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Introduction to String Theory

Thomas Mohaupt

Friedrich-Schiller Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany

Abstract. We give a pedagogical introduction to string theory, D-branes and p-brane
solutions.

1 Introductory remarks

These notes are based on lectures given at the 271-th WE-Haereus-Seminar
‘Aspects of Quantum Gravity’. Their aim is to give an introduction to string
theory for students and interested researches. No previous knowledge of string
theory is assumed. The focus is on gravitational aspects and we explain in some
detail how gravity is described in string theory in terms of the graviton excitation
of the string and through background gravitational fields. We include Dirichlet
boundary conditions and D-branes from the beginning and devote one section to
p-brane solutions and their relation to D-branes. In the final section we briefly
indicate how string theory fits into the larger picture of M-theory and mention
some of the more recent developments, like brane world scenarios.

The WE-Haereus-Seminar ‘Aspects of Quantum Gravity’ covered both main
approaches to quantum gravity: string theory and canonical quantum gravity.
Both are complementary in many respects. While the canonical approach stresses
background independence and provides a non-perturbative framework, the cor-
nerstone of string theory still is perturbation theory in a fixed background ge-
ometry. Another difference is that in the canonical approach gravity and other
interactions are independent from each other, while string theory automatically
is a unified theory of gravity, other interactions and matter. There is a single
dimensionful constant and all couplings are functions of this constant and of
vacuum expectation values of scalars. The matter content is uniquely fixed by
the symmetries of the underlying string theory. Moreover, when formulating the
theory in Minkowski space, the number of space-time dimensions is fixed. As
we will see, there are only five distinct supersymmetric string theories in ten-
dimensional Minkowski space.

The most important feature of string perturbation theory is the absence of
UV divergencies. This allows one to compute quantum corrections to scatter-
ing amplitudes and to the effective action, including gravitational effects. More
recently, significant progress has been made in understanding non-perturbative
aspects of the theory, through the study of solitons and instantons, and through
string dualities which map the strong coupling behaviour of one string theory to
the weak coupling behaviour of a dual theory. Moreover, string dualities relate
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all five supersymmetric string theories to one another and lead to the picture of
one single underlying theory, called M-theory. So far, only various limits of this
theory are known, while the problem of finding an intrinsic, non-perturbative
and background-independent definition is unsolved. One expects that M-theory
has an underlying principle which unifies its various incarnations, presumably
a symmetry principle. One of the obstacles on the way to the final theory is
that it is not clear which degrees of freedom are fundamental. Besides strings,
also higher-dimensional p-branes play an essential role. Moreover, there is an
eleven-dimensional limit, which cannot be described in terms of strings.

Our presentation of string theory will be systematic rather than follow the
path of historical development. Nevertheless we feel that a short historical note
will be helpful, since many aspects which may seem somewhat ad hoc (such
as the definition of interactions in section 3) become clearer in their historical
context. The story started with the Veneziano amplitude, which was proposed as
an amplitude for meson scattering in pre-QCD times. The amplitude fitted the
known experimental data very well and had precisely the properties expected
of a good scattering amplitude on the basis of S-matrix theory, the bootstrap
program and Regge pole theory. In particular it had a very special soft UV
behaviour. Later work by Y. Nambu, H.B. Nielsen and L. Susskind showed that
the Veneziano amplitude, and various generalization thereof could be interpreted
as describing the scattering of relativistic strings. But improved experimental
data ruled out the Veneziano amplitude as a hadronic amplitude: it behaved
just to softly in order to describe the hard, partonic substructures of hadrons
seen in deep inelastic scattering. J. Scherk and J. Schwarz reinterpreted string
theory as a unified theory of gravity and all other fundamental interactions,
making use of the fact that the spectrum of a closed string always contains a
massless symmetric tensor state which couples like a graviton. This lead to the
development of perturbative string theory, as we will describe it in sections 2–4
of these lecture notes. More recently the perspective has changed again, after
the role of D-branes, p-branes and string dualities was recognized. This will be
discussed briefly in sections 5 and 6.

From the historical perspective it appears that string theory is a theory which
is ‘discovered’ rather than ‘invented’. Though it was clear from the start that
one was dealing with an interesting generalization of quantum field theory and
general relativity, the subject has gone through several ‘phase transitions’, and its
fundamental principles remain to be made explicit. This is again complementary
to canonical quantum gravity, where the approach is more axiomatic, starting
from a set of principles and proceeding to quantize Einstein gravity.

The numerous historical twists, our lack of final knowledge about the funda-
mental principles and the resulting diversity of methods and approaches make
string theory a subject which is not easy to learn (or to teach). The 271-th WE-
Haereus-Seminar covered a broad variety of topics in quantum gravity, ‘From
Theory to Experimental Search’. The audience consisted of two groups: gradu-
ate students, mostly without prior knowledge of string theory, and researches,
working on various theoretical and experimental topics in gravity. The two lec-
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tures on string theory were supposed to give a pedagogical introduction and to
prepare for later lectures on branes worlds, large extra dimensions, the AdS-CFT
correspondence and black holes. These lecture notes mostly follow the lectures,
but aim to extend them in two ways. The first is to add more details to the
topics I discussed in the lectures. In particular I want to expand on points which
seemed to be either difficult or interesting to the audience. The second goal is to
include more material, in order to bring the reader closer to the areas of current
active research. Both goals are somewhat contradictory, given that the result is
not meant to be a book, but lecture notes of digestable length. As a compromise
I choose to explain those things in detail which seemed to be the most important
ones for the participants of the seminar, hoping that they represent a reason-
able sample of potential readers. On the other side several other topics are also
covered, though in a more scetchy way. Besides summarizing advanced topics,
which cannot be fully explained here, I try to give an overview of (almost) all
the new developements of the last years and to indicate how they fit into the
emerging overall picture of M-theory.

The outline of the lectures is as follows: sections 2–4 are devoted to pertur-
bative aspects of bosonic and supersymmetric string theories. They are the core
of the lectures. References are given at the end of the sections. String theory has
been a very active field over several decades, and the vast amount of existing
literature is difficult to oversee even for people working in the field. I will not
try to give a complete account of the literature, but only make suggestions for
further reading. The basic references are the books [1,2,3,4,5], which contain a
huge number of references to reviews and original papers. The reader interested
in the historical developement of the subject will find information in the anno-
tated bibliography of [1]. Section 5 gives an introduction to non-perturbative
aspects by discussing a particular class of solitons, the p-brane solutions of type
II string theory. Section 6 gives an outlook on advanced topics: while sections
6.1–6.3 scetch how the five supersymmetric string theories fit into the larger
picture of M-theory, section 6.4 gives an overview of current areas of research,
together with references to lecture notes, reviews and some original papers.

2 Free bosonic strings

We start our study of string theories with the bosonic string. This theory is a
toy-model rather than a realistic theory of gravity and matter. As indicated by
its name it does not have fermionic states, and this disqualifies it as a theory
of particle physics. Moreover, its groundstate in Minkowski space is a tachyon,
i.e., a state of negative mass squared. This signals that the theory is unstable.
Despite these shortcomings, the bosonic string has its virtues as a pedagogi-
cal toy-model: whereas we can postpone to deal with the additional techniques
needed to describe fermions, many features of the bosonic string carry over to
supersymmetric string theories, which have fermions but no tachyon.
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2.1 Classical bosonic strings

We start with a brief overview of classical aspects of bosonic strings.

Setting the stage. Let us first fix our notation. We consider a fixed background
Pseudo-Riemannian space-timeM of dimension D, with coordinates X = (Xµ),
µ = 0, . . . , D−1. The metric is Gµν(X) and we take the signature to be ‘mostly
plus’, (−)(+)D−1.

The motion of a relativistic string inM is described by its generalized world-
line, a two-dimensional surface Σ, which is called the world-sheet. For a single
non-interacting string the world-sheet has the form of an infinite strip. We in-
troduce coordinates σ = (σ0, σ1) on the world-sheet. The embedding of the
world-sheet into space-time is given by maps

X : Σ −→M : σ −→ X(σ) . (1)

The background metric induces a metric on the world-sheet:

Gαβ =
∂Xµ

∂σα
∂Xν

∂σβ
Gµν , (2)

where α, β = 0, 1 are world-sheet indices. The induced metric is to be distin-
guished from an intrinsic metric hαβ on Σ. As we will see below, an intrinsic
metric is used as an auxiliary field in the Polyakov formulation of the bosonic
string.

A useful, but sometimes confusing fact is that the above setting can be viewed
from two perspectives. So far we have taken the space-time perspective, inter-
preting the system as a relativistic string moving in space-timeM. Alternatively
we may view it as a two-dimensional field theory living on the world-sheet, with
fields X which take values in the target-space M. This is the world-sheet per-
spective, which enables us to use intuitions and methods of two-dimensional field
theory for the study of strings.

Actions. The natural action for a relativistic string is its area, measured with
the induced metric:

SNG =
1

2πα′

∫

Σ

d2σ| detGαβ|1/2 . (3)

This is the Nambu-Goto action, which is the direct generalization of the action
for a massive relativistic particle. The prefactor (2πα′)−1 is the energy per length
or tension of the string, which is the fundamental dimensionful parameter of the
theory. We have expressed the tension in terms of the so-called Regge slope α′,
which has the dimension (length)2 in natural units, c = 1, ~ = 1. Most of the
time we will use string units, where in addition we set α′ = 1

2 .
The Nambu-Goto action has a direct geometric meaning, but is technically

inconvenient, due to the square root. Therefore one prefers to use the Polyakov
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action, which is equivalent to the Nambu-Goto action, but is a standard two-
dimensional field theory action. In this approach one introduces an intrinsic
metric on the world-sheet, hαβ(σ), as additional datum. The action takes the
form of a non-linear sigma-model on the world-sheet,

SP =
1

4πα′

∫

Σ

d2σ
√
hhαβ∂αX

µ∂βX
νGµν(X) , (4)

where h = | dethαβ|.
The equation of motion for hαβ is algebraic. Thus the intrinsic metric is

non-dynamical and can be eliminated, which brings us back to the Nambu-Goto
action. Since

Tαβ :=
(

2πα′
√
h
)−1 δSP

δhαβ
= ∂αX

µ∂βXµ −
1

2
hαβ∂γX

µ∂γXµ (5)

is the energy momentum of the two-dimensional field theory defined by (4), we
can interpret the equation of motion of hαβ as the two-dimensional Einstein equa-
tion. The two-dimensional metric is non-dynamical, because the two-dimensional
Einstein-Hilbert action is a topological invariant, proportional to the Euler num-
ber of Σ. Thus its variation vanishes and the Einstein equation of (4) coupled to
two-dimensional gravity reduces to Tαβ = 0. Note that the energy-momentum
tensor (5) is traceless, hαβTαβ = 0. This holds before imposing the equations of
motion (‘off shell’). Therefore Tαβ has only two independent components, which
vanish for solutions to the equations of motion (‘on shell’). Since the trace of the
energy-momentum tensor is the Noether current of scale transformations, this
shows that the two-dimensional field theory (4) is scale invariant. As we will see
below, it is in fact a conformal field theory.

The Polyakov action has three local symmetries. Two are shared by the
Nambu-Goto action, namely reparametrizations of the world-sheet:

σα −→ σ̃α(σ0, σ1) . (6)

The third local symmetry is the multiplication of the metric hαβ by a local,
positive scale factor,

hαβ(σ) −→ eΛ(σ)hαβ(σ) . (7)

This transformation is called a Weyl transformation by physicists, while mathe-
maticians usually use the term conformal transformation. The three local sym-
metries can be used to gauge-fix the metric hαβ. The standard choice is the
conformal gauge,

hαβ(σ)
!

= ηαβ , where (ηαβ) = Diag(−1, 1) . (8)

While this gauge can be imposed globally on the infinite strip describing the
motion of a single non-interacting string, it can only be imposed locally on more
general world-sheets, which describe string interactions. We will discuss global
aspects of gauge fixing later.
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The conformal gauge does not provide a complete gauge fixing, because (8)
is invariant under a residual symmetry. One can still perform reparametrizations
under which the metric only changes by a local, positive scale factor, because this
factor can be absorbed by a Weyl transformation. Such conformal reparametriza-
tions are usually called conformal transformations by physicists. Note that the
same term is used for Weyl transformations by mathematicians. A convenient
way to characterize conformal reparametrizations in terms of coordinates is to
introduce light cone coordinates,

σ± = σ0 ± σ1 . (9)

Then conformal reparametrization are precisely those reparametrizations which
do not mix the light cone coordinates:

σ+ −→ σ̃+(σ+) , σ− −→ σ̃−(σ−) . (10)

Thus we are left with an infinite-dimensional group of symmetries, which in
particular includes scale transformations.

Equations of motion, closed and open strings, and D-branes. In order
to proceed we now spezialize to the case of a flat space-time, Gµν = ηµν , where
ηµν = Diag(−1,+1, . . . ,+1). In the conformal gauge the equation of motion for
X reduces to a free two-dimensional wave equation,

∂2Xµ = ∂α∂αX
µ = 0 . (11)

Note that when imposing the conformal gauge on the Polyakov action (4), the
equation of motion for hαβ, i.e., Tαβ = 0, becomes a constraint, which has to be
imposed on the solutions of (11).

The general solution of (11) is a superposition of left- and right-moving waves,

Xµ(σ) = Xµ
L(σ+) +Xµ

R(σ−) . (12)

However, we also have to specify boundary conditions at the ends of the string.
One possible choice are periodic boundary conditions,

Xµ(σ0, σ1 + π) = Xµ(σ0, σ1) . (13)

They correspond to closed strings. A convient parametrization of the solution
is:

Xµ(σ) = xµ + 2α′pµσ0 + i
√

2α′
∑

n6=0

αµn
n
e−2inσ+

+ i
√

2α′
∑

n6=0

α̃µn
n
e−2inσ− . (14)

Reality of Xµ implies: (xµ)? = xµ and (pµ)? = pµ and (αµm)? = αµ−m and
(α̃µm)? = α̃µ−m. Here ? denotes complex conjugation. While xµ is the position of
the center of mass of the string at time σ0, pµ is its total momentum. Thus, the
center of mass moves on a straight line in Minkowski space, like a free relativistic
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particle. The additional degrees of freedom are decoupled left- and right-moving
waves on the string, with Fourier components αµm and α̃µm.

When not choosing periodic boundary conditions, the world-sheet has bound-
aries and we have open strings. The variation of the world-sheet action yields a
boundary term, δS '

∫
∂Σ

dσ0∂1X
µδXµ. The natural choice to make the bound-

ary term vanish are Neumann boundary conditions,

∂1X
µ|σ1=0 = 0 , ∂1X

µ|σ1=π = 0 . (15)

With these boundary conditions, momentum is conserved at the ends of the
string. Left- and right-moving waves are reflected at the ends and combine into
standing waves. The solution takes the form

Xµ(σ) = xµ + (2α′)pµσ0 + i
√

2α′
∑

n6=0

αµn
n
e−inσ0

cos(nσ1) . (16)

There is, however, a second possible choice of boundary conditions for open
strings, namely Dirichlet boundary conditions. Here the ends of the string are
kept fixed:

Xµ|σ1=0 = xµ(1) , Xµ|σ1=π = xµ(2) . (17)

With these boundary conditions the solution takes the form

Xµ(σ) = xµ
(1)

+ (xµ
(2)
− xµ

(1)
)σ

1

π
+ i
√

2α′
∑

n6=0

αµn
n
e−inσ0

sin(nσ1) . (18)

More generally we can impose Neumann boundary conditions in the time and
in p space directions and Dirichlet boundary conditions in the other directions.
Let us denote the Neumann directions by (Xm) = (X0, X1, . . . , Xp) and the
Dirichlet directions by (Xa) = (Xp+1, . . . , XD−1).

The most simple choice of Dirichlet boundary conditions is then to require
that all open strings begin and end on a p-dimensional plane located at an
arbitrary position Xa = xa(1) along the Dirichlet directions. Such a plane is called
a p-dimensional Dirichlet-membrane, or D-p-brane, or simply D-brane for short.
While the ends of the strings are fixed in the Dirichlet directions, they still can
move freely along the Neumann directions. The world-volume of a D-p-brane is
(p+1)-dimensional. The Neumann directions are called the world-volume or the
parallel directions, while the Dirichlet directions are called transverse directions.

An obvious generalization is to introduce N > 1 such D-p-branes, located
at positions xa(i), where i = 1, . . . , N , and to allow strings to begin and end on
any of these. In this setting the mode expansion for a string starting on the i-th
D-brane and ending on the j-th is:

Xm(σ) = xm + (2α′)pmσ0 + i
√

2α′
∑

n6=0

αmn
n
e−inσ0

cos(nσ1) ,

Xa(σ) = xa(i) + (xa(j) − xa(i))σ
1

π + i
√

2α′
∑

n6=0

αan
n e
−inσ0

sin(nσ1) . (19)
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(One might also wonder about Dirichlet boundary conditions in the time direc-
tion. This makes sense, at least for Euclidean space-time signature, and leads to
instantons, called D-instantons, which we will not discuss in these lectures.)

Dirichlet boundary conditions have been neglected for several years. The rea-
son is that momentum is not conserved at the ends of the strings, reflecting that
translation invariance is broken along the Dirichlet directions. Therefore, in a
complete fundamental theory the D-branes must be new dynamical objects, dif-
ferent from strings. The relevance of such objects was only appreciated when it
became apparent that string theory already includes solitonic space-time back-
grounds, so called (’RR-charged’) p-Branes, which correspond to D-branes. We
will return to this point later.

Promoting the D-branes to dynamical objects implies that they will interact
through the exchange of strings. This means that in general they will repulse or
attract, and therefore their positions become dynamical. But there exist many
static configurations of D-branes (mainly in supersymmetric string theories),
where the attractive and repulsive forces cancel for arbitrary distances of the
branes.

2.2 Quantized bosonic strings

The definition of a quantum theory of bosonic strings proceeds by using stan-
dard recipies of quantization. The two most simple ways to proceed are called
‘old covariant quantization’ and ‘light cone quantization’. As mentioned above
imposing the conformal gauge leaves us with a residual gauge invariance. In light
cone quantization one fixes this residual invariance by imposing the additional
condition

X+ !
= x+ + p+σ+ , i.e. , α+

m
!

= 0 , (20)

where X± = 1√
2
(X0 ± XD−1) are light cone coordinates in space-time. Then

the constraints Tαβ = 0 are solved in the classical theory. This yields (non-
linear) expressions for the oscillators α−n in terms of the transverse oscillators
αin, i = 1, . . .D − 2. In light cone coordinates the world-sheet is embedded into
space-time along the X0, XD−1 directions. The independent degrees of freedom
are the oscillations transverse to the world sheet, which are parametrized by
the αin. One proceeds to quantize these degrees of freedom. In this approach
unitarity of the theory is manifest, but Lorentz invariance is not.

In old covariant quantization one imposes the constraints at the quantum
level. Lorentz covariance is manifest, but unitarity is not: one has to show that
there is a positive definite space of states and an unitary S-matrix. This is the
approach we will describe in more detail below.

One might also wonder about ‘new covariant quantization’, which is BRST
quantization. This approach is more involved but also more powerful then old
covariant quantization. When dealing with advanced technical problems, for ex-
ample the construction of scattering amplitudes involving fermions in superstring
theories, BRST techniques become mandatory. But this is beyond the scope of
these lectures.
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The Fock space. The first step is to impose canonical commutation relations
on Xµ(σ) and its canonical momentum Πµ(σ) = ∂0X

µ(σ). In terms of modes
one gets

[xµ, pν] = iηµν , [αµm, α
ν
n] = mηµνδm+n,0 . (21)

For closed strings there are analogous relations for α̃µm. The reality conditions of
the classical theory translate into hermiticity relations:

(xµ)+ = xµ , (pµ)+ = pµ , (αµm)+ = αµ−m . (22)

While the commutation relations for xµ, pν are those of a relativistic particle,
the αµm satisfy the relations of creation and annihilation operators of harmonic
oscillators, though with an unconventional normalization.

To proceed, one constructs a Fock space F on which the commutation rela-
tions (21) are repesented. First one chooses momentum eigenstates |k〉, which
are annihiliated by half of the oscillators:

pµ|k〉 = kµ|k〉 , αµm|k〉 = 0 = α̃µm|k〉 , m > 0 . (23)

Then a basis B of F is obtained by acting with creation operators:

B = {αµ1

−m1
· · · α̃ν1

−n1
· · · |k〉 | ml , nl > 0} . (24)

A bilinear form on F , which is compatible with the hermiticity properties (22),
cannot be positive definite. Consider for example the norm squared of the state
αµ−m|k〉:

〈k|(αµ−m)+αµ−m|k〉 ∼ ηµµ = ±1 . (25)

However, the Fock space is not the space of physical states, because we still have
to impose the constraints. The real question is whether the subspace of physical
states contains states of negative norm.

The Virasoro Algebra. Constraints arise when the canonical momenta of a
system are not independent. This is quite generic for relativistic theories. The
most simple example is the relativistic particle, where the constraint is the mass
shell condition, p2 + m2 = 0. When quantizing the relativistic particle, physical
states are those annihilated by the constraint, i.e., states satisfying the mass
shell condition:

(p2 +m2)|Φ〉 = 0 . (26)

When evaluating this in a basis of formal eigenstates of the operator xµ, one
obtains the Klein-Gordon equation, (∂2 + m2)Φ(x) = 0, where Φ(x) = 〈x|Φ〉 is
interpreted as the state vector in the x-basis. This is a clumsy way to approach
the quantum theory of relativistic particles, and one usually prefers to use quan-
tum field theory (‘second quantization’) rather than quantum mechanics (‘first
quantization’). But in string theory it turns out that the first quantized formula-
tion works nicely for studying the spectrum and computing amplitudes, whereas
string field theory is very complicated.
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Proceeding parallel to the case of a relativistic particle one finds that the
canonical momentum is Πµ = ∂0X

µ. The constraints are

Πµ∂1Xµ = 0 , ΠµΠµ + ∂1X
µ∂1Xµ = 0 . (27)

In the Polyakov formulation they are equivalent to Tαβ = 0. It is convenient
to express the constraints through the Fourier components of Tαβ. Passing to
light cone coordinates, the tracelessness of Tαβ, which holds without using the
equation of motion or imposing the constraints, implies

T+− = 0 = T−+ . (28)

Thus we are left with two independent components, T++ and T−−, where T±± '
∂±Xµ∂±Xµ. For closed strings, where ∂±Xµ are periodic in σ1, we expand T±±
in a Fourier series and obtain Fourier coefficients Lm, L̃m, m ∈ Z. For open
strings, observe that σ1 → −σ1 exchanges ∂+X

µ and ∂−Xµ. Both fields can
be combined into a single field, which is periodic on a formally doubled world-
sheet with −π ≤ σ1 ≤ π. In the same way one can combine T++ with T−−.
By Fourier expansion on the doubled world-sheet one then obtains one set of
Fourier modes for the energy-momentum tensor, denoted Lm. This reflects that
left- and right-moving waves couple through the boundaries.

The explicit form for the Lm in terms of oscillators is

Lm = 1
2

∞∑

n=−∞
αm−n · αn , (29)

with an analogous formula for L̃m for closed strings. We have denoted the con-
traction of Lorentz indices by ‘·’ and defined αµ0 = 1

2p
µ = α̃µ0 for closed strings

and αµ0 = pµ for open strings. In terms of the Fourier modes, the constraints are
Lm = 0, and, for closed string, L̃m = 0. Translations in σ0 are generated by L0

for open and by L0 + L̃0 for closed strings. These functions are the world-sheet
Hamiltonians. The Lm satisfy the Witt algebra algebra,

{Lm, Ln}P.B. = i(m − n)Lm+n , (30)

where {·, ·}P.B. is the Poisson bracket. For closed strings we have two copies
of this algebra. The Witt algebra is the Lie algebra of infinitesimal conformal
transformations. Thus the constraints reflect that we have a residual gauge sym-
metry corresponding to conformal transformations. Since the constraints form
a closed algebra with the Hamiltonian, they are preserved in time. Such con-
straints are called first class, and they can be imposed on the quantum theory
without further modifications (such as Dirac brackets).

In the quantum theory the Lm are taken to be normal ordered, i.e., annihi-
lation operators are moved to the right. This is unambigous, except for L0. We
will deal with this ordering ambiguity below. The hermiticiy properties of the
Lm are:

L+
m = L−m . (31)
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The operators Lm satisfy the Virasora algebra:

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0 . (32)

The Virasoro algebra is a central extension of the Witt algebra. On our Fock
space F the central charge c takes the value

c = ηµνηµν = D , (33)

i.e., each space-time dimension contributes one unit. Since the Poisson brackets
of Lm in the classical theory just give the Witt algebra, this dependence on the
number of dimensions is a new property of the quantum theory. The extra central
term occuring at the quantum level is related to a normal ordering ambiguity
of commutators with m + n = 0. This results in a new ‘anomalous’ term in the
algebra. In the context of current algebras such terms are known as Schwinger
terms.

Imposing the constraints, or, why D = 26? In the classical theory the con-
straints amount to imposing Lm = 0 on solutions. Imposing this as an operator
equation on the quantum theory is too strong. In particular it is not compat-
ible with the algebra (32). What can be imposed consistently is that matrix
elements of the Lm vanish between physical states, 〈Φ1|Lm|Φ2〉 = 0. Conversely
this condition singles out the subspace of physical states, Fphys ⊂ F . Using the
hermiticity properties of the Lm, this is equivalent to the statement that the
positive Virasoro modes annihilate physical states,

Lm|Φ〉 = 0 , m > 0 ,

(L0 − a)|Φ〉 = 0 , (34)

for all |Φ〉 ∈ Fphys. Note that we have introduced an undetermined constant
a into the L0-constraint. As mentioned above this operator has an ordering
ambiguity. We take L0 to be normal ordered and parametrize possible finite
ordering effects by the constant a. Since L0 is the Hamiltonian, this might be
considered as taking into account a non-trivial Casimir effect. In the case of
closed strings there is a second set of constraints involving the L̃m.

The Virasoro operators L−m, m > 0 still act non-trivially on physical states
and create highest weight representations of the Virasoro algebra. This corre-
sponds to the fact that we still have residual gauge symmetries. Therefore it is
clear that Fphys is not the physical Hilbert space. Fphys is not positive definite,
but contains null states (states of norm zero) and, depending on the number of
space-time dimensions, also states of negative norm. A positive definite space
of states can be constructed if negative norm states are absent, such that Fphys

is positive semi-definite, and if null states are orthogonal to all physical states.
Then one can consistently identify physical states |Φ〉 that differ by null states
|Ψ 〉,

|Φ〉 ' |Φ〉+ |Ψ 〉 , (35)
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and define the Hilbert space by

H = Fphys/{Null states} . (36)

The working of this construction crucially depends on the values of D and a.
This is the contents of the so-called no-ghost theorem, which can be summarized
as follows:

1. D = 26 and a = 1. The construction works as described above. The resulting
theory is known as the critical (bosonic) string theory, D = 26 is the critical
dimension. Physical states differing by a null states differ by a residual gauge
transformation and represent the same state in the Hilbert space. We will
see explicit examples below.

2. D > 26. The physical subspace Fphys always contains states of negative
norm and no Hilbert space H can be constructed. There is no bosonic string
theory for D > 26.

3. D ≤ 25. Naively one expects such theories to be unitary, because we can just
truncate the unitary critical string theory and this cannot introduce states
of negative norm. Nevertheless one does not obtain a consistent quantum
theory by truncation. When studying scattering amplitudes at the loop level
one finds poles corresponding to unphysical negative norm states and there
is no unitary S-matrix. Thus truncations of the critical string do not yield
unitary theories.
But there is an alternative to truncation, known as Liouville string theory
or non-critical string theory. This theory exists in D < 26, at the price that
the quantum theory has a new degree of freedom, the Liouville mode. (This
is most obvious in a path integral formulation.) The resulting theory is much
more complicated then the critical string, because its world-sheet theory is
interacting even for a flat target space. For this theory much less is known
then about the critical string. However, there are arguments indicating that
the non-critical string is equivalent to the critical string in a non-trivial
background.

We will only consider critical string theories in the following. Also note that the
above analysis applies to strings in flat space-time, with no background fields.
When switching on a non-trivial dilaton background, this can modify the central
charge of the world-sheet conformal field theory, and, hence, the dimension of
space-time. But this topic is beyond the scope of these lectures.

The spectrum of the bosonic closed string. We can now identify the phys-
ical states by imposing the constraints. Let us consider closed strings. We first
look at the two constraints

(L0 − 1)|Φ〉 = 0 , (L̃0 − 1)|Φ〉 = 0 . (37)

The operator L0 can be rewritten as

L0 = 1
8p

2 + N . (38)
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As mentioned above the operator L0 is the normal ordered version of (29) with
m = 0. The original and the normal ordered expression formally differ by an
infinite constant. Subtracting this constant introduces a finite ambiguity, which
was parametrized by a. Unitarity then fixed a = 1. The oscillator part of L0 is

N =

∞∑

n=1

α−n · αn . (39)

N is called the number operator, because

[N,αµ−m] = mαµ−m . (40)

Since the total momentum is related to the mass of the string by M 2 + p2 = 0,
the constraints (37) determine the mass of a physical states in terms of the
eigenvalues of N and of its right-moving analogue Ñ . (We denote the operators
and their eigenvalues by the same symbol.) We now use the above decomposition
of L0, take the sum and difference of the constraints (37) and reintrodue the
Regge slope α′ = 1

2 by dimensional analysis:

α′M2 = 2(N + Ñ − 2) ,

N = Ñ . (41)

The first equation is the mass formula for string states, wherea the second
equation shows that left- and right-moving degrees of freedom must constribute
equally to the mass.

Let us list the lightest states satisfying these constraints:

Occupation Mass State

N = Ñ = 0 α′M2 = −4 |k〉
N = Ñ = 1 α′M2 = 0 αµ−1α̃

ν
−1|k〉

N = Ñ = 2 α′M2 = 4 αµ−2α̃
ν
−2|k〉

αµ−2α̃
ν
−1α̃

ρ
−1|k〉

αµ−1α
ν
−1α̃

ρ
−2|k〉

αµ−1α
ν
−1α̃

ρ
−1α̃

σ
−1|k〉

(42)

The most obvious and disturbing fact is that the ground state is a tachyon,
i.e., a state of negative mass squared. Since the mass squared of a scalar cor-
responds to the curvature of the potential at the critical point, we seem to be
expanding around a maximum rather then a minimum of the potential. This sig-
nals that the bosonic closed string quantized in flat Minkowski space is unstable.
It is a very interesting question whether there is a minimum of this potential
which provides a stable ground state. Since the tachyon aquires a vacuum ex-
pectation value in this minimum, this is referred to as tachyon condensation.



14 Thomas Mohaupt

But since we will be mostly interested in superstring theories, where tachyons
are absent, we will simply ignore the fact that our toy model has a tachyon.

The first excited state is massless, and on top of it we find an infinite tower
of states with increasing mass. Since the mass scale of string theory presumably
is very large, we will focus on the massless states. So far we only imposed the
constraints (37). The other constraints

Lm|Φ〉 = 0 , L̃m|Φ〉 = 0 , m > 0 , (43)

impose conditions on the polarisations of physical states. For the tachyon one
gets no condition, while for the first excited level the constraints with m = 1 are
non-trivial. Forming a general linear combination of basic states,

ζµνα
µ
−1α̃

ν
−1|k〉 , (44)

the constraints (43) imply

kµζµν = 0 = kνζµν . (45)

Since ζµν is the polarization tensor, we see that only states of transverse po-
larization are physical. To obtain the particle content, we have to extract the
irreducible representations of the D-dimensional Poincaré group contained in
physical ζµν . There are three such representations: the traceless symmetric part
describes a graviton Gµν, the trace part corresponds to a scalar, the dilaton Φ,
and the third representation is an antisymmetric tensor Bµν . In order to dis-
entangle the trace part, one needs to introduce an auxiliary vector k, with the
properties:

k · k = 0 , k · k = −1 . (46)

(k is the momentum vector.) The polarization tensors of the graviton, dilaton
and antisymmmetric tensor are:

ζGµν = ζ(µν) − 1
D−2ζ

ρ
ρ (ηµν − kµkν − kνkµ) ,

ζΦµν = 1
D−2

ζρρ (ηµν − kµkν − kνkµ) ,

ζBµν = ζ[µν] , (47)

where ζ(µν) = 1
2(ζµν + ζνµ) and ζ[µν] = 1

2 (ζµν − ζνµ) are the symmetric and
antisymmetric parts of ζµν . Note that the prefactor 1/(D − 2) is needed in order
that the trace part is physical. Using explicit choices for k, k one can check
that ζGµν is the polarization tensor of a plane wave and transforms as a traceless
symmetric tensor under transverse rotations.

As we discussed above, physical states are only defined up to the addition of
null states, |Φ〉 ∼ |Φ〉 + |Ψ 〉. In the case at hand adding null states corresponds
to adding states of longitudinal polarization, according to:

ζ(µν) ∼ ζ(µν) + kµζν + ζµkν

ζ[µν] ∼ ζ[µν] + kµξν − ξµkν . (48)
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ζµ and ξµ are arbitrary vectors orthogonal to the momentum kµ. Adding null
states can be understood as a residual gauge transformation parametrized by
ζµ, ξµ. By taking Fourier transforms we see that these are the standard gauge
invariances of a graviton and of an antisymmetric tensor, repectively:

Gµν ∼ Gµν + ∂µΛν + ∂νΛµ ,

Bµν ∼ Bµν + ∂µAν − ∂νAµ . (49)

A graviton is defined by taking the gravitational action and expanding the met-
ric around a flat background. The gauge transformations are then infinitesimal
reparametrization, which, in a flat background, act according to (49) on the met-
ric. Note that our gauge transformations Λµ, Aµ have a vanishing divergence, be-
cause the corresponding polarization vectors are orthogonal to the momentum.
This reason is that the Virasoro constraints automatically impose a generalized
Lorentz gauge.

Thus far our identification of the symmetric traceless part of the state (44)
as a graviton is based on the fact that this state has the same kinematic prop-
erties as a graviton in Einstein gravity. We will see later, after analyzing string
interactions, that this extends to the dynamical properties.

Finally it is interesting to compare the results of old covariant quantization to
those obtained in light cone quantization. In light cone quantization unitarity is
manifest, but the Lorentz algebra of the quantum theory has an anomaly which
only cancels in the critical dimension D = 26. Moreover the normal ordering
constant must take the value a = 1. Independently, the same value of a is ob-
tained when computing the Casimir energy of the ground state using ζ-function
regularization. One virtue of light cone quantization is that one can write down
immediately all the physical states. A basis is provided by all states which can
be created using transverse oscillators,

αi1−m1
· · · α̃j1−n1

· · · |k〉 , (50)

where i1, . . . , j1, . . . = 1, . . . , D − 2. What remains is to group these states into
representations of the D-dimensional Poincaré group. Massless states are classi-
fied by the little group SO(D − 2). Since all states manifestly are tensors with
respect to this subgroup, one immediately sees that the massless states are a
graviton (traceless symmetric tensor), dilaton (trace) and antisymmetric tensor.
For massive states the little group is the full rotation subgroup SO(D−1). Using
Young tableaux it is straightforward to obtains these from the given representa-
tions of SO(D − 2).

Open strings. Having treated the closed bosonic string in much detail, we now
describe the results for open strings. One finds the same critical dimension,
D = 26, and the same value of the normal ordering constant, a = 1. The
constraints read:

(L0 − 1)|Φ〉 = 0 , Lm|Φ〉 = 0 , m > 0 . (51)
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L0 can be decomposed as L0 = 1
2p

2 +N , where N is the number operator. The
L0-constraint gives the mass formula:

α′M2 = N − 1 . (52)

Therefore the lowest states are:

Occupation Mass State

N = 0 α′M2 = −1 |k〉
N = 1 α′M2 = 0 ζµα

µ
−1|k〉

N = 2 α′M2 = 1 ζµνα
µ
−1α

ν
−1|k〉

ζµα
µ
−2|k〉

(53)

The other constraints impose restrictions on the polarizations. Whereas the
groundstate is a tachyonic scalar, the massless state has the kinematic prop-
erties of a gauge boson: its polarization must be transverse,

ζµk
µ = 0 , (54)

and polarizations proportional to kµ correspond to null states,

ζµ ∼ ζµ + αkµ . (55)

This is the Fourier transform of a U (1) gauge transformation,

Aµ ∼ Aµ + ∂µχ . (56)

Whereas massless closed string states mediate gravity, massless open string states
mediate gauge interactions.

Chan-Paton factors. Open string theory has a generalization which has non-
abelian gauge interactions. One can assign additional degress of freedom to the
ends of the string, namely charges (‘Chan-Paton factors’) which transform in
the fundamental and anti-fundamental (complex conjugated) representation of
the group U (n). The massless states then take the form

ζµα
µ
−1|k, a, b〉 , (57)

where a is an index transforming in the fundamental representation [n] of U (n),
whereas b transforms in the anti-fundamental representation [n]. Since

[n]× [n] = adj U (n) , (58)

the massless states transform in the adjoint of U (n) and can be interpreted
as U (n) gauge bosons. (As for the graviton, we have only seen the required
kinematic properties so far. But the interpretation is confirmed when studying
interactions.)

Note that U (n) is the only compact Lie group where the adjoint represen-
tation is the product of the fundamental and anti-fundamental representation.
Therefore the construction precisely works for these groups.
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Non-oriented strings. There is a further modification which leads to non-
oriented strings. These are obtained from the theories constructed so far by a
projection. Both closed and open bosonic string theories are symmetric under
world-sheet parity, which is defined as a reflection on the world-sheet:

Ω : σ1 −→ π − σ1 = −σ1 modulo π . (59)

Since Ω is an involution,Ω2 = 1, the spectrum can be organized into states with
eigenvalues ±1:

Ω|N, k〉 = (−1)N |N, k〉 , (60)

Ω|N, Ñ , k〉 = |Ñ ,N, k〉 . (61)

Here |N, k〉 is an open string state with momentum k and total occupation
number N and |N, Ñ, k〉 is a closed string state with momentum k and total left
and right occupation numbers N, Ñ .

Non-oriented strings are defined by keeping only those states which are in-
variant under Ω. The resulting theories are insensitive to the orientation of the
world-sheet. Let us look at the effect of this projection on the lowest states. For
open strings we are left with:

Occupation Mass State

N = 0 α′M2 = −1 |k〉
N = 1 α′M2 = 0 −
N = 2 α′M2 = 1 ζµνα

µ
−1α

ν
−1|k〉

ζµα
µ
−2|k〉

(62)

All states with odd occupation numbers are projected out, including the gauge
boson. For closed strings we obtain:

Occupation Mass State

N = Ñ = 0 α′M2 = −4 |k〉
N = Ñ = 1 α′M2 = 0 ζ(µν)α

µ
−1α̃

ν
−1|k〉

N = Ñ = 2 α′M2 = 4 ζ(µν)α
µ
−2α̃

ν
−2|k〉

ζ(µρνσ)α
µ
−1α

ν
−1α̃

ρ
−1α̃

σ
−1|k〉

(63)

Only states which are left-right symmetric survive. At the massless level the
antisymmetric tensor is projected out, whereas the graviton and dilaton are
kept.

Chan-Paton factors for non-oriented strings. The above construction can
be generalized to open strings with Chan-Paton factors. In this case the two
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representations assigned to the ends of the strings must be equivalent. One can
define a generalized involution Ω′, which combines world-sheet parity with an
action on the Chan-Paton indices,

Ω′|N, a, b〉 = ε(−1)N |N, b, a〉 , (64)

where ε = ±1. The projection is Ω′|N, a, b〉 !
= |N, a, b〉. There are two inequiva-

lent choices of the projection. For ε = 1, the indices a, b must transform in the
fundamental representation of SO(n). Since the adjoint of SO(n) is the anti-
symmetric product of the fundamental representation with itself, the massless
vector state transforms in the adjoint. More generally, states at even (odd) mass
level transform as symmetric (antisymmetric) tensors.

The other choice is ε = −1. Then a, b transform in the fundamental of
USp(2n) (the compact form of the symplectic group. Our normalization is such
that USp(2) ' SU (2).) Since the adjoint of USp(2n) is the symmetric product
of the fundamental representation with itself, the massless vector transforms in
the adjoint. More generally, states at even (odd) mass level transform as anti-
symmetric (symmetric) tensors.

D-branes. Finally we can consider open strings with Dirichlet boundary con-
ditions along some directions. Consider first oriented open strings ending on a
D-p-brane located at xa(1). The ground state is tachyonic. The massless state of
an open string with purely Neumann condition is a D-dimensional gauge bo-
son αµ−1|k〉. Now we impose Dirichlet boundary conditions along the directions
a = p+ 1, . . . , D−1, so that the string can only move freely along the Neumann
directions m = 0, 1, . . . , p. The relevant kinematic group is now the world-volume
Lorentz group SO(1, p). The massless states are a world-volume vector,

αm−1|k〉 , m = 0, 1, . . . , p (65)

and D− p− 1 scalars,

αa−1|k〉 , a = p + 1, . . . ,D− 1 . (66)

The scalars correspond to transverse oscillations of the brane. Changing the
position of the brane corresponds to changing the vacuum expectation values of
the scalars. The effective action of the massless modes is given, to leading order
in α′, by the dimensional reduction of the D-dimensional Maxwell action to p+1
dimensions. The full effective action is of Born-Infeld type.

Next consider N parallel D-p-branes, located at positions xa(i). The new fea-
ture of this configuration is that there are strings which start and end on different
branes. For such strings there is an additional term in the mass formula, which
accounts for the stretching:

α′M2 = N − 1 +

( |x(i) − x(j)|
2π
√
α′

)2

. (67)



Introduction to String Theory 19

Here x(i) is the position of the i-th brane. (Remember that the tension of the
string is (2πα′)−1.) Due to the normal ordering constant, the ground state be-
comes tachyonic if two branes come close enough. This signals an instability of
the D-brane configuration. As already mentioned this might lead to interesting
dynamics (tachyon condensation, decay of D-branes), but we will not discuss
this here. Instead, we focus on features shared by D-branes in supersymmetric
string theories. The states at the first excited level become massless precisely if
the corresponding D-branes are put on top of each other. Each of the N branes
already carries a U (1) gauge theory: the massless modes of strings beginning
and ending of the same brane give N vectors and N · (D− p− 1) scalars. For N
coinciding branes we get additionalN ·(N−1) vectors and N ·(N−1)·(D−p−1)
scalars. Combining all massless states one gets one vector and D− p− 1 scalars
in the adjoint representation of the non-abelian group U (N ). This suggests that
the D-brane system describes a U (N ) gauge theory with an adjoint Higgs mech-
anism. The Higgs mechanism is realized geometrically: Higgs expectation values
correspond to the distances between branes, and the masses can be understood in
terms of stretched strings. Again, this interpretation, which is based on analyz-
ing the spectrum is confirmed when studying interactions. Besides Chan-Paton
factors, D-branes are a second possibility to introduce non-abelian gauge groups.
In fact Chan-Paton factors are related to D-branes through T-duality, but we
will not be able to discuss this in these lectures.

The above construction can be extended to non-oriented strings, where other
gauge groups occure. There are various other generalizations, which allow one
to construct and study various gauge theories using strings and D-branes. These
techniques are known as ‘D-brane engineering’ of field theories. Besides being
of interest for the study of field theories through string methods, D-branes are
important for understanding string theory itself. As we will see later, D-branes
are actually solitons of string theory. Thus we are in the privileged position of
knowing the exact excitation spectrum around such solitons in terms of open
strings. This can be used, for example, to compute the entropy and Hawking
radiation of black holes.

Another application of D-branes goes under the name of ‘brane worlds’ or
‘brane universes’ or ‘models with large extra dimensions’. As we have seen, D-
branes enable one to localize gauge interactions and matter on a lower-dimension-
al submanifold of space-time. This leads to models with space-dimensions where
only gravity (closed strings) but not standard model matter (open strings) can
propagate. Empirical limits on the size of the dimensions transverse to the brane
only come from gravity, which is much weaker than all other interactions. There-
fore such dimensions can be quite large, even up to about 1 mm. This is in
contrast to limits on extra dimensions which are accessible to standard model
interactions. Here the experimental limits are set by the scale resolvable in cur-
rent accelerator experiments.

Brane world models are nowadays popular in both particle physics and cos-
mology. In particular, they can be used to construct models where the fundamen-
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tal gravitational scale is of order 1 TeV. We will come back to these applications
of D-branes in section 6.

2.3 Further reading

The material covered in this section can be found in all of the standard textbooks
on string theory [1,2,3,4,5]. Dirichlet boundary conditions and D-branes are only
covered by the more recent ones [3,4].

3 Interacting bosonic strings

So far we have not specified how strings interact. One might expect that this
can be done by adding interaction terms to the world-sheet action. However,
we have to respect the local symmetries of the Polyakov action, which severely
restricts our options. In particular, contact interactions, which are frequently
used in describing non-fundamental string-like objects such as polymers, are
not compatible with Weyl invariance. Admissible interacting world-sheet actions
include marginal deformations of the Polyakov action, i.e., deformations which
preserve Weyl invariance. One such deformation replaces the flat space-time
metric by a curved one. As expected intuitively, such an action does not describe
interactions among strings, but strings moving in a non-trivial background. The
same is true when replacing the Polaykov action by more general conformal field
theories.

How then do we define interactions? We will give a heuristic discussion in the
next section. The resulting scattering amplitudes are Lorentz covariant, unitary
and UV finite. They include the Veneziano amplitude and its cousins, which
historically started the subject.

For definiteness we will focus in the following on closed oriented strings. The
generalization to other string theories will be indicated briefly.

3.1 Heuristic discussion

Intuitively, interactions between strings are described by world-sheets which con-
nect a given initial configuration of strings to a final configuration. One can
draw several such world-sheets, which differ by their topologies. Comparing to
the similar treatment of point particles by graphs, we realize that while graphs
have vertices, the world-sheets connecting strings are manifolds without distin-
guished interaction points. This leads to the expectation that string interactions
are less singular then those of point particles, which is indeed confirmed by the
final result of the construction. Moreover, it indicates that one does not have
any freedom in defining interactions. For particles, we can assign couplings to
vertices which depend on the species of the particles meeting at the vertex. For
strings the interaction is encoded in the topology of the world-sheet and there
is no such freedom. There is one fundamental interaction, which couples three
closed strings, and all we can do is to assign a coupling constant κ to it.
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Next, we restrict ourselves to finding transition amplitudes between asymp-
totic states in the infinite past and future. An asymptoting in- or out-going state
is represented by a semi-infinite cylinder. When mapping this to a punctered disc,
the asymptotic state is represented by the puncture. This leads to the idea that
we can represent the asymptotic state by a local operator of the world-sheet
field theory. Such operators are called vertex operators. Note that they do not
describe interactions. Instead, the vertex operator VΦ(σ) describes the creation
or annihilation of the string state |Φ〉 at the position σ on the world-sheet. That
is, they allow us to assign a copy of the space of physical states to every point of
the world-sheet. As we will see below, there is indeed a natural one-to-one map
between physical states |Φ〉 and local operators of the world-sheet field theory.

After replacing the world-sheet punctures by insertions of vertex operators
we are left with compact closed surfaces. The topologies of such surfaces are
classified by their genus g ≥ 0, or equivalently, by their Euler number χ = 2−2g.
Here g = 0 is the two-sphere, and g = 1 is the torus. The general genus g surface
Σg is obtained from the sphere by attatching g handles. The handles play the
role of loops in Feynman diagrams. When considering an interaction process on
Σg involving M external states, we find M − χ fundamental string interactions
and have to assign a factor κM−χ.

We now postulate that a scattering amplitude involving M external states is
given by

A(1, . . . ,M ) =

∞∑

g=0

κM−χA(1, . . . ,M )g , (68)

where A(1, . . . ,M )g is the contribution ofΣg . This is a perturbative expression in
the string coupling κ. As usual for theories with a single coupling, the expansion
in the coupling coincides with the expansion in loops, which in our case is the
expansion in the genus g.

The genus g contribution is defined to be

A(1, . . . ,M )g = 〈V1 · · ·VM 〉g , (69)

where

Vi =

∫

Σg

d2σi
√
hVi(σi) (70)

are the so-called integrated vertex operators, which are obtained by integrating
the vertex operators Vi(σi) over the world sheet. (Though our notation might
suggest otherwise, we do not require that Σg can be covered by one set of co-
ordinates, which is of course impossible for compact Σg. We just use a local
representative of the integrand for notational purposes.) In (69) we compute
the correlation function of the vertex operators Vi(σi) on Σg in the world-sheet
quantum field theory defined by the Polyakov action and integrate over the posi-
tions of the vertex operators. The result is interpreted as a scattering amplitude
of string states in space-time, with the in- and out-states represented by the
vertex operators.
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Note that it is not possible to introduce arbitrary weight factors between
the contributions of different genera. The reason is that unitarity requires that
scattering amplitudes factorize into the amplitudes of subprocesses whenever
an intermediate state is on-shell. In fact, in the old days of string theory this
was used to construct the perturbative expansion by seewing together tree am-
plitudes. However, this approach is more cumbersome then the Polyakov path
integral approach that we will desribe here.

3.2 Vertex operators

We now take a closer look at the vertex operators. Observe that the scattering
amplitudes defined by (68,69,70) must be invariant under reparametrizations of
the world-sheets. In particular the local vertex operators Vi(σi) must transform
such that (70) is invariant. When imposing the conformal gauge, it still must
transform in a specific way under conformal transformations σ± → σ̃±(σ±).
In conformal field theory fields which transform covariantly under conformal
transformations are called primary conformal fields. A primary conformal field
of weights (h, h) is an object that transforms like a contravariant tensor field of
rank (h, h):

Ṽ (σ̃+, σ̃−) =

(
dσ+

dσ̃+

)h(
dσ−

dσ̃−

)h
V (σ+, σ−) . (71)

Invariance of (70) implies that vertex operators of physical states must be pri-
mary conformal fields of weights (1, 1). This property is equivalent to imposing
the Virasoro constraints (41) on physical states. States assigned to a point P
of Σ are constructed from vertex operators by applying them to a ground state
|0〉P ,

|Φ〉 = VΦ(P )|0〉P . (72)

To make contact with the space Fphys constructed in section 2.2, one parametrizes
Σ in the vicinity of P by a semi-infinity cylinder with P being the asymptotic
point σ0 →−∞. Intuitively this describes an ingoing state created in the infinite
past. Then,

|Φ〉 = lim
σ0→−∞

VΦ(σ)|0〉 , (73)

where |0〉 := |k = 0〉 is the (unphysical) zero-momentum state with occupation
numbers N = 0 = Ñ in F .

To indicate how this works in practice, we now specify the vertex operators
for the lowest states. Consider the operator

V (σ) =: eikµX
µ

: (σ) , (74)

where : · · · : indicates normal ordering. Applying this operator we find

lim
σ0→−∞

: eikµX
µ

: (σ)|0〉 = eikµx
µ|0〉 = |k〉 , (75)

where we used that eikµx
µ |0〉 is an eigenstate of pµ with eigenvalues kµ. One can

show that (74) has weights ( 1
8k

2, 1
8k

2). Thus it has weights (1, 1) if k2 = 8, which
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is the physical state condition M 2 = −8 for the tachyonic ground state of the
closed string. (We have set α′ = 1

2
.)

The vertex operator for the first excited level is

V (σ) =: ζµν∂+X
µ∂−X

νeikρX
ρ

: (σ) . (76)

This has weights (1, 1) if

k2 = 0 , kµζµν = 0 = kνζµν , (77)

which is precisely the physical state condition for the state

ζµνα
µ
−1α̃

ν
−1|k〉 . (78)

More generally, vertex operators of the form

V (σ) =: ζµ1 ···ν1···∂
m1
+ Xµ1 · · ·∂n1

− X
ν1 · · ·eikρX

ρ

: (σ) (79)

generate states of the form

ζµ1···ν1···α
µ1

−m1
· · · α̃ν1

−n1
· · · |k〉 . (80)

3.3 Interactions in the path integral formalism

The next step is to explain in more detail how the amplitudes (68)–(70) are
defined and how they are computed in practice. As usual one can use either the
path integral (Lagrangian) or the operator (Hamiltonian) formulation. We will
use Polyakov’s path integral formulation. This has the advantage of immediately
providing explicit formal expressions for correlation functions. The mathematical
complications of defining the interacting quantum theory are hidden in the path
integral measure. We will not discuss this is full detail, but mention and illustrate
the most important points.

The path integral. We now turn to the Polaykov path integral, which is one
way to give a precise meaning to (68). In this approach the correlation func-
tion (69) is computed by functional methods. Intuitively we integrate over all
paths that strings can take in space-time. However, in order to have a well de-
fined path integral, we need to study the theory in Euclidean signature, both on
the world-sheet and in space-time. A Euclidean formulation of the world-sheet
theory is needed to have a well defined functional integral for the world-sheet
field theory. In particular, we want to have well defined world-sheet metrics on
general surfaces Σg , which is not possible for Lorentzian signature. Second, one
also has to work in Euclidean space-time, in order to have a standard Gaus-
sian integral for the ‘time’ coordinate X0. Wick-rotating X0 can be interpreted
as continuing to unphysical Euclidean momenta and polarizations. As we have
seen in our discussion of vertex operators the string coordinates Xµ are always
contracted with momenta and polarizations. Physical scattering amplitudes are
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thus obtained by computing (68) in the Euclidean theory and evaluating the re-
sult for physical momenta and polarizations. This uses the analycity properties
expected to hold for any relativistic unitary scattering amplitude. For tree-level
amplitudes one can study how the Wick rotation works explicitly, by comparing
to results obtained by operator methods.

Our starting point is the Polyakov action on a world-sheet Σ with positive
definite metric hαβ and local complex coordinate z,

SP =
1

4πα′

∫

Σ

d2z
√
hhαβ∂αX

µ∂βXµ . (81)

The quantum theory is now defined by summing over all topologies of Σ and
integrating over Xµ and hαβ:

A(1, . . . ,M ) =

∞∑

g=0

κM−χNg

∫
DXµDhαβe

−SP [X,h]V1 · · ·VM , (82)

where Vi are the integrated vertex operators of the physical states and Ng are
normalization factors needed to define the path integral. The Vi depend on Xµ

through the local vertex operators Vi(σi), while the world-sheet metric enters
through the integration over σi.

One expects that one can properly define and compute the expression (82),
because the integration over Xµ is Gaussian (in flat space-time) and hαβ is non-
dynamical. This turns out to be true, though several interesting complications
arise. Let us consider the integration over hαβ. Since we can locally impose the
conformal gauge,

hαβ = δαβ , (83)

we expect that we can use the Faddeev-Popov method and trade the integration
over the metric for an integration over reparametrizations and the Weyl factor.
As long as these are symmetries, the corresponding integration factorizes and can
be absorbed in the normalization factor Ng . The first obstruction encountered is
that there is a conformal anomaly when the quantum theory based on (81) lives
on a curved world-sheet. This has the consequence that the integration over the
Weyl factor does not factorize in general. One option is to accept it as a new,
purely quantum degree of freedom: this is non-critical string theory, also called
Liouville string theory, because the dynamcis of the Weyl factor is given by the
Liouville action. The other option is to observe that the anomaly is proportional
to D − 26, and therefore cancels for D = 26 space-time dimensions. This is the
critical string theory we study in these lectures.

Moduli and modular transformations. The next point is that the gauge
(83) cannot be imposed globally. All that can be achieved is to map hαβ to a
metric of constant curvature,

hαβ
!

= ĥαβ[τ ] . (84)
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As indicated, Σg in general posesses a continuous family of such metrics, para-
metrized by moduli τ = (τ1, . . .). The space of constant curvature metrics on a
two-dimensional closed compact surface is isomorphic to the space of complex
structures. By reparametrizations and Weyl transformations we cannot change
the complex structure of the metric but we can map it to the unique representa-
tive (84) of the complex structure class which has constant curvature. Then the
path integral over all metrics reduces to a finite-dimensional integral over the
space Mg of complex structures. The dimension of this space is known from a
Riemann-Roch theorem. For g = 0 the complex structure is unique, and every
metric can be mapped to the standard round metric on the sphere. For g > 1
there is a non-trivial moduli space,

dimCMg = 1 , for g = 1 ,

dimCMg = 3g − 3 , for g > 1 . (85)

After carrying out the integration over the metric, amplitudes take the form

A(1, . . . ,M ) =

∞∑

g=0

κM−χN ′g

∫

Mg

dµ(τ )

∫
DXµe−SP [X,ĥ]J(ĥ)V1 . . . VM . (86)

N ′g are normalization factors needed to deal with the Xµ-integration and J(ĥ)
is the Faddeev-Popov determinant, which one can rewrite as a functional inte-
gral over Faddeev-Popov ghost fields. As indicated the Xµ-integral depends on
the moduli through the world-sheet metric ĥαβ = ĥαβ(τ ). One finds that the
measure dµ(τ ) for the moduli is the natural measure on the space of complex
structures, the so-called Weil-Petersson measure.

The precise characterization of the moduli space has further interesting de-
tails. We examplify this with the two-torus. We can represent a torus as a paral-
lelogram in the complex plane with opposite sides identified. Since the complex
structure does not depend on the overall volume, we can restrict ourselves to
parallelograms with edges 0, 1, τ, τ+ 1, where Im(τ ) > 0. In one complex dimen-
sion holomorphic maps are conformal maps, and vice versa. Thus the complex
structure is varied by moving τ in the upper half-plane,

H = {τ ∈ C | Im(τ ) > 0} . (87)

This is the modulus we are looking for. H has a metric of constant negative
curvature, the Poincaré metric,

dµ(τ ) =
d2τ

(Im(τ ))2
. (88)

With this SL(2,R)–invariant metric, H is the symmetric space Sl(2,R)/SO(2).
However, H is not our moduli space, because it overcounts complex structures.
On H the group Sl(2,R) acts from the right. Taking τ as coordinate, the oper-
ation is

τ −→ aτ + b

cτ + d
, where


a b

c d


 ∈ Sl(2,R) . (89)
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The subgroup Sl(2,Z) maps parallelograms to parallelograms which define the
same torus, because they form basic cells of the same lattice in H. Such transfor-
mations are called modular transformations. Their action on the torus is given by
cutting the torus along a non-contractible loop, twisting and regluing. This cor-
responds to a large reparametrization which cannot be continously connected
to the identity. Clearly, we have to require that string amplitudes are invari-
ant under such large reparametrizations. This implies a consistency condition,
known as modular invariance: the τ -integral in (86) must be invariant under
modular transformations. This condition becomes non-trivial when considering
more general background geometries or string theories with fermions.

The moduli space is obtained by restricting to a fundamental domain F of
the action of Sl(2,Z) on H. By modular invariance we can consistently restrict
the τ -integration to such an F . The standard choice is found by looking at the
action of the two generators of Sl(2,Z),

τ → τ + 1 , τ →−1

τ
. (90)

Therefore the most convenient choice is

F = {τ ∈ H| − 1
2 ≤ Im(τ ) < 1

2τ , |τ | ≥ 1} (91)

(with certain identifications along the boundary).
Modular invariance has deep consequences for the short distance behaviour

of string theory. In fact, modular invariance is what makes closed string theories
UV finite. To illustrate how this works, note that a one-loop amplitude in closed
string theory takes the form

AString
1-loop ∼

∫

F

d2τ

(Im(τ ))2
F (τ ) . (92)

An analogous expression for one loop amplitudes in quantum field theory is given
by Schwinger’s proper time parametrization,

AQFT
1-loop ∼

∫ ∞

ε

dt

t
f(t) , (93)

where t is the proper time and ε is an UV cutoff. In this formulation UV di-
vergencies occure at short times t → 0. In string theory Im(τ ) plays the role
of proper time, and potential UV divergencies occure for Im(τ ) → 0. However,
by restricting to the fundamental domain we have cut out the whole dangerous
region of small times and high momenta. This confirms the intuitive idea that
strings should have a particularly soft UV behaviour, because the theory has
a minimal length scale, which works like a physical UV cutoff. Note that one
still has IR divergencies. In bosonic string theory one has divergencies related to
the tachyon, which show that the theory is unstable in Minkowski space. This
problem is absent in supersymmetric string theories. In addition one can have
IR divergencies related to massless states. Since there is only a finite number of
massless string states, this problem has the same character as in field theory.
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Also note that the modular transformation τ → −1/τ maps the UV region
of H to its IR region. Thus, modular transformations map UV divergencies to
IR divergencies and enable us to reinterpret them in terms of low energy physics
(namely, intermediate massless states which go on-shell).

For higher genus surfaces Σg with g > 1 the story is similar, but more
complicated. There is an analogue of the upper half plane, which is called Siegels

upper half plane and has complex dimension g(g+1)
2 . Since there are only 3g− 3

complex moduli, this space contains more parameters then needed for g ≥ 4.
The Teichmüller space is embedded in a complicated way into Siegel’s upper
half plane. On top of this there is a modular group which has to be divided out.

Global conformal transformations. The integration over complex structure
moduli in (86) reflects that surfaces with g > 0 have metrics that cannot be
related by reparametrizations. Therefore there is a finite left-over integration
when replacing the integral over metrics by an integral over reparametrizations.
For g < 2 one has in addition the reciprocal phenomenon: these surfaces have
global conformal isometries. This means that there are reparametrizations which
do not change the metric, implying an overcounting of equivalent contributions
in (86). Formally this is taken care of by the normalization factors N ′0, N

′
1. The

overcounting yields a multiplicative factor, which is the volume of the group of
conformal isometries. This has to be cancelled by the normalization factors. For
g = 0 the conformal group is Sl(2,C) and has infinite volume. Thus one has to
formally divide out an infinite constant. For g = 1 the conformal group is U (1)2,
and has a volume which depends on the complex structure modulus τ of the
world-sheet. This factor is crucial for world-sheet modular invariance.

The systematic approach is to treat the global conformal isometries as a
residual gauge invariance and to apply the Faddeev-Popov technique.Then the
volumes of residual gauge groups are properly taken care of. So far we have been
sloppy about how and when to carry out the integration over the positions of
the vertex operators. The proper order is as follows: one first carries out the Xµ-
integration to obtain a correlation function on a world-sheet of given topology
and complex structure:

〈V1(z1, z1) · · ·〉g,τ = N ′g

∫
DXe−SP [X,ĥ(τ )]J(ĥ(τ ))V1(z1, z1) · · · . (94)

Next one integrates over the positions of the vertex operators. For g < 2 one
treats the global conformal isometries by the Faddeev Popov method. The result
is

〈V1 · · ·〉g,τ =

∫
dµ(z1, z1, . . .)〈V1(z1, z1) · · ·〉g,τ , (95)

where dµ(z1, z1, . . .) for g < 2 is a measure invariant under the global isometries.
For g = 0 the measure vanishes if less than three vertex operators are present.

This reflects the infinite volume of the global conformal group: by Sl(2,C) trans-
formations one can map three points on the sphere to three arbitrary prescribed
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points. Thus, the Sl(2,C) symmetry can be used to by keep three vertex oper-
ators at fixed positions. In other words the first three integrations over vertex
operators compensate the infinite volume of the global conformal group that one
has to divide out. For less then three vertex operators one cannot compensate
this infinite normalization factor and the result is zero. Thus, the integrated
zero-, one- and two-point functions vanish. This implies that at string tree level
the cosmological constant and all tadpoles diagrams vanish.

The final step in evaluating (86) is to integrate over complex structures and
to sum over topologies:

A(1, . . . ,M ) =

∞∑

g=0

κM−χ(g)

∫

Mg

dµ(τ )〈V1 . . .〉g,τ . (96)

Through the vertex operators, A(1, . . . ,M ) is a function of the momenta kµi and
polarization tensors ζµ1 ···

i of the external states.

Graviton scattering. Though we cannot go through the details of a calculation
here, we would like to discuss the properties of string scattering amplitudes in
a particular example. Our main interest being gravity, we choose the scattering
of two massless closed string states. The corresponding external states are

ζ(i)
µνα

µ
−1α̃

ν
−1|k(i)〉 , (97)

with i = 1, 2, 3, 4. The resulting amplitude takes the following form:

AString
4 = κ2 Γ (−α′4 s)Γ (−α′4 t)Γ (−α′4 u)

Γ (1 + α′

4 s)Γ (1 + α′

4 t)Γ (1 + α′

4 u)
·K(ζ(i), k(i)) . (98)

Here s, t, u are the Mandelstam variables

s = −(k(1) + k(2))2 , t = −(k(2) + k(3))2 , u = −(k(1) + k(3))2 (99)

and K(ζ(i), k(i)) is the kinematic factor, a complicated function of momenta and
polarizations that we do not display.

Scattering amplitudes have poles whenever an intermediate states can be
produced as a real physical state. Unitarity requires that the residue of the pole
describing such a resonance is the product of the amplitudes of the subprocesses
through which the intermediate state is produced and decays. In this way the
pole structure of amplitudes is related to the particle spectrum of the theory.

The amplitude (98) has poles when the argument of one of the Γ -functions
in the numerator takes a non-positive integer value,

− α′

4 x = 0,−1,−2, . . . , where x = s, t, u . (100)

Comparing to the mass formula of closed strings,

α′M2 = 2(N + Ñ − 2) , (101)
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we see that the poles precisely correspond to massless and massive string states
with N = Ñ = 1, 2, 3, . . .. There is no pole corresponding to the tachyon (N =
0) in this amplitude, because the tachyon cannot be produced as a resonance
for kinematic reasons. When computing the amplitude for tachyon scattering
instead, one also finds a tachyon pole.

The particular pole structure of (98) and of related string amplitudes was
observed before the interpretation of the amplitudes in terms of strings was
known. In the late 1960s it was observed experimentally that hadronic resonances
obey a linear relation between the spin and the square of the mass, called Regge
behaviour. This behaviour was correctly captured by the Veneziano amplitude,
which has a structure similar to (98) and describes the scattering of two open
string tachyons. The Regge behaviour was the clue for the interpretation of the
Veneziano amplitudes and its cousins in terms of strings.

To see that string states show Regge behaviour, consider the truncation of
string theory to four space-time dimension (which is consistent at tree level).
Closed string states with level N = Ñ have spins J ≤ 2N , because the spin J
representation of the four-dimensional Lorentz group is the traceless symmetric
tensor of rank J . Open string states have spins J ≤ N . The states lie on lines in
the (M2, J)–plane, which are called Regge trajectories. The closed string Regge
trajectories are given by

αclosed(M2) = α′closedM
2 + αclosed(0) , (102)

where

α′closed =
α′

4
, αclosed(0) = 1, 0,−1, . . . . (103)

String states correspond to those points on the Regge trajectories where
α′closed(M2) = N + Ñ . States with the maximal possible spin J = 2N = N +

Ñ for a given mass lie on the leading Regge trajectory αclosed(0) = 1. Since
α′ determines the slope of the trajectories, it is called the Regge slope. The
corresponding expressions for open strings are:

αopen(M2) = α′openM
2 + αopen(0) , (104)

where
α′open = α′ , αopen(0) = 1, 0,−1, . . . . (105)

The resonances found in open string scattering lie on the corresponding Regge
trajectories.

When computing scattering amplitudes in terms of Feynman diagrams in
field theory, individual diagrams only have poles in one particular kinematic
channel, i.e., in the s-channel or t-channel or u-channel. The full scattering am-
plitude, which has poles in all channels, is obtained by summing up all Feynman
diagrams. In (closed oriented) string theory there is only one diagram in each
order of perturbation theory, which simultanously has poles in all channels. The
total amplitude can be written as a sum over resonances in one particular chan-
nel, say the s-channel. This is consistent with the existence of poles in the other
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channels, because there is an infinite set of resonances. When instead writing
the amplitude in the form (98), it is manifestly symmetric under permutations
of the kinematic variables s, t, u. This special property was called ’duality’ in the
old days of string theory (a term that nowadays is used for a variety of other,
unrelated phenomena as well).

Another important property of (98) and other string amplitudes is that they
fall off exponentially for large s, which means that the behaviour for large ex-
ternal momenta is much softer then in any field theory. This is again due to the
presence of an infinite tower of excitations. Since loop amplitudes can be con-
structed by sewing tree amplitudes, this implies that the UV behaviour of loop
diagrams is much softer than in field theory. This lead to the expectation that
string loop amplitudes are UV finite, which was confirmed in the subsequent
development of string perturbation theory.

Though we did not explicitly display the kinematic factor K(ζ (i), k(i)) we
need to emphasize one of its properties: it vanishes whenever one of the external
states is a null state. As we learned above, null states have polarizations of the
form

ζ(i)
µν = k(i)

µ ξ(i)
ν + k(i)

ν ζ(i)
µ (106)

and are gauge degrees of freedom. They have to decouple from physical scattering
amplitudes, as it happens in the above example. This property is called ‘on shell
gauge invariance’, because it is the manifestation of local gauge invariance at
the level of scattering amplitudes. It can be proven to hold for general scattering
amplitudes.

If we take the polarization tensors of the external states to be symmetric and
traceless, then (98) describes graviton–graviton scattering. So far our identifica-
tion of this string state with the graviton was based on its kinematic properties.
Since Einstein gravity is the only known consistent interaction for a second rank,
traceless symmetric tensor field (‘massless spin–2–field’), we expect that this
also holds dynamically. We will now check this explicitly. In the field theoretical
perturbative approach to quantum gravity one starts from the Einstein-Hilbert
action,

S =
1

2κ2

∫
dDx
√
gR (107)

and expands the metric around flat space

gµν(x) = ηµν + κψµν(x) . (108)

The field ψµν(x) is the graviton field. Expanding (107) in κ one gets a compli-
cated non-polynomial action for ψ that one quantizes perturbatively. The result-
ing theory is non-renormalizable, but tree diagrams can be consistently defined
and computed. In particular one can compute graviton–graviton scattering at
tree level and compare it to the string amplitude (98). Denoting the field theory
amplitude by AFTh

4 , the relation is

AString
4 =

Γ (1− α′

4 s)Γ (1− α′

4 t)Γ (1− α′

4 u)

Γ (1 + α′

4 s)Γ (1 + α′

4 t)Γ (1 + α′

4 u)
AFTh

4 . (109)
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In the limit α′ → 0, which corresponds to sending the string mass scale to
infinity, the string amplitude reduces to the field theory amplitude:

lim
α′→0

AString
4 = AFTh

4 . (110)

At finite α′ string theory deviates from field theory. The correction factor in (109)
contains precisely all the poles corresponding to massive string states, whereas
the massless poles are captured by the field theory amplitude. One can construct
an effective action which reproduces the string amplitude order by order in α′.
At order α′ one obtains four-derivative terms, in particular terms quadratic in
the curvature tensor,

Seff =
1

2κ2

∫
dDx
√
g(R+ α′c1RµνρσR

µνρσ + · · ·+O((α′)2)) , (111)

where c1 is a numerical constant. The α′-expansion of the effective action is an
expansion in derivatives. It is valid at low energies, i.e., at energies lower than
the scale set by α′, where corrections due to massive string scales are small.

Obviously, it is very cumbersome to construct the effective action by match-
ing field theory amplitudes with string amplitudes. In practice one uses symme-
tries to constrain the form of the effective action. This is particularly efficient for
supersymmetric actions, which only depend on a few independent parameters
or functions, which can be extracted from a small number of string amplitudes.
A different technique, which often is even more efficient, is to study strings in
curved backgrounds, and, more generally, in background fields.

3.4 Strings in curved backgrounds

So far we only discussed strings in flat backgrounds. Let us now consider the case
of a curved background with Riemannian metric Gµν(X). Then the Polyakov
action takes the form of a non-linear sigma-model

SP =
1

4πα′

∫
d2σ
√
hhαβ∂αX

µ∂βX
νGµν(X) . (112)

As emphasized above, the local Weyl invariance

hαβ → eΛ(σ)hαβ (113)

is crucial for the consistency of string theory, since the construction of states,
vertex operators and amplitudes is based on having a conformal field theory on
the world-sheet. If the space-time metric is curved, then the Weyl invariance of
the classical action (112) is still manifest. But at the quantum level it becomes
non-trivial and imposes restrictions on Gµν(X). In the non-linear sigma-model
defined by (112) one can define a modified beta function β, which measures the
violation of local Weyl invariance. In order to have local Weyl invariance this
function must vanish,

β = 0 . (114)
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Since Gµν(X) are the field-dependent couplings of the non-linear sigma-model,
the beta function β is a functional of Gµν(X). It can be computed perturbatively,
order by order in α′. The dimensionless expansion parameter is the curvature
scale of the target space (i.e., space-time) measured in units of the string length√
α′.

The leading term in this expansion is:

β
G

µν = − 1

2π
Rµν . (115)

Thus the space-time background has to be Ricci-flat, i.e., it satisfies the vacuum
Einstein equation. The condition imposed on the background field by local Weyl
invariance on the world-sheet is its space-time equation of motion. This relation
between world-sheet and space-time properties holds for other background fields
as well and can be used as an efficient method to construct effective actions. One
can also compute the α′-corrections to (115):

β
G

µν = − 1

2π

(
Rµν +

α′

2
RµαβγR

αβγ
ν

)
. (116)

The corresponding α′-corrections to the Einstein-Hilbert action take the form
(111).

At this point we need to reflect a little bit on how gravity is described in string
theory. So far we have seen that it enters in two ways: first, there is a graviton
state ζ(µν)α

µ
−1α̃

ν
−1|k〉 in the string spectrum. Second, there is a background met-

ric Gµν(X). If gravity is described consistently, then these two objects must be
related. To explore this we expand Gµν(X) around flat space,

Gµν(X) = ηµν + κψµν(X) , (117)

and observe that the action (112) is related to the Polyakov action in flat space
by

SP [Gµν] = SP [ηµν] + κV [ψµν] , (118)

where

V [ψµν ] =
1

4πα′

∫
d2σ
√
hhαβψµν(X)∂αX

µ∂βX
ν . (119)

Taking the Fourier transform of ψµν(X) we obtain

V [ψµν ] =
1

4πα′

∫
dDk

∫
d2σ
√
hVψ(k, ψ̃(k)) (120)

where
Vψ(k, ψ̃(k)) = ψ̃µν(k)∂αX

µ∂αXνeikρX
ρ

(121)

is the graviton vertex operator with polarisation tensor ψ̃µν(k).
Thus the curved space action SP [Gµν] is obtained by deforming the flat space

action SP [ηµν] by the graviton vertex operator. Since both actions must be con-
formal, V [ψ] must be a so-called exactly marginal operator of the world-sheet
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field theory. These are the operators which generate deformations of the action
while preserving conformal invariance. A necessary condition is that V [ψ] must
be a marginal operator, which means it has weights (0, 0) with respect to the
original action. Such operators have the correct weight for being added to the
action and generate infinitesimal deformations which preserve conformal invari-
ance. Note that it is not guaranteed that a marginal operator is still marginal in
the infinitesimally deformed theory. Only those marginal operators which stay
marginal under deformation generate finite deformations of a conformal field
theory and are called exactly marginal (or truly marginal).

If the integrated vertex operator V [ψ] has weights (0, 0), then the vertex op-
erator (121) must have weights (1, 1). This is the condition for a vertex operator
to create a physical state. The resulting conditions on momenta and polarization
are

k2 = 0 , kµψ̃
(µν) = 0 , (122)

which we now recognize as the Fourier transforms of the linearized Einstein
equation. This the free part of the equations of motion for the graviton and
characterizes its mass and spin.

Marginal operators are not necessarily exactly marginal. The flat space action
defines a free field theory on the world-sheet, which is conformally invariant at
the quantum level. Thus V [ψ] is exactly marginal if and only if the curved
space action SP [Gµν] is conformally invariant. By the beta–function analysis,
this is equivalent to the full vacuum Einstein equation for the metric Gµν , plus
corrections in α′. This is the full, non-linear equation of motion for the graviton
string state.

In order to understand the relation between the graviton string state and
the background metric even better we use (118) to relate amplitudes computed
using the curved space action SP [Gµν] and the flat space action SP [ηµν]:

〈V1 · · ·VM 〉G = 〈V1 · · ·VMeV [ψ]〉η (123)

The operator eV [ψ] generates a coherent state of gravitons in flat space. This
can be seen as follows: in quantum mechanics (think of the harmonic oscilla-
tor) coherent states are defined as states with minimal Heisenberg uncertainty.
They are eigenstates of annihilation operators and can be constructed by ex-
ponentiating creation operators. The resulting states are not eigenstates of the
number operator but are superpositions of states with all possible occupation
numbers. In (123) the role of the creation operator is played by the graviton
vertex operator.

In quantum field theory, coherent states are the states corresponding to clas-
sical fields. For example, in quantum electrodynamics a classical electrodynamic
field can be represented as a coherent state of photons. Similarly, in gravity a
curved metric (modulo global properties) can be described as a coherent state
of gravitons in the Minkowski vacuum. This is realized in the above formula,
where the amplitudes in the curved background can be computed equivalently
by inserting the vertex operator for a coherent state of gravitons into the flat
space amplitude. This is a manifestation of background independence: though
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we need to pick a particular background to define our theory, other backgrounds
are different states in the same theory. Since consistent backgrounds must satisfy
the equations of motion, one also calls them solutions of string theory. In this
terminology different background geometries are different solutions of the single
underlying string theory.

3.5 Effective actions

In the last section we have seen that the equation of motion of the metric/graviton
can be obtained from an effective action. Such effective actions are very conve-
nient, because they allow us to describe string states in terms of D-dimensional
field theory. Effective actions are obtained in an expansion in α′ and therefore
their use is limited to scales below the string scale. But given that the string
scale probably is very large, they are extremely useful to extract particle physics
or gravitational physics from string theory. Therefore they play a mayor role in
string theory. We have also seen that there are two methods for deriving effective
actions: the matching of string theory amplitudes with field theory amplitudes
and solving the conditions for Weyl invariance β = 0 in a non-trivial background.

So far we found that the Einstein-Hilbert action is the leading part of the
effective action for the graviton. We have seen that the closed string has two
further massless modes, the dilaton Φ and the antisymmetric tensor field Bµν .
We can now switch on the corresponding non-trivial background fields. The total
world-sheet action is:

S = SP [G] + S[B] + S[Φ] . (124)

Here SP [G] is the action (112),

S[B] =
1

4πα′

∫
d2σεαβ∂αX

µ∂βX
νBµν(X) (125)

and

S[Φ] =
1

4π

∫
d2σ
√
hR(2)(h)Φ(X) . (126)

Here εαβ is the totally antisymmetric world-sheet tensor density and R(2)(h) is
the Ricci scalar of the world-sheet metric. Note that the dilaton action is higher
order in α′.

The beta-function for the dilaton starts with a term proportional to (D−26)
and has α′-correction proportional to derivatives of Φ. The leading term of the
beta-function corresponds to a cosmological constant in the effective action.
When considering string theory around backgrounds with constant dilaton, the
only solution to the dilaton beta-function equation is to work in the critical di-
mension D = 26. We will only consider such backgrounds here, and therefore the
cosmological term in the effective action vanishes. But let us note that there are
known exact solutions to the beta-function equations with non-constant dilaton.
These describe exact string backgrounds with D 6= 26.
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Let us now return to dilaton term of the world-sheet action. When evaluated
for constant dilaton, (126) is proportional to the Euler number of the world-
sheet. For a Euclidean closed string world-sheet of genus g we have:

χ =
1

4π

∫

Σg

d2z
√
hR(2)(h) = 2− 2g . (127)

Therefore shifting the dilaton by a constant a,

Φ(X)→ Φ(X) + a (128)

has the effect of shifting the total action (124) by a constant proportional to the
Euler number:

S → S + aχ(g) . (129)

For the corresponding partition function this is equivalent to rescaling the cou-
pling by ea:

Z =

∞∑

g=0

κ−χ(g)

∫
DXDhe−S −→

∞∑

g=0

(κea)−χ(g)

∫
DXDhe−S . (130)

This shows that the coupling constant κ and vacuum expectation value 〈Φ〉 of the
dilaton are not independent. To clarify the physical meaning of both quantities,
we now investigate the effective action of the massless modes. The conditions
for Weyl invariance of (124) are the Euler-Lagrange equation of the following
effective action:

SStrFr
tree =

1

2κ2

∫
dDx
√
Ge−2Φ

(
R(G)− 1

12
HµνρH

µνρ + 4∂µΦ∂
µΦ+O(α′)

)
.

(131)
This way of parametrizing the effective action is called the string-frame. The
string frame metric Gµν is the metric appearing in the world-sheet action (112).
The field strength of the antisymmetric tensor field is

Hµνρ = 3! ∂[µBνρ] , (132)

where [µνρ] denotes antisymmetrization.
Concerning the dilaton we note that its vacuum expectation value is not

fixed by the equations of motion. Like in the partition function (130), shifting
the dilaton by a constant is equivalent to rescaling the coupling. In order to
determine the relation of the string coupling constant κ to the physical gravi-
tational coupling κphys one has to perform a field redefinition that transforms
the gravitational term in (131) into the standard Einstein-Hilbert action. The
coefficient in front of this term is the physical gravitational coupling.

The transformation which achieves this is the following Weyl rescaling of the
metric:

gµν := Gµνe
− 4
D−2 (Φ−〈Φ〉) . (133)
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Expressing everything in terms of the Einstein frame metric gµν one obtains:

SEinstFr
tree =

1

2κ2
phys

∫ √
g
(
R(g)− 1

12e
−8

Φ−〈Φ〉
D−2 HµνρH

µνρ − 4
D−2∂µΦ∂

µΦ+ O(α′)
)
.

(134)
The physical gravitational coupling is

κphys = κe〈Φ〉 . (135)

Since the coupling κ can be rescaled by shifting Φ, it can be set to an arbitrary
value. This is used to fix κ:

κ
!
= (α′)

D−2
4 . (136)

(Note that the D-dimensional gravitational couplings κ, κphys have dimension
(length)D−2/2.) Since κphys and α′ are related by the vacuum expectation value
of the dilaton we see that there is only one fundamental dimensionful parameter
in string theory, which we can take to be either the gravitational coupling κphys

or the string scale set by α′. They are related by the vacuum expectation value of
the dilaton, which classically is a free parameter labeling different ground states
in one theory. Defining the dimensionless string coupling constant by

gS = e〈Φ〉 , (137)

we have the relation
κphys = (α′)

D−2
4 gS . (138)

The effective actions (131,134) have been constructed to leading order in α′

and at tree level in the string coupling gS . Loop corrections in gS can be ob-
tained, either by considering loop amplitudes or from the contribution of higher
genus world-sheets to the Weyl anomaly (Fischler-Susskind mechanism). One
might expect that loop corrections generate a potential for the dilaton and lift
the vacuum degeneracy. But for the bosonic string one does not know the stable
ground state, because of the tachyon. In supersymmetric string theories tachyons
are absent, but no dilaton potential is created at any loop level. Thus the value
of the string coupling remains a free parameter. This is (part of) the problem
of vacuum degeneracy of superstring theories. Since the flatness of the dilaton
potential is a consequence of supersymmetry, the solution of the vacuum degen-
eracy problem is related to understanding supersymmetry breaking.

For practical applications, both the string frame effective action and the
Einstein frame effective action (and their higher-loop generalizations) are needed.
The string frame action is adapted to string perturbation theory and has a
universal dependence on the dilaton and on the string coupling:

SStrFr
g-loop ∼ g−2+2g

S . (139)

The Einstein frame action is needed when analyzing gravitational physics, in
particular for solutions of the effective action that describe black holes and
other space-time geometries. Note that concepts such as the ADM mass of an
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asymptotically flat space-time are tied to the gravitational action written in the
Einstein frame. The relation between the Einstein frame metric and the string
frame metric is non-trivial, because it involves the dilaton, which in general is a
space-time dependent field. Therefore various quantities, most importantly the
metric itself, can take a very different form in the two frames. For example one
metric might be singular wheras the other is not. In order to decide whether a
field configuration is singular or not, one has of course to look at all the fields,
not just at the metric. If the metric is singular in one frame but not in the other,
then the dilaton must be singular.

3.6 Interacting open and non-oriented strings

We now indicate how the above results extend to open and non-oriented strings.

Open strings. The world-sheets describing the interactions of open strings
have two kinds of boundaries: those corresponding to the initial and final strings
and those corresponding to the motions of string endpoints. Boundaries corre-
sponding to external strings can be mapped to punctures and are then replaced
by vertex operators. The boundaries corresponding to the motions of string
endpoints remain. They are the new feature compared to closed strings. Pertur-
bation theory for open strings can then be developed along the same lines as for
closed strings. Instead of closed oriented surfaces it involves oriented surfaces
with boundaries, and the vertex operators for open string states are inserted at
on the boundaries.

Again there is one fundamental interaction, which couples three open strings,
and we assign to it a coupling constant κo. The most simple world-sheet, analo-
gous to the sphere for closed strings, is the disc. It is leading in the expansion in
κo and describes scattering at tree level. The computation of tree level scattering
amplitudes confirms the interpretation of the massless state as a gauge boson.
The resulting effective action, to leading order in α′, is the Maxwell or, with
Chan-Paton factors, the Yang-Mills action. It receives higher order corrections
in α′ and one can show that the resulting actions are of Born-Infeld type.

Higher order diagrams in open string perturbation theory correspond to sur-
faces with more than one boundary component. They are obtained from the disc
by removing discs from the interior. Each removal of a disc corresponds to an
open string loop. The one loop diagram is the the annulus.

One can also introduce a coupling of two open strings to one closed string
with coupling κoc and consider theories of open and closed strings. Unitarity
then implies that the three couplings κo, κoc, κ are not independent. To see this
consider first a disc diagram with two open string vertex operators at the bound-
aries and two closed string vertex operators in the interior. This amplitude can
be factorized with an intermediate closed string. Looking at string interactions
we see that one has one interaction between three closed strings and one be-
tween one closed and two open strings. Therefore the amplitude is proportional
to κκoc. The amplitude can also be factorized with an intermediate open string.
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This time one sees two interactions involving two open and one closed string.
Therefore the amplitude is proportional to κ2

oc. Comparing both forms of the
amplitude we deduce

κ ' κoc (140)

(the numerical factor has to be determined by explicit computation).
Next consider the open string one loop diagram, the annulus. Putting two

vertex operators on each boundary one can again factorize it with either a closed
or an open intermediate state. This way one finds

κ ' κ2
o . (141)

Note that the above amplitude does not involve external closed string states.
This indicates an important property of open string theories: the coupling to
closed strings is not optional, but mandatory. When computing open string loop
diagrams, one finds that they have poles which correspond to closed string states.
Therefore consistency of open string theories at the quantum level requires the
inclusion of closed strings. This means in particular that every consistent quan-
tum string theory has to include gravity. The relation between open and closed
strings becomes obvious when one realizes that the annulus is topologically equiv-
alent to the cylinder. While the annulus intuitively is the open string one loop
diagram, the cylinder is the closed string propagator. This is reflected by the
properties of the corresponding string amplitudes, which can be written either
as a sum over poles corresponding to open strings (open string channel) or as a
sum over poles corresponding to closed strings (closed string channel).

The UV finiteness of closed string theories is due to modular invariance.
Open string world-sheets do not have a modular group. The role of modular
invariance is played by another property, called tadpole cancellation. The un-
derlying observation is that the cancellation of divergencies between different
diagrams is equivalent to the vanishing of the dilaton tadpole. It turns out that
tadpole cancellation cannot be realized in a theory of oriented open and closed
strings. In theories of non-oriented open and closed strings tadpole cancellation
fixes the gauge group to be SO(2D/2). For bosonic strings the critical dimension
is D = 26 an the gauge group must be SO(8192). Since the primary problem of
bosonic strings is the tachyon, it is not clear whether tadpole cancellation plays
a fundamental role there. But for type I superstrings this is the condition which
makes the theory finite.

Since we only discussed orientable world-sheets so far, we next collect some
properties of the world-sheets of non-oriented strings.

Non-oriented strings. Theories of non-oriented strings are obtained by keep-
ing only states which are invariant under world-sheet parity. Since such theories
are insensitive to the orientation of the world–sheet one now has to include
non-orientable world-sheets. Theories of closed non-oriented strings involve ori-
entable and non-orientable surfaces without boundaries, whereas theories of open
and closed non-oriented strings involve in addition orientable and non-orientable
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world-sheets with boundaries. Let us summarize which types of world-sheets oc-
cure in string theory, depending on boundary conditions and orientability of the
world-sheet:

Strings Surfaces

boundaries orientable

open closed oriented non-oriented without with yes no

x − x − x − x −
x x x − x x x −
x − − x x − x x

x x − x x x x x

(142)

The simplest example of a non-orientable surface without boundary is the
real projective plane RP2, which is obtained from R2 by adding a circle at
infinity, such that every line through the origin in R2 intersects the circle in
one point. Equivalently, RP2 is obtained from the disc by identifying antipodal
points on its boundary. Thus, RP2 is a closed, but non-orientable surface, and
it is a world-sheet occuring in theories of closed non-oriented strings. It is useful
to note that RP2 can be obtained from the sphere, which is the tree-level world-
sheet already familiar from oriented closed strings, by the following procedure:
start with the sphere, remove a disc, (realize that the result is a disc itself,) then
identify antipodal points on the resulting boundary. This operation is called
‘adding a crosscap’. By iterating this process we get an infinite series of new
non-orientable surfaces. For example, by adding a second crosscap we get the
Klein bottle. As we discussed above, there is a similar operation that generates
all orientable closed surfaces from the sphere: adding a handle. By adding both
handles and crosscaps we can generate all closed surfaces, orientable and non-
orientable. In fact, it is sufficient to either add handles (generating all orientable
surfaces) or to add crosscaps (generating all non-orientable surfaces). The reason
is that adding a crosscap and a handle is equivalent to adding three crosscaps.

When considering theories of non-oriented open strings one has to add world-
sheets with boundaries. These are obtained from the world-sheets of closed
strings by removing discs. For example, removing one disc from RP2 gives the
Möbius strip. As we discussed in the last section, the couplings between open
strings, κo, and between open and closed strings, κog, are related to the closed
string coupling κ by unitarity. The order of a given world-sheet in string pertur-
bation theory is κ−χ(g,b,c), where the Euler number is now determined by the
number g of handles, the number b of boundary components and the number c
of crosscaps:

χ(g, b, c) = 2− 2g − b− c . (143)
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Let us write down explicitly the first few world-sheets:

g b c χ Surface Coupling

0 0 0 2 Sphere κ−2

0 1 0 1 Disc κ−1

0 0 1 1 Real projective plane κ−1

1 0 0 0 Torus κ0

0 0 2 0 Klein bottle κ0

0 2 0 0 Annulus = cylinder κ0

0 1 1 0 Möbius strip κ0

(144)

3.7 Further reading

Vertex operators and the Polyakov path integral are discussed in all the standard
textbooks [1,2,3,4]. A very nice introduction to the use of conformal field theory
in string theory is provided by [6]. A more detailed introduction to the Polyakov
path integral can be found in [8]. For an extensive review of this subject, see
[7]. A pedagogical treatment of the mathematical ingredients needed to treat
higher genus surfaces can be found in [10], whereas [9] discusses the Polyakov
path integral from the mathematicians point of view.

4 Supersymmetric strings

The bosonic string does not have fermionic states and therefore it cannot be used
as a unified theory of particle physics and gravity. One way to introduce fermionic
states is an extension known as the Ramond-Neveu-Schwarz string (RNS string).
In this model one introduces new dynamical fields ψµ = (ψµA) on the world-
sheets, which are vectors with respect to space-time but spinors with respect to
the world-sheet. We will suppress the world-sheet spinor indices A = 1, 2 most of
the time. Surprisingly, the presence of such fields, when combined with a certain
choice of boundary conditions, yields states which are spinors with respect to
space-time, as we will see below.

The RNS model contains space-time bosons and fermions, but still has a
tachyonic ground state. One then observes that there are projections of the
spectrum which simultanously remove the tachyon and make the theories space-
time supersymmetric. A closer inspection shows that these projections are not
optional, but required by consistency at the quantum level. This way one obtains
three consistent supersymmetric strings theories, called type I, type IIA and type
IIB. Finally there are also two so-called heterotic string theories, which are the
result of a hybrid construction, combining type II and bosonic strings. This
makes a total of five supersymmetric string theories.
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4.1 The RNS model

We now discuss the classical and quantum properties of the RNS string, pro-
ceeding along the same lines as we did for the bosonic string.

The RNS action. The action of the RNS model is obtained from the Polyakov
action by extending it to an action with supersymmetry on the world-sheet.
Note that that world-sheet supersymmetry is different from, and does not im-
ply, supersymmetry in space-time. The action of the RNS model is constructed
by extending the Polyakov action (4) to an action with local world-sheet super-
symmetry. This action also has local Weyl symmetry, and further local fermionic
symmetries which make it locally superconformal. We will not need its explicit
form here. The analogue of the conformal gauge is called superconformal gauge.
In this gauge the action reduces to

SRNS =
1

4πα′

∫

Σ

d2σ
(
∂αX

µ∂αXµ + i ψ
µ
ρα∂αψµ

)
. (145)

The fields ψµ = (ψµA) are Majorana spinors with respect to the world-sheet and
vectors with respect to space-time, while ρα = (ραAB) are the two-dimensional
spin matrices. We will usually suppress the world-sheet spinor index A,B = 1, 2.
The action (145) is invariant under global world-sheet supersymmetry transfor-
mations:

δXµ = εψµ , δψµ = −i ραε∂αX
µ . (146)

The equations of motion are:

∂2Xµ = 0 , ρα∂αψ
µ = 0 . (147)

To these one has to add the constraints, which arise from the locally superconfor-
mal action. In this action the supersymmetric partner of the world-sheet metric
is a vector-spinor, the gravitino. This field is non-dynamical in two dimensions
and is set to zero in the superconformal gauge. The equation of motion for the
metric implies that the energy-momentum tensor vanishes on shell:

Tαβ = ∂αX
µ∂βXµ + i

2ψ
µ
ρ(α∂β)ψµ − Trace = 0 . (148)

The equation of motion for the gravitino implies that the world-sheet supercur-
rent Jα vanishes on shell:

Jα = 1
2ρ
βραψ

µ∂βXµ = 0 . (149)

In order to solve the equation of motion for ψµ it is convenient to choose the
following spin matrices:

ρ0 =


0 i

i 0


 , ρ1 =


0 −i

i 0


 . (150)
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Using the chirality matrix ρ = ρ0ρ1 we see that the components ψµ± of ψµ,
defined by

ψµ =


ψ−

ψ+


 (151)

with respect to the basis (150) are Majorana-Weyl spinors. The equations of
motion decouple,

∂−ψ
µ
+ = 0 , ∂+ψ

µ
− = 0 , (152)

and have the general solution

ψµ+ = ψµ+(σ+) , ψµ− = ψµ−(σ−) . (153)

Next we have to specify the boundary conditions. Requiring the vanishing of the
boundary terms when varying the action implies:

(ψµ−δψµ− − ψµ+δψµ+)
∣∣
σ1=0

= (ψµ−δψ
µ
− − ψµ+δψµ+)

∣∣
σ1=π

. (154)

For open strings we take

ψµ+(σ0, σ1 = 0) = ψµ−(σ0, σ1 = 0) (155)

ψµ+(σ0, σ1 = π) = ±ψµ−(σ0, σ1 = π) . (156)

This couples ψµ+ and ψµ− at the boundaries. Depending on the choice of sign
in (156) one gets Ramond boundary conditions (‘+’ sign) or Neveu-Schwarz
boundary conditions (‘−’ sign). One can use the same doubling trick that we
used to obtain the Fourier expansion for bosonic open strings. Setting

ψµ(σ0, σ1) :=




ψµ−(σ0,−σ1) if− π ≤ σ1 ≤ 0 ,

ψµ+(σ0, σ1) if 0 ≤ σ1 ≤ π ,
(157)

we find that ψ is periodic for R(amond)-boundary conditions and antiperiodic
for N(eveu-)S(chwarz)-boundary conditions on the doubled world-sheet. Consis-
tency at the loop level requires that both types of boundary conditions have to
be included. The Hilbert space has both an NS-sector and an R-sector.

For closed strings we can make ψ+ and ψ− either periodic (R-boundary
conditions) or antiperiodic (NS-boundary conditions):

ψµ+(σ0, σ1 = π) = ±ψµ+(σ0, σ1 = 0) , (158)

ψµ−(σ0, σ1 = π) = ±ψµ−(σ0, σ1 = 0) . (159)

Since ψµ+ and ψµ− are independent, one has four different choices of fermionic
boundary conditions: R-R, NS-R, R-NS, NS-NS. Again considerations at the
loop level require that all four sectors have to be included.

We can now write down solutions of (152) subject to the boundary conditions
that we admit. For open strings we use the doubling trick and Fourier expand
(157). For R-boundary conditions one obtains,

ψµ∓ =
1√
2

∑

n∈Z

dµne
−inσ∓ , (160)
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while for NS-boundary conditions the result is:

ψµ∓ =
1√
2

∑

r∈Z+
1
2

bµr e
−irσ∓ . (161)

For closed strings R-boundary conditions in the right-moving sector we get:

ψµ− =
∑

n∈Z

dµne
−2inσ− , (162)

while with NS-boundary conditions this becomes

ψµ− =
∑

r∈Z+
1
2

bµr e
−2irσ− . (163)

The Fourier coefficients of the left-moving fields are denoted d̃µn and b̃µr , respec-
tively.

Likewise, one obtains Fourier coefficients of the energy momentum tensor Tαβ
and of the supercurrent Jα. For open strings the Fourier coefficients of J+, J− (in
the doubled intervall) are denoted Fm in the R-sector and Gr in the NS-sector.
For closed strings the Fourier modes of J+ are denoted Fm, Gr, while those of
J− are F̃m and G̃r. The Fourier components of T++ and T−− are denotes as
before.

Covariant quantization of the RNS model. The covariant quantization of
the RNS model proceeds along the lines of the bosonic string. We will consider
open strings for definiteness. The canonical commutation relations of the αµm are
as before. The fermionic modes satisfy the canonical anticommutation relations

{bµr , bνs} = ηµνδr+s,0 (164)

in the NS-sector and
{dµm, dνn} = ηµνδm+n,0 (165)

in the R-sector. (For closed strings there are analogous relations for the second
set of of modes.)

The Virasoro generators get contributions from both the bosonic and the

fermionic oscillators, Lm = L
(α)
m + L

(NS)/(R)
m . The bosonic part L

(α)
m is given

by (29), while the contributions from the fermionic oscillators in the respective
sectors are:

L(NS)
m = 1

2

∞∑

r=−∞
(r + 1

2m) br · bm+r , (166)

L(R)
m = 1

2

∞∑

n=−∞
(n + 1

2m) dn · dm+n . (167)
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The explicit formulae for the modes of the supercurrent are:

Gr =

∞∑

n=−∞
α−n · br+n , (168)

Fm =

∞∑

n=−∞
α−n · dm+n . (169)

The modes of Tαβ and Jα generate a supersymmetric extension of the Vira-
soro algebra. In the NS sector this algebra takes the form

[Lm, Ln] = (m− n)Lm+n +
D

8
(m3 −m)δm+n,0 , (170)

[Lm, Gr] = (1
2
m − r)Gm+r , (171)

{Gr, Gs} = 2Lr+s +
D

2
(r2 − 1

4)δr+s,0 , (172)

while in the R-sector one finds

[Lm, Ln] = (m − n)Lm+n +
D

8
m3δm+n,0 , (173)

[Lm, Fn] = (1
2
m − n)Fm+n , (174)

{Fm, Fn} = 2Lm+n +
D

2
m2δm+n,0 . (175)

The subspace of physical states Fphys ⊂ F is found by imposing the corre-
sponding super Virasoro constraints. In the NS-sector the constraints are:

Ln|Φ〉 = 0 , n > 0 ,

(L0 − a)|Φ〉 = 0 ,

Gr|Φ〉 = 0 , r > 0 . (176)

Absence of negative norm states is achieved for

D = 10 and a = 1
2 . (177)

(Like for bosonic strings there is the option to have a non-critical string theory
with D < 10, which we will not discuss here.) Thus the critical dimension has
been reduced to 10.

In the R-sector the constraints are:

Ln|Φ〉 = 0 , n > 0 ,

(L0 − a)|Φ〉 = 0 ,

Fn|Φ〉 = 0 , n ≥ 0 . (178)

Note that there is no normal ordering ambiguity in F0. Since F 2
0 = L0 we

conclude a = 0. The critical dimension is 10, as in the NS-sector:

D = 10 and a = 0 . (179)
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Let us construct explicitly the lowest states of the open string in both sectors.
In the NS-sector the basic momentum eigenstates satisfy

αµm|k〉 = 0 , m > 0 , (180)

bµr |k〉 = 0 , r > 0 (181)

and the constraint (L0 − 1
2
)|Φ〉 = 0 provides the mass formula:

α′M2 = N − 1
2 , (182)

where we reinstated α′. The number operator gets an additional term N (b) com-
pared to (39), which counts fermionic oscillations:

N (d) =

∞∑

r=1/2

r b−r · br , (183)

[N, bµ−r] = r bµ−r . (184)

Now we can list the states:

Occupation Mass State

N = 0 α′M2 = −1
2 |k〉

N = 1
2

α′M2 = 0 bµ−1/2|k〉
N = 1 α′M2 = 1

2 bµ−1/2b
ν
−1/2|k〉

αµ−1|k〉
N = 3

2 α′M2 = 1 bµ−1/2b
ν
−1/2b

ρ
−1/2|k〉

αµ−1b
ν
−1/2|k〉

bµ−3/2|k〉

(185)

Thus the NS-sector of the open string consists of space-time bosons and has a
tachyonic ground state. The massless state is a gauge boson.

The basic momentum eigenstates in the R-sector defined by:

αµm|k〉 = 0 , m > 0 , (186)

dµm|k〉 = 0 , m > 0 . (187)

The constraint L0|Φ〉 = 0 yields the mass formula

α′M2 = N . (188)

The number operator gets an additional fermonic contribution

N (d) =

∞∑

m=1

m d−m · dm . (189)
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The zero modes dµ0 of the fermionic fields play a distinguished role. Their algebra
is, up to normalization, the Clifford algebra Cl(1, 9):

{dµ0 , dν0} = ηµν . (190)

The unique irreducible representation of this algebra is the spinor representation
of the Lorentz group SO(1, 9). Introducing standard Clifford generators γµ =√

2dµ0 , the generators of the spinor representation are σµν = 1
4 [γµ, γν ]. Since the

dµ0 are real, this representation is the 32-dimensional Majorana representation,
denoted [32].

The zero modes dµ0 commute with the number operator. Therefore the states
in the R-sector organize themselves into spinor representations of the Lorentz
group. This is how space-time spinors are described in the RNS model. To con-
struct the states, we denote the ground state of the R-sector by

|a〉 , a = 1, . . . , 32 = 2D/2 , (191)

where a transforms in the [32] representation. Then the first states are:

Occupation Mass State

N = 0 α′M2 = 0 |a〉
N = 1 α′M2 = 1 dµ−1|a〉

αµ−1|a〉

(192)

The constraints Ln|Φ〉 = 0 (n > 0) and the new constraints Fn|Φ〉 = 0 (n ≥ 0)
impose restrictions on the polarization. For example, F0|a〉 = 0 is easily seen to
be the Fourier transform of the massless Dirac equation and reduces the number
of independent components by a factor 1

2
. Excited states are obtained by acting

with creation operators αµ−m, dµ−m on the gound state. Since the product of a
tensor representation of the Lorentz group with a spinor representation always
gives spinor representations, we see that all states in the R-sector are space-time
spinors.

The GSO projection for open strings. The RNS model solves the problem
of describing space-time fermions but still has a tachyon. Gliozzi, Scherk and
Olive observed that one can make a projection of the spectrum, which removes
the tachyon. Moreover the resulting spectrum is supersymmetric in the space-
time sense. This so-called GSO projection is optional at the classical level, but
it becomes mandatory at the quantum level, as we will discuss below.

The GSO projector in the NS-sector is defined as follows:

P
(NS)
GSO = −(−1)

∑∞
r=1/2 b−r ·br . (193)

Imposing P
(NS)
GSO

!
= 1, one projects out all the states which contain an even

number of bµ−r creation operators. This in particular removes the tachyon. The
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GSO projector in the R-sector is

P
(R)
GSO = γ(−1)

∑∞
m=1 d−m ·dm , (194)

where γ is the ten-dimensional chirality operator. On the ground state |a〉 of

the R-sector the projection P
(R)
GSO|Φ〉

!
= 1 removes one chirality of the spinor.

This is consistent, because in ten space-time dimensions the irreducible spinor
representations are Majorana-Weyl spinors. The [32] representation decomposes
according to

[32] = [16]+ + [16]− . (195)

With the GSO projection one only keeps one chirality (which we have taken to
be the [16]+, for definiteness):

|a〉 = |a+〉+ |a−〉 −→ |a+〉 , (196)

where a+ = 1, . . . , 16 is a Majorana-Weyl index.
At the massive level just projecting out one chirality would not be consistent,

as massive particles cannot be chiral. The projection with (194) keeps states
which either have ‘+’ chirality and an even number of dµ−m creation operators
or ‘−’ chirality and an odd number of dµ−m creation operators.

By writing down the first few states one can easily verify that after the
projection the NS-sector and R-sector have an equal number of states, and that
the massive states in the R-sector combine into full (non-chiral) massive Lorentz
representations.

Checking the equality of states at every mass level is done by computing the
one-loop partition function. Moreover one can construct explicitly the represen-
tation of the ten-dimensional super Poincaré algebra on the physical states. This
is done using BRST techniques and lies beyond the scope of these lectures. Here
we restrict ourselves to noting that the ground state of the open string, after
GSO projection, is a ten-dimensional vector supermultiplet:

{bµ−1/2|k〉 , |a+〉} . (197)

Spectrum and GSO projection for closed strings. Let us next study the
spectrum of closed RNS strings. The masses of states are determined by

α′M2 = 2(N − ax + Ñ − ãx) ,

N − ax = Ñ − ãx , (198)

with normal ordering constants aR = 0 = ãR and aNS = 1
2

= ãNS .
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We start by listing the first states in the NS-NS sector:

Occupation Mass States

N = Ñ = 0 α′M2 = −2 |k〉
N = Ñ = 1

2
α′M2 = 0 bµ−1/2

b̃ν−1/2|k〉
N = Ñ = 1 α′M2 = 2 αµ−1α̃

ν
−1|k〉

αµ−1b̃
ν
−1/2b̃

ρ
−1/2|k〉

bµ−1/2b
ν
−1/2α̃

ρ
−1|k〉

bµ−1/2b
ν
−1/2b̃

ρ
−1/2b̃

σ
−1/2|k〉

(199)

All these states are bosons, and at the massless level we recognize the graviton,
the dilaton and the antisymmetric tensor.

In the R-R sector, the ground state transforms in the [32]×[32] representation
and is denoted |a, ã〉. The first states are

Occupation Mass State

N = Ñ = 0 α′M2 = 0 |a, ã〉
N = Ñ = 1 α′M2 = 2 αµ−1α̃

ν
−1|a, ã〉

dµ−1α̃
ν
−1|a, ã〉

αµ−1d̃
ν
−1|a, ã〉

dµ−1d̃
ν
−1|a, ã〉

(200)

The product of two spinor representations is a vector-like representations. There-
fore the states in the R-R sector are bosons. In more detail, the [32]× [32] rep-
resentation is the direct sum of all the antisymmetric tensor representations of
rank zero to ten. Using the ten-dimensional Γ -matrices we can decompose a
general massless state into irreducible representations:

|ΦRR〉 = (Fδaã + FµΓ
µ
aã + FµνΓ

µν
aã + · · ·)|a, ã〉 . (201)

By evaluating the remaining constraints F0|ΦRR〉 = 0 = F̃0|ΦRR〉 one obtains
the conditions

kµ1Fµ1µ2...µn = 0 and k[µ0
Fµ1µ2...µn] = 0 , (202)

which are the Fourier transforms of the equation of motion and Bianchi identity
of an n-form field strength:

d ? F(n) = 0 and dF(n) = 0 . (203)

The physical fields are antisymmetric tensor gauge fields or rank n−1. Note that
in contrast to the antisymmetric NS-NS field, the states in the R-R sector (and
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the corresponding vertex operators) describe the field strength and not the gauge
potential. When analyzing interactions one finds that there are no minimal gauge
couplings but only momentum couplings of these fields (i.e. couplings involving
the field strength). In other words the perturbative spectrum does not contain
states which are charged under these gauge fields. This is surprising, but a closer
analysis shows that the theory has solitonic solutions which carry R-R charge.
These so called R-R charged p-branes turn out to be an alternative description
of D-branes.

Now we turn to the NS-R sector. The first states are:

Occupation Mass State

N = 1
2 , Ñ = 0 α′M2 = 0 bµ−1/2|ã〉

N = 3
2 , Ñ = 1 α′M2 = 4 αµ−1b

ν
−1/2α̃

ρ
−1|ã〉

bµ−1/2b
ν
−1/2b

ρ
−1/2α̃

σ
−1|ã〉

αµ−1b
ν
−1/2d̃

ρ
−1|ã〉

bµ−1/2b
ν
−1/2b

ρ
−1/2d̃

µ
−1|ã〉

(204)

The massless state is a product of a vector [D] and a spinor [2D/2]. It decomposes
into a vector-spinor and a spinor:

[D]× [2D/2] = [(D − 1)2D/2] + 2D/2 . (205)

Therefore this state and all other states in the NS-R sector are space-time
fermions. The spectrum of the R-NS sector is obtained by exchanging left- and
right-moving fermions.

We observe that the massless states contains two vector-spinors. The only
known consistent interaction for such fields is supergravity. There these fields
are called gravitini. They sit in the same supermultiplet as the graviton, they
are the gauge fields of local supertransformations and couple to the conserved
supercurrent. The spectrum of the closed RNS model is obviously not super-
symmetric. This suggests that we have to make a projection in order to obtain
consistent interactions. This brings us to the GSO projection for closed strings,
which makes the spectrum supersymmetric and removes the tachyon. The GSO
projection is applied both in the left-moving and in the right-moving sector. In
the R-sectors one has to decide which chirality one keeps. There are two in-
equivalent projections of the total spectrum: one either takes opposite chiralities
of the R-groundstates (type A) or the same chiralities (type B). The resulting
theories are the type IIA and type IIB superstring. Let us look at their massless
states. The NS-NS sectors of both theories are identical. The states

bµ−1/2b̃
ν
−1/2|k〉 (206)

are the graviton Gµν the dilaton Φ and the antisymmetric tensor Bµν . The
number of on-shell states is 8 · 8 = 64. The ground states of the R-R sectors are:

|a+, ã−〉 (type A) , (207)
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|a+, ã+〉 (type B) . (208)

In both cases we have 8 · 8 = 64 on-shell states. Again we can decompose these
representations into irreducible antisymmetric tensors. For type IIA we get a
two-form and a four-form field strength, corresponding to a one-form and a
three-form potential:

IIA : Aµ , Aµνρ . (209)

There is also a zero-form field strength which has no local dynamics. It corre-
sponds to the so-called massive deformation of IIA supergravity, which is almost
but not quite a cosmological constant. (In the effective action the corresponding
term is a dimensionful constant multiplied by the dilaton. This is as close as one
can get to a cosmological constant in ten-dimensional supergravity.)

In the IIB theory one has a one-form, a three-form and a selfdual five-form
field strength. The corresponding potentials are:

IIB : A , Aµν , Aµνρσ . (210)

The massless states in the NS-R sector and R-NS sector are:

IIA : bµ−1/2|ã−〉 b̃
µ
−1/2|a+〉 , (211)

IIB : bµ−1/2|ã+〉 b̃µ−1/2|a+〉 , (212)

The total number of fermionic states is 128 in both cases. The decomposition
into irreducible representations gives two vector-spinors, the gravitini, and two
spinors, called dilatini. For type IIA they have opposite chiralities, whereas for
type IIB they have the same chiralities. The corresponding space-time fields are:

IIA : ψµ+ , ψµ− , ψ+ , ψ− ,

IIB : ψµ+(1) , ψµ+(2) , ψ+(1) , ψ+(2) . (213)

All together we get the field content of the type IIA/B supergravity multiplet
with 128 bosonic and 128 fermionic on shell states. The IIA theory is non-chiral
whereas the IIB theory is chiral. The massive spectra are of course non-chiral,
and, moreover, they are identical.

4.2 Type I and type II superstrings

We will now begin to list all consistent supersymmetric string theories. A priori,
we have the following choices: strings can be (i) open or closed, (ii) oriented
or non-oriented, (iii) one can make the GSO projection, with two inequivalent
choices (type A and B) for closed strings and (iv) one can choose gauge groups for
open strings: U (n) for oriented and SO(n) or Usp(2n) for non-oriented strings.

We have already seen that not all combinations of these choices are consistent
at the quantum level. Since theories of open strings have closed string poles in
loop diagrams, we can either have closed or closed and open strings. The next
restriction comes from modular invariance. On the higher genus world-sheets
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of closed oriented strings, one has to specify boundary conditions around every
handle. Since modular invariance maps one set of boundary conditions to others,
these choices are not independent. It turns out that one has to include both NS-
and R-boundary conditions around every handle, but one has the freedom of
choosing relative signs between different orbits of action of the modular group
on the set of boundary conditions. There are four possible choices. Two of them
correspond to the IIA and IIB superstrings. The other two choices are non-
supersymmetric theories without fermions, known as type 0A and 0B, which we
will not discuss here.

Type IIA and IIB are theories of oriented closed strings. Can we construct
supersymmetric string theories with oriented closed and open strings? The states
of the oriented open string fall into representations of the minimal N = 1 super-
symmetry algebra in D = 10. This algebra has 16 supercharges, which transform
as a Majorana-Weyl spinor under the Lorentz group. In ten dimensions there are
two further supersymmetry algebras, called N = 2A and N = 2B. They have 32
supercharges which either combine into two Majorana-Weyl spinors of opposite
chirality (A) or into two Majorana-Weyl spinors of the same chirality (B). The
states of the oriented closed string form multiplets of the N = 2A or N = 2B
supersymmetry algebra. In particular one has two gravitini, which must couple
to two independent supercurrents. Therefore oriented open and closed strings
cannot be coupled in a supersymmetric way. One can also show that any such
theory has divergencies, due to the presence of dilaton tadpoles.

Next we have to consider non-oriented strings. A theory of non-oriented
closed strings can be obtained by projecting the type IIB theory onto states in-
variant under world-sheet parity. (IIA is not invariant under world-sheet parity,
because the R-groundstates have opposite chirality.) This theory has divergen-
cies, which are related to the non-vanishing of dilaton tadpole diagrams. One
can also see from the space-time point of view that this theory is inconsistent:
the massless states form the N = 1 supergravity multiplet, which is chiral. Pure
N = 1 supergravity has a gravitational anomaly, which can only be cancelled by
adding precisely 496 vector multiplets.

Therefore we have to look at theories with non-oriented closed and open
strings. Tadpole cancellation precisely occurs if the gauge group is chosen to
be SO(2D/2) = SO(32). This is one of the gauge groups for which gravitational
anomalies cancel. The other anomaly-free gauge groups are E8×E8, E8×U (1)248

and U (1)496, which, however, cannot be realized through Chan-Paton factors.
Thus there is one supersymmetric string theory with non-oriented closed and
open strings and gauge group SO(32). This is the type I superstring.

Let us construct the massless spectrum of this theory. The closed string sector
is obtained by projecting the IIB theory onto states invariant under world-sheet
parity. Parity acts by exchanging left- and right-moving quantities:

αµm ↔ α̃µm , bµr ↔ b̃µr , dµm ↔ d̃µm , |a+〉 ↔ |ã+〉 . (214)

The action on the R-R ground state is:

|a+, ã+〉 ↔ −|ã+, a+〉 . (215)
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The ‘−’ sign reflects that one exchanges two fermionic states. (To make this
precise one needs to construct the so-called spin fields Sa, Sã which generate the
R-groundstates from the NS-groundstate. This can be done in the framework of
BRST quantization, which we did not introduce here.)

We can now write down the massless states of the type IIB string which
are invariant under world-sheet parity and survive the projection. In the NS-NS
sector we find

NS-NS : 1
2

(
bµ−1/2b̃

ν
−1/2 + bν−1/2b̃

µ
−1/2

)
|k〉 . (216)

Therefore the Bµν field is projected out and we are left with the graviton Gµν
and dilaton Φ. In the R-R sector the invariant massless state is:

R-R : 1
2

(|a+, ã+〉 − |ã+, a+〉) . (217)

Thus only the antisymmetric part of the tensor product of the two Majorana-
Weyl spinors survives the projection. This corresponds to the three-form field
strength Fµνρ, as is most easily seen by computing the dimensions of the repre-
sentations. Thus the two-form R-R gauge field Aµν survives the projection.

In the NS-R and R-NS one finds the following invariant state:

R-NS/NS-R : 1
2

(
bµ−1/2

|ã+〉+ b̃µ−1/2
|a+〉

)
. (218)

Therefore one gravitino ψµ+ and one dilatino ψµ are kept.
In the NS-sector of the open string we get massless vectors Aiµ, which trans-

form in the adjoint representations of SO(32): i = 1, . . . , dim(adjSO(32)) = 496.
The R-sector contains massless spinors ψi which combine with the vectors to
form vector supermultiplets.

Combining the massless states of the closed and open string sector we get
the field content of N = 1 supergravity coupled to Super-Yang-Mills theory with
gauge group SO(32).

4.3 Heterotic strings

There is yet another construction of supersymmetric string theories. It is a hybrid
construction, which combines the bosonic string with the type II superstring and
is called the heterotic string. The right-moving sector is taken from the type II
superstring, whereas the left-moving sector is taken from the bosonic string. To
get a modular invariant theory, the sixteen extra left-moving coordinates have
to be identified periodically,

XI ' XI + wI(i) , I = 1, . . . , 16 . (219)

The vectors w(i) = (wI(i)), i = 1, . . . , 16 generate a sixteen dimensional lattice
Γ16. Modular invariance requires that Γ16 is an even self-dual lattice. Modulo
rotations, there are only two such lattices, the root lattice of E8 × E8 and the
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lattice generated by the roots and the weights of one of the Majorana-Weyl
spinor representations of SO(32). Thus, there are two different heterotic string
theories.

The bosonic massless states come from the NS-sector and take the form

αµ−1b̃
ν
−1/2|k〉 (220)

αI−1b̃
ν
−1/2|k〉 (221)

eik
(i)
I xIL b̃ν−1/2|k〉 (222)

Here αI−1 are the oscillators corresponding to the sixteen extra left-moving di-

rections. The vectors k(i) = (k
(i)
I ) are discrete momentum vectors in the extra

dimensions. The above states are massless if the vectors k(i) have norm-squared
two. The two lattices Γ16 have 480 such vectors, corresponding to the roots of
E8 × E8 and SO(32), respectively. Together with the states generated by the
internal oscillators one gets bosons in the adjoint representations of theses two
groups. The massless fermionic states are obtained by replacing b̃ν−1/2|k〉 by the

R-ground state |a+〉. In total one gets the N = 1 supergravity multiplet plus
vector multiples in the adjoint representation of E8 ×E8 or SO(32).

The massless sectors of the five supersymmetric string theories correspond
to four different supergravity theories. The type I and the heterotic string with
gauge group SO(32) have the same massless spectrum, but their massive spectra
and interactions are different.

Let us summarize the essential properties of the five supersymmetric string
theories:

Type open/closed? oriented? chiral? supersymmetry gauge group

I both no yes N = 1 SO(32)

II A closed yes no N = 2A −
II B closed yes yes N = 2B −

Heterotic closed yes yes N = 1 E8 × E8

Heterotic closed yes yes N = 1 SO(32)

(223)

4.4 Further reading

Supersymmetric string theories are discussed in all of the standard textbooks
[1,2,3,4,5]. To prove the necessity of the GSO projection and the consistency of
the heterotic string as a perturbative quantum theory one needs properties of
the multiloop path integral [7]. A paedagogical treatment of the relation between
the GSO projection and boundary conditions in the path integral can be found
in [6].
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5 p-Branes in type II string theories

In this section we discuss a class of solitons of the type II string theories, which
turn out to be alternative descriptions of the D-branes introduced earlier.

5.1 Effective actions of type II string theories

The effective actions for the massless states of type IIA/B superstring theory are
the corresponding type IIA/B supergravity actions. Since we will be interested in
bosonic solutions of the field equations, we will only display the bosonic parts.
The effective action for the fields in the NS-NS sector is the same for both
theories. Moreover it is identical to the effective action of the bosonic string:

SNS-NS =
1

2κ2

∫
d10x
√
−Ge−2Φ

(
R+ 4∂µΦ∂

µΦ− 1
12
HµνρH

µνρ
)
. (224)

The R-R sectors consist of antisymmetric tensor gauge fields. For an (n − 1)
form gauge potential A(n−1) with field strength F(n) = dA(n−1) the generalized
Maxwell action is

S ' −1
2

∫
F(n) ∧ ?F(n) = −1

2

∫
dDx
√
−G|F(n)|2 , (225)

where

|F(n)|2 :=
1

n!
Fµ1···µnF

µ1···µn . (226)

In the effective R-R actions one has in addition Chern-Simons terms.
In the IIA theory the R-R fields are A(1) and A(3). It is convenient to define

a modified field strength

F̃(4) = dA(3) −A(1) ∧H(3) , (227)

where H(3) = dB(2) is the field strength of the antisymmetric NS-NS tensor field.
Then the R-R action is the sum of a Maxwell and a Chern-Simons term:

SIIA
R-R = − 1

4κ2

∫
d10x
√
−G

(
|F(2)|2 + |F̃(4)|2

)

− 1

4κ2

∫
B(2) ∧ F(4) ∧ F(4) . (228)

The massless R-R fields of IIB string theory are A(0), A(2) and A(4). Again
it is useful to define modified field strengths

F̃(3) = F(3) − A(0) ∧H(3) ,

F̃(5) = F(5) − 1
2A(2) ∧H(3) + 1

2B(2) ∧F(3) . (229)

Since F̃(5) must be selfdual, the kinetic term (225) vanishes and does not give a
field equation. The simplest way out is to impose the selfduality condition only
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at the level of the equation of motion. Then one can use the action

SIIB
R-R = − 1

4κ2

∫
d10x
√
−G

(
|F(1)|2 + |F̃(3)|2 + 1

2 |F̃(5)|2
)

− 1

4κ2

∫
A(4) ∧H(3) ∧ F(3) . (230)

The correct covariant equations of motion result when varying the action and
imposing selfduality of F̃(5) afterwards.

5.2 R-R charged p-brane solutions

The type II effective actions have static solutions which are charged under the R-
R gauge fields. The solution charged under A(p+1) has p translational isometries.
From far it looks like a p-dimensional membrane and therefore one calls it a p-
brane solution or just a p-brane.

For 0 ≤ p ≤ 2 the solution has the following form:

ds2
Str = H−1/2(r)

(
−dt2 + (dx1)2 + · · ·+ (dxp)2

)

+H1/2(r)
(
(dxp+1)2 + · · ·+ (dx9)2

)
,

F(p+2) = dH−1(r) ∧ dt∧ dx1 ∧ · · · ∧ dxp ,
e−2Φ = H(p−3)/2(r) , (231)

where
r2 = (xp+1)2 + · · ·+ (x9)2 (232)

and H(r) is a harmonic function of the transverse coordinates (xp+1, . . . , x9):

∆⊥H =

9∑

i=p+1

∂i∂iH = 0 . (233)

We require that the solution becomes asymptotically flat at transverse infinity
and normalize the metric such that it approaches the standard Minkowski metric.
This fixes

H(r) = 1 +
Qp
r7−p . (234)

Qp measures the flux of the R-R field strength at transverse infinity. A convenient
way to parametrize it is:

Qp = Npcp , cp =
(2π)7−p

(7− p)ω8−p
(α′)

7−p
2 gS . (235)

Np is a constant, which a priori is real, but will turn out later to be an integer.
Therefore cp is the fundamental quantum of R-R p-brane charge. ωn is the
volume of the n-dimensional unit sphere,

ωn =
2π(n+1)/2

Γ
(
n+1

2

) . (236)
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Besides geometrical factors, Qp contains the appropriate power of α′ to give it
the correct dimension. gS is the dimensionless string coupling. Note that in the
above solution for the dilaton we have subtracted the dilaton vacuum expectation
value from Φ.

The metric used in this solution is the string frame metric, as indicated by
the subscript. (The effective action was also given in the string frame.) Using
(133) we can find the corresponding Einstein frame metric:

ds2
Einst = −H p−7

8 (r)
(
−dt2 + (dx1)2 + · · ·+ (dxp)2

)

+H
p+1

8 (r)
(
(dxp+1)2 + · · ·+ (dx9)2

)
. (237)

The above solution is most easily understood as a generalization of the ex-
treme Reissner-Nordstrom solution of four-dimensional Einstein-Maxwell theory.
Let us review its properties.

The isometry directions t, x1, . . . , xp are called longitudinal or world-volume
directions, the others transverse directions. Since the solution has translational
invariance, it has infinite mass, as long as one does not compactify the world-
volume directions. However, the tension Tp (the energy per world volume) is
finite. Since the solution becomes asymptotically flat in the transverse directions,
the tension can be defined by a generalization of the ADM construction of general
relativity. Concretely, the tension of a p-brane can be extracted from the Einstein
frame metric by looking at the leading deviation from flatness:

g00 = −1 +
16πG

(D)
N Tp

(D − 2)ωD−2−prD−3−p + · · · = −1 +
16πG

(10)
N Tp

8ω8−pr7−p + · · · (238)

The Schwarzschild radius rS of the brane is:

rD−3−p
S =

16πG
(D)
N Tp

(D − 2)ωD−2−p
. (239)

Since there is only one independent dimensionful constant, which we take to

be α′, we can express the ten-dimensional Newton constant G
(10)
N in terms of α′

and the dimensionless string coupling gS :

G
(10)
N = 8π6(α′)4g2

S . (240)

Since Newton’s constant is related to the physical gravitational coupling by

8πG
(D)
N = κ2

(D),phys (241)

in any dimension, this corresponds to replacing the conventional choices (136,

138) by κ2 !
= 64π7(α′)4 and κ2

phys = 64π7(α′)4g2
S .

Using (238) we can compute the tension of the p-brane solution (231):

Tp =
Np

gS(α′)
p+1

2 (2π)p
. (242)
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For r → 0 the solution (231) has a null singularity, that is a curvature
singularity which is lightlike and coincides with an event horizon. The p-brane
(231) is the extremal limit of a more general black p-brane solution, which has a
time-like singularity along a p-dimensional surface and a regular event horizon. In
the extremal limit, the singularity and the even horizon coincide. This behaviour
is similar to the Reissner-Nordstrom black hole. The behaviour of the black p-
brane in the extremal limit is slightly more singular, because for the extremal
Reissner-Nordstrom black hole singularity and horizon do not coinicide. But
since the singularity of the p-brane solution is not naked, we can think about
it as describing an extended charged black hole. The charge (density) carried
under the gauge field A(p+1) can be read off from the asymptotic behaviour of
the field strength,

F01...p '
Qp
r8−p . (243)

Instead of Qp we can define use a redefined charge, which has the dimension of
a tension:

Q̂p =
1

2κ2

∮

S8−p

?F(p+2) , (244)

which gives

Q̂p = Np
µp
gS

, µp =
1

(2π)p(α′)
p+1

2

. (245)

We now observe that tension and charge are equal:

Tp = Q̂p . (246)

More generally, black p-brane solutions satisfy the Bogomol’nyi bound

Tp ≥ Q̂p . (247)

This inequality guarantees the existence of an event horizon, just as for charged
black holes.

A feature that distinguishes our solutions from Reissner-Nordstrom type
black holes is that one also has a non-trivial scalar, the dilaton.

The extremal solution has a multicentered generalization. When replacing
H(r) by

H(x⊥) = 1 +

N∑

i=1

|Q(i)
p |

|x⊥ − x(i)
⊥ |7−p

, (248)

one still has a static solution, provided that all the charges Q
(i)
p have the same

sign. Here x⊥ = (xp+1, . . . , x9) and x
(i)
⊥ is the position of (the horizon of) the

i-th p-brane. It is remarkable that the solution is static for arbitrary positions

x
(i)
⊥ , because this implies that the gravitational attraction and the ‘electrostatic’

repulsion cancel for arbitrary distances. (If one flips the sign of one charge, one
has to flip the corresponding tension, which makes the solution unphysical.)
Systems of extremal Reissner-Nordstrom black holes have the same properties.
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The corresponding multi-centered solutions are known as Majumdar-Papapetrou
solutions.

The remarkable properties of these (and other related) solutions can be un-
derstood in terms of supersymmetry. The solution (231) is a supersymmetric
solution, i.e., it has Killing spinors. Killing spinors are the supersymmetric ana-
logues of Killing vectors v(x), which satisfy

Lv(x) Ψ (x)|Ψ0(x) = 0 , (249)

where L is the Lie derivative. Here Ψ (x) collectively denotes all the fields, and
Ψ0(x) is the particular field configuration, which is invariant under under the
transformation generated by the vector field v(x). In supergravity theories one
can look for field configurations Ψ0(x) which are invariant under supersymmetry
transformations. From the action one knows the supersymmetry variations of all
the fields, δε(x)Ψ (x), where the spinor (field) ε(x) is the transformation parame-
ter. Then one can plugg in a given field configuration Ψ0(x) and check whether
the variation vanishes for a specific choice of ε(x):

δε(x) Ψ (x)|Ψ0(x) = 0 . (250)

Since the supersymmetry transformations involve derivatives of ε(x), this is a
system of first order differential equation for ε(x). Solutions of (250) are called
Killing spinors.

The type II superalgebras have 32 independent real transformation param-
eters, which organize themselves into two Majorana-Weyl spinors εi(x). The
equation (250) fixes the space-time dependence of the εi(x). For the p-brane one
finds

εi(x) = g
1/4
tt (x)ε

(0)
i , (251)

where the constant Majorana-Weyl spinors ε
(0)
i , i = 1, 2 are related by

ε
(0)
2 = Γ 0 · · ·Γ pε(0)

1 . (252)

Since half of the components of the ε
(0)
i is fixed in terms of the other half, we

see that we have 16 independent solutions, i.e., 16 Killing spinors. The maximal
number of Killing spinors equals the number of sypersymmetry transformation
parameters, which is 32 in type II theory. Solutions with the maximal number of
Killing spinors are invariant under all supersymmetry transformations. They are
the analogues of maximally symmetric spaces in Riemannian geometry, which
by definition have as many isometries as flat space. One example of a maximally
supersymmetric solution of type II theory is flat ten-dimensional Minkowski
space. Here the Killing spinor equation is solved by all constant spinors. The
p-brane solution (231) has 16 Killing spinors, and only is invariant under half of
the supersymmetry transformations. Solutions with residual supersymmetry are
called BPS solutions, and solutions which preserve half of the supersymmetry
are called ‘ 1

2 BPS solutions’.
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The Bogomol’nyi bound (247) can be shown to follow from supersymmetry.
In this context it is then also called the BPS bound. In theories where the
supersymmetry algebra contains central charges, (247) is a relation between the
mass or tension of a state and its central charge. In our case the charges carried
under the R-R gauge fields are such central charges. The representations of the
supersymmetry algebra fall into distinct classes, depending on whether they
saturate the bound or not. Representations which saturate the bound are called
short representations or BPS representations. Since BPS states have the minimal
tension possible for their charge they are absolutely stable. This minimization
of energy also accounts for the existence of static multicentered solutions.

So far we restricted ourselves to p-branes solutions with 0 ≤ p ≤ 2. There is
a second class, where the solution (231) and the other formulae take the form
form, but with p replaced by p̃ with 4 ≤ p̃ ≤ 6. The field strength Fp̃+2 in
equation (231) is the ?–dual of Fp+2 = dAp+1. Since Fp̃+2 = ?Fp+2 implies
p+ p̃+ 4 = D = 10, each of the so-called electric solutions with p = 0, 1, 2 has a
dual magnetic solution with p̃ = 6, 5, 4.

There is also a solution with p = 3. The five-form gauge field is selfdual,
and the solution for F5 is from (231) by adding the ?-dual of the right hand
side of the equation. The solutions for the metric and for the dilaton are not
modified. Note that for p = 3 the dilaton is constant. The three-brane solution
is not singular at r = 0. Instead one has a regular horizon, and the geometry
is asymptotic to AdS5 × S5. This geometry has 32 Killing spinors and is fully
supersymmetric. The interior of this geometry is isometric to the exterior, in
particular it is non-singular. Since the field strength is selfdual, the three-brane
carries an equal amount of electric and magnetic charge (it is not only dyonic,
carrying both electric and magnetic charge, but selfdual).

Electric and magnetic charges are subject to a generalized Dirac quantization
condition, which can be found by generalizing either the Dirac string or the Wu-
Yang construction known from four-dimensional magnetic monopoles. In our
conventions the condition is:

(2π)7g2
S(α′)4 Q̂pQ̂p̃ ∈ 2πZ . (253)

This fixes the possible magnetic charges in terms of the electric charges. Using
T-duality and S-duality one can fix the electric and magnetic charge units. T-
duality is a symmetry that can be proven to hold in string perturbation theory.
It acts on our solutions by transforming p-branes into (p±1)-branes. In this way
one can relate the tensions and charges of all R-R charged p-branes. S-duality
is a conjectured non-perturbative symmetry of IIB string theory. It relates the
R-R one-brane to a solution which describes the fundamental IIB string. This
way one relates the fundamental unit of R-R one-brane charge to the charge
carried by a fundamental IIB string under the NS-NS B-field. The resulting R-
R p-brane charge units are given by µp (245) and satisfy Dirac quantization
in a minimal way: µpµp̃(2π)7(α′)4 = 2π. Thus Np in (245) is an integer which

counts multiples of the fundamental R-R charge. When using Qp instead of Q̂p
to measure charges then cp as defined in (235) is the unit charge.
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We now summarize the R-R charged p-brane solutions of type II string the-
ories:

Theory R-R potential electric sol. magnetic sol.

IIA A(1) p = 0 p = 6

IIB A(2) p = 1 p = 5

IIA A(3) p = 2 p = 4

IIB A(4) p = 3 (selfdual)

(254)

The R-R p-brane solutions have properties which qualify them as solitons:
They are static, stable (BPS bound), regular (no naked singularities) solutions
of the field equations and have finite tension. The three-brane has an addi-
tional property familiar from two-dimensional solitons: it interpolates between
two vacua, Minkowski space at infinity and AdS5×S5 at the event horizon. (We
call AdS5×S5 a vacuum, because it is maximally supersymmetric.) For solitons
one expects that the tension depends on the coupling as T ∼ 1

g2 . This is, for
example, what one finds for monopoles in Yang-Mills-Higgs theories. In this re-
spect the R-R p-branes show an unusal behaviour as their tension is proportional
to the inverse coupling, Tp ∼ 1

gS
, see (242). This behaviour is in between the

one expected for a soliton T ∼ 1
g2
S

and the one of a fundamental string, T ∼ 1,

which is independent of the coupling.
One clue to this unexpected behaviour is that the fundamental coupling of

three closed strings is – up to a constant – the square of the coupling of three open
strings, see (141). Thus a R-R p-brane has the coupling dependence expected
for a soliton in a theory of open strings. The type II string theories, as defined
so far, are theories of oriented closed strings. Consider now an extension where
one adds to the theory open strings with Dirichlet boundary conditions along p
directions. If we manage to identify the corresponding D-p-branes with the R-R
p-brane solutions, this provides a description of type II string theory in these
solitonic backgrounds.

5.3 p-branes and D-branes

Surprising as it may be, the identification of R-R p-branes and D-branes can
be supported by convincing arguments. Let us compare the known properties of
these objects. R-R p-branes preserve half of supersymmetry and can be located
at arbitrary positions in transverse space. The same is true for D-branes with p =
0, 2, 4, 6 in type IIA and p = 1, 3, 5 in type IIB string theory. The corresponding
Killing spinors are constant and are given by (252). The translational symmetries
trivially agree. These D-p-branes are BPS states and since the central charge
associated with a BPS state with Killing spinors (252) is precisely the R-R
charge, they must carry R-R charge. A crucial quantitative test is to compute
the R-R charge carried by a single D-p-brane. To do so one has to compute the
force due to exchange of R-R gauge fields between to D-p-branes.



Introduction to String Theory 61

One first computes an annulus diagram with Dirichlet boundary conditions
on both boundaries. This diagram can be factorized in two ways: either as a sum
over intermediate open strings, or a as a sum over intermediate closed strings.
In the closed string channel the diagram can be visualized as a cylinder (closed
string propagator) ending on the two D-branes. In this picture it is obvious that
one measures the total force between the D-branes resulting from the exchange
of arbitrary closed string states. This amplitude vanishes, which tells us that the
total force vanishes, as expected for a BPS state. To extract the long range part of
the force one takes the two D-branes to be far apart and expands the amplitudes
in the masses of the closed string states. Then the exchange of massless states
dominates. In detail one finds an attractive force due to graviton and dilaton
exchange which is cancelled exactly by a repulsive force due to exchange of rank
(p + 1) tensor gauge fields. The static R-R forces correspond to a generalized
Coulomb potential,

VR-R =
Qp

rD−p−3
=

Qp
r7−p . (255)

It turns out that one D-p-brane carries precisely one unit of R-R p-brane charge,

Qp = cp =
(2π)7−p

(7− p)ω8−p
(α′)

7−p
2 gS . (256)

This shows that one should identify a R-R p-brane of charge Npcp with a system
of Np D-p-branes. People also have computed various other quantities, including
the low energy scattering, absorption and emission (encoded in the so-called
greybody factors) of various strings states on R-R p-branes and D-p-branes, and
the low velocity interactions between p-branes and D-branes. All these test have
been successful.

Since p-branes are extended supergravity solutions with non-trivial space-
time metric, whereas D-branes are defects in flat space-time, we should of course
be more precise in what we mean by identification. We have seen that both
kinds of objects have the same charges, tensions and low energy dynamics. They
have the same space-time and supersymmetries and saturate the same BPS
bound. Thus they seem to represent the same BPS state of the theory, but in
different regions of the parameter space. A description in terms of Np D-branes
works within string perturbation theory. In presence of D-branes the effective
string loop counting parameter is NpgS instead of gS. The reason is as follows:
as we have seen in section 3 each boundary component gives rise to a factor
gS in scattering amplitudes. In a background with D-branes every boundary
component can end on each of the Np D-branes and therefore gS always occures
multiplied withNp. Since we are inerested in describing macroscopic objects with
large Np, we need to impose that NpgS is small in order to apply perturbation
theory.

Thus we are in the perturbative regime if

NpgS � 1 . (257)
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Using the Schwarzschild radius (239) we see that this equivalent to

rS �
√
α′ , (258)

which means that the gravitational scale is much smaller then the string scale.
This explains why one does not see any backreaction of the D-branes on the
space-time in string perturbation theory. D-branes have a finite tension and
couple to gravity, but the deviation from flat space caused by backreaction is
only seen at scales of the order rS . The only length scale occuring in string
perturbation theory is

√
α′ and this is the minimal scale one can resolve when

probing D-branes with strings.
The R-R p-branes are solutions of the type II effective actions. These are

valid at string tree level and therefore we need to be in the perturbative regime
(of the closed string sector), gS < 1. Morover we have neglected α′-corrections,
which become relevant when the curvature, mesured in string units, becomes
large. The condition for having small curvature is

rS �
√
α′ , (259)

or, equivalently
NpgS � 1 (260)

which is opposite to (257, 258). The p-brane solution is valid in the regime of
the low energy effective field theory, where stringy effects can be neglected.

Between the two regimes one can interpolate by changing the string coupling
gS, while keeping the charge Np fixed. In general it is not clear that one can
believe in the results of such interpolations. But in our case we know that the
p-brane/D-brane is the object of minimal tension for the given charge. As a
BPS state it sits in a special BPS multiplet. There is no mechanism compatible
with supersymmetry through which this state could decay or become a non-BPS
state. Besides these arguments, various quantities have been computed in both
regimes and agree with one another.

In string perturbation theory one also has D-branes with p > 6. Therefore
one might wonder whether the corresponding objects also exist as p-branes.
The answer is yes, though these so-called large branes have somewhat different
properties than the other branes. For example the seven- and eight-brane are
not flat in the transverse dimensions. The reason is that there are no harmonic
functions in transverse space that become constant at infinity (this is similar to
black holes in D < 4). The seven-brane carries magnetic charge under the IIB R-
R scalar A. Its electric partner is a (−1)-brane, the D-instanton. The eight-brane
does not have a local source. It is a domain wall solution which separates regions
where the IIA mass parameter (which is similar to a cosmological constant) takes
different values. The nine-brane is flat space.

5.4 Further reading

The type II effective actions and the corresponding p-brane solutions can be
found in the book [3]. For extensive reviews of BPS-branes in supergravity and
string theory, see [11,47,13,12].
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6 Outlook

In this final section we give an outlook on more recent developments.

6.1 Eleven-dimensional M-theory

Besides the R-R charged p-branes, type II string theories contain various other
BPS solutions. Since all these carry central charges of the supersymmetry alge-
bra, they can be constructed systematically. The other string theories also have
their BPS solitons. Combining perturbative string theory with the knowledge
about the BPS states one can show that the strong coupling behaviour of any of
the five string theories can be described consistently by a dual theory. Moreover,
one can interrelate all five superstring theories by such string dualities. These
dualities have not been fully proven yet, but one has compared various accessible
quantities and all these tests have been successful. The dualities give a coherent
picture where all perturbative string theories are limits of one single underlying
theory.

This is by now a huge subject, which deserves a separate set of lectures.
Here we will only illustrate it by reviewing Witten’s analysis [18] of the strong
coupling behaviour of type IIA string theory. Consider the spectrum of finite
mass objects in IIA string theory. It starts with the massless IIA supergravity
multiplet, then comes an infinite series of excited string states with masses (198)

α′M2 ∼ N , (261)

where N = 1, 2, . . .. As further finite mass objects the theory contains states
with N0 D-0-branes, with masses (242)

α′M2 ∼ N0

gS
. (262)

(One can show that there are no bound states at threshold, so the states
with N0 > 1 are N0-particle states.) In the perturbative regime, gS � 1, the
D-0-branes are very heavy. But when extrapolating to strong coupling, gS →∞,
they become much lighter than any perturbative excitation. Since the D-0-branes
are BPS-states, we know that the mass formula (262) is not modified at strong
coupling. For very large gS one gets a quasi-continuum of D-0-brane states above
the massless supergravity multiplet. The collective modes of a D-0-brane sit in
a so-called short multiplet of the IIA supersymmetry algebra. Short multiplets
are special massive multiplets which saturate the BPS bound. They have less
components than generic massive multiplets. The multiplet of the D-0-brane is
a massive version of the supergravity multiplet: it has the same number of states
and the same spin content. Thus the low energy, strong coupling spectrum looks
like the Kaluza-Klein spectrum obtained by dimensional reduction of an eleven-
dimensional theory. The only candidate is eleven-dimensional supergravity, the
unique supersymmetric theory in eleven dimensions. When comparing the low
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energy, strong coupling spectrum of IIA string theory to the Kaluza-Klein spec-
trum of eleven-dimensional supergravity one finds that both agree, provided one
relates the string coupling to the radius R11 of the additional space dimension
according to,

g2
S =

(
R11

LPl

)3

(263)

and the string scale α′ to the eleven-dimensional Planck length LPl according
to:

α′ =
L3

Pl

R11
. (264)

The eleven-dimensional Planck length is defined through the eleven-dimensional
gravitational coupling by: κ2

(11) = L9
Pl. The relation between the eleven-dimensional

metric and the IIA string frame metric is:

ds2
11 = e2Φ/3

(
ds2

IIA, Str + (dx11 −Aµdxµ)2
)
, (265)

where Φ is the IIA dilaton and the Kaluza-Klein gauge field Aµ becomes the
R-R one form.

This indicates that the strong coupling limit of IIA string theory is an eleven-
dimensional theory, called M-theory. We do not have enough information to give
a complete definition, but we know that M-theory has eleven-dimensional su-
pergravity as its low energy limit. There must be additional degrees of freedom,
because eleven-dimensional supergravity is not consistent as a quantum theory.
Even without a complete definition of M-theory, one can find more evidence for
the duality. Eleven-dimensional supergravity has BPS solitons, which properly
reduce under dimensional reduction to the solitons of IIA string theory. In par-
ticular it has a supersymmetric membrane solution, called the M-2-brane, which
reduces to the fundamental IIA string.

6.2 String dualities

Let us now consider the other string theories. What about type IIB? The theory
has maximal supersymmetry, and its massless spectrum cannot be obtained by
dimensional reduction from a higher dimensional supersymmetric theory. The
only obvious possibility is that it is selfdual, which means that the strong and
weak coupling limits take the same form. One can show that inverting the cou-
pling, gS → g−1

S , preserves the form of the action and is a symmetry of the
BPS spectrum, if one simultanously interchanges the fundamental IIB string
with the D-1-brane. The strong coupling limit is again a IIB string theory, with
solitonic strings (D-1-branes) now playing the role of the fundamental objects.
The transformation relating weak and strong coupling is called S-duality and
works the same way as the Montonen-Olive duality in four-dimensional N = 4
Super-Yang-Mills theory. It has also been verified that S-duality is respected by
instanton corrections to string amplitudes.
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In a similar way, the strong coupling limit of the type I string is the heterotic
string with gauge group SO(32), and vice versa. We already saw that both theo-
ries have the same massless spectra, while the perturbative massive spectra and
interactions were different. Both theories cannot be selfdual (for example, invert-
ing the string coupling does not preserve the form of the effective action). But
once solitonic BPS states are included, the BPS spectra are equal and reversing
the coupling relates the two effective actions. The heterotic SO(32) string is
identified with the D-1-brane of type I.

What is left is to determine the strong coupling behaviour of the E8 × E8

heterotic string. This turns out to be again eleven-dimensional M-theory but this
time compactified on an interval instead of a circle. The interval has two ten-
dimensional boundaries, on which ten-dimensional vector multiplets with gauge
group E8 are located. This is also known as Horava-Witten theory.

Let us summarize the strong-coupling limits of the five supersymmetric string
theories:

String theory Strong coupling dual

IIA M-theory on circle

IIB IIB

I Heterotic SO(32)

Heterotic SO(32) I

Heterotic E8 × E8 M-theory on intervall

(266)

These dualities fall into two classes: either one has a relation between strong and
weak coupling. This is called S-duality. Or the coupling is mapped to a geomet-
ric datum, the radius of an additional dimension. There is a third type of string
duality, which leads to further relations between string theories. It is called T-
duality and relates weak coupling to weak coupling, while acting non-trivially
on the geometry. Since weak coupling is preserved, one can check that T-duality
is preserved in perturbation theory. By T-duality, the IIA string theory com-
pactified on a circle of radius R is equivalent to IIB string theory compactified
on a circle of inverse radius in string length units, R̃ = α′

R . One can take the
decompactification limit and obtain ten-dimensional IIB theory as the zero ra-
dius limit of compactified IIA theory and vice versa. In the same way one can
relate the two heterotic string theories. When acting on open strings, T-duality
exchanges Neumann boundary conditions with Dirichlet boundary conditions.
Therefore the T-dual of type I string theory is a theory containing open strings
which are coupled to D-branes. Though one might consider this as a solitonic
sector of type I theory, it is sometimes called type I’ theory. Let us summarize
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the T-duals of the five supersymmetric string theories:

String theory T-dual theory

IIA IIB

IIB IIA

I I’

Heterotic SO(32) Heterotic E8 ×E8

Heterotic E8 ×E8 Heterotic SO(32)

(267)

Finally there is yet another relation between IIB string theory and type
I. Type IIB has supersymmetric D-9-branes. These D-branes are space-filling,
they correspond to adding open strings with Neumann boundary conditions in all
directions. From our earlier discussion we know that the only consistent coupling
between open and closed superstrings is a non-oriented theory with gauge group
SO(32), namely type I. This can be realized as a configuration in IIB string
theory, where one adds 32 D-9-branes together with additional non-dynamical
objects, so-called orientifold planes, which reverse world-sheet parity. Type I
string theory is an ‘orientifold’ of type IIB. More generally, after introducing D-
branes and orientifolds, the type I, IIA and IIB string theories can be considered
as one theory in different backgrounds, which can be transformed into another by
T-duality and orientifolding. The type I’ theory, which we introduced above as
the T-dual of type I, can also be obtained as an orientifold of type IIA. Therefore
type I’ and type I theory are also called type IA and type IB.

Thus we see a bigger picture emerging once we include the BPS solitons of the
five supersymmetric string theories. All theories are related to one another and to
eleven-dimensional M-theory, and all strong couplings limits can be consistently
described. Therefore one believes today that the different string theories are
perturbative limits of one single underlying theory. Due to the role of D-branes
and since there is an eleven-dimensional limit, which cannot be described by
perturbative string theory, one prefers to call it M-theory.

6.3 Further reading.

String dualities and how they relate the five supersymmetric string theories to
one another are discussed in the book [3] and in various lectures notes. The paper
[48] gives a nice overview of the various dualities that we mentioned above. The
lectures [46] approache the subject from the side of effective supergravity theories
and string compactifications, whereas [47] is an introduction to supergravity
which also covers branes and string dualities. Other lecture notes on string theory
and string dualities are [49,50,51].

T-duality, which we only mentioned briefly in these lectures is reviewed at
length in [16]. The role of combined T- and S-dualities, then called U-dualities,
in string and M-theory compactifications is reviewed in [17]. D-branes and their
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applications are discussed in [52,53]. For a recent reviews of open strings, see
[19]. The lectures [14] are devoted to the description of BPS black holes in string
theory. They also cover the ten-dimensional brane solutions of type II string
theories and how they are related by T- and S-duality. BPS solutions of eleven-
dimensional supergravity (M-branes) and their relation to the brane solutions of
type II string theory are explained in [12].

6.4 Lightning review of further topics

Let us finally mention areas of active research together with some references,
which might be useful for the interested reader.

What is M-theory? So far M-theory was characterized by its relation to var-
ious perturbative string theories and through its eleven-dimensional low energy
limit, supergravity. The fundamental open question is how to define M-theory
without recourse to a particular background, perturbation theory or particular
limits. The recent developments show that besides strings also various branes
have to be taken into account as dynamical objects. The question which remains
open is which of these objects are truly fundamental. When considering all p-
branes as equally fundamental as strings, one immediately faces the problems
of how to quantize higher-dimensional objects. Among p-branes, strings (p = 1)
and particles particles (p = 0) are singled out, because their world-volume the-
ories are free as long as the background geometry is flat. This underlies the
power of string perturbation theory. The situation is completely different for
higher-dimensional branes (p > 1), where the world-volume theory is a compli-
cated interacting theory, even in a flat background. Therefore no analogon of
string perturbation theory for these objects has been developed so far. Alterna-
tively, one particular kind of brane might be the fundamental object, whereas
all others are obtained by dimensional reduction or as solitons. There are two
candidates for which concrete proposals have been made: the supermembrane
and the D-0-brane.

The supermembrane. Eleven-dimensional supergravity has a solitonic two-
brane solution, called the supermembrane or the M-2-brane. The three-dimension-
al action for the collective modes of this solution contains a Nambu-Goto term
and Wess-Zumino term, which describe the coupling to gravity and to the three-
form gauge field of eleven-dimensional supergravity. One can then try to treat
this membrane as a fundamental object in an analogous way to the fundamental
string in string theory. Moreover one can get back the IIA string by dimensional
reduction. Supermembrane theory is much more complicated then string theory,
because the world-volume theory does not become free in a flat background, as
discussed above. Also note that there is no local Weyl invariance for p-branes
with p 6= 1. Therefore there is no conformal world volume action and no analogon
of the Polyakov formulation.
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At the WE-Haereus-Seminar, supermembrane theory was the subject of lec-
tures by Hermann Nicolai. A pedagogical introduction to the subject, which also
covers the relation to other approaches to M-theory is provided by his Trieste
lectures [55].

Matrix theory. In the matrix theory formulation of M-theory, also called
M(atrix) theory, the D-0-brane is the fundamental object. More precisely, there
is a conjecture due to Banks, Fischler, Shenker and Susskind [22], which claims
that eleven-dimensional M-theory in the infinite momentum frame is given ex-
actly by the limit N → ∞ of the supersymmetric U (N ) quantum mechanics
describing a system of N D-0-branes.

M(atrix) theory can be viewed as an alternative formulation of supermem-
brane theory, since the finite–N–M(atrix) model Hamiltonian is an approxima-
tion of the supermembrane Hamiltonian. In M(atrix) theory multi-membrane
states are described by clusters of D-0-branes. Conversely D-0-branes are con-
tained in supermembrane theory as Kaluza-Klein modes of the eleven-dimensional
supergravity multiplet, which consists of the zero mass states of the supermem-
brane. Besides [55], lectures on M(atrix) theory are [56,57,58].

Black holes. While the fundamental definition of M-theory remains to be
found, string theory and D-branes have been applied to a variety of problems
in gravity, field theory and particle physics. One of the most prominent applica-
tions is the description of black holes through D-branes, which elaborates on the
relation between D-branes and p-brane solutions discussed in section 5. Starting
from p-branes in ten dimensions one can obtain four-dimensional black holes by
dimensional reduction. Performing the same reduction with the corresponding
D-brane configuration, one gets a description of the system where the micro-
scopic degrees of freedom are known. This can be used to compute the entropy
of the black hole: one counts the number N of microstates, i.e., excitations of
the system, which belong to the same macrostate, i.e., the same total energy,
charge and angular momementum:

S = logN . (268)

In practice the statistical entropy N is evaluated asymptotically for very large
black hole mass.

The result can be compared to the Bekenstein-Hawking entropy of the black
hole, which is given in terms of the area A of the event horizon,

SBH =
A

4
. (269)

One finds that the two entropies agree, S = SBH, which confirms that the D-
brane picture correctly captures the microscopic degrees of freedom of the black
hole [23]. As mentioned above S is evaluated asymptotically, but we would like
to stress that the resulting S matches exactly with the Bekenstein-Hawking
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entropy. This is in contrast to other approaches, where both entropies have the
same dependence on paramaters, while the numerical prefactor of the statistical
cannot be determined precisely.

One can also compute and compare sub-leading contributions to both en-
tropies. Corrections to the statistical entropy have been computed for Calabi-
Yau compactifications of type II string theory and eleven-dimensional M-theory
[25,26], (see also [27]). These match precisely with corrections to the macroscopic
black hole entropy, which are due to higher curvature terms in the effective ac-
tion [28,29]. These higher curvature terms modify the entropy in two ways. The
first is an explicit modification of the black hole solution and, hence, of the
area A. The second is a modification of the area law (269). As pointed out by
R. Wald [24], the validity of the first law of black hole mechanics in presence
of higher curvature terms requires a modified definition of black hole entropy.
(The first law of black hole mechanics formulates the conservation of energy. It
expresses adiabatic changes of the mass to changes in terms of parameters of
the black hole solution.) Both effects, the explicit change of the solution and the
modified definition of the entropy, change the entropy in a complicated way, but
the combined correction is relatively simple and precisely matches the statistical
entropy. This is reviewed in [15].

Besides entropy, the D-brane picture has been used to compute Hawking
radiation and greybody factors (see [61,44] for review and references). This is
possible for branes which are close to the BPS limit. In the D-brane picture
one can compute the emission, absorption and scattering of closed string states
by a D-brane. Again one finds agreement with a semiclassical treatment of the
corresponding black hole solutions. Note, however, that the method only applies
to D-branes and p-branes which are close to the BPS limit. The generalization
to generic black holes remains an open problem, though various proposals have
been made. One idea, which applies to black holes without R-R charge is a
correspondence principle between black holes and fundamental strings [30,31].
The idea is that a black hole evaporates through Hawking radiation until its
size reaches the string scale where it converts into a highly excited fundamental
string. This is supported by the observation that the entropies of black holes and
fundamental strings of equal mass match precisely when the Schwarzschild radius
equals the string length. Another idea [32] is to use string dualities to map four-
(and five-)dimensional black holes to three-dimensional black holes (BTZ black
holes [33]). Three-dimensional gravity does not have local degrees of freedom,
because the action is a total derivative. If the space-time has boundaries one
gets boundary degrees of freedom which can be described by a two-dimensional
conformal field theory. Treating the horizon as a boundary, this can be used
to compute the statistical entropy of three-dimensional black holes [34]. The
dualities that one needs to connect these three-dimensional to four-dimensional
black holes are slightly more general then those mentioned so far. In particular
they change the asymptotic geometry of space-time, so that one can map a
higher-dimensional black hole to a lower-dimensional one (times an internal,
compact space). One can argue that these transformations do not change the
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thermodynamic properties. Moreover one finds explicitly that the Bekenstein-
Hawking entropy of the four-dimensional Schwarzschild black hole is matched by
the state counting of the dual three-dimensional black hole. A related approach
is to use dualities to map Schwarzschild black holes to brane configurations
[35]. Finally, the microscopic entropy of Schwarzschild black holes has also been
computed using Matrix theory, see [58] for review and references.

The most general and most promising approach to generic black holes is the
AdS-CFT correspondence [38,39,40]. This correspondence and its generalizations
relate D-dimensional gravitational backgrounds to (D − 1)–dimensional field
theories. One of the roots of this idea is the so-called holographic principle [36,37],
which claims that the physics beyond the horizon of a black hole can be described
in terms of a field theory associated with its horizon. The D-brane picture of
black holes can be viewed as a realization of this idea, because here the interior
region of the black hole has disappeared, while interactions of the exterior region
with the black hole are described as interactions between closed strings in the
bulk with open strings on the brane. A more general version of the holographic
principle is that gravity can always be described in terms of a lower dimensional
field theory. The AdS-CFT correspondence, which we briefly describe below, can
be viewed as an attempt to realize this idea.

More about black holes in string theory can be found in [14] and in other
reviews of the topic including [59,60,61,62,44,63,15,58] and section 14.8 of [3].

The AdS-CFT correspondence and its generalizations. The AdS-CFT
correspondence is another consequence of the relation between D-branes and
p-brane solutions. Its most simple version is obtained by considering a system
of N D-3-branes and taking the limit α′ → 0, while NgS and R/α′ are kept
fixed. Here gS is the string coupling and R the characteristic scale of separation
between the branes. In the D-brane picture gravity and massive string excitations
decouple and one is left with the effective theory of the massless open string
modes, which is a four-dimensional N = 4 supersymmetric U (N ) gauge theory
in the large N limit. The corresponding limit in the p-brane regime is the near
horizon limit, where the geometry takes the form AdS5 × S5. The low energy
excitations are described by supergravity on AdS5. This observation motivated
Maldacena’s conjecture [38]: five-dimensional supergravity on AdS5 is a dual
description of four-dimensional N = 4 supersymmetric U (N ) gauge theory, the
later being a conformal field theory. AdS5 has an asymptotic region which can be
identified with (the conformal compactification of) four-dimensional Minkowski
space. This is called the boundary, and the conformal field theory is located
there. One finds a correspondence between fields φ(x(5)) of the bulk supergravity
theory and operators O(x(4)) of the Yang-Mills theory on the boundary. (Here
x(5) are coordinates on the five-dimensional bulk and x(4) are coordinates on
the four-dimensional boundary.) A quantitative version of the conjecture, due
to Gubser, Klebanov, Polyakov [39] and Witten [40], states that the generating
functional for the correlators of operators O(x(4)) with sources φ0(x(4)) is given
by the partition function of the supergravity theory, evaluated in the background
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φ(x(5)) with boundary values φ(x5)|Boundary = φ0(x(4)), according to:

〈
e
∫
d4xφ0(x(4))O(x(4))

〉
= Z

(
φ(x(5))

)
. (270)

There are various generalizations of this basic form of the correspondence,
which relate other gravitational backgrounds to other gauge theories. One partic-
ular extension of the AdS-CFT correspondence relates five-dimensional domain
wall geometries to renormalization group flows in non-conformal gauge theories.
In this setup the coordinate transverse to the domain wall corresponds to the en-
ergy scale of the gauge theory [41,42]. More recently, maximally supersymmetric
gravitational wave backgrounds have moved to the center of interest [43].

Extensive reviews of the AdS-CFT correspondence can be found in [44] and
[45].

Brane worlds. D-branes provide a new option for model building in particle
physics. One can localize some or all matter and gauge fields of the standard
model on a three-brane, while gravity propagates in the higher-dimensional bulk.
Such models have the interesting feature that the size of the extra dimensions can
be quite large, even in the sub-mm range. Moreover one can have a fundamental
(higher-dimensional) Planck scale of 1 TeV, which provides a new approach
to the gauge hierarchy problem. A low gravitational scale of 1 TeV leads to
spectacular predictions, like the mass production of black holes at the LHC.
Therefore brane worlds have been a main activity in the string and particle
physics community over the last years. One should stress here that though TeV-
scale gravity is possible within string theory, it is not predicted.

There is a huge variety of brane world models, which range from phenomeno-
logical models to models with explicit realization in string or M-theory, see for ex-
ample [64,65,66,67,68,69]. In one variant, the so-called Randall-Sundrum model
(RS II model [68], to be precise), the extra dimensions are curved in such a way
that gravity is confined on the brane in a similar way as matter fields. This opens
the possibility of extra dimensions which a arbitrarily large, though invisible at
low energies.

At the WE-Haereus Seminar brane worlds were the subject of the lectures
given by I. Antoniadis and A. Barvinsky, while J. Gundlach reviewed tests of
Newton’s law at short distances. A nice review of mass scales and the possible
sizes of extra dimensions in string theory can be found in [20]. Experimental
signatures of large extra dimensions are discussed in [21]. One particular type of
brane worlds, which occure in Calabi-Yau compactifications of Horava-Witten
theory, is reviewed in [70]. The lectures [72] give an introductions brane worlds
and warped compactifications.

Compactifications and phenomenology. D-branes and p-branes have con-
siderably extended the framework of string compactifications, which aim to ex-
plaine how our four-dimensional world is embedded into the fundamental ten-
or eleven-dimensional theory. Whereas ten years ago string phenomenology was
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synonymous with the study of the heterotic E8×E8 string, compactified on com-
plex three-dimensional Calabi-Yau manifolds, one now has various other options
to consider. Besides brane worlds one can study compactifications where part of
the standard model particles are not string modes but descend from p-branes
wrapped on internal p-cycles. Switching on background fluxes of antisymmet-
ric tensor fields, one obtains warped compactifications, where the characteristic
length scale of four-dimensional space-time becomes dependent on the position
in the internal space. A particular class of non-perturbative IIB backgrounds
can be described purely geometrically in terms of so-called F-Theory.

The central problem of string compactifications is still the problem of vacuum
degeneracy. As we have seen, the vacuum expectation value of the dilaton is not
fixed at string tree level. In supersymmetric theories this holds to all orders in
perturbation theory. Similarly, string compactifications in general have several
scalar fields, called moduli, which parametrize the shape and size of the internal
manifold and enter into the couplings of the effective field theory. The vacuum
expectation values of these fields are not fixed, as long as supersymmetry is
unbroken. This ruins the predictive power that the theory has in principle, and
leads to continuous families of degenerate vacua. Once supersymmetry is broken
the moduli get fixed, but there is a number of issues to be addressed: one needs
to understand the dynamical mechanism behind supersymmetry breaking, which
requires to understand the theory non-perturbatively. The potential generated
for the dilaton and for the moduli should have stable vacua and no runaway
behaviour. One needs sufficently large masses or sufficiently small couplings for
the moduli to avoid contradiction with empirical data. Moreover, in string theory
supersymmetry is closely related to the absence of the tachyon, which one does
not want to reintroduce. One also wants that supersymmetry breaking occurs
at a specific scale, the most popular scenario being low energy supersymmetry
where the supersymmetric partners have masses of about 1 TeV. D-branes, p-
branes and other new developments have added a variety of new ways to address
these problems, but a definite solution remains to be found.

String compactifications on Calabi-Yau manifolds are reviewed in [71]. Lec-
tures on warped compactifications and brane worlds can be found in [72]. F-
theory is for example explained in [49]. For an introduction to string and M-
theory particle phenomenology, see for example [73,74].

Geometric and D-brane engineering, D-branes and non-commutative
field theory. In addition to the AdS-CFT correspondence, string theory has
lead to other new approaches to gauge theories and other field theories. In geo-
metric engineering [77] one starts from branes wrapped on cycles in an internal
space, which typically is a Calabi-Yau manifold, whereas in D-brane engineering
[78] one studies D-brane configurations in a non-compact space-time. In both
cases one takes a low energy limit (similar to the one discussed above in the
context of the AdS-CFT correspondence) to decouple gravity.

Another direction stimulated by string theory and D-branes is gauge theory
on non-commutative space-times. As mentioned in the lectures, the effective
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action for a D-brane is of Born-Infeld type. It has been argued that this can be
reformulated as a Yang-Mills theory on a non-commutative world volume, with
a deformation parameter which is determined by the bulk Bµν field of the closed
string sector [79].

Geometric engineering is reviewed in [75,76], while gauge theory on non-
commutative space-times is reviewed in [80]. For extensive lectures on D-branes,
see [52,53].

Cosmology. Whereas string compactifications ususally aim at finding four-
dimensional Minkowski space with a realistic particle spectrum from string the-
ory, one should of course try to do better. Cosmological solutions of string theory
should shed light on the issue of the initial singularity, describe an inflationary
phase (or an alternative mechanism which takes care of the problems of the old
hot big bang model), further describe the post-inflationary phase and explain
the smallness of the cosmological constant. These problems have been mostly
neglected by string theorists for a long time, but nowadays they find increasing
interest, due to both new cosmological data and new theoretical developments.
In particular branes have been invoked for either providing the mechanism for
inflation or for providing an alternative to inflation.

Reviews of string cosmology can be found in [81,82,83].

The challenge from de Sitter space. Since there is empirical evidence in
favour of a small, positive cosmological constant, there has been a considerable
interest in string theory in de Sitter space over the last few years. De Sitter
space is a challenge for several reasons. First, most successful applications of
string theory to gravity depend on supersymmetry, but supersymmetry is com-
pletely broken in presence of a positive cosmological constant. Second, de Sitter
space has cosmological horizons, and the perturbative formalism which works
for Minkowski space as explained in section 3 cannot be applied. Therefore de
Sitter space requires a significant step beyond that framework. For a review see
[54].

Tachyon condensation and string field theory. As observed several times
in these lectures, the appearence of tachyons is a generic feature of string theories
when there is no supersymmetry. Since the mass squared of a scalar particle is
given by the curvature of its potential at the stationary point one is expanding
around, this shows that one tries to expand the theory around a local maximum
of the potential. Depending on the global form of the potential, the theory might
be unstable, or it might be that the scalar field rolls to a minimum. This is
referred to as tachyon condensation.

Tachyons do not only occure in the groundstate of bosonic string theories,
but also in D-branes configurations which are not BPS states (non-BPS D-branes
systems are reviewed in [84]). Work starting with a paper by A. Sen [85] provided
strong evidence that tachyon condensation occurs in unstable non-BPS config-
urations of D-branes. Such systems have tachyonic open string states which
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condense. The resulting stable vacuum is the closed string vacuum, whereas the
D-branes have decayed and therefore open strings are absent. This work makes
use of string field theory, which for a long time was mostly neglected, because it
is very complicated and was believed of little practical use. The renewed interest
in string field theory might bring us one step forward towards a non-perturbative
and background-independent formulation of M-theory.
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