor c equals

c2
=

2d̃2

∆(d̃+1)�2d̃
: (5.30)

We can then read off the domain–wall dilaton coupling parameter b

b= a
(d+ d̃)

(d�1)d̃
c: (5.31)

This is all we need to express ∆DW (5.21) in terms of the parameters of the original
p–brane4. We find

∆DW =
�2d̃∆

∆(d̃+1)�2d̃
: (5.32)

Comparing the reduced p–brane solution in the Einstein frame with (5.26) we
conclude that m and r0 are related as follows

m=
�d̃
r0

: (5.33)

As a consistency check we should find c2
= 1;a = b;∆DW = ∆ and m= 1=r0

when d̃ = �1, in which case the original p–brane is already a domain–wall. The
relations (5.30), (5.31), (5.32) and (5.33) indeed satisfy this requirement.

4The parameter ∆ is only invariant under toroidal reductions and not under reductions on
spheres. This explains why ∆DW 6= ∆.
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Using these relations we can express the value of the cosmological constant Λ
in terms of the original p–brane parameters. We just use (5.24) and plug in (5.33)
and (5.32). This gives

g4�2k
s Λ =

d̃
2r2

0

�
2(d̃+1)�

4d̃
∆

�
: (5.34)

The first term in this expression originated in the reduction of the D–dimensional
Ricci scalar and the second term comes from the reduction of the magnetically
charged rank d̃+ 1 field strength curvature. Analyzing this expression we find
that all p–brane near-horizon geometries give a Λ > 0 (with 1 � d̃ � (D� 3))
except for the domain-walls, which have d̃ =�1 and a sign change occurs, giving
Λ < 0. We note that this is not in contradiction with the fact that all p–branes
(including the domain–walls) have AdS geometries, which are defined by having
Λ > 0, in the near–horizon limit. The dilaton kinetic term in (5.18) will contribute
to an effectivecosmological constant which is always positive, as can be most
easily seen using stereographic coordinates when the dilaton is a linear function
of λ (5.28)5.

So we have now related all near–horizon geometries of p–branes in (5.4) to
domain–wall solutions. In the dual frame the generic domain–wall metric de-
scribed an AdSd+1 spacetime, with one Minkowski spacetime exception when
∆DW =�2. Let us now discuss some of the special properties of AdSspacetimes,
for a more extensive discussion we refer to [118].

Anti–de Sitter metrics describe spacetimes of constant negative curvatures.
By considering a d+1–dimensional Einstein–Hilbert action with a cosmological
constant term we find

Rµν � 1
2gµν R = Λgµν )

R = �
d+1
d�1

Λ) (5.35)

Rµν = �
Λ

d�1
gµν :

So these spaces have the property that the Ricci tensor is proportional to the metric
tensor, which is the definition of Einstein spacetimes. When Λ > 0 and d > 1 the
solutions describe spacetimes of constant negative curvature and to obtain AdSwe

5As one might expect one obtains a flat Minkowski near–horizon geometry when the effective
cosmological constant vanishes.
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need maximal symmetry implied by demanding

Rµνρσ =
R

d(d+1)
(gνσ gµρ�gνρgµσ) : (5.36)

It is possible to embed AdSd+1 in a d+2–dimensional flat space. The metric
of this d+2–dimensional flat space is

ηab = diag(�;+;+; : : : ;+;�) : (5.37)

The d+2–dimensional spacetime therefore has two times, or signature (2;d). The
invariant distance or length (positive for timelike worldlines) is defined as

�l2 �
i=d

∑
i=1

(yi
)

2� (y0
)

2� (yd+2
)

2
: (5.38)

We note that this length is preserved by a generalization of the Lorentz group rota-
tions into SO(2;d). An AdSd+1 embedded surface is then defined as a hyperboloid
with l2

=R2
= constant

�R2
=

i=d

∑
i=1

(yi
)

2� (y0
)

2� (yd+2
)

2
: (5.39)

The length scale R can be interpreted as the embedding radius of the AdSd+1
surface. Through this embedding equation (5.39) the isometry group of an AdSd+1
spacetime obviously is SO(2;d), which has 1

2(d+1)(d+2) generators6. Quantum
theories on AdSd+1 should therefore have an SO(2;d) invariance. We note that the
group of conformal transformations in d dimensions is also SO(2;d). The AdSd+1
embedding equation (5.39) also implies the existence of closed timelike curves in
the embedded surface. This can be avoided by considering the universal cover
of the AdSd+1 geometry (which means we introduce an infinite set of AdSd+1
geometries allowing timelike curves to pass through different AdSd+1 geometries
avoiding closed timelike curves).

We can now choose suitable coordinates on AdSd+1 satisfying the embedding
constraint (5.39) and defining an induced AdSd+1 metric. For example let us de-
fine

u0 � yd+2
+yd

; v� yd+2�yd (5.40)

6Notice that the number of generators is the same as the Poincaré group in d+1 dimensions.
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Chapter 5. String solitons and the field theory limit

where we picked out yd as one of the spacelike coordinates in (5.39). Also define
the left–over coordinates as

yµ �
u0

R
xµ µ 2 [0;1; : : : ;d�1] (5.41)

and introduce a flat d–dimensional metric ηµν with usual Minkowski signature to
lower the Greek indices on the x coordinates. The induced (mostly plus) AdSd+1
metric is just

ds2
= dyµdyµ �du0dv: (5.42)

Working out the differentials and expressing v in terms of u and xµ through the
embedding equation (5.39) we obtain

ds2
=

�
u0

R

�2

dxµdxµ +

�
R

u0

�2

du02 : (5.43)

This can be recognized as the horospherical parameterization of AdSd+1 (5.17) if
we identify u0 � ur2

0 and

R �
r0

β
=

∆ r0

2d̃�∆
: (5.44)

An important property of AdSd+1 is that it has a “projective boundary”. This
has the effect that in many (physical) situations AdSd+1 spacetime acts as a finite
volume box. Lightlike trajectories can reach this AdSboundary in finite time as
opposed to timelike trajectories. Considering the embedding (5.39) and defining
new coordinates Ry0 with R very large, the boundary can be parametrized (ap-
proximately) as

�
�
R

R

�2

! 0 =

i=d

∑
i=1

(y0i)2� (y00)2� (y0d+2
)

2
: (5.45)

Since tR with t 2 R is just as good as R, we should consider the boundary as a
projective equivalence class defined as

0 =

i=d

∑
i=1

(y0i)2� (y00)2� (y0d+2
)

2

y � ty: (5.46)

We can use the scaling equivalence to fix one of the coordinates and this means
the boundary is a d–dimensional surface, as it should be. For example we can fix
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5.1. String soliton geometries

y0d+2 � 1. In that case we find that

1 =

i=d

∑
i=1

(y0i)2� (y00)2
; (5.47)

which means the topology of the boundary is S1�Sd�1 7. Considering the univer-
sal cover of AdSd+1 decompactifies the S1, avoiding closed timelike curves. An
important property of the boundary of AdSd+1 is that the isometry group SO(2;d)
acts precisely as the conformal group on Minkowski space. The conformal group
consists of the usual Poincaré group together with the following conformal trans-
formations

� Dilations or scale transformations acting as

xµ ! λ xµ
; λ 2 R : (5.48)

� Special conformal transformations acting as

xµ ! x0µ ; such that
x0µ

x02
=

xµ

x2 +aµ
: (5.49)

Together with the Poincaré group these make up the group SO(2;d). It is not
very hard to see that some infinitesimal SO(2;d) isometries, namely infinitesimal
translations u0 ! u0 + a (using horospherical coordinates (5.40)), indeed repro-
duce dilations on the boundary, which follows from the equivalence class condi-
tion (5.46) of coordinates on the boundary. For a more extensive discussion on
this point we refer to [111]. We conclude that SO(2;d) AdSisometries can be
identified with conformal transformations from the boundary point of view.

We found that generic p–brane near–horizon geometries have AdSmetrics,
but the complete generic solution is also described by a non–trivial dilaton. A
non–trivial dilaton breaks the SO(2;d) isometries of the complete solution. For
example infinitesimal SO(2;d) translations will not leave the value of eΦ invariant,
breaking the symmetry. From the boundary point of view this has to correspond
to broken conformal or scale invariance. Only when the dilaton background is

7This result only refers to the topology of the boundary and does not mean that the boundary
is a curved geometry. Rather the boundary is a flat Minkowski geometry which can be thought of
as the infinite radius limit of a sphere.
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Chapter 5. String solitons and the field theory limit

constant do we expect the complete background solution to be invariant under the
SO(2;d) isometries of AdSd+1. In that case we also find supersymmetry enhance-
ment in the near–horizon limit [41, 42, 119], meaning that a pure AdSbackground
solution preserves all of the supersymmetries, just like flat Minkowski space.

Let us end this section by discussing the two special near–horizon cases in the
dual frame.

� Flat Minkowski near–horizon spacetime. This requires

β = 0 or 2d̃ = ∆ : (5.50)

We will only consider supersymmetry preserving cases, which means ∆ =

4=n with n an integer. It is important to note that the parameter d̃ is invariant
under double dimensional reductions. This means that once we found a p–
brane satisfying the constraint (5.50), p–branes with r legs compactified
on a Tr giving a p� r–brane in D� r dimensions, will also satisfy the
constraint (5.50). So we find families of solutions. Because d̃ has to be
an integer solutions can only be found for n = 1 and n = 2. Relating our
results to existing branes in string– or M–theory we find the 10–dimensional
p= 5–branes for n= 1. When n= 2 we find p= 5–branes in D = 9, which
can be obtained from reduction of D = 10 Kaluza–Klein monopoles in the
N = 1 supergravity theories.

� Pure Anti–de Sitter backgrounds. This requires

a= 0 or
2dd̃
∆

= (d+ d̃) : (5.51)

This condition can be satisfied for the cases where we preserve some su-
persymmetry or equivalently ∆ = 4=n. We summarized the results [41, 42,
120, 119] in Table 5.1.

The p–brane listed in Table 5.1 with ∆ = 2 in D = 6 can be traced back to
an intersection of 2 Dp–branes in D = 10, hence the terminology. The same
holds for the p–branes in D = 5 with ∆ = 4=3, which are related to intersec-
tions of 3 M–branes. Finally, the 0–brane or extreme Reissner–Nordström
black hole in D = 4 is related to an intersection of 4 Dp–branes in D = 10.
Notice that only three possible values of β occur: 1

2 ;1 and 2. Remember

that β defines the ratio of the radius r0 of the transverse sphere Sd̃+1 to
the radius r0=β of the embedded AdSd+1. Considering D = 10 Dp–branes
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D β ∆DW ∆ Name
11 1

2 –12/5 4 M5–brane
2 –3 4 M2–brane

10 1 –8/3 4 D3–brane
6 1 –4 2 d1–brane
5 1

2 –4 4/3 m1–brane
2 ∞ 4/3 m0–brane

4 1 ∞ 1 RN black hole

Table 5.1: The Table indicates the values of β , ∆DW and ∆ for all p–branes that have a
pure AdSnear–horizon background.

or their reduced intersections we always find this ratio to be 1. Considering
D= 11 M2–branes or M5–branes and their reduced intersections we always
find 2 and 1

2 respectively.

Finally notice that p= 0 is special because ∆DW blows up and using (5.35)
we find that Λ � 0. However we can still consider maximally symmetric
Einstein spaces of constant negative curvature and the AdS2 metric satisfies
these requirements.

This finishes our discussion on p–brane near–horizon geometries and their
relation to domain–wall and Anti–de Sitter spaces. We will next introduce a
string theory low energy limit which leads us into the p–brane near–horizon re-
gion, decoupled from the asymptotic Minkowski supergravity. From the p–brane
worldvolume theory point of view the same low energy limit also decouples bulk
Minkowski supergravity and leaves us with the non–trivial field theory living on
the p–brane. This will lead to the surprising and interesting conjecture that p–
brane field theories can be mapped to closed superstring theories on (p–brane
near–horizon) domain–wall backgrounds. By now the best understood and check-
ed example is that of N D3–branes in Type IIB string theory, which was first
discussed by Maldacena, together with the other pure AdSbackgrounds, in [110].
This was generalized to the other D = 10 Dp–branes in [108] and somewhat later
in [109] using the dual frame metric.
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Chapter 5. String solitons and the field theory limit

5.2 The field theory limit

In this section we will set up the limit taking us into the near–horizon region, fixing
the worldvolume field theory coupling constant and energy scale. We will work
out this limit for the general class of p–branes described by (5.4). To obtain well–
behaved near–horizon background solutions we need a constraint on our p–brane
parameters. The result will be that dualities relating domain–wall supergravities
having a 6= 0 to large N worldvolume field theories are only well–behaved for
Dp–branes and their reduced intersections. We will first try to be as general as
possible, only excluding the flat Minkowski near–horizon spacetimes, which will
not be treated in this thesis.

5.2.1 The general setup

A string low energy8 limit will always involve

u2 α 0! 0 ; (5.52)

as explained in section 2.2, where we substituted u for U to denote the natural en-
ergy scale. There are two ways to interpret this limit (5.52). One usually considers
u! 0 and keeps α 0 fixed. However one can equivalently consider fixed energies
u and consider the limit α 0! 0. We will use the last option and therefore consider
the limit

α 0! 0 ; (5.53)

keeping fixed a natural energy scale u. We will also assume that from the outset gs

is small, in order for the p–brane soliton solution to make sense in a string theory
low energy limit.

In one regime the system we want to analyze consists of N p–branes described
by a worldvolume theory, coupled perturbatively to a Minkowski bulk supergrav-
ity theory (so we neglect the back reaction of the N p–branes on the spacetime
geometry). The dynamics of the (effective) field theory on the corresponding p–
brane should be non–trivial. This means that at least one field theory coupling
constant should be fixed in the limit (5.53). The field content of the p–brane
worldvolume field theory determines the dimensions of the different coupling
constants (scalars have dimensions different from vectors), which can be easily
read off from the different kinetic terms. The dependence on gs is fixed through

8It should be clear that when we consider M–theory we just replace the string length scale by
the Planck length scale and we lose the string theory coupling constant.
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5.2. The field theory limit

the scaling of the effective tension of the p–brane under consideration, which is
denoted by the parameter k (5.3). A p–brane soliton solution must be thought of
as a stack of N microscopic single p–branes. We will fix (generalized) ’t Hooft
coupling constants9, which involve this integer N. In general we will assume the
following structure of a p–brane worldvolume (’t Hooft) coupling constant

g2
f = cpNgk

s (
p

α 0)x
; (5.54)

with cp some (dimensionless) constant. When considering M–theory branes, the
gs dependence is of course absent10. We introduced the parameter x to denote the
dimension of the coupling constant, which is unconstrained (for now). Both cp

and x depend on the specific p–brane worldvolume theory fields under considera-
tion. When considering Yang–Mills coupling constants of Dp–branes, x is equal
to p�3. On the other hand, when considering scalar coupling constants x= p�1.
We want the coupling constant (5.54) to stay fixed in the limit (5.53). Depending
on the sign of x this has the following consequences

x< 0 ! Ngk
s �

p
α 0�x! 0

x> 0 ! Ngk
s �

p
α 0�x! ∞ : (5.55)

We will only be considering p–branes with k > 0. This is reasonable because
otherwise the effective tension would scale with a positive power of gs, saying
that in a weak string coupling limit the tension of such an object would vanish.
This implies the absence of solitonic solutions to the string effective equations
of motion which are only defined in a weak coupling limit, and so we arrive at
a contradiction because we do want to consider the existence of p–brane soliton
solutions. Positive k and gs � 1 imply that in order to keep gf fixed we need
gs! 0 when x< 0 and N! ∞ when x> 0.

The non–trivial worldvolume field theory will be decoupled from the bulk
Minkowski supergravity theory when the gravitational coupling constant vanishes
in the limit (5.53). The gravitational coupling constant in D spacetime dimensions
is proportional to

GD ∝ (

p
α 0)D�2g2

s ; (5.56)
9These are called ’t Hooft coupling constants after ’t Hooft’s idea to treat U(N) Yang–Mills

theories in a 1=N expansion. The suggestion was that these theories might simplify when the
number of colors N is large, because only planar Feynman diagrams contribute in a large N limit.
If one could solve the theory with N=∞ exactly, the hope was that one could analyze SU(3) QCD
beyond the perturbative weak coupling expansion by doing an expansion in 1=N = 1=3 < 1.

10In fact the α 0 dependence also disappears in that case because the worldvolume field theories
are scale invariant.
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which clearly vanishes in the limit (5.53) and u and gf fixed, as long as we do not
consider taking gs! ∞. We conclude that in the limit described above, which we
will refer to as the field theory limit, we end up with a bulk Minkowski supergrav-
ity theory decoupled from a non–trivial p–brane low energy effective worldvol-
ume theory.

Now consider the p–brane supergravity soliton solution (5.4). We have to de-
fine a natural energy scale with respect to the p–brane solution which coincides
with the one in the worldvolume field theory and which should be kept fixed in
the limit (5.53). We already encountered an energy scale when we discussed the
AdSd+1 horospherical coordinates, where we defined a parameter u with the di-
mensions of mass (5.15). This can be shown to be the natural energy scale associ-
ated to a massless supergravity field probing the p–brane near–horizon geometry
[121]. That energy scale could only be defined when β 6= 0 (5.16), so we will only
be discussing p–branes with AdSd+1 near–horizon geometries (in the dual frame).
The cases with β = 0, resulting in a dual frame flat Minkowski near–horizon ge-
ometry, can be treated but we refer to [108, 109] and [122] to learn more about
the holographic duality conjectures in these special cases.

We want to replace all quantities appearing in the harmonic function by the
fixed parameters in the field theory limit. All r dependence will be replaced by u
and we also need to express r0 in terms of the appropriate string theory parameters.
In Appendix A we deduce that

rd̃
0 = (dpNg2�k

s )

p
α 0d̃

; (5.57)

where we introduced a dimensionless constant dp. We can now rewrite the har-
monic function H(r) in terms of the fixed quantities u and g2

f , extracting powers
of α 0 and gs which are left–over. This gives

H = 1+(

p
α 0)

x�d̃
β (gs)

2(k�1)
β

�
g2

f (uβ)
d̃
�

dp

cp

���1=β
: (5.58)

The field theory limit will take us into the p–brane near–horizon region when

x� d̃
β

< 0 : (5.59)

The power of gs could still spoil this behavior, but we will soon constrain our
parameters in such a way that this possibility is excluded.
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5.2. The field theory limit

Let us for the moment assume that the constraint (5.59) is fulfilled and the
field theory limit takes us into the p–brane near–horizon geometry. We will use
the dual frame metric solution written in terms of horospherical coordinates and
we will not give the expression for the field strength, which is of less importance.
Expressing the p–brane near–horizon solution in terms of the fixed quantities,
removing all the α 0 dependence in the dilaton, we find

ds2
= (dpNg2�k

s )
2=d̃ α 0

"
(uβ)

2dx2
d +

�
1

uβ

�2

du2
+dΩ2

d̃+1

#

eΦ
= g

1+ (D�2)a
2∆β (k�1)

s

�
Ngk

s

� a(D�2)(d̃�x)
4∆βx

"
(g2

f )
1=x

(uβ)

 
d1=d̃

p

c1=x
p

!#�(D�2)a
8

�
β+1

β

�

:(5.60)

We can rescale the metric to lose the factors (dpNg2�k
s )

2=d̃ and α 0. This will

introduce (extra) α 0 and (dpNg2�k
s )

2=d̃ dependence in the dual frame action (5.10).
Collecting all α 0 dependence, we find the important result that all α 0’s drop out.
All gs dependence nicely combines into the eδΦ in front of the dual frame action.
After the rescaling our action (5.10) becomes

SD =

Z
dDx

p
gD(dpN)

(D�2)=d̃eδΦ
h
RD +γ(∂Φ)

2�
1

2(dpN)2(d̃+1)!
F2

d̃+1

i
:

(5.61)
This means that if the dilaton expression is non–singular in the field theory limit,
we are left with a near–horizon supergravity theory with a finite Planck length
and a finite string coupling constant defined by eΦ! This strongly suggests that
in the field theory limit on the supergravity soliton side, we end up with a super-
string theory on the AdSd+1�Sd̃+1 p–brane near–horizon background with new
(finite) parameters α̃ 0 and g̃s. The field theory limit decouples this near–horizon
superstring theory from the asymptotic Minkowski superstring theory we started
with.

The special cases a = 0 imply a constant dilaton and the supergravity back-
ground carries an unbroken SO(2;d) isometry. This should match with a con-
formal symmetry group in the worldvolume field theory description, meaning the
fixed coupling constant (5.54) should be dimensionless or x = 0. Those cases
(which include the M–branes) do not require a parameter restriction and will be
discussed separately in 4.2.2. When a 6= 0 non–singular dilaton expressions in the
field theory limit require a restriction on our p–brane parameters. We will now
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Chapter 5. String solitons and the field theory limit

constrain our p–brane parameters such that the near–horizon limit (5.59) is guar-
anteed and the new string coupling constant eΦ is finite or independent of the old
string coupling constant gs.

In the analysis of the effect of the field theory limit on the supergravity soliton,
we defined a fixed energy scale u. A priori there is no reason for this fixed energy
scale to be the same as the natural energy scale in the worldvolume field theory. To
be able to compare both descriptions we need related or better, equivalent fixed
energy scales. To determine these relations we need to probe the system under
consideration in both descriptions by the same objects or fields. Suppose we are
dealing with N Dp–branes probed by a single Dp–brane. Then we know how
to relate a natural energy scale in the Dp–brane Yang–Mills worldvolume field
theory to the length of stretched strings, defining a distance scale in the bulk. Open
strings stretching from the probe brane to the system of N Dp–branes correspond
to energy scales equal to

U =
r
α 0 ; (5.62)

which is just the distance between the probe and the system of N Dp–branes times
the open string tension (see 1.1.5). This is obviously not the same as the definition
of the energy scale u (5.17), which we kept fixed when considering the field theory
limit in the supergravity soliton description. The two energy scales are related in
the following way

uβ = α 0 x+d̃�∆
∆ g

4(k�1)
∆

s

�
dp

cp
g2

f

��2
∆

Uβ
: (5.63)

We would like u and U to be related through fixed quantities only. Otherwise fixed
energy scales U in the worldvolume field theory would correspond to diverging
energy scales u in the supergravity soliton description and vice versa. Looking at
(5.63) this is only possible when

k= 1 ; x= ∆� d̃ : (5.64)

The first constraint k = 1 just confirms our restriction to Dp–branes in any di-
mension. The second constraint is interesting, because it tells us which coupling
constant in the worldvolume theory we should keep fixed. Until now we kept x as
a free parameter, but now we see we have to fix it in order to connect the Dp–brane
supergravity soliton and Dp–brane field theory energy scales. When D = 10 and
∆ = 4 we find x= p� 3, telling us that we should keep fixed the ’t Hooft Yang–
Mills coupling constant (5.54). The connection between the two energy scales
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was discussed extensively in [121]. There it was observed that u is the natural
energy scale for supergravity probes (instead of Dp–brane probes), which could
also be obtained in the worldvolume field theory by considering the self–energy
of a point charge. The point charge is the interpretation of the stretched string
from the worldvolume gauge theory point of view, which has energy U . How-
ever, the self–energy is also proportional to the effective strength of the Coulomb
interaction and this will reproduce (5.63). To get the correct holographic relation
between the number of degrees of freedom on both sides of the duality [123], the
energy scale u should be used and therefore this parameter is also called the holo-
graphic energy scale. This also means that from the holographic point of view,
the supergravity fields are the natural holographic probes of the AdSgeometry.
In [109] it was noted for the first time that the holographic energy scale u is the
natural energy scale coordinate for AdSspacetimes obtained as the near–horizon
geometries of Dp–branes in D = 10 in the dual frame. We have seen that this
phenomenon extends to p–branes in arbitrary dimensions.

Using the restriction (5.64) first of all drops all gs dependence in (5.58), and the
power of α 0 (5.59) becomes�∆. Because we only consider ∆> 0, it is guaranteed
that the field theory limit takes us into the near–horizon region. Importantly, using
the constraints (5.64) we find the following expression for eΦ in the field theory
limit

eΦ
=

1
N

"
(g2

f )
1=x

(uβ)

 
d1=d̃

p

c1=x
p

!#�(D�2)a
8

�
β+1

β

�

: (5.65)

Remember that x= ∆� d̃ in this expression. This is finite (at least when we do not
consider N ! ∞) and defines a new string coupling constant independent of the
old Minkowski string coupling constant gs. From (5.65) we conclude that this new
coupling constant is proportional to 1=N. So in a large N limit we obtain a weakly
coupled string theory and string theory quantum corrections are 1=N effects.

We are now ready to state the conjecture naturally following from the above
analysis, restricting the parameters as in (5.64) when a 6= 0. Fixing an energy
scale u and a ’t Hooft coupling constant gf , the low energy limit α 0 ! 0 decou-
ples Minkowski supergravity in both descriptions. We are left with a p–brane
worldvolume field theory on one side and a well defined domain–wall supergrav-
ity solution on the other side. Choosing a fixed energy scale and ’t Hooft cou-
pling constant we can now either describe the system of p–branes by a closed
superstring theory on a domain–wall background, or by the p–brane worldvol-
ume field theory and both descriptions are conjectured to give the same results.
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Chapter 5. String solitons and the field theory limit

This automatically leads to the conjecture that closed superstring theory on a
DWd+1�Sd̃+1 p–brane near–horizon background is dual to the d–dimensional
p–brane worldvolume field theory. These kind of relations we will very often call
domain–wall/quantum field theory dualities (or in short DW/QFT dualities). The
suggestion to go beyond the supergravity approximation is based on the fact that
we found finite Planck length and string coupling in the supergravity analysis.
Of course when considering M–branes we loose the dilaton (and thus the string
coupling) and we should replace “closed superstring theory on a DWd+1�Sd̃+1

p–brane near–horizon background” by “M–theory on a pure AdSd+1�Sd̃+1 M–
brane near–horizon background”.

Let us explain what we mean when we say that the two descriptions are dual to
each other. This will become clear when we start analyzing the regions of the fixed
quantities u and gf (and usually N) where the different descriptions are in their
perturbative, calculable, regime. We will first analyze the perturbative regime of
the worldvolume field theory giving a restriction on the quantities u and gf and
after that deduce the restriction needed on the quantities u and gf (and N) to be in
a perturbative closed string regime.

Although the field theory description is in principle defined non–perturbati-
vely, in practice we (almost always) need a perturbative expansion which is only
defined for small effective dimensionless coupling constant. This effective di-
mensionless coupling constant in the worldvolume field theory can be constructed
from the energy scale u and the coupling constant g2

f and should be much smaller
than one, giving

g2
eff = g2

f ux� 1 : (5.66)

Depending on the sign of x the perturbative field theory description will either be
valid when u� 1 or u� 1. This effective coupling constant determines the (clas-
sical) scaling of the supersymmetric d–dimensional quantum field theory under
consideration. We note that this is the combination of u and gf that appears in the
dilaton background (5.65).

The situation is different for the string theory (as explained in 1.1.6), which
first of all is only definedfor weak string coupling. Also the domain–wall back-
ground solution on which the string theory is defined can only be trusted as long
as the spacetime curvatures are small and finite size corrections can be neglected.
We can use a supergravity approximation (neglecting string loop diagrams) when
the string coupling and the curvature of the background are both small. Let us
investigate the regions in the p–brane near–horizon background solution where
we can trust this supergravity approximation.
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Small curvature (as seen by closed strings) can be translated in demanding that
the effective tension in the dual frame times the characteristic spacetime length
is large. The characteristic spacetime length is determined by the dual frame
AdSd+1�Sd̃+1 metric and is of order one (in α̃ 0 units). Calculating the effec-
tive string tension in the dual frame (using (5.9) and (2.1) we find small curvature
when

τs =

�
dpNe(2�k)Φ

�2=d̃
� 1 : (5.67)

We note that we did not yet use the constraint k= 1 in the above expression.
Small string coupling, which is defined by the dilaton expression (5.65) after

the constraint (5.64), can be translated into the constraint

eΦ
=

1
N

"
g2

eff

 
βxd1=d̃

p

cp

!#�(D�2)a
8

�
β+1
βx

�

� 1 : (5.68)

This last constraint can always be satisfied for generic u (except for the special
points u! 0 or u! ∞) by taking N very large. This is a general feature of
DW/QFT dualities, a supergravity approximation at least requires a large N limit.
We note that when we take k= 1 in (5.67) the overall N dependence will drop out.
This means that generically we can only expect supergravity to be a good approx-
imation within a finite region of the complete background [108, 109]. Quantum–
gravitational corrections can be included by taking into account string loop di-
agrams (which as we already mentioned can be identified with 1=N effects) and
this string loop expansion will be restricted to the same region on the domain–wall
background.

As we will see, in most cases the region where supergravity is a valid descrip-
tion is not overlapping with the region in which the perturbative field theory is a
good description. This means that at a particular scale u and coupling constant
gf there only exists one perturbatively well–defined theory which, through the
conjecture, can be mapped to a non–perturbative regime in the other theory. So a
strongly coupled theory can be mapped to a weakly coupled (different) theory and
it is precisely in this sense that the theories are said to be dual to each other. In
fact we could have expected that, because sure enough we know that perturbative
quantum field theory is very different from any (super)gravity theory.

This new kind of duality between large N SYM field theories and closed su-
perstring theories (including quantum gravity) can be used to study non–pertur-
bative physics on either side. First of all, although we did not show this here,
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in the procedure leading to the conjecture we can also introduce a small non–
extremality parameter (giving rise to some excitation energy) in the background
solution breaking the supersymmetry. This will correspond to a finite tempera-
ture configuration on the dual field theory side. Such a background solution has a
true horizon and will Hawking radiate (a quantum process) towards thermal equi-
librium11. Using the conjectured duality we can map this semiclassical gravity
result to a process in a finite temperature large N SYM field theory, which means
that Hawking radiation can be described by a unitary process associated with 1=N
effects in the large N quantum field theory.

On the other hand we could also use the duality map to learn about large N
quantum field theory, using (semiclassical) supergravity. Let us also remark that
this duality is an explicit manifestation of the holographic principle [105, 106]. It
was shown in [123] that the number of degrees of freedom in AdSspace satisfy the
holographic bound of one per surrounding Planck area. The way the two theories
are related is by identifying the coordinate u on the domain–wall supergravity side
with the scale parameter in the quantum field theory. Moving from u = 0 to the
boundary at u= ∞ in the AdSspacetime should be interpreted as going from the
infrared (IR) to the ultraviolet (UV) in the quantum field theory. This also means
that large distances (IR) in the quantum field theory correspond to small distances
in the domain–wall supergravity (near the center) and vice versa. The special
properties of AdSmetrics allow for this so–called UV–IR connection. Let us next
discuss more specific examples present in our general setup. Along the way we
will give some more details of the duality map.

5.2.2 The AdS/CFT examples

In this subsection we will take a better look at the pure AdSexamples, which
require a constant dilaton. This means that the dilaton coupling parameter a= 0.
Remember that we do not need the constraint (5.64) now. Also remember that we
want a= 0 to cover M–branes as well, in which case the string coupling constant
is non–existent and we should replace the string length scale by the appropriate
M–theory Planck length scale.

The complete background will have unbroken SO(2;d) isometries, which will
correspond to invariance under the conformal group in the dual field theory. The

11For a black p–brane in Minkowski spacetime this means that the p–brane will evolve into
the extremal BPS p–brane. In AdSspacetimes, which act as finite volume boxes, the equilibrium
situation will be the one where the temperature of the black p–brane equals the temperature of the
surrounding gas of emitted Hawking radiation.
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dual field theory therefore has to be a superconformal field theory, which means
the parameter x should vanish (otherwise the coupling would classically run). For
∆ and β we find in this case

β =
d̃
d

; ∆ =
2dd̃

d+ d̃
: (5.69)

Using these results we find that the harmonic function in the field theory limit can
be written as (5.58)

H = 1+(l f )
�d
�
g2

f (uβ)
d̃
�

dp

cp

���1=β
; (5.70)

where we replaced the
p

α 0 by the appropriate fundamental length scale l f under
consideration (which is the Planck length in M–theory and the string length in
string theory). Because d > 0 always, the field theory limit is guaranteed to take
us into the near–horizon region of the background solution. All the branes listed
in Table 5.1 are covered by this analysis, which were studied in the paper by
Maldacena [110].

When embedded in a string theory we always find β = 1, which also means
d= d̃ and ∆=d through (5.69). Using (5.3) we can also conclude that k= 1, so the
branes under consideration have to be D–branes. This also means the constraint
(5.64) is satisfied and using (5.63) we find that u ∝ U , so in this case the two
energy scales are essentially equivalent. The fixed conformal field theory coupling
constant is proportional to

g2
f ∝ Ngs: (5.71)

This coupling constant has to be small if we want to obtain perturbative confor-
mal field theory results. In theories without supersymmetry classical conformal
invariance is usually broken by quantum effects, as is represented by the Wilso-
nian renormalisation group equations. In supersymmetric theories however the
conformal invariance can be maintained at the quantum level, which is necessary
for the AdS/CFT duality. Looking at the condition for small AdScurvature (5.67)
we find

τs ∝ (gsN)
2=d

= (g2
f )

2=d � 1 : (5.72)

The new string coupling constant can be written as gs = g2
f =N, which has to be

small in a supergravity approximation. Combining these two requirements we
conclude that we need large N � g2

f � 1 for the supergravity approximation to
be a valid description. String quantum corrections are governed by the string
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coupling constant and are therefore 1=N corrections, as we concluded before. The
size of the sphere Sd̃+1 and the radius of the AdSd+1 embedding are both equal to
r0 and therefore proportional (in α̃ 0 units) to

r0 ∝ (gsN)
1=d

= (g2
f )

1=d
: (5.73)

We can use (5.34) to translate this into the value of the cosmological constant

Λ ∝
d(d�1)

(g2
f )

2=d
: (5.74)

We clearly obtain small Λ� 1 or large r0 � 1 in the supergravity approximation.
Similar equations hold for M–branes. We loose the constraint of small string

coupling, gs disappears altogether and the fixed conformal field theory coupling
constant is just proportional to N. The only requirement for a supergravity ap-
proximation is now small curvature and this will involve taking a large N limit.
For M–branes the parameter β can take on two values. For M2–branes (or inter-
sections) we find β = 2 and for M5–branes (or intersections) we find β =

1
2 . The

energy parameter u (5.15) can be written as

uβ =
rβ

(dpN)(β+1)=d̃l (β+1)
11

: (5.75)

When β =
1
2 this energy scale can be interpreted as the squareroot of the distance

scale between M5–branes times the tension of a membrane TM2 ∝ 1=l3
11. So in

the field theory limit we keep the length of stretched membranes fixed. This is of
course very similar to Dp–branes in string theory and confirms the interpretation
of M5–branes as topological defects on which open supermembranes can end. For
β = 2 we do not find such a nice interpretation.

Because of exact conformal invariance these dualities are not restricted to par-
ticular regimes in the AdSbackground. The coupling constants are independent
of the scale parameter u, and so the supergravity approximation constraints can be
satisfied on the complete AdSd+1�Sd̃+1 background by just considering a large N
limit. Conformal invariance also makes it easier to perform tests of these dualities,
basically because some observables (like 2– and 3–point functions) satisfy very
stringent constraints because of conformal invariance. This ensures that some per-
turbative properties on the conformal field theory side can be extended to strong
’t Hooft coupling. These results can then be compared with (semiclassical) AdS
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supergravity results to test the conjecture. Of course we need a specific relation
between the fields on both sides of the conjecture to be able to compare results.
The general AdS/CFT duality map was first constructed by Witten in [124] and
was suggested earlier for D3–branes in [125]. These maps position the confor-
mal field theory on the boundary of AdSd+1 and couple boundary values of AdS
supergravity fields to conformal operators living on the boundary. The choice for
the boundary of AdSis a natural one because the AdSisometries indeed act on the
boundary as ordinary conformal field theory transformations, as we discussed in
4.1.2.

A first requirement for the duality to be possible is that the symmetries match
on both sides. These can be checked case by case and should include the isome-
tries from the sphere Sd̃+1, giving a SO(d̃+ 2) global symmetry group on the
supergravity side. These global symmetries are indeed also found as the so–called
R–symmetry group on the superconformal field theory side. Conformal sym-
metry and the number of supersymmetries also match up in all cases. Using the
duality maps many checks were made of the AdS/CFT conjecture, mainly for the
D3–brane and the self–dual string (a D1–D5 intersection) in D= 6. Especially the
D3–brane case, where the dual field theory is a D = 4 superconformal Yang–Mills
theory, attracted a lot of attention. All these checks so far confirmed the AdS/CFT
conjecture and for more details we refer to the review paper [112] and references
therein.

The examples which are not yet understood are the five– and four–dimensional
Reissner–Nordström extremal black holes. Those cases are conjectured to give
rise to an AdS2�S2 and AdS2�S3/CFT1 duality respectively. The field theories in
these cases should reduce to supersymmetric conformal quantum mechanics mod-
els [126, 127], which are difficult to construct. An immediate problem that arises
is that, as opposed to higher dimensional field theories, a (conformal) quantum
mechanics model does not describe any internal dynamics if we have to assume
that all the BPS particles lie on top of each other. The same problem occurs in the
conjectured dual AdS2 supergravity description which displays a mass gap, telling
us that small excitations of the AdS2 supergravity fields can not exist. The dual-
ity conjecture therefore reduces to a map between two non–dynamical theories,
which does not seem very interesting. Another basic problem refers to the fact
that AdS2 has two boundaries and the question then arises on which boundary the
dual conformal quantum mechanics model should live [128]. Another problem
was discussed in [129], where it was observed that the AdS2 spacetime is not a
stable background vacuum solution, but instead can fragment into multiple AdS2
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spacetimes.
Although potentially these AdS2/CFT1 dualities could teach us a lot about (ex-

tremal) black hole dynamics, as advocated in in [130, 131], the situation at this
moment is not well understood. What has become clear is that the AdS2/CFT1 case
requires an understanding of what the duality conjecture means which is different
from all the higher–dimensional cases. More recent progress in constructing su-
persymmetric conformal quantum mechanics models and the interpretation of the
duality can be found in [132, 133, 134, 135] and in the review paper [136].

5.2.3 Non–trivial dilaton Dp–branes in D= 10

Let us first discuss all ten–dimensional Dp–branes, except for the already covered
D3–brane. These were first discussed in [108, 109], except for the special case of
the D8–brane. The only difference with the pure AdScases is the appearance of a
non–trivial dilaton, forcing us to use the constraint (5.64) and signalling the break-
ing of the conformal isometry group of the complete background solution. The
non–trivial dilaton, turning the background solution into a generic domain–wall, is
also responsible for the breaking of supersymmetry. The number of broken super-
symmetries is obviously the same as the number of broken supersymmetries in the
original Dp–brane solution, which is 1

2 of the maximum number 32. Remember
that the pure AdSvacuum solution preserved all of the supersymmetries and with
respect to the original p–brane soliton solution this represented supersymmetry
enhancement in the near–horizon geometry.

The string coupling constant will depend on the (radial) AdSenergy scale u
and therefore naturally represents a (classically) running coupling constant in the
dual field theory. This also means that when we want to use a supergravity approx-
imation we will be forced into a region (an energy scale u interval) of the complete
domain–wall supergravity background where the string coupling is small. Simi-
larly the spacetime curvature of the background, when probed with strings, is no
longer constant because the dilaton scalar will now contribute as well. Therefore
it is non–trivial to find energy regions where supergravity will be a good approxi-
mation.

The constraint (5.64) for D = 10 and ∆ = 4 gives k= 1 and more importantly
x= p�3. The fixed ’t Hooft coupling constant (5.54) therefore equals

g2
f = cpNgs

p
α 0(p�3)

= Ng2
YM ; (5.76)

which is the appropriate scaling for a coupling constant of a p+ 1–dimensional
Yang–Mills gauge theory. We will keep this quantity fixed, which for p> 3 means
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we have to take N!∞ if we want to be sure that the bulk supergravity decouples.
From the Yang–Mills theory point of view this is the ’t Hooft limit of an infinite
number of colors. The supersymmetric Yang–Mills theory under consideration
will of course be the one obtained as a low–energy limit of Dp–branes, which as
we discussed in section 2.3.2 can all be obtained from a toroidal reduction of the
D = 10 SYM theory. These include scalars which for p� 1 will be frozen into
their vacuum expectation values12 and will play no role in the actual dynamics.
Remember that even p D–branes are string solitons of IIA superstrings, whereas
odd p D–branes are part of IIB superstring theory.

Other D = 10 Dp–brane parameters we will need are

β =
1
2(5� p) ; a=

1
2(3� p) : (5.77)

For p= 5 we see that β = 0 and therefore the near–horizon geometry becomes d+
1–dimensional flat space in the dual frame metric. This excludes the D5–branes
from our discussion. Also remember that the IIB D7–brane is excluded because
d̃ = 0. The relation between the Dp–brane energy scale U and the holographic
energy scale u now becomes

U5�p
=

1
4(5� p)2

�
dp

cp

�
g2

f u2
: (5.78)

Plugging in the different D = 10 Dp–brane parameters the dilaton background
(5.65) becomes

eΦ
=

1
N

"
1
2 j5� pj(g2

f )
1

p�3 u

 
d1=(7�p)

p

c1=(p�3)
p

!# (p�3)(7�p)
2(5�p)

: (5.79)

Let us analyze for each Dp–brane where we can trust a supergravity approxima-
tion on the one hand and a perturbative supersymmetric Yang–Mills gauge theory
approximation on the other hand.

The effective dimensionless coupling constant (5.66) in the perturbative Yang–
Mills theory equals

g2
e f f = g2

f u(p�3)
: (5.80)

This represents the classical scaling of the coupling constant which because of su-
persymmetry should not be affected by quantum effects in the field theory. Nec-
essarily a perturbative field theory analysis can only be trusted in the following

12Put differently, for p� 1 the positions of the N Dp–branes are fixed and determine the gauge
theory vacuum.
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energy regimes

u � (g2
f )

�1
(p�3) 8 p< 3

u � (g2
f )

�1
(p�3) 8 p> 3 : (5.81)

In a supergravity approximation we need small curvature (5.67) and at the
same time small string coupling eΦ (5.79). Small curvature means13

τs ∝
�
g2

e f f

� 1
(5�p) � 1 : (5.82)

Similarly small string coupling (5.79), when rewritten using ge f f, gives the con-
dition

eΦ ∝
1
N

�
g2

e f f

� (7�p)
2(5�p) � 1 : (5.83)

Translating the conditions (5.82) and (5.83) into conditions on the energy scale u
we find

u � (g2
f )

�1
(p�3) 8 p< 3

u � (g2
f )

�1
(p�3) 8 3 < p< 5 (5.84)

u � (g2
f )

�1
(p�3) 8 p> 5 ;

for small curvature. Notice that these regimes are opposite to the perturbative field
theory regimes (5.81) for p< 5. For p> 5 these regimes overlap. Small string
coupling (5.83) translates into

u � (g2
f )

�1
(p�3) N

(p�3)(7�p)
2(5�p) 8 p< 3

u � (g2
f )

�1
(p�3) N

(p�3)(7�p)
2(5�p) 8 3 < p< 5

u � (g2
f )

�1
(p�3) N

(p�3)(7�p)
2(5�p) 8 5 < p< 7 (5.85)

u � (g2
f )

�1
(p�3) N

(p�3)(7�p)
2(5�p) 8 p> 7 :

Combining the conditions (5.84) and (5.85) to find the regions where supergravity
is a good approximation, will necessarily give a condition on N to be able to
satisfy both conditions at the same time (except for the D8–brane). We find

N

��� (p�3)(7�p)
2(5�p)

���� 1 8 p< 7 : (5.86)
13In our analysis of small curvature and string coupling we suppress all constants of order 1,

e.g. p, cp and dp.
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g  >>1s

u u gN

SUGRA

R >>1

S-dual PQFT

IR UV

Figure 5.2: Different regimes in the energy plot for Dp–branes with 0 � p < 3 and
N� 1. The terminology should be self–explanatory and was discussed in the main text.

A supergravity approximation therefore always involves a large N limit. The only
exception being the D8–brane, but remember that in that case we had to take
N! ∞ anyhow to keep g2

f fixed and to decouple gravity. The D8–brane was first
discussed in [107].

The D= 10 Dp–branes can be divided into four types of qualitatively different
behavior [108, 109, 107].

� Dp–branes with 0 � p< 3. Summarizing the previous discussion we find
that the supergravity approximation is valid in the IR when

uN = (g2
f )

�1
(p�3) N

(p�3)(7�p)
2(5�p) � u� ug = (g2

f )
�1

(p�3)
; (5.87)

which implies large N. The perturbative quantum field theory description
applies in the UV, when

u� ug : (5.88)

We end up in a strongly coupled string theory regime when

u� uN : (5.89)

In the inequality (5.87) we defined the two critical points uN and ug, where
the subscript refers to their (different) dependence on the fixed quantities.
The critical point ug describes the crossover from small to large curvature
(R� 1) in the string theory description and the transition from perturba-
tive (PQFT) to non–perturbative in the field theory description. The critical
point uN describes the crossover from weak to strong string coupling. When
N = 1 the two critical points become equal and the separation between ug

and uN increases with N, which motivates the subscript N on uN. We plotted
the different regimes in Figure 5.2.
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Depending on whether we are in Type IIA (p = 0 and p = 2) or Type IIB
superstring theory (p = 1) we can invoke M–theory or S–dual Type IIB
theory respectively to try to obtain another weakly coupled description of
this system of Dp–branes in the far IR. The Dp–brane background itself
should then also be transformed. For the D2–brane the solution transforms
into the M–theory M2–brane, which we already discussed in the AdS/CFT
subsection. It follows that the (2+ 1)–dimensional field theory flows to a
conformal fixed point in the IR, which has a dual description as the AdS4�
S7 M2–brane near–horizon supergravity in the large N limit [108].

The S–dual background for the Type IIB D1–brane is the fundamental (k=

0) Type IIB F1–brane, which has a curvature singularity at u= 0 and there-
fore a supergravity approximation is not possible in the far IR. However the
(1+ 1)–dimensional Yang–Mills gauge theory flows to a conformal fixed
point in the IR [75]. This suggests that the curvature singularity in the
S–dual F1 background is an artifact and is resolved by a description as a
conformal fixed point in the 1+1–dimensional gauge theory [108].

The S–dual D0–brane background is the M–wave, which just represents
D = 11 momentum. Wrapping the M–wave on a light–like compact direc-
tion with N units of momentum will give the N D0–branes near–horizon
solution [137]. The S–dual gravitational theory in the IR is therefore M–
theory on a compact light–like direction with N units of momentum. This
is the strongly coupled region of the dual N D0–branes quantum mechanics
model. This quantum mechanics model is nothing but the Matrix model
and we now conclude that only the strongly coupled IR limit of the Matrix
model will describe DLCQ M–theory. We can now also understand why
we reached a different conclusion in section 3.1.1. When we “deduced” the
Matrix model we neglected the gravitational backreaction of the N units of
M–theory momentum. The agreement between perturbativeMatrix model
results and DLCQ M–theory (in a supergravity limit) should probably be
understood as a consequence of non–renormalisation theorems due to su-
persymmetry. The Matrix theory conjecture has now been reduced to a
special example of the more general DW/QFT correspondence [137, 138].
Although the above sketched scenario seems plausible, a remaining prob-
lem is that we do not understand the duality map between quantum mechan-
ics models and DW2 backgrounds very well. These problems were already
explained in section 4.2.2 where we discussed the AdS2/CFT1 examples.

The established relation between the (uncompactified) Matrix model and
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u g u N

g  >>1s

IR UV

S-dualPQFT SUGRA

R >>1

Figure 5.3: Different regimes in the energy plot for the D4–brane with N� 1.

the more general DW2/QFT1 correspondence seems to break down when we
consider Matrix model compactifications. According to the Matrix model
conjecture p+1–dimensional Yang–Mills theory defined on a torus Tp will
describe DLCQ M–theory on the T–dual torus. At first sight these Matrix
model conjectures can not be obtained as special examples of the DW/QFT
correspondence if p > 0. Supposedly a relation should exist [138], but a
detailed understanding seems to be missing so far.

� The D4–brane. The supergravity regime is defined in the UV by

ug = (g2
f )
�1 � u� uN = (g2

f )
�1 N

3
2 : (5.90)

The D = 5 perturbative quantum field theory description applies in the IR,
when

u� ug : (5.91)

Strong string coupling is encountered in the far UV when

u� uN : (5.92)

We plotted the different regimes in Figure 5.3.

In the strong string coupling regime we can try to go to the S–dual de-
scription, which would be the M–theory M5–brane. In the UV regime
we therefore obtain the AdS/CFT duality between AdS7 �S4 supergrav-
ity and a (5+1)–dimensional conformal field theory. This also means that
the (4+ 1)–dimensional gauge theory of the D4–branes should flow in the
UV to a (5+ 1)–dimensional conformal fixed point theory. This was also
suggested earlier in studies involving Matrix theory on T4 and T5 [61, 62]
. To decouple gravity and to fix the ’t Hooft coupling constant we men-
tioned that we had to take N!∞ and small gs. However in this case we can
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g  >>1s

u N u g

IR UV

R >>1

SUGRAS-dual
PQFT

?

Figure 5.4: Different regimes in the energy plot for the D6–brane with N � 1. The
question mark represents our lack of knowledge for both the QFT and the string theory
in the UV. When N! ∞, uN ! 0 and the S–dual string theory region will shrink to zero
size.

take gs! ∞ and finite N to fix the coupling constant and decouple eleven–
dimensionalbulk gravity to leave us with the (conformal) M5–brane world-
volume field theory. Classically this is a self–dual rank 2 gauge theory,
whose quantum version is not yet understood.

� The D6–brane. In the IR there exists a valid supergravity regime bounded
by

uN = (g2
f )

�1
3 N

�3
2 � u� ug = (g2

f )
�1
3 ; (5.93)

which partially overlaps with the perturbative field theory regime, defined
by

u� ug : (5.94)

At the same IR end of the energy spectrum, when

u� uN ; (5.95)

we end up in a region of strong string coupling. We plotted the different
regimes in Figure 5.4.

The strong string coupling regime can perhaps be resolved by going to
eleven–dimensional M–theory. This will amount to considering Kaluza–
Klein monopoles, their near–horizon region and their worldvolume field
theory description. This time it is impossible to consider a limit gs ! ∞
and finite N to fix the worldvolume field theory coupling constant and de-
couple eleven–dimensionalgravity. So the best we can do is consider the
limit N ! ∞. Essentially this excludes the appearance of a strong string
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u g u N

g  >>1s
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R >>1

?

Figure 5.5: Different regimes in the energy plot for the D8–brane with N � 1. The
question mark represents our lack of knowledge for both the QFT and the string theory.
When N! ∞, uN ! ∞ and the S–dual string theory region will shrink to zero size.

coupling regime and describes a free string theory limit. The DW/QFT du-
ality then suggests that in the IR a perturbative ’t Hooft limit (N ! ∞) of
the (6+ 1)–dimensional (non–renormalizable) gauge theory equalsa free
string theory on the domain–wall background. Different interpretations of
the correspondence in this D6–branes example, although investigated in a
slightly different context, were pointed out in [108, 121].

� The D8–brane. This case is rather special, although somewhat similar to the
D6–brane discussion. As we already pointed out the supergravity approx-
imation does not need to involve a large N limit and is valid in the energy
range

u� ug = (g2
f )

�1
5 ; (5.96)

which becomes larger in the limit of large N. The perturbative gauge theory
regime is bounded by

u� ug ; (5.97)

which is the same energy range as in the supergravity approximation. Large
string coupling is encountered in the UV when

u� uN = (g2
f )

�1
5 N

5
6 ; (5.98)

which gets larger when N is increasing. We plotted the different regimes in
Figure 5.5.

Again we would like to go to M–theory to resolve this regime. We need
M9–branes for that but these solutions will still have large curvature in the
UV, so a supergravity approximation does not exist in that regime. Also the
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worldvolume theory of M9–branes is not yet well understood [20, 23]. As
in the case of the D6–brane it is again impossible to take the limit gs! ∞
and finite N to fix the worldvolume coupling constant and decouple eleven–
dimensionalgravity. So we have to consider the limit N!∞, which is a free
string theory limit. The analysis above suggests that in the IR a ’t Hooft limit
of the (8+1)–dimensional (non–renormalizable) gauge theory can also be
described by a free string theory on the domain–wall background.

This ends our discussion on D = 10 Dp–branes. We will now move on to their
six–dimensional analogues.

5.2.4 Non–trivial dilaton dp–branes in D= 6

The examples in D = 6 were first discussed in [107]. The p–brane solutions in
D= 6 we will treat all have ∆= n= 2, where n is the integer counting the (higher–
dimensional) constituents which make up the D = 6 p–brane solution. This can
be understood as follows. In ten dimensions one can consider intersecting or
overlapping Dp–branes, let us say we consider a Dp–brane intersecting with a
Dq–brane with p0 common worldvolume directions. These solutions are stable
and BPS, breaking 1=4 of the 32 supersymmetries, only when the number of rela-
tive transverse directions14 equals 4 [139, 140]. Reducing all 4 relative transverse
directions on a torus T4 we end up in D = 6 with a p0–brane solution. Reducing
on the T4 relative transverse space also means the constituent branes are delocal-
ized, the solution can not depend on the relative transverse directions anymore.
All information of the D = 10 intersection is hidden in the 4 small compact direc-
tions, from the D = 6 point of view this can not be distinguished from an ordinary
p0–brane solution. To obtain a solution with just one harmonic functions we will
decide to identify the D = 10 Dp– and Dq–brane charges. This means we iden-
tify the number N1 of Dp–branes and the number N2 of Dq–branes to equal the
number N of p0–branes. The resulting D = 6 p0–brane can be found in our gen-
eral solution (5.4) if we take D = 6 and ∆ = 2 and inherits many properties of the
D = 10 Dp–brane parents, so we decide to call them dp0–branes. For example
their tension again scales as 1=gs, which is customary for D–branes.

It is also possible to give these string solitons an interpretation without re-
ferring to D = 10 Dp–brane intersections. Instead we can relate them directly
to D = 10 Dp–branes by considering K3 compactifications. A K3–manifold is

14These are transverse directions of one of the constituent branes and worldvolume directions
of the other brane.
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Figure 5.6: Intersecting D–branes and some different open string excitations.

a 4–dimensional Calabi–Yau manifold breaking 1=2 of the D = 10 supersymme-
tries. Compactification of Type IIA or Type IIB superstrings on a K3–manifold
gives a corresponding D = 6 superstring theory with 16 supersymmetries. String
solitons in this D = 6 theory will break another half and therefore correspond to
supergravity soliton solutions preserving 8 supersymmetries. When we consider
Dp–branes in Type IIA or Type IIB superstring theory and compactify the theory
on a K3–manifold, the D = 6 dp0–branes with ∆ = 2 will arise naturally.

The worldvolume theory of these dp0–branes can not be the same as their
Dp–brane parents. For one thing they should preserve a smaller number of super-
symmetries. To construct them the easiest approach is to use their interpretation
as intersections of Dp–branes in D = 10. Open strings, which will determine the
worldvolume field theory fluctuations, now have the possibility to stretch from the
Dp–branes to the Dq–branes, see Figure 5.6. These will give rise to extra states
in the worldvolume field theory. Extra fermions and scalars denoting the relative
position in the intersection space (which is the space of relative transverse direc-
tions), called a supersymmetry hypermultiplet, will appear on both the Dp–brane
and Dq–brane worldvolume theory. These scalars and fermions will transform in
the fundamental representation of the (different) gauge groups. The appearance
of the hypermultiplet will break the supersymmetry of the system to one preser-
ving only 1=4 of the maximum of 32 supersymmetries. Most important for our
discussion will be that the D = 6 dp0–brane worldvolume field theory will have
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Chapter 5. String solitons and the field theory limit

extra hypermultiplet scalars which after identification of the number of branes
transform in a single fundamental representation of the U(2N) gauge group.

We already encountered one example of a D = 6 dp–brane in our AdS/ CFT
discussion, where we described the D = 6 self–dual string (p = 1) as the pure
AdS3�S3 near–horizon geometry example which is dual to a 2–dimensional con-
formal field theory. The d2–brane is the special flat Minkowski spacetime near–
horizon geometry example, the d3–brane has d̃ = 0, so we will discuss the d0–
brane and the (domain–wall) d4–brane as new examples of DW/QFT dualities in
D = 6.

Interestingly enough the constraint (5.64) tells us that in this case

x= p�1 ; (5.99)

which means that the dimension of the fixed coupling constant (5.54) is that of a
scalar field theory15. This is a very important difference as compared with the D=

10 Dp–branes. It means that the Yang–Mills coupling constant gYM ! ∞ in the
field theory limit. Generically the dp–brane worldvolume field theory will be in a
vacuum with non–zero vacuum expectation values for the hypermultiplet scalars,
which is called the Higgs branch16. This will give rise to a Higgs effect giving
mass to all the vector bosons on the worldvolume proportional to the Yang–Mills
coupling constant. Because the Yang–Mills coupling constant diverges in the field
theory limit, all vector bosons will become infinitely massive and decouple. The
effective field theory which is left–over is a worldvolume scalar field theory (with
the necessary fermions of course to make it supersymmetric). These kinds of
limits were discussed earlier in the context of Matrix theories [141, 142] and in
the context of the D = 6 self–dual string AdS/CFT duality in [110].

In principle the dynamics of the positions of the dp–branes, represented by the
vector multiplet scalars (as opposed to the hypermultiplet scalars) is now included
as well, which is called the Coulomb branch when the hypermultiplet scalars have
vanishing expectation values. In [141, 142] it is argued that the Coulomb branch
decouples and one should only consider the Higgs branch scalar field theory. We
will assume this conclusion to be correct and will only consider, when needed, the
Higgs branch of the corresponding dp–brane worldvolume field theory.

Let us now analyze the D = 6 supergravity near–horizon backgrounds. We are
mainly interested in the dilaton–expression which governs the analysis of where

15This is of course consistent with the fact that the p= 1 case should be a conformal field theory.
16Strictly speaking, this is only called the Higgs branch if the scalars in the vector multiplet

have vanishing expectation values, which means that all the dp–branes are on top of each other.
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5.2. The field theory limit

we will be able to use a supergravity approximation. We are going to repeat the
analysis done for the D = 10 Dp–branes, just replacing the D = 10 parameters by
the appropriate six–dimensional ones. Using that ∆ = 2 and D = 6 we find

β = 2� p ; a= 1� p: (5.100)

The D–brane constraint (5.64) gives the following relation between the D–brane
energy scale U and the holographic energy scale u

U2�p
= j2� pj

�
dp

cp

�
g2

f u: (5.101)

The singular case p = 2 is the one with the flat Minkowski near–horizon region,
as the p= 5 case in D = 10. The effective dimensionless coupling constant equals

g2
e f f = g2

f u
p�1

: (5.102)

In terms of this effective coupling constant the dilaton background (5.65) can be
expressed as

eΦ
=

1
dpN

j2� pj
(p�1)(3�p)

2(2�p)

 
dpg2

e f f

cp

! (3�p)
2(2�p)

: (5.103)

This is of course very similar to the expression in (5.83).
From (5.102) it follows that a perturbative field theory analysis is valid when

u � (g2
f )

1
(1�p) 8 p< 1

u � (g2
f )

1
(1�p) 8 p> 1 : (5.104)

The supergravity approximation requires us to satisfy the following two conditions
simultaneously (we neglect constants of order 1, e.g. p, cp and dp)

τs ∝
�
g2

e f f

� 1
(2�p) � 1

eΦ ∝
1
N

�
g2

e f f

� (3�p)
2(2�p) � 1 : (5.105)

It should be clear that the first condition represents small curvature and the sec-
ond condition represents small string coupling. Translating these conditions into
conditions on the energy u will give us the energy regimes where supergravity
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g  >>1s

u u gN

SUGRA

R >>1

S-dual PQFT

IR UV

Figure 5.7: Different regimes in the energy plot for d0–branes with N� 1. The termi-
nology should be self–explanatory and was discussed in section 4.2.3.

is a good description. For p = 0 these conditions can again only be satisfied si-
multaneously by taking a large N limit, whereas for p = 4 a large N limit is not
implied by (5.105). However, we need to take N! ∞ in the d4–brane case to fix
the coupling constant (5.54) and to decouple the worldvolume field theory from
gravity.

Below we discuss the two D = 6 DW/QFT examples in more detail.

� The D = 6 d0–brane. A supergravity approximation can be used in the
following IR energy regime

uN = g2
f N

�4
3 � u� ug = g2

f ; (5.106)

which can only be satisfied for large N. In the UV we can use perturbative
field theory

u� ug ; (5.107)

which in this case reduces to a quantum mechanics model. We therefore
find the typical DW/QFT behavior that the supergravity regime and the
perturbative field theory regime do not overlap, avoiding inconsistencies. In
the far IR, when

u� uN ; (5.108)

the string coupling becomes large and we could try to use an S–dual de-
scription. The different regimes are plotted in Figure 5.7.

The d0–brane is related to the D4–brane by considering a IIA compactifi-
cation on a K3–manifold. It is conjectured (and by now well established)
that Type IIA superstring theory on a K3–manifold is S–dual to Heterotic
superstring theory on a T4 [26]. On the Heterotic side the S–dual soliton so-
lution would be a fundamental state (k = 0) and has a curvature singularity
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u g u N

g  >>1s

IR UV

SUGRA
PQFT

S-dual

R >>1

?

Figure 5.8: Different regimes in the energy plot for the d4–brane with N � 1. The
question mark represents our lack of knowledge for both the QFT and the string theory.
When N! ∞, uN ! ∞ and the S–dual string theory region will shrink to zero size.

at u= 0, so a supergravity approximation will not make sense. The situation
resembles the D1–brane case in D = 10 Type IIB theory. There the curva-
ture singularity in the S–dual F1–brane solution was resolved by the strong
coupling conformal fixed point of the (1+ 1)–dimensional gauge theory.
It is suggestive to propose the occurrence of a similar phenomenon in this
case. It would therefore be interesting to determine the strongly coupled IR
limit of the corresponding quantum mechanics model. As mentioned in sec-
tion 4.2.2 and 4.2.3, we will have to deal with the problems involving the
interpretation of the DW2/QFT1 correspondence if we want to understand
this d0–branes example in all its detail.

� The d4–brane. Just like the D = 10 D8–brane this is a special case, because
it is a D = 6 domain–wall solution. The supergravity regime is bounded
from above by

u� ug = (g2
f )

�1
3 (5.109)

and we do not need large N. The perturbative field theory is valid in

u� ug ; (5.110)

so supergravity and perturbative field theory are valid in the same regime,
which seems implausible. Large string coupling is encountered in the UV
when

u� uN = (g2
f )

�1
3 N

4
3 : (5.111)

We plotted the different regimes in Figure 5.8.

As in the D8–brane case however, we should remember that we had to take
N ! ∞ to fix the coupling constant and to decouple gravity. So the state-
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ment should be that the IR ’t Hooft limit of the (4+1)–dimensional (non–
renormalizable) field theory can equivalently be described by a free string
theory on the corresponding domain–wall background. Again we can not
consider a limit in which we take gs! ∞ and keep N finite to decouple an
S–dual gravity theory (like we could for the Type IIA D4–brane). In the
UV, after taking the limit N ! ∞ which shrinks the S–dual region to zero
size, a well–defined description is unknown. This is also suggested by the
non–renormalizability of the worldvolume field theory.

At the end of this subsection let us make the following remarks. We did not
present a detailed investigation of the dp–brane worldvolume field theories. Our
discussion was focussed on the dp–brane geometry in the field theory limit and the
search for well–defined supergravity regions. We showed that the near–horizon
geometries of the D = 6 dp–branes indeed have regions where a supergravity ap-
proximation seems valid and the analysis is strikingly similar to that of the D= 10
Dp–branes. We did make some general remarks on the nature of the field theory,
which is governed by scalar dynamics, presumably in the Higgs branch of the
p+ 1–dimensional gauge theory, consisting of supersymmetry vector multiplets
and hypermultiplets.

We should point out that other work was done on localizedDp–brane intersec-
tions and the field theory limit [143, 144, 145]. In these investigations a limit is
considered taking one into the near–horizon geometry of the lower–dimensional
D–brane in the intersection and the dual field theory should then also be the one
living on the lower–dimensional D–brane. Although the field theory limit in that
case fixes the Yang–Mills coupling constant, there could be a connection with the
results presented here in the sense that both investigations start off with the same
intersecting D–brane system.

The status of these DW/QFT dualities, in D = 10 as well as in D = 6, is not
entirely clear at this moment because they are hard to check explicitly. Basically
this is because the supergravity approximation and the perturbative field theory
are generically valid in opposite energy regimes, making it very hard to perform
explicit checks of the duality conjecture. What can be checked of course are the
symmetries and it is not very hard to show that these match in all examples pre-
sented. However, the very general mechanism leading to these proposed dualities,
the explicit checks of the AdS/CFT duality and the string theory interpretation
of Dp–branes as discussed in 1.1.5, can all be considered strong circumstantial
evidence for the correctness of the DW/QFT duality conjecture.

This ends the chapter on string solitons and the field theory limit. In the next
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concluding chapter we will summarize our results presented here and in the previ-
ous chapter and try to establish a common understanding of these results, appar-
ently teaching us that gravity and gauge field theories, as limits of an underlying
string theory, are connected in a very interesting way.
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Emerging structure and discussion

To conclude it is useful to summarize and discuss the results presented in chapter
4 and 5 and, if possible, try to establish a common understanding. One of the
goals of this thesis was to try to convey the idea that string theory, regarded as a
natural extension of point particle theories, can be used as a tool to find interest-
ing relationships between point particle theories which were previously thought
to be very distinct. The correspondence between supergravities and large N su-
persymmetric gauge theories was the example we concentrated on in this thesis.
In chapter 4 we introduced Matrix theory as an example of a large N quantum
mechanics model capable of describing (certain aspects of) M–theory and, in a
low energy limit, D = 11 supergravity. In chapter 5 we discussed a limit which
incorporated the p–brane geometries in an important way and which led to the
conjectured DW/QFT correspondence.

First of all let us summarize our contributions. In the context of Matrix theory
we constructed additional (kinematical) evidence in favor of the conjecture. We
constructed intersecting BPS states in the Matrix model and concluded that all of
these BPS states can be mapped to corresponding intersecting BPS states in M–
theory. We also presented some arguments as to why some BPS states are missing
in Matrix theory, which is perhaps a consequence of the light–cone frame. Be-
sides the additional evidence in favor of the Matrix theory conjecture, the method
of constructing intersecting BPS states is interesting by itself and can be applied
to other cases as well (e.g. higher dimensional supersymmetric Yang–Mills theo-
ries).

In the chapter on string solitons and the field theory limit we showed that
dualities between field theories on the one hand and domain–wall superstring the-
ories on the other hand can be derived systematically. This involved introduc-
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ing the dual frame metric and also the restriction to D–branes and their intersec-
tions (reduced over all relative transverse directions) when a non–trivial dilaton
background was involved. This led to new conjectures of DW/QFT correspon-
dences in 6 uncompactified spacetime dimensions, which are very similar to the
10–dimensional cases. We also presented some results of the correspondence
when considering D� 2–branes. We argued that the situation in those cases not
necessarily leads to contradictions because we explicitly have to take N ! ∞ in
that case. In the case of the AdS/CFT correspondences many tests have been
performed which are all in support of the conjecture and in some cases one can
even go beyond the supergravity approximation, considering string theory on AdS
spacetimes1.

We have to say that explicit tests of these DW/QFT correspondences (with
non–trivial dilaton) have not (yet) been made, mainly because generically the dual
descriptions are supposed to be valid in different regimes. We should also point
out that the DW/QFT correspondence is not well understood when the dual field
theory is a supersymmetric (conformal) quantum mechanics model. Although we
did describe flat near–horizon geometries, we did not discuss a limit taking us into
the flat near–horizon region and leading to non–trivial worldvolume dynamics.
These limits are described in [108, 109] and a more thorough investigation on (the
meaning of) the correspondence in those cases can be found in [122].

We noticed that the Matrix theory conjecture can be understood as embed-
ded in the more general DW/QFT correspondence. This has some consequences
for the Matrix theory conjecture(s). Although we introduced the Matrix theory
conjecture as a limit of IIA superstring theory, in retrospect we have to conclude
that we neglected the effect of the limit on the (non–trivial) background of the N
units of momentum in DLCQ M–theory (or D0–branes in Type IIA superstring
theory). If we would not have neglected the background we could have observed
that the radius of the compact (light–like) direction is not a constant, but instead
depends on the radial parameter of the background solution. In the context of the
DW/QFT correspondence this then led to the understanding that Matrix theory, or
the quantum mechanics of N D0–branes, is only describing DLCQ M–theory in
the far IR, where the quantum mechanics model is strongly coupled. Remember
that we do seem to understand how to construct DLCQ M–theory supergravi-
ton states in the Matrix theory, whereas we do not know the explicit map in the

1In general this is very hard because the background involves non–trivial Ramond–Ramond
flux, which is hard to treat in a quantized closed string σ–model approach. Progress has been
made in the case of AdS3�S3 in which case the R–R rank 2 potential can be replaced by a NS–NS
rank 2 potential [146, 147, 148].
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DW2/QM correspondence. Perhaps the Matrix theory conjecture can teach us how
we should construct the DW2/QM map. Presumably similar considerations hold
for the tori compactified Matrix theory conjectures. We note that in the DW/QFT
correspondence we did not consider wrapping the string solitons on tori, so we
can not immediately compare with the Matrix theory conjectures.

The overall topic in this thesis were the relations between supersymmetric
(large N Yang–Mills) field theories and closed superstring theories, containing
gravity, on a particular BPS background. Although string theory was used to es-
tablish these relations, it is not impossible that these relations could have been
discovered without string theory. After all, in a large N limit where string loop
corrections can be neglected, we are left with two particle theories on both sides.
In that case one would not have had any understanding as to the origin of these
relations between gravity and field theory. In that sense string theory naturally ex-
plains the appearance of these relations, understood by the covariance property of
the (stretched) string worldsheet relating closed and open strings in the presence
of D–brane solitons. This could be another strong theoretical argument in favor
of string theory, assuming these dualities and/or correspondences are actually cor-
rect.

Perhaps these relations are very dependent on supersymmetry. In fact a lot
of results and techniques were based on the fact that we were dealing with BPS
states. Recently there has been a lot of activity in trying to get results beyond the
BPS states. Also in the context of the AdS/CFT correspondence one is trying to
make contact with our real (non–supersymmetric) world, for example trying to
understand confinement in QCD from a dual string theory on a particular back-
ground [149, 150]. Another interesting approach is making use of the idea that
the DW/QFT correspondence tells us that one can think of the renormalization
group scale in field theories as a (special) coordinate in a background solution of
a gravitational theory living in one dimension higher (the renormalization group
flow equations can then be deduced from the classical gravitational equations of
motion). In a cosmological context this can perhaps explain the smallness of the
cosmological constant in our D= 4 world [151, 152, 153]. It is satisfying to notice
that these new techniques and ideas in string theory can be more directly applied
to D = 4 (theoretical) physics problems.

From our point of view string theory is an interesting theoretical structure in
which new ideas about space, time and quantum mechanics seem to be realized
in a very concrete and tractable way. The concepts of dualities, non–commutative
geometry and the holographic principle were all mentioned somewhere in this
thesis. This is just one among many other motivations to continue to investigate
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string theory and its consequences.
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Appendix A

String theory units and charge
conventions

In this Appendix we specify our units and charge conventions. In D = 10 and
lower we use the convention l2

s = α 0 which is understood to be replaced by the
Planck length l11 in eleven dimensions.

In a low energy approximation of string theory we want to make a clear dis-
tinction between the field eΦ and the string coupling constant gs in order to deter-
mine the dependence of the low energy effective action on gs. Remember that gs

is defined as the constant part of eΦ. This means that in a low energy, tree level
approximation of string theory, which naturally involves the string frame metric,
all gs dependence can be extracted from the field eΦ. We note that we do not want
these dependences to change when we perform a conformal transformation. Our
starting point for deducing the dependence of the action on gs will be the general
Einstein frame action (3.48), but with the rank d+1 field strength replaced by its
rank d̃+1 Hodge dual. Next we perform a conformal transformation to the string
frame using

g(E)
µν = e

�4Φ
D�2 g(S)µν : (A.1)

This gives the following string frame action

SD =
1

κ 2
D

Z
dDx

p
gSe�2Φ

h
RS+4(∂Φ)

2�
e[4�(a+ 4d

D�2)]Φ

2(p+2)!
F2

d̃+1

i
; (A.2)

where we extracted an overall factor of e�2Φ. We can now read off the gs depen-
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dence by just extracting gs’s from eΦ and writing the string frame action as

SD =
1

α 0
1
2 (D�2)g2

s

Z
dDx

p
gS

�
eΦ

gs

��2 h
RS+4(∂Φ)

2

�
g4�2k

s

2(p+2)!

�
eΦ

gs

�4�2k

F2
d̃+1

i
; (A.3)

where we used that κ 2
D ∝ α 0

1
2 (D�2) and defined the parameter k

k=
a
2
+

2d
D�2

: (A.4)

This parameter is useful because it is directly related to the scaling of the effec-
tive tension of the corresponding p–brane, which is equal to g�k

s and that can be
deduced by adding a p–brane source term to the supergravity action and using a
scaling argument [37]. So for D–branes k= 1, for Neveu–Schwarz solitons k= 2
and for fundamental branes k = 0, which are the only types of branes we will
encounter in string theory.

At this point we want this gs dependence to stay fixed under conformal trans-
formations, which means we should always perform conformal transformations
with the gs independent field eΦ

gs

g(C)
µν =

�
eΦ

gs

�α

g(S)µν : (A.5)

The mass τp per unit p–volume of a p–brane is given by the ADM–formula

τp =
1

2κ 2
D

Z
∂Md̃+2

dd̃+1Σm
�

∂ nhmn�∂mhb
b

�

=
2d̃

∆κ 2
D

rd̃
0 Ω

d̃+1
; (A.6)

where we plugged in the solution given in (5.4), in which r0 is an integration
constant with the dimension of length. On the other hand, the charge µp per unit
p–volume is given, in terms of the same integration constant r0, by the Gauss–law
formula

µp =
1

2κ 2
D

Z
(dd̃+1Σ)m1���md̃+1g(2�k)

s Fm1���md̃+1

= �
r

∆
4

τp : (A.7)
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Hence, the p–brane solution satisfies the Bogomol’nyi bound

τp =

r
4
∆
jµpj : (A.8)

Because the effective tension (A.6) should scale as g�k
s we can now derive an

expression for r0 in terms of the string parameters ls and gs

�
r0

ls

�d̃

= dpNg2�k
s ; (A.9)

where dp is just a number and N counts the number of p–branes.
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Samenvatting

Dacht men aan het einde van de 19de eeuw dat atomen de kleinste bouwstenen
waren, in de loop van de 20ste eeuw bleek al snel dat een atoom is opgebouwd
uit een atoomkern en daaromheen cirkelende elektronen. De atoomkern is opge-
bouwd uit protonen en neutronen en de protonen en neutronen zijn opgebouwd
uit de zogenaamde quarks, waarvan men nu aanneemt dat ze ondeelbaar zijn. Uit
bovenstaande blijkt dat wat men elementaire of kleinste bouwstenen noemt onder-
hevig kan zijn aan veranderingen in de loop der tijd. De theoretische elementaire–
deeltjesfysica is die tak van de natuurkunde die zich bezighoudt met het opstellen
en bestuderen van wiskundige modellen die de eigenschappen en wisselwerkingen
beschrijven van de kleinste bouwstenen der natuur.

De bewegingen van deze deeltjes in ruimte en tijd worden bepaald door de
eigenschappen van de verschillende deeltjes en hun onderlinge wisselwerkingen.
Zeer kleine en snelle objecten blijken zich op een fundamenteel andere wijze te
gedragen dan we gewend zijn van macroscopische objecten, waarvan het gedrag
nauwkeurig kan worden beschreven met behulp van de wetten van Newton. Bij
afstanden die de grootte van een atoom benaderen (� 10�10 meter) of bij snelhe-
den in de buurt van de lichtsnelheid (3:108 meter per seconde) dienen de wetten
van Newton aangepast te worden.

Microscopische objecten worden beschreven door de kwantummechanica. De
natuur laat zich volgens deze theorie bij zeer kleine afstanden niet meer precies
voorspellen. In plaats daarvan beschrijven de uitkomsten van kwantummecha-
nische berekeningen slechts de kans dat een bepaald proces zich voordoet. Een
ander specifiek gevolg van de kwantummechanica is dat in veel omstandigheden
allerlei meetbare grootheden, zoals bijvoorbeeld energie, slechts discrete waarden
aannemen. De toestanden die overeenkomen met deze discrete waarden worden
vaak aangeduid als kwantumtoestanden. Hoe kleiner de afstanden, des te doel-
treffender wordt de kwantummechanische beschrijving. Hoe groter de afstanden,
des te meer komt de kwantummechanische beschrijving overeen met de klassieke
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mechanica van Newton1.
Wanneer de snelheden van objecten de lichtsnelheid benaderen dient de me-

chanica van Newton te worden vervangen door de speciale relativiteitstheorie van
Einstein. De speciale relativiteitstheorie veronderstelt dat de lichtsnelheid ge-
meten door verschillende waarnemers die ten opzichte van elkaar met constante
snelheid bewegen, altijd dezelfde is. Gebruikmakend van deze symmetrie kunnen
de relativistische bewegingswetten worden opgesteld2, waaruit bijvoorbeeld blijkt
dat de lichtsnelheid bovendien de maximaal bereikbare snelheid is. In de limiet
van relatief kleine snelheden vinden we de klassieke mechanica van Newton weer
terug.

De kwantummechanica en de speciale relativiteitstheorie zijn toepasbaar op
een groter gebied van afstanden en snelheden dan de mechanica van Newton en
in die zin beschouwen we deze theorieën als fundamentelere beschrijvingen. In
de huidige elementaire–deeltjesfysica wil men processen beschrijven die zowel
op kleine schaal als bij zeer hoge snelheden plaatsvinden. Dit vereist een verdere
aanpassing van de wetten der mechanica, namelijk één die de kwantummechanica
en de speciale relativiteitstheorie verenigt. Het resultaat wordt kwantumvelden-
theorie genoemd en deze theorie is in staat gebleken, althans formeel, vele eigen-
schappen van elementaire deeltjes en hun wisselwerkingen met grote precisie te
beschrijven. Zoals de kwantummechanica en de speciale relativiteitstheorie af-
zonderlijk fundamentelere beschrijvingen zijn vergeleken met de mechanica van
Newton, zo is kwantumveldentheorie wederom een fundamentelere beschrijving
van de natuur, aangezien ze een nog groter bereik heeft.

De combinatie van kwantumveldentheorieën die alle waargenomen deeltjes
en hun wisselwerkingen beschrijven wordt het Standaard Model genoemd. In het
Standaard Model kan men onderscheid maken tussen materiedeeltjes (elektronen,
quarks en neutrinos, ook wel fermionen genoemd), waaruit alle macroscopische
objecten zijn opgebouwd, en krachten uitwisselende deeltjes (bosonen), die uit-
gewisseld worden wanneer er een interactie plaatsvindt tussen materiedeeltjes. Er
bestaan drie soorten krachten uitwisselende deeltjes in het Standaard Model. De
fotonen zijn verantwoordelijk voor de elektromagnetische wisselwerking, de mas-
sieve vectorbosonen beschrijven de zwakke wisselwerking en de sterke wissel-
werking komt tot stand door uitwisseling van gluondeeltjes. De kwantumvelden-

1In sommige gevallen kan dit aangetoond worden, in andere gevallen is het zeer moeilijk (wis-
kundig) te bewijzen. In dat opzicht is de kwantummechanica nog geen gesloten (en zeker niet
begrepen) boek.

2Met als absoluut meest bekende resultaat de equivalentie tussen massa en energie, uitgedrukt
in de vergelijking E = mc2.
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theorieën in het Standaard Model die deze deeltjes en hun interacties beschrijven
hebben de belangrijke eigenschap dat ze onveranderd blijven onder zogenaamde
ijktransformaties en worden kwantumijkveldentheorieën genoemd.

Al meer dan twintig jaar beschrijft het Standaard Model met (veelal onge-
kende) precisie allerlei botsingsexperimenten tussen elementaire deeltjes in de
verscheidene experimentele versnellerinstituten, zoals CERN in Genève (Zwit-
serland), SLAC in Stanford en Fermilab in Chicago (beide Verenigde Staten). In
dat opzicht is het Standaard Model een van de succesvolste natuurkundige theo-
rieën ooit en is er op dit moment zeker geen experimentele noodzaak om theorieën
te ontwikkelen (of te bestuderen) die beter of fundamenteler, in de zin zoals eerder
uitgelegd, zouden zijn dan het Standaard Model3. En toch zijn er velen die denken
dat er iets aan het Standaard Model mankeert.

Voor een fundamentele theorie die de kleinste bouwstenen van de materie
beschrijft, bevat het Standaard Model veel vrije parameters die bepaald moeten
worden door een experiment te doen. Velen binnen de theoretische elementaire–
deeltjesfysica verwachten (of hopen) dat een fundamentele theorie van de natuur
weinig mogelijkheden voor variatie toelaat, en dus een minimum aan vrije para-
meters bevat. Op die manier zou het heelal zijn zoals het is omdat er gewoon
geen andere mogelijkheden zijn, wat voor veel theoretisch natuurkundigen een
afdoende verklaring is. Aangezien dit voor het Standaard Model niet geldt, wordt
vaak verondersteld dat het Standaard Model slechts een effectieve beschrijving is,
geldig voor processen beneden een bepaalde energie. Voor processen boven die
energie (die ook wel de Grand Unified Theory (GUT)–energie wordt genoemd)
zou een fundamentelere theorie geldig zijn die minder vrije parameters bevat. Dit
idee wordt ondersteund door experimentele data die laten zien dat de drie ver-
schillende koppelingconstanten, die de sterkte van de drie verschillende wissel-
werkingen tussen de elementaire deeltjes weergeven, als functie van de energie
naar elkaar toe bewegen bij hogere energie. Dit betekent dat het niet onmogelijk
is dat de drie wisselwerkingen hun oorsprong vinden in een theorie met slechts
één koppelingconstante, een Grand Unified Theory. Omdat de GUT–energie ver
boven de bereikbare experimentele energieën ligt, kan dit idee niet direct getoetst
worden en is een veelgehoorde kritiek op de bovenstaande argumenten dat ze
gebaseerd zijn op esthetische principes die a priori helemaal niets met de werke-
lijkheid te maken hoeven hebben. Er zijn echter meer redenen om aan te nemen

3Hier dient te worden opgemerkt dat recentelijk experimenteel is aangetoond dat niet alle neu-
trino deeltjes massaloos zijn, zoals wordt verondersteld in het Standaard Model. De wijziging van
het Standaard Model die dit echter tot gevolg heeft zouden wij in de context van dit proefschrift
niet willen betitelen als een fundamentele verbetering van het Standaard Model.
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dat er iets mis is met het Standaard Model.
De opmerkzame lezer zal het opgevallen zijn dat in het lijstje van wisselwer-

kingen of krachten die opgenomen zijn in het Standaard Model de zwaartekracht
ontbreekt. De zwaartekracht wordt beschreven door de algemene relativiteitstheo-
rie die een extensie is van de speciale relativiteitstheorie, eveneens ontwikkeld
door Einstein. Het blijkt dat wanneer we steeds grotere massa’s (of energieën)
beschouwen, de speciale relativiteitstheorie niet langer van toepassing kan zijn en
we over moeten stappen naar de algemene relativiteitstheorie. Speciale relativi-
teitstheorie moet dus worden opgevat als een redelijke benadering van algemene
relativiteitstheorie wanneer de energieën of massa’s niet te groot zijn. De alge-
mene relativiteitstheorie beschrijft met zeer grote precisie de processen die met
zwaartekracht te maken hebben, zoals bijvoorbeeld de banen van de planeten om
de zon, de afbuiging van licht door sterren en de evolutie van het heelal. De alge-
mene relativiteitstheorie en het Standaard Model vormen samen de hedendaagse
pijlers van de theoretische hoge–energiefysica en hebben, ieder in hun eigen ge-
bied van geldigheid, vele experimentele toetsen met glans doorstaan.

Voor elementaire deeltjes speelt de zwaartekracht geen rol omdat de massa’s
van deze deeltjes te klein zijn. Alle andere interacties zijn veel sterker en de
zwaartekracht is dus verwaarloosbaar. Maar omdat volgens de speciale relativi-
teitstheorie massa en energie equivalent zijn, zal op een bepaald moment wanneer
we de energieën van de elementaire deeltjes steeds groter maken de zwaartekracht
wel degelijk een rol gaan spelen. Hoewel deze energie, ook wel de Planck energie
genoemd, ver buiten het huidige experimentele bereik ligt moeten de energieën
een fractie na het ontstaan van het heelal (ongeveer vijftien miljard jaar geleden
als gevolg van een enorme explosie, de Big Bang) van vergelijkbare grootte zijn
geweest. Het is dus van (theoretisch) belang het effect van de algemene relati-
viteitstheorie op de elementaire deeltjes in het Standaard Model te bepalen. Dit
betekent dat gezocht moet worden naar een theorie die de algemene relativiteits-
theorie en de kwantummechanica verenigt. Op algemene gronden kan men aanne-
men dat die theorie een graviton dient te bevatten, het deeltje dat verantwoordelijk
is voor de gravitationele wisselwerking.

Er bestaan standaard (technische) procedures om een theorie te verenigen met
de kwantummechanica. Alhoewel dit in veel gevallen gepaard gaat met allerlei
technische problemen, is het in het geval van het Standaard Model gelukt om een
betekenisvolle theorie (dat wil zeggen dat de theorie uitkomsten geeft die tussen
de 0 en 100 procent liggen) op te zetten4. Past men deze kwantisatiemethode

4Voor het oplossen van deze technische problemen in het Standaard Model kregen de Neder-
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echter toe op de algemene relativiteitstheorie dan is het resultaat een onzinnige
kwantumtheorie (dat wil zeggen dat men oneindigheden berekent). Hoewel dit
misschien slechts een technisch probleem lijkt, zijn er ook fundamentelere pro-
blemen bij het kwantiseren van de algemene relativiteitstheorie. De algemene
relativiteitstheorie beschrijft zwaartekracht als een gevolg van de kromming van
de ruimte en tijd. Kwantisatie van de algemene relativiteitstheorie is daarom het-
zelfde als kwantisatie van de ruimte en tijd. Of aan dat laatste een betekenisvolle
interpretatie kan worden gegeven is maar de vraag. De heersende opvatting is
dat een betekenisvolle constructie van een kwantumtheorie van de zwaartekracht
radicaal nieuwe natuurkunde zal bevatten.

In het Standaard Model worden de elementaire deeltjes beschreven als punt-
deeltjes, objecten die geen vorm of grootte hebben. Al in de jaren ’70 speelde men
met het idee om deeltjes als de verschillende kwantumtoestanden van een snaar te
beschrijven. Deze resonantiemodellen, zoals ze genoemd werden, waren bedoeld
om een onderdeel van het Standaard Model, namelijk de sterke wisselwerking
waarvan men op dat moment nog weinig wist, beter te begrijpen. Deze modellen
werden al snel aan de kant geschoven omdat bleek dat bepaalde toestanden van de
snaar niet voorkwamen in de theorie van de sterke wisselwerking. Na een korte
stilte traden de snaarmodellen weer op de voorgrond, maar nu met een volstrekt
ander doel. Men was er namelijk achter gekomen dat een van de toestanden van
de snaar alle eigenschappen had van een graviton, het deeltje dat verantwoorde-
lijk is voor de gravitationele wisselwerking. De snaartheorie bleek een consistente
beschrijving van de kwantum–zwaartekracht te kunnen geven in een benadering
waarin de zwaartekracht niet te sterk mag zijn.

In een snaartheorie worden alle elementaire–materiedeeltjes en de deeltjes ver-
antwoordelijk voor de uitwisseling van krachten beschouwd als de verschillende
(harmonische) toestanden van één enkele snaar. Voor de opzet van een beteke-
nisvolle snaartheorie is een aantal theoretische concepten vereist. Zo is het nood-
zakelijk om supersymmetrie in te voeren. Supersymmetrie is een symmetrie die
elementaire–materiedeeltjes (fermionen) en krachten uitwisselende deeltjes (bo-
sonen) met elkaar verbindt. In een supersymmetrische theorie heeft elk boson-
deeltje een fermion superpartner deeltje en omgekeerd. Om contact te maken met
het Standaard Model moet worden aangenomen dat supersymmetrie een gebroken
symmetrie is omdat superpartners vooralsnog niet zijn waargenomen.

Alle consistente supersnaartheorieën zijn gedefinieerd in tien ruimte– en tijd-
dimensies. Om contact te maken met onze vierdimensionale ruimte en tijd, wordt

landers ’t Hooft en Veltman in 1999 de Nobelprijs!
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aangenomen dat zes dimensies opgerold en zeer klein zijn, zodat we ze niet kun-
nen waarnemen5. Gebruikmakend van supersymmetrie en extra dimensies is tij-
dens de zogenaamde eerste supersnaar revolutie (1984–1985) aangetoond dat er
vijf verschillende supersnaartheorieën in tien ruimte– en tijddimensies bestaan. Al
deze supersnaartheorieën bevatten een betekenisvolle beschrijving van kwantum-
gravitatie en zijn daarnaast in principe in staat om de verschillende kwantumijk-
veldentheorieën in het Standaard Model te beschrijven. Snaartheorie lijkt daarom
uitermate geschikt als kandidaat voor een geunificeerde elementaire–deeltjestheo-
rie.

Het grote probleem in supersnaartheorie is dat deze slechts bij benadering ge-
definieerd is. Dat wil zeggen alleen wanneer de snaarkoppelingconstante klein
is, wat equivalent is aan niet al te grote zwaartekracht. Zeer waarschijnlijk ver-
hindert deze restrictie ons ook om direct contact te maken met het succesvolle
vierdimensionale Standaard Model. Reproduktie van het Standaard Model is na-
tuurlijk van uitermate groot belang voor snaartheorie als serieuze kandidaat voor
een geunificeerde elementaire–deeltjestheorie. Het huidige onderzoek in snaar-
theorie is dan ook bijna volledig geconcentreerd op het begrijpen van het gedrag
van snaren wanneer de snaarkoppelingconstante groot is (het niet–perturbatieve
regime). De laatste tijd is er enorme vooruitgang geboekt op dit gebied door de
ontdekking van dualiteiten in snaartheorie.

Supersymmetrie zorgt ervoor dat sommige objecten, BPS–objecten genoemd,
massa’s en ladingen dragen die geen correcties krijgen wanneer de koppelingcon-
stante groot wordt. Deze BPS–gegevens zijn dus volkomen onafhankelijk van de
perturbatieve definitie van snaartheorie. Het blijkt dat BPS–objecten veel voor-
komen in snaartheorie. Bovendien ontdekte men dat sommige van deze objec-
ten microscopisch beschreven konden worden met behulp van open–snaartheorie.
Door aan te nemen dat de eindpunten van een open snaar eindigen op een p–
dimensionaal vlak, bleek men in staat een BPS–Dp–braan6 te beschrijven. Ge-
bruikmakend van de BPS–eigenschap van deze objecten kwam men erachter dat
er zeer waarschijnlijk allerlei verbanden bestaan tussen de vijf verschillende snaar-
theorieën en deze verbanden worden dualiteiten genoemd.

Het meest opvallend zijn die dualiteiten die een sterk gekoppelde snaartheorie
relateren aan een zwak gekoppelde (niet noodzakelijk andere) snaartheorie. Tij-
dens de zogenaamde tweede supersnaar revolutie (1994–1996) ontdekte men dat

5Denk aan een tuinslang. Van dichtbij is deze tweedimensionaal, maar wanneer je er van een
flinke afstand naar kijkt begint de tuinslang steeds meer op een ééndimensionale lijn te lijken.

6Deze randcondities op een open string worden Dirichlet randcondities genoemd, vandaar de
naam D–branen.
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alle vijf de snaartheorieën verbonden zijn met elkaar en de verschillende pertur-
batieve (zwakke koppeling) limieten beschrijven van een unieke elfdimensionale
theorie die M–theorie wordt genoemd. Hoewel dit een enorme vooruitgang is7,
ontbreekt er tot op de dag van vandaag een microscopische formulering van M–
theorie. In dit proefschrift bestuderen we een voorstel voor een microscopische
definitie van M–theorie, Matrix theorie genoemd, en laten we zien dat Matrix
theorie in staat is het spectrum van BPS–objecten van M–theorie grotendeels te
reproduceren.

Als vervolg op deze ontwikkelingen, gebruikmakend van dezelfde technieken,
werden allerlei onverwachte relaties (wederom dualiteiten genoemd) ontdekt tus-
sen kwantumijkveldentheorieën die, zoals reeds vermeld, ook onderdeel zijn van
het Standaard Model, en snaartheorieën gedefinieerd op Anti–de Sitter–ruimtes
(dit zijn oplossingen van de bewegingsvergelijkingen van algemene relativiteits-
theorie met een negatieve kosmologische constante). In een bepaalde limiet lei-
den deze dualiteiten tot de verrassende conclusie dat sommige kwantumijkvel-
dentheorieën tevens beschreven kunnen worden door supergravitaties gedefinieerd
op Anti–de Sitter–ruimtes. A priori hadden deze dualiteiten ook ontdekt kunnen
worden zonder enige kennis van snaartheorie, maar in dat geval lijkt het onwaar-
schijnlijk dat dit zou hebben geleid tot het huidige begrip van dit verschijnsel. In
dit proefschrift laten we bovendien zien dat snaartheorie het mogelijk maakt deze
relaties tussen gravitatie en kwantumveldentheorie systematisch af te leiden en
presenteren we enkele nieuwe gevallen.

De laatste tien jaar bleek snaartheorie in staat ons allerlei diepe inzichten te
geven in de eigenschappen van kwantumgravitatie en kwantumveldentheorieën.
Het lijdt nauwelijks twijfel dat deze resultaten ook hun invloed zullen hebben bui-
ten de snaartheorie. Snaartheorie lijkt namelijk bij uitstek geschikt om ons allerlei
concrete en handelbare voorbeelden te geven van nieuwe ideeën over ruimte en
tijd en kwantumveldentheorie, die bijvoorbeeld door theoretisch natuurkundigen
niet werkend aan snaartheorie geopperd zijn8. Het valt te hopen en te verwachten
dat er de komende jaren nog vele nieuwe ontwikkelingen zullen volgen.

7Voorheen waren er vijf ongerelateerde snaartheorieën en bestond er dus geen unieke geunifi-
ceerde theorie.

8Voorbeelden daarvan zijn het Holografische principe van ’t Hooft en de niet–commutatieve
meetkunde van Connes.
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danken voor de financiële steun van mijn onderzoek dat ondermeer geleid heeft
tot dit proefschrift. Ook dank ik de F.O.M. voor de ruime mogelijkheden om
zomerscholen, workshops en conferenties te bezoeken en de vlotte financiële en
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