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M(atrix) theory: matrix quantum mechanics as a fundamental theory
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This article reviews the matrix model of M theory. M theory is an 11-dimensional quantum theory of
gravity that is believed to underlie all superstring theories. M theory is currently the most plausible
candidate for a theory of fundamental physics which reconciles gravity and quantum field theory in a
realistic fashion. Evidence for M theory is still only circumstantial—no complete
background-independent formulation of the theory exists as yet. Matrix theory was first developed as
a regularized theory of a supersymmetric quantum membrane. More recently, it has appeared in a
different guise as the discrete light-cone quantization of M theory in flat space. These two approaches
to matrix theory are described in detail and compared. It is shown that matrix theory is a well-defined
quantum theory that reduces to a supersymmetric theory of gravity at low energies. Although its
fundamental degrees of freedom are essentially pointlike, higher-dimensional fluctuating objects
(branes) arise through the non-Abelian structure of the matrix degrees of freedom. The problem of
formulating matrix theory in a general space-time background is discussed, and the connections
between matrix theory and other related models are reviewed.
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I. INTRODUCTION

In the last two decades, a remarkable structure has
emerged as a candidate for the fundamental theory of
nature. Until recently, this structure was known prima-
rily under the rubric ‘‘string theory,’’ as it was believed
that the fundamental theory should be most effectively
described in terms of quantized fundamental stringlike
degrees of freedom. Since 1995, however, several new
developments have drastically modified our perspective.
An increased understanding of nonperturbative aspects
of string theory has led to the realization that all the
known consistent string theories seem be special limiting
cases of a more fundamental underlying theory, which
has been dubbed ‘‘M theory.’’ While the consistent su-
perstring theories give microscopic models for quantum
gravity in ten dimensions, M theory seems to be most
naturally described in eleven dimensions. We do not yet
have a truly fundamental definition of M theory. It may
be that in its most natural formulation, the dimensional-
ity of space-time emerges in a smooth approximation to
a nongeometrical mathematical system.

At the same time that string theory has been replaced
by M theory as the most natural candidate for a funda-
©2001 The American Physical Society
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mental description of the world, the string itself has also
lost its position as the main candidate for a fundamental
degree of freedom. Both M theory and string theory
contain dynamical objects of several different dimen-
sionalities. In addition to one-dimensional string excita-
tions (1-branes), string theories contain pointlike objects
(0-branes), membranes (2-branes), three-dimensional
extended objects (3-branes), and objects of all dimen-
sions up to eight or nine. Eleven-dimensional M theory,
on the other hand, seems to contain dynamical mem-
branes and 5-branes. Amongst all these degrees of free-
dom, there is no obvious reason why the ‘‘string’’ of
string theory is any more fundamental than, say, the
pointlike or 3-brane excitations of string theory, or the
membrane of M theory. While the perturbative string
expansion makes sense in a regime of the theory where
the string coupling is small, there are also limits in which
the theory is described by the low-energy dynamics of a
system of higher- or lower-dimensional branes. It seems
that by considering the dynamics of any of these sets of
degrees of freedom, we can access at least some part of
the full physics of M theory.

This review article concerns itself with a remarkably
simple theory that is believed to be equivalent to M
theory in a particular reference frame. The theory in
question is a simple quantum mechanical system matrix
degrees of freedom. The quantum-mechanical degrees
of freedom are a finite set of bosonic N3N matrices and
fermionic partners, which combine to form a system
with a high degree of supersymmetry. It is believed that
this matrix quantum mechanics theory provides a
second-quantized description of M theory around a flat
space-time background and in a light-front coordinate
system. The finite integer N serves as a regulator for the
theory, and the exact correspondence with M theory in
flat space-time emerges only in the large-N limit. Since
this system has a finite number of degrees of freedom
for any value of N , it is manifestly a well-defined theory.
Since it is a quantum mechanics theory rather than a
quantum field theory, it does not even exhibit the stan-
dard problems of renormalization and other subtleties
that afflict any but the simplest quantum field theories.

It may seem incredible that a simple matrix quantum
mechanics model can capture most of the physics of M
theory, and thus perhaps of the real world. This would
imply that matrix theory provides a calculational frame-
work in which, at least in principle, questions of quan-
tum effects in gravity and Planck scale corrections to the
standard model could be determined to an arbitrarily
high degree of accuracy by a large enough computer.
Unfortunately, however, although it is only a quantum
mechanics theory, matrix theory is a remarkably tricky
model in which to perform detailed calculations relevant
to understanding quantum corrections to general relativ-
ity, even at very small values of N .

Although it is technically difficult to study detailed
aspects of quantum gravity using the matrix-theory ap-
proach, it is possible to demonstrate analytically that
classical 11-dimensional gravitational interactions are
produced by matrix quantum mechanics. This has been
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shown for all linearized gravitational interactions and a
subset of nonlinear interactions. This is the first time
that it has been possible to show explicitly that a well-
defined microscopic quantum-mechanical theory agrees
with classical gravity at long distances, including some
nonlinear corrections from general relativity. Under-
standing the correspondence between matrix quantum
mechanics and classical supergravity in detail gives some
important new insights into the connections between
quantum-mechanical systems with matrix degrees of
freedom and gravity theories.

One remarkable aspect of the matrix description of M
theory is the fact that it describes classical gravitational
interactions through quantum-mechanical effects. In
classical matrix theory separated objects experience no
interactions. Performing a one-loop calculation in matrix
quantum mechanics gives classical Newtonian (linear-
ized) gravitational interactions. Higher-order general
relativistic corrections to the linearized gravity theory
arise from higher-loop calculations in matrix theory.
This connection between a classical theory of gravity
and a quantum system with matrix degrees of freedom
was the first example found of what now seems to be a
very general family of correspondences. The conjectured
equivalence between strings (ten-dimensional quantum
gravity) propagating on an anti–de Sitter background
and a conformal quantum field theory (the celebrated
AdS/CFT correspondence) gives another wide class of
examples of this type of correspondence. We discuss
other examples of such connections in Sec. VII.

Another remarkable aspect of matrix theory is the ap-
pearance of the extended objects of M theory (the su-
permembrane and M5-brane) in terms of apparently
pointlike fundamental degrees of freedom. There is a
rich mathematical structure governing the way in which
objects of higher dimension can be encoded in noncom-
muting matrices. This structure may eventually lead us
to crucial new insights into the way in which all the
many-dimensional excitations of M theory and string
theory arise in terms of fundamental degrees of free-
dom.

This review focuses primarily on some basic aspects of
matrix theory: the definitions of the theory through
regularization of the supermembrane and through light-
front compactification, the appearance of classical super-
gravity interactions through quantum effects, and the
construction of the objects of M theory in terms of ma-
trix degrees of freedom. There are many other interest-
ing directions in which progress has been made. Reviews
of matrix theory and related work that emphasize differ-
ent aspects of the subject include those of Bigatti and
Susskind (1997), Banks (1998, 1999), Nicolai and Helling
(1998), Taylor (1998, 2000), Bilal (1999), de Wit (1999),
Obers and Pioline (1999), and Konechny and Schwarz
(2000).

In the remainder of this section, we give a brief over-
view of a number of ideas that form the background for
the discussion in the remainder of the review. This sec-
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tion is intended to be a useful introduction to matrix
theory and M theory for the nonspecialist. In Sec. I.A
we review some basic aspects of classical supergravity
theories and the appearance of strings and membranes
in these theories. In Sec. I.B we discuss the two major
developments of the second superstring revolution: du-
ality and D-branes. We focus in particular on the duality
relating M theory to a strongly coupled limit of string
theory. Section I.C gives a brief introduction to matrix
theory in the context of the developments summarized
in Secs. I.A and I.B. The material in this section is es-
sentially an overview of the remainder of the review.

A. Supergravity, strings, and membranes

The principal outstanding problem of theoretical
physics at the close of the 20th century is to find a the-
oretical framework that combines the classical theory of
general relativity at large distance scales with the stan-
dard model of quantum particle physics at short distance
scales. At the phenomenological and experimental lev-
els, the next major challenge is to extend the standard
model of particle physics to describe physics at and
above the TeV scale. For both of these endeavors, a
potentially key structure is the idea of a ‘‘supersymme-
try,’’ which relates bosonic and fermionic fields through
a symmetry group with anticommuting (Grassmann)
generators Qa , where a is a spinor index. For an intro-
duction to supersymmetry, see Wess and Bagger (1992).

In a supersymmetric theory in flat space, the anticom-
mutator of a pair of supersymmetry (SUSY) generators
Qa is a translation generator or linear combination of
generators: $Q ,Q%;Pm . If supersymmetry plays any
role in describing physics in the real world, it must be
necessary to incorporate local supersymmetry into Ein-
stein’s theory of gravity. The supersymmetry generators
cannot simply describe a global symmetry of the funda-
mental theory, since in general relativity the momentum
generator that appears as an anticommutator of two
SUSY generators becomes a local vector field generat-
ing a diffeomorphism of space-time. In a theory combin-
ing general relativity with supersymmetry, supersymme-
try generators become spinor-valued fields on the space-
time manifold.

It is possible to classify supersymmetric theories of
gravity (supergravity theories) by constructing super-
symmetry algebras with multiplets containing particles
of spin 2 (gravitons). In any dimension greater than
eleven, supersymmetry multiplets automatically contain
particles of spin higher than 2, so that the maximal di-
mension for a supergravity theory is eleven. Indeed,
there is a unique such classical theory in eleven dimen-
sions with local supersymmetry (Cremmer, Julia, and
Scherk, 1978). This theory has N51 supersymmetry,
meaning that the supersymmetry generators live in a
single 32-component spinor representation of the 11D
Lorentz group. The generators Qa extend the usual 11D
Poincaré algebra into a super-Poincaré algebra. Eleven-
dimensional supergravity is in a natural sense the parent
of all other supergravity theories, since all supergravity
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theories in lower dimensions can be derived from the
11D theory by compactifying some subset of the dimen-
sions (or by considering a dual limit of a compactifica-
tion, as in the ten-dimensional type-IIB supergravity
theory, which we shall discuss momentarily). We recall
here some basic features of eleven- and ten-dimensional
supergravity theories. For more details the reader may
consult Green, Schwarz, and Witten (1987) or Townsend
(1996b).

By examining the structure of the supersymmetry
multiplet containing the graviton, one may determine
the set of classical fields that appear in any supergravity
theory. In 11D supergravity, there are the following
propagating fields:1

eI
a : vielbein field (bosonic, with 44 components)

AIJK : 3-form potential (bosonic, with 84 components)
cI : Majorana fermion gravitino (fermionic, with 128

components).
The vielbein eI

a is an alternative description of the space-
time metric tensor gIJ . The 3-form field AIJK is antisym-
metric in its indices and plays a role very similar to the
vector potential Am of classical electromagnetism.

In ten dimensions there are two supergravity theories
with 32 SUSY generators. These are N52 theories,
since the supersymmetry generators comprise two 16-
component spinors. In type-IIA supergravity these
spinors have opposite chirality, while in type-IIB super-
gravity the spinors have the same chirality. In addition
to the metric tensor/vielbein field, both type-IIA and IIB
supergravity have several other propagating bosonic
fields. The IIA and IIB theories both have a scalar field
f (the dilaton) and an antisymmetric 2-form field Bmn .
Each of the type-II theories also has a set of antisym-
metric ‘‘Ramond-Ramond’’ p-form fields Cm1¯mp

(p) . For
for the type-IIA theory, pP$1,3% is even, and for the
type-IIB theory pP$0,2,4% is odd.

Like the 3-form field AIJK of 11D supergravity, the
antisymmetric 2-form field Bmn and the Ramond-
Ramond p-form fields of the type-II supergravity theo-
ries are closely analogous to the vector potential of elec-
tromagnetism. In both the type-IIA and IIB
supergravity theories there are classical stringlike ex-
tremal black-hole solutions of the field equations which
are charged under the 2-form field (Dabholkar et al.,
1990), as well as higher-dimensional brane solutions that
couple to the p-form fields (for a review, see Duff,
Khuri, and Lu, 1995). The dynamics of these stringlike
and branelike solutions can be described through an ef-
fective action living on the world volume of the string or
higher-dimensional brane. Just as the electromagnetic
vector potential Am couples to an electrically charged
particle through a term of the form

E
L

Am dXm (1)

1We denote space-time indices in 11 dimensions by capital
roman letters I ,J ,K , . . .P$0,1,.. . ,8,9,11%, and indices in 10 di-
mensions by Greek letters m ,n , . . .P$0,1,.. . ,9%.



422 Washington Taylor: M(atrix) theory
where L is the trajectory of the particle, the 2-form field
of type-II supergravity couples to the two-dimensional
string world sheet through a term of the form

E
S

Bmneab~]aXm!~]bXn!, (2)

where Xm are the embedding functions of the string
world sheet S in ten dimensions and a ,bP$0,1% are
world-sheet indices.

The tension of the string is given by Ts51/2pa8,
where ls5Aa8 is the fundamental string length. The
starting point for perturbative string theory is the quan-
tization of the world-sheet action on a string, treating
the space-time coordinates Xm as bosonic fields on the
string world sheet. The remarkable consequence of this
quantization is that quanta of all the fields in the super-
gravity multiplet arise as massless excitations of the fun-
damental string. It has been shown that there are five
consistent quantum superstring theories which can be
constructed by choosing different sets of fields on the
string world sheet. These are the type-I, IIA, IIB, and
heterotic E83E8 and SO(32) theories. In each of these
cases, string theory seems to give a consistent micro-
scopic description of interactions between gravitational
quanta. In addition to massless fields, there is also an
infinite tower of fields in each theory with masses on the
order of 1/ls . In principle, any scattering process involv-
ing a finite number of massless supergravity particles can
be systematically calculated as a perturbative expansion
in string theory. The strength of string interactions is
encoded in the dilaton field through the string coupling
g5ef. The perturbative string expansion makes sense
when g is small.

We shall not discuss string theory in any detail in this
review; for a comprehensive introduction to superstring
theory, the reader should consult the excellent text-
books by Green, Schwarz, and Witten (1987) and by
Polchinski (1998). We would like, however, to empha-
size the following points:

(i) The world-sheet approach to superstring quanti-
zation yields a first-quantized theory of gravity
from the point of view of the target space—that is,
a state in the string Hilbert space corresponds to a
single-particle state in the target space consisting
of a single string.

(ii) The world-sheet approach to superstrings is per-
turbative in the string coupling g . As we shall dis-
cuss in the following section, there are many non-
perturbative objects that should appear in a
consistent quantum theory of 10D supergravity.

In order to have a definition of string theory that cor-
responds to a true quantum theory of gravity in space-
time, it is necessary to overcome these obstacles by de-
veloping a second-quantized theory of strings. Work has
been done towards developing such a string field theory
(see, for example, Zwiebach, 1993; Gaberdiel and Zwie-
bach, 1997a, 1997b). It is currently difficult to use this
formalism to do practical calculations or gain new in-
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sight into the theory, although the work of Sen (1999)
and others has recently generated a new wave of devel-
opment in this direction.

To summarize our discussion of string theory, it has
been found that a natural approach to finding a micro-
scopic quantum theory of gravity whose low-energy limit
is ten-dimensional supergravity is to quantize the string-
like degrees of freedom that couple to the antisymmetric
2-form field Bmn .

Because 11-dimensional supergravity seems to be in
some sense more fundamental than the ten-dimensional
theory, it is natural to want to find an analogous con-
struction of a microscopic quantum theory of gravity in
11 dimensions. Unlike the ten-dimensional theories,
however, in 11-dimensional supergravity there is no
stringlike black-hole solution; indeed, there is no 2-form
for it to couple to. There is, however, a ‘‘black-
membrane’’ solution in 11 dimensions, which has a
source extended infinitely in two spatial dimensions. Just
as the black string couples to the 2-form field through
Eq. (2), the black-membrane solution of 11D supergrav-
ity couples to the 3-form field through

E
S

AIJKeabc~]aXI!~]bXJ!~]cXK!, (3)

where now a ,b ,cP$0,1,2% are indices of coordinates on
the three-dimensional membrane world volume.

It is tempting to imagine that a microscopic descrip-
tion of 11D supergravity might be found by quantizing
the supermembrane, just as a microscopic description of
10D supergravity is found by quantizing the superstring.
This idea was explored extensively in the 1980s, when it
was first realized that a consistent classical theory of a
supermembrane could be realized in 11 dimensions. At
that time, while no satisfactory covariant quantization of
the membrane theory was found, it was shown that the
supermembrane could be quantized in light-front coor-
dinates. As we shall discuss in greater detail in the fol-
lowing sections, this construction leads to precisely the
matrix quantum mechanics theory that is the subject of
this article. Not only does this theory provide a micro-
scopic description of quantum gravity in 11 dimensions,
but, as more recent work has demonstrated, it also by-
passes the difficulties mentioned above for string theory
by directly providing a nonperturbative definition of a
theory that is second quantized in target space.

B. Duality and D-branes

Although 11-dimensional supergravity and the quan-
tum supermembrane theory were originally discovered
at around the same time as the five consistent super-
string theories, much more attention was given to string
theory in the decade 1985–1995 than to the 11-
dimensional theory. There were several reasons for this
lack of attention to 11D supergravity and membrane
theory by (much of) the high-energy community. For
one thing, heterotic string theory looked like a much
more promising framework in which to make contact
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with standard-model phenomenology. In order to con-
nect a ten- or 11-dimensional theory with four-
dimensional physics, it is necessary to compactify all but
four dimensions of space-time [or, as has been suggested
more recently by Randall and Sundrum (1999) and oth-
ers, to consider our 4D space-time as a brane living in
the higher-dimensional space-time]. There is no way to
compactify 11D supergravity on a smooth 7-manifold in
such a way as to give rise to chiral fermions in the re-
sulting 4D theory (Witten, 1981). This fact made 11D
supergravity for some time a very unattractive possibil-
ity for a fundamental theory; more recently, however,
singular (orbifold) compactifications of 11D M theory
have been considered (Hořava and Witten, 1996) which
lead to realistic models of phenomenology with chiral
fermions (see for example, Donagi et al., 2000). Another
reason for which the quantum supermembrane was
dropped from the mainstream of research was the ap-
pearance of an apparent instability in the membrane
theory (de Wit, Lüscher, and Nicolai, 1989). As we shall
discuss in Sec. III, rather than being a problem this ap-
parent instability is an indication of the second-
quantized nature of the membrane theory.

As was briefly discussed in the introduction, in 1995
two remarkable new ideas caused a substantial change
in the dominant picture of superstring theory. The first
of these was the realization that all five superstring theo-
ries, as well as 11-dimensional supergravity, seem to be
related to one another by duality transformations that
exchange the degrees of freedom of one theory for the
degrees of freedom of another theory (Hull and
Townsend, 1995; Witten, 1995). It is now generally be-
lieved that all six of these theories are realized as par-
ticular limits of some more fundamental underlying
theory, which may be describable as a quantum theory
in 11 dimensions. This 11-dimensional quantum theory
of gravity, for which no rigorous definition has yet been
given, is often referred to as ‘‘M theory’’ (Hořava and
Witten, 1996).2

The second new idea in 1995 was the realization by
Polchinski (1995) that black p-brane solutions that are
charged under the Ramond-Ramond fields of string
theory can be described in the language of perturbative
strings as ‘‘Dirichlet-branes,’’ or ‘‘D-branes,’’ that is, as
hypersurfaces on which open strings may have end-
points. Type-IIA string theory contains Dp-branes with
p50, 2, 4, and 6, while type-IIB string theory contains
Dp-branes with p521, 1, 3, 5, and 7. Dp-branes with
p>8 also appear in certain situations; they will not,

2The term ‘‘M theory’’ is usually used to refer to an 11-
dimensional quantum theory of gravity that reduces to N51
supergravity at low energies. It is possible that a more funda-
mental description of this 11-dimensional theory and string
theory can be given by a model in terms of which the dimen-
sionality of space-time is either greater than 11 or is an emer-
gent aspect of the dynamics of the system. Generally the term
M theory does not refer to such models, but usage varies. In
this article we mean by M theory a consistent quantum theory
of gravity in 11 dimensions.
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however, be relevant to this article. The Dp-branes with
p<3 couple to the Ramond-Ramond (p11)-form fields
of supergravity through expressions analogous to Eqs.
(2) and (3). These branes are referred to as being ‘‘elec-
trically coupled’’ to the relevant Ramond-Ramond
fields. The Dp-branes with p>4 have ‘‘magnetic’’ cou-
plings to the (72p)-form Ramond-Ramond fields,
which can be described in terms of electric couplings to
the dual fields C̃(p11) defined through dC̃(p11)

5 * dC(72p). D-branes are nonperturbative structures in
first-quantized string theory, but play a fundamental role
in many aspects of quantum gravity. In recent years
D-branes have been used to construct stringy black
holes and to explore connections between string theory
and quantum field theory. Basic aspects of D-brane
physics are reviewed by Polchinski (1996) and Taylor
(1998); applications of D-branes to black holes are re-
viewed by Skenderis (1999), Mohaupt (2000), and Peet
(2000); a recent comprehensive review of D-brane con-
structions of supersymmetric field theories is given by
Giveon and Kutasov (1999).

Combining the ideas of duality and D-branes, we have
a new picture of fundamental physics as having an as-
yet-unknown microscopic structure, which reduces in
certain limits to perturbative string theory and to 11D
supergravity. In the 10D and 11D limits, there are a va-
riety of dynamical extended objects of various dimen-
sions appearing as effective excitations. There is no clear
reason for strings to be any more fundamental in this
structure than the membrane in 11-dimensions, or even
than D0-branes or D3-branes in type-IIA or IIB super-
string theory. At this point, in fact, it seems likely that
these objects should all be thought of as equally impor-
tant pieces of the theory. On one hand, the strings and
branes can all be thought of as effective excitations of
some as-yet-unknown set of degrees of freedom. On the
other hand, by quantizing any of these objects to what-
ever extent is technically possible for an object of the
relevant dimension, it is possible to study particular as-
pects of each of the theories in certain limits. This equal-
ity between branes is often referred to as ‘‘brane democ-
racy.’’

As we shall see in the remainder of this review, matrix
theory can be thought of alternatively as a quantum
theory of membranes in 11 dimensions or as a quantum
theory of pointlike D0-branes in ten dimensions. In or-
der to relate these complementary approaches to matrix
theory, it will be helpful at this point to briefly review
one of the simplest links in the network of dualities con-
necting the string theories with M theory. This is the
duality that relates M theory to type-IIA string theory
(Townsend, 1995; Witten, 1995). The connection be-
tween these theories essentially follows from the fact
that type-IIA supergravity can be constructed from 11D
supergravity by performing ‘‘dimensional reduction’’
along a single dimension. To implement this procedure
we assume that 11D supergravity is defined on a space-
time with geometry M103S1 where M10 is an arbitrary
10D manifold and S1 is a circle of radius R . When R is
small we can systematically neglect the dependence of
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all fields in the 11D theory along the 11th (compact)
direction, giving an effective low-energy 10D theory,
which turns out to be type-IIA supergravity. In this di-
mensional reduction, the different components of the
fields of the 11D theory decompose into the various
fields of the 10D theory. The metric tensor gIJ in 11
dimensions has components gmn , 0<m ,n<9, which be-
come the 10D metric tensor, components gm11 , which
become the Ramond-Ramond vector field Cm

(1) in
the 10D theory, and a single component g11 11 , which
becomes the 10D dilaton field f. Similarly, the 3-form
field of the 11D theory decomposes into the 2-form field
Bmn and the Ramond-Ramond 3-form field Cmnl

(3) in ten
dimensions. Just as the fields of 11D supergravity reduce
to the fields of the type-IIA theory under dimensional
reduction, the extended objects of M theory reduce to
branes of various kinds in type-IIA string theory. The
membrane of M theory can be ‘‘wrapped’’ around the
compact direction of radius R to become the fundamen-
tal string of the type-IIA theory. The unwrapped
M-theory membrane corresponds to the Dirichlet
2-brane (D2-brane) in type IIA. In addition to the mem-
brane, M theory has an M5-brane (with six-dimensional
world volume), which couples magnetically to the
3-form field AIJK . Wrapped M5-branes become D4-
branes in type IIA, while unwrapped M5-branes become
solitonic (NS) 5-branes in type IIA, which are magneti-
cally charged objects under the NS-NS 2-form field Bmn .

Through the dimensional reduction of 11D supergrav-
ity to type-IIA supergravity, the string coupling g and
string length ls in the 10D theory can be related to the
11D Planck length l11 and the compactification radius R
through

g5S R

l11
D 3/2

, ls
25

l11
3

R
. (4)

From these relations we see that in the strong-coupling
limit g→` , type-IIA string theory ‘‘grows’’ an extra di-
mension R→` and should be identified with M theory
in flat space. This motivates a definition of M theory as
the strong-coupling limit of the type-IIA string theory
(Witten, 1995); because there is no nonperturbative defi-
nition of type-IIA string theory, however, this definition
is not completely satisfactory.

When the compactification radius R used to reduce M
theory to type IIA is small, momentum modes in the
11th direction of the massless fields associated with the
11D graviton multiplet become massive Kaluza-Klein
particles in the 10D type-IIA theory. These particles
couple to the components gm11 of the 11D metric, and
therefore to Cm

(1) in ten dimensions. Thus these particles
can be identified as the Dirichlet 0-branes of type-IIA
string theory. This connection between momentum in 11
dimensions and Dirichlet particles, first emphasized by
Townsend (1996a), is a crucial ingredient in understand-
ing the connection between the two perspectives on ma-
trix theory that we develop in this review.

C. M(atrix) theory

In this section we briefly summarize the development
of matrix theory, giving an overview of the material that
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we describe in detail in the following sections. As dis-
cussed above, it seems that a natural way to try to con-
struct a microscopic model for M theory would be to
quantize the supermembrane that couples to the 3-form
field of 11D supergravity. In general, quantizing any
fluctuating geometrical object of higher dimensionality
than the string is a problematic enterprise, and for some
time it was believed that membranes and higher-
dimensional objects could not be described in a sensible
fashion by quantum field theory. Almost two decades
ago, however, Goldstone (1982) and Hoppe (1982, 1987)
found a very clever way of regularizing the theory of the
classical membrane. They replaced the infinite number
of degrees of freedom representing the embedding of
the membrane in space-time by a finite number of de-
grees of freedom contained in N3N matrices. This ap-
proach, which we describe in detail in the next section,
was generalized by de Wit, Hoppe, and Nicolai (1988) to
the supermembrane. The resulting theory is a simple
quantum-mechanical theory with matrix degrees of free-
dom. The Hamiltonian of this theory is given by

H5TrS 1
2

ẊiẊi2
1
4

@Xi,Xj#@Xi,Xj#1
1
2

uTg i@Xi,u# D . (5)

In this expression, Xi are nine N3N matrices, u is a
16-component matrix-valued spinor of SO(9), and g i
are the SO(9) gamma matrices in the 16-dimensional
representation. Even before its discovery as a regular-
ized version of the supermembrane theory, this quantum
mechanics theory had been studied as a particularly el-
egant example of a quantum system with a high degree
of supersymmetry (Baake, Reinicke, and Rittenberg,
1985; Claudson and Halpern, 1985; Flume, 1985).

Although the Hamiltonian (5) describing matrix
theory and its connection with the supermembrane has
been known for some time, this theory was previously
believed to suffer from insurmountable instability prob-
lems. It was pointed out several years ago by Townsend
(1996a) and by Banks, Fischler, Shenker, and Susskind
(1997) that Eq. (5) can also be seen as arising from a
system of N Dirichlet particles in type-IIA string theory.
Using the duality relationship between M theory and
type-IIA string theory described above, Banks, Fischler,
Shenker, and Susskind (henceforth ‘‘BFSS’’) made the
bold conjecture that in the large-N limit the system de-
fined by Eq. (5) should give a complete description of M
theory in the light-front (infinite-momentum) coordinate
frame. This picture cleared up the apparent instability
problems of the theory in a very satisfactory fashion by
making it clear that matrix theory should describe a
second-quantized theory in target space, rather than a
first-quantized theory as had previously been imagined.

Following the BFSS conjecture, there was a flurry of
activity for several years centered on the matrix model
defined by Eq. (5). In this period of time much progress
was made in understanding both the structure and the
limits of this approach to studying M theory. It has been
shown that matrix theory can indeed be constructed in a
fairly rigorous way as a light-front quantization of M
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theory by taking a limit of spatial compactifications. A
fairly complete picture has been formed of how the ob-
jects of M theory (the graviton, membrane, and M5-
brane) can be constructed from matrix degrees of free-
dom. It has also been shown that all linearized
supergravitational interactions between these objects
and some nonlinear general relativistic corrections can
be derived from quantum effects in matrix theory. Some
simple compactifications of M theory have been con-
structed in the matrix-theory formalism, leading to new
insight into connections between certain quantum field
theories and quantum theories of gravity. The goal of
this article is to review these developments in some de-
tail and to summarize our current understanding of both
the successes and the limitations of the matrix-model
approach to M theory.

In the following sections, we develop the structure of
matrix theory in more detail. Section II reviews the
original description of matrix theory in terms of a regu-
larization of the quantum supermembrane theory. In
Sec. III we describe the theory in the language of light-
front quantized M theory and discuss the second-
quantized nature of the resulting space-time theory. The
connection between classical supergravity interactions in
space-time and quantum loop effects in matrix theory is
presented in Sec. IV. In Sec. V we show how the ex-
tended objects of M theory can be described in terms of
matrix degrees of freedom. In Sec. VI we discuss exten-
sions of the basic matrix-theory conjecture to other
space-time backgrounds, and in Sec. VII we briefly re-
view the connection between matrix theory and several
other related models. Section VIII contains concluding
remarks.

II. MATRIX THEORY FROM THE QUANTIZED
SUPERMEMBRANE

In this section we describe in some detail how matrix
theory arises from the quantization of the supermem-
brane. In Sec. II.A we describe the theory of the relativ-
istic bosonic membrane in flat space. The light-front de-
scription of this theory is discussed in Sec. II.B, and the
matrix regularization of the theory is described in Sec.
II.C. In Sec. II.D we briefly describe the bosonic mem-
brane in a general background geometry. In Sec. II.E we
extend the discussion to the supermembrane. The prob-
lem of finding a covariant membrane quantization is dis-
cussed in Sec. II.F.

The material in this section roughly follows the origi-
nal papers by Hoppe (1982, 1987) and de Wit, Hoppe,
and Nicolai (1988). Note, however, that the original
derivation of the matrix quantum mechanics theory was
done in the Nambu-Goto-type membrane formalism,
while we use here a Polyakov-type approach.

A. The bosonic membrane theory

In this section we review the theory of a classical rela-
tivistic bosonic membrane moving in flat D-dimensional
Minkowski space. This analysis is very similar in flavor
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to the theory of a classical relativistic bosonic string. We
do not assume familiarity with string theory, and give a
self-contained description of the membrane theory here;
readers unfamiliar with the somewhat simpler classical
bosonic string may wish to look at the texts by Green,
Schwarz, and Witten (1987) and by Polchinski (1998) for
comparison with the discussion here.

Just as a particle sweeps out a trajectory described by
a one-dimensional world line as it moves through space-
time, a dynamical membrane moving in D21 spatial di-
mensions sweeps out a three-dimensional world volume
in D-dimensional space-time. We can think of the mo-
tion of the membrane in space-time as being described
by a map X :V→RD21,1 taking a three-dimensional mani-
fold V (the membrane world volume) into flat
D-dimensional Minkowski space. We can locally choose
a set of three coordinates sa,aP$0,1,2%, on the world
volume of the membrane, analogous to the coordinate t
used to parametrize the world line of a particle moving
in space-time. We shall sometimes use the notation t
5s0 and we shall use indices a ,b , . . . to describe ‘‘spa-
tial’’ coordinates saP$1,2% on the membrane world vol-
ume. In such a coordinate system, the motion of the
membrane through space-time is described by a set of D
functions Xm(s0,s1,s2).

The natural classical action for a membrane moving in
flat space-time is given by the integrated proper volume
swept out by the membrane. This action takes the
Nambu-Goto form

S52TE d3sA2det hab, (6)

where T is a constant that can be interpreted as the
membrane tension T51/(2p)2lp

3 , while

hab5]aXm]bXm (7)

is the pullback of the flat space-time metric (with signa-
ture 211¯1) to the three-dimensional membrane
world volume.

Because of the square root, it is cumbersome to ana-
lyze the membrane theory directly using this action.
There is a convenient reformulation of the membrane
theory that leads to the same classical equations of mo-
tion using a polynomial action. This is the analog of the
Polyakov action for the bosonic string. In order to de-
scribe the membrane using this approach, we must intro-
duce an auxiliary metric gab on the membrane world
volume. We then take the action to be

S52
T

2 E d3sA2g~gab]aXm]bXm21 !. (8)

The final constant term 21 inside the parentheses does
not appear in the analogous string theory action. This
additional ‘‘cosmological’’ term is needed due to the ab-
sence of scale invariance in the theory.

Computing the equations of motion from Eq. (8) by
varying gab , we get

gab5hab5]aXm]bXm . (9)
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Replacing this in Eq. (8) again gives Eq. (6), so we see
that the two forms of the action are actually equivalent.
The equation of motion that arises from varying Xm in
Eq. (8) is ]a(A2ggab]bXm)50.

To simplify the analysis, we would now like to use the
symmetries of the theory to gauge-fix the metric gab .
Unfortunately, unlike the case of the classical string, in
which there are three components of the metric and
three continuous symmetries (two diffeomorphism sym-
metries and a scale symmetry), for the membrane we
have six independent metric components and only three
diffeomorphism symmetries. We can use these symme-
tries to fix the components g0a of the metric to be

g0a50, g0052
4
n2 h̄[2

4
n2 det hab , (10)

where n is an arbitrary constant whose normalization
has been chosen to make the later matrix interpretation
transparent. Once we have chosen this gauge, no further
components of the metric gab can be fixed. This gauge
can only be chosen when the membrane world volume is
of the form S3R, where S is a Riemann surface of fixed
topology. The membrane action becomes in this gauge,
using Eq. (9) to eliminate g,

S5
Tn

4 E d3sS ẊmẊm2
4
n2 h̄ D . (11)

It is natural to rewrite this action in terms of a canoni-
cal Poisson bracket on the membrane where at constant
t , $f ,g%[eab]af]bg with e1251. We shall assume that
the coordinates s are chosen so that, with respect to the
symplectic form associated with this canonical Poisson
bracket, the volume of the Riemann surface S is *d2s
54p . In terms of the Poisson bracket, the membrane
action becomes

S5
Tn

4 E d3sS ẊmẊm2
2
n2 $Xm,Xn%$Xm ,Xn% D . (12)

The equations of motion for the fields Xm are

Ẍm5
4
n2 ]a~ h̄hab]bXm!5

4
n2 ˆ$Xm,Xn%,Xn‰. (13)

The auxiliary constraints on the system arising from
combining Eqs. (9) and (10) are

ẊmẊm52
4
n2 h̄52

2
n2 $Xm,Xn%$Xm ,Xn% (14)

and

Ẋm]aXm50. (15)

It follows directly from Eq. (15) that

$Ẋm,Xm%50. (16)

We have thus expressed the classical bosonic mem-
brane theory as a constrained dynamical system. The
degrees of freedom of this system are D functions Xm on
the three-dimensional world volume of a membrane
with topology S3R, where S is a Riemann surface. This
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theory is still completely covariant. It is difficult to quan-
tize, however, because of the constraints and the nonlin-
earity of the equations of motion. The direct quantiza-
tion of this covariant theory will be discussed further in
Sec. II.F.

B. The light-front bosonic membrane

We now consider the membrane theory in light-front
coordinates

X65~X06XD21!/& . (17)

The constraints (14) and (15) can be explicitly solved in
light-front gauge,

X1~t ,s1 ,s2!5t . (18)

We have

Ẋ25
1
2

ẊiẊi1
1
n2 $Xi,Xj%$Xi,Xj%, ]aX25Ẋi]aXi.

(19)

We can go to a Hamiltonian formalism by computing
the canonically conjugate momentum densities. The to-
tal momentum in the direction P1 is then

p15E d2s P152pnT , (20)

and the Hamiltonian of the theory is given by

H5
nT

4 E d2sS ẊiẊi1
2
n2 $Xi,Xj%$Xi,Xj% D . (21)

The only remaining constraint that the transverse de-
grees of freedom must satisfy is

$Ẋi,Xi%50. (22)

This theory has a residual invariance under time-
independent area-preserving diffeomorphisms. Such dif-
feomorphisms do not change the symplectic form and
thus manifestly leave the Hamiltonian (21) invariant.

We now have a Hamiltonian formalism for the light-
front membrane theory. Unfortunately, this theory is
still rather difficult to quantize. Unlike string theory, in
which the equations of motion are linear in the analo-
gous formalism, for the membrane the equations of mo-
tion (13) are nonlinear and difficult to solve.

C. Matrix regularization

A remarkably clever regularization of the light-front
membrane theory was found by Goldstone (1982) and
Hoppe (1982) for the case in which the membrane sur-
face S is a sphere S2. According to this regularization
procedure, functions on the membrane surface are
mapped to finite-sized matrices. Just as in the quantiza-
tion of a classical mechanical system defined in terms of
a Poisson bracket, the Poisson bracket appearing in the
membrane theory is replaced in the matrix regulariza-
tion of the theory by a matrix commutator.
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It should be emphasized that this procedure of replac-
ing functions by matrices is a completely classical ma-
nipulation. Although the mathematical construction
used is similar to those used in geometric quantization of
classical systems, after regularizing the continuous clas-
sical membrane theory the resulting theory is a system
that has a finite number of degrees of freedom but is still
classical. After this regularization procedure has been
carried out, we can quantize the system just like any
other classical system with a finite number of degrees of
freedom.

The matrix regularization of the theory can be gener-
alized to membranes of arbitrary topology, but is per-
haps most easily understood by considering the case
originally discussed by Hoppe (1982), in which the mem-
brane has the topology of a sphere S2. In this case the
world sheet of the membrane surface at fixed time can
be described by a unit sphere with an SO(3) invariant
canonical symplectic form. Functions on this membrane
can be described in terms of functions of the three Car-
tesian coordinates j1 ,j2 ,j3 on the unit sphere satisfying
j1

21j2
21j3

251. The Poisson brackets of these functions
are given by $jA ,jB%5eABCjC . This is the same alge-
braic structure as that defined by the commutation rela-
tions of the generators of SU(2). It is therefore natural
to associate these coordinate functions on S2 with the
matrices generating SU(2) in the N-dimensional repre-
sentation. In terms of the conventions we are using here,
when the normalization constant n is integral, the cor-
rect correspondence is

jA→ 2
N

JA , (23)

where J1 ,J2 ,J3 are generators of the N-dimensional rep-
resentation of SU(2) with N5n , satisfying the commu-
tation relations 2i@JA ,JB#5eABCJC .

In general, any function on the membrane can be ex-
panded as a sum of spherical harmonics,

f~j1 ,j2 ,j3!5(
l ,m

clmYlm~j1 ,j2 ,j3!. (24)

The spherical harmonics can in turn be written as sums
of monomials in the coordinate functions:

Ylm~j1 ,j2 ,j3!5(
k

tA1¯Al

(lm) jA1
¯jAl

, (25)

where the coefficients tA1¯Al

(lm) are symmetric and trace-

less (because jAjA51). Using the correspondence (23),
we can construct matrix approximations Ylm to each of
the spherical harmonics with l,N through

Ylm~j1 ,j2 ,j3!→Ylm5S 2
N D l

( tA1¯Al

(lm) JA1
¯JAl

. (26)

For a fixed value of N only spherical harmonics with l
,N can be constructed because higher-order monomials
in the generators JA do not generate linearly indepen-
dent matrices. Note that the number of independent ma-
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trix entries is precisely equal to the number of indepen-
dent spherical harmonic coefficients that can be
determined for fixed N ,

N25 (
l50

N21

~2l11 !. (27)

The matrix approximations (26) of the spherical har-
monics can be used to construct matrix approximations
to an arbitrary function of the form (24)

f~j1 ,j2 ,j3!→F5 (
l,N ,m

clmYlm . (28)

The Poisson bracket in the membrane theory is re-
placed in the matrix-regularized theory with the matrix
commutator according to the prescription

$f ,g%→ 2iN

2
@F ,G# . (29)

Similarly, an integral over the membrane at fixed t is
replaced by a matrix trace through

1
4p E d2s f→ 1

N
Tr F . (30)

The Poisson bracket of a pair of spherical harmonics
takes the form

$Ylm ,Yl8m8%5glm ,l8m8
l9m9 Yl9m9 . (31)

The commutator of a pair of matrix spherical harmonics
(26) can be written

@Ylm ,Yl8m8#5Glm ,l8m8
l9m9 Yl9m9 . (32)

It can be verified that in the large-N limit the structure
constants of these algebras agree:

lim
N→`

2iN

2
Glm ,l8m8

l9m9 →glm ,l8m8
l9m9 . (33)

As a result, it can be shown that for any smooth func-
tions f ,g on the membrane defined in terms of conver-
gent sums of spherical harmonics, with Poisson bracket
$f ,g%5j we have, defining F, G, and J in terms of f, g,
and J through Eq. (28),

lim
N→`

1
N

Tr F5
1

4p E d2s f (34)

and

lim
N→`

F S 2iN

2 D @F ,G#2JG50. (35)

This last relation is really shorthand for the statement
that

lim
N→`

1
N

Tr H F S 2iN

2 D @F ,G#2JGKJ 50, (36)

where K is the matrix approximation to any smooth
function k on the sphere.

We now have a dictionary for transforming between
continuum and matrix-regularized quantities. The corre-
spondence is given by
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jA↔ 2
N

JA , $• ,•%↔ 2iN

2
@• ,•# ,

1
4p E d2s↔ 1

N
Tr.

(37)

The matrix-regularized membrane Hamiltonian is there-
fore given by

H5~2plp
3 !TrS 1

2
PiPiD2

1

~2plp
3 !

3TrS 1
4

@Xi,Xj#@Xi,Xj# D
5

1

~2plp
3 !

TrS 1
2

ẊiẊi2
1
4

@Xi,Xj#@Xi,Xj# D . (38)

This Hamiltonian gives rise to the matrix equations of
motion

Ẍi1†@Xi,Xj# ,Xj
‡50, (39)

which must be supplemented with the Gauss constraint

@Ẋi,Xi#50. (40)

This is a classical theory with a finite number of degrees
of freedom. The quantization of such a system is
straightforward, although solving the quantum theory
can in practice be quite tricky.

We have now described, following Goldstone and
Hoppe, a well-defined quantum theory arising from the
matrix regularization of the relativistic membrane
theory in light-front coordinates. This model has N3N
matrix degrees of freedom, and a symmetry group U(N)
with respect to which the matrices Xi are in the adjoint
representation. The model just described arose from the
regularization of a membrane with world-volume topol-
ogy S23R. A similar regularization procedure can be
followed for an arbitrary genus Riemann surface. Re-
markably, the same U(N) matrix theory arises as the
regularization of the theory describing a membrane of
any genus (Bordemann, Meinrenken, and Schlichen-
maier, 1994). While this result has been demonstrated
implicitly only for Riemann surfaces of genus greater
than one, the toroidal case was described explicitly by
Fairlie, Fletcher, and Zachos (1989) and Floratos (1989;
see also Fairlie and Zachos, 1989). In this case a natural
basis of functions on the torus parametrized by h1 ,h2
P$@0,2p#% is given by the Fourier modes

Ynm~h1 ,h2!5einh11imh2. (41)

To describe the matrix approximations for these func-
tions we use the ’t Hooft matrices

U5S 1

q

q2

�

qN21

D ,
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V5S 1

1

�

1

1

D , (42)

where

q5e2pi/N. (43)

The matrices U ,V satisfy

UV5q21VU . (44)

In terms of these matrices we can define

Ynm5qnm/2UnVm5q2nm/2VmUn. (45)

The matrix approximation to an arbitrary function on
the torus is then given by

f~h1 ,h2!5(
n ,m

cnmYnm~h1 ,h2!→F5(
n ,m

cnmYnm .

(46)

Just as in the case of the sphere, the structure constants
of the Poisson bracket algebra of the Fourier modes (41)
are reproduced by the commutators of the matrices (45)
in the large-N limit, where the symplectic form on the
torus is taken to be proportional to e ij . Combining Eq.
(46) with Eqs. (29) and (30) then gives a consistent regu-
larization of the membrane theory on the torus, which
again leads to the matrix Hamiltonian (5).

The fact that the regularization of the membrane
theory on a Riemann surface of any genus gives rise to a
family of theories with U(N) symmetry can be related
to the fact that the symmetry group of area-preserving
diffeomorphisms on the membrane can be approxi-
mated by U(N) for a surface of any genus. This was
emphasized in the case of the sphere by Floratos, Il-
iopoulos, and Tiktopoulos (1989), and discussed for ar-
bitrary genus by Bordemann, Meinrenken, and Schli-
chenmaier (1994). How this connection should be
understood in the large-N limit is, however, a subtle is-
sue. It is possible to construct, for example, sequences of
matrices in U(N) that correspond in the large-N limit to
singular area-preserving diffeomorphisms of the mem-
brane surface. These singular maps may have the effect
of essentially changing the membrane topology by add-
ing or removing handles. Thus it probably does not
make sense to think of the matrix membrane theory as
being associated with membranes of a particular topol-
ogy. Indeed, as we shall emphasize in Sec. III, matrix
configurations with large values of N can approximate
any system of multiple membranes with arbitrary to-
pologies. Thus in some sense the matrix regularization
of the membrane theory contains more structure than
the smooth theory it is supposed to be approximating.
This additional structure may be precisely what is
needed to make sense of M theory as a quantized theory
of membranes.

Another way to describe mathematically the matrix
regularization of a theory on the membrane is in the
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language of geometrical quantization. From this point of
view the matrix membrane is like a ‘‘fuzzy’’ membrane
that is in some sense discrete and yet may preserve con-
tinuous symmetries such as the SU(2) rotational symme-
try of a spherical membrane. This point of view ties into
recent developments in noncommutative geometry, and
we shall discuss it again briefly in Sec. VIII.

In this section we have focused on the matrix regular-
ization of closed membranes (membranes without
boundaries). It is also possible to consider a theory of
open membranes with boundaries on an M5-brane
(Strominger, 1996; Townsend, 1996a). The matrix regu-
larization of the open-membrane theory has been con-
structed by Li (1997), de Wit, Peeters, and Plefka
(1998a), and Ezawa, Matsuo, and Murakami (1998).

D. The bosonic membrane in a general background

So far we have considered the membrane only in a
flat-background Minkowski geometry. It is natural to
generalize the discussion to a bosonic membrane moving
in a general background metric gmn and 3-form field
Amnr . The introduction of a general background metric
modifies the Nambu-Goto action by replacing hab in Eq.
(7) with

hab5]aXm]bXngmn~X !. (47)

The membrane couples to the 3-form field as an electri-
cally charged object through Eq. (3). This gives a total
action for the membrane in a general background of the
form

S52TE d3s@A2det hab16Ẋm]1Xn]2XrAmnr~X !# .

(48)

With an auxiliary world-volume metric, this action be-
comes

S52
T

2 E d3s$A2g@gab]aXm]bXngmn~X !21#

112Ẋm]1Xn]2XrAmnr~X !%. (49)

We can gauge-fix the action (49) using the same gauge
(10) as in the flat-space case. We can then quantize the
membrane in a general background by a procedure simi-
lar to that we described in the case of the flat back-
ground. We shall return to this possibility in Sec. VI.B
when we discuss in more detail the prospects for con-
structing matrix theory in a general background.

E. The supermembrane

Now let us turn our attention to the supermembrane.
In order to make contact with M theory, and indeed to
make the membrane theory well behaved, it is necessary
to add supersymmetry to the theory. Supersymmetric
membrane theories can be constructed classically in di-
mensions 4, 5, 7, and 11. These theories have different
degrees of supersymmetry, with 2, 4, 8, and 16 indepen-
dent supersymmetric generators, respectively. It is be-
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lieved that all the supermembrane theories other than
the 11D maximally supersymmetric theory are problem-
atic quantum mechanically. Thus, just as D510 is the
natural dimension for the superstring, D511 is the natu-
ral dimension for the supermembrane.

The formalism for describing the supermembrane is
rather technically complicated. We outline here very
briefly the steps involved in constructing the supermem-
brane theory and deriving the associated supersymmet-
ric matrix model. For a more detailed description of the
supermembrane, the reader should refer to the original
paper of Bergshoeff, Sezgin, and Townsend (1988) or
the reviews of Duff (1996), Nicolai and Helling (1998),
and de Wit (1999).

To understand how space-time supersymmetry can be
incorporated into membrane theory, it is useful to con-
sider the analogous situation in string theory. There are
two very different approaches to incorporating space-
time supersymmetry in string theory. One approach is
the Neveu-Schwarz-Ramond approach (see, for ex-
ample, Green, Schwarz, and Witten, 1987), in which the
world-volume string theory itself is extended to have su-
persymmetry. This formalism gives a theory that is easy
to quantize and that can be used in a straightforward
fashion to describe the spectra of the five superstring
theories. One disadvantage of this formalism, however,
is that the target space supersymmetry of the theory is
difficult to show explicitly. The second approach to in-
corporating space-time supersymmetry into string
theory is the Green-Schwarz formalism (Green and
Schwarz, 1984a, 1984b), in which the target space super-
symmetry of the theory is manifest. In this formalism,
Grassmann (anticommuting) degrees of freedom are in-
troduced that transform as space-time spinors but as
world-sheet scalars. These correspond to space-time su-
perspace coordinates for the string. The Green-Schwarz
superstring action does not have a standard world-sheet
supersymmetry (it cannot, since there are no world-
sheet fermions). The theory does, however, have a novel
type of supersymmetry known as a k symmetry, which
restricts the classical Green-Schwarz string theory to
space-time dimension D53, 4, 6, or 10. No such restric-
tion occurs for the classical superstring with world-sheet
supersymmetry.

Unlike the superstring, there is no known way of for-
mulating the supermembrane in a world-volume super-
symmetric fashion [although see Duff (1996) for refer-
ences to some recent progress in this direction]. A
k-symmetric formulation of the supermembrane in a
general background was first found by Bergshoeff, Sez-
gin, and Townsend (1988). An interesting feature of the
Green-Schwarz actions for the string and membrane is
that k symmetry on the string/membrane world volume
is possible only when the background fields satisfy the
supergravity equations of motion. Thus 11D supergrav-
ity emerges from the membrane theory even at the clas-
sical level. The k symmetry of the membrane can be
gauge fixed, reducing the number of propagating fermi-
onic degrees of freedom to 8. This is also the number of
propagating bosonic degrees of freedom, as can be seen
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by going to a static gauge membrane theory where X0,1,2

are identified with t ,s1,2 so that only the eight trans-
verse directions appear as propagating degrees of free-
dom. In general, gauge-fixing the k symmetry in any par-
ticular way will break the Lorentz invariance of the
theory. This makes it quite difficult to find any way of
quantizing the theory without breaking Lorentz symme-
try. This situation is again analogous to the Green-
Schwarz superstring theory, in which fixing the k sym-
metry also breaks Lorentz invariance and no covariant
quantization scheme is known.

Beginning with the general supermembrane action,
specializing to flat space-time, fixing light-cone coordi-
nates X15t , and gauge-fixing k symmetry through
G1u50, one obtains the light-front supermembrane
Hamiltonian

H5
nT

4 E d2sS ẊiẊi1
2
n2 $Xi,Xj%$Xi,Xj%

2
2
n

uTg i$Xi,u% D , (50)

where u is a 16-component Majorana spinor of SO(9)
(de Wit, Hoppe, and Nicolai 1988). It is straightforward
to apply the matrix regularization procedure discussed
in Sec. II.C to this Hamiltonian. This gives the super-
symmetric form of matrix theory,

H5
1

~2plp
3 !

TrS 1
2

ẊiẊi2
1
4

@Xi,Xj#@Xi,Xj#

1
1
2

uTg i@Xi,u# D . (51)

F. Covariant membrane quantization

It is natural to think of generalizing the matrix regu-
larization approach to the covariant formulation of the
bosonic and supersymmetric membrane theories. For
the bosonic membrane it is straightforward to imple-
ment the matrix regularization procedure. There is a
technical difficulty, however. In the most convenient ap-
proach for quantizing gauge theories (Peskin and
Schroeder, 1995), it is necessary to define a Becchi-
Rouet-Stora-Tyutin (BRST) charge. In this case, how-
ever, the BRST charge needed to implement the gauge-
fixing procedure cannot be simply expressed in terms of
the Poisson bracket on the membrane (Fujikawa and
Okuyama, 1997). For the supermembrane, there is a
more serious complication related to the k symmetry of
the theory. As mentioned above, any gauge-fixing of the
k symmetry will break the eleven-dimensional Lorentz
invariance of the theory. This is the same difficulty that
one encounters when trying to construct a covariant
quantization of the Green-Schwarz superstring.
Fujikawa and Okuyama (1998) considered the possibil-
ity of fixing the k symmetry in a way that breaks the 32
of SO(10, 1) into 16R116L of SO(9, 1). Thus they found
a matrix formulation of a theory with explicit SO(9, 1)
Lorentz symmetry. Although this theory does not have
Rev. Mod. Phys., Vol. 73, No. 2, April 2001
the desired complete SO(10, 1) Lorentz symmetry of M
theory, it might be used to address some questions with
limited Lorentz invariance.

Another approach to finding a covariant version of
the matrix membrane involves the quantization of the
Nambu bracket. The Poisson bracket used to transform
Eq. (11) to Eq. (12) can be generalized to a higher-
dimensional algebraic structure known as the classical
Nambu bracket (Nambu, 1973). On a 3-manifold, the
Nambu bracket is given by

$f ,g ,h%5eabg~]af !~]bg !~]gh !. (52)

The Nambu-Goto form of the membrane action (6) can
be rewritten in terms of the classical Nambu bracket as

S52TE d3sA2det hab

52TE d3sA2
1
6

$Xm,Xn,Xl%$Xm ,Xn ,Xl%. (53)

If a finite matrix regularization of the Nambu bracket
could be constructed analogous to the usual quantiza-
tion of the Poisson bracket, it would lead to a matrix
regularization of the covariant membrane theory analo-
gous to the light-cone theory we have been discussing.
Some progress in this direction was made by Awata
et al. (1999) and Minic (1999); the reader is referred to
these papers for further references on this interesting
subject. An alternative approach to a covariant matrix
membrane theory was described by Smolin (1998).

III. THE MATRIX-MODEL OF M THEORY

As we have already discussed, it has been known for
over a decade that the light-front supermembrane
theory can be regularized and described as a supersym-
metric quantum mechanics theory. At the time that this
theory was first developed, however, it was believed that
the quantum supermembrane theory suffered from in-
stabilities that would make the low-energy interpreta-
tion as a theory of quantized gravity impossible. In 1996
supersymmetric matrix quantum mechanics was brought
back into currency as a candidate for a microscopic de-
scription of an eleven-dimensional quantum-mechanical
theory containing gravity by Banks, Fischler, Shenker,
and Susskind (1997, henceforth ‘‘BFSS’’). This sugges-
tion, which quickly became known as the ‘‘matrix-theory
conjecture,’’ was primarily motivated not by the quan-
tum supermembrane theory, but by considering the low-
energy theory of a system of many D0-branes as a par-
tonic description of light-front M theory.

In this section we discuss the apparent instability of
the quantized membrane theory and the BFSS conjec-
ture. We describe the membrane instability in Sec. III.A.
We describe the BFSS conjecture in Sec. III.B. In Sec.
III.C we describe the resolution of the apparent instabil-
ity of the membrane theory by an interpretation of ma-
trix theory in terms of a second-quantized theory of
gravity. Finally, in Sec. III.D we review an argument due



431Washington Taylor: M(atrix) theory
to Seiberg and Sen which shows that matrix theory
should be equivalent to a discrete light-front quantiza-
tion of M theory, even at finite N , assuming that M
theory and its compactification to type-IIA string theory
can be defined in a consistent fashion.

A. Membrane ‘‘instability’’

When de Wit, Hoppe, and Nicolai (1988) showed that
the regularized supermembrane theory could be de-
scribed in terms of supersymmetric matrix quantum me-
chanics, the general hope of the community was that the
quantized supermembrane theory would have a discrete
spectrum of states. In string theory the spectrum of
states in the Hilbert space of the string can be put into
one-to-one correspondence with elementary-particle-
like states in the target space. It is crucial for this inter-
pretation that the massless particle spectrum contain a
graviton and that there be a mass gap separating the
massless states from massive excitations. For the super-
membrane theory, however, the spectrum does not seem
to have these properties. This can be seen in both the
classical and the quantum membrane theories.

The simplest way to see the instability of the mem-
brane theory at the classical level is to consider a
bosonic membrane whose energy is given by the area of
the membrane times a constant tension T . Such a mem-
brane can have long narrow spikes at very low cost in
energy (see Fig. 1). If the spike is roughly cylindrical and
has a radius r and length L then the energy is 2prLT .
For a spike with very large L but a small radius r
!1/TL the energy cost is small but the spike is very
long. This heuristic picture indicates that a quantum
membrane will tend to have many fluctuations of this
type, making it difficult to conceive of the membrane as
an object that is well localized in space-time. Note that
the quantum string theory does not have this problem,
since a long spike in a string always has energy propor-
tional to the length of the string. In the matrix-
regularized version of the membrane theory, this insta-
bility appears as a set of flat directions in the classical
theory. For example, if we have a pair of N52 matrices
with nonzero entries of the form

FIG. 1. Spikes of infinitesimal area, from which classical mem-
brane instability arises.
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X15S x 0

0 0 D , X25S 0 y

y 0 D , (54)

then a potential term Tr @X1,X2#2 corresponds to a term
proportional to x2y2. If either x50 or y50 then the
other (nonzero) variable is unconstrained, giving flat di-
rections in the moduli space of solutions to the classical
equations of motion. This corresponds classically to a
marginal instability in the matrix theory with N.1.
(Note that in the previous section we distinguished ma-
trices Xi from related functions Xi by using bold font for
matrices. We shall henceforth drop this font distinction
as long as the difference can easily be distinguished from
context.)

In the quantum bosonic membrane theory, the appar-
ent instability from the flat directions is cured because of
the zero modes of off-diagonal degrees of freedom. In
the above example, for instance, if x takes a large value
then y corresponds to a harmonic-oscillator degree of
freedom with a large mass. The zero-point energy of this
oscillator becomes larger as x increases, giving an effec-
tive confining potential that removes the flat directions
of the classical theory. This would seem to resolve the
instability problem. Indeed, in the matrix-regularized
quantum bosonic membrane theory, there is a discrete
spectrum of energy levels for the system of N3N matri-
ces (Simon, 1983).

When we consider the supersymmetric theory, on the
other hand, the problem returns. The zero-point ener-
gies of the fermionic degrees of freedom conspire to pre-
cisely cancel the zero-point energies of the bosonic os-
cillators. This cancellation gives rise to a continuous
spectrum in the supersymmetric matrix theory. This re-
sult was proven by de Wit, Lüscher, and Nicolai (1989).
They showed that for any e.0 and any energy E
P@0,`) there exists a state c in the N52 maximally
supersymmetric matrix model that is normalizable
(* ucu25ici251) and that has

i~H2E !ci2,e . (55)

This implied that the spectrum of the supersymmetric
matrix quantum mechanics theory was continuous,3 and
hence it would not be possible to have a simple interpre-
tation of the states of the theory in terms of a discrete
particle spectrum. After this work there was little fur-
ther development on the supersymmetric matrix quan-
tum mechanics theory as a theory of membranes or
gravity until almost a decade later.

B. The conjecture of Banks, Fischler, Shenker,
and Susskind

Motivated by recent work on D-branes and string du-
alities, Banks, Fischler, Shenker, and Susskind (1997)
proposed that the large-N limit of the supersymmetric
matrix quantum mechanics model described by Eq. (5)

3Note that de Wit, Lüscher, and Nicolai did not resolve the
question of whether a state existed with identically vanishing
energy H50 (see Sec. V.A).
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should describe all of M theory in a light-front coordi-
nate system. Although this conjecture fits neatly into the
framework of the quantized membrane theory, the start-
ing point of BFSS was to consider M theory compacti-
fied on a spacelike circle S1, with a large momentum in
the compact direction. As discussed in Sec. I.B, when M
theory is compactified on S1 the resulting ten-
dimensional theory is a type-IIA string theory. The
quanta corresponding to momentum in the compact di-
rection x11 are the D0-branes of the IIA theory. In the
‘‘infinite-momentum frame’’ of M theory, where the mo-
mentum p11 is taken to be very large, the dynamics of
the theory become nonrelativistic (Weinberg, 1966;
Kogut and Susskind, 1973). Banks, Fischler, Shenker,
and Susskind argued that these dynamics should be de-
scribed by the large-N limit of a nonrelativistic system of
D0-branes.

The low-energy Lagrangian for a system of N type-
IIA D0-branes is the matrix quantum mechanics La-
grangian arising from the dimensional reduction to 0
11 dimensions of the 10D super Yang-Mills Lagrangian
(Witten, 1996; see Polchinski, 1996 or Taylor, 1998 for a
review):

L5
1

2gls
Tr F ẊaẊa1

1
2

@Xa,Xb#21uT~ i u̇2Ga@Xa,u#!G .

(56)
In this action the gauge has been fixed to A050. Just as
in Eq. (51), Xa are 9 N3N bosonic matrices and u are
16 Grassmann N3N matrices. Using the relations R
5g2/3l115gls from Eq. (4), we see that in string units
(2pls

251) we can replace gls5R52pl11
3 . Thus the

Hamiltonian associated with Eq. (56) is in fact precisely
equivalent to the matrix membrane Hamiltonian (51).
This connection and its possible significance were first
pointed out by Townsend (1996a). The fact that l11
arises as the basic length scale in D0-brane quantum
mechanics was discussed by Kabat and Pouliot (1996)
and Douglas, Kabat, et al. (1997); this was an early indi-
cation that D0-branes might play a fundamental role as
constituents of M theory (see also Shenker, 1995, for a
discussion of substring distance scales). The matrix-
theory Hamiltonian is often written, following BFSS, in
the form

H5
R

2
TrS PiPi2

1
2

@Xi,Xj#@Xi,Xj#1uTg i@Xi,u# D ,

(57)

where we have rescaled X/g1/3→X and written the
Hamiltonian in Planck units l1151. It is this Hamiltonian
that BFSS conjectured should correspond with the
infinite-momentum limit of M theory when N→` .

The original BFSS conjecture was made in the context
of the large-N theory. It was later argued by Susskind
(1997a) that the finite-N matrix quantum mechanics
theory should be equivalent to the discrete light-cone
quantization (DLCQ; see, for example, Pauli and Brod-
sky, 1985) sector of M theory with N units of compact
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momentum. We describe in Sec. III.D below an argu-
ment due to Seiberg and Sen that makes this connection
more precise and that justifies the use of the low-energy
D0-brane action in the BFSS conjecture.

While the BFSS conjecture was based on a philosophy
different from that underlying matrix quantization of the
supermembrane theory, the fact that the M-theory
membrane can be described as a classical configuration
in the matrix quantum mechanics theory was a substan-
tial piece of additional evidence for the validity of the
BFSS conjecture. Two additional pieces of evidence
were given by BFSS which extended their conjecture
beyond previous work on the matrix membrane theory.
The first was that the Hilbert space of the matrix quan-
tum mechanics theory naturally contains multiple par-
ticle states. This observation, which we discuss in more
detail in the following section, resolves the problem of
the continuous spectrum discussed above. The second
was the fact that quantum effects in matrix theory give
rise to long-range interactions between a pair of gravita-
tional quanta (D0-branes). These interactions have pre-
cisely the structure expected from light-front supergrav-
ity. This result was first shown for D0-branes by a
calculation of Douglas, Kabat, et al. (1997); we shall dis-
cuss this result and its generalization to more general
matrix-theory interactions in Sec. IV.

C. Matrix theory as a second-quantized theory

The classical equations of motion for a bosonic matrix
configuration with the Hamiltonian (5) are (up to an
overall constant)

Ẍi52†@Xi,Xj# ,Xj
‡. (58)

If we consider a block-diagonal set of matrices

Xi5S X̂i 0

0 X̃iD (59)

with first time derivatives Ẋi which are also of block-
diagonal form, then the classical equations of motion for
the blocks are separable,

X̂
¨ i52†@X̂i,X̂j# ,X̂j

‡, Ẍ̃ i52†@X̃i,X̃j# ,X̃j
‡. (60)

If we think of these blocks as describing two matrix-
theory objects with centers of mass

x̂ i5
1

N̂
Tr X̂i, x̃ i5

1

Ñ
Tr X̃i, (61)

then we have two objects obeying classically indepen-
dent equations of motion (see Fig. 2). It is straightfor-
ward to generalize this construction to a block-diagonal
matrix configuration describing k classically indepen-
dent objects. This gives a simple indication of how ma-
trix theory can encode, even in finite-N matrices, a con-
figuration of multiple objects. In this sense it is natural
to think of matrix theory as a second-quantized theory
from the point of view of the target space.
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Given the realization that matrix theory should de-
scribe a second-quantized theory, the puzzle discussed
above regarding the continuous spectrum is easily re-
solved. Assume that there is a state in matrix theory
corresponding to a single graviton of M theory with H
50, which is roughly a localized state (we shall discuss
such states in greater detail in Sec. V.A). By taking two
of these gravitons to have a large separation and a small
relative velocity v , it should be possible to construct a
two-body state with an arbitrarily small total energy us-
ing block-diagonal matrices. Since the D0-branes of the
IIA theory correspond to gravitons in M theory with a
single unit of longitudinal momentum, we therefore
naturally expect to find a continuous spectrum of ener-
gies, even in the theory with N52. This resolves the
puzzle found by de Wit, Lüscher, and Nicolai in a very
pleasing fashion and suggests that matrix theory is per-
haps even more powerful than perturbative string
theory, which gives only a first-quantized theory in the
target space.

The second-quantized nature of matrix theory can
also be seen heuristically in the continuous-membrane
theory. Recall that the instability of membrane theory
appears in the classical theory of a continuous mem-
brane when we consider the possibility of long thin
spikes of negligible energy, as discussed in Sec. III.A. In
a similar fashion, it is possible for a classical smooth
membrane of fixed topology to be mapped to a configu-
ration in the target space that looks like a system of
multiple distinct macroscopic membranes connected by
infinitesimal tubes of negligible energy (see Fig. 3). In
the limit where the tubes become very small, their effect
on the classical dynamics of the multiple-membrane con-
figuration becomes negligible, and we effectively have a
system of multiple independent membranes moving in
the target space. At the classical level, the sum of the
genera of the membranes in the target space must be
equal to or smaller than the genus of the single world-
sheet membrane, but when quantum effects are included
handles can be added to the membrane as well as re-
moved. These considerations seem to indicate that any
consistent quantum theory that contains a continuous
membrane in its effective low-energy theory must con-
tain configurations with arbitrary membrane topology
and must therefore be a ‘‘second-quantized’’ theory
from the point of view of the target space.

FIG. 2. Two matrix-theory objects described by block-
diagonal matrices.
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D. Matrix theory and discrete light-cone quantization

A theory that has been compactified on a lightlike
circle can be viewed as a limit of a theory compactified
on a spacelike circle where the size of the spacelike
circle becomes vanishingly small. This point of view was
used by Seiberg (1997b) and Sen (1998) to argue that
light-front compactified M theory is described through
such a limiting process by the low-energy Lagrangian for
many D0-branes, and hence by matrix theory. In this
section we review this argument in detail. Other per-
spectives on the DLCQ limit are given by Balasubrama-
nian, Gopakumar, and Larsen (1998) and de Alwis
(1999). A nice synthesis of the various approaches to the
matrix-theory limit is given by Polchinski (1999).

Consider a space-time that has been compactified on a
lightlike circle by identifying

S x
t D;S x2R/&

t1R/& D . (62)

This theory has a quantized momentum in the compact
direction P15N/R . The compactification (62) can be
described as a limit of a family of spacelike compactifi-
cations

S x
t D;S x2AR2/21Rs

2

t1R/& D (63)

parametrized by the size Rs→0 of the spacelike circle,
which is taken to vanish in the limit.

The system satisfying Eq. (63) is related to a system
with the identification

S x8
t8 D;S x82Rs

t8 D (64)

through a boost with boost parameter b given by

b5
1

A11
2Rs

2

R2

'12
Rs

2

R2 . (65)

We are interested in compactifying M theory on a
lightlike circle. This is related through the above limiting

FIG. 3. Membrane of fixed (spherical) topology mapped to
multiple membranes connected by tubes in the target space.
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process to a family of spacelike compactifications of M
theory, which we know can be identified with the IIA
string theory. At first glance, it may seem that the limit
we are considering here is difficult to analyze from the
IIA point of view. The IIA string coupling and string
length are related to the compactification radius and
11D Planck length as in Eq. (4) by

g5S Rs

l11
D 3/2

, ls
2

l11
3

Rs
.

Thus in the limit Rs→0 the string coupling g becomes
small as desired; the string length ls , however, goes to
` . Since ls

25a8, this corresponds to a limit of vanishing
string tension. Such a limiting theory is very complicated
and would not seem to provide a useful alternative de-
scription of the theory.

Let us consider, however, how the energy of the states
we are interested in behaves in the class of limiting theo-
ries with spacelike compactification. If we want to de-
scribe the behavior of a state that has light-front energy
P2 and compact momentum P15N/R , then the spatial
momentum in the theory with spatial Rs compactifica-
tion is P85N/Rs . The energy in the spatially compacti-
fied theory is

E85N/Rs1DE , (66)

where DE is at the energy scale we are interested in
understanding. The term N/Rs in the energy is simply
the mass energy of the N D0-branes that correspond to
the momentum in the compactified M-theory direction.
Relating back to the near lightlike compactified theory
we have

P25
1

&
~E2P !5

1

&

11b

A12b2
DE'

R

Rs
DE . (67)

As a result we see that the energy DE of the IIA con-
figuration needed to approximate the light-front energy
P2 is given by DE'P2Rs /R . We know that the string
mass scale 1/ls becomes small as Rs→0. We can com-
pare the energy scale of interest to this string mass scale,
however, and find

DE

~1/ls!
5

P2

R
Rsls5

P2

R
ARsl11

3 . (68)

This ratio vanishes in the limit Rs→0, which implies
that, although the string scale vanishes, the energy scale
of interest is smaller still. Thus it is reasonable to study
the lightlike compactification through a limit of spatial
compactifications in this fashion.

To make the correspondence between the light-front
compactified theory and the spatially compactified limit-
ing theories more transparent, we perform a change of
units to a new Planck length l̃ 11 in the spatially compac-
tified theories in such a way that the energy of the states
of interest is independent of Rs . For this condition to
hold we must have
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DE l̃ 115P2
Rsl11

2

R l̃ 11

, (69)

where E, R, and P2 are independent of Rs and all units
have been explicitly included. This requires us to keep
the quantity Rs / l̃ 11

2 fixed in the limiting process. Thus in
the limit l̃ 11→0.

We can summarize the preceding discussion as fol-
lows: to describe the sector of M theory corresponding
to light-front compactification on a circle of radius R
with light-front momentum P15N/R we may consider
the limit Rs→0 of a family of IIA configurations with N
D0-branes in which the string coupling and string length

g̃5~Rs / l̃ 11!
3/2→0, l̃ s5A l̃ 11

3 /Rs→0 (70)

are defined in terms of a Planck length l̃ 11 and compac-
tification length Rs which satisfy Rs / l̃ 11

2 5R/l11
2 . All

transverse directions scale normally through x̃ i/ l̃ 11
5xi/l11 .

To give a concrete example of how this limiting pro-
cess works, let us consider a system with a single unit of
longitudinal momentum P151/R . We know that in the
corresponding IIA theory we have a single D0-brane
whose Lagrangian has the relativistic Born-Infeld form

L52
1

g̃ l̃ s

A12x8 ix8 i. (71)

Expanding the square root, we have

L52
1

g̃ l̃ s

S 12
1

2
x8 ix8 i1O~x8 4!D . (72)

Replacing g̃ l̃ s→Rs and x̃→x l̃ 11 /l11 gives

L52
1

Rs
1

1
2R

ẋiẋ i1O~Rs /R !. (73)

Thus we see that all the higher-order terms in the Born-
Infeld action vanish in the Rs→0 limit. The leading term
is the D0-brane energy 1/Rs , which we subtract to com-
pare to the M-theory light-front energy P2. Although
we do not know the full form of the non-Abelian Born-
Infeld action describing N D0-branes in IIA, it is clear
that an analogous argument shows that all terms in this
action other than those in the nonrelativistic supersym-
metric matrix theory action (56) will vanish in the limit
Rs→0.

This argument apparently demonstrates that matrix
theory gives a complete description of the dynamics of
DLCQ M theory. There are several caveats that should
be taken into account, however, with respect to this dis-
cussion. First, in order for this argument to be correct, it
is necessary that there exist a well-defined theory with
the properties expected of M theory and that there exist
a well-defined IIA string theory that arises as the com-
pactification of M theory. Neither of these statements is
at this point definitely established. Thus this argument
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must be taken as contingent upon the definition of these
theories. Second, although we know that 11D supergrav-
ity arises as the low-energy limit of M theory, this argu-
ment does not necessarily indicate that matrix theory
describes DLCQ supergravity in the low-energy limit. It
may be that to make the connection to supergravity it is
necessary to deal with subtleties of the large-N limit.

While there are reasons to suspect that care must be
taken with this argument when N becomes large, there
are also some aspects of the story that become much
clearer at large N . For large N , the rest energy N/Rs
from Eq. (66) becomes very large and modifies the flat
space-time geometry we have assumed in this discussion.
As discussed by Hyun, Kiem, and Shin (1998), Bala-
subramanian, Gopakumar, and Larsen (1998), Itzhaki
et al. (1998), and Polchinski (1999), this back reaction
produces a ‘‘bubble’’ of 11D space-time in the vicinity of
the 0-branes, which in the large-N limit decompactifies
the space-time. From the 10D point of view, this pro-
vides an explanation of how 11D physics can be de-
scribed by weakly coupled string theory in ten dimen-
sions. The local gravitational effects of the D0-branes
also have the effect of making the periodic dimension
spacelike rather than lightlike, so that the problems of
zero modes usually associated with light-front field theo-
ries are avoided.

In the following sections we shall discuss some more
explicit approaches to connecting matrix theory with su-
pergravity. In particular, we shall see how far it is pos-
sible to go in demonstrating that 11D supergravity arises
from calculations in the finite-N version of matrix
theory, which is a completely well-defined theory.

IV. INTERACTIONS IN MATRIX THEORY

As we discussed in Sec. III.C, a many-body system is
described in matrix theory by a set of block-diagonal
matrices. Classically, the blocks describing each object
evolve independently, so that there are no classical in-
teractions in matrix theory between separated objects.
How, then, can matrix theory be said to describe even
classical gravitational interactions?

The answer to this question is quite remarkable and is
one of the most important features of this theory. It
turns out that classical gravitational interactions arise
through quantum loop effects in matrix theory. The first
example of this classical-quantum correspondence was
used as a piece of evidence for the validity of the 1996
matrix theory conjecture by BFSS. These authors
pointed out that earlier work on D0-brane scattering in
type-IIA string theory by Douglas, Kabat, et al. (1997)
gave a leading-order interaction between a pair of indi-
vidual D0-branes that agrees precisely with the interac-
tion between a pair of gravitons in 11-dimensional su-
pergravity according to the conjectured matrix theory
correspondence. The interaction between the D0-branes
in this calculation arises from a one-loop quantum-
mechanical calculation, while the leading interaction be-
tween gravitons in 11 dimensions is purely a classical
effect arising from the linearized gravity theory. It was
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shown by Paban, Sethi, and Stern (1998a) that the lead-
ing one-loop interaction term in matrix theory is exact
and is protected by a supersymmetric nonrenormaliza-
tion theorem. A power-counting argument (Becker et al.
1997) indicates that nth-order nonlinear gravitational ef-
fects require n-loop interactions in the matrix quantum
mechanics. This leads to the hypothesis that perhaps all
classical gravitational interactions can be reproduced by
perturbative calculations in matrix theory. At the linear-
ized level this statement seems to be correct. It was
shown by Kabat and Taylor (1998b) that all linearized
gravitational interactions between a pair of bosonic
sources can be reproduced by a general one-loop
matrix-theory calculation. Taylor and Van Raamsdonk
(1999a) generalized this result to quadratic order in fer-
mions. Beyond the linearized theory, however, this hy-
pothesis is less strongly supported. There is evidence
that some simple nonlinear gravitational interactions are
correctly reproduced by perturbative calculations in ma-
trix theory, including an impressive demonstration of
agreement between three-graviton interactions and a
two-loop calculation in N53 matrix theory by Okawa
and Yoneya (1999a, 1999b). It has also been argued by
Dine, Echols, and Gray (2000), however, that terms
arise in a three-loop matrix-theory calculation that can-
not correspond to third-order gravitational effects.
While some of the one-loop and two-loop interaction
terms are protected by supersymmetric nonrenormaliza-
tion theorems (Paban, Sethi, and Stern, 1998a, 1998b),
there is no evidence that higher-loop effects are simi-
larly constrained. Thus, even if the matrix-theory conjec-
ture is correct, it may not be possible to demonstrate
directly the correspondence with supergravity by pertur-
bative finite-N calculations in matrix quantum mechan-
ics. In this section we describe the perturbative
matrix-theory calculations just discussed and the corre-
spondence with supergravity interactions in some detail
and also discuss the known supersymmetric nonrenor-
malization theorems and their consequences.

In Sec. IV.A we consider perturbative calculations of
two-body interactions in matrix theory. We begin by re-
viewing the perturbative Yang-Mills formalism in back-
ground field gauge, which can be used to carry out loop
calculations in matrix theory. We describe in detail the
one-loop calculation for a pair of D0-branes with rela-
tive velocity v . We then summarize the results of the
one-loop calculation for a general two-body interaction
and show that these interaction terms can be described
by a sum of linearized supergravity interactions arising
from the exchange of a single graviton, 3-form quantum,
or gravitino. We review results on spin effects and
higher-order terms for interactions between a pair of
matrix-theory gravitons, and we discuss nonrenormaliza-
tion theorems and their implications for two-graviton in-
teractions. In Sec. IV.B we discuss interactions between
more than two objects. We discuss the N-body problem
in general, and we review positive results for three-
graviton scattering and negative results for the scattering
of four or more gravitons. Section IV.C contains a brief
discussion of interactions involving longitudinal momen-
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tum transfer, which correspond to nonperturbative pro-
cesses in matrix theory. In Sec. IV.D we review the sta-
tus of the correspondence between matrix theory and
supergravity and discuss possible subtleties in the large-
N limit. We also briefly discuss work on reproducing
quantum corrections to supergravity interactions from
the matrix-theory point of view. All the analysis in this
section deals with matrix theory in a flat space-time
background. Some progress towards understanding ma-
trix theory in a curved space-time background is re-
viewed in Sec. VI.B.

A. Two-body interactions

1. The background field formalism

In this section we review the background field formal-
ism for Yang-Mills theory in the context of the
(011)-dimensional matrix quantum mechanics theory.
For a more complete introduction to the background
field method, see, for example, Abbott (1981, 1982).
Starting from the dimensionally reduced Yang-Mills ac-
tion describing a system of N D0-branes (without gauge-
fixing A), the matrix theory Lagrangian is

L5
1

2R
Tr FD0Xi D0Xi1

1
2

@Xi,Xj#2

1uT~ i u̇2g i@Xi,u#!G , (74)

where

D0Xi5] tX
i2i@A ,Xi# . (75)

We wish to expand each of the matrix-theory fields
around a classical background. We shall assume here for
simplicity that the background has a vanishing gauge
field and vanishing fermionic fields. The general situa-
tion with background fermionic fields as well as bosonic
fields is described by Taylor and Van Raamsdonk
(1999a). We expand the bosonic fields in terms of a
background plus a fluctuation,

Xi5Bi1Yi.

We choose the background field gauge

Dm
bgAm5] tA2i@Bi,Xi#50. (76)

This gauge can be implemented by adding a term
2(Dm

bgAm)2 to the action and including the appropriate
ghosts. The nice feature of this gauge is that the terms
quadratic in the bosonic fluctuations simplify consider-
ably.

The complete gauge-fixed action including ghosts is
written in Euclidean time t5it as

S5S01S21S31S4 , (77)

where

S05
1

2R E dt Tr F]tBi]tBi1
1
2

@Bi,Bj#2G ,
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S25
1

2R E dt Tr †]tYi]tYi2@Bi,Yj#@Bi,Yj#

2@Bi,Bj#@Yi,Yj#1]tA]tA2@Bi,A#@Bi,A#

22iḂ i@A ,Yi#1]tC̄]tC2@Bi,C̄#@Bi,C#

1uTu̇2uTg i@Bi,u#‡, (78)

and where S3 and S4 contain terms cubic and quartic in
the fluctuations Yi,A ,C ,u . These interaction terms are
given explicitly by Becker and Becker (1997). Note that
we have taken A→2iA as appropriate for the Euclid-
ean formulation.

This gauge-fixed action can be used to perturbatively
compute the effective action governing the interaction
between any set of matrix-theory objects. This effective
action in turn determines the scattering phase shift of
the objects in the eikonal approximation. In general, to
calculate the effective interaction potential to arbitrary
order it is necessary to include the terms S3 and S4 in
the action. The propagators for each of the fields can be
computed from the quadratic term S2 . A systematic dia-
grammatic expansion then yields the effective potential
to arbitrarily high order. The only calculations that we
describe in detail here are one-loop terms in the effec-
tive potential, for which the quadratic action S5S0
1S2 is sufficient.

2. Two-graviton interactions at leading order

According to the BFSS conjecture, a 131 matrix de-
scribing a single D0-brane in type-IIA string theory cor-
responds to a graviton of M theory with longitudinal
momentum p151/N . As we shall discuss in further de-
tail in Sec. V.A, at distances large compared to the size
of the wave function describing the single graviton, it is
sufficient to use a classical approximation Xi5ai1v it
for the bosonic fields describing a single D0-brane mov-
ing along a linear trajectory in transverse nine-
dimensional space with velocity v i and position ai at
time t50. Given this interpretation of a classical 131
matrix, and the many-body interpretation of block-
diagonal matrices described in Sec. III.C, a classical
background describing a pair of gravitons with relative
velocity v and impact parameter b is given in the center-
of-mass frame in the Euclidean theory by

B15
2i

2 S vt 0

0 2vt D , B25
1
2 S b 0

0 2b D ,

Bi50, i.2. (79)

In assuming this classical background we have ignored
polarization effects, which are discussed in Secs. IV.A.5
and V.A.2. Following Douglas, Kabat, et al. (1997), we
can use the matrices (79) as a background and perform a
one-loop calculation to find the leading long-range inter-
action between these two matrix-theory gravitons. Re-
lated earlier calculations were performed by Bachas
(1996) and Lifschytz (1996).
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Inserting the background (79) into Eq. (78) we see
that at a fixed value of time the Lagrangian at quadratic
order for the ten complex bosonic off-diagonal compo-
nents of A and Yi is that of a system of ten harmonic
oscillators with mass matrix

~Vb!25S r2 22iv 0 ¯ 0

2iv r2 0 � 0

0 0 r2
� A

A � � � 0

0 0 ¯ 0 r2

D , (80)

where r25b21(vt)2 is the instantaneous separation be-
tween the gravitons. There are two complex off-diagonal
ghosts with V25r2. There are 16 fermionic oscillators
with a mass-squared matrix

~V f!
25r21163161vg1 . (81)

To perform a completely general calculation of the
two-body effective interaction potential to all orders in
1/r it is necessary to perform a diagrammatic expansion
using the exact propagators for the bosonic and fermi-
onic fields. For example, the bosonic propagator satisfy-
ing

~2]21b21v2t2!DB~t ,t8ub21v2t2!5d~t2t8! (82)

is given by the expression (Becker and Becker, 1997)

DB~t ,t8ub21v2t2!5E
0

`

ds e2b2sA v
2p sinh 2sv

3expS 2
v

2 sinh 2sv
@~t21t2!

3cosh 2sv22tt8# D . (83)

In general, even for a simple two-graviton calculation
there is a fair amount of algebra involved in extracting
the effective potential using propagators of the form of
Eq. (83). If, however, we are only interested in calculat-
ing the leading term in the long-range interaction poten-
tial we can simplify the calculation by making the qua-
sistatic assumption4 that all the oscillator frequencies v
of interest are large compared to the ratio v/r . In this
approximation, all the oscillators stay in their ground
state over the time of the interaction, so that the effec-
tive potential between the two objects is simply given by
the sum of the ground-state energies of the boson, ghost,
and fermion oscillators,

Vqs5(
b

vb2(
g

vg2
1
2 (

f
v f . (84)

(Note that the bosonic and ghost oscillators are com-
plex, so that no factor of 1/2 is included.)

4The validity of this approximation is discussed by Tafjord
and Periwal (1998).
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In the situation of two-graviton scattering we can
therefore calculate the effective potential by diagonaliz-
ing the frequency matrices Vb , Vg , and V f . We find
that the bosonic oscillators have frequencies

vb5r with multiplicity 8,

vb5Ar262v with multiplicity 1 each.

The two ghosts have frequencies vg5r , and the 16 fer-
mions have frequencies

v f5Ar26v with multiplicity 8 each. (85)

The effective potential for a two-graviton system with
instantaneous relative velocity v and separation r is thus
given by the leading term in a 1/r expansion of the ex-
pression

V5Ar212v1Ar222v16r24Ar21v14Ar22v . (86)

Expanding in v/r2 we see that the terms of order r, v/r ,
v2/r3, and v3/r5 all cancel. The leading term is

V52
15
16

v4

r7 1OS v6

r11D . (87)

As mentioned above, this result agrees with the lead-
ing term in the effective potential between two gravitons
with P151/R in light-front 11D supergravity. We shall
discuss the supergravity side of this calculation in more
detail in the following section.

3. General two-body systems and linearized supergravity at
leading order

We now generalize the background to include an ar-
bitrary pair of bosonic matrix-theory objects, described
by block-diagonal matrices

Bi5S X̂i 0

0 X̃iD , (88)

where X̂i and X̃i are N̂3N̂ and Ñ3Ñ matrices. The
separation distance between the objects, which we will
use as an expansion parameter, is given by

ri5
1

N̂
Tr X̂i2

1

Ñ
Tr X̃i. (89)

To compute the leading term in the interaction poten-
tial, following Kabat and Taylor (1998b), we insert Eq.
(88) into Eq. (78) and, as in the simpler two-graviton
example, compute the frequency matrices for the
bosons, ghosts, and fermions. We summarize here the
results of this calculation. Expanding the frequency ma-
trices as before in powers of 1/r and using Eq. (84), for a
completely arbitrary pair of objects the potential again
vanishes to order 1/r7. At this order the potential is

V leading5Tr~Vb!2
1
2

Tr~V f!22 Tr~Vg!

52
5

128r7 STr F, (90)
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where

F524Fm
nFn

lFl
sFs

m26FmnFmnFlsFls (91)

and STr indicates that the trace is symmetrized over all
possible orderings of the F’s. The field strength Fmn is a
linear combination of contributions from each of the
two objects,

Fmn5F̂mn2F̃mn , (92)

where F̂mn and F̃mn are defined through

F0i5Ẋi, Fij5i@Xi,Xj# (93)

in terms of X̂ and X̃ , respectively.
Because of the linear structure of Eq. (92), it is pos-

sible to decompose the potential V leading into a sum of
terms that are written as products of a function of X̂ and
a function of X̃ , where the terms can be grouped accord-
ing to the number of Lorentz indices contracted be-
tween the two objects. With some algebra, this potential
can be rewritten in the suggestive form

V leading5Vgravity1Velectric1Vmagnetic , (94)

Vgravity52
15R2

4r7 S T̂ IJT̃IJ2
1
9

T̂ I
IT̃ J

JD , (95)

Velectric52
45R2

r7 Ĵ IJKJ̃IJK , (96)

Vmagnetic52
45R2

r7 M̂12ijklM̃21ijkl. (97)

This is, as we shall discuss shortly, precisely the form of
the interactions we expect to see from 11D supergravity
in light-front coordinates, where T, J, and M play the
roles of the (integrated) stress tensor, membrane cur-
rent, and M5-brane current of the two objects. The
quantities appearing in this decomposition are defined
as follows.

The matrix stress tensor T IJ is a symmetric tensor with
components

T 225
1
R

STr
F
96

, (98)

T 2i5
1
R

STr S 1
2

ẊiẊjẊ j1
1
4

ẊiFjkFjk1FijFjkẊkD ,

T 125
1
R

STr S 1
2

ẊiẊi1
1
4

FijFijD ,

T ij5
1
R

STr ~ẊiẊj1FikFkj!,

T 1i5
1
R

STr Ẋi,

T 115
N

R
.

The matrix membrane current J IJK is a totally anti-
symmetric tensor with components
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J 2ij5
1

6R
STr S ẊiẊkFkj2ẊjẊkFki2

1
2

ẊkẊkFij

1
1
4

FijFklFkl1FikFklFljD ,

J 12i5
1

6R
STr ~FijẊj!, (99)

J ijk52
1

6R
STr ~ẊiFjk1ẊjFki1ẊkFij!,

J 1ij52
1

6R
STr Fij.

Note that we retain some quantities—in particular,
J 12i and J 1ij—which vanish at finite N (by the Gauss
constraint and antisymmetry of Fij, respectively). These
terms represent membrane charges that are present only
in the large-N limit. We also define higher moments of
these terms below that can be nonvanishing at finite N ;
the existence of these higher moments makes it useful to
include these formally vanishing terms even at finite N .

The matrix M5-brane current M IJKLMN is a totally
antisymmetric tensor with

M 12ijkl5
1

12R
STr ~FijFkl1FikFlj1FilFjk!. (100)

At finite N this vanishes by the Jacobi identity, but we
shall retain it for the reasons noted above. This term
represents the charge of an M5-brane wrapped in the
longitudinal (X2) direction. The other components of
M IJKLMN do not appear in the matrix potential. In prin-
ciple, we expect another component of the M5-brane
current, M 2ijklm, to be well defined. This term arises
from a moving longitudinal M5-brane and does not ap-
pear in the two-body interaction formula because it
would couple to the charge M 1ijklm of a transverse (un-
wrapped) M5-brane. As we discuss in Sec. V.D, this
charge is expected to vanish classically in matrix theory.
The component M 2ijklm can, however, be determined
from the conservation of the M5-brane current and was
shown by Van Raamsdonk (1999) to be given by

M 2ijklm5
5

4R
STr ~Ẋ [iFjkFlm]!. (101)

Let us now compare the interaction potential Eq. (94)
with the leading long-range interaction between two ob-
jects in 11-dimensional light-front compactified super-
gravity. The scalar propagator in 11 dimensions is

h21~x !5
1

2pR(
n
E dk2d 9k'

~2p!10

3
e2i ~n/R ! x22ik2x11ik'•x'

2
n

R
k22k'

2
, (102)

where n counts the number of units of longitudinal mo-
mentum k1. To compare the leading term in the long-
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distance potential with matrix theory, we extract the n
50 term, corresponding to interactions mediated by ex-
change of a supergraviton with no longitudinal momen-
tum,

h21~x2y !5
1

2pR
d~x12y1!

215
32p4ux'2y'u7 . (103)

Note that the exchange of quanta with zero longitudinal
momentum gives rise to interactions that are instanta-
neous in light-front time, as emphasized by Hellerman
and Polchinski (1999). This is precisely the type of in-
stantaneous interaction that arises at one loop in matrix
theory. Such action-at-a-distance potentials are allowed
by the Galilean invariance manifest in the light-front
formalism.

The graviton propagator can be written in terms of
this scalar propagator as

Dgraviton
IJ ,KL 52k2S hIKhJL1hILhJK2

2
9

hIJhKLD
3h21~x2y !, (104)

where 2k25(2p)5R3 in string units. The effective su-
pergravity interaction between two objects having stress
tensors T̂IJ and T̃KL can then be expressed as

S52
1
4 E d11x d11y T̂IJ~x !Dgraviton

IJ ,KL ~x2y !T̃KL~y !.

(105)

This interaction has a leading term of precisely the form
of Eq. (95) if we define T g

IJ to be the integrated compo-
nent of the stress tensor,

T g
IJ[E dx2d 9x'TIJ~x !. (106)

It is straightforward to show in a similar fashion that
Eqs. (96) and (97) are precisely the forms of the leading
supergravity interaction mediated by 3-form exchange
between membrane currents and M5-brane currents of a
pair of objects.

In this section we have summarized the analysis of the
leading two-body interaction potential between an arbi-
trary pair of bosonic matrix-theory objects. This analysis
was generalized to include all quadratic and some quar-
tic terms in the fermionic matrices by Taylor and Van
Raamsdonk (1999a). With the inclusion of fermions and
the added assumption that the background fields satisfy
the classical equations of motion, the general form of
the leading matrix-theory potential in Eq. (94) remains
essentially unchanged, although the integrated matrix-
theory currents given by Eqs. (98)–(100) acquire addi-
tional terms at quadratic and higher order in the fermi-
ons. Furthermore, with the inclusion of fermionic
backgrounds, new interaction terms between fermionic
sources appear which correspond to linearized gravita-
tional interactions mediated by the gravitino. These in-
teraction terms allow for the identification of the fermi-
onic components of the matrix-theory supercurrent.
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The fact that Eq. (94) (and its generalization to in-
clude fermions) is exactly the form of the leading long-
range supergravity interaction between a general pair of
supercurrent sources implies that matrix theory cor-
rectly reproduces all leading-order linearized supergrav-
ity interactions5 and that the integrated stress tensor,
membrane current, and M5-brane current of M-theory
objects are encoded in the N3N matrix degrees of free-
dom of matrix theory through Eqs. (98)–(100). An alter-
native approach to finding the matrix-theory stress ten-
sor and membrane current is to compute the stress
tensor and membrane current of the membrane from
the continuous theory defined by the action (49) for the
bosonic membrane in a general background. The
matrix-theory stress tensor and membrane current
should then follow from the matrix-membrane corre-
spondence given in Eq. (37). This calculation was per-
formed by Kabat and Taylor (1998b) and Dasgupta,
Nicolai, and Plefka (2000). It turns out that indeed the
matrix definitions given above for the stress tensor and
membrane current are compatible with the expressions
for the analogous expressions for continuum membrane,
including higher-moment terms that we discuss in the
next section. The matrix expressions are not uniquely
determined by this correspondence, however. Addi-
tional terms appear in the matrix-theory currents which
depend upon the higher degree of sensitivity to operator
ordering afforded by the matrix description. These
terms, like the appearance of longitudinal M5-branes,
seem to be examples of new physical properties that are
mysteriously added to the system in the matrix regular-
ization process, making the regularized theory in many
ways richer than the initial continuous membrane theory
would suggest.

4. General two-body interactions

In the previous sections we have considered only the
leading 1/r7 terms in the two-body interaction potential.
In this section we discuss higher-order terms in the in-
teraction potential between a general pair of sources.

Let us begin by considering the series of subleading
terms in the linearized supergravity potential between a
general pair of sources arising from higher multipole
moments of the supergravity currents for the two

5Prior to and following the proof of this general result, the
agreement between one-loop matrix calculations and leading
long-distance interactions due to linearized supergravity was
verified in specific examples of two-body backgrounds by Aha-
rony and Berkooz (1997), Balasubramanian and Larsen
(1997), Berenstein and Corrado (1997), Chepelev and Tseytlin
(1997, 1998a), Lifschytz (1997, 1998a), Lifschytz and Mathur
(1997), Pierre (1997, 1998), Billó, Di Vecchia, Frau, Lerda,
Pesando, et al. (1998) Brandhuber et al. (1998), Fatollahi, Ka-
viani, and Parvizi (1998), Gopakumar and Ramgoolam (1998),
Hari Dass and Sathiapalan (1998), Kabat and Taylor (1998a),
Keski-Vakkuri and Kraus (1998a, 1998b), Maldacena (1998a,
1998b), Hyun, Kiem, and Shin (1999b), and Massar and Troost
(2000).



440 Washington Taylor: M(atrix) theory
sources. Performing a Taylor-series expansion around
the origin for each of the two stress tensor sources in Eq.
(105), for example, we find an infinite series of terms in
the effective potential arising from linearized graviton
exchange,

Vgravity5 (
m<n50

`

2
15R2

4 r7 F ~21 !n2m

~n2m !!m!
T̂g

IJ(i1i2¯in2m)

3S hIKhJL2
1
9

hIJhKLD T̃g
KL(j1j2¯jm)

3] i1
] i2

¯] in2m
] j1

] j2
¯] jmS 1

r7D G , (107)

where the moments of the stress tensor in the supergrav-
ity theory are defined through

T g
IJ(i1i2¯in)

[E dx2d 9x'@TIJ~x !xi1xi2
¯xin# .

Similar multipole interactions arise from the exchange
of 3-form field quanta, generalizing the leading interac-
tion terms given in Eqs. (96) and (97).

Let us now consider how higher-order terms of the
form of Eq. (107) can be reproduced by loop calcula-
tions in matrix theory. If we consider all possible Feyn-
man diagrams that might contribute to higher-order
terms, it is straightforward to demonstrate by power
counting that the complete two-body potential can be
written as a sum of terms of the form

V5 (
n ,k ,l ,m ,p ,a

Vn ,k ,l ,m ,p ,aRn21
XlDpFkc2m

r3n12k1l13m1p24 ,

(108)

where n counts the number of loops in the relevant dia-
grams and c describes the fermionic background fields.
Each D indicates either a time derivative or a commu-
tator with an X , as in c@X ,c# . The summation over the
index a indicates a sum over many possible index con-
tractions for every combination of F’s, X’s, and D’s
and G matrices between the c’s.

For a completely general pair of objects, only terms in
the one-loop effective action have been understood in
terms of supergravity. At one-loop order, when the
fields are taken on-shell by imposing the matrix-theory
equations of motion, all terms with k1m1p,4 that
have been calculated vanish. All terms with k1m1p
54 that have been calculated have m>p and can be
written in the form

V1,42m2p ,l ,m ,p ,a

XlF(42m2p)c2(m2p)~cDc!p

r71m2p1l . (109)

In this expression, the grouping of c terms indicates the
contraction of spinor indices. The terms can be ordered
in an arbitrary fashion when considered as U(N) matri-
ces, and each ordering is associated with a different in-
dex a and overall coefficient. The terms in Eq. (109)
have been explicitly determined for m,2 by Taylor and
Van Raamsdonk (1998a, 1999a) and Kabat and Taylor
(1998b). These terms precisely correspond to linearized
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supergravitational interactions of the form of Eq. (107).
We now briefly summarize some of the details of this
correspondence.
• Matrix multipole moments: Associated with each of
the components of the integrated matrix-theory super-
currents given in Eqs. (98)–(100) there is an infinite se-
quence of higher multipole moments. The bosonic parts
of these multipole moments are formed by simply in-
cluding l extra matrices Xi in the formula for a given
supercurrent component and symmetrizing over all pos-
sible orderings of the matrices Ẋi, Fij, and Xi inside the
trace. For example, the higher multipole moments of the
component T 12 of the matrix theory stress tensor are
given by

T 12(i1i2¯in)5
1
R

STr F S 1
2

ẊiẊi1
1
4

FijFijDXi1Xi2
¯XinG ,

(110)
where STr denotes a symmetrized trace. In the one-loop
matrix-theory potential between a general pair of ob-
jects, these higher multipole moments appear in the
long-range potential in precisely the form of Eq. (107)
and its generalization for interactions mediated by
3-form and gravitino exchange. The simplest example of
such an interaction is a term in the interaction potential
(109) of the form Ĵ ijT̃ 2ir j/r9;F4X/r8 which appears in
the case of a graviton moving in the long-range gravita-
tional field of a matrix-theory object with angular mo-
mentum

J ij5T 1i(j)2T 1j(i), (111)

where the first moment of the matrix-theory stress ten-
sor component T 1i is defined through

T 1i(j)5
1
R

Tr ~ẊiXj!. (112)

• Matrix 6-brane current: At order 1/r8 new ‘‘dyonic’’
interaction terms describing higher-moment
membrane—M5-brane and D0-brane—D6-brane inter-
actions appear in addition to the interactions mentioned
above (Billó, Di Vecchia, Frau, Lerda, Russo, and
Sciuto, 1998; Dhar and Mandel, 1998; Taylor and Van
Raamsdonk, 1999a). These interactions again are ex-
actly in agreement with those of linearized supergravity,
providing that we define (bosonic) components of a
6-brane current through

S 1ijklmn5
1
R

STr ~F [ijFklFmn]!,

S ijklmnp5
7
R

STr ~F [ijFklFmnẊp]!. (113)

It is interesting that this current appears in the matrix-
theory interaction potential, since the D6-brane of type-
IIA string theory corresponds to a Kaluza-Klein mono-
pole descending from eleven dimensions, rather than an
electrically or magnetically charged brane like the mem-
brane or M5-brane (Townsend, 1995).
• Fermion multipole moments: In addition to the purely
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bosonic components of the higher multipole moments,
there are fermionic contributions. These include contri-
butions to the integrated supercurrent components, as
well as fundamentally fermionic contributions to higher
moments of the supercurrent, where no derivatives act
on the fermions. The simplest example of a term of the
latter type is the spin contribution to the matrix-theory
angular momentum, first noted in the context of spin-
ning gravitons by Kraus (1998):

J fermion
ij 5

1
4R

Tr ~cg ijc!. (114)

Like the term in Eq. (112) above, this angular momen-
tum term couples to the component T 2i;F3 of the
matrix-theory stress-energy tensor through terms of the
form Ĵ ijT̃ 2ir j/r9.

This summarizes all that is known about the two-body
interaction for a completely general (and not necessarily
supersymmetric) pair of matrix-theory objects. All lin-
earized supergravity interactions between an arbitrary
pair of sources are reproduced by a one-loop matrix-
theory calculation up to quadratic order in fermions. No
higher-loop calculations have been done for general
backgrounds. It seems likely that the agreement be-
tween one-loop matrix-theory calculations and linear-
ized supergravity persists to higher order in the fermi-
ons, but the relevant contributions to the multipole
moments of the supergravity currents have not yet been
calculated for a general matrix-theory object. It is quite
plausible that the one-loop matrix-theory interactions
corresponding with linearized supergravity are all pro-
tected by supersymmetric nonrenormalization theorems,
although this has not yet been demonstrated.

5. General two-graviton interactions

Aside from the general one-loop results described in
the previous section, almost all other perturbative re-
Rev. Mod. Phys., Vol. 73, No. 2, April 2001
sults on two-body interactions in matrix theory are for a
pair of gravitons. In the case of a pair of gravitons, the
general interaction potential (108) simplifies to

V5 (
n ,k ,m

Vn ,k ,mRn21 vkc2m

r3n12k13m24 . (115)

The leading terms for each value of m<4 have been
computed in the eikonal approximation using the one-
loop approach and are in agreement with the spin-spin
interaction terms between gravitons in supergravity. The
sum of these terms is summarized by Plefka, Serone, and
Waldron (1998b) and is given by6

V(1)52
15
16 Fv412v2v iD

ij] j12v iv jD
ikDjl]k] l

1
4
9

v iD
ijDkmDlm] j]k] l

1
2
63

DinDjnDkmDlm] i] j]k] lG 1
r7 , (116)

where Dij5cg ijc . The term with a single D propor-
tional to 1/r8 arises from the spin angular momentum
term described in Eq. (114).

No further checks have been made on the matrix-
theory/supergravity correspondence for terms with non-
trivial fermion backgrounds. Simplifying to the spin-
independent terms, the complete effective potential
(115) simplifies still further to

V5(
n ,k

Vn ,kRn21 vk

r3n12k24 . (117)

Following Becker et al. (1997), we write these terms in
matrix form,
V 5
1
R

V0,2 v2

1 V1,4
v4

r7 1 V1,6
v6

r11 1 V1,8
v8

r15 1 ¯

1 R V2,4
v4

r10 1 R V2,6
v6

r14 1 R V2,8
v8

r18 1 ¯

1 R2 V3,4
v4

r13 1 R2 V3,6
v6

r17 1 R2 V3,8
v8

r21 1 ¯

1 A 1 A 1 A 1 � , (118)

6Aspects of these fermionic contributions to the two-graviton interaction potential were studied by Barrio, Helling, and Polhe-
mus (1998), Harvey (1998), Kraus (1998), McArthur (1998), Morales, Scrucca, and Serone (1998a, 1998b), Plefka, Serone, and
Waldron (1998a), Hyun, Kiem, and Shin (1999b, 1999c), and Nicolai and Plefka (2000).
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where each row gives the contribution at fixed loop or-
der. We shall now give a brief review of what is known
about these coefficients. First, let us note that in Planck
units this potential is (restoring factors of a85l11

3 /R by
dimensional analysis)

V5(
n ,k

Vn ,k

l11
3n13k26

Rk21

vk

r3n12k24 . (119)

Since the gravitational coupling constant is k2

527p8l11
9 , we expect only terms with n1k[2 (mod 3)

to correspond with classical supergravity interactions,
since all terms in the classical theory have integral pow-
ers of k. Of the terms explicitly shown in Eq. (118) only
the diagonal terms satisfy this criterion. By including
factors of N̂ and Ñ for semiclassical graviton states with
finite momentum P1 and comparing to supergravity,
one finds that the terms on the diagonal are precisely
those which should correspond to classical supergravity.
The terms beneath the diagonal have extra powers of N
for a fixed power of v and would therefore dominate the
diagonal terms in a fixed-r , large-N limit. It has been
suggested that the terms above the diagonal correspond
to quantum gravity corrections. It was shown by Becker
et al. (1997) that the sum of diagonal terms correspond-
ing to the effective classical supergravity potential be-
tween two gravitons should be given by an expansion in
v2 of the potential

Vclassical5
2r7

15R2 S 12A12
15R

2

v2

r7 D . (120)

Now let us discuss the individual terms in Eq. (118).
As we have seen, the one-loop analysis gives a term
V1,45215/16, which agrees with linearized supergravity.
The analysis of Sec. IV.A.2 can be extended to the re-
maining one-loop terms. The next one-loop term van-
ishes, V1,650. Some efforts have been made to relate
the higher-order terms V1,8 , . . . to quantum effects in
11D supergravity, but so far this interpretation is not
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clear. We briefly return to this question in Sec. IV.D.
The term V2,450 was computed by Becker and Becker
(1997). As expected, this term vanishes. The term V2,6
5225/32 was computed by Becker et al. (1997). This
term agrees with the expansion of Eq. (120). A general
expression for the two-loop effective potential given by
the second line of Eq. (118) was given by Becker and
Becker (1998b), although there is no known connection
between these terms and quantum corrections to super-
gravity.

It was argued by Paban, Sethi, and Stern (1998a,
1998b) that there can be no (below-diagonal) higher-
loop corrections to the v4 and v6 terms on the diagonal.
These authors considered the terms with the maximal
number of fermions that are related to the v4 and v6

terms by supersymmetry [for example, the c8/r11 term in
Eq. (116) in the case v4]. They showed that these fermi-
onic terms are uniquely determined by supersymmetry,
and suggested that this in turn should uniquely fix the
form of the bosonic terms proportional to v4 and v6.
Explicit arguments along these lines for the nonrenor-
malization of the terms in Eq. (116) were given by
Hyun, Kiem, and Shin (1999d), Okawa (1999), Kazama
and Muramatsu (2000), and Nicolai and Plefka (2000).
The results of these authors support the conclusion that
all these terms are protected by supersymmetry, al-
though the full supersymmetric off-shell action has not
yet been constructed. The connection between the v6

terms and the related terms with 12 fermions appears to
be more subtle than in the v4 case (Okawa, 1999), par-
ticularly when the action is taken off-shell. The non-
renormalization results for the v4 and v6 terms indicate
that V(n.1),45V(n.2),650. The existence of such non-
renormalization theorems in matrix theory was origi-
nally conjectured by BFSS in analogy to similar known
theorems for higher-dimensional theories.

This completes our summary of what is known about
interactions between two unpolarized gravitons in ma-
trix theory. The complete set of known terms is given by
V 5
1

2R
v2

1 2
15
16

v4

r7 1 0 1 ~known! →

1 0 1
225
32

R
v6

r14 1 ~known! →

1 0 1 0 1 ? 1 ¯

↓ ↓ 1 A 1 � . (121)
It has been proposed that for arbitrary N the analogs
of the higher-loop diagonal terms should naturally take
the form of a supersymmetric Born-Infeld-type action
(Balasubramanian, Gopakumar, and Larsen, 1998;
Chepelev and Tseytlin, 1998a, 1998b; Keski-Vakkuri and
Kraus, 1998b). This would give rise in the case N52 to a
sum of the form of Eq. (120). There is as yet, how-
ever, no proof of this statement beyond two loops.
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One particular obstacle to calculating the higher-loop
terms in this series is that it is necessary to integrate over
loops containing propagators of massless fields. These
propagators can give rise to subtle infrared problems
with the calculation. Some of these difficulties can be
avoided by trying to reproduce higher-order supergrav-
ity interactions from interactions of more than two ob-
jects in matrix theory, a subject to which we turn in the
next section. One interesting example of a two-body in-
teraction that has been considered at higher loop order
involves the scattering of a D0-brane from a bound state
of D0-branes and D6-branes. It was shown by Branco
(1998) that the form of the F6 term in the supersymmet-
ric Born-Infeld action proposed by Chepelev and Tseyt-
lin correctly reproduces the supergravity interaction in
this situation. Dhar (1999) found, however, that the two-
loop matrix-theory calculation in this background suf-
fers from divergences. It would be very interesting to
understand whether the higher terms in the non-Abelian
Born-Infeld action can indeed be organized in such a
way as to reproduce nonlinear gravitational effects be-
tween general sources.

B. The N-body problem

So far we have seen that the linearized theory of su-
pergravity is correctly reproduced by an infinite series of
terms arising from one-loop calculations in matrix
theory. We have also discussed two-loop calculations of
two-graviton interactions that agree with supergravity. If
matrix theory is truly to reproduce all of classical super-
gravity, however, it must reproduce all the nonlinear ef-
fects of the fully covariant gravitational theory. The easi-
est way to study these nonlinearities is to consider
N-body interaction processes. The first nonlinear gravi-
tational effects appear at order k4 in the gravitational
coupling. An example of such a nonlinear effect is the
effect on a third object of the nonlinear contribution to
the long-range gravitational field produced by the inter-
action of the fields from two distinct sources. This effect
can be seen in classical gravity from a Y-shaped tree
diagram connecting three separate objects. From the
same dimensional analysis leading to Eq. (119), we ex-
pect these nonlinear effects to arise in a two-loop
matrix-theory calculation and to have a leading term of
the general form v6/r14, where the v’s are the velocities
of the three bodies and the r’s are their relative posi-
tions. The simplest three-body interaction is that of
three unpolarized gravitons, which can be described by
the classical background

Bi5S r1
i 1v1

i 0 0

0 r2
i 1v2

i 0

0 0 r3
i 1v3

i
D . (122)

Finding the leading terms in the two-loop effective ac-
tion for an N53 matrix configuration such as this is
technically quite complicated. In an impressive pair of
papers, Okawa and Yoneya (1999a, 1999b) carried out a
complete perturbative calculation of all terms of order
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v6/r14 in the three-graviton effective action. (There are
many such terms, which can be expressed as different
functions of the relative velocities v ij5v i2v j and rela-
tive positions rij5ri2rj of the three gravitons.) They
found that there is an exact agreement between the two-
loop matrix-theory calculation and nonlinear corrections
to supergravity at this order.7 Sethi and Stern (1999)
have argued that, like the v4 and v6 terms in the N52
theory, all these v6/r14 terms in the N53 theory are
protected from higher loop corrections by a supersym-
metric nonrenormalization theorem.

One would naturally like to extend these results both
by considering a general three-body system and by going
beyond the three-body problem to the general N-body
problem. To date, however, there has been very little
progress on the problem of understanding higher-order
nonlinearities in the theory beyond those involved in the
three-graviton system. One foray into the general
N-body calculation was made by Dine, Echols, and Gray
(2000). These authors considered a subset of the terms
in the general N-graviton interaction potential for arbi-
trary N . They found some terms at higher loop orders
that agree with supergravity. However, they also identi-
fied terms that appear in the three-loop calculation of
the four-graviton effective action and that scale as
v6/r17. These terms have improper scaling to correspond
to supergravity terms and are in fact ‘‘below the diago-
nal’’ as seen in Eq. (118). The appearance of such terms
in the matrix-theory perturbation series indicates a
breakdown of the correspondence between perturbative
matrix-theory calculations and classical supergravity.
This is the first concrete calculation in which the two
perturbative expansions have been shown to disagree.
There are several subtleties in this calculation that may
require further consideration before the case is com-
pletely closed. There are infrared divergences in this cal-
culation, which must be handled carefully and which
may lead to unexpected cancellations in some situations.
There is also an issue of gauge choices; while the scat-
tering S matrix is gauge independent, the effective ac-
tion derived from Eq. (78) is gauge dependent. The
manifest agreement discussed above between the one-
loop matrix-theory effective action and linearized super-
gravity seems to rely upon a fortuitous choice of gauge
on both sides. If other gauges had been chosen, it might
have been necessary to perform a complicated field re-
definition to see the correspondence explicitly. It may be
that for N.2 the background field gauge is not suitable
for direct comparison to N-body interaction terms in the
supergravity effective action. The issue of gauge depen-
dence was discussed by Hata and Moriyama (1999). As

7Previous partial results on the three-graviton problem had
been found by Dine and Rajaraman (1998), Echols and Gray
(1998), Fabbrichesi, Ferretti, and Iengo (1998), and Taylor and
Van Raamsdonk (1998b). Further work on this problem is de-
scribed by McCarthy, Susskind, and Wilkins (1998), Helling
et al. (1999), Dine, Echols, and Gray (2000), and Refolli, Terzi,
and Zanon (2000).
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one goes to higher loop order it may also be necessary to
understand recoil effects and the off-shell effective ac-
tion; these issues are discussed by Periwal and von Unge
(1998), Okawa (1999), Okawa and Yoneya (1999b), and
Kazama and Muramatsu (2000). Despite these concerns,
however, it seems most likely that this result is correct as
stated and that the correspondence between perturba-
tive calculations in matrix theory and classical super-
gravity breaks down once high-order nonlinear effects
are taken into consideration. As we shall discuss in
slightly more detail below, the nonrenormalization theo-
rems that protect the one-loop and two-loop terms for
N<3 do not seem to extend to higher loops and larger
values of N , so there is no contradiction between this
breakdown of perturbative matrix theory and supersym-
metry. It does, however, mean that we must work harder
if we wish to demonstrate that classical eleven-
dimensional supergravity is reproduced by matrix theory
in the large-N limit.

C. Longitudinal momentum transfer

In this section we have so far considered interactions
in matrix theory and supergravity in which no longitudi-
nal momentum is transferred from one object to an-
other. A supergravity process in which longitudinal mo-
mentum is transferred is described in the IIA theory as a
process in which one or more D0-branes are exchanged
between coherent states consisting of clumps of D0-
branes. Such processes are exponentially suppressed,
since the D0-branes are massive, and thus are not rel-
evant for the expansion of the effective potential in
terms of 1/r that we have been discussing. In the matrix-
theory picture, this type of exponentially suppressed
process can appear only from nonperturbative effects.
Clearly, however, for a full understanding of interactions
in matrix theory it will be necessary to study processes
with longitudinal momentum transfer in detail and to
show that they also correspond correctly with processes
in supergravity and M theory. Some progress has been
made in this direction. Polchinski and Pouliot (1997)
have calculated the scattering amplitude for two D2-
branes for processes in which a D0-brane is transferred
from one D2-brane to the other. In the Yang-Mills pic-
ture on the world volume of the D2-branes, the incom-
ing and outgoing configurations in this calculation are
described in terms of a U(2) gauge theory with a scalar
field taking a vaccum expectation value that separates
the branes. The transfer of a D0-brane corresponds to
an instantonlike process in which a unit of flux is trans-
ferred from one brane to the other. The amplitude for
this process was computed by Polchinski and Pouliot
and shown to be in agreement with expectations from
supergravity. This result suggests that processes involv-
ing longitudinal momentum transfer may be correctly
described in matrix theory. It should be noted, however,
that the Polchinski-Pouliot calculation is not precisely a
calculation of membrane scattering with longitudinal
momentum transfer in matrix theory, since it is carried
out in the D2-brane gauge theory language. In the
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T-dual matrix-theory picture the process in question cor-
responds to a scattering of D0-branes in a toroidally
compactified space-time with the transfer of membrane
charge. Processes with D0-brane transfer and the rela-
tionship between these processes and graviton scattering
in matrix theory have been studied further by Banks,
Fischler, Seiberg, and Susskind (1997), Dorey, Khoze,
and Mattis (1997), de Boer, Hori, and Ooguri (1998),
Keski-Vakkuri and Kraus (1998d), Paban, Sethi, and
Stern (1998c), and Hyun, Kiem, and Shin (1999a).

D. Summary and outlook for the correspondence of matrix
theory and supergravity

In this section we have examined a variety of pertur-
bative matrix-theory calculations describing interactions
between two or more ‘‘objects’’ represented as blocks in
a matrix-theory background. For most of these calcula-
tions the perturbative results of matrix quantum me-
chanics precisely reproduce classical supergravity inter-
actions between appropriate sources. It seems that all
linearized supergravity interactions between arbitrary
sources can be reproduced by a one-loop calculation in
matrix theory. Some more specific nonlinear effects in
supergravity, namely, the second-order interactions in
systems of two and three unpolarized gravitons, are also
reproduced by two-loop matrix-theory calculations. We
consider supersymmetric nonrenormalization theorems
that guarantee that the one-loop and two-loop graviton
interaction calculations are protected by supersymmetry
and cannot be corrected by higher-loop effects in matrix
theory. While it has not been explicitly proven, it is
tempting to believe that similar supersymmetric non-
renormalization theorems protect all the terms in the
one-loop matrix-theory effective action for any N , with
backgrounds describing an arbitrary pair of interacting
supergravity sources.

While it may be that all one-loop interactions and
two-loop interactions for N<3 are protected by super-
symmetric nonrenormalization theorems, as we have
discussed, there is little evidence that higher-loop terms
or two-loop terms for N.3 are protected by supersym-
metry. Indeed, it was argued by Dine, Echols, and Gray
(1998) that even in the N52 theory terms of order v8

and higher should experience higher-loop corrections.
Similarly, the techniques Paban, Sethi, and Stern (1998a,
1998b) used to prove the nonrenormalization for one-
loop and two-loop terms for small values of N cannot, as
Sethi and Stern (1999) noted, be generalized to the case
N.3. Given that the supersymmetric nonrenormaliza-
tion theorems start to break down at this point, it is
perhaps not surprising that Dine, Echols, and Gray
(2000) found discrepancies between three-loop calcula-
tions for N54 and classical supergravity. If the corre-
spondence does indeed break down at higher-loop or-
der, then either we must accept that matrix theory does
not successfully model M theory, or there must be a
more complicated way of understanding the correspon-
dence between these theories. At this time there is not
universal agreement as to how this question will
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eventually be resolved, but the only possible alternatives
seem to be the following:

(i) Matrix theory is correct in the large-N limit, and
noncompact supergravity is reproduced by a na-
ive large-N limit of the standard perturbative
matrix-theory calculations.

(ii) Matrix theory is correct in the large-N limit, but
to connect it with classical supergravity it is nec-
essary to deal with subtleties in the large-N limit
(i.e., there are problems with the standard per-
turbative analysis at higher order).

(iii) Matrix theory is simply wrong, and further terms
need to be added to the dimensionally reduced
super Yang-Mills action to find agreement with
M theory even in the large-N limit.

Let us review the evidence:
• Assuming that the result of Dine, Echols, and Gray is
correct and has been correctly interpreted, clearly (i) is
not possible. The fact that the methods of Paban, Sethi,
and Stern for proving nonrenormalization theorems in
the SU(2) theory break down for SU(3) at two loops
and at higher loop order also hints that (i) may not be
correct.
• The analysis of Seiberg and Sen seems to indicate that
either possibility (i) or (ii) should hold.

It seems that (ii) is the most likely possibility, given
this limited evidence. There are several issues that are
extremely important in understanding how this problem
will be resolved. The first is the issue of Lorentz invari-
ance. If a theory contains linearized gravity and is Lor-
entz invariant, then it must be either the complete gen-
erally covariant gravity theory or just the pure linearized
theory. Since we know that matrix theory has some non-
trivial nonlinear structure that reproduces part of the
nonlinearity of supergravity, it would seem that the con-
jecture must be valid if and only if the theory is Lorentz
invariant. Unfortunately, so far there is no complete un-
derstanding of whether the quantum theory is Lorentz
invariant (classical Lorentz invariance was demonstrated
by de Wit, Marquard, and Nicolai, 1990). It was sug-
gested by Lowe (1998) that the problems found by Dine,
Echols, and Gray (2000) might be related to a break-
down of Lorentz invariance and that in fact extra terms
must be added to the theory to restore this invariance;
this would lead to possibility (iii) above.

Another critical issue in the interpretation of the per-
turbative matrix-theory calculations is the order of lim-
its. In the perturbative calculations discussed here we
have assumed that the longitudinal momentum param-
eter N is fixed for each of the objects we are taking as a
background, and we have then taken the limit of large
separations between each of the objects. Since the size
of the wave function describing a given matrix theory
object will depend on N but not on the separation from
a distant object, this gives a systematic approximation
scheme in which the bound state and wave-function ef-
fects for each of the bodies can be ignored in the pertur-
bative analysis. If we really are interested in the large-N
theory, however, the correct order of limits to take is the
opposite. We should fix a separation distance r and then
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take the large-N limit. Unfortunately, in this limit we
have no systematic approximation scheme. The wave
functions for the separate objects overlap significantly as
the size of the objects grows. Indeed, it was argued by
Polchinski (1999) that the size of the bound-state wave
function of N D0-branes will grow at least as fast as
N1/3. As emphasized by Susskind (1999), this overlap of
wave functions makes the theory very difficult to ana-
lyze. Indeed, if possibility (ii) above is correct, it may be
very difficult to use matrix theory to reproduce all the
nonlinear structure of classical supergravity, let alone to
derive new results about quantum supergravity. On the
other hand, it may be that whatever mechanism allows
the one-loop and two-loop matrix-theory results to cor-
rectly reproduce the first few terms in supergravity and
to evade the problem of wave-function overlap may per-
sist at higher orders through a more subtle mechanism
than those currently understood. Indeed, one of the
most important outstanding questions regarding matrix
theory is precisely which terms in the naive perturbative
expansion of the quantum mechanics will agree with
classical supergravity, and more importantly, why these
terms agree.

In this section we have focused on the problem of
deriving classical eleven-dimensional supergravity from
matrix theory. A very interesting, but more difficult,
question is whether matrix theory can also successfully
reproduce string/M-theory corrections to classical super-
gravity. The first such corrections would be R 4 correc-
tions to the Einstein-Hilbert action (Fradkin and Tseyt-
lin, 1983). It was argued by Susskind (1997b) and
Berglund and Minic (1997) that such terms should be
reproduced by the v8/r18 terms that arise in the two-loop
effective potential8 (118). It was shown by Keski-
Vakkuri and Kraus (1998c) and Becker and Becker
(1998a) that in a two-body interaction between a pair of
gravitons with longitudinal momentum N/R this term
has the wrong scaling in N . This discrepancy was sharp-
ened by Helling et al. (1999), who performed a two-loop
calculation in a three-graviton background and showed
that the tensor structure of the v8/r18 terms disagrees
with that expected from a R 4 correction to gravity.
While more work needs to be done in this direction, the
results of these authors indicate that the perturbative
loop expansion in matrix theory probably does not cor-
rectly reproduce quantum effects in M theory. The most
likely explanation for this discrepancy is that, like the
higher-loop diagonal terms discussed above, such terms
are not subject to nonrenormalization theorems and are
only reproduced in the large-N limit if the matrix-theory
conjecture is correct.

V. M-THEORY OBJECTS FROM MATRIX THEORY

In this section we discuss how the matrix-theory de-
grees of freedom can be used to construct the various
objects of M theory: the supergraviton, supermembrane,

8An alternative suggestion was made by Serone (1998).
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and M5-brane. We discuss classical and quantum super-
gravitons in matrix theory in Sec. V.A. We present a
general discussion of the structure of extended objects
and their charges in Sec. V.B, following which we dis-
cuss the matrix constructions of membranes and M5-
branes in Secs. V.C and V.D, respectively.

A. Supergravitons

In DLCQ M theory, for every integer N there should
be a localized state corresponding to a longitudinal
graviton with p15N/R and arbitrary transverse mo-
mentum pi. We expect from the massless condition m2

52pIpI50 that such an object will have matrix-theory
energy E5pi

2/2p1. We discuss such states first classi-
cally and then in the quantum theory.

1. Classical supergravitons

The classical matrix-theory potential is 2@Xi,Xj#2,
from which we have the classical equations of motion

Ẍi52†@Xi,Xj# ,Xj
‡. (123)

One simple class of solutions to these equations of mo-
tion can be found when the matrices minimize the po-
tential at all times and therefore all commute. Such so-
lutions are of the form

Xi5S x1
i 1v1

i t 0 0 �

0 x2
i 1v2

i t � 0

0 � � 0

� 0 0 xN
i 1vN

i t

D . (124)

This corresponds to a classical N-graviton solution, in
which each graviton has

pa
151/R , pa

i 5va
i /R , Ea5va

2/~2R !5~pa
i !2/2p1.

(125)
A single classical graviton with p15N/R can be formed
by setting

x1
i 5¯5xN

i , v1
i 5¯5vN

i (126)

so that the trajectories of all the components are identi-
cal. This simple model for gravitons was used in all the
spin-independent matrix-theory calculations described
in the previous section.

The classical graviton gives a simple example with
which to understand the matrix-theory stress tensor
(98). The integrated stress tensor of a graviton can be
written in the form

T IJ5
pIpJ

p1 , (127)

where

p15N/R , pi5p1ẋ i, p25p'
2 /2p1. (128)

These expressions agree precisely with the matrix ex-
pressions for the stress tensor (98) using the matrices
(124) with Eq. (126).
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2. Quantum supergravitons

The picture of a supergraviton in quantum matrix
theory is somewhat more subtle than the simple classical
picture just discussed. Let us first consider the case of a
single supergraviton with p151/R . This corresponds to
the U(1) case of the super Yang-Mills quantum mechan-
ics theory. The Hamiltonian is simply

H5
1

2R
Ẋ2, (129)

since all commutators vanish in this theory. The bosonic
part of the theory is simply a free nonrelativistic particle.
In the fermionic sector there are 16 spinor variables with
anticommutation relations $ua ,ub%5dab . By using the
standard trick of writing these as 8 fermion creation and
annihilation operators

u i
65

1

&
~u i6u i18!, 1<i<8, (130)

we see that the Hilbert space for the fermions is a stan-
dard fermion Fock space of dimension 285256. Indeed,
this is precisely the number of states needed to represent
all the polarization states of the graviton (44), the anti-
symmetric three-tensor field (84), and the gravitino
(128). For details of how the polarization states are rep-
resented in terms of the fermionic Fock space, see de
Wit, Hoppe, and Nicolai (1988), Morales, Scrucca, and
Serone (1998b), Plefka and Waldron (1998), and Millar,
Taylor, and Van Raamsdonk (2000).

The case in which N.1 is much more subtle. We can
factor out the overall U(1) so that every state in the
SU(N) quantum mechanics theory has 256 correspond-
ing states in the full theory. For the matrix-theory con-
jecture to be correct, as BFSS pointed out, it should then
be the case that for every N there exists a unique thresh-
old bound state in the SU(N) theory with H50. As
mentioned before, no definitive answer as to the exis-
tence of such a state was given in the early work on
matrix theory. The existence of a unique ground state
for the matrix quantum mechanics can be demonstrated
by showing both that the Witten index of the system is
equal to one and that there are no fermionic ground
states. The first of these statements was finally proven
for N52 by Sethi and Stern (1998), demonstrating that
at least one threshold bound state exists. These authors
showed that the Witten index breaks up into a bulk and
a boundary contribution, each of which is separately
fractional. The uniqueness of the bound state for SU(2)
was shown by Sethi and Stern (2000a). The existence of
a bound state for N.2 was demonstrated when Moore,
Nekrasov, and Shatashvili (2000) computed the bulk
contribution to the index for general N and Green and
Gutperle (1998) computed the corresponding boundary
contribution. (This boundary contribution has also been
checked by numerical methods by Krauth and Stau-
dacher, 1998.) Related work was done by Yi (1997),
Konechny (1998), and Porrati and Rozenberg (1998).
The Witten index for groups other than SU(N) was de-
termined by Hanany, Kol, and Rajaraman (1999), Kac



447Washington Taylor: M(atrix) theory
and Smilga (2000), and Staudacher (2000), where a puz-
zling discrepancy between the predictions of different
methods was noted for the exceptional group G2 .

The exact determination of the bound-state wave
function, even for N52, is a difficult problem on which
little progress has been made. A more tractable and still
very interesting problem is the determination of the
asymptotic form of the ground state. It was shown by
Sethi and Stern (2000a) that for the SU(2) theory the
asymptotic form of the wave function is invariant under
the SO(9) R-symmetry group of the quantum mechan-
ics theory. Combining this with the conditions of inte-
grability and SU(2) invariance is sufficient to uniquely
fix the asymptotic form of the SU(2) wave function.
Halpern and Schwartz (1998) used a second-order Born-
Oppenheimer approach to determine the form of the
asymptotic wave function in the SU(2) theory. This
asymptotic form was reproduced using a first-order ap-
proach (based on the supersymmetry generators rather
than the Hamiltonian) by Graf and Hoppe (1998) and
Fröhlich et al. (2000).9 It was shown by Bordemann,
Hoppe, and Suter (1999) that the analogous condition of
R-symmetry invariance is not sufficient to uniquely de-
termine the asymptotics of the ground state for N.2.
The extra information needed to determine the
asymptotic form of the SU(3) ground state was, how-
ever, described by Hoppe (1999) and the asymptotic
form was found by Hoppe and Plefka (2000).

While little progress has been made so far towards an
exact analytic description of the bound-state wave func-
tion of two D0-branes, Sethi and Stern (2000b) consid-
ered the related problem of the bound-state wave func-
tion of a D0-brane and a D4-brane. They found a system
of equations describing this bound state and arrived at
the surprising conclusion that the unique normalizable
bound state could be described by a single equation in
terms of a single unknown function. This extraordinary
simplification hints that perhaps there is some hidden
structure even in the case of two D0-branes that might
eventually allow for an analytic description of the gravi-
ton bound state.

As discussed in Sec. IV.D, to understand interactions
between matrix-theory gravitons in the large-N limit, it
is crucial to understand how the size of the bound-state
wave function grows with N . With the limited informa-
tion we have at this time about the wave functions for
small values of N , it is difficult to determine rigorously
the asymptotics as N becomes large. It was argued by
Nekrasov (1999) that the ground-state wave function has
a size that scales as N1/3, saturating the lower bound
found by Polchinski (1999). How such large wave func-
tions interact when scattered at an impact parameter
that is fixed as N becomes large is a puzzle that must be
better understood if we are to develop a deeper under-
standing of matrix theory as a model of quantum grav-
ity.

9Related work appeared in Hoppe (1997b).
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B. Extended objects from matrices

We have discussed the construction of localized gravi-
ton states as classical and quantum matrix-theory con-
figurations. In addition to these pointlike objects, we
would like to construct M-theory membranes and M5-
branes from the fundamental matrix degrees of free-
dom. These will be objects extended in one, two, and
four spatial dimensions. In this section we make some
general comments about the structure of these extended
objects in matrix theory.

Let us begin by discussing the charges associated with
the extended objects in matrix theory. In Sec. IV.A.3 we
used the correspondence between one-loop matrix-
theory interactions and linearized supergravity to con-
struct an integrated stress tensor, membrane current,
and M5-brane current for a general matrix-theory con-
figuration. The components of these tensors with a 1
index correspond to conserved charges in the theory.
The components T 11 and T 1i of the matrix stress ten-
sor correspond to longitudinal and transverse momen-
tum N/R and pi, respectively. The components J 12i

and J 1ij of the membrane current correspond to
charges for membranes that are wrapped and un-
wrapped in the longitudinal direction, and the compo-
nent M 12ijkl of the M5-brane current corresponds to a
charge for wrapped (longitudinal) M5-branes. No charge
associated with unwrapped (transverse) M5-branes ap-
pears in the one-loop matrix-theory interaction poten-
tial. The charges associated with extended objects all
vanish at finite N ; this corresponds physically to the fact
that any finite-size configuration of membranes and M5-
branes must have net charges that vanish, as all the
branes must be compact.

An alternative understanding of the conserved
charges associated with extended objects in matrix
theory follows from the supersymmetry algebra of the
theory. The 11-dimensional supersymmetry algebra
takes the form

$Qa ,Qb%;PI~gI!ab1ZI1I2~gI1I2
!ab

1ZI1¯I5~gI1¯I5
!ab , (131)

where the central terms ZI1I2,ZI1¯I5 correspond to
2-brane and M5-brane charges. The supersymmetry al-
gebra of matrix theory was explicitly computed10 by
Banks, Seiberg, and Shenker (1997). The full supersym-
metry algebra of the theory takes the schematic form

$Q ,Q%;PI1zi1zij1zijkl, (132)

as we would expect for the light-front supersymmetry
algebra corresponding to Eq. (131). The charge

zi;J 12i;iTr ~$Pj,@Xi,Xj#%1†@Xi,ua# ,ua
‡! (133)

10Similar calculations were performed previously by Claud-
son and Halpern (1985) and by de Wit, Hoppe, and Nicolai
(1988); in these earlier analyses, however, terms such as
Tr @Xi,Xj# and Tr X @ iXjXkXl] were dropped since they vanish
for finite N .
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corresponds to longitudinal membranes (strings), the
charge

zij;J 1ij;2iTr @Xi,Xj# (134)

corresponds to transverse membranes, and

zijkl;M 12ijkl;Tr X [iXjXkXl] (135)

corresponds to the longitudinal M5-brane charge.
Yet another way to motivate these charge identifica-

tions is through T duality in the type-IIA picture. This
approach is described by Taylor (1998, 2000), Taylor
and Van Raamsdonk (1999a), and Myers (1999).

The perturbative matrix-theory calculations described
in Sec. IV.A determine not only the conserved charges
of the theory, but also the higher multipole moments of
these charges. For example, the multipole moments of
the membrane charge zij522piTr @Xi,Xj# can be writ-
ten in terms of the matrix moments

zij(k1¯kn)522pi STr ~@Xi,Xj#Xk1
¯Xkn!, (136)

which are the matrix analogs of the moments

E d2s $Xi,Xj%Xk1
¯Xkn (137)

for the continuous membrane. The symbol STr as usual
indicates a symmetrized trace, wherein the trace is aver-
aged over all possible orderings of the terms @Xi,Xj#
and Xkn appearing inside the trace. This corresponds to
a particular ordering prescription in applying the matrix-
membrane correspondence to Eq. (137). There is no a
priori justification for this ordering prescription, but it is
a consequence of the explicit calculations of interactions
between general matrix-theory objects described above.
The same prescription can be used to define the multi-
pole moments of the longitudinal membrane and M5-
brane charges. These multipole moments can also be de-
rived from T-duality arguments in type IIA, as in Taylor
and Van Raamsdonk (1999b) and Myers (1999), but the
ordering information implied by the symmetrized trace
cannot be determined in this fashion.

Although, as we have mentioned, the conserved
charges in matrix theory corresponding to extended ob-
jects all vanish at finite N , the same is not true of the
higher moments of these charges. As we shall discuss in
the following sections, it is possible to construct compact
membrane and M5-brane configurations in matrix
theory whose multipole moments of membrane and M5-
brane charge are nonvanishing and agree to within
terms of order 1/N2 with the continuous versions of
these multipole moments. Conversely, by calculating the
multipole moments of a fixed matrix configuration we
can essentially reproduce the complete spatial depen-
dence of the matter configuration to which the matrices
correspond.

It is interesting to note that while the superalgebra in
Eq. (132) does not contain a 6-brane charge, such a
charge does appear in the one-loop matrix-theory effec-
tive action, associated with dyonic interactions between
D6-branes and D0-branes. The construction of 6-branes
from multiple D0-branes was discussed by Taylor
(1997b).
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C. Membranes

In this section we discuss the construction of M-theory
membranes in terms of the matrix quantum mechanics
degrees of freedom. It is clear from the derivation of
matrix theory as a regularized supermembrane theory
that there must be matrix configurations that in the
large-N limit give arbitrarily good descriptions of any
membrane configuration. It is somewhat instructive,
however, to study some aspects of the geometry of
simple matrix membranes at finite N . In Sec. V.C.1 we
describe some explicit examples of compact membrane
configurations and discuss how membrane geometry is
encoded in a system of finite-size matrices. In Sec. V.C.2
we discuss noncompact matrix membranes, and in Sec.
V.C.3 we discuss wrapped membranes, which appear as
string excitations in matrix theory.

1. Compact membranes

One extremely simple example of a membrane con-
figuration, which makes it clear that a smooth mem-
brane geometry can be approximated quite well even at
finite N by simple matrix configurations, is the symmet-
ric spherical membrane (Kabat and Taylor, 1998a).
Imagine that we wish to construct a membrane embed-
ded in an isotropic sphere x1

21x2
21x3

25r2 in the first
three dimensions of R11. The embedding functions for
such a continuous membrane can be written as linear
functions Xi5rj i,1<i<3, of the three Euclidean coordi-
nates j i on the spherical world volume. Using the
matrix-membrane correspondence (37) we see that the
matrix approximation to this membrane will be given by
the N3N matrices

Xi5
2r

N
Ji 1<i<3, (138)

where Ji are the generators of SU(2) in the
N-dimensional representation.

It is interesting to see how many of the geometrical
and physical properties of the sphere can be extracted
from the algebraic structure of these matrices, even for
small values of N . We list here some of these properties.

(i) Spherical locus: The matrices Eq. (138) satisfy

X1
21X2

21X3
25

4r2

N2 C2~N!15r2~121/N2!1, (139)

where C2(N)5(N221)/4 is the quadratic Ca-
simir of SU(2) in the N-dimensional representa-
tion. This shows that the D0-branes are in a non-
commutative sense ‘‘localized’’ on a sphere of
radius r1O(1/N2).

(ii) Rotational invariance: The matrices (138) satisfy

RijXj5U~R!•Xi•U~R21!, (140)

where RPSO(3) and U(R) is the N-dimensional
representation of R . Thus the spherical matrix
configuration is rotationally invariant up to a
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gauge transformation, even though the smooth
membrane sphere has been ‘‘discretized’’ to a fi-
nite number of degrees of freedom.

(iii) Spectrum: The matrix X352rJ3 /N (as well as the
other matrices) has a spectrum of eigenvalues that
are uniformly distributed in the interval @2r ,r# .
This is precisely the correct distribution if we
imagine a perfectly symmetric sphere with D0-
branes distributed uniformly on its surface and
project this distribution onto a single axis.

(iv) Membrane dipole moment: The spherical matrix
membrane has nonvanishing membrane dipole
moments

z12(3)5z23(1)5z31(2)522piTr ~@X1,X2#X3!

5
4pr3

3
~121/N2!, (141)

which agrees with the membrane dipole moment
4pr3/3 of the smooth spherical membrane up to
terms of order 1/N2.

(v) Energy: In M theory we expect the tension energy
of a (momentarily) stationary membrane sphere
to be

e5
4pr2

~2p!2l11
3 5

r2

pl11
3 . (142)

Using pIpI52e2 we see that the light-front en-
ergy should be

E5
e2

2p1 (143)

in 11D Planck units. The matrix membrane en-
ergy is given by

E52
1

4R
@Xi,Xj#25

2r4

NR
1O~N23! (144)

in string units, which is easily seen to agree with
Eq. (143).

It is also straightforward to verify that the equations
of motion for the membrane are correctly reproduced in
matrix theory. Like the smooth membrane, the matrix
membrane oscillates periodically according to an equa-
tion of motion of the form r̈52ar3 for a constant a
(Collins and Tucker, 1976; Kabat and Taylor, 1998a).
Related ellipsoidal oscillating membrane solutions were
considered by Rey (1997b), Harmark and Savvidy
(2000), and Savvidy (2000).

Thus we see that many of the geometrical and physi-
cal properties of the membrane can be extracted from
algebraic information about the structure of the appro-
priate membrane configuration. The discussion we have
carried out here has applied only to the simple case of a
the rotationally invariant, spherically embedded mem-
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brane. It is straightforward to extend the discussion to a
membrane of spherical topology and arbitrary shape,
however, simply by using the matrix-membrane corre-
spondence (37) to construct matrices approximating an
arbitrary smooth spherical membrane.

The preceding discussion can similarly be extended to
the torus by using the genus-one matrix membrane regu-
larization described in Sec. II.C. As a concrete example
let us consider embedding a torus into R4,R9 so that
the membrane fills the locus of points satisfying

X1
21X2

25r2, X3
21X4

25s2. (145)

Such a membrane configuration can be realized through
the following matrices:

X15
r

2
~U1U†!, X25

2ir

2
~U2U†!, (146)

X35
s

2
~V1V†!, X45

2is

2
~V2V†!.

It is straightforward to check that this matrix configura-
tion has geometrical properties analogous to those of
the matrix membrane sphere discussed in the previous
section. In particular, Eq. (145) is satisfied identically as
a matrix equation. Note, however, that this configura-
tion is not gauge invariant under U(1) rotations in the
12 and 34 planes—only under a ZN subgroup of each of
these U(1)’s.

Since the matrix regularization procedure for higher-
genus Riemann surfaces has not yet been described as
explicitly as for the sphere and torus, it is more difficult
to construct explicit matrices approximating smooth
higher-genus surfaces. Some progress in this direction
has been made by Bars (1991) and Hoppe (1997a). De-
spite the increased technical complications presented by
giving explicit matrix-regularized representations of gen-
eral higher-genus surfaces, in principle there is no ob-
stacle to constructing systems of matrices that describe
an arbitrary configuration of multiple membranes of any
genera to an arbitrary degree of accuracy. As mentioned
in Sec. IV.A.4, the linearized coupling of matrix mem-
branes to background supergravity fields is precisely in
accord with the matrix-regularized expressions for the
coupling of smooth membranes, so it is clear that com-
pact membranes of arbitrary genus will interact with one
another and with gravitons in a way consistent with
eleven-dimensional supergravity coupled to membrane
sources, at least at the level of linearized supergravity.

2. Infinite membranes

So far we have discussed compact membranes, which
can be described in terms of finite-size N3N matrices.
In the large-N limit it is also possible to construct mem-
branes with infinite spatial extent. The matrices Xi de-
scribing such configurations are infinite-dimensional ma-
trices that correspond to operators on a Hilbert space.
Infinite membranes are of particular interest because
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they can be BPS (supersymmetric) states11 which solve
the classical equations of motion of matrix theory. Ex-
tended compact membranes cannot be static solutions of
the equations of motion since their membrane tension
always causes them to contract and/or oscillate, as in the
case of the spherical membrane.

The simplest infinite membrane is the flat planar
membrane corresponding in IIA theory to an infinite
D2-brane (Banks, Fischler, Shenker, and Susskind,
1997). This solution can be found by looking at the limit
of the spherical membrane at large radius. It is simpler,
however, to construct the solution directly by regulariz-
ing the flat membrane of M theory. As in the compact
case, we wish to quantize the Poisson bracket algebra of
functions on the brane. Functions on the infinite mem-
brane can be described in terms of two coordinates
x1 ,x2 with a symplectic form v ij5e ij giving a Poisson
bracket

$f~x1 ,x2!,g~x1 ,x2!%5]1f]2g2]1g]2f . (147)

This algebra of functions can be ‘‘quantized’’ in the stan-
dard fashion to the algebra of operators generated by
Q ,P satisfying @Q ,P#5ie21/2p , where e is a constant
parameter. This gives a map from functions on R2 to
operators, which allows us to describe fluctuations
around a flat membrane geometry with a single unit of
P151/R in each region of area e2 on the membrane.
(As usual in the quantization process there are operator-
ordering ambiguities that must be resolved in determin-
ing a general map from functions expressed as polyno-
mials in x1 ,x2 to operators expressed as polynomials of
Q ,P .)

In addition to the flat membrane solution there are
other infinite membranes that are static solutions of M
theory in flat space. In particular, there are BPS solu-
tions corresponding to membranes that are holomorphi-
cally embedded in C45R8,R9. These are static solutions
of the membrane equations of motion. Finding a matrix-
theory description of such membranes is possible but
requires choosing a regularization that preserves the
complex structure of the brane. The details of this con-
struction for a general holomorphic membrane are dis-
cussed by Cornalba and Taylor (1998).

3. Wrapped membranes as matrix strings

So far we have discussed M-theory membranes that
are unwrapped in the longitudinal direction and that

11In the study of solitons (for example, magnetic monopoles),
states that preserve some supersymmetry are particularly in-
teresting. For example, they solve first-order rather than
second-order differential equations, and one can often find ex-
plicit solutions. In addition, their masses are frequently related
to their charges under various gauged symmetries. Such solu-
tions are called ‘‘BPS’’ (for Bogolmony, Prasad, and Sommer-
field). D-branes are examples of BPS objects, and more gener-
ally such supersymmetric solutions have played an important
role in enhancing our understanding of dualities in field theo-
ries and in string theory.
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therefore appear as D2-branes in the IIA language of
matrix theory. It is also possible to describe wrapped
M-theory membranes that correspond to strings in the
IIA picture. The charge in matrix theory which mea-
sures the number of strings present is proportional to

i

R
Tr ~@Xi,Xj#Ẋj1†@Xi,uȧ# ,uȧ

‡!. (148)

Configurations with nonzero values of this charge were
considered by Imamura (1997).

To realize a classical configuration in matrix theory
that contains fundamental strings extended in some di-
rection Xi, it is clear from the form of the charge that we
need to construct a configuration with local membrane
charge extended in a pair of directions Xi,Xj and then to
give the D0-branes velocity in the Xj direction. For ex-
ample, we could consider an infinite planar membrane
(as discussed in the previous section) sliding along itself
according to

X15Q1t1, X25P . (149)

This corresponds to an M-theory membrane that has a
projection onto the X1,X2 plane and that wraps around
the compact direction as a periodic function of X1 so
that the IIA system contains a D2-brane with infinite
strings extended in the X2 direction. The dependence of
the compact coordinate X2 on X1 in this configuration
can be seen easily in the corresponding smooth mem-
brane configuration, where ]aX25Ẋi]aXi as in Eq.
(19).

It is interesting to note that there is no classical
matrix-theory solution corresponding to a string that is
truly one-dimensional and has no local membrane
charge. This follows from the appearance of the commu-
tator @Xi,Xj# in the string charge, which vanishes unless
the matrices describe a configuration with at least two
dimensions of spatial extent. We can come very close to
a one-dimensional classical string configuration by con-
sidering a one-dimensional array of D0-branes at equal
intervals on the X1 axis with small off-diagonal matrix
elements connecting adjacent D0-branes. In the classical
theory, this configuration can have arbitrary string
charge. If the off-diagonal modes are quantized, then
the string charge is quantized in the correct units. This
string configuration is almost one-dimensional but has a
small additional extent in the X2 direction correspond-
ing to the extra dimension of the M-theory membrane.
From the M-theory point of view this extra dimension
must appear because the membrane cannot have mo-
mentum in a direction parallel to its direction of exten-
sion (since it has no internal degrees of freedom). Thus
the momentum in the compact direction represented by
the D0-branes must appear on the membrane as a fluc-
tuation in some transverse direction.

D. 5-branes

The M-theory 5-brane can appear in two possible
guises in type-IIA string theory. If the M5-brane is
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wrapped around the compact direction it becomes a D4-
brane in the IIA theory, corresponding to a longitudinal
M5-brane in matrix theory, while if it is unwrapped it
appears as an NS 5-brane in IIA, corresponding to a
transverse M5-brane in matrix theory. A priori, one
might think that it should be possible to see both types
of M5-branes in matrix theory. Several calculations,
however, indicate that the transverse M5-brane does not
carry a classical conserved charge that can be described
in terms of the matrix degrees of freedom. As we have
discussed, no transverse M5-brane charge appears in ei-
ther the matrix-theory supersymmetry algebra discussed
in Sec. V.B or the linearized supergravity interactions
described in Sec. IV.A.3.

One way of understanding this apparent puzzle is by
comparing it to the situation for D-branes in light-front
string theory (Banks, Seiberg, and Shenker, 1997). Due
to the Virasoro constraints, strings in the light-front for-
malism must have Neumann boundary conditions in
both the light-front directions X1,X2. Thus in light-
front string theory there are no transverse D-branes that
can be used as boundary conditions for the string. A
similar situation holds for membranes in M theory,
which can end on M5-branes. The boundary conditions
on the bosonic membrane fields which can be derived
from the action (11) state that

~ h̄hab]bXi!dXi50. (150)

When we combine this condition with the Virasoro-type
constraint

]aX25Ẋi]aXi, (151)

we find that, just as in the string theory case, membranes
must have Neumann boundary conditions in the light-
front directions.

These considerations would seem to lead to the con-
clusion that transverse M5-branes simply cannot be con-
structed in matrix theory. On the other hand, it was ar-
gued by Ganor, Ramgoolam, and Taylor (1997) that a
transverse M5-brane may be constructed using S duality
when the theory has been compactified on a 3-torus. To
construct an infinite extended transverse M5-brane in
this fashion would require performing S duality on (3
11)-dimensional N54 supersymmetric Yang-Mills
theory with gauge group U(`), which is a poorly under-
stood procedure. Taylor and Van Raamsdonk (2000),
however, have constructed a finite-size transverse M5-
brane with geometry T33S2 using S duality of the four-
dimensional U(N) with finite N . Furthermore, it was
shown that this object couples correctly to the super-
gravity fields even in the absence of an explicit trans-
verse M5-brane charge; similar results were found ear-
lier by Lifschytz (1997). Taken together, these results for
transverse M5-branes seem to indicate that transverse
M5-branes in matrix theory can be constructed as quan-
tum states in the theory but they are essentially solitonic
objects and do not carry a classically conserved charge.

We now turn to the wrapped, or longitudinal, M5-
brane, which we will refer to as the ‘‘L5-brane.’’ This
object appears as a D4-brane in the IIA theory. An in-
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finite flat D4-brane was considered as a matrix-theory
background by Berkooz and Douglas (1997) by includ-
ing extra fields corresponding to strings stretching be-
tween the D0-branes of matrix theory and the back-
ground D4-brane. As in the case of the membrane,
however, we would like to find a way to describe a dy-
namical L5-brane explicitly using the matrix degrees of
freedom. From the L5-brane charge zijkl;M 12ijkl dis-
cussed in Sec. V.B, we know that the charge measuring
the L5-brane four volume in the ijkl plane is given by

2p2 Tr e ijklX
iXjXkXl. (152)

Another way to motivate this charge is that it is the T
dual of the instanton number in a four-dimensional
gauge theory, which measures D0-brane charge on D4-
branes. Just as for the membrane charge, higher multi-
pole moments of the L5-brane charge are constructed by
inserting factors of Xm into Eq. (100) and performing a
symmetrized trace.

Unlike the matrix membrane, there is no general
theory describing an arbitrary L5-brane geometry in ma-
trix theory language. In fact, the only L5-brane configu-
rations that have been explicitly constructed to date are
those corresponding to the highly symmetric geometries
S4, CP2, and R4. We now offer a few brief comments
about these configurations.

The L5-brane with isotropic S4 geometry is similar in
many ways to the membrane with S2 geometry discussed
in Sec. V.C.1. There are a number of unusual features of
the S4 system, however, that deserve mention. For full
details of the construction see Castelino, Lee, and Tay-
lor (1998); a related construction from the noncommu-
tative geometry point of view is given by Grosse, Klim-
čı́k, and Prešnajder (1996). A rotationally invariant
spherical L5-brane can only be constructed for those
values of N that are of the form N5(n11)(n12)(n
13)/6, where n is integral. For N of this form we define
the configuration by setting Xi5rGi /n ,iP$1,¯ ,5%,
where Gi are the generators of the n-fold symmetric
tensor product representation of the five four-
dimensional Euclidean gamma matrices G i . For any n
this configuration has the geometrical properties ex-
pected of n superimposed L5-branes contained in the
locus of points describing a 4-sphere. As for the spheri-
cal membrane discussed in Sec. V.C.1, the configuration
is confined to the appropriate spherical locus. The con-
figuration is symmetric under SO(5) and has the correct
spectrum and the L5-brane dipole moment of n spheri-
cal branes. The energy and equations of motion of this
system agree with those expected from M theory. Unlike
the S2 membrane, there is no obvious way of including
small fluctuations of the membrane geometry around
the perfectly isotropic 4-sphere L5-brane in a systematic
way. In the case of the membrane, we know that for any
particular geometry the fluctuations around that geom-
etry can be encoded into matrices that form an arbi-
trarily good approximation to a smooth fluctuation,
through the procedure of replacing functions described
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in terms of an orthonormal basis by appropriate matrix
analogs. In the case of the L5-brane no such procedure
is known.

The infinite flat L5-brane was constructed by Ganor,
Ramgoolam, and Taylor (1997) and Banks, Seiberg, and
Shenker (1997). Like the infinite membrane, the infinite
L5-brane with geometry of a flat R4,R9 can be viewed
as a local limit of a large spherical geometry or it can be
constructed directly. We need to find a set of operators
X124 on some Hilbert space satisfying

e ijklX
iXjXkXl5

e4

2p2 1. (153)

Such a configuration can be constructed using matrices
that are tensor products of the form 1^ Q ,P and Q ,P
^ 1. This gives a ‘‘stack of D2-branes’’ solution with D2-
brane charge as well as D4-brane charge. It is also pos-
sible to construct a configuration with no D2-brane
charge by identifying Xa with the components of the
covariant derivative operator for an instanton on S4,
Xi5i] i1Ai . This construction is known as the Banks-
Casher instanton (Banks and Casher, 1980). Just as for
the spherical L5-brane, it is not known how to construct
small fluctuations of the L5-brane geometry around any
of these flat solutions.

The only other known configuration of an L5-brane in
matrix theory corresponds to a brane with geometry
CP2. This configuration was constructed by Nair and
Randjbar-Daemi (1998) as a particular example of a
coset space G/H with G5SU(3) and H5U(2). They
chose the matrices Xi5rt i /AN , where t i are generators
spanning g/h in a particular representation of SU(3).
The geometry defined in this fashion seems to be in
some ways better behaved than the S4 geometry. For
one thing, configurations of a single brane can be con-
structed with arbitrarily large N . Furthermore, it seems
to be possible to include local fluctuations as symmetric
functions of the matrices t i . This configuration extends
in only four spatial dimensions, however, which makes
the geometrical interpretation less clear.

Clearly, there are many aspects of the L5-brane in
matrix theory that are not understood. The principal
outstanding problem is to find a systematic way of de-
scribing an arbitrary L5-brane geometry including its
fluctuations. One approach to this might be to find a way
of regularizing the world-volume theory of an M5-brane
in a fashion similar to the matrix regularization of the
supermembrane. Just as for the construction of a cova-
riant version of the matrix membrane theory, a generali-
zation of the Nambu bracket may be helpful in finding
such a matrix M5-brane theory. It is also possible that
understanding the structure of noncommutative
4-manifolds might help clarify this question. This is one
of many places in which noncommutative geometry ties
in closely with matrix theory. We shall discuss other
such connections with noncommutative geometry in Sec.
VIII.

In this and the previous section we have discussed the
construction of membrane and 5-brane configurations
from the matrix degrees of freedom. Additional features
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that appear when multiple membranes of different kinds
are included in the configuration have been discussed by
Ohta, Shimizu, and Zhou (1998) and de Roo, Panda,
and Van der Schaar (1998).

VI. MATRIX THEORY IN A GENERAL BACKGROUND

So far we have discussed matrix theory as a descrip-
tion of M theory only in infinite flat space. In this section
we consider the possibility of extending the theory to
compact and curved spaces. We discuss the compactifi-
cation of the theory on tori in Sec. VI.A. In Sec. VI.B we
discuss the problem of using matrix-theory methods to
describe M theory in a curved-background space-time.

A. Matrix theory on tori

The compactification of matrix theory on a toroidallly
compactified space-time is most easily understood using
an explicit representation of T duality in type-IIA string
theory. In string theory, T duality is a symmetry that
relates the type-IIA theory compactified on a circle of
radius R with type-IIB theory compactified on a circle
with dual radius R̂5a8/R . In the perturbative type-II
string theory, T duality exchanges winding and momen-
tum modes of the closed string around the compact di-
rection. For open strings, Dirichlet and Neumann
boundary conditions are exchanged by T duality, so that
Dirichlet p-branes are mapped under T duality to Di-
richlet (p61)-branes (Dai, Leigh, and Polchinski, 1989).
It was shown by Witten (1996) that the low-energy
theory describing a system of N parallel Dp-branes in
flat space is the dimensional reduction of N51,
(911)-dimensional super Yang-Mills theory to p11 di-
mensions. In the case of N D0-branes, this gives the
Lagrangian (56). In terms of these low-energy field theo-
ries describing Dp-brane dynamics, T duality has the
effect of exchanging transverse scalars and gauge fields
associated with the compact direction in the p-brane and
(p11)-brane world-volume theories through

Xj→~2pa8!~ i] j1Aj!. (154)

With this identification, the low-energy action describing
N D0-branes on a d-torus is precisely identifiable with
the dimensional reduction of 10D super Yang-Mills to a
(d11)-dimensional theory on the dual torus (Taylor,
1997a). This allows us to identify the matrix model of M
theory compactified on a torus Td as a
(d11)-dimensional supersymmetric Yang-Mills theory.
The argument of Seiberg and Sen reviewed in Sec. III.D
is valid in this situation, so that U(N) maximally super-
symmetric Yang-Mills theory on (Td)* should describe
DLCQ M theory compactified on Td. When d<3, the
quantum super Yang-Mills theory is renormalizable, so
this is a sensible way to approach the theory. As the
dimension of the torus increases, however, the matrix
description of the theory develops more and more com-
plications. In general, the super Yang-Mills theory on
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the d-torus encodes the full U-duality symmetry group
of M theory on Td in a rather nontrivial fashion.

We shall discuss the compactification of the theory on
a circle S1 in Sec. VII.B. Compactification of the theory
on a 2-torus was discussed by Sethi and Susskind (1997).
They pointed out that as the T2 shrinks, a new dimen-
sion appears whose quantized momentum modes corre-
spond to magnetic flux on the T2. In the limit where the
area of the torus goes to 0, an O(8) symmetry appears.
This corresponds with the fact that IIB string theory ap-
pears as a limit of M theory on a small 2-torus (Schwarz,
1995; Aspinwall, 1996).

Compactification of the theory on a 3-torus was dis-
cussed by Susskind (1996) and Ganor, Ramgoolam, and
Taylor (1997). In this case, M theory on T3 is equivalent
to (311)-dimensional super Yang-Mills theory on a
torus. This theory is conformal and finite. M theory on
T3 has a special type of T-duality symmetry under which
all three dimensions of the torus are inverted. In the
matrix description this is encoded in the Montanen-
Olive S duality of the 4D super Yang-Mills theory.

When compactified on T4, the manifest symmetry
group of the theory is SL(4,Z). The expected U-duality
group of M theory compactified on T4 is SL(5,Z), how-
ever. It was pointed out by Rozali (1997) that the
U-duality group can be completed by interpreting in-
stantons on T4 as momentum states in a fifth compact
dimension. This means that matrix theory on T4 is most
naturally described in terms of a (511)-dimensional
theory with a chiral (2,0) supersymmetry. This (2,0)
theory with 16 supersymmetries (see, for example,
Seiberg, 1998) appears to play a crucial role in numerous
aspects of the physics of M theory and 5-branes and has
been studied extensively in recent years.

Compactification on T5 was discussed by Berkooz,
Rozali, and Seiberg (1997) and Seiberg (1997b). Com-
pactification on tori of higher dimensions continues to
lead to more complicated situations, particularly when
one gets to T6, when the matrix-theory description
seems to be as complicated as the original M theory
(Brunner and Karch, 1998; Elitzur et al. 1998; Hanany
and Lifschytz, 1998; Losev, Moore, and Shatashvili,
1998). Despite the complexity of T6 compactification,
however, it was suggested by Kachru, Lawrence, and Sil-
verstein (1998) that compactification of matrix theory on
a more general Calabi-Yau 3-fold might actually lead to
a simpler theory than that resulting from compactifica-
tion on T6. If this speculation is correct and a more
explicit description of the theory on a Calabi-Yau com-
pactification could be found, it might make matrix
theory a possible approach for studying realistic 4D phe-
nomenology.

A significant literature has been produced on the sub-
ject of compactification of matrix theory on tori and or-
bifolds, of which we have mentioned only a few aspects.
One particularly interesting orbifold compactification of
M theory is the Hořava-Witten (1996) compactification
leading to heterotic string theory. The construction of a
matrix heterotic string theory was considered in several
Rev. Mod. Phys., Vol. 73, No. 2, April 2001
papers.12 The reader interested in more details regarding
toroidal or orbifold compactifications of matrix theory is
referred to Fischler et al. (1997), Banks (1999), and
Obers and Pioline (1999) for reviews and further refer-
ences.

B. Matrix theory in curved backgrounds

In the previous section we discussed matrix theory
compactifications on tori, which have nontrivial topol-
ogy but are locally flat. We now briefly discuss the prob-
lem of formulating matrix theory in a space that has the
topology of R9 but that may be curved or have other
nontrivial background fields. We should like to general-
ize the matrix-theory action to one that includes a gen-
eral supergravity background given by a metric tensor,
3-form field, and gravitino field that together satisfy the
equations of motion of 11D supergravity. This issue has
been discussed by many authors, although limited
progress has been made in this direction so far.

Seiberg (1997b) argued that light-front M theory on
an arbitrary compact or non-compact manifold should
be reproduced by the low-energy D0-brane action on
the same compact manifold, although no explicit de-
scription of this low-energy theory was given. Douglas
(1998a, 1998b) proposed that any formulation of matrix
theory in a curved background should satisfy a number
of axioms. The most restrictive of these axioms is a con-
dition stating that, for a pair of D0-branes at points xi

and yi, corresponding to diagonal 232 matrices, the
masses of the off-diagonal fields should be given by the
geodesic distance between the points xi and yi in the
given background metric. It was shown by Douglas,
Kato, and Ooguri (1998) that the first few terms in a
weak-field expansion of the multiple D0-brane action on
a Ricci-flat Kähler manifold can be constructed in a
fashion that is consistent with the geodesic length condi-
tion as well as Douglas’s other axioms. These authors
also found, however, that these conditions do not
uniquely determine most of the terms in the action, so
that a more general principle is still needed to construct
the action to all orders.

Taylor and Van Raamsdonk (1999a) used the matrix-
theory representation of the supercurrent components
reviewed in Sec. IV.A.4 to construct the terms in the
matrix-theory action describing linear couplings to a
general supergravity background (see also Lifschytz,
1998b). A related construction with regard to the mem-
brane was carried out by Dasgupta, Nicolai, and Plefka
(2000). One interesting feature of this construction is
that the combinatorics of the symmetrized trace pre-
scription is necessary for Douglas’s geodesic length
condition to be satisfied. This proposal can in principle
be generalized to described mth-order couplings to the

12These include Banks and Motl (1997), Danielsson and Fer-
retti (1997), Hořava (1997), Kachru and Silverstein (1997),
Lowe (1997a, 1997b), Motl (1996), Motl and Susskind (1997),
Rey (1997a), and Krogh (1999a, 1999b).
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supergravity background fields, where matrix expres-
sions are needed for quantities that can be determined
from an m-loop matrix-theory calculation. Whether
these terms can be calculated and sensibly organized
into higher-order couplings of matrix theory to back-
ground fields depends on whether higher-loop matrix-
theory results are protected by supersymmetric non-
renormalization theorems.

In two articles Douglas, Ooguri, and Shenker (1997)
and Douglas and Ooguri (1998) considered two-graviton
scattering for matrix theory on a large K3 surface. These
authors concluded that no finite-N matrix theory action
could reproduce gravitational physics in such a curved
background. The difficulty in this situation first arises
from terms quadratic in the background curvature ten-
sor. This is compatible with the observations mentioned
in Sec. IV.D that supersymmetric nonrenormalization
theorems first fail for four-graviton interactions. These
combined pieces of evidence make it quite plausible that
classical supergravity on curved (or flat) spaces will not
be describable by any finite-N matrix theory, but that
the large-N limit must be understood for further
progress to be made.

VII. RELATED MODELS

The BFSS conjecture stating that matrix quantum me-
chanics is a complete description of flat-space M theory
in light-front coordinates was the first of a series of re-
lated conjectures that M theory and other string theories
can be described in certain regimes or with certain back-
grounds by quantum-mechanical or quantum-field-
theoretical models. In this section we briefly review sev-
eral of these other conjectures and discuss their
relationship to the matrix model of M-theory theory on
which we have focused in the rest of this review.

A. The IKKT matrix model of IIB string theory

Shortly after the original BFSS paper, it was proposed
by Ishibashi, Kawai, Kitazawa, and Tsuchiya (1996) that
a (010)-dimensional matrix model should give a Poin-
caré invariant description of type-IIB string theory in a
flat-space background. The argument given for this con-
jecture follows a similar line of reasoning to the deriva-
tion of matrix theory as a regularized light-front mem-
brane theory reviewed in Sec. II. Ishibashi et al. started
with the Green-Schwarz form of the IIB string action,
written following Schild (1977) as

S5E d2sFAgaS 1
4

$Xm,Xn%22
i

2
c̄Gm$Xm,c% D1bAgG ,

(155)
where $• ,•% is a canonical Poisson bracket on the string
world volume and a,b are constants. Performing the ma-
trix regularization of this theory à la Goldstone and
Hoppe led to the 0-dimensional matrix model arising
from the dimensional reduction in all ten dimensions of
10D N51 super Yang-Mills theory,
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This action was then integrated over all N3N matrices
Xm,c , giving a finite-dimensional integral for finite N .
The integral of Eq. (155) over all metrics g was inter-
preted in this model as leading to a sum over all values
of N in the partition function of the theory. This (0
10)-dimensional matrix model of type-IIB string theory
is often referred to as the IKKT model. Other related
matrix formulations of type-IIB string theory have been
discussed by Fayyazuddin et al. (1997), Hirano and Kato
(1997), Periwal (1997), Yoneya (1997), Kitsunezaki and
Nishimura (1998), and Tada and Tsuchiya (1999). A re-
lated matrix formulation of type-I string theory was in-
vestigated by Tokura and Itoyama (1998); see Itoyama
and Tsuchiya (1999) for a review.

Since the initial formulation of this model by Ishibashi
et al., many further extensions of this model have been
carried out. For a review of some of this work, see Aoki
et al. (1999). Because the partition function for this
model is simply a finite-dimensional integral for finite N ,
this is in principle the simplest of the matrix models in
which to carry out explicit calculations. Since this model
furthermore has the virtue of manifest Poincaré invari-
ance, it is potentially a more powerful framework than
the matrix model of M theory, which as we have dis-
cussed here is restricted to a light-front description of
the full 11-dimensional theory. In some sense this matrix
model can be thought of in terms of the low-energy
theory of N D-instantons, although there does not seem
to be an argument analogous to the Seiberg-Sen limiting
argument that justifies the dropping of higher-order
terms in the Born-Infeld theory for this model. There is
a separate argument for the validity of this model, which
comes from relating the Schwinger-Dyson loop equa-
tions for Wilson loops in the IKKT model to the type-
IIB string field theory in light-cone gauge (Fukuma et al.
1998). The role of the light cone and its relationship to
space-time causality in the IIB matrix model, however,
is not yet clearly understood. One very intriguing sug-
gestion that has been made for the IKKT model is that
the dimension (four) of observable space-time arises as
the natural fractal dimension of a branched polymer
which describes the dynamics of the model (Aoki et al.
1999). While evidence for this speculation is not yet con-
clusive (see, for instance, Ambjorn et al., 2000), it is
clearly important to develop a deeper understanding of
this model.

B. The matrix model of light-front IIA string theory

Another matrix formulation of string theory arises
from acting with T duality on the matrix model of M
theory we have been discussing. The resulting matrix
string theory asserts that a light-cone description of
type-IIA string theory in flat space is given by
(111)-dimensional maximally supersymmetric Yang-
Mills theory. This matrix string theory was first de-
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scribed by Motl (1997) and was further refined by Banks
and Seiberg (1997) and Dijkgraaf, Verlinde, and Ver-
linde (1997, 1998). The model can be derived from the
matrix model of M theory in the following fashion: Con-
sider matrix theory compactified on a circle S1 in dimen-
sion 9. As discussed in Sec. VI.A, under T duality on the
circle this theory can be described by super Yang-Mills
theory in (111)-D on the dual circle Ŝ1. In the BFSS
formulation of matrix theory, this corresponds to M
theory compactified on a 2-torus. If we now think of
dimension 9 rather than dimension 11 as the dimension
that has been compactified to get a IIA theory, we see
immediately that this super Yang-Mills theory should
provide a light-front description of type-IIA string
theory. Because we are now interpreting dimension 9 as
the dimension of M theory that is compactified to give
type-IIA string theory, the fundamental objects that
carry momentum p1 are no longer D0-branes, but
rather strings with longitudinal momentum. Thus it is
natural to interpret N/R in this super Yang-Mills theory
as the longitudinal string momentum.

To be slightly more explicit about this matrix string-
theory conjecture, consider the matrix-theory Hamil-
tonian (working in Planck units and dropping factors of
order unity)

H5R11Tr †PaPa2@Xa,Xb#21uTga@Xa,u#‡. (157)

After compactification on R9 we identify X9→R9Ds ,
P9→R9Ȧ9;E9 /R9 , where sP@0,2p# is the coordinate
on the dual circle. With these identifications, and using
g;R9

3/2 , the Hamiltonian can be rewritten in the form

H5
R11

2p E ds Tr FPaPa1~DsXa!21uTDsu

1
1
g2 ~E22@Xa,Xb#2!1

1
g

uTga@Xa,u#G . (158)

This is essentially the form of the Green-Schwarz light-
front string Hamiltonian, with the modification that the
fields are now N3N matrices that do not necessarily
commute. This means that the theory automatically con-
tains multistring objects living in a second-quantized
Hilbert space. Furthermore, it is possible to construct
extended string-theory objects in terms of the noncom-
muting matrix variables, by a simple translation from the
original matrix-theory language. For example, the type-
IIA D0-brane charge in this model is given by the elec-
tric flux F09 along the compact direction in the
(111)-dimensional super Yang-Mills theory. A com-
plete list of the charges and their couplings to back-
ground supergravity fields is given by Schiappa (2000).

A particularly nice feature of the matrix IIA string
theory is the way in which the individual string bits car-
rying a single unit of longitudinal momentum combine
to form long strings, as shown by Motl (1997). As the
string coupling becomes small, g→0, the coefficient of
the term @Xa,Xb#2 in the Hamiltonian becomes very
large. This forces the matrices to become simultaneously
diagonalizable. Because the string configuration is de-
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fined over S1, however, the matrix configuration need
not be periodic in s. The matrices Xa(0) and Xa(2p)
can be related by an arbitrary permutation. The lengths
of the cycles of this permutation determine the numbers
of string bits that combine into long strings whose lon-
gitudinal momentum N/R11 can become large in the
large-N limit. As the coupling becomes very small, the
theory therefore essentially becomes a sigma model on
(R8)N/SN. The twisted sectors of this theory correspond
to the sectors where the string bits are combined in dif-
ferent permutations. In this picture, string interactions
appear as vertex operators in the conformal field theory
arising as the infrared limit of the sigma model, as dis-
cussed by Dijkgraaf, Verlinde, and Verlinde (1997).13

C. The AdS/CFT correspondence

From the point of view taken in Sec. III the essential
connection between matrix quantum mechanics and M
theory is that the same limit that gives the nonrelativistic
Yang-Mills theory for D0-branes can be interpreted as
corresponding to a limit of lightlike compactification of
M theory. Following the BFSS matrix-theory conjecture,
it was found that there are numerous other situations in
which an appropriate field theory limit of a system of
multiple branes can be related to M theory and string
theory in certain limiting backgrounds. The simplest and
best-studied example of this for higher-dimensional
branes is the case of many D3-branes. The first clue that
a similar correspondence might exist for D3-branes was
the demonstration by Klebanov (1997) that the leading
term in a semiclassical calculation of the absorption
cross section of a dilaton s wave by a system of many
3-branes is precisely reproduced by the
(311)-dimensional super Yang-Mills theory describing
the low-energy dynamics of the system. This and other
evidence led Maldacena (1998c) to conjecture that the
large-N limit of U(N) maximally supersymmetric Yang-
Mills theory in (311) dimensions should precisely re-
produce the physics of type-IIB string theory in the
near-horizon limit of the D3-brane supergravity solu-
tion. This near-horizon geometry is a manifold of the
form AdS53S5, where AdSn is an anti–de Sitter mani-
fold of dimension n . Maldacena motivated his conjec-
ture by observing that by taking the limit a8→0 and
taking the distance scale r on the supergravity side to
zero such that r/a8 remains constant, the physics on the
D3-brane side is the Yang-Mills limit of the Born-Infeld
theory,

13Further details regarding string interactions in matrix string
theory can be found in the articles of Wynter (1997, 1998,
2000), Bonelli, Bonora, and Nesti (1998, 1999), Bonelli,
Bonora, Nesti, and Tomasiello (1999), Giddings, Hacquebord,
and Verlinde (1999), Grignani and Semenoff (1999), Hacque-
bord (1999), Brax (2000), and Grignani et al. (2000). Other
aspects of matrix string theory were discussed by Bonora and
Chu (1997), Verlinde (1997), Kostov and Vanhove (1998),
Baulieu, Laroche, and Nekrasov (1999), Billó et al. (1999),
Brax and Wynter (1999), and Sugino (1999).
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while the physics on the supergravity side is precisely
that of IIB string theory in the near-horizon AdS53S5

geometry. An enormous amount of work has been done
to extend and verify this conjecture in many different
situations, including those with reduced supersymmetry.
Further development of this subject is beyond the scope
of this review, and we refer the reader to the compre-
hensive review by Aharony et al. (2000) for further de-
tails. We shall restrict ourselves here to a few brief com-
ments about the connection between this anti-de sitter/
conformal field theory conjecture for D3-branes and the
matrix description of M theory. Just as the matrix string
theory described in the previous section can be related
to the matrix of M theory through T duality on a circle
S1, it is tempting to imagine that there is a connection
between matrix theory and the D3-brane AdS/CFT con-
jecture that may be made precise by considering T du-
ality on a 3-torus. This duality replaces matrix quantum
mechanics with the same 4D Yang-Mills theory that ap-
pears in the AdS/CFT correspondence. One difficulty in
making such a connection precise is that the connection
between the theories is described very differently in the
two cases. In the matrix-model case, we expect to be
able to describe the quantum gravity S matrix explicitly
in terms of the scattering of localized D0-brane wave
functions. In the AdS/CFT picture, on the other hand,
correlation functions in the Yang-Mills theory corre-
spond to interactions between supergravity fields in the
bulk of the AdS space with sources on the boundary
(Gubser, Klebanov, and Polyakov, 1998; Witten, 1998).
While the very different nature of these two correspon-
dences makes it difficult to relate them in a precise fash-
ion, connections between the matrix theory and AdS/
CFT conjectures have been discussed by several
writers.14 The connections between many of these points
of view, and the regions of overlap between the various
limits associated with matrix theory and the AdS/CFT
conjecture for D0-branes, are discussed by Polchinski
(1999).

VIII. CONCLUSIONS

In this review we have focused on some basic aspects
of matrix theory. We have described two complemen-
tary ways of thinking about matrix theory: first, as a
quantized regularized theory of a supermembrane,
which can be interpreted as a second-quantized theory
of objects moving in an 11-dimensional target space, and
second, as the discrete light-cone quantization of M
theory, which is equivalent to a simple limit of type-IIA
string theory through the Seiberg-Sen limiting argument.
We have reviewed perturbative matrix-theory calcula-
tions that correspond precisely with linearized 11-

14See, for example, Balasubramanian, Gopakumar, and
Larsen (1998), Hyun (1998), Itzhaki et al. (1998), Silva (1998),
Chepelev (1999), de Alwis (1999), Hyun and Kiem (1999),
Jevicki and Yoneya (1999), Martinec and Sahakian (1999),
Sekino and Yoneya (1999), and Yoneya (2000).
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dimensional supergravity at the one-loop level, and with
nonlinear interactions between three gravitons at the
two-loop level, but that seem to disagree with higher-
order nonlinearities in gravity at the three-loop level. As
we have discussed, showing that matrix theory agrees
with classical supergravity to all orders probably re-
quires new insight into the nature of the large-N limit
and the structure of quantum states in the theory. We
have shown that by using matrix degrees of freedom it is
possible to describe pointlike objects that have many of
the physical properties of supergravitons, as well as ex-
tended objects that behave like the supermembrane and
5-brane of M theory. For supergravitons and mem-
branes this story is fairly complete, at least classically;
for M5-branes, however, only a few very special geom-
etries have been described in matrix language, and a
systematic description of M5-branes, even at the classi-
cal level, is still lacking. We have reviewed progress on
generalizing matrix theory to backgrounds other than
flat eleven-dimensional Minkowski space. Finding a de-
scription of the theory when the background is curved
seems to involve resolving many of the same issues that
arise in comparing with nonlinear classical supergravity.
Finally, we have discussed related models that describe
other M-theory or string-theory backgrounds in terms of
higher-dimensional field theories.

There are many aspects of matrix theory that we have
covered only briefly, or not at all, in this review. These
include matrix-theory black holes,15 orbifold compactifi-
cations of matrix theory, matrix models of the six-
dimensional (0,2) theory and little string theory,16 and
the matrix models of string theory briefly mentioned in
the previous section.

Matrix theory has given us a remarkable new perspec-
tive on M theory and string theory, by giving us a well-
defined, in principle calculable, model for a quantum
theory of supergravity. While this model has given us
many new insights, at this point it seems clear that, for
further progress in directly using this model to better
understand the physics of M theory, some new ideas
about how to understand the quantum theory and the
large-N limit are probably needed. Resolving the out-
standing issues surrounding both the connection of the
model with classical nonlinear supergravity and the for-
mation of the model in a general space-time background
is clearly necessary if we ever wish to use this model to
make new statements about corrections to classical su-
pergravity in phenomenologically interesting models
such as M theory on compact 7-manifolds or orbifolds.

While direct progress on matrix theory seems at this
point to be slowing, the development of this model over
the last several years has led to a number of ideas that

15See, for example, Banks et al. (1998), Kabat and Lifschytz
(2000) and references therein.

16These matrix models were first developed by Witten (1997),
Aharony, Berkooz, and Seiberg (1998), Aharony et al. (1998),
and Ganor and Sethi (1998); for a review of this work and
further developments in this direction see Banks (1999).
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have fueled interesting developments in many other re-
lated areas. We conclude this review with a brief men-
tion of some of these areas.

One important area of research on which matrix
theory has had significant impact is the ongoing study of
supersymmetric nonrenormalization theorems in quan-
tum field theories. Motivated in part by the BFSS con-
jecture, Dine and Seiberg (1997) proved a nonrenormal-
ization theorem for the F4 terms in the effective action
of (311)-dimensional super Yang-Mills theory. As we
discussed in Sec. IV, the matrix-theory conjecture moti-
vated a great deal of effort towards proving such non-
renormalization theorems for the matrix quantum me-
chanics theory. This work has already improved our
understanding of the role of supersymmetry in field
theories of various dimensions. Finding some general
principles that explain why certain terms in the effective
action are renormalized and others are not would be a
great step forward in the study of supersymmetric field
theories.

Another direction that recent work has taken, which
was motivated, at least in part, by results from matrix
theory, is the study of noncommutative field theory and
noncommutative geometry in string theory. A review of
noncommutative geometry in the context of matrix
theory is given in Konechny and Schwarz (2000). It was
pointed out by Connes, Douglas, and Schwarz (1998)
and Douglas and Hull (1998) that the T-duality con-
struction of Taylor (1997a) relating D0-branes on a
torus to Dp-branes on the dual torus can be generalized
by considering boundary conditions giving a noncommu-
tative gauge theory on the dual torus. They showed that
this construction was equivalent to thinking of the D0-
branes as being in a constant B-field background. The
connection between string theory in a constant B field
and noncommutative geometry was studied further by
Seiberg and Witten (1999), leading to a flurry of activity
in this area. Throughout this recent work, one theme is
the idea that for a Dp-brane in a constant B field, a
gauge transformation removes the B field in the bulk
and produces a magnetic or electric flux F on the
Dp-brane world volume. For p52, the resulting system
is simply a D2-brane bound to multiple D0-branes,
which is described equivalently through the matrix-
theory language and the language of fuzzy geometry on
the D2-brane, using the Moyal (1949) product. The con-
nection between these points of view is discussed by
Alekseev, Recknagel, and Schomerus (1999), Castro
(1999), Cornalba (1999), Cornalba and Schiappa (1999),
Floratos and Leontaris (1999), and many others.

Another aspect of matrix theory that has wide-ranging
applications is the explicit construction reviewed in Sec.
IV of the multipole moments of the matrix-theory stress
tensor, membrane current, and M5-brane current. This
higher-moment structure, which describes higher-
dimensional extended objects in terms of the degrees of
freedom of lower-dimensional objects, is very general
and has a precise analog in type-II string theory, where
it is possible to describe the supercurrents and charges
of both higher- and lower-dimensional Dirichlet- and
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NS-branes in terms of the degrees of freedom living in
the world-volume theory of a system of Dp-branes (My-
ers, 1999; Taylor and Van Raamsdonk, 1999a, 1999b).
This structure has many possible applications to
D-brane physics. It was pointed out by Myers (1999)
that putting a system of Dp-branes in a constant back-
ground (p14)-form flux will produce a dielectric effect
in which spherical bubbles of D(p12)-branes will be
formed with dipole moments that screen the background
field. This dielectric effect has been used in the work of
Polchinski and Strassler (2000) on string duals of super
Yang-Mills theories with reduced supersymmetry, and in
the work of McGreevy, Susskind, and Toumbas (2000)
on giant gravitons in AdS space. The fact that extended
objects can be constructed from the matrices describing
pointlike D0-branes seems to be one of the fundamental
lessons of matrix theory. The fundamental problem of M
theory at this point is finding a background-independent
formulation in terms of fundamental degrees of freedom
from which all extended objects in the theory can be
built. It seems likely that the insights learned from ma-
trix theory will be useful in finding such a set of funda-
mental degrees of freedom and understanding how they
can be used to build the strings and branes in the theory
and describe their interactions.
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